
SQL Cookbook

By Anthony Molinaro

...

Publisher: O'Reilly

Pub Date: December 2005

Print ISBN-10: 0-596-00976-3

Print ISBN-13: 978-0-59-600976-2

Pages: 628

Table of Contents | Index

You know the rudiments of the SQL query language, yet you feel you aren't taking full advantage of
SQL's expressive power. You'd like to learn how to do more work with SQL inside the database
before pushing data across the network to your applications. You'd like to take your SQL skills to
the next level.

Let's face it, SQL is a deceptively simple language to learn, and many database developers never go
far beyond the simple statement: SELECT FROM WHERE . But there is so much more you can do
with the language. In the SQL Cookbook, experienced SQL developer Anthony Molinaro shares his
favorite SQL techniques and features. You'll learn about:

Window functions, arguably the most significant enhancement to SQL in the past decade. If
you're not using these, you're missing out

Powerful, database-specific features such as SQL Server's PIVOT and UNPIVOT operators,
Oracle's MODEL clause, and PostgreSQL's very useful GENERATE_SERIES function

Pivoting rows into columns, reverse-pivoting columns into rows, using pivoting to facilitate
inter-row calculations, and double-pivoting a result set

Bucketization, and why you should never use that term in Brooklyn.

How to create histograms, summarize data into buckets, perform aggregations over a moving
range of values, generate running-totals and subtotals, and other advanced, data warehousing
techniques

The technique of walking a string, which allows you to use SQL to parse through the
characters, words, or delimited elements of a string

Written in O'Reilly's popular Problem/Solution/Discussion style, the SQL Cookbook is sure to please.
Anthony's credo is: "When it comes down to it, we all go to work, we all have bills to pay, and we all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

want to go home at a reasonable time and enjoy what's still available of our days." The SQL
Cookbook moves quickly from problem to solution, saving you time each step of the way.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Cookbook

By Anthony Molinaro

...

Publisher: O'Reilly

Pub Date: December 2005

Print ISBN-10: 0-596-00976-3

Print ISBN-13: 978-0-59-600976-2

Pages: 628

Table of Contents | Index

 Copyright

 Dedication

 Preface

 Why I Wrote This Book

 Objectives of This Book

 Audience for This Book

 How to Use This Book

 What's Missing from This Book

 Structure of This Book

 Platform and Version

 Tables Used in This Book

 Conventions Used in This Book

 Using Code Examples

 Comments and Questions

 Safari® Enabled

 Acknowledgments

 Chapter 1. Retrieving Records

 Recipe 1.1. Retrieving All Rows and Columns from a Table

 Recipe 1.2. Retrieving a Subset of Rows from a Table

 Recipe 1.3. Finding Rows That Satisfy Multiple Conditions

 Recipe 1.4. Retrieving a Subset of Columns from a Table

 Recipe 1.5. Providing Meaningful Names for Columns

 Recipe 1.6. Referencing an Aliased Column in the WHERE Clause

 Recipe 1.7. Concatenating Column Values

 Recipe 1.8. Using Conditional Logic in a SELECT Statement

 Recipe 1.9. Limiting the Number of Rows Returned

 Recipe 1.10. Returning n Random Records from a Table

 Recipe 1.11. Finding Null Values

 Recipe 1.12. Transforming Nulls into Real Values

 Recipe 1.13. Searching for Patterns

 Chapter 2. Sorting Query Results

 Recipe 2.1. Returning Query Results in a Specified Order

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 2.2. Sorting by Multiple Fields

 Recipe 2.3. Sorting by Substrings

 Recipe 2.4. Sorting Mixed Alphanumeric Data

 Recipe 2.5. Dealing with Nulls when Sorting

 Recipe 2.6. Sorting on a Data Dependent Key

 Chapter 3. Working with Multiple Tables

 Recipe 3.1. Stacking One Rowset atop Another

 Recipe 3.2. Combining Related Rows

 Recipe 3.3. Finding Rows in Common Between Two Tables

 Recipe 3.4. Retrieving Values from One Table That Do Not Exist in Another

 Recipe 3.5. Retrieving Rows from One Table That Do Not Correspond to Rows in Another

 Recipe 3.6. Adding Joins to a Query Without Interfering with Other Joins

 Recipe 3.7. Determining Whether Two Tables Have the Same Data

 Recipe 3.8. Identifying and Avoiding Cartesian Products

 Recipe 3.9. Performing Joins when Using Aggregates

 Recipe 3.10. Performing Outer Joins when Using Aggregates

 Recipe 3.11. Returning Missing Data from Multiple Tables

 Recipe 3.12. Using NULLs in Operations and Comparisons

 Chapter 4. Inserting, Updating, Deleting

 Recipe 4.1. Inserting a New Record

 Recipe 4.2. Inserting Default Values

 Recipe 4.3. Overriding a Default Value with NULL

 Recipe 4.4. Copying Rows from One Table into Another

 Recipe 4.5. Copying a Table Definition

 Recipe 4.6. Inserting into Multiple Tables at Once

 Recipe 4.7. Blocking Inserts to Certain Columns

 Recipe 4.8. Modifying Records in a Table

 Recipe 4.9. Updating when Corresponding Rows Exist

 Recipe 4.10. Updating with Values from Another Table

 Recipe 4.11. Merging Records

 Recipe 4.12. Deleting All Records from a Table

 Recipe 4.13. Deleting Specific Records

 Recipe 4.14. Deleting a Single Record

 Recipe 4.15. Deleting Referential Integrity Violations

 Recipe 4.16. Deleting Duplicate Records

 Recipe 4.17. Deleting Records Referenced from Another Table

 Chapter 5. Metadata Queries

 Recipe 5.1. Listing Tables in a Schema

 Recipe 5.2. Listing a Table's Columns

 Recipe 5.3. Listing Indexed Columns for a Table

 Recipe 5.4. Listing Constraints on a Table

 Recipe 5.5. Listing Foreign Keys Without Corresponding Indexes

 Recipe 5.6. Using SQL to Generate SQL

 Recipe 5.7. Describing the Data Dictionary Views in an Oracle Database

 Chapter 6. Working with Strings

 Recipe 6.1. Walking a String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 6.2. Embedding Quotes Within String Literals

 Recipe 6.3. Counting the Occurrences of a Character in a String

 Recipe 6.4. Removing Unwanted Characters from a String

 Recipe 6.5. Separating Numeric and Character Data

 Recipe 6.6. Determining Whether a String Is Alphanumeric

 Recipe 6.7. Extracting Initials from a Name

 Recipe 6.8. Ordering by Parts of a String

 Recipe 6.9. Ordering by a Number in a String

 Recipe 6.10. Creating a Delimited List from Table Rows

 Recipe 6.11. Converting Delimited Data into a Multi-Valued IN-List

 Recipe 6.12. Alphabetizing a String

 Recipe 6.13. Identifying Strings That Can Be Treated as Numbers

 Recipe 6.14. Extracting the nth Delimited Substring

 Recipe 6.15. Parsing an IP Address

 Chapter 7. Working with Numbers

 Recipe 7.1. Computing an Average

 Recipe 7.2. Finding the Min/Max Value in a Column

 Recipe 7.3. Summing the Values in a Column

 Recipe 7.4. Counting Rows in a Table

 Recipe 7.5. Counting Values in a Column

 Recipe 7.6. Generating a Running Total

 Recipe 7.7. Generating a Running Product

 Recipe 7.8. Calculating a Running Difference

 Recipe 7.9. Calculating a Mode

 Recipe 7.10. Calculating a Median

 Recipe 7.11. Determining the Percentage of a Total

 Recipe 7.12. Aggregating Nullable Columns

 Recipe 7.13. Computing Averages Without High and Low Values

 Recipe 7.14. Converting Alphanumeric Strings into Numbers

 Recipe 7.15. Changing Values in a Running Total

 Chapter 8. Date Arithmetic

 Recipe 8.1. Adding and Subtracting Days, Months, and Years

 Recipe 8.2. Determining the Number of Days Between Two Dates

 Recipe 8.3. Determining the Number of Business Days Between Two Dates

 Recipe 8.4. Determining the Number of Months or Years Between Two Dates

 Recipe 8.5. Determining the Number of Seconds, Minutes, or Hours Between Two Dates

 Recipe 8.6. Counting the Occurrences of Weekdays in a Year

 Recipe 8.7. Determining the Date Difference Between the Current Record and the Next Record

 Chapter 9. Date Manipulation

 Recipe 9.1. Determining if a Year Is a Leap Year

 Recipe 9.2. Determining the Number of Days in a Year

 Recipe 9.3. Extracting Units of Time from a Date

 Recipe 9.4. Determining the First and Last Day of a Month

 Recipe 9.5. Determining All Dates for a Particular Weekday Throughout a Year

 Recipe 9.6. Determining the Date of the First and Last Occurrence of a Specific Weekday in a Month

 Recipe 9.7. Creating a Calendar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 9.8. Listing Quarter Start and End Dates for the Year

 Recipe 9.9. Determining Quarter Start and End Dates for a Given Quarter

 Recipe 9.10. Filling in Missing Dates

 Recipe 9.11. Searching on Specific Units of Time

 Recipe 9.12. Comparing Records Using Specific Parts of a Date

 Recipe 9.13. Identifying Overlapping Date Ranges

 Chapter 10. Working with Ranges

 Recipe 10.1. Locating a Range of Consecutive Values

 Recipe 10.2. Finding Differences Between Rows in the Same Group or Partition

 Recipe 10.3. Locating the Beginning and End of a Range of Consecutive Values

 Recipe 10.4. Filling in Missing Values in a Range of Values

 Recipe 10.5. Generating Consecutive Numeric Values

 Chapter 11. Advanced Searching

 Recipe 11.1. Paginating Through a Result Set

 Recipe 11.2. Skipping n Rows from a Table

 Recipe 11.3. Incorporating OR Logic when Using Outer Joins

 Recipe 11.4. Determining Which Rows Are Reciprocals

 Recipe 11.5. Selecting the Top n Records

 Recipe 11.6. Finding Records with the Highest and Lowest Values

 Recipe 11.7. Investigating Future Rows

 Recipe 11.8. Shifting Row Values

 Recipe 11.9. Ranking Results

 Recipe 11.10. Suppressing Duplicates

 Recipe 11.11. Finding Knight Values

 Recipe 11.12. Generating Simple Forecasts

 Chapter 12. Reporting and Warehousing

 Recipe 12.1. Pivoting a Result Set into One Row

 Recipe 12.2. Pivoting a Result Set into Multiple Rows

 Recipe 12.3. Reverse Pivoting a Result Set

 Recipe 12.4. Reverse Pivoting a Result Set into One Column

 Recipe 12.5. Suppressing Repeating Values from a Result Set

 Recipe 12.6. Pivoting a Result Set to Facilitate Inter-Row Calculations

 Recipe 12.7. Creating Buckets of Data, of a Fixed Size

 Recipe 12.8. Creating a Predefined Number of Buckets

 Recipe 12.9. Creating Horizontal Histograms

 Recipe 12.10. Creating Vertical Histograms

 Recipe 12.11. Returning Non-GROUP BY Columns

 Recipe 12.12. Calculating Simple Subtotals

 Recipe 12.13. Calculating Subtotals for All Possible Expression Combinations

 Recipe 12.14. Identifying Rows That Are Not Subtotals

 Recipe 12.15. Using Case Expressions to Flag Rows

 Recipe 12.16. Creating a Sparse Matrix

 Recipe 12.17. Grouping Rows by Units of Time

 Recipe 12.18. Performing Aggregations over Different Groups/Partitions Simultaneously

 Recipe 12.19. Performing Aggregations over a Moving Range of Values

 Recipe 12.20. Pivoting a Result Set with Subtotals

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 13. Hierarchical Queries

 Recipe 13.1. Expressing a Parent-Child Relationship

 Recipe 13.2. Expressing a Child-Parent-Grandparent Relationship

 Recipe 13.3. Creating a Hierarchical View of a Table

 Recipe 13.4. Finding All Child Rows for a Given Parent Row

 Recipe 13.5. Determining Which Rows Are Leaf, Branch, or Root Nodes

 Chapter 14. Odds 'n' Ends

 Recipe 14.1. Creating Cross-Tab Reports Using SQL Server's PIVOT Operator

 Recipe 14.2. Unpivoting a Cross-Tab Report Using SQL Server's UNPIVOT Operator

 Recipe 14.3. Transposing a Result Set Using Oracle's MODEL Clause

 Recipe 14.4. Extracting Elements of a String from Unfixed Locations

 Recipe 14.5. Finding the Number of Days in a Year (an Alternate Solution for Oracle)

 Recipe 14.6. Searching for Mixed Alphanumeric Strings

 Recipe 14.7. Converting Whole Numbers to Binary Using Oracle

 Recipe 14.8. Pivoting a Ranked Result Set

 Recipe 14.9. Adding a Column Header into a Double Pivoted Result Set

 Recipe 14.10. Converting a Scalar Subquery to a Composite Subquery in Oracle

 Recipe 14.11. Parsing Serialized Data into Rows

 Recipe 14.12. Calculating Percent Relative to Total

 Recipe 14.13. Creating CSV Output from Oracle

 Recipe 14.14. Finding Text Not Matching a Pattern (Oracle)

 Recipe 14.15. Transforming Data with an Inline View

 Recipe 14.16. Testing for Existence of a Value Within a Group

 Appendix A. Window Function Refresher

 Recipe A.1. Grouping

 Recipe A.2. Windowing

 Appendix B. Rozenshtein Revisited

 Recipe B.1. Rozenshtein's Example Tables

 Recipe B.2. Answering Questions Involving Negation

 Recipe B.3. Answering Questions Involving "at Most"

 Recipe B.4. Answering Questions Involving "at Least"

 Recipe B.5. Answering Questions Involving "Exactly"

 Recipe B.6. Answering Questions Involving "Any" or "All"

 About the Author

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jonathan Gennick

Production Editor: Darren Kelly

Production Services: nSight, Inc.

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Printing History:

December 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Cookbook series designations, SQL Cookbook, the image of an Agamid lizard,
and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00976-3

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dedication

To my mom:

You're the best! Thank you for everything.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
SQL is the language in the database world. If you're developing for or reporting from relational
databases, your ability to put data into a database and then get it back out again ultimately comes
down to your knowledge of SQL. Yet many practitioners use SQL in a perfunctory manner, and are
unaware of the power at their disposal. This book aims to change all that, by opening your eyes to
what SQL can really do for you.

The book you're holding in your hands is a cookbook. It's a collection of common SQL problems and
their solutions that I hope you'll find helpful in your day-to-day work. Recipes are categorized into
chapters of related topics. When faced with a new SQL problem that you haven't solved before, find
the chapter that best seems to apply, skim through the recipe titles, and hopefully you will find a
solution, or at least inspiration for a solution.

More than 150 recipes are available in this 600-plus page book, and I've only scratched the surface of
what can be done using SQL. The number of different SQL solutions available for solving our daily
programming problems is eclipsed only by the number of problems we need to solve. You won't find
all possible problems covered in this book. Indeed, such coverage would be impossible. You will,
however, find many common problems and their solutions. And in those solutions lie techniques that
you'll learn how to expand upon and apply to other, new problems that I never thought to cover.

My publisher and I are constantly on the lookout for new, cookbook-worthy SQL
recipes. If you come across a good or clever SQL solution to a problem,
consider sharing it; consider sending it in for inclusion in the next edition of this
book. See "Comments and Questions" for our contact information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Why I Wrote This Book

Queries, queries, queries. My goal from the beginning of this project has not been so much to write a
"SQL Cookbook" as to write a "Query Cookbook." I've aimed to create a book comprised of queries
ranging from the relatively easy to the relatively difficult in hopes the reader will grasp the techniques
behind those queries and use them to solve his own particular business problems. I hope to pass on
many of the SQL programming techniques I've used in my career so that you, the reader, will take
them, learn from them, and eventually improve upon them; through this cycle we all benefit. Being
able to retrieve data from a database seems so simple, yet in the world of Information Technology
(IT) it's crucial that the operation of data retrieval be done as efficiently as possible. Techniques for
efficient data retrieval should be shared so that we can all be efficient and help each other improve.

Consider for a moment the outstanding contribution to mathematics by Georg Cantor, who was the
first to realize the vast benefit of studying sets of elements (studying the set itself rather than its
constituents). At first, Cantor's work wasn't accepted by many of his peers. In time, though, it was
not only accepted, but set theory is now considered the foundation of mathematics! More
importantly, however, it was not through Cantor's work alone that set theory became what it is
today; rather, by sharing his ideas, others such as Ernst Zermelo, Gottlob Frege, Abraham Fraenkel,
Thoralf Skolem, Kurt Gödel, and John von Neumann developed and improved the theory. Such
sharing not only provided everyone with a better understanding of the theory, it made for a better
set theory than was first conceived.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Objectives of This Book

Ultimately, the goal of this book is to give you, the reader, a glimpse of what can be done using SQL
outside of what is considered the typical SQL problem domain. SQL has come a very long way in the
last ten years. Problems typically solved using a procedural language such as C or JAVA can now be
solved directly in SQL, but many developers are simply unaware of this fact. This book is to help
make you aware.

Now, before you take what I just said the wrong way, let me state that I am a firm believer in, "If it
ain't broke, don't fix it." For example, let's say you have a particular business problem to solve, and
you currently use SQL to simply retrieve your data while applying your complex business logic using a
language other than SQL. If your code works and performance is acceptable, then great. I am in no
way suggesting that you scrap your code for a SQL-only solution; I only ask that you open your mind
and realize that the SQL you programmed with in 1995 is not the same SQL being used in 2005.
Today's SQL can do so much more.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Audience for This Book

This text is unique in that the target audience is wide, but the quality of the material presented is not
compromised. Consider that both complex and simple solutions are provided, and that solutions for
five different vendors are available when a common solution does not exist. The target audience is
indeed wide:

The SQL novice

Perhaps you have just purchased a text on learning SQL, or you are fresh into your first
semester of a required database course and you want to supplement your new knowledge with
some challenging real world examples. Maybe you've seen a query that magically transforms
rows to columns, or that parses a serialized string into a result set. The recipes in this book
explain techniques for performing these seemingly impossible queries.

The non-SQL programmer

Perhaps your background is in another language and you've been thrown into the fire at your
current job and are expected to support complex SQL written by someone else. The recipes
shown in this book, particularly in the later chapters, break down complex queries and provide
a gentle walk-through to help you understand complex code that you may have inherited.

The SQL journeyman

For the intermediate SQL developer, this book is the gold at the end of the rainbow (OK,
maybe that's too strong; please forgive an author's enthusiasm for his topic). In particular, if
you've been coding SQL for quite some time and have not found your way onto window
functions, you're in for a treat. For example, the days of needing temporary tables to store
intermediate results are over; window functions can get you to an answer in a single query!
Allow me to again state that I have no intention of trying to force-feed my ideas to an already
experienced practitioner. Instead, consider this book as a way to update your skill set if you
haven't caught on to some of the newer additions to the SQL language.

The SQL expert

Undoubtedly you've seen these recipes before, and you probably have your own variations.
Why, then, is this book useful to you? Perhaps you've been a SQL expert on one platform your
whole career, say, SQL Server, and now wish to learn Oracle. Perhaps you've only ever used
MySQL, and you wonder what the same solutions in PostgreSQL would look like. This text
covers different relational database management systems (RDBMSs) and displays their
solutions side by side. Here's your chance to expand your knowledge base.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How to Use This Book

Be sure to read this preface thoroughly. It contains necessary background and other information that
you might otherwise miss if you dive into individual recipes. The section on "Platform and Version"
tells you what RDBMSs this book covers. Pay special attention to "Tables Used in This Book," so that
you become familiar with the example tables used in most of the recipes. You'll also find important
coding and font conventions in "Conventions Used in This Book." All these sections come later in this
preface.

Remember that this is a cookbook, a collection of code examples to use as guidelines for solving
similar (or identical) problems that you may have. Do not try to learn SQL from this book, at least
not from scratch. This book should act as a supplement to, not a replacement for, a complete text on
learning SQL. Additionally, following the tips below will help you use this book more productively:

This book takes advantage of vendor-specific functions. SQL Pocket Guide by Jonathan Gennick
has all of them and is convenient to have close to you in case you don't know what some of the
functions in my recipes do.

If you've never used window functions, or have had problems with queries using GROUP BY,
read Appendix A first. It will define and prove what a group is in SQL. More importantly, it gives
a basic idea of how window functions work. Window functions are one of the most important
SQL developments of the past decade.

Use common sense! Realize that it is impossible to write a book that provides a solution to
every possible business problem in existence. Instead, use the recipes from this book as
templates or guidelines to teach yourself the techniques required to solve your own specific
problems. If you find yourself saying, "Great, this recipe works for this particular data set, but
mine is different and thus the recipe doesn't work quite correctly," that's expected. In that case,
try to find commonality between the data in the book and your data. Break down the book's
query to its simplest form and add complexity as you go. All queries start with SELECT…FROM…,
so in their simplest form, all queries are the same. If you add complexity as you go, "building" a
query one step, one function, one join at a time, you will not only understand how those
constructs change the result set, but you will see how the recipe is different from what you
actually need. And from there you can modify the recipe to work for your particular data set.

Test, test, and test. Undoubtedly any table of yours is bigger than the 14 row EMP table used in
this book, so please test the solutions against your data, at the very least to ensure that they
perform well. I can't possibly know what your tables look like, what columns are indexed, and
what relationships are present in your schema. So please, do not blindly implement these
techniques in your production code until you fully understand them and how they will perform
against your particular data.

Don't be afraid to experiment. Be creative! Feel free to use techniques different from what I've
used. I make it a point to use many of the functions supplied by the different vendors in this
book, and often there are several other functions that may work as well as the one I've chosen
to use in a particular recipe. Feel free to plug your own variations into the recipes of this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Newer does not always mean better. If you're not using some of the more recent features of the
SQL language (for example, window functions), that does not necessarily mean your code is not
as efficient as it can be. There are many cases in which traditional SQL solutions are as good or
better than any new solution. Please keep this in mind, particularly in the Appendix B,
Rozenshtein Revisited. After reading this book, you should not come away with the idea that
you need to update or change all your existing code. Instead, only realize there are many new
and extremely efficient features of SQL available now that were not available 10 years ago, and
they are worth the time taken to learn them.

Don't be intimidated. When you get to the solution section of a recipe and a query looks
impossible to understand, don't fear. I've gone to great lengths to not only break down each
query starting from its simplest form, but to show the intermediate results of each portion of a
query as we work our way to the complete solution. You may not be able to see the big picture
immediately, but once you follow the discussion and see not only how a query is built, but the
results of each step, you'll find that even convoluted-looking queries are not hard to grasp.

Program defensively when necessary. In an effort to make the queries in this book as terse as
humanly possible without obscuring their meaning, I've removed many "defensive measures"
from the recipes. For example, consider a query computing a running total for a number of
employee salaries. It could be the case that you have declared the column of type VARCHAR
and are (sadly) storing a mix of numeric and string data in one field. You'll find the running total
recipe in this book does not check for such a case (and it will fail as the function SUM doesn't
know what to do with character data), so if you have this type of "data" ("problem" is a more
accurate description), you will need to code around it or (hopefully) fix your data, because the
recipes provided do not account for such design practices as the mixing of character and
numeric data in the same column. The idea is to focus on the technique; once you understand
the technique, sidestepping such problems is trivial.

Repetition is the key. The best way to master the recipes in this book is to sit down and code
them. When it comes to code, reading is fine, but actually coding is even better. You must read
to understand why things are done a certain way, but only by coding will you be able to create
these queries yourself.

Be advised that many of the examples in this book are contrived. The problems are not contrived.
They are real. However, I've built all examples around a small set of tables containing employee
data. I've done that to help you get familiar with the example data, so that, having become familiar
with the data, you can focus on the technique that each recipe illustrates. You might look at a specific
problem and think: "I would never need to do that with employee data." But try to look past the
example data in those cases and focus on the technique that I'm illustrating. The techniques are
useful. My colleagues and I use them daily. We think you will too.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What's Missing from This Book

Due to constraints on time and book size, it isn't possible for a single book to provide solutions for all
the possible SQL problems you may encounter. That said, here are some additional items that did not
make the list:

Data Definition

Aspects of SQL such as creating indexes, adding constraints, and loading data are not covered
in this book. Such tasks typically involve syntax that is highly vendor-specific, so you're best off
referring to vendor manuals. In addition, such tasks do not represent the type of "hard"
problem for which one would purchase a book to solve. Chapter 4, however, does provide
recipes for common problems involving the insertion, updating, and deleting of data.

XML

It is my strong opinion that XML recipes do not belong in a book on SQL. Storing XML
documents in relational databases is becoming increasingly popular, and each RDBMS has their
own extensions and tools for retrieving and manipulating such data. XML manipulation often
involves code that is procedural and thus outside the scope of this book. Recent developments
such as XQUERY represent completely separate topics from SQL and belong in their own book
(or books).

Object-Oriented Extensions to SQL

Until a language more suitable for dealing with objects comes along, I am strongly against
using object-oriented features and designs in relational databases. At the present time, the
object-oriented features available from some vendors are more suitable for use in procedural
programming than in the sort of setoriented problem-solving for which SQL is designed.

Debates on Points of Theory

You won't find arguments in this book about whether SQL is relational, or about whether NULL
values should exist. These sort of theoretical discussions have their place, but not in a book
centered on delivering SQL solutions to real-life problems. To solve real-life problems, you
simply have to work with the tools available to you at the time. You have to deal with what you
have, not what you wish you had.

If you wish to learn more about theory, any of Chris Date's "Relational
Database Writings" books would be a good start. You might also pick up a
copy of his most recent book, Database in Depth (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Vendor Politics

This text provides solutions for five different RDBMSs. It is only natural to want to know which
vendor's solution is "best" or "fastest." There is plenty of information that each vendor would
gladly provide to show that their product is "best"; I have no intention of doing so here.

ANSI Politics

Many texts shy away from the proprietary functions supplied by different vendors. This text
embraces proprietary functions. I have no intention of writing convoluted, poorly performing
SQL code simply for the sake of portability. I have never worked in an environment where the
use of vendor-specific extensions was prohibited. You are paying for these features; why not
use them?

Vendor extensions exist for a reason, and many times offer better performance and readability
than you could otherwise achieve using standard SQL. If you prefer ANSI-only solutions, fine.
As I mentioned before, I am not here to tell you to turn all your code upside down. If what you
have is strictly ANSI and it works for you, great. When it comes down to it, we all go to work,
we all have bills to pay, and we all want to go home at a reasonable time and enjoy what's still
left of our days. So, I'm not suggesting that ANSI-only is wrong. Do what works and is best for
you. But, I want to make clear that if you're looking for ANSI-only solutions, you should look
elsewhere.

Legacy Politics

The recipes in this text make use of the newest features available at the time of writing. If you
are using old versions of the RDBMSs that I cover, many of my solutions will simply not work
for you. Technology does not stand still, and neither should you. If you need older solutions,
you'll find that many of the SQL texts available from years past have plenty of examples using
older versions of the RDBMSs covered in this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Structure of This Book

This book is divided into 14 chapters and 2 appendices:

Chapter 1, Retrieving Records, introduces very simple queries. Examples include how to use a
WHERE clause to restrict rows from your result set, providing aliases for columns in your result
set, using an inline view to reference aliased columns, using simple conditional logic, limiting the
number of rows returned by a query, returning random records, and finding NULL values. Most
of the examples are very simple, but some of them appear in more complex recipes, so it's a
good idea to read this chapter if you're relatively new to SQL or aren't familiar with any of the
examples listed for this chapter.

Chapter 2, Sorting Query Results, introduces recipes for sorting query results. The ORDER BY
clause is introduced and is used to sort query results. Examples increase in complexity ranging
from simple, single-column ordering, to ordering by substrings, to ordering based on conditional
expressions.

Chapter 3, Working with Multiple Tables, introduces recipes for combining data from multiple
tables. If you are new to SQL or are a bit rusty on joins, I strongly recommend you read this
chapter before reading Chapter 5 and later. Joining tables is what SQL is all about; you must
understand joins to be successful. Examples in this chapter include performing both inner and
outer joins, identifying Cartesian productions, basic set operations (set difference, union,
intersection), and the effects of joins on aggregate functions.

Chapter 4, Inserting, Updating, Deleting, introduces recipes for inserting, updating, and deleting
data, respectively. Most of the examples are very straightforward (perhaps even pedestrian).
Nevertheless, operations such as inserting rows into one table from another table, the use of
correlated subqueries in updates, an understanding of the effects of NULLs, and knowledge of
new features such as multi-table inserts and the MERGE command are extremely useful for your
toolbox.

Chapter 5, Metadata Queries, introduces recipes for getting at your database metadata. It's
often very useful to find the indexes, constraints, and tables in your schema. The simple recipes
here allow you to gain information about your schema. Additionally, "dynamic" SQL examples
are shown here as well, i.e., SQL generated by SQL.

Chapter 6, Working with Strings, introduces recipes for manipulating strings. SQL is not known
for its string parsing capabilities, but with a little creativity (usually involving Cartesian
products) along with the vast array of vendor-specific functions, you can accomplish quite a bit.
This chapter is where the book begins to get interesting. Some of the more interesting examples
include counting the occurrences of a character in a string, creating delimited lists from table
rows, converting delimited lists and strings into rows, and separating numeric and character
data from a string of alphanumeric characters.

Chapter 7, Working with Numbers, introduces recipes for common number crunching. The
recipes found here are extremely common and you'll learn how easily window functions solve
problems involving moving calculations and aggregations. Examples include creating running

http://lib.ommolketab.ir
http://lib.ommolketab.ir

totals; finding mean, median, and mode; calculating percentiles; and accounting for NULL while
performing aggregations.

Chapter 8, Date Arithmetic, is the first of two chapters dealing with dates. Being able to perform
simple date arithmetic is crucial to everyday tasks. Examples include determining the number of
business days between two dates, calculating the difference between two dates in different units
of time (day, month, year, etc.), and counting occurrences of days in a month.

Chapter 9, Date Manipulation, is the second of the two chapters dealing with dates. In this
chapter you will find recipes for some of the most common date operations you will encounter in
a typical work day. Examples include returning all days in a year, finding leap years, finding first
and last days of a month, creating a calendar, and filling in missing dates for a range of dates.

Chapter 10, Working with Ranges, introduces recipes for identifying values in ranges, and for
creating ranges of values. Examples include automatically generating a sequence of rows, filling
in missing numeric values for a range of values, locating the beginning and end of a range of
values, and locating consecutive values.

Chapter 11, Advanced Searching, introduces recipes that are crucial for everyday development
and yet sometimes slip through the cracks. These recipes are not any more difficult than others,
yet I see many developers making very inefficient attempts at solving the problems these
recipes solve. Examples from this chapter include finding knight values, paginating through a
result set, skipping rows from a table, finding reciprocals, selecting the top n records, and
ranking results.

Chapter 12, Reporting and Warehousing, introduces queries typically used in warehousing or
generating complex reports. This chapter was meant to be the majority of the book as it existed
in my original vision. Examples include converting rows into columns and vice versa (cross-tab
reports), creating buckets or groups of data, creating histograms, calculating simple and
complete subtotals, performing aggregations over a moving window of rows, and grouping rows
based on given units of time.

Chapter 13, Hierarchical Queries, introduces hierarchical recipes. Regardless of how your data is
modeled, at some point you will be asked to format data such that it represents a tree or
parent-child relationship. This chapter provides recipes accomplishing these tasks. Creating
tree-structured result sets can be cumbersome with traditional SQL, so vendor-supplied
functions are particularly useful in this chapter. Examples include expressing a parent-child
relationship, traversing a hierarchy from root to leaf, and rolling up a hierarchy.

Chapter 14, Odds 'n' Ends, is a collection of miscellaneous recipes that didn't seem to fit into
any other problem domain, but that nevertheless are interesting and useful. This chapter is
different from the rest in that it focuses on vendor-spe-cific solutions only. This is the only
chapter of the book where each recipe highlights only one vendor. The reasons are twofold:
first, this chapter was meant to serve as more of a fun, geeky chapter. Second, some recipes
exist only to highlight a vendor-specific function that has no equivalent in the other RDBMSs
(examples include SQL Server's PIVOT/UNPIVOT operators and Oracle's MODEL clause). In
some cases, though, you'll be able to easily tweak a solution provided in this chapter to work for
a platform not covered in the recipe.

Appendix A, Window Function Refresher, is a window function refresher along with a solid
discussion of groups in SQL. Window functions are new to most, so it is appropriate that this
appendix serves as a brief tutorial. Additionally, in my experience I have noticed that the use of
GROUP BY in queries is a source of confusion for many developers. This chapter defines exactly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

what a SQL group is, and then proceeds to use various queries as proofs to validate that
definition. The chapter then goes into the effects of NULLs on groups, aggregates, and
partitions. Lastly, you'll find discussion on the more obscure and yet extremely powerful syntax
of the window function's OVER clause (i.e., the "framing" or "windowing" clause).

Appendix B, Rozenshtein Revisited, is a tribute to David Rozenshtein, to whom I owe my
success in SQL development. Rozenshtein's book, The Essence of SQL (Coriolis Group Books)
was the first book I purchased on SQL that was not required by a class. It was from that book
that I learned how to "think in SQL." To this day I attribute much of my understanding of how
SQL works to David's book. It truly is different from any other SQL book I've read, and I'm
grateful that it was the first one I picked up on my own volition. Appendix B focuses on some of
the queries presented in The Essence of SQL, and provides alternative solutions using window
functions (which weren't available when The Essence of SQL was written) for those queries.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Platform and Version

SQL is a moving target. Vendors are constantly pumping new features and functionality into their
products. Thus you should know up front which versions of the various platforms were used in the
preparation of this text:

DB2 v.8

Oracle Database 10g (with the exception of a handful of recipes, the solutions will work for
Oracle8i Database and Oracle9i Database as well)

PostgreSQL 8

SQL Server 2005

MySQL 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tables Used in This Book

The majority of the examples in this book involve the use of two tables, EMP and DEPT. The EMP
table is a simple 14-row table with only numeric, string, and date fields. The DEPT table is a simple
four-row table with only numeric and string fields. These tables appear in many old database texts,
and the many-to-one relationship between departments and employees is well understood.

While I'm on the topic of the example tables, I want to mention that all but a very few solutions in
this book run against these tables. Nowhere do I tweak my example data to set up a solution that
you would be unlikely to have a chance of implementing in the real world, as some books do.

And while I'm on the topic of solutions, let me just mention that whenever possible I've tried to
provide a generic solution that will run on all five RDBMSs covered in this book. Often that's not
possible. Even so, in many cases more than one vendor shares a solution. Because of their mutual
support for window functions, for example, Oracle and DB2 often share solutions. Whenever solutions
are shared, or at least are very similar, discussions are shared as well.

The contents of EMP and DEPT are shown below, respectively:

 select * from emp;

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
 ----- ------ --------- ---- ----------- ---- ---- -------
 7369 SMITH CLERK 7902 17-DEC-1980 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-1981 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30
 7566 JONES MANAGER 7839 02-APR-1981 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-1981 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-1981 2850 30
 7782 CLARK MANAGER 7839 09-JUN-1981 2450 10
 7788 SCOTT ANALYST 7566 09-DEC-1982 3000 20
 7839 KING PRESIDENT 17-NOV-1981 5000 10
 7844 TURNER SALESMAN 7698 08-SEP-1981 1500 0 30
 7876 ADAMS CLERK 7788 12-JAN-1983 1100 20
 7900 JAMES CLERK 7698 03-DEC-1981 950 30
 7902 FORD ANALYST 7566 03-DEC-1981 3000 20
 7934 MILLER CLERK 7782 23-JAN-1982 1300 10

 select * from dept;

 DEPTNO DNAME LOC
 ------ -------------- ---------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 30 SALES CHICAGO
 40 OPERATIONS BOSTON

Additionally, you will find four pivot tables used in this book; T1, T10, T100, and T500. Because these
tables exist only to facilitate pivots, I did not find it necessary to give them clever names. The
number following the "T" in each of the pivot tables signifies the number of rows in each table
starting from 1. For example, the values for T1 and T10:

 select id from t1;

 ID

 1

 select id from t10;

 ID

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

As an aside, some vendors allow partial SELECT statements. For example, you can have SELECT
without a FROM clause. I don't particularly like this, thus I select against a support table, T1, with a
single row, rather than using partial queries.

Any other tables are specific to particular recipes and chapters, and will be introduced in the text
when appropriate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

I use a number of typographical and coding conventions in this book. Take time to become familiar
with them. Doing so will enhance your understanding of the text. Coding conventions in particular are
important, because I can't discuss them anew for each recipe in the book. Instead, I list the
important conventions here.

Typographical Conventions

The following typographical conventions are used in this book:

UPPERCASE

Used to indicate SQL keywords within text

lowercase

Used for all queries in code examples. Other languages such as C and JAVA use lowercase for
most keywords and I find it infinitely more readable than uppercase. Thus all queries will be
lowercase.

Constant width bold

Indicates user input in examples showing an interaction.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Coding Conventions

My preference for case in SQL statements is to always use lowercase, for both keywords and user-
specified identifiers. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select empno, ename
 from emp;

Your preference may be otherwise. For example, many prefer to uppercase SQL keywords. Use
whatever coding style you prefer, or whatever your project requires.

Despite my use of lowercase in code examples, I consistently uppercase SQL keywords and identifiers
in the text. I do this to make those items stand out as something other than regular prose. For
example:

The preceding query represents a SELECT against the EMP table.

While this book covers databases from five different vendors, I've decided to use one format for all
the output:

 EMPNO ENAME
 ----- ------
 7369 SMITH
 7499 ALLEN
 …

Many solutions make use of inline views, or subqueries in the FROM clause. The ANSI SQL standard
requires that such views be given table aliases. (Oracle is the only vendor that lets you get away
without specifying such aliases.) Thus, my solutions use aliases such as x and y to identify the result
sets from inline views:

 select job, sal
 from (select job, max(sal) sal
 from emp
 group by job) x;

Notice the letter X following the final, closing parenthesis. That letter X becomes the name of the
"table" returned by the subquery in the FROM clause. While column aliases are a valuable tool for
writing self-documenting code, aliases on inline views (for most recipes in this book) are simply
formalities. They are typically given trivial names such as X, Y, Z, TMP1, and TMP2. In cases where I
feel a better alias will provide more understanding, I do so.

You will notice that the SQL in the SOLUTION section of the recipes is typically numbered, for
example:

 1 select ename
 2 from emp
 3 where deptno = 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The number is not part of the syntax; I have included it so I can reference parts of the query by
number in the discussion section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact O'Reilly for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: SQL Cookbook, by Anthony Molinaro. Copyright 2006 O'Reilly
Media, Inc., 0-596-00976-3.

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed or that we have made mistakes. If so, please notify us by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, or to suggest additional recipes for future
editions, send email to:

bookquestions@oreilly.com

We have a web site for this book where you can find examples and errata (previously reported errors
and corrections are available for public view there). You can access this page at:

http://www.oreilly.com/catalog/sqlckbk

http://www.oreilly.com/catalog/sqlckbk
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
it means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top technology books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

This book would not exist without all the support I've received from a great many people. I would like
to thank my mother, Connie, to whom this book is dedicated. Without your hard work and sacrifice I
would not be where I am today. Thank you for everything, Mom. I am thankful and appreciative of
everything you've done for my brother and me. I have been blessed to have you as my mother.

To my brother, Joe: every time I came home from Baltimore to take a break from writing, you were
there to remind me how great things are when we're not working, and how I should finish writing so I
can get back to the more important things in life. You're a good man and I respect you. I am
extremely proud of you, and proud to call you my brother.

To my wonderful fiancee, Georgia: Without your support I would not have made it through all 600-
plus pages of this book. You were here sharing this experience with me, day after day. I know it was
just as hard on you as it was on me. I spent all day working and all night writing, but you were great
through it all. You were understanding and supportive and I am forever grateful. Thank you. I love
you.

To my future in-laws: to my mother-in-law and father-in-law, Kiki and George. Thank you for your
support throughout this whole experience. You always made me feel at home whenever I took a
break and came to visit, and you made sure Georgia and I were always well fed. To my sister-in-
laws, Anna and Kathy, it was always fun coming home and hanging out with you guys, giving Georgia
and I a much needed break from the book and from Baltimore.

To my editor Jonathan Gennick, without whom this book would not exist. Jonathan, you deserve a
tremendous amount of credit for this book. You went above and beyond what an editor would
normally do and for that you deserve much thanks. From supplying recipes, to tons of rewrites, to
keeping things humorous despite oncoming deadlines, I could not have done it without you. I am
grateful to have had you as my editor and grateful for the opportunity you have given me. An
experienced DBA and author yourself, it was a pleasure to work with someone of your technical level
and expertise. I can't imagine there are too many editors out there that can, if they decided to, stop
editing and work practically anywhere as a database administrator (DBA); Jonathan can. Being a DBA
certainly gives you an edge as an editor as you usually know what I want to say even when I'm
having trouble expressing it. O'Reilly is lucky to have you on staff and I am lucky to have you as an
editor.

I would like to thank Ales Spetic and Jonathan Gennick for Transact-SQL Cookbook. Isaac Newton
famously said, "If I have seen a little further it is by standing on the shoulders of giants." In the
acknowledgments section of the Transact-SQL Cookbook, Ales Spetic wrote something that is a
testament to this famous quote and I feel should be in every SQL book. I include it here:

I hope that this book will complement the exiting opuses of outstanding authors like Joe Celko,
David Rozenshtein, Anatoly Abramovich, Eugine Berger, Iztik Ben-Gan, Richard Snodgrass, and
others. I spent many nights studying their work, and I learned almost everything I know from
their books. As I am writing these lines, I'm aware that for every night I spent discovering their
secrets, they must have spent 10 nights putting their knowledge into a consistent and readable
form. It is an honor to be able to give something back to the SQL community.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I would like to thank Sanjay Mishra for his excellent Mastering Oracle SQL book, and also for putting
me in touch with Jonathan. If not for Sanjay, I may have never been in touch with Jonathan and
never would have written this book. Amazing how a simple email can change your life. I would like to
thank David Rozenshtein, especially, for his Essence of SQL book, which provided me with a solid
understanding of how to think and problem solve in sets/SQL. I would like to thank David
Rozenshtein, Anatoly Abramovich, and Eugene Birger for their book Optimizing Transact-SQL, from
which I learned many of the advanced SQL techniques I use today.

I would like to thank the whole team at Wireless Generation, a great company with great people. A
big thank you to all of the people who took the time to review, critique, or offer advice to help me
complete this book: Jesse Davis, Joel Patterson, Philip Zee, Kevin Marshall, Doug Daniels, Otis
Gospodnetic, Ken Gunn, John Stewart, Jim Abramson, Adam Mayer, Susan Lau, Alexis Le-Quoc, and
Paul Feuer. I would like to thank Maggie Ho for her careful review of my work and extremely useful
feedback regarding the window function refresher. I would like to thank Chuck Van Buren and Gillian
Gutenberg for their great advice about running. Early morning workouts helped me clear my mind
and unwind. I don't think I would have been able to finish this book without getting out a bit. I would
like to thank Steve Kang and Chad Levinson for putting up with all my incessant talk about different
SQL techniques on the nights when all they wanted was to head to Union Square to get a beer and a
burger at Heartland Brewery after a long day of work. I would like to thank Aaron Boyd for all his
support, kind words, and, most importantly, good advice. Aaron is honest, hardworking, and a very
straightforward guy; people like him make a company better. I would like to thank Olivier Pomel for
his support and help in writing this book, in particular for the DB2 solution for creating delimited lists
from rows. Olivier contributed that solution without even having a DB2 system to test it with! I
explained to him how the WITH clause worked, and minutes later he came up with the solution you
see in this book.

Jonah Harris and David Rozenshtein also provided helpful technical review feedback on the
manuscript. And Arun Marathe, Nuno Pinto do Souto, and Andrew Odewahn weighed in on the outline
and choice of recipes while this book was in its formative stages. Thanks, very much, to all of you.

I want to thank John Haydu and the MODEL clause development team at Oracle Corporation for
taking the time to review the MODEL clause article I wrote for O'Reilly, and for ultimately giving me a
better understanding of how that clause works. I would like to thank Tom Kyte of Oracle Corporation
for allowing me to adapt his TO_BASE function into a SQL-only solution. Bruno Denuit of Microsoft
answered questions I had regarding the functionality of the window functions introduced in SQL
Server 2005. Simon Riggs of PostgreSQL kept me up to date about new SQL features in PostgreSQL
(very big thanks: Simon, by knowing what was coming out and when, I was able to incorporate some
new SQL features such as the ever-so-cool GENERATE_SERIES function, which I think made for more
elegant solutions compared to pivot tables).

Last but certainly not least, I'd like to thank Kay Young. When you are talented and passionate about
what you do, it is great to be able to work with people who are likewise as talented and passionate.
Many of the recipes you see in this text have come from working with Kay and coming up with SQL
solutions for everyday problems at Wireless Generation. I want to thank you and let you know I
absolutely appreciate all the help you given me throughout all of this; from advice, to grammar
corrections, to code, you played an integral role in the writing of this book. It's been great working
with you, and Wireless Generation is a better company because you are there.

Anthony Molinaro

September 2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Retrieving Records

This chapter focuses on very basic SELECT statements. It is important to have a solid understanding
of the basics as many of the topics covered here are not only present in more difficult recipes but also
are found in everyday SQL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.1. Retrieving All Rows and Columns from a
Table

Problem

You have a table and want to see all of the data in it.

Solution

Use the special "*" character and issue a SELECT against the table:

 1 select *
 2 from emp

Discussion

The character "*" has special meaning in SQL. Using it will return every column for the table
specified. Since there is no WHERE clause specified, every row will be returned as well. The
alternative would be to list each column individually:

 select empno,ename,job,sal,mgr,hiredate,comm,deptno
 from emp

In ad hoc queries that you execute interactively, it's easier to use SELECT *. However, when writing
program code it's better to specify each column individually. The performance will be the same, but
by being explicit you will always know what columns you are returning from the query. Likewise, such
queries are easier to understand by people other than yourself (who may or may not know all the
columns in the tables in the query).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.2. Retrieving a Subset of Rows from a Table

Problem

You have a table and want to see only rows that satisfy a specific condition.

Solution

Use the WHERE clause to specify which rows to keep. For example, to view all employees assigned to
department number 10:

 1 select *
 2 from emp
 3 where deptno = 10

Discussion

The WHERE clause allows you to retrieve only rows you are interested in. If the expression in the
WHERE clause is true for any row, then that row is returned.

Most vendors support common operators such as: =, <, >, <=, >=, !, <>. Additionally, you may
want rows that satisfy multiple conditions; this can be done by specifying AND, OR, and parenthesis,
as shown in the next recipe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.3. Finding Rows That Satisfy Multiple Conditions

Problem

You want to return rows that satisfy multiple conditions.

Solution

Use the WHERE clause along with the OR and AND clauses. For example, if you would like to find all
the employees in department 10, along with any employees who earn a commission, along with any
employees in department 20 who earn at most $2000:

 1 select *
 2 from emp
 3 where deptno = 10
 4 or comm is not null
 5 or sal <= 2000 and deptno=20

Discussion

You can use a combination of AND, OR, and parenthesis to return rows that satisfy multiple
conditions. In the solution example, the WHERE clause finds rows such that:

the DEPTNO is 10, or

the COMM is NULL, or

the salary is $2000 or less for any employee in DEPTNO 20.

The presence of parentheses causes conditions within them to be evaluated together.

For example, consider how the result set changes if the query was written with the parentheses as
shown below:

 select *
 from emp
 where (deptno = 10
 or comm is not null

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 or sal <= 2000
)
 and deptno=20

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
 ----- ------ ----- ----- ----------- ----- ---------- ------
 7369 SMITH CLERK 7902 17-DEC-1980 800 20
 7876 ADAMS CLERK 7788 12-JAN-1983 1100 20

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.4. Retrieving a Subset of Columns from a Table

Problem

You have a table and want to see values for specific columns rather than for all the columns.

Solution

Specify the columns you are interested in. For example, to see only name, department number, and
salary for employees:

 1 select ename,deptno,sal
 2 from emp

Discussion

By specifying the columns in the SELECT clause, you ensure that no extraneous data is returned. This
can be especially important when retrieving data across a network, as it avoids the waste of time
inherent in retrieving data that you do not need.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.5. Providing Meaningful Names for Columns

Problem

You would like to change the names of the columns that are returned by your query so they are more
readable and understandable. Consider this query that returns the salaries and commissions for each
employee:

 1 select sal,comm
 2 from emp

What's "sal"? Is it short for "sale"? Is it someone's name? What's "comm"? Is it communication? You
want the results to have more meaningful labels.

Solution

To change the names of your query results use the AS keyword in the form: original_name AS
new_name. Some databases do not require AS, but all accept it:

 1 select sal as salary, comm as commission
 2 from emp

 SALARY COMMISSION
 ------- ----------
 800
 1600 300
 1250 500
 2975
 1250 1300
 2850
 2450
 3000
 5000
 1500 0
 1100
 950
 3000
 1300

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

Using the AS keyword to give new names to columns returned by your query is known as aliasing
those columns. The new names that you give are known as aliases. Creating good aliases can go a
long way toward making a query and its results understandable to others.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.6. Referencing an Aliased Column in the WHERE
Clause

Problem

You have used aliases to provide more meaningful column names for your result set and would like to
exclude some of the rows using the WHERE clause. However, your attempt to reference alias names
in the WHERE clause fails:

 select sal as salary, comm as commission
 from emp
 where salary < 5000

Solution

By wrapping your query as an inline view you can reference the aliased columns:

 1 select *
 2 from (
 3 select sal as salary, comm as commission
 4 from emp
 5) x
 6 where salary < 5000

Discussion

In this simple example, you can avoid the inline view and reference COMM or SAL directly in the
WHERE clause to achieve the same result. This solution introduces you to what you would need to do
when attempting to reference any of the following in a WHERE clause:

Aggregate functions

Scalar subqueries

Windowing functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Aliases

Placing your query, the one giving aliases, in an inline view gives you the ability to reference the
aliased columns in your outer query. Why do you need to do this? The WHERE clause is evaluated
before the SELECT, thus, SALARY and COMMISSION do not yet exist when the "Problem" query's
WHERE clause is evaluated. Those aliases are not applied until after the WHERE clause processing is
complete. However, the FROM clause is evaluated before the WHERE. By placing the original query in
a FROM clause, the results from that query are generated before the outermost WHERE clause, and
your outermost WHERE clause "sees" the alias names. This technique is particularly useful when the
columns in a table are not named particularly well.

The inline view in this solution is aliased X. Not all databases require an inline
view to be explicitly aliased, but some do. All of them accept it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.7. Concatenating Column Values

Problem

You want to return values in multiple columns as one column. For example, you would like to produce
this result set from a query against the EMP table:

 CLARK WORKS AS A MANAGER
 KING WORKS AS A PRESIDENT
 MILLER WORKS AS A CLERK

However, the data that you need to generate this result set comes from two different columns, the
ENAME and JOB columns in the EMP table:

 select ename, job
 from emp
 where deptno = 10

 ENAME JOB
 ---------- ---------
 CLARK MANAGER
 KING PRESIDENT
 MILLER CLERK

Solution

Find and use the built-in function provided by your DBMS to concatenate values from multiple
columns.

DB2, Oracle, PostgreSQL

These databases use the double vertical bar as the concatenation operator:

 1 select ename||' WORKS AS A '||job as msg
 2 from emp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 where deptno=10

MySQL

This database supports a function called CONCAT:

 1 select concat(ename, ' WORKS AS A ',job) as msg
 2 from
 3 where deptno=10

SQL Server

Use the "+" operator for concatenation:

 1 select ename + ' WORKS AS A ' + job as msg
 2 from emp
 3 where deptno=10

Discussion

Use the CONCAT function to concatenate values from multiple columns. The || is a shortcut for the
CONCAT function in DB2, Oracle, and PostgreSQL, while + is the shortcut for SQL Server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.8. Using Conditional Logic in a SELECT
Statement

Problem

You want to perform IF-ELSE operations on values in your SELECT statement. For example, you
would like to produce a result set such that, if an employee is paid $2000 or less, a message of
"UNDERPAID" is returned, if an employee is paid $4000 or more, a message of "OVERPAID" is
returned, if they make somewhere in between, then "OK" is returned. The result set should look like
this:

 ENAME SAL STATUS
 ---------- ---------- ---------
 SMITH 800 UNDERPAID
 ALLEN 1600 UNDERPAID
 WARD 1250 UNDERPAID
 JONES 2975 OK
 MARTIN 1250 UNDERPAID
 BLAKE 2850 OK
 CLARK 2450 OK
 SCOTT 3000 OK
 KING 5000 OVERPAID
 TURNER 1500 UNDERPAID
 ADAMS 1100 UNDERPAID
 JAMES 950 UNDERPAID

 FORD 3000 OK
 MILLER 1300 UNDERPAID

Solution

Use the CASE expression to perform conditional logic directly in your SELECT statement:

 1 select ename,sal,
 2 case when sal <= 2000 then 'UNDERPAID'
 3 when sal >= 4000 then 'OVERPAID'
 4 else 'OK'
 5 end as status
 6 from emp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

The CASE expression allows you to perform condition logic on values returned by a query. You can
provide an alias for a CASE expression to return a more readable result set. In the solution, you'll see
the alias STATUS given to the result of the CASE expression. The ELSE clause is optional. Omit the
ELSE, and the CASE expression will return NULL for any row that does not satisfy the test condition.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.9. Limiting the Number of Rows Returned

Problem

You want to limit the number of rows returned in your query. You are not concerned with order; any
n rows will do.

Solution

Use the built-in function provided by your database to control the number of rows returned.

DB2

In DB2 use the FETCH FIRST clause:

 1 select *
 2 from emp fetch first 5 rows only

MySQL and PostgreSQL

Do the same thing in MySQL and PostgreSQL using LIMIT:

 1 select *
 2 from emp limit 5

Oracle

In Oracle, place a restriction on the number of rows returned by restricting ROWNUM in the WHERE
clause:

 1 select *
 2 from emp
 3 where rownum <= 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Server

Use the TOP keyword to restrict the number of rows returned:

 1 select top 5 *
 2 from emp

Discussion

Many vendors provide clauses such as FETCH FIRST and LIMIT that let you specify the number of
rows to be returned from a query. Oracle is different, in that you must make use of a function called
ROWNUM that returns a number for each row returned (an increasing value starting from 1).

Here is what happens when you use ROWNUM <= 5 to return the first five rows:

Oracle executes your query.1.

Oracle fetches the first row and calls it row number 1.2.

Have we gotten past row number 5 yet? If no, then Oracle returns the row, because it meets
the criteria of being numbered less than or equal to 5. If yes, then Oracle does not return the
row.

3.

Oracle fetches the next row and advances the row number (to 2, and then to 3, and then to 4,
and so forth).

4.

Go to step 3.5.

As this process shows, values from Oracle's ROWNUM are assigned after each row is fetched. This is
a very important and key point. Many Oracle developers attempt to return only, say, the fifth row
returned by a query by specifying ROWNUM = 5.

Using an equality condition in conjunction with ROWNUM is a bad idea. Here is what happens when
you try to return, say, the fifth row using ROWNUM = 5:

Oracle executes your query.1.

Oracle fetches the first row and calls it row number 1.2.

Have we gotten to row number 5 yet? If no, then Oracle discards the row, because it doesn't
meet the criteria. If yes, then Oracle returns the row. But the answer will never be yes!

3.

Oracle fetches the next row and calls it row number 1. This is because the first row to be4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

returned from the query must be numbered as 1.
4.

Go to step 3.5.

Study this process closely, and you can see why the use of ROWNUM = 5 to return the fifth row fails.
You can't have a fifth row if you don't first return rows one through four!

You may notice that ROWNUM = 1 does, in fact, work to return the first row, which may seem to
contradict the explanation thus far. The reason ROWNUM = 1 works to return the first row is that, to
determine whether or not there are any rows in the table, Oracle has to attempt to fetch at least
once. Read the preceding process carefully, substituting 1 for 5, and you'll understand why it's OK to
specify ROWNUM = 1 as a condition (for returning one row).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.10. Returning n Random Records from a Table

Problem

You want to return a specific number of random records from a table. You want to modify the
following statement such that successive executions will produce a different set of five rows:

 select ename, job
 from emp

Solution

Take any built-in function supported by your DBMS for returning random values. Use that function in
an ORDER BY clause to sort rows randomly. Then, use the previous recipe's technique to limit the
number of randomly sorted rows to return.

DB2

Use the built-in function RAND in conjunction with ORDER BY and FETCH:

 1 select ename,job
 2 from emp
 3 order by rand() fetch first 5 rows only

MySQL

Use the built-in RAND function in conjunction with LIMIT and ORDER BY:

 1 select ename,job
 2 from emp
 3 order by rand() limit 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PostgreSQL

Use the built-in RANDOM function in conjunction with LIMIT and ORDER BY:

 1 select ename,job
 2 from emp
 3 order by random() limit 5

Oracle

Use the built-in function VALUE, found in the built-in package DBMS_RANDOM, in conjunction with
ORDER BY and the built-in function ROWNUM:

 1 select *
 2 from (
 3 select ename, job
 4 from emp
 6 order by dbms_random.value()
 7)
 8 where rownum <= 5

SQL Server

Use the built-in function NEWID in conjunction with TOP and ORDER BY to return a random result
set:

 1 select top 5 ename,job
 2 from emp
 3 order by newid()

Discussion

The ORDER BY clause can accept a function's return value and use it to change the order of the result
set. The solution queries all restrict the number of rows to return after the function in the ORDER BY
clause is executed. Non-Oracle users may find it helpful to look at the Oracle solution as it shows
(conceptually) what is happening under the covers of the other solutions.

It is important that you don't confuse using a function in the ORDER BY clause with using a numeric
constant. When specifying a numeric constant in the ORDER BY clause, you are requesting that the
sort be done according the column in that ordinal position in the SELECT list. When you specify a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function in the ORDER BY clause, the sort is performed on the result from the function as it is
evaluated for each row.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.11. Finding Null Values

Problem

You want to find all rows that are null for a particular column.

Solution

To determine whether a value is null, you must use IS NULL:

 1 select *
 2 from emp
 3 where comm is null

Discussion

NULL is never equal/not equal to anything, not even itself, therefore you cannot use = or != for
testing whether a column is NULL. To determine whether or not a row has NULL values you must use
IS NULL. You can also use IS NOT NULL to find rows without a null in a given column.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.12. Transforming Nulls into Real Values

Problem

You have rows that contain nulls and would like to return non-null values in place of those nulls.

Solution

Use the function COALESCE to substitute real values for nulls:

 1 select coalesce(comm,0)
 2 from emp

Discussion

The COALESCE function takes one or more values as arguments. The function returns the first non-
null value in the list. In the solution, the value of COMM is returned whenever COMM is not null.
Otherwise, a zero is returned.

When working with nulls, it's best to take advantage of the built-in functionality provided by your
DBMS; in many cases you'll find several functions work equally as well for this task. COALESCE
happens to work for all DBMSs. Additionally, CASE can be used for all DBMSs as well:

 select case
 when comm is null then 0
 else comm
 end
 from emp

While you can use CASE to translate nulls into values, you can see that it's much easier and more
succinct to use COALESCE.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.13. Searching for Patterns

Problem

You want to return rows that match a particular substring or pattern. Consider the following query
and result set:

 select ename, job
 from emp
 where deptno in (10,20)

 ENAME JOB
 ---------- ---------
 SMITH CLERK
 JONES MANAGER
 CLARK MANAGER
 SCOTT ANALYST
 KING PRESIDENT
 ADAMS CLERK
 FORD ANALYST
 MILLER CLERK

Of the employees in departments 10 and 20, you want to return only those that have either an "I"
somewhere in their name or a job title ending with "ER":

 ENAME JOB
 ---------- ---------
 SMITH CLERK
 JONES MANAGER
 CLARK MANAGER
 KING PRESIDENT
 MILLER CLERK

Solution

Use the LIKE operator in conjunction with the SQL wildcard operator ("%"):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select ename, job
 2 from emp
 3 where deptno in (10,20)
 4 and (ename like '%I%' or job like '%ER')

Discussion

When used in a LIKE pattern-match operation, the percent ("%") operator matches any sequence of
characters. Most SQL implementations also provide the underscore ("_") operator to match a single
character. By enclosing the search pattern "I" with "%" operators, any string that contains an "I" (at
any position) will be returned. If you do not enclose the search pattern with "%", then where you
place the operator will affect the results of the query. For example, to find job titles that end in "ER",
prefix the "%" operator to "ER"; if the requirement is to search for all job titles beginning with "ER",
then append the "%" operator to "ER".

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Sorting Query Results

This chapter focuses on customizing how your query results look. By understanding how you can
control and modify your result sets, you can provide more readable and meaningful data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.1. Returning Query Results in a Specified Order

Problem

You want to display the names, job, and salaries of employees in department 10 in order based on
their salary (from lowest to highest). You want to return the following result set:

 ENAME JOB SAL
 ---------- --------- ----------
 MILLER CLERK 1300
 CLARK MANAGER 2450
 KING PRESIDENT 5000

Solution

Use the ORDER BY clause:

 1 select ename,job,sal
 2 from emp
 3 where deptno = 10
 4 order by sal asc

Discussion

The ORDER BY clause allows you to order the rows of your result set. The solution sorts the rows
based on SAL in ascending order. By default, ORDER BY will sort in ascending order, and the ASC
clause is therefore optional. Alternatively, specify DESC to sort in descending order:

 select ename,job,sal
 from emp
 where deptno = 10
 order by sal desc

 ENAME JOB SAL
 ---------- --------- ----------

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 KING PRESIDENT 5000
 CLARK MANAGER 2450
 MILLER CLERK 1300

You need not specify the name of the column on which to sort. You can instead specify a number
representing the column. The number starts at 1 and matches the items in the SELECT list from left
to right. For example:

 select ename,job,sal
 from emp
 where deptno = 10
 order by 3 desc

 ENAME JOB SAL
 ---------- --------- ----------
 KING PRESIDENT 5000
 CLARK MANAGER 2450
 MILLER CLERK 1300

The number 3 in this example's ORDER BY clause corresponds to the third column in the SELECT list,
which is SAL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.2. Sorting by Multiple Fields

Problem

You want to sort the rows from EMP first by DEPTNO ascending, then by salary descending. You want
to return the following result set:

 EMPNO DEPTNO SAL ENAME JOB
 ---------- ---------- ---------- ---------- ---------
 7839 10 5000 KING PRESIDENT
 7782 10 2450 CLARK MANAGER
 7934 10 1300 MILLER CLERK
 7788 20 3000 SCOTT ANALYST
 7902 20 3000 FORD ANALYST
 7566 20 2975 JONES MANAGER
 7876 20 1100 ADAMS CLERK
 7369 20 800 SMITH CLERK
 7698 30 2850 BLAKE MANAGER
 7499 30 1600 ALLEN SALESMAN
 7844 30 1500 TURNER SALESMAN
 7521 30 1250 WARD SALESMAN
 7654 30 1250 MARTIN SALESMAN
 7900 30 950 JAMES CLERK

Solution

List the different sort columns in the ORDER BY clause, separated by commas:

 1 select empno,deptno,sal,ename,job
 2 from emp
 3 order by deptno, sal desc

Discussion

The order of precedence in ORDER BY is from left to right. If you are ordering using the numeric
position of a column in the SELECT list, then that number must not be greater than the number of
items in the SELECT list. You are generally permitted to order by a column not in the SELECT list, but

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to do so you must explicitly name the column. However, if you are using GROUP BY or DISTINCT in
your query, you cannot order by columns that are not in the SELECT list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.3. Sorting by Substrings

Problem

You want to sort the results of a query by specific parts of a string. For example, you want to return
employee names and jobs from table EMP and sort by the last two characters in the job field. The
result set should look like the following:

 ENAME JOB
 ---------- ---------
 KING PRESIDENT
 SMITH CLERK
 ADAMS CLERK
 JAMES CLERK
 MILLER CLERK
 JONES MANAGER
 CLARK MANAGER
 BLAKE MANAGER
 ALLEN SALESMAN
 MARTIN SALESMAN
 WARD SALESMAN
 TURNER SALESMAN
 SCOTT ANALYST
 FORD ANALYST

Solution

DB2, MySQL, Oracle, and PostgreSQL

Use the SUBSTR function in the ORDER BY clause:

 select ename,job
 from emp
 order by substr(job,length(job)-2)

SQL Server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the SUBSTRING function in the ORDER BY clause:

 select ename,job
 from emp
 order by substring(job,len(job)-2,2)

Discussion

Using your DBMS's substring function, you can easily sort by any part of a string. To sort by the last
two characters of a string, find the end of the string (which is the length of the string) and subtract 2.
The start position will be the second to last character in the string. You then take all characters after
that start position. Because SQL Server requires a third parameter in SUBSTRING to specify the
number of characters to take. In this example, any number greater than or equal to 2 will work.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.4. Sorting Mixed Alphanumeric Data

Problem

You have mixed alphanumeric data and want to sort by either the numeric or character portion of the
data. Consider this view:

 create view V
 as
 select ename||' '||deptno as data
 from emp

 select * from V

 DATA

 SMITH 20
 ALLEN 30
 WARD 30
 JONES 20
 MARTIN 30
 BLAKE 30
 CLARK 10
 SCOTT 20
 KING 10
 TURNER 30
 ADAMS 20
 JAMES 30
 FORD 20
 MILLER 10

You want to sort the results by DEPTNO or ENAME. Sorting by DEPTNO produces the following result
set:

 DATA

 CLARK 10
 KING 10
 MILLER 10
 SMITH 20

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ADAMS 20
 FORD 20
 SCOTT 20
 JONES 20
 ALLEN 30
 BLAKE 30
 MARTIN 30
 JAMES 30
 TURNER 30
 WARD 30

Sorting by ENAME produces the following result set:

 DATA

 ADAMS 20
 ALLEN 30
 BLAKE 30
 CLARK 10
 FORD 20
 JAMES 30
 JONES 20
 KING 10
 MARTIN 30
 MILLER 10
 SCOTT 20
 SMITH 20
 TURNER 30
 WARD 30

Solution

Oracle and PostgreSQL

Use the functions REPLACE and TRANSLATE to modify the string for sorting:

 /* ORDER BY DEPTNO */

 1 select data
 2 from V
 3 order by replace(data,
 4 replace(
 5 translate(data,'0123456789','##########'),'#',''),'')

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* ORDER BY ENAME */

 1 select data
 2 from emp
 3 order by replace(
 4 translate(data,'0123456789','##########'),'#','')

DB2

Implicit type conversion is more strict in DB2 than in Oracle or PostgreSQL, so you will need to cast
DEPTNO to a CHAR for view V to be valid. Rather than recreate view V, this solution will simply use
an inline view. The solution uses REPLACE and TRANSLATE in the same way as the Oracle and
PostrgreSQL solution, but the order of arguments for TRANSLATE is slightly different for DB2:

 /* ORDER BY DEPTNO */

 1 select *
 2 from (
 3 select ename||' '||cast(deptno as char(2)) as data
 4 from emp
 5) v
 6 order by replace(data,
 7 replace(
 8 translate(data,'##########','0123456789'),'#',''),'')

 /* ORDER BY ENAME */

 1 select *
 2 from (
 3 select ename||' '||cast(deptno as char(2)) as data
 4 from emp
 5) v
 6 order by replace(
 7 translate(data,'##########','0123456789'),'#','')

MySQL and SQL Server

The TRANSLATE function is not currently supported by these platforms, thus a solution for this
problem will not be provided.

Discussion

The TRANSLATE and REPLACE functions remove either the numbers or characters from each row,
allowing you to easily sort by one or the other. The values passed to ORDER BY are shown in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

following query results (using the Oracle solution as the example, as the same technique applies to all
three vendors; only the order of parameters passed to TRANSLATE is what sets DB2 apart):

 select data,
 replace(data,
 replace(
 translate(data,'0123456789','##########'),'#',''),'') nums,
 replace(
 translate(data,'0123456789','##########'),'#','') chars
 from V

 DATA NUMS CHARS
 ------------ ------ ----------
 SMITH 20 20 SMITH
 ALLEN 30 30 ALLEN
 WARD 30 30 WARD
 JONES 20 20 JONES
 MARTIN 30 30 MARTIN
 BLAKE 30 30 BLAKE
 CLARK 10 10 CLARK
 SCOTT 20 20 SCOTT
 KING 10 10 KING
 TURNER 30 30 TURNER
 ADAMS 20 20 ADAMS
 JAMES 30 30 JAMES
 FORD 20 20 FORD
 MILLER 10 10 MILLER

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.5. Dealing with Nulls when Sorting

Problem

You want to sort results from EMP by COMM, but the field is nullable. You need a way to specify
whether nulls sort last:

 ENAME SAL COMM
 ---------- ---------- ----------
 TURNER 1500 0
 ALLEN 1600 300
 WARD 1250 500
 MARTIN 1250 1400
 SMITH 800
 JONES 2975
 JAMES 950
 MILLER 1300
 FORD 3000
 ADAMS 1100
 BLAKE 2850
 CLARK 2450
 SCOTT 3000
 KING 5000

or whether they sort first:

 ENAME SAL COMM
 ---------- ---------- ----------
 SMITH 800
 JONES 2975
 CLARK 2450
 BLAKE 2850
 SCOTT 3000
 KING 5000
 JAMES 950
 MILLER 1300
 FORD 3000
 ADAMS 1100
 MARTIN 1250 1400
 WARD 1250 500
 ALLEN 1600 300

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TURNER 1500 0

Solution

Depending on how you want the data to look (and how your particular RDBMS sorts NULL values),
you can sort the nullable column in ascending or descending order:

 1 select ename,sal,comm
 2 from emp
 3 order by 3

 1 select ename,sal,comm
 2 from emp
 3 order by 3 desc

This solution puts you in a position such that if the nullable column contains non-NULL values, they
will be sorted in ascending or descending order as well, according to what you ask for; this may or
may not what you have in mind. If instead you would like to sort NULL values differently than non-
NULL values, for example, you want to sort non-NULL values in ascending or descending order and all
NULL values last, you can use a CASE expression to conditionally sort the column.

DB2, MySQL, PostgreSQL, and SQL Server

Use a CASE expression to "flag" when a value is NULL. The idea is to have a flag with two values: one
to represent NULLs, the other to represent non-NULLs. Once you have that, simply add this flag
column to the ORDER BY clause. You'll easily be able to control whether NULL values are sorted first
or last without interfering with non-NULL values:

 /* NON-NULL COMM SORTED ASCENDING, ALL NULLS LAST */

 1 select ename,sal,comm
 2 from (
 3 select ename,sal,comm,
 4 case when comm is null then 0 else 1 end as is_null
 5 from emp
 6) x
 7 order by is_null desc,comm

 ENAME SAL COMM
 ------ ----- ----------
 TURNER 1500 0
 ALLEN 1600 300
 WARD 1250 500

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MARTIN 1250 1400
 SMITH 800
 JONES 2975
 JAMES 950
 MILLER 1300
 FORD 3000
 ADAMS 1100
 BLAKE 2850
 CLARK 2450
 SCOTT 3000
 KING 5000

 /* NON-NULL COMM SORTED DESCENDING, ALL NULLS LAST */

 1 select ename,sal,comm
 2 from (
 3 select ename,sal,comm,
 4 case when comm is null then 0 else 1 end as is_null
 5 from emp
 6) x
 7 order by is_null desc,comm desc

 ENAME SAL COMM
 ------ ----- ----------
 MARTIN 1250 1400
 WARD 1250 500
 ALLEN 1600 300
 TURNER 1500 0
 SMITH 800
 JONES 2975
 JAMES 950
 MILLER 1300
 FORD 3000
 ADAMS 1100
 BLAKE 2850
 CLARK 2450
 SCOTT 3000
 KING 5000

 /* NON-NULL COMM SORTED ASCENDING, ALL NULLS FIRST */

 1 select ename,sal,comm
 2 from (
 3 select ename,sal,comm,
 4 case when comm is null then 0 else 1 end as is_null
 5 from emp
 6) x
 7 order by is_null,comm

 ENAME SAL COMM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ------ ----- ----------
 SMITH 800
 JONES 2975
 CLARK 2450
 BLAKE 2850
 SCOTT 3000
 KING 5000
 JAMES 950
 MILLER 1300
 FORD 3000
 ADAMS 1100
 TURNER 1500 0
 ALLEN 1600 300
 WARD 1250 500
 MARTIN 1250 1400

 /* NON-NULL COMM SORTED DESCENDING, ALL NULLS FIRST */

 1 select ename,sal,comm
 2 from (
 3 select ename,sal,comm,
 4 case when comm is null then 0 else 1 end as is_null
 5 from emp
 6) x
 7 order by is_null,comm desc

 ENAME SAL COMM
 ------ ----- ----------
 SMITH 800
 JONES 2975
 CLARK 2450
 BLAKE 2850
 SCOTT 3000
 KING 5000
 JAMES 950
 MILLER 1300
 FORD 3000
 ADAMS 1100
 MARTIN 1250 1400
 WARD 1250 500
 ALLEN 1600 300
 TURNER 1500 0

Oracle

Users on Oracle8i Database and earlier can use the solution for the other platforms. Users on
Oracle9i Database and later can use the NULLS FIRST and NULLS LAST extension to the ORDER
BYclause to ensure NULLs are sorted first or last regardless of how non-NULL values are sorted:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /* NON-NULL COMM SORTED ASCENDING, ALL NULLS LAST */

 1 select ename,sal,comm
 2 from emp
 3 order by comm nulls last

 ENAME SAL COMM
 ------ ----- ---------
 TURNER 1500 0
 ALLEN 1600 300
 WARD 1250 500
 MARTIN 1250 1400
 SMITH 800
 JONES 2975
 JAMES 950
 MILLER 1300
 FORD 3000
 ADAMS 1100
 BLAKE 2850
 CLARK 2450
 SCOTT 3000
 KING 5000

 /* NON-NULL COMM SORTED ASCENDING, ALL NULLS FIRST */

 1 select ename,sal,comm
 2 from emp
 3 order by comm nulls first

 ENAME SAL COMM
 ------ ----- ----------
 SMITH 800
 JONES 2975
 CLARK 2450
 BLAKE 2850
 SCOTT 3000
 KING 5000
 JAMES 950
 MILLER 1300
 FORD 3000
 ADAMS 1100
 TURNER 1500 0
 ALLEN 1600 300
 WARD 1250 500
 MARTIN 1250 1400

 /* NON-NULL COMM SORTED DESCENDING, ALL NULLS FIRST */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select ename,sal,comm
 2 from emp
 3 order by comm desc nulls first

 ENAME SAL COMM
 ------ ----- ----------
 SMITH 800
 JONES 2975
 CLARK 2450
 BLAKE 2850
 SCOTT 3000
 KING 5000
 JAMES 950
 MILLER 1300
 FORD 3000
 ADAMS 1100
 MARTIN 1250 1400
 WARD 1250 500
 ALLEN 1600 300
 TURNER 1500 0

Discussion

Unless your RDBMS provides you with a way to easily sort NULL values first or last without modifying
non-NULL values in the same column (such as Oracle does), you'll need an auxiliary column.

As of the time of this writing, DB2 users can use NULLS FIRST and NULLS LAST
in the ORDER BY subclause of the OVER clause in window functions but not in
the ORDER BY clause for the entire result set.

The purpose of this extra column (in the query only, not in the table) is to allow you to identify NULL
values and sort them altogether, first or last. The following query returns the result set for inline view
X for the non-Oracle solution:

 select ename,sal,comm,
 case when comm is null then 0 else 1 end as is_null
 from emp

 ENAME SAL COMM IS_NULL
 ------ ----- ---------- ----------
 SMITH 800 0
 ALLEN 1600 300 1
 WARD 1250 500 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JONES 2975 0
 MARTIN 1250 1400 1
 BLAKE 2850 0
 CLARK 2450 0
 SCOTT 3000 0
 KING 5000 0
 TURNER 1500 0 1
 ADAMS 1100 0
 JAMES 950 0
 FORD 3000 0
 MILLER 1300 0

By using the values returned by IS_NULL, you can easily sort NULLS first or last without interfering
with the sorting of COMM.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.6. Sorting on a Data Dependent Key

Problem

You want to sort based on some conditional logic. For example: if JOB is "SALESMAN" you want to
sort on COMM; otherwise, you want to sort by SAL. You want to return the following result set:

 ENAME SAL JOB COMM
 ---------- ---------- --------- ----------
 TURNER 1500 SALESMAN 0
 ALLEN 1600 SALESMAN 300
 WARD 1250 SALESMAN 500
 SMITH 800 CLERK
 JAMES 950 CLERK
 ADAMS 1100 CLERK
 MARTIN 1250 SALESMAN 1300
 MILLER 1300 CLERK
 CLARK 2450 MANAGER
 BLAKE 2850 MANAGER
 JONES 2975 MANAGER
 SCOTT 3000 ANALYST
 FORD 3000 ANALYST
 KING 5000 PRESIDENT

Solution

Use a CASE expression in the ORDER BY clause:

 1 select ename,sal,job,comm
 2 from emp
 3 order by case when job = 'SALESMAN' then comm else sal end

Discussion

You can use the CASE expression to dynamically change how results are sorted. The values passed to
the ORDER BY look as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select ename,sal,job,comm,
 case when job = 'SALESMAN' then comm else sal end as ordered
 from emp
 order by 5

 ENAME SAL JOB COMM ORDERED
 ---------- ---------- --------- ---------- ----------
 TURNER 1500 SALESMAN 0 0
 ALLEN 1600 SALESMAN 300 300
 WARD1 250 SALESMAN 500 500
 SMITH 800 CLERK 800
 JAMES 950 CLERK 950
 ADAMS 1100 CLERK 1100
 MARTIN 1250 SALESMAN 1300 1300
 MILLER 1300 CLERK 1300
 CLARK2 450 MANAGER 2450
 BLAKE2 850 MANAGER 2850
 JONES2 975 MANAGER 2975
 SCOTT 3000 ANALYST 3000
 FORD 3000 ANALYST 3000
 KING 5000 PRESIDENT 5000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Working with Multiple Tables
This chapter introduces the use of joins and set operations to combine data from multiple tables.
Joins are the foundation of SQL. Set operations are also very important. If you want to master the
complex queries found in the later chapters of this book, you must start here, with joins and set
operations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.1. Stacking One Rowset atop Another

Problem

You want to return data stored in more than one table, conceptually stacking one result set atop the
other. The tables do not necessarily have a common key, but their columns do have the same data
types. For example, you want to display the name and department number of the employees in
department 10 in table EMP, along with the name and department number of each department in
table DEPT. You want the result set to look like the following:

 ENAME_AND_DNAME DEPTNO
 --------------- ----------
 CLARK 10
 KING 10
 MILLER 10

 ACCOUNTING 10
 RESEARCH 20
 SALES 30
 OPERATIONS 40

Solution

Use the set operation UNION ALL to combine rows from multiple tables:

 1 select ename as ename_and_dname, deptno
 2 from emp
 3 where deptno = 10
 4 union all
 5 select '----------', null
 6 from t1
 7 union all
 8 select dname, deptno
 9 from dept

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UNION ALL combines rows from multiple row sources into one result set. As with all set operations,
the items in all the SELECT lists must match in number and data type. For example, both of the
following queries will fail:

 select deptno | select deptno, dname
 from dept | from dept
 union all | union
 select ename | select deptno
 from emp | from emp

It is important to note, UNION ALL will include duplicates if they exist. If you wish to filter out
duplicates, use the UNION operator. For example, a UNION between EMP.DEPTNO and DEPT.DEPTNO
returns only four rows:

 select deptno
 from emp
 union
 select deptno
 from dept

 DEPTNO

 10
 20
 30
 40

Specifying UNION rather than UNION ALL will most likely result in a sort operation in order to
eliminate duplicates. Keep this in mind when working with large result sets. Using UNION is roughly
equivalent to the following query, which applies DISTINCT to the output from a UNION ALL:

 select distinct deptno
 from (
 select deptno
 from emp
 union all
 select deptno
 from dept
)

 DEPTNO

 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 20
 30
 40

You wouldn't use DISTINCT in a query unless you had to, and the same rule applies for UNION; don't
use it instead of UNION ALL unless you have to.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.2. Combining Related Rows

Problem

You want to return rows from multiple tables by joining on a known common column or joining on
columns that share common values. For example, you want to display the names of all employees in
department 10 along with the location of each employee's department, but that data is stored in two
separate tables. You want the result set to be the following:

 ENAME LOC
 ---------- ----------
 CLARK NEW YORK
 KING NEW YORK
 MILLER NEW YORK

Solution

Join table EMP to table DEPT on DEPTNO:

 1 select e.ename, d.loc
 2 from emp e, dept d
 3 where e.deptno = d.deptno
 4 and e.deptno = 10

Discussion

The solution is an example of a join, or more accurately an equi-join, which is a type of inner join. A
join is an operation that combines rows from two tables into one. An equi-join is one in which the join
condition is based on an equality condition (e.g., where one department number equals another). An
inner join is the original type of join; each row returned contains data from each table.

Conceptually, the result set from a join is produced by first creating a Cartesian product (all possible
combinations of rows) from the tables listed in the FROM clause, as seen below:

 select e.ename, d.loc,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 e.deptno as emp_deptno,
 d.deptno as dept_deptno
 from emp e, dept d
 where e.deptno = 10

 ENAME LOC EMP_DEPTNO DEPT_DEPTNO
 ---------- ------------- ---------- -----------
 CLARK NEW YORK 10 10
 KING NEW YORK 10 10
 MILLER NEW YORK 10 10
 CLARK DALLAS 10 20

 KING DALLAS 10 20
 MILLER DALLAS 10 20
 CLARK CHICAGO 10 30
 KING CHICAGO 10 30
 MILLER CHICAGO 10 30
 CLARK BOSTON 10 40
 KING BOSTON 10 40
 MILLER BOSTON 10 40

Every employee in table EMP (in department 10) is returned along with every department in the table
DEPT. Then, the expression in the WHERE clause involving e.deptno and d.deptno (the join) restricts
the result set such that the only rows returned are the ones where EMP.DEPTNO and DEPT.DEPTNO
are equal:

 select e.ename, d.loc,
 e.deptno as emp_deptno,
 d.deptno as dept_deptno
 from emp e, dept d
 where e.deptno = d.deptno
 and e.deptno = 10

 ENAME LOC EMP_DEPTNO DEPT_DEPTNO
 ---------- -------------- ---------- -----------
 CLARK NEW YORK 10 10
 KING NEW YORK 10 10
 MILLER NEW YORK 10 10

An alternative solution makes use of an explicit JOIN clause (the "INNER" keyword is optional):

 select e.ename, d.loc
 from emp e inner join dept d
 on (e.deptno = d.deptno)
 where e.deptno = 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the JOIN clause if you prefer to have the join logic in the FROM clause rather than the WHERE
clause. Both styles are ANSI compliant and work on all the latest versions of the RDBMSs in this
book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.3. Finding Rows in Common Between Two
Tables

Problem

You want to find common rows between two tables but there are multiple columns on which you can
join. For example, consider the following view V:

 create view V
 as
 select ename,job,sal
 from emp
 where job = 'CLERK'

 select * from V

 ENAME JOB SAL
 ---------- --------- ----------
 SMITH CLERK 800
 ADAMS CLERK 1100
 JAMES CLERK 950
 MILLER CLERK 1300

Only clerks are returned from view V. However, the view does not show all possible EMP columns.
You want to return the EMPNO, ENAME, JOB, SAL, and DEPTNO of all employees in EMP that match
the rows from view V. You want the result set to be the following:

 EMPNO ENAME JOB SAL DEPTNO
 -------- ---------- --------- ---------- ---------
 7369 SMITH CLERK 800 20
 7876 ADAMS CLERK 1100 20
 7900 JAMES CLERK 950 30
 7934 MILLER CLERK 1300 10

Solution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Join the tables on all the columns necessary to return the correct result. Alternatively, use the set
operation INTERSECT to avoid performing a join and instead return the intersection (common rows)
of the two tables.

MySQL and SQL Server

Join table EMP to view V using multiple join conditions:

 1 select e.empno,e.ename,e.job,e.sal,e.deptno
 2 from emp e, V
 3 where e.ename = v.ename
 4 and e.job = v.job
 5 and e.sal = v.sal

Alternatively, you can perform the same join via the JOIN clause:

 1 select e.empno,e.ename,e.job,e.sal,e.deptno
 2 from emp e join V
 3 on (e.ename = v.ename
 4 and e.job = v.job
 5 and e.sal = v.sal)

DB2, Oracle, and PostgreSQL

The MySQL and SQL Server solution also works for DB2, Oracle, and PostgreSQL. It's the solution
you should use if you need to return values from view V.

If you do not actually need to return columns from view V, you may use the set operation
INTERSECT along with an IN predicate:

 1 select empno,ename,job,sal,deptno
 2 from emp
 3 where (ename,job,sal) in (
 4 select ename,job,sal from emp
 5 intersect
 6 select ename,job,sal from V
 7)

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When performing joins, you must consider the proper columns to join on in order to return correct
results. This is especially important when rows can have common values for some columns while
having different values for others.

The set operation INTERSECT will return rows common to both row sources. When using INTERSECT,
you are required to compare the same number of items, having the same data type, from two tables.
When working with set operations keep in mind that, by default, duplicate rows will not be returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.4. Retrieving Values from One Table That Do Not
Exist in Another

Problem

You wish to find those values in one table, call it the source table, that do not also exist in some
target table. For example, you want to find which departments (if any) in table DEPT do not exist in
table EMP. In the example data, DEPTNO 40 from table DEPT does not exist in table EMP, so the
result set should be the following:

 DEPTNO

 40

Solution

Having functions that perform set difference is particularly useful for this problem. DB2, PostgreSQL,
and Oracle support set difference operations. If your DBMS does not support a set difference
function, use a subquery as shown for MySQL and SQL Server.

DB2 and PostgreSQL

Use the set operation EXCEPT:

 1 select deptno from dept
 2 except
 3 select deptno from emp

Oracle

Use the set operation MINUS:

 1 select deptno from dept
 2 minus

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 select deptno from emp

MySQL and SQL Server

Use a subquery to return all DEPTNOs from table EMP into an outer query that searches table DEPT
for rows that are not amongst the rows returned from the subquery:

 1 select deptno
 2 from dept
 3 where deptno not in (select deptno from emp)

Discussion

DB2 and PostgreSQL

The built-in functions provided by DB2 and PostgreSQL make this operation quite easy. The EXCEPT
operator takes the first result set and removes from it all rows found in the second result set. The
operation is very much like a subtraction.

There are restrictions on the use of set operators, including EXCEPT. Data types and number of
values to compare must match in both SELECT lists. Additionally, EXCEPT will not return duplicates
and, unlike a subquery using NOT IN, NULLs do not present a problem (see the discussion for MySQL
and SQL Server). The EXCEPT operator will return rows from the upper query (the query before the
EXCEPT) that do not exist in the lower query (the query after the EXCEPT).

Oracle

The Oracle solution is identical to that for DB2 and PostgreSQL, except that Oracle calls its set
difference operator MINUS rather than EXCEPT. Otherwise, the preceding explanation applies to
Oracle as well.

MySQL and SQL Server

The subquery will return all DEPTNOs from table EMP. The outer query returns all DEPTNOs from
table DEPT that are "not in" or "not included in" the result set returned from the subquery.

Duplicate elimination is something you'll want to consider when using the MySQL and SQL Server
solutions. The EXCEPT- and MINUS-based solutions used for the other platforms eliminate duplicate
rows from the result set, ensuring that each DEPTNO is reported only one time. Of course, that can
only be the case anyway, as DEPTNO is a key field in my example data. Were DEPTNO not a key
field, you could use DISTINCT as follows to ensure that each DEPTNO value missing from EMP is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reported only once:

 select distinct deptno
 from dept
 where deptno not in (select deptno from emp)

Be mindful of NULLs when using NOT IN. Consider the following table, NEW_ DEPT:

 create table new_dept(deptno integer)
 insert into new_dept values (10)
 insert into new_dept values (50)
 insert into new_dept values (null)

If you try to find the DEPTNOs in table DEPT that do not exist in table NEW_DEPT and use a subquery
with NOT IN, you'll find that the query returns no rows:

 select *
 from dept
 where deptno not in (select deptno from new_dept)

DEPTNOs 20, 30, and 40 are not in table NEW_DEPT, yet were not returned by the query. The reason
is the NULL value present in table NEW_DEPT. Three rows are returned by the subquery, with
DEPTNOs of 10, 50, and NULL. IN and NOT IN are essentially OR operations, and will yield different
results because of how NULL values are treated by logical OR evaluations. Consider the following
example using IN and its equivalent using OR:

 select deptno
 from dept
 where deptno in (10,50,null)

 DEPTNO

 10

 select deptno
 from dept
 where (deptno=10 or deptno=50 or deptno=null)

 DEPTNO

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10

Now consider the same example using NOT IN and NOT OR:

 select deptno
 from dept
 where deptno not in (10,50,null)

 (no rows)

 select deptno
 from dept
 where not (deptno=10 or deptno=50 or deptno=null)

 (no rows)

As you can see, the condition DEPTNO NOT IN (10, 50, NULL) equates to:

 not (deptno=10 or deptno=50 or deptno=null)

In the case where DEPTNO is 50, here's how this expression plays out:

 not (deptno=10 or deptno=50 or deptno=null)
 (false or false or null)
 (false or null)
 null

In SQL, "TRUE or NULL" is TRUE, but "FALSE or NULL" is NULL! And once you have a NULL result,
you'll continue to have NULL result (unless you specifically test for NULL using a technique like that
shown in Recipe 1.11). You must keep this in mind when using IN predicates and when performing
logical OR evaluations, and NULL values are involved.

To avoid the problem with NOT IN and NULLs, use a correlated subquery in conjunction with NOT
EXISTS. The term "correlated subquery" is used because rows from the outer query are referenced in
the subquery. The following example is an alternative solution that will not be affected by NULL rows
(going back to the original query from the "Problem" section):

 select d.deptno

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from dept d
 where not exists (select null
 from emp e
 where d.deptno = e.deptno)

 DEPTNO

 40

Conceptually, the outer query in this solution considers each row in the DEPT table. For each DEPT
row, the following happens:

The subquery is executed to see whether the department number exists in the EMP table. Note
the condition D.DEPTNO = E.DEPTNO, which brings together the department numbers from the
two tables.

1.

If the subquery returns results, then EXISTS (…) evaluates to true and NOT EXISTS (…) thus
evaluates to FALSE, and the row being considered by the outer query is discarded.

2.

If the subquery returns no results, then NOT EXISTS (…) evaluates to TRUE, and the row being
considered by the outer query is returned (because it is for a department not represented in the
EMP table).

3.

The items in the SELECT list of the subquery are unimportant when using a correlated subquery with
EXISTS/NOT EXISTS, which is why I chose to select NULL, to force you to focus on the join in the
subquery rather than the items in the SELECT list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.5. Retrieving Rows from One Table That Do Not
Correspond to Rows in Another

Problem

You want to find rows that are in one table that do not have a match in another table, for two tables
that have common keys. For example, you want to find which departments have no employees. The
result set should be the following:

 DEPTNO DNAME LOC
 ---------- -------------- -------------
 40 OPERATIONS BOSTON

Finding the department each employee works in requires an equi-join on DEPTNO from EMP to DEPT.
The DEPTNO column represents the common value between tables. Unfortunately, an equi-join will
not show you which department has no employees. That's because by equi-joining EMP and DEPT
you are returning all rows that satisfy the join condition. Instead you want only those rows from
DEPT that do not satisfy the join condition.

This is a subtly different problem than in the preceding recipe, though at first glance they may seem
the same. The difference is that the preceding recipe yields only a list of department numbers not
represented in table EMP. Using this recipe, however, you can easily return other columns from the
DEPT table; you can return more than just department numbers.

Solution

Return all rows from one table along with rows from another that may or may not have a match on
the common column. Then, keep only those rows with no match.

DB2, MySQL, PostgreSQL, SQL Server

Use an outer join and filter for NULLs (keyword OUTER is optional):

 1 select d.*
 2 from dept d left outer join emp e
 3 on (d.deptno = e.deptno)
 4 where e.deptno is null

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Oracle

For users on Oracle9i Database and later, the preceding solution will work. Alternatively, you can use
the proprietary Oracle outer-join syntax:

 1 select d.*
 2 from dept d, emp e
 3 where d.deptno = e.deptno (+)
 4 and e.deptno is null

This proprietary syntax (note the use of the "+" in parens) is the only outer-join syntax available in
Oracle8i Database and earlier.

Discussion

This solution works by outer joining and then keeping only rows that have no match. This sort of
operation is sometimes called an anti-join. To get a better idea of how an anti-join works, first
examine the result set without filtering for NULLs:

 select e.ename, e.deptno as emp_deptno, d.*
 from dept d left join emp e
 on (d.deptno = e.deptno)

 ENAME EMP_DEPTNO DEPTNO DNAME LOC
 ---------- ---------- ---------- -------------- -------------
 SMITH 20 20 RESEARCH DALLAS
 ALLEN 30 30 SALES CHICAGO
 WARD 30 30 SALES CHICAGO
 JONES 20 20 RESEARCH DALLAS
 MARTIN 30 30 SALES CHICAGO
 BLAKE 30 30 SALES CHICAGO
 CLARK 10 10 ACCOUNTING NEW YORK
 SCOTT 20 20 RESEARCH DALLAS
 KING 10 10 ACCOUNTING NEW YORK
 TURNER 30 30 SALES CHICAGO
 ADAMS 20 20 RESEARCH DALLAS
 JAMES 30 30 SALES CHICAGO
 FORD 20 20 RESEARCH DALLAS
 MILLER 10 10 ACCOUNTING NEW YORK
 40 OPERATIONS BOSTON

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice, the last row has a NULL value for EMP.ENAME and EMP_DEPTNO. That's because no
employees work in department 40. The solution uses the WHERE clause to keep only rows where
EMP_DEPTNO is NULL (thus keeping only rows from DEPT that have no match in EMP).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.6. Adding Joins to a Query Without Interfering
with Other Joins

Problem

You have a query that returns the results you want. You need additional information, but when trying
to get it, you lose data from the original result set. For example, you want to return all employees,
the location of the department in which they work, and the date they received a bonus. For this
problem, the EMP_BONUS table contains the following data:

 select * from emp_bonus

 EMPNO RECEIVED TYPE
 ---------- ----------- ----------
 7369 14-MAR-2005 1
 7900 14-MAR-2005 2
 7788 14-MAR-2005 3

The query you start with looks like this:

 select e.ename, d.loc
 from emp e, dept d
 where e.deptno=d.deptno

 ENAME LOC
 ---------- -------------
 SMITH DALLAS
 ALLEN CHICAGO
 WARD CHICAGO
 JONES DALLAS
 MARTIN CHICAGO
 BLAKE CHICAGO
 CLARK NEW YORK
 SCOTT DALLAS
 KING NEW YORK
 TURNER CHICAGO
 ADAMS DALLAS
 JAMES CHICAGO

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FORD DALLAS
 MILLER NEW YORK

You want to add to these results the date a bonus was given to an employee, but joining to the
EMP_BONUS table returns fewer rows than you wish because not every employee has a bonus:

 select e.ename, d.loc,eb.received
 from emp e, dept d, emp_bonus eb
 where e.deptno=d.deptno
 and e.empno=eb.empno

 ENAME LOC RECEIVED
 ---------- ------------- -----------
 SCOTT DALLAS 14-MAR-2005
 SMITH DALLAS 14-MAR-2005
 JAMES CHICAGO 14-MAR-2005

Your desired result set is the following:

 ENAME LOC RECEIVED
 ---------- ------------- -----------
 ALLEN CHICAGO
 WARD CHICAGO
 MARTIN CHICAGO
 JAMES CHICAGO 14-MAR-2005
 TURNER CHICAGO
 BLAKE CHICAGO
 SMITH DALLAS 14-MAR-2005
 FORD DALLAS
 ADAMS DALLAS
 JONES DALLAS
 SCOTT DALLAS 14-MAR-2005
 CLARK NEW YORK
 KING NEW YORK
 MILLER NEW YORK

Solution

You can use an outer join to obtain the additional information without losing the data from the
original query. First join table EMP to table DEPT to get all employees and the location of the
department they work, then outer join to table EMP_ BONUS to return the date of the bonus if there
is one. Following is the DB2, MySQL, PostgreSQL, and SQL Server syntax:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select e.ename, d.loc, eb.received
 2 from emp e join dept d
 3 on (e.deptno=d.deptno)
 4 left join emp_bonus eb
 5 on (e.empno=eb.empno)
 6 order by 2

If you are using Oracle9i Database or later, the preceding solution will work for you. Alternatively,
you can use Oracle's proprietary outer-join syntax, which is your only choice when using Oracle8i
Database and earlier:

 1 select e.ename, d.loc, eb.received
 2 from emp e, dept d, emp_bonus eb
 3 where e.deptno=d.deptno
 4 and e.empno=eb.empno (+)
 5 order by 2

You can also use a scalar subquery (a subquery placed in the SELECT list) to mimic an outer join:

 1 select e.ename, d.loc,
 2 (select eb.received from emp_bonus eb
 3 where eb.empno=e.empno) as received
 4 from emp e, dept d
 5 where e.deptno=d.deptno
 6 order by 2

The scalar subquery solution will work across all platforms.

Discussion

An outer join will return all rows from one table and matching rows from another. See the previous
recipe for another example of such a join. The reason an outer join works to solve this problem is
that it does not result in any rows being eliminated that would otherwise be returned. The query will
return all the rows it would return without the outer join. And it also returns the received date, if one
exists.

Use of a scalar subquery is also a convenient technique for this sort of problem, as it does not require
you to modify already correct joins in your main query. Using a scalar subquery is an easy way to
tack on extra data to a query without compromising the current result set. When working with scalar
subqueries, you must ensure they return a scalar (single) value. If a subquery in the SELECT list
returns more than one row, you will receive an error.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

See "Converting a Scalar Subquery to a Composite Subquery in Oracle" in Chapter 14 for a
workaround to the problem of not being able to return multiple rows from a SELECT-list subquery.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.7. Determining Whether Two Tables Have the
Same Data

Problem

You want to know if two tables or views have the same data (cardinality and values). Consider the
following view:

 create view V
 as
 select * from emp where deptno != 10
 union all
 select * from emp where ename = 'WARD'

 select * from V

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
 ----- ---------- --------- ----- ----------- ----- ----- ------
 7369 SMITH CLERK 7902 17-DEC-1980 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-1981 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30
 7566 JONES MANAGER 7839 02-APR-1981 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-1981 1250 1300 30
 7698 BLAKE MANAGER 7839 01-MAY-1981 2850 30
 7788 SCOTT ANALYST 7566 09-DEC-1982 3000 20
 7844 TURNER SALESMAN 7698 08-SEP-1981 1500 0 30
 7876 ADAMS CLERK 7788 12-JAN-1983 1100 20
 7900 JAMES CLERK 7698 03-DEC-1981 950 30
 7902 FORD ANALYST 7566 03-DEC-1981 3000 20
 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30

You want to determine whether or not this view has exactly the same data as table EMP. The row for
employee "WARD" is duplicated to show that the solution will reveal not only different data but
duplicates as well. Based on the rows in table EMP the difference will be the three rows for employees
in department 10 and the two rows for employee "WARD". You want to return the following result
set:

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
 ----- ---------- --------- ----- ----------- ----- ----- ------ ---

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 1
 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 2
 7782 CLARK MANAGER 7839 09-JUN-1981 2450 10 1
 7839 KING PRESIDENT 17-NOV-1981 5000 10 1
 7934 MILLER CLERK 7782 23-JAN-1982 1300 10 1

Solution

Functions that perform SET difference (MINUS or EXCEPT, depending on your DBMS) make the
problem of comparing tables a relatively easy one to solve. If your DBMS does not offer such
functions, you can use a correlated subquery.

DB2 and PostgreSQL

Use the set operations EXCEPT and UNION ALL to find the difference between view V and table EMP
combined with the difference between table EMP and view V:

 1 (
 2 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 3 count(*) as cnt
 4 from V
 5 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 6 except
 7 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 8 count(*) as cnt
 9 from emp
 10 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 11)
 12 union all
 13 (
 14 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 15 count(*) as cnt
 16 from emp
 17 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 18 except
 19 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 20 count(*) as cnt
 21 from v
 22 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 23)

Oracle

Use the set operations MINUS and UNION ALL to find the difference between view V and table EMP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

combined with the difference between table EMP and view V:

 1 (
 2 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 3 count(*) as cnt
 4 from V
 5 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 6 minus
 7 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 8 count(*) as cnt
 9 from emp
 10 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 11)
 12 union all
 13 (
 14 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 15 count(*) as cnt
 16 from emp
 17 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 18 minus
 19 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 20 count(*) as cnt
 21 from v
 22 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 23)

MySQL and SQL Server

Use a correlated subquery and UNION ALL to find the rows in view V and not in table EMP combined
with the rows in table EMP and not in view V:

 1 select *
 2 from (
 3 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
 4 e.sal,e.comm,e.deptno, count(*) as cnt
 5 from emp e
 6 group by empno,ename,job,mgr,hiredate,
 7 sal,comm,deptno
 8) e
 9 where not exists (
 10 select null
 11 from (
 12 select v.empno,v.ename,v.job,v.mgr,v.hiredate,
 13 v.sal,v.comm,v.deptno, count(*) as cnt
 14 from v
 15 group by empno,ename,job,mgr,hiredate,
 16 sal,comm,deptno

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 17) v
 18 where v.empno = e.empno
 19 and v.ename = e.ename
 20 and v.job = e.job
 21 and v.mgr = e.mgr
 22 and v.hiredate = e.hiredate
 23 and v.sal = e.sal
 24 and v.deptno = e.deptno
 25 and v.cnt = e.cnt
 26 and coalesce(v.comm,0) = coalesce(e.comm,0)
 27)
 28 union all
 29 select *
 30 from (
 31 select v.empno,v.ename,v.job,v.mgr,v.hiredate,
 32 v.sal,v.comm,v.deptno, count(*) as cnt
 33 from v
 34 group by empno,ename,job,mgr,hiredate,
 35 sal,comm,deptno
 36) v
 37 where not exists (
 38 select null
 39 from (
 40 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
 41 e.sal,e.comm,e.deptno, count(*) as cnt
 42 from emp e
 43 group by empno,ename,job,mgr,hiredate,
 44 sal,comm,deptno
 45) e
 46 where v.empno = e.empno
 47 and v.ename = e.ename
 48 and v.job = e.job
 49 and v.mgr = e.mgr
 50 and v.hiredate = e.hiredate
 51 and v.sal = e.sal
 52 and v.deptno = e.deptno
 53 and v.cnt = e.cnt
 54 and coalesce(v.comm,0) = coalesce(e.comm,0)
 55)

Discussion

Despite using different techniques, the concept is the same for all solutions:

First, find rows in table EMP that do not exist in view V.1.

Then combine (UNION ALL) those rows with rows from view V that do not exist in table EMP.2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

2.

If the tables in question are equal, then no rows are returned. If the tables are different, the rows
causing the difference are returned. As an easy first step when comparing tables, you can compare
the cardinalities alone rather than including them with the data comparison. The following query is a
simple example of this and will work on all DBMSs:

 select count(*)
 from emp
 union
 select count(*)
 from dept

 COUNT(*)

 4
 14

Because UNION will filter out duplicates, only one row will be returned if the tables' cardinalities are
the same. Because two rows are returned in this example, you know that the tables do not contain
identical rowsets.

DB2, Oracle, and PostgreSQL

MINUS and EXCEPT work in the same way, so I will use EXCEPT for this discussion. The queries
before and after the UNION ALL are very similar. So, to understand how the solution works, simply
execute the query prior to the UNION ALL by itself. The following result set is produced by executing
lines 111 in the solution section:

 (
 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 count(*) as cnt
 from V
 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 except
 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 count(*) as cnt
 from emp
 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
)

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
 ----- ---------- --------- ----- ----------- ----- ----- ------ ---
 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The result set represents a row found in view V that is either not in table EMP or has a different
cardinality than that same row in table EMP. In this case, the duplicate row for employee "WARD" is
found and returned. If you're still having trouble understanding how the result set is produced, run
each query on either side of EXCEPT individually. You'll notice the only difference between the two
result sets is the CNT for employee "WARD" returned by view V.

The portion of the query after the UNION ALL does the opposite of the query preceding UNION ALL.
The query returns rows in table EMP not in view V:

 (
 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 count(*) as cnt
 from emp
 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 minus
 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 count(*) as cnt
 from v
 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
)

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
 ----- ---------- --------- ----- ----------- ----- ----- ------ ---
 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 1
 7782 CLARK MANAGER 7839 09-JUN-1981 2450 10 1
 7839 KING PRESIDENT 17-NOV-1981 5000 10 1
 7934 MILLER CLERK 7782 23-JAN-1982 1300 10 1

The results are then combined by UNION ALL to produce the final result set.

MySQL and SQL Server

The queries before and after the UNION ALL are very similar. To understand how the subquery-based
solution works, simply execute the query prior to the UNION ALL by itself. The query below is from
lines 127 in the solution:

 select *
 from (
 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
 e.sal,e.comm,e.deptno, count(*) as cnt
 from emp e
 group by empno,ename,job,mgr,hiredate,
 sal,comm,deptno
) e
 where not exists (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select null
 from (
 select v.empno,v.ename,v.job,v.mgr,v.hiredate,
 v.sal,v.comm,v.deptno, count(*) as cnt
 from v
 group by empno,ename,job,mgr,hiredate,
 sal,comm,deptno
) v
 where v.empno = e.empno
 and v.ename = e.ename
 and v.job = e.job
 and v.mgr = e.mgr
 and v.hiredate = e.hiredate
 and v.sal = e.sal
 and v.deptno = e.deptno
 and v.cnt = e.cnt
 and coalesce(v.comm,0) = coalesce(e.comm,0)
)

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
 ----- ---------- --------- ----- ----------- ----- ----- ------ ---
 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 1
 7782 CLARK MANAGER 7839 09-JUN-1981 2450 10 1
 7839 KING PRESIDENT 17-NOV-1981 5000 10 1
 7934 MILLER CLERK 7782 23-JAN-1982 1300 10 1

Notice that the comparison is not between table EMP and view V, but rather between inline view E
and inline view V. The cardinality for each row is found and returned as an attribute for that row. You
are comparing each row and its occurrence count. If you are having trouble understanding how the
comparison works, run the subqueries independently. The next step is to find all rows (including CNT)
in inline view E that do not exist in inline view V. The comparison uses a correlated subquery and NOT
EXISTS. The joins will determine which rows are the same, and the result will be all rows from inline
view E that are not the rows returned by the join. The query after the UNION ALL does the opposite;
it finds all rows in inline view V that do not exist in inline view E:

 select *
 from (
 select v.empno,v.ename,v.job,v.mgr,v.hiredate,
 v.sal,v.comm,v.deptno, count(*) as cnt
 from v
 group by empno,ename,job,mgr,hiredate,
 sal,comm,deptno
) v
 where not exists (
 select null
 from (
 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
 e.sal,e.comm,e.deptno, count(*) as cnt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from emp e
 group by empno,ename,job,mgr,hiredate,
 sal,comm,deptno
) e
 where v.empno = e.empno
 and v.ename = e.ename
 and v.job = e.job
 and v.mgr = e.mgr
 and v.hiredate = e.hiredate
 and v.sal = e.sal
 and v.deptno = e.deptno
 and v.cnt = e.cnt
 and coalesce(v.comm,0) = coalesce(e.comm,0)
)

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
 ----- ---------- --------- ----- ----------- ----- ----- ------ ---
 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 2

The results are then combined by UNION ALL to produce the final result set.

Ales Spectic and Jonathan Gennick give an alternate solution in their book
Transact-SQL Cookbook (O'Reilly). See the section "Comparing Two Sets for
Equality" in Chapter 2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.8. Identifying and Avoiding Cartesian Products

Problem

You want to return the name of each employee in department 10 along with the location of the
department. The following query is returning incorrect data:

 select e.ename, d.loc
 from emp e, dept d
 where e.deptno = 10

 ENAME LOC
 ---------- -------------
 CLARK NEW YORK
 CLARK DALLAS
 CLARK CHICAGO
 CLARK BOSTON
 KING NEW YORK
 KING DALLAS
 KING CHICAGO
 KING BOSTON
 MILLER NEW YORK
 MILLER DALLAS
 MILLER CHICAGO
 MILLER BOSTON

The correct result set is the following:

 ENAME LOC
 ---------- ---------
 CLARK NEW YORK
 KING NEW YORK
 MILLER NEW YORK

Solution

Use a join between the tables in the FROM clause to return the correct result set:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select e.ename, d.loc
 2 from emp e, dept d
 3 where e.deptno = 10
 4 and d.deptno = e.deptno

Discussion

Looking at the data in the DEPT table:

 select * from dept

 DEPTNO DNAME LOC
 ---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

You can see that department 10 is in New York, and thus you can know that returning employees
with any location other than New York is incorrect. The number of rows returned by the incorrect
query is the product of the cardinalities of the two tables in the FROM clause. In the original query,
the filter on EMP for department 10 will result in three rows. Because there is no filter for DEPT, all
four rows from DEPT are returned. Three multiplied by four is twelve, so the incorrect query returns
twelve rows. Generally, to avoid a Cartesian product you would apply the n1 rule where n represents
the number of tables in the FROM clause and n1 represents the minimum number of joins necessary
to avoid a Cartesian product. Depending on what the keys and join columns in your tables are, you
may very well need more than n1 joins, but n1 is a good place to start when writing queries.

When used properly, Cartesian products can be very useful. The recipe, , uses a
Cartesian product and is used by many other queries. Common uses of
Cartesian products include transposing or pivoting (and unpivoting) a result set,
generating a sequence of values, and mimicking a loop.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.9. Performing Joins when Using Aggregates

Problem

You want to perform an aggregation but your query involves multiple tables. You want to ensure that
joins do not disrupt the aggregation. For example, you want to find the sum of the salaries for
employees in department 10 along with the sum of their bonuses. Some employees have more than
one bonus and the join between table EMP and table EMP_BONUS is causing incorrect values to be
returned by the aggregate function SUM. For this problem, table EMP_BONUS contains the following
data:

 select * from emp_bonus

 EMPNO RECEIVED TYPE
 ----- ----------- ----------
 7934 17-MAR-2005 1
 7934 15-FEB-2005 2
 7839 15-FEB-2005 3
 7782 15-FEB-2005 1

Now, consider the following query that returns the salary and bonus for all employees in department
10. Table BONUS.TYPE determines the amount of the bonus. A type 1 bonus is 10% of an employee's
salary, type 2 is 20%, and type 3 is 30%.

 select e.empno,
 e.ename,
 e.sal,
 e.deptno,
 e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3
 end as bonus
 from emp e, emp_bonus eb
 where e.empno = eb.empno
 and e.deptno = 10

 EMPNO ENAME SAL DEPTNO BONUS
 ------- ---------- ---------- ---------- ---------
 7934 MILLER 1300 10 130

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 7934 MILLER 1300 10 260
 7839 KING 5000 10 1500
 7782 CLARK 2450 10 245

So far, so good. However, things go awry when you attempt a join to the EMP_ BONUS table in order
to sum the bonus amounts:

 select deptno,
 sum(sal) as total_sal,
 sum(bonus) as total_bonus
 from (
 select e.empno,
 e.ename,
 e.sal,
 e.deptno,
 e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3
 end as bonus
 from emp e, emp_bonus eb
 where e.empno = eb.empno
 and e.deptno = 10
) x
 group by deptno

 DEPTNO TOTAL_SAL TOTAL_BONUS
 ------ ----------- -----------
 10 10050 2135

While the TOTAL_BONUS is correct, the TOTAL_SAL is incorrect. The sum of all salaries in
department 10 is 8750, as the following query shows:

 select sum(sal) from emp where deptno=10

 SUM(SAL)

 8750

Why is TOTAL_SAL incorrect? The reason is the duplicate rows in the SAL column created by the join.
Consider the following query, which joins table EMP and EMP_ BONUS:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select e.ename,
 e.sal
 from emp e, emp_bonus eb
 where e.empno = eb.empno
 and e.deptno = 10

 ENAME SAL
 ---------- ----------
 CLARK 2450
 KING 5000
 MILLER 1300
 MILLER 1300

Now it is easy to see why the value for TOTAL_SAL is incorrect: MILLER's salary is counted twice. The
final result set that you are really after is:

 DEPTNO TOTAL_SAL TOTAL_BONUS
 ------ --------- -----------
 10 8750 2135

Solution

You have to be careful when computing aggregates across joins. Typically when duplicates are
returned due to a join, you can avoid miscalculations by aggregate functions in two ways: you can
simply use the keyword DISTINCT in the call to the aggregate function, so only unique instances of
each value are used in the computation; or you can perform the aggregation first (in an inline view)
prior to joining, thus avoiding the incorrect computation by the aggregate function because the
aggregate will already be computed before you even join, thus avoiding the problem altogether. The
solutions that follow use DISTINCT. The "Discussion" section will discuss the technique of using an
inline view to perform the aggregation prior to joining.

MySQL and PostgreSQL

Perform a sum of only the DISTINCT salaries:

 1 select deptno,
 2 sum(distinct sal) as total_sal,
 3 sum(bonus) as total_bonus
 4 from (
 5 select e.empno,
 6 e.ename,
 7 e.sal,
 8 e.deptno,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 9 e.sal*case when eb.type = 1 then .1
 10 when eb.type = 2 then .2
 11 else .3
 12 end as bonus
 13 from emp e, emp_bonus eb
 14 where e.empno = eb.empno
 15 and e.deptno = 10
 16) x
 17 group by deptno

DB2, Oracle, and SQL Server

These platforms support the preceding solution, but they also support an alternative solution using
the window function SUM OVER:

 1 select distinct deptno,total_sal,total_bonus
 2 from (
 3 select e.empno,
 4 e.ename,
 5 sum(distinct e.sal) over
 6 (partition by e.deptno) as total_sal,
 7 e.deptno,
 8 sum(e.sal*case when eb.type = 1 then .1
 9 when eb.type = 2 then .2
 10 else .3 end) over
 11 (partition by deptno) as total_bonus
 12 from emp e, emp_bonus eb
 13 where e.empno = eb.empno
 14 and e.deptno = 10
 15) x

Discussion

MySQL and PostgreSQL

The second query in the "Problem" section of this recipe joins table EMP and table EMP_BONUS and
returns two rows for employee "MILLER", which is what causes the error on the sum of EMP.SAL (the
salary is added twice). The solution is to simply sum the distinct EMP.SAL values that are returned by
the query. The following query is an alternative solution. The sum of all salaries in department 10 is
computed first and that row is then joined to table EMP, which is then joined to table EMP_BONUS.
The following query works for all DBMSs:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select d.deptno,
 d.total_sal,
 sum(e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3 end) as total_bonus
 from emp e,
 emp_bonus eb,
 (
 select deptno, sum(sal) as total_sal
 from emp
 where deptno = 10
 group by deptno
) d
 where e.deptno = d.deptno
 and e.empno = eb.empno
 group by d.deptno,d.total_sal

 DEPTNO TOTAL_SAL TOTAL_BONUS
 --------- ---------- ------------
 10 8750 2135

DB2, Oracle, and SQL Server

This alternative solution takes advantage of the window function SUM OVER. The following query is
taken from lines 314 in "Solution" and returns the following result set:

 select e.empno,
 e.ename,
 sum(distinct e.sal) over
 (partition by e.deptno) as total_sal,
 e.deptno,
 sum(e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3 end) over
 (partition by deptno) as total_bonus
 from emp e, emp_bonus eb
 where e.empno = eb.empno
 and e.deptno = 10

 EMPNO ENAME TOTAL_SAL DEPTNO TOTAL_BONUS
 ----- ---------- ---------- ------ -----------
 7934 MILLER 8750 10 2135
 7934 MILLER 8750 10 2135
 7782 CLARK 8750 10 2135
 7839 KING 8750 10 2135

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The windowing function, SUM OVER, is called twice, first to compute the sum of the distinct salaries
for the defined partition or group. In this case, the partition is DEPTNO 10 and the sum of the distinct
salaries for DEPTNO 10 is 8750. The next call to SUM OVER computes the sum of the bonuses for the
same defined partition. The final result set is produced by taking the distinct values for TOTAL_SAL,
DEPTNO, and TOTAL_BONUS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.10. Performing Outer Joins when Using
Aggregates

Problem

Begin with the same problem as in 3.9, but modify table EMP_BONUS such that the difference in this
case is not all employees in department 10 have been given bonuses. Consider the EMP_BONUS table
and a query to (ostensibly) find both the sum of all salaries for department 10 and the sum of all
bonuses for all employees in department 10:

 select * from emp_bonus

 EMPNO RECEIVED TYPE
 ---------- ----------- ----------
 7934 17-MAR-2005 1
 7934 15-FEB-2005 2

 select deptno,
 sum(sal) as total_sal,
 sum(bonus) as total_bonus
 from (
 select e.empno,
 e.ename,
 e.sal,
 e.deptno,
 e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3 end as bonus
 from emp e, emp_bonus eb
 where e.empno = eb.empno
 and e.deptno = 10
)
 group by deptno

 DEPTNO TOTAL_SAL TOTAL_BONUS
 ------ ---------- -----------
 10 2600 390

The result for TOTAL_BONUS is correct, but the value returned for TOTAL_SAL does not represent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the sum of all salaries in department 10. The following query shows why the TOTAL_SAL is incorrect:

 select e.empno,
 e.ename,
 e.sal,
 e.deptno,
 e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3 end as bonus
 from emp e, emp_bonus eb
 where e.empno = eb.empno
 and e.deptno = 10

 EMPNO ENAME SAL DEPTNO BONUS
 --------- --------- ------- ---------- ----------
 7934 MILLER 1300 10 130
 7934 MILLER 1300 10 260

Rather than sum all salaries in department 10, only the salary for "MILLER" is summed and it is
erroneously summed twice. Ultimately, you would like to return the following result set:

 DEPTNO TOTAL_SAL TOTAL_BONUS
 ------ --------- -----------
 10 8750 390

Solution

The solution is similar to that of 3.9, but here you outer join to EMP_BONUS to ensure all employees
from department 10 are included.

DB2, MySQL, PostgreSQL, SQL Server

Outer join to EMP_BONUS, then perform the sum on only distinct salaries from department 10:

 1 select deptno,
 2 sum(distinct sal) as total_sal,
 3 sum(bonus) as total_bonus
 4 from (
 5 select e.empno,
 6 e.ename,
 7 e.sal,
 8 e.deptno,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 9 e.sal*case when eb.type is null then 0
 10 when eb.type = 1 then .1
 11 when eb.type = 2 then .2
 12 else .3 end as bonus
 13 from emp e left outer join emp_bonus eb
 14 on (e.empno = eb.empno)
 15 where e.deptno = 10
 16)
 17 group by deptno

You can also use the window function SUM OVER:

 1 select distinct deptno,total_sal,total_bonus
 2 from (
 3 select e.empno,
 4 e.ename,
 5 sum(distinct e.sal) over
 6 (partition by e.deptno) as total_sal,
 7 e.deptno,
 8 sum(e.sal*case when eb.type is null then 0
 9 when eb.type = 1 then .1
 10 when eb.type = 2 then .2
 11 else .3
 12 end) over
 13 (partition by deptno) as total_bonus
 14 from emp e left outer join emp_bonus eb
 15 on (e.empno = eb.empno)
 16 where e.deptno = 10
 17) x

Oracle

If you are using Oracle9i Database or later you can use the preceding solution. Alternatively, you can
use the proprietary Oracle outer-join syntax, which is mandatory for users on Oracle8i Database and
earlier:

 1 select deptno,
 2 sum(distinct sal) as total_sal,
 3 sum(bonus) as total_bonus
 4 from (
 5 select e.empno,
 6 e.ename,
 7 e.sal,
 8 e.deptno,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 9 e.sal*case when eb.type is null then 0
 10 when eb.type = 1 then .1
 11 when eb.type = 2 then .2
 12 else .3 end as bonus
 13 from emp e, emp_bonus eb
 14 where e.empno = eb.empno (+)
 15 and e.deptno = 10
 16)
 17 group by deptno

Oracle 8i Database users can also use the SUM OVER syntaxshown for DB2 and the other databases,
but must modify it to use the proprietary Oracle outer-join syntax shown in the preceding query.

Discussion

The second query in the "Problem" section of this recipe joins table EMP and table EMP_BONUS and
returns only rows for employee "MILLER", which is what causes the error on the sum of EMP.SAL (the
other employees in DEPTNO 10 do not have bonuses and their salaries are not included in the sum).
The solution is to outer join table EMP to table EMP_BONUS so even employees without a bonus will
be included in the result. If an employee does not have a bonus, NULL will be returned for
EMP_BONUS.TYPE. It is important to keep this in mind as the CASE statement has been modified and
is slightly different from solution 3.9. If EMP_BONUS.TYPE is NULL, the CASE expression returns zero,
which has no effect on the sum.

The following query is an alternative solution. The sum of all salaries in department 10 is computed
first, then joined to table EMP, which is then joined to table EMP_BONUS (thus avoiding the outer
join). The following query works for all DBMSs:

 select d.deptno,
 d.total_sal,
 sum(e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3 end) as total_bonus
 from emp e,
 emp_bonus eb,
 (
 select deptno, sum(sal) as total_sal
 from emp
 where deptno = 10
 group by deptno
) d
 where e.deptno = d.deptno
 and e.empno = eb.empno
 group by d.deptno,d.total_sal

 DEPTNO TOTAL_SAL TOTAL_BONUS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 --------- ---------- -----------
 10 8750 390

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.11. Returning Missing Data from Multiple Tables

Problem

You want to return missing data from multiple tables simultaneously. Returning rows from table DEPT
that do not exist in table EMP (any departments that have no employees) requires an outer join.
Consider the following query, which returns all DEPTNOs and DNAMEs from DEPT along with the
names of all the employees in each department (if there is an employee in a particular department):

 select d.deptno,d.dname,e.ename
 from dept d left outer join emp e
 on (d.deptno=e.deptno)

 DEPTNO DNAME ENAME
 --------- -------------- ----------
 20 RESEARCH SMITH
 30 SALES ALLEN
 30 SALES WARD
 20 RESEARCH JONES
 30 SALES MARTIN
 30 SALES BLAKE
 10 ACCOUNTING CLARK
 20 RESEARCH SCOTT
 10 ACCOUNTING KING
 30 SALES TURNER
 20 RESEARCH ADAMS
 30 SALES JAMES
 20 RESEARCH FORD
 10 ACCOUNTING MILLER
 40 OPERATIONS

The last row, the OPERATIONS department, is returned despite that department not having any
employees, because table EMP was outer joined to table DEPT. Now, suppose there was an employee
without a department. How would you return the above result set along with a row for the employee
having no department? In other words, you want to outer join to both table EMP and table DEPT, and
in the same query. After creating the new employee, a first attempt may look like this:

 insert into emp (empno,ename,job,mgr,hiredate,sal,comm,deptno)
 select 1111,'YODA','JEDI',null,hiredate,sal,comm,null
 from emp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 where ename = 'KING'

 select d.deptno,d.dname,e.ename
 from dept d right outer join emp e
 on (d.deptno=e.deptno)

 DEPTNO DNAME ENAME
 ---------- ------------ ----------
 10 ACCOUNTING MILLER
 10 ACCOUNTING KING
 10 ACCOUNTING CLARK
 20 RESEARCH FORD
 20 RESEARCH ADAMS
 20 RESEARCH SCOTT
 20 RESEARCH JONES
 20 RESEARCH SMITH
 30 SALES JAMES
 30 SALES TURNER
 30 SALES BLAKE
 30 SALES MARTIN
 30 SALES WARD
 30 SALES ALLEN
 YODA

This outer join manages to return the new employee but lost the OPERATIONS department from the
original result set. The final result set should return a row for YODA as well as OPERATIONS, such as
the following:

 DEPTNO DNAME ENAME
 ---------- ------------ --------
 10 ACCOUNTING CLARK
 10 ACCOUNTING KING
 10 ACCOUNTING MILLER
 20 RESEARCH ADAMS
 20 RESEARCH FORD
 20 RESEARCH JONES
 20 RESEARCH SCOTT
 20 RESEARCH SMITH
 30 SALES ALLEN
 30 SALES BLAKE
 30 SALES JAMES
 30 SALES MARTIN
 30 SALES TURNER
 30 SALES WARD
 40 OPERATIONS
 YODA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Solution

Use a full outer join to return missing data from both tables based on a common value.

DB2, MySQL, PostgreSQL, SQL Server

Use the explicit FULL OUTER JOIN command to return missing rows from both tables along with
matching rows:

 1 select d.deptno,d.dname,e.ename
 2 from dept d full outer join emp e
 3 on (d.deptno=e.deptno)

Alternatively, union the results of two different outer joins:

 1 select d.deptno,d.dname,e.ename
 2 from dept d right outer join emp e
 3 on (d.deptno=e.deptno)
 4 union
 5 select d.deptno,d.dname,e.ename
 6 from dept d left outer join emp e
 7 on (d.deptno=e.deptno)

Oracle

If you are on Oracle9i Database or later, you can use either of the preceding solutions. Alternatively,
you can use Oracle's proprietary outer join syntax, which is the only choice for users on Oracle8i
Database and earlier:

 1 select d.deptno,d.dname,e.ename
 2 from dept d, emp e
 3 where d.deptno = e.deptno(+)
 4 union
 5 select d.deptno,d.dname,e.ename
 6 from dept d, emp e
 7 where d.deptno(+) = e.deptno

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The full outer join is simply the combination of outer joins on both tables. To see how a full outer join
works "under the covers," simply run each outer join, then union the results. The following query
returns rows from table DEPT and any matching rows from table EMP (if any).

 select d.deptno,d.dname,e.ename
 from dept d left outer join emp e
 on (d.deptno = e.deptno)

 DEPTNO DNAME ENAME
 ------ -------------- ----------
 20 RESEARCH SMITH
 30 SALES ALLEN
 30 SALES WARD
 20 RESEARCH JONES
 30 SALES MARTIN
 30 SALES BLAKE
 10 ACCOUNTING CLARK
 20 RESEARCH SCOTT
 10 ACCOUNTING KING
 30 SALES TURNER
 20 RESEARCH ADAMS
 30 SALES JAMES
 20 RESEARCH FORD
 10 ACCOUNTING MILLER
 40 OPERATIONS

This next query returns rows from table EMP and any matching rows from table DEPT (if any):

 select d.deptno,d.dname,e.ename
 from dept d right outer join emp e
 on (d.deptno = e.deptno)

 DEPTNO DNAME ENAME
 ------ -------------- ----------
 10 ACCOUNTING MILLER
 10 ACCOUNTING KING
 10 ACCOUNTING CLARK
 20 RESEARCH FORD
 20 RESEARCH ADAMS
 20 RESEARCH SCOTT
 20 RESEARCH JONES
 20 RESEARCH SMITH
 30 SALES JAMES
 30 SALES TURNER
 30 SALES BLAKE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 30 SALES MARTIN
 30 SALES WARD
 30 SALES ALLEN
 YODA

The results from these two queries are unioned to provide the final result set.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.12. Using NULLs in Operations and
Comparisons

Problem

NULL is never equal to or not equal to any value, not even itself, but you want to evaluate values
returned by a nullable column like you would evaluate real values. For example, you want to find all
employees in EMP whose commission (COMM) is less than the commission of employee "WARD".
Employees with a NULL commission should be included as well.

Solution

Use a function such as COALESCE to transform the NULL value into a real value that can be used in
standard evaluation:

 1 select ename,comm
 2 from emp
 3 where coalesce(comm,0) < (select comm
 4 from emp
 5 where ename = 'WARD')

Discussion

The COALESCE function will return the first non-NULL value from the list of values passed to it. When
a NULL value is encountered it is replaced by zero, which is then compared with Ward's commission.
This can be seen by putting the COALESCE function in the SELECT list:

 select ename,comm,coalesce(comm,0)
 from emp
 where coalesce(comm,0) < (select comm
 from emp
 where ename = 'WARD')

 ENAME COMM COALESCE(COMM,0)
 ---------- ---------- ----------------
 SMITH 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ALLEN 300 300
 JONES 0
 BLAKE 0
 CLARK 0
 SCOTT 0
 KING 0
 TURNER 0 0
 ADAMS 0
 JAMES 0
 FORD 0
 MILLER 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Inserting, Updating, Deleting
The past few chapters have focused on basic query techniques, all centered around the task of
getting data out of a database. This chapter turns the tables, and focuses on the following three topic
areas:

Inserting new records into your database

Updating existing records

Deleting records that you no longer want

For ease in finding them when you need them, recipes in this chapter have been grouped by topic: all
the insertion recipes come first, followed by the update recipes, and finally recipes for deleting data.

Inserting is usually a straightforward task. It begins with the simple problem of inserting a single row.
Many times, however, it is more efficient to use a set-based approach to create new rows. To that
end, you'll also find techniques for inserting many rows at a time.

Likewise, updating and deleting start out as simple tasks. You can update one record, and you can
delete one record. But you can also update whole sets of records at once, and in very powerful ways.
And there are many handy ways to delete records. For example, you can delete rows in one table
depending on whether or not they exist in another table.

SQL even has a way, a relatively new addition to the standard, by which you can insert, update, and
delete all at once. That may not sound like too useful a thing now, but the MERGE statement
represents a very powerful way to bring a database table into sync with an external source of data
(such as a flat file feed from a remote system). Check out Section in this chapter for details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.1. Inserting a New Record

Problem

You want to insert a new record into a table. For example, you want to insert a new record into the
DEPT table. The value for DEPTNO should be 50, DNAME should be "PROGRAMMING", and LOC
should be "BALTIMORE".

Solution

Use the INSERT statement with the VALUES clause to insert one row at a time:

 insert into dept (deptno,dname,loc)
 values (50,'PROGRAMMING','BALTIMORE')

For DB2 and MySQL you have the option of inserting one row at a time or multiple rows at a time by
including multiple VALUES lists:

 /* multi row insert */
 insert into dept (deptno,dname,loc)
 values (1,'A','B'),
 (2,'B','C')

Discussion

The INSERT statement allows you to create new rows in database tables. The syntax for inserting a
single row is consistent across all database brands.

As a shortcut, you can omit the column list in an INSERT statement:

 insert into dept
 values (50,'PROGRAMMING','BALTIMORE')

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, if you do not list your target columns, you must insert into all of the columns in the table,
and be mindful of the order of the values in the VALUES list; you must supply values in the same
order in which the database displays columns in response to a SELECT * query.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.2. Inserting Default Values

Problem

A table can be defined to take default values for specific columns. You want to insert a row of default
values without having to specify those values. Consider the following table:

 create table D (id integer default 0)

You want to insert zero without explicitly specifying zero in the values list of an INSERT statement.
You want to explicitly insert the default, whatever that default is.

Solution

All brands support use of the DEFAULT keyword as a way of explicitly specifying the default value for
a column. Some brands provide additional ways to solve the problem.

The following example illustrates the use of the DEFAULT keyword:

 insert into D values (default)

You may also explicitly specify the column name, which you'll need to do anytime you are not
inserting into all columns of a table:

 insert into D (id) values (default)

Oracle8i Database and prior versions do not support the DEFAULT keyword. Prior to Oracle9i
Database, there was no way to explicitly insert a default column value.

MySQL allows you to specify an empty values list if all columns have a default value defined:

 insert into D values ()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this case, all columns will be set to their default values.

PostgreSQL and SQL Server support a DEFAULT VALUES clause:

 insert into D default values

The DEFAULT VALUES clause causes all columns to take on their default values.

Discussion

The DEFAULT keyword in the values list will insert the value that was specified as the default for a
particular column during table creation. The keyword is available for all DBMSs.

MySQL, PostgreSQL, and SQL Server users have another option available if all columns in the table
are defined with a default value (as table D is in this case). You may use an empty VALUES list
(MySQL) or specify the DEFAULT VALUES clause (PostgreSQL and SQL Server) to create a new row
with all default values; otherwise, you need to specify DEFAULT for each column in the table.

For tables with a mix of default and non-default columns, inserting default values for a column is as
easy as excluding the column from the insert list; you do not need to use the DEFAULT keyword. Say
that table D had an additional column that was not defined with a default value:

 create table D (id integer default 0, foo varchar(10))

You can insert a default for ID by listing only FOO in the insert list:

 insert into D (name) values ('Bar')

This statement will result in a row in which ID is 0 and FOO is "Bar". ID takes on its default value
because no other value is specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.3. Overriding a Default Value with NULL

Problem

You are inserting into a column having a default value, and you wish to override that default value by
setting the column to NULL. Consider the following table:

 create table D (id integer default 0, foo VARCHAR(10))

You wish to insert a row with a NULL value for ID.

Solution

You can explicitly specify NULL in your values list:

 insert into d (id, foo) values (null, 'Brighten')

Discussion

Not everyone realizes that you can explicitly specify NULL in the values list of an INSERT statement.
Typically, when you do not wish to specify a value for a column, you leave that column out of your
column and values lists:

 insert into d (foo) values ('Brighten')

Here, no value for ID is specified. Many would expect the column to taken on the null value, but,
alas, a default value was specified at table creation time, so the result of the preceding INSERT is
that ID takes on the value 0 (the default). By specifying NULL as the value for a column, you can set
the column to NULL despite any default value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.4. Copying Rows from One Table into Another

Problem

You want to copy rows from one table to another by using a query. The query may be complex or
simple, but ultimately you want the result to be inserted into another table. For example, you want to
copy rows from the DEPT table to the DEPT_EAST table. The DEPT_EAST table has already been
created with the same structure (same columns and data types) as DEPT and is currently empty.

Solution

Use the INSERT statement followed by a query to produce the rows you want:

 1 insert into dept_east (deptno,dname,loc)
 2 select deptno,dname,loc
 3 from dept
 4 where loc in ('NEW YORK','BOSTON')

Discussion

Simply follow the INSERT statement with a query that returns the desired rows. If you want to copy
all rows from the source table, exclude the WHERE clause from the query. Like a regular insert, you
do not have to explicitly specify which columns you are inserting into. But if you do not specify your
target columns, you must insert into all of the table's columns, and you must be mindful of the order
of the values in the SELECT list as described earlier in "Inserting a New Record."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.5. Copying a Table Definition

Problem

You want to create a new table having the same set of columns as an existing table. For example,
you want to create a copy of the DEPT table and call it DEPT_2. You do not want to copy the rows,
only the column structure of the table.

Solution

DB2

Use the LIKE clause with the CREATE TABLE command:

 create table dept_2 like dept

Oracle, MySQL, and PostgreSQL

Use the CREATE TABLE command with a subquery that returns no rows:

 1 create table dept_2
 2 as
 3 select *
 4 from dept
 5 where 1 = 0

SQL Server

Use the INTO clause with a subquery that returns no rows:

 1 select *
 2 into dept_2
 3 from dept

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 where 1 = 0

Discussion

DB2

DB2's CREATE TABLE…LIKE command allows you to easily use one table as the pattern for creating
another. Simply specify your pattern table's name following the LIKE keyword.

Oracle, MySQL, and PostgreSQL

When using Create Table As Select (CTAS), all rows from your query will be used to populate the new
table you are creating unless you specify a false condition in the WHERE clause. In the solution
provided, the expression "1 = 0" in the WHERE clause of the query causes no rows to be returned.
Thus the result of the CTAS statement is an empty table based on the columns in the SELECT clause
of the query.

SQL Server

When using INTO to copy a table, all rows from your query will be used to populate the new table you
are creating unless you specify a false condition in the WHERE clause of your query. In the solution
provided, the expression "1 = 0" in the predicate of the query causes no rows to be returned. The
result is an empty table based on the columns in the SELECT clause of the query.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.6. Inserting into Multiple Tables at Once

Problem

You want to take rows returned by a query and insert those rows into multiple target tables. For
example, you want to insert rows from DEPT into tables DEPT_EAST, DEPT_WEST, and DEPT_MID. All
three tables have the same structure (same columns and data types) as DEPT and are currently
empty.

Solution

The solution is to insert the result of a query into the target tables. The difference from "Copying
Rows from One Table into Another" is that for this problem you have multiple target tables.

Oracle

Use either the INSERT ALL or INSERT FIRST statement. Both share the same syntax except for the
choice between the ALL and FIRST keywords. The following statement uses INSERT ALL to cause all
possible target tables to be considered:

 1 insert all
 2 when loc in ('NEW YORK','BOSTON') then
 3 into dept_east (deptno,dname,loc) values (deptno,dname,loc)
 4 when loc = 'CHICAGO' then
 5 into dept_mid (deptno,dname,loc) values (deptno,dname,loc)
 6 else
 7 into dept_west (deptno,dname,loc) values (deptno,dname,loc)
 8 select deptno,dname,loc
 9 from dept

DB2

Insert into an inline view that performs a UNION ALL on the tables to be inserted. You must also be
sure to place constraints on the tables that will ensure each row goes into the correct table:

 create table dept_east
 (deptno integer,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dname varchar(10),
 loc varchar(10) check (loc in ('NEW YORK','BOSTON')))

 create table dept_mid
 (deptno integer,
 dname varchar(10),
 loc varchar(10) check (loc = 'CHICAGO'))

 create table dept_west
 (deptno integer,
 dname varchar(10),
 loc varchar(10) check (loc = 'DALLAS'))

 1 insert into (
 2 select * from dept_west union all
 3 select * from dept_east union all
 4 select * from dept_mid
 5) select * from dept

MySQL, PostgreSQL, and SQL Server

As of the time of this writing, these vendors do not support multi-table inserts.

Discussion

Oracle

Oracle's multi-table insert uses WHEN-THEN-ELSE clauses to evaluate the rows from the nested
SELECT and insert them accordingly. In this recipe's example, INSERT ALL and INSERT FIRST would
produce the same result, but there is a difference between the two. INSERT FIRST will break out of
the WHEN-THEN-ELSE evaluation as soon as it encounters a condition evaluating to true; INSERT ALL
will evaluate all conditions even if prior tests evaluate to true. Thus, you can use INSERT ALL to insert
the same row into more than one table.

DB2

My DB2 solution is a bit of a hack. It requires that the tables to be inserted into have constraints
defined to ensure that each row evaluated from the subquery will go into the correct table. The
technique is to insert into a view that is defined as the UNION ALL of the tables. If the check
constraints are not unique amongst the tables in the INSERT (i.e., multiple tables have the same
check constraint), the INSERT statement will not know where to put the rows and it will fail.

MySQL, PostgreSQL, and SQL Server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As of the time of this writing, only Oracle and DB2 currently provide mechanisms to insert rows
returned by a query into one or more of several tables within the same statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.7. Blocking Inserts to Certain Columns

Problem

You wish to prevent users, or an errant software application, from inserting values into certain table
columns. For example, you wish to allow a program to insert into EMP, but only into the EMPNO,
ENAME, and JOB columns.

Solution

Create a view on the table exposing only those columns you wish to expose. Then force all inserts to
go through that view.

For example, to create a view exposing the three columns in EMP:

 create view new_emps as
 select empno, ename, job
 from emp

Grant access to this view to those users and programs allowed to populate only the three fields in the
view. Do not grant those users insert access to the EMP table. Users may then create new EMP
records by inserting into the NEW_EMPS view, but they will not be able to provide values for columns
other than the three that are specified in the view definition.

Discussion

When you insert into a simple view such as in the solution, your database server will translate that
insert into the underlying table. For example, the following insert:

 insert into new_emps
 (empno ename, job)
 values (1, 'Jonathan', 'Editor')

will be translated behind the scenes into:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 insert into emp
 (empno ename, job)
 values (1, 'Jonathan', 'Editor')

It is also possible, but perhaps less useful, to insert into an inline view (currently only supported by
Oracle):

 insert into
 (select empno, ename, job
 from emp)
 values (1, 'Jonathan', 'Editor')

View insertion is a complex topic. The rules become very complicated very quickly for all but the
simplest of views. If you plan to make use of the ability to insert into views, it is imperative that you
consult and fully understand your vendor documentation on the matter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.8. Modifying Records in a Table

Problem

You want to modify values for some or all rows in a table. For example, you might want to increase
the salaries of everyone in department 20 by 10%. The following result set shows the DEPTNO,
ENAME, and SAL for employees in that department:

 select deptno,ename,sal
 from emp
 where deptno = 20
 order by 1,3

 DEPTNO ENAME SAL
 ------ ---------- ----------
 20 SMITH 800
 20 ADAMS 1100
 20 JONES 2975
 20 SCOTT 3000
 20 FORD 3000

You want to bump all the SAL values by 10%.

Solution

Use the UPDATE statement to modify existing rows in a database table. For example:

 1 update emp
 2 set sal = sal*1.10
 3 where deptno = 20

Discussion

Use the UPDATE statement along with a WHERE clause to specify which rows to update; if you
exclude a WHERE clause, then all rows are updated. The expression SAL*1.10 in this solution returns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the salary increased by 10%.

When preparing for a mass update, you may wish to preview the results. You can do that by issuing a
SELECT statement that includes the expressions you plan to put into your SET clauses. The following
SELECT shows the result of a 10% salary increase:

 select deptno,
 ename,
 sal as orig_sal,
 sal*.10 as amt_to_add,
 sal*1.10 as new_sal
 from emp
 where deptno=20
 order by 1,5

 DEPTNO ENAME ORIG_SAL AMT_TO_ADD NEW_SAL
 ------ ------ -------- ---------- -------
 20 SMITH 800 80 880
 20 ADAMS 1100 110 1210
 20 JONES 2975 298 3273
 20 SCOTT 3000 300 3300
 20 FORD 3000 300 3300

The salary increase is broken down into two columns: one to show the increase over the old salary,
and the other to show the new salary.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.9. Updating when Corresponding Rows Exist

Problem

You want to update rows in one table when corresponding rows exist in another. For example, if an
employee appears in table EMP_BONUS, you want to increase that employee's salary (in table EMP)
by 20 percent. The following result set represents the data currently in table EMP_BONUS:

 select empno, ename
 from emp_bonus

 EMPNO ENAME
 ---------- ---------
 7369 SMITH
 7900 JAMES
 7934 MILLER

Solution

Use a subquery in your UPDATE statement's WHERE clause to find employees in table EMP that are
also in table EMP_BONUS. Your UPDATE will then act only on those rows, enabling you to increase
their salary by 20 percent:

 1 update emp
 2 set sal=sal*1.20
 3 where empno in (select empno from emp_bonus)

Discussion

The results from the subquery represent the rows that will be updated in table EMP. The IN predicate
tests values of EMPNO from the EMP table to see whether they are in the list of EMPNO values
returned by the subquery. When they are, the corresponding SAL values are updated.

Alternatively, you can use EXISTS instead of IN:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 update emp
 set sal = sal*1.20
 where exists (select null
 from emp_bonus
 where emp.empno=emp_bonus.empno)

You may be surprised to see NULL in the SELECT list of the EXISTS subquery. Fear not, that NULL
does not have an adverse effect on the update. In my opinion it increases readability as it reinforces
the fact that, unlike the solution using a subquery with an IN operator, what will drive the update
(i.e., which rows will be updated) will be controlled by the WHERE clause of the subquery, not the
values returned as a result of the subquery's SELECT list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.10. Updating with Values from Another Table

Problem

You wish to update rows in one table using values from another. For example, you have a table called
NEW_SAL, which holds the new salaries for certain employees. The contents of table NEW_SAL are:

 select *
 from new_sal

 DEPTNO SAL
 ------ ----------
 10 4000

Column DEPTNO is the primary key of table NEW_SAL. You want to update the salaries and
commission of certain employees in table EMP using values table NEW_SAL if there is a match
between EMP.DEPTNO and NEW_SAL.DEPTNO, update EMP.SAL to NEW_SAL.SAL, and update
EMP.COMM to 50% of NEW_SAL.SAL. The rows in EMP are as follows:

 select deptno,ename,sal,comm
 from emp
 order by 1

 DEPTNO ENAME SAL COMM
 ------ ---------- ---------- ----------
 10 CLARK 2450
 10 KING 5000
 10 MILLER 1300
 20 SMITH 800
 20 ADAMS 1100
 20 FORD 3000
 20 SCOTT 3000
 20 JONES 2975
 30 ALLEN 1600 300
 30 BLAKE 2850
 30 MARTIN 1250 1400
 30 JAMES 950
 30 TURNER 1500 0
 30 WARD 1250 500

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Solution

Use a join between NEW_SAL and EMP to find and return the new COMM values to the UPDATE
statement. It is quite common for updates such as this one to be performed via correlated subquery.
Another technique involves creating a view (traditional or inline, depending on what your database
supports), then updating that view.

DB2 and MySQL

Use a correlated subquery to set new SAL and COMM values in EMP. Also use a correlated subquery
to identify which rows from EMP should be updated:

 1 update emp e set (e.sal,e.comm) = (select ns.sal, ns.sal/2
 2 from new_sal ns
 3 where ns.deptno=e.deptno)
 4 where exists (select null
 5 from new_sal ns
 6 where ns.deptno = e.deptno)

Oracle

The method for the DB2 solution will certainly work for Oracle, but as an alternative, you can update
an inline view:

 1 update (
 2 select e.sal as emp_sal, e.comm as emp_comm,
 3 ns.sal as ns_sal, ns.sal/2 as ns_comm
 4 from emp e, new_sal ns
 5 where e.deptno = ns.deptno
 6) set emp_sal = ns_sal, emp_comm = ns_comm

PostgreSQL

The method used for the DB2 solution will work for PostgreSQL, but as an alternative you can (quite
conveniently) join directly in the UPDATE statement:

 1 update emp
 2 set sal = ns.sal,
 3 comm = ns.sal/2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 from new_sal ns
 5 where ns.deptno = emp.deptno

SQL Server

The method used for the DB2 solution will work for SQL Server, but as an alternative you can
(similarly to the PostgreSQL solution) join directly in the UPDATE statement:

 1 update e
 2 set e.sal = ns.sal,
 3 e.comm = ns.sal/2
 4 from emp e,
 5 new_sal ns
 6 where ns.deptno = e.deptno

Discussion

Before discussing the different solutions, I'd like to mention something important regarding updates
that use queries to supply new values. A WHERE clause in the subquery of a correlated update is not
the same as the WHERE clause of the table being updated. If you look at the UPDATE statement in
the "Problem" section, the join on DEPTNO between EMP and NEW_SAL is done and returns rows to
the SET clause of the UPDATE statement. For employees in DEPTNO 10, valid values are returned
because there is a match DEPTNO in table NEW_SAL. But what about employees in the other
departments? NEW_SAL does not have any other departments, so the SAL and COMM for employees
in DEPTNOs 20 and 30 are set to NULL. Unless you are doing so via LIMIT or TOP or whatever
mechanism your vendor supplies for limiting the number of rows returned in a result set, the only
way to restrict rows from a table in SQL is to use a WHERE clause. To correctly perform this UPDATE,
use a WHERE clause on the table being updated along with a WHERE clause in the correlated
subquery.

DB2 and MySQL

To ensure you do not update every row in table EMP, remember to include a correlated subquery in
the WHERE clause of the UPDATE. Performing the join (the correlated subquery) in the SET clause is
not enough. By using a WHERE clause in the UPDATE, you ensure that only rows in EMP that match
on DEPTNO to table NEW_SAL are updated. This holds true for all RDBMSs.

Oracle

In the Oracle solution using the update join view, you are using equi-joins to determine which rows
will be updated. You can confirm which rows are being updated by executing the query
independently. To be able to successfully use this type of UPDATE, you must first understand the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

concept of key-preservation. The DEPTNO column of the table NEW_SAL is the primary key of that
table, thus its values are unique within the table. When joining between EMP and NEW_SAL,
however, NEW_SAL.DEPTNO is not unique in the result set, as can be seen below:

 select e.empno, e.deptno e_dept, ns.sal, ns.deptno ns_deptno
 from emp e, new_sal ns
 where e.deptno = ns.deptno

 EMPNO E_DEPT SAL NS_DEPTNO
 ----- ---------- ---------- ----------
 7782 10 4000 10
 7839 10 4000 10
 7934 10 4000 10

To enable Oracle to update this join, one of the tables must be key-preserved, meaning that if its
values are not unique in the result set, it should at least be unique in the table it comes from. In this
case NEW_SAL has a primary key on DEPTNO, which makes it unique in the table. Because it is
unique in its table, it may appear multiple times in the result set and will still be considered key-
preserved, thus allowing the update to complete successfully.

PostgreSQL and SQL Server

The syntax is a bit different between these two platforms, but the technique is the same. Being able
to join directly in the UPDATE statement is extremely convenient. Since you specify which table to
update (the table listed after the UPDATE keyword) there's no confusion as to which table's rows are
modified. Additionally, because you are using joins in the update (since there is an explicit WHERE
clause), you can avoid some of the pitfalls when coding correlated subquery updates; in particular, if
you missed a join here, it would be very obvious you'd have a problem.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.11. Merging Records

Problem

You want to conditionally insert, update, or delete records in a table depending on whether or not
corresponding records exist. (If a record exists, then update; if not,then insert; if after updating a
row fails to meet a certain condition, delete it.) For example, you want to modify table
EMP_COMMISSION such that:

If any employee in EMP_COMMISSION also exists in table EMP, then update their commission
(COMM) to 1000.

For all employees who will potentially have their COMM updated to 1000, if their SAL is less than
2000, delete them (they should not be exist in EMP_COMMISSION).

Otherwise, insert the EMPNO, ENAME, and DEPTNO values from table EMP into table
EMP_COMMISSION.

Essentially, you wish to execute either an UPDATE or an INSERT depending on whether a given row
from EMP has a match in EMP_COMMISSION. Then you wish to execute a DELETE if the result of an
UPDATE causes a commission that's too high.

The following rows are currently in tables EMP and EMP_COMMISSION, respectively:

 select deptno,empno,ename,comm
 from emp
 order by 1

 DEPTNO EMPNO ENAME COMM
 ------ ---------- ------ ----------
 10 7782 CLARK
 10 7839 KING
 10 7934 MILLER
 20 7369 SMITH
 20 7876 ADAMS
 20 7902 FORD
 20 7788 SCOTT
 20 7566 JONES
 30 7499 ALLEN 300
 30 7698 BLAKE
 30 7654 MARTIN 1400
 30 7900 JAMES
 30 7844 TURNER 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 30 7521 WARD 500

 select deptno,empno,ename,comm
 from emp_commission
 order by 1

 DEPTNO EMPNO ENAME COMM
 ---------- ---------- ---------- ----------
 10 7782 CLARK
 10 7839 KING
 10 7934 MILLER

Solution

Oracle is currently the only RDBMS with a statement designed to solve this problem. That statement
is the MERGE statement, and it can perform either an UPDATE or an INSERT, as needed. For
example:

 1 merge into emp_commission ec
 2 using (select * from emp) emp
 3 on (ec.empno=emp.empno)
 4 when matched then
 5 update set ec.comm = 1000
 6 delete where (sal < 2000)
 7 when not matched then
 8 insert (ec.empno,ec.ename,ec.deptno,ec.comm)
 9 values (emp.empno,emp.ename,emp.deptno,emp.comm)

Discussion

The join on line 3 of the solution determines what rows already exist and will be updated. The join is
between EMP_COMMISSION (aliased as EC) and the subquery (aliased as emp). When the join
succeeds, the two rows are considered "matched" and the UPDATE specified in the WHEN MATCHED
clause is executed. Otherwise, no match is found and the INSERT in WHEN NOT MATCHED is
executed. Thus, rows from table EMP that do not have corresponding rows based on EMPNO in table
EMP_COMMISSION will be inserted into EMP_COMMISSION. Of all the employees in table EMP only
those in DEPTNO 10 should have their COMM updated in EMP_COMMISSION, while the rest of the
employees are inserted. Additionally, since MILLER is in DEPTNO 10 he is a candidate to have his
COMM updated, but because his SAL is less than 2000 it is deleted from EMP_COMMISSION.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.12. Deleting All Records from a Table

Problem

You want to delete all the records from a table.

Solution

Use the DELETE command to delete records from a table. For example, to delete all records from
EMP:

 delete from emp

Discussion

When using the DELETE command without a WHERE clause, you will delete all rows from the table
specified.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.13. Deleting Specific Records

Problem

You wish to delete records meeting a specific criterion from a table.

Solution

Use the DELETE command with a WHERE clause specifying which rows to delete. For example, to
delete all employees in department 10:

 delete from emp where deptno = 10

Discussion

By using a WHERE clause with the DELETE command, you can delete a subset of rows in a table
rather than all the rows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.14. Deleting a Single Record

Problem

You wish to delete a single record from a table.

Solution

This is a special case of "Deleting Specific Records." The key is to ensure that your selection criterion
is narrow enough to specify only the one record that you wish to delete. Often you will want to delete
based on the primary key. For example, to delete employee CLARK (EMPNO 7782):

 delete from emp where empno = 7782

Discussion

Deleting is always about identifying the rows to be deleted, and the impact of a DELETE always
comes down to its WHERE clause. Omit the WHERE clause and the scope of a DELETE is the entire
table. By writing conditions in the WHERE clause, you can narrow the scope to a group of records, or
to a single record. When deleting a single record, you should typically be identifying that record based
on its primary key or on one of its unique keys.

If your deletion criterion is based on a primary or unique key, then you can be
sure of deleting only one record. (This is because your RDBMS will not allow
two rows to contain the same primary or unique key values.) Otherwise, you
may want to check first, to be sure you aren't about to inadvertently delete
more records than you intend.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.15. Deleting Referential Integrity Violations

Problem

You wish to delete records from a table when those records refer to nonexistent records in some
other table. Example: some employees are assigned to departments that do not exist. You wish to
delete those employees.

Solution

Use the NOT EXISTS predicate with a subquery to test the validity of department numbers:

 delete from emp
 where not exists (
 select * from dept
 where dept.deptno = emp.deptno
)

Alternatively, you can write the query using a NOT IN predicate:

 delete from emp
 where deptno not in (select deptno from dept)

Discussion

Deleting is really all about selecting: the real work lies in writing WHERE clause conditions to correctly
describe those records that you wish to delete.

The NOT EXISTS solution uses a correlated subquery to test for the existence of a record in DEPT
having a DEPTNO matching that in a given EMP record. If such a record exists, then the EMP record is
retained. Otherwise, it is deleted. Each EMP record is checked in this manner.

The IN solution uses a subquery to retrieve a list of valid department numbers. DEPTNOs from each
EMP record are then checked against that list. When an EMP record is found with a DEPTNO not in the
list, the EMP record is deleted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.16. Deleting Duplicate Records

Problem

You want to delete duplicate records from a table. Consider the following table:

 create table dupes (id integer, name varchar(10))
 insert into dupes values (1, 'NAPOLEON')
 insert into dupes values (2, 'DYNAMITE')
 insert into dupes values (3, 'DYNAMITE')
 insert into dupes values (4, 'SHE SELLS')
 insert into dupes values (5, 'SEA SHELLS')
 insert into dupes values (6, 'SEA SHELLS')
 insert into dupes values (7, 'SEA SHELLS')

 select * from dupes order by 1

 ID NAME
 ---------- ----------
 1 NAPOLEON
 2 DYNAMITE
 3 DYNAMITE
 4 SHE SELLS
 5 SEA SHELLS
 6 SEA SHELLS
 7 SEA SHELLS

For each group of duplicate names, such as "SEA SHELLS", you wish to arbitrarily retain one ID and
delete the rest. In the case of "SEA SHELLS" you don't care whether you delete 5 and 6, or 5 and 7,
or 6 and 7, but in the end you want just one record for "SEA SHELLS".

Solution

Use a subquery with an aggregate function such as MIN to arbitrarily choose the ID to retain (in this
case only the NAME with the smallest value for ID is not deleted):

 1 delete from dupes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 where id not in (select min(id)
 3 from dupes
 4 group by name)

Discussion

The first thing to do when deleting duplicates is to define exactly what it means for two rows to be
considered "duplicates" of each other. For my example in this recipe, the definition of "duplicate" is
that two records contain the same value in their NAME column. Having that definition in place, you
can look to some other column to discriminate among each set of duplicates, to identify those records
to retain. It's best if this discriminating column (or columns) is a primary key. I used the ID column,
which is a good choice because no two records have the same ID.

The key to the solution is that you group by the values that are duplicated (by NAME in this case),
and then use an aggregate function to pick off just one key value to retain. The subquery in the
"Solution" example will return the smallest ID for each NAME, which represents the row you will not
delete:

 select min(id)
 from dupes
 group by name

 MIN(ID)

 2
 1
 5
 4

The DELETE then deletes any ID in the table that is not returned by the subquery (in this case IDs 3,
6, and 7). If you are having trouble seeing how this works, run the subquery first and include the
NAME in the SELECT list:

 select name, min(id)
 from dupes
 group by name

 NAME MIN(ID)
 ---------- ----------
 DYNAMITE 2
 NAPOLEON 1
 SEA SHELLS 5
 SHE SELLS 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The rows returned by the subquery represent those to be retained. The NOT IN predicate in the
DELETE statement causes all other rows to be deleted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.17. Deleting Records Referenced from Another
Table

Problem

You want to delete records from one table when those records are referenced from some other table.
Consider the following table, named DEPT_ACCIDENTS, which contains one row for each accident
that occurs in a manufacturing business. Each row records the department in which an accident
occurred and also the type of accident.

 create table dept_accidents
 (deptno integer,
 accident_name varchar(20))

 insert into dept_accidents values (10,'BROKEN FOOT')
 insert into dept_accidents values (10,'FLESH WOUND')
 insert into dept_accidents values (20,'FIRE')
 insert into dept_accidents values (20,'FIRE')
 insert into dept_accidents values (20,'FLOOD')
 insert into dept_accidents values (30,'BRUISED GLUTE')

 select * from dept_accidents

 DEPTNO ACCIDENT_NAME
 ---------- --------------------
 10 BROKEN FOOT
 10 FLESH WOUND
 20 FIRE
 20 FIRE
 20 FLOOD
 30 BRUISED GLUTE

You want to delete from EMP the records for those employees working at a department that has
three or more accidents.

Solution

Use a subquery and the aggregate function COUNT to find the departments with three or more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accidents. Then delete all employees working in those departments:

 1 delete from emp
 2 where deptno in (select deptno
 3 from dept_accidents
 4 group by deptno
 5 having count(*) >= 3)

Discussion

The subquery will identify which departments have three or more accidents:

 select deptno
 from dept_accidents
 group by deptno
 having count(*) >= 3

 DEPTNO

 20

The DELETE will then delete any employees in the departments returned by the subquery (in this
case, only in department 20).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Metadata Queries

This chapter presents recipes that allow you to find information about a given schema. For example,
you may wish to know what tables you've created or which foreign keys are not indexed. All of the
RDBMSs in this book provide tables and views for obtaining such data. The recipes in this chapter will
get you started on gleaning information from those tables and views. There is, however, far more
information available than the recipes in this chapter can show. Consult your RDBMSs documentation
for the complete list of catalog or data dictionary tables/views.

For purposes of demonstration, all the recipes in this chapter assume the
schema name SMEAGOL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.1. Listing Tables in a Schema

Problem

You want to see a list all the tables you've created in a given schema.

Solution

The solutions that follow all assume you are working with the SMEAGOL schema. The basic approach
to a solution is the same for all RDBMSs: you query a system table (or view) containing a row for
each table in the database.

DB2

Query SYSCAT.TABLES:

 1 select tabname
 2 from syscat.tables
 3 where tabschema = 'SMEAGOL'

Oracle

Query SYS.ALL_TABLES:

 select table_name
 from all_tables
 where owner = 'SMEAGOL'

PostgreSQL, MySQL, and SQL Server

Query INFORMATION_SCHEMA.TABLES:

 1 select table_name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 from information_schema.tables
 3 where table_schema = 'SMEAGOL'

Discussion

In a delightfully circular manner, databases expose information about themselves through the very
mechanisms that you create for your own applications: tables and views. Oracle, for example,
maintains an extensive catalog of system views, such as ALL_TABLES, that you can query for
information about tables, indexes, grants, and any other database object.

Oracle's catalog views are just that, views. They are based on an underlying set
of tables that contain the information in a very user-unfriendly form. The views
put a very usable face on Oracle's catalog data.

Oracle's system views and DB2's system tables are each vendor-specific. PostgreSQL, MySQL, and
SQL Server, on the other hand, support something called the information schema, which is a set of
views defined by the ISO SQL standard. That's why the same query can work for all three of those
databases.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.2. Listing a Table's Columns

Problem

You want to list the columns in a table, along with their data types, and their position in the table
they are in.

Solution

The following solutions assume that you wish to list columns, their data types, and their numeric
position in the table named EMP in the schema SMEAGOL.

DB2

Query SYSCAT.COLUMNS:

 1 select colname, typename, colno
 2 from syscat.columns
 3 where tabname = 'EMP'
 4 and tabschema = 'SMEAGOL'

Oracle

Query ALL_TAB_COLUMNS:

 1 select column_name, data_type, column_id
 2 from all_tab_columns
 3 where owner = 'SMEAGOL'
 4 and table_name = 'EMP'

PostgreSQL, MySQL, and SQL Server

Query INFORMATION_SCHEMA.COLUMNS:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select column_name, data_type, ordinal_position
 2 from information_schema.columns
 3 where table_schema = 'SMEAGOL'
 4 and table_name = 'EMP'

Discussion

Each vendor provides ways for you to get detailed information about your column data. In the
examples above only the column name, data type, and position are returned. Additional useful items
of information include length, nullability, and default values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.3. Listing Indexed Columns for a Table

Problem

You want list indexes, their columns, and the column position (if available) in the index for a given
table.

Solution

The vendor-specific solutions that follow all assume that you are listing indexes for the table EMP in
the SMEAGOL schema.

DB2

Query SYSCAT.INDEXES:

 1 select a.tabname, b.indname, b.colname, b.colseq
 2 from syscat.indexes a,
 3 syscat.indexcoluse b
 3 where a.tabname = 'EMP'
 4 and a.tabschema = 'SMEAGOL'
 5 and a.indschema = b.indschema
 6 and a.indname = b.indname

Oracle

Query SYS.ALL_IND_COLUMNS:

 select table_name, index_name, column_name, column_position
 from sys.all_ind_columns
 where table_name = 'EMP'
 and table_owner = 'SMEAGOL'

PostgreSQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Query PG_CATALOG.PG_INDEXES and INFORMATION_SCHEMA.COLUMNS:

 1 select a.tablename,a.indexname,b.column_name
 2 from pg_catalog.pg_indexes a,
 3 information_schema.columns b
 4 where a.schemaname = 'SMEAGOL'
 5 and a.tablename = b.table_name

MySQL

Use the SHOW INDEX command:

 show index from emp

SQL Server

Query SYS.TABLES, SYS.INDEXES, SYS.INDEX_COLUMNS, and SYS.COLUMNS:

 1 select a.name table_name,
 2 b.name index_name,
 3 d.name column_name,
 4 c.index_column_id
 5 from sys.tables a,
 6 sys.indexes b,
 7 sys.index_columns c,
 8 sys.columns d
 9 where a.object_id = b.object_id
 10 and b.object_id = c.object_id
 11 and b.index_id = c.index_id
 12 and c.object_id = d.object_id
 13 and c.column_id = d.column_id
 14 and a.name = 'EMP'

Discussion

When it comes to queries, it's important to know what columns are/aren't indexed. Indexes can
provide good performance for queries against columns that are frequently used in filters and that are
fairly selective. Indexes are also useful when joining between tables. By knowing what columns are
indexed, you are already one step ahead of performance problems if they should occur. Additionally,
you might want to find information about the indexes themselves: how many levels deep they are,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

how many distinct keys, how many leaf blocks, and so forth. Such information is also available from
the views/tables queried in this recipe's solutions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.4. Listing Constraints on a Table

Problem

You want to list the constraints defined for a table in some schema and the columns they are defined
on. For example, you want to find the constraints and the columns they are on for table EMP.

Solution

DB2

Query SYSCAT.TABCONST and SYSCAT.COLUMNS:

 1 select a.tabname, a.constname, b.colname, a.type
 2 from syscat.tabconst a,
 3 syscat.columns b
 4 where a.tabname = 'EMP'
 5 and a.tabschema = 'SMEAGOL'
 6 and a.tabname = b.tabname
 7 and a.tabschema = b.tabschema

Oracle

Query SYS.ALL_CONSTRAINTS and SYS.ALL_CONS_COLUMNS:

 1 select a.table_name,
 2 a.constraint_name,
 3 b.column_name,
 4 a.constraint_type
 5 from all_constraints a,
 6 all_cons_columns b
 7 where a.table_name = 'EMP'
 8 and a.owner = 'SMEAGOL'
 9 and a.table_name = b.table_name
 10 and a.owner = b.owner
 11 and a.constraint_name = b.constraint_name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PostgreSQL, MySQL, and SQL Server

Query INFORMATION_SCHEMA.TABLE_CONSTRAINTS and INFORMATION_
SCHEMA.KEY_COLUMN_USAGE:

 1 select a.table_name,
 2 a.constraint_name,
 3 b.column_name,
 4 a.constraint_type
 5 from information_schema.table_constraints a,
 6 information_schema.key_column_usage b
 7 where a.table_name = 'EMP'
 8 and a.table_schema = 'SMEAGOL'
 9 and a.table_name = b.table_name
 10 and a.table_schema = b.table_schema
 11 and a.constraint_name = b.constraint_name

Discussion

Constraints are such a critical part of relational databases that it should go without saying why you
need to know what constraints are on your tables. Listing the constraints on tables is useful for a
variety of reasons: you may want to find tables missing a primary key, you may want to find which
columns should be foreign keys but are not (i.e., child tables have data different from the parent
tables and you want to know how that happened), or you may want to know about check constraints
(Are columns nullable? Do they have to satisfy a specific condition? etc.).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.5. Listing Foreign Keys Without Corresponding
Indexes

Problem

You want to list tables that have foreign key columns that are not indexed. For example, you want to
determine if the foreign keys on table EMP are indexed.

Solution

DB2

Query SYSCAT.TABCONST, SYSCAT.KEYCOLUSE, SYSCAT.INDEXES, and SYSCAT.INDEXCOLUSE:

 1 select fkeys.tabname,
 2 fkeys.constname,
 3 fkeys.colname,
 4 ind_cols.indname
 5 from (
 6 select a.tabschema, a.tabname, a.constname, b.colname
 7 from syscat.tabconst a,
 8 syscat.keycoluse b
 9 where a.tabname = 'EMP'
 10 and a.tabschema = 'SMEAGOL'
 11 and a.type = 'F'
 12 and a.tabname = b.tabname
 13 and a.tabschema = b.tabschema
 14) fkeys
 15 left join
 16 (
 17 select a.tabschema,
 18 a.tabname,
 19 a.indname,
 20 b.colname
 21 from syscat.indexes a,
 22 syscat.indexcoluse b
 23 where a.indschema = b.indschema
 24 and a.indname = b.indname
 25) ind_cols
 26 on (fkeys.tabschema = ind_cols.tabschema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 27 and fkeys.tabname = ind_cols.tabname
 28 and fkeys.colname = ind_cols.colname)
 29 where ind_cols.indname is null

Oracle

Query SYS.ALL_CONS_COLUMNS, SYS.ALL_CONSTRAINTS, and SYS.ALL_ IND_COLUMNS:

 1 select a.table_name,
 2 a.constraint_name,
 3 a.column_name,
 4 c.index_name
 5 from all_cons_columns a,
 6 all_constraints b,
 7 all_ind_columns c
 8 where a.table_name = 'EMP'
 9 and a.owner = 'SMEAGOL'
 10 and b.constraint_type = 'R'
 11 and a.owner = b.owner
 12 and a.table_name = b.table_name
 13 and a.constraint_name = b.constraint_name
 14 and a.owner = c.table_owner (+)
 15 and a.table_name = c.table_name (+)
 16 and a.column_name = c.column_name (+)
 17 and c.index_name is null

PostgreSQL

Query INFORMATION_SCHEMA.KEY_COLUMN_USAGE, INFORMATION_
SCHEMA.REFERENTIAL_CONSTRAINTS, INFORMATION_SCHEMA.COL-UMNS, and
PG_CATALOG.PG_INDEXES:

 1 select fkeys.table_name,
 2 fkeys.constraint_name,
 3 fkeys.column_name,
 4 ind_cols.indexname
 5 from (
 6 select a.constraint_schema,
 7 a.table_name,
 8 a.constraint_name,
 9 a.column_name
 10 from information_schema.key_column_usage a,
 11 information_schema.referential_constraints b
 12 where a.constraint_name = b.constraint_name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 13 and a.constraint_schema = b.constraint_schema
 14 and a.constraint_schema = 'SMEAGOL'
 15 and a.table_name = 'EMP'
 16) fkeys
 17 left join
 18 (
 19 select a.schemaname, a.tablename, a.indexname, b.column_name
 20 from pg_catalog.pg_indexes a,
 21 information_schema.columns b
 22 where a.tablename = b.table_name
 23 and a.schemaname = b.table_schema
 24) ind_cols
 25 on (fkeys.constraint_schema = ind_cols.schemaname
 26 and fkeys.table_name = ind_cols.tablename
 27 and fkeys.column_name = ind_cols.column_name)
 28 where ind_cols.indexname is null

MySQL

You can use the SHOW INDEX command to retrieve index information such as index name, columns
in the index, and ordinal position of the columns in the index. Additionally, you can query
INFORMATION_SCHEMA.KEY_COLUMN_USAGE to list the foreign keys for a given table. In MySQL 5,
foreign keys are said to be indexed automatically, but can in fact be dropped. To determine whether
a foreign key column's index has been dropped you can execute SHOW INDEX for a particular table
and compare the output with that of INFORMATION_SCHEMA.KEY_ COLUMN_USAGE.COLUMN_NAME
for the same table. If the COLUMN_NAME is listed in KEY_COLUMN_USAGE but is not returned by
SHOW INDEX, you know that column is not indexed.

SQL Server

Query SYS.TABLES, SYS.FOREIGN_KEYS, SYS.COLUMNS, SYS.INDEXES, and SYS.INDEX_COLUMNS:

 1 select fkeys.table_name,
 2 fkeys.constraint_name,
 3 fkeys.column_name,
 4 ind_cols.index_name
 5 from (
 6 select a.object_id,
 7 d.column_id,
 8 a.name table_name,
 9 b.name constraint_name,
 10 d.name column_name
 11 from sys.tables a
 12 join
 13 sys.foreign_keys b
 14 on (a.name = 'EMP'
 15 and a.object_id = b.parent_object_id

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 16)
 17 join
 18 sys.foreign_key_columns c
 19 on (b.object_id = c.constraint_object_id)
 20 join
 21 sys.columns d
 22 on (c.constraint_column_id = d.column_id
 23 and a.object_id = d.object_id
 24)
 25) fkeys
 26 left join
 27 (
 28 select a.name index_name,
 29 b.object_id,
 30 b.column_id
 31 from sys.indexes a,
 32 sys.index_columns b
 33 where a.index_id = b.index_id
 34) ind_cols
 35 on (fkeys.object_id = ind_cols.object_id
 36 and fkeys.column_id = ind_cols.column_id)
 37 where ind_cols.index_name is null

Discussion

Each vendor uses its own locking mechanism when modifying rows. In cases where there is a parent-
child relationship enforced via foreign key, having indexes on the child column(s) can reducing
locking (see your specific RDBMS documentation for details). In other cases, it is common that a child
table is joined to a parent table on the foreign key column, so an index may help improve
performance in that scenario as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.6. Using SQL to Generate SQL

Problem

You want to create dynamic SQL statements, perhaps to automate maintenance tasks. You want to
accomplish three tasks in particular: count the number of rows in your tables, disable foreign key
constraints defined on your tables, and generate insert scripts from the data in your tables.

Solution

The concept is to use strings to build SQL statements, and the values that need to be filled in (such
as the object name the command acts upon) will be supplied by data from the tables you are
selecting from. Keep in mind, the queries only generate the statements; you must then run these
statements via script, manually, or however you execute your SQL statements. The examples below
are queries that would work on an Oracle system. For other RDBMSs the technique is exactly the
same, the only difference being things like the names of the data dictionary tables and date
formatting. The output shown from the queries below are a portion of the rows returned from an
instance of Oracle on my laptop. Your result sets will of course vary.

 /* generate SQL to count all the rows in all your tables */

 select 'select count(*) from '||table_name||';' cnts
 from user_tables;

 CNTS
 --
 select count(*) from ANT;
 select count(*) from BONUS;
 select count(*) from DEMO1;
 select count(*) from DEMO2;
 select count(*) from DEPT;
 select count(*) from DUMMY;
 select count(*) from EMP;
 select count(*) from EMP_SALES;
 select count(*) from EMP_SCORE;
 select count(*) from PROFESSOR;
 select count(*) from T;
 select count(*) from T1;
 select count(*) from T2;
 select count(*) from T3;
 select count(*) from TEACH;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select count(*) from TEST;
 select count(*) from TRX_LOG;
 select count(*) from X;

 /* disable foreign keys from all tables */

 select 'alter table '||table_name||
 ' disable constraint '||constraint_name||';' cons
 from user_constraints
 where constraint_type = 'R';

 CONS
 --
 alter table ANT disable constraint ANT_FK;
 alter table BONUS disable constraint BONUS_FK;
 alter table DEMO1 disable constraint DEMO1_FK;
 alter table DEMO2 disable constraint DEMO2_FK;
 alter table DEPT disable constraint DEPT_FK;
 alter table DUMMY disable constraint DUMMY_FK;
 alter table EMP disable constraint EMP_FK;
 alter table EMP_SALES disable constraint EMP_SALES_FK;
 alter table EMP_SCORE disable constraint EMP_SCORE_FK;
 alter table PROFESSOR disable constraint PROFESSOR_FK;
 /* generate an insert script from some columns in table EMP */

 select 'insert into emp(empno,ename,hiredate) '||chr(10)||
 'values('||empno||','||''''||ename
 ||''',to_date('||''''||hiredate||'''));' inserts
 from emp
 where deptno = 10;

 INSERTS
 --
 insert into emp(empno,ename,hiredate)
 values(7782,'CLARK',to_date('09-JUN-1981 00:00:00'));

 insert into emp(empno,ename,hiredate)
 values(7839,'KING',to_date('17-NOV-1981 00:00:00'));

 insert into emp(empno,ename,hiredate)
 values(7934,'MILLER',to_date('23-JAN-1982 00:00:00'));

Discussion

Using SQL to generate SQL is particularly useful for creating portable scripts such as you might use
when testing on multiple environments. Additionally, as can be seen by the examples above, using
SQL to generate SQL is useful for performing batch maintenance, and for easily finding out

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information about multiple objects in one go. Generating SQL with SQL is an extremely simple
operation, and the more you experiment with it the easier it will become. The examples provided
should give you a nice base on how to build your own "dynamic" SQL scripts because, quite frankly,
there's not much to it. Work on it and you'll get it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.7. Describing the Data Dictionary Views in an
Oracle Database

Problem

You are using Oracle. You can't remember what data dictionary views are available to you, nor can
you remember their column definitions. Worse yet, you do not have convenient access to vendor
documentation.

Solution

This is an Oracle-specific recipe. Oracle not only maintains a robust set of data dictionary views, but
there are even data dictionary views to document the data dictionary views. It's all so wonderfully
circular.

Query the view named DICTIONARY to list data dictionary views and their purposes:

 select table_name, comments
 from dictionary
 order by table_name;

 TABLE_NAME COMMENTS
 ------------------------------ --
 ALL_ALL_TABLES Description of all object and relational
 tables accessible to the user

 ALL_APPLY Details about each apply process that
 dequeues from the queue visible to the
 current user
 …

Query DICT_COLUMNS to describe the columns in given a data dictionary view:

 select column_name, comments
 from dict_columns
 where table_name = 'ALL_TAB_COLUMNS';

 COLUMN_NAME COMMENTS
 ------------------------------- --

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OWNER
 TABLE_NAME Table, view or cluster name
 COLUMN_NAME Column name
 DATA_TYPE Datatype of the column
 DATA_TYPE_MOD Datatype modifier of the column
 DATA_TYPE_OWNER Owner of the datatype of the column
 DATA_LENGTH Length of the column in bytes
 DATA_PRECISION Length: decimal digits (NUMBER) or binary
 digits (FLOAT)

Discussion

Back in the day when Oracle's documentation set wasn't so freely available on the Web, it was
incredibly convenient that Oracle made the DICTIONARY and DICT_ COLUMNS views available.
Knowing just those two views, you could bootstrap to learning about all the other views, and from
thence to learning about your entire database.

Even today, it's convenient to know about DICTIONARY and DICT_COLUMNS. Often, if you aren't
quite certain which view describes a given object type, you can issue a wildcard query to find out. For
example, to get a handle on what views might describe tables in your schema:

 select table_name, comments
 from dictionary
 where table_name LIKE '%TABLE%'
 order by table_name;

This query returns all data dictionary view names that include the term "TABLE". This approach takes
advantage of Oracle's fairly consistent data dictionary view naming conventions. Views describing
tables are all likely to contain "TABLE" in their name. (Sometimes, as in the case of
ALL_TAB_COLUMNS, TABLE is abbreviated TAB.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Working with Strings
This chapter focuses on string manipulation in SQL. Keep in mind that SQL is not designed to perform
complex string manipulation and you can (and will) find working with strings in SQL to be very
cumbersome and frustrating at times. Despite SQL's limitations, there are some very useful built-in
functions provided by the different DBMSs, and I've tried to use them in creative ways. This chapter
in particular is very representative of the message I tried to convey in the introduction; SQL is the
good, the bad, and the ugly. I hope that you take away from this chapter a better appreciation for
what can and can't be done in SQL when working with strings. In many cases you'll be surprised by
how easy parsing and transforming of strings can be, while at other times you'll be aghast by the
kind of SQL that is necessary to accomplish a particular task.

The first recipe in this chapter is critically important, as it is leveraged by several of the subsequent
solutions. In many cases, you'd like to have the ability to traverse a string by moving through it a
character at a time. Unfortunately, SQL does not make this easy. Because there is no loop
functionality in SQL (Oracle's MODEL clause excluded), you need to mimic a loop to traverse a string.
I call this operation "walking a string" or "walking through a string" and the very first recipe explains
the technique. This is a fundamental operation in string parsing when using SQL, and is referenced
and used by almost all recipes in this chapter. I strongly suggest becoming comfortable with how the
technique works.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.1. Walking a String

Problem

You want to traverse a string to return each character as a row, but SQL lacks a loop operation. For
example, you want to display the ENAME "KING" from table EMP as four rows, where each row
contains just characters from "KING".

Solution

Use a Cartesian product to generate the number of rows needed to return each character of a string
on its own line. Then use your DBMS's built-in string parsing function to extract the characters you
are interested in (SQL Server users will use SUBSTRING instead of SUBSTR):

 1 select substr(e.ename,iter.pos,1) as C
 2 from (select ename from emp where ename = 'KING') e,
 3 (select id as pos from t10) iter
 4 where iter.pos <= length(e.ename)

 C
 -
 K
 I
 N
 G

Discussion

The key to iterating through a string's characters is to join against a table that has enough rows to
produce the required number of iterations. This example uses table T10, which contains 10 rows (it
has one column, ID, holding the values 1 through 10). The maximum number of rows that can be
returned from this query is 10.

The following example shows the Cartesian product between E and ITER (i.e., between the specific
name and the 10 rows from T10) without parsing ENAME:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select ename, iter.pos
 from (select ename from emp where ename = 'KING') e,
 (select id as pos from t10) iter

 ENAME POS
 ---------- ----------
 KING 1
 KING 2
 KING 3
 KING 4
 KING 5
 KING 6
 KING 7
 KING 8
 KING 9
 KING 10

The cardinality of inline view E is 1, and the cardinality of inline view ITER is 10. The Cartesian
product is then 10 rows. Generating such a product is the first step in mimicking a loop in SQL.

It is common practice to refer to table T10 as a "pivot" table.

The solution uses a WHERE clause to break out of the loop after four rows have been returned. To
restrict the result set to the same number of rows as there are characters in the name, that WHERE
clause specifies ITER.POS <= LENGTH(E. ENAME) as the condition:

 select ename, iter.pos
 from (select ename from emp where ename = 'KING') e,
 (select id as pos from t10) iter
 where iter.pos <= length(e.ename)

 ENAME POS
 ---------- ----------
 KING 1
 KING 2
 KING 3
 KING 4

Now that you have one row for each character in E.ENAME, you can use ITER.POS as a parameter to
SUBSTR, allowing you to navigate through the characters in the string. ITER.POS increments with
each row, and thus each row can be made to return a successive character from E.ENAME. This is
how the solution example works.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Depending on what you are trying to accomplish you may or may not need to generate a row for
every single character in a string. The following query is an example of walking E.ENAME and
exposing different portions (more than a single character) of the string:

 select substr(e.ename,iter.pos) a,
 substr(e.ename,length(e.ename)-iter.pos+1) b
 from (select ename from emp where ename = 'KING') e,
 (select id pos from t10) iter
 where iter.pos <= length(e.ename)

 A B
 ---------- ------
 KING G
 ING NG
 NG ING
 G KING

The most common scenarios for the recipes in this chapter involve walking the whole string to
generate a row for each character in the string, or walking the string such that the number of rows
generated reflects the number of particular characters or delimiters that are present in the string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.2. Embedding Quotes Within String Literals

Problem

You want to embed quote marks within string literals. You would like to produce results such as the
following with SQL:

 QMARKS

 g'day mate
 beavers' teeth
 '

Solution

The following three SELECTs highlight different ways you can create quotes: in the middle of a string
and by themselves:

 1 select 'g''day mate' qmarks from t1 union all
 2 select 'beavers'' teeth' from t1 union all
 3 select '''' from t1

Discussion

When working with quotes, it's often useful to think of them like parentheses. When you have an
opening parenthesis, you must always have a closing parenthesis. The same goes for quotes. Keep in
mind that you should always have an even number of quotes across any given string. To embed a
single quote within a string you need to use two quotes:

 select 'apples core', 'apple''s core',
 case when '' is null then 0 else 1 end
 from t1

 'APPLESCORE 'APPLE''SCOR CASEWHEN''ISNULLTHEN0ELSE1END
 ----------- ------------ -----------------------------

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 apples core apple's core 0

Following is the solution stripped down to its bare elements. You have two outer quotes defining a
string literal, and, within that string literal you have two quotes that together represent just one
quote in the string that you actually get:

 select '''' as quote from t1

 Q
 -
 '

When working with quotes, be sure to remember that a string literal comprising two quotes alone,
with no intervening characters, is NULL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.3. Counting the Occurrences of a Character in a
String

Problem

You want to count the number of times a character or substring occurs within a given string.
Consider the following string:

 10,CLARK,MANAGER

You want to determine how many commas are in the string.

Solution

Subtract the length of the string without the commas from the original length of the string to
determine the number of commas in the string. Each DBMS provides functions for obtaining the
length of a string and removing characters from a string. In most cases, these functions are LENGTH
and REPLACE, respectively (SQL Server users will use the built-in function LEN rather than LENGTH):

 1 select (length('10,CLARK,MANAGER')-
 2 length(replace('10,CLARK,MANAGER',',','')))/length(',')
 3 as cnt
 4 from t1

Discussion

You arrive at the solution by using simple subtraction. The call to LENGTH on line 1 returns the
original size of the string, and the first call to LENGTH on line 2 returns the size of the string without
the commas, which are removed by REPLACE.

By subtracting the two lengths you obtain the difference in terms of characters, which is the number
of commas in the string. The last operation divides the difference by the length of your search string.
This division is necessary if the string you are looking for has a length greater than 1. In the following
example, counting the occurrence of "LL" in the string "HELLO HELLO" without dividing will return an
incorrect result:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select
 (length('HELLO HELLO')-
 length(replace('HELLO HELLO','LL','')))/length('LL')
 as correct_cnt,
 (length('HELLO HELLO')-
 length(replace('HELLO HELLO','LL',''))) as incorrect_cnt
 from t1

 CORRECT_CNT INCORRECT_CNT
 ----------- -------------
 2 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.4. Removing Unwanted Characters from a String

Problem

You want to remove specific characters from your data. Consider this result set:

 ENAME SAL
 ---------- ----------
 SMITH 800
 ALLEN 1600
 WARD 1250
 JONES 2975
 MARTIN 1250
 BLAKE 2850
 CLARK 2450
 SCOTT 3000
 KING 5000
 TURNER 1500
 ADAMS 1100
 JAMES 950
 FORD 3000
 MILLER 1300

You want to remove all zeros and vowels as shown by the following values in columns STRIPPED1
and STRIPPED2:

 ENAME STRIPPED1 SAL STRIPPED2
 ---------- ---------- ---------- ---------
 SMITH SMTH 800 8
 ALLEN LLN 1600 16
 WARD WRD 1250 125
 JONES JNS 2975 2975
 MARTIN MRTN 1250 125
 BLAKE BLK 2850 285
 CLARK CLRK 2450 245
 SCOTT SCTT 3000 3
 KING KNG 5000 5
 TURNER TRNR 1500 15
 ADAMS DMS 1100 11
 JAMES JMS 950 95
 FORD FRD 3000 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MILLER MLLR 1300 13

Solution

Each DBMS provides functions for removing unwanted characters from a string. The functions
REPLACE and TRANSLATE are most useful for this problem.

DB2

Use the built-in functions TRANSLATE and REPLACE to remove unwanted characters and strings:

 1 select ename,
 2 replace(translate(ename,'aaaaa','AEIOU'),'a','') stripped1,
 3 sal,
 4 replace(cast(sal as char(4)),'0','') stripped2
 5 from emp

MySQL and SQL Server

MySQL and SQL Server do not offer a TRANSLATE function, so several calls to REPLACE are needed:

 1 select ename,
 2 replace(
 3 replace(
 4 replace(
 5 replace(
 6 replace(ename,'A',''),'E',''),'I',''),'O',''),'U','')
 7 as stripped1,
 8 sal,
 9 replace(sal,0,'') stripped2
 10 from emp

Oracle and PostgreSQL

Use the built-in functions TRANSLATE and REPLACE to remove unwanted characters and strings:

 1 select ename,
 2 replace(translate(ename,'AEIOU','aaaaa'),'a')
 3 as stripped1,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 sal,
 5 replace(sal,0,'') as stripped2
 6 from emp

Discussion

The built-in function REPLACE removes all occurrences of zeros. To remove the vowels, use
TRANSLATE to convert all vowels into one specific character (I used "a"; you can use any character),
then use REPLACE to remove all occurrences of that character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.5. Separating Numeric and Character Data

Problem

You have (unfortunately) stored numeric data along with character data together in one column. You
want to separate the character data from the numeric data. Consider the following result set:

 DATA

 SMITH800
 ALLEN1600
 WARD1250
 JONES2975
 MARTIN1250
 BLAKE2850
 CLARK2450
 SCOTT3000
 KING5000
 TURNER1500
 ADAMS1100
 JAMES950
 FORD3000
 MILLER1300

You would like the result to be:

 ENAME SAL
 ---------- ----------
 SMITH 800
 ALLEN 1600
 WARD 1250
 JONES 2975
 MARTIN 1250
 BLAKE 2850
 CLARK 2450
 SCOTT 3000
 KING 5000
 TURNER 1500
 ADAMS 1100
 JAMES 950
 FORD 3000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MILLER 1300

Solution

Use the built-in functions TRANSLATE and REPLACE to isolate the character from the numeric data.
Like other recipes in this chapter, the trick is to use TRANSLATE to transform multiple characters into
a single character you can reference. This way you are no longer searching for multiple numbers or
characters, rather one character to represent all numbers or one character to represent all
characters.

DB2

Use the functions TRANSLATE and REPLACE to isolate and separate the numeric from the character
data:

 1 select replace(
 2 translate(data,'0000000000','0123456789'),'0','') ename,
 3 cast(
 4 replace(
 5 translate(lower(data),repeat('z',26),
 6 'abcdefghijklmnopqrstuvwxyz'),'z','') as integer) sal
 7 from (
 8 select ename||cast(sal as char(4)) data
 9 from emp
 10) x

Oracle

Use the functions TRANSLATE and REPLACE to isolate and separate the numeric from the character
data:

 1 select replace(
 2 translate(data,'0123456789','0000000000'),'0') ename,
 3 to_number(
 5 replace(
 6 translate(lower(data),
 7 'abcdefghijklmnopqrstuvwxyz',
 8 rpad('z',26,'z')),'z')) sal
 9 from (
 10 select ename||sal data
 11 from emp
 12)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PostgreSQL

Use the functions TRANSLATE and REPLACE to isolate and separate the numeric from the character
data:

 1 select replace(
 2 translate(data,'0123456789','0000000000'),'0','') as ename,
 3 cast(
 4 replace(
 5 translate(lower(data),
 6 'abcdefghijklmnopqrstuvwxyz',
 7 rpad('z',26,'z')),'z','') as integer) as sal
 8 from (
 9 select ename||sal as data
 10 from emp
 11) x

Discussion

The syntax is a bit different for each DBMS, but the technique is the same. I will use the solution for
Oracle in the discussion section. The key to solving this problem is to isolate the numeric and
character data. You can use TRANSLATE and REPLACE to do this. To extract the numeric data, first
isolate all character data using TRANSLATE:

 select data,
 translate(lower(data),
 'abcdefghijklmnopqrstuvwxyz',
 rpad('z',26,'z')) sal
 from (select ename||sal data from emp)

 DATA SAL
 -------------------- -------------------
 SMITH800 zzzzz800
 ALLEN1600 zzzzz1600
 WARD1250 zzzz1250
 JONES2975 zzzzz2975
 MARTIN1250 zzzzzz1250
 BLAKE2850 zzzzz2850
 CLARK2450 zzzzz2450
 SCOTT3000 zzzzz3000
 KING5000 zzzz5000
 TURNER1500 zzzzzz1500
 ADAMS1100 zzzzz1100

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JAMES950 zzzzz950
 FORD3000 zzzz3000
 MILLER1300 zzzzzz1300

By using TRANSLATE you convert every non-numeric character into a lowercase Z. The next step is
to remove all instances of lowercase Z from each record using REPLACE, leaving only numerical
characters that can then be cast to a number:

 select data,
 to_number(
 replace(
 translate(lower(data),
 'abcdefghijklmnopqrstuvwxyz',
 rpad('z',26,'z')),'z')) sal
 from (select ename||sal data from emp)

 DATA SAL
 -------------------- ----------
 SMITH800 800
 ALLEN1600 1600
 WARD1250 1250
 JONES2975 2975
 MARTIN1250 1250
 BLAKE2850 2850
 CLARK2450 2450
 SCOTT3000 3000
 KING5000 5000
 TURNER1500 1500
 ADAMS1100 1100
 JAMES950 950
 FORD3000 3000
 MILLER1300 1300

To extract the non-numeric characters, isolate the numeric characters using TRANSLATE:

 select data,
 translate(data,'0123456789','0000000000') ename
 from (select ename||sal data from emp)

 DATA ENAME
 -------------------- ----------
 SMITH800 SMITH000
 ALLEN1600 ALLEN0000
 WARD1250 WARD0000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JONES2975 JONES0000
 MARTIN1250 MARTIN0000
 BLAKE2850 BLAKE0000
 CLARK2450 CLARK0000
 SCOTT3000 SCOTT0000
 KING5000 KING0000
 TURNER1500 TURNER0000
 ADAMS1100 ADAMS0000
 JAMES950 JAMES000
 FORD3000 FORD0000
 MILLER1300 MILLER0000

By using TRANSLATE you convert every numeric character into a zero. The next step is to remove all
instances of zero from each record using REPLACE, leaving only non-numeric characters:

 select data,
 replace(translate(data,'0123456789','0000000000'),'0') ename
 from (select ename||sal data from emp)

 DATA ENAME
 -------------------- -------
 SMITH800 SMITH
 ALLEN1600 ALLEN
 WARD1250 WARD
 JONES2975 JONES
 MARTIN1250 MARTIN
 BLAKE2850 BLAKE
 CLARK2450 CLARK
 SCOTT3000 SCOTT
 KING5000 KING
 TURNER1500 TURNER
 ADAMS1100 ADAMS
 JAMES950 JAMES
 FORD3000 FORD
 MILLER1300 MILLER

Put the two techniques together and you have your solution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.6. Determining Whether a String Is
Alphanumeric

Problem

You want to return rows from a table only when a column of interest contains no characters other
than numbers and letters. Consider the following view V (SQL Server users will use the operator "+"
for concatenation instead of "||"):

 create view V as
 select ename as data
 from emp
 where deptno=10
 union all
 select ename||', $'|| cast(sal as char(4)) ||'.00' as data
 from emp
 where deptno=20
 union all
 select ename|| cast(deptno as char(4)) as data
 from emp
 where deptno=30

The view V represents your table, and it returns the following:

 DATA

 CLARK
 KING
 MILLER
 SMITH, $800.00
 JONES, $2975.00
 SCOTT, $3000.00
 ADAMS, $1100.00
 FORD, $3000.00
 ALLEN30
 WARD30
 MARTIN30
 BLAKE30
 TURNER30
 JAMES30

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, from the view's data you want to return only the following records:

 DATA

 CLARK
 KING
 MILLER
 ALLEN30
 WARD30
 MARTIN30
 BLAKE30
 TURNER30
 JAMES30

In short, you wish to omit those rows containing data other than letters and digits.

Solution

It may seem intuitive at first to solve the problem by searching for all the possible non-alphanumeric
characters that can be found in a string, but, on the contrary, you will find it easier to do the exact
opposite: find all the alphanumeric characters. By doing so, you can treat all the alphanumeric
characters as one by converting them to one single character. The reason you want to do this is so
the alphanumeric characters can be manipulated together, as a whole. Once you've generated a copy
of the string in which all alphanumeric characters are represented by a single character of your
choosing, it is easy to isolate the alphanumeric characters from any other characters.

DB2

Use the function TRANSLATE to convert all alphanumeric characters to a single character, then
identify any rows that have characters other than the converted alphanumeric character. For DB2
users, the CAST function calls in view V are necessary; otherwise, the view cannot be created due to
type conversion errors. Take extra care when working with casts to CHAR as they are fixed length
(padded):

 1 select data
 2 from V
 3 where translate(lower(data),
 4 repeat('a',36),
 5 '0123456789abcdefghijklmnopqrstuvwxyz') =
 6 repeat('a',length(data))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MySQL

The syntax for view V is slightly different in MySQL:

 create view V as
 select ename as data
 from emp
 where deptno=10
 union all
 select concat(ename,', $',sal,'.00') as data
 from emp
 where deptno=20
 union all
 select concat(ename,deptno) as data
 from emp
 where deptno=30

Use a regular expression to easily find rows that contain non-alphanumeric data:

 1 select data
 2 from V
 3 where data regexp '[^0-9a-zA-Z]' = 0

Oracle and PostgreSQL

Use the function TRANSLATE to convert all alphanumeric characters to a single character, then
identify any rows that have characters other than the converted alphanumeric character. The CAST
function calls in view V are not needed for Oracle and PostgreSQL. Take extra care when working
with casts to CHAR as they are fixed length (padded). If you decide to cast, cast to VARCHAR or
VARCHAR2:

 1 select data
 2 from V
 3 where translate(lower(data),
 4 '0123456789abcdefghijklmnopqrstuvwxyz',
 5 rpad('a',36,'a')) = rpad('a',length(data),'a')

SQL Server

Because SQL Server does not support a TRANSLATE function, you must walk each row and find any
that contains a character that contains a non-alphanumeric value. That can be done many ways, but

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the following solution uses an ASCII-value evaluation:

 1 select data
 2 from (
 3 select v.data, iter.pos,
 4 substring(v.data,iter.pos,1) c,
 5 ascii(substring(v.data,iter.pos,1)) val
 6 from v,
 7 (select id as pos from t100) iter
 8 where iter.pos <= len(v.data)
 9) x
 10 group by data
 11 having min(val) between 48 and 122

Discussion

The key to these solutions is being able to reference multiple characters concurrently. By using the
function TRANSLATE you can easily manipulate all numbers or all characters without having to
"iterate" and inspect each character one by one.

DB2, Oracle, and PostgreSQL

Only 9 of the 14 rows from view V are alphanumeric. To find the rows that are alphanumeric only,
simply use the function TRANSLATE. In this example, TRANSLATE converts characters 09 and az to
"a". Once the conversion is done, the converted row is then compared with a string of all "a" with the
same length (as the row). If the length is the same, then you know all the characters are
alphanumeric and nothing else.

By using the TRANSLATE function (using the Oracle syntax):

 where translate(lower(data),
 '0123456789abcdefghijklmnopqrstuvwxyz',
 rpad('a',36,'a'))

you convert all numbers and letters into a distinct character (I chose "a"). Once the data is
converted, all strings that are indeed alphanumeric can be identified as a string comprising only a
single character (in this case, "a"). This can be seen by running TRANSLATE by itself:

 select data, translate(lower(data),
 '0123456789abcdefghijklmnopqrstuvwxyz',
 rpad('a',36,'a'))
 from V

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DATA TRANSLATE(LOWER(DATA)
 -------------------- ---------------------
 CLARK aaaaa
 …
 SMITH, $800.00 aaaaa, $aaa.aa
 …
 ALLEN30 aaaaaaa
 …

The alphanumeric values are converted, but the string lengths have not been modified. Because the
lengths are the same, the rows to keep are the ones for which the call to TRANSLATE returns all a's.
You keep those rows, rejecting the others, by comparing each original string's length with the length
of its corresponding string of a's:

 select data, translate(lower(data),
 '0123456789abcdefghijklmnopqrstuvwxyz',
 rpad('a',36,'a')) translated,
 rpad('a',length(data),'a') fixed
 from V

 DATA TRANSLATED FIXED
 -------------------- -------------------- ----------------
 CLARK aaaaa aaaaa
 …
 SMITH, $800.00 aaaaa, $aaa.aa aaaaaaaaaaaaaa
 …
 ALLEN30 aaaaaaa aaaaaaa
 …

The last step is to keep only the strings where TRANSLATED equals FIXED.

MySQL

The expression in the WHERE clause:

 where data regexp '[^0-9a-zA-Z]' = 0

causes rows that have only numbers or characters to be returned. The value ranges in the brackets,
"0-9a-zA-Z", represent all possible numbers and letters. The character "^" is for negation, so the
expression can be stated as "not numbers or letters." A return value of 1 is true and 0 is false, so the
whole expression can be stated as "return rows where anything other than numbers and letters is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

false."

SQL Server

The first step is to walk each row returned by view V. Each character in the value returned for DATA
will itself be returned as a row. The values returned by C represent each individual character for the
values returned by DATA:

 +-----------------+------+------+------+
 | data | pos | c | val |
 +-----------------+------+------+------+
ADAMS, $1100.00	1	A	65
ADAMS, $1100.00	2	D	68
ADAMS, $1100.00	3	A	65
ADAMS, $1100.00	4	M	77
ADAMS, $1100.00	5	S	83
ADAMS, $1100.00	6	,	44
ADAMS, $1100.00	7		32
ADAMS, $1100.00	8	$	36
ADAMS, $1100.00	9	1	49
ADAMS, $1100.00	10	1	49
ADAMS, $1100.00	11	0	48
ADAMS, $1100.00	12	0	48
ADAMS, $1100.00	13	.	46
ADAMS, $1100.00	14	0	48
ADAMS, $1100.00	15	0	48

Inline view Z not only returns each character in the column DATA row by row, it also provides the
ASCII value for each character. For this particular implementation of SQL Server, the range 48122
represents alphanumeric characters. With that knowledge, you can group each row in DATA and filter
out any such that the minimum ASCII value is not in the 48122 range.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.7. Extracting Initials from a Name

Problem

You want convert a full name into initials. Consider the following name:

 Stewie Griffin

You would like to return:

 S.G.

Solution

It's important to keep in mind that SQL does not provide the flexibility of languages such as C or
Python; therefore, creating a generic solution to deal with any name format is not something
particularly easy to do in SQL. The solutions presented here expect the names to be either first and
last name, or first, middle name/middle initial, and last name.

DB2

Use the built-in functions REPLACE, TRANSLATE, and REPEAT to extract the initials:

 1 select replace(
 2 replace(
 3 translate(replace('Stewie Griffin', '.', ''),
 4 repeat('#',26),
 5 'abcdefghijklmnopqrstuvwxyz'),
 6 '#',''), ' ','.')
 7 ||'.'
 8 from t1

MySQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the built-in functions CONCAT, CONCAT_WS, SUBSTRING, and SUBSTRING_ INDEX to extract
the initials:

 1 select case
 2 when cnt = 2 then
 3 trim(trailing '.' from
 4 concat_ws('.',
 5 substr(substring_index(name,' ',1),1,1),
 6 substr(name,
 7 length(substring_index(name,' ',1))+2,1),
 8 substr(substring_index(name,' ',-1),1,1),
 9 '.'))
 10 else
 11 trim(trailing '.' from
 12 concat_ws('.',
 13 substr(substring_index(name,' ',1),1,1),
 14 substr(substring_index(name,' ',-1),1,1)
 15))
 16 end as initials
 17 from (
 18 select name,length(name)-length(replace(name,' ','')) as cnt
 19 from (
 20 select replace('Stewie Griffin','.','') as name from t1
 21)y
 22)x

Oracle and PostgreSQL

Use the built-in functions REPLACE, TRANSLATE, and RPAD to extract the initials:

 1 select replace(
 2 replace(
 3 translate(replace('Stewie Griffin', '.', ''),
 4 'abcdefghijklmnopqrstuvwxyz',
 5 rpad('#',26,'#')), '#',''),' ','.') ||'.'
 6 from t1

SQL Server

As of the time of this writing, neither TRANSLATE nor CONCAT_WS is supported in SQL Server.

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By isolating the capital letters you can extract the initials from a name. The following sections
describe each vendor-specific solution in detail.

DB2

The REPLACE function will remove any periods in the name (to handle middle initials), and the
TRANSLATE function will convert all non-uppercase letters to #.

 select translate(replace('Stewie Griffin', '.', ''),
 repeat('#',26),
 'abcdefghijklmnopqrstuvwxyz')
 from t1

 TRANSLATE('STE

 S##### G######

At this point, the initials are the characters that are not #. The function REPLACE is then used to
remove all the # characters:

 select replace(
 translate(replace('Stewie Griffin', '.', ''),
 repeat('#',26),
 'abcdefghijklmnopqrstuvwxyz'),'#','')
 from t1

 REP

 S G

The next step is to replace the white space with a period by using REPLACE again:

 select replace(
 replace(
 translate(replace('Stewie Griffin', '.', ''),
 repeat('#',26),
 'abcdefghijklmnopqrstuvwxyz'),'#',''),' ','.') || '.'
 from t1

 REPLA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 S.G

The final step is to append a decimal to the end of the initials.

Oracle and PostgreSQL

The REPLACE function will remove any periods in the name (to handle middle initials), and the
TRANSLATE function will convert all non-uppercase letters to '#'.

 select translate(replace('Stewie Griffin','.',''),
 'abcdefghijklmnopqrstuvwxyz',
 rpad('#',26,'#'))
 from t1

 TRANSLATE('STE

 S##### G######

At this point, the initials are the characters that are not "#". The function REPLACE is then used to
remove all the # characters:

 select replace(
 translate(replace('Stewie Griffin','.',''),
 'abcdefghijklmnopqrstuvwxyz',
 rpad('#',26,'#')),'#','')
 from t1

 REP

 S G

The next step is to replace the white space with a period by using REPLACE again:

 select replace(
 replace(
 translate(replace('Stewie Griffin','.',''),
 'abcdefghijklmnopqrstuvwxyz',
 rpad('#',26,'#')),'#',''),' ','.') || '.'
 from t1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 REPLA

 S.G

The final step is to append a decimal to the end of the initials.

MySQL

The inline view Y is used to remove any period from the name. The inline view X finds the number of
white spaces in the name so the SUBSTR function can be called the correct number of times to
extract the initials. The three calls to SUBSTRING_ INDEX parse the string into individual names
based on the location of the white space. Because there is only a first and last name, the code in the
ELSE portion of the case statement is executed:

 select substr(substring_index(name, ' ',1),1,1) as a,
 substr(substring_index(name,' ',-1),1,1) as b
 from (select 'Stewie Griffin' as name from t1) x

 A B
 - -
 S G

If the name in question has a middle name or initial, the initial would be returned by executing

 substr(name,length(substring_index(name, ' ',1))+2,1)

which finds the end of the first name then moves two spaces to the beginning of the middle name or
initial; that is, the start position for SUBSTR. Because only onecharacter is kept, the middle name or
initial is successfully returned. The initials are then passed to CONCAT_WS, which separates the
initials by a period:

 select concat_ws('.',
 substr(substring_index(name, ' ',1),1,1),
 substr(substring_index(name,' ',-1),1,1),
 '.') a
 from (select 'Stewie Griffin' as name from t1) x

 A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 S.G..

The last step is to trim the extraneous period from the initials.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.8. Ordering by Parts of a String

Problem

You want to order your result set based on a substring. Consider the following records:

 ENAME

 SMITH
 ALLEN
 WARD
 JONES
 MARTIN
 BLAKE
 CLARK
 SCOTT
 KING
 TURNER
 ADAMS
 JAMES
 FORD
 MILLER

You want the records to be ordered based on the last two characters of each name:

 ENAME

 ALLEN
 TURNER
 MILLER
 JONES
 JAMES
 MARTIN
 BLAKE
 ADAMS
 KING
 WARD
 FORD
 CLARK
 SMITH
 SCOTT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Solution

The key to this solution is to find and use your DBMS's built-in function to extract the substring on
which you wish to sort. This is typically done with the SUBSTR function.

DB2, Oracle, MySQL, and PostgreSQL

Use a combination of the built-in functions LENGTH and SUBSTR to order by a specific part of a
string:

 1 select ename
 2 from emp
 3 order by substr(ename,length(ename)-1,)

SQL Server

Use functions SUBSTRING and LEN to order by a specific part of a string:

 1 select ename
 2 from emp
 3 order by substring(ename,len(ename)-1,2)

Discussion

By using a SUBSTR expression in your ORDER BY clause, you can pick any part of a string to use in
ordering a result set. You're not limited to SUBSTR either. You can order rows by the result of almost
any expression.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.9. Ordering by a Number in a String

Problem

You want order your result set based on a number within a string. Consider the following view:

 create view V as
 select e.ename ||' '||
 cast(e.empno as char(4))||' '||
 d.dname as data
 from emp e, dept d
 where e.deptno=d.deptno

This view returns the following data:

 DATA

 CLARK 7782 ACCOUNTING
 KING 7839 ACCOUNTING
 MILLER 7934 ACCOUNTING
 SMITH 7369 RESEARCH
 JONES 7566 RESEARCH
 SCOTT 7788 RESEARCH
 ADAMS 7876 RESEARCH
 FORD 7902 RESEARCH
 ALLEN 7499 SALES
 WARD 7521 SALES
 MARTIN 7654 SALES
 BLAKE 7698 SALES
 TURNER 7844 SALES
 JAMES 7900 SALES

You want to order the results based on the employee number, which falls between the employee
name and respective department:

 DATA

 SMITH 7369 RESEARCH

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ALLEN 7499 SALES
 WARD 7521 SALES
 JONES 7566 RESEARCH
 MARTIN 7654 SALES
 BLAKE 7698 SALES
 CLARK 7782 ACCOUNTING
 SCOTT 7788 RESEARCH
 KING 7839 ACCOUNTING
 TURNER 7844 SALES
 ADAMS 7876 RESEARCH
 JAMES 7900 SALES
 FORD 7902 RESEARCH
 MILLER 7934 ACCOUNTING

Solution

Each solution uses functions and syntax specific to its DBMS, but the method (making use of the
built-in functions REPLACE and TRANSLATE) is the same for each. The idea is to use REPLACE and
TRANSLATE to remove non-digits from the strings, leaving only the numeric values upon which to
sort.

DB2

Use the built-in functions REPLACE and TRANSLATE to order by numeric characters in a string:

 1 select data
 2 from V
 3 order by
 4 cast(
 5 replace(
 6 translate(data,repeat('#',length(data)),
 7 replace(
 8 translate(data,'##########','0123456789'),
 9 '#','')),'#','') as integer)

Oracle

Use the built-in functions REPLACE and TRANSLATE to order by numeric characters in a string:

 1 select data
 2 from V
 3 order by
 4 to_number(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 5 replace(
 6 translate(data,
 7 replace(
 8 translate(data,'0123456789','##########'),
 9 '#'),rpad('#',20,'#')),'#'))

PostgreSQL

Use the built-in functions REPLACE and TRANSLATE to order by numeric characters in a string:

 1 select data
 2 from V
 3 order by
 4 cast(
 5 replace(
 6 translate(data,
 7 replace(
 8 translate(data,'0123456789','##########'),
 9 '#',''),rpad('#',20,'#')),'#','') as integer)

MySQL and SQL Server

As of the time of this writing, neither vendor supplies the TRANSLATE function.

Discussion

The purpose of view V is only to supply rows on which to demonstrate this recipe's solution. The view
simply concatenates several columns from the EMP table. The solution shows how to take such
concatenated text as input and sort it by the employee number embedded within.

The ORDER BY clause in each solution may look a bit intimidating but performs quite well and is
pretty straightforward once you examine it piece by piece. To order by the numbers in the string, it's
easiest to remove any characters that are not numbers. Once the non-numeric characters are
removed all that is left to do is cast the string of numerals into a number, then sort as you see fit.
Before examining each function call it is important to understand the order in which each function is
called. Starting with the innermost call, TRANSLATE (line 8 from each of the original solutions), you
see that:

TRANSLATE (line 8) is called and the results are returned to1.

REPLACE (line 7) and those results are returned to2.

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

2.

TRANSLATE (line 6) and those results are returned to3.

REPLACE (line 5) and those results are returned and finally4.

cast into a number5.

The first step is to convert the numbers into characters that do not exist in the rest of the string. For
this example, I chose "#" and used TRANSLATE to convert all non-numeric characters into
occurrences of "#". For example, the following query shows the original data on the left and the
results from the first translation:

 select data,
 translate(data,'0123456789','##########') as tmp
 from V

 DATA TMP
 ------------------------------ -----------------------
 CLARK 7782 ACCOUNTING CLARK #### ACCOUNTING
 KING 7839 ACCOUNTING KING #### ACCOUNTING
 MILLER 7934 ACCOUNTING MILLER #### ACCOUNTING
 SMITH 7369 RESEARCH SMITH #### RESEARCH
 JONES 7566 RESEARCH JONES #### RESEARCH
 SCOTT 7788 RESEARCH SCOTT #### RESEARCH
 ADAMS 7876 RESEARCH ADAMS #### RESEARCH
 FORD 7902 RESEARCH FORD #### RESEARCH
 ALLEN 7499 SALES ALLEN #### SALES
 WARD 7521 SALES WARD #### SALES
 MARTIN 7654 SALES MARTIN #### SALES
 BLAKE 7698 SALES BLAKE #### SALES
 TURNER 7844 SALES TURNER #### SALES
 JAMES 7900 SALES JAMES #### SALES

TRANSLATE finds the numerals in each string and converts each one to to the "#" character. The
modified strings are then returned to REPLACE (line 11), which removes all occurrences of "#":

 select data,
 replace(
 translate(data,'0123456789','##########'),'#') as tmp
 from V

 DATA TMP
 ------------------------------ -------------------
 CLARK 7782 ACCOUNTING CLARK ACCOUNTING
 KING 7839 ACCOUNTING KING ACCOUNTING
 MILLER 7934 ACCOUNTING MILLER ACCOUNTING
 SMITH 7369 RESEARCH SMITH RESEARCH

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JONES 7566 RESEARCH JONES RESEARCH
 SCOTT 7788 RESEARCH SCOTT RESEARCH
 ADAMS 7876 RESEARCH ADAMS RESEARCH
 FORD 7902 RESEARCH FORD RESEARCH
 ALLEN 7499 SALES ALLEN SALES
 WARD 7521 SALES WARD SALES
 MARTIN 7654 SALES MARTIN SALES
 BLAKE 7698 SALES BLAKE SALES
 TURNER 7844 SALES TURNER SALES
 JAMES 7900 SALES JAMES SALES

The strings are then returned to TRANSLATE once again, but this time it's the second (outermost)
TRANSLATE in the solution. TRANSLATE searches the original string for any characters that match the
characters in TMP. If any are found, they too are converted to "#"s. This conversion allows all non-
numeric characters to be treated as a single character (because they are all transformed to the same
character):

 select data, translate(data,
 replace(
 translate(data,'0123456789','##########'),
 '#'),
 rpad('#',length(data),'#')) as tmp
 from V

 DATA TMP
 ------------------------------ ---------------------------
 CLARK 7782 ACCOUNTING ########7782###########
 KING 7839 ACCOUNTING ########7839###########
 MILLER 7934 ACCOUNTING ########7934###########
 SMITH 7369 RESEARCH ########7369#########
 JONES 7566 RESEARCH ########7566#########
 SCOTT 7788 RESEARCH ########7788#########
 ADAMS 7876 RESEARCH ########7876#########
 FORD 7902 RESEARCH ########7902#########
 ALLEN 7499 SALES ########7499######
 WARD 7521 SALES ########7521######
 MARTIN 7654 SALES ########7654######
 BLAKE 7698 SALES ########7698######
 TURNER 7844 SALES ########7844######
 JAMES 7900 SALES ########7900######

The next step is to remove all "#" characters through a call to REPLACE (line 8), leaving you with
only numbers:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select data, replace(
 translate(data,
 replace(
 translate(data,'0123456789','##########'),
 '#'),
 rpad('#',length(data),'#')),'#') as tmp
 from V

 DATA TMP
 ------------------------------ -----------
 CLARK 7782 ACCOUNTING 7782
 KING 7839 ACCOUNTING 7839
 MILLER 7934 ACCOUNTING 7934
 SMITH 7369 RESEARCH 7369
 JONES 7566 RESEARCH 7566
 SCOTT 7788 RESEARCH 7788
 ADAMS 7876 RESEARCH 7876
 FORD 7902 RESEARCH 7902
 ALLEN 7499 SALES 7499
 WARD 7521 SALES 7521
 MARTIN 7654 SALES 7654
 BLAKE 7698 SALES 7698
 TURNER 7844 SALES 7844
 JAMES 7900 SALES 7900

Finally, cast TMP to a number (line 4) using the appropriate DBMS function (often CAST) to
accomplish this:

 select data, to_number(
 replace(
 translate(data,
 replace(
 translate(data,'0123456789','##########'),
 '#'),
 rpad('#',length(data),'#')),'#')) as tmp
 from V

 DATA TMP
 ------------------------------ ----------
 CLARK 7782 ACCOUNTING 7782
 KING 7839 ACCOUNTING 7839
 MILLER 7934 ACCOUNTING 7934
 SMITH 7369 RESEARCH 7369
 JONES 7566 RESEARCH 7566
 SCOTT 7788 RESEARCH 7788
 ADAMS 7876 RESEARCH 7876
 FORD 7902 RESEARCH 7902
 ALLEN 7499 SALES 7499

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 WARD 7521 SALES 7521
 MARTIN 7654 SALES 7654
 BLAKE 7698 SALES 7698
 TURNER 7844 SALES 7844
 JAMES 7900 SALES 7900

When developing queries like this, it's helpful to work with your expressions in the SELECT list. That
way, you can easily view the intermediate results as you work toward a final solution. However,
because the point of this recipe is to order the results, ultimately you should place all the function
calls into the ORDER BY clause:

 select data
 from V
 order by
 to_number(
 replace(
 translate(data,
 replace(
 translate(data,'0123456789','##########'),
 '#'),rpad('#',length(data),'#')),'#'))

 DATA

 SMITH 7369 RESEARCH
 ALLEN 7499 SALES
 WARD 7521 SALES
 JONES 7566 RESEARCH
 MARTIN 7654 SALES
 BLAKE 7698 SALES
 CLARK 7782 ACCOUNTING
 SCOTT 7788 RESEARCH
 KING 7839 ACCOUNTING
 TURNER 7844 SALES
 ADAMS 7876 RESEARCH
 JAMES 7900 SALES
 FORD 7902 RESEARCH
 MILLER 7934 ACCOUNTING

As a final note, the data in the view is comprised of three fields, only one being numeric. Keep in
mind that if there had been multiple numeric fields, they would have all been concatenated into one
number before the rows were sorted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.10. Creating a Delimited List from Table Rows

Problem

You want to return table rows as values in a delimited list, perhaps delimited by commas, rather than
in vertical columns as they normally appear. You want to convert a result set from this:

 DEPTNO EMPS
 ------ ----------
 10 CLARK
 10 KING
 10 MILLER
 20 SMITH
 20 ADAMS
 20 FORD
 20 SCOTT
 20 JONES
 30 ALLEN
 30 BLAKE
 30 MARTIN
 30 JAMES
 30 TURNER
 30 WARD

to this:

 DEPTNO EMPS
 ------- ------------------------------------
 10 CLARK,KING,MILLER
 20 SMITH,JONES,SCOTT,ADAMS,FORD
 30 ALLEN,WARD,MARTIN,BLAKE,TURNER,JAMES

Solution

Each DBMS requires a different approach to this problem. The key is to take advantage of the built-in
functions provided by your DBMS. Understanding what is available to you will allow you to exploit
your DBMS's functionality and come up with creative solutions for a problem that is typically not
solved in SQL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2

Use recursive WITH to build the delimited list:

 1 with x (deptno, cnt, list, empno, len)
 2 as (
 3 select deptno, count(*) over (partition by deptno),
 4 cast(ename as varchar(100)), empno, 1
 5 from emp
 6 union all
 7 select x.deptno, x.cnt, x.list ||','|| e.ename, e.empno, x.len+1
 8 from emp e, x
 9 where e.deptno = x.deptno
 10 and e.empno > x. empno
 11)
 12 select deptno,list
 13 from x
 14 where len = cnt

MySQL

Use the built-in function GROUP_CONCAT to build the delimited list:

 1 select deptno,
 2 group_concat(ename order by empno separator, ',') as emps
 3 from emp
 4 group by deptno

Oracle

Use the built-in function SYS_CONNECT_BY_PATH to build the delimited list:

 1 select deptno,
 2 ltrim(sys_connect_by_path(ename,','),',') emps
 3 from (
 4 select deptno,
 5 ename,
 6 row_number() over
 7 (partition by deptno order by empno) rn,
 8 count(*) over
 9 (partition by deptno) cnt
 10 from emp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 11)
 12 where level = cnt
 13 start with rn = 1
 14 connect by prior deptno = deptno and prior rn = rn-1

PostgreSQL

PostgreSQL does not offer a standard built-in function for creating a delimited list, so it is necessary
to know how many values will be in the list in advance. Once you know the size of the largest list,
you can determine the number of values to append to create your list by using standard transposition
and concatenation:

 1 select deptno,
 2 rtrim(
 3 max(case when pos=1 then emps else '' end)||
 4 max(case when pos=2 then emps else '' end)||
 5 max(case when pos=3 then emps else '' end)||
 6 max(case when pos=4 then emps else '' end)||
 7 max(case when pos=5 then emps else '' end)||
 8 max(case when pos=6 then emps else '' end),','
 9) as emps
 10 from (
 11 select a.deptno,
 12 a.ename||',' as emps,
 13 d.cnt,
 14 (select count(*) from emp b
 15 where a.deptno=b.deptno and b.empno <= a.empno) as pos
 16 from emp a,
 17 (select deptno, count(ename) as cnt
 18 from emp
 19 group by deptno) d
 20 where d.deptno=a.deptno
 21) x
 22 group by deptno
 23 order by 1

SQL Server

Use recursive WITH to build the delimited list:

 1 with x (deptno, cnt, list, empno, len)
 2 as (
 3 select deptno, count(*) over (partition by deptno),
 4 cast(ename as varchar(100)),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 5 empno,
 6 1
 7 from emp
 9 union all
 9 select x.deptno, x.cnt,
 10 cast(x.list + ',' + e.ename as varchar(100)),
 11 e.empno, x.len+1
 12 from emp e, x
 13 where e.deptno = x.deptno
 14 and e.empno > x. empno
 15)
 16 select deptno,list
 17 from x
 18 where len = cnt
 19 order by 1

Discussion

Being able to create delimited lists in SQL is useful because it is a common requirement. Yet each
DBMS offers a unique method for building such a list in SQL. There's very little commonality between
the vendor-specific solutions; the techniques vary from using recursion, to hierarchal functions, to
classic transposition, to aggregation.

DB2 and SQL Server

The solution for these two databases differ slightly in syntax (the concatenation operators are "||" for
DB2 and "+" for SQL Server), but the technique is the same. The first query in the WITH clause
(upper portion of the UNION ALL) returns the following information about each employee: the
department, the number of employees in that department, the name, the ID, and a constant 1
(which at this point doesn't do anything). Recursion takes place in the second query (lower half of the
UNION ALL) to build the list. To understand how the list is built, examine the following excerpts from
the solution: first, the third SELECT-list item from the second query in the union:

 x.list ||','|| e.ename

and then the WHERE clause from that same query:

 where e.deptno = x.deptno
 and e.empno > x.empno

The solution works by first ensuring the employees are in the same department. Then, for every

http://lib.ommolketab.ir
http://lib.ommolketab.ir

employee returned by the upper portion of the UNION ALL, append the name of the employees who
have a greater EMPNO. By doing this, you ensure that no employee will have his own name
appended. The expression

 x.len+1

increments LEN (which starts at 1) every time an employee has been evaluated. When the
incremented value equals the number of employees in the department:

 where len = cnt

you know you have evaluated all the employees and have completed building the list. That is crucial
to the query as it not only signals when the list is complete, but also stops the recursion from running
longer than necessary.

MySQL

The function GROUP_CONCAT does all the work. It concatenates the values found in the column
passed to it, in this case ENAME. It's an aggregate function, thus the need for GROUP BY in the
query.

Oracle

The first step to understanding the Oracle query is to break it down. Running the inline view by itself
(lines 410), you generate a result set that includes the following for each employee: her department,
her name, a rank within her respective department that is derived by an ascending sort on EMPNO,
and a count of all employees in her department. For example:

 select deptno,
 ename,
 row_number() over
 (partition by deptno order by empno) rn,
 count(*) over (partition by deptno) cnt
 from emp

 DEPTNO ENAME RN CNT
 ------ ---------- -- ---
 10 CLARK 1 3
 10 KING 2 3
 10 MILLER 3 3
 20 SMITH 1 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 20 JONES 2 5
 20 SCOTT 3 5
 20 ADAMS 4 5
 20 FORD 5 5
 30 ALLEN 1 6
 30 WARD 2 6
 30 MARTIN 3 6
 30 BLAKE 4 6
 30 TURNER 5 6
 30 JAMES 6 6

The purpose of the rank (aliased RN in the query) is to allow you to walk the tree. Since the function
ROW_NUMBER generates an enumeration starting from one with no duplicates or gaps, just subtract
one (from the current value) to reference a prior (or parent) row. For example, the number prior to 3
is 3 minus 1, which equals 2. In this context, 2 is the parent of 3; you can observe this on line 12.
Additionally, the lines

 start with rn = 1
 connect by prior deptno = deptno

identify the root for each DEPTNO as having RN equal to 1 and create a new list whenever a new
department is encountered (whenever a new occurrence of 1 is found for RN).

At this point, it's important to stop and look at the ORDER BY portion of the ROW_NUMBER function.
Keep in mind the names are ranked by EMPNO and the list will be created in that order. The number
of employees per department is calculated (aliased CNT) and is used to ensure that the query returns
only the list that has all the employee names for a department. This is done because SYS_CONNECT_
BY_PATH builds the list iteratively, and you do not want to end up with partial lists.

For heirarchical queries, the pseudocolumn LEVEL starts with 1 (for queries not using CONNECT BY,
LEVEL is 0, unless you are on 10g and later when LEVEL is only available when using CONNECT BY)
and increments by one after each employee in a department has been evaluated (for each level of
depth in the hierarchy). Because of this, you know that once LEVEL reaches CNT, you have reached
the last EMPNO and will have a complete list.

The SYS_CONNECT_BY_PATH function prefixes the list with your chosen
delimiter (in this case, a comma). You may or may not want that behavior. In
this recipe's solution, the call to the function LTRIM removes the leading comma
from the list.

PostgreSQL

PostgreSQL's solution requires you to know in advance the maximum number of employees in any
one department. Running the inline view by itself (lines 1118) generates a result set that includes
(for each employee) his department, his name with a comma appended, the number of employees in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

his department, and the number of employees who have an EMPNO that is less than his:

 deptno | emps | cnt | pos
 --------+----------+-----+-----
 20 | SMITH, | 5 | 1
 30 | ALLEN, | 6 | 1
 30 | WARD, | 6 | 2
 20 | JONES, | 5 | 2
 30 | MARTIN, | 6 | 3
 30 | BLAKE, | 6 | 4
 10 | CLARK, | 3 | 1
 20 | SCOTT, | 5 | 3
 10 | KING, | 3 | 2
 30 | TURNER, | 6 | 5
 20 | ADAMS, | 5 | 4
 30 | JAMES, | 6 | 6
 20 | FORD, | 5 | 5
 10 | MILLER, | 3 | 3

The scalar subquery, POS (lines 14-15), is used to rank each employee by EMPNO. For example, the
line

 max(case when pos = 1 then ename else '' end)||

evaluates whether or not POS equals 1. The CASE expression returns the employee name when POS
is 1, and otherwise returns NULL.

You must query your table first to find the largest number of values that could be in any one list.
Based on the EMP table, the largest number of employees in any one department is six, so the
largest number of items in a list is six.

The next step is to begin creating the list. Do this by performing some conditional logic (in the form of
CASE expressions) on the rows returned from the inline view.

You must write as many CASE expressions as there are possible values to be concatenated together.

If POS equals one, the current name is added to the list. The second CASE expression evaluates
whether or not POS equals two; if it does, then the second name is appended to the first. If there is
no second name, then an additional comma is appended to the first name (this process is repeated
for each distinct value of POS until the last one is reached).

The use of the MAX function is necessary because you want to build only one list per department
(you can also use MIN; it makes no difference in this case, since POS returns only one value for each
case evaluation). Whenever an aggregate function is used, any items in the SELECT list not acted
upon by the aggregate must be specified in the GROUP BY clause. This guarantees you will have only
one row per item in the SELECT list not acted upon by the aggregate function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that you also need the function RTRIM to remove trailing commas; the number of commas will
always be equal to the maximum number of values that could potentially be in a list (in this case,
six).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.11. Converting Delimited Data into a Multi-
Valued IN-List

Problem

You have delimited data that you want to pass to the IN-list iterator of a WHERE clause. Consider the
following string:

 7654,7698,7782,7788

You would like to use the string in a WHERE clause but the following SQL fails because EMPNO is a
numeric column:

 select ename,sal,deptno
 from emp
 where empno in ('7654,7698,7782,7788')

This SQL fails because, while EMPNO is a numeric column, the IN list is composed of a single string
value. You want that string to be treated as a comma-delimited list of numeric values.

Solution

On the surface it may seem that SQL should do the work of treating a delimited string as a list of
delimited values for you, but that is not the case. When a comma embedded within quotes is
encountered, SQL can't possibly know that signals a multi-valued list. SQL must treat everything
between the quotes as a single entity, as one string value. You must break the string up into
individual EMPNOs. The key to this solution is to walk the string, but not into individual characters.
You want to walk the string into valid EMPNO values.

DB2

By walking the string passed to the IN-list, you can you can easily convert it to rows. The functions
ROW_NUMBER, LOCATE, and SUBSTR are particularly useful here:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select empno,ename,sal,deptno
 2 from emp
 3 where empno in (
 4 select cast(substr(c,2,locate(',',c,2)-2) as integer) empno
 5 from (
 6 select substr(csv.emps,cast(iter.pos as integer)) as c
 7 from (select ','||'7654,7698,7782,7788'||',' emps
 8 from t1) csv,
 9 (select id as pos
 10 from t100) iter
 11 where iter.pos <= length(csv.emps)
 12) x
 13 where length(c) > 1
 14 and substr(c,1,1) = ','
 15) y

MySQL

By walking the string passed to the IN-list, you can easily convert it to rows:

 1 select empno, ename, sal, deptno
 2 from emp
 3 where empno in
 4 (
 5 select substring_index(
 6 substring_index(list.vals,',',iter.pos),',',-1) empno
 6 from (select id pos from t10) as iter,
 7 (select '7654,7698,7782,7788' as vals
 8 from t1) list
 9 where iter.pos <=
 10 (length(list.vals)-length(replace(list.vals,',','')))+1
 11) x

Oracle

By walking the string passed to the IN-list, you can you can easily convert it to rows. The functions
ROWNUM, SUBSTR, and INSTR are particularly useful here:

 1 select empno,ename,sal,deptno
 2 from emp
 3 where empno in (
 4 select to_number(
 5 rtrim(
 6 substr(emps,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 7 instr(emps,',',1,iter.pos)+1,
 8 instr(emps,',',1,iter.pos+1)
 9 instr(emps,',',1,iter.pos)),',')) emps
 10 from (select ','||'7654,7698,7782,7788'||',' emps from t1) csv,
 11 (select rownum pos from emp) iter
 12 where iter.pos <= ((length(csv.emps)-
 13 length(replace(csv.emps,',')))/length(','))-1
 14)

Postgres

By walking the string passed to the IN-list, you can easily convert it to rows. The function
SPLIT_PART makes it easy to parse the string into individual numbers:

 1 select ename,sal,deptno
 2 from emp
 3 where empno in (
 4 select cast(empno as integer) as empno
 5 from (
 6 select split_part(list.vals,',',iter.pos) as empno
 7 from (select id as pos from t10) iter,
 8 (select ','||'7654,7698,7782,7788'||',' as vals
 9 from t1) list
 10 where iter.pos <=
 11 length(list.vals)-length(replace(list.vals,',',''))
 12) z
 13 where length(empno) > 0
 14) x

SQL Server

By walking the string passed to the IN-list, you can you can easily convert it to rows. The functions
ROW_NUMBER, CHARINDEX, and SUBSTRING are particularly useful here:

 1 select empno,ename,sal,deptno
 2 from emp
 3 where empno in (select substring(c,2,charindex(',',c,2)-2) as empno
 4 from (
 5 select substring(csv.emps,iter.pos,len(csv.emps)) as c
 6 from (select ','+'7654,7698,7782,7788'+',' as emps
 7 from t1) csv,
 8 (select id as pos
 9 from t100) iter
 10 where iter.pos <= len(csv.emps)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 11) x
 12 where len(c) > 1
 13 and substring(c,1,1) = ','
 14) y

Discussion

The first and most important step in this solution is to walk the string. Once you've accomplished
that, all that's left is to parse the string into individual, numeric values using your DBMS's provided
functions.

DB2 and SQL Server

The inline view X (lines 611) walks the string. The idea in this solution is to "walk through" the string,
so that each row has one less character than the one before it:

 ,7654,7698,7782,7788,
 7654,7698,7782,7788,
 654,7698,7782,7788,
 54,7698,7782,7788,
 4,7698,7782,7788,
 ,7698,7782,7788,
 7698,7782,7788,
 698,7782,7788,
 98,7782,7788,
 8,7782,7788,
 ,7782,7788,
 7782,7788,
 782,7788,
 82,7788,
 2,7788,
 ,7788,
 7788,
 788,
 88,
 8,
 ,

Notice that by enclosing the string in commas (the delimiter), there's no need to make special checks
as to where the beginning or end of the string is.

The next step is to keep only the values you want to use in the IN-list. The values to keep are the
ones with leading commas, with the exception of the last row with its lone comma. Use SUBSTR or
SUBSTRING to identify which rows have a leading comma, then keep all characters found before the
next comma in that row. Once that's done, cast the string to a number so it can be properly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

evaluated against the numeric column EMPNO (lines 414):

 EMPNO

 7654
 7698
 7782
 7788

The final step is to use the results in a subquery to return the desired rows.

MySQL

The inline view (lines 59) walks the string. The expression on line 10 determines how many values
are in the string by finding the number of commas (the delimiter) and adding one. The function
SUBSTRING_INDEX (line 6) returns all characters in the string before (to the left of) the nth
occurrence of a comma (the delimiter):

 +---------------------+
 | empno |
 +---------------------+
 | 7654 |
 | 7654,7698 |
 | 7654,7698,7782 |
 | 7654,7698,7782,7788 |
 +---------------------+

Those rows are then passed to another call to SUBSTRING_INDEX (line 5); this time the nth
occurrence of the delimited is 1, which causes all values to the right of the nth occurrence of the
delimiter to be kept:

 +-------+
 | empno |
 +-------+
 | 7654 |
 | 7698 |
 | 7782 |
 | 7788 |
 +-------+

The final step is to plug the results into a subquery.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Oracle

The first step is to walk the string:

 select emps,pos
 from (select ','||'7654,7698,7782,7788'||',' emps
 from t1) csv,
 (select rownum pos from emp) iter
 where iter.pos <=
 ((length(csv.emps)-length(replace(csv.emps,',')))/length(','))-1

 EMPS POS
 --------------------- ----------
 ,7654,7698,7782,7788, 1
 ,7654,7698,7782,7788, 2
 ,7654,7698,7782,7788, 3
 ,7654,7698,7782,7788, 4

The number of rows returned represents the number of values in your list. The values for POS are
crucial to the query as they are needed to parse the string into individual values. The strings are
parsed using SUBSTR and INSTR. POS is used to locate the nth occurrence of the delimiter in each
string. By enclosing the strings in commas, no special checks are necessary to determine the
beginning or end of a string. The values passed to SUBSTR, INSTR (lines 79) locate the nth and
nth+1 occurrence of the delimiter. By subtracting the value returned for the current comma (the
location in the string where the current comma is) from the value returned bythe next comma (the
location in the string where the next comma is) you can extract each value from the string:

 select substr(emps,
 instr(emps,',',1,iter.pos)+1,
 instr(emps,',',1,iter.pos+1)
 instr(emps,',',1,iter.pos)) emps
 from (select ','||'7654,7698,7782,7788'||',' emps
 from t1) csv,
 (select rownum pos from emp) iter
 where iter.pos <=
 ((length(csv.emps)-length(replace(csv.emps,',')))/length(','))-1
 EMPS

 7654,
 7698,
 7782,
 7788,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The final step is to remove the trailing comma from each value, cast it to a number, and plug it into a
subquery.

PostgreSQL

The inline view Z (lines 69) walks the string. The number of rows returned is determined by how
many values are in the string. To find the number of values in the string, subtract the size of the
string without the delimiter from the size of the string with the delimiter (line 9). The function
SPLIT_PART does the work of parsing the string. It looks for the value that comes before the nth
occurrence of the delimiter:

 select list.vals,
 split_part(list.vals,',',iter.pos) as empno,
 iter.pos
 from (select id as pos from t10) iter,
 (select ','||'7654,7698,7782,7788'||',' as vals
 from t1) list
 where iter.pos <=
 length(list.vals)-length(replace(list.vals,',',''))

 vals | empno | pos
 ----------------------+-------+-----
 ,7654,7698,7782,7788, | | 1
 ,7654,7698,7782,7788, | 7654 | 2
 ,7654,7698,7782,7788, | 7698 | 3
 ,7654,7698,7782,7788, | 7782 | 4
 ,7654,7698,7782,7788, | 7788 | 5

The final step is to cast the values (EMPNO) to a number and plug it into a subquery.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.12. Alphabetizing a String

Problem

You want alphabetize the individual characters within strings in your tables. Consider the following
result set:

 ENAME

 ADAMS
 ALLEN
 BLAKE
 CLARK
 FORD
 JAMES
 JONES
 KING
 MARTIN
 MILLER
 SCOTT
 SMITH
 TURNER
 WARD

You would like the result to be:

 OLD_NAME NEW_NAME
 ---------- --------
 ADAMS AADMS
 ALLEN AELLN
 BLAKE ABEKL
 CLARK ACKLR
 FORD DFOR
 JAMES AEJMS
 JONES EJNOS
 KING GIKN
 MARTIN AIMNRT
 MILLER EILLMR
 SCOTT COSTT
 SMITH HIMST
 TURNER ENRRTU

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 WARD ADRW

Solution

This problem is a perfect example of why it is crucial to understand your DBMS and what functionality
is available to you. In situations where your DBMS does not provide built-in functions to facilitate this
solution, you need to come up with something creative. Compare the MySQL solution with the rest.

DB2

To alphabetize rows of strings it is necessary to walk each string then order its characters:

 1 select ename,
 2 max(case when pos=1 then c else '' end)||
 3 max(case when pos=2 then c else '' end)||
 4 max(case when pos=3 then c else '' end)||
 5 max(case when pos=4 then c else '' end)||
 6 max(case when pos=5 then c else '' end)||
 7 max(case when pos=6 then c else '' end)
 8 from (
 9 select e.ename,
 10 cast(substr(e.ename,iter.pos,1) as varchar(100)) c,
 11 cast(row_number()over(partition by e.ename
 12 order by substr(e.ename,iter.pos,1))
 13 as integer) pos
 14 from emp e,
 15 (select cast(row_number()over() as integer) pos
 16 from emp) iter
 17 where iter.pos <= length(e.ename)
 18) x
 19 group by ename

MySQL

The key here is the GROUP_CONCAT function, which allows you to not only concatenate the
characters that make up each name but also order them:

 1 select ename, group_concat(c order by c separator '')
 2 from (
 3 select ename, substr(a.ename,iter.pos,1) c
 4 from emp a,
 5 (select id pos from t10) iter
 6 where iter.pos <= length(a.ename)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 7) x
 8 group by ename

Oracle

The function SYS_CONNECT_BY_PATH allows you to iteratively build a list:

 1 select old_name, new_name
 2 from (
 3 select old_name, replace(sys_connect_by_path(c,' '),' ') new_name
 4 from (
 5 select e.ename old_name,
 6 row_number() over(partition by e.ename
 7 order by substr(e.ename,iter.pos,1)) rn,
 8 substr(e.ename,iter.pos,1) c
 9 from emp e,
 10 (select rownum pos from emp) iter
 11 where iter.pos <= length(e.ename)
 12 order by 1
 13) x
 14 start with rn = 1
 15 connect by prior rn = rn-1 and prior old_name = old_name
 16)
 17 where length(old_name) = length(new_name)

PostgreSQL

PostgreSQL does not offer any built-in functions to easily sort characters in a string, so it is necessary
not only to walk through each string but also to know in advance the largest length of any one name.
View V is used in this solution for readability:

 create or replace view V as
 select x.*
 from (
 select a.ename,
 substr(a.ename,iter.pos,1) as c
 from emp a,
 (select id as pos from t10) iter
 where iter.pos <= length(a.ename)
 order by 1,2
) x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following select statement leverages the view:

 1 select ename,
 2 max(case when pos=1 then
 3 case when cnt=1 then c
 4 else rpad(c,cast(cnt as integer),c)
 5 end
 6 else ''
 7 end)||
 8 max(case when pos=2 then
 9 case when cnt=1 then c
 10 else rpad(c,cast(cnt as integer),c)
 11 end
 12 else ''
 13 end)||
 14 max(case when pos=3 then
 15 case when cnt=1 then c
 16 else rpad(c,cast(cnt as integer),c)
 17 end
 18 else ''
 19 end)||
 20 max(case when pos=4 then
 21 case when cnt=1 then c
 22 else rpad(c,cast(cnt as integer),c)
 23 end
 24 else ''
 25 end)||
 26 max(case when pos=5 then
 27 case when cnt=1 then c
 28 else rpad(c,cast(cnt as integer),c)
 29 end
 30 else ''
 31 end)||
 32 max(case when pos=6 then
 33 case when cnt=1 then c
 34 else rpad(c,cast(cnt as integer),c)
 35 end
 36 else ''
 37 end)
 38 from (
 39 select a.ename, a.c,
 40 (select count(*)
 41 from v b
 42 where a.ename=b.ename and a.c=b.c) as cnt,
 43 (select count(*)+1
 44 from v b
 45 where a.ename=b.ename and b.c<a.c) as pos
 46 from v a
 47) x
 48 group by ename

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Server

To alphabetize rows of strings it is necessary to walk each string, and then order their characters:

 1 select ename,
 2 max(case when pos=1 then c else '' end)+
 3 max(case when pos=2 then c else '' end)+
 4 max(case when pos=3 then c else '' end)+
 5 max(case when pos=4 then c else '' end)+
 6 max(case when pos=5 then c else '' end)+
 7 max(case when pos=6 then c else '' end)
 8 from (
 9 select e.ename,
 10 substring(e.ename,iter.pos,1) as c,
 11 row_number() over (
 12 partition by e.ename
 13 order by substring(e.ename,iter.pos,1)) as pos
 14 from emp e,
 15 (select row_number()over(order by ename) as pos
 16 from emp) iter
 17 where iter.pos <= len(e.ename)
 18) x
 19 group by ename

Discussion

DB2 and SQL Server

The inline view X returns each character in each name as a row. The function SUBSTR or SUBSTRING
extracts each character from each name, and the function ROW_NUMBER ranks each character
alphabetically:

 ENAME C POS
 ----- - ---
 ADAMS A 1
 ADAMS A 2
 ADAMS D 3
 ADAMS M 4
 ADAMS S 5
 …

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To return each letter of a string as a row, you must walk the string. This is accomplished with inline
view ITER.

Now that the letters in each name have been alphabetized, the last step is to put those letters back
together, into a string, in the order they are ranked. Each letter's position is evaluated by the CASE
statements (lines 27). If a character is found at a particular position it is then concatenated to the
result of the next evaluation (the following CASE statement). Because the aggregate function MAX is
used as well, only one character per position POS is returned, so that only one row per name is
returned. The CASE evaluation goes up to the number 6, which is the maximum number of
characters in any name in table EMP.

MySQL

The inline view X (lines 36) returns each character in each name as a row. The function SUBSTR
extracts each character from each name:

 ENAME C
 ----- -
 ADAMS A
 ADAMS A
 ADAMS D
 ADAMS M
 ADAMS S
 …

Inline view ITER is used to walk the string. From there, the rest of the work is done by the
GROUP_CONCAT function. By specifying an order, the function not only concatenates each letter, it
does so alphabetically.

Oracle

The real work is done by inline view X (lines 511), where the characters in each name are extracted
and put into alphabetical order. This is accomplished by walking the string, then imposing order on
those characters. The rest of the query merely glues the names back together.

The tearing apart of names can be seen by executing only inline view X:

 OLD_NAME RN C
 ---------- --------- -
 ADAMS 1 A
 ADAMS 2 A
 ADAMS 3 D
 ADAMS 4 M
 ADAMS 5 S
 …

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next step is to take the alphabetized characters and rebuild each name. This is done with the
function SYS_CONNECT_BY_PATH by appending each character to the ones before it:

 OLD_NAME NEW_NAME
 ---------- ---------
 ADAMS A
 ADAMS AA
 ADAMS AAD
 ADAMS AADM
 ADAMS AADMS
 …

The final step is to keep only the strings that have the same length as the names they were built
from.

PostgreSQL

For readability, view V is used in this solution to walk the string. The function SUBSTR, in the view
definition, extracts each character from each name so that the view returns:

 ENAME C
 ----- -
 ADAMS A
 ADAMS A
 ADAMS D
 ADAMS M
 ADAMS S
 …

The view also orders the results by ENAME and by each letter in each name. The inline view X (lines
1518) returns the names and characters from view V, the number of times each character occurs in
each name, and its position (alphabetically):

 ename | c | cnt | pos
 ------+---+-----+-----
 ADAMS | A | 2 | 1
 ADAMS | A | 2 | 1
 ADAMS | D | 1 | 3
 ADAMS | M | 1 | 4
 ADAMS | S | 1 | 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The extra columns CNT and POS, returned by the inline view X, are crucial to the solution. POS is
used to rank each character and CNT is used to determine the number of times the character exists
in each name. The final step is to evaluate the position of each character and rebuild the name. You'll
notice that each case statement is actually two case statements. This is to determine whether or not
a character occursmore than once in a name; if it does, then rather than return that character, what
is returned is that character appended to itself CNT times. The aggregate function, MAX, is used to
ensure there is only one row per name.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.13. Identifying Strings That Can Be Treated as
Numbers

Problem

You have a column that is defined to hold character data. Unfortunately, the rows contain mixed
numeric and character data. Consider view V:

 create view V as
 select replace(mixed,' ','') as mixed
 from (
 select substr(ename,1,2)||
 cast(deptno as char(4))||
 substr(ename,3,2) as mixed
 from emp
 where deptno = 10
 union all
 select cast(empno as char(4)) as mixed
 from emp
 where deptno = 20
 union all
 select ename as mixed
 from emp
 where deptno = 30
) x
 select * from v

 MIXED

 CL10AR
 KI10NG
 MI10LL
 7369
 7566
 7788
 7876
 7902
 ALLEN
 WARD
 MARTIN
 BLAKE
 TURNER
 JAMES

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You want to return rows that are numbers only, or that contain at least one number. If the numbers
are mixed with character data, you want to remove the characters and return only the numbers. For
the sample data above you want the following result set:

 MIXED

 10
 10
 10
 7369
 7566
 7788
 7876
 7902

Solution

The functions REPLACE and TRANSLATE are extremely useful for manipulating strings and individual
characters. The key is to convert all numbers to a single character, which then makes it easy to
isolate and identify any number by referring to a single character.

DB2

Use functions TRANSLATE, REPLACE, and POSSTR to isolate the numeric characters in each row. The
calls to CAST are necessary in view V; otherwise, the view will fail to be created due to type
conversion errors. You'll need the function REPLACE to remove extraneous white space due to casting
to the fixed length CHAR:

 1 select mixed old,
 2 cast(
 3 case
 4 when
 5 replace(
 6 translate(mixed,'9999999999','0123456789'),'9','') = ''
 7 then
 8 mixed
 9 else replace(
 10 translate(mixed,
 11 repeat('#',length(mixed)),
 12 replace(
 13 translate(mixed,'9999999999','0123456789'),'9','')),
 14 '#','')
 15 end as integer) mixed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 16 from V
 17 where posstr(translate(mixed,'9999999999','0123456789'),'9') > 0

MySQL

The syntax for MySQL is slightly different and will define view V as:

 create view V as
 select concat(
 substr(ename,1,2),
 replace(cast(deptno as char(4)),' ',''),
 substr(ename,3,2)
) as mixed
 from emp
 where deptno = 10
 union all
 select replace(cast(empno as char(4)), ' ', '')
 from emp where deptno = 20
 union all
 select ename from emp where deptno = 30

Because MySQL does not support the TRANSLATE function, you must walk each row and evaluate it
on a character-by-character basis.

 1 select cast(group_concat(c order by pos separator '') as unsigned)
 2 as MIXED1
 3 from (
 4 select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
 5 from V,
 6 (select id pos from t10) iter
 7 where iter.pos <= length(v.mixed)
 8 and ascii(substr(v.mixed,iter.pos,1)) between 48 and 57
 9) y
 10 group by mixed
 11 order by 1

Oracle

Use functions TRANSLATE, REPLACE, and INSTR to isolate the numeric characters in each row. The
calls to CAST are not necessary in view V. Use the function REPLACE to remove extraneous white
space due to casting to the fixed length CHAR. If you decide you would like to keep the explicit type
conversion calls in the view definition, it is suggested you cast to VARCHAR2:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select to_number (
 2 case
 3 when
 4 replace(translate(mixed,'0123456789','9999999999'),'9')
 5 is not null
 6 then
 7 replace(
 8 translate(mixed,
 9 replace(
 10 translate(mixed,'0123456789','9999999999'),'9'),
 11 rpad('#',length(mixed),'#')),'#')
 12 else
 13 mixed
 14 end
 15) mixed
 16 from V
 17 where instr(translate(mixed,'0123456789','9999999999'),'9') > 0

PostgreSQL

Use functions TRANSLATE, REPLACE, and STRPOS to isolate the numeric characters in each row. The
calls to CAST are not necessary in view V. Use the function REPLACE ito remove extraneous white
space due to casting to the fixed length CHAR. If you decide you would like to keep the explicit type
conversion calls in the view definition, it is suggested you cast to VARCHAR:

 1 select cast(
 2 case
 3 when
 4 replace(translate(mixed,'0123456789','9999999999'),'9','')
 5 is not null
 6 then
 7 replace(
 8 translate(mixed,
 9 replace(
 10 translate(mixed,'0123456789','9999999999'),'9',''),
 11 rpad('#',length(mixed),'#')),'#','')
 12 else
 13 mixed
 14 end as integer) as mixed
 15 from V
 16 where strpos(translate(mixed,'0123456789','9999999999'),'9') > 0

SQL Server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The built-in function ISNUMERIC along with a wildcard search allows you to easily identify strings that
contains numbers, but getting numeric characters out of a string is not particularly efficient because
the TRANSLATE function is not supported.

Discussion

The TRANSLATE function is very useful here as it allows you to easily isolate and identify numbers
and characters. The trick is to convert all numbers to a single character; this way, rather than
searching for different numbers you only search for one character.

DB2, Oracle, and PostgreSQL

The syntax differs slightly among these DBMSs, but the technique is the same. I'll use the solution for
PostgreSQL for the discussion.

The real work is done by functions TRANSLATE and REPLACE. To get the final result set requires
several function calls, each listed below in one query:

 select mixed as orig,
 translate(mixed,'0123456789','9999999999') as mixed1,
 replace(translate(mixed,'0123456789','9999999999'),'9','') as mixed2,
 translate(mixed,
 replace(
 translate(mixed,'0123456789','9999999999'),'9',''),
 rpad('#',length(mixed),'#')) as mixed3,
 replace(
 translate(mixed,
 replace(
 translate(mixed,'0123456789','9999999999'),'9',''),
 rpad('#',length(mixed),'#')),'#','') as mixed4
 from V
 where strpos(translate(mixed,'0123456789','9999999999'),'9') > 0

 ORIG | MIXED1 | MIXED2 | MIXED3 | MIXED4 | MIXED5
 --------+--------+--------+--------+--------+--------
 CL10AR | CL99AR | CLAR | ##10## | 10 | 10
 KI10NG | KI99NG | KING | ##10## | 10 | 10
 MI10LL | MI99LL | MILL | ##10## | 10 | 10
 7369 | 9999 | | 7369 | 7369 | 7369
 7566 | 9999 | | 7566 | 7566 | 7566
 7788 | 9999 | | 7788 | 7788 | 7788
 7876 | 9999 | | 7876 | 7876 | 7876
 7902 | 9999 | | 7902 | 7902 | 7902

First, notice that any rows without at least one number are removed. How this is accomplished will

http://lib.ommolketab.ir
http://lib.ommolketab.ir

become clear as you examine each of the columns in the above result set. The rows that are kept are
the values in the ORIG column and are the rows that will eventually make up the result set. The first
step to extracting the numbers is to use the function TRANSLATE to convert any number to a 9 (you
can use any digit; 9 is arbitrary), this is represented by the values in MIXED1. Now that all numbers
are 9's, they can be treating as a single unit. The next step is to remove all of the numbers by using
the function REPLACE. Because all digits are now 9, REPLACE simply looks for any 9's and removes
them. This is represented by the values in MIXED2. The next step, MIXED3, uses values that are
returned by MIXED2. These values are then compared to the values in ORIG. If any characters from
MIXED2 are found in ORIG, they are converted to the # character by TRANSLATE. The result set
from MIXED3 shows that the letters, not the numbers, have now been singled out and converted to a
single character. Now that all non-numeric characters are represented by #'s, they can be treated as
a single unit. The next step, MIXED4, uses REPLACE to find and remove any # characters in each
row; what's left are numbers only. The final step is to cast the numeric characters as numbers. Now
that you've gone through the steps, you can see how the WHERE clause works. The results from
MIXED1 are passed to STRPOS, and if a 9 is found (the position in the string where the first 9 is
located) the result must be greater than 0. For rows that return a value greater than zero, it means
there's at least one number in that row and it should be kept.

MySQL

The first step is to walk each string and evaluate each character and determine whether or not it's a
number:

 select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
 from V,
 (select id pos from t10) iter
 where iter.pos <= length(v.mixed)
 order by 1,2

 +--------+------+------+
 | mixed | pos | c |
 +--------+------+------+
7369	1	7
7369	2	3
7369	3	6
7369	4	9
…		
ALLEN	1	A
ALLEN	2	L
ALLEN	3	L
ALLEN	4	E
ALLEN	5	N
…		
CL10AR	1	C
CL10AR	2	L
CL10AR	3	1
CL10AR	4	0
CL10AR	5	A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 | CL10AR | 6 | R |
 +--------+------+------+

Now that each character in each string can be evaluated individually, the next step is to keep only
the rows that have a number in the C column:

 select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
 from V,
 (select id pos from t10) iter
 where iter.pos <= length(v.mixed)
 and ascii(substr(v.mixed,iter.pos,1)) between 48 and 57
 order by 1,2

 +--------+------+------+
 | mixed | pos | c |
 +--------+------+------+
7369	1	7
7369	2	3
7369	3	6
7369	4	9
…		
CL10AR	3	1
CL10AR	4	0
 …
 +--------+------+------+

At this point, all the rows in column C are numbers. The next step is to use GROUP_CONCAT to
concatenate the numbers to form their respective whole number in MIXED. The final result is then
cast as a number:

 select cast(group_concat(c order by pos separator '') as unsigned)
 as MIXED1
 from (
 select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
 from V,
 (select id pos from t10) iter
 where iter.pos <= length(v.mixed)
 and ascii(substr(x.mixed,iter.pos,1)) between 48 and 57
) y
 group by mixed
 order by 1

 +--------+
 | MIXED1 |

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 +--------+
 | 10 |
 | 10 |
 | 10 |
 | 7369 |
 | 7566 |
 | 7788 |
 | 7876 |
 | 7902 |
 +--------+

As a final note, keep in mind that any digits in each string will be concatenated to form one numeric
value. For example, an input value of, say, '99Gennick87' will result in the value 9987 being returned.
This is something to keep in mind, particularly when working with serialized data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.14. Extracting the nth Delimited Substring

Problem

You want to extract a specified, delimited substring from a string. Consider the following view V,
which generates source data for this problem:

 create view V as
 select 'mo,larry,curly' as name
 from t1
 union all
 select 'tina,gina,jaunita,regina,leena' as name
 from t1

Output from the view is as follows:

 select * from v

 NAME

 mo,larry,curly
 tina,gina,jaunita,regina,leena

You would like to extract the second name in each row, so the final result set would be:

 SUB

 larry
 gina

Solution

The key to solving this problem is to return each name as an individual row while preserving the
order in which the name exists in the list. Exactly how you do these things depends on which DBMS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you are using.

DB2

After walking the NAMEs returned by view V, use the function ROW_NUMBER to keep only the second
name from each string:

 1 select substr(c,2,locate(',',c,2)-2)
 2 from (
 3 select pos, name, substr(name, pos) c,
 4 row_number() over(partition by name
 5 order by length(substr(name,pos)) desc) rn
 6 from (
 7 select ',' ||csv.name|| ',' as name,
 8 cast(iter.pos as integer) as pos
 9 from V csv,
 10 (select row_number() over() pos from t100) iter
 11 where iter.pos <= length(csv.name)+2
 12) x
 13 where length(substr(name,pos)) > 1
 14 and substr(substr(name,pos),1,1) = ','
 15) y
 16 where rn = 2

MySQL

After walking the NAMEs returned by view V, use the position of the commas to return only the
second name in each string:

 1 select name
 2 from (
 3 select iter.pos,
 4 substring_index(
 5 substring_index(src.name,',',iter.pos),',',-1) name
 6 from V src,
 7 (select id pos from t10) iter,
 8 where iter.pos <=
 9 length(src.name)-length(replace(src.name,',',''))
 10) x
 11 where pos = 2

Oracle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After walking the NAMEs returned by view V, retrieve the second name in each list by using SUBSTR
and INSTR:

 1 select sub
 2 from (
 3 select iter.pos,
 4 src.name,
 5 substr(src.name,
 6 instr(src.name,',',1,iter.pos)+1,
 7 instr(src.name,',',1,iter.pos+1) -
 8 instr(src.name,',',1,iter.pos)-1) sub
 9 from (select ','||name||',' as name from V) src,
 10 (select rownum pos from emp) iter
 11 where iter.pos < length(src.name)-length(replace(src.name,','))
 12)
 13 where pos = 2

PostgreSQL

Use the function SPLIT_PART to help return each individual name as a row:

 1 select name
 2 from (
 3 select iter.pos, split_part(src.name,',',iter.pos) as name
 4 from (select id as pos from t10) iter,
 5 (select cast(name as text) as name from v) src
 7 where iter.pos <=
 8 length(src.name)-length(replace(src.name,',',''))+1
 9) x
 10 where pos = 2

SQL Server

After walking the NAMEs returned by view V, use the function ROW_NUMBER to keep only the second
name from each string:

 1 select substring(c,2,charindex(',',c,2)-2)
 2 from (
 3 select pos, name, substring(name, pos, len(name)) as c,
 4 row_number() over(
 5 partition by name
 6 order by len(substring(name,pos,len(name))) desc) rn
 7 from (
 8 select ',' + csv.name + ',' as name,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 9 iter.pos
 10 from V csv,
 11 (select id as pos from t100) iter
 12 where iter.pos <= len(csv.name)+2
 13) x
 14 where len(substring(name,pos,len(name))) > 1
 15 and substring(substring(name,pos,len(name)),1,1) = ','
 16) y
 17 where rn = 2

Discussion

DB2 and SQL Server

The syntax is slightly different between these two DBMSs, but the technique is the same. I will use
the solution for DB2 for the discussion. The strings are walked and the results are represented by
inline view X:

 select ','||csv.name|| ',' as name,
 iter.pos
 from v csv,
 (select row_number() over() pos from t100) iter
 where iter.pos <= length(csv.name)+2

 EMPS POS
 ------------------------------- ----
 ,tina,gina,jaunita,regina,leena, 1
 ,tina,gina,jaunita,regina,leena, 2
 ,tina,gina,jaunita,regina,leena, 3
 …

The next step is to then step through each character in each string:

 select pos, name, substr(name, pos) c,
 row_number() over(partition by name
 order by length(substr(name, pos)) desc) rn
 from (
 select ','||csv.name||',' as name,
 cast(iter.pos as integer) as pos
 from v csv,
 (select row_number() over() pos from t100) iter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 where iter.pos <= length(csv.name)+2
) x
 where length(substr(name,pos)) > 1

 POS EMPS C RN
 --- --------------- ---------------- --
 1 ,mo,larry,curly, ,mo,larry,curly, 1
 2 ,mo,larry,curly, mo,larry,curly, 2
 3 ,mo,larry,curly, o,larry,curly, 3
 4 ,mo,larry,curly, ,larry,curly, 4
 …

Now that different portions of the string are available to you, simply identify which rows to keep. The
rows you are interested in are the ones that begin with a comma; the rest can be discarded:

 select pos, name, substr(name,pos) c,
 row_number() over(partition by name
 order by length(substr(name, pos)) desc) rn
 from (
 select ','||csv.name||',' as name,
 cast(iter.pos as integer) as pos
 from v csv,
 (select row_number() over() pos from t100) iter
 where iter.pos <= length(csv.name)+2
) x
 where length(substr(name,pos)) > 1
 and substr(substr(name,pos),1,1) = ','

 POS EMPS C RN
 --- -------------- ---------------- --
 1 ,mo,larry,curly, ,mo,larry,curly, 1
 4 ,mo,larry,curly, ,larry,curly, 2
 10 ,mo,larry,curly, ,curly, 3
 1 ,tina,gina,jaunita,regina,leena, ,tina,gina,jaunita,regina,leena, 1
 6 ,tina,gina,jaunita,regina,leena, ,gina,jaunita,regina,leena, 2
 11 ,tina,gina,jaunita,regina,leena, ,jaunita,regina,leena, 3
 19 ,tina,gina,jaunita,regina,leena, ,regina,leena, 4
 26 ,tina,gina,jaunita,regina,leena, ,leena, 5

This is an important step as it sets up how you will get the nth substring. Notice that many rows have
been eliminated from this query because of the following condition in the WHERE clause:

 substr(substr(name,pos),1,1) = ','

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You'll notice that ,larry,curly, was ranked 4, but now is ranked 2. Remember, the WHERE clause is
evaluated before the SELECT, so the rows with leading commas are kept, then ROW_NUMBER
performs its ranking. At this point it's easy to see that, to get the nth substring you want rows where
RN equals n. The last step is to keep only the rows you are interested in (in this case where RN
equals 2) and use SUBSTR to extract the name from that row. The name to keep is the first name in
the row: larry from ,larry,curly, and gina from ,gina,jaunita,regina,leena,.

MySQL

The inline view X walks each string. You can determine how many values are in each string by
counting the delimiters in the string:

 select iter.pos, src.name
 from (select id pos from t10) iter,
 V src
 where iter.pos <=
 length(src.name)-length(replace(src.name,',',''))

 +------+--------------------------------+
 | pos | name |
 +------+--------------------------------+
1	mo,larry,curly
2	mo,larry,curly
1	tina,gina,jaunita,regina,leena
2	tina,gina,jaunita,regina,leena
3	tina,gina,jaunita,regina,leena
4	tina,gina,jaunita,regina,leena
 +------+--------------------------------+

In this case, there is one fewer row than values in each string because that's all that is needed. The
function SUBSTRING_INDEX takes care of parsing the needed values:

 select iter.pos,src.name name1,
 substring_index(src.name,',',iter.pos) name2,
 substring_index(
 substring_index(src.name,',',iter.pos),',',-1) name3
 from (select id pos from t10) iter,
 V src
 where iter.pos <=
 length(src.name)-length(replace(src.name,',',''))

+------+--------------------------------+--------------------------+---------+
| pos | name1 | name2 | name3 |
+------+--------------------------------+--------------------------+---------+

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1	mo,larry,curly	mo	mo
2	mo,larry,curly	mo,larry	larry
1	tina,gina,jaunita,regina,leena	tina	tina
2	tina,gina,jaunita,regina,leena	tina,gina	gina
3	tina,gina,jaunita,regina,leena	tina,gina,jaunita	jaunita
4	tina,gina,jaunita,regina,leena	tina,gina,jaunita,regina	regina
+------+--------------------------------+--------------------------+---------+

I've shown three name fields, so you can see how the nested SUBSTRING_INDEX calls work. The
inner call returns all characters to the left of the nth occurrence of a comma. The outer call returns
everything to the right of the first comma it finds (starting from the end of the string). The final step
is to keep the value for NAME3 where POS equals n, in this case 2.

Oracle

The inline view walks each string. The number of times each string is returned is determined by how
many values are in each string. The solution finds the number of values in each string by counting
the number of delimiters in it. Because each string is enclosed in commas, the number of values in a
string is the number of commas minus one. The strings are then UNIONed and joined to a table with
a cardinality that is at least the number of values in the largest string. The functions SUBSTR and
INSTR use the value of POS to parse each string:

 select iter.pos, src.name,
 substr(src.name,
 instr(src.name,',',1,iter.pos)+1,
 instr(src.name,',',1,iter.pos+1)
 instr(src.name,',',1,iter.pos)-1) sub
 from (select ','||name||',' as name from v) src,
 (select rownum pos from emp) iter
 where iter.pos < length(src.name)-length(replace(src.name,','))

 POS NAME SUB
 --- --------------------------------- -------------
 1 ,mo,larry,curly, mo
 1 , tina,gina,jaunita,regina,leena, tina
 2 ,mo,larry,curly, larry
 2 , tina,gina,jaunita,regina,leena, gina
 3 ,mo,larry,curly, curly
 3 , tina,gina,jaunita,regina,leena, jaunita
 4 , tina,gina,jaunita,regina,leena, regina
 5 , tina,gina,jaunita,regina,leena, leena

The first call to INSTR within SUBSTR determines the start position of the substring to extract. The
next call to INSTR within SUBSTR finds the position of the nth comma (same as the start position) as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

well the position of the nth + 1 comma. Subtracting the two values returns the length of the
substring to extract. Because every value is parsed into its own row, simply specify WHERE POS = n
to keep the nth substring (in this case, where POS = 2, so, the second substring in the list).

PostgreSQL

The inline view X walks each string. The number of rows returned is determined by how many values
are in each string. To find the number of values in each string, find the number of delimiters in each
string and add one. The function SPLIT_PART uses the values in POS to find the nth occurrence of the
delimiter and parse the string into values:

 select iter.pos, src.name as name1,
 split_part(src.name,',',iter.pos) as name2
 from (select id as pos from t10) iter,
 (select cast(name as text) as name from v) src
 where iter.pos <=
 length(src.name)-length(replace(src.name,',',''))+1

 pos | name1 | name2
 -----+--------------------------------+---------
 1 | mo,larry,curly | mo
 2 | mo,larry,curly | larry
 3 | mo,larry,curly | curly
 1 | tina,gina,jaunita,regina,leena | tina
 2 | tina,gina,jaunita,regina,leena | gina
 3 | tina,gina,jaunita,regina,leena | jaunita
 4 | tina,gina,jaunita,regina,leena | regina
 5 | tina,gina,jaunita,regina,leena | leena

I've shown NAME twice so you can see how SPLIT_PART parses each string using POS. Once each
string is parsed, the final step is the keep the rows where POS equals the nth substring you are
interested in, in this case, 2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.15. Parsing an IP Address

Problem

You want to parse an IP address's fields into columns. Consider the following IP address:

 111.22.3.4

You would like the result of your query to be:

 A B C D
 ----- ----- ----- ---
 111 22 3 4

Solution

The solution depends on the built-in functions provided by your DBMS. Regardless of your DBMS,
being able to locate periods and the numbers immediately surrounding them are the keys to the
solution.

DB2

Use the recursive WITH clause to simulate an iteration through the IP address while using SUBSTR to
easily parse it. A leading period is added to the IP address so that every set of numbers has a period
in front of it and can be treated the same way.

 1 with x (pos,ip) as (
 2 values (1,'.92.111.0.222')
 3 union all
 4 select pos+1,ip from x where pos+1 <= 20
 5)
 6 select max(case when rn=1 then e end) a,
 7 max(case when rn=2 then e end) b,
 8 max(case when rn=3 then e end) c,
 9 max(case when rn=4 then e end) d
 10 from (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 11 select pos,c,d,
 12 case when posstr(d,'.') > 0 then substr(d,1,posstr(d,'.')-1)
 13 else d
 14 end as e,
 15 row_number() over(order by pos desc) rn
 16 from (
 17 select pos, ip,right(ip,pos) as c, substr(right(ip,pos),2) as d
 18 from x
 19 where pos <= length(ip)
 20 and substr(right(ip,pos),1,1) = '.'
 21) x
 22) y

MySQL

The function SUBSTR_INDEX makes parsing an IP address an easy operation:

 1 select substring_index(substring_index(y.ip,'.',1),'.',-1) a,
 2 substring_index(substring_index(y.ip,'.',2),'.',-1) b,
 3 substring_index(substring_index(y.ip,'.',3),'.',-1) c,
 4 substring_index(substring_index(y.ip,'.',4),'.',-1) d
 5 from (select '92.111.0.2' as ip from t1) y

Oracle

Use the built-in function SUBSTR and INSTR to parse and navigate through the IP address:

 1 select ip,
 2 substr(ip, 1, instr(ip,'.')-1) a,
 3 substr(ip, instr(ip,'.')+1,
 4 instr(ip,'.',1,2)-instr(ip,'.')-1) b,
 5 substr(ip, instr(ip,'.',1,2)+1,
 6 instr(ip,'.',1,3)-instr(ip,'.',1,2)-1) c,
 7 substr(ip, instr(ip,'.',1,3)+1) d
 8 from (select '92.111.0.2' as ip from t1)

PostgreSQL

Use the built-in function SPLIT_PART to parse an IP address:

 1 select split_part(y.ip,'.',1) as a,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 split_part(y.ip,'.',2) as b,
 3 split_part(y.ip,'.',3) as c,
 4 split_part(y.ip,'.',4) as d
 5 from (select cast('92.111.0.2' as text) as ip from t1) as y

SQL Server

Use the recursive WITH clause to simulate an iteration through the IP address while using SUBSTR to
easily parse it. A leading period is added to the IP address so that every set of numbers has a period
in front of it and can be treated the same way:

 1 with x (pos,ip) as (
 2 select 1 as pos,'.92.111.0.222' as ip from t1
 3 union all
 4 select pos+1,ip from x where pos+1 <= 20
 5)
 6 select max(case when rn=1 then e end) a,
 7 max(case when rn=2 then e end) b,
 8 max(case when rn=3 then e end) c,
 9 max(case when rn=4 then e end) d
 10 from (
 11 select pos,c,d,
 12 case when charindex('.',d) > 0
 13 then substring(d,1,charindex('.',d)-1)
 14 else d
 15 end as e,
 16 row_number() over(order by pos desc) rn
 17 from (
 18 select pos, ip,right(ip,pos) as c,
 19 substring(right(ip,pos),2,len(ip)) as d
 20 from x
 21 where pos <= len(ip)
 22 and substring(right(ip,pos),1,1) = '.'
 23) x
 24) y

Discussion

By using the built-in functions for your database, you can easily walk through parts of a string. The
key is being able to locate each of the periods in the address. Then you can parse the numbers
between each.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Working with Numbers
This chapter focuses on common operations involving numbers, including numeric computations.
While SQL is not typically considered the first choice for complex computations, it is very efficient for
day-to-day numeric chores.

Some recipes in this chapter make use of aggregate functions and the GROUP
BY clause. If you are not familiar with grouping, please read at least the first
major section, called "Grouping," in Appendix A.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.1. Computing an Average

Problem

You want to compute the average value in a column, either for all rows in a table or for some subset
of rows. For example, you might want to find the average salary for all employees as well as the
average salary for each department.

Solution

When computing the average of all employee salaries, simply apply the AVG function to the column
containing those salaries. By excluding a WHERE clause, the average is computed against all non-
NULL values:

 1 select avg(sal) as avg_sal
 2 from emp

 AVG_SAL

 2073.21429

To compute the average salary for each department, use the GROUP BY clause to create a group
corresponding to each department:

 1 select deptno, avg(sal) as avg_sal
 2 from emp
 3 group by deptno

 DEPTNO AVG_SAL
 ---------- ----------
 10 2916.66667
 20 2175
 30 1566.66667

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

When finding an average where the whole table is the group or window, simply apply the AVG
function to the column you are interested in without using the GROUP BY clause. It is important to
realize that the function AVG ignores NULLs. The effect of NULL values being ignored can be seen
here:

 create table t2(sal integer)
 insert into t2 values (10)
 insert into t2 values (20)
 insert into t2 values (null)

 select avg(sal) select distinct 30/2
 from t2 from t2

 AVG(SAL) 30/2
 ---------- ----------
 15 15

 select avg(coalesce(sal,0)) select distinct 30/3
 from t2 from t2

 AVG(COALESCE(SAL,0)) 30/3
 -------------------- ----------
 10 10

The COALESCE function will return the first non-NULL value found in the list of values that you pass.
When NULL SAL values are converted to zero, the average changes. When invoking aggregate
functions, always give thought to how you want NULLs handled.

The second part of the solution uses GROUP BY (line 3) to divide employee records into groups based
on department affiliation. GROUP BY automatically causes aggregate functions such as AVG to
execute and return a result for each group. In this example, AVG would execute once for each
department-based group of employee records.

It is not necessary, by the way, to include GROUP BY columns in your select list. For example:

 select avg(sal)
 from emp
 group by deptno

 AVG(SAL)

 2916.66667
 2175

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1566.66667

You are still grouping by DEPTNO even though it is not in the SELECT clause. Including the column
you are grouping by in the SELECT clause often improves readability, but is not mandatory. It is
mandatory, however, to avoid placing columns in your SELECT list that are not also in your GROUP
BY clause.

See Also

Appendix A for a refresher on GROUP BY functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.2. Finding the Min/Max Value in a Column

Problem

You want to find the highest and lowest values in a given column. For example, you want to find the
highest and lowest salaries for all employees, as well as the highest and lowest salaries for each
department.

Solution

When searching for the lowest and highest salaries for all employees, simply use the functions MIN
and MAX, respectively:

 1 select min(sal) as min_sal, max(sal) as max_sal
 2 from emp

 MIN_SAL MAX_SAL
 ---------- ----------
 800 5000

When searching for the lowest and highest salaries for each department, use the functions MIN and
MAX with the GROUP BY clause:

 1 select deptno, min(sal) as min_sal, max(sal) as max_sal
 2 from emp
 3 group by deptno

 DEPTNO MIN_SAL MAX_SAL
 ---------- ---------- ----------
 10 1300 5000
 20 800 3000
 30 950 2850

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When searching for the highest or lowest values, and in cases where the whole table is the group or
window, simply apply the MIN or MAX function to the column you are interested in without using the
GROUP BY clause.

Remember that the MIN and MAX functions ignore NULLs, and that you can have NULL groups as well
as NULL values for columns in a group. The following are examples that ultimately lead to a query
using GROUP BY that returns NULL values for two groups (DEPTNO 10 and 20):

 select deptno, comm
 from emp
 where deptno in (10,30)
 order by 1

 DEPTNO COMM
 ---------- ----------
 10
 10
 10
 30 300
 30 500
 30
 30 0
 30 1300
 30

 select min(comm), max(comm)
 from emp

 MIN(COMM) MAX(COMM)
 ---------- ----------
 0 1300

 select deptno, min(comm), max(comm)
 from emp
 group by deptno

 DEPTNO MIN(COMM) MAX(COMM)
 ---------- ---------- ----------
 10
 20
 30 0 1300

Remember, as Appendix A points out, even if nothing other than aggregate functions are listed in the
SELECT clause, you can still group by other columns in the table; for example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select min(comm), max(comm)
 from emp
 group by deptno

 MIN(COMM) MAX(COMM)
 ---------- ----------
 0 1300

Here you are still grouping by DEPTNO even though it is not in the SELECT clause. Including the
column you are grouping by in the SELECT clause often improves readability, but is not mandatory. It
is mandatory, however, that any column in the SELECT list of a GROUP BY query also be listed in the
GROUP BY clause.

See Also

Appendix A for a refresher on GROUP BY functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.3. Summing the Values in a Column

Problem

You want to compute the sum of all values, such as all employee salaries, in a column.

Solution

When computing a sum where the whole table is the group or window, simply apply the SUM function
to the columns you are interested in without using the GROUP BY clause:

 1 select sum(sal)
 2 from emp

 SUM(SAL)

 29025

When creating multiple groups or windows of data, use the SUM function with the GROUP BY clause.
The following example sums employee salaries by department:

 1 select deptno, sum(sal) as total_for_dept
 2 from emp
 3 group by deptno

 DEPTNO TOTAL_FOR_DEPT
 ---------- --------------
 10 8750
 20 10875
 30 9400

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When searching for the sum of all salaries for each department, you are creating groups or
"windows" of data. Each employee's salary is added together to produce a total for his respective
department. This is an example of aggregation in SQL because detailed information, such as each
individual employee's salary, is not the focus; the focus is the end result for each department. It is
important to note that the SUM function will ignore NULLs, but you can have NULL groups, which can
be seen here. DEPTNO 10 does not have any employees who earn a commission, thus grouping by
DEPTNO 10 while attempting to SUM the values in COMM will result in a group with a NULL value
returned by SUM:

 select deptno, comm
 from emp
 where deptno in (10,30)
 order by 1

 DEPTNO COMM
 ---------- ----------
 10
 10
 10
 30 300
 30 500
 30
 30 0
 30 1300
 30

 select sum(comm)
 from emp

 SUM(COMM)

 2100

 select deptno, sum(comm)
 from emp
 where deptno in (10,30)
 group by deptno

 DEPTNO SUM(COMM)
 ---------- ----------
 10
 30 2100

See Also

Appendix A for a refresher on GROUP BY functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.4. Counting Rows in a Table

Problem

You want to count the number of rows in a table, or you wish to count the number of values in a
column. For example, you want to find the total number of employees as well as the number of
employees in each department.

Solution

When counting rows where the whole table is the group or window, simply use the COUNT function
along with the "*" character:

 1 select count(*)
 2 from emp

 COUNT(*)

 14

When creating multiple groups, or windows of data, use the COUNT function with the GROUP BY
clause:

 1 select deptno, count(*)
 2 from emp
 3 group by deptno

 DEPTNO COUNT(*)
 ---------- ----------
 10 3
 20 5
 30 6

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When counting the number of employees for each department, you are creating groups or "windows"
of data. Each employee found increments the count by one to produce a total for her respective
department. This is an example of aggregation in SQL because detailed information, such as each
individual employee's salary or job, is not the focus; the focus is the end result for each department.
It is important to note that the COUNT function will ignore NULLs when passed a column name as an
argument, but will include NULLs when passed the "*" character or any constant; consider:

 select deptno, comm
 from emp

 DEPTNO COMM
 ---------- ----------
 20
 30 300
 30 500
 20
 30 1300
 30
 10
 20
 10
 30 0
 20
 30
 20
 10

 select count(*), count(deptno), count(comm), count('hello')
 from emp

 COUNT(*) COUNT(DEPTNO) COUNT(COMM) COUNT('HELLO')
 ---------- ------------- ----------- --------------
 14 14 4 14

 select deptno, count(*), count(comm), count('hello')
 from emp
 group by deptno

 DEPTNO COUNT(*) COUNT(COMM) COUNT('HELLO')
 ---------- ---------- ----------- --------------
 10 3 0 3
 20 5 0 5
 30 6 4 6

If all rows are null for the column passed to COUNT or if the table is empty, COUNT will return zero.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It should also be noted that, even if nothing other than aggregate functions are specified in the
SELECT clause, you can still group by other columns in the table; for example:

 select count(*)
 from emp
 group by deptno

 COUNT(*)

 3
 5
 6

Notice that you are still grouping by DEPTNO even though it is not in the SELECT clause. Including
the column you are grouping by in the SELECT clause often improves readability, but is not
mandatory. If you do include it (in the SELECT list), it is mandatory that is it listed in the GROUP BY
clause.

See Also

Appendix A for a refresher on GROUP BY functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.5. Counting Values in a Column

Problem

You wish to count the number of non-NULL values in a column. For example, you'd like to find out
how many employees are on commission.

Solution

Count the number of non-NULL values in the EMP table's COMM column:

 select count(comm)
 from emp

 COUNT(COMM)

 4

Discussion

When you "count star," as in COUNT(*), what you are really counting is rows (regardless of actual
value, which is why rows containing NULL and non-NULL values are counted). But when you COUNT a
column, you are counting the number of non-NULL values in that column. The previous recipe's
discussion touches on this distinction. In this solution, COUNT(COMM) returns the number of non-
NULL values in the COMM column. Since only commissioned employees have commissions, the result
of COUNT(COMM) is the number of such employees.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.6. Generating a Running Total

Problem

You want to calculate a running total of values in a column.

Solution

As an example, the following solutions show how to compute a running total of salaries for all
employees. For readability, results are ordered by SAL whenever possible so that you can easily
eyeball the progression of the running total.

DB2 and Oracle

Use the windowing version of the function SUM to compute a running total:

 1 select ename, sal,
 2 sum(sal) over (order by sal,empno) as running_total
 3 from emp
 4 order by 2

 ENAME SAL RUNNING_TOTAL
 ---------- ---------- -------------
 SMITH 800 800
 JAMES 950 1750
 ADAMS 1100 2850
 WARD 1250 4100
 MARTIN 1250 5350
 MILLER 1300 6650
 TURNER 1500 8150
 ALLEN 1600 9750
 CLARK 2450 12200
 BLAKE 2850 15050
 JONES 2975 18025
 SCOTT 3000 21025
 FORD 3000 24025
 KING 5000 29025

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to compute a running total (without the use of a window function such as SUM
OVER, you cannot easily order the result set by SAL as in the DB2 and Oracle solution). Ultimately,
the running total is correct (the final value is the same as the above recipe), but the intermediate
values differ due to the lack of ordering:

 1 select e.ename, e.sal,
 2 (select sum(d.sal) from emp d
 3 where d.empno <= e.empno) as running_total
 4 from emp e
 5 order by 3

 ENAME SAL RUNNING_TOTAL
 ---------- ---------- -------------
 SMITH 800 800
 ALLEN 1600 2400
 WARD 1250 3650
 JONES 2975 6625
 MARTIN 1250 7875
 BLAKE 2850 10725
 CLARK 2450 13175
 SCOTT 3000 16175
 KING 5000 21175
 TURNER 1500 22675
 ADAMS 1100 23775
 JAMES 950 24725
 FORD 3000 27725
 MILLER 1300 29025

Discussion

Generating a running total is one of the tasks made simple by the new ANSI windowing functions. For
DBMSs that do not yet support these windowing functions, a scalar subquery (joining on a field with
unique values) is required.

DB2 and Oracle

The windowing function SUM OVER makes generating a running total a simple task. The ORDER BY
clause in the solution includes not only the SAL column, but also the EMPNO column (which is the
primary key) to avoid duplicate values in the running total. The column RUNNING_TOTAL2 in the
following example illustrates the problem that you might otherwise have with duplicates:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select empno, sal,
 sum(sal)over(order by sal,empno) as running_total1,
 sum(sal)over(order by sal) as running_total2
 from emp
 order by 2

 ENAME SAL RUNNING_TOTAL1 RUNNING_TOTAL2
 ---------- ---------- -------------- --------------
 SMITH 800 800 800
 JAMES 950 1750 1750
 ADAMS 1100 2850 2850
 WARD 1250 4100 5350
 MARTIN 1250 5350 5350
 MILLER 1300 6650 6650
 TURNER 1500 8150 8150
 ALLEN 1600 9750 9750
 CLARK 2450 12200 12200
 BLAKE 2850 15050 15050
 JONES 2975 18025 18025
 SCOTT 3000 21025 24025
 FORD 3000 24025 24025
 KING 5000 29025 29025

The values in RUNNING_TOTAL2 for WARD, MARTIN, SCOTT, and FORD are incorrect. Their salaries
occur more than once, and those duplicates are summed together and added to the running total.
This is why EMPNO (which is unique) is needed to produce the (correct) results that you see in
RUNNING_TOTAL1. Consider this: for ADAMS you see 2850 for RUNNING_TOTAL1 and
RUNNING_TOTAL2. Add WARD's salary of 1250 to 2850 and you get 4100, yet RUNNING_TOTAL2
returns 5350. Why? Since WARD and MARTIN have the same SAL, their two 1250 salaries are added
together to yield 2500, which is then added to 2850 to arrive at 5350 for both WARD and MARTIN. By
specifying a combination of columns to order by that cannot result in duplicate values (e.g., any
combination of SAL and EMPNO is unique), you ensure the correct progression of the running total.

MySQL, PostgreSQL, and SQL Server

Until windowing functions are fully supported for these DBMSs, you can use a scalar subquery to
compute a running total. You must join on a column with unique values; otherwise the running total
will have incorrect values in the event that duplicate salaries exist. The key to this recipe's solution is
the join on D.EMPNO to E. EMPNO, which returns (sums) every D.SAL where D.EMPNO is less than or
equal E.EMPNO. This can be understood easily by rewriting the scalar subquery as a join for a handful
of the employees:

 select e.ename as ename1, e.empno as empno1, e.sal as sal1,
 d.ename as ename2, d.empno as empno2, d.sal as sal2
 from emp e, emp d

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 where d.empno <= e.empno
 and e.empno = 7566

 ENAME EMPNO1 SAL1 ENAME EMPNO2 SAL2
 ---------- ---------- ---------- ---------- ---------- ----------
 JONES 7566 2975 SMITH 7369 800
 JONES 7566 2975 ALLEN 7499 1600
 JONES 7566 2975 WARD 7521 1250
 JONES 7566 2975 JONES 7566 2975

Every value in EMPNO2 is compared against every value in EMPNO1. For every row where the value
in EMPNO2 is less than or equal to the value in EMPNO1, the value in SAL2 is included in the sum. In
this snippet, the EMPNO values for employees Smith, Allen, Ward, and Jones are compared against
the EMPNO of Jones. Since all four employees' EMPNOs meet the condition of being less than or equal
to Jones' EMPNO, those salaries are summed. Any employee whose EMPNO is greater than Jones' is
not included in the SUM (in this snippet). The way the full query works is by summing all the salaries
where the corresponding EMPNO is less than or equal to 7934 (Miller's EMPNO), which is the highest
in the table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.7. Generating a Running Product

Problem

You want to compute a running product on a numeric column. The operation is similar to "Calculating
a Running Total," but using multiplication instead of addition.

Solution

By way of example, the solutions all compute running products of employee salaries. While a running
product of salaries may not be all that useful, the technique can easily be applied to other, more
useful domains.

DB2 and Oracle

Use the windowing function SUM OVER and take advantage of the fact that you can simulate
multiplication by adding logarithms:

 1 select empno,ename,sal,
 2 exp(sum(ln(sal))over(order by sal,empno)) as running_prod
 3 from emp
 4 where deptno = 10

 EMPNO ENAME SAL RUNNING_PROD
 ----- ---------- ---- --------------------
 7934 MILLER 1300 1300
 7782 CLARK 2450 3185000
 7839 KING 5000 15925000000

It is not valid in SQL to compute logarithms of values less than or equal to zero. If you have such
values in your tables you need to avoid passing those invalid values to SQL's LN function. Precautions
against invalid values and NULLs are not provided in this solution for the sake of readability, but you
should consider whether to place such precautions in production code that you write. If you
absolutely must work with negative and zero values, then this solution may not work for you.

An alternative, Oracle-only solution is to use the MODEL clause that became available in Oracle
Database 10g. In the following example, each SAL is returned as a negative number to show that
negative values will not cause a problem for the running product:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select empno, ename, sal, tmp as running_prod
 2 from (
 3 select empno,ename,-sal as sal
 4 from emp
 5 where deptno=10
 6)
 7 model
 8 dimension by(row_number()over(order by sal desc) rn)
 9 measures(sal, 0 tmp, empno, ename)
 10 rules (
 11 tmp[any] = case when sal[cv()-1] is null then sal[cv()]
 12 else tmp[cv()-1]*sal[cv()]
 13 end
 14)

 EMPNO ENAME SAL RUNNING_PROD
 ----- ---------- ---- --------------------
 7934 MILLER -1300 -1300
 7782 CLARK -2450 3185000
 7839 KING -5000 -15925000000

MySQL, PostgreSQL, and SQL Server

You still use the approach of summing logarithms, but these platforms do not support windowing
functions, so use a scalar subquery instead:

 1 select e.empno,e.ename,e.sal,
 2 (select exp(sum(ln(d.sal)))
 3 from emp d
 4 where d.empno <= e.empno
 5 and e.deptno=d.deptno) as running_prod
 6 from emp e
 7 where e.deptno=10

 EMPNO ENAME SAL RUNNING_PROD
 ----- ---------- ---- --------------------
 7782 CLARK 2450 2450
 7839 KING 5000 12250000
 7934 MILLER 1300 15925000000

SQL Server users use LOG instead of LN.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

Except for the MODEL clause solution, which is only usable with Oracle Database 10g or later, all the
solutions take advantage of the fact that you can sum two numbers by:

Computing their respective natural logarithms1.

Summing those logarithms2.

Raising the result to the power of the mathematical constant e (using the EXP function)3.

The one caveat when using this approach is that it doesn't work for summing zero or negative values,
because any value less than or equal to zero is out of range for an SQL logarithm.

DB2 and Oracle

For an explanation of how the window function SUM OVER works, see the previous recipe "Generating
a Running Total."

In Oracle Database 10g and later, you can generate running products via the MODEL clause. Using
the MODEL clause along with the window function ROW_NUMBER allows you to easily access prior
rows. Each item in the MEASURES list can be accessed like an array. The arrays can then be
searched by using the items in the DIMENSIONS list (which are the values returned by
ROW_NUMBER, alias RN):

 select empno, ename, sal, tmp as running_prod,rn
 from (
 select empno,ename,-sal as sal
 from emp
 where deptno=10
)
 model
 dimension by(row_number()over(order by sal desc) rn)
 measures(sal, 0 tmp, empno, ename)
 rules ()

 EMPNO ENAME SAL RUNNING_PROD RN
 ----- ---------- ---------- ------------ ----------
 7934 MILLER -1300 0 1
 7782 CLARK -2450 0 2
 7839 KING -5000 0 3

Observe that SAL[1] has a value of1300. Because the numbers are increasing by one with no gaps,
you can reference prior rows by subtracting one. The RULES clause:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rules (
 tmp[any] = case when sal[cv()-1] is null then sal[cv()]
 else tmp[cv()-1]*sal[cv()]
 end
)

uses the built-in operator, ANY, to work through each row without hard-coding. ANY in this case will
be the values 1, 2, and 3. TMP[n] is initialized to zero. A value is assigned to TMP[n] by evaluating
the current value (the function CV returns the current value) of the corresponding SAL row. TMP[1] is
initially zero and SAL[1] is1300. There is no value for SAL[0] so TMP[1] is set to SAL[1]. After TMP[1]
is set, the next row is TMP[2]. First SAL[1] is evaluated (SAL[CV()1] is SAL[1] because the current
value of ANY is now 2). SAL[1] is not null, it is1300, so TMP[2] is set to the product of TMP[1] and
SAL[2]. This is continued for all the rows.

MySQL, PostgreSQL, and SQL Server

See "Generating a Running Total" earlier in this chapter for an explanation of the subquery approach
used for the MySQL, PostgreSQL, and SQL Server solutions.

Be aware that the output of the subquery-based solution is slightly different from that of the Oracle
and DB2 solutions due to the EMPNO comparison (the running product is computed in a different
order). Like a running total, the summation is driven by the predicate of the scalar subquery; the
ordering of rows is by EMPNO for this solution whereas the Oracle/DB2 solution order is by SAL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.8. Calculating a Running Difference

Problem

You want to compute a running difference on values in a numeric column. For example, you want to
compute a running difference on the salaries in DEPTNO 10. You would like to return the following
result set:

 ENAME SAL RUNNING_DIFF
 ---------- ---------- ------------
 MILLER 1300 1300
 CLARK 2450 -1150
 KING 5000 -6150

Solution

DB2 and Oracle

Use the window function SUM OVER to create a running difference:

 1 select ename,sal,
 2 sum(case when rn = 1 then sal else -sal end)
 3 over(order by sal,empno) as running_diff
 4 from (
 5 select empno,ename,sal,
 6 row_number()over(order by sal,empno) as rn
 7 from emp
 8 where deptno = 10
 9) x

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to compute a running difference:

 1 select a.empno, a.ename, a.sal,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 (select case when a.empno = min(b.empno) then sum(b.sal)
 3 else sum(-b.sal)
 4 end
 5 from emp b
 6 where b.empno <= a.empno
 7 and b.deptno = a.deptno) as rnk
 8 from emp a
 9 where a.deptno = 10

Discussion

The solutions are identical to those of "Generating a Running Total." The only difference is that all
values for SAL are returned as negative values with the exception of the first (you want the starting
point to be the first SAL in DEPTNO 10).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.9. Calculating a Mode

Problem

You want to find the mode (for those of you who don't recall, the mode in mathematics is the
element that appears most frequently for a given set of data) of the values in a column. For example,
you wish to find mode of the salaries in DEPTNO 20. Based on the following salaries:

 select sal
 from emp
 where deptno = 20
 order by sal

 SAL

 800
 1100
 2975
 3000
 3000

the mode is 3000.

Solution

DB2 and SQL Server

Use the window function DENSE_RANK to rank the counts of the salaries to facilitate extracting the
mode:

 1 select sal
 2 from (
 3 select sal,
 4 dense_rank()over(order by cnt desc) as rnk
 5 from (
 6 select sal, count(*) as cnt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 8 from emp
 9 where deptno = 20
 10 group by sal
 11) x
 12) y
 13 where rnk = 1

Oracle

Users on Oracle8i Database can use the solution provided for DB2. If you are on Oracle9i Database
and later, you can use the KEEP extension to the aggregate function MAX to find the mode SAL. One
important note is that if there are ties, i.e., multiple rows that are the mode, the solution using KEEP
will only keep one, and that is the one with the highest salary. If you want to see all modes (if more
than one exists), you must modify this solution or simply use the DB2 solution presented above. In
this case, since 3000 is the mode SAL in DEPTNO 20 and is also the highest SAL, this solution is
sufficient:

 1 select max(sal)
 2 keep(dense_rank first order by cnt desc) sal
 3 from (
 4 select sal, count(*) cnt
 5 from emp
 6 where deptno=20
 7 group by sal
 8)

MySQL and PostgreSQL

Use a subquery to find the mode:

 1 select sal
 2 from emp
 3 where deptno = 20
 4 group by sal
 5 having count(*) >= all (select count(*)
 6 from emp
 7 where deptno = 20
 8 group by sal)

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2 and SQL Server

The inline view X returns each SAL and the number of times it occurs. Inline view Y uses the window
function DENSE_RANK (which allows for ties) to sort the results.

The results are ranked based on the number of times each SAL occurs as is seen below:

 1 select sal,
 2 dense_rank()over(order by cnt desc) as rnk
 3 from (
 4 select sal,count(*) as cnt
 5 from emp
 6 where deptno = 20
 7 group by sal
 8) x

 SAL RNK
 ----- ----------
 3000 1
 800 2
 1100 2
 2975 2

The outermost portion of query simply keeps the row(s) where RNK is 1.

Oracle

The inline view returns each SAL and the number of times it occurs and is shown below:

 select sal, count(*) cnt
 from emp
 where deptno=20
 group by sal

 SAL CNT
 ----- ----------
 800 1
 1100 1
 2975 1
 3000 2

The next step is to use the KEEP extension of the aggregate function MAX to find the mode. If you
analyze the KEEP clause shown below you will notice three subclauses, DENSE_RANK, FIRST, and
ORDER BY CNT DESC:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 keep(dense_rank first order by cnt desc)

What this does is extremely convenient for finding the mode. The KEEP clause determines which SAL
will be returned by MAX by looking at the value of CNT returned by the inline view. Working from
right to left, the values for CNT are ordered in descending order, then the first is kept of all the values
for CNT returned in DENSE_RANK order. Looking at the result set from the inline view, you can see
that 3000 has the highest CNT of 2. The MAX(SAL) returned is the greatest SAL that has the greatest
CNT, in this case 3000.

See Also

Chapter 11, the section on "Finding Knight Values," for a deeper discussion of Oracle's KEEP
extension of aggregate functions.

MySQL and PostgreSQL

The subquery returns the number of times each SAL occurs. The outer query returns any SAL that
has a number of occurrences greater than or equal to all of the counts returned by the subquery (or
to put it another way, the outer query returns the most common salaries in DEPTNO 20).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.10. Calculating a Median

Problem

You want to calculate the median (for those of who do not recall, the median is the value of the
middle member of a set of ordered elements) value for a column of numeric values. For example, you
want to find the median of the salaries in DEPTNO 20. Based on the following salaries:

 select sal
 from emp
 where deptno = 20
 order by sal

 SAL

 800
 1100
 2975
 3000
 3000

the median is 2975.

Solution

Other than the Oracle solution (which uses supplied functions to compute a median), all of the
solutions are based on the method described by Rozenshtein, Abramovich, and Birger in Optimizing
Transact-SQL: Advanced Programming Techniques (SQL Forum Press, 1997). The introduction of
window functions allows for a more efficient solution compared to the traditional self join.

DB2

Use the window functions COUNT(*) OVER and ROW_NUMBER to find the median:

 1 select avg(sal)
 2 from (
 3 select sal,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 count(*) over() total,
 5 cast(count(*) over() as decimal)/2 mid,
 6 ceil(cast(count(*) over() as decimal)/2) next,
 7 row_number() over (order by sal) rn
 8 from emp
 9 where deptno = 20
 10) x
 11 where (mod(total,2) = 0
 12 and rn in (mid, mid+1)
 13)
 14 or (mod(total,2) = 1
 15 and rn = next
 16)

MySQL and PostgreSQL

Use a self join to find the median:

 1 select avg(sal)
 2 from (
 3 select e.sal
 4 from emp e, emp d
 5 where e.deptno = d.deptno
 6 and e.deptno = 20
 7 group by e.sal
 8 having sum(case when e.sal = d.sal then 1 else 0 end)
 9 >= abs(sum(sign(e.sal - d.sal)))
 10)

Oracle

Use the functions MEDIAN (Oracle Database 10g) or PERCENTILE_CONT (Oracle9i Database):

 1 select median(sal)
 2 from emp
 3 where deptno=20

 1 select percentile_cont(0.5)
 2 within group(order by sal)
 3 from emp
 4 where deptno=20

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the DB2 solution for Oracle8i Database. For versions prior to Oracle8i Database you can use the
PostgreSQL/MySQL solution.

SQL Server

Use the window functions COUNT(*) OVER and ROW_NUMBER to find the median:

 1 select avg(sal)
 2 from (
 3 select sal,
 4 count(*)over() total,
 5 cast(count(*)over() as decimal)/2 mid,
 6 ceiling(cast(count(*)over() as decimal)/2) next,
 7 row_number()over(order by sal) rn
 8 from emp
 9 where deptno = 20
 10) x
 11 where (total%2 = 0
 12 and rn in (mid, mid+1)
 13)
 14 or (total%2 = 1
 15 and rn = next
 16)

Discussion

DB2 and SQL Server

The only difference between the DB2 and SQL Server solutions is a small point of syntax: SQL Server
uses "%" for modulo and DB2 uses the function MOD; otherwise they are the same. Inline view X
returns three different counts, TOTAL, MID, and NEXT, along with RN, generated by ROW_NUMBER.
These additional columns help determine how to find the median. Examine the result set for inline
view X to see what these columns represent:

 select sal,
 count(*)over() total,
 cast(count(*)over() as decimal)/2 mid,
 ceil(cast(count(*)over() as decimal)/2) next,
 row_number()over(order by sal) rn
 from emp
 where deptno = 20

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SAL TOTAL MID NEXT RN
 ---- ----- ---- ---- ----
 800 5 2.5 3 1
 1100 5 2.5 3 2
 2975 5 2.5 3 3
 3000 5 2.5 3 4
 3000 5 2.5 3 5

To find the median, the values for SAL must be ordered from lowest to highest. Since DEPTNO 20 has
an odd number of employees, the median is simply the SAL that is located in the position where RN
equals NEXT (the position that represents the smallest whole number larger than the total number of
employees divided by two).

The first part of the WHERE clause (lines 1113) is not satisfied if there are an odd number of rows
returned by the result set. If you know that the result set will always be odd, you can simplify to:

 select avg(sal)
 from (
 select sal,
 count(*)over() total,
 ceil(cast(count(*)over() as decimal)/2) next,
 row_number()over(order by sal) rn
 from emp
 where deptno = 20
) x
 where rn = next

Unfortunately, if you have an even number of rows in the result set, the simplified solution will not
work. The original solution handles even-numbered rows by using the values in the column MID.
Consider what the results from inline view X would look like for DEPTNO 30, which has six
employees:

 select sal,
 count(*)over() total,
 cast(count(*)over() as decimal)/2 mid,
 ceil(cast(count(*)over() as decimal)/2) next,
 row_number()over(order by sal) rn
 from emp
 where deptno = 30

 SAL TOTAL MID NEXT RN
 ---- ----- ---- ---- ----
 950 6 3 3 1
 1250 6 3 3 2
 1250 6 3 3 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1500 6 3 3 4
 1600 6 3 3 5
 2850 6 3 3 6

Since there are an even number of rows returned, the median is computed by taking the average of
two rows; the row where RN equals MID and the row where RN equals MID + 1.

MySQL and PostgreSQL

The median is computed by first self joining table EMP, which returns a Cartesian product for all the
salaries (but the GROUP BY on E.SAL will prevent duplicates from being returned). The HAVING
clause uses the function SUM to count the number of times E.SAL equals D.SAL; if this count is
greater than or equal to the number of times E.SAL is greater than D.SAL then that row is the
median. You can observe this by moving the SUM into the SELECT list:

 select e.sal,
 sum(case when e.sal=d.sal
 then 1 else 0 end) as cnt1,
 abs(sum(sign(e.sal - d.sal))) as cnt2
 from emp e, emp d
 where e.deptno = d.deptno
 and e.deptno = 20
 group by e.sal

 SAL CNT1 CNT2
 ---- ---- ----
 800 1 4
 1100 1 2
 2975 1 0
 3000 4 6

Oracle

If you are on Oracle Database 10g or Oracle9i Database, you can leave the work of computing a
median to functions supplied by Oracle. If you are running Oracle8i Database, you can use the DB2
solution. Otherwise you must use the PostgreSQL solution. While the MEDIAN function obviously
computes a median, it may not be at all obvious that PERCENTILE_CONT does so as well. The
argument passed to PERCENTILE_CONT, 0.5, is a percentile value. The clause, WITHIN GROUP
(ORDER BY SAL), determines which sorted rows PERCENTILE_CONT will search (remember, a median
is the middle value from a set of ordered values). The value returned is the value from the sorted
rows that falls into the given percentile (in this case, 0.5, which is the middle because the boundary
values are 0 and 1).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.11. Determining the Percentage of a Total

Problem

You want to determine the percentage that values in a specific column represent against a total. For
example, you want to determine what percentage of all salaries are the salaries in DEPTNO 10 (the
percentage that DEPTNO 10 salaries contribute to the total).

Solution

In general, computing a percentage against a total in SQL is no different than doing so on paper;
simply divide, then multiply. In this example you want to find the percentage of total salaries in table
EMP that come from DEPTNO 10. To do that, simply find the salaries for DEPTNO 10, and then divide
by the total salary for the table. As the last step, multiply by 100 to return a value that represents a
percent.

MySQL and PostgreSQL

Divide the sum of the salaries in DEPTNO 10 by the sum of all salaries:

 1 select (sum(
 2 case when deptno = 10 then sal end)/sum(sal)
 3)*100 as pct
 4 from emp

DB2, Oracle, and SQL Server

Use an inline view with the window function SUM OVER to find the sum of all salaries along with the
sum of all salaries in DEPTNO 10. Then do the division and multiplication in the outer query:

 1 select distinct (d10/total)*100 as pct
 2 from (
 3 select deptno,
 4 sum(sal)over() total,
 5 sum(sal)over(partition by deptno) d10
 6 from emp
 7) x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 8 where deptno=10

Discussion

MySQL and PostgreSQL

The CASE statement conveniently returns only the salaries from DEPTNO 10. They are then summed
and divided by the sum of all the salaries. Because NULLs are ignored by aggregates, an ELSE clause
is not needed in the CASE statement. To see exactly which values are divided, execute the query
without the division:

 select sum(case when deptno = 10 then sal end) as d10,
 sum(sal)
 from emp

 D10 SUM(SAL)
 ---- ---------
 8750 29025

Depending on how you define SAL, you may need to include explicit casts when performing division.
For example, on DB2, SQL Server, and PostgreSQL, if SAL is stored as an integer, you can cast to
decimal to get the correct answer, as seen below:

 select (cast(
 sum(case when deptno = 10 then sal end)
 as decimal)/sum(sal)
)*100 as pct
 from emp

DB2, Oracle, and SQL Server

As an alternative to the traditional solution, this solution uses window functions to compute a
percentage relative to the total. For DB2 and SQL Server, if you've stored SAL as an integer, you'll
need to cast before dividing:

 select distinct
 cast(d10 as decimal)/total*100 as pct
 from (
 select deptno,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sum(sal)over() total,
 sum(sal)over(partition by deptno) d10
 from emp
) x
 where deptno=10

It is important to keep in mind that window functions are applied after the WHERE clause is
evaluated. Thus, the filter on DEPTNO cannot be performed in inline view X. Consider the results of
inline view X without and with the filter on DEPTNO. First without:

 select deptno,
 sum(sal)over() total,
 sum(sal)over(partition by deptno) d10
 from emp

 DEPTNO TOTAL D10
 ------- --------- ---------
 10 29025 8750
 10 29025 8750
 10 29025 8750
 20 29025 10875
 20 29025 10875
 20 29025 10875
 20 29025 10875
 20 29025 10875
 30 29025 9400
 30 29025 9400
 30 29025 9400
 30 29025 9400
 30 29025 9400
 30 29025 9400

and now with:

 select deptno,
 sum(sal)over() total,
 sum(sal)over(partition by deptno) d10
 from emp
 where deptno=10

 DEPTNO TOTAL D10
 ------ --------- ---------
 10 8750 8750
 10 8750 8750

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10 8750 8750

Because window functions are applied after the WHERE clause, the value for TOTAL represents the
sum of all salaries in DEPTNO 10 only. But to solve the problem you want the TOTAL to represent the
sum of all salaries, period. That's why the filter on DEPTNO must happen outside of inline view X.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.12. Aggregating Nullable Columns

Problem

You want to perform an aggregation on a column, but the column is nullable. You want the accuracy
of your aggregation to be preserved, but are concerned because aggregate functions ignore NULLs.
For example, you want to determine the average commission for employees in DEPTNO 30, but there
are some employees who do not earn a commission (COMM is NULL for those employees). Because
NULLs are ignored by aggregates, the accuracy of the output is compromised. You would like to
somehow include NULL values in your aggregation.

Solution

Use the COALESCE function to convert NULLs to 0, so they will be included in the aggregation:

 1 select avg(coalesce(comm,0)) as avg_comm
 2 from emp
 3 where deptno=30

Discussion

When working with aggregate functions, keep in mind that NULLs are ignored. Consider the output of
the solution without using the COALESCE function:

 select avg(comm)
 from emp
 where deptno=30

 AVG(COMM)

 550

This query shows an average commission of 550 for DEPTNO 30, but a quick examination of those
rows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select ename, comm
 from emp
 where deptno=30
 order by comm desc

 ENAME COMM
 ---------- ---------
 BLAKE
 JAMES
 MARTIN 1400
 WARD 500
 ALLEN 300
 TURNER 0

shows that only four of the six employees can earn a commission. The sum of all commissions in
DEPTNO 30 is 2200, and the average should be 2200/6, not 2200/4. By excluding the COALESCE
function, you answer the question, "What is the average commission of employees in DEPTNO 30
who can earn a commission?" rather than "What is the average commission of all employees in
DEPTNO 30?" When working with aggregates, remember to treat NULLs accordingly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.13. Computing Averages Without High and Low
Values

Problem

You want to compute an average, but you wish to exclude the highest and lowest values in order to
(hopefully) reduce the effect of skew. For example, you want to compute the average salary of all
employees excluding the highest and lowest salaries.

Solution

MySQL and PostgreSQL

Use subqueries to exclude high and low values:

 1 select avg(sal)
 2 from emp
 3 where sal not in (
 4 (select min(sal) from emp),
 5 (select max(sal) from emp)
 6)

DB2, Oracle, and SQL Server

Use an inline view with the windowing functions MAX OVER and MIN OVER to generate a result set
from which you can easily eliminate the high and low values:

 1 select avg(sal)
 2 from (
 3 select sal, min(sal)over() min_sal, max(sal)over() max_sal
 4 from emp
 5) x
 6 where sal not in (min_sal,max_sal)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

MySQL and PostgreSQL

The subqueries return the highest and lowest salaries in the table. By using NOT IN against the
values returned, you exclude the highest and lowest salaries from the average. Keep in mind that if
there are duplicates (if multiple employees have the highest or lowest salaries), they will all be
excluded from the average. If your goal is to exclude only a single instance of the high and low
values, simply subtract them from the SUM and then divide:

 select (sum(sal)-min(sal)-max(sal))/(count(*)-2)
 from emp

DB2, Oracle, and SQL Server

Inline view X returns each salary along with the highest and lowest salary:

 select sal, min(sal)over() min_sal, max(sal)over() max_sal
 from emp

 SAL MIN_SAL MAX_SAL
 --------- --------- ---------
 800 800 5000
 1600 800 5000
 1250 800 5000
 2975 800 5000
 1250 800 5000
 2850 800 5000
 2450 800 5000
 3000 800 5000
 5000 800 5000
 1500 800 5000
 1100 800 5000
 950 800 5000
 3000 800 5000
 1300 800 5000

You can access the high and low salary at every row, so finding which salaries are highest and/or
lowest is trivial. The outer query filters the rows returned from inline view X such that any salary that
matches either MIN_SAL or MAX_SAL is excluded from the average.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.14. Converting Alphanumeric Strings into
Numbers

Problem

You have alphanumeric data and would like to return numbers only. You want to return the number
123321 from the string "paul123f321".

Solution

DB2

Use the functions TRANSLATE and REPLACE to extract numeric characters from an alphanumeric
string:

 1 select cast(
 2 replace(
 3 translate('paul123f321',
 4 repeat('#',26),
 5 'abcdefghijklmnopqrstuvwxyz'),'#','')
 6 as integer) as num
 7 from t1

Oracle and PostgreSQL

Use the functions TRANSLATE and REPLACE to extract numeric characters from an alphanumeric
string:

 1 select cast(
 2 replace(
 3 translate('paul123f321',
 4 'abcdefghijklmnopqrstuvwxyz',
 5 rpad('#',26,'#')),'#','')
 6 as integer) as num
 7 from t1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MySQL and SQL Server

As of the time of this writing, neither vendor supports the TRANSLATE function, thus a solution will
not be provided.

Discussion

The only difference between the two solutions is syntax; DB2 uses the function REPEAT rather than
RPAD and the parameter list for TRANSLATE is in a different order. The following explanation uses the
Oracle/PostgreSQL solution but is relevant to DB2 as well. If you run query inside out (starting with
TRANSLATE only), you'll see this is very simple. First, TRANSLATE converts any non-numeric
character to an instance of "#":

 select translate('paul123f321',
 'abcdefghijklmnopqrstuvwxyz',
 rpad('#',26,'#')) as num
 from t1

 NUM

 ####123#321

Since all non-numeric characters are now represented by "#", simply use REPLACE to remove them,
then cast the result to a number. This particular example is extremely simple because the data is
alphanumeric. If additional characters can be stored, rather than fishing for those characters, it is
easier to approach this problem differently: rather than finding non-numeric characters and then
removing them, find all numeric characters and remove anything that is not amongst them. The
following example will help clarify this technique:

 select replace(
 translate('paul123f321',
 replace(translate('paul123f321',
 '0123456789',
 rpad('#',10,'#')),'#',''),
 rpad('#',length('paul123f321'),'#')),'#','') as num
 from t1

 NUM

 123321

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This solution looks a bit more convoluted than the original but is not so bad once you break it down.
Observe the innermost call to TRANSLATE:

 select translate('paul123f321',
 '0123456789',
 rpad('#',10,'#'))
 from t1

 TRANSLATE('

 paul###f###

So, the initial approach is different; rather than replacing each non-numeric character with an
instance of "#", you replace each numeric character with an instance of "#". The next step removes
all instances of "#", thus leaving only non-numeric characters:

 select replace(translate('paul123f321',
 '0123456789',
 rpad('#',10,'#')),'#','')
 from t1

 REPLA

 paulf

The next step is to call TRANSLATE again, this time to replace each of the non-numeric characters
(from the query above) with an instance of "#" in the original string:

 select translate('paul123f321',
 replace(translate('paul123f321',
 '0123456789',
 rpad('#',10,'#')),'#',''),
 rpad('#',length('paul123f321'),'#'))
 from t1

 TRANSLATE('

 ####123#321

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point, stop and examine the outermost call to TRANSLATE. The second parameter to RPAD (or
the second parameter to REPEAT for DB2) is the length of the original string. This is convenient to
use since no character can occur enough times to be greater than the string it is part of. Now that all
non-numeric characters are replaced by instances of "#", the last step is to use REPLACE to remove
all instances of "#". Now you are left with a number.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.15. Changing Values in a Running Total

Problem

You want to modify the values in a running total depending on the values in another column.
Consider a scenario where you want to display the transaction history of a credit card account along
with the current balance after each transaction. The following view, V, will be used in this example:

 create view V (id,amt,trx)
 as
 select 1, 100, 'PR' from t1 union all
 select 2, 100, 'PR' from t1 union all
 select 3, 50, 'PY' from t1 union all
 select 4, 100, 'PR' from t1 union all
 select 5, 200, 'PY' from t1 union all
 select 6, 50, 'PY' from t1

 select * from V

 ID AMT TR
 -- ---------- --
 1 100 PR
 2 100 PR
 3 50 PY
 4 100 PR
 5 200 PY
 6 50 PY

The ID column uniquely identifies each transaction. The AMT column represents the amount of money
involved in each transaction (either a purchase or a payment). The TRX column defines the type of
transaction; a payment is "PY" and a purchase is "PR." If the value for TRX is PY, you want the
current value for AMT subtracted from the running total; if the value for TRX is PR, you want the
current value for AMT added to the running total. Ultimately you want to return the following result
set:

 TRX_TYPE AMT BALANCE
 -------- ---------- ----------
 PURCHASE 100 100
 PURCHASE 100 200
 PAYMENT 50 150

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PURCHASE 100 250
 PAYMENT 200 50
 PAYMENT 50 0

Solution

DB2 and Oracle

Use the window function SUM OVER to create the running total along with a CASE expression to
determine the type of transaction:

 1 select case when trx = 'PY'
 2 then 'PAYMENT'
 3 else 'PURCHASE'
 4 end trx_type,
 5 amt,
 6 sum(
 7 case when trx = 'PY'
 8 then -amt else amt
 9 end
 10) over (order by id,amt) as balance
 11 from V

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to create the running total along with a CASE expression to determine the type
of transaction:

 1 select case when v1.trx = 'PY'
 2 then 'PAYMENT'
 3 else 'PURCHASE'
 4 end as trx_type,
 5 v1.amt,
 6 (select sum(
 7 case when v2.trx = 'PY'
 8 then -v2.amt else v2.amt
 9 end
 10)
 11 from V v2
 12 where v2.id <= v1.id) as balance
 13 from V v1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

The CASE expression determines whether the current AMT is added or deducted from the running
total. If the transaction is a payment, the AMT is changed to a negative value, thus reducing the
amount of the running total. The result of the CASE expression is seen below:

 select case when trx = 'PY'
 then 'PAYMENT'
 else 'PURCHASE'
 end trx_type,
 case when trx = 'PY'
 then -amt else amt
 end as amt
 from V

 TRX_TYPE AMT
 -------- ---------
 PURCHASE 100
 PURCHASE 100
 PAYMENT -50
 PURCHASE 100
 PAYMENT -200
 PAYMENT -50

After evaluating the transaction type, the values for AMT are then added to or subtracted from the
running total. For an explanation on how the window function, SUM OVER, or the scalar subquery
creates the running total see recipe "Calculating a Running Total."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Date Arithmetic

This chapter introduces techniques for performing simple date arithmetic. Recipes cover common
tasks like adding days to dates, finding the number of business days between dates, and finding the
difference between dates in days.

Being able to successfully manipulate dates with your RDBMS's built-in functions can greatly improve
your productivity. For all the recipes in this chapter, I try to take advantage of each RDBMS's built-in
functions. In addition, I have chosen to use one date format for all the recipes, "DD-MON-YYYY". I
chose to do this because I believe it will benefit those of you who work with one RDBMS and want to
learn others. Seeing one standard format will help you focus on the different techniques and functions
provided by each RDBMS without having to worry about default date formats.

This chapter focuses on basic date arithmetic. You'll find more advanced date
recipes in the following chapter. The recipes presented in this chapter use
simple date data types. If you are using more complex date data types you will
need to adjust the solutions accordingly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.1. Adding and Subtracting Days, Months, and
Years

Problem

You need to add or subtract some number of days, months, or years from a date. For example, using
the HIREDATE for employee CLARK you want to return six different dates: five days before and after
CLARK was hired, five months before and after CLARK was hired, and, finally, five years before and
after CLARK was hired. CLARK was hired on "09-JUN-1981", so you want to return the following
result set:

 HD_MINUS_5D HD_PLUS_5D HD_MINUS_5M HD_PLUS_5M HD_MINUS_5Y HD_PLUS_5Y
 ----------- ----------- ----------- ----------- ----------- -----------
 04-JUN-1981 14-JUN-1981 09-JAN-1981 09-NOV-1981 09-JUN-1976 09-JUN-1986
 12-NOV-1981 22-NOV-1981 17-JUN-1981 17-APR-1982 17-NOV-1976 17-NOV-1986
 18-JAN-1982 28-JAN-1982 23-AUG-1981 23-JUN-1982 23-JAN-1977 23-JAN-1987

Solution

DB2

Standard addition and subtraction is allowed on date values, but any value that you add to or
subtract from a date must be followed by the unit of time it represents:

 1 select hiredate -5 day as hd_minus_5D,
 2 hiredate +5 day as hd_plus_5D,
 3 hiredate -5 month as hd_minus_5M,
 4 hiredate +5 month as hd_plus_5M,
 5 hiredate -5 year as hd_minus_5Y,
 6 hiredate +5 year as hd_plus_5Y
 7 from emp
 8 where deptno = 10

Oracle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use standard addition and subtraction for days, and use the ADD_MONTHS function to add and
subtract months and years:

 1 select hiredate-5 as hd_minus_5D,
 2 hiredate+5 as hd_plus_5D,
 3 add_months(hiredate,-5) as hd_minus_5M,
 4 add_months(hiredate,5) as hd_plus_5M,
 5 add_months(hiredate,-5*12) as hd_minus_5Y,
 6 add_months(hiredate,5*12) as hd_plus_5Y
 7 from emp
 8 where deptno = 10

PostgreSQL

Use standard addition and subtraction with the INTERVAL keyword specifying the unit of time to add
or subtract. Single quotes are required when specifying an INTERVAL value:

 1 select hiredate - interval '5 day' as hd_minus_5D,
 2 hiredate + interval '5 day' as hd_plus_5D,
 3 hiredate - interval '5 month' as hd_minus_5M,
 4 hiredate + interval '5 month' as hd_plus_5M,
 5 hiredate - interval '5 year' as hd_minus_5Y,
 6 hiredate + interval '5 year' as hd_plus_5Y
 7 from emp
 8 where deptno=10

MySQL

Use standard addition and subtraction with the INTERVAL keyword specifying the unit of time to add
or subtract. Unlike the PostgreSQL solution, you do not place single quotes around the INTERVAL
value:

 1 select hiredate - interval 5 day as hd_minus_5D,
 2 hiredate + interval 5 day as hd_plus_5D,
 3 hiredate - interval 5 month as hd_minus_5M,
 4 hiredate + interval 5 month as hd_plus_5M,
 5 hiredate - interval 5 year as hd_minus_5Y,
 6 hiredate + interval 5 year as hd_plus_5Y
 7 from emp
 8 where deptno=10

Alternatively, you can use the DATE_ADD function, which is shown below:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select date_add(hiredate,interval -5 day) as hd_minus_5D,
 2 date_add(hiredate,interval 5 day) as hd_plus_5D,
 3 date_add(hiredate,interval -5 month) as hd_minus_5M,
 4 date_add(hiredate,interval 5 month) as hd_plus_5M,
 5 date_add(hiredate,interval -5 year) as hd_minus_5Y,
 6 date_add(hiredate,interval 5 year) as hd_plus_5DY
 7 from emp
 8 where deptno=10

SQL Server

Use the DATEADD function to add or subtract different units of time to/from a date:

 1 select dateadd(day,-5,hiredate) as hd_minus_5D,
 2 dateadd(day,5,hiredate) as hd_plus_5D,
 3 dateadd(month,-5,hiredate) as hd_minus_5M,
 4 dateadd(month,5,hiredate) as hd_plus_5M,
 5 dateadd(year,-5,hiredate) as hd_minus_5Y,
 6 dateadd(year,5,hiredate) as hd_plus_5Y
 7 from emp
 8 where deptno = 10

Discussion

The Oracle solution takes advantage of the fact that integer values represent days when performing
date arithmetic. However, that's true only of arithmetic with DATE types. Oracle9 i Database
introduced TIMESTAMP types. For those, you should use the INTERVAL solution shown for
PostgreSQL. Beware too, of passing TIMESTAMPs to old-style date functions such as ADD_MONTHS.
By doing so, you can lose any fractional seconds that such TIMESTAMP values may contain.

The INTERVAL keyword and the string literals that go with it represent ISO-standard SQL syntax. The
standard requires that interval values be enclosed within single quotes. PostgreSQL (and Oracle9 i
Database and later) complies with the standard. MySQL deviates somewhat by omitting support for
the quotes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.2. Determining the Number of Days Between
Two Dates

Problem

You want to find the difference between two dates and represent the result in days. For example, you
want to find the difference in days between the HIREDATEs of employee ALLEN and employee WARD.

Solution

DB2

Use two inline views to find the HIREDATEs for WARD and ALLEN. Then subtract one HIREDATE from
the other using the DAYS function:

 1 select days(ward_hd) - days(allen_hd)
 2 from (
 3 select hiredate as ward_hd
 4 from emp
 5 where ename = 'WARD'
 6) x,
 7 (
 8 select hiredate as allen_hd
 9 from emp
 10 where ename = 'ALLEN'
 11) y

Oracle and PostgreSQL

Use two inline views to find the HIREDATEs for WARD and ALLEN, and then subtract one date from
the other:

 1 select ward_hd - allen_hd
 2 from (
 3 select hiredate as ward_hd
 4 from emp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 5 where ename = 'WARD'
 6) x,
 7 (
 8 select hiredate as allen_hd
 9 from emp
 10 where ename = 'ALLEN'
 11) y

MySQL and SQL Server

Use the function DATEDIFF to find the number of days between two dates. MySQL's version of
DATEDIFF requires only two parameters (the two dates you want to find the difference in days
between), and the smaller of the two dates should be passed first to avoid negative values (opposite
in SQL Server). SQL Server's version of the function allows you to specify what you want the return
value to represent (in this example you want to return the difference in days). The solution following
uses the SQL Server version:

 1 select datediff(day,allen_hd,ward_hd)
 2 from (
 3 select hiredate as ward_hd
 4 from emp
 5 where ename = 'WARD'
 6) x,
 7 (
 8 select hiredate as allen_hd
 9 from emp
 10 where ename = 'ALLEN'
 11) y

MySQL users can simply remove the first argument of the function and flip-flop the order in which
ALLEN_HD and WARD_HD is passed.

Discussion

For all solutions, inline views X and Y return the HIREDATEs for employees WARD and ALLEN
respectively. For example:

 select ward_hd, allen_hd
 from (
 select hiredate as ward_hd
 from emp
 where ename = 'WARD'
) y,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (
 select hiredate as allen_hd
 from emp
 where ename = 'ALLEN'
) x

 WARD_HD ALLEN_HD
 ----------- ----------
 22-FEB-1981 20-FEB-1981

You'll notice a Cartesian product is created, because there is no join specified between X and Y. In
this case, the lack of a join is harmless as the cardinalities for X and Y are both 1, thus the result set
will ultimately have one row (obviously, because 1x1=1). To get the difference in days, simply
subtract one of the two values returned from the other using methods appropriate for your database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.3. Determining the Number of Business Days
Between Two Dates

Problem

Given two dates, you want to find how many "working" days are between them, including the two
dates themselves. For example, if January 10th is a Tuesday and January 11th is a Monday, then the
number of working days between these two dates is two, as both days are typical work days. For this
recipe, "business days" is defined as any day that is not Saturday or Sunday.

Solution

The solution examples find the number of business days between the HIREDATEs of BLAKE and
JONES. To determine the number of business days between two dates, you can use a pivot table to
return a row for each day between the two dates (including the start and end dates). Having done
that, finding the number of business days is simply counting the dates returned that are not Saturday
or Sunday.

If you want to exclude holidays as well, you can create a HOLIDAYS table. Then
include a simple NOT IN predicate to exclude days listed in HOLIDAYS from the
solution.

DB2

Use the pivot table T500 to generate the required number of rows (representing days) between the
two dates. Then count each day that is not a weekend. Use the DAYNAME function to return the
weekday name of each date. For example:

 1 select sum(case when dayname(jones_hd+t500.id day -1 day)
 2 in ('Saturday','Sunday')
 3 then 0 else 1
 4 end) as days
 5 from (
 6 select max(case when ename = 'BLAKE'
 7 then hiredate
 8 end) as blake_hd,
 9 max(case when ename = 'JONES'
 10 then hiredate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 11 end) as jones_hd
 12 from emp
 13 where ename in ('BLAKE','JONES')
 14) x,
 15 t500
 16 where t500.id <= blake_hd-jones_hd+1

MySQL

Use the pivot table T500 to generate the required number of rows (days) between the two dates.
Then count each day that is not a weekend. Use the DATE_ADD function to add days to each date.
Use the DATE_FORMAT function to obtain the weekday name of each date:

 1 select sum(case when date_format(
 2 date_add(jones_hd,
 3 interval t500.id-1 DAY),'%a')
 4 in ('Sat','Sun')
 5 then 0 else 1
 6 end) as days
 7 from (
 8 select max(case when ename = 'BLAKE'
 9 then hiredate
 10 end) as blake_hd,
 11 max(case when ename = 'JONES'
 12 then hiredate
 13 end) as jones_hd
 14 from emp
 15 where ename in ('BLAKE','JONES')
 16) x,
 17 t500
 18 where t500.id <= datediff(blake_hd,jones_hd)+1

Oracle

Use the pivot table T500 to generate the required number of rows (days) between the two dates, and
then count each day that is not a weekend. Use the TO_CHAR function to obtain the weekday name
of each date:

 1 select sum(case when to_char(jones_hd+t500.id-1,'DY')
 2 in ('SAT','SUN')
 3 then 0 else 1
 4 end) as days
 5 from (
 6 select max(case when ename = 'BLAKE'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 7 then hiredate
 8 end) as blake_hd,
 9 max(case when ename = 'JONES'
 10 then hiredate
 11 end) as jones_hd
 12 from emp
 13 where ename in ('BLAKE','JONES')
 14) x,
 15 t500
 16 where t500.id <= blake_hd-jones_hd+1

PostgreSQL

Use the pivot table T500 to generate the required number of rows (days) between the two dates.
Then count each day that is not a weekend. Use the TO_CHAR function to obtain the weekday name
of each date:

 1 select sum(case when trim(to_char(jones_hd+t500.id-1,'DAY'))
 2 in ('SATURDAY','SUNDAY')
 3 then 0 else 1
 4 end) as days
 5 from (
 6 select max(case when ename = 'BLAKE'
 7 then hiredate
 8 end) as blake_hd,
 9 max(case when ename = 'JONES'
 10 then hiredate
 11 end) as jones_hd
 12 from emp
 13 where ename in ('BLAKE','JONES')
 14) x,
 15 t500
 16 where t500.id <= blake_hd-jones_hd+1

SQL Server

Use the pivot table T500 to generate the required number of rows (days) between the two dates, and
then count each day that is not a weekend. Use the DATENAME function to obtain the weekday name
of each date:

 1 select sum(case when datename(dw,jones_hd+t500.id-1)
 2 in ('SATURDAY','SUNDAY')
 3 then 0 else 1
 4 end) as days

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 5 from (
 6 select max(case when ename = 'BLAKE'
 7 then hiredate
 8 end) as blake_hd,
 9 max(case when ename = 'JONES'
 10 then hiredate
 11 end) as jones_hd
 12 from emp
 13 where ename in ('BLAKE','JONES')
 14) x,
 15 t500
 16 where t500.id <= datediff(day,jones_hd-blake_hd)+1

Discussion

While each RDBMS requires the use of different built-in functions to determine the name of a day, the
overall solution approach is the same for each. The solution can be broken into two steps:

Return the days between the start date and end date (inclusive).1.

Count how many days (i.e., rows) there are, excluding weekends.2.

Inline view X performs step 1. If you examine inline view X, you'll notice the use of the aggregate
function MAX, which the recipe uses to remove NULLs. If the use of MAX is unclear, the following
output might help you understand. The output shows the results from inline view X without MAX:

 select case when ename = 'BLAKE'
 then hiredate
 end as blake_hd,
 case when ename = 'JONES'
 then hiredate
 end as jones_hd
 from emp
 where ename in ('BLAKE','JONES')

 BLAKE_HD JONES_HD
 ----------- -----------
 02-APR-1981
 01-MAY-1981

Without MAX, two rows are returned. By using MAX you return only one row instead of two, and the
NULLs are eliminated:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select max(case when ename = 'BLAKE'
 then hiredate
 end) as blake_hd,
 max(case when ename = 'JONES'
 then hiredate
 end) as jones_hd
 from emp
 where ename in ('BLAKE','JONES')

 BLAKE_HD JONES_HD
 ----------- -----------
 01-MAY-1981 02-APR-1981

The number of days (inclusive) between the two dates here is 30. Now that the two dates are in one
row, the next step is to generate one row for each of those 30 days. To return the 30 days (rows),
use table T500. Since each value for ID in table T500 is simply 1 greater than the one before it, add
each row returned by T500 to the earlier of the two dates (JONES_HD) to generate consecutive days
starting from JONES_HD up to and including BLAKE_HD. The result of this addition is shown below
(using Oracle syntax):

 select x.*, t500.*, jones_hd+t500.id-1
 from (
 select max(case when ename = 'BLAKE'
 then hiredate
 end) as blake_hd,
 max(case when ename = 'JONES'
 then hiredate
 end) as jones_hd
 from emp
 where ename in ('BLAKE','JONES')
) x,
 t500
 where t500.id <= blake_hd-jones_hd+1

 BLAKE_HD JONES_HD ID JONES_HD+T5
 ----------- ----------- ---------- -----------
 01-MAY-1981 02-APR-1981 1 02-APR-1981
 01-MAY-1981 02-APR-1981 2 03-APR-1981
 01-MAY-1981 02-APR-1981 3 04-APR-1981
 01-MAY-1981 02-APR-1981 4 05-APR-1981
 01-MAY-1981 02-APR-1981 5 06-APR-1981
 01-MAY-1981 02-APR-1981 6 07-APR-1981
 01-MAY-1981 02-APR-1981 7 08-APR-1981
 01-MAY-1981 02-APR-1981 8 09-APR-1981
 01-MAY-1981 02-APR-1981 9 10-APR-1981
 01-MAY-1981 02-APR-1981 10 11-APR-1981
 01-MAY-1981 02-APR-1981 11 12-APR-1981

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 01-MAY-1981 02-APR-1981 12 13-APR-1981
 01-MAY-1981 02-APR-1981 13 14-APR-1981
 01-MAY-1981 02-APR-1981 14 15-APR-1981
 01-MAY-1981 02-APR-1981 15 16-APR-1981
 01-MAY-1981 02-APR-1981 16 17-APR-1981
 01-MAY-1981 02-APR-1981 17 18-APR-1981
 01-MAY-1981 02-APR-1981 18 19-APR-1981
 01-MAY-1981 02-APR-1981 19 20-APR-1981
 01-MAY-1981 02-APR-1981 20 21-APR-1981
 01-MAY-1981 02-APR-1981 21 22-APR-1981
 01-MAY-1981 02-APR-1981 22 23-APR-1981
 01-MAY-1981 02-APR-1981 23 24-APR-1981
 01-MAY-1981 02-APR-1981 24 25-APR-1981
 01-MAY-1981 02-APR-1981 25 26-APR-1981
 01-MAY-1981 02-APR-1981 26 27-APR-1981
 01-MAY-1981 02-APR-1981 27 28-APR-1981
 01-MAY-1981 02-APR-1981 28 29-APR-1981
 01-MAY-1981 02-APR-1981 29 30-APR-1981
 01-MAY-1981 02-APR-1981 30 01-MAY-1981

If you examine the WHERE clause, you'll notice that you add 1 to the difference between BLAKE_HD
and JONES_HD to generate the required 30 rows (otherwise, you would get 29 rows). You'll also
notice that you subtract 1 from T500.ID in the SELECT list of the outer query, since the values for ID
start at 1 and adding 1 to JONES_HD would cause JONES_HD to be excluded from the final count.

Once you generate the number of rows required for the result set, use a CASE expression to "flag"
whether or not each of the days returned are weekdays or weekends (return a 1 for a weekday and a
0 for a weekend). The final step is to use the aggregate function SUM to tally up the number of 1s to
get the final answer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.4. Determining the Number of Months or Years
Between Two Dates

Problem

You want to find the difference between two dates in terms of either months or years. For example,
you want to find the number of months between the first and last employees hired, and you also wish
to express that value as some number of years.

Solution

Since there are always 12 months in a year, you can find the number of months between two dates,
and then divide by 12 to get the number of years. After getting comfortable with the solution, you'll
want to round the results up or down depending on what you want for the year. For example, the
first HIREDATE in table EMP is "17-DEC-1980" and the last is "12-JAN-1983". If you do the math on
the years (1983 minus 1980) you get three years, yet the difference in months is approximately 25
(a little over two years). You should tweak the solution as you see fit. The solutions below will return
25 months and ~2 years.

DB2 and MySQL

Use the functions YEAR and MONTH to return the four-digit year and the two-digit month for the
dates supplied:

 1 select mnth, mnth/12
 2 from (
 3 select (year(max_hd) - year(min_hd))*12 +
 4 (month(max_hd) - month(min_hd)) as mnth
 5 from (
 6 select min(hiredate) as min_hd, max(hiredate) as max_hd
 7 from emp
 8) x
 9) y

Oracle

Use the function MONTHS_BETWEEN to find the difference between two dates in months (to get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

years, simply divide by 12):

 1 select months_between(max_hd,min_hd),
 2 months_between(max_hd,min_hd)/12
 3 from (
 4 select min(hiredate) min_hd, max(hiredate) max_hd
 5 from emp
 6) x

PostgreSQL

Use the function EXTRACT to return the four-digit year and two-digit month for the dates supplied:

 1 select mnth, mnth/12
 2 from (
 3 select (extract(year from max_hd)
 4 extract(year from min_hd)) * 12
 5 +
 6 (extract(month from max_hd)
 7 extract(month from min_hd)) as mnth
 8 from (
 9 select min(hiredate) as min_hd, max(hiredate) as max_hd
 10 from emp
 11) x
 12) y

SQL Server

Use the function DATEDIFF to find the difference between two dates in months (to get years, simply
divide by 12):

 1 select datediff(month,min_hd,max_hd),
 2 datediff(month,min_hd,max_hd)/12
 3 from (
 4 select min(hiredate) min_hd, max(hiredate) max_hd
 5 from emp
 6) x

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2, MySQL, and PostgreSQL

Once you extract the year and month for MIN_HD and MAX_HD in the PostgreSQL solution, the
method for finding the months and years between MIN_HD and MAX_HD is the same for all three
RDBMs. This discussion will cover all three solutions. Inline view X returns the earliest and latest
HIREDATEs in table EMP and can be seen below:

 select min(hiredate) as min_hd,
 max(hiredate) as max_hd
 from emp

 MIN_HD MAX_HD
 ----------- -----------
 17-DEC-1980 12-JAN-1983

To find the months between MAX_HD and MIN_HD, multiply the difference in years between MIN_HD
and MAX_HD by 12, then add the difference in months between MAX_HD and MIN_HD. If you are
having trouble seeing how this works, return the date component for each date. The numeric values
for the years and months are show below:

 select year(max_hd) as max_yr, year(min_hd) as min_yr,
 month(max_hd) as max_mon, month(min_hd) as min_mon
 from (
 select min(hiredate) as min_hd, max(hiredate) as max_hd
 from emp
) x

 MAX_YR MIN_YR MAX_MON MIN_MON
 ------ ---------- ---------- ----------
 1983 1980 1 12

Looking at the results above, finding the months between MAX_HD and MIN_HD is simply
(19831980)*12 + (112). To find the number of years between MIN_HD and MAX_HD, divide the
number of months by 12. Again, depending on the results you are looking for you will want to round
the values.

Oracle and SQL Server

Inline view X returns the earliest and latest HIREDATEs in table EMP and can be seen below:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select min(hiredate) as min_hd, max(hiredate) as max_hd
 from emp

 MIN_HD MAX_HD
 ----------- -----------
 17-DEC-1980 12-JAN-1983

The functions supplied by Oracle and SQL Server (MONTHS_BETWEEN and DATEDIFF, respectively)
will return the number of months between two given dates. To find the year, divide the number of
months by 12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.5. Determining the Number of Seconds, Minutes,
or Hours Between Two Dates

Problem

You want to return the difference in seconds between two dates. For example, you want to return the
difference between the HIREDATEs of ALLEN and WARD in seconds, minutes, and hours.

Solution

If you can find the number of days between two dates, you can find seconds, minutes, and hours as
they are the units of time that make up a day.

DB2

Use the function DAYS to find the difference between ALLEN_HD and WARD_HD in days. Then
multiply to find each unit of time:

 1 select dy*24 hr, dy*24*60 min, dy*24*60*60 sec
 2 from (
 3 select (days(max(case when ename = 'WARD'
 4 then hiredate
 5 end)) -
 6 days(max(case when ename = 'ALLEN'
 7 then hiredate
 8 end))
 9) as dy
 10 from emp
 11) x

MySQL and SQL Server

Use the DATEDIFF function to return the number of days between ALLEN_HD and WARD_HD. Then
multiply to find each unit of time:

 1 select datediff(day,allen_hd,ward_hd)*24 hr,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 datediff(day,allen_hd,ward_hd)*24*60 min,
 3 datediff(day,allen_hd,ward_hd)*24*60*60 sec
 4 from (
 5 select max(case when ename = 'WARD'
 6 then hiredate
 7 end) as ward_hd,
 8 max(case when ename = 'ALLEN'
 9 then hiredate
 10 end) as allen_hd
 11 from emp
 12) x

Oracle and PostgreSQL

Use subtraction to return the number of days between ALLEN_HD and WARD_ HD. Then multiply to
find each unit of time:

 1 select dy*24 as hr, dy*24*60 as min, dy*24*60*60 as sec
 2 from (
 3 select (max(case when ename = 'WARD'
 4 then hiredate
 5 end) -
 6 max(case when ename = 'ALLEN'
 7 then hiredate
 8 end)) as dy
 9 from emp
 10) x

Discussion

Inline view X for all solutions returns the HIREDATEs for WARD and ALLEN, as can be seen below:

 select max(case when ename = 'WARD'
 then hiredate
 end) as ward_hd,
 max(case when ename = 'ALLEN'
 then hiredate
 end) as allen_hd
 from emp

 WARD_HD ALLEN_HD
 ----------- -----------
 22-FEB-1981 20-FEB-1981

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Multiply the number of days between WARD_HD and ALLEN_HD by 24 (hours in a day), 1440
(minutes in a day), and 86400 (seconds in a day).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.6. Counting the Occurrences of Weekdays in a
Year

Problem

You want to count the number of times each weekday occurs in one year.

Solution

To find the number of occurrences of each weekday in a year, you must:

Generate all possible dates in the year.1.

Format the dates such that they resolve to the name of their respective weekdays.2.

Count the occurrence of each weekday name.3.

DB2

Use recursive WITH to avoid the need to SELECT against a table with at least 366 rows. Use the
function DAYNAME to obtain the weekday name for each date, and then count the occurrence of
each:

 1 with x (start_date,end_date)
 2 as (
 3 select start_date,
 4 start_date + 1 year end_date
 5 from (
 6 select (current_date
 7 dayofyear(current_date) day)
 8 +1 day as start_date
 9 from t1
 10) tmp
 11 union all
 12 select start_date + 1 day, end_date
 13 from x
 14 where start_date + 1 day < end_date
 15)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 16 select dayname(start_date),count(*)
 17 from x
 18 group by dayname(start_date)

MySQL

Select against table T500 to generate enough rows to return every day in the year. Use the
DATE_FORMAT function to obtain the weekday name of each date, and then count the occurrence of
each name:

 1 select date_format(
 2 date_add(
 3 cast(
 4 concat(year(current_date),'-01-01')
 5 as date),
 6 interval t500.id-1 day),
 7 '%W') day,
 8 count(*)
 9 from t500
 10 where t500.id <= datediff(
 11 cast(
 12 concat(year(current_date)+1,'-01-01')
 13 as date),
 14 cast(
 15 concat(year(current_date),'-01-01')
 16 as date))
 17 group by date_format(
 18 date_add(
 19 cast(
 20 concat(year(current_date),'-01-01')
 21 as date),
 22 interval t500.id-1 day),
 23 '%W')

Oracle

If you are on Oracle9 i Database or later, you can use the recursive CONNECT BY to return each day
in a year. If you are on Oracle8 i Database or earlier, select against table T500 to generate enough
rows to return every day in a year. In either case, use the TO_CHAR function to obtain the weekday
name of each date, and then count the occurrence of each name.

First, the CONNECT BY solution:

 1 with x as (
 2 select level lvl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 from dual
 4 connect by level <= (
 5 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
 6)
 7)
 8 select to_char(trunc(sysdate,'y')+lvl-1,'DAY'), count(*)
 9 from x
 10 group by to_char(trunc(sysdate,'y')+lvl-1,'DAY')

and next, the solution for older releases of Oracle:

 1 select to_char(trunc(sysdate,'y')+rownum-1,'DAY'),
 2 count(*)
 3 from t500
 4 where rownum <= (add_months(trunc(sysdate,'y'),12)
 5 - trunc(sysdate,'y'))
 6 group by to_char(trunc(sysdate,'y')+rownum-1,'DAY')

PostgreSQL

Use the built-in function GENERATE_SERIES to generate one rows for every day in the year. Then
use the TO_CHAR function to obtain the weekday name of each date. Finally, count the occurrence of
each weekday name. For example:

 1 select to_char(
 2 cast(
 3 date_trunc('year',current_date)
 4 as date) + gs.id-1,'DAY'),
 5 count(*)
 6 from generate_series(1,366) gs(id)
 7 where gs.id <= (cast
 8 (date_trunc('year',current_date) +
 9 interval '12 month' as date) -
 10 cast(date_trunc('year',current_date)
 11 as date))
 12 group by to_char(
 13 cast(
 14 date_trunc('year',current_date)
 15 as date) + gs.id-1,'DAY')

SQL Server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the recursive WITH to avoid the need to SELECT against a table with at least 366 rows. If you
are on a version of SQL Server that does not support the WITH clause, see the alternative Oracle
solution as a guideline for using a pivot table. Use the DATENAME function to obtain the weekday
name of each date, and then count the occurrence of each name. For example:

 1 with x (start_date,end_date)
 2 as (
 3 select start_date,
 4 dateadd(year,1,start_date) end_date
 5 from (
 6 select cast(
 7 cast(year(getdate()) as varchar) + '-01-01'
 8 as datetime) start_date
 9 from t1
 10) tmp
 11 union all
 12 select dateadd(day,1,start_date), end_date
 13 from x
 14 where dateadd(day,1,start_date) < end_date
 15)
 16 select datename(dw,start_date),count(*)
 17 from x
 18 group by datename(dw,start_date)
 19 OPTION (MAXRECURSION 366)

Discussion

DB2

Inline view TMP, in the recursive WITH view X, returns the first day of the current year and is shown
below:

 select (current_date
 dayofyear(current_date) day)
 +1 day as start_date
 from t1

 START_DATE

 01-JAN-2005

The next step is to add one year to START_DATE, so that you have the beginning and end dates. You

http://lib.ommolketab.ir
http://lib.ommolketab.ir

need to know both because you want to generate every day in a year. START_DATE and END_DATE
are shown below:

 select start_date,
 start_date + 1 year end_date
 from (
 select (current_date
 dayofyear(current_date) day)
 +1 day as start_date
 from t1
) tmp

 START_DATE END_DATE
 ----------- ------------
 01-JAN-2005 01-JAN-2006

The next step is to recursively increment START_DATE by one day, stopping before it equals
END_DATE. A portion of the rows returned by the recursive view X is shown below:

 with x (start_date,end_date)
 as (
 select start_date,
 start_date + 1 year end_date
 from (
 select (current_date -
 dayofyear(current_date) day)
 +1 day as start_date
 from t1
) tmp
 union all
 select start_date + 1 day, end_date
 from x
 where start_date + 1 day < end_date
)
 select * from x

 START_DATE END_DATE
 ----------- -----------
 01-JAN-2005 01-JAN-2006
 02-JAN-2005 01-JAN-2006
 03-JAN-2005 01-JAN-2006
 …
 29-JAN-2005 01-JAN-2006
 30-JAN-2005 01-JAN-2006
 31-JAN-2005 01-JAN-2006
 …

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 01-DEC-2005 01-JAN-2006
 02-DEC-2005 01-JAN-2006
 03-DEC-2005 01-JAN-2006
 …
 29-DEC-2005 01-JAN-2006
 30-DEC-2005 01-JAN-2006
 31-DEC-2005 01-JAN-2006

The final step is to use the function DAYNAME on the rows returned by the recursive view X, and
count how many times each weekday occurs. The final result is shown below:

 with x (start_date,end_date)
 as (
 select start_date,
 start_date + 1 year end_date
 from (
 select (current_date -
 dayofyear(current_date) day)
 +1 day as start_date
 from t1
) tmp
 union all
 select start_date + 1 day, end_date
 from x
 where start_date + 1 day < end_date
)
 select dayname(start_date),count(*)
 from x
 group by dayname(start_date)

 START_DATE COUNT(*)
 ---------- ----------
 FRIDAY 52
 MONDAY 52
 SATURDAY 53
 SUNDAY 52
 THURSDAY 52
 TUESDAY 52
 WEDNESDAY 52

MySQL

This solution selects against table T500 to generate one row for every day in the year. The command
on line 4 returns the first day of the current year. It does this by returning the year of the date
returned by the function CURRENT_DATE, and then appending a month and day (following MySQL's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

default date format). The result is shown below:

 select concat(year(current_date),'-01-01')
 from t1

 START_DATE

 01-JAN-2005

Now that you have the first day in the current year, use the DATEADD function to add each value
from T500.IDto generate each day in the year. Use the function DATE_FORMAT to return the
weekday for each date. To generate the required number of rows from table T500, find the difference
in days between the first day of the current year and the first day of the next year, and return that
many rows (will be either 365 or 366). A portion of the results is shown below:

 select date_format(
 date_add(
 cast(
 concat(year(current_date),'-01-01')
 as date),
 interval t500.id-1 day),
 '%W') day
 from t500
 where t500.id <= datediff(
 cast(
 concat(year(current_date)+1,'-01-01')
 as date),
 cast(
 concat(year(current_date),'-01-01')
 as date))

 DAY

 01-JAN-2005
 02-JAN-2005
 03-JAN-2005
 …
 29-JAN-2005
 30-JAN-2005
 31-JAN-2005
 …
 01-DEC-2005
 02-DEC-2005
 03-DEC-2005
 …
 29-DEC-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 30-DEC-2005
 31-DEC-2005

Now that you can return every day in the current year, count the occurrences of each weekday
returned by the function DAYNAME. The final results are shown below:

 select date_format(
 date_add(
 cast(
 concat(year(current_date),'-01-01')
 as date),
 interval t500.id-1 day),
 '%W') day,
 count(*)
 from t500
 where t500.id <= datediff(
 cast(
 concat(year(current_date)+1,'-01-01')
 as date),
 cast(
 concat(year(current_date),'-01-01')
 as date))
 group by date_format(
 date_add(
 cast(
 concat(year(current_date),'-01-01')
 as date),
 interval t500.id-1 day),
 '%W')

 DAY COUNT(*)
 --------- ----------
 FRIDAY 52
 MONDAY 52
 SATURDAY 53
 SUNDAY 52
 THURSDAY 52
 TUESDAY 52
 WEDNESDAY 52

Oracle

The solutions provided either select against table T500 (a pivot table), or use the recursive CONNECT
BY and WITH, to generate a row for every day in the current year. The call to the function TRUNC
truncates the current date to the first day of the current year.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are using the CONNECT BY/WITH solution, you can use the pseudo-column LEVEL to generate
sequential numbers beginning at 1. To generate the required number of rows needed for this
solution, filter ROWNUM or LEVEL on the difference in days between the first day of the current year
and the first day of the next year (will be 365 or 366 days). The next step is to increment each day
by adding ROWNUM or LEVEL to the first day of the current year. Partial results are shown below:

 /* Oracle 9i and later */
 with x as (
 select level lvl
 from dual
 connect by level <= (
 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
)
)
 select trunc(sysdate,'y')+lvl-1
 from x

If you are using the pivot-table solution, you can use any table or view with at least 366 rows in it.
And since Oracle has ROWNUM, there's no need for a table with incrementing values starting from 1.
Consider the following example, which uses pivot table T500 to return every day in the current year:

 /* Oracle 8i and earlier */
 select trunc(sysdate,'y')+rownum-1 start_date
 from t500
 where rownum <= (add_months(trunc(sysdate,'y'),12)
 - trunc(sysdate,'y'))

 START_DATE

 01-JAN-2005
 02-JAN-2005
 03-JAN-2005
 …
 29-JAN-2005
 30-JAN-2005
 31-JAN-2005
 …
 01-DEC-2005
 02-DEC-2005
 03-DEC-2005
 …
 29-DEC-2005
 30-DEC-2005
 31-DEC-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Regardless of which approach you take, you eventually must use the function TO_ CHAR to return
the weekday name for each date, and then count the occurrence of each name. The final results are
shown below:

 /* Oracle 9i and later */
 with x as (
 select level lvl
 from dual
 connect by level <= (
 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
)
)
 select to_char(trunc(sysdate,'y')+lvl-1,'DAY'), count(*)
 from x
 group by to_char(trunc(sysdate,'y')+lvl-1,'DAY')

 /* Oracle 8i and earlier */
 select to_char(trunc(sysdate,'y')+rownum-1,'DAY') start_date,
 count(*)
 from t500
 where rownum <= (add_months(trunc(sysdate,'y'),12)
 - trunc(sysdate,'y'))
 group by to_char(trunc(sysdate,'y')+rownum-1,'DAY')

 START_DATE COUNT(*)
 ---------- ----------
 FRIDAY 52
 MONDAY 52
 SATURDAY 53
 SUNDAY 52
 THURSDAY 52
 TUESDAY 52
 WEDNESDAY 52

PostgreSQL

The first step is to use the DATE_TRUNC function to return the year of the current date (shown
below, selecting against T1 so only one row is returned):

 select cast(
 date_trunc('year',current_date)
 as date) as start_date
 from t1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 START_DATE

 01-JAN-2005

The next step is to select against a row source (any table expression, really) with at least 366 rows.
The solution uses the function GENERATE_SERIES as the row source. You can, of course, use table
T500 instead. Then add one day to the first day of the current year until you return every day in the
year (shown below):

 select cast(date_trunc('year',current_date)
 as date) + gs.id-1 as start_date
 from generate_series (1,366) gs(id)
 where gs.id <= (cast
 (date_trunc('year',current_date) +
 interval '12 month' as date) -
 cast(date_trunc('year',current_date)
 as date))

 START_DATE

 01-JAN-2005
 02-JAN-2005
 03-JAN-2005
 …
 29-JAN-2005
 30-JAN-2005
 31-JAN-2005
 …
 01-DEC-2005
 02-DEC-2005
 03-DEC-2005
 …
 29-DEC-2005
 30-DEC-2005
 31-DEC-2005

The final step is to use the function TO_CHAR to return the weekday name for each date, and then
count the occurrence of each name. The final results are shown below:

 select to_char(
 cast(
 date_trunc('year',current_date)
 as date) + gs.id-1,'DAY') as start_dates,
 count(*)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from generate_series(1,366) gs(id)
 where gs.id <= (cast
 (date_trunc('year',current_date) +
 interval '12 month' as date) -
 cast(date_trunc('year',current_date)
 as date))
 group by to_char(
 cast(
 date_trunc('year',current_date)
 as date) + gs.id-1,'DAY')

 START_DATE COUNT(*)
 ---------- ----------
 FRIDAY 52
 MONDAY 52
 SATURDAY 53
 SUNDAY 52
 THURSDAY 52
 TUESDAY 52
 WEDNESDAY 52

SQL Server

Inline view TMP, in the recursive WITH view X, returns the first day of the current year and is shown
below:

 select cast(
 cast(year(getdate()) as varchar) + '-01-01'
 as datetime) start_date
 from t1

 START_DATE

 01-JAN-2005

Once you return the first day of the current year, add one year to START_DATE so that you have the
beginning and end dates. You need to know both because you want to generate every day in a year.
START_DATE and END_DATE are shown below:

 select start_date,
 dateadd(year,1,start_date) end_date
 from (
 select cast(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cast(year(getdate()) as varchar) + '-01-01'
 as datetime) start_date
 from t1
) tmp

 START_DATE END_DATE
 ----------- -----------
 01-JAN-2005 01-JAN-2006

Next, recursively increment START_DATE by one day and stop before it equals END_DATE. A portion
of the rows returned by the recursive view X is shown below:

 with x (start_date,end_date)
 as (
 select start_date,
 dateadd(year,1,start_date) end_date
 from (
 select cast(
 cast(year(getdate()) as varchar) + '-01-01'
 as datetime) start_date
 from t1
) tmp
 union all
 select dateadd(day,1,start_date), end_date
 from x
 where dateadd(day,1,start_date) < end_date
)
 select * from x
 OPTION (MAXRECURSION 366)

 START_DATE END_DATE
 ----------- -----------
 01-JAN-2005 01-JAN-2006
 02-JAN-2005 01-JAN-2006
 03-JAN-2005 01-JAN-2006
 …
 29-JAN-2005 01-JAN-2006
 30-JAN-2005 01-JAN-2006
 31-JAN-2005 01-JAN-2006
 …
 01-DEC-2005 01-JAN-2006
 02-DEC-2005 01-JAN-2006
 03-DEC-2005 01-JAN-2006
 …
 29-DEC-2005 01-JAN-2006
 30-DEC-2005 01-JAN-2006
 31-DEC-2005 01-JAN-2006

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The final step is to use the function DATENAME on the rows returned by the recursive view X and
count how many times each weekday occurs. The final result is shown below:

 with x(start_date,end_date)
 as (
 select start_date,
 dateadd(year,1,start_date) end_date
 from (
 select cast(
 cast(year(getdate()) as varchar) + '-01-01'
 as datetime) start_date
 from t1
) tmp
 union all
 select dateadd(day,1,start_date), end_date
 from x
 where dateadd(day,1,start_date) < end_date
)
 select datename(dw,start_date), count(*)
 from x
 group by datename(dw,start_date)
 OPTION (MAXRECURSION 366)

 START_DATE COUNT(*)
 --------- ----------
 FRIDAY 52
 MONDAY 52
 SATURDAY 53
 SUNDAY 52
 THURSDAY 52
 TUESDAY 52
 WEDNESDAY 52

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.7. Determining the Date Difference Between the
Current Record and the Next Record

Problem

You want to determine the difference in days between two dates (specifically dates stored in two
different rows). For example, for every employee in DEPTNO 10, you want to determine the number
of days between the day they were hired and the day the next employee (can be in another
department) was hired.

Solution

The trick to this problem's solution is to find the earliest HIREDATE after the current employee was
hired. After that, simply use the technique from "Determining the Number of Days between Two
Dates" to find the difference in days.

DB2

Use a scalar subquery to find the next HIREDATE relative to the current HIREDATE. Then use the
DAYS function to find the difference in days:

 1 select x.*,
 2 days(x.next_hd) - days(x.hiredate) diff
 3 from (
 4 select e.deptno, e.ename, e.hiredate,
 5 (select min(d.hiredate) from emp d
 6 where d.hiredate > e.hiredate) next_hd
 7 from emp e
 8 where e.deptno = 10
 9) x

MySQL and SQL Server

Use a scalar subquery to find the next HIREDATE relative to the current HIREDATE. Then use the
DATEDIFF function to find the difference in days. The SQL Server version of DATEDIFF is used below:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select x.*,
 2 datediff(day,x.hiredate,x.next_hd) diff
 3 from (
 4 select e.deptno, e.ename, e.hiredate,
 5 (select min(d.hiredate) from emp d
 6 where d.hiredate > e.hiredate) next_hd
 7 from emp e
 8 where e.deptno = 10
 9) x

MySQL users can exclude the first argument ("day") and switch the order of the two remaining
arguments:

 2 datediff(x.next_hd, x.hiredate) diff

Oracle

If you're on Oracle8 i Database or later, use the window function LEAD OVER to access the next
HIREDATE relative to the current row, thus facilitating subtraction:

 1 select ename, hiredate, next_hd,
 2 next_hd - hiredate diff
 3 from (
 4 select deptno, ename, hiredate,
 5 lead(hiredate)over(order by hiredate) next_hd
 6 from emp
 7)
 8 where deptno=10

If you are on Oracle8 Database or earlier, you can use the PostgreSQL solution as an alternative.

PostgreSQL

Use a scalar subquery to find the next HIREDATE relative to the current HIREDATE. Then use simple
subtraction to find the difference in days:

 1 select x.*,
 2 x.next_hd - x.hiredate as diff
 3 from (
 4 select e.deptno, e.ename, e.hiredate,
 5 (select min(d.hiredate) from emp d

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6 where d.hiredate > e.hiredate) as next_hd
 7 from emp e
 8 where e.deptno = 10
 9) x

Discussion

DB2, MySQL, PostgreSQL, and SQL Server

Despite the differences in syntax, the approach is the same for all these solutions: use a scalar
subquery to find the next HIREDATE relative to the current HIREDATE, and then find the difference in
days between the two using the technique described in "Determining the Number of Days Between
Two Dates," found earlier in this chapter.

Oracle

The window function LEAD OVER is extremely useful here as it allows you to access "future" rows
("future" determined by the ORDER BY clause, relative to the current row). The ability to access rows
around your current row without additional joins provides for more readable and efficient code. When
working with window functions, keep in mind that they are evaluated after the WHERE clause, hence
the need for an inline view in the solution. If you were to move the filter on DEPTNO into the inline
view, the results would change (only the HIREDATEs from DEPTNO 10 would be considered). One
important note to mention about Oracle's LEAD and LAG functions is their behavior in the presence of
duplicates. In the preface I mention that these recipes are not coded "defensively" because there are
too many conditions that one can't possibly foresee that can break code. Or, even if one can foresee
every problem, sometimes the resulting SQL becomes unreadable. So in most cases, the goal of a
solution is to introduce a technique: one that you can use in your production system, but that must
be tested and many times tweaked to work for your particular data. In this case, though, there is a
situation that I will discuss simply because the workaround may not be all that obvious, particularly
for those coming from non-Oracle systems. In this example there are no duplicate HIREDATEs in
table EMP, but it is certainly possible (and probably likely) that there are duplicate date values in your
tables. Consider the employees in DEPTNO 10 and their HIREDATEs:

 select ename, hiredate
 from emp
 where deptno=10
 order by 2

 ENAME HIREDATE
 ------ -----------
 CLARK 09-JUN-1981
 KING 17-NOV-1981
 MILLER 23-JAN-1982

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For the sake of this example, let's insert four duplicates such that there are five employees (including
KING) hired on November 17:

 insert into emp (empno,ename,deptno,hiredate)
 values (1,'ant',10,to_date('17-NOV-1981'))

 insert into emp (empno,ename,deptno,hiredate)
 values (2,'joe',10,to_date('17-NOV-1981'))

 insert into emp (empno,ename,deptno,hiredate)
 values (3,'jim',10,to_date('17-NOV-1981'))

 insert into emp (empno,ename,deptno,hiredate)
 values (4,'choi',10,to_date('17-NOV-1981'))

 select ename, hiredate
 from emp
 where deptno=10
 order by 2

 ENAME HIREDATE
 ------ -----------
 CLARK 09-JUN-1981
 ant 17-NOV-1981
 joe 17-NOV-1981
 KING 17-NOV-1981
 jim 17-NOV-1981
 choi 17-NOV-1981
 MILLER 23-JAN-1982

Now there are multiple employees in DEPTNO 10 hired on the same day. If you try to use the
proposed solution (moving the filter into the inline view so you only are concerned with employees in
DEPTNO 10 and their HIREDATEs) on this result set you get the following output:

 select ename, hiredate, next_hd,
 next_hd - hiredate diff
 from (
 select deptno, ename, hiredate,
 lead(hiredate)over(order by hiredate) next_hd
 from emp
 where deptno=10
)

 ENAME HIREDATE NEXT_HD DIFF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ------ ----------- ----------- ----------
 CLARK 09-JUN-1981 17-NOV-1981 161
 ant 17-NOV-1981 17-NOV-1981 0
 joe 17-NOV-1981 17-NOV-1981 0
 KING 17-NOV-1981 17-NOV-1981 0
 jim 17-NOV-1981 17-NOV-1981 0
 choi 17-NOV-1981 23-JAN-1982 67
 MILLER 23-JAN-1982 (null) (null)

Looking at the values of DIFF for four of the five employees hired on the same day, you can see that
the value is zero. This is not correct. All employees hired on the same day should have their dates
evaluated against the HIREDATE of the next date on which an employee was hired, i.e., all
employees hired on November 17 should be evaluated against MILLER's HIREDATE. The problem
here is that the LEAD function orders the rows by HIREDATE but does not skip duplicates. So, for
example, when employee ANT's HIREDATE is evaluated against employee JOE's HIREDATE, the
difference is zero, hence a DIFF value of zero for ANT. Fortunately, Oracle has provided an easy
workaround for situations like this one. When invoking the LEAD function, you can pass an argument
to LEAD to specify exactly where the future row is (i.e., is it the next row, 10 rows later, etc.). So,
looking at employee ANT, instead of looking ahead one row you need to look ahead five rows (you
want to jump over all the other duplicates), because that's where MILLER is. If you look at employee
JOE, he is four rows from MILLER, JIM is three rows from MILLER, KING is two rows from MILLER
and, pretty boy CHOI is one row from MILLER. To get the correct answer, simply pass the distance
from each employee to MILLER as an argument to LEAD. The solution is shown below:

 select ename, hiredate, next_hd,
 next_hd - hiredate diff
 from (
 select deptno, ename, hiredate,
 lead(hiredate,cnt-rn+1)over(order by hiredate) next_hd
 from (
 select deptno,ename,hiredate,
 count(*)over(partition by hiredate) cnt,
 row_number()over(partition by hiredate order by empno) rn
 from emp
 where deptno=10
)
)

 ENAME HIREDATE NEXT_HD DIFF
 ------ ----------- ----------- ----------
 CLARK 09-JUN-1981 17-NOV-1981 161
 ant 17-NOV-1981 23-JAN-1982 67
 joe 17-NOV-1981 23-JAN-1982 67
 jim 17-NOV-1981 23-JAN-1982 67
 choi 17-NOV-1981 23-JAN-1982 67
 KING 17-NOV-1981 23-JAN-1982 67
 MILLER 23-JAN-1982 (null) (null)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now the results are correct. All the employees hired on the same day have their HIREDATEs
evaluated against the next HIREDATE, not a HIREDATE that matches their own. If the workaround
isn't immediately obvious, simply break down the query. Start with the inline view:

 select deptno,ename,hiredate,
 count(*)over(partition by hiredate) cnt,
 row_number()over(partition by hiredate order by empno) rn
 from emp
 where deptno=10

 DEPTNO ENAME HIREDATE CNT RN
 ------ ------ ----------- ---------- ----------
 10 CLARK 09-JUN-1981 1 1
 10 ant 17-NOV-1981 5 1
 10 joe 17-NOV-1981 5 2
 10 jim 17-NOV-1981 5 3
 10 choi 17-NOV-1981 5 4
 10 KING 17-NOV-1981 5 5
 10 MILLER 23-JAN-1982 1 1

The window function COUNT OVER counts the number of times each HIREDATE occurs and returns
this value to each row. For the duplicate HIREDATEs, a value of 5 is returned for each row with that
HIREDATE. The window function ROW_ NUMBER OVER ranks each employee by EMPNO. The ranking
is partitioned by HIREDATE, so unless there are duplicate HIREDATEs each employee will have a rank
of 1. At this point, all the duplicates have been counted and ranked and the ranking can serve as the
distance to the next HIREDATE (MILLER's HIREDATE). You can see this by subtracting RN from CNT
and adding 1 for each row when calling LEAD:

 select deptno, ename, hiredate,
 cnt-rn+1 distance_to_miller,
 lead(hiredate,cnt-rn+1)over(order by hiredate) next_hd
 from (
 select deptno,ename,hiredate,
 count(*)over(partition by hiredate) cnt,
 row_number()over(partition by hiredate order by empno) rn
 from emp
 where deptno=10
)

 DEPTNO ENAME HIREDATE DISTANCE_TO_MILLER NEXT_HD
 ------ ------ ----------- ------------------ -----------
 10 CLARK 09-JUN-1981 1 17-NOV-1981
 10 ant 17-NOV-1981 5 23-JAN-1982
 10 joe 17-NOV-1981 4 23-JAN-1982

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10 jim 17-NOV-1981 3 23-JAN-1982
 10 choi 17-NOV-1981 2 23-JAN-1982
 10 KING 17-NOV-1981 1 23-JAN-1982
 10 MILLER 23-JAN-1982 1 (null)

As you can see, by passing the appropriate distance to jump ahead to, the LEAD function performs
the subtraction on the correct dates.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Date Manipulation

This chapter introduces recipes for searching and modifying dates. Queries involving dates are very
common. Thus, you need to know how to think when working with dates, and you need to have a
good understanding of the functions that your RDBMS platform provides for manipulating them. The
recipes in this chapter form an important foundation for future work as you move on to more
complex queries involving not only dates, but times too.

Before getting into the recipes, I want to reinforce the concept (that I mentioned in the Preface) of
using these solutions as guidelines to solving your specific problems. Try to think "big picture." For
example, if a recipe solves a problem for the current month, keep in mind that you may be able to
use the recipe for any month (with minor modifications), not just the month used in the recipe.
Again, I want you to use these recipes as guidelines, not as the absolute final option. There's no
possible way a book can contain an answer for all your problems, but if you understand what is
presented here, modifying these solutions to fit your needs is trivial. I also urge you to consider
alternative versions of the solutions I've provided. For instance, if I solve a problem using one
particular function provided by your RDBMS, it is worth the time and effort to find out if there is an
alternativemaybe one that is more or less efficient than what is presented here. Knowing what
options you have will make you a better SQL programmer.

The recipes presented in this chapter use simple date data types. If you are
using more complex date data types you will need to adjust the solutions
accordingly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.1. Determining if a Year Is a Leap Year

Problem

You want to determine whether or not the current year is a leap year.

Solution

If you've worked on SQL for some time, there's no doubt that you've come across several techniques
for solving this problem. Just about all the solutions I've encountered work well, but the one
presented in this recipe is probably the simplest. This solution simply checks the last day of February;
if it is the 29th then the current year is a leap year.

DB2

Use the recursive WITH clause to return each day in February. Use the aggregate function MAX to
determine the last day in February.

 1 with x (dy,mth)
 2 as (
 3 select dy, month(dy)
 4 from (
 5 select (current_date -
 6 dayofyear(current_date) days +1 days)
 7 +1 months as dy
 8 from t1
 9) tmp1
 10 union all
 11 select dy+1 days, mth
 12 from x
 13 where month(dy+1 day) = mth
 14)
 15 select max(day(dy))
 16 from x

Oracle

Use the function LAST_DAY to find the last day in February:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select to_char(
 2 last_day(add_months(trunc(sysdate,'y'),1)),
 3 'DD')
 4 from t1

PostgreSQL

Use the function GENERATE_SERIES to return each day in February, then use the aggregate function
MAX to find the last day in February:

 1 select max(to_char(tmp2.dy+x.id,'DD')) as dy
 2 from (
 3 select dy, to_char(dy,'MM') as mth
 4 from (
 5 select cast(cast(
 6 date_trunc('year',current_date) as date)
 7 + interval '1 month' as date) as dy
 8 from t1
 9) tmp1
 10) tmp2, generate_series (0,29) x(id)
 11 where to_char(tmp2.dy+x.id,'MM') = tmp2.mth

MySQL

Use the function LAST_DAY to find the last day in February:

 1 select day(
 2 last_day(
 3 date_add(
 4 date_add(
 5 date_add(current_date,
 6 interval -dayofyear(current_date) day),
 7 interval 1 day),
 8 interval 1 month))) dy
 9 from t1

SQL Server

Use the recursive WITH clause to return each day in February. Use the aggregate function MAX to
determine the last day in February:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 with x (dy,mth)
 2 as (
 3 select dy, month(dy)
 4 from (
 5 select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy
 6 from t1
 7) tmp1
 8 union all
 9 select dateadd(dd,1,dy), mth
 10 from x
 11 where month(dateadd(dd,1,dy)) = mth
 12)
 13 select max(day(dy))
 14 from x

Discussion

DB2

The inline view TMP1 in the recursive view X returns the first day in February by:

Starting with the current date1.

Using DAYOFYEAR to determine the number of days into the current year that the current date
represents

2.

Subtracting that number of days from the current date to get December 31 of the prior year,
and then adding one to get to January 1 of the current year

3.

Adding one month to get to February 14.

The result of all this math is shown below:

 select (current_date
 dayofyear(current_date) days +1 days) +1 months as dy
 from t1

 DY

 01-FEB-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next step is to return the month of the date returned by inline view TMP1 by using the MONTH
function:

 select dy, month(dy) as mth
 from (
 select (current_date
 dayofyear(current_date) days +1 days) +1 months as dy
 from t1
) tmp1

 DY MTH
 ----------- ---
 01-FEB-2005 2

The results presented thus far provide the start point for the recursive operation that generates each
day in February. To return each day in February, repeatedly add one day to DY until you are no
longer in the month of February. A portion of the results of the WITH operation is shown below:

 with x (dy,mth)
 as (
 select dy, month(dy)
 from (
 select (current_date -
 dayofyear(current_date) days +1 days) +1 months as dy
 from t1
) tmp1
 union all
 select dy+1 days, mth
 from x
 where month(dy+1 day) = mth
)
 select dy,mth
 from x

 DY MTH
 ----------- ---
 01-FEB-2005 2
 …
 10-FEB-2005 2
 …
 28-FEB-2005 2

The final step is to use the MAX function on the DY column to return the last day in February; if it is
the 29th, you are in a leap year.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Oracle

The first step is to find the beginning of the year using the TRUNC function:

 select trunc(sysdate,'y')
 from t1

 DY

 01-JAN-2005

Because the first day of the year is January 1st, the next step is to add one month to get to February
1st:

 select add_months(trunc(sysdate,'y'),1) dy
 from t1

 DY

 01-FEB-2005

The next step is to use the LAST_DAY function to find the last day in February:

 select last_day(add_months(trunc(sysdate,'y'),1)) dy
 from t1

 DY

 28-FEB-2005

The final step (which is optional) is to use TO_CHAR to return either 28 or 29.

PostgreSQL

The first step is to examine the results returned by inline view TMP1. Use the DATE_TRUNC function
to find the beginning of the current year and cast that result as a DATE:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select cast(date_trunc('year',current_date) as date) as dy
 from t1

 DY

 01-JAN-2005

The next step is to add one month to the first day of the current year to get the first day in February,
casting the result as a date:

 select cast(cast(
 date_trunc('year',current_date) as date)
 + interval '1 month' as date) as dy
 from t1

 DY

 01-FEB-2005

Next, return DY from inline view TMP1 along with the numeric month of DY. Return the numeric
month by using the TO_CHAR function:

 select dy, to_char(dy,'MM') as mth
 from (
 select cast(cast(
 date_trunc('year',current_date) as date)
 + interval '1 month' as date) as dy
 from t1
) tmp1

 DY MTH
 ----------- ---
 01-FEB-2005 2

The results shown thus far comprise the result set of inline view TMP2. Your next step is to use the
extremely useful function GENERATE_SERIES to return 29 rows (values 1 through 29). Every row
returned by GENERATE_SERIES (aliased X) is added to DY from inline view TMP2. Partial results are
shown below:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select tmp2.dy+x.id as dy, tmp2.mth
 from (
 select dy, to_char(dy,'MM') as mth
 from (
 select cast(cast(
 date_trunc('year',current_date) as date)
 + interval '1 month' as date) as dy
 from t1
) tmp1
) tmp2, generate_series (0,29) x(id)
 where to_char(tmp2.dy+x.id,'MM') = tmp2.mth

 DY MTH
 ----------- ---
 01-FEB-2005 02
 …
 10-FEB-2005 02
 …
 28-FEB-2005 02

The final step is to use the MAX function to return the last day in February. The function TO_CHAR is
applied to that value and will return either 28 or 29.

MySQL

The first step is to find the first day of the current year by subtracting from the current date the
number of days it is into the year, and then adding one day. Do all of this with the DATE_ADD
function:

 select date_add(
 date_add(current_date,
 interval -dayofyear(current_date) day),
 interval 1 day) dy
 from t1

 DY

 01-JAN-2005

Then add one month again using the DATE_ADD function:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select date_add(
 date_add(
 date_add(current_date,
 interval -dayofyear(current_date) day),
 interval 1 day),
 interval 1 month) dy
 from t1

 DY

 01-FEB-2005

Now that you've made it to February, use the LAST_DAY function to find the last day of the month:

 select last_day(
 date_add(
 date_add(
 date_add(current_date,
 interval -dayofyear(current_date) day),
 interval 1 day),
 interval 1 month)) dy
 from t1

 DY

 28-FEB-2005

The final step (which is optional) is to use the DAY function to return either a 28 or 29.

SQL Server

This solution uses the recursive WITH clause to generate each day in February. The first step is to
find the first day of February. To do this, find the first day of the current year by subtracting from the
current date the number of days it is into the year, and then adding one day. Once you have the first
day of the current year, use the DATEADD function to add one month to advance to the first day of
February:

 select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy
 from t1

 DY

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 01-FEB-2005

Next, return the first day of February along with the numeric month for February:

 select dy, month(dy) mth
 from (
 select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy
 from t1
) tmp1

 DY MTH
 ----------- ---
 01-FEB-2005 2

Then use the recursive capabilities of the WITH clause to repeatedly add one day to DY from inline
view TMP1 until you are no longer in February (partial results shown below):

 with x (dy,mth)
 as (
 select dy, month(dy)
 from (
 select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy
 from t1
) tmp1
 union all
 select dateadd(dd,1,dy), mth
 from x
 where month(dateadd(dd,1,dy)) = mth
)
 select dy,mth from x

 DY MTH
 ----------- ---
 01-FEB-2005 02
 …
 10-FEB-2005 02
 …
 28-FEB-2005 02

Now that you can return each day in February, the final step is to use the MAX function to see if the
last day is the 28th or 29th. As an optional last step, you can use the DAY function to return a 28 or
29, rather than a date.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.2. Determining the Number of Days in a Year

Problem

You want to count the number of days in the current year.

Solution

The number of days in the current year is the difference between the first day of the next year and
the first day of the current year (in days). For each solution the steps are:

Find the first day of the current year.1.

Add one year to that date (to get the first day of the next year).2.

Subtract the current year from the result of Step 2.3.

The solutions differ only in the built-in functions that you use to perform these steps.

DB2

Use the function DAYOFYEAR to help find the first day of the current year, and use DAYS to find the
number of days in the current year:

 1 select days((curr_year + 1 year)) - days(curr_year)
 2 from (
 3 select (current_date -
 4 dayofyear(current_date) day +
 5 1 day) curr_year
 6 from t1
 7) x

Oracle

Use the function TRUNC to find the beginning of the current year, and use ADD_ MONTHS to then
find the beginning of next year:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select add_months(trunc(sysdate,'y'),12) - trunc(sysdate,'y')
 2 from dual

PostgreSQL

Use the function DATE_TRUNC to find the beginning of the current year. Then use interval arithmetic
to determine the beginning of next year:

 1 select cast((curr_year + interval '1 year') as date) - curr_year
 2 from (
 3 select cast(date_trunc('year',current_date) as date) as curr_year
 4 from t1
 5) x

MySQL

Use ADDDATE to help find the beginning of the current year. Use DATEDIFF and interval arithmetic to
determine the number of days in the year:

 1 select datediff((curr_year + interval 1 year),curr_year)
 2 from (
 3 select adddate(current_date,-dayofyear(current_date)+1) curr_year
 4 from t1
 5) x

SQL Server

Use the function DATEADD to find the first day of the current year. Use DATEDIFF to return the
number of days in the current year:

 1 select datediff(d,curr_year,dateadd(yy,1,curr_year))
 2 from (
 3 select dateadd(d,-datepart(dy,getdate())+1,getdate()) curr_year
 4 from t1
 5) x

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2

The first step is to find the first day of the current year. Use DAYOFYEAR to determine how many
days you are into the current year. Subtract that value from the current date to get the last day of
last year, and then add 1:

 select (current_date
 dayofyear(current_date) day +
 1 day) curr_year
 from t1

 CURR_YEAR

 01-JAN-2005

Now that you have the first day of the current year, just add one year to it; this gives you the first
day of next year. Then subtract the beginning of the current year from the beginning of next year.

Oracle

The first step is to find the first day of the current year, which you can easily do by invoking the built-
in TRUNC function and passing 'Y' as the second argument (thereby truncating the date to the
beginning of the year):

 select select trunc(sysdate,'y') curr_year
 from dual

 CURR_YEAR

 01-JAN-2005

Then add one year to arrive at the first day of the next year. Finally, subtract the two dates to find
the number of days in the current year.

PostgreSQL

Begin by finding the first day of the current year. To do that, invoke the DATE_ TRUNC function as
follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select cast(date_trunc('year',current_date) as date) as curr_year
 from t1

 CURR_YEAR

 01-JAN-2005

You can then easily add a year to compute the first day of next year. Then all you need to do is to
subtract the two dates. Be sure to subtract the earlier date from the later date. The result will be the
number of days in the current year.

MySQL

Your first step is to find the first day of the current year. Use DAYOFYEAR to find how many days you
are into the current year. Subtract that value from the current date, and add 1:

 select adddate(current_date,-dayofyear(current_date)+1) curr_year
 from t1

 CURR_YEAR

 01-JAN-2005

Now that you have the first day of the current year, your next step is to add one year to it to get the
first day of next year. Then subtract the beginning of the current year from the beginning of the next
year. The result is the number of days in the current year.

SQL Server

Your first step is to find the first day of the current year. Use DATEADD and DATEPART to subtract
from the current date the number of days into the year the current date is, and add 1:

 select dateadd(d,-datepart(dy,getdate())+1,getdate()) curr_year
 from t1

 CURR_YEAR

 01-JAN-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now that you have the first day of the current year, your next step is to add one year to it get the
first day of the next year. Then subtract the beginning of the current year from the beginning of the
next year. The result is the number of days in the current year.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.3. Extracting Units of Time from a Date

Problem

You want to break the current date down into six parts: day, month, year, second, minute, and hour.
You want the results to be returned as numbers.

Solution

My use of the current date is arbitrary. Feel free to use this recipe with other dates. In Chapter 1, I
mention the importance of learning and taking advantage of the built-in functions provided by your
RDBMS; this is especially true when it comes to working with dates. There are different ways of
extracting units of time from a date than those presented in this recipe, and it would benefit you to
experiment with different techniques and functions.

DB2

DB2 implements a set of built-in functions that make it easy for you to extract portions of a date. The
function names HOUR, MINUTE, SECOND, DAY, MONTH, and YEAR conveniently correspond to the
units of time you can return: if you want the day use DAY, hour use HOUR, etc. For example:

 1 select hour(current_timestamp) hr,
 2 minute(current_timestamp) min,
 3 second(current_timestamp) sec,
 4 day(current_timestamp) dy,
 5 month(current_timestamp) mth,
 6 year(current_timestamp) yr
 7 from t1

 HR MIN SEC DY MTH YR
 ---- ----- ----- ----- ----- -----
 20 28 36 15 6 2005

Oracle

Use functions TO_CHAR and TO_NUMBER to return specific units of time from a date:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select to_number(to_char(sysdate,'hh24')) hour,
 2 to_number(to_char(sysdate,'mi')) min,
 3 to_number(to_char(sysdate,'ss')) sec,
 4 to_number(to_char(sysdate,'dd')) day,
 5 to_number(to_char(sysdate,'mm')) mth,
 6 to_number(to_char(sysdate,'yyyy')) year
 7 from dual

 HOUR MIN SEC DAY MTH YEAR
 ---- ----- ----- ----- ----- -----
 20 28 36 15 6 2005

PostgreSQL

Use functions TO_CHAR and TO_NUMBER to return specific units of time from a date:

 1 select to_number(to_char(current_timestamp,'hh24'),'99') as hr,
 2 to_number(to_char(current_timestamp,'mi'),'99') as min,
 3 to_number(to_char(current_timestamp,'ss'),'99') as sec,
 4 to_number(to_char(current_timestamp,'dd'),'99') as day,
 5 to_number(to_char(current_timestamp,'mm'),'99') as mth,
 6 to_number(to_char(current_timestamp,'yyyy'),'9999') as yr
 7 from t1

 HR MIN SEC DAY MTH YR
 ---- ----- ----- ----- ----- -----
 20 28 36 15 6 2005

MySQL

Use the DATE_FORMAT function to return specific units of time from a date:

 1 select date_format(current_timestamp,'%k') hr,
 2 date_format(current_timestamp,'%i') min,
 3 date_format(current_timestamp,'%s') sec,
 4 date_format(current_timestamp,'%d') dy,
 5 date_format(current_timestamp,'%m') mon,
 6 date_format(current_timestamp,'%Y') yr
 7 from t1

 HR MIN SEC DAY MTH YR

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ---- ----- ----- ----- ----- -----
 20 28 36 15 6 2005

SQL Server

Use the function DATEPART to return specific units of time from a date:

 1 select datepart(hour, getdate()) hr,
 2 datepart(minute,getdate()) min,
 3 datepart(second,getdate()) sec,
 4 datepart(day, getdate()) dy,
 5 datepart(month, getdate()) mon,
 6 datepart(year, getdate()) yr
 7 from t1

 HR MIN SEC DAY MTH YR
 ---- ----- ----- ----- ----- -----
 20 28 36 15 6 2005

Discussion

There's nothing fancy in these solutions; just take advantage of what you're already paying for. Take
the time to learn the date functions available to you. This recipe only scratches the surface of the
functions presented in each solution. You'll find that each of the functions takes many more
arguments and can return more information than what this recipe provides you.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.4. Determining the First and Last Day of a Month

Problem

You want to determine the first and last days for the current month.

Solution

The solutions presented here are for finding first and last days for the current month. Using the
current month is arbitrary. With a bit of adjustment, you can make the solutions work for any month.

DB2

Use the DAY function to return the number of days into the current month the current date
represents. Subtract this value from the current date, and then add 1 to get the first of the month.
To get the last day of the month, add one month to the current date, then subtract from it the value
returned by the DAY function as applied to the current date:

 1 select (current_date - day(current_date) day +1 day) firstday,
 2 (current_date +1 month -day(current_date) day) lastday
 3 from t1

Oracle

Use the function TRUNC to find the first of the month, and the function LAST_DAY to find the last day
of the month:

 1 select trunc(sysdate,'mm') firstday,
 2 last_day(sysdate) lastday
 3 from dual

Using TRUNC as decribed here will result in the loss of any time-of-day
component, whereas LAST_DAY will preserve the time of day.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PostgreSQL

Use the DATE_TRUNC function to truncate the current date to the first of the current month. Once
you have the first day of the month, add one month and subtract one day to find the end of the
current month:

 1 select firstday,
 2 cast(firstday + interval '1 month'
 3 - interval '1 day' as date) as lastday
 4 from (
 5 select cast(date_trunc('month',current_date) as date) as firstday
 6 from t1
 7) x

MySQL

Use the DATE_ADD and DAY functions to find the number of days into the month the current date is.
Then subtract that value from the current date and add 1 to find the first of the month. To find the
last day of the current month, use the LAST_DAY function:

 1 select date_add(current_date,
 2 interval -day(current_date)+1 day) firstday,
 3 last_day(current_date) lastday
 4 from t1

SQL Server

Use the DATEADD and DAY functions to find the number of days into the month represented by the
current date. Then subtract that value from the current date and add 1 to find the first of the month.
To get the last day of the month, add one month to the current date, and then subtract from that
result the value returned by the DAY function applied to the current date, again using the functions
DAY and DATEADD:

 1 select dateadd(day,-day(getdate())+1,getdate()) firstday,
 2 dateadd(day,
 3 -day(getdate()),
 4 dateadd(month,1,getdate())) lastday
 5 from t1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

DB2

To find the first day of the month, use the DAY function. The DAY function conveniently returns the
day of the month for the date passed. If you subtract the value returned by DAY(CURRENT_DATE)
from the current date, you get the last day of the prior month; add one day to get the first day of the
current month. To find the last day of the month, add one month to the current date. That will get
you the same number of days into the following month as you are into the current month (the math
will still work out if the following month is shorter than the current). Then subtract the value returned
by DAY(CURRENT_DATE) to get the last day of the current month.

Oracle

To find the first day of the current month, use the TRUNC function with "mm" as the second
argument to "truncate" the current date down to the first of the month. To find the last day of the
current month, simply use the LAST_DAY function.

PostgreSQL

To find the first day of the current month, use the DATE_TRUNC function with "month" as the second
argument to "truncate" the current date down to the first of the month. To find the last day of the
current month, add one month to the first day of the month, and then subtract one day.

MySQL

To find the first day of the month, use the DAY function. The DAY function conveniently returns the
day of the month for the date passed. If you subtract the value returned by DAY(CURRENT_DATE)
from the current date, you get the last day of the prior month; add one day to get the first day of the
current month. To find the last day of the current month, simply use the LAST_DAY function.

SQL Server

To find the first day of the month, use the DAY function. The DAY function conveniently returns the
day of the month for the date passed. If you subtract the value returned by DAY(GETDATE()) from
the current date, you get the last day of the prior month; add one day to get the first day of the
current month. To find the last day of the current month, use the DATEADD function. Add one month
to the current date, then subtract from it the value returned by DAY(GETDATE()) to get the last day
of the current month.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.5. Determining All Dates for a Particular
Weekday Throughout a Year

Problem

You want to find all the dates in a year that correspond to a given day of the week. For example, you
may wish to generate a list of Fridays for the current year.

Solution

Regardless of vendor, the key to the solution is to return each day for the current year and keep only
those dates corresponding to the day of the week that you care about. The solution examples retain
all the Fridays.

DB2

Use the recursive WITH clause to return each day in the current year. Then use the function
DAYNAME to keep only Fridays:

 1 with x (dy,yr)
 2 as (
 3 select dy, year(dy) yr
 4 from (
 5 select (current_date -
 6 dayofyear(current_date) days +1 days) as dy
 7 from t1
 8) tmp1
 9 union all
 10 select dy+1 days, yr
 11 from x
 12 where year(dy +1 day) = yr
 13)
 14 select dy
 15 from x
 16 where dayname(dy) = 'Friday'

Oracle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the recursive CONNECT BY clause to return each day in the current year. Then use the function
TO_CHAR to keep only Fridays:

 1 with x
 2 as (
 3 select trunc(sysdate,'y')+level-1 dy
 4 from t1
 5 connect by level <=
 6 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
 7)
 8 select *
 9 from x
 10 where to_char(dy, 'dy') = 'fri'

PostgreSQL

Use the function GENERATE_SERIES to return each day in the current year. Then use the function
TO_CHAR to keep only Fridays:

 1 select cast(date_trunc('year',current_date) as date)
 2 + x.id as dy
 3 from generate_series (
 4 0,
 5 (select cast(
 6 cast(
 7 date_trunc('year',current_date) as date)
 8 + interval '1 years' as date)
 9 - cast(
 10 date_trunc('year',current_date) as date))-1
 11) x(id)
 12 where to_char(
 13 cast(
 14 date_trunc('year',current_date)
 15 as date)+x.id,'dy') = 'fri'

MySQL

Use the pivot table T500 to return each day in the current year. Then use the function DAYNAME to
keep only Fridays:

 1 select dy
 2 from (
 3 select adddate(x.dy,interval t500.id-1 day) dy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 from (
 5 select dy, year(dy) yr
 6 from (
 7 select adddate(
 8 adddate(current_date,
 9 interval -dayofyear(current_date) day),
 10 interval 1 day) dy
 11 from t1
 12) tmp1
 13) x,
 14 t500
 15 where year(adddate(x.dy,interval t500.id-1 day)) = x.yr
 16) tmp2
 17 where dayname(dy) = 'Friday'

SQL Server

Use the recursive WITH clause to return each day in the current year. Then use the function
DAYNAME to keep only Fridays:

 1 with x (dy,yr)
 2 as (
 3 select dy, year(dy) yr
 4 from (
 5 select getdate()-datepart(dy,getdate())+1 dy
 6 from t1
 7) tmp1
 8 union all
 9 select dateadd(dd,1,dy), yr
 10 from x
 11 where year(dateadd(dd,1,dy)) = yr
 12)
 13 select x.dy
 14 from x
 15 where datename(dw,x.dy) = 'Friday'
 16 option (maxrecursion 400)

Discussion

DB2

To find all the Fridays in the current year, you must be able to return every day in the current year.
The first step is to find the first day of the year by using the DAYOFYEAR function. Subtract the value
returned by DAYOFYEAR(CURRENT_DATE) from the current date to get December 31 of the prior

http://lib.ommolketab.ir
http://lib.ommolketab.ir

year, and then add 1 to get the first day of the current year:

 select (current_date
 dayofyear(current_date) days +1 days) as dy
 from t1

 DY

 01-JAN-2005

Now that you have the first day of the year, use the WITH clause to repeatedly add one day to the
first day of the year until you are no longer in the current year. The result set will be every day in the
current year (a portion of the rows returned by the recursive view X is shown below):

 with x (dy,yr)
 as (
 select dy, year(dy) yr
 from (
 select (current_date
 dayofyear(current_date) days +1 days) as dy
 from t1
) tmp1
 union all
 select dy+1 days, yr
 from x
 where year(dy +1 day) = yr
)
 select dy
 from x

 DY

 01-JAN-2005
 …
 15-FEB-2005
 …
 22-NOV-2005
 …
 31-DEC-2005

The final step is to use the DAYNAME function to keep only rows that are Fridays.

Oracle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To find all the Fridays in the current year, you must be able to return every day in the current year.
Begin by using the TRUNC function to find the first day of the year:

 select trunc(sysdate,'y') dy
 from t1

 DY

 01-JAN-2005

Next, use the CONNECT BY clause to return every day in the current year (to understand how to use
CONNECT BY to generate rows, see "Generating Consecutive Time and Numeric Values" in Chapter
13).

As an aside, this recipe uses the WITH clause, but you can also use an inline
view.

At the time of this writing, Oracle's WITH clause is not meant for recursive operations (unlike the
case with DB2 and SQL Server); recursive operations are done using CONNECT BY. A portion of the
result set returned by view X is shown below:

 with x
 as (
 select trunc(sysdate,'y')+level-1 dy
 from t1
 connect by level <=
 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
)
 select *
 from x

 DY

 01-JAN-2005
 …
 15-FEB-2005
 …
 22-NOV-2005
 …
 31-DEC-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The final step is to use the TO_CHAR function to keep only Fridays.

PostgreSQL

To find all the Fridays in the current year, you must be able to return a row for every day in the
current year. To do that, use the GENERATE_SERIES function. The start and end values to be
returned by GENERATE_SERIES are 0 and the number of days in the current year minus 1. The first
parameter passed to GENERATE_SERIES is 0, while the second is a query that determines the
number of days in the current year (because you are adding to the first day of the current year, you
actually want to add 1 less than the number of days in the current year, so as to not spill over into
the next year). The result returned by the second parameter of the GENERATE_SERIES function is
shown below:

 select cast(
 cast(
 date_trunc('year',current_date) as date)
 + interval '1 years' as date)
 -cast(
 date_trunc('year',current_date) as date)-1 as cnt
 from t1

 CNT

 364

Keeping in mind the result set above, the call to GENERATE_SERIES in the FROM clause will look like
this: GENERATE_SERIES (0, 364). If you are in a leap year, such as 2004, the second parameter
would be 365.

The next step after generating a list of dates in the year is to add the values returned by
GENERATE_SERIES to the first day of the current year. A portion of the results is shown below:

 select cast(date_trunc('year',current_date) as date)
 + x.id as dy
 from generate_series (
 0,
 (select cast(
 cast(
 date_trunc('year',current_date) as date)
 + interval '1 years' as date)
 -cast(
 date_trunc('year',current_date) as date))-1
) x(id)

 DY

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 01-JAN-2005
 …
 15-FEB-2005
 …
 22-NOV-2005
 …
 31-DEC-2005

The final step is to use the TO_CHAR function to keep only the Fridays.

MySQL

To find all the Fridays in the current year, you must be able to return every day in the current year.
The first step is to find the first day of the year by using the DAYOF-YEAR function. Subtract the
value returned by DAYOFYEAR(CURRENT_DATE) from the current date, and then add 1 to get the
first day of the current year:

 select adddate(
 adddate(current_date,
 interval -dayofyear(current_date) day),
 interval 1 day) dy
 from t1

 DY

 01-JAN-2005

Then use table T500 to generate enough rows to return each day in the current year. You can do this
by adding each value of T500.ID to the first day of the year until you break out of the current year.
Partial results of this operation are shown below:

 select adddate(x.dy,interval t500.id-1 day) dy
 from (
 select dy, year(dy) yr
 from (
 select adddate(
 adddate(current_date,
 interval -dayofyear(current_date) day),
 interval 1 day) dy
 from t1
) tmp1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

) x,
 t500
 where year(adddate(x.dy,interval t500.id-1 day)) = x.yr

 DY

 01-JAN-2005
 …
 15-FEB-2005
 …
 22-NOV-2005
 …
 31-DEC-2005

The final step is to use the DAYNAME function to keep only Fridays.

SQL Server

To find all the Fridays in the current year, you must be able to return every day in the current year.
The first step is to find the first day of the year by using the DATEPART function. Subtract the value
returned by DATEPART(DY,GETDATE()) from the current date, and then add 1 to get the first day of
the current year:

 select getdate()-datepart(dy,getdate())+1 dy
 from t1

 DY

 01-JAN-2005

Now that you have the first day of the year, use the WITH clause and the DATEADD function to
repeatedly add one day to the first day of the year until you are no longer in the current year. The
result set will be every day in the current year (a portion of the rows returned by the recursive view
X is shown below):

 with x (dy,yr)
 as (
 select dy, year(dy) yr
 from (
 select getdate()-datepart(dy,getdate())+1 dy
 from t1
) tmp1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 union all
 select dateadd(dd,1,dy), yr
 from x
 where year(dateadd(dd,1,dy)) = yr
)
 select x.dy
 from x
 option (maxrecursion 400)

 DY

 01-JAN-2005
 …
 15-FEB-2005
 …
 22-NOV-2005
 …
 31-DEC-2005

Finally, use the DATENAME function to keep only rows that are Fridays. For this solution to work, you
must set MAXRECURSION to at least 366 (the filter on the year portion of the current year, in
recursive view X, guarantees you will never generate more than 366 rows).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.6. Determining the Date of the First and Last
Occurrence of a Specific Weekday in a Month

Problem

You want to find, for example, the first and last Mondays of the current month.

Solution

The choice to use Monday and the current month is arbitrary; you can use the solutions presented in
this recipe for any weekday and any month. Because each weekday is seven days apart from itself,
once you have the first instance of a weekday, you can add 7 days to get the second and 14 days to
get the third. Likewise, if you have the last instance of a weekday in a month, you can subtract 7
days to get the third and subtract 14 days to get the second.

DB2

Use the recursive WITH clause to generate each day in the current month and use a CASE expression
to flag all Mondays. The first and last Mondays will be the earliest and latest of the flagged dates:

 1 with x (dy,mth,is_monday)
 2 as (
 3 select dy,month(dy),
 4 case when dayname(dy)='Monday'
 5 then 1 else 0
 6 end
 7 from (
 8 select (current_date-day(current_date) day +1 day) dy
 9 from t1
 10) tmp1
 11 union all
 12 select (dy +1 day), mth,
 13 case when dayname(dy +1 day)='Monday'
 14 then 1 else 0
 15 end
 16 from x
 17 where month(dy +1 day) = mth
 18)
 19 select min(dy) first_monday, max(dy) last_monday
 20 from x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 21 where is_monday = 1

Oracle

Use the functions NEXT_DAY and LAST_DAY, together with a bit of clever date arithmetic, to find the
first and last Mondays of the current month:

 select next_day(trunc(sysdate,'mm')-1,'MONDAY') first_monday,
 next_day(last_day(trunc(sysdate,'mm'))-7,'MONDAY') last_monday
 from dual

PostgreSQL

Use the function DATE_TRUNC to find the first day of the month. Once you have the first day of the
month, you can use simple arithmetic involving the numeric values of weekdays (SunSat is 17) to
find the first and last Mondays of the current month:

 1 select first_monday,
 2 case to_char(first_monday+28,'mm')
 3 when mth then first_monday+28
 4 else first_monday+21
 5 end as last_monday
 6 from (
 7 select case sign(cast(to_char(dy,'d') as integer)-2)
 8 when 0
 9 then dy
 10 when -1
 11 then dy+abs(cast(to_char(dy,'d') as integer)-2)
 12 when 1
 13 then (7-(cast(to_char(dy,'d') as integer)-2))+dy
 14 end as first_monday,
 15 mth
 16 from (
 17 select cast(date_trunc('month',current_date) as date) as dy,
 18 to_char(current_date,'mm') as mth
 19 from t1
 20) x
 21) y

MySQL

Use the ADDDATE function to find the first day of the month. Once you have the first day of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

month, you can use simple arithmetic on the numeric values of weekdays (SunSat is 06) to find the
first and last Mondays of the current month:

 1 select first_monday,
 2 case month(adddate(first_monday,28))
 3 when mth then adddate(first_monday,28)
 4 else adddate(first_monday,21)
 5 end last_monday
 6 from (
 7 select case sign(dayofweek(dy)-2)
 8 when 0 then dy
 9 when -1 then adddate(dy,abs(dayofweek(dy)-2))
 10 when 1 then adddate(dy,(7-(dayofweek(dy)-2)))
 11 end first_monday,
 12 mth
 13 from (
 14 select adddate(adddate(current_date,-day(current_date)),1) dy,
 15 month(current_date) mth
 16 from t1
 17) x
 18) y

SQL Server

Use the recursive WITH clause to generate each day in the current month, and then use a CASE
expression to flag all Mondays. The first and last Mondays will be the earliest and latest of the flagged
dates:

 1 with x (dy,mth,is_monday)
 2 as (
 3 select dy,mth,
 4 case when datepart(dw,dy) = 2
 5 then 1 else 0
 6 end
 7 from (
 8 select dateadd(day,1,dateadd(day,-day(getdate()),getdate())) dy,
 9 month(getdate()) mth
 10 from t1
 11) tmp1
 12 union all
 13 select dateadd(day,1,dy),
 14 mth,
 15 case when datepart(dw,dateadd(day,1,dy)) = 2
 16 then 1 else 0
 17 end
 18 from x
 19 where month(dateadd(day,1,dy)) = mth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 20)
 21 select min(dy) first_monday,
 22 max(dy) last_monday
 23 from x
 24 where is_monday = 1

Discussion

DB2 and SQL Server

DB2 and SQL Server use different functions to solve this problem, but the technique is exactly the
same. If you eyeball both solutions you'll see the only difference between the two is the way dates
are added. This discussion will cover both solutions, using the DB2 solution's code to show the results
of intermediate steps.

If you do not have access to the recursive WITH clause in the version of SQL
Server or DB2 that you are running, you can use the PostgreSQL technique
instead.

The first step in finding the first and last Mondays of the current month is to return the first day of
the month. Inline view TMP1 in recursive view X finds the first day of the current month by first
finding the current date, specifically, the day of the month for the current date. The day of the month
for the current date represents how many days into the month you are (e.g., April 10th is the 10th
day of the April). If you subtract this day of the month value from the current date, you end up at
the last day of the previous month (e.g., subtracting 10 from April 10th puts you at the last day of
March). After this subtraction, simply add one day to arrive at the first day of the current month:

 select (current_date-day(current_date) day +1 day) dy
 from t1

 DY

 01-JUN-2005

Next, find the month for the current date using the MONTH function and a simple CASE expression to
determine whether or not the first day of the month is a Monday:

 select dy, month(dy) mth,
 case when dayname(dy)='Monday'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 then 1 else 0
 end is_monday
 from (
 select (current_date-day(current_date) day +1 day) dy
 from t1
) tmp1

 DY MTH IS_MONDAY
 ----------- --- ----------
 01-JUN-2005 6 0

Then use the recursive capabilities of the WITH clause to repeatedly add one day to the first day of
the month until you're no longer in the current month. Along the way, you will use a CASE expression
to determine which days in the month are Mondays (Mondays will be flagged with "1"). A portion of
the output from recursive view X is shown below:

 with x (dy,mth,is_monday)
 as (
 select dy,month(dy) mth,
 case when dayname(dy)='Monday'
 then 1 else 0
 end is_monday
 from (
 select (current_date-day(current_date) day +1 day) dy
 from t1
) tmp1
 union all
 select (dy +1 day), mth,
 case when dayname(dy +1 day)='Monday'
 then 1 else 0
 end
 from x
 where month(dy +1 day) = mth
)
 select *
 from x

 DY MTH IS_MONDAY
 ----------- --- ----------
 01-JUN-2005 6 0
 02-JUN-2005 6 0
 03-JUN-2005 6 0
 04-JUN-2005 6 0
 05-JUN-2005 6 0
 06-JUN-2005 6 1
 07-JUN-2005 6 0
 08-JUN-2005 6 0
 …

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Only Mondays will have a value of 1 for IS_MONDAY, so the final step is to use the aggregate
functions MIN and MAX on rows where IS_MONDAY is 1 to find the first and last Mondays of the
month.

Oracle

The function NEXT_DAY makes this problem easy to solve. To find the first Monday of the current
month, first return the last day of the prior month via some date arithmetic involving the TRUNC
function:

 select trunc(sysdate,'mm')-1 dy
 from dual

 DY

 31-MAY-2005

Then use the NEXT_DAY function to find the first Monday that comes after the last day of the
previous month (i.e., the first Monday of the current month):

 select next_day(trunc(sysdate,'mm')-1,'MONDAY') first_monday
 from dual

 FIRST_MONDAY

 06-JUN-2005

To find the last Monday of the current month, start by returning the first day of the current month by
using the TRUNC function:

 select trunc(sysdate,'mm') dy
 from dual

 DY

 01-JUN-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next step is to find the last week (the last seven days) of the month. Use the LAST_DAY function
to find the last day of the month, and then subtract seven days:

 select last_day(trunc(sysdate,'mm'))-7 dy
 from dual

 DY

 23-JUN-2005

If it isn't immediately obvious, you go back seven days from the last day of the month to ensure that
you will have at least one of any weekday left in the month. The last step is to use the function
NEXT_DAY to find the next (and last) Monday of the month:

 select next_day(last_day(trunc(sysdate,'mm'))-7,'MONDAY') last_monday
 from dual

 LAST_MONDAY

 27-JUN-2005

PostgreSQL and MySQL

PostgreSQL and MySQL also share the same solution approach. The difference is in the functions that
you invoke. Despite their lengths, the respective queries are extremely simple; little overhead is
involved in finding the first and last Mondays of the current month.

The first step is to find the first day of the current month. The next step is to find the first Monday of
the month. Since there is no function to find the next date for a given weekday, you need to use a
little arithmetic. The CASE expression beginning on line 7 (of either solution) evaluates the difference
between the numeric value for the weekday of the first day of the month and the numeric value
corresponding to Monday. Given that the function TO_CHAR (PostgresSQL), when called with the 'D'
or 'd' format, and the function DAYOFWEEK (MySQL) will return a numeric value from 1 to 7
representing days Sunday to Saturday; Monday is always represented by 2. The first test evaluated
by CASE is the SIGN of the numeric value of the first day of the month (whatever it may be) minus
the numeric value of Monday (2). If the result is 0, then the first day of the month falls on a Monday
and that is the first Monday of the month. If the result is1, then the first day of the month falls on a
Sunday and to find the first Monday of the month simply add the difference in days between 2 and 1
(numeric values of Monday and Sunday, respectively) to the first day of the month.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are having trouble understanding how this works, forget the weekday
names and just do the math. For example, say you happen to be starting on a
Tuesday and you are looking for the next Friday. When using TO_CHAR with
the 'd' format, or DAYOFWEEK, Friday is 6 and Tuesday is 3. To get to 6 from 3,
simply take the difference (63 = 3) and add it to the smaller value ((63) + 3 =
6). So, regardless of the actual dates, if the numeric value of the day you are
starting from is less than the numeric value of the day you are searching for,
adding the difference between the two dates to the date you are starting from
will get you to the date you are searching for.

If the result from SIGN is 1, then the first day of the month falls between Tuesday and Saturday
(inclusive). When the first day of the month has a numeric value greater than 2 (Monday), subtract
from 7 the difference between the numeric value of the first day of the month and the numeric value
of Monday (2), and then add that value to the first day of the month. You will have arrived at the day
of the week that you are after, in this case Monday.

Again, if you are having trouble understanding how this works, forget the
weekday names and just do the math. For example, suppose you want to find
the next Tuesday and you are starting from Friday. Tuesday (3) is less than
Friday (6). To get to 3 from 6 subtract the difference between the two values
from 7 (7(|36|) = 4) and add the result (4) to the start day Friday. (The
vertical bars in |3-6| generate the absolute value of that difference.) Here,
you're not adding 4 to 6 (which will give you 10), you are adding four days to
Friday, which will give you the next Tuesday.

The idea behind the CASE expression is to create a sort of a "next day" function for PostgreSQL and
MySQL. If you do not start with the first day of the month, the value for DY will be the value returned
by CURRENT_DATE and the result of the CASE expression will return the date of the next Monday
starting from the current date (unless CURRENT_DATE is a Monday, then that date will be returned).

Now that you have the first Monday of the month, add either 21 or 28 days to find the last Monday of
the month. The CASE expression in lines 25 determines whether to add 21 or 28 days by checking to
see whether 28 days takes you into the next month. The CASE expression does this through the
following process:

It adds 28 to the value of FIRST_MONDAY.1.

Using either TO_CHAR (PostgreSQL) or MONTH, the CASE expression extracts the name of the
current month from result of FIRST_MONDAY + 28.

2.

The result from Step 2 is compared to the value MTH from the inline view. The value MTH is the
name of the current month as derived from CURRENT_ DATE. If the two month values match,
then the month is large enough for you to need to add 28 days, and the CASE expression
returns FIRST_MONDAY + 28. If the two month values do not match, then you do not have
room to add 28 days, and the CASE expression returns FIRST_MONDAY + 21 days instead. It is
convenient that our months are such that 28 and 21 are the only two possible values you need
worry about adding.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can extend the solution by adding 7 and 14 days to find the second and
third Mondays of the month, respectively.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.7. Creating a Calendar

Problem

You want to create a calendar for the current month. The calendar should be formatted like a
calendar you might have on your desk seven columns across, (usually) five rows down.

Solution

Each solution will look a bit different, but they all solve the problem the same way: return each day
for the current month, and then pivot on the day of the week for each week in the month to create a
calendar.

There are different formats available for calendars. For example, the Unix cal command formats the
days from Sunday to Saturday. The examples in this recipe are based on ISO weeks, so the Monday
through Friday format is the most convenient to generate. Once you become comfortable with the
solutions, you'll see that reformatting however you like is simply a matter of modifying the values
assigned by the ISO week before pivoting.

As you begin to use different types of formatting with SQL to create readable
output, you will notice your queries becoming longer. Don't let those long
queries intimidate you; the queries presented for this recipe are extremely
simple once broken down and run piece by piece.

DB2

Use the recursive WITH clause to return every day in the current month. Then pivot on the day of the
week using CASE and MAX:

 1 with x(dy,dm,mth,dw,wk)
 2 as (
 3 select (current_date -day(current_date) day +1 day) dy,
 4 day((current_date -day(current_date) day +1 day)) dm,
 5 month(current_date) mth,
 6 dayofweek(current_date -day(current_date) day +1 day) dw,
 7 week_iso(current_date -day(current_date) day +1 day) wk
 8 from t1
 9 union all
 10 select dy+1 day, day(dy+1 day), mth,
 11 dayofweek(dy+1 day), week_iso(dy+1 day)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 12 from x
 13 where month(dy+1 day) = mth
 14)
 15 select max(case dw when 2 then dm end) as Mo,
 16 max(case dw when 3 then dm end) as Tu,
 17 max(case dw when 4 then dm end) as We,
 18 max(case dw when 5 then dm end) as Th,
 19 max(case dw when 6 then dm end) as Fr,
 20 max(case dw when 7 then dm end) as Sa,
 21 max(case dw when 1 then dm end) as Su
 22 from x
 23 group by wk
 24 order by wk

Oracle

Use the recursive CONNECT BY clause to return each day in the current month. Then pivot on the
day of the week using CASE and MAX:

 1 with x
 2 as (
 3 select *
 4 from (
 5 select to_char(trunc(sysdate,'mm')+level-1,'iw') wk,
 6 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
 7 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,
 8 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
 9 to_char(sysdate,'mm') mth
 10 from dual
 11 connect by level <= 31
 12)
 13 where curr_mth = mth
 14)
 15 select max(case dw when 2 then dm end) Mo,
 16 max(case dw when 3 then dm end) Tu,
 17 max(case dw when 4 then dm end) We,
 18 max(case dw when 5 then dm end) Th,
 19 max(case dw when 6 then dm end) Fr,
 20 max(case dw when 7 then dm end) Sa,
 21 max(case dw when 1 then dm end) Su
 22 from x
 23 group by wk
 24 order by wk

PostgreSQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the function GENERATE_SERIES to return every day in the current month. Then pivot on the day
of the week using MAX and CASE:

 1 select max(case dw when 2 then dm end) as Mo,
 2 max(case dw when 3 then dm end) as Tu,
 3 max(case dw when 4 then dm end) as We,
 4 max(case dw when 5 then dm end) as Th,
 5 max(case dw when 6 then dm end) as Fr,
 6 max(case dw when 7 then dm end) as Sa,
 7 max(case dw when 1 then dm end) as Su
 8 from (
 9 select *
 10 from (
 11 select cast(date_trunc('month',current_date) as date)+x.id,
 12 to_char(
 13 cast(
 14 date_trunc('month',current_date)
 15 as date)+x.id,'iw') as wk,
 16 to_char(
 17 cast(
 18 date_trunc('month',current_date)
 19 as date)+x.id,'dd') as dm,
 20 cast(
 21 to_char(
 22 cast(
 23 date_trunc('month',current_date)
 24 as date)+x.id,'d') as integer) as dw,
 25 to_char(
 26 cast(
 27 date_trunc('month',current_date)
 28 as date)+x.id,'mm') as curr_mth,
 29 to_char(current_date,'mm') as mth
 30 from generate_series (0,31) x(id)
 31) x
 32 where mth = curr_mth
 33) y
 34 group by wk
 35 order by wk

Mysol

Use table T500 to return each day in the current month. Then pivot on the day of the week using
MAX and CASE:

 1 select max(case dw when 2 then dm end) as Mo,
 2 max(case dw when 3 then dm end) as Tu,
 3 max(case dw when 4 then dm end) as We,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 max(case dw when 5 then dm end) as Th,
 5 max(case dw when 6 then dm end) as Fr,
 6 max(case dw when 7 then dm end) as Sa,
 7 max(case dw when 1 then dm end) as Su
 8 from (
 9 select date_format(dy,'%u') wk,
 10 date_format(dy,'%d') dm,
 11 date_format(dy,'%w')+1 dw
 12 from (
 13 select adddate(x.dy,t500.id-1) dy,
 14 x.mth
 15 from (
 16 select adddate(current_date,-dayofmonth(current_date)+1) dy,
 17 date_format(
 18 adddate(current_date,
 19 -dayofmonth(current_date)+1),
 20 '%m') mth
 21 from t1
 22) x,
 23 t500
 24 where t500.id <= 31
 25 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth
 26) y
 27) z
 28 group by wk
 29 order by wk

SQL Server

Use the recursive WITH clause to return every day in the current month. Then pivot on the day of the
week using CASE and MAX:

 1 with x(dy,dm,mth,dw,wk)
 2 as (
 3 select dy,
 4 day(dy) dm,
 5 datepart(m,dy) mth,
 6 datepart(dw,dy) dw,
 7 case when datepart(dw,dy) = 1
 8 then datepart(ww,dy)-1
 9 else datepart(ww,dy)
 10 end wk
 11 from (
 12 select dateadd(day,-day(getdate())+1,getdate()) dy
 13 from t1
 14) x
 15 union all
 16 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 17 datepart(dw,dateadd(d,1,dy)),
 18 case when datepart(dw,dateadd(d,1,dy)) = 1
 19 then datepart(wk,dateadd(d,1,dy))-1
 20 else datepart(wk,dateadd(d,1,dy))
 21 end
 22 from x
 23 where datepart(m,dateadd(d,1,dy)) = mth
 24)
 25 select max(case dw when 2 then dm end) as Mo,
 26 max(case dw when 3 then dm end) as Tu,
 27 max(case dw when 4 then dm end) as We,
 28 max(case dw when 5 then dm end) as Th,
 29 max(case dw when 6 then dm end) as Fr,
 30 max(case dw when 7 then dm end) as Sa,
 31 max(case dw when 1 then dm end) as Su
 32 from x
 33 group by wk
 34 order by wk

Discussion

DB2

The first step is to return each day in the month for which you want to create a calendar. Do that
using the recursive WITH clause (if you don't have WITH available, you can use a pivot table, such as
T500, as in the MySQL solution). Along with each day of the month (alias DM) you will need to return
different parts of each date: the day of the week (alias DW), the current month you are working with
(alias MTH), and the ISO week for each day of the month (alias WK). The results of the recursive
view X prior to recursion taking place (the upper portion of the UNION ALL) are shown below:

 select (current_date -day(current_date) day +1 day) dy,
 day((current_date -day(current_date) day +1 day)) dm,
 month(current_date) mth,
 dayofweek(current_date -day(current_date) day +1 day) dw,
 week_iso(current_date -day(current_date) day +1 day) wk
 from t1

 DY DM MTH DW WK
 ----------- -- --- ---------- --
 01-JUN-2005 01 06 4 22

The next step is to repeatedly increase the value for DM (move through the days of the month) until
you are no longer in the current month. As you move through each day in the month, you will also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

return the day of the week that each day is, and which ISO week the current day of the month falls
into. Partial results are shown below:

 with x(dy,dm,mth,dw,wk)
 as (
 select (current_date -day(current_date) day +1 day) dy,
 day((current_date -day(current_date) day +1 day)) dm,
 month(current_date) mth,
 dayofweek(current_date -day(current_date) day +1 day) dw,
 week_iso(current_date -day(current_date) day +1 day) wk
 from t1
 union all
 select dy+1 day, day(dy+1 day), mth,
 dayofweek(dy+1 day), week_iso(dy+1 day)
 from x
 where month(dy+1 day) = mth
)
 select *
 from x

 DY DM MTH DW WK
 ----------- -- --- ---------- --
 01-JUN-2005 01 06 4 22
 02-JUN-2005 02 06 5 22
 …
 21-JUN-2005 21 06 3 25
 22-JUN-2005 22 06 4 25
 …
 30-JUN-2005 30 06 5 26

What you are returning at this point are: each day for the current month, the two-digit numeric day
of the month, the two-digit numeric month, the one-digit day of the week (17 for SunSat), and the
two-digit ISO week each day falls into. With all this information available, you can use a CASE
expression to determine which day of the week each value of DM (each day of the month) falls into.
A portion of the results is shown below:

 with x(dy,dm,mth,dw,wk)
 as (
 select (current_date -day(current_date) day +1 day) dy,
 day((current_date -day(current_date) day +1 day)) dm,
 month(current_date) mth,
 dayofweek(current_date -day(current_date) day +1 day) dw,
 week_iso(current_date -day(current_date) day +1 day) wk
 from t1
 union all
 select dy+1 day, day(dy+1 day), mth,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dayofweek(dy+1 day), week_iso(dy+1 day)
 from x
 where month(dy+1 day) = mth
)
 select wk,
 case dw when 2 then dm end as Mo,
 case dw when 3 then dm end as Tu,
 case dw when 4 then dm end as We,
 case dw when 5 then dm end as Th,
 case dw when 6 then dm end as Fr,
 case dw when 7 then dm end as Sa,
 case dw when 1 then dm end as Su
 from x

 WK MO TU WE TH FR SA SU
 -- -- -- -- -- -- -- --
 22 01
 22 02
 22 03
 22 04
 22 05
 23 06
 23 07
 23 08
 23 09
 23 10
 23 11
 23 12

As you can see from the partial output, every day in each week is returned as a row. What you want
to do now is to group the days by week, and then collapse all the days for each week into a single
row. Use the aggregate function MAX, and group by WK (the ISO week) to return all the days for a
week as one row. To properly format the calendar and ensure that the days are in the right order,
order the results by WK. The final output is shown below:

 with x(dy,dm,mth,dw,wk)
 as (
 select (current_date -day(current_date) day +1 day) dy,
 day((current_date -day(current_date) day +1 day)) dm,
 month(current_date) mth,
 dayofweek(current_date -day(current_date) day +1 day) dw,
 week_iso(current_date -day(current_date) day +1 day) wk
 from t1
 union all
 select dy+1 day, day(dy+1 day), mth,
 dayofweek(dy+1 day), week_iso(dy+1 day)
 from x
 where month(dy+1 day) = mth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

)
 select max(case dw when 2 then dm end) as Mo,
 max(case dw when 3 then dm end) as Tu,
 max(case dw when 4 then dm end) as We,
 max(case dw when 5 then dm end) as Th,
 max(case dw when 6 then dm end) as Fr,
 max(case dw when 7 then dm end) as Sa,
 max(case dw when 1 then dm end) as Su
 from x
 group by wk
 order by wk

 MO TU WE TH FR SA SU
 -- -- -- -- -- -- --
 01 02 03 04 05
 06 07 08 09 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30

Oracle

Begin by using the recursive CONNECT BY clause to generate a row for each day in the month for
which you wish to generate a calendar. If you aren't running at least Oracle9i Database, you can't
use CONNECT BY this way. Instead, you can use a pivot table, such as T500 in the MySQL solution.

Along with each day of the month, you will need to return different bits of information for each day:
the day of the month (alias DM), the day of the week (alias DW), the current month you are working
with (alias MTH), and the ISO week for each day of the month (alias WK). The results of the WITH
view X for the first day of the current month are shown below:

 select trunc(sysdate,'mm') dy,
 to_char(trunc(sysdate,'mm'),'dd') dm,
 to_char(sysdate,'mm') mth,
 to_number(to_char(trunc(sysdate,'mm'),'d')) dw,
 to_char(trunc(sysdate,'mm'),'iw') wk
 from dual

 DY DM MT DW WK
 ----------- -- -- ---------- --
 01-JUN-2005 01 06 4 22

The next step is to repeatedly increase the value for DM (move through the days of the month) until
you are no longer in the current month. As you move through each day in the month, you will also
return the day of the week for each day and the ISO week into which the current day falls. Partial

http://lib.ommolketab.ir
http://lib.ommolketab.ir

results are shown below (the full date for each day is added below for readability):

 with x
 as (
 select *
 from (
 select trunc(sysdate,'mm')+level-1 dy,
 to_char(trunc(sysdate,'mm')+level-1,'iw') wk,
 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,
 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
 to_char(sysdate,'mm') mth
 from dual
 connect by level <= 31
)
 where curr_mth = mth
)
 select *
 from x

 DY WK DM DW CU MT
 ----------- -- -- ---------- -- --
 01-JUN-2005 22 01 4 06 06
 02-JUN-2005 22 02 5 06 06
 …
 21-JUN-2005 25 21 3 06 06
 22-JUN-2005 25 22 4 06 06
 …
 30-JUN-2005 26 30 5 06 06

What you are returning at this point is one row for each day of the current month. In that row you
have: the two-digit numeric day of the month, the two-digit numeric month, the one-digit day of the
week (17 for SunSat), and the two-digit ISO week number. With all this information available, you
can use a CASE expression to determine which day of the week each value of DM (each day of the
month) falls into. A portion of the results is shown below:

 with x
 as (
 select *
 from (
 select trunc(sysdate,'mm')+level-1 dy,
 to_char(trunc(sysdate,'mm')+level-1,'iw') wk,
 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,
 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
 to_char(sysdate,'mm') mth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from dual
 connect by level <= 31
)
 where curr_mth = mth
)
 select wk,
 case dw when 2 then dm end as Mo,
 case dw when 3 then dm end as Tu,
 case dw when 4 then dm end as We,
 case dw when 5 then dm end as Th,
 case dw when 6 then dm end as Fr,
 case dw when 7 then dm end as Sa,
 case dw when 1 then dm end as Su
 from x

 WK MO TU WE TH FR SA SU
 -- -- -- -- -- -- -- --
 22 01
 22 02
 22 03
 22 04
 22 05
 23 06
 23 07
 23 08
 23 09
 23 10
 23 11
 23 12

As you can see from the partial output, every day in each week is returned as a row, but the day
number is in one of seven columns corresponding to the day of the week. Your task now is to
consolidate the days into one row for each week. Use the aggregate function MAX and group by WK
(the ISO week) to return all the days for a week as one row. To ensure the days are in the right
order, order the results by WK. The final output is shown below:

 with x
 as (
 select *
 from (
 select to_char(trunc(sysdate,'mm')+level-1,'iw') wk,
 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,
 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
 to_char(sysdate,'mm') mth
 from dual
 connect by level <= 31
)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 where curr_mth = mth
)
 select max(case dw when 2 then dm end) Mo,
 max(case dw when 3 then dm end) Tu,
 max(case dw when 4 then dm end) We,
 max(case dw when 5 then dm end) Th,
 max(case dw when 6 then dm end) Fr,
 max(case dw when 7 then dm end) Sa,
 max(case dw when 1 then dm end) Su
 from x
 group by wk
 order by wk

 MO TU WE TH FR SA SU
 -- -- -- -- -- -- --
 01 02 03 04 05
 06 07 08 09 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30

PostgreSQL

Use the GENERATE_SERIES function to return one row for each day in the month. If your version of
PostgreSQL doesn't support GENERATE_SERIES, then query a pivot table as shown in the MySQL
solution.

For each day of the month, return the following information: the day of the month (alias DM), the
day of the week (alias DW), the current month you are working with (alias MTH), and the ISO week
for each day of the month (alias WK). The formatting and explicit casting makes this solution tough
on the eyes, but it's really quite simple. Partial results from inline view X are shown below:

 select cast(date_trunc('month',current_date) as date)+x.id as dy,
 to_char(
 cast(
 date_trunc('month',current_date)
 as date)+x.id,'iw') as wk,
 to_char(
 cast(
 date_trunc('month',current_date)
 as date)+x.id,'dd') as dm,
 cast(
 to_char(
 cast(
 date_trunc('month',current_date)
 as date)+x.id,'d') as integer) as dw,
 to_char(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cast(
 date_trunc('month',current_date)
 as date)+x.id,'mm') as curr_mth,
 to_char(current_date,'mm') as mth
 from generate_series (0,31) x(id)

 DY WK DM DW CU MT
 ----------- -- -- ---------- -- --
 01-JUN-2005 22 01 4 06 06
 02-JUN-2005 22 02 5 06 06
 …
 21-JUN-2005 25 21 3 06 06
 22-JUN-2005 25 22 4 06 06
 …
 30-JUN-2005 26 30 5 06 06

Notice that as you move through each day in the month, you will also return the day of the week and
the ISO week number. To ensure you return days only for the month you are interested in, return
only rows where CURR_MTH = MTH (the month each day belongs to should be the month the current
date belongs to). What you are returning at this point is, for each day for the current month: the
two-digit numeric day of the month, the two-digit numeric month, the one-digit day of the week (17
for Sun Sat), and the two-digit ISO week. Your next step is to use a CASE expression to determine
which day of the week each value of DM (each day of the month) falls into. A portion of the results is
shown below:

 select case dw when 2 then dm end as Mo,
 case dw when 3 then dm end as Tu,
 case dw when 4 then dm end as We,
 case dw when 5 then dm end as Th,
 case dw when 6 then dm end as Fr,
 case dw when 7 then dm end as Sa,
 case dw when 1 then dm end as Su
 from (
 select *
 from (
 select cast(date_trunc('month',current_date) as date)+x.id,
 to_char(
 cast(
 date_trunc('month',current_date)
 as date)+x.id,'iw') as wk,
 to_char(
 cast(
 date_trunc('month',current_date)
 as date)+x.id,'dd') as dm,
 cast(
 to_char(
 cast(
 date_trunc('month',current_date)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 as date)+x.id,'d') as integer) as dw,
 to_char(
 cast(
 date_trunc('month',current_date)
 as date)+x.id,'mm') as curr_mth,
 to_char(current_date,'mm') as mth
 from generate_series (0,31) x(id)
) x
 where mth = curr_mth
) y

 WK MO TU WE TH FR SA SU
 -- -- -- -- -- -- -- --
 22 01
 22 02
 22 03
 22 04
 22 05
 23 06
 23 07
 23 08
 23 09
 23 10
 23 11
 23 12

As you can see from the partial output, every day in each week is returned as a row, and each day
number falls into the column corresponding to its day of the week. Your job now is to collapse the
days into one row for each week. To that end, use the aggregate function MAX and group the rows by
WK (the ISO week). The result will be all the days for each week returned as one row as you would
see on a calendar. To ensure the days are in the right order, order the results by WK. The final
output is shown below:

 select max(case dw when 2 then dm end) as Mo,
 max(case dw when 3 then dm end) as Tu,
 max(case dw when 4 then dm end) as We,
 max(case dw when 5 then dm end) as Th,
 max(case dw when 6 then dm end) as Fr,
 max(case dw when 7 then dm end) as Sa,
 max(case dw when 1 then dm end) as Su
 from (
 select *
 from (
 select cast(date_trunc('month',current_date) as date)+x.id,
 to_char(
 cast(
 date_trunc('month',current_date)
 as date)+x.id,'iw') as wk,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 to_char(
 cast(
 date_trunc('month',current_date)
 as date)+x.id,'dd') as dm,
 cast(
 to_char(
 cast(
 date_trunc('month',current_date)
 as date)+x.id,'d') as integer) as dw,
 to_char(
 cast(
 date_trunc('month',current_date)
 as date)+x.id,'mm') as curr_mth,
 to_char(current_date,'mm') as mth
 from generate_series (0,31) x(id)
) x
 where mth = curr_mth
) y
 group by wk
 order by wk

 MO TU WE TH FR SA SU
 -- -- -- -- -- -- --
 01 02 03 04 05
 06 07 08 09 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30

MySQL

The first step is to return a row for each day in the month for which you want to create a calendar.
To that end, query against table T500. By adding each value returned by T500 to the first day of the
month, you can return each day in the month.

For each date, you will need to return the following bits of information: the day of the month (alias
DM), the day of the week (alias DW), the current month you are working with (alias MTH), and the
ISO week for each day of the month (alias WK). Inline view X returns the first day of the current
month along with the two-digit numeric value for the current month. Results are shown below:

 select adddate(current_date,-dayofmonth(current_date)+1) dy,
 date_format(
 adddate(current_date,
 -dayofmonth(current_date)+1),
 '%m') mth
 from t1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DY MT
 ----------- --
 01-JUN-2005 06

The next step is to move through the month, starting from the first day and returning each day in the
month. Notice that as you move through each day in the month, you will also return the
corresponding day of the week and ISO week number. To ensure you return days only for the month
you are interested in, return only rows where the month of the day returned is equal to the current
month (the month each day belongs to should be the month the current date belongs to). A portion
of the rows from inline view Y is shown below:

 select date_format(dy,'%u') wk,
 date_format(dy,'%d') dm,
 date_format(dy,'%w')+1 dw
 from (
 select adddate(x.dy,t500.id-1) dy,
 x.mth
 from (
 select adddate(current_date,-dayofmonth(current_date)+1) dy,
 date_format(
 adddate(current_date,
 -dayofmonth(current_date)+1),
 '%m') mth
 from t1
) x,
 t500
 where t500.id <= 31
 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth
) y

 WK DM DW
 -- -- ----------
 22 01 4
 22 02 5
 …
 25 21 3
 25 22 4
 …
 26 30 5

For each day for the current month you now have: the two-digit numeric day of the month (DM), the
one-digit day of the week (DW), and the two-digit ISO week number (WK). Using this information,
you can write a CASE expression to determine which day of the week each value of DM (each day of
the month) falls into. A portion of the results is shown below:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select case dw when 2 then dm end as Mo,
 case dw when 3 then dm end as Tu,
 case dw when 4 then dm end as We,
 case dw when 5 then dm end as Th,
 case dw when 6 then dm end as Fr,
 case dw when 7 then dm end as Sa,
 case dw when 1 then dm end as Su
 from (
 select date_format(dy,'%u') wk,
 date_format(dy,'%d') dm,
 date_format(dy,'%w')+1 dw
 from (
 select adddate(x.dy,t500.id-1) dy,
 x.mth
 from (
 select adddate(current_date,-dayofmonth(current_date)+1) dy,
 date_format(
 adddate(current_date,
 -dayofmonth(current_date)+1),
 '%m') mth
 from t1
) x,
 t500
 where t500.id <= 31
 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth
) y
) z

 WK MO TU WE TH FR SA SU
 -- -- -- -- -- -- -- --
 22 01
 22 02
 22 03
 22 04
 22 05
 23 06
 23 07
 23 08
 23 09
 23 10
 23 11
 23 12

As you can see from the partial output, every day in each week is returned as a row. Within each
row, the day number falls into the column corresponding to the appropriate weekday. Now you need
to consolidate the days into one row for each week. To do that, use the aggregate function MAX, and
group the rows by WK (the ISO week). To ensure the days are in the right order, order the results by
WK. The final output is shown below:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select max(case dw when 2 then dm end) as Mo,
 max(case dw when 3 then dm end) as Tu,
 max(case dw when 4 then dm end) as We,
 max(case dw when 5 then dm end) as Th,
 max(case dw when 6 then dm end) as Fr,
 max(case dw when 7 then dm end) as Sa,
 max(case dw when 1 then dm end) as Su
 from (
 select date_format(dy,'%u') wk,
 date_format(dy,'%d') dm,
 date_format(dy,'%w')+1 dw
 from (
 select adddate(x.dy,t500.id-1) dy,
 x.mth
 from (
 select adddate(current_date,-dayofmonth(current_date)+1) dy,
 date_format(
 adddate(current_date,
 -dayofmonth(current_date)+1),
 '%m') mth
 from t1
) x,
 t500
 where t500.id <= 31
 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth
) y
) z
 group by wk
 order by wk

 MO TU WE TH FR SA SU
 -- -- -- -- -- -- --
 01 02 03 04 05
 06 07 08 09 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30

SQL Server

Begin by returning one row for each day of the month. You can do that using the recursive WITH
clause. Or, if your version of SQL Server doesn't support recursive WITH, you can use a pivot table in
the same manner as the MySQL solution. For each row that you return, you will need the following
items: the day of the month (alias DM), the day of the week (alias DW), the current month you are
working with (alias MTH), and the ISO week for each day of the month (alias WK). The results of the
recursive view X prior to recursion taking place (the upper portion of the UNION ALL) are shown
below:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select dy,
 day(dy) dm,
 datepart(m,dy) mth,
 datepart(dw,dy) dw,
 case when datepart(dw,dy) = 1
 then datepart(ww,dy)-1
 else datepart(ww,dy)
 end wk
 from (
 select dateadd(day,-day(getdate())+1,getdate()) dy
 from t1
) x

 DY DM MTH DW WK
 ----------- -- --- ---------- --
 01-JUN-2005 1 6 4 23

Your next step is to repeatedly increase the value for DM (move through the days of the month) until
you are no longer in the current month. As you move through each day in the month, you will also
return the day of the week and the ISO week number. Partial results are shown below:

 with x(dy,dm,mth,dw,wk)
 as (
 select dy,
 day(dy) dm,
 datepart(m,dy) mth,
 datepart(dw,dy) dw,
 case when datepart(dw,dy) = 1
 then datepart(ww,dy)-1
 else datepart(ww,dy)
 end wk
 from (
 select dateadd(day,-day(getdate())+1,getdate()) dy
 from t1
) x
 union all
 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,
 datepart(dw,dateadd(d,1,dy)),
 case when datepart(dw,dateadd(d,1,dy)) = 1
 then datepart(wk,dateadd(d,1,dy))-1
 else datepart(wk,dateadd(d,1,dy))
 end
 from x
 where datepart(m,dateadd(d,1,dy)) = mth
)
 select *

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from x

 DY DM MTH DW WK
 ----------- -- --- ---------- --
 01-JUN-2005 01 06 4 23
 02-JUN-2005 02 06 5 23
 …
 21-JUN-2005 21 06 3 26
 22-JUN-2005 22 06 4 26
 …
 30-JUN-2005 30 06 5 27

You now have, for each day in the current month: the two-digit numeric day of the month, the two-
digit numeric month, the one-digit day of the week (17 for Sun Sat), and the two-digit ISO week
number.

Now, use a CASE expression to determine which day of the week each value of DM (each day of the
month) falls into. A portion of the results is shown below:

 with x(dy,dm,mth,dw,wk)
 as (
 select dy,
 day(dy) dm,
 datepart(m,dy) mth,
 datepart(dw,dy) dw,
 case when datepart(dw,dy) = 1
 then datepart(ww,dy)-1
 else datepart(ww,dy)
 end wk
 from (
 select dateadd(day,-day(getdate())+1,getdate()) dy
 from t1
) x
 union all
 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,
 datepart(dw,dateadd(d,1,dy)),
 case when datepart(dw,dateadd(d,1,dy)) = 1
 then datepart(wk,dateadd(d,1,dy))-1
 else datepart(wk,dateadd(d,1,dy))
 end
 from x
 where datepart(m,dateadd(d,1,dy)) = mth
)
 select case dw when 2 then dm end as Mo,
 case dw when 3 then dm end as Tu,
 case dw when 4 then dm end as We,
 case dw when 5 then dm end as Th,
 case dw when 6 then dm end as Fr,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 case dw when 7 then dm end as Sa,
 case dw when 1 then dm end as Su
 from x

 WK MO TU WE TH FR SA SU
 -- -- -- -- -- -- -- --
 22 01
 22 02
 22 03
 22 04
 22 05
 23 06
 23 07
 23 08
 23 09
 23 10
 23 11
 23 12

Every day in each week is returned as a separate row. In each row, the column containing the day
number corresponds to the day of the week. You now need to consolidate the days for each week
into one row. Do that by grouping the rows by WK (the ISO week) and applying the MAX function to
the different columns. The results will be in calendar format as shown below:

 with x(dy,dm,mth,dw,wk)
 as (
 select dy,
 day(dy) dm,
 datepart(m,dy) mth,
 datepart(dw,dy) dw,
 case when datepart(dw,dy) = 1
 then datepart(ww,dy)-1
 else datepart(ww,dy)
 end wk
 from (
 select dateadd(day,-day(getdate())+1,getdate()) dy
 from t1
) x
 union all
 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,
 datepart(dw,dateadd(d,1,dy)),
 case when datepart(dw,dateadd(d,1,dy)) = 1
 then datepart(wk,dateadd(d,1,dy))-1
 else datepart(wk,dateadd(d,1,dy))
 end
 from x
 where datepart(m,dateadd(d,1,dy)) = mth
)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select max(case dw when 2 then dm end) as Mo,
 max(case dw when 3 then dm end) as Tu,
 max(case dw when 4 then dm end) as We,
 max(case dw when 5 then dm end) as Th,
 max(case dw when 6 then dm end) as Fr,
 max(case dw when 7 then dm end) as Sa,
 max(case dw when 1 then dm end) as Su
 from x
 group by wk
 order by wk

 MO TU WE TH FR SA SU
 -- -- -- -- -- -- --
 01 02 03 04 05
 06 07 08 09 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.8. Listing Quarter Start and End Dates for the
Year

Problem

You want to return the start and end dates for each of the four quarters of a given year.

Solution

There are four quarters to a year, so you know you will need to generate four rows. After generating
the desired number of rows, simply use the date functions supplied by your RDBMS to return the
quarter the start and end dates fall into. Your goal is to produce the following result set (one again,
the choice to use the current year is arbitrary):

 QTR Q_START Q_END
 --- ----------- -----------
 1 01-JAN-2005 31-MAR-2005
 2 01-APR-2005 30-JUN-2005
 3 01-JUL-2005 30-SEP-2005
 4 01-OCT-2005 31-DEC-2005

DB2

Use table EMP and the window function ROW_NUMBER OVER to generate four rows. Alternatively,
you can use the WITH clause to generate rows (as many of the recipes do), or you can query against
any table with at least four rows. The following solution uses the ROW_NUMBER OVER approach:

 1 select quarter(dy-1 day) QTR,
 2 dy-3 month Q_start,
 3 dy-1 day Q_end
 4 from (
 5 select (current_date -
 6 (dayofyear(current_date)-1) day
 7 + (rn*3) month) dy
 8 from (
 9 select row_number()over() rn
 10 from emp
 11 fetch first 4 rows only

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 12) x
 13) y

Oracle

Use the function ADD_MONTHS to find the start and end dates for each quarter. Use ROWNUM to
represent the quarter the start and end dates belong to. The following solution uses table EMP to
generate four rows.

 1 select rownum qtr,
 2 add_months(trunc(sysdate,'y'),(rownum-1)*3) q_start,
 3 add_months(trunc(sysdate,'y'),rownum*3)-1 q_end
 4 from emp
 5 where rownum <= 4

PostgreSQL

Use the function GENERATE_SERIES to generate the required four quarters. Use the DATE_TRUNC
function to truncate the dates generated for each quarter down to year and month. Use the
TO_CHAR function to determine which quarter the start and end dates belong to:

 1 select to_char(dy,'Q') as QTR,
 2 date(
 3 date_trunc('month',dy)-(2*interval '1 month')
 4) as Q_start,
 5 dy as Q_end
 6 from (
 7 select date(dy+((rn*3) * interval '1 month'))-1 as dy
 8 from (
 9 select rn, date(date_trunc('year',current_date)) as dy
 10 from generate_series(1,4) gs(rn)
 11) x
 12) y

MySQL

Use table T500 to generate four rows (one for each quarter). Use functions DATE_ ADD and
ADDDATE to create the start and end dates for each quarter. Use the QUARTER function to determine
which quarter the start and end dates belong to:

 1 select quarter(adddate(dy,-1)) QTR,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 date_add(dy,interval -3 month) Q_start,
 3 adddate(dy,-1) Q_end
 4 from (
 5 select date_add(dy,interval (3*id) month) dy
 6 from (
 7 select id,
 8 adddate(current_date,-dayofyear(current_date)+1) dy
 9 from t500
 10 where id <= 4
 11) x
 12) y

SQL Server

Use the recursive WITH clause to generate four rows. Use the function DATEADD to find the start and
end dates. Use the function DATEPART to determine which quarter the start and end dates belong to:

 1 with x (dy,cnt)
 2 as (
 3 select dateadd(d,-(datepart(dy,getdate())-1),getdate()),
 4 1
 5 from t1
 6 union all
 7 select dateadd(m,3,dy), cnt+1
 8 from x
 9 where cnt+1 <= 4
 10)
 11 select datepart(q,dateadd(d,-1,dy)) QTR,
 1 dateadd(m,-3,dy) Q_start,
 13 dateadd(d,-1,dy) Q_end
 14 from x
 15 order by 1

Discussion

DB2

The first step is to generate four rows (with values 1 through 4) for each quarter in the year. Inline
view X uses the window function ROW_NUMBER OVER and the FETCH FIRST clause to return only
four rows from EMP. The results are shown below:

 select row_number()over() rn

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from emp
 fetch first 4 rows only

 RN
 --
 1
 2
 3
 4

The next step is to find the first day of the year, then add n months to it, where n is three times RN
(you are adding 3, 6, 9, and 12 months to the first day of the year). The results are shown below:

 select (current_date
 (dayofyear(current_date)-1) day
 + (rn*3) month) dy
 from (
 select row_number()over() rn
 from emp
 fetch first 4 rows only
) x

 DY

 01-APR-2005
 01-JUL-2005
 01-OCT-2005
 01-JAN-2005

At this point, the values for DY are one day after the end date for each quarter. The next step is to
get the start and end dates for each quarter. Subtract one day from DY to get the end of each
quarter, and subtract three months from DY to get the start of each quarter. Use the QUARTER
function on DY-1 (the end date for each quarter) to determine which quarter the start and end dates
belong to.

Oracle

The combination of ROWNUM, TRUNC, and ADD_MONTHS makes this solution very easy. To find the
start of each quarter simply add n months to the first day of the year, where n is (ROWNUM-1)*3
(giving you 0,3,6,9). To find the end of each quarter add n months to the first day of the year, where
n is ROWNUM*3, and subtract one day. As an aside, when working with quarters, you may also find it
useful to use TO_CHAR and/or TRUNC with the 'q' formatting option.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PostgreSQL

The first step is to truncate the current date to the first day of the year using the DATE_TRUNC
function. Next, add n months, where n is RN (the values returned by GENERATE_SERIES) times
three, and subtract one day. The results are shown below:

 select date(dy+((rn*3) * interval '1 month'))-1 as dy
 from (
 select rn, date(date_trunc('year',current_date)) as dy
 from generate_series(1,4) gs(rn)
) x

 DY

 31-MAR-2005
 30-JUN-2005
 30-SEP-2005
 31-DEC-2005

Now that you have the end dates for each quarter, the final step is to find the start date by
subtracting two months from DY then truncating to the first day of the month by using the
DATE_TRUNC function. Use the TO_CHAR function on the end date for each quarter (DY) to
determine which quarter the start and end dates belong to.

MySQL

The first step is to find the first day of the year by using functions ADDDATE and DAYOFYEAR, then
adding n months to the first day of the year, where n is T500.ID times three, by using the DATE_ADD
function. The results are shown below:

 select date_add(dy,interval (3*id) month) dy
 from (
 select id,
 adddate(current_date,-dayofyear(current_date)+1) dy
 from t500
 where id <= 4
) x
 DY

 01-APR-2005
 01-JUL-2005
 01-OCT-2005
 01-JAN-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point the dates are one day after the end of each quarter; to find the end of each quarter,
simply subtract one day from DY. The next step is to find the start of each quarter by subtracting
three months from DY. Use the QUARTER function on the end date of each quarter to determine
which quarter the start and end dates belong to.

SQL Server

The first step is to find the first day of the year, then recursively add n months, where n is three
times the current iteration (there are four iterations, therefore, you are adding 3*1 months, 3*2
months, etc.), using the DATEADD function. The results are shown below:

 with x (dy,cnt)
 as (
 select dateadd(d,-(datepart(dy,getdate())-1),getdate()),
 1
 from t1
 union all
 select dateadd(m,3,dy), cnt+1
 from x
 where cnt+1 <= 4
)
 select dy
 from x

 DY

 01-APR-2005
 01-JUL-2005
 01-OCT-2005
 01-JAN-2005

The values for DY are one day after the end of each quarter. To get the end of each quarter, simply
subtract one day from DY by using the DATEADD function. To find the start of each quarter, use the
DATEADD function to subtract three months from DY. Use the DATEPART function on the end date for
each quarter to determine which quarter the start and end dates belong to.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.9. Determining Quarter Start and End Dates for a
Given Quarter

Problem

When given a year and quarter in the format of YYYYQ (four-digit year, one-digit quarter), you want
to return the quarter's start and end dates.

Solution

The key to this solution is to find the quarter by using the modulus function on the YYYYQ value. (As
an alternative to modulo, since the year format is four digits, you can simply substring out the last
digit to get the quarter.) Once you have the quarter, simply multiply by 3 to get the ending month for
the quarter. In the solutions that follow, inline view X will return all four year and quarter
combinations. The result set for inline view X is as follows:

 select 20051 as yrq from t1 union all
 select 20052 as yrq from t1 union all
 select 20053 as yrq from t1 union all
 select 20054 as yrq from t1
 YRQ

 20051
 20052
 20053
 20054

DB2

Use the function SUBSTR to return the year from inline view X. Use the MOD function to determine
which quarter you are looking for:

 1 select (q_end-2 month) q_start,
 2 (q_end+1 month)-1 day q_end
 3 from (
 4 select date(substr(cast(yrq as char(4)),1,4) ||'-'||
 5 rtrim(cast(mod(yrq,10)*3 as char(2))) ||'-1') q_end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6 from (
 7 select 20051 yrq from t1 union all
 8 select 20052 yrq from t1 union all
 9 select 20053 yrq from t1 union all
 10 select 20054 yrq from t1
 11) x
 12) y

Oracle

Use the function SUBSTR to return the year from inline view X. Use the MOD function to determine
which quarter you are looking for:

 1 select add_months(q_end,-2) q_start,
 2 last_day(q_end) q_end
 3 from (
 4 select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end
 5 from (
 6 select 20051 yrq from dual union all
 7 select 20052 yrq from dual union all
 8 select 20053 yrq from dual union all
 9 select 20054 yrq from dual
 10) x
 11) y

PostgreSQL

Use the function SUBSTR to return the year from the inline view X. Use the MOD function to
determine which quarter you are looking for:

 1 select date(q_end-(2*interval '1 month')) as q_start,
 2 date(q_end+interval '1 month'-interval '1 day') as q_end
 3 from (
 4 select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') as q_end
 5 from (
 6 select 20051 as yrq from t1 union all
 7 select 20052 as yrq from t1 union all
 8 select 20053 as yrq from t1 union all
 9 select 20054 as yrq from t1
 10) x
 11) y

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MySQL

Use the function SUBSTR to return the year from the inline view X. Use the MOD function to
determine which quarter you are looking for:

 1 select date_add(
 2 adddate(q_end,-day(q_end)+1),
 3 interval -2 month) q_start,
 4 q_end
 5 from (
 6 select last_day(
 7 str_to_date(
 8 concat(
 9 substr(yrq,1,4),mod(yrq,10)*3),'%Y%m')) q_end
 10 from (
 11 select 20051 as yrq from t1 union all
 12 select 20052 as yrq from t1 union all
 13 select 20053 as yrq from t1 union all
 14 select 20054 as yrq from t1
 15) x
 16) y

SQL Server

Use the function SUBSTRING to return the year from the inline view X. Use the modulus function (%)
to determine which quarter you are looking for:

 1 select dateadd(m,-2,q_end) q_start,
 2 dateadd(d,-1,dateadd(m,1,q_end)) q_end
 3 from (
 4 select cast(substring(cast(yrq as varchar),1,4)+'-'+
 5 cast(yrq%10*3 as varchar)+'-1' as datetime) q_end
 6 from (
 7 select 20051 as yrq from t1 union all
 8 select 20052 as yrq from t1 union all
 9 select 20052 as yrq from t1 union all
 10 select 20054 as yrq from t1
 11) x
 12) y

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2

The first step is to find the year and quarter you are working with. Substring out the year from inline
view X (X.YRQ) using the SUBSTR function. To get the quarter, use modulus 10 on YRQ. Once you
have the quarter, multiply by 3 to get the end month for the quarter. The results are shown below:

 select substr(cast(yrq as char(4)),1,4) yr,
 mod(yrq,10)*3 mth
 from (
 select 20051 yrq from t1 union all
 select 20052 yrq from t1 union all
 select 20053 yrq from t1 union all
 select 20054 yrq from t1
) x
 YR MTH
 ---- ------
 2005 3
 2005 6
 2005 9
 2005 12

At this point you have the year and end month for each quarter. Use those values to construct a
date, specifically, the first day of the last month for each quarter. Use the concatenation operator "||"
to glue together the year and month, then use the DATE function to convert to a date:

 select date(substr(cast(yrq as char(4)),1,4) ||'-'||
 rtrim(cast(mod(yrq,10)*3 as char(2))) ||'-1') q_end
 from (
 select 20051 yrq from t1 union all
 select 20052 yrq from t1 union all
 select 20053 yrq from t1 union all
 select 20054 yrq from t1
) x

 Q_END

 01-MAR-2005
 01-JUN-2005
 01-SEP-2005
 01-DEC-2005

The values for Q_END are the first day of the last month of each quarter. To get to the last day of the
month add one month to Q_END, then subtract one day. To find the start date for each quarter
subtract two months from Q_END.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Oracle

The first step is to find the year and quarter you are working with. Substring out the year from inline
view X (X.YRQ) using the SUBSTR function. To get the quarter, use modulus 10 on YRQ. Once you
have the quarter, multiply by 3 to get the end month for the quarter. The results are shown below:

 select substr(yrq,1,4) yr, mod(yrq,10)*3 mth
 from (
 select 20051 yrq from dual union all
 select 20052 yrq from dual union all
 select 20053 yrq from dual union all
 select 20054 yrq from dual
) x
 YR MTH
 ---- ------
 2005 3
 2005 6
 2005 9
 2005 12

At this point you have the year and end month for each quarter. Use those values to construct a
date, specifically, the first day of the last month for each quarter. Use the concatenation operator "||"
to glue together the year and month, then use the TO_DATE function to convert to a date:

 select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end
 from (
 select 20051 yrq from dual union all
 select 20052 yrq from dual union all
 select 20053 yrq from dual union all
 select 20054 yrq from dual
) x
 Q_END

 01-MAR-2005
 01-JUN-2005
 01-SEP-2005
 01-DEC-2005

The values for Q_END are the first day of the last month of each quarter. To get to the last day of the
month use the LAST_DAY function on Q_END. To find the start date for each quarter subtract two
months from Q_END using the ADD_MONTHS function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PostgreSQL

The first step is to find the year and quarter you are working with. Substring out the year from inline
view X (X.YRQ) using the SUBSTR function. To get the quarter, use modulus 10 on YRQ. Once you
have the quarter, multiply by 3 to get the end month for the quarter. The results are shown below:

 select substr(yrq,1,4) yr, mod(yrq,10)*3 mth
 from (
 select 20051 yrq from dual union all
 select 20052 yrq from dual union all
 select 20053 yrq from dual union all
 select 20054 yrq from dual
) x
 YR MTH
 ---- -------
 2005 3
 2005 6
 2005 9
 2005 12

At this point you have the year and end month for each quarter. Use those values to construct a
date, specifically, the first day of the last month for each quarter. Use the concatenation operator "||"
to glue together the year and month, then use the TO_ DATE function to convert to a date:

 select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end
 from (
 select 20051 yrq from dual union all
 select 20052 yrq from dual union all
 select 20053 yrq from dual union all
 select 20054 yrq from dual
) x

 Q_END

 01-MAR-2005
 01-JUN-2005
 01-SEP-2005
 01-DEC-2005

The values for Q_END are the first day of the last month of each quarter. To get to the last day of the
month add one month to Q_END and subtract one day. To find the start date for each quarter
subtract two months from Q_END. Cast the final result as dates.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MySQL

The first step is to find the year and quarter you are working with. Substring out the year from inline
view X (X.YRQ) using the SUBSTR function. To get the quarter, use modulus 10 on YRQ. Once you
have the quarter, multiply by 3 to get the end month for the quarter. The results are shown below:

 select substr(yrq,1,4) yr, mod(yrq,10)*3 mth
 from (
 select 20051 yrq from dual union all
 select 20052 yrq from dual union all
 select 20053 yrq from dual union all
 select 20054 yrq from dual
) x

 YR MTH
 ---- ------
 2005 3
 2005 6
 2005 9
 2005 12

At this point you have the year and end month for each quarter. Use those values to construct a
date, specifically, the last day of each quarter. Use the CONCAT function to glue together the year
and month, then use the STR_TO_DATE function to convert to a date. Use the LAST_DAY function to
find the last day for each quarter:

 select last_day(
 str_to_date(
 concat(
 substr(yrq,1,4),mod(yrq,10)*3),'%Y%m')) q_end
 from (
 select 20051 as yrq from t1 union all
 select 20052 as yrq from t1 union all
 select 20053 as yrq from t1 union all
 select 20054 as yrq from t1
) x

 Q_END

 31-MAR-2005
 30-JUN-2005
 30-SEP-2005
 31-DEC-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because you already have the end of each quarter, all that's left is to find the start date for each
quarter. Use the DAY function to return the day of the month the end of each quarter falls on, and
subtract that from Q_END using the ADDDATE function to give you the end of the prior month; add
one day to bring you to the first day of the last month of each quarter. The last step is to use the
DATE_ADD function to subtract two months from the first day of the last month of each quarter to
get you to the start date for each quarter.

SQL Server

The first step is to find the year and quarter you are working with. Substring out the year from inline
view X (X.YRQ) using the SUBSTRING function. To get the quarter, use modulus 10 on YRQ. Once
you have the quarter, multiply by 3 to get the end month for the quarter. The results are shown
below:

 select substring(yrq,1,4) yr, yrq%10*3 mth
 from (
 select 20051 yrq from dual union all
 select 20052 yrq from dual union all
 select 20053 yrq from dual union all
 select 20054 yrq from dual
) x

 YR MTH
 ---- ------
 2005 3
 2005 6
 2005 9
 2005 12

At this point, you have the year and end month for each quarter. Use those values to construct a
date, specifically, the first day of the last month for each quarter. Use the concatenation operator "+"
to glue together the year and month, then use the CAST function to convert to a date:

 select cast(substring(cast(yrq as varchar),1,4)+'-'+
 cast(yrq%10*3 as varchar)+'-1' as datetime) q_end
 from (
 select 20051 yrq from t1 union all
 select 20052 yrq from t1 union all
 select 20053 yrq from t1 union all
 select 20054 yrq from t1
) x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Q_END

 01-MAR-2005
 01-JUN-2005
 01-SEP-2005
 01-DEC-2005

The values for Q_END are the first day of the last month of each quarter. To get to the last day of the
month add one month to Q_END and subtract one day using the DATEADD function. To find the start
date for each quarter subtract two months from Q_END using the DATEADD function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.10. Filling in Missing Dates

Problem

You need to generate a row for every date (or every month, week, or year) within a given range.
Such rowsets are often used to generate summary reports. For example, you want to count the
number of employees hired every month of every year in which any employee has been hired.
Examining the dates of all the employees hired, there have been hirings from 1980 to 1983:

 select distinct
 extract(year from hiredate) as year
 from emp

 YEAR

 1980
 1981
 1982
 1983

You want to determine the number of employees hired each month from 1980 to 1983. A portion of
the desired result set is shown below:

 MTH NUM_HIRED
 ----------- ----------
 01-JAN-1981 0
 01-FEB-1981 2
 01-MAR-1981 0
 01-APR-1981 1
 01-MAY-1981 1
 01-JUN-1981 1
 01-JUL-1981 0
 01-AUG-1981 0
 01-SEP-1981 2
 01-OCT-1981 0
 01-NOV-1981 1
 01-DEC-1981 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Solution

The trick here is that you want to return a row for each month even if no employee was hired (i.e.,
the count would be zero). Because there isn't an employee hired every month between 1980 and
1983, you must generate those months yourself, and then outer join to table EMP on HIREDATE
(truncating the actual HIREDATE to its month, so it can match the generated months when possible).

DB2

Use the recursive WITH clause to generate every month (the first day of each month from January 1,
1980, to December 1, 1983). Once you have all the months for the required range of dates, outer
join to table EMP and use the aggregate function COUNT to count the number of hires for each
month:

 1 with x (start_date,end_date)
 2 as (
 3 select (min(hiredate)
 4 dayofyear(min(hiredate)) day +1 day) start_date,
 5 (max(hiredate)
 6 dayofyear(max(hiredate)) day +1 day) +1 year end_date
 7 from emp
 8 union all
 9 select start_date +1 month, end_date
 10 from x
 11 where (start_date +1 month) < end_date
 12)
 13 select x.start_date mth, count(e.hiredate) num_hired
 14 from x left join emp e
 15 on (x.start_date = (e.hiredate-(day(hiredate)-1) day))
 16 group by x.start_date
 17 order by 1

Oracle

Use the CONNECT BY clause to generate each month between 1980 and 1983. Then outer join to
table EMP and use the aggregate function COUNT to count the number of employees hired in each
month. If you are on Oracle8i Database and earlier, the ANSI outer join is not available to you, nor is
the ability to use CONNECT BY as a row generator; a simple workaround is to use a traditional pivot
table (like the one used in the MySQL solution). Following as an Oracle solution using Oracle's outer-
join syntax:

 1 with x
 2 as (
 3 select add_months(start_date,level-1) start_date

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 from (
 5 select min(trunc(hiredate,'y')) start_date,
 6 add_months(max(trunc(hiredate,'y')),12) end_date
 7 from emp
 8)
 9 connect by level <= months_between(end_date,start_date)
 10)
 11 select x.start_date MTH, count(e.hiredate) num_hired
 12 from x, emp e
 13 where x.start_date = trunc(e.hiredate(+),'mm')
 14 group by x.start_date
 15 order by 1

and here is a second Oracle solution, this time using the ANSI syntax:

 1 with x
 2 as (
 3 select add_months(start_date,level-1) start_date
 4 from (
 5 select min(trunc(hiredate,'y')) start_date,
 6 add_months(max(trunc(hiredate,'y')),12) end_date
 7 from emp
 8)
 9 connect by level <= months_between(end_date,start_date)
 10)
 11 select x.start_date MTH, count(e.hiredate) num_hired
 12 from x left join emp e
 13 on (x.start_date = trunc(e.hiredate,'mm'))
 14 group by x.start_date
 15 order by 1

PostgreSQL

To improve readability, this solution uses a view, named V, to return the number of months between
the first day of the first month of the year the first employee was hired and the first day of the last
month of the year the most recent employee was hired. Use the value returned by view V as the
second value passed to the function GENERATE_SERIES, so that the correct number of months
(rows) are generated. Once you have all the months for the required range of dates, outer join to
table EMP and use the aggregate function COUNT to count the number of hires for each month:

 create view v
 as
 select cast(
 extract(year from age(last_month,first_month))*12-1
 as integer) as mths

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from (
 select cast(date_trunc('year',min(hiredate)) as date) as first_month,
 cast(cast(date_trunc('year',max(hiredate))
 as date) + interval '1 year'
 as date) as last_month
 from emp
) x

 1 select y.mth, count(e.hiredate) as num_hired
 2 from (
 3 select cast(e.start_date + (x.id * interval '1 month')
 4 as date) as mth
 5 from generate_series (0,(select mths from v)) x(id),
 6 (select cast(
 7 date_trunc('year',min(hiredate))
 8 as date) as start_date
 9 from emp) e
 10) y left join emp e
 11 on (y.mth = date_trunc('month',e.hiredate))
 12 group by y.mth
 13 order by 1

MySQL

Use the pivot table T500 to generate each month between 1980 and 1983. Then outer join to table
EMP and use the aggregate function COUNT to count the number of employees hired for each month:

 1 select z.mth, count(e.hiredate) num_hired
 2 from (
 3 select date_add(min_hd,interval t500.id-1 month) mth
 4 from (
 5 select min_hd, date_add(max_hd,interval 11 month) max_hd
 6 from (
 7 select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,
 8 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd
 9 from emp
 10) x
 11) y,
 12 t500
 13 where date_add(min_hd,interval t500.id-1 month) <= max_hd
 14) z left join emp e
 15 on (z.mth = adddate(
 16 date_add(
 17 last_day(e.hiredate),interval -1 month),1))
 18 group by z.mth
 19 order by 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Server

Use the recursive WITH clause to generate every month (the first day of each month from January 1,
1980, to December 1, 1983). Once you have all the months for the required range of dates, outer
join to table EMP and use the aggregate function COUNT to count the number of hires for each
month:

 1 with x (start_date,end_date)
 2 as (
 3 select (min(hiredate)
 4 datepart(dy,min(hiredate))+1) start_date,
 5 dateadd(yy,1,
 6 (max(hiredate)
 7 datepart(dy,max(hiredate))+1)) end_date
 8 from emp
 9 union all
 10 select dateadd(mm,1,start_date), end_date
 11 from x
 12 where dateadd(mm,1,start_date) < end_date
 13)
 14 select x.start_date mth, count(e.hiredate) num_hired
 15 from x left join emp e
 16 on (x.start_date =
 17 dateadd(dd,-day(e.hiredate)+1,e.hiredate))
 18 group by x.start_date
 19 order by 1

Discussion

DB2

The first step is to generate every month (actually the first day of each month) from 1980 to 1983.
Start using the DAYOFYEAR function on the MIN and MAX HIREDATEs to find the boundary months:

 select (min(hiredate)
 dayofyear(min(hiredate)) day +1 day) start_date,
 (max(hiredate)
 dayofyear(max(hiredate)) day +1 day) +1 year end_date
 from emp

 START_DATE END_DATE
 ----------- -----------

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 01-JAN-1980 01-JAN-1984

Your next step is to repeatedly add months to START_DATE to return all the months necessary for
the final result set. The value for END_DATE is one day more than it should be. This is OK. As you
recursively add months to START_DATE, you can stop before you hit END_DATE. A portion of the
months created is shown below:

 with x (start_date,end_date)
 as (
 select (min(hiredate)
 dayofyear(min(hiredate)) day +1 day) start_date,
 (max(hiredate)
 dayofyear(max(hiredate)) day +1 day) +1 year end_date
 from emp
 union all
 select start_date +1 month, end_date
 from x
 where (start_date +1 month) < end_date
)
 select *
 from x

 START_DATE END_DATE
 ----------- -----------
 01-JAN-1980 01-JAN-1984
 01-FEB-1980 01-JAN-1984
 01-MAR-1980 01-JAN-1984
 …
 01-OCT-1983 01-JAN-1984
 01-NOV-1983 01-JAN-1984
 01-DEC-1983 01-JAN-1984

At this point, you have all the months you need, and you can simply outer join to EMP.HIREDATE.
Because the day for each START_DATE is the first of the month, truncate EMP.HIREDATE to the first
day of its month. Finally, use the aggregate function COUNT on EMP.HIREDATE.

Oracle

The first step is to generate the first day of every for every month from 1980 to 1983. Start by using
TRUNC and ADD_MONTHS together with the MIN and MAX HIREDATE values to find the boundary
months:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select min(trunc(hiredate,'y')) start_date,
 add_months(max(trunc(hiredate,'y')),12) end_date
 from emp

 START_DATE END_DATE
 ----------- -----------
 01-JAN-1980 01-JAN-1984

Then repeatedly add months to START_DATE to return all the months necessary for the final result
set. The value for END_DATE is one day more than it should be, which is OK. As you recursively add
months to START_DATE, you can stop before you hit END_DATE. A portion of the months created is
shown below:

 with x as (
 select add_months(start_date,level-1) start_date
 from (
 select min(trunc(hiredate,'y')) start_date,
 add_months(max(trunc(hiredate,'y')),12) end_date
 from emp
)
 connect by level <= months_between(end_date,start_date)
)
 select *
 from x

 START_DATE

 01-JAN-1980
 01-FEB-1980
 01-MAR-1980
 …
 01-OCT-1983
 01-NOV-1983
 01-DEC-1983

At this point, you have all the months you need; simply outer join to EMP.HIREDATE. Because the
day for each START_DATE is the first of the month, truncate EMP.HIREDATE to the first day of the
month it is in. The final step is to use the aggregate function COUNT on EMP.HIREDATE.

PostgreSQL

This solution uses the function GENERATE_SERIES to return the months you need. If you do not have
the GENERATE_SERIES function available, you can use a pivot table as in the MySQL solution. The
first step is to understand view V. View V simply finds the number of months you'll need to generate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

by finding the boundary dates for the range. Inline view X in view V uses the MIN and MAX
HIREDATEs to find the start and end boundary dates and is shown below:

 select cast(date_trunc('year',min(hiredate)) as date) as first_month,
 cast(cast(date_trunc('year',max(hiredate))
 as date) + interval '1 year'
 as date) as last_month
 from emp

 FIRST_MONTH LAST_MONTH
 ----------- -----------
 01-JAN-1980 01-JAN-1984

The value for LAST_MONTH is actually one day more than it should be. This is fine, as you can just
subtract 1 when you calculate the months between these two dates. The next step is to use the AGE
function to find the difference between the two dates in years, then multiply by 12 (and remember,
subtract by 1!):

 select cast(
 extract(year from age(last_month,first_month))*12-1
 as integer) as mths
 from (
 select cast(date_trunc('year',min(hiredate)) as date) as first_month,
 cast(cast(date_trunc('year',max(hiredate))
 as date) + interval '1 year'
 as date) as last_month
 from emp
) x

 MTHS

 47

Use the value returned by view V as the second parameter of GENERATE_SERIES to return the
number of months you need. Your next step is then to find your start date. You'll repeatedly add
months to your start date to create your range of months. Inline view Y uses the DATE_TRUNC
function on the MIN(HIREDATE) to find the start date, and uses the values returned by
GENERATE_SERIES to add months. Partial results are shown below:

 select cast(e.start_date + (x.id * interval '1 month')
 as date) as mth
 from generate_series (0,(select mths from v)) x(id),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (select cast(
 date_trunc('year',min(hiredate))
 as date) as start_date
 from emp
) e

 MTH

 01-JAN-1980
 01-FEB-1980
 01-MAR-1980
 …
 01-OCT-1983
 01-NOV-1983
 01-DEC-1983

Now that you have each month you need for the final result set, outer join to EMP. HIREDATE and
use the aggregate function COUNT to count the number of hires for each month.

MySQL

First, find the boundary dates by using the aggregate functions MIN and MAX along with the
DAYOFYEAR and ADDDATE functions. The result set shown below is from inline view X:

 select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,
 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd
 from emp

 MIN_HD MAX_HD
 ----------- -----------
 01-JAN-1980 01-JAN-1983

Next, increment MAX_HD to the last month of the year:

 select min_hd, date_add(max_hd,interval 11 month) max_hd
 from (
 select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,
 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd
 from emp
) x

 MIN_HD MAX_HD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ----------- -----------
 01-JAN-1980 01-DEC-1983

Now that you have the boundary dates, add months to MIN_HD up to and including MAX_HD by
using pivot table T500 to generate the rows you need. A portion of the results is shown below:

 select date_add(min_hd,interval t500.id-1 month) mth
 from (
 select min_hd, date_add(max_hd,interval 11 month) max_hd
 from (
 select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,
 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd
 from emp
) x
) y,
 t500
 where date_add(min_hd,interval t500.id-1 month) <= max_hd
 MTH

 01-JAN-1980
 01-FEB-1980
 01-MAR-1980
 …
 01-OCT-1983
 01-NOV-1983
 01-DEC-1983

Now that you have all the months you need for the final result set, outer join to EMP.HIREDATE (be
sure to truncate EMP.HIREDATE to the first day of the month) and use the aggregate function COUNT
on EMP.HIREDATE to count the number of hires in each month.

SQL Server

Begin by generating every month (actually, the first day of each month) from 1980 to 1983. Then
find the boundary months by applying the DAYOFYEAR function to the MIN and MAX HIREDATEs:

 select (min(hiredate) -
 datepart(dy,min(hiredate))+1) start_date,
 dateadd(yy,1,
 (max(hiredate) -
 datepart(dy,max(hiredate))+1)) end_date
 from emp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 START_DATE END_DATE
 ----------- -----------
 01-JAN-1980 01-JAN-1984

Your next step is to repeatedly add months to START_DATE to return all the months necessary for
the final result set. The value for END_DATE is one day more than it should be, which is OK, as you
can stop recursively adding months to START_DATE before you hit END_DATE. A portion of the
months created is shown below:

 with x (start_date,end_date)
 as (
 select (min(hiredate) -
 datepart(dy,min(hiredate))+1) start_date,
 dateadd(yy,1,
 (max(hiredate) -
 datepart(dy,max(hiredate))+1)) end_date
 from emp
 union all
 select dateadd(mm,1,start_date), end_date
 from x
 where dateadd(mm,1,start_date) < end_date
)
 select *
 from x

 START_DATE END_DATE
 ----------- -----------
 01-JAN-1980 01-JAN-1984
 01-FEB-1980 01-JAN-1984
 01-MAR-1980 01-JAN-1984
 …
 01-OCT-1983 01-JAN-1984
 01-NOV-1983 01-JAN-1984
 01-DEC-1983 01-JAN-1984

At this point, you have all the months you need. Simply outer join to EMP.HIREDATE. Because the
day for each START_DATE is the first of the month, truncate EMP.HIREDATE to the first day of the
month. The final step is to use the aggregate function COUNT on EMP.HIREDATE.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.11. Searching on Specific Units of Time

Problem

You want to search for dates that match a given month, or day of the week, or some other unit of
time. For example, you want to find all employees hired in February or December, as well as
employees hired on a Tuesday.

Solution

Use the functions supplied by your RDBMS to find month and weekday names for dates. This
particular recipe can be useful in various places. Consider, if you wanted to search HIREDATEs but
wanted to ignore the year by extracting the month (or any other part of the HIREDATE you are
interested in), you can do so. The example solutions to this problem search by month and weekday
name. By studying the date formatting functions provided by your RDBMS, you can easily modify
these solutions to search by year, quarter, combination of year and quarter, month and year
combination, etc.

DB2 and MySQL

Use the functions MONTHNAME and DAYNAME to find the name of the month and weekday an
employee was hired, respectively:

 1 select ename
 2 from emp
 3 where monthname(hiredate) in ('February','December')
 4 or dayname(hiredate) = 'Tuesday'

Oracle and PostgreSQL

Use the function TO_CHAR to find the names of the month and weekday an employee was hired. Use
the function RTRIM to remove trailing whitespaces:

 1 select ename
 2 from emp
 3 where rtrim(to_char(hiredate,'month')) in ('february','december')
 4 or rtrim(to_char(hiredate,'day')) = 'tuesday'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Server

Use the function DATENAME to find the names of the month and weekday an employee was hired:

 1 select ename
 2 from emp
 3 where datename(m,hiredate) in ('February','December')
 4 or datename(dw,hiredate) = 'Tuesday'

Discussion

The key to each solution is simply knowing which functions to use and how to use them. To verify
what the return values are, put the functions in the SELECT clause and examine the output. Listed
below is the result set for employees in DEPTNO 10 (using SQL Server syntax):

 select ename,datename(m,hiredate) mth,datename(dw,hiredate) dw
 from emp
 where deptno = 10

 ENAME MTH DW
 ------ --------- -----------
 CLARK June Tuesday
 KING November Tuesday
 MILLER January Saturday

Once you know what the function(s) return, finding rows using the functions shown in each of the
solutions is easy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.12. Comparing Records Using Specific Parts of a
Date

Problem

You want to find which employees have been hired on the same month and weekday. For example, if
an employee was hired on Monday, March 10, 1988, and another employee was hired on Monday,
March 2, 2001, you want those two to come up as a match since the day of week and month match.
In table EMP, only three employees meet this requirement. You want to return the following result
set:

 MSG
 --
 JAMES was hired on the same month and weekday as FORD
 SCOTT was hired on the same month and weekday as JAMES
 SCOTT was hired on the same month and weekday as FORD

Solution

Because you want to compare one employee's HIREDATE with the HIREDATE of the other employees,
you will need to self join table EMP. That makes each possible combination of HIREDATEs available
for you to compare. Then, simply extract the weekday and month from each HIREDATE and
compare.

DB2

After self joining table EMP, use the function DAYOFWEEK to return the numeric day of the week. Use
the function MONTHNAME to return the name of the month:

 1 select a.ename ||
 2 ' was hired on the same month and weekday as '||
 3 b.ename msg
 4 from emp a, emp b
 5 where (dayofweek(a.hiredate),monthname(a.hiredate)) =
 6 (dayofweek(b.hiredate),monthname(b.hiredate))
 7 and a.empno < b.empno
 8 order by a.ename

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Oracle and PostgreSQL

After self joining table EMP, use the TO_CHAR function to format the HIREDATE into weekday and
month for comparison:

 1 select a.ename ||
 2 ' was hired on the same month and weekday as '||
 3 b.ename as msg
 4 from emp a, emp b
 5 where to_char(a.hiredate,'DMON') =
 6 to_char(b.hiredate,'DMON')
 7 and a.empno < b.empno
 8 order by a.ename

MySQL

After self joining table EMP, use the DATE_FORMAT function to format the HIREDATE into weekday
and month for comparison:

 1 select concat(a.ename,
 2 ' was hired on the same month and weekday as ',
 3 b.ename) msg
 4 from emp a, emp b
 5 where date_format(a.hiredate,'%w%M') =
 6 date_format(b.hiredate,'%w%M')
 7 and a.empno < b.empno
 8 order by a.ename

SQL Server

After self joining table EMP, use the DATENAME function to format the HIREDATE into weekday and
month for comparison:

 1 select a.ename +
 2 ' was hired on the same month and weekday as '+
 3 b.ename msg
 4 from emp a, emp b
 5 where datename(dw,a.hiredate) = datename(dw,b.hiredate)
 6 and datename(m,a.hiredate) = datename(m,b.hiredate)
 7 and a.empno < b.empno
 8 order by a.ename

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

The only difference between the solutions is the date function used to format the HIREDATE. I'm
going to use the Oracle/PostgreSQL solution in this discussion (because it's the shortest to type out),
but the explanation holds true for the other solutions as well.

The first step is to self join EMP so that each employee has access to the other employees'
HIREDATEs. Consider the results of the query below (filtered for SCOTT):

 select a.ename as scott, a.hiredate as scott_hd,
 b.ename as other_emps, b.hiredate as other_hds
 from emp a, emp b
 where a.ename = 'SCOTT'
 and a.empno != b.empno

 SCOTT SCOTT_HD OTHER_EMPS OTHER_HDS
 ---------- ----------- ---------- -----------
 SCOTT 09-DEC-1982 SMITH 17-DEC-1980
 SCOTT 09-DEC-1982 ALLEN 20-FEB-1981
 SCOTT 09-DEC-1982 WARD 22-FEB-1981
 SCOTT 09-DEC-1982 JONES 02-APR-1981
 SCOTT 09-DEC-1982 MARTIN 28-SEP-1981
 SCOTT 09-DEC-1982 BLAKE 01-MAY-1981
 SCOTT 09-DEC-1982 CLARK 09-JUN-1981
 SCOTT 09-DEC-1982 KING 17-NOV-1981
 SCOTT 09-DEC-1982 TURNER 08-SEP-1981
 SCOTT 09-DEC-1982 ADAMS 12-JAN-1983
 SCOTT 09-DEC-1982 JAMES 03-DEC-1981
 SCOTT 09-DEC-1982 FORD 03-DEC-1981
 SCOTT 09-DEC-1982 MILLER 23-JAN-1982

By self-joining table EMP, you can compare SCOTT's HIREDATE to the HIREDATE of all the other
employees. The filter on EMPNO is so that SCOTT's HIREDATE is not returned as one of the
OTHER_HDS. The next step is to use your RDBMS's supplied date formatting function(s) to compare
the weekday and month of the HIREDATEs and keep only those that match:

 select a.ename as emp1, a.hiredate as emp1_hd,
 b.ename as emp2, b.hiredate as emp2_hd
 from emp a, emp b
 where to_char(a.hiredate,'DMON') =
 to_char(b.hiredate,'DMON')
 and a.empno != b.empno

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 order by 1

 EMP1 EMP1_HD EMP2 EMP2_HD
 ---------- ----------- ---------- -----------
 FORD 03-DEC-1981 SCOTT 09-DEC-1982
 FORD 03-DEC-1981 JAMES 03-DEC-1981
 JAMES 03-DEC-1981 SCOTT 09-DEC-1982
 JAMES 03-DEC-1981 FORD 03-DEC-1981

 SCOTT 09-DEC-1982 JAMES 03-DEC-1981
 SCOTT 09-DEC-1982 FORD 03-DEC-1981

At this point, the HIREDATEs are correctly matched, but there are six rows in the result set rather
than the three in the "Problem" section of this recipe. The reason for the extra rows is the filter on
EMPNO. By using "not equals" you do not filter out the reciprocals. For example, the first row
matches FORD and SCOTT and the last row matches SCOTT and FORD. The six rows in the result set
are technically accurate but redundant. To remove the redundancy use "less than" (the HIREDATEs
are removed to bring the intermediate queries closer to the final result set):

 select a.ename as emp1, b.ename as emp2
 from emp a, emp b
 where to_char(a.hiredate,'DMON') =
 to_char(b.hiredate,'DMON')
 and a.empno < b.empno
 order by 1

 EMP1 EMP2
 ---------- ----------
 JAMES FORD
 SCOTT JAMES
 SCOTT FORD

The final step is to simply concatenate the result set to form the message.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.13. Identifying Overlapping Date Ranges

Problem

You want to find all instances of an employee starting a new project before ending an existing
project. Consider table EMP_PROJECT:

 select *
 from emp_project

 EMPNO ENAME PROJ_ID PROJ_START PROJ_END
 ----- ---------- ------- ----------- -----------
 7782 CLARK 1 16-JUN-2005 18-JUN-2005
 7782 CLARK 4 19-JUN-2005 24-JUN-2005
 7782 CLARK 7 22-JUN-2005 25-JUN-2005
 7782 CLARK 10 25-JUN-2005 28-JUN-2005
 7782 CLARK 13 28-JUN-2005 02-JUL-2005
 7839 KING 2 17-JUN-2005 21-JUN-2005
 7839 KING 8 23-JUN-2005 25-JUN-2005
 7839 KING 14 29-JUN-2005 30-JUN-2005
 7839 KING 11 26-JUN-2005 27-JUN-2005
 7839 KING 5 20-JUN-2005 24-JUN-2005
 7934 MILLER 3 18-JUN-2005 22-JUN-2005
 7934 MILLER 12 27-JUN-2005 28-JUN-2005
 7934 MILLER 15 30-JUN-2005 03-JUL-2005
 7934 MILLER 9 24-JUN-2005 27-JUN-2005
 7934 MILLER 6 21-JUN-2005 23-JUN-2005

Looking at the results for employee KING, you see that KING began PROJ_ID 8 before finishing
PROJ_ID 5 and began PROJ_ID 5 before finishing PROJ_ID 2. You want to return the following result
set:

 EMPNO ENAME MSG
 ----- ---------- --------------------------------
 7782 CLARK project 7 overlaps project 4
 7782 CLARK project 10 overlaps project 7
 7782 CLARK project 13 overlaps project 10
 7839 KING project 8 overlaps project 5
 7839 KING project 5 overlaps project 2
 7934 MILLER project 12 overlaps project 9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 7934 MILLER project 6 overlaps project 3

Solution

The key here is to find rows where PROJ_START (the date the new project starts) occurs on or after
another project's PROJ_START date and on or before that other project's PROJ_END date. To begin,
you need to be able to compare each project with each other project (for the same employee). By
self joining EMP_PROJECT on employee, you generate every possible combination of two projects for
each employee. To find the overlaps, simply find the rows where PROJ_START for any PROJ_ID falls
between PROJ_START and PROJ_END for another PROJ_ID by the same employee.

DB2, PostgreSQL, and Oracle

Self join EMP_PROJECT. Then use the concatenation operator "||" to construct the message that
explains which projects overlap:

 1 select a.empno,a.ename,
 2 'project '||b.proj_id||
 3 ' overlaps project '||a.proj_id as msg
 4 from emp_project a,
 5 emp_project b
 6 where a.empno = b.empno
 7 and b.proj_start >= a.proj_start
 8 and b.proj_start <= a.proj_end
 9 and a.proj_id != b.proj_id

MySQL

Self join EMP_PROJECT. Then use the CONCAT function to construct the message that explains which
projects overlap:

 1 select a.empno,a.ename,
 2 concat('project ',b.proj_id,
 3 ' overlaps project ',a.proj_id) as msg
 4 from emp_project a,
 5 emp_project b
 6 where a.empno = b.empno
 7 and b.proj_start >= a.proj_start
 8 and b.proj_start <= a.proj_end
 9 and a.proj_id != b.proj_id

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Server

Self join EMP_PROJECT. Then use the concatenation operator "+" to construct the message that
explains which projects overlap:

 1 select a.empno,a.ename,
 2 'project '+b.proj_id+
 3 ' overlaps project '+a.proj_id as msg
 4 from emp_project a,
 5 emp_project b
 6 where a.empno = b.empno
 7 and b.proj_start >= a.proj_start
 8 and b.proj_start <= a.proj_end
 9 and a.proj_id != b.proj_id

Discussion

The only difference between the solutions lies in the string concatenation, so one discussion using the
DB2 syntax will cover all three solutions. The first step is a self join of EMP_PROJECT so that the
PROJ_START dates can be compared amongst the different projects. The output of the self join for
employee KING is shown below. You can observe how each project can "see" the other projects:

 select a.ename,
 a.proj_id as a_id,
 a.proj_start as a_start,
 a.proj_end as a_end,
 b.proj_id as b_id,
 b.proj_start as b_start
 from emp_project a,
 emp_project b
 where a.ename = 'KING'
 and a.empno = b.empno
 and a.proj_id != b.proj_id
 order by 2

 ENAME A_ID A_START A_END B_ID B_START
 ------ ----- ----------- ----------- ----- -----------
 KING 2 17-JUN-2005 21-JUN-2005 8 23-JUN-2005
 KING 2 17-JUN-2005 21-JUN-2005 14 29-JUN-2005
 KING 2 17-JUN-2005 21-JUN-2005 11 26-JUN-2005
 KING 2 17-JUN-2005 21-JUN-2005 5 20-JUN-2005
 KING 5 20-JUN-2005 24-JUN-2005 2 17-JUN-2005
 KING 5 20-JUN-2005 24-JUN-2005 8 23-JUN-2005
 KING 5 20-JUN-2005 24-JUN-2005 11 26-JUN-2005
 KING 5 20-JUN-2005 24-JUN-2005 14 29-JUN-2005
 KING 8 23-JUN-2005 25-JUN-2005 2 17-JUN-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 KING 8 23-JUN-2005 25-JUN-2005 14 29-JUN-2005
 KING 8 23-JUN-2005 25-JUN-2005 5 20-JUN-2005
 KING 8 23-JUN-2005 25-JUN-2005 11 26-JUN-2005
 KING 11 26-JUN-2005 27-JUN-2005 2 17-JUN-2005
 KING 11 26-JUN-2005 27-JUN-2005 8 23-JUN-2005
 KING 11 26-JUN-2005 27-JUN-2005 14 29-JUN-2005
 KING 11 26-JUN-2005 27-JUN-2005 5 20-JUN-2005
 KING 14 29-JUN-2005 30-JUN-2005 2 17-JUN-2005
 KING 14 29-JUN-2005 30-JUN-2005 8 23-JUN-2005
 KING 14 29-JUN-2005 30-JUN-2005 5 20-JUN-2005
 KING 14 29-JUN-2005 30-JUN-2005 11 26-JUN-2005

As you can see from the result set above, the self join makes finding overlapping dates easy; simply
return each row where B_START occurs between A_START and A_END. If you look at the WHERE
clause on lines 7 and 8 of the solution:

 and b.proj_start >= a.proj_start
 and b.proj_start <= a.proj_end

it is doing just that. Once you have the required rows, constructing the messages is just a matter of
concatenating the return values.

Oracle users can use the window function LEAD OVER to avoid the self join, if the maximum number
of projects per employee is fixed. This can come in handy if the self join is expensive for your
particular results (if the self join requires more resources than the sorts needed for LEAD OVER). For
example, consider the alternative for employee KING using LEAD OVER:

 select empno,
 ename,
 proj_id,
 proj_start,
 proj_end,
 case
 when lead(proj_start,1)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,2)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,3)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,4)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end is_overlap
 from emp_project
 where ename = 'KING'

 EMPNO ENAME PROJ_ID PROJ_START PROJ_END IS_OVERLAP
 ----- ------ ------- ----------- ----------- ----------
 7839 KING 2 17-JUN-2005 21-JUN-2005 5
 7839 KING 5 20-JUN-2005 24-JUN-2005 8
 7839 KING 8 23-JUN-2005 25-JUN-2005
 7839 KING 11 26-JUN-2005 27-JUN-2005
 7839 KING 14 29-JUN-2005 30-JUN-2005

Because the number of projects is fixed at five for employee KING, you can use LEAD OVER to move
examine the dates of all the projects without a self join. From here, producing the final result set is
easy. Simply keep the rows where IS_OVERLAP is not NULL:

 select empno,ename,
 'project '||is_overlap||
 ' overlaps project '||proj_id msg
 from (
 select empno,
 ename,
 proj_id,
 proj_start,
 proj_end,
 case
 when lead(proj_start,1)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,2)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,3)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,4)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 end is_overlap
 from emp_project
 where ename = 'KING'
)
 where is_overlap is not null

 EMPNO ENAME MSG
 ----- ------ --------------------------------
 7839 KING project 5 overlaps project 2
 7839 KING project 8 overlaps project 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To allow the solution to work for all employees (not just KING), partition by ENAME in the LEAD OVER
function:

 select empno,ename,
 'project '||is_overlap||
 ' overlaps project '||proj_id msg
 from (
 select empno,
 ename,
 proj_id,
 proj_start,
 proj_end,
 case
 when lead(proj_start,1)over(partition by ename
 order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(partition by ename
 order by proj_start)
 when lead(proj_start,2)over(partition by ename
 order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(partition by ename
 order by proj_start)
 when lead(proj_start,3)over(partition by ename
 order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(partition by ename
 order by proj_start)
 when lead(proj_start,4)over(partition by ename
 order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(partition by ename
 order by proj_start)
 end is_overlap
 from emp_project
)
 where is_overlap is not null

 EMPNO ENAME MSG
 ----- ------ -------------------------------
 7782 CLARK project 7 overlaps project 4
 7782 CLARK project 10 overlaps project 7
 7782 CLARK project 13 overlaps project 10
 7839 KING project 5 overlaps project 2
 7839 KING project 8 overlaps project 5
 7934 MILLER project 6 overlaps project 3
 7934 MILLER project 12 overlaps project 9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. Working with Ranges
This chapter is about "everyday" queries that involve ranges. Ranges are common in everyday life.
For example, projects that we work on range over consecutive periods of time. In SQL, it's often
necessary to search for ranges, or to generate ranges, or to otherwise manipulate range-based data.
The queries you'll read about here are slightly more involved than the queries found in the preceding
chapters, but they are just as common, and they'll begin to give you a sense of what SQL can really
do for you when you learn to take full advantage of it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.1. Locating a Range of Consecutive Values

Problem

You want to determine which rows represent a range of consecutive projects. Consider the following
result set from view V, which contains data about a project and its start and end dates:

 select *
 from V

 PROJ_ID PROJ_START PROJ_END
 ------- ----------- -----------
 1 01-JAN-2005 02-JAN-2005
 2 02-JAN-2005 03-JAN-2005
 3 03-JAN-2005 04-JAN-2005
 4 04-JAN-2005 05-JAN-2005
 5 06-JAN-2005 07-JAN-2005
 6 16-JAN-2005 17-JAN-2005
 7 17-JAN-2005 18-JAN-2005
 8 18-JAN-2005 19-JAN-2005
 9 19-JAN-2005 20-JAN-2005
 10 21-JAN-2005 22-JAN-2005
 11 26-JAN-2005 27-JAN-2005
 12 27-JAN-2005 28-JAN-2005
 13 28-JAN-2005 29-JAN-2005
 14 29-JAN-2005 30-JAN-2005

Excluding the first row, each row's PROJ_START should equal the PROJ_END of the row before it
("before" is defined as PROJ_ID1 for the current row). Examining the first five rows from view V,
PROJ_IDs 1 through 3 are part of the same "group" as each PROJ_END equals the PROJ_START of
the row after it. Because you want to find the range of dates for consecutive projects, you would like
to return all rows where the current PROJ_END equals the next row's PROJ_START. If the first five
rows comprised the entire result set, you would like to return only the first three rows. The final
result set (using all 14 rows from view V) should be:

 PROJ_ID PROJ_START PROJ_END
 ------- ----------- -----------
 1 01-JAN-2005 02-JAN-2005
 2 02-JAN-2005 03-JAN-2005
 3 03-JAN-2005 04-JAN-2005
 6 16-JAN-2005 17-JAN-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 7 17-JAN-2005 18-JAN-2005
 8 18-JAN-2005 19-JAN-2005
 11 26-JAN-2005 27-JAN-2005
 12 27-JAN-2005 28-JAN-2005
 13 28-JAN-2005 29-JAN-2005

The rows with PROJ_IDs 4,5,9,10, and 14 are excluded from this result set because the PROJ_END of
each of these rows does not match the PROJ_START of the row following it.

Solution

DB2, MySQL, PostgreSQL, and SQL Server

Use a self join to find the rows with consecutive values:

 1 select v1.proj_id,
 2 v1.proj_start,
 3 v1.proj_end
 4 from V v1, V v2
 5 where v1.proj_end = v2.proj_start

Oracle

The preceding solution will also work for Oracle. Alternatively, here is another solution that takes
advantage of the window function LEAD OVER to look at the "next" row's BEGIN_DATE, thus avoiding
the need to self join:

 1 select proj_id, proj_start, proj_end
 2 from (
 3 select proj_id, proj_start, proj_end,
 4 lead(proj_start)over(order by proj_id) next_proj_start
 5 from V
 6)
 7 where next_proj_start = proj_end

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2, MySQL, PostgreSQL, and SQL Server

By self joining the view to itself, each row can be compared to every other row returned. Consider a
partial result set for IDs 1 and 4:

 select v1.proj_id as v1_id,
 v1.proj_end as v1_end,
 v2.proj_start as v2_begin,
 v2.proj_id as v2_id
 from v v1, v v2
 where v1.proj_id in (1, 4)

 V1_ID V1_END V2_BEGIN V2_ID
 ----- ----------- ----------- ----------
 1 02-JAN-2005 01-JAN-2005 1
 1 02-JAN-2005 02-JAN-2005 2
 1 02-JAN-2005 03-JAN-2005 3
 1 02-JAN-2005 04-JAN-2005 4
 1 02-JAN-2005 06-JAN-2005 5
 1 02-JAN-2005 16-JAN-2005 6
 1 02-JAN-2005 17-JAN-2005 7
 1 02-JAN-2005 18-JAN-2005 8
 1 02-JAN-2005 19-JAN-2005 9
 1 02-JAN-2005 21-JAN-2005 10
 1 02-JAN-2005 26-JAN-2005 11
 1 02-JAN-2005 27-JAN-2005 12
 1 02-JAN-2005 28-JAN-2005 13
 1 02-JAN-2005 29-JAN-2005 14
 4 05-JAN-2005 01-JAN-2005 1
 4 05-JAN-2005 02-JAN-2005 2
 4 05-JAN-2005 03-JAN-2005 3
 4 05-JAN-2005 04-JAN-2005 4
 4 05-JAN-2005 06-JAN-2005 5
 4 05-JAN-2005 16-JAN-2005 6
 4 05-JAN-2005 17-JAN-2005 7
 4 05-JAN-2005 18-JAN-2005 8
 4 05-JAN-2005 19-JAN-2005 9
 4 05-JAN-2005 21-JAN-2005 10
 4 05-JAN-2005 26-JAN-2005 11
 4 05-JAN-2005 27-JAN-2005 12
 4 05-JAN-2005 28-JAN-2005 13
 4 05-JAN-2005 29-JAN-2005 14

Examining this result set, you can see why PROJ_ID 1 is included in the final result set and PROJ_ID
4 is not: there is no corresponding V2_BEGIN value for the V1_ END value returned for V1_ID 4.

Depending on how you view the data, PROJ_ID 4 can just as easily be considered contiguous.
Consider the following result set:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select *
 from V
 where proj_id <= 5

 PROJ_ID PROJ_START PROJ_END
 ------- ---------- -----------
 1 01-JAN-2005 02-JAN-2005
 2 02-JAN-2005 03-JAN-2005
 3 03-JAN-2005 04-JAN-2005
 4 04-JAN-2005 05-JAN-2005
 5 06-JAN-2005 07-JAN-2005

If "contiguous" is defined as a project that starts the same day another project ends, then PROJ_ID 4
should be included in the result set. PROJ_ID 4 was originally eliminated because of the forward
comparison (comparing its PROJ_END with the next PROJ_START), but if you do a backwards
comparison (PROJ_START with the prior PROJ_END), then PROJ_ID 4 will be included in the result
set.

Modifying the solution to include PROJ_ID 4 is trivial: simply add an additional predicate to ensure
that both PROJ_START and PROJ_END are checked for being contiguous, not just PROJ_END. The
modification shown in the following query produces a result set that includes PROJ_ID 4 (DISTINCT is
necessary because some rows satisfy both predicate conditions):

 select distinct
 v1.proj_id,
 v1.proj_start,
 v1.proj_end
 from V v1, V v2
 where v1.proj_end = v2.proj_start
 or v1.proj_start = v2.proj_end

 PROJ_ID PROJ_START PROJ_END
 ------- ----------- -----------
 1 01-JAN-2005 02-JAN-2005
 2 02-JAN-2005 03-JAN-2005
 3 03-JAN-2005 04-JAN-2005
 4 04-JAN-2005 05-JAN-2005

Oracle

While the self-join solution certainly works, the window function LEAD OVER is perfect for this type of
problem. The function LEAD OVER allows you to examine other rows without performing a self join

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(though the function must impose order on the result set to do so). Consider the results of the inline
view (lines 35) for IDs 1 and 4:

 select *
 from (
 select proj_id, proj_start, proj_end,
 lead(proj_start)over(order by proj_id) next_proj_start
 from v
)
 where proj_id in (1, 4)

 PROJ_ID PROJ_START PROJ_END NEXT_PROJ_START
 ------- ----------- ----------- ---------------
 1 01-JAN-2005 02-JAN-2005 02-JAN-2005
 4 04-JAN-2005 05-JAN-2005 06-JAN-2005

Examining the above snippet of code and its result set, it is particularly easy to see why PROJ_ID 4 is
excluded from the final result set of the complete solution. It's excluded because its PROJ_END date
of 05-JAN-2005 does not match the "next" project's start date of 06-JAN-2005.

The function LEAD OVER is extremely handy when it comes to problems such as this one, particularly
when examining partial results. When working with window functions, keep in mind that they are
evaluated after the FROM and WHERE clauses, so the LEAD OVER function in the preceding query
must be embedded within an inline view. Otherwise the LEAD OVER function is applied to the result
set after the WHERE clause has filtered out all rows except for PROJ_ID's 1 and 4.

Now, depending on how you view the data, you may very well want to include PROJ_ID 4 in the final
result set. Consider the first five rows from view V:

 select *
 from V
 where proj_id <= 5

 PROJ_ID PROJ_START PROJ_END
 ------- ----------- -----------
 1 01-JAN-2005 02-JAN-2005
 2 02-JAN-2005 03-JAN-2005
 3 03-JAN-2005 04-JAN-2005
 4 04-JAN-2005 05-JAN-2005
 5 06-JAN-2005 07-JAN-2005

If your requirement is such that PROJ_ID 4 is in fact contiguous (because PROJ_ START for PROJ_ID
4 matches PROJ_END for PROJ_ID 3), and that only PROJ_ ID 5 should be discarded, the proposed
solution for this recipe is incorrect (!), or at the very least, incomplete:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select proj_id, proj_start, proj_end
 from (
 select proj_id, proj_start, proj_end,
 lead(proj_start)over(order by proj_id) next_start
 from V
 where proj_id <= 5
)
 where proj_end = next_start

 PROJ_ID PROJ_START PROJ_END
 ------- ----------- -----------
 1 01-JAN-2005 02-JAN-2005
 2 02-JAN-2005 03-JAN-2005
 3 03-JAN-2005 04-JAN-2005

If you believe PROJ_ID 4 should be included, simply add LAG OVER to the query and use an
additional filter in the WHERE clause:

 select proj_id, proj_start, proj_end
 from (
 select proj_id, proj_start, proj_end,
 lead(proj_start)over(order by proj_id) next_start,
 lag(proj_end)over(order by proj_id) last_end
 from V
 where proj_id <= 5
)
 where proj_end = next_start
 or proj_start = last_end

 PROJ_ID PROJ_START PROJ_END
 ------- ----------- -----------
 1 01-JAN-2005 02-JAN-2005
 2 02-JAN-2005 03-JAN-2005
 3 03-JAN-2005 04-JAN-2005
 4 04-JAN-2005 05-JAN-2005

Now PROJ_ID 4 is included in the final result set, and only the evil PROJ_ID 5 is excluded. Please
consider your exact requirements when applying these recipes to your code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.2. Finding Differences Between Rows in the
Same Group or Partition

Problem

You want to return the DEPTNO, ENAME, and SAL of each employee along with the difference in SAL
between employees in the same department (i.e., having the same value for DEPTNO). The
difference should be between each current employee and the employee hired immediately afterwards
(you want to see if there is a correlation between seniority and salary on a "per department" basis).
For each employee hired last in his department, return "N/A" for the difference. The result set should
look like this:

 DEPTNO ENAME SAL HIREDATE DIFF
 ------ ---------- ---------- ----------- ----------
 10 CLARK 2450 09-JUN-1981 -2550
 10 KING 5000 17-NOV-1981 3700
 10 MILLER 1300 23-JAN-1982 N/A
 20 SMITH 800 17-DEC-1980 -2175
 20 JONES 2975 02-APR-1981 -25
 20 FORD 3000 03-DEC-1981 0
 20 SCOTT 3000 09-DEC-1982 1900
 20 ADAMS 1100 12-JAN-1983 N/A
 30 ALLEN 1600 20-FEB-1981 350
 30 WARD 1250 22-FEB-1981 -1600
 30 BLAKE 2850 01-MAY-1981 1350
 30 TURNER 1500 08-SEP-1981 250
 30 MARTIN 1250 28-SEP-1981 300
 30 JAMES 950 03-DEC-1981 N/A

Solution

The is another example of where the Oracle window functions LEAD OVER and LAG OVER come in
handy. You can easily access next and prior rows without additional joins. For other RDBMSs, you can
use scalar subqueries, though not as easily. This particular problem is not at all elegant when having
to use scalar subqueries or self joins to solve it.

DB2, MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to retrieve the HIREDATE of the employee hired immediately after each

http://lib.ommolketab.ir
http://lib.ommolketab.ir

employee. Then use another scalar subquery to find the salary of said employee:

 1 select deptno, ename, hiredate, sal,
 2 coalesce(cast(sal-next_sal as char(10)), 'N/A') as diff
 3 from (
 4 select e.deptno,
 5 e.ename,
 6 e.hiredate,
 7 e.sal,
 8 (select min(sal) from emp d
 9 where d.deptno=e.deptno
 10 and d.hiredate =
 11 (select min(hiredate) from emp d
 12 where e.deptno=d.deptno
 13 and d.hiredate > e.hiredate)) as next_sal
 14 from emp e
 15) x

Oracle

Use the window function LEAD OVER to access the "next" employee's salary relative to the current
row:

 1 select deptno, ename, sal, hiredate,
 2 lpad(nvl(to_char(sal-next_sal), 'N/A'), 10) diff
 3 from (
 4 select deptno, ename, sal, hiredate,
 5 lead(sal)over(partition by deptno
 6 order by hiredate) next_sal
 7 from emp
 8)

Discussion

DB2, MySQL, PostgreSQL, and SQL Server

The first step is to use a scalar subquery to find the HIREDATE of the employee hired immediately
after each employee in the same department. The solution uses MIN(HIREDATE) in the scalar
subquery to ensure that only one value is returned even in the event of multiple people being hired
on the same date:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select e.deptno,
 e.ename,
 e.hiredate,
 e.sal,
 (select min(hiredate) from emp d
 where e.deptno=d.deptno
 and d.hiredate > e.hiredate) as next_hire
 from emp e
 order by 1

 DEPTNO ENAME HIREDATE SAL NEXT_HIRE
 ------ ---------- ----------- ---------- -----------
 10 CLARK 09-JUN-1981 2450 17-NOV-1981
 10 KING 17-NOV-1981 5000 23-JAN-1982
 10 MILLER 23-JAN-1982 1300
 20 SMITH 17-DEC-1980 800 02-APR-1981
 20 ADAMS 12-JAN-1983 1100
 20 FORD 03-DEC-1981 3000 09-DEC-1982
 20 SCOTT 09-DEC-1982 3000 12-JAN-1983
 20 JONES 02-APR-1981 2975 03-DEC-1981
 30 ALLEN 20-FEB-1981 1600 22-FEB-1981
 30 BLAKE 01-MAY-1981 2850 08-SEP-1981
 30 MARTIN 28-SEP-1981 1250 03-DEC-1981
 30 JAMES 03-DEC-1981 950
 30 TURNER 08-SEP-1981 1500 28-SEP-1981
 30 WARD 22-FEB-1981 1250 01-MAY-1981

The next step is to use another scalar subquery to find the salary of the employee who was hired on
the NEXT_HIRE date. Again, the solution uses MIN to ensure that just one value is always returned:

 select e.deptno,
 e.ename,
 e.hiredate,
 e.sal,
 (select min(sal) from emp d
 where d.deptno=e.deptno
 and d.hiredate =
 (select min(hiredate) from emp d
 where e.deptno=d.deptno
 and d.hiredate > e.hiredate)) as next_sal
 from emp e
 order by 1

 DEPTNO ENAME HIREDATE SAL NEXT_SAL
 ------ ---------- ----------- ---------- ----------
 10 CLARK 09-JUN-1981 2450 5000
 10 KING 17-NOV-1981 5000 1300
 10 MILLER 23-JAN-1982 1300

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 20 SMITH 17-DEC-1980 800 2975
 20 ADAMS 12-JAN-1983 1100
 20 FORD 03-DEC-1981 3000 3000
 20 SCOTT 09-DEC-1982 3000 1100
 20 JONES 02-APR-1981 2975 3000
 30 ALLEN 20-FEB-1981 1600 1250
 30 BLAKE 01-MAY-1981 2850 1500
 30 MARTIN 28-SEP-1981 1250 950
 30 JAMES 03-DEC-1981 950
 30 TURNER 08-SEP-1981 1500 1250
 30 WARD 22-FEB-1981 1250 2850

The final step is to find the difference between SAL and NEXT_SAL, and to use the function
COALESCE to return "N/A" when applicable. Since the result of the subtraction is a number and can
potentially be NULL, you must cast to a string for COALESCE to work:

 select deptno, ename, hiredate, sal,
 coalesce(cast(sal-next_sal as char(10)), 'N/A') as diff
 from (
 select e.deptno,
 e.ename,
 e.hiredate,
 e.sal,
 (select min(sal) from emp d
 where d.deptno=e.deptno
 and d.hiredate =
 (select min(hiredate) from emp d
 where e.deptno=d.deptno
 and d.hiredate > e.hiredate)) as next_sal
 from emp e
) x
 order by 1

 DEPTNO ENAME HIREDATE SAL DIFF
 ------ ---------- ----------- ---------- ---------
 10 CLARK 09-JUN-1981 2450 -2550
 10 KING 17-NOV-1981 5000 3700
 10 MILLER 23-JAN-1982 1300 N/A
 20 SMITH 17-DEC-1980 800 -2175
 20 ADAMS 12-JAN-1983 1100 N/A
 20 FORD 03-DEC-1981 3000 0
 20 SCOTT 09-DEC-1982 3000 1900
 20 JONES 02-APR-1981 2975 -25
 30 ALLEN 20-FEB-1981 1600 350
 30 BLAKE 01-MAY-1981 2850 1350
 30 MARTIN 28-SEP-1981 1250 300
 30 JAMES 03-DEC-1981 950 N/A
 30 TURNER 08-SEP-1981 1500 250

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 30 WARD 22-FEB-1981 1250 -1600

The use of MIN(SAL) in this solution is an example of how, in some ways, you
can unintentionally inject business logic into a query while making what appears
to be a solely technical decision. If multiple salaries are available for a given
date, should you take the least? the highest? the average? In my example, I
choose to take the least. In real life, I might well punt that decision back to the
business client who requested the report to begin with.

Oracle

The first step is to use the LEAD OVER window function to find the "next" salary for each employee
within her department. The employees hired last in each department will have a NULL value for
NEXT_SAL:

 select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno order by hiredate) next_sal
 from emp

 DEPTNO ENAME SAL HIREDATE NEXT_SAL
 ------ ---------- ---------- ----------- ----------
 10 CLARK 2450 09-JUN-1981 5000
 10 KING 5000 17-NOV-1981 1300
 10 MILLER 1300 23-JAN-1982
 20 SMITH 800 17-DEC-1980 2975
 20 JONES 2975 02-APR-1981 3000
 20 FORD 3000 03-DEC-1981 3000
 20 SCOTT 3000 09-DEC-1982 1100
 20 ADAMS 1100 12-JAN-1983
 30 ALLEN 1600 20-FEB-1981 1250
 30 WARD 1250 22-FEB-1981 2850
 30 BLAKE 2850 01-MAY-1981 1500
 30 TURNER 1500 08-SEP-1981 1250
 30 MARTIN 1250 28-SEP-1981 950
 30 JAMES 950 03-DEC-1981

The next step is to take the difference between each employee's salary and the salary of the
employee hired immediately after her in the same department:

 select deptno,ename,sal,hiredate, sal-next_sal diff
 from (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno order by hiredate) next_sal
 from emp
)

 DEPTNO ENAME SAL HIREDATE DIFF
 ------ ---------- ---------- ----------- ----------
 10 CLARK 2450 09-JUN-1981 -2550
 10 KING 5000 17-NOV-1981 3700
 10 MILLER 1300 23-JAN-1982
 20 SMITH 800 17-DEC-1980 -2175
 20 JONES 2975 02-APR-1981 -25
 20 FORD 3000 03-DEC-1981 0
 20 SCOTT 3000 09-DEC-1982 1900
 20 ADAMS 1100 12-JAN-1983
 30 ALLEN 1600 20-FEB-1981 350
 30 WARD 1250 22-FEB-1981 -1600
 30 BLAKE 2850 01-MAY-1981 1350
 30 TURNER 1500 08-SEP-1981 250
 30 MARTIN 1250 28-SEP-1981 300
 30 JAMES 950 03-DEC-1981

The next step is to use the function NVL to return "N/A" when DIFF is NULL. To be able to return
"N/A" you must cast the value of DIFF to a string, otherwise NVL will fail:

 select deptno,ename,sal,hiredate,
 nvl(to_char(sal-next_sal),'N/A') diff
 from (
 select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno order by hiredate) next_sal
 from emp
)

 DEPTNO ENAME SAL HIREDATE DIFF
 ------ ---------- ---------- ----------- ---------------
 10 CLARK 2450 09-JUN-1981 -2550
 10 KING 5000 17-NOV-1981 3700
 10 MILLER 1300 23-JAN-1982 N/A
 20 SMITH 800 17-DEC-1980 -2175
 20 JONES 2975 02-APR-1981 -25
 20 FORD 3000 03-DEC-1981 0
 20 SCOTT 3000 09-DEC-1982 1900
 20 ADAMS 1100 12-JAN-1983 N/A
 30 ALLEN 1600 20-FEB-1981 350
 30 WARD 1250 22-FEB-1981 -1600
 30 BLAKE 2850 01-MAY-1981 1350
 30 TURNER 1500 08-SEP-1981 250
 30 MARTIN 1250 28-SEP-1981 300

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 30 JAMES 950 03-DEC-1981 N/A

The last step is to use the function LPAD to format the values for DIFF. This is because, by default,
numbers are right justified while strings are left justified. Using LPAD, you can right justify all the
results in the column:

 select deptno,ename,sal,hiredate,
 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff
 from (
 select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno order by hiredate) next_sal
 from emp
)

 DEPTNO ENAME SAL HIREDATE DIFF
 ------ ---------- ---------- ----------- ----------
 10 CLARK 2450 09-JUN-1981 -2550
 10 KING 5000 17-NOV-1981 3700
 10 MILLER 1300 23-JAN-1982 N/A
 20 SMITH 800 17-DEC-1980 -2175
 20 JONES 2975 02-APR-1981 -25
 20 FORD 3000 03-DEC-1981 0
 20 SCOTT 3000 09-DEC-1982 1900
 20 ADAMS 1100 12-JAN-1983 N/A
 30 ALLEN 1600 20-FEB-1981 350
 30 WARD 1250 22-FEB-1981 -1600
 30 BLAKE 2850 01-MAY-1981 1350
 30 TURNER 1500 08-SEP-1981 250
 30 MARTIN 1250 28-SEP-1981 300
 30 JAMES 950 03-DEC-1981 N/A

While the majority of the solutions provided in this book do not deal with "what if" scenarios (for the
sake of readability and the author's sanity), the scenario involving duplicates when using Oracle's
LEAD OVER function in this manner must be discussed. In the simple sample data in table EMP, no
employees have duplicate HIREDATEs, yet this is a very likely situation. Normally, I would not discuss
a "what if" situation such as duplicates (since there aren't any in table EMP), but the workaround
involving LEAD (particularly to those of you with non-Oracle backgrounds) may not be immediately
obvious. Consider the following query, which returns the difference in SAL between the employees in
DEPTNO 10 (the difference is performed in the order in which they were hired):

 select deptno,ename,sal,hiredate,
 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff
 from (
 select deptno,ename,sal,hiredate,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lead(sal)over(partition by deptno
 order by hiredate) next_sal
 from emp
 where deptno=10 and empno > 10
)

 DEPTNO ENAME SAL HIREDATE DIFF
 ------ ------ ----- ----------- ----------
 10 CLARK 2450 09-JUN-1981 -2550
 10 KING 5000 17-NOV-1981 3700
 10 MILLER 1300 23-JAN-1982 N/A

This solution is correct considering the data in table EMP but, if there were duplicate rows, the
solution would fail. Consider the example below, showing four more employees hired on the same
day as KING:

 insert into emp (empno,ename,deptno,sal,hiredate)
 values (1,'ant',10,1000,to_date('17-NOV-1981'))

 insert into emp (empno,ename,deptno,sal,hiredate)
 values (2,'joe',10,1500,to_date('17-NOV-1981'))

 insert into emp (empno,ename,deptno,sal,hiredate)
 values (3,'jim',10,1600,to_date('17-NOV-1981'))

 insert into emp (empno,ename,deptno,sal,hiredate)
 values (4,'jon',10,1700,to_date('17-NOV-1981'))

 select deptno,ename,sal,hiredate,
 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff
 from (
 select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno
 order by hiredate) next_sal
 from emp
 where deptno=10
)

 DEPTNO ENAME SAL HIREDATE DIFF
 ------ ------ ----- ----------- ----------
 10 CLARK 2450 09-JUN-1981 1450
 10 ant 1000 17-NOV-1981 -500
 10 joe 1500 17-NOV-1981 -3500
 10 KING 5000 17-NOV-1981 3400
 10 jim 1600 17-NOV-1981 -100
 10 jon 1700 17-NOV-1981 400
 10 MILLER 1300 23-JAN-1982 N/A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You'll notice that with the exception of employee JON, all employees hired on the same date
(November 17) evaluate their salary against another employee hired on the same date! This is
incorrect. All employees hired on November 17 should have the difference of salary computed against
MILLER's salary, not another employee hired on November 17. Take, for example, employee ANT.
The value for DIFF for ANT is500 because ANT's SAL is compared with JOE's SAL and is 500 less than
JOE's SAL, hence the value of500. The correct value for DIFF for employee ANT should be300
because ANT makes 300 less than MILLER, who is the next employee hired by HIREDATE. The reason
the solution seems to not work is due to the default behavior of Oracle's LEAD OVER function. By
default, LEAD OVER only looks ahead one row. So, for employee ANT, the next SAL based on
HIREDATE is JOE's SAL, because LEAD OVER simply looks one row ahead and doesn't skip duplicates.
Fortunately, Oracle planned for such a situation and allows you to pass an additional parameter to
LEAD OVER to determine how far ahead it should look. In the example above, the solution is simply a
matter of counting: find the distance from each employee hired on November 17 to January 23
(MILLER's HIREDATE). The solution below shows how to accomplish this:

 select deptno,ename,sal,hiredate,
 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff
 from (
 select deptno,ename,sal,hiredate,
 lead(sal,cnt-rn+1)over(partition by deptno
 order by hiredate) next_sal
 from (
 select deptno,ename,sal,hiredate,
 count(*)over(partition by deptno,hiredate) cnt,
 row_number()over(partition by deptno,hiredate order by sal) rn
 from emp
 where deptno=10
)
)

 DEPTNO ENAME SAL HIREDATE DIFF
 ------ ------ ----- ----------- ----------
 10 CLARK 2450 09-JUN-1981 1450
 10 ant 1000 17-NOV-1981 -300
 10 joe 1500 17-NOV-1981 200
 10 jim 1600 17-NOV-1981 300
 10 jon 1700 17-NOV-1981 400
 10 KING 5000 17-NOV-1981 3700
 10 MILLER 1300 23-JAN-1982 N/A

Now the solution is correct. As you can see, all the employees hired on November 17 now have their
salaries compared with MILLER's salary. Inspecting the results, employee ANT now has a value of300
for DIFF, which is what we were hoping for. If it isn't immediately obvious, the expression passed to
LEAD OVER; CNT-RN+1 is simply the distance from each employee hired on November 17 to MILLER.
Consider the inline view below, which shows the values for CNT and RN:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select deptno,ename,sal,hiredate,
 count(*)over(partition by deptno,hiredate) cnt,
 row_number()over(partition by deptno,hiredate order by sal) rn
 from emp
 where deptno=10

 DEPTNO ENAME SAL HIREDATE CNT RN
 ------ ------ ----- ----------- ---------- ----------
 10 CLARK 2450 09-JUN-1981 1 1
 10 ant 1000 17-NOV-1981 5 1
 10 joe 1500 17-NOV-1981 5 2
 10 jim 1600 17-NOV-1981 5 3
 10 jon 1700 17-NOV-1981 5 4
 10 KING 5000 17-NOV-1981 5 5
 10 MILLER 1300 23-JAN-1982 1 1

The value for CNT represents, for each employee with a duplicate HIREDATE, how many duplicates
there are in total for their HIREDATE. The value for RN represents a ranking for the employees in
DEPTNO 10. The rank is partitioned by DEPTNO and HIREDATE so only employees with a HIREDATE
that another employee has will have a value greater than one. The ranking is sorted by SAL (this is
arbitrary; SAL is convenient, but we could have just as easily chosen EMPNO). Now that you know
how many total duplicates there are and you have a ranking of each duplicate, the distance to
MILLER is simply the total number of duplicates minus the current rank plus one (CNT-RN+1). The
results of the distance calculation and its effect on LEAD OVER are shown below:

 select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno
 order by hiredate) incorrect,
 cnt-rn+1 distance,
 lead(sal,cnt-rn+1)over(partition by deptno
 order by hiredate) correct
 from (
 select deptno,ename,sal,hiredate,
 count(*)over(partition by deptno,hiredate) cnt,
 row_number()over(partition by deptno,hiredate
 order by sal) rn
 from emp
 where deptno=10
)

 DEPTNO ENAME SAL HIREDATE INCORRECT DISTANCE CORRECT
 ------ ------ ----- ----------- ---------- ---------- ----------
 10 CLARK 2450 09-JUN-1981 1000 1 1000
 10 ant 1000 17-NOV-1981 1500 5 1300
 10 joe 1500 17-NOV-1981 1600 4 1300
 10 jim 1600 17-NOV-1981 1700 3 1300

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10 jon 1700 17-NOV-1981 5000 2 1300
 10 KING 5000 17-NOV-1981 1300 1 1300
 10 MILLER 1300 23-JAN-1982 1

Now you can clearly see the effect that you have when you pass the correct distance to LEAD OVER.
The rows for INCORRECT represent the values returned by LEAD OVER using a default distance of
one. The rows for CORRECT represent the values returned by LEAD OVER using the proper distance
for each employee with a duplicate HIREDATE to MILLER. At this point, all that is left is to find the
difference between CORRECT and SAL for each row, which has already been shown.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.3. Locating the Beginning and End of a Range
of Consecutive Values

Problem

This recipe is an extension of the prior recipe , and it uses the same view V from the prior recipe.
Now that you've located the ranges of consecutive values, you want to find just their start and end
points. Unlike the prior recipe, if a row is not part of a set of consecutive values, you still want to
return it. Why? Because such a row represents both the beginning and end of its range. Using the
data from view V:

 select *
 from V

 PROJ_ID PROJ_START PROJ_END
 ------- ----------- -----------
 1 01-JAN-2005 02-JAN-2005
 2 02-JAN-2005 03-JAN-2005
 3 03-JAN-2005 04-JAN-2005
 4 04-JAN-2005 05-JAN-2005
 5 06-JAN-2005 07-JAN-2005
 6 16-JAN-2005 17-JAN-2005
 7 17-JAN-2005 18-JAN-2005
 8 18-JAN-2005 19-JAN-2005
 9 19-JAN-2005 20-JAN-2005
 10 21-JAN-2005 22-JAN-2005
 11 26-JAN-2005 27-JAN-2005
 12 27-JAN-2005 28-JAN-2005
 13 28-JAN-2005 29-JAN-2005
 14 29-JAN-2005 30-JAN-2005

you want the final result set to be:

 PROJ_GRP PROJ_START PROJ_END
 -------- ----------- -----------
 1 01-JAN-2005 05-JAN-2005
 2 06-JAN-2005 07-JAN-2005
 3 16-JAN-2005 20-JAN-2005
 4 21-JAN-2005 22-JAN-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 5 26-JAN-2005 30-JAN-2005

Solution

This problem is a bit more involved than its predecessor. First, you must identify what the ranges
are. A range of rows is defined by the values for PROJ_START and PROJ_END. For a row to be
considered "consecutive" or part of a group, its PROJ_ START value must equal the PROJ_END value
of the row before it. In the case where a row's PROJ_START value does not equal the prior row's
PROJ_END value and its PROJ_END value does not equal the next row's PROJ_START value, this is an
instance of a single row group. Once you have identify the ranges, you need to be able to group the
rows in these ranges together (into groups) and return only their start and end points.

Examine the first row of the desired result set. The PROJ_START is the PROJ_ START for PROJ_ID 1
from view V and the PROJ_END is the PROJ_END for PROJ_ID 4 from view V. Despite the fact that
PROJ_ID 4 does not have a consecutive value following it, it is the last of a range of consecutive
values, and thus it is included in the first group.

DB2, MySQL, PostgreSQL, and SQL Server

The solution for these platforms will use use view V2 to help improve readability. View V2 is defined
as follows:

 create view v2
 as
 select a.*,
 case
 when (
 select b.proj_id
 from V b
 where a.proj_start = b.proj_end
)
 is not null then 0 else 1
 end as flag
 from V a

The result set from view V2 is:

 select *
 from V2

 PROJ_ID PROJ_START PROJ_END FLAG
 ------- ----------- ----------- ----------
 1 01-JAN-2005 02-JAN-2005 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 02-JAN-2005 03-JAN-2005 0
 3 03-JAN-2005 04-JAN-2005 0
 4 04-JAN-2005 05-JAN-2005 0
 5 06-JAN-2005 07-JAN-2005 1
 6 16-JAN-2005 17-JAN-2005 1
 7 17-JAN-2005 18-JAN-2005 0
 8 18-JAN-2005 19-JAN-2005 0
 9 19-JAN-2005 20-JAN-2005 0
 10 21-JAN-2005 22-JAN-2005 1
 11 26-JAN-2005 27-JAN-2005 1
 12 27-JAN-2005 28-JAN-2005 0
 13 28-JAN-2005 29-JAN-2005 0
 14 29-JAN-2005 30-JAN-2005 0

Using V2, the solution is as follows. First, find the rows that are part of a set of consecutive values.
Group those rows together. Then use the MIN and MAX functions to find their start and end points:

 1 select proj_grp,
 2 min(proj_start) as proj_start,
 3 max(proj_end) as proj_end
 4 from (
 5 select a.proj_id,a.proj_start,a.proj_end,
 6 (select sum(b.flag)
 7 from V2 b
 8 where b.proj_id <= a.proj_id) as proj_grp
 9 from V2 a
 10) x
 11 group by proj_grp

Oracle

While the solution for the other vendors will work for Oracle, there's no need to introduce additional
views when you can take advantage of Oracle's LAG OVER window function. Use LAG OVER to
determine whether or not each prior row's PROJ_END equals the current row's PROJ_START to help
place the rows into groups. Once they are grouped, use the aggregate functions MIN and MAX to find
their start and end points:

 1 select proj_grp, min(proj_start), max(proj_end)
 2 from (
 3 select proj_id,proj_start,proj_end,
 4 sum(flag)over(order by proj_id) proj_grp
 5 from (
 6 select proj_id,proj_start,proj_end,
 7 case when
 8 lag(proj_end)over(order by proj_id) = proj_start

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 9 then 0 else 1
 10 end flag
 11 from V
 12)
 13)
 14 group by proj_grp

Discussion

DB2, MySQL, PostgreSQL, and SQL Server

Using view V2 makes this problem relatively easy to solve. View V2 uses a scalar subquery in a CASE
expression to determine whether or not a particular row is part of a set of consecutive values. The
CASE expression, aliased FLAG, returns a 0 if the current row is part of a consecutive set or a 1 if it is
not (membership in a consecutive set is determined by whether or not there is a record with a
PROJ_END value that matches the current row's PROJ_START value). The next step is to examine
inline view X (lines 59). Inline view X returns all rows from view V2 along with a running total on
FLAG; this running total is what creates our groups and can be seen below:

 select a.proj_id,a.proj_start,a.proj_end,
 (select sum(b.flag)
 from v2 b
 where b.proj_id <= a.proj_id) as proj_grp
 from v2 a

 PROJ_ID PROJ_START PROJ_END PROJ_GRP
 ------- ----------- ----------- ----------
 1 01-JAN-2005 02-JAN-2005 1
 2 02-JAN-2005 03-JAN-2005 1
 3 03-JAN-2005 04-JAN-2005 1
 4 04-JAN-2005 05-JAN-2005 1
 5 06-JAN-2005 07-JAN-2005 2
 6 16-JAN-2005 17-JAN-2005 3
 7 17-JAN-2005 18-JAN-2005 3
 8 18-JAN-2005 19-JAN-2005 3
 9 19-JAN-2005 20-JAN-2005 3
 10 21-JAN-2005 22-JAN-2005 4
 11 26-JAN-2005 27-JAN-2005 5
 12 27-JAN-2005 28-JAN-2005 5
 13 28-JAN-2005 29-JAN-2005 5
 14 29-JAN-2005 30-JAN-2005 5

Now that the ranges have been grouped, find the start and end point for each by simply using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

aggregate functions MIN and MAX on PROJ_START and PROJ_END respectively, and group by the
values created by the running total.

Oracle

The window function LAG OVER is extremely useful in this situation. You can examine each prior
row's PROJ_END value without a self join, without a scalar sub-query, and without a view. The results
of the LAG OVER function without the CASE expression are as follows:

 select proj_id,proj_start,proj_end,
 lag(proj_end)over(order by proj_id) prior_proj_end
 from V

 PROJ_ID PROJ_START PROJ_END PRIOR_PROJ_END
 ------- ----------- ----------- --------------
 1 01-JAN-2005 02-JAN-2005
 2 02-JAN-2005 03-JAN-2005 02-JAN-2005
 3 03-JAN-2005 04-JAN-2005 03-JAN-2005
 4 04-JAN-2005 05-JAN-2005 04-JAN-2005
 5 06-JAN-2005 07-JAN-2005 05-JAN-2005
 6 16-JAN-2005 17-JAN-2005 07-JAN-2005
 7 17-JAN-2005 18-JAN-2005 17-JAN-2005
 8 18-JAN-2005 19-JAN-2005 18-JAN-2005
 9 19-JAN-2005 20-JAN-2005 19-JAN-2005
 10 21-JAN-2005 22-JAN-2005 20-JAN-2005
 11 26-JAN-2005 27-JAN-2005 22-JAN-2005
 12 27-JAN-2005 28-JAN-2005 27-JAN-2005
 13 28-JAN-2005 29-JAN-2005 28-JAN-2005
 14 29-JAN-2005 30-JAN-2005 29-JAN-2005

The CASE expression in the complete solution simply compares the value returned by LAG OVER to
the current row's PROJ_START value; if they are the same, return 0, else return 1. The next step is
to create a running total on the 0's and 1's returned by the CASE expression to put each row into a
group. The results of the running total can be seen below:

 select proj_id,proj_start,proj_end,
 sum(flag)over(order by proj_id) proj_grp
 from (
 select proj_id,proj_start,proj_end,
 case when
 lag(proj_end)over(order by proj_id) = proj_start
 then 0 else 1
 end flag
 from V
)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PROJ_ID PROJ_START PROJ_END PROJ_GRP
 ------- ----------- ----------- ----------
 1 01-JAN-2005 02-JAN-2005 1
 2 02-JAN-2005 03-JAN-2005 1
 3 03-JAN-2005 04-JAN-2005 1
 4 04-JAN-2005 05-JAN-2005 1
 5 06-JAN-2005 07-JAN-2005 2
 6 16-JAN-2005 17-JAN-2005 3
 7 17-JAN-2005 18-JAN-2005 3
 8 18-JAN-2005 19-JAN-2005 3
 9 19-JAN-2005 20-JAN-2005 3
 10 21-JAN-2005 22-JAN-2005 4
 11 26-JAN-2005 27-JAN-2005 5
 12 27-JAN-2005 28-JAN-2005 5
 13 28-JAN-2005 29-JAN-2005 5
 14 29-JAN-2005 30-JAN-2005 5

Now that each row has been placed into a group, simply use the aggregate functions MIN and MAX
on PROJ_START and PROJ_END respectively, and group by the values created in the PROJ_GRP
running total column.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.4. Filling in Missing Values in a Range of
Values

Problem

You want to return the number of employees hired each year for the entire decade of the 1980s, but
there are some years in which no employees were hired. You would like to return the following result
set:

 YR CNT
 ---- ----------
 1980 1
 1981 10
 1982 2
 1983 1
 1984 0
 1985 0
 1986 0
 1987 0
 1988 0
 1989 0

Solution

The trick to this solution is returning zeros for years that saw no employees hired. If no employee
was hired in a given year, then no rows for that year will exist in table EMP. If the year does not exist
in the table, how can you return a count, any count, even zero? The solution requires you to outer
join. You must supply a result set that returns all the years you want to see, and then perform a
count against table EMP to see if there were any employees hired in each of those years.

DB2

Use table EMP as a pivot table (because it has 14 rows) and the built-in function YEAR to generate
one row for each year in the decade of 1980. Outer join to table EMP and count how many employees
were hired each year:

 1 select x.yr, coalesce(y.cnt,0) cnt
 2 from (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 select year(min(hiredate)over()) -
 4 mod(year(min(hiredate)over()),10) +
 5 row_number()over()-1 yr
 6 from emp fetch first 10 rows only
 7) x
 8 left join
 9 (
 10 select year(hiredate) yr1, count(*) cnt
 11 from emp
 12 group by year(hiredate)
 13) y
 14 on (x.yr = y.yr1)

Oracle

Use table EMP as a pivot table (because it has 14 rows) and the built-in functions TO_NUMBER and
TO_CHAR to generate one row for each year in the decade of 1980. Outer join to table EMP and
count how many employees were hired each year:

 1 select x.yr, coalesce(cnt,0) cnt
 2 from (
 3 select extract(year from min(hiredate)over()) -
 4 mod(extract(year from min(hiredate)over()),10) +
 5 rownum-1 yr
 6 from emp
 7 where rownum <= 10
 8) x,
 9 (
 10 select to_number(to_char(hiredate,'YYYY')) yr, count(*) cnt
 11 from emp
 12 group by to_number(to_char(hiredate,'YYYY'))
 13) y
 14 where x.yr = y.yr(+)

If you're using Oracle9 i Database or later, you can implement the solution using the newly supported
JOIN clause:

 1 select x.yr, coalesce(cnt,0) cnt
 2 from (
 3 select extract(year from min(hiredate)over()) -
 4 mod(extract(year from min(hiredate)over()),10) +
 5 rownum-1 yr
 6 from emp
 7 where rownum <= 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 8) x
 9 left join
 10 (
 11 select to_number(to_char(hiredate,'YYYY')) yr, count(*) cnt
 12 from emp
 13 group by to_number(to_char(hiredate,'YYYY'))
 14) y
 15 on (x.yr = y.yr)

PostgreSQL and MySQL

Use table T10 as a pivot table (because it has 10 rows) and the built-in function EXTRACT to
generate one row for each year in the decade of 1980. Outer join to table EMP and count how many
employees were hired each year:

 1 select y.yr, coalesce(x.cnt,0) as cnt
 2 from (
 3 select min_year-mod(cast(min_year as int),10)+rn as yr
 4 from (
 5 select (select min(extract(year from hiredate))
 6 from emp) as min_year,
 7 id-1 as rn
 8 from t10
 9) a
 10) y
 11 left join
 12 (
 13 select extract(year from hiredate) as yr, count(*) as cnt
 14 from emp
 15 group by extract(year from hiredate)
 16) x
 17 on (y.yr = x.yr)

SQL Server

Use table EMP as a pivot table (because it has 14 rows) and the built-in function YEAR to generate
one row for each year in the decade of 1980. Outer join to table EMP and count how many employees
were hired each year:

 1 select x.yr, coalesce(y.cnt,0) cnt
 2 from (
 3 select top (10)
 4 (year(min(hiredate)over()) -
 5 year(min(hiredate)over())%10)+

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6 row_number()over(order by hiredate)-1 yr
 7 from emp
 8) x
 9 left join
 10 (
 11 select year(hiredate) yr, count(*) cnt
 12 from emp
 13 group by year(hiredate)
 14) y
 15 on (x.yr = y.yr)

Discussion

Despite the difference in syntax, the approach is the same for all solutions. Inline view X returns each
year in the decade of the '80s by first finding the year of the earliest HIREDATE. The next step is to
add RN1 to the difference between the earliest year and the earliest year modulus ten. To see how
this works, simply execute inline view X and return each of the values involved separately. Listed
below is the result set for inline view X using the window function MIN OVER (DB2, Oracle, SQL
Server) and a scalar subquery (MySQL, PostgreSQL):

 select year(min(hiredate)over()) -
 mod(year(min(hiredate)over()),10) +
 row_number()over()-1 yr,
 year(min(hiredate)over()) min_year,
 mod(year(min(hiredate)over()),10) mod_yr,
 row_number()over()-1 rn
 from emp fetch first 10 rows only

 YR MIN_YEAR MOD_YR RN
 ---- ---------- ---------- ----------
 1980 1980 0 0
 1981 1980 0 1
 1982 1980 0 2
 1983 1980 0 3
 1984 1980 0 4
 1985 1980 0 5
 1986 1980 0 6
 1987 1980 0 7
 1988 1980 0 8
 1989 1980 0 9

 select min_year-mod(min_year,10)+rn as yr,
 min_year,
 mod(min_year,10) as mod_yr
 rn
 from (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select (select min(extract(year from hiredate))
 from emp) as min_year,
 id-1 as rn
 from t10
) x

 YR MIN_YEAR MOD_YR RN
 ---- ---------- ---------- ----------
 1980 1980 0 0
 1981 1980 0 1
 1982 1980 0 2
 1983 1980 0 3
 1984 1980 0 4
 1985 1980 0 5
 1986 1980 0 6
 1987 1980 0 7
 1988 1980 0 8
 1989 1980 0 9

Inline view Y returns the year for each HIREDATE and the number of employees hired during that
year:

 select year(hiredate) yr, count(*) cnt
 from emp
 group by year(hiredate)

 YR CNT
 ----- ----------
 1980 1
 1981 10
 1982 2
 1983 1

For the final solution, outer join inline view Y to inline view X so that every year is returned even if
there are no employees hired.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.5. Generating Consecutive Numeric Values

Problem

You would like to have a "row source generator" available to you in your queries. Row source
generators are useful for queries that require pivoting. For example, you want to return a result set
such as the following, up to any number of rows that you specify:

 ID

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 …

If your RDBMS provides built-in functions for returning rows dynamically, you do not need to create a
pivot table in advance with a fixed number of rows. That's why a dynamic row generator can be so
handy. Otherwise, you must use a traditional pivot table with a fixed number of rows (that may not
always be enough) to generate rows when needed.

Solution

This solution shows how to return 10 rows of increasing numbers starting from 1. You can easily
adapt the solution to return any number of rows.

The ability to return increasing values from 1 opens the door to many other solutions. For example,
you can generate numbers to add to dates in order to generate sequences of days. You can also use
such numbers to parse through strings.

DB2 and SQL Server

Use the recursive WITH clause to generate a sequence of rows with incrementing values. Use a one-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

row table such as T1 to kick off the row generation; the WITH clause does the rest:

 1 with x (id)
 2 as (
 3 select 1
 4 from t1
 5 union all
 6 select id+1
 7 from x
 8 where id+1 <= 10
 9)
 10 select * from x

Following is a second, alternative solution for DB2 only. Its advantage is that it does not require table
T1:

 1 with x (id)
 2 as (
 3 values (1)
 4 union all
 5 select id+1
 6 from x
 7 where id+1 <= 10
 8)
 9 select * from x

Oracle

Use the recursive CONNECT BY clause (Oracle9 i Database or later). In Oracle 9 i Database, you
must either wrap the CONNECT BY solution in an inline view or place it in the WITH clause:

 1 with x
 2 as (
 3 select level id
 4 from dual
 5 connect by level <= 10
 6)
 7 select * from x

In Oracle Database 10 g or later, you can generate rows using the MODEL clause:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select array id
 2 from dual
 3 model
 4 dimension by (0 idx)
 5 measures(1 array)
 6 rules iterate (10) (
 7 array[iteration_number] = iteration_number+1
 8)

PostgreSQL

Use the very handy function GENERATE_SERIES, which is designed for the express purpose of
generating rows:

 1 select id
 2 from generate_series (1, 10) x(id)

Discussion

DB2 and SQL Server

The recursive WITH clause increments ID (which starts at 1) until the WHERE clause is satisfied. To
kick things off you must generate one row having the value 1. You can do this by selecting 1 from a
one-row table or, in the case of DB2, by using the VALUES clause to create a one-row result set.

Oracle

The solution places the CONNECT BY subquery into the WITH clause. Rows will continue to be
returned unless short-circuited by the WHERE clause. Oracle will increment the pseudo-column LEVEL
automatically, so there's no need for you to do so.

In the MODEL clause solution, there is an explicit ITERATE command that allows you to generate
multiple rows. Without the ITERATE clause, only one row will be returned, since DUAL has only one
row. For example:

 select array id
 from dual
 model
 dimension by (0 idx)
 measures(1 array)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rules ()

 ID
 --
 1

The MODEL clause not only allows you array access to rows, it allows you to easily "create" or return
rows that are not in the table you are selecting against. In this solution, IDX is the array index
(location of a specific value in the array) and ARRAY (aliased ID) is the "array" of rows. The first row
defaults to 1 and can be referenced with ARRAY[0]. Oracle provides the function
ITERATION_NUMBER so you can track the number of times you've iterated. The solution iterates 10
times, causing ITERATION_NUMBER to go from 0 to 9. Adding 1 to each of those values yields the
results 1 through 10.

It may be easier to visualize what's happening with the model clause if you execute the following
query:

 select 'array['||idx||'] = '||array as output
 from dual
 model
 dimension by (0 idx)
 measures(1 array)
 rules iterate (10) (
 array[iteration_number] = iteration_number+1
)

 OUTPUT

 array[0] = 1
 array[1] = 2
 array[2] = 3
 array[3] = 4
 array[4] = 5
 array[5] = 6
 array[6] = 7
 array[7] = 8
 array[8] = 9
 array[9] = 10

PostgreSQL

All the work is done by the function GENERATE_SERIES. The function accepts three parameters, all
numeric values. The first parameter is the start value, the second parameter is the ending value, and
the third parameter is an optional "step" value (how much each value is incremented by). If you do
not pass a third parameter, the increment defaults to 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The GENERATE_SERIES function is flexible enough so that you do not have to hardcode parameters.
For example, if you wanted to return five rows starting from value 10 and ending with value 30,
incrementing by 5 such that the result set is the following:

 ID

 10
 15
 20
 25
 30

you can be creative and do something like this:

 select id
 from generate_series(
 (select min(deptno) from emp),
 (select max(deptno) from emp),
 5
) x(id)

Notice here that the actual values passed to GENERATE_SERIES are not known when the query is
written. Instead, they are generated by subqueries when the main query executes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. Advanced Searching

In a very real sense, this entire book so far has been about searching. You've seen all sorts of queries
that use joins and WHERE clauses and grouping techniques to search out and return the results that
you need. Some types of searching operations, though, stand apart from others in that they
represent a different way of thinking about searching. Perhaps you're displaying a result set one page
at a time. Half of that problem is to identify (search for) the entire set of records that you want to
display. The other half of that problem is to repeatedly search for the next page to display as a user
cycles through the records on a display. Your first thought may not be to think of pagination as a
searching problem, but it can be thought of that way, and it can be solved that way; that is the type
of searching solution this chapter is all about.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.1. Paginating Through a Result Set

Problem

You want to paginate or "scroll through" a result set. For example, you want to return the first five
salaries from table EMP, then the next five, and so forth. Your goal is to allow a user to view five
records at a time, scrolling forward with each click of a "Next" button.

Solution

Because there is no concept of first, last, or next in SQL, you must impose order on the rows you are
working with. Only by imposing order can you accurately return ranges of records.

DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to impose order, and specify the window of records
that you want returned in your WHERE clause. For example, to return rows 1 through 5:

 select sal
 from (
 select row_number() over (order by sal) as rn,
 sal
 from emp
) x
 where rn between 1 and 5

 SAL

 800
 950
 1100
 1250
 1250

Then to return rows 6 through 10:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select sal
 from (
 select row_number() over (order by sal) as rn,
 sal
 from emp
) x
 where rn between 6 and 10

 SAL

 1300
 1500
 1600
 2450
 2850

You can return any range of rows that you wish simply by changing the WHERE clause of your query.

MySQL and PostgreSQL

Scrolling through a result set is particularly easy due to the LIMIT and OFFSET clauses that these
products support. Use LIMIT to specify the number of rows to return, and use OFFSET to specify the
number of rows to skip. For example, to return the first five rows in order of salary:

 select sal
 from emp
 order by sal limit 5 offset 0

 SAL

 800
 950
 1100
 1250
 1250

To return the next group of five rows:

 select sal
 from emp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 order by sal limit 5 offset 5

 SAL

 1300
 1500
 1600
 2450
 2850

LIMIT and OFFSET not only make the MySQL and PostgreSQL solutions easy to write, but they are
quite readable, too.

Discussion

DB2, Oracle, and SQL Server

The window function ROW_NUMBER OVER in inline view X will assign a unique number to each salary
(in increasing order starting from 1). Listed below is the result set for inline view X:

 select row_number() over (order by sal) as rn,
 sal
 from emp

 RN SAL
 -- ----------
 1 800
 2 950
 3 1100
 4 1250
 5 1250
 6 1300
 7 1500
 8 1600
 9 2450
 10 2850
 11 2975
 12 3000
 13 3000
 14 5000

Once a number has been assigned to a salary, simply pick the range you want to return by specifying
values for RN.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For Oracle users, an alternative: you can use ROWNUM instead of ROW NUMBER OVER to generate
sequence numbers for the rows:

 select sal
 from (
 select sal, rownum rn
 from (
 select sal
 from emp
 order by sal
)
)
 where rn between 6 and 10

 SAL

 1300
 1500
 1600
 2450
 2850

Using ROWNUM forces you into writing an extra level of subquery. The innermost subquery sorts
rows by salary. The next outermost subquery applies row numbers to those rows, and, finally, the
very outermost SELECT returns the data you are after.

MySQL and PostgreSQL

The OFFSET clause added to the SELECT clause makes scrolling through results intuitive and easy.
Specifying OFFSET 0 will start you at the first row, OFFSET 5 at the sixth row, and OFFSET 10 at the
eleventh row. The LIMIT clause restricts the number of rows returned. By combining the two clauses
you can easily specify where in a result set to start returning rows and how many to return.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.2. Skipping n Rows from a Table

Problem

You want a query to return every other employee in table EMP; you want the first employee, third
employee, and so forth. For example, from the following result set:

 ENAME

 ADAMS
 ALLEN
 BLAKE
 CLARK
 FORD
 JAMES
 JONES
 KING
 MARTIN
 MILLER
 SCOTT
 SMITH
 TURNER
 WARD

you want to return:

 ENAME

 ADAMS
 BLAKE
 FORD
 JONES
 MARTIN
 SCOTT
 TURNER

Solution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To skip the second or fourth or n th row from a result set, you must impose order on the result set,
otherwise there is no concept of first or next, second, or fourth.

DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to assign a number to each row, which you can then
use in conjunction with the modulo function to skip unwanted rows. The modulo function is MOD for
DB2 and Oracle. In SQL Server, use the percent (%) operator. The following example uses MOD to
skip even-numbered rows:

 1 select ename
 2 from (
 3 select row_number() over (order by ename) rn,
 4 ename
 5 from emp
 6) x
 7 where mod(rn,2) = 1

MySQL and PostgreSQL

Because there are no built-in functions for ranking or numbering rows, you need to use a scalar
subquery to rank the rows (by name in this example). Then use modulus to skip rows:

 1 select x.ename
 2 from (
 3 select a.ename,
 4 (select count(*)
 5 from emp b
 6 where b.ename <= a.ename) as rn
 7 from emp a
 8) x
 9 where mod(x.rn,2) = 1

Discussion

DB2, Oracle, and SQL Server

The call to the window function ROW_NUMBER OVER in inline view X will assign a rank to each row
(no ties, even with duplicate names). The results are shown below:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select row_number() over (order by ename) rn, ename
 from emp

 RN ENAME
 -- --------
 1 ADAMS
 2 ALLEN
 3 BLAKE
 4 CLARK
 5 FORD
 6 JAMES
 7 JONES
 8 KING
 9 MARTIN
 10 MILLER
 11 SCOTT
 12 SMITH
 13 TURNER
 14 WARD

The last step is to simply use modulus to skip every other row.

MySQL and PostgreSQL

With a function to rank or number rows, you can use a scalar subquery to first rank the employee
names. Inline view X ranks each name and is shown below:

 select a.ename,
 (select count(*)
 from emp b
 where b.ename <= a.ename) as rn
 from emp a

 ENAME RN
 ---------- ----------
 ADAMS 1
 ALLEN 2
 BLAKE 3
 CLARK 4
 FORD 5
 JAMES 6
 JONES 7
 KING 8
 MARTIN 9
 MILLER 10
 SCOTT 11

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SMITH 12
 TURNER 13
 WARD 14

The final step is to use the modulo function on the generated rank to skip rows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.3. Incorporating OR Logic when Using Outer
Joins

Problem

You want to return the name and department information for all employees in departments 10 and
20 along with department information for departments 30 and 40 (but no employee information).
Your first attempt looks like this:

 select e.ename, d.deptno, d.dname, d.loc
 from dept d, emp e
 where d.deptno = e.deptno
 and (e.deptno = 10 or e.deptno = 20)
 order by 2

 ENAME DEPTNO DNAME LOC
 ------- ---------- -------------- -----------
 CLARK 10 ACCOUNTING NEW YORK
 KING 10 ACCOUNTING NEW YORK
 MILLER 10 ACCOUNTING NEW YORK
 SMITH 20 RESEARCH DALLAS
 ADAMS 20 RESEARCH DALLAS
 FORD 20 RESEARCH DALLAS
 SCOTT 20 RESEARCH DALLAS
 JONES 20 RESEARCH DALLAS

Because the join in this query is an inner join, the result set does not include department information
for DEPTNOs 30 and 40.

You attempt to outer join EMP to DEPT with the following query, but you still do not get the correct
results:

 select e.ename, d.deptno, d.dname, d.loc
 from dept d left join emp e
 on (d.deptno = e.deptno)
 where e.deptno = 10
 or e.deptno = 20
 order by 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ENAME DEPTNO DNAME LOC
 ------- ---------- ------------ -----------
 CLARK 10 ACCOUNTING NEW YORK
 KING 10 ACCOUNTING NEW YORK
 MILLER 10 ACCOUNTING NEW YORK
 SMITH 20 RESEARCH DALLAS
 ADAMS 20 RESEARCH DALLAS
 FORD 20 RESEARCH DALLAS
 SCOTT 20 RESEARCH DALLAS
 JONES 20 RESEARCH DALLAS

Ultimately, you would like the result set to be:

 ENAME DEPTNO DNAME LOC
 ------- ---------- ------------ ---------
 CLARK 10 ACCOUNTING NEW YORK
 KING 10 ACCOUNTING NEW YORK
 MILLER 10 ACCOUNTING NEW YORK
 SMITH 20 RESEARCH DALLAS
 JONES 20 RESEARCH DALLAS
 SCOTT 20 RESEARCH DALLAS
 ADAMS 20 RESEARCH DALLAS
 FORD 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

Solution

DB2, MySQL, PostgreSQL, and SQL Server

Move the OR condition into the JOIN clause:

 1 select e.ename, d.deptno, d.dname, d.loc
 2 from dept d left join emp e
 3 on (d.deptno = e.deptno
 4 and (e.deptno=10 or e.deptno=20))
 5 order by 2

Alternatively, you can filter on EMP.DEPTNO first in an inline view and then outer join:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select e.ename, d.deptno, d.dname, d.loc
 2 from dept d
 3 left join
 4 (select ename, deptno
 5 from emp
 6 where deptno in (10, 20)
 7) e on (e.deptno = d.deptno)
 8 order by 2

Oracle

If you are on Oracle9i Database or later, you can use either of the solutions for the other products.
Otherwise, you need to use CASE or DECODE in a workaround. Following is a solution using CASE:

 select e.ename, d.deptno, d.dname, d.loc
 from dept d, emp e
 where d.deptno = e.deptno (+)
 and d.deptno = case when e.deptno(+) = 10 then e.deptno(+)
 when e.deptno(+) = 20 then e.deptno(+)
 end

 order by 2

And next is the same solution, but this time using DECODE:

 select e.ename, d.deptno, d.dname, d.loc
 from dept d, emp e
 where d.deptno = e.deptno (+)
 and d.deptno = decode(e.deptno(+),10,e.deptno(+),
 20,e.deptno(+))
 order by 2

When using the proprietary Oracle outer join syntax (+) along with an IN or OR predicate on an outer
joined column, the query will return an error. The solution is to move the IN or OR predicate to an
inline view:

 select e.ename, d.deptno, d.dname, d.loc
 from dept d,
 (select ename, deptno
 from emp
 where deptno in (10, 20)
) e

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 where d.deptno = e.deptno (+)
 order by 2

Discussion

DB2, MySQL, PostgreSQL, and SQL Server

Two solutions are given for these products. The first moves the OR condition into the JOIN clause,
making it part of the join condition. By doing that, you can filter the rows returned from EMP without
losing DEPTNOs 30 and 40 from DEPT.

The second solution moves the filtering into an inline view. Inline view E filters on EMP.DEPTNO and
returns EMP rows of interest. These are then outer joined to DEPT. Because DEPT is the anchor table
in the outer join, all departments, including 30 and 40, are returned.

Oracle

Use the CASE and DECODE functions as a workaround for what seems to be a bug in the older outer-
join syntax. The solution using inline view E works by first finding the rows of interest in table EMP,
and then outer joining to DEPT.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.4. Determining Which Rows Are Reciprocals

Problem

You have a table containing the results of two tests, and you want to determine which pair of scores
are reciprocals. Consider the result set below from view V:

 select *
 from V

 TEST1 TEST2
 ----- ----------
 20 20
 50 25
 20 20
 60 30
 70 90
 80 130
 90 70
 100 50
 110 55
 120 60
 130 80
 140 70

Examining these results, you see that a test score for TEST1 of 70 and TEST2 of 90 is a reciprocal
(there exists a score of 90 for TEST1 and a score of 70 for TEST2). Likewise, the scores of 80 for
TEST1 and 130 for TEST2 are reciprocals of 130 for TEST1 and 80 for TEST2. Additionally, the scores
of 20 for TEST1 and 20 for TEST2 are reciprocals of 20 for TEST2 and 20 for TEST1. You want to
identify only one set of reciprocals. You want your result set to be this:

 TEST1 TEST2
 ----- ---------
 20 20
 70 90
 80 130

not this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TEST1 TEST2
 ----- ---------
 20 20
 20 20
 70 90
 80 130
 90 70
 130 80

Solution

Use a self join to identify rows where TEST1 equals TEST2 and vice versa:

 select distinct v1.*
 from V v1, V v2
 where v1.test1 = v2.test2
 and v1.test2 = v2.test1
 and v1.test1 <= v1.test2

Discussion

The self-join results in a Cartesian product in which every TEST1 score can be compared against
every TEST2 score and vice versa. The query below will identify the reciprocals:

 select v1.*
 from V v1, V v2
 where v1.test1 = v2.test2
 and v1.test2 = v2.test1

 TEST1 TEST2
 ----- ----------
 20 20
 20 20
 20 20
 20 20
 90 70
 130 80
 70 90
 80 130

The use of DISTINCT ensures that duplicate rows are removed from the final result set. The final
filter in the WHERE clause (and V1.TEST1 <= V1.TEST2) will ensure that only one pair of reciprocals

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(where TEST1 is the smaller or equal value) is returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.5. Selecting the Top n Records

Problem

You want to limit a result set to a specific number of records based on a ranking of some sort. For
example, you want to return the names and salaries of the employees with the top five salaries.

Solution

The key to this solution is to make two passes: first rank the rows on whatever value you want to
rank on; then limit the result set to the number of rows you are interested in.

DB2, Oracle, and SQL Server

The solution to this problem depends on the use of a window function. Which window function you will
use depends on how you want to deal with ties. The following solution uses DENSE_RANK, so that
each tie in salary will count as only one against the total:

 1 select ename,sal
 2 from (
 3 select ename, sal,
 4 dense_rank() over (order by sal desc) dr
 5 from emp
 6) x
 7 where dr <= 5

The total number of rows returned may exceed five, but there will be only five distinct salaries. Use
ROW_NUMBER OVER if you wish to return five rows regardless of ties (as no ties are allowed with this
function).

MySQL and PostgreSQL

Use a scalar subquery to create a rank for each salary. Then restrict the results of that subquery by
rank:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select ename,sal
 2 from (
 3 select (select count(distinct b.sal)
 4 from emp b
 5 where a.sal <= b.sal) as rnk,
 6 a.sal,
 7 a.ename
 8 from emp a
 9)
 10 where rnk <= 5

Discussion

DB2, Oracle, and SQL Server

The window function DENSE_RANK OVER in inline view X does all the work. The following example
shows the entire table after applying that function:

 select ename, sal,
 dense_rank() over (order by sal desc) dr
 from emp

 ENAME SAL DR
 ------- ------ ----------
 KING 5000 1
 SCOTT 3000 2
 FORD 3000 2
 JONES 2975 3
 BLAKE 2850 4
 CLARK 2450 5
 ALLEN 1600 6
 TURNER 1500 7
 MILLER 1300 8
 WARD 1250 9
 MARTIN 1250 9
 ADAMS 1100 10
 JAMES 950 11
 SMITH 800 12

Now it's just a matter of returning rows where DR is less than or equal to five.

MySQL and PostgreSQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The scalar subquery in inline view X ranks the salaries as follows:

 select (select count(distinct b.sal)
 from emp b
 where a.sal <= b.sal) as rnk,
 a.sal,
 a.ename
 from emp a

 RNK SAL ENAME
 --- ------ -------
 1 5000 KING
 2 3000 SCOTT
 2 3000 FORD
 3 2975 JONES
 4 2850 BLAKE
 5 2450 CLARK
 6 1600 ALLEN
 7 1500 TURNER
 8 1300 MILLER
 9 1250 WARD
 9 1250 MARTIN
 10 1100 ADAMS
 11 950 JAMES
 12 800 SMITH

The final step is to return only rows where RNK is less than or equal to five.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.6. Finding Records with the Highest and
Lowest Values

Problem

You want to find "extreme" values in your table. For example, you want to find the employees with
the highest and lowest salaries in table EMP.

Solution

DB2, Oracle, and SQL Server

Use the window functions MIN OVER and MAX OVER to find the lowest and highest salaries,
respectively:

 1 select ename
 2 from (
 3 select ename, sal,
 4 min(sal)over() min_sal,
 5 max(sal)over() max_sal
 6 from emp
 7) x
 8 where sal in (min_sal,max_sal)

MySQL and PostgreSQL

Write two subqueries, one each to return the MIN and MAX values of SAL:

 1 select ename
 2 from emp
 3 where sal in ((select min(sal) from emp),
 4 (select max(sal) from emp))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

DB2, Oracle, and SQL Server

The window functions MIN OVER and MAX OVER allow each row to have access to the lowest and
highest salaries. The result set from inline view X is as follows:

 select ename, sal,
 min(sal)over() min_sal,
 max(sal)over() max_sal
 from emp

 ENAME SAL MIN_SAL MAX_SAL
 ------- ------ ---------- ----------
 SMITH 800 800 5000
 ALLEN 1600 800 5000
 WARD 1250 800 5000
 JONES 2975 800 5000
 MARTIN 1250 800 5000
 BLAKE 2850 800 5000
 CLARK 2450 800 5000
 SCOTT 3000 800 5000
 KING 5000 800 5000
 TURNER 1500 800 5000
 ADAMS 1100 800 5000
 JAMES 950 800 5000
 FORD 3000 800 5000
 MILLER 1300 800 5000

Given this result set, all that's left is to return rows where SAL equals MIN_SAL or MAX_SAL.

MySQL and PostgreSQL

This solution uses two subqueries in one IN list to find the lowest and highest salaries from EMP. The
rows returned by the outer query are the ones having salaries that match the values returned by
either subquery.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.7. Investigating Future Rows

Problem

You want to find any employees who earn less than the employee hired immediately after them.
Based on the following result set:

 ENAME SAL HIREDATE
 ---------- ---------- ---------
 SMITH 800 17-DEC-80
 ALLEN 1600 20-FEB-81
 WARD 1250 22-FEB-81
 JONES 2975 02-APR-81
 BLAKE 2850 01-MAY-81
 CLARK 2450 09-JUN-81
 TURNER 1500 08-SEP-81
 MARTIN 1250 28-SEP-81
 KING 5000 17-NOV-81
 JAMES 950 03-DEC-81
 FORD 3000 03-DEC-81
 MILLER 1300 23-JAN-82
 SCOTT 3000 09-DEC-82
 ADAMS 1100 12-JAN-83

SMITH, WARD, MARTIN, JAMES, and MILLER earn less than the person hired immediately after they
were hired, so those are the employees you wish to find with a query.

Solution

The first step is to define what "future" means. You must impose order on your result set to be able
to define a row as having a value that is "later" than another.

DB2, MySQL, PostgreSQL, and SQL Server

Use subqueries to determine the following for each employee:

The date of the first person subsequently hired with a greater salary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The date of the next person to be hired

When the two dates match, you have what you are looking for:

 1 select ename, sal, hiredate
 2 from (
 3 select a.ename, a.sal, a.hiredate,
 4 (select min(hiredate) from emp b
 5 where b.hiredate > a.hiredate
 6 and b.sal > a.sal) as next_sal_grtr,
 7 (select min(hiredate) from emp b
 8 where b.hiredate > a.hiredate) as next_hire
 9 from emp a
 10) x
 11 where next_sal_grtr = next_hire

Oracle

You can use the LEAD OVER window function to access the salary of the next employee that was
hired. It's then a simple matter to check whether that salary is larger:

 1 select ename, sal, hiredate
 2 from (
 3 select ename, sal, hiredate,
 4 lead(sal)over(order by hiredate) next_sal
 5 from emp
 6)
 7 where sal < next_sal

Discussion

DB2, MySQL, PostgreSQL, and SQL Server

The scalar subqueries return, for each employee, the HIREDATE of the very next employee hired and
the HIREDATE of the first, subsequently hired employee who earns more than the current employee.
Here's a look at the raw data:

 select a.ename, a.sal, a.hiredate,
 (select min(hiredate) from emp b
 where b.hiredate > a.hiredate
 and b.sal > a.sal) as next_sal_grtr,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (select min(hiredate) from emp b
 where b.hiredate > a.hiredate) as next_hire
 from emp a

 ENAME SAL HIREDATE NEXT_SAL_GRTR NEXT_HIRE
 ------- ------ --------- ------------- ---------
 SMITH 800 17-DEC-80 20-FEB-81 20-FEB-81
 ALLEN 1600 20-FEB-81 02-APR-81 22-FEB-81
 WARD 1250 22-FEB-81 02-APR-81 02-APR-81
 JONES 2975 02-APR-81 17-NOV-81 01-MAY-81
 MARTIN 1250 28-SEP-81 17-NOV-81 17-NOV-81
 BLAKE 2850 01-MAY-81 17-NOV-81 09-JUN-81
 CLARK 2450 09-JUN-81 17-NOV-81 08-SEP-81
 SCOTT 3000 09-DEC-82 12-JAN-83
 KING 5000 17-NOV-81 03-DEC-81
 TURNER 1500 08-SEP-81 17-NOV-81 28-SEP-81
 ADAMS 1100 12-JAN-83
 JAMES 950 03-DEC-81 23-JAN-82 23-JAN-82
 FORD 3000 03-DEC-81 23-JAN-82
 MILLER 1300 23-JAN-82 09-DEC-82 09-DEC-82

Someone hired subsequently may or may not have been hired immediately after the current
employee was hired. The next (and last) step then is to return only rows where NEXT_SAL_GRTR
(the earliest HIREDATE of an employee who earns more than the current employee) equals
NEXT_HIRE (the HIREDATE of the very next employee relative to the current employee's HIREDATE).

Oracle

The window function LEAD OVER is perfect for a problem such as this one. It not only makes for a
more readable query than the solution for the other products, LEAD OVER also leads to a more
flexible solution because an argument can be passed to it that will determine how many rows ahead
it should look (by default 1). Being able to leap ahead more than one row is important in the case of
duplicates in the column you are ordering by.

The following example shows how easy it is to use LEAD OVER to look at the salary of the "next"
employee hired:

 select ename, sal, hiredate,
 lead(sal)over(order by hiredate) next_sal
 from emp

 ENAME SAL HIREDATE NEXT_SAL
 ------- ------ --------- ----------
 SMITH 800 17-DEC-80 1600
 ALLEN 1600 20-FEB-81 1250
 WARD 1250 22-FEB-81 2975
 JONES 2975 02-APR-81 2850

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BLAKE 2850 01-MAY-81 2450
 CLARK 2450 09-JUN-81 1500
 TURNER 1500 08-SEP-81 1250
 MARTIN 1250 28-SEP-81 5000
 KING 5000 17-NOV-81 950
 JAMES 950 03-DEC-81 3000
 FORD 3000 03-DEC-81 1300
 MILLER 1300 23-JAN-82 3000
 SCOTT 3000 09-DEC-82 1100
 ADAMS 1100 12-JAN-83

The final step is to return only rows where SAL is less than NEXT_SAL. Because of LEAD OVER's
default range of one row, if there had been duplicates in table EMP, in particular, multiple employees
hired on the same date, their SAL would be compared. This may or may not have been what you
intended. If your goal is to compare the SAL of each employee with SAL of the next employee hired,
excluding other employees hired on the same day, you can use the following solution as an
alternative:

 select ename, sal, hiredate
 from (
 select ename, sal, hiredate,
 lead(sal,cnt-rn+1)over(order by hiredate) next_sal
 from (
 select ename,sal,hiredate,
 count(*)over(partition by hiredate) cnt,
 row_number()over(partition by hiredate order by empno) rn
 from emp
)
)
 where sal < next_sal

The idea behind this solution is to find the distance from the current row to the row it should be
compared with. For example, if there are five duplicates, the first of the five needs to leap five rows
to get to its correct LEAD OVER row. The value for CNT represents, for each employee with a
duplicate HIREDATE, how many duplicates there are in total for their HIREDATE. The value for RN
represents a ranking for the employees in DEPTNO 10. The rank is partitioned by HIREDATE so only
employees with a HIREDATE that another employee has will have a value greater than one. The
ranking is sorted by EMPNO (this is arbitrary). Now that you now how many total duplicates there are
and you have a ranking of each duplicate, the distance to the next HIREDATE is simply the total
number of duplicates minus the current rank plus one (CNT-RN+1).

See Also

For additional examples of using LEAD OVER in the presence of duplicates (and a more thorough
discussion of the technique above): Chapter 8, the section on "Determining the Date Difference

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Between the Current Record and the Next Record" and Chapter 10, the section on "Finding
Differences Between Rows in the Same Group or Partition."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.8. Shifting Row Values

Problem

You want to return each employee's name and salary along with the next highest and lowest salaries.
If there are no higher or lower salaries, you want the results to wrap (first SAL shows last SAL and
vice versa). You want to return the following result set:

 ENAME SAL FORWARD REWIND
 ---------- ---------- ---------- ----------
 SMITH 800 950 5000
 JAMES 950 1100 800
 ADAMS 1100 1250 950
 WARD 1250 1250 1100
 MARTIN 1250 1300 1250
 MILLER 1300 1500 1250
 TURNER 1500 1600 1300
 ALLEN 1600 2450 1500
 CLARK 2450 2850 1600
 BLAKE 2850 2975 2450
 JONES 2975 3000 2850
 SCOTT 3000 3000 2975
 FORD 3000 5000 3000
 KING 5000 800 3000

Solution

For Oracle users, the window functions LEAD OVER and LAG OVER make this problem easy to solve
and the resulting queries very readable. With other RDBMSs you can use scalar subqueries, though
ties will present a problem. Because of the problem with ties, the RDBMSs without support for
window functions enable only an approximate solution to this problem.

DB2, SQL Server, MySQL, and PostgreSQL

Use a scalar subquery to find next and prior salaries relative to each salary:

 1 select e.ename, e.sal,
 2 coalesce(
 3 (select min(sal) from emp d where d.sal > e.sal),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 (select min(sal) from emp)
 5) as forward,
 6 coalesce(
 7 (select max(sal) from emp d where d.sal < e.sal),
 8 (select max(sal) from emp)
 9) as rewind
 10 from emp e
 11 order by 2

Oracle

Use the window functions LAG OVER and LEAD OVER to access prior and next rows relative to the
current row:

 1 select ename,sal,
 2 nvl(lead(sal)over(order by sal),min(sal)over()) forward,
 3 nvl(lag(sal)over(order by sal),max(sal)over()) rewind
 4 from emp

Discussion

DB2, SQL Server, MySQL, and PostgreSQL

The scalar subquery solution is not a true solution to the problem. It's an approximation that will fail
in the event any two records contain the same value for SAL. It's the best you can do without having
window functions available.

Oracle

The window functions LAG OVER and LEAD OVER will (by default and unless otherwise specified)
return values from the row before and after the current row, respectively. You define what "before"
or "after" means in the ORDER BY portion of the OVER clause. If you examine the solution, the first
step is to return the next and prior rows relative to the current row, ordered by SAL:

 select ename,sal,
 lead(sal)over(order by sal) forward,
 lag(sal)over(order by sal) rewind
 from emp

 ENAME SAL FORWARD REWIND

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ---------- ---------- ---------- ----------
 SMITH 800 950
 JAMES 950 1100 800
 ADAMS 1100 1250 950
 WARD 1250 1250 1100
 MARTIN 1250 1300 1250
 MILLER 1300 1500 1250
 TURNER 1500 1600 1300
 ALLEN 1600 2450 1500
 CLARK 2450 2850 1600
 BLAKE 2850 2975 2450
 JONES 2975 3000 2850
 SCOTT 3000 3000 2975
 FORD 3000 5000 3000
 KING 5000 3000

Notice that REWIND is NULL for employee SMITH and FORWARD is NULL for employee KING; that is
because those two employees have the lowest and highest salaries, respectively. The requirement in
the problem section should NULL values exist in FORWARD or REWIND is to "wrap" the results
meaning that, for the highest SAL, FORWARD should be the value of the lowest SAL in the table, and
for the lowest SAL, REWIND should be the value of the highest SAL in the table. The window
functions MIN OVER and MAX OVER with no partition or window specified (i.e., an empty parenthesis
after the OVER clause) will return the lowest and highest salaries in the table, respectively. The
results are shown below:

 select ename,sal,
 nvl(lead(sal)over(order by sal),min(sal)over()) forward,
 nvl(lag(sal)over(order by sal),max(sal)over()) rewind
 from emp

 ENAME SAL FORWARD REWIND
 ---------- ---------- ---------- ----------
 SMITH 800 950 5000
 JAMES 950 1100 800
 ADAMS 1100 1250 950
 WARD 1250 1250 1100
 MARTIN 1250 1300 1250
 MILLER 1300 1500 1250
 TURNER 1500 1600 1300
 ALLEN 1600 2450 1500
 CLARK 2450 2850 1600
 BLAKE 2850 2975 2450
 JONES 2975 3000 2850
 SCOTT 3000 3000 2975
 FORD 3000 5000 3000
 KING 5000 800 3000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another useful feature of LAG OVER and LEAD OVER is the ability to define how far forward or back
you would like to go. In the example for this recipe, you go only one row forward or back. If want to
move three rows forward and five rows back, doing so is simple. Just specify the values 3 and 5 as
shown below:

 select ename,sal,
 lead(sal,3)over(order by sal) forward,
 lag(sal,5)over(order by sal) rewind
 from emp

 ENAME SAL FORWARD REWIND
 ---------- ---------- ---------- ----------
 SMITH 800 1250
 JAMES 950 1250
 ADAMS 1100 1300
 WARD 1250 1500
 MARTIN 1250 1600
 MILLER 1300 2450 800
 TURNER 1500 2850 950
 ALLEN 1600 2975 1100
 CLARK 2450 3000 1250
 BLAKE 2850 3000 1250
 JONES 2975 5000 1300
 SCOTT 3000 1500
 FORD 3000 1600
 KING 5000 2450

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.9. Ranking Results

Problem

You want to rank the salaries in table EMP while allowing for ties. You want to return the following
result set:

 RNK SAL
 --- -------
 1 800
 2 950
 3 1100
 4 1250
 4 1250
 5 1300
 6 1500
 7 1600
 8 2450
 9 2850
 10 2975
 11 3000
 11 3000
 12 5000

Solution

Window functions make ranking queries extremely simple. Three window functions are particularly
useful for ranking: DENSE_RANK OVER, ROW_NUMBER OVER, and RANK OVER.

DB2, Oracle, and SQL Server

Because you want to allow for ties, use the window function DENSE_RANK OVER:

 1 select dense_rank() over(order by sal) rnk, sal
 2 from emp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MySQL and PostgreSQL

Until window functions are introduced, use a scalar subquery to rank the salaries:

 1 select (select count(distinct b.sal)
 2 from emp b
 3 where b.sal <= a.sal) as rnk,
 4 a.sal
 5 from emp a

Discussion

DB2, Oracle, and SQL Server

The window function DENSE_RANK OVER does all the legwork here. In parentheses following the
OVER keyword you place an ORDER BY clause to specify the order in which rows are ranked. The
solution uses ORDER BY SAL, so rows from EMP are ranked in ascending order of salary.

MySQL and PostgreSQL

The output from the scalar subquery solution is similar to that of DENSE_RANK because the driving
predicate in the scalar subquery is on SAL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.10. Suppressing Duplicates

Problem

You want to find the different job types in table EMP but do not want to see duplicates. The result set
should be:

 JOB

 ANALYST
 CLERK
 MANAGER
 PRESIDENT
 SALESMAN

Solution

All of the RDBMSs support the keyword DISTINCT, and it arguably is the easiest mechanism for
suppressing duplicates from the result set. However, this recipe will also cover two additional
methods for suppressing duplicates.

DB2, Oracle, and SQL Server

The traditional method of using DISTINCT and sometimes GROUP BY (as seen next in the
MySQL/PostgreSQL solution) certainly works for these RDBMSs. The solution below is an alternative
that makes use of the window function ROW_NUMBER OVER:

 1 select job
 2 from (
 3 select job,
 4 row_number()over(partition by job order by job) rn
 5 from emp
 6) x
 7 where rn = 1

MySQL and PostgreSQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the DISTINCT keyword to suppress duplicates from the result set:

 select distinct job
 from emp

Additionally, it is also possible to use GROUP BY to suppress duplicates:

 select job
 from emp
 group by job

Discussion

DB2, Oracle, and SQL Server

This solution depends on some outside-the-box thinking about partitioned window functions. By using
PARTITION BY in the OVER clause of ROW_NUMBER, you can reset the value returned by
ROW_NUMBER to 1 whenever a new job is encountered. The results below are from inline view X:

 select job,
 row_number()over(partition by job order by job) rn
 from emp

 JOB RN
 --------- ----------
 ANALYST 1
 ANALYST 2
 CLERK 1
 CLERK 2
 CLERK 3
 CLERK 4
 MANAGER 1
 MANAGER 2
 MANAGER 3
 PRESIDENT 1
 SALESMAN 1
 SALESMAN 2
 SALESMAN 3
 SALESMAN 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each row is given an increasing, sequential number, and that number is reset to 1 whenever the job
changes. To filter out the duplicates, all you must do is keep the rows where RN is 1.

An ORDER BY clause is mandatory when using ROW_NUMBER OVER (except in DB2) but doesn't
affect the result. Which job is returned is irrelevant so long as you return one of each job.

MySQL and PostgreSQL

The first solution shows how to use the keyword DISTINCT to suppress duplicates from a result set.
Keep in mind that DISTINCT is applied to the whole SELECT list; additional columns can and will
change the result set. Consider the difference between the two queries below:

 select distinct job select distinct job, deptno
 from emp from emp

 JOB JOB DEPTNO
 --------- --------- ----------
 ANALYST ANALYST 20
 CLERK CLERK 10
 MANAGER CLERK 20
 PRESIDENT CLERK 30
 SALESMAN MANAGER 10
 MANAGER 20
 MANAGER 30
 PRESIDENT 10
 SALESMAN 30

By adding DEPTNO to the SELECT list, what you return is each DISTINCT pair of JOB/DEPTNO values
from table EMP.

The second solution uses GROUP BY to suppress duplicates. While using GROUP BY this way is not
uncommon, keep in mind that GROUP BY and DISTINCT are two very different clauses that are not
interchangeable. I've included GROUP BY in this solution for completeness, as you will no doubt come
across it at some point.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.11. Finding Knight Values

Problem

You want return a result set that contains each employee's name, the department they work in, their
salary, the date they were hired, and the salary of the last employee hired, in each department. You
want to return the following result set:

 DEPTNO ENAME SAL HIREDATE LATEST_SAL
 ------ ---------- ---------- ----------- ----------
 10 MILLER 1300 23-JAN-1982 1300
 10 KING 5000 17-NOV-1981 1300
 10 CLARK 2450 09-JUN-1981 1300
 20 ADAMS 1100 12-JAN-1983 1100
 20 SCOTT 3000 09-DEC-1982 1100
 20 FORD 3000 03-DEC-1981 1100
 20 JONES 2975 02-APR-1981 1100
 20 SMITH 800 17-DEC-1980 1100
 30 JAMES 950 03-DEC-1981 950
 30 MARTIN 1250 28-SEP-1981 950
 30 TURNER 1500 08-SEP-1981 950
 30 BLAKE 2850 01-MAY-1981 950
 30 WARD 1250 22-FEB-1981 950
 30 ALLEN 1600 20-FEB-1981 950

The values in LATEST_SAL are the "Knight values" because the path to find them is analogous to a
knight's path in the game of chess. You determine the result the way a knight determines a new
location: by jumping to a row then turning and jumping to a different column (see Figure 11-1). To
find the correct values for LATEST_SAL, you must first locate (jump to) the row with the latest
HIREDATE in each DEPTNO, and then you select (jump to) the SAL column of that row.

Figure 11-1. A knight value comes from "up and over"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The term "Knight value" was coined by a very clever coworker of mine, Kay
Young. After having him review the recipes for correctness I admitted to him
that I was stumped and could not come up with a good title. Because you need
to initially evaluate one row then "jump" and take a value from another, he
came up with the term "Knight value."

Solution

DB2 and SQL Server

Use a CASE expression in a subquery to return the SAL of the last employee hired in each DEPTNO;
for all other salaries, return zero. Use the window function MAX OVER in the outer query to return the
non-zero SAL for each employee's department:

 1 select deptno,
 2 ename,
 3 sal,
 4 hiredate,
 5 max(latest_sal)over(partition by deptno) latest_sal
 6 from (
 7 select deptno,
 8 ename,
 9 sal,
 10 hiredate,
 11 case
 12 when hiredate = max(hiredate)over(partition by deptno)
 13 then sal else 0
 14 end latest_sal
 15 from emp
 16) x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 17 order by 1, 4 desc

MySQL and PostgreSQL

Use a scalar subquery nested two levels deep. First, find the HIREDATE of the last employee in each
DEPTO. Then use the aggregate function MAX (in case there are duplicates) to find the SAL of the last
employee hired in each DEPTNO:

 1 select e.deptno,
 2 e.ename,
 3 e.sal,
 4 e.hiredate,
 5 (select max(d.sal)
 6 from emp d
 7 where d.deptno = e.deptno
 8 and d.hiredate =
 9 (select max(f.hiredate)
 10 from emp f
 11 where f.deptno = e.deptno)) as latest_sal
 12 from emp e
 13 order by 1, 4 desc

Oracle

Use the window function MAX OVER to return the highest SAL for each DEPTNO. Use the functions
DENSE_RANK and LAST, while ordering by HIREDATE, in the KEEP clause to return the highest SAL
for the latest HIREDATE in a given DEPTNO:

 1 select deptno,
 2 ename,
 3 sal,
 4 hiredate,
 5 max(sal)
 6 keep(dense_rank last order by hiredate)
 7 over(partition by deptno) latest_sal
 8 from emp
 9 order by 1, 4 desc

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2 and SQL Server

The first step is to use the window function MAX OVER in a CASE expression to find the employee
hired last, or most recently, in each DEPTNO. If an employee's HIREDATE matches the value returned
by MAX OVER, then use a CASE expression to return that employee's SAL; otherwise return 0. The
results of this are shown below:

 select deptno,
 ename,
 sal,
 hiredate,
 case
 when hiredate = max(hiredate)over(partition by deptno)
 then sal else 0
 end latest_sal
 from emp

 DEPTNO ENAME SAL HIREDATE LATEST_SAL
 ------ --------- ----------- ----------- ----------
 10 CLARK 2450 09-JUN-1981 0
 10 KING 5000 17-NOV-1981 0
 10 MILLER 1300 23-JAN-1982 1300
 20 SMITH 800 17-DEC-1980 0
 20 ADAMS 1100 12-JAN-1983 1100
 20 FORD 3000 03-DEC-1981 0
 20 SCOTT 3000 09-DEC-1982 0
 20 JONES 2975 02-APR-1981 0
 30 ALLEN 1600 20-FEB-1981 0
 30 BLAKE 2850 01-MAY-1981 0
 30 MARTIN 1250 28-SEP-1981 0
 30 JAMES 950 03-DEC-1981 950
 30 TURNER 1500 08-SEP-1981 0
 30 WARD 1250 22-FEB-1981 0

Because the value for LATEST_SAL will be either 0 or the SAL of the employee(s) hired most recently,
you can wrap the above query in an inline view and use MAX OVER again, but this time to return the
greatest non-zero LATEST_SAL for each DEPTNO:

 select deptno,
 ename,
 sal,
 hiredate,
 max(latest_sal)over(partition by deptno) latest_sal
 from (
 select deptno,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ename,
 sal,
 hiredate,
 case
 when hiredate = max(hiredate)over(partition by deptno)
 then sal else 0
 end latest_sal
 from emp
) x
 order by 1, 4 desc

 DEPTNO ENAME SAL HIREDATE LATEST_SAL
 ------- --------- ---------- ----------- ----------
 10 MILLER 1300 23-JAN-1982 1300
 10 KING 5000 17-NOV-1981 1300
 10 CLARK 2450 09-JUN-1981 1300
 20 ADAMS 1100 12-JAN-1983 1100
 20 SCOTT 3000 09-DEC-1982 1100
 20 FORD 3000 03-DEC-1981 1100
 20 JONES 2975 02-APR-1981 1100
 20 SMITH 800 17-DEC-1980 1100
 30 JAMES 950 03-DEC-1981 950
 30 MARTIN 1250 28-SEP-1981 950
 30 TURNER 1500 08-SEP-1981 950
 30 BLAKE 2850 01-MAY-1981 950
 30 WARD 1250 22-FEB-1981 950
 30 ALLEN 1600 20-FEB-1981 950

MySQL and PostgreSQL

The first step is to use a scalar subquery to find the HIREDATE of the last employee hired in each
DEPTNO:

 select e.deptno,
 e.ename,
 e.sal,
 e.hiredate,
 (select max(f.hiredate)
 from emp f
 where f.deptno = e.deptno) as last_hire
 from emp e
 order by 1, 4 desc

 DEPTNO ENAME SAL HIREDATE LAST_HIRE
 ------ ---------- ---------- ----------- -----------

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10 MILLER 1300 23-JAN-1982 23-JAN-1982
 10 KING 5000 17-NOV-1981 23-JAN-1982
 10 CLARK 2450 09-JUN-1981 23-JAN-1982
 20 ADAMS 1100 12-JAN-1983 12-JAN-1983
 20 SCOTT 3000 09-DEC-1982 12-JAN-1983
 20 FORD 3000 03-DEC-1981 12-JAN-1983
 20 JONES 2975 02-APR-1981 12-JAN-1983
 20 SMITH 800 17-DEC-1980 12-JAN-1983
 30 JAMES 950 03-DEC-1981 03-DEC-1981
 30 MARTIN 1250 28-SEP-1981 03-DEC-1981
 30 TURNER 1500 08-SEP-1981 03-DEC-1981
 30 BLAKE 2850 01-MAY-1981 03-DEC-1981
 30 WARD 1250 22-FEB-1981 03-DEC-1981
 30 ALLEN 1600 20-FEB-1981 03-DEC-1981

The next step is to find the SAL for the employee(s) in each DEPTNO hired on LAST_HIRE. Use the
aggregate function MAX to keep the highest (if there are multiple employees hired on the same day):

 select e.deptno,
 e.ename,
 e.sal,
 e.hiredate,
 (select max(d.sal)
 from emp d
 where d.deptno = e.deptno
 and d.hiredate =
 (select max(f.hiredate)
 from emp f
 where f.deptno = e.deptno)) as latest_sal
 from emp e
 order by 1, 4 desc

 DEPTNO ENAME SAL HIREDATE LATEST_SAL
 ------ ---------- ---------- ----------- ----------
 10 MILLER 1300 23-JAN-1982 1300
 10 KING 5000 17-NOV-1981 1300
 10 CLARK 2450 09-JUN-1981 1300
 20 ADAMS 1100 12-JAN-1983 1100
 20 SCOTT 3000 09-DEC-1982 1100
 20 FORD 3000 03-DEC-1981 1100
 20 JONES 2975 02-APR-1981 1100
 20 SMITH 800 17-DEC-1980 1100
 30 JAMES 950 03-DEC-1981 950
 30 MARTIN 1250 28-SEP-1981 950
 30 TURNER 1500 08-SEP-1981 950
 30 BLAKE 2850 01-MAY-1981 950
 30 WARD 1250 22-FEB-1981 950

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 30 ALLEN 1600 20-FEB-1981 950

Oracle

Users on Oracle8i Database can use the DB2 solution. For users on Oracle9i Database and later, you
can use the solution presented below. The key to the Oracle solution is to take advantage of the KEEP
clause. The KEEP clause allows you to rank the rows returned by a group/partition and work with the
first or last row in the group. Consider what the solution looks like without KEEP:

 select deptno,
 ename,
 sal,
 hiredate,
 max(sal) over(partition by deptno) latest_sal
 from emp
 order by 1, 4 desc

 DEPTNO ENAME SAL HIREDATE LATEST_SAL
 ------ ---------- ---------- ----------- ----------
 10 MILLER 1300 23-JAN-1982 5000
 10 KING 5000 17-NOV-1981 5000
 10 CLARK 2450 09-JUN-1981 5000
 20 ADAMS 1100 12-JAN-1983 3000
 20 SCOTT 3000 09-DEC-1982 3000
 20 FORD 3000 03-DEC-1981 3000
 20 JONES 2975 02-APR-1981 3000
 20 SMITH 800 17-DEC-1980 3000
 30 JAMES 950 03-DEC-1981 2850
 30 MARTIN 1250 28-SEP-1981 2850
 30 TURNER 1500 08-SEP-1981 2850
 30 BLAKE 2850 01-MAY-1981 2850
 30 WARD 1250 22-FEB-1981 2850
 30 ALLEN 1600 20-FEB-1981 2850

Rather than returning the SAL of the latest employee hired, MAX OVER without KEEP simply returns
the highest salary in each DEPTNO. KEEP, in this recipe, allows you to order the salaries by
HIREDATE in each DEPTNO by specifying ORDER BY HIREDATE. Then, the function DENSE_RANK
assigns a rank to each HIREDATE in ascending order. Finally, the function LAST determines which row
to apply the aggregate function to: the "last" row based on the ranking of DENSE_ RANK. In this
case, the aggregate function MAX is applied to the SAL column for the row with the "last" HIREDATE.
In essence, keep the SAL of the HIREDATE ranked last in each DEPTNO.

You are ranking the rows in each DEPTNO based on one column (HIREDATE), but then applying the
aggregation (MAX) on another column (SAL). This ability to rank in one dimension and aggregate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

over another is convenient as it allows you to avoid extra joins and inline views as are used in the
other solutions. Finally, by adding the OVER clause after the KEEP clause you can return the SAL
"kept" by KEEP for each row in the partition.

Alternatively, you can order by HIREDATE in descending order and "keep" the first SAL. Compare the
two queries below, which return the same result set:

 select deptno,
 ename,
 sal,
 hiredate,
 max(sal)
 keep(dense_rank last order by hiredate)
 over(partition by deptno) latest_sal
 from emp
 order by 1, 4 desc

 DEPTNO ENAME SAL HIREDATE LATEST_SAL
 ------ ---------- ---------- ----------- ----------
 10 MILLER 1300 23-JAN-1982 1300
 10 KING 5000 17-NOV-1981 1300
 10 CLARK 2450 09-JUN-1981 1300
 20 ADAMS 1100 12-JAN-1983 1100
 20 SCOTT 3000 09-DEC-1982 1100
 20 FORD 3000 03-DEC-1981 1100
 20 JONES 2975 02-APR-1981 1100
 20 SMITH 800 17-DEC-1980 1100
 30 JAMES 950 03-DEC-1981 950
 30 MARTIN 1250 28-SEP-1981 950
 30 TURNER 1500 08-SEP-1981 950
 30 BLAKE 2850 01-MAY-1981 950
 30 WARD 1250 22-FEB-1981 950
 30 ALLEN 1600 20-FEB-1981 950

 select deptno,
 ename,
 sal,
 hiredate,
 max(sal)
 keep(dense_rank first order by hiredate desc)
 over(partition by deptno) latest_sal
 from emp
 order by 1, 4 desc

 DEPTNO ENAME SAL HIREDATE LATEST_SAL
 ------ ---------- ---------- ----------- ----------
 10 MILLER 1300 23-JAN-1982 1300

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10 KING 5000 17-NOV-1981 1300
 10 CLARK 2450 09-JUN-1981 1300
 20 ADAMS 1100 12-JAN-1983 1100
 20 SCOTT 3000 09-DEC-1982 1100
 20 FORD 3000 03-DEC-1981 1100
 20 JONES 2975 02-APR-1981 1100
 20 SMITH 800 17-DEC-1980 1100
 30 JAMES 950 03-DEC-1981 950
 30 MARTIN 1250 28-SEP-1981 950
 30 TURNER 1500 08-SEP-1981 950
 30 BLAKE 2850 01-MAY-1981 950
 30 WARD 1250 22-FEB-1981 950
 30 ALLEN 1600 20-FEB-1981 950

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.12. Generating Simple Forecasts

Problem

Based on current data, you want to return addition rows and columns representing future actions.
For example, consider the following result set:

 ID ORDER_DATE PROCESS_DATE
 -- ----------- ------------
 1 25-SEP-2005 27-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 3 27-SEP-2005 29-SEP-2005

You want to return three rows per row returned in your result set (each row plus two additional rows
for each order). Along with the extra rows you would like to return two additional columns providing
dates for expected order processing.

From the result set above you can see that an order takes two days to process. For the purposes of
this example, let's say the next step after processing is verification, and the last step is shipment.
Verification occurs one day after processing and shipment occurs one day after verification. You want
to return a result set expressing the whole procedure. Ultimately you want to transform the result set
above to the following result set:

 ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
 -- ----------- ------------ ----------- -----------
 1 25-SEP-2005 27-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

Solution

The key is to use a Cartesian product to generate two additional rows for each order then simply use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CASE expressions to create the required column values.

DB2 and SQL Server

Use the recursive WITH clause to generate rows needed for your Cartesian product. The DB2 and
SQL Server solutions are identical except for the function used to retrieve the current date. DB2 uses
CURRENT_DATE and SQL Server uses GET-DATE. The SQL Server solution is shown below:

 1 with nrows(n) as (
 2 select 1 from t1 union all
 3 select n+1 from nrows where n+1 <= 3
 4)
 5 select id,
 6 order_date,
 7 process_date,
 8 case when nrows.n >= 2
 9 then process_date+1
 10 else null
 11 end as verified,
 12 case when nrows.n = 3
 13 then process_date+2
 14 else null
 15 end as shipped
 16 from (
 17 select nrows.n id,
 18 getdate()+nrows.n as order_date,
 19 getdate()+nrows.n+2 as process_date
 20 from nrows
 21) orders, nrows
 22 order by 1

Oracle

Use the hierarchical CONNECT BY clause to generate the three rows needed for the Cartesian
product. Use the WITH clause to allow you to reuse the results returned by CONNECT BY without
having to call it again:

 1 with nrows as (
 2 select level n
 3 from dual
 4 connect by level <= 3
 5)
 6 select id,
 7 order_date,
 8 process_date,
 9 case when nrows.n >= 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10 then process_date+1
 11 else null
 12 end as verified,
 13 case when nrows.n = 3
 14 then process_date+2
 15 else null
 16 end as shipped
 17 from (
 18 select nrows.n id,
 19 sysdate+nrows.n as order_date,
 20 sysdate+nrows.n+2 as process_date
 21 from nrows
 22) orders, nrows

PostgreSQL

You can create a Cartesian product many different ways; this solution uses the PostgreSQL function
GENERATE_SERIES:

 1 select id,
 2 order_date,
 3 process_date,
 4 case when gs.n >= 2
 5 then process_date+1
 6 else null
 7 end as verified,
 8 case when gs.n = 3
 9 then process_date+2
 10 else null
 11 end as shipped
 12 from (
 13 select gs.id,
 14 current_date+gs.id as order_date,
 15 current_date+gs.id+2 as process_date
 16 from generate_series(1,3) gs (id)
 17) orders,
 18 generate_series(1,3)gs(n)

MySQL

MySQL does not support a function for automatic row generation.

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2 and SQL Server

The result set presented in the problem section is returned via inline view ORDERS and is shown
below:

 with nrows(n) as (
 select 1 from t1 union all
 select n+1 from nrows where n+1 <= 3
)
 select nrows.n id,
 getdate()+nrows.n as order_date,
 getdate()+nrows.n+2 as process_date
 from nrows

 ID ORDER_DATE PROCESS_DATE
 -- ----------- ------------
 1 25-SEP-2005 27-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 3 27-SEP-2005 29-SEP-2005

The query above simply uses the WITH clause to make up three rows representing the orders you
must process. NROWS returns the values 1, 2, and 3, and those numbers are added to GETDATE
(CURRENT_DATE for DB2) to represent the dates of the orders. Because the problem section states
that processing time takes two days, the query above also adds two days to the ORDER_DATE (adds
the value returned by NROWS to GETDATE, then adds two more days).

Now that you have your base result set, the next step is to create a Cartesian product because the
requirement is to return three rows for each order. Use NROWS to create a Cartesian product to
return three rows for each order:

 with nrows(n) as (
 select 1 from t1 union all
 select n+1 from nrows where n+1 <= 3
)
 select nrows.n,
 orders.*
 from (
 select nrows.n id,
 getdate()+nrows.n as order_date,
 getdate()+nrows.n+2 as process_date
 from nrows
) orders, nrows
 order by 2,1

 N ID ORDER_DATE PROCESS_DATE
 --- --- ----------- ------------
 1 1 25-SEP-2005 27-SEP-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 1 25-SEP-2005 27-SEP-2005
 3 1 25-SEP-2005 27-SEP-2005
 1 2 26-SEP-2005 28-SEP-2005
 2 2 26-SEP-2005 28-SEP-2005
 3 2 26-SEP-2005 28-SEP-2005
 1 3 27-SEP-2005 29-SEP-2005
 2 3 27-SEP-2005 29-SEP-2005
 3 3 27-SEP-2005 29-SEP-2005

Now that you have three rows for each order, simply use a CASE expression to create the addition
column values to represent the status of verification and shipment.

The first row for each order should have a NULL value for VERIFIED and SHIPPED. The second row
for each order should have a NULL value for SHIPPED. The third row for each order should have non-
NULL values for each column. The final result set is shown below:

 with nrows(n) as (
 select 1 from t1 union all
 select n+1 from nrows where n+1 <= 3
)
 select id,
 order_date,
 process_date,
 case when nrows.n >= 2
 then process_date+1
 else null

 end as verified,
 case when nrows.n = 3
 then process_date+2
 else null
 end as shipped
 from (
 select nrows.n id,
 getdate()+nrows.n as order_date,
 getdate()+nrows.n+2 as process_date
 from nrows
) orders, nrows
 order by 1

 ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
 -- ----------- ------------ ----------- -----------
 1 25-SEP-2005 27-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

The final result set expresses the complete order process from the day the order was received to the
day it should be shipped.

Oracle

The result set presented in the problem section is returned via inline view ORDERS and is shown
below:

 with nrows as (
 select level n
 from dual
 connect by level <= 3
)
 select nrows.n id,
 sysdate+nrows.n order_date,
 sysdate+nrows.n+2 process_date
 from nrows

 ID ORDER_DATE PROCESS_DATE
 -- ----------- ------------
 1 25-SEP-2005 27-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 3 27-SEP-2005 29-SEP-2005

The query above simply uses CONNECT BY to make up three rows representing the orders you must
process. Use the WITH clause to refer to the rows returned by CONNECT BY as NROWS.N. CONNECT
BY returns the values 1, 2, and 3, and those numbers are added to SYSDATE to represent the dates
of the orders. Since the problem section states that processing time takes two days, the query above
also adds two days to the ORDER_DATE (adds the value returned by GENERATE_ SERIES to
SYSDATE, then adds two more days).

Now that you have your base result set, the next step is to create a Cartesian product because the
requirement is to return three rows for each order. Use NROWS to create a Cartesian product to
return three rows for each order:

 with nrows as (
 select level n
 from dual
 connect by level <= 3
)
 select nrows.n,
 orders.*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from (
 select nrows.n id,
 sysdate+nrows.n order_date,
 sysdate+nrows.n+2 process_date
 from nrows
) orders, nrows

 N ID ORDER_DATE PROCESS_DATE
 --- --- ----------- ------------
 1 1 25-SEP-2005 27-SEP-2005
 2 1 25-SEP-2005 27-SEP-2005
 3 1 25-SEP-2005 27-SEP-2005
 1 2 26-SEP-2005 28-SEP-2005
 2 2 26-SEP-2005 28-SEP-2005
 3 2 26-SEP-2005 28-SEP-2005
 1 3 27-SEP-2005 29-SEP-2005
 2 3 27-SEP-2005 29-SEP-2005
 3 3 27-SEP-2005 29-SEP-2005

Now that you have three rows for each order, simply use a CASE expression to create the addition
column values to represent the status of verification and shipment.

The first row for each order should have a NULL value for VERIFIED and SHIPPED. The second row
for each order should have a NULL value for SHIPPED. The third row for each order should have non-
NULL values for each column. The final result set is shown below:

 with nrows as (
 select level n
 from dual
 connect by level <= 3
)
 select id,
 order_date,
 process_date,
 case when nrows.n >= 2
 then process_date+1
 else null
 end as verified,
 case when nrows.n = 3
 then process_date+2
 else null
 end as shipped
 from (
 select nrows.n id,
 sysdate+nrows.n order_date,
 sysdate+nrows.n+2 process_date
 from nrows
) orders, nrows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
 -- ----------- ------------ ----------- -----------
 1 25-SEP-2005 27-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

The final result set expresses the complete order process from the day the order was received to the
day it should be shipped.

PostgreSQL

The result set presented in the problem section is returned via inline view ORDERS and is shown
below:

 select gs.id,
 current_date+gs.id as order_date,
 current_date+gs.id+2 as process_date
 from generate_series(1,3) gs (id)

 ID ORDER_DATE PROCESS_DATE
 -- ----------- ------------
 1 25-SEP-2005 27-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 3 27-SEP-2005 29-SEP-2005

The query above simply uses the GENERATE_SERIES function to make up three rows representing
the orders you must process. GENERATE_SERIES returns the values 1, 2, and 3, and those numbers
are added to CURRENT_DATE to represent the dates of the orders. Since the problem section states
that processing time takes two days, the query above also adds two days to the ORDER_DATE (adds
the value returned by GENERATE_SERIES to CURRENT_DATE, then adds two more days). Now that
you have your base result set, the next step is to create a Cartesian product because the
requirement is to return three rows for each order. Use the GENERATE_ SERIES function to create a
Cartesian product to return three rows for each order:

 select gs.n,
 orders.*
 from (
 select gs.id,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 current_date+gs.id as order_date,
 current_date+gs.id+2 as process_date
 from generate_series(1,3) gs (id)
) orders,
 generate_series(1,3)gs(n)

 N ID ORDER_DATE PROCESS_DATE
 --- --- ----------- ------------
 1 1 25-SEP-2005 27-SEP-2005
 2 1 25-SEP-2005 27-SEP-2005
 3 1 25-SEP-2005 27-SEP-2005
 1 2 26-SEP-2005 28-SEP-2005
 2 2 26-SEP-2005 28-SEP-2005
 3 2 26-SEP-2005 28-SEP-2005
 1 3 27-SEP-2005 29-SEP-2005
 2 3 27-SEP-2005 29-SEP-2005
 3 3 27-SEP-2005 29-SEP-2005

Now that you have three rows for each order, simply use a CASE expression to create the addition
column values to represent the status of verification and shipment.

The first row for each order should have a NULL value for VERIFIED and SHIPPED. The second row
for each order should have a NULL value for SHIPPED. The third row for each order should have non-
NULL values for each column. The final result set is shown below:

 select id,
 order_date,
 process_date,
 case when gs.n >= 2
 then process_date+1
 else null
 end as verified,
 case when gs.n = 3
 then process_date+2
 else null
 end as shipped
 from (
 select gs.id,
 current_date+gs.id as order_date,
 current_date+gs.id+2 as process_date
 from generate_series(1,3) gs(id)
) orders,
 generate_series(1,3)gs(n)

 ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
 -- ----------- ------------ ----------- -----------
 1 25-SEP-2005 27-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 26-SEP-2005 28-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

The final result set expresses the complete order process from the day the order was received to the
day it should be shipped.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. Reporting and Warehousing
This chapter introduces queries you may find helpful for creating reports. These typically involve
reporting-specific formatting considerations along with different levels of aggregation. Another focus
of this chapter is on transposing or pivoting result sets, converting rows into columns. Pivoting is an
extremely useful technique for solving a variety of problems. As your comfort level increases with
pivoting, you'll undoubtedly find uses for it outside of what are presented in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.1. Pivoting a Result Set into One Row

Problem

You wish to take values from groups of rows and turn those values into columns in a single row per
group. For example, you have a result set displaying the number of employees in each department:

 DEPTNO CNT
 ------ ----------
 10 3
 20 5
 30 6

You would like to reformat the output such the result set looks as follows:

 DEPTNO_10 DEPTNO_20 DEPTNO_30
 --------- ---------- ----------
 3 5 6

Solution

Transpose the result set using a CASE expression and the aggregate function SUM:

 1 select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
 2 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
 3 sum(case when deptno=30 then 1 else 0 end) as deptno_30
 4 from emp

Discussion

This example is an excellent introduction to pivoting. The concept is simple: for each row returned by
the unpivoted query, use a CASE expression to separate the rows into columns. Then, because this
particular problem is to count the number of employees per department, use the aggregate function
SUM to count the occurrence of each DEPTNO. If you're having trouble understanding how this works

http://lib.ommolketab.ir
http://lib.ommolketab.ir

exactly, execute the query with the aggregate function SUM and include DEPTNO for readability:

 select deptno,
 case when deptno=10 then 1 else 0 end as deptno_10,
 case when deptno=20 then 1 else 0 end as deptno_20,
 case when deptno=30 then 1 else 0 end as deptno_30
 from emp
 order by 1

 DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30
 ------ ---------- ---------- ----------
 10 1 0 0
 10 1 0 0
 10 1 0 0
 20 0 1 0
 20 0 1 0
 20 0 1 0
 20 0 1 0
 30 0 0 1
 30 0 0 1
 30 0 0 1
 30 0 0 1
 30 0 0 1
 30 0 0 1

You can think of each CASE expression as a flag to determine which DEPTNO a row belongs to. At
this point, the "rows to columns" transformation is already done; the next step is to simply sum the
values returned by DEPTNO_10, DEPTNO_20, and DEPTNO_30, and then to group by DEPTNO.
Following are the results:

 select deptno,
 sum(case when deptno=10 then 1 else 0 end) as deptno_10,
 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
 sum(case when deptno=30 then 1 else 0 end) as deptno_30
 from emp
 group by deptno

 DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30
 ------ ---------- ---------- ----------
 10 3 0 0
 20 0 5 0
 30 0 0 6

If you eyeball this result set, you see that logically the output makes sense; for example, DEPTNO 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

has 3 employees in DEPTNO_10 and zero in the other departments. Since the goal is to return one
row, the last step is to lose the DEPTNO and GROUP BY, and simply sum the CASE expressions:

 select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
 sum(case when deptno=30 then 1 else 0 end) as deptno_30
 from emp

 DEPTNO_10 DEPTNO_20 DEPTNO_30
 --------- ---------- ----------
 3 5 6

Following is another approach that you may sometimes see applied to this same sort of problem:

 select max(case when deptno=10 then empcount else null end) as deptno_10
 max(case when deptno=20 then empcount else null end) as deptno_20,
 max(case when deptno=10 then empcount else null end) as deptno_30
 from (
 select deptno, count(*) as empcount
 from emp
 group by deptno
) x

This approach uses an inline view to generate the employee counts per department. CASE
expressions in the main query translate rows to columns, getting you to the following results:

 DEPTNO_10 DEPTNO_20 DEPTNO_30
 --------- ---------- ----------
 3 NULL NULL
 NULL 5 NULL
 NULL NULL 6

Then the MAX functions collapses the columns into one row:

 DEPTNO_10 DEPTNO_20 DEPTNO_30
 --------- ---------- ----------
 3 5 6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.2. Pivoting a Result Set into Multiple Rows

Problem

You want to turn rows into columns by creating a column corresponding to each of the values in a
single given column. However, unlike in the previous recipe, you need multiple rows of output.

For example, you want to return each employee and their position (JOB), and you currently use a
query that returns the following result set:

 JOB ENAME
 --------- ----------
 ANALYST SCOTT
 ANALYST FORD
 CLERK SMITH
 CLERK ADAMS
 CLERK MILLER
 CLERK JAMES
 MANAGER JONES
 MANAGER CLARK
 MANAGER BLAKE
 PRESIDENT KING
 SALESMAN ALLEN
 SALESMAN MARTIN
 SALESMAN TURNER
 SALESMAN WARD

You would like to format the result set such that each job gets its own column:

 CLERKS ANALYSTS MGRS PREZ SALES
 ------ -------- ----- ---- ------
 MILLER FORD CLARK KING TURNER
 JAMES SCOTT BLAKE MARTIN
 ADAMS JONES WARD
 SMITH ALLEN

Solution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unlike the first recipe in this chapter, the result set for this recipe consists of more than one row.
Using the previous recipe's technique will not work for this recipe, as the MAX(ENAME) for each JOB
would be returned, which would result in one ENAME for each JOB (i.e., one row will be returned as in
the first recipe). To solve this problem, you must make each JOB/ENAME combination unique. Then,
when you apply an aggregate function to remove NULLs, you don't lose any ENAMEs.

DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to make each JOB/ENAME combination unique. Pivot
the result set using a CASE expression and the aggregate function MAX while grouping on the value
returned by the window function:

 1 select max(case when job='CLERK'
 2 then ename else null end) as clerks,
 3 max(case when job='ANALYST'
 4 then ename else null end) as analysts,
 5 max(case when job='MANAGER'
 6 then ename else null end) as mgrs,
 7 max(case when job='PRESIDENT'
 8 then ename else null end) as prez,
 9 max(case when job='SALESMAN'
 10 then ename else null end) as sales
 11 from (
 12 select job,
 13 ename,
 14 row_number()over(partition by job order by ename) rn
 15 from emp
 16) x
 17 group by rn

PostgreSQL and MySQL

Use a scalar subquery to rank each employee by EMPNO. Pivot the result set using a CASE
expression and the aggregate function MAX while grouping on the value returned by the scalar
subquery:

 1 select max(case when job='CLERK'
 2 then ename else null end) as clerks,
 3 max(case when job='ANALYST'
 4 then ename else null end) as analysts,
 5 max(case when job='MANAGER'
 6 then ename else null end) as mgrs,
 7 max(case when job='PRESIDENT'
 8 then ename else null end) as prez,
 9 max(case when job='SALESMAN'
 10 then ename else null end) as sales

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 11 from (
 12 select e.job,
 13 e.ename,
 14 (select count(*) from emp d
 15 where e.job=d.job and e.empno < d.empno) as rnk
 16 from emp e
 17) x
 18 group by rnk

Discussion

DB2, Oracle, and SQL Server

The first step is to use the window function ROW_NUMBER OVER to help make each JOB/ENAME
combination unique:

 select job,
 ename,
 row_number()over(partition by job order by ename) rn
 from emp

 JOB ENAME RN
 --------- ---------- ----------
 ANALYST FORD 1
 ANALYST SCOTT 2
 CLERK ADAMS 1
 CLERK JAMES 2
 CLERK MILLER 3
 CLERK SMITH 4
 MANAGER BLAKE 1
 MANAGER CLARK 2
 MANAGER JONES 3
 PRESIDENT KING 1
 SALESMAN ALLEN 1
 SALESMAN MARTIN 2
 SALESMAN TURNER 3
 SALESMAN WARD 4

Giving each ENAME a unique "row number" within a given job prevents any problems that might
otherwise result from two employees having the same name and job. The goal here is to be able to
group on row number (on RN) without dropping any employees from the result set due to the use of
MAX. This step is the most important step in solving the problem. Without this first step, the
aggregation in the outer query will remove necessary rows. Consider what the result set would look

http://lib.ommolketab.ir
http://lib.ommolketab.ir

like without using ROW_NUMBER OVER, using the same technique as seen in the first recipe:

 select max(case when job='CLERK'
 then ename else null end) as clerks,
 max(case when job='ANALYST'
 then ename else null end) as analysts,
 max(case when job='MANAGER'
 then ename else null end) as mgrs,
 max(case when job='PRESIDENT'
 then ename else null end) as prez,
 max(case when job='SALESMAN'
 then ename else null end) as sales
 from emp

 CLERKS ANALYSTS MGRS PREZ SALES
 ---------- ---------- ---------- ---------- ----------
 SMITH SCOTT JONES KING WARD

Unfortunately, only one row is returned for each JOB: the employee with the MAX ENAME. When it
comes time to pivot the result set, using MIN or MAX should serve as a means to remove NULLs from
the result set, not restrict the ENAMEs returned. How this works will be come clearer as you continue
through the explanation.

The next step uses a CASE expression to organize the ENAMEs into their proper column (JOB):

 select rn,
 case when job='CLERK'
 then ename else null end as clerks,
 case when job='ANALYST'
 then ename else null end as analysts,
 case when job='MANAGER'
 then ename else null end as mgrs,
 case when job='PRESIDENT'
 then ename else null end as prez,
 case when job='SALESMAN'
 then ename else null end as sales
 from (
 Select job,
 ename,
 row_number()over(partition by job order by ename) rn
 from emp
) x

 RN CLERKS ANALYSTS MGRS PREZ SALES
 -- ---------- ---------- ---------- ---------- ----------
 1 FORD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 SCOTT
 1 ADAMS
 2 JAMES
 3 MILLER
 4 SMITH
 1 BLAKE
 2 CLARK
 3 JONES
 1 KING
 1 ALLEN
 2 MARTIN
 3 TURNER
 4 WARD

At this point, the rows are transposed into columns and the last step is to remove the NULLs to make
the result set more readable. To remove the NULLs use the aggregate function MAX and group by
RN. (You can use the function MIN as well. The choice to use MAX is arbitrary, as you will only ever
be aggregating one value per group.) There is only one value for each RN/JOB/ENAME combination.
Grouping by RN in conjunction with the CASE expressions embedded within the calls to MAX ensures
that each call to MAX results in picking only one name from a group of otherwise NULL values:

 select max(case when job='CLERK'
 then ename else null end) as clerks,
 max(case when job='ANALYST'
 then ename else null end) as analysts,
 max(case when job='MANAGER'
 then ename else null end) as mgrs,
 max(case when job='PRESIDENT'
 then ename else null end) as prez,
 max(case when job='SALESMAN'
 then ename else null end) as sales
 from (
 Select job,
 ename,
 row_number()over(partition by job order by ename) rn
 from emp
) x
 group by rn

 CLERKS ANALYSTS MGRS PREZ SALES
 ------ -------- ----- ---- ------
 MILLER FORD CLARK KING TURNER
 JAMES SCOTT BLAKE MARTIN
 ADAMS JONES WARD
 SMITH ALLEN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The technique of using ROW_NUMBER OVER to create unique combinations of rows is extremely
useful for formatting query results. Consider the query below that creates a sparse report showing
employees by DEPTNO and JOB:

 select deptno dno, job,
 max(case when deptno=10
 then ename else null end) as d10,
 max(case when deptno=20
 then ename else null end) as d20,
 max(case when deptno=30
 then ename else null end) as d30,
 max(case when job='CLERK'
 then ename else null end) as clerks,
 max(case when job='ANALYST'
 then ename else null end) as anals,
 max(case when job='MANAGER'
 then ename else null end) as mgrs,
 max(case when job='PRESIDENT'
 then ename else null end) as prez,
 max(case when job='SALESMAN'
 then ename else null end) as sales
 from (
 Select deptno,
 job,
 ename,
 row_number()over(partition by job order by ename) rn_job,
 row_number()over(partition by job order by ename) rn_deptno
 from emp
) x
 group by deptno, job, rn_deptno, rn_job
 order by 1

 DNO JOB D10 D20 D30 CLERKS ANALS MGRS PREZ SALES
 --- --------- ------ ----- ------ ------ ----- ----- ---- ------
 10 CLERK MILLER MILLER
 10 MANAGER CLARK CLARK
 10 PRESIDENT KING KING
 20 ANALYST FORD FORD
 20 ANALYST SCOTT SCOTT
 20 CLERK ADAMS ADAMS
 20 CLERK SMITH SMITH
 20 MANAGER JONES JONES
 30 CLERK JAMES JAMES
 30 MANAGER BLAKE BLAKE
 30 SALESMAN ALLEN ALLEN
 30 SALESMAN MARTIN MARTIN
 30 SALESMAN TURNER TURNER
 30 SALESMAN WARD WARD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By simply modifying what you group by (hence the nonaggregate items in the SELECT list above),
you can produce reports with different formats. It is worth the time of changing things around to
understand how these formats change based on what you include in your GROUP BY clause.

PostgreSQL and MySQL

The technique for these RDBMSs is the same as for the others once a method of creating unique
JOB/ENAME combinations is established. The first step is to use a scalar subquery to provide a "row
number" or "rank" for each JOB/ENAME combination:

 select e.job,
 e.ename,
 (select count(*) from emp d
 where e.job=d.job and e.empno < d.empno) as rnk
 from emp e

 JOB ENAME RNK
 --------- ---------- ----------
 CLERK SMITH 3
 SALESMAN ALLEN 3
 SALESMAN WARD 2
 MANAGER JONES 2
 SALESMAN MARTIN 1
 MANAGER BLAKE 1
 MANAGER CLARK 0
 ANALYST SCOTT 1
 PRESIDENT KING 0
 SALESMAN TURNER 0
 CLERK ADAMS 2
 CLERK JAMES 1
 ANALYST FORD 0
 CLERK MILLER 0

Giving each JOB/ENAME combination a unique "rank" makes each row unique. Even if there are
employees with the same name working the same job, no two employees will share the same rank
within a job. This step is the most important step in solving the problem. Without this first step, the
aggregation in the outer query will remove necessary rows. Consider what the result set would look
like without applying a rank to each JOB/ENAME combination, using the same technique as seen in
the first recipe:

 select max(case when job='CLERK'
 then ename else null end) as clerks,
 max(case when job='ANALYST'
 then ename else null end) as analysts,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 max(case when job='MANAGER'
 then ename else null end) as mgrs,
 max(case when job='PRESIDENT'
 then ename else null end) as prez,
 max(case when job='SALESMAN'
 then ename else null end) as sales
 from emp

 CLERKS ANALYSTS MGRS PREZ SALES
 ---------- ---------- ---------- ---------- ----------
 SMITH SCOTT JONES KING WARD

Unfortunately, only one row is returned for each JOB: the employee with the MAX ENAME. When it
comes time to pivot the result set, using MIN or MAX should serve as a means to remove NULLs from
the result set, not to restrict the ENAMEs returned.

Now, that you see the purpose of applying a rank, you can move on to the next step. The next step
uses a CASE expression to organize the ENAMEs into their proper column (JOB):

 select rnk,
 case when job='CLERK'
 then ename else null end as clerks,
 case when job='ANALYST'
 then ename else null end as analysts,
 case when job='MANAGER'
 then ename else null end as mgrs,
 case when job='PRESIDENT'
 then ename else null end as prez,
 case when job='SALESMAN'
 then ename else null end as sales
 from (
 Select e.job,
 e.ename,
 (select count(*) from emp d
 where e.job=d.job and e.empno < d.empno) as rnk
 from emp e
) x

 RNK CLERKS ANALYSTS MGRS PREZ SALES
 --- ------ -------- ----- ---- ----------
 3 SMITH
 3 ALLEN
 2 WARD
 2 JONES
 1 MARTIN
 1 BLAKE
 0 CLARK
 1 SCOTT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 0 KING
 0 TURNER
 2 ADAMS
 1 JAMES
 0 FORD
 0 MILLER

At this point, the rows are transposed into columns and the last step is to remove the NULLs to make
the result set more readable. To remove the NULLs use the aggregate function MAX and group by
RNK. (MAX is an arbitrary choice. You can use the function MIN as well.) There is only one value for
each RN/JOB/ENAME combination, so the application of the aggregate function is simply to remove
NULLs:

 select max(case when job='CLERK'
 then ename else null end) as clerks,
 max(case when job='ANALYST'
 then ename else null end) as analysts,
 max(case when job='MANAGER'
 then ename else null end) as mgrs,
 max(case when job='PRESIDENT'
 then ename else null end) as prez,
 max(case when job='SALESMAN'
 then ename else null end) as sales
 from (
 Select e.job,
 e.ename,
 (select count(*) from emp d
 where e.job=d.job and e.empno < d.empno) as rnk
 from emp e
) x
 group by rnk

 CLERKS ANALYSTS MGRS PREZ SALES
 ------ -------- ----- ---- ------
 MILLER FORD CLARK KING TURNER
 JAMES SCOTT BLAKE MARTIN
 ADAMS JONES WARD
 SMITH ALLEN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.3. Reverse Pivoting a Result Set

Problem

You want to transform columns to rows. Consider the following result set:

 DEPTNO_10 DEPTNO_20 DEPTNO_30
 ---------- ---------- ----------
 3 5 6

You would like to convert that to:

 DEPTNO COUNTS_BY_DEPT
 ------ --------------
 10 3
 20 5
 30 6

Solution

Examining the desired result set, it's easy to see that you can execute a simple COUNT and GROUP
BY on table EMP to produce the desired result. The object here, though, is to imagine that the data is
not stored as rows; perhaps the data is denormalized and aggregated values are stored as multiple
columns.

To convert columns to rows, use a Cartesian product. You'll need to know in advance how many
columns you want to convert to rows because the table expression you use to create the Cartesian
product must have a cardinality of at least the number of columns you want to transpose.

Rather than create a denormalized table of data, the solution for this recipe will use the solution from
the first recipe of this chapter to create a "wide" result set. The full solution is as follows:

 1 select dept.deptno,
 2 case dept.deptno
 3 when 10 then emp_cnts.deptno_10
 4 when 20 then emp_cnts.deptno_20
 5 when 30 then emp_cnts.deptno_30

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6 end as counts_by_dept
 7 from (
 8 select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
 9 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
 10 sum(case when deptno=30 then 1 else 0 end) as deptno_30
 11 from emp
 12) emp_cnts,
 13 (select deptno from dept where deptno <= 30) dept

Discussion

The inline view EMP_CNTS represents the denormalized view, or "wide" result set that you want to
convert to rows, and is shown below:

 select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
 sum(case when deptno=30 then 1 else 0 end) as deptno_30
 from emp

 DEPTNO_10 DEPTNO_20 DEPTNO_30
 --------- ---------- ----------
 3 5 6

Because there are three columns, you will create three rows. Begin by creating a Cartesian product
between inline view EMP_CNTS and some table expression that has at least three rows. The following
code uses table DEPT to create the Cartesian product; DEPT has four rows:

 select dept.deptno,
 emp_cnts.deptno_10,
 emp_cnts.deptno_20,
 emp_cnts.deptno_30
 from (
 Select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
 sum(case when deptno=30 then 1 else 0 end) as deptno_30
 from emp
) emp_cnts,
 (select deptno from dept where deptno <= 30) dept

 DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30
 ------ ---------- ---------- ---------
 10 3 5 6
 20 3 5 6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 30 3 5 6

The Cartesian product enables you to return a row for each column in inline view EMP_CNTS. Since
the final result set should have only the DEPTNO and the number of employees in said DEPTNO, use
a CASE expression to transform the three columns into one:

 select dept.deptno,
 case dept.deptno
 when 10 then emp_cnts.deptno_10
 when 20 then emp_cnts.deptno_20
 when 30 then emp_cnts.deptno_30
 end as counts_by_dept
 from (
 Select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
 sum(case when deptno=30 then 1 else 0 end) as deptno_30
 from emp
) emp_cnts,
 (select deptno from dept where deptno <= 30) dept

 DEPTNO COUNTS_BY_DEPT
 ------ --------------
 10 3
 20 5
 30 6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.4. Reverse Pivoting a Result Set into One
Column

Problem

You want to return all columns from a query as just one column. For example, you want to return the
ENAME, JOB, and SAL of all employees in DEPTNO 10, and you want to return all three values in one
column. You want to return three rows for each employee and one row of white space between
employees. You want to return the following result set:

 EMPS

 CLARK
 MANAGER
 2450

 KING
 PRESIDENT
 5000

 MILLER
 CLERK
 1300

Solution

The key is to use a Cartesian product to return four rows for each employee. This lets you return one
column value per row and have an extra row for spacing between employees.

DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to rank each row based on EMPNO (14). Then use a
CASE expression to transform three columns into one:

 1 select case rn
 2 when 1 then ename
 3 when 2 then job
 4 when 3 then cast(sal as char(4))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 5 end emps
 6 from (
 7 select e.ename,e.job,e.sal,
 8 row_number()over(partition by e.empno
 9 order by e.empno) rn
 10 from emp e,
 11 (select *
 12 from emp where job='CLERK') four_rows
 13 where e.deptno=10
 14) x

PostgreSQL and MySQL

This recipe is meant to highlight the use of window functions to provide a ranking for your rows,
which then comes into play later when pivoting. At the time of this writing, neither PostgreSQL nor
MySQL support window functions.

Discussion

DB2, Oracle, and SQL Server

The first step is to use the window function ROW_NUMBER OVER to create a ranking for each
employee in DEPTNO 10:

 select e.ename,e.job,e.sal,
 row_number()over(partition by e.empno
 order by e.empno) rn
 from emp e
 where e.deptno=10

 ENAME JOB SAL RN
 ---------- --------- ---------- ----------
 CLARK MANAGER 2450 1
 KING PRESIDENT 5000 1
 MILLER CLERK 1300 1

At this point the ranking doesn't mean much. You are partitioning by EMPNO, so the rank is 1 for all
three rows in DEPTNO 10. Once you add the Cartesian product, the rank will begin to take shape, as
can be seen in the following results:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select e.ename,e.job,e.sal,
 row_number()over(partition by e.empno
 order by e.empno) rn
 from emp e,
 (select *
 from emp where job='CLERK') four_rows
 where e.deptno=10

 ENAME JOB SAL RN
 ---------- --------- ---------- ----------
 CLARK MANAGER 2450 1
 CLARK MANAGER 2450 2
 CLARK MANAGER 2450 3
 CLARK MANAGER 2450 4
 KING PRESIDENT 5000 1
 KING PRESIDENT 5000 2
 KING PRESIDENT 5000 3
 KING PRESIDENT 5000 4
 MILLER CLERK 1300 1
 MILLER CLERK 1300 2
 MILLER CLERK 1300 3
 MILLER CLERK 1300 4

You should stop at this point and understand two key points:

RN is no longer 1 for each employee; it is now a repeating sequence of values from 1 to 4, the
reason being, window functions are applied after the FROM and WHERE clauses are evaluated.
So, partitioning by EMPNO causes the RN to reset to 1 when a new employee is encountered.

The inline view FOUR_ROWS is simply that a SQL statement exists simply to return four rows.
That is all it does. You want to return a row for every column (ENAME, JOB, SAL) plus an
additional row for whitespace.

At this point, the hard work is done and all that is left is to use a CASE expression to put ENAME,
JOB, and SAL into one column for each employee (you need to cast SAL to a string to make CASE
happy):

 select case rn
 when 1 then ename
 when 2 then joB
 when 3 then cast(sal as char(4))
 end emps
 from (
 Select e.ename,e.job,e.sal,
 row_number()over(partition by e.empno
 order by e.empno) rn
 from emp e,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (select *

 from emp where job='CLERK') four_rows
 where e.deptno=10
) x

 EMPS

 CLARK
 MANAGER
 2450

 KING
 PRESIDENT
 5000

 MILLER
 CLERK
 1300

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.5. Suppressing Repeating Values from a Result
Set

Problem

You are generating a report, and, when two rows have the same value in a column, you wish to
display that value only once. For example, you want to return DEPTNO and ENAME from table EMP,
you wish to group all rows for each DEPTNO, and you wish to display each DEPTNO only one time.
You want to return the following result set:

 DEPTNO ENAME
 ------ ---------
 10 CLARK
 KING
 MILLER
 20 SMITH
 ADAMS
 FORD
 SCOTT
 JONES
 30 ALLEN
 BLAKE
 MARTIN
 JAMES
 TURNER
 WARD

Solution

This is a simple formatting problem that is easily solved by the window function LAG OVER provided
by Oracle. There are other methods such as scalar subqueries and other window functions that you
can use (and that you'll have to use for non-Oracle platforms), but LAG OVER is most convenient and
appropriate here.

DB2 and SQL Server

You can use the window function MIN OVER to find the smallest EMPNO for each DEPTNO. Then use a
CASE expression to "white out" the rows that do not have this EMPNO:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select case when empno=min_empno
 2 then deptno else null
 3 end deptno,
 4 ename
 5 from (
 6 select deptno,
 7 min(empno)over(partition by deptno) min_empno,
 8 empno,
 9 ename
 10 from emp
 11) x

Oracle

Use the window function LAG OVER to access prior rows relative to the current row, to find the first
DEPTNO for each partition:

 1 select to_number(
 2 decode(lag(deptno)over(order by deptno),
 3 deptno,null,deptno)
 4) deptno, ename
 5 from emp

PostgreSQL and MySQL

This recipe highlights the use of window functions for easily accessing rows around your current row.
At the time of this writing, these vendors do not support window functions.

Discussion

DB2 and SQL Server

The first step is to use the window function MIN OVER to find the lowest EMPNO in each DEPTNO:

 select deptno,
 min(empno)over(partition by deptno) min_empno,
 empno,
 ename
 from emp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DEPTNO MIN_EMPNO EMPNO ENAME
 ------ ---------- ---------- ----------
 10 7782 7782 CLARK
 10 7782 7839 KING
 10 7782 7934 MILLER
 20 7369 7369 SMITH
 20 7369 7876 ADAMS
 20 7369 7902 FORD
 20 7369 7788 SCOTT
 20 7369 7566 JONES
 30 7499 7499 ALLEN
 30 7499 7698 BLAKE
 30 7499 7654 MARTIN
 30 7499 7900 JAMES
 30 7499 7844 TURNER
 30 7499 7521 WARD

The next and last step is to use a CASE expression to suppress the repeated display of DEPTNO. If an
employee's EMPNO matches MIN_EMPNO, return DEPTNO, otherwise return NULL:

 select case when empno=min_empno
 then deptno else null
 end deptno,
 ename
 from (
 Select deptno,
 min(empno)over(partition by deptno) min_empno,
 empno,
 ename
 from emp
) x

 DEPTNO ENAME
 ------ ----------
 10 CLARK
 KING
 MILLER
 20 SMITH
 ADAMS
 FORD
 SCOTT
 JONES
 30 ALLEN
 BLAKE
 MARTIN
 JAMES
 TURNER
 WARD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Oracle

The first step is to use the window function LAG OVER to return the prior DEPTNO for each row:

 Select lag(deptno)over(order by deptno) lag_deptno,
 deptno,
 ename
 from emp

 LAG_DEPTNO DEPTNO ENAME
 ---------- ---------- ----------
 10 CLARK
 10 10 KING
 10 10 MILLER
 10 20 SMITH
 20 20 ADAMS
 20 20 FORD
 20 20 SCOTT
 20 20 JONES
 20 30 ALLEN
 30 30 BLAKE
 30 30 MARTIN
 30 30 JAMES
 30 30 TURNER
 30 30 WARD

If you eyeball the result set above, you can easily see where DEPTNO matches LAG_ DEPTNO. For
those rows, you want to set DEPTNO to NULL. Do that by using DECODE (TO_NUMBER is included to
cast DEPTNO as a number):

 select to_number(
 decode(lag(deptno)over(order by deptno),
 deptno,null,deptno)
) deptno, ename
 from emp

 DEPTNO ENAME
 ------ ----------
 10 CLARK
 KING
 MILLER
 20 SMITH
 ADAMS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FORD
 SCOTT
 JONES
 30 ALLEN
 BLAKE
 MARTIN
 JAMES
 TURNER
 WARD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.6. Pivoting a Result Set to Facilitate Inter-Row
Calculations

Problem

You wish to make calculations involving data from multiple rows. To make your job easier, you wish
to pivot those rows into columns such that all values you need are then in a single row.

In this book's example data, DEPTNO 20 is the department with the highest combined salary, which
you can confirm by executing the following query:

 select deptno, sum(sal) as sal
 from emp
 group by deptno

 DEPTNO SAL
 ------ ----------
 10 8750
 20 10875
 30 9400

You want to calculate the difference between the salaries of DEPTNO 20 and DEPTNO 10 and between
DEPTNO 20 and DEPTNO 30.

Solution

Transpose the totals using the aggregate function SUM and a CASE expression. Then code your
expressions in the select list:

 1 select d20_sal - d10_sal as d20_10_diff,
 2 d20_sal - d30_sal as d20_30_diff
 3 from (
 4 select sum(case when deptno=10 then sal end) as d10_sal,
 5 sum(case when deptno=20 then sal end) as d20_sal,
 6 sum(case when deptno=30 then sal end) as d30_sal
 7 from emp
 8) totals_by_dept

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

The first step is to pivot the salaries for each DEPTNO from rows to columns by using a CASE
expression:

 select case when deptno=10 then sal end as d10_sal,
 case when deptno=20 then sal end as d20_sal,
 case when deptno=30 then sal end as d30_sal
 from emp

 D10_SAL D20_SAL D30_SAL
 ------- ---------- ----------
 800
 1600
 1250
 2975
 1250
 2850
 2450
 3000
 5000
 1500
 1100
 950
 3000
 1300

The next step is to sum all the salaries for each DEPTNO by applying the aggregate function SUM to
each CASE expression:

 select sum(case when deptno=10 then sal end) as d10_sal,
 sum(case when deptno=20 then sal end) as d20_sal,
 sum(case when deptno=30 then sal end) as d30_sal
 from emp

 D10_SAL D20_SAL D30_SAL
 ------- ---------- ----------
 8750 10875 9400

The final step is to simply wrap the above SQL in an inline view and perform the subtractions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.7. Creating Buckets of Data, of a Fixed Size

Problem

You wish to organized data into evenly sized buckets, with a predetermined number of elements in
each bucket. The total number of buckets may be unknown, but you want to ensure that each bucket
has five elements. For example, you want to organize the employees in table EMP into groups of five
based on the value of EMPNO, as shown in the following results:

 GRP EMPNO ENAME
 --- ---------- -------
 1 7369 SMITH
 1 7499 ALLEN
 1 7521 WARD
 1 7566 JONES
 1 7654 MARTIN
 2 7698 BLAKE
 2 7782 CLARK
 2 7788 SCOTT
 2 7839 KING
 2 7844 TURNER
 3 7876 ADAMS
 3 7900 JAMES
 3 7902 FORD
 3 7934 MILLER

Solution

The solution to this problem is greatly simplified if your RDBMS provides functions for ranking rows.
Once rows are ranked, creating buckets of five is simply a matter of dividing and then taking the
mathematical ceiling of the quotient.

DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to rank each employee by EMPNO. Then divide by 5 to
create the groups (SQL Server users will use CEILING, not CEIL):

 1 select ceil(row_number()over(order by empno)/5.0) grp,
 2 empno,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 ename
 4 from emp

PostgreSQL and MySQL

Use a scalar subquery to rank each EMPNO. Then divide by 5 to create the groups:

 1 select ceil(rnk/5.0) as grp,
 2 empno, ename
 3 from (
 4 select e.empno, e.ename,
 5 (select count(*) from emp d
 6 where e.empno > d.empno)+1 as rnk
 7 from emp e
 8) x
 9 order by grp

Discussion

DB2, Oracle, and SQL Server

The window function ROW_NUMBER OVER assigns a rank or "row number" to each row sorted by
EMPNO:

 select row_number()over(order by empno) rn,
 empno,
 ename
 from emp

 RN EMPNO ENAME
 -- ---------- ----------
 1 7369 SMITH
 2 7499 ALLEN
 3 7521 WARD
 4 7566 JONES
 5 7654 MARTIN
 6 7698 BLAKE
 7 7782 CLARK
 8 7788 SCOTT
 9 7839 KING
 10 7844 TURNER
 11 7876 ADAMS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 12 7900 JAMES
 13 7902 FORD
 14 7934 MILLER

The next step is to apply the function CEIL (or CEILING) after dividing ROW_ NUMBER OVER by five.
Dividing by five logically organizes the rows into groups of five, i.e., five values less than or equal to
1, five values greater than 1 but less than or equal to 2, the remaining group (composed of the last
four rows since 14, the number of rows in table EMP, is not a multiple of 5) has a value greater than
2 but less than or equal to 3.

The CEIL function will return the smallest whole number greater than the value passed to it; this will
create whole number groups. The results of the division and application of the CEIL are shown below.
You can follow the order of operation from left to right, from RN to DIVISION to GRP:

 select row_number()over(order by empno) rn,
 row_number()over(order by empno)/5.0 division,
 ceil(row_number()over(order by empno)/5.0) grp,
 empno,
 ename
 from emp

 RN DIVISION GRP EMPNO ENAME
 -- ---------- --- ----- ----------
 1 .2 1 7369 SMITH
 2 .4 1 7499 ALLEN
 3 .6 1 7521 WARD
 4 .8 1 7566 JONES
 5 1 1 7654 MARTIN
 6 1.2 2 7698 BLAKE
 7 1.4 2 7782 CLARK
 8 1.6 2 7788 SCOTT
 9 1.8 2 7839 KING
 10 2 2 7844 TURNER
 11 2.2 3 7876 ADAMS
 12 2.4 3 7900 JAMES
 13 2.6 3 7902 FORD
 14 2.8 3 7934 MILLER

PostgreSQL and MySQL

The first step is to use a scalar subquery to rank each row by EMPNO:

 select (select count(*) from emp d

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 where e.empno < d.empno)+1 as rnk,
 e.empno, e.ename
 from emp e
 order by 1

 RNK EMPNO ENAME
 --- ---------- ----------
 1 7934 MILLER
 2 7902 FORD
 3 7900 JAMES
 4 7876 ADAMS
 5 7844 TURNER
 6 7839 KING
 7 7788 SCOTT
 8 7782 CLARK
 9 7698 BLAKE
 10 7654 MARTIN
 11 7566 JONES
 12 7521 WARD
 13 7499 ALLEN
 14 7369 SMITH

The next step is to apply the function CEIL after dividing RNK by 5. Dividing by 5 logically organizes
the rows into groups of five, i.e., five values less than or equal to 1, five values greater than one but
less than or equal to 2, the remaining group (composed of the last four rows since 14, the number of
rows in table EMP, is not a multiple of 5) has a value greater than 2 but less than or equal to 3. The
results of the division and application of the CEIL are shown below. You can follow the order of
operation from left to right as you work your way from RNK over to GRP:

 select rnk,
 rnk/5.0 as division,
 ceil(rnk/5.0) as grp,
 empno, ename
 from (
 Select e.empno, e.ename,
 (select count(*) from emp d
 where e.empno < d.empno)+1 as rnk
 from emp e
) x
 order by 1

 RNK DIVISION GRP EMPNO ENAME
 --- ---------- --- ----- -------
 1 .2 1 7934 MILLER
 2 .4 1 7902 FORD
 3 .6 1 7900 JAMES
 4 .8 1 7876 ADAMS
 5 1 1 7844 TURNER

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6 1.2 2 7839 KING
 7 1.4 2 7788 SCOTT
 8 1.6 2 7782 CLARK
 9 1.8 2 7698 BLAKE
 10 2 2 7654 MARTIN
 11 2.2 3 7566 JONES
 12 2.4 3 7521 WARD
 13 2.6 3 7499 ALLEN
 14 2.8 3 7369 SMITH

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.8. Creating a Predefined Number of Buckets

Problem

You want to organize your data into a fixed number of buckets. For example, you want to organize
the employees in table EMP into four buckets. The result set should look similar to the following:

 GRP EMPNO ENAME
 --- ----- ---------
 1 7369 SMITH
 1 7499 ALLEN
 1 7521 WARD
 1 7566 JONES
 2 7654 MARTIN
 2 7698 BLAKE
 2 7782 CLARK
 2 7788 SCOTT
 3 7839 KING
 3 7844 TURNER
 3 7876 ADAMS
 4 7900 JAMES
 4 7902 FORD
 4 7934 MILLER

This problem is the opposite of the previous recipe, where you had an unknown number of buckets
but a predetermined number of elements in each bucket. In this recipe, the goal is such that you may
not necessarily know how many elements are in each bucket, but you are defining a fixed (known)
number of buckets to be created.

Solution

The solution to this problem is trivial if your RDBMS provides functions for creating "buckets" of rows.
If your RDBMS provides no such functions, you can simply rank each row, and then use the modulus
of said rank and n, where n is the number of buckets you wish to create, in an expression to
determine into which bucket the row falls. Where available, this solution will make use of the NTILE
window function for creating a fixed number of buckets. NTILE organizes an ordered set into the
number of buckets you specify, with any stragglers distributed into the available buckets starting
from the first bucket. The desired result set for this recipe reflects this: buckets 1 and 2 have four
rows while buckets 3 and 4 have three rows. If your RDBMS does not support NTILE, don't worry
about which rows are in which buckets; the main goal of this recipe is to create the fixed number of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

buckets you are requesting.

DB2

Use the window function ROW_NUMBER OVER window function to rank the rows by EMPNO, then use
the modulus of the rank and 4 to create four buckets:

 1 select mod(row_number()over(order by empno),4)+1 grp,
 2 empno,
 3 ename
 4 from emp
 5 order by 1

Oracle and SQL Server

The DB2 solution will work for these vendors but alternatively (conveniently) you may use the NTILE
window function to create four buckets:

 1 select ntile(4)over(order by empno) grp,
 2 empno,
 3 ename
 4 from emp

MySQL, and PostgreSQL

Use a self join to rank the rows by EMPNO, then use the modulus of the rank and 4 to create your
buckets:

 1 select mod(count(*),4)+1 as grp,
 2 e.empno,
 3 e.ename
 4 from emp e, emp d
 5 where e.empno >= d.empno
 6 group by e.empno,e.ename
 7 order by 1

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2

The first step is to use the window function ROW_NUMBER OVER to rank each row by EMPNO:

 select row_number()over(order by empno) grp,
 empno,
 ename
 from emp

 GRP EMPNO ENAME
 --- ----- ------
 1 7369 SMITH
 2 7499 ALLEN
 3 7521 WARD
 4 7566 JONES
 5 7654 MARTIN
 6 7698 BLAKE
 7 7782 CLARK
 8 7788 SCOTT
 9 7839 KING
 10 7844 TURNER
 11 7876 ADAMS
 12 7900 JAMES
 13 7902 FORD
 14 7934 MILLER

Now that the rows are ranked, use the modulo function, MOD, to create four buckets:

 select mod(row_number()over(order by empno),4) grp,
 empno,
 ename
 from emp

 GRP EMPNO ENAME
 --- ----- ------
 1 7369 SMITH
 2 7499 ALLEN
 3 7521 WARD
 0 7566 JONES
 1 7654 MARTIN
 2 7698 BLAKE
 3 7782 CLARK
 0 7788 SCOTT
 1 7839 KING
 2 7844 TURNER
 3 7876 ADAMS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 0 7900 JAMES
 1 7902 FORD
 2 7934 MILLER

The last step is to add one GRP so the buckets start at 1, not 0, and use ORDER BY on GRP to order
the rows by bucket.

Oracle and SQL Server

All the work is done by the NTILE function. Simply pass it a number representing the number of
buckets you want, and watch the magic unfold right in front of your eyes.

MySQL and PostgreSQL

The fist step is to generate a Cartesian product with table EMP so that each EMPNO can be compared
with every other EMPNO [only a snippet of the Cartesian is shown below because there would be 196
rows returned (14x14)]:

 select e.empno,
 e.ename,
 d.empno,
 d.ename
 from emp e, emp d

 EMPNO ENAME EMPNO ENAME
 ----- ---------- ---------- ---------
 7369 SMITH 7369 SMITH
 7369 SMITH 7499 ALLEN
 7369 SMITH 7521 WARD
 7369 SMITH 7566 JONES
 7369 SMITH 7654 MARTIN
 7369 SMITH 7698 BLAKE
 7369 SMITH 7782 CLARK
 7369 SMITH 7788 SCOTT
 7369 SMITH 7839 KING
 7369 SMITH 7844 TURNER
 7369 SMITH 7876 ADAMS
 7369 SMITH 7900 JAMES
 7369 SMITH 7902 FORD
 7369 SMITH 7934 MILLER
 …

As you can see from this result set, you can compare SMITH's EMPNO to the EMPNO of all the other

http://lib.ommolketab.ir
http://lib.ommolketab.ir

employees in EMP (you can compare each employee's EMPNO with all the other employees' EMPNOs).
The next step is to restrict the Cartesian product to only those EMPNOs that are greater than or equal
to another EMPNO. A portion of the result set (as there are 105 rows) is shown below:

 select e.empno,
 e.ename,
 d.empno,
 d.ename
 from emp e, emp d
 where e.empno >= d.empno

 EMPNO ENAME EMPNO ENAME
 ----- ---------- ---------- ----------
 7934 MILLER 7934 MILLER
 7934 MILLER 7902 FORD
 7934 MILLER 7900 JAMES
 7934 MILLER 7876 ADAMS
 7934 MILLER 7844 TURNER
 7934 MILLER 7839 KING
 7934 MILLER 7788 SCOTT
 7934 MILLER 7782 CLARK
 7934 MILLER 7698 BLAKE
 7934 MILLER 7654 MARTIN
 7934 MILLER 7566 JONES
 7934 MILLER 7521 WARD
 7934 MILLER 7499 ALLEN
 7934 MILLER 7369 SMITH
 …
 7499 ALLEN 7499 ALLEN
 7499 ALLEN 7369 SMITH
 7369 SMITH 7369 SMITH

Of the entire result set, I've included only rows (from EMP E) for MILLER, ALLEN, and SMITH in this
output. The reason is to show you how the Cartesian product has been restricted by the WHERE
clause. Because the filter on EMPNO in the WHERE clause uses "greater than or equal to," you know
you will get at least one row for each employee because each EMPNO is equal to itself. But why is
there only one row for SMITH (on the left-hand side of the result set) when there are two rows for
ALLEN and 14 rows for MILLER? The reason is the compound evaluation on EMPNO in the WHERE
clause: "greater than or equal to". In SMITH's case, there is no EMPNO that 7369 is greater than, so
only one row is returned for SMITH. In ALLEN's case, ALLEN's EMPNO is obviously equal to itself (so
that row is returned), but 7499 is also greater than 7369 (SMITH's EMPNO) so two rows are returned
for ALLEN. In the case of MILLER's EMPNO 7934, it is greater than all the other EMPNOs in table EMP
(and obviously equal to itself) so there are 14 MILLER rows returned.

Now you can compare each EMPNO and determine which ones are greater than others. Use the
aggregate function COUNT to return the self join as a more expressive result set:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select count(*) as grp,
 e.empno,
 e.ename
 from emp e, emp d
 where e.empno >= d.empno
 group by e.empno,e.ename
 order by 1

 GRP EMPNO ENAME
 --- ---------- ----------
 1 7369 SMITH
 2 7499 ALLEN
 3 7521 WARD
 4 7566 JONES
 5 7654 MARTIN
 6 7698 BLAKE
 7 7782 CLARK
 8 7788 SCOTT
 9 7839 KING
 10 7844 TURNER
 11 7876 ADAMS
 12 7900 JAMES
 13 7902 FORD
 14 7934 MILLER

Now that the rows are ranked, simply add 1 to the modulus of GRP and 4 to create four buckets
(adding 1 so the buckets start at 1, not 0). Use the ORDER BY clause on GRP to order the buckets
appropriately:

 select mod(count(*),4)+1 as grp,
 e.empno,
 e.ename
 from emp e, emp d
 where e.empno >= d.empno
 group by e.empno,e.ename
 order by 1

 GRP EMPNO ENAME
 --- ---------- ---------
 1 7900 JAMES
 1 7566 JONES
 1 7788 SCOTT
 2 7369 SMITH
 2 7902 FORD
 2 7654 MARTIN
 2 7839 KING
 3 7499 ALLEN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 7698 BLAKE
 3 7934 MILLER
 3 7844 TURNER
 4 7521 WARD
 4 7782 CLARK
 4 7876 ADAMS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.9. Creating Horizontal Histograms

Problem

You want to use SQL to generate histograms that extend horizontally. For example, you want to
display the number of employees in each department as a horizontal histogram with each employee
represented by an instance of "*". You want to return the following result set:

 DEPTNO CNT
 ------ ----------
 10 ***
 20 *****
 30 ******

Solution

The key to this solution is to use the aggregate function COUNT, and use GROUP BY DEPTNO to
determine the number of employees in each DEPTNO. The value returned by COUNT is then passed
to a string function that generates a series of "*" characters.

DB2

Use the REPEAT function to generate the histogram:

 1 select deptno,
 2 repeat('*',count(*)) cnt
 3 from emp
 4 group by deptno

Oracle, PostgreSQL, and MySQL

Use the LPAD function to generate the needed strings of "*" characters:

 1 select deptno,
 2 lpad('*',count(*),'*') as cnt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 from emp
 4 group by deptno

SQL Server

Generate the histogram using the REPLICATE function:

 1 select deptno,
 2 replicate('*',count(*)) cnt
 3 from emp
 4 group by deptno

Discussion

The technique is the same for all vendors. The only difference lies in the string function used to return
a "*" for each employee. The Oracle solution will be used for this discussion, but the explanation is
relevant for all the solutions.

The first step is to count the number of employees in each department:

 select deptno,
 count(*)
 from emp
 group by deptno

 DEPTNO COUNT(*)
 ------ ----------
 10 3
 20 5
 30 6

The next step is to use the value returned by COUNT(*) to control the number of "*"characters to
return for each department. Simply pass COUNT(*) as an argument to the string function LPAD to
return the desired number of "*"s:

 select deptno,
 lpad('*',count(*),'*') as cnt
 from emp
 group by deptno

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DEPTNO CNT
 ------ ----------
 10 ***
 20 *****
 30 ******

For PostgreSQL users, you may need to explicitly cast the value returned by COUNT(*) to an integer
as can be seen below:

 select deptno,
 lpad('*',count(*)::integer,'*') as cnt
 from emp
 group by deptno

 DEPTNO CNT
 ------ ----------
 10 ***
 20 *****
 30 ******

This CAST is necessary because PostgreSQL requires the numeric argument to LPAD to be an integer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.10. Creating Vertical Histograms

Problem

You want to generate a histogram that grows from the bottom up. For example, you want to display
the number of employees in each department as a vertical histogram with each employee
represented by an instance of "*". You want to return the following result set:

 D10 D20 D30
 --- --- ---
 *
 * *
 * *
 * * *
 * * *
 * * *

Solution

The technique used to solve this problem is built upon that used as the second recipe in this chapter:
.

DB2, Oracle, and SQL Server

Use the ROW_NUMBER OVER function to uniquely identify each instance of "*" for each DEPTNO. Use
the aggregate function MAX to pivot the result set and group by the values returned by
ROW_NUMBER OVER (SQL Server users should not use DESC in the ORDER BY clause):

 1 select max(deptno_10) d10,
 2 max(deptno_20) d20,
 3 max(deptno_30) d30
 4 from (
 5 select row_number()over(partition by deptno order by empno) rn,
 6 case when deptno=10 then '*' else null end deptno_10,
 7 case when deptno=20 then '*' else null end deptno_20,
 8 case when deptno=30 then '*' else null end deptno_30
 9 from emp
 10) x
 11 group by rn

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 12 order by 1 desc, 2 desc, 3 desc

PostgreSQL and MySQL

Use a scalar subquery to uniquely identify each instance of "*" for each DEPTNO. Use the aggregate
function MAX on the values returned by inline view X, while also grouping by RNK to pivot the result
set. MySQL users should not use DESC in the ORDER BY clause:

 1 select max(deptno_10) as d10,
 2 max(deptno_20) as d20,
 3 max(deptno_30) as d30
 4 from (
 5 select case when e.deptno=10 then '*' else null end deptno_10,
 6 case when e.deptno=20 then '*' else null end deptno_20,
 7 case when e.deptno=30 then '*' else null end deptno_30,
 8 (select count(*) from emp d
 9 where e.deptno=d.deptno and e.empno < d.empno) as rnk
 10 from emp e
 11) x
 12 group by rnk
 13 order by 1 desc, 2 desc, 3 desc

Discussion

DB2, Oracle, and SQL Server

The first step is to use the window function ROW_NUMBER to uniquely identify each instance of "*" in
each department. Use a CASE expression to return a "*" for each employee in each department:

 select row_number()over(partition by deptno order by empno) rn,
 case when deptno=10 then '*' else null end deptno_10,
 case when deptno=20 then '*' else null end deptno_20,
 case when deptno=30 then '*' else null end deptno_30
 from emp

 RN DEPTNO_10 DEPTNO_20 DEPTNO_30
 -- ---------- ---------- ---------
 1 *
 2 *
 3 *
 1 *
 2 *

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 *
 4 *
 5 *
 1 *
 2 *
 3 *
 4 *
 5 *
 6 *

The next and last step is to use the aggregate function MAX on each CASE expression, grouping by
RN to remove the NULLs from the result set. Order the results ASC or DESC depending on how your
RDBMS sorts NULLs:

 select max(deptno_10) d10,
 max(deptno_20) d20,
 max(deptno_30) d30
 from (
 Select row_number()over(partition by deptno order by empno) rn,
 case when deptno=10 then '*' else null end deptno_10,
 case when deptno=20 then '*' else null end deptno_20,
 case when deptno=30 then '*' else null end deptno_30
 from emp
) x
 group by rn
 order by 1 desc, 2 desc, 3 desc

 D10 D20 D30
 --- --- ---
 *
 * *
 * *
 * * *
 * * *
 * * *

PostgreSQL and MySQL

The first step is to use a scalar subquery to uniquely identify each instance of "*" in each department.
The scalar subquery ranks the employees by EMPNO in each DEPTNO, so there can be no duplicates.
Use a CASE expression to generate a "*" for each employee in each department:

 select case when e.deptno=10 then '*' else null end deptno_10,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 case when e.deptno=20 then '*' else null end deptno_20,
 case when e.deptno=30 then '*' else null end deptno_30,
 (select count(*) from emp d
 where e.deptno=d.deptno and e.empno < d.empno) as rnk
 from emp e

 DEPTNO_10 DEPTNO_20 DEPTNO_30 RNK
 ---------- ---------- ---------- ----------
 * 4
 * 5
 * 4
 * 3
 * 3
 * 2
 * 2
 * 2
 * 1
 * 1
 * 1
 * 0
 * 0
 * 0

Then use the aggregate function MAX on each CASE expression, being sure to group by RNK to
remove the NULLs from the result set. Order the results ASC or DESC depending on how your RDBMS
sorts NULLs:

 select max(deptno_10) as d10,
 max(deptno_20) as d20,
 max(deptno_30) as d30
 from (
 Select case when e.deptno=10 then '*' else null end deptno_10,
 case when e.deptno=20 then '*' else null end deptno_20,
 case when e.deptno=30 then '*' else null end deptno_30,
 (select count(*) from emp d
 where e.deptno=d.deptno and e.empno < d.empno) as rnk
 from emp e
) x
 group by rnk
 order by 1 desc, 2 desc, 3 desc

 D10 D20 D30
 --- --- ---
 *
 * *
 * *
 * * *
 * * *

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * * *

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.11. Returning Non-GROUP BY Columns

Problem

You are executing a GROUP BY query, and you wish to return columns in your select list that are not
also listed in your GROUP BY clause. This is not normally possible, as such ungrouped columns would
not represent a single value per row.

Say that you want to find the employees who earn the highest and lowest salaries in each
department, as well as the employees who earn the highest and lowest salaries in each job. You want
to see each employee's name, the department he works in, his job title, and his salary. You want to
return the following result set:

 DEPTNO ENAME JOB SAL DEPT_STATUS JOB_STATUS
 ------ ------ --------- ----- --------------- --------------
 10 MILLER CLERK 1300 LOW SAL IN DEPT TOP SAL IN JOB
 10 CLARK MANAGER 2450 LOW SAL IN JOB
 10 KING PRESIDENT 5000 TOP SAL IN DEPT TOP SAL IN JOB
 20 SCOTT ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
 20 FORD ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
 20 SMITH CLERK 800 LOW SAL IN DEPT LOW SAL IN JOB
 20 JONES MANAGER 2975 TOP SAL IN JOB
 30 JAMES CLERK 950 LOW SAL IN DEPT
 30 MARTIN SALESMAN 1250 LOW SAL IN JOB
 30 WARD SALESMAN 1250 LOW SAL IN JOB
 30 ALLEN SALESMAN 1600 TOP SAL IN JOB
 30 BLAKE MANAGER 2850 TOP SAL IN DEPT

Unfortunately, including all these columns in the SELECT clause will ruin the grouping. Consider the
following example. Employee "KING" earns the highest salary. You want to verify this with the
following query:

 Select ename,max(sal)
 from emp
 group by ename

Instead of seeing "KING" and KING's salary, the above query will return all 14 rows from table EMP.
The reason is because of the grouping: the MAX(SAL) is applied to each ENAME. So, it would seem
the above query can be stated as "find the employee with the highest salary" but in fact what it is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doing is "find the highest salary for each ENAME in table EMP." This recipe explains a technique for
including ENAME without the need to GROUP BY that column.

Solution

Use an inline view to find the high and low salaries by DEPTNO and JOB. Then keep only the
employees who make those salaries.

DB2, Oracle, and SQL Server

Use the window functions MAX OVER and MIN OVER to find the highest and lowest salaries by
DEPTNO and JOB. Then keep the rows where the salaries are those that are highest or lowest by
DEPTNO or JOB:

 1 select deptno,ename,job,sal,
 2 case when sal = max_by_dept
 3 then 'TOP SAL IN DEPT'
 4 when sal = min_by_dept
 5 then 'LOW SAL IN DEPT'
 6 end dept_status,
 7 case when sal = max_by_job
 8 then 'TOP SAL IN JOB'
 9 when sal = min_by_job
 10 then 'LOW SAL IN JOB'
 11 end job_status
 12 from (
 13 select deptno,ename,job,sal,
 14 max(sal)over(partition by deptno) max_by_dept,
 15 max(sal)over(partition by job) max_by_job,
 16 min(sal)over(partition by deptno) min_by_dept,
 17 min(sal)over(partition by job) min_by_job
 18 from emp
 19) emp_sals
 20 where sal in (max_by_dept,max_by_job,
 21 min_by_dept,min_by_job)

PostgreSQL and MySQL

Use scalar subqueries to find the highest and lowest salaries by DEPTNO and JOB. Then keep only
those employees who match those salaries:

 1 select deptno,ename,job,sal,
 2 case when sal = max_by_dept
 3 then 'TOP SAL IN DEPT'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 when sal = min_by_dept
 5 then 'LOW SAL IN DEPT'
 6 end as dept_status,
 7 case when sal = max_by_job
 8 then 'TOP SAL IN JOB'
 9 when sal = min_by_job
 10 then 'LOW SAL IN JOB'
 11 end as job_status
 12 from (
 13 select e.deptno,e.ename,e.job,e.sal,
 14 (select max(sal) from emp d
 15 where d.deptno = e.deptno) as max_by_dept,
 16 (select max(sal) from emp d
 17 where d.job = e.job) as max_by_job,
 18 (select min(sal) from emp d
 19 where d.deptno = e.deptno) as min_by_dept,
 20 (select min(sal) from emp d
 21 where d.job = e.job) as min_by_job
 22 from emp e
 23) x
 24 where sal in (max_by_dept,max_by_job,
 25 min_by_dept,min_by_job)

Discussion

DB2, Oracle, and SQL Server

The first step is to use the window functions MAX OVER and MIN OVER to find the highest and lowest
salaries by DEPTNO and JOB:

 select deptno,ename,job,sal,
 max(sal)over(partition by deptno) maxDEPT,
 max(sal)over(partition by job) maxJOB,
 min(sal)over(partition by deptno) minDEPT,
 min(sal)over(partition by job) minJOB
 from emp

 DEPTNO ENAME JOB SAL MAXDEPT MAXJOB MINDEPT MINJOB
 ------ ------ --------- ----- ------- ------ ------- ------
 10 MILLER CLERK 1300 5000 1300 1300 800
 10 CLARK MANAGER 2450 5000 2975 1300 2450
 10 KING PRESIDENT 5000 5000 5000 1300 5000
 20 SCOTT ANALYST 3000 3000 3000 800 3000
 20 FORD ANALYST 3000 3000 3000 800 3000
 20 SMITH CLERK 800 3000 1300 800 800

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 20 JONES MANAGER 2975 3000 2975 800 2450
 20 ADAMS CLERK 1100 3000 1300 800 800
 30 JAMES CLERK 950 2850 1300 950 800
 30 MARTIN SALESMAN 1250 2850 1600 950 1250
 30 TURNER SALESMAN 1500 2850 1600 950 1250
 30 WARD SALESMAN 1250 2850 1600 950 1250
 30 ALLEN SALESMAN 1600 2850 1600 950 1250
 30 BLAKE MANAGER 2850 2850 2975 950 2450

At this point, every salary can be compared with the highest and lowest salaries by DEPTNO and JOB.
Notice that the grouping (the inclusion of multiple columns in the SELECT clause) does not affect the
values returned by MIN OVER and MAX OVER. This is the beauty of window functions: the aggregate
is computed over a defined "group" or partition and returns multiple rows for each group. The last
step is to simply wrap the window functions in an inline view and keep only those rows that match
the values returned by the window functions. Use a simple CASE expression to display the "status" of
each employee in the final result set:

 select deptno,ename,job,sal,
 case when sal = max_by_dept
 then 'TOP SAL IN DEPT'
 when sal = min_by_dept
 then 'LOW SAL IN DEPT'
 end dept_status,
 case when sal = max_by_job
 then 'TOP SAL IN JOB'
 when sal = min_by_job
 then 'LOW SAL IN JOB'
 end job_status
 from (
 select deptno,ename,job,sal,
 max(sal)over(partition by deptno) max_by_dept,
 max(sal)over(partition by job) max_by_job,
 min(sal)over(partition by deptno) min_by_dept,
 min(sal)over(partition by job) min_by_job
 from emp
) x
 where sal in (max_by_dept,max_by_job,
 min_by_dept,min_by_job)

 DEPTNO ENAME JOB SAL DEPT_STATUS JOB_STATUS
 ------ ------ --------- ----- --------------- --------------
 10 MILLER CLERK 1300 LOW SAL IN DEPT TOP SAL IN JOB
 10 CLARK MANAGER 2450 LOW SAL IN JOB
 10 KING PRESIDENT 5000 TOP SAL IN DEPT TOP SAL IN JOB
 20 SCOTT ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
 20 FORD ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
 20 SMITH CLERK 800 LOW SAL IN DEPT LOW SAL IN JOB
 20 JONES MANAGER 2975 TOP SAL IN JOB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 30 JAMES CLERK 950 LOW SAL IN DEPT
 30 MARTIN SALESMAN 1250 LOW SAL IN JOB
 30 WARD SALESMAN 1250 LOW SAL IN JOB
 30 ALLEN SALESMAN 1600 TOP SAL IN JOB
 30 BLAKE MANAGER 2850 TOP SAL IN DEPT

PostgreSQL and MySQL

The first step is to use scalar subqueries to find the highest and lowest salaries by DEPTNO and JOB:

 select e.deptno,e.ename,e.job,e.sal,
 (select max(sal) from emp d
 where d.deptno = e.deptno) as maxDEPT,
 (select max(sal) from emp d
 where d.job = e.job) as maxJOB,
 (select min(sal) from emp d
 where d.deptno = e.deptno) as minDEPT,
 (select min(sal) from emp d
 where d.job = e.job) as minJOB
 from emp e

 DEPTNO ENAME JOB SAL MAXDEPT MAXJOB MINDEPT MINJOB
 ------ ------ --------- ----- ------- ------ ------- ------
 20 SMITH CLERK 800 3000 1300 800 800
 30 ALLEN SALESMAN 1600 2850 1600 950 1250
 30 WARD SALESMAN 1250 2850 1600 950 1250
 20 JONES MANAGER 2975 3000 2975 800 2450
 30 MARTIN SALESMAN 1250 2850 1600 950 1250
 30 BLAKE MANAGER 2850 2850 2975 950 2450
 10 CLARK MANAGER 2450 5000 2975 1300 2450
 20 SCOTT ANALYST 3000 3000 3000 800 3000
 10 KING PRESIDENT 5000 5000 5000 1300 5000
 30 TURNER SALESMAN 1500 2850 1600 950 1250
 20 ADAMS CLERK 1100 3000 1300 800 800
 30 JAMES CLERK 950 2850 1300 950 800
 20 FORD ANALYST 3000 3000 3000 800 3000
 10 MILLER CLERK 1300 5000 1300 1300 800

The highest and lowest salaries by DEPTNO and JOB can now be compared with all other salaries in
table EMP. The final step is to wrap the scalar subqueries in an inline view and simply keep the
employees whose salaries match one of the scalar subqueries. Use a CASE expression to display each
employee's status in the final result set:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select deptno,ename,job,sal,
 case when sal = max_by_dept
 then 'TOP SAL IN DEPT'
 when sal = min_by_dept
 then 'LOW SAL IN DEPT'
 end as dept_status,
 case when sal = max_by_job
 then 'TOP SAL IN JOB'
 when sal = min_by_job
 then 'LOW SAL IN JOB'
 end as job_status
 from (
 select e.deptno,e.ename,e.job,e.sal,
 (select max(sal) from emp d
 where d.deptno = e.deptno) as max_by_dept,
 (select max(sal) from emp d
 where d.job = e.job) as max_by_job,
 (select min(sal) from emp d
 where d.deptno = e.deptno) as min_by_dept,
 (select min(sal) from emp d
 where d.job = e.job) as min_by_job
 from emp e
) x
 where sal in (max_by_dept,max_by_job,
 min_by_dept,min_by_job)

 DEPTNO ENAME JOB SAL DEPT_STATUS JOB_STATUS
 ------ ------ --------- ----- --------------- --------------
 10 CLARK MANAGER 2450 LOW SAL IN JOB
 10 KING PRESIDENT 5000 TOP SAL IN DEPT TOP SAL IN JOB
 10 MILLER CLERK 1300 LOW SAL IN DEPT TOP SAL IN JOB
 20 SMITH CLERK 800 LOW SAL IN DEPT LOW SAL IN JOB
 20 FORD ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
 20 SCOTT ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
 20 JONES MANAGER 2975 TOP SAL IN JOB
 30 ALLEN SALESMAN 1600 TOP SAL IN JOB
 30 BLAKE MANAGER 2850 TOP SAL IN DEPT
 30 MARTIN SALESMAN 1250 LOW SAL IN JOB
 30 JAMES CLERK 950 LOW SAL IN DEPT
 30 WARD SALESMAN 1250 LOW SAL IN JOB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.12. Calculating Simple Subtotals

Problem

For the purposes of this recipe, a "simple subtotal" is defined as a result set that contains values from
the aggregation of one column along with a grand total value for the table. An example would be a
result set that sums the salaries in table EMP by JOB, and that also includes the sum of all salaries in
table EMP. The summed salaries by JOB are the subtotals, and the sum of all salaries in table EMP is
the grand total. Such a result set should look as follows:

 JOB SAL
 --------- ----------
 ANALYST 6000
 CLERK 4150
 MANAGER 8275
 PRESIDENT 5000
 SALESMAN 5600
 TOTAL 29025

Solution

The ROLLUP extension to the GROUP BY clause solves this problem perfectly. If ROLLUP is not
available for your RDBMS, you can solve the problem, albeit with more difficulty, using a scalar
subquery or a UNION query.

DB2 and Oracle

Use the aggregate function SUM to sum the salaries, and use the ROLLUP extension of GROUP BY to
organize the results into subtotals (by JOB) and a grand total (for the whole table):

 1 select case grouping(job)
 2 when 0 then job
 3 else 'TOTAL'
 4 end job,
 5 sum(sal) sal
 6 from emp
 7 group by rollup(job)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL Server and MySQL

Use the aggregate function SUM to sum the salaries, and use WITH ROLLUP to organize the results
into subtotals (by JOB) and a grand total (for the whole table). Then use COALESCE to supply the
label 'TOTAL' for the grand total row (which will otherwise have a NULL in the job column):

 1 select coalesce(job,'TOTAL') job,
 2 sum(sal) sal
 3 from emp
 4 group by job with rollup

With SQL Server, you also have the option to use the GROUPING function shown in the Oracle/DB2
recipe rather than COALESCE to determine the level of aggregation.

PostgreSQL

Use the aggregate function SUM to sum the salaries by DEPTNO. Then UNION ALL with a query
generating the sum of all the salaries in the table:

 1 select job, sum(sal) as sal
 2 from emp
 3 group by job
 4 union all
 5 select 'TOTAL', sum(sal)
 6 from emp

Discussion

DB2 and Oracle

The first step is to use the aggregate function SUM, grouping by JOB in order to sum the salaries by
JOB:

 select job, sum(sal) sal
 from emp
 group by job

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JOB SAL
 --------- -----
 ANALYST 6000
 CLERK 4150
 MANAGER 8275
 PRESIDENT 5000
 SALESMAN 5600

The next step is to use the ROLLUP extension to GROUP BY to produce a grand total for all salaries
along with the subtotals for each JOB:

 select job, sum(sal) sal
 from emp
 group by rollup(job)

 JOB SAL
 --------- -------
 ANALYST 6000
 CLERK 4150
 MANAGER 8275
 PRESIDENT 5000
 SALESMAN 5600
 29025

The last step is to use the GROUPING function in the JOB column to display a label for the grand
total. If the value of JOB is NULL, the GROUPING function will return 1, which signifies that the value
for SAL is the grand total created by ROLLUP. If the value of JOB is not NULL, the GROUPING function
will return 0, which signifies the value for SAL is the result of the GROUP BY, not the ROLLUP. Wrap
the call to GROUPING(JOB) in a CASE expression that returns either the job name or the label
'TOTAL', as appropriate:

 select case grouping(job)
 when 0 then job
 else 'TOTAL'
 end job,
 sum(sal) sal
 from emp
 group by rollup(job)

 JOB SAL
 --------- ----------
 ANALYST 6000
 CLERK 4150
 MANAGER 8275

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PRESIDENT 5000
 SALESMAN 5600
 TOTAL 29025

SQL Server and MySQL

The first step is to use the aggregate function SUM, grouping the results by JOB to generate salary
sums by JOB:

 select job, sum(sal) sal
 from emp
 group by job

 JOB SAL
 --------- -----
 ANALYST 6000
 CLERK 4150
 MANAGER 8275
 PRESIDENT 5000
 SALESMAN 5600

The next step is to use GROUP BY's ROLLUP extension to produce a grand total for all salaries along
with the subtotals for each JOB:

 select job, sum(sal) sal
 from emp
 group by job with rollup

 JOB SAL
 --------- -------
 ANALYST 6000
 CLERK 4150
 MANAGER 8275
 PRESIDENT 5000
 SALESMAN 5600
 29025

The last step is to use the COEALESCE function against the JOB column. If the value of JOB is NULL,
the value for SAL is the grand total created by ROLLUP. If the value of JOB is not NULL, the value for
SAL is the result of the "regular" GROUP BY, not the ROLLUP:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select coalesce(job,'TOTAL') job,
 sum(sal) sal
 from emp
 group by job with rollup

 JOB SAL
 --------- ----------
 ANALYST 6000
 CLERK 4150
 MANAGER 8275
 PRESIDENT 5000
 SALESMAN 5600
 TOTAL 29025

PostgreSQL

The first step is to group the results by job, using the aggregate function SUM to return salary totals
by JOB:

 select job, sum(sal) sal
 from emp
 group by job

 JOB SAL
 --------- -----
 ANALYST 6000
 CLERK 4150
 MANAGER 8275
 PRESIDENT 5000
 SALESMAN 5600

The last step is to use a UNION ALL to supply the grand total to the above query:

 select job, sum(sal) as sal
 from emp
 group by job
 union all
 select 'TOTAL', sum(sal)
 from emp

 JOB SAL
 --------- -------

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ANALYST 6000
 CLERK 4150
 MANAGER 8275
 PRESIDENT 5000
 SALESMAN 5600
 TOTAL 29025

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.13. Calculating Subtotals for All Possible
Expression Combinations

Problem

You want to find the sum of all salaries by DEPTNO, and by JOB, for every JOB/ DEPTNO
combination. You also want a grand total for all salaries in table EMP. You want to return the
following result set:

 DEPTNO JOB CATEGORY SAL
 ------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900
 30 CLERK TOTAL BY DEPT AND JOB 950
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 CLERK TOTAL BY JOB 4150
 ANALYST TOTAL BY JOB 6000
 MANAGER TOTAL BY JOB 8275
 PRESIDENT TOTAL BY JOB 5000
 SALESMAN TOTAL BY JOB 5600
 10 TOTAL BY DEPT 8750
 30 TOTAL BY DEPT 9400
 20 TOTAL BY DEPT 10875
 GRAND TOTAL FOR TABLE 29025

Solution

Extensions added to GROUP BY in recent years make this a fairly easy problem to solve. If your
platform does not supply such extensions for computing various levels of subtotals, then you must
compute them manually (via self joins or scalar subqueries).

DB2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For DB2, you will need to CAST the results from GROUPING to the CHAR(1) data type:

 1 select deptno,
 2 job,
 3 case cast(grouping(deptno) as char(1))||
 4 cast(grouping(job) as char(1))
 5 when '00' then 'TOTAL BY DEPT AND JOB'
 6 when '10' then 'TOTAL BY JOB'
 7 when '01' then 'TOTAL BY DEPT'
 8 when '11' then 'TOTAL FOR TABLE'
 9 end category,
 10 sum(sal)
 11 from emp
 12 group by cube(deptno,job)
 13 order by grouping(job),grouping(deptno)

Oracle

Use the CUBE extension to the GROUP BY clause with the concatenation operator ||:

 1 select deptno,
 2 job,
 3 case grouping(deptno)||grouping(job)
 4 when '00' then 'TOTAL BY DEPT AND JOB'
 5 when '10' then 'TOTAL BY JOB'
 6 when '01' then 'TOTAL BY DEPT'
 7 when '11' then 'GRAND TOTAL FOR TABLE'
 8 end category,
 9 sum(sal) sal
 10 from emp
 11 group by cube(deptno,job)
 12 order by grouping(job),grouping(deptno)

SQL Server

Use the CUBE extension to the GROUP BY clause. For SQL Server, you will need to CAST the results
from GROUPING to CHAR(1), and you will need to use the + operator for concatenation (as opposed
to Oracle's || operator):

 1 select deptno,
 2 job,
 3 case cast(grouping(deptno)as char(1))+
 4 cast(grouping(job)as char(1))
 5 when '00' then 'TOTAL BY DEPT AND JOB'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6 when '10' then 'TOTAL BY JOB'
 7 when '01' then 'TOTAL BY DEPT'
 8 when '11' then 'GRAND TOTAL FOR TABLE'
 9 end category,
 10 sum(sal) sal
 11 from emp
 12 group by deptno,job with cube
 13 order by grouping(job),grouping(deptno)

PostgreSQL and MySQL

Use multiple UNION ALLs, creating different sums for each:

 1 select deptno, job,
 2 'TOTAL BY DEPT AND JOB' as category,
 3 sum(sal) as sal
 4 from emp
 5 group by deptno, job
 6 union all
 7 select null, job, 'TOTAL BY JOB', sum(sal)
 8 from emp
 9 group by job
 10 union all
 11 select deptno, null, 'TOTAL BY DEPT', sum(sal)
 12 from emp
 13 group by deptno
 14 union all
 15 select null,null,'GRAND TOTAL FOR TABLE', sum(sal)
 16 from emp

Discussion

Oracle, DB2, and SQL Server

The solutions for all three are essentially the same. The first step is to use the aggregate function
SUM and group by both DEPTNO and JOB to find the total salaries for each JOB and DEPTNO
combination:

 select deptno, job, sum(sal) sal
 from emp
 group by deptno, job

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DEPTNO JOB SAL
 ------ --------- -------
 10 CLERK 1300
 10 MANAGER 2450
 10 PRESIDENT 5000
 20 CLERK 1900
 20 ANALYST 6000
 20 MANAGER 2975
 30 CLERK 950
 30 MANAGER 2850
 30 SALESMAN 5600

The next step is to create subtotals by JOB and DEPTNO along with the grand total for the whole
table. Use the CUBE extension to the GROUP BY clause to perform aggregations on SAL by DEPTNO,
JOB, and for the whole table:

 select deptno,
 job,
 sum(sal) sal
 from emp
 group by cube(deptno,job)

 DEPTNO JOB SAL
 ------ --------- -------
 29025
 CLERK 4150
 ANALYST 6000
 MANAGER 8275
 SALESMAN 5600
 PRESIDENT 5000
 10 8750
 10 CLERK 1300
 10 MANAGER 2450
 10 PRESIDENT 5000
 20 10875
 20 CLERK 1900
 20 ANALYST 6000
 20 MANAGER 2975
 30 9400
 30 CLERK 950
 30 MANAGER 2850
 30 SALESMAN 5600

Next, use the GROUPING function in conjunction with CASE to format the results into more
meaningful output. The value from GROUPING(JOB) will be 1 or 0 depending on whether or not the
values for SAL are due to the GROUP BY or the CUBE. If the results are due to the CUBE, the value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

will be 1, otherwise it will be 0. The same goes for GROUPING(DEPTNO). Looking at the first step of
the solution, you should see that grouping is done by DEPTNO and JOB. Thus, the expected values
from the calls to GROUPING when a row represents a combination of both DEPTNO and JOB is 0. The
query below confirms this:

 select deptno,
 job,
 grouping(deptno) is_deptno_subtotal,
 grouping(job) is_job_subtotal,
 sum(sal) sal
 from emp
 group by cube(deptno,job)
 order by 3,4

 DEPTNO JOB IS_DEPTNO_SUBTOTAL IS_JOB_SUBTOTAL SAL
 ------ --------- ------------------ --------------- -------
 10 CLERK 0 0 1300
 10 MANAGER 0 0 2450
 10 PRESIDENT 0 0 5000
 20 CLERK 0 0 1900
 30 CLERK 0 0 950
 30 SALESMAN 0 0 5600
 30 MANAGER 0 0 2850
 20 MANAGER 0 0 2975
 20 ANALYST 0 0 6000
 10 0 1 8750
 20 0 1 10875
 30 0 1 9400
 CLERK 1 0 4150
 ANALYST 1 0 6000
 MANAGER 1 0 8275
 PRESIDENT 1 0 5000
 SALESMAN 1 0 5600
 1 1 29025

The final step is to use a CASE expression to determine which category each row belongs to based on
the values returned by GROUPING(JOB) and GROUPING(DEPTNO) concatenated:

 select deptno,
 job,
 case grouping(deptno)||grouping(job)
 when '00' then 'TOTAL BY DEPT AND JOB'
 when '10' then 'TOTAL BY JOB'
 when '01' then 'TOTAL BY DEPT'
 when '11' then 'GRAND TOTAL FOR TABLE'
 end category,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sum(sal) sal
 from emp
 group by cube(deptno,job)
 order by grouping(job),grouping(deptno)

 DEPTNO JOB CATEGORY SAL
 ------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900
 30 CLERK TOTAL BY DEPT AND JOB 950
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 CLERK TOTAL BY JOB 4150
 ANALYST TOTAL BY JOB 6000
 MANAGER TOTAL BY JOB 8275
 PRESIDENT TOTAL BY JOB 5000
 SALESMAN TOTAL BY JOB 5600
 10 TOTAL BY DEPT 8750
 30 TOTAL BY DEPT 9400
 20 TOTAL BY DEPT 10875
 GRAND TOTAL FOR TABLE 29025

This Oracle solution implicitly converts the results from the GROUPING functions to a character type
in preparation for concatenating the two values. DB2 and SQL Server users will need to explicitly
CAST the results of the GROUPING functions to CHAR(1) as shown in the solution. In addition, SQL
Server users must use the + operator, and not the || operator, to concatenate the results from the
two GROUPING calls into one string.

For Oracle and DB2 users, there is an additional extension to GROUP BY called GROUPING SETS; this
extension is extremely useful. For example, you can use GROUPING SETS to mimic the output
created by CUBE as is done below (DB2 and SQL Server users will need to add explicit CASTS to the
values returned by the GROUPING function just as in the CUBE solution):

 select deptno,
 job,
 case grouping(deptno)||grouping(job)
 when '00' then 'TOTAL BY DEPT AND JOB'
 when '10' then 'TOTAL BY JOB'
 when '01' then 'TOTAL BY DEPT'
 when '11' then 'GRAND TOTAL FOR TABLE'
 end category,
 sum(sal) sal
 from emp
 group by grouping sets ((deptno),(job),(deptno,job),())

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DEPTNO JOB CATEGORY SAL
 ------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 20 CLERK TOTAL BY DEPT AND JOB 1900
 30 CLERK TOTAL BY DEPT AND JOB 950
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 CLERK TOTAL BY JOB 4150
 ANALYST TOTAL BY JOB 6000
 MANAGER TOTAL BY JOB 8275
 SALESMAN TOTAL BY JOB 5600
 PRESIDENT TOTAL BY JOB 5000
 10 TOTAL BY DEPT 8750
 20 TOTAL BY DEPT 10875
 30 TOTAL BY DEPT 9400
 GRAND TOTAL FOR TABLE 29025

What's great about GROUPING SETS is that it allows you to define the groups. The GROUPING SETS
clause in the preceding query causes groups to be created by DEPTNO, by JOB, by the combination of
DEPTNO and JOB, and finally the empty parenthesis requests a grand total. GROUPING SETS gives
you enormous flexibility for creating reports with different levels of aggregation; for example, if you
wanted to modify the preceding example to exclude the GRAND TOTAL, simply modify the GROUPING
SETS clause by excluding the empty parentheses:

 /* no grand total */

 select deptno,
 job,
 case grouping(deptno)||grouping(job)
 when '00' then 'TOTAL BY DEPT AND JOB'
 when '10' then 'TOTAL BY JOB'
 when '01' then 'TOTAL BY DEPT'
 when '11' then 'GRAND TOTAL FOR TABLE'
 end category,
 sum(sal) sal
 from emp
 group by grouping sets ((deptno),(job),(deptno,job))

 DEPTNO JOB CATEGORY SAL
 ------ --------- --------------------- ----------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 20 CLERK TOTAL BY DEPT AND JOB 1900
 30 CLERK TOTAL BY DEPT AND JOB 950

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 20 ANALYST TOTAL BY DEPT AND JOB 6000
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 CLERK TOTAL BY JOB 4150
 ANALYST TOTAL BY JOB 6000
 ANAGER TOTAL BY JOB 8275
 SALESMAN TOTAL BY JOB 5600
 PRESIDENT TOTAL BY JOB 5000
 10 TOTAL BY DEPT 8750
 20 TOTAL BY DEPT 10875
 30 TOTAL BY DEPT 9400

You can also eliminate a subtotal, such as the one on DEPTNO, simply by omitting (DEPTNO) from
the GROUPING SETS clause:

 /* no subtotals by DEPTNO */

 select deptno,
 job,
 case grouping(deptno)||grouping(job)
 when '00' then 'TOTAL BY DEPT AND JOB'
 when '10' then 'TOTAL BY JOB'
 when '01' then 'TOTAL BY DEPT'
 when '11' then 'GRAND TOTAL FOR TABLE'
 end category,
 sum(sal) sal
 from emp
 group by grouping sets ((job),(deptno,job),())
 order by 3

 DEPTNO JOB CATEGORY SAL
 ------ --------- --------------------- ----------
 GRAND TOTAL FOR TABLE 29025
 10 CLERK TOTAL BY DEPT AND JOB 1300
 20 CLERK TOTAL BY DEPT AND JOB 1900
 30 CLERK TOTAL BY DEPT AND JOB 950
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 CLERK TOTAL BY JOB 4150
 SALESMAN TOTAL BY JOB 5600
 PRESIDENT TOTAL BY JOB 5000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MANAGER TOTAL BY JOB 8275
 ANALYST TOTAL BY JOB 6000

As you can see, GROUPING SETS makes it very easy indeed to play around with totals and subtotals
in order to look at your data from different angles.

PostgreSQL and MySQL

The first step is to use the aggregate function SUM and group by both DEPTNO and JOB:

 select deptno, job,
 'TOTAL BY DEPT AND JOB' as category,
 sum(sal) as sal
 from emp
 group by deptno, job

 DEPTNO JOB CATEGORY SAL
 ------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 CLERK TOTAL BY DEPT AND JOB 950
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600

The next step is to UNION ALL the sum of all the salaries by JOB:

 select deptno, job,
 'TOTAL BY DEPT AND JOB' as category,
 sum(sal) as sal
 from emp
 group by deptno, job
 union all
 select null, job, 'TOTAL BY JOB', sum(sal)
 from emp
 group by job

 DEPTNO JOB CATEGORY SAL
 ------ --------- --------------------- -------

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 CLERK TOTAL BY DEPT AND JOB 950
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 ANALYST TOTAL BY JOB 6000
 CLERK TOTAL BY JOB 4150
 MANAGER TOTAL BY JOB 8275
 PRESIDENT TOTAL BY JOB 5000
 SALESMAN TOTAL BY JOB 5600

The next step is to UNION ALL the sum of all the salaries by DEPTNO:

 select deptno, job,
 'TOTAL BY DEPT AND JOB' as category,
 sum(sal) as sal
 from emp
 group by deptno, job
 union all
 select null, job, 'TOTAL BY JOB', sum(sal)
 from emp
 group by job
 union all
 select deptno, null, 'TOTAL BY DEPT', sum(sal)
 from emp
 group by deptno

 DEPTNO JOB CATEGORY SAL
 ------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 CLERK TOTAL BY DEPT AND JOB 950
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 ANALYST TOTAL BY JOB 6000
 CLERK TOTAL BY JOB 4150
 MANAGER TOTAL BY JOB 8275
 PRESIDENT TOTAL BY JOB 5000
 SALESMAN TOTAL BY JOB 5600
 10 TOTAL BY DEPT 8750

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 20 TOTAL BY DEPT 10875
 30 TOTAL BY DEPT 9400

The final step is to UNION ALL the sum of all salaries in table EMP:

 select deptno, job,
 'TOTAL BY DEPT AND JOB' as category,
 sum(sal) as sal
 from emp
 group by deptno, job
 union all
 select null, job, 'TOTAL BY JOB', sum(sal)
 from emp
 group by job
 union all
 select deptno, null, 'TOTAL BY DEPT', sum(sal)
 from emp
 group by deptno
 union all
 select null,null, 'GRAND TOTAL FOR TABLE', sum(sal)
 from emp

 DEPTNO JOB CATEGORY SAL
 ------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 CLERK TOTAL BY DEPT AND JOB 950
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 ANALYST TOTAL BY JOB 6000
 CLERK TOTAL BY JOB 4150
 MANAGER TOTAL BY JOB 8275
 PRESIDENT TOTAL BY JOB 5000
 SALESMAN TOTAL BY JOB 5600
 10 TOTAL BY DEPT 8750
 20 TOTAL BY DEPT 10875
 30 TOTAL BY DEPT 9400
 GRAND TOTAL FOR TABLE 29025

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.14. Identifying Rows That Are Not Subtotals

Problem

You've used the CUBE extension of the GROUP BY clause to create a report, and you need a way to
differentiate between rows that would be generated by a normal GROUP BY clause and those rows
that have been generated as a result of using CUBE or ROLLUP.

Following is the result set from a query using the CUBE extension to GROUP BY to create a
breakdown of the salaries in table EMP:

 DEPTNO JOB SAL
 ------ --------- -------
 29025
 CLERK 4150
 ANALYST 6000
 MANAGER 8275
 SALESMAN 5600
 PRESIDENT 5000
 10 8750
 10 CLERK 1300
 10 MANAGER 2450
 10 PRESIDENT 5000
 20 10875
 20 CLERK 1900
 20 ANALYST 6000
 20 MANAGER 2975
 30 9400
 30 CLERK 950
 30 MANAGER 2850
 30 SALESMAN 5600

This report includes the sum of all salaries by DEPTNO and JOB (for each JOB per DEPTNO), the sum
of all salaries by DEPTNO, the sum of all salaries by JOB, and finally a grand total (the sum of all
salaries in table EMP). You want to clearly identify the different levels of aggregation. You want to be
able to identify which category an aggregated value belongs to (i.e., does a given value in the SAL
column represent a total by DEPTNO? By JOB? The grand total?). You would like to return the
following result set:

 DEPTNO JOB SAL DEPTNO_SUBTOTALS JOB_SUBTOTALS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ------ --------- ------- ---------------- -------------
 29025 1 1
 CLERK 4150 1 0
 ANALYST 6000 1 0
 MANAGER 8275 1 0
 SALESMAN 5600 1 0
 PRESIDENT 5000 1 0
 10 8750 0 1
 10 CLERK 1300 0 0
 10 MANAGER 2450 0 0
 10 PRESIDENT 5000 0 0
 20 10875 0 1
 20 CLERK 1900 0 0
 20 ANALYST 6000 0 0
 20 MANAGER 2975 0 0
 30 9400 0 1
 30 CLERK 950 0 0
 30 MANAGER 2850 0 0
 30 SALESMAN 5600 0 0

Solution

Use the GROUPING function to identify which values exist due to CUBE's or ROLLUP's creation of
subtotals, or superaggregate values. The following is an example for DB2 and Oracle:

 1 select deptno, job, sum(sal) sal,
 2 grouping(deptno) deptno_subtotals,
 3 grouping(job) job_subtotals
 4 from emp
 5 group by cube(deptno,job)

The only difference between the SQL Server solution and that for DB2 and Oracle lies in how the
CUBE/ROLLUP clauses are written:

 1 select deptno, job, sum(sal) sal,
 2 grouping(deptno) deptno_subtotals,
 3 grouping(job) job_subtotals
 4 from emp
 5 group by deptno,job with cube

This recipe is meant to highlight the use of CUBE and GROUPING when working with subtotals. As of
the time of this writing, PostgreSQL and MySQL support neither CUBE nor GROUPING.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

If DEPTNO_SUBTOTALS is 1, then the value in SAL represents a subtotal by DEPTNO created by
CUBE. If JOB_SUBTOTALS is 1, then the value in SAL represents a subtotal by JOB created by CUBE.
If both JOB_SUBTOTALS and DEPTNO_ SUBTOTALS are 1, then the value in SAL represents a grand
total of all salaries created by CUBE. Rows with 0 for both DEPTNO_SUBTOTALS and
JOB_SUBTOTALS represent rows created by regular aggregation (the sum of SAL for each
DEPTNO/JOB combination).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.15. Using Case Expressions to Flag Rows

Problem

You want to map the values in a column, say, the EMP table's JOB column, into a series of "Boolean"
flags. For example, you wish to return the following result set:

 ENAME IS_CLERK IS_SALES IS_MGR IS_ANALYST IS_PREZ
 ------ -------- -------- ------ ---------- -------
 KING 0 0 0 0 1
 SCOTT 0 0 0 1 0
 FORD 0 0 0 1 0
 JONES 0 0 1 0 0
 BLAKE 0 0 1 0 0
 CLARK 0 0 1 0 0
 ALLEN 0 1 0 0 0
 WARD 0 1 0 0 0
 MARTIN 0 1 0 0 0
 TURNER 0 1 0 0 0
 SMITH 1 0 0 0 0
 MILLER 1 0 0 0 0
 ADAMS 1 0 0 0 0
 JAMES 1 0 0 0 0

Such a result set can be useful for debugging and to provide yourself a view of the data different
from what you'd see in a more typical result set.

Solution

Use a CASE expression to evaluate each employee's JOB, and return a 1 or 0 to signify her JOB.
You'll need to write one CASE expression, and thus create one column for each possible job:

 1 select ename,
 2 case when job = 'CLERK'
 3 then 1 else 0
 4 end as is_clerk,
 5 case when job = 'SALESMAN'
 6 then 1 else 0
 7 end as is_sales,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 8 case when job = 'MANAGER'
 9 then 1 else 0
 10 end as is_mgr,
 11 case when job = 'ANALYST'
 12 then 1 else 0
 13 end as is_analyst,
 14 case when job = 'PRESIDENT'
 15 then 1 else 0
 16 end as is_prez
 17 from emp
 18 order by 2,3,4,5,6

Discussion

The solution code is pretty much self-explanatory. If you are having trouble understanding it, simply
add JOB to the SELECT clause:

 select ename,
 job,
 case when job = 'CLERK'
 then 1 else 0
 end as is_clerk,
 case when job = 'SALESMAN'
 then 1 else 0
 end as is_sales,
 case when job = 'MANAGER'
 then 1 else 0
 end as is_mgr,
 case when job = 'ANALYST'
 then 1 else 0
 end as is_analyst,
 case when job = 'PRESIDENT'
 then 1 else 0
 end as is_prez
 from emp
 order by 2

 ENAME JOB IS_CLERK IS_SALES IS_MGR IS_ANALYST IS_PREZ
 ------ --------- -------- -------- ------ ---------- -------
 SCOTT ANALYST 0 0 0 1 0
 FORD ANALYST 0 0 0 1 0
 SMITH CLERK 1 0 0 0 0
 ADAMS CLERK 1 0 0 0 0
 MILLER CLERK 1 0 0 0 0
 JAMES CLERK 1 0 0 0 0
 JONES MANAGER 0 0 1 0 0
 CLARK MANAGER 0 0 1 0 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BLAKE MANAGER 0 0 1 0 0
 KING PRESIDENT 0 0 0 0 1
 ALLEN SALESMAN 0 1 0 0 0
 MARTIN SALESMAN 0 1 0 0 0
 TURNER SALESMAN 0 1 0 0 0
 WARD SALESMAN 0 1 0 0 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.16. Creating a Sparse Matrix

Problem

You want to create a sparse matrix, such as the following one transposing the DEPTNO and JOB
columns of table EMP:

 D10 D20 D30 CLERKS MGRS PREZ ANALS SALES
 ---------- ---------- ---------- ------ ----- ---- ----- ------
 SMITH SMITH
 ALLEN ALLEN
 WARD WARD
 JONES JONES
 MARTIN MARTIN
 BLAKE BLAKE
 CLARK CLARK
 SCOTT SCOTT
 KING KING
 TURNER TURNER
 ADAMS ADAMS
 JAMES JAMES
 FORD FORD
 MILLER MILLER

Solution

Use CASE expressions to create a sparse row-to-column transformation:

 1 select case deptno when 10 then ename end as d10,
 2 case deptno when 20 then ename end as d20,
 3 case deptno when 30 then ename end as d30,
 4 case job when 'CLERK' then ename end as clerks,
 5 case job when 'MANAGER' then ename end as mgrs,
 6 case job when 'PRESIDENT' then ename end as prez,
 7 case job when 'ANALYST' then ename end as anals,
 8 case job when 'SALESMAN' then ename end as sales
 9 from emp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

To transform the DEPTNO and JOB rows to columns, simply use a CASE expression to evaluate the
possible values returned by those rows. That's all there is to it. As an aside, if you want to "densify"
the report and get rid of some of those NULL rows, you would need to find something to group by.
For example, use the window function ROW_NUMBER OVER to assign a ranking for each employee
per DEPTNO, and then use the aggregate function MAX to rub out some of the NULLs:

 select max(case deptno when 10 then ename end) d10,
 max(case deptno when 20 then ename end) d20,
 max(case deptno when 30 then ename end) d30,
 max(case job when 'CLERK' then ename end) clerks,
 max(case job when 'MANAGER' then ename end) mgrs,
 max(case job when 'PRESIDENT' then ename end) prez,
 max(case job when 'ANALYST' then ename end) anals,
 max(case job when 'SALESMAN' then ename end) sales
 from (
 select deptno, job, ename,
 row_number()over(partition by deptno order by empno) rn
 from emp
) x
 group by rn

 D10 D20 D30 CLERKS MGRS PREZ ANALS SALES
 ---------- ---------- ---------- ------ ----- ---- ----- ------
 CLARK SMITH ALLEN SMITH CLARK ALLEN
 KING JONES WARD JONES KING WARD
 MILLER SCOTT MARTIN MILLER SCOTT MARTIN
 ADAMS BLAKE ADAMS BLAKE
 FORD TURNER FORD TURNER
 JAMES JAMES

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.17. Grouping Rows by Units of Time

Problem

You want to summarize data by some interval of time. For example, you have a transaction log and
want to summarize transactions by 5-second intervals. The rows in table TRX_LOG are shown below:

 select trx_id,
 trx_date,
 trx_cnt
 from trx_log
 TRX_ID TRX_DATE TRX_CNT
 ------ -------------------- ----------
 1 28-JUL-2005 19:03:07 44
 2 28-JUL-2005 19:03:08 18
 3 28-JUL-2005 19:03:09 23
 4 28-JUL-2005 19:03:10 29
 5 28-JUL-2005 19:03:11 27
 6 28-JUL-2005 19:03:12 45
 7 28-JUL-2005 19:03:13 45
 8 28-JUL-2005 19:03:14 32
 9 28-JUL-2005 19:03:15 41
 10 28-JUL-2005 19:03:16 15
 11 28-JUL-2005 19:03:17 24
 12 28-JUL-2005 19:03:18 47
 13 28-JUL-2005 19:03:19 37
 14 28-JUL-2005 19:03:20 48
 15 28-JUL-2005 19:03:21 46
 16 28-JUL-2005 19:03:22 44
 17 28-JUL-2005 19:03:23 36
 18 28-JUL-2005 19:03:24 41
 19 28-JUL-2005 19:03:25 33
 20 28-JUL-2005 19:03:26 19

You want to return the following result set:

 GRP TRX_START TRX_END TOTAL
 --- -------------------- -------------------- ----------
 1 28-JUL-2005 19:03:07 28-JUL-2005 19:03:11 141
 2 28-JUL-2005 19:03:12 28-JUL-2005 19:03:16 178

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 28-JUL-2005 19:03:17 28-JUL-2005 19:03:21 202
 4 28-JUL-2005 19:03:22 28-JUL-2005 19:03:26 173

Solution

Group the entries into five row buckets. There are several ways to accomplish that logical grouping;
this recipe does so by dividing the TRX_ID values by 5, using a technique shown earlier in "Creating
Buckets of Data, of a Fixed Size."

Once you've created the "groups," use the aggregate functions MIN, MAX, and SUM to find the start
time, end time, and total number of transactions for each "group" (SQL Server users should use
CEILING instead of CEIL):

 1 select ceil(trx_id/5.0) as grp,
 2 min(trx_date) as trx_start,
 3 max(trx_date) as trx_end,
 4 sum(trx_cnt) as total
 5 from trx_log
 6 group by ceil(trx_id/5.0)

Discussion

The first step, and the key to the whole solution, is to logically group the rows together. By dividing
by 5 and taking the smallest whole number greater than the quotient, you can create logical groups.
For example:

 select trx_id,
 trx_date,
 trx_cnt,
 trx_id/5.0 as val,
 ceil(trx_id/5.0) as grp
 from trx_log
 TRX_ID TRX_DATE TRX_CNT VAL GRP
 ------ -------------------- ------- ------ ---
 1 28-JUL-2005 19:03:07 44 .20 1
 2 28-JUL-2005 19:03:08 18 .40 1
 3 28-JUL-2005 19:03:09 23 .60 1
 4 28-JUL-2005 19:03:10 29 .80 1
 5 28-JUL-2005 19:03:11 27 1.00 1
 6 28-JUL-2005 19:03:12 45 1.20 2
 7 28-JUL-2005 19:03:13 45 1.40 2
 8 28-JUL-2005 19:03:14 32 1.60 2
 9 28-JUL-2005 19:03:15 41 1.80 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10 28-JUL-2005 19:03:16 15 2.00 2
 11 28-JUL-2005 19:03:17 24 2.20 3
 12 28-JUL-2005 19:03:18 47 2.40 3
 13 28-JUL-2005 19:03:19 37 2.60 3
 14 28-JUL-2005 19:03:20 48 2.80 3
 15 28-JUL-2005 19:03:21 46 3.00 3
 16 28-JUL-2005 19:03:22 44 3.20 4
 17 28-JUL-2005 19:03:23 36 3.40 4
 18 28-JUL-2005 19:03:24 41 3.60 4
 19 28-JUL-2005 19:03:25 33 3.80 4
 20 28-JUL-2005 19:03:26 19 4.00 4

The last step is to apply the appropriate aggregate functions to find the total number of transactions
per 5 seconds along with the start and end times for each transaction:

 select ceil(trx_id/5.0) as grp,
 min(trx_date) as trx_start,
 max(trx_date) as trx_end,
 sum(trx_cnt) as total
 from trx_log
 group by ceil(trx_id/5.0)
 GRP TRX_START TRX_END TOTAL
 --- -------------------- -------------------- ----------
 1 28-JUL-2005 19:03:07 28-JUL-2005 19:03:11 141
 2 28-JUL-2005 19:03:12 28-JUL-2005 19:03:16 178
 3 28-JUL-2005 19:03:17 28-JUL-2005 19:03:21 202
 4 28-JUL-2005 19:03:22 28-JUL-2005 19:03:26 173

If your data is slightly different (perhaps you don't have an ID for each row), you can always "group"
by dividing the seconds of each TRX_DATE row by 5 to create a similar grouping. Then you can
include the hour for each TRX_DATE and group by the actual hour and logical "grouping," GRP.
Following is an example of this technique (using Oracle's TO_CHAR and TO_NUMBER functions, you
would use the appropriate date and character formatting functions for your platform):

 select trx_date,trx_cnt,
 to_number(to_char(trx_date,'hh24')) hr,
 ceil(to_number(to_char(trx_date-1/24/60/60,'miss'))/5.0) grp
 from trx_log

 TRX_DATE TRX_CNT HR GRP
 -------------------- ---------- ---------- ----------
 28-JUL-2005 19:03:07 44 19 62
 28-JUL-2005 19:03:08 18 19 62
 28-JUL-2005 19:03:09 23 19 62

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 28-JUL-2005 19:03:10 29 19 62
 28-JUL-2005 19:03:11 27 19 62
 28-JUL-2005 19:03:12 45 19 63
 28-JUL-2005 19:03:13 45 19 63
 28-JUL-2005 19:03:14 32 19 63
 28-JUL-2005 19:03:15 41 19 63
 28-JUL-2005 19:03:16 15 19 63
 28-JUL-2005 19:03:17 24 19 64
 28-JUL-2005 19:03:18 47 19 64
 28-JUL-2005 19:03:19 37 19 64
 28-JUL-2005 19:03:20 48 19 64
 28-JUL-2005 19:03:21 46 19 64
 28-JUL-2005 19:03:22 44 19 65
 28-JUL-2005 19:03:23 36 19 65
 28-JUL-2005 19:03:24 41 19 65
 28-JUL-2005 19:03:25 33 19 65
 28-JUL-2005 19:03:26 19 19 65

Regardless of the actual values for GRP, the key here is that you are grouping for every 5 seconds.
From there you can apply the aggregate functions in the same way as in the original solution:

 select hr,grp,sum(trx_cnt) total
 from (
 select trx_date,trx_cnt,
 to_number(to_char(trx_date,'hh24')) hr,
 ceil(to_number(to_char(trx_date-1/24/60/60,'miss'))/5.0) grp
 from trx_log
) x
 group by hr,grp
 HR GRP TOTAL
 -- ---------- ----------
 19 62 141
 19 63 178
 19 64 202
 19 65 173

Including the hour in the grouping is useful if your transaction log spans hours. In DB2 and Oracle,
you can also use the window function SUM OVER to produce the same result. The following query
returns all rows from TRX_LOG along with a running total for TRX_CNT by logical "group," and the
TOTAL for TRX_CNT for each row in the "group":

 select trx_id, trx_date, trx_cnt,
 sum(trx_cnt)over(partition by ceil(trx_id/5.0)
 order by trx_date

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 range between unbounded preceding
 and current row) runing_total,
 sum(trx_cnt)over(partition by ceil(trx_id/5.0)) total,
 case when mod(trx_id,5.0) = 0 then 'X' end grp_end
 from trx_log

 TRX_ID TRX_DATE TRX_CNT RUNING_TOTAL TOTAL GRP_END
 ------ -------------------- ---------- ------------ ---------- -------
 1 28-JUL-2005 19:03:07 44 44 141
 2 28-JUL-2005 19:03:08 18 62 141
 3 28-JUL-2005 19:03:09 23 85 141
 4 28-JUL-2005 19:03:10 29 114 141
 5 28-JUL-2005 19:03:11 27 141 141 X
 6 28-JUL-2005 19:03:12 45 45 178
 7 28-JUL-2005 19:03:13 45 90 178
 8 28-JUL-2005 19:03:14 32 122 178
 9 28-JUL-2005 19:03:15 41 163 178
 10 28-JUL-2005 19:03:16 15 178 178 X
 11 28-JUL-2005 19:03:17 24 24 202
 12 28-JUL-2005 19:03:18 47 71 202
 13 28-JUL-2005 19:03:19 37 108 202
 14 28-JUL-2005 19:03:20 48 156 202
 15 28-JUL-2005 19:03:21 46 202 202 X
 16 28-JUL-2005 19:03:22 44 44 173
 17 28-JUL-2005 19:03:23 36 80 173
 18 28-JUL-2005 19:03:24 41 121 173
 19 28-JUL-2005 19:03:25 33 154 173
 20 28-JUL-2005 19:03:26 19 173 173 X

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.18. Performing Aggregations over Different
Groups/Partitions Simultaneously

Problem

You want to aggregate over different dimensions at the same time. For example, you want to return
a result set that lists each employee's name, his department, the number of employees in his
department (himself included), the number of employees that have the same job as he does (himself
included in this count as well), and the total number of employees in the EMP table. The result set
should look like the following:

 ENAME DEPTNO DEPTNO_CNT JOB JOB_CNT TOTAL
 ------ ------ ---------- --------- -------- ------
 MILLER 10 3 CLERK 4 14
 CLARK 10 3 MANAGER 3 14
 KING 10 3 PRESIDENT 1 14
 SCOTT 20 5 ANALYST 2 14
 FORD 20 5 ANALYST 2 14
 SMITH 20 5 CLERK 4 14
 JONES 20 5 MANAGER 3 14
 ADAMS 20 5 CLERK 4 14
 JAMES 30 6 CLERK 4 14
 MARTIN 30 6 SALESMAN 4 14
 TURNER 30 6 SALESMAN 4 14
 WARD 30 6 SALESMAN 4 14
 ALLEN 30 6 SALESMAN 4 14
 BLAKE 30 6 MANAGER 3 14

Solution

Window functions make this problem quite easy to solve. If you do not have window functions
available to you, you can use scalar subqueries.

DB2, Oracle, and SQL Server

Use the COUNT OVER window function while specifying different partitions, or groups of data on
which to perform aggregation:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select ename,
 deptno,
 count(*)over(partition by deptno) deptno_cnt,
 job,
 count(*)over(partition by job) job_cnt,
 count(*)over() total
 from emp

PostgreSQL and MySQL

Use scalar subqueries in your SELECT list to perform the aggregate count operations on different
groups of rows:

 1 select e.ename,
 2 e.deptno,
 3 (select count(*) from emp d
 4 where d.deptno = e.deptno) as deptno_cnt,
 5 job,
 6 (select count(*) from emp d
 7 where d.job = e.job) as job_cnt,
 8 (select count(*) from emp) as total
 9 from emp e

Discussion

DB2, Oracle, and SQL Server

This example really shows off the power and convenience of window functions. By simply specifying
different partitions or groups of data to aggregate, you can create immensely detailed reports
without having to self join over and over, and without having to write cumbersome and perhaps
poorly performing subqueries in your SELECT list. All the work is done by the window function COUNT
OVER. To understand the output, focus on the OVER clause for a moment for each COUNT operation:

 count(*)over(partition by deptno)

 count(*)over(partition by job)

 count(*)over()

Remember the main parts of the OVER clause: the partition, specified by PARTITION BY: and the
frame or window, specified by ORDER BY. Look at the first COUNT, which partitions by DEPTNO. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rows in table EMP will be grouped by DEPTNO and the COUNT operation will be performed on all the
rows in each group. Since there is no frame or window clause specified (no ORDER BY), all the rows
in the group are counted. The PARTITION BY clause finds all the unique DEPTNO values, and then the
COUNT function counts the number of rows having each value. In the specific example of
COUNT(*)OVER(PARTITION BY DEPTNO), The PARTITION BY clause identifies the partitions or
groups to be values 10, 20, and 30.

The same processing is applied to the second COUNT, which partitions by JOB. The last count does
not partition by anything, and simply has an empty parenthesis. An empty parenthesis implies "the
whole table." So, whereas the two prior COUNTs aggregate values based on the defined groups or
partitions, the final COUNT counts all rows in table EMP.

Keep in mind that window functions are applied after the WHERE clause. If you
were to filter the result set in some way, for example, excluding all employees
in DEPTNO 10, the value for TOTAL would not be 14, it would be 11. To filter
results after window functions have been evaluated, you must make your
windowing query into an inline view and then filter on the results from that
view.

PostgreSQL and MySQL

For every row returned by the main query (rows from EMP E), use multiple scalar subqueries in the
SELECT list to perform different counts for each DEPTNO and JOB. To get the TOTAL, simply use
another scalar subquery to get the count of all employees in table EMP.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.19. Performing Aggregations over a Moving
Range of Values

Problem

You want to compute a moving aggregation, such as a moving sum on the salaries in table EMP. You
want to compute a sum for every 90 days, starting with the HIREDATE of the first employee. You
want to see how spending has fluctuated for every 90-day period between the first and last employee
hired. You want to return the following result set:

 HIREDATE SAL SPENDING_PATTERN
 ----------- ------- ----------------
 17-DEC-1980 800 800
 20-FEB-1981 1600 2400
 22-FEB-1981 1250 3650
 02-APR-1981 2975 5825
 01-MAY-1981 2850 8675
 09-JUN-1981 2450 8275
 08-SEP-1981 1500 1500
 28-SEP-1981 1250 2750
 17-NOV-1981 5000 7750
 03-DEC-1981 950 11700
 03-DEC-1981 3000 11700
 23-JAN-1982 1300 10250
 09-DEC-1982 3000 3000
 12-JAN-1983 1100 4100

Solution

Being able to specify a moving window in the framing or windowing clause of window functions makes
this problem very easy to solve, if your RDBMS supports such functions. The key is to order by
HIREDATE in your window function and then specify a window of 90 days starting from the earliest
employee hired. The sum will be computed using the salaries of employees hired up to 90 days prior
to the current employee's HIREDATE (the current employee is included in the sum). If you do not
have window functions available, you can use scalar subqueries, but the solution will be more
complex.

DB2 and Oracle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For DB2 and Oracle, use the window function SUM OVER and order by HIREDATE. Specify a range of
90 days in the window or "framing" clause to allow the sum to be computed for each employee's
salary and to include the salaries of all employees hired up to 90 days earlier. Because DB2 does not
allow you to specify HIREDATE in the ORDER BY clause of a window function (line 3 below), you can
order by DAYS(HIREDATE) instead:

 1 select hiredate,
 2 sal,
 3 sum(sal)over(order by days(hiredate)
 4 range between 90 preceding
 5 and current row) spending_pattern
 6 from emp e

The Oracle solution is more straightforward than DB2's, because Oracle allows window functions to
order by datetime types:

 1 select hiredate,
 2 sal,
 3 sum(sal)over(order by hiredate
 4 range between 90 preceding
 5 and current row) spending_pattern
 6 from emp e

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to sum the salaries of all employees hired up to 90 days prior to the day each
employee was hired:

 1 select e.hiredate,
 2 e.sal,
 3 (select sum(sal) from emp d
 4 where d.hiredate between e.hiredate-90
 5 and e.hiredate) as spending_pattern
 6 from emp e
 7 order by 1

Discussion

DB2 and Oracle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2 and Oracle share the same solution. The only difference, and it's minor between the two
solutions, lies in how you specify HIREDATE in the ORDER BY clause of the window function. At the
time of this book's writing, DB2 doesn't allow a DATE value in such an ORDER BY clause if you are
using a numeric value to set the window's range. (For example, RANGE BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW allows you to order by a date, but RANGE BETWEEN 90 PRECEDING
AND CURRENT ROW does not.)

To understand what the solution query is doing, you simply need to understand what the window
clause is doing. The window you are defining orders the salaries for all employees by HIREDATE. Then
the function computes a sum. The sum is not computed for all salaries. Instead, the processing is as
follows:

The salary of the first employee hired is evaluated. Since no employees were hired before the
first employee, the sum at this point is simply the first employee's salary.

1.

The salary of the next employee (by HIREDATE) is evaluated. This employee's salary is included
in the moving sum along with any other employees who were hired up to 90 days prior.

2.

The HIREDATE of the first employee is December 17, 1980, and the HIREDATE of the next hired
employee is February 20, 1981. The second employee was hired less than 90 days after the first
employee, and thus the moving sum for the second employee is 2400 (1600 + 800). If you are
having trouble understanding where the values in SPENDING_PATTERN come from, examine the
following query and result set:

 select distinct
 dense_rank()over(order by e.hiredate) window,
 e.hiredate current_hiredate,
 d.hiredate hiredate_within_90_days,
 d.sal sals_used_for_sum
 from emp e,
 emp d
 where d.hiredate between e.hiredate-90 and e.hiredate

 WINDOW CURRENT_HIREDATE HIREDATE_WITHIN_90_DAYS SALS_USED_FOR_SUM
 ------ ---------------- ----------------------- -----------------
 1 17-DEC-1980 17-DEC-1980 800
 2 20-FEB-1981 17-DEC-1980 800
 2 20-FEB-1981 20-FEB-1981 1600
 3 22-FEB-1981 17-DEC-1980 800
 3 22-FEB-1981 20-FEB-1981 1600
 3 22-FEB-1981 22-FEB-1981 1250
 4 02-APR-1981 20-FEB-1981 1600
 4 02-APR-1981 22-FEB-1981 1250
 4 02-APR-1981 02-APR-1981 2975
 5 01-MAY-1981 20-FEB-1981 1600
 5 01-MAY-1981 22-FEB-1981 1250
 5 01-MAY-1981 02-APR-1981 2975
 5 01-MAY-1981 01-MAY-1981 2850
 6 09-JUN-1981 02-APR-1981 2975

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6 09-JUN-1981 01-MAY-1981 2850
 6 09-JUN-1981 09-JUN-1981 2450
 7 08-SEP-1981 08-SEP-1981 1500
 8 28-SEP-1981 08-SEP-1981 1500
 8 28-SEP-1981 28-SEP-1981 1250
 9 17-NOV-1981 08-SEP-1981 1500
 9 17-NOV-1981 28-SEP-1981 1250
 9 17-NOV-1981 17-NOV-1981 5000
 10 03-DEC-1981 08-SEP-1981 1500
 10 03-DEC-1981 28-SEP-1981 1250
 10 03-DEC-1981 17-NOV-1981 5000
 10 03-DEC-1981 03-DEC-1981 950
 10 03-DEC-1981 03-DEC-1981 3000
 11 23-JAN-1982 17-NOV-1981 5000
 11 23-JAN-1982 03-DEC-1981 950
 11 23-JAN-1982 03-DEC-1981 3000
 11 23-JAN-1982 23-JAN-1982 1300
 12 09-DEC-1982 09-DEC-1982 3000
 13 12-JAN-1983 09-DEC-1982 3000
 13 12-JAN-1983 12-JAN-1983 1100

If you look at the WINDOW column, only those rows with the same WINDOW value will be considered
for each sum. Take for example, WINDOW 3. The salaries used for the sum for that window are 800,
1600, and 1250, which total 3650. If you look at the final result set in the "Problem" section, you'll
see the SPENDING_PATTERN for February 22, 1981 (WINDOW 3) is 3650. As proof, to verify that the
above self join includes the correct salaries for the windows defined, simply sum the values in
SALS_USED_FOR_SUM and group by CURRENT_DATE. The result should be the same as the result
set shown in the "Problem" section (with the duplicate row for December 3, 1981, filtered out):

 select current_hiredate,
 sum(sals_used_for_sum) spending_pattern
 from (
 select distinct
 dense_rank()over(order by e.hiredate) window,
 e.hiredate current_hiredate,
 d.hiredate hiredate_within_90_days,
 d.sal sals_used_for_sum
 from emp e,
 emp d
 where d.hiredate between e.hiredate-90 and e.hiredate
) x
 group by current_hiredate

 CURRENT_HIREDATE SPENDING_PATTERN
 ---------------- ----------------
 17-DEC-1980 800
 20-FEB-1981 2400
 22-FEB-1981 3650

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 02-APR-1981 5825
 01-MAY-1981 8675
 09-JUN-1981 8275
 08-SEP-1981 1500
 28-SEP-1981 2750
 17-NOV-1981 7750
 03-DEC-1981 11700
 23-JAN-1982 10250
 09-DEC-1982 3000
 12-JAN-1983 4100

MySQL, PostgreSQL, and SQL Server

The key to this solution is to use a scalar subquery (a self join will work as well) while using the
aggregate function SUM to compute a sum for every 90 days based on HIREDATE. If you are having
trouble seeing how this works, simply convert the solution to a self join and examine which rows are
included in the computations. Consider the result set below, which returns the same result set as that
in the solution:

 select e.hiredate,
 e.sal,
 sum(d.sal) as spending_pattern
 from emp e, emp d
 where d.hiredate
 between e.hiredate-90 and e.hiredate
 group by e.hiredate,e.sal
 order by 1\

 HIREDATE SAL SPENDING_PATTERN
 ----------- ----- ----------------
 17-DEC-1980 800 800
 20-FEB-1981 1600 2400
 22-FEB-1981 1250 3650
 02-APR-1981 2975 5825
 01-MAY-1981 2850 8675
 09-JUN-1981 2450 8275
 08-SEP-1981 1500 1500
 28-SEP-1981 1250 2750
 17-NOV-1981 5000 7750
 03-DEC-1981 950 11700
 03-DEC-1981 3000 11700
 23-JAN-1982 1300 10250
 09-DEC-1982 3000 3000
 12-JAN-1983 1100 4100

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If it is still unclear, simply remove the aggregation and start with the Cartesian product. The first step
is to generate a Cartesian product using table EMP so that each HIREDATE can be compared with all
the other HIREDATEs. [Only a snippet of the result set is shown below because there are 196 rows
(14x14) returned by a Cartesian of EMP.]

 select e.hiredate,
 e.sal,
 d.sal,
 d.hiredate
 from emp e, emp d

 HIREDATE SAL SAL HIREDATE
 ----------- ----- ----- -----------
 17-DEC-1980 800 800 17-DEC-1980
 17-DEC-1980 800 1600 20-FEB-1981
 17-DEC-1980 800 1250 22-FEB-1981
 17-DEC-1980 800 2975 02-APR-1981
 17-DEC-1980 800 1250 28-SEP-1981
 17-DEC-1980 800 2850 01-MAY-1981
 17-DEC-1980 800 2450 09-JUN-1981
 17-DEC-1980 800 3000 09-DEC-1982
 17-DEC-1980 800 5000 17-NOV-1981
 17-DEC-1980 800 1500 08-SEP-1981
 17-DEC-1980 800 1100 12-JAN-1983
 17-DEC-1980 800 950 03-DEC-1981
 17-DEC-1980 800 3000 03-DEC-1981
 17-DEC-1980 800 1300 23-JAN-1982
 20-FEB-1981 1600 800 17-DEC-1980
 20-FEB-1981 1600 1600 20-FEB-1981
 20-FEB-1981 1600 1250 22-FEB-1981
 20-FEB-1981 1600 2975 02-APR-1981
 20-FEB-1981 1600 1250 28-SEP-1981
 20-FEB-1981 1600 2850 01-MAY-1981
 20-FEB-1981 1600 2450 09-JUN-1981
 20-FEB-1981 1600 3000 09-DEC-1982
 20-FEB-1981 1600 5000 17-NOV-1981
 20-FEB-1981 1600 1500 08-SEP-1981
 20-FEB-1981 1600 1100 12-JAN-1983
 20-FEB-1981 1600 950 03-DEC-1981
 20-FEB-1981 1600 3000 03-DEC-1981
 20-FEB-1981 1600 1300 23-JAN-1982

If you examine the result set above, you'll notice that there is no HIREDATE 90 days earlier or equal
to December 17, except for December 17. So, the sum for that row should be only 800. If you
examine the next HIREDATE, February 20, you'll notice that there is one HIREDATE that falls within
the 90-day window (within 90 days prior), and that is December 17. If you sum the SAL from
December 17 with the SAL from February 20 (because we are looking for HIREDATEs equal to each
HIREDATE or within 90 days earlier) you get 2400, which happens to be the final result for that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HIREDATE.

Now that you know how it works, use a filter in the WHERE clause to return for each HIREDATE and
HIREDATE that is equal to it or is no more than 90 days earlier:

 select e.hiredate,
 e.sal,
 d.sal sal_to_sum,
 d.hiredate within_90_days
 from emp e, emp d
 where d.hiredate
 between e.hiredate-90 and e.hiredate
 order by 1
 HIREDATE SAL SAL_TO_SUM WITHIN_90_DAYS
 ----------- ----- ---------- --------------
 17-DEC-1980 800 800 17-DEC-1980
 20-FEB-1981 1600 800 17-DEC-1980
 20-FEB-1981 1600 1600 20-FEB-1981
 22-FEB-1981 1250 800 17-DEC-1980
 22-FEB-1981 1250 1600 20-FEB-1981
 22-FEB-1981 1250 1250 22-FEB-1981
 02-APR-1981 2975 1600 20-FEB-1981
 02-APR-1981 2975 1250 22-FEB-1981
 02-APR-1981 2975 2975 02-APR-1981
 01-MAY-1981 2850 1600 20-FEB-1981
 01-MAY-1981 2850 1250 22-FEB-1981
 01-MAY-1981 2850 2975 02-APR-1981
 01-MAY-1981 2850 2850 01-MAY-1981
 09-JUN-1981 2450 2975 02-APR-1981
 09-JUN-1981 2450 2850 01-MAY-1981
 09-JUN-1981 2450 2450 09-JUN-1981
 08-SEP-1981 1500 1500 08-SEP-1981
 28-SEP-1981 1250 1500 08-SEP-1981
 28-SEP-1981 1250 1250 28-SEP-1981
 17-NOV-1981 5000 1500 08-SEP-1981
 17-NOV-1981 5000 1250 28-SEP-1981
 17-NOV-1981 5000 5000 17-NOV-1981
 03-DEC-1981 950 1500 08-SEP-1981
 03-DEC-1981 950 1250 28-SEP-1981
 03-DEC-1981 950 5000 17-NOV-1981
 03-DEC-1981 950 950 03-DEC-1981
 03-DEC-1981 950 3000 03-DEC-1981
 03-DEC-1981 3000 1500 08-SEP-1981
 03-DEC-1981 3000 1250 28-SEP-1981
 03-DEC-1981 3000 5000 17-NOV-1981
 03-DEC-1981 3000 950 03-DEC-1981
 03-DEC-1981 3000 3000 03-DEC-1981
 23-JAN-1982 1300 5000 17-NOV-1981
 23-JAN-1982 1300 950 03-DEC-1981
 23-JAN-1982 1300 3000 03-DEC-1981

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 23-JAN-1982 1300 1300 23-JAN-1982
 09-DEC-1982 3000 3000 09-DEC-1982
 12-JAN-1983 1100 3000 09-DEC-1982
 12-JAN-1983 1100 1100 12-JAN-1983

Now that you know which SALs are to be included in the moving window of summation, simply use
the aggregate function SUM to produce a more expressive result set:

 select e.hiredate,
 e.sal,
 sum(d.sal) as spending_pattern
 from emp e, emp d
 where d.hiredate
 between e.hiredate-90 and e.hiredate
 group by e.hiredate,e.sal
 order by 1

If you compare the result set for the query above and the result set for the query below (which is the
original solution presented), you will see they are the same:

 select e.hiredate,
 e.sal,
 (select sum(sal) from emp d
 where d.hiredate between e.hiredate-90
 and e.hiredate) as spending_pattern
 from emp e
 order by 1

 HIREDATE SAL SPENDING_PATTERN
 ----------- ----- ----------------
 17-DEC-1980 800 800
 20-FEB-1981 1600 2400
 22-FEB-1981 1250 3650
 02-APR-1981 2975 5825
 01-MAY-1981 2850 8675
 09-JUN-1981 2450 8275
 08-SEP-1981 1500 1500
 28-SEP-1981 1250 2750
 17-NOV-1981 5000 7750
 03-DEC-1981 950 11700
 03-DEC-1981 3000 11700
 23-JAN-1982 1300 10250
 09-DEC-1982 3000 3000
 12-JAN-1983 1100 4100

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.20. Pivoting a Result Set with Subtotals

Problem

You want to create a report containing subtotals, then transpose the results to provide a more
readable report. For example, you've been asked to create a report that displays for each
department, the managers in the department along with a sum of the salaries of the employees who
work for those managers. Additionally, you want to return two subtotals: the sum of all salaries in
each department for those employees who have managers, and a sum of all salaries in the result set
(the sum of the department subtotals). You currently have the following report:

 DEPTNO MGR SAL
 ------ ---------- ----------
 10 7782 1300
 10 7839 2450
 10 3750
 20 7566 6000
 20 7788 1100
 20 7839 2975
 20 7902 800
 20 10875
 30 7698 6550
 30 7839 2850
 30 9400
 24025

You want to provide a more readable report and wish to transform the above result set to the
following, which makes the meaning of the report much more clear:

 MGR DEPT10 DEPT20 DEPT30 TOTAL
 ---- ---------- ---------- ---------- ----------
 7566 0 6000 0
 7698 0 0 6550
 7782 1300 0 0
 7788 0 1100 0
 7839 2450 2975 2850
 7902 0 800 0
 3750 10875 9400 24025

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Solution

The first step is to generate subtotals using the ROLLUP extension to GROUP BY. The next step is to
perform a classic pivot (aggregate and CASE expression) to create the desired columns for your
report. The GROUPING function allows you to easily determine which values are subtotals (that is,
exist because of ROLLUP and otherwise would not normally be there). Depending on how your
RDBMS sorts NULL values, you may need to add an ORDER BY to the solution to allow it to look like
the target result set above.

DB2 and Oracle

Use the ROLLUP extension to GROUP BY then use a CASE expression to format the data into a more
readable report:

 1 select mgr,
 2 sum(case deptno when 10 then sal else 0 end) dept10,
 3 sum(case deptno when 20 then sal else 0 end) dept20,
 4 sum(case deptno when 30 then sal else 0 end) dept30,
 5 sum(case flag when '11' then sal else null end) total
 6 from (
 7 select deptno,mgr,sum(sal) sal,
 8 cast(grouping(deptno) as char(1))||
 9 cast(grouping(mgr) as char(1)) flag
 10 from emp
 11 where mgr is not null
 12 group by rollup(deptno,mgr)
 13) x
 14 group by mgr

SQL Server

Use the ROLLUP extension to GROUP BY then use a CASE expression to format the data into a more
readable report:

 1 select mgr,
 2 sum(case deptno when 10 then sal else 0 end) dept10,
 3 sum(case deptno when 20 then sal else 0 end) dept20,
 4 sum(case deptno when 30 then sal else 0 end) dept30,
 5 sum(case flag when '11' then sal else null end) total
 6 from (
 7 select deptno,mgr,sum(sal) sal,
 8 cast(grouping(deptno) as char(1))+
 9 cast(grouping(mgr) as char(1)) flag
 10 from emp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 11 where mgr is not null
 12 group by deptno,mgr with rollup
 13) x
 14 group by mgr

MySQL and PostgreSQL

The GROUPING function is not supported by either RDBMS.

Discussion

The solutions provided above are identical except for the string concatenation and how GROUPING is
specified. Because the solutions are so similar, the discussion below will refer to the SQL Server
solution to highlight the intermediate result sets (the discussion is relevant to DB2 and Oracle as
well).

The first step is to generate a result set that sums the SAL for the employees in each DEPTNO per
MGR. The idea is to show how much the employees make under a particular manager in a particular
department. For example, this query below will allow you to compare the salaries of employees who
work for KING in DEPTNO 10 compared with those who work for KING in DEPTNO 30:

 select deptno,mgr,sum(sal) sal
 from emp
 where mgr is not null
 group by mgr,deptno
 order by 1,2

 DEPTNO MGR SAL
 ------ ---------- ----------
 10 7782 1300
 10 7839 2450
 20 7566 6000
 20 7788 1100
 20 7839 2975
 20 7902 800
 30 7698 6550
 30 7839 2850

The next step is to use the ROLLUP extension to GROUP BY to create subtotals for each DEPTNO and
across all employees (who have a manager):

 select deptno,mgr,sum(sal) sal
 from emp
 where mgr is not null

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 group by deptno,mgr with rollup

 DEPTNO MGR SAL
 ------ ---------- ----------
 10 7782 1300
 10 7839 2450
 10 3750
 20 7566 6000
 20 7788 1100
 20 7839 2975
 20 7902 800
 20 10875
 30 7698 6550
 30 7839 2850
 30 9400
 24025

With the subtotals created, you need a way to determine which values are in fact subtotals (created
by ROLLUP) and which are results of the regular GROUP BY. Use the GROUPING function to create
bitmaps to help identify the subtotal values from the regular aggregate values:

 select deptno,mgr,sum(sal) sal,
 cast(grouping(deptno) as char(1))+
 cast(grouping(mgr) as char(1)) flag
 from emp
 where mgr is not null
 group by deptno,mgr with rollup

 DEPTNO MGR SAL FLAG
 ------ ---------- ---------- ----
 10 7782 1300 00
 10 7839 2450 00
 10 3750 01
 20 7566 6000 00
 20 7788 1100 00
 20 7839 2975 00
 20 7902 800 00
 20 10875 01
 30 7698 6550 00
 30 7839 2850 00
 30 9400 01
 24025 11

If it isn't immediately obvious, the rows with a value of 00 for FLAG are the results of regular
aggregation. The rows with a value of 01 for FLAG are the results of ROLLUP aggregating SAL by
DEPTNO (since DEPTNO is listed first in the ROLLUP; if you switch the order, for example, "GROUP BY
MGR, DEPTNO WITH ROLLUP", you'd see quite different results). The row with a value of 11 for FLAG

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is the result of ROLLUP aggregating SAL over all rows.

At this point you have everything you need to create a beautified report by simply using CASE
expressions. The goal is to provide a report that shows employee salaries for each manager across
departments. If a manager does not have any subordinates in a particular department, a zero should
be returned; otherwise, you want to return the sum of all salaries for that manager's subordinates in
that department. Additionally, you want to add a final column, TOTAL, representing a sum of all the
salaries in the report. The solution satisfying all these requirements is shown below:

 select mgr,
 sum(case deptno when 10 then sal else 0 end) dept10,
 sum(case deptno when 20 then sal else 0 end) dept20,
 sum(case deptno when 30 then sal else 0 end) dept30,
 sum(case flag when '11' then sal else null end) total
 from (
 select deptno,mgr,sum(sal) sal,
 cast(grouping(deptno) as char(1))+
 cast(grouping(mgr) as char(1)) flag
 from emp
 where mgr is not null
 group by deptno,mgr with rollup
) x
 group by mgr
 order by coalesce(mgr,9999)

 MGR DEPT10 DEPT20 DEPT30 TOTAL
 ---- ---------- ---------- ---------- ----------
 7566 0 6000 0
 7698 0 0 6550
 7782 1300 0 0
 7788 0 1100 0
 7839 2450 2975 2850
 7902 0 800 0
 3750 10875 9400 24025

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 13. Hierarchical Queries
This chapter introduces recipes for expressing hierarchical relationships that you may have in your
data. It is typical when working with hierarchical data to have more difficulty retrieving and displaying
the data (as a hierarchy) than storing it. This is particularly true because of the inflexibility of SQL
(SQL's nonrecursive nature). When working with hierarchical queries, it is absolutely crucial that you
take advantage of what your RDBMS supplies you to facilitate these operations; otherwise you will
end up writing potentially less efficient queries and constructing convoluted data models to deal with
the hierarchical data. For PostgreSQL users, the recursive WITH clause will most likely be added to
later versions PostgreSQL, so it would behoove you to pay attention to the DB2 solutions to these
queries.

This chapter will provide recipes to help you unravel the hierarchical structure of your data by taking
advantage of the functions supplied by each of the RDBMSs. Before starting, examine table EMP and
the hierarchical relationship between EMPNO and MGR:

 select empno,mgr
 from emp
 order by 2

 EMPNO MGR
 ---------- ----------
 7788 7566
 7902 7566
 7499 7698
 7521 7698
 7900 7698
 7844 7698
 7654 7698
 7934 7782
 7876 7788
 7566 7839
 7782 7839
 7698 7839
 7369 7902
 7839

If you look carefully, you will see that each value for MGR is also an EMPNO, meaning the manager of
each employee in table EMP is also an employee in table EMP and not stored somewhere else. The
relationship between MGR and EMPNO is a parentchild relationship in that the value for MGR is the
most immediate parent for a given EMPNO (it is also possible that the manager for a specific
employee can have a manager herself, and those managers can in turn have managers, and so on,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

creating an n-tier hierarchy). If an employee has no manager, then MGR is NULL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.1. Expressing a Parent-Child Relationship

Problem

You want to include parent information along with data from child records. For example, you want to
display each employee's name along with the name of his manager. You want to return the following
result set:

 EMPS_AND_MGRS

 FORD works for JONES
 SCOTT works for JONES
 JAMES works for BLAKE
 TURNER works for BLAKE
 MARTIN works for BLAKE
 WARD works for BLAKE
 ALLEN works for BLAKE
 MILLER works for CLARK
 ADAMS works for SCOTT
 CLARK works for KING
 BLAKE works for KING
 JONES works for KING
 SMITH works for FORD

Solution

Self join EMP on MGR and EMPNO to find the name of each employee's manager. Then use your
RDBMS's supplied function(s) for string concatenation to generate the strings in the desired result
set.

DB2, Oracle, and PostgreSQL

Self join on EMP. Then use the double vertical-bar (||) concatenation operator:

 1 select a.ename || ' works for ' || b.ename as emps_and_mgrs
 2 from emp a, emp b
 3 where a.mgr = b.empno

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MySQL

Self join on EMP. Then use the concatenation function CONCAT:

 1 select concat(a.ename, ' works for ',b.ename) as emps_and_mgrs
 2 from emp a, emp b
 3 where a.mgr = b.empno

SQL Server

Self join on EMP. Then use the plus sign (+) as the concatenation operator:

 1 select a.ename + ' works for ' + b.ename as emps_and_mgrs
 2 from emp a, emp b
 3 where a.mgr = b.empno

Discussion

The implementation is essentially the same for all the solutions. The difference lies only in the method
of string concatenation, and thus one discussion will cover all of the solutions.

The key is the join between MGR and EMPNO. The fist step is to build a Cartesian product by joining
EMP to itself (only a portion of the rows returned by the Cartesian product is shown below):

 select a.empno, b.empno
 from emp a, emp b

 EMPNO MGR
 ----- ----------
 7369 7369
 7369 7499
 7369 7521
 7369 7566
 7369 7654
 7369 7698
 7369 7782
 7369 7788
 7369 7839
 7369 7844
 7369 7876

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 7369 7900
 7369 7902
 7369 7934
 7499 7369
 7499 7499
 7499 7521
 7499 7566
 7499 7654
 7499 7698
 7499 7782
 7499 7788
 7499 7839
 7499 7844
 7499 7876
 7499 7900
 7499 7902
 7499 7934

As you can see, by using a Cartesian product you are returning every possible EMPNO/EMPNO
combination (such that it looks like the manager for EMPNO 7369 is all the other employees in the
table, including EMPNO 7369).

The next step is to filter the results such that you return only each employee and his manager's
EMPNO. Accomplish this by joining on MGR and EMPNO:

 1 select a.empno, b.empno mgr
 2 from emp a, emp b
 3 where a.mgr = b.empno

 EMPNO MGR
 ---------- ----------
 7902 7566
 7788 7566
 7900 7698
 7844 7698
 7654 7698
 7521 7698
 7499 7698
 7934 7782
 7876 7788
 7782 7839
 7698 7839
 7566 7839
 7369 7902

Now that you have each employee and the EMPNO of his manager, you can return the name of each

http://lib.ommolketab.ir
http://lib.ommolketab.ir

manager by simply selecting B.ENAME rather than B.EMPNO. If after some practice you have
difficulty grasping how this works, you can use a scalar subquery rather than a self join to get the
answer:

 select a.ename,
 (select b.ename
 from emp b
 where b.empno = a.mgr) as mgr
 from emp a

 ENAME MGR
 ---------- ----------
 SMITH FORD
 ALLEN BLAKE
 WARD BLAKE
 JONES KING
 MARTIN BLAKE
 BLAKE KING
 CLARK KING
 SCOTT JONES
 KING
 TURNER BLAKE
 ADAMS SCOTT
 JAMES BLAKE
 FORD JONES
 MILLER CLARK

The scalar subquery version is equivalent to the self join, except for one row: employee KING is in
the result set, but that is not the case with the self join. "Why not?" you might ask. Remember, NULL
is never equal to anything, not even itself. In the self-join solution, you use an equi-join between
EMPNO and MGR, thus filtering out any employees who have NULL for MGR. To see employee KING
when using the self-join method, you must outer join as shown in the following two queries. The first
solution uses the ANSI outer join while the second uses the Oracle outer-join syntax. The output is
the same for both and is shown following the second query:

 /* ANSI */
 select a.ename, b.ename mgr
 from emp a left join emp b
 on (a.mgr = b.empno)

 /* Oracle */
 select a.ename, b.ename mgr
 from emp a, emp b
 where a.mgr = b.empno (+)

 ENAME MGR

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ---------- ----------
 FORD JONES
 SCOTT JONES
 JAMES BLAKE
 TURNER BLAKE
 MARTIN BLAKE
 WARD BLAKE
 ALLEN BLAKE
 MILLER CLARK
 ADAMS SCOTT
 CLARK KING
 BLAKE KING
 JONES KING
 SMITH FORD
 KING

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.2. Expressing a Child-Parent-Grandparent Relationship

Problem

Employee CLARK works for KING and to express that relationship you can use the first recipe in this chapter. What if
employee CLARK was in turn a manager for another employee? Consider the following query:

 select ename,empno,mgr
 from emp
 where ename in ('KING','CLARK','MILLER')

 ENAME EMPNO MGR
 --------- -------- -------
 CLARK 7782 7839
 KING 7839
 MILLER 7934 7782

As you can see, employee MILLER works for CLARK who in turn works for KING. You want to express the full
hierarchy from MILLER to KING. You want to return the following result set:

 LEAF___BRANCH___ROOT

 MILLER-->CLARK-->KING

However, the single self-join approach from the previous recipe will not suffice to show the entire relationship from
top to bottom. You could write a query that does two self joins, but what you really need is a general approach for
traversing such hierarchies.

Solution

This recipe differs from the first recipe because there is now a three-tier relationship, as the title suggests. If your
RDBMS does not supply functionality for traversing tree-structured data, then you can solve this problem using the
technique from , but you must add an additional self join. DB2, SQL Server, and Oracle offer functions for expressing
hierarchies. Thus self joins on those RDBMSs aren't necessary, though they certainly work.

DB2 and SQL Server

Use the recursive WITH clause to find MILLER's manager, CLARK, then CLARK's manager, KING. The SQL Server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

string concatenation operator + is used in this solution:

 1 with x (tree,mgr,depth)
 2 as (
 3 select cast(ename as varchar(100)),
 4 mgr, 0
 5 from emp
 6 where ename = 'MILLER'
 7 union all
 8 select cast(x.tree+'-->'+e.ename as varchar(100)),
 9 e.mgr, x.depth+1
 10 from emp e, x
 11 where x.mgr = e.empno
 12)
 13 select tree leaf___branch___root
 14 from x
 15 where depth = 2

The only modification necessary for this solution to work on DB2 is to use DB2's concatenation operator, ||.
Otherwise, the solution will work as is, on DB2 as well as SQL Server.

Oracle

Use the function SYS_CONNECT_BY_PATH to return MILLER, MILLER's manager, CLARK, then CLARK's manager,
KING. Use the CONNECT BY clause to walk the tree:

 1 select ltrim(
 2 sys_connect_by_path(ename,'-->'),
 3 '-->') leaf___branch___root
 4 from emp
 5 where level = 3
 6 start with ename = 'MILLER'
 7 connect by prior mgr = empno

PostgreSQL and MySQL

Self join on table EMP twice to return MILLER, MILLER's manager, CLARK, then CLARK's manager, KING. The
following solution uses PostgreSQL's concatenation operator, the double vertical-bar (||):

 1 select a.ename||'-->'||b.ename
 2 ||'-->'||c.ename as leaf___branch___root
 3 from emp a, emp b, emp c
 4 where a.ename = 'MILLER'
 5 and a.mgr = b.empno

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6 and b.mgr = c.empno

For MySQL users, simply use the CONCAT function; this solution will work for PostgreSQL as well.

Discussion

DB2 and SQL Server

The approach here is to start at the leaf node and walk your way up to the root (as useful practice, try walking in the
other direction). The upper part of the UNION ALL simply finds the row for employee MILLER (the leaf node). The
lower part of the UNION ALL finds the employee who is MILLER's manager, then finds that person's manager, and this
process of finding the "manager's manager" repeats until processing stops at the highest-level manager (the root
node). The value for DEPTH starts at 0 and increments automatically by 1 each time a manager is found. DEPTH is a
value that DB2 maintains for you when you execute a recursive query.

For an interesting and in-depth introduction to the WITH clause with focus on its use
recursively, see Jonathan Gennick's article " Understanding the WITH Clause" at
http://gennick.com/with.htm .

Next, the second query of the UNION ALL joins the recursive view X to table EMP, to define the parentchild
relationship. The query at this point, using SQL Server's concatenation operator, is as follows:

 with x (tree,mgr,depth)
 as (
 select cast(ename as varchar(100)),
 mgr, 0
 from emp
 where ename = 'MILLER'
 union all
 select cast(x.tree+'-->'+e.ename as varchar(100)),
 e.mgr, x.depth+1
 from emp e, x
 where x.mgr = e.empno
)
 select tree leaf___branch___root
 from x

 TREE DEPTH
 ---------- ----------
 MILLER 0
 CLARK 1
 KING 2

http://gennick.com/with.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point, the heart of the problem has been solved; starting from MILLER, return the full hierarchical relationship
from bottom to top. What's left then is merely formatting. Since the tree traversal is recursive, simply concatenate
the current ENAME from EMP to the one before it, which gives you the following result set:

 with x (tree,mgr,depth)
 as (
 select cast(ename as varchar(100)),
 mgr, 0
 from emp
 where ename = 'MILLER'
 union all
 select cast(x.tree+'-->'+e.ename as varchar(100)),
 e.mgr, x.depth+1
 from emp e, x
 where x.mgr = e.empno
)
 select depth, tree
 from x

 DEPTH TREE
 ----- ---------------------------
 0 MILLER
 1 MILLER-->CLARK
 2 MILLER-->CLARK-->KING

The final step is to keep only the last row in the hierarchy. There are several ways to do this, but the solution uses
DEPTH to determine when the root is reached (obviously, if CLARK has a manager other than KING, the filter on
DEPTH would have to change; for a more generic solution that requires no such filter, see the next recipe).

Oracle

The CONNECT BY clause does all the work in the Oracle solution. Starting with MILLER, you walk all the way to KING
without the need for any joins. The expression in the CONNECT BY clause defines the relationship of the data and how
the tree will be walked:

 select ename
 from emp
 start with ename = 'MILLER'
 connect by prior mgr = empno

 ENAME

 MILLER
 CLARK
 KING

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The keyword PRIOR lets you access values from the previous record in the hierarchy. Thus, for any given EMPNO you
can use PRIOR MGR to access that employee's manager number. When you see a clause such as CONNECT BY PRIOR
MGR = EMPNO, think of that clause as expressing a join between, in this case, parent and child.

For more on CONNECT BY and related features, see the following Oracle Technology Network articles:
"Querying Hierarchies: Top-of-the-Line Support" at
http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/gennick_connectby.html , and
"New CONNECT BY Features in Oracle Database 10g"at
http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/gennick_connectby_10g.html .

At this point you have successfully displayed the full hierarchy starting from MILLER and ending at KING. The problem
is for the most part solved. All that remains is the formatting. Use the function SYS_CONNECT_BY_PATH to append
each ENAME to the one before it:

 select sys_connect_by_path(ename,'-->') tree
 from emp
 start with ename = 'MILLER'
 connect by prior mgr = empno

 TREE

 -->MILLER
 -->MILLER-->CLARK
 -->MILLER-->CLARK-->KING

Because you are interested in only the complete hierarchy, you can filter on the pseudo-column LEVEL (a more
generic approach is shown in the next recipe):

 select sys_connect_by_path(ename,'-->') tree
 from emp
 where level = 3
 start with ename = 'MILLER'
 connect by prior mgr = empno

 TREE

 -->MILLER-->CLARK-->KING

The final step is to use the LTRIM function to remove the leading "-->" from the result set.

http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/gennick_connectby.html
http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/gennick_connectby_10g.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

PostgreSQL and MySQL

Without built-in support for hierarchical queries, you must self join n times to return the whole tree (where n is the
number of nodes between the leaf and the root, including the root itself; in this example, relative to MILLER, CLARK is
a branch node and KING is the root node, so the distance is two nodes, and n = 2). This solution simply uses the
technique from the previous recipe and adds one more self join:

 select a.ename as leaf,
 b.ename as branch,
 c.ename as root
 from emp a, emp b, emp c
 where a.ename = 'MILLER'
 and a.mgr = b.empno
 and b.mgr = c.empno

 LEAF BRANCH ROOT
 --------- ---------- -----
 MILLER CLARK KING

The next and last step is to format the output using the || concatenation operator for PostgreSQL or the CONCAT
function for MySQL. The drawback to this kind of query is that if the hierarchy changesfor example, if there is another
node between CLARK and KINGthe query would need to have yet another join to return the whole tree. This is why it
is such an advantage to have and use built-in functions for hierarchies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.3. Creating a Hierarchical View of a Table

Problem

You want to return a result set that describes the hierarchy of an entire table. In the case of the EMP
table, employee KING has no manager, so KING is the root node. You want to display, starting from
KING, all employees under KING and all employees (if any) under KING's subordinates. Ultimately,
you want to return the following result set:

 EMP_TREE

 KING
 KING - BLAKE
 KING - BLAKE - ALLEN
 KING - BLAKE - JAMES
 KING - BLAKE - MARTIN
 KING - BLAKE - TURNER
 KING - BLAKE - WARD
 KING - CLARK
 KING - CLARK - MILLER
 KING - JONES
 KING - JONES - FORD
 KING - JONES - FORD - SMITH
 KING - JONES - SCOTT
 KING - JONES - SCOTT - ADAMS

Solution

DB2 and SQL Server

Use the recursive WITH clause to start building the hierarchy at KING and then ultimately display all
the employees. The solution following uses the DB2 concatenation operator "||". SQL Server users
use the concatenation operator +. Other than the concatenation operators, the solution will work as-
is on both RDBMSs:

 1 with x (ename,empno)
 2 as (
 3 select cast(ename as varchar(100)),empno

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 from emp
 5 where mgr is null
 6 union all
 7 select cast(x.ename||' - '||e.ename as varchar(100)),
 8 e.empno
 9 from emp e, x
 10 where e.mgr = x.empno
 11)
 12 select ename as emp_tree
 13 from x
 14 order by 1

Oracle

Use the CONNECT BY function to define the hierarchy. Use SYS_CONNECT_BY_PATH function to
format the output accordingly:

 1 select ltrim(
 2 sys_connect_by_path(ename,' - '),
 3 ' - ') emp_tree
 4 from emp
 5 start with mgr is null
 6 connect by prior empno=mgr
 7 order by 1

This solution differs from that in the previous recipe in that it includes no filter on the LEVEL pseudo-
column. Without the filter, all possible trees (where PRIOR EMPNO=MGR) are displayed.

PostgreSQL

Use three UNIONs and multiple self joins:

 1 select emp_tree
 2 from (
 3 select ename as emp_tree
 4 from emp
 5 where mgr is null
 6 union
 7 select a.ename||' - '||b.ename
 8 from emp a
 9 join
 10 emp b on (a.empno=b.mgr)
 11 where a.mgr is null
 12 union

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 13 select rtrim(a.ename||' - '||b.ename
 14 ||' - '||c.ename,' - ')
 15 from emp a
 16 join
 17 emp b on (a.empno=b.mgr)
 18 left join
 19 emp c on (b.empno=c.mgr)
 20 where a.ename = 'KING'
 21 union
 22 select rtrim(a.ename||' - '||b.ename||' - '||
 23 c.ename||' - '||d.ename,' - ')
 24 from emp a
 25 join
 26 emp b on (a.empno=b.mgr)
 27 join
 28 emp c on (b.empno=c.mgr)
 29 left join
 30 emp d on (c.empno=d.mgr)
 31 where a.ename = 'KING'
 32) x
 33 where tree is not null
 34 order by 1

MySQL

Use three UNIONs and multiple self joins:

 1 select emp_tree
 2 from (
 3 select ename as emp_tree
 4 from emp
 5 where mgr is null
 6 union
 7 select concat(a.ename,' - ',b.ename)
 8 from emp a
 9 join
 10 emp b on (a.empno=b.mgr)
 11 where a.mgr is null
 12 union
 13 select concat(a.ename,' - ',
 14 b.ename,' - ',c.ename)
 15 from emp a
 16 join
 17 emp b on (a.empno=b.mgr)
 18 left join
 19 emp c on (b.empno=c.mgr)
 20 where a.ename = 'KING'
 21 union

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 22 select concat(a.ename,' - ',b.ename,' - ',
 23 c.ename,' - ',d.ename)
 24 from emp a
 25 join
 26 emp b on (a.empno=b.mgr)
 27 join
 28 emp c on (b.empno=c.mgr)
 29 left join
 30 emp d on (c.empno=d.mgr)
 31 where a.ename = 'KING'
 32) x
 33 where tree is not null
 34 order by 1

Discussion

DB2 and SQL Server

The first step is to identify the root row (employee KING) in the upper part of the UNION ALL in the
recursive view X. The next step is to find KING's subordinates, and their subordinates if there are
any, by joining recursive view X to table EMP. Recursion will continue until you've returned all
employees. Without the formatting you see in the final result set, the result set returned by the
recursive view X is shown below:

 with x (ename,empno)
 as (
 select cast(ename as varchar(100)),empno
 from emp
 where mgr is null
 union all
 select cast(e.ename as varchar(100)),e.empno
 from emp e, x
 where e.mgr = x.empno
)
 select ename emp_tree
 from x

 EMP_TREE

 KING
 JONES
 SCOTT
 ADAMS
 FORD
 SMITH

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BLAKE
 ALLEN
 WARD
 MARTIN
 TURNER
 JAMES
 CLARK
 MILLER

All the rows in the hierarchy are returned (which can be useful), but without the formatting you
cannot tell who the managers are. By concatenating each employee to her manager, you return more
meaningful output. Produce the desired output simply by using

 cast(x.ename+','+e.ename as varchar(100))

in the SELECT clause of the lower portion of the UNION ALL in recursive view X.

The WITH clause is extremely useful in solving this type of problem, because the hierarchy can
change (for example, leaf nodes become branch nodes) without any need to modify the query.

Oracle

The CONNECT BY clause returns the rows in the hierarchy. The START WITH clause defines the root
row. If you run the solution without SYS_CONNECT_BY_PATH, you can see that the correct rows are
returned (which can be useful), but not formatted to express the relationship of the rows:

 select ename emp_tree
 from emp
 start with mgr is null
 connect by prior empno = mgr

 EMP_TREE

 KING
 JONES
 SCOTT
 ADAMS
 FORD
 SMITH
 BLAKE
 ALLEN
 WARD
 MARTIN
 TURNER

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JAMES
 CLARK
 MILLER

By using the pseudo-column LEVEL and the function LPAD, you can see the hierarchy more clearly,
and you can ultimately see why SYS_CONNECT_BY_PATH returns the results that you see in the
desired output shown earlier:

 select lpad('.',2*level,'.')||ename emp_tree
 from emp
 start with mgr is null
 connect by prior empno = mgr

 EMP_TREE

 ..KING
JONES
SCOTT
ADAMS
FORD
SMITH
BLAKE
ALLEN
WARD
MARTIN
TURNER
JAMES
CLARK
MILLER

The indentation in this output indicates who the managers are by nesting subordinates under their
superiors. For example, KING works for no one. JONES works for KING. SCOTT works for JONES.
ADAMS works for SCOTT.

If you look at the corresponding rows from the solution when using SYS_CONNECT_BY_PATH, you
will see that SYS_CONNECT_BY_PATH rolls up the hierarchy for you. When you get to a new node,
you see all the prior nodes as well:

 KING
 KING - JONES
 KING - JONES - SCOTT
 KING - JONES - SCOTT - ADAMS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are on Oracle8i Database or earlier, you can use the PostgreSQL solution
to this problem. Alternatively, because CONNECT BY is available on older
versions of Oracle, you can simply use LEVEL and RPAD/ LPAD for formatting
(although to reproduce the output created by SYS_CONNECT_BY_PATH would
require a bit more work).

PostgreSQL and MySQL

With the exception of string concatenation in the SELECT clauses, the solutions are the same for both
PostgreSQL and MySQL. The first step is to determine the maximum number of nodes for any one
branch. You have to do this manually, before you write the query. If you examine the data in the EMP
table, you will see that employees ADAM and SMITH are the leaf nodes at the greatest depth (you
may wish to look at the Oracle discussion where you'll find a nicely formatted tree of the EMP
hierarchy). If you look at employee ADAMS, you see that ADAMS works for SCOTT who in turn works
for JONES who in turn works for KING, so the depth is 4. To be able to express a hierarchy with a
depth of four, you must self join four instances of table EMP, and you must write a four-part UNION
query. The results of the four-way self join (which is the lower part of the last UNION, from top to
bottom) is shown below (using PostgreSQL syntax; MySQL users, simply substitute "||" for the
CONCAT function call):

 select rtrim(a.ename||' - '||b.ename||' - '||
 c.ename||' - '||d.ename,' - ') as max_depth_4
 from emp a
 join
 emp b on (a.empno=b.mgr)
 join
 emp c on (b.empno=c.mgr)
 left join
 emp d on (c.empno=d.mgr)
 where a.ename = 'KING'

 MAX_DEPTH_4

 KING - JONES - FORD - SMITH
 KING - JONES - SCOTT - ADAMS
 KING - BLAKE - TURNER
 KING - BLAKE - ALLEN
 KING - BLAKE - WARD
 KING - CLARK - MILLER
 KING - BLAKE - MARTIN
 KING - BLAKE - JAMES

The filter on A.ENAME is necessary to ensure that the root row is KING and no other employee. If you
look at the result set above and compare it with the final result set, you'll see that there are some
three-deep hierarchies not returned: KING - JONES - FORD and KING - JONES - SCOTT. To include

http://lib.ommolketab.ir
http://lib.ommolketab.ir

those rows in the final result set, you need to write another query similar to the one above, but with
one less join (self joining only three instances of table EMP rather than four). The result set of this
query is shown below:

 select rtrim(a.ename||' - '||b.ename
 ||' - '||c.ename,' - ') as max_depth_3
 from emp a
 join
 emp b on (a.empno=b.mgr)
 left join
 emp c on (b.empno=c.mgr)
 where a.ename = 'KING'

 MAX_DEPTH_3

 KING - BLAKE - ALLEN
 KING - BLAKE - WARD
 KING - BLAKE - MARTIN
 KING - JONES - SCOTT
 KING - BLAKE - TURNER
 KING - BLAKE - JAMES
 KING - JONES - FORD
 KING - CLARK - MILLER

Like the query before it, the filter on A.ENAME is necessary to ensure the root row node is KING.
You'll notice some overlapping rows between the query above and the four-way EMP join. To get rid
of the redundant rows, simply UNION the two queries:

 select rtrim(a.ename||' - '||b.ename
 ||' - '||c.ename,' - ') as partial_tree
 from emp a
 join
 emp b on (a.empno=b.mgr)
 left join
 emp c on (b.empno=c.mgr)
 where a.ename = 'KING'
 union
 select rtrim(a.ename||' - '||b.ename||' - '||
 c.ename||' - '||d.ename,' - ')
 from emp a
 join
 emp b on (a.empno=b.mgr)
 join
 emp c on (b.empno=c.mgr)
 left join
 emp d on (c.empno=d.mgr)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 where a.ename = 'KING'

 PARTIAL_TREE

 KING - BLAKE - ALLEN
 KING - BLAKE - JAMES
 KING - BLAKE - MARTIN
 KING - BLAKE - TURNER
 KING - BLAKE - WARD
 KING - CLARK - MILLER
 KING - JONES - FORD
 KING - JONES - FORD - SMITH
 KING - JONES - SCOTT
 KING - JONES - SCOTT - ADAMS

At this point the tree is almost complete. The next step is to return rows that represent a two-deep
hierarchy with KING as the root node (i.e., employees who work directly for KING). The query to
return those rows is shown below:

 select a.ename||' - '||b.ename as max_depth_2
 from emp a
 join
 emp b on (a.empno=b.mgr)
 where a.mgr is null

 MAX_DEPTH_2

 KING - JONES
 KING - BLAKE
 KING - CLARK

The next step is to UNION the above query, to the PARTIAL_TREE union:

 select a.ename||' - '||b.ename as partial_tree
 from emp a
 join
 emp b on (a.empno=b.mgr)
 where a.mgr is null
 union
 select rtrim(a.ename||' - '||b.ename
 ||' - '||c.ename,' - ')
 from emp a
 join
 emp b on (a.empno=b.mgr)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 left join
 emp c on (b.empno=c.mgr)
 where a.ename = 'KING'
 union
 select rtrim(a.ename||' - '||b.ename||' - '||
 c.ename||' - '||d.ename,' - ')
 from emp a
 join
 emp b on (a.empno=b.mgr)
 join
 emp c on (b.empno=c.mgr)
 left join
 emp d on (c.empno=d.mgr)
 where a.ename = 'KING'

 PARTIAL_TREE

 KING - BLAKE
 KING - BLAKE - ALLEN
 KING - BLAKE - JAMES
 KING - BLAKE - MARTIN
 KING - BLAKE - TURNER
 KING - BLAKE - WARD
 KING - CLARK
 KING - CLARK - MILLER
 KING - JONES
 KING - JONES - FORD
 KING - JONES - FORD - SMITH
 KING - JONES - SCOTT
 KING - JONES - SCOTT - ADAMS

The final step is to UNION KING to the top of PARTIAL_TREE to return the desired result set.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.4. Finding All Child Rows for a Given Parent
Row

Problem

You want to find all the employees who work for JONES, either directly or indirectly (i.e., they work
for someone who works for JONES). The list of employees under JONES is shown below (JONES is
included in the result set):

 ENAME

 JONES
 SCOTT
 ADAMS
 FORD
 SMITH

Solution

Being able to move to the absolute top or bottom of a tree is extremely useful. For this solution there
is no special formatting necessary. The goal is to simply return all employees who work under
employee JONES, including JONES himself. This type of query really shows the usefulness of
recursive SQL extensions like Oracle's CONNECT BY and SQL Server's/DB2's WITH clause.

DB2 and SQL Server

Use the recursive WITH clause to find all employees under JONES. Begin with JONES by specifying
WHERE ENAME = 'JONES' in the first of the two union queries:

 1 with x (ename,empno)
 2 as (
 3 select ename,empno
 4 from emp
 5 where ename = 'JONES'
 6 union all
 7 select e.ename, e.empno
 8 from emp e, x
 9 where x.empno = e.mgr

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10)
 11 select ename
 12 from x

Oracle

Use the CONNECT BY clause and specify START WITH ENAME = 'JONES' to find all the employees
under JONES:

 1 select ename
 2 from emp
 3 start with ename = 'JONES'
 4 connect by prior empno = mgr

PostgreSQL and MySQL

You must know in advance how many nodes there are in the tree. The following queries show how to
determine the depth of the hierarchy:

 /* find JONES' EMPNO */
 select ename,empno,mgr
 from emp
 where ename = 'JONES'

 ENAME EMPNO MGR
 ---------- ----------- ---------
 JONES 7566 7839

 /* are there any employees who work directly under JONES? */
 select count(*)
 from emp
 where mgr = 7566

 COUNT(*)

 2

 /* there are two employees under JONES, find their EMPNOs */
 select ename,empno,mgr
 from emp
 where mgr = 7566

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ENAME EMPNO MGR
 ---------- ----------- -----------
 SCOTT 7788 7566
 FORD 7902 7566

 /* are there any employees under SCOTT or FORD? */
 select count(*)
 from emp
 where mgr in (7788,7902)

 COUNT(*)

 2

 /* there are two employees under SCOTT or FORD, find their EMPNOs */
 select ename,empno,mgr
 from emp
 where mgr in (7788,7902)

 ENAME EMPNO MGR
 --------- ----------- --------
 SMITH 7369 7902
 ADAMS 7876 7788

 /* are there any employees under SMITH or ADAMS? */
 select count(*)
 from emp
 where mgr in (7369,7876)

 COUNT(*)

 0

The hierarchy starting from JONES ends with employees SMITH and ADAMS. That makes the
hierarchy three levels deep. Now that you know the depth, you can begin to traverse the hierarchy
from top to bottom.

First, self join table EMP twice. Then unpivot inline view X to transform three columns with two rows
into one column with six rows (in PostgreSQL, you can use GENERATE_SERIES(1,6) as an alternative
to querying the T100 pivot table):

 1 select distinct
 2 case t100.id
 3 when 1 then root
 4 when 2 then branch
 5 else leaf

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6 end as JONES_SUBORDINATES
 7 from (
 8 select a.ename as root,
 9 b.ename as branch,
 10 c.ename as leaf
 11 from emp a, emp b, emp c
 12 where a.ename = 'JONES'
 13 and a.empno = b.mgr
 14 and b.empno = c.mgr
 15) x,
 16 t100
 17 where t100.id <= 6

As an alternative, you can use views and UNION the results. If you create the following views:

 create view v1
 as
 select ename,mgr,empno
 from emp
 where ename = 'JONES'
 create view v2
 as
 select ename,mgr,empno
 from emp
 where mgr = (select empno from v1)

 create view v3
 as
 select ename,mgr,empno
 from emp
 where mgr in (select empno from v2)

the solution then becomes:

 select ename from v1
 union
 select ename from v2
 union
 select ename from v3

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2 and SQL Server

The recursive WITH clause makes this a relatively easy problem to solve. The first part of the WITH
clause, the upper part of the UNION ALL, returns the row for employee JONES. You need to return
ENAME to see the name and EMPNO so you can use it to join on. The lower part of the UNION ALL
recursively joins EMP.MGR to X.EMPNO. The join condition will be applied until the result set is
exhausted.

Oracle

The START WTH clause tells the query to make JONES the root node. The condition in the CONNECT
BY clause drives the tree walk and will run until the condition is no longer true.

PostgreSQL and MySQL

The technique used here is the same as that of the second recipe in this chapter, "Expressing a Child-
Parent-Grandparent Relationship." A major drawback is that you must know in advance the depth of
the hierarchy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.5. Determining Which Rows Are Leaf, Branch,
or Root Nodes

Problem

You want to determine what type of node a given row is: a leaf, branch, or root. For this example, a
leaf node is an employee who is not a manager. A branch node is an employee who is both a
manager and also has a manager. A root node is an employee without a manager. You want to
return 1 (TRUE) or 0 (FALSE) to reflect the status of each row in the hierarchy. You want to return
the following result set:

 ENAME IS_LEAF IS_BRANCH IS_ROOT
 ---------- ---------- ---------- ----------
 KING 0 0 1
 JONES 0 1 0
 SCOTT 0 1 0
 FORD 0 1 0
 CLARK 0 1 0
 BLAKE 0 1 0
 ADAMS 1 0 0
 MILLER 1 0 0
 JAMES 1 0 0
 TURNER 1 0 0
 ALLEN 1 0 0
 WARD 1 0 0
 MARTIN 1 0 0
 SMITH 1 0 0

Solution

It is important to realize that the EMP table is modeled in a tree hierarchy, not a recursive hierarchy,
the value for MGR for root nodes is NULL. If EMP was modeled to use a recursive hierarchy, root
nodes would be self-referencing (i.e., the value for MGR for employee KING would be KING's
EMPNO). I find self-referencing to be counterintuitive and thus am using NULL values for root nodes'
MGR. For Oracle users using CONNECT BY and DB2/SQL Server users using WITH, you'll find tree
hierarchies easier to work with and potentially more efficient than recursive hierarchies. If you are in
a situation where you have a recursive hierarchy and are using CONNECT BY or WITH, watch out:
you can end up with a loop in your SQL. You need to code around such loops if you are stuck with
recursive hierarchies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DB2, PostgreSQL, MySQL, and SQL Server

Use three scalar subqueries to determine the correct "Boolean" value (either a 1 or a 0) to return for
each node type:

 1 select e.ename,
 2 (select sign(count(*)) from emp d
 3 where 0 =
 4 (select count(*) from emp f
 5 where f.mgr = e.empno)) as is_leaf,
 6 (select sign(count(*)) from emp d
 7 where d.mgr = e.empno
 8 and e.mgr is not null) as is_branch,
 9 (select sign(count(*)) from emp d
 10 where d.empno = e.empno
 11 and d.mgr is null) as is_root
 12 from emp e
 13 order by 4 desc,3 desc

Oracle

The scalar subquery solution will work for Oracle as well, and should be used if you are on a version
of Oracle prior to Oracle Database 10g. The following solution highlights built-in functions provided by
Oracle (that were introduced in Oracle Database 10g) to identify root and leaf rows. The functions are
CONNECT_BY_ROOT and CONNECT_BY_ISLEAF, respectively:

 1 select ename,
 2 connect_by_isleaf is_leaf,
 3 (select count(*) from emp e
 4 where e.mgr = emp.empno
 5 and emp.mgr is not null
 6 and rownum = 1) is_branch,
 7 decode(ename,connect_by_root(ename),1,0) is_root
 8 from emp
 9 start with mgr is null
 10 connect by prior empno = mgr
 11 order by 4 desc, 3 desc

Discussion

DB2, PostgreSQL, MySQL, and SQL Server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This solution simply applies the rules defined in the "Problem" section to determine leaves, branches,
and roots. The first step is to find determine whether an employee is a leaf node. If the employee is
not a manager (no one works under her), then she is a leaf node. The first scalar subquery, IS_LEAF,
is shown below:

 select e.ename,
 (select sign(count(*)) from emp d
 where 0 =
 (select count(*) from emp f
 where f.mgr = e.empno)) as is_leaf
 from emp e
 order by 2 desc

 ENAME IS_LEAF
 ----------- --------
 SMITH 1
 ALLEN 1
 WARD 1
 ADAMS 1
 TURNER 1
 MARTIN 1
 JAMES 1
 MILLER 1
 JONES 0
 BLAKE 0
 CLARK 0
 FORD 0
 SCOTT 0
 KING 0

Because the output for IS_LEAF should be a 0 or 1, it is necessary to take the SIGN of the COUNT(*)
operation. Otherwise you would get 14 instead of 1 for leaf rows. As an alternative, you can use a
table with only one row to count against, because you only want to return 0 or 1. For example:

 select e.ename,
 (select count(*) from t1 d
 where not exists
 (select null from emp f
 where f.mgr = e.empno)) as is_leaf
 from emp e
 order by 2 desc

 ENAME IS_LEAF
 ---------- ----------
 SMITH 1
 ALLEN 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 WARD 1
 ADAMS 1
 TURNER 1
 MARTIN 1
 JAMES 1
 MILLER 1
 JONES 0
 BLAKE 0
 CLARK 0
 FORD 0
 SCOTT 0
 KING 0

The next step is to find branch nodes. If an employee is a manager (someone works for them), and
they also happen to work for someone else, then the employee is a branch node. The results of the
scalar subquery IS_BRANCH are shown below:

 select e.ename,
 (select sign(count(*)) from emp d
 where d.mgr = e.empno
 and e.mgr is not null) as is_branch
 from emp e
 order by 2 desc

 ENAME IS_BRANCH
 ----------- ---------
 JONES 1
 BLAKE 1
 SCOTT 1
 CLARK 1
 FORD 1
 SMITH 0
 TURNER 0
 MILLER 0
 JAMES 0
 ADAMS 0
 KING 0
 ALLEN 0
 MARTIN 0
 WARD 0

Again, it is necessary to take the SIGN of the COUNT(*) operation. Otherwise you will get
(potentially) values greater than 1 when a node is a branch. Like scalar subquery IS_LEAF, you can
use a table with one row to avoid using SIGN. The following solution uses a one-row table named
dual:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select e.ename,
 (select count(*) from t1 t
 where exists (
 select null from emp f
 where f.mgr = e.empno
 and e.mgr is not null)) as is_branch
 from emp e
 order by 2 desc

 ENAME IS_BRANCH
 --------------- ----------
 JONES 1
 BLAKE 1
 SCOTT 1
 CLARK 1
 FORD 1
 SMITH 0
 TURNER 0
 MILLER 0
 JAMES 0
 ADAMS 0
 KING 0
 ALLEN 0
 MARTIN 0
 WARD 0

The last step is to find the root nodes. A root node is defined as an employee who is a manager but
who does not work for anyone else. In table EMP, only KING is a root node. Scalar subquery
IS_ROOT is shown below:

 select e.ename,
 (select sign(count(*)) from emp d
 where d.empno = e.empno
 and d.mgr is null) as is_root
 from emp e
 order by 2 desc

 ENAME IS_ROOT
 ---------- ---------
 KING 1
 SMITH 0
 ALLEN 0
 WARD 0
 JONES 0
 TURNER 0
 JAMES 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MILLER 0
 FORD 0
 ADAMS 0
 MARTIN 0
 BLAKE 0
 CLARK 0
 SCOTT 0

Because EMP is a small 14-row table, it is easy to see that employee KING is the only root node, so in
this case taking the SIGN of the COUNT(*) operation is not strictly necessary. If there can be
multiple root nodes, then you can use SIGN, or you can use a one-row table in the scalar subquery
as is shown earlier for IS_BRANCH and IS_LEAF.

Oracle

For those of you on versions of Oracle prior to Oracle Database 10g, you can follow the discussion for
the other RDBMSs, as that solution will work (without modifications) in Oracle. If you are on Oracle
Database 10g or later, you may want to take advantage of two functions to make identifying root and
leaf nodes a simple task: they are CONNECT_BY_ROOT and CONNECT_BY_ISLEAF, respectively. As
of the time of this writing, it is necessary to use CONNECT BY in your SQL statement in order for you
to be able to use CONNECT_BY_ROOT and CONNECT_BY_ISLEAF. The first step is to find the leaf
nodes by using CONNECT_BY_ISLEAF as follows:

 select ename,
 connect_by_isleaf is_leaf
 from emp
 start with mgr is null
 connect by prior empno = mgr
 order by 2 desc

 ENAME IS_LEAF
 ---------- ----------
 ADAMS 1
 SMITH 1
 ALLEN 1
 TURNER 1
 MARTIN 1
 WARD 1
 JAMES 1
 MILLER 1
 KING 0
 JONES 0
 BLAKE 0
 CLARK 0
 FORD 0
 SCOTT 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next step is to use a scalar subquery to find the branch nodes. Branch nodes are employees who
are managers but who also work for someone else:

 select ename,
 (select count(*) from emp e
 where e.mgr = emp.empno
 and emp.mgr is not null
 and rownum = 1) is_branch
 from emp
 start with mgr is null
 connect by prior empno = mgr
 order by 2 desc

 ENAME IS_BRANCH
 ---------- ----------
 JONES 1
 SCOTT 1
 BLAKE 1
 FORD 1
 CLARK 1
 KING 0
 MARTIN 0
 MILLER 0
 JAMES 0
 TURNER 0
 WARD 0
 ADAMS 0
 ALLEN 0
 SMITH 0

The filter on ROWNUM is necessary to ensure that you return a count of 1 or 0, and nothing else.

The last step is to identify the root nodes by using the function CONNECT_BY_ROOT. The solution
finds the ENAME for the root node and compares it with all the rows returned by the query. If there is
a match, that row is the root node:

 select ename,
 decode(ename,connect_by_root(ename),1,0) is_root
 from emp
 start with mgr is null
 connect by prior empno = mgr
 order by 2 desc

 ENAME IS_ROOT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ---------- ----------
 KING 1
 JONES 0
 SCOTT 0
 ADAMS 0
 FORD 0
 SMITH 0
 BLAKE 0
 ALLEN 0
 WARD 0
 MARTIN 0
 TURNER 0
 JAMES 0
 CLARK 0
 MILLER 0

If using Oracle9i Database or later, you can use the SYS_CONNECT_BY_PATH function as an
alternative to CONNECT_BY_ROOT. The Oracle9i Database version of the preceding would be:

 select ename,
 decode(substr(root,1,instr(root,',')-1),NULL,1,0) root
 from (
 select ename,
 ltrim(sys_connect_by_path(ename,','),',') root
 from emp
 start with mgr is null
 connect by prior empno=mgr
)

 ENAME ROOT
 ---------- ----
 KING 1
 JONES 0
 SCOTT 0
 ADAMS 0
 FORD 0
 SMITH 0
 BLAKE 0
 ALLEN 0
 WARD 0
 MARTIN 0
 TURNER 0
 JAMES 0
 CLARK 0
 MILLER 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SYS_CONNECT_BY_PATH function rolls up a hierarchy starting from the root value as is shown
below:

 select ename,
 ltrim(sys_connect_by_path(ename,','),',') path
 from emp
 start with mgr is null
 connect by prior empno=mgr

 ENAME PATH
 ---------- ----------------------------
 KING KING
 JONES KING,JONES
 SCOTT KING,JONES,SCOTT
 ADAMS KING,JONES,SCOTT,ADAMS
 FORD KING,JONES,FORD
 SMITH KING,JONES,FORD,SMITH
 BLAKE KING,BLAKE
 ALLEN KING,BLAKE,ALLEN
 WARD KING,BLAKE,WARD
 MARTIN KING,BLAKE,MARTIN
 TURNER KING,BLAKE,TURNER
 JAMES KING,BLAKE,JAMES
 CLARK KING,CLARK
 MILLER KING,CLARK,MILLER

To get the root row, simply substring out the first ENAME in PATH:

 select ename,
 substr(root,1,instr(root,',')-1) root
 from (
 select ename,
 ltrim(sys_connect_by_path(ename,','),',') root
 from emp
 start with mgr is null
 connect by prior empno=mgr
)

 ENAME ROOT
 ---------- ----------
 KING
 JONES KING
 SCOTT KING
 ADAMS KING
 FORD KING
 SMITH KING

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BLAKE KING
 ALLEN KING
 WARD KING
 MARTIN KING
 TURNER KING
 JAMES KING
 CLARK KING
 MILLER KING

The last step is to flag the result from the ROOT column if it is NULL; that is your root row.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 14. Odds 'n' Ends
This chapter contains queries that didn't fit in any other chapter either because the chapter they
would belong to is already long enough, or because the problems they solve are more fun than
realistic. This chapter is meant to be a "fun" chapter, in that the recipes here may or may not be
recipes that you would actually use; nevertheless, I consider the queries interesting and wanted to
include them somewhere in this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.1. Creating Cross-Tab Reports Using SQL
Server's PIVOT Operator

Problem

You want to create a cross-tab report, to transform your result set's rows into columns. You are
aware of traditional methods of pivoting but would like to try something different. In particular, you
want to return the following result set without using CASE expressions or joins:

 DEPT_10 DEPT_20 DEPT_30 DEPT_40
 ------- ----------- ----------- ----------
 3 5 6 0

Solution

Use the PIVOT operator to create the required result set without CASE expressions or additional
joins:

 1 select [10] as dept_10,
 2 [20] as dept_20,
 3 [30] as dept_30,
 4 [40] as dept_40
 5 from (select deptno, empno from emp) driver
 6 pivot (
 7 count(driver.empno)
 8 for driver.deptno in ([10],[20],[30],[40])
 9) as empPivot

Discussion

The PIVOT operator may seem strange at first, but the operation it performs in the solution is
technically the same as the more familiar transposition query shown below:

 select sum(case deptno when 10 then 1 else 0 end) as dept_10,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sum(case deptno when 20 then 1 else 0 end) as dept_20,
 sum(case deptno when 30 then 1 else 0 end) as dept_30,
 sum(case deptno when 40 then 1 else 0 end) as dept_40
 from emp

 DEPT_10 DEPT_20 DEPT_30 DEPT_40
 ------- ---------- ---------- ----------
 3 5 6 0

Now that you know what is essentially happening, let's break down what the PIVOT operator is doing.
Line 5 of the solution shows an inline view named DRIVER:

 from (select deptno, empno from emp) driver

I've chosen the alias "driver" because the rows from this inline view (or table expression) feed
directly into the PIVOT operation. The PIVOT operator rotates the rows to columns by evaluating the
items listed on line 8 in the FOR list (shown below):

 for driver.deptno in ([10],[20],[30],[40])

The evaluation goes something like this:

If there are any DEPTNOs with a value of 10, perform the aggregate operation defined (
COUNT(DRIVER.EMPNO)) for those rows.

1.

Repeat for DEPTNOs 20, 30, and 40.2.

The items listed in the brackets on line 8 serve not only to define values for which aggregation is
performed; the items also become the column names in the result set (without the square brackets).
In the SELECT clause of the solution, the items in the FOR list are referenced and aliased. If you do
not alias the items in the FOR list, the column names become the items in the FOR list sans brackets.

Interestingly enough, since inline view DRIVER is just that, an inline view, you may put more complex
SQL in there. For example, consider the situation where you want to modify the result set such that
the actual department name is the name of the column. Listed below are the rows in table DEPT:

 select * from dept

 DEPTNO DNAME LOC
 ------ -------------- -------------
 10 ACCOUNTING NEW YORK

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

You would like to use PIVOT to return the following result set:

 ACCOUNTING RESEARCH SALES OPERATIONS
 ---------- ---------- ---------- ----------
 3 5 6 0

Because inline view DRIVER can be practically any valid table expression, you can perform the join
from table EMP to table DEPT, and then have PIVOT evaluate those rows. The following query will
return the desired result set:

 select [ACCOUNTING] as ACCOUNTING,
 [SALES] as SALES,
 [RESEARCH] as RESEARCH,
 [OPERATIONS] as OPERATIONS
 from (
 select d.dname, e.empno
 from emp e,dept d
 where e.deptno=d.deptno

) driver
 pivot (
 count(driver.empno)
 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])
) as empPivot

As you can see, PIVOT provides an interesting spin on pivoting result sets. Regardless of whether or
not you prefer using it to the traditional methods of pivoting, it's nice to have another tool in your
toolbox.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.2. Unpivoting a Cross-Tab Report Using SQL
Server's UNPIVOT Operator

Problem

You have a pivoted result set (or simply a fat table) and you wish to unpivot the result set. For
example, instead of having a result set with one row and four columns you want to return a result set
with two columns and four rows. Using the result set from the previous recipe, you want to convert it
from this:

 ACCOUNTING RESEARCH SALES OPERATIONS
 ---------- ---------- ---------- ----------
 3 5 6 0

to this:

 DNAME CNT
 -------------- ----------
 ACCOUNTING 3
 RESEARCH 5
 SALES 6
 OPERATIONS 0

Solution

You didn't think SQL Server would give you the ability to PIVOT without being able to UNPIVOT, did
you? To unpivot the result set just use it as the driver and let the UNPIVOT operator do all the work.
All you need to do is specify the column names:

 1 select DNAME, CNT
 2 from (
 3 select [ACCOUNTING] as ACCOUNTING,
 4 [SALES] as SALES,
 5 [RESEARCH] as RESEARCH,
 6 [OPERATIONS] as OPERATIONS
 7 from (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 8 select d.dname, e.empno
 9 from emp e,dept d
 10 where e.deptno=d.deptno
 11
 12) driver
 13 pivot (
 14 count(driver.empno)
 15 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])
 16) as empPivot
 17) new_driver
 18 unpivot (cnt for dname in (ACCOUNTING,SALES,RESEARCH,OPERATIONS)
 19) as un_pivot

Hopefully, before reading this recipe you've read the one prior to it, because the inline view
NEW_DRIVER is simply the code from the previous recipe (if you don't understand it, please refer to
the previous recipe before looking at this one). Since lines 316 consist of code you've already seen,
the only new syntax is on line 18, where you use UNPIVOT.

The UNPIVOT command simply looks at the result set from NEW_DRIVER and evaluates each column
and row. For example, the UNPIVOT operator evaluates the column names from NEW_DRIVER. When
it encounters ACCOUNTING, it transforms the column name ACCOUNTING into a row value (under
the column DNAME). It also takes the value for ACCOUNTING from NEW_DRIVER (which is 3) and
returns that as part of the ACCOUNTING row as well (under the column CNT). UNPIVOT does this for
each of the items specified in the FOR list and simply returns each one as a row.

The new result set is now skinny and has two columns, DNAME and CNT, with four rows:

 select DNAME, CNT
 from (
 select [ACCOUNTING] as ACCOUNTING,
 [SALES] as SALES,
 [RESEARCH] as RESEARCH,
 [OPERATIONS] as OPERATIONS
 from (
 select d.dname, e.empno
 from emp e,dept d
 where e.deptno=d.deptno

) driver
 pivot (
 count(driver.empno)
 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])
) as empPivot
) new_driver
 unpivot (cnt for dname in (ACCOUNTING,SALES,RESEARCH,OPERATIONS)
) as un_pivot

 DNAME CNT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 -------------- ----------
 ACCOUNTING 3
 RESEARCH 5
 SALES 6
 OPERATIONS 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.3. Transposing a Result Set Using Oracle's
MODEL Clause

Problem

Like the fist recipe in this chapter, you wish to find an alternative to the traditional pivoting
techniques you've seen already. You want to try your hand at Oracle's MODEL clause. Unlike SQL
Server's PIVOT operator, Oracle's MODEL clause does not exist to transpose result sets; as a matter
of fact, it would be quite accurate to say the application of the MODEL clause for pivoting would be a
misuse and clearly not what the MODEL clause was intended for. Nevertheless, the MODEL clause
provides for an interesting approach to a common problem. For this particular problem, you want to
transform the following result set from this:

 select deptno, count(*) cnt
 from emp
 group by deptno

 DEPTNO CNT
 ------ ----------
 10 3
 20 5
 30 6

to this:

 D10 D20 D30
 ---------- ---------- ----------
 3 5 6

Solution

Use aggregation and CASE expressions in the MODEL clause just as you would use them if pivoting
with traditional techniques. The main difference in this case is that you use arrays to store the values
of the aggregation and return the arrays in the result set:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select max(d10) d10,
 max(d20) d20,
 max(d30) d30
 from (
 select d10,d20,d30
 from (select deptno, count(*) cnt from emp group by deptno)
 model
 dimension by(deptno d)
 measures(deptno, cnt d10, cnt d20, cnt d30)
 rules(
 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
)
)

Discussion

The MODEL clause is an extremely useful and powerful addition to the Oracle SQL toolbox. Once you
begin working with MODEL you'll notice helpful features such as iteration, array access to row values,
the ability to "upsert" rows into a result set, and the ability to build reference models. You'll quickly
see that this recipe doesn't take advantage of any of the cool features the MODEL clause offers, but
it's nice to be able to look at a problem from multiple angles and use different features in unexpected
ways (if for no other reason than to learn where certain features are more useful than others).

The first step to understanding the solution is to examine the inline view in the FROM clause. The
inline view simply counts the number of employees in each DEPTNO in table EMP. The results are
shown below:

 select deptno, count(*) cnt
 from emp
 group by deptno

 DEPTNO CNT
 ------ ----------
 10 3
 20 5
 30 6

This result set is what is given to MODEL to work with. Examining the MODEL clause, you see three
subclauses that stand out: DIMENSION BY, MEASURES, and RULES. Let's start with MEASURES.

The items in the MEASURES list are simply the arrays you are declaring for this query. The query
uses four arrays: DEPTNO, D10, D20, and D30. Like columns in a SELECT list, arrays in the
MEASURES list can have aliases. As you can see, three of the four arrays are actually CNT from the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inline view.

If the MEASURES list contains our arrays, then the items in the DIMENSION BY subclause are the
array indices. Consider this: array D10 is simply an alias for CNT. If you look at the result set for the
inline view above, you'll see that CNT has three values: 3, 5, and 6. When you create an array of
CNT, you are creating an array with three elements, namely, the three integers 3, 5, and 6. Now,
how do you access these values from the array individually? You use the array index. The index,
defined in the DIMENSION BY subclause, has the values of 10, 20, and 30 (from the result set
above). So, for example, the following expression:

 d10[10]

would evaluate to 3, as you are accessing the value for CNT in array D10 for DEPTNO 10 (which is 3).

Because each of the three arrays (D10, D20, D30) contain the values from CNT, all three of them
have the same results. How then do we get the proper count into the correct array? Enter the RULES
subclause. If you look at the result set for the inline view shown earlier, you'll see that the values for
DEPTNO are 10, 20, and 30. The expressions involving CASE in the RULES clause simply evaluate
each value in the DEPTNO array:

If the value is 10, store the CNT for DEPTNO 10 in D10[10] else store 0.

If the value is 20, store the CNT for DEPTNO 20 in D20[20] else store 0.

If the value is 30, store the CNT for DEPTNO 30 in D30[30] else store 0.

If you find yourself feeling a bit like Alice tumbling down the rabbit hole, don't worry; just stop and
execute what's been discussed thus far. The following result set represents what has been discussed.
Sometimes it's easier to read a bit, look at the code that actually performs what you just read, then
go back and read it again. The following is quite simple once you see it in action:

 select deptno, d10,d20,d30
 from (select deptno, count(*) cnt from emp group by deptno)
 model
 dimension by(deptno d)
 measures(deptno, cnt d10, cnt d20, cnt d30)
 rules(
 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
)

 DEPTNO D10 D20 D30
 ------ ---------- ---------- ----------
 10 3 0 0
 20 0 5 0
 30 0 0 6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, the RULES subclause is what changed the values in each array. If you are still not
catching on, simply execute the same query but comment out the expressions in the RULES
subclase:

 select deptno, d10,d20,d30
 from (select deptno, count(*) cnt from emp group by deptno)
 model
 dimension by(deptno d)
 measures(deptno, cnt d10, cnt d20, cnt d30)
 rules(
 /*
 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
 */
)

 DEPTNO D10 D20 D30
 ------ ---------- ---------- ----------
 10 3 3 3
 20 5 5 5
 30 6 6 6

It should be clear now that the result set from the MODEL clause is the same as the inline view,
except that the COUNT operation is aliased D10, D20, and D30. The query below proves this:

 select deptno, count(*) d10, count(*) d20, count(*) d30
 from emp
 group by deptno

 DEPTNO D10 D20 D30
 ------ ---------- ---------- ----------
 10 3 3 3
 20 5 5 5
 30 6 6 6

So, all the MODEL clause did was to take the values for DEPTNO and CNT, put them into arrays, and
then make sure that each array represents a single DEPTNO. At this point, arrays D10, D20, and D30
each have a single non-zero value representing the CNT for a given DEPTNO. The result set is already
transposed, and all that is left is to use the aggregate function MAX (you could have used MIN or
SUM; it would make no difference in this case) to return only one row:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select max(d10) d10,
 max(d20) d20,
 max(d30) d30
 from (
 select d10,d20,d30
 from (select deptno, count(*) cnt from emp group by deptno)
 model
 dimension by(deptno d)
 measures(deptno, cnt d10, cnt d20, cnt d30)
 rules(
 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
)
)

 D10 D20 D30
 ---------- ---------- ----------
 3 5 6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.4. Extracting Elements of a String from Unfixed
Locations

Problem

You have a string field that contains serialized log data. You want to parse through the string and
extract the relevant information. Unfortunately, the relevant information is not at fixed points in the
string. Instead, you must use the fact that certain characters exist around the information you need,
to extract said information. For example, consider the following strings:

 xxxxxabc[867]xxx[-]xxxx[5309]xxxxx
 xxxxxtime:[11271978]favnum:[4]id:[Joe]xxxxx
 call:[F_GET_ROWS()]b1:[ROSEWOOD…SIR]b2:[44400002]77.90xxxxx
 film:[non_marked]qq:[unit]tailpipe:[withabanana?]80sxxxxx

You want to extract the values between the square brackets, returning the following result set:

 FIRST_VAL SECOND_VAL LAST_VAL
 --------------- ------------------- ---------------
 867 - 5309
 11271978 4 Joe
 F_GET_ROWS() ROSEWOOD…SIR 44400002
 non_marked unit withabanana?

Solution

Despite not knowing the exact locations within the string of the interesting values, you do know that
they are located between square brackets [], and you know there are three of them. Use Oracle's
built-in function INSTR to find the locations to of the brackets. Use the built-in function SUBSTR to
extract the values from the string. View V will contain the strings to parse and is defined as follows
(its use is strictly for readability):

 create view V
 as
 select 'xxxxxabc[867]xxx[-]xxxx[5309]xxxxx' msg
 from dual

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 union all
 select 'xxxxxtime:[11271978]favnum:[4]id:[Joe]xxxxx' msg
 from dual
 union all
 select 'call:[F_GET_ROWS()]b1:[ROSEWOOD…SIR]b2:[44400002]77.90xxxxx' msg
 from dual
 union all
 select 'film:[non_marked]qq:[unit]tailpipe:[withabanana?]80sxxxxx' msg
 from dual

 1 select substr(msg,
 2 instr(msg,'[',1,1)+1,
 3 instr(msg,']',1,1)-instr(msg,'[',1,1)-1) first_val,
 4 substr(msg,
 5 instr(msg,'[',1,2)+1,
 6 instr(msg,']',1,2)-instr(msg,'[',1,2)-1) second_val,
 7 substr(msg,
 8 instr(msg,'[',-1,1)+1,
 9 instr(msg,']',-1,1)-instr(msg,'[',-1,1)-1) last_val
 10 from V

Discussion

Using Oracle's built-in function INSTR makes this problem fairly simple to solve. Since you know the
values you are after are enclosed in [], and that there are three sets of [], the first step to this
solution is to simply use INSTR to find the numeric positions of [] in each string. The following
example returns the numeric position of the opening and closing brackets in each row:

 select instr(msg,'[',1,1) "1st_[",
 instr(msg,']',1,1) "]_1st",
 instr(msg,'[',1,2) "2nd_[",
 instr(msg,']',1,2) "]_2nd",
 instr(msg,'[',-1,1) "3rd_[",
 instr(msg,']',-1,1) "]_3rd"
 from V

 1st_[]_1st 2nd_[]_2nd 3rd_[]_3rd
 ------ ----- ---------- ----- ---------- -----
 9 13 17 19 24 29
 11 20 28 30 34 38
 6 19 23 38 42 51
 6 17 21 26 36 49

At this point, the hard work is done. All that is left is to plug the numeric positions into SUBSTR to
parse MSG at those locations. You'll notice that in the complete solution there's some simple

http://lib.ommolketab.ir
http://lib.ommolketab.ir

arithmetic on the values returned by INSTR, particularly, +1 and1; this is necessary to ensure the
opening square bracket, [, is not returned in the final result set. Listed below is the solution less
addition and subtraction of 1 on the return values from INSTR; notice how each value has a leading
square bracket:

 select substr(msg,
 instr(msg,'[',1,1),
 instr(msg,']',1,1)-instr(msg,'[',1,1)) first_val,
 substr(msg,
 instr(msg,'[',1,2),
 instr(msg,']',1,2)-instr(msg,'[',1,2)) second_val,
 substr(msg,
 instr(msg,'[',-1,1),
 instr(msg,']',-1,1)-instr(msg,'[',-1,1)) last_val
 from V

 FIRST_VAL SECOND_VAL LAST_VAL
 --------------- -------------------- -------
 [867 [- [5309
 [11271978 [4 [Joe
 [F_GET_ROWS() [ROSEWOOD…SIR [44400002
 [non_marked [unit [withabanana?

From the result set above, you can see that the open bracket is there. You may be thinking: "OK, put
the addition of 1 to INSTR back and the leading square bracket goes away. Why do we need to
subtract 1?" The reason is this: if you put the addition back but leave out the subtraction, you end up
including the closing square bracket, as can be seen below:

 select substr(msg,
 instr(msg,'[',1,1)+1,
 instr(msg,']',1,1)-instr(msg,'[',1,1)) first_val,
 substr(msg,
 instr(msg,'[',1,2)+1,
 instr(msg,']',1,2)-instr(msg,'[',1,2)) second_val,
 substr(msg,
 instr(msg,'[',-1,1)+1,
 instr(msg,']',-1,1)-instr(msg,'[',-1,1)) last_val
 from V

 FIRST_VAL SECOND_VAL LAST_VAL
 --------------- --------------- -------------
 867] -] 5309]
 11271978] 4] Joe]
 F_GET_ROWS()] ROSEWOOD…SIR] 44400002]
 non_marked] unit] withabanana?]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point it should be clear: to ensure you include neither of the square brackets, you must add 1
to the beginning index and subtract one from the ending index.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.5. Finding the Number of Days in a Year (an
Alternate Solution for Oracle)

Problem

You want to find the number of days in a year.

This recipe presents an alternative solution to "Determining the Number of
Days in a Year" from Chapter 9. This solution is specific to Oracle.

Solution

Use the TO_CHAR function to format the last date of the year into a three-digit day-of-the-year
number:

 1 select 'Days in 2005: '||
 2 to_char(add_months(trunc(sysdate,'y'),12)-1,'DDD')
 3 as report
 4 from dual
 5 union all
 6 select 'Days in 2004: '||
 7 to_char(add_months(trunc(
 8 to_date('01-SEP-2004'),'y'),12)-1,'DDD')
 9 from dual

 REPORT

 Days in 2005: 365
 Days in 2004: 366

Discussion

Begin by using the TRUNC function to return the first day of the year for the given date, as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select trunc(to_date('01-SEP-2004'),'y')
 from dual

 TRUNC(TO_DA

 01-JAN-2004

Next, use ADD_MONTHS to add one year (12 months) to the truncated date. Then subtract one day,
bringing you to the end of the year in which your original date falls:

 select add_months(
 trunc(to_date('01-SEP-2004'),'y'),
 12) before_subtraction,
 add_months(
 trunc(to_date('01-SEP-2004'),'y'),
 12)-1 after_subtraction
 from dual

 BEFORE_SUBT AFTER_SUBTR
 ----------- -----------
 01-JAN-2005 31-DEC-2004

Now that you have found the last day in the year you are working with, simply use TO_CHAR to
return a three-digit number representing on which day (1st, 50th, etc.) of the year the last day is:

 select to_char(
 add_months(
 trunc(to_date('01-SEP-2004'),'y'),
 12)-1,'DDD') num_days_in_2004
 from dual

 NUM

 366

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.6. Searching for Mixed Alphanumeric Strings

Problem

You have a column with mixed alphanumeric data. You want to return those rows that have both
alphabetical and numeric characters; in other words, if a string has only number or only letters, do
not return it. The return values should have a mix of both letters and numbers. Consider the
following data:

 STRINGS

 1010 switch
 333
 3453430278
 ClassSummary
 findRow 55
 threes

The final result set should contain only those rows that have both letters and numbers:

 STRINGS

 1010 switch
 findRow 55

Solution

Use the built-in function TRANSLATE to convert each occurrence of a letter or digit into a specific
character. Then keep only those strings that have at least one occurrence of both. The solution uses
Oracle syntax, but both DB2 and PostgreSQL support TRANSLATE, so modifying the solution to work
on those platforms should be trivial:

 with v as (
 select 'ClassSummary' strings from dual union
 select '3453430278' from dual union
 select 'findRow 55' from dual union
 select '1010 switch' from dual union

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select '333' from dual union
 select 'threes' from dual
)
 select strings
 from (
 select strings,
 translate(
 strings,
 'abcdefghijklmnopqrstuvwxyz0123456789',
 rpad('#',26,'#')||rpad('*',10,'*')) translated
 from v
) x
where instr(translated,'#') > 0
and instr(translated,'*') > 0

As an alternative to the WITH clause, you may use an inline view or simply
create a view.

Discussion

The TRANSLATE function makes this problem extremely easy to solve. The first step is to use
TRANSLATE to identify all letters and all digits by pound (#) and asterisk (*) characters, respectively.
The intermediate results (from inline view X) are as follows:

 with v as (
 select 'ClassSummary' strings from dual union
 select '3453430278' from dual union
 select 'findRow 55' from dual union
 select '1010 switch' from dual union
 select '333' from dual union
 select 'threes' from dual
)
 select strings,
 translate(
 strings,
 'abcdefghijklmnopqrstuvwxyz0123456789',
 rpad('#',26,'#')||rpad('*',10,'*')) translated
 from v

 STRINGS TRANSLATED
 ------------- ------------
 1010 switch **** ######
 333 ***
 3453430278 **********

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ClassSummary C####S######
 findRow 55 ####R## **
 threes ######

At this point, it is only a matter of keeping those rows that have at least one instance each of "#" and
"*". Use the function INSTR to determine whether "#" and "*" are in a string. If those two characters
are, in fact, present, then the value returned will be greater than zero. The final strings to return,
along with their translated values, are shown next for clarity:

 with v as (
 select 'ClassSummary' strings from dual union
 select '3453430278' from dual union
 select 'findRow 55' from dual union
 select '1010 switch' from dual union
 select '333' from dual union
 select 'threes' from dual
)
 select strings, translated
 from (
 select strings,
 translate(
 strings,
 'abcdefghijklmnopqrstuvwxyz0123456789',
 rpad('#',26,'#')||rpad('*',10,'*')) translated
 from v
)
 where instr(translated,'#') > 0
 and instr(translated,'*') > 0

 STRINGS TRANSLATED
 ------------ ------------
 1010 switch **** ######
 findRow 55 ####R## **

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.7. Converting Whole Numbers to Binary Using
Oracle

Problem

You want to convert a whole number to its binary representation on an Oracle system. For example,
you would like to return all the salaries in table EMP in binary as part of the following result set:

 ENAME SAL SAL_BINARY
 ---------- ----- --------------------
 SMITH 800 1100100000
 ALLEN 1600 11001000000
 WARD 1250 10011100010
 JONES 2975 101110011111
 MARTIN 1250 10011100010
 BLAKE 2850 101100100010
 CLARK 2450 100110010010
 SCOTT 3000 101110111000
 KING 5000 1001110001000
 TURNER 1500 10111011100
 ADAMS 1100 10001001100
 JAMES 950 1110110110
 FORD 3000 101110111000
 MILLER 1300 10100010100

Solution

This solution makes use of the MODEL clause, so you'll need to be running Oracle Database 10g or
later for it to work. Because of MODEL's ability to iterate and provide array access to row values, it is
a natural choice for this operation (assuming you are forced to solve the problem in SQL, as a stored
function is more appropriate here). Like the rest of the solutions in this book, even if you don't find a
practical application for this code, focus on the technique. It is useful to know that the MODEL clause
can perform procedural tasks while still keeping SQL's set-based nature and power. So, even if you
find yourself saying: "I'd never do this in SQL," that's fine. I'm in no way suggesting you should or
shouldn't. I only remind you to focus on the technique, so you can apply it to whatever you consider
a more "practical" application.

The following solution returns all ENAME and SAL from table EMP, while calling the MODEL clause in a
scalar subquery (this way it serves as sort of a standalone function from table EMP that simply
receives an input, processes it, and returns a value, much like a function would):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select ename,
 2 sal,
 3 (
 4 select bin
 5 from dual
 6 model
 7 dimension by (0 attr)
 8 measures (sal num,
 9 cast(null as varchar2(30)) bin,
 10 '0123456789ABCDEF' hex
 11)
 12 rules iterate (10000) until (num[0] <= 0) (
 13 bin[0] = substr(hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],
 14 num[0] = trunc(num[cv()]/2)
 15)
 16) sal_binary
 17 from emp

Discussion

I mentioned in the "Solution" section that this problem is most likely better solved via a stored
function. Indeed, the idea for this recipe came from a function. As a matter of fact, this recipe is an
adaptation of a function called TO_BASE, written by Tom Kyte of Oracle Corporation. Like other
recipes in this book that you may decide not to use, even if you do not use this recipe it does a nice
job of showing of some of the features of the MODEL clause such as iteration and array access of
rows.

To make the explanation easier, I am going to focus on a slight variation of the subquery containing
the MODEL clause. The code that follows is essentially the subquery from the solution, except that it's
been hard-wired to return the value 2 in binary:

 select bin
 from dual
 model
 dimension by (0 attr)
 measures (2 num,
 cast(null as varchar2(30)) bin,
 '0123456789ABCDEF' hex
)
 rules iterate (10000) until (num[0] <= 0) (
 bin[0] = substr (hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],
 num[0] = trunc(num[cv()]/2)
)

 BIN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10

The following query outputs the values returned from one iteration of the RULES defined in the query
above:

 select 2 start_val,
 '0123456789ABCDEF' hex,
 substr('0123456789ABCDEF',mod(2,2)+1,1) ||
 cast(null as varchar2(30)) bin,
 trunc(2/2) num
 from dual

 START_VAL HEX BIN NUM
 --------- ---------------- ---------- ---
 2 0123456789ABCDEF 0 1

START_VAL represents the number you want to convert to binary, which in this case is 2. The value
for BIN is the result of a substring operation on '0123456789ABCDEF' (HEX, in the original solution).
The value for NUM is the test that will determine when you exit the loop.

As you can see from the preceding result set, the first time through the loop BIN is 0 and NUM is 1.
Because NUM is not less than or equal to 0, another loop iteration occurs. The following SQL
statement shows the results of the next iteration:

 select num start_val,
 substr('0123456789ABCDEF',mod(1,2)+1,1) || bin bin,
 trunc(1/2) num
 from (
 select 2 start_val,
 '0123456789ABCDEF' hex,
 substr('0123456789ABCDEF',mod(2,2)+1,1) ||
 cast(null as varchar2(30)) bin,
 trunc(2/2) num
 from dual
)

 START_VAL BIN NUM
 --------- ---------- ---
 1 10 0

The next time through the loop, the result of the substring operation on HEX returns 1 and the prior
value of BIN, 0, is appended to it. The test, NUM, is now 0, thus this is the last iteration and the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

return value "10" is the binary representation of the number 2. Once you're comfortable with what's
going on, you can remove the iteration from the MODEL clause and step through it row by row to
follow how the rules are applied to come to the final result set, as is shown below:

 select 2 orig_val, num, bin
 from dual
 model
 dimension by (0 attr)
 measures (2 num,
 cast(null as varchar2(30)) bin,
 '0123456789ABCDEF' hex
)
 rules (
 bin[0] = substr (hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],
 num[0] = trunc(num[cv()]/2),
 bin[1] = substr (hex[0],mod(num[0],2)+1,1)||bin[0],
 num[1] = trunc(num[0]/2)
)

 ORIG_VAL NUM BIN
 -------- --- ---------
 2 1 0
 2 0 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.8. Pivoting a Ranked Result Set

Problem

You want to rank the values in a table, then pivot the result set into three columns. The idea is to
show the top three, the next three, then all the rest. For example, you want to rank the employees in
table EMP by SAL, and then pivot the results into three columns. The desired result set is as follows:

 TOP_3 NEXT_3 REST
 --------------- --------------- --------------
 KING (5000) BLAKE (2850) TURNER (1500)
 FORD (3000) CLARK (2450) MILLER (1300)
 SCOTT (3000) ALLEN (1600) MARTIN (1250)
 JONES (2975) WARD (1250)
 ADAMS (1100)
 JAMES (950)
 SMITH (800)

Solution

The key to this solution is to first use the window function DENSE_RANK OVER to rank the employees
by SAL while allowing for ties. By using DENSE_RANK OVER, you can easily see the top three
salaries, the next three salaries, and then all the rest.

Next, use the window function ROW_NUMBER OVER to rank each employee within his group (the top
three, next three, or last group). From there, simply perform a classic transpose, while using the
built-in string functions available on your platform to beautify the results. The following solution uses
Oracle syntax. Since both DB2 and SQL Server 2005 support window functions, converting the
solution to work for those platforms is trivial:

 1 select max(case grp when 1 then rpad(ename,6) ||
 2 ' ('|| sal ||')' end) top_3,
 3 max(case grp when 2 then rpad(ename,6) ||
 4 ' ('|| sal ||')' end) next_3,
 5 max(case grp when 3 then rpad(ename,6) ||
 6 ' ('|| sal ||')' end) rest
 7 from (
 8 select ename,
 9 sal,
 10 rnk,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 11 case when rnk <= 3 then 1
 12 when rnk <= 6 then 2
 13 else 3
 14 end grp,
 15 row_number()over (
 16 partition by case when rnk <= 3 then 1
 17 when rnk <= 6 then 2
 18 else 3
 19 end
 20 order by sal desc, ename
 21) grp_rnk
 22 from (
 23 select ename,
 24 sal,
 25 dense_rank()over(order by sal desc) rnk
 26 from emp
 27) x
 28) y
 29 group by grp_rnk

Discussion

This recipe is a perfect example of how much you can accomplish with so little, with the help of
window functions. The solution may look involved, but as you break it down from inside out you will
be surprised how simple it is. Let's begin by executing inline view X first:

 select ename,
 sal,
 dense_rank()over(order by sal desc) rnk
 from emp

 ENAME SAL RNK
 ---------- ----- ----------
 KING 5000 1
 SCOTT 3000 2
 FORD 3000 2
 JONES 2975 3
 BLAKE 2850 4
 CLARK 2450 5
 ALLEN 1600 6
 TURNER 1500 7
 MILLER 1300 8
 WARD 1250 9
 MARTIN 1250 9
 ADAMS 1100 10
 JAMES 950 11
 SMITH 800 12

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see from the result set above, inline view X simply ranks the employees by SAL, while
allowing for ties (because the solution uses DENSE_RANK instead of RANK, there are ties without
gaps). The next step is to take the rows from inline view X and create groups by using a CASE
expression to evaluate the ranking from DENSE_RANK. Additionally, use the window function
ROW_NUMBER OVER to rank the employees by SAL within their group (within the group you are
creating with the CASE expression). All of this happens in inline view Y and is shown below:

 select ename,
 sal,
 rnk,
 case when rnk <= 3 then 1
 when rnk <= 6 then 2
 else 3
 end grp,
 row_number()over (
 partition by case when rnk <= 3 then 1
 when rnk <= 6 then 2
 else 3
 end
 order by sal desc, ename
) grp_rnk
 from (
 select ename,
 sal,
 dense_rank()over(order by sal desc) rnk
 from emp
) x

 ENAME SAL RNK GRP GRP_RNK
 ---------- ----- ---- ---- -------
 KING 5000 1 1 1
 FORD 3000 2 1 2
 SCOTT 3000 2 1 3
 JONES 2975 3 1 4
 BLAKE 2850 4 2 1
 CLARK 2450 5 2 2
 ALLEN 1600 6 2 3
 TURNER 1500 7 3 1
 MILLER 1300 8 3 2
 MARTIN 1250 9 3 3
 WARD 1250 9 3 4
 ADAMS 1100 10 3 5
 JAMES 950 11 3 6
 SMITH 800 12 3 7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now the query is starting to take shape and, if you followed it from the beginning (from inline view
X), you can see that it's not that complicated. The query so far returns each employee, her SAL, her
RNK, which represents where her SAL ranks amongst all employees, her GRP, which indicates the
group each employee is in (based on SAL), and finally GRP_RANK, which is a ranking (based on SAL)
within her GRP.

At this point, perform a traditional pivot on ENAME while using the Oracle concatenation operator ||
to append the SAL. The function RPAD ensures that the numeric values in parentheses line up nicely.
Finally, use GROUP BY on GRP_RNK to ensure you show each employee in the result set. The final
result set is shown below:

 select max(case grp when 1 then rpad(ename,6) ||
 ' ('|| sal ||')' end) top_3,
 max(case grp when 2 then rpad(ename,6) ||
 ' ('|| sal ||')' end) next_3,
 max(case grp when 3 then rpad(ename,6) ||
 ' ('|| sal ||')' end) rest
 from (
 select ename,
 sal,
 rnk,
 case when rnk <= 3 then 1
 when rnk <= 6 then 2
 else 3
 end grp,
 row_number()over (
 partition by case when rnk <= 3 then 1
 when rnk <= 6 then 2
 else 3
 end
 Order by sal desc, ename
) grp_rnk
 from (
 select ename,
 sal,
 dense_rank()over(order by sal desc) rnk
 from emp
) x
) y
 group by grp_rnk

 TOP_3 NEXT_3 REST
 --------------- --------------- -------------
 KING (5000) BLAKE (2850) TURNER (1500)
 FORD (3000) CLARK (2450) MILLER (1300)
 SCOTT (3000) ALLEN (1600) MARTIN (1250)
 JONES (2975) WARD (1250)
 ADAMS (1100)
 JAMES (950)
 SMITH (800)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you examine the queries in all of the steps you'll notice that table EMP is accessed exactly once.
One of the remarkable things about window functions is how much work you can do in just one pass
through your data. No need for self joins or temp tables; just get the rows you need, then let the
window functions do the rest. Only in inline view X do you need to access EMP. From there, it's simply
a matter of massaging the result set to look the way you want. Consider what all this means for
performance if you can create this type of report with a single table access. Pretty cool.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.9. Adding a Column Header into a Double
Pivoted Result Set

Problem

You want to stack two result sets, and then pivot them into two columns. Additionally, you want to
add a "header" for each group of rows in each column. For example, you have two tables containing
information about employees working in different areas of development in your company (say, in
research and applications):

 select * from it_research

 DEPTNO ENAME
 ------ --------------------
 100 HOPKINS
 100 JONES
 100 TONEY
 200 MORALES
 200 P.WHITAKER
 200 MARCIANO
 200 ROBINSON
 300 LACY
 300 WRIGHT
 300 J.TAYLOR

 select * from it_apps

 DEPTNO ENAME
 ------ -----------------
 400 CORRALES
 400 MAYWEATHER
 400 CASTILLO
 400 MARQUEZ
 400 MOSLEY
 500 GATTI
 500 CALZAGHE
 600 LAMOTTA
 600 HAGLER
 600 HEARNS
 600 FRAZIER
 700 GUINN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 700 JUDAH
 700 MARGARITO

You would like to create a report listing the employees from each table in two columns. You want to
return the DEPTNO followed by ENAME for each. Ultimately you want to return the following result
set:

 RESEARCH APPS
 -------------------- ---------------
 100 400
 JONES MAYWEATHER
 TONEY CASTILLO
 HOPKINS MARQUEZ
 200 MOSLEY
 P.WHITAKER CORRALES
 MARCIANO 500
 ROBINSON CALZAGHE
 MORALES GATTI
 300 600
 WRIGHT HAGLER
 J.TAYLOR HEARNS
 LACY FRAZIER
 LAMOTTA
 700
 JUDAH
 MARGARITO
 GUINN

Solution

For the most part, this solution requires nothing more than a simple stack-n-pivot (union then pivot)
with an added twist: the DEPTNO must precede the ENAME for each employee returned. The
technique here uses a Cartesian product to generate an extra row for each DEPTNO, so you have the
required rows necessary to show all employees, plus room for the DEPTNO. The solution uses Oracle
syntax, but since DB2 supports window functions that can compute moving windows (the framing
clause), converting this solution to work for DB2 is trivial. Because the IT_ RESEARCH and IT_APPS
tables exist only for this recipe, their table creation statements are shown along with this solution:

 create table IT_research (deptno number, ename varchar2(20))

 insert into IT_research values (100,'HOPKINS')
 insert into IT_research values (100,'JONES')
 insert into IT_research values (100,'TONEY')
 insert into IT_research values (200,'MORALES')
 insert into IT_research values (200,'P.WHITAKER')

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 insert into IT_research values (200,'MARCIANO')
 insert into IT_research values (200,'ROBINSON')
 insert into IT_research values (300,'LACY')
 insert into IT_research values (300,'WRIGHT')
 insert into IT_research values (300,'J.TAYLOR')

 create table IT_apps (deptno number, ename varchar2(20))

 insert into IT_apps values (400,'CORRALES')
 insert into IT_apps values (400,'MAYWEATHER')
 insert into IT_apps values (400,'CASTILLO')
 insert into IT_apps values (400,'MARQUEZ')
 insert into IT_apps values (400,'MOSLEY')
 insert into IT_apps values (500,'GATTI')
 insert into IT_apps values (500,'CALZAGHE')
 insert into IT_apps values (600,'LAMOTTA')
 insert into IT_apps values (600,'HAGLER')
 insert into IT_apps values (600,'HEARNS')
 insert into IT_apps values (600,'FRAZIER')
 insert into IT_apps values (700,'GUINN')
 insert into IT_apps values (700,'JUDAH')
 insert into IT_apps values (700,'MARGARITO')

 1 select max(decode(flag2,0,it_dept)) research,
 2 max(decode(flag2,1,it_dept)) apps
 3 from (
 4 select sum(flag1)over(partition by flag2
 5 order by flag1,rownum) flag,
 6 it_dept, flag2
 7 from (
 8 select 1 flag1, 0 flag2,
 9 decode(rn,1,to_char(deptno),' '||ename) it_dept
 10 from (
 11 select x.*, y.id,
 12 row_number()over(partition by x.deptno order by y.id) rn
 13 from (
 14 select deptno,
 15 ename,
 16 count(*)over(partition by deptno) cnt
 17 from it_research
 18) x,
 19 (select level id from dual connect by level <= 2) y
 20)
 21 where rn <= cnt+1
 22 union all
 23 select 1 flag1, 1 flag2,
 24 decode(rn,1,to_char(deptno),' '||ename) it_dept
 25 from (
 26 select x.*, y.id,
 27 row_number()over(partition by x.deptno order by y.id) rn

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 28 from (
 29 select deptno,
 30 ename,
 31 count(*)over(partition by deptno) cnt
 32 from it_apps
 33) x,
 34 (select level id from dual connect by level <= 2) y
 35)
 36 where rn <= cnt+1
 37) tmp1
 38) tmp2
 39 group by flag

Discussion

Like many of the other warehousing/report type queries, the solution presented looks quite
convoluted but once broken down you'll seen it's nothing more than a stack-n-pivot with a Cartesian
twist (on the rocks, with a little umbrella). The way to break this query down is to work on each part
of the UNION ALL first, then bring it together for the pivot. Let's start with the lower portion of the
UNION ALL:

 select 1 flag1, 1 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
 select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
 select deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps
) x,
 (select level id from dual connect by level <= 2) y
) z
 where rn <= cnt+1

 FLAG1 FLAG2 IT_DEPT
 ----- ---------- --------------------------
 1 1 400
 1 1 MAYWEATHER
 1 1 CASTILLO
 1 1 MARQUEZ
 1 1 MOSLEY
 1 1 CORRALES
 1 1 500
 1 1 CALZAGHE
 1 1 GATTI

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 1 600
 1 1 HAGLER
 1 1 HEARNS
 1 1 FRAZIER
 1 1 LAMOTTA
 1 1 700
 1 1 JUDAH
 1 1 MARGARITO
 1 1 GUINN

Let's examine exactly how that result set is put together. Breaking down the above query to its
simplest components, you have inline view X, which simply returns each ENAME and DEPTNO and the
number of employees in each DEPTNO from table IT_APPS. The results are as follows:

 select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps

 DEPTNO ENAME CNT
 ------ -------------------- ----------
 400 CORRALES 5
 400 MAYWEATHER 5
 400 CASTILLO 5
 400 MARQUEZ 5
 400 MOSLEY 5
 500 GATTI 2
 500 CALZAGHE 2
 600 LAMOTTA 4
 600 HAGLER 4
 600 HEARNS 4
 600 FRAZIER 4
 700 GUINN 3
 700 JUDAH 3
 700 MARGARITO 3

The next step is to create a Cartesian product between the rows returned from inline view X and two
rows generated from DUAL using CONNECT BY. The results of this operation are as follows:

 select *
 from (
 select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from it_apps
) x,
 (select level id from dual connect by level <= 2) y
 order by 2

 DEPTNO ENAME CNT ID
 ------ ---------- --- ---
 500 CALZAGHE 2 1
 500 CALZAGHE 2 2
 400 CASTILLO 5 1
 400 CASTILLO 5 2
 400 CORRALES 5 1
 400 CORRALES 5 2
 600 FRAZIER 4 1
 600 FRAZIER 4 2
 500 GATTI 2 1
 500 GATTI 2 2
 700 GUINN 3 1
 700 GUINN 3 2
 600 HAGLER 4 1
 600 HAGLER 4 2
 600 HEARNS 4 1
 600 HEARNS 4 2
 700 JUDAH 3 1
 700 JUDAH 3 2
 600 LAMOTTA 4 1
 600 LAMOTTA 4 2
 700 MARGARITO 3 1
 700 MARGARITO 3 2
 400 MARQUEZ 5 1
 400 MARQUEZ 5 2
 400 MAYWEATHER 5 1
 400 MAYWEATHER 5 2
 400 MOSLEY 5 1
 400 MOSLEY 5 2

As you can see from these results, each row from inline view X is now returned twice due to the
Cartesian product with inline view Y. The reason a Cartesian is needed will become clear shortly. The
next step is to take the current result set and rank each employee within his DEPTNO by ID (ID has a
value of 1 or 2 as was returned by the Cartesian product). The result of this ranking is shown in the
output from the following query:

 select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
 select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from it_apps
) x,
 (select level id from dual connect by level <= 2) y

 DEPTNO ENAME CNT ID RN
 ------ ---------- --- --- ----------
 400 CORRALES 5 1 1
 400 MAYWEATHER 5 1 2
 400 CASTILLO 5 1 3
 400 MARQUEZ 5 1 4
 400 MOSLEY 5 1 5
 400 CORRALES 5 2 6
 400 MOSLEY 5 2 7
 400 MAYWEATHER 5 2 8
 400 CASTILLO 5 2 9
 400 MARQUEZ 5 2 10
 500 GATTI 2 1 1
 500 CALZAGHE 2 1 2
 500 GATTI 2 2 3
 500 CALZAGHE 2 2 4
 600 LAMOTTA 4 1 1
 600 HAGLER 4 1 2
 600 HEARNS 4 1 3
 600 FRAZIER 4 1 4
 600 LAMOTTA 4 2 5
 600 HAGLER 4 2 6
 600 FRAZIER 4 2 7
 600 HEARNS 4 2 8
 700 GUINN 3 1 1
 700 JUDAH 3 1 2
 700 MARGARITO 3 1 3
 700 GUINN 3 2 4
 700 JUDAH 3 2 5
 700 MARGARITO 3 2 6

Each employee is ranked; then his duplicate is ranked. The result set contains duplicates for all
employees in table IT_APP, along with their ranking within their DEPTNO. The reason you need to
generate these extra rows is because you need a slot in the result set to slip in the DEPTNO in the
ENAME column. If you Cartesian-join IT_APPS with a one-row table, you get no extra rows (because
cardinality of any table x1 = cardinality of that table).

The next step is to take the results returned thus far and pivot the result set such that all the
ENAMES are returned in one column but are preceded by the DEPTNO they are in. The following
query shows how this happens:

 select 1 flag1, 1 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
 select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps
) x,
 (select level id from dual connect by level <= 2) y
) z
 where rn <= cnt+1

 FLAG1 FLAG2 IT_DEPT
 ----- ---------- -------------------------
 1 1 400
 1 1 MAYWEATHER
 1 1 CASTILLO
 1 1 MARQUEZ
 1 1 MOSLEY
 1 1 CORRALES
 1 1 500
 1 1 CALZAGHE
 1 1 GATTI
 1 1 600
 1 1 HAGLER
 1 1 HEARNS
 1 1 FRAZIER
 1 1 LAMOTTA
 1 1 700
 1 1 JUDAH
 1 1 MARGARITO
 1 1 GUINN

FLAG1 and FLAG2 come into play later and can be ignored for the moment. Focus your attention on
the rows in IT_DEPT. The number of rows returned for each DEPTNO is CNT*2, but all that is needed
is CNT+1, which is the filter in the WHERE clause. RN is the ranking for each employee. The rows
kept are all those ranked less than or equal to CNT+1; i.e., all employees in each DEPTNO plus one
more (this extra employee is the employee who is ranked first in their DEPTNO). This extra row is
where the DEPTNO will slide in. By using DECODE (an older Oracle function that gives more or less
the equivalent of a CASE expression) to evaluate the value of RN, you can slide the value of DEPTNO
into the result set. The employee who was at position 1 (based on the value of RN) is still shown in
the result set, but is now last in each DEPTNO (because the order is irrelevant, this is not a problem).
That pretty much covers the lower part of the UNION ALL.

The upper part of the UNION ALL is processed in the same way as the lower part so there's no need
to explain how that works. Instead, let's examine the result set returned when stacking the queries:

 select 1 flag1, 0 flag2,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
 select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
 select deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_research
) x,
 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1
 union all
 select 1 flag1, 1 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
 select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
 select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps
) x,
 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1

 FLAG1 FLAG2 IT_DEPT
 ----- ---------- -----------------------
 1 0 100
 1 0 JONES
 1 0 TONEY
 1 0 HOPKINS
 1 0 200
 1 0 P.WHITAKER
 1 0 MARCIANO
 1 0 ROBINSON
 1 0 MORALES
 1 0 300
 1 0 WRIGHT
 1 0 J.TAYLOR
 1 0 LACY
 1 1 400
 1 1 MAYWEATHER
 1 1 CASTILLO
 1 1 MARQUEZ
 1 1 MOSLEY
 1 1 CORRALES
 1 1 500
 1 1 CALZAGHE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 1 GATTI
 1 1 600
 1 1 HAGLER
 1 1 HEARNS
 1 1 FRAZIER
 1 1 LAMOTTA
 1 1 700
 1 1 JUDAH
 1 1 MARGARITO
 1 1 GUINN

At this point, it isn't clear what FLAG1's purpose is, but you can see that FLAG2 identifies which rows
come from which part of the UNION ALL (0 for the upper part, 1 for the lower part).

The next step is to wrap the stacked result set in an inline view and create a running total on FLAG1
(finally, its purpose is revealed!), which will act as a ranking for each row in each stack. The results of
the ranking (running total) are shown below:

 select sum(flag1)over(partition by flag2
 order by flag1,rownum) flag,
 it_dept, flag2
 from (
 select 1 flag1, 0 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
 select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
 select deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_research
) x,
 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1
 union all
 select 1 flag1, 1 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
 select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
 select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps
) x,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1
) tmp1

 FLAG IT_DEPT FLAG2
 ---- --------------- ----------
 1 100 0
 2 JONES 0
 3 TONEY 0
 4 HOPKINS 0
 5 200 0
 6 P.WHITAKER 0
 7 MARCIANO 0
 8 ROBINSON 0
 9 MORALES 0
 10 300 0
 11 WRIGHT 0
 12 J.TAYLOR 0
 13 LACY 0
 1 400 1
 2 MAYWEATHER 1
 3 CASTILLO 1
 4 MARQUEZ 1
 5 MOSLEY 1
 6 CORRALES 1
 7 500 1
 8 CALZAGHEe 1
 9 GATTI 1
 10 600 1
 11 HAGLER 1
 12 HEARNS 1
 13 FRAZIER 1
 14 LAMOTTA 1
 15 700 1
 16 JUDAH 1
 17 MARGARITO 1
 18 GUINN 1

The last remaining step (finally!) is to pivot the value returned by TMP1 on FLAG2 while grouping by
FLAG (the running total generated in TMP1). The results from TMP1 are wrapped in an inline view and
pivoted (wrapped in a final inline view called TMP2). The final solution and result set is shown below:

 select max(decode(flag2,0,it_dept)) research,
 max(decode(flag2,1,it_dept)) apps
 from (
 select sum(flag1)over(partition by flag2
 order by flag1,rownum) flag,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 it_dept, flag2
 from (
 select 1 flag1, 0 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
 select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
 select deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_research
) x,
 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1
 union all
 select 1 flag1, 1 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
 select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
 select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps
) x,
 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1
) tmp1
) tmp2
 group by flag

 RESEARCH APPS
 -------------------- ---------------
 100 400
 JONES MAYWEATHER
 TONEY CASTILLO
 HOPKINS MARQUEZ
 200 MOSLEY
 P.WHITAKER CORRALES
 MARCIANO 500
 ROBINSON CALZAGHE
 MORALES GATTI
 300 600
 WRIGHT HAGLER
 J.TAYLOR HEARNS
 LACY FRAZIER
 LAMOTTA
 700

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JUDAH
 MARGARITO
 GUINN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.10. Converting a Scalar Subquery to a
Composite Subquery in Oracle

Problem

You would like to bypass the restriction of returning exactly one value from a scalar subquery. For
example, you attempt to execute the following query:

 select e.deptno,
 e.ename,
 e.sal,
 (select d.dname,d.loc,sysdate today
 from dept d
 where e.deptno=d.deptno)
 from emp e

but receive an error because subqueries in the SELECT list are allowed to return only a single value.

Solution

Admittedly, this problem is quite unrealistic, because a simple join between tables EMP and DEPT
would allow you to return as many values you want from DEPT. Nevertheless, the key is to focus on
the technique and understand how to apply it to a scenario that you find useful. The key to bypassing
the requirement to return a single value when placing a SELECT within SELECT (scalar subquery) is
to take advantage of Oracle's object types. You can define an object to have several attributes, and
then you can work with it as a single entity or reference each element individually. In effect, you
don't really bypass the rule at all. You simply return one value, an object, that in turn contains many
attributes.

This solution makes use of the following object type:

 create type generic_obj
 as object (
 val1 varchar2(10),
 val2 varchar2(10),
 val3 date
);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With this type in place, you can execute the following query:

 1 select x.deptno,
 2 x.ename,
 3 x.multival.val1 dname,
 4 x.multival.val2 loc,
 5 x.multival.val3 today
 6 from (
 7select e.deptno,
 8 e.ename,
 9 e.sal,
 10 (select generic_obj(d.dname,d.loc,sysdate+1)
 11 from dept d
 12 where e.deptno=d.deptno) multival
 13 from emp e
 14) x

 DEPTNO ENAME DNAME LOC TODAY
 ------ ---------- ---------- ---------- -----------
 20 SMITH RESEARCH DALLAS 12-SEP-2005
 30 ALLEN SALES CHICAGO 12-SEP-2005
 30 WARD SALES CHICAGO 12-SEP-2005
 20 JONES RESEARCH DALLAS 12-SEP-2005
 30 MARTIN SALES CHICAGO 12-SEP-2005
 30 BLAKE SALES CHICAGO 12-SEP-2005
 10 CLARK ACCOUNTING NEW YORK 12-SEP-2005
 20 SCOTT RESEARCH DALLAS 12-SEP-2005
 10 KING ACCOUNTING NEW YORK 12-SEP-2005
 30 TURNER SALES CHICAGO 12-SEP-2005
 20 ADAMS RESEARCH DALLAS 12-SEP-2005
 30 JAMES SALES CHICAGO 12-SEP-2005
 20 FORD RESEARCH DALLAS 12-SEP-2005
 10 MILLER ACCOUNTING NEW YORK 12-SEP-2005

Discussion

The key to the solution is to use the object's constructor function (by default the constructor function
has the same name as the object). Because the object itself is a single scalar value, it does not
violate the scalar subquery rule, as you can see from the following:

 select e.deptno,
 e.ename,
 e.sal,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (select generic_obj(d.dname,d.loc,sysdate-1)
 from dept d
 where e.deptno=d.deptno) multival
 from emp e

 DEPTNO ENAME SAL MULTIVAL(VAL1, VAL2, VAL3)
 ------ ------ ----- ---
 20 SMITH 800 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')
 30 ALLEN 1600 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
 30 WARD 1250 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
 20 JONES 2975 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')
 30 MARTIN 1250 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
 30 BLAKE 2850 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
 10 CLARK 2450 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2005')
 20 SCOTT 3000 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')
 10 KING 5000 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2005')
 30 TURNER 1500 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
 20 ADAMS 1100 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')
 30 JAMES 950 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')
 20 FORD 3000 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')
 10 MILLER 1300 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2005')

The next step is to simply wrap the query in an inline view and extract the attributes.

One important note: In Oracle, unlike the case with other vendors, you do not
generally need to name your inline views. In this particular case, however, you
do need to name your inline view. Otherwise you will not be able to reference
the object's attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.11. Parsing Serialized Data into Rows

Problem

You have serialized data (stored in strings) that you want to parse and return as rows. For example,
you store the following data:

 STRINGS

 entry:stewiegriffin:lois:brian:
 entry:moe::sizlack:
 entry:petergriffin:meg:chris:
 entry:willie:
 entry:quagmire:mayorwest:cleveland:
 entry:::flanders:
 entry:robo:tchi:ken:

You want to convert these serialized strings into the following result set:

 VAL1 VAL2 VAL3
 --------------- --------------- ---------------
 moe sizlack
 petergriffin meg chris
 quagmire mayorwest cleveland
 robo tchi ken
 stewiegriffin lois brian
 willie
 flanders

Solution

Each serialized string in this example can store up to three values. The values are delimited by
colons, and a string may or may not have all three entries. If a string does not have all three entries,
you must be careful to place the entries that are available into the correct column in the result set.
For example, consider the following row:

 entry:::flanders:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This row represents an entry with the first two values missing and only the third value available.
Hence, if you examine the target result set in the "Problem" section, you will notice that for the row
"flanders" is in, both VAL1 and VAL2 are NULL.

The key to this solution is nothing more than a string walk with some string parsing, following by a
simple pivot. This solution uses rows from view V, which is defined as follows. The example uses
Oracle syntax, but since nothing more than string parsing functions are needed for this recipe,
converting to other platforms is trivial:

 create view V
 as
 select 'entry:stewiegriffin:lois:brian:' strings
 from dual
 union all
 select 'entry:moe::sizlack:'
 from dual
 union all
 select 'entry:petergriffin:meg:chris:'
 from dual
 union all
 select 'entry:willie:'
 from dual
 union all
 select 'entry:quagmire:mayorwest:cleveland:'
 from dual
 union all
 select 'entry:::flanders:'
 from dual
 union all
 select 'entry:robo:tchi:ken:'
 from dual

Using view V to supply the example data to parse, the solution is as follows:

 1 with cartesian as (
 2 select level id
 3 from dual
 4 connect by level <= 100
 5)
 6 select max(decode(id,1,substr(strings,p1+1,p2-1))) val1,
 7 max(decode(id,2,substr(strings,p1+1,p2-1))) val2,
 8 max(decode(id,3,substr(strings,p1+1,p2-1))) val3
 9 from (
 10 select v.strings,
 11 c.id,
 12 instr(v.strings,':',1,c.id) p1,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 13 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
 14 from v, cartesian c
 15 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
 16)
 17 group by strings
 18 order by 1

Discussion

The first step is to walk the serialized strings:

 with cartesian as (
 select level id
 from dual
 connect by level <= 100
)
 select v.strings,
 c.id
 from v,cartesian c
 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1

 STRINGS ID
 ----------------------------------- ---
 entry:::flanders: 1
 entry:::flanders: 2
 entry:::flanders: 3
 entry:moe::sizlack: 1
 entry:moe::sizlack: 2
 entry:moe::sizlack: 3
 entry:petergriffin:meg:chris: 1
 entry:petergriffin:meg:chris: 3
 entry:petergriffin:meg:chris: 2
 entry:quagmire:mayorwest:cleveland: 1
 entry:quagmire:mayorwest:cleveland: 3
 entry:quagmire:mayorwest:cleveland: 2
 entry:robo:tchi:ken: 1
 entry:robo:tchi:ken: 2
 entry:robo:tchi:ken: 3
 entry:stewiegriffin:lois:brian: 1
 entry:stewiegriffin:lois:brian: 3
 entry:stewiegriffin:lois:brian: 2
 entry:willie: 1

The next step is to use the function INSTR to find the numeric position of each colon in each string.
Since each value you need to extract is enclosed by two colons, the numeric values are aliased P1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and P2, for "position 1" and "position 2":

 with cartesian as (
 select level id
 from dual
 connect by level <= 100
)
 select v.strings,
 c.id,
 instr(v.strings,':',1,c.id) p1,
 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
 from v,cartesian c
 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
 order by 1

 STRINGS ID P1 P2
 ----------------------------------- --- ---------- ----------
 entry:::flanders: 1 6 1
 entry:::flanders: 2 7 1
 entry:::flanders: 3 8 9
 entry:moe::sizlack: 1 6 4
 entry:moe::sizlack: 2 10 1
 entry:moe::sizlack: 3 11 8
 entry:petergriffin:meg:chris: 1 6 13
 entry:petergriffin:meg:chris: 3 23 6
 entry:petergriffin:meg:chris: 2 19 4
 entry:quagmire:mayorwest:cleveland: 1 6 9
 entry:quagmire:mayorwest:cleveland: 3 25 10
 entry:quagmire:mayorwest:cleveland: 2 15 10
 entry:robo:tchi:ken: 1 6 5
 entry:robo:tchi:ken: 2 11 5
 entry:robo:tchi:ken: 3 16 4
 entry:stewiegriffin:lois:brian: 1 6 14
 entry:stewiegriffin:lois:brian: 3 25 6
 entry:stewiegriffin:lois:brian: 2 20 5
 entry:willie: 1 6 7

Now that you know the numeric positions for each pair of colons in each string, simply pass the
information to the function SUBSTR to extract values. Since you want to create a result set with three
columns, use DECODE to evaluate the ID from the Cartesian product:

 with cartesian as (
 select level id
 from dual
 connect by level <= 100
)
 select decode(id,1,substr(strings,p1+1,p2-1)) val1,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 decode(id,2,substr(strings,p1+1,p2-1)) val2,
 decode(id,3,substr(strings,p1+1,p2-1)) val3
 from (
 select v.strings,
 c.id,
 instr(v.strings,':',1,c.id) p1,
 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
 from v,cartesian c
 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
)
 order by 1

 VAL1 VAL2 VAL3
 --------------- --------------- --------------
 moe
 petergriffin
 quagmire
 robo
 stewiegriffin
 willie
 lois

 meg
 mayorwest

 tchi
 brian
 sizlack
 chris
 cleveland
 flanders
 ken

The last step is to apply an aggregate function to the values returned by SUBSTR while grouping by
ID, to make a human-readable result set:

 with cartesian as (
 select level id
 from dual
 connect by level <= 100
)
 select max(decode(id,1,substr(strings,p1+1,p2-1))) val1,
 max(decode(id,2,substr(strings,p1+1,p2-1))) val2,
 max(decode(id,3,substr(strings,p1+1,p2-1))) val3
 from (
 select v.strings,
 c.id,
 instr(v.strings,':',1,c.id) p1,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
 from v,cartesian c
 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
)
 group by strings
 order by 1

 VAL1 VAL2 VAL3
 --------------- --------------- -----------
 moe sizlack
 petergriffin meg chris
 quagmire mayorwest cleveland
 robo tchi ken
 stewiegriffin lois brian
 willie
 flanders

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.12. Calculating Percent Relative to Total

Problem

You want to report a set of numeric values, and you want to show each value as a percentage of the
whole. For example, you are on an Oracle system and you want to return a result set that shows the
breakdown of salaries by JOB so that you can determine which JOB position costs the company the
most money. You also want to include the number of employees per JOB to prevent the results from
being misleading. You want to produce the following report:

 JOB NUM_EMPS PCT_OF_ALL_SALARIES
 --------- ---------- -------------------
 CLERK 4 14
 ANALYST 2 20
 MANAGER 3 28
 SALESMAN 4 19
 PRESIDENT 1 17

As you can see, if the number of employees is not included in the report, it would look as if the
president position takes very little of the overall salary. Seeing that there is only one president helps
put into perspective what that 17% means.

Solution

Only Oracle enables a decent solution to this problem, which involves using the built-in function
RATIO_TO_REPORT. To calculate percentages of the whole for other databases, you can use division
as shown in "Determining the Percentage of a Total" in Chapter 7.

 1 select job,num_emps,sum(round(pct)) pct_of_all_salaries
 2 from (
 3 select job,
 4 count(*)over(partition by job) num_emps,
 5 ratio_to_report(sal)over()*100 pct
 6 from emp
 7)
 8 group by job,num_emps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

The first step is to use the window function COUNT OVER to return the number of employees per
JOB. Then use RATIO_TO_REPORT to return the percentage each salary counts against the total (the
value is returned in decimal):

 select job,
 count(*)over(partition by job) num_emps,
 ratio_to_report(sal)over()*100 pct
 from emp

 JOB NUM_EMPS PCT
 --------- ---------- ----------
 ANALYST 2 10.3359173
 ANALYST 2 10.3359173
 CLERK 4 2.75624462
 CLERK 4 3.78983635
 CLERK 4 4.4788975
 CLERK 4 3.27304048
 MANAGER 3 10.2497847
 MANAGER 3 8.44099914
 MANAGER 3 9.81912145
 PRESIDENT 1 17.2265289
 SALESMAN 4 5.51248923
 SALESMAN 4 4.30663221
 SALESMAN 4 5.16795866
 SALESMAN 4 4.30663221

The last step is to use the aggregate function SUM to sum the values returned by
RATIO_TO_REPORT. Be sure to group by JOB and NUM_EMPS. Multiply by 100 to return a whole
number that represents a percentage (e.g., to return 25 rather than 0.25 for 25%):

 select job,num_emps,sum(round(pct)) pct_of_all_salaries
 from (
 select job,
 count(*)over(partition by job) num_emps,
 ratio_to_report(sal)over()*100 pct
 from emp
)
 group by job,num_emps

 JOB NUM_EMPS PCT_OF_ALL_SALARIES
 --------- ---------- -------------------
 CLERK 4 14
 ANALYST 2 20

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MANAGER 3 28
 SALESMAN 4 19
 PRESIDENT 1 17

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.13. Creating CSV Output from Oracle

Problem

You want to create a delimited list (perhaps comma delimited) from rows in a table. For example,
using table EMP, you want to return the following result set:

 DEPTNO LIST
 ------ --------------------------------------
 10 MILLER,KING,CLARK
 20 FORD,ADAMS,SCOTT,JONES,SMITH
 30 JAMES,TURNER,BLAKE,MARTIN,WARD,ALLEN

You are on an Oracle system (Oracle Database 10g or later) and want to use the MODEL clause.

Solution

This solution takes advantage of the iteration capabilities of Oracle's MODEL clause. The technique is
to use the window function ROW_NUMBER OVER to rank each employee (by EMPNO, which is
arbitrary) in each DEPTNO. Because MODEL provides array access, you can access prior array
elements by subtracting from the rank. So, for each row, create a list that includes each employee's
name, plus the name of the employee ranked before the current employee:

 1 select deptno,
 2 list
 3 from (
 4 select *
 5 from (
 6 select deptno,empno,ename,
 7 lag(deptno)over(partition by deptno
 8 order by empno) prior_deptno
 9 from emp
 10)
 11 model
 12 dimension by
 13 (
 14 deptno,
 15 row_number()over(partition by deptno order by empno) rn
 16)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 17 measures
 18 (
 19 ename,
 20 prior_deptno,cast(null as varchar2(60)) list,
 21 count(*)over(partition by deptno) cnt,
 22 row_number()over(partition by deptno order by empno) rnk
 23)
 24 rules
 25 (
 26 list[any,any]
 27 order by deptno,rn = case when prior_deptno[cv(),cv()] is null
 28 then ename[cv(),cv()]
 29 else ename[cv(),cv()]||','||
 30 list[cv(),rnk[cv(),cv()]-1]
 31 end
 32)
 33)
 34 where cnt = rn

Discussion

The first step is to use the window function LAG OVER to return the DEPTNO of the previous
employee (sorted by EMPNO). The results are partitioned by DEPTNO, so the return value will be
NULL for the first employee (by EMPNO) in the department and DEPTNO for the rest. The results are
as follows:

 select deptno,empno,ename,
 lag(deptno)over(partition by deptno
 order by empno) prior_deptno
 from emp

 DEPTNO EMPNO ENAME PRIOR_DEPTNO
 ------ ---------- ------ ------------
 10 7782 CLARK
 10 7839 KING 10
 10 7934 MILLER 10
 20 7369 SMITH
 20 7566 JONES 20
 20 7788 SCOTT 20
 20 7876 ADAMS 20
 20 7902 FORD 20
 30 7499 ALLEN
 30 7521 WARD 30
 30 7654 MARTIN 30
 30 7698 BLAKE 30
 30 7844 TURNER 30
 30 7900 JAMES 30

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next step is to examine the MEASURES subclause of the MODEL clause. The items in the
MEASURES list are the arrays:

ENAME

An array of all the ENAMEs in EMP

PRIOR_DEPTNO

An array of the values returned by the LAG OVER window function

CNT

An array of the number of employees in each DEPTNO

RNK

An array of rankings (by EMPNO) for each employee in each DEPTNO

The array indices are DEPTNO and RN (the value returned by the ROW_NUMBER OVER window
function in the DIMENSION BY subclause). To see what all these arrays contain, simply comment out
the code listed in the RULES subclause of the MODEL clause and execute the query, as follows:

 select *
 from (
 select deptno,empno,ename,
 lag(deptno)over(partition by deptno
 order by empno) prior_deptno
 from emp
)
 model
 dimension by
 (
 deptno,
 row_number()over(partition by deptno order by empno) rn
)
 measures
 (
 ename,
 prior_deptno,cast(null as varchar2(60)) list,
 count(*)over(partition by deptno) cnt,
 row_number()over(partition by deptno order by empno) rnk
)
 rules

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (
 /*
 list[any,any]
 order by deptno,rn = case when prior_deptno[cv(),cv()] is null
 then ename[cv(),cv()]
 else ename[cv(),cv()]||','||
 list[cv(),rnk[cv(),cv()]-1]
 end
 */
)
 order by 1

 DEPTNO RN ENAME PRIOR_DEPTNO LIST CNT RNK
 ------ --- ------ ------------ ---------- --- ----
 10 1 CLARK 3 1
 10 2 KING 10 3 2
 10 3 MILLER 10 3 3
 20 1 SMITH 5 1
 20 2 JONES 20 5 2
 20 4 ADAMS 20 5 4
 20 5 FORD 20 5 5
 20 3 SCOTT 20 5 3
 30 1 ALLEN 6 1
 30 6 JAMES 30 6 6
 30 4 BLAKE 30 6 4
 30 3 MARTIN 30 6 3
 30 5 TURNER 30 6 5
 30 2 WARD 30 6 2

Now that you know exactly what each item declared in the MODEL clause does, continue on to the
RULES subclause. If you look at the CASE expression, you'll see that the current value for
PRIOR_DEPTNO is being evaluated. If that value is NULL, it signifies that the first employee in each
DEPTNO and ENAME should be returned to that employee's LIST array. If the value for
PRIOR_DEPTNO is not NULL, then append the value of the prior employee's LIST to the current
employee's name (ENAME array), and then return that result as the current employee's LIST. This
CASE expression operation, when performed for each row in DEPTNO, results in an iteratively built
comma-separated values (CSV) list. You can see the intermediate results in the following example:

 select deptno,
 list
 from (
 select *
 from (
 select deptno,empno,ename,
 lag(deptno)over(partition by deptno
 order by empno) prior_deptno
 from emp
)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 model
 dimension by
 (
 deptno,
 row_number()over(partition by deptno order by empno) rn
)
 measures
 (
 ename,
 prior_deptno,cast(null as varchar2(60)) list,
 count(*)over(partition by deptno) cnt,
 row_number()over(partition by deptno order by empno) rnk
)
 rules
 (
 list[any,any]
 order by deptno,rn = case when prior_deptno[cv(),cv()] is null
 then ename[cv(),cv()]
 else ename[cv(),cv()]||','||
 list[cv(),rnk[cv(),cv()]-1]
 end
)
)

 DEPTNO LIST
 ------ ---------------------------------------
 10 CLARK
 10 KING,CLARK
 10 MILLER,KING,CLARK
 20 SMITH
 20 JONES,SMITH
 20 SCOTT,JONES,SMITH
 20 ADAMS,SCOTT,JONES,SMITH
 20 FORD,ADAMS,SCOTT,JONES,SMITH
 30 ALLEN
 30 WARD,ALLEN
 30 MARTIN,WARD,ALLEN
 30 BLAKE,MARTIN,WARD,ALLEN
 30 TURNER,BLAKE,MARTIN,WARD,ALLEN
 30 JAMES,TURNER,BLAKE,MARTIN,WARD,ALLEN

The last step is to keep only the last employee in each DEPTNO to ensure that you have a complete
CSV list for each DEPTNO. Use the values stored in the CNT array and the values stored in the RN
array to keep only the completed CSV for each DEPTNO. Because RN represents a ranking of
employees in each DEPTNO by EMPNO, the last employee in each DEPTNO will be the one where CNT
= RN, as the following example shows:

 select deptno,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 list
 from (
 select *
 from (
 select deptno,empno,ename,
 lag(deptno)over(partition by deptno
 order by empno) prior_deptno
 from emp
)
 model
 dimension by
 (
 deptno,
 row_number()over(partition by deptno order by empno) rn
)
 measures
 (
 ename,
 prior_deptno,cast(null as varchar2(60)) list,
 count(*)over(partition by deptno) cnt,
 row_number()over(partition by deptno order by empno) rnk
)
 rules
 (
 list[any,any]
 order by deptno,rn = case when prior_deptno[cv(),cv()] is null
 then ename[cv(),cv()]
 else ename[cv(),cv()]||','||
 list[cv(),rnk[cv(),cv()]-1]
 end
)
)
 where cnt = rn

 DEPTNO LIST
 ------ --
 10 MILLER,KING,CLARK
 20 FORD,ADAMS,SCOTT,JONES,SMITH
 30 JAMES,TURNER,BLAKE,MARTIN,WARD,ALLEN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.14. Finding Text Not Matching a Pattern
(Oracle)

Problem

You have a text field that contains some structured text values (e.g., phone numbers), and you wish
to find occurrences where those values are structured incorrectly. For example, you have data like
the following:

 select emp_id, text
 from employee_comment

 EMP_ID TEXT
 ---------- --
 7369 126 Varnum, Edmore MI 48829, 989 313-5351
 7499 1105 McConnell Court
 Cedar Lake MI 48812
 Home: 989-387-4321
 Cell: (237) 438-3333

and you wish to list rows having invalidly formatted phone numbers. For example, you wish to list the
following row because its phone number uses two different separator characters:

 7369 126 Varnum, Edmore MI 48829, 989 313-5351

You wish to consider valid only those phone numbers that use the same character for both delimiters.

Solution

This problem has a multi-part solution:

Find a way to describe the universe of apparent phone numbers that you wish to consider.1.

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Remove any validly formatted phone numbers from consideration.2.

See whether you still have any apparent phone numbers left. If you do, you know those are
invalidly formatted.

3.

The following solution makes good use of the regular expression functionality introduced in Oracle
Database 10g

 select emp_id, text
 from employee_comment
 where regexp_like(text, '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')
 and regexp_like(
 regexp_replace(text,
 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),
 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

 EMP_ID TEXT
 ---------- --
 7369 126 Varnum, Edmore MI 48829, 989 313-5351
 7844 989-387.5359
 9999 906-387-1698, 313-535.8886

Each of these rows contains at least one apparent phone number that is not correctly formatted.

Discussion

The key to this solution lies in the detection of an "apparent phone number." Given that the phone
numbers are stored in a comment field, any text at all in the field could be construed to be an invalid
phone number. You need a way to narrow the field to a more reasonable set of values to consider.
You don't, for example, want to see the following row in your output:

 EMP_ID TEXT
 ---------- --
 7900 Cares for 100-year-old aunt during the day. Schedule only
 for evening and night shifts.

Clearly there's no phone number at all in this row, much less one that is invalid. You and I can see
that. The question is, how do you get the RDBMS to "see" it. I think you'll enjoy the answer. Please
read on.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This recipe comes (with permission) from an article by Jonathan Gennick called
"Regular Expression Anti-Patterns," which you can read at:
http://gennick.com/antiregex.htm.

The solution uses Pattern A to define the set of "apparent" phone numbers to consider:

 Pattern A: [0-9]{3}[-.][0-9]{3}[-.][0-9]{4}

Pattern A checks for two groups of three digits followed by one group of four digits. Any one of a dash
(-), a period (.), or a space are accepted as delimiters between groups. You could come up with a
more complex pattern. For example, you could decide that you also wish to consider seven-digit
phone numbers. But don't get side-tracked. The point now is that somehow you do need to define the
universe of possible phone number strings to consider, and for this problem that universe is defined
by Pattern A. You can define a different Pattern A, and the general solution still applies.

The solution uses Pattern A in the WHERE clause to ensure that only rows having potential phone
numbers (as defined by the pattern!) are considered:

 select emp_id, text
 from employee_comment
 where regexp_like(text, '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

Next, you need to define what a "good" phone number looks like. The solution does this using Pattern
B:

 Pattern B: [0-9]{3}([-.])[0-9]{3}\1[0-9]{4}

This time, the pattern uses \1 to reference the first subexpression. Whichever character is matched
by ([-.]) must also be matched by \1. Pattern B describes good phone numbers, which must be
eliminated from consideration (as they are not bad). The solution eliminates the well-formatted
phone numbers through a call to REGEXP_ REPLACE:

 regexp_replace(text,
 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),

This call to REGEXP_REPLACE occurs in the WHERE clause. Any well-formatted phone numbers are
replaced by a string of three asterisks. Again, Pattern B can be any pattern that you desire. The point
is that Pattern B describes the acceptable pattern that you are after.

http://gennick.com/antiregex.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Having replaced well-formatted phone numbers with strings of three asterisks (***), any "apparent"
phone numbers that remain must, by definition, be poorly formatted. The solution applies
REGEXP_LIKE to the output from REGEXP_LIKE to see whether any poorly formatted phone numbers
remain:

 and regexp_like(
 regexp_replace(text,
 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),
 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

This recipe would be difficult to implement without the pattern matching capabilities inherent in
Oracle's relatively new regular expression features. In particular, this recipe depends on
REGEXP_REPLACE. Other databases (notably PostgreSQL) implement support for regular
expressions. But to my knowledge, only Oracle supports the regular expression search and replace
functionality on which this recipe depends.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.15. Transforming Data with an Inline View

Problem

You have a table in a column that sometimes contains numeric data and sometimes character data.
Another column in the same table indicates which is the case. You wish to use a subquery to isolate
only the numeric data:

 select *
 from (select flag, to_number(num) num
 from subtest
 where flag in ('A', 'C'))
 where num > 0

Unfortunately, this query against an inline view often (but perhaps not always!) results in the
following error message;

 ERROR:
 ORA-01722: invalid number

Solution

One solution is to force the inline view to completely execute prior to the outer SELECT statement.
You can do that, in Oracle at least, by including the row number pseudo-column in your inner SELECT
list:

 select *
 from (select rownum, flag, to_number(num) num
 from subtest
 where flag in ('A', 'C'))
 where num > 0

See "Discussion" for an explanation of why this solution works.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

The reason for the invalid number error in the problem query is that some optimizers will merge the
inner and outer queries. While it looks like you are executing an inner query first to remove all non-
numeric NUM values, you might really be executing:

 select flag, to_number(num) num
 from subtest
 where to_number(num) > 0 and flag in ('A', 'C');

And now you can probably clearly see the reason for the error: rows with non-numeric NUM values
are not filtered out before the TO_NUMBER function is applied.

Should a database merge sub and main queries? The answer depends on
whether you are thinking in terms of relational theory, in terms of the SQL
standard, or in terms of how your particular database vendor chooses to
implement his brand of SQL. You can learn more by visiting
http://gennick.com/madness.html.

The solution solves the problem, in Oracle at least, because it adds ROWNUM to the inner query's
SELECT list. ROWNUM is a function that returns a sequentially increasing number for each row
returned by a query. Those last words are important. The sequentially increasing number, termed a
row number, cannot be computed outside the context of returning a row from a query. Thus, Oracle
is forced to materialize the result of the subquery, which means that Oracle is forced to execute the
subquery first in order to return rows from that subquery in order to properly assign row numbers.
Thus, querying for ROWNUM is one mechanism that you can use to force Oracle to fully execute a
subquery prior to the main query (i.e., no merging of queries allowed). If you are not using Oracle,
and you need to force the order of execution of a subquery, check to see whether your database
supports something analogous to Oracle's ROWNUM function.

http://gennick.com/madness.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.16. Testing for Existence of a Value Within a
Group

Problem

You want to create a Boolean flag for a row depending on whether or not any row in its group
contains a specific value. Consider an example of a student who has taken a certain number of
exams during a period of time. A student will take three exams over three months. If a student
passes one of these exams, the requirement is satisfied and a flag should be returned to express that
fact. If a student did not pass any of the three tests in the three month period, then an additional flag
should be returned to express that fact as well. Consider the following example (using Oracle syntax
to make up rows for this example; minor modifications are necessary for DB2 and SQL Server,
because both support window functions):

 create view V
 as
 select 1 student_id,
 1 test_id,
 2 grade_id,
 1 period_id,
 to_date('02/01/2005','MM/DD/YYYY') test_date,
 0 pass_fail
 from dual union all
 select 1, 2, 2, 1, to_date('03/01/2005','MM/DD/YYYY'), 1 from dual union all
 select 1, 3, 2, 1, to_date('04/01/2005','MM/DD/YYYY'), 0 from dual union all
 select 1, 4, 2, 2, to_date('05/01/2005','MM/DD/YYYY'), 0 from dual union all
 select 1, 5, 2, 2, to_date('06/01/2005','MM/DD/YYYY'), 0 from dual union all
 select 1, 6, 2, 2, to_date('07/01/2005','MM/DD/YYYY'), 0 from dual

 select *
 from V

 STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL
 ---------- ------- -------- --------- ----------- ---------
 1 1 2 1 01-FEB-2005 0
 1 2 2 1 01-MAR-2005 1
 1 3 2 1 01-APR-2005 0
 1 4 2 2 01-MAY-2005 0
 1 5 2 2 01-JUN-2005 0
 1 6 2 2 01-JUL-2005 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Examining the result set above, you see that the student has taken six tests over two, three-month
periods. The student has passed one test (1 means "pass"; 0 means "fail"), thus the requirement is
satisfied for the entire first period. Because the student did not pass any exams during the second
period (the next three months), PASS_FAIL is 0 for all three exams. You want to return a result set
that highlights whether or not a student has passed a test for a given period. Ultimately you want to
return the following result set:

 STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE METREQ IN_PROGRESS
 ---------- ------- -------- --------- ----------- ------ -----------
 1 1 2 1 01-FEB-2005 + 0
 1 2 2 1 01-MAR-2005 + 0
 1 3 2 1 01-APR-2005 + 0
 1 4 2 2 01-MAY-2005 - 0
 1 5 2 2 01-JUN-2005 - 0
 1 6 2 2 01-JUL-2005 - 1

The values for METREQ ("met requirement") are + and -, signifying the student either has or has not
satisfied the requirement of passing at least one test in a period (three-month span), respectively.
The value for IN_PROGRESS should be 0 if a student has already passed a test in a given period. If a
student has not passed a test for a given period, then the row that has the latest exam date for that
student will have a value of 1 for IN_PROGRESS.

Solution

What makes this problem a bit tricky is the fact that you have to treat rows in a group as a group
and not as individuals. Consider the values for PASS_FAIL in the problem section. If you evaluate row
by row, it would seem that the value for METREQ for each row except TEST_ID 2 should be "-", when
in fact that is not the case. You must ensure you evaluate the rows as a group. By using the window
function MAX OVER you can easily determine whether or not a student passed at least one test
during a particular period. Once you have that information, the "Boolean" values are a simple matter
of using CASE expressions:

 1 select student_id,
 2 test_id,
 3 grade_id,
 4 period_id,
 5 test_date,
 6 decode(grp_p_f,1,lpad('+',6),lpad('-',6)) metreq,
 7 decode(grp_p_f,1,0,
 8 decode(test_date,last_test,1,0)) in_progress
 9 from (
 10 select V.*,
 11 max(pass_fail)over(partition by
 12 student_id,grade_id,period_id) grp_p_f,
 13 max(test_date)over(partition by
 14 student_id,grade_id,period_id) last_test

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 15 from V
 16) x

Discussion

The key to the solution is using the window function MAX OVER to return the greatest value of
PASS_FAIL for each group. Because the values for PASS_FAIL are only 1 or 0, if a student passed at
least one exam, then MAX OVER would return 1 for the entire group. How this works is shown below:

 select V.*,
 max(pass_fail)over(partition by
 student_id,grade_id,period_id) grp_pass_fail
 from V

 STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL GRP_PASS_FAIL
 ---------- ------- -------- --------- ----------- --------- -------------
 1 1 2 1 01-FEB-2005 0 1
 1 2 2 1 01-MAR-2005 1 1
 1 3 2 1 01-APR-2005 0 1
 1 4 2 2 01-MAY-2005 0 0
 1 5 2 2 01-JUN-2005 0 0
 1 6 2 2 01-JUL-2005 0 0

The result set above shows that the student passed at least one test during the first period, thus the
entire group has a value of 1 or "pass." The next requirement is that if the student has not passed
any tests in a period, return a value of 1 for he IN_ PROGRESS flag for the latest test date in that
group. You can use the window function MAX OVER to do this as well:

 select V.*,
 max(pass_fail)over(partition by
 student_id,grade_id,period_id) grp_p_f,
 max(test_date)over(partition by
 student_id,grade_id,period_id) last_test
 from V

 STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL GRP_P_F LAST_TEST
 ---------- ------- -------- --------- ----------- --------- ------- -----------
 1 1 2 1 01-FEB-2005 0 1 01-APR-2005
 1 2 2 1 01-MAR-2005 1 1 01-APR-2005
 1 3 2 1 01-APR-2005 0 1 01-APR-2005
 1 4 2 2 01-MAY-2005 0 0 01-JUL-2005
 1 5 2 2 01-JUN-2005 0 0 01-JUL-2005
 1 6 2 2 01-JUL-2005 0 0 01-JUL-2005

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now that you have determined for which period the student has passed a test and what the latest
test date for each period is, the last step is simply a matter of applying some formatting magic to
make the result set look nice. The final solution uses Oracle's DECODE function (CASE supporters eat
your hearts out) to create the METREQ and IN_PROGRESS columns. Use the LPAD function to right
justify the values for METREQ:

 select student_id,
 test_id,
 grade_id,
 period_id,
 test_date,
 decode(grp_p_f,1,lpad('+',6),lpad('-',6)) metreq,
 decode(grp_p_f,1,0,
 decode(test_date,last_test,1,0)) in_progress
 from (
 select V.*,
 max(pass_fail)over(partition by
 student_id,grade_id,period_id) grp_p_f,
 max(test_date)over(partition by
 student_id,grade_id,period_id) last_test
 from V
) x

 STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE METREQ IN_PROGRESS
 ---------- ------- -------- --------- ----------- ------ -----------
 1 1 2 1 01-FEB-2005 + 0
 1 2 2 1 01-MAR-2005 + 0
 1 3 2 1 01-APR-2005 + 0
 1 4 2 2 01-MAY-2005 - 0
 1 5 2 2 01-JUN-2005 - 0
 1 6 2 2 01-JUL-2005 - 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. Window Function Refresher
The recipes in this book take full advantage of the window functions added to the ISO SQL standard
in 2003, as well as vendor-specific window functions. This appendix is meant to serve as a brief
overview of how window functions work. Window functions make many typically difficult tasks
(difficult to solve using standard SQL, that is) quite easy. For a complete list of window functions
available, full syntax, and in-depth coverage of how they work, please consult your vendor's
documentation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe A.1. Grouping

Before moving on to window functions, it is crucial that you understand how grouping works in SQL.
In my experience, the concept of grouping results in SQL has been a stumbling block for many. The
problems stem from not fully understanding how the GROUP BY clause works and why certain queries
return certain results when using GROUP BY.

Simply stated, grouping is a way to organize like rows together. When you use GROUP BY in a query,
each row in the result set is a group and represents one or more rows with the same values in one or
more columns that you specify. That's the gist of it.

If a group is simply a unique instance of a row that represents one or more rows with the same value
for a particular column (or columns), then practical examples of groups from table EMP include all
employees in department 10 (the common value for these employees that enable them to be in the
same group is DEPTNO=10) or all clerks (the common value for these employees that enable them to
be in the same group is JOB='CLERK'). Consider the following queries. The first shows all employees
in department 10; the second query groups the employees in department 10 and returns the
following information about the group: the number of rows (members) in the group, the highest
salary, and the lowest salary:

 select deptno,ename
 from emp
 where deptno=10

 DEPTNO ENAME
 ------ ----------
 10 CLARK
 10 KING
 10 MILLER

 select deptno,
 count(*) as cnt,
 max(sal) as hi_sal,
 min(sal) as lo_sal
 from emp
 where deptno=10
 group by deptno

 DEPTNO CNT HI_SAL LO_SAL
 ------ ---------- ---------- ----------
 10 3 5000 1300

If you were not able to group the employees in department 10 together, to get the information in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

second query above you would have to manually inspect the rows for that department (trivial if there
are only three rows, but what if there were three million rows?). So, why would anyone want to
group? Reasons for doing so vary; perhaps you want to see how many different groups exist or how
many members (rows) are in each group. As you can see from the simple example above, grouping
allows you to get information about many rows in a table without having to inspect them one by one.

Definition of an SQL Group

In mathematics, a group is defined, for the most part, as (G, •, e), where G is a set, • is a binary
operation in G, and e is a member of G. We will use this definition as the foundation for what a SQL
group is. A SQL group will be defined as (G, e), where G is a result set of a single or self-contained
query that uses GROUP BY, e is a member of G, and the following axioms are satisfied:

For each e in G, e is distinct and represents one or more instances of e.

For each e in G, the aggregate function COUNT returns a value > 0.

The result set is included in the definition of a SQL group to reinforce the fact
that we are defining what groups are when working with queries only. Thus, it
would be accurate to replace "e" in each axiom with the word "row" because
the rows in the result set are technically the groups.

Because these properties are fundamental to what we consider a group, it is important that we prove
they are true (and we will proceed to do so through the use of some example SQL queries).

Groups are non-empty

By its very definition, a group must have at least one member (or row). If we accept this as a truth,
then it can be said that a group cannot be created from an empty table. To prove that proposition
true, simply try to prove it is false. The following example creates an empty table, and then attempts
to create groups via three different queries against that empty table:

 create table fruits (name varchar(10))

 select name
 from fruits
 group by name

 (no rows selected)

 select count(*) as cnt
 from fruits
 group by name

 (no rows selected)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select name, count(*) as cnt
 from fruits
 group by name

 (no rows selected)

As you can see from these queries, it is impossible to create what SQL considers a group from an
empty table.

Groups are distinct

Now let's prove that the groups created via queries with a GROUP BY clause are distinct. The
following example inserts five rows into table FRUITS, and then creates groups from those rows:

 insert into fruits values ('Oranges')
 insert into fruits values ('Oranges')
 insert into fruits values ('Oranges')
 insert into fruits values ('Apple')
 insert into fruits values ('Peach')

 select *
 from fruits

 NAME

 Oranges
 Oranges
 Oranges
 Apple
 Peach

 select name
 from fruits
 group by name

 NAME

 Apple
 Oranges
 Peach

 select name, count(*) as cnt
 from fruits
 group by name

 NAME CNT
 ------- --------

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Apple 1
 Oranges 3
 Peach 1

The first query shows that "Oranges" occurs three times in table FRUITS. However, the second and
third queries (using GROUP BY) return only one instance of "Oranges." Taken together, these queries
prove that the rows in the result set (e in G, from our definition) are distinct, and each value of NAME
represents one or more instances of itself in table FRUITS.

Knowing that groups are distinct is important because it means, typically, you would not use the
DISTINCT keyword in your SELECT list when using a GROUP BY in your queries.

I am in no way suggesting GROUP BY and DISTINCT are the same. They
represent two completely different concepts. I am merely stating that the items
listed in the GROUP BY clause will be distinct in the result set and that using
DISTINCT as well as GROUP BY is redundant.

Frege's Axiom and Russell's Paradox

For those of you who are interested, Frege's axiom of abstraction, based on Cantor's
solution for defining set membership for infinite or uncountable sets, states that, given a
specific identifying property, there exists a set whose members are only those items
having that property. The source of trouble, as put by Robert Stoll, "is the unrestrictd
use of the principal of abstraction." Bertrand Russell asked Gottlob Frege to consider a
set whose members are sets and have the defining property of not being members of
themselves.

As Russell pointed out, the axiom of abstraction gives too much freedom because you
are simply specifiying a condition or property to define set membership, thus a
contradiction can be found. To better explain how a contradiction can be found, he
devised the "Barber Puzzle." The Barber Puzzle states:

In a certain town there is a male barber who shaves all those men, and only those
men, who do not shave themselves. If this is true, who, then, shaves the barber?

For a more concrete example, consider the set that can be described as:

For all members x in y that satisfy a specific condition (P)

The mathematical notation for this description is:

 {x e y | P(x)}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because the above set considers only those x in y that satisfy a condition (P) you may
find it more intuitive to describe the set as x is a member of y if and only if x satisfies a
condition (P).

At this point let us define this condition P(x) as x is not a member of x:

 (x e x)

The set is now defined as x is a member of y if and only if x is not a member of x:

 {x e y | (x e x)}

Russell's paradox may not be clear to you yet, but ask yourself this: can the set above
be a member of itself? Let's assume that x = y and look at the above set again. The
following set can be defined as y is a member of y if and only if y is not a member of y:

 {y e y | (y e y)}

Simply put, Russell's paradox leaves us in a position to have a set that is concurrently a
member of itself and not a member of itself, which is a contradiction. Intuitive thinking
would lead one to believe this isn't a problem at all; indeed, how can a set be a member
of itself? The set of all books, after all, is not a book. So why does this paradox exist and
how can it be an issue? It becomes an issue when you consider more abstract
applications of set theory. For example, a "practical" application of Russell's paradox can
be demonstrated by considering the set of all sets. If we allow such a concept to exist,
then by its very definition, it must be a member of itself (it is, after all, the set of all
sets). What then happens when you apply P(x) above to the set of all sets? Simply
stated, Russell's paradox would state that the set of all sets is a member of itself if and
only if it is not a member of itselfclearly a contradiction.

For those of you who are interested, Ernst Zermelo developed the axiom schema of
separation (also referred to as the axiom schema of subsets or the axiom of
specification) to elegantly sidestep Russell's paradox in axiomatic set theory.

COUNT is never zero

The queries and results in the preceding section also prove the final axiom that the aggregate
function COUNT will never return zero when used in a query with GROUP BY on a nonempty table. It
should not be surprising that you cannot return a count of zero for a group. We have already proved
that a group cannot be created from an empty table, thus a group must have at least one row. If at
least one row exists, then the count will always be at least 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Remember, we are talking about using COUNT with GROUP BY, not COUNT by
itself. A query using COUNT without a GROUP BY on an empty table will of
course return zero.

Paradoxes

"Hardly anything more unfortunate can befall a scientific writer than to have one of the
foundations of his edifice shaken after the work is finished…. This was the position I was placed
in by a letter of Mr. Bertrand Russell, just when the printing of this volume was nearing its
completion."

The preceding quote is from Gottlob Frege in response to Bertrand Russell's discovery of a
contradiction to Frege's axiom of abstraction in set theory.

Paradoxes many times provide scenarios that would seem to contradict established theories or ideas.
In many cases these contradictions are localized and can be "worked around," or they are applicable
to such small test cases that they can be safely ignored.

You may have guessed by now that the point to all this discussion of paradoxes is that there exists a
paradox concerning our definition of an SQL group, and that paradox must be addressed. Although
our focus right now is on groups, ultimately we are discussing SQL queries. In its GROUP BY clause, a
query may have a wide range of values such as constants, expressions, or, most commonly, columns
from a table. We pay a price for this flexibility, because NULL is a valid "value" in SQL. NULLs present
problems because they are effectively ignored by aggregate functions. With that said, if a table
consists of a single row and its value is NULL, what would the aggregate function COUNT return when
used in a GROUP BY query? By our very definition, when using GROUP BY and the aggregate function
COUNT, a value >= 1 must be returned. What happens, then, in the case of values ignored by
functions such as COUNT, and what does this mean to our definition of a GROUP? Consider the
following example, which reveals the NULL group paradox (using the function COALESCE when
necessary for readability):

 select *
 from fruits

 NAME

 Oranges
 Oranges
 Oranges
 Apple
 Peach

 insert into fruits values (null)
 insert into fruits values (null)
 insert into fruits values (null)
 insert into fruits values (null)
 insert into fruits values (null)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select coalesce(name,'NULL') as name
 from fruits

 NAME

 Oranges
 Oranges
 Oranges
 Apple
 Peach
 NULL
 NULL
 NULL
 NULL
 NULL

 select coalesce(name,'NULL') as name,
 count(name) as cnt
 from fruits
 group by name

 NAME CNT
 -------- ----------
 Apple 1
 NULL 0
 Oranges 3
 Peach 1

It would seem that the presence of NULL values in our table introduces a contradiction, or paradox,
to our definition of a SQL group. Fortunately, this contradiction is not a real cause for concern,
because the paradox has more to do with the implementation of aggregate functions than our
definition. Consider the final query in the preceding set; a general problem statement for that query
would be:

Count the number of times each name occurs in table FRUITS or count the number of members
in each group.

Examining the INSERT statements above, it's clear that there are five rows with NULL values, which
means there exists a NULL group with five members.

While NULL certainly has properties that differentiate it from other values, it is
nevertheless a value, and can in fact be a group.

How, then, can we write the query to return a count of 5 instead of 0, thus returning the information
we are looking for while conforming to our definition of a group? The example below shows a
workaround to deal with the NULL group paradox:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select coalesce(name,'NULL') as name,
 count(*) as cnt
 from fruits
 group by name

 NAME CNT
 --------- --------
 Apple 1
 Oranges 3
 Peach 1
 NULL 5

The workaround is to use COUNT(*) rather than COUNT(NAME) to avoid the NULL group paradox.
Aggregate functions will ignore NULL values if any exist in the column passed to them. Thus, to avoid
a zero when using COUNT do not pass the column name; instead, pass in an asterisk (*). The *
causes the COUNT function to count rows rather than the actual column values, so whether or not
the actual values are NULL or not NULL is irrelevant.

One more paradox has to do with the axiom that each group in a result set (for each e in G) is
distinct. Because of the nature of SQL result sets and tables, which are more accurately defined as
multisets or "bags," not sets (because duplicate rows are allowed), it is possible to return a result set
with duplicate groups. Consider the following queries:

 select coalesce(name,'NULL') as name,
 count(*) as cnt
 from fruits
 group by name
 union all
 select coalesce(name,'NULL') as name,
 count(*) as cnt
 from fruits
 group by name

 NAME CNT
 ---------- ---------
 Apple 1
 Oranges 3
 Peach 1
 NULL 5
 Apple 1
 Oranges 3
 Peach 1
 NULL 5

 select x.*
 from (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select coalesce(name,'NULL') as name,
 count(*) as cnt
 from fruits
 group by name
) x,
 (select deptno from dept) y

 NAME CNT
 ---------- ----------
 Apple 1
 Apple 1
 Apple 1
 Apple 1
 Oranges 3
 Oranges 3
 Oranges 3
 Oranges 3
 Peach 1
 Peach 1
 Peach 1
 Peach 1
 NULL 5
 NULL 5
 NULL 5
 NULL 5

As you can see in these queries, the groups are in fact repeated in the final results. Fortunately, this
is not much to worry about because it represents only a partial paradox. The first property of a group
states that for (G, e), G is a result set from a single or self-contained query that uses GROUP BY.
Simply put, the result set from any GROUP BY query itself conforms to our definition of a group. It is
only when you combine the result sets from two GROUP BY queries to create a multiset that groups
may repeat. The first query in the preceding example uses UNION ALL, which is not a set operation
but a multiset operation, and invokes GROUP BY twice, effectively executing two queries.

If you use UNION, which is a set operation, you will not see repeating groups.

The second query in the preceding set uses a Cartesian product, which only works if you materialize
the group first and then perform the Cartesian. Thus the GROUP BY query when self-contained
conforms to our definition. Neither of the two examples takes anything away from the definition of a
SQL group. They are shown for completeness, and so that you can be aware that almost anything is
possible in SQL.

Relationship Between SELECT and GROUP BY

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With the concept of a group defined and proved, it is now time to move on to more practical matters
concerning queries using GROUP BY. It is important to understand the relationship between the
SELECT clause and the GROUP BY clause when grouping in SQL. It is important to keep in mind when
using aggregate functions such as COUNT that any item in your SELECT list that is not used as an
argument to an aggregate function must be part of your group. For example, if you write a SELECT
clause such as:

 select deptno, count(*) as cnt
 from emp

then you must list DEPTNO in your GROUP BY clause:

 select deptno, count(*) as cnt
 from emp
 group by deptno

 DEPTNO CNT
 ------- ----
 10 3
 20 5
 30 6

Constants, scalar values returned by user-defined functions, window functions, and non-correlated
scalar subqueries are exceptions to this rule. Since the SELECT clause is evaluated after the GROUP
BY clause, these constructs are allowed in the SELECT list and do not have to (and in some cases
cannot) be specified in the GROUP BY clause. For example:

 select 'hello' as msg,
 1 as num,
 deptno,
 (select count(*) from emp) as total,
 count(*) as cnt
 from emp
 group by deptno

 MSG NUM DEPTNO TOTAL CNT
 ----- --- ------ ----- ---
 hello 1 10 14 3
 hello 1 20 14 5
 hello 1 30 14 6

Don't let this query confuse you. The items in the SELECT list not listed in the GROUP BY clause do
not change the value of CNT for each DEPTNO, nor do the values for DEPTNO change. Based on the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

results of the preceding query, we can define the rule about matching items in the SELECT list and
the GROUP BY clause when using aggregates a bit more precisely:

Items in a SELECT list that can potentially change the group or change the value returned by an
aggregate function must be included in the GROUP BY clause.

The additional items in the preceding SELECT list did not change the value of CNT for any group
(each DEPTNO), nor did they change the groups themselves.

Now it's fair to ask: exactly what items in a SELECT list can change a grouping or the value returned
by an aggregate function? The answer is simple: other columns from the table(s) you are selecting
from. Consider the prospect of adding the JOB column to the query we've been looking at:

 select deptno, job, count(*) as cnt
 from emp
 group by deptno, job

 DEPTNO JOB CNT
 ------ ---------- ----
 10 CLERK 1
 10 MANAGER 1
 10 PRESIDENT 1
 20 CLERK 2
 20 ANALYST 2
 20 MANAGER 1
 30 CLERK 1
 30 MANAGER 1
 30 SALESMAN 4

By listing another column, JOB, from table EMP, we are changing the group and changing the result
set; thus we must now include JOB in the GROUP BY clause along with DEPTNO, otherwise the query
will fail. The inclusion of JOB in the SELECT/GROUP BY clauses changes the query from "How many
employees are in each department?" to "How many different types of employees are in each
department?" Notice again that the groups are distinct; the values for DEPTNO and JOB individually
are not distinct, but the combination of the two (which is what is in the GROUP BY and SELECT list,
and thus is the group) are distinct (e.g., 10 and CLERK appear only once).

If you choose not to put items other than aggregate functions in the SELECT list, then you may list
any valid column you wish, in the GROUP BY clause. Consider the following two queries, which
highlight this fact:

 select count(*)
 from emp
 group by deptno

 COUNT(*)

 3
 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6

 select count(*)
 from emp
 group by deptno,job

 COUNT(*)

 1
 1
 1
 2
 2
 1
 1
 1
 4

Including items other than aggregate functions in the SELECT list is not mandatory, but often
improves readability and usability of the results.

As a rule, when using GROUP BY and aggregate functions, any items in the
SELECT list [from the table(s) in the FROM clause] not used as an argument to
an aggregate function must be included in the GROUP BY clause. However,
MySQL has a "feature" that allows you to deviate from this rule, allowing you to
place items in your SELECT list [that are columns in the table(s) you are
selecting from] that are not used as arguments to an aggregate function and
that are not present in your GROUP BY clause. I use the term "feature" very
loosely here as its use is a bug waiting to happen and I urge you to avoid it. As
a matter of fact, if you use MySQL and care at all about the accuracy of your
queries I suggest you urge them to remove this, ahem, "feature."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe A.2. Windowing

Once you understand the concept of grouping and using aggregates in SQL, understanding window
functions is easy. Window functions, like aggregate functions, perform an aggregation on a defined
set (a group) of rows, but rather than returning one value per group, window functions can return
multiple values for each group. The group of rows to perform the aggregation on is the window
(hence the name "window functions"). DB2 actually calls such functions online analytic processing
(OLAP) functions, and Oracle calls them analytic functions, but the ISO SQL standard calls them
window functions, so that's the term I use in this book.

A Simple Example

Let's say that you wish to count the total number of employees across all departments. The
traditional method for doing that is to issue a COUNT(*) query against the entire EMP table:

 select count(*) as cnt
 from emp

 CNT

 14

This is easy enough, but often you will find yourself wanting to access such aggregate data from rows
that do not represent an aggregation, or that represent a different aggregation. Window functions
make light work of such problems. For example, the following query shows how you can use a
window function to access aggregate data (the total count of employees) from detail rows (one per
employee):

 select ename,
 deptno,
 count(*) over() as cnt
 from emp
 order by 2

 ENAME DEPTNO CNT
 ---------- ------ ------
 CLARK 10 14
 KING 10 14
 MILLER 10 14
 SMITH 20 14
 ADAMS 20 14

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FORD 20 14
 SCOTT 20 14
 JONES 20 14
 ALLEN 30 14
 BLAKE 30 14
 MARTIN 30 14
 JAMES 30 14
 TURNER 30 14
 WARD 30 14

The window function invocation in this example is COUNT(*) OVER(). The presence of the OVER
keyword indicates that the invocation of COUNT will be treated as a window function, not as an
aggregate function. In general, the SQL standard allows for all aggregate functions to also be window
functions, and the keyword OVER is how the language distinguishes between the two uses.

So, what did the window function COUNT(*) OVER () do exactly? For every row being returned in the
query, it returned the count of all the rows in the table. As the empty parentheses suggest, the OVER
keyword accepts additional clauses to affect the range of rows that a given window function
considers. Absent any such clauses, the window function looks at all rows in the result set, which is
why you see the value 14 repeated in each row of output.

Hopefully you begin to see the great utility of window functions, which is that they allow you to work
with multiple levels of aggregation in one row. As you continue through this appendix, you'll begin to
see even more just how incredibly useful that ability can be.

Order of Evaluation

Before digging deeper into the OVER clause, it is important to note that window functions are
performed as the last step in SQL processing prior to the ORDER BY clause. As an example of how
window functions are processed last, let's take the query from the preceding section and use a
WHERE clause to filter out employees from DEPTNO 20 and 30:

 select ename,
 deptno,
 count(*) over() as cnt
 from emp
 where deptno = 10
 order by 2

 ENAME DEPTNO CNT
 ---------- ------ ------
 CLARK 10 3
 KING 10 3
 MILLER 10 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The value for CNT for each row is no longer 14, it is now 3. In this example, it is the WHERE clause
that restricts the result set to three rows, hence the window function will count only three rows (there
are only three rows available to the window function by the time processing reaches the SELECT
portion of the query). From this example you can see that window functions perform their
computations after clauses such as WHERE and GROUP BY are evaluated.

Partitions

Use the PARTITION BY clause to define a partition or group of rows to perform an aggregation over.
As we've seen already, if you use empty parentheses then the entire result set is the partition that a
window function aggregation will be computed over. You can think of the PARTITION BY clause as a
"moving GROUP BY" because unlike a traditional GROUP BY, a group created by PARTITION BY is not
distinct in a result set. You can use PARTITION BY to compute an aggregation over a defined group of
rows (resetting when a new group is encountered) and rather than having one group represent all
instances of that value in the table, each value (each member in each group) is returned. Consider
the following query:

 select ename,
 deptno,
 count(*) over(partition by deptno) as cnt
 from emp
 order by 2

 ENAME DEPTNO CNT
 ---------- ------ ------
 CLARK 10 3
 KING 10 3
 MILLER 10 3
 SMITH 20 5
 ADAMS 20 5
 FORD 20 5
 SCOTT 20 5
 JONES 20 5
 ALLEN 30 6
 BLAKE 30 6
 MARTIN 30 6
 JAMES 30 6
 TURNER 30 6
 WARD 30 6

This query still returns 14 rows, but now the COUNT is performed for each department as a result of
the PARTITION BY DEPTNO clause. Each employee in the same department (in the same partition)
will have the same value for CNT, because the aggregation will not reset (recompute) until a new
department is encountered. Also note that you are returning information about each group, along
with the members of each group. You can think of the preceding query as a more efficient version of
the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select e.ename,
 e.deptno,
 (select count(*) from emp d
 where e.deptno=d.deptno) as cnt
 from emp e
 order by 2

 ENAME DEPTNO CNT
 ---------- ------ ------
 CLARK 10 3
 KING 10 3
 MILLER 10 3
 SMITH 20 5
 ADAMS 20 5
 FORD 20 5
 SCOTT 20 5
 JONES 20 5
 ALLEN 30 6
 BLAKE 30 6
 MARTIN 30 6
 JAMES 30 6
 TURNER 30 6
 WARD 30 6

Additionally, what's nice about the PARTITION BY clause is that it performs its computations
independently of other window functions, partitioning by different columns in the same SELECT
statement. Consider the following query, which returns each employee, her department, the number
of employees in her respective department, her job, and the number of employees with the same
job:

 select ename,
 deptno,
 count(*) over(partition by deptno) as dept_cnt,
 job,
 count(*) over(partition by job) as job_cnt
 from emp
 order by 2

 ENAME DEPTNO DEPT_CNT JOB JOB_CNT
 ---------- ------ -------- --------- -------
 MILLER 10 3 CLERK 4
 CLARK 10 3 MANAGER 3
 KING 10 3 PRESIDENT 1
 SCOTT 20 5 ANALYST 2
 FORD 20 5 ANALYST 2
 SMITH 20 5 CLERK 4
 JONES 20 5 MANAGER 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ADAMS 20 5 CLERK 4
 JAMES 30 6 CLERK 4
 MARTIN 30 6 SALESMAN 4
 TURNER 30 6 SALESMAN 4
 WARD 30 6 SALESMAN 4
 ALLEN 30 6 SALESMAN 4
 BLAKE 30 6 MANAGER 3

In this result set, you can see that employees in the same department have the same value for
DEPT_CNT, and that employees who have the same job position have the same value for JOB_CNT.

By now it should be clear that the PARTITION BY clause works like a GROUP BY clause, but it does so
without being affected by the other items in the SELECT clause and without requiring you to write a
GROUP BY clause.

Effect of NULLs

Like the GROUP BY clause, the PARTITION BY clause lumps all the NULLs into one group or partition.
Thus, the effect from NULLs when using PARTITION BY is similar to that from using GROUP BY. The
following query uses a window function to count the number of employees with each distinct
commission (returning1 in place of NULL for readability):

 select coalesce(comm,-1) as comm,
 count(*)over(partition by comm) as cnt
 from emp

 COMM CNT
 ------ ----------
 0 1
 300 1
 500 1
 1400 1
 -1 10
 -1 10
 -1 10
 -1 10
 -1 10
 -1 10
 -1 10
 -1 10
 -1 10
 -1 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because COUNT(*) is used, the function counts rows. You can see that there are 10 employees
having NULL commissions. Use COMM instead of *, however, and you get quite different results:

 select coalesce(comm,-1) as comm,
 count(comm)over(partition by comm) as cnt
 from emp

 COMM CNT
 ---- ----------
 0 1
 300 1
 500 1
 1400 1
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0

This query uses COUNT(COMM), which means that only the non-NULL values in the COMM column
are counted. There is one employee with a commission of 0, one employee with a commission of 300,
and so forth. But notice the counts for those with NULL commissions! Those counts are 0. Why?
Because aggregate functions ignore NULL values, or more accurately, aggregate functions count only
non-NULL values.

When using COUNT, consider whether you wish to include NULLs. Use
COUNT(column) to avoid counting NULLs. Use COUNT(*) if you do wish to
include NULLs (since you are no longer counting actual column values, you are
counting rows).

When Order Matters

Sometimes the order in which rows are treated by a window function is material to the results that
you wish to obtain from a query. For this reason, window function syntax includes an ORDER BY
subclause that you can place within an OVER clause. Use the ORDER BY clause to specify how the
rows are ordered with a partition (remember, "partition" in the absence of a PARTITION BY clause
means the entire result set).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some window functions require you to impose order on the partitions of rows
being affected. Thus, for some window functions an ORDER BY clause is
mandatory.

When you use an ORDER BY clause in the OVER clause of a window function you are specifying two
things:

How the rows in the partition are ordered1.

What rows are included in the computation2.

Consider the following query, which sums and computes a running total of salaries for employees in
DEPTNO 10:

 select deptno,
 ename,
 hiredate,
 sal,
 sum(sal)over(partition by deptno) as total1,
 sum(sal)over() as total2,
 sum(sal)over(order by hiredate) as running_total
 from emp
 where deptno=10

 DEPTNO ENAME HIREDATE SAL TOTAL1 TOTAL2 RUNNING_TOTAL
 ------ ------ ----------- ----- ------ ------ -------------
 10 CLARK 09-JUN-1981 2450 8750 8750 2450
 10 KING 17-NOV-1981 5000 8750 8750 7450
 10 MILLER 23-JAN-1982 1300 8750 8750 8750

Just to keep you on your toes, I've included a sum with empty parentheses.
Notice how TOTAL1 and TOTAL2 have the same values. Why? Once again, the
order in which window functions are evaluated answers the question. The
WHERE clause filters the result set such that only salaries from DEPTNO 10 are
considered for summation. In this case there is only one partitionthe entire
result set, which consists of only salaries from DEPTNO 10. Thus TOTAL1 and
TOTAL2 are the same.

Looking at the values retuned by column SAL, you can easily see where the values for
RUNNING_TOTAL come from. You can eyeball the values and add them yourself to compute the
running total. But more importantly, why did including an ORDER BY in the OVER clause create a
running total in the first place? The reason is, when you use ORDER BY in the OVER clause you are
specify a default "moving" or "sliding" window within the partition even though you don't see it. The
ORDER BY HIREDATE clause terminates summation at the HIREDATE in the current row.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following query is the same as the previous one, but uses the RANGE BETWEEN clause (which
you'll learn more about later) to explicitly specify the default behavior that results from ORDER BY
HIREDATE:

 select deptno,
 ename,
 hiredate,
 sal,
 sum(sal)over(partition by deptno) as total1,
 sum(sal)over() as total2,
 sum(sal)over(order by hiredate
 range between unbounded preceding
 and current row) as running_total
 from emp
 where deptno=10

 DEPTNO ENAME HIREDATE SAL TOTAL1 TOTAL2 RUNNING_TOTAL
 ------ ------ ----------- ----- ------ ------ -------------
 10 CLARK 09-JUN-1981 2450 8750 8750 2450
 10 KING 17-NOV-1981 5000 8750 8750 7450
 10 MILLER 23-JAN-1982 1300 8750 8750 8750

The RANGE BETWEEN clause that you see in this query is termed the framing clause by ANSI and I'll
use that term here. Now, it should be easy to see why specifying an ORDER BY in the OVER clause
created a running total; we've (by default) told the query to sum all rows starting from the current
row and include all prior rows ("prior" as defined in the ORDER BY, in this case ordering the rows by
HIREDATE).

The Framing Clause

Let's apply the framing clause from the preceding query to the result set, starting with the first
employee hired, who is named CLARK.

Starting with CLARK's salary, 2450, and including all employees hired before CLARK, compute a
sum. Since CLARK was the first employee hired in DEPTNO 10, the sum is simply CLARK's
salary, 2450, which is the first value returned by RUNNING_TOTAL.

1.

Let's move to the next employee based on HIREDATE, named KING, and apply the framing
clause once again. Compute a sum on SAL starting with the current row, 5000 (KING's salary),
and include all prior rows (all employees hired before KING). CLARK is the only one hired before
KING so the sum is 5000 + 2450, which is 7450, the second value returned by
RUNNING_TOTAL.

2.

Moving on to MILLER, the last employee in the partition based on HIREDATE, let's one more3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

time apply the framing clause. Compute a sum on SAL starting with the current row, 1300
(MILLER's salary), and include all prior rows (all employees hired before MILLER). CLARK and
KING were both hired before MILLER, and thus their salaries are included in MILLER's
RUNNING_TOTAL: 2450 + 5000 + 1300 is 8750, which is the value for RUNNING_TOTAL for
MILLER.

3.

As you can see, it is really the framing clause that produces the running total. The ORDER BY defines
the order of evaluation and happens to also imply a default framing.

In general, the framing clause allows you to define different "sub-windows" of data to include in your
computations. There are many ways to specify such sub-windows. Consider the following query:

 select deptno,
 ename,
 sal,
 sum(sal)over(order by hiredate
 range between unbounded preceding
 and current row) as run_total1,
 sum(sal)over(order by hiredate
 rows between 1 preceding
 and current row) as run_total2,
 sum(sal)over(order by hiredate
 range between current row
 and unbounded following) as run_total3,
 sum(sal)over(order by hiredate
 rows between current row
 and 1 following) as run_total4
 from emp
 where deptno=10

 DEPTNO ENAME SAL RUN_TOTAL1 RUN_TOTAL2 RUN_TOTAL3 RUN_TOTAL4
 ------ ------ ----- ---------- ---------- ---------- ----------
 10 CLARK 2450 2450 2450 8750 7450
 10 KING 5000 7450 7450 6300 6300
 10 MILLER 1300 8750 6300 1300 1300

Don't be intimidated here; this query is not as bad as it looks. You've already seen RUN_TOTAL1 and
the effects of the framing clause "UNBOUNDED PRECEDING AND CURRENT ROW". Here's a quick
description of what's happening in the other examples:

RUN_TOTAL2

Rather than the keyword RANGE, this framing clause specifies ROWS, which means the frame,
or window, is going to be constructed by counting some number of rows. The 1 PRECEDING
means that the frame will begin with the row immediately preceding the current row. The
range continues through the CUR-RENT ROW. So what you get in RUN_TOTAL2 is the sum of
the current employee's salary and that of the preceding employee, based on HIREDATE.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It so happens that RUN_TOTAL1 and RUN_TOTAL2 are the same for both
CLARK and KING. Why? Think about which values are being summed for
each of those employees, for each of the two window functions. Think
carefully, and you'll get the answer.

RUN_TOTAL3

The window function for RUN_TOTAL3 works just the opposite of that for RUN_TOTAL1; rather
than starting with the current row and including all prior rows in the summation, summation
begins with the current row and includes all subsequent rows in the summation.

RUN_TOTAL4

Is inverse of RUN_TOTAL2; rather than starting from the current row and including one prior
row in the summation, start with the current row and include one subsequent row in the
summation.

If you can understand what's been explained thus far, you will have no problem
with any of the recipes in this book. If you're not catching on, though, try
practicing with your own examples and your own data. I personally find
learning easier by actually coding new features rather than just reading about
them.

A Framing Finale

As a final example of the effect of the framing clause on query output, consider the following query:

 select ename,
 sal,
 min(sal)over(order by sal) min1,
 max(sal)over(order by sal) max1,
 min(sal)over(order by sal
 range between unbounded preceding
 and unbounded following) min2,
 max(sal)over(order by sal
 range between unbounded preceding
 and unbounded following) max2,
 min(sal)over(order by sal
 range between current row
 and current row) min3,
 max(sal)over(order by sal
 range between current row
 and current row) max3,
 max(sal)over(order by sal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rows between 3 preceding
 and 3 following) max4
 from emp

 ENAME SAL MIN1 MAX1 MIN2 MAX2 MIN3 MAX3 MAX4
 ------ ----- ------ ------ ------ ------ ------ ------ ------
 SMITH 800 800 800 800 5000 800 800 1250
 JAMES 950 800 950 800 5000 950 950 1250
 ADAMS 1100 800 1100 800 5000 1100 1100 1300
 WARD 1250 800 1250 800 5000 1250 1250 1500
 MARTIN 1250 800 1250 800 5000 1250 1250 1600
 MILLER 1300 800 1300 800 5000 1300 1300 2450
 TURNER 1500 800 1500 800 5000 1500 1500 2850
 ALLEN 1600 800 1600 800 5000 1600 1600 2975
 CLARK 2450 800 2450 800 5000 2450 2450 3000
 BLAKE 2850 800 2850 800 5000 2850 2850 3000
 JONES 2975 800 2975 800 5000 2975 2975 5000
 SCOTT 3000 800 3000 800 5000 3000 3000 5000
 FORD 3000 800 3000 800 5000 3000 3000 5000
 KING 5000 800 5000 800 5000 5000 5000 5000

OK, let's break this query down:

MIN1

The window function generating this column does not specify a framing clause, so the default
framing clause of UNBOUNDED PRECEDING AND CURRENT ROW kicks in. Why is MIN1 800 for
all rows? It's because the lowest salary comes first (ORDER BY SAL), and it remains the lowest,
or minimum, salary forever after.

MAX1

The values for MAX1 are much different from those for MIN1. Why? The answer (again) is the
default framing clause UNBOUNDED PRECEDING AND CURRENT ROW. In conjunction with
ORDER BY SAL, this framing clause ensures that the maximum salary will also correspond to
that of the current row.

Consider the first row, for SMITH. When evaluating SMITH's salary and all prior salaries, MAX1
for SMITH is SMITH's salary, because there are no prior salaries. Moving on to the next row,
JAMES, when comparing JAMES' salary to all prior salaries, in this case comparing to the salary
of SMITH, JAMES' salary is the higher of the two, and thus it is the maximum. If you apply this
logic to all rows, you will see that the value of MAX1 for each row is the current employee's
salary.

MIN2 and MAX2

The framing clause given for these is UNBOUNDED PRECEDING AND UNBOUNDED

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FOLLOWING, which is the same as specifying empty parentheses. Thus, all rows in the result
set are considered when computing MIN and MAX. As you might expect, the MIN and MAX
values for the entire result set are constant, and thus the value of these columns is constant as
well.

MIN3 and MAX3

The framing clause for these is CURRENT ROW AND CURRENT ROW, which simply means use
only the current employee's salary when looking for the MIN and MAX salary. Thus both MIN3
and MAX3 are the same as SAL for each row. That was easy, wasn't it?

MAX4

The framing clause defined for MAX4 is 3 PRECEDING AND 3 FOLLOWING, which means, for
every row, consider the three rows prior and the three rows after the current row, as well as
the current row itself. This particular invocation of MAX(SAL) will return from those rows the
highest salary value.

If you look at the value of MAX4 for employee MARTIN you can see how the framing clause is
applied. MARTIN's salary is 1250 and the three employee salaries prior to MARTIN's are
WARD's (1250), ADAMS' (1100) and JAMES' (950). The three employee salaries after MARTIN's
are MILLER's (1300), TURNER's (1500), and ALLEN's (1600). Out of all those salaries, including
MARTIN's, the highest is ALLEN's, and thus the value of MAX4 for MARTIN is 1600.

Readability + Performance = Power

As you can see, window functions are extremely powerful as they allow you to write queries that
contain both detailed and aggregate information. Using window functions allows you to write smaller,
more efficient queries as compared to using multiple self join and/or scalar subqueries. Consider the
following query, which easily answers all of the following questions: "What is the number of
employees in each department? How many different types of employees are in each department
(e.g., how many clerks are in department 10)? How many total employees are in table EMP?"

 select deptno,
 job,
 count(*) over (partition by deptno) as emp_cnt,
 count(job) over (partition by deptno,job) as job_cnt,
 count(*) over () as total
 from emp

 DEPTNO JOB EMP_CNT JOB_CNT TOTAL
 ------ --------- ---------- ---------- ----------
 10 CLERK 3 1 14
 10 MANAGER 3 1 14
 10 PRESIDENT 3 1 14
 20 ANALYST 5 2 14
 20 ANALYST 5 2 14
 20 CLERK 5 2 14

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 20 CLERK 5 2 14
 20 MANAGER 5 1 14
 30 CLERK 6 1 14
 30 MANAGER 6 1 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14

To return the same result set without using window functions would require a bit more work:

 select a.deptno, a.job,
 (select count(*) from emp b
 where b.deptno = a.deptno) as emp_cnt,
 (select count(*) from emp b
 where b.deptno = a.deptno and b.job = a.job) as job_cnt,
 (select count(*) from emp) as total
 from emp a
 order by 1,2

 DEPTNO JOB EMP_CNT JOB_CNT TOTAL
 ------ --------- ---------- ---------- ----------
 10 CLERK 3 1 14
 10 MANAGER 3 1 14
 10 PRESIDENT 3 1 14
 20 ANALYST 5 2 14
 20 ANALYST 5 2 14
 20 CLERK 5 2 14
 20 CLERK 5 2 14
 20 MANAGER 5 1 14
 30 CLERK 6 1 14
 30 MANAGER 6 1 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14

The non-window solution is obviously not difficult to write, yet it certainly is not as clean or efficient
(you won't see performance differences with a 14-row table, but try these queries with, say, a 1,000-
or 10,000-row table and then you'll see the benefit of using window functions over multiple self joins
and scalar subqueries).

Providing a Base

Besides readability and performance, window functions are useful for providing a "base" for more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

complex "report style" queries. For example, consider the following "report style" query that uses
window functions in an inline view and then aggregates the results in an outer query. Using window
functions allows you to return detailed as well as aggregate data, which is useful for reports. The
query below uses window functions to find counts using different partitions. Because the aggregation
is applied to multiple rows, the inline view returns all rows from EMP, which the outer CASE
expressions can use to transpose and create a formatted report:

 select deptno,
 emp_cnt as dept_total,
 total,
 max(case when job = 'CLERK'
 then job_cnt else 0 end) as clerks,
 max(case when job = 'MANAGER'
 then job_cnt else 0 end) as mgrs,
 max(case when job = 'PRESIDENT'
 then job_cnt else 0 end) as prez,
 max(case when job = 'ANALYST'
 then job_cnt else 0 end) as anals,
 max(case when job = 'SALESMAN'
 then job_cnt else 0 end) as smen
 from (
 select deptno,
 job,
 count(*) over (partition by deptno) as emp_cnt,
 count(job) over (partition by deptno,job) as job_cnt,
 count(*) over () as total
 from emp
) x
 group by deptno, emp_cnt, total

 DEPTNO DEPT_TOTAL TOTAL CLERKS MGRS PREZ ANALS SMEN
 ------ ---------- ----- ------ ---- ---- ----- ----
 10 3 14 1 1 1 0 0
 20 5 14 2 1 0 2 0
 30 6 14 1 1 0 0 4

The query above returns each department, the total number of employees in each department, the
total number of employees in table EMP, and a breakdown of the number of different job types in
each department. All this is done in one query, without additional joins or temp tables!

As a final example of how easily multiple questions can be answered using window functions, consider
the following query:

 select ename as name,
 sal,
 max(sal)over(partition by deptno) as hiDpt,
 min(sal)over(partition by deptno) as loDpt,
 max(sal)over(partition by job) as hiJob,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 min(sal)over(partition by job) as loJob,
 max(sal)over() as hi,
 min(sal)over() as lo,
 sum(sal)over(partition by deptno
 order by sal,empno) as dptRT,
 sum(sal)over(partition by deptno) as dptSum,
 sum(sal)over() as ttl
 from emp
 order by deptno,dptRT

 NAME SAL HIDPT LODPT HIJOB LOJOB HI LO DPTRT DPTSUM TTL
 ------ ----- ----- ----- ----- ----- ----- ---- ------ ------ ------
 MILLER 1300 5000 1300 1300 800 5000 800 1300 8750 29025
 CLARK 2450 5000 1300 2975 2450 5000 800 3750 8750 29025
 KING 5000 5000 1300 5000 5000 5000 800 8750 8750 29025
 SMITH 800 3000 800 1300 800 5000 800 800 10875 29025
 ADAMS 1100 3000 800 1300 800 5000 800 1900 10875 29025
 JONES 2975 3000 800 2975 2450 5000 800 4875 10875 29025
 SCOTT 3000 3000 800 3000 3000 5000 800 7875 10875 29025
 FORD 3000 3000 800 3000 3000 5000 800 10875 10875 29025
 JAMES 950 2850 950 1300 800 5000 800 950 9400 29025
 WARD 1250 2850 950 1600 1250 5000 800 2200 9400 29025
 MARTIN 1250 2850 950 1600 1250 5000 800 3450 9400 29025
 TURNER 1500 2850 950 1600 1250 5000 800 4950 9400 29025
 ALLEN 1600 2850 950 1600 1250 5000 800 6550 9400 29025
 BLAKE 2850 2850 950 2975 2450 5000 800 9400 9400 29025

This query answers the following questions easily, efficiently, and readably (and without additional
joins to EMP!). Simply match the employee and her salary with the different rows in the result set to
determine:

who makes the highest salary of all employees (HI)1.

who makes the lowest salary of all employees (LO)2.

who makes the highest salary in her department (HIDPT)3.

who makes the lowest salary in her department (LODPT)4.

who makes the highest salary in her job (HIJOB)5.

who makes the lowest salary in her job (LOJOB)6.

what is the sum of all salaries (TTL)7.

what is the sum of salaries per department (DPTSUM)8.

what is the running total of all salaries per department (DPTRT)9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.

9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix B. Rozenshtein Revisited
This appendix is a tribute to David Rozenshtein. As I mentioned in the introduction, I feel his book
The Essence of SQL is (even today) the best book ever written on SQL. Although only 119 pages
long, the book covers what I consider to be crucial topics for any SQL programmer. In particular,
David shows how to think through a problem and arrive at an answer. The solutions provided by
Rozenshtein are very set oriented. Even if the size of your tables do not permit you to use his
solutions in a practical environment, his approach is excellent as it forces you to stop searching for a
procedural solution to a problem and start thinking in sets.

The Essence of SQL was published long before window functions and MODEL clauses. In this appendix
I provide alternative solutions to some of the questions in Rozenshtein's book using some of the
newer functions available in standard SQL. (Whether these new solutions are "better" than
Rozenshtein's depends on the circumstances.) At the end of each discussion, I present a solution
based on the original solution from Rozenshtein's book. For the examples in which I present a
variation of a problem found in Rozenshtein's text, I will also present a variation of a solution (a
solution that may not necessarily exist in Rozenshtein's book, but that uses a similar technique).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe B.1. Rozenshtein's Example Tables

The following tables are based on Rozenshtein's book and will be used in this chapter:

 /* table of students */
 create table student
 (sno integer,
 sname varchar(10),
 age integer
)

 /* table of courses */
 create table courses
 (cno varchar(5),
 title varchar(10),
 credits integer
)

 /* table of professors */
 create table professor
 (lname varchar(10),
 dept varchar(10),
 salary integer,
 age integer
)

 /* table of students and the courses they take */
 create table take
 (sno integer,
 cno varchar(5)
)

 /* table of professors and the courses they teach */
 create table teach
 (lname varchar(10),
 cno varchar(5)
)

 insert into student values (1,'AARON',20)
 insert into student values (2,'CHUCK',21)
 insert into student values (3,'DOUG',20)
 insert into student values (4,'MAGGIE',19)
 insert into student values (5,'STEVE',22)
 insert into student values (6,'JING',18)
 insert into student values (7,'BRIAN',21)
 insert into student values (8,'KAY',20)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 insert into student values (9,'GILLIAN',20)
 insert into student values (10,'CHAD',21)

 insert into courses values ('CS112','PHYSICS',4)
 insert into courses values ('CS113','CALCULUS',4)
 insert into courses values ('CS114','HISTORY',4)

 insert into professor values ('CHOI','SCIENCE',400,45)
 insert into professor values ('GUNN','HISTORY',300,60)
 insert into professor values ('MAYER','MATH',400,55)
 insert into professor values ('POMEL','SCIENCE',500,65)
 insert into professor values ('FEUER','MATH',400,40)

 insert into take values (1,'CS112')
 insert into take values (1,'CS113')
 insert into take values (1,'CS114')
 insert into take values (2,'CS112')
 insert into take values (3,'CS112')
 insert into take values (3,'CS114')
 insert into take values (4,'CS112')
 insert into take values (4,'CS113')
 insert into take values (5,'CS113')
 insert into take values (6,'CS113')
 insert into take values (6,'CS114')

 insert into teach values ('CHOI','CS112')
 insert into teach values ('CHOI','CS113')
 insert into teach values ('CHOI','CS114')
 insert into teach values ('POMEL','CS113')
 insert into teach values ('MAYER','CS112')
 insert into teach values ('MAYER','CS114')

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe B.2. Answering Questions Involving Negation

In his book, Rozenshtein approached the teaching of SQL through an examination of the different
types of fundamental problems that you are often called upon to solve, in one form or another.
Negation is one such type. It is often necessary to find rows for which some condition is not true.
Simple conditions are easy but, as the following questions show, some negation problems require a
bit of creativity and thought to solve.

Question 1

You want to find students who do not take CS112, but the following query is returning the wrong
results:

 select *
 from student
 where sno in (select sno
 from take
 where cno != 'CS112')

Because a student may take several courses, this query can (and does) return students who take
CS112. The query is incorrect because it does not answer the question: "Who does not take CS112?"
Instead, it answers the question "Who takes a course that is not CS112?" The correct result set
should include students who take no courses as well as students who take courses but none of them
CS112. Ultimately, you should return the following result set:

 SNO SNAME AGE
 --------- ---------- ----------
 5 STEVE 22
 6 JING 18
 7 BRIAN 21
 8 KAY 20
 9 GILLIAN 20
 10 CHAD 21

MySQL and PostgreSQL

Use a CASE expression with the aggregate function MAX to flag CS112 if it exists for a particular

http://lib.ommolketab.ir
http://lib.ommolketab.ir

student:

 1 select s.sno,s.sname,s.age
 2 from student s left join take t
 3 on (s.sno = t.sno)
 4 group by s.sno,s.sname,s.age
 5 having max(case when t.cno = 'CS112'
 6 then 1 else 0 end) = 0

DB2 and SQL Server

Use a CASE expression with the window function MAX OVER to flag CS112 if it exists for a particular
student:

 1 select distinct sno,sname,age
 2 from (
 3 select s.sno,s.sname,s.age,
 4 max(case when t.cno = 'CS112'
 5 then 1 else 0 end)
 7 over(partition by s.sno,s.sname,s.age) as takes_CS112
 9 from student s left join take t
 10 on (s.sno = t.sno)
 11) x
 12 where takes_CS112 = 0

Oracle

For users on Oracle9i Database and later, you can use the DB2 solution above. Alternatively, you can
use the proprietary Oracle outer-join syntax, which is mandatory for users on Oracle8i Database and
earlier:

 /* group by solution */

 1 select s.sno,s.sname,s.age
 2 from student s, take t
 3 where s.sno = t.sno (+)
 4 group by s.sno,s.sname,s.age
 5 having max(case when t.cno = 'CS112'
 6 then 1 else 0 end) = 0

 /* window solution */

 1 select distinct sno,sname,age
 2 from (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 select s.sno,s.sname,s.age,
 4 max(case when t.cno = 'CS112'
 5 then 1 else 0 end)
 7 over(partition by s.sno,s.sname,s.age) as takes_CS112
 9 from student s, take t
 10 where s.sno = t.sno (+)
 11) x
 12 where takes_CS112 = 0

Discussion

Despite the different syntax for each solution, the technique is the same. The idea is to create a
"Boolean" column in the result set to denote whether or not a student takes CS112. If a student
takes CS112, then return 1 in that column; otherwise, return 0. The following query moves the CASE
expression into the SELECT list and shows the intermediate results thus far:

 select s.sno,s.sname,s.age,
 case when t.cno = 'CS112'
 then 1
 else 0
 end as takes_CS112
 from student s left join take t
 on (s.sno=t.sno)

 SNO SNAME AGE TAKES_CS112
 --- ---------- ---------- -----------
 1 AARON 20 1
 1 AARON 20 0
 1 AARON 20 0
 2 CHUCK 21 1
 3 DOUG 20 1
 3 DOUG 20 0
 4 MAGGIE 19 1
 4 MAGGIE 19 0
 5 STEVE 22 0
 6 JING 18 0
 6 JING 18 0
 8 KAY 20 0
 10 CHAD 21 0
 7 BRIAN 21 0
 9 GILLIAN 20 0

The outer join to table TAKE ensures that even students who take no courses are returned. The next
step is to use MAX to take the greatest value returned by the CASE expression for each student. If a
student takes CS112, the greatest value will be 1, because all other courses are 0. For the solution
using GROUP BY, the final step is to use the HAVING clause to keep only students with 0 returned

http://lib.ommolketab.ir
http://lib.ommolketab.ir

from the MAX/CASE expression. For the window solution, you need to wrap the query in an inline
view and then reference TAKES_CS112, because window functions cannot be referenced directly in
the WHERE clause. Because of how window functions work, it is also necessary to remove duplicates
caused by multiple courses.

Original solution

The original solution to this problem is quite clever and is shown here:

 select *
 from student
 where sno not in (select sno
 from take
 where cno = 'CS112')

This can be stated as: "Find the students in table TAKE who take CS112, and then return all students
in table STUDENT who are not them." This technique follows the advice regarding negation found at
the end of Rozenshtein's book:

Remember that real negation requires two passes: To find out "who does not," first find out
"who does" and then get rid of them.

Question 2

You want to find students who take CS112 or CS114 but not both. The following query looks
promising as a solution but returns the wrong result set:

 select *
 from student
 where sno in (select sno
 from take
 where cno != 'CS112'
 and cno != 'CS114')

Of the students who take courses, only students DOUG and AARON take both CS112 and CS114.
Those two should be excluded. Student STEVE takes CS113, but not CS112 or CS114, and should be
excluded as well.

Because a student can take multiple courses, the approach here is to return a single row for each
student with information regarding whether the student takes CS112 or CS114, or both. This
approach allows you to easily evaluate whether or not the student takes both courses without having
to make multiple passes through the data. The final result set should be:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SNO SNAME AGE
 --- ---------- ----------
 2 CHUCK 21
 4 MAGGIE 19
 6 JING 18

MySQL and PostgreSQL

Use a CASE expression with the aggregate function SUM to find students who take either CS112 or
CS114 but not both:

 1 select s.sno,s.sname,s.age
 2 from student s, take t
 3 where s.sno = t.sno
 4 group by s.sno,s.sname,s.age
 5 having sum(case when t.cno in ('CS112','CS114')
 6 then 1 else 0 end) = 1

DB2, Oracle, and SQL Server

Use a CASE expression with the window function SUM OVER to find students who take either CS112
or CS114 but not both:

 1 select distinct sno,sname,age
 2 from (
 3 select s.sno,s.sname,s.age,
 4 sum(case when t.cno in ('CS112','CS114') then 1 else 0 end)
 5 over (partition by s.sno,s.sname,s.age) as takes_either_or
 6 from student s, take t
 7 where s.sno = t.sno
 8) x
 9 where takes_either_or = 1

Discussion

The first step in solving the problem is to use an inner join from table STUDENT to table TAKE, thus
eliminating any students who do not take any courses. The next step is to use a CASE expression to
denote whether a student takes each respective course. In the following query, the CASE expressions
are moved into the SELECT list and return the intermediate results thus far:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select s.sno,s.sname,s.age,
 case when t.cno in ('CS112','CS114')
 then 1 else 0 end as takes_either_or
 from student s, take t
 where s.sno = t.sno

 SNO SNAME AGE TAKES_EITHER_OR
 --- ---------- --- ---------------
 1 AARON 20 1
 1 AARON 20 0
 1 AARON 20 1
 2 CHUCK 21 1
 3 DOUG 20 1
 3 DOUG 20 1
 4 MAGGIE 19 1
 4 MAGGIE 19 0
 5 STEVE 22 0
 6 JING 18 0
 6 JING 18 1

A value of 1 for TAKES_EITHER_OR signifies the student takes CS112 or CS114. Because a student
can take multiple courses, the next step is to return only one row per student by using a GROUP BY
with the aggregate function SUM. The function SUM will sum all the 1's for each student:

 select s.sno,s.sname,s.age,
 sum(case when t.cno in ('CS112','CS114')
 then 1 else 0 end) as takes_either_or
 from student s, take t
 where s.sno = t.sno
 group by s.sno,s.sname,s.age

 SNO SNAME AGE TAKES_EITHER_OR
 --- ---------- --- ---------------
 1 AARON 20 2
 2 CHUCK 21 1
 3 DOUG 20 2
 4 MAGGIE 19 1
 5 STEVE 22 0
 6 JING 18 1

Students who do not take CS112 or CS114 will have 0 for TAKES_EITHER_OR. Students who take
both CS112 and CS114 will have 2 for TAKES_EITHER_OR. Thus the only students you want to return
are those with a value of 1 for TAKES_EITHER_OR. The final solution uses the HAVING clause to keep
only those students where the SUM of TAKES_EITHER_OR is one.

For the window solution, the same technique is used. You also need to wrap the query in an inline
view, and then reference the column TAKES_EITHER_OR, because window functions cannot be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

referenced directly in the WHERE clause (they are evaluated last in SQL processing, prior only to the
ORDER BY clause). Because of how window functions work, it is necessary to remove duplicates
caused by multiple courses.

Original solution

The following query is the original solution (modified slightly). The query is quite clever and uses the
same approach as the original solution in Question 1. The solution uses a self join to find students
who take both CS112 and CS114, and then uses a subquery to filter them out of the set of students
who take either CS112 or CS114:

 select *
 from student s, take t
 where s.sno = t.sno
 and t.cno in ('CS112', 'CS114')
 and s.sno not in (select a.sno
 from take a, take b
 where a.sno = b.sno
 and a.cno = 'CS112'
 and b.cno = 'CS114')

Question 3

You want to find students who take CS112 and no other courses, but the following query returns
incorrect results:

 select s.*
 from student s, take t
 where s.sno = t.sno
 and t.cno = 'CS112'

CHUCK is the only student who takes CS112 and no other courses, and is the only student that
should be returned from the query.

This question can be restated as "Find students who take only CS112." The query above finds
students who take CS112, but also returns students who take other courses as well. The query
should answer the question "Who takes only one course and that one course is CS112?"

MySQL and PostgreSQL

Use the aggregate function COUNT to ensure that students returned by the query take only one
course:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select s.*
 2 from student s,
 3 take t1,
 4 (
 5 select sno
 6 from take
 7 group by sno
 8 having count(*) = 1
 9) t2
 10 where s.sno = t1.sno
 11 and t1.sno = t2.sno
 12 and t1.cno = 'CS112'

DB2, Oracle, and SQL Server

Use the window function COUNT OVER to ensure a student takes only one course:

 1 select sno,sname,age
 2 from (
 3 select s.sno,s.sname,s.age,t.cno,
 4 count(t.cno) over (
 5 partition by s.sno,s.sname,s.age
 6) as cnt
 7 from student s, take t
 8 where s.sno = t.sno
 9) x
 10 where cnt = 1
 11 and cno = 'CS112'

Discussion

The key to the solutions is to write a query to answer both of the following questions: "Which student
takes only one course?" and "Which student takes CS112?" The first approach uses inline view T2 to
find students who take only one course. The next step is to join inline view T2 to table TAKE and keep
only students who take CS112 (so what you are left with are students who take only one course and
that one course is CS112). The query below shows the results thus far:

 select t1.*
 from take t1,
 (
 select sno
 from take
 group by sno

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 having count(*) = 1
) t2
 where t1.sno = t2.sno
 and t1.cno = 'CS112'

 SNO CNO
 --- -----
 2 CS112

The final step is to join to table STUDENT and find the students who match those returned by the join
between inline view T2 and table TAKE. The window solution takes a similar approach but does so in
a different (more efficient) way. Inline view X returns the students, the courses they take, and the
number of courses they take (the inner join between table TAKE and table STUDENT guarantees that
students who take no courses are excluded). The results are shown below:

 select s.sno,s.sname,s.age,t.cno,
 count(t.cno) over (
 partition by s.sno,s.sname,s.age
) as cnt
 from student s, take t
 where s.sno = t.sno

 SNO SNAME AGE CNO CNT
 --- ---------- ---------- ----- ----------
 1 AARON 20 CS112 3
 1 AARON 20 CS113 3
 1 AARON 20 CS114 3
 2 CHUCK 21 CS112 1
 3 DOUG 20 CS112 2
 3 DOUG 20 CS114 2
 4 MAGGIE 19 CS112 2
 4 MAGGIE 19 CS113 2
 5 STEVE 22 CS113 1
 6 JING 18 CS113 2
 6 JING 18 CS114 2

With the course and count available, the last step is to simply keep only rows such that CNT is 1 and
CNO is CS112.

Original solution

The original solution uses a subquery and double negation:

 select s.*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from student s, take t
 where s.sno = t.sno
 and s.sno not in (select sno
 from take
 where cno != 'CS112')

This is an extremely clever solution, because nowhere in the query is the number of courses checked,
nor is there a filter to ensure that students returned by the query actually take CS112! How does this
work, then? The subquery returns all students who take a course other than CS112 and the results
are shown below:

 select sno
 from take
 where cno != 'CS112'

 SNO

 1
 1
 3
 4
 5
 6
 6

The outer query returns all students who take a course (any course) and are not amongst the
students returned by the subquery. Ignoring the NOT IN portion of the outer query for a moment,
the results would be the following (showing all students who take a course):

 select s.*
 from student s, take t
 where s.sno = t.sno

 SNO SNAME AGE
 --- ---------- ----------
 1 AARON 20
 1 AARON 20
 1 AARON 20
 2 CHUCK 21
 3 DOUG 20
 3 DOUG 20
 4 MAGGIE 19
 4 MAGGIE 19
 5 STEVE 22
 6 JING 18
 6 JING 18

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you compare the two results sets, you see that the addition of NOT IN to the outer query
effectively performs a set difference between SNO from the outer query and SNO from the subquery,
returning only the student whose SNO is 2. In summary, the subquery finds all students who take a
course that is not CS112. The outer query returns all students who are not amongst those that take
a course other than CS112 (at this point the only available students are those who actually take
CS112 or take nothing at all). The join between table STUDENT and table TAKE filters out the
students who do not take any classes at all, leaving you only with the student who takes CS112 and
only CS112. Set-based problem solving at its best!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe B.3. Answering Questions Involving "at Most"

Questions involving "at most" represent another type of query problem that you'll encounter from
time to time. It's easy enough to find rows for which a condition is true, but what if you want to place
a limit on the number of such rows? That's what the next next two questions are all about.

Question 4

You want to find the students who take at most two courses. Students who do not take any courses
should be excluded. Of the students who take courses, only AARON takes more than two and should
be excluded from the result set. Ultimately, you want to return the following result set:

 SNO SNAME AGE
 --- ---------- ----------
 2 CHUCK 21
 3 DOUG 20
 4 MAGGIE 19
 5 STEVE 22
 6 JING 18

MySQL and PostgreSQL

Use the aggregate function COUNT to determine which students take no more than two courses:

 1 select s.sno,s.sname,s.age
 2 from student s, take t
 3 where s.sno = t.sno
 4 group by s.sno,s.sname,s.age
 5 having count(*) <= 2

DB2, Oracle, and SQL Server

Use the window function COUNT OVER, again to determine which students take no more than two
courses:

 1 select distinct sno,sname,age

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 from (
 3 select s.sno,s.sname,s.age,
 4 count(*) over (
 5 partition by s.sno,s.sname,s.age
 6) as cnt
 7 from student s, take t
 8 where s.sno = t.sno
 9) x
 10 where cnt <= 2

Discussion

Both solutions work by simply counting the number of times a particular SNO occurs in table TAKE.
The inner join to table TAKE ensures that students who take no courses are excluded from the final
result set.

Original solution

Rozenshtein used the aggregate solution shown here for MySQL and PostgreSQL in his book along
with an alternative solution using multiple self joins, shown here:

 select distinct s.*
 from student s, take t
 where s.sno = t.sno
 and s.sno not in (select t1.sno
 from take t1, take t2, take t3
 where t1.sno = t2.sno
 and t2.sno = t3.sno
 and t1.cno < t2.cno
 and t2.cno < t3.cno)

The multiple self-join solution is interesting because it solves the problem without using aggregation.
To understand how the solution works, focus on the WHERE clause of the subquery. The inner joins
on SNO ensure that you are dealing with the same student across all columns of each row that can
potentially be returned by the subquery. The less-than comparisons are what determine whether or
not a student is taking more than two courses. The WHERE clause in the subquery can be stated as:
"For a particular student, return rows where the first CNO is less than the second CNO and the
second CNO is less than the THIRD CNO." If a student has fewer than three courses, that expression
can never evaluate to true as there is no third CNO. The job of the subquery is to find students who
take three or more courses. The outer query then returns students who take at least one course and
are not amongst those returned by the subquery.

Question 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You want to find students who are older than at most two other students. Another way to think about
the problem is to find only the students who are older than zero, one, or two other students. The final
result set should be:

 SNO SNAME AGE
 ---- ---------- ---
 6 JING 18
 4 MAGGIE 19
 1 AARON 20
 9 GILLIAN 20
 8 KAY 20
 3 DOUG 20

MySQL and PostgreSQL

Use the aggregate function COUNT and a correlated subquery to find the students who are older than
zero, one, or two other students:

 1 select s1.*
 2 from student s1
 3 where 2 >= (select count(*)
 4 from student s2
 5 where s2.age < s1.age)

DB2, Oracle, and SQL Server

Use the window function DENSE_RANK to find the students who are older than zero, one, or two
other students:

 1 select sno,sname,age
 2 from (
 3 select sno,sname,age,
 4 dense_rank()over(order by age) as dr
 5 from student
 6) x
 7 where dr <= 3

Discussion

The aggregate solution uses a scalar subquery to find all students who are older than no more than

http://lib.ommolketab.ir
http://lib.ommolketab.ir

two other students. To see how this works, rewrite the solution to use a scalar subquery. In the
following example, the column CNT represents the number of students that are younger than the
current student:

 select s1.*,
 (select count(*) from student s2
 where s2.age < s1.age) as cnt
 from student s1
 order by 4

 SNO SNAME AGE CNT
 --- ---------- ---------- ----------
 6 JING 18 0
 4 MAGGIE 19 1
 1 AARON 20 2
 3 DOUG 20 2
 8 KAY 20 2
 9 GILLIAN 20 2
 2 CHUCK 21 6
 7 BRIAN 21 6
 10 CHAD 21 6
 5 STEVE 22 9

Rewriting the solution this way makes it easy to see that the students in the final result set are those
for whom CNT is less than or equal to 2.

The solution using the window function DENSE_RANK is similar to the scalar subquery example in
that every row is ranked based on how many students are younger than the current student (ties are
allowed and there are no gaps). The following query shows the output from the DENSE_RANK
function:

 select sno,sname,age,
 dense_rank()over(order by age) as dr
 from student

 SNO SNAME AGE DR
 --- ---------- ---------- ----------
 6 JING 18 1
 4 MAGGIE 19 2
 1 AARON 20 3
 3 DOUG 20 3
 8 KAY 20 3
 9 GILLIAN 20 3
 2 CHUCK 21 4
 7 BRIAN 21 4
 10 CHAD 21 4
 5 STEVE 22 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The final step is to wrap the query in an inline view and keep only those rows where DR is less than
or equal to 3.

Original solution

Rozenshtein takes an interesting approach to solving this problem by rephrasing it. Instead of "find
the students who are older than at most two students," his approach is to "find the students who are
not older than three or more (at least three) students." This approach is brilliant for those of you who
want to learn how to problem solve in sets, because it forces you to find the solution in two passes:

Find the set of students who are older than three or more students.1.

Simply return all students who are not amongst the students returned by step 1.2.

The solution is shown below:

 select *
 from student
 where sno not in (
 select s1.sno
 from student s1,
 student s2,
 student s3,
 student s4
 where s1.age > s2.age
 and s2.age > s3.age
 and s3.age > s4.age
)

 SNO SNAME AGE
 --- ---------- ---
 6 JING 18
 4 MAGGIE 19
 1 AARON 20
 9 GILLIAN 20
 8 KAY 20
 3 DOUG 20

If you examine the solution from bottom up, you see that step 1, "find all students who are older
than three or more students," is performed first and is shown below (using DISTINCT to reduce the
result set size for readability):

 select distinct s1.*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from student s1,
 student s2,
 student s3,
 student s4
 where s1.age > s2.age
 and s2.age > s3.age
 and s3.age > s4.age

 SNO SNAME AGE
 --- ---------- ---
 2 CHUCK 21
 5 STEVE 22
 7 BRIAN 21
 10 CHAD 21

If you are getting confused by all the self joins, simply focus on the WHERE clause. S1.AGE is greater
than S2.AGE so you know at that point any student who is older than at least one other student is
considered. Next, S2.AGE is greater than S3.AGE. At this point any student who is older than two
other students is considered. If you are stumbling at this point, try to keep in mind that greater-than
comparisons are transitive. If S1.AGE is greater than S2.AGE, and S2.AGE is greater than S3.AGE,
then it is also true that S1AGE is greater than S3.AGE. You may find it helpful to strip down the query
to one self join and build the query once you understand what is returned by each step. For example,
find all students who are older than at least one other student (all students except the youngest,
JING, should be returned):

 select distinct s1.*
 from student s1,
 student s2
 where s1.age > s2.age

 SNO SNAME AGE
 --- ---------- ---
 5 STEVE 22
 7 BRIAN 21
 10 CHAD 21
 2 CHUCK 21
 1 AARON 20
 3 DOUG 20
 9 GILLIAN 20
 8 KAY 20
 4 MAGGIE 19

Next, find all students who are older than two or more students (now, both JING and MAGGIE should
be excluded from the result set):

 select distinct s1.*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from student s1,
 student s2,
 student s3
 where s1.age > s2.age
 and s2.age > s3.age

 SNO SNAME AGE
 --- ---------- ---
 1 AARON 20
 2 CHUCK 21
 3 DOUG 20
 5 STEVE 22
 7 BRIAN 21
 8 KAY 20
 9 GILLIAN 20
 10 CHAD 21

Finally, find all students who are older than three or more students (only CHUCK, STEVE, BRIAN, and
CHAD are in this result set):

 select distinct s1.*
 from student s1,
 student s2,
 student s3,
 student s4
 where s1.age > s2.age
 and s2.age > s3.age
 and s3.age > s4.age

 SNO SNAME AGE
 --- ---------- ---
 2 CHUCK 21
 5 STEVE 22
 7 BRIAN 21
 10 CHAD 21

Now that you know which students are older than three or more other students, simply return only
those students who are not amongst the four students above by using NOT IN with a subquery.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe B.4. Answering Questions Involving "at Least"

The flip side of "at most" is "at least." You can often solve "at least" questions by applying variations
of the techniques described for "at most" questions. When solving "at least" problems it is often
helpful to rephrase them as "having no fewer than."

In general, if you can identify a threshold in your requirement, you've already solved half the
problem. Once you know the threshold, you can decide to solve the problem using one pass
(aggregate or window functions typically using COUNT) or two passes (negation with subquery).

Question 6

You want to find students who take at least two courses.

You may find it helpful to restate the problem as "Find students who take two or more courses" or as
"Find students who take no fewer than two courses." You can use the same technique used for
Question 4: use the aggregate function COUNT or window function COUNT OVER. The final result set
should be:

 SNO SNAME AGE
 --- ---------- ----------
 1 AARON 20
 3 DOUG 20
 4 MAGGIE 19
 6 JING 18

MySQL and PostgreSQL

Use the aggregate function COUNT to find students who take at least two courses:

 1 select s.sno,s.sname,s.age
 2 from student s, take t
 3 where s.sno = t.sno
 4 group by s.sno,s.sname,s.age
 5 having count(*) >= 2

DB2, Oracle, and SQL Server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the window function COUNT OVER to find students who take at least two courses:

 1 select distinct sno,sname,age
 2 from (
 3 select s.sno,s.sname,s.age,
 4 count(*) over (
 5 partition by s.sno,s.sname,s.age
 6) as cnt
 7 from student s, take t
 8 where s.sno = t.sno
 9) x
 10 where cnt >= 2

Discussion

See Question 4 for a full discussion of the solutions presented in this section; the techniques are the
same. For the aggregate solution, join table STUDENT to table TAKE and use COUNT in the HAVING
clause to keep only those students with two or more courses. For the window solution, join table
STUDENT to table TAKE and perform a count over the partition that is defined by specifying all the
columns from table STUDENT. From there, simply keep only those rows where CNT is two or greater.

Original solution

The solution below uses a self join on table TAKE to find students who take two or more classes. The
equi-join on SNO in the subquery ensures that each student is evaluated against his/her own courses
only. The greater-than comparison on CNO can only be true if a student takes more than one course,
otherwise CNO would equal CNO (as there is only one course to be compared with itself). The last
step is to return all students who are amongst those returned by the subquery, and is shown below:

 select *
 from student
 where sno in (
 select t1.sno
 from take t1,
 take t2
 where t1.sno = t2.sno
 and t1.cno > t2.cno
)

 SNO SNAME AGE
 --- ---------- ----------
 1 AARON 20
 3 DOUG 20
 4 MAGGIE 19
 6 JING 18

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Question 7

You want to find students who take both CS112 and CS114. The students may take other courses,
but they must take CS112 and CS114 as well.

This problem is similar to Question 2, except that in that case a student may take more than two
courses whereas in this case they take at least 2 courses (AARON and DOUG are the only students
who take both CS112 and CS114). You can easily modify the solution from Question 2 to work here.
The final result set should be:

 SNO SNAME AGE
 --- ---------- ----
 1 AARON 20
 3 DOUG 20

MySQL and PostgreSQL

Use the aggregate functions MIN and MAX to find students who take both CS112 and CS114:

 1 select s.sno, s.sname, s.age
 2 from student s, take t
 3 where s.sno = t.sno
 4 and t.cno in ('CS114','CS112')
 5 group by s.sno, s.sname, s.age
 6 having min(t.cno) != max(t.cno)

DB2, Oracle, and SQL Server

Use the window functions MIN OVER and MAX OVER to find students who take both CS112 and
CS114:

 1 select distinct sno, sname, age
 2 from (
 3 select s.sno, s.sname, s.age,
 4 min(cno) over (partition by s.sno) as min_cno,
 5 max(cno) over (partition by s.sno) as max_cno
 6 from student s, take t
 7 where s.sno = t.sno
 8 and t.cno in ('CS114','CS112')
 9) x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10 where min_cno != max_cno

Discussion

Both solutions use the same technique to find the answer. The IN list ensures only students who take
CS112 or CS114, or both, are returned. If a student does not take both courses, then MIN(CNO) will
equal MAX(CNO) and that student is excluded. To help visualize how this works, the intermediate
results of the window solution are shown below (T.CNO is added for clarity):

 select s.sno, s.sname, s.age, t.cno,
 min(cno) over (partition by s.sno) as min_cno,
 max(cno) over (partition by s.sno) as max_cno
 from student s, take t
 where s.sno = t.sno
 and t.cno in ('CS114','CS112')

 SNO SNAME AGE CNO MIN_C MAX_C
 --- ---------- ---- ----- ----- -----
 1 AARON 20 CS114 CS112 CS114
 1 AARON 20 CS112 CS112 CS114
 2 CHUCK 21 CS112 CS112 CS112
 3 DOUG 20 CS114 CS112 CS114
 3 DOUG 20 CS112 CS112 CS114
 4 MAGGIE 19 CS112 CS112 CS112
 6 JING 18 CS114 CS114 CS114

Examining the results, it's easy to see only AARON and DOUG have rows where MIN(CNO) !=
MAX(CNO).

Original solution

The original solution by Rozenshtein uses a self join on table TAKE. Following is the original solution,
which performs extremely well with the proper indexes in place:

 select s.*
 from student s,
 take t1,
 take t2
 where s.sno = t1.sno
 and t1.sno = t2.sno
 and t1.cno = 'CS112'
 and t2.cno = 'CS114'

 SNO SNAME AGE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 --- ----- ---
 1 AARON 20
 3 DOUG 20

All the solutions work by ensuring that, regardless of the other courses a student may take, they
must take both CS112 and CS114. If you are having trouble understanding the self join, you may
find it easier to understand the following example:

 select s.*
 from take t1, student s

 where s.sno = t1.sno
 and t1.cno = 'CS114'
 and 'CS112' = any (select t2.cno
 from take t2
 where t1.sno = t2.sno
 and t2.cno != 'CS114')
 SNO SNAME AGE
 --- ----- ---
 1 AARON 20
 3 DOUG 20

Question 8

Find students who are older than at least two other students.

You may find it helpful to restate the problem as "Find students who are older than two or more
other students." You can use the same technique used in Question 5. The final result set is shown
below (only JING and MAGGIE are not older than two or more students):

 SNO SNAME AGE
 --- ---------- ----------
 1 AARON 20
 2 CHUCK 21
 3 DOUG 20
 5 STEVE 22
 7 BRIAN 21
 8 KAY 20
 9 GILLIAN 20
 10 CHAD 21

MySQL and PostgreSQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the aggregate function COUNT and a correlated subquery to find students older than at least two
other students:

 1 select s1.*
 2 from student s1
 3 where 2 <= (select count(*)
 4 from student s2
 5 where s2.age < s1.age)

DB2, Oracle, and SQL Server

Use the window function DENSE_RANK to find students older than at least two other students:

 1 select sno,sname,age
 2 from (
 3 select sno,sname,age,
 4 dense_rank()over(order by age) as dr
 5 from student
 6) x
 7 where dr >= 3

Discussion

For a full discussion see Question 5. The technique is exactly the same for both solutions, with the
only difference being the final evaluation on the count or rank.

Original solution

The problem is a variation of Question 6, the difference being you are now only dealing with the
STUDENT table. This solution in Question 6 can be easily adapted to "find students older than at least
two other students" and is shown below:

 select distinct s1.*
 from student s1,
 student s2,
 student s3
 where s1.age > s2.age
 and s2.age > s3.age

 SNO SNAME AGE
 --- ---------- ----------
 1 AARON 20

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 CHUCK 21
 3 DOUG 20
 5 STEVE 22
 7 BRIAN 21
 8 KAY 20
 9 GILLIAN 20
 10 CHAD 21

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe B.5. Answering Questions Involving "Exactly"

You would think that answering the question of whether or not something is true would be easy. In
many cases it is easy. But sometimes it can be tricky to answer questions of whether something is
"exactly" true, especially when answering involves joining master/detail data. The problem stems
from the exclusive nature of "exactly." It may be more helpful to think of it as "only." Consider the
difference between people who wear shoes and those who wear only shoes. It is not enough to
satisfy the condition; you must satisfy the condition while ensuring that no other conditions are
satisfied.

Question 9

Find professors who teach exactly one course.

You can restate the problem as "Find professors who teach only one course." Which course they
teach is unimportant; what matters is that only one course is taught. The final result set should be:

 LNAME DEPT SALARY AGE
 ---------- ---------- ---------- ----
 POMEL SCIENCE 500 65

MySQL and PostgreSQL

Use the aggregate function COUNT to find the professors who teach exactly one course:

 1 select p.lname,p.dept,p.salary,p.age
 2 from professor p, teach t
 3 where p.lname = t.lname
 4 group by p.lname,p.dept,p.salary,p.age
 5 having count(*) = 1

DB2, Oracle, and SQL Server

Use the window function COUNT OVER to find the professors who teach exactly one course:

 1 select lname, dept, salary, age

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 from (
 3 select p.lname,p.dept,p.salary,p.age,
 4 count(*) over (partition by p.lname) as cnt
 5 from professor p, teach t
 6 where p.lname = t.lname
 7) x
 8 where cnt = 1

Discussion

By inner joining table PROFESSOR to table TEACH you ensure that all professors who teach no
courses are excluded. The aggregate solution uses the COUNT function in the HAVING clause to
return only professors who teach exactly one course. The window solution uses the COUNT OVER
function, but notice that the columns from table PROFESSOR that are used in the PARTITION clause
of the COUNT OVER function are different from the columns that are used in the GROUP BY of the
aggregate solution. In this example it is safe for the GROUP BY and PARTITION BY clauses to be
different, because the last names are unique in table TEACHER, i.e., excluding P.DEPT, P.SALARY,
and .PAGE from the partition does not affect the COUNT operation. In solutions prior to this one, I
purposely use the same columns in the PARTITION clause of a window function solution as I use in
the GROUP BY clause of an aggregate solution to show that the PARTITION is a moving, more flexible
kind of GROUP BY.

Original solution

This solution uses the same technique used in Question 3: perform two passes to find the answer.
The first step is to find those professors who teach two or more classes. The second step is to find
those professors who teach a course and are not amongst those returned by step 1. Please refer to
Question 3 for a full discussion. The solution is shown below:

 select p.*
 from professor p,
 teach t
 where p.lname = t.lname
 and p.lname not in (
 select t1.lname
 from teach t1,
 teach t2
 where t1.lname = t2.lname
 and t1.cno > t2.cno
)

 LNAME DEPT SALARY AGE
 ---------- ---------- ---------- ----------
 POMEL SCIENCE 500 65

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Question 10

You want to find students who take only CS112 and CS114 (exactly those two courses and no other
courses), but the following query returns an empty result set:

 select s.*
 from student s, take t
 where s.sno = t.sno
 and t.cno = 'CS112'
 and t.cno = 'CS114'

No row can have a column that is simultaneously two values (assuming simple scalar data types such
as those used for table STUDENT), so the query will never work. Rozenshtein's book does a nice job
of discussing how intuitive thinking when writing queries causes errors such as this one. DOUG is the
only student who takes only CS112 and CS114 and should be the only student returned for this
query.

MySQL and PostgreSQL

Use a CASE expression and the aggregate function COUNT to find students who take only CS112 and
CS114:

 1 select s.sno, s.sname, s.age
 2 from student s, take t
 3 where s.sno = t.sno
 4 group by s.sno, s.sname, s.age
 5 having count(*) = 2
 6 and max(case when cno = 'CS112' then 1 else 0 end) +
 7 max(case when cno = 'CS114' then 1 else 0 end) = 2

DB2, Oracle, and SQL Server

Use the window function COUNT OVER with a CASE expression to find students who take only CS112
and CS114:

 1 select sno,sname,age
 2 from (
 3 select s.sno,
 4 s.sname,
 5 s.age,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 6 count(*) over (partition by s.sno) as cnt,
 7 sum(case when t.cno in ('CS112', 'CS114')
 8 then 1 else 0
 9 end)
 10 over (partition by s.sno) as both,
 11 row_number()
 12 over (partition by s.sno order by s.sno) as rn
 13 from student s, take t
 14 where s.sno = t.sno
 15) x
 16 where cnt = 2
 17 and both = 2
 18 and rn = 1

Discussion

The aggregate solution uses the same technique found in Question 1 and Question 2. The inner join
from table STUDENT to table TAKE ensures that any students who take no courses are excluded. The
COUNT expression in the HAVING clause keeps only students who take exactly two courses. The
results of the CASE expressions counting the number of courses are summed. Only those students
who take both CS112 and CS114 have a sum of 2.

The window solution uses a technique similar to the window solutions found in Question 1 and
Question 2. This version is slightly different as the value of the CASE expression is returned to the
window function SUM OVER. Another variation in this solution is the use of the window function
ROW_NUMBER to avoid using DISTINCT. The results of the window solution without the final filters
are shown below:

 select s.sno,
 s.sname,
 s.age,
 count(*) over (partition by s.sno) as cnt,
 sum(case when t.cno in ('CS112', 'CS114')
 then 1 else 0
 end)
 over (partition by s.sno) as both,
 row_number()
 over (partition by s.sno order by s.sno) as rn
 from student s, take t
 where s.sno = t.sno

 SNO SNAME AGE CNT BOTH RN
 --- ------ ---- ---- ---- ----
 1 AARON 20 3 2 1
 1 AARON 20 3 2 2
 1 AARON 20 3 2 3
 2 CHUCK 21 1 1 1
 3 DOUG 20 2 2 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 DOUG 20 2 2 2
 4 MAGGIE 19 2 1 1
 4 MAGGIE 19 2 1 2
 5 STEVE 22 1 0 1
 6 JING 18 2 1 1
 6 JING 18 2 1 2

Examining these results, you can see that the final result set is the one where BOTH and CNT are 2.
RN can be either 1 or 2, it doesn't matter; that column exists only to help filter out duplicates without
using DISTINCT.

Original solution

This solution uses a subquery with multiple self joins to first find students who take at least three
classes. The next step is to use a self join on table TAKE to find those students who take both CS112
and CS114. The final step is to keep only those students who take both CS112 and CS114 and do not
take three or more classes. The solution is shown below:

 select s1.*
 from student s1,
 take t1,
 take t2
 where s1.sno = t1.sno
 and s1.sno = t2.sno
 and t1.cno = 'CS112'
 and t2.cno = 'CS114'
 and s1.sno not in (
 select s2.sno
 from student s2,
 take t3,
 take t4,
 take t5
 where s2.sno = t3.sno
 and s2.sno = t4.sno
 and s2.sno = t5.sno
 and t3.cno > t4.cno
 and t4.cno > t5.cno
)

 SNO SNAME AGE
 --- ---------- ---
 3 DOUG 20

Question 11

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You want to find students who are older than exactly two other students. Another way of stating the
problem is that you want to find the third youngest student(s). The final result set should be:

 SNO SNAME AGE
 --- ---------- ----------
 1 AARON 20
 3 DOUG 20
 8 KAY 20
 9 GILLIAN 20

MySQL and PostgreSQL

Use the aggregate function COUNT and a correlated subquery to find the third youngest student:

 1 select s1.*
 2 from student s1
 3 where 2 = (select count(*)
 4 from student s2
 5 where s2.age < s1.age)

DB2, Oracle, and SQL Server

Use the window function DENSE_RANK to find the third youngest student:

 1 select sno,sname,age
 2 from (
 3 select sno,sname,age,
 4 dense_rank()over(order by age) as dr
 5 from student
 6) x
 7 where dr = 3

Discussion

The aggregate solution uses a scalar subquery to find all students who are older than two (and only
two) other students. To see how this works, rewrite the solution to use a scalar subquery. In the
following example, the column CNT represents the number of students that are younger than the
current student:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select s1.*,
 (select count(*) from student s2
 where s2.age < s1.age) as cnt
 from student s1
 order by 4

 SNO SNAME AGE CNT
 --- ---------- ---------- ----------
 6 JING 18 0
 4 MAGGIE 19 1
 1 AARON 20 2
 3 DOUG 20 2
 8 KAY 20 2
 9 GILLIAN 20 2
 2 CHUCK 21 6
 7 BRIAN 21 6
 10 CHAD 21 6
 5 STEVE 22 9

Rewriting the solution this way makes it easy to see who the third youngest students are (those
whose CNT is 2).

The solution using the window function DENSE_RANK is similar to the scalar subquery example in
that every row is ranked based on how many students are younger than the current student (ties are
allowed and there are no gaps). The following query shows the output from the DENSE_RANK
function:

 select sno,sname,age,
 dense_rank()over(order by age) as dr
 from student

 SNO SNAME AGE DR
 --- ---------- ---------- ----------
 6 JING 18 1
 4 MAGGIE 19 2
 1 AARON 20 3
 3 DOUG 20 3
 8 KAY 20 3
 9 GILLIAN 20 3
 2 CHUCK 21 4
 7 BRIAN 21 4
 10 CHAD 21 4
 5 STEVE 22 5

The final step is to wrap the query in an inline view and keep only those rows where DR is 3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Original solution

The original solution uses a two-pass approach: step 1, find the students who are older than three or
more students; step 2, find the students who are older than two students who are not amongst the
students returned by step 1. Alternatively, Rozenshtein would rephrase this as, "Find students who
are older than at least two students and are not older than at least three students." The solution is
shown below:

 select s5.*
 from student s5,
 student s6,
 student s7
 where s5.age > s6.age
 and s6.age > s7.age
 and s5.sno not in (
 select s1.sno
 from student s1,
 student s2,
 student s3,
 student s4
 where s1.age > s2.age
 and s2.age > s3.age
 and s3.age > s4.age
)

 SNO SNAME AGE
 --- ------ ----
 1 AARON 20
 3 DOUG 20
 9 GILLIAN 20
 8 KAY 20

The solution above uses the technique shown in Question 5. Refer to Question 5 for a complete
discussion of how extremes are found using self joins.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe B.6. Answering Questions Involving "Any" or "All"

Queries involving "any" or "all" typically require you to find rows that satisfy one or more conditions
completely. For example, if you are asked to find people who eat all vegetables, you are essentially
looking for people for whom there is no vegetable that they do not eat. This type of problem
statement is typically categorized as relational division. With questions regarding "any," it is crucial
you pay close attention to how the question is phrased. Consider the difference between these two
requirements: "a student who takes any class" and "a plane faster than any train." The former
implies, "find a student who takes at least one class," while the latter implies "find a plane that is
faster than all trains."

Question 12

You want to find students who take all courses.

The number of courses for a student in table TAKE must be equal to the total number of courses in
table COURSES. There are three courses in table COURSES. Only AARON takes all three courses and
should be the only student returned. The final result set should be:

 SNO SNAME AGE
 --- ------ ---
 1 AARON 20

MySQL and PostgreSQL

Use the aggregate function COUNT to find students who take every course:

 1 select s.sno,s.sname,s.age
 2 from student s, take t
 3 where s.sno = t.sno
 4 group by s.sno,s.sname,s.age
 5 having count(t.cno) = (select count(*) from courses)

DB2 and SQL Server

Use the window function COUNT OVER and an outer join instead of a subquery:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 select sno,sname,age
 2 from (
 3 select s.sno,s.sname,s.age,
 4 count(t.cno)
 5 over (partition by s.sno) as cnt,
 6 count(distinct c.title) over() as total,
 7 row_number() over
 8 (partition by s.sno order by c.cno) as rn
 9 from courses c
 10 left join take t on (c.cno = t.cno)
 11 left join student s on (t.sno = s.sno)
 12) x
 13 where cnt = total
 14 and rn = 1

Oracle

Users on Oracle9i and later can use the DB2 solution. Alternatively, you can use the proprietary
Oracle outer-join syntax, which is mandatory for users on 8i and earlier:

 1 select sno,sname,age
 2 from (
 3 select s.sno,s.sname,s.age,
 4 count(t.cno)
 5 over (partition by s.sno) as cnt,
 6 count(distinct c.title) over() as total,
 7 row_number() over
 8 (partition by s.sno order by c.cno) as rn
 9 from courses c, take t, student s
 10 where c.cno = t.cno (+)
 11 and t.sno = s.sno (+)
 12)
 13 where cnt = total
 14 and rn = 1

Discussion

The aggregate solution uses a subquery to return the total number of courses available. The outer
query keeps only students who take the same number of courses as the value returned by the
subquery. The window solution takes a different approach: it uses an outer join to table COURSES
instead of a subquery. The window solution also uses window functions to return the number of
courses a student takes (aliased CNT) along with the total number of courses there are in table
COURSES (aliased TOTAL). The query below shows the intermediate results from those window
functions:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 select s.sno,s.sname,s.age,
 count(distinct t.cno)
 over (partition by s.sno) as cnt,
 count(distinct c.title) over() as total,
 row_number()
 over(partition by s.sno order by c.cno) as rn
 from courses c
 left join take t on (c.cno = t.cno)
 left join student s on (t.sno = s.sno)
 order by 1

 SNO SNAME AGE CNT TOTAL RN
 --- ------ ---- ---- ---------- ----
 1 AARON 20 3 3 1
 1 AARON 20 3 3 2
 1 AARON 20 3 3 3
 2 CHUCK 21 1 3 1
 3 DOUG 20 2 3 1
 3 DOUG 20 2 3 2
 4 MAGGIE 19 2 3 1
 4 MAGGIE 19 2 3 2
 5 STEVE 22 1 3 1
 6 JING 18 2 3 1
 6 JING 18 2 3 2

The student who takes all courses is the one where CNT equals TOTAL. ROW_NUMBER is used
instead of DISTINCT to filter out the duplicates from the final result set. Strictly speaking, the outer
joins to tables TAKE and STUDENT are not necessary, as there are no courses that aren't taken by at
least one student. If there is a course that no students take, CNT would not equal TOTAL, and a row
with NULL values for SNO, SNAME, and AGE would be returned. The example below creates a new
course that no students take. The following query demonstrates what the intermediate result set
would look like if there exists a course no students take (for clarity, C.TITLE is included below):

 insert into courses values ('CS115','BIOLOGY',4)

 select s.sno,s.sname,s.age,c.title,
 count(distinct t.cno)
 over (partition by s.sno) as cnt,
 count(distinct c.title) over() as total,
 row_number()
 over(partition by s.sno order by c.cno) as rn
 from courses c
 left join take t on (c.cno = t.cno)
 left join student s on (t.sno = s.sno)
 order by 1

 SNO SNAME AGE TITLE CNT TOTAL RN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 --- ------ --- ---------- --- ----- ---
 1 AARON 20 PHYSICS 3 4 1
 1 AARON 20 CALCULUS 3 4 2
 1 AARON 20 HISTORY 3 4 3
 2 CHUCK 21 PHYSICS 1 4 1
 3 DOUG 20 PHYSICS 2 4 1
 3 DOUG 20 HISTORY 2 4 2
 4 MAGGIE 19 PHYSICS 2 4 1
 4 MAGGIE 19 CALCULUS 2 4 2
 5 STEVE 22 CALCULUS 1 4 1
 6 JING 18 CALCULUS 2 4 1
 6 JING 18 HISTORY 2 4 2
 BIOLOGY 0 4 1

Examining these results, it's easy to see no rows will be returned when the final filters are applied.
Additionally, keep in mind that window functions take effect after the WHERE clause is evaluated so it
is necessary to use DISTINCT when counting the total courses available in table COURSES (otherwise
you get the total from the result set, which would be the total number of courses taken by all
students, i.e., select count(cno) from take).

The sample data used for this example does not have any duplicates in table
TAKE, so the solution provided works fine. If there had been duplicates in TAKE,
for example, a student that takes the same courses three times, the solution
would fail. The workaround for dealing with duplicates in this solution is trivial;
simply add DISTINCT when performing the count on T.CNO and the solution will
work correctly.

Original solution

The original solution avoids aggregates by using a Cartesian product in a devilishly clever way. The
query below is based on the original:

 select *
 from student
 where sno not in
 (select s.sno
 from student s, courses c
 where (s.sno,c.cno) not in (select sno,cno from take))

Rozenshtein restates the problem to be "Which students are not among those for whom there is a
course that they do not take?" If you look at the problem that way, you are now working with
negation. Recall how Rozenshtein suggests handling negation:

Remember that real negation requires two passes: To find out "who does not," first find out

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"who does" and then get rid of them.

The innermost subquery returns all valid SNO/CNO combinations. The middle subquery, which uses a
Cartesian product between tables STUDENT and COURSES, returns all students and all courses (i.e.,
every student taking every course) and filters out the valid SNO/CNO combinations (leaving only
"made up" SNO/CNO combinations). The outermost query returns only the rows from table STUDENT
where the SNO is not amongst those returned by the middle subquery. The following queries may
make the solution a bit more clear. To keep it readable, I'll use only AARON and CHUCK (only AARON
takes all courses):

 select *
 from student
 where sno in (1,2)

 SNO SNAME AGE
 --- ---------- ----
 1 AARON 20
 2 CHUCK 21

 select *
 from take
 where sno in (1,2)

 SNO CNO
 --- -----
 1 CS112
 1 CS113
 1 CS114
 2 CS112

 select s.sno, c.cno
 from student s, courses c
 where s.sno in (1,2)
 order by 1

 SNO CNO
 --- -----
 1 CS112
 1 CS113
 1 CS114
 2 CS112
 2 CS113
 2 CS114

These queries show the rows from table STUDENT for AARON and CHUCK, the courses that AARON
and CHUCK take, and a Cartesian product that returns AARON and CHUCK taking all courses,
respectively. The result set from the Cartesian product for AARON matches the result set returned for
AARON from table TAKE, but CHUCK has two "made up" rows as a result of the Cartesian product
that do not match his rows in table TAKE. The following query is the middle subquery and uses NOT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IN to filter out the valid SNO/CNO combinations:

 select s.sno, c.cno
 from student s, courses c
 where s.sno in (1,2)
 and (s.sno,c.cno) not in (select sno,cno from take)

 SNO CNO
 --- ----
 2 CS113
 2 CS114

Notice that AARON is not returned by the middle subquery (because AARON takes all courses). The
result set of the middle subquery contains rows that exist due to the Cartesian product, not because
CHUCK actually takes those courses. The outermost query then returns rows from table STUDENT
where the SNO is not amongst the SNO returned by the middle subquery:

 select *
 from student
 where sno in (1,2)
 and sno not in
 (select s.sno from student s, courses c
 where s.sno in (1,2)
 and (s.sno,c.cno) not in (select sno,cno from take))

 SNO SNAME AGE
 --- ---------- -----
 1 AARON 20

Question 13

Find students who are older than any other students.

You can restate the problem as "Find the oldest students." The final result set should be:

 SNO SNAME AGE
 --- -------- ------
 5 STEVE 22

MySQL and PostgreSQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the aggregate function MAX in a subquery to find the oldest students:

 1 select *
 2 from student
 3 where age = (select max(age) from student)

DB2, Oracle, and SQL Server

Use the window function MAX OVER in an inline view to find the oldest students:

 1 select sno,sname,age
 2 from (
 3 select s.*,
 4 max(s.age)over() as oldest
 5 from student s
 6) x
 7 where age = oldest

Discussion

Both solutions use the function MAX to find the oldest student. The subquery solution first finds the
greatest age in table STUDENT and returns it to the outer query, which finds student of that age. The
window version does the same as the subquery solution but returns the greatest age for each row.
The intermediate results of the window query are as follows:

 select s.*,
 max(s.age) over() as oldest
 from student s

 SNO SNAME AGE OLDEST
 --- ---------- ---- ----------
 1 AARON 20 22
 2 CHUCK 21 22
 3 DOUG 20 22
 4 MAGGIE 19 22
 5 STEVE 22 22
 6 JING 18 22
 7 BRIAN 21 22
 8 KAY 20 22
 9 GILLIAN 20 22
 10 CHAD 21 22

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To find the oldest students, simply keep the rows where AGE = OLDEST.

Original solution

The original solution uses a self join on table STUDENT in a subquery to find all students who are
younger than some other student. The outer query returns all students from table STUDENT who are
not amongst those returned by the subquery. The operation can be rephrased as "find all students
who are not amongst those students who are younger than at least one other student":

 select *
 from student
 where age not in (select a.age
 from student a, student b
 where a.age < b.age)

The subquery returns use a Cartesian product to find all ages in A that are younger than all ages in
B. The only age that would not be younger than any other age is the greatest age. The greatest age
is not returned by the subquery. The outer query uses NOT IN to return all rows from table STUDENT
where AGE is not amongst the AGE returned by the subquery (if A.AGE is returned, that means there
is an AGE somewhere in table STUDENT that is greater than it). If you have trouble understanding
how it works, examine the following query. Conceptually they both work in a similar way, but the
following is probably more common:

 select *
 from student
 where age >= all (select age from student)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Author

Anthony Molinaro is a database developer at Wireless Generation, Inc. with many years of
experience in helping developers improve their SQL queries. SQL is a particular passion of Anthony's,
and he's become known as the go-to guy among his clients when it comes to solving difficult SQL
query problems. He's well-read, understands relational theory well, and has nine years of hands-on
experience solving tough SQL problems. Anthony is particularly well-acquainted with new and
powerful SQL features such as the windowing function syntax that was added to the most recent SQL
standard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of SQL Cookbook is an Agamid lizard. These lizards belong to the Agamidae
family and have more than 300 species among them. Agamids can be found in Africa, Asia, Australia,
and Southern Europe, and are characterized by strong legs andin some varietiesthe ability to change
color. Unlike other species of lizards, agamids cannot regenerate their tails if they lose them. They
can be found in varied environments from hot deserts to warm, wet tropical rainforests.

Several species of agamids are popular as pets. Among these are the Bearded Dragon (genus
Pogona). Calm, yet curious, these creatures grow to be only about 20 inches. Even with their small
stature, they are still considered "giant" lizards, and therefore require ample space. Males are
generally territorial and, although they are social animals, overcrowding can lead to stress, especially
when the animals have no place to hide. Overcrowding can lead to injuries from fighting such as lost
toes and tails, as well as a loss of appetite.

The head of the bearded lizard is triangular in shape and features many spikes protruding from its
chin. These spikes resemble whiskers (thus the name). The spikes are also found along its side.
Bearded dragons open their mouths and display their spiky beards to scare predators and other
beardeds. They also can flatten their bodies to appear larger. As pets, they may stop displaying their
beards once they become comfortable with their owners and habitats.

Although they originated in Australia, the bearded dragons sold by U.S. dealers are descendants of
animals that were imported from Europe. This is due to Australia's strict export laws regarding
wildlife.

The Flying Lizard (draco volans) is another varied example of an agamid lizard. Measuring slightly
less than 12 inches, this animal has a long, thin body with flaps of skin along its ribs. The male flying
lizard will claim two to three trees for its territory with one to three females living in each tree. In
order to transport itself from one place to another, it glides from trees or other high places by
extending its skin flaps like wings. However, it usually does not fly in rain or wind. When threatened,
the flying lizard may also extend its skin flaps to appear larger.

Another interesting variety of the agamidae family is the Red Headed Rock Agama (Agama agama)
found in sub-Saharan Africa. These creatures often live in groups of 10 to 20 with an older male
acting as the group's "leader." At night, their coloring is dark brown, but at dawn, their bodies change
to light blue with a bright orange head and tail. Their skin coloring changes with their mood, acting
like a virtual mood ring. For example, when males fight, their heads will become brown, while white
spots appear along the body.

Darren Kelly was the production editor for SQL Cookbook. Kenneth Kimball was the copyeditor and
Karmyn Guthrie was the proofreader. nSight, Inc. provided production services. Jamie Peppard and
Genevieve d'Entremont provided quality control. Jansen Fernald provided production support Beth
Palmer wrote the index.

Karen Montgomery designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Karen Montgomery

http://lib.ommolketab.ir
http://lib.ommolketab.ir

produced the cover layout with Adobe InDesign CS using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahlgren to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia
FreeHand MX and Adobe Photoshop CS. The tip and warning icons were drawn by Christopher Bing.
This colophon was written by Jansen Fernald.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

% (modulus) function (SQL Server) 2nd 3rd

% (wildcard) operator

* character in SELECT statements

+ (concatenation) operator (SQL Server) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

abstraction

ADD_MONTHS function (Oracle) 2nd 3rd 4th 5th

ADDDATE function (MySQL) 2nd 3rd 4th

aggregate functions

 defining rows to perform operation on 2nd

 grouping and 2nd

 multiple tables and 2nd

 NULL values and 2nd 3rd

 WHERE clause

 window functions versus

aliases

 for CASE expression

 inline views

 referencing aliased columns

 timing of application

any or "all" queries 2nd 3rd 4th 5th 6th 7th

arithmetic

 dates

 days in year

 difference between dates

 seconds/minutes/hours between dates

AS keyword

at least queries 2nd 3rd 4th 5th 6th 7th

at most queries 2nd 3rd 4th 5th 6th

AVG function

axiom of abstraction 2nd

axiom of specification

axiom schema of separation

axiom schema of subsets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

bags

Barber Puzzle

business logic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

calendars

Cartesian products

CAST function (SQL Server)

CEIL function (DB2/MySQL/Oracle/PostgreSQL) 2nd

CEILING function (SQL Server) 2nd

COALESCE function 2nd 3rd 4th 5th

columns

 adding headers to double pivoted result sets

 concatenating

complex

 retrieving records

 non-subtotal rows

 rows

composite subqueries

CONCAT function (MySQL) 2nd 3rd

concatenation

 columns

 operator (+) (SQL Server) 2nd

 operator (||) (DB2/Oracle/PostgreSQL) 2nd

conditional logic in SELECT statements

CONNECT BY clause (Oracle)

 alternatives to

 in hierarchical structures 2nd 3rd

 inline views and

 WITH clause and 2nd

CONNECT_BY_ISLEAF function (Oracle) 2nd

CONNECT_BY_ROOT function (Oracle) 2nd

constraints

 listing

correlated subqueries

COUNT function 2nd 3rd 4th

COUNT OVER window function 2nd

CREATE TABLE … LIKE command (DB2)

CREATE TABLE command

cross-tab reports

 creating (SQL Server)

CSV output 2nd 3rd

CUBE extension 2nd 3rd

CURRENT_DATE function (DB2/MySQL/PostgreSQL) 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

data dependent keys

data dictionary views (Oracle)

DATE function (DB2)

DATE_ADD function (MySQL) 2nd 3rd 4th 5th

DATE_FORMAT function (MySQL) 2nd 3rd 4th 5th

DATE_TRUNC function (PostgreSQL) 2nd 3rd 4th 5th

DATEADD function (MySQL)

DATEADD function (SQL Server) 2nd 3rd

DATEDIFF function (MySQL/SQL Server) 2nd 3rd 4th 5th

DATENAME function (SQL Server) 2nd 3rd 4th 5th

DATEPART function (SQL Server) 2nd 3rd 4th 5th

dates

 arithmetic 2nd

 business days between dates 2nd 3rd 4th 5th 6th

 difference between record and next record 2nd 3rd 4th

 weekdays in year, counting 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 format

 manipulation

 calendar 2nd 3rd 4th 5th 6th 7th

 comparing records

 date ranges, identifying overlapping 2nd 3rd 4th 5th

 leap year 2nd 3rd 4th 5th 6th 7th 8th

 missing dates 2nd 3rd 4th 5th 6th 7th 8th 9th

 quarter start/end dates 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 weekdays, first/last in month 2nd

 year 2nd 3rd 4th

 ORDER BY clause and (DB2)

DAY function (DB2) 2nd 3rd

DAY function (MySQL) 2nd 3rd 4th

DAY function (SQL Server) 2nd 3rd

DAYNAME function (DB2/MySQL/SQL Server) 2nd

DAYOFWEEK function (DB2/MYSQL) 2nd 3rd

DAYOFYEAR function (DB2/MySQL/SQL Server) 2nd 3rd 4th 5th

DAYS function (DB2) 2nd 3rd

DB2

 DATE values in ORDER BY clause

DECODE function (Oracle) 2nd

DEFAULT keyword

DEFAULT VALUES clause (PostgreSQL/SQL Server)

DELETE command 2nd

deleting records

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 all

 duplicate

 referenced from another table

 single

 specific

 that violate integrity

 with NULLs (DB2/Oracle/SQL Server)

 with NULLs (PostgreSQL/MySQL) 2nd

delimited data 2nd

delimited lists 2nd 3rd 4th 5th 6th

DENSE_RANK function (DB2/Oracle/SQL Server) 2nd 3rd

DENSE_RANK OVER window function (DB2/Oracle/SQL Server) 2nd 3rd 4th

DISTINCT keyword

 alternatives to 2nd

 SELECT list and 2nd 3rd

 uses for 2nd 3rd

duplicates

 deleting

 suppressing 2nd

dynamic SQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

equi-join operations 2nd

exactly queries 2nd 3rd 4th 5th 6th

EXCEPT function 2nd 3rd 4th

EXTRACT function (PostgreSQL/MySQL) 2nd

extreme values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

forecasts

foreign keys 2nd 3rd 4th

framing clause 2nd 3rd 4th 5th 6th

Frege

Frege's axiom 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

GENERATE_SERIES function (PostgreSQL)

 alternatives to 2nd 3rd 4th

GETDATE function (SQL Server) 2nd

GROUP BY clause 2nd 3rd 4th 5th

GROUP BY queries 2nd 3rd 4th 5th 6th

grouping

 aggregate functions and 2nd

 by time units 2nd 3rd 4th 5th

 characteristics of 2nd 3rd 4th

 COUNT function and

 defined

 examples

 NULLs and

 reasons for

 SELECT clause and 2nd 3rd 4th

 SUM function and

GROUPING function (DB2/Oracle/SQL Server) 2nd 3rd 4th

GROUPING function (MySQL/PostgreSQL)

GROUPING SETS extension (DB2/Oracle) 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

hierarchies

 node type 2nd 3rd 4th 5th 6th 7th

 parent-child relationships

 problematic nature of

 tree versus recursive structure

histograms

 horizontal

 vertical

HOUR function (DB2)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

IF-ELSE operations

indexes

 listing

information schema (MySQL/PostgreSQL/SQL Server)

inline views

 transforming data with

inner joins 2nd

INSERT ALL statement (Oracle)

INSERT FIRST statement (Oracle)

INSERT statement 2nd

inserting records

 blocking

 copying from another table

 into multiple tables 2nd 3rd

 new

 with default values

 with NULL values

INSTR function (Oracle) 2nd 3rd

integrity

INTERSECT operation 2nd

INTERVAL keyword 2nd

IS NULL

ITERATE command (Oracle)

ITERATION_NUMBER function (Oracle)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

JOIN clause

 in FROM clause

 Oracle support for

joins

 anti-

 equi- 2nd

 inner

 scalar subqueries and

 selecting columns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

KEEP extension (Oracle) 2nd 3rd

keys

 foreign 2nd 3rd

 Knight values 2nd 3rd

 Kyte

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

LAG function (Oracle)

LAG OVER window function (Oracle) 2nd 3rd 4th 5th 6th 7th 8th

LAST function (Oracle) 2nd

LAST_DAY function (MySQL/Oracle) 2nd 3rd 4th 5th

LEAD function (Oracle) 2nd

LEAD OVER window function (Oracle)

 duplicates and

 self joins and 2nd 3rd 4th

 uses

LIKE operator

LIMIT clause (MySQL/PostgreSQL) 2nd 3rd

logarithms

loop functionality

LPAD function (Oracle/PostgreSQL/MySQL) 2nd

LTRIM function (Oracle)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

manipulation

 dates

 month

 time units 2nd

MAX function 2nd

MAX OVER window function 2nd 3rd

MEASURES subclause of MODEL clause (Oracle)

MEDIAN function (Oracle)

MERGE statement 2nd

merging records 2nd

metadata

 columns in table

 constraints on table

 data dictionary

 foreign keys without indexes

 generating SQL

 indexed columns in table

 tables in schema

MIN function

MIN OVER window function (DB2/Oracle/SQL Server) 2nd 3rd

minimum values 2nd 3rd 4th

MINUS operation 2nd 3rd

MINUTE function (DB2)

MOD function (DB2)

MODEL clause (Oracle)

 uses

modes

modifying records

 changing row data

 using queries for new values

 when corresponding rows exist

 with values from another table 2nd 3rd 4th

modulus (%) function (SQL Server) 2nd

MONTH function (DB2/MySQL) 2nd 3rd 4th

MONTHNAME function (DB2/MySQL) 2nd

MONTHS_BETWEEN function (Oracle) 2nd

multiple tables

 inserting data into 2nd

 retrieving data from 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

 comparing 2nd 3rd 4th

 joins when aggregates are used 2nd 3rd 4th 5th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 missing data from multiple tables 2nd

 outer joins when using aggregates 2nd 3rd

 values nonexistant in all tables 2nd 3rd 4th

multisets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

names 2nd

negation queries 2nd 3rd

 A only 2nd 3rd 4th

 A or B but not both 2nd 3rd

 not A 2nd 3rd 4th

NEXT_DAY function (Oracle) 2nd 3rd

NOT EXISTS

NOT IN operator

NROWS function (DB2/SQL Server)

NTILE window function (Oracle/SQL Server) 2nd 3rd

NULL paradox 2nd 3rd 4th

NULLs

 aggregate functions and 2nd 3rd

 AVG function and

 comparisons to 2nd

 groups and

 MIN/MAX functions and

 OR operations and

 sorting and 2nd 3rd 4th

 window functions and 2nd

numbers queries

 averages without high/low values

 converting alphanumeric strings to

 converting whole to binary (Oracle)

 counting column values

 counting rows

 nullable columns

 percentage of total 2nd

 percentage relative to total

 subtotals 2nd 3rd 4th

 subtotals for all combinations 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

NVL function (Oracle)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

OFFSET clause (MySQL/PostgreSQL) 2nd

Optimizing Transact-SQL: Advanced Programming Techniques (Rozenshtein et al.)

Oracle

 object types

ORDER BY clause 2nd 3rd 4th 5th

outer joins

 OR logic in 2nd 3rd

 Oracle syntax 2nd 3rd 4th 5th 6th

OVER keyword 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

PARTITION BY clause 2nd 3rd 4th

partitions

 ORDER BY clause and

patterns

 finding non-matching text (Oracle)

percentage calculations 2nd 3rd 4th

PERCENTILE_CONT function (Oracle) 2nd

PIVOT operator (SQL Server) 2nd 3rd

pivoting

 inter-row calculations

 MODEL clause (Oracle)

 multiple rows 2nd 3rd 4th 5th 6th

 one row

 ranked result sets 2nd 3rd 4th 5th

 subtotals 2nd 3rd

PostgreSQL

 PRIOR keyword (Oracle)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

QUARTER function (DB2/MySQL) 2nd 3rd

queries

 strings

 alphanumeric

 characters

 occurrences

 ordering by part

 quotes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

RAND function

RANDOM function

random records 2nd

RANGE BETWEEN clause 2nd 3rd 4th

ranges

 consecutive 2nd

 consecutive numeric values

 differences between rows in group 2nd 3rd 4th 5th

 missing values 2nd

RATIO_TO_REPORT function (Oracle)

reciprocal rows 2nd

referential integrity

REGEXP_REPLACE function (Oracle)

Regular Expression Anti-Patterns(Gennick)

regular expressions (Oracle) 2nd

relational division

REPEAT function (DB2)

REPLACE function 2nd 3rd 4th 5th

REPLICATE function (SQL Server)

result set 2nd 3rd 4th 5th

retrieving data from

 multiple tables

 adding joins to existing joins

 columns with same data type

 finding common rows

 nonmatching rows

 NULLs in operations/comparisons

 related rows

retrieving records

 complex

 aggregating groups/partitions simultaneously

 aggregating over moving value range 2nd 3rd 4th

 fixed size groups

 histograms, horizontal 2nd

 non-GROUP BY columns, returning 2nd 3rd 4th 5th 6th

 repeating values, suppressing 2nd

 sparse matrices

 subtotals 2nd

 simple

 random 2nd

reverse pivoting result sets 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ROLLUP extension of GROUP BY(DB2/Oracle) 2nd 3rd

row generation 2nd 3rd 4th

ROW_NUMBER function (DB2/SQL Server)

ROW_NUMBER OVER window function (DB2/Oracle/SQL Server)

 ORDER BY clause and

 uniqueness of result

 uses 2nd

ROWNUM function (Oracle) 2nd 3rd

RPAD function (Oracle)

RTRIM function (Oracle/PostgreSQL)

RULES subclause (Oracle)

running differences

running products 2nd 3rd 4th

running totals 2nd 3rd 4th 5th 6th

Russell

Russell's Paradox

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

scalar subqueries

 converting to composite (Oracle) 2nd 3rd

 joins and 2nd

 referencing in WHERE clause

scripts

searching

 duplicates 2nd 3rd

 for text not matching pattern (Oracle) 2nd 3rd 4th

 highest/lowest values

 Knight values

 outer joins

 results 2nd 3rd

 row values 2nd 3rd 4th

 rows 2nd 3rd

 rows from table 2nd 3rd 4th

 top n records 2nd 3rd

SECOND function (DB2)

SELECT statements

 DISTINCT keyword and

 GROUP BY and 2nd 3rd 4th

self joins

 alternatives to 2nd 3rd 4th

serialized data 2nd 3rd

set differences

set operations generally 2nd 3rd

SIGN function (MySQL/PostgreSQL)

simple

 retrieving records

 all rows/columns

 columns 2nd 3rd 4th

 null values

 pattern matching

 rows 2nd

sorting records 2nd 3rd 4th 5th 6th 7th

 by substrings

 mixed alphanumeric data

 nulls and 2nd 3rd 4th 5th 6th 7th

 on data dependent key

 on multiple fields

 on single field

 strings 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specification

START WITH clause (Oracle) 2nd

Stoll

STR_TO_DATE function (MySQL)

strings

 queries 2nd

 alphabetizing

 alphanumeric status 2nd 3rd 4th 5th 6th

 extracting elements

 initials, extracting from name 2nd 3rd 4th 5th

 IP Address parsing 2nd 3rd

 numeric content 2nd 3rd 4th 5th 6th

 ordering by number 2nd 3rd 4th 5th

 parsing into rows 2nd

 searching for mixed alphanumeric 2nd

 separating numeric and character data 2nd 3rd 4th 5th

subqueries

 correlated

SUBSTR function (DB2/MySQL/Oracle/PostgreSQL) 2nd 3rd

SUBSTRING function (SQL Server) 2nd 3rd

subtotals

 calculating for all combinations

 calculating simple

 pivoting result set with 2nd

SUM function 2nd

SUM OVER window function (DB2/Oracle/SQL Server) 2nd 3rd 4th 5th

summing column values

SYS_CONNECT_BY_PATH function (Oracle) 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

tables

 creating and copying definition

testing for existence of value within group 2nd 3rd

The Essence of SQL (Rozenshtein)

time

 grouping rows by 2nd 3rd 4th

TIMESTAMP types (Oracle)

TO_BASE function (Oracle)

TO_CHAR function (Oracle/PostgreSQL) 2nd 3rd 4th

TO_DATE function (Oracle/PostgreSQL) 2nd

TO_NUMBER function (Oracle/PostgreSQL) 2nd

TRANSLATE function (DB2/Oracle/PostgreSQL) 2nd 3rd 4th 5th

transposing result sets (Oracle) 2nd 3rd 4th

TRUNC function (Oracle) 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

underscore (_) operator

Understanding the WITH Clause(Gennick)

UNION ALL operation 2nd 3rd

UNION operation 2nd 3rd 4th

UNPIVOT operator (SQL Server) 2nd 3rd

UPDATE statement 2nd 3rd 4th 5th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

VALUES clause

version differences

 Oracle

 CONNECT BY clause 2nd 3rd 4th

 DEFAULT keyword

 JOIN clause 2nd

 KEEP clause 2nd

 LEAD OVER window function

 MEDIAN/PERCENTILE_CONT functions 2nd

 MODEL clause 2nd

 outer joins

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

WHERE clause

wildcard (%) operator

window functions

 aggregate functions versus

 evaluation order

 NULLs and 2nd

 ORDER BY subclause

 partitions

 reports and

 timing of 2nd 3rd

WITH clause (DB2/SQL Server) 2nd 3rd

WITH clause (Oracle)

WITH ROLLUP (SQL Server/MySQL)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

YEAR function (DB2/MySQL/SQL Server) 2nd 3rd 4th

Young

YS_CONNECT_BY_PATH function (Oracle)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y] [Z]

Zermelo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	SQL Cookbook
	Table of Contents
	Copyright
	Dedication

	Preface
	Why I Wrote This Book
	Objectives of This Book
	Audience for This Book
	How to Use This Book
	What's Missing from This Book
	Structure of This Book
	Platform and Version
	Tables Used in This Book
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Safari® Enabled
	Acknowledgments

	Chapter 1. Retrieving Records
	Recipe 1.1. Retrieving All Rows and Columns from a Table
	Recipe 1.2. Retrieving a Subset of Rows from a Table
	Recipe 1.3. Finding Rows That Satisfy Multiple Conditions
	Recipe 1.4. Retrieving a Subset of Columns from a Table
	Recipe 1.5. Providing Meaningful Names for Columns
	Recipe 1.6. Referencing an Aliased Column in the WHERE Clause
	Recipe 1.7. Concatenating Column Values
	Recipe 1.8. Using Conditional Logic in a SELECT Statement
	Recipe 1.9. Limiting the Number of Rows Returned
	Recipe 1.10. Returning n Random Records from a Table
	Recipe 1.11. Finding Null Values
	Recipe 1.12. Transforming Nulls into Real Values
	Recipe 1.13. Searching for Patterns

	Chapter 2. Sorting Query Results
	Recipe 2.1. Returning Query Results in a Specified Order
	Recipe 2.2. Sorting by Multiple Fields
	Recipe 2.3. Sorting by Substrings
	Recipe 2.4. Sorting Mixed Alphanumeric Data
	Recipe 2.5. Dealing with Nulls when Sorting
	Recipe 2.6. Sorting on a Data Dependent Key

	Chapter 3. Working with Multiple Tables
	Recipe 3.1. Stacking One Rowset atop Another
	Recipe 3.2. Combining Related Rows
	Recipe 3.3. Finding Rows in Common Between Two Tables
	Recipe 3.4. Retrieving Values from One Table That Do Not Exist in Another
	Recipe 3.5. Retrieving Rows from One Table That Do Not Correspond to Rows in Another
	Recipe 3.6. Adding Joins to a Query Without Interfering with Other Joins
	Recipe 3.7. Determining Whether Two Tables Have the Same Data
	Recipe 3.8. Identifying and Avoiding Cartesian Products
	Recipe 3.9. Performing Joins when Using Aggregates
	Recipe 3.10. Performing Outer Joins when Using Aggregates
	Recipe 3.11. Returning Missing Data from Multiple Tables
	Recipe 3.12. Using NULLs in Operations and Comparisons

	Chapter 4. Inserting, Updating, Deleting
	Recipe 4.1. Inserting a New Record
	Recipe 4.2. Inserting Default Values
	Recipe 4.3. Overriding a Default Value with NULL
	Recipe 4.4. Copying Rows from One Table into Another
	Recipe 4.5. Copying a Table Definition
	Recipe 4.6. Inserting into Multiple Tables at Once
	Recipe 4.7. Blocking Inserts to Certain Columns
	Recipe 4.8. Modifying Records in a Table
	Recipe 4.9. Updating when Corresponding Rows Exist
	Recipe 4.10. Updating with Values from Another Table
	Recipe 4.11. Merging Records
	Recipe 4.12. Deleting All Records from a Table
	Recipe 4.13. Deleting Specific Records
	Recipe 4.14. Deleting a Single Record
	Recipe 4.15. Deleting Referential Integrity Violations
	Recipe 4.16. Deleting Duplicate Records
	Recipe 4.17. Deleting Records Referenced from Another Table

	Chapter 5. Metadata Queries
	Recipe 5.1. Listing Tables in a Schema
	Recipe 5.2. Listing a Table's Columns
	Recipe 5.3. Listing Indexed Columns for a Table
	Recipe 5.4. Listing Constraints on a Table
	Recipe 5.5. Listing Foreign Keys Without Corresponding Indexes
	Recipe 5.6. Using SQL to Generate SQL
	Recipe 5.7. Describing the Data Dictionary Views in an Oracle Database

	Chapter 6. Working with Strings
	Recipe 6.1. Walking a String
	Recipe 6.2. Embedding Quotes Within String Literals
	Recipe 6.3. Counting the Occurrences of a Character in a String
	Recipe 6.4. Removing Unwanted Characters from a String
	Recipe 6.5. Separating Numeric and Character Data
	Recipe 6.6. Determining Whether a String Is Alphanumeric
	Recipe 6.7. Extracting Initials from a Name
	Recipe 6.8. Ordering by Parts of a String
	Recipe 6.9. Ordering by a Number in a String
	Recipe 6.10. Creating a Delimited List from Table Rows
	Recipe 6.11. Converting Delimited Data into a Multi-Valued IN-List
	Recipe 6.12. Alphabetizing a String
	Recipe 6.13. Identifying Strings That Can Be Treated as Numbers
	Recipe 6.14. Extracting the nth Delimited Substring
	Recipe 6.15. Parsing an IP Address

	Chapter 7. Working with Numbers
	Recipe 7.1. Computing an Average
	Recipe 7.2. Finding the Min/Max Value in a Column
	Recipe 7.3. Summing the Values in a Column
	Recipe 7.4. Counting Rows in a Table
	Recipe 7.5. Counting Values in a Column
	Recipe 7.6. Generating a Running Total
	Recipe 7.7. Generating a Running Product
	Recipe 7.8. Calculating a Running Difference
	Recipe 7.9. Calculating a Mode
	Recipe 7.10. Calculating a Median
	Recipe 7.11. Determining the Percentage of a Total
	Recipe 7.12. Aggregating Nullable Columns
	Recipe 7.13. Computing Averages Without High and Low Values
	Recipe 7.14. Converting Alphanumeric Strings into Numbers
	Recipe 7.15. Changing Values in a Running Total

	Chapter 8. Date Arithmetic
	Recipe 8.1. Adding and Subtracting Days, Months, and Years
	Recipe 8.2. Determining the Number of Days Between Two Dates
	Recipe 8.3. Determining the Number of Business Days Between Two Dates
	Recipe 8.4. Determining the Number of Months or Years Between Two Dates
	Recipe 8.5. Determining the Number of Seconds, Minutes, or Hours Between Two Dates
	Recipe 8.6. Counting the Occurrences of Weekdays in a Year
	Recipe 8.7. Determining the Date Difference Between the Current Record and the Next Record

	Chapter 9. Date Manipulation
	Recipe 9.1. Determining if a Year Is a Leap Year
	Recipe 9.2. Determining the Number of Days in a Year
	Recipe 9.3. Extracting Units of Time from a Date
	Recipe 9.4. Determining the First and Last Day of a Month
	Recipe 9.5. Determining All Dates for a Particular Weekday Throughout a Year
	Recipe 9.6. Determining the Date of the First and Last Occurrence of a Specific Weekday in a Month
	Recipe 9.7. Creating a Calendar
	Recipe 9.8. Listing Quarter Start and End Dates for the Year
	Recipe 9.9. Determining Quarter Start and End Dates for a Given Quarter
	Recipe 9.10. Filling in Missing Dates
	Recipe 9.11. Searching on Specific Units of Time
	Recipe 9.12. Comparing Records Using Specific Parts of a Date
	Recipe 9.13. Identifying Overlapping Date Ranges

	Chapter 10. Working with Ranges
	Recipe 10.1. Locating a Range of Consecutive Values
	Recipe 10.2. Finding Differences Between Rows in the Same Group or Partition
	Recipe 10.3. Locating the Beginning and End of a Range of Consecutive Values
	Recipe 10.4. Filling in Missing Values in a Range of Values
	Recipe 10.5. Generating Consecutive Numeric Values

	Chapter 11. Advanced Searching
	Recipe 11.1. Paginating Through a Result Set
	Recipe 11.2. Skipping n Rows from a Table
	Recipe 11.3. Incorporating OR Logic when Using Outer Joins
	Recipe 11.4. Determining Which Rows Are Reciprocals
	Recipe 11.5. Selecting the Top n Records
	Recipe 11.6. Finding Records with the Highest and Lowest Values
	Recipe 11.7. Investigating Future Rows
	Recipe 11.8. Shifting Row Values
	Recipe 11.9. Ranking Results
	Recipe 11.10. Suppressing Duplicates
	Recipe 11.11. Finding Knight Values
	Recipe 11.12. Generating Simple Forecasts

	Chapter 12. Reporting and Warehousing
	Recipe 12.1. Pivoting a Result Set into One Row
	Recipe 12.2. Pivoting a Result Set into Multiple Rows
	Recipe 12.3. Reverse Pivoting a Result Set
	Recipe 12.4. Reverse Pivoting a Result Set into One Column
	Recipe 12.5. Suppressing Repeating Values from a Result Set
	Recipe 12.6. Pivoting a Result Set to Facilitate Inter-Row Calculations
	Recipe 12.7. Creating Buckets of Data, of a Fixed Size
	Recipe 12.8. Creating a Predefined Number of Buckets
	Recipe 12.9. Creating Horizontal Histograms
	Recipe 12.10. Creating Vertical Histograms
	Recipe 12.11. Returning Non-GROUP BY Columns
	Recipe 12.12. Calculating Simple Subtotals
	Recipe 12.13. Calculating Subtotals for All Possible Expression Combinations
	Recipe 12.14. Identifying Rows That Are Not Subtotals
	Recipe 12.15. Using Case Expressions to Flag Rows
	Recipe 12.16. Creating a Sparse Matrix
	Recipe 12.17. Grouping Rows by Units of Time
	Recipe 12.18. Performing Aggregations over Different Groups/Partitions Simultaneously
	Recipe 12.19. Performing Aggregations over a Moving Range of Values
	Recipe 12.20. Pivoting a Result Set with Subtotals

	Chapter 13. Hierarchical Queries
	Recipe 13.1. Expressing a Parent-Child Relationship
	Recipe 13.2. Expressing a Child-Parent-Grandparent Relationship
	Recipe 13.3. Creating a Hierarchical View of a Table
	Recipe 13.4. Finding All Child Rows for a Given Parent Row
	Recipe 13.5. Determining Which Rows Are Leaf, Branch, or Root Nodes

	Chapter 14. Odds 'n' Ends
	Recipe 14.1. Creating Cross-Tab Reports Using SQL Server's PIVOT Operator
	Recipe 14.2. Unpivoting a Cross-Tab Report Using SQL Server's UNPIVOT Operator
	Recipe 14.3. Transposing a Result Set Using Oracle's MODEL Clause
	Recipe 14.4. Extracting Elements of a String from Unfixed Locations
	Recipe 14.5. Finding the Number of Days in a Year (an Alternate Solution for Oracle)
	Recipe 14.6. Searching for Mixed Alphanumeric Strings
	Recipe 14.7. Converting Whole Numbers to Binary Using Oracle
	Recipe 14.8. Pivoting a Ranked Result Set
	Recipe 14.9. Adding a Column Header into a Double Pivoted Result Set
	Recipe 14.10. Converting a Scalar Subquery to a Composite Subquery in Oracle
	Recipe 14.11. Parsing Serialized Data into Rows
	Recipe 14.12. Calculating Percent Relative to Total
	Recipe 14.13. Creating CSV Output from Oracle
	Recipe 14.14. Finding Text Not Matching a Pattern (Oracle)
	Recipe 14.15. Transforming Data with an Inline View
	Recipe 14.16. Testing for Existence of a Value Within a Group

	Appendix A. Window Function Refresher
	Recipe A.1. Grouping
	Recipe A.2. Windowing

	Appendix B. Rozenshtein Revisited
	Recipe B.1. Rozenshtein's Example Tables
	Recipe B.2. Answering Questions Involving Negation
	Recipe B.3. Answering Questions Involving
	Recipe B.4. Answering Questions Involving
	Recipe B.5. Answering Questions Involving
	Recipe B.6. Answering Questions Involving

	About the Author
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

