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Abstract

An important issue for the anode manufacturers is the increased 
variability of the raw materials and its negative impact on baked 
anode quality. This variability could be reduced by timely 
corrective actions applied on selected manipulated variables at the 
green mill (i.e. process control). However, the lack of rapid 
sensors for measuring anode quality is an important limitation to 
implementing feedback/feedforward control. Weekly averages of 
lab measurement are available too late to be used for feedback 
control. This work investigates the use of machine vision for 
sensing paste properties. The effects of changes in pitch demand
of the aggregate and its particle size distribution, and mixing 
temperature on the visual appearance of laboratory paste image
were studied. The 2D discrete wavelet transform (2D-DWT) was 
used to extract textural features for each image, followed by their 
analysis using Partial Least-Squares regression (PLS). Preliminary 
results show that the imaging sensor is sensitive to variations in 
pitch demand and aggregate size.

Introduction

Baked anode quality is an important issue for the primary 
aluminum industry. First, baked anode properties are affected by 
the declining quality and increasing variability of both anode raw 
materials (coke and pitch), and also by the frequent coke supplier 
changes made to meet process constraints and reduce cost.
Fluctuations in baked anode quality can have an important impact 
on the performance of the reduction process, such as decreasing 
the energy and the current efficiency, increasing specific carbon 
consumption, increasing labor productivity and greenhouse gas 
emissions.

However, the baked anode quality control scheme currently used
in the industry is not adequate to efficiently respond to the 
increased raw material variability. Generally, it is based on
monitoring weekly averages of key properties measured by 
laboratory testing of anode core samples. These properties include 
mechanical, electrical, physical and chemical analyses, measured 
on less than 1 % of the total weekly production. Hence, core 
results may not be representative of the anode population. 
Furthermore, the results of core sample assays are typically 
available four weeks after the anodes are manufactured. Raw 
material properties are also obtained with significant delays for 
similar reasons. It is therefore not currently possible to implement 
corrective actions to the process at an early stage. Therefore, 
process deviations are typically detected a few weeks after the 
anodes have been produced.

There is a need for developing new sensors to measure and track 
variations in raw material properties and process operation at 
different stages within the carbon plant. Using those on-line 
sensors in a control system would help reducing the impact of raw 
materials variations on green and baked anode properties. One of 

the options explored in this work is the use of machine vision for 
rapid and non-destructive monitoring of the anode paste visual 
appearance which is known to be affected by raw material 
properties (coke in particular), formulation and mixing conditions 
(e.g. under or over-pitching leads to a dryer or wetter paste). In 
addition, the paste is an intermediate product that could allow 
early corrective actions to be implemented to formulation, for 
instance. To prove the concept, paste sample were produced in the 
laboratory to test the impact of paste formulation and processing 
conditions on its visual appearance. Variations in the pitch 
demand and size distribution of the dry aggregate mix were 
simulated. Pitch demand is defined as the amount of pitch 
required to achieve an optimum baked anode density given a 
certain coke source and size distribution [1]. This can be affected
by many different factors in the paste formulation, such as coke 
porosity, amount of pitch, binder viscosity and so on.

This paper presents the work done using paste made in the 
laboratory. Lab paste was used instead of industrial paste to allow 
testing a wider range of variations under controlled conditions.
This preliminary work focuses on understanding the impact of dry 
aggregate properties, formulation and mixing conditions on the 
paste visual appearance, and assessing the sensitivity of imaging 
sensor.

Experimental

Raw materials

One goal of this experiment was to reproduce the formulation of 
an industrial paste as closely as possible. For this reason, the 
aggregate mix formulation was based on ratios of classified raw 
material typically used at an industrial carbon plant instead the 
usual laboratory paste composition (i.e coke and pitch only). The 
dry aggregate contained the three coke fractions classified by their 
particle size (i.e. coarse, intermediate and fines) and the recycled 
butts. The latter are often omitted in lab formulations due to 
difficulties in obtaining a small but representative butt sample 
from a broad size distribution. Typically, the maximum particle 
size used is between 4 to 8 mm [2,3]. Very large particle can 
increase the variability in the laboratory paste due to the high 
relative importance of individual large particle in the small 
sample. In spite of these difficulties, it was decided to keep them 
in the formulation in order to mimic industrial paste. All of the 
fractions were sampled from classified material from storage 
silos. Finally, solid pitch was used. The raw materials came from 
the Alcoa Deschambault carbon plant. Only the recycle green 
scrap was omitted in the paste formulation.

Design of experiments

A total of 21 different mixes were prepared to simulate a wide 
range of variations in the dry aggregate pitch demand and size 
distribution across the various paste samples. A few replicates 
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were made for some mixes for a total of 30 paste samples to be 
imaged and analyzed.

Expected effects of the different experiments

The changes made to the base case mix were either aimed at 
changing the dry aggregate pitch demand or modifying its size 
distribution. The 21 paste mixes prepared in the lab are listed in 
Table I. The symbols identifying each mix will be used in the 
results section. The percentages for the coarse, intermediate, fines 
and butts fractions are given on a dry aggregate basis, but the 
pitch % is given on the paste weight basis.

Table I – Description of experimental paste mixes
Description Name Symbol
Base mix base
Increased butts ratio B_-10%
Decreased butts ratio B_+10%
Different Blaine number (fines fraction) BL_2300
Different Blaine number (fines fraction) BL_4000
Different Blaine number (fines fraction) BL_6000
Decreased fines ratio in the aggregate mix F_-4%%
Decreased fines ratio in the aggregate mix F_-2%%
Increased fines ratio in the aggregate mix F_+2%%
Increased fines ratio in the aggregate mix F_+4%%
Decreased pitch ratio in the paste P_-1.4%
Increased pitch ratio in the paste P_+1.6%
Increased coarse and intermediate frac. SD_+C+I
Increased intermediate frac. SD_+I
Decreased coarse and intermediate frac. SD_-C-I
Decreased intermediate frac. SD_-I
Substitution of coarse frac. by shot coke shot_20%
Substitution of coarse frac. by shot coke shot_40%
Substitution of coarse frac. by shot coke shot_60%
Decreased mixing temperature T_158°C
Increased mixing temperature T_188°C

Different types of changes were made to the base case mix to 
modify the pitch demand of the dry aggregate. First, a ±10% 
change was made to the butts ratio. The change in the dry 
aggregate weight was compensated by adding/removing some of 
the coarse fraction. The butts are less porous than fresh coke 
particles. Thus, they need less pitch to wet them properly. High 
butts fraction should lead to wetter paste (for the same amount of 
pitch). Secondly, the Blaine number (BN) of the fines was varied. 
Different coke fines with specific fineness were prepared at the 
laboratory and used in substitution of the industrial fines fraction. 
The BN of the samples were measured using a Malvern laser 
diffraction particle size analyzer. Ball mill fines with 2300 4000 
and 6000 BN where used. Finer fines (i.e. higher BN) should 
require more pitch because of the increased specific area. Hence, 
the paste should look dryer when using higher BN fines and 
wetter when using lower BN fines if the amount of pitch remains 
unchanged. Third, the fines ratio was modified and compensated 
by adding/removing coarse, intermediate and butts particles in 
equal amounts. The tested fines ratios were ±2 and ±4%. The 
more fines for a given amount of pitch, the dryer the paste be. 
Fourth, the pitch ratio was varied. There should be a direct 
relationship between the amount of pitch and the wetness of the 
paste. Fifth, a proportion of the coarse fraction was substituted 
with shot coke (e.g. 20, 40 and 60% of the coarse fraction). 
Because shot coke is typically less porous, the paste should look 
wetter when a greater amount of shot coke is added to the mix for 

the same amount of pitch. Finally, the mixing temperature was 
varied from 158 to 188 °C. When the temperature is too low, the 
pitch is more viscous and should not penetrate as much in the 
pores of the particles, leading to a wetter paste

The dry aggregate size distribution was varied by either 
substituting the coarse and intermediate fractions or the 
intermediate fraction only by the fines fraction (e.g. +10% coarse, 
+ 5% inter and -15% fines or – 10% inter and + 10% fines). 
Although changes in the aggregate size distribution may also 
cause changes in pitch demand, it is expected that variations in 
aggregate size should have a different impact on paste visual 
appearance (i.e. its texture) than that of a change in pitch demand. 
Hence, the two types of disturbances should be distinguishable by 
the machine vision system.

Pre-heating and mixing

The paste samples were prepared in an industrial dough mixer 
fitted inside a laboratory oven. This set-up allowed good control 
on the pre-heating and mixing temperature.

Each constituent of the paste was weighted individually for every 
prepared sample. The total paste sample weight was 450 g. The 
four fractions of the dry aggregate were pre-heated over night in 
the mixing oven. The pitch was added to the mix and an 
additional pre-heating period of 30 min followed to let the pitch 
melt. Then the paste was stirred for 10 min. The standard mixing 
temperature was set to 178°C. When the mixing step was 
completed, the paste was spread in an aluminium container for the 
imaging step.

Imaging set-up

The imaging set-up for this experiment is shown in Figure 1. It 
consists of an Allied Vision Technologies Prosilica GX 6 
megapixel color camera with a 50 mm Kowa lens, two 4.5 W
LED light bulbs and Fresnel lenses to ensure uniformity of 
lighting. This set-up allows for a wide variety of adjustment of the 
lighting angle and camera height.

Figure 1 – Imaging set-up

Two images of each paste sample were taken to assess variability 
due to sampling. The paste was first poured in an aluminium 
container and imaged. Then the paste was put back in the mixing 
bowl, given a small hand mixing and poured again in the sample 
container. A second image was then captured. A set of 60 
different paste images were available for texture analyses (i.e. 30 
paste samples 2 images/sample).
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Machine vision approach for texture analysis

Image texture analysis

Image texture can be defined as a function of the spatial variation 
in pixel intensities [4]. Furthermore, this function can be 
established at different scales within the images (i.e. resolutions or 
levels of scrutiny). For example, high frequency variations from
pixel-to-pixel yields a fine texture whereas lower frequency 
variations leads to coarser textures. Anode paste images are well 
suited for such a texture analysis because it is formed by a mixture 
of solid particles of different sizes and a viscous binder leading to 
a variety of textures (from fine to coarse and from smooth to 
rough) depending on the formulation (pitch ratio and aggregate 
size distribution).

The 2-Dimensional Discrete Wavelet Transform (2D-DWT) was 
used for extracting (i.e. quantifying) paste image textural features. 
This is a state-of-the-art multi-resolution textural method 
developed in the image processing field. The first step of the 
approach consists of selecting a waveform, also called mother 
wavelet, which shape roughly matches that of the image signals 
(i.e. pixel-to-pixel intensity variations in a given direction). 
Several wavelet families exist in the literature and, in general, the 
choice is not unique as many wavelets perform equally well on a 
given set of images. As opposed to the sine or cosine waves used 
in Fourier Transform, the wavelets have a finite length. This 
enables spatial-frequency decomposition of the image signals, a 
distinctive advantage over Fourier Transform which performs 
frequency decomposition only. 

The mother wavelet can be dilated in order to capture information 
at different (decreasing) frequencies. This is modulated by a 
scaling coefficient which is an integral part of the wavelet 
equation. The wavelet at a given scale (i.e. value of the wavelet 
coefficient) is then convoluted with the image signals in the 
horizontal, vertical and diagonal directions. Having a finite length, 
the wavelet is translated across the image in all three directions 
(hence it captures spatial information), and the fit (i.e. correlation) 
between the wavelet and the image signal is computed for every 
pixel. The fit is represented by so-called detail coefficients. The 
output of 2D-DWT at scale s is a set of three detail subimages 
Ds

H, Ds
V, Ds

D representing the information captured by the 
wavelet in all three directions at scale s. The procedure is then 
repeated for a selected number of scales (s=1,2,…S). Note that the 
2D-DWT can also be viewed as a filtering approach where the 
detail subimages contain band-pass information at different 
frequency ranges (i.e. scales). Since the scale is inversely 
proportional to frequency, the detail subimages at the first scale 
will capture high frequency information, or small size features 
(fine textures), whereas higher scales will contain lower frequency 
information (coarser objects or textural features). After filtering 
the image at a selected number of scales, the residual image is 
called the approximation subimage. The 2D-DWT approach is 
usually made robust to noise (high frequency) and lighting 
variations (low frequency) by leaving the first detail and 
approximation subimages out of subsequent analyses. Interested 
readers are referred to Mallat [5] for more details on the method.

To analyze and compare the texture of different images, it is a 
common practice to compute a row vector of scalar textural 
descriptors from the detail subimages (Ds

H, Ds
V, Ds

D, s=1,2,..S) 
and collecting them in a matrix for further analyses, such as 

classification or regression against responses of interest. The 
reader is referred to Duchesne et al. [6] for a good review on this 
topic. The energy of each detail subimage was used as textural 
descriptors in this analysis. The energy is a measure of the 
variance of the detail coefficients at each decomposition level. 
Alternatively, it can be interpreted as the amount of signal at a 
given frequency range (scale) contained in an image. The energy 
E is defined in the equation below, where Ds

k is the detail 
subimage of size (m,n) at scale s, and k=H,V,D (direction). The 
energy of each detail coefficients is normalized by the number of 
pixel in the original image of size (M,N).

2

1 1
D ,

E

m n
k
s

i jk
s

i j

M N
(1)

Note that the DWT algorithm performs dyadic down-sampling 
(decimation) of the image at each scale rather than dilating the 
mother wavelet, which length is kept constant. That is, the size of 
the detail subimages Ds

k (m,n) in eq. 1 decrease by a twofold 
factor at each scale. This is very computationally efficient, but 
imposes a constraint on the frequency resolution of the approach. 
Other wavelet methods, such as wavelet packets and the 
continuous wavelet transform can improve frequency resolution 
but were not tested at this point.

Datasets

The data collected from the image analysis are divided in two data
matrices. The first, called the design matrix (X), contains 
information on the paste formulation (Table II). The second,
called the image features matrix (Y), contains the extracted image 
features. These are the energy of the 21 detail subimages
computed on 7 scales (i.e. 3 subimages/scale) using the symlet4
mother wavelet. The variables in this dataset are labeled by the 
direction of the detail coefficient as well as its level of 
decomposition. The higher the scale, the lower the frequency 
associated with it.

Table II – Design dataset variables
Variable number Variable name

1 Coarse (%)
2 Inter (%)
3 Fines (%)
4 Butts (%)
5 Pitch (%)
6 Pitch/Fines ratio
7 Shot in coarse faction (%)
8 Mixing Temperature (°C)
9 Blaine number

Multivariate analysis of image textural features

The image textural features were then analyzed using Partial 
Least-Squares (PLS) regression. The latter is a multivariate 
regression technique dealing with correlated data in both X and Y.
Some of the variables in the design data matrix (Table II) are 
correlated to a certain extent because the changes in some dry 
aggregate fractions were compensated by changes in other 
fractions. The image features are also collinear to some extent. 
The PLS model structure is shown by eq. 2-5. It performs a
bilinear variance-covariance decomposition of the X and Y data 
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(eq. 2-3) by finding a small number of orthogonal linear 
combinations of the X-variables that are the most predictive of 
(i.e. correlated with) the Y variables (eq. 4). These combinations,
also called principal components, and stored in the columns of the 
weight matrix W* (eq. 4), define a lower dimensional subspace in 
both data spaces. The column vectors in the P and C matrices are 
called loading vectors and define the subspaces that best represent 
X and Y, respectively. Projection of the X and Y data onto their 
respective subspaces yields the score vectors, the columns of T
and U. The E and F matrices contain the PLS model residuals.
The linear relationship between both spaces through their score 
vectors is defined by eq. 5, where H contains the residuals of that 
relationship. The components of the PLS model are ordered in 
such a way that the first component is the one that explains the 
greatest amount of covariance between X and Y, the second 
explains the greatest amount of covariance orthogonal to the first 
component, and so on. Several criteria are available for choosing 
the number of PLS components (A). We selected A so as to 
maximize the model predictive ability on the Y data. For more 
details on PLS, the reader is referred to [7].

TX TP E (2)
TY UC F (3)

T XW * (4)
U T H (5)

To interpret the model and the information contained in the data, 
it is common practice to look at different types of plots. The 
scatter plots of pairs of scores (e.g. t1-t2 or u1-u2) show the 
clustering patterns of the observations (i.e. design data or image 
features associated with each paste sample). Scatter plots of the 
loadings for pairs of components (e.g. w1c1- w2c2 plots) allow for 
interpreting the relationships between the X and Y variables. 
Other plots are also used in practice but not shown in this paper 
(refer to [7] for more details).

Results

Some hurdles

The small size of the paste samples was an important issue in 
these experiments. The dry aggregate fractions were stored in 20-
25 kg buckets. But only 60 g to 125 g of each constituent was 
needed for a paste sample. It was very difficult to obtain a 
representative size distribution for each dry aggregate fraction.

The recycle butts fraction contains a very large distribution of 
particle size (i.e. from 2-3 cm to a few m). For this fraction in 
particular, the full industrial sample was split into several smaller 
fraction of approximately 100 g using a sample splitter and than 
the 4 corners method on a large sheet of paper. Even with careful 
manipulations, it was not possible to obtain a constant size 
distribution in all split fractions. This is illustrated in Figure 2,
where the size distribution for 5 split butts sample is shown. There 
is a large variability of the larger particles in the samples.

Figure 2 – Butts size distribution span

Image analysis results

Table III shows the percentage of variance of X and Y explained 
by the PLS model. The model captures 59% of the variability in 
the image features in spite of the variations introduced by sample 
preparation.

Table III – Percentage of variance explained by the PLS model for 
the first two principal components

Design-Block (X) Image features-Block (Y)
Comp This (%) Total (%) This (%) Total (%)

1 30.44 30.44 47.42 47.42
2 12.36 42.80 11.45 58.87

Figure 3 displays the latent variable score space for the two 
components PLS model. This score plot represents the main 
direction of variability in the datasets. Each marker represents one 
experiment. It is possible to look at the clustering patterns (i.e. 
similarity or differences) between all the paste samples by looking 
at their projection in the LV space. Arrows indicates the 
phenomena that the experiment was designed to stimulate (i.e. 
change in pitch demand in blue and size distribution in green). 
The upper right and lower left corners represents the regions 
where the paste is wetter and dryer respectively. This was 
validated by observations made on the paste visual appearance.
The orthogonal direction indicated by the green arrow is related 
with the size of the dry aggregate within the paste samples. This 
figure is representative of the experimental design chosen for the 
paste samples.
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Figure 3 – Design scores plot (t1-t2)

It is also possible to look at the latent variable space for the image 
features dataset. These results are shown in Figure 4. Again, the 
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two arrows indicate the two main effects studied. This is a very 
important figure for the analysis of the results and it will be 
commented further in the next few paragraphs.
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Figure 4 – Image features scores plot (u1-u2)

The results clearly show that increasing pitch content from -1.4 to 
+1.6% for the same dry aggregate drives the paste appearance 
from dry to wet. This experiment mimics under- and over-pitching 
situations and, without knowing what the optimum pitch level is 
for this aggregate, the proposed approach seems promising for
detecting such situations. Changing the fines ratio also moves the 
paste visual appearance along the pitch demand direction (blue 
line in Figure 4). The paste sample with +4% fines falls in the dry 
paste region. Decreasing it to -4% brings paste image features 
close to the origin of the plot where the paste samples look wetter. 
This behavior is consistent with process knowledge. Increasing 
the amount of shot coke with respect to the base case leads to 
progressively wetter paste as shot coke is less porous and the 
amount of pitch is unchanged. The reader is reminded that these 
changes in shot coke are only a mean for modifying the dry 
aggregate porosity. Finally, increasing mixing temperature from 
158-188ºC changes the paste appearance from wet to dry. The 
lower pitch viscosity at higher temperature should increase pitch 
penetration in the coke particles and hence, the paste would like 
dryer for the same aggregate and formulation.

The results obtained after varying the butts ratio and Blaine 
Number (BN) also drive the paste visual appearance along the 
pitch demand direction (dry-wet paste) as shown in Figure 4, but 
the interpretation is not as clear as with other experiments.
Increasing butts ratio should move the paste sample towards the 
wetter region since, in general, the butts are less porous. Although 
most samples at +10% butts are in the wetter region and most 
samples at -10%% butts are in the dryer region, one sample at 
each of these conditions fall in the opposite quadrants. For BN, it 
was expected that higher BN fines should make the paste look 
dryer than with lower BN fines because the higher surface area of 
the fines should increase pitch demand. However, the paste 
samples with different BN are spread along the pitch demand 
direction. At this point, the reason for this is unknown. However, 
as mentioned earlier, sampling issues with butts and fines makes it 
difficult to ascertain what really was in the dry aggregates with
respect to these two fractions. This sampling issue also probably 
contributed to the high variability of the base mix paste which is 
broadly spread along the pitch demand direction. In addition, as 
changes in certain fractions were compensated by changes in 
other fractions to maintain total dry aggregate weight, some of the 

effects might be confounded. Future work will look at resolving 
these issues.

Figure 4 also shows that the machine vision approach is also 
sensitive to changes in aggregate size distribution, and the latter 
can be distinguished from variations in pitch demand. The 
experiments made to change the dry aggregate size distribution 
moved the paste sample appearance along the orthogonal direction 
from pitch demand (i.e. green direction in Figure 4). The paste 
with less intermediate size coke (i.e. SD_-I) is situated in the 
upper left quadrant, while the coarser pastes (i.e. SD_+C+I and 
SD_+I) are located in the lower right quadrant. Similar results are 
observed with the finer formulation past (i.e.SD_-C-I). Their 
position in the bottom left corner indicates that the high content of 
the fines affected the pitch demand at the same time as the size 
distribution.

The loadings biplot shown in Figure 5 is used to interpret the 
correlation between the design variables and the image features. It 
can be used simultaneously with Figures 3 and 4. The directions 
of changes are the same in the three plots. In the pitch demand 
direction the energy of the detail coefficients increases in all 
decomposition levels when the wetness of the paste increases. For 
the size distribution the energy of the decomposition levels 1 to 4 
(i.e. higher frequencies) increases faster than the decomposition 
levels 5 to 7 when the formulation of the paste is coarser.

Image features
Design variables

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

w*c1

w
*c

2

 Coarse (%)

 Inter  (%)

 Fines  (%)

 Butts  (%)

 Pitch  (%)

 Pitch/Fines

 Shot (%)

 Blaine

 Mix T (C)

 ED2 ED3
 EH4 EV4
 ED4

 EH5 EV5

 ED5

 EV6 ED6

 EH7
 EV7

 ED7

Image features
Design variables

“Wet” 
paste

“Dry” 
paste

%)

la BBBBBl

finer agg.

Coarser agg.

Figure 5 – Loadings bi-plot (w*c1 – w*c2)

The wetness of the paste is correlated with the overall energy of 
the images since all the detail coefficient energy change in a 
similar manner. The total energy of a wet paste is higher than the 
total energy of a dry paste. To better understand the differences, 
the paste with the highest energy (P_+1.6%) and the lower energy
(SD_-C-I) are shown in Figure 6. They correspond to the paste 
with the most pitch and the paste with the finest formulation. 
Wetter pastes have more specular reflection (i.e. more glossy 
images) which leads to higher overall energy.

For the size distribution direction, the additional specular 
reflection due to the pitch demand is also visible in the mix with 
lower fines content (i.e. coarser mix). But there is an additional 
effect that changes the variations of the energy in the 
decomposition levels 5 to 7. The pastes with a higher (SD_+I) and 
lower (SD_-I) intermediate formulation are shown in Figure 7.
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a)

b) 
Figure 6 – images of paste sample showing variations in pitch 

demand: a) wetter paste (P_+1.6%) and b) dryer paste (SD_-C-I)

a)

b) 
Figure 7 – images of paste sample showing variations in size 
distribution: a) coarser mix (SD_+I) and b) finer mix (SD_-I)

Conclusion

The hypothesis of this work was that the anode paste appearance
changes as a function of pitch demand and size distribution of the 
dry aggregate. This change in visual appearance can be detected 
using a texture analysis method applied on paste images. It was 
possible to discriminate between the dry aggregate formulations
and the pitch demand variations. Future work should concentrate 
on validating the robustness of this method on industrial paste.
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