

PHP, MySQL® &
JavaScript®

A L L - I N - O N E

by Richard Blum

PHP, MySQL® & JavaScript® All-in-One For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. MySQL is a registered trademark of MySQL AB. JavaScript is a registered trademark of Oracle America,
Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with
any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE
IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018933793

ISBN 978-1-119-46838-7 (pbk); ISBN 978-1-119-46833-2 (ebk); ISBN 978-1-119-46837-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Book 1: Getting Started with Web Programming 5
CHAPTER 1:	 Examining	the	Pieces	of Web	Programming . 7
CHAPTER 2:	 Using	a	Web	Server . 27
CHAPTER 3:	 Building	a	Development	Environment . 51

Book 2: HTML5 and CSS3 . 71
CHAPTER 1: The Basics of HTML5 . 73
CHAPTER 2:	 The	Basics	of	CSS3 . 103
CHAPTER 3:	 HTML5	Forms . 135
CHAPTER 4:	 Advanced	CSS3 . 157
CHAPTER 5: HTML5 and Multimedia . 177

Book 3: JavaScript . 195
CHAPTER 1:	 Introducing	JavaScript . 197
CHAPTER 2:	 Advanced	JavaScript	Coding . 223
CHAPTER 3:	 Using	jQuery . 243
CHAPTER 4:	 Reacting	to	Events	with	JavaScript	and	jQuery . 263
CHAPTER 5:	 Troubleshooting	JavaScript	Programs . 283

Book 4: PHP . 301
CHAPTER 1:	 Understanding	PHP	Basics . 303
CHAPTER 2:	 PHP	Flow	Control . 325
CHAPTER 3:	 PHP	Libraries . 349
CHAPTER 4:	 Considering	PHP	Security . 375
CHAPTER 5:	 Object-Oriented	PHP	Programming . 395
CHAPTER 6:	 Sessions	and	Carts . 419

Book 5: MySQL . 443
CHAPTER 1:	 Introducing	MySQL . 445
CHAPTER 2:	 Administering	MySQL . 465
CHAPTER 3:	 Designing	and	Building	a	Database . 489
CHAPTER 4:	 Using	the	Database . 513
CHAPTER 5:	 Communicating	with	the	Database	from	PHP	Scripts 541

Book 6: Creating Object-Oriented Programs 561
CHAPTER 1:	 Designing	an	Object-Oriented	Application . 563
CHAPTER 2:	 Implementing	an	Object-Oriented	Application . 593
CHAPTER 3:	 Using	AJAX . 619
CHAPTER 4:	 Extending	WordPress . 651

Book 7: Using PHP Frameworks . 681
CHAPTER 1: The MVC Method . 683
CHAPTER 2:	 Selecting	a	Framework . 695
CHAPTER 3:	 Creating	an	Application	Using	Frameworks . 715

Index . 735

Table of Contents
INTRODUCTION . 1

About	This	Book .1
Foolish	Assumptions .2
Icons	Used	in	This	Book .3
Beyond	the	Book .3
Where	to	Go	from	Here .3

BOOK 1: GETTING STARTED WITH
WEB PROGRAMMING . 5

CHAPTER 1:	 Examining	the	Pieces	of Web	Programming 7
Creating	a	Simple	Web	Page .7

Kicking	things	off	with	the	World	Wide	Web . 8
Making	sense	of	markup	languages . 9
Retrieving	HTML	documents .10
Styling .14

Creating	a	Dynamic	Web	Page .17
Client-side	programming .19
Server-side	programming .21
Combining	client-side	and	server-side		programming 24

Storing	Content .25

CHAPTER 2: Using a Web Server . 27
Recognizing	What’s	Required . .27

The	web	server .28
The	PHP	server .29
The	database	server .30

Considering	Your	Server	Options .31
Using	a	web-hosting	company .32
Building	your	own	server	environment .33
Using	premade	servers .37

Tweaking	the	Servers .41
Customizing	the	Apache	Server .41
Customizing	the	MySQL	server .44
Customizing	the	PHP	server . .46

CHAPTER 3: Building a Development Environment 51
Knowing	Which	Tools	to	Avoid .51

Graphical	desktop	tools .52
Web-hosting	sites .52
Word	processors .53

Table of Contents v

vi PHP, MySQL & JavaScript All-in-One For Dummies

Working	with	the	Right	Tools .53
Text	editors .53
Program	editors .61
Integrated	development	environments .64
Browser	debuggers .67

BOOK 2: HTML5 AND CSS3 . 71

CHAPTER 1: The Basics of HTML5 . 73
Diving	into	Document	Structure .73

Elements,	tags,	and	attributes .73
Document	type .75
Page	definition .76
Page sections .78

Looking	at	the	Basic	HTML5	Elements .81
Headings .81
Text	groupings .82
Breaks .84

Marking	Your	Text .85
Formatting	text .85
Using	hypertext .86

Working	with	Characters .90
Character	sets .90
Special	characters .91

Making	a	List	(And	Checking	It	Twice) .92
Unordered	lists .92
Ordered	lists .93
Description	lists .95

Building	Tables .96
Defining	a	table .96
Defining	the	table’s	rows	and	columns .97
Defining	the	table	headings .99

CHAPTER 2: The Basics of CSS3 . 103
Understanding	Styles .103

Defining	the	rules	of	CSS3 .104
Applying	style	rules .110
Cascading	style	rules .111

Styling	Text .112
Setting	the	font .112
Playing	with	color .116

Working	with	the	Box	Model .119
Styling	Tables .121

Table	borders .122
Table	data .123

Positioning Elements .125
Putting	elements	in	a	specific	place .128
Floating elements .130

CHAPTER 3: HTML5 Forms . 135
Understanding	HTML5	Forms .135

Defining	a	form .136
Working	with	form	fields .137

Using	Input	Fields .138
Text	boxes .138
Password	entry .140
Check	boxes .141
Radio	buttons .142
Hidden	fields .143
File	upload .144
Buttons .145

Adding	a	Text	Area .146
Using	Drop-Down	Lists .147
Enhancing	HTML5	Forms .149

Data lists .149
Additional	input	fields .150

Using HTML5 Data Validation .154
Holding	your	place .154
Making	certain	data	required .155
Validating	data	types .155

CHAPTER 4: Advanced CSS3 . 157
Rounding	Your	Corners .157
Using	Border	Images . .159
Looking	at	the	CSS3	Colors .162
Playing	with	Color	Gradients .164

Linear	gradients .164
Radial	gradients .165

Adding	Shadows .166
Text	shadows .166
Box	shadows .167

Creating	Fonts .168
Focusing	on	font	files .169
Working	with	web	fonts .169

Handling	Media	Queries .171
Using the @media command .171
Dealing	with	CSS3	media	queries .172
Applying	multiple	style	sheets .175

Table of Contents vii

viii PHP, MySQL & JavaScript All-in-One For Dummies

CHAPTER 5: HTML5 and Multimedia . 177
Working	with	Images .177

Placing images .178
Styling	images .179
Linking	images .181
Working	with	image	maps .182
Using HTML5 image additions .183

Playing	Audio .185
Embedded	audio .185
Digital	audio	formats .186
Audio	the	HTML5	way .188

Watching	Videos .190
Paying	attention	to	video	quality . .190
Looking	at	digital	video	formats .191
Putting	videos	in	your	web	page .192

Getting	Help	from	Streamers .194

BOOK 3: JAVASCRIPT . 195

CHAPTER 1: Introducing JavaScript . 197
Knowing	Why	You	Should	Use	JavaScript .197

Changing	web	page	content .198
Changing	web	page	styles .198

Seeing	Where	to	Put	Your	JavaScript	Code .199
Embedding	JavaScript .199
Using	external	JavaScript	files .203

The	Basics	of	JavaScript .203
Working	with	data .204
Data	types .205
Arrays	of	data .206
Operators .207

Controlling	Program	Flow .209
Conditional statements .209
Loops .216

Working	with	Functions .220
Creating	a	function .221
Using a function .222

CHAPTER 2: Advanced JavaScript Coding . 223
Understanding	the	Document	Object	Model .223

The	Document	Object	Model	tree .224
JavaScript	and	the	Document	Object	Model 226

Finding	Your	Elements .233
Getting	to	the	point .233
Walking	the	tree .235

Working	with	Document	Object	Model	Form	Data 238
Text	boxes .238
Text	areas .239
Check	boxes .240
Radio	buttons .241

CHAPTER 3: Using jQuery . 243
Loading	the	jQuery	Library .244

Option	1:	Downloading	the	library	file	to your	server 245
Option	2:	Using	a	content	delivery	network 246

Using	jQuery	Functions . .246
Finding Elements .247
Replacing	Data .250

Working	with	text .250
Working	with	HTML .252
Working	with	attributes .253
Working	with	form	values .253

Changing	Styles .254
Playing	with	properties .254
Using	CSS	objects .256
Using	CSS	classes .257

Changing	the	Document	Object	Model .259
Adding a node .259
Removing	a	node .260

Playing	with	Animation .261

CHAPTER 4: Reacting to Events with JavaScript and jQuery . . . 263
Understanding	Events .263

Event-driven	programming .264
Watching	the	mouse .264
Listening	for	keystrokes .265
Paying	attention	to	the	page	itself .266

Focusing	on	JavaScript	and	Events .267
Saying	hello	and	goodbye .267
Listening	for	mouse	events .269
Listening	for	keystrokes .273
Event	listeners .275

Looking	at	jQuery	and	Events .276
jQuery	event	functions .276
The	jQuery	event	handler .280

Table of Contents ix

x PHP, MySQL & JavaScript All-in-One For Dummies

CHAPTER 5: Troubleshooting JavaScript Programs 283
Identifying	Errors .283
Working	with	Browser	Developer	Tools .285

The	DOM	Explorer .286
The Console .287
The	Debugger .290

Working	Around	Errors .295

BOOK 4: PHP . 301

CHAPTER 1: Understanding PHP Basics . 303
Seeing	the	Benefits	of	PHP .303

A	centralized	programming	language .304
Centralized	data	management .304

Understanding	How	to	Use	PHP .305
Embedding	PHP	code .305
Identifying	PHP	pages .306
Displaying	output .307
Handling	new-line	characters .309

Working	with	PHP	Variables .310
Declaring	variables .311
Seeing	which	data	types	PHP	supports .312
Grouping	data	values	with	array	variables 315

Using	PHP	Operators .317
Arithmetic	operators .317
Arithmetic	shortcuts .318
Boolean	operators .319
String	operators .320

Including Files .320
The	include()	function .320
The	require()	function .323

CHAPTER 2: PHP Flow Control . 325
Using	Logic	Control .325

The if statement .326
The else statement .328
The elseif statement .328
The	switch	statement .330

Looping .331
The	while	family .331
The	for	statement .333
The	foreach	statement .334

Building	Your	Own	Functions .336
Working	with	Event-Driven	PHP .339

Working	with	links .339
Processing	form	data .343

CHAPTER 3: PHP Libraries . 349
How	PHP	Uses	Libraries .349

Exploring	PHP	extensions .350
Examining the PHP extensions .351
Including extensions .353
Adding additional extensions .354

Text Functions .354
Altering	string	values . .354
Splitting	strings .356
Testing	string	values .359
Searching	strings .360

Math Functions .361
Number	theory .361
Calculating	logs	and	exponents .362
Working	the	angles .363
Hyperbolic	functions .364
Tracking	statistics .364

Date and Time Functions .365
Generating	dates .365
Using	timestamps .367
Calculating dates .368

Image-Handling	Functions .369

CHAPTER 4: Considering PHP Security . 375
Exploring	PHP	Vulnerabilities .375

Cross-site	scripting .376
Data	spoofing .379
Invalid	data .380
Unauthorized	file	access . .382

PHP	Vulnerability	Solutions .384
Sanitizing	data .384
Validating data .389

CHAPTER 5: Object-Oriented PHP Programming 395
Understanding	the	Basics	of	Object-Oriented	Programming 395

Defining	a	class .396
Creating	an	object	instance .397

Using Magic Class Methods .401
Defining	mutator	magic	methods .401
Defining	accessor	magic	methods .403
The	constructor .406

Table of Contents xi

xii PHP, MySQL & JavaScript All-in-One For Dummies

The destructor .407
Copying objects .408
Displaying objects .408

Loading Classes .409
Extending Classes .414

CHAPTER 6: Sessions and Carts . 419
Storing Persistent Data .419

The purpose of HTTP cookies .420
Types of cookies .421
The anatomy of a cookie .422
Cookie rules .424

PHP and Cookies .424
Setting cookies .424
Reading cookies .426
Modifying and deleting cookies .428

PHP and Sessions .430
Starting a session . .431
Storing and retrieving session data .431
Removing session data .435

Shopping Carts .436
Creating a cart .436
Placing items in the cart .437
Retrieving items from a cart .437
Removing items from a cart .438
Putting it all together .438

BOOK 5: MYSQL . 443

CHAPTER 1: Introducing MySQL . 445
Seeing the Purpose of a Database .445

How databases work .446
Relational databases .449
Database data types .451
Data constraints .451
Structured Query Language .452

Presenting MySQL .454
MySQL features .454
Storage engines .456
Data permissions .457

Advanced MySQL Features .458
Handling transactions .458
Making sure your database is ACID compliant 459
Examining the views .461

Working	with	stored	procedures . .462
Pulling	triggers .463
Working	with	blobs .463

CHAPTER 2: Administering MySQL . 465
MySQL	Administration	Tools .465

Working	from	the	command	line .466
Using	MySQL	Workbench .470
Using	the	phpMyAdmin	tool .475

Managing	User	Accounts .477
Creating	a	user	account .477
Managing	user	privileges .481

CHAPTER 3: Designing and Building a Database 489
Managing	Your	Data .489

The	first	normal	form .490
The	second	normal	form .491
The	third	normal	form .491

Creating	Databases .492
Using	the	MySQL	command	line .492
Using	MySQL	Workbench .495
Using	phpMyAdmin .497

Building	Tables .500
Working	with	tables	using	the	command-line	interface 500
Working	with	tables	using	Workbench .505
Working	with	tables	in	phpMyAdmin .508

CHAPTER 4: Using the Database . 513
Working	with	Data .513

The	MySQL	command-line	interface .514
The	MySQL	Workbench	tool .519
The	phpMyAdmin	tool .522

Searching	for	Data .524
The	basic	SELECT	format .525
More	advanced	queries .527

Playing	It	Safe	with	Data .531
Performing	data	backups .532
Restoring	your	data .538

CHAPTER 5: Communicating with the Database from PHP
Scripts . 541
Database	Support	in	PHP .541
Using	the	mysqli	Library .543

Connecting	to	the	database .544
Closing the connection .545

Table of Contents xiii

xiv PHP, MySQL & JavaScript All-in-One For Dummies

Submitting	queries .546
Retrieving	data .547
Being	prepared .549
Checking	for	errors .551
Miscellaneous functions .553

Putting	It	All	Together .554

BOOK 6: CREATING OBJECT-ORIENTED PROGRAMS 561

CHAPTER 1: Designing an Object-Oriented Application 563
Determining	Application	Requirements .563
Creating	the	Application	Database .565

Designing	the	database .565
Creating	the	database .568

Designing	the	Application	Objects .571
Designing	objects .571
Coding	the	objects	in	PHP .573

Designing	the	Application	Layout .579
Designing	web	page	layout .580
The	AuctionHelper	page	layout .581

Coding	the	Website	Layout .582
Creating	the	web	page	template .582
Creating	the	support	files .587

CHAPTER 2: Implementing an Object-Oriented Application . . . 593
Working	with	Events .593
Bidder	Object	Events .595

Listing	bidders .595
Adding	a	new	bidder .603
Searching	for	a	bidder .605

Item	Object	Events .605
Listing items .606
Adding	a	new	item .611
Searching	for	an	item .614

Logging	Out	of	a	Web	Application .614
Testing	Web	Applications .616

CHAPTER 3: Using AJAX . 619
Getting	to	Know	AJAX .619
Communicating	Using	JavaScript .621

Considering	XMLHttpRequest	class	methods 622
Focusing	on	XMLHttpRequest	class	properties 623
Trying	out	AJAX .625

Using	the	jQuery	AJAX	Library .629
The	jQuery	$.ajax()	function .629
The	jQuery	$.get()	function . .633

Transferring	Data	in	AJAX .635
Looking	at	the	XML	standard .635
Using	XML	in	PHP .636
Using	XML	in	JavaScript .640

Modifying	the	AuctionHelper	Application .643

CHAPTER 4: Extending WordPress . 651
Getting	Acquainted	with	WordPress .651

What	WordPress	can	do	for	you .652
How	to	run	WordPress .653
Parts	of	a	WordPress	website .654

Installing	WordPress .655
Downloading	the	WordPress	software .655
Creating	the	database	objects .656
Configuring	WordPress .658

Examining	the	Dashboard .662
Using	WordPress .664
Exploring	the	World	of	Plugins .669

WordPress	APIs .670
Working	with	plugins	and	widgets .671

Creating	Your	Own	Widget .674
Coding	the	widget .674
Activating	the	widget	plugin .676
Adding	the	widget .677

BOOK 7: USING PHP FRAMEWORKS . 681

CHAPTER 1: The MVC Method . 683
Getting	Acquainted	with	MVC .683

Exploring	the	MVC	method .684
Digging	into	the	MVC	components .686
Communicating in MVC .690

Comparing	MVC	to	Other	Web	Models .691
The MVP method .692
The MVVM method .692

Seeing	How	MVC	Fits	into	N-Tier	Theory .693
Implementing	MVC .694

Table of Contents xv

xvi PHP, MySQL & JavaScript All-in-One For Dummies

CHAPTER 2: Selecting a Framework . 695
Getting	to	Know	PHP	Frameworks .695

Convention	over	configuration .696
Scaffolding .698
Routing .699
Helper	methods .700
Form	validation .700
Support	for	mobile	devices .700
Templates .701
Unit testing .701

Knowing	Why	You	Should	Use	a	Framework .702
Focusing	on	Popular	PHP	Frameworks .704

CakePHP .704
CodeIgniter .705
Laravel .707
Symfony .708
Zend	Framework .709

Looking	At	Micro	Frameworks .710
Lumen .710
Slim .711
Yii .713

CHAPTER 3: Creating an Application Using Frameworks 715
Building	the	Template .715

Initializing	the	application .716
Exploring	the	files	and	folders .718
Defining	the	database	environment .719

Creating	an	Application	Scaffold .721
Installing	the	scaffolding .721
Exploring	the	scaffolding	code .724

Modifying	the	Application	Scaffold .725
Adding	a	new	feature	link . .726
Creating	the	controller	code .728
Modifying	the	model	code .730
Painting	a	view .731

INDEX .735

Introduction 1

Introduction

The Internet has become an amazing place to shop, do your banking, look up
homework assignments, and even keep track of your bowling league scores.
Behind all those great applications are a bunch of different web technolo-

gies that must all work together to create the web experience you come to expect.

You may think that creating web applications is best left for the professionals, but
you’d be surprised by just how well you can do with just a little knowledge and
experience! That’s the point of this book.

About This Book
Think of this book as a reference book. Like the dictionary or an encyclopedia
(remember those?), you don’t have to read it from beginning to end. Instead, you
can dip into the book to find the information you need and return to it again when
you need more. That said, you won’t be disappointed if you work through the book
from beginning to end, and you may find it easier to follow along with some of
the examples.

In this book, I walk you through all the different technologies involved with creat-
ing dynamic web applications that can track data and present it in an orderly and
pleasing manner. I cover several key topics that you’ll need to know to create a
full-featured, dynamic web application:

 » Creating the basic layout of a web page: In this book, you see the program
code behind placing content on a web page and reacting to your website
visitors’ mouse clicks.

 » Styling the web page: Just placing data on a web page is boring. In this book,
you learn how to use CSS to help use color, images, and placement to help
liven up your web applications.

 » Adding dynamic features: These days, having a static web page that just sits
there doesn’t get you many followers. This book shows you how to incorpo-
rate JavaScript to animate your web pages and provide dynamic features.

 » Leveraging the power of the server: The PHP programming language allows
you to harness the power behind the web server to dynamically generate web
pages “on the fly” as your website visitors make choices.

 » Storing data for the future: Just about every dynamic web application needs
to store data, and in this book you learn exactly how to do that using the
MySQL server, which is commonly available in just about every web platform.

 » Creating full applications: Many books throw a bunch of technology at you
and expect you to put the pieces together yourself. This book not only shows
you the technology, but also demonstrates how all the parts fit together to
create a dynamic web application.

 » Using helper programs: No one is an island; everyone needs some help
putting together those fancy web applications. There are plenty of tools to
help you get the job done, and with this book you find out which tools will
help you with which features of your application.

Throughout this book you see sidebars (text in gray boxes) and material marked
with the Technical Stuff icon. All of these things are skippable. If you have time
and are interested, by all means read them, but if you don’t or aren’t, don’t.

Finally, within this book, you may note that some web addresses break across two
lines of text. If you’re reading this book in print and want to visit one of these web
pages, simply key in the web address exactly as it’s noted in the text, pretending
as though the line break doesn’t exist. If you’re reading this as an e-book, you’ve
got it easy — just click the web address to be taken directly to the web page.

Foolish Assumptions
You don’t need any level of programming experience to enjoy this book and start
creating your own web applications. Each chapter walks through all the basics you
need to know and doesn’t assume you’ve ever coded before. As long as you’re rea-
sonably comfortable navigating your way around a standard desktop computer,
you have all the experience you need!

That said, if you’ve already tried your hand at web programming and you just
want to fill in a few holes, this book will work well for you, too!

This book doesn’t expect you to run out and buy any expensive software packages
to start your web development career. All the tools that are used in the book are
freely available open-source software. I walk you through how to set up a com-
plete development environment, whether you’re working in Microsoft Windows,
Apple macOS, or Linux.

2 PHP, MySQL & JavaScript All-in-One For Dummies

Icons Used in This Book
I use some icons throughout the book to help you identify useful information.
Here’s what the icons are and what I use them for:

Anything marked with the Tip icon provides some additional information about a
topic to help you better understand what’s going on behind the scenes or how to
better use the feature discussed in the text.

You don’t have to commit this book to memory — there won’t be a test. But every
once in a while I tell you something so important that you should remember it.
When I do, I mark it with the Remember icon.

The Warning icon is there to point out potential pitfalls that can cause problems.
If you want to save yourself a lot of time or trouble, heed these warnings.

When you see the Technical Stuff icon, be prepared to put your geek hat on. When
I get into the weeds, I use the Technical Stuff icon. If you’re not interested in these
details, feel free to skip these sections — you won’t miss anything essential about
the topic at hand.

Beyond the Book
In addition to the material in the print or e-book you’re reading right now, you
also get access to a free online Cheat Sheet filled with more tips and tricks on
building a web application, including accessing any database from your PHP pro-
grams, filtering data your program receives from web forms to block unwanted
or potentially dangerous data, quickly finding data in a MySQL database, and
triggering JavaScript events at predetermined times in a browser. To access this
resource go to www.dummies.com and enter PHP, MySQL & JavaScript All-in-One
For Dummies Cheat Sheet in the search box.

Where to Go from Here
This book doesn’t have to be read from beginning to end, so you can dive in wher-
ever you want! Use the Table of Contents and Index to find subjects that inter-
est you. If you already know PHP and JavaScript and you’re just interested in
learning how to create a dynamic web application from scratch, start out with

Introduction 3

http://www.dummies.com

Book 6, Chapter 1. If you’re interested in learning how to use one of the framework
packages available for PHP, check out Book 7, Chapter 1. Or, if you’re interested in
everything, start with Book 1, Chapter 1, and read until the very end.

With the information in this book, you’ll be ready to start creating your own
dynamic web applications. Web programming is one of those skills that takes time
and practice to get good at, so the more coding you can do, the better you’ll get
at it. To get some practice, you may want to offer your services for free at first, to
build up a reputation. Find a needy nonprofit organization that you’re interested
in supporting and offer to work on its website. They’ll get a great website, and
you’ll get a project to add to your résumé!

Don’t stop learning! There are always new things coming out in the web world,
even if you just stick to using the same software packages to develop your web
applications. Stay plugged in to the PHP world by visiting the official PHP website
at www.php.net or by visiting (and even participating in) one or more of the many
PHP forums. Just do some Googling to find them.

Enjoy your newfound skills in developing dynamic web applications!

4 PHP, MySQL & JavaScript All-in-One For Dummies

http://www.php.net

1Getting Started
with Web
Programming

Contents at a Glance
CHAPTER 1:	 Examining	the	Pieces	of Web	Programming 7

Creating a Simple Web Page . 7
Creating a Dynamic Web Page . 17
Storing Content . 25

CHAPTER 2: Using a Web Server . 27
Recognizing What’s Required . 27
Considering Your Server Options . 31
Tweaking the Servers . 41

CHAPTER 3: Building a Development Environment 51
Knowing Which Tools to Avoid . 51
Working with the Right Tools . 53

CHAPTER 1 Examining the Pieces of Web Programming 7

Examining the Pieces
of Web Programming

At first, diving into web programming can be somewhat overwhelming. You
need to know all kinds of things in order to build a web application that
not only looks enticing but also works correctly. The trick to learning web

programming is to pull the individual pieces apart and tackle them one at a time.

This chapter gets you started on your web design journey by examining the dif-
ferent pieces involved in creating a simple web page. Then it kicks things up a
notch and walks you through dynamic web pages. And finally, the chapter ends by
explaining how to store your content for use on the web.

Creating a Simple Web Page
Before you can run a marathon, you need to learn how to walk. Likewise, before you
can create a fancy website, you need to know the basics of how web pages work.

Nowadays, sharing documents on the Internet is easy, but it wasn’t always that
way. Back in the early days of the Internet, documents were often created using
proprietary word-processing packages and had to be downloaded using the cum-
bersome File Transfer Protocol (FTP). To retrieve a document, you had to know

Chapter 1

IN THIS CHAPTER

 » Understanding how simple web
pages work

 » Incorporating programming into your
web page

 » Storing content in a database

8 BOOK 1 Getting Started with Web Programming

exactly what server contained the document, you had to know where it was stored
on the server, and you had to be able to log into the server. After all that, you still
needed to have the correct word-processing software on your computer to view
the document. As you can imagine, it wasn’t long before a new way of sharing
content was required.

To get to where we are today, several different technologies had to be developed:

 » A method for linking related documents together

 » A way for the document reader to display formatted text the same way in any
type of device

 » An Internet standard allowing clients to easily retrieve documents from any
server

 » A standard method of styling and positioning content in documents

This section describes the technology that made viewing documents on the Inter-
net work the way it does today.

Kicking things off with the World Wide Web
In 1989, Tim Berners-Lee developed a method of interconnecting documents to
make sharing research information on the Internet easier. His creation, the World
Wide Web, defined a method for linking documents together in a web structure,
so that a researcher could follow the path between related documents, no mat-
ter where they were located in the world. Clicking text in one document took you
to another document automatically, without your having to manually find and
download the related document.

The method Berners-Lee developed for linking documents is called hypertext. Hyper-
text embeds links that are hidden from view in the document, and directs the soft-
ware being used to view the document (known as the web browser) to retrieve the
referenced document. With hypertext, you just click the link, and the software (the
web browser) does all the work of finding and retrieving the related document for you.

Because the document-viewing software does all the hard work, a new type of
software had to be developed that was more than just a document viewer. That’s
where web browsers came into existence. Web browsers display a document on
a computer screen and respond to the reader clicking hypertext links to retrieve
other specified documents.

To implement hypertext in documents, Berners-Lee had to utilize a text-based
document-formatting system. Fortunately for him, a lot of work had already been
done on that.

Ex
am

in
in

g
th

e
Pi

ec
es

 o
f

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1 Examining the Pieces of Web Programming 9

Making sense of markup languages
Markup languages were developed to replace proprietary word-processing pack-
ages with a standard way of formatting documents so that they could be read by
any type of document viewer on any type of device. This goal is accomplished by
embedding tags in the text. Each tag indicates a formatting feature, such as head-
ings, bold or italic text, or special margins. What made markup languages differ-
ent from word-processing packages is that these tags were common text codes
instead of proprietary codes, making it generic enough that any device could read
and process them.

The first popular markup language was the Generalized Markup Language (GML),
developed by IBM in the 1960s. The International Organization for Standardization
(ISO) took up the challenge of creating markup languages and produced the Stan-
dard Generalized Markup Language (SGML), mainly based on GML, in the 1980s.
However, because SGML was developed to cover all types of document formatting
on all types of devices, it’s extremely complex and it wasn’t readily adapted.

Berners-Lee used the ideas developed in SGML to create a simplified markup lan-
guage that could support his hypertext idea. He called it Hypertext Markup Language
(HTML). HTML uses the same concept of tags that SGML uses, but it defines fewer
of them, making it easier to implement in software.

An example of an HTML tag is <h1>. You use this tag to define text that’s used as a
page heading. Just surround the text with an opening <h1> tag, and a correspond-
ing closing </h1> tag, like this:

<h1>This is my heading</h1>

When the browser gets to the <h1> tag, it knows to format the text embedded in
the opening and closing tags using a different style of formatting, such as a larger
font or a bold typeface.

To define a hypertext link to another document, you use the <a> tag:

Click here for more info

When the reader clicks the Click here for more info text, the browser automatically
tries to retrieve the document specified in the <a> tag. That document can be on
the same server or on another server anywhere on the Internet.

HTML development has seen quite a few changes since Berners-Lee created it and
turned it over to the World Wide Web Consortium (W3C) to maintain. Table 1-1
shows the path the language has taken.

10 BOOK 1 Getting Started with Web Programming

The HTML version 4.01 standard was the backbone of websites for many years,
and it’s still used by many websites today. However, HTML version 5.0 (called
HTML5 for short) is the future of web development. It provides additional features
for embedding multimedia content in web pages without the need for proprietary
software plug-ins (such as Adobe Flash Player). Because multimedia is taking
over the world (just ask YouTube), HTML5 has grown in popularity. This book
focuses on HTML5; all the code included in this book use that standard.

Retrieving HTML documents
Besides a document-formatting standard, Berners-Lee also developed a method
of easily retrieving the HTML documents in a client–server environment. A web
server software package runs in the background on a server, listening for con-
nection requests from web clients (the browser). The browser sends requests to
retrieve HTML documents from the server. The request can be sent anonymously
(without using a login username), or the browser can send a username and pass-
word or certificate to identify the requestor.

These requests and responses are defined in the Hypertext Transfer Protocol (HTTP)
standard. HTTP defines a set of requests the client can send to the server and a set
of responses the server uses to reply back to the client.

This section walks you through the basics of how web servers and web clients use
HTTP to interact with each other to move web pages across the Internet.

Web clients
The web client sends requests to the web server on a standard network commu-
nication channel (known as TCP port 80), which is defined as the standard for

TABLE 1-1	 HTML Versions
Version Description

HTML 1.0 Formally released in 1989 as the first public version of HTML

HTML 2.0 Released in 1995 to add interactive elements

HTML 3.0 Released in 1996 but never widely adopted

HTML 3.2 Released in 1997, adding support for tables

HTML 4.01 Released in 1999, widely adopted, and remains an often-used standard

XHTML 1.0 Released in 2001, standardizing HTML around the XML document format

XHTML 1.1 Released in 2002, making updates and corrections to XHTML 1.1

HTML 5.0 Released in 2014, adding multimedia features

Ex
am

in
in

g
th

e
Pi

ec
es

 o
f

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1 Examining the Pieces of Web Programming 11

HTTP communication. HTTP uses standard text requests sent to the server, either
requesting information from the server or sending information to the server.
Table 1-2 shows the basic HTTP client requests available.

As shown in Table 1-2, when you ask to view a web page from your client browser,
the browser sends the HTTP GET request to the server, specifying the filename
of the web page. The server then responds with a response code along with the
requested data. If the client doesn’t specify a filename in the GET request, most
servers have a default file with which to respond.

Web servers
With HTTP, the web server must respond to each client request received. If the
 client sends a request that the server can’t process, the server must send some
type of error code back to the client indicating that something went wrong.

The first part of the server response is a status code and text that the client uses to
determine whether the submitted request was successful. The format of the HTTP
response uses a three-digit status code, followed by an optional text message that
the browser can display. The three-digit codes are broken down into five categories:

 » 1xx: Informational messages

 » 2xx: Success

 » 3xx: Redirection

TABLE 1-2	 HTTP Client Requests
Request Description

CONNECT Converts the connection into a secure tunnel for sending data

DELETE Deletes the specified resource

GET Requests the specified resource

HEAD Requests the title of the specified resource

OPTIONS Retrieves the HTTP requests that the server supports

PATCH Applies a modification to a resource

POST Sends specified data to the server for processing

PUT Stores specified data at a specified location

TRACE Sends the received request back to the client

12 BOOK 1 Getting Started with Web Programming

 » 4xx: Client error

 » 5xx: Server error

The three-digit status code is crucial to knowing what happened with the response.
Many status codes are defined in the HTTP standards, providing some basic infor-
mation on the status of client requests. Table 1-3 shows just a few of the standard
HTTP response codes that you may run into.

TABLE 1-3	 Common HTTP Server Response Status Codes
Status Code Text Message Description

100 Continue The client should send additional information.

101 Switching Protocols The server is using a different protocol for the request.

102 Processing The server is working on the response.

200 OK The server accepted the request and has returned
the response.

201 Created The server created a new resource in response to
the request.

202 Accepted The data sent by the client has been accepted by the server
but has not completed processing the data.

206 Partial Content The response returned by the server is only part of the full
data; more will come in another response.

300 Multiple Choices The request matched multiple possible responses from
the server.

301 Moved Permanently The requested file was moved and is no longer at the
requested location.

302 Found The requested resource was found at a different location.

303 See Other The requested resource is available at a different location.

304 Not Modified The requested resource was not modified since the last time
the client accessed it.

307 Temporary Redirect The requested resource was temporarily moved to a
different location.

308 Permanent Redirect The requested resource was permanently moved to a
different location.

400 Bad Request The server cannot process the request.

401 Unauthorized The resource requires authentication that the client did
not provide.

Ex
am

in
in

g
th

e
Pi

ec
es

 o
f

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1 Examining the Pieces of Web Programming 13

As you can see from Table 1-3, a web server can return many possible responses.
It’s the client’s job to parse the response and determine the next action to take.

If the response indicates the request was successful, the server will follow the
response code with the data related to the request, such as the contents of an
HTML file. The client must then read the returned data and decide what to do with
it. For HTML files, the browser will display the requested file, applying the HTML
formatting tags to the data.

Don’t worry about trying to memorize all the HTTP status codes. Most of them
you’ll never run into in your web-programming career. Before long, you’ll start
to remember a few of the more common ones, and you can always look up any
others you run into.

Status Code Text Message Description

402 Payment Required The requested resource is not freely available.

403 Forbidden The resource requires authentication, and the client does not
have the proper permission.

404 Not Found The requested resource was not located on the server.

414 URI Too Long The Uniform Resource Identifier (URI) describing the location
of the resource was longer than the server is able to handle.

415 Unsupported Media Type The server does not know how to process the requested
resource file.

429 Too Many Requests The client has sent too many requests within a specific
amount of time.

500 Internal Server Error An unexpected condition occurred on the server while trying
to retrieve the requested resource.

501 Not Implemented The server doesn’t recognize the request.

502 Bad Gateway The server was acting as a proxy to another server but
received an invalid response from the other server.

503 Service Unavailable The server is currently unavailable, often due to
maintenance.

505 HTTP Version
Not Supported

The server doesn’t support the HTTP standard used by the
client in the request.

507 Insufficient Storage The server is unable to store the resource due to lack of
storage space.

511 Network
Authentication Required

The client is required to authenticate with a network
resource to receive the response.

14 BOOK 1 Getting Started with Web Programming

Styling
The HTML standard defines how browsers perform basic formatting of text, but
it doesn’t really provide a way to tell a browser how to display the text. The <h1>
tag indicates that the text should be a heading, but nothing tells the browser just
how to display the heading to make it different from any other text on the page.

This is where styling comes into play. Styling allows you to tell the browser just
what fonts, sizes, and colors to use for text, as well as how to position the text in
the display. This section explains how styling affects how your web pages appear
to your visitors.

Style sheets
There are several ways to define styling for an HTML document. The most basic
method is what the browser uses by default. When the browser sees an HTML
formatting tag, such as the <h1> tag, it has a predefined font, size, and color that
the developer of the browser felt was useful.

That’s fine, but what if you want to make some headings black and others red?
This is possible with inline styling. Inline styling allows you to define special styles
that apply to only one specific tag in the document. For example, to make one
heading red, you’d use the following HTML:

<h1 style="color: red">Warning, this is bad</h1>

The style term is called an attribute of the <h1> tag. There are a few different
attributes you can apply directly to tags within HTML; each one modifies how the
browser should handle the tag. The style attribute allows you to apply any type
of styling to this specific <h1> tag in the document. In this example, I chose to
change the color of the text.

Now, you’re probably thinking that I’ve just opened another can of worms. What
if you want to apply the red color to all the <h1> tags in your document? That’s a
lot of extra code to write! Don’t worry, there’s a solution for that.

Instead of inserting styles inline, you can create a style definition that applies to
the entire document. This method is known as internal styling. It defines a set of
styles at the top of the HTML document that are applied to the entire document.
Internal styling looks like this:

<style>

h1 {color: red;}

</style>

Ex
am

in
in

g
th

e
Pi

ec
es

 o
f

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1 Examining the Pieces of Web Programming 15

Now the browser will display all the <h1> tags in the document using a red color.
But wait, there’s more!

Style listings can be somewhat lengthy for large web pages, and placing them at
the top of a document can become cumbersome. Also, if you want to apply the
same styles to all the web pages in a website, having to retype or copy all that text
can be tiring. To solve that problem, you use an external style sheet.

An external style sheet allows you to define styles just as the internal method does,
but in a separate file, called a style sheet. Any web page can reference the same
style sheet, and you can apply multiple style sheets to a single web page. You ref-
erence the external style sheet using the <link> tag, like this:

<link rel="stylesheet" href="mystyles.css">

When the browser sees this tag, it downloads the external style sheet, and applies
the styles you defined in it to the document.

This all sounds great, but things just got a lot more complicated! Now there are
three different locations from which you can define styles for your HTML doc-
ument, on top of what the browser itself does. How are you supposed to know
which ones take precedence over the others?

The Cascading Style Sheet (CSS) standard defines a set of rules that determine just
how browsers should apply styles to an HTML document. As the name implies,
styles cascade down from a high level to a low level. Styles defined in a higher-
level rule override styles defined in a lower-level rule.

The CSS standard defines nine separate levels, which I cover in greater detail in
Book 2, Chapter 2, but for now, here are the four most common style levels, in
order from highest priority to lowest:

 » Styles defined within the element tags

 » Styles defined in an internal style sheet

 » Styles defined in an external style sheet

 » Styles defined by the client’s browser defaults

So, any style attributes you set in an element tag override any styles that you set in
an internal style sheet, which overrides any styles you set in an external style sheet,
which overrides any styles the client browser uses by default. This allows you to set
an overall style for your web pages using an external style sheet, and then override
those settings for individual situations using the standard element tags.

16 BOOK 1 Getting Started with Web Programming

You may be wondering how assistive technology tools work to change the web
page display for individuals who are sight impaired. Part of the nine rules that I
cover in Book 2, Chapter 2, incorporate any rules defined in the browser for sight-
impaired viewing.

CSS standards
The CSS standard defines a core set of styles for basic rendering of an HTML
 document. The first version of CSS (called CSS1) was released in 1996, and it only
defined some very rudimentary styles:

 » Font type, size, and color

 » Text alignment (such as margins)

 » Background colors or images

 » Borders

The second version of CSS, called — you guessed it! — CSS2, was released in 1998.
It added only a few more styling features:

 » More-exact positioning of text

 » Styles for different output types (such as printers or screens)

 » The appearance of browser features such as the cursor and scrollbar

That’s still not all that impressive of a list of styles. Needless to say, more was
needed to help liven up web pages. To compensate for that, many browser devel-
opers started creating their own style definitions, apart from the CSS standards.
These style definitions are called extensions. The browser extensions covered lots
of different fancy styling features, such as applying rounded edges to borders and
images, making a smoother layout in the web page.

As you might guess, having different extensions to apply different style features
in different browsers just made things more complicated. Instead of coding a
single style for an element in an HTML document, you needed to code the same
feature several different ways so the web page would look the same in different
browsers. This quickly became a nightmare.

When work was started on the CSS3 standard in 1999, one of the topics was to
rein in the myriad browser extensions. However, things quickly became compli-
cated because all the different browser developers wanted their own extensions
included in the new standard.

Ex
am

in
in

g
th

e
Pi

ec
es

 o
f

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1 Examining the Pieces of Web Programming 17

To simplify the process, the CSS design committee split the CSS standards into
separate modules. Each CSS module covers a specific area of styling, such as col-
ors, media support, and backgrounds. Each module could be voted on and released
under a different timeline. The downside to this approach is that now each mod-
ule has been released as a recommended standard at a different time, making the
CSS3 standard somewhat difficult to track and implement.

Quite possibly one of the most anticipated features of CSS3 is the ability to define
fonts. Fonts have long been the bane of web programmers. When you define a
specific font, that font must be installed on your website visitor’s computer in
order for the browser to use it. If the font isn’t available, the browser picks a
default font to use, which often becomes an ugly mess.

Web fonts allow you to define a font on your server so that every client browser
can download the font and render text using it. This is a huge accomplishment!
No longer are you reliant on your website visitors having specific fonts installed
in their web browsers.

Yet another popular feature of CSS3 is the use of shadows and semitransparent
colors in text and other web page elements, such as form objects. These features
by themselves can transform an ugly HTML form into a masterpiece.

The combination of HTML5 and CSS3 has greatly revolutionized the web world,
allowing developers to create some pretty amazing websites. However, one thing
was still missing: the ability to easily change content on the web page.

Creating a Dynamic Web Page
Static web pages contain information that doesn’t change until the web designer
or programmer manually changes it. In the early days of the Internet, simply
jumping on the Internet bandwagon was important for corporations. It wasn’t
so important what companies posted on the web, as long as they had an Internet
presence where customers could get basic information about the company and
its products. Static web pages, consisting solely of HTML and CSS, easily accom-
plished this function.

But one of the big limitations of static web pages is how much effort it takes to
update them. Changing a single element on a static web page requires rebuild-
ing and reloading the entire page, or sometimes even a group of web pages. This
process is way too cumbersome for an organization that frequently needs to post
real-time information, such as events, awards, or closings. Also, during this pro-
cess, a developer can accidentally change other items on the page, seriously mess-
ing up the information on the web page, or even the entire web page layout!

18 BOOK 1 Getting Started with Web Programming

Dynamic web pages allow you to easily change your content in real time without
even touching the coding of the page. That’s right: Without manually making any
changes to the page itself, the information on the page can change. This means
you can keep the content on the page fresh so that what a visitor sees there now
may be updated or replaced in a day, an hour, or a minute. The core layout of the
web page can remain the same, but the data presented constantly changes.

To successfully create a dynamic web page, you have to know a method for auto-
matically inserting real-time data into the HTML code that gets sent to the client
browser. This is where web scripting languages come in.

A web scripting language allows you to insert program code inside your web page
that dynamically generates HTML that the client browser reads. A processor reads
the program code and dynamically generates HTML to display content on the web
page, as shown in Figure 1-1.

Now, because programming code is embedded in the web page, something some-
where must run the code to produce the dynamic HTML for the new content. As it
turns out, there are two places where the embedded program code can run:

 » On the client’s computer, after the web browser downloads the web page.
This is known as client-side programming.

 » On the web server before the web page is sent. This is known as server-side
programming.

This section takes a look at how each of these types of programming differ in cre-
ating dynamic content for your website.

FIGURE 1-1:
Program code

embedded in a
web page.

Ex
am

in
in

g
th

e
Pi

ec
es

 o
f

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1 Examining the Pieces of Web Programming 19

Client-side programming
In client-side programming, you embed program code inside the HTML code that
the server sends to the client browser with the HTML code. The browser must be
able to detect the embedded program code and run it, either inside the browser or
as a separate program outside the browser. Figure 1-2 demonstrates this process.

JavaScript
These days, the most popular client-side programming language is JavaScript.
JavaScript is a scripting language that you embed inside the normal HTML code
in your web page. It runs within the client browser and can utilize features of the
browser that are not normally accessible from standard HTML code. JavaScript code
is commonly used to produce pop-up messages and dialog boxes that people inter-
act with as they view the page. These are elements that HTML code can’t generate.

FIGURE 1-2:
Using client-side

code in a
web page.

20 BOOK 1 Getting Started with Web Programming

As shown in Figure 1-2, the entire web page with the embedded JavaScript code is
downloaded to the client browser. The client browser detects the embedded JavaS-
cript code and runs it accordingly. It does this while also processing the HTML
tags within the document and applying any CSS styles defined. That’s a lot for the
browser to keep up with!

The downside of JavaScript is that, because it runs in the client browser, you’re
at the mercy of how the individual web browser interprets the code. Although
the HTML language started out as a standard, JavaScript was a little different. In
the early days of JavaScript, different browsers would implement different fea-
tures of JavaScript using different methods. It was not uncommon to run across
a web page that worked just fine for one type of browser, but didn’t work at all in
another type of browser — all because of JavaScript processing inconsistencies.

Eventually, work was done to standardize JavaScript. The JavaScript language
was taken up by the Ecma International standards organization, which created
the ECMAScript standard, which is what JavaScript is now based off of. As the
ECMAScript standard evolved, more and more browser developers started seeing
the benefits of using a standard client-side programming language and incorpo-
rated them in their JavaScript implementations. At the time of this writing, the
eighth version of the standard, called ECMAScript 2017, has been finalized and
implemented in most browsers.

The name JavaScript was chosen to capitalize on the popularity of the Java pro-
gramming language for use in web applications. However, it doesn’t have any
resemblance or relation to the Java programming language.

jQuery
JavaScript is popular, but one of its downsides is that it can be somewhat com-
plicated to program. With so many different features incorporated by so many
different developers, today a JavaScript program can quickly turn into a large
endeavor to code.

To help solve this issue, a group of developers banded together to create a set of
libraries to make client-side programming with JavaScript easier. Thus was born
jQuery.

The jQuery software isn’t a separate programming language; instead, it’s a set of
libraries of JavaScript code. The libraries are self-contained JavaScript functions
that you can reference in your own JavaScript programming to perform common
functions, such as finding a location in a web page to display text or retrieve a
value entered into an HTML form field.

Instead of having to write lines and lines of JavaScript code, you can just reference
one or two jQuery functions to do the work for you. That’s a huge time-saver, as

Ex
am

in
in

g
th

e
Pi

ec
es

 o
f

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1 Examining the Pieces of Web Programming 21

well as a great resource for implementing advanced features that you would never
have been able to code yourself using just JavaScript.

Server-side programming
The other side of web programming is server-side programming. Server-side
programming languages solve the problem of different client code interpreters
by running the code on the server. In server-side programming, the web server
interprets the embedded programming code before sending the web page to the
client’s browser. The server then takes any HTML that the programming code
generates and inserts it directly into the web page before sending it out to the
 client. The server does all the work running the scripting code, so you’re guar-
anteed that every web page will run properly. Figure 1-3 illustrates this process.

FIGURE 1-3:
Using server-side

programming
to create a web

page.

22 BOOK 1 Getting Started with Web Programming

Unlike client-side programming, there are many popular server-side programming
languages that are in use these days, each with its own set of pros and cons. This
section takes a look at a few of the more popular programming languages.

CGI scripting
One of the first attempts at server-side programming support was the Apache web
server’s Common Gateway Interface (CGI). The CGI provided an interface between
the web server and the underlying server operating system (OS), which was often
Unix-based.

This allowed programmers to embed scripting code commonly used in the Unix
platform to dynamically generate HTML. Two of the most common scripting lan-
guages used in the Unix world and, thus, commonly used in CGI programming are
Perl and Python.

Although CGI programming became popular in the early days of the web, it
 wasn’t long before it was exploited. It was all too easy for a novice administrator
to apply the wrong permissions to CGI scripts, allowing a resourceful attacker
to gain privileged access to the server. Other methods of processing server-side
 programming code had to be developed.

Java
One of the earlier attempts at a controlled server-side programming language was
Java. Although the Java programming language became popular as a language for
creating stand-alone applications that could run on any computer platform, it can
also run as a server-side programming language in web applications. When used
this way, it’s called Java Server Pages (JSP).

The JSP language requires that you have a Java compiler embedded with your web
server. The web server detects the Java code in the HTML code and then sends
the code to the Java compiler for processing. Any output from the Java program is
sent to the client browser as part of the HTML document. The most common JSP
platform is the open-source Apache Tomcat server.

The Microsoft ASP.NET family
Microsoft’s first entry into the server-side programming world — Active Server
Pages (ASP) — had a similar look and feel to JSP. ASP programs embedded ASP
scripting code inside standard HTML code and required an ASP server to be incor-
porated with the standard Microsoft Internet Information Services (IIS) web
server to process the code.

However, Microsoft developers determined that it wasn’t necessary to maintain
a separate programming language for server-side web programming, so they

Ex
am

in
in

g
th

e
Pi

ec
es

 o
f

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1 Examining the Pieces of Web Programming 23

combined the server-side programming and Windows desktop programming
environments into one technology. With the advent of the .NET family of pro-
gramming languages, Microsoft released ASP.NET for the web environment, as an
update to the old ASP environment.

With ASP.NET, you can embed any type of Microsoft .NET programming code
inside your HTML documents to produce dynamic content. The .NET family of
programming languages includes Visual Basic .NET, C#, J#, and even Delphi.
NET. This allows you to leverage the same code you use to create Windows desktop
applications as you do to create dynamic web pages. You can often use the same
Windows features, such as buttons, slide bars, and scrollbars, inside your web
applications that you see in Windows applications.

JavaScript
Yes, you read that right. The same JavaScript language that’s popular in the
client-side programming world is now starting to make headway as a server-
side programming language. The Node.js library allows you to interface JavaScript
code inside HTML web pages for processing on the server.

The benefit to using Node.js is that you only need to learn one language for both
client-side and server-side programming. Although it’s still relatively new to the
game, the Node.js language is becoming more popular.

PHP
What started out as a simple exercise in tweaking CGI scripts turned into a new
server-side programming language that took the world by storm. Rasmus Lerdorf
wrote the Personal Home Page (PHP) programming language as a way to improve
how his CGI scripts worked. After some encouragement and help, PHP morphed
into its own programming language, and a new name, PHP: Hypertext Preproces-
sor (yes, it uses the acronym inside its name, which is called a recursive acronym).

The PHP language developers freely admit that they borrowed many features from
other popular languages, such as Perl, Python, C, and even Unix shell scripting.
However, PHP was developed specifically for server-side programming, and it has
many features built in that aren’t available in other scripting languages. You don’t
need to wrestle with strange setups or features to get PHP to work in a web envi-
ronment. It has matured into a complete catalog of advanced features that cover
everything from database access to drawing graphics on your web page.

Because of the dedication of the PHP developers to create a first-rate server-
side programming language, and because it’s free open-source software, PHP
quickly became the darling of the Internet world. Many web-hosting companies
include PHP as part of their basic hosting packages. If you already have space on a
web-hosting server, it’s possible that you already have access to PHP!

24 BOOK 1 Getting Started with Web Programming

Combining client-side and server-side
 programming
Client-side and server-side programming both have pros and cons. Instead of
trying to choose one method of creating dynamic web pages, you can instead use
both at the same time!

You can easily embed both client-side and server-side programming code into the
same web page to run on the server, as shown in Figure 1-4.

FIGURE 1-4:
Combining

client-side and
server-side

 programming.

Ex
am

in
in

g
th

e
Pi

ec
es

 o
f

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1 Examining the Pieces of Web Programming 25

One common use for JavaScript and PHP coding is data validation. When you pro-
vide an HTML form for your website visitors to fill out, you have to be careful that
they actually fill in the correct type of data for each field. With server-side pro-
gramming, you can’t validate the data until the site visitor completes and submits
the form to the server. If a website visitor accidentally skips filling out a single
field and the entire form needs to be filled out all over again, that can be a frus-
trating experience.

To solve that problem, you can embed JavaScript code into the form to check as
the site visitor enters data into the form. If any form fields are empty when the
Submit button is clicked, the JavaScript code can block the form submission and
point out the empty field. Then, when all the data is completed and the form is
successfully submitted, the PHP code on the server can process the data to ensure
it’s the correct data type and format.

Storing Content
The last piece of the dynamic web application puzzle is the actual content. With
static web pages, content is already built into the web page code. To change infor-
mation on a static web page, you have to recode the page. Unfortunately, more
often than not, when a web page is updated, the old version is lost.

With dynamic web applications, the content comes from somewhere outside of
the web page. But where? The most common place is a database.

Databases are an easy way to store and retrieve data. They’re quicker than storing
data using standard files, and they provide a level of security to protect your data.
By storing content in a database, you can also easily archive and reference old
content and replace it with new content as needed.

Much like the server-side programming world, the database world has lots of dif-
ferent database software options. Here are some of the more popular ones:

 » Oracle: Oracle has set the gold standard for databases. It’s found in many
high-profile commercial environments. Although Oracle is very fast and
supports lots of features, it can also be somewhat expensive.

 » Microsoft SQL Server: Microsoft’s entry into the database server world, SQL
Server is geared toward high-end database environments. It’s often found in
environments that utilize Microsoft Windows Servers.

26 BOOK 1 Getting Started with Web Programming

 » PostgreSQL: The PostgreSQL database server is an open-source project that
attempts to implement many of the advanced features found in commercial
databases. In its early days, PostgreSQL had a reputation for being somewhat
slow, but it has made vast improvements. Unfortunately, old reputations are
hard to shake, and PostgreSQL still struggles with overcoming them.

 » MySQL: The MySQL database server is yet another open-source project.
Unlike PostgreSQL, it doesn’t attempt to match all the features of commercial
packages. Instead, it focuses on speed. MySQL has a reputation for being very
fast at simple data inserts and queries — perfect for the fast-paced web
application world.

Mainly because of its speed, the MySQL database server has become a
popular tool for storing data in dynamic web applications. It also helps that,
because it’s an open-source project, web-hosting companies can install it for
free, which makes it a perfect combination with the PHP server-side program-
ming language for dynamic web applications.

CHAPTER 2 Using a Web Server 27

Using a Web Server

Before you can start developing dynamic web applications, you’ll need a web
server environment to work in. You have lots of different choices available
to create your own development environment, but sometimes having more

options just makes things more confusing. This chapter walks through the differ-
ent options you have for creating your development environment.

Recognizing What’s Required
Just like that famous furniture that needs assembly, you’ll need to assemble some
separate components to get your web application development environment up
and running. There are three main parts that you need to assemble for your web
development environment:

 » A web server to process requests from browsers to interact with your application

 » A PHP server to run the PHP server-side programming code in your application

 » A database server to store the data required for your dynamic application

On the surface, this may seem fairly simple, but to make things more complicated,
each of these parts has different options and versions available. That can lead to
literally hundreds of different combinations to wade through!

Chapter 2

IN THIS CHAPTER

 » Exploring your development options

 » Picking a development environment

 » Configuring the servers

28 BOOK 1 Getting Started with Web Programming

This section helps you maintain your sanity by taking a closer look at each of these
three requirements.

The web server
The web server is what interacts with your website visitors. It passes their requests
to your web application and passes your application responses back to them. The
web server acts as a file server — it accepts requests for PHP and HTML files from
client browsers and then retrieves those files and sends them back to the client
browser. As I explain in the preceding chapter, the web server uses the HTTP
standard to allow anonymous requests for access to the files on the server and
respond to those requests.

There are quite a few different web server options around these days. Here are a
few of the more popular ones that you’ll run into:

 » Apache: The granddad of web servers, Apache was derived from the original
web server developed at the University of Illinois. It’s an open-source software
project that has been and is currently the most commonly used web server on
the Internet. It is very versatile and supports lots of different features, but with
versatility comes complexity. Trying to wade through the configuration file for
an Apache web server can be confusing. But for most web environments you
just need to change a few of the default configuration settings.

 » nginx: The newer kid on the block, nginx is intended to ease some of the
complexity of the Apache web server and provide improved performance. It’s
currently gaining in popularity, but it still has a long way to go to catch up with
Apache.

 » lighthttpd: As its name suggests, lighthttpd is a lightweight web server that’s
significantly less versatile and complex than the Apache web server. It works
great for small development environments and is becoming popular in
embedded systems that need a web server with a small footprint. However, it
doesn’t hold up well in large-scale production Web server environments and
probably isn’t a good choice for a web development environment.

 » IIS: IIS is the official Microsoft Web server. It’s popular in Microsoft Windows
server environments, but there aren’t versions for other operating systems. IIS
focuses on supporting the Microsoft .NET family of server-side programming
languages, such as C# .NET and Visual Basic .NET, but it can be interfaced with
the PHP server. This configuration is not common, though, and you don’t see
very many PHP servers that utilize the IIS web server.

As you can tell from these descriptions, just about every web server is compared
to the Apache web server. Apache has become the gold standard in Internet web

U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2 Using a Web Server 29

servers. Unless you have a specific reason for not using the Apache web server,
you should use it for your development environment, especially if you know that
your production web server environment will use it.

The PHP server
The PHP programming language began in 1995 as a personal project by Rasmus
Lerdorf to help his web pages access data stored in a database. He released the
first official version 1.0 to the open-source community on June 8, 1995.

Since then, the PHP language has taken on a life of its own, gaining in both fea-
tures and popularity. The development of the PHP language is currently supported
by Zend, which produces many PHP tools.

One of the most confusing aspects of the PHP server is that there are currently two
different actively supported branches of the PHP language:

 » The version 5.x branch

 » The version 7.x branch

The first question that often comes to mind is: “What happened to version 6?”
The short-lived version 6 of PHP had some unresolvable issues and was officially
abandoned by the PHP developers, with the new features rolled back into version 5.

Now for the second question: “Why two active versions?” The version 5.x branch
is still maintained mainly because of the great wealth of applications that con-
tinue to use features supported in version 5.x, but not in version 7.x. It will take
some time before all the old 5.x applications will be migrated to version 7.x code.
Unfortunately, version 7 of PHP breaks quite a few things that were popular in the
5.x version. However, the PHP developers are no longer performing bug fixes in
the 5.x branch, only security patches. At the time of this writing, the current ver-
sion in the 5.x branch is 5.4 and will be maintained until the end of 2018.

At the time of this writing, many popular web server packages support both the
5.x and 7.x version branches and will give you the choice of which one to use for
your installation. If you’re developing new dynamic web applications, it’s best to
use the 7.x version branch; at the time of this writing, the latest version is 7.2.

The PHP server contains its own built-in web server, but that’s only intended for
development and not for use as a live production web server. For large-scale use,
you must interface the PHP server with a web server. As the web server receives
requests for .php files, it must pass them to the PHP server for processing. You
must set up this feature as part of the web server configuration file. This is dis-
cussed later in this chapter in the “Customizing the Apache Web Server” section.

30 BOOK 1 Getting Started with Web Programming

You may still run into some web-hosting companies that use PHP version 4. This
was a very popular and long-running version, but it’s no longer supported by PHP
with security patches. It’s best to stay away from any web host that only supports
PHP version 4.

The database server
As I describe in Chapter 1 of this minibook, there are many different types of data-
base servers to handle data for your web applications. By far the most popular
used in open-source web applications is the MySQL server.

Many websites and web packages use the term MySQL Server, but there are actually
a few different versions of it. Because Oracle acquired the MySQL project in 2010,
it has split the project into four versions:

 » MySQL Standard Edition: A commercial product that provides the minimal
MySQL database features.

 » MySQL Enterprise Edition: A commercial product that provides extra
support, monitoring, and maintenance features.

 » MySQL Cluster Carrier Grade Edition: A commercial product that in addition
to the Enterprise Edition features, supports multi-server clustering.

 » MySQL Community Edition: The freely downloadable version of MySQL that
supports the same features as the Standard Edition, but with no formal support.

As you can see from the list, the MySQL server has both commercial and open-
source versions. The commercial versions support some advanced features that
aren’t available in the Open Source version, such as hot backups, database activity
monitoring, and being able to implement a read/write database cluster on multiple
servers. These advanced features can come in handy in large-scale database envi-
ronments, but for most small to medium-size database applications, the MySQL
Community Edition is just fine. That’s what’s usually included in most web server
packages.

Just as with PHP, the MySQL project maintains multiple versions of the MySQL
server software. At the time of this writing, the currently supported versions of
MySQL are

 » Version 5.5

 » Version 5.6

 » Version 5.7

U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2 Using a Web Server 31

Each version has some minor updates to the MySQL database engine, but for most
dynamic web applications, the differences won’t play a significant role in your
application performance or functions, so it won’t matter much which of these
three versions your system uses.

Several cloud providers (including Oracle itself) provide the MySQL server as a
cloud service. Instead of installing and running your own MySQL server you can
rent space on their MySQL cloud server. The benefit of running MySQL in the
cloud is that you’re guaranteed perfect up-time for the database, because it’s dis-
tributed among multiple servers in the cloud. The downside, though, is that this
can get expensive and is only recommended for commercial web applications that
require the extra server power provided by the cloud.

Considering Your Server Options
Now that you know you’ll need a web server, a PHP server, and a MySQL server for
your development work, the next step is trying to find an environment that supports
all three (and it would help if they were all integrated). You basically have three
options for setting up a complete web programming development environment:

 » Purchase space on a commercial server from a web-hosting company.

 » Install the separate servers on your own workstation or server.

 » Install an all-in-one package that bundles all three servers for you.

MySQL AND MariaDB
The MySQL server project has had quite an interesting life. It was originally developed in
1994 as an open-source project by a Swedish company, MySQL AB. It gained in popular-
ity and features, until MySQL AB was purchased by Sun Microsystems in 2008. However,
Oracle purchased Sun Microsystems in 2010 and took control over the MySQL project.

When Oracle purchased the rights to MySQL from Sun Microsystems, the main MySQL
developer and his team left to start their own separate open-source branch of MySQL,
called MariaDB. With the terms of the open-source license, this move was completely
legal, and the project has gained some respect and following in the open-source com-
munity. MariaDB is nearly 100 percent compatible with MySQL and is often used as a
direct replacement for the MySQL Community Edition in some environments. Any PHP
code that you write to interact with the MySQL server will also work with the MariaDB
server. Don’t be alarmed if the development environment you use switches to MariaDB!

32 BOOK 1 Getting Started with Web Programming

The following sections walk you through each of these scenarios and the pros and
cons of each.

Using a web-hosting company
By far, the easiest method of setting up a PHP programming environment is to
rent space on an existing server that has all the necessary components already
installed. Plenty of companies offer PHP web development packages. Some of the
more popular ones are

 » GoDaddy (www.godaddy.com)

 » HostGator (www.hostgator.com)

 » 1&1 (www.1and1.com)

 » 000webhost (www.000webhost.com)

These large web-hosting companies offer multiple levels of support for their ser-
vices. Often, they’ll offer several tiers of service based on the number of databases
you can create, the amount of data that you can store, and the amount of network
bandwidth your web applications are allowed to consume per month. That way,
you can start out with a basic package for minimal cost and then upgrade to one
of the more expensive packages as your Internet application takes off! It pays to
shop around to check different pricing structures and support levels at the differ-
ent web-hosting companies.

Besides these main competitors, you’ll find many, many smaller web host-
ing companies willing to offer MySQL/PHP packages to host your applications.
There’s a good chance if you already have a web-hosting company you use to host
your static web pages, it’ll have some type of MySQL/PHP support. If you already
have space on a web server for your website, check with them to see if they offer
an upgrade to a MySQL/PHP package.

With the popularity of the new “cloud” environment where everything runs on
shared server space, there are now a few more participants in the PHP server
hosting game. The Wikipedia web page for cloud service providers lists more than
200 different providers! You’ll probably recognize the more popular ones:

 » Amazon Web Services (AWS)

 » Google Cloud Platform

 » Oracle Cloud Platform

 » Microsoft Azure

http://www.godaddy.com
http://www.hostgator.com
http://www.1and1.com
http://www.000webhost.com

U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2 Using a Web Server 33

Each of these cloud services provides some level of support for PHP program
development. One of the main benefits of utilizing a cloud service is that your
application is hosted on multiple servers that share the traffic load and are redun-
dant for backup purposes. If a server in the cloud crashes, your application will
still work on other servers. Of course, be prepared to pay a premium price for
those features!

Be careful with some of the smaller web-hosting companies. These days, just
about anyone can install the PHP and MySQL server software onto a server and
sell space, so many “mom-and-pop” web-hosting companies now provide this
service. However, installing the server programs is different from maintaining the
server programs. Often, you’ll find these smaller web-hosting sites use outdated
server versions that haven’t been upgraded or patched with security updates,
making them vulnerable to attacks.

Building your own server environment
I wouldn’t recommend it for a live production website, but for development work
you can build your own web server environment. You don’t even need to have
a large server for a personal web development environment — you can build it
using your existing Windows or Apple workstation or laptop.

The following sections walk you through the basics you need to know to get this
working in either the Linux or Windows/Mac environments.

Web servers in Linux
Linux desktops and servers are becoming more popular these days, especially for
web development. You can download the Apache, MySQL, and PHP server source
code packages and compile them on your Linux system, but unless you need the
absolute latest version of things, that’s not the recommended way to do it.

These days, most Linux distributions include packages for easily installing all
the components you need for a complete web development environment. For
Debian-based Linux distributions (such as Ubuntu and Linux Mint), you use the
apt-get command-line tool to install software packages. For Red Hat–based
Linux distributions (such as Red Hat, CentOS, and Fedora) you use the dnf
 command-line tool.

34 BOOK 1 Getting Started with Web Programming

For Debian-based systems, such as Ubuntu, follow these steps to do that:

1. From a command prompt, install the Apache web server using the
following command:

sudo apt-get install apache2

2. Install the MySQL server package using the following command:

sudo apt-get install mysql-server

During the MySQL server installation, you’ll be prompted for a password
to use for the root user account. The root user account in MySQL has full
privileges to all tables and objects. Make sure you remember what password
you enter here!

3. Install the PHP packages to install the PHP server and required
 extensions, the Apache modifications to run PHP, and the graphical
phpMyAdmin tool:

sudo apt-get install php libapache2-mod-php
sudo apt-get install php-mcrypt php-mysql

sudo apt-get install phpmyadmin

The first line installs the main PHP server, along with the Apache module to
interface with the PHP server. The second line installs two PHP extensions that
are required to interface with the MySQL server. The third line installs the
web-based phpMyAdmin PHP program, which provides a web interface to the
MySQL server.

4. Open a browser and test things out by going to the following URL:

http://localhost/phpmyadmin

You should be greeted by the phpMyAdmin administration window.

5. Log in using the MySQL root user account and the password you supplied
when you installed MySQL (you remember it, right?).

Figure 2-1 shows the main phpMyAdmin web page, which shows what versions
of the Apache, PHP, and MySQL servers are running.

U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2 Using a Web Server 35

For Red Hat–based systems, such as Fedora and CentOS, follow these steps to load
LAMP:

1. From a command prompt, install the Apache web server using the
following commands:

sudo dnf install httpd
sudo systemctl enable httpd

sudo systemsctl start httpd

The httpd package includes the Apache2 web server. The executable file for
Apache is named httpd (thus, the name of the package). The package doesn’t
start the Apache web server by default, so the second two lines use the
systemctl utility to enable the service so it starts automatically at boot time
and then starts it.

2. Install the MySQL server package using the following commands:

sudo dnf install mariadb-server
sudo systemctl enable mariadb

sudo systemctl start mariadb

FIGURE 2-1:
The main

phpMyAdmin
web page

 showing
everything that is

running.

36 BOOK 1 Getting Started with Web Programming

Notice that the Red Hat distribution (and thus CentOS and Fedora) has gone
with the MariaDB replacement package for MySQL. When you install MariaDB,
the package sets the root user account password to an empty string. This is
not recommended if your server is on any type of a network. Fortunately,
there’s a quick utility that you can run to change the root user account’s
password:

mysql_secure_installation

When you run this script, it’ll prompt you to answer a few questions, such as
the new password for the root user account, whether to restrict the root user
account to only logging in from the local host, whether to remove the anony-
mous users feature, and whether to remove the test database.

3. Install the PHP packages using the following commands:

sudo dnf install php php-mbstring php-mysql
sudo dnf install phpmyadmin

sudo systemctl restart httpd

The PHP server doesn’t run as its own service — the Apache web server
spawns it when needed. Because of that, you do need to use the systemctl
utility to restart the Apache web server so it rereads the configuration file with
the new PHP settings.

4. Open a browser and test things out by going to the following URL:

http://localhost/phpmyadmin

You should see the phpMyAdmin login page.

5. Log in using the root user account in MySQL along with the password you
defined when you installed MySQL.

Figure 2-2 shows phpMyAdmin running on a CentOS 7 system.

By using the distribution software packages for each server, you’re guaranteed
that the server will run correctly in your Linux environment. An additional benefit
is that the distribution software updates will include any security patches or bug
fixes released for the servers automatically.

Web servers in Windows and Mac
Installing and running the Apache, MySQL, and PHP servers in a Windows or Mac
environment is very tricky, because there are lots of factors involved in how to
install and configure them. For starters, both Windows and macOS come with a
web server built in, so if you install the Apache web server you’ll need to configure
it to use an alternative TCP port.

U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2 Using a Web Server 37

Likewise, macOS includes an older version of PHP by default, so if you install an
updated version of PHP, things get tricky trying to make sure which version is
active.

Because of these complexities, it’s not recommended for beginners to install the
Apache, MySQL, and PHP packages separately in the Windows and Mac environ-
ments. There’s a much simpler way of getting that to work, which I’ll describe in
the next section.

Using premade servers
Trying to get a working Apache, MySQL, and PHP server in Windows (called
WAMP) or in the Mac environment (called MAMP) can be a complicated process.
There’s a lot of work downloading each of the individual server packages, config-
uring them, and getting things to work together.

Fortunately, some resourceful programmers have done that work for us! There are
quite a few open-source packages that bundle the Apache web server, MySQL (or
MariaDB) server, and PHP server together to install as a single package. This is by
far the best way to go if you plan on using your Windows or Mac workstation or
laptop as your web development environment.

FIGURE 2-2:
Viewing the

phpMyAdmin
main web page

on Fedora 27.

38 BOOK 1 Getting Started with Web Programming

There are quite a few pre-loaded packages available, but these are the most com-
mon ones:

 » XAMPP: An all-in-one package that supports PHP and Perl server-side
programming and also includes an email and FTP server, along with a
self-signed certificate to use the Apache web server in HTTPS mode. It has
installation packages available for Windows, Mac, and Linux.

 » Wampserver: A Windows-based all-in-one package that allows you to install
multiple versions of the Apache, MySQL, and PHP servers at the same time.
You can then mix-and-match which versions of which server you have active
at any time, allowing you to duplicate almost any web-hosting environment.

 » MAMP: A Mac-based all-in-one package that is easy to install and use. It also
has a commercial package called MAMP Pro that provides additional features
for managing your web environment for professional developers.

Of these, the XAMPP package is by far the most popular. It was created by the
Apache Friends organization to help promote the use of the Apache web server in
web development environments. Follow these steps to install XAMPP in a Win-
dows or macOS environment:

1. Open your browser and go to www.apachefriends.org.

2. Look for the Download section of the web page and click the link for the
OS you’re using.

3. After the download finishes, run the downloaded file in your OS
environment.

This starts the XAMPP installation wizard.

4. Click the Next button to go to the Select Components window, shown in
Figure 2-3.

The Select Components window allows you to select which components in
XAMPP you want installed. You won’t use everything contained in XAMPP for
this book, but feel free to install the entire package and explore on your own!

5. Click the Next button to continue the installation.

6. Select the installation folder for XAMPP.

The default location for Windows is c:\xampp; for macOS, it’s /Applications/
XAMPP. Those will work just fine for both environments.

7. Click the Next button to continue the installation.

The Apache Friends organization has teamed up with Bitnami, which has
prepackaged many popular web applications specifically for use in XAMPP.

https://www.apachefriends.org

U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2 Using a Web Server 39

8. You can learn more about Bitnami by leaving the Learn More about
Bitnami for XAMPP check box checked, or if you’d like to skip this step,
remove the check mark from the check box, and then click the Next
button to continue.

9. Click the Next button to begin the software installation.

10. You can keep the check mark in the check box to start XAMPP, and then
click the Finish button to end the wizard.

The XAMPP Control Panel provides easy access to start, stop, and configure each
of the servers contained in the XAMPP package. Figure 2-4 shows the main Con-
trol Panel window.

FIGURE 2-3:
The XAMPP Select

 Components
 window in the

installation
wizard.

FIGURE 2-4:
The main XAMPP

Control Panel
window.

40 BOOK 1 Getting Started with Web Programming

By default, XAMPP configures the Apache web server to use TCP port 80 for HTTP
connections. Unfortunately, this port is often in use by web servers built into Win-
dows and Mac workstations and servers. This will produce an error message when
you first start the XAMPP Control Panel, as shown in Figure 2-4.

You can move the Apache web server to an alternative TCP port. Just follow these
steps:

1. From the XAMPP Control Panel main window, click the Config button for
the Apache web server.

2. Select the menu option to edit the httpd.conf configuration file.

This opens the Apache web server configuration file in a text editor.

3. Look for the line:

Listen 80

4. Change the 80 in the line to 8080, a common alternative TCP port to use
for HTTP communications.

5. Save the updated configuration file in the editor, and then exit the editor
window.

6. Click the Start button for the Apache web server.

The Apache Web server should indicate that it has started and is using both
TCP Ports 443 (for HTTPS) and 8080 (for HTTP).

7. Click the Start button for the MySQL database server.

The MariaDB database server should indicate that it has started and is using
TCP Port 3306 (the default TCP port for MySQL).

After the Apache and MySQL servers start, you can exit the XAMPP Control Panel.
If you need to stop the servers, reopen the XAMPP Control Panel and click the Stop
buttons for both servers.

Although you’ve moved the Apache web server in the configuration file, XAMPP
will still check to see if TCP Port 80 is available when you start the XAMPP Control
Panel and complain that it’s not available. To stop that, click the Config button in
the Control Panel and then remove the check mark for the Check Default Ports on
Startup check box.

U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2 Using a Web Server 41

Tweaking the Servers
When you get the Apache, MySQL, and PHP servers installed in your development
environment, you may need to do a little bit of tweaking to get them working just
the way you want. Each of the servers uses a text configuration file to define just
how the server behaves. The following sections walk you through how to find the
configuration files and some of the settings that you may need to tweak for your
development environment.

Customizing the Apache Server
By default, the Apache Web server uses the httpd.conf configuration file to store
its settings. For Linux and Mac systems, the file is usually stored in the /etc
folder structure, often under either /etc/httpd or /etc/apache2.

The XAMPP package installs the Apache configuration file in the c:\xampp\
apache\conf folder in Windows or /Applications/XAMPP/apache/conf in macOS.

The httpd.conf configuration file contains individual lines called directives. Each
directive defines one configuration option, along with the value that you set.

The Apache web server is very versatile, with lots of different options and fea-
tures. The downside to that is it can make the configuration seem complex at first,
but the configuration file is organized such that you should be able to find what
you’re looking for relatively easily. In the following sections, I cover a few things
that you’ll want to pay attention to.

Many systems break the Apache web server configurations into multiple files to
help make the features more modular. Look for the Include directive lines in the
main httpd.conf configuration file to see what other files contain Apache web
server configuration settings.

Defining the web folder location
The main job of the Apache web server is to serve files to remote clients. However,
you don’t want just anyone retrieving just any file on your system! To limit what
files the Apache server serves, you must restrict it to a specific folder area in the
system.

You set the folder where the Apache web server serves files using the Document-
Root directive:

DocumentRoot c:/xampp/htdocs

42 BOOK 1 Getting Started with Web Programming

The htdocs folder is the normal default used for the Apache web server in
Windows and macOS environments (for macOS, it’s located in /Applciations/
XAMPP/htdocs). For Linux environments, it has become somewhat common to use
/var/www/html as the DocumentRoot folder.

If you choose to move the DocumentRoot folder to another folder location on the
server, make sure the user account that runs the Apache web server has access to
at least read files from the folder.

Setting the default TCP port
The Apache web server listens for incoming connections from client browsers
using two different default TCP network ports:

 » TCP port 80 for HTTP requests

 » TCP port 443 for HTTPS requests

HTTPS requests use encryption to secure the communication between the browser
and the server. This method is quickly becoming a standard for all web servers on
the Internet.

You set the ports the Apache web server accepts incoming requests on using the
Listen directive:

Listen 80

Listen 443

You can use multiple Listen directives in the configuration file to listen on more
than one TCP port.

USING ENCRYPTION
To establish a secure HTTPS connection, your Apache web server must have a valid
encryption certificate signed by a certificate authority. The certificate authority recognizes
your website as valid and vouches for your authenticity. This enables your website visitors
to trust that you are who you say you are and that your web server is what it says it is.

Unfortunately, signed certificates must be purchased and can be somewhat expensive.
For development work, you can use a self-signed certificate. The self-signed certificate is
what it says: You sign your own certificate. This doesn’t instill any trust in your website
visitors, so don’t use a self-signed certificate on a production website — only use it for
development. The XAMPP web server installs a self-signed certificate just for this purpose!

U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2 Using a Web Server 43

Interacting with the PHP server
The Apache web server must know how to pass files that contain PHP code to the
PHP server for processing. This is a two-step process.

First, you have to tell the Apache web server to load the PHP server module so that
it can establish the link between the Apache and PHP servers. You do that using
the LoadModule directive:

LoadModule php7_module "c:/xampp/php/apache2_4.dll"

After Apache loads the PHP module, you have to tell it what type of files to send to
the PHP server. You do this using the AddHandler directive:

AddHandler application/x-httpd-php .php

This directive tells the Apache web server to forward all files with the .php file
extension to the PHP module, which then forwards the files to the PHP server for
processing.

It may be tempting to just forward all .html files to the PHP server, because the
PHP server will pass any HTML code directly to the client browser. However, this
will add extra processing time to load your static web pages, causing a perfor-
mance issue with your HTML pages.

Tracking errors
When working in a development environment, it’s always helpful to be able to
track any errors that occur in your applications. The Apache web server supports
eight different levels of error messages, shown in Table 2-1.

TABLE 2-1	 Apache Web Server Error Levels
Error Level Description

emerg A fatal error will halt the Apache web server.

alert A severe error will have an adverse impact on your application and should be resolved
immediately.

crit A critical condition caused the operation to fail, such as a failure to access the network.

error An error occurred in the session, such as an invalid HTTP header.

warn A minor issue occurred in the session but didn’t prevent it from continuing.

notice Something out of the normal occurred.

debug A low-level detailed message occurs for each step the server takes in processing a request.

44 BOOK 1 Getting Started with Web Programming

You define the level of error tracking using the LogLevel directive and the location
of the error log using the ErrorLog directive:

LogLevel warn

ErrorLog logs/error.log

The debug log level can be useful for troubleshooting issues but is not recom-
mended for normal activity, because it generates lots of output!

You can customize the appearance of the log messages using the LogFormat direc-
tive. Apache allows you to determine just what information appears in the log
file, which can be handy when trying to troubleshoot specific problems. Consult
the Apache server documentation for the different options you have available for
customizing the logs.

Customizing the MySQL server
The MySQL server uses two different filenames for its configuration settings:

 » my.cnf for Linux and Mac systems

 » my.ini for Windows systems

One of the more confusing features about the MySQL server is that there are three
ways to specify configuration settings:

 » They can be compiled into the executable server program when built from
source code.

 » They can be specified as command-line options when the server starts.

 » They can be set in the MySQL configuration file.

You can compile all the settings you need into the MySQL executable server pro-
gram and run with no configuration file at all (that’s the approach the MAMP
all-in-one package takes). The downside to that is it’s hard to determine just
which settings are set to which values.

Most MySQL server installations use a combination of compiling some basic set-
tings into the executable server program and creating a basic configuration file for
the rest. The setting values set in the configuration file override anything com-
piled into the executable server program or set on the command line.

U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2 Using a Web Server 45

As with the Apache web server, the MySQL database server has lots of options
you can change in the configuration file to fine-tune how things work. That said,
there are only a few items that you’d ever really need to tweak in a normal setup.
The following sections walk you through some of the settings you should become
familiar with.

The core server settings
The core server settings define the basics of how the MySQL server operates.
These settings in the XAMPP for Windows setup look like this:

[mysqld]

port = 3306

socket = "C:/xampp/mysql/mysql.sock"

basedir = "C:/xampp/mysql"

tmpdir = "C:/xampp/mysql/tmp"

datadir = "C:/xampp/mysql/data"

log_error = "mysql_error.log"

The port setting defines the TCP port the MySQL server listens for incoming
requests on. The socket setting defines the location of a socket file that local cli-
ents can use to communicate with the MySQL server without using the network.

The basedir, tmpdir, and datadir settings define the locations on the server that
MySQL will use for storing its working files. The datadir setting defines where
MySQL stores the actual database files.

Working with the InnoDB storage engine
The InnoDB storage engine provides advanced database features for the MySQL
server. It has its own set of configuration settings that control exactly how it oper-
ates and how it handles the data contained in tables that use that storage engine.

There are two main configuration settings that you may need to tweak for your
specific MySQL server installation:

innodb_data_home_dir = "C:/xampp/mysql/data"

innodb_data_file_path = ibdata1:10M:autoextend

The innodb_data_home_dir setting defines the location where MySQL places files
required to support the InnoDB storage engine. This allows you to separate those
files from the normal MySQL database files if needed.

46 BOOK 1 Getting Started with Web Programming

The innodb_data_file_path setting defines three pieces of information for the
storage engine:

 » The filename MySQL uses for the main InnoDB storage file

 » The initial size of the storage file

 » What happens when the storage file fills up

To help speed up the data storage process, the InnoDB storage engine pre-
allocates space on the system hard drive for the database storage file. That way, for
each data record that’s inserted into a table, the storage engine doesn’t need to ask
the operating system for more disk space to add to the database file — it’s already
there! This greatly speeds up the database performance. The second parameter
defines the initial amount of disk space that the InnoDB storage engine allocates.

The third parameter is where things get interesting. It defines what the InnoDB
storage engine does when the space allocated for the storage file becomes full. By
default, the InnoDB storage engine will block new data inserts to the tables when
it runs out of allocated storage space. You would have to manually extend the
storage file size.

When you specify the autoextend setting, that allows the InnoDB storage engine
to automatically allocate more space for the file. That’s convenient, but it can
also be dangerous in some environments. The InnoDB storage engine will keep
allocating more storage space as needed until the server runs out of disk space!

When you use the InnoDB storage engine for your MySQL applications, it’s always
a good idea to keep an eye on the storage space folder to make sure it’s not taking
up all the server disk space.

Customizing the PHP server
The PHP server configuration file is named php.ini, but it can be located in
 several different areas. The locations that the PHP server checks are (in order):

 » The path set in the PHPIniDir directive in the Apache web server
 configuration file

 » The path set in a system environment variable named PHPRC

 » For Windows systems, the path set in the registry key named IniFilePath
under the HKEY_LOCAL_MACHINE/Software/PHP registry hive

 » The folder where the PHP server executable file is stored

U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2 Using a Web Server 47

 » The default web server’s folder

 » The OS system folder, which for Windows is the c:\winnt folder, and for
Linux and Mac the /usr/local/lib folder

The XAMPP install process places the php.ini file in the c:\xampp\apache\bin
folder.

If you’re ever in doubt as to which php.ini configuration file the PHP server is
using, run the phpinfo() function in a small PHP program. For your convenience,
all the popular all-in-one packages provide a link to run the phpinfo() function
from their main web pages. Figure 2-5 shows the output from the phpinfo()
function in XAMPP running on a Windows system.

The phpinfo() function displays the system values for each of the configuration
file settings and if any were overridden by a local setting. Look for the Loaded
Configuration File entry that shows the path to the active php.ini file to see
where that file is located for your PHP server.

FIGURE 2-5:
The phpinfo()

function output.

48 BOOK 1 Getting Started with Web Programming

As you can imagine, there are lots of settings available in the php.ini configu-
ration file. Here are some of the php.ini settings (and the default values set in
XAMPP) that you may need to tweak on your PHP server:

 » date.timezone = Europe/Berlin: Defines the time zone of the PHP server.
This must use a time zone value defined at http://php.net/manual/en/
timezones.php.

 » display_errors = On: Defines whether PHP error messages appear on the
web page. This feature is extremely handy for development work but should
be disabled for production servers.

 » error_reporting = E_ALL & ~E_DEPRECATED: Sets the level of error
reporting from the PHP server. PHP uses a complicated bit pattern to set
which errors to display or not display. It uses labels to indicate the error level
and Boolean bitwise operators to combine the levels — the tilde (~) indicates
the NOT operator. The error levels are:

• E_ERROR: Fatal run-time errors

• E_WARNING: Run-time warnings that won’t halt the script

• E_PARSE: Parsing syntax errors

• E_NOTICE: Script encountered something that could be an error and effect
the results

• E_CORE_ERROR: Fatal error that prevents PHP from starting

• E_CORE_WARNING: Non-fatal errors during startup

• E_COMPILE_ERROR: Fatal error while compiling the PHP code

• E_COMPILE_WARNING: Non-fatal errors during compile time

• E_USER_ERROR: Fatal error message generated manually by your PHP code

• E_USER_WARNING: Non-fatal error message generated manually by your
PHP code

• E_USER_NOTICE: Notice message generated manually by your PHP code

• E_STRICT: PHP detected code that doesn’t follow the PHP strict rules

• E_RECOVERABLE_ERROR: A fatal error that you can catch with a try-catch
block

• E_DEPRECATED: The PHP parser detected code that will no longer be
supported

• E_USER_DEPRECATED: A deprecation error generated manually by your
PHP code

• E_ALL: All errors and warnings except E_STRICT

http://php.net/manual/en/timezones.php
http://php.net/manual/en/timezones.php

U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2 Using a Web Server 49

 » variables_order = "GPCS": The order in which PHP populates the data
from the HTTP session (G = GET, P = POST, C = Cookies, and S = System
variables)

 » short_open_tag = Off: Determines if you can use the <? tag to identify PHP
code in your HTML documents

 » max_execution_time = 30: Sets a time limit (in seconds) for a PHP program
to run before the PHP server kills it (This is useful for stopping programs stuck
in a loop!)

 » memory_limit = 128M: Sets a limit on how much memory on the physical
server the PHP server can allocate (This also helps prevent runaway programs
from taking down the entire web server!)

CHAPTER 3 Building a Development Environment 51

Building a Development
Environment

When you’re ready to start coding your web application, you’ll need some
tools to help you out. Just as a carpenter needs a set of tools to do her job,
web developers need tools as well. And just as the carpenter has a wide

selection of tools to choose from, so do web developers. A carpenter can build an
entire house using a hammer and hand saw (and possibly a tape measure), but most
likely, she has a few more advanced tools to make her job easier. Likewise, you can
build an entire web application using a standard text editor, but there are plenty of
other tools around to make your job easier. The trick to becoming comfortable with
web programming is to find the right tool, or combination of tools, for the task at
hand. This chapter walks you through some of the tools that you can use to help
make your programming job easier. But first, I start by telling you what not to use.

Knowing Which Tools to Avoid
Before I get too far into the tool discussion, I need to tell you what tools not to use
for serious web-programming jobs. These days, plenty of tools are available to help
novice web designers create their own web pages without doing any coding at all.
However, trying to develop dynamic web applications with these tools can create
more problems than they’re worth. Here are some of the tools you should avoid.

Chapter 3

IN THIS CHAPTER

 » Identifying which tools to avoid

 » Finding the right tools for the job

52 BOOK 1 Getting Started with Web Programming

Graphical desktop tools
Graphical desktop tools allow you to create a web page using a purely graphical
interface, without having to do any coding. The most popular of these tools are the
Microsoft Expression Web package and Adobe Dreamweaver.

Both of these tools use the what you see is what you get (WYSIWYG) method of
creating web pages. Instead of an editor for writing code, the tool presents you
with a graphical canvas that represents your web page. To add features to the web
page, you drag and drop elements like text, menus, images, or multimedia clips
onto the canvas. When you’ve created the web page layout, you click a button and
the tool automatically generates all the HTML and CSS code required to build the
web page. Click another button and the tool automatically uploads the files to your
web-hosting server and you have a complete web page.

At first, tools like these may sound like a great idea, but they have some drawbacks:

 » You have little control over the HTML and CSS code the tools automati-
cally generate. Because the tools need to generate code for all sorts of
environments and applications, the code they generate is somewhat generic
and can be bloated and unnecessarily complicated.

 » Because of the code bloat, it’s extremely difficult to add or modify any of
the code that the tools generate.

 » When you use a graphical desktop tool to create your website, you’re
stuck using that tool forever. Just like other desktop software packages,
graphical desktop tools often change features as new versions come out. Old
features are dropped and new features are added, sometimes forcing you to
change the way you design your website. You’re stuck in an endless loop of
purchasing upgrades and learning new features just to maintain your website.

 » The WYSIWYG principle isn’t always accurate. The layout you create in the
canvas may not always represent what appears in web pages for all browsers
and devices that people use to view your website.

Web-hosting sites
Besides the graphical desktop tools, there are also web-hosting sites that mimic
that type of web page design. Web-hosting sites such as Squarespace and Weebly
are oriented toward novice non-programmers who want to build their own web-
sites. These sites allow people with no experience to get a simple static website
up and running in practically no time, and as you can imagine, they’re becoming
very popular.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 53

These sites have all the same drawbacks as the desktop graphical tools. Plus,
many of them don’t even let you see the HTML and CSS code that they generate.
With these template-based sites, you’re completely at their mercy. You can never
migrate your web application to a different host (which is exactly what they want).

Word processors
Some word-processing software packages, such as Microsoft Word and Apple
Pages, offer the ability to convert documents into web pages. This feature has the
same drawbacks as the fancier WYSIWYG tools: You can’t control the code they
generate, and the code they do generate is often bloated. Stay away from creating
web pages using word processors.

Also stay away from the temptation to write your web application code using a
word processor. Most word processors embed binary characters into the text, even
if you save the document in a text mode. This causes all sorts of problems when
you try to view the web page in a browser.

Working with the Right Tools
Now that you know which tools to avoid, you’re ready to look at the tools you can
use to get the job done right. In this section, I fill you in on text editors, program
editors, integrated development environments, and browser debuggers.

Text editors
The hammer-and-saw equivalent for creating web applications is the standard
text editor. You can build all the program code used in this book using the text
editor that’s already installed on your computer. You don’t have to buy any fancy
software packages or maintain any upgrades. This section explains how to use the
standard text editors that are found on most computers, based on the operating
system you’re running.

If you’re running Microsoft Windows
If you’re running Microsoft Windows, you have the trusty Notepad application for
creating and viewing standard text files. Notepad provides a bare-bones interface
for typing text and saving it. Figure 3-1 shows an example of writing HTML code
in a Notepad window. Notepad is nothing fancy — just your code in black and
white.

54 BOOK 1 Getting Started with Web Programming

Notepad works fine as a programming tool, but you’ll want to tweak a few of the
settings before you start coding in Notepad, just to make things easier.

DISABLING WORD WRAP

In Notepad, you can define the width of the document you want to create, and
then Notepad automatically starts a new line when you’ve reached that limit. This
feature is handy for typing memos, but it causes issues when coding.

Wrapping a line of code from one line to the next is generally not allowed in pro-
gramming languages. All the code for a statement should be on the same line,
unless you do some trickery to tell it otherwise.

Another issue with word wrap is that the GoTo option in the Edit menu becomes
disabled when word wrap is turned on. Because Notepad doesn’t show line num-
bers, the GoTo feature is all you have to hunt for specific line numbers that error
messages point out. GoTo is a crucial tool to have in the Notepad editor.

To disable word wrap in Notepad, click the Format entry in the menu bar; then
click the Word Wrap entry to ensure there is no check mark next to it.

AVOIDING DEFAULT FILE EXTENSIONS

By default, Notepad assumes you’re saving a text document and automatically
appends a .txt file extension to the file. That doesn’t work with programming
code, because most programs use a specific file extension to identify themselves
(such as .html for HTML files or .php for PHP files).

When you use the File ➪ Save As menu option in Notepad, you’ll need to be careful
when saving your program file that the .txt file extension doesn’t get appended

FIGURE 3-1:
Using Microsoft

Notepad to write
HTML code.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 55

to the end of the filename. To save a program file using Notepad, follow these
steps:

1. Choose File ➪ Save As from the menu bar at the top of the editor.

The Save As dialog box, shown in Figure 3-2, appears.

2. In the drop-down list at the top of the Save As dialog box, navigate to the
folder where you want to save the program file.

3. From the Save As Type text box near the bottom of the Save As dialog
box, select All Files (*.*).

This prevents Notepad from appending the .txt file extension to your
filename.

4. In the File Name field, enter the filename for your program file, including
the file extension you want to use.

5. Click Save to save the program file.

Your program file is properly saved in the correct format, with the correct
filename, in the correct location.

SEEING FILE EXTENSIONS

In Microsoft Windows you use File Explorer to navigate the storage devices on
your system to open files. Unfortunately, the default setup in File Explorer is to
hide the file extension part of the filename (the part after the period) so that it
doesn’t confuse novice computer users.

FIGURE 3-2:
The Microsoft

Notepad Save As
dialog box.

56 BOOK 1 Getting Started with Web Programming

That can have the opposite effect for programmers, adding confusion when you’re
trying to look for a specific file. You may use the same filename for multiple files
with different extensions. Fortunately, you can easily change this default setting
in Windows. Just follow these steps:

1. In Windows 8 or 10, open Settings. In Windows 7, open the Control Panel.

2. In Windows 8 or 10, type File Explorer Options in the search bar and
press Enter.

3. Click the icon for the File Explorer Options tool that appears in the search
results.

4. In Windows 7, click the File Explorer Options icon in the Control Panel.

You may have to go to the Advanced view to see it.

After you open File Explorer Options, the dialog box should look like Figure 3-3.

5. Click the View tab.

6. Remove the check mark from the Hide Extensions for Known File Types
check box, as shown in Figure 3-4.

7. Click OK.

Now you’ll be able to see the full filename, including the extension, when you
look for your programs using File Explorer.

FIGURE 3-3:
The File Explorer

Options dialog
box in Windows.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 57

SETTING THE DEFAULT APPLICATION

Now that you can see the full filename of your program files in File Explorer,
there’s just one more hurdle to cross. If you want to open your program files using
Notepad by default, you’ll need to tell File Explorer to do that. Follow these steps:

1. Navigate to the program file, and right-click the filename.

2. In the menu that appears, select Open.

The Open dialog box appears.

3. Select Notepad from the list of programs, and then select the check box
to always open files of this type using the program.

Now you’ll be able to double-click your program files in File Explorer to
automatically open them in Notepad.

If you’re running macOS
If you’re running macOS (or one of the earlier Mac OS X versions), the text editor
that comes standard is called TextEdit. The TextEdit application actually provides
quite a lot of features for a standard text editor — it recognizes and allows you to
edit a few different types of text files, including rich text files (.rtf) and HTML files.

The drawback to TextEdit is that sometimes it can be too smart. Trying to save
and edit an HTML file in TextEdit can be more complicated than it should be. By
default, TextEdit will try to display the HTML tags as their graphical equivalents
in the editor window, as shown in Figure 3-5.

FIGURE 3-4:
Removing the

Hide Extensions
for Known File

Types check
mark.

58 BOOK 1 Getting Started with Web Programming

As you can see in Figure 3-5, TextEdit actually shows the text as the HTML tags
format it instead of the actual HTML code. This won’t work for editing an HTML
file, because you need to see the code text instead of what the code generates.
There’s an easy way to fix that — just follow these steps:

1. Choose TextEdit ➪ Preferences.

The Preferences dialog box, shown in Figure 3-6, appears.

FIGURE 3-5:
Using the default
TextEdit settings

to edit an
HTML file.

FIGURE 3-6:
The Preferences

dialog box in
TextEdit.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 59

2. On the New Document tab, in the Format section, select the Plain Text
radio button.

3. In the Options section, remove the check mark from the following
check boxes:

• Correct Spelling Automatically

• Smart Quotes

• Smart Dashes

• Smart Links

4. Click the Open and Save tab (see Figure 3-7).

5. In the When Opening a File section, check the Display HTML Files as HTML
Code Instead of Formatted Text check box.

6. In the When Saving a File section, remove the check mark from the Add
“.txt” File Extension to Plain Text Files check box.

7. Close the Preferences dialog box to save the settings.

Now you’re all set to start editing your program code using TextEdit!

FIGURE 3-7:
The Open and

Save tab of the
Preferences
 dialog box.

60 BOOK 1 Getting Started with Web Programming

If you’re running Linux
The Linux environment was made by programmers, for programmers. Because of
that, even the simple text editors installed by default in Linux distributions pro-
vide some basic features that come in handy when coding.

Which text editor comes with your Linux distribution usually depends on the desk-
top environment. Linux supports many different graphical desktop environments,
but the two most common are GNOME and KDE. This section walks through the
default text editors found in each.

THE GNOME EDITOR

If you’re working in a GNOME desktop environment, the default text editor is
gedit, shown in Figure 3-8.

The gedit editor automatically saves program files as plain text format and doesn’t
try to add a .txt file extension to filenames. There’s nothing special you need to
do to dive into coding your programs using gedit. Plus, it has some advanced
 features specifically for programming that you would find in program editors (see
the “Program editors” section later in this chapter).

THE KDE EDITOR

The default text editor used in the KDE graphical desktop environment is Kate,
shown in Figure 3-9.

FIGURE 3-8:
The gedit

editor used in
Linux GNOME

desktops.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 61

Just like gedit, the Kate editor contains lots of programmer-friendly features right
out of the box. Again, no special configuration is required before you can start
editing your program code in Kate.

Program editors
The next step up from standard text editors is a family of tools called program
editors. A program editor works just like a text editor, but it has a few additional
built-in features that come in handy for programming. Here are some of the fea-
tures that you’ll find in program editors:

 » Line numbering: Providing the line numbers off to the side of the window is
a lifesaver when coding. When an error message tells you there’s a problem
on line 1935, not having to count every line to get there helps!

 » Syntax highlighting: With syntax highlighting, the editor uses different colors
for different parts of the program. Program keywords are displayed using
different colors to help make them stand out from data in the code file.

 » Syntax error marking: Text that appears to be used as a keyword but that
isn’t found in the code statement dictionary is marked as an error. This
feature can be a time-saver by helping you catch simple typos in your
program code.

There are lots of commercial program editors, but some of the best program edi-
tors are actually free. This section discusses some of the better free ones available
for HTML, CSS, JavaScript, and PHP coding.

FIGURE 3-9:
The Kate editor

used in Linux KDE
desktops.

62 BOOK 1 Getting Started with Web Programming

Notepad++
If you’re running Microsoft Windows, the Notepad++ tool is a great place to start.
As its name suggests, it’s like Notepad, but better. You can download Note-
pad++ from www.notepad-plus-plus.org. The main editing window is shown in
Figure 3-10.

The main interface for Notepad++ looks similar to Notepad, so there’s nothing
different to get used to. By default, it shows line numbers along the left margin, as
well as the type of file and the column location of the cursor at the bottom.

Notepad++ recognizes the syntax for many different types of programming lan-
guages, including HTML, CSS, JavaScript, and PHP. It highlights the keywords and
will even match up opening and closing block statements. If you miss a closing
block, Notepad++ will point that out.

Scintilla and SciTE
The Scintilla library (www.scintilla.org) is an open-source project to provide a
programming text editor engine for use in any type of environment. Developers
can embed the Scintilla editor into any type of application free of charge.

The SciTE package is a desktop text editor tool that implements the Scintilla
library. The SciTE package is available for Windows, macOS, and Linux plat-
forms. You can download it from the Scintilla website for the Windows and Linux

FIGURE 3-10:
Notepad++.

http://www.notepad-plus-plus.org
http://www.scintilla.org

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 63

platforms, and it’s available in the Apple Store for the macOS platform. Figure 3-11
shows the basic SciTE editor window in action.

SciTE provides all the program editing features mentioned earlier. It recognizes
the syntax of many different programming languages and can help you organize
your code by marking and collapsing code sections (this comes in handy if you
write long if-then statement sections).

jEdit
The jEdit program editor (www.jedit.org) is a little bit different from the other
packages. It’s written in Java code, so you can run it in any platform that supports
Java. That means you can use the exact same editor interface in Windows, macOS,
or Linux! jEdit supports all the common features you’d expect from a program
editor. Figure 3-12 shows the basic jEdit editor window.

Because jEdit is a Java application, your desktop platform must have either a Java
Runtime Environment (JRE) or Java Development Kit (JDK) package installed in
order for it to work. You can download and install one from Oracle at www.oracle.
com/technetwork/java/javase/downloads. Also, because jEdit runs as a Java
application, you may find it slower than some of the native desktop packages such
as Notepad++ or SciTE.

FIGURE 3-11:
SciTE.

http://www.jedit.org
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

64 BOOK 1 Getting Started with Web Programming

Integrated development environments
Moving up the ladder of tools, the laser-guided miter tool for program develop-
ment is the integrated development environment (IDE). IDE packages provide every-
thing you could possibly need to develop any size of web application.

Here are some of the advanced features IDE packages provide:

 » Code completion: Start typing a code statement, and the package will provide
a pop-up list of statements that match what you’re typing. It also shows what
parameters are required and optional for the statement.

 » Code formatting: The IDE automatically indents code blocks to help make
your code more readable.

 » Program execution: You can run your code directly from the editor window
without having to jump out to a web browser.

 » Debugging: You can step through the program code line by line, watch how
variables are set, and see whether any error messages are generated.

 » Project and file management: Most IDE packages allow you to group your
application files into projects. This allows you to open a project and see just the
files associated with that application. Some will even upload the project files to
your web-hosting site for you, similar to what the graphical desktop tools do.

Using an IDE tool is not for the faint of heart. Because of all the fancy features,
learning how to use the IDE interface can be almost as complicated as learning the
programming language!

FIGURE 3-12:
jEdit.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 65

There are both commercial and open-source IDE packages available for the PHP
environment. To give you a general idea of how IDE packages operate, this section
walks through two of the more popular ones: Netbeans and Eclipse.

Netbeans
The Netbeans IDE package was originally developed by Sun Microsystems and
released as an open-source IDE for its Java programming language environment
(thus the “beans” part of the name). When Oracle acquired Sun, it maintained
support for Netbeans, and continued development of it with updated releases.

The Netbeans IDE now contains support for several different programming lan-
guages besides Java by using additional plug-in modules. As you can guess, the
reason I’m mentioning it here is because there’s a plug-in module for PHP.

You can download the Netbeans editor with the PHP module already installed,
making it easy to install. Just go to www.netbeans.org/downloads and click the
Download button under the PHP category.

When you start Netbeans, it will prompt you to start a new project, as shown in
Figure 3-13.

Netbeans contains project templates for HTML and JavaScript applications, as
well as PHP applications. When you start a new PHP project, Netbeans automati-
cally creates an index.php file as the main program file for the project. It even
builds a rough template for your code. As you would expect from an IDE, when you

FIGURE 3-13:
The Netbeans

project
 dialog box.

http://www.netbeans.org/downloads

66 BOOK 1 Getting Started with Web Programming

start typing a PHP function name, Netbeans opens a pop-up box that shows all the
PHP functions that match what you’re typing, as shown in Figure 3-14.

Not only does it show the code completion list, as you can see in Figure 3-14,
but it also shows you the PHP manual definition of the function! This is cer-
tainly a handy tool to have available if you plan on doing any large-scale PHP
development.

Eclipse
The other big name in PHP IDE packages is the Eclipse PHP Development Tool
(usually just called Eclipse PDT). Eclipse was also originally designed as a Java
application IDE. Many open-source proponents didn’t trust Sun Microsystems
maintaining the only IDE for Java, so they set out to develop their own. (The
story goes that there was no intentional wordplay on the name Eclipse versus Sun
Microsystems. If you can believe that, I may have a bridge to sell you.)

Just like the Netbeans IDE, Eclipse evolved from a Java-only IDE to support many
different programming languages via the use of plug-in modules. You can down-
load the Eclipse PDT as an all-in-one package at www.eclipse.org/pdt.

Just like the jEdit editor, Eclipse PDT is written as a Java application and requires
that you have a JRE or JDK installed on your workstation (see “jEdit,” earlier in
this chapter).

FIGURE 3-14:
The Netbeans

code completion
dialog box.

https://www.eclipse.org/pdt

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 67

When you start Eclipse, a menu system appears, as shown in Figure 3-15.

This allows you to easily change the IDE configuration, start a new project, or open
an existing project. Eclipse has all the same features that Netbeans offers. Plus, it
has one additional feature: Eclipse PDT contains the advanced PHP Debugger tool
developed by Zend, the company that sponsors PHP. The Debugger tool can help
point out errors in your PHP code immediately as you type, or it can debug your
code as you run it in the Eclipse editor window. Figure 3-16 demonstrates Eclipse
pointing out a PHP coding error I made in my code.

Having an advanced PHP debugger at your fingertips can be a great time-saver
when you’re developing large applications!

Browser debuggers
Before I finish this chapter, I want to mention one more tool that you have availa-
ble when trying to troubleshoot web application issues. Most browsers today have
a code-debugging feature either built in or easily installable. The browser debug-
gers can help you troubleshoot HTML, CSS, and JavaScript issues in the web page
you send to the client. Figure 3-17 shows the debugging console in the Microsoft
Edge web browser after you press F12 to activate it.

FIGURE 3-15:
The Eclipse
start menu.

68 BOOK 1 Getting Started with Web Programming

Browser debuggers can show you exactly where something has gone wrong in
the HTML or CSS code. They’re also invaluable when working with JavaScript
applications.

FIGURE 3-16:
The PHP

 debugger in
action in Eclipse.

FIGURE 3-17:
The Microsoft

Edge
web browser

debugging a web
page.

Bu
ild

in
g

a
D

ev
el

op
m

en
t

En
vi

ro
nm

en
t

CHAPTER 3 Building a Development Environment 69

When you’re developing web applications, it’s crucial that you test, do some more
testing, and then test again. Testing your application in every possible way your
website visitors will use it is the only way to know just what to expect.

Things are getting better, but different browsers still may handle HTML, CSS, and
even JavaScript code differently. Nowhere is this more evident than when errors
occur.

When an error occurs in HTML or CSS code, the browser doesn’t display any type
of error message. Instead, it tries to fix the problem on its own so it can display
the web page. Unfortunately, not all browsers fix code the same way. If you run
into a situation where your web page looks different on two different browsers,
most likely you have some type of HTML or CSS code issue that the browsers are
interpreting differently.

2HTML5 and CSS3

Contents at a Glance
CHAPTER 1: The Basics of HTML5 . 73

Diving into Document Structure . 73
Looking at the Basic HTML5 Elements . 81
Marking Your Text . 85
Working with Characters . 90
Making a List (And Checking It Twice) . 92
Building Tables . 96

CHAPTER 2: The Basics of CSS3 . 103
Understanding Styles . 103
Styling Text . 112
Working with the Box Model . 119
Styling Tables . 121
Positioning Elements . 125

CHAPTER 3: HTML5 Forms . 135
Understanding HTML5 Forms . 135
Using Input Fields . 138
Adding a Text Area . 146
Using Drop-Down Lists . 147
Enhancing HTML5 Forms . 149
Using HTML5 Data Validation . 154

CHAPTER 4: Advanced CSS3 . 157
Rounding Your Corners . 157
Using Border Images . 159
Looking at the CSS3 Colors . 162
Playing with Color Gradients . 164
Adding Shadows . 166
Creating Fonts . 168
Handling Media Queries . 171

CHAPTER 5: HTML5 and Multimedia . 177
Working with Images . 177
Playing Audio . 185
Watching Videos . 190
Getting Help from Streamers . 194

CHAPTER 1 The Basics of HTML5 73

The Basics of HTML5

The core of your web application is the HTML5 code you create to present
the content to your site visitors. You need an understanding of how HTML5
works and how to use it to best present your information. This chapter

describes the basics of HTML5 and demonstrates how to use it to create web pages.

Diving into Document Structure
The HTML5 standard defines a specific structure that you must follow when
defining your web pages so that they appear the same way in all browsers. This
structure includes not only the markups that you use to tell browsers how to dis-
play your web page content, but also some overhead information you need to
provide to the browser. This section explains the overall structure of an HTML5
program, and tells you what you need to include to ensure your clients’ browsers
know how to work with your web pages correctly.

Elements, tags, and attributes
An HTML5 document consists of one or more elements. An element is any object
contained within your web page. That can be headings, paragraphs of text, form

Chapter 1

IN THIS CHAPTER

 » Looking at the HTML5 document
structure

 » Identifying the basic HTML5 elements

 » Formatting text

 » Using special characters

 » Creating lists

 » Working with tables

74 BOOK 2 HTML5 and CSS3

fields, or even multimedia clips. Your browser works with each element individu-
ally, positioning it in the browser window and styling it as directed.

You define elements in your web page by using tags. A tag identifies the type of
element so the browser knows just how to handle the content it contains. The
HTML5 specification defines two types of elements:

 » Two-sided elements: Two-sided elements are the more common type of
element. A two-sided element contains two parts: an opening tag and a closing
tag. The syntax for a two-sided element looks like this:

<element>content</element>

The first element tag is the opening tag. It contains the element name,
surrounded by the less-than symbol (<) and greater-than symbol (>), and
defines the start of the element definition.

The second tag is the closing tag; it defines the end of the element definition.
It points to the same element name, but the name is preceded by a forward
slash (/). The browser should handle any content between the two tags as
part of the element content. For example, the HTML5 h1 element defines a
heading like this:

<h1>This is a heading</h1>

The element instructs the browser to display the text This is a heading using
the font and size appropriate for a heading on the web page. It’s up to the
browser to determine just how to do that.

 » One-sided elements: One-sided elements don’t contain any content and
usually define some type of directive for the browser to take in the web page.
For example, the line break element instructs the browser to start a new line
in the web page:

Because there’s no content, there’s no need for a closing tag.

The older XHTML standard requires that one-sided tags include a closing
forward slash character at the end of the tag, such as
. This isn’t
required by HTML5, but it’s supported for backward compatibility. It’s very
common to still see that format used in HTML5 code.

Besides the basic element definition, many elements also allow you to define
attributes to apply to the element. Attributes provide further instructions to the
browser on how to handle the content contained within the element. When you
define an attribute for an element, you must also assign it a value.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 75

You include attributes and their values inside the opening tag of the element,
like this:

<element attribute="value">content</element>

You can define more than one attribute/value pair for the element. Just separate
them using a space in the opening tag:

<element attribute1="value1" attribute2="value2">

Attributes are commonly used to apply inline styles to elements:

<h1 style="color: red">Warning!!</h1>

The style attribute shown here defines additional styles the browser should apply
to the content inside the element. In this example, the browser will change the
font color of the text to red.

Document type
Every web page must follow an HTML or XHTML document standard so the
browser can parse it correctly. The very first element in the web page code is
the markup language standard your document follows. This element, called the
document type, is crucial, because the browser has to know what standard to follow
when parsing the code in your web page.

You define the document type using the <!DOCTYPE> tag. It contains one or more
attributes that define the markup language standard. Prior versions of HTML used
a very complicated format for the document type definition, pointing the browser
to a web page on the Internet that contained the standard definition.

Fortunately, the HTML5 standard reduced that complexity. To define an HTML5
document, you just need to include the following line:

<!DOCTYPE html>

When the browser sees this line at the start of your web page code, it knows to
parse the elements using the HTML5 standard.

If you omit the <!DOCTYPE> tag, the browser will still attempt to parse and pro-
cess the markup code. However, because the browser won’t know exactly which
standard to follow, it follows a practice known as quirks mode. In quirks mode, the
browser follows the original version of the HTML standard, so newer elements
won’t be rendered correctly.

76 BOOK 2 HTML5 and CSS3

Page definition
To create an HTML5 web page, you just define the different elements that appear
on the page. The elements fit together as part of a hierarchy of elements. Some ele-
ments define the different sections of the web page, and other elements contained
within those sections define content.

The html element is at the top of the hierarchy. It defines the start of the entire
web page. All the other elements contained within the web page should appear
between the <html> opening and </html> closing tags:

<!DOCTYPE html>

<html>

web page content

</html>

Most Web pages define at least two second-level elements, the head and the body:

<html>

<head>

head content

</head>

<body>

body content

</body>

</html>

The head element contains information about your web page for the browser. Con-
tent contained within the head element doesn’t appear on the web page, but it
directs things behind the scenes, such as any files the browser needs to load in
order to properly display the web page or any programs the browser needs to run
when it loads the web page.

One element that’s commonly found in the head element content is the title,
which defines the title of your web page:

<head>

<title>My First Web Page</title>

</head>

The web page title isn’t part of the actual web page, but it usually appears in the
browser’s title bar at the top of the browser window or in the window tab if the
browser supports tabbed browsing.

The body element contains the elements that appear in the web page. This is where
you define the content that you want your site visitors to see. The body element

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 77

should always appear after the head element in the page definition. It’s also
important to close the body element before closing out the html element.

Follow these steps to create and test your first web page:

1. Open the editor, program editor, or integrated development environ-
ment (IDE) package of your choice.

See Book 1, Chapter 3, for ideas on which tool to use.

2. Enter the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>My First Web Page</title>

</head>

<body>

This is text inside the web page.

</body>

</html>

3. Save the code to the DocumentRoot folder of your web server, naming it
mytest.html.

If you’re using the XAMPP server in Windows, the folder is c:\xampp\htdocs.
For macOS, it’s /Applications/xampp/htdocs.

4. Start the XAMPP servers.

5. Open the browser of your choice, and enter the following URL:

http://localhost:8080/mytest.html

Note that you may need to change the 8080 port number specified in the URL
to match your XAMPP Apache server set up (see Book 1, Chapter 2). Figure 1-1
shows the web page that this code produces.

The head element defines the web page title, which as shown in Figure 1-1, appears
in the web browser title bar. The body element contains a single line of text, which
the browser renders inside the browser window area.

You may notice that other than the special <!DOCTYPE> tag, all the other HTML
tags I used are in lowercase. HTML5 ignores the case of element tags, so you can
use uppercase, lowercase, or any combination of the two for the element names
in the tags. The older XHTML standard requires all lowercase tags, so many web
developers have gotten into the habit of using lowercase for tags, and more often
than not, you’ll still see HTML5 code use all lowercase tag names.

78 BOOK 2 HTML5 and CSS3

Page sections
Web pages these days aren’t just long pages of content. They contain some type of
formatting that lays out the content in different sections, similar to how a news-
paper presents articles. In a newspaper, usually there are two or more columns of
content, with each column containing one or more separate articles.

In the old days, trying to create this type of layout using HTML was somewhat of
a challenge. Fortunately, the HTML5 standard defines some basic elements that
make it easier to break up our web pages into sections. Table 1-1 lists the HTML5
elements that you use to define sections of your web page.

FIGURE 1-1:
The output

for the sample
web page.

TABLE 1-1	 HTML5 Section Elements
Element Description

article A subsection of text contained within a section

aside Content related to the main article, but placed alongside to provide additional information

div A grouping of similarly styled content within an article

footer Content that appears at the bottom of the web page

header Content that appears at the top of the web page

nav A navigation area allowing site visitors to easily find other pages or related websites

section A top-level grouping of articles

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 79

Although HTML5 defines the sections, it doesn’t define how the browser should
place them in the web page. That part is left up to CSS styling, which I talk about
in Chapter 2 of this minibook.

When you combine the HTML5 section elements with the appropriate CSS3 styl-
ing, you can create just about any look and feel for your web pages that you want.
Although there’s no one standard, there are some basic rules that you can follow
when positioning sections in the web page. Figure 1-2 shows one common layout
that I’m sure you’ve seen used in many websites.

Just about every web page has a heading section at the top of the page that iden-
tifies it to site visitors. After that, a middle section is divided into three separate
areas. On the left side is often a navigation section, providing links to other pages
in the website. On the right side is often additional information or, in some cases,
advertisements. In the middle of the middle section is the meat of the content
you’re presenting to your site visitors. Finally, at the bottom of the web page is a
footer, often identifying the copyright information, as well as some basic contact
information for the company.

The div element is a holdout from previous versions of HTML. If you need to work
with older versions of HTML, instead of using the named section elements, you
need to use the <div> tag, along with the id attribute to define a specific name
for the section:

<div id="header">

content for the heading

</div>

The CSS styles refer to the id attribute value to define the styles and positioning
required for the section. You can still use this method in HTML5. Designers often
use the div element to define subsections within articles that need special styling.

FIGURE 1-2:
A basic web page

layout using
HTML5 section

elements.

80 BOOK 2 HTML5 and CSS3

A WORD ABOUT WHITE SPACE
Quite possibly the most confusing feature in HTML is how it uses white space. The term
white space refers to spaces, tabs, consecutive spaces, and line breaks within the HTML
code.

By default, when a browser parses the HTML code, it ignores any white space between
elements. So, these three formats all produce the same results:

<title>

My First Web Page

</title>

<title>My First Web Page

</title>

<title>My First Web Page</title>

It's completely up to you which format to use for your programs, but I recommend
choosing a format and sticking to it. That’ll make reading your code down the road
easier, for you or anyone else.

COMMENTING YOUR CODE
Every programming language allows you to embed comments inside the code to help
with documenting what’s going on. HTML is no different. HTML allows you to insert text
inside the HTML document that will be ignored by the browser as it parses the text.

To start a comment section in HTML, you use the following symbol:

<!--

You can then enter as little or as much text as you need to properly document what's
going on in your code. When the comment text is complete, you have to close the
 comment section using the following symbol:

-->

You can place anything between the opening and closing comment tags, including
HTML code, and the browser will ignore it. However, be careful what you say in your
comments, because they can be read by anyone who downloads your web page!

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 81

Now that you know how to define different sections of the web page, the next sec-
tion discusses how to add content to them.

Looking at the Basic HTML5 Elements
After you define one or more sections in your web page, you’re ready to start
defining content. Adding content to a web page is sort of like working on a car
assembly line. You define each piece of the web page separately, element by ele-
ment. It’s up to the browser to assemble the pieces to create the finished web page.

This section covers the main elements that you’ll use to define content in your
web page.

Headings
Normally, each new section of content in a web page will use some type of head-
ing to make it stand out. Research shows that the first thing site visitors usually
do when visiting a web page is to scan the main headings on the page. If you can’t
attract their attention with your section headings, you may quickly lose them.

HTML5 uses the h element to define text for a heading. It defines six different
 levels of headings. Each heading level has a separate tag:

<h1>A level 1 heading</h1>

<h2>A level 2 heading</h2>

<h3>A level 3 heading</h3>

<h4>A level 4 heading</h4>

<h5>A level 5 heading</h5>

<h6>A level 6 heading</h6>

Although there are six levels of headings in the HTML5 standard, most sites don’t
use more than two or three.

The client browser determines the font, style, and size of the text it uses for each
heading level. Figure 1-3 shows how the Chrome web browser interprets the six
levels of headings.

82 BOOK 2 HTML5 and CSS3

The browser displays each heading level with a decreasing font size. By the time
you get to the sixth heading level, it’s pretty hard to tell the difference between
the heading and normal text on the web page!

Text groupings
There are several HTML5 elements that allow you to group text together into
what are called block-level elements. The browser treats all of the content defined
within the opening and closing tags of a block-level element as a single group.
This allows you to use CSS to style or position the entire block of content as one
piece, instead of having to style or position each element individually.

You can group headings together using a new feature in the HTML5 standard
called a heading group, using the hgroup element:

<hgroup>

<h1>This is the main heading.</h1>

<h2>This is the subheading.</h2>

</hgroup>

The heading group doesn’t change the h1 or h2 elements, but it provides a way
for the browser to interpret the two headings as a single element for styling and
positioning. This allows you to use CSS styles to format them as a single block so
they blend together like a main heading and a subheading.

A web page consisting of sentences just strung together is boring to read and
won’t attract very many site visitors (or may just put them to sleep). In print, we

FIGURE 1-3:
Displaying all six
heading levels in
the Chrome web

browser.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 83

group sentences of common thoughts together into paragraphs. You do the same
thing in your web page content by using the p element:

<p>This is one paragraph of text. The paragraph contains two sentences of

content.</p>

Notice that the p element uses an opening tag (<p>) and a closing tag (</p>) to
mark the beginning and end of the grouped text. The browser treats all the text
inside the p element as a single element. When you group the content together,
you can apply styles and positioning to the entire block.

Be careful with the p element, though. The rules of white space that apply to
HTML tags also apply to text inside the p element. The browser won’t honor line
breaks, tabs, or multiple spaces. So, if you have code like this:

<p>

This is one line.

This is another line.

</p>

It will appear in the web page like this:

This is one line. This is another line.

All the extra spaces and the line break are removed from the content. Also, notice
that the web browser adds a space between the two sentences.

If you want to preserve the formatting of the text in the web page, use the pre
element. The pre element allows you to group preformatted text. The idea behind
preformatted text is that it appears in the web page exactly as you enter it in the
code file:

<pre>

This is one line.

This is another line.

</pre>

The browser will display the text in the web page exactly as it appears in the
HTML5 code.

Yet another method of grouping text is the blockquote element. The blockquote
element is often used to quote references within a paragraph. The browser will

84 BOOK 2 HTML5 and CSS3

indent the text contained within the blockquote separate from the normal para-
graph text:

<p>The only poem that I learned as a child was:</p>

<blockquote>Roses are red, violets are blue. A face like yours, belongs in the

zoo.</blockquote>

<p>But that's probably not considered classic poetry.</p>

This feature helps you embed any type of text within content, not just quotes.

Breaks
Because HTML doesn’t recognize the newline character in text, there’s a way to
tell the browser to start a new line in the web page when you need it. The single-
sided br element forces a new line in the output:

<p>

This is one line.

This is a second line.

</p>

Now the output in the web page will appear as:

This is one line.

This is a second line.

Another handy break element is the hr element. It displays a horizontal line across
the width of the web page section.

<h1>Section 1</h1>

<p>This is the content of section 1.</p>

<hr>

<h1>Section 2</h2>

<p>This is the content of section 2.</p>

The horizontal line spans the entire width of the web page block that contains it,
as shown in Figure 1-4.

Sometimes that’s a bit awkward, but you can control the width of the horizontal
line a bit by enclosing it in a section and adding some CSS styling.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 85

Marking Your Text
The opposite of block-level elements are text-level elements. Text-level elements
allow you to apply styles to a section of content within a block. This section shows
you the text-level elements you can apply to the content in your web page.

Formatting text
The text-level elements apply predefined formats to text without the need for
CSS styling. The most popular of the text-level elements are the b and i elements,
which apply the bold and italic styles, respectively:

<p>I <i>wanted</i> the large drink size.</p>

Text-level elements are also called inline, because they appear in the same line
as the content. You can embed text-level elements to apply more than one to the
same text:

<p>I wanted the <i>large</i> drink size.</p>

When applying two or more text-level elements to text, make sure you close the
tags in the opposite order that you open them.

HTML5 supports lots of different text-level elements for using different styles
of text directly, without the help of CSS. Table 1-2 lists the text-level elements
available in HTML5.

FIGURE 1-4:
Using the hr
 element in a

web page.

86 BOOK 2 HTML5 and CSS3

As you can see in Table 1-2, you have lots of options for formatting text without
even having to write a single line of CSS code!

Using hypertext
In Book 1, Chapter 1, I mention that hyperlinks are the key to web pages. Hyper-
links are what tie all the individual web pages in your website together, allowing
site visitors to jump from one page to another.

TABLE 1-2	 HTML5 Text-Level Elements
Element Description

abbr Displays the text as an abbreviation

b Displays the text as boldface

cite Displays the text as a citation (often displayed as italic)

code Displays the text as program code (often displayed with a fixed-width font)

del Displays the text as deleted (often displayed with a strikethrough font)

dfn Displays the text as a definition term (often displayed as italic)

em Displays the text as emphasized (often displayed as italic)

i Displays the text as italic

ins Displays the text as inserted (often displayed with an underline font)

kbd Displays the text as typed from a keyboard (often as a fixed-width font)

mark Displays the text as marked (often using highlighting)

q Displays the text as quoted (often using quotes)

samp Displays the text as sample program code (often displayed with a fixed font)

small Displays the text using a smaller font than normal

strong Displays the text as strongly emphasized (often using boldface)

sub Displays the text as subscripted

sup Displays the text as superscripted

time Displays the text as a date and time value

var Displays the text as a program variable (often using italic)

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 87

The element that creates a hyperlink is the anchor text-level element. At first, that
may sound somewhat counterintuitive — you’d think an anchor would keep you
in one place instead of sending you someplace else. But think of it the other way
around: The anchor element is what anchors another web page to your current
web page. Following the anchor takes you to the other web page!

Formatting a hyperlink
Because the anchor element is a text-level element, you use it to mark text inside
a block. That text then becomes the hyperlink. You add an anchor element using
the <a> tag. The anchor element is two-sided, so it has both an opening tag (<a>)
and a closing tag (). The text inside the opening and closing tags becomes the
hyperlink text.

A few different attributes are available for the <a> tag, but the most important one
is the href attribute. The href attribute specifies where the hyperlink takes your
site visitors:

Click here to search.

When a site visitor clicks the hyperlink, the browser automatically takes the visi-
tor to the referenced web page in the same browser window. If you prefer, you can
also specify the target attribute, which specifies how the browser should open
the new web page. Here are your options for the target attribute:

 » _blank: Opens the specified page in a new tab or window.

 » _self: Opens the specified page in the current tab or window. This is the
default behavior in HTML5, so it’s not necessary to add it unless you want to
for clarification in your code.

 » _parent: Opens the specified page in the parent window of a frame embed-
ded within the window. Embedded frames aren’t popular anymore in HTML5,
so this option is seldom used.

 » _top: Opens the specified page in the main window that contains the frame
embedded within other frames. This is seldom used.

You use the target attribute like this:

Click here to search.

There’s no set rule regarding how to handle opening new web pages, but generally
it’s a good idea to open other pages on your own website in the same browser tab
or window, but open remote web pages in a new tab or window. That way your
site visitors can easily get back to where they left off on your website if needed.

88 BOOK 2 HTML5 and CSS3

Displaying a hyperlink
When you specify a hyperlink in the text, the browser tries to make it stand out
from the rest of the text, as shown in Figure 1-5.

By default, browsers will display the anchor element text using a different format
than the rest of the block text:

 » Unvisited links appear underlined in blue.

 » Visited links appear underlined in purple.

 » Active links are when you click an unvisited or visited link with your mouse. When
you click your mouse, the link becomes active and appears underlined in red.

You can change these formats to your own liking using CSS styles, as I explain in
the next chapter.

Specifying a hyperlink
The href attribute defines the location of the web page that you want the browser
to open for your site visitor, but there are a few different formats you can use to
specify that location:

FIGURE 1-5:
Displaying

hypertext in a
document.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 89

 » A different location on the same document

 » A separate web page in the same website

 » A web page in a remote website

You can use hyperlinks to force the browser to jump to a specific location inside
the same web page. This is handy for long web pages that require lots of scrolling
to get to sections at the bottom of the page. To use this method, you must first
identify the locations in the web page by applying the id attribute to a block-level
element, such as a heading or a paragraph element:

<h1 id="chicago">Chicago News</h1>

To create an anchor element to jump to that section, you use the id attribute
value, preceded by a number sign or hash mark (#):

See Chicago News

When the site visitor clicks the link, the browser automatically scrolls to place the
section in the viewing area of the window.

When jumping to another web page on the same server, you don’t need to include
the full http:// address in the href attribute. Instead, you can specify a relative
address. The relative address isn’t where your uncle lives; it’s shorthand for find-
ing another file on the same web server. If the file is in the same folder on the
same server, you can just specify the filename:

Shop in our online store.

You can also place files in a subfolder under the location of the current web page.
To do that, specify the subfolder without a leading slash:

Shop in our online store.

In both cases, the browser will send an HTTP request to retrieve the file to the
same server where it downloads the original page from.

To specify a web page on a remote website, you’ll need to use an absolute address.
The absolute address specifies the location using the Uniform Resource Locator
(URL), which defines the exact location of a file on the Internet using the follow-
ing format:

protocol://host/filename

90 BOOK 2 HTML5 and CSS3

The protocol part specifies the network protocol the browser should use to
download the file. For web pages, the protocol is either http (for unencrypted
connections) or https (for encrypted connections). The host part specifies the
host name, such as www.google.com for Google. The filename part specifies the
exact folder path and filename to reach the file on the server. If you omit the file-
name, the remote web server will offer the default web page in the folder (usually,
index.html).

You can also specify local filenames using an absolute path address. Just pre-
cede the folder name with a forward slash (/). The leading forward slash tells the
server to look for the specified folder at the DocumentRoot location of the web
server, instead of in a subfolder from the current location.

Working with Characters
No, I’m not talking about Disneyland. I’m talking about the letters, numbers,
and symbols that appear on your web pages. Humans prefer to see information
as letters, words, and sentences, but computers prefer to work with numbers. To
compensate for that, programmers developed a way to represent all characters as
number codes so computers can handle them. The computer just needs a method
of mapping the number codes to characters.

Character sets
The character-to-number mapping scheme is called a character set. A character set
assigns a unique number to every character the computer needs to represent. In
the early days of computing in the United States, the American Standard Code for
Information Interchange (ASCII) became the standard character set for mapping
the English-language characters and symbols in computers.

As the computing world became global, most programs needed to support more
than just the English language. The Latin-1 and ISSO 8859-1 character sets
became popular, because they include characters for European languages. But that
still didn’t cover everything!

Because it’s supported worldwide, the HTML5 standard required more than just
European-language support. The Unicode character set supports characters from
all languages of the world; plus, it has room for expansion. Because of its huge
size, though, a subset of Unicode, called UTF-8, became more popular. UTF-8 also
supports all languages, but with a smaller footprint; it has become the standard
for HTML5.

http://www.google.com

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 91

Although the HTML5 standard specifies a default character set, it’s a good idea to
specify the character set in your web pages so that you’re sure the client browser is
using the same character set to interpret your content. You do that using the meta
element. Because the meta element provides additional information about your web
page, you have to place it inside the head element section of the HTML code.

The meta element uses the single-sided <meta> tag. To specify the character set
in HTML5 you use the following format:

<meta charset="UTF-8">

If your HTML code requires a different character set, you specify it here.

The <meta> tag allows you to specify other features of your web page to the
browser so that it knows how to process the body of the web page, and identify
the content of the web page to servers that automatically scan your web pages for
search engines. I talk some more about the <meta> tag in Book 4, Chapter 4.

Special characters
The UTF-8 character set supports lots of fancy characters that you won’t find on
your keyboard, such as the copyright symbol (©), the cent symbol (¢), and the
degree symbol (°). These are commonly referred to as special characters.

You can use special characters in your web page content because they’re valid
UTF-8 characters. You just need to use a different way of specifying them. Instead
of typing these characters using your keyboard, you use a code to specify them.

HTML5 uses two types of codes to specify special characters:

 » Numeric character reference: The numeric character reference uses the
UTF-8 numeric code assigned to the character. Place an ampersand (&) and a
hash (#) in front of the character number, and a semicolon (;) after the
character number. For example, to display the copyright symbol, use the
following:

©

 » Character entity reference: The character entity reference uses a short
name to represent the character. Place an ampersand (&) in front of the
character short name, and a semicolon (;) after the character short name:

©

92 BOOK 2 HTML5 and CSS3

Both methods work equally well, so use whichever method you’re most comforta-
ble with. The list of special characters available in UTF-8 is pretty long, so I won’t
include them here. If you search the web for UTF-8 characters, you’ll find plenty
of websites that show the mappings between the UTF-8 numbers and character
short names.

Making a List (And Checking It Twice)
The world is full of lists — to-do lists, wish lists, grocery lists . . . the list just
goes on and on. It’s no surprise that the HTML5 developers created a way to easily
present lists in web pages. There are three basic types of lists available for you to
use in HTML5: unordered lists, ordered lists, and description lists. This section
covers how to use each type of list in your web pages.

Unordered lists
Some lists have no specific order to the items contained in them (like a grocery
list). In the word-processing world, these are called bulleted lists, as each item
in the list is preceded by a generic bullet icon. In HTML5, they’re referred to as
unordered lists.

The HTML5 standard uses the ul element to display an unordered list using bullets.
The ul element is a two-sided element, so you use the tag to open the list and
the tag to close the list.

You must identify each item in the list using the li element. The li element is also
a two-sided element, so you use the tag to open each item description and
the tag to close it. The overall structure for an unordered list looks like this:

 item1

 item2

 item3

Because HTML5 doesn’t care about white space in code, it’s common to indent the
list items in the definition as shown here, to help make it easier to read the code.
However, indenting isn’t necessary.

Figure 1-6 shows the default way most browsers display unordered lists in the
web page.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 93

The bullet marks are fairly generic, similar to what you’d see in most word-
processing documents. Fortunately, you can spice things up a little using CSS by
defining different types of bullets to use.

Ordered lists
Some lists have a specific order in which the items should appear and be processed.
In word-processing, these lists are called numbered lists. In HTML5, they’re called
ordered lists.

The HTML5 standard uses the ol element to display an ordered list. The ordered list
also uses the li element to mark the individual items contained in the list:

 Walk the dog.

 Eat breakfast.

 Read the paper.

 Get ready for work.

By default, browsers assign each item in the list a number, starting at 1, and
increasing for each list item, as shown in Figure 1-7.

FIGURE 1-6:
Displaying an

unordered list.

94 BOOK 2 HTML5 and CSS3

If you want the list to be in reverse order, add the reversed attribute:

<ol reversed>

If you’d like to start at a different number, add the start attribute, and specify the
starting number as the value:

<ol start="10">

If you don’t want to use numbers, there are a few other options available with the
type attribute. Table 1-3 shows the different ordered list types available.

FIGURE 1-7:
The display

default for an
ordered list.

TABLE 1-3	 Ordered List Types
Type Description

1 Numerical list (the default)

A Alphabetical list, using uppercase

a Alphabetical list, using lowercase

I Roman numerals, using uppercase

i Roman numerals, using lowercase

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 95

As you can probably guess, you can also embed lists within lists:

<ol type="I">

 First item

 <ol type="A">

 Item 1, Subitem 1

 Item 1, Subitem 2

 Second item

 <ol type="A">

 Item 2, Subitem 1

 Item 2, Subitem 2

When using embedded lists, it’s very important to match up the opening and clos-
ing tags for each item in the list, as well as the lists themselves. Any mismatches
will confuse the browser and will cause unpredictable results.

Description lists
Another common use of lists is to provide descriptions for terms, such as a glos-
sary. The HTML5 standard uses description lists to provide an easy way to do that.

Description lists use the dl element to define the list but use a slightly different
method of defining the items in the list than the unordered and ordered lists. The
description list breaks the items into terms and descriptions. You define a term
using the dt two-sided element and the associated description using the dd two-
sided element.

Because it’s important to match the correct term with the correct description, be
careful to alternate between the two in the list definition:

<dl>

<dt>Baseball</dt>

<dd>A game played with bats and balls</dd>

<dt>Basketball</dt>

<dd>A game played with balls and baskets</dd>

<dt>Football</dt>

<dd>A game played with balls and goals</dd>

</dl>

Figure 1-8 shows how this table is rendered in the browser.

96 BOOK 2 HTML5 and CSS3

The browser automatically separates the terms from the descriptions in the dis-
play, making it easier to tell which is which.

Building Tables
No, don’t get out your hammer and saw. I’m talking about data tables. The world
is filled with data, and a very common use of web pages is to present that data
to the world. This section describes the data table features built into HTML5 that
you can use to easily present your data. The general process for creating a table
involves three steps:

1. Define the table element.

2. Define the table rows and columns.

3. Define the table headings.

This section walks through each of these steps to show you how to create tables
for your data.

Defining a table
To add a table to your web page, you start out with the HTML5 table element. The
table element is a two-sided element, so it opens with a <table> tag and closes
with a </table> tag:

FIGURE 1-8:
Displaying a

description list.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 97

<table>

</table>

That creates the table, but it’s not too exciting because there’s nothing in it yet.
The next step is to define cells for the data.

Prior versions of HTML added attributes to the <table> tag to define the table
appearance, such as the border type, cell spacing, and width. HTML5 has dropped
all these attributes, so avoid using them if possible. You should now define those
features using CSS styles instead.

Defining the table’s rows and columns
If you’re familiar with standard spreadsheet software, such as Microsoft Excel or
Apple Numbers, you’re used to defining tables using cells, referenced by letters
(for the columns) and numbers (for the columns). Unfortunately, HTML5 uses a
different method for defining table cells.

To build the cells in a table you must define two separate elements:

 » A row in the table: You use the tr element to define the row inside the table.
The tr element is a two-sided element, so you use the <tr> tag to open a row
and the </tr> tag to close the row.

 » The cell inside the row: Inside the row you use the td element to define
individual cells. Again, the td element is two-sided, so you use the <td> tag to
open a cell and the </td> tag to close a cell.

So, with all that info, you can create your first table. Just follow these steps:

1. Open your text editor, program editor, or IDE package and type the
following code:

<!DOCTYPE html>

<html>

<head>

<title>My First Table</title>

</head>

<body>

<h1>Bowling Scores</h1>

<table>

98 BOOK 2 HTML5 and CSS3

 <tr>

 <td>Bowler</td>

 <td>Game 1</td>

 <td>Game 2</td>

 <td>Game 3</td>

 <td>Average</td>

 </tr>

 <tr>

 <td>Rich</td>

 <td>100</td>

 <td>110</td>

 <td>95</td>

 <td>102</td>

 </tr>

 <tr>

 <td>Barbara</td>

 <td>110</td>

 <td>105</td>

 <td>103</td>

 <td>106</td>

 </tr>

 <tr>

 <td>Katie</td>

 <td>120</td>

 <td>125</td>

 <td>115</td>

 <td>120</td>

 </tr>

 <tr>

 <td>Jessica</td>

 <td>115</td>

 <td>120</td>

 <td>120</td>

 <td>118</td>

 </tr>

</table>

</body>

</html>

2. Save the file in the XAMPP DocumentRoot folder as mytable.html.

3. Make sure the XAMPP servers are running.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 99

4. Open your browser and enter the following URL:

http://localhost:8080/mytable.html

You may need to change the 8080 port number in the URL to match the
Apache web server in your setup. When you display the web page it should
look like Figure 1-9.

By default, the table doesn’t contain any gridlines, but you can change that using
CSS, as you see in the next chapter. Also, the table column headings appear just
like the data rows. You fix that next.

Defining the table headings
You can apply special formatting to table headings without the use of CSS by using
the th element instead of the td element for the heading cells:

<tr>

 <th>Bowler</th>

 <th>Game 1</th>

 <th>Game 2</th>

 <th>Game 3</th>

 <th>Average</th>

</tr>

FIGURE 1-9:
Displaying the

table in Chrome.

100 BOOK 2 HTML5 and CSS3

The th element causes the browser to display the heading cells using a bold font.

Often, in tables, you’ll run into situations where a data cell must span two or more
columns or rows. You can emulate that in your HTML5 tables using the rowspan
and colspan attributes in the <td> tag.

To span two or more rows in a single data cell, just add the rowspan attribute, and
specify the number of rows to span. For example, if all the bowlers had the same
score in the first game, you could do this:

<tr>

 <td>Rich</td>

 <td rowspan=4>100</td>

 <td>110</td>

 <td>95</td>

 <td>102</td>

</tr>

Now the second cell will span the next four rows in the table. Remember, though,
when entering data for the other three rows, you must omit the first cell of data,
because the first row will take up that space, as shown in Figure 1-10.

FIGURE 1-10:
Using the

rowspan attribute
in a table.

Th
e

Ba
si

cs
 o

f H
TM

L5

CHAPTER 1 The Basics of HTML5 101

Likewise, if one of the bowlers had the same score in all three games, you could
use the colspan attribute to combine all three columns into one cell:

<tr>

 <td>Katie</td>

 <td colspan=3>120</td>

</tr>

Now the second cell in the row will span all three data columns for that row, as
shown in Figure 1-11.

FIGURE 1-11:
Using the

colspan attribute
in a table.

CHAPTER 2 The Basics of CSS3 103

The Basics of CSS3

In the last chapter, I explain how to use HTML5 to display content on your web
page. However, when you just use HTML5, things look pretty boring! This
chapter shows you how to incorporate style into your web pages to help liven

things up (even if you’re not an artist).

First, I explain how to use CSS style sheets to style elements contained in the web
page. Then I show you how to work with styles to change the color and font of
text, make fancier lists, and spruce up your tables within your web pages. Finally,
I explain how to work with the CSS positioning features to arrange your content in
an appealing manner on the page.

Understanding Styles
When you specify an HTML5 element in your web page, the web browser decides
just how that element should look. Browsers use a default styling to determine the
difference between the text in an h1 element and the text in a blockquote element.

Fortunately, another standard is available to work with HTML5 that helps you
make your web pages unique. Back in Book 1, Chapter 1, I explain how Cascading
Style Sheets (CSS) work to style HTML5 content on the web page. That’s the key
to making your website stand out from the crowd!

Chapter 2

IN THIS CHAPTER

 » Defining styles

 » Formatting text

 » Using the box model

 » Sprucing up your tables

 » Positioning elements where you
want them

104 BOOK 2 HTML5 and CSS3

The CSS standard specifies ways to define the color, size, and font type of text that
appears on web pages. It also provides some styles for adding background colors
and images and styling other types of elements on the web page.

The CSS standard has evolved some over the years. At the time of this writing, it’s
currently at version 3 — you’ll often see it referred to as CSS3, and that’s what I
call it in this book.

Now you’re ready to take a deeper dive into just how to use CSS3 in your web
applications. This section walks through how CSS3 works and how you can use it
to make your web pages look good.

Defining the rules of CSS3
CSS3 uses rules to define how the browser should display content on the web page.
Each rule consists of two parts: a selector that defines what elements the rule
applies to and one or more declarations that define the style to apply.

The format of the CSS3 rule looks like this:

selector {declaration; declaration; ...}

In the rule definition, there are five ways to define the selector:

 » Element type: The rule applies to all elements of the specified type.

 » id attribute: The rule applies to the specific element with the specified id value.

 » class attribute: The rule applies to all elements with the specified
class value.

 » Pseudo-element: The rule applies to a specific part within an element.

 » Pseudo-class: The rule applies to elements in a specific state.

Each declaration defines a CSS3 style property and its associated value. Each prop-
erty sets a specific style (such as a color or a font) to the element the rule applies
to. You must end each declaration with a semicolon, and you can list as many
declarations as needed in the rule.

Here’s the format of the property and its value as you list them in the declaration:

property: value

In the following sections, I explain in more detail the five ways to define a selector.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 105

Element type
You can apply the same styling to all elements of a specific type in your web page
by specifying the element name as the selector:

h1 {color: red;}

This rule ensures that the browser displays all h1 elements in the web page using
a red font color.

If you want to apply the same styles to multiple types of elements, you can either
list them as separate rules or group the elements together in the selector by sepa-
rating the element names with commas, like this:

h1, p {color: red;}

This rule instructs the browser to style all h1 and p elements using a red font color.

id attribute
If you need to define a rule that applies to just a single element in the web page,
use the id attribute as the selector. To specify an id attribute as the selector, place
a pound sign (#) in front of the id name:

#warning {color: red;}

To use the rule in your HTML5 code, just apply the id attribute value to the ele-
ment you need to style:

<h1 id="warning">This is a bad selection.</h1>

The browser will apply that rule to the specific element that uses the id attribute
value.

class attribute
If you need to define a rule that applies to multiple elements, but not necessarily
all the elements of that type, use the class attribute as the selector. To specify a
class attribute as the selector, place a period in front of the class name:

.warning {color: red;}

106 BOOK 2 HTML5 and CSS3

Then just apply that class attribute to whichever elements you need to style using
that rule:

<h1 class="warning">This is a bad selection.</h1>

<p class="warning">Please make another selection.</p>

As you can see from this example, you can apply the same class attribute value
to different element types, making this a very versatile way of styling sections of
your web page!

If you decide you only need to apply a rule to one particular element type of the
class, you can specify the element type in the selector before the class value:

p.warning {color: red;}

This rule will apply only to p elements with the class attribute value of warning.

Pseudo-element
The CSS standard defines a handful of special cases where you can apply styles to a
subsection of the element content, and not the entire content of an element. These
rules are called pseudo-elements.

To use a pseudo-element rule, separate the rule from the selector it applies to
using a double colon (::):

selector::pseudo-element

CSS3 supports a set of keywords for the pseudo-element names. For example, if
you want to get fancy and style the first letter of a paragraph of text differently
from the rest of the text, you can use the first-letter pseudo-element keyword:

p::first-letter {font-size: 20px}

The first-letter pseudo-element matches with only the first letter of the p ele-
ment, as shown in Figure 2-1.

CSS3 defines only a handful of pseudo-elements. Table 2-1 lists them.

There aren’t a lot of pseudo-elements available, but these few pseudo-elements
can come in handy for trying special formatting of your web pages.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 107

The after and before pseudo-elements may sound a bit strange, because there’s
no content to style before or after an element. They’re most commonly used for
placing images after or before the content in the element.

Pseudo-class
A pseudo-class applies the defined styles to an element that is in a specific state on
the web page. The state refers to how the element behaves, such as buttons that
are disabled, check boxes that are checked, or input boxes that have the browser
focus.

FIGURE 2-1:
Using the
first-letter

pseudo-element
on text.

TABLE 2-1	 CSS3 Pseudo-Elements
Pseudo-Element Description

after Places an object before the selected element content

before Places an object after the selected element content

first-letter Applies the rule to the first letter of the selected element content

first-line Applies the rule to the first line of the selected element content

selection Applies the rule to the content area selected by the site visitor

108 BOOK 2 HTML5 and CSS3

These rules are commonly applied to hypertext links on the web page to help site
visitors distinguish links they’ve already visited. You do that by using a series of
four pseudo-class style rules:

 » link: Applies the rule to a normal, unvisited link

 » visited: Applies the rule to a link that the site visitor has already visited

 » hover: Applies the rule when the site visitor hovers the mouse pointer over
the link

 » active: Applies the rule when the site visitor clicks the mouse on the link

You specify pseudo-class rules using a single colon to separate it from the selector
in the rule definition:

a: link {color: orange;}

a: visited {color: purple;}

a: hover {color: green;}

a: active {color: red;}

All these pseudo-class rules apply to all the anchor elements in the web page and
apply different colors to the hyperlink text depending on the hyperlink state.

It’s extremely important to list the anchor element pseudo-class rules in the
order shown here, or they won’t work!

If you want to remove the underline that most browsers apply to hypertext links,
add the following property to the pseudo-element style rule:

text-decoration:none;

There are lots of pseudo-classes that you can use to apply rules to specific ele-
ments in the your web pages. Table 2-2 shows the list of available pseudo-classes
in CSS3.

Many of the pseudo-class style rules (such as first-child and last-child)
work with the location of an element within the Document Object Model (DOM).
Book 3, Chapter 2, discusses the DOM and how to use it to reference elements on
the web page.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 109

TABLE 2-2	 The CSS3 Pseudo-Classes
Pseudo-Class Description

active The rule applies to hypertext links while the site visitor clicks them.

checked The rule applies to input check boxes and radio options that are selected
(checked).

disabled The rule applies to input elements that are disabled.

empty The rule applies to elements that have no children.

enabled The rule applies to input elements that are enabled.

first-child The rule applies to the first child element of a parent element.

first-of-type The rule applies to the first child element of the same type as the parent.

focus The rule applies to elements that have the browser focus.

hover The rule applies to elements that the mouse pointer is hovering over.

in-range The rule applies to elements whose value is within the specified range.

invalid The rule applies to elements whose value is invalid.

lang(language) The rule applies to elements with the lang attribute specified.

last-child The rule applies to the last child element of a parent element.

last-of-type The rule applies to the last child element of the same type as the parent.

link The rule applies to unvisited hypertext link elements.

not(selector) The rule applies to all elements except the specified selector elements.

nth-child(n) The rule applies to the nth child of the parent element.

nth-last-child(n) The rule applies to the nth child of the parent element counting backward from
the last element.

nth-of-type(n) The rule applies to the nth child element with the same type as the parent.

only-of-type The rule applies to every element that is the only element of the same type as
the parent.

only-child The rule applies to every element that is the same only child of a parent.

optional The rule applies to input elements that do not have the required attribute.

out-of-range The rule applies to elements with a value out of the specified range.

read-only The rule applies to elements with a readonly attribute specified.

(continued)

110 BOOK 2 HTML5 and CSS3

Applying style rules
In Book 1, Chapter 1, I discuss the different ways to apply CSS3 styles to an HTML5
document. To refresh your memory, there are three ways to do that:

 » Inline styles: Place the style properties inside the HTML5 element opening
tag, using the style attribute:

<h1 style="color: red;">Warning</h1>

 » Internal styles: Use the <style> tag to define a set of styles that apply to the
entire document:

<style>

h1 {color: red;}

</style>

 » External styles: Use an external file to contain the style definitions, and then
add the <link> tag in the HTML5 document to reference the external style
sheet:

<link rel="stylesheet" href="mystyles.css">

Note that with the inline style definitions, you leave off the selector part of the
rule. Because the rule applies only to the element that declares it, there’s no need
for the selector. With both the inline and external style sheet methods, you define
the set of rules separately within the style sheet. The great benefit of using the
external style sheet method is that you can then apply the same style sheet to all
the pages of your website!

TABLE 2-2	(continued)

Pseudo-Class Description

read-write The rule applies to elements without a readonly attribute specified.

required The rule applies to elements with a required attribute specified.

root The rule applies to the document’s root element.

target The rule applies to the current active element specified.

valid The rule applies to elements that have a valid value.

visited The rule applies to hypertext links that the site visitor has already visited.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 111

You can use any of these locations to define your style rules, or you can use them
all at the same time! If two or more style rules apply to the same element on the
web page, the cascading feature of CSS3 kicks in. CSS3 defines a specific process
on how the browser applies conflicting rules to an element to ensure everything
happens in order. The next section explains how that works.

Cascading style rules
As the name suggests, if you define multiple style rules for a web page, the rules
cascade down from the lower-priority rules, which are applied first, to the higher-
priority rules, which are applied later.

Saying “down” from a lower to a higher priority may seem counterintuitive, but
it’s common jargon in CSS circles. Just remember that the higher-priority rules
take precedence over the lower-priority rules.

The CSS3 standard defines a strict process for how browsers should apply style
rules to each element. In Book 1, Chapter 1, I outline an abbreviated version of the
cascading rules. There are actually ten different rule levels that the CSS3 standard
defines for applying rules! However, most web designers don’t use all ten levels to
define rules, so things don’t usually get that complicated.

Table 2-3 shows the official CSS3 cascading rules process.

TABLE 2-3	 The CSS3 Cascading Rules Process
Rule Type Description Priority Level

Importance Rules contain the !important property and override all other rules 1

Inline Rules defined using the style attribute in an element opening tag 2

Media Rules defined for a specific media type 3

User defined Accessibility features defined in the browser by the site visitor 4

Specific selector A selector referring to an id, class, pseudo-element, or pseudo-class 5

Rule order When multiple rules apply to an element, the last rule declared wins 6

Inheritance Rules inherited from parent elements in the web page 7

Internal Rules defined in internal style sheets 8

External Rules defined in external style sheets 9

Browser default The default styles built into the browser, the lowest priority 10

112 BOOK 2 HTML5 and CSS3

Notice that accessibility features have a special place in the cascading rule order.
Many of your website visitors may have some type of viewing disability prevent-
ing them from viewing your content as you style it. Most browsers allow users to
define their own style features, such as specifying foreground and background
contrasting colors or changing the font size to make text more readable.

Now that you’ve seen how to define CSS3 rules and where to define them, the next
step is to start learning some rules to apply to your web pages. The CSS3 standard
defines a myriad of styles for you to use. Entire books have been written trying to
cover all the different rules and features, such as CSS3 For Dummies by John Paul
Mueller (Wiley). The remaining sections in this chapter walk you through some
of the more commonly used rules that you’ll want to keep in mind as you design
your dynamic web applications.

Styling Text
No place is styling more important than with the text that appears on your web
page. You can transform a dull, boring website with just a few changes to the text
styles. This section walks through the options you have available for styling text
to help liven up your website.

Setting the font
A font defines how a medium displays the characters in the content. Whether it’s
etching words into stone, setting text on paper using a printing press, or displaying
pixels on a computer monitor, fonts help control how readers interpret the content.

When you place text on your web page using HTML5, the browser selects a default
font style, size, and format based on the element type, and it uses that same set-
ting for all the text in those elements on your web page. That not only makes for
a boring web page, but can also confuse your site visitors if all the content blends
together.

This section describes how you can change the font features the browser uses to
display text in your web pages.

Finding a family
The CSS3 standard defines the font-family style property to allow you to change
the style of font. Here’s the format for the font-family property:

font-family: fontlist;

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 113

The fontlist value is a comma-separated list of font names. There are two ways
to specify a font in the list:

 » Using a specific font name: Specific font names require the browser to use that
specific font to display the text, such as Times New Roman, Arial, or Helvetica.
Browsers are limited to using only the fonts that are installed on the workstation,
so specifying a specific font name can be a gamble. If that font isn’t available on
the site visitor’s workstation, the browser will revert to the default font. It has
become common practice to provide several options of font names in the
font-family property. The browser will try to use the font presented first in the
list, and if that’s not available, it’ll try the next font listed, and continue down the
list. If no font is available, the browser reverts to the default font.

 » Using a generic font group: Generic font groups give the browser a little
more leeway in selecting a font to use. Instead of looking for a specific font,
the browser can use any font that’s included in the font group. CSS3 defines
the following font groups:

• cursive: A font that mimics handwritten text

• fantasy: An ornamental font used for special text

• monospace: A font that uses the same spacing for all characters

• sans-serif: A font without any ornamentation added to characters

• serif: A font that uses ornamentation at the tail of each character

It’s common practice to list specific font names first in the font list and then, as a
last resort, add a generic font group, like this:

font-family: Arial, 'Times New Roman', sans-serif;

With this rule, the browser will try to use the Arial font. If that’s not available on
the visitor’s workstation, it will try to use the Times New Roman font. If Times
New Roman is also not available, the browser will look for a font from the sans-
serif font group.

Note that for font names that contain spaces, you must enclose the name in single
quotes.

The CSS3 standard defines an exciting new feature called web fonts. Web fonts
allow you to define your own font on a server so that browsers can download them
along with the web page. I dive into using web fonts in more detail in Chapter 4
of this minibook.

114 BOOK 2 HTML5 and CSS3

Picking a size
After selecting a font style to use, the next step is to decide what size the font
should be. Browsers have built-in sizes for separating out the different header
levels, as well as standard text. However, you can change that by using the font-
size property:

font-size: size;

You’d think specifying a font size would be easy, but CSS3 actually allows you to
specify the size in one of five different methods:

 » As an absolute unit of measurement

 » As a relative unit of measurement

 » As a percentage of the space assigned to the element

 » Using a size keyword

 » Using a size keyword relative to the space assigned to the element

You specify absolute units using a specific size value of measurement. To compli-
cate things even more, CSS allows you to use six different units of measurements,
shown in Table 2-4.

The first three units of measurement shown in Table 2-4 are easily recognizable,
but the last three aren’t as common. There are 6 picas in an inch, and 72 points
in an inch. The pixel unit originally matched up to pixels on a standard computer
monitor, but with the advancement of monitor technology, that isn’t the case
anymore.

TABLE 2-4	 CSS Font-Size Absolute Units of Measurement
Unit Description

cm Centimeters

in Inches

mm Millimeters

pc Picas

pt Points

px Pixels

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 115

You can specify the size using either a whole number or a decimal value:

font-size: 0.25in;

font-size: 48pt;

The relative units of measurement set the size of the font relative to other
elements on the web page. Table 2-5 shows the relative size units in CSS3.

The em relative unit size is the most popular. It sizes the element relative to the
text in the web page. For example, here’s a common rule that you’ll see:

h1 {font-size: 2em;}

This tells the browser to size the h1 element twice the size of the text in the web page.
By using relative units, you can easily change the size of headings based on the size
of the text in the content. If you decide to change the font size of the text in the web
page, the headings will automatically change size to stay in the same proportion.

To make things simpler, CSS also allows you to set the text size using a human-
readable keyword. There are both absolute and relative keywords available:

 » Absolute: xx-small, x-small, small, medium, large, x-large, xx-large

 » Relative: smaller, larger

TABLE 2-5	 CSS Font-Size Relative Units of Measurement
Unit Description

ch Relative to the size of the zero character

em Relative to the size of the normal font size of the elements

ex Relative to the normal height of the font size currently used

rem Relative to the height of the root element

vh Relative to 1% of the browser window height

vw Relative to 1% of the browser window width

vmax Relative to 1% of the larger of the browser window width or height

vmin Relative to 1% of the smaller of the browser window width or height

% As a percentage of the normal element size

116 BOOK 2 HTML5 and CSS3

Using the keywords makes setting font sizes easier, but you’re still a little at the
mercy of the browser. It’s up to the browser to determine just what is a small,
medium, or large size font.

Playing with color
By default, browsers display all text in black on a white background. Things don’t
get any more boring than that! One of the first steps in livening up your website is
to change the text color scheme.

There are two CSS3 properties that you need to do that:

 » color: Selects the color the browser uses for the text font

 » background-color: Selects the color the browser uses for the background

You have a vast palette of colors to choose from for your color scheme. Usually,
it’s a good idea to pick a color scheme for your website and try to stick with that
for most of the web pages contained in the website. Often, a corporation will set
the color scheme of its website based on the colors used in the company logo.
Occasionally, you may need some content to pop out at visitors, so you’ll need to
deviate some from the scheme.

The original CSS standard provided three ways to define colors used in styles:

 » With color names: You can choose a text value from a standard list of color
names. CSS3 defines many different colors by name. If you plan on using a
standard color, most likely you can call it just by its name:

p {color: red; background-color: white;}

 » With RGB hexadecimal values: If you want to fine-tune the colors your web
page elements use, you can select the intensity of the red, green, and blue colors
based on hexadecimal values from 00 to FF. If you’re into hexadecimal numbers,
define the color as three hexadecimal values preceded by a pound sign:

p {color: #ffa500;}

The ffa500 value sets the red hue at full intensity, sets the green hue a little
lower, and turns the blue hue off, producing the orange color.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 117

 » With the rgb() function: You can select the color using decimal values from
0 to 255 for the red, green, and blue intensities. To specify the same color
using the rgb() method, you’d use the following:

p {color: rgb(255, 165, 0);}

If you’re not picky about the shade of red you want, the first method will work
just fine. But odds are, you’ll want to be more precise in your color selection (for
example, matching the shade of red to the red in your company’s logo), so you’ll
want to use one of the other two methods. Which of the other two methods you
use is a matter of personal preference.

The updated CSS3 standard provides four new ways of working with colors in your
web pages:

 » RGBA: Adds an opacity value to the standard RGB settings

 » HSL: Defines the color as a hue, saturation, and lightness percentage

 » HSLA: Defines the color as an HSL value, plus adds an opacity value

 » Opacity: Defines a transparency value to make the element more opaque

The main addition to the CSS3 color scheme is the opacity feature. The opacity fea-
ture provides the ability to make elements transparent, or faded. The opacity value
ranges from 0.0 (fully transparent) to 1.0 (no transparency, also called opaque).

Here’s an example to demonstrate just how changing colors in elements works:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Enter the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>Testing colors in CSS3</title>

<style>

p {

 font-family: Arial, Helvetica, sans-serif;

 color: #ff0000;

 background-color: cyan;

}

118 BOOK 2 HTML5 and CSS3

h1 {

 color: rgb(255, 165, 0);

 background-color: green;

}

</style>

</head>

<body>

<h1>Testing the color scheme</h1>

<p>

The quick brown fox jumps over the lazy dog.

</p>

<h1>This is the end of the color test</h1>

</body>

</html>

3. Save the program as colortest.html in the DocumentRoot folder of your
web server.

If you’re using XAMPP, it’s c:\xampp\htdocs for Windows or /Applications/
XAMPP/htdocs for macOS.

4. Start the web server.

If you’re using XAMPP, launch the XAMPP Control Panel and then click the Start
button for the Apache web server.

5. Open your browser and go to the URL for the new file:

http://localhost:8080/colortest.html

Note: You may need to change the port in the URL to what your web
server uses.

6. Stop the web server and close the browser.

You should see in the output from your web page that the browser uses different
colors for the h1 elements and the p elements. However, notice that there’s some
whitespace between the elements, as shown in Figure 2-2.

You didn’t define any space between the p and h1 elements in the HTML5 code, so
why is that there? You may be thinking that something has gone wrong with the
browser, but actually, it’s a feature of CSS that I cover next.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 119

Working with the Box Model
CSS3 handles all elements on the web page using the box model, which defines the
area inside and around the element and provides a way for you to alter the style of
those features. Figure 2-3 shows the box model defined in CSS3.

The box model defines four different sections in the element. Working from the
inside out, they are as follows:

 » Content: The text or image the element contains

 » Padding: The space around the content

FIGURE 2-2:
Displaying

elements with
different colors

in CSS3

FIGURE 2-3:
The CSS3 box

model.

120 BOOK 2 HTML5 and CSS3

 » Border: An area, usually visible, that goes around the content and padding

 » Margin: The space outside of the element border, between elements

With CSS3, you can alter the padding, margin, and border around an element to
help make it stand out in the web page. You do that using the padding, margin,
and border style properties.

Let’s correct the colortest.html code to remove the margin around the elements
and add some extra padding to see how that changes things:

1. Open the colortest.html file you created in the “Playing with color”
section in your favorite text editor, program editor, or IDE package.

2. Modify the p and h1 element styles to set the element margins to 0px
and add 10px of padding.

The styles should now look like this:

<style>

p {

 font-family: Arial, Helvetica, sans-serif;

 color: #ff0000;

 background-color: cyan;

 margin: 0px;

 padding: 10px;

}

h1 {

 color: rgb(255, 165, 0);

 background-color: green;

 margin: 0px;

 padding: 10px;

}

</style>

3. Save the updated colortest.html file.

4. Start the web server.

If you’re using XAMPP, launch the XAMPP Control Panel and then click the Start
button for the Apache web server.

5. Open your browser and go to the URL for the new file:

http://localhost:8080/colortest.html

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 121

Note: You may need to change the port in the URL to what your web
server uses.

6. Stop the web server and close the browser.

Figure 2-4 shows the web page this code produces.

Notice that the white space is gone and the background space around the text in
the headings and paragraph is larger. Feel free to play around with the margin
and padding numbers in the HTML5 code and watch how it changes the display
results.

Styling Tables
The previous chapter explains how to create tables using HTML5. Older versions
of HTML defined attributes in the table element to help add some features, such as
creating borders around the table cells and sizing the table cells. However, HTML5
removed all those attributes, so it’s up to CSS to provide those features.

FIGURE 2-4:
The updated

colortest.html
file output.

122 BOOK 2 HTML5 and CSS3

Table borders
When you’re presenting data in tables, you may want to create borders around the
table and around the individual cells in the table. You do that with the CSS border
property:

table {border: 1px solid black;}

The first value in the border property (1px) is the width of the border. The second
value (solid) is the type of border; you can specify dashed, dotted, double, or
solid for the border type. The third value (black) specifies the color of the border.

You can add borders around any of the table family of elements — table, th, tr,
or td. However, if you specify the border property for all of them, you’ll see dou-
ble borders around the individual cells. To prevent that from happening, add the
border-collapse property to the rule, and set its value to collapse.

If you only want to show horizontal lines between the table rows, you can use the
border-bottom property for the tr element. This only creates borders at the bot-
tom of each row.

Follow these steps to add borders around a table:

1. Open the mytable.html file that you created in the preceding chapter in
your favorite text editor, program editor, or IDE package.

If you haven’t yet read Chapter 1 of this minibook, you’ll have to turn back and
at least work through the section on tables before proceeding with these steps.
I’ll wait for you!

2. Add a style element to the head section of the document to define the
table styling rule:

<style>

 table tr td {

 border: 1px solid black;

 border-collapse: collapse;

 }

</style>

I included the border-collapse property to prevent double borders from
appearing.

3. Save the file.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 123

4. Start your web server software, open your browser, and go to the
following URL:

http://localhost:8080/mytable.html

5. Close the browser and stop your web server software.

With the added stylings, you should see a single border line around each table cell
and a single border line around the entire table, as shown in Figure 2-5.

Now that you have borders around each cell, it may seem a bit more obvious how
cramped the data inside the table looks. You can do some more playing around with
sizing and positioning the text inside each cell. I cover that in the next section.

Table data
As you can see in Figure 2-5, by default, the browser creates the table cells just
large enough to contain the largest data value in the cells. That can make for a
somewhat cramped table. Fortunately, you can add a little more space around the
data in the table cells using some additional CSS properties.

FIGURE 2-5:
Adding a border

to the table.

124 BOOK 2 HTML5 and CSS3

Padding the cells
A padded cell sounds somewhat ominous, but adding the padding property to your
table cells can make a huge difference in the appearance of the table data:

table tr td {

 border: 1px solid black;

 border-collapse: collapse;

 padding: 10px;

 }

When you provide some additional space inside the table cells, you have some
more options on where the data appears within the table.

Aligning text in the cells
You can align the data to the left side, center, or right side of the cell with the
text-align property:

table th {

 border: 1px solid black;

 border-collapse: collapse;

 padding: 10px;

 text-align: center;

 }

This definition centers the text in the table header (th) elements. If you also want
to move the text upward inside the cell, use the vertical-align property.

Coloring tables
Just using the default black-and-white tables can quickly put your site visitors
to sleep! Add the color and background-color properties to your table to make
it stand out. You can apply the colors to the entire table, individual rows, or even
individual cells.

To simulate the old mainframe printer report style using alternating row colors in
the table, use the nth-child pseudo-class to style every other row in the table as
a different color, like this:

tr: nth-child(even) {

 background-color: lightgreen;

}

If you’re old enough to remember the mainframe computer report days, this
should bring back memories!

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 125

Another feature that comes in handy is to use the hover pseudo-class to change
the background color of an individual cell as your site visitor hovers the mouse
pointer over it:

td: hover {

 background-color: yellow;

}

Now things are really starting to get fancy!

Positioning Elements
By default, browsers place elements in the window following a set order. As the
web page defines each element, the browser places it in the window starting at the
upper-left corner of the window, proceeding from left to right, and top to bottom.

To demonstrate this, let’s run a quick test. You’ll create a web page that contains
five sections:

 » A header to display at the top of the web page

 » A footer to display at the bottom of the web page

 » A navigation section to display on the left side of the middle section

 » An aside section to display on the right side of the middle section

 » A main content section to display in the middle of the middle section

This is a pretty standard web page layout structure, which I’m sure you’ve seen
lots of times as you’ve browsed the web.

Follow these steps to run the test:

1. Open your favorite text editor, program editor, or IDE package, and enter
the following code:

<!DOCTYPE html>

<html>

<head>

<title>Positioning Test</title>

<style>

126 BOOK 2 HTML5 and CSS3

header {

 background-color: red;

 margin: 0px;

 padding: 10px;

 height: 25px;

 width: 600px;

}

nav {

 background-color: blue;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

}

section {

 background-color: green;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

}

aside {

 background-color: yellow;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

}

footer {

 background-color: orange;

 margin: 0px;

 padding: 10px;

 height: 25px;

 width: 600px;

}

</style>

</head>

<body>

<header><p>This is the header</p></header>

<nav><p>Navigation</p></nav>

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 127

<section><p>Section</p></section>

<aside><p>Aside</p></aside>

<footer><p>This is the footer</p></footer>

</body>

</html>

2. Save the file as positiontest.html in the DocumentRoot folder of your
web server.

3. Start the web server, open your browser, and go to the following URL:

http://localhost:8080/positiontest.html

4. Close the browser and stop the web server.

This test creates a web page that contains a header section, a navigation section,
a main content section, an aside section, and a footer section. It uses the height
and width style properties to define how large each section should be and sets a
different background color for each section so you can tell them apart on the web
page. However, when you display the web page, you’ll probably be a bit disap-
pointed with the results, which are shown in Figure 2-6.

The browser positioned each of the different sections in the order you defined
them, each on top of the other. Ouch! That’s not what we wanted at all!

FIGURE 2-6:
Displaying the

web page with no
positioning.

128 BOOK 2 HTML5 and CSS3

To get the browser to place the different web page sections the way we want, we’ll
need to use some of the positioning properties available in CSS. The next sections
walk you through how to do that.

Putting elements in a specific place
Placing elements in specific locations on the web page requires using the position-
ing properties available in CSS. There are three main positioning properties that are
normally used:

 » position: Sets the position method the browser should use to place
the element

 » top: Defines the location for the top of the element

 » left: Defines the location for the left side of the element

The position property defines what method the browser uses to place the ele-
ment in the web page. There are four different positioning methods:

 » absolute: Changes the element’s position relative to the nearest positioned
element that precedes it.

 » fixed: Places the element in a fixed location in the browser window. If the site
visitor scrolls the window, the element stays in the same spot.

 » relative: Changes the element’s position relative to the default position.

 » static: Places the element in its normal location in the web page following
the default placement rules.

To use the absolute, fixed, and relative positioning methods, you need to
define the location in the browser window where the element will be placed. You
do that using the top and left properties.

Let’s change the positiontest.html test file to use absolute positioning to place
the sections. Just follow these steps:

1. Open the positiontest.html file in your favorite text editor, program
editor, or IDE package.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 129

2. Modify the styles defined so they look like this:

<style>

header {

 background-color: red;

 margin: 0px;

 padding: 10px;

 height: 25px;

 width: 600px;

 position: absolute;

 top: 0px;

 left: 0px;

}

nav {

 background-color: blue;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

 position: absolute;

 top: 46px;

 left: 0px;

}

section {

 background-color: green;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

 position: absolute;

 top: 46px;

 left: 201px;

}

aside {

 background-color: yellow;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 200px;

130 BOOK 2 HTML5 and CSS3

 position: absolute;

 top: 46px;

 left: 402px;

}

footer {

 background-color: orange;

 margin: 0px;

 padding: 10px;

 height: 25px;

 width: 600px;

 position: absolute;

 top: 192px;

 left: 0px;

}

</style>

3. Save the updated positiontest.html file as positiontest2.html.

4. Start your web server, open a browser, and go to the following URL:

http://localhost:8080/positiontest2.html

5. Close the browser and stop the web server.

The additional code sets the positioning method for the browser to use for each
section to absolute, which means it will place the sections at exactly the place
in the browser window you define using the top and left properties. When you
display the web page, you should see the result as shown in Figure 2-7.

Now things are starting to look like a real web page!

Floating elements
Absolute positioning has made a huge difference in how we can lay out elements
in our web pages, but it doesn’t solve all problems. You’ve probably already real-
ized that trying to figure out the exact location for each element in a compli-
cated web page would be somewhat difficult. Also, you’ll notice as you resize the
browser window that the sections stay in a fixed location and size — they don’t
expand or shrink with the browser window. Fortunately, there’s a way you can
avoid these problems.

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 131

CSS uses a feature called the float property to aid in positioning elements in the
web page using a more dynamic method. The float property allows you to take an
element out of the normal positioning flow in the web page and position it within
the right or left edge of its parent container element. You don’t need to calculate
the exact position for the elements within the parent.

The format of the float property is pretty simple:

float: position

The position value can be none, left, or right.

The float property is most often used to create columns in a web page layout.
Instead of using absolute positioning for the columns, you define a parent con-
tainer element, and then just float the column elements inside the parent.

Let’s give that a try with our positiontest.html example. You’ll add a div
 element to use as the container for the middle three sections (nav, section, and
aside) in the web page document. Follow these steps:

1. Open the original positiontest.html file in your favorite text editor,
program editor, or IDE package.

FIGURE 2-7:
Using absolute
positioning to

place sections in
the web page.

132 BOOK 2 HTML5 and CSS3

2. Modify the styles defined so they look like this:

<style>

header {

 background-color: red;

 margin: 0px;

 padding: 10px;

 height: 25px;

 width: 100%

}

nav {

 background-color: blue;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 20%;

 float: left;

}

section {

 background-color: green;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 55%;

 float: left;

}

aside {

 background-color: yellow;

 margin: 0px;

 padding: 10px;

 height: 125px;

 width: 20%;

 float: right;

}

footer {

 clear: both;

 background-color: orange;

 margin: 0px;

 padding: 10px;

Th
e

Ba
si

cs
 o

f C
SS

3

CHAPTER 2 The Basics of CSS3 133

 height: 25px;

 width: 100%;

}

</style>

3. Modify the HTML code to add a div parent element around the nav,
section, and aside elements.

That code should look like this:

<body>

<header><p>This is the header</p></header>

<div id="container">

<nav><p>Navigation</p></nav>

<section><p>Section</p></section>

<aside><p>Aside</p></aside>

</div>

<footer><p>This is the footer</p></footer>

</body>

4. Save the updated positiontest.html file as positiontest3.html.

5. Start your web server, open your browser, and go to the following URL:

http://localhost:8080/positiontest2.html

6. Close the browser and stop the web server.

When you view the resulting web page, it should look similar to Figure 2-8.

FIGURE 2-8:
Using float

positioning to
place sections in

the web page.

134 BOOK 2 HTML5 and CSS3

The float property in the nav, section, and aside elements causes them to float
within the parent div element. I gave the parent element an id attribute value of
container to help me remember its purpose. It’s not necessary for it to have an
id attribute defined because it isn’t styled by itself.

Each of the inner sections appears side by side, as long as there’s enough space
for them in the browser window. By using a percentage value for the width, this
creates what’s called a liquid layout. With a liquid layout, if you resize the browser
window, the individual section elements resize as well. If you resize the browser
window too small, the browser automatically repositions the elements so that
they all appear in the window.

CHAPTER 3 HTML5 Forms 135

HTML5 Forms

Quite possibly one of the most common ways that PHP programming helps
is by processing data entered into an HTML5 form. There are plenty of
applications that require data entry — from keeping track of your bowl-

ing team to filling out online job applications. HTML forms have been around
for a long time, and with HTML5 it’s sure to stick around for years to come.
This chapter shows you how to create forms for your web applications using the
HTML5 form features.

Understanding HTML5 Forms
A dynamic web application requires some type of interaction with the site visitors
who use it. That interaction is usually done with a form. Forms allow you to ask
your site visitor for information using many of the same input interfaces that are
commonly found in Windows and macOS systems, such as text boxes, drop-down
lists, and radio buttons.

Before you can create a form for your web application, you need to do some house-
keeping for HTML5. You need to define the form and how the browser should han-
dle the data the site visitor enters into it. This section explains just how to do that.

Chapter 3

IN THIS CHAPTER

 » Creating a data form

 » Examining the form fields

 » Looking at additions to HTML5

 » Validating forms

136 BOOK 2 HTML5 and CSS3

Defining a form
It’s probably not too surprising that the HTML element you use to create a form is
the form element. The form element has a simple enough format:

<form attributes>

 form elements

</form>

The <form> tag defines the start of the form area, which contains all the elements
that create the form fields. The </form> tag defines the end of the form area.

The form element has lots of attributes that define just how the browser handles
the data in the form. Table 3-1 shows all the attributes available.

Often, when you create a form, you don’t need to worry about setting all the attri-
butes shown in Table 3-1; you can use the standard default values. Here are the
attributes you’ll probably work with the most:

 » action: You’ll need to define the URL of the web page that will accept and
process the form data. Usually, this is a page that contains server-side
programming, such as PHP code.

 » enctype: If your form contains binary data (such as an upload file), you’ll need
to set the encoding type so the server knows there’s binary data involved with
the form data.

TABLE 3-1	 The Form Element Attributes
Attribute Description

accept-charset Specifies the character used in the form if it’s different from the web page

action Defines the URL where the browser should send the form data

autocomplete Specifies whether the browser is allowed to use the autocomplete feature

enctype Specifies the encoding the browser uses to submit the form data

method Specifies the transfer method the browser should use to send the data

name Defines a name assigned to the form

novalidate Specifies that the browser shouldn’t validate the data

target Specifies the target window for the action URL

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 137

 » method: You’ll need to define how the browser sends the data to the server,
using either the HTTP GET method or the HTTP PUT method.

• GET: The HTTP GET method sends the form data as part of the URL to the
server. It embeds the form field names and data values together in the
URL. Often, if you fill out a form on the Internet and click the Submit
button, you’ll see a URL that looks something like this:

http://myhost.com/index.php?content=store&id=100

This means the form used the GET method to send two form fields back to
the server. Because the server needs to identify each value, the GET
method associates the form field name with each value:

content=store

id=100

These values indicate that a form field named content is set to a value of
store and a form field name id is set to a value of 100.

This method is a great way to quickly send small pieces of form data to the
server, but it isn’t recommended for larger forms. For forms that send lots
of data, you’re better off using the HTML PUT method.

• PUT: The PUT method sends the data behind the scenes in the HTTP
request packets instead of using the URL. The data isn’t seen in the
address bar of the browser; instead, it’s processed by the client browser
and server as part of the HTTP communication behind the scenes.

Just because the data isn’t easily seen doesn’t mean it’s secure. The data
sent by the PUT method is still sent in plain text in the HTTP request
message. Any person with a network sniffer can still read that data. The
only secure method of sending data is with an encrypted HTTPS session.

After you define the form and how it will send the form data, you’re ready to start
adding some form fields.

Working with form fields
The original version of HTML didn’t specify all that many form field elements
for us to use. The list of form field elements that were available are shown in
Table 3-2.

138 BOOK 2 HTML5 and CSS3

HTML5 adds a couple more form field elements to the list:

 » datalist: Provides a list of predefined options

 » keygen: Creates a public/private key pair for authentication

 » output: Creates an area to display results from a process

The following sections walk you through how to use each of these elements in
your web forms.

Using Input Fields
The input element is the most versatile of the form field elements. It provides for
a few different types of interfaces to input data. You define the type of input field
element to use by adding the type attribute to the tag:

<input type="type" attributes>

The HTML standard defines a handful of different input field types. If you’ve ever
interacted with a Windows or macOS workstation (and who hasn’t these days?),
you’re familiar with all these input types. The following sections explain how to
use each one.

Text boxes
The text box is the workhorse of the form. How many times have you filled out an
online form that asked for your name, age, address, and so on? All these single-
line form fields use the text box input type.

TABLE 3-2	 HTML Basic Form Field Elements
Field Description

button A clickable area on the web page that triggers an action

input Provides a single interface for one data value

select A list of multiple objects in a drop-down list

submit Signals to the browser to send the form data to the action URL

textarea A larger multiline box for entering larger amounts of text

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 139

You create a text box input field by setting the type attribute value to text:

<input type="text" name="age" size=3>

The name attribute defines a unique identifier that allows you to retrieve the value
entered into the field. It’s important that you include that attribute. The size
attribute allows you to set how large the form field appears on the web page. The
default value is 20, which is a bit much for entering an age, so I’ve changed it to 3.

You can define a default value that appears in the form field using the value
attribute. This feature is useful if you’re trying to get your site visitor to update
information that’s already in your database. Just display the existing data as the
default values for each form field.

The disabled attribute prevents you from entering data into the text field. It may
sound weird to display a text field that you can’t enter data into, but it has a pur-
pose when you learn how to dynamically change the input fields using JavaScript
later on in Book 3.

You can associate a label with a text box by using the label element. The input ele-
ment should be enclosed in the label opening and closing tags:

<label>

 Last Name

 <input type="text" name="lastname">

</label>

With this format, you can use CSS to style and position both the label and the text
box field at the same time.

Another feature is the ability to group input fields together into a fieldset. A fieldset
creates a border area around the enclosed form fields to help separate them out in
the web page. The format to use a fieldset is:

<fieldset>

 <legend>Enter your name</legend>

 <label>

 Last Name

 <input type="text" name="lastname">

 </label>

 <label>

 First Name

 <input type="text" name="firstname">

 </label>

</fieldset>

140 BOOK 2 HTML5 and CSS3

The legend element allows you to define text that appears in the fieldset border
area. Figure 3-1 shows how this form looks.

The nice thing about the fieldset is that you can assign it an id attribute and then
apply specific styles to the entire group in CSS3.

Password entry
Many web applications require that site visitors enter sensitive information in the
form, such as Social Security numbers (SSNs). The input element provides an easy
way to hide that information from prying eyes trying to watch as visitors enter
their data.

The password input field type instructs the browser to mask the characters as the
site visitor enters them into the text box. Here’s the format to create a password
field:

<input type="password" name="ssn">

As your site visitor types data into the password form field, the browser masks the
characters by displaying a neutral, nondescript character. Just how the characters
are masked depends on the browser. Most browsers use bullet circles in the field.

FIGURE 3-1:
Using a fieldset to
group form fields.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 141

Check boxes
Check boxes provide a simple yes-or-no response form field. The checkbox input
type creates a simple square box that the site visitor can click. The check box field
toggles with each click — from showing a check mark in the box to not showing
a check mark in the box.

To define a checkbox input type, use the following format:

<input type="checkbox" name="fishing">

The name attribute defines the name that’s passed along to the action URL when
the site visitor submits the form. The value sent is a Boolean true/false value —
true if the check box is marked, and false if the check box is not marked.

Because the check box field is just a box, you’ll most likely want to associate a
label with the check box field so your site visitors know what they’re selecting.
Often, check boxes are used in groups, so you can use the fieldset element:

<fieldset>

 <legend>Please select which sports you like</legend>

 <label>

 Baseball

 <input type="checkbox" name="baseball">

 </label>

 <label>

 Basketball

 <input type="checkbox" name="basketball">

 </label>

 <label>

 Football

 <input type="checkbox" name="football">

 </label>

 <label>

 Hockey

 <input type="checkbox" name="hockey">

 </label>

</fieldset>

Figure 3-2 shows how this form looks in the browser window.

142 BOOK 2 HTML5 and CSS3

You can also set a default state for the check box, but not by using the value
attribute. Instead, you have to use the checked attribute:

<input type="checkbox" name="football" checked>

The checked attribute doesn’t have a value associated with it. If it appears in the
input element, the check box appears with a check mark in it.

Radio buttons
A similar interface to check boxes are radio buttons. Radio buttons allow you to
select only one out of a group of options. You create radio buttons by using the
radio input type:

<input type="radio" name="sports">

To group options together, you have to assign them all the same name attribute.
Then the browser will allow your site visitors to select only one option from the
group. That code would look like this:

<fieldset>

 <legend>Please select your favorite sport</legend>

 <label>

 Baseball

 <input type="radio" name="sport">

 </label>

FIGURE 3-2:
Using check

boxes in a
fieldset.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 143

 <label>

 Basketball

 <input type="radio" name="sport">

 </label>

 <label>

 Football

 <input type="radio" name="sport" >

 </label>

 <label>

 Hockey

 <input type="radio" name="sport">

 </label>

</fieldset>

Figure 3-3 shows how the radio buttons appear on the web page.

As your site visitor selects each option, the previously selected option is reset.
Only one value is sent back to the server from the form field.

If you’d like to set a default value for the radio button group, add the checked
attribute to that radio button element.

Hidden fields
Your application may need to pass data behind the scenes as part of the applica-
tion control. Perhaps it’s a product ID value related to an item the site visitor is
purchasing or an employee ID number in a human resources application. Not all
data that the form submits needs to be seen by the site visitor.

FIGURE 3-3:
Using radio

 buttons to make
a selection from a

group.

144 BOOK 2 HTML5 and CSS3

To accommodate that, HTML uses the hidden input type:

<input type="hidden" name="productid" value="121">

The hidden form field doesn’t appear in the form itself, so you have to use the
value attribute to assign a value to the form field that gets passed to the server.
When the site visitor clicks the Submit button to submit the form data, any hidden
form fields that are defined are sent along with the normal form field data.

File upload
If your application requires that your site visitors upload files, you’ll want to
explore the file input type. The file input type produces an input field with two
parts:

 » A text box to display the filename

 » A Browse button to launch a file manager

In some browsers, you can manually type the filename in the text box, but many
of the popular browsers prevent that. The Browse button appears next to the text
box, allowing site visitors to search for the file to upload. The interface that’s used
for searching depends on the OS the browser is running on. On Windows worksta-
tions, clicking the Browse button launches the File Explorer tool. On macOS work-
stations, clicking the Browse button launches the Finder tool. Figure 3-4 shows
how the field appears on the web page.

The format of the file input field is:

<input type="file" name="upload">

That’s simple enough! However, you need to take care of one more thing when
using the file input field. By default, the form sets the enctype attribute for

FIGURE 3-4:
The file input

type interface
as shown in the
Microsoft Edge

browser.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 145

encoding characters before they’re uploaded. Most likely, your upload files will
contain binary data, and encoding that data will corrupt it.

To solve that problem you need to set the enctype attribute in the <form> opening
tag to use the multipart/form-data value:

<form method="POST" action="myhost.com/index.php" enctype="multipart/form-data">

This ensures that the binary data contained in the uploaded file is uploaded in
binary format, but the data contained in the other form fields are properly encoded
for upload.

Buttons
Button, button, who’s got the button? That’s just a silly child’s game, but but-
tons are a crucial part of your web forms. Buttons allow your site visitor to trigger
actions on the web page, from launching JavaScript programs to uploading the
form data to the server.

There are three types of button input types available to use: button, reset, and
submit.

Button
The button field type creates a generic button to trigger an event. When a site vis-
itor clicks the button, nothing happens by default. The trick is to define an action
using the onclick attribute:

<input type="button" name="launch" value="Click Me" onclick="myprogram()">

The value attribute defines what text appears in the button. The browser will
automatically size the button to fit the text you specify. The onclick attribute
defines a JavaScript function that the browser runs when you click the button.

Reset
The reset field type resets any values in the form data fields back to their original
values — either to empty if no default value is defined or to the default value if
it’s defined:

<input type="reset" name="reset" value="Reset fields">

146 BOOK 2 HTML5 and CSS3

Submit
The submit input field type is a crucial part of most forms. It signals to the browser
that it’s time to upload the form field data values to the server:

<input type="submit">

By default, the button appears with Submit as the button label. You can change the
button text using the value attribute. It’s customary to place the Submit button
at the bottom of a form, but that isn’t required. You can place the Submit button
anywhere between the opening <form> tag and the closing </form> tag.

Adding a Text Area
Text boxes are extremely versatile, but there’s a limit to what they can do. If you
need to enter large amounts of text, the text box scrolls to allow you to enter the
text, but you lose sight of the text you previously typed.

The textarea element provides a larger interface for entering text. To create a
text area, you use the following opening and closing tags:

<textarea name="story"></textarea>

That, by itself, though, won’t give you what you’re looking for. There are a few
attributes that you’ll want to use to define the text area. Table 3-3 shows the
attributes you can use.

TABLE 3-3	 The textarea Attributes
Attribute Description

cols Specifies the width of the text area in the web page

disabled Grays out the text area so nothing can be typed

name Specifies the form field name associated with the field

readonly Locks the text area so nothing can be typed, but default text can be displayed

rows Specifies the height of the text area in the web page

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 147

So, to create a text area that’s 20 characters wide by 30 characters high, you’d use
the following:

<textarea name="story" cols=20 rows=30></textarea>

Your site visitors can then type their text in the text area. If they type more than
30 rows of text, the browser will add a scrollbar to the right side of the text area
and allow them to continue typing.

You’ll notice that in my text area examples, there’s nothing between the open-
ing and closing textarea tags. That produces an empty text area. Any text that
you place between the opening and closing tags appears as the default text in the
text area.

Using Drop-Down Lists
Often, you want to limit the choices your site visitors have for a specific data field.
To do that, you use a drop-down list. The drop-down list appears in the form as
a single line, similar to a text box, but with a down arrow. If you click the down
arrow, a box drops down with all the options available in it. You can then select
one or more options from the drop-down list.

In the HTML5 world, this feature is called a select element. The select element
consists of two parts:

 » The select opening and closing tags to define the select element

 » One or more option elements that define the allowed options

Here’s an example of a simple select element (see Figure 3-5):

<select name="sports">

<option value="baseball">Baseball</option>

<option value="basketball">Basketball</option>

<option value="football">Football</option>

<option value="hockey">Hockey</option>

</select>

148 BOOK 2 HTML5 and CSS3

With this format, the browser displays a single text box along with a down arrow
indicating that there’s a drop-down list to select from. When you click the arrow,
you see the list.

If you prefer to have more of the options appear on the web page than just one, set
the size attribute in the <select> tag:

<select name="sports" size="4">

This creates a list of options that you can scroll through, as shown in Figure 3-6.

FIGURE 3-5:
Using the

select element.

FIGURE 3-6:
Displaying

 multiple options
in the select

element.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 149

Each option element defines one item in the select list. The browser displays the
text between the opening <option> and closing </option> tags, but it sends the
value attribute of the item your site visitor selects to the server. This can come
in handy if you want to use abbreviations or codes in your data, but you want to
display the full text to the site visitors.

By default, the select element only allows the site visitor to select one value. You
can change that behavior by setting the multiple attribute in the <select> open-
ing tag.

Enhancing HTML5 Forms
The original HTML standards were pretty bare-bones with the form field options.
These days web developers gather all types of information from forms. To help
with that, the HTML5 standard defines some fancier form types that you can use.
This section walks you through what those are.

Data lists
The datalist element is new to HTML5. It allows you to create an option list
for drop-down lists that use the autocomplete feature, made popular by Google
searching. As you start typing a value in the text box, the list that appears in the
drop-down box narrows to only the values that match what you’ve typed.

The data list feature requires three parts:

 » An <input> tag that defines the data list

 » A datalist element that defines the list

 » One or more <option> tags that define the list values

A complete data list looks like this:

<input list="sports">

<datalist id="sports">

 <option value="Baseball">

 <option value="Basketball">

 <option value="Football">

 <option value="Hockey">

</datalist>

150 BOOK 2 HTML5 and CSS3

The list attribute in the <input> tag refers to the data list id attribute value
for the data list to use. This allows you to define multiple data lists in your form.
Figure 3-7 shows how the data list looks in action.

In this example, as I typed the characters, the matching data list values appeared
in the drop-down box, limiting my choices. Notice that the match is case insensi-
tive and that the match is made anywhere in the text string of the option values.

Additional input fields
One of the more exciting features in the HTML5 standard form additions are the
additions to the <input> tag. HTML5 defines 13 additional input element types:

 » color: Produces a color palette for the site visitor to select a color. Returns
the RGB color value associated with the selected color.

 » date: Produces a graphical month calendar to select a date. Returns the
selected year, month, and day values.

 » datetime: Produces a graphical month calendar to select a date and a text
box to select the time. Returns the selected year, month, date, hour, minute,
second, and fraction-of-a-second values, along with the time zone.

 » datetime-local: Produces the same form field as the datetime input type,
but doesn’t return a time zone.

 » email: For inputting a single email address or a comma-separated list of email
addresses.

FIGURE 3-7:
Using a data list

in the web page.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 151

 » month: Produces a graphical month calendar. Returns the year and month selected.

 » number: Produces a spin box for increasing or decreasing a numeric value in a
text box. Returns the numeric value selected.

 » range: Produces a slider to select a value from a range. You define the range
using the min and max attributes in the tag. Returns the numeric value selected.

 » search: Produces a text box that some browsers style like a search box (such
as with a magnifying glass icon). Returns the value entered into the text box.

 » tel: Produces a standard text box for entering a telephone number. Some
browsers may validate the format of the text entered to ensure it matches a
telephone number format. Returns the value entered into the text box.

 » time: Produces a time selector that shows two numeric values, along with a
spin box for increasing or decreasing the values. The numeric values indicate
1 through 12 for the hour and 0 through 59 for the minutes. Returns the
values selected in a time format.

 » url: Produces a text box for entering a text URL. Some browsers may validate
the URL format entered. Returns the text entered into the text box.

 » week: Produces a graphical calendar to select a week number for a specified
year. Returns the year and the week number selected.

These produce some pretty amazing input fields in your web pages! The only
downside is that different browsers may use different methods to produce these
form fields. Let’s walk through an example to create a test program so you can see
how your browsers handle the new input fields:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>HTML5 Input Types Test</title>

</head>

<body>

<h1>Testing the HTML5 Input Types</h1>

<fieldset>

<legend>HTML5 Input Fields</legend>

<label>

Color Selector

<input type="color" name="colortest">

</label>

152 BOOK 2 HTML5 and CSS3

<label>

Date Selector

<input type="date" name="datetest">

</label>

<label>

DateTime Selector

<input type="datetime" name="datetimetest">

</label>

<label>

DateTime-Local Selector

<input type="datetime-local" name="datetimelocaltest">

</label>

<label>

Email Selector

<input type="email" name="emailtest">

</label>

<label>

Month Selector

<input type="month" name="monthtest">

</label>

<label>

Number Selector

<input type="number" name="numbertest">

</label>

<label>

Range Selector

<input type="range" min=0 max=100 name="rangetest">

</label>

<label>

Search Selector

<input type="search" name="searchtest">

</label>

<label>

Telephone Selector

<input type="tel" name="teltest">

</label>

<label>

Time Selector

<input type="time" name="timetest">

</label>

<label>

URL Selector

<input type="url" name="urltest">

</label>

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 153

<label>

Week Selector

<input type="week" name="weektest">

</label>

</body>

</html>

3. Save the file as inputtypestest.html in the DocumentRoot folder for your
web server (such as c:\xampp\htdocs for XAMPP in Windows, or /
Application/XAMPP/htdocs for XAMPP in macOS).

4. Start your web server.

5. Open a browser and enter the following URL:

http://localhost:8080/inputtypestest.html

6. Close the browser window and shut down the web server.

The inputtypestest.html file is a great way to see how the new HTML5 input
types look in different browsers. Figure 3-8 shows how they look in the Google
Chrome browser.

If you have a mobile device handy, try testing the inputtypestest.html web page
on your mobile device. Mobile devices use virtual keyboards that appear on the
screen when you click in an input form field. Most mobile devices will customize
the keyboard depending on which type of input form field you click in. For exam-
ple, in the tel input type, the mobile device may only display a numeric keypad

FIGURE 3-8:
Viewing the

input
typestest.html

output in the
Google Chrome

browser.

154 BOOK 2 HTML5 and CSS3

for entering the phone number; for the email input type, the mobile device may
display a keyboard with a .com button.

Using HTML5 Data Validation
Accepting data from unknown website visitors is a dangerous thing. However,
dynamic web applications must have user interaction to work. The conundrum is
how to do both.

One method is to use data validation, which is the process of verifying that the data
your site visitors enter into the form fields is correct. There are two ways to tackle
that process:

 » On the server, with server-side programming code

 » In the client browser, using HTML, CSS, and JavaScript

In Book 4, Chapter 4, I cover all the bases on using server-side programming
to validate form data. However, waiting until the browser has uploaded the data to
the server to validate it can be somewhat cumbersome. By that time, the site visitor
has already entered all the form data. Returning a web page making the site visitor
re-enter all that data just because of one typo is not a good way to retain customers.

This is where client-side data validation comes in handy. The more data you can
validate in the browser as the site visitor enters it, the better the chance you have
of receiving valid data in the first place.

Holding your place
HTML5 helps that process with a few additional features. One such feature is the
placeholder attribute for the input element. The placeholder attribute appears
as gray text inside the form field and can provide a suggested format for the data
to enter:

<label>

Enter your daytime phone number:

<input type="tel" name="num" placeholder="(nnn)nnn-nnnn">

</label>

The browser displays the placeholder value inside the input form field, but as gray
text, as shown in Figure 3-9.

H
TM

L5
 F

or
m

s

CHAPTER 3 HTML5 Forms 155

As you start typing text in the input field, the placeholder text disappears.

Making certain data required
Another data validation attribute added by HTML5 is the required attribute:

<input type="text" name="lastname" required="required">

The required attribute marks the form field so that the browser won’t upload the
form if that field is empty. Some browsers will display an error message indicating
which required form field(s) are empty.

Validating data types
Not only do the additional HTML5 input types produce different types of input
fields, but you can also use them to validate data. Browsers that support the new
HTML5 data types will mark input form fields that contain data not in the proper
format with the invalid state.

CSS provides pseudo-class rules to style elements based on their state (see Book 2,
Chapter 2). You use the invalid and valid pseudo-class states to style input fields
with invalid data differently from input fields with valid data. This helps make the
fields with invalid data stand out in the form.

Here’s a quick example you can try to test this feature:

1. Open your favorite text editor, program editor, or IDE package.

FIGURE 3-9:
Using the

placeholder
HTML5 attribute.

156 BOOK 2 HTML5 and CSS3

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing for Invalid Data</title>

</head>

<style>

input:invalid {

 background-color: red;

}

input:valid {

 background-color: lightgreen;

}

</style>

<body>

<h1>Testing for invalid data</h1>

<fieldset>

<legend>You must be over 18 to participate</legend>

<label>

Age:

<input type="number" name="age" min="18">

</label>

</fieldset>

</body>

</html>

3. Save the file as invaliddatatest.html in the DocumentRoot folder for
your web server (c:\xampp\htdocs for XAMPP on Windows or /
Applications/XAMPP/htdocs for XAMPP on macOS).

4. Start the Apache web server from XAMPP.

5. Open a browser and enter the following URL:

http://localhost:8080/invaliddatatest.html

6. Close the browser, and stop the XAMPP web server.

When the invaliddatatest.html form first appears, the age data field will be empty
and colored green. If you use the spinner icons on the right side of the text box,
the numbers will start at 18, and the text box will stay green. However, if you try
to manually enter an age less than 18, the text box immediately turns red.

CHAPTER 4 Advanced CSS3 157

Advanced CSS3

The previous two chapters show you how to use the combination of HTML5
and CSS to create content and style it for your web pages. CSS3 provides
some more advanced features, allowing you to do even more styling for your

web pages. This chapter walks you through some of the more exciting features
from CSS3 that you can use to liven up your site.

Rounding Your Corners
In Book 2, Chapter 3, I explain how to build online forms using HTML5. However,
by default, HTML forms are somewhat boring, even after adding some CSS styling.

The default styling used by browsers to display text boxes, buttons, and text areas
in forms produces nothing but square boxes, which gets pretty boring. The original
CSS standard didn’t do anything to solve the problem, other than possibly adding
some color to the square boxes. Cubism may be good for some styles of paintings,
but that layout doesn’t work in forms and can bore your website visitors.

One of the features that had been hotly sought after in the browser world has been
the ability to use rounded corners for form elements. The simple act of rounding

Chapter 4

IN THIS CHAPTER

 » Rounding corners

 » Working with border images

 » Exploring new colors

 » Using gradients

 » Lurking in the shadows

 » Working with fonts

 » Answering media queries

158 BOOK 2 HTML5 and CSS3

the square boxes just a bit can liven up the form. Many individual browsers
added the rounded corners feature on their own, separate from the CSS standard.
Unfortunately, as you may guess, different browsers used different methods for
implementing rounded corners. Trying to write a style that would work across all
browsers became both difficult and confusing. But because using rounded corners
became so popular, that feature was finally added to CSS3 as a standard.

The new border-radius style property allows you to round off the sharp edges
from elements on the web page. It does that by allowing you to define the radius
of an imaginary circle used to create the rounded corners. You can just shave a
little off the edge by using a small radius value, or you can create a full ellipse by
completely rounding all four corners with a large radius value. Figure 4-1 shows
an example of applying the border-radius property to a few form elements.

Notice that the input text boxes, the text area, and even the Submit button are
rounded instead of the standard squares. That makes quite a difference in the
appearance of the web form.

What can get confusing with the border-radius property, though, is that there
are four different formats for using it — with one, two, three, or four parameters.
The following single parameter sets the radius of all four corners to 10 pixels:

border-radius: 10px;

The following two parameters set the radius of the top-left and bottom-right
 corners to 10 pixels, but the top-right and bottom-left corners to 5 pixels:

FIGURE 4-1:
Using the

border-radius
property to

create rounded
corners.

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 159

border-radius: 10px 5px;

The following three parameters set the radius of the top-left corner to 10 pixels,
the top-right and bottom-left corners to 5 pixels, and the bottom-right corner to
3 pixels:

border-radius: 10px 5px 3px;

The following four parameters set the radius of the top-left corner to 10 pixels,
the top-right corner to 5 pixels, the bottom-right corner to 3 pixels, and the
 bottom-left corner to 1 pixel:

border-radius: 10px 5px 3px 1px;

When you’re able to set the radius of each individual corner or pairs of corners, you
can create quite a few different special effects, such as dialog bubbles or ellipses.

You can also set the individual corner radii values independently from one another
with a few additional properties:

 » border-top-left-radius

 » border-top-right-radius

 » border-bottom-left-radius

 » border-bottom-right-radius

Each one sets the corresponding border radius value in the element.

The border-radius properties all use a size value to set the circle radius for the
corner. You can specify the size using any of the standard CSS size unit measure-
ments, such as inches, pixels, or em units.

Using Border Images
The default border line that HTML5 places around objects is pretty dull. How
about adding some more elaborate borders around objects? You can, thanks to
another interesting feature added to CSS3. It provides the ability to use images for
the border around elements instead of just a line. This feature allows you to use
any type of image to create a flourish around your elements.

160 BOOK 2 HTML5 and CSS3

You apply a border image to an element by adding the border-image property:

border-image: url(file) slice repeat

The url() function defines the location of the image file used for the border. The
path can be either an absolute value pointing directly to the image file or a relative
path (relative to the location of the CSS script).

The slice value defines what parts of the border image to use for the border.
This part can get somewhat complicated. By default, the browser slices the bor-
der image into nine sections, as shown in Figure 4-2. The nine border image
 sections are

 » The four corner pieces (top left, top right, bottom right, and bottom left)

 » The four edge pieces (top, right, bottom, and left)

 » The middle section

For the slice value, you specify the size of the image pieces to use for the indi-
vidual border images. You can specify that as either a percentage of the entire
image size, or a pixel value to represent how much of the image edges to use for
the border edges. You have the option to specify the slice as one, two, or four
separate values:

FIGURE 4-2:
Slicing a border

image to retrieve
the pieces.

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 161

 » One value: Cuts the same size of the image for the four corners and the
four edges

 » Two values: One size for the top and bottom, and another size for the left
and right sides

 » Four values: One size each for the top, right side, bottom, and left side

The repeat parameter defines how the browser should make the image fit the
space required to create the border edges. There are four ways to do that:

 » repeat: Repeats the image to fill the entire edge

 » round: Repeats the image, but if the image doesn’t fit the area as a whole
number of repeats, rescales the image so it fits

 » space: Repeats the image, but if the image doesn’t fit the area as a whole
number of repeats, adds spaces between the images so it fits

 » stretch: Stretches the image to fill the edge

So, for example, to define a border image that uses 10-pixel slices from all the
sides, and stretches them to fit the border area, you’d use the following:

border-image: url("myimage.jpg") 10 stretch;

Note that you don’t use the units for the slice value. If you specify the value as
a percentage of the entire image, add the percent sign, but if it’s in pixels, leave
off the px.

Instead of using one property statement for all the features, if you prefer, you can
define these values in separate properties. There are five separate properties used
to define the border image, and how the browser should use it (see Table 4-1).

TABLE 4-1	 The CSS4 Border Image Properties
Property Description

border-image-outset Specifies the amount the image extends beyond the normal border box area

border-image-repeat Specifies how the image should be extended to fit the entire border area

border-image-slice Specifies what piece of the image to use as the border

border-image-source Specifies the path to the image used for the border

border-image-width Specifies the widths of the border image sides

162 BOOK 2 HTML5 and CSS3

Figure 4-3 shows what the border image looks like around an element. That’s
quite a bit better than the standard border line.

The Mozilla Foundation developers’ website includes a handy border image
generator tool: https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_
Background_and_Borders/Border-image_generator. With this tool, you can
upload an image or use one of their standard images, and the tool will automati-
cally generate the CSS3 code necessary to extract the border image properties.

Looking at the CSS3 Colors
In Book 2, Chapter 2, I show you the three formats that the original CSS standard
defines for setting colors in the web page:

 » Using a color name

 » Using an RGB hexadecimal value

 » Using the rgb() function with decimal values

The CSS3 standard extends the options you have available for defining colors
by adding the hue, saturation, and lightness (HSL) method. The HSL method of
defining colors uses three values:

FIGURE 4-3:
Using a border

image around an
element.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Background_and_Borders/Border-image_generator
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Background_and_Borders/Border-image_generator

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 163

 » Hue: The degree of color on the color wheel. The color wheel concept has
been around in the art world since the early 1800s. It places the colors around
a circle with the primary colors — red, yellow, and blue — positioned on the
wheel at 0, 60, and 240 degrees, respectively. The secondary colors — orange,
green, and violet — are placed in between the primary colors, in locations
based on their shades at 30, 120, and 260 degrees, respectively. From there,
the different shades of color combinations are arranged appropriately on the
wheel. To specify an individual color hue, you must know its location on the
color wheel. Fortunately there are plenty of charts online to help out with that.

 » Saturation: The percentage of the color used. The saturation value is a
percentage that specifies the grayness shade of the color, from 0 percent for
no color (all gray) to 100 percent for full color saturation.

 » Lightness: The percentage of lightness added to the color. The lightness value
is a percentage that specifies how dark (0 percent) or light (100 percent) the
color should be. The 50 percent value creates the color at its normal shade.
Larger percentages create darker shades of the color, while smaller
 percentages create lighter shades of the color.

To use the HSL method to specify a color, use the hsl() format. For example, the
following property specifies the red color at position 0 of the color wheel, shown
at 100 percent saturation, with 50 percent lightness:

color: hsl(0, 100%, 50%);

The CSS3 standard also adds the opacity feature to HSL, creating the HSLA color
method. With HSLA, you add a fourth parameter to specify the opaqueness of the
color, from 0 to 1. The following example uses the red color, but at 50 percent
transparency:

color: hsla(0, 100%, 50%, 0.5)

The beauty of using the HSL values comes when you’re choosing a color scheme
for your website. If you want to use a single color for the website scheme, you can
modify the saturation and lightness levels to make different shades of the color. If
you want to create a two-color scheme, you may want to choose hues that are 180
degrees apart — those are considered complementary. For a three-color scheme,
hues that are 120 degrees apart create a triad. In a four-color scheme, select hues
that are 90 degrees apart to create a nice offset. By sticking with the color wheel
rules, just about anyone can create a tasteful color scheme for a website.

164 BOOK 2 HTML5 and CSS3

Playing with Color Gradients
While using individual colors are a great way to liven up the website, even colors
can get somewhat boring when you use them all the time. To help make things
more interesting, the CSS3 standard adds color gradients to the mix. A color gradi-
ent slowly fades from one color into a second color, producing a warm transition
effect. These transition colors are often used for backgrounds, creating an effect
that helps the website visitor follow the content as the color gradient morphs into
a different color.

There are two types of color gradients defined in the CSS3 standard:

 » Linear gradients: Fade using a side-to-side or top-to-bottom direction

 » Radial gradients: Use a center point and fade outward (radiate) from there,
much like a tie-dyed T-shirt.

This section discusses how to use each of these methods in your web pages.

Linear gradients
A linear gradient fades between two colors in a linear manner — that is, from side
to side, or from top to bottom. Use the linear-gradient() function to define the
direction of the fade and the transition colors:

linear-gradient(direction, color1, color2);

The direction parameter defines which way the gradient should go. If you omit
the direction, the browser will create the gradient from top to bottom, a common
effect for backgrounds. If you want to change the direction, specify it by the direc-
tion that the gradient should fade from color1 to color2, like this:

linear-gradient(to right, black, white)

You can use to top, to bottom, or to right to specify the direction of the gradi-
ent. This example starts with the black color on the left side and fades to the white
color on the right side, as shown in Figure 4-4.

To use the linear gradient, just add it anywhere you’d use a color value:

background: linear-gradient(red, orange);

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 165

Linear gradients can create quite the stunning effect for web page backgrounds. If
you want to get fancy, you can specify more colors in the linear-gradient() list
as intermediate points between the two endpoints:

background: linear-gradient(red, orange, yellow);

This takes the color transition from a red to an orange first and then finally to the
yellow destination.

Radial gradients
The radial-gradient() does the same thing as the linear gradient, but in a
 circular pattern radiating from a central point. If you have fond memories of the
days when tie-dyed T-shirts were popular, you may love the radial gradients!

Here’s the format for the radial-gradient() function:

radial-gradient(shape size, color1, color2, ...)

The keys to creating the radial gradient are the shape parameter, which defines
the shape of the gradient, and the size parameter. By default the radial gradient
is drawn as an ellipse, but you can instead specify a circle. The size determines
where the radial gradient stops. Usually this is a location, such as closest-
corner, closest-side, farthest-corner, or farthest-side.

FIGURE 4-4:
A left-to-right

color gradient.

166 BOOK 2 HTML5 and CSS3

You’ll also want to define two or more colors to create the gradient effect in the
image. The simplest way to define a radial gradient is to just define the colors:

background: radial-gradient(red, orange, yellow);

This creates an elliptical radial gradient, centered in the element, radiating out-
ward toward the farthest corner.

Adding Shadows
Yet another cool feature added in CSS3 is the ability to create shadows of elements
on the web page. Shadows allow you to produce the effect of a light shining down
on the web page. You can place shadows behind both text and box elements.

Text shadows
Placing shadows behind text on a web page can create a startling effect to draw
attention to headings. Figure 4-5 shows how the text shadow effect can make the
heading stand out on the web page.

FIGURE 4-5:
Adding the text

shadow effect
to a heading

element.

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 167

The CSS3 text-shadow style property allows you to define just how the shadow
should look. Here’s the format of the text-shadow style property:

text-shadow: color offsetx offsety blur;

The color parameter defines the color to use for the shadow. The offsetx and
offsety parameters define the distance of the shadow from the text. You can use
either positive or negative values to represent the offset values. Positive values
move the shadow down and to the right of the text. Negative values move the
shadow up and to the left of the text. The blur parameter defines the amount
of space the shadow uses. The larger the space, the more stretched looking the
shadow appears.

Here’s an example of a CSS3 rule that sets a shadow for all h1 elements:

h1 {

 text-shadow: black, 10px, 5px, 15px;

}

This produces a black shadow to the right and below the text.

You can apply more than one shadow to a text element. Just list the different
shadow definitions on the same text-shadow line, separated by commas:

text-shadow: shadow1, shadow2, ...;

The browser displays the shadows in the order you define them, with each shadow
placed on top of the previous shadows.

Box shadows
The box shadow helps the element stand out with almost a 3-D effect on the web
page. Box shadows work the same way as text shadows, but you apply them to
box elements, such as individual form input fields, text areas, or even entire div
blocks. Figure 4-6 shows an example of applying a simple box shadow to a div
section on the web page.

The format for the box-shadow property is similar to the text-shadow property,
with a couple of added things:

box-shadow: [inset] color offsetx offsety blur [spread];

168 BOOK 2 HTML5 and CSS3

The inset keyword is optional. It determines whether the browser should display
the shadow inside the element. By default, the size of the shadow is the same
as the object; by adding the spread value, you can increase or decrease the size
of the shadow.

Creating Fonts
In Chapter 2 of this minibook, I mention the problem with fonts on a web page. In
the past, browsers were only able to use fonts that were already installed on the
workstation. Finding fonts that are available on all workstations is somewhat of
a challenge.

The CSS3 standard has attempted to remedy this situation by providing a way for
web designers to create their own fonts and deliver them to their site visitors as
part of the web page download. The @font-face rule provides a way to specify a
font file that the client browser must download as part of the style definitions.
When the browser downloads the font file, your web application can use that font
to style text in the web pages. These fonts are known as web fonts.

The following sections describe the different types of web fonts and how to use
them in your web applications.

FIGURE 4-6:
Using a box

shadow on a div
element.

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 169

Focusing on font files
The key to using web fonts is the ability to define a font in a file that every site
visitor’s browser can download and use. The font files contain detailed information
on how the workstation should display individual characters and symbols.

The problem with font files, though, is that, over the years, lots of different font
file formats have appeared. Table 4-2 shows the popular font file formats you may
run into.

The TrueType and WOFF font file formats are currently the only two supported
by all browsers. It’s best to stick with one of these types of fonts when creating
your web fonts.

Font files can often be found and downloaded from the Internet. However, beware
of licensing restrictions on font files. Most font files are not free, or are free only
for personal use.

Working with web fonts
CSS3 allows you to define a web font file for client browsers to download using
the @font-face rule. You may notice that the @font-face rule doesn’t follow any
of the standard style rule-naming conventions that I discuss in Chapter 2 of this
minibook. There’s a reason for that. The @font-face rule defines a CSS command.
CSS commands are directives to the browser to perform some action while loading
the styles. CSS commands start with the at symbol (@) and should be placed at the
start of the CSS stylesheet area.

TABLE 4-2	 Font File Formats
Font Description

TrueType A font created in the 1980s by Microsoft and Apple. This font type is still
commonly used by both operating systems.

OpenType Created by Microsoft and built to extend TrueType fonts. The most common
font type used.

Embedded OpenType A font format created by Microsoft for use only in the Internet Explorer
web browser.

Scalable Vector
Graphics (SVG)

Primarily used for graphics on mobile devices, but can be used to display text.

Web Open Font
Format (WOFF)

A font created by the W3C standards group, intended for web pages.

170 BOOK 2 HTML5 and CSS3

Here’s the format of the @font-face rule:

@font-face {

 font-family: name;

 src: url(location);

 [descriptor:value];

}

The font-family property defines a unique name for the font in your stylesheet.
The src property defines the location of the font file on your server, either as an
absolute or relative path.

Following those two properties, you can add descriptors that indicate when the font
should be used (such as for bold text or for text in italics).

An example of defining a web font would be:

@font-face {

 font-family: myfont;

 src: url(myfont.woff);

}

This defines a font family named myfont from the myfont.woff font file that the
client workstation should download. Then, to use the new font in your web pages,
just define the font-family name in a style rule:

div {

 font-family: myfont;

}

There are three descriptors that you can define for the web font:

 » font-stretch: Specifies how the font should be stretched to fill a space. The
default is normal, but other values are condensed or expanded.

 » font-style: Specifies how the font should be styled. The values are normal,
italic, or oblique.

 » font-weight: Specifies the boldness of the font. The values are normal, bold,
or numeric values from 100 to 900.

By specifying different font-style and font-weight values, you can specify more
than one font file, depending on how you use the font in the web page.

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 171

Handling Media Queries
These days, it’s likely that your web applications will be viewed by site visitors
using a myriad of devices. Whether it’s on a large monitor connected to a desktop
workstation or a small mobile device that fits in the palm of your hand, your web
application will need to be presentable to all your website visitors.

The CSS3 standard has some tricks that you can use to help determine just when
you need to alter the style and layout of your web pages, based on how your site
visitor is viewing the application. This section covers just how to use those tricks.

Using the @media command
The CSS2 standard defined the @media CSS command to help you detect what type
of device the web page is being viewed on. You can then create styles based on the
media type. This allows you to style the web page one way when your site visitor is
displaying it on a monitor screen and another way when the site visitor prints it out.

The CSS2 standard defined several different media types to use in the @media rule,
as shown in Table 4-3.

TABLE 4-3	 The CSS2 @media Types
Type Description

all All types of output devices

braille Devices that produce Braille

embossed Braille printers

handheld Mobile devices with small screens

print Printers

projection Large-screen projectors

screen Standard computer monitors

speech Text-to-speech readers

tty Teletype terminals

tv Television

172 BOOK 2 HTML5 and CSS3

You use the @media command in your standard style sheet to define styles used for
that specific type of device:

@media screen {

 body {

 font-family: sans-serif;

 font-size: 12pt;

 }

 h1 {

 font-family: sans-serif;

 font-size: 20pt;

 }

}

@media print {

 body {

 font-family: serif;

 font-size: 10pt;

 }

 h1 {

 font-family: serif;

 font-size: 18pt;

 }

}

These two @media commands define two sets of style rules — one for when the
web page appears on a monitor, and one for when the web page is printed. It’s up
to the browser to determine which situation dictates which @media command set
to use.

Dealing with CSS3 media queries
The CSS2 @media command went a long way toward helping you determine what
types of devices your site visitors are using to display your web application, but it
didn’t go quite far enough. For example, whether your site visitor is viewing your
web application on a big monitor or a small mobile device, the device evaluates to
the screen media type by the @media command.

The CSS3 standard solves that problem by adding media queries to the standard
@media commands. Media queries allow you to query the features supported by
the client browser and the device the browser is running on. You can add the
media queries to the standard @media commands to produce a customized rule set
for just about any type of circumstance.

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 173

Here’s the format of the media query:

@media type and feature

The type parameter defines the media type, similar to the CSS2 media types, but
now limits them to only four (all, print, screen, and speech). The feature
parameter defines new features available to query. The CSS3 media features avail-
able are shown in Table 4-4.

TABLE 4-4	 The CSS3 Media Features
Feature Description

any-hover Whether the device supports hovering a pointer over elements

any-pointer Whether the device supports a pointing device

aspect-ratio The height and width ratio of the viewing device

color The number of bits of color supported by the viewing device

color-index The number of colors the device can display

grid Whether the device supports a grid or a bitmap

height The height of the viewing area of the device

hover Whether the device supports hovering a pointer over elements

inverted-colors Whether the browser is capable of inverting colors

light-level The current ambient light level

max-aspect-ratio The maximum ratio between the width and height of the viewing area

max-color The maximum number of bits of color supported by the viewing area

max-color-index The maximum number of colors the device supports

max-device-aspect-ratio The maximum ratio between the width and height of the device

max-device-height The maximum height of the device

max-device-width The maximum width of the device

max-height The maximum height of the device viewing area

max-monochrome The maximum number of bits in a monochrome setting

max-resolution The maximum resolution of the device

(continued)

174 BOOK 2 HTML5 and CSS3

Feature Description

max-width The maximum width of the device

min-aspect-ratio The minimum ratio between the width and height of the viewing area

min-color The minimum number of bits of color supported by the viewing area

min-color-index The minimum number of colors the device supports

min-device-aspect-ratio The minimum ratio between the width and height of the device

min-device-height The minimum height of the device

min-device-width The minimum width of the device

min-height The minimum height of the device viewing area

min-monochrome The minimum number of bits in a monochrome setting

min-resolution The minimum resolution of the device

min-width The minimum width of the device

monochrome The number of bits of color in a monochrome setting

orientation The orientation (landscape or portrait) of the device

overflow-block How the device handles overflowing block elements

overflow-inline How the device handles overflowing inline elements

pointer Whether the device supports a pointing device

resolution The resolution of the device

scan Whether the device uses progressive or interlaced scanning

scripting Whether the device supports client-side scripting languages

update-frequency How quickly the device can update the viewing area

width The width of the device viewing area

TABLE	4-4	(continued)

Table 4-4 shows lots of different device features you can test to customize the
styles you apply to your web page. An example looks like this:

@media screen and (max-width: 1000px) {

 font-size: 12px;

}

A
dv

an
ce

d
CS

S3

CHAPTER 4 Advanced CSS3 175

@media screen and (max-width: 500px) {

 font-size: 10px;

}

The first rule only applies to devices that have a maximum viewing area width of
100 pixels. It uses the 12-pixel font size for the text on the web page. The second
rule only applies to devices that have a maximum viewing area of 500 pixels (such
as a mobile device). It uses the 10-pixel font size for the text on the web page to
make it smaller.

Applying multiple style sheets
You can also use the media types and features queries in the <link> tag to refer-
ence specific external style sheets depending on the media features. This allows
you to apply entirely different style sheets to the web page based on the device
your site visitor is using to view it. Here’s the format for doing that:

<link rel="stylesheet" href="desktop.css" media="screen and (max-width:500px)">

Now the browser will apply the desktop.css external style sheet only if the device
has a maximum viewing area width of 500 pixels.

It’s always a good idea to have separate style sheets for mobile devices for your
web application. Usually, you’ll need to change the layout of navigation buttons to
make them easily accessible on the mobile device, as well as limit the content that
you display in the web page.

CHAPTER 5 HTML5 and Multimedia 177

HTML5 and Multimedia

Multimedia has taken over the Internet. Thanks to the popularity of
websites like YouTube, these days if your website doesn’t support some
type of multimedia content, your visitors will consider it old school and

may pass it by. This chapter examines the multimedia features available in HTML5
and shows you how to implement images, audio, and video in your dynamic web
applications.

Working with Images
The most basic type of multimedia to put on a web page is a picture. The old say-
ing “a picture is worth a thousand words” is somewhat true, especially in the web
world. Placing images on your web page can help break up the monotony of plain
text, as well as help add to your content in an attractive manner. Often, the first
thing a new website visitor will notice are the images.

The HTML standard has always supported placing images within web pages, but
there are a few new tricks that you can try using HTML5 and CSS3 to make your
images stand out. This section shows just how to do that.

Chapter 5

IN THIS CHAPTER

 » Working with images

 » Playing audio

 » Watching videos

178 BOOK 2 HTML5 and CSS3

Placing images
The img element allows you to place an image file on the web page. The img ele-
ment uses a one-sided tag, , that uses attributes to define the image and
how the browser should display it.

Here’s the basic format for the tag:

The src attribute defines the location of the image file to display. You can specify
the location as a relative or absolute file path for images stored on the same server
as the web page, or you can use a URL to reference images stored on another
server.

The alt attribute defines alternative text that appears if the browser can’t display
the image, such as if the image file is missing if the browser doesn’t support dis-
playing images (such as a text-based browser), if your site visitor is using a screen
reader, or if your website is being read by a search engine. For all your images, it’s
a good idea to provide a good description of not only the image, but also any action
that occurs in the image. You do this in the alternative text attribute.

By default, the browser displays the image at full size in the browser window. That
may not always be what you want, or you may just want more control over how
or where the image appears. To help control that you use the width and height
attributes to define a specific viewing area for the image to fit into.

Alternatively, instead of using the width and height attributes, you can use the
style attribute and define the width and height as style properties:

Either method is allowed in HTML5, although using an inline style will help pre-
vent accidental styling of the image from an external style sheet.

Browsers are able to display most image types these days, but some image types
are more suited for web pages than others. The JPEG image type is commonly
used on web pages because it compresses the image to a smaller file size, making
it quicker to download to the client browser. Using image files that are too large
may ruin the experience for some of your website visitors, especially those who
are using mobile data connections. No one likes having to wait for an image to
load on a web page.

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 179

Styling images
The CSS3 standard defines some additional styles that you can apply to the images
on your web page to make them stand out even more. In Book 2, Chapter 4, I dem-
onstrate how you can use the CSS3 shadow effect on elements to help give them a
3D effect. You can use that effect on images on the web page, too. That adds a nice
touch to help make the image pop out from the web page.

Another handy style added by the CSS3 standard is the transform property. The
transform property allows you to alter how an image appears on the web page,
such as scale it, rotate it, or even skew it! There are functions for both 2D and
3D manipulation of the images. Table 5-1 lists the 2D transform effects that are
available.

The rotate() function is one of my favorites. Just by adding the rotate() func-
tion to a standard image, you can help make it stand out from the text content on
the web page. You can try that out yourself by following these steps:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

TABLE 5-1	 The CSS3 2D Transform Effects
Effect Description

matrix(a,b,c,d,e,f) Combines the translation, scale, skew, and rotation effects in one property

rotate(angle) Rotates the object clockwise by the specified angle

scale(x,y) Resizes the object by a factor of x horizontally and y vertically

scaleX(x) Resizes the object horizontally only by a factor of x

scaleY(y) Resizes the object vertically only by a factor of y

skew(x,y) Offsets the object horizontally by an angle of x and horizontally by an angle of y

skewX(x) Offsets the object horizontally only by an angle of x

skewY(y) Offsets the object vertically only by an angle of y

translate(x,y) Moves the object x pixels to the right and y pixels down

translateX(x) Moves the object x pixels to the right

translateY(y) Moves the object y pixels down

180 BOOK 2 HTML5 and CSS3

2. In the editor window, type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Image Rotation Test</title>

<style>

 #img1 {

 float: left;

 transform: rotate(30deg);

 box-shadow: black 10px 5px 15px;

 }

 #img2 {

 float: left;

 transform: rotate(-30deg);

 box-shadow: black 10px 5px 15px;

 }

</style>

</head>

<body>

<h1>Testing the image rotation feature</h1>

<header>

<h1>My vacation photos</h1>

</header>

<section>

</section>

</body>

</html>

3. Save the file as imagetest.html in the DocumentRoot folder for your web
server.

For XAMPP on Windows, that’s c:\xampp\htdocs. For XAMPP on macOS, that’s
/Applications/XAMPP/htdocs.

4. Find two of your favorite image files and copy them to the same folder as
the imagetest.html file.

You’ll need to either rename them as image1.jpg and image2.jpg or change
the code in the imagetest.html file to match your image filenames.

5. Start the web server if necessary.

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 181

6. Open a browser and go to the URL for the file.

If you’re using the XAMPP server set to TCP port 8080, use the following:

http://localhost:8080/imagetest.html

7. Close the browser and shut down the web server.

The code in the imagetest.html file places two images on the web page. The
first image is rotated by a negative value so that it rotates counterclockwise;
the second image is rotated by a positive value so that it rotates clockwise.
Figure 5-1 shows the results using my test image.

That’s a great start to a professional-looking website!

Linking images
You can also use images as links to other web pages or locations. You do that by
embedding the tag inside an anchor element:

<img src="children.jpg" alt="Children's clothes"

style="width: 50px; height: 50px; border: 0px;">

If the website visitor clicks anywhere on the image, the browser responds just as
if the anchor element was a hypertext link, redirecting the browser to the destina-
tion defined by the href attribute.

FIGURE 5-1:
Rotating images

on the web page.

182 BOOK 2 HTML5 and CSS3

It’s also a good idea to add the border style property to the anchor style element
and set it to 0 pixels to prevent the browser from drawing an ugly border around
the image to indicate that it’s a link.

Working with image maps
Linked images are nice, but how about those fancy map images that allow you to
click in different parts of the map to go to different locations? You do that by using
image maps. An image map allows you to define sections of an image that act just
like a hyperlink. You can define each section to redirect the visitor’s browser to a
different location.

Creating an image map requires that you first define the map and then apply it to
your image. To define the map, you use the map element:

<map name="mapname">

 map area definitions

</map>

The name attribute is important, because you’ll use that to reference the map from
the image tag in the usemap attribute:

After you define the map, you need to define one or more map areas. Each map
area defines a specific location on the image to create a hotspot (clickable region).
You define the map areas using the <area> tag:

<area shape="shape" cords="coordinates" href="location" alt="text">

The combination of the shape and coordinates defines the area in the image for
the hotspot. Table 5-2 shows how to match those up.

TABLE 5-2	 Defining the Area Element Hotspots
Shape Value Description

circle Defines the x and y location of the circle center, as well as the radius value

poly Defines multiple x and y locations for each point of the polygon

rect Defines the x and y coordinates for the upper-left corner and the lower-right corner

default No coordinates necessary; uses the remaining unmapped area of the image

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 183

Defining an image map can be somewhat difficult. You’ll need to know the exact
size of the image on the web page and be able to define the exact location for each
area hotspot. This is where a good image manipulation tool such as Photoshop or
GIMP can come in handy. Anything that allows you to count pixels in the image
will help you plot out the hotspots.

Here’s an example of defining an image map for an image:

<map name="storemap">

<area shape="rect" coords="0, 0, 100, 500" href="books.html" alt="shop our

books">

<area shape="rect" coords="101, 0, 200, 500" href="furniture.html" alt="shop our

furniture">

<area shape="rect" coords="201, 0, 300, 500" href="clothes.html" alt="shop our

clothes">

<area shape="rect" coords="301, 0, 400, 500" href="tools.html" alt="shop our

selection of tools">

<area shape="rect" coords="401, 0, 500, 500" href="food.html" alt="shop for some

groceries">

</map>

After you define the image map, you associate it to an image by adding the usemap
attribute to the tag:

The #storemap value references the storemap name attribute, so the browser
applies that image map to the image on the web page. Clicking each individual
section takes you to the associated href location defined for that area.

Using HTML5 image additions
Besides the standard HTML image features, HTML5 adds a couple of new image
features that you can use in your web pages.

Figures and captions
It’s common to want to place captions around images that you display on the web
page. You can do that with standard HTML and CSS, but it takes some calculating
to get the positioning correct, and if anything on the web page moves, the image
and caption may get out of sync.

HTML5 adds the figure element to match images and captions together. The figure
element encloses the image, along with a figcaption element, creating a single

184 BOOK 2 HTML5 and CSS3

object that you can position and move around on the web page. Here’s the general
format for all that:

<figure>

<figcaption>Figure 1: Creating a web page</figcaption>

</figure>

You can now add styles for the figure element to position both the image and
its associated caption on the web page together as a single object. In this exam-
ple, the caption will appear under the image. If you prefer, you can place the
<figcaption> tag above the image, too, by just listing it before the tag.

You can use the figure element to link other objects with captions, too. For exam-
ple, use the p element instead of the img element for embedding quotes inside
a text section and linking them to the citation for the quote in the figcaption
element.

The picture element
The tag, along with the transform CSS property, allows you to scale images
to fit a specific area on the web page:

img {

 transform: scale(80,60);

}

This solution doesn’t always produce the best-quality image for the device. With
website visitors using a multitude of different devices, each with a different aspect
ratio and screen size, it’s hard to get one image to work in all situations.

The HTML5 standard has a solution for that problem. Instead of trying to scale
one image to fit everywhere, you can define multiple versions of an image to dis-
play for different environments. You just need to define the environment param-
eters for the browser to test to know which image to display. You do that using
the picture element.

The HTML5 picture element allows you to define one or more sources for the
image, along with defining media rules to determine when each source should be
used. I cover media rules in Book 2, Chapter 4, where I discuss how to use media
rules to load different style sheets based on different properties of the website
visitor’s device. This is the same concept.

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 185

The picture element uses the <picture> tag, along with one or more source ele-
ments. Each source element defines a media rule and the image to use if the device
meets the media rule criteria. The format for all that looks like this:

<picture>

<source media="(min-width: 1000px)" srcset="large.jpg">

<source media="(min-width: 500px)" srcset="small.jpg">

</picture>

When the browser sees the picture element, it evaluates each of the source ele-
ments inside, from the first to the last. The first source element that matches the
media environment is used to display the image defined in the srcset attribute.
If none of the media tests defined in the source elements passes, the browser uses
the image defined in the tag.

Playing Audio
The original HTML standard didn’t account for playing audio clips in web pages.
That created a free-for-all of methods developed to incorporate audio. Many dif-
ferent solutions were created along the way.

One such solution is to reference an audio file stored on the server using a stan-
dard anchor element:

Click to play

When the site visitor clicks the hypertext link, the browser downloads the audio
file and opens an appropriate audio player from the workstation to play it. That’s
a pretty clunky way of trying to incorporate audio into a web page.

The following sections discuss better ways of playing audio files in your web pages.

Embedded audio
The next step in the evolution of playing audio in web pages was the plugin. A
plugin is a separate program that runs inside the browser to support additional
features. Over the years, several different audio plugins had been developed, but
the three most common were

186 BOOK 2 HTML5 and CSS3

 » QuickTime: A plugin developed by Apple, used mainly in the Safari
web browser.

 » RealAudio: A vendor-neutral attempt to create an audio plugin. It only
supports its own proprietary audio file format.

 » Flash: Developed by Adobe, Flash became a popular format for playing both
audio and video files in browsers.

To play an audio file using a plugin, you had to use the embed element, which
signals to the browser that some type of external file is embedded inside the web
page and to find the appropriate plugin to handle the embedded file. The embed
element uses the one-sided <embed> tag, with the following format:

<embed src="location" type="mime" width=x height=y>

The src attribute defines the location of the audio file, either as an absolute or
relative path on the local server, or as a URL to point to an audio file stored on a
remote server.

The width and height attributes are used if the plugin requires space on the web
page to display an interface. Some audio plugins provide an interface to stop,
start, and pause playing the audio file.

The type attribute defines the type of multimedia file. It uses the standard Multi-
media Internet Mail Extension (MIME) type names to identify the audio file type. As
the name suggests, MIME types were originally developed for sending binary files
through email, but they’re also used by web browsers for embedded binary files
in web pages. The browser uses the MIME type to determine just what plugin to
use to process the embedded file. Different audio file formats (such as QuickTime
or RealAudio) require a different plugin to play. This is where it helps to know the
different formats available for digital audio files.

Digital audio formats
Since the transition from vinyl records to the digital world, many different meth-
ods had been used for converting analog sound to digital media. The process of
converting sound to digital signals consists of three elements:

 » Sampling rate: How often the sound amplitude is measured and quantified
to a digital value

 » Sample resolution: How many bits of data are used for each sample digital value

 » Compression: How the final digital data is compressed to make an audio file

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 187

The combination of the sampling rate and sample resolution result in the
bit rate used for the digital recording. The larger the bit rate, the more accu-
rately the digital playback will produce the original analog signal. However, the
larger the bit rate, the more digital data that is generated and, thus, required to
store the audio file.

A standard CD format for digital audio uses a bit rate of 1411 Kbps, which results in
an extremely accurate reproduction, but also an extremely large file size (around
10MB) for each audio track. It’s impractical to send a standard CD audio track
across the Internet to play on client browsers.

This is where compression comes into play. Because the original audio files are too
large to use on the web, we need to incorporate some type of compression scheme
to make them more manageable. Unfortunately, over the years, many different
companies have developed proprietary compression techniques, resulting in our
current myriad of different audio file types. Table 5-3 lists the more common
audio file types in use, along with their file extensions and MIME types.

Each of these audio file formats has its own pros and cons to deal with. Different
audiophiles have different opinions on which method is the best. To make matters
more complicated, many of these audio file formats are proprietary and require a
license to embed a player in a browser. The MP3 audio type has become the de facto

TABLE 5-3	 Audio File and MIME Types
Audio File MIME Description

AAC .aac audio/aac Apple audio coding

AU .au audio/basic Sun Microsystems standard for
Unix systems

MIDI .mid audio/mid Musical Instrument Digital Interface
standard for recording instruments

MP3 .mp3 audio/mpeg Motion Picture Experts Group standard

Ogg Vorbis .ogg audio/ogg Open-source standard

RealAudio .ra audio/x-pn-realaudio Real Media standard for streaming audio

SND .snd audio/basic SouND format, developed by Apple based
on the AU audio format

Shockwave Flash .swf audio/x-shockwave-flash Adobe proprietary format

WAV .wav audio/wav Waveform Audio format developed by
Microsoft for uncompressed audio

188 BOOK 2 HTML5 and CSS3

standard over the years due to its high compression rate and high audio quality,
but many developers don’t like using MP3 because of its proprietary nature.

The Ogg Vorbis audio type is an open-source standard, free to use in any envi-
ronment. However, it hasn’t been widely adopted by all browsers yet (including
Internet Explorer and Safari) due to its perceived lack of audio quality compared
to other compression methods.

At the time of this writing, the only audio file type supported by all the major
browsers is MP3. However, if your site visitor is using a Linux workstation, due to
licensing restrictions, the MP3 codecs are often not loaded by default on all Linux
distributions.

If you embed an audio file into your web page and a visitor doesn’t have the appro-
priate plugin to handle it, the browser will react in one of three ways:

 » Display an error message in place of the embedded audio file

 » Display a pop-up message indicating the plugin required to play the audio file

 » Redirect the web page to the web page for the required plugin

All three of these results are less than optimal for your web page. Fortunately, the
HTML5 standard has produced a better way to incorporate sounds into web pages.

Audio the HTML5 way
The key to embedding audio files into your web pages is similar to how you handle
displaying images — it’s best to have multiple versions available and let each site
visitor’s browser decide which one to use. The HTML5 standard provides a way for
you to do that with the audio element.

The audio element works just like the picture element (see the “Using HTML5
image additions” section, earlier in this chapter). You use the <audio> tag to open
a list of audio sources, defined using the <source> tag. Each source specifies a
different audio file format for the browser to try. The first one in the list that the
browser supports is what gets requested and played by the browser. That looks
like this:

<audio>

<source src="myaudio.mp3" type="audio/ogg">

<source src="myaudio.ogg" type="audio/mpeg">

<source src="myaudio.wav" type="audio/wav">

</audio>

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 189

For the source elements, you use the src attribute to indicate the location of the
audio file to play, as well as the type attribute to indicate the MIME type of the
audio file. It’s up to the browser to decide which one to use. In this example,
the browser attempts to play the MP3 version first. Then for Linux workstations
where that’s not available, it automatically attempts to load and play the Ogg Vor-
bis version. If that’s not available, it’ll try to use the WAV version of the audio file.

The HTML5 standard only supports the MP3, Ogg Vorbis, and WAV audio file types.
Don’t try to use the audio element to embed a QuickTime or RealAudio audio file.
You’ll need to use the embed element to do that.

You can also place a short message after the <source> tag list for the browser to
display if it can’t support any of the listed MIME types:

<audio>

<source src="myaudio.mp3" type="audio/ogg" controls>

<source src="myaudio.ogg" type="audio/mpeg" controls>

Sorry, your browser doesn't support MP3 or OGG audio

</audio>

The <audio> tag has a few attributes to help alter how the browser handles the
audio file. Table 5-4 shows the available attributes.

The controls attribute is recommended, because it provides an interface for the
website visitor to have control over how or when the audio file plays. Each browser
has its own way of displaying audio controls. Figure 5-2 shows how the controls
appear in the Internet Explorer browser.

TABLE 5-4	 The <audio> Tag Attributes
Attribute Description

autoplay The browser should start playing the file as soon as the web page loads.

controls The browser should display a standard set of audio controls, such as Play, Stop,
and Pause buttons.

loop The browser should continually loop the audio file.

muted The browser should mute the audio track immediately.

preload Specifies whether the audio file should be loaded when the page loads or when the Play
button is clicked.

src Specifies the URL of an audio file when not using additional <source> tags.

190 BOOK 2 HTML5 and CSS3

The audio controls shown by browser are fairly simplistic — a Play/Pause button,
a Mute button, a slider to control the location in the audio file, and a sound level
slider. Don’t expect any fancy EQ settings to bump up the bass in your tunes!

In the past, it was somewhat commonplace to embed an audio file in a web page
and set it to automatically play with the loop feature enabled. This is a surefire
way to annoy your site visitors, and it may even cause issues for visitors who use
a screen reader to process your web page. I don’t recommend using this method.
Allow your site visitors the option of whether to play the audio embedded on your
web pages.

Watching Videos
These days, the world is full of video content. You can find videos on just about
every topic under the sun, including how to make your own videos! This section
walks through how you can embed videos in your web pages, but first, a quick look
at the different types of video files you may have to deal with.

Paying attention to video quality
Just like in the world of film, videos are composed of a series of individual images
(called frames) played at a set rate of speed (called the frame rate). The higher the
frame quality, the better the video quality. The higher the frame rate, usually the
better the video quality (with exceptions, as noted in this section).

FIGURE 5-2:
The audio

controls in the
Internet Explorer

browser.

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 191

You can use any frame size for the video images, but there are standard frame
sizes that are commonly used:

 » 160 x 120: Low-quality video using the 3:4 aspect ratio

 » 320 x 240: Higher-quality video, but still using the 3:4 aspect ratio

 » 640 x 480: Highest-quality video using the 3:4 aspect ratio

 » 1280 x 720: High-definition (HD) video using the 16:9 aspect ratio

 » 1920 x 1080: HD-quality video using the 16:9 aspect ratio

As you can guess, a higher quality of frame images means a larger video file.

The frame rate used for television video is 60 frames per second (fps). That frame
rate would create a huge video file. DVD-quality videos use 24fps as a compromise
between video quality and file size.

A fast frame rate isn’t necessarily a good thing with web video. As the video is
sent from the server to the client browser, the network gets in the way. Usually,
to help with a smooth playback, most browsers use a buffer to hold video data as
it downloads. When the buffer area is filled enough that the browser feels it can
play the video at the designated frame rate and keep up with the download, it
plays the video.

However, if the download slows down and the buffer starts to catch up with the
real-time data, video playback will appear choppy and reduce the viewing experi-
ence of your site visitors. This is why a high frame rate doesn’t necessarily equate
to a better video quality.

Looking at digital video formats
Just as with audio files, many different companies have devised different methods
of compressing videos for storage and playback. Unfortunately, this has resulted
in a hodge-podge of different video formats that we have to work with. Table 5-5
lists the more popular video formats you’ll most likely run into.

Just as with the audio files, each video file format has its own pros and cons, mak-
ing it difficult to decide which one to use. Although the WebM video standard was
developed by a consortium of browser developers, it’s actually one of the lesser-
used standards.

192 BOOK 2 HTML5 and CSS3

Putting videos in your web page
With the original version of HTML there was no standard way of embedding video
content in your web pages. Proprietary methods became popular, and the Adobe
Flash plugin became the de facto standard in web video.

However, HTML5 has changed that, by including a way to embed videos into your
web pages without requiring the use of a separate plugin. The new video element
is what does that.

As you can probably guess, the video element works the same way as the audio
element does. It allows you to provide a list of source elements that define differ-
ent videos using different MIME types. The basic format for that looks like this:

<video>

<source src="mymovie.mp4" type="video/mp4">

<source src="mymovie.ogg" type="video/ogg">

Sorry, your browser is unable to play the video

</video>

The browser attempts to play the first listed video, and if that fails, it tries the
second listed video. Then if that fails, the browser will display the text specified.

The HTML5 standard only defines support for the MP4, Ogg, and WebM video for-
mats. If you need to play another video format you can try to use the embed element.

TABLE 5-5	 Common Video Formats
Format File MIME Description

AVI .avi video/x-msvideo Audio Video Interleave. Developed by Microsoft.

Flash .flv video/x-flv Adobe Flash video.

MPEG .mpg video/mpg The original Motion Pictures Expert Group standard for
digital video.

MPEG-4 .mp4 video/mp4 Updated MPEG standard, currently in use.

Ogg Theora .ogg video/ogg Open-source video standard.

QuickTime .mov video/quicktime Developed by Apple.

RealVideo .rm video/x-pn-realvideo Developed by Real Media for video streaming.

WebM .webm video/webm Developed by browser developers as a common
video format.

WMV .wmv video/x-ms-wmv Microsoft standard video format.

H
TM

L5
 a

nd
 M

ul
ti

m
ed

ia

CHAPTER 5 HTML5 and Multimedia 193

The <video> tag supports some attributes that allow you to control the viewing
experience for your site visitors. Table 5-6 shows what attributes are available.

For videos, it’s imperative that you specify the height and width attributes to
maintain control of how the video appears in the web page. The browser will limit
the video to display within the area you specify. Figure 5-3 shows playing a video
with controls in the Internet Explorer web browser.

TABLE 5-6	 The <video> Tag Attributes
Attribute Description

autoplay Starts the video as soon as the web page loads

controls Displays a set of icons for controlling the video (such as Play, Stop, and Pause)

height Sets the height of the video display area in the web page

loop Specifies that the browser should continually loop through the video

muted Starts the video with muted audio

poster Specifies an image URL to show while the video is downloading

preload Loads the video when the web page loads instead of when the Play button is clicked

src Specifies the location of the video file

width Specifies the width of the video display area in the web page

FIGURE 5-3:
Playing a video
in the Internet

Explorer browser.

194 BOOK 2 HTML5 and CSS3

The video viewer in Internet Explorer provides a Play/Pause button, a status
 indicator showing the current position in the video file, a Mute button that also
displays a volume control when you click it, and a button that allows you to switch
to viewing the video in full-screen mode.

The same warning that I gave you about automatically playing audio files applies
to video files. Never assume that your site visitors will want to view the video as
soon as the web page loads, even if you include the muted attribute. Playing videos
takes a lot of processor power from the workstation; for site visitors using less
powerful devices, that may cause issues.

Getting Help from Streamers
Trying to provide your own videos in the correct format to display correctly in
all browsers can be somewhat of a challenge. Sometimes it’s best to cry “uncle,”
and let the professionals handle it. By “professionals,” I mean the myriad of
commercially available video-streaming services, such as YouTube, Vimeo, and
LiveStream. Most of these services allow you to register for free trials, and some
even allow you to host small videos for free in your own channel.

The beauty of using a streaming service is that usually you only need to upload
your video in one format; then the streaming service takes care of reformatting
the video to match other video formats or quality required by your website visi-
tors. No more having to reformat videos yourself and worrying about how they’ll
appear in different browsers, at different bandwidth speeds.

To embed a video from a streaming service requires that you use the old HTML
iframe element. The iframe element was popular in the early days of HTML as a
way of dividing a web page into separate sections. However, the iframe method
was clunky, and soon CSS provided a much better way of dividing web pages.

However, the iframe element has had something of a comeback as a container for
displaying streaming videos. The format uses the two-sided <iframe> tag:

<iframe width=x height=y src="location">

</iframe>

As you would expect, the width and height attributes are necessary to control the
size of the iframe area in your web page. The src attribute points to the custom
URL your streaming provider assigns to your uploaded video.

3JavaScript

Contents at a Glance
CHAPTER 1: Introducing JavaScript . 197

Knowing Why You Should Use JavaScript . 197
Seeing Where to Put Your JavaScript Code 199
The Basics of JavaScript . 203
Controlling Program Flow . 209
Working with Functions . 220

CHAPTER 2: Advanced JavaScript Coding . 223
Understanding the Document Object Model 223
Finding Your Elements . 233
Working with Document Object Model Form Data 238

CHAPTER 3: Using jQuery . 243
Loading the jQuery Library . 244
Using jQuery Functions . 246
Finding Elements . 247
Replacing Data . 250
Changing Styles . 254
Changing the Document Object Model . 259
Playing with Animation . 261

CHAPTER 4: Reacting to Events with JavaScript
and jQuery . 263
Understanding Events . 263
Focusing on JavaScript and Events . 267
Looking at jQuery and Events . 276

CHAPTER 5: Troubleshooting JavaScript Programs 283
Identifying Errors . 283
Working with Browser Developer Tools . 285
Working Around Errors . 295

CHAPTER 1 Introducing JavaScript 197

Introducing JavaScript

The previous minibook shows you how to use HTML5 and CSS3 to create
some pretty fancy-looking web pages. That’s the first step to creating your
dynamic web applications, but there are a few more parts to add. This mini-

book tackles the next piece you’ll need to add to your web programs: client-side
programming.

This chapter focuses on the JavaScript programming language, the most popular
client-side programming language in use today. First, I cover the basics of how
to add JavaScript code to your web pages. Then I explore some of the basics of the
JavaScript language.

Knowing Why You Should Use JavaScript
HTML5 and CSS3 work together to create web pages. The HTML5 code produces
the content that appears on the web page, and the CSS3 code helps style it to
change the format and location of the web page elements. So, what exactly does
JavaScript do to help augment those languages?

JavaScript is program code that you embed into the HTML5 code. The web server
sends the JavaScript program code to your site visitors’ web browsers, which in
turn detect and run the JavaScript code. The JavaScript code can alter features of
the web page that the HTML5 and CSS3 code produce. This section explains what
you can do with JavaScript code.

Chapter 1

IN THIS CHAPTER

 » Defining JavaScript

 » Adding JavaScript to your web pages

 » Working with data

 » Looking at JavaScript control
structures

 » Creating JavaScript functions

198 BOOK 3 JavaScript

Changing web page content
In your HTML5 code, you no doubt will have lots of text that appears in separate
sections of your web page. For example, you may have a sidebar element that lists
the day’s news events related to your website topic, or you may have a header ele-
ment that displays the current time and temperature for your city.

All that is great, but you need a way for that information to change dynamically,
each time your site visitors load the web page. This is where JavaScript comes in.

JavaScript code allows you to alter the text that appears on your web page “on the
fly,” without requiring your site visitors to reload the web page. You can create
JavaScript code that retrieves updated news articles even as your site visitors are
viewing your web pages. The information will change right before their eyes —
like magic!

Changing web page styles
Book 2, Chapter 2, explains how you add CSS3 styles to your web pages to apply
styles to text and elements, or to place elements in specific locations on the web
page. The CSS3 code you create is placed inline in the HTML5 elements, internally
in the head element of the web page, or as an external style sheet.

JavaScript code allows you to dynamically alter any style or position that you define
for an HTML5 element in your CSS3 code. That’s right — you can use JavaScript to
turn blue backgrounds yellow, orange text green, or even move an entire section
of text from one side of the web page to another! That’s a lot of control to have at
your fingertips.

One of the coolest features of JavaScript is the ability to dynamically make HTML5
elements appear out of nowhere! Each HTML5 element supports the display
style property, which you use to determine how or if the element appears on the
web page.

With JavaScript code you can dynamically alter the display style property for
any element on the web page to make it appear as needed or disappear when not
needed. That gives you the ability to dramatically alter the layout of a web page at
any time while your site visitor is interacting with the web page. This helps hide
sections that may be distracting to site visitors at times, then make them appear
when the site visitor needs to interact with them.

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 199

Seeing Where to Put Your JavaScript Code
Now that I’ve sold you on the benefits of using JavaScript code in your web pages,
let’s take a look at how you include JavaScript code in your HTML5 code. There are
two ways of including JavaScript code in web pages:

 » Embedding the JavaScript code directly into the HTML5 code for the web page

 » Creating an external JavaScript file that the browser downloads and runs

This section walks through how to use both methods of working with JavaScript
code in your HTML5 code.

Embedding JavaScript
You embed JavaScript code directly into the HTML5 code for your web pages by
using the script element. The script element is a two-sided element, so it has an
opening and closing tag that surrounds your JavaScript code:

<script>

 JavaScript code

</script>

The script element informs the browser that there’s code to run as part of the web
page. Most browsers will recognize the JavaScript code that appears in the script
element and run the code using an internal JavaScript interpreter. However, some
programmers like to identify the type of code embedded in the script element
using the type attribute:

<script type="text/javascript">

This isn’t required in HTML5, but you’re more than welcome to use this format if
it helps you to remember that the embedded code is JavaScript. This can be espe-
cially helpful when you start embedding server-side programming languages,
such as PHP, in your HTML5 code as well.

You can place script elements anywhere in the HTML5 code. The browser will pro-
cess the JavaScript code as it parses the HTML5 code for the web page. However,
that affects how the JavaScript code runs and how any output generated by the
JavaScript code appears. The following sections demonstrate this.

200 BOOK 3 JavaScript

Embedding in the head element
If you place the script element inside the head element of the web page, the
browser will run the JavaScript code before it processes the code to build the web
page. Follow these steps to see how this works:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing JavaScript in the Head Section</title>

<script>

alert("This is the JavaScript program!");

</script>

</head>

<body>

<h1>This is the web page</h1>

</body>

<html>

3. Save the code as scriptheadtest.html in the DocumentRoot folder for
your web server.

That’s c:\xampp\htdocs for XAMPP on Windows or /Applications/XAMPP/
htdocs for XAMPP on macOS.

4. Start the XAMPP Control Panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/scriptheadtest.html

You may have to alter the TCP port to match your web server setup.

6. Stop the Apache web server and exit from the XAMPP Control Panel.

The scriptheadtest.html code embeds a script element inside the head element
of the web page. Because this appears before the body section of the web page
code, the browser processes the JavaScript code before the body element section.
The script element contains a single line of JavaScript code:

alert("This is the JavaScript program!");

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 201

The alert() function displays text in a pop-up dialog box, separate from the
main web page window of the browser.

When you run the program, you should see the alert dialog box pop-up, but no
text appears on the web page, as shown in Figure 1-1. That’s because the alert()
function stops the browser from processing any more code until the site visitor
clicks the OK button in the dialog box. The code is frozen in time, waiting for the
browser to continue processing the rest of the code.

When you run the test, your browser may not run the JavaScript code or it may
prompt you to allow the code to run. Some browsers have built-in security fea-
tures to block running JavaScript code embedded in a web page. You’ll need to
consult your browser documentation on how to enable JavaScript code, at least
from the localhost address, so your test programs can run.

Embedding in the body element
Alternatively, you can place the script element inside the body element section of
the web page. When you do this, the browser runs the JavaScript code when it gets
to the script element as it parses the HTML5 code to build the web page.

FIGURE 1-1:
Testing the

script
headtest.html

program file.

202 BOOK 3 JavaScript

Follow these steps to test this out:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing JavaScript in the Body Section</title>

</head>

<body>

<h1>This is the web page</h1>

<script>

alert("This is the JavaScript program!");

</script>

<h1>This is the end of the web page</h1>

</body>

<html>

3. Save the code as scriptbodytest.html in the DocumentRoot folder for
your web server.

That’s c:\xampp\htdocs for XAMPP on Windows or /Applications/XAMPP/
htdocs for XAMPP on macOS.

4. Start the XAMPP Control Panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/scriptbodytest.html

You may have to alter the TCP port to match your web server setup.

6. Stop the Apache web server and exit from the XAMPP Control Panel.

When you run the test, you should see the content from the first h1 element appear
on the web page, and the alert() function dialog box, but not the content from
the second h1 element. Figure 1-2 shows that result.

The browser processes the first h1 element in the body section and then stops to
run the JavaScript alert() function. After you click the OK button in the alert dia-
log box, the browser displays the section h1 element content.

Embedding JavaScript code inside the body element of a web page can slow down
how the web page loads. If the code location is not crucial, it’s best to place the
script element at the end of the body element, after the normal HTML5 code.

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 203

Using external JavaScript files
If you have JavaScript code that you need to embed in all of your web pages, hav-
ing to retype the same code in each web page file can become tedious. And on top
of that, if you need to change anything in the code, you have to revisit every single
web page file that uses the code!

To solve that problem, you can use an external JavaScript file. The <script> open-
ing tag supports the src attribute, which allows you to define an external location
for the JavaScript code:

<script src="myjavascript.js"></script>

The src attribute can point to an absolute or relative file path on the local server,
or you can use a full URL to point to a JavaScript file stored on a remote server.
Note that although it’s not mandatory, it’s very common to use the .js file exten-
sion to identify JavaScript files.

You place the JavaScript code inside the external file just as it would appear
within the script element. Be careful though — don’t include the <script> and
</script> tags in the external JavaScript file.

The Basics of JavaScript
Now that you’ve seen where to put your JavaScript code in your web pages, you
can dive into coding using JavaScript. This section goes through the basics for get-
ting started with JavaScript coding.

FIGURE 1-2:
Running

JavaScript code in
the body section.

204 BOOK 3 JavaScript

Working with data
Data is the key to any program, and JavaScript programs are no exception. You’ll
need to work with different types of data in your dynamic web applications, every-
thing from bowling scores to employee records. Being able to manipulate that data
is an important function.

To manipulate data, the JavaScript program needs a way to temporarily store it
somewhere so that it can retrieve the data later on, manipulate it, and then display
it to the site visitor running the program. JavaScript does that using variables.
Variables are names that represent storage locations in the computer memory
where your JavaScript program can temporarily store data values. When your
JavaScript code places a value into a variable, the JavaScript interpreter converts
that action into the physical action of storing the data into the computer memory
for future use.

The downside to using variables to store data is that they only retain their values
for the duration of the program. You can’t save a data value to a variable in one
web page and then retrieve it in another web page. After your site visitor leaves
the web page, those values (and their data values) are gone forever. That’s why
we need some help from our MySQL database server — to have a place for storing
data long term!

For all the JavaScript variables that you use in your programs, you must assign
each one a unique name to represent the different memory locations. There are a
few rules you’ll need to remember when creating JavaScript variable names:

 » Variable names can contain letters, numbers, underscores, and dollar signs.

 » Variable names must begin with a letter, an underscore, or a dollar sign.

 » Variable names are case sensitive.

 » You can’t use JavaScript keywords as variable names.

Before you can use a variable in your JavaScript code, you must first declare it as a
variable using the var statement:

var test;

This format tells the JavaScript interpreter to set aside a place in memory for stor-
ing data and call that location test. For now, you haven’t assigned a specific value
to the test variable, so it contains what’s called an undefined value.

You can then use the JavaScript assignment operator to assign a value to the variable:

test = 10;

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 205

If you prefer, you can both declare a variable and assign it a value in one statement:

var test = 10;

When you need to reference the value you stored in the variable later on in the
program code, you just refer to it using the variable name:

alert(test);

The JavaScript interpreter retrieves the value stored in the location the variable
represents and uses it just as if you had entered the value in the statement.

Data types
JavaScript variables can hold different types of data. The two basic data types are

 » Numbers: Either integer values (such as 5) or floating point values (such
as 3.1419)

 » Strings: A series of characters, strung together in memory one after the other
(thus the term strings)

Declaring a number value is somewhat straightforward:

var age = 20;

This statement places the numeric value of 20 into the memory location pointed
to by the age variable.

Declaring a string value is a little bit trickier:

var name = "Rich Blum";

You must enclose the string value in quotes. That delineates the start and end of
the string value. If you forget the quotes, you’ll get a JavaScript error message.

One interesting feature of JavaScript is that it uses dynamic data typing. With
dynamic data typing, you don’t need to tell JavaScript what type of data a variable
contains ahead of time, like some other programming languages require. Instead,
JavaScript will automatically try to figure out the type of data from the values
you use.

206 BOOK 3 JavaScript

With dynamic data typing, you can also use the same variable name to hold dif-
ferent data types at different times. For example, after declaring the age variable
with a number, later in the program you could then do the following:

age = "really old";

JavaScript won’t complain that you started out storing a number in the age vari-
able and then shifted to storing a string value, it just happily changes the value
stored in that variable.

Although dynamic data types can come in handy, they can also cause problems if
you’re not careful. If you try to perform a mathematical operation on a variable
that contains a string value, you won’t get what you might have been expect-
ing. Always keep track of what type of data you’re storing in variables in your
programs.

Arrays of data
JavaScript allows you to store multiple values in a single variable. These variables
are called arrays.

If you have an application that contains a list of items, it can often be somewhat
clunky to specify each item as a separate variable:

var score1 = 100;

var score2 = 110;

var score3 = 105;

If you need to perform any type of operation on the variables, you need to know
exactly how many variables are used to contain the list of items.

Arrays allow us to store an entire list of items into a single variable:

var scores = [100, 110, 105];

The scores array variable contains three items (called elements). You reference
an individual element value by using an index value. You specify the index using
brackets with the array variable:

scores[0]

This array variable contains the first element of the array (the value 100 in this
example). Note that the first element of the array is at index 0, a very unfortunate
fact that’s important to remember when working with arrays in JavaScript!

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 207

You can change an individual array element value using the index in a standard
assign statement:

scores[1] = 120;

This replaces the 110 value in the array with a value of 120.

JavaScript treats arrays as objects. An object has properties, as well as methods
that you can run against the object. Properties return features for the array, such
as the length property:

var games = scores.length

Methods are used to manipulate the values within the object:

scores.sort();

You can add new values to an existing array by using the push() method:

scores.push(115);

This allows you to dynamically store and retrieve data values from a single vari-
able location in your program, without having to know exactly how many data
values it will need to retain.

Operators
JavaScript provides different operators for working with data. An operator per-
forms some type of manipulation of the data provided. Table 1-1 shows the basic
math operators that JavaScript uses.

TABLE 1-1	 JavaScript Math Operators
Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (the remainder of a division operation)

++ Increment (increases the value by 1)

-- Decrement (decreases the value by 1)

208 BOOK 3 JavaScript

You use the math operators as part of an assignment statement:

result = 10 + 5;

The JavaScript interpreter performs the operation on the right side of the equal
sign and then assigns the result to the variable declared on the left side. You can
use variables with the operators as well:

var side1 = 10;

var side2 = 5;

var area = side1 * side2;

Again, JavaScript performs the operation on the right side of the assignment
operator first and then assigns the result to the variable declared on the left side.
In this example, JavaScript retrieves the value stored in both the side1 and side2
variables, performs the multiplication, and then stores the result in the area
variable.

Don’t think of the assignment as a mathematical equation. You can have an
assignment statement that looks like this:

counter = counter + 1;

As a mathematical equation, this is impossible — you can’t have a value equal
to itself plus 1. What’s happening here is that the interpreter adds 1 to the value
stored in the counter variable and then stores the result back into the counter
variable memory location.

JavaScript also provides the incrementor operator, ++. This adds 1 to the variable
without all the extra text: counter++;.

Besides the math operators, JavaScript also supports logical Boolean operators, as
shown in Table 1-2.

TABLE 1-2	 JavaScript Boolean Operators
Operator Description

&& logical AND

|| logical OR

! logical NOT

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 209

Boolean operators are most commonly used in condition tests in control state-
ments, as described a little later in the “Controlling Program Flow” section of this
chapter.

There is also a string operator that you can use in JavaScript. Although it may
seem odd, JavaScript supports the plus sign when working with string values:

var value1 = "test";

var value2 = "ing";

var value3 = value1 + value2;

The resulting value3 variable will contain the string value testing. The plus sign
concatenates the two separate string values into a single string value. This comes
in handy when you want to display a string value stored in a variable along with
some text, like this:

var display = "Welcome, " + name + " to the game!";

Notice the spaces at the end of the first string value, and at the beginning of the
second string value. These are necessary because the concatenation doesn’t add
any spaces itself when it joins the variable value to the other strings.

Controlling Program Flow
By default, JavaScript processes statements in a linear fashion, operating on one
statement, and then moving on to the next statement in the program code. You
may want to alter the behavior of the code based on some type of conditions,
events, or variable values.

You can do that using flow control statements. Flow control statements alter the
flow of the program to make the JavaScript interpreter jump over code to another
statement, based on some type of condition. The following sections discuss two
popular methods of flow control in JavaScript programming.

Conditional statements
Life is full of conditions. How often do you get up in the morning and say “If it’s
raining today, I’d better bring my umbrella”? Your actions for the day depend on
a specific condition (the weather). JavaScript programs provide the same type of
condition checks for your code. These are called conditional statements. They pro-
cess blocks of code depending on a condition that the program can test for.

210 BOOK 3 JavaScript

There are a few different types of conditional statements:

 » if statements

 » else statements

 » switch statements

Each has its own set of nuances and formats that you’ll need to become familiar
with. This section walks through each type of conditional statement.

if statements
The if...else statement checks a condition that you specify and runs specific
code if that condition occurs or skips the code if the condition doesn’t occur.
Here’s the basic format for an if statement:

if (condition) {

 code to process

}

The JavaScript interpreter evaluates the condition between the parentheses. If
the condition evaluates to a true value, the interpreter runs the code inside the
braces. If the condition evaluates to a false value, the interpreter skips all the
code between the braces. Let’s take a look at an example of this:

if (age > 17) {

 alert("You are allowed to play the game");

}

The condition in this if statement evaluates the value currently stored in the age
variable. If the value is greater than 17, the interpreter runs the alert() function.
If the value is not greater than 17, the interpreter skips the alert() function.

The greater-than symbol used in the condition is another type of JavaScript oper-
ator, called a comparison operator. Comparison operators compare two values to
test their equality. Table 1-3 shows the JavaScript comparison operators to use in
conditions.

The equal-to operator (==) is possibly the most forgotten operator in JavaScript,
even for pros. If you want to check if a variable is equal to a specific value, you
must use the equal-to operator:

if (counter == 20) {

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 211

The equal-to operator compares the two values, and the interpreter processes the
code in the code block only if they’re equal. In coding, programmers often get in
a hurry and write the following:

if (counter = 20) {

This uses the assignment operator (=) instead of the comparison operator (==).
The assignment operator assigns the value of 20 to the counter variable and then
returns a true value if the assignment was successful (which it usually is). This is
not the same thing as the comparison operator, and it’ll produce faulty results in
your programs!

Most of the comparison operators are fairly self-explanatory. The ternary opera-
tor is somewhat different. It provides a shortcut way of combining an if...else
statement and an assignment statement:

var display = (age > 21) ? "Too old":"Young enough";

The ternary operator performs the condition on the left side of the question mark.
If the condition evaluates to a true value, it assigns the first value to the vari-
able. If the condition evaluates to a false value, it assigns the second value to the
variable.

TABLE 1-3	 The JavaScript Comparison Operators
Operator Description

== Equal to

=== Equal to and the same data type

!= Not equal to

!== Not equal to the value or the type

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

? Ternary operator

212 BOOK 3 JavaScript

else statements
With the if statement, if the condition is not met, the interpreter just skips the
code you specify in the code block. The else statement allows you to specify code
to run if the condition evaluates to a false value. That looks like this:

if (age < 18) {

 display = "Sorry, you are not old enough to play";";

 status = "failed";

} else {

 display = "You may begin the game";

 status = "ok";

}

Now there are two separate code blocks — one associated with the if statement
and another associated with the else statement. The two are linked. If the condi-
tion evaluates to a true value, the JavaScript interpreter runs the code in the if
statement code block. If the condition evaluates to a false value, the JavaScript
interpreter runs the code contained in the else statement code block. The inter-
preter runs the code in one block or the other. At no time will the interpreter run
the code in both code blocks.

More often than not, you’ll find yourself needing to test a variable for a range
of values. Instead of having to write multiple if...else statements, JavaScript
allows you to string them together into one long statement by using the else if
statement. The else if statement strings together multiple if and else state-
ments so that they become one long chain of condition tests:

if (age < 10) {

 display = "You are very young";

} else if (age < 20) {

 display = "You are between 10 and 19";

} else if (age < 30) {

 display = "You are between 20 and 29";

} else {

 display = "You are 30 or older";

}

When stringing together multiple if and else statements, the interpreter goes
through the list in order from the first condition test to the last condition test.
When the first condition evaluates to a true value, the interpreter runs the code in
the code block and exits the statements.

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 213

switch statements
Using the else if statement provides an easy way to check for a value within a
range, but it’s still somewhat clunky to code. JavaScript makes that test easier for
us by providing the switch statement.

The switch statement performs a similar function to the else if statement, but
using a cleaner format:

switch (expression) {

 case match1:

 statements

 break;

 case match2:

 statements

 break;

 default:

 statements

}

With the switch statement, the JavaScript interpreter evaluates the expression
specified and then compares the result with one or more case statements. Each
case statement specifies a different possible result of the expression. If the result
matches, the interpreter runs the statements contained in that section. The break
statement is used to force the interpreter to then skip over the remaining case
statement sections to the end of the switch code block. If none of the case results
matches, the interpreter runs the statements under the default statement.

This sounds complicated, but it actually makes your life much easier when coding
to check for variable values. Here’s an example of using a switch statement:

switch (counter) {

 case 0:

 alert("You have four lives left");

 break;

 case 1:

 alert("You have three lives left");

 break;

 case 2:

 alert("You have two lives left");

 break;

 case 3:

 alert("Careful, you only have one life left");

 break;

 case 4:

 alert("Sorry, you are out of lives");

}

214 BOOK 3 JavaScript

The expression to evaluate is the value stored in the counter variable. Depending
on the value, the program displays a different alert message and then breaks out
of the switch statement code block.

Checking for a range of values is a little tricky, but doable with the switch state-
ment. Follow these steps to experiment with using the switch statement in a
JavaScript program:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing the switch statement</title>

<script>

var age = prompt("How old are you?");

</script>

</head>

<body>

<script>

switch (true) {

 case (age < 18):

 alert("Sorry, you are too young to play");

 break;

 case (age < 50):

 alert("Welcome to the game!");

 break;

 case (age >= 50):

 alert("Sorry, you are too old to play");

}

</script>

</body>

</html>

3. Save the code as switchtest.html in the DocumentRoot folder of your
web server.

That’s c:\xampp\htdocs for XAMPP on Windows or /Applications/XAMPP/
htdocs for XAMPP on Mac macOS.

4. Open the XAMPP Control Panel and start the Apache web server.

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 215

5. Open your browser, and enter the following URL:

http://localhost:8080/switchtest.html

You may need to change the TCP port based on your web server.

6. Stop the Apache web server and close the XAMPP Control Panel.

The switchtest.html code has two separate switch elements. The first one is
in the head element of the web page. It uses the JavaScript prompt() function to
prompt the site visitor for an age:

var age = prompt("How old are you?");

It stores the value in the age variable. Figure 1-3 shows what the prompt looks like
using the Microsoft Edge browser.

Notice that the Edge browser provides some additional information in the prompt
dialog box, such as the host that has produced the prompt. This can be helpful to
prevent security issues with unwanted pop-up prompts from dangerous websites.

The second script element retrieves the age variable and uses it in a switch
statement. The odd thing is that the switch statement just has a true value for the
expression. This means the expression will always evaluate to a true condition, so
the individual case statements test the condition.

FIGURE 1-3:
The JavaScript

prompt()
 function as

displayed by the
Microsoft Edge

browser.

216 BOOK 3 JavaScript

The interpreter will run the first case statement that matches the age range.
Figure 1-4 shows the alert() message that displays for entering an age of 15.

Notice, in this example, that the code sets the age variable in one script element
and uses that value in another script element. JavaScript maintains variables and
their values between multiple script elements contained in the same web page.

Loops
Often, when you’re writing programs, you’ll run into situations where you need to
run the same block of code multiple times, called a loop. Usually, in a loop, one or
more variables changes values in each iteration of the loop. The loop exits when
the variable reaches a specific value.

Loops that contain variables that never change values are called endless loops. If
your program gets stuck in an endless loop, the browser will never show the web
page as loading completely.

JavaScript supports a few different types of loop statements, as shown in Table 1-4.

Each of these loop types is useful and comes in handy in different environments.
The following sections walk through how to use each type of JavaScript loop
statement.

FIGURE 1-4:
The JavaScript

alert() function
response as

displayed by the
Microsoft Edge

browser.

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 217

The do...while loop
The do...while loop executes a block of statements and then at the end of the
block tests a condition to determine if the block should be repeated:

var side1 = 1;

var side2 = 5;

do {

 area = side1 * side2;

 alert(side1 + "x" + side2 + " = " + area);
side1 = side1 + 1;
} while (side1 <= 10)

The do...while loop ensures that the code in the loop executes at least once
before the condition is evaluated.

The while loop
The while loop is the opposite of the do...while loop:

var side1 = 1;

var side2 = 5;

while (side1 <= 10) {

area = side1 * side2;

 alert(side1 + "x" + side2 + " = " + area);
side1 = side1 + 1;
}

Because the condition is checked before the interpreter executes the code in the
code block, it’s possible that the condition will fail before the first loop and none
of the code will be executed.

TABLE 1-4	 JavaScript Looping Statements
Statement Description

do..,while Executes a block of statements and checks a condition at the end

for Checks a condition, executes a block of statements, and then alters a specified variable

for...in Executes a block of statements for each element contained in an array

while Checks a condition and then executes a block of statements

218 BOOK 3 JavaScript

The for statement
The for statement is similar to the while loop, but it provides three features in
one statement:

 » It sets the initial values of one or more variables going into the loop.

 » It defines the condition to evaluate before each iteration.

 » It defines how a variable should be changed at the end of each iteration.

The basic format of the for statement is:

for(statement1; condition; statement2) {

 statements

}

The statement1 statement is executed before the loop starts. The interpreter then
evaluates the condition to determine whether to execute the statements in the
code block. At the end of executing the statements in the code block, the inter-
preter executes the statement2 statement.

This provides a compact way of creating loops for your programs. Try the follow-
ing steps to test using the for statement to calculate the factorial of a value:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Calculating the Factorial</title>

<script>

var number = prompt("Please enter a number:");

</script>

</head>

<body>

<script>

var factorial = 1;

for (counter = 1; counter <= number; counter++) {
 factorial = factorial * counter;

}

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 219

var output = "The factorial of " + number + " is " + factorial;
alert(output);

</script>

</body>

</html>

3. Save the file as factorial.html in the DocumentRoot folder for your web
server.

4. Start the XAMPP Control panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/factorial.html

You may need to change the TCP port to match your web server setup.

6. Stop the Apache web server and close the XAMPP Control Panel.

The factorial.html code uses the prompt() function to prompt for a value at the
start of the program. This is shown in Figure 1-5.

You find the factorial of a number by multiplying the series of numbers up to and
including the number you want. So the factorial of 5 is 1 × 2 × 3 × 4 × 5, which is
120. To calculate the factorial, you set up a for statement to iterate through the
numbers starting at 1, up to the number entered into the prompt dialog box:

for(counter = 1; counter <= number, counter++)

FIGURE 1-5:
Prompting for the
factorial number.

220 BOOK 3 JavaScript

The counter variable keeps track of how many iterations of the for loop have
taken place. After each iteration, you add 1 to the counter variable by using the
incrementor operator (++). At the start of each new iteration, the interpreter
checks the condition statement, which evaluates whether the counter variable
value is less than or equal to the number value. If this is true, the interpreter con-
tinues with the next loop iteration.

The for...in statement
The for...in statement comes in handy when you need to iterate through the
data elements stored in an array variable. Often, you don’t know how many values
are stored in the array, so you can’t just use a for loop to loop a specific number
of times.

The for...in statement allows you to extract individual data values from the
array and then stop when the array runs out of data elements. That code looks
like this:

var scores = [100, 110, 105];

for (index in scores) {

 output = "One bowling score was " + scores[index];
 alert(output);

}

The first time the for...in statement runs, the index variable contains the value
of 0, or the first index number from the array. For the next iteration, the index
variable contains the value of 1, and for the final iteration, it contains the value 2.
You can then use that index value to reference the individual data values stored
in the array.

Working with Functions
As you write more complex JavaScript code, you’ll find yourself reusing parts of
code that perform specific tasks. Sometimes it’s something simple, such as dis-
playing a prompt and retrieving a response from the site visitor. Other times it’s a
complicated calculation that’s used multiple times in your program.

In each of these situations, writing the same blocks of code over and over again
can get tiresome. It would be nice to just write the block of code once, and then be
able to refer to that block of code in the other places it’s needed.

JavaScript provides a feature that lets you do just that. Functions are blocks of code
to which you assign names; then you can reuse them anywhere in your code. Any

In
tr

od
uc

in
g

Ja
va

Sc
ri

pt

CHAPTER 1 Introducing JavaScript 221

time you need to use the block of code in your program, you simply use the name
you assigned to the function. This is referred to as calling the function. The follow-
ing sections describe how to create and use functions in your JavaScript code.

Creating a function
To create a function in JavaScript you use the function statement:

function name(parameter1, parameter2, ...) {

 function code

 return value;

}

The name that you assign to the function must be unique within your program
code. The function can take parameters that the calling program passes to it. You
can use the parameter variables within the function code.

Functions are intended to be self-contained. The only data they work with are the
values passed as the function parameters. This allows you to use the function in
any program that requires that function task. Because of that, you can’t directly
access variables defined in the main program from inside the function code.

At the end of the function, you can opt to have it return a single value back to
the calling program by including the return statement. If no data needs to be
returned back to the calling program, you can leave out the return statement.

Here’s an example of writing a function to calculate the factorial value of a num-
ber passed to the function:

function factorial(number) {

 var factorial = 1;

 for(counter = 1; counter <= number; counter++) {
 fact = fact * counter;

 }

 return fact;

}

The factorial() function requires a single parameter, assigned to the number
variable. Inside the factorial() function the code uses the number variable to
calculate the factorial. When the for loop completes, the answer is stored in the
fact variable. The return statement returns the value of the fact variable back
to the calling program.

222 BOOK 3 JavaScript

Using a function
To call a function from inside the JavaScript program, you just reference it by
name, and include any parameters you need to pass. If the function returns a
value, you can assign the output of the function to a variable:

var result = factorial(5);

The return value from the factorial() function is assigned to the result vari-
able. You can use the factorial() function as many times as necessary in your
program code.

Before you can use the function though, you must ensure that it gets defined.
Because of this, it’s common to define JavaScript functions at the start of the head
element section of the web page.

CHAPTER 2 Advanced JavaScript Coding 223

Advanced JavaScript
Coding

In the previous chapter, I explain the basics of how to incorporate JavaScript code
into a web page. If you read that chapter, you ran a couple of simple JavaScript
programs, using the prompt() function for input and the alert() function for

output. That was a great start, but the whole point of using JavaScript is to dynam-
ically alter the data and/or appearance of web pages. This chapter explains how
JavaScript interfaces with your web pages and shows you how to write JavaScript
code to dynamically add, delete, or change content in your website.

Understanding the Document
Object Model

In order for JavaScript to have access to the elements in your web page, it needs to
know how to find them. The Document Object Model (DOM) provides a standard
way of accessing objects placed within a web page. It creates a tree structure that
contains every element, attribute, content text, and even CSS3 style contained
within the web page. It treats each of these items as objects that the browser (or
your program code) can manipulate. Finding any of these items is just a matter of
walking through the tree with your JavaScript code.

Chapter 2

IN THIS CHAPTER

 » Getting acquainted with the
Document Object Model

 » Working with the Document Object
Model

 » Reading data from your web page

 » Writing to your web page

224 BOOK 3 JavaScript

The browser defines every web page as a set of DOM objects that the web page
contains. Just as your family has a family tree that you can trace back to find
relatives, every web page has its own DOM tree of the objects contained within
the web page. With JavaScript, you can peruse through the DOM tree and make
modifications along the way.

The Document Object Model tree
Every family tree has a head, and for the DOM tree, the head is the html element
that starts out the web page. Just as parents have children, the html object in the
DOM tree has two child objects: the head object and the body object, shown in
Figure 2-1.

The head and body elements in the HTML code are called child objects of the html
object in the DOM tree. Because it comes first in the code, the head object is called
the “first child object,” while the body object is the “last child object.” This ter-
minology is important when working with DOM objects.

As you continue down the DOM tree, the browser places each object in the web
page under its parent object. Let’s take a look at a simple example of this prin-
ciple. I’ll use this sample web page for the demo:

<!DOCTYPE html>

<html>

<head>

<title>Sample DOM web page</title>

</head>

<body>

<h1>This is the heading of the web page</h1>

<p>This is sample text</p>

</body>

</html>

FIGURE 2-1:
The html object
and its two child

objects.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 225

From this sample HTML5 code, the browser creates DOM objects from each ele-
ment, and places them in a DOM tree layout it keeps in memory, as shown in
Figure 2-2.

In the example shown in Figure 2-2, the html object contains the two child
objects — head and body — but now each of those objects has child objects as
well. The head object contains just one child object, the title object. The title
object also has one child object, which may seem odd at first glance, because the
title object doesn’t contain any additional objects.

One of the more confusing features of the DOM tree is how it handles text inside
elements. It treats the text inside an element as a separate DOM object that has its
own features. So, in this example, the title object contains a single child object,
which is the text object for the title text.

The body object has two child objects. The h1 object is the first child of the body
object, and it, too, contains a text child object. The p object is the last child of the
body object, and it has a text object in it as well.

FIGURE 2-2:
The simple
DOM tree.

226 BOOK 3 JavaScript

This simple example shows the basics of DOM. Working out the DOM tree for a
large web page with lots of different types of elements can be complicated, but it
uses the same principle. Fortunately, JavaScript has some features that help make
things a little easier for you.

JavaScript and the Document
Object Model
So far, you’ve seen that the browser breaks every web page down into a DOM
tree of objects. The browser uses the DOM tree to keep track of all the HTML5
elements, their content, and the styles that appear on the web page. However,
because JavaScript programs run in the browser (remember the whole client-
side programming thing?), they have full access to the DOM tree created by the
browser.

That means your JavaScript programs can interact directly with the DOM tree that
the browser follows to create the web page. And not only that, but your JavaScript
programs can add, change, and even remove objects in the DOM tree. As your
JavaScript program modifies the DOM tree, the browser automatically updates the
web page window with the new information. How cool is that? This is the key to
client-side dynamic web programming.

Just like the DOM tree, JavaScript treats each element contained in a web page as
an object. In JavaScript, objects have two features:

 » Properties: Properties define information about the object.

 » Methods: Methods are actions to take with the objects.

JavaScript assigns a special object named document to represent the entire web
page DOM tree. You can reference many of the DOM objects directly from the doc-
ument object, as well as add or remove objects. Table 2-1 lists some of the docu-
ment properties available in JavaScript.

To reference a document property, you use the format document.property, like
this:

var myurl = document.URL;

The same applies to using the document methods. Table 2-2 shows a list of the
more popular document methods used in JavaScript.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 227

TABLE 2-1	 JavaScript Document Properties
Property Description

activeElement Returns the element that currently has the focus of the web page window

anchors Returns a list of all the anchor elements on the web page

body Sets or retrieves the body element of the web page

cookie Returns all cookie names and values set in the web page

characterSet Returns the character set defined for the web page

documentElement Returns the DOM object for the html element of the web page

documentMode Returns the mode used by the browser to display the web page

domain Returns the domain name of the server used to send the document

embeds Returns a list of all the embed elements in the web page

forms Returns a list of all the form elements in the web page

head Returns the head element for the web page

images Returns a list of all the img elements in the web page

lastModified Returns the time and date the web page was last modified

links Returns a list of all the anchor and area elements in the web page

title Sets or retrieves the title of the web page

URL Returns the full URL for the web page

TABLE 2-2	 JavaScript Document Methods
Method Description

createElement() Adds a new element object

createTextNode() Adds a new text object

getElementbyId(id) Returns an element object with the specified id value

getElementsByClass
Name(class)

Returns a list of elements with the specified class name

getElementsByTagname(tag) Returns a list of elements of the specified element type

hasFocus() Returns a true value if the web page has the window focus

write(text) Sends the specified text to the web page

writeln(text) Sends the specified text to the web page, followed by a new
line character

228 BOOK 3 JavaScript

Let’s run a quick test to see how this works. Follow these steps to test using the
write() method for a web page document:

1. Open your favorite text editor, program editor, or integrated
 development environment (IDE) package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>DOM Test</title>

<script>

document.write("<h1>This is a test of the DOM</h1>");

</script>

</head>

<body>

</body>

</html>

3. Save the file as domtest.html in the DocumentRoot folder for your web
server.

If you’re using XAMPP in Windows, that’s the c:\xampp\htdocs folder; for
XAMPP in macOS, it’s /Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel and then start the Apache Web server.

5. Open your browser and enter the following URL:

http://localhost:8080/domtest.html

You may need to change the TCP port in the URL to match your Apache web
server.

6. Close the browser.

When you examine the code in the domtest.html file, you’ll notice that there’s
nothing in the body element, so you may not expect to see anything on the result-
ing web page. However, when you run the program, you should see the output
shown in Figure 2-3.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 229

The document.write() function runs the write() method from the document
object to dynamically place the h1 element in the web page for us!

The write() method is an easy way to dynamically place text in the web page, but
it can be somewhat dangerous to use. The write() method overwrites everything
that was originally in the web page. In this example, I ran it from the head element,
so it placed the output at the top of the web page, before any elements defined in
the body element. However, if you use the write() function from within the body
element, it’ll remove any elements that were previously on the web page. I’ll show
you some better methods for doing this later in this chapter.

Besides the document properties and methods, JavaScript also has properties and
methods that apply to each element object in the document. The following sec-
tions detail how to use those properties and methods.

JavaScript DOM object properties
Now that you have access to the objects contained in the web page, you can use
JavaScript to manipulate them. Each DOM object contains one or more properties
that define the actual object. There are lots of object properties JavaScript uses
with objects. Table 2-3 shows a list of the more popular JavaScript DOM object
properties you’ll use.

FIGURE 2-3:
The output from

the domtest.
html program.

230 BOOK 3 JavaScript

Besides these standard properties, each attribute that you assign to an HTML5
element and each CSS style property that you apply to an element becomes an
object property of the DOM object as well.

Follow these steps to experiment with accessing the DOM object properties for our
sample web page:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

TABLE 2-3	 JavaScript DOM Object Properties
Property Description

attributes Returns a list of the object’s attributes

childElementCount Returns a list of the number of child objects the object has

childNodes Returns a list of the object’s child nodes, including text and comments

children Returns a list of only the object’s child element object nodes

classList Returns a list of the class name attributes of an object

className Sets or returns the value of a class attribute of an object

firstChild Returns the first child object for the object

id Sets or returns the id value of the object

innerHTML Sets or returns the HTML content of the object

lastChild Returns the last child object for the object

nodeName Returns the name of the object

nodeType Returns the element type of the object

nodeValue Sets or returns the value for the object

nextSibling Returns the next object at the same level in the tree as the object

parentNode Returns the parent object for the object

previousSibling Returns the previous object at the same level in the tree as the object

style Sets or returns the value of the style property for the object

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 231

<!DOCTYPE html>

<html>

<head>

<title>Testing DOM properties</title>

</head>

<body>

<body>

<h1>This is the heading of the web page</h1>

<p>This is sample text</p>

<button type="button" onclick="changeme('red')">Change background to

red</button>

<button type="button" onclick="changeme('white')">Change background to

white</button>

<script>

function changeme(color) {

 document.body.style.backgroundColor = color;

}

</script>

</body>

</html>

3. Save the file as domproperties.html in the DocumentRoot folder for your
web server.

4. Open the XAMPP Control Panel and start the Apache web server if it’s not
already running.

5. Open your browser and enter the following URL:

http://localhost:8080/domproperties.html

You may need to change the TCP port to match your Apache web server.

6. Click the buttons to change the background color of the web page.

7. Close the browser window.

The domproperties.html code uses two buttons to trigger the changeme() func-
tion. (I talk more about how to do that in Book 3, Chapter 4.) The changeme()
function uses the document.body object to reference the body element in the web
page. It then uses the style object property to reference the CSS3 styles applied
to the body element.

You may be wondering why the backgroundColor style property isn’t
background-color, because that’s how CSS3 defines that property. Unfortunately,
the DOM standard doesn’t like using dashes in property names. So, instead, wher-
ever there’s a dash in a CSS3 property name (such as in background-color), it
removes the dash and capitalizes the first letter of the next word. That’s how we

232 BOOK 3 JavaScript

get backgroundColor as the DOM property to change the background-color CSS3
property on the web page.

JavaScript DOM object methods
Besides properties, JavaScript objects also contain methods. The methods provide
actions to interact with the object. You’ve already seen a demonstration of using
the write() method of a DOM object in JavaScript. There are plenty more object
methods for you to use in your JavaScript programs to help you retrieve informa-
tion about the DOM objects, modify existing DOM objects, or even add new DOM
objects to your web page. Table 2-4 shows some of the more popular DOM object
methods that you’ll use.

TABLE 2-4	 JavaScript DOM Object Methods
Method Description

appendChild(object) Adds a new child object to an existing object

blur() Removes the page focus from an object

click() Simulates a mouse click on the object

cloneNode Duplicates an object in the DOM

contains(object) Returns a true value if the object contains the specified object

focus() Places the window focus on the object

getAttribute(attr) Returns the value for the specified object attribute

getElementsByClassName(class) Returns a list of objects with the specified class name

getElementsByTagName(tag) Returns a list of objects with the specified tag name

hasAttribute(attr) Returns true if the object contains the specified attribute

hasAttributes() Returns true if the object contains any attributes

hasChildNodes() Returns true of the object contains any child objects

insertBefore(object) Inserts the specified object before the object

removeAttribute(attr) Removes the specified attribute from the object

removeChild(object) Removes the specified child object from the parent object

replaceChild(object) Replaces the child object with the specified object

setAttribute(attr) Sets the specified attribute of the object to the specified value

toString() Converts the object to a string value

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 233

As you can see, there are quite a few different methods available for you to use
when you reference a specific element in the web page. However, part of the prob-
lem with using JavaScript to dynamically change elements is finding them in the
first place. The next section covers how to do that.

Finding Your Elements
As your web pages become more complicated, they’ll contain dozens, hun-
dreds, and possibly even thousands of different elements. Trying to find a
specific element within that mess so you can dynamically change it can be a
challenge.

There are basically two different ways to find a specific element buried within the
HTML5 code in your web page:

 » Using a unique feature assigned to the element to jump directly to it

 » Walking the DOM tree to navigate your way down to the element's object
from a specific point in the DOM tree

Both methods have their own pros and cons for using them. Obviously, if you
can use a unique feature of an element (such as an id attribute) to reference a
specific element that’s the easiest way to go. However, that’s not always pos-
sible, so it helps to know how to get there the hard way. The following sections
describe how to use both methods for referencing element objects within the
DOM tree.

Getting to the point
The easiest way to uniquely identify an element in your web page is to assign it
a unique id attribute value. When you assign the id attribute to elements, you
can then reference them in your JavaScript code by using the getElementById()
method.

The getElementById() method returns a pointer to the DOM object with the
specified id value. When you have the pointer to the element object, you can use
any of the DOM object properties or methods to work with the element.

234 BOOK 3 JavaScript

Follow these steps to test this out:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Finding an Element</title>

<script>

function changeit() {

 var answer = prompt("Enter some new text");

 var spot = document.getElementById("here");

 spot.innerHTML = answer;

}

</script>

</head>

<body>

<h1>Trying to find an element</h1>

<button type="button" onclick="changeit()">

Click to change

</button>

<p id="here">This is the original text</p>

</body>

</html>

3. Save the file as findtest.html in the DocumentRoot folder for your web
server.

4. Start the Apache web server if it’s not currently running.

5. Open your browser and enter the following URL:

http://localhost:8080/findtest.html

6. Note the text that appears in the web page below the button.

7. Click the button and then enter some new text at the prompt dialog box.

8. Click OK in the dialog box.

9. Note the text that now appears on the web page.

10. Close the browser window when you’re done playing.

The findtest.html code defines the changeit() JavaScript function in the head
section. The changeit() function uses a prompt() function to retrieve some text
from the site visitor and then attempts to replace the text in the p DOM object with
the new text.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 235

To do that, it uses the getElementById() document method to create a pointer
to the p object in the web page, identified by the id attribute value of here. After
it retrieves the pointer to the p object, it uses the innerHTML object property to
change the text that appears inside the p object.

When you run the program, you should see the heading, the same text, and a but-
ton. When you click the button, a prompt dialog box should appear, prompting
you to enter some text (see Figure 2-4).

Type some text and then click OK. The browser will automatically change the con-
tent of the p element to show the text you entered into the dialog box!

You can continue doing that for as long as you like. Each time you enter new text,
it’ll appear in the web page automatically!

Walking the tree
Finding the DOM object for a specific HTML5 element in the DOM tree by using its
id attribute is the preferred method, but that’s not always available. Sometimes
you need to find an element within the document to use as a base, and then use
the element properties to find child and sibling objects:

 » Use the firstChild property to find the first element in a group.

 » Use the nextSibling property to find the related elements within the group.

FIGURE 2-4:
The initial page

and dialog
box for the

findtest.html
web page.

236 BOOK 3 JavaScript

You can then alternate between firstChild, lastChild, nextSibling, or
previousSibling properties to work your way down to where you want to be in
the DOM tree.

That can be tedious work, especially for large web pages. You need to be aware of
exactly how all the elements appear and fit together in the web page.

Follow these steps to try this method out:

1. Open your favorite text editor, program editor, or IDE package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Walking Test</title>

<script>

function changeit() {

 var spot = document.getElementById("mylist");

 var item1 = spot.firstChild;

 var item2 = item1.nextSibling;

 var item3 = item2.nextSibling;

 var item4 = item3.nextSibling;

 item1.innerHTML = "Cake";

 item2.innerHTML = "Ice Cream";

 item3.innerHTML = "Cookies";

 item4.innerHTML = "Fudge";

}

</script>

</head>

<body>

<h1>Changing elements by walking</h1>

<h2>Here's a list of food to buy</h2>

<ul id="mylist">CarrotsBrussel SproutsEggplant

Tofu

<button type="button" onclick="changeit()">

Change the list

</button>

</body>

</html>

3. Save the file as walkingtest.html in the DocumentRoot folder for your
Apache web server.

4. Start the Apache web server if it’s not already running.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 237

5. Open your browser and enter the following URL:

http://localhost:8080/walkingtest.html

6. Examine the items in the list.

7. Click the button.

8. Note the new items in the list.

9. Close the browser window when you’re done.

The walkingtest.html code defines an id attribute for the unordered list ele-
ment, but each of the items within the list isn’t uniquely identified. In order to
reference them, the code uses the firstChild and nextSibling object property
values to walk its way through the list of items. When you click the button, all the
items in the list are replaced, as shown in Figure 2-5.

The code finds the ul object by using the id attribute value of the ul element. It
assigns that object to the variable spot. Then the code can reference the individual
list items based on that location in the DOM tree. The first child of the ul object
is the first li object for the list. The firstChild property returns a pointer to
that object, which the code stores in the item1 variable. Next, the code uses the
nextSibling property of the item1 variable, which returns a pointer to the next
item in the list and is stored in the item2 variable. That continues on, using the
nextSibling property for each item to find the next item in the list. After the code
retrieves pointers to all the list items, it uses the innerHTML property to change
the text for each item.

FIGURE 2-5:
The

walkingtest.
html results.

238 BOOK 3 JavaScript

Be careful how you create the list in the code. If you place each list item on a sep-
arate line, the code won't work! That’s because the browser assigns any white
space between elements as a text object in the DOM. So the nextSibling property
will point to the new line character text object and not the next li object in the list!
It’s important to remember that when working with the positional properties of
objects.

Working with Document Object
Model Form Data

When you use HTML5 forms in your web pages, you usually incorporate quite a
few different elements — text boxes, text areas, check boxes, and radio buttons.
Your JavaScript code can use the DOM tree objects to manipulate all these ele-
ments. The following sections show you how to use the DOM tree to work with
different types of form elements.

Text boxes
Handling data in a text input element is a little different from what I did with the
p element. Because the input element is a one-sided tag, there’s no innerHTML
property to store the text that’s inside the text box.

Instead, you need to use the value attribute of the object to read any text that may
already be in the text box (whether placed there by the value attribute or typed by
the site visitor). To do that, you use the value object property:

var textbox = document.getElementById("test");

var data = textbox.value;

You can also use the value property to write data to the text box. That code looks
like this:

var textbox = document.getElementById("test");

var answer = prompt("Enter text to change");

textbox.value = answer;

This provides for an easy way to create a message area on your web page for dis-
playing short messages, such as status messages. Just place a textbox input ele-
ment near the bottom of the web page, and change the value property of it with
any message you need to display.

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 239

There are also a few other DOM object properties associated with textbox objects
that can come in handy. Table 2-5 shows the DOM textbox properties available.

With these few properties, you have full control to dynamically modify any text
box that appears on the web page.

Text areas
The textarea DOM object works similar to the textbox object. Instead of the
innerHTML property, you use the value attribute to retrieve any text from the text
area or place any new text into the text area.

TABLE 2-5	 The textbox DOM Properties
Property Description

autocomplete Sets or retrieves the value of the autocomplete attribute

autofocus Sets or retrieves whether the text box gets the window focus when the web page loads

defaultValue Sets or retrieves the default value assigned to the text box

disabled Sets or retrieves whether the text box is disabled in the form

form Retrieves the parent form the text box belongs to

list Retrieves the data list associated with the text box

maxLength Sets or retrieves the maximum length of the text box

name Sets or retrieves the name attribute for the text box

pattern Sets or retrieves the pattern attribute for the text box

placeholder Sets or retrieves the placeholder attribute for the text box

readOnly Sets or retrieves whether the text box is read only

required Sets or retrieves whether the text box is a required field in the form

size Sets or retrieves the value of the size attribute for the text box

type Retrieves the type of element the text box is

value Sets or retrieves the value attribute for the text box

240 BOOK 3 JavaScript

There are a few other properties that are unique to the textarea object:

 » cols: Sets or retrieves the number of columns assigned to the text area

 » rows: Sets or retrieves the number of rows assigned to the text area

 » wrap: Sets or retrieves whether text can auto-wrap within the text area

As you can tell, you can dynamically change the size of the text area in a web page
using JavaScript and the DOM object properties. That can create quite an effect as
your site visitor is filling out the form.

Check boxes
The checkbox object is another oddity in the DOM. A check box in a form provides
for a yes/no type of answer — either the visitor checks the check box or the box
is unchecked. You can test for that condition using the DOM checked property:

var pizza = document.getElementById("pizzabox");

if (pizza.checked) {

 alert("your pizza will be delivered shortly");

}

You can also set whether the check box is checked by assigning the property a
true or false value:

pizza.checked = true;

Table 2-6 shows all the DOM object properties that are supported when using
check boxes.

TABLE 2-6	 The checkbox DOM Properties
Property Description

autofocus Sets or retrieves whether the check box gets the focus when the web page loads

checked Sets or retrieves the state of the check box

defaultChecked Retrieves the default state of the check box

defaultValue Retrieves the default value assigned to the check box

disabled Sets or retrieves whether the check box is disabled

A
dv

an
ce

d
Ja

va
Sc

ri
pt

Co

di
ng

CHAPTER 2 Advanced JavaScript Coding 241

That gives you full control over how the check boxes behave in your web page.

Radio buttons
Working with radio buttons is always a complicated matter. All the radio but-
tons in the same group use the same name property, so the browser can handle
them as a group. Remember, only one radio button in the group can be selected at
any time.

Handling data from a radio button requires using the checked and value object
properties, just like the checkbox object. Because all the radio buttons use the
same name, the value attribute is crucial in determining if you’re working with
the correct radio button in the form.

Property Description

form Retrieves the parent form the check box belongs to

intermediate Sets or retrieves the intermediate state of the check box

name Sets or retrieves the name assigned to the check box element

required Sets retrieves whether the check box must be checked before submitting the form

type Retrieves the type of element the check box is

value Sets or retrieves the value associated with the check box

CHAPTER 3 Using jQuery 243

Using jQuery

As you code dynamic web applications using JavaScript, you’ll find your-
self using the same statements and features over and over again to create
dynamic effects on your web pages. As it turns out, JavaScript developers

around the world use the same statements and features to implement the same
effects on their web pages, too!

Because of that, lots of work has been done by developers in trying to create a
standard JavaScript library of useful functions. Instead of having to write the same
JavaScript statements over and over, you just run a simple function from a pre-
built library. That makes life for the JavaScript programmer much easier!

By far the most common JavaScript library used around the world today is the
jQuery library. The jQuery library was written to simplify five main functions that
JavaScript is commonly used for:

 » Finding content in an HTML5 document

 » Changing content in an HTML5 document

 » Creating animations using CSS

 » Listening for web page events (see Book 3, Chapter 4)

 » Communicating with remote servers (see Book 6, Chapter 3)

Chapter 3

IN THIS CHAPTER

 » Loading the jQuery library

 » Using jQuery in your web pages

 » Finding elements

 » Replacing data

 » Changing styles

 » Adding nodes

 » Using animation

244 BOOK 3 JavaScript

I cover how to use the first three features of jQuery in this chapter. In the next
chapter, I show you how to use jQuery to simplify listening to actions your site
visitors take while on your web pages. Then in Book 6, Chapter 3, I show how to use
jQuery to simplify communicating with PHP programs running on the server from
inside your web pages. But for now, let’s examine how to use the basics of jQuery.

Loading the jQuery Library
Before you can use the jQuery library functions in your web page, you need to load
the library functions. The jQuery library is nothing more than a standard external
JavaScript program that defines lots of handy functions for us. The project freely
provides the JavaScript code library for use in any application, whether it’s com-
mercial or open source.

The main website for the jQuery project is www.jquery.com. From there, you can
find documentation on jQuery, as well as the software download packages. There
are two main versions of jQuery:

 » The latest production version (at the time of this writing, 3.2.1)

 » The latest development version (which isn’t assigned a version number)

For all your website work, you’ll want to use the latest production version of the
jQuery library. The development package is for testing cutting-edge features and
isn’t guaranteed to work correctly at all times in all situations. This could lead to
issues in your dynamic web application.

After you decide to use the latest production version of the jQuery library, there are
actually four different versions of the library that you can use in your application:

 » Uncompressed: The full jQuery library in an uncompressed file

 » Minified: The full jQuery library in a compressed file

 » Slim: Everything except support for animation and Ajax in an uncom-
pressed file

 » Slim minified: Everything except support for animation and Ajax in a
compressed file

For most purposes, you’ll be fine using the minified version of the file. This con-
tains all the jQuery features, but in a compressed file so that it will load faster for
your site visitors.

https://www.jquery.com

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 245

You’ve decided to use the minified version of the latest production version of the
jQuery library software (because you trust me completely), but there’s still one
more decision for you to make. Because the jQuery file is a JavaScript library, your
application needs to load it for each web page that contains jQuery code. This can
get somewhat tedious for large applications.

You can either download the jQuery library file to your own server to host, making
it easier for your website visitors to access it along with the rest of your appli-
cation files, or you can point your site visitors’ browsers to download the jQuery
library file from a content delivery network (CDN) server. The following sections
walk through how to use both options.

Option 1: Downloading the library file
to your server
Sometimes it’s better to have your website visitors download all the files neces-
sary for your dynamic web application from one place — your own server. To do
that, you need to have the jQuery library file installed on your web server, in the
DocumentRoot folder so that your site visitors can access it.

Downloading the file from the main jQuery web page and installing it on your web
server is a fairly easy process. Just follow these steps:

1. Open your web browser and go to www.jquery.com/download.

2. Click the link to the compressed production version of jQuery.

At the time of this writing, it’s version 3.2.1.

Your browser downloads the file to the default download folder. It should have
a name something like jquery-3.2.1.min.js. (The numbers will be different
if the version number has changed since this book was written.)

3. Copy the file to the DocumentRoot folder for your web server.

If you’re using XAMPP in Windows, that’s c:\xampp\htdocs; for XAMPP in
macOS, it’s /Applications/XAMPP/htdocs.

To load the jQuery library in your web application, you’ll need to include a
<script> tag in the head element of your web page. The <script> tag should
point to the jQuery library file that you downloaded:

<script src="jquery-3.2.1.min.js"></script>

https://www.jquery.com/download

246 BOOK 3 JavaScript

It’s important that the browser loads the jQuery library file before you use any
jQuery functions in your application. Place the <script> tag near the top of the
head element section, after the <title> tag.

Option 2: Using a content delivery network
One downside to hosting the jQuery library file on your own server is that all your
site visitors will need to download it directly from your server, creating an addi-
tional load on your server. To prevent that, you can point the <script> tag to load
the jQuery library file from a CDN.

A CDN provides content for applications from a common server or group of serv-
ers. Your website visitors can download the jQuery library file from the nearest
CDN to their location, which may speed up the time it takes to load your web page.

The jQuery project runs its own CDN to host the latest jQuery library file and
provides the <script> tag formats required for each of the different library file
options. At the time of this writing, they host that at https://code.jquery.com.
Here’s the current <script> tag to use to load the jQuery library from the jQuery
CDN website:

<script src="https://code.jquery.com/jquery-3.2.1.min.js" integrity="sha256-hwg4

gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>

The integrity and crossorigin attributes are for the Subresource Integrity (SRI)
feature, which helps the browser ensure the downloaded file hasn’t been tam-
pered with. This is a nice feature to add to ensure your site visitors aren’t using a
hacked library file.

Besides the jQuery CDN website, Google and Microsoft also host the jQuery library
files on their own CDN websites. If your site visitors are geographically disbursed
throughout the world, it may be faster for them to download the jQuery library
file from a Google or Microsoft server. The https://code.jquery.com website
provides instructions on how to use the Google and Microsoft CDN websites.

Using jQuery Functions
After you have the jQuery library file downloaded to the site visitor’s browser,
you’re ready to start using jQuery functions in your dynamic web application.

https://code.jquery.com
https://code.jquery.com

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 247

All jQuery functions must be embedded in the special jQuery() function. This
signals to the browser that it must use the jQuery library to process the functions
used in the code. The general format for embedding jQuery code into your web
page thus looks like this:

<script>

 jQuery(code);

</script>

Because jQuery is still JavaScript code, you must surround the jQuery code using
the standard script HTML5 element. The actual jQuery code itself must also be
embedded within the jQuery() function.

If things are starting to look complicated, don’t worry — this is a standard format.
After you’ve written a few jQuery programs, you’ll feel right at home using it. That
said, there is a shortcut that can come in handy. Instead of using the jQuery()
function name, you can use the $() shortcut function name.

Finding Elements
One of the main features of jQuery is to help you find HTML5 elements in the
web page to manipulate. In Book 3, Chapter 2, I show you how you need to use
the JavaScript getElementById(), getElementByClassName(), or getElementBy
TagName() functions to find elements in the web page. Needless to say, that gets
fairly complicated when you start working with large web pages.

The jQuery library greatly simplifies this process. It incorporates the same selec-
tor method that CSS uses to apply styles to HTML5 elements. For example, to find
the h1 element in a web page, you just use the jQuery code:

$("h1");

Now that’s easy! If you want to find an element based on an id attribute value, you
use the same format as in CSS:

$("#warning");

Likewise with class names:

$(".warning");

248 BOOK 3 JavaScript

After you’ve found the HTML5 element that you’re looking for, jQuery allows you
to easily apply lots of different functions to modify the element — but more on
that later in this chapter.

Follow these steps to experiment with retrieving text from an HTML5 p element
using your new jQuery skills:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing jQuery</title>

<script src="jquery-3.2.1.min.js"></script>

</head>

<body>

<h1>This is my heading</h1>

<p>This is some content on my web page</p>

<script>

 var data = $("p").text();

 alert(data);

</script>

</body>

</html>

3. Save the file as jquery1.html in the DocumentRoot folder of your web
server, where you also saved the jQuery library file.

4. Open the XAMPP Control Panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/jquery1.html

You may need to modify the TCP port used in the URL to match your web
server.

The jQuery code finds the p element in the web page, retrieves the text that it
contains, and then stores it in the data JavaScript variable. You can then use that
as any other JavaScript variable, including displaying it using an alert() func-
tion, as shown in the code. When you run the program, you should see the output
shown in Figure 3-1.

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 249

Congratulations on running a successful jQuery program! However, one little issue
remains: I placed the script element that contained the jQuery code at the very end
of the body element section. There’s a reason for that. The jQuery find feature can
only find elements that have already been processed by the browser into the Doc-
ument Object Model (DOM) tree. If you try to run a jQuery find operation before
the browser completes building the DOM tree, it won’t find the elements. That can
be a huge problem with a dynamic web application, but there’s a way around that:
the .ready() function.

The .ready() function causes jQuery to wait until the browser has completely
loaded the DOM tree, and all the HTML5 elements contained in the web page are
available. After that’s done, the .ready() function runs whatever jQuery code you
place inside of it.

To do that, you need to embed your jQuery code into a code block that now looks
like this:

<script>

jQuery(document).ready(function() {

 code

});

</script>

The .ready() function uses an anonymous function that it runs when the browser
fully loads the DOM tree. You just embed your jQuery code inside the anonymous
function, and you’re guaranteed it won’t run until the DOM tree is ready. When
you use this method, you can place your jQuery script element anywhere in the
web page code, including the head element section. That makes it much easier to
spot the embedded jQuery code, instead of having to go hunting all around the
web page code file for it.

FIGURE 3-1:
The output from

the jquery1.
html program.

250 BOOK 3 JavaScript

Using this method, the code that you created earlier would look like this:

<script>

 jQuery(document).ready(function() {

 var data = $("p").text();

 alert(data);

 });

</script>

Now you can place this script element block into the head element of the web page
and it’ll work just fine!

Although you can now place your jQuery code anywhere in the head element sec-
tion, you still need to place the script element that loads the jQuery library before
any jQuery code.

Replacing Data
After you find the HTML5 elements in your web page, the next step is to modify
the content of the web page. Fortunately, jQuery makes that step easier, too. This
section shows how jQuery allows you to change the text, HTML code, and even
attributes of the HTML5 elements contained in your web pages.

Working with text
As shown in the previous code example, adding the .text() function to the jQuery
object retrieves the text contained in the object. You can use the same .text()
function to replace that text. Just place the text you want to use as a parameter to
the .text() function:

$("p").text("This has changed");

Follow these steps to test this out:

1. Open your favorite text editor, program editor, or IDE package.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 251

<title>Testing jQuery Replacing Text</title>

<script src="jquery-3.2.1.min.js"></script>

<script>

 jQuery(document).ready(function() {

 $("button").click(function() {

 $("p").text("This has changed!");

 });

 });

</script>

</head>

<body>

<h1>This is my heading</h1>

<p>This is some content on my web page</p>

<button>Test button</button>

</body>

</html>

3. Save the file as jquery2.html in the DocumentRoot folder of your web
server.

4. Make sure the Apache web server is running, open your browser, and
enter the following URL:

http://localhost:8080/jquery2.html

5. Click the button on the web page and watch the text on the page.

There are a couple of new things I threw into this example, so let me explain a bit:

 » I added a button element at the bottom of the web page. Notice that I
didn’t need to add the onclick attribute for the button as I used in the
preceding chapter with JavaScript. The jQuery library is kind enough to do
that for us!

 » In the jQuery code I added the following line:

$("button").click(function() {

The first part you should recognize — it finds the first button element on the
web page. The code then applies the .click() function to that object. The
browser runs this function when it detects that the site visitor clicks the
referenced button. In this case, when the button gets clicked, the code triggers
another anonymous function. The code in the anonymous function is

$("p").text("This has changed!");

252 BOOK 3 JavaScript

When you click the button, you should see the content of the p element
change to the text you specify in the jQuery code, right before your eyes, as
shown in Figure 3-2!

You use this method to change any type of text content in any type of block
element.

Working with HTML
The .text() function allows you to change the text contained within an element,
but it doesn’t change the HTML5 code for the element. You can do that by using
the .html() function:

$("p").html("<h1>This changed to a heading</h1>");

Notice that you need to supply the full HTML5 element tags along with the text
that you want to appear in the element.

If you replace the original .text() function in the example code with this line,
when you click the button the p element turns into an h1 element, and the browser
styles it accordingly, as shown in Figure 3-3!

FIGURE 3-2:
The result of the
jquery2.html

program.

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 253

Working with attributes
Not only can you modify the text and HTML code in an element, but you can also
retrieve and set attributes for the element using the .attr() function. To retrieve
an attribute value, use the following format:

$(selector).attr("attribute");

To set a value associated with an attribute of the element, the format is as follows:

$(selector).attr("attribute", "value");

This allows you to change the appearance of an element by modifying the attri-
butes as needed from your jQuery code.

Working with form values
One of the greatest features of the jQuery library is the ability to dynamically read
and modify data in HTML5 forms. This feature comes in handy if you need to
validate form data as your site visitors are typing it into the form, before it even
leaves their workstations!

The .val() function provides access to the value attribute for input elements:

var data = $("input").val();

FIGURE 3-3:
Changing the

element using
the .html()

function.

254 BOOK 3 JavaScript

The value HTML5 attribute also allows you to set the default value that appears in
the input form. So by adding a value to the .val() function, you can control what
text appears in the form field as well:

$("input").val("Enter your last name");

The next chapter shows you how you can trigger the .val() function as your site
visitor presses each key as she’s typing in the form fields. With that feature, you
can create dynamic search results as the visitor is typing!

Changing Styles
The jQuery library can do more than just change the content that appears in the
web page. It also contains functions that help you dynamically change the styles
that the browser applies to elements on the web page.

This section discusses how you can access the CSS properties assigned to an object,
as well as modify them on the fly as your site visitor interacts with the web page.

Playing with properties
Book 2, Chapter 2, shows how you can apply CSS3 styles to elements to not only
style them but also position them on the web page. Style rules defined in an inter-
nal or external style sheet determine just how the browser displays and positions
the element on the web page.

The jQuery library provides some functions for you to use to help manipulate the
CSS3 properties that the browser applies to elements. The first one I talk about is
the .css() function.

The .css() function allows you to retrieve and set individual properties or a
group of properties for any element in the web page. To retrieve the current value
assigned to a CSS3 property, you use the following format, where selector is
the CSS-style selector for finding the element and property is the CSS3 property
name you want to retrieve:

$(selector).css(property);

For example, to determine the background color applied to a div element, you’d
use the following:

var color = $("div").css("background-color");

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 255

When you use JavaScript to set CSS3 properties, you have to use different names,
because JavaScript doesn’t support the dash in the property names. Notice that
with jQuery you use the actual CSS property name that you’re already used to
using — nothing new to learn!

Then, as you can probably guess by now, to set the CSS3 property for an element,
you just add the value as the second parameter to the function call:

$("div").css("background-color", "red");

Follow these steps to test this out:

1. Open your favorite text editor, program editor, or IDE package.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Changing Properties with jQuery</title>

</head>

<style>

 div {

 background-color:yellow;

 }

</style>

<script src="jquery-3.2.1.min.js"></script>

<script>

 jQuery(document).ready(function() {

 $("button").click(function() {

 $("p").css("background-color", "red");

 $("p").css("font-size", "50px");

 });

 });

</script>

<body>

<div id="container">

<h1>This is my heading</h1>

<p>This is some content on my web page</p>

<button>Test button</button>

</div>

</body>

</html>

256 BOOK 3 JavaScript

3. Save the file as jquery4.html in the DocumentRoot folder of your web
server.

4. Make sure the Apache web server is running, and then open your
browser and enter the following URL:

http://localhost:8080/jquery4.html

5. Click the button and watch the content from the p element on the
web page.

This version of our example program uses a short CSS internal style sheet to set
the background color of the div element around the elements on the web page.
When jQuery detects the button click, it applies two new styles to the p element —
changing the background color to red and increasing the font size to 50 pixels.
Figure 3-4 shows what this looks like after you click the button.

You can apply as many styles to as many elements as you need within the event
trigger. However, the more styles you apply, the messier it gets. But fortunately,
there are a couple of solutions to that problem.

Using CSS objects
Instead of piling multiple .css() function lines on top of each other, trying to
change lots of different style properties, you can create a style object in jQuery. The
style object allows you to specify styles just as you do in the CSS3 style sheet and
provide multiple styles in a single .css() function.

FIGURE 3-4:
The result of the
jquery4.html

program.

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 257

The style object has the following format:

{"property1":"value1", "property2":"value2"...}

Now things are really starting to look familiar — very similar to how CSS rules
define properties and their values! Using this format, you can combine the two
style changes in the jquery4.html example to one line:

$("p").css({"background-color":"red", "font-size":"50px"});

This is a great way to make dramatic changes to the web page layout and style
dynamically in response to events that your site visitor triggers, such as changing
the background color of text boxes as data is entered, or changing the location of
important content that may be missed.

Using CSS classes
Things are starting to get pretty fancy with your jQuery style coding, and you’re
starting to introduce another issue to your program. Now you’re embedding styles
inside your jQuery code, separate from the rest of the styles defined in the CSS3
style sheets. That can make things somewhat confusing when you’re trying to
troubleshoot a problem, or even if you’re trying to go back over your own code
several months later!

To solve that issue, the brilliant jQuery developers added another set of functions
that interact with CSS3 class rules. With the jQuery class functions, you can add,
remove, or even toggle a class to an element. Table 3-1 shows the classes available
for you.

TABLE 3-1	 The jQuery Class Functions
Function Description

.addClass(class) Adds the specified class to the element

.hasClass(class) Returns a true value if the element contains the specified class attribute

.removeClass(class) Removes the specified class from the element

.toggleClass(class) Alternately adds and removes the specified class each time it’s called

258 BOOK 3 JavaScript

Now all you need to do is place the group of style properties you need into a class
rule in your CSS style sheet definitions, and then add, remove, or even toggle the
class for the element. The .hasClass() function allows you to check what class is
currently assigned to the element.

Follow these steps to try this feature out:

1. Open the jquery4.html file from the previous example in your editor.

2. Modify the code so that it looks like this:

<!DOCTYPE html>

<html>

<head>

<title>Changing Properties with jQuery</title>

</head>

<style>

 div {

 background-color:yellow;

 }

 .changeit {

 background-color:red;

 font-size:50px;

 }

</style>

<script src="jquery-3.2.1.min.js"></script>

<script>

 jQuery(document).ready(function() {

 $("button").click(function() {

 $("p").toggleClass("changeit");

 });

 });

</script>

<body>

<div id="container">

<h1>This is my heading</h1>

<p id="content">This is some content on my web page</p>

<button>Test button</button>

</div>

</body>

</html>

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 259

3. Save the file as jquery5.html in the DocumentRoot folder of the Apache
web server.

4. Ensure that the Apache web server is running, and then open your
browser and enter the following URL:

http://localhost:8080/jquery5.html

5. Click the button multiple times to toggle the style effects on and off.

In the updated code, I added a new class rule to the internal style sheet:

 .changeit {

 background-color:red;

 font-size:50px;

 }

And I used the .toggleClass() function to apply it to the p element:

$("p").toggleClass("changeit");

For even more fun, you can use the .show() and .hide() jQuery functions, which
pretty much do what they say. They change the display CSS3 property of the ele-
ment to block (for .show()) or none (for .hide()).

Changing the Document Object Model
Not only can you use jQuery to modify content and styles of the existing elements
in your Web page, you can also use it to add or remove entire elements! There are
a handful of different jQuery functions available for manipulating the element
nodes contained in the DOM tree.

Adding a node
You can use jQuery to add a new node to the DOM tree to display additional con-
tent as needed. Table 3-2 shows the functions available for adding new nodes.

260 BOOK 3 JavaScript

Note the subtle difference between the .after() and .append() functions. The
.append() function adds the new node to the end of the existing node, so it
becomes a child node of the existing node in the DOM. The .after() function, on
the other hand, adds a new sibling node after the existing node in the DOM. Like-
wise for the .before() and .prepend() functions.

For example, you can add a new p element to the existing p element in your exam-
ple program by adding the following code:

$("p").after("<p>This is a new node</p>");

As you would expect, when you run one of these functions, the new node imme-
diately appears in the web page.

Removing a node
The jQuery library provides two functions for you to remove existing nodes from
the DOM:

 » .empty(): Removes all child nodes from the specified node

 » .remove(): Removes the specified node

It’s important to note that the .empty() function doesn’t remove the specified
node — it just removes any child nodes associated with the node.

TABLE 3-2	 The jQuery Functions to add DOM Nodes
Function Description

.after() Adds a node after an existing node

.append() Adds a node to the end of an existing node

.appendTo() Adds a new node to the end of an existing node

.before() Adds a node before an existing node

.insertAfter() Adds a new node after an existing node

.insertBefore() Adds a new node before an existing node

.prepend() Adds a node to the beginning of an existing node

.prependTo() Adds a new node to the beginning of an existing node

U
si

ng
 jQ

ue
ry

CHAPTER 3 Using jQuery 261

Playing with Animation
When you run the jquery4.html example code to change the background color
and font size, the changes occur almost immediately after you click the button.
That’s a pretty stark effect, which can be toned down some.

One of the cooler features of jQuery is the ability to animate style changes. With
the .animate() function, you can specify an endpoint style for the content, and
jQuery will slowly work its way to that endpoint from the current style. This slow
morphing process causes the web page to look like it’s animated!

This is a hard feature to explain without actually viewing it, so follow these steps
to try it out:

1. Open the jquery4.html file in your editor.

2. Change the line that sets the font-size style property to use the
.animate() function.

Look for the following line:

$("p").css("font-size", "20px");

And change it to this:

$("p").animate({"font-size": "50px"});

3. Save the new file as jquery6.html in the DocumentRoot folder for the web
server.

4. Ensure the Apache web server is running and then open your browser
and enter the following URL:

http://localhost:8080/jquery6.html

5. Click the button and watch the animation.

The .animate() function requires a CSS object, so even if you just specify one
property to change, you must use the object format. When you click the button,
instead of an instant change in font size, you see the text “grow” to get to the font
size. You can change the rate of animation by adding a second parameter to the
.animate() function — the milliseconds it takes to get to the final endpoint value.
The default is 400 milliseconds (ms).

CHAPTER 4 Reacting to Events with JavaScript and jQuery 263

Reacting to Events with
JavaScript and jQuery

In the previous chapters in this minibook, I explain how to incorporate both
JavaScript and jQuery into your HTML5 code to help create a dynamic web
application. The trick to using JavaScript and jQuery, though, is knowing when

to use them. How are you supposed to know when your site visitor is hovering
the mouse pointer over a product in your catalog to pop up more information?
Fortunately, your web page is talking to you, telling you what your website visi-
tors are doing at all times. All you need to do is listen to your web page and direct
your JavaScript or jQuery code accordingly. That’s exactly what this chapter shows
you how to do.

Understanding Events
The world is full of events. There are birthday events, holiday events, school
events, all types of events competing for your time. Your world is loaded with
events, and it’s your job to determine which events to participate in (your birth-
day) and which ones to ignore (Talk Like a Pirate Day?).

The same is true with your web application. There are lots of events that your site
visitor generates as she interacts with your web page. Each time your site visitor

Chapter 4

IN THIS CHAPTER

 » Exploring web page events

 » Using events with JavaScript

 » Working with jQuery and events

264 BOOK 3 JavaScript

moves the mouse, that’s an event. Each time she types text into a form field,
that’s an event. And of course, each time she clicks the mouse on a link or button,
those are events, too. The key to successful dynamic web applications is to detect
the events you need and ignore the ones you don’t need.

Event-driven programming
Most of the JavaScript code earlier in this minibook uses procedural programming.
In procedural programming, the browser follows your JavaScript code line by line,
processing each statement as it appears in the program.

There’s another way to write programs, called event-driven programming. With
event-driven programming, your program centers around events that occur in the
web page. You must define a list of events to monitor, and if one of those events
occurs, the browser runs the JavaScript function you’ve defined for the event.

With event-driven programming, you need to know what events to watch for.
This section details the events that are generated by the browser on the different
activities that occur while your site visitor views your web page.

Watching the mouse
No, I’m not talking about Mickey. I’m talking about paying attention to what your
site visitor is doing with the mouse device on his or her workstation. Believe it or
not, your browser tracks every single move and action your mouse takes. You can
tap into that wealth of information with your JavaScript or jQuery programs.

As you can imagine, there are many different events that the mouse generates as
you move it around. Table 4-1 shows a list of the different mouse event names
generated by the browser as defined in HTML5 and JavaScript. Later on, I show
you the jQuery version of the event names.

As you can tell from the list in Table 4-1, you can watch exactly what your site
visitors are doing while viewing your web page. (Scary!) Although this informa-
tion can be useful, it can also result in information overload. The key to successful
mouse watching is to only watch for the important events, such as when the site
visitor clicks the primary mouse button on an object in the web page or when the
mouse is hovering over an object.

It’s not a good idea to write code that watches the onmousemove event, because
that event triggers for every pixel the mouse pointer moves to on the screen, gen-
erating thousands of events at a time!

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 265

Listening for keystrokes
The keyboard talks to the browser, too. You can watch for key events in your
JavaScript or jQuery programs just as you watch the mouse. Unlike the long list of
mouse events, there are only three keyboard events for you to work with:

 » onkeydown: A key is being pressed down.

 » onkeypress: A key has been pressed and released.

 » onkeyup: A key has been released.

Notice the subtle difference between the three events. The onkeydown event only
triggers while the site visitor is pressing the key. Both the onkeypress and onkeyup
events trigger when the site visitor releases the key. Granted, for most typing
situations, the difference is very small, but for some applications (for example,
games), it can be useful to know how long a key is being pressed, which you can
only get from the onkeydown event.

The term keystroke may be misleading. There are some keys on the standard key-
board that don’t generate a keystroke themselves, such as the Shift, Alt, and Ctrl
keys on a Windows keyboard. These keys are modifiers for other keys that gener-
ate the keystrokes.

TABLE 4-1	 Mouse Events
Event Description

onclick The primary mouse button has been clicked.

oncontextmenu The secondary mouse button has been clicked.

ondblclick The primary mouse button has been double-clicked.

onmousedown The primary mouse button has been depressed.

onmouseenter The mouse pointer has entered a specific area in the window.

onmouseleave The mouse pointer has left a specific area in the window.

onmousemove The mouse pointer is moving.

onmouseover The mouse pointer is hovering over an object.

onmouseout The mouse pointer has left a specific area in the window.

onmouseup The primary mouse button has been released.

266 BOOK 3 JavaScript

Paying attention to the page itself
Even the web page itself has events that your JavaScript and jQuery programs can
listen for. Before HTML5, there were only a handful of page events that you could
tap into. The newer HTML5 standard has defined a lot more page events to work
with. Table 4-2 lists the more common HTML events that you may run into.

The web page events allow you to track when your web page first appears in the
site visitor’s browser and when it leaves (and even just before it leaves). This gives
you the opportunity to load things right up front when the page appears, or per-
form some operation as the page is about to disappear from the browser window.

TABLE 4-2	 Page Events
Event Description

onafterprint Triggers after the site visitor prints the web page

onbeforeprint Triggers before the site visitor prints the web page

onbeforeunload Triggers just before the web page is removed from the browser window

onerror Triggers when there is an error in loading a required file for the web page

onhaschange Triggers when the server address of the URL has changed

onload Triggers when the body of the web page loads

onmessage Triggers when a message is sent to the browser window

onoffline Triggers when the site visitor sets the browser to view the web page offline

ononline Triggers when the site visitor sets the browser to view the web page online

onpagehide Triggers when the site visitor navigates away from the web page

onpageshow Triggers when the web page appears in the browser window

onpopstate Triggers when the browser’s history changes

onresize Triggers when your site visitor resizes the browser window

onstorage Triggers when a web storage area is updated

onscroll Triggers when the site visitor moves the scrollbar in the browser window

onunload Triggers when the web page is removed from the browser window

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 267

Focusing on JavaScript and Events
JavaScript and HTML5 team up to provide a way for your program to listen for
events and perform some type of action when they occur. The HTML5 element
code registers a JavaScript function for the browser to run when a specific element
event occurs.

Different HTML5 elements generate different events based on how they interact
with the site visitor on the web page. The following sections walk you through
how to set up a JavaScript event monitor for different HTML5 elements.

Saying hello and goodbye
The page events allow you to monitor when the web page loads and unloads from
the site visitor’s browser. You use these in the <body> tag of the web page to spec-
ify any onload or onunload event functions you need to run:

<body onload="welcome()">

In this example, the browser runs the welcome() JavaScript function when the
web page first loads into the browser window, as shown in Figure 4-1.

FIGURE 4-1:
Running a

function when
the web page

loads in the
Chrome browser.

268 BOOK 3 JavaScript

There’s some controversy as to just what the term loads means for the onload
event. Some browsers trigger the onload event as the first thing before processing
any of the HTML5 elements into the Document Object Model (DOM), while oth-
ers wait until all the HTML5 elements have been processed before triggering the
event. Because of this, it’s not recommended to try to access any of the web page
elements from a function triggered by the onload event — there’s no guarantee
that they’ll be there yet.

You can test the onload event out in your own browsers by following these steps:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Type the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>Testing the Page Events</title>

<script>

 function welcome() {

 alert("Welcome to my website!");

 }

</script>

</head>

<body onload="welcome()">

<h1>This is the main web page</h1>

<p>This is some content on the web page</p>

</body>

</html>

3. Save the file as loadtest.html in the DocumentRoot folder of your web
server.

For XAMPP on Windows, that’s c:\xampp\htdocs; for XAMPP on macOS, that’s
/Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel, and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/loadtest.html

You may need to change the TCP port to match your web server.

You should see the welcome alert message, but you may or may not see the
HTML code behind it on the web page.

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 269

6. Try different browsers to see if they behave any differently.

Figure 4-1 show the results from running the test using the Chrome browser.
The alert() message appears from the onload event, but no content appears in
the web page yet. Figure 4-2 shows running the same test using the Microsoft
Edge browser.

The Edge browser displays the elements on the web page and then triggers the
onload event to run the alert() function!

Using the onunload and onbeforeunload events can be even more problematic.
Most browsers won’t allow you to use the alert() function after the browser
window has already closed, so don’t try to use that in the onunload event. Usu-
ally you can still access the DOM tree objects during the unload process, but
even that’s not guaranteed. It’s common practice to only use the onunload and
onbeforeunload events to trigger functions that ensure any application data is
safely stored before the application closes out the web page.

Listening for mouse events
To trigger a JavaScript function for mouse events, you need to define the events
as attributes in the HTML5 elements. This section shows you how to do that for a
few different mouse events.

FIGURE 4-2:
Running the

onload test using
the Microsoft

Edge browser.

270 BOOK 3 JavaScript

Clicking the button
When your website visitor clicks the primary mouse button anywhere on your
web page, that triggers an onclick event. To capture that event for individual
elements, you must use add the onclick attribute to the element opening tag and
specify the JavaScript function you want the browser to run when the event trig-
gers. For example:

<button onclick="myfunction()">

If you have more than one button on your web page, you can pass a parameter to
the JavaScript function identifying which button was selected:

<button onclick="func('buy')">Buy</button>

<button onclick="func('browse')">Browse</button>

<button onclick="func('help')">Help</button>

Notice that to pass a string value inside the attribute value you must use sin-
gle quotes around the string value if you use double quotes around the HTML
attribute. If you use double quotes, the browser will confuse them with the double
quotes used to delimit the attribute value.

Follow these steps to test out listening for button clicks:

1. Open your favorite editor.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing Button Events</title>

<script>

 function clickme(name) {

 if (name == "help") {

 alert("Do you need some help?");

 } else if (name == "buy") {

 alert("What would you like to buy?");

 } else if (name == "browse") {

 alert("You can browse our catalog");

 }

 }

</script>

</head>

<body>

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 271

<h1>Store Menu</h1>

<p>Here are the current options:</p>

<button onclick="clickme('buy')">Buy a product</button>

<button onclick="clickme('browse')">Browse our catalog</button>

<button onclick="clickme('help')">Get Help</button>

</body>

</html>

3. Save the file as buttontest.html in the DocumentRoot folder of your web
server.

4. Ensure that the Apache web server is still running.

5. Open your browser and enter the following URL:

http://localhost:8080/buttontest.html

6. Click each of the buttons that appears on the web page.

7. Close the browser window when you’re done testing.

As you click each button, a different alert dialog box should appear, as shown in
Figure 4-3.

FIGURE 4-3:
The Help alert

dialog box
appearing from

the buttontest.
html application.

272 BOOK 3 JavaScript

If you prefer, you can also use a unique ID attribute for each button to help iden-
tify it in the event function code.

Hovering the pointer
It may seem odd, but the onmouseover and onmouseout events allow you to alter
the appearance of many types of elements as your website visitors hover their
mouse pointers over them. You’re not limited to using these events on only but-
tons; you can work with the mouse events from inside any standard block ele-
ment, such as paragraph and heading elements within your web page. Follow
these steps to try that out:

1. Open your editor.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing Mouse Events</title>

<style>

 #test {

 background-color: yellow;

 width:400px;

 }

</style>

<script>

 function changeit(state) {

 if (state == "in") {

 document.getElementById("test").style.backgroundColor="red";

 } else if (state == "out") {

 document.getElementById("test").style.backgroundColor="yellow";

}

 }

</script>

</head>

<body>

<h1>This is a test of the mouse events</h1>

<p id="test" onmouseover="changeit('in')" onmouseout="changeit('out')">

This is some content that will change color!</p>

</body>

</html>

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 273

3. Save the file as hovertest.html in the DocumentRoot folder of your web
server.

4. Ensure that the Apache web server is running.

5. Open your browser and enter the following URL:

http://localhost:8080/hovertest.html

6. Move your mouse pointer around through the text in the paragraph and
observe what happens.

The background color of the p element text should change when your mouse
pointer hovers over it.

7. Close your browser window when you’re done testing.

The onmouseover event triggers the changeit() JavaScript function, passing the
text in, while the onmouseout event triggers the same changeit() JavaScript
function, but passes the text out. The JavaScript code detects the value passed
to the changeit() function and sets the background-color style property of the
p element accordingly.

Listening for keystrokes
Elements that accept data entry, such as text boxes and text areas, can trigger the
keystroke events as your site visitors type. This allows you to monitor just what
data your site visitors enter into the form fields as they type.

You’ll often find yourself in situations where you need to count characters entered
into a text box or text area in a form. You can use the onkeyup event to trigger a
counter that counts the keystrokes.

Follow these steps to create a small program to demonstrate this feature using
JavaScript and the onkeyup event:

1. Open your favorite editor.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing Keystroke Events</title>

274 BOOK 3 JavaScript

<script>

 function gotkey() {

 var count =document.getElementById("text").value.length;

var output = "Character count: " + count;
 document.getElementById("status").innerHTML=output;

}

</script>

</head>

<body>

<h1>Testing for keystrokes</h1>

<p>Please enter some text into the text area</p>

<textarea id="text" cols="50" rows="20" onkeyup="gotkey()"></textarea>

<p id="status"></p>

</body>

</html>

3. Save the file as keytest.html in the DocumentRoot folder of your
web server.

4. Ensure that the Apache web server is running.

5. Open your browser and enter the following URL:

http://localhost:8080/keytest.html

6. Start typing some text in the text area that appears on the page.

You should see the character count appear under the text area and be able to
keep track of the characters that appear.

7. Close the browser to exit the program.

The gotkey() function uses the length property of the value attribute of the
element. By stringing them all together into the same statement, you can easily
return the number of characters that are currently in the text area:

var count = document.getElementById("text").value.length;

The p element after the text area starts out empty, but for each triggering of
the gotkey() function, it changes the innerHTML property to the string that was
stored in the output variable. Figure 4-4 shows what the result will look like as
you type text into the text area.

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 275

Now you can provide an interface that tells your site visitors how many charac-
ters they’ve typed into a text box or text area! You can take this feature one step
 further by disabling the text area if they’ve entered too many characters:

function gotkey() {

 var count = document.getElementById("text").value.length;

 if (count > 20) {

 var output = "Sorry, that's too many characters";

 document.getElementById("text").disabled="disabled";

 } else {

 var output = "Character count: " + count;
 }

 document.getElementById("status").innerHTML=output;

 }

Now things are really starting to get fancy!

Event listeners
JavaScript provides one more way to assign events to elements. You use the
.addEventListener() function to dynamically assign events to monitor the
 elements on your web page. That looks like this:

document.getElementById("button1").addEventListener("click", clickbuy);

FIGURE 4-4:
Counting

keystrokes in the
keytest.html

program.

276 BOOK 3 JavaScript

The first parameter of the .addEventListener() function defines the event to
monitor (note the missing on as part of the event name). The second parameter
specifies the function to call when the event is triggered. (Also note the missing
parentheses in the function name.)

Just as you can dynamically add an event listener to an element, you can remove
it using the .removeEventListener() function.

You can assign two or more functions to the same event trigger for an element.
The JavaScript interpreter will trigger each function when the event occurs.

Looking at jQuery and Events
The jQuery library uses a slightly different approach to handling events. Instead
of relying on the HTML5 event attributes in elements, it monitors the events in
the browser and allows you to tap into them directly. This helps simplify things,
because you don’t need to split the event code between the HTML5 code and the
jQuery code. Everything you need is in the jQuery code.

jQuery event functions
The jQuery library provides functions for handling all the HTML5 events that you’ve
seen. The benefit of using the jQuery event model is that you don’t need to specify the
event attribute in the HTML5 code — the jQuery function does all the work for you!

For example, to monitor for the onclick event for a button, you just simply use
the following:

$("button").click(function() {

 code

});

This creates an anonymous function to run whenever the site visitor clicks the
button. The actual HTML5 button element would look like this:

<button>Click here</button>

And that’s all you need! The benefit of this method is that you do all the event
coding in the JavaScript code — there’s nothing in the HTML5 code.

For the most part, the jQuery event functions mirror the HTML5 event attributes,
but leave off the on part in the event name. There are, however, a couple of extra

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 277

handy event functions available. Table 4-3 shows a list of the jQuery events that
you’re most likely to use.

TABLE 4-3	 The jQuery Event Functions
Event Description

blur() Triggers when the element loses the window focus

change() Triggers when the element changes

click() Triggers when the primary mouse button clicks on the element

dblclick() Triggers when the primary mouse button is double-clicked on the event

focus() Triggers when the element gains the window focus

focusin() Triggers when the element or a child element gains the window focus

focusout() Triggers when the element or a child element loses the window focus

hover() Defines two functions — one for when the mouse pointer is over the element
and another one for when it leaves

keydown() Triggers when a key is held down

keypress() Triggers when a key is pressed and released

keyup() Triggers when a key is released

mousedown() Triggers when the primary mouse button is held down

mouseenter() Triggers when the mouse pointer enters the element area

mouseleave() Triggers when the mouse pointer leaves the element area

mousemove() Triggers when the mouse pointer moves

mouseout() Triggers when the mouse pointer leaves the element area

mouseover() Triggers when the mouse pointer is over the element area

mouseup() Triggers when the primary mouse button is released

ready() Triggers when the DOM tree is fully populated

resize() Triggers when the browser window has been resized

scroll() Triggers when the site visitor uses the scrollbar

select() Triggers when an item is selected

submit() Triggers when a submit button has been clicked

278 BOOK 3 JavaScript

An extremely handy addition is the hover() function. It allows you to define two
separate functions at the same time — one for when the mouse is hovering over the
element and another for when it’s not. Follow these steps to test this feature out.

1. Open your favorite editor.

2. Type the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>Testing Mouse Events</title>

<style>

 .yellow {

 background-color: yellow;

 width: 400px;

 }

 .red {

 background-color: red;

 width: 400px;

 }

</style>

<script src="jquery-3.2.1.min.js"></script>

<script>

 jQuery(document).ready(function() {

 $("p").hover(function() {

 $(this).addClass("red"); },

 function() {

 $(this).removeClass("red"); });

 });

</script>

</head>

<body>

<h1>This is a test of the mouse events</h1>

<p class="yellow">This is some content that will change color!</p>

<p>This is some content that will change color, too!</p>

</body>

</html>

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 279

3. Save the file as jhovertest.html in the DocumentRoot folder for your web
server.

4. Ensure that the Apache web server is running.

5. Open your browser and enter the following URL:

http://localhost:8080/jhovertest.html

6. Move the mouse pointer around to hover over the p element sections
and watch what happens.

Each p element should get the red background only when you hover over it;
the other p element should stay the same.

7. Close out the browser to end the test.

In the code for this example, everything happens in the jQuery code:

jQuery(document).ready(function() {

 $("p").hover(function() {

 $(this).addClass("red"); },

 function() {

 $(this).removeClass("red"); });

});

You should recognize the first line, which tells jQuery to wait until the browser
loads the document before running the function code. The function code selects all
p elements and then assigns the hover() event function to them. In this example,
I created two p elements to show another neat feature in jQuery.

When you hover over each p element, only that p element changes background
color! The key to that is the $(this) object in jQuery. The $(this) object repre-
sents the currently selected object. Using that, whichever p element triggered the
event is the one that the addClass() function applies to, while the other p ele-
ment is ignored. That saves us a whole lot of code from having to uniquely identify
each p element on the web page! Figure 4-5 shows the result of the program in
action.

This example shows just how easy it is to code events with jQuery. One of the
primary goals of jQuery is to make coding for handling events easier, and I’d say
they met their goals!

280 BOOK 3 JavaScript

The jQuery event handler
The jQuery library also provides a way for you to code event handlers. With jQuery,
the event handler function is called on(). Here’s the format for the on() function:

$(selector).on("event", "filter", data, function() {

 code

});

The selector part you should be familiar with now. It determines which element(s)
the event handler is attached to. The event parameter defines the jQuery event to
attach to the element(s). The filter parameter is a little different. It defines a
child selector to the main selector you specify. For example, if you only want to
capture click events on buttons within an article element section, you’d use the
following:

$("article").on("click", "button", function() {

To test this feature out, follow these steps to convert the keytest.html JavaScript
code you worked on earlier to use jQuery instead:

1. Open your favorite editor.

2. Type the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>Testing jQuery Keystroke Events</title>

FIGURE 4-5:
The jhover.
html code test

only changes one
p element at

a time.

Re
ac

ti
ng

 t
o

Ev
en

ts
 w

it
h

Ja
va

Sc
ri

pt
 a

nd
 jQ

ue
ry

CHAPTER 4 Reacting to Events with JavaScript and jQuery 281

<script src="jquery-3.2.1.min.js"></script>

<script>

 jQuery(document).ready(function() {

 $("textarea").on("keyup", function() {

 var count = $(this).val().length;

 var output = "Character count: " + count;
 $("#status").text(output);

 });

 });

</script>

</head>

<body>

<h1>Testing for keystrokes</h1>

<p>Please enter some text into the text area</p>

<textarea cols="50" rows="20"></textarea>

<p id="status"></p>

</body>

</html>

3. Save the file as jkeytest.html in the DocumentRoot folder of your web
server.

4. Ensure that the web server is running.

5. Open your browser and enter the following URL:

http://localhost:8080/jkeytest.html

6. Start typing text in the text area.

You should see the count message appear in the status area, showing the
accurate count of how many characters are in the text area.

7. Close the browser window when you’re finished.

8. Stop the web server.

One thing you have to say about jQuery code: It’s a lot cleaner looking than the
JavaScript version! Notice that now you don’t need to define an event attribute in
the <textarea> tag. jQuery takes care of that for you.

282 BOOK 3 JavaScript

The jQuery code itself is fairly clean and uncomplicated:

jQuery(document).ready(function() {

 $("textarea").on("keyup", function() {

 var count = $(this).val().length;

 var output = "Character count: " + count;
 $("#status").text(output);

 });

});

It starts out as usual, waiting for the document DOM to load and then assigns the
event handler to the text area element on the web page. The event handler looks
for the keyup event; when it’s detected, the handler function retrieves the length
of the text in the text area (again, using the $(this) selector) and then outputs it
to the status p element area. Figure 4-6 shows how this looks.

The results are the same as the JavaScript version, but with a lot less coding!

To define an event handler that only triggers once and goes away, use the one()
function instead of the on() function. To remove an event handler that you’ve
defined for a selector, use the off() function.

FIGURE 4-6:
The output of

the jkeytest.
html program in

action.

CHAPTER 5 Troubleshooting JavaScript Programs 283

Troubleshooting
JavaScript Programs

A fact of life when working with any type of programming language is that
there will always be errors as you develop your application code. Working
with JavaScript is no different. There are plenty of opportunities for coding

errors to cause all sorts of problems in your web applications. But don’t worry —
getting an error in your application isn’t the end of the world. There are some
simple tools at your disposal to help you find and fix those errors before your site
visitors experience them. This chapter helps give you some ideas for what to do
when errors occur as you develop your applications and offers tips for how to work
your way through them.

Identifying Errors
Your web application may run into an error and it’s fairly obvious that some-
thing went wrong — something that was supposed to happen didn’t. Other times,
however, program errors can be a little more subtle, such as altering the data in
a way that’s not obvious until you analyze the output. These types of errors are
dangerous, because often you don’t even know they’re present until it’s too late.
It helps to be able to watch your JavaScript program and observe when the subtle
coding errors occur.

Chapter 5

IN THIS CHAPTER

 » Finding errors in your JavaScript code

 » Using JavaScript debuggers

 » Working around errors

284 BOOK 3 JavaScript

The old-fashioned way of doing that was to insert alert() statements at strategic
places in your code to watch variables as your code processes things. Just stick in
the variable you want to monitor inside the alert() function to get a quick dis-
play of the value the variable contains at that point in the program:

alert(lastName);

That generates a lot of pop-up messages as you walk through your application,
but it’s a great strategy for helping watch what’s going on “behind the scenes”
in the code. This method is especially helpful with logic errors in the code — to
detect when something isn’t working quite the way you thought it would.

Yet another code troubleshooting method often used in the past was commenting
out sections of code. JavaScript supports adding comment lines in the code to help
with documenting what’s going on. There are two types of comments that you can
use in JavaScript. This is a one-line comment:

// Comments are fun!

This is a comment that spans more than one line in the code:

/* Comments allow you to document what is happening with your code. Comments are

useful, but calling them fun is a bit of a stretch. */

When JavaScript sees the comment tags, it skips any text that’s within the com-
ment. While this is mainly intended to add commentary to your programs so you
(or anyone else reading your code) know what code does what, it was also common
to use this method to temporarily remove lines or entire blocks of code from the
program without actually deleting them. Just place the JavaScript comment tags
around the code you want to skip, and then run the program to watch how it works.

These are good troubleshooting methods, and they still come in handy at times,
but today we have more sophisticated troubleshooting techniques at our fingertips.

Fortunately, all the popular web browsers today support JavaScript debuggers.
A debugger is a program that points out program errors as they occur while you run
the web application in the browser. Most debuggers also allow you to step through
your JavaScript code one line at a time. This provides the opportunity to watch as
each variable changes value, to help you track exactly where things are going awry.

All the main web browsers in use today either have a JavaScript debugger built in
or easily added as a plug-in. It has become somewhat of a standard to launch the
debugger tools by hitting the F12 key while viewing a web page. Figure 5-1 shows
the IE Developer Tools section that appears.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 285

You can use the Developer Tools to help with your troubleshooting methods and
quickly find (and fix) coding issues.

Working with Browser Developer Tools
The Developer tools interface used by all the main web browsers has many of the
same features across all browsers. The interface contains seven different tabs:

 » DOM Explorer: Breaks down the web page elements into their Document
Object Model (DOM) objects. This tool is great for exploring the DOM ele-
ments, especially if you need to isolate an element to reference in your
JavaScript code.

 » Console: Displays the JavaScript console, which logs error and warning
messages caused by the JavaScript code in the web page, as well as any
messages logged to the console directly from the JavaScript program.

 » Debugger: A full-featured JavaScript debugger for troubleshooting JavaScript
code line by line.

 » Network: Displays network information about remote servers contacted to
display the content on the web page.

 » Performance: Profiles the central processing unit (CPU) utilization required
while the JavaScript code in your web page runs.

 » Memory: Profiles the memory utilization required while the JavaScript code in
your web page runs.

FIGURE 5-1:
The Microsoft

Edge Developer
Tools interface.

286 BOOK 3 JavaScript

 » Emulation: In addition to the standard developer tools, the Internet Explorer
and Edge browsers allow you to change the version of browser emulation
used to display a web page. This allows you to view the web page as it would
be seen in an older version of Internet Explorer, a great tool for developing
web pages.

The following sections walk through the first three tools as they work in the
Microsoft Internet Explorer and Edge browsers. Other browsers offer similar fea-
tures but may require slightly different methods for using them. When you’ve
learned how to use the tools in one browser, it’s fairly easy to figure out how to
use them in the others.

The DOM Explorer
The DOM Explorer disassembles the web page HTML5 code into the separate DOM
elements that comprise the web page. It displays each element in a hierarchical
tree structure, showing the general layout of the web page. Embedded elements
are shown in the tree as child objects of the parent element, allowing you to col-
lapse entire sections down to view a single level of the tree hierarchy at a time.
Figure 5-2 demonstrates how this looks.

In some browsers, when you hover the mouse pointer over a DOM element, the
DOM Explorer highlights the area of the web page the DOM element generates.
This helps you identify which area on the web page is created by which HTML5
code. Unfortunately, Internet Explorer doesn’t support this feature, but Edge does.

FIGURE 5-2:
Using the DOM

Explorer to
 examine the

HTML in a
web page.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 287

Instead of highlighting the elements in the web page, Internet Explorer displays
a layout diagram for the element to the right side of the DOM Explorer. The high-
lighted areas use separate colors to show the element text area, the padding area
around the text, the border area around the element, and the margin area defined
for the element.

Inside each area is a number showing how the area is sized in the HTML5 code.
What’s even cooler is that you can click the number of an area to edit it directly in
the DOM tree and then see how the change affects the layout of the elements on
the web page. This is a great way to help visualize and experiment with your web
page layout.

For position values that are calculated by the browser (such as percentages and
em units), the DOM Explorer displays both the configured value, as well as the
calculated value in pixels. This is yet another great tool for experimenting with
layout structures.

The DOM Explorer also allows you to make edits directly to the HTML5 code for
an element and then view how the changes affect the web page in real time. There
are three ways to do that:

 » Double-click directly on an element attribute in the DOM Explorer to change
its value.

 » Right-click an element and select Add Attribute to add a new attribute.

 » Right-click an element and select Edit as HTML to edit the element manually.

The DOM Explorer also tracks event handlers that your JavaScript code attaches
to HTML5 events, allowing you to detect when an event handler is misapplied or
didn’t get applied at all.

The Console
The Console displays messages received by the browser from the loaded web page.
There are three categories of messages that display in the Console:

 » Errors: Issues that cause the web page to not load or perform correctly, such
as invalid JavaScript code

 » Warnings: Issues that allow the web page to load, but that may cause
unexpected behavior

 » Information: Any noncritical information provided by the web page

When you click the Console tab, you see the interface shown in Figure 5-3.

288 BOOK 3 JavaScript

The first three icons at the top allow you to filter the messages to hide or dis-
play the error (the red X), warning (the yellow triangle), or information (the blue
circle) messages. They also show the count of each type of message generated
since the last clear of the Console. You can clear out the messages by clicking the
black X icon.

To watch the Console in action, let’s work on an example with some bad JavaScript
code and see what happens. Follow these steps:

1. Open the hover.html file created in Book 3, Chapter 4.

2. In the changeit() function code, change the getElementById() functions
to the incorrect getElementByid() name.

Note the lower-case i in the function name, a mistake that I make all too often
on my own!

3. Open the XAMPP Console and start the Apache web server.

4. Open Internet Explorer or Edge, and enter the following URL:

http://localhost:8080/hover.html

5. Press F12.

The Developer Tools window appears.

6. Click the Console tab.

7. Hover your mouse pointer over the p element content in the main web
page, and watch the messages that appear in the Console area.

FIGURE 5-3:
The Developer
Tools Console

window in
 Microsoft Edge.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 289

While on the web page, all you see is that nothing happens, not much to help
with why that was. However, the Console shows the error messages that identify
exactly what went wrong. The misnamed getElementByid() functions generate
an error in the Console each time the mouse events trigger. The error messages
point you to the misnamed function and the line numbers they appear on in the
code. This is a huge help in figuring out just what went wrong when a dynamic
action doesn’t work correctly in your web pages.

Besides watching the error and warning messages that the web page generates on
its own, you can generate your own messages in the Console from your code. The
console.log() JavaScript function allows you to send messages directly to the
Console for viewing. Just add the line anywhere in your JavaScript code to display
useful information to the Console.

For example, one method I often use when working with events is to add a console.
log() function to identify each time an event is triggered in the JavaScript code:

function changeit(state) {

 if (state == "in") {

 console.log("mouseover triggered");

 document.getElementById("test").style.backgroundColor"red";

 } else if (state == "out") {

 console.log("mouseout triggered");

 document.getElementById("test").style.backgroundColor="yellow";

 }

 }

As the HTML5 code triggers each mouse event and passes control over to the
JavaScript changeit() function, the console.log() functions run based on just
which event triggered. Then you can just watch the Console area to tell just what’s
going on “behind the scenes” in your application!

Adding console.log() functions to the code is a great troubleshooting technique,
but be sure to remove them before taking your application live for site visitors! You
don’t want to needlessly clutter up their Console logs with troubleshooting data.

Below the Console window is a command line interface (CLI) that allows you to
enter JavaScript code to run inside the web page. Just type the JavaScript code you
want at the CLI prompt and press Enter or Return. You can use this to quickly
test variable values or override variable values to see how they affect the program
operation.

If you need to enter a long JavaScript statement (such as defining a function), click
the double up-arrow icon at the far-right side of the CLI. This expands the CLI
pane to display more lines of code. When you’re ready to submit the code, click
the green arrow to run it.

290 BOOK 3 JavaScript

The Console CLI also allows you to copy and paste code into it. You can use the CLI
to insert new functions, or test out additional code as the program is running. As
you enter new code, the browser interprets it on the fly, at the current point in the
application. If the application is paused by the Debugger tool, the code is executed
at that point in the program.

The Debugger
The Debugger allows you to watch your JavaScript code in action. This tool is a
powerful way to step through the JavaScript code in the application one statement
at a time and observe exactly what’s going on. The Debugger allows you to pause
the JavaScript code at any point in the program and view the following:

 » The path that caused the program to get where it is

 » The values of any variables that have been set by the code

 » How variables change at each statement after that point

To cause the JavaScript program to pause in the Debugger you need to set one or
more breakpoints in the code. The breakpoint signals to the browser to stop pro-
cessing code and enter the Debugger window.

When you open the Debugger tool window, you’ll see different sections appear in
the interface, as shown in Figure 5-4.

FIGURE 5-4:
The Debugger

interface in the
Microsoft Edge

Developer Tools.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 291

The Debugger interface has three main sections:

 » Script pane: The script pane (on the left side) shows the web page HTML5
and JavaScript code. It indicates whether there are any breakpoints and, if the
program is paused, where in the code it’s paused.

 » Watch pane: The watch pane (on the right side at the top) shows a list of
variables that you’re watching and their current values.

 » Call Stack and Breakpoints pane: The Call Stack and Breakpoints pane (on
the right side at the bottom) displays the chain of function calls that led to the
current location in the code (the call stack), as well as the list of breakpoints
set in the program code.

Each pane provides information about the running JavaScript program and what’s
going on each time the Debugger pauses the program to examine the code in a
breakpoint.

There are three ways to set a breakpoint in your JavaScript program:

 » Click next to the line number in the script pane of the statement where you
want the program to pause.

 » Use the icons in the Breakpoints pane to add an XML or event breakpoint.
Event breakpoints pause the program when a specified event is triggered
(such as when you click the mouse button).

 » Add the debugger statement in your JavaScript code. Although this method is
handy, it can also be very dangerous. If you use this method, don’t forget to
remove the debugger statements from your code before going live with site
visitors.

Setting breakpoints inside the Debugger interface is the best method. Those
breakpoints are only temporary — they go away when you close out your browser
window.

When the Debugger pauses the program code at a breakpoint, you have a set of
icons available above the script pane that control how the browser executes the
code in debugger mode. Table 5-1 lists the icons that you can use.

292 BOOK 3 JavaScript

To go line-by-line through the JavaScript code, use the Step Into control icon. If
you come to a JavaScript function in the code (such as the getElementById() func-
tion), clicking the Step Into control icon will follow the code into the JavaScript
library that implements that function. This can get somewhat tedious at times,
because some JavaScript functions require hundreds or even thousands of lines of
code to implement, before you get back to your own code! To avoid that, use the
Step Over control icon. The Step Over control feature runs through the JavaScript
library code that implements the function, but then pauses again when control
gets back to your code.

When you’re done debugging the code, click the Continue control icon to return
back to the normal operation of the program.

To watch the Debugger tool in action, follow these steps:

1. Ensure that the Apache web server is running; if it isn’t, start it from the
XAMPP Console.

2. Open your Internet Explorer or Edge browser and enter the follow-
ing URL:

http://localhost:8080/hovertest.html

TABLE 5-1	 Debugger Control Icons
Icon Description

Continue Removes the code pause and continues with the next statement.

Break Exits from the Debugger mode after the next statement.

Step Into Proceeds to the next line of code. If the next line is a function, the Debugger follows
into the function code.

Step Over Proceeds to the next line of code. If the next line is a function, the Debugger runs the
function code, but not in debug mode.

Step Out Exits from the called function back to the main program.

Break on
New Worker

Exits the Debugger when a new web page is created.

Exception Control Sets how to handle exceptions as they’re thrown in the code.

Show
Next Statement

Lets you skip lines of code to execute in the program.

Run to Cursor Resumes execution of the code until the line in the code where the cursor is located.

Set Next Statement Lets you skip statements in a function without running them.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 293

3. Press F12.

The Developer Tools window appears.

4. Click the Debugger tab.

5. In the script pane, click the line number for the first statement in the
changeit() function.

This should be the following line:

if (status == "in") {

6. Observe what happens in the Breakpoint pane.

A new breakpoint should be set, indicated by a red dot next to the line.

7. Click Add Watch in the Watches pane.

8. In the text box that appears, type state, to watch the state variable that’s
used in the changeit() function.

9. Reload the hovertest.html page in the browser window and then hover
the mouse pointer over the p element section on the web page.

When you hover the mouse pointer over the p element, that triggers the
onmouseover event, which calls the changeit() JavaScript function. The
Debugger detects the breakpoint that you set and pauses the program
execution, as shown in Figure 5-5.

FIGURE 5-5:
Pausing the code
at a breakpoint in

the Debugger.

294 BOOK 3 JavaScript

Notice the information you now have available at your fingertips. The orange arrow
in the Script pane indicates the statement at which the debugger is paused. In the
Watches pane, you can now see the state variable’s value as the program enters into
the changeit() function. In the Call Stack and Breakpoints pane, you can see just
how the program got to the changeit() function. It shows that the main program
thread triggered an onmouseout event, and it’s currently at the changeit() function.
In the Script pane, you see a pointer that shows just where in the code things stopped.

Follow these steps to continue on with the debugging process:

1. Click the Step Into icon to move on to the next line of code.

If you kept the console.log() statement in the code from the previous
example, it’ll take you into the JavaScript library to run that function. If you
prefer to avoid doing that, click the Step Over icon.

2. Continue clicking the Step Into icon to walk your way through the
changeit() function code in the web page.

Eventually the pointer will return to the p element defined in the hovertest.
html file.

3. Click the Continue icon in the controls.

The Debugger will again stop at the changeit() function. This is because it
detected that the mouse pointer is no longer in the p element section, so the
onmouseout event triggered.

4. Note the value of the state variable.

It should now be set to out, as shown in Figure 5-6.

FIGURE 5-6:
Stopping the

Debugger later
on in the code.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 295

5. Click the Step Into icon, and watch how the if...else statement in the
code evaluates the state variable and jumps to the else section of the code.

6. Click the Continue icon to return the program back to running normally.

7. Disable the breakpoint that you previously set by clicking the check box
for the breakpoint in the Breakpoints pane.

8. Run the program again and watch what happens.

Now the Debugger won’t stop at the breakpoint.

9. Close the browser window to end the test.

With just a few simple commands, you have a full-fledged method of debugging
your dynamic web applications. That makes developing your web applications a
much easier task.

Working Around Errors
There may be times in your application where you don’t want things to come
to a grinding halt just because of some type of error in the program code. Often
 JavaScript programs rely on data supplied by the site visitor, and you wouldn’t
want an invalid data entry to cause your program to crash.

One method to prevent that is to intercept errors before they make it to the
browser and cause problems. This process is called “catching the errors.” With
catching the errors, the program detects when something is amiss and provides
some alternate code for the browser to run, bypassing the normal code that would
have produced the fatal error.

You do this in JavaScript with the try...catch statement. The try...catch
statement consists of two code blocks — the try code block to run and monitor
for errors, and the catch code block to run in case any errors are detected in the
try code block. Here’s the format for the try...catch statement:

try {

 code to test

} catch (err) {

 code to run if test fails

}

296 BOOK 3 JavaScript

The catch() function takes one parameter — a variable to place an Error object
that JavaScript generates to describe the error that occurred. The Error object has
two properties:

 » name: Returns the name of the error type

 » message: A string message describing the error in more detail

The error name identifies the type of error that occurred in the try code block.
There are six different error types supported in JavaScript, shown in Table 5-2.

Besides automatically detecting errors, you can create your own custom error
checks and messages by using the throw statement inside the try code block:

try {

 if (value < 1000) throw "The value is too small";

 if (value > 10000) throw "The value is too large";

} catch (err) {

 alert(err);

}

The string assigned to the throw statement is displayed as part of the Error object.
To demonstrate using the try...catch method to your JavaScript code, let’s work
out a simple exercise. Follow these steps to create the demo:

1. Open your favorite text editor, program editor, or IDE package.

2. Type the following code:

<!DOCTYPE html>

<html>

<head>

TABLE 5-2	 JavaScript Error Types
Error Description

EvalError An eval() function has produced an error.

RangeError A value out of range has occurred.

ReferenceError An invalid location was referenced in the code.

SyntaxError Invalid JavaScript code was detected.

TypeError An invalid data type was used.

URIError An error in the encodeURI() function was detected.

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 297

<title>Catching Errors Test</title>

<style>

 fieldset {

 width: 450px;

 }

 label, input {

 margin: 10px;

 }

</style>

<script>

function calculate() {

 var games, scores, array, total, average, output;

 games = document.getElementById("games").value;

 scores = document.getElementById("scores").value;

 array = scores.split(',');

 total = 0;

 for(i = 0; i < array.length; i++) {
 total = total + parseInt(array[i]);
 }

 try {

 if (games == 0) {

 throw "Please enter a valid number of games";

 } else if (games == "") {

 throw "Please enter a valid number of games";

 } else if (isNaN(games)) {

 throw "Please enter a valid number of games";

 }

 average = total / games;

 output = "The average is " + average;
 document.getElementById("result").innerHTML = output;

 } catch (err) {

 document.getElementById("result").innerHTML = err;

 }

}

</script>

</head>

<body>

<fieldset>

<legend>Bowling Calculator</legend>

<label>Enter number of games bowled</label>

<input type="text" id="games" size="3">

<label>Enter scores, separated by commas</label>

<input type="text" id="scores" size="20">

<button onclick="calculate()">

298 BOOK 3 JavaScript

Calculate average

</button>

<p id="result"></p>

</fieldset>

</body>

</html>

3. Save the file as catchtest.html in the DocumentRoot folder of the Apache
web server.

That’s c:\xampp\htdocs for XAMPP on Windows, or /Applications/XAMPP/
htdocs for XAMPP on macOS.

4. Open the XAMPP Control Panel and start the Apache web server.

5. Open your browser, and enter the following URL:

http://localhost:8080/catchtest.html

You may need to use a different port in the URL for your web server.

6. Enter 3 for the number of games and 100,105,100 for the scores.

7. Click the Calculate Average button to view the results.

8. Change the number of games to an invalid value — enter 0 or some text,
or just leave the field empty.

9. Click the Calculate Average button and see what happens.

You should see the text from the appropriate throw statement that caught the
error appear.

10. Close the browser, and shut down the Apache web server.

When you enter an invalid value for the number of games, the if...then condi-
tion checks will detect it, and use the throw statement to intercept the error and
trigger the catch code block, displaying the message defined in the throw state-
ment (see Figure 5-7).

There’s one more piece to the try...catch statement that you can use. The
finally statement allows you to enter a block of code that gets executed no mat-
ter what happens in the try code block:

try {

 code to test

} catch (error) {

 code to run if errors

} finally {

 final code always runs

}

Tr
ou

bl
es

ho
ot

in
g

Ja
va

Sc
ri

pt
 P

ro
gr

am
s

CHAPTER 5 Troubleshooting JavaScript Programs 299

Any code you place in the finally code block runs at all times. If the code in the
try code block is successful, the JavaScript interpreter jumps to the finally code
block and runs that code. If the code in the try code block fails, the JavaScript
interpreter runs the code in the catch code block, and then runs the code in the
finally code block. This is a good way to have “cleanup” code for the function.

FIGURE 5-7:
Catching an

invalid data entry
using the try...
catch statement.

4PHP

Contents at a Glance
CHAPTER 1: Understanding PHP Basics . 303

Seeing the Benefits of PHP . 303
Understanding How to Use PHP . 305
Working with PHP Variables . 310
Using PHP Operators . 317
Including Files . 320

CHAPTER 2: PHP Flow Control . 325
Using Logic Control . 325
Looping . 331
Building Your Own Functions . 336
Working with Event-Driven PHP . 339

CHAPTER 3: PHP Libraries . 349
How PHP Uses Libraries . 349
Text Functions . 354
Math Functions . 361
Date and Time Functions . 365
Image-Handling Functions . 369

CHAPTER 4: Considering PHP Security . 375
Exploring PHP Vulnerabilities . 375
PHP Vulnerability Solutions . 384

CHAPTER 5: Object-Oriented PHP Programming 395
Understanding the Basics of Object-Oriented Programming 395
Using Magic Class Methods . 401
Loading Classes . 409
Extending Classes . 414

CHAPTER 6: Sessions and Carts . 419
Storing Persistent Data . 419
PHP and Cookies . 424
PHP and Sessions . 430
Shopping Carts . 436

CHAPTER 1 Understanding PHP Basics 303

Understanding PHP
Basics

Welcome to the PHP minibook! If you’ve been following along through the
previous minibooks, you’ve seen how to create web page content using
HTML5, how to style and position it using CSS3, and how to add some

dynamic features to your web pages using JavaScript. This minibook examines the
next piece to dynamic web applications — using a server-side programming lan-
guage to make your web applications even more dynamic. As the title of the book
suggests, the server-side programming language that I discuss is PHP, one of the
most popular server-side programming languages in use on the Internet today!

Seeing the Benefits of PHP
So far, you’ve already seen that JavaScript is a popular client-side programming
language and that it has the ability to change the content and style of a web page
dynamically. One question you may be asking is, “Why do I need a server-side
programming language, too?” This section examines what your web applications
will gain by adding PHP to the mix and what you can do when you incorporate PHP
code in your applications.

Chapter 1

IN THIS CHAPTER

 » Understanding PHP

 » Using PHP in HTML5 programs

 » Storing data in PHP programs

 » Including PHP code in multiple
programs

304 BOOK 4 PHP

A centralized programming language
One of the downsides to using a client-side programming language is that your
code is dependent on how each individual browser runs it. Great strides have been
made in the standardization of JavaScript, but each browser still has its own set of
quirks when running JavaScript code, as well as its own set of libraries that offers
different features, making it impossible to know just how your JavaScript code
will run in all situations.

Unlike that environment, server-side PHP programs run on the same server that
hosts your web pages, so every site visitor who accesses your web pages runs the
PHP code on the same server, using the same set of library features. You know
exactly how your application code will run and exactly what it will produce for all
your website visitors.

Another added benefit of using PHP code in your web pages is the ability to con-
trol the actual PHP server itself. Because all the PHP code in your web pages runs
from the same location, you can customize the feature settings in the PHP server
to your specific environment. This allows you to utilize just the libraries you need
or set memory usage just how you want, giving you some control over the perfor-
mance of your web applications.

Book 1, Chapter 2, shows some of the configuration settings available in the PHP
server and how you can change them to customize your PHP environment.

Centralized data management
These days, data rules the world. Just about every web application requires some
type of data to run. Whether it’s displaying news stories, posting blog entries, or
just tracking your bowling team scores, you need some type of data to use in your
dynamic web application.

When you use data, you need some method for storing it. A content management
system (CMS) provides an interface to track data in a single repository, allowing
you to create, read, update, and delete data records freely. The CMS package is
often installed as part of the web server environment and often utilizes a database
server that specializes in quickly storing and retrieving data records.

By using PHP, you can access the data in your CMS package directly from the server.
That usually means faster response times, as opposed to your individual site visi-
tors accessing the CMS server from their locations. It also means more control over
how your application accesses and displays the data. The only data your site visitors
can see is what your application presents to them. All your CMS access information
stays hidden on the server — none of the code to access the data is downloaded to
the client browsers. This is a also huge benefit for security reasons.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 305

Understanding How to Use PHP
After you decide to incorporate PHP into your web applications, you need to know
just how to do that. This section walks through the basics of adding PHP code to
your web pages and how to get output from your PHP programs to appear in your
web pages as they display in your site visitors’ browsers.

Embedding PHP code
Just as with JavaScript, you embed PHP code directly into the HTML5 code that
creates the web page. As you can probably guess, you need a way to identify the
embedded PHP code, and that method is to use tags.

There are actually four different ways to tag PHP code in the HTML5 document.
The most common method is to use the special <?php and ?> tag combination.
Just place the PHP code you need to embed between the opening <?php tag and
the closing ?> tag, like this:

<!DOCTYPE html>

<html>

<body>

<?php

 php code

?>

</body>

</html>

You can place the PHP tags anywhere in the HTML5 code — they don’t need to be
in the body element. You can have as many HTML5 elements that you need out-
side the PHP code area to provide supporting content on the web page, but you
can’t place HTML5 elements inside the PHP code area. Only PHP code can reside
inside the PHP code area.

The <?php tag is the most common way to identify PHP code, but it’s not the only
way. Another method is to use the <script> HTML5 tag:

<!DOCTYPE html>

<html>

<body>

<script language="php">

 php code

</script>

</body>

</html>

306 BOOK 4 PHP

This looks very similar to what you use to embed JavaScript code into HTML5
code, which could be good or bad. Just remember to include the language attrib-
ute in the tag and identify the code as PHP code. Using the same <script> tags
to embed both JavaScript and PHP code can be a bit confusing, which is why the
<?php tag has become so popular.

The third type of PHP tag is called the short open tag. It uses <? as the opening tag,
instead of the full <?php tag. For this tag method to work, though, the PHP server
must have the short_open_tag setting enabled in its configuration file. The short
open tag saves some typing, but it can get confusing as you look through the pro-
gram code.

Finally, the fourth type of PHP tag is the <% opening tag. This is called the ASP style
tag because this is the same tag used when programming with the Microsoft ASP.
NET family of server-side programming languages. If you’re already comfortable
with using ASP.NET programming, you can use this style of tag for PHP coding as
well. Similar to the short open tag, you must enable the asp_tags setting in the
PHP server configuration file to use this method.

Identifying PHP pages
Because PHP is a server-side programming language, the PHP processor that runs
the PHP code is located on the server — usually the same physical server as the
web server. To process the embedded PHP code, your web page must pass your
HTML5 document to the PHP server on its way to the site visitor who requested it.

The web server must be able to detect when a web page contains embedded PHP
code and when it doesn’t. If the web page contains PHP code, the web server must
pass the entire HTML5 document to the PHP server for processing. We don’t want
the web server to pass all HTML5 documents to the PHP server, because that
would slow down processing web pages that don’t contain embedded PHP code.
The web server must know when it has to send an HTML5 file to the PHP server
for processing. You control that by using file extensions.

When the Apache web server has the PHP module installed, there’s a directive in
the main httpd.conf configuration file identifying PHP programs that need to be
sent to the PHP server for processing. That directive looks like this:

AddHandler application/x-httpd-php .php

This tells the Apache web server to send any files that site visitors request that end
with the .php file extension to the PHP server. This way, you can identify any web
pages that contain embedded PHP code by using the .php file extension instead of
the standard .html file extension. Figure 1-1 shows this process.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 307

Using the correct file extension for PHP files is crucial, because if you embed any
PHP code into a file with an .html file extension, the PHP code won’t get pro-
cessed; instead, it will appear on the web page as text.

When working with PHP code, you must run the web page through the web server
so that it gets processed by the PHP server. You can’t just double-click a .php file
to open it in your browser — you must open your browser and use the http://
URL to access the file via the web server.

Displaying output
As the PHP server reads the code in the file that the web server sends it, it passes
any HTML5 code directly on to the client browser that requested the file and pro-
cesses any PHP code embedded in the document. As it processes the PHP code,
you’ll want to be able to dynamically add content to the web page (after all, that’s
what you’re here for). You do that using the echo statement.

The echo statement injects text into the HTML5 data stream that’s sent to the
client browser. The data appears to the client browser just as if it came from the
HTML5 document — it has no idea that the PHP server dynamically generated the
content.

To use the echo statement, you just specify the string value that you want to insert
into the HTML5 output:

echo "this is my output";

FIGURE 1-1:
Processing PHP

code in a
web page.

308 BOOK 4 PHP

In PHP, function names are not case sensitive, but it’s fairly standard convention
to use lowercase for function names. Also in PHP, all statements must end with
a semicolon. If you forget the semicolon, you’ll generate a parse error from the
PHP processor.

Follow these steps to test out embedding PHP in an HTML5 document:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Type the following code:

<!DOCTYPE html>

<html>

<body>

<h1>This is a test of PHP code</h1>

<?php

 echo "<p>This text was dynamically generated!</p>";

?>

<h1>This is the end of the test</h1>

</body>

</html>

3. Save the file as phptest.php in the DocumentRoot folder of your web server.

For XAMPP on Windows, use the c:\xampp\htdocs folder; for XAMPP on
macOS, use /Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/phptest.php

You may need to use a different TCP port based on your Apache web server
setting.

6. Close your browser when you’re done.

When you run the phptest.php file in your browser, the web page should appear
as shown in Figure 1-2.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 309

The p element section appears just as if you had typed it directly in the HTML5
code. The PHP server injected it into the HTML5 code, and the browser added it to
the Document Object Model (DOM) tree just as normal. It’s also important to note
that, in this demonstration, I embedded standard HTML5 tags into the output
from the echo statement. Everything that’s inside the string value is sent to the
client browser, including any HTML5 elements that you specify.

If you see the PHP code appear in your web page, that means the PHP server didn’t
process the PHP code. Check to make sure you don’t have a typo in the opening
<?php tag (note that there are no spaces in the tag) and that the file uses the .php
file extension.

Handling new-line characters
There is one oddity that you may have noticed when running the phptest.php
demo program. If you use the Developer Tools for your browser (see Book 3,
 Chapter 5) and look at the HTML5 code generated, it may look a little odd, as
shown in Figure 1-3.

Instead of the p element being on a separate line in the code, it got pushed onto
the same line as the second h1 element.

FIGURE 1-2:
Output generated

by the phptest.
php program.

310 BOOK 4 PHP

The echo statement in PHP doesn’t add a new-line character at the end of the out-
put. Because there aren’t any new-line characters, any content that you display
using the echo statement in PHP appears on the same line in the HTML5 code.

The HTML5 standard ignores any white space between elements in the document,
so the fact that the p element is on the same line as the h1 element doesn’t effect
the output that appears on the web page at all. However, having two elements on
the same line can make troubleshooting HTML5 code generated by PHP somewhat
complicated. That’s especially true as you use PHP to create entire web pages!

To solve this problem, many PHP developers like to add their own new-line
 characters to the ends of all echo statements in the code, like this:

echo "<p>This text was dynamically generated!</p>\n";

The \n new-line character doesn’t change the appearance of anything on the web
page as it appears in the browser, but it does separate the p element from the fol-
lowing h1 element when you look at the HTML5 code using the browser Developer
Tools features. It adds some extra typing to your development work, but it can save
you lots of time trying to troubleshoot HTML5 code issues in your applications!

Working with PHP Variables
The key to dynamic web applications is working with data. Just like any other
programming language, PHP allows you to use variables to store data in your
programs. Variables are placeholders that you assign values to throughout the

FIGURE 1-3:
Viewing the

HTML5 code
generated by the

phptest.php
program.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 311

duration of the program. When the program references the variable, it represents
the actual value that the program last assigned to it.

This section walks through what you’ll need to know to use variables in PHP.

Declaring variables
In PHP, you identify variables with a leading dollar sign ($) in front of the vari-
able name. You must start a variable name with either a letter or an underscore
character (_), and it can contain only letters, numbers, and underscores (the vari-
able name can’t contain any spaces or other special characters). Here are some
examples of valid PHP variable names:

$test

$Test1

$_another_test

Just as in JavaScript, PHP variable names are case-sensitive, so be careful when
you reference variables in your code. The variable name $Test is different from
$test. Case-sensitivity causes all sorts of headaches when trying to troubleshoot
PHP code.

Unlike with JavaScript, with PHP, you don’t declare variables with a var
statement — you just use them. However, the first time you use a variable must
be within an assign statement, assigning a value to the variable:

$test = "This is a test string";

The assignment statement assigns the value specified on the right side of
the equal sign to the variable specified on the left side. As with all other PHP
statements, don’t forget the semicolon at the end of assignment statements!

After you assign a value to a variable, you can use it in your application:

$value1 = 10;

$value2 = 20;

$result = $value1 + $value2;

If you try using the third statement before assigning values to the $value1 or
$value2 variables, you’ll get a warning message from PHP about using a value
with no assigned value. However, by default, PHP will assume the unassigned
variables contain a value of 0.

312 BOOK 4 PHP

As you can tell from these examples, PHP allows you to store different data types
in variables. The next section takes a closer look at that.

Seeing which data types PHP supports
Just as with JavaScript, PHP supports the following data types:

 » Integer: Stores whole-number values

 » Float: Also called floating-point or double; stores real numbers

 » Boolean: Stores a true or false value

 » String: Stores a series (string) of characters

 » Array: Stores multiple values referenced by the same variable name

 » Object: Stores instances of classes

 » Reference: Stores a pointer to a complex data type

In PHP, just as in JavaScript, a single variable can hold any type of data at any time
(PHP doesn’t enforce strict data typing). Changing the data type stored in a vari-
able can get confusing, and I strongly recommend sticking with one data type per
variable name in your programs. Trust me, it’ll make your life a lot easier!

Follow these steps to test out using different data types in PHP code:

1. Open your editor and type the following code:

<!DOCTYPE>

<html>

<head>

<title>Testing PHP Data Types</title>

</head>

<body>

<h1>PHP Data Type Test</h1>

<?php

$name = "Rich";

$age = 100;

$salary = 575.25;

echo "<h2>Information for $name</h2>\n";

echo "Age: $age
\n";

echo "Salary: $$salary\n";

?>

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 313

<h1>This is the end of the PHP test</h1>

</body>

</html>

2. Save the file as phpdatatest.php in the DocumentRoot folder for your
web server.

3. Ensure that the web server is running, open your browser, and enter the
following URL:

http://localhost:8080/phpdatatest.php

4. Close the browser window when you’re done.

When you run the phpdatatest.php program, you should see the output as shown
in Figure 1-4.

Let’s look at exactly what’s going on in this PHP program. First, the code assigns
values for three variables:

$name = "Rich";

$age = 100;

$salary = 575.25;

FIGURE 1-4:
Output from the
phpdatatest.
php program.

314 BOOK 4 PHP

The first statement assigns a string value to the $name variable. To assign a string
value, you must enclose the data in either single or double quotes. These mark the
beginning and end of the string value.

After assigning the three variable values, the code then uses three echo state-
ments to display the variable values:

echo "<h2>Information for $name</h2>\n";

echo "Age: $age
\n";

echo "Salary: $$salary\n";

Unlike many other programming languages, PHP allows you to just use a vari-
able directly within a string value in the echo statement. However, how the echo
statement handles the variable depends on the type of quotes you use to define the
string (again with the quotes).

If you use double quotes to define the output string, PHP will display the variable
value in the output. If you use single quotes to define the output string, PHP will
display the variable name in the output:

echo "The variable value is $age";

echo 'The variable name is $age';

PHP AND QUOTES
You can use either single or double quotes to define a string value in PHP. They're inter-
changeable, but there are times when you'll want to use one over the other. Things
can get somewhat confusing when you have to use quotes inside the string value itself.
When you know you have to use one type of quote in the data, just use the other type
to define the string value:

$test1 = "This'll work just fine in PHP";

$test2 = 'Rich says "this works, too" in PHP';

Where things get tricky is when you need to use both types of quotes inside the data
value. To do that, you must escape the quote type that you use to define the string
value. Use the backslash to identify the quotes in the data:

$test3 = "Rich says \"This'll work, too\" in PHP";

Be careful when working with quotes in data — it’s easy to miss them and cause errors
in your PHP code.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 315

That’s extremely versatile, but it can be somewhat confusing, and it takes some
time getting used to as you code your PHP programs.

The last echo statement in the example code also does something rather odd: It
uses two dollar signs in front of the $salary variable. That doesn’t change any-
thing for the variable — it just displays a dollar sign in front of the value contained
in the $salary variable. This shows that PHP doesn’t get confused when embed-
ding variables inside the output string. You don’t need to place spaces before the
variable names. Again, though, this can get confusing, and you should take care
when embedding variables in your output.

There is one oddity with using single quotes for string values in PHP. For some
reason, PHP doesn’t recognize the \n newline character when you use single
quotes. For that reason, I tend to stick with using double quotes for my string
values.

Grouping data values with array variables
Array variables allow you to group related data values together in a list using a
single variable name. You can then either reference the values as a whole by ref-
erencing the variable name or handle each data value individually within the array
by referencing its place in the list.

PHP supports two types of arrays: numeric and associative. The following sections
cover these array types.

Numeric
The standard type of array variable is the numeric array. With the numeric array,
PHP indexes each value you store in the array with an integer value, starting at 0
for the first item in the array list.

The way to define an array is to use the PHP array() function in an assignment
statement:

$myscores = array(100, 120, 115);

Just because the array is a numeric array, that doesn’t mean you’re restricted to
storing only numeric values:

$myfamily = array("Rich", "Barbara", "Katie", "Jessica");

316 BOOK 4 PHP

Starting in PHP version 5.4, you can also define an array using square brackets
instead of the array() function:

$myscores = [110, 120, 115];

PHP references each value in the array using a positional number within square
brackets after the variable name. The first element in the array is at position 0, the
second at position 1, and so on.

For example, to retrieve the first value stored in the array, you’d use
$myfamily[0], which would return the value Rich.

Associative
The associative array variable is similar to what other programming languages call
a “dictionary.” Instead of using numeric indexes, it assigns a string key value to
individual values in the list. You use the special => assignment operator to do that
when you define the array:

$favs = array("fruit" => "banana", "veggie" => "carrot");

This array definition assigns the key value of fruit to the data value banana, and
the key value veggie to the data value carrot. With associative arrays, to refer-
ence a data value you must specify the key value in the square brackets:

$favs["fruit"]

There is one thing to watch out for, though, when using associative array vari-
ables in your PHP code. For some reason, the echo statement has a hard time
detecting associative array variables, so it needs some help from you.

When you use an associative array variable in an echo statement, it’s a good idea
to enclose it in braces, like this:

echo "My favorite fruit is {$favs['fruit']}\n";

This separates out the associative array variable from the string, so the echo
statement can properly process it. Also, notice that the problem with quotes pops
up when using associative array variables inside the echo statement. Because you
want the output to show the value of the associative array variable, you need to
use double quotes for the echo statement string. That means you must use single
quotes around the associative array variable key.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 317

Using PHP Operators
Now that you know how to store data in variables and display those values on a
web page, it’s time to take a look at how to dynamically alter the values. The core
of any programming language is the ability to let the computer system crunch
your data and then display the results for you. To do that, you need data operators.
This section covers the operators you’ll run into when using arithmetic and string
operations in your PHP code.

Arithmetic operators
Arithmetic operators provide the basic mathematical functions that you’re used to
seeing on your calculator, directly within your PHP programs. You can perform all
the standard calculations shown in Table 1-1 in your PHP programs.

Arithmetic operators are normally used in an assignment statement to perform
the calculations:

$value1 = 10;

$value2 = 20;

$result = $value1 + $value2;
echo "The result is $result\n";

The first two lines assign values to the two values used in the arithmetic opera-
tion. If you try to use a variable that hasn’t been assigned a value in an arithmetic
operation, you’ll get a warning from PHP.

The third line is where you use the arithmetic operation on the two values. If
you’ve never done programming before, this statement may look a little odd. Don’t
think of it as a mathematical equation. The equal sign is still acting to perform

TABLE 1-1	 PHP Arithmetic Operators
Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

318 BOOK 4 PHP

the assignment in PHP. The PHP server first evaluates the arithmetic operation on
the right side of the equal sign and then assigns the result to the $result variable
specified on the left side.

You can use both integer and float data type values in your arithmetic operations.
However, float data type values need a little explaining here.

You can define a float value in one of three ways:

$float1 = 3.14159;

$float2 = 2.3e10;

$float3 = 5E-10;

The e and E symbols represent an exponential value applied to the value specified.
You can use very large and very small float numbers, but be careful because the
precision that PHP uses is somewhat limited, based on the server system. Don’t be
surprised if you store the value 3.0 in a variable and then later on retrieve it and it
shows as 3.00001. Extra care is needed when working with float values.

Arithmetic shortcuts
There are a few different shortcuts you can use when implementing arithmetic
operators in your PHP code. A common function in programming code is to per-
form a mathematical operation on a value stored in a variable and then store the
result back in the same variable, like this:

$counter = $counter + 1;

This code adds 1 to the value currently stored in the $counter variable and then
saves the result back in the $counter variable. PHP provides a handy shortcut
method for doing this:

$counter += 1;

This code accomplishes the exact same thing, but in a shorter form. You can use
the same shortcut with any type of arithmetic operator:

$total *= 1.10;

This example multiplies the value stored in the $total variable by 1.10 and stores
the result back in the $total variable. You can also use variables on the right side
of the assignment operation:

$total *= $taxrate;

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 319

This is the same as typing the following:

$total = $total * $taxrate;

That can really save some typing for you!

Two other types of arithmetic shortcuts are the incrementor and decrementor oper-
ators. The incrementor operator adds 1 to a variable’s value:

$counter++;

The decrementor operator subtracts 1 from the variable’s value:

$counter--;

Now that’s really saving some typing!

The arithmetic shortcut operators assume there’s already a value stored in the
variable before the operation. If there isn’t, PHP will generate a warning message,
telling you that it assumes the initial value is 0. It’s always a good idea to initialize
a variable to a known value before trying to use it in any arithmetic operations.

Boolean operators
Besides the standard arithmetic operators, PHP supports Boolean operators for
logical operations with data. Boolean math allows you to work with TRUE and
FALSE conditions in your programs. The Boolean operators test whether two val-
ues are both TRUE, both FALSE, or one is TRUE and the other is FALSE. Table 1-2
shows the Boolean operators supported by PHP.

TABLE 1-2	 PHP Boolean Operators
Operator Description

and logical AND

&& logical AND

or logical OR

|| logical OR

xor logical XOR

! logical NOT

320 BOOK 4 PHP

Notice that PHP supports two forms for the AND and OR logical operations — both
the symbols and the names. There’s no preference as to which method to use, so
feel free to use the method you’re most comfortable with.

These operators come in handy when you need to evaluate two separate conditions
at the same time:

if (($age > 50) and ($gender == "F"))

This can help to simplify the code in your programs!

String operators
When you think of text string values, you don’t necessarily think of arithmetic
operations, but PHP does include a string operator that comes in handy when
working with string values.

The concatenation operator allows you to “add” two string values together to cre-
ate a single string value. Basically, the concatenation operator appends the second
string to the end of the first string.

The concatenation operator in PHP is the period:

$string1 = "This is ";

$string2 = "a test";

$result = $string1 . $string2;

The result stored in the $result variable will be the string This is a test. Note
that the concatenation operator doesn’t add any spaces either before or after the
text it concatenates, so it’s up to you to do that if you need the space!

Including Files
One feature of PHP that many web developers love is the ability to create and use
include files. Include files (sometimes referred to as server-side includes) allow you
to store HTML5 and PHP code in one file and then reference that file in another
web page file. There are a couple of ways to do that in PHP.

The include() function
The include() function allows you to include the contents of one web page
within another web page simply by referencing a filename on the server. The PHP

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 321

processor includes all the code contained within the included file, both HTML5
and PHP, directly into the PHP code of the main file, exactly where you place the
include() function. It’s just as if you had typed in all the lines of code from the
include file yourself into the main file!

Developers often use the include() function to create standard header or footer
sections on all the web pages in an application. Instead of having to add the same
header or footer code to every web page in the application, you just save the header
code in one file and the footer code in another file, and then use the include()
function to include the header and footer files into each web page code.

The format of the include() function is simple:

include(filename);

You just replace filename with the actual name of the file you need to include in
the program code.

Follow these steps to test out using an include file in a web page:

1. Open your editor and type the following code:

<h1>This is a test header</h1>

<?php

 echo "<p>This is the header text</p>\n";

?>

2. Save the file as myinclude.inc.php in the DocumentRoot folder for your
web server.

3. Open your editor to a new document and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing PHP includes</title>

</head>

<body>

<header>

<?php include("myinclude.inc.php"); ?>

</header>

322 BOOK 4 PHP

<section>

<h2>This is the body of the main web page</h2>

</section>

</body>

</html>

4. Save the file as mymain.php in the DocumentRoot folder for your web
server.

5. Ensure that the web server is running, and then open your browser and
enter the following URL:

http://localhost:8080/mymain.php

6. Close the browser when you’re done.

You should see the output as shown in Figure 1-5.

If you view the HTML5 code in your browser’s Developer Tools, the output appears
as a single HTML5 document. The browser is unaware that the code came from
two separate files on the server, and your site visitors will have no idea that you
cheated when creating all your web pages!

FIGURE 1-5:
The results of

the mymain.php
program.

U
nd

er
st

an
di

ng
 P

H
P

Ba
si

cs

CHAPTER 1 Understanding PHP Basics 323

The filename you specify in the include() function can use any file extension —
it’s not required to use .php, because the include() function includes it into
the main file for processing. However, it’s become common to use the .inc.php
file extension to identify include files and to separate them out from main PHP
files. You can also use either an absolute or relative path name to reference the
filename. Because the PHP server is accessing the file as a file and not as a web
document, you can’t use the http:// URL here — only a file path. Also, your web
server must have access to read the file on the server.

The require() function
There is one limitation to the include() function that may cause problems for
you. If PHP is unable to find the file you reference, it’ll produce a warning, but the
PHP server will continue to process the rest of the program code. That may have
detrimental effects on your program!

There may be times where you don’t want the PHP server to continue on process-
ing code if a crucial include file is missing from the server. Instead, you may want
the program to stop immediately and produce an error message instead of just a
warning. This is where the require() function comes in.

The require() function works exactly like the include() function, except for one
difference: It forces the PHP server to stop processing code if the include file fails
to load.

To test this out, follow these steps:

1. Open the mymain.php code from the previous example into your editor.

2. Change the include() function line to this:

require("mybadinclude.inc.php");

3. Save the file as mybadmain.php in the DocumentRoot folder for your web
server.

4. Ensure that the web server is still running and then open your browser
and go to the following URL:

http://localhost:8080/mybadmain.php

5. Close the browser and shut down the web server when you’re done.

When you run the mybadmain.php program, you may or may not see an error
 message on your web page, as shown in Figure 1-6.

324 BOOK 4 PHP

If you have the display_errors setting enabled in your PHP server configuration
file, you’ll see the error message. None of the HTML5 code from the main program
code appears on the web page, because the PHP server stopped processing code
after the require() function failed.

FIGURE 1-6:
The output from
the mybadmain.

php program.

CHAPTER 2 PHP Flow Control 325

PHP Flow Control

In the preceding chapter, I cover the basics of creating and running PHP
 programs. I show you how to use variables to hold data, but you don’t really
do much with them to test the data and perform operations. In this chapter, I

walk through how to use the PHP conditional tests to control how your program
behaves, as well as show how to loop through code to perform multiple iterations.
In case you have code that you find yourself using frequently, I show how you can
convert them into functions to share among your programs. Finally, I cover how
to use PHP code in your event-driven web applications to add to your dynamic
web applications.

Using Logic Control
Only having variables and echo statements in your PHP program would be pretty
boring. You need to give your programs some intelligence so that they can make
decisions based on what’s happening in the application and display different sets
of content based on those decisions.

Every programming language has methods for controlling the order the program
handles statements, called the program flow, and PHP is no different. This section
walks through the basics of controlling program flow in your PHP programs.

Chapter 2

IN THIS CHAPTER

 » Adding conditional tests

 » Looping through code

 » Building functions

 » Working with event-driven
programming

326 BOOK 4 PHP

The if statement
The if statement controls which statements PHP should run in the program
based on conditions. You use if statements in your everyday life (for example, if
it’s raining, then you’ll bring an umbrella). You apply the same logic to your PHP
programs.

The basic format for the if statement is:

if (condition)

 PHP statement to run

PHP evaluates the condition defined inside the parentheses to determine whether
it should run the specified PHP statement that appears immediately after the if
statement. The condition uses a special PHP expression called the comparison
operator, which it uses to compare two values. If the comparison evaluates to a
Boolean TRUE value, PHP runs the statement listed after the if statement. If the
comparison evaluates to a Boolean FALSE value, PHP skips the statement.

This may sound confusing, but it’s not all that hard when you get used to the for-
mat. Here’s an example of a simple if statement:

if ($age > 21)

 echo "Sorry, you are too old to play";

The condition inside the parentheses checks if the value stored in the variable
named $age is greater than 21. If it is, the condition evaluates to a TRUE value and
PHP runs the echo statement. If it isn’t, the condition evaluates to a FALSE value
and PHP skips the echo statement and moves on.

There are quite a few comparison operators that you have available to use in
PHP. Table 2-1 shows the comparison operators available.

Notice that the comparison operator used to check if two values are equal is the
double equal sign, not a single equal sign. Forgetting that small detail causes all
sorts of annoying errors in your PHP code because the equal sign performs an
assignment operation, which always returns a TRUE value (been there, done that).

The triple equal sign not only compares the value of the variables, but also checks
to make sure the variables contain the same data types. For example, a Boolean
data type of TRUE will match against an integer data type of 1 using the double
equal, but not the triple equal.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 327

If you need to control more than just a single statement using the if condition,
group the statements using braces:

if (condition) {

 statement1

 statement2

 statement3

}

You can have as many PHP statements contained within the group block as
 necessary — they’ll all be controlled by the single condition in the if statement
line. Here’s an example:

if ($price > 50) {

 $tax = $price * .07;

 $shipping = 10;

 $total = $price + $tax + $shipping;
}

In this example, the entire group of statements will only be run by PHP if the
$price variable value is greater than 50.

TABLE 2-1	 PHP Comparison Operators
Operator Description

== Equal to the same value

=== Equal to the same value, and they’re the same data type

!= Not equal to the same value

<> Not equal to the same value

!== Not equal to the same value, or they aren’t the same data type

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

328 BOOK 4 PHP

The else statement
The if statement has a cousin, called the else statement. The else statement
allows you to provide an alternative group of statements to run if the condition in
the if statement evaluates to a FALSE value:

if (condition) {

 PHP statements to run if TRUE

} else {

 PHP statements to run if FALSE

}

This gives you total control over what PHP statements are run in any condition!

The elseif statement
You can string if and else statements together, but that uses a new statement in
place of the else statement, called the elseif statement (yes, that’s else and if
as one word). An elseif statement looks like this:

if (condition1){

 PHP statements to run if condition1 is TRUE

} elseif (condition2) {

 PHP statements to run if condition2 is TRUE

}

You can string as many elseif statements into the code block as necessary to
check for alternative conditions. Each elseif statement requires its own condi-
tion check.

Follow these steps to try out using if, else, and elseif statements:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Type the following code into the editor:

<!DOCTYPE html>

<html>

<head>

<title>Testing PHP Program Control</title>

</head>

<body>

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 329

<h1>Random number test</h1>

<?php

 $number = rand(1, 100);

 if ($number > 50) {

 echo "<h2>The value $number is big!</h2>\n";

 } elseif ($number > 25) {

 echo "<h2>The value $number is medium</h2>\n";

 } else {

 echo "<h2>The value $number is small</h2>\n";

 }

?>

</body>

</html>

3. Save the file as phpconditiontest.php in the DocumentRoot folder for
your web server.

For XAMPP on Windows, use c:\xampp\htdocs; for XAMPP on macOS,
use /Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel and start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/phpconditiontest.php

You may need to change the TCP port used in the URL to match your web
server.

6. Click the Refresh button on your browser to reload the web page.

That should run the PHP program again, selecting a new random number.

7. Close the browser when you’re done.

The program uses the PHP rand() function to select a random number from
1 to 100. The value is compared in two separate condition checks in the if and
elseif statements. If both fail, the code falls through to the final else statement.
PHP runs the appropriate echo statement based on which condition succeeds.
Figure 2-1 shows an example of the output you should see in your web page.

Each time you click your browser’s Refresh button, the browser makes a new
request to the server to reload the web page. That triggers the server to reload the
web page in the PHP server, which in turn reruns the program.

330 BOOK 4 PHP

The switch statement
Writing long if, elseif, and else statements to check for a long list of condi-
tions can get tedious. To help out with that, PHP provides the switch statement.
The switch statement allows you to perform one check, and then provide multiple
values to compare the check against:

switch (condition) {

 case value1:

 statement1;

 break;

 case value2:

 statement2;

 break;

 default:

 statement3;

}

The switch statement evaluates the condition you specify against the different
values presented in each case statement. If one of the values matches the result
of the condition, PHP jumps to that section of the code to run the statements con-
tained in that section.

It’s important to note, though, that the case statements are labels and not code
blocks. After PHP runs the statements in the case section it jumped to, it continues
to run the statements in all the case sections after it! To prevent that from hap-
pening, use the break statement at the end of the case code section. That causes
PHP to break out of the switch statement and skip any remaining case sections.

FIGURE 2-1:
The output

from the
phpcondition

test.php
program.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 331

Also, you can place a default statement section at the end of the switch
statement code block. If none of the case values matches the condition value, PHP
jumps to the default section.

Looping
Sometimes you’ll find yourself needing to repeat the same operation multiple
times, such as when you’re displaying all the values in an array variable or data-
base table. You could just write out all the PHP statements yourself, but that could
get cumbersome:

$family = array("Rich", "Barbara", "Katie", "Jessica");

echo "One member of my family is $family[0]
\n";

echo "One member of my family is $family[1]
\n";

echo "One member of my family is $family[2]
\n";

echo "One member of my family is $family[3]
\n";

This code would certainly display all the elements contained within the array, but
what if there were 100 elements in the array? That would require a lot of coding!

Notice that most of the code in the echo statements is the same — the only thing
that differs is the index used in the array to reference the specific data element in
the array. All that you need to do is iterate through the index numbers and use the
same code. Well, that’s exactly what you can do using the PHP looping functions.

PHP provides a family of looping functions available for you to use in your code.
The following sections walk through the different ways to loop through code
in PHP.

The while family
The while statement allows you to create a simple loop of code based on a condi-
tion that you specify in the statement:

while (condition) {

 statements

}

In each iteration of the loop, PHP evaluates the condition you specify. If the
 condition evaluates to a TRUE value, PHP runs the statements contained in the

332 BOOK 4 PHP

while code block. As soon as the condition evaluates to a FALSE value, PHP breaks
out of the loop and continues on with the next statement after the loop.

The while statement is tricky in that something inside the loop code must alter
the value checked in the condition; otherwise, it will never end (called an endless
loop). Usually, there’s some type of variable that you must change inside the loop
and then check in the condition.

Follow these steps to test using the while statement to create a loop:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP While Test</title>

</head>

<body>

<h1>Presenting the Beatles</h1>

<?php

$group = array("John", "Paul", "George", "Ringo");

$count = 0;

while ($count < 4) {

 echo "One member of the Beatles is

 $group[$count]
\n";

 $count++;
}

?>

</body>

</html>

2. Save the file as phpwhiletest.php in the DocumentRoot folder for your
web server.

3. Ensure that the web server is running and then open your browser and
enter the following URL:

http://localhost:8080/phwhiletest.php

4. Close the browser when you’re done.

When you run the program, you should see the output as shown in Figure 2-2.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 333

Remember that array data indexes always start at 0, so you need to start the
$count variable at 0 before entering the loop. In the while loop condition, you
need to check to make sure the $count variable value hasn’t gotten past the last
index in the array. With four data elements in the array, the last index value is 3.
So, as long as the $count variable value is less than 4, the program can continue
iterating through the code in the loop. The code uses the $count variable as the
$group array index to reference each individual data element in the echo state-
ment. Finally, there’s an incrementor statement to add 1 to the $count variable at
the end of each loop iteration.

Similar to the while statement is the do...while statement. The do...while
statement changes the order of when the condition check is performed:

do {

 statements

} while (condition)

With the do...while loop, PHP doesn’t check the condition until after it runs the
code inside the loop block. This ensures that the code will be run at least one time,
even if the condition evaluates to a FALSE value.

The for statement
The while loop statement is a great way to iterate through a bunch of data, but it
can be a bit cumbersome to use. With the while statement, you need to make sure

FIGURE 2-2:
The output of the
phpwhiletest.

php program.

334 BOOK 4 PHP

you set a PHP variable that changes value inside the loop code, and make sure you
code the condition to stop when that variable reaches a specific value. Sometimes
with large blocks of code, that can get complicated to track.

PHP provides an all-on-one type of looping statement called the for statement.
The for statement can keep track of loop iterations for you.

Here’s the basic format of the for statement:

for(statement1; condition; statement2) {

 PHP statements

}

The first parameter, statement1, is a PHP statement that the PHP server runs
before the loop starts. Normally, this statement sets the initial value of the coun-
ter used in the loop.

The middle parameter, condition, is the standard PHP condition check that’s
evaluated after each loop iteration. The last parameter, statement2, is a PHP
statement that’s run at the end of each loop iteration. This is normally set to
change the value of the counter used in the loop.

Here’s the same code used to demonstrate the while loop, but using the for
statement:

<?php

$group = array("John", "Paul", "George", "Ringo");

for ($count = 0; $count < 4; $count++) {
 echo "One member of the Beatles is

 $group[$count]
\n";

}

?>

Because the for loop does everything for you, you don’t need to worry about
incrementing the counter value inside the code block. At the end of each iteration,
PHP runs the incrementor specified in the for statement for you.

The foreach statement
One problem that you may often run into with PHP is having to iterate through all
the data elements contained within an associative array variable.

An associative array uses text keys, not numbers, to track data values. There’s no
way you can increment through the keys in an associative array variable using the
for statement.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 335

Fortunately, the PHP developers have come to your rescue with the foreach
 statement. The foreach statement loops through each of the keys created in an
associative array and allows you to retrieve both the key and its associated value.

Here’s the format of the foreach statement:

foreach (array as $key => $value) {

 PHP statements

}

In each iteration, the foreach statement assigns the associative key to the $key
variable, and its associated value to the $value variable. You can then use those
variables in your PHP code inside the code block.

Follow these steps to try out the foreach statement with an associative array
variable:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP foreach Test</title>

</head>

<body>

<h1>My favorites</h1>

<?php

$favs = array("fruit"=>"banana","veggie"=>"carrot","meat"

 =>"roast beef");

foreach($favs as $food => $type) {

 echo "$food - $type
\n";

}

?>

</body>

</html>

2. Save the file as foreachtest.php in the DocumentRoot folder of the web
server.

3. Ensure that the web server is running, and then open your browser and
enter the following URL:

http://localhost:8080/foreachtest.php

4. Close the browser when you’re done.

336 BOOK 4 PHP

When you run the program, you should get the results shown in Figure 2-3.

The foreach statement iterates through each key contained in the $favs associ-
ative array variable, assigning the key to the $food variable and its value to the
$type variable. The code then uses the echo statement to display the values on
the web page.

Building Your Own Functions
While you’re coding in PHP, you’ll often find yourself using the built-in functions
available (such as the rand() function you used earlier in the example programs).
Functions are nothing more than PHP code someone else wrote to accomplish a
useful feature that you can use in any program. Instead of having to copy all the
code into your application, you just use the function name.

PHP allows you to create your own functions to use in your programs and share
with others. After you define a function, you can use it throughout your program.
This saves typing if you use a common routine or block of code in lots of places in
your application. All you need to do is write the code once in the function defini-
tion and then call the function everywhere else you need it.

FIGURE 2-3:
The output

from the
foreachtest.
php program.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 337

The basic format for a function definition looks like this:

function name(parameters) {

 function code

 return value;

}

The name must uniquely identify the function. It can’t be one of the existing PHP
function names, and it can’t start with a number (although numbers can appear
anywhere else in the function name).

The parameters identify one or more variables that the calling program can pass
to the function (or you can have a function that requires o parameters). If there is
more than one variable in the parameter list, you must separate them with com-
mas. You can then use the variables anywhere within the function code, but they
only apply to inside the function code block. You can’t access the passed parame-
ter variables anywhere else in the program code.

Any variables you define inside the function code apply only to the function code.
You can’t use function variables in the PHP code outside the function definition.

The return statement allows you to pass a single value back to the calling pro-
gram. It’s the last statement in the function definition code, and it returns control
of the program back to the main code section in your program.

Try out the following steps to experiment with creating a function and using it in
your PHP program:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP Function Test</title>

</head>

<body>

<?php

function factorial($value1) {

 $factorial = 1;

 $count = 1;

 while($count <= $value1) {

 $factorial *= $count;

 $count++;
 }

 return $factorial;

338 BOOK 4 PHP

}

?>

<h1>Calculating factorials</h1>

<?php

echo "The factorial of 10 is " . factorial(10) . "
\n";

echo "The factorial of 5 is " . factorial(5) . "
\n";

?>

</body>

</html>

2. Save the file as factest.php in the DocumentRoot folder for your web
server.

3. Open your browser and enter the following URL:

http://localhost:8080/factest.php

4. Close your browser when you’re done.

When you run the factest.php program, the output should look like what’s
shown in Figure 2-4.

All the code required to calculate the function is contained within the factorial()
function definition code block. When PHP uses the factorial() function, it passes
a single value that the function assigns to the $value1 variable. When the calcula-
tion is complete, the function code returns the results back to the main program.

FIGURE 2-4:
The output from

the factest.php
program.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 339

The main program uses the factorial() function twice in the code, both embed-
ded in echo statements:

echo "The factorial of 10 is " . factorial(10) . "
\n";

echo "The factorial of 5 is " . factorial(5) . "
\n";

You can embed variables inside the string values in echo statements, but you can’t
embed functions. To insert the output from the function into the echo statement
output, the code uses the string concatenation operator (the period) to “glue”
the output from the strings and the factorial() functions into a single string to
display.

If you have lots of functions that you use in many of your programs, you can
define them in a separate file. Then to use the functions in your programs just
use the include() function to include the function file, and you can then use the
functions inside your programs without having to retype them!

Working with Event-Driven PHP
Because PHP is a server-side programming language, you can't associate it
directly with events that occur within the browser. However, that said, you can
link your PHP web pages to specific events in the web page so that the browser can
request a specific web page based on an event.

There are basically two methods for doing that:

 » Creating a link to a PHP web page

 » Creating a form to pass data to a web page

The following sections describe how to use each of these event-driven methods to
launch your PHP web pages.

Working with links
In HTML5, you create hypertext links on the web page using the anchor element:

Click here

The text Click Here appears on the web page, and when the site visitor clicks that
link, the browser requests the mypage.html file from the web server.

340 BOOK 4 PHP

You can use this method for passing small amounts of data to the PHP web pages
in your web application. As part of the URL, you can embed variable/value pairs
after the URL location that get passed to the web server:

Click to shop

The browser sends the data combination of content and store to the web server
as part of the GET request for the new web page. If you need to send more data,
separate them with the ampersand sign:

href="mystore.php?content=buy&prodid=10"

This link sends two variable/value pairs to the web server using the GET method:

content=buy

prodid=10

To retrieve the data values passed using the GET method in your PHP code, use
the special array variable $_GET[]. The PHP server populates the $_GET[] array
variable with all the variable/value pairs passed in the GET method from the client
browser. You can then access those array variables in your PHP program code.

Follow this example to test out using the GET method to pass data from a link click
event to a PHP program:

1. Open your editor and enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing Link Events in PHP</title>

</head>

<body>

<h1>Please select one of the following links:</h1>

Buy products

Browse for products

I need assistance

</body>

</html>

2. Save the file as linktest.html in the DocumentRoot folder for your web
server.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 341

3. Open a new window in your editor and enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing Link Events in PHP</title>

</head>

<body>

<h1>Thanks for visiting us!<h1>

<?php

$content = $_GET['content'];

echo "<h2>You are in the $content section</h2>\n";

?>

</body>

</html>

4. Save the file as linktest2.php in the DocumentRoot folder for your web
server.

5. Ensure that the web server is running, and then open your browser and
enter the following URL:

http://localhost:8080/linktest.html

6. Click one of the links on the web page, and observe what appears in the
resulting web page.

7. Close the browser when you’re done.

When you open the linktest.html web page, you’ll see a series of links that
simulate a navigation menu bar in a web page. Each link consists of a hyptertext
link that points to the same web page (linktest2.php) but sets a different value
for the content variable passed in the GET method. When you open the page, you
should see the results, as shown in Figure 2-5.

When you click a link on the web page, the browser sends a GET request to the
web server for the specified web page file, and passes the content variable setting
assigned in the anchor element tag.

When the Apache web server receives the GET request from the client browser,
it retrieves the linktest2.php file, and because it uses the .php file exten-
sion, it passes it to the PHP server to process the embedded PHP code. The PHP
server detects the GET variable/value pair passed and assigns it to the $_GET[]

342 BOOK 4 PHP

array variable. The code in the linktest2.php code retrieves that value from the
$_GET[] array variable and assigns it to another variable:

$content = $_GET['content'];

The code then uses that variable in the echo statement to display on the web page.
The result is shown in Figure 2-6.

FIGURE 2-5:
The output from

the linktest.
html file.

FIGURE 2-6:
The result of

clicking the Buy
a Product link on

the linktest.
html web page.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 343

Notice the URL that appears in the address bar in the link2test.php web page.
It contains the content variable, along with the value that was set by the anchor
element href attribute. Because the values set using the GET method appear in the
URL, they aren’t a secure method of sending data. You should limit using the GET
method to passing data about web pages and not personal information.

Processing form data
Book 2, Chapter 3, discusses how to build data entry forms using HTML5 code.
To refresh your memory, the core of the HTML5 form is the <form> tag. This
tag defines the beginning and end of the data fields that make up the form. The
<form> tag uses three main attributes:

 » name: Specifies a unique name for the form

 » method: Specifies the HTTP method used to pass data

 » action: Specifies the web page to pass the form data to

Within the form element, you include HTML elements for text boxes, text areas,
radio buttons, check boxes, and other HTML5 form data fields. Each element uses
a unique name to identify it in the form data that the browser sends to the action
web page.

Because PHP runs on the server, it has no way of knowing when the site visi-
tor is done filling out the form data fields in the browser window. With PHP, it’s
imperative to have a Submit button in the form to indicate to the browser when
to send the form data to the web page specified in the action attribute, using the
method specified in the method attribute.

A simple HTML5 form to use with PHP would look like this:

<form name="myform" action="mypage.php" method="POST">

<label>First name</label>

<input type="text" name="fname" size="40">

<label>Last name</label>

<input type="text" name="lname" size="40">

<input type="submit">

</form>

After the site visitor fills in the form data, she needs to click the Submit button to
send the data to the mypage.php file specified in the form action attribute. The
browser sends the form data embedded behind the scenes in the HTTP communi-
cation with the web server.

344 BOOK 4 PHP

In the receiving web server, it passes the data received by the POST method to the
PHP server, which uses the special $_POST[] array variable to retrieve the form
data. You can then access that data in your PHP code using the $_POST[] array
variable, along with the form field names:

$firstname = $_POST['fname'];

$lastname = $_POST['lname'];

The same method works for retrieving data from a <textarea> form field.

To retrieve the value from a select element, the name attribute of the select ele-
ment defines the field name, and the option element value attribute for the option
selected in the field is the value passed in the POST data. Consider the following
form field:

<select name="age">

<option value="young">18-35</option>

<option value="middleage'>36-55</option>

<option value="old">56+</option>
</select>

When the site visitor selects the option labeled 18-35 in the drop-down list, the
form sends the value young in the POST data. The PHP code can then access the
$_POST['age'] array variable to retrieve the selected value.

To retrieve the value from a radio button element, the name attribute for all the
buttons in the same group is the same. The value attribute defines what data is
sent to the server as part of the POST data:

<input type="radio" name="age" value="young">18-35

<input type="radio" name="age" value="middleage">36-55

<input type="radio" name="age" value="old">56+

The PHP code checks the $_POST['age'] variable for the data value passed by the
selected radio button.

Working with check box data fields can be a little tricky. The check box doesn’t
pass any data — it just indicates whether the box is checked. If the box is checked,
it sends the value specified by the value attribute assigned to the data field speci-
fied name attribute:

<input type="checkbox" name="age" value="old">

If the site visitor checks the box in the form, the form sends the data field age
with a value of old, and your PHP code can retrieve the selection using the
$_POST['age'] array variable.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 345

The problem comes in if the site visitor doesn’t select the check box. If the check
box is not selected, the form doesn’t send any data for the form field. In that case,
if you try using the $_POST['age'] array variable, you get an error from PHP that
it doesn’t exist.

To determine if a check box form field has been selected, you use the isset() PHP
function. The isset() function returns a TRUE value if the PHP variable exists and
has a value assigned to it or a FALSE value if not. You can then write something
like this:

if (isset($_POST['age'])) {

 $age = $_POST['age'];

} else

 $age = "not selected";

}

Now you’re able to determine whether the site visitor selected the check box.

Working with forms and PHP can be a bit tricky, but the more you practice, the
better you’ll get at it. Try out this example to get a feel for how to work with forms
and PHP:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP Form Test</title>

<style>

 input, textarea {

 margin: 5px;

 }

</style>

</head>

<body>

<h1>Please fill in the form</h1>

<form action="formtest.php" method="post">

<fieldset>

<legend>My test form</legend>

<label>First name</label>

<input type="text" name="fname" size="40">

<label>Last name</label>

<input type="text" name="lname" size="40">

<fieldset>

<legend>Select your favorite sport</legend>

346 BOOK 4 PHP

<input type="radio" name="sport" value="baseball">Baseball

<input type="radio" name="sport" value="football">Football

<input type="radio" name="sport" value="hockey">Hockey

<input type="radio" name="sport" value="soccer">Soccer

</fieldset>

<label>Please type your essay</label>

<textarea name="essay" cols="50" rows="10"></textarea>

<input type="submit" value="Submit your form">

</fieldset>

</body>

</html>

2. Save the file as formtest.html in the DocumentRoot folder for your web
server.

3. Open a new window in your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP Form Test</title>

</head>

<body>

<h1>Form results:</h1>

<?php

$fname = $_POST['fname'];

$lname = $_POST['lname'];

if (isset($_POST['sport'])) {

 $sport = $_POST['sport'];

} else {

 $sport = "not specified";

}

$essay = $_POST['essay'];

echo "<h2>First name: $fname</h2>\n";

echo "<h2>Last name: $lname</h2>\n";

echo "<h2>Favorite sport: $sport</h2>\n";

echo "<h2>Essay response:</h2>\n";

echo "<p>$essay</p>\n";

?>

</body>

</html>

4. Save the file as formtest.php in the DocumentRoot folder for your web
server.

PH
P

Fl
ow

 C
on

tr
ol

CHAPTER 2 PHP Flow Control 347

5. Ensure the web server is running and then open your browser and enter
the following URL:

http://localhost:8080/formtest.html

6. Fill in the from data fields, selecting a radio button but leaving the check
boxes all unchecked.

7. Click the Submit button when you’re done filling in the form.

8. Close the browser and shut down the web server.

The formtest.html file displays a standard HTML5 form on the web page, as
shown in Figure 2-7.

Enter your data in the form, but don’t make a selection for your favorite sport.
When you click the Submit button, the browser sends the form data as part of a
POST method to the web server, which passes the form data to the formtest.php
file as specified in the form action attribute.

The formtest.php code retrieves the form data and detects that none of the radio
buttons was selected. By using the isset() function. It displays the data passed
from the form, as shown in Figure 2-8.

Now you’re ready to process any HTML5 form using your PHP server-side pro-
gramming skills!

FIGURE 2-7:
The web form

produced by
the formtest.

html file.

348 BOOK 4 PHP

FIGURE 2-8:
The form results

as shown from
the formtest.

php file.

CHAPTER 3 PHP Libraries 349

PHP Libraries

As you start creating your dynamic web applications, you’ll often find your-
self wanting to perform certain functions that require quite a bit of coding,
such as manipulating data or performing complex mathematical calcula-

tions. The true test of a robust programming language is in how much work it can
save you by providing prebuilt code libraries that do most of the hard coding work
for you. Fortunately, PHP has an extensive set of built-in libraries that can save
you lots of development time as you build your web applications! This chapter
dives into the basics of using the built-in libraries in PHP.

How PHP Uses Libraries
All programming languages provide libraries of functions that help you with your
coding. How many there are and how they do that differs somewhat between pro-
gramming languages.

Some interpreted programming languages compile all the function libraries into a
single monolithic executable program that loads into memory each time the web
server runs a program that requires the interpreter. That can be a huge resource
hog on your server!

PHP took a more modular approach to things. Instead of compiling all the func-
tion libraries in a single program, PHP provides them as separate loadable library

Chapter 3

IN THIS CHAPTER

 » Getting familiar with PHP libraries

 » Working with text functions

 » Handling numbers

 » Using dates

 » Playing with images

350 BOOK 4 PHP

files, called extensions. That way, you (or your web-hosting company) can opt to
load only the extensions you need to use, saving memory on the server and hope-
fully improving the performance of the PHP server.

The downside to this approach is that you need to be more aware of just what PHP
extensions are available and which ones you should load. This section shows you
how PHP splits functions up into different extensions and how you can find the
functions you need to do your work.

Exploring PHP extensions
More than 150 extensions are available in the PHP package! There are exten-
sions to cover functions as simple as manipulating string values or as complex as
interacting with online search engines. The PHP developers have classified these
extensions into 27 categories. Table 3-1 shows the different categories, along with
a brief description of what each category contains.

TABLE 3-1	 PHP Extension Categories
Category Description

PHP behavior Functions that control how the PHP server operates

Audio formats Functions that handle and manipulate audio files

Authentication Functions that work with authentication services

Command line Functions that interact with the server command-line environment

Compression Functions that compress and archive files and folders

Credit card Functions that process credit card transactions

Cryptography Functions that encrypt and decrypt data

Database Functions that interact with database servers

Date and time Functions that handle dates and times

File system Functions that interact with the server file system

GUI Functions that work with user interface features

Human language Functions that work with character sets

Image processing Functions that create and manipulate images

Mail Functions that interact with mail servers

Mathematical Functions that perform complex mathematical operations

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 351

Each category contains multiple extensions that are available for you to load and
use in your PHP programs. There are far too many PHP extensions to list them all
individually here. For a full and current list of the PHP extensions, go to the PHP
online documentation at www.php.net/manual/en/funcref.php.

Examining the PHP extensions
You can view which extensions are actively installed in your specific PHP server
environment by using the special phpinfo() function. Just include that as a single
line in a PHP program. When you run the program, the phpinfo() function dis-
plays a table showing detailed information about the PHP server, including which
PHP extensions are currently installed.

Follow these steps to determine which PHP extensions are installed in your PHP
server environment.

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Type the following code:

<!DOCTYPE html>

<html>

<body>

Category Description

Non-text MIME Functions that handle binary data in MIME messages

Process control Functions that interact with processes on the server

Other Miscellaneous functions that manipulate data

Other services Functions that interact with network services

Search engine Functions that interact with online search engines

Session Functions that handle browser sessions

Text Functions that manipulate and process text

Variable Functions that work with complex objects and data structures

Web services Functions that interact with web service servers and clients

Windows Functions that access Microsoft Windows features on
Windows servers

XML Functions that handle and manipulate data in XML format

http://www.php.net/manual/en/funcref.php

352 BOOK 4 PHP

<?php

phpinfo();

?>

</body>

</html>

3. Save the file as extensions.php in the DocumentRoot folder for your web
server.

For XAMPP on Windows, that’s c:\xampp\htdocs; for XAMPP on macOS,
it’s /Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel, and then start the Apache web server.

5. Open your browser, and enter the following URL:

http://localhost:8080/extensions.php

You may need to change the TCP port in the URL to match your web server.

6. Examine the output generated by the phpinfo() function, looking for
which extensions are installed on your system.

7. Close the browser when you’re done.

Figure 3-1 shows the results from the XAMPP package running on a Windows
workstation.

FIGURE 3-1:
The output from

the phpinfo()
function.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 353

As you scroll through the listing generated by the phpinfo() function, you’ll see
separate sections devoted to the different extensions and the configuration set-
tings that control how they operate. Most likely, your PHP server has quite a few
(if not all) of the extensions already activated. If any are missing, you can usually
activate them yourself. That’s covered in the next section.

Including extensions
Most PHP server environments include all the extension library files in the PHP
server build, but they may not activate all of them to help save memory as the PHP
server runs. If you find yourself needing to activate a specific PHP extension, you
can easily do that from the PHP configuration file.

The first step is to find the php.ini configuration file for your PHP server envi-
ronment. The easiest way to do that is from the output of the phpinfo() function.

If you followed the steps in the previous exercise, you can view the output of the
phpinfo() function in your browser. In that output, look for the line in the top
section for Loaded Configuration File. That shows the path to the configuration
file the PHP server is using.

Using your system’s file manager program (File Explorer for Windows, Finder for
Mac), navigate to the folder where the php.ini file is stored, and then double-
click the file to open it with a text editor.

Look for the section labeled Dynamic Extensions within the php.ini configura-
tion file. This is where the configuration file defines the extensions to install. Each
extension is referenced by a single line. For Windows systems, it looks like this:

extension=name.dll

For Mac and Unix/Linux systems, it looks like this:

extension=name.so

The extension names are in the format php_name where name is the unique name
assigned to the extension. For example, the extension for interacting with MySQL
servers is called php_mysqli (the i is added because it’s an improved version from
the original MySQL extension).

354 BOOK 4 PHP

Not all PHP server environments use extensions, so you may not see any entries
for them in the php.ini configuration file. For example, the XAMPP for the
macOS environment compiles all the extensions directly into the main PHP server
executable.

Adding additional extensions
As you can probably guess, you can create your own PHP extensions for your own
custom functions. This has become quite popular in the PHP developer world, and
a clearinghouse has been created for sharing custom-made extensions with other
PHP developers.

The PHP Extension Community Library (PECL) hosts a library of custom exten-
sions shared by developers from around the world. You can access PECL at
https://pecl.php.net. There, you’ll find extensions that add additional func-
tionality to the standard PHP libraries, as well as add entirely new features, such
as the html_parse extension, which provides functions to access a remote web
page and parse the DOM tree elements to extract data!

Now that you know about PHP extensions, the following sections take a look at
some of the more popular ones and the functions they contain that can help save
you some time in your PHP coding.

Text Functions
Just about every web application needs to work with text data. There’s a wealth of
text processing and manipulation functions available at your fingertips within the
PHP extension library. This section walks through some of the more useful ones
that may come in handy as you process data in your applications. There are so
many text functions provided by PHP that trying to find just what you’re looking
for in the PHP online manual can be a bit overwhelming. This section breaks up
the functions into categories to help simplify things a bit.

Altering string values
PHP provides a handful of functions that manipulate either the text or the text
format in string values. Table 3-2 shows the string functions that can be useful
when you need to manipulate string values.

https://pecl.php.net

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 355

The string manipulation functions don’t change the value of the original string —
they just return a new string value. If you want to use the result in your program,
you have to assign it to another variable:

$newvalue = trim($data);

The htmlspecialchars() and strip_tags() functions are extremely helpful if
you’re creating a web application that accepts data from unknown site visitors.
Unfortunately, it’s all too common these days for an unseemly website to run
robot scripts that scan the Internet looking for websites that allow site visitors to
post comments without requiring a login. These robots then post advertisements
as comments in the website, and these advertisements more often than not con-
tain a hypertext link to a rogue website.

TABLE 3-2	 PHP String Manipulation Functions
Function Description

addslashes Adds an escape character (backslash) in front of single quote, double quote,
backslash, and NULL characters.

chop Removes all whitespace characters from the end of a string.

htmlentities Converts HTML codes into HTML tags.

htmlspecialchars Converts any HTML tags embedded in a string into HTML codes.

lcfirst Changes the first character of the string to lowercase.

ltrim Removes any whitespace characters from the start of a string.

money_format Formats a monetary string value into a currency format.

nl2br Converts newline characters to the
 HTML tag.

number_format Allows you to specify the format to display a number value.

rtrim Removes all whitespace characters from the end of a string.

str_replace Replaces the occurrences of a string with another string.

strip_tags Removes all HTML and PHP tags from a string.

strtolower Converts the string to lowercase.

strtoupper Converts the string to uppercase.

trim Removes all whitespace characters from the start and end of a string.

ucfirst Converts the first character of the string to uppercase.

356 BOOK 4 PHP

The htmlspecialchars() and strip_tags() functions can help block that
 silliness. They detect any HTML code embedded within a string value and either
remove them completely (the strip_tags() function) or convert the greater-
than and less-than symbols in the tag into the HTML > and < codes (the
htmlspecialchars() function). This helps prevent your site visitors from acci-
dentally clicking rogue hypertext links embedded within posts!

The nl2br() function comes in handy if your web application processes text files
to display on the web page. If the text file contains new-line characters, those
won’t display on the web page, which may alter the layout of the text. If you pass
the data through the nl2br() function, it converts any new-line characters in the
text to HTML5
 tags, preserving the text layout on the web page.

Yet another useful string manipulation function you don’t often see in other pro-
gramming languages is the addslashes() function. This function is useful when
you need to push data submitted by site visitors into a SQL database. It escapes
any single or double quotes embedded within the string value, so that they don't
conflict with any quotes needed to embed the string into a SQL statement to sub-
mit to the database. This little function can save you lots of trouble with handling
data for your database!

Splitting strings
Another common function in string manipulation is the ability to split strings
into separate substrings. This comes in handy when you’re trying to parse string
values to look for words. Table 3-3 shows the PHP string splitting functions that
are available.

TABLE 3-3	 PHP String Splitting Functions
Function Description

chunk_split Splits a string value into smaller parts of a specified length.

explode Splits a string value into an array based on one or more delimiter characters.

implode Joins array elements into a single string value.

str_getcsv Parses a comma-delimited string into an array.

str_split Splits a string into an array based on a specified length.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 357

The str_getcsv() function is extremely useful when you need to parse comma-
separated data entered by site visitors, such as search terms. Follow these steps to
see a demonstration of how this works:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>String Parsing Test</title>

<style>

 input {

 margin: 5px;

 }

</style>

</head>

<body>

<h2>String parse test</h2>

<form action="parseoutput.php" method="post">

<p>Enter a list of search words, separated with commas</p>

<input type="text" name="search" size="40">

<input type="submit" value="Search">

</form>

</body>

</html>

2. Save the file as parseinput.html in the DocumentRoot folder for your web
server.

3. Open a new tab or window in your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>String Parse Test Results</title>

</head>

</body>

<h1>Search word results</h1>

<?php

$search = $_POST['search'];

$words = str_getcsv($search);

358 BOOK 4 PHP

foreach ($words as $word) {

 $term = trim($word);

 echo "<p>Search term: '$term'</p>

\n";

}

?>

</body>

</html>

4. Save the file as parseoutput.php in the DocumentRoot folder for your web
server.

5. Ensure that your web server is still running, and then open your browser
and enter the following URL:

http://localhost:8080/parseinput.html

6. In the text box, type a comma-separated list of words, and then click the
Submit button.

7. Observe the results in the parseoutput.php page.

8. Close your browser window when you’re done.

The parseinput.html file creates a simple HTML form that contains a single text
box for you to enter search words, as shown in Figure 3-2.

FIGURE 3-2:
The web page

generated by the
parseinput.php

code.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 359

Type a comma-separated list of words in the text box, and then click the Search
button to send them to the parseoutput.php file. The parseoutput.php code
retrieves the list of words using the standard $_POST[] array variable:

$search = $_POST['search'];

Then it uses the str_getcsv() function to parse the string and split the words
into an array variable. It then uses the foreach statement to display the individual
words in the web page, as shown in Figure 3-3.

The trim() function is used to remove any extra spaces or tab characters that
may have been added between the search terms in the form. These are handy little
functions to have in your toolbox as you code your web applications!

Testing string values
A vital function in string manipulation is the ability to test string values for spe-
cific conditions. PHP provides several string-testing functions that help with that,
as shown in Table 3-4.

FIGURE 3-3:
The web page

result from the
parseoutput.

php code.

360 BOOK 4 PHP

The string-testing functions provide quite a bit of information about the data you
receive from your site visitors, as well as performing simple string comparisons to
check data. The strcmp() function is crucial in evaluating data entered into forms
in response to questions in your web applications.

The is_numeric() function is handy to use when testing data submitted in HTML5
forms from unknown site visitors to ensure a numeric value was submitted.

Searching strings
Yet another common string function is searching for a specific value within a
string. If you just need to know if a substring value is contained within a string
value, use the strpos() function. Here’s the format of the strpos() function:

strpos(largestring, substring);

PHP will look for the string substring within the largestring string value. It
returns the position where the substring is found inside the largestring (with
position 0 being the first character of the string). If the substring is not found, it
returns a FALSE value. Be careful though, because position 0 returns a numeric 0,
which is different from a FALSE value! To properly test for the difference you
must use the === comparison operator, which compares both the value and the
data type.

TABLE 3-4	 PHP String-Testing Functions
Function Description

is_bool Returns a TRUE value if the string is a valid Boolean value.

is_float Returns a TRUE value if the string is a valid float value.

is_int Returns a TRUE value if the string is a valid integer value.

is_null Returns a TRUE value if the string is a NULL value.

is_numeric Returns a TRUE value if the string is a valid number or
numeric string.

str_word_count Returns the number of words in a string or an array of words.

strcasecmp Performs a case-insensitive string comparison.

strcmp Compares the binary values of two string values.

strlen Returns the number of characters in a string.

strncmp Compares the first n characters of two string values.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 361

Math Functions
Chapter 1 in this minibook shows the basic arithmetic operators that PHP sup-
ports. However, there are lots more advanced mathematical features that are
available in the PHP extensions! This section discusses the different math func-
tions you can add to your web applications to help save you from having to create
complex code for your calculations.

Number theory
Number theory functions provide handy mathematical features, such as finding
the absolute value, square root, or factorial of a number. PHP has lots of different
number theory functions built in and ready for you to use in your calculations.
Table 3-5 lists some of the more common ones you’ll use.

REGULAR EXPRESSIONS
Besides a simple string search, PHP supports more complex regular expression string
searches. Regular expressions allow you to define a template to compare against the
string value. If the string matches the template, it passes the regular expression test.

In the past, PHP supported two different types of regular expressions formats:

• Perl Compatible Regular Expressions (PCRE)

• POSIX Extended Regular Expressions

However, since PHP version 7, support for POSIX regular expressions has been
dropped; only the PCRE regular expression format is supported today.

Using regular expressions to search for data is a powerful tool, but also a very complex
tool. Entire books and websites have been devoted to explaining all the complexities
of regular expression searching. In a nutshell, the key to regular expressions is defin-
ing a template that can filter out just the data you want. The template defines what
character(s) to look for in a string, and you can even define in what positions the charac-
ters should appear within the string if needed. PHP matches the string value against the
template, and if it matches, it returns a TRUE value. Check out the PHP online manual
section on the PCRE regular expressions (www.php.net/manual/en/book.pcre.php)
for more information on using regular expressions in your PHP code.

http://www.php.net/manual/en/book.pcre.php

362 BOOK 4 PHP

The rand() function is handy when you need to generate random numbers for
applications (such as guessing games). Without any parameters, the rand()
function returns a random integer value between 0 and the maximum integer
value supported by the server (you can determine that using the getrandmax()
 function). If you need a value from a smaller range, you can specify the min and
max range as parameters. The range values are inclusive, so if you specify the
 following, the rand() function will return a random number from 1 to 10:

$number = rand(1, 10);

Despite what you might think from its name, the is_nan() function does not
work to test input provided by site visitors to determine if the value is a number.
The is_nan() function only works for float values to determine if the float is in
the correct floating point notation. Use the is_numeric() string function instead.

Calculating logs and exponents
PHP supports several logarithmic functions that can help with some of your more
complex mathematical operations. Table 3-6 shows what tools you have available
for that.

TABLE 3-5	 PHP Number Functions
Function Description

abs Returns the absolute value of a number.

ceil Rounds a value up to the next largest integer.

floor Rounds a value down to the next lowest integer.

fmod Returns the floating point remainder of the division.

intdiv Performs an integer division.

is_finite Returns TRUE if the value is a finite number.

is_infinite Returns TRUE if the value is infinite.

is_nan Returns TRUE if the value is not a proper float value.

max Returns the largest value in an array.

min Returns the smallest value in an array.

pi Returns a float approximation of pi.

rand Returns a random number.

sqrt Returns the square root of a value.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 363

Since version 5.6, PHP has included the ** operator to perform exponentiation as
well as the pow() function. You can use either one in your mathematical calcula-
tions to get the same result.

Working the angles
If trigonometry is your thing, you’ll be glad to know that PHP includes all the
standard trig functions in the math extension. These are shown in Table 3-7.

TABLE 3-6	 PHP Logarithmic Functions
Function Description

exp Calculates the exponent of e.

expm1 Calculates the exponent of e minus 1.

log Performs a standard natural logarithm.

log10 Performs a base-10 logarithm.

log1p Calculates a log(1 + number).

pow Calculate the base raised to a power.

TABLE 3-7	 PHP Trigonometric Functions
Function Description

acos Calculates the arc cosine.

asin Calculates the arc sine.

atan Calculates the arc tangent.

cos Calculates the cosine.

deg2rad Returns the radian value of a degree.

hypot Calculates the length of the hypotenuse of a right triangle.

rad2deg Returns the degree value of a radian.

sin Calculates the sine.

tan Calculates the tangent.

364 BOOK 4 PHP

All the PHP trig functions require that you specify the angle values in radians
instead of degrees. If your application is working with degree units, you’ll need to
use the deg2rad() function to convert the values to radians before using them in
your calculations.

Hyperbolic functions
Somewhat related to trigonometric functions are the hyperbolic functions.
Whereas trigonometric functions are derived from circular calculations, hyper-
bolic functions are derived from a hyperbola calculation. Table 3-8 shows the
hyperbolic functions that PHP supports.

Just as with the trigonometric functions, you must specify the hyperbolic function
values in radian units instead of degrees.

Tracking statistics
The PHP statistics extension contains functions commonly used for statistical
calculations. It uses the open-source library of C routines for Cumulative Distri-
butions Functions, Inverses, and Other parameters (DCDFLIB) created by Barry
Brown and James Lavato.

The library contains about 70 functions for calculating statistical values from
beta, chi-square, f, gamma, Laplace, logistic, normal, Poisson, t, and Weinbull
distributions. If you understand any of those things, this is the extension for you!
Check out the available statistical functions in the PHP online manual at www.php.
net/manual/en/ref.stats.php.

TABLE 3-8	 PHP Hyperbolic Functions
Function Description

acosh Returns the inverse hyperbolic cosine.

asinh Returns the inverse hyperbolic sine.

atanh Returns the inverse hyperbolic tangent.

cosh Returns the hyperbolic cosine.

sinh Returns the hyperbolic sine.

tanh Returns the hyperbolic tangent.

http://www.php.net/manual/en/ref.stats.php
http://www.php.net/manual/en/ref.stats.php

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 365

Date and Time Functions
Working with times and dates in web applications can be a tricky thing. If your
application needs to perform date arithmetic (such as calculating when 60 days
is from now), PHP has some useful functions for you! This section first walks
through just how PHP handles time and dates, then shows you some functions
that can help with your date calculations.

Generating dates
PHP provides the date() function for generating human-readable dates and
times. The date() function takes either one or two parameters:

date(format [, timestamp])

The format parameter is required. It specifies how you want PHP to display the
date and/or time values. The timestamp parameter is optional. It represents the
date and time you want to display as an integer timestamp value. The timestamp
value represents the date and time as the number of seconds since midnight,
 January 1, 1970 (it’s an old Unix standard). If you omit the timestamp value, PHP
assumes the current date and time.

The format is a string value that uses a complicated code to indicate how you want
the time and date to appear in the output. Table 3-9 shows the format codes that
are available.

TABLE 3-9	 The PHP date() Function Format Codes
Code Description Example

a Morning or evening as am or pm am

A Morning or evening as AM or PM AM

B The Swatch international time format 952 (for 9:52 pm)

c The date in ISO 8601 format 2018-05-15T22:51:52+01:00

d The day of the month as a two-digit value with leading zero
if necessary

15

D The day of the week as a three-letter abbreviation Mon

e Time zone identifier America/New_York

F The month of the year in full text January

(continued)

366 BOOK 4 PHP

Code Description Example

g The hour of the day in 12-hour format 4

G The hour of the day in 24-hour format 16

h The hour of the day in 12-hour format with leading zero 04

H The hour of the day in 24-hour format with leading zero 16

i Minutes past the hour with leading zero 05

I Whether the time zone is using daylight saving time 0 (for not using daylight
savings time)

j The day of the month as a number without leading zeroes 5

l The day of the week in full text Monday

L Whether the year is a leap year 0 (for non-leap years)

m The month of the year as a two-digit number with leading zero 01

M The month of the year as a three-letter abbreviation Jan

n The month of the year as a number without leading zero 1

o The year in ISO 8601 format 2018

O The difference between the current time zone and GMT -0500

r The date and time in RFC822 format Mon, 15 Jan 2018 22:56:35 +0100

s Seconds past the minute in two-digit format with leading zero 05

S Ordinal suffix of the date in two-letter format th (for 15)

t The total number of days in the date’s month 31

T The time zone setting of the server EST

U The date and time in Unix timestamp format 1516053508

w The day of the week as a single digit 1

W The week number in the year 03

y The year in two-digit format with leading zero 18

Y The year in four-digit format 2018

z The day of the year as a number 78

Z Offset for the current time zone in seconds -18000

TABLE 3-9 (continued)

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 367

As you can see from the list of codes in Table 3-9, the date() function output is
very flexible! For example, if you use the following format:

$today = date("l, F jS, Y");

The $today variable would display the current date as:

Thursday, January 4th, 2018

Or if you prefer, you can just use:

$today = date("m/d/Y");

To display the date as:

01/04/2018

With the date() function codes, you can display the date and time in any format
you need!

Displaying dates in a website that can be seen internationally can be somewhat
tricky. Keep in mind the differences in how the United States represents dates and
how the rest of the world represents dates. To accommodate that difference, the
Organization of International Standards (ISO) has created the ISO 8601 standard
for displaying dates. It follows none of the common date formats, but instead,
uses its own style: 2018-01-04, which represents January 4, 2018. Later in the
book, when you work with dates in the MySQL server, you need to use this format
to store dates in the database.

Using timestamps
The second parameter of the date() function allows you to specify a different
date/time to display using a timestamp value. The problem, though, is that you
most likely don’t know what the timestamp value for a date is! No worries — you
have the handy strtotime() function to help you out.

The strtotime() function converts a date/time string value in just about any for-
mat into a timestamp value. For example, if you want to find out what day of the
week the Fourth of July is in the year 2020, just use the following code:

$timestamp = strtotime("07/04/2020");

$holiday = date("l", $timestamp);

368 BOOK 4 PHP

The strtotime() function returns the value 1593820800, which is the timestamp
representation for midnight on that day. You then use that as the second param-
eter in the date() function, and use the l (lowercase letter L) code format for the
output. The output will be the day of the week, Saturday.

There is a looming problem with using timestamp values in your PHP code.
Because the timestamp format is an old format, to remain backward-compatible,
systems store the value as a 32-bit integer data type. As you can guess, at some
point in the future, that value will overflow the storage capability of the integer
data type. That date happens to be January 14, 2038. If your application needs to
work with dates past then, you have to use some other way to handle dates.

Calculating dates
You have a couple of different ways to handle date calculations at your disposal in
PHP. One method is to work with timestamp values. If you know the timestamp
for the current date/time, you can add the number of seconds needed to represent
another date/time.

For example, to calculate the time ten minutes from now, you’d use the following
code:

$start = strtotime("07/04/2020 10:00:00");

$end = $start + (60 * 10);
$duedate = $date("H:i:s", $end);

The first line returns the timestamp value for the start date. The second line adds
the number of seconds for 10 minutes (60 seconds × 10 minutes) to the date time-
stamp. Finally, the third line returns the resulting time.

With timestamp values, you can perform all types of calculations, adding and
subtracting values from any start point. Just remember that you’re working with
seconds, so you need to convert the values into the appropriate timestamp values,
and add or subtract the appropriate number of seconds.

The other method for performing date calculations is to use the strtotime()
function itself. The strtotime() function is extremely versatile and can recog-
nize all sorts of common date representations. For example, if you want to find
out yesterday’s date, you use the following:

$yesterday = strtotime("yesterday");

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 369

And the strtotime() function will return the timestamp value for yesterday! You
can also use some basic calendar math:

$duedate = strtotime("today + 120 days");

PHP will calculate that for you automatically! That saves you from having to do
the calculations yourself using timestamp values.

Image-Handling Functions
These days, it’s a common requirement to work with images in your web pages.
Whether vacation pictures on a blog or an online catalog of products, images have
become a crucial part of most web applications.

PHP doesn’t disappoint here. The php_gd2 extension is a complete graphical
manipulation library for processing images directly in your PHP applications.
Instead of having to rely on an external image manipulation program such as
Photoshop or GIMP, you can edit images directly in your application as you or your
site visitors upload them!

Not only can you manipulate uploaded images, but the php_gd2 extension also
has functions that allow you to create new images on the fly in your PHP code!
To create a new image, use the imagecreatetruecolor() function. This function
takes two parameters: the width and height of the new image, specified in pixels.
It returns a resource variable value that you use to reference the new image as you
add components to the image.

For example, to create a new image that is 80 pixels wide by 60 pixels high, use
this code:

$myimage = imagecreatetruecolor(80, 60);

After creating the new image, you’ll probably want to draw something in it. First,
you must allocate colors to use for the background and foreground objects:

$bg = imagecolorallocate($myimage, 255, 255, 255);

$fg = imagecolorallocate($myimage, 0, 0, 0);

The imagecolorallocate() function takes four parameters. The first parameter
is the image resource value returned when you create the image. The next three
parameters are the color, defined by the RGB value, just as you do with CSS style col-
ors. The value 255, 255, 255 represents white, while the 0, 0, 0 value represents black.

370 BOOK 4 PHP

After allocating the colors you need, you’re ready to start drawing on your canvas.
Table 3-10 covers the functions you have available for drawing lines, shapes, and
even text.

So, to create a new image file with the words Test Image, you’d use this code:

$image = imagecreatetruecolor(80, 60);

$bc = imagecolorallocate($image, 255, 255, 255);

$fc = imagecolorallocate($image, 0, 0, 0);

imagefilledrectangle($image, 0, 0, 80, 60, $bc);

imagestring($image, 5, 20, 5, "Test", $fc);

imagestring($image, 5, 10, 20, "Image", $fc);

imagejpeg($image, "myimage.jpg");

imagedestroy($image);

You should recognize most of these image functions. The imagestring() function
defines a font size followed by the X and Y coordinates of where to start the string,
followed by the string, followed by the color.

The imagejpeg() function converts the referenced image object in memory to
either an image on the web page or saves it to a file. I specified a filename to save
the image to. The imagedestroy() function removes the image from memory to
free up space. This is especially necessary when working with large images.

One of the biggest problems I often run into when using images in web applica-
tions is that they’re too big to fit nicely in the spaces I allocate on the web page. If
you run a web application that allows site visitors to upload their own images for
posting, you never know quite what to expect. Some visitors upload tiny picture
files, while others upload mega-sized images. The trick to a good web page is to
standardize all the images to make them fit nicely on the web page.

TABLE 3-10	 The GD2 Library Drawing Functions
Function Description

imageline Draws a line between two specified points, using a defined color.

imagechar Draws an alphanumeric character using a specified font, color, and location.

imagerectangle Draws a rectangle outline between four points using a defined color.

imagefilledrectangle Draws a solid rectangle between four points using a defined color.

imagestring Draws a string of characters using a specified font, color, and location.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 371

Sure, you can do that by manually downloading all the images, opening them
in Photoshop, resizing them, and then uploading the new images back to the
web server. That works, but it’s extremely time consuming and awkward. Fortu-
nately, the php_gd2 library has just the tool for you!

The imagecopyresampled() function allows you to resample an existing image to
a new image. Resampling rebuilds the image pixel by pixel, at a different resolu-
tion, using special algorithms to maintain the picture clarity.

By resampling the image, you can make it larger or smaller. The php_gd2
 extension library takes care of all the mathematical routines required to do that.
Follow these steps to try that out:

1. Open your editor and enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Image Manipulation Test</title>

<style>

 input {

 margin: 5px;

 }

</style>

</head>

<body>

<h2>Please select an image to upload</h2>

<form action="imageconvert.php" method="post"

 enctype="multipart/form-data">

<input type="file" name="picture">

<input type="submit" value="Submit">

</form>

</body>

</html>

2. Save the file as imageupload.html in the DocumentRoot folder for your
web server.

3. Open a new tab or window in your editor and enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Image Manipulation Test</title>

</head>

372 BOOK 4 PHP

<body>

<h1>The uploaded image:</h1>

<?php

$file = $_FILES['picture']['tmp_name'];

$picture = file_get_contents($file);

$sourceImage = imagecreatefromstring($picture);

$width = imageSX($sourceImage);

$height = imageSY($sourceImage);

$newheight = 400;

$newwidth = $newheight * ($width / $height);

$newImage = imagecreatetruecolor($newwidth, $newheight);

$result = imagecopyresampled($newImage, $sourceImage,

 0, 0, 0, 0,

 $newwidth, $newheight, $width, $height);

imagejpeg($newImage, "newimage.jpg");

?>

</body>

</html>

4. Save the file as imageconvert.php in the DocumentRoot folder for your
web server.

5. Have an image file handy that you want to copy and convert to a differ-
ent sized image.

6. Ensure the web server is running, and then open your browser to
the URL:

http://localhost:8080/imageupload.html

7. Click the file chooser button for the file upload text box as it appears in
your browser, navigate to your image file, select it, and then click the
Open button to select the name.

8. Click the Submit button to upload the image file for converting.

9. You should see the resized image appear on the resulting web page.

10. Close your browser and shut down the web server when you’re done.

The imageupload.html file creates a simple HMTL5 form using the file data
input type. The browser will provide a method for you to select a local file to enter
into the file input field, as shown in Figure 3-4 for the Chrome browser.

PH
P

Li
br

ar
ie

s

CHAPTER 3 PHP Libraries 373

The imageconvert.php code retrieves the uploaded image from the PHP server
using the special $_FILES[] array variable. The $_FILES[] array provides infor-
mation about files uploaded to the server within an HTML5 form. The tmp_name
array element contains the name of the temporary file the server creates to store
the uploaded file.

After retrieving the uploaded file, the code converts it to an editable php_gd2
library object using the imagecreatefromstring() function.

Using the uploaded image object, the code calculates the width and height of the
original image using the imageSX() and imageSY() functions. Then with a little
bit of algebra, the code sets the new image height to a set height, and calculates
the new width required to keep the original aspect ratio of the image. This ensures
that all images that appear on the web page use the same height.

With the new width and height values calculated, the code then uses the image
copyresampled() function to copy and resample the original image to the
resized image object. The imagejpeg() function saves the new image as the file
newimage.jpg in the DocumentRoot folder of the web server. Finally, the code
displays the new image on the web page using a standard HTML5 tag, as
shown in Figure 3-5.

Now you can resize uploaded image files on the fly, without any intervention
required on your part!

FIGURE 3-4:
The output

from the
 imageupload.
html program.

374 BOOK 4 PHP

FIGURE 3-5:
Displaying the

resampled and
resized image.

CHAPTER 4 Considering PHP Security 375

Considering PHP Security

Web application security is a hot topic these days, and for good reason!
It seems that almost every day there’s a news story about some com-
pany being attacked and having important data stolen. These breaches

are costly — both for the company and for the thousands of customers who have
personal information stolen.

As a web application developer, your job is to put security first in all your design
and coding work. You’re the front line in the battle of data security! This chapter
helps with that job, by giving you an idea of the types of attacks you need to
watch out for and then walking you through how to avoid those attacks with your
PHP code.

Exploring PHP Vulnerabilities
To avoid attacks, you first need to know where they’ll come from. It doesn’t do
any good to barricade the front door, if you leave the windows wide open. The
majority of attacks against your web applications are avoidable by following some
basic PHP coding rules.

Chapter 4

IN THIS CHAPTER

 » Identifying PHP attacks

 » Stopping cross-site scripts

 » Hiding your files

 » Watching for data spoofing

 » Handling data safely

376 BOOK 4 PHP

There are thousands of different ways for an attacker to break into your PHP pro-
gram, but most of them boil down into four general categories:

 » Cross-site scripting

 » Data spoofing

 » Invalid data

 » Unauthorized file access

Each of these attacks has different causes and results, as well as different methods
for you to use to block them. The following sections examine each of these attacks
in depth.

Cross-site scripting
Cross-site scripting (known as XSS) is quite possibly the most dangerous type of
attack made on dynamic web applications. The main idea of an XSS attack is to
embed malicious JavaScript code in data that the attacker submits to the web
application as part of the normal data input process. When the web application
tries to display the data in a client browser, the JavaScript is pushed to the client
browser that’s viewing the website and runs.

Follow these steps to watch an XSS exploit in action:

1. Open your favorite text editor, program editor, or integrated development
environment (IDE) package.

2. Type the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>XSS Test</title>

<style>

 input {

 margin: 5px;

 }

</style>

</head>

<body>

<h2>Please enter your first name:</h2>

<form action="xsstest.php" method="post">

<input type="text" name="fname">

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 377

<input type="submit" value="Submit name">

</form>

</body>

</html>

3. Save the file as xssform.html in the DocumentRoot folder for your web
server.

For XAMPP on Windows, that’s c:\xampp\htdocs; for XAMPP on macOS, that’s
/Applications/XAMPP/htdocs.

4. Open a new tab or window in your browser, and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>XSS Test</title>

</head>

<body>

<h1>XSS Test</h1>

<?php

 $fname = $_POST['fname'];

 echo "<p>Welcome, $fname</p>\n";

?>

<h2>This is the end of the test</h2>

</body>

</html>

5. Save the file as xsstest.php in the DocumentRoot folder for your web
server.

6. Open the XAMPP Control Panel, and then start the Apache web server.

7. Open your browser, and enter the following URL:

http://localhost:8080/xssform.html

You may need to change the TCP port used to match your web server.

8. In the form, type the following code in the Name text box:

<script>alert("Hello!");</script>

9. Click the Submit button to continue.

10. Close the browser window when you’re done with the test.

378 BOOK 4 PHP

When you submit the form with the embedded JavaScript code, you should get the
output as shown in Figure 4-1.

The PHP code sent the JavaScript to the browser as part of the echo statement
output, and the browser dutifully ran the JavaScript code. This example is harm-
less, because it just displays a simple alert message, but a real attacker would
embed much more malicious code.

Some browsers, such as Safari and Chrome, have built-in XSS attack detection,
which may trigger on this test and block the JavaScript code from running. If you
don’t see the alert() pop-up box, open the developer tools for your browser and
see if there’s a notice that the browser blocked a potential XSS attempt.

The “cross-site” part of the XSS name comes from where the <script> tag sends
the browser to retrieve the JavaScript code file. In the previous example, I just
submitted embedded JavaScript code directly within the script element. Remember:
The <script> HTML5 tag can also reference an external JavaScript file, which
the browser will load and run. An attacker can specify the src attribute in the
<script> tag to redirect the browser to run JavaScript located on a rogue server
anywhere in the world.

There are two different methods of carrying out an XSS attack:

 » Reflected attack: The attacker places the rogue script as a link in the
submitted data. Victims must actively click the link to launch the XSS attack.

FIGURE 4-1:
The output

from entering
 embedded

JavaScript
in a form.

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 379

 » Persistent attack: The attacker places the rogue script as data that the
browser displays when the web page loads (as in the previous example).

Persistent attacks are very dangerous. The malicious script runs as soon as an
unsuspecting website visitor opens the web page that contains the script as part
of the content, without any actions required by the victim. For example, if an
attacker posts a blog comment that contains malicious JavaScript code, every time
the web application displays that blog comment on a client browser, the malicious
script is run.

Data spoofing
Our dynamic web applications use all types of data to produce content. All too
often, though, we assume the values stored in a particular variable are placed
there by our program and are correct. However, that may not always be the case.

Another popular form of attack is data spoofing (externally inserting fraudulent
data into a PHP program code). The biggest culprit of this attack is the register_
globals setting in the php.ini configuration file for the PHP server (see Book 1,
Chapter 2).

The register_globals setting was originally intended to make life easier for PHP
developers. When that setting is enabled, PHP automatically converts any data
passed via the GET or POST methods into a PHP variable.

For example, let’s say you build a form that contains the following input element:

<input type="text" name="fname">

When the PHP server receives the form data, it automatically creates a PHP
 variable named $fname, and assigns it the value passed from the form data field
with that name. This feature certainly makes your coding life easier, but it adds a
new problem.

Suppose your application uses an authentication method to validate the admin-
istrators of your website. When an administrator logs in, you set a variable indi-
cating that the session is an administrative session and then check that variable
whenever the user attempts to do some admin work. The code for that would look
something like this:

if ($admin == 1) {

 do some admin functions

} else {

 echo "Sorry, you do not have permission";

}

380 BOOK 4 PHP

The application assumes the $admin variable is set to a value of 1 when the user is
an authenticated administrator.

Now, consider what would happen if an attacker figured this out and the
 register_globals setting in PHP were enabled. All the attacker would need to do
is spoof the $admin variable with a phony value. And all that attack requires is to
use this URL:

http://yourhost.com/index.php?admin=1

The register_globals setting allows the PHP server to retrieve the value set in
the GET method, create the variable $admin, and set it to a value of 1. This will
then allow the attacker to perform the admin function in the application without
having to log in!

Newer versions of PHP disable the register_globals setting by default, but that
setting is still present. It’s never a good idea to enable the register_globals
setting. Just retrieve any data you need using the standard $_GET[] and $_POST[]
array variables. It’s worth the effort!

Invalid data
Invalid data comes in all shapes and sizes. Often invalid data is just the result of a
site visitor not paying close enough attention to the form fields and entering the
wrong data into the wrong field, such as typing a zip code into a city name data
field. Other times there may be some malicious intent to the invalid data, such
as entering an invalid email address into a contact form on purpose to remain
anonymous. It’s your job as the application developer to anticipate invalid data
and try to prevent it before it becomes a problem in the application.

There are two schools of thought on data validation:

 » Client-side data validation

 » Server-side data validation

The following sections dig a little deeper into just how these two methods differ.

Client-side data validation
As you can probably guess, client-side data validation requires adding some Java-
Script code to your web-page form to ensure site visitors enter the proper data
into the proper data fields. Book 3, Chapter 4, details how to watch for form events

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 381

and trigger JavaScript code to check as the site visitor types the data. If any invalid
data is entered, the JavaScript can block sending the form data to the server.

Don’t rely on JavaScript data validation alone, though. Your website visitors can
disable JavaScript in their browsers to get around it!

You can also use the HTML5 data-filtering elements and attributes that limit the
range of possible values for a form field — for example, by using the new phone or
email input element types instead of just a standard text input element. The browser
won’t accept data that doesn’t match the format defined by the filters.

A combination of JavaScript, HTML5, and CSS produces a three-pronged approach
to client-side data validation. That combination allows you to monitor the data
your site visitors type into the data fields and then change the styles applied to
the data field accordingly. A common feature is to use the background color style
to indicate invalid data in a data field. When the site visitor enters invalid data,
JavaScript changes the data field background color to red.

Server-side data validation
Because the focus of this chapter is PHP, I talk more about server-side data
 validation. Server-side data validation is a little trickier in that you must wait for
the site visitor to submit the form before you can validate the data in your PHP
code. You can’t detect invalid data in real time, but you do have a few more tools
available for validating the data in your PHP code.

When the client browser sends the form data to the server, your PHP code retrieves
it from the $_GET[] or $_POST[] array variables and then can work on determining
which data is valid and which is invalid. Usually, there’s a set process that you can
undertake to validate data, such as making sure numeric values are really num-
bers or that text values don’t contain any extraneous characters that shouldn’t
be there (such as the semicolon character discussed in the SQL injection sidebar).

One common method used in PHP development is to create an array to contain the
“clean” data values retrieved from the table. As the code validates each data field
value, that value is placed into the array with the corresponding variable name
used as the key. The application doesn’t use any of the data retrieved directly from
the form; instead, it only accesses data values from the array of cleaned data val-
ues. That ensures that you won’t make any mistakes by accidentally using a data
value that hasn’t been validated.

There are a few PHP functions to help out with the data validation process, which
I discuss later in this chapter.

382 BOOK 4 PHP

Unauthorized file access
The PHP code that you write for your web applications may contain lots of privi-
leged information, whether it’s database user accounts for accessing a database
or admin passwords that it checks to validate admin login attempts. Being able to
properly protect your PHP files from unauthorized viewing is a must.

By default, any .php files accessed via the web server are passed to the PHP server
and processed, so if attackers try to access a .php file directly, they only see the
output from the file, not the actual code. However, if an attacker manages to break
into the DocumentRoot folder using some attack, your PHP code will be wide open.
Your job as a PHP developer is to try to hide your code from these types of attacks.

One method of doing that is to utilize the include() function. Chapter 1 of this
minibook covers how to use the include() function to access PHP and HTML5
code located in a separate file from within a program file. The include() function
isn’t bound by the web server DocumentRoot setting folder location; it can retrieve
data from anywhere on the server that it has read access to.

You can leverage that feature by storing all your application PHP code as include
files outside the DocumentRoot boundaries. Then you only need to place the main
index.php template file into the DocumentRoot folder for site visitors to access.

The main template file defines the different sections of the web page, and calls the
appropriate include files for each one:

SQL INJECTION
Possibly the most dangerous attack involving invalid data is the SQL injection attack.
With SQL injection, an attacker embeds a SQL statement inside form field data, hoping
that the application will forward the data to a database server without validating it and
that the database server will run the SQL statement. The embedded SQL statement
usually performs some type of malicious action, such as deleting a table, or at least all
the data within the table.

If your application uses a database, it’s important to block SQL injection attempts within
form data. SQL injections usually involve embedding a semicolon to separate out the
SQL statement. Always validate input data looking for embedded semicolons to block
these types of attacks.

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 383

<body>

<header>

<?php include("/secretlocation/header.inc.php"); ?>

</header>

<nav>

<?php include("/secretlocation/navigation.inc.php");?>

</nav>

<main>

<?php

$content = $_GET['content'];

switch ($content) {

 case "initial":

 include("/secretlocation/initial.inc.php");

 break;

 case "registration":

 include("/secretlocation/registration.inc.php");

 break;

 case "query":

 include("/secretlocation/query.inc.php");

 break;

 case "newdata":

 include("/secretlocation/newdata.inc.php");

 break;

 default:

 echo "<p>Sorry, invalid page location</p>\n";

}

?>

</main>

<aside>

<?php include("/secretlocation/aside.inc.php"); ?>

</aside>

<footer>

<?php include("/secretlocation/footer.inc.php"); ?>

</footer>

</body>

Each section of the web page uses a separate include file to load the content for the
section. A GET variable controls what content displays in the main section of each
web page. The content HTML variable contains the name of the include file to use
for each feature of the application. If an attacker tries to set the content HTML
variable to some other value, an error message displays.

Now all the actual PHP code is safely stored away in include files located outside
the DocumentRoot folder area of the web server. This method isn’t foolproof, but
it does provide an extra layer of security for your data.

384 BOOK 4 PHP

PHP Vulnerability Solutions
Fortunately, the PHP programming language provides several features that you
can utilize to help you avoid all these types of attacks. This section walks through
the different tools that you have at your disposal, showing you how best to use
them to protect your website data and code.

Sanitizing data
Just like sanitizing your kitchen is a good idea to help protect you from nasty bugs
and viruses, sanitizing your PHP data helps render any harmful code injected into
the data harmless. The idea is to detect any embedded HTML code and make it
harmless by removing the HTML5 tags that trigger actions in the browser. This
stops any type of XSS attack dead in its tracks.

The best defense against XSS attacks is to block any types of HTML code from the
data your site visitors enter, both as they try to input it and as your application
tries to output it. Two functions are good for this:

 » htmlspecialchars()

 » filter_var()

The following sections takes a closer look at how to use these functions to help
make your web application safer.

Using htmlspecialchars()
The htmlspecialchars() function detects HTML5 tags embedded in a data string
and converts the greater-than and less-than symbols in the tags to the HTML5
entity codes > and <. This doesn’t remove the tags from the data; instead,
it turns them to ordinary text that displays as normal content.

Here’s the format for the htmlspecialchars() function:

htmlspecialchars(string [, flags [,encoding [,double]]])

By default, the htmlspecialchars() function encodes the following characters
that it finds in the data string:

 » Ampersand (&)

 » Double quote (")

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 385

 » Single quote (')

 » Less than (<)

 » Greater than (>)

You can pick and choose which of these items the htmlspecialchars() func-
tion converts and which ones it allows through by specifying one or more flags.
Table 4-1 shows the flags that are available to choose from.

The encoding parameter allows you to define what character set encoding the data
uses, and the double parameter allows PHP to double-encode the data, also look-
ing for HTML5 entity codes embedded in the data and converting them as well.

The best way to get a handle on what htmlspecialchars() does is to watch it in
action. Follow these steps to test this out:

1. Open the xsstest.php file in your editor, program editor, or IDE package.

2. Change the line of code that retrieves the $_POST['fname'] array
variable to make it look like the following:

$fname = htmlspecialchars($_POST['fname']);

TABLE 4-1	 htmlspecialchars Flags
Flag Description

ENT_COMPAT Converts only double quotes.

ENT_QUOTES Converts both single and double quotes.

ENT_NOQUOTES Doesn’t convert either single or double quotes.

ENT_IGNORE Doesn’t convert anything.

ENT_SUBSTITUTE Replaces invalid code with Unicode replacement characters instead of returning an
empty string.

ENT_DISALLOWED Replaces invalid code with Unicode replacement characters instead of leaving them as is.

ENT_HTML401 Handles the code as HTML version 4.01.

ENT_XML1 Handles the code as XML version 1.

ENT_XHTML Handles the code as XHTML.

ENT_HTML5 Handles the code as HTML5.

386 BOOK 4 PHP

3. Save the file as xsstest.php in the DocumentRoot folder of your web
server.

4. Ensure that the web server is running and then open your browser and
enter the following URL:

http://localhost:8080/xssform.html

5. Enter the following text in the text box:

<script>alert("Hello!");</script>

6. Click the Submit button to submit the text.

7. Observe the output in the xsstest.php web page and then close the
browser window.

With the simple addition of the htmlspecialchars() function, you should now
see the output shown in Figure 4-2.

The htmlspecialchars() function converted the script element tags into plain
text and displayed the JavaScript code as regular text in the output. That’s not
ideal, but it did block the XSS attack from hitting the browser.

Using filter_var()
The filter_var() function is the Swiss Army knife of functions for protecting
data in your PHP applications. It provides a host of customized filters for finding

FIGURE 4-2:
The output from
adding the html
specialchars()

function.

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 387

and sanitizing different types of data that could potentially cause harm in your
PHP application.

You control the behavior of the filter_var() function by specifying both options
and flags as parameters:

filter_var(string [, filter] [, flags])

The filter and flags parameters are optional, but almost always you’ll at
least specify the filter to use. The filter defines what class of characters the

filter_var() function should look for, and the flags parameter fine-tunes
 subsets of characters within the filter class.

What makes the filter_var() function so versatile is that it can both sanitize
(remove) and validate (test) string data. Table 4-2 shows the data-sanitizing
options that you can use.

TABLE 4-2	 The filter_var Data-Sanitizing Options
Option Description

FILTER_SANITIZE_EMAIL Removes invalid characters from an email address.

FILTER_SANITIZE_ENCODED Encodes a string to make a valid URL.

FILTER_SANITIZE_MAGIC_QUOTES Escapes embedded quotes.

FILTER_SANITIZE_NUMBER_FLOAT Removes all characters except digits and float symbols.

FILTER_SANITIZE_NUMBER_INT Removes all characters except digits and integer symbols.

FILTER_SANITIZE_SPECIAL_CHARS Removes quotes, as well as greater-than, less-than, and
ampersand characters.

FILTER_SANITIZE_FULL_SPECIAL_CHARS Converts the greater-than and less-than symbols in HTML5
tags to entity codes (the same as htmlspecialchars()).

FILTER_SANITIZE_STRING Removes all HTML5 tags.

FILTER_SANITIZE_STRIPPED Removes all HTML5 tags.

FILTER_SANITIZE_URL Removes all invalid URL characters.

FILTER_UNSAFE_RAW Does nothing, the default action.

388 BOOK 4 PHP

The filter_var() function allows you to customize just what data gets sanitized
from the input data and what data is allowed to pass through. Follow these steps
to test this out:

1. Open the xsstest.php file in your editor.

2. Change the line that assigns the $fname variable to this:

$fname = filter_var($_POST['fname'], FILTER_SANITIZE_STRING);

3. Save the file as xsstest.php in the DocumentRoot folder for your web server.

4. Ensure that your web server is running, and then open your browser and
type the following URL:

http://localhost:8080/xsstest.php

5. Enter the following text into the text box:

http://localhost:8080/xssform.html

6. Click the Submit button.

7. Observe the output from the xsstest.php program and then close the
browser window.

The filter_var() function not only disables the script element in the text, but
also completely removes the opening and closing tags, as shown in Figure 4-3.

The embedded JavaScript code is still visible, but at least the <script> tags are
completely removed from the data, rendering the attack useless.

FIGURE 4-3:
The output

from adding the
filter_var()

function.

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 389

The filter_var() function is also a great way to extract numeric data from a
string, using the FILTER_SANITIZE_NUMBER_INT option.

Validating data
Detecting all types of invalid data can be impossible, but PHP provides a few ways
for you to at least detect some types of invalid data to help make things at least
a little bit easier. This section describes the PHP functions available for helping
detect when a site visitor has attempted to input invalid data into a form data field.

Validating data types
One primary goal for catching invalid data is to at least determine that the input
data is the correct data type. PHP provides a series of functions to do that (see
Table 4-3).

Of these, the is_numeric() function is the most useful. It comes in handy to
 validate simple numeric data that your site visitors enter into forms, such as ages
or quantities.

To test this out, follow these steps:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Data Type Test</title>

<style>

 input {

TABLE 4-3	 PHP Data Validation Functions
Function Description

is_bool() Returns TRUE if the value is a Boolean data type.

is_float() Returns TRUE if the value is in valid float format.

is_int() Returns TRUE if the value is an integer value.

is_null() Returns TRUE if the value is NULL.

is_numeric() Returns TRUE if the value is in a valid numeric format.

is_string() Returns TRUE if the value is a string as opposed to a number.

390 BOOK 4 PHP

 margin: 5px;

 }

</style>

</head>

<body>

<h1>Please enter data into the form fields</h1>

<form action="typetest.php" method="post">

<label>Last Name</label>

<input type="text" name="name">

<label>Email address</label>

<input type="text" name="email">

<label>Age</label>

<input type="text" name="age">

<input type="submit" value="Submit form">

</form>

</body>

</html>

2. Save the file as typetest.html in the DocumentRoot folder for your web
server.

3. Open a new tab or window in your editor, and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>Data Type Test</title>

<style>

 .warning {

 color:red;

 }

</style>

</head>

<body>

<h1>Form results:</h1>

<?php

$name = htmlspecialchars($_POST['name']);

$email = htmlspecialchars($_POST['email']);

$age = htmlspecialchars($_POST['age']);

echo "<p>Name: $name</p>\n";

echo "<p>Email: $email</p>\n";

if (is_numeric($age)) {

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 391

 echo "<p>Age: $age</p>\n";

} else {

 echo "<p class='warning'>Please enter a valid age</p>\n";

}

?>

Return to form

</body>

</html>

4. Save the file as typetest.php in the DocumentRoot folder for your web
server.

5. Ensure that the web server is running and then open your browser and
enter the following URL:

http://localhost:8080/typetest.html

6. Enter your name and numeric age into the form and click the Submit
button.

7. Observe the results on the typetest.php page output and then click the
Return to Form link.

8. This time, enter your name and a text value for the age and then click the
Submit button.

9. Observe the results in the typetest.php page output.

10. Close your browser window when you’re done.

In this example, the is_numeric() function detects when the site visitor enters an
invalid value for the age and displays a warning message, as shown in Figure 4-4.

The is_numeric() function can’t stop site visitors from lying about their ages,
but at least it can prevent someone from entering text into the age data field.

Validating data format
Testing for valid data types is fine when you’re working with numeric values, but
it doesn’t help all that much for text values such as names, home addresses, and
email addresses. The is_string() function can tell you that the value is a valid
string value, but not the format of the data contained within the string.

392 BOOK 4 PHP

This is another time where the filter_var() function can come in handy. Not
only can the filter_var() function sanitize data, but it can also validate data
formats for us! Table 4-4 shows the data validation options that are available for
the filter_var() function.

The email address check in filter_vars() comes in handy when you need to
validate email addresses entered into contact forms. Follow these steps to test
that out:

FIGURE 4-4:
The result

from entering
an invalid age
value into the

typetest.html
form.

TABLE 4-4	 The filter_var() Data Validation Options
Option Description

FILTER_VALIDATE_BOOLEAN Returns TRUE if the value is a valid Boolean value.

FILTER_VALIDATE_EMAIL Returns TRUE if the value is in a valid email address format.

FILTER_VALIDATE_FLOAT Returns TRUE if the value is in a valid float format.

FILTER_VALIDATE_INT Returns TRUE if the value is in a valid integer format.

FILTER_VALIDATE_IP Returns TRUE if the value is in a valid IP address format.

FILTER_VALIDATE_MAC Returns TRUE if the value is in a valid MAC address format.

FILTER_VALIDATE_REGEXP Returns TRUE if the value matches the specified regular expression.

FILTER_VALIDATE_URL Returns TRUE if the value is in a valid URL format.

Co
ns

id
er

in
g

PH
P

Se
cu

ri
ty

CHAPTER 4 Considering PHP Security 393

1. Open the typetest.php file in your editor.

2. Modify the code so that it looks like the following:

<!DOCTYPE html>

<html>

<head>

<title>Data Type Test</title>

<style>

 .warning {

 color:red;

 }

</style>

</head>

<body>

<h1>Form results:</h1>

<?php

$name = htmlspecialchars($_POST['name']);

$emal = htmlspecialchars($_POST['email']);

$age = htmlspecialchars($_POST['age']);

echo "<p>Name: $name</p>\n";

if (filter_var($email, FILTER_VALIDATE_EMAIL)) {

 echo "<p>Email: $email</p>\n";

} else {

 echo "<p class='warning'>Please enter a valid

 email address</p>\n";

}

if (is_numeric($age)) {

 echo "<p>Age: $age</p>\n";

} else {

 echo "<p class='warning'>Please enter a valid

 age</p>\n";

}

?>

Return to form

</body>

</html>

3. Save the file as typetest.php in the DocumentRoot folder of your web
server.

394 BOOK 4 PHP

4. Ensure that the web server is running and then open your browser and
enter the following URL:

http://localhost:8080/typetest.html

5. Enter a valid name and age, but enter an email address in an invalid
format.

6. Click the Submit button to submit the form data.

7. Observe the output.

8. Click the link to return to the form and try out different email address
formats to see what gets caught by the data validation and what doesn’t.

9. Close your browser window when you’re done.

The added filter_var() validation check looks for the email address to be in the
proper format of name@hostname. If it is, the filter_var() function returns a
TRUE value, which triggers the if...else statement to display the data. If it isn’t,
the else code block triggers and displays a warning, as shown in Figure 4-5.

Again, this check is not foolproof — it can only check the format of an email
address. It doesn’t test the account to make sure it’s a live account. But at least
this is a start!

FIGURE 4-5:
The result from

entering an
invalid email

address.

mailto:name@hostname

CHAPTER 5 Object-Oriented PHP Programming 395

Object-Oriented PHP
Programming

So far, all the PHP scripts presented in this minibook have followed the proce-
dural style of programming. With procedural programming, you create vari-
ables and functions within your code to perform certain procedures, such as

storing values in variables, and then checking them with conditional statements.
The data you use and the functions you create are completely separate entities,
with no specific relationship to one another. With object-oriented programming,
on the other hand, variables and functions are grouped into common objects that
you can use in any program. In this chapter, you learn what object-oriented pro-
gramming is and how to use it in your web applications.

Understanding the Basics of
Object-Oriented Programming

Before you can start working on object-oriented programming (OOP), you need to
know how it works. OOP uses a completely different paradigm from coding than
what I cover earlier in this minibook. OOP requires that you think differently about
how your programs work and how you code them.

Chapter 5

IN THIS CHAPTER

 » Defining object-oriented
programming

 » Creating objects

 » Using objects

 » Customizing objects

396 BOOK 4 PHP

With OOP, everything is related to objects. (I guess that’s why they call it object-
oriented programming!) Objects are the data you use in your applications, grouped
together into a single entity.

For example, if you’re writing a program that uses cars, you can create a Car object
that contains information on the car’s weight, size, color, engine, and number of
doors. If you’re writing a program that tracks people, you might create a person
object that contains information about each person’s name, date of birth, height,
weight, and gender.

OOP uses classes to define objects. A class is the written definition in the program
code that contains all the characteristics of the object, using variables and func-
tions. The benefit of OOP is that after you create a class for an object, you can use
that same class in any other application. Just plug in the class definition code and
put it to use!

An OOP class contains members. There are two types of members:

 » Properties: Class properties (also called attributes) denote features of the
object, such as the car’s weight or the person’s name. A class can contain
many properties, with each property describing a different feature of
the object.

 » Methods: Class methods are similar to the standard PHP functions that you’ve
been using. A method performs an operation using the properties in a class.
For instance, you could create class methods to retrieve a specific person
from a database, or change the address property for an existing person. Each
method should be contained within the class and perform operations only in
that class. The methods for one class shouldn’t deal with properties in other
classes.

Defining a class
Defining a class in PHP isn’t too different from defining a function. To define a
new class, you use the class keyword, along with the name of the class, followed
by any statements contained in the class.

Here’s an example of a simple class definition:

class Product {

 public $description;

 public $price;

 public $inventory;

 public $onsale;

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 397

 public function buyProduct($amount) {

 $this->inventory -= $amount;

 }

}

The class name you choose must be unique within your program. Class names fol-
low the same rules as PHP variable names. Although it’s not required, program-
mers often start class names with an uppercase letter to help distinguish them in
program code.

This example defines four property members and one method member. Each
member is defined using one of three visibility classifications. The visibility of the
member determines where you can use or reference that member. There are three
visibility keywords used in PHP:

 » public: The member can be accessed from outside the class code.

 » private: The member can only be accessed from inside the class code.

 » protected: The member can only be accessed from a child class. (I talk about
that a little later in the “Extending Classes” section.)

The Product class example declares all the members to be public, so you can ref-
erence them anywhere in your PHP code.

The buyProduct() method uses an odd variable name in the function:

$this->inventory

The $this variable is a special identifier that references the current object of the
class. In this example, it points to the $inventory property of the object. Notice
the removal of the dollar sign from the inventory property when referencing it
this way. This helps PHP know that you’re referencing the $inventory property
from within the class object and not the class itself.

This code defines the makeup of the class, but it doesn’t actually do anything with
it. The next section shows you how to actually use your class template to create
objects.

Creating an object instance
To use a class, you have to instantiate it. When you instantiate a class, you create
what’s called an instance of the class in your program. Each instance represents

398 BOOK 4 PHP

one occurrence of the object within the program. To instantiate an object in PHP
code, you use the following format:

$prod1 = new Product();

This creates the object called $prod1 using the Product class. When you instanti-
ate an object, you can access the public members of that class directly from your
program code:

$prod1->description = "carrot";

$prod1->price = 1.50;

$prod1->inventory = 10;

$prod1->onsale = false;

This code sets values for each of the properties for the object. Notice the -> sym-
bol in use again. It tells PHP that you’re referencing the properties and methods
specifically for the $prod1 object.

The $prod1 variable now contains these values set for the object properties, and
you can use it anywhere in your PHP code to reference the properties. The same
applies when you need to use a public method of an object:

$prod1->buyProduct(4);

This calls the buyProduct() method for the class object, passing the value of 4.
Because the buyProduct() method alters the $inventory property of the object,
the next time you reference the $prod1->inventory property in your code, it’ll
have the value of 6.

You can instantiate as many instances of a class as you need within your program.
Just make sure that each instance uses a different variable name:

$prod2 = new Product();

$prod2->description = "eggplant";

$prod2->price = 2.00;

$prod2->inventory = 5;

$prod2->onsale = true;

PHP will keep the two instances of the Product class completely separate,
 maintaining the property values for each one.

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 399

Follow these steps to test out creating and using classes in PHP:

1. Open your favorite text editor, program editor, or integrated development
environment (IDE) package.

2. Type the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>PHP OOP Test</title>

</head>

<body>

<h1>Testing PHP OOP code</h1>

<?php

class Product {

 public $description;

 public $price;

 public $inventory;

 public $onsale;

 public function buyProduct($amount) {

 $this->inventory -= $amount;

 }

}

$prod1 = new Product();

$prod1->description = "Carrots";

$prod1->price = 1.50;

$prod1->inventory = 10;

$prod1->onsale = false;

echo "<p>Just added $prod1->description<p>\n";

$prod2 = new Product();

$prod2->description = "Eggplants";

$prod2->price = 2.00;

$prod2->inventory = 5;

$prod2->onsale = true;

echo "<p>Just added $prod2->description<p>\n";

echo "<p>Now buying 4 carrots...<p>\n";

$prod1->buyProduct(4);

400 BOOK 4 PHP

echo "<p>Inventory of $prod1->description is now

 $prod1->inventory</p>\n";

echo "<p>Inventory of $prod2->description is still

 $prod2->inventory</p>\n";

?>

</body>

</html>

3. Save the file as ooptest1.php in the DocumentRoot folder for your web
server.

For XAMPP on Windows, that’s c:\xampp\htdocs; for XAMPP on macOS, that’s
/Applications/XAMPP/htdocs.

4. Open the XAMPP Control Panel and then start the Apache web server.

5. Open your browser, and enter the following URL:

http://localhost:8080/ooptest1.php

You may need to change the TCP port to match your web server.

6. Close the browser window when you’re done.

When you run the ooptest1.php file, you should see the output shown in
Figure 5-1.

FIGURE 5-1:
The output from

the ooptest1.
php program.

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 401

The example code defines the Product class, which contains the four properties
and one method that has already been discussed. After the Product class defi-
nition, the code creates two instances of the Product class: $prod1 and $prod2.
When using classes, you need to define the class first in the code before you create
an instance of it.

After creating the two instances, the code uses the buyProduct() method for
the $prod1 instance to reduce the inventory by 4. Then it uses two echo state-
ments to display the inventory properties for the two instances. Notice that the
buyProduct() method reduced the inventory of the $prod1 instance, but not the
$prod2 instance, showing that the two instances are, indeed, separate objects in
the program.

Using Magic Class Methods
No, you won’t be learning any new tricks involving smoke and mirrors. Magic
class methods are built-in method names in PHP that apply to all class objects. You
can redefine them in your code to provide additional functionality to your PHP
classes. This process is called overloading or overriding. In overloading, you define
a method in your class code with the same name as an existing method. PHP uses
the newly defined method when you call it from your program code in the class
object.

Magic class methods are most often used to help provide common functionality
for classes, such as creating a new class object, copying an existing class object, or
displaying class objects as text. The PHP developers identify magic class methods
by using a double underscore at the start of the method name.

The following sections walk through how to use some of the more common magic
class methods in your own classes.

Defining mutator magic methods
Mutator magic methods are methods that change the value of a property that you
set with the private visibility. These are also commonly called setters.

The class example in the previous section used the public visibility feature for
the class properties, but that’s not always a good thing to do. That means that
any application can directly access the properties and change them to whatever
values it wants. That could be dangerous, and it’s somewhat frowned upon in OOP
circles.

402 BOOK 4 PHP

The preferred way to handle class properties is to make them private so external
programs can’t change them directly. Instead, to manipulate the data, external
programs are forced to use mutator magic class methods that interface with
the properties.

The mutator magic method in PHP is __set() (note the leading double under-
scores). You use the mutator magic method to set all the values of the properties
in the class with a single method definition:

public function __set($name, $value) {

 $this->$name = $value;

}

The mutator uses two parameters: the name of the property to set and the value to
assign to the property. Where the magic comes into play is with how PHP uses the
mutator. In your PHP application code, you don’t actually have to call the __set()
mutator method. You can define the $description property just by using a simple
assignment statement:

$prod1->description = "Carrots";

PHP automatically knows to look for the __set() mutator method defined for the
class and runs it, passing the appropriate property name and value.

Even though the $description property is set to the private visibility, by defin-
ing the mutator magic method you can allow external programs to assign a value
to the property. The benefit of using mutators, though, is that you can control how
external programs use the properties you define for the class.

With the mutator definition, you can place any code you need to control property
features, such as ranges of values allowed or the allowed settings applied to the
property. For example, you could so something like this:

public function __set($name,$value) {

 if ($name == "price" && $value < 0) {

 $this->price = 0;

 } else {

 $this->$name = $value;

 }

}

This example checks if the property being set is the $price property. If it is, it
checks if the value is less than 0. If the value is less than 0, the price is set to 0
instead of the supplied price value. This gives you a way to control the value that
is set for the price from external programs that use the class object.

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 403

Defining accessor magic methods
Accessor magic methods are methods you use to access the private property values
you define in the class. Creating special methods to retrieve the current property
values helps create a standard for how other programs use your class objects.
These methods are often called getters because they retrieve (get) the value of the
property.

You define the accessor using the special __get() method:

public function __get($name) {

 return $this->$name;

}

That’s all there is to it! Accessor methods aren’t overly complicated; they just
return the current value of the property. To use them you just reference the prop-
erty name as normal:

echo "<p>Product: $prod1->description</p>\n";

PHP automatically looks for the accessor method to retrieve the property value.
Follow these steps to try creating and using a class definition with mutators and
accessors:

1. Open your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP OOP Test</title>

</head>

<body>

<h1>Testing PHP OOP setters and getters</h1>

<?php

class Product {

 private $description;

 private $price;

 private $inventory;

 private $onsale;

 public function __set($name, $value) {

 if ($name == "price" && $value < 0) {

 echo "<p>Invalid price set<p>\n";

 $this->price = 0;

 } elseif ($name == "inventory" && $value < 0) {

404 BOOK 4 PHP

 echo "<p>Invalid inventory set: $value</p>\n";

 } else {

 $this->$name = $value;

 }

 }

 public function __get($name) {

 return $this->$name;

 }

 public function buyProduct($amount) {

 if ($this->inventory >= $amount) {

 $this->inventory -= $amount;

 } else {

 echo "<p>Sorry, invalid inventory requested:

 $amount</p>\n";

 echo "<p>There are only $this->inventory

 left</p>\n";

 }

 }

}

$prod1 = new Product();

$prod1->description = "Carrots";

$prod1->price = 1.50;

$prod1->inventory = 5;

$prod1->onsale = false;

echo "<p>Just added $prod1->inventory $prod1->description</p>\n";

echo "<p>Now buying 4 carrots...<p>\n";

$prod1->buyProduct(4);

echo "<p>Inventory of $prod1->description is now $prod1->inventory</p>\n";

echo "<p>Trying to set carrot inventory to -1:</p>\n";

$prod1->inventory = -1;

echo "<p>Now trying to buy 10 carrots...</p>\n";

$prod1->buyProduct(10);

echo "<p>Inventory of $prod1->description is now $prod1->inventory</p>\n";

?>

</body>

</html>

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 405

2. Save the file as ooptest2.php in the DocumentRoot folder for your web
server.

3. Ensure that the web server is running, and then open your browser and
enter the following URL:

http://localhost:8080/ooptest2.php

4. Close the browser window when you’re done.

Figure 5-2 shows the output that you should see when you run the program in
your browser.

There’s a lot going on in this example, so hang in there with me! First, the PHP
code defines the Product class, using the four properties, but this time it defines
them with private visibility. Following that, the mutator and accessor magic
methods are defined. The mutator checks to ensure the price and inventory prop-
erties can’t be set to a negative value.

After the class definition, the code creates an instance of the Product class, and
experiments with the inventory values. First, it uses the buyProduct() method to
purchase four carrots. That works just fine.

Next, it uses the mutator to set the inventory property for the carrot object to a
negative value. The mutator code intercepts that request and prevents the inven-
tory from being set, instead producing an error message.

FIGURE 5-2:
The output from

the ooptest2.
php program.

406 BOOK 4 PHP

Finally, the code tries to use the buyProduct() method to purchase more carrots
than what’s set in inventory. The added code in the buyProduct() method pre-
vents that from happening.

Now the class definition is starting to do some useful functions for the applica-
tion. But wait, there are more magic methods available for you to use!

The constructor
Having to set property values using the mutator methods each time you instanti-
ate a new object can get old, especially if you have lots of properties in the class.
The constructor magic class method makes that job a lot easier.

The constructor magic method allows you to define values for the properties
when you create the new object instance. You can define as many or as few of the
 properties as you like within the class constructor definition. You do that with
the __construct() magic method:

public function __construct($name, $cost, $quantity) {

 $this->description = $name;

 if ($price > 0) {

 $this->price = $cost;

 } else {

 $this->price = 0;

 }

 $this->inventory = $quantity;

 $this->onsale = false;

}

This constructor for the Product class uses three parameters to assign values to
three of the class properties when you instantiate the class. It also automatically
sets the $onsale property to a false value for each new class instance. To use the
constructor, you just provide the three property values as parameters to the class:

$prod1 = new Product("Carrot", 1.50, 10);

When you define a constructor, you have to make sure that the property values
are provided in the correct order and data type when you instantiate a new object.
If you provide too few arguments to the constructor, PHP will produce an error
message. If you provide the right number of arguments but in the wrong order,
you may not run into a problem until PHP tries to use the properties in the code.

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 407

The destructor
Handling memory management in PHP programs is normally a lot easier than
with some other programming languages. By default, PHP recognizes when a
class instance is no longer in use and automatically removes it from memory.
However, sometimes a program might need to do some type of “cleanup” work
for the class object before PHP removes it from memory.

You can specify a magic class method that PHP automatically attempts to run just
before it removes the instance from memory. These methods are called destructors.

Destructors come in handy with a class that works with files or databases to
ensure that the files or database connections are properly closed before the system
removes the class instance. This helps prevent any corruption in the data from an
improperly closed session being stopped.

You use the __destruct() magic class method to define any final statements to
process before PHP removes the class instance from memory:

public function __destruct() {

 statements

}

The __destruct() method doesn’t allow you to pass any parameters into the
method. All the statements you specify in the method need to be self-contained
and must not rely on any data from the main program. They can, however, rely
on properties within the class, because those should be available when the class
object is removed.

You can also manually remove an instance of an object from memory using the
unset() function:

unset($prod1);

When you run this command, PHP will process the destructor for the Product
class for the instance.

Although PHP will normally attempt to process a class destructor any time it
removes a class instance from memory, it may not always be successful. If the
program crashes or stops due to a fatal error, there’s no guarantee that PHP will
be able to run the destructor method code. If your application relies on closing
open files or database connections, it’s a good idea to use the unset() function to
manually remove the object from memory when you’re done using it!

408 BOOK 4 PHP

Copying objects
You can copy objects within PHP, but not using the standard assignment state-
ment. Instead you need to use the clone keyword:

$prod1 = new Product("Carrot", 1.50, 100);

$prod2 = clone $prod1;

Now the $prod2 variable contains a second object instance of the Product class,
with the same property values as the $prod1 instance.

You may however have a situation where you don’t want the copy of the object
to have all the same property values as the original. To do that, you can override
the __clone() magic method in your class code:

public function __clone() {

 $this->price = 0;

 $this->inventory = 0;

 $this->onsale = false;

}

With this code, when you clone an object only the description property will copy
over; all the other property values will be reset.

Displaying objects
Most likely, at some point in your application, you’ll want to display the properties
of your objects in the web page. However, if you try to use the echo statement to
display the object instance, you’ll get a somewhat ugly error message from PHP:

Recoverable fatal error: Object of class Product could not be converted to

string

You can solve that problem by defining the __toString() magic class method in
the class definition.

The __toString() magic method defines how you want PHP to handle the prop-
erties when you try to use the object as a string value, such as in the echo state-
ment. You just build the string value from the properties and store the output in a
variable. Then use the return statement to return the output variable back to the
main program. That code looks like this:

public function __toString() {

 $output = "<p>Product: " . $this->description . "
\n";

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 409

 $output .= "Price: $" . number_format($this->price,2) . "
\n";

 $output .= "Inventory: " . $this->inventory . "
\n";

 $output .= "On sale: ";

 if ($this->onsale) {

 $output .= "Yes</p>\n";

 } else {

 $output .= "No</p>\n";

 }

 return $output;

}

With the __toString() magic method defined, you can now use an instance of the
Product class in an echo statement just like any variable:

echo $prod1;

And you’ll get the following output in your web page:

Product: Carrots

Price: 1.50

Inventory: 10

On sale: No

With the __tostring() magic method, displaying your class objects in the web
page is as easy as any other type of variable value!

Loading Classes
At the beginning of this chapter, I mention that OOP helps make it easy to reuse
program code in multiple applications. After you create the Product class for one
application, you can use the same code to use the Product class in any other
application that uses products.

However, having to retype the entire Product class code definition in each appli-
cation that uses it can be somewhat tedious, especially for complicated classes. To
solve that problem you can use our friend the include() function.

Just save your class definitions in separate PHP code files; then use the include()
function to include the files in any code that uses the class definitions. This
enables you to include only the files for the classes the application uses, without
having to retype the entire class code definition! That’s good, but there may still
be a downside to that.

410 BOOK 4 PHP

Complex applications may use dozens or possibly even hundreds of separate class
objects to manage and manipulate data in the application. Having to list each of
the class include files can still be somewhat tedious, as well as be prone to typing
mistakes that will cause errors. To solve that problem, the PHP developers created
the autoload feature, which determines when a class is being instantiated in the
program and then tries to load the appropriate include file that defines that class.
You implement that using the spl_autoload_register() function.

With the spl_autoload_register() function, you define the location for all of
the class include files based on the class name. With a little bit of programming
magic, you can make that task a breeze:

spl_autoload_register(function($class) {

 include $class . ".inc.php";

});

The anonymous function provided to the spl_autoload_register() function
defines the include file to load whenever a class is instantiated in the PHP code.
The anonymous function attempts to load the include file with the same name as
the class name, with an .inc.php file extension. Using this method, you must be
careful to save the class definition files using the class name as the filename, plus
the .inc.php file extension.

Follow these steps to try out using the autoload feature in PHP:

1. Open your editor and type the following code:

<?php

class Product {

 private $description;

 private $price;

 private $inventory;

 private $onsale;

 public function __construct($name, $cost, $quantity, $sale) {

 $this->description = $name;

 $this->onsale = $sale;

 if ($cost < 0) {

 $this->price = 0;

 } else {

 $this->price = $cost;

 }

 if ($quantity < 0) {

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 411

 $this->inventory = 0;

 } else {

 $this->inventory = $quantity;

 }

 }

 public function __set($name, $value) {

 if ($name == "price" && $value < 0) {

 echo "<p>Invalid price set<p>\n";

 $this->price = 0;

 } elseif ($name == "inventory" && $value < 0) {

 echo "<p>Invalid inventory set: $value</p>\n";

 } else {

 $this->$name = $value;

 }

 }

 public function __get($name) {

 return $this->$name;

 }

 public function __clone() {

 $this->price = 0;

 $this->inventory = 0;

 $this->onsale = false;

 }

 public function __toString() {

 $output = "<p>Product: " . $this->description . "
\n";

 $output .= "Price: $" . number_format($this->price,2) . "
\n";

 $output .= "Inventory: " . $this->inventory . "
\n";

 $output .= "On sale: ";

 if ($this->onsale) {

 $output .= "Yes</p>\n";

 } else {

 $output .= "No</p>\n";

 }

 return $output;

}

 public function buyProduct($amount) {

 if ($this->inventory >= $amount) {

 $this->inventory -= $amount;

412 BOOK 4 PHP

 } else {

 echo "<p>Sorry, invalid inventory requested:

 $amount</p>\n";

 echo "<p>There are only $this->inventory

 left</p>\n";

 }

 }

 public function putonsale() {

 $this->onsale = true;

 }

 public function takeoffsale() {

 $this->onsale = false;

 }

}

?>

2. Save the file as Product.inc.php (note the capitalization) in the
DocumentRoot folder for your web server.

3. Open a new tab or window in your editor and type the following code:

<!DOCTYPE html>

<html>

<head>

<title>PHP Total OOP Test</title>

</head>

<body>

<h1>Testing the PHP class</h1>

<?php

spl_autoload_register(function($class) {

 include $class . ".inc.php";

});

$prod1 = new Product("Carrots", 4.00, 10, false);

echo "<p>Creating one product:</p>\n";

echo $prod1;

$prod2 = new Product("Eggplant", 2.00, 5, true);

echo "<p>Creating one product:</p>\n";

echo $prod2;

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 413

echo "<p>Putting $prod1->description on sale:</p>\n";

$prod1->price = 3.00;

$prod1->putonsale();

echo "<p>New product status:</p>\n";

echo $prod1;

?>

</body>

</html>

4. Save the file as ooptest3.php in the DocumentRoot folder for your web
server.

5. Ensure that the web server is running and then open your browser and
enter the following URL:

http://localhost:8080/ooptest3.php

6. Close the browser window when you’re done.

When you run the ooptest3.php file, you should see the output shown in
Figure 5-3.

The code saves the Product class definition code in the Product.inc.php file
and then uses the autoloader feature to load the Product class include file when
needed. It instantiates two Product class objects using the constructor and dis-
plays them on the web page.

FIGURE 5-3:
The output from

the ooptest3.
php program.

414 BOOK 4 PHP

Following that, the code changes the price for the $prod1 object using the class
mutator and uses the putonsale() method to place the product on sale. The code
finishes with an echo statement so you can see the changes made to the class
object. Now things are really starting to get fancy!

Be very careful when naming class include files. If you’re using a server that’s
case-sensitive with filenames (such as Linux or macOS), then the include file-
name must match the case of the class name.

Extending Classes
No, I’m not talking about making you stay after school! OOP provides a way to
extend an existing class by adding additional members to an existing class. That’s
the whole beauty of OOP: You can take classes and use them as is, or you can mod-
ify just the pieces you need to fit your particular application.

Defining a new class that’s an extension of another class is called inheritance. The
new class (called the child) inherits all the public or protected members from the
original class (called the parent). You can then add new members to the child class
and even override members of the parent class. If you use the overridden mem-
bers, the child members take precedence over the parent members.

Members marked with private visibility aren’t inherited by child classes. If you
want a child class to inherit properties but don’t want them visible to external
programs, use the protected visibility setting.

To create a child class, you use the normal class definition format, along with the
extends keyword and the name of the class you’re extending:

class Soda extends Product {

For the new class, Soda, to inherit the Product class properties, you need to
change the visibility of the properties to protected:

class Product {

 protected $description;

 protected $price;

 protected $inventory;

 protected $onsale;

 ...

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 415

With the properties set to protected visibility, the Soda child class will automati-
cally inherit the description, price, inventory, and onsale properties from the
Product class, along with all the public class methods.

In the child class definition, you can add additional properties and methods that
are unique to the child class:

private ounces;

public function restock($amount) {

 $this->inventory += $amount;
}

Notice that the restock() method uses the inventory property that was inherited
from the Product parent class. When you define a method in a child class, it’s only
available for objects that are instantiated from the child class. Objects instantiated
from the parent class won’t see that method.

Because the Soda child class contains an additional property, you need to override
the __construct() method from the parent class to add the new property. That
code looks like this:

public function __construct($name, $value, $amount, $sale,

 $size) {

 parent::__construct($name, $value, $amount,

 $sale);

 $this->ounces = $size;

}

The new constructor for the Soda child class requires five parameters. Note the
first line in the constructor code:

parent::__construct($name, $value, $amount, $sale);

The parent:: keyword tells PHP to run the constructor from the parent object.
This assigns values to those properties inherited from the parent. The property
unique to the child class is assigned a separate value from the parameters.

To instantiate a new child object you’d then just use the following:

$rootbeer = new Soda("Root Beer", 1.50, 10, false, 18);

Inside the child class definition, you can override any or all of the parent meth-
ods. Any methods that don’t override the child class objects can use the parent
methods.

416 BOOK 4 PHP

Follow these steps to test out using inheritance in your OOP PHP code.

1. Open the Product.inc.php file in your editor.

2. Change the private visibility keyword to protected.

Look for these four lines:

private $description;

private $price;

private $inventory;

private $onsale;

And change them to the following:

protected $description;

protected $price;

protected $inventory;

protected $onsale;

3. Save the file as Product.inc.php in the DocumentRoot folder for your web
server.

4. Open a new tab or window in your editor, and type the following code:

<?php

include("Product.inc.php");

class Soda extends Product {

 private $ounces;

 public function __construct($name, $value, $amount, $sale, $size) {

 parent::__construct($name, $value, $amount, $sale);

 $this->ounces = $size;

 }

 public function __toString() {

 $output = "<p>Product: " . $this->description . "
\n";

 $output .= "Price: $" . number_format($this->price,2) . "
\n";

 $output .= "Inventory: " . $this->inventory . "
\n";

 $output .= "On sale: ";

 if ($this->onsale) {

 $output .= "Yes
\n";

 } else {

 $output .= "No
\n";

O
bj

ec
t-

O
ri

en
te

d
PH

P
Pr

og
ra

m
m

in
g

CHAPTER 5 Object-Oriented PHP Programming 417

 }

 $output .= "Ounces: " . $this->ounces . "</p>\n";

 return $output;

 }

 public function restock($amount) {

 $this->inventory += $amount;
 }

}

?>

5. Save the file as Soda.inc.php in the DocumentRoot folder for your web
server.

6. Open yet another new tab or window in your editor, and type the
following code:

<!DOCTYPE html>

<html>

<head>

<title>Testing PHP Inheritance</title>

</head>

<body>

<h1>Testing inheritance in PHP OOP</h1>

<?php

spl_autoload_register(function($class) {

 include $class . ".inc.php";

});

$prod1 = new Soda("Root Beer", 1.25, 10, false, 18);

echo $prod1;

echo "<p>Buying 6 bottles:</p>\n";

$prod1->buyProduct(6);

echo $prod1;

echo "<p>Restocking 4 bottles:</p>\n";

$prod1->restock(4);

echo $prod1;

?>

</body>

</html>

418 BOOK 4 PHP

7. Save this file as ooptest4.php in the DocumentRoot folder for your web
server.

8. Ensure that the web server is running, and then open your browser and
enter the following URL:

http://localhost:8080/ooptest4.php

9. Close the browser, and stop the web server.

When you run the ooptest4.php code, you should see the output as shown in
Figure 5-4.

The Soda class code overrides both the constructor and the __toString() methods
of the Product parent class to accommodate the additional $ounces property. The
ooptest4.php code creates an instance of the Soda class, uses the buyProduct()
method from the parent class to buy bottles, and then uses the restock() method
from the child class to restock them. Notice that the child class object has access
to the public buyProduct() method from the parent class.

FIGURE 5-4:
The output from

the ooptest4.
php program.

CHAPTER 6 Sessions and Carts 419

Sessions and Carts

In the previous chapters of this minibook, I show you how to use the HTTP GET
and POST methods to send data from one web page to another. Although they
work fine for clicking links and submitting forms, they’re somewhat impracti-

cal to use for sharing data between all the web pages in an application. To do that
requires some other form of persistent data, someplace where you can temporar-
ily store it so that your PHP programs can access the data at any time from any
page. This is where sessions and carts help out. This chapter explains how they
work, why you shouldn’t be afraid of them, and how to use them as another piece
of your dynamic web applications.

Storing Persistent Data
Most dynamic web applications require some way of temporarily storing data
while site visitors work their way through the application web pages. I’m not
talking about long-term storage of data (I cover that in the next minibook). I’m
talking about short-term storage of data that one web page can store and another
web page retrieves, such as passing an authenticated user’s info through the web-
site. This helps your application track the site visitors and what they’re doing
within the application.

This is where HTTP cookies come into play. Cookies have received somewhat
of a bum rap in the web world, mainly because of a misunderstanding of how

Chapter 6

IN THIS CHAPTER

 » Storing data

 » Using cookies

 » Working with sessions

 » Playing with carts

420 BOOK 4 PHP

companies use them. A company can’t track all of your browsing history using
cookies, but it can track which of its advertisements you’ve visited. This helps the
marketing gurus target advertising to your browser based on which of the com-
pany’s links you’ve already visited. Cookies do have a valid place in the assembly
line of dynamic web application tools, playing a crucial function in being able to
keep track of individual site visitors in your application. It’s crucial that you know
how they work and how to use them.

This section walks through the basics of cookies, why you need them, and how to
safely (and responsibly) use them in your dynamic web applications.

The purpose of HTTP cookies
In the mainframe computer world, people who need to access programs running
on the system must first log in to the system. This usually requires entering some
type of data that uniquely identifies you, such as typing a user ID, placing your
finger on a scanner, or inserting a smart ID card that includes a unique encrypted
key. When the system authenticates that you are who you say you are, it allows
you access to the system and your data. This process starts what’s called a session.

The mainframe tracks every transaction you perform within the session. A system
administrator can look through the log file and identify the user who performed
each transaction on the system.

When you’ve finished entering transactions, you must log off of the system to
stop the session. If you forget to log out, another user can come in and enter new
transactions that the mainframe credits to your session.

On a mainframe system, keeping track of sessions is easy, because each user logs
in from a specific device (either a directly connected terminal or a persistent net-
work connection), performs transactions, and then logs out. Unfortunately, it’s
not that easy in our dynamic web applications.

The HTTP standard was intended to retrieve data from a remote server in an
anonymous, stateless manner. This means not having to deal with the formali-
ties of a session. In essence, a web session consists of a single transaction, and it
doesn’t even require an ID to identify the user.

Dynamic web applications are somewhat of a hybrid of these two environments.
You want to maintain the ease of an HTTP anonymous session, but you need to
track users and their transactions like a mainframe session. This is where cookies
come to save the day.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 421

Cookies are data that a server can temporarily store in the browser of each site
 visitor. When the browser stores the cookie data, the server can retrieve that
information in later transactions with the site visitor. This allows the server (and,
thus, the server-side application) to identify individual site visitors and keep track
of what they’re doing within the application. This is the beginning of a true web
session.

Types of cookies
Before you start thinking chocolate chip and oatmeal raisin, let me start out by
saying we’re not talking about those types of cookies here. There are several dif-
ferent characteristics of HTTP cookies, each one defining a different way to use
the cookie. Table 6-1 lists the different HTTP cookie types you can use.

The standard type of cookie is the persistent cookie. Persistent cookies are sent by
the web server to be stored in the client browser for a specific amount of time.
Your application can store data in a persistent cookie and then access that data
any time in the future until the cookie expires.

As opposed to persistent cookies, session cookies only last for as long as the client
browser window stays open. When the site visitor closes the browser window, the
session cookies (and the data they contain) go away.

Third-party cookies are what gave cookies a bad name. With persistent and ses-
sion cookies, a web server can only retrieve and read the cookies that it sets — it
doesn’t have access to cookies set by other servers. This helps protect the privacy

TABLE 6-1	 Types of HTTP Cookies
Type Description

HttpOnly Can only be accessed via HTTP, not via JavaScript

Persistent Expires at a specific date/time or after a specific length of time

SameSite Can only be sent in requests from the same origin as the target
domain

Secure Can only be sent in HTTPS connections

Session Expires when the client browser window closes

Supercookie Uses a top-level domain as the origin, allowing multiple
websites access

Third-party Uses a domain that doesn’t match the URL domain for the web page

422 BOOK 4 PHP

of site visitors by preventing a single server from determining all the websites a
site visitor has visited. Third-party cookies use a loophole to get around that.

These days it’s very common for a web page to contain embedded advertisements
from other websites. Those embedded advertisements run code created by the
remote website and can set cookies from the remote website, storing the location
of the main website the advertisement is embedded in. This allows a company
to purchase advertising space on multiple common websites and then determine
which site visitors have visited which website by tracking the cookies that it sets
in the advertisements. Now that’s sneaky!

Most modern browsers allow you to block third-party cookies separate from
 session or persistent cookies, allowing you to use cookies for normal operations
but block third-party cookies trying to track your website history.

The anatomy of a cookie
The HTTP standard defines how web servers set and retrieve cookies within the
HTTP session with a client browser. When a client browser requests to view a web
page on a server, it sends an HTTP GET request:

GET /index.php

Host: www.myserver.com

The request specifies the web page to retrieve and the host from where to retrieve
it (usually the same server the request is sent to). The host server returns an HTTP
response, which includes the status code for the request, along with any cookies
that it wants to set using the Set-Cookie statement and then the HTML for the
requested web page:

HTTP/1.0 GET OK

Content-type: text/html

Set-Cookie: name1=value1; attributes

Set-Cookie: name2=value2; attributes

 Web page HTML content

The cookie information appears before the HTML from the requested web
page. The server assigns each cookie a unique name and a value, and possibly
adds optional attributes that define the cookie type. The client browser stores each
cookie as a separate temporary file on the client workstation.

The Set-Cookie statement can list one or more optional attributes for the cookie.
Table 6-2 lists the cookie attributes that you can set.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 423

If either the Expires or Max-Age attributes are set, the cookie is a persistent
cookie. It will remain available until the expiration date and/or time. If no attri-
butes are specified, the cookie is a session cookie and will be deleted when the
client browser window closes.

The Expires attribute specifies an exact date and time the cookie will expire:

Set-Cookie: id=25; Expires=Mon 12 May 2025 13:30:00 GMT;

The Max-Age attribute sets a time duration (in seconds) that the cookie should
remain valid:

Set-Cookie: id=25; Max-Age=3600

After the server sets a cookie, the next time the client browser requests a web page
from the same destination, it sends all the cookies set from that destination in the
HTTP request using a single Cookie statement:

GET /index.php

Host: www.myserver.com

Cookie: name1=value1; name2=value2

The Cookie statement just sends the name/value pair for all the cookies set
by that server. It doesn’t send any attributes that the server had set for the
cookies. The server can then extract the separate cookie names and values and pass
them to any server-side programming language (such as your PHP programs).

TABLE 6-2	 HTTP Cookie Attributes
Attribute Description

Domain=site Specifies the domain the cookie applies to. If omitted the server is the default
location.

Expires=datetime Specifies the expiration date for the cookie as an HTTP timestamp value.

HttpOnly Specifies that the cookie can only be retrieved in an HTTP session.

Max-Age=number Specifies the expiration time for the cookie in seconds.

Path=path Indicates the path in the URL that must exist in the requested resource.

SameSite=setting Specifies if the cookie can only be accessed from the same site that set it. Values
are Strict or Lax.

Secure Specifies that the cookie can only be sent in an HTTPS secure session.

424 BOOK 4 PHP

Cookie rules
Overall, the implementation of cookies in browsers is somewhat nonstandard. No
two client browsers may handle cookies the same way. There are however a few
minimum requirements that the HTTP standard specifies:

 » The browser must support cookies up to 4,096 bytes in size.

 » The browser must support at least 50 cookies per website.

 » The browser must be able to store at least 3,000 cookies total.

Most browsers exceed these requirements, but it’s best not to test the limits in
your applications. If you need to store large amounts of data for an application,
it’s best to use some other type of persistent data storage, such as a database. You
can store a key identifying the site visitor as a cookie, and then use that key to
reference the larger amounts of data stored in the database associated with that
site visitor.

Be careful when using session cookies. There is still some controversy in the
browser world over how to handle session cookies, especially now that tabbed
browsers have become all the rage. Most browsers consider all the web page tabs
within the same browser window as a single session. To close the session, your
site visitor must close the entire browser window, not just the tab for the web
page. Also, many browsers now have a feature that allows for the option of saving
sessions by storing session cookie data rather than removing it when the browser
window closes. This somewhat circumvents the whole idea of session cookies!

PHP and Cookies
PHP allows you to fully interact with cookies in your web applications. You can
set cookies from one web page, retrieve and read them in another web page, and
remove them from yet another web page. This section walks through the code you
need to use to implement cookies in your PHP applications.

Setting cookies
PHP uses the setcookie() function to set new cookies and update existing cook-
ies. Here’s the basic format of the setcookie() function:

setcookie(name [, value] [, expire] [, path] [, domain] [, secure] [, httponly])

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 425

The only required parameter is the name of the cookie, although you’ll almost
always want to include a cookie value, too. Leaving off the value sets the cookie
value to NULL.

The optional expire parameter allows you to specify the expiration date and time
as a Unix timestamp value, making it a persistent cookie. The Unix timestamp
format is an integer value of the number of seconds since midnight on January 1,
1970. The last four parameters allow you to specify the URL paths and domains
allowed to access the cookie, and whether the cookie should be set as Secure or
HttpOnly.

Be careful with the expire parameter. Even though the HTTP message sends the
expire attribute as a full date and time, with the setcookie() function you set it
using a timestamp value, not a standard date and time. The way most PHP devel-
opers do that is by adding the number of seconds to the current date and time
retrieved from the time() function:

setcookie("test", "Testing", time() + (60*60*24*10));

This sets the cookie named test to expire ten days from the time the web page is
accessed by the site visitor.

Because the cookie is part of the HTTP message and not part of the HTML data,
you must set the cookie before you send any HTML content, including the opening
<!DOCTYPE> tag. There is an exception to this, though. If the PHP output_buffer
setting is enabled, the PHP server sends all output from the program to a buffer
first. Then, either when the buffer is full or the program ends, it rearranges the
data in the buffer to place the HTTP messages first and then sends the data to the
client browser.

Follow these steps to test setting a persistent cookie from a PHP application:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Type the following code into the editor window:

<?php

setcookie("test1", "This is a test cookie", time() + 600);
?>

<!DOCTYPE html>

<html>

<head>

<title>PHP Cookie Test</title>

</head>

426 BOOK 4 PHP

<body>

<h1>Trying to set a cookie</h1>

</body>

</html>

3. Save the file as cookietest1.php in the DocumentRoot folder for the web
server.

For XAMPP in Windows, that’s c:\xampp\htdocs; for XAMPP in macOS,
that’s /Applications/XAMPP/htdocs.

4. Start the XAMPP Control Panel and then start the Apache web server.

5. Open your browser and enter the following URL:

http://localhost:8080/cookietest1.php

You may need to change the TCP port number to match your web server.

6. Using your browser’s Developer Tools, check the cookies that are set
from the web page and their expiration date and time.

You should see the test1 cookie created. It should be set to expire in ten
minutes.

7. Close the browser window when you’re done.

The Developer Tools allow you to see the test1 cookie that was set by the program.
For the Microsoft Edge browser, look in the Debugger section for the cookies, as
shown in Figure 6-1.

The cookie is set, along with the value, and the expiration time is set to ten
 minutes (600 seconds) in the future.

You have to place the setcookie() function lines before the <html> section of the
web page. Otherwise, you’ll get an error message. The web server must send any
cookie data in the HTTP session before any HTML content.

Reading cookies
PHP makes reading cookies that your application sets a breeze. The PHP server
automatically places all cookies passed from the client in the $_COOKIE[] special
array variable. The cookie name that you assigned in the setcookie() statement
becomes the associative array key:

$_COOKIE['name']

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 427

If a cookie has expired, you’ll get an error message when trying to access it using
the $_COOKIE[] array variable. It’s a good idea to always check that the cookie
exists first, using the isset() function:

if (isset($_COOKIE['test'])) {

 $data = $_COOKIE['test'];

} else {

 $data = 0;

}

This code will set the value of the $data variable used in the program to 0 if the
cookie doesn’t exist. You can then check for the 0 condition in the variable to
determine if the cookie is missing.

Follow these steps to test reading the cookie you set in the cookietest1.php
program:

1. Open your editor, and type the following code:

<!DOCTYPE html>

<html>

<head>

FIGURE 6-1:
Displaying the

cookie in the
Microsoft Edge

Developer Tools
window.

428 BOOK 4 PHP

<title>PHP Cookie Test</title>

</head>

<body>

<h1>Retrieving the test cookie</h1>

<?php

if (isset($_COOKIE['test1'])) {

 $data = $_COOKIE['test1'];

 echo "<p>The cookie was set: $data</p>

\n";

} else {

 echo "<p>Sorry, I couldn't find the cookie</p>

\n";

}

?>

</body>

</html>

2. Save the file as cookietest2.php in the DocumentRoot folder for your web
server.

3. Ensure the web server is running, and then open your browser and enter
the following URL:

http://localhost:8080/cookietest2.php

4. Close the browser when you’re done testing.

If you run the cookietest2.php program within ten minutes of the cookietest1.
php program, you should see the data stored in the cookie appear on the web page
and in the browser Developer Tools, as shown in Figure 6-2.

If you wait longer than the ten-minute expiration time of the cookie, you’ll get the
message that the program couldn’t find the cookie.

Modifying and deleting cookies
You can easily modify an existing cookie just by resending the cookie with the
updated value:

setcookie("test1", "New data", time() + 600);

When you resend the cookie, the browser overwrites the original cookie infor-
mation with the new information, including the updated expiration time. If you
specify a time relative to the current time, that will change the expiration time of
the cookie.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 429

To delete a cookie, just set the expiration time to a time value in the past:

setcookie("test1", "", time() – 1);

When you set the expiration time to one second earlier than the current time, the
browser will immediately expire the cookie.

Follow these steps to test setting and removing a cookie:

1. Open your editor and type the following code:

<?php

if (!isset($_COOKIE['test1'])) {

 setcookie("test1", "This is a test cookie", time() + 600);
} else {

 setcookie("test1", "", time() - 1);

}

?>

<!DOCTYPE html>

<html>

<head>

<title>Deleting a Cookie</title>

FIGURE 6-2:
The result of the
cookietest2.

php code
displaying the

cookie data.

430 BOOK 4 PHP

</head>

<body>

<h1>Cookie status:</h1>

<?php

 if (isset($_COOKIE['test1'])) {

 $data = $_COOKIE['test1'];

 echo "<p>Cookie set: $data<p>\n";

 } else {

 echo "<p>Cookie not set</p>\n";

 }

?>

Click to try again

</body>

</html>

2. Save the file as cookietest3.php in the DocumentRoot folder for your web
server.

3. Open your browser and enter the following URL:

http://localhost:8080/cookietest3.php

4. Note if the cookie has been set or not, then click the Click to Try Again
link in the web page to reload the page.

You can continue clicking the link to toggle the cookie on and off.

5. Close the browser window when you’re done testing.

In the cookietest3.php code, each time you visit the page the PHP code checks if
the cookie exists. If the cookie exists, the code deletes it by setting the expiration
time back one second. If the cookie doesn’t exist, it creates the cookie. You can
continue going back and forth by clicking the link to reload the page each time.

PHP and Sessions
PHP handles sessions and session cookies a little differently from persistent
 cookies. Instead of storing session cookies in the client browser as separate data
files, PHP assigns a unique session ID to each site visitor session and stores that
as a session cookie in the client browser.

PHP then stores any data associated with the session in a temporary file located on
the actual PHP server. This helps protect the session data, because it’s not being

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 431

stored in the client browser at any time. When the session ends, PHP automati-
cally deletes the temporary session file on the server.

This feature alone makes using sessions to store data more attractive than using
persistent cookies. The only data sent between the client browser and the server is
the session ID value assigned to the session. All the data stays local on the server.

The following sections describe how to use sessions in your PHP applications.

Starting a session
Before you can set or read any session data, you must start the session. PHP
 provides an easy way for you to declare sessions in your web pages. The PHP
session_start() function automatically sends the required HTTP code to the
remote client browser to create a session cookie. PHP assigns the session cookie a
unique ID value to identify the session.

In the PHP file (the code for your web page), the session_start() function must
come before any HTML code, including the <!DOCTYPE> tag. The session PHP code
then looks like this:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

You must add the session_start() function at the start of every web page that
needs to access the session data. If the session_start() function is not present,
PHP doesn’t look for the session ID, and your application can’t access any of the
session data.

Don’t place any HTML comment lines, blank lines, or even a space before the
opening <?php tag when using the session_start() function. Any text that
appears before the opening <?php tag will be sent as HTML code to the client
browser. Then you’ll get an error message for trying to send the session data.

Storing and retrieving session data
After you initialize the session using the session_start() function, you can use
the $_SESSION[] array variable to both set and retrieve session data in your appli-
cation. To set a new value, just define it in an assignment statement:

$_SESSION['item'] = "computer";

432 BOOK 4 PHP

Use the session cookie name as the associative array key. When you set a session
cookie name/value pair, you can access it at any time in any web page that’s part
of the same session:

echo "You purchased a " . $_SESSION['item'];

Follow these steps to test out setting and reading session cookie data:

1. Open your editor and type the following code:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<head>

<title>Testing Session Cookies</title>

</head>

<body>

<h1>Setting a session cookie</h1>

<?php

 $_SESSION['test2'] = "Second test cookie";

?>

Click to continue

</body>

</html>

2. Save the file as sessiontest1.php in the DocumentRoot folder for your
web server.

3. Open a new tab or window in your editor and type the following code:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<head>

<title>Testing Session Cookies</title>

</head>

<body>

<h1>Retrieving the session cookie</h1>

<?php

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 433

 if (isset($_SESSION['test2'])) {

 $data = $_SESSION['test2'];

 echo "<p>Session cookie: $data</p>\n";

 } else {

 echo "<p>Error accessing the session

 cookie</p>\n";

 }

?>

Go back to start

</body>

</html>

4. Save the file as sessiontest2.php in the DocumentRoot folder for your
web server.

5. Ensure that the web server is started, and then open your browser and
enter the following URL:

http://localhost:8080/sessiontest1.php

6. Click the Click to Continue link to go to the second test page.

7. Close your browser window.

8. Open your browser window, and go directly to the following URL:

http://localhost:8080/sessiontest2.php

9. Close the browser at the end of the test.

When you open the sessiontest1.php web page, the PHP code starts a session
and then saves the test session cookie and value. If you use the Developer Tools
in your browser, you can see that the web page doesn’t create a test2 cookie,
but instead creates a cookie named PHPSESSID with a long hexadecimal value, as
shown in Figure 6-3.

This is the unique session ID that the PHP server assigned to the browser session.

When you click the link, the browser requests the sessiontest2.php web page
from the server, passing the session ID cookie that was set in the sessiontest1.
php web page code. This tells PHP that the second page is part of the same brows-
ing session and allows the PHP code access to any session cookie data set in that
session. Figure 6-4 shows the output that you should see from the sessiontest2.
php file, along with the PHPSESSID cookie value shown in the Developer Tools.

434 BOOK 4 PHP

FIGURE 6-3:
Looking for the

PHP session
cookie using the
Developer Tools.

FIGURE 6-4:
The output

from the
sessiontest2.

php file.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 435

When you close the browser window, that deletes the session ID session
cookie. When you reopen the browser window and attempt to go directly to the
sessiontest2.php file, the original session ID is not present, so PHP creates a
new session for the connection. That new session doesn’t have access to the data
set in the original session, so you’ll get an error message, as shown in Figure 6-5.

If you take a look at the PHPSESSID value using the Developer Tools, it has a dif-
ferent value than before, because the new browser window is a new session.

Removing session data
There are three ways to remove session cookie data:

 » Remove individual session values.

 » Remove all session values but keep the session active.

 » Remove the original session ID session cookie, which deletes the session.

FIGURE 6-5:
The error
 message

 generated from
trying to access

data in an
expired session.

436 BOOK 4 PHP

To remove individual session values, use the unset() function, along with the
session array variable to remove:

unset($_SESSION['item']);

This removes the session name/value pair from the session data in the temp file
on the server, but maintains the temp file and the session ID session cookie in the
client browser.

To remove all the session name/value pairs from the session data, but maintain
the session ID session cookie, use the session_unset() function:

session_unset();

You can terminate an entire session by using the session_destroy() function
anywhere in your PHP application:

session_destroy();

This removes all session name/value pairs associated with the session, as well
as the session ID value assigned to the client browser’s session cookie. If the site
visitor continues on to another web page in the application, the session_start()
function will set a new session ID session cookie, along with a new temporary
 session file on the server associated with the session.

Shopping Carts
Quite possibly one of the most common uses of session cookies is the ability to
track items customers intend to purchase while browsing through an online store.
Just like old-fashioned shopping carts, the online shopping cart should allow cus-
tomers to place one or more of an item into the cart, view the cart contents at any
time, and remove any item from the cart — all with the benefit of not having to
listen to a squeaky cart wheel!

This section shows you how to use session cookies to implement simple shopping
carts in your own dynamic web applications.

Creating a cart
To create an online shopping cart, you just need to use two PHP features: session
cookies and arrays. The idea is to create a session cookie as an empty array variable.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 437

As shoppers place new items into the cart, the code adds a new element to the
array, setting the quantity of the item selected as the array value.

You do that by creating a multidimensional array session cookie. That sounds like
a mouthful, but it’s actually very easy to create:

$_SESSION['cart'] = array();

This single line of code creates a session cookie named cart and defines it as an
array variable. That’s the start to your shopping cart.

Placing items in the cart
When you create the shopping cart session cookie, you’re ready to start placing
items into it. To place an item into the cart, you’ll create a new array element and
pair it with a value. The array element key will be the name of the product placed
in the cart, and the array element value will be the quantity of the product to pur-
chase. That looks like this:

$_SESSION['cart']['apples'] = 10;

This statement creates an array element in the $_SESSION['cart'] session cookie
with the name apples and assigns it a value of 10.

You can create as many array elements as you want to add into the session cookie
array variable.

Retrieving items from a cart
Now that you have a multidimensional session cookie array that contains the
products you placed in the cart, all you need to do is extract the values stored in
the array to see what’s there. However, that can be a little tricky.

Because the array is an associative array, you can’t just loop through the array
element using a simple for or while statement because you don’t know what
key names are in the array. This is where the foreach statement comes in handy!
It allows you to iterate through all the array keys without having to know what
they are:

foreach($_SESSION['cart'] as $key => $value) {

 echo "<p>$key - $value</p>\n";

}

438 BOOK 4 PHP

The foreach statement iterates through the array, extracting each key and value
pair in each iteration. You can then use the individual key and value pairs in your
code to list the items and their quantities.

Removing items from a cart
Because each product in the cart is a separate array element of the session cookie,
you can handle each product individually, as long as you know the product name
that you used for the array key. To remove an individual product, just specify it in
the unset() function:

unset($_SESSION['cart']['apples']);

This statement removes just the apples array key and its value from the array,
leaving any other items still in the array. If you want to remove the entire
 shopping cart, you’d use the following:

session_unset($_SESSION['cart']);

This statement removes the entire cart session cookie. To start a new cart, your
code would need to create a new cart session cookie and make it an array variable.

Be careful when unsetting the individual shopping cart items or the entire session
cookie, because there’s no going back. When you remove a session cookie, it’s
gone and can’t be recovered!

Putting it all together
As you can tell, working with a shopping cart is a multistep process, and it can get
somewhat complicated. Let’s take a look at an example of using a shopping cart
on a web page. Listing 6-1 shows the code.

LISTING	6-1:	 The carttest.php Program

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<head>

<title>Shopping Cart Test</title>

</head>

<body>

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 439

<h1>Items available</h1>

<form action="carttest.php" method="post">

<table>

<tr><th>Item</th><th>Quantity</th></tr>

<tr><td>Apples</td><td><input type="text" name="apples" size="2"></td></tr>

<tr><td>Bananas</td><td><input type="text" name="bananas" size="2"></td></tr>

</table>

<input type="submit" value="Click to add to cart">

</form>

<?php

 if (isset($_POST['apples'])) {

 if (is_numeric($_POST['apples'])) {

 $_SESSION['cart']['apples'] = $_POST['apples'];

 } elseif ($_POST['apples'] == "Remove") {

 unset($_SESSION['cart']['apples']);

 }

 }

 if (isset($_POST['bananas'])) {

 if (is_numeric($_POST['bananas'])) {

 $_SESSION['cart']['bananas'] = $_POST['bananas'];

 } elseif ($_POST['bananas'] == "Remove") {

 unset($_SESSION['cart']['bananas']);

 }

 }

?>

<fieldset style="width:300px">

<legend>Your Shopping Cart</legend>

<?php

 if (!isset($_SESSION['cart'])) {

 $_SESSION['cart'] = array();

 echo "Your shopping cart is empty\n";

 } else {

 echo "<form action=\"carttest.php\" method=\"post\">\n";

 echo "<table>\n";

 echo "<tr><th>Item</th><th>Quantity</th><th/></tr>\n";

 foreach($_SESSION['cart'] as $key => $value) {

 echo "<tr><td>$key</td><td>$value</td>\n";

 echo "<td><input type=\"submit\" name=\"$key\" value=\"Remove\"></

td></tr>\n";

 }

 echo "</table>\n";

 echo "</form>\n";

 }

?>

</fieldset>

</body>

</html>

440 BOOK 4 PHP

Listing 6-1 shows the carttest.php program, which I’ll walk through to demon-
strate using a shopping cart. The first part of the program creates a simple form
for selecting the products to purchase. The code lists two products — apples and
bananas — and provides a text box to indicate the quantity of each you want to
place in the shopping cart.

The next section uses PHP code to check whether the form has already been sub-
mitted. If the site visitor has submitted the form, the PHP code checks to see
which (if any) of the products had been selected for purchase. If either one had
been selected, the PHP code stores the new quantity number in the cart session
cookie for that product:

if (isset($_POST['apples'])) {

 if (is_numeric($_POST['apples'])) {

 $_SESSION['cart']['apples'] = $_POST['apples'];

Next, the code shows the shopping cart status. If there isn’t a shopping cart
 session cookie, one is created:

$_SESSION['cart'] = array();

If a shopping cart session cookie exists, the program creates a form containing the
shopping cart items, along with a Remove button. The foreach statement is used
to iterate through each of the items in the shopping cart:

foreach($_SESSION['cart'] as $key => $value) {

 echo "<tr><td>$key</td><td>$value</td>\n";

 ech o "<td><input type=\"submit\" name=\"$key\"

value=\"Remove\"></td></tr>\n";

}

Because there are two forms on the web page, you need to add some more code to
check if a Remove button has been clicked by the shopper. That was added to the
code that checks for the other form data:

} elseif ($_POST['apples'] == "Remove") {

 unset($_SESSION['cart']['apples']);

}

Follow these steps to test the carttest.php program:

1. Open your editor and enter the code from Listing 6-1.

2. Save the file as carttest.php in the DocumentRoot folder for your web server.

It’s important that you use this exact filename because the forms use that as
the action attribute.

Se
ss

io
ns

 a
nd

 C
ar

ts

CHAPTER 6 Sessions and Carts 441

3. Ensure that the Apache web server is running, and then open your
browser and enter the following URL:

http://localhost:8080/carttest.php

4. Enter a quantity to purchase for one of the items, and then click the Click
to Add to Cart button.

5. Enter a quantity to purchase for the other item, and then click the Click
to Add to Cart button.

6. Click the Remove button for one of the items.

7. Repeat the process to add or remove products in the shopping cart.

8. Close your browser and close the Apache web server when you’re done.

When you first open the carttest.php file, the shopping cart should show that
it’s empty, as shown in Figure 6-6.

FIGURE 6-6:
The initial

 shopping cart
web page.

442 BOOK 4 PHP

When you enter a quantity for a product and then click the button to submit it, the
product and quantity appear in the shopping cart, as shown in Figure 6-7.

Click the Remove button to remove a product from the shopping cart, or add
more quantity of a product to change the value shown in the shopping cart.
 Congratulations! You’ve just created a simple shopping cart!

FIGURE 6-7:
The shopping cart

after selecting
products.

5MySQL

Contents at a Glance
CHAPTER 1: Introducing MySQL . 445

Seeing the Purpose of a Database . 445
Presenting MySQL . 454
Advanced MySQL Features . 458

CHAPTER 2: Administering MySQL . 465
MySQL Administration Tools . 465
Managing User Accounts . 477

CHAPTER 3: Designing and Building a Database 489
Managing Your Data . 489
Creating Databases . 492
Building Tables . 500

CHAPTER 4: Using the Database . 513
Working with Data . 513
Searching for Data . 524
Playing It Safe with Data . 531

CHAPTER 5: Communicating with the Database from
PHP Scripts . 541
Database Support in PHP . 541
Using the mysqli Library . 543
Putting It All Together . 554

CHAPTER 1 Introducing MySQL 445

Introducing MySQL

Computers are all about storing information. However, unlike that junk
drawer in your kitchen that contains multiple shards of paper with names
and phone numbers scribbled on them, you want to store your dynamic web

application data in an orderly fashion. After all, you wouldn’t want to mix up the
data from your astrophysics experiments with your bowling league scores!

The MySQL database server provides a user-friendly platform for you to organize
your application data, making it simple to identify which data belongs to which
application and easy for the application to access the data, all while maintaining
security so the right people can only get to the right data. This chapter describes
just why you need a database for your dynamic web applications, and why you
should choose the MySQL database server.

Seeing the Purpose of a Database
With PHP, you have a few different options for storing persistent data in your
application to retrieve at a later time. One method is to use the PHP file system
functions to create a standard text file on the server to store the application data,
and then read the data back as necessary.

One downside to using standard text files to store your application data is that it’s
hard to find a specific data item buried in the text file. Standard text files are often

Chapter 1

IN THIS CHAPTER

 » Understanding why you need a
database

 » Seeing how MySQL works

 » Exploring the advanced features of
MySQL

446 BOOK 5 MySQL

called “flat files” because you can’t create any type of relationships in the data to
make searching for specific information easier. Your application must open the
text file and read each line until it finds the data it needs. That’s fine for small
amounts of data, but for large amounts of data that can be slow, especially if there
are thousands of site visitors all trying to access their data from the same file at
the same time.

To solve that problem, most web developers have turned to using databases. Data-
bases organize data in a manner making it easier for the database server to insert,
find, modify, and delete data. There are lots of different database types avail-
able, but one of the most popular is the relational database system. This sec-
tion describes how relational databases work with data to help speed up your web
application.

How databases work
Microsoft Access is by far the most popular end-user database tool developed
for commercial use. Many Windows users, from professional accounts to bowl-
ing league secretaries, use Access to track data. It provides an easy, intuitive user
interface, allowing novice computer users to quickly produce queries and reports
with little effort.

However, despite its user-friendliness, Access has its limitations. To fully under-
stand how MySQL differs from Access, you must first understand how database
systems are organized.

There is more to a database than just a bunch of data files. Most databases incor-
porate several layers of files, programs, and utilities, which all interact to provide
the database experience. The whole package is referred to as a database manage-
ment system (DBMS).

There are different types of DBMS packages, but they all basically contain the fol-
lowing parts:

 » A database engine

 » One or more database files

 » An internal data dictionary

 » A query language interface

The database engine is the heart and brains of the DBMS. It controls all access
to the data, which is stored in the database files. Any application (including the
DBMS itself) that requires access to data must go through the database engine
(see Figure 1-1).

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 447

The database engine uses an internal data dictionary to define how the database
operates, the type of data that can be stored in the database files, and the structure
of the database. It basically defines the rules used for the DBMS. Each DBMS has
its own data dictionary.

If you’re a user running a simple database on Access, you probably don’t even
realize you’re using a database engine. Access keeps much of the DBMS work
under the hood and away from users. When you start Access, the database engine
starts, and when you stop Access, the database engine stops.

In MySQL, the database engine runs as a service that is always running in the
background on the server. Users run separate application programs that interface
with the database engine while it’s running. Each application can send queries to
the database engine and process the results returned. When the application stops,
the MySQL database engine continues to run, waiting for commands from other
applications.

Both Access and MySQL require one or more database files to be present to hold
data. If you work with Access, you’ve seen the .mdb database files. These files
contain the data defined in tables created in the Access database. Each database
has its own .mdb file.

In the Access environment, if two or more applications want to share a database,
the database file must be located on a shared network drive available to all the
applications. Each application has a copy of the Access database engine program
running on the local workstation, which points to the common database file, as
shown in Figure 1-2.

FIGURE 1-1:
A simple

 database
 management

system.

448 BOOK 5 MySQL

Where this model falls apart is that there are multiple database engines, all trying
to access the database files across a network environment. This generates large
amounts of data on the network and slows down the performance of the individual
database engines.

In the MySQL model, the database engine and database files are always on the
same computer. Queries and reports run from separate applications, but they all
send requests to the common database engine, as shown in Figure 1-3.

As you can see from Figure 1-3, the MySQL database engine accepts data requests
from multiple users across the network. All the database access is performed
on the local system running the MySQL server, so the data interaction with the

FIGURE 1-2:
A shared

 Microsoft Access
environment.

FIGURE 1-3:
A multiuser

MySQL
 environment.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 449

database files stays on the local system. The database engine only sends the query
or report results across the network to the applications.

This feature alone makes using MySQL a better database choice in multiuser data-
base projects.

Relational databases
Databases are all about arranging data to make finding information faster. Rela-
tional database theory arranges data in three levels: databases, tables, and data
fields.

Databases
A database groups related data into a single container. The database is the highest
level or grouping of data on the relational database server. The server allows you
to create multiple databases, all accessible from the same server service running
on the server.

To help keep things organized, it’s a good idea to create a separate database for
each application you’re hosting on the server. This helps to separate data ele-
ments and eliminates accidents caused by accessing the wrong data from the
wrong application.

Each database you create must have a unique name on the server. To help with
the organization process, it’s usually a good idea to somehow relate the database
name to the name of the application.

Table
The table is a subset of data within the database, which contains a grouping of
similar data items. For example, if a company wants to track data on employees,
customers, and products, instead of having just one group of mixed-up data ele-
ments, the company would create four separate tables to hold the data:

 » An Employees table to hold data related to employees

 » A Customers table to hold data related to customers

 » A Products table to hold data related to products

 » An Orders table to track which products are in individual customer orders

The process of grouping application data into tables is called data normalization.
Grouping similar data into its own table gives you more control over the data. For

450 BOOK 5 MySQL

example, if you have a program that interfaces only with customer orders, you can
give it permissions to only the Customers, Products, and Orders tables, leaving the
Employees table safe from accidental exposure.

Data fields
You use data fields to hold individual data elements within a table. For example,
the Employees table might contain data fields for an employee ID number, first
name, last name, home address, salary, and employment start date. The data
fields are the core of the application because they’re where the application actu-
ally stores data.

The table groups data fields into data records. Each data record is a single occur-
rence of values for each of the data fields. Figure 1-4 shows a diagram of how the
Employees table might look.

Figure 1-4 shows the data fields as table headings. Each data record appears as a
single line of data in the table (in this case, the information for a single employee).
Because data is often displayed this way in a table, you’ll often hear the word row
used to reference a single data record.

FIGURE 1-4:
An example of
an Employees

table layout.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 451

Database data types
Just as with variables in programming languages, databases need to identify the
type of data stored in each data field so that it knows how much space to reserve
to store the data, and how to handle the data. Table 1-1 shows the basic data types
found in most relational database systems.

Many relational database servers provide variations of these standard data types,
such as small integer values or large text values, to help you customize exactly
how much space to reserve for each data field. Unfortunately, these customized
data types aren’t necessarily standardized between relational databases.

Data constraints
Besides the data field name and value, a data field can be marked with special data
constraints. Relational databases use data constraints to control how you place data
into a data field. The most popular data constraint is the primary key.

A primary key defines the table data field(s) that uniquely identify each individual
data record in the table. For example, if you’re retrieving an employee data record
and your company has two employees named John Smith, you’ll run into a prob-
lem trying to get the correct data for the correct employee. To solve this problem,

TABLE 1-1	 Standard Database Data Types
Data Type Description

int A whole number between –2,147,483,648 and 2,147,483,647

float A floating point number between –3.40283466E+38 and +3.40283466E+38

bool A Boolean true or false value

date A day value in the YYYY-MM-DD format

datetime A day and time value displayed in YYYY-MM-DD HH:MM:SS format

char(x) A fixed-length character string with x characters

varchar(x) A variable-length character string with x or fewer characters

text A variable-length character string of up to 65,536 characters stored as a binary value

452 BOOK 5 MySQL

relational databases allow you to add a special data field to tell you which John
Smith each data record refers to.

To do this, you must create an employee ID data field and assign a unique ID num-
ber to each employee. Because the new employee ID data field uniquely identifies
each employee record, you can specify it as the primary key for the Employees
table. The database server creates a separate hidden table relating the primary key
values to data record numbers, and then uses it as an index to quickly retrieve the
correct data record based on the primary key value.

Another popular data constraint you’ll run across is the is null restriction. If you
set a data field with the is null data constraint, the database server will prevent
you from entering a data record without a value in that data field.

Structured Query Language
The Structured Query Language (SQL) is a language for interacting with rela-
tional database systems that been around since the early 1970s. Over the years,
other database vendors have tried to mimic or replace SQL with their own query
languages. But despite their attempts, SQL still provides the easiest interface for
both users and administrators to interact with any type of relational database
system.

In 1986, the American National Standards Institute (ANSI) created the first SQL
standards. The U.S. government adopted them as a federal standard and named
it ANSI SQL89. Most commercial database vendors now use this SQL standard to
interface with their products.

The SQL standard has been evolving over the years, with new standards being
released to support new advanced database features. At the time of this writing,
the most current standard is SQL:2016.

The SQL language specifies a format that you use to send commands to the data-
base server. The SQL command format consists of:

 » A keyword: SQL keywords define the action the database server takes based
on the SQL statement. The SQL standard defines lots of different keywords
for performing lots of different actions. However, you’ll find yourself just
using a few standard keywords in your database programming, so it’s not
all that hard to remember them. Table 1-2 lists the popular ones you’ll
get to know.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 453

 » An identifier: The SQL command identifier defines the database object used
in a command. This is most often a database name, table name, or the names
of data fields. The SQL identifiers help you select which data elements to
retrieve from the database and which table to select them from.

 » One or more literals (optional): SQL command literals define specific data
values referenced by the keyword. Literals are constant values, such as data
values to insert into a table or data values used to search within the table
data. You must enclose string literals in quotes (either single or double
quotes), but you can use numerical values without quotes.

The most common SQL command you’ll use in your web applications is the query.
A query is a SQL SELECT statement that searches the database for specific data
records. Here’s the basic format of a SELECT statement:

SELECT datafields FROM table

The datafields parameter is a comma-separated list of the data field names you
want the query to return. If you want to retrieve all the data field values for the
data records, you use an asterisk as a wildcard character.

You must also specify the specific table you want the query to search. To get
meaningful results, you must match your query data fields with the proper table.

SQL keywords are often identified with all capital letters in a SQL statement.
MySQL allows you to use either uppercase or lowercase for keywords. I use all
capitals in this book to help you identify the keywords within the SQL statements.

By default, the SELECT statement returns all the data records in the specified table.
You can use one or more modifiers to define how MySQL returns the data requested
by the query. Table 1-3 shows the more popular modifiers you’ll run into with SQL
queries.

TABLE 1-2	 SQL Keywords
Keyword Description

DELETE Removes a data record from a table

DROP Removes a table or database

INSERT Adds a new data record to a table

SELECT Retrieves data records from a table

UPDATE Modifies data within an existing data record in a table

454 BOOK 5 MySQL

The WHERE clause is the most common SELECT statement modifier. It allows you to
specify conditions to filter data from the table. For example:

SELECT lastname FROM Employees WHERE salary > 100000;

This SELECT statement only returns the last name of the employees with a salary
of over $100,000.

Having to use SQL to interact with a database server can seem a bit overwhelm-
ing at first — you have to learn an entirely new programming language besides
the languages you’re learning to build your dynamic web application. Don’t fret,
though. There are really only a handful of SQL statements that you’ll regularly
use during the course of your application development. You’ll start remembering
them in no time.

Presenting MySQL
The specific relational database server that I discuss in this book is the MySQL
database server. The MySQL server is the most popular database server used in
web applications — and for good reason. The following sections describe the fea-
tures of the MySQL server that make it so popular.

MySQL features
The MySQL database server was created by David Axmark, Allan Larsson, and
Michael Widenius as an upgrade to the mSQL database server and was first
released for general use in 1996. It’s now owned and supported by Oracle but
released as open-source software.

MySQL was originally created to incorporate indexing data to speed up data que-
ries in the mSQL database server, by using the indexed sequential access method
(ISAM). It did this by incorporating a special data management algorithm called
the MyISAM storage engine. This proved to be a huge success.

TABLE 1-3	 SQL Query Modifiers
Modifier Description

LIMIT Displays only a subset of the returned data records

ORDER BY Displays data records in a specified order

WHERE Displays a subset of data records that meet a specified condition

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 455

MySQL was initially recognized for its speed of accessing data. The MyISAM data
storage and indexing method proved to be a game changer in speeding up data
access from other types of DBMS packages. It wasn’t long before the Internet
world took notice, and MySQL became the DBMS package of choice for high-
volume web applications.

These days, MySQL has evolved to do more than just fast data queries. Develop-
ment is continually ongoing to add new features to MySQL. A short list of features
includes the following:

 » It was written in C and C++ and has been compiled to run on many different
platforms.

 » It incorporates a modular design approach to create a multi-layer server
design.

 » It supports multi-threading, making it easily scalable to incorporate multiple
CPUs if available.

 » It uses a thread-based memory allocation system.

 » It implements hash tables in memory to increase performance.

 » It supports client/server and embedded server environments.

 » It supports multiple data storage engines.

 » It implements all SQL functions using a class library.

 » It includes support for all standard SQL data types.

 » It offers a security system that supports both user-based and host-based
verification.

 » It includes support for large databases using more than 5 billion rows of data.

 » It provides application programming interfaces (APIs) for many common
programming languages (including PHP).

 » It incorporates many different character sets, allowing it to support many
different languages.

 » It provides both command line and graphical tools for common database
management.

Of these features, let’s take a closer look at two specific features to demonstrate
the versatility of MySQL. The following sections dive into the ability for MySQL
to support different database storage types, as well as how MySQL handles user
authentication.

456 BOOK 5 MySQL

Storage engines
As shown in the preceding section, the MySQL server uses a modular approach to
building the database server. One of those modules is how it stores and accesses
database data. This is called the storage engine.

The storage engine is the gatekeeper to your data and all requests to your data
go through it. The MySQL server incorporates several different types of storage
engines, shown in Table 1-4.

The MyISAM storage engine is what made MySQL famous, but it’s no longer being
developed by Oracle. The default and recommended storage engine for MySQL is
now the InnoDB storage engine.

The InnoDB storage engine supports many advanced database features found in
commercial databases, but initially it was known for not being all that fast. Devel-
opers had to decide which was more important to their application: performance
or fancy database features.

However, work has been done by the MySQL developers to increase the perfor-
mance of the InnoDB storage engine so that it comes close to the performance of
the MyISAM storage engine. This gives you the best of both worlds — advanced
database features and a high-performance storage engine, all as open-source
software!

TABLE 1-4	 The MySQL Storage Engines
Storage Engine Description

Archive Produces a special-purpose table for inserting and retrieving data, but not updating or
deleting it.

Blackhole Accepts data but does not store it. Used for development testing.

CSV Stores data in a comma-separated file format.

Federated Allows data access from a remote server without using replication.

Example A storage engine that does nothing. Used as a template for storage engine developers.

InnoDB An advanced storage engine that balances high reliability and high performance.

Memory Stores all data in memory for fast performance, but it doesn’t retain the data.

MyISAM The initial MySQL storage engine, known for being fast with few advanced features.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 457

Data permissions
The MySQL database server handles access to database data using a two-tiered
approach:

 » The user account assigned to a user

 » The location from where the user connects to the server

MySQL considers your identity from both the user account you use to log into the
system, as well as the host from which you connect. That means you can control
access to your data not only to specific user accounts, but from where the users
happen to be when they log into the database server. For example, you can give a
user account full access to a database when she logs in from the local server but
restricted read-only access to the database when she logs in from a remote server.

MySQL does this by using an access control list (ACL) to define permissions to data-
bases, tables, and special features based on the identities. When you create an
identity in MySQL, you not only create a user account, but also specify the loca-
tion from which the access control applies. You can use wildcards to allow users to
have the same permissions from multiple locations.

MySQL uses a two-stage approach to verifying your database connection. First,
MySQL accepts or rejects the connection request based on the user ID/password
combination provided and whether the account is locked on the system. Then, if
the connection is granted, MySQL accepts or rejects the access request based on
database and table permissions.

A user account can have access to the database server, but not every database on
the server. You can create separate user accounts for each application database
that you create on the MySQL server. If your application requires more control,
you can even create separate user accounts that have access to only certain tables
within the same database!

As the database administrator you also have the ability to grant system-level
privileges to user accounts, such as the ability to create new databases or even
new user accounts.

The MySQL server has a single main administration user account named root. If
you forget the password to the root user account that may or may not be recover-
able, depending on your server setup and environment. It’s always a good idea to
keep track of the root user account’s password, but also to protect it so that no one
else can use it. If your system requires multiple administrators, give them each
a separate user account and grant those user accounts elevated privileges on the
database server so they can create databases and user accounts as needed.

458 BOOK 5 MySQL

Advanced MySQL Features
When you use the default InnoDB storage engine in MySQL, you have a wealth of
advanced database feature available for your applications to utilize. This section
walks through the more advanced features that the InnoDB storage engine brings
to the MySQL world.

Handling transactions
All database servers allow users to enter database commands to query and manip-
ulate data. What separates good database servers from bad ones is the way they
handle commands.

The database engine processes commands as a single unit, called a transaction.
A transaction represents a single data operation on the database. Most simplistic
database servers treat each command received — such as adding a new record
to a table or modifying an existing record in a table — as a separate transaction.
Groups of commands create groups of transactions.

However, some advanced database servers (such as the MySQL with the InnoDB
storage engine) allow you to perform more complicated transactions. In some
instances, it’s necessary for an application to perform multiple commands as a
result of a single action.

In a relational database, tables can be related to one another. This means that
one table can contain data that is related to the data in another table. In the store
example, the Orders table relied on data in both the Customers and Products
tables. Although this makes organizing data easier, it makes managing transac-
tions more difficult. A single action may require the database server to update
several data values in several different tables.

In the store example, if a new customer comes into the store and purchases a lap-
top computer, the database server must modify three tables:

 » Add a new data record to the Customers table

 » Add a new data record to the Orders table

 » Modify the Products table to subtract one from the laptop inventory value

For the action to be complete, all three of these actions must succeed. If any
one of the actions fails, the data will become corrupt. In an advanced database
server, you can combine all these actions into a single transaction. If any one of
the actions fails, the database server rolls back the other two actions to return

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 459

the database to the previous condition. This feature is crucial to have available
for your web applications!

Making sure your database
is ACID compliant
Over the years, database experts have devised rules for how databases should
 handle transactions. The benchmark for all professional database systems is the
ACID test. No, we’re not throwing the server into an acid bath; the ACID test
is actually an acronym for a set of database features defining how the database
server should support transactions:

 » Atomicity

 » Consistency

 » Isolation

 » Durability

The following sections examine these four features and discuss how MySQL
implements them.

Atomicity
The atomicity feature states that for a transaction to be considered successful,
all steps within the transaction must complete successfully. Either all the steps
should be applied to the database, or none of them should. A transaction should
not be allowed to complete partway.

To support atomicity, MySQL uses a system called commit and rollback. Database
actions are only temporarily performed during a transaction. When it appears that
all the actions in a transaction would complete successfully, the transaction is
committed (the server applies all the actions to the database). If it appears that
any one of the actions would fail, the entire transaction is rolled back (any previ-
ous steps that were successful are reversed). This ensures that the transaction is
completed as a whole.

MySQL uses the two-phase commit approach to committing transactions. The
two-phase commit performs the transaction using two steps (or phases):

 » Prepare phase: A transaction is analyzed to determine if the database is able
to commit the entire transaction.

 » Commit phase: The transaction is physically committed to the database.

460 BOOK 5 MySQL

The two-phase commit approach allows MySQL to test all transaction commands
during the prepare phase without having to modify any data in the actual tables.
Table data is not changed until the commit phase is complete.

Consistency
The concept of consistency is a little more difficult than atomicity. The consis-
tency feature states that every transaction should leave the database in a valid
state. The tricky part here is what is considered a “valid state.”

Often, this feature is applied to how a database server handles unexpected crashes.
If the database takes a power hit in the middle of the commit phase of a multi-
action transaction, can it leave the tables in a state where the data makes sense?

MySQL utilizes two features to accomplish consistency:

 » Double-write buffering: With double-write buffering, before MySQL writes
data to the actual tables, it stores the data in a buffer area. Only after all the
transaction data is written to the buffer area will MySQL write the buffer area
data to the actual table data files.

 » Crash recovery: If there is a system crash before the buffer area is com-
pletely written to the table files, MySQL can recover the buffer area using the
crash recovery feature, which recovers submitted transactions from a
transaction log file.

Isolation
The isolation feature is required for multiuser databases. When there is more than
one person modifying data in a database, odd things can happen. If two people try
to modify the same data value at the same time, who’s to say which value is the
final value?

When more than one person tries to access the same data, the DBMS must act as
the traffic cop, directing who gets access to the data first. Isolation ensures that
each transaction in progress is invisible to any other transaction in progress. The
DBMS must allow each transaction to complete and then decide which transac-
tion value is the final value for the data. It accomplishes this task using a feature
called locking.

Locking does what it says: It locks data while a transaction is being committed to
the database. While the data is locked, other users can’t access the data, not even
for queries. This prevents multiple users from querying or modifying the data
while it’s in a locked mode.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 461

There are two basic levels of locking that MySQL uses to support isolation:

 » Table-level locking: With table-level locking, any time a user requires a
modification to a data record in a table, the DBMS locks the entire table,
preventing other users from even viewing data in the table. As you can guess,
this has an adverse effect on database performance, especially in environ-
ments where there is a lot of change to the data in the database. Early DBMS
implementations used table-level locking exclusively.

 » Row-level locking: To solve the problems of table-level locking, many DBMS
implementations (including the MySQL InnoDB storage engine) now incorpo-
rate row-level locking. With row-level locking, the DBMS locks only the data
record that’s being modified. The rest of the table is available for other users
to access.

Durability
The durability feature states that when a transaction is committed to the data-
base, it must not be lost. This sounds like a simple concept, but in reality durabil-
ity is often harder to ensure than it sounds.

Durability means being able to withstand both hardware and software failures. A
database is useless if a power outage or server crash compromises the data stored
in the database.

MySQL supports durability by incorporating multiple layers of protection. The
same double-write buffer and crash recovery features mentioned for the consis-
tency feature also apply to the durability feature. MySQL writes all transactions
to a log file, writes the changes to the double-write buffer area, and then writes
them to the actual database files. If the system crashes during this process, most
of the time MySQL can recover the transaction within the process.

The onus of durability also rests on the database administrator. Having a good
uninterruptable power supply (UPS) for your database server, as well as perform-
ing regular database backups, is crucial to ensuring your database tables are safe.

Examining the views
The SQL programming language provides developers with the ability to cre-
ate some pretty complex queries, retrieving data from multiple tables in a single
SQL statement. However, for queries that span more than a couple of tables, the
SQL statement can become overly complex.

462 BOOK 5 MySQL

To help simplify complex query statements, some DBMS packages (including
MySQL) allow administrators to create views. A view allows you to see (or view)
data contained in separate database tables as if it were in a single table. Instead of
having to write a sub-select query to grab data from multiple places, all the data
is available in a single table view.

To a query, the view looks like any other database table. The DBMS can query
views just like normal tables. A view does not use any disk space in the database
files, because the DBMS generates the data in the view “on the fly” when a query
tries to access the data. When the query is complete, the view data disappears.
Figure 1-5 shows a sample view that you could create from the store database
example.

The view shown in Figure 1-5 incorporates some of the customer data from the
Customers table, product data from the Products table, and order data from the
Orders table. Queries can access all the fields in the view as if they belonged to a
single table.

You can always use a view to read data, but you may or may not be able to use the
view to insert new data or update existing data. It depends on the relationship
between the data fields in the view. Data fields related in a one-to-one relation-
ship can be inserted or updated, but data fields related in a one-to-many relation-
ship can’t.

Working with stored procedures
A stored procedure is a set of SQL statements that are commonly used by applica-
tions. Instead of each application needing to submit the multiple SQL statements,

FIGURE 1-5:
A view of

 customer order
information.

In
tr

od
uc

in
g

M
yS

Q
L

CHAPTER 1 Introducing MySQL 463

you can create a stored procedure that contains the SQL statements and each
application just needs to run the stored procedure.

Stored procedures can also help with the performance of the application, because
less information needs to be sent between the client and the server (especially for
long procedures). Stored procedures also allows you to create your own library of
common functions in the database server to share among multiple applications.
This helps you performance-tune queries and ensure all the applications use the
same procedure to retrieve the data.

Pulling triggers
A trigger is a set of instructions that the DBMS performs on data based on an event
in the table that contains the data. Events that can trigger the instructions are
inserts, updates, or deletions of data contained in one or more tables. Here are the
most common triggers you’ll see:

 » AFTER DELETE: Perform the set of instructions after a data record has been
deleted from the table.

 » BEFORE DELETE: Perform the set of instructions before a data record is
deleted from the table.

 » AFTER INSERT: Perform the set of instructions after a data record has been
inserted into the table.

 » BEFORE INSERT: Perform the set of instructions before a data record is
inserted into a table.

 » AFTER UPDATE: Perform the set of instructions after a data record is updated
in the table.

 » BEFORE UPDATE: Perform the set of instructions before a data record is
updated in the table.

Triggers help you maintain data integrity within your database tables by moni-
toring when data is changed and having the ability to change related data at the
same time.

Working with blobs
Most database users are familiar with the common data types that you can store in
a database. These include integers, floating point numbers, Boolean values, fixed-
length character strings, and variable-length character strings. However, in the
modern programming world, support for lots of other data types is necessary. It’s

464 BOOK 5 MySQL

not uncommon to see web applications that are used to store and index pictures,
audio clips, and even short videos. This type of data storage has forced many pro-
fessional databases to devise a plan to store different types of data.

MySQL uses a special data type called the binary large object (BLOB) to store any
type of binary data. You can enter a BLOB into a table the same as any other
data type. This allows you to include support for any type of multimedia storage
within applications and still use all the fast retrieval and indexing methods of the
database.

Just because you can save large binary files in your tables doesn’t mean that it’s
necessarily a good idea to do it. Large binary files can quickly fill a database disk
space and slow down normal database queries. You’ll need to analyze your par-
ticular application requirements to determine if it’s better to store binary data
inside the database or store the binary data outside as standard files, with just a
pointer to the filename stored in the database.

CHAPTER 2 Administering MySQL 465

Administering MySQL

As you can tell from the previous chapter, the MySQL database server is a
crucial component in your dynamic web applications. It’s important that
you know how to interact with the MySQL database server to create the

database objects and user accounts required for your application. This chapter
examines the different methods you have available for interacting directly with
the MySQL database server in your application environment.

MySQL Administration Tools
There are lots of different tools available for interacting with a MySQL server to
help manage your database environment. Over the years, three particular tools
have risen to the top to be the most popular:

 » The MySQL command-line utilities

 » The MySQL Workbench graphical tool

 » The phpMyAdmin web-based tool

All these methods allow you to create, modify, and remove database objects in
the server, manage user accounts and privileges, and perform standard database
maintenance tasks such as backups and restores. They just all happen to use dif-
ferent environments to do that.

Chapter 2

IN THIS CHAPTER

 » Working from the command line

 » Using MySQL Workbench

 » Administering the server from
the web

 » Creating user accounts

 » Assigning database privileges to users

466 BOOK 5 MySQL

This section walks through the basics of these tools, showing you how to use them
to perform basic administration functions on the MySQL database server.

Working from the command line
Just about everything these days uses some type of graphical interface, but the
MySQL project still provides a method for interacting with the database directly
from a text command line in the Windows, Mac, and Linux environments. That
may seem old-fashioned, but the command line can often provide a handy inter-
face for quickly entering commands. It’s also great to use in emergencies — you
never know when you’ll find yourself working in a situation where the command
line is all you have to work with!

This section walks through how to perform standard database administration
functions with the MySQL server using just the command line.

Command-line tools
MySQL offers many scripts and programs that provide different ways for you to
interact with the MySQL server in a command-line environment. Table 2-1 lists
the command-line tools you’ll find in your MySQL server installation.

TABLE 2-1	 MySQL Command-Line Tools
Tool Description

innochecksum Checks for damaged MyISAM storage engine files

l4z_decompress Expands a mysqlpump archive file

myisam_ftdump Displays information about full text indexes in MyISAM files

myisamchk Repairs corrupt MyISAM storage engine files

myisamlog Displays the contents of the MyISAM log file

myisampack Compresses MyISAM storage engine table files

mysql Provides an interactive command-line interface to the MySQL server

mysqld The main MySQL database server program

mysqld_multi Manages multiple mysqld server processes on a server

mysqld_safe MySQL server startup script for Linux and Unix systems

mysql.server MySQL server startup script for Mac systems

mysqladmin Command-line administration tool

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 467

Tool Description

mysqlbinlog Parses binary log files

mysqlcheck Analyzes, optimizes, and repairs MySQL tables

mysqldump Performs a database backup

mysqldumpslow Parses the MySQL slow query log

mysqlimport Loads data from a file into a database

mysqlpump Generates a SQL file to migrate a database to another SQL server

mysqlsh A MySQL shell for creating scripts

mysqlshow Displays database, table, and data field information

mysqlslap Emulates client load on a MySQL server

perror Displays a text description from a MySQL error code number

zlib_decompress Expands compressed output from the mysqlpump command

As you can see in Table 2-1, there are quite a few command-line utilities that
MySQL provides to help you out as a database administrator. Most likely, you’ll
never use most of them, but it’s good to know they’re there (and what they do) in
case you ever need them.

For most normal interactions with the MySQL server, you’ll use the mysql
command-line program, which is discussed in the next section.

Exploring the MySQL client tool
The mysql command provides a text-based interactive interface (commonly called
a command-line interface, or CLI) to the MySQL server. When you start the com-
mand, you’ll get an interactive prompt:

C:\xampp\mysql\bin>mysql --user=root --password

Enter password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 4

Server version: 10.1.28-MariaDB mariadb.org binary distribution

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

468 BOOK 5 MySQL

From the > prompt, you can submit SQL statements directly to the server to inter-
act with the databases contained on the server. There are also some built-in com-
mands available in the CLI to help manage your database objects.

The mysql command provides a lot of command-line parameters that allow you to
customize what it does when you start it. You can use the -? parameter to display
all the available parameters and what they do. There are lots of parameters that
provide a lot of features that, again, you’ll most likely never use. Usually the only
parameters you’ll need to worry about are --user and --password.

These parameters allow you to specify the user ID and password to use when con-
necting to the MySQL server (by default the mysql command attempts to connect
to the MySQL server using the user account of the currently logged-in user). These
days it’s not a good idea to enter your password in plain text on the command line.
If you use the --password parameter by itself (without a specified value), the
mysql command prompts you to enter your password as a hidden entry, as I did
in the preceding example.

Occasionally, you may find yourself in an environment where you need to connect
to a remote MySQL server. If that’s the case, add the --host parameter to specify
the host name or address of the remote server.

Besides standard SQL statements, the mysql command has quite a few special
internal commands of its own. These commands help you set features within the
CLI that regulate how it behaves. Each command has a full-name version and a
shortcut-character version. If you want to use the shortcut, precede the shortcut
character with a backslash. Table 2-2 lists the commands and their shortcuts that
are currently available.

TABLE 2-2	 The mysql Commands
Command Shortcut Description

charset \C Switch to another character set for the output

connect \r Reconnect to the server with a specified database

delimiter \d Set the delimiter used between SQL statements (the default is a semicolon)

edit \e Edit the command using the default editor

ego \G Send command to the MySQL server and display results

exit \q Exit the command-line interface

go \g Send the command to the MySQL server

help \h Display available commands

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 469

Command Shortcut Description

nopager \n Disable the pager and send output to the standard output

notee \t Don’t redirect output to an output file

nowarning \w Don’t display MySQL warning messages

pager \P Define a program to use to page output (such as more)

print \p Print the current command

prompt \R Change the command-line prompt

quit \q Quit the command-line interface

rehash \# Rebuild the command-line completion hash

source \. Execute the specified SQL script file

status \s Retrieve status information from the MySQL server

tee \T Redirect output to specified output file as well as the display

use \u Use another database as the default database

warnings \W Display MySQL warnings after each command

After you enter the command, the mysql program processes it and displays the
results within the CLI environment. Figure 2-1 demonstrates the output from
using the status command.

FIGURE 2-1:
The status
 command

output.

470 BOOK 5 MySQL

To exit the mysql command prompt environment, just type exit.

As you can see from my examples, some all-in-one Apache/MySQL/PHP packages
(such as XAMPP) use the MySQL sister application, MariaDB, instead of the origi-
nal MySQL server package. The MariaDB package is a spinoff from the original
MySQL package done by the original developers after Oracle took over develop-
ment of the MySQL package. They created MariaDB to be a complete replace-
ment for the MySQL server. To maintain complete compatibility between the two
packages, the MariaDB developers use the same mysql commands, but insert the
MariaDB signature in the command output, as you can see in Figure 2-1.

Using MySQL Workbench
Working from the command line can make you feel like a hard-core adminis-
trator, but relying on a graphical interface doesn’t make you any less of a true
administrator. Many administrators prefer to work with graphical tools, espe-
cially if they’re already working in a graphical desktop environment.

The MySQL project includes a great graphical administration tool called
 Workbench. It’s not often installed by default in most MySQL setups, but it’s not
hard to download and install yourself. This section walks through that process
and shows you some of the features available in the graphical interface.

Installing the Workbench package
You can get the Workbench tool directly from the MySQL website (https://dev.
mysql.com/downloads/workbench). The Download page is shown in Figure 2-2.

Scroll to the bottom of the page to see the section for downloading the program
installation package. Just follow these steps to download and install Workbench:

1. Select the OS where you plan to run Workbench.

Because it’s a binary program, you need to download a separate package for
each OS environment where you plan to use it.

2. Click the Download button to start the download.

If you’re a Windows user, be careful — there are two download options
available. One option downloads the complete MySQL server along with
Workbench. If you already have an all-in-one package installed, you don’t need
to download the MySQL server, only the Workbench client.

3. When the download completes, run the download package and follow
the step-by-step instructions on installing Workbench on your
workstation.

https://dev.mysql.com/downloads/workbench
https://dev.mysql.com/downloads/workbench

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 471

If you’re using Workbench on a Windows workstation, you’ll need to have both
the Microsoft .NET 4.5 and Visual C++ 2015 Redistributable libraries installed. You
can find both of these library packages on the Microsoft developer website. The
Workbench installation provides the URLs that you need to get them.

Exploring the Workbench options
After you install Workbench on your workstation and launch it, you’ll be greeted
by the main window, shown in Figure 2-3.

Before you can get started with your database administration, you’ll need to tell
Workbench how to find and log into your MySQL server. To do that, follow these
steps:

1. Click the Plus sign next to the MySQL Connections heading to add a new
connection.

This opens the Setup New Connection dialog box, show in Figure 2-4.

FIGURE 2-2:
The MySQL
 Workbench

download
web page.

472 BOOK 5 MySQL

2. Enter a unique name for the connection in the Connection Name
text box.

3. Enter the IP address or hostname for the MySQL server in the Hostname
textbox.

If you’re running MySQL server on your workstation (such as if you’re using the
XAMPP package), keep the default IP address of 127.0.0.1.

FIGURE 2-3:
The main

 Workbench
window.

FIGURE 2-4:
The Workbench

Setup New
Connection
 dialog box.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 473

4. Enter the user account you use to log into the MySQL server in the
Username textbox.

For full administration privileges, use the root user account.

5. Click OK to save the connection information.

After you create the connection, it appears as an option in the main Workbench
window. Click that entry to start the connection to the database.

The MySQL Workbench tool assumes you’re working with the latest version of
MySQL server. If your MySQL installation isn’t the latest version (as is usually the
case with all-in-one packages), Workbench will display a warning message when
you connect, informing you that not all the features will be supported. Just click
the Continue Anyway button to continue with the connection.

When Workbench establishes the connection, it produces the main administration
window, as shown in Figure 2-5.

The main administration window consists of five sections:

 » Navigation: Provides links to start and stop the server, monitor client
connections, administer user accounts, export and import data, watch the

FIGURE 2-5:
The Workbench
administration

window.

474 BOOK 5 MySQL

performance of the databases and tables, and add, modify, or remove
databases and tables from the system schema.

 » Query1: Submit SQL queries directly to the server for testing.

 » SQL Additions: Provides online help with SQL statements, showing the
context help for the SQL statements you enter into the Query1 panel.

 » Information: Displays information on the connection session or an individual
object that you select from the Query1 panel.

 » Action Output: Displays the status of any actions you submit to the server,
such as queries.

When you submit a query (or group of queries) from the Query1 panel, a new panel
appears under the Query1 panel, showing the results from the transaction. If the
transaction was a SELECT statement, the data records from the result set appear
in a grid, as shown in Figure 2-6.

From the Workbench interface, you can perform all the same functions that you
can from the MySQL command-line interface but with a fancy graphical twist,
making it a snap to manage your MySQL server!

FIGURE 2-6:
Submitting

a query
using MySQL
 Workbench.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 475

Using the phpMyAdmin tool
Quite possibly the most popular graphical tool for working with MySQL servers is
the web-based phpMyAdmin tool. As the name suggests, the phpMyAdmin tool is
a PHP web application that interfaces with a MySQL server to provide a wealth of
administration functions, all as a website that you can access from any browser!

The phpMyAdmin tool has become so popular that it’s usually installed by default
in many Apache/MySQL/PHP packages, such as XAMPP, MAMP, and LAMP, as
well as supported by most commercial web hosting companies.

Since it’s a website, to launch the phpMyAdmin application you need to open your
browser and enter the URL that points to the package on your server. For most
installations that’s just http://localhost/phpmyadmin.

If you had to move the Apache web server to an alternative TCP port in your
installation, you need to include that port in the URL: http://localhost:8080/
phpmyadmin.

Depending on your particular environment, the phpMyAdmin package may be
configured by default to automatically log into the MySQL server when you start
it (such as in XAMPP and MAMP). If not, you’ll be greeted by a login form to enter
a MySQL user account and password. For full access privileges, log in using the
root user account.

When you’re logged into phpMyAdmin, you’ll see the main window, as shown in
Figure 2-7.

The main phpMyAdmin window displays the existing databases on the server on
the left-hand side of the window. At the top is the navigation area, allowing you
to select from 12 different options:

 » Databases: Create and manage databases.

 » SQL: Submit SQL statements directly to the server.

 » Status: Displays the status of connections, server processes, and database
queries.

 » User accounts: Create and manage user accounts.

 » Export: Create a backup of one or more databases.

 » Import: Restore one or more databases.

http://localhost/phpmyadmin
http://localhost:8080/phpmyadmin
http://localhost:8080/phpmyadmin

476 BOOK 5 MySQL

 » Settings: Manage settings for phpMyAdmin.

 » Replication: Control the master and slave replicas if created.

 » Variables: Manage the MySQL server configuration settings.

 » Charsets: Display the character sets available for the server.

 » Engines: Display the storage engines available for the server.

 » Plugins: Display plugins installed for phpMyAdmin.

As you can tell, phpMyAdmin also gives you full access to all the server features
that you’d need to manage as the MySQL server administrator, all from a simple
web interface!

Now that you’ve seen the three most popular administrator interfaces used for
working with a MySQL server, the next sections take a look at doing some basic
database administration work using each interface.

FIGURE 2-7:
The main

phpMyAdmin
window.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 477

Managing User Accounts
One of the basic administration functions you need to perform in your MySQL
server is creating and maintaining user accounts. By default, the MySQL server
installs with a single user account, root, which has full access to everything on
the database server. It’s not a good idea to use this user account in web applica-
tions to access the databases. If your application should become compromised,
the attacker would have full access to the database server, which would definitely
cause a bad day for you.

This section walks through how to create and manage MySQL user accounts using
each of the three popular MySQL tools.

Creating a user account
It’s usually a good idea to create a separate user account for each web application
that uses the MySQL server. That way you can restrict each user account to only
access the single database used for the application, helping to prevent accidental
data access and modification.

Just how you do that depends on the interface you’ve chosen to use to interact
with the MySQL server.

From the MySQL command line
Managing user accounts from the MySQL CLI requires that you know a few SQL
statements. To create a new user account, you use the CREATE USER statement.
Here’s the basic format for that:

CREATE USER username@location IDENTIFIED BY password;

As noted in Chapter 1 of this minibook, the MySQL server tracks user privileges
based on a username and the location from where the user logs into the server.
The CREATE USER statement lists both of these items in the definition. You can
create separate user@location combinations if you desire to grant different priv-
ileges to applications depending on where they’re running.

To create a new MySQL server user account, follow these steps:

1. Open a command-line interface in your OS environment.

For Windows, that’s the Command Prompt tool. For macOS, that’s the Terminal
utility.

478 BOOK 5 MySQL

2. Navigate to the folder that contains the MySQL server programs.

If you’re using the XAMPP package on Windows, the command is

cd \xampp\mysql\bin

For the macOS environment, the command is

cd /Applications/XAMPP/mysql/bin

3. Enter the mysql command to start the CLI, specifying the root user
account and prompting for the password:

mysql --user root --password

For the macOS and Linux environments, you may have to precede the mysql
command with the ./ symbol to tell the OS that the program is located in the
current folder.

4. Enter the root user account password at the prompt.

For XAMPP, the password is empty, so just press Enter.

5. At the > prompt, type the CREATE USER command to create a new user
account:

MariaDB [(none)]> CREATE USER user1@localhost IDENTIFIED BY

'MyL0ngP@ssword';

Query OK, 0 rows affected (0.08 sec)

MariaDB [(none)]>

6. Type exit to leave the MySQL CLI.

7. Type exit at the command-line prompt to exit the Command Prompt or
Terminal session.

Now you have a new user account named user1 that can log into the MySQL server.

Using Workbench
Since the MySQL Workbench is a graphical tool, you don’t need to know any SQL
statements to create user accounts. You can create new accounts from the graphi-
cal interface by simply filling out a form. Follow these steps to do that:

1. Launch the MySQL Workbench tool from your workstation environment.

2. Select the option to connect to your MySQL server.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 479

3. From the main Workbench window, click the Users and Privileges link in
the Management section under the Navigation pane.

The Users and Privileges window, shown in Figure 2-8, appears.

Notice that the window displays a complete list of the user accounts already
available for the server. You should see the user1 account you created from
the command line, as well as the entry for the root user account.

4. To add a new user account, click the Add Account button, located toward
the bottom of the window.

5. Fill in the form to specify a new user’s login name of user2, the host
location of localhost, and a password of MyL0ngP@ssword.

Figure 2-9 shows this process.

6. Click Apply at the bottom of the window to create the user account.

7. Close the MySQL Workbench tool when complete.

That’s all there is to creating a new user account from Workbench.

FIGURE 2-8:
The MySQL

Workbench Users
and Privileges

window.

480 BOOK 5 MySQL

Using phpMyAdmin
Because the phpMyAdmin tool is also a graphical interface, creating a new user
account isn’t all that much different from using Workbench, just from a web
 environment. Follow these steps to create a new user account using phpMyAdmin:

1. Open your browser and enter the URL to get to the phpMyAdmin tool for
your environment.

If you’re using XAMPP, enter the following URL:

http://localhost:8080/phpmyadmin

You may need to use a different TCP port depending on your web server.

2. Click the User Accounts button at the top of the main phpMyAdmin
web page.

This produces the User Accounts Overview page, shown in Figure 2-10.

3. To create a new user account, click the Add User Account link in the New
section.

The Add User Account page appears.

4. For the username, type user3.

FIGURE 2-9:
Creating a new

user account
using Workbench.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 481

5. From the Host Name drop-down list, choose Local.

6. For the password form fields, type MyL0ngP@ssword.

Figure 2-11 shows what these entries should look like.

7. Scroll to the bottom of the web page and click the Go button.

8. Click the User Accounts button at the top of the web page to view the
user account list to verify the new user account.

9. Click the Exit icon on the left side of the web page to close the session,
and then close your browser window.

As you can see, creating user accounts in the phpMyAdmin environment isn’t all
that different from the Workbench environment, because they both use similar
graphical interfaces to build and submit the CREATE USER SQL statement for you!

Managing user privileges
After you create a user account for your web application, you’ll need to grant it
privileges to use the database that supports the application. As part of a security
feature, MySQL only grants new user accounts the ability to log into the server —
they don’t have access to any data on the server by default.

FIGURE 2-10:
The User
Accounts
 Overview

window in
phpMyAdmin.

482 BOOK 5 MySQL

To solve that, you need to use the GRANT SQL statement, using either the MySQL
CLI or one of the fancy graphical tools you’ve just learned how to use. The basic
format of the GRANT statement is:

GRANT privileges ON objects TO user;

The privileges list controls just what access the user account has on the data-
base objects defined in the objects list. MySQL allows you to grant as many or
as few privileges to a user account as you need, providing very fine control over
database access. Table 2-3 lists the privileges that you can use.

FIGURE 2-11:
Entering a new
user account in

phpMyAdmin.

TABLE 2-3	 MySQL Privileges
Privilege Description

ALL All privileges

ALTER The ability to change a database or table definition

ALTER ROUTINE The ability to change or remove a stored routine

CREATE The ability to create a new database or table within a database

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 483

Privilege Description

CREATE ROUTINE The ability to create a new stored routine

CREATE TABLESPACE The ability to create a new database storage area

CREATE TEMPORARY TABLES The ability to create temporary tables in a database

CREATE USER The ability to create, rename, or remove user accounts on the server

CREATE VIEW The ability to create or change a database view

DELETE The ability to remove data from tables

DROP The ability to remove databases or tables

EVENT The ability to use events in the event scheduler

EXECUTE The ability to run stored routines

FILE The ability to cause the server to read or write to files

GRANT OPTION The ability to add or remove privileges to other users

INDEX The ability to create or remove table indexes

INSERT The ability to add new data to tables

LOCK TABLES The ability to lock tables for data access

PROCESS The ability to see all the database processes

PROXY The ability to use proxying

REFERENCES The ability to create and remove foreign key relationships

RELOAD The ability to force database writes to files

REPLICATION CLIENT The ability to list replication servers and clients

REPLICATION SLAVE The ability to enable replication slaves to contact the server

SELECT The ability to query databases and tables

SHOW DATABASES The ability to list all the databases on the server

SHOW VIEW The ability to list all the views on the server

SHUTDOWN The ability to stop the MySQL server

SUPER The ability to have administrative control of the MySQL server

TRIGGER The ability to create and remove triggers

UPDATE The ability to modify existing data in tables

USAGE The ability to log into the MySQL server, but no data access

484 BOOK 5 MySQL

There are two levels of privileges in MySQL:

 » Global privileges: Apply to all database objects

 » Local privileges: Apply to a specific database or table

To see what global privileges an existing user account has from the CLI, use the
SHOW GRANTS statement, as shown in Figure 2-12.

The output shows that the user1 user account only has USAGE global privileges, so
it can log into the database server, but not access any data.

To grant privileges to a specific database, you must list the privileges in the GRANT
statement, along with the specific database:

GRANT SELECT ON phpmyadmin.* TO user1@localhost;

Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]>

The wildcard character used in the database object list indicates that the privileges
apply to all the tables contained in the phpmyadmin database. If needed, you could
apply specific privileges to individual tables within your application.

Now you can log in using the user1 user account and access the phpmyadmin
database:

FIGURE 2-12:
Displaying global

user privileges
from the CLI.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 485

C:\xampp\mysql\bin>mysql --user=user1 --password

Enter password: **************

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 35

Server version: 10.1.28-MariaDB mariadb.org binary distribution

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> use phpmyadmin;

Database changed

MariaDB [phpmyadmin]>

Doing the same thing from one of the graphical interfaces is similar, but just
using a graphical form. Follow these steps to grant database privileges to a user
account using Workbench:

1. Start the Workbench application and then click the connection icon to
connect to your MySQL server.

2. Click the Users and Privileges link in the Navigation section on the right
side of the window.

This displays the Users and Privileges window, as shown in Figure 2-13.

FIGURE 2-13:
The Workbench

Users and
 Privileges
window.

486 BOOK 5 MySQL

3. Click the user2 user account in the list.

4. Click the Schema Privileges tab at the top of the display section.

The current global and database privileges granted to the user account appear.

5. Click the Add Entry button.

The New Schema Privilege Definition form, shown in Figure 2-14, appears.

6. Click the Selected schema radio button, select the phpmyadmin database
from the drop-down list, and click OK.

The Details for Account user2@localhost window, shown in Figure 2-15,
appears.

7. Check the SELECT check box in the Object Rights section to allow the
user2 account access to view and query tables in the phpmyadmin
database.

8. Click the Apply button at the bottom of the window to apply the new
privileges to the user account.

As you can probably guess, using the phpMyAdmin tool to grant privileges is very
similar to how you did it using the Workbench tool. Follow these steps:

1. Click the User Accounts tab at the top of the main phpMyAdmin web page.

The list of the user accounts currently configured in the MySQL server appears.
You should see the user1 and user2 user accounts that you’ve already
created, as shown in Figure 2-16.

FIGURE 2-14:
The Workbench

form to add
schema

 privileges.

A
dm

in
is

te
ri

ng
 M

yS
Q

L

CHAPTER 2 Administering MySQL 487

FIGURE 2-15:
Adding schema
privileges using

Workbench.

FIGURE 2-16:
Using the

phpMyAdmin
tool to display
user accounts.

488 BOOK 5 MySQL

FIGURE 2-17:
Setting

database
 privileges
using the

phpMyAdmin
tool.

2. Click the Edit Privileges link for the user3 user account.

3. Click the Database button at the top of the Edit Privileges page.

4. Select the phpmyadmin database from the list and then click the Go
button.

5. Check the SELECT check box and then click Go.

Figure 2-17 shows the web page for displaying the privileges set for the user3 user
account on the phpmyadmin database.

All three methods produce the exact same results, so feel free to use whichever
tool you prefer!

CHAPTER 3 Designing and Building a Database 489

Designing and Building
a Database

In the preceding chapter, you learned your way around the MySQL server inter-
face tools. The next step in the process of building a dynamic web application is
to create a database and tables for the data required for your application.

In this chapter, I show you how to determine just what data is required for an
application and how to divide it into tables to manage the data. Then I show you
how to create databases using the popular MySQL server interface tools. Finally,
I explain how to create the tables by using each of the tools, so that you can
 manage the data in your applications.

Managing Your Data
When you start out a new dynamic web application, your first decision, before you
even start any coding, is how to handle the application data. Often you’re faced
with a myriad of data elements you need to track, such as employee, customer,
and product information for a store. The trick to successfully managing all that
information is in how to sort it all out.

Chapter 3

IN THIS CHAPTER

 » Understanding how to design a
database

 » Creating a database in MySQL

 » Building tables using different tools

490 BOOK 5 MySQL

The process of structuring application data into tables is called database normal-
ization. The key to database normalization is to build your database so that your
application can quickly and easily add, modify, delete, and search for data con-
tained in the tables, and do it with a minimum amount of server overhead. For
large applications, that can be easier said than done!

Fortunately, many very smart people have worked out some standard rules you
can follow for organizing the data in your applications. These rules are called
normal forms. Each normal form defines a set of standards to follow to organize
and protect the data in your application. Each normal form builds on the other
normal forms to provide a tiered approach to organizing data. Although there are
many different normal forms, for most applications you just need to follow three:
the first, second, and third normal forms. These are described in the following
sections.

The first normal form
In the first normal form, the idea is to organize the application data to find related
data elements and group them into tables, identify the unique data elements
with a key to make them easier to find, and eliminate any redundant data stored
in tables.

The first part of the rule specifies to group related data into separate tables. In the
store example from Chapter 1 of this minibook, you create three tables for a store
application by grouping employee information into an Employees table, customer
information into a Customers table, and product information into a Products
table. That covers the first part of the first normal form!

The second part of the rule specifies that you should provide a way to uniquely
identify each individual data record in each of the tables. You do that by defining
a primary key data field for each table. Sometimes that can be done using existing
data elements; other times it requires that you add new data elements.

In the Employees table, you can’t necessarily use one of the existing data values to
point to a specific employee — there could be multiple John Smiths working at the
company, or there could be multiple employees with the same address. It’s even
possible to have multiple employees with the same birth date.

The solution is to create a separate data field that assigns a unique value to each
employee. The application assigns a unique employeeid to each employee that it
can use to find individual employees. This data field is designated at the primary
key for the Employees table. The primary key guarantees that you’ll retrieve the
information for a single employee based on a unique employeeid value. You then
do the same thing for the Customers and Products tables.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 491

The last part of the rule specifies that you should eliminate any redundant data
contained in the table. For example, if an employee has multiple phone num-
bers, it may not be a good idea to have multiple phone data fields in the Employ-
ees table. How many should you create? What if you create home and cellphone
 number data fields, but then need to add an employee’s summer house number?
You can’t just continue adding new data fields to the table all the time.

The solution is to create a separate table with the phone number information. The
phone number table can have multiple data records with the same employeeid
data values, but each with a different phone number. To find all the phone num-
bers for an employee, just query the Phone Numbers table with that employeeid.
Now you can accommodate as many or as few phone numbers for each employee
without wasting data field space in the Employees table.

The second normal form
The second normal form specifies that you should create separate tables for data
fields that could apply to multiple tables. In the store example, this would apply
to how you track customer orders.

In this application, customers place orders, so the orderid value could be tracked
by customerid. However, orders contain one or more products, so the order could
be tracked by productid. This presents a problem.

Adding the order information directly in the Customers table would be bad. Hope-
fully, your customers will have multiple orders, so each order data record would
need to duplicate the customer’s information. That would violate the data redun-
dancy rule. Plus, it wouldn’t work putting order information in the Products table,
because multiple products could also be in the same order.

The solution is to create a separate Orders table, and relate that table to both the
Customers and Products tables. Each order data record would use the customerid
and productid primary key values from the Customers and Products tables so
that it could relate the order item back to a customer and the products it contains.

The third normal form
The third normal form defines how to work with data fields that don’t neces-
sarily depend on the primary key in a table but need to be searched. This level of
normalization depends heavily on just how your application uses the data that it
stores.

An example of this would be the startdate data field in the Employees table.
If your application needs to perform a lot of queries to find employees who’ve

492 BOOK 5 MySQL

worked at the company for a specific number of years, it could help the applica-
tion performance to create a separate table with the startdate values, separate
from the Employees table. This helps speed up the query process by reading a
smaller table with the one value instead of the entire Employees table. This is
often referred to as an index table.

The index table contains data that is commonly queried in the application but is
separate from the primary key of the table. If your application needs to query the
startdate of employees as a primary function, it will help increase the perfor-
mance of those queries by creating a separate index table of the startdate values
contained in the Employees table.

However, index tables come with drawbacks. As you insert each new employee
data record, the database system must now make two entries: one in the Employ-
ees table and another in the startdate index table. That will slow down the
 performance of adding new employee data records!

As you can see, this produces a trade-off. If your application queries the
startdate of employees a lot, it would help to implement the third normal form
rule and create the separate index table. If not, it would be best to ignore the third
normal form rule and not create the separate table. It all comes down to knowing
how your application and your application users work!

Creating Databases
After you determine the structure required to support your application data,
you can start creating it in the MySQL server. The first step in that process is to
 create a database for the application. This section walks through the different
ways to create a new database using the different MySQL tools covered in the
previous chapter.

Using the MySQL command line
To create a new database from the MySQL command line interface (CLI) you use
the CREATE DATABASE SQL statement. Depending on your needs and environment,
this command can be either very simple or very complex. If you just want to cre-
ate a database that uses the server default character set settings, just specify the
name of the database in the command:

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 493

MariaDB [(none)]> CREATE DATABASE dbtest1;

Query OK, 1 row affected (0.00 sec)

MariaDB [(none)]>

You now have a new database!

On Mac, Linux, and Unix systems, the database names are case sensitive; on
 Windows systems, they’re case-insensitive. This can cause all sorts of problems
if you migrate your database from one environment to another, so be careful with
using mixed-case database names! Your best bet is to stick with the same case for
all characters in the database name.

To make sure the database was actually created, use the SHOW DATABASES state-
ment at the CLI to display the databases contained on the server:

MariaDB [(none)]> SHOW DATABASES;

+--------------------+
| Database |

+--------------------+
| dbtest1 |

| information_schema |

| mysql |

| performance_schema |

| phpmyadmin |

| test |

+--------------------+
6 rows in set (0.00 sec)

MariaDB [(none)]>

The database you created should appear in the list of databases. If you’d like to
see a little more detail about the new database, use the SHOW CREATE DATABASE
statement:

MariaDB [(none)]> SHOW CREATE DATABASE dbtest1;

+----------+--+
| Database | Create Database |

+----------+--+
| dbtest1 | CREATE DATABASE `dbtest1` /*!40100 DEFAULT CHARACTER SET latin1*/|

+----------+--+
1 row in set (0.00 sec)

MariaDB [(none)]>

494 BOOK 5 MySQL

The output from the SHOW CREATE DATABASE statement indicates that the data-
base is using the latin1 character set. The character set defined for your database
may be different, depending on the default settings in your MySQL server. If you
need to create a database using a specific character set, you can specify that in the
CREATE DATABASE statement:

MariaDB [(none)]> CREATE DATABASE dbtest1

 -> CHARACTER SET latin1

 -> COLLATE latin1_general_cs;

Query OK, 1 row affected (0.00 sec)

MariaDB [(none)]>

This statement creates the dbtest1 database using the latin1 character set, and
the latin1_general_cs collation.

CHARACTER SETS AND COLLATIONS
MySQL supports different character sets and collations for storing data. The charac-
ter set defines the binary code MySQL uses to store character text, while the collation
defines the algorithms used to compare text values. MySQL uses a cascading method
of assigning character sets and collations. If you define a default character set and col-
lation for the server, they’ll be used when you create new data objects that don’t specify
a character set or collation. If you define a default character set and/or collation for a
database, those will override the server defaults. If you then create a new table, it will
use the character set and collation defined for the database by default. If you define
a character set and/or collation for a table, those will override any database or server
defaults.

The latin1 character set supports Western European languages. If your application
needs to support text from other languages, use the utf8 character set. Likewise,
the latin1_general_ci collation compares text based on the latin1 character
set. The ci part of the collation name indicates that comparisons are made in case-
insensitive mode, so uppercase and lowercase letters will match. If your application
needs to support case-sensitive comparisons, you’ll want to specify a collation that ends
with cs, such as the latin1_general_cs collation.

You can see what character sets your particular MySQL server supports by using the
SHOW CHARACTER SET statement. This lists the character sets and the default collation
that MySQL will use with that character set. To see the collations that are available, use
the SHOW COLLATION statement.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 495

If you need to remove a database from the MySQL server, you use the DROP
statement:

MariaDB [(none)]> DROP DATABASE dbtest1;

Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]> SHOW DATABASES;

+--------------------+
| Database |

+--------------------+
| information_schema |

| mysql |

| performance_schema |

| phpmyadmin |

| test |

+--------------------+
5 rows in set (0.00 sec)

MariaDB [(none)]>

Be careful using the DROP and DELETE SQL statements! The DROP statement
removes the entire object, while the DELETE statement removes the data but keeps
the object.

Using MySQL Workbench
The MySQL Workbench tool provides a nice graphical environment for you to eas-
ily create databases. The Schemas section of the Navigator pane displays the cur-
rent databases created on the server. (Remember: Workbench refers to databases
as schemas.)

To create a new database using Workbench, follow these steps:

1. Right-click in the Schemas section and select Create schema from the
pop-up menu.

A New schema form opens in the left-hand section of the window, as shown in
Figure 3-1.

2. Enter the name of the database in the Name text box.

3. Select a character set and appropriate collation from the Collation
drop-down menu.

You can leave the Server Default value to use the default character set and
collation settings for the server.

496 BOOK 5 MySQL

4. Click Apply.

The Workbench Create Database Wizard appears, which walks you through the
database creation process. First, the CREATE DATABASE statement generated
by the information you entered into the form appears, as shown in Figure 3-2.

FIGURE 3-1:
Creating a new
database using

Workbench.

FIGURE 3-2:
The Workbench

Create Database
Wizard.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 497

5. Click Apply to submit the generated SQL statement to the MySQL server
to create the database.

6. When the MySQL server runs the statement, the wizard displays the
results, as shown in Figure 3-3.

If the SQL submission was successful, the new database will appear under the
Schemas section in the left-hand section of the window.

If you need to remove a database using Workbench, simply right-click the database
entry in the Schemas list and then select the Drop schema menu entry. Simple!

Using phpMyAdmin
As you might guess, creating a database in the phpMyAdmin web-based graphical
tool is similar to using Workbench. Here are the steps to do that:

1. After you open the phpMyAdmin tool in your browser, click the
Databases button in the top Navigation bar.

Figure 3-4 shows the form that appears.

The Databases page displays the existing databases on the MySQL server,
along with a form to create a new database.

FIGURE 3-3:
The results of

the Workbench
Create Database

Wizard.

498 BOOK 5 MySQL

2. Enter the name of the new database in the Database name text box.

3. Select the character set and collation from the Collation drop-down
menu.

If you want to use the server default values, just leave the drop-down box
empty.

4. Click the Create button to submit the SQL to create the database.

If the database creation was successful, phpMyAdmin automatically takes you to
the database interface web page, prompting you to create a new table in the data-
base, as shown in Figure 3-5.

Removing a database using phpMyAdmin is a little more complex than in Work-
bench. Here are the steps to remove an existing database:

1. Click the database you want to remove in the left-hand list of databases.

2. Click the Operations tab at the top of the database web page.

The database operations web page, shown in Figure 3-6, appears. On the
operations web page, you can rename the database, copy the database, create
tables in the database, and of course, remove the database.

FIGURE 3-4:
The phpMyAdmin

Databases page.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 499

FIGURE 3-5:
The phpMyAdmin

database
web page.

FIGURE 3-6:
The phpMyAdmin

database
 operations
web page.

500 BOOK 5 MySQL

3. Click the Drop the Database (DROP) link that appears on the right-hand
side of the page (in red font) to remove the database.

After you’ve created your application database, you can move onto the next step:
creating the tables to hold the application data.

Building Tables
In a relational database model, tables are what hold all the actual application data.
As mentioned at the start of this chapter, it’s important that you take time to plan
your table layout and structure before you try creating any tables.

Each data table definition must specify the individual data elements contained
in the table, along with all the properties for those data elements. That includes

 » The data field name

 » The data field data type

 » Any indexes required for the data field (such as the primary key)

 » Whether any foreign keys need to be defined for the table

 » Any data constraints required for the data field

All this information can make creating a table from the command line require a
lot of typing! Fortunately, the graphical tools available make the process a little
easier, but before you get to the easy stuff, let’s take a look at how to create tables
using the command line so you can learn the SQL format for the statements.

Working with tables using the
command-line interface
In the MySQL CLI, you use the CREATE TABLE statement to build a new table.
Here’s the basic format of the CREATE TABLE statement:

CREATE TABLE name (field1 datatype constraints, field2 datatype constraints...);

You must define each individual data field, specifying the data field name, data
type, and any data constraints applied to the data field. For tables with lots of data
fields, this can become quite a long statement!

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 501

Instead of trying to include all the information required to create a table in one
CREATE statement, database administrators often utilize the ALTER TABLE state-
ment. This statement alters the definition of an existing table, allowing you to
add, modify, or remove data fields, data field types, and of course, data field con-
straints. So, you can build a base definition of the table using the CREATE TABLE
statement and then add additional elements using ALTER TABLE statements.

The following sections go through the process of creating a table and adding addi-
tional elements to the base table.

Defining the base table
For the basic table definition, just define the table name and the individual data
fields and their required data types. For tables with lots of data fields, even just
this primary information can make for a long CREATE TABLE statement! To help
keep your sanity, you can use the command completion feature of the MySQL
CLI. Just press Enter in the middle of the statement, and you’ll get a prompt to
complete the statement. By default, the MySQL CLI won’t process the statement
until it sees a semicolon.

Follow these steps to create a simple base table:

1. Open the MySQL CLI and log into the MySQL server.

2. Use the dbtest1 database as the default database by entering the USE
command:

MariaDB [(none)]> use dbtest1;

Database changed

MariaDB [dbtest1]>

The CLI prompt shows the default database selected.

3. Enter the start of the CREATE TABLE statement defining the Employees
table, along with the opening parenthesis to start the data field
definition:

MariaDB [dbtest1]> CREATE TABLE employees (

 ->

The CLI prompt changes, indicating that it’s waiting for the completion of the
SQL statement.

4. Enter the individual data fields and their data types, with a comma at the
end of each line, and press Enter at the end of each data field entry; after

502 BOOK 5 MySQL

the last data field, add the closing parenthesis and the semicolon to
complete the statement:

 -> employeeid int,

 -> lastname varchar(50),

 -> firstname varchar(50),

 -> departmentcode char(5),

 -> startdate date,

 -> salary float);

Query OK, 0 rows affected (0.22 sec)

MariaDB [dbtest1]>

This creates the basic table defining the table name and the data fields but
omits any data constraints and indexes. You can double-check that the table
was created by using the SHOW TABLES statement:

MariaDB [dbtest1]> SHOW TABLES;

+-------------------+
| Tables_in_dbtest1 |

+-------------------+
| employees |

+-------------------+
1 row in set (0.00 sec)

MariaDB [dbtest1]>

If you’d like to see the data fields contained in the table, use the SHOW CREATE
TABLE statement:

MariaDB [dbtest1]> SHOW CREATE TABLE employees;

+-----------+--------------------------------+
| Table | Create Table |

+-----------+--------------------------------+
| employees | CREATE TABLE `employees` (

 `employeeid` int(11) DEFAULT NULL,

 `lastname` varchar(50) DEFAULT NULL,

 `firstname` varchar(50) DEFAULT NULL,

 `departmentcode` char(5) DEFAULT NULL,

 `startdate` date DEFAULT NULL,

 `salary` float DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |

+-----------+-------------------------------+
1 row in set (0.00 sec)

MariaDB [dbtest1]>

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 503

Now that the basic table exists, you can add any required data constraints and
indexes.

Adding more table features
After you create a table, you can add, modify, or remove data fields using the
ALTER TABLE statement. Here’s the format of the ALTER TABLE statement:

ALTER TABLE tablename action

The action parameter can be one or more SQL commands used to modify the table.
MySQL defines lots of actions that you can take on an existing table. Table 3-1 lists
and describes the more common commands that you’ll probably want to use.

As you can tell from Table 3-1, there are lots of changes you can make to an exist-
ing table in MySQL using the ALTER TABLE statement! Follow these steps to try
out a few of them:

1. Open the MySQL CLI and log in using the root user account.

2. Use the dbtest1 database as the default by entering the USE command:

MariaDB [(none)]> use dbtest1;

Database changed

MariaDB [dbtest1]>

TABLE 3-1	 ALTER TABLE Actions
Action Description

ADD COLUMN name Add a new column (data field) to the table.

DROP COLUMN name Remove an existing column from the table.

ALTER COLUMN name
MODIFY action

Change the definition of an existing column based
on the specified action.

ADD constraint Add a new data constraint to the table.

DROP constraint Remove an existing data constraint from the table.

RENAME COLUMN old TO new Change the name of a table column.

RENAME TO new Change the table name.

504 BOOK 5 MySQL

3. Submit an ALTER TABLE statement to add the primary key data con-
straint to the employeeid data field:

MariaDB [dbtest1]> ALTER TABLE employees add primary key (employeeid);

Query OK, 0 rows affected (0.57 sec)

Records: 0 Duplicates: 0 Warnings: 0

MariaDB [dbtest1]>

4. Submit an ALTER TABLE statement to add the NOT NULL data constraint
to the lastname data field:

MariaDB [dbtest1]> ALTER TABLE employees MODIFY lastname varchar(50) NOT

NULL;

Query OK, 0 rows affected (0.58 sec)

Records: 0 Duplicates: 0 Warnings: 0

MariaDB [dbtest1]>

5. Enter an ALTER TABLE statement to add a new data field named
birthdate, using the date data type:

MariaDB [dbtest1]> ALTER TABLE employees ADD COLUMN birthdate date;

Query OK, 0 rows affected (0.30 sec)

Records: 0 Duplicates: 0 Warnings: 0

MariaDB [dbtest1]>

To make sure the table changes actually took effect, use the SHOW CREATE TABLE
statement again:

MariaDB [dbtest1]> SHOW CREATE TABLE employees;

+-----------+--------------------------------+
| Table | Create Table

 |

+-----------+--------------------------------+
| employees | CREATE TABLE `employees` (

 `employeeid` int(11) NOT NULL,

 `lastname` varchar(50) NOT NULL,

 `firstname` varchar(50) DEFAULT NULL,

 `departmentcode` char(5) DEFAULT NULL,

 `startdate` date DEFAULT NULL,

 `salary` float DEFAULT NULL,

 `birthdate` date DEFAULT NULL,

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 505

 PRIMARY KEY (`employeeid`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |

+-----------+-------------------------------+
1 row in set (0.00 sec)

MariaDB [dbtest1]>

The table definition now shows the updates made to the table — the primary key
assigned to the employeeid data field, the new NOT NULL constraint for the last-
name data field, and the new birthdate data field.

Removing a table using the MySQL CLI requires that you use the DROP TABLE
statement:

DROP TABLE employees;

The DROP statement removes the entire table structure. If you just need to remove
data records, use the DELETE statement instead.

Working with tables using Workbench
The graphical environment in Workbench makes creating tables much simpler
than the MySQL CLI environment. As you would expect, it’s just a matter of filling
in a form!

Here are the steps to create a table using the MySQL Workbench tool:

1. Click the arrow icon next to the dbtest2 database entry in the Schemas
section of the Navigator pane.

2. Right-click the Tables menu item, and select Create Table.

The New Table form appears, as shown in Figure 3-7.

3. Enter the table name of employees in the Table Name text box.

4. Click in the text area that shows the Column Name field.

An empty text box appears for the Column Name and Datatype.

5. Enter employeeid for the Column Name, and select INT from the
Datatype drop-down box.

Notice that Workbench automatically selects the Primary Key and Not Null
constraint check boxes in the form for the first data field you enter. Keep those
checked.

506 BOOK 5 MySQL

6. Click the empty line under the employeeid data field in the form.

A new data field name of employeescol appears.

7. Double-click the new employeescol name to change it to lastname.

A default data type of varchar(45) appears in the DataType column.

8. Change varchar(45) to varchar(50).

9. Check the Not Null check box in the form.

10. Repeat steps 4 through 9 to add the remainder of the table data fields:

lastname varchar(50) Not Null

firstname varchar(50)

departmentcode char(5)

startdate date

birthdate date

salary float

When you complete the form, it should look like what’s shown in Figure 3-8.

FIGURE 3-7:
Creating a new

table using
 Workbench.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 507

11. Click Apply.

A wizard appears, showing the SQL code generated from the information you
entered into the form, as shown in Figure 3-9.

Notice that the CREATE TABLE statement generated by Workbench to create
the table looks just like what you did manually using the MySQL CLI.

FIGURE 3-8:
The completed

New Table
form for the

 Employees
table.

FIGURE 3-9:
The CREATE

TABLE statement
generated by

Workbench.

508 BOOK 5 MySQL

12. Click Apply to submit the SQL statement to create the table.

The status of the submitted SQL statement appears.

13. Click the Finish button to close out the wizard.

When you return to the main Workbench interface, click the arrow next to the
Tables entry under the dbtest2 database. You should now see the new Employees
table added, as shown in Figure 3-10.

From here you can modify any of the data field names, data types, or data con-
straints. You can remove the table by right-clicking on the table name and then
selecting the Drop Table entry from the pop-up menu.

Working with tables in phpMyAdmin
phpMyAdmin also provides a pretty fancy graphical interface for creating your
tables. Follow these steps to create a new table using phpMyAdmin:

1. After you open the phpMyAdmin web page in your browser, click the
dbtest3 database entry from the database list on the left-hand side of
the main page.

This takes you to the database structure page, shown in Figure 3-11.

FIGURE 3-10:
Viewing the
Employees

table created
in the dbtest2

database.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 509

2. Enter employees in the Name text box.

3. Change the number of columns to 7.

4. Click Go.

This produces the table data field form, shown in Figure 3-12.

5. Fill in the top form field with the employeeid data field information.

6. Click the Index drop-down box and select PRIMARY.

A pop-up window appears, prompting you for additional information on the
index key, as shown in Figure 3-13.

7. Click Go to accept the default values.

Be careful with the NOT NULL data constraint when using phpMyAdmin. Notice
that it provides a Null check box. If you select the check box, that means the
data field can have a Null value. Keep the check box empty to apply the NOT
NULL data constraint.

FIGURE 3-11:
The database

structure page in
phpMyAdmin.

510 BOOK 5 MySQL

8. Complete the form for the rest of the Employees table fields, as shown in
Figure 3-14.

9. If you’d like to see the SQL CREATE TABLE statement that the form
information would generate ahead of time, click the Preview SQL button
at the bottom of the form page.

10. Click the Save button to create the table.

After phpMyAdmin submits the SQL to create the table, it automatically redirects
you to the structure page for the new table, as shown in Figure 3-15.

FIGURE 3-13:
The Index

dialog box in
phpMyAdmin.

FIGURE 3-12:
The empty new

table form in
phpMyAdmin.

D
es

ig
ni

ng
 a

nd
 B

ui
ld

in
g

a
D

at
ab

as
e

CHAPTER 3 Designing and Building a Database 511

The table structure page is a very busy web page! It shows the data fields for the
table, along with a series of action icons for each data field. From here, you can
change any of the data field properties, along with adding a new data field or
removing an existing data field.

FIGURE 3-14:
The completed

new table form in
phpMyAdmin.

FIGURE 3-15:
The phpMyAdmin

table structure
page.

512 BOOK 5 MySQL

If you click the dbtest3 database link on the left side of the web page, phpMyAdmin
will take you back to the database Structure page. This time, because you have an
existing table in the database, the Structure page shows the table, along with
some action icons, as shown in Figure 3-16.

From here you can remove the table by clicking the Drop link or delete the data
from the table by clicking the Empty link. To get back to the table structure page
to view the data fields, click the Structure link.

FIGURE 3-16:
The phpMyAdmin

database
 structure

page with an
existing table.

CHAPTER 4 Using the Database 513

Using the Database

The preceding chapter covers how to create databases and tables for your
dynamic web application. That’s all well and good, but databases and tables
don’t really do anything until you start placing data in them.

This chapter explores the different methods you have available for adding, chang-
ing, and removing data in your application tables. After that, it walks through
possibly the most important feature of any database: how to quickly retrieve the
data that your application needs. The chapter closes by discussing the important
jobs of backing up and restoring database data.

Working with Data
The ability to easily manage application data is the whole reason dynamic web
applications use databases. So it stands to reason that the SQL language has quite
a few options for working with data. There are four basic functions that we need
to do with the data in our application:

 » Add new data records to tables.

 » Modify existing data records in tables.

 » Remove unwanted data records from tables.

 » Query existing data for specific information.

Chapter 4

IN THIS CHAPTER

 » Adding new data to your tables

 » Updating existing data in your tables

 » Finding data quickly

 » Working with backups and restores

514 BOOK 5 MySQL

This section walks through how to accomplish the first three items in this list
using the three different MySQL interfaces I cover earlier in this minibook — the
MySQL command-line interface (CLI), the graphical MySQL Workbench tool, and
the web-based phpMyAdmin tool. Querying data is a complex topic, so I save that
for its own section. Let’s get started and look at managing the data in your tables.

The MySQL command-line interface
The MySQL CLI uses standard SQL statements to interact with the MySQL server.
There are just three basic SQL statements that you need to know to manage data
in your database tables:

 » INSERT: To add new data records to a table

 » UPDATE: To modify existing data records in a table

 » DELETE: To remove existing data records from a table

The following sections describe these three statements and show how to use them
in your application.

Adding new data
You use the INSERT SQL statement to add one or more new data records to a table
in the database. A data record consists of a single instance of data values for each
data field.

In some MySQL documentation, you’ll often see the terms column used to refer to
a single data field and tuple used to refer to an entire data record. I’ll use the more
generic terms data field and data record in this book.

Here’s the basic format of the INSERT statement:

INSERT INTO table [(fieldlist)] VALUES (valuelist)

The fieldlist parameter is optional. By default, the INSERT statement tries to
load comma-separated values from the valuelist into each data field in the
table, in the order the data fields appear in the table definition. Chapter 3 of this
minibook explains how can you use the SHOW CREATE TABLE statement to list the
data fields in the table. Another method is to use the DESCRIBE SQL statement:

MariaDB [dbtest1]> DESCRIBE employees;

+----------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 515

+----------------+-------------+------+-----+---------+-------+
| employeeid | int(11) | NO | PRI | NULL | |

| lastname | varchar(50) | NO | | NULL | |

| firstname | varchar(50) | YES | | NULL | |

| departmentcode | char(5) | YES | | NULL | |

| startdate | date | YES | | NULL | |

| salary | float | YES | | NULL | |

| birthdate | date | YES | | NULL | |

+----------------+-------------+------+-----+---------+-------+
7 rows in set (0.01 sec)

MariaDB [dbtest1]>

It doesn’t show the exact SQL statement used to create the table, but it produces a
quick summary of the data fields contained in the table. That’s all you need to see
what order the data fields appear in the table for the INSERT statement.

Follow these steps to enter a data record into the employees table that you created
back in Chapter 3 of this minibook. (If you skipped that part, or haven’t read it yet,
just jump back there and run the CREATE statements to do that. I’ll wait.)

1. Ensure that the MySQL server is started, and then open the MySQL CLI
program.

2. Log in as the root user account.

3. Specify the dbtest1 database from Chapter 3 as the default database by
entering the USE statement:

MariaDB [(none)]> USE dbtest1;

Database changed

MariaDB [dbtest1]>

4. Add a new data record by entering the INSERT statement:

MariaDB [dbtest1]> INSERT INTO employees VALUES

 -> (123, 'Blum', 'Rich', 5, '2020-01-01', 10000, '2000-05-01');

Query OK, 1 row affected (0.12 sec)

MariaDB [dbtest1]>

In the INSERT statement, text and date values must be enclosed in quotes to
delineate the start and end of the text value. Numeric values don’t need to use
quotes. Notice that I split the INSERT statement into two parts here. That’s not
necessary, but it can come in handy when you don’t want too long of a line for
the INSERT statement.

516 BOOK 5 MySQL

The INSERT statement returns a status message indicating how many data
record rows were successfully added to the table. (If you need to, you can
specify more than one group of data values in the valuelist, surrounding
each with the parentheses.)

5. Check to ensure the data was added correctly by using the SELECT
statement:

MariaDB [dbtest1]> SELECT * FROM employees;

+------------+----------+-----------+-------+------------+--------+-------
-----+

| employeeid | lastname | firstname | dcode | startdate | salary |

birthdate |

+------------+----------+-----------+-------+------------+--------+-------
-----+

| 123 | Blum | Rich | 5 | 2020-01-01 | 10000 |

2000-05-01 |

+------------+----------+-----------+-------+------------+--------+-------
-----+

1 row in set (0.00 sec)

MariaDB [dbtest1]>

The SELECT statement shows the data fields in the table (I truncated the
departmentcode data field name in this output so it would fit the width of the
book page), and then shows the data records contained in the table.

If you don’t want to assign values to all the data fields in the data record, you must
include the fieldlist parameter. This specifies the data fields (and the order)
that the data values will be placed in:

MariaDB [dbtest1]> INSERT INTO employees (employeeid, lastname, firstname)

 -> VALUES (124, 'Blum', 'Barbara');

Query OK, 1 row affected (0.10 sec)

MariaDB [dbtest1]>

Be careful when skipping data fields when adding a new data record. If a data field
that uses the NOT NULL data constraint isn’t assigned a data value, the server may
reject the INSERT statement. I say “may” because it depends on the configuration
of the MySQL server. To maintain backward compatibility with older versions of
MySQL, by default MySQL won’t enforce some data constraints, such as the NOT
NULL constraint by default. To enforce it, you must change the sql_mode setting,
either in the MySQL server configuration, or by setting it in the MySQL connection
session. The sql_mode setting value of STRICT_ALL_TABLES tells MySQL to enforce

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 517

all data constraints on all tables. When you do that, you’ll get an error message
if you don’t supply a value for any data field that uses the NOT NULL constraint:

MariaDB [dbtest1]> set sql_mode=STRICT_ALL_TABLES;

Query OK, 0 rows affected (0.00 sec)

MariaDB [dbtest1]> INSERT INTO employees (employeeid, firstname) VALUES

 -> (126, 'Katie');

ERROR 1364 (HY000): Field 'lastname' doesn't have a default value

MariaDB [dbtest1]>

Modifying existing data
If you need to change data that you’ve already entered into the table, don’t
worry — all is not lost. You can modify any existing data records in the table, as
long as the privileges assigned to your MySQL user account contains the UPDATE
privilege.

You use the UPDATE SQL statement for updating one or more data records con-
tained in the table. The UPDATE statement is another of those SQL statements that,
though simple in concept, can easily get complex. Here’s the basic format for the
UPDATE statement:

UPDATE table SET datafield = value [WHERE condition]

The basic format of this statement specifies a datafield in the table to change
the data value of that data field to the value specified. The WHERE clause specifies
the condition that a data record must meet to have the change applied to it. How-
ever, notice that it’s optional, which can cause lots of problems.

Here’s the way the scenario often plays out: Suppose you need to go back into
the Employees table to change the NULL startdate value for Barbara that wasn’t
supplied when the data record was created. If you just use the basic format for the
UPDATE statement, you’ll get a surprise:

MariaDB [dbtest1]> UPDATE employees SET startdate = '2020-01-02';

Query OK, 2 rows affected (0.10 sec)

Rows matched: 2 Changed: 2 Warnings: 0

MariaDB [dbtest1]>

Your first clue that something bad happened would be the output returned from
the MySQL server. The Rows matched and the Changed fields indicate that two

518 BOOK 5 MySQL

data records were updated — but you just wanted to change one data record. Run-
ning a SELECT statement will verify your mistake:

MariaDB [dbtest1]> select * From employees;

+------------+----------+-----------+-------+------------+--------+-----------+
| employeeid | lastname | firstname | dcode | startdate | salary | birthdate |

+------------+----------+-----------+-------+------------+--------+-----------+
| 123 | Blum | Rich | 5 | 2020-01-02 | 10000 | 2000-05-01|

| 124 | Blum | Barbara | NULL | 2020-01-02 | NULL | NULL |

+------------+----------+-----------+-------+------------+--------+-----------+
2 rows in set (0.00 sec)

MariaDB [dbtest1]>

The basic UPDATE statement changed the startdate data field value for all of the
data records in the table! This is an all-too-common mistake made by even the
most experienced database administrators and programmers when in a hurry. By
default, MySQL applies the update to all the table data records.

To solve that problem, you just need to add the WHERE clause to specify exactly
which data record(s) you intend the change to apply to:

UPDATE employees SET startdate = '2020-01-01' WHERE employeeid = 123;

It’s a good practice to get in the habit of always including a WHERE clause in your
UPDATE statements, even if you really do want the update to apply to all the data
records. That way, you know the update will always be applied to the correct data
records and avoid costly mistakes.

Deleting existing data
The DELETE statement allows you to remove data from a table but keep the actual
table intact (unlike the DROP statement, which removes the table and the data).
Here’s the format for the DELETE statement:

DELETE FROM table [WHERE condition]

This statement works similar to the UPDATE statement. Any data records match-
ing the condition listed in the WHERE clause are deleted. And just like the UPDATE
statement, if you leave off the WHERE clause, the DELETE function applies to all the
data in the table. Make sure you really mean that before using it!

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 519

Here are a couple of examples of using the DELETE statement:

MariaDB [dbtest1]> DELETE FROM employees WHERE employeeid = 124;

Query OK, 1 row affected (0.08 sec)

MariaDB [dbtest1]> DELETE FROM employees WHERE employeeid = 124;

Query OK, 0 rows affected (0.00 sec)

MariaDB [dbtest1]>

In the second example, I tried to delete a data record that I had already deleted.
Notice that when the DELETE statement fails to find any data records to delete, it
does not produce an error message; instead, it just indicates in the return status
that the number of data records deleted was zero.

The MySQL Workbench tool
Thanks to its graphical interface, working with table data using MySQL Work-
bench is a breeze. You don’t need to memorize any SQL statements — just fill out
a form and apply it to the database. Much like ordering a pizza!

Follow these steps to experiment with the data management features in
Workbench:

1. Ensure that the MySQL database server is running, and then open the
MySQL Workbench tool.

2. Double-click the dbtest2 database link in the Navigator pane, under the
Schemas section.

3. Double-click the Tables link under the dbtest2 link.

4. Hover the mouse pointer over the Employees table entry.

Three icons appear:

• An i icon, which displays information about the table

• A wrench icon, which allows you to modify the table structure

• A spreadsheet table icon, which allows you to manage data in the table

5. Click the spreadsheet table icon next to the Employees table entry.

The Result Grid pane appears under the Query1 pane, as shown in Figure 4-1.

The Result Grid pane shows the existing table data (if any) in a grid layout. Each
row in the grid is a data record in the table.

520 BOOK 5 MySQL

Depending on the size of the Workbench window, the Result Grid area may
be truncated on the right-hand side. If that happens, grab the margin line at
the right-hand edge of the Result Grid area and drag it to the right to expand
the pane.

6. To enter a new data record, either double-click in the empty grid row at
the bottom of the table or, if your grid is very long, click the Insert Row
icon at the top of the grid to jump to the empty grid row.

7. To modify an existing single data value in a data record, single-click the
value in the grid and replace the existing value with the new value.

8. To remove an existing data record, highlight the grid row by clicking the
empty cell at the left-hand side of the row, and then click the Delete
selected rows icon at the top of the Result Grid pane.

9. To apply the changes to the table, click the Apply button at the bottom of
the pane.

The Apply SQL Wizard appears, as shown in Figure 4-2.

The wizard shows the SQL statements generated to add, modify, or delete the
data records based on the changes you made in the data grid.

10. Click the Apply button to apply the SQL statements to the table.

11. Click the Finish button to close the wizard.

FIGURE 4-1:
The Workbench

Result Grid
for displaying

table data.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 521

The Result Grid can be a bit misleading. Just making the changes in the grid display
doesn’t commit them to the table. You have to click the Apply button to run the
wizard to commit the changes, or else they’ll be gone when you close out the grid!

If you feel a bit restricted by the small area of the result grid, click the Form Editor
button on the right-hand side of the pane. That displays a single data record in the
table using a form format, as shown in Figure 4-3.

FIGURE 4-2:
The Apply

SQL Wizard in
 Workbench.

FIGURE 4-3:
Using the

Form Editor in
 Workbench to
manage data

records.

522 BOOK 5 MySQL

The Form Editor does the same thing as the Result Grid but provides a single data
record interface, giving you more room for viewing long data fields. Again, if you
make any changes in the Form Editor, make sure to click the Apply button at the
bottom to commit the changes.

Making changes to data in a table doesn’t get any easier than that!

The phpMyAdmin tool
The phpMyAdmin web-based tool also provides a graphical interface for working
with your table data, but it’s a little more complicated than Workbench. Instead
of using a single interface for all data management, phpMyAdmin breaks them up
into a couple of different interfaces.

Follow these steps to insert new data using phpMyAdmin:

1. Ensure that the MySQL server is running, and then open your browser
and go to the phpMyAdmin URL for your system.

For XAMPP it’s http://localhost:8080/phpmyadmin/. Note that the TCP
port may be different for your server environment.

2. Click the dbtest3 database link on the left-hand side of the main phpMy-
Admin web page.

This produces the Database web page, as shown in Figure 4-4.

FIGURE 4-4:
The phpMyAdmin

Database
web page.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 523

3. To add a new data record, click the Insert link in the Actions section.

This produces a form to insert one or two new data records, as shown in
Figure 4-5.

4. Enter data values in the appropriate data fields, and then click the Go
button to add the data record.

When you click the Go button, phpMyAdmin generates the INSERT statement
and submits the data record to the table. It then takes you back to the
Database web page, showing the status for the completed statement.

Managing existing data in a table uses a different interface in phpMyAdmin.
 Follow these steps to manage the existing data records in the table:

1. Open your browser and enter the following phpMyAdmin URL:

http://localhost:8080/phpmyadmin/

2. Click the dbtest3 database link on the left-hand side of the main
 phpMyAdmin web page.

3. Click the Browse icon in the employee table actions section of the
Database web page.

This produces a list of all the data records contained in the table, as shown in
Figure 4-6.

FIGURE 4-5:
The INSERT form
in phpMyAdmin.

524 BOOK 5 MySQL

4. Click the Edit icon for the data record you need to modify or the Delete
icon for the data record you need to delete.

To delete multiple data records, select the check boxes for those data records,
and then click the Delete icon at the bottom of the data record list.

5. Click the Go button to confirm editing or deleting the selected data
record.

Thanks to the graphical interface in phpMyAdmin, entering and managing data
is still a simple process. However, finding specific data records in an application
can be somewhat tricky, even when using a graphical interface. The next section
tackles that topic.

Searching for Data
Quite possibly the most important function you’ll perform in your dynamic web
applications is to query existing data in the database. Many web developers spend
a great deal of time concentrating on the design layout of the web pages, but the
real heart of the application is the behind-the-scenes SQL used to query data to
produce the website content. If this code is inefficient, it can cause huge perfor-
mance problems, and possibly even make the web application virtually useless to
customers — no matter how fancy the web pages look.

FIGURE 4-6:
The phpMyAdmin

window for
browsing data

records.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 525

As a good database application developer, it’s essential that you understand
how to write good SQL query statements. The SQL statement used for queries
is SELECT. Because of its importance, a lot of work has been done on the format
of the SELECT statement, to make it as versatile as possible. Unfortunately, with
versatility comes complexity.

Because of the versatility of the SELECT statement, the statement format has
become somewhat unwieldy and intimidating for the beginner. To try and keep
things simple, in this section I walk through the different features of the SELECT
statement one piece at a time. The next few sections demonstrate how to use these
features of the SELECT statement.

The basic SELECT format
The basic format for the SELECT statement seems simple enough:

SELECT fieldlist FROM table

The fieldlist parameter specifies the data fields that should appear in the out-
put from the table you specify. The fieldlist can be a comma-separated list of
specific data fields in the table, or the wildcard character (the asterisk) to specify
all data fields, as shown in the SELECT example I use earlier in this chapter:

SELECT * FROM employees;

This statement returns all the data field values for all the data records contained
in the Employees table. If that’s all you need for your application, you don’t need
to know anything more about the SELECT statement (lucky you)!

However, more than likely, you’ll need to customize just what data fields (and
data records) need to appear in the output. That’s where things start getting com-
plicated. The following sections show some more features that you may need to
use in your SELECT statements.

Sorting output data
The output from a SELECT statement is called a result set. The result set contains
only the data fields specified in the SELECT statement. The result set is only tem-
porary and, by default, is not stored in any tables in the database.

By default, the data records displayed in the result set are not displayed in any
particular order. As records are added or removed from the table, MySQL may
place new data records anywhere within the table order. Even if you enter data
in a particular order using INSERT statements, there is still no guarantee that the
records will display in the same order in the result set.

526 BOOK 5 MySQL

If you need to specify the order in which the data records appear in your output,
you must add the ORDER BY clause to the SELECT statement:

> SELECT employeeid, lastname, firstname FROM employees ORDER BY firstname;

+------------+----------+-----------+
| employeeid | lastname | firstname |

+------------+----------+-----------+
| 124 | Blum | Barbara |

| 126 | Blum | Jessica |

| 125 | Blum | Katie |

| 123 | Blum | Rich |

+------------+----------+-----------+
4 rows in set (0.00 sec)

>

In this example, only the data fields specified in the SELECT statement are dis-
played, ordered by the firstname data field. The default order used by the ORDER
BY clause is ascending order, based on the data type and collation you select when
creating the table. You can change the order to descending by adding the DESC
keyword at the end of the ORDER BY clause:

ORDER BY firstname DESC;

This gives you complete control over how the data records appear in the result set
output.

Filtering output data
By default, the SELECT statement places all the data records in the table in the
result set output. The power of the database query comes from displaying only a
subset of the data that meets a specific condition.

You add the WHERE clause to the SELECT statement to determine which data records
to display in the result set output. Now we’re getting to the heart of the SELECT
statement!

For example, you can check for all the employees who work in the department
identified by departmentcode 5 by using the following query:

MariaDB [dbtest1]> SELECT * FROM employees WHERE departmentcode = 5;

+----+-------+-------+----------------+------------+--------+------------+
| id | lname | fname | departmentcode | startdate | salary | birthdate |

+----+-------+-------+----------------+------------+--------+------------+
| 123| Blum | Rich | 5 | 2020-01-02 | 10000 | 2000-05-01 |

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 527

| 125| Blum | Katie | 5 | 2020-02-25 | 14000 | 2004-01-01 |

+----+-------+-------+----------------+------------+--------+------------+
2 rows in set (0.00 sec)

MariaDB [dbtest1]>

The result set only contains the data records from the table that match the WHERE
clause condition you specified. In this example, the data field was an integer type,
but if the data field you use is a text or date value, you must place quotes around
the value to delineate the start and end of the value:

SELECT * FROM employees WHERE startdate < "2020-03-01";

In the WHERE clause condition, the collation you define for the data field is impor-
tant. MySQL evaluates the specified condition based on the collation defined. If
you use a case-insensitive collation, MySQL can’t tell the difference between the
values Rich and rich. Be very careful in selecting the collation you use for tables,
because that plays an important role in just how your application can handle the
data contained in the tables.

More advanced queries
Now that you’ve seen the basics (and the power) of the SELECT statement, let’s
dive into some more complex topics. The following sections help add to your
SELECT querying skills by showing you how to do some pretty complex searches
in your database!

Querying from multiple tables
In a relational database, data is split into several tables in an attempt to keep data
duplication to a minimum. In Chapter 3 of this minibook, I show you how to apply
the second normal form rule of database design to create separate Customers and
Orders tables so that the customer information didn’t need to be duplicated for
every order data record. Although this helps reduce data redundancy, it produces
a small problem for your application queries.

When your application needs to generate a report for an order, it most likely will
need the customer’s address information to place on the report. That means now
your program needs to retrieve the order information from the Orders table, and
the customer information from the Customers table.

528 BOOK 5 MySQL

You can do that with two separate queries:

1. Query the Orders table with the orderid value to retrieve the customerid.

2. Query the Customers table with the customerid to retrieve the customer
address information for that order.

However, the two separate queries do take some extra processing time, both
in your PHP application code and in the MySQL server. A more efficient way of
retrieving that information is to submit a single SELECT statement that retrieves
the data from both tables.

To query data from multiple tables in a single SELECT statement, you must specify
both tables in the FROM clause. Also, because you’re referencing data fields from
both tables in the data field list, you must indicate which table each data field
comes from. That looks like this:

MariaDB [dbtest1]> SELECT orders.orderid, customers.name, customers.address

 -> FROM orders, customers

 -> WHERE orderid = 1000 AND orders.customerid = customers.customerid;

+---------+------------+-------------------------+
| orderid | name | address |

+---------+------------+-------------------------+
| 1000 | Acme Paper | 134 Main St.; Miami, FL |

+---------+------------+-------------------------+
1 row in set (0.00 sec)

MariaDB [dbtest1]>

As you can see from this example, it doesn’t take long for a seemingly simple
SELECT statement to get complex! Let’s walk through just what this statement
does.

The first line in the query defines the data fields you want to see in the result set
output. Because you’re using data fields from two tables, you must precede each
data field name with the table it comes from.

In the second line, you have to define which tables the data fields come from in the
FROM clause. You can list the tables in any order here.

Finally, in the WHERE clause, you have to define the condition that filters out the
records you want to display. In this example, there are two conditions that must
be met:

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 529

 » You need the Orders table data record that meets the specific orderid value
you’re looking for.

 » You need the Customers table data record that matches the customerid
value for that specific order.

You use the logical AND operator to combine the two conditions. The result set
contains the data record values that meets both of those conditions.

Using joins
In the previous example, you had to write a lot of code in the WHERE clause to
match the appropriate data record from the Customers table to the Orders table
data record information. In a relational database, this is a common thing to do. To
help programmers, the SQL designers came up with an alternative way to perform
this function.

A database join matches related data records in relational database tables without
your having to perform all the associated checks in your code. Here’s the format
for using the join in a SELECT statement:

SELECT fieldlist FROM table1 jointtype JOIN table2 ON condition

The fieldlist parameter lists the data fields from the tables to display in the
output as usual. The table1 and table2 parameters define the two tables to per-
form the join on. The jointype parameter determines the type of join for MySQL
to perform. There are three types of joins available in MySQL:

 » INNER JOIN: Only displays data records found in both tables.

 » LEFT JOIN: Displays all records in table1 and the matching data records in
table2.

 » RIGHT JOIN: Displays all records in table2 and the matching data records in
table1.

The LEFT and RIGHT join types are also commonly referred to as outer joins. The
order in which you specify the tables and the join type that you use are very
important to the join operation.

Finally, the ON condition clause defines the data field relation to use for the join
operation.

It’s common practice to use the same data field name for data fields in sepa-
rate tables that contain the same information (such as the customerid data field

530 BOOK 5 MySQL

in the Customers and Orders tables). You can add the NATURAL keyword before
the join type to tell MySQL to join using the common data field name. Here’s an
example of querying the customer information for all the orders using a NATURAL
INNER JOIN:

MariaDB [dbtest1]> SELECT orders.orderid, customers.name, customers.address

 -> FROM orders NATURAL INNER JOIN customers;

+---------+---------------+------------------------------+
| orderid | name | address |

+---------+---------------+------------------------------+
| 1000 | Acme Paper | 134 Main St.; Miami, FL |

| 1001 | Acme Paper | 134 Main St.; Miami, FL |

| 1002 | Acme Machines | 264 Oak St.; Los Angeles, CA |

+---------+---------------+------------------------------+
3 rows in set (0.00 sec)

MariaDB [dbtest1]>

Now that’s a lot less typing to mess with! The result set shows all the data records
in the Orders table that have matching customerid data records in the Customers
table.

Another way of doing this is to add the USING clause to a JOIN statement:

MariaDB [dbtest1]> SELECT orders.orderid, customers.name, customers.address

 -> FROM orders LEFT JOIN customers USING (customerid);

+---------+---------------+------------------------------+
| orderid | name | address |

+---------+---------------+------------------------------+
| 1000 | Acme Paper | 134 Main St.; Miami, FL |

| 1001 | Acme Paper | 134 Main St.; Miami, FL |

| 1002 | Acme Machines | 264 Oak St.; Los Angeles, CA |

+---------+---------------+------------------------------+
3 rows in set (0.00 sec)

MariaDB [dbtest1]>

The USING keyword works with the LEFT and RIGHT joins to specify the data field
for the join operation.

Using joins the wrong way can cause severe performance issues on your MySQL
server, especially when working with large amounts of data (joining all the
data records in tables with millions of data records can take quite a long time).
I strongly suggest testing out your SELECT statements first before coding them
into your web application. That will help give you a feel for any performance
issues that may occur. In some situations, it’s better to submit multiple smaller
SELECT statements than to submit a single complex SELECT statement.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 531

Using aliases
Having to specify the table and data field names in SELECT statements can get
somewhat cumbersome. To help out, you can use the table alias feature, which
defines a name that represents the full table name within the SELECT statement.
Here’s the format for using aliases:

SELECT fieldlist FROM table AS alias

When you define an alias for a table, you can use the alias anywhere within the
SELECT statement to reference the full table name. This is especially handy in the
long WHERE clauses when you’re working with multiple tables:

MariaDB [dbtest1]> SELECT t1.orderid, t2.name, t2.address

 -> FROM orders as t1, customers as t2

 -> WHERE t1.orderid = 1000 AND t1.customerid = t2.customerid;

+---------+------------+-------------------------+
| orderid | name | address |

+---------+------------+-------------------------+
| 1000 | Acme Paper | 134 Main St.; Miami, FL |

+---------+------------+-------------------------+
1 row in set (0.00 sec)

MariaDB [dbtest1]>

The t1 alias represents the Orders table, and the t2 alias represents the Customers
table. Notice that you can use the aliases anywhere in the SELECT statement, even
in the data field list!

Playing It Safe with Data
You’ve worked hard managing the data contained in the database (or at least your
application has!). It would be a tragedy if something happened that corrupted
the database so that you couldn’t access that data. You never know when a cata-
strophic event will occur in the computer world, so it’s always a good idea to have
a duplicate copy of your data handy at all times.

The MySQL server provides a few different methods for backing up and restoring
database data. This section walks through how to back up and restore database
data in the MySQL server environments.

532 BOOK 5 MySQL

Performing data backups
When backing up a MySQL database server, you have a few different options
available:

 » Copy the physical files the MySQL server uses to store data and database
information.

 » Use MySQL utilities to extract database and table structure information.

 » Use MySQL utilities to extract table data.

 » Use MySQL utilities to extract both the table structure and data.

If you choose to copy the physical file structure of the MySQL server, you’ll need
to be careful. MySQL uses file locking to protect data as the server is running, so
you may not be able to copy all the files required for the server operation at any
given time.

Before you try to manually copy the MySQL server files, it’s best to stop the MySQL
server process from running to ensure all the data files are available and that you
can safely copy them. This is called a cold backup.

In a cold backup, because you’ve stopped the MySQL server, web applications
can’t access the application data, so your website users won’t be able to properly
interact with your application. If your application has certain downtimes where
website visitors won’t use it (such as outside of business hours), this is fine, but
for most web applications, your website visitors need access 24 hours a day, seven
days a week! In those situations a cold backup just won’t work.

The alternative is to perform a hot backup, which copies database information
while the MySQL server is running and the web applications are still in use.
Because the server is still running, the backup process can’t lock the data tables,
so the MySQL server can still process SQL statements, altering the data contained
in the databases.

Because of this, the hot backup methods can’t copy any of the files associated
with the server operations. Instead, all they can do is take snapshots of the data
contained within the database at specific moments in time. This type of backup is
called a data export.

In a data export hot backup, the backup program exports the table structure and
any data contained in the table into a text file that you can then copy to a safe
location. The text file formats can differ, from placing data in a comma-separated
spreadsheet format, to generating SQL statements that you can feed into the
MySQL server to re-create the tables.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 533

Each of the MySQL interfaces that you’ve been working with support data export
hot backups. The following sections describe how to use these options within each
of the interfaces.

From the command-line interface
The mysqldump command-line utility allows you to quickly and easily export a
table structure and data from the command line. The mysqldump program is usu-
ally included with the other binary programs in MySQL, and you should find it in
the same folder as the other MySQL command-line utility files (for XAMPP, that’s
the c:\xampp\mysql\bin folder in Windows, or /Applications/XAMPP/mysql/bin
in macOS).

Here’s the format for the mysqldump utility:

mysqldump [options] database [tablelist]

There are lots of options available for you to customize just how to perform the
export. Here are some of the more common ones you may run into:

 » --add-drop-database: Add a DROP DATABASE statement in the output to
replace any existing databases with the same name.

 » --add-drop-table: Add a DROP TABLE statement in the output to replace
any existing tables with the same name.

 » --all-databases: Backup all the tables from all the databases on the server.

 » --databases: List multiple databases to export.

 » --lock-tables: Lock the tables during the export.

 » --password: Specify the user password, or if empty, prompt for a password.

 » --tab: Produce a tab-separated output for the data instead of SQL statements.

 » --user: Specify the user account to log into the MySQL server for the export.

Follow these steps to back up the dbtest1 database tables using the mysqldump
utility:

1. Open a command line in Windows or a Terminal session in Linux or macOS.

2. Change to the MySQL folder that contains the MySQL utilities for your
installation environment.

For XAMPP on Windows, that’s:

cd \xampp\mysql\bin

534 BOOK 5 MySQL

3. Run the mysqldump utility to export the table data from the dbtest1
database.

By default, the mysqldump utility will output the database contents to the
screen. To save it to a file, you must redirect the output to a file. Enter this
command:

C:\xampp\mysql\bin>mysqldump --user=root --password dbtest1 > dbtest1.sql

Enter password:

C:\xampp\mysql\bin>

4. View the generated dbtest1.sql file using your favorite text editor.

Figure 4-7 shows the results from my database.

As you peruse through the dbtest1.sql file that the mysqldump utility gener-
ated, you’ll probably recognize the SQL statements that it uses. For each table in
the database, it generates a CREATE TABLE statement to rebuild the table struc-
ture; then it generates an INSERT statement to add each data record from the
original table.

FIGURE 4-7:
The output from

the mysqldump
utility.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 535

Using Workbench
The MySQL Workbench graphical program provides a nice form for you to use to
pick out the mysqldump options for the export. Follow these steps to generate an
export file using Workbench:

1. Ensure that the MySQL server is running, and then start the Workbench
tool.

2. Click the Data Export link from the Management section in the Navigator
window pane.

Figure 4-8 shows what the Data Export interface looks like.

3. Single-click the dbtest2 database entry in the left-hand window of the
Tables to Export section of the main window.

The tables contained in the dbtest2 database appear in the right-hand side
window.

4. Select the check box for the dbtest2 database in the left-hand window.

This automatically selects the check boxes for the tables it contains.

FIGURE 4-8:
The Workbench

Data Export
window.

536 BOOK 5 MySQL

5. Under the right-hand side window, ensure that the drop-down box has
the Dump Structure and Data option selected.

6. In the Export Options section, select the Export to Self-Contained File
radio button and specify the location and name of the .sql file that will
contain the export.

The default will create a file in your Documents folder under the dump folder.

Alternatively, you can opt to save the export as a project, which generates
multiple files for each table. This allows you some more flexibility when
restoring the data, but it’s more difficult to manage the exported files.

7. Click the Advanced Options button at the top of the window.

A complete list of options for customizing the export appears, as shown in
Figure 4-9.

8. Click the Return button to return to the main Data Export interface
window.

9. Click the Start Export button at the bottom of the window.

A dialog box appears, prompting you for the root user account password.

FIGURE 4-9:
The Workbench

Data Export
advanced options

window.

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 537

10. For XAMPP, leave it empty and click the OK button.

The Export Progress window appears, showing the progress of the export.

11. Use your favorite text editor to view the .sql file that was generated by
the export.

Using a graphical interface certainly makes the data export process much simpler!

Using phpMyAdmin
The phpMyAdmin tool has an excellent graphical interface for handling data
exports. After you open the phpMyAdmin tool, click the Export button at the top
of the main web page. This produces the interface shown in Figure 4-10.

The main export page allows you to choose from two options:

 » A quick export, which exports all the tables from all the databases using the
mysqldump default options.

 » A custom export, which allows you to pick and choose the databases and
options for the export.

One nice feature about the phpMyAdmin export interface is that it allows you to
select the format of the export file from a long list of options, shown in Table 4-1.

FIGURE 4-10:
The phpMyAdmin
export web page.

538 BOOK 5 MySQL

That’s a lot of different ways to export your database data!

If you select the Custom export method, you can select the databases to export, the
output method (and file type if you save it to a file), the format of the output, and
any MySQL directives (such as to add the DROP DATABASE or DROP TABLE state-
ments). This gives you maximum flexibility when creating your database backups!

Restoring your data
Backups are only good if you have the ability to use them to restore the database.
Testing out the restore capabilities of your system before you have a catastrophic
event is always a good idea.

Each of the MySQL interface methods provides a different way of restoring data
from the backup files. This section walks through each of these methods.

TABLE 4-1	 The phpMyAdmin Export Formats
Format Description

CodeGen The NHibernate file format

CSV The comma-separated values format

CSV for Microsoft Excel The CSV format with customizations for Microsoft Excel

Microsoft Word 2000 The Microsoft 2000 Word document

JSON The JavaScript Object Notation format

LaTeX The Lamport TeX format commonly used for academic
publications

MediaWiki Table The Wikipedia table format

OpenDocument Spreadsheet The open spreadsheet standard format

OpenDocument Text The open document standard format

PDF The Adobe Portable Document Format

PHP array PHP code to create an array of the data

SQL SQL statements to rebuild the table

Texy! XHTML formatted data

YAML A data serialization format that is human-readable

U
si

ng
 t

he
 D

at
ab

as
e

CHAPTER 4 Using the Database 539

From the command-line interface
To restore a database using the SQL dump file generated by the mysqldump utility,
just pass the file into the input of the mysql command-line tool using the com-
mand line redirect symbol (<). That looks like this:

mysql --user=root --password dbtest1 < dbtest1.sql

The MySQL server will process the SQL statements contained in the dbtest1.sql
file and apply them against the database you specify on the command line. This
is a great way to move a database to a new database, either on the same server or
on a remote server!

If you opt to save only the table data using either the tab or comma-separated
formats, you can read the data into a table by using the LOAD DATA INFILE SQL
statement:

LOAD DATA INFILE filename INTO TABLE table

The data fields in the file must match the order in which they appear in the table.

From Workbench
The MySQL Workbench tool provides a graphical interface for loading the backup
file. After you open Workbench, click the Data Import/Restore link in the Manage-
ment section of the Navigator window pane. Figure 4-11 shows what that window
looks like.

In the Import Options section, select either the project folder or the export file
that you created with the Export feature. Select the database to use for the import
in the Default Target Schema drop-down box.

If you opted to save the backup as a project, you can customize the restore by
selecting exactly which objects to restore. If you opted to save the backup as a
single file as in the example, you must restore all the objects in the export file.

After you’ve selected the export file and options, click the Start Import button at
the bottom of the window to begin the import process. That makes restoring table
data almost simple!

From phpMyAdmin
Importing data from an export backup using phpMyAdmin is also a fairly sim-
ple process. After you open the phpMyAdmin web tool, click the Import button
at the top of the web page. This produces the Import Web page, as shown in
Figure 4-12.

540 BOOK 5 MySQL

From here, you can browse to find the export file that you generated, along with
selecting some options for the import, such as the file format. After you’ve made
your selections, click the Go button at the bottom of the web page to start the
import.

FIGURE 4-11:
The Workbench

Data Import/
Restore window.

FIGURE 4-12:
The phpMyAdmin
Import web page.

CHAPTER 5 Communicating with the Database from PHP Scripts 541

Communicating with
the Database from
PHP Scripts

In the previous chapter, I show you how to insert, delete, and manage data in
a MySQL database. Now that you have your content all ready for your applica-
tion, there’s just one more piece to add in the assembly line to complete your

dynamic web applications. This chapter explores how you can interact with the
MySQL database server from your PHP programs to retrieve the stored data, add
new data records, and remove existing data records. This chapter first explores
how PHP interacts with databases in general. Then it focuses on the most popular
method used for accessing MySQL databases from web applications: the mysqli
library.

Database Support in PHP
The PHP programming language doesn’t have any functions for accessing data-
bases directly built into the language. However, there are plenty of PHP exten-
sion libraries available to help out. The PHP extensions provide additional

Chapter 5

IN THIS CHAPTER

 » Examining the PHP database libraries

 » Connecting to the MySQL server

 » Submitting SQL queries

 » Retrieving result set data

 » Exploring a PHP database application

542 BOOK 5 MySQL

functionality to the main PHP language by incorporating add-on libraries
(see Book 4, Chapter 1).

PHP has a long history of providing library support for accessing different types of
databases, making it a popular programming language to use with lots of different
database servers. Table 5-1 lists the database server libraries currently available to
use with your PHP code.

In addition to the specific database extensions available in PHP, there are also
three abstract database interfaces available:

TABLE 5-1	 PHP Database Extension Libraries
Library Description

CUBRID An open-source relational database with object extensions

DB++ A non-SQL-based relational database created by Concept asa

dBase An old proprietary database file format used mostly for
microcomputers

FireBird/InterBase A relational database based on the ISO SQL-2003 standard

IBM DB2 A proprietary IBM relational database format

Informix An old relational database format acquired by IBM in 2001

Ingres An open-source relational database designed for large applications

MaxDB An ANSI SQL-92-compliant relational database used by the
SAP software

Mongo An open-source document-oriented database

mSQL A lightweight SQL-based database created by Hughes
Technologies

MySQL The open-source MySQL database server

OCI8 The Oracle database server

PostgreSQL An open-source database based on the original Ingres database

SQLite An embeddable database system for small environments

SQLite3 An update to the SQLite database system

SQLSRV The Microsoft SQL database server

tokyo_tyrant An open-source distributed database system

Co
m

m
un

ic
at

in
g

w
it

h
th

e
D

at
ab

as
e

fr
om

 P
H

P
Sc

ri
pt

s

CHAPTER 5 Communicating with the Database from PHP Scripts 543

 » DBA: A library for accessing Berkeley DB–style database files

 » ODBC: A library for interfacing with the Open Database Connectivity (ODBC)
standard, originally developed by Microsoft and popular on Windows
platforms

 » PDO: The PHP Data Objects (PDO) library, which uses a lightweight interface
to access different types of databases, based on an installed driver

The benefit of using an abstract database interface in your PHP code is that you
can easily change the underlying database your application uses without having
to change any of your PHP code. If you use a specific database extension, such as
for MySQL, and you need to run your application using a different database server,
you need to recode all your database interactions. However, with the abstract
database extension you can keep your code and just change the underlying data-
base driver. If you’re developing applications for use in multiple environments,
this is definitely the way to go.

Because the MySQL database server is the focus of this book, this chapter shows
you how to code PHP to interact with a MySQL database using the MySQL-specific
database interface. If you decide to use another database server for your applica-
tions, you’ll be able to apply the same techniques you learn here to the other PHP
database libraries.

Using the mysqli Library
The original MySQL database extension library created for PHP was called php_
mysql. It had some limitations, but it was widely popular in developing dynamic
web applications across the Internet that used the MySQL database.

As time went on, developers worked on improving the limitations of the php_
mysql library. Eventually, enough changes accumulated to warrant a new library
package release. That release was named the php_mysqli library (the added i stands
for “improved”). Starting in PHP version 7, the original php_mysql library has
been removed, so it’s not recommended that any new application development
use it. This section walks through how to use the php_mysqli library to interface
your PHP programs to a MySQL database server.

One of the added features of the php_mysqli library is that it supports both pro-
cedural language and object-oriented language coding styles. That means you
can use the library both as functions in procedural programs and as an object in
object-oriented PHP programs.

544 BOOK 5 MySQL

For the procedural program environment, you just run separate functions for each
action. Most of the functions require that you pass the database connection handle
along as a parameter. For the object-oriented program environment, you must
instantiate a new mysqli object, and then run methods using that object. For each
action, you need to interact with the MySQL database. In the following sections, I
show you how to use both coding methods.

Connecting to the database
The first thing you need to do from your PHP code is to establish a connection
to the MySQL database server. The connection creates a database session, from
which you can submit queries and retrieve result sets.

In the procedural coding method, you establish the connection using the mysqli_
connect() function:

$con = mysqli_connect(host, user, password, database, port, socket);

That’s a lot of information to pass for the connection! Fortunately, for most situ-
ations, you don’t need to include the port or socket values, because those are
standard. As you can probably tell from the parameter names, you must specify
the host name or IP address of the MySQL server, a userid to log into the server,
along with its associated password. The database parameter allows you to specify
a default database for the session. A typical connection statement would look like
this:

$con = mysqli_connect("localhost", "user1", "myL0ngP@ssword", "dbtest1");

If the connection is successful, the $con variable contains what’s called the
connection handle. You must use it to reference the connection session in some of
the other php_mysqli library functions.

If you need to change the default database used in the connection, use the mysqli_
select_db() function:

mysqli_select_db(handle, database)

As you can tell from the function format, for the first parameter you need the con-
nection handle from the original database connection:

mysqli_select_db($con, "dbtest2");

Co
m

m
un

ic
at

in
g

w
it

h
th

e
D

at
ab

as
e

fr
om

 P
H

P
Sc

ri
pt

s

CHAPTER 5 Communicating with the Database from PHP Scripts 545

In object-oriented coding, instead of using the mysqli_connect() function, you
must instantiate a new instance of the myslqi object:

$db = new mysqli("localhost", "user1", "myL0ngP@ssword", "dbtest1");

The parameters available are the same as for the mysqli_connect() function.
However, this time the $db variable contains an instance of the myslqi object
instead of a connection handle.

To select a new default database for the session, you run the select_db() method
from the $db object you created:

$db->select_db("dbtest2");

Notice that the names of the procedural functions and object-oriented methods
are similar. That holds true for the rest of the functions and methods you’ll use
in the php_mysqli library, so it’s relatively easy to move back and forth between
the two coding methods.

In both the procedural and object-oriented coding methods, you must enter the
user ID and password to connect to the database. Unfortunately, you must do that
in plain text. This is a bit of a security risk. If anyone has access to your source
code, they could gain access to the database. First, make sure the user ID config-
ured on the MySQL server is locked down to a specific host location (don’t use
a wildcard character for the location). The next step is to move the connection
statement to an out-of-the-way place, such as in a separate include file; then use
the PHP include() function to add it to your programs. That at least limits the
visibility of the user ID and password information to a single file. If your server
environment permits, you may even be able to hide the include file outside of the
DocumentRoot folder of your web server.

Closing the connection
When you open a connection to the MySQL server, the connection remains open
for the duration of that program. When the PHP server reaches the end of your
PHP code for that web page, it automatically closes the connection.

The MySQL server has a limited number of client connections that it supports
(defined by the MySQL configuration file). If you’re coding in a high-volume
environment that has lots of customers accessing your web application at the
same time, it may be crucial that your application releases the MySQL server con-
nection as soon as possible.

546 BOOK 5 MySQL

If you’re working in that type of environment, you can manually close the MySQL
server connection as soon as you’re done using it to help free up more connec-
tions as soon as possible. You do that by using the mysqli_close() function. Just
 specify the connection handle as the sole parameter:

mysqli_close($con);

If you’re working with object-oriented programming code, just use the close()
method on the mysqli instance:

$db->close();

Again, for most normal situations you don’t need to worry about closing the
MySQL server connection, it’s just nice to know you have that option available if
you need it!

Submitting queries
After you establish a connection to the MySQL server, you can start submitting
SQL statements. You can submit any type of statement, just as if you were working
from the MySQL command-line interface.

The procedural function you use to submit a query to the MySQL server is the
mysqli_query() function. Here’s the format:

$conresult = mysqli_query(handle, query);

The handle parameter is the connection handle created when you connected to
the MySQL server. The query parameter is the text SQL statement. Unless you’re
submitting a very short SQL statement, it has become common practice to store
the SQL statement in a variable so as not to make the mysqli_query() statement
overly complicated:

$query = "SELECT * FROM employees";

$dbresult = mysqli_query($con, $query);

The mysqli_query() function returns what’s called a resource handle. You must
store that in a variable to be able to access the data in the result set returned by
the query.

In the object-oriented coding world, you use the query() method of the mysqli
connection instance to submit SQL statements:

$query = "SELECT * FROM employees";

$result = $db->query($query);

Co
m

m
un

ic
at

in
g

w
it

h
th

e
D

at
ab

as
e

fr
om

 P
H

P
Sc

ri
pt

s

CHAPTER 5 Communicating with the Database from PHP Scripts 547

The query() method returns a result set object, which you must store in a variable
to be able to access the data contained in the result set.

The SQL statement that you send to the MySQL doesn’t need a semicolon at the
end. The semicolon is used by the MySQL command-line interface to indicate the
end of the statement. The mysqli_query() function already knows the end of
the SQL statement because it will only accept one query per text string. That also
helps block SQL-injection types of attacks against your system.

Retrieving data
If you submit a SQL statement that will return data (such as a SELECT statement),
the result set handle returned will point to the data. You can then retrieve the
data using other mysqli library functions. There are actually quite a few different
ways to retrieve that data using different functions or methods. Table 5-2 lists the
 different functions and methods available.

TABLE 5-2	 The mysqli Data Retrieval Functions and Methods
Function Method Description

mysqli_fetch_all fetch_all() Retrieves all the data records in the result set
as an array

mysqli_fetch_array fetch_array() Retrieves the current data record in the result set
as an array

mysqli_fetch_assoc fetch_assoc() Retrieves the current data record in the result set
as an associative array

mysqli_fetch_field_
direct()

fetch_field_
direct()

Retrieves the metadata for a specific field in a
result set

mysqli_fetch_field() fetch_field() Retrieves the metadata for a single field in a
result set

mysqli_fetch_fields() fetch_fields() Returns the metadata for all the fields in a result
set as an array

mysqli_fetch_object() fetch_object() Retrieves the current data record of a result set
as an object

mysqli_fetch_row() fetch_row() Retrieves the current data record of a result set
as a numeric array

mysqli_field_seek() field_seek() Sets the result set pointer to a specific field in the
current data record

mysqli_free() free() Releases the memory associated with the result
set handle

548 BOOK 5 MySQL

The mysqli _fetch family of statements retrieves the data records from the result
set and places them in an array variable. The type of array variable used depends
on the function you use:

 » The mysqli_fetch_array() function creates an associative array, a numeric
array, or both, based on the second parameter (MYSQLI_ASSOC, MYSQLI_NUM,
or MYSQLI_BOTH).

 » The mysqli_fetch_assoc() function creates an associative array, using the
data field names as the array keys.

 » The mysqli_fetch_row() function creates a numeric array, using numeric
indexes for each data field (starting at 0, and using the data field order
specified in the table or SELECT statement data field).

The fetch statements are also somewhat unique in that they allow you to walk
your way through the result set one data record at a time. Each time you call the
fetch statement, it returns the data from the current data record in the result set;
then it moves a pointer to the next data record in the result set for the next call.
When it reaches the end of the result set data, it returns a NULL value, making it
ideal to use the fetch statements in a while() loop:

$query = "SELECT * FROM employees";

$conresult = mysqli_query($con, $query);

while($row = mysqli_fetch_assoc($conresult)) {

echo "<p>Employee last name: $row['lastname']
\n";

 echo "Employee first name: $row['firstname']
\n";

 echo "Start date: $row['startdate']
\n";

 echo "Salary: $row['salary']</p>\n;

}

Or if you’re using the object-oriented programming style:

$query = "SELECT * FROM employees";

$dbresult = $db->query($query);

while($row = $dbresult->fetch_assoc()) {

 echo "<p>Employee last name: $row['lastname']
\n";

 echo "Employee first name: $row['firstname']
\n";

 echo "Start date: $row['startdate']
\n";

 echo "Salary: $row['salary']</p>\n;

}

The mysqli_fetch_assoc() function returns the data record as an associative
array value, which you then store in an array variable. The while loop continues

Co
m

m
un

ic
at

in
g

w
it

h
th

e
D

at
ab

as
e

fr
om

 P
H

P
Sc

ri
pt

s

CHAPTER 5 Communicating with the Database from PHP Scripts 549

until there are no more data records in the result set; then it drops out so the
program can continue.

Being prepared
You can submit any type of SQL statements using the mysqli_query() func-
tion, but it’s not recommended to use that for submitting INSERT statements.
All too often, beginning PHP coders retrieve data from an HTML form, place the
data directly in an INSERT statement string, then submit the string to the MySQL
server, like this:

$empid = $_POST['employeeid'];

$lname = $_POST['lastname'];

$fname = $_POST['firstname'];

$start = $_POST['startdate'];

$birth = $_POST['birthdate'];

$salary = $_POST['salary'];

$query = "INSERT INTO employees VALUES ($empid, '$lname', '$fname',

'$start','$birth', $salary)";

$dbresult = $db->query($query);

This method works, but it’s a dangerous way of inserting data into your database!
There’s no guarantee that the person using the HTML form will enter the cor-
rect data into all the data fields (either by accident or on purpose). There’s also
no guarantee the data submitted in the form won’t contain malicious characters
meant to cause issues with the database.

The safer way of submitting data in an INSERT statement is to use a prepared state-
ment, which defines a template of the query you want to execute on the MySQL
server, and then sends the data separate from the template. The MySQL server
stores the prepared statement, and then matches the submitted data against the
template. This helps filter out malicious data. Plus, it can help speed up executing
multiple INSERT statements on the server. You just submit one template state-
ment. Then you can apply multiple data statements against the same template.

With a prepared statement, you create the query string as normal, but instead of
including data values, you use a question mark as a placeholder for each value,
like this:

$query = "INSERT INTO employees VALUES (?, ?, ?, ?, ?, ?)";

Then you use the myqli_prepare() function to submit it:

$constmt = mysqli_prepare($con, $query);

550 BOOK 5 MySQL

If you’re using the object-oriented coding style, it looks like this:

$dbstmt = $db->prepare($query);

Now the MySQL server has the prepared statement, but it doesn’t have any data to
plug into it. To do that you use the mysqli_stmt_bind_param() function:

mysqli_stmt_bind_param($constmt, "issssi", $empid, $lname, $fname, $start,

$birth, $salary);

The first parameter is the result from the prepared statement you submitted. The
second parameter is somewhat odd. It defines the data type of each of the data
values as a single character in a string value:

 » b: A blob data type value

 » i: An integer data type value

 » d: A double data type value

 » s: A string data type value

In this example, I define the first data value as an integer, the next four as string
values, and the final data value as an integer.

After defining the data types, you just list the values for the data fields, in the
order they appear in the prepared statement.

If you’re following along in the object-oriented code style, here’s how to bind the
parameters:

$dbstmt->bind_param("isssi", $empid, $lname, $fname, $start, $birth, $salary);

After you bind the data values to the prepared statement, there’s still one more
step — you must execute the prepared statement:

mysql_bind_execute($constmt);

Or if you’re using the object-oriented coding style, it looks like this:

$dbstmt->execute();

This is what links the data to the template in the MySQL server and processes the
statement.

Co
m

m
un

ic
at

in
g

w
it

h
th

e
D

at
ab

as
e

fr
om

 P
H

P
Sc

ri
pt

s

CHAPTER 5 Communicating with the Database from PHP Scripts 551

Using prepared statements for INSERT statements is crucial, but you can also use
them for submitting SELECT statements if you don’t trust the data that you’re
using in the WHERE clause.

This can be the result of allowing your website visitors to enter text to search for
in the database. For example, instead of writing this code:

$empid = $_POST['employeeid'];

$query = "SELECT * FROM employees WHERE employeeid = $empid";

$result = $db->query($query);

$row = $db->fetch_assoc($result);

You can use a prepared statement and write it this way:

$empid = $_POST['employeeid'];

$query = "SELECT * FROM employees WHERE empid = ?";

$dbstmt = $db->prepare($query);

$dbstmt->bind_param("i", $empid);

$dbstmt->execute();

$dbstmt->bind_result($empid, $lname, $fname, $start, $birth, $salary);

$dbstmt->fetch();

When you submit the SELECT statement using a prepared statement, you must
bind the PHP variables for the result set data fields using the bind_result()
method (or mysqli_stmt_bind_result() for procedural style coding). Then
you can retrieve the data records in the result set using the fetch() method (or
mysqli_stmt_fetch() for procedural style coding).

Checking for errors
Whenever you submit any type of action to the MySQL server, it’s always a good
idea to ensure that it completed properly before continuing on with your program.
There are a couple of different ways to do that.

One method is to test the connection handle or result handle for a NULL value. If
the connection or query fails, the handle will be set to NULL:

$con = mysqli_connect("localhost", "user1", "MyL0ngP@ssword", "dbtest1");

if (!$con) {

 echo "Sorry, there was a problem connecting";

 exit;

}

552 BOOK 5 MySQL

Or for procedural-style coding:

$db = new mysqli("localhost", "user1", "MyL0ngP@ssword", "dbtest1");

if (!$db) {

 echo "Sorry, there was a problem connecting";

 exit;

}

This allows you to halt the program immediately without trying to submit any
further statements. The downside is that if the connection fails, the connection
statement will generate an ugly PHP error message. If you’d like to suppress the
error message, you can precede the code with an ampersand (@), like this:

@ $con = mysqli_connect("localhost", "user1", "MyL0ngP@ssword", "dbtest1");

Or:

@ $db = new mysqli("localhost", "user1", "MyL0ngP@ssword", "dbtest1");

The leading ampersand tells PHP to suppress any error output that may be gener-
ated from the statement.

The other way of stopping things when the connection fails is to use the PHP
die() function:

@ $con = mysqli_connect("localhost", "user1", "MyL0ngP@ssword", "dbtest1") or

 die("Sorry, something went wrong with the connection");

The logical OR statement will only trigger if the connection statement fails, run-
ning the die() function, which displays the string in the web page output.

Sometimes when you submit queries that fail, it helps to be able to see the exact
error message the query generated. You can do that using the mysqli_error()
function:

$conresult = mysqli_query($con, $query)

if (!$conresult) {

 echo mysqli_error($con);

}

Or for object-oriented programming:

$dbresult = $db->query($query);

if (!$dbresult) {

 echo $db->error();

}

Co
m

m
un

ic
at

in
g

w
it

h
th

e
D

at
ab

as
e

fr
om

 P
H

P
Sc

ri
pt

s

CHAPTER 5 Communicating with the Database from PHP Scripts 553

The mysqli_error() function returns the detailed error message generated by the
MySQL server when a submitted SQL statement fails. Often that helps shed some
additional light on just what went wrong, and can be invaluable when trouble-
shooting your SQL code!

The mysqli_error() function is useful for troubleshooting code, but it’s also use-
ful for attackers to gain inside information on your database structure. After you’re
done developing the application code, it’s best to remove any mysqli_error()
functions you have in the code to prevent an attacker from exploiting them.

Miscellaneous functions
Submitting queries to the MySQL server and retrieving the data records from the
result set consists of the bulk of your database requirements, but there are a few
more handy functions available in the php_mysqli library that can be useful in
your application coding. Table 5-3 lists some of the more common ones that you
may want to use.

TABLE 5-3	 Additional myslqi Library Functions
Method Description

autocommit Turn on or off the autocommit feature in MySQL, which
allows you to submit multi-statement transactions

change_user Changes the user account for the session

character_set_name Returns the character set used for the connection

commit Commits a transaction

more_results Checks if there are more query results from a multi-
query submission

multi_query Allows you to submit more than one query at a time

next_result Prepares the next data record result from a multi-query

real_escape_string Escapes special characters in a string to make them safe
to use in an SQL query

rollback Rolls back the current transaction

set_charset Sets the default character set used for the session

554 BOOK 5 MySQL

As you can probably guess, the procedural style names for these methods are the
same, just with the mysqli_ prefix.

The real_escape_string() method is useful for cleaning up text input to use in
an INSERT statement. It places a backslash in front of any character that will cause
trouble when sent to the MySQL server. This is especially useful with data that
may include single or double quotes.

Though not a method, the num_rows property is handy when you just need the
number of data records returned in a result set. Because it’s a property and not a
method, you don’t include the parenthesis after it:

$query = "SELECT * FROM employees";

$dbresult = $db->query($query);

if ($dbresult->num_rows > 0) {

 echo "There were $dbresult->num_rows data records in the table";

} else {

 echo "Sorry, there weren't any data records returned";

}

The procedural style is a little different in that it uses the num_rows as a function:

if (mysqli_num_rows($conresult) > 0)

The mysqli_num_rows() function returns the same information, but you just use
it as a function instead of a property.

Putting It All Together
Now that you’ve seen the basics of using the php_mysqli library to interact with
the MySQL server, let’s walk through a short web application that does that. First,
you need a database with some data. Follow these steps to create that:

1. Ensure that both the Apache and MySQL servers are running.

If you’re using XAMPP, start the Control Panel and click the Start buttons for
both Apache and MySQL.

2. Open the MySQL command-line interface.

For Windows, open a Command Prompt session and enter these commands:

cd \xampp\mysql\bin

mysql --user=root --password

Co
m

m
un

ic
at

in
g

w
it

h
th

e
D

at
ab

as
e

fr
om

 P
H

P
Sc

ri
pt

s

CHAPTER 5 Communicating with the Database from PHP Scripts 555

For the macOS environment, open a Terminal session and enter these
commands:

cd /Applications/XAMPP/mysql/bin

./mysql --user=root --password

3. Press the Enter key at the MySQL password prompt.

4. Enter the following statement to create the apptest1 database:

MariaDB [(none)]> CREATE DATABASE apptest1;

Query OK, 1 row affected (0.00 sec)

5. Enter the following statement to create the appuser1 user account:

MariaDB [(none)]> CREATE USER appuser1@localhost IDENTIFIED BY

"MyL0ngP@ssword";

Query OK, 0 rows affected (0.07 sec)

6. Enter the following statement to grant privileges to the apptest1
database for the appuser1 user account:

MariaDB [(none)]> GRANT SELECT,INSERT,UPDATE,DELETE ON apptest1.*

 -> TO appuser1@localhost;

Query OK, 0 rows affected (0.00 sec)

7. Enter the USE statement to change the default database to the apptest1
database:

MariaDB [(none)]> USE apptest1;

Database changed

8. Enter the following statement to create the Bowlers table:

MariaDB [apptest1]> CREATE TABLE bowlers

 -> (bowlerid int primary key,

 -> name varchar(100),

 -> address varchar(200),

 -> phone varchar(20));

Query OK, 0 rows affected (0.28 sec)

9. Enter the following statement to create the Games table:

MariaDB [apptest1]> CREATE TABLE games

 -> (gameid int auto_increment primary key,

 -> bowlerid int,

 -> score int);

Query OK, 0 rows affected (0.22 sec)

556 BOOK 5 MySQL

10. Now you can start entering some data into your tables.

Here’s some sample data for the Bowlers table:

MariaDB [apptest1]> INSERT INTO bowlers VALUES

 -> (100, 'Rich', '123 Main St.', '555-1234');

Query OK, 1 row affected (0.08 sec)

MariaDB [apptest1]> INSERT INTO bowlers VALUES

 -> (101, 'Barbara', '123 Main St.', '555-5678');

Query OK, 1 row affected (0.10 sec)

MariaDB [apptest1]> INSERT INTO bowlers VALUES

 -> (102, 'Katie Jane', '567 Oak St.', '555-0123');

Query OK, 1 row affected (0.10 sec)

MariaDB [apptest1]> INSERT INTO bowlers VALUES

 -> (103, 'Jessica', '901 Elm St.', '555-3256');

Query OK, 1 row affected (0.09 sec)

11. Add some data for the Games table for the bowlers:

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (100, 110);

Query OK, 1 row affected (0.10 sec)

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (100, 115);

Query OK, 1 row affected (0.08 sec)

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (100, 105);

Query OK, 1 row affected (0.05 sec)

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (101, 110);

Query OK, 1 row affected (0.11 sec)

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (101, 112);

Query OK, 1 row affected (0.06 sec)

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (101, 130);

Query OK, 1 row affected (0.10 sec)

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (102, 115);

Query OK, 1 row affected (0.11 sec)

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (102, 125);

Query OK, 1 row affected (0.09 sec)

Co
m

m
un

ic
at

in
g

w
it

h
th

e
D

at
ab

as
e

fr
om

 P
H

P
Sc

ri
pt

s

CHAPTER 5 Communicating with the Database from PHP Scripts 557

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (102, 140);

Query OK, 1 row affected (0.08 sec)

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (103, 135);

Query OK, 1 row affected (0.08 sec)

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (103, 138);

Query OK, 1 row affected (0.09 sec)

MariaDB [apptest1]> INSERT INTO games (bowlerid, score) VALUES (103, 130);

Query OK, 1 row affected (0.08 sec)

12. Exit the MySQL command-line interface by entering the exit statement:

MariaDB [apptest1]> exit;

C:\xampp\mysql\bin>

13. Close the Command Prompt or Terminal session.

Now that you have some sample data, you can code an application to use the data!
Follow these steps to create a simple application that reads the Bowlers table and
then calculates the average score for each bowler on your team:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Enter the following code into the editor window:

<!DOCTYPE html>

<html>

<head>

<title>PHP Test Web Page</title>

<style>

table, th, td {

 border: 1px solid black;

 border-collapse: collapse;

 text-align: center;

}

</style>

</head>

<body>

<h1>My Bowling Team</h1>

<CDATAtable>

<tr><th>Bowler</th><th>Games Played</th><th>Average</th></tr>

<?php

$db = new mysqli("localhost", "appuser1", "MyL0ngP@ssword", "apptest1");

558 BOOK 5 MySQL

if (!$db) {

 echo "Sorry, I could not connect to the database server";

 exit;

}

$query = "SELECT bowlerid, name FROM bowlers ORDER BY name";

$result = $db->query($query);

while($row = $result->fetch_assoc()) {

 $bowlerid = $row['bowlerid'];

 $name = $row['name'];

 $query2 = "SELECT COUNT(score) AS games, AVG(score) AS average FROM

games" .

 " WHERE bowlerid = $bowlerid";

 $result2 = $db->query($query2);

 $row2 = $result2->fetch_assoc();

$games = $row2['games'];

 $average = $row2['average'];

 echo "<tr><td>$name</td><td>$games</td><td>$average</td>\n";

}

?>

</CDATAtable>

</body>

</html>

3. Save the file as phpapptest.php in the DocumentRoot folder for your web
server.

If you’re using XAMPP on Windows, that’s c:\xampp\htdocs. For XAMPP on
macOS, that’s /Applications/XAMPP/htdocs.

4. Ensure that the Apache and MySQL servers are still running.

5. Open your browser and enter the following URL:

http://localhost:8080/phpapptest.php

You may need to modify the TCP port in the URL to match your web server.

6. Observe the output in the web page.

7. Open the MySQL command-line interface again and add some new data
records.

Create a new bowler, along with some new games scores.

Co
m

m
un

ic
at

in
g

w
it

h
th

e
D

at
ab

as
e

fr
om

 P
H

P
Sc

ri
pt

s

CHAPTER 5 Communicating with the Database from PHP Scripts 559

8. Refresh the browser window and observe the output.

9. Stop the Apache and MySQL servers, close out the XAPP Control Panel,
and close your browser when you’re done.

Figure 5-1 shows the results that you should have seen in your browser window.

The PHP code first submitted a SELECT statement to retrieve the bowlerid and
name data field values for each bowler in the Bowlers table:

$query = "SELECT bowlerid, name FROM bowlers ORDER BY name";

Then the code iterates through that result set using the fetch_assoc() method:

while($row = $result->fetch_assoc()) {

FIGURE 5-1:
The output

from the
phpapptest.php

program.

560 BOOK 5 MySQL

For each iteration in the Bowlers table, the code submits another SELECT state-
ment, using the MySQL COUNT() and AVG() built-in functions to determine the
number of data records for the bowler, and the average of the score data field
values:

$query2 = "SELECT COUNT(score) AS games, AVG(score) AS average FROM games" . "

WHERE bowlerid = $bowlerid";

Remember that the dot at the end of the statement is the string concatenation
operator, so you can split this long SQL statement into two lines to make it easier
to read.

Because this SELECT statement returns only one data record for each bowler, you
don’t need to iterate through the result set, because there’s just one data record in
the result set. The code uses the fetch_assoc() function to retrieve the data field
values (notice that it uses the alias names assigned to the data fields in the SELECT
statement) and uses the echo statement to output the table row HTML code with
the embedded data. Fancy!

6Creating
Object-Oriented
Programs

Contents at a Glance
CHAPTER 1: Designing an Object-Oriented Application 563

Determining Application Requirements . 563
Creating the Application Database . 565
Designing the Application Objects . 571
Designing the Application Layout . 579
Coding the Website Layout . 582

CHAPTER 2: Implementing an Object-Oriented
Application . 593
Working with Events . 593
Bidder Object Events . 595
Item Object Events . 605
Logging Out of a Web Application . 614
Testing Web Applications . 616

CHAPTER 3: Using AJAX . 619
Getting to Know AJAX . 619
Communicating Using JavaScript . 621
Using the jQuery AJAX Library . 629
Transferring Data in AJAX . 635
Modifying the AuctionHelper Application . 643

CHAPTER 4: Extending WordPress . 651
Getting Acquainted with WordPress . 651
Installing WordPress . 655
Examining the Dashboard . 662
Using WordPress . 664
Exploring the World of Plugins . 669
Creating Your Own Widget . 674

CHAPTER 1 Designing an Object-Oriented Application 563

Designing an Object-
Oriented Application

If you’ve been reading through this book in order, the previous five minibooks
have walked you through the basics of HTML, CSS, JavaScript, PHP, and the
MySQL database server. Now that you’ve seen all the pieces that are required to

create a dynamic web application, this minibook puts them all together to actually
create a dynamic web application!

Before you dive too deep into the coding, though, it’s a good idea to sit down
and map out just what type of application you want to create. This chapter walks
you through the process of designing a dynamic web application. First, it shows
you how to obtain the functional requirements for the application. It’s impor-
tant to know what you’re building before you start building it! Next, the chapter
discusses building the database elements required for the application and how to
build the PHP objects required to track the data. The chapter finishes by discuss-
ing how to design the user interface part of the web application and building the
rough template for the application website.

Determining Application Requirements
The first step to writing a dynamic web application is to define the functional
requirements for the application. Many a project has gone awry by not defining

Chapter 1

IN THIS CHAPTER

 » Defining application requirements

 » Designing the application database

 » Creating application objects

 » Designing and building an application
layout

564 BOOK 6 Creating Object-Oriented Programs

exactly what is expected by the customers or users of the application before the
coding starts.

For this project, I’m going to task you with creating the AuctionHelper web appli-
cation to help out at a school silent auction. Silent auctions are popular fundrais-
ing events used by many schools and other nonprofit organizations. In a silent
auction, items are donated by local businesses to support the organization. The
items can be either physical items (such as footballs autographed by famous ath-
letes) or services (such as a free haircut from a local salon). At the auction, the
items are presented along with a signup sheet for each item. Bidders are able to
walk around the event, making bids on items by writing down their bid on the
signup sheet for the appropriate item. (That’s the “silent” part of the auction —
no auctioneer yelling at you, and you don’t have to worry about accidentally rais-
ing your hand!) When the event closes, the bidder with the highest bid for an item
wins that item.

After talking with the auction event organizers, you’ve determined a list of
requirements that they expect your web application to accomplish:

 » Track bidder information, such as the bidder name, address, and phone
number. Each bidder is also assigned a unique bidder number by the auction
organizers as they register.

 » Track item information, such as the item name, basic description, and
resale price. Each item is also assigned a unique item number by the auction
organizers used to track the item.

 » Track the winning bid for each item. There is no need to track individual
bids, just the winning bid.

 » List the items won by a bidder at the end of the event.

 » Display the silent auction event totals in real-time for volunteers.

Based on these functional requirements, you can create a checklist of the individ-
ual functions your application must perform. This will help you define what web
pages are required, and what PHP code you’ll need to create. That checklist looks
like this:

 » Create a new bidder.

 » Modify an existing bidder.

 » Delete an existing bidder.

 » List the items won by a bidder.

 » Create a new item.

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 565

 » Modify an existing item.

 » Delete an existing item.

 » Assign the winning bidder and price to an item.

You won’t be able to use PHP for the last requirement — displaying auction infor-
mation in real-time. PHP requires that the application users refresh their browsers
to display new information. However, JavaScript can help with that requirement,
so I save that for Chapter 3 in this minibook.

Keep this checklist handy. It’ll assist you as you work out both the HTML and PHP
code for the application.

Now that you have a handle on the data requirements for the application, you’re
ready to move onto the next step in the design process: working on the database.

Creating the Application Database
Now that you have a good idea of what the application requirements are, you can
start working out the database design, and create it in your MySQL server. This
section walks through those processes.

Designing the database
The AuctionHelper application will obviously have some data storage needs. It
will need to store the bidder information, as well as the information on the items
placed in the auction. Without doing a lot of database normalization calculations,
that sounds like you’ll need at least two tables.

The Bidders table will contain information about the auction bidders. You’ll need
to track the bidder information required by the event organizers, such as the bid-
der name, address, and phone number, and match that information to a unique
bidder number assigned to each bidder. Table 1-1 shows the data fields and their
associated data types that you’ll use for the Bidders table.

Because the application will need to find a specific bidder at checkout time, you’ll
want to assign the bidderid data field as the primary key for the Bidders table. No
other indexes are required for the application.

The Items table will contain information about the auction items. Again, accord-
ing to the requirements presented by the event organizers, you’ll need data fields

566 BOOK 6 Creating Object-Oriented Programs

to track the name of the item, a brief description of the item, and the resale price
of the item. You’ll also need to match this information to a unique item number
so you can search the database using the item number.

Along with the basic item information, you’ll need to include data fields to track
the winning bidderid number for the item and the winning bid price. Table 1-2
shows the data fields and their associated data types that you’ll use for the
Items table.

Because the event organizers are assigning a unique itemid to each item, you can
use that as the primary key for the Items table. The winbidder data field in the
Items table should match an existing bidderid value in the Bidders table.

Besides these two tables required to handle the application data, there’s one more
table that you’ll need to create for the application. You’ll want your application to
be protected — you don’t want just anyone using the application to modify infor-
mation. To do that, you’ll need to create a login page where auction volunteers

TABLE 1-1	 The Bidders Table Layout
Data Field Data Type

bidderid integer

lastname varchar(100)

firstname varchar(100)

address varchar(200)

phone varchar(14)

TABLE 1-2	 The Items Table Layout
Data Field Data Type

itemid integer

name varchar(100)

description text

resaleprice decimal

winbidder integer

winprice decimal

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 567

can log in with a user ID and password to access the application. To support that,
you’ll need to create an Admins table to track the users and their passwords.
Table 1-3 shows what the Admins table should look like.

The userid data field is what each volunteer uses to log into the application. The
name data field tracks the full name of the volunteer assigned to that user ID. The
password data field may be a bit misleading. You’re not going to save the pass-
word as plain text in the Admins table. Instead, you’ll use the MySQL SHA2()
function, which uses the SHA-2 encryption standard to create a hash value from
the password text:

MariaDB [(none)]> select sha2('myL0ngP@ssword', 256);

+--+
| sha2('myL0ngP@ssword', 256) |

+--+
| 3cdfa761361762ddedc01ea1428db10a92e327325f490f7f34f1b1b91d994f22 |

+--+
1 row in set (0.00 sec)

MariaDB [(none)]>

Storing the passwords as an encrypted value helps protect the user passwords in
case the Admins table becomes compromised by an attacker. The second param-
eter of the SHA2() function specifies the length of the encryption. As you can see
from the output, the 256 generates a 64-byte hash value from the plain text, so
you’ll need a 64-byte data type field to store the value. The char(64) data type
works just fine for that.

To encrypt the password when you store it, you use the SHA2() function directly
in the INSERT statement when you add a new user account for the application:

INSERT INTO admins VALUES ('rich', 'Rich Blum', SHA2('myL0ngP@ssword',256));

TABLE 1-3	 The Admins Table Layout
Data Field Data Type

userid varchar(20)

name varchar(100)

password char(64)

568 BOOK 6 Creating Object-Oriented Programs

The downside to using the SHA2() function is that the values it generates can’t
be decrypted to determine the original text (that’s called a one-way encryption
 algorithm). The only way to check if a password matches the stored value is to
encrypt it and then compare the two encrypted values. This also means that if a
volunteer forgets his password, there’s no way to find out what it was. All you can
do is assign a new password to the volunteer.

With your database layout in hand, you’re ready to create the database elements
in MySQL.

Creating the database
You can use the MySQL command-line interface (CLI), the MySQL Workbench
graphical tool, or the phpMyAdmin web-based tool to create the database and
tables required for the application. You’ll also need to create an application user
account in the MySQL server and grant it privileges to read, modify, and delete
data in the tables in the application database.

The following steps show the SQL statements needed to create the database, user
account, and tables. You can use whichever MySQL interface you prefer to enter
the SQL statements.

1. Log into the MySQL interface of your choice:

C:\Users\rich>cd \xampp\mysql\bin

C:\xampp\mysql\bin>mysql --user=root --password

Enter password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 2

Server version: 10.1.28-MariaDB mariadb.org binary distribution

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input

statement.

MariaDB [(none)]>

2. Create the AuctionHelper database named auction:

MariaDB [(none)]> CREATE DATABASE auction;

Query OK, 1 row affected (0.09 sec)

MariaDB [(none)]>

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 569

3. Create a MySQL user account named ah_user for the AuctionHelper
application, and assign it a password of AuctionHelper:

MariaDB [(none)]> CREATE USER 'ah_user'@'localhost'

 -> IDENTIFIED BY 'AuctionHelper';

Query OK, 0 rows affected (0.13 sec)

MariaDB [(none)]>

Note that the location for the user account is set to localhost. This assumes
the PHP server is running on the same physical server as the MySQL server.
If that’s not the case in your environment, you’ll need to set that value to the
host name or IP address of your MySQL server.

4. Grant the new ah_user user account privileges to the auction database:

MariaDB [(none)]> GRANT SELECT,UPDATE,INSERT,DELETE

 -> ON auction.* TO 'ah_user'@'localhost';

Query OK, 0 rows affected (0.08 sec)

MariaDB [(none)]>

The GRANT statement assigns the specified privileges to all the tables in the
auction database, as indicated by the asterisk wildcard character.

5. Create the Bidders table:

MariaDB [(none)]> USE auction;

Database changed

MariaDB [auction]> CREATE TABLE bidders (

 -> bidderid integer primary key,

 -> lastname varchar(100),

 -> firstname varchar(100),

 -> address varchar(200),

 -> phone varchar(14));

Query OK, 0 rows affected (0.39 sec)

MariaDB [auction]>

Don’t forget the USE statement to tell MySQL which database the table should
go in! For portability, and to prevent typo errors, I prefer to use all lowercase
letters for database, table, and data field names. Mixed-case names are
supported, but they only work in Linux and Mac environments. Windows
ignores uppercase names, which can cause issues when porting code between
different servers.

570 BOOK 6 Creating Object-Oriented Programs

6. Create the Items table:

MariaDB [auction]> CREATE TABLE items (

 -> itemid int primary key,

 -> name varchar(100),

 -> description text,

 -> resaleprice decimal(10,2),

 -> winbidder int,

 -> winprice decimal(10,2));

Query OK, 0 rows affected (0.19 sec)

MariaDB [auction]>

7. Create the Admins table:

MariaDB [auction]> CREATE TABLE admins (

 -> userid varchar(20) primary key,

 -> name varchar(100),

 -> password char(64));

Query OK, 0 rows affected (0.23 sec)

MariaDB [auction]>

8. Insert a user account into the Admins table to use for testing:

MariaDB [auction]> INSERT INTO admins

 -> VALUES ('rich', 'Rich Blum', SHA2('myL0ngP@ssword', 256));

Query OK, 1 row affected (0.12 sec)

MariaDB [auction]>

Note how the password value is created in the INSERT statement. The code
uses the SHA2() function directly in the value list.

9. Display the tables to ensure that they’ve been created, and then exit
your MySQL tool:

MariaDB [auction]> SHOW TABLES;

+-------------------+
| Tables_in_auction |

+-------------------+
| admins |

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 571

| bidders |

| items |

+-------------------+
3 rows in set (0.00 sec)

MariaDB [auction]>

That’s all there is to it! You now have the database structure for the AuctionHelper
application completed.

The next step is to work on creating the PHP objects required to track the data
inside the web application. These objects will be the interface between the PHP
application and the MySQL database. The next section shows how to do that.

Designing the Application Objects
Because you’ve decided to create the AuctionHelper application as an object-
oriented application, you’ll need to create some PHP objects to represent the data
items in the application. This section walks through the process of designing the
objects to use for the application, and how to write the PHP code to create them.

Designing objects
The first step in the process of writing an object-oriented program is to determine
the objects that the application needs to do its job. Often you can rely on your work
in designing the database to determine the object requirements, too. The Auction-
Helper application clearly uses two different types of data objects:

 » Bidders

 » Auction items

It would make sense to create separate objects for each of these data groups to
help handle the database tables inside the PHP application. The following two
sections walk through defining each of these objects.

572 BOOK 6 Creating Object-Oriented Programs

The Bidder object
The Bidder object will track the properties and methods required to interact with
bidders in the application. Each data field in the Bidders table will be a separate
property in the Bidder object. That produces the following properties:

 » bidderid

 » lastname

 » firstname

 » address

 » phone

Because the object properties mirror the table data fields, you’ll be able to store
the application bidder data as a Bidder object and then write that object directly
to the database using the Bidder object methods!

The methods that you’ll need to create for the Bidder object mirror the functions
that the AuctionHelper application needs to accomplish:

 » saveBidder: Store the Bidder object data to the Bidders table.

 » updateBidder: Modify an existing bidder data record in the Bidders table.

 » removeBidder: Delete an existing bidder data record from the Bidders table.

 » findBidder: Locate the bidder information in the Bidders table based on a
bidderid value.

 » getBidders: Retrieve a list of all bidders in the Bidders table.

The last two methods are a little different from the first three. The first three
methods operate on an existing instance of the Bidder object. The last two objects
retrieve data from the Bidders table and create Bidder objects. Because they
don’t use an existing Bidder object instance, they’re called static methods. A static
method allows you to call the method directly from the class without having an
existing object instance.

Besides these methods, you also need to create a __construct() method to
 create a new Bidder object, and a __tostring() method so you can easily dis-
play the Bidder object information stored in the object as a string value in the
application.

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 573

The Item object
The Item object will track the properties and methods required to interact with
auction items in the application. Again, this will match the data fields in the Items
table, which will require the following properties:

 » itemid

 » name

 » description

 » resaleprice

 » winbidder

 » winprice

The methods required for the Item object mirror the function requirements for the
AuctionHelper application:

 » saveItem: Store the Item object data to the Items table.

 » updateItem: Modify an existing data record in the Items table.

 » removeItem: Delete an existing data record in the Items table.

 » findItem: Retrieve a specific data record from the Items table based on the
itemid value.

 » getItems: Retrieve all the items from the Items table.

 » getItemsbyBidder: Retrieve all the items with a specific bidderid as the
winbidder value from the Items table.

The first three methods require an existing Item object instance, while the last
three are static methods that return Item objects.

With these methods, you’ll be able to interact with the MySQL database to man-
age the items for the auction. The next step is to work out the code to implement
the methods.

Coding the objects in PHP
After you’ve designed what the application objects should look like, you can cre-
ate the PHP code to define them. Listing 1-1 shows the code to define the Bidder
class object.

574 BOOK 6 Creating Object-Oriented Programs

LISTING	1-1:	 The bidder.php Code for the Bidder Class Object

<?php

class Bidder {

 public $bidderid;

 public $lastname;

 public $firstname;

 public $address;

 public $phone;

 function __construct($bidderid, $lname, $fname, $address, $phone) {

 $this->bidderid = $bidderid;

 $this->lastname = $lname;

 $this->firstname = $fname;

 $this->address = $address;

 $this->phone = $phone;

 }

 function __toString() {

 $output = "<h2>Bidder Number: $this->bidderid</h2>\n" .

 "<h2>$this->lastname, $this->firstname</h2>\n" .

 "<h2>$this->address</h2>\n" .

 "<h2>$this->phone</h2>\n";

 return $output;

 }

 function saveBidder() {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "INSERT INTO bidders VALUES (?, ?, ?, ?, ?)";

 $stmt = $db->prepare($query);

 $stmt->bind_param("issss", $this->bidderid, $this->lastname,

 $this->firstname, $this->address, $this->phone);

 $result = $stmt->execute();

 $db->close();

 return $result;

 }

 function updateBidder() {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "UPDATE bidders SET bidderid = ?, lastname = ?, " .

 "firstname = ?, address= ?, phone= ? " .

 "WHERE bidderid = $this->bidderid";

 $stmt = $db->prepare($query);

 $stmt->bind_param("issss", $this->bidderid, $this->lastname,

 $this->firstname, $this->address, $this->phone);

 $result = $stmt->execute();

 $db->close();

 return $result;

 }

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 575

 function removeBidder() {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "DELETE FROM bidders WHERE bidderid = $this->bidderid";

 $result = $db->query($query);

 $db->close();

 return $result;

 }

 static function getBidders() {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "SELECT * FROM bidders";

 $result = $db->query($query);

 if (mysqli_num_rows($result) > 0) {

 $bidders = array();

 while($row = $result->fetch_array(MYSQLI_ASSOC)) {

 $bidder = new Bidder($row['bidderid'],$row['lastname'],

 $row['firstname'],$row['address'],$row['phone']);

 array_push($bidders, $bidder);

 unset($bidder);

 }

 $db->close();

 return $bidders;

 } else {

 $db->close();

 return NULL;

 }

 }

 static function findBidder($bidderid) {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "SELECT * FROM bidders WHERE bidderid = $bidderid";

 $result = $db->query($query);

 $row = $result->fetch_array(MYSQLI_ASSOC);

 if ($row) {

 $bidder = new Bidder($row['bidderid'], $row['lastname'],

 $row['firstname'], $row['address'], $row['phone']);

 $db->close();

 return $bidder;

 } else {

 $db->close();

 return NULL;

 }

 }

}

?>

576 BOOK 6 Creating Object-Oriented Programs

In Listing 1-1, you should recognize the property and method names from the
Bidder object design in the previous section. For each method, you must first
connect to the MySQL database using the mysqli object (see Book 5, Chapter 5, for
details on how that works). Each method then submits the appropriate SQL state-
ment to interact with the database.

The getBidders() method retrieves multiple data records from the Bidders table.
The code uses each data record in the result set to create a separate Bidder object,
and then stores each Bidder object instance in the $bidders array. After all the
data records have been read from the result set, the method returns the $bidders
array back to the calling program.

The findBidder() method requires the bidderid value as a parameter, and then
uses that in the SELECT statement to retrieve the specific data record from the
Bidders table. If no data record is returned, the method returns a NULL value back
to the calling program. If the bidderid value is found, the bidder information is
returned as a Bidder object.

The PHP code to create the Item class is shown in Listing 1-2.

LISTING	1-2:	 The items.php Code for the Item Class Object

<?php

class Item {

 public $itemid;

 public $name;

 public $description;

 public $resaleprice;

 public $winbidder;

 public $winprice;

 function __construct($itemid, $name, $description, $resaleprice,

 $winbidder, $winprice) {

 $this->itemid = $itemid;

 $this->name = $name;

 $this->description = $description;

 $this->resaleprice = $resaleprice;

 $this->winbidder = $winbidder;

 $this->winprice = $winprice;

 }

 function __toString() {

 $output = "<h2>Item : $this->itemid</h2>" .

 "<h2>Name: $this->name</h2>\n";

 "<h2>Description: $this->description</h2>\n";

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 577

 "<h2>Resale Price: $this->resaleprice</h2>\n";

 "<h2>Winning bid: $this->winbid at $this->winprice</h2>\n";

 return $output;

 }

 function saveItem() {

 $db = new mysqli("localhost","ah_user","AuctionHelper","auction");

 $query = "INSERT INTO items VALUES (?, ?, ?, ?, ?, ?)";

 $stmt = $db->prepare($query);

 $stmt->bind_param("issdid", $this->itemid, $this->name,

 $this->description, $this->resaleprice,

 $this->winbidder, $this->winprice);

 $result = $stmt->execute();

 $db->close();

 return $result;

 }

 function updateItem() {

 $db = new mysqli("localhost","ah_user","AuctionHelper","auction");

 $query = "UPDATE items SET name= ?, description= ?, resaleprice= ?, " .

 "winbidder= ?, winprice= ? WHERE itemid = $this->itemid";

 $stmt = $db->prepare($query);

 $stmt->bind_param("ssdid", $this->name, $this->description,

 $this->resaleprice, $this->winbidder, $this->winprice);

 $result = $stmt->execute();

 $db->close();

 return $result;

 }

 function removeItem() {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "DELETE FROM items WHERE itemid = $this->itemid";

 $result = $db->query($query);

 $db->close();

 return $result;

 }

 static function getItems() {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "SELECT * FROM items";

 $result = $db->query($query);

 if (mysqli_num_rows($result) > 0) {

 $items = array();

 while($row = $result->fetch_array(MYSQLI_ASSOC)) {

 $item = new Item($row['itemid'], $row['name'],

 $row['description'], $row['resaleprice'],

 $row['winbidder'], $row['winprice']);

 array_push($items, $item);

 }

(continued)

578 BOOK 6 Creating Object-Oriented Programs

 $db->close();

 return $items;

 } else {

 $db->close();

 return NULL;

 }

 }

 static function getItemsbyBidder($bidderid) {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "SELECT * FROM items WHERE winbidder = $bidderid";

 $result = $db->query($query);

 if (mysqli_num_rows($result) > 0) {

 $items = array();

 while($row = $result->fetch_array(MYSQLI_ASSOC)) {

 $item = new Item($row['itemid'], $row['name'],

 $row['description'], $row['resaleprice'],

 $row['winbidder'], $row['winprice']);

 array_push($items, $item);

 }

 $db->close();

 return $items;

 } else {

 $db->close();

 return NULL;

 }

 }

 static function findItem($itemid) {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "SELECT * FROM items WHERE itemid = $itemid";

 $result = $db->query($query);

 $row = $result->fetch_array(MYSQLI_ASSOC);

 if ($row) {

 $item = new Item($row['itemid'], $row['name'], $row['description'],

 $row['resaleprice'], $row['winbidder'], $row['winprice']);

 $db->close();

 return $item;

 } else {

 $db->close();

 return NULL;

 }

 }

}

?>

LISTING	1-2:	 (continued)

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 579

In Listing 1-2, you should recognize the properties and methods from the
Item object design discussed in the previous section. The getItems() and
getItemsbyBidder() methods return the list of items as an array of Item objects,
while the findItem() method returns the result as a single Item object (or a NULL
value if the item isn’t found in the Items table).

Now that you’ve seen the code, you can create the files. Follow these steps to
 create the class files for your AuctionHelper web application:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Enter the code shown in Listing 1-1.

3. Create a folder named auction in the DocumentRoot folder for your web
server.

If you’re using XAMPP in Windows, that’s c:\xampp\htdocs. If you’re using
XAMPP in macOS, that’s /Applications/XAMPP/htdocs.

4. Save the file as bidder.php in the auction folder you just created in
Step 3.

5. Open a new tab or window in your editor or IDE package.

6. Enter the code shown in Listing 1-2.

7. Save the file as item.php in the auction folder.

8. Close your editor or IDE package.

Notice that the database connection functions are contained within the Bidder
and Item classes. If you prefer to hide that information, you can move the bidder.
php and item.php files to an alternate folder outside the DocumentRoot folder. Just
make sure the web server user account has access to that folder!

Designing the Application Layout
I know you’re anxious to start coding the application, but before you can dive into
the coding you need to create the website design layout first. Knowing what your
website should look like ahead of time helps save lots of time of trial-and-error
coding! This section discusses some general web page design theory, and then
applies that theory to the AuctionHelper application design.

580 BOOK 6 Creating Object-Oriented Programs

Designing web page layout
Web page layout defines how the web page presents the content you need to display.
Displaying content to readers isn’t new to the web world — the newspaper and
magazine worlds have been struggling with that issue for centuries! If you pick up
a copy of your local newspaper, you’ll notice that articles aren’t just thrown onto
the pages haphazardly. There’s a specific format to the layout of each newspaper
page (yes, even the tabloids have some thought behind them).

The web design world has borrowed many of the concepts from how newspapers
organize and display content. One of those borrowed concepts is called grid theory.
With grid theory, you divide the web page into grids for placing different types of
content on the page. You create separate areas in the web page for corporate logos,
website navigation menus, advertisements, and of course, the main content. The
way you divide the grids on the web page should follow a strict mathematical
algorithm that remains constant throughout the entire website, giving the website
an organized look.

The most common grid method is called the golden ratio. The golden ratio states
that to make a page aesthetically pleasing, you should divide it into sections using
the golden ratio of 1.62. Applied to a web page layout, that means content sections
should be divided into two parts:

 » A main section that takes up two-thirds of the page

 » A supporting section that takes up one-third of the page

Because of this ratio, the layout is also commonly referred to as the rule of thirds.

To implement this layout, you divide your web page into three equal columns and
three equal rows. If you need finer control over the layout, you can subdivide col-
umns or rows to make smaller sections. After creating the grid, fit the elements of
your application into the grid, assigning the more important content to the larger
grid areas. Figure 1-1 shows a rough diagram of what this looks like.

FIGURE 1-1:
Sample rule-of-

thirds layout.

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 581

In the next section, you apply the rule of thirds to the AuctionHelper web applica-
tion layout.

The AuctionHelper page layout
For the AuctionHelper application, you’ll need five separate sections on each web
page:

 » A header area at the top of the web page to display the application title across
the top of all pages

 » A footer area at the bottom of the web page to display any copyright or
contact information

 » A navigation area on the left side of the web page

 » A real-time data update area on the right-hand side of the web page

 » The main content area in the middle of the web page

Using the grid layout to place things, the basic AuctionHelper website layout is
shown in Figure 1-2.

The header and footer sections incorporate data that appears on every web page in
the application but doesn’t need a lot of space. You’ll use PHP include files to load
a standard header and footer section on each web page without having to code that
for every page.

FIGURE 1-2:
The basic

AuctionHelper
web page layout.

582 BOOK 6 Creating Object-Oriented Programs

The navigation section provides a way for the application users to find their way
around the website. It will display links to the major features in the application,
such as adding new bidders or items, listing all the bidders or items, and finding
bidders or items.

The real-time information section will be where the JavaScript code does all its
work. There won’t be any PHP code in this section, but you need to reserve the
space for JavaScript to dynamically update the information.

The main section is the main work area to display content that changes from page
to page. It’ll be used to display a variety of content, including the bidder informa-
tion, item information, and of course, the items won by a bidder.

Now that you have a plan for the basic website layout, you can start writing some
HTML and CSS code to implement it. The next section walks through that process.

Coding the Website Layout
While you’re not quite ready to start coding all the application PHP code yet, you
can get started with the basic HTML5 and CSS3 code required for the page layout.
This section shows you how to create the basic template for the AuctionHelper
website layout.

Creating the web page template
The key to building dynamic web application is reusability. The more code you
can reuse for the different web pages, the less code you need to write! That means
using PHP include files wherever possible. However, to do that, you need a main
page that anchors the application and displays all the include files.

For most web servers, the default web page for a PHP application is called
index.php. This will be your anchor page that controls everything the appli-
cation displays. Follow these steps to create the main index.php page for the
AuctionHelper application.

1. Open your editor and enter the following code:

<?php

session_start();

include("bidder.php");

include("item.php");

?>

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 583

<!DOCTYPE html>

<html>

<head>

<title>AuctionHelper</title>

<link rel="stylesheet" type="text/css" href="ah_styles.css">

</head>

<body>

<header>

<?php include("header.inc.php"); ?>

</header>

<section id="container">

<nav>

<?php include("nav.inc.php"); ?>

</nav>

<main>

<?php

if (isset($_REQUEST['content'])) {

 include($_REQUEST['content'] . ".inc.php");

} else {

 include("main.inc.php");

}

?>

</main>

<aside>

<?php include("aside.inc.php"); ?>

</aside>

</section>

<footer>

<?php include("footer.inc.php"); ?>

</footer>

</body>

</html>

2. Save the file in the auction folder as index.php.

The index.php code starts out by using the PHP session_start() function to
initiate a session. Then it uses the include() function to include the Bidder and
Item class code files. Because all the other web pages are based off of this page,
this is the only time you need to include these files.

Next you see some standard HTML5 code to build the web page template. The code
uses the HTML5 <header>, <nav>, <section>, <main>, <aside>, and <footer>
elements to define the different sections of the web page. The <section> element

584 BOOK 6 Creating Object-Oriented Programs

creates a common container to help position the navigation, main, and aside
 sections. Remember: All the actual positioning will happen in the CSS3 style sheet.

The <main> section code needs some explaining:

<?php

if (isset($_REQUEST['content'])) {

 include($_REQUEST['content'] . ".inc.php");

} else {

 include("main.inc.php");

}

?>

The code checks if an HTML variable/value pair identified by content is set. That’s
how the application dynamically displays different content in each web page. If
the content HTML variable is set, the code uses its value to create the filename
to include for the main content area. If it’s not set, it uses the main.inc.php file
as the default.

For this application, you’ll place most of the styling required for the application in
an external style sheet file. Follow these steps to create that file:

1. Open your editor and enter the following code:

body{

 font-family: Arial, sans-serif;

 font-size: 80%;

 color: #333333;

 line-height: 1.166;

 margin: 0px;

 padding: 0px;

}

a{

 color: #006699;

 text-decoration: none;

}

a:link{

 color: #006699;

 text-decoration: none;

}

a:visited{

 color: #006699;

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 585

 text-decoration: none;

}

a:hover{

 color: #006699;

 text-decoration: underline;

}

h1{

 font-family: Verdana, Arial, sans-serif;

 font-size: 120%;

 color: #334d55;

 margin: 0px;

 padding: 0px;

}

h2{

 font-family: Arial, sans-serif;

 font-size: 120%;

 color: #334d55;

 margin: 0px;

 padding: 0px;

}

h3{

 font-family: Arial, sans-serif;

 font-size: 110%;

 color: #334d55;

 margin: 0px;

 padding: 0px;

}

h4{

 font-family: Arial, sans-serif;

 font-size: 100%;

 color: #334d55;

 margin: 0px;

 padding: 0px;

}

header{

 padding: 7px;

 border-bottom: 1px solid #E2EAEF;

586 BOOK 6 Creating Object-Oriented Programs

 height: 40px;

 width: 100%;

}

#container {

 height: 400px;

}

nav {

 padding: 5px;

 border-bottom: 1px solid #E2EAEF;

 border-top: 1px solid #E2EAEF;

 border-right: 1px solid #E2EAEF;

 background-color: #FFE3AA;

 float: left;

 width: 15%;

 height: 100%;

}

main {

 padding: 5px;

 border-top: 1px solid #E2EAEF;

 float: left;

 width: 55%;

 height: 100%;

}

main table {

 padding: 2px;

 border: 1px solid black;

 border-collapse: collapse;

}

main td {

 padding: 2px;

 border: 1px solid black;

 border-collapse: collapse;

}

aside {

 padding: 5px;

 border-top: 1px solid #E2EAEF;

 border-left: 1px solid #E2EAEF;

 background-color: #f3f6f8;

 float: right;

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 587

 width: 15%;

 height: 100%;

}

footer {

 clear: both;

 text-align: center;

 padding: 7px;

 border-bottom: 1px solid #E2EAEF;

 border-top: 1px solid #E2EAEF;

 background-color: #f3f6f8;

 width: 100%;

}

2. Save the file in the auction folder as ah_styles.css.

That’s a lot of style rules to apply! Don’t get too overwhelmed — most of them
just apply different aesthetics to the web page layout, such as defining the default
fonts and color schemes. There are a few position style rules applied as well, to
ensure that the different sections appear in the correct location on the web page.

Creating the support files
There are four sections of the web page that are common to all pages in the appli-
cation, each one using a separate include file:

 » header.inc.php

 » nav.inc.php

 » aside.inc.php

 » footer.inc.php

Because these files don’t change, you can write the code for them now to complete
the web page template. Follow these steps:

1. Open your editor and enter this code:

<h1>First Street Elementary School</h1>

<h2>Silent Auction Event</h2>

2. Save the file in the auction folder as header.inc.php.

588 BOOK 6 Creating Object-Oriented Programs

3. Open a new tab or window in your editor and enter this code:

<p>© AuctionHelper - Making auctions easier</p>

4. Save the file in the auction folder as footer.inc.php.

5. Open a new tab or window in your editor and enter this code:

<h2>Real-time Auction Info</h2>

<hr>

<h3>Bidder count: </h3>

<h3>Item count: </h3>

<h3>Items total value: </h3>

<h3>Bid totals: </h3>

6. Save the file in the auction folder as aside.inc.php.

7. Open a new tab or window in your editor and enter this code:

<table width="100%" cellpadding="3">

<tr>

<?php

 if (!isset($_SESSION['login']))

 echo "<td></td>\n";

 else {

 echo "<td><h3>Welcome, {$_SESSION['login']}</h3></td>\n";

 ?>

</tr>

<tr>

<td>Home</td>

</tr>

<tr>

<td>Bidders</td>

</tr>

<tr>

<td>

List Bidders</td>

</tr>

<tr>

<td>

Add New Bidder</td>

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 589

</tr>

<tr>

<td>Items</td>

</tr>

<tr>

<td>

List Items</td>

</tr>

<tr>

<td>

Add New Item</td>

</tr>

<tr><td><hr/></td></tr>

<tr><td>

Logout</td></tr>

<tr>

<td> </td>

</tr>

<tr>

<td>

<form action="index.php" method="post">

<label>Search for item:</label>

<input type="text" name="itemid" size="14"/>

<input type="submit" value="find"/>

<input type="hidden" name="content" value="updateitem">

</form>

</td></tr>

<tr>

<td>

<form action="index.php" method="post">

<label>Search for bidder:</label>

<input type="text" name="bidderid" size="14"/>

<input type="submit" value="find"/>

<input type="hidden" name="content" value="displaybidder">

</form>

</td></tr>

<?php

}

?>

</table>

8. Save the file in the auction folder as nav.inc.php.

590 BOOK 6 Creating Object-Oriented Programs

There isn’t anything too out of the ordinary in these code files. The nav.inc.php
file checks the session cookie named login to determine if the website visitor is
logged in or not. If not, it doesn’t display the navigation entries. This is a great
security feature. Notice that the URLs used in the navigation links all include the
content HTML variable and set it to a name that’ll be used later on for an include
file. The two mini-forms are used for creating search boxes for bidders and items.
They also set the content HTML variable, but as a hidden form field that gets
passed to the index.php file.

The last piece of the template is the main.inc.php include file. That gets included
to create the default main content area. It needs to display a login form if the
website visitor isn’t logged in. If the website visitor is logged in and goes to
the default application web page, it will display some simple information about
the application.

Follow these steps to create the main.inc.php include file, along with another
helper include file:

1. Open a new tab or window in your editor and enter this code:

<?php

if (!isset($_SESSION['login'])) {

?>

<h2>Please log in</h2>

<form name="login" action="index.php" method="post">

<label>UserID</label>

<input type="text" name="userid" size="10">

<label>Password</label>

<input type="password" name="password" size="10">

<input type="submit" value="Login">

<input type="hidden" name="content" value="validate">

</form>

<?php

} else {

 echo "<h2>Welcome to AuctionHelper</h2>\n";

 echo "

\n";

 echo "<p>This program tracks bidder and auction item information</p>\n";

 echo "<p>Please use the links in the navigation window</p>\n";

 echo "<p>Please DO NOT use the browser navigation buttons!</p>\n";

}

D
es

ig
ni

ng
 a

n
O

bj
ec

t-
O

ri
en

te
d

A
pp

lic
at

io
n

CHAPTER 1 Designing an Object-Oriented Application 591

?>

<script language="javascript">

document.login.userid.focus();

document.login.userid.select();

</script>

2. Save the file in the auction folder as main.inc.php.

3. Open a new tab or window in your browser and enter this code:

<?php

$userid = $_POST['userid'];

$password = $_POST['password'];

$query ="SELECT name FROM admins WHERE userid = ? AND password =

SHA2(?,256)";

$db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

$stmt = $db->prepare($query);

$stmt->bind_param("ss", $userid, $password);

$stmt->execute();

$stmt->bind_result($name);

$stmt->fetch();

if (isset($name)) {

 echo "<h2>Welcome to AuctionHelper</h2>\n";

 $_SESSION['login'] = $name;

 header("Location: index.php");

} else {

 echo "<h2>Sorry, login incorrect</h2>\n";

 echo "Please try again\n";

}

?>

4. Save the file in the auction folder as validate.inc.php.

5. Close your editor window.

Notice that the main.inc.php code has a little JavaScript code section at the
 bottom. That’s a trick that places the cursor in the UserID text box by default
when the web page opens! The login form in the main.inc.php code passes the
login form data to the validate.inc.php file. The validate.inc.php looks up
the login information in the admins table, and then sets the login session cookie
if the login is valid and redirects the browser back to the main index.php page.

If you start your Apache web server and open the AuctionHelper application in
your browser, you should see the login form, as shown in Figure 1-3.

592 BOOK 6 Creating Object-Oriented Programs

Enter the user ID and password that you stored in the Admins table, and then click
the Login button. You should then see the main AuctionHelper window, as shown
in Figure 1-4.

Congratulations! You’ve got the start of a dynamic web application!

FIGURE 1-3:
The AuctionHelper

login window.

FIGURE 1-4:
The main

AuctionHelper
window.

CHAPTER 2 Implementing an Object-Oriented Application 593

Implementing an Object-
Oriented Application

If you’ve just finished reading through Chapter 1 of this minibook, take a
moment and take a deep breath! You did a lot of work preparing the database,
PHP objects, and the HTML and CSS templates required for the AuctionHelper

application. This chapter walks through how to create the rest of the PHP code
required to complete the application. First, it walks through the overall layout of
the AuctionHelper application links and buttons, and discusses how to handle the
browser events triggered by them. Those are how your application users interact
with the website. Then it goes through all the PHP code required to work with the
bidder and item objects that you’ve already created. Finally, the chapter finishes
off by discussing how to test out an application to ensure things are working
correctly.

Working with Events
Web-based applications use what’s called event-driven programming. In event-
driven programming, the flow of the program is based on events that the program
user generates from the user interface. The program displays the user interface,
and then waits and listens for an event to occur. As the program user clicks each

Chapter 2

IN THIS CHAPTER

 » Handling web events

 » Creating code to work with objects

 » Test-driving your application

594 BOOK 6 Creating Object-Oriented Programs

link or button on the web page, the application runs different sets of include files
to generate the content that it displays in the main web page sections.

Figure 2-1 refreshes your memory on just what the main AuctionHelper web page
looks like when the user logs into the application.

From the main page, the links and buttons in the navigation area (the section on
the left side of the web page) control the application events. There are four links
available:

 » List bidders

 » Add new bidder

 » List items

 » Add new item

And below those are two search text boxes:

 » Search for items

 » Search for a specific bidder

Each event, whether a link or a button, creates a new request from the user’s
browser to the web server, which then passes the index.php file to the PHP server
for processing, along with the content HTML variable and value. The following
sections discuss how to create the PHP code to handle those events.

FIGURE 2-1:
The main

AuctionHelper
web page.

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 595

Bidder Object Events
This section walks through the PHP code you need to create to respond to the
bidder-oriented events in the navigation menu. This allows you to add, change,
and delete bidders, as well as display information about what items a specific bid-
der has won in the silent auction.

Listing bidders
When your application user clicks the List Bidders link in the navigation menu
(see Figure 2-1), the link URL passes the user’s browser to the index.php main
file and sets the content HTML variable to a value of listbidders in the link URL:

The code in the index.php file tells the PHP server to retrieve the listbidders.
inc.php include file for the main content section. You need to create the
listbidders.inc.php code file to display a list of the current bidders in the
 Bidders table.

Follow these steps to create the listbidders.inc.php file:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Enter the following code:

<?php

echo "<script language=\"javascript\">\n";

echo "function listbox_dblclick() {\n";

echo "document.bidders.displaybidder.click() }\n";

echo "</script>\n";

echo "<script language=\"javascript\">\n";

echo "function button_click(target) {\n";

echo "if(target==0) bidders.action=\"index.php?content=displaybidder\"\n";

echo "if(target==1) bidders.action=\"index.php?content=removebidder\"\n";

echo "if(target==2) bidders.action=\"index.php?content=updatebidder\"\n";

echo "}\n";

echo "</script>\n";

echo "<h2>Select Bidder</h2>\n";

echo "<form name=\"bidders\" method=\"post\">\n";

596 BOOK 6 Creating Object-Oriented Programs

echo "<select ondblclick=\"listbox_dblclick()\" name=\"bidderid\"

size=\"20\">\n";

$bidders = Bidder::getBidders();

foreach($bidders as $bidder) {

 $bidderid = $bidder->bidderid;

 $name = $bidderid . " - " . $bidder->lastname . ", " . $bidder-

>firstname;

 echo "<option value=\"$bidderid\">$name</option>\n";

}

echo "</select>

\n";

echo "<input type=\"submit\" onClick=\"button_click(0)\" " .

 "name=\"displaybidder\" value=\"View Bidder\">\n";

echo "<input type=\"submit\" onClick=\"button_click(1)\" " .

 "name=\"deletebidder\" value=\"Delete Bidder\">\n";

echo "<input type=\"submit\" onClick=\"button_click(2)\" " .

 "name=\"updatebidder\" value=\"Update Bidder\">\n";

echo "</form>\n";

?>

3. Save the file in the auction folder you created in the DocumentRoot folder
of your web server as listbidders.inc.php.

The listbidders.inc.php code generates the web page shown in Figure 2-2.

FIGURE 2-2:
The web page

generated by the
listbidders.

inc.php
include file.

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 597

In Figure 2-2, you’ll notice that I placed some bidders into the Bidders table ahead
of time so that I could test out the program. It’s always a good idea to have some
test data on hand so you can see your application working as you build it. You can
remove the test data when your application goes live.

The listbidders web page displays a list box of all the bidders in the Bidders table
and then three buttons:

 » View Bidder: Displays information on the bidder selected in the list box.

 » Delete Bidder: Removes the bidder selected in the list box from the Bidders
table.

 » Update Bidder: Displays a form to update the information in the bidders
table for the bidder selected in the list box.

Users trigger events on the web page in two ways: by clicking one of the three but-
tons, or by double-clicking a bidder in the list box.

In the listbidder.inc.php code, the first section of the code defines two
 JavaScript functions for handling the web page events:

 » listbox_dblclick(): Triggers when the application user double-clicks a
bidder in the list box. It simulates pressing the View Bidder button, which
requests the index.php page with the content HTML variable set to
displaybidders.

 » button_click(): Triggers when any of the three buttons is clicked. It dynami-
cally changes the action attribute in the <form> element to redirect the
browser to one of three include files, based on which button the user clicks.

Next, the PHP code creates the <select> list box of bidders by calling the
getBidders() static method from the Bidder class. It uses each Bidder object
returned by the getBidders() method to create each entry in the list box.

Finally, the code creates three buttons to view, delete, or update a bidder data
record. These buttons use the button_click() JavaScript function that was
defined. The three buttons redirect three actions to take on a specific bidder entry:

 » The View Bidder button redirects to the displaybidder.inc.php include file.

 » The Delete Bidder button redirects to the removebidder.inc.php include file.

 » Update Bidder button redirects to the updatebidder.inc.php include file.

Now you have three more include files to code! These are described in the follow-
ing sections.

598 BOOK 6 Creating Object-Oriented Programs

Viewing a bidder
When your application user clicks the View Bidder button or double-clicks a bidder
from the list box, the code retrieves the displaybidder.inc.php include file code,
passing the bidderid value for the bidder the user selects from the list box. The
displaybidder.inc.php code displays the bidder data record from the Bidders
table and lists any items in the Items table that the bidder has won (where the
item winbidder value matches the bidderid value).

Follow these steps to create the displaybidder.inc.php file:

1. Open your editor and enter this code:

<?php

if (!isset($_REQUEST['bidderid']) OR (!is_numeric($_REQUEST['bidderid'])))

{

 echo "<h2>You did not select a valid bidderid to view.</h2>\n";

 echo "List bidders\n";

} else

{

 $bidderid = $_REQUEST['bidderid'];

 $bidder = Bidder::findBidder($bidderid);

 if ($bidder) {

 echo $bidder;

 echo "

\n";

 // List items won

 $items = Item::getItemsbyBidder($bidderid);

 if ($items) {

 echo "Items Won:
\n";

 echo "<table>\n";

 echo "<tr><td>Item</td><td>Name</td>" .

 "<td>Description</td><td>Amount</td></tr>\n";

 $itemtotal = 0;

 foreach($items as $item) {

 printf("<tr><td>%s</td>", $item->itemid);

 printf("<td>%s</td>",$item->name);

 printf("<td>%s</td>", $item->description);

 printf("<td>%.2f</td></tr>\n", $item->winprice);

 $itemtotal = $itemtotal + $item->winprice;
 }

 echo "<tr><td/><td/><td>Total</td>";

 printf("<td>%.2f</td></tr>\n", $itemtotal);

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 599

 echo "</table>\n";

 } else {

 echo "<h2>There are no items won at this time</h2>\n";

 }

 } else {

 echo "<h2>Sorry, bidder $bidderid not found</h2>\n";

 }

}

?>

2. Save the file in the auction folder as displaybidder.inc.php.

The displaybidder.inc.php code generates the web page shown in Figure 2-3.

The displaybidder.inc.php code uses the bidderid value in the findBidder()
static method to retrieve the information for the specific bidder. It then uses
the bidderid in the getItemsbyBidder() static method from the Items class to
retrieve all the items associated with the bidder’s bidderid value.

The getItemsbyBidder() method returns the list of matching items as an array of
Item objects, so the code uses the foreach statement to iterate through each item
and display its properties. That provides all the bidder information in one handy
web page, making it a breeze for volunteers to check out bidders at the end of the
silent auction!

FIGURE 2-3:
The web page

generated by the
displaybidder.

inc.php
include file.

600 BOOK 6 Creating Object-Oriented Programs

Deleting a bidder
When the application user clicks the Delete Bidder button from the bidders list,
that triggers the removebidder.inc.php include file. Follow these steps to build
that file:

1. Open your editor and enter this code:

<?php

if (isset($_SESSION['login'])) {

 $bidderid = $_POST['bidderid'];

 $bidder = Bidder::findBidder($bidderid);

 $result = $bidder->removeBidder();

 if ($result)

 echo"<h2>Bidder $bidderid removed</h2>\n";

 else

 echo "<h2>Sorry, problem removing bidder $bidderid</h2>\n";

} else {

 echo "<H2>Please login first</h2>\n";

}

?>

2. Save the file in the auction folder as removebidder.inc.php.

That wasn’t too difficult! The removebidder.inc.php code first checks to
make sure the user is really logged in and then retrieves the bidderid value
that the listbidder.inc.php code passed using the POST method. It finds
the associated Bidder object using the findBidder() method, and then runs the
removeBidder() method for that object.

Updating a bidder
When the application user clicks the Update Bidder button from the bidders list,
that triggers the updatebidder.inc.php file. Follow these steps to build that file:

1. Open your editor and enter this code:

<?php

$bidderid = $_POST['bidderid'];

$bidder = Bidder::findBidder($bidderid);

if ($bidder) {

 echo "<h2>Update Bidder $bidderid</h2>
\n";

 echo "<form name=\"bidder\" action=\"index.php\" method=\"post\">\n";

 echo "<table>\n";

 echo "<tr><td>BidderID</td><td>$bidder->bidderid</td></tr>\n";

 echo "<tr><td>Last Name</td><td><input type=\"text\" name=\"lastname\" " .

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 601

 "value=\"$bidder->lastname\"></td></tr>\n";

 echo "<tr><td>First Name</td><td><input type=\"text\" " .

 "name=\"firstname\" value=\"$bidder->firstname\"></td></tr>\n";

 echo "<tr><td>Address</td><td><input type=\"text\" " .

 "name=\"address\" value=\"$bidder->address\"></td></tr>\n";

 echo "<tr><td>Phone</td><td><input type=\"text\" " .

 "name=\"phone\" value=\"$bidder->phone\"></td></tr>\n";

 echo "</CDATAtable>

\n";

 echo "<input type=\"submit\" name=\"answer\" value=\"Update

Bidder\">\n";

 echo "<input type=\"submit\" name=\"answer\" value=\"Cancel\">\n";

 echo "<input type=\"hidden\" name=\"bidderid\"

value=\"$bidderid\">\n";

 echo "<input type=\"hidden\" name=\"content\"

value=\"changebidder\">\n";

 echo "</form>\n";

} else {

 echo "<h2>Sorry, bidder $bidderid not found</h2>\n";

}

?>

<script language="javascript">

document.bidder.lastname.focus();

document.bidder.lastname.select();

</script>

2. Save the file in the auction folder as updatebidder.inc.php.

The updatebidder.inc.php include file generates the web page shown in
Figure 2-4.

FIGURE 2-4:
The web page

generated by the
updatebidder.

inc.php
include file.

602 BOOK 6 Creating Object-Oriented Programs

The updatebidder.inc.php code retrieves the bidder based on the bidderid value
and creates a form using the Bidder object properties as the default values for the
form text fields. The application user can modify any of the text field values and
then click the Update Bidder button to save the changes.

The form calls the changebidder.inc.php file to submit the form data to the
MySQL database. Follow these steps to create that file:

1. Open your editor and enter this code:

<?php

if (isset($_SESSION['login'])) {

 $bidderid = $_POST['bidderid'];

 $answer = $_POST['answer'];

 if ($answer == "Update Bidder") {

 $bidder = Bidder::findBidder($bidderid);

 $bidder->bidderid = $_POST['bidderid'];

 $bidder->lastname = $_POST['lastname'];

 $bidder->firstname = $_POST['firstname'];

 $bidder->address = $_POST['address'];

 $bidder->phone = $_POST['phone'];

 $result = $bidder->updateBidder();

 if ($result) {

 echo "<h2>Bidder $bidderid updated</h2>\n";

 } else {

 echo "<h2>Problem updating bidder $bidderid</h2>\n";

 }

 } else {

 echo "<h2>Update Canceled for bidder $bidderid</h2>\n";

 }

} else {

 echo "<h2>Please login first</h2>\n";

}

?>

2. Save the file in the auction folder as changebidder.inc.php.

The changebidder.inc.php code first checks to make sure the login session
cookie exists to ensure the user has properly logged into the application. It then
retrieves the $_POST['answer'] value. This determines which button in the
form the user selected (either to proceed with the update or cancel the update). If
the user clicked the Update button, the code retrieves the bidderid value and uses
the findBidder() static method to retrieve the data record from the Bidders table.

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 603

It then retrieves the rest of the form data using the $_POST[] array variable and
updates the Bidder object properties with the new data. Finally, the code uses the
updateBidder() method to commit the new values to the database.

Adding a new bidder
When the application user clicks the navigation link to add a new bidder, that
triggers the newbidder.inc.php include file. Follow these steps to build that file:

1. Open your editor and enter this code:

<h2>Enter new bidder information</h2>

<form name="newbidder" action="index.php" method="post">

<CDATAtable cellpadding="1" border="0">

<tr><td>Bidder ID:</td><td><input type="text" name="bidderid" size="4">

</td></tr>

<tr><td>Last name:</td><td><input type="text" name="lastname" size="20">

</td></tr>

<tr><td>First name(s):</td><td><input type="text" name="firstname"

size="50">

</td></tr>

<tr><td>Address:</td><td><input type="text" name="address" size="75">

</td></tr>

<tr><td>Phone:</td><td><input type="text" name="phone" size="12">

</td></tr>

</CDATAtable>

<input type="submit" value="Submit new Bidder">

<input type="hidden" name="content" value="addbidder">

</form>

<script language="javascript">

document.newbidder.bidderid.focus();

document.newbidder.bidderid.select();

</script>

2. Save the file in the auction folder as newbidder.inc.php.

The newbidder.inc.php include file generates the web page shown in Figure 2-5.

The newbidder.inc.php code simply creates a form to enter the information for
a new bidder.

604 BOOK 6 Creating Object-Oriented Programs

The JavaScript code at the end of the newbidder.inc.php file forces the browser
to place the cursor in the bidder data field by default. That’s a small feature that
goes a long way in making your web forms more user-friendly!

When the application user clicks the Submit New Bidder button, it triggers the
addbidder.inc.php include file. Follow these steps to create that file:

1. Open your editor and enter this code:

<?php

if (isset($_SESSION['login'])) {

 $bidderid = $_POST['bidderid'];

 if ((trim($bidderid) == '') OR (!is_numeric($bidderid)))

 {

 echo "<h2>Sorry, you must enter a valid bidder ID number</h2>\n";

 } else

 {

 $lastname = $_POST['lastname'];

 $firstname = $_POST['firstname'];

 $address = $_POST['address'];

 $phone = $_POST['phone'];

 $bidder = new Bidder($bidderid,$lastname,$firstname,$address,$

phone);

 $result = $bidder->saveBidder();

 if ($result)

 echo "<h2>New Bidder #$bidderid successfully added</h2>\n";

 else

 echo "<h2>Sorry, there was a problem adding that bidder

</h2>\n";

FIGURE 2-5:
The web page

generated by the
newbidder.inc.
php include file.

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 605

 }

} else {

 echo "<h2>Please log in first</h2>\n";

}

?>

2. Save the file in the auction folder as addbidder.inc.php.

The addbidder.inc.php code first checks to make sure the user is properly logged
in. Then it retrieves the bidderid and makes sure the value isn’t empty and
that it’s a valid number. It then retrieves the rest of the form data posted by the
newbidder.inc.php form and uses it to create a new Bidder object. Finally, it
uses the saveBidder() method from the Bidder object to store the new bidder
information as a data record in the Bidders table.

Searching for a bidder
The List Bidders feature allows you to access all the bidders, but if your silent auc-
tion event is a success, you may have hundreds of bidders to have to look through
to find a single bidder! To solve that problem, it helps to have a search text box to
find a specific bidder based in the bidderid assigned to the bidder. That’s built
into the navigation menu nav.inc.php file with this code:

<form action="index.php" method="post">

 <label>Search for bidder:</label>

 <input type="text" name="bidderid" size="14" >

 <input type="submit" value="find" >

<input type="hidden" name="content" value="displaybidder">

 </form>

When your application user enters a bidderid value into the Bidder search
text box and clicks the find button, the navigation action triggers the
displaybidder.inc.php include file passing the bidderid value. Because it
uses the same displaybidder.inc.php code you’ve already created for the list
bidders feature, you’ve already done the coding to complete the bidder search
feature!

Item Object Events
This section walks through the PHP code you need to respond to the item-oriented
events in the navigation menu. These events allow you to add, change, delete, and
view items tracked for the silent auction.

606 BOOK 6 Creating Object-Oriented Programs

Listing items
When your application user clicks the List Items link in the navigation window, it
triggers the listitems.inc.php include file based on the link URL:

Just as when you were working with bidders, the listitems.inc.php include
file code creates a list box with the current Items table data records, along with
three buttons to trigger events to view, delete, and update a specific item. Follow
these steps to create the listitems.inc.php file:

1. Open your editor and enter this code:

<?php

echo "<script language=\"javascript\">\n";

echo "function listbox_dblclick() {\n";

echo "document.items.updateitem.click() }\n";

echo "</script>\n";

echo "<script language=\"javascript\">\n";

echo "function button_click(target) {\n";

echo "if(target==0) " .

 "document.items.action=\"index.php?content=removeitem\"\n";

echo "if(target==1) " .

 " document.items.action=\"index.php?content=updateitem\"\n";

echo "}\n";

echo "</script>\n";

echo "<h2>Select Item</h2>\n";

echo "<form name=\"items\" method=\"post\">\n";

echo "<select ondblclick=\"listbox_dblclick()\" " .

 "name=\"itemid\" size=\"20\">\n";

$items= Item::getItems();

foreach($items as $item) {

 $itemid = $item->itemid;

 $name = $item->name;

 $option = $itemid . " - " . $name;

 echo "<option value=\"$itemid\">$option</option>\n";

}

echo "</select>

\n";

echo "<input type=\"submit\" onClick=\"button_click(0)\" " .

 "name=\"deleteitem\" value=\"Delete Item\">\n";

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 607

echo "<input type=\"submit\" onClick=\"button_click(1)\" " .

 "name=\"updateitem\" value=\"Update Item\">\n";

echo "</form>\n";

?>

2. Save the file in the auction folder as listitems.inc.php.

The listitems.inc.php code generates the web page shown in Figure 2-6.

You should recognize the similarities with the listbidders.inc.php code. The
listitems.inc.php code creates the two JavaScript functions for handling the
web page events, displays the items table data records in a list box, and then dis-
plays two buttons:

 » Delete Item: Removes an item data record from the Items table.

 » Update Item: Updates an existing item data record in the Items table.

The form works similar to the listbidders.inc.php code. However, you don’t
need an event to display an item, because that’s not a requirement for the applica-
tion (see Chapter 1 of this minibook for the application requirements).

If the user double-clicks an item in the list or clicks the Update Item button, that
triggers the updateitem.inc.php code. If the user clicks the Delete Item button,
that triggers the removeitem.inc.php code. These files are described in the next
sections.

FIGURE 2-6:
The web page

generated by the
listitems.inc.
php include file.

608 BOOK 6 Creating Object-Oriented Programs

Deleting an item
The removeitem.inc.php code works the same way as the removebidder.inc.
php code does. It retrieves the item ID of the item the user selects in the list box
and then uses it to delete the associated data record in the Items table. Follow
these steps to create the removeitem.inc.php code:

1. Open your editor and enter the following code:

<?php

if (isset($_SESSION['login'])) {

 $itemid = $_POST['itemid'];

 $item = Item::findItem($itemid);

 $result = $item->removeItem();

 if ($result)

 echo"<h2>Item $itemid removed</h2>\n";

 else

 echo "<h2>Sorry, problem removing item $itemid</h2>\n";

} else {

 echo "<h2>Please login first</h2>\n";

}

?>

2. Save the file in the auction folder as removeitem.inc.php.

The removeitem.inc.php include file code checks to make sure the user is prop-
erly logged in. Then it retrieves the itemid value passed to it. It uses that itemid
value in the findItem() static method to retrieve the Item object and then the
removeItem() method to remove the item data record from the Items table.

Updating an item
When the application user either double-clicks an item entry in the list box or
selects an entry from the list box and clicks the Update Item button, those events
trigger the updateitem.inc.php include file. Follow these steps to create that file:

1. Open your editor and enter the following code:

<?php

if (!isset($_POST['itemid']) OR (!is_numeric($_POST['itemid']))) {

 echo "<h2>You did not select a valid itemid value</h2>\n";

 echo "List items\n";

} else {

 $itemid = $_POST['itemid'];

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 609

 $item = Item::findItem($itemid);

 if ($item) {

 echo "<h2>Update Item $item->itemid</h2>
\n";

 echo "<form name=\"items\" action=\"index.php\"

method=\"post\">\n";

 echo "<CDATAtable>\n";

 echo "<tr><td>ItemID</td><td>$item->itemid</td></tr>\n";

 echo "<tr><td>Name</td><td><input type=\"text\" name=\"name\" ".

 "value=\"$item->name\"></td></tr>\n";

 echo "<tr><td>Description</td><td><input type=\"text\" " .

 "name=\"description\" value=\"$item->description\"></td>

</tr>\n";

 echo "<tr><td>Resale Price</td><td><input type=\"text\" " .

 "name=\"resaleprice\" value=\"$item->resaleprice\"></td>

</tr>\n";

 echo "<tr><td>Winning Bidder</td><td><input type=\"text\" " .

 "name=\"winbidder\" value=\"$item->winbidder\"></td></tr>\n";

 echo "<tr><td>Winning Price</td><td><input type=\"text\" " .

 "name=\"winprice\" value=\"$item->winprice\"></td></tr>\n";

 echo "</CDATAtable>

\n";

 echo "<input type=\"submit\" name=\"answer\" " .

 "value=\"Update Item\">\n";

 echo "<input type=\"submit\" name=\"answer\" value=\"Cancel\">\n";

 echo "<input type=\"hidden\" name=\"itemid\" value=\"$itemid\">\n";

 echo "<input type=\"hidden\" name=\"content\" value=\

"changeitem\">\n";

 echo "</form>\n";

 } else {

 echo "<h2>Sorry, item $itemid not found</h2>\n";

 echo "List items\n";

 }

}

?>

<script language="javascript">

document.items.winbidder.focus();

document.items.winbidder.select();

</script>

2. Save the file in the auction folder as updateitem.inc.php.

The updateitem.inc.php include file generates the web page shown in Figure 2-7.

610 BOOK 6 Creating Object-Oriented Programs

The updateitem.inc.php code retrieves the itemid value passed to it and then
uses the findItem() static method to retrieve the item’s data record from the
Items table. It uses the item properties to populate the form, which then allows
the user to change any of the item property values.

The last part of the code file adds a JavaScript section to the web page to set the
default cursor location for the form. Note, however, that it doesn’t set the cursor
at the itemid data field. Instead, it sets the cursor at the winbidder data field:

<script language="javascript">

document.items.winbidder.focus();

document.items.winbidder.select();

</script>

As the silent auction event ends, the volunteers will need to rush to enter the
winning bidder information for each item. This helps out a bit by ensuring the
updateitem form opens with the cursor in the winning bidder form field so all
the volunteers need to do is enter the winning bidder number and the winning
bid value!

When the application user clicks the Submit button, the form passes the updated
data to the changeitem.inc.php include file. Follow these steps to create that file:

1. Open your editor and enter the following code:

<?php

if (isset($_SESSION['login'])) {

 $itemid = $_POST['itemid'];

 $answer = $_POST['answer'];

FIGURE 2-7:
The web page

generated by the
updateitem.

inc.php
include file.

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 611

 if ($answer == "Update Item") {

 $item = Item::findItem($itemid);

 $item->itemid = $_POST['itemid'];

 $item->name = $_POST['name'];

 $item->description = $_POST['description'];

 $item->resaleprice = $_POST['resaleprice'];

 $item->winbidder = $_POST['winbidder'];

 $item->winprice = $_POST['winprice'];

 $result = $item->updateItem();

 if ($result) {

 echo "<h2>Item $itemid updated</h2>\n";

 } else {

 echo "<h2>Problem updating item $itemid</h2>\n";

 }

 } else {

 echo "<h2>Update Canceled for item $itemid</h2>\n";

 }

} else {

 echo "<h2>Please login first</h2>\n";

}

?>

2. Save the file in the auction folder as changeitem.inc.php.

The changeitem.inc.php code first checks to make sure the user is properly
logged in. Then it retrieves the $_POST['answer'] value to determine if the user
canceled the update or not. If the user clicked the Update button, the code retrieves
the itemid, uses the findItem() static method to retrieve the item’s data as an
Item object, changes the item’s properties using the retrieved form data, and uses
the updateItem() method to update the existing data record in the Items table.

Adding a new item
Are you starting to get the hang of things now? The application is just a series
of events, and you just need to create the PHP include files tied to the individual
events to perform the task associated with the event. That’s the core of dynamic
web applications!

When the application user clicks the link to add a new item from the navigation
menu (see Figure 2-1), the link points to the main index.php file, setting the
content HTML variable to newitem:

612 BOOK 6 Creating Object-Oriented Programs

That means you now need to code the newitem.inc.php include file. Follow these
steps to do that:

1. Open your editor and enter the following code:

<h2>Enter new item information</h2>

<form name="newitem" action="index.php" method="post">

<CDATAtable cellpadding="1" border="0">

<tr><td>Item ID:</td><td><input type="text" name="itemid" size="4">

</td></tr>

<tr><td>Name:</td><td><input type="text" name="name" size="20">

</td></tr>

<tr><td>Description:</td><td><input type="text" name="description"

size="50">

</td></tr>

<tr><td>Resale Price:</td><td><input type="text" name="resaleprice"

size="10">

</td></tr>

<tr><td>Winning Bidder:</td><td><input type="text" name="winbidder"

size="4">

</td></tr>

<tr><td>Winning Price:</td><td><input type="text" name="winprice"

size="10">

</td></tr>

</table>

<input type="submit" value="Submit new Item">

<input type="hidden" name="content" value="additem">

</form>

<script language="javascript">

document.newitem.itemid.focus();

document.newitem.itemid.select();

</script>

2. Save the file in the auction folder as newitem.inc.php.

The newitem.inc.php code generates the web page shown in Figure 2-8.

The newitem.inc.php code generates the form that users use to add a new item.
When the user clicks the Submit button, that triggers the additem.inc.php file.
Follow these steps to create that file:

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 613

1. Open your editor and enter the following code:

<?php

if (isset($_SESSION['login'])) {

 $itemid = $_POST['itemid'];

 if ((trim($itemid) == '') OR (!is_numeric($itemid)))

 {

 echo "<h2>Sorry, you must enter a valid item ID number</h2>\n";

 } else

 {

 $name = $_POST['name'];

 $description = $_POST['description'];

 $resaleprice = $_POST['resaleprice'];

 $winbidder = $_POST['winbidder'];

 $winprice = $_POST['winprice'];

 $item = new Item($itemid, $name, $description, $resaleprice,

 $winbidder, $winprice);

 $result = $item->saveItem();

 if ($result)

 echo "<h2>New Item #$itemid successfully added</h2>\n";

 else

 echo "<h2>Sorry, there was a problem adding that item</h2>\n";

 }

} else {

 echo "<h2>Please login first</h2>\n";

}

?>

2. Save the file in the auction folder as additem.inc.php.

FIGURE 2-8:
The web page

generated by the
newitem.inc.
php include file.

614 BOOK 6 Creating Object-Oriented Programs

The additem.inc.php code first checks to make sure the user is properly logged
in. Then it retrieves the itemid and makes sure the value isn’t empty and that
it’s a valid number. It then retrieves the rest of the form data posted by the
newitem.inc.php form and uses it to create a new Item object. Finally, it uses
the saveItem() method from the Item object to store the new item information
as a data record in the Bidders table.

Searching for an item
Just as with bidders, a successful silent auction event could potentially contain
hundreds of separate items for auction! When it comes time to assigning the win-
ning bidder and price to an auction item, you won’t want the auction volunteers
to have to hunt through the list box of items looking for the one item to update.
This is where the search box comes in handy.

The navigation section includes the HTML code to create a simple search text box
for items:

<form action="index.php" method="post">

<label>Search for item:</label>

 <input type="text" name="itemid" size="14" >

 <input type="submit" value="find" >

<input type="hidden" name="content" value="updateitem">

</form>

The form retrieves the itemid value from the text box and sets the content HTML
variable to updateitem to pass to the index.php file. This combination passes the
itemid value to the updateitem.inc.php file, which you’ve already created.

Logging Out of a Web Application
So far, the application has controlled access to major features (such as adding and
updating bidders and items) by checking for the existence of the login session
cookie. As long as the volunteer keeps the browser window open, when he or she
logs in the session will remain active, and the application will allow the user full
control of the data.

The session will end when the browser is closed, but sometimes customers prefer
to see an actual Logout feature to ensure that they’ve properly logged out from
the application and that no one can come by later and gain unauthorized access to
the application. It’s always a good idea to include a logout feature in your dynamic
web applications.

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 615

In the AuctionHelper program, the Logout link is included as part of the naviga-
tion menu:

<tr><td>

Logout</td></tr>

This link sets the content HTML variable to the value logout, which triggers the
index.php file to include the logout.inc.php include file. This is the last file
you’ll need to create to complete the application! Follow these steps to do that:

1. Open your editor to a new window and enter the following code:

<?php

if (isset($_SESSION['login']))

{

 unset($_SESSION['login']);

}

header("Location: index.php");

?>

2. Save the file in the auction folder as logout.inc.php.

3. You can finally close out your editor — you’re done coding for this
project!

The logout.inc.php include file first checks to make sure the login session
cookie exists, and if it does, it uses the unset() function to remove it. This doesn’t
stop the session, but it removes the session cookie the application uses to detect
if the user is logged in.

The header() function may take some explanation:

header("Location: index.php");

The header() PHP function sends an HTTP header message to the browser. The
Location message instructs the browser to redirect to the specified URL. In this
case, the code redirects the browser back to the index.php file, which causes the
browser to repaint the main web page. This time, though, since the login session
cookie is gone, the main web page will display the login form.

The PHP server must send any HTTP messages generated by the header()
 function before any HTML code. Because this application uses the header()
 function in an include file, that won’t be the case. What allows you to do this is
the output_buffer setting in the PHP server. If you enable that setting in the
php.ini configuration file, the PHP server buffers all output from the program.

616 BOOK 6 Creating Object-Oriented Programs

Then it sends all the output in one stream. The output buffer is smart and will
rearrange any HTTP messages to the front of the buffer, sending them first.

Testing Web Applications
Congratulations! If you’ve been following along with the code in these last two
chapters, you’ve just completed a full-featured dynamic web application to track
silent auction data. However, the development work doesn’t stop after you’ve
designed the website and created the code. You must ensure that things work
 correctly before handing the application over to your customer.

That process involves testing. There are generally four levels of testing that you
can perform with dynamic web applications. From lowest to highest, they are as
follows:

 » Unit testing: Perform tests on individual sections of code to ensure that there
are no syntax or logic errors.

 » Integration testing: Perform tests on passing data between different
sections of code to ensure that there is no data mismatch.

 » System testing: Perform tests on the entire website to ensure that all the
functionality works correctly and nothing is missing.

 » Acceptance testing: Your customer tests the website to ensure that it works
as he or she specified and that he or she understands the user interface.

In PHP applications, you often perform the unit testing as part of each include file
that you create to respond to events. Ensure that when you click a link in the web
page, the proper include file triggers and that it performs its job correctly.

When you perform unit testing, watch for PHP warnings as well as errors.
 Warnings may not adversely affect the outcome of the application, but it’s poor
programming practice to misuse PHP code, even if it doesn’t cause a fatal error.

Integration testing with include files can get somewhat tricky. It’s easy to get lost
in a sea of include files, even in a small application like AuctionHelper. It often
helps to draw a process map, showing which include files are triggered by events
and which include files rely on other include files. Figure 2-9 shows a simple
 process diagram for the include files used in the AuctionHelper application.

Im
pl

em
en

ti
ng

 a
n

O
bj

ec
t-

O
ri

en
te

d
A

pp
lic

at
io

n

CHAPTER 2 Implementing an Object-Oriented Application 617

In situations where a function relies on two separate include files (such as pass-
ing new bidder information from the newbidder.inc.php include file to the
addbidder.inc.php include file), integration testing must ensure that all the data
values are passed correctly.

System testing requires that you (or better yet, someone else) walk through the
entire application from start to finish. Every link and button event must func-
tion correctly, producing proper content on the web pages. The system testing
often refers back to the original feature requirements that were defined by the
 customer, ensuring that each of the requirements is met by the applications.

Finally, you’re ready to turn your creation over to the customer for acceptance
testing. It often helps to have a checklist handy for each of the requirement
 features, to ensure that the customer doesn’t forget to test all the features of the
application. If you’re also required to create a user guide for the application, this
is also a good place to test that out as well!

With all that, there’s still one final feature that you haven’t implemented from
the original requirements. If you remember from Chapter 1 of this minibook, one
of the original requirements was to provide real-time statistics for the auction
totals. You created an area to display the data, but you didn’t actually create the
data. That requires some JavaScript tricks that you haven’t seen yet, so I saved
that for another chapter.

FIGURE 2-9:
Process
diagram

for the
AuctionHelper

include files.

CHAPTER 3 Using AJAX 619

Using AJAX

The previous two chapters in this minibook walk through the AuctionHelper
application, a dynamic web application used to support a silent auction.
There is one requirement for that project that I haven’t covered yet — the

ability to update web pages with real-time data. To do that requires a little more
than just PHP or even just JavaScript. It requires using a new technology that
combines both languages! This chapter discusses just what that technology is and
how to produce dynamic content on a web page without having to reload the web
page, a great feature to include in your web applications!

Getting to Know AJAX
One of the newest technologies to hit dynamic web programming is Asynchronous
JavaScript and XML (called AJAX). This name doesn’t refer to either the household
cleaner or the figure in Greek mythology. It also doesn’t refer to a new type of
programming language.

Instead, AJAX refers to a method of combining several existing web languages and
standards to produce dynamic content on a web page. AJAX utilizes the following
technologies:

 » JavaScript: To communicate with a web server “behind the scenes” in an
existing web page in the browser

Chapter 3

IN THIS CHAPTER

 » Getting acquainted with AJAX

 » Using JavaScript to communicate

 » Working with jQuery and AJAX

 » Using XML to transfer data

 » Adding AJAX to AuctionHelper

620 BOOK 6 Creating Object-Oriented Programs

 » A server-side programming language: To retrieve the dynamic content from
the application database

 » Extensible Markup Language (XML): To safely transfer the dynamic content
back to the browser

 » HTML and CSS: To place the dynamic content on the web page and assign
styles and positioning to it

 » Document Object Model (DOM): To reference locations on a web page to
place the dynamic content

Trying to picture just how all these piece fit together can be a bit confusing.
 Figure 3-1 shows a rough diagram of how this all works.

FIGURE 3-1:
The basics

of AJAX.

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 621

The first step in AJAX is for JavaScript code embedded within the web page to
establish an HTTP connection with a web server to retrieve a specific web page.
The web page can be a static HTML file, but more often it utilizes a server-
side programming language, such as PHP, to retrieve data from an application
database to return to the JavaScript client program.

In AJAX, data retrieved from the server is usually formatted using the XML stan-
dard to send back to the browser, although that’s not a requirement. Data can
be sent using any formatting standard, or even just in plain text. Recently the
 JavaScript Object Notation (JSON) format has become increasingly popular to use
as a method to format data in AJAX implementations.

When the JavaScript code in the browser receives the new data, it uses HTML and
CSS to place and style the new content, usually using DOM manipulation to place
the data in the existing web page that’s displayed in the browser. All this happens
behind the scenes of an existing web page while the website visitor is viewing it!

The key to AJAX is the creation of a special JavaScript object that can communicate
with web servers. The next section discusses just what that is.

Communicating Using JavaScript
Allowing JavaScript code to run in a web page and communicate directly with
a web server has revolutionized dynamic web applications. This feature actu-
ally isn’t all that new. Microsoft introduced the feature with the XMLHTTP ActiveX
object way back in Internet Explorer version 5.

The XMLHTTP object allowed you to specify a URL to connect to a web server using
HTTP and retrieve the web page content that the server returned. Although it’s
simplistic, this started a revolution that has changed the face of dynamic web
applications!

The downside was that Microsoft controlled the standard, and other browsers were
reluctant to incorporate it. Soon, though, a JavaScript standard was created to sup-
port this feature, called the XMLHttpRequest object. The XMLHttpRequest object
does what its awkward names says: It sends an HTTP request to a web server
and retrieves the response and creates an XML object. The XMLHttpRequest object
quickly became popular and is supported by all the major browsers in use today.

This section walks through the methods and properties available in the
XMLHttpRequest object and how to use them to communicate with a web server
from your own web pages.

622 BOOK 6 Creating Object-Oriented Programs

Considering XMLHttpRequest class
methods
The XMLHttpRequest object contains several class methods to help you control the
interaction between the JavaScript program and the web server. Table 3-1 lists the
methods available.

There aren’t a lot of class methods for the XMLHttpRequest, making it not only
powerful, but fairly easy to use! After instantiating a new XMLHttpRequest object,
use the open() method to define the connection to the web server and the send()
method to send the request to the server:

var con = new XMLHTTPRequest();

con.open("GET", "myprog.php", true);

con.send();

The first parameter of the open() method defines the HTTP request type to use —
either the GET method or the POST method. The second parameter defines the URL
to send the request to. The third parameter determines if the connection is asyn-
chronous (true) or synchronous (false).

With a synchronous connection, JavaScript will wait at the send() method until it
receives a response from the web server. While JavaScript is waiting, the browser
won’t process any other code or events in the web page. This will make the web
page appear frozen, because the user won’t be able to click any links or buttons.

With the asynchronous connection type, JavaScript sends the request and then
continues on with the rest of the program. When it receives a response from the

TABLE 3-1	 The XMLHttpRequest Class Methods
Method Description

abort() Cancels an existing request that is waiting for a response

getAllResponseHeaders() Retrieves the HTTP header information returned by the
web server

getResponseHeader() Retrieves information from a specific HTTP header

open(method,url,async,user,pass) Opens a connection to the specified web server

send(string) Sends a request to the web server

setRequestHeader() Adds HTML variable/value pairs for the request

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 623

web server, it triggers a callback function that you define to handle the response
(discussed in the next section). This allows the program code to continue operat-
ing while it’s waiting for the server response, which is a much cleaner experience
for the web page viewer.

While currently still supported, the synchronous connection type is in the process
of being deprecated in the XMLHttpRequest JavaScript standard. It’s good practice
to just use the asynchronous connection type for your applications, because that
doesn’t have an adverse effect on the web page user interface.

If you define the HTTP request to use the POST method of sending data, you must
place the HTML variable/value data pairs as a parameter in the send() method:

con.open("POST", "myprog.php", true);

con.send("id=100&name=rich");

If you prefer to use the GET request method, you can include the HTML variable/
value data pairs in the URL:

con.open("GET", "myprog.php?id=100&name=rich", true);

con.send();

Some browsers have a limitation on how long the connection URL can be, so for
large amounts of data it’s better to use the POST method.

After you send the request, you’ll need to retrieve the response from the web
server. That requires using a few of the XMLHttpRequest object class properties,
discussed next.

Due to the potential for abuse, most browsers restrict the URL that the XMLHttpRe-
quest object can connect to. You can only connect to a URL in the same domain as
the original web page that loads the object.

Focusing on XMLHttpRequest
class properties
The XMLHttpRequest object contains several class properties that you’ll need to
know about to handle the HTTP response from the web server. These are shown
in Table 3-2.

624 BOOK 6 Creating Object-Oriented Programs

After you use the send() method to send a connection request to a web server, the
HTTP connection process works through five connection states, as tracked by the
readyState property:

 » State 0: The connection has not been initialized.

 » State 1: The connection to the server has been established.

 » State 2: The server received the HTTP request message.

 » State 3: The server is processing the HTTP request.

 » State 4: The server sent the response.

As the HTTP connection works through these five connection states, the value
contained in the readyState property changes. This causes the function you
define in the onreadystatechange property to trigger for each state change. When
the readyState property contains a value of 4, the final result from the request is
available for processing.

When the readyState property value is 4, you know the communication is com-
plete, but you don’t know how it turned out. To determine that, you check the
HTTP response returned by the web server using the status property. If the
status property contains the 200 numeric HTTP result code, that indicates the
connection was successful, and any data returned by the web server is available
in the responseText and responseXML properties. If the status property contains
some other HTTP result code (such as 403 or 404), that indicates there was an
error communicating with the web server.

Because these values are standard, it has become somewhat common practice to
start out the onreadystatechange callback function code checking for them:

TABLE 3-2	 The XMLHttpRequest Class Properties
Property Description

onreadystatechange Defines a callback function that the browser triggers when
the HTTP connection changes state

readyState Contains the connection status of the HTTP connection

responseText Contains the response sent by the web server in text format

responseXML Contains the response sent by the web server in XML format

status Contains the numeric HTTP response code from the
web server

statusText Contains the text HTTP response string from the web server

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 625

con.onreadystatechange = function() {

 if (this.readyState == 4 && this.status == 200) {

 var result = this.responseText;

 }

};

The function only retrieves the data when the connection is complete and has
returned valid data. This method of defining the callback function inline is referred
to as creating an anonymous callback function, because you don’t define a name for
the function. It only exists inside the onreadystatechange property, so you can’t
reference it anywhere else in your JavaScript code.

Although using an anonymous function is a popular way of defining the callback
function, you can define the function as a standard named JavaScript function and
then reference that function name in the onreadystatechange property.

Trying out AJAX
Now that you’ve seen a little about how AJAX works, let’s walk through an exam-
ple of using it. For this example, you write some code that dynamically changes
the values in a drop-down box based on a selection in another drop-down box on
the web page. Follow these steps to get started:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

2. Enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>Car dropdown test</title>

<script language="javascript" type="text/javascript">

function getmodels()

{

 var select = document.getElementById("make");

 var make = select.options[select.selectedIndex].value;

 var URL = "ajaxcars.php?make=" + make;
 var request = new XMLHttpRequest();

 request.open("GET", URL);

 request.onreadystatechange = function() {

 if (request.readyState == 4 && request.status == 200) {

 var models = request.responseText.split(',');

 var model = document.getElementById('model');

626 BOOK 6 Creating Object-Oriented Programs

 if (model) {

 model.innerHTML = "";

 for(i = 0; i < models.length; i++) {
 model.innerHTML += "<option value='" + models[i] +
 "'>" + models[i] + "</option>";
 }

 }

 }

 }

 request.send();

}

</script>

</head>

<body>

<h2>Find your car</h2>

Make:

<select id="make" onchange="getmodels()">

<option value="">Select the make</option>

<option value="buick">Buick</option>

<option value="chevy">Chevy</option>

<option value="dodge">Dodge</option>

<option value="ford">Ford</option>

</select>

Model:

<select id="model">

<option value="">Select make first</option>

</select>

</body>

</html>

3. Save the file as ajaxcars1.html in the DocumentRoot area of your web
server.

For XAMPP on Windows, that’s c:\xampp\htdocs; for XAMPP on macOS, that’s
/Applications/XAMPP/htdocs.

4. Open a new editor window or tab, and enter the following code:

<?php

$make = $_GET['make'];

switch ($make)

{

 case "buick":

 echo "Enclave,Lacrosse,Regal";

 break;

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 627

 case "chevy":

 echo "Camero,Corvette,Impala";

 break;

 case "dodge":

 echo "Challenger,Charger,Viper";

 break;

 case "ford":

 echo "Fusion,Mustang,Taurus";

}

?>

5. Save the file as ajaxcars.php in the DocumentRoot folder of your
web server.

6. Open your browser and then enter the following URL in the address bar:

http://localhost:8080/ajaxcars1.html

Note: You may need to use a different port in the URL, depending on your
web server configuration.

7. Make a selection from the Make drop-down box.

As you make the selection, the options available in the Model drop-down box
dynamically change!

The initial web page produced by the ajaxcars1.html file is shown in Figure 3-2.

FIGURE 3-2:
The ajaxcars1.
html initial web

page.

628 BOOK 6 Creating Object-Oriented Programs

As you make a selection in the Make drop-down box, the options available in the
Model drop-down box dynamically change. After creating the web page layout,
the ajaxcars1.html code uses JavaScript to listen for events from the Make drop-
down box. When a change is made to a selection, that triggers the getmodels()
JavaScript function.

The getmodels() function uses DOM to retrieve the selection made in the select
element:

var make = select.options[select.selectedIndex].value;

Then it passes the selection to the ajaxcars.php program using an XMLHttp
Request object:

var request = new XMLHttpRequest();

var URL = "ajaxcars.php?make=" + make;
request.open("GET", URL);

The ajaxcars.php code returns a simple text string of models, separated by com-
mas, based on the make value it receives. Back at the ajaxcars1.html file, the
onreadystatechange callback function retrieves the returned value, converts it

AJAX AND CACHED PAGES
One issue that you may run into when using AJAX in your application is cached web
pages. Most web browsers have the ability to cache the response returned by a spe-
cific URL. This helps reduce the amount of data the browser must download from the
server and speed up the time it takes to load a web page. Unfortunately, caching also
applies to the HTTP requests sent by the XMLHttpRequest object. If you use the same
URL to retrieve dynamic data from a server-side program, the browser may cache one
response and always use that response for the URL. This will cause problems if the data
returned by the web server changes.

One way to solve this issue is to create a unique URL for each HTTP request by adding a
large random number as a GET variable/value pair:

var random = Math.floor(Math.random() * 1000);

var myurl = "myprog.php?x=" + random;
con.open("GET", myurl, true);

The random number isn’t used by the receiving program. Its sole purpose is to make
each HTTP request unique, causing the browser to retrieve the actual data from the
web server and not a cached web page.

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 629

into an array, retrieves the options DOM object handle for the Models drop-down
box, and then uses the innerHTML DOM property for the model drop-down box to
reset and change the options available in the drop-down box. Before your eyes,
the drop-down box options change to match the car make you select. Now that’s
dynamic programming!

Using the jQuery AJAX Library
Unfortunately, using the XMLHttpRequest object is somewhat clunky in JavaS-
cript. There are a lot of parts that you need to have in place and use in the correct
order for things to work correctly. The popular jQuery JavaScript library (dis-
cussed in Book 3, Chapter 3) comes to our rescue by providing some functions to
help simplify using AJAX.

The jQuery $.ajax() function
The $.ajax() function in jQuery allows you to build all the parts for an XML-
HttpRequest object at one time in one place. Instead of having to break things
down into several different methods and properties, you just fill out a series of
key/value pairs to submit in your request and process the response:

$.ajax({

 type: 'POST',

 url: 'myprog.php',

 data: { id: "100", name: "Rich" },

 dataType: "XML",

 success: function (response) {

 var XMLresult = response;

 },

 error: function(response) {

 console.log('Error: ' + response);
 }

});

The key/value pairs defined in the function control just how the request works.
Table 3-3 shows the different elements available in the $.ajax() function settings.

630 BOOK 6 Creating Object-Oriented Programs

TABLE 3-3	 The $.ajax() Function Settings
Settings Description

accepts Defines the MIME data types the request will accept

async Specifies if the connection is synchronous

beforeSend Defines a callback method to trigger before the connection request is sent

cache Prevents the browser from caching the request

complete Defines the callback method to trigger when the connection is complete

contents Defines a regular expression to determine how to parse the response

contentType Defines the Content-type for the data sent to the server

context Defines the DOM context for all callbacks

converters Defines content type converters for the response data

crossDomain Forces a connection to an outside domain

data Sends data to the server in a POST request

dataFilter Defines a function to process raw data in the response

dataType Defines the data type expected in the response

error Defines a callback function to trigger if the connection fails

global Triggers global Ajax event handlers

headers Defines additional HTML header values

ifModified Returns data only if the response has changed since the last request

isLocal Allows the current connection if it uses a local resource (such as a local file)

jsonp Defines a callback function if the connection returns data in JSON format

jsonpCallback Defines the callback function for a JSON request

method Defines the HTTP method used for the request (GET or POST)

mimeType Defines the MIME type used for the response

password Defines the password if required to access the URL

processData Bypasses processing the response data

scriptCharset Sets the charset attribute on the <script> element if the response is a script

statusCode Returns the HTTP status code for the response

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 631

Although the $.ajax() function has lots of features that allow you to customize
it, most often you’ll just need to use a few of them to create a standard connection
request and retrieve the response data.

Follow these steps to convert the ajaxcars1.html file to use the $.ajax()
function:

1. Open the ajaxcars1.html file you previously created in your editor.

2. Modify the code to replace the XMLHttpRequest object with the $.ajax()
function.

Your final code should look like this:

<!DOCTYPE html>

<html>

<head>

<title>Car dropdown test</title>

<script src="jquery-3.2.1.min.js"></script>

<script language="javascript" type="text/javascript">

function getmodels()

{

 var select = document.getElementById("make");

 var make = select.options[select.selectedIndex].value;

 var URL = "ajaxcars.php?make=" + make;
 $.ajax({

 type: "GET",

 url: URL,

 dataType: "text",

Settings Description

success Defines a callback function to trigger if the connection succeeds

timeout Sets the time to wait for a response from the server

traditional Uses the traditional AJAX parameter serialization method

type Defines the HTTP request method

url Defines the URL connection string for the request

username Defines the username if required to access the URL

xhr Defines a callback function to create a custom XMLHttpRequest object

xhrFields Defines the field name/value pairs for the XHR object

632 BOOK 6 Creating Object-Oriented Programs

 success: function(response) {

 var models = response.split(',');

 var model = document.getElementById('model');

 if (model) {

 model.innerHTML = "";

 for(i = 0; i < models.length; i++) {

 model.innerHTML += "<option value='" + models[i] +

 "'>" + models[i] + "</option>";

 }

 }

 }

 });

}

</script>

</head>

<body>

<h2>Find your car</h2>

Make:

<select id="make" onchange="getmodels()">

<option value="">Select the make</option>

<option value="buick">Buick</option>

<option value="chevy">Chevy</option>

<option value="dodge">Dodge</option>

<option value="ford">Ford</option>

</select>

Model:

<select id="model">

<option value="">Select make first</option>

</select>

</body>

</html>

3. Save the file as ajaxcars2.html in the DocumentRoot folder for your web
server.

4. Open your browser and enter the following URL:

http://localhost:8080/ajaxcars2.html

5. Make a selection from the Make drop-down box, and observe the options
available in the Model drop-down box.

The web page generated by the ajaxcars2.html file should work exactly the same
as the web page generated by the ajaxcars1.html file. As you make a selection

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 633

in the Make drop-down box, the options available in the Models drop-down box
dynamically change.

Note that to run the ajaxcars2.html file, you need to specify the jQuery library
file in a script element. If you haven’t downloaded that previously while work-
ing in Book 3, Chapter 3, you can download the current jQuery library file from
http://jquery.com.

The jQuery $.get() function
The $.ajax() function helps clean up your code a little bit, but there’s still a lot
of information you need to enter into the settings for the connection to work. As
you create different AJAX applications, you’ll notice that many of the settings that
you use remain the same from program to program. To help make things easier,
the jQuery library contains the $.get() function.

The $.get() function assumes the common setting values used in the $.ajax()
function, so that you only need to specify a couple of things:

$.get('myprog.php').done(function(response) {

 var result = response;

}).fail(function(response) {

 console.log('Error: ' + response);
});

Now that’s really making things simple! Follow these steps to modify the
 ajaxcars2.html file to use the $.get() jQuery function:

1. Open the ajaxcars2.html file in your editor.

2. Modify the code to replace the $.ajax() function with the $.get()
function.

Your final code should look like this:

<!DOCTYPE html>

<html>

<head>

<title>Car dropdown test</title>

<script src="jquery-3.2.1.min.js"></script>

<script language="javascript" type="text/javascript">

function getmodels()

http://jquery.com

634 BOOK 6 Creating Object-Oriented Programs

{

 var select = document.getElementById("make");

 var make = select.options[select.selectedIndex].value;

 var URL = "ajaxcars.php?make=" + make;
 $.get(URL).done(function(response) {

 var models = response.split(',');

 var model = document.getElementById('model');

 if (model) {

 model.innerHTML = "";

 for(i = 0; i < models.length; i++) {

 model.innerHTML += "<option value='" + models[i] +

 "'>" + models[i] + "</option>";

 }

 }

 });

}

</script>

</head>

<body>

<h2>Find your car</h2>

Make:

<select id="make" onchange="getmodels()">

<option value="">Select the make</option>

<option value="buick">Buick</option>

<option value="chevy">Chevy</option>

<option value="dodge">Dodge</option>

<option value="ford">Ford</option>

</select>

Model:

<select id="model">

<option value="">Select make first</option>

</select>

</body>

</html>

3. Save the file as ajaxcars3.html in the DocumentRoot folder for your web
server.

4. Open your browser and enter the following URL:

http://localhost:8080/ajaxcars3.html

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 635

5. Make a selection in the Make drop-down box and observe the options
available in the Model drop-down box.

With the $.get() function, you can focus on the code that handles the response
without having to worry about all the settings!

Transferring Data in AJAX
The ajaxcars.php server program used in the previous examples sent the response
data back to the client browser as a comma-separated string value. That’s fine for
small amounts of data, but if your application needs to move large amounts of
data that can quickly get confusing.

To help organize the data sent back to the browser, the AJAX standard suggests
using the XML markup standard. There are many different data formatting stan-
dards you could use, for web developers using XML is a popular choice because
it’s similar to HTML, so using it isn’t too much of a new learning curve. The fol-
lowing sections discuss the XML standard and how to use it in both your PHP and
JavaScript code.

Looking at the XML standard
Similar to HTML, a standard XML document uses element tags to identify each
data element in the document. The first element in an XML document identifies
the XML standard used. Then that’s followed by the actual data elements:

<?xml version="1.0" encoding="UTF-8"?>

<car>Dodge</car>

Unlike HTML, there are no standard tags used in XML — you can define any tag
you want to represent the data in your application! Just as in HTML, you can cre-
ate levels of data in XML:

<?xml version="1.0" encoding="UTF-8"?>

<car>

<make>Dodge</make>

<model>Challenger</model>

</car>

636 BOOK 6 Creating Object-Oriented Programs

Because there are no predefined element names in XML, you can create element
names and levels as needed for your application. All the same rules for element
names that you’re already familiar with in HTML apply to XML:

 » Element names can contain letters, numbers, hyphens, underscores,
and periods.

 » Element names are case-sensitive.

 » Element names must start with a letter or underscore.

 » Element names cannot contain spaces.

 » Elements must have a matching close tag.

Just like HTML, XML elements also support attributes:

<?xml version="1.0" encoding="UTF-8"?>

<car make="Dodge">

<model>Challenger</model>

</car>

The same rules for element names apply to attribute names. You can also define
multiple attributes in a single element. Just separate each attribute/value pair
with a space. Also, it’s important to remember that you must enclose the attribute
value in quotes.

One of the benefits of using XML is that finding data in an XML document is
a breeze. The XML standard uses the same Document Object Model (DOM) as
HTML. You use the XML DOM to reference an individual element or attribute con-
tained anywhere within the XML document.

The following sections explain how to use XML to handle data in PHP and
JavaScript.

Using XML in PHP
You can manually build all the XML elements to create an XML document as
a string value in PHP, but there’s an easier way to do that! PHP includes the
DOMDocument object, which allows you to build an XML document as an object.
Often, it’s easier to manipulate an object than a string value in the PHP code.

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 637

To create a new DOMDocument object, just instantiate the class:

$doc = new DOMDocument("1.0");

The parameter specifies the XML version number PHP uses to create the docu-
ment. When you create the object, you use the DOMDocument methods to add ele-
ments, attributes, and their values. There are quite a few DOMDocument methods

ELEMENTS OR ATTRIBUTES?
You’ll notice that in XML you can specify data as either an element or an attribute within
an element. Usually, it doesn’t matter which method you use to store your data in the
XML document — both methods save the data, and both methods allow you to retrieve
the data. For example, you can use all elements:

<car>

<make>Dodge</make>

<model>Challenger</model>

</car>

<car>

<make>Ford</make>

<model>Mustang</model>

</car>

Or you can use all attributes:

<car make="Dodge" model="Challenger"></car>

<car make="Ford" model="Mustang"></car>

Or you can mix and match:

<car make="Dodge">

<model>Challenger</model>

</car>

<car make="Ford">

<model>Mustang</model>

</car>

There are pros and cons to each format. Using the XML DOM, attribute values can be
easier to retrieve when you know the element they’re associated with. However, having
lots of attributes for a single element can get somewhat messy in the document layout.
Adding additional attributes isn’t as easy as adding new elements. As you design your
application, you’ll need to decide how to format the XML DOM to handle the data trans-
ferred between your PHP and JavaScript programs.

638 BOOK 6 Creating Object-Oriented Programs

available. Table 3-4 shows the methods that you’ll most often use to create an
XML document.

As you can see from Table 3-4, it doesn’t take all that much code to create an XML
document in PHP! Follow these steps to try building an XML document using PHP:

1. Open your editor and enter the following code:

<?php

$doc = new DOMDocument("1.0");

$carlot = $doc->createElement("carlot");

$carlot = $doc->appendChild($carlot);

$car1 = $doc->createElement("car");

$car1 = $carlot->appendChild($car1);

$make1 = $doc->createAttribute("make");

$make1->value = "Dodge";

$car1->appendChild($make1);

$model1 = $doc->createElement("model", "Challenger");

$model1 = $car1->appendChild($model1);

$model2 = $doc->createElement("model", "Charger");

$model2 = $car1->appendChild($model2);

$car2 = $doc->createElement("car");

$car2 = $carlot->appendChild($car2);

$make2 = $doc->createAttribute("make");

$make2->value = "Ford";

$car2->appendChild($make2);

$model3 = $doc->createElement("model", "Mustang");

$model3 = $car2->appendChild($model3);

$output = $doc->saveXML();

TABLE 3-4	 Popular PHP DOMDocument Methods
Method Description

appendChild Adds a new child node to an existing node in the document

createAttribute Creates a new attribute for an existing element

createElement Creates a new element node in the document

createTextNode Creates a text value for an existing element in the document

saveXML Outputs the DOM document in XML format

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 639

header("Content-type: application/xml");

echo $output;

?>

2. Save the file as xmltest.php in the DocumentRoot folder for your
web server.

3. Open your browser and then enter the following URL in the browser
address bar:

http://localhost:8080/xmltest.php

4. View the XML code displayed in the browser window.

The Content-type HTTP header tells the browser that the document is an XML
document and not an HTML document. That causes the browser to parse the text
as an XML document and display the contents.

Setting the Content-type HTTP header is also important when creating an XML
document that you pass to the JavaScript XMLHttpRequest object. When JavaScript
detects the XML document Content-type, it places the data in the responseXML
property instead of the responseText property.

Different browsers display XML files in different formats. Figure 3-3 shows what
the output looks like in the Microsoft Edge browser, which does a nice job of for-
matting the XML document.

FIGURE 3-3:
Viewing the XML

source code using
the Microsoft

Edge browser.

640 BOOK 6 Creating Object-Oriented Programs

The PHP code creates a new DOMDocument object, using the carlot element as the
root of the XML tree:

$carlot = $doc->createElement("carlot");

$carlot = $doc->appendChild($carlot);

It then adds two car elements to the document. The first car element contains an
attribute named make, with a value of "Dodge":

$car1 = $doc->createElement("car");

$car1 = $carlot->appendChild($car1);

$make1 = $doc->createAttribute("make");

$make1->value = "Dodge";

$car1->appendChild($make1);

It also contains two child elements, both named model, with different text values:

$model1 = $doc->createElement("model", "Challenger");

$model1 = $car1->appendChild($model1);

$model2 = $doc->createElement("model", "Charger");

$model2 = $car1->appendChild($model2);

Notice that you can add the text value associated with the node in the createEle-
ment method. If you prefer, you can use the createTextNode method to create the
text value separately after you create the element.

In XML DOM, the text contained within an element is considered a separate node.
This is a significant difference from HTML DOM, where the text is part of the ele-
ment. This can get confusing when you’re trying to traverse an XML DOM tree.

Next the PHP code creates another car element with the make attribute set to
"Ford". This car element only has one child element, using the model name. The
code then appends the model element as a child node of the second car element.

The saveXML() method completes the process by converting the DOMDocument
object into an XML document that you can send to the requesting browser using
the echo statement.

Using XML in JavaScript
To read the XML data sent by the PHP server in your JavaScript code, you use the
DOMParser object. The DOMParser object creates a DOM tree from the XML doc-
ument data and provides methods and properties for you to traverse the tree,
accessing the elements and attributes it contains.

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 641

The XMLHttpRequest object uses the responseXML property to hold the data sent
by the server as an XML DOMParser object, so creating the object has already been
done for you:

var xmldoc = con.responseXML;

There aren’t a lot of methods and properties that you need to know to get the XML
data. You retrieve the XML elements using the getElementsByTagName() method:

var cars = xmldoc.getElementsByTagName("car");

This returns an array of all the car elements. You then just iterate through them
to examine each element individually:

for(i = 0; i < cars.length; i++) {
 make = cars[i].getAttribute("make");

The getAttribute() method retrieves the value associated with the specified
attribute name.

As you retrieve each individual car element, you then access each model child ele-
ment from the car element using the getElementsByTagName() method:

var models = cars[i].getElementsByTagName("model");

for (j = 0; j < models.length; j++) {
 var model = models[j].childNodes[0].nodeValue;

For each individual model element, you need to read the text that it contains.
However, with XML, that’s a little tricky. Because the XML DOM treats the ele-
ment text as a separate element node, you need to reference it as a separate node.
This is where the childNodes property comes in handy. It contains an array of all
the child nodes for an element. Because there’s only one text node associated with
the element, you can retrieve its value using childNodes[0] and the nodeValue
property as shown earlier.

Follow these steps to write a JavaScript program to read the XML document cre-
ated by the xmltest.php program:

1. Open your editor and enter the following code:

<!DOCTYPE html>

<html>

<head>

<title>XML test</title>

<script language="javascript" type="text/javascript">

642 BOOK 6 Creating Object-Oriented Programs

function getcars() {

 var carlist = document.getElementById("carlist");

 carlist.innerHTML = "";

 var URL = "xmltest.php";

 var request = new XMLHttpRequest();

 request.open("GET", "xmltest.php", true);

 request.onreadystatechange = function() {

 if (request.readyState == 4 && request.status == 200) {

 var response = request.responseXML;

 var cars = response.getElementsByTagName("car");

 for(i = 0; i < cars.length; i++) {
 var make = cars[i].getAttribute("make");

 var models = cars[i].getElementsByTagName("model");

 for (j = 0; j < models.length; j++) {
 var model = models[j].childNodes[0].nodeValue;

 carlist.innerHTML += make + " " + model + "
";
 }

 }

 }

 }

 request.send();

}

</script>

</head>

<body>

<h2>JavaScript XML test</h2>

<p>Cars retrieved from the server:</p>

<div id="carlist"></div>

<p>This is the end of the list</p>

<input type="button" onclick="getcars()" value="Get cars">

</body>

</html>

2. Save the file as xmltest.html in the DocumentRoot folder of your web
server.

3. Open your browser and enter the following URL:

http://localhost:8080/xmltest.html

4. Click the Get Cars button to retrieve the XML document from the
xmltest.php program.

5. Observe the changes dynamically made to the web page, and then close
the browser when you’re done.

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 643

When you run the program and click the Get Cars button, you should see the list
of cars defined in the XML document created by the xmltest.php program, as
shown in Figure 3-4.

The JavaScript code uses the XMLHttpRequest object to request the xmltest.php
page and then parses the XML document from the responseXML property to retrieve
the car makes and models available on the car lot!

Now that you’ve seen how to use AJAX, the next step is to utilize it in the Auction-
Helper program to display the real-time data for the auction. I cover that topic in
the next section.

Modifying the AuctionHelper Application
With your newfound skills in AJAX, you can now tackle the last requirement for
the AuctionHelper application! If you remember from Chapter 1 of this minibook,
the main layout for the AuctionHelper application contains a separate section to
display the real-time data, as shown in Figure 3-5.

FIGURE 3-4:
The output of the
xmltest.html

program.

644 BOOK 6 Creating Object-Oriented Programs

The aside.inc.php code creates four separate span elements for the content to
display:

 » The total number of bidders

 » The total number of items

 » The total resale value of all the items

 » The total current winning bid values

The first step to implement this feature is to create the PHP file that generates the
real-time data and returns it as an XML document. Follow these steps to do that:

1. Open your editor and enter the following code:

<?php

include("bidder.php");

include("item.php");

$bidders = Bidder::getTotalBidders();

$items = Item::getTotalItems();

$itemtotal = Item::getTotalPrice();

$bidtotal = Item::getTotalBids();

$doc = new DOMDocument("1.0");

$auction = $doc->createElement("auction");

$auction = $doc->appendChild($auction);

FIGURE 3-5:
The

 AuctionHelper
main window.

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 645

$bidders = $doc->createElement("bidders", $bidders);

$bidders = $auction->appendChild($bidders);

$items = $doc->createElement("items", $items);

$items = $auction->appendChild($items);

$itemtotal = $doc->createElement("itemtotal", $itemtotal);

$itemtotal = $auction->appendChild($itemtotal);

$bidtotal = $doc->createElement("bidtotal", $bidtotal);

$bidtotal = $auction->appendChild($bidtotal);

$output = $doc->saveXML();

header("Content-type: application/xml");

echo $output;

?>

2. Save the file as realtime.php in the auction folder in the DocumentRoot
folder for your web server.

You should recognize the code in the realtime.php file. It creates a DOMDocument
object and then populates it with the data you need. However, notice that I used
four new static methods to retrieve the data. You could write the PHP code to
directly access the auction database here, but it’s better programming practice to
let the Bidder and Item objects do that work for you. That means you’ll need
to add some code to each of the PHP files that create those objects. Follow these
steps to do that:

1. Open the bidder.php file from the auction folder in your editor.

2. At the very end of the code after the findBidder() static method
definition (but before the closing bracket) add the following code:

static function getTotalBidders() {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "SELECT count(bidderid) FROM bidders";

 $result = $db->query($query);

 $row = $result->fetch_array();

 if ($row) {

 return $row[0];

 } else {

 return NULL;

 }

}

646 BOOK 6 Creating Object-Oriented Programs

3. Save the file as bidder.php in the auction folder.

4. Open a new tab or window in your editor and then open the item.php file
from the auction folder.

5. At the very end of the code after the findItem() static method definition
(but before the closing bracket), add the following code:

static function getTotalItems() {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "SELECT count(itemid) FROM items";

 $result = $db->query($query);

 $row = $result->fetch_array();

 if ($row) {

 return $row[0];

 } else {

 return NULL;

 }

}

static function getTotalPrice() {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "SELECT sum(resaleprice) FROM items";

 $result = $db->query($query);

 $row = $result->fetch_array();

 if ($row) {

 return $row[0];

 } else {

 return NULL;

 }

}

static function getTotalBids() {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper", "auction");

 $query = "SELECT sum(winprice) FROM items";

 $result = $db->query($query);

 $row = $result->fetch_array();

 if ($row) {

 return $row[0];

 } else {

 return NULL;

 }

}

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 647

6. Save the file as item.php in the auction folder.

Now you have the static class methods created and the code to generate the XML
document with the real-time data you need. If you like, you can test that out by
opening your browser and entering the following URL:

http://localhost:8080/auction/realtime.php

You should see the XML document that contains the data you need, as shown in
Figure 3-6.

The final step is to modify the index.php file to retrieve the data from the
realtime.php file at a regular interval and populate the appropriate DOM objects
to display the data.

First, you’ll need to create the XMLHttpRequest object to retrieve the data and
populate the DOM object. Follow these steps to do that:

1. Open the index.php file from the auction folder in your editor.

2. Modify the code in the <head> section to look like this:

<head>

<title>AuctionHelper</title>

<link rel="stylesheet" type="text/css" href="ah_styles.css">

<script language="javascript" type="text/javascript">

function getRealTime() {

 // retrieve the DOM objects to place the content

FIGURE 3-6:
Displaying the

output from
the realtime.

php file.

648 BOOK 6 Creating Object-Oriented Programs

 var dombidders = document.getElementById("biddercount");

 var domitems = document.getElementById("itemcount");

 var domitemtotal = document.getElementById("itemtotal");

 var dombidtotal = document.getElementById("bidtotal");

 //send the GET request to retrieve the data

 var request = new XMLHttpRequest();

 request.open("GET", "realtime.php", true);

 request.onreadystatechange = function() {

 if (request.readyState == 4 && request.status == 200) {

 //parse the XML document to get each data element

 var xmldoc = request.responseXML;

 var xmlbidders = xmldoc.getElementsByTagName("bidders")[0];

 var bidders = xmlbidders.childNodes[0].nodeValue;

 var xmlitems = xmldoc.getElementsByTagName("items")[0];

 var items = xmlitems.childNodes[0].nodeValue;

 var xmlitemtotal = xmldoc.getElementsByTagName("itemtotal")[0];

 var itemtotal = xmlitemtotal.childNodes[0].nodeValue;

 var xmlbidtotal = xmldoc.getElementsByTagName("bidtotal")[0];

 var bidtotal = xmlbidtotal.childNodes[0].nodeValue;

 dombidders.innerHTML = bidders;

 domitems.innerHTML = items;

 domitemtotal.innerHTML = itemtotal;

 dombidtotal.innerHTML = bidtotal;

 }

 };

 request.send();

}

</script>

</head>

3. Save the file as index.php in the auction folder.

The getRealTime() function uses the XMLHttpRequest object to submit the
request to the realtime.php program and then parses the content received in
the responseXML property. Because each data item is an element with a unique
name, the code uses four separate getElementsByTagName() methods to parse out
each element; then it uses the childNodes[0] property to retrieve the text value
assigned to the element.

U
si

ng
 A

JA
X

CHAPTER 3 Using AJAX 649

However, nothing triggers the getRealTime() function yet. The trick to trigger-
ing the function at a regular interval to simulate a real-time update requires the
JavaScript setInterval() function:

setInterval(function, time);

The setInterval() function triggers the function you specify every time milli-
seconds. So to trigger the getRealTime() function every five seconds, you’d write
the following:

setInterval(getRealTime, 5000);

Be careful when setting how often to fire a trigger to update real-time data. You
may be tempted to have it trigger every second, but that could generate a lot of
network traffic! Usually retrieving data every five seconds or so is sufficient for
most “real-time” environments.

Now the only question is where to place that code! Follow these steps to do that:

1. Open the index.php file from the auction folder in your editor.

2. In the <aside> section, modify the code to look like this:

<aside>

<?php include("aside.inc.php"); ?>

<script language="javascript" type="text/javascript")>

getRealTime();

setInterval(getRealTime, 5000);

</script>

</aside>

3. Save the file as index.php in the auction folder.

And that should do it! The first getRealTime() function triggers when each page
loads to display the data and then the setInterval() function triggers the get-
RealTime() function every five seconds after that. (Notice that you don’t use the
parentheses when specifying the function name in the setInterval() function.)
The new AuctionHelper page is shown in Figure 3-7.

650 BOOK 6 Creating Object-Oriented Programs

You can test this feature by opening two separate browser windows and logging
into the AuctionHelper application. In one window, add a new bidder. Then watch
the other window update the auction totals automatically!

Congratulations! You’ve completed the AuctionHelper dynamic web application!
That was a lot of code to generate, but you’ve seen all the parts required to create
a full-featured dynamic web application.

FIGURE 3-7:
The

 AuctionHelper
main page with

the real-time data
added.

CHAPTER 4 Extending WordPress 651

Extending WordPress

Social media. Two words that have changed the Internet and the world. It’s no
longer sufficient for a company or organization to just have a standard website
presence — it must be plugged into the social media world to interact with

customers or donors. Commercial websites such as Facebook and Twitter are all
the rage, but there are also many options to create your own social media website.
One package that has clearly risen above the rest is the WordPress web applica-
tion. WordPress provides a standard template for easily creating a blog to express
your (or your organization’s) views on the Internet. This chapter explains just
what WordPress is and how you can leverage the power behind WordPress to cre-
ate your own custom social media website.

Getting Acquainted with WordPress
Social interaction with friends, family, customers, or potential customers has
become a popular requirement for web applications these days. One such method
of interaction is blogging. Blogging allows companies to post information on the
latest company business strategies, artists to share their portfolios with anyone
on the Internet, or anyone to post articles on his or her personal life. Blogging
allows you to engage your audience in conversation, making your website visitors
feel more connected to you or your organization.

WordPress incorporates HTML, CSS, JavaScript, and PHP code to provide tem-
plates and building blocks for creating your own dynamic web application. You

Chapter 4

IN THIS CHAPTER

 » Examining WordPress

 » Installing WordPress

 » Creating a WordPress website

 » Writing WordPress plugins

652 BOOK 6 Creating Object-Oriented Programs

don’t have to know anything about any of those languages to get a professional-
looking blogging website up and running using WordPress. Just a few clicks of the
mouse creates a fancy blogging interface that allows you to post content and your
website visitors to find your content and post comments on it.

Over the years, WordPress has expanded its features and capabilities. It’s not just
a blogging package anymore. You can use WordPress to design more complicated
dynamic web applications, easily rivaling the most sophisticated web applications
coded by hand. WordPress claims that websites powered by the WordPress soft-
ware now make up over 25 percent of the total websites on the Internet! It would
be foolish for any web developer to ignore the power of WordPress.

As a PHP web developer, don’t dismiss WordPress as a tool for those who can’t
code. You, too, can leverage the power of WordPress to simplify your website
development process. Plus, you’ll have the ability to customize WordPress with
your own PHP code to make your website stand out from others!

This section goes through the basics of WordPress, showing what it can do and
describing the different parts that make up the WordPress interface. You’ll need
to know that before you can start coding with it.

What WordPress can do for you
WordPress started out life as a simple blogging interface. It created an environ-
ment where a blogger could easily enter text to post as a message in a bulletin
board style of entry. Each post became an article on the website that was archived
in a database; then it could be easily searched and retrieved by website visitors.
The website administrator could allow website visitors to post comments on any
article if needed. The comments could be open to the public, or the blogger could
act as a moderator and approve which comments could stay and which ones would
be removed from the website.

From that humble beginning, WordPress morphed into a full content management
system (CMS). A CMS offers the ability to post and archive any type of content —
from simple text articles to pictures to full multi-page documents. The CMS soft-
ware archives all content posted to the website in the database, making it fully
searchable by either the actual content text or by keywords related to the content.

Another great feature of WordPress is the ability to add plugins. Plugins provide
extended functionality to the core WordPress features. There are plugins for post-
ing calendars for events, listing the most popular posts in your website, accessing
archived posts, and even running separate mini web applications inside the main
WordPress web page! Plugins are where the real power behind WordPress lies, and
that’s what you’ll focus on as a PHP web developer.

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 653

How to run WordPress
One of the most confusing parts about WordPress is that there are two ways to
create a WordPress website:

 » The WordPress.com commercial website: This is a standard web-hosting
server that offers plans for hosting your own pre-installed WordPress website
environment on the Internet using the WordPress servers.

 » The WordPress.org nonprofit entity: This group develops and supports the
actual open-source WordPress web application software and provides it for
you to install on your own web server and run your own WordPress website.

Both methods of running a WordPress website have pros and cons. Obviously, for
people who don’t happen to have their own data center in their basement, having
the ability to have a well-known and respected company host their website is a
plus. You can host your WordPress website using the WordPress domain name for
free, or you can purchase personal or corporate packages to host your own domain
name on the WordPress servers.

The WordPress.com infrastructure ensures almost constant uptime for your web-
site. Another benefit of using the WordPress.com website is that the administra-
tors take care of all the server hardware and software maintenance headaches
for you. This allows you to focus on creating and maintaining your WordPress
website, instead of worrying about missing a patch for the server that will allow
attackers to deface your website or, worse, steal your data.

If you’re already running a web server for your company or organization, adding
the WordPress application to your existing web server is a breeze. Because Word-
Press is just a PHP application, you just create a separate folder for your server and
copy the WordPress software there to run.

The WordPress.org organization provides the same full-featured WordPress soft-
ware available on its commercial site free of charge to anyone who wants to run
his or her own WordPress website. Just download the WordPress package to your
own web server and maintain it yourself. Of course, that means you’re responsible
for keeping up with updates and patches, both for the web server software and the
WordPress software.

A common middle ground is to use a third-party web hosting company, such
as GoDaddy (www.godaddy.com), HostGator (www.hostgator.com), or 1&1 (www.
1and1.com) to host your website. That way, they’re responsible for maintaining
the web server hardware and software, but you’re responsible for the WordPress
software. Many of the major web hosting companies even offer quick install pack-
ages for WordPress so you can install it from a single mouse click from the admin
website interface!

http://www.godaddy.com
http://www.hostgator.com
http://www.1and1.com
http://www.1and1.com

654 BOOK 6 Creating Object-Oriented Programs

Parts of a WordPress website
One of the features that makes WordPress so popular is the ability to separate the
website content from the website design. You can easily change the look and feel
of your website without losing any of the content you’ve already published. By
separating the different features and functions of the website into separate mod-
ules, WordPress makes it easy to mix and match just what you want to appear on
your website.

There are a few main components in WordPress that provide the overall look and
feel of the website:

 » Themes: A theme is a software bundle that creates the look and feel of the
website. Everything that has to do with the website layout, images, and
structure are contained within the theme software. Bundling that into a single
package allows you to easily change the look and feel of your website without
interfering with the content maintained by the CMS.

Each theme package includes only the HTML, CSS, JavaScript, and PHP code
required to display content from the database. Each theme package plugs into
the overall website interface the same way and interacts with the underlying
CMS code the same way. This enables you to change theme packages at any
time, often with just a few clicks of the mouse!

 » Posts and comments: Posts are the articles that you upload to the website to
display. Posts can be text, images, or even video clips. You have full control
over how posts are visible on the website and how they’re archived for future
reference.

WordPress provides the option to allow your website visitors to make
comments on your post. You can open your website to the public for open
commenting, but these days that’s not a recommended strategy. It’s usually
best to incorporate a validation process, where you must validate each
comment before it displays on your website.

 » Categories and tags: Categories provide the ability to organize the multitude
of posts and comments on your WordPress website. You can divide your
website into separate categories and maintain each category as a separate
blogging interface. Then you tag each post according to which category (or
categories) it belongs to for displaying and searching purposes.

You can add, change, or delete categories within your WordPress website
whenever you want, without having any adverse effect on the other catego-
ries you maintain. Categories allow you to use your WordPress website to
host multiple topics and keep them all separate. That helps you keep your
bowling league blog separate from your advanced particle physics blog!

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 655

 » Plugins: Plugins are where the real power of WordPress lies. The plugin
feature in WordPress allows anyone to create custom code for just about any
type of application to add to a standard WordPress website.

WordPress maintains a public plugin repository, so after you create a plugin,
you can share it with the world by uploading it to the repository! There are
plugins that support lots of different advanced features, such as filtering posts
and comments, displaying event calendars, tracking your website usage,
following other websites (such as other bloggers or ecommerce websites), and
monitoring RSS news feeds.

Plugins are where your skills as a PHP developer can really shine. This is
where you customize your website to stand out from others, by adding special
features that no one else has or interfacing with other web applications. Later
in this chapter, you explore how to create a plugin by interfacing your
WordPress website with the AuctionHelper application later on in this chapter.

Installing WordPress
As a PHP developer, the best way to get involved with developing plugins for
WordPress is to set up a WordPress environment in your own web development
environment. That may sound complicated, but it’s actually a fairly simple pro-
cess, thanks to the WordPress developers. This section walks through the steps
you need to take to get a full WordPress website up and running in your web
environment.

Downloading the WordPress software
Because the WordPress package is a PHP application, you just need to download
the software and install the PHP code into your web server’s DocumentRoot folder.
Follow these steps to do that:

1. Open your browser and enter the following URL:

http://www.wordpress.org

Make sure you go to the .org website and not the .com website.

2. Click the Download WordPress button in the header area of the main
web page.

You’re taken to the main download page.

656 BOOK 6 Creating Object-Oriented Programs

3. Download the package.

If you’re developing on a Windows or macOS platform, click the large button
that shows the latest version of WordPress. At the time of this writing, you click
the Download WordPress 4.9.1 button to download the latest package in .zip
file format.

If you’re developing on a Linux platform, click the smaller Download .tar.gz link
to download the package as a compressed .tar file to extract on your Linux
system.

4. Extract the files.

If you’re developing on a Windows or macOS platform, double-click the .zip
download package to begin extracting the files. Extract the package into the
DocumentRoot folder for your web server. For XAMPP on Windows, that would
be the c:\xampp\htdocs folder; for XAMPP on macOS, that would be the
/Applications/XAMPP/htdocs folder.

If you’re working on a Linux platform, use the package utility for your distribu-
tion to extract the WordPress files from the compressed .tar file.

5. Close the file extraction window and the browser window.

This process should create a wordpress folder under the htdocs folder for your
web server. That’s where all the WordPress files are stored for the application.

Next, you need to configure the WordPress setup for your environment.

Creating the database objects
WordPress stores just about everything — from configuration settings to content —
in a database. You’ll need to create that database, and a user account to access it,
in your MySQL server.

If you’re using a web-hosting company for your web development, follow the
instructions it provides to create the database and the user account to access the
database.

If you’ve installed the XAMPP package on your Windows, macOS, or Linux envi-
ronment for your web development, follow these steps to create the WordPress
database and user account:

1. Ensure that the MySQL server is running and then open the MySQL
Console for your XAMPP environment.

For XAMPP in Windows, first open a Command Prompt session, and then
navigate to the c:\xampp\mysql\bin folder. For XAMPP in macOS, first open a

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 657

Terminal session, and then navigate to the /Applications/XAMPP/mysql/
bin folder.

2. Start the MySQL Console using the mysql command.

For XAMPP in Windows do this:

C:\Users\rkblu>cd \xampp\mysql\bin

C:\xampp\mysql\bin>mysql --user=root --password

Enter password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 2

Server version: 10.1.28-MariaDB mariadb.org binary distribution

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input

statement.

MariaDB [(none)]>

3. In the MySQL Console, click the ENTER key at the password prompt to get
to the mysql> prompt.

4. To create a database for WordPress, use the CREATE DATABASE command
in SQL.

For your development environment, just call the database wordpress:

MariaDB [(none)]> CREATE DATABASE wordpress;

Query OK, 1 row affected (0.00 sec)

MariaDB [(none)]>

5. Create a user account for the WordPress application that has full access
to the database you created.

For the development environment, just call the user account wordpress, and
create it using the GRANT command in SQL:

MariaDB [(none)]> GRANT ALL on wordpress.* TO 'wordpress'@'localhost'

 -> IDENTIFIED BY 'myL0ngP@ssword';

Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]>

658 BOOK 6 Creating Object-Oriented Programs

Write down the user account and password you create here. You’ll need to use
them in the WordPress configuration.

6. Exit the MySQL Console using the exit command.

7. Exit the Command Prompt or Terminal session using the exit command.

With the database and MySQL user account required by WordPress created, you’re
ready to start configuring the WordPress software.

Configuring WordPress
The next step in the installation process is to tell WordPress about the database
and user account you just created. There are two ways to accomplish that:

 » Manually edit the WordPress configuration file.

 » Run the WordPress setup web application.

WordPress provides a configuration file template as the wp-config-sample.php
file in the wordpress folder. You can manually change the settings for your envi-
ronment and then save the file as wp-config.php in the wordpress folder. At a
minimum, you’ll need to specify the database name, username, and password
that you created in MySQL for the WordPress application, as well as the host name
where the MySQL server resides. (You use the localhost host name if the MySQL
server is on the same physical server as the web server.)

The WordPress setup web application is a web page that produces a standard
HTML form interface for you to enter the information required for WordPress
to access the database and define instructions for how you’d like it to create the
tables for the database. Follow these steps to do that:

1. Open your browser and go to the following URL:

http://localhost:8080/wordpress/

2. Select your preferred language from the list and then click Continue.

The next page is a set of instructions about the information you’ll need to
continue with the configuration.

3. When you’re ready, click the Let’s Go button.

The next page is a form with the information you’ll need to fill out, shown in
Figure 4-1.

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 659

4. Enter wordpress for the Database Name and Username fields.

5. In the Password field, enter the password you selected
(myL0ngP@ssword if you followed the instructions earlier).

6. Keep the localhost entry for the Database Host field.

The Table Prefix field allows you to place a prefix in front of the WordPress
tables so that you can identify them if you need to share a database with other
applications. Because you created a separate database for WordPress, this is
not needed, but you can keep the wp_ value there if you like.

7. Click the Submit button to continue.

The next page warns you that the installation process will continue (what’s up
with the application calling us “sparky”?).

8. Click the Run the Installation button when you’re ready to start the
process.

The first page of the Installation process is shown in Figure 4-2.

9. Provide a title for your WordPress website.

I’m using First Street Elementary School to match my AuctionHelper
 application title.

FIGURE 4-1:
The

WordPress
Setup

 Configuration
File web page.

660 BOOK 6 Creating Object-Oriented Programs

10. Provide a username for the main administrator account on the system.

I used rich for my website.

11. Provide a password for the administrator account.

WordPress conveniently provides a suggestion for a strong password for you.
If you’d like to test your memory skills, feel free to use it. Otherwise, replace it
with something you’ll remember (I used myL0ngP@ssword again).

It’s important to remember the username and password you configure here.
You’ll need it to administer your WordPress website.

12. Enter an email address for the administrator.

This will be shown as a contact information address in the WordPress website.
For your development environment, just enter any email address, but use the
correct email address format (I used me@localhost.com).

13. Select the Search Engine Visibility check box if you don’t want Search
engines to index your WordPress website.

That creates a file that instructs search engines to not scan the folder. It’s up to
the individual search engine website whether to honor your request.

14. Click the Install WordPress button to continue the installation process.

After a few seconds, the installation will complete. Don’t click the Login button
yet, but keep your browser window open.

FIGURE 4-2:
The WordPress

Installation
web page.

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 661

After you finish the installation process, your WordPress website is up and run-
ning! To test it out, enter the following URL in your browser:

http://localhost:8080/wordpress/

You’ll be greeted with the main WordPress web page, show in Figure 4-3.

The web page uses the default theme for WordPress (for this version it’s a styl-
ish picture of a potted houseplant). Notice that the title that you selected for your
website appears at the bottom, along with a tagline, that for now is generic. Don’t
worry — you can change that easily enough!

When you scroll down the web page, the background image is replaced with the
content of your website, shown in Figure 4-4.

The left-hand column lists the recent posts (there’s a sample post conveniently
made for you). Click the post, and you’ll get a new web page that shows just the
single post, along with any comments made by you or your website visitors asso-
ciated with that post.

FIGURE 4-3:
The main

 WordPress
web page for
your website.

662 BOOK 6 Creating Object-Oriented Programs

The right-hand column on the main web page contains a few different sections.
These features in the sidebar are widgets. You’ll be able to customize which wid-
gets appear on your website and where they appear. You’ll also be able to modify
the posts and comments that appear in the default website. All that happens using
the admin dashboard in WordPress.

Examining the Dashboard
Now that you have a generic WordPress website up and running, you can tweak
things to make it look just the way you want. You do that using the WordPress
Dashboard.

To get to the Dashboard, click the Login link that appears in the Meta section on
the right-hand side of your main WordPress web page, or just enter the follow-
ing URL:

http://localhost:8080/wordpress/wp-admin

FIGURE 4-4:
The main

 content area in
the WordPress

web page.

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 663

Both methods produce a login web page. Enter the username or email address
that you specified when you configured the website, along with the password you
specified, and then click the Login button. The Dashboard web page, shown in
Figure 4-5, appears.

The left-hand side of the web page contains a navigation menu for you to select
administration options:

 » Updates: Notifies you when there’s an update to WordPress or any plugins
that you can download and install.

 » Posts: Allows you to view previous posts and create new posts, categories,
and tags.

 » Media: Allows you to upload and manage multimedia files such as images
and video clips.

 » Pages: Manages the web pages that appear in your website.

 » Comments: Lists comments and allows you to mark to approve, spam, or
delete them.

FIGURE 4-5:
The WordPress

Dashboard
web page.

664 BOOK 6 Creating Object-Oriented Programs

 » Appearance: Allows you to manage the look and feel of your website by
changing the theme, widgets, menus, and header that appear on the web
pages.

 » Users: Provides tools to create and manage user accounts for restricting
posting on your website.

 » Tools: Allows you to add customized tools to help you manage your website.

 » Settings: Provides an interface for you to change the configuration settings
used by WordPress in your website.

The right-hand side of the Dashboard web page contains widgets to assist you in
managing your website. You’ll use them to change the look and feel of your web-
site and see those changes as you make them. The next section walks you through
how to do that.

Using WordPress
Now that you know your way around the WordPress Dashboard a little, let’s dive
in and start making some changes! Follow these steps to customize your website:

1. Open your browser and enter the following URL:

http://localhost:8080/wordpress/wp-admin

2. Log in using the username and password you created in the configura-
tion setup process.

The Dashboard web page appears.

3. In the Dashboard web page, click the Customize Your Site button.

The Customize web page, shown in Figure 4-6, appears.

4. Click the Site Identity menu option in the left-hand navigation window.

5. Change the Tagline setting to the text you want to appear.

I chose Providing a World-Class Education to All Kids.

Notice that as you type the text, the text in the picture on the right-hand side of
the web page changes. Using this interface you can also change the back-
ground image or, if you prefer, upload a video clip to use in the main web page.

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 665

6. Click the left-arrow icon at the top to return to the main Customize
web page.

Notice that in the Customize web page you can change the colors, media, and
menus that appear on the main Home page of your website. We’ll skip that for
now, though.

7. Click the Widgets link.

You can place widgets either along the sidebar or within one of two footer
areas of the web page.

8. Click the Blog Sidebar link to see the widgets that are currently active in
the sidebar.

There are three widgets placed there by default:

• Find Us: Text to identify your location

• Search: A search tool for finding posts

• About this Site: Text to identify you or your organization

9. Click the Find Us link and enter information about the address you want
to use for your organization.

I just kept the default address for testing.

FIGURE 4-6:
The WordPress

Customize
web page.

666 BOOK 6 Creating Object-Oriented Programs

10. Click the Add a Widget button, and then select the Categories widget
from the list.

11. Click the Show Post Counts check box, and then click the Done link.

The new Categories widget is placed at the bottom of the sidebar list.

12. Click the widget and hold the mouse button down. You can now drag and
drop the Categories widget to a new location in the sidebar. Move it to
just below the Search widget.

13. Click the X icon to exit the Blog Sidebar section, and then click the X icon
to return back to the main Customize web page.

14. Click the Homepage Settings link.

This web page defines what appears as the main web page for your website.
You can use a static web page that remains the same, or you can select to
display your posts immediately on the main page.

15. Click the Your Latest Posts radio button so that the latest posts appear
on the main page.

16. Click the left-arrow icon at the top of the page to return to the Customize
web page.

17. Click the Publish button at the top of the web page to save the changes
you’ve made and make them live on your WordPress website.

18. Click the X icon at the top of the Customize web page to return to the
Dashboard web page.

Now that you’ve been able to change the overall look and feel of your website, the
next step is to look at the posts and comments. You’ll remember that, by default,
WordPress entered a “Hello World” post. To clean up the posts and comments,
follow these steps:

1. Navigate to the Dashboard web page for your WordPress website.

2. Click the Posts link in the left-hand navigation menu.

Figure 4-7 shows the Posts web page, listing the current posts in the database.

3. Hover the mouse pointer over the Hello World! post title.

A pop-up menu appears under the post title, allowing you to edit, trash, or view
the post.

4. Click the Trash option to remove the test post.

The post is removed, but notice that a warning message appears at the top of
the window allowing you to undo the action if needed. There’s also now a

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 667

Trash category that shows one item in the trash. You can go back to the trash
and recover the post at any time (at least until you empty the trash can).

5. Click the Categories submenu option under the Post menu option in the
navigation menu.

This brings up the Categories web page, shown in Figure 4-8.

By default there’s only one category (named Uncategorized).

6. In the Add New Category section, add a new category named Silent
Auction event.

7. For the Slug (what appears in the URL), you can leave the entry blank.

WordPress will automatically create the Slug, converting the category name to
all lowercase, and inserting dashes for spaces.

8. In the Description, enter some text to describe the category.

9. Click the Add New Category button.

Now you’re ready to make your first post!

FIGURE 4-7:
The WordPress

Posts web page.

668 BOOK 6 Creating Object-Oriented Programs

10. Click the Posts menu entry in the left-hand navigation menu, and then
click the Add New button at the top of the Posts web page.

This opens the Add New Post web page, shown in Figure 4-9.

11. Fill in a title for the post and then the text for the post in the Description
text area.

12. Select the Silent Auction Event category check box in the Categories
section.

13. In the Publish section on the right-hand side, click the Preview button to
see what your post will look like on the web page.

This opens a new web page with the post.

14. Close that browser tab when you’re done reviewing it.

15. Click the Publish icon to publish the new post.

16. Click the Posts link in the navigation menu to make sure your new post
published.

17. Hover the mouse pointer over the user icon in the upper-right corner of
the Dashboard, and then select Logout from the drop-down menu to exit
the Dashboard web page.

FIGURE 4-8:
The WordPress

Categories
web page.

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 669

Now when you enter the main WordPress website address in your browser
(http://localhost:8080/wordpress/), you’ll see your updated creation! To view
the activity for a post, click the title of the new post that you made. The post web
page shows any comments made for that post and allows others to make new
comments. When a site visitor makes a comment, you’ll need to go into the Dash-
board Comments section to approve the comment before it appears on the post’s
web page.

There are lots of other features that you’ll want to customize for your new web-
site. Everything is accessible from the Dashboard interface, so feel free to peruse
the different sections and see all the different things you can do. Plenty of books
provide detailed instructions on how to set up and maintain your WordPress web-
site, such as WordPress All-in-One for Dummies by Lisa Sabin-Wilson (Wiley).

Exploring the World of Plugins
WordPress was designed for novice web developers with no knowledge of HTML,
CSS, JavaScript, or PHP, but it also has the flexibility of being completely custom-
izable by those who do have those skills (like you!). This section walks through the
different methods you have for customizing your WordPress website to add more
features using simple PHP coding!

FIGURE 4-9:
Adding a

new post in
 WordPress.

670 BOOK 6 Creating Object-Oriented Programs

WordPress APIs
WordPress is a PHP application, and as such, you can view all the code that makes
up the WordPress application. Just peruse the files contained in the wordpress
folder to see what’s there.

Resist the temptation to make tweaks or additions to this code. Any code you
change may (and probably will) get replaced in the next upgrade version of Word-
Press. Instead of modifying the core WordPress code files, there’s a better way to
customize your WordPress website.

WordPress provides a complete set of application programming interface (API)
libraries that you use to create plugins for the WordPress website. These API
libraries allow your plugin to intercept the code flow in WordPress and mod-
ify how it stores and displays content, processes web requests, and even handles
themes. This is all done without changing any of the core code in WordPress, so
you’re guaranteed that your plugins will work in future upgrades to WordPress.

It’s important to remember to only make changes in plugins and not the core
WordPress code, but WordPress is an open-source project, so if you do see some-
thing in the core code that should be changed, feel free to post that in the Word-
Press developer’s forum and offer to make the change in the development code.

Lots of functions are contained within the WordPress API library. These functions
are broken into separate library categories to help organize them. Table 4-1 shows
the list of the current WordPress API categories.

TABLE 4-1	 The WordPress API Library Categories
Category Description

Dashboard widgets Create new admin widgets for the Dashboard.

Database Intercept database calls.

HTTP Modify HTTP requests and responses.

REST Modify how WordPress responds to HTTP requests.

File header Read and process the header information contained in WordPress files.

Filesystem Read and write files on the WordPress server.

Metadata Retrieve and manipulate metadata of WordPress objects.

Options Store custom options in the WordPress database.

Plugin Write plugins to add functionality to the website.

Quicktags Create additional buttons in the WordPress text editor.

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 671

The WordPress API library functions cover just about any feature that you’d want
to modify in your WordPress website. The trick is knowing just which ones to use
for which situations. The next section takes a look at that.

Working with plugins and widgets
The WordPress API library does most of the hard work for you when you’re devel-
oping new features for WordPress. You just need to know which API library to
tap into for your specific application. There are two core API libraries that you’ll
mainly work with to add new features to your WordPress applications:

 » The Plugins API library

 » The Widget API library

The following sections describe how to use each of these libraries.

Plugins
The Plugins API library provides hooks into the content data and the processes
that handle it within the WordPress application. You can tap into these hooks to
modify the data or process at any step as WordPress processes data and creates
the resulting web page.

There are two types of hooks into WordPress for plugins:

 » Filters: Filters are hooks that intercept data as it traverses the different stages
within the WordPress application. After you intercept the data, you can
modify, delete, or add to it before passing it on to the next step in the process.
This gives you a great amount of power over the data in the application!

Category Description

Rewrite Define or change URL rewrite rules used in WordPress.

Settings Modify the Dashboard Settings interface.

Shortcode Define new tags to use in posts and comments.

Theme modification Alter the modification interface for working with themes.

Theme customization Add controls to the Customize web page for working with themes.

Transients Access cached data in the database.

Widgets Build your own widgets.

XML-RPC Interact with remote clients to pass and retrieve data.

672 BOOK 6 Creating Object-Oriented Programs

 » Actions: Actions are hooks that intercept the processes within WordPress and
allow you to alter the process action. For example, you can hook into the
commenting action in WordPress so that when a site visitor submits a
comment, WordPress calls your plugin, which can send you an email
notification.

When you write a plugin, you have to follow specific rules for the format of your
code and which API functions you call:

 » Your plugin files must be stored in the wp-content/plugins folder in the
wordpress folder structure.

 » If your plugin requires just a single file, name the file the same as your plugin
name. If your plugin requires multiple files, create a folder in the plugins
folder with your plugin name, and then place the plugin files in there. If you
use the folder method, the main program file must be named init.php.

 » Start your PHP code with a comment section that identifies important
information about the plugin. This is called the header metadata. WordPress
uses the header metadata to provide information about your plugin to users.
At a minimum, you must specify the Name and Description of the plugin in
the header:

<?php

/*

Plugin Name: My Plugin

Description: My clever plugin for WordPress

/*

 » After you define your function code, use the add_filter() or add_action()
functions to hook your plugin into WordPress.

Inside your plugin, the code that you write must follow standard PHP coding
practices. Listing 4-1 shows an example of an action plugin.

LISTING	4-1:	 A Sample Action Plugin

<?php

/*

Name: My Comment Mailer

Description: Email me when someone makes a comment

function my_comment_mailer($comment_ID) {

 $myaddress = "me@localhost.com";

 $message = "Comment $comment_ID just posted to my website";

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 673

 mail($myaddress, "Comment on website", $message);

 return $comment_ID;

}

add_action('comment_post', 'my_comment_mailer');

?>

The my_comment_mailer() function name that you create must be unique within
WordPress, so be careful to not use too generic of a function name.

Most action and filter hooks pass data into your plugin function, so usually you’ll
need to provide a parameter variable to accept the incoming data, even if you
don’t use it. The add_action() function specifies the WordPress hook to tap into
to trigger your function, and the name of your function to call when the hook is
triggered in WordPress.

When you create a plugin, it appears in the Plugins page in the Dashboard. You
must activate your plugin using that interface before it will work.

Widgets
The Widgets API works similar to the Plugins API. Widgets are a special type of
plugin. They follow the same rules as when you write a filter or action plugin, but
instead of creating a simple function, you must create your widget as a class that
inherits the WP_Widget class:

class mywidget extends WP_Widget {

By inheriting the WP_Widget class, your widget automatically gets all the features
and functions available for all widgets. You need to create a constructor method to
accept the parent class methods:

function mywidget() {

 parent::WP_Widget(false, "mywidget");

}

Following that, you create the code to generate the output that appears in the
web page area assigned to the widget (usually located in the sidebar, but you can
also place widgets in the footer area). This code uses a special function named
widget():

function widget($args, $instance) {

 echo "Welcome to my first widget!
\n";

}

674 BOOK 6 Creating Object-Oriented Programs

The WordPress hook passes any arguments required for the widget to run, along
with an array of any options the widget saved in the WordPress database.

If your widget needs to have customized options, you can specify them in a form()
method within the widget class. WordPress will display the output of the form()
method in the Widget manager so your widget users can add their custom options.
You then define the update() method to save those options in the WordPress
database.

Finally, you need to register your widget in WordPress by defining the register_
widget() method, and using it in the add_action() method:

function register_mywidget{} {

 register_widget('mywidget');

}

add_action('widgets_init', 'register_mywidget');

After you’ve created the code for your widget, you need to activate it in the Plugins
area of the Dashboard. Then you can go to the Appearance area and add your new
widget to the web page.

Creating Your Own Widget
Now that you’ve seen how plugins (and specifically, widgets) are made, you’re
ready to create one of your own! This section walks through creating a sidebar
widget that will display the current totals from the AuctionHelper database — the
total number of bidders, the total number of donated items, and the total resale
price of the times.

Coding the widget
The first step is to create the code for the AuctionHelper widget. The widget must
follow the standard WordPress plugin coding rules. As a widget, it needs to inherit
the WP_Widget class. You’ll then need to create a constructor method to reference
the parent object, a widget() method that contains the code to create what we
want to see on the web page, and the method to register the widget as a widget
plugin.

Follow these steps to build the code for the AuctionHelper widget:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) package.

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 675

2. Enter the following code:

<?php

/*

Plugin Name: AuctionHelper

Description: Retrieve real-time data from AuctionHelper

*/

class AuctionHelper extends WP_Widget {

 function AuctionHelper() {

 parent::WP_Widget(false, "AuctionHelper");

 }

 function widget($args, $instance) {

 $db = new mysqli("localhost", "ah_user", "AuctionHelper",

"auction");

 $query = "SELECT count(bidderid) FROM bidders";

 $result = $db->query($query);

 $row = $result->fetch_array();

 $bidders = $row[0];

 $query = "SELECT count(itemid) FROM items";

 $result = $db->query($query);

 $row = $result->fetch_array();

 $items = $row[0];

 $query = "SELECT sum(resaleprice) FROM items";

 $result = $db->query($query);

 $row = $result->fetch_array();

 $totprice = $row[0];

 echo "<h2>Auction Totals</h2><hr>\n";

 echo "Registered bidders: $bidders
\n";

 echo "Total Items: $items
\n";

 echo "Items resale value: $$totprice
\n";

 echo "<hr>
\n";

 }

}

function register_AuctionHelper() {

 register_widget('AuctionHelper');

}

add_action("widgets_init", "register_AuctionHelper");

?>

676 BOOK 6 Creating Object-Oriented Programs

3. Open File Explorer for Windows or Finder for Mac and navigate to the
wordpress folder under the htdocs folder in your web server.

4. Double-click the wp-content folder, and then double-click the plugins
folder.

5. Create a new folder here named AuctionHelper.

6. Back in your editor, save the file in the new AuctionHelper folder as
init.php.

7. Open a new tab in your editor, and enter the following code:

<?php

 //dummy file

?>

8. Save the file in the AuctionHelper folder as index.php.

You should recognize the code for the widget() method. It uses the php_mysqli
library functions to query the auction MySQL database to get the bidder and item
information and then stores that information in PHP variables. After retrieving
the necessary data, the code uses echo statements to display the information.
What you display from the widget() method will be what appears in the sidebar
area of the WordPress website.

The index.php file is an empty dummy file. It helps prevent an attacker from
navigating directly to the plugin folder and being able to list the files located
there. If you specify a folder in the URL, the web server will automatically serve
the index.php file to the browser. If the index.php file is not there, the browser
will display a listing of the files in the folder.

Now that you’ve built the widget, you need to get it active in your WordPress
website.

Activating the widget plugin
Before you can use the AuctionHelper widget that you just coded, you need to let
WordPress know that it can be used. Follow these steps:

1. Open your browser and enter the following URL:

http://localhost:8080/wordpress/wp-admin

2. Log into WordPress using the username and password you created
during the installation process.

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 677

3. Click the Plugins menu option in the left-hand navigation menu of the
Dashboard.

Your AuctionHelper widget plugin should appear in the list of plugins, as shown
in Figure 4-10.

4. Click the Activate link under the AuctionHelper plugin.

A message appears at the top of the web page letting you know that the plugin
has activated.

Now that the AuctionHelper widget is activated, it’s ready for use in your Word-
Press website. The final step is to add it to the sidebar.

Adding the widget
With the AuctionHelper widget plugin activated, it should now appear in the list
of widgets in the Customize page. Follow these steps to add the AuctionHelper
widget to your web page:

1. Click the Appearance link in the left-hand navigation menu of the
Dashboard, and then select the Widgets menu entry that appears under
the Appearance link.

FIGURE 4-10:
Activating the

AuctionHelper
plugin in

WordPress.

678 BOOK 6 Creating Object-Oriented Programs

You’ll see the AuctionHelper widget appear in the list of widgets on the
right-hand side of the web page.

2. Drag and drop the AuctionHelper widget to the blog sidebar area,
positioning it at the top of the list.

Figure 4-11 shows what this should look like when you drop the widget.

3. Click the Done link in the AuctionHelper widget area to complete the
process.

4. Log out from the Dashboard.

Congratulations! You’ve just created and installed your first WordPress widget.
Yes, that’s really all there is to it! Now for the moment of truth — testing your
widget. Open your browser and enter the WordPress URL:

http://localhost:8080/wordpress

Scroll down to display the content of your website. At the top of the sidebar sec-
tion, you should see the Auction Total area, created by your widget! This is shown
in Figure 4-12.

FIGURE 4-11:
Adding the

AuctionHelper
widget to the blog

sidebar.

Ex
te

nd
in

g
W

or
dP

re
ss

CHAPTER 4 Extending WordPress 679

You should see the values current for your AuctionHelper database appear in
your WordPress sidebar. To make sure things really are working, jump back into
your AuctionHelper application and add an item or two. Then jump back into your
WordPress website, refresh the page, and make sure the changes appear. How
cool is that?

This just covers a bit of the power you have at your fingertips when working with
WordPress and creating your own plugins. Now with your new skills you can add
just about any type of feature or application to a WordPress website to impress
your boss or customers!

FIGURE 4-12:
The result of

 adding the
 AuctionHelper

widget to the
WordPress

website.

7Using PHP
Frameworks

Contents at a Glance
CHAPTER 1: The MVC Method . 683

Getting Acquainted with MVC . 683
Comparing MVC to Other Web Models . 691
Seeing How MVC Fits into N-Tier Theory . 693
Implementing MVC . 694

CHAPTER 2: Selecting a Framework . 695
Getting to Know PHP Frameworks . 695
Knowing Why You Should Use a Framework 702
Focusing on Popular PHP Frameworks . 704
Looking At Micro Frameworks . 710

CHAPTER 3: Creating an Application Using Frameworks 715
Building the Template . 715
Creating an Application Scaffold . 721
Modifying the Application Scaffold . 725

CHAPTER 1 The MVC Method 683

The MVC Method

In Book 6, I walk you through how to create a complete dynamic web application
using object-oriented PHP programming techniques. But there’s more than one
way to design and program an object-oriented PHP application. There are, in

fact, many different theories on just how best to design and code your dynamic
web applications with PHP, all with their own pros and cons. This chapter walks
you through one of the more popular methods for designing object-oriented web
applications and compares it to some other methods available.

Getting Acquainted with MVC
If you’ve been spending any time reading articles, books, or even discussion group
posts about PHP programming, you’ve come across the term MVC. The acronym
stands for model–view–controller, which is a method of splitting your object-
oriented program code into multiple parts to make it easier to code and implement
in an object-oriented environment.

This section first describes how MVC works and then digs deeper into each of the
separate components that make up an MVC application.

Chapter 1

IN THIS CHAPTER

 » Exploring the hype about MVC
programming

 » Comparing MVC to other
programming methods

 » Implementing MVC

 » Using MVC in a client/server
environment

684 BOOK 7 Using PHP Frameworks

Exploring the MVC method
The MVC method of programming actually predates the web programming world
by quite a bit. It was designed in the early days of graphical desktop programming
as a way to help organize applications that required lots of coding to support user
interaction. Instead of intertwining the display code inside the application code,
developers decided early on it was best to try to separate those features into sepa-
rate components.

The MVC method divides a graphical application into three basic components:

 » The model: One or more classes that interact with the application data and
implement the coding logic required to store and manipulate application data

 » The view: A class that displays the application data in the graphical
environment

 » The controller: A class that listens for user input and passes the input to the
appropriate model class methods for processing

Web application programming has many similarities to desktop graphical appli-
cation programming, so many web developers have adopted the MVC method for
creating object-oriented web applications.

Most MVC experts agree on the three basic components of the application, but
there are several different theories on how they should interact with one another.
Before your eyes start glazing over hearing the word theory, let me just show you
the most popular interpretation of MVC theory, as shown in Figure 1-1.

Most MVC experts agree that the controller component is the “front door” to
your application. The controller’s job is to be the traffic cop of the application,
shuttling user requests to the correct model class method to interact with the

FIGURE 1-1:
A basic MVC

theory diagram.

Th
e

M
VC

 M
et

ho
d

CHAPTER 1 The MVC Method 685

requested data — whether that’s inserting new data, updating existing data, or
just listing the existing data (or some subset of the data). The model class meth-
ods do the actual work to produce the data required to support the user request
and then pass the result to the view.

The view’s job is to organize the result of the request into a visual output. That
visual output could be as simple as a notice that the operation was successful, or
as complex as displaying a full report of requested data elements. Whatever the
result of the request, it’s the view’s job to communicate it to the application user.

You can probably start to see how the MVC method can easily fit into your dynamic
web applications. Web applications receive requests from client browsers request-
ing some type of data operation, and then need to display the requested data back
to the client browser in the form of a web page. Being able to split these functions
into separate components can be handy.

This feature is attractive in large development environments where it’s easier to
separate the different coding requirements between development groups. With
the MVC programming method, you can allow your best HTML and CSS program-
mers to focus on the view code, while your best PHP and SQL coders can focus on
the model and controller code.

This also means that you can have multiple development groups working on
the application code at the same time, without causing problems for each other.
With different groups simultaneously writing code, the application may get done
quicker than with other object-oriented approaches.

Of course, with all coding methods, there are downsides, and that’s certainly the
case with the MVC method of application development. One of the biggest com-
plaints you’ll see regarding applications developed using the MVC method is that
they can be somewhat difficult to understand and troubleshoot.

Breaking code up into separate components can make trying to follow the appli-
cation code more complicated. As a client makes a request for data, multiple class
files get involved with the process. Instead of being able to trace the execution of a
single application file, you’ll find yourself having to dig through several different
smaller application files, looking for the one bug that’s causing the issue.

Yet another complaint about the MVC method is that it can be somewhat hard to
implement in a programming environment. It can take time and practice incor-
porating the MVC programming method into an application, time that most web
application developers don’t have. Fortunately, there are tools available to help
out with that, which I cover in Chapter 2 of this minibook.

686 BOOK 7 Using PHP Frameworks

Digging into the MVC components
Now that you’ve seen the high-level overview of just what MVC is, let’s take a look
at the internals required for the individual components. This section goes a little
more in depth into what each of the MVC components does.

The model
The model component of the MVC method is where the majority of the PHP appli-
cation coding takes place. Its job is to provide a common interface between the
application and any data that the application requires.

Of course these days, most web applications use some type of database system to
store the application data (such as the MySQL server in the application example).
The model code sits between the application and the database tables. Any access
to the data must go through the model code.

Most MVC model implementations use a technique called object-relational mapping
(ORM) to provide this interface. The ORM class is responsible for handling the
methods for all interaction with the underlying table:

 » Creating new data records

 » Reading existing data records

 » Updating existing data records

 » Deleting existing data records

The combination of the create, read, update, and delete methods are commonly
referred to as CRUD. Besides the four CRUD methods, the model class often con-
tains additional methods for any type of data manipulation that are required to
support the application.

There are two different approaches to how the ORM interacts with the data used
in an application:

 » Relational data method: In the relational data method, you create a model
class for each table contained in the application database. For example, in the
AuctionHelper application discussed in Book 6, which contains a Bidders table
and an Items table, you’d need to create a model class for the Bidders table
and a second model class for the Items table. The model classes use standard
SQL to interact with the data contained in the tables. Figure 1-2 demonstrates
this method.

Th
e

M
VC

 M
et

ho
d

CHAPTER 1 The MVC Method 687

 » Object-oriented data method: The object-oriented data method takes a
slightly different approach to interfacing the application to the underlying
database tables. Instead of using a relational database method, this uses an
object-oriented database management system (OODBMS), which stored data as
objects instead of tables. Because the data is stored as objects, the model
class objects can more easily map directly to the database objects. Figure 1-3
demonstrates the object-oriented data method.

FIGURE 1-2:
The relational
data method

model.

FIGURE 1-3:
The object-

oriented data
method model.

688 BOOK 7 Using PHP Frameworks

With an OODBMS, related data is automatically grouped together in the database
as keys and their associated values, such as the bidders as keys and the items
they’ve won as their values. There is no formal separation of the data into tables
like in the relational database method. By grouping these objects together, you
create a virtual object that is quicker to query and retrieve the information by just
submitting keys to the database and retrieving the associated values.

With the growing popularity of OODBMS theory, a few different OODBMS database
servers have been developed. Currently, the popular OODBMS server is the NoSQL
server project. It stores data as XML files that can be easily added and appended as
the data grows in an application.

The view
The view component is responsible for all the output from the application. It takes
the raw data provided by the model component and formats it in a way that’s
visually pleasing to the application user. For our web applications, the view com-
ponent is where all the HTML and CSS code resides.

The view component code is often placed into a folder area in the application, with
different files responsible for creating different features of the application. This
completely separates the view code from the model and component code in the
application.

In the AuctionHelper application, I chose not to implement a separate view com-
ponent, but instead placed the code to display the application data directly in the
files that controlled the data. This requires mixing the PHP, HTML, CSS, and even
JavaScript code into the same files. That’s fine if you’re writing your own appli-
cation, but it can get confusing if you’re working in a programming environment
that divides the modules up between separate programming groups.

One area where having a separate code component to handle the view comes in
handy is when working with mobile devices. These days, it may not be sufficient
to write your application solely to display web pages for a normal desktop browser
environment. With the popularity of mobile devices, your application may need to
be usable (and readable) in both the desktop and mobile environments.

That may require that you create different sets of CSS styles (and sometimes even
different sets of HTML code) for different display environments. Mobile devices
have a much smaller display area and need some extra consideration to ensure
your website visitors can interact properly with the application. Trying to main-
tain two separate code bases can get confusing, especially if you’re embedding the
view code within your application.

Th
e

M
VC

 M
et

ho
d

CHAPTER 1 The MVC Method 689

Isolating the code required to generate the display output into a separate compo-
nent makes it easier to incorporate multiple code for multiple devices — one set
of view code for desktop browsers and another set for mobile devices. Figure 1-4
demonstrates how this works.

Two devices submit the same HTTP request to the controller, which forwards both
requests to the model. The model sends the same responses to the view, but the
view processes the responses differently.

Both CSS3 and JavaScript provide ways for you to detect the device monitor size
and determine whether the website visitor is viewing the application on a mobile
device or desktop browser. In CSS3, the max-width property in the @media rule
allows the browser to select which CSS rules to apply based on the size of the
browser window. For JavaScript, you can use the screen.width global property to
determine the viewing area size.

The controller
The controller accepts requests from the application user and sends them to the
components required to satisfy the request. That means being able to commu-
nicate between all the model classes, as well as the view files required to display
the data.

FIGURE 1-4:
Using multiple

view modules for
different display

environments.

690 BOOK 7 Using PHP Frameworks

The controller uses routing to determine which model class method to run based
on the client browser’s request. Routing maps the specific HTTP GET or POST
request received from a client browser to a specific model class method.

In the AuctionHelper application, I did that by setting the HTML content variable/
value pair. The index.php code acted as the application controller, directing which
include file to display as the main web page content. So, to display the details of the
bidder with a bidderid value of 100, the client browser sent the following request:

index.php?content=showbidder&id=100

The index.php code in the AuctionHelper application retrieved the content HTML
variable/value pair and then used that value to include the showbidder.inc.php
include file, which then used the id value of 100 to display the appropriate bidder
information.

MVC controllers use a similar method but utilize the rewrite rules feature of web
servers to help clean up the format of the request URL. Rewrite rules allow you to
customize the format of the URL to pass information in a cleaner-looking format
than what the standard GET method uses. For example, the URL request to show
information for bidder 100 might look like this:

index.php/bidders/show/100

The web server parses the URL to set the HTML variable/value pairs. Then the
controller routing rules direct the application to call the show method of the
 bidders model class and pass it the bidderid value of 100.

Search engine optimization (SEO) is the process of designing your application to
make it easier for Internet search engines (such as Google) to find and catalog
your website pages. Web server rewrite rules can play a crucial role in helping add
to your search engine visibility, as many search engines won’t scan websites with
URLs that contain long lists of variable/value pairs. By parsing out the URL data
automatically, you can trim off quite a bit of length in your URLs, making them
more SEO-friendly!

Communicating in MVC
In the MVC method, because you must divide all the functions of your web applica-
tion into separate components, communication between the components becomes
crucial. Each component must know when and how to communicate information
to the other components for the application to function correctly.

Earlier, Figure 1-1 showed the classical MVC communication method. There were
five separate steps for communicating with a website visitor’s request:

Th
e

M
VC

 M
et

ho
d

CHAPTER 1 The MVC Method 691

1. The controller receives the request from the website visitor’s browser.

2. The controller passes the request to the appropriate class method in the
model component.

3. The model class method performs the appropriate action with the data based
on the request.

4. The model class method passes any resulting data or status to the view.

5. The view sends a response back to the website visitor with the data, formatted
appropriately for the visitor’s display device.

That all seems organized and proper, but there are some holes in this process that
can cause issues in the application:

 » The controller is responsible for handling the client request but is not
responsible for returning the response. If any special communication is
required for the session (such as an encryption key or session ID), the view
must get that information from the controller.

 » The model is responsible for retrieving the data required to satisfy the
request, but the view is responsible for the format in which the data
appears in the display. This can make common web page features such as
paging through long result sets of data on multiple web pages more complex.
Paging through data is usually more easily handled with SQL directives in the
model code rather than PHP in the view code. This means the view and the
model must communicate information between each other as well.

 » The view must have knowledge of the client browser’s environment to
format the data to display properly on the client device. This may require
communication between the view and the controller that initiated the session.

Because of little issues like these, many MVC implementations violate the strict
MVC method rules and implement communication between the different com-
ponent classes. This helps eliminate issues within the application and provide a
smoother interface for the website visitor.

Comparing MVC to Other Web Models
As you might guess, the MVC method is not the only theory available for creating
object-oriented web applications. This section explores a couple of other popular
methods that you may encounter as you explore the world of object-oriented web
applications: the MVP method and the MVVM method.

692 BOOK 7 Using PHP Frameworks

The MVP method
The model–view–presenter (MVP) method is another popular method of creating
object-oriented web applications. At first, its name may sound a bit redundant —
the presenter sounds as if it’s doing the same job as the view.

The MVP method takes a more linear approach to the process of handling client
requests, as shown in Figure 1-5.

In the MVP method, the view handles both the request and response parts of the
process, taking on the MVC controller’s function of communicating with the client.

The presenter acts as the middleman between the model and the view. It inter-
prets the client requests and calls the appropriate model class methods. After the
model processes the request and generates the appropriate response, it sends the
response to the presenter, which passes it to the view to format for display.

As you can see, the MVP method basically splits the controller jobs from the MVC
method between the view and presenter modules, making things a little more
streamlined. This helps eliminate some of the communication issues presented in
the MVC method.

The MVVM method
The model–view–viewmodel (MVVM) method is similar to the MVP method, but
with a slight twist, as shown in Figure 1-6.

The viewmodel acts as a middleman between the view and the model, similar to
the presenter module in MVP. But unlike the MVP presenter module, the view-
model doesn’t manipulate the data — it just provides an interface between the
view and the model.

FIGURE 1-5:
The model–

view–presenter
method.

Th
e

M
VC

 M
et

ho
d

CHAPTER 1 The MVC Method 693

The viewmodel creates an abstract layer between the graphical environment
of the view and the data-centric environment of the model. This abstract layer
allows the programmers working on the view code to provide an interface to the
data in the model without having to know the details of the underlying data or
how the model handles it.

This data abstraction helps the development process, because the user interface
often changes more frequently than the underlying data. The graphical designers
can make changes without worrying about messing up the database designers.

Seeing How MVC Fits into N-Tier Theory
If you’ve been doing any type of web application development in a large-scale
environment, you’ve probably heard of or even used the multitier architecture (often
called n-tier) approach to web applications. With n-tier architecture, developers
divide a web application into separate physical servers, based on functionality, as
shown in Figure 1-7.

The n-tier architecture layout often consists of three physical servers:

 » A web server that interacts with client browsers (called the presentation tier)

 » An application server that runs the server-side application code (called the logic tier)

 » A database server that stores the application data (called the data tier)

FIGURE 1-6:
The model–

view–viewmodel
method.

FIGURE 1-7:
The n-tier theory

architecture.

694 BOOK 7 Using PHP Frameworks

The main goal of the n-tier architecture is to divide the separate functions of a
web application into separate physical servers. This action helps prevent server
bottlenecks and makes it easier to both expand individual servers as needed to
support application load or share server resources between web applications.

The web–application–database layout of the n-tier architecture sounds a lot like
the model–view–controller model of MVC, but there’s a difference. It’s important
to remember that the n-tier architecture refers to the physical server environment
of the application and not the application software. The MVC method represents a
method of dividing the software requirements of a web application, regardless of
the underlying hardware.

The n-tier architecture can support any type of software application method, and
your MVC application can run in any type of server environment. It’s certainly
possible to implement your MVC application in an n-tier server environment, but
you can just as easily run it within a standard one-server web environment.

Implementing MVC
In the AuctionHelper application, you use PHP code on the server and HTML, CSS,
and JavaScript code on the client to create the application. The first question that
often comes to mind when considering the MVC programming method is “Where
is that implemented?”

The MVC method isn’t necessarily a client-side or server-side programming par-
adigm. There are parts of the MVC method that work in either side of the web
application environment. Trying to figure out which parts fit where can be some-
what of a challenge.

Most MVC implementations focus on the server-side programming environment
and leave the client-side code to presenting the data from the view component.
However, with Ajax technology (see Book 6, Chapter 3), you can implement parts
of the model in the client as well, retrieving data as needed from the database
tables on the server. Because this book is primarily about writing PHP applica-
tions, I focus on using MVC in the PHP server-side programming code.

Fortunately, there are many tools available to help you utilize MVC concepts
within your PHP applications. The next chapter discusses the use of these pro-
gramming tools.

CHAPTER 2 Selecting a Framework 695

Selecting a Framework

As you write larger web applications, you’ll find yourself having to write lots
of the same code within your projects. Much of the code for performing
standard web application functions, such as displaying data from a table

and inserting new data into the table, is fairly customary and can be repetitive.
Before you fall asleep writing your PHP programs, there’s a solution you should
try. There are some tools available that help write the repetitive code for you, as
well as provide some extra utilities for making the code you do need to write easier
to handle. This chapter introduces the concept of using a programming frame-
work tool to assist you in your web application development. If you create a lot of
web applications, it’s well worth the effort to become familiar with these tools.

Getting to Know PHP Frameworks
A PHP framework is not a special server to use for your applications, nor is it
another programming language you need to code in. PHP framework packages
are a combination of code files, library files, and utility scripts that help you kick-
start your web application development by automatically generating some of the
tedious code required to implement a web application for you. This helps you
focus on writing the application-specific code required for your web application
to work.

Chapter 2

IN THIS CHAPTER

 » Getting acquainted with PHP
frameworks

 » Identifying the parts of a framework

 » Exploring popular framework
packages

 » Taking a look at micro-frameworks

696 BOOK 7 Using PHP Frameworks

Frameworks provide the templates you use to create your web application. Just
like the framework of a house remains hidden, supporting the drywall, roof, and
outside brick, a programming framework creates template files that remains
 hidden but that you use to build your application on. You’re still responsible for
creating the code to produce the final product, but much of the underlying coding
work has been done for you!

With framework tools, often you just need to point the tool to your database tables,
and it’ll automatically generate the HTML, CSS, JavaScript, and PHP code required
to create the web pages that interact with those tables. That can be a huge time
saver for you (as opposed to having to hand-code those features yourself).

You may be wondering just how a program can generate program code that would
create a web application. Well, the answer lies in the MVC method. In Chapter 1
of this minibook, I introduce you to the concept of the model–view–controller
method of developing web applications. That’s the key behind most framework
packages.

By sticking to a strict rule set for splitting up features in the application based on
the MVC, the framework packages generate the model code to interface with your
tables, the view code to display the data, and the controller code used to direct
browser requests to the correct class methods. These files become the templates
that you use to build the rest of your application.

Most PHP framework packages use the MVC method to generate application code,
but they vary in the features they offer and how you use them. The following
 sections walk through some of the different features you’ll find in PHP framework
packages.

Convention over configuration
One feature that makes using framework packages simpler to use is imposing a
specific file-naming convention for files in the application. In an MVC applica-
tion, there are lots of different model files, controller files, and of course, lots and
lots of different view files used to complete the application. Trying to organize all
these files so that they make sense can be a nightmare.

One solution is to use a standard configuration file. In a configuration file, you
must specify which controller class file handles which browser request. After the
controller handles the request, it needs to know which model class file it should
use to interact with the requested data.

Finally, when the controller code retrieves the data, it needs to know which
view file it should use to display the data it retrieved from the model. As you can

Se
le

ct
in

g
a

Fr
am

ew
or

k

CHAPTER 2 Selecting a Framework 697

probably guess, trying to use a configuration file to define all that would be some-
what difficult.

Instead of trying to define all those actions in a configuration file, most frame-
work packages have incorporated a file-naming convention. The phrase conven-
tion over configuration is commonly used in framework circles. It means to stick
with file-naming conventions to direct the controller actions, instead of trying to
use configuration files to direct everything (there may still be some configuration
files, such as to define the connection information for the database).

The convention defines strict rules on what filenames you should use within the
application. This way each component can assume the name of the correspond-
ing file it needs to interact with. The application knows which controller, model,
and view files to use based solely on their filenames. This is demonstrated in
Figure 2-1.

In the example shown in Figure 2-1, when your browser submits a request to
view a data record contained in the Bidders table, the application calls the view()
method defined in the controller file named BiddersController.php. When the
controller view() method needs to access data from the Bidders table, it uses
the model class file named BiddersTable.php. After retrieving the data field val-
ues for the data record, the view() controller method uses the view file named
 BidderView.php to display the data in the web page.

Notice the flow of the application and how each part of the flow incorporates the
name of the object it’s handling, as well as the name of the action it’s performing.
By incorporating a file-naming convention, framework packages don’t need to
define configuration settings for all that interaction — the framework packages
handle all that for you!

FIGURE 2-1:
Using a file-

naming
 convention to

handle web
requests.

698 BOOK 7 Using PHP Frameworks

Scaffolding
As I mention earlier in this chapter, lots of the coding you write to interact with
tables ends up looking the same. Just about every web application needs to cre-
ate, read, update, and delete data records in database tables (see Chapter 1 of this
minibook for more on the CRUD acronym). These functions have become so com-
monplace in web applications that most framework packages have the ability to
write that code for you!

Scaffolding is the process of framework package scripts inspecting the data fields
defined in a table and automatically generating the controller, model, and view
code files required to perform all the CRUD operations with the table data. If your
application uses multiple database tables, you can perform the scaffolding opera-
tion on each table, automatically generating the files to interact with all the tables.
Figure 2-2 shows an example of a CRUD interface generated from scaffolding code.

Just as in construction work, the scaffolding isn’t the final product — it’s there
to help you build the final product. After the framework package generates the
scaffolding code, you can easily modify things to fit your particular application
environment, including adding any styling required for your web pages.

Another great feature of scaffolding is that you’re not stuck with the code the scaf-
folding process generates. If something doesn’t quite fit within your application,

FIGURE 2-2:
A CRUD interface
generated by the
CakePHP frame-

work package.

Se
le

ct
in

g
a

Fr
am

ew
or

k

CHAPTER 2 Selecting a Framework 699

it’s easy to tweak the generated code to just the way you want things. By splitting
the functions into the model, view, and controller components, it’s easier to find
just what you need to change.

Routing
Dynamic web applications require lots of interaction with the client browser. As
the website visitor clicks links or pushes buttons, URLs are generated that the
browser uses to request more information from the application.

Those interactions require different URLs to pass information back and forth
between the client browser and the application. Just trying to keep track of all the
different URLs required for an application can be a fulltime job.

Routing helps that process by defining the rules for directing the controller on
how to handle each URL received from client browsers. Most framework packages
incorporate a specific routing rule set for handling URLs received from browsers:

http://hostname/classname/methodname/data

The URL specifies the name of the controller class that should handle the request,
along with the name of the class method within the class that processes the
request. Any data required for the function is added as a third element. Figure 2-3
demonstrates how this works with the view() method from the Bidders class.

Routing is yet another example of the convention over configuration feature found
in frameworks. By sticking to a standard routing convention, you can easily add
new features to the application and ensure that they’re handled correctly by the
controllers.

FIGURE 2-3:
Using routing

to direct client
requests.

700 BOOK 7 Using PHP Frameworks

Besides the standard routing, most framework packages allow you to define your
own custom routing paths as you incorporate additional features in the frame-
work. This gives you full flexibility in using both automatic and custom request
routing within your application if needed.

Helper methods
All framework packages allow you to code using standard HTML, CSS, JavaScript,
and PHP, but most of them also provide a code library to help make creating the
application a little easier.

These additional library functions are referred to as helper methods within the
framework. You can choose to use them, or continue coding using HTML, CSS,
JavaScript, and PHP. However, the helper methods often can save you time and
effort in your coding.

Just as the jQuery library methods help simplify complex JavaScript features (see
Book 3, Chapter 3), the framework helper methods help simplify complex HTML,
CSS, and PHP code. For example, in CakePHP, the link() helper method gener-
ates an <a href> tag based on the controller and method names you supply to it.
That makes it easier than trying to write out the URLs in an <a href> tag as you
go along.

Form validation
These days, receiving data in HTML forms from website visitors can be a danger-
ous thing. The key to handling unknown data from website visitors is validation.
There are plenty of HTML, JavaScript, and PHP features and functions available
to validate data to ensure that it’s not only in the correct format but also safe to
insert in your database.

However, trying to utilize all the validation features available can be somewhat
complicated and time consuming trying to write. Fortunately, most PHP frame-
work packages automatically generate the necessary form validation code for you,
to some degree. All you need to do is define the form fields, and their data types
and the framework code do the rest!

Support for mobile devices
No longer can you write a single web application and expect it to satisfy customers
using it from a desktop or laptop device with a large monitor and customers using
it from a mobile device with a small display.

Se
le

ct
in

g
a

Fr
am

ew
or

k

CHAPTER 2 Selecting a Framework 701

Instead, you often have to write multiple versions of the application presentation
code, checking for the size of the browser’s viewing area and sending the proper
styles to size things appropriately. This is one place where the MVC programming
method comes in handy. With that setup, you only need to worry about duplicat-
ing the view code, so you can keep the controller and model codes the same.

This is also another place where framework packages can come to your rescue.
Instead of having to write multiple versions of your web pages, some framework
packages provide the ability to automatically scale the presentation features to fit
the viewing area used by each individual website visitor.

Templates
Sometimes I think the worst feeling for a programmer is when you have to gener-
ate a great-looking web application and you’re staring at an empty editor window.
Just trying to get that first bit of code written to support the web pages can be a
hurdle.

This is yet another place where framework packages can come to the rescue. The
framework scripts can automatically generate basic code templates that you can
use for the base of your website design layout. Then you just need to apply those
templates to every web page in the application. This helps you create a consistent
look and feel for your application. It also saves you from having to come up with
all that code yourself!

Unit testing
Software bugs are the bane of web programmers. Having to deal with software
bugs after you’ve released a web application to the public or, even worse, to a pay-
ing customer is a hassle. Software bugs ruin the application’s (any maybe your)
reputation and can drive potential visitors to other websites. The key to reducing
software bugs is testing.

However, trying to test an application during development can be confusing,
because different parts of the application may rely on other parts being com-
pleted. Often, you find yourself in a circular situation where you’re constantly
waiting for another part of the application to become complete before you can test
any of the parts.

Framework packages have incorporated a feature called unit testing to help with
that problem. Unit testing provides simple tests based on the expected input and
output of an individual operation within the application. With unit testing, you can
determine if a part of the application is working correctly based on the expected

702 BOOK 7 Using PHP Frameworks

input, and the output you expect it to produce based on that input. There’s no
need for the other parts of the web application — everything is self-contained
within the unit testing environment.

By not having to rely on other parts of the application, unit testing allows you to
compartmentalize your testing process, and helps ensure each individual feature
within a web application is performing correctly before you try to put them all
together.

Knowing Why You Should
Use a Framework

If you’re a seasoned PHP developer, you may be thinking you don’t need any help
with developing your web applications. That may be true, but there are other rea-
sons for incorporating a framework package in your web development tools. Here
are some of the common reasons even professional web developers are turning to
framework packages:

 » Organization: PHP frameworks force you to organize your application code
into a specific file and folder structure. This not only helps with the develop-
ment process, but is also handy when you’re trying to troubleshoot an
application that you may have written years ago. Knowing just where to look
to find a specific function makes all the difference in finding bugs and
updating features.

 » Speed of development: PHP frameworks help cut down application develop-
ment time by stubbing out the code blocks for you, giving you a boost to your
development. Just having the code files present and filling in the required
methods can help with the process of creating code.

 » Helper methods: Even if you don’t use the scaffolding features in the
framework packages, just having the library of helper methods available to
simplify your code can greatly increase your development speed. Instead of
having to hand-code long HTML code blocks, you can just insert a simple
helper method and provide a few options.

 » Database integration: Integration with the underlying database is also a key
to using frameworks. If you must create web applications that run in multiple
environments, you may need to support multiple types of database servers.
Most framework packages use a simple configuration file to define the
location and type of server that the database uses. Changing the underlying

Se
le

ct
in

g
a

Fr
am

ew
or

k

CHAPTER 2 Selecting a Framework 703

database server is a simple matter of changing that configuration file — no
code needs to be changed!

 » Reusable code: Adhering to the same coding templates and patterns makes
it easier to use the same controllers, models, or even views in multiple
applications.

 » Consistent look and feel: Along the same lines as reusable code, using the
same application templates allows you to maintain a consistent look and feel
within an application, as well as between applications if you want.

 » Testing: Using the unit testing features of a framework package is a huge
benefit to finding software bugs before you release your web applications.
The unit testing abilities of most framework packages makes it easy to test
each component individually to ensure they meet your expectations.

 » Community: Each framework package has its own community of developers,
working together to both improve package features and support those who
have questions using those features.

Using a framework package may not be for everyone, but it doesn’t hurt to give
one or two a try and see how they could help with your web development environ-
ment. To help with that, the following section discusses five of the most popular
PHP framework packages to help give you an idea of which ones to try.

FRAMEWORKS AND PACKAGE
MANAGEMENT
Framework packages are nothing more than a bundle of code files, but many of them
utilize the Composer package manager for installation. The Composer package man-
ager provides a standard format for bundling software files and library files for distri-
bution and installation. It’s also good for tracking file dependencies, so upgrading an
installed package is a breeze.

If you’re familiar with Linux package managers such as yum or apt-get, you’ll notice that
Composer is a bit different. Instead of using a central database to track installed pack-
ages, Composer merely downloads and installs the package from a software repository
into a folder on your workstation or server. This makes it ideal for installing different
framework packages for different applications on your web server.

Before you can install most PHP framework packages, you’ll need to install the
Composer package manager. You can find it at the main Composer website (https://
getcomposer.org). Click the Download button for instructions on how to download
and install Composer on your workstation or server environment.

https://getcomposer.org
https://getcomposer.org

704 BOOK 7 Using PHP Frameworks

Focusing on Popular PHP Frameworks
Now that you’ve seen what frameworks are and what they can do, you’re ready to
take a look at some of the more popular PHP framework packages. In this section,
I review five of the most popular options:

 » CakePHP

 » CodeIgniter

 » Laravel

 » Symfony

 » Zend Framework

Each of these packages is currently supported and has its own following within
the PHP developer community. Choosing a framework package is a lot like buying
a car — different people have different needs and tastes that play into just which
framework package they prefer to use. Don’t hesitate to give a couple of them a try
before you decide on which one to use for your development work.

CakePHP
The CakePHP framework package (www.cakephp.org) was developed during the
height of the Ruby on Rails framework craze and supports many of the same fea-
tures. The Ruby on Rails framework uses the Ruby programming language as the
server-side web language and was one of the early pioneers in developing web
applications using the MVC method.

CakePHP followed that pattern and is highly MVC oriented. It structures the web
applications it develops into specific controller, model, and view components.
That makes it easier to follow along with the code, and interject your own code
when necessary.

When you peruse through the CakePHP website, you’ll find that it has lots of
documentation, tutorials, and forum support. Here are some of the benefits you’ll
find in CakePHP:

 » Built-in authentication helpers

 » Enhanced form validation to protect against SQL injections, cross-site scripting
attacks, and form tampering

 » The ability to use scaffolding to generate one or all components of the MVC
application

http://www.cakephp.org

Se
le

ct
in

g
a

Fr
am

ew
or

k

CHAPTER 2 Selecting a Framework 705

 » Its own find() method for creating complex SQL queries with just a little
input from you

 » Heavy reliance on convention over configuration for most framework features

CakePHP uses the Composer package manager to download and install the
template files needed to create an application framework. Just navigate to the
 DocumentRoot folder for your web server and enter the following command:

composer create-project --prefer-dist cakephp/app appname

The appname parameter is the name for your application. This command down-
loads all the controller, model, and view template files necessary to use CakePHP
in your application. Figure 2-4 shows the initial web page generated from a
CakePHP install.

If you’re looking for a full-featured framework package that follows MVC conven-
tions, CakePHP is a great tool to consider.

CodeIgniter
The CodeIgniter framework package (www.codeigniter.com) was another early
entrant into the PHP framework world. It supports full MVC compatibility, but

FIGURE 2-4:
The default

CakePHP frame-
work web page.

https://www.codeigniter.com

706 BOOK 7 Using PHP Frameworks

you can also write an application framework by only defining controllers with no
model or view components. This can make CodeIgniter easier to use to quickly
develop smaller web applications.

CodeIgniter is known as one of the easier-to-learn frameworks (and is often
recommended for beginners). It produces framework code that is known for its
speed. Here are some of the other features that make CodeIgniter popular:

 » No configuration is required for simple web applications.

 » There’s a large set of library methods to help with complex coding.

 » You can create high-performance websites with little overhead.

CodeIgniter is one of the few PHP framework packages that doesn’t use the Com-
poser package manager to install the package (at least at the time of this writing).
To install CodeIgniter, go to the main CodeIgniter website and click the Download
link. This downloads the latest version of the CodeIgniter framework files as a
single zip file.

Extract the zip file into a folder under the DocumentRoot folder for your web
server to start your application development. This becomes the folder for your
new application. Figure 2-5 shows the main web page that appears from the basic
installation.

FIGURE 2-5:
The default
 CodeIgniter
framework
web page.

Se
le

ct
in

g
a

Fr
am

ew
or

k

CHAPTER 2 Selecting a Framework 707

If you’re looking to just test-drive a PHP framework package to get a feel for how
they work, CodeIgniter is certainly one of the easier packages to install and play
around with.

Laravel
The Laravel PHP framework package (www.laravel.com) has quickly become the
most popular package among PHP developers. It has a wide array of features and
capabilities for producing sophisticated web applications. It can be a bit complex
to install and configure, but the features that the Laravel framework provides can
make it worth it. Here are some of the features included in Laravel:

 » Routing using the common REST principles

 » An advanced object-relational mapping (ORM) database interface modeler

 » An advanced query builder for simplifying submitting queries to the database

 » Database seeding for creating data records for testing

 » Pagination for large data result sets included automatically

 » Includes its own package bundling system for handling library files

 » Version control for database schemas

 » Class file auto loading for increased performance

 » Automatic form validation

The Laravel package uses the Composer package manager for installation:

composer create-project --prefer-dist laravel/laravel appname

The front door” to your Laravel application is actually in the folder named public.
You need to point your web server DocumentRoot setting to this folder, or you need
to include it in your URLs:

http://localhost:8080/laraveltest/public

Figure 2-6 shows the default Laravel application web page.

Laravel provides a package called Homestead that is a complete prebuilt web devel-
opment environment running on a virtual machine. It uses the Vagrant configu-
ration management tool to build the virtual machine environment that can run in
VirtualBox, Hyper-V, Docker, or VMware. Simply download and install VirtualBox,
Vagrant, and Homestead, and you’ll have a complete Ubuntu Linux server with a
Laravel development environment up and running in a virtual server environment!

https://www.laravel.com

708 BOOK 7 Using PHP Frameworks

Symfony
The Symfony project is primarily a bundle of PHP libraries that provide lots and
lots of useful features for creating dynamic web applications. The libraries include
tools for authentication, form creation and validation, routing, and building page
templates.

The Symfony libraries have become extremely popular, used by many high-profile
PHP applications, such as the Drupal content management system. In fact, many
of the other framework packages use them in their own code!

You can combine the Symfony libraries into a framework environment to generate
your own web applications. Symfony uses the Composer package manager, so you
can easily install the framework and test it out:

composer create-project --prefer-dist symphony/skeleton appname

When you run the default Symfony web page from the skeleton (see Figure 2-7),
it provides a link that points you to a guide for building your frameworks using
the Symfony libraries.

One downside to Symfony is that it uses the older YAML-style configuration files
to define just about everything. YAML is a markup language that was popular for
a while in configuration files, but it can be somewhat confusing for beginners.

FIGURE 2-6:
The default

 Laravel
 framework
web page.

Se
le

ct
in

g
a

Fr
am

ew
or

k

CHAPTER 2 Selecting a Framework 709

Zend Framework
By far the most popular professional PHP framework package has been Zend
Framework (https://framework.zend.com). Zend specializes in PHP devel-
opment and is the corporate sponsor for the PHP open-source project. It’s no
stranger to advanced PHP development and support.

The Zend Framework is a full-featured framework package that uses the MVC
model for the framework structure. You can install the Zend Framework MVC
template using Composer:

composer create-project --prefer-dist zendframework/skeleton-application appname

Figure 2-8 shows the default web page generated by the Zend Framework skel-
eton code.

The Zend Framework skeleton application produces the file and folder structure
that you need to start your application. It provides some level of scaffolding for
you to use with the zf tool. You use that to create individual controller, model, and
view scaffolding files for an application based on the application database.

The Zend Framework package provides lots of high-end features for PHP devel-
opment, and is highly respected in professional PHP development circles. It can
be somewhat complicated to start out with, but when you get the hang of things,
you can create some pretty amazing websites with it!

FIGURE 2-7:
The default

 Symfony
 framework
web page.

https://framework.zend.com

710 BOOK 7 Using PHP Frameworks

Looking At Micro Frameworks
After test-driving a couple of the PHP framework packages, you may find that you
don’t need that much support for your PHP development. You’re not alone in that,
which has spurred another type of framework package: the micro-framework.

Micro-frameworks are framework packages that don’t include all the fancy helper
methods and library utilities that the big framework packages include. They do,
however, produce great bare-bones framework code for you to build your web
applications from. This is ideal if you’re just looking for a little help and organiza-
tion for your web application.

This section walks you through a few popular micro-framework packages to give
you an idea of what they have to offer.

Lumen
The Lumen framework package (https://lumen.laravel.com) is a micro-
framework supported by Laravel. It eliminates many of the fancy features that the
Laravel framework provides and leaves you with just the bare-bones necessities
to build an MVC application framework.

FIGURE 2-8:
The default

Zend Framework
web page.

https://lumen.laravel.com

Se
le

ct
in

g
a

Fr
am

ew
or

k

CHAPTER 2 Selecting a Framework 711

You can install a Lumen framework using Composer:

composer create-project --prefer-dist laravel/lumen appname

You’ll get an idea of just how bare-bones Lumen is by opening the default web
page that it generates with the skeleton files, shown in Figure 2-9.

That’s about as bare-bones as you can get! Lumen is great if you’re looking
for just a little help with your web development, without committing to a large
framework package. It has a small footprint, which doesn’t add much overhead to
your application performance.

Slim
The Slim framework package (www.slimframework.com) is quite possibly the
smallest of the micro-framework packages, but it has a reputation for being the
fastest. Here are the core features of Slim:

 » URL routing that maps URLs to function callbacks and has the ability to
perform pattern matching on URLs so that you don’t need to specify all the
possible URLs used in your application

FIGURE 2-9:
The default

Lumen
 framework
web page.

https://www.slimframework.com

712 BOOK 7 Using PHP Frameworks

 » Middleware you use to build your application code around specific URL
requests from clients

 » The ability to dissect HTTP messages, statuses, and cookies within your code

 » Interoperability with other PHP libraries and tools

The URL routing feature makes Slim a good framework to use for static websites
that only need the ability to perform dynamic routing of web pages. You just set
up a routing table that directs browser requests to the proper static Web page in
your application.

The Slim framework is available for installation from the Composer package
manager:

composer create-project --prefer-dist slim/slim-skeleton appname

Figure 2-10 shows the default web page for the Slim framework.

The Slim framework package offers some interesting features for non-PHP
applications to use and may be worth looking into if you still maintain any static
websites.

FIGURE 2-10:
The default

Slim framework
web page.

Se
le

ct
in

g
a

Fr
am

ew
or

k

CHAPTER 2 Selecting a Framework 713

Yii
The Yii framework package (https://yiiframework.org) is a simple PHP frame-
work that provides all the standard MVC components for your application. There
aren’t a lot of bells and whistles in the Yii package, but it can do a lot of the basic
coding work for you.

There are two versions of the framework that you can install: basic and advanced.
To install an advanced skeleton, use this command from Composer:

composer create-project --prefer-dist yiisoft/yii2-app-advanced appname

The Yii framework doesn’t produce a default framework page — it’s up to you
to create the pages you need for your application. It uses the gii tool (which you
need to install separately) to generate simple scaffolding files for your application.

https://yiiframework.org

CHAPTER 3 Creating an Application Using Frameworks 715

Creating an Application
Using Frameworks

The previous chapter introduces some of the various framework packages
available for PHP programming. Using a framework package can help sim-
plify your web application development efforts, but you have to follow

the framework rules. This chapter dives into creating a simple application using
CakePHP so you can get a feel for just how frameworks operate, and how you can
add your own PHP touches to the code they generate.

Building the Template
The CakePHP framework package creates a lot of the behind-the-scenes code for
your application for you. That allows you to focus more on what’s important: the
code that does all the application-specific work.

For this demo, I walk you through re-creating some of the basic features from the
AuctionHelper application introduced in Book 6. If you aren’t familiar with that
project, take a few minutes to jump back and skim through Book 6, Chapter 1, to
get an idea of just what the AuctionHelper program does. I’ll be here when you
get back.

Chapter 3

IN THIS CHAPTER

 » Creating the template

 » Building the scaffolding

 » Modifying the scaffolding code

716 BOOK 7 Using PHP Frameworks

Before you can start writing any code for the new application, you need to allow
CakePHP to generate the application template for you. It’s amazing how much
code CakePHP can do for you, and it would be a shame to not utilize all that power
in your application. This section walks through how to start out a new project
using the CakePHP framework.

Initializing the application
It’s important to remember that working with framework packages isn’t like
installing a server, where you install the software once and use it multiple times.
Framework packages generate specific code for each single application, so each
time you create a new application, you need to reinstall the framework package
just for that application.

Fortunately, as discussed in Chapter 2 of this minibook, CakePHP uses the popular
Composer package management system to manage your code. That makes install-
ing an up-to-date CakePHP framework code easy. Follow these steps to do that
for your application:

1. Open a command-line tool for your operating system environment.

For Windows, use the Command Prompt window. For macOS, use the
Terminal utility. For Linux environments, you can either use a virtual
command-line terminal or launch a graphical command-line utility from
your graphical desktop.

2. Navigate to the DocumentRoot folder for your web server.

Use the cd command-line command to change to the htdocs folder for your
web server. If you’re using the XAMPP server in Windows, that’s the c:\xampp\
htdocs folder. For the XAMPP server in macOS, that’s the /Applications/
XAMPP/htdocs folder. So for Windows, use:

C:\Users\rkblu> cd \xampp\htdocs

C:\xampp\htdocs>

Or for macOS use:

/usrs/rblum> cd /Applications/XAMPP/htdocs

/Applications/XAMPP/htdocs>

3. Run the Composer program from the command prompt, specifying the
create-project option; for the name of the application, use cakeauction:

Cr
ea

ti
ng

 a
n

A
pp

lic
at

io
n

U
si

ng
 F

ra
m

ew
or

ks

CHAPTER 3 Creating an Application Using Frameworks 717

C:\xampp\htdocs> composer create-project --prefer-dist cakephp/app

cakeauction

Installing cakephp/app (3.5.1)

 - Installing cakephp/app (3.5.1): Loading from cache

Created project in cakeauction

Loading composer repositories with package information

Updating dependencies (including require-dev)

Package operations: 47 installs, 0 updates, 0 removals

...

Generating autoload files

> Cake\Composer\Installer\PluginInstaller::postAutoloadDump

> App\Console\Installer::postInstall

Created `config/app.php` file

Created `C:\xampp\htdocs\cakeauction/tmp/cache/views` directory

Set Folder Permissions ? (Default to Y) [Y,n]? y

Updated Security.salt value in config/app.php

C:\xampp\htdocs>

If you don’t have the Composer program installed, go to https://
getcomposer.org and follow the instructions to download and install
it on your workstation.

4. Close the command prompt window by typing exit.

The Composer utility retrieves the current CakePHP framework template files
from its software repository and copies them into the cakeauction folder struc-
ture on your workstation. At the end of the process, it asks if you would like it to
set the folder security permissions for you. If you answer yes, Composer will mod-
ify the folder properties so the web server can access the application.

When the process completes, you have a full CakePHP application template
installed in the cakeauction folder. You may not realize it, but there’s a complete
web page infrastructure built into the template files. You can test that out yourself
by starting your web server environment, opening your browser, and then going
to the following URL:

http://localhost:8080/cakeauction

You should see the main CakePHP template web page, shown in Figure 3-1.

The web page code checks your web server environment to ensure that it’s com-
patible with running CakePHP code. You should see green icons for all the Envi-
ronment and Filesystem checks that CakePHP performs on your system.

https://getcomposer.org
https://getcomposer.org

718 BOOK 7 Using PHP Frameworks

If any of the Environment or Filesystem icons is red, that will be a potential prob-
lem down the road. It’s best to make the necessary modifications to your web
environment now to satisfy the CakePHP requirements before you start out with
any coding. At this point in the process, the icon for the Database check icon will
be red, because you haven’t told CakePHP how to access your database yet.

Exploring the files and folders
With the core CakePHP template files installed for the application, you can do some
snooping around to see just what was installed. Open your system’s File Manager
tool and navigate to the cakeauction folder that the install process created.

In that folder, you should see several folders and a few files. There are three fold-
ers that are of particular interest:

 » bin: Contains the cake utility that helps you manage the CakePHP
environment.

 » config: Contains the few configuration files required by CakePHP to operate
properly in your server environment

 » src: Contains the source code files for your web application

FIGURE 3-1:
The generic

CakePHP
 application
web page.

Cr
ea

ti
ng

 a
n

A
pp

lic
at

io
n

U
si

ng
 F

ra
m

ew
or

ks

CHAPTER 3 Creating an Application Using Frameworks 719

The src folder is the main area for the application code files. This is where you’ll
be spending most of your time coding. If you take a quick peek in this folder, you’ll
see the subfolders Controller, Model, Template, and View.

This is a clue that, indeed, the CakePHP template is using the MVC method (see
Chapter 1 in this minibook) to design and lay out the application program files.
The code for the different MVC components resides in each of these folders. That
is a great help in keeping the application code organized and being able to quickly
find the files you need to modify.

Defining the database environment
Before you can start working with the template code, you need to tell CakePHP
where to find the database for your application. You do that in the app.php con-
figuration file, located in the config folder in the application template. Follow
these steps to change the app.php file to recognize your application database:

1. Open your favorite text editor, program editor, or integrated develop-
ment environment (IDE) editor package.

2. Choose File➪ Open to navigate to the app.php file in the cakeauction/
config folder, contained within the application template.

3. Scroll through the app.php file until you see the Datasources section of
the file.

It should contain the following lines:

'className' => 'Cake\Database\Connection',

'driver' => 'Cake\Database\Driver\Mysql',

'persistent' => false,

'host' => 'localhost',

//'port' => 'non_standard_port_number',

'username' => 'my_app',

'password' => 'secret',

'database' => 'my_app',

'encoding' => 'utf8',

'timezone' => 'UTC',

'flags' => [],

'cacheMetadata' => true,

'log' => false,

720 BOOK 7 Using PHP Frameworks

4. Modify the database configuration for your MySQL server environment.

If you follow the instructions in Book 6, Chapter 1, for the AuctionHelper
application, enter these changes in the app.php code:

'className' => 'Cake\Database\Connection',

'driver' => 'Cake\Database\Driver\Mysql',

'persistent' => false,

'host' => 'localhost',

//'port' => 'non_standard_port_number',

'username' => 'ah_user',

'password' => 'AuctionHelper',

'database' => 'auction',

'encoding' => 'utf8',

'timezone' => 'UTC',

'flags' => [],

'cacheMetadata' => true,

'log' => false,

5. Save the app.php file changes and exit your editor.

Now if you run the application’s main web page again, you should see the Data-
base icon turn green, indicating that the CakePHP application can connect to
the MySQL server and access the auction database where your application data
resides.

This creates the basic CakePHP application template. If you prefer to create your
own application code on your own, you can start building your model, view, and
controller files now. If you’d like to take advantage of the CakePHP scaffolding
features, continue to the next section.

If you skipped working out the AuctionHelper application in Book 6, Chapter 1,
turn back to that chapter and go through the steps to create the auction data-
base, the Bidders and Items tables within the database, and the ah_user MySQL
user account to access the database. You’ll need those items to work out this
demonstration.

The default configuration template that CakePHP creates assumes that you’re
using the MySQL database server, but it also supports other database servers.
Consult the CakePHP documentation to see what other drivers are available for
accessing data on other database servers.

Cr
ea

ti
ng

 a
n

A
pp

lic
at

io
n

U
si

ng
 F

ra
m

ew
or

ks

CHAPTER 3 Creating an Application Using Frameworks 721

Creating an Application Scaffold
The real power behind framework packages is the amount of code they can gen-
erate for you, saving you from having to hand-code the boring stuff. That power
comes in the scaffolding code. Most framework packages provide some level of
scaffolding code support, but the scaffolding code generated by CakePHP is pretty
amazing! This section walks you through the steps to create the scaffolding code
for the auction application.

Installing the scaffolding
The CakePHP package has the ability to create scaffolding code for one part of the
application or all the parts of the application. How much code CakePHP gener-
ates for you is completely up to you. If you just need some help creating the CRUD
methods for your tables, you can tell CakePHP to just create the model scaffold-
ing. If you need some help creating a controller to start out your application, you
can tell CakePHP to just create the controller scaffolding. Remember: The choice of
how much help you want is up to you!

CakePHP doesn’t generate the scaffolding code automatically when you install
the template files, but you can easily generate it yourself. CakePHP uses the bake
utility (cute name, isn’t it?) to generate the scaffolding code for your application.
You run the bake utility from within the cake utility, which is contained in the
bin template folder:

C:\xampp\htdocs\cakeauction>bin\cake bake

The following commands can be used to generate skeleton code for your application.

Available bake commands:

- all

- behavior

- cell

- component

- controller

- fixture

- form

- helper

- mailer

- middleware

- migration

- migration_diff

- migration_snapshot

- model

722 BOOK 7 Using PHP Frameworks

- plugin

- seed

- shell

- shell_helper

- task

- template

- test

By using `cake bake [name]` you can invoke a specific bake task.

C:\xampp\htdocs\cakeauction>

There are a lot of options available in the bake utility. You can bake just the model
code, just the controller code, or everything you need for your application. The all
option allows CakePHP to generate scaffolding code for a complete web applica-
tion that provides CRUD features for the table you specify.

Follow these steps to create a simple CRUD application for the Bidders table in the
auction database:

1. Open the command-line utility in your OS, and navigate to the
cakeauction folder for your project:

C:\users/rblu> cd \xampp\htdocs\cakeauction

C:\xampp\htdocs\cakeauction>

2. Run the bake utility to generate all scaffolding for the Bidders table:

C:\xampp\htdocs\cakeauction>bin\cake bake all bidders

Bake All

One moment while associations are detected.

...

Bake All complete.

C:\xampp\htdocs\cakeauction>

3. Ensure that the Apache and MySQL servers are running, and then open
your browser; in the address bar enter the following URL:

http://localhost:8080/cakeauction/bidders/

Peruse through the application a bit to see what functionality is there by
default.

Cr
ea

ti
ng

 a
n

A
pp

lic
at

io
n

U
si

ng
 F

ra
m

ew
or

ks

CHAPTER 3 Creating an Application Using Frameworks 723

4. Repeat Step 2 to run the bake utility for the Items table:

C:\xampp\htdocs\cakeauction>bin/cake bake all items

5. In your browser address bar, enter the following URL:

http://localhost:8080/cakeauction/items/

You just created a complete web application with just one command! (Okay, maybe
CakePHP helped a bit.) Figure 3-2 shows the main web page that’s generated for
the Bidders table scaffolding.

When you go to the web page that the items scaffolding generated, you’ll see the
same layout and features, but with the Items table data.

The scaffolding creates a complete data management website for each of the data-
base tables. Just take a look at all the features “baked into” this simple application:

 » The main web page displays the data field values for each of the data records
contained in the Bidders or Items tables.

 » The main web page incorporates content paging, so if there are lots of data
records, you can view them one page at a time.

FIGURE 3-2:
The main Bidders

scaffolding
web page.

724 BOOK 7 Using PHP Frameworks

 » You can sort the output based on any data field by clicking the data field name
at the top of the column.

 » The action icons allow you to perform functions on an individual data record.
You can

• View the complete data record.

• Edit the data record values.

• Delete the data record.

 » You can add a new data record using the New link in the navigation bar.

And to think you created this application with just a single command!

As you click the different links within the application, take a look at your brows-
er’s address bar and note the URL that each link generates. After you move around
some, you’ll probably start to notice a trend in the format of the URLs. The URLs
all use the same basic format:

http://localhost:8080/cakeauction/controller/method/data

This follows standard MVC routing rules, specifying the controller and method in
the URL (see Chapter 1 of this minibook). The bake utility creates the basic rout-
ing rules as part of the scaffolding code in CakePHP. This helps you identify which
controller method is responsible for generating each web page in the application
and easily expand on that as you add new features to the application.

Exploring the scaffolding code
I didn’t want to show all the output from the bake utility in the preceding steps,
but if you still happen to have your command prompt window open, you can scroll
back through the output. The output from the bake utility shows all the files
that the scaffolding process creates. You can also open your File Manager utility
and peruse through the src template folder to see the changes added to the file
structure.

In the Controllers folder, two new files have been added: BiddersController.
php and ItemsController.php. As you can guess, they contain the class defini-
tions for the bidders controller and the items controller. As you can tell from
these filenames, CakePHP is big on the convention versus configuration part of
frameworks. The filenames directly correspond to the function of the code they
contain.

Cr
ea

ti
ng

 a
n

A
pp

lic
at

io
n

U
si

ng
 F

ra
m

ew
or

ks

CHAPTER 3 Creating an Application Using Frameworks 725

If you open either of the controller files in your text editor, you’ll see they each
define the following methods:

 » index: Generates the listing on the main web page.

 » view: Displays the details for a specific data record.

 » add: Displays a form to enter a new data record, and then retrieves the form
data and saves it in the table.

 » edit: Displays a form with the data from an existing data record, and then
retrieves the form data and updates the existing data record.

 » delete: Prompts the visitor to confirm the deleting request, and then
removes the data record from the table.

These are the default methods required to implement the CRUD features in the
application. Now, take a look at the src/Template folder. Notice that it contains a
Bidders subfolder and an Items subfolder. Double-click one of the folders to see
what’s inside.

Inside the Bidders and Items template subfolders are the files required to display
the output from the controller methods. You should see four files in the folders:

 » add.ctp: The template file for the add controller method

 » edit.ctp: The template file for the edit controller method

 » index.ctp: The template file for the index controller method

 » view.ctp: The template file for the view controller method

This is yet another place where the convention over configuration part of the
framework kicks in. CakePHP knows when the controller method runs to use the
template file with the same name to control the view output.

Modifying the Application Scaffold
You have a pretty cool web application created, just by using the standard CakePHP
scaffolding code, but now it’s time to add your own touch to the application. If
you remember, the original AuctionHelper application was required to be able to
list the items won by a bidder. The scaffolding application doesn’t provide that
feature, so you need to add it yourself.

726 BOOK 7 Using PHP Frameworks

Adding the new feature is a multistep process:

 » You’ll need to add a link somewhere in the application that allows the
website visitor to launch the new feature web page to view the bidder’s
won items. It would make sense to add this link to the listing of bidders, so
that you can select the link for the appropriate bidder.

 » You’ll need to add a controller method to handle the new feature. The
controller method will need to receive the bidderid value for the bidder
selected back in the bidder listing, and be able to query the items model to
retrieve the items table data records that match the bidderid.

 » You’ll need to modify the items model class to add a method to perform
the specialized search function. It’ll need to receive the bidderid value, and
then return an array of items data records with the matching winbidder data
value.

 » You’ll need to create a new view template file to display the bidderid,
along with the list of items the bidder won. Being able to total the winning
bid amounts so the bidder knows how much to pay would also be a nice
feature to have.

That seems like a lot of steps required for adding a single feature to the applica-
tion. Don’t worry, though. With CakePHP, you won’t have to do much coding. The
following sections walk you through each step.

Adding a new feature link
The first step in adding the new feature web page in the application is to create a
link to it in the existing application. Your website visitors will need some way of
getting to the new feature within the existing application structure.

The bidders scaffold code that CakePHP created already lists each bidder data
record contained in the Bidders table, along with a set of action links for perform-
ing actions for the bidder. That’s a perfect place for you to plug in a link to the web
page that lists the items won by the bidder.

The page code that generates the Bidders main page is located in the src/
Template/Bidders folder and contained in the index.ctp template file.

If you open that file in your editor, you’ll see the code that CakePHP uses to gen-
erate the bidders listing. The action links are created in this section of the code:

Cr
ea

ti
ng

 a
n

A
pp

lic
at

io
n

U
si

ng
 F

ra
m

ew
or

ks

CHAPTER 3 Creating an Application Using Frameworks 727

<td class="actions">

 <?= $this->Html->link(__('View'), ['action' => 'view', $bidder->bidderid]) ?>

 <?= $this->Html->link(__('Edit'), ['action' => 'edit', $bidder->bidderid]) ?>

 <?= $this->Form->postLink(__('Delete'), ['action' => 'delete',

 $bidder->bidderid], ['confirm' => __('Are you sure you want to delete # {0}?',

 $bidder->bidderid)]) ?>

</td>

The link() method is a CakePHP helper method that creates HTML links for you,
based on the controller and method you supply. If you omit the controller value,
the link() method assumes to use the same controller that generated the web
page. (Remember: The controller name is embedded in the URL.)

To add a new link, you need to come up with a new method name for the feature.
I give it the name listItemsWon(). Because you’re listing items, the new feature
should be part of the items controller.

Follow these steps to add that link to the application code:

1. Open your favorite editor and navigate to the cakeauction/src/
Template/Bidders folder in the DocumentRoot folder for your web server.

2. Select the index.ctp file to open in the editor.

3. Before the lines that create the View, Edit, and Delete links (but after the
<td> line), add this code:

<?= $this->Html->link(__('Items'), ['controller' => 'items','action' =>

'listItemsWon', $bidder->bidderid]) ?>

4. Save the updated file as index.ctp.

If you open your browser and go to the bidders main page as before, you should
now see your new link appear in the action links, as shown in Figure 3-3.

The new Items link appears in the actions, just as you planned. However, if you
click the Items link you’ll get an error message, shown in Figure 3-4.

The error message is telling you that the link requested the listItemsWon()
method from the ItemsController class, which doesn’t exist yet. The error mes-
sage was even nice enough to show you the file that needs to be updated and the
basic code needed to implement the method. That’s exactly what you do in the
next section.

728 BOOK 7 Using PHP Frameworks

Creating the controller code
Now that you have a way for your website visitors to access the new feature, you
need to start writing the code to implement it. Don’t worry — that part isn’t all
that hard, thanks to the help that CakePHP provides for you.

FIGURE 3-3:
The new link

in the bidders
action links.

FIGURE 3-4:
The CakePHP

error message
generated

by clicking the
new link.

Cr
ea

ti
ng

 a
n

A
pp

lic
at

io
n

U
si

ng
 F

ra
m

ew
or

ks

CHAPTER 3 Creating an Application Using Frameworks 729

As shown in the previous section, the next step in the process is to write the
listItemsWon() method for the ItemsController.php file. Follow these steps to
do that:

1. Open your favorite editor and navigate to the ItemsController.php file,
located in the cakeauction/src/Controllers folder in the DocumentRoot
folder of your web server.

2. Scroll down through the existing methods contained within the
ItemsController.php file until you get to the bottom of the file.

3. Before the closing bracket, add the listItemsWon() method code:

public function listItemsWon($id = null)

{

 $bidderid = $this->request->getParam('pass');

 $items = $this->Items->find('winbidder', ['winbidder' => $bidderid]);

 $this->set(['items' => $items, 'winbidder' => $bidderid]);

}

4. Save the updated file as ItemsController.php.

Thanks yet again to CakePHP, the entire listItemsWon() method consists of only
three lines of code! The first line uses the getParam() helper function to retrieve
the bidderid value passed from the URL that the link() helper method created.

The second line uses the find() method of the Items model to submit a SQL
search to the database server. The find() method is a huge benefit of the CakePHP
framework package. Instead of your having to hand-code SQL statements to
retrieve data, the find() method does most of the work for you. You just need to
specify the data field and value to match in the search.

Finally, the last line of code uses the special set() method. This method triggers
the call for the view template and passes data to the template code to display. In
this statement, I pass both the array of items data records that’s returned from
the find() method, along with the bidderid value.

If you click the Items link for a bidder now, you’ll be passed to the controller
method that you just created, but you’ll still be somewhat disappointed with the
results, as shown in Figure 3-5.

The listItemsWon() controller method uses the find() model method but speci-
fies for it to find a winbidder data field instead of the primary key of the table.
Because that’s a custom operation, you need to create a custom method to support
it. Thanks to the convention rules of CakePHP, you know that you’ll need to create
a findWinbidder() method in the model class for the items table. That’s up next
on the to-do list.

730 BOOK 7 Using PHP Frameworks

Modifying the model code
You’re almost there — just a couple more code files to modify to implement the
new feature! As the previous section discusses, in this step you need to create a
custom find() method in the items table model class to find the winbidder data
values that match the bidderid value passed from the link URL.

As you may have guessed by now, you’ll find the model class files in the src/
Model/Table folder. (Are you starting to get the hang of the MVC file layout yet?)
When you peek in that folder, you’ll see the ItemsTable.php file. That’s where
you add any custom model methods your application needs for the items table.

Follow these steps to continue on with the update:

1. Open your browser and navigate to the cakeauction/src/Model/Table
folder and open the ItemsTable.php file.

2. Scroll down to the bottom of the file, and just before the closing bracket,
add the following code:

public function findWinbidder(Query $query, array $options)

{

 $items = $this->find()->select(['itemid', 'name','description',

'winprice']);

FIGURE 3-5:
The find error
message from

the application.

Cr
ea

ti
ng

 a
n

A
pp

lic
at

io
n

U
si

ng
 F

ra
m

ew
or

ks

CHAPTER 3 Creating an Application Using Frameworks 731

 $items->where(['Items.winbidder IN' => $options['winbidder']]);

 return $items->group(['Items.itemid']);

}

3. Save the updated file as ItemsTable.php.

Yes, another method with just three lines of code — I love frameworks! The first
line of code calls the find() method from the Item model’s parent class. The
find() method allows you to build a SELECT query statement piece by piece.

The first piece is to provide the list of data fields you want the query to return.
The result of the find() method is an array of the matching data records returned
from the table. The code stores that result in the $items variable.

The second added line continues to further define the find() results by using the
where() method. The where() method is similar to using a SQL WHERE clause, but
it has some additional features, such as using the IN operator as shown in this
code. This is needed because the options passed to the controller appear as an
array object. The IN operator allows you to match the data field against an array
of values.

Finally, the last line of code uses the group() method to order the resulting data
records based on the itemid value. The $items variable contains the final result
from the search, which is then returned back to the controller.

Okay, another step completed! If you click the Item action link for a bidder, you
get further along in the process, but you still get an error message, shown in
Figure 3-6.

The convention rules strike again! According to the error message, the listItems
Won() controller method is looking for a view file named list_items_won.ctp to
use to display the results. You’ll tackle that final piece of the puzzle in the next
section.

Painting a view
You’re almost there! Can you see the finish line ahead? Before you cross it, let me
recap to remind you what you’ve accomplished. So far you’ve created

 » A new link in the bidder index view template file using the link() helper
method to pass the website visitor to a controller method to list all the items
won by a bidder

732 BOOK 7 Using PHP Frameworks

 » A new method in the ItemsController.php controller file to process the link
request and request the data from the items model

 » A new method in the ItemsTable.php model file to find the data records in
the Items table that match the winbidder data field value to the selected
bidderid value

That was quite a bit, but then again, it didn’t require all that much coding on your
part — CakePHP did most of the work for you.

The last step to get the new feature working in the web application is to create the
view template file to display all the results. CakePHP stores the view template files
in the src/Template folder. Each controller has its own subfolder, so you need to
work in the Items subfolder.

If you remember from Figure 3-6, CakePHP is trying to help you out by telling
you just what template file you need to create: list_items_won.ctp. Follow these
steps to do that:

1. Open your favorite editor, and enter the following code:

<div class="items view large-9 medium-8 columns content">

<?php echo "<h3>Items won by Bidder $winbidder[0]</h3>\n"; ?>

<section>

FIGURE 3-6:
The missing

template error
message.

Cr
ea

ti
ng

 a
n

A
pp

lic
at

io
n

U
si

ng
 F

ra
m

ew
or

ks

CHAPTER 3 Creating an Application Using Frameworks 733

<?php $total = 0; ?>

<table>

<tr><th>ItemID</th><th>Name</th><th>Description</th><th>Winning Bid

</th></tr>

<?php foreach ($items as $item): ?>

 <?php $total = $total + $item->winprice; ?>
 <?php echo "<tr><td>$item->itemid</td><td>$item->name</td>" ?>

 <?php echo "<td>$item->description</td><td>$item->winprice</td>

</tr>\n"; ?>

<?php endforeach; ?>

<?php echo "<tr><td/><td/><td>Total</td><td>$total</td>\n"; ?>

</table>

<?= $this->Html->link(__('Return to Bidders list'),['controller' =>

'bidders', 'action' => 'index']) ?>

</section>

</div>

2. Save the file as list_items_won.ctp in the cakeauction/src/Template/
Items folder, under the DocumentRoot folder for your web server.

The template code uses a mixture of HTML and PHP code to retrieve and display
the data values. I copied the <div> class from the index.ctp template for the bid-
ders controller so that the new page would have the same look and feel as the rest
of the pages in the scaffolding application. The PHP code should look somewhat
familiar to you — it’s just a matter of retrieving the class properties that contain
the data values for each item data record and plugging them into an HTML table.

I added a local variable named $total to track the total amount of the winning
bids and then display that at the bottom of the table. Also, after the table I threw
in a link() helper method to create a link that allows the website visitor to jump
back to the main page of the bidders controller, listing the bidder data records.

Now for the moment of truth. Open your browser, and enter the following URL:

http://localhost:8080/cakeauction/bidders/

You should see the listing of data records from the Bidders table as before. Now
when you click the Items link for a bidder that you know has won items, you
should see the items appear in the template output web page that you just defined,
shown in Figure 3-7.

Congratulations! You’ve just written your first modification to a CakePHP frame-
work project!

734 BOOK 7 Using PHP Frameworks

You’re not stuck with the web page layout and styling used by the CakePHP scaf-
folding for your projects. You can override any part of the scaffolding application
with your own code — creating your own Web page layout and applying your own
CSS styles.

FIGURE 3-7:
The final results

of adding the
items won

 feature to the
scaffolding code.

Index 735

Index
Special Characters
" (double quote), 384
' (single quote), 385
- operator, 317
.NET 4.5, 471
/ operator, 317
:: (double colon symbol), 106
; (semicolon symbol), 91
\. command shortcut, 469
|| operator, 319
+ operator, 317
++ (incrementor operator), 208, 220
= (assignment operator), 204, 211
== (equal-to operator), 210
== operator, 327
=== operator, 327
-> symbol, 398
¢ (cent symbol), 91
© (copyright symbol), 91
° (degree symbol), 91
! operator, 319
!= operator, 327
!== operator, 327
(hash symbol), 91, 105
#storemap value, 183
$() function, 247
$_COOKIE[] array variable, 426–427
$_FILES[] array variable, 373
$_GET[] array variable, 340, 342, 380, 381
$_POST[] array variable, 344, 359, 380, 381, 603
$_POST['age'] array variable, 344–345
$_POST['answer'] value, 602, 611
$_POST['fname'] array variable, 386
$_SESSION[] array variable, 431
$_SESSION['cart'] session cookie, 437
$admin variable, 380
$age variable, 326

$.ajax() function, 629–633
$bidders array, 576
$con variable, 544
$count variable, 333
$counter variable, 318
$db object, 545
$description property, 402
$favs variable, 336
$fname variable, 379, 388
$food variable, 336
$.get() function, 633–635
$inventory property, 397
$items variable, 731
$key variable, 336
$myfamily[0] value, 316
$onsale property, 406
$ounces property, 418
$price property, 402
$price variable value, 327
$prod1 instance, 408
$prod1 object, 398
$prod1->inventory property, 398
$prod2 instance, 401
$result variable, 320
$salary variable, 315
$(this) object, 279
$this variable, 397
$today variable, 367–368
$total variable, 318
$value variable, 335
$value1 variable, 311, 338
$value2 variable, 311
% operator, 317
% unit of measurement, 115
& (ampersand), 91, 384
&& operator, 319
> code, 356, 384

736 PHP, MySQL & JavaScript All-in-One For Dummies

< code, 356, 384
* operator, 317
? (Ternary operator), 211
?> tag, 305–306
@ (ampersand), 552
@font-face rule, 168, 169–170
@media command, 170–172
@media rule, 689
~__clone() method, 408
~__construct() method, 406
< (command line redirect symbol), 539
< (less than), 385
< operator, 327
<% tag, 306
<= operator, 327
<> operator, 327
> operator, 327, 385
> prompt, 468
>= operator, 327

Numbers
000webhost, 32
1 type, 94
1&1, 32, 653
1px border property value, 122

A
a code, 365
A code, 365
<a href> tag, 700
A type, 94
a type, 94
<a> tag, 9, 87
AAC (Apple audio coding), 187
abbr elements, 86
abort() method, 622
abs function, 362
absolute address, 89
absolute keywords, 115
absolute positioning method, 128–130
absolute units of measurement, 114
acceptance testing, 616

accept-charset attribute, 136
accepts setting, 630
access control list (ACL), 457
accessor magic methods, 403–406
ACID (atomicity, consistency, isolation, durability)

compliant database, 459–461
ACL (access control list), 457
acos function, 363
acosh function, 364
action attribute, 136, 343, 347
action parameter statement, 503
actions, 672
active pseudo-classes, 108, 109
Active Server Pages (ASP) style tag, 306
Active Server Pages (ASP).NET, 22–23
activeElement property, 227
ADD COLUMN name action, 503
ADD constraint action, 503
add method, 725
add_action() function, 672, 673, 674
add_filter() function, 672
addbidder.inc.php file, 604–605, 617
addClass() function, 279
.addClass(class) function, 257
add.ctp folder, 725
--add-drop-database export, 533
--add-drop-table export, 533
.addEventListener() function, 275–276
AddHandler directive, 43
additem.inc.php code, 614
additional styles, 75
address property, 572
addslashes function, 355, 356
administration tools, 465–476
Adobe Dreamweaver, 52
Adobe Flash Player, 10
Adobe Photoshop, 183, 369
advanced framework, 713
advanced queries, 527–531
.after() function, 260
AFTER DELETE trigger, 463
AFTER INSERT trigger, 463
after pseudo-element, 107

Index 737

AFTER UPDATE trigger, 463
age variable, 205–206
AJAX (Asynchronous JavaScript and XML)

AuctionHelper application, 643–650
cached pages and, 628
data, transferring in, 635–643
files and, 244
JavaScript, communicating using, 621–629
jQuery AJAX library, using, 629–635
overview, 619–621

ajaxcars1.html file, 628, 631–633
ajaxcars.php code, 628
alert() function, 201, 210, 223, 248, 269, 284
alert() pop-up box, 378
alert error level, 43
aliases, 531
all media type, 173
ALL privileges, 482
--all-databases export, 533
all-in-one packages, 31, 38, 470, 473
alt attribute, 178
ALTER COLUMN name MODIFY action, 503
ALTER privileges, 482
ALTER ROUTINE privileges, 482
ALTER TABLE statement, 501, 503–504
altering, 640
Amazon Web Services (AWS), 32
American National Standards Institute. See ANSI

(American National Standards Institute)
American Standard Code for Information Interchange

(ASCII), 90
ampersand (&), 91, 384
ampersand (@), 552
anchor element, 87
anchors property, 227
and operator, 319
AND operator, 529
.animate() function, 261
animation, 261
anonymous function, 251, 625
ANSI (American National Standards Institute), 452
ANSI SQL89, 452
ANSI SQL-92-compliant relational database, 542

any-hover attribute, 173
any-pointer attribute, 173
Apache Friends organization, 38
Apache packages, 33, 37
Apache web server, 22

configurations, 41
customizing, 41–44
error levels, 43–44
installing, 34–36
pros of, 28

API (application programming interface), 455, 670
appearance, 664
.append() function, 260
appendChild method, 232, 638
.appendTo() function, 260
Apple audio coding (AAC), 187
Apple Numbers, 97
Apple Pages, 53
application data, 693
application presentation code, writing versions

of, 701
application programming interface (API), 455, 670
application scaffold

creating, 721–725
modifying, 725–731

applications, creating using frameworks, 715–720
appname parameter, 705
app.php file, 719
apptest1 database, 555
appuser1 user account, 555
<area> tag, 182
arithmetic operators, 317–318
arithmetic shortcuts, 318–319
array() function, 315
array variables, grouping data values and, 315–316
article element, 78
ASCII (American Standard Code for Information

Interchange), 90
<aside> element, 78, 134, 583
aside.inc.php file, 587–588, 644
asin function, 363
asinh function, 364
ASP (Active Server Pages) style tag, 306

738 PHP, MySQL & JavaScript All-in-One For Dummies

asp_tags setting, 306
aspect-ratio attribute, 173
ASP.NET, 22–23
assign statement, 311
assignment operator (=), 204, 211
associative array, 316, 437, 548
associative array key, 426, 432
async setting, 630
asynchronous (true) connection, 622
Asynchronous JavaScript and XML (AJAX), 643–650
atan function, 363
atanh function, 364
atomicity, 459–460
atomicity, consistency, isolation, durability (ACID)

compliant database, 459–461
.attr() function, 253
attribute values, 637
attributes, 14, 73–75, 253, 637
attributes property, 230
.au audio file, 187
auction database, 676, 720, 722
auction information, 565
AuctionHelper application, 565, 569, 643–650, 686
AuctionHelper page, designing, 581–582
AuctionHelper widget, 675, 715
audio

formats for, 350
playing, 185–190

Audio Video Interleave (AVI), 191
<audio> tag, 188, 189
authentication, 350
authentication helpers, 704
autocommit method, 553
autocomplete attribute, 136
autocomplete property, 239
autofocus property, 239, 240
autoload feature, 410
autoplay attribute, 189, 193
AVG() functions, 560
AVI (Audio Video Interleave), 191
.avi video formats, 192
AWS (Amazon Web Services), 32
Axmark, David, 454
Azure, 32

B
B code, 365
b data type value, 550
b elements, 85, 86
background-color property, 116, 124, 231–232
backups, performing, 532–538
bake utility, 721–724
banana value, 316
bare-bones framework code, 710
base table, 501–503
basedir setting, 45
basic framework, 713
basic functions, 513
basic hosting packages, 23
basic layout, 1
.before() function, 260
BEFORE DELETE trigger, 463
BEFORE INSERT trigger, 463
before pseudo-element, 107
BEFORE UPDATE trigger, 463
beforeSend setting, 630
Berners-Lee, Tim, 8
beta statistical values, 364
Bidder class, 579, 597
bidder information, 564, 565
Bidder objects, 572, 595–605, 645
bidder. php file, 579
bidderid data field, 565–566
bidderid property, 572
bidderid value, 566, 576, 602, 605, 690, 726,

729–730
bidder.php file, 645–646
bidders

adding and updating, 614
deleting, 600
listing, 595–596
new, adding, 603–605
searching for, 605
updating, 600–603
viewing, 596–599

Bidders class, 699
bidders controller, 724
bidders scaffold code, 726

Index 739

Bidders sub-folder, 725
Bidders template, 725
BiddersController.php folder, 724
BiddersTable.php file, 697
bin folder, 718, 721
binary data, 136, 463
binary large object (BLOB), 463–464
bind_result() method, 551
birthdate data field, 504–505
bit rate, 187
Bitnami, 38–39
black border property value, 122
Blackhole, 456
_blank attribute, 87
BLOB (binary large object), 463–464
blob data type value, 550
block element, 259
block statements, 62
block-level elements, 85
blockquote element, 83–84
blogging, 651–652
blur() event, 277
blur() method, 232
blur parameter, 167
body element, 76, 201–203
body object, 224–225
body property, 227
<body> tag, 267
bold text, 9
bool data type, 451
Boolean operators, 208–209, 319–320
Boolean value, 141, 392, 463
border element section, 120
border images, 157–159
border style property, 182
border-bottom property, 122
border-collapse property, 122
border-image property, 160
border-image-outset property, 161
border-image-repeat property, 161
border-image-slice property, 161
border-image-source property, 161
border-image-width property, 161

border-radius property, 158, 159
borders, 16, 121–122
bowlerid data field values, 559
Bowlers table, 556–557, 560
box model, 119–121
box shadows, 167–168
box-shadow property, 167

 element, 74, 84, 355, 356
Break control icon, 292
Break on New Worker control icon, 292
break statement, 212
Breakpoints pane, 291
Brown, Barry, 364
browser (web clients), 10–11
browser debuggers, 67–69
built-in web servers, 29
bulleted lists, 92
button form field element, 138, 145
button input field type, 145
button_click() function, 596, 597
buttons, 145–146, 270–272
buttontest.html file, 271
buyProduct() method, 397, 398, 401,

405–406, 418

C
c code, 365
\C command shortcut, 468
C programming language, 455
C#.NET, 23, 28
C++ programming language, 455
cache setting, 630
cached pages, AJAX and, 628
cakeauction folder, 716–718
cakeauction/config folder, 719
CakePHP framework, 704–705, 715–717
CakePHP template, 719, 720
Call Stack pane, 291
calling the function, 221
carlot element, 640, 641
carrot value, 316
cart session cookie, 437, 438
carttest.php file, 441

740 PHP, MySQL & JavaScript All-in-One For Dummies

carttest.php program, 440
cascading style rules, 111–112
Cascading Style Sheets (CSS), 15–17

classes, 257–259
issues, 67
objects, 256–257

Cascading Style Sheets (CSS1), 16, 79, 152
client browser and, 152
HTML and, 620
styling, 79

Cascading Style Sheets, first version (CSS1), 16
Cascading Style Sheets, second version (CSS2),

16–17, 171
Cascading Style Sheets, third version (CSS3)

advanced
border images, using, 157–159
color gradients, 164–166
corners, rounding, 157–159
CSS3, 157–159
fonts, creating, 168–170
media queries, handling, 170–175
overview, 157
shadows, adding, 166–168

box model, 119–121
elements, positioning, 125–134
overview, 16, 103
styling

overview, 103–104
positioning and, 79
rules of, 104–112
tables, 121–125
text, 112–119

case code, 330
case statements, 212, 215
case values, 331
case-insensitive mode, 494
case-sensitive comparisons, 494
catch() function, 296
catch code block, 295, 297, 298
categories, 654
CDN (content delivery network), 245, 246–247
ceil function, 362
cells, 97, 124

cent symbol (¢), 91
CentOS, 33, 35–36
CentOS7 system, 36
central processing unit (CPU), 285
centralized data management, 304
centralized programming language, 304
certificate authority, 42
CGI (Common Gateway Interface) scripting, 22
ch unit of measurement, 115
change() event, 277
change_user method, 553
changebidder.inc.php file, 602
Changed field, 517
changeit() function, 235, 273, 288, 289, 293, 294
changeitem.inc.php file, 610–611
changeme() function, 231
char(64) data type, 567
character entity reference, 91
character number, 91
character sets, 90–91, 494
character strings, 463
character_set_name method, 553
characters, 90–92
characterSet property, 227
character-to-number mapping scheme. See

character set
charset command, 468
charsets, 476
char(x) data type, 451
check boxes, 141–142, 240–241
checkbox input type, 140
checkbox object, 240, 241
checked attribute, 142, 143
checked property, 240
checked pseudo-classes, 109
child class, 414
child elements, 640
child objects, 224–225
childNodes property, 230
childNodes[0] value, 641
children property, 230
chi-square statistical values, 364
chop function, 355

Index 741

chunk_split function, 356
ci collation, 494
circle shape value, 182
cite elements, 86
class attribute, 104–106
class keyword, 396
classes

defining, 396–397
extending, 414–418
loading, 409–414

classList property, 230
className property, 230
cleaner format, 212
CLI (command line interface)

data
adding, 514–517
modifying and deleting, 517–519

data backups using, 533–534
databases, creating using, 492–495
JavaScript code and, 289
tables and

base tables, defining, 501–503
features, adding, 503–505
overview, 500–501

tools, using, 466–470
user account, creating from, 477–478

click() event, 277
.click() function, 251
click() method, 232
clickable region (hotspot), 182
client browsers, 20, 693
client errors, 12
client tool, 467–470
client-side code, 694
client-side data validation, 380–381
client-side programming, 18–25
clone keyword, 407
cloneNode method, 232
close() method, 546
closest-corner location, 165
closest-side location, 165
closing tag, 74
cloud environment, 32

cm absolute units of measurement, 114
CMS (content management system), 304, 652
code completion, 64
code elements, 86
code files, 695, 703
code formatting, 64
code sections, marking and collapsing, 63
CodeGen, 538
CodeIgniter framework, 705–707
cold backup, 532
collapse value, 122
collations, character sets and, 494
color attribute, 173
color gradients, 164–165
color input element type, 150
color names, 116
color parameter, 167
color property, 116, 124
color scheme, changing, 116–119
color1 direction, 164
color2 direction, 164
color-index attribute, 173
colors

looking at, 162–163
semitransparent, 17
text, 14, 16

colortest.html code, 120
colortest.html file, 120
cols attribute, 146, 240
colspan attributes, 100–101
columns, 97–99, 514
command line interface (CLI), 492–495, 500–505,

514–519, 533–534
command line redirect symbol (<), 539
command-line tool, 33
comma-separated spreadsheet format, 532
comma-separated string values, 635
comma-separated values (CSV), 456, 514, 538
comment tags, 80
comments, 654, 663
commercial server, 31
commit and rollback system, 459
commit method, 553

742 PHP, MySQL & JavaScript All-in-One For Dummies

commit phase, 459
Common Gateway Interface (CGI) scripting, 22
community, 703
comparison operator, 210–211, 326
complete setting, 630
Composer, 703, 707, 717
compression, 186–187, 350
concatenation operator, 320
condition, 217
condition parameter, 334
conditional statements, 209–216
config folder, 718, 719
configuration files, 696, 708
configuration options, 41, 44
connect command, 468
CONNECT request, 11
connection handle, 544
consistency, 460
Console, 287–290
console.log() function, 289, 294
__construct() keyword, 415
__construct() method, 572
constructor magic method, 406, 673
contains(object) method, 232
content delivery network (CDN), 245, 246–247
content element section, 119
content management system (CMS), 304, 652
content variable, 341, 383, 584, 590, 595, 611, 615
content variable/value pair, 690
contents setting, 630
Content-type HTTP header, 639
contentType setting, 630
context setting, 630
Continue control icon, 292
controller code, 729–730
controller method, 689–690
Controllers folder, 719, 724
controls attribute, 189, 193
convention over configuration, 696–697, 705
converters setting, 630
cookie property, 227
Cookie statement, 423
cookies, PHP and, 424–430

cookietest2.php, 428
cookietest3.php, 430
copyright symbol (©), 91
core server settings, 45
corners, rounding, 157–159
cos function, 363
cosh function, 364
cosine, 363
COUNT() function, 560
counter variable, 208, 212, 220
counter++; variable, 208
CPU (central processing unit), 285
crash recovery, 460
CREATE DATABASE command, 657
CREATE DATABASE statement, 492,

493–494, 496
CREATE privileges, 482
CREATE ROUTINE privileges, 483
CREATE statement, 501, 515–516
CREATE TABLE statement, 500–501, 507
CREATE TABLESPACE privileges, 483
CREATE TEMPORARY TABLES privileges, 483
CREATE USER privileges, 483
CREATE USER statement, 477, 481
createAttribute method, 638
createElement() method, 227, 638
create-project option, 716
Create-Read-Update-Delete (CRUD), 686, 698
createTextNode() method, 227, 638
crit error level, 43
crossDomain setting, 630
crossorigin attribute, 246
Cross-Platform, Apache, MariaDB, PHP,

and Perl (XAMPP), 38–42, 47–49, 354, 470,
474, 656

cross-site scripting (XSS), 376–379, 704
CRUD (Create-Read-Update-Delete), 686, 698
cryptography, 350
cs collation, 494
CSS (Cascading Style Sheets), 15–17

classes, 257–259
issues, 67
objects, 256–257

Index 743

.css() function, 254, 256
CSS1 (Cascading Style Sheets), 16, 79, 152

client browser and, 152
HTML and, 620
styling, 79

CSS1 (Cascading Style Sheets, first version), 16
CSS2 (Cascading Style Sheets, second version),

16–17, 171
CSS3 (Cascading Style Sheets, third version)

advanced
border images, using, 157–159
color gradients, 164–166
corners, rounding, 157–159
CSS3, 157–159
fonts, creating, 168–170
media queries, handling, 170–175
overview, 157
shadows, adding, 166–168

box model, 119–121
elements, positioning, 125–134
overview, 16, 103
styling

overview, 103–104
positioning and, 79
rules of, 104–112
tables, 121–125
text, 112–119

CSS3 For Dummies (Mueller), 112
CSV (comma-separated values), 456, 514, 538
CUBRID library, 542
Cumulative Distributions Functions, Inverses, and

Other parameters (DCDFLIB), 364
cursive font, 113
custom export, 537
customerid data field, 529, 530
customerid value, 491, 528–529
Customers table, 449–450, 458, 490

D
d code, 365
D code, 365
\d command shortcut, 468
d data type value, 554
dashboard widgets category, 670

dashed border, 122
data

adding, 514–517
arrays of, 206–207
binary, 464
in databases

backups, performing, 532–538
restoring, 538–540
searching for, 524–531
using, 513–524

inserting, 685
invalid, 380–382
managing, 489–492
output, 525–527
overview, 204–205
replacing, 250–254
retrieving, 547–549, 554–560
sanitizing, 384–389
short-term storage of, 419
string, 387
transferring in AJAX, 635–643
types, 205–206
validating, 389–394

data constraints, 500
data dictionary, 447
data export, 532
data fields, 450, 514
data format, 391–394
data lists, 149–150
data normalization, 449
data operation, 685
data permissions, 457
data records, 450, 514, 686
data setting, 630
data spoofing, 379–380
data table definition, 500
data tier, 693
data types, 155–156, 312–315,

389–391
data validation, 25, 154–156
data values, 204, 315–316
data variable, 248
database category, 670
database engine, 446

744 PHP, MySQL & JavaScript All-in-One For Dummies

database management system (DBMS)
features of, 455
isolation and, 460
purpose of, 445–449
views, querying using, 462

database objects, 656–658
database parameter, 544
database server, 30–31
databases

backups, 532–538
connecting to, 544–545, 554–560
creating, 492–500, 571
data constraints, 451–452
data types, 451
environment, 719–720
features, 30
high-end, 25
integration, 702–703
managing data in, 489–492
name, 658
normalization, 490
overview, 445–449, 489, 513
password, 658
PHP scripts, communicating from

database support, 541–543
MySQL library, using, 544–553, 554–560
overview, 541

relational, 449–450
restoring data, 538–540
searching for data, 524–531
software options, 25–26
SQL, 452–454
support, 541–543
tables, building

CLI, using, 500–505
overview, 500
phpMyAdmin tool, using, 508–512
Workbench tool, using, 505–508

username, 658
using data, 513–524

--databases export, 533
data-centric environment, 692
datadir setting, 45

datafield statement, 517
datafields parameter, 453
dataFilter setting, 630
datalist element, 138, 149
Datasources section, 719
dataType setting, 630
date() function, 365, 367–368
date data type, 451
date functions, 365–369
date input element type, 150
dates, 365–369
datetime data type, 150, 451
datetime-local input element type, 150
date.timezone default setting and value, 48
DB++ library, 542
DBA (DB–style database files), 543
dBase library, 542
dblclick() event, 277
DBMS (database management system), 446–447, 455,

460, 462
DB–style database files (DBA), 543
dbtest1 database, 494, 501, 534
dbtest1.sql file, 534, 539
dbtest2 database, 505, 508, 535
dbtest3 database, 509, 512
DCDFLIB (Cumulative Distributions Functions,

Inverses, and Other parameters), 364
dd two-sided element, 95
Debian-based Linux distributions, 33–34
debug error level, 43
debug log level, 44
Debugger, 290–295
debugger statement, 291
decimal data types, 566
declarations, 104
decrementor operations, 319
default applications, 57
default collation, 494
default configuration settings, 28
default file extensions, avoiding, 54–55
default shape value, 182
default statement, 212, 331
default styles, 111

Index 745

default value, 145
defaultChecked property, 240
defaultValue property, 239, 240
deg2rad() function, 363, 364
degree symbol (°), 91
del elements, 86
DELETE keyword, 453
delete method, 725
DELETE statement, 495, 505, 514, 518, 519
delimiter command, 468
Delphi, 23
departmentcode 5 department, 527
DESC keyword, 526
DESCRIBE SQL statement, 514
description data field, 566
description lists, 95–96
description property, 408, 415, 573
descriptors, 170
desktop.css external style sheet, 175
__destruct() method, 407
destructor magic methods, 407
Developer Tools, 285–290
dfn elements, 86
dialog boxes, 19
dialog bubbles, 159
die() function, 552
digital audio formats, 186–188
digital video formats, 191–192
direction parameter, 164
directives, 41
disabled attribute, 139, 146, 239, 240
disabled pseudo-classes, 109
display property, 198, 259
display_errors setting, 48, 324
displaybidder.inc.php file, 597, 598–599, 605
distribution software packages, 36
div element, 78, 79
dl element, 95
Docker, 707
<!DOCTYPE> tag, 75, 77, 425, 431
document object, 226, 229
Document Object Model. See DOM
document structure, 73–81

document.body object, 231
documentElement property, 227
documentMode property, 227
document.property format, 226
DocumentRoot folder, 77, 90, 117, 245, 382, 383,

545, 706
documents, 8–9
document-viewing software, 8
document.write() function, 229
Dodge value, 640
DOM (Document Object Model), 259–260, 268, 620,

628, 636
form data

check boxes, 240–241
overview, 235–238
radio buttons, 241
text areas, 239–240
text boxes, 238–239

JavaScript code and
object methods, 232–233
object properties, 229–232
overview, 223–224

DOM (Document Object Model) Explorer, 285–287
DOM (Document Object Model) tree, 224–229,

235–238, 249, 309
domain property, 227
Domain=site attribute, 423
DOMDocument object, 636, 637, 640, 645
DOMParser object, 640, 641
domproperties.html code, 231
domtest.html file, 228
dotted border, 122
double border, 122
double colon symbol (::), 106
double data type value, 550
double parameter, 385
double quote ("), 384
double up-arrow icon, 289
double-write buffering, 460
do.while statement, 333
Dreamweaver application, 52
DROP (Drop the Database) link, 500
DROP COLUMN name action, 503

746 PHP, MySQL & JavaScript All-in-One For Dummies

DROP constraint action, 503
DROP DATABASE statement, 533, 538
DROP keyword, 453
DROP privileges, 483
DROP statement, 495, 518
DROP TABLE statement, 505, 533, 538
Drop the Database (DROP) link, 500
drop-down lists, 147–149
Drupal content management system, 708
dt two-sided element, 95
dump folder, 536
durability, 461
dynamic data typing, 205
dynamic features, 1
dynamic web applications, 26, 29, 295, 376, 419,

651, 685
dynamic web pages, 17–25

E
e code, 365
\e command shortcut, 468
E symbol, 318
e symbol, 318
E_ALL & E_DEPRECATED setting, 48
E_ALL setting, 48
E_COMPILE_ERROR setting, 48
E_COMPILE_WARNING setting, 48
E_CORE_ERROR setting, 48
E_CORE_WARNING setting, 48
E_DEPRECATED setting, 48
E_ERROR setting, 48
E_NOTICE setting, 48
E_PARSE setting, 48
E_RECOVERABLE_ERROR setting, 48
E_STRICT setting, 48
E_USER_DEPRECATED setting, 48
E_USER_ERROR setting, 48
E_USER_NOTICE setting, 48
E_USER_WARNING setting, 48
E_WARNING setting, 48
easier-to-learn frameworks, 706
ebidder.inc.php file, 600

e-book version, 2–3
echo statement

class objects and, 414
displaying code, 676
example, 408–409
inventory properties, displaying, 401
new-line characters and, 310
outputting code, 560
PHP program and, 325
text, injecting, 307
values, displaying, 336

Eclipse, 66–67
Eclipse PDT (Eclipse PHP Development Tool), 65
ECMAScript 2017 (eighth version), 20
ECMAScript standard, 20
edit command, 468
edit method, 725
edit.ctp folder, 725
ego command, 468
eighth version (ECMAScript 2017), 20
element names, 636
element tag, 15, 74
element type, 105
elements. See also names of specific elements

attributes or, 637
defined, 73–75, 206
finding

DOM tree, 235–238
overview, 233, 247–250
pointers, 235

HTML5
breaks, 84–85
headings, 81–82
overview, 81
text groupings, 82–84

positioning, 128–134
ellipses. See dialog bubbles
elliptical radial gradient, 166
else statement, 212, 295, 328, 394
elseif statement, 328–330
em elements, 86, 115, 287
email input type, 150, 152
embed element, 186

Index 747

embedded audio, 185–186
Embedded OpenType front file formats, 169
embedded program code, 18
embeds property, 227
emerg error level, 43
employeeid data field, 490–491, 506
Employees table, 449–450, 490–492
employees table, 515
.empty() function, 260
empty pseudo-classes, 109
emulation, 286
enabled pseudo-classes, 109
encodeURI() function, 296
encoding parameter, 385
encryption key, 691
encryptions, 42
enctype attribute, 136, 144
endless loop, 216, 332
engines, 476
ENT_COMPAT flag, 385
ENT_DISALLOWED flag, 385
ENT_HTML401 flag, 385
ENT_HTML5 flag, 385
ENT_IGNORE flag, 385
ENT_NOQUOTES flag, 385
ENT_QUOTES flag, 385
ENT_SUBSTITUTE flag, 385
ENT_XHTML flag, 385
ENT_XML1 flag, 385
Environment icon, 718
equal-to operator (==), 210
error messages, 43–44
Error object, 296
error setting, 43, 630
error_reporting setting, 48
ErrorLog directive, 44
errors

avoiding, 295–299
browser Developer Tools, 285–290
catching, 295
checking for, 551–560
identifying, 283–285
tracking, 43–44

eval() function, 296

EvalError error, 296
event functions, 276–280
event handler, 280–282
event listeners, 275–276
event parameter, 280
EVENT privileges, 483
event-driven Personal Home Page (PHP)

form data, processing, 343–348
links, using, 339–343
overview, 339

event-driven programming, 264, 593–594
events

bidder object, 595–605
defining, 263–266
item object, 606–614
JavaScript and

event listeners, 275–276
keystrokes, listening for, 273–275
mouse events, listening for, 269–273
overview, 267
web page, loading and unloading, 267–269

jQuery and, 276–282
ex unit of measurement, 115
Excel application, 97
Exception Control control icon, 292
EXECUTE privileges, 483
exit command, 468, 658
exp function, 363
expire parameter, 425
expires=datetime attribute, 423
explode function, 356
expm1 function, 363
exponents, calculating, 362–363
expression, 212
Expression Web package, 51
Extensible Hypertext Markup Language (XHTML), 10,

74, 77, 538
Extensible Markup Language (XML), 291, 351, 620,

636–643, 687–688
extensions, 16, 349–354
extensions.php file, 352
external JavaScript files, 203
external style sheet method, 110
external style sheets, 15, 111

748 PHP, MySQL & JavaScript All-in-One For Dummies

F
F code, 365
f statistical values, 364
F12 key, 284
fact variable, 221
factest.php program, 338
factorial() function, 221, 338–339
factorial.html code, 219
false (synchronous) connection, 622
false value, 210, 240
FALSE value, 326, 328, 332, 333, 345, 360
false value, 406
fantasy font, 113
farthest-corner location, 165
farthest-side location, 165
feature link, adding, 726–728
feature parameter, 173
Fedora, 33, 35–36
fetch() method, 551
fetch statements, 548
fetch_all() method, 547
fetch_array() method, 547
fetch_assoc() method, 559, 560
fetch_field() method, 547
fetch_field_direct() method, 547
fetch_fields() method, 547
fetch_object() method, 547
fetch_row() method, 547
ffa500 value, 116
ffetch_assoc() method, 547
field_seek() method, 547
fieldlist parameter, 514, 516, 525, 529
fieldset element, 140–141
<figcaption> element, 183, 184
figure element, 183
file access, unauthorized, 382–383
file data input type, 372
file extensions, 54–57
file header category, 670
file input type, 144
file management, 64
FILE privileges, 483
file server, 28

File Transfer Protocol (FTP), 7
file upload, 144–145
filename, 90
files

Ajax and, 244
folders and, 718–719

filesystem category, 670
Filesystem icon, 718
filter parameter, 280, 387
FILTER_SANITIZE_EMAIL option, 387
FILTER_SANITIZE_ENCODED option, 387
FILTER_SANITIZE_FULL_SPECIAL_CHARS

option, 387
FILTER_SANITIZE_MAGIC_QUOTES option, 387
FILTER_SANITIZE_NUMBER_FLOAT option, 387
FILTER_SANITIZE_NUMBER_INT option, 387, 389
FILTER_SANITIZE_SPECIAL_CHARS option, 387
FILTER_SANITIZE_STRING option, 387
FILTER_SANITIZE_STRIPPED option, 387
FILTER_SANITIZE_URL option, 387
FILTER_UNSAFE_RAW option, 387
FILTER_VALIDATE_BOOLEAN option, 392
FILTER_VALIDATE_EMAIL option, 392
FILTER_VALIDATE_FLOAT option, 392
FILTER_VALIDATE_INT option, 392
FILTER_VALIDATE_IP option, 392
FILTER_VALIDATE_MAC option, 392
FILTER_VALIDATE_REGEXP option, 392
FILTER_VALIDATE_URL option, 392
filter_var() function, 384, 386–389
filters, 671
finally code block, 298
finally statement, 297
find() method, 705, 729–730, 731
findBidder() method, 572, 600, 602
findBidders() method, 576
findItem method, 573, 579, 608, 611, 646
findtest.html code, 235
findWinbidder() method, 729
FireBird/InterBase library, 542
first normal form, 490–491
firstChild property, 230, 235–237
first-child pseudo-classes, 108, 109
first-letter pseudo-element, 106, 107

Index 749

first-line pseudo-element, 107
firstname data field, 526, 566
firstname property, 572
first-of-type pseudo-classes, 109
first-rate server-side programming language, 23
fixed positioning method, 130
fixed-length character strings, 463
flags parameters, 387
Flash, 10, 186, 191
flat files, 446
float data type, 451
float property, 131, 134
floating elements, 130–134
floating point numbers, 312, 463
floor function, 362
flow control statements, 209
.flv video formats, 192
fmod function, 362
focus() event, 277
focus() method, 232
focus pseudo-classes, 109
focusin() event, 277
focusout() event, 277
folders, files and, 718–719
font files, 168–169
font-family property, 170
fontlist value, 113
fonts

creating, 168–170
setting, 112–116
text, 14, 16
web, 17

fontsize property, 114
font-stretch descriptors, 170
font-style descriptors, 170
font-weight descriptors, 170
<footer> element, 583
footer.inc.php file, 587–588
for encrypted connections (https), 90
for statement, 333–334, 437
Ford attribute, 640
foreach statement, 334–336, 359, 437–438, 440, 599
foreign keys, 501
form() method, 674

Form Editor, 521–522
form fields, 73–74, 137–138
form property, 239, 241
form tampering, 704
form validation, 704, 707
form values, 253–254
<form> element, 136, 145, 146, 343, 596
format parameter, 365
formatting features, 9
formatting text, 85–86
forms property, 227
forms validation, 700
formtest.html file, 347
four values, 161
four-color scheme, 163
fps (frames per second), 191
frame rate, 190
frames, 87, 190
frames per second (fps), 191
frameworks

application scaffold
creating, 721–725
modifying, 725–731

creating applications using, 715
package management and, 703
selecting, 695–713

free() method, 547
free-for-all of methods, 185
FROM clause, 528
fruit value, 316
FTP (File Transfer Protocol), 7
full applications, 2
full-featured framework package, 709
functions

building, 336–339
callbacks for, 712
creating, 221
date and time, 365–369
image-handling, 369–374
logarithmic, 363
math, 361–364
miscellaneous, 553–560
overview, 220
using, 222

750 PHP, MySQL & JavaScript All-in-One For Dummies

G
G code, 366
g code, 366
\G command shortcut, 468
\g command shortcut, 468
gamma statistical values, 364
Generalized Markup Language (GML), 9
generic font group, 113
GET, POST, Cookies, and System variables

(GPCS) default settings and value, 49
__get() method, 403
GET method, 340, 343, 379, 380, 622–623, 690
GET request, 11, 340, 422
GET variable, 383, 628
getAllResponseHeaders() method, 622
getAttribute() method, 232, 641
getBidders() method, 572, 576, 597
getElementByClassName() function, 247
getElementById() function, 233–235, 247, 288,

289, 292
getElementByTagName() function, 247
getElementsByClassName(class) method,

227, 232
getElementsByTagName() method, 641, 648
getElementsByTagname(tag) method, 227, 232
getItems methods, 573, 579
getItemsbyBidder() method, 573, 579, 600
getmodels() function, 628
getParam() helper function, 729
getrandmax() function, 362
getRealTime() function, 648–649
getResponseHeader() method, 622
getters, 403
gii tool, 713
GIMP (GNU Image Manipulation Program), 183, 369
global setting, 630
GML (Generalized Markup Language), 9
GNOME editor, 60
GNU Image Manipulation Program (GIMP), 183, 369
go command, 468
GoDaddy, 32, 653
golden ratio, 580

Google Cloud Platform, 32
gotkey() function, 274
GPCS (GET, POST, Cookies, and

System variables) default settings
and value, 49

GRANT command, 657
GRANT OPTION privileges, 483
GRANT statement, 482
graphical desktop programming, 684
graphical desktop tools, 52
gray boxes (sidebars), 2
greater than (>), 385
grid attribute, 173
grid theory, 580
group() method, 731

H
H code, 366
h code, 366
\h command shortcut, 468
h elements, 81
<h1> element, 9, 14–15, 82, 105, 118, 167
<h2> element, 82
handle parameter, 546
hasAttributes() method, 232
hasChildNodes() method, 232
.hasClass() function, 257, 258
hasFocus() method, 227
hash symbol (#), 91, 105
head element, 76, 200–201
head object, 224–225
head property, 227
HEAD request, 11
<header> element, 78, 583
header.inc.php file, 587
headers setting, 630
headings, 9, 14, 81–82
height attribute, 173, 178, 193, 194
help command, 468
helper methods, 700, 702
helper programs, 2

Index 751

here value, 235
hgroup element, 82
hidden fields, 143–144
hidden input type, 144
.hide() function, 259
high-end database environments, 25
higher-level rule, 15
high-strength, low alloy (HSLA), 117, 163
HKEY_LOCAL_MACHINE/Software/PHP registry

hive, 46
Homestead, 707
host, 90
--host parameter, 468
HostGator, 32, 653
hot backup, 532
hotspot (clickable region), 182
hover() event, 277
hover() function, 278
hover attribute, 173
hover pseudo-classes, 108, 109
hover.html file, 288
hovertest.html file, 273, 293
hr element, 84
href attribute, 87, 88, 89, 181, 183, 343
HSL (hue, saturation, and lightness) method, 117,

162–163
hsl() format, 163
HSLA (high-strength, low alloy), 117, 163
htdocs folder, 42, 656, 676
HTML (Hypertext Markup Language). See also HTML5

client browser and, 152
CSS and, 620
defined, 9
forms, 25
programming codes, embedding, 23
retrieving documents, 10–13
styling documents, 14
troubleshooting issues, 67
using, 252–253
versions, 10

.html() function, 252
html element, 76

.html file, 43, 307
html object, 224
<html> element, 76, 426
HTML5 (Hypertext Markup Language version 5.0).

See also PHP
characters, 90–92
CSS3 and, 17
document structure

attributes, 73–75
document type, 75
elements, 73–75
overview, 73
page definition, 76–78
page sections, 78–81

elements of
breaks, 84–85
headings, 81–82
overview, 81
text groupings, 82–84

lists
description, 95–96
ordered, 93–95
overview, 92
unordered, 92–93

multimedia and
audio, playing, 185–190
images, 177–185
overview, 177
streamers, getting help from, 194
videos, watching, 190–194

overview, 73
popularity of, 10
tables, building

headings, 99–101
overview, 96–97
rows and columns, 97–99

tags, 73–75
text, marking

formatting, 85–86
hypertext, using, 86–90
overview, 85

752 PHP, MySQL & JavaScript All-in-One For Dummies

HTML5 (Hypertext Markup Language version 5.0)
forms

data validation, 154–156
defining, 135–138
drop-down lists, using, 147–149
enhancing

data lists, 149–150
input fields, additional, 150–154
overview, 149

images
figures and captions, 183–184
overview, 183
picture element, 184–185

input fields, using
buttons, 145–146
check boxes, 141–142
file upload, 144–145
hidden fields, 143–144
overview, 138
password entry, 140
radio buttons, 142–143
text boxes, 138–140

overview, 135
text area, adding, 146–147

HTML5h1 element, 74
htmlentities function, 355
htmlspecialchars() function, 355, 356,

384–386, 387
HTTP (Hypertext Transfer Protocol), 10, 28
http (unencrypted connections), 90
HTTP category, 670
HTTP cookies, 420–424, 712
HTTP GET method, 137
HTTP messages, 712
HTTP PUT method, 137
HTTP statuses, 712
httpd.conf file, 41, 306
HttpOnly attribute, 423
HttpOnly cookie, 421, 425
https (for encrypted connections), 90
hue, saturation, and lightness (HSL) method, 117,

162–163
human language, 350
hyperbolic functions, 364
hyperlink, 87–89, 182

hypertext, 8, 86–90
hypertext link, 181
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol (HTTP), 10, 28
Hyper-V, 707
hyphens, 636
hypot function, 363

I
i code, 366
I code, 366
i data type value, 550
i elements, 85
i type, 94
I type, 94
IBM DB2 library, 542
id attribute, 79, 89, 105, 140, 150,

237, 247
id property, 230
identifier, 453
IDEs (integrated development environments), 64–67,

77, 117
if statement, 210–211, 326–327
if.else statement, 295, 394
ifModified setting, 630
iframe element, 194
<iframe> tag, 194
if.then condition, 297
IIS (Internet Information Services), 22, 28
image copyresampled() function, 373
image maps, 182–183
image processing, 350
imagechar function, 370
imagecolorallocate() function, 369
imageconvert.php code, 373
imagecopyresampled() function, 371
imagecreatefromstring() function, 373
imagecreatetruecolor() function, 369
imagedestroy() function, 370
imagefilledrectangle function, 370
image-handling functions, 369–374
imagejpeg() function, 370, 373
imageline function, 370
imagerectangle function, 370

Index 753

images
adding, 52
HTML5 image additions

figures and captions, 183–184
overview, 183
picture element, 184–185

image maps, 182–183
linking, 181–182
overview, 177
placing, 178
styling, 179–181

images property, 227
imagestring function, 370
imageSX() function, 373
imageSY() function, 373
imageupload.html file, 372
img element, 178
 tag, 178, 181–185, 373
implode function, 356
in absolute units of measurement, 114
IN operator, 731
in text, 273
include() function, 320–323, 339, 382, 409, 545
Include directive, 41
.inc.php file extension, 410
incrementor operations, 319
incrementor operator (++), 208, 220
index, 206
index controller method, 725
index method, 725
INDEX privileges, 483
index table, 492
index variable, 220
index.ctp folder, 725
index.ctp template file, 726
indexed sequential access method (ISAM), 454
index.html default web page, 90
index.php file, 65, 382, 582–583, 590, 591, 594, 595,

676, 690
informational messages, 11
Informix library, 542
Ingres library, 542
inheritance, 414
IniFilePath registry key name, 46
initializing applications, 716–718

inline. See text-level elements
inline style sheet method, 110
inline styling, 14, 75
INNER JOIN join type, 529
innerHTML DOM object, 629
innerHTML object, 235
innerHTML property, 230, 235, 237, 239, 274
innochecksum tool, 466
InnoDB storage engine, 45–46, 456, 458, 461
innodb_data_file_path setting, 45–46
innodb_data_home_dir setting, 45
input element, 154
input fields

buttons, 145–146
check boxes, 141–142
file upload, 144–145
hidden fields, 143–144
overview, 138
password entry, 140
radio buttons, 142–143
text boxes, 138–140

input fields, additional, 150–154
input form field, 155
input form field element, 138
input interfaces, 135
<input> tag, 149, 150
inputtypestest.html web page, 151
in-range pseudo-classes, 109
ins elements, 86
INSERT keyword, 453
INSERT privileges, 483
INSERT statement, 514, 515, 549, 551, 554,

567, 570
.insertAfter() function, 260
.insertBefore() function, 232, 260
inset keyword, 168
instantiate, 397
int data type, 451
intdiv function, 362
integer data types, 550, 566
integers, 463
integrated development environments (IDEs), 64–67,

77, 117
integration testing, 616
integrity attribute, 246

754 PHP, MySQL & JavaScript All-in-One For Dummies

intermediate property, 241
internal style sheets, 110, 111
internal styling, 14
Internet. See World Wide Web
Internet Information Services (IIS), 22, 28
interoperability, 712
interpreted programming languages, 23, 349
invalid pseudo-class, 109, 155
inventory property, 397, 405, 415
inverted-colors attribute, 173
is null data constraint, 451
is_bool() function, 360, 389
is_finite function, 362
is_float() function, 360, 389
is_infinite function, 362
is_int() function, 360, 389
is_nan() function, 362
is_null() function, 360, 389
is_numeric() function, 389, 391
is_numeric function, 360
is_string() function, 389
ISAM (indexed sequential access method), 454
isLocal setting, 630
ISO (Organization of International Standards), 9, 367
isolation, 460–461
isset() function, 345, 347, 427
italic text, 9
Item action link, 731
Item class, 576, 579
item information, 564
Item object, 573, 579, 599, 645

adding items, 611–614
deleting items, 607–608
listing items, 606–607
overview, 606
searching for items, 614
updating items, 608–611

item1 variable, 237
item2 variable, 237
itemid data field, 566
itemid property, 573
itemid value, 611, 614
item.php file, 579

items
adding, 611–614
deleting, 607–608
listing, 606–607
searching for, 614
updating, 608–611

items controller, 724
Items sub-folder, 725
items table, 729
Items template, 725
ItemsController class, 727
ItemsController.php file, 724, 729, 732
ItemsTable.php file, 730, 732

J
j code, 366
J#.NET, 23
Java Development Kit (JDK), 63, 66
Java programming language, 22
Java Runtime Environment (JRE), 63, 66
Java Server Pages (JSP), 22
Java Server Pages.Active Server Pages (JSP.ASP)

programs, 22
JavaScript

AJAX, communicating with using, 623–629
basics of, 203–209
CLI and, 289
client browser and, 152
defined, 19–20
DOM and

DOM tree, 224–229
object methods, 232–233
object properties, 229–232
overview, 223–224

DOM form data
check boxes, 240–241
overview, 235–238
radio buttons, 241
text areas, 239–240
text boxes, 238–239

downloading code, 20
elements, finding, 233–238
embedding code, 199

Index 755

events and
event listeners, 275–276
keystrokes, listening for, 273–275
mouse events, listening for, 269–273
overview, 267
web page, loading and unloading, 267–269

functions of, 20, 220–222
issues, troubleshooting, 67
jQuery and, 263–266
language of, 23
overview, 197, 223
program editor, free, 61
program flow, controlling

conditional statements, 209–216
loops, 216–220
overview, 209

reasons for using, 197–1998
troubleshooting programs, 283–289
using in XML, 640–643
web pages, creating using, 696

JavaScript Object Notation (JSON), 538, 620
JDK (Java Development Kit), 63, 66
jEdit, 63–64
jhovertest.html file, 279
jkeytest.html file, 281
joins, 529–531
jointype parameter, 529
JPEG image type, 178
jQuery

animation, using, 261
DOM, changing, 259
elements, finding, 247–250
events, and, 276–282
functions of, 247
JavaScript and, 263–266
language of, 20–21
overview, 243–244
replacing, 250–254
styles, changing, 254–259
website for, 244

jQuery() function, 247
jQuery AJAX library, 629–635
jQuery library, 244–247
jquery2.html file, 251

jquery4.html file, 257, 258, 261
jquery5.html file, 259
jquery6.html file, 261
JRE (Java Runtime Environment), 63, 66
.js file, 203
JSON (JavaScript Object Notation), 538, 620
jsonp setting, 630
jsonpCallback setting, 630
JSP (Java Server Pages), 22
JSP.ASP (Java Server Pages.Active Server Pages)

programs, 22

K
kbd elements, 86
KDE (K Desktop Environment) editor, 60–61
key topics, 1
keydown() event, 277
keygen form field element, 138
keypress() event, 277
keystrokes, listening for, 265, 273–275
keytest.html code, 280
keyup() event, 277
keywords, 452–453

L
L code, 366
l code, 366
l4z_decompress tool, 466
label element, 139
LAMP (Linux, Apache, MySQL, and Perl), 35, 474
Lamport TeX (LaTeX), 538
lang(language) pseudo-classes, 109
Laplace statistical values, 364
Laravel package, 707
large absolute keywords, 115
larger relative keywords, 115
large-scale database environments, 30
largestring, 360
Larsson, Allan, 454
lastChild property, 230, 236
last-child pseudo-classes, 108, 109
lastModified property, 227
lastname data field, 505, 566

756 PHP, MySQL & JavaScript All-in-One For Dummies

lastname property, 572
last-of-type pseudo-classes, 109
LaTeX (Lamport TeX), 538
latin1 character set, 494
latin1_general_ci collation, 494
latin1_general_cs collation, 494
Lavato, James, 364
layout

coding
overview, 582
support files, creating, 587–592
web page template, creating, 582–587

designing, 579–581
lcfirst function, 355
LEFT JOIN join type, 529, 530
left position value, 131
left property, 128, 130
length property, 207, 274
Lerdorf, Rasmus, 29
less than (<), 385
li object, 237
 element, 92, 93
library files, downloading to server, 245–246
licensing restrictions, 187
lighthttpd server, 28
light-level attribute, 173
LIMIT modifier, 454
line numbering, 54, 61
linear gradients, 164–165
linear-gradient() function, 164
link() method, 700, 727, 729, 733
link pseudo-classes, 108, 109
<link> tag, 15, 110, 175
links, 594
links property, 227
linktest2.php file, 341, 342
linktest.html web page, 341
Linux, Apache, MySQL, and Perl (LAMP), 35, 474
Linux environment, 33–36, 42, 60–61, 188, 466, 493
Linux Mint, 33
Linux package managers, 703
liquid layout, 134
list attribute, 150, 239
list_items_won.ctp file, 731, 732

listbidder.inc.php code, 596
listbidders value, 595
listbidders.inc.php file, 595–596, 607
listbox_dblclick() function, 596
Listen directive, 42
listitems.inc.php file, 606–607
listItemsWon() method, 727, 729
lists

description, 95–96
ordered, 93–95
overview, 92
unordered, 92–93

literals, 453
LOAD DATA INFILE statement, 539
LoadModule directive, 43
loads, 268
loadtest.html file, 268
localhost host name, 658
Location message, 615
LOCK TABLES privileges, 483
locking, 460–461
--lock-tables export, 533
log function, 363
log1p function, 363
log10 function, 363
logarithmic functions, 363
LogFormat directive, 44
logic control
else statement, 328
elseif statement, 328–330
if statement, 326–327
overview, 325
switch statement, 330–331

logic tier, 693
logical operations, 320
login session cookie, 590, 591
logistic statistical values, 364
LogLevel directive, 44
logout value, 615
logout.inc.php file, 615
logs, calculating exponents and,

362–363
long-term data storage, 419
loop attribute, 189, 193

Index 757

looping
foreach statement, 334–336
overview, 331
for statement, 333–334
while statement, 331–333

lower-level rule, 15
low-level detailed message, 43
ltrim function, 355
Lumen frameworks, 710–711

M
m code, 366
M code, 366
Mac, Apache, MySQL, and PHP (MAMP), 37, 38,

44, 474
Mac environments, 33, 36–37, 466, 493
macOS, 57–59
magic class methods

accessor, 403–406
constructor, 406
destructor, 407
mutator, 401–402
objects, 408–409
overview, 401

<main> element, 583, 584
main.inc.php file, 584, 590, 591
maintenance features, 30
make attribute, 640
make value, 628
MAMP (Mac, Apache, MySQL, and PHP), 37, 38,

44, 474
margins, 16, 120
MariaDB, 31, 36, 470
mark elements, 86
markup languages, 9, 75
math functions, 361–364
math operators, 207–208
matrix(a,b,c,d,e,f) effect, 179
max attributes, 151
max function, 362
max_execution_time default settings and value, 49
Max-Age=number attribute, 423
max-aspect-ratio attribute, 173
max-color attribute, 173
max-color-index attribute, 173

MaxDB library, 542
max-device-aspect-ratio attribute, 173
max-device-height attribute, 173
max-device-width attribute, 173
max-height attribute, 173
maxLength property, 239
max-monochrome attribute, 173
max-resolution attribute, 173
max-width attribute, 174
max-width property, 689
.mdb file, 447
media, 663
media queries, handling

@media command, using, 171–172
multiple style sheets, applying, 175
overview, 170–171, 172–175

media support, 17
MediaWiki Table, 538
medium absolute keywords, 115
members, 396
memory_limit default settings and

values, 49
menus, adding, 52
message property, 296
<meta> tag, 91
metadata, in header, 672
metadata category, 670
method attribute, 136, 137, 343, 630
micro-frameworks, 710–713
Microsoft Active Server Pages (ASP).NET, 22–23
Microsoft Azure, 32
Microsoft developers, 22
Microsoft Excel, 97
Microsoft Expression Web package, 51
Microsoft .NET 4.5, 471
Microsoft SQL Server, 25
Microsoft Windows

running, 53–57
server environments, 28

Microsoft Windows Servers, 25
MIDI (Musical Instrument Digital Interface), 187
MIME (Multimedia Internet Mail Extension), 186,

189, 351
mimeType setting, 630
min attribute, 151

758 PHP, MySQL & JavaScript All-in-One For Dummies

min function, 362
min-aspect-ratio attribute, 174
min-color attribute, 174
min-color-index attribute, 174
min-device-aspect-ratio attribute, 174
min-device-height attribute, 174
min-device-width attribute, 174
min-height attribute, 174
minified files, 244
min-monochrome attribute, 174
min-resolution attribute, 174
min-width attribute, 174
miscellaneous functions, 553, 554–560
mixed-case names, 569
mm absolute units of measurement, 114
mobile devices, support for, 700–701
model code, 731
model element, 640
model method, 686–688
Model sub-folder, 719
model–view–controller method. See MVC method
model–view–presenter (MVP) method, 692
model–view–viewmodel (MVVM) method, 692–693
modifiers, 453
mom-and-pop web-hosting companies, 33
money_format function, 355
Mongo library, 542
monochrome attribute, 174
monospace font, 113
month input element type, 151
more_results method, 553
Motion Picture Experts (MP3), 187, 189
Motion Pictures Expert Group (MPEG), 192
Motion Pictures Expert Group updated version

(MPEG-4), 192
mouse events

listening for, 269–273
watching, 264–265

mousedown() event, 277
mouseenter() event, 277
mouseleave() event, 277
mousemove() event, 277
mouseout() event, 277
mouseover() event, 277

mouseup() event, 277
.mov video formats, 192
Mozilla Foundation developers’ website, 162
.mp3 audio format, 187, 188
.mp4 video format, 187, 192
mSQL library, 542
multi_query method, 553
multimedia, HTML5 and

audio, playing, 185–190
images, 177–185
overview, 177
streamers, getting help from, 194
videos, watching, 190–194

multimedia clips, 52, 74
multimedia content, 10
Multimedia Internet Mail Extension (MIME), 186,

189, 351
multipart/form-data value, 145
multiple attribute, 149
multiple style sheets, applying, 175
multiple tables, querying from, 527–529
multi-server clustering, 30
multi-threading, 455
multitier architecture. See n-tier
multiuser databases, 460
Musical Instrument Digital Interface (MIDI), 187
mutator magic methods, 401–402
muted attribute, 189, 193, 194
MVC (model–view–controller) method

communicating in, 690–691
components of, 686–690
implementing, 694
n-tier and, 693–694
other web models, comparing, 691–693
overview, 683–685

MVP (model–view–presenter) method, 692
MVVM (model–view–viewmodel) method, 692–693
my_comment_mailer() function, 673
mybadmain.php program, 323
my.cnf filename, 44
myfont font family name, 170
myfont.woff font file, 170
my.ini filename, 44
MyISAM storage engine, 454–455, 456

Index 759

myisam_ftdump tool, 466
myisamchk tool, 466
myisamlog tool, 466
myisampack tool, 466
mypage.html file, 339
mypage.php file, 343
MySQL

administration tools
command line, 466–470
overview, 465–466
phpMyAdmin tool, 474–476
Workbench tool, 470–474

data permissions, 457
databases, 449–454
features of, 458–464
overview, 445
pros of, 26
storage engine, 456
user accounts, managing

creating, 477–481
overview, 477
user privileges, 481–488

utilities, 532
MySQL AB, 31
MySQL cloud server, 31
MySQL Cluster Carrier Grade Edition, 30
mysql command, 467, 468, 470, 478, 657
mysql command-line tool, 539
MySQL Community Edition, 30, 31
MySQL Console, 656
MySQL Enterprise Edition, 30
MySQL library

connection, closing, 545–546
data, retrieving, 547–549
database, connecting to, 544–545
errors, checking for, 551–553
example, 554–560
functions, miscellaneous, 553
overview, 544
prepared statement, 549–551
queries, submitting, 546–547

MySQL packages, installing, 37
mysql program, 469
MySQL server

customizing, 46
database, creating, 656
installing and running, 36
MariaDB and, 31
options for, 31
versions of, 30

MySQL server package, 33–36
MySQL Standard Edition, 30
mysql tool, 466
mysql> prompt, 657
mysqladmin tool, 466
mysqlbinlog tool, 467
mysqlcheck tool, 467
mysqld tool, 466
mysqld_multi tool, 466
mysqld_safe tool, 466
mysqldump export options, 535
mysqldump utility, 467, 533, 534, 539
mysqldumpslow tool, 467
mysqli instance, 546
mysqli object, 543, 545, 576
mysqli_ connect() function, 544, 545
mysqli_ prefix, 554
mysqli_ select_db() function, 544
MYSQLI_ASSOC parameter, 548
MYSQLI_BOTH parameter, 548
mysqli_close() function, 546
mysqli_error() function, 552–553
mysqli_fetch_all function, 547
mysqli_fetch_array() function, 547, 548
mysqli_fetch_assoc() function, 548
mysqli_fetch_assoc function, 547
mysqli_fetch_field() function, 547
mysqli_fetch_field_direct() function, 547
mysqli_fetch_object() function, 547
mysqli_fetch_row() function, 547, 548
mysqli_field_seek() function, 547
mysqli_free() function, 547
MYSQLI_NUM parameter, 548
mysqli_num_rows() function, 554
mysqli_query() function, 546, 547, 549
mysqli_stmt_bind_param() function, 550
mysqli_stmt_bind_result() method, 551
mysqli_stmt_fetch() method, 551

760 PHP, MySQL & JavaScript All-in-One For Dummies

mysqlimport tool, 467
MySQL/PHP packages, 32
mysqlpump tool, 467
mysql.server tool, 466
mysqlsh tool, 467
mysqlshow tool, 467
mysqlslap tool, 467

N
n code, 366
\n command shortcut, 310, 315, 469
name attribute, 136, 139, 140, 146, 182, 343, 344
name data field, 559, 566, 567
name property, 239, 241, 296
NATURAL INNER JOIN join type, 530
NATURAL keyword, 530
<nav> element, 78, 134, 583
nav.inc.php file, 587, 589–590, 605
Netbeans, 65–66
new attribute, 287
newbidder.inc.php file, 603–605, 617
newimage.jpg file, 373
newitem variable, 611
newitem.inc.php file, 612, 614
new-line characters, 309–310
next_result method, 553
nextSibling property, 230, 235–238
nginx server, 28
nl2br() function, 355, 356
Node.js library, 23
nodeName property, 230
nodeType property, 230
nodeValue property, 230, 641
none element, 259
none position value, 131
non-PHP applications, 712
nopager command, 469
normal forms, 490
normal statistical values, 364
NOT NULL data constraint, 504–505, 509,

516–517
NOT operator, 48
notee command, 469

Notepad, 53–54
Notepad++, 62
notice error level, 43
not(selector) pseudo-classes, 109
novalidate attribute, 136
nowarning command, 469
nth-child pseudo-class, 124
nth-child(n) pseudo-classes, 109
nth-last-child(n) pseudo-classes, 109
nth-of-type(n) pseudo-classes, 109
n-tier, MVC and, 693–694
NULL characters, 355
NULL startdate value, 517
NULL value, 425, 551, 576, 579
num_rows property, 554
number input element type, 151
number theory, 361–362
number variable, 221
number_format function, 355
numbered lists. See ordered lists
numbers, 205
Numbers application, 97
numeric array, 315–316, 548
numeric character reference, 91

O
O code, 366
o code, 366
object instance, creating, 397–401
object methods, 232–233
object properties, 229–232
object-oriented application

database, creating, 571
events

bidder object, 595–605
item object, 606–614

layout
coding, 582–587, 588–592
designing, 579–582

logging out of, 614–616
objects

coding in PHP, 573–579
designing, 571–573

Index 761

overview, 563, 593
programming, event-driven, 593–594
requirements for, 563–565
testing, 616–617

object-oriented data method, 687
object-oriented database management system

(OODBMS), 687–688
object-oriented programming (OOP)

basics of, 395–401
classes

extending, 414–418
loading, 409–414

magic class methods
accessor, 403–406
constructor, 406
destructor, 407
mutator, 401–402
objects, 408–409
overview, 401

overview, 395
splitting, 683
writing, process of, 571

object-relational mapping (ORM), 686, 707
objects

coding in PHP, 574–579
copying, 408
defined, 207
designing
Bidder object, 572
Item object, 573
overview, 571

displaying, 408–409
objects list, 482
OCI8 (Oracle database server), 542
OCI8 library, 542
ODBC (Open Database Connectivity), 543
offsetx parameter, 167
offsety parameter, 167
.ogg audio file, 187
Ogg Theora, 192
.ogg video format, 192
Ogg Vorbis, 187–189
ol element, 93
on() function, 280

ON condition clause, 529
on part, 276
onafterprint event, 266
onbeforeprint event, 266
onbeforeunload event, 266, 269
onclick attribute, 145, 251
onclick event, 265, 270, 276
oncontextmenu event, 265
ondblclick event, 265
one value, 161
onerror event, 266
one-sided elements, 74
one-way encryption algorithm, 568
onhaschange event, 266
onkeydown event, 265
onkeypress event, 265
onkeyup event, 265, 273
online material, 3–4
onload event, 266, 267, 268, 269
only-child pseudo-classes, 109
only-of-type pseudo-classes, 109
onmessage event, 266
onmousedown event, 265
onmouseenter event, 265
onmouseleave event, 265
onmousemove event, 264, 265
onmouseout event, 265, 272, 273
onmouseover event, 265, 272, 273, 293, 294
onmouseup event, 265
onoffline event, 266
ononline event, 266
onpagehide event, 266
onpageshow event, 266
onpopstate event, 266
onreadystatechange callback function, 628
onreadystatechange property, 624–625
onresize event, 266
onsale property, 415
onscroll event, 266
onstorage event, 266
onunload event, 266, 267, 269
OODBMS (object-oriented database management

system), 687–688

762 PHP, MySQL & JavaScript All-in-One For Dummies

OOP (object-oriented programming). See object-
oriented programming

ooptest1.php file, 400
ooptest3.php file, 413
ooptest4.php code, 418
opacity, 117
opacity value, 117
open() method, 622
Open Database Connectivity (ODBC), 543
OpenDocument Spreadsheet, 538
OpenDocument Text, 538
opening tag, 74
open(method,url,async,user,pass)

method, 622
open-source community, 29, 31
open-source library, 364
open-source packages, 37
OpenType front file formats, 169
operating system (OS), 22, 28
operators, 207–209, 317–320
<option> element, 149
optional pseudo-classes, 109
options category, 670
options DOM object, 629
OPTIONS request, 11
or operators, 319
OR statement, 552
Oracle

acquisition of by Sun, 65
cloud service, providing, 31
features of, 25
MySQL package and, 470
website for, 63

Oracle Cloud Platform, 32
Oracle database server (OCI8), 542
ORDER BY clause, 526
ORDER BY modifier, 454
ordered lists, 93–95
orderid value, 491, 528–529
Orders table, 449–450, 458
organization, 702
Organization of International Standards (ISO), 9, 367
orientation attribute, 174
ORM (object-relational mapping), 686, 707

OS (operating system), 22, 28
out text, 273
outer joins, 529
out-of-range pseudo-classes, 109
output, displaying, 307–309
output data, 525–527
output form field element, 138
output variable, 274
output_buffer setting, 425, 615
outputs, styles for, 16
overflow-inline attribute, 174
overloading, 401
overriding, 401

P
\p command shortcut, 469
\P command shortcut, 469
<p> element, 83, 105, 118, 225, 235
package management, frameworks and, 703
padding element section, 119
padding property, 124
page definition, 76–78
page sections, 78–81
pager command, 469
pages, 663
Pages application, 53
pagination, 707
parent class, 414–415, 673
parent div element, 134
parent:: keyword, 415
_parent attribute, 87
parentNode property, 230
parseinput.html file, 357, 358
parseoutput.php file, 358, 359
password data field, 567
password entry, 140
--password export, 533
password input field, 140
--password parameter, 468
password setting, 630
PATCH request, 11
Path=path attribute, 423
pattern matching, 712

Index 763

pattern property, 239
pc absolute units of measurement, 114
PCRE (Perl Compatible Regular Expressions), 361
PDF (Portable Document Format), 538
PDO (PHP Data Objects), 543
PECL (PHP Extension Community Library), 354
percentages, 287
Perl, 22, 23, 38
Perl Compatible Regular Expressions (PCRE), 361
perror tool, 467
persistent attack, 379
persistent cookie, 421–422, 425–426, 431
persistent data, storing, 419–424
Personal Home Page (PHP). See PHP
phone data field, 566
Phone Numbers table, 491
phone property, 572
Photoshop, 183, 369
PHP (Personal Home Page), 29

behavior of, 350
benefits of, 303–304
code for, 61, 305–306, 696
coding objects in, 573–579
files, including, 320–324
OOP

basics of, 395–401
classes, 409–418
magic class methods, 401–409
overview, 395

operators, using, 317–320
overview, 23, 303
pages, 306–307
program flow, controlling

event-driven PHP, using, 339–348
functions, building, 336–339
logic control, using, 325–331
looping, 331–336
overview, 325

quotes and, 314
scripts, communicating with databases from,

541–544
security

cross-site scripting, 376–379
data, invalid, 380–382

data spoofing, 379–380
file access, unauthorized, 382–383
overview, 375–376
solutions, 384–394

sessions and, 430–436
tools, 29
using in XML, 636–640
variables, using, 310–317
versions, 29
web pages, adding, 305–310

PHP Data Objects (PDO), 543
PHP Extension Community Library (PECL), 354
.php file, 306, 307, 309, 341
PHP framework

convention, 696–697
form validation, 700
helper methods, 700
mobile devices, support for, 700–701
overview, 695–696
routing, 699–700
scaffolding, 698–699
templates, 701
unit testing, 701–702

PHP libraries
extensions, using, 349–354
functions

date and time, 365–369
image-handling, 369–374
math, 361–364
text, 354–361

overview, 349–350
PHP packages, 36–37
PHP server, 29–30, 36, 43
<?php tag, 305–306, 309, 431
php_gd2 extension, 369, 371
php_mysqli library, 543, 545, 554
php_name format, 353
phpdatatest.php program, 313
phpinfo() function, 47, 351, 352, 353
php.ini configuration file, 615
php.ini file, 46, 47, 48, 353, 354, 379
PHPIniDir directive, 46
phpmyadmin database, 484, 488

764 PHP, MySQL & JavaScript All-in-One For Dummies

phpMyAdmin tool, 474–481, 497–500, 508–512,
522–524, 536–540

PHPRC system environment variable name, 46
PHPSESSID value, 433, 435
phptest.php file, 308, 309
pi function, 362
<picture> tag, 185
pixels, 158–159
placeholder attribute, 154–155, 239
plugin category, 670
plugins, 185, 476, 652, 654, 671–673
Plugins API library, 671
pointer attribute, 174
pointers, 235, 272–273
Poisson statistical values, 364
poly shape value, 182
popular framework, focusing on, 704–710
pop-up messages, 19
Portable Document Format (PDF), 538
Portable Operating System Interface for UniX

(POSIX), 361
position property, 128
positioning properties, 128
POSIX (Portable Operating System Interface for

UniX), 361
POST data, 344
POST method, 347, 379, 600, 622–623, 690
POST request, 11
poster attribute, 193
PostgreSQL library, 26, 542
posts, 654, 663
pound symbol (#), 91, 105
pow() function, 363
preload attribute, 189, 193
pre-loaded packages, 38
premade servers, 37–40
prepare phase, 459
prepared statement, 549–551, 554–560
.prepend() function, 260
.prependTo() function, 260
presentation tier, 693
previousSibling property, 230, 236
price property, 415
primary key, 451, 490, 500

print command, 469
print media type, 173
private keyword, 397
private visibility, 401, 402, 416
privileges list, 482
procedural programming, 264
procedural style coding, 551
PROCESS privileges, 483
processData setting, 630
Product class, 397, 398, 405, 406, 408–409, 413
productid value, 491
Product.inc.php file, 413
Products table, 449–450, 458, 490
program editors, 61–64
program execution, 64
program flow

controlling
conditional statements, 209–216
event-driven PHP, using, 339–348
functions, building, 336–339
logic control, using, 325–331
looping, 331–336
loops, 216–220

defined, 325
overview, 209

programming languages
interpreted, 23, 349
providing APIs, 455
server-side, 28

project management, 64
prompt() function, 215, 219, 223, 235
prompt command, 469
properties, 254–256
proprietary codes, 9
proprietary software plug-ins, 10
proprietary word-processing packages, 7, 9
protected keyword, 397
protected visibility, 414, 415
protocol format, 90
PROXY privileges, 483
pseudo-class, 104, 107–110
pseudo-elements, 104, 106–107
pt absolute units of measurement, 114

Index 765

public class methods, 415
public keyword, 397
push() method, 207
PUT request, 11
putonsale() method, 414
px absolute units of measurement, 114
Python, 22, 23

Q
\q command shortcut, 468, 469
q elements, 86
queries

advanced, 527–531
defined, 453
submitting, 546–547, 554–560

query() method, 546–547
query parameter, 546
Query1 panel, 474
quick export, 537
quicktags category, 670
QuickTime, 186, 192
quirks mode, 75
quit command, 469
quotes, PHP and, 314

R
r code, 366
\r command shortcut, 468
\R command shortcut, 469
.ra audio file, 187
rad2deg function, 363
radial gradients, 165–166
radial-gradient() function, 165
radio buttons, 142–143, 241
radio input type, 142
radius value, 158
rand() function, 329, 336, 362
range input element type, 151
RangeError error, 296
readonly attribute, 110, 146
readOnly property, 239
read-only pseudo-classes, 109

read/write database cluster, 30
read-write pseudo-classes, 110
ready() event, 277
.ready() function, 249
readyState property, 624
real_escape_string method, 553, 554
RealAudio, 186, 187
real-time information, 582
realtime.php file, 645, 648
RealVideo, 192
rect shape value, 182
recursive acronym, 23
Red, Green, and Blue (RGB) hexadecimal values,

116, 162
Red Green Blue Alpha (RGBA), 117
Red Hat, 33, 35, 36
redirection, 11
ReferenceError error, 296
REFERENCES privileges, 483
reflected attack, 378
register_ globals setting, 379, 380
register_widget() method, 674
regular expressions, 361
rehash command, 469
related documents, linking, 8
relational data method, 686
relational databases, 449–450
relative address, 89
relative keywords, 115
relative positioning method, 130
relative units of measurement, 114, 115
RELOAD privileges, 483
rem unit of measurement, 115
.remove() function, 260
removeAttribute(attr) method, 232
removeBidder method, 572
removebidder.inc.php file, 597, 600
removeChild(object) method, 232
.removeClass(class) function, 257
.removeEventListener() function, 276
removeItem methods, 573
removeitem.inc.php code, 607–608
RENAME COLUMN old TO new action, 503
RENAME TO new action, 503

766 PHP, MySQL & JavaScript All-in-One For Dummies

repeat parameter, 161
replaceChild(object) method, 232
REPLICATION CLIENT privileges, 483
REPLICATION SLAVE privileges, 483
require() function, 323–324
required attribute, 155, 239, 241
required pseudo-classes, 110
resaleprice property, 566, 573
reset field, 145
reset input field type, 145
resize() event, 277
resolution attribute, 174
resource handle, 546
responseText property, 624
responseXML property, 624, 639, 641, 643, 648
REST category, 670
REST principles, 707
restock() method, 415, 418
result set, 525
result variable, 222
return statement, 221, 337, 408
reusable code, 703
reversed attribute, 94
rewrite category, 671
rewrite rules, 690
RGB (Red, Green, and Blue) hexadecimal values,

116, 162
rgb() function, 117, 162
RGBA (red green blue alpha), 117
rich text files (.rtf), 57
RIGHT JOIN join type, 529, 530
right position value, 131
.rm video formats, 192
rollback method, 553
root pseudo-classes, 110
root user account, 34, 36, 457, 475, 477
rotate(angle) effect, 179
round parameter, 161
routing, 690, 699–700
routing table, 712
row-level locking, 461
rows, columns and, 97–99
rows attribute, 146
Rows matched field, 517

rows property, 240
rowspan attributes, 100
RSS news feeds, 655
.rtf (rich text files), 57
rtrim function, 355
rule of thirds, 580
rules, styling, 104–112
Run to Cursor control icon, 292

S
S code, 366
s code, 366
\s command shortcut, 469
s data type value, 550
SameSite cookie type, 421
SameSite=setting attribute, 423
samp elements, 86
sample resolution, 186–187
sampling rate, 186–187
sans-serif font, 113
SAP (Systems Applications and Products)

software, 542
saveBidder() method, 572, 605
saveItem() method, 573, 614
saveXML() method, 638, 640
scaffolding, 698–699, 721–725
Scalable Vector Graphics (SVG) front file formats, 169
scale(x,y) effect, 179
scaleX(x) effect, 179
scaleY(y) effect, 179
scan attribute, 174
Scintilla, SciTE and, 62–63
screen media type, 173
screen.width global property, 689
script element, 199
script pane, 291
<script> element, 203, 245–246, 305–306, 378, 388
scriptCharset setting, 630
scriptheadtest.html code, 200
scripting attribute, 174
scripting language, 19
scroll() event, 277
scrollbars, 23

Index 767

search engine optimization (SEO), 690
search input element type, 151
second normal form, 491
<section> element, 78, 134, 583
Secure attribute, 423
Secure cookie type, 421, 425
select() event, 277
select closing tags, 147
select element, 147
select form field element, 138
SELECT format, 525
SELECT keyword, 453
select opening tags, 147
SELECT statements

aliases and, 531, 560
Bowlers and, 559
building, 731
clauses, adding, 526–527
example, 547–548
format of, 525
join, using, 529
submitting, 551
testing, 530
verifying mistakes using, 518

select_db() method, 545
<select> list box, 597
<select> tag, 148, 149
selection pseudo-element, 107
selector, 104, 254, 280
_self attribute, 87
self-signed certificate, 42
semicolon symbol (;), 91
semitransparent colors, 17
send() method, 622–623
send(string) method, 622
SEO (search engine optimization), 690
series, 312
serif font, 113
server default values, 498
server environment, 33–37
server-side application code, 693
server-side data validation, 381–382
server-side programming, 18, 21–25, 28, 320, 620

service support levels, 32
Session cookie type, 421
session cookies, 421–435
session data, 431–436
session ID, 691
session_destroy() function, 436
session_start() function, 431, 436, 583
session_unset() function, 436
sessions

defined, 420
overview, 419
persistent data, storing, 419–424
PHP and, 436–442
shopping carts and, 436–442

sessiontest1.php web page, 433
sessiontest2.php file, 435
sessiontest2.php web page, 433
set() method, 729
__set() mutator method, 402
Set Next Statement control icon, 292
set_charset method, 553
setAttribute(attr) method, 232
setcookie() function, 424, 425, 426
Set-Cookie statement, 422
setInterval() function, 649
setRequestHeader() method, 622
setters, 401
setting values, 44
settings category, 671
SGML (Standard Generalized Markup Language), 9
SHA2() function, 567–568, 570
shadows, adding, 166–168
shape parameter, 165
Shockwave Flash, 187
shopping carts, sessions and, 436–442
short open tag, 306
short_open_tag default settings and values, 49
shortcode category, 671
short-term data storage, 419
.show() function, 259
SHOW CHARACTER SET statement, 494
SHOW COLLATION statement, 494
SHOW CREATE DATABASE statement, 493–494

768 PHP, MySQL & JavaScript All-in-One For Dummies

SHOW CREATE TABLE statement, 505, 514
SHOW CREATE TABLES statement, 502
SHOW DATABASES statement, 483, 493
SHOW GRANTS statement, 484
Show Next Statement control icon, 292
SHOW TABLES statement, 502
SHOW VIEW privileges, 483
showbidder.inc.php file, 690
SHUTDOWN privileges, 483
side1 variable, 208
side2 variable, 208
sidebars (gray boxes), 2
sin function, 363
single quote (’), 385
sinh function, 364
site visitors, 25
size attribute, 139, 148
size keyword, 114
size parameter, 165
size property, 239
skew(x,y) effect, 179
skewX(x) effect, 179
skewY(y) effect, 179
slice value, 160
slide bars, 23
Slim files, 244
Slim frameworks, 711–712
Slug, 667
small absolute keywords, 115
small elements, 86
smaller relative keywords, 115
SND (SouND), 187
.snd audio file, 187
social media, 651
Social Security numbers (SSNs), 140
socket files, 45
socket setting, 45
Soda class, 414, 418
software, downloading, 655–656
software bugs, 701
solid border property value, 122, 124
SouND (SND), 187
source code packages, 33

source command, 469
<source> tag, 188, 189
space parameter, 161
special characters, 91–92
special margins, 9
special styling, 79
specific file-naming convention, 696
specific font name, 113
specific URL, 628
speech media type, 173
speed of development, 702
spl_autoload_register() function, 410
spot variable, 237
spread value, 168
SQL (Structured Query Language), 452–454

injections, 382, 704
statements, 532

SQL CREATE TABLE statement, 510
SQL Server, 25
SQL Wizard, 520
sql_mode value, 516
SQLite library, 542
SQLite3 library, 542
SQLSRV library, 542
sqrt function, 362
Squarespace, 52
src attribute, 178, 186, 189, 194, 203
src folder, 718–719
SRI (Subresource Integrity), 246
SSNs (Social Security numbers), 140
standard anchor element, 185
Standard Generalized Markup Language (SGML), 9
standard network communication channel (TCP

port 80), 10
start attribute, 94
startdate data field, 491
startdate index table, 492
startdate values, 492
state variable, 293
statement1 parameter, 334
statement1 statement, 217
statement2 parameter, 334
statement2 statement, 217

Index 769

static positioning method, 130
static web pages, 17, 25, 32, 43, 666
static websites, 712
statistical functions, 364
statistical values, 364
statistics, tracking, 364
status command, 469
status property, 624
statusCode setting, 630
statusText property, 624
Step Into control icon, 292
Step Out control icon, 292
Step Over control icon, 292
storage engine, 456
stored procedures, 461–463
storemapname attribute, 183
storing content, 25–26
str_getcsv() function, 356, 357, 359
str_replace function, 355
str_split function, 356
str_word_count function, 360
strcasecmp function, 360
strcmp function, 360
streamers, 194
stretch parameter, 161
STRICT_ALL_TABLES value, 516
string data, 387, 550
string operators, 320
string values

altering, 354–356
assigning, 314
comma-separated, 635
merging, 320
objects and, 636
quotes and, 270
searching, 360–361
splitting, 356–359
testing, 209, 359
valid, testing, 391

strings, 205
strip_tags function, 355, 356
strlen function, 360
strncmp function, 360

strong elements, 86
strtolower function, 355
strtotime() function, 367–369
strtoupper function, 355
Structured Query Language. See SQL
style attribute, 75, 110, 111, 178
style definition, 14
style features, 16
style levels, 15
style object, 256
style property, 230
style sheets, 14–16
<style> tag, 110
styling

changing styles, 254–259
CSS standards, 16–17
overview, 14–16, 103–104
rules of, 104–112
tables, 121–125
text, 112–119

sub elements, 86
submit() event, 277
submit form field element, 138
submit input, 145, 146
Subresource Integrity (SRI), 246
substring, 360
success setting, 631
Sun Microsystems, 31, 65, 66
sup elements, 86
SUPER privileges, 483
Supercookie cookie type, 421
support files, 587–592
SVG (Scalable Vector Graphics) front file formats, 169
.swf audio file, 187
switch statement, 213–216, 330–331
switchtest.html code, 215
Symfony framework, 708–709
synchronous (false) connection, 622
syntax error marking, 61
SyntaxError error, 296
system testing, 616
systemctl utility, 35
Systems Applications and Products (SAP)

software, 542

770 PHP, MySQL & JavaScript All-in-One For Dummies

T
t code, 366
T code, 366
\T command shortcut, 469
\t command shortcut, 469
t statistical values, 364
t1 alias, 531
t2 alias, 531
--tab export, 533
table alias, 531
table data, 123–125
table element, 95, 122
table features, 503–505
table header (th) elements, 99, 100, 122, 124
table headings, 99–101
<table> element, 96
table1 parameter, 529
table2 parameter, 529
table-level locking, 461
tables, 96–101, 121–125, 449–450, 500–512
tags, 9, 73–75, 654
tan function, 363
tanh function, 364
.tar file, 656
target attribute, 87, 136
target pseudo-classes, 110
.tar.gz link, 656
TCP port 80 (standard network communication

channel), 10
td element, 97, 99, 122
<td> element, 97, 100
tee command, 469
tel input element type, 151, 153
Template sub-folder, 719
template-based sites. See web-hosting sites
templates, 701, 715–720
Ternary operator (?), 211
test variable, 204
text, 85–90, 112–119, 250–252

alignment, 16
colors, 14, 16
fonts, 14, 16, 354–361
shadows, 166–167
size, 14, 16

.text() function, 250, 252
text areas, 146–147, 239–240
text attribute value, 139
text boxes, 138–140, 238–239
text codes, 9
text data type, 451, 566
text editors

Linux, 60–61
macOS, 57–59
Windows, 52–57

text values, 640
text-align property, 124
textarea object, 239–240
<textarea> element, 138, 147, 281, 344
text-based browser, 178
text-based document-formatting system, 8
text-based interactive interface. See command line

interface (CLI)
textbox input element, 238
textbox object, 239
textbox properties, 239
TextEdit, 57–59
text-level elements, 85
text-shadow style property, 167
Texy! 538
th (table header) elements, 99, 100, 122, 124
theme customization category, 671
theme modification category, 671
themes, 654
third normal form, 491–492
third-party cookies, 421–422
third-party web hosting company, 653
three-color scheme, 163
three-digit status codes, 11–13
throw statement, 296, 297
time() function, 425
time elements, 86
time functions, date and, 365–369
time input element type, 151
time milliseconds, 649
timeout setting, 631
Times New Roman font, 113
timestamps, 367–368
title object. See also child objects

Index 771

title property, 227
<title> tag, 246
tmpdir setting, 45
to bottom direction, 164
to right direction, 164
to top direction, 164
.toggleClass(class) function, 257
tokyo_tyrant library, 542
tools

browser debuggers, 67–69
graphical desktop tools, 52
integrated development environments, 64–67
overview, 51, 53
program editors, 61–64
text editors, 53–57, 58–61
web-hosting sites, 52–53
word processors, 53

top property, 128, 130
_top attribute, 87
topics, key, 1
toString() method, 232
__toString() method, 408–409, 418, 572
tr element, 97, 122
<tr> element, 97
TRACE request, 11
traditional setting, 631
transactions, 458–459
transform property, 179
transients category, 671
translate(x,y) effect, 179
translateX(x) effect, 179
translateY(y) effect, 179
TRIGGER privileges, 483
triggers, 463
trigonometric functions, 363–364
trim() function, 355, 359
true (asynchronous) connection, 622
true value, 210, 240
TRUE value, 326, 345, 360, 361, 389, 392, 394
TrueType front file formats, 169
try code block, 295, 296, 298
try.catch statement, 295, 296, 297
tuple, 514
two values, 161

two-color scheme, 163
two-sided elements, 74
.txt file, 55, 60
type attribute, 94, 139, 173, 189, 239, 241, 631
TypeError error, 296
typetest.php file, 390–391, 393

U
U code, 366
\u command shortcut, 469
Ubuntu, 33–34, 707
ucfirst function, 355
ul element, 92, 237
uncompressed files, 244
undefined value, 204
underscores, 636
unencrypted connections (http), 90
Unicode, 90
Uniform Resource Identifier (URI), 13
Uniform Resource Locator (URL), 89, 678, 711–712
uninterruptable power supply (UPS), 461
unit testing, 616, 701–702
Unix systems, 22, 466, 493
unordered lists, 92–93
unset() function, 407, 436, 438, 615
update() method, 674
UPDATE keyword, 453
UPDATE privileges, 483
UPDATE statement, 514, 517, 518
updateBidder() method, 572, 603
updatebidder.inc.php file, 597, 601–602
update-frequency attribute, 174
updateItem() method, 573, 610, 611, 614
updateitem.inc.php code, 607, 608
updates, 663
UPS (uninterruptable power supply), 461
URI (Uniform Resource Identifier), 13
URIError error, 296
URL (Uniform Resource Locator), 89, 678, 711–712
url() function, 160
url input element type, 151
URL property, 227
url setting, 631

772 PHP, MySQL & JavaScript All-in-One For Dummies

USAGE privileges, 483, 484
use command, 469
USE statement, 501, 555, 569
usemap attribute, 182
--user export, 533
--user parameter, 468
user privileges, 481–488
user@location combinations, 477
user1 user account, 478, 484, 486
user2 user account, 486
userid data field, 567
username setting, 631
users, 664
USING keyword, 530
utf8 character set, 91–92, 494
utility scripts, 695

V
Vagrant, 707
.val() function, 253, 254
valid pseudo-class, 110, 155
valid state, 460
validate.inc.php file, 591
value attribute, 139, 144, 238, 254, 344
value property, 239, 241, 274
value3 variable, 208–209
valuelist data values, 514, 516
values, 74
var statement, 204
varchar data type, 451, 506, 566
variable-length character strings, 463
variables, 204, 310–316
variables_order default settings and value, 49
variable/value data pairs, 623, 690
veggie value, 316
vertical-align property, 124
vh unit of measurement, 115
video element, 192
<video> tag, 193
videos, 190–194
view() method, 697, 699
view component, 694
view controller method, 725

view methods, 688–689, 725
View sub-folder, 719
view.ctp folder, 725
views, 461–462
VirtualBox, 707
visited pseudo-classes, 108, 110
Visual Basic.NET, 23, 28
Visual C++ 2015 Redistributable, 471
visual output, 685
vmax unit of measurement, 115
vmin unit of measurement, 115
VMware, 707
vw unit of measurement, 115

W
W code, 366
w code, 366
\W command shortcut, 469
\w command shortcut, 469
W3C (World Wide Web Consortium), 9
walkingtest.html code, 237
WAMP (Windows, Apache, MySQL, and PHP), 37
Wampserver, 38
warn error level, 43
warning value, 106
warnings command, 469
watch pane, 291
WAV (Waveform Audio), 187, 189
.wav audio file, 187
web applications, dynamic, 23, 295, 376, 419,

651, 685
web browser, 8
web clients, 10–11
web development environment, 27, 33, 51–69
web folder location, 41–42
web fonts, 17, 113, 169–170
web models, comparing MVC with, 691–693
Web Open Font Format (WOFF) front file formats, 169
web pages

adding, 305–310
content, changing, 198
creating

HTML documents, retrieving, 10–13
markup languages, 9

Index 773

overview, 7–8
styling, 14–17
World Wide Web and, 8

designing, 580–581
dynamic, 17–25
JavaScript code, including in, 199–203
loading and unloading, 267–269
overview, 1
paying attention to, 266
static

hosting, 32
information, changing, 25
loading, 43
manual changes, 17

styles, changing, 198
template for, 582–587
videos, adding to, 192–194
Wikipedia, 32

web programming
overview, 7
storing content, 25–26
web pages, creating

dynamic, 17–25
HTML documents, retrieving, 10–13
markup languages, 9
overview, 7–8
styling, 14–17
World Wide Web and, 8

web scripting language, 18
web servers

adjustments, making, 41–49
client requests, responding, 11–13
options for, 31–40
overview, 27
requirements for, 27–31
software package, 10
web-hosting, 23

web-hosting companies, 23, 26, 30–33
web-hosting sites, 52–53
WebM video, 191, 192
.webm video formats, 192
website visitors, 28
websites, customizing

overview, 664–669
plugins, 671–673
widgets, 673–674
WordPress APIs, 670–671

Weebly, 52
week input element type, 151
Weinbull distributions statistical values, 364
welcome() function, 267
what you see is what you get (WYSIWYG) method,

52, 53
where() method, 731
WHERE clause, 517, 518, 526–527, 529, 531, 731
while() loop, 548
while statement, 331–333, 437
white space, 80
Widenius, Michael, 454
widget() function, 673, 675, 676
Widget API library, 671
widgets, 662, 673–679
widgets category, 671
width attribute, 174, 178, 186, 193, 194
width style property, 127
Wikipedia web page, 32
winbidder data field, 566, 573, 598, 610, 730
Windows, 36–37, 53–57, 466, 493
Windows, Apache, MySQL, and PHP (WAMP), 37
Windows servers, 25, 28
winprice data field, 566, 573
.wmv video format, 192
WOFF (Web Open Font Format) front file formats, 169
word processors, 53
word wrap, 54
WordPress

dashboard, examining, 662–664
installing, 655–662
overview, 651–652
running, 653
website

customizing, 664–674
parts of, 654–655

widgets, creating, 674–679
WordPress All-in-One for Dummies (Sabin-

Wilson), 669
wordpress folder, 656, 672, 676

774 PHP, MySQL & JavaScript All-in-One For Dummies

wordpress user account, 657, 658
WordPress.com commercial website, 653
WordPress.org nonprofit entity, 653
word-processing software packages, 53
Workbench tool, 470–474, 478–479, 495–497,

505–508, 519–522, 535–539
World Wide Web Consortium (W3C), 9
WP_Widget class, 673, 675
wp-config.php file, 658
wp-content folder, 676
wp-content/plugins folder, 672
wrap property, 240
write() method, 228–229, 232
writeln(text) method, 227
write(text) method, 227
WYSIWYG (what you see is what you get) method,

52, 53

X
XAMPP (Cross-Platform, Apache, MariaDB, PHP, and

Perl), 38–42, 47–49, 354, 470, 474, 656
xhr setting, 631
xhrFields setting, 631
XHTML (Extensible Hypertext Markup Language), 10,

74, 77, 538
x-large absolute keywords, 115
XML (Extensible Markup Language), 291, 351, 620,

635–643, 687–688
XML DOM, 636, 637
XMLHTTP ActiveX object, 621

XMLHTTP object, 620
XMLHttpRequest class

methods, 622–623
properties, 623–625

XMLHttpRequest object, 621–623, 628–629,
639, 641

XML-RPC category, 671
xmltest.php page, 643
xmltest.php program, 641
xor operators, 319
x-small absolute keywords, 115
XSS (cross-site scripting), 376–379, 704
xx-large absolute keywords, 115
xx-small absolute keywords, 115

Y
Y code, 366
y code, 366
YAML (YAML Ain’t Markup Language), 538, 708
Yii frameworks, 713

Z
z code, 366
Z code, 366
Zend Framework, 29, 709–710
zf tool, 709
.zip file format, 656
zlib_decompress tool, 467

About the Author
Richard Blum has been a network and systems administrator for more than 30
years for a large government organization. During this time, he has had the
opportunity to support Microsoft, Unix, and Linux servers, and write support pro-
grams in C/C++, Java, Unix/Linux shell scripts, PHP, and the .NET platform. Rich
is also an instructor for a worldwide online course provider, with more than ten
years of experience teaching PHP, JavaScript, HTML5, and CSS3 programming
courses, as well as a Linux administration course in an adult continuing educa-
tion environment used by community colleges. Rich also volunteers for nonprofit
organizations doing computer and audiovisual support. When he’s not busy being
a computer nerd, Rich enjoys his time helping out at his church Friendship Bible
Study and English as a Second Language groups, and spending time with his wife,
Barbara, and two daughters, Katie Jane and Jessica.

Dedication
To all the students, readers, and coworkers who have forced me to continue learn-
ing new things by asking questions. Never stop asking questions!

“Great are the works of the LORD, studied by all who delight in them.”

—Psalm 111:2 (ESV)

Author’s Acknowledgments
First, all praise and glory go to God, who through His Son makes all things possi-
ble and gives us the gift of eternal life.

Many thanks go to the great team at John Wiley & Sons for their help and guidance
throughout the development of this book. Special thanks to Steve Hayes for offer-
ing me the opportunity to work on this project and to Elizabeth Kuball for helping
keep me focused and the project on track. Also, many thanks to Jack Shepler, the
technical editor. This book is a true team effort, and I’ve had an excellent team to
work with. I’d also like to thank Carole Jelen at Waterside Productions for helping
arrange this gig for me. You’ve been a great friend for many years!

Finally, I’d like to thank my parents, Mike and Joyce Blum, for constantly stress-
ing education over goofing off, and my wife, Barbara, and two daughters, Katie
Jane and Jessica, for their love and support when I was being grumpy while work-
ing on this project.

Publisher’s Acknowledgments

Executive Editor: Steven Hayes

Project Editor: Elizabeth Kuball

Copy Editor: Elizabeth Kuball

Technical Editor: Jack Shepler

Production Editor: Vasanth Koilraj

Cover Image: © hxdyl/Shutterstock

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part1 Getting Started with Web Programming
	Chapter 1 Examining the Pieces of Web Programming
	Creating a Simple Web Page
	Kicking things off with the World Wide Web
	Making sense of markup languages
	Retrieving HTML documents
	Styling

	Creating a Dynamic Web Page
	Client-side programming
	Server-side programming
	Combining client-side and server-side programming

	Storing Content

	Chapter 2 Using a Web Server
	Recognizing What’s Required
	The web server
	The PHP server
	The database server

	Considering Your Server Options
	Using a web-hosting company
	Building your own server environment
	Using premade servers

	Tweaking the Servers
	Customizing the Apache Server
	Customizing the MySQL server
	Customizing the PHP server

	Chapter 3 Building a Development Environment
	Knowing Which Tools to Avoid
	Graphical desktop tools
	Web-hosting sites
	Word processors

	Working with the Right Tools
	Text editors
	Program editors
	Integrated development environments
	Browser debuggers

	Part2 HTML5 and CSS3
	Chapter 1 The Basics of HTML5
	Diving into Document Structure
	Elements, tags, and attributes
	Document type
	Page definition
	Page sections

	Looking at the Basic HTML5 Elements
	Headings
	Text groupings
	Breaks

	Marking Your Text
	Formatting text
	Using hypertext

	Working with Characters
	Character sets
	Special characters

	Making a List (And Checking It Twice)
	Unordered lists
	Ordered lists
	Description lists

	Building Tables
	Defining a table
	Defining the table’s rows and columns
	Defining the table headings

	Chapter 2 The Basics of CSS3
	Understanding Styles
	Defining the rules of CSS3
	Applying style rules
	Cascading style rules

	Styling Text
	Setting the font
	Playing with color

	Working with the Box Model
	Styling Tables
	Table borders
	Table data

	Positioning Elements
	Putting elements in a specific place
	Floating elements

	Chapter 3 HTML5 Forms
	Understanding HTML5 Forms
	Defining a form
	Working with form fields

	Using Input Fields
	Text boxes
	Password entry
	Check boxes
	Radio buttons
	Hidden fields
	File upload
	Buttons

	Adding a Text Area
	Using Drop-Down Lists
	Enhancing HTML5 Forms
	Data lists
	Additional input fields

	Using HTML5 Data Validation
	Holding your place
	Making certain data required
	Validating data types

	Chapter 4 Advanced CSS3
	Rounding Your Corners
	Using Border Images
	Looking at the CSS3 Colors
	Playing with Color Gradients
	Linear gradients
	Radial gradients

	Adding Shadows
	Text shadows
	Box shadows

	Creating Fonts
	Focusing on font files
	Working with web fonts

	Handling Media Queries
	Using the @media command
	Dealing with CSS3 media queries
	Applying multiple style sheets

	Chapter 5 HTML5 and Multimedia
	Working with Images
	Placing images
	Styling images
	Linking images
	Working with image maps
	Using HTML5 image additions

	Playing Audio
	Embedded audio
	Digital audio formats
	Audio the HTML5 way

	Watching Videos
	Paying attention to video quality
	Looking at digital video formats
	Putting videos in your web page

	Getting Help from Streamers

	Part3 JavaScript
	Chapter 1 Introducing JavaScript
	Knowing Why You Should Use JavaScript
	Changing web page content
	Changing web page styles

	Seeing Where to Put Your JavaScript Code
	Embedding JavaScript
	Using external JavaScript files

	The Basics of JavaScript
	Working with data
	Data types
	Arrays of data
	Operators

	Controlling Program Flow
	Conditional statements
	Loops

	Working with Functions
	Creating a function
	Using a function

	Chapter 2 Advanced JavaScript Coding
	Understanding the Document Object Model
	The Document Object Model tree
	JavaScript and the Document Object Model

	Finding Your Elements
	Getting to the point
	Walking the tree

	Working with Document Object Model Form Data
	Text boxes
	Text areas
	Check boxes
	Radio buttons

	Chapter 3 Using jQuery
	Loading the jQuery Library
	Option 1: Downloading the library file to your server
	Option 2: Using a content delivery network

	Using jQuery Functions
	Finding Elements
	Replacing Data
	Working with text
	Working with HTML
	Working with attributes
	Working with form values

	Changing Styles
	Playing with properties
	Using CSS objects
	Using CSS classes

	Changing the Document Object Model
	Adding a node
	Removing a node

	Playing with Animation

	Chapter 4 Reacting to Events with JavaScript and jQuery
	Understanding Events
	Event-driven programming
	Watching the mouse
	Listening for keystrokes
	Paying attention to the page itself

	Focusing on JavaScript and Events
	Saying hello and goodbye
	Listening for mouse events
	Listening for keystrokes
	Event listeners

	Looking at jQuery and Events
	jQuery event functions
	The jQuery event handler

	Chapter 5 Troubleshooting JavaScript Programs
	Identifying Errors
	Working with Browser Developer Tools
	The DOM Explorer
	The Console
	The Debugger

	Working Around Errors

	Part4 PHP
	Chapter 1 Understanding PHP Basics
	Seeing the Benefits of PHP
	A centralized programming language
	Centralized data management

	Understanding How to Use PHP
	Embedding PHP code
	Identifying PHP pages
	Displaying output
	Handling new-line characters

	Working with PHP Variables
	Declaring variables
	Seeing which data types PHP supports
	Grouping data values with array variables

	Using PHP Operators
	Arithmetic operators
	Arithmetic shortcuts
	Boolean operators
	String operators

	Including Files
	The include() function
	The require() function

	Chapter 2 PHP Flow Control
	Using Logic Control
	The if statement
	The else statement
	The elseif statement
	The switch statement

	Looping
	The while family
	The for statement
	The foreach statement

	Building Your Own Functions
	Working with Event-Driven PHP
	Working with links
	Processing form data

	Chapter 3 PHP Libraries
	How PHP Uses Libraries
	Exploring PHP extensions
	Examining the PHP extensions
	Including extensions
	Adding additional extensions

	Text Functions
	Altering string values
	Splitting strings
	Testing string values
	Searching strings

	Math Functions
	Number theory
	Calculating logs and exponents
	Working the angles
	Hyperbolic functions
	Tracking statistics

	Date and Time Functions
	Generating dates
	Using timestamps
	Calculating dates

	Image-Handling Functions

	Chapter 4 Considering PHP Security
	Exploring PHP Vulnerabilities
	Cross-site scripting
	Data spoofing
	Invalid data
	Unauthorized file access

	PHP Vulnerability Solutions
	Sanitizing data
	Validating data

	Chapter 5 Object-Oriented PHP Programming
	Understanding the Basics of Object-Oriented Programming
	Defining a class
	Creating an object instance

	Using Magic Class Methods
	Defining mutator magic methods
	Defining accessor magic methods
	The constructor
	The destructor
	Copying objects
	Displaying objects

	Loading Classes
	Extending Classes

	Chapter 6 Sessions and Carts
	Storing Persistent Data
	The purpose of HTTP cookies
	Types of cookies
	The anatomy of a cookie
	Cookie rules

	PHP and Cookies
	Setting cookies
	Reading cookies
	Modifying and deleting cookies

	PHP and Sessions
	Starting a session
	Storing and retrieving session data
	Removing session data

	Shopping Carts
	Creating a cart
	Placing items in the cart
	Retrieving items from a cart
	Removing items from a cart
	Putting it all together

	Part5 MySQL
	Chapter 1 Introducing MySQL
	Seeing the Purpose of a Database
	How databases work
	Relational databases
	Database data types
	Data constraints
	Structured Query Language

	Presenting MySQL
	MySQL features
	Storage engines
	Data permissions

	Advanced MySQL Features
	Handling transactions
	Making sure your database is ACID compliant
	Examining the views
	Working with stored procedures
	Pulling triggers
	Working with blobs

	Chapter 2 Administering MySQL
	MySQL Administration Tools
	Working from the command line
	Using MySQL Workbench
	Using the phpMyAdmin tool

	Managing User Accounts
	Creating a user account
	Managing user privileges

	Chapter 3 Designing and Building a Database
	Managing Your Data
	The first normal form
	The second normal form
	The third normal form

	Creating Databases
	Using the MySQL command line
	Using MySQL Workbench
	Using phpMyAdmin

	Building Tables
	Working with tables using the command-line interface
	Working with tables using Workbench
	Working with tables in phpMyAdmin

	Chapter 4 Using the Database
	Working with Data
	The MySQL command-line interface
	The MySQL Workbench tool
	The phpMyAdmin tool

	Searching for Data
	The basic SELECT format
	More advanced queries

	Playing It Safe with Data
	Performing data backups
	Restoring your data

	Chapter 5 Communicating with the Database from PHP Scripts
	Database Support in PHP
	Using the mysqli Library
	Connecting to the database
	Closing the connection
	Submitting queries
	Retrieving data
	Being prepared
	Checking for errors
	Miscellaneous functions

	Putting It All Together

	Part6 Creating Object-Oriented Programs
	Chapter 1 Designing an Object-Oriented Application
	Determining Application Requirements
	Creating the Application Database
	Designing the database
	Creating the database

	Designing the Application Objects
	Designing objects
	Coding the objects in PHP

	Designing the Application Layout
	Designing web page layout
	The AuctionHelper page layout

	Coding the Website Layout
	Creating the web page template
	Creating the support files

	Chapter 2 Implementing an Object-Oriented Application
	Working with Events
	Bidder Object Events
	Listing bidders
	Adding a new bidder
	Searching for a bidder

	Item Object Events
	Listing items
	Adding a new item
	Searching for an item

	Logging Out of a Web Application
	Testing Web Applications

	Chapter 3 Using AJAX
	Getting to Know AJAX
	Communicating Using JavaScript
	Considering XMLHttpRequest class methods
	Focusing on XMLHttpRequest class properties
	Trying out AJAX

	Using the jQuery AJAX Library
	The jQuery $.ajax() function
	The jQuery $.get() function

	Transferring Data in AJAX
	Looking at the XML standard
	Using XML in PHP
	Using XML in JavaScript

	Modifying the AuctionHelper Application

	Chapter 4 Extending WordPress
	Getting Acquainted with WordPress
	What WordPress can do for you
	How to run WordPress
	Parts of a WordPress website

	Installing WordPress
	Downloading the WordPress software
	Creating the database objects
	Configuring WordPress

	Examining the Dashboard
	Using WordPress
	Exploring the World of Plugins
	WordPress APIs
	Working with plugins and widgets

	Creating Your Own Widget
	Coding the widget
	Activating the widget plugin
	Adding the widget

	Part7 Using PHP Frameworks
	Chapter 1 The MVC Method
	Getting Acquainted with MVC
	Exploring the MVC method
	Digging into the MVC components
	Communicating in MVC

	Comparing MVC to Other Web Models
	The MVP method
	The MVVM method

	Seeing How MVC Fits into N-Tier Theory
	Implementing MVC

	Chapter 2 Selecting a Framework
	Getting to Know PHP Frameworks
	Convention over configuration
	Scaffolding
	Routing
	Helper methods
	Form validation
	Support for mobile devices
	Templates
	Unit testing

	Knowing Why You Should Use a Framework
	Focusing on Popular PHP Frameworks
	CakePHP
	CodeIgniter
	Laravel
	Symfony
	Zend Framework

	Looking At Micro Frameworks
	Lumen
	Slim
	Yii

	Chapter 3 Creating an Application Using Frameworks
	Building the Template
	Initializing the application
	Exploring the files and folders
	Defining the database environment

	Creating an Application Scaffold
	Installing the scaffolding
	Exploring the scaffolding code

	Modifying the Application Scaffold
	Adding a new feature link
	Creating the controller code
	Modifying the model code
	Painting a view

	Index
	EULA

