


Visual	Quickpro	Guide

PHP	and	MySQL	for	Dynamic	Web	Sites
Fifth	Edition

Larry	Ullman



Visual	QuickPro	Guide
PHP	and	MySQL	for	Dynamic	Web	Sites,	Fifth	Edition
Larry	Ullman
Peachpit	Press
www.peachpit.com
Copyright	©	2018	by	Larry	Ullman
To	report	errors,	please	send	a	note	to:	errata@peachpit.com
Peachpit	Press	is	a	division	of	Pearson	Education.
Editor:	Mark	Taber
Copy	Editor:	Elizabeth	Welch
Technical	Reviewer:	Timothy	Boronczyk
Production	Coordinator:	David	Van	Ness
Compositor:	Danielle	Foster
Proofreader:	Scout	Festa
Indexer:	Valerie	Haynes	Perry
Cover	Design:	RHDG	/	Riezebos	Holzbaur	Design	Group,	Peachpit	Press
Interior	Design:	Peachpit	Press
Logo	Design:	MINE™	www.minesf.com
Notice	of	Rights
This	publication	is	protected	by	copyright,	and	permission	should	be	obtained	from	the	publisher	prior	to
any	prohibited	reproduction,	storage	in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	or	otherwise.	For	 information	on	obtaining	permission
for	reprints	and	excerpts,	please	complete	the	form	at	http://www.pearsoned.com/permissions/
Notice	of	Liability
The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While	every	precaution
has	been	taken	in	the	preparation	of	the	book,	neither	the	author	nor	Peachpit	Press	shall	have	any	liability
to	 any	person	or	 entity	with	 respect	 to	 any	 loss	 or	 damage	 caused	 or	 alleged	 to	 be	 caused	 directly	 or
indirectly	by	the	instructions	contained	in	this	book	or	by	the	computer	software	and	hardware	products
described	in	it.
Trademarks
Visual	QuickPro	Guide	 is	 a	 registered	 trademark	 of	 Peachpit	 Press,	 a	 division	 of	 Pearson	 Education.
MySQL	is	a	registered	 trademark	of	MySQL	AB	in	 the	United	States	and	 in	other	countries.	Macintosh
and	macOS	are	registered	trademarks	of	Apple,	Inc.	Microsoft	and	Windows	are	registered	trademarks	of
Microsoft	 Corp.	 Other	 product	 names	 used	 in	 this	 book	 may	 be	 trademarks	 of	 their	 own	 respective
owners.	Images	of	Web	sites	in	this	book	are	copyrighted	by	the	original	holders	and	are	used	with	their
kind	permission.	This	book	is	not	officially	endorsed	by	nor	affiliated	with	any	of	the	above	companies,
including	MySQL	AB.
Unless	 otherwise	 indicated	 herein,	 any	 third	 party	 trademarks	 that	 may	 appear	 in	 this	 work	 are	 the
property	 of	 their	 respective	 owners	 and	 any	 references	 to	 third	 party	 trademarks,	 logos	 or	 other	 trade
dress	are	for	demonstrative	or	descriptive	purposes	only.	Such	references	are	not	intended	to	imply	any
sponsorship,	endorsement,	authorization,	or	promotion	of	Peachpit	Press	products	by	the	owners	of	such
marks,	or	any	relationship	between	 the	owner	and	Peachpit	Press	or	 its	affiliates,	authors,	 licensees	or
distributors.

http://www.peachpit.com
mailto:errata@peachpit.com
http://www.minesf.com
http://www.pearsoned.com/permissions/


ISBN-13:	978-0-13-430184-6
ISBN-10:								0-13-430184-6
1			17
Printed	and	bound	in	the	United	States	of	America



Dedication
Dedicated	to	the	fine	faculty	at	my	alma	mater,	Northeast	Missouri	State	University.	In	particular,	I	would
like	to	thank	Dr.	Monica	Barron,	Dr.	Dennis	Leavens,	Dr.	Ed	Tyler,	and	Dr.	Cole	Woodcox,	whom	I	also
have	the	pleasure	of	calling	my	friend.	I	would	not	be	who	I	am	as	a	writer,	as	a	student,	as	a	teacher,	or
as	a	person	if	it	were	not	for	the	magnanimous,	affecting,	and	brilliant	instruction	I	received	from	these
educators.

Special	Thanks	to:
My	heartfelt	thanks	to	everyone	at	Peachpit	Press,	as	always.
My	gratitude	to	the	fine	editor	on	this	project,	Mark	Taber,	for	leading	the	way	and	putting	up	with	 too
many	delayed	emails	and	chapters!
Thanks	to	David	Van	Ness	and	Elizabeth	Welch	for	their	hard	work,	helpful	suggestions,	and	 impressive
attention	to	detail.	Thanks	to	Scout	Festa	for	ensuring	the	writing	is	“pixel	perfect.”	Thanks	also	to	Valerie
Perry	for	indexing	and	Danielle	Foster	for	laying	out	the	book,	and	thanks	to	Timothy	Boronczyk	for	his
technical	review.
Kudos	to	the	good	people	working	on	PHP,	MySQL,	Apache,	phpMyAdmin,	MAMP,	and	XAMPP,	among
other	 great	 projects.	 And	 a	 hearty	 “cheers”	 to	 the	 denizens	 of	 the	 various	 newsgroups,	 mailing	 lists,
support	forums,	etc.,	who	offer	assistance	and	advice	to	those	in	need.
Thanks,	as	always,	to	the	readers,	whose	support	gives	my	job	relevance.	An	extra	helping	of	thanks	to
those	who	 provided	 the	 translations	 in	 Chapter	 17,	 “Example—Message	Board,”	 and	 who	 offered	 up
recommendations	as	to	what	they’d	like	to	see	in	this	edition.
Finally,	I	would	not	be	able	to	get	through	a	single	book	if	it	weren’t	for	the	love	and	support	of	my	wife,
Jessica.	And	a	special	shout-out	to	Zoe	and	Sam,	who	give	me	reasons	to,	and	not	to,	write	books!.



Table	of	Contents

Introduction

Chapter	1	Introduction	to	PHP
Basic	Syntax
Sending	Data	to	the	Browser
Writing	Comments
What	Are	Variables?
Introducing	Strings
Concatenating	Strings
Introducing	Numbers
Introducing	Constants
Single	vs.	Double	Quotation	Marks
Basic	Debugging	Steps
Review	and	Pursue

Chapter	2	Programming	with	PHP
Creating	an	HTML	Form
Handling	an	HTML	Form
Conditionals	and	Operators
Validating	Form	Data
Introducing	Arrays
For	and	While	Loops
Review	and	Pursue

Chapter	3	Creating	Dynamic	Web	Sites
Including	Multiple	Files
Handling	HTML	Forms,	Revisited
Making	Sticky	Forms
Creating	Your	Own	Functions
Review	and	Pursue

Chapter	4	Introduction	to	MySQL
Naming	Database	Elements
Choosing	Your	Column	Types
Choosing	Other	Column	Properties
Accessing	MySQL
Review	and	Pursue

Chapter	5	Introduction	to	SQL
Creating	Databases	and	Tables
Inserting	Records



Selecting	Data
Using	Conditionals
Using	LIKE	and	NOT	LIKE
Sorting	Query	Results
Limiting	Query	Results
Updating	Data
Deleting	Data
Using	Functions
Review	and	Pursue

Chapter	6	Database	Design
Normalization
Creating	Indexes
Using	Different	Table	Types
Languages	and	MySQL
Time	Zones	and	MySQL
Foreign	Key	Constraints
Review	and	Pursue

Chapter	7	Advanced	SQL	and	MySQL
Performing	Joins
Grouping	Selected	Results
Advanced	Selections
Performing	FULLTEXT	Searches
Optimizing	Queries
Performing	Transactions
Database	Encryption
Review	and	Pursue

Chapter	8	Error	Handling	and	Debugging
Error	Types	and	Basic	Debugging
Displaying	PHP	Errors
Adjusting	Error	Reporting	in	PHP
Creating	Custom	Error	Handlers
PHP	Debugging	Techniques
SQL	and	MySQL	Debugging	Techniques
Review	and	Pursue

Chapter	9	Using	PHP	with	MySQL
Modifying	the	Template
Connecting	to	MySQL
Executing	Simple	Queries
Retrieving	Query	Results



Ensuring	Secure	SQL
Counting	Returned	Records
Updating	Records	with	PHP
Review	and	Pursue

Chapter	10	Common	Programming	Techniques
Sending	Values	to	a	Script
Using	Hidden	Form	Inputs
Editing	Existing	Records
Paginating	Query	Results
Making	Sortable	Displays
Review	and	Pursue

Chapter	11	Web	Application	Development
Sending	Email
Handling	File	Uploads
PHP	and	JavaScript
Understanding	HTTP	Headers
Date	and	Time	Functions
Performing	Transactions
Review	and	Pursue

Chapter	12	Cookies	and	Sessions
Making	a	Login	Page
Making	the	Login	Functions
Using	Cookies
Using	Sessions
Improving	Session	Security
Review	and	Pursue

Chapter	13	Security	Methods
Preventing	Spam
Validating	Data	by	Type
Validating	Files	by	Type
Preventing	XSS	Attacks
Using	the	Filter	Extension
Preventing	SQL	Injection	Attacks
Securing	Passwords	with	PHP
Review	and	Pursue

Chapter	14	Perl-Compatible	Regular	Expressions
Creating	a	Test	Script
Defining	Simple	Patterns
Using	Quantifiers



Using	Character	Classes
Finding	All	Matches
Using	Modifiers
Matching	and	Replacing	Patterns
Review	and	Pursue

Chapter	15	Introducing	jQuery
What	Is	jQuery?
Incorporating	jQuery
Using	jQuery
Selecting	Page	Elements
Event	Handling
DOM	Manipulation
Using	Ajax
Review	and	Pursue

Chapter	16	An	OOP	Primer
Fundamentals	and	Syntax
Working	with	MySQL
The	DateTime	Class
Review	and	Pursue

Chapter	17	Example—Message	Board
Making	the	Database
Writing	the	Templates
Creating	the	Index	Page
Creating	the	Forum	Page
Creating	the	Thread	Page
Posting	Messages
Review	and	Pursue

Chapter	18	Example—User	Registration
Creating	the	Templates
Writing	the	Configuration	Scripts
Creating	the	Home	Page
Registration
Activating	an	Account
Logging	In	and	Logging	Out
Password	Management
Review	and	Pursue

Appendix	A	Installation
Installation	on	Windows
Installation	on	macOS



Managing	MySQL	Users
Testing	Your	Installation
Configuring	PHP
Configuring	Apache

Index



Introduction

Today’s	 web	 users	 expect	 exciting	 pages	 that	 are	 updated	 frequently	 and	 provide	 a	 customized
experience.	For	them,	web	sites	are	more	like	communities,	to	which	they’ll	return	time	and	again.	At	the
same	time,	site	administrators	want	pages	that	are	easier	to	update	and	maintain,	understanding	that’s	the
only	reasonable	way	to	keep	up	with	visitors’	expectations.	For	these	reasons	and	more,	PHP	and	MySQL
have	become	the	de	facto	standards	for	creating	dynamic,	database-driven	web	sites.
This	book	represents	the	culmination	of	my	many	years	of	web	development	experience	coupled	with	the
value	of	having	written	several	previous	books	on	 the	 technologies	discussed	herein.	The	 focus	of	 this
book	is	on	covering	the	most	important	knowledge	in	the	most	efficient	manner.	It	will	teach	you	how	to
begin	developing	dynamic	web	sites	and	give	you	plenty	of	example	code	to	get	you	started.	All	you	need
to	provide	is	an	eagerness	to	learn.
Well,	that	and	a	computer.

What	Are	Dynamic	Web	Sites?
Dynamic	 web	 sites	 are	 flexible	 and	 potent	 creatures,	 more	 accurately	 described	 as	 applications	 than
merely	sites.	Dynamic	web	sites

	Respond	to	different	parameters	(for	example,	the	time	of	day	or	the	version	of	the	visitor’s	browser)
	Have	a	“memory,”	allowing	for	user	registration	and	login,	e-commerce,	and	similar	processes
	Almost	always	integrate	HTML	forms,	allowing	visitors	to	perform	searches,	provide	feedback,	and
so	forth
	Often	have	interfaces	where	administrators	can	manage	the	content
	Are	easier	to	maintain,	upgrade,	and	build	upon	than	statically	made	sites

Many	technologies	are	available	for	creating	dynamic	web	sites.	The	most	common	are	ASP.NET	(Active
Server	 Pages,	 a	 Microsoft	 construct),	 JSP	 (JavaServer	 Pages),	 ColdFusion,	 Ruby	 on	 Rails	 (a	 web
development	framework	for	the	Ruby	programming	language),	and	PHP.	Dynamic	sites	don’t	always	rely
on	a	database,	but	more	and	more	of	them	do,	particularly	as	excellent	database	applications	like	MySQL
and	MongoDB	are	available	at	little	to	no	cost.



What	Happened	to	PHP	6?
When	I	wrote	a	previous	edition	of	this	book,	PHP	6	and	MySQL	5	for	Dynamic	Web	Sites:
Visual	 QuickPro	 Guide,	 the	 next	 major	 release	 of	 PHP—PHP	 6—was	 approximately	 50
percent	complete.	Thinking	that	PHP	6	would	therefore	be	released	sometime	after	the	book
was	published,	I	relied	on	a	beta	version	of	PHP	6	for	a	bit	of	 that	edition’s	material.	And
then…	PHP	6	died.
One	 of	 the	 key	 features	 planned	 for	 PHP	 6	was	 support	 for	Unicode,	meaning	 that	 PHP	 6
would	 be	 able	 to	 work	 natively	 with	 any	 language.	 This	 would	 be	 a	 great	 addition	 to	 an
already	popular	programming	 tool.	Unfortunately,	 implementing	Unicode	support	went	 from
being	 complicated	 to	 quite	 difficult,	 and	 the	 developers	 behind	 the	 language	 tabled
development	of	PHP	6.	Not	all	was	lost,	however;	some	of	the	other	features	planned	for	PHP
6,	such	as	support	for	namespaces	(an	object-oriented	programming	concept),	were	added	to
PHP	5.3.
When	it	was	time	to	release	the	next	major	version	of	PHP,	it	was	decided	to	name	it	PHP	7
to	avoid	confusion	with	the	PHP	6	version	that	was	started	but	never	completed.

What	is	PHP?
PHP	originally	stood	for	“Personal	Home	Page”	when	it	was	created	in	1994	by	Rasmus	Lerdorf	to	track
the	visitors	to	his	online	résumé.	As	its	usefulness	and	capabilities	grew	(and	as	it	started	being	used	in
more	professional	situations),	it	came	to	mean	“PHP:	Hypertext	Preprocessor.”
According	to	the	official	PHP	web	site,	found	at	www.php.net	 ,	PHP	is	a	“popular	general-purpose
scripting	 language	 that	 is	 especially	 suited	 to	web	development.”	 It’s	 a	 long	but	descriptive	definition,
whose	meaning	I’ll	explain.

http://www.php.net


	The	home	page	for	PHP.
Starting	at	the	end	of	that	statement,	to	say	that	PHP	is	especially	suited	to	web	development	means	that
although	you	can	use	PHP	for	non-web	development	purposes,	 it’s	best	suited	for	that.	The	corollary	is
that	although	many	other	technologies	can	be	used	for	web	development,	that	may	not	be	what	they’re	best
suited	for.	Simply	put,	if	you’re	hoping	to	do	web	development,	PHP	is	an	excellent	choice.
Also,	PHP	is	a	scripting	language,	as	opposed	to	a	compiled	language:	PHP	was	designed	to	write	web
scripts,	 not	 stand-alone	 applications	 (although,	 with	 some	 extra	 effort,	 you	 can	 create	 applications	 in
PHP).	PHP	scripts	run	only	after	an	event	occurs—for	example,	when	a	user	submits	a	form	or	goes	to	a
URL	(uniform	resource	locator,	the	technical	term	for	a	web	site	address).
I	 should	 add	 to	 this	 definition	 that	 PHP	 is	 a	 server-side,	 cross-platform	 technology,	 both	 descriptions
being	 important.	Server-side	 refers	 to	 the	 fact	 that	 everything	 PHP	 does	 occurs	 on	 the	 server.	 A	web
server	 application,	 like	Apache	 or	Microsoft’s	 IIS	 (Internet	 Information	 Services),	 is	 required	 and	 all
PHP	scripts	must	be	accessed	through	a	URL	(http://something).	Its	cross-platform	nature	means
that	 PHP	 runs	 on	 most	 operating	 systems,	 including	 Windows,	 Unix	 (and	 its	 many	 variants),	 and
Macintosh.	More	 important,	 the	PHP	scripts	written	on	one	server	will	normally	work	on	another	with
little	or	no	modification.
At	the	time	this	book	was	written,	PHP	was	at	version	7.1.7.	Although	PHP	7	is	a	major	release,	the	most
important	changes	are	in	its	core,	with	PHP	7	being	significantly	more	performant	than	PHP	5.
For	the	most	part,	the	examples	in	this	book	will	work	fine	so	long	as	you’re	using	at	least	version	5.4.

http://something


Some	 functions	 and	 features	 covered	 will	 require	more	 specific	 or	 current	 versions,	 like	 PHP	 5.6	 or
greater.	 In	 those	 cases,	 I	 will	 make	 it	 clear	 when	 the	 functionality	 was	 added	 to	 PHP,	 and	 provide
alternative	solutions	if	you	have	a	slightly	older	version	of	the	language.
More	information	about	PHP	can	always	be	found	at	PHP.net.

Why	use	PHP?
Put	simply,	when	it	comes	to	developing	dynamic	web	sites,	PHP	is	better,	faster,	and	easier	to	learn	than
the	alternatives.	What	you	get	with	PHP	 is	 excellent	performance,	 a	 tight	 integration	with	nearly	 every
database	available,	stability,	portability,	and	a	nearly	limitless	feature	set	due	to	its	extendibility.	All	of
this	comes	at	no	cost	(PHP	is	open	source)	and	with	a	very	manageable	learning	curve.	PHP	is	one	of	the
best	marriages	I’ve	ever	seen	between	the	ease	with	which	beginning	programmers	can	start	using	it	and
the	ability	for	more	advanced	programmers	to	do	everything	they	require.
Finally,	the	proof	is	in	the	pudding:	PHP	has	seen	an	exponential	growth	in	use	since	its	inception,	and	is
the	server-side	technology	of	choice	on	over	82	percent	of	all	web	sites	 .	In	terms	of	all	programming
languages,	PHP	is	the	sixth	most	popular	 .

	 The	 Web	 Technology	 Surveys	 site	 provides	 this	 graphic	 regarding	 server-side	 technologies
(www.w3techs.com/technologies/overview/programming_language/all).

	The	Tiobe	Index	(https://www.tiobe.com/tiobe-index/)	uses	a	combination	of	factors
to	rank	the	popularity	of	programming	languages.
Of	 course,	 you	might	 assume	 that	 I,	 as	 the	 author	of	 a	 book	on	PHP	 (several,	 actually),	 have	 a	 biased
opinion.	 Although	 not	 nearly	 to	 the	 same	 extent	 as	 I	 have	 with	 PHP,	 I’ve	 also	 developed	 sites	 using
JavaServer	Pages	(JSP),	Ruby	on	Rails	 (RoR),	Sinatra	 (another	Ruby	web	 framework),	 and	ASP.NET.
Each	 has	 its	 pluses	 and	minuses,	 but	 PHP	 is	 the	 technology	 I	 always	 return	 to.	You	might	 hear	 that	 it

http://www.w3techs.com/technologies/overview/programming_language/all
https://www.tiobe.com/tiobe-index/


doesn’t	perform	or	scale	as	well	as	other	technologies,	but	Yahoo,	Wikipedia,	and	Facebook	all	use	PHP,
and	you	can’t	find	many	sites	more	visited	or	demanding	than	those.
You	might	have	heard	that	PHP	is	less	secure.	But	security	isn’t	in	the	language;	it’s	in	how	that	language
is	used.	Rest	assured	 that	a	complete	and	up-to-date	discussion	of	 all	 the	 relevant	 security	 concerns	 is
provided	by	this	book.

How	PHP	works
As	previously	stated,	PHP	is	a	server-side	language.	This	means	that	the	code	you	write	in	PHP	sits	on	a
host	computer	called	a	server.	The	server	sends	web	pages	to	the	requesting	visitors	(you,	the	client,	with
your	browser).
When	 a	 visitor	 goes	 to	 a	 site	 written	 in	 PHP,	 the	 server	 reads	 the	 PHP	 code	 and	 then	 processes	 it
according	to	its	scripted	directions.	In	the	example	shown	in	 ,	the	PHP	code	tells	the	server	to	send	the
appropriate	data—HTML	code—to	the	browser,	which	 treats	 the	received	code	as	 it	would	a	standard
HTML	page.

	How	PHP	fits	into	the	client/server	model	when	a	user	requests	a	page.
This	differs	from	a	static	HTML	site	where,	when	a	request	is	made,	the	server	merely	sends	the	HTML
data	to	the	browser	and	there	is	no	server-side	interpretation	occurring	 .	Because	no	server-side	action
is	required,	you	can	run	HTML	pages	in	your	browser	without	using	a	server	at	all.

	The	client/server	process	when	a	request	for	a	static	HTML	page	is	made.
To	 the	 end	 user	 and	 the	 browser	 there	 is	 no	 perceptible	 difference	 between	 what	 home.html	 and
home.php	may	look	like,	but	how	that	page’s	content	was	created	will	be	significantly	different.



What	is	MySQL?
MySQL	 (www.mysql.com)	 	 is	 the	 world’s	 most	 popular	 open	 source	 database.	 In	 fact,	 today
MySQL	 is	 a	 viable	 competitor	 to	 pricey	 goliaths	 such	 as	 Oracle	 and	 Microsoft’s	 SQL	 Server	 (and,
ironically,	MySQL	is	owned	by	Oracle).	Like	PHP,	MySQL	offers	excellent	performance,	portability,	and
reliability,	with	a	moderate	learning	curve	and	little	to	no	cost.

	The	home	page	for	the	MySQL	database	application.
MySQL	 is	 a	 database	 management	 system	 (DBMS)	 for	 relational	 databases	 (therefore,	 MySQL	 is	 an
RDBMS).	A	database,	in	the	simplest	terms,	is	a	collection	of	data,	be	it	 text,	numbers,	or	binary	files,
stored	and	kept	organized	by	the	DBMS.
There	are	many	types	of	databases,	from	the	simple	flat-file	to	relational	to	object-oriented	to	NoSQL.	A
relational	 database	 uses	 multiple	 tables	 to	 store	 information	 in	 its	 most	 discernible	 parts.	 Although
relational	databases	may	involve	more	thought	in	the	design	and	programming	stages,	they	offer	improved
reliability	 and	 data	 integrity	 that	 more	 than	 make	 up	 for	 the	 extra	 effort	 required.	 Further,	 relational
databases	are	more	searchable	and	allow	for	concurrent	users.
By	incorporating	a	database	into	a	web	application,	some	of	the	data	generated	by	PHP	can	be	retrieved
from	MySQL	 .	This	further	moves	the	site’s	content	from	a	static	(hard-coded)	basis	to	a	flexible	one,
flexibility	being	the	key	to	a	dynamic	web	site.

http://www.mysql.com


	How	most	of	the	dynamic	applications	in	this	book	will	work,	using	both	PHP	and	MySQL.
MySQL	is	an	open	source	application,	like	PHP,	meaning	that	it	is	free	to	use	or	even	modify	(the	source
code	itself	is	downloadable).	There	are	occasions	when	you	should	pay	for	a	MySQL	license,	especially
if	you	are	making	money	from	the	sales	or	incorporation	of	the	MySQL	product.	Check	MySQL’s	licensing
policy	for	more	information	on	this.
The	MySQL	software	consists	of	several	pieces,	 including	 the	MySQL	server	 (mysqld,	which	runs	and
manages	 the	 databases),	 the	 MySQL	 client	 (mysql,	 which	 gives	 you	 an	 interface	 to	 the	 server),	 and
numerous	utilities	for	maintenance	and	other	purposes.	PHP	has	always	had	good	support	for	MySQL,	and
that	is	even	truer	in	the	most	recent	versions	of	the	language.
MySQL	has	 been	 known	 to	 handle	 databases	 as	 large	 as	 60,000	 tables	with	more	 than	 several	 billion
rows.	 MySQL	 can	 work	 with	 tables	 as	 large	 as	 thousands	 of	 terabytes	 on	 some	 operating	 systems,
generally	a	healthy	4	GB	otherwise.	MySQL	is	used	by	NASA	and	the	U.S.	Census	Bureau,	among	many
others.
As	of	 this	writing,	MySQL	is	on	version	5.7.18.	The	version	of	MySQL	you	have	affects	what	 features
you	can	use,	so	it’s	important	that	you	know	what	you’re	working	with.	For	this	book,	MySQL	5.7.14	was
used,	 although	 you	 should	 be	 able	 to	 do	 everything	 in	 this	 book	 as	 long	 as	 you’re	 using	 a	 version	 of
MySQL	greater	than	5.0.

Pronunciation	Guide
Trivial	as	it	may	be,	I	should	clarify	up	front	that	MySQL	is	technically	pronounced	“My	Ess
Cue	Ell,”	 just	 as	SQL	should	be	 said	 “Ess	Cue	Ell.”	This	 is	 a	question	many	people	 have
when	 first	working	with	 these	 technologies.	Though	not	a	 critical	 issue,	 it’s	 always	best	 to
pronounce	acronyms	correctly.

What	You’ll	Need
To	follow	the	examples	in	this	book,	you’ll	need	the	following	tools:

	A	web	server	application	(for	example,	Apache,	Nginx,	or	IIS)
	PHP
	MySQL
	 A	 browser	 (Microsoft’s	 Internet	 Explorer	 or	 Edge,	 Mozilla’s	 Firefox,	 Apple’s	 Safari,	 Google’s
Chrome,	etc.)
	 A	 text	 editor,	 PHP-capable	 WYSIWYG	 application	 (Adobe’s	 Dreamweaver	 qualifies),	 or	 IDE



(integrated	development	environment)
	An	FTP	application,	if	using	a	remote	server

One	 of	 the	 great	 things	 about	 developing	 dynamic	 web	 sites	 with	 PHP	 and	MySQL	 is	 that	 all	 of	 the
requirements	can	be	met	at	no	cost	whatsoever,	regardless	of	your	operating	system!	Apache,	PHP,	and
MySQL	are	each	 free,	browsers	can	be	had	without	cost,	and	many	good	 text	editors	are	available	 for
nothing.
The	 appendix	discusses	 the	 installation	process	 on	 the	Windows	 and	macOS	operating	 systems.	 If	 you
have	a	computer,	you	are	only	a	couple	of	downloads	away	from	being	able	to	create	dynamic	web	sites
(in	that	case,	your	computer	would	represent	both	the	client	and	the	server	in	 	and	 ).	Conversely,
you	 could	 purchase	 web	 hosting	 for	 only	 dollars	 per	 month	 that	 will	 provide	 you	 with	 a	 PHP-	 and
MySQL-enabled	environment	already	online.

About	This	Book
This	book	teaches	you	how	to	develop	dynamic	web	sites	with	PHP	and	MySQL,	covering	the	knowledge
that	 most	 developers	 might	 require.	 In	 keeping	 with	 the	 format	 of	 the	 Visual	 QuickPro	 series,	 the
information	 is	discussed	using	a	step-by-step	approach	with	corresponding	 images.	The	focus	has	been
kept	 on	 real-world,	 practical	 examples,	 avoiding	 “here’s	 something	 you	 could	 do	 but	 never	 would”
scenarios.	As	a	practicing	web	developer	myself,	 I	wrote	about	 the	 information	 that	 I	use	and	avoided
those	topics	immaterial	 to	 the	 task	at	hand.	As	a	practicing	writer,	 I	made	certain	 to	 include	topics	and
techniques	that	I	know	readers	are	asking	about.
The	structure	of	 the	book	 is	 linear,	 and	 the	 intention	 is	 that	you’ll	 read	 it	 in	order.	 It	 begins	with	 three
chapters	covering	the	fundamentals	of	PHP	(by	the	second	chapter,	you	will	have	already	developed	your
first	dynamic	web	page).	After	that,	there	are	four	chapters	on	SQL	(Structured	Query	Language,	which	is
used	to	interact	with	all	databases)	and	MySQL.	Those	chapters	teach	the	basics	of	SQL,	database	design,
and	the	MySQL	application	in	particular.	Then	there’s	one	chapter	on	debugging	and	error	management,
information	 everyone	 needs.	 This	 is	 followed	 by	 a	 chapter	 introducing	 how	 to	 use	 PHP	 and	MySQL
together,	a	remarkably	easy	thing	to	do.
The	following	five	chapters	teach	more	application	techniques	to	round	out	your	knowledge.	Security,	 in
particular,	 is	 repeatedly	 addressed	 in	 those	 pages.	 The	 next	 two	 chapters	 expand	 your	 newfound
knowledge	 into	 subjects	 that,	 though	 not	 critical,	 are	 ones	 you’ll	 want	 to	 pick	 up	 in	 time	 regardless.
Finally,	 I’ve	 included	 two	 example	 chapters,	 in	 which	 the	 heart	 of	 different	 web	 applications	 are
developed,	with	instructions.

Is	this	book	for	you?
This	book	was	written	for	a	wide	range	of	people	within	 the	beginner-to-intermediate	range.	The	book
makes	use	of	HTML5,	so	solid	experience	with	HTML	is	a	must.	Although	this	book	covers	many	things,
it	does	not	formally	teach	HTML	or	web	design.	Some	CSS	is	sprinkled	about	these	pages	but	also	not
taught.
Second,	this	book	expects	that	you	have	one	of	the	following:

	The	drive	and	ability	to	learn	without	much	hand	holding,	or…
	Familiarity	with	another	programming	language	(even	solid	JavaScript	skills	would	qualify),	or…
	A	cursory	knowledge	of	PHP

Make	no	mistake:	This	 book	 covers	PHP	 and	MySQL	 from	A	 to	Z,	 teaching	 everything	you’ll	 need	 to
know	to	develop	real-world	web	sites,	but	the	early	chapters	in	particular	cover	PHP	at	a	quick	pace.	For



this	reason	I	recommend	either	some	programming	experience	or	a	curious	and	independent	spirit	when	it
comes	to	learning	new	things.	If	you	find	that	the	material	goes	too	quickly,	you	should	probably	start	off
with	the	latest	edition	of	my	book	PHP	for	the	World	Wide	Web:	Visual	QuickStart	Guide,	which	goes	at
a	much	more	tempered	pace.
No	database	experience	is	required,	since	SQL	and	MySQL	are	discussed	starting	at	a	more	basic	level.

What’s	new	in	this	edition
The	first	four	editions	of	this	book	have	been	very	popular,	and	I’ve	received	a	lot	of	positive	feedback
on	them	(thanks!).	In	writing	this	new	edition,	I	focused	on	ensuring	the	material	is	accurate,	up	to	date,
and	in	keeping	with	today’s	standards	and	best	practices.	The	changes	in	this	edition	include

	Updating	all	the	code	to	use	HTML5
	Use	of	more	modern	HTML	design	techniques,	including	multiple	examples	of	the	Twitter	Bootstrap
framework
	Updating	everything	for	the	latest	versions	of	PHP	and	MySQL
	Additional	PHP	and	MySQL	examples,	such	as	performing	transactions	from	a	PHP	script
	Even	more	information	and	examples	for	improving	the	security	of	your	scripts	and	sites
	Removal	of	outdated	content	(e.g.,	things	used	in	older	versions	of	PHP	or	no	longer	applicable)
	Return	of	the	installation	appendix	to	the	printed	book	(in	the	fourth	edition,	the	appendix	was	freely
available	online	instead)

For	 those	of	you	that	also	own	a	previous	edition	(thanks,	 thanks,	 thanks!),	 I	hope	you	find	 this	 to	be	a
fresh	and	sharp	update	to	an	already	excellent	resource.

How	this	book	compares	to	my	other	books
This	is	my	fourth	PHP	and/or	MySQL	title,	after	(in	order)

	PHP	for	the	World	Wide	Web:	Visual	QuickStart	Guide
	PHP	Advanced	and	Object-Oriented	Programming:	Visual	QuickPro	Guide
	MySQL:	Visual	QuickStart	Guide

I	hope	this	résumé	implies	a	certain	level	of	qualification	to	write	this	book,	but	how	do	you,	as	a	reader
standing	in	a	bookstore,	decide	which	title	is	for	you?	Of	course,	you	are	more	than	welcome	to	splurge
and	buy	the	whole	set,	earning	my	eternal	gratitude,	but…
The	PHP	 for	 the	World	Wide	Web:	Visual	QuickStart	Guide	 book	 is	very	much	a	beginner’s	guide	 to
PHP.	This	title	overlaps	it	some,	mostly	in	the	first	three	chapters,	but	uses	new	examples	so	as	not	to	be
redundant.	For	novices,	this	book	acts	as	a	follow-up	to	that	one.	The	advanced	book	is	really	a	sequel	to
this	one,	as	 it	assumes	a	 fair	amount	of	knowledge	and	builds	on	many	 things	 taught	here.	The	MySQL
book	focuses	almost	exclusively	on	MySQL	(there	are	but	two	chapters	that	use	PHP).
With	that	in	mind,	read	the	section	“Is	this	book	for	you?”	and	see	if	the	requirements	apply.	If	you	have
no	programming	experience	at	all	and	would	prefer	to	be	taught	PHP	more	gingerly,	my	first	book	would
be	 better.	 If	 you	 are	 already	 very	 comfortable	 with	 PHP	 and	 want	 to	 learn	 more	 of	 its	 advanced
capabilities,	pick	up	PHP	Advanced	and	Object-Oriented	Programming:	Visual	QuickPro	Guide.	If	you
are	most	interested	in	MySQL	and	are	not	concerned	with	learning	much	about	PHP,	check	out	MySQL:
Visual	QuickStart	Guide.
That	being	said,	if	you	want	to	learn	everything	you	need	to	know	to	begin	developing	dynamic	web	sites
with	PHP	and	MySQL	today,	then	this	is	the	book	for	you!	It	references	the	most	current	versions	of	both



technologies,	 uses	 techniques	 not	 previously	 discussed	 in	 other	 books,	 and	 contains	 its	 own	 unique
examples.
And	whatever	book	you	do	choose,	make	sure	you’re	getting	the	most	recent	edition	or,	barring	that,	 the
edition	that	best	matches	the	versions	of	the	technologies	you’ll	be	using.

Companion	Web	Site
I	 have	 developed	 a	 companion	 web	 site	 specifically	 for	 this	 book,	 which	 you	 may	 reach	 at
LarryUllman.com.	There	you	will	find	every	script	from	this	book,	a	text	file	containing	lengthy	SQL
commands,	and	a	list	of	errata	that	occurred	during	publication.	(If	you	have	problems	with	a	command	or
script,	 and	 you	 are	 following	 the	 book	 exactly,	 check	 the	 errata	 to	 ensure	 there	 is	 not	 a	 printing	 error
before	 driving	 yourself	 absolutely	 mad.)	 At	 this	 web	 site	 you	 will	 also	 find	 a	 popular	 forum	 where
readers	can	ask	and	answer	each	other’s	questions	(I	answer	many	of	them	myself),	and	more!

Questions,	comments,	or	suggestions?
If	you	have	any	questions	on	PHP	or	MySQL,	you	can	 turn	 to	one	of	 the	many	web	sites,	mailing	 lists,
newsgroups,	 and	 FAQ	 repositories	 already	 in	 existence.	 A	 quick	 search	 online	 will	 turn	 up	 virtually
unlimited	 resources.	For	 that	matter,	 if	you	need	an	 immediate	answer,	 those	 sources	or	 a	quick	online
search	will	most	assuredly	serve	your	needs	(in	all	likelihood,	someone	else	has	already	seen	and	solved
your	exact	problem).
You	can	also	direct	your	questions,	comments,	and	suggestions	to	me.	You’ll	get	the	fastest	reply	using	the
book’s	corresponding	forum	(I	always	answer	those	questions	first).	If	you’d	rather	email	me,	my	contact
information	is	available	on	my	site.	I	do	try	to	answer	every	email	I	receive,	although	I	cannot	guarantee	a
quick	reply.

Accessing	the	free	Web	Edition
Your	 purchase	 of	 this	 book	 in	 any	 format	 includes	 access	 to	 the	 corresponding	 Web	 Edition,	 which
provides	several	special	online-only	features:

	The	complete	text	of	the	book,	with	all	the	figures	and	in	full	color
	Updates	and	corrections	as	they	become	available

The	Web	Edition	 can	 be	 viewed	 on	 all	 types	 of	 computers	 and	mobile	 devices	with	 any	modern	web
browser	that	supports	HTML5.	To	get	access	to	the	Web	Edition	of	PHP	and	MySQL	for	Dynamic	Web
Sites:	Visual	QuickPro	Guide	all	you	need	to	do	is	register	this	book:
1.	Go	to	www.peachpit.com/register.
2.	Sign	in	or	create	a	new	account.
3.	Enter	ISBN:	9780134301846.
4.	Answer	the	questions	as	proof	of	purchase.
The	Web	Edition	will	appear	under	the	Digital	Purchases	tab	on	your	Account	page.	Click	the	Launch	link
to	access	the	product.

http://LarryUllman.com
http://www.peachpit.com/register


1.	Introduction	to	PHP

In	This	Chapter
Basic	Syntax
Sending	Data	to	the	Browser
Writing	Comments
What	Are	Variables?
Introducing	Strings
Concatenating	Strings
Introducing	Numbers
Introducing	Constants
Single	vs.	Double	Quotation	Marks
Basic	Debugging	Steps
Review	and	Pursue

Although	 this	book	 focuses	on	using	MySQL	and	PHP	 together,	you’ll	do	 the	majority	of	 your	 legwork
using	PHP	alone.	In	this	and	the	following	chapter,	you’ll	learn	PHP’s	basics,	from	syntax	to	variables,
operators,	 and	 language	 constructs	 (conditionals,	 loops,	 and	 whatnot).	 As	 you	 are	 picking	 up	 these
fundamentals,	you’ll	 also	develop	usable	 code	 that	 you’ll	 integrate	 into	 larger	 applications	 later	 in	 the
book.
This	 introductory	 chapter	will	 cruise	 through	most	 of	 the	basics	 of	 the	PHP	 language.	You’ll	 learn	 the
syntax	for	coding	PHP,	how	to	send	data	to	the	browser,	and	how	to	use	two	kinds	of	variables—strings
and	numbers—plus	 constants.	Some	examples	may	 seem	 inconsequential,	 but	 they’ll	 demonstrate	 ideas
you’ll	 need	 to	 master	 in	 order	 to	 write	 more	 advanced	 scripts	 further	 down	 the	 line.	 The	 chapter
concludes	with	some	quick	debugging	tips…you	know…just	in	case!

Basic	Syntax
As	stated	in	the	book’s	introduction,	PHP	is	an	HTML-embedded	scripting	language,	meaning	that	you	can
intermingle	PHP	and	HTML	code	within	the	same	file.	So	to	begin	programming	with	PHP,	start	with	a
simple	web	page.	Script	1.1	 is	an	example	of	a	no-frills,	no-content	HTML5	document,	which	will	be
used	as	the	foundation	for	most	web	pages	in	the	book	(this	book	does	not	formally	discuss	HTML5;	see	a
resource	 dedicated	 to	 the	 topic	 for	more	 information).	 Please	 also	 note	 that	 the	 template	 uses	 UTF-8
encoding,	a	topic	discussed	in	the	following	sidebar.

Script	1.1	A	basic	HTML5	page.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Page	Title</title>

6			</head>

7			<body>



8						<!--	Script	1.1	-	template.html	-->

9			</body>

10			</html>

To	add	PHP	code	to	a	page,	place	it	within	PHP	tags:
<?php

?>

Understanding	Encoding
Encoding	is	a	big	subject,	but	what	you	most	need	to	understand	is	this:	the	encoding	you	use
in	a	file	dictates	what	characters	can	be	represented	(and	therefore,	what	languages	can	be
used).	 To	 select	 an	 encoding,	 you	 must	 first	 confirm	 that	 your	 text	 editor	 or	 integrated
development	environment	(IDE)—whatever	application	you’re	using	to	create	the	HTML	and
PHP	 scripts—can	 save	 documents	 using	 that	 encoding.	 Some	 applications	 let	 you	 set	 the
encoding	in	the	preferences	or	options	area;	others	set	the	encoding	when	you	save	the	file.
To	indicate	the	encoding	to	the	browser,	there’s	the	corresponding	meta	tag:
<meta	charset="utf-8">

The	 charset=utf-8	 part	 says	 that	 UTF-8	 encoding	 is	 being	 used,	 short	 for	 8-bit	 Unicode
Transformation	Format.	Unicode	 is	 a	way	 of	 reliably	 representing	 every	 symbol	 in	 every
alphabet.	Version	 9.0.0	 of	 Unicode—the	 current	 version	 as	 of	 this	 writing—supports	 over
128,000	characters!
If	you	want	to	create	a	multilingual	web	page,	UTF-8	is	the	way	to	go,	and	I’ll	be	using	it	in
this	book’s	examples.	You	don’t	have	to,	of	course.	But	whatever	encoding	you	do	use,	make
sure	 that	 the	encoding	 indicated	by	 the	HTML	page	matches	 the	actual	encoding	set	 in	your
text	editor	or	IDE.	If	you	don’t,	you’ll	likely	see	odd	characters	when	you	view	the	page	in	a
browser.

Script	1.2	This	first	PHP	script	doesn't	do	anything,	but	it	does	demonstrate	how	a	PHP	script	is	written.
It'll	also	be	used	as	a	test	script,	prior	to	getting	into	elaborate	PHP	code.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Basic	PHP	Page</title>

6			</head>

7			<body>

8						<!--	Script	1.2	-	first.php	-->

9						<p>This	is	standard	HTML.</p>

10		<?php

11		?>

12		</body>

13		</html>

Anything	written	within	these	tags	will	be	treated	by	the	web	server	as	PHP,	meaning	the	PHP	interpreter
will	 process	 the	 code.	Any	 text	 outside	of	 the	PHP	 tags	 is	 immediately	 sent	 to	 the	 browser	 as	 regular
HTML.	Because	 PHP	 is	most	 often	 used	 to	 create	 content	 displayed	 in	 the	 browser,	 the	 PHP	 tags	 are



normally	put	somewhere	within	the	page’s	body.
Along	 with	 placing	 PHP	 code	 within	 PHP	 tags,	 your	 PHP	 files	 must	 have	 a	 proper	 extension.	 The
extension	tells	the	server	to	treat	the	script	in	a	special	way—namely,	as	a	PHP	page.	Most	web	servers
use	.html	for	standard	HTML	pages	and	.php	for	PHP	files.
Before	getting	into	 the	steps,	understand	that	you	must	already	have	a	working	PHP	installation!	This
could	 be	 on	 a	 hosted	 site	 or	 your	 own	 computer,	 after	 following	 the	 instructions	 in	 Appendix	 A,
“Installation.”

To	make	a	basic	PHP	script:
1.	Create	a	new	document	in	your	text	editor	or	IDE,	to	be	named	first.php	(Script	1.2).
It	 generally	 does	 not	 matter	 what	 application	 you	 use,	 be	 it	 Adobe	 Dreamweaver	 (a	 fancy	 IDE),
Sublime	Text	(a	great	and	popular	plain-text	editor),	or	vi	(a	plain-text	Unix	editor,	lacking	a	graphical
interface).	 Still,	 some	 text	 editors	 and	 IDEs	 make	 typing	 and	 debugging	 HTML	 and	 PHP	 easier
(conversely,	Notepad	on	Windows	does	some	things	that	make	coding	harder:	don’t	use	Notepad!).	 If
you	don’t	already	have	an	application	you’re	attached	to,	search	online	or	use	the	book’s	corresponding
forum	(LarryUllman.com/forums/)	to	find	one.

2.	Create	a	basic	HTML	document:
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Basic	PHP	Page</title>

</head>

<body>

		<!--	Script	1.2	-	first.php	-->

		<p>This	is	standard	HTML.</p>

</body>

</html>

This	is	a	basic	HTML5	page.	One	of	the	niceties	of	HTML5	is	its	minimal	doctype	and	syntax.
3.	Before	the	closing	body	tag,	insert	the	PHP	tags:

<?php

?>

These	are	the	formal	PHP	tags,	also	known	as	XML-style	tags.	Although	PHP	supports	other	tag	types,	I
recommend	that	you	use	the	formal	type,	and	I	will	do	so	throughout	this	book.

4.	Save	the	file	as	first.php.
Remember	that	if	you	don’t	save	the	file	using	an	appropriate	PHP	extension,	the	script	will	not	execute
properly.	(Just	one	of	the	reasons	not	to	use	Notepad	is	that	it	will	secretly	add	the	.txt	extension	to
PHP	files,	thereby	causing	many	headaches.)

5.	Place	the	file	in	the	proper	directory	of	your	web	server.
If	you	are	running	PHP	on	your	own	computer	(presumably	after	following	the	installation	directions	in
Appendix	A),	you	just	need	to	move,	copy,	or	save	the	file	to	a	specific	folder	on	your	computer.	Check
Appendix	A	or	the	documentation	for	your	particular	web	server	to	identify	the	correct	directory,	if	you
don’t	already	know	what	it	is.
If	you	are	running	PHP	on	a	hosted	server	(i.e.,	on	a	remote	computer),	you’ll	need	to	use	a	Secure	File
Transfer	Protocol	(SFTP)	application	to	upload	the	file	to	the	proper	directory.	Your	hosting	company

http://LarryUllman.com/forums/


will	provide	you	with	access	and	the	other	necessary	information.
6.	Run	first.php	in	your	browser	 .

While	it	seems	like	any	other	(simple)	HTML	page,	this	is	in	fact	a	PHP	script	and	the	basis	for	the
rest	of	the	examples	in	the	book.
Because	PHP	scripts	need	to	be	parsed	by	the	server,	you	absolutely	must	access	them	via	a	URL	(i.e.,
the	address	in	the	browser	must	begin	with	http://	or	https://).	You	cannot	simply	open	them	in
your	browser	as	you	would	a	 file	 in	other	 applications	 (in	which	 case	 the	 address	would	 start	with
file://	or	C:\	or	the	like).
If	 you	 are	 running	 PHP	 on	 your	 own	 computer,	 you’ll	 need	 to	 use	 a	 URL	 like
http://localhost/first.php,	 http://127.0.0.1/first.php,	 or
http://localhost/~<user>/first.php	 (on	 macOS,	 using	 your	 actual	 username	 for
<user>).	 If	 you	 are	 using	 a	 hosted	 site,	 you’ll	 need	 to	 use	 http://your-domain-

name/first.php	(e.	g.,	http://www.example.com/first.php).
7.	If	you	don’t	see	results	like	those	in	 ,	start	debugging!
Part	 of	 learning	 any	 programming	 language	 is	 mastering	 debugging.	 It’s	 a	 sometimes	 painful	 but
absolutely	necessary	process.	With	 this	 first	 example,	 if	 you	don’t	 see	 a	 simple,	 but	 perfectly	 valid,
web	page,	follow	these	steps:
A.	Confirm	that	you	have	a	working	PHP	installation	(see	Appendix	A	for	testing	instructions).
B.	Make	sure	that	you	are	running	the	script	through	a	URL.	The	address	in	the	browser	must	begin	with
http.	If	it	starts	with	file://,	that’s	a	problem	 .

PHP	code	will	only	be	executed	when	run	through	http://.
C.	 If	 you	get	 a	 file	 not	 found	 (or	 similar)	 error,	 you’ve	 likely	put	 the	 file	 in	 the	wrong	directory	or
mistyped	the	file’s	name	(either	when	saving	it	or	in	your	browser).
If	you’ve	gone	through	all	 this	and	you	are	still	having	problems,	 turn	 to	 the	book’s	corresponding



forum	(LarryUllman.com/forums/).

Tip
To	find	more	information	about	HTML,	check	out	Elizabeth	Castro’s	excellent	HTML	and	CSS:
Visual	QuickStart	Guide	(Peachpit,	2013),	or	search	online.

Tip
You	can	embed	multiple	sections	of	PHP	code	within	a	single	HTML	document	(i.e.,	you	can	go
in	and	out	of	the	two	languages).	You’ll	see	examples	of	this	throughout	the	book.

Tip
You	can	declare	the	encoding	of	an	external	CSS	file	by	adding	@charset	“utf-8”;	as	the
first	line	in	the	file.	If	you’re	not	using	UTF-8,	change	the	line	accordingly.

Sending	Data	to	the	Browser
To	 create	 dynamic	web	 sites	with	 PHP,	 you	must	 know	 how	 to	 send	 data	 to	 the	 browser.	 PHP	 has	 a
number	of	built-in	 functions	 for	 this	purpose;	 the	most	 common	are	echo	 and	print.	 I	 tend	 to	 favor
echo:
echo	'Hello,	world!';

echo	"What's	new?";

You	could	use	print	instead	if	you	prefer	(the	name	more	obviously	indicates	what	it	does):
print	'Hello,	world!';

print	"What's	new?";

As	you	can	see	from	these	examples,	you	can	use	either	single	or	double	quotation	marks	(but	there	is	a
distinction	between	the	two	types	of	quotation	marks,	which	I’ll	make	clear	by	this	chapter’s	end).	The
first	 quotation	mark	 after	 the	 function	 name	 indicates	 the	 start	 of	 the	message	 to	 be	 printed.	 The	 next
matching	quotation	mark	(i.e.,	the	next	quotation	mark	of	the	same	kind	as	the	opening	mark)	indicates	the
end	of	the	message	to	be	printed.
Along	with	learning	how	to	send	data	to	the	browser,	you	should	also	notice	that	in	PHP	all	statements—a
line	 of	 executed	 code,	 in	 layman’s	 terms—must	 end	with	 a	 semicolon.	 Also,	 PHP	 is	 case-insensitive
when	it	comes	to	function	names,	so	,	,	,	and	so	forth	will	all	work.	The	all-lowercase	version	is	easiest
to	type,	of	course.

http://LarryUllman.com/forums/


Needing	an	Escape
As	you	might	discover,	one	of	 the	complications	with	sending	data	 to	 the	browser	 involves
printing	single	and	double	quotation	marks.	Either	of	the	following	will	cause	errors:

Click	here	to	view	code	image

echo	"She	said,	"How	are	you?"";

echo	'I'm	just	ducky.';

There	 are	 two	 solutions	 to	 this	 problem.	 First,	 use	 single	 quotation	marks	when	 printing	 a
double	quotation	mark,	and	vice	versa:

Click	here	to	view	code	image

echo	'She	said,	"How	are	you?"';

echo	"I'm	just	ducky.";

Or,	you	can	escape	the	problematic	character	by	preceding	it	with	a	backslash:
Click	here	to	view	code	image

echo	"She	said,	\"How	are	you?\"";

echo	'I\'m	just	ducky.';

An	 escaped	 quotation	mark	will	merely	 be	 printed	 like	 any	 other	 character.	Understanding
how	to	use	the	backslash	to	escape	a	character	is	an	important	concept,	and	one	that	will	be
covered	in	more	depth	at	the	end	of	this	chapter.

Script	1.3	Using	print	or	echo,	PHP	can	send	data	to	the	browser.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Using	Echo</title>

6			</head>

7			<body>

8						<!--	Script	1.3	-	second.php	-->

9						<p>This	is	standard	HTML.</p>

10		<?php

11		echo	'This	was	generated	using	PHP!';

12		?>

13		</body>

14		</html>

To	send	data	to	the	browser:
1.	Open	first.php	(refer	to	Script	1.2)	in	your	text	editor	or	IDE.
2.	Between	the	PHP	tags	(lines	10	and	11),	add	a	simple	message	(Script	1.3):

echo	'This	was	generated	using	 	PHP!';

It	truly	doesn’t	matter	what	message	you	type	here,	which	function	you	use	(echo	or	print),	or	which
quotation	marks,	for	that	matter—just	be	careful	if	you	are	printing	a	single	or	double	quotation	mark	as
part	of	your	message	(see	the	sidebar	“Needing	an	Escape”).

3.	If	you	want,	change	the	page	title	to	better	describe	this	script	(line	5):



<title>Using	Echo</title>

This	change	affects	only	the	browser	window’s	title	bar.
4.	Save	the	file	as	second.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

The	results	still	aren’t	glamorous,	but	this	page	was	in	part	dynamically	generated	by	PHP.
Remember	that	all	PHP	scripts	must	be	run	through	a	URL	(http://something)!

5.	If	necessary,	debug	the	script.
If	you	see	a	parse	error	instead	of	your	message	 ,	check	that	you	have	both	opened	and	closed	your
quotation	marks	and	escaped	any	problematic	characters	(see	the	sidebar).	Also	be	certain	to	conclude
each	statement	with	a	semicolon.

This	may	be	the	first	of	many	parse	errors	you	see	as	a	PHP	programmer	(this	one	is	caused	by	 the
omission	of	the	terminating	quotation	mark).
If	you	see	an	entirely	blank	page,	this	is	probably	for	one	of	two	reasons:
	There	is	a	problem	with	your	HTML.	Test	this	by	viewing	the	source	of	your	page	 and	looking	for
HTML	problems	there	 .

http://something


One	possible	cause	of	a	blank	PHP	page	 is	a	simple	HTML	error,	 like	 the	closing	title	 tag	here
(it’s	missing	the	slash).
	An	error	occurred,	but	 display_errors	is	turned	off	in	your	PHP	configuration,	so	nothing	is	shown.
In	 this	 case,	 see	 the	 section	 in	 Appendix	 A	 on	 how	 to	 configure	 PHP	 so	 that	 you	 can	 turn
display_errors	back	on.

Tip
Technically,	echo	and	print	are	language	constructs,	not	functions.	That	being	said,	don’t	be
bothered	as	I	continue	to	call	 them	“functions”	for	convenience.	Also,	as	you’ll	see	later	 in	the
book,	I	include	the	parentheses	when	referring	to	functions—say,	number_format(),	not	just
number_format—to	help	distinguish	them	from	variables	and	other	parts	of	PHP.	This	is	just
my	own	little	convention.

Tip
You	can,	and	often	will,	use	echo	and	print	to	send	HTML	code	to	the	browser,	like	so	 :

PHP	can	send	HTML	code	(like	the	formatting	here)	as	well	as	simple	text	 	to	the	browser.
echo	'<p>Hello,

	<strong>world</strong>!</p>';



Tip
echo	and	print	can	both	be	used	over	multiple	lines:

echo	'This	sentence	is

printed	over	two	lines.';

What	happens	in	this	case	is	that	the	return	(created	by	pressing	Enter	or	Return)	becomes	part	of
the	printed	message	and	isn’t	terminated	until	the	closing	quotation	mark.	The	net	result	will	be
the	 “printing”	 of	 the	 return	 in	 the	HTML	 source	 code	 .	 This	will	 not	 have	 an	 effect	 on	 the
generated	page	 .	For	more	on	this,	see	the	sidebar	“Understanding	White	Space.”

	 Printing	 text	 and	 HTML	 over	 multiple	 PHP	 lines	 will	 generate	 HTML	 source	 code	 that	 also
extends	over	multiple	lines.	Note	that	extraneous	white	spacing	in	the	HTML	source	will	not	affect	the
look	of	a	page	 	but	can	make	the	source	easier	to	review.

	The	return	in	the	HTML	source	 	has	no	effect	on	the	rendered	result.	The	only	way	to	alter	the
spacing	of	a	displayed	web	page	is	to	use	HTML	tags	(like	<br>	and	<p></p>).

Writing	Comments
Creating	 executable	 PHP	 code	 is	 only	 a	 part	 of	 the	 programming	 process	 (admittedly,	 it’s	 the	 most
important	part).	A	secondary	but	still	crucial	aspect	 to	any	programming	endeavor	 is	documenting	your
code.
In	HTML	you	can	add	comments	using	special	tags:
<!--	Comment	goes	here.	-->

HTML	comments	are	viewable	in	the	source	but	do	not	appear	in	the	rendered	page	(see	 	and	 	in	the
previous	section).



PHP	comments	are	different	in	that	they	aren’t	sent	to	the	browser	at	all,	meaning	they	won’t	be	viewable
to	the	end	user,	even	when	looking	at	the	HTML	source.
PHP	supports	 three	comment	 syntaxes.	The	 first	uses	what’s	called	 the	pound,	hash,	or	 number	 symbol
(#):
#	This	is	a	comment.

The	second	uses	two	slashes:
//	This	is	also	a	comment.

Both	of	these	cause	PHP	to	ignore	everything	that	follows	until	the	end	of	the	line	(when	you	press	Return
or	 Enter).	 Thus,	 these	 two	 comments	 are	 for	 single	 lines	 only.	 They	 are	 also	 often	 used	 to	 place	 a
comment	on	the	same	line	as	some	PHP	code:
print	'Hello!';	//	Say	hello.

A	third	style	allows	comments	to	run	over	multiple	lines:
/*	This	is	a	longer	comment

that	spans	two	lines.	*/

Understanding	White	Space
With	 PHP	 you	 send	 data—like	 HTML	 tags	 and	 text—to	 the	 browser,	 which	 will,	 in	 turn,
render	that	data	as	the	web	page	the	end	user	sees.	Thus,	what	you	are	often	doing	with	PHP
is	creating	the	HTML	source	of	a	web	page.	With	this	in	mind,	there	are	three	areas	of	notable
white	space	(extra	spaces,	tabs,	and	blank	lines):	in	your	PHP	scripts,	in	your	HTML	source,
and	in	the	rendered	web	page.
PHP	is	generally	white	space	insensitive,	meaning	that	you	can	space	out	your	code	however
you	want	to	make	your	scripts	more	legible.	HTML	is	also	generally	white	space	insensitive.
Specifically,	 the	only	white	space	in	HTML	that	affects	the	rendered	page	 is	a	single	space
(multiple	spaces	still	get	rendered	as	one).	If	your	HTML	source	has	 text	on	multiple	 lines,
that	doesn’t	mean	it’ll	appear	on	multiple	lines	in	the	rendered	page	( 	and	 ).
To	alter	the	spacing	in	a	rendered	web	page,	use	the	HTML	tags	<br>	(line	break)	and	<p>
</p>	(paragraph).	To	alter	the	spacing	of	the	HTML	source	created	with	PHP,	you	can
	Use	echo	or	print	over	the	course	of	several	lines.
or
	Print	the	newline	character	(\n)	within	double	quotation	marks,	which	is	equivalent	to	Enter
or	Return.

To	comment	your	scripts:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	comments.php,	starting	with	the
initial	HTML	(Script	1.4):

Script	1.4	These	basic	comments	demonstrate	the	three	comment	syntaxes	you	can	use	in	PHP.
Click	here	to	view	code	image

1			<!doctype	html>



2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Comments</title>

6			</head>

7			<body>

8			<?php

9

10		#	Script	1.4	-	comments.php

11		#	Created	March	16,	2011

12		#	Created	by	Larry	E.	Ullman

13		#	This	script	does	nothing	much.

14

15		echo	'<p>This	is	a	line	of	text.<br>This	is	another	line	of	text.</p>';

16

17		/*

18		echo	'This	line	will	not	be	executed.';

19		*/

20

21		echo	"<p>Now	I'm	done.</p>";	//	End	of	PHP	code.

22

23		?>

24		</body>

25		</html>

Click	here	to	view	code	image
<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Comments</title>

</head>

<body>

2.	Add	the	initial	PHP	tag	and	write	your	first	comments:
Click	here	to	view	code	image

<?php

#	Script	1.4	-	comments.php

#	Created	April	23,	2017

#	Created	by	Larry	E.	Ullman

#	This	script	does	nothing	much.

One	of	 the	first	comments	each	script	should	contain	 is	an	 introductory	block	 that	 lists	creation	date,
modification	 date,	 creator,	 creator’s	 contact	 informa-tion,	 purpose	 of	 the	 script,	 and	 so	 on.	 Some
people	suggest	that	the	shell-style	comments	(#)	stand	out	more	 in	a	script	and	are	 therefore	best	 for
this	kind	of	notation.

3.	Send	some	HTML	to	the	browser:
Click	here	to	view	code	image

echo	'<p>This	is	a	line	of	text.

	<br>This	is	another	line	of

	text.</p>';

It	doesn’t	matter	what	you	do	here—just	make	something	for	 the	browser	 to	display.	For	 the	 sake	of
variety,	the	echo	 statement	will	print	some	HTML	tags,	 including	a	 line	break	(<br>)	 to	add	some
spacing	to	the	generated	HTML	page.

4.	Use	the	multiline	comments	to	comment	out	a	second	echo	statement:



Click	here	to	view	code	image
/*

echo	'This	line	will	not	be

	executed.';

*/

By	surrounding	any	block	of	PHP	code	with	/*	and	*/,	you	can	render	that	code	inert	without	having
to	delete	it	from	your	script.	By	later	removing	the	comment	tags,	you	can	reactivate	that	section	of	PHP
code.

5.	Add	a	final	comment	after	a	third	echo	statement:
Click	here	to	view	code	image

echo	"<p>Now	I'm	done.</p>";

	//	End	of	PHP	code.

This	 last	 (superfluous)	 comment	 shows	 how	 to	 place	 a	 comment	 at	 the	 end	 of	 a	 line,	 a	 common
practice.	Note	that	double	quotation	marks	surround	this	message,	since	single	quotation	marks	would
conflict	with	the	apostrophe	(see	the	“Needing	an	Escape”	sidebar,	earlier	in	the	chapter).

6.	Close	the	PHP	section	and	complete	the	HTML	page:
?>

</body>

</html>

7.	Save	the	file	as	comments.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	The	PHP	comments	in	Script	1.4	don’t	appear	in	the	web	page	or	the	HTML	source	 .
8.	If	you’re	the	curious	type,	check	the	source	code	in	your	browser	to	confirm	that	the	PHP	comments	do
not	appear	there	 .

	The	PHP	comments	from	Script	1.4	are	nowhere	to	be	seen	in	the	client’s	browser.



Tip
You	 shouldn’t	 nest—place	 one	 inside	 another—multiline	 comments	 (/*	*/).	 Doing	 so	 will
cause	problems.

Tip
Any	of	the	PHP	comments	can	be	used	at	the	end	of	a	line	(say,	after	a	function	call):

echo	'Howdy';	/*	Say	'Howdy'	*/

Although	this	is	allowed,	it’s	far	less	common.

Tip
In	the	interest	of	saving	space,	the	scripts	in	this	book	will	not	be	as	well	documented	as	I	would
suggest	they	should	be.

Tip
It’s	also	important	that	you	keep	the	comments	up	to	date	and	accurate	when	you	change	a	script.
There’s	 nothing	more	 confusing	 than	 a	 comment	 that	 says	one	 thing	when	 the	 code	 really	 does
something	else.

Tip
Some	developers	argue	that	it’s	unnecessary	to	comment	individual	bits	of	code	because	the	code
itself	should	make	its	purpose	clear.	In	my	experience,	adding	comments	helps.

What	Are	Variables?
Variables	 are	 containers	used	 to	 temporarily	 store	values.	These	values	 can	be	numbers,	 text,	 or	much
more	 complex	 data.	 PHP	 supports	 eight	 types	 of	 variables.	 These	 include	 four	 scalar	 (single-valued)
types—Boolean	 (TRUE	 or	 FALSE),	 integer,	 floating	 point	 (decimals),	 and	 strings	 (one	 or	 more
characters);	 two	 nonscalar	 (multivalued)—arrays	 and	objects;	 plus	 resources	 (which	 you’ll	 see	when
interacting	with	databases)	and	NULL	(which	is	a	special	type	that	has	no	value).
Regardless	of	what	type	you	are	creating,	all	variable	names	in	PHP	follow	certain	syntactical	rules:

	A	variable’s	name	must	start	with	a	dollar	sign	($)—for	example,	$name.
	The	variable’s	name	can	contain	a	combination	of	letters,	numbers,	and	the	underscore—for	example,
$my_report1.
	 The	 first	 character	 after	 the	 dollar	 sign	 must	 be	 either	 a	 letter	 or	 an	 underscore	 (it	 cannot	 be	 a
number).
	Variable	names	in	PHP	are	case-sensitive!	This	is	a	very	important	rule.	It	means	that	$name	and
$Name	are	different	variables.

To	begin	working	with	variables,	this	next	script	will	print	out	the	value	of	three	predefined	variables.
Whereas	a	standard	variable	is	assigned	a	value	during	the	execution	of	a	script,	a	predefined	variable



will	already	have	a	value	when	the	script	begins	its	execution.	Most	of	these	predefined	variables	reflect
properties	of	the	server	as	a	whole,	such	as	the	operating	system	in	use.
Before	getting	into	this	script,	there	are	two	more	things	you	should	know.	First,	variables	can	be	assigned
values	using	the	equals	sign	(=),	also	called	the	assignment	operator.	Second,	to	display	the	value	of	a
variable,	you	can	print	the	variable	without	quotation	marks:
print	$some_var;

Or	variables	can	be	printed	within	double	quotation	marks:
print	"Hello,	$name";

You	cannot	print	variables	within	single	quotation	marks:
print	'Hello,	$name';

	//	This	won't	work!

To	use	variables:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	predefined.php,	starting	with
the	initial	HTML	(Script	1.5):

Click	here	to	view	code	image
<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Predefined	Variables</title>

</head>

<body>

2.	Add	the	opening	PHP	tag	and	the	first	comment:
<?php	#	Script	1.5	-	predefined.php

Script	1.5	This	script	prints	three	of	PHP's	many	predefined	variables.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Predefined	Variables</title>

6			</head>

7			<body>

8			<?php	#	Script	1.5	-	predefined.php

9

10		//	Create	a	shorthand	version	of	the	variable	names:

11		$file	=	$_SERVER['SCRIPT_FILENAME'];

12		$user	=	$_SERVER['HTTP_USER_AGENT'];

13		$server	=	$_SERVER['SERVER_SOFTWARE'];

14		

15		//	Print	the	name	of	this	script:

16		echo	"<p>You	are	running	the	file:<br><strong>$file</strong>.</p>\n";

17

18		//	Print	the	user's	information:

19		echo	"<p>You	are	viewing	this	page	using:<br><strong>$user</strong></p>\n";

20

21		//	Print	the	server's	information:

22		echo	"<p>This	server	is	running:<br><strong>$server</strong>.</p>\n";



23

24		?>

25		</body>

26		</html>

From	here	on	out,	scripts	will	no	longer	comment	on	the	creator,	creation	date,	and	so	forth,	although
you	 should	 continue	 to	 document	 your	 scripts	 thoroughly.	 Scripts	 will,	 however,	 make	 a	 comment
indicating	the	script’s	number	and	filename	for	ease	of	cross-referencing	(both	 in	 the	book	and	when
you	download	them	from	the	book’s	supporting	web	site,	LarryUllman.com).

3.	Create	a	shorthand	version	of	the	first	variable	to	be	used	in	this	script:
Click	here	to	view	code	image

$file	=	$_SERVER['SCRIPT_FILENAME'];

This	 script	 will	 use	 three	 variables,	 each	 of	 which	 comes	 from	 the	 larger	 predefined	 $_SERVER
variable.	$_SERVER	refers	to	a	mass	of	server-related	information.	The	first	variable	the	script	uses
is	$_SERVER[‘SCRIPT_FILENAME’].	This	 variable	 stores	 the	 full	 path	 and	name	of	 the	 script
being	run	(for	example,	C:\Program	Files\Apache\htdocs	\predefined.php).
The	value	 stored	 in	$_SERVER[‘SCRIPT	_FILENAME’]	will	 be	 assigned	 to	 the	 new	 variable
$file.	Creating	new	variables	with	shorter	names	and	then	assigning	them	values	from	$_SERVER
will	make	it	easier	to	refer	to	the	variables	when	printing	them.	(It	also	gets	around	another	issue	you’ll
learn	about	in	due	time.)

4.	Create	a	shorthand	version	of	two	more	variables:
Click	here	to	view	code	image

$user	=	$_SERVER

	['HTTP_USER_AGENT'];

$server	=	$_SERVER

	['SERVER_SOFTWARE'];

$_SERVER[‘HTTP_USER_AGENT’]	 represents	 the	 browser	 and	 operating	 system	 of	 the	 user
accessing	the	script.	This	value	is	assigned	to	$user.
$_SERVER[‘SERVER_SOFTWARE’]	 represents	 the	 web	 application	 on	 the	 server	 that’s	 running
PHP	(e.g.,	Apache,	Abyss,	Xitami,	or	IIS).	This	is	the	program	that	must	be	installed	(see	Appendix	A)
in	order	to	run	PHP	scripts	on	that	computer.

5.	Print	out	the	name	of	the	script	being	run:
Click	here	to	view	code	image

echo	"<p>You	are	running	the

	file:<br	/><strong>$file

	</strong>.</p>\n";

The	 first	 variable	 to	 be	 printed	 is	 $file.	 Notice	 that	 this	 variable	 must	 be	 used	 within	 double
quotation	marks	and	that	the	statement	also	makes	use	of	the	PHP	newline	character	(\n),	which	will
add	a	line	break	in	the	generated	HTML	source.	Some	basic	HTML	tags—paragraph	and	strong—are
added	to	give	the	generated	page	a	bit	of	flair.

6.	Print	out	the	information	of	the	user	accessing	the	script:
Click	here	to	view	code	image

echo	"<p>You	are	viewing	this	page

	using:<br><strong>$user</strong>

	</p>\n";

http://LarryUllman.com


This	 line	 prints	 the	 second	 variable,	 $user.	 To	 repeat	 what’s	 said	 in	 the	 fourth	 step,	 $user
correlates	to	$_SERVER[‘HTTP_USER_AGENT’]	and	refers	to	the	operating	system,	browser	type,
and	browser	version	being	used	to	access	the	web	page.

7.	Print	out	the	server	information:
Click	here	to	view	code	image

echo	"<p>This	server	is	running:

	<br><strong>$server</strong>.

	</p>\n";

8.	Complete	the	PHP	block	and	the	HTML	page:
?>

</body>

</html>

9.	Save	the	file	as	predefined.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	The	predefined.php	script	reports	back	to	the	viewer	information	about	the	script,	the	browser
being	used	to	view	it,	and	the	server	itself.

Tip
If	 you	 have	 problems	 with	 this,	 or	 any	 other	 script,	 turn	 to	 the	 book’s	 corresponding	 forum
(LarryUllman.com/forums/)	for	assistance.

http://LarryUllman.com/forums/


Tip
If	possible,	run	this	script	using	a	different	browser	and/or	on	another	server	 .

	This	is	the	book’s	first	truly	dynamic	script,	in	that	the	web	page	changes	depending	on	the	server
running	it	and	the	browser	viewing	it	(compare	with	 ).

Tip
Variable	names	cannot	contain	spaces.	The	underscore	is	commonly	used	in	lieu	of	a	space.

Tip
The	most	important	consideration	when	creating	variables	is	to	use	a	consistent	naming	scheme.
In	this	book	you’ll	see	that	I	use	all-lowercase	letters	for	my	variable	names,	with	underscores
separating	 words	 ($first_name).	 Some	 programmers	 prefer	 to	 use	 capitalization	 instead:
$FirstName	(known	as	“camel-case”	style).

Tip
PHP	is	very	casual	in	how	it	treats	variables,	meaning	that	you	don’t	need	to	initialize	them	(set
an	immediate	value)	or	declare	them	(set	a	specific	type),	and	you	can	convert	a	variable	among
the	many	types	without	problem.

Introducing	Strings
Now	that	you’ve	been	introduced	to	the	general	concept	of	variables,	let’s	look	at	variables	in	detail.	The
first	 variable	 type	 to	 delve	 into	 is	 the	 string.	A	 string	 is	merely	 a	 quoted	 chunk	 of	 characters:	 letters,
numbers,	spaces,	punctuation,	and	so	forth.	These	are	all	strings:

	‘Tobias’
	“In	watermelon	sugar”
	‘100’
	‘August	2,	2017’



To	make	a	string	variable,	assign	a	string	value	to	a	valid	variable	name:
Click	here	to	view	code	image

$first_name	=	'Tobias';

$today	=	'August	2,	2011';

When	creating	strings,	you	can	use	either	single	or	double	quotation	marks	to	encapsulate	the	characters,
just	 as	 you	would	when	 printing	 text.	 Likewise,	 you	must	 use	 the	 same	 type	 of	 quotation	mark	 for	 the
beginning	and	the	end	of	the	string.	If	that	same	mark	appears	within	the	string,	it	must	be	escaped:
Click	here	to	view	code	image

$var	=	"Define	\"platitude\",	please.";

Or	you	can	instead	use	the	other	quotation	mark	type:
Click	here	to	view	code	image

$var	=	'Define	"platitude",	please.';

To	print	out	the	value	of	a	string,	use	either	echo	or	print:
echo	$first_name;

To	print	the	value	of	string	within	a	context,	you	must	use	double	quotation	marks:
Click	here	to	view	code	image

echo	"Hello,	$first_name";

You’ve	already	worked	with	strings	once—when	using	the	predefined	variables	in	the	preceding	section,
as	the	values	of	those	variables	happened	to	be	strings.	In	this	next	example,	you’ll	create	and	use	your
own	strings.

To	use	strings:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	strings.php,	starting	with	the
initial	HTML	and	including	the	opening	PHP	tag	(Script	1.6):

Click	here	to	view	code	image
<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Strings</title>

</head>

<body>

<?php	#	Script	1.6	-	strings.php

Script	1.6	String	variables	are	created	and	their	values	are	sent	to	the	browser	in	this	script.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Strings</title>

6			</head>

7			<body>

8			<?php	#	Script	1.6	-	strings.php

9



10		//	Create	the	variables:

11		$first_name	=	'Haruki';

12		$last_name	=	'Murakami';

13		$book	=	'Kafka	on	the	Shore';

14

15		//	Print	the	values:

16		echo	"<p>The	book	<em>$book</em>

				was	written	by	$first_name

				$last_name.</p>";

17

18		?>

19		</body>

20		</html>

2.	Within	the	PHP	tags,	create	three	variables:
Click	here	to	view	code	image

$first_name	=	'Haruki';

$last_name	=	'Murakami';

$book	=	'Kafka	on	the	Shore';

This	 rudimentary	 example	 creates	$first_name,	$last_name,	 and	$book	 variables	 that	 will
then	be	printed	out	in	a	message.

3.	Add	an	echo	statement:
Click	here	to	view	code	image

echo	"<p>The	book	<em>$book

	</em>	was	written	by

	$first_name	$last_name.</p>";

All	 this	 script	 does	 is	 print	 a	 statement	 of	 authorship	 based	 on	 three	 established	 variables.	A	 little
HTML	 formatting—the	 emphasis	 on	 the	 book’s	 title—is	 thrown	 in	 to	 make	 it	 more	 attractive.
Remember	to	use	double	quotation	marks	here	for	the	variable	values	to	be	printed	out	appropriately
(more	on	the	importance	of	double	quotation	marks	at	this	chapter’s	end).

4.	Complete	the	PHP	block	and	the	HTML	page:
?>

</body>

</html>

5.	Save	the	file	as	strings.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

The	resulting	web	page	is	based	on	printing	out	the	values	of	three	variables.
6.	If	desired,	change	the	values	of	the	three	variables,	save	the	file,	and	run	the	script	again	 .



The	output	of	the	script	is	changed	by	altering	the	variables	in	it.

Tip
If	you	assign	another	value	to	an	existing	variable	(e.g.,	$book),	the	new	value	will	overwrite
the	old	one.	For	example:

Click	here	to	view	code	image

$book	=	'High	Fidelity';

$book	=	'The	Corrections';

/*	$book	now	has	a	value	of

'The	Corrections'.	*/

Tip
PHP	has	no	set	limits	on	how	big	a	string	can	be.	It’s	theoretically	possible	that	you’ll	be	limited
by	the	resources	of	the	server,	but	it’s	doubtful	that	you’ll	ever	encounter	such	a	problem.

Concatenating	Strings
Concatenation	 is	 like	 addition	 for	 strings,	whereby	 characters	 are	 added	 to	 the	 end	of	 the	 string.	 It	 is
performed	using	the	concatenation	operator,	which	is	the	period	(•):
Click	here	to	view	code	image

$city=	'Seattle';

$state	=	'Washington';

$address	=	$city	.	$state;

The	$address	variable	now	has	the	value	SeattleWashington,	which	almost	achieves	the	desired	result
(Seattle,	Washington).	To	improve	upon	this,	you	could	write
Click	here	to	view	code	image

$address	=	$city	.	',	'	.	$state;

so	that	a	comma	and	a	space	are	concatenated	to	the	variables	as	well.
Because	of	how	liberally	PHP	treats	variables,	concatenation	is	possible	with	strings	and	numbers.	Either
of	these	statements	will	produce	the	same	result	(Seattle,	Washington	98101):
Click	here	to	view	code	image

$address	=	$city	.	',	'	.	$state	.

	'	98101';

$address	=	$city	.	',	'	.	$state	.

	'	'	.	98101;

Let’s	modify	strings.php	to	use	this	new	operator.



To	use	concatenation:
1.	Open	strings.php	(refer	to	Script	1.6)	in	your	text	editor	or	IDE.
2.	After	you’ve	established	the	$first_name	and	$last_name	variables	(lines	11	and	12),	add	this
line	(Script	1.7):

Script	1.7	Concatenation	gives	you	the	ability	to	append	more	characters	onto	a	string.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Concatenation</title>

6			</head>

7			<body>

8			<?php	#	Script	1.7	-	concat.php

9

10		//	Create	the	variables:

11		$first_name	=	'Melissa';

12		$last_name	=	'Bank';

13		$author	=	$first_name	.	'	'	.

				$last_name;

14

15		$book	=	'The	Girls\'	Guide	to	Hunting	and	Fishing';

16

17		//Print	the	values:

18		echo	"<p>The	book	<em>$book</em>	was

				written	by	$author.</p>";

19

20		?>

21		</body>

22		</html>

Click	here	to	view	code	image
$author	=	$first_name	.	'	'	.

	$last_name;

As	 a	 demonstration	 of	 concatenation,	 a	 new	 variable—$author—will	 be	 created	 as	 the
concatenation	of	two	existing	strings	and	a	space	in	between.

3.	Change	the	echo	statement	to	use	this	new	variable:
Click	here	to	view	code	image

echo	"<p>The	book	<em>$book</em>

	was	written	by	$author.</p>";

Since	the	two	variables	have	been	turned	into	one,	the	echo	statement	should	be	altered	accordingly.
4.	If	desired,	change	the	HTML	page	title	and	the	values	of	the	first	name,	last	name,	and	book	variables.
5.	Save	the	file	as	concat.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .



In	this	revised	script,	the	end	result	of	concatenation	is	not	apparent	to	the	user.

Tip
PHP	has	a	slew	of	useful	string-specific	functions,	which	you’ll	see	over	the	course	of	this	book.
For	 example,	 to	 calculate	 how	 long	 a	 string	 is	 (how	 many	 characters	 it	 contains),	 use
strlen():

Click	here	to	view	code	image

$num	=	strlen('some	string');	//	11

Tip
You	can	have	PHP	convert	 the	case	of	 strings	with	strtolower(),	which	makes	 it	 entirely
lowercase;	 strtoupper(),	 which	 makes	 it	 entirely	 uppercase;	 ucfirst(),	 which
capitalizes	 the	 first	 character;	 and	ucwords(),	which	 capitalizes	 the	 first	 character	of	 every
word.

Tip
If	you	are	merely	concatenating	one	value	 to	another,	you	can	use	 the	concatenation	assignment
operator	(.=).	The	following	are	equivalent:

Click	here	to	view	code	image

$title	=	$title	.	$subtitle;

$title	.=	$subtitle;

Tip
The	initial	example	in	this	section	could	be	rewritten	using	either

Click	here	to	view	code	image

$address	=	"$city,	$state";

or

$address	=	$city;

$address	.=	',';

$address	.=	$state;



Using	the	PHP	Manual
The	 PHP	 manual–accessible	 online	 at	 www.php.net/manual–lists	 every	 function	 and
feature	of	the	language.	The	manual	is	organized	with	general	concepts	 (installation,	syntax,
variables)	discussed	first	and	ends	with	the	functions	by	topic	(MySQL,	string	functions,	and
so	on).
To	quickly	 look	up	any	 function	 in	 the	PHP	manual,	go	 to	php.net/functionname	 in
your	browser	(for	example,	php.net/print).	For	each	function,	the	manual	indicates	the
following:
	The	versions	of	PHP	the	function	is	available	in
	How	many	and	what	types	of	arguments	the	function	takes	(optional	arguments	are	wrapped	in
square	brackets)
	What	type	of	value	the	function	returns
The	manual	also	contains	a	description	of	the	function.
You	should	be	 in	 the	habit	of	checking	out	 the	PHP	manual	whenever	you’re	confused	by	 a
function	or	how	it’s	properly	used,	or	need	to	learn	more	about	any	feature	of	the	 language.
It’s	 also	 critically	 important	 that	 you	 know	 what	 version	 of	 PHP	 you’re	 running,	 since
functions	and	other	particulars	of	PHP	do	change	over	time.

Introducing	Numbers
In	introducing	variables,	I	stated	that	PHP	has	both	integer	and	floating-point	(decimal)	number	types.	In
my	experience,	though,	these	two	types	can	be	classified	under	the	generic	title	numbers	without	 losing
much	valuable	distinction.	Valid	numbers	in	PHP	can	be	anything	like

	8
	3.14
	10980843985
	–4.2398508
	4.4e2

Notice	that	these	values	are	never	quoted—quoted	numbers	are	strings	with	numeric	values—nor	do	they
include	commas	to	indicate	thousands.	Also,	a	number	is	assumed	to	be	positive	unless	it	is	preceded	by
the	minus	sign	(–).
Along	with	the	standard	arithmetic	operators	you	can	use	on	numbers	(Table	1.1),	dozens	of	functions	are
built	 into	 PHP.	 Two	 common	 ones	 are	 round()	 and	 number_format().	 The	 former	 rounds	 a
decimal	to	the	nearest	integer:

http://www.php.net/manual


TABLE	1.1	Arithmetic	Operators
Operator Meaning
+ Addition
– Subtraction
* Multiplication
/ Division
% Modulus
+	+ Increment
–– Decrement

Click	here	to	view	code	image

$n	=	3.14;

$n	=	round($n);	//	3

It	can	also	round	to	a	specified	number	of	decimal	places:
Click	here	to	view	code	image

$n	=	3.141592;

$n	=	round($n,	3);	//	3.142

The	number_format()	function	turns	a	number	into	the	more	commonly	written	version,	grouped	into
thousands	using	commas:
Click	here	to	view	code	image

$n	=	20943;

$n	=	number_format($n);	//	20,943

This	function	can	also	set	a	specified	number	of	decimal	points:
Click	here	to	view	code	image

$n	=	20943;

$n	=	number_format($n,	2);	//

20,943.00

To	practice	with	numbers,	let’s	write	a	mock-up	script	that	performs	the	calculations	you	might	use	in	an
e-commerce	shopping	cart.

To	use	numbers:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	numbers.php	(Script	1.8):
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Numbers</title>

</head>

<body>

<?php	#	Script	1.8	-	numbers.php

Script	1.8	The	numbers.php	 script	 performs	basic	mathematical	 calculations,	 like	 those	 used	 in	 an	 e-
commerce	application.



Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Numbers</title>

6			</head>

7			<body>

8			<?php	#	Script	1.8	-	numbers.php

9

10		//	Set	the	variables:

11		$quantity	=	30;	//	Buying	30	widgets.

12		$price	=	119.95;

13		$taxrate	=	.05;	//	5%	sales	tax.

14		

15		//	Calculate	the	total:

16		$total	=	$quantity	*	$price;

17		$total	=	$total	+	($total	*	$taxrate);	//	Calculate	and	add	the	tax.

18		

19		//	Format	the	total:

20		$total	=	number_format	($total,	2);

21		

22		//	Print	the	results:

23		echo	'<p>You	are	purchasing	<strong>'	.

				$quantity	.	'</strong>	widget(s)	at	a

				cost	of	<strong>$'	.	$price	.	'</strong>

				each.	With	tax,	the	total	comes	to

				<strong>$'	.	$total	.	'</strong>.</p>';

24		

25		?>

26		</body>

27		</html>

2.	Establish	the	requisite	variables:
Click	here	to	view	code	image

$quantity	=	30;

$price	=	119.95;

$taxrate	=	.05;

This	script	will	use	three	hard-coded	variables	on	which	calculations	will	be	made.	Later	in	the	book,
you’ll	 see	how	 these	values	can	be	dynamically	determined	 (i.e.,	by	user	 interaction	with	 an	HTML
form).

3.	Perform	the	calculations:
Click	here	to	view	code	image

$total	=	$quantity	*	$price;

$total	=	$total	+	($total	*

	$taxrate);

The	first	line	establishes	the	order	total	as	the	number	of	widgets	purchased	multiplied	by	the	price	of
each	widget.	The	second	line	then	adds	the	amount	of	tax	to	the	total	(calculated	by	multiplying	the	tax
rate	by	the	total).

4.	Format	the	total:
Click	here	to	view	code	image

$total	=	number_format($total,	2);



The	number_format()	 function	will	 group	 the	 total	 into	 thousands	 and	 round	 it	 to	 two	 decimal
places.	Applying	this	function	will	properly	format	the	calculated	value.

5.	Print	the	results:
Click	here	to	view	code	image

echo	'<p>You	are	purchasing

	<strong>'	.	$quantity	.

	'</strong>	widget(s)	at	a	cost

	of	<strong>$'	.	$price	.

	'</strong>	each.	With	tax,	the

	total	comes	to	<strong>$'	.

	$total	.	'</strong>.</p>';

The	last	step	in	the	script	is	to	print	out	the	results.	The	echo	statement	uses	both	single-quoted	text
and	 concatenated	 variables	 in	 order	 to	 print	 out	 the	 full	 combination	 of	 HTML,	 dollar	 signs,	 and
variable	values.	You’ll	see	an	alternative	approach	in	the	last	example	of	this	chapter.

6.	Complete	the	PHP	code	and	the	HTML	page:
?>

</body>

</html>

7.	Save	the	file	as	numbers.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	The	numbers	PHP	page	(Script	1.8)	performs	calculations	based	on	set	values.
8.	If	desired,	change	the	initial	three	variables	and	rerun	the	script	 .

	To	change	the	generated	web	page,	alter	any	or	all	of	the	three	variables	(compare	with	 ).

Tip
PHP	supports	a	maximum	integer	of	around	two	billion	on	most	platforms.	With	numbers	larger
than	that,	PHP	will	automatically	use	a	floating-point	type.



Tip
When	 dealing	 with	 arithmetic,	 the	 issue	 of	 precedence	 arises—the	 order	 in	 which	 complex
calculations	 are	 made.	While	 the	 PHP	manual	 and	 other	 sources	 tend	 to	 list	 the	 hierarchy	 of
precedence,	I	find	programming	to	be	safer	and	more	legible	when	I	group	clauses	in	parentheses
to	force	the	execution	order	(see	line	17	of	Script	1.8).

Tip
Computers	 are	 notoriously	 poor	 at	 dealing	 with	 decimals.	 For	 example,	 the	 number	 2.0	 may
actually	 be	 stored	 as	 1.99999.	Most	 of	 the	 time	 this	won’t	 be	 a	 problem,	 but	 in	 cases	where
mathematical	 precision	 is	 paramount,	 rely	 on	 integers,	 not	 decimals.	 The	 PHP	 manual	 has
information	 on	 this	 subject,	 as	 well	 as	 alternative	 functions	 for	 improving	 computational
accuracy.

Tip
Many	of	the	mathematical	operators	also	have	a	corresponding	assignment	operator,	 letting	you
create	a	shorthand	for	assigning	values.	The	line

Click	here	to	view	code	image

$total	=	$total	+	($total	*	$taxrate);

could	be	rewritten	as
Click	here	to	view	code	image

$total	+=	($total	*	$taxrate);

Tip
If	you	set	a	$price	value	without	using	 two	decimals	 (e.g.,	119.9	or	34),	you	would	want	 to
apply	number_format()	to	$price	before	printing	it.

Tip
New	in	PHP	7	is	the	intdiv()	function,	which	returns	the	integer	quotient	of	a	division:

echo	intdiv(7,	3);	//	2

Introducing	Constants
Constants,	 like	variables,	are	used	 to	 temporarily	store	a	value,	but	otherwise,	constants	and	 variables
differ	 in	many	ways.	For	 starters,	 to	 create	 a	 constant,	 you	use	 the	define()	 function	 instead	of	 the
assignment	operator	(=):
define('NAME',	value);

Notice	that,	as	a	rule	of	thumb,	constants	are	named	using	all	capitals,	although	this	is	not	required.	Most
importantly,	 constants	 do	 not	 use	 the	 initial	 dollar	 sign	 as	 variables	 do	 (because	 constants	 are	 not



variables).
A	constant	is	normally	assigned	a	scalar	value,	like	a	string	or	a	number:
Click	here	to	view	code	image

define('USERNAME',	'troutocity');

define('PI',	3.14);

And	unlike	variables,	a	constant’s	value	cannot	be	changed.
To	access	a	constant’s	value,	like	when	you	want	to	print	it,	you	cannot	put	the	constant	within	quotation
marks:
Click	here	to	view	code	image

echo	"Hello,	USERNAME";	//	Won't	work!

With	that	code,	PHP	literally	prints	Hello,	USERNAME	 	and	not	the	value	of	the	USERNAME	constant
because	there’s	no	indication	that	USERNAME	 is	anything	other	than	literal	text.	Instead,	either	print	the
constant	by	itself:

	Constants	cannot	be	placed	within	quoted	strings.
Click	here	to	view	code	image

echo	'Hello,	';

echo	USERNAME;

or	use	the	concatenation	operator:
echo	'Hello,	'	.	USERNAME;

PHP	 runs	 with	 several	 predefined	 constants,	 much	 like	 the	 predefined	 variables	 used	 earlier	 in	 the
chapter.	These	include	PHP_VERSION	(the	version	of	PHP	running)	and	PHP_OS	(the	operating	system
of	 the	 server).	 This	 next	 script	 will	 print	 those	 two	 values,	 along	 with	 the	 value	 of	 a	 user-defined
constant.

To	use	constants:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	constants.php	(Script	1.9).
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Constants</title>

</head>

<body>

<?php	#	Script	1.9	-	constants.php

Script	1.9	Constants	are	another	temporary	storage	tool	you	can	use	in	PHP,	distinct	from	variables.
Click	here	to	view	code	image



1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Constants</title>

6			</head>

7			<body>

8			<?php	#	Script	1.9	-	constants.php

9

10		//	Set	today's	date	as	a	constant:

11		define('TODAY',	'April	23,	2017');

12

13		//	Print	a	message,	using	predefined	constants	and	the	TODAY	constant:

14		echo	'<p>Today	is	'	.	TODAY	.	'.<br>This	server	is	running	version	<strong>'	.

				PHP_VERSION	.	'</strong>	of	PHP	on	the	<strong>'	.	PHP_OS	.	'</strong>	operating

				system.</p>';

15

16		?>

17		</body>

18		</html>

2.	Create	a	new	date	constant:
Click	here	to	view	code	image

define('TODAY',	'April	23,	2017');

An	admittedly	trivial	use	of	constants,	but	this	example	will	 illustrate	the	point.	In	Chapter	9,	“Using
PHP	with	MySQL,”	you’ll	see	how	to	use	constants	to	store	your	database	access	information.

3.	Print	out	the	date,	the	PHP	version,	and	operating	system	information:
Click	here	to	view	code	image

echo	'<p>Today	is	'	.	TODAY	.

'.<br>This	server	is	running

version	<strong>'	.	PHP_VERSION	.

'</strong>	of	PHP	on	the

<strong>'	.	PHP_OS	.	'</strong>

operating	system.</p>';

Since	constants	cannot	be	printed	within	quotation	marks,	use	the	concatenation	operator	in	the	echo
statement.

4.	Complete	the	PHP	code	and	the	HTML	page:
?>

</body>

</html>

5.	Save	the	file	as	constants.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	By	making	use	of	PHP’s	constants,	you	can	learn	more	about	your	PHP	setup.



Tip
If	possible,	run	this	script	on	another	PHP-enabled	server	 .

	Running	the	same	script	(refer	to	Script	1.9)	on	different	servers	garners	different	results.

Tip
The	operating	system	called	Darwin	 	is	the	technical	name	for	macOS.

Tip
In	Chapter	12,	“Cookies	and	Sessions,”	you’ll	learn	about	another	constant,	SID	 (which	stands
for	session	ID).

Tip
As	of	PHP	7,	you	can	now	create	an	array	constant.	You’ll	learn	more	about	arrays	in	Chapter	2,
“Programming	with	PHP.”

Single	vs.	Double	Quotation	Marks
In	PHP,	it’s	important	to	understand	how	single	quotation	marks	differ	from	double	quotation	marks.	With
echo	and	print,	or	when	assigning	values	to	strings,	you	can	use	either,	as	in	the	examples	used	so	far.
But	there	is	a	key	difference	between	the	two	types	of	quotation	marks	and	when	you	should	use	which.
You’ve	seen	this	difference	already,	but	it’s	an	important	enough	concept	to	merit	more	discussion.
In	PHP,	values	enclosed	within	single	quotation	marks	will	be	treated	literally,	whereas	 those	within
double	 quotation	marks	will	 be	 interpreted.	 In	 other	words,	 placing	 variables	 and	 special	 characters
(Table	1.2)	within	double	quotes	will	result	in	their	represented	values	printed,	not	their	literal	values.
For	example,	assume	that	you	have
$var	=	'test';



TABLE	1.2	Escape	Sequences
Code Meaning
\” Double	quotation	mark
\’ Single	quotation	mark
\\ Backslash
\n Newline
\r Carriage	return
\t Tab
\$ Dollar	sign

The	 code	echo	“var	is	equal	to	$var”;	 will	 print	 out	 var	 is	 equal	 to	 test,	 but	 the	 code
echo	‘var	is	equal	to	$var’;	will	print	out	var	is	equal	to	$var.	Using	an	escaped	dollar
sign,	 the	 code	 echo	 “\$var	 is	 equal	 to	 $var”;	 will	 print	 out	 $var	 is	 equal	 to	 test,
whereas	the	code	echo	‘\$var	is	equal	to	$var’;	will	print	out	\$var	is	equal	to	$var	 .

	How	single	and	double	quotation	marks	affect	what	gets	printed	by	PHP.
As	these	examples	should	illustrate,	double	quotation	marks	will	replace	a	variable’s	name	($var)	with
its	 value	 (test)	 and	 a	 special	 character’s	 code	 (\$)	with	 its	 represented	 value	 ($).	 Single	 quotes	will
always	display	exactly	what	you	type,	except	for	the	escaped	single	quote	(\’)	and	the	escaped	backslash
(\\),	which	are	printed	as	a	single	quotation	mark	and	a	single	backslash,	respectively.
As	another	example	of	how	the	two	quotation	marks	differ,	let’s	modify	the	numbers.php	script	as	an
experiment.

To	use	single	and	double	quotation	marks:
1.	Open	numbers.php	(refer	to	Script	1.8)	in	your	text	editor	or	IDE.
2.	Delete	the	existing	echo	statement	(Script	1.10).

Script	1.10	This,	 the	 final	 script	 in	 the	chapter,	demonstrates	 the	differences	between	using	single	 and
double	quotation	marks.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">



5						<title>Quotation	Marks</title>

6			</head>

7			<body>

8			<?php	#	Script	1.10	-	quotes.php

9

10		//	Set	the	variables:

11		$quantity	=	30;	//	Buying	30	widgets.

12		$price	=	119.95;

13		$taxrate	=	.05;	//	5%	sales	tax.

14		

15		//	Calculate	the	total.

16		$total	=	$quantity	*	$price;

17		$total	=	$total	+	($total	*	$taxrate);	//	Calculate	and	add	the	tax.

18		

19		//	Format	the	total:

20		$total	=	number_format	($total,	2);

21		

22		//	Print	the	results	using	double	quotation	marks:

23		echo	"<h3>Using	double	quotation

				marks:</h3>";

24		echo	"<p>You	are	purchasing

				<strong>$quantity</strong>	widget(s)

				at	a	cost	of	<strong>\$$price

				</strong>	each.	With	tax,	the	total

				comes	to	<strong>\$$total</strong>.

				</p>\n";

25		

26		//	Print	the	results	using	single	quotation	marks:

27		echo	'<h3>Using	single	quotation

				marks:</h3>';

28		echo	'<p>You	are	purchasing

				<strong>$quantity</strong>	widget(s)

				at	a	cost	of	<strong>\$$price

				</strong>	each.	With	tax,	the	total

				comes	to	<strong>\$$total</strong>.

				</p>\n';

29		

30		?>

31		</body>

32		</html>

3.	Print	a	caption	and	then	rewrite	the	original	echo	statement	using	double	quotation	marks:
Click	here	to	view	code	image

echo	"<h3>Using	double	quotation

marks:</h3>";

echo	"<p>You	are	purchasing

<strong>$quantity</strong>

widget(s)	at	a	cost	of

<strong>\$$price</strong>	each.

With	tax,	the	total	comes	to

<strong>\$$total</strong>.</p>\n";

In	the	original	script,	the	results	were	printed	using	single	quotation	marks	and	concatenation.	The	same
result	can	be	achieved	using	double	quotation	marks.	When	using	double	quotation	marks,	the	variables
can	be	placed	within	the	string.
There	 is	 one	 catch,	 though:	 trying	 to	 print	 a	 dollar	 amount	 as	 $12.34	 (where	 12.34	 comes	 from	 a
variable)	would	suggest	 that	you	would	code	$$var.	That	will	not	work	(for	complicated	reasons).
Instead,	escape	 the	 initial	dollar	 sign,	 resulting	 in	\$$var,	 as	you	 see	 twice	 in	 this	 code.	The	 first
dollar	sign	will	be	printed,	and	the	second	becomes	the	start	of	the	variable	name.



4.	Repeat	the	echo	statements,	this	time	using	single	quotation	marks:
Click	here	to	view	code	image

echo	'<h3>Using	single	quotation

	marks:</h3>';

echo	'<p>You	are	purchasing

	<strong>$quantity</strong>

	widget(s)	at	a	cost	of

	<strong>\$$price</strong>	each.

	With	tax,	the	total	comes	to

	<strong>\$$total</strong>.</p>\n';

This	echo	statement	is	used	to	highlight	the	difference	between	using	single	or	double	quotation	marks.
It	will	not	work	as	desired,	and	the	resulting	page	will	show	you	exactly	what	does	happen	instead.

5.	If	you	want,	change	the	page’s	title.
6.	Save	the	file	as	quotes.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	These	 results	 demonstrate	when	 and	how	you’d	use	one	 type	of	 quotation	mark	 as	 opposed	 to	 the
other.
7.	View	the	source	of	the	web	page	to	see	how	using	the	newline	character	(\n)	within	each	quotation
mark	type	also	differs.
You	should	see	that	when	you	place	the	newline	character	within	double	quotation	marks	it	creates	a
newline	in	the	HTML	source.	When	placed	within	single	quotation	marks,	the	literal	characters	\	and	n
are	printed	instead.



Tip
Because	PHP	will	attempt	to	find	variables	within	double	quotation	marks,	using	single	quotation
marks	 is	 theoretically	 faster.	 If	you	need	 to	print	 the	value	of	 a	variable,	 though,	you	must	use
double	quotation	marks.
Because	 valid	HTML	often	 includes	 a	 lot	 of	 double-quoted	 attributes,	 it’s	 often	 easiest	 to	 use
single	quotation	marks	when	printing	HTML	with	PHP:

echo	'<table	class="data">';

If	you	were	to	print	out	this	HTML	using	double	quotation	marks,	you	would	have	to	escape	all	of
the	double	quotation	marks	in	the	string:

echo	"<table	class=\"data\">";

Tip
In	newer	versions	of	PHP,	you	can	actually	use	$$price	and	$$total	without	preceding	them
with	 a	 backslash	 (thanks	 to	 some	 internal	 magic).	 In	 older	 versions	 of	 PHP,	 you	 cannot.	 To
guarantee	 reliable	 results,	 regardless	 of	 PHP	 version,	 I	 recommend	 using	 the	\$$var	 syntax
when	you	need	to	print	a	dollar	sign	immediately	followed	by	the	value	of	a	variable.

Tip
If	 you’re	 still	 unclear	 as	 to	 the	 difference	 between	 the	 types,	 use	 double	 quotation	marks	 and
you’re	less	likely	to	have	problems.

Basic	Debugging	Steps
Debugging	is	by	no	means	a	simple	concept	to	grasp,	and	unfortunately,	it’s	one	that	is	only	truly	mastered
by	doing.	The	next	50	pages	could	be	dedicated	to	the	subject	and	you’d	still	only	be	able	to	pick	up	a
fraction	of	the	debugging	skills	that	you’ll	eventually	acquire	and	need.
The	reason	I	introduce	debugging	in	this	somewhat	harrowing	way	is	that	it’s	important	not	to	enter	into
programming	with	delusions.	Sometimes	code	won’t	work	as	expected,	you’ll	inevitably	create	careless
errors,	and	some	days	you’ll	want	to	pull	your	hair	out,	even	when	using	a	comparatively	user-friendly
language	such	as	PHP.	In	short,	prepare	to	be	perplexed	and	frustrated	at	times.	I’ve	been	coding	in	PHP
since	1999,	and	occasionally	I	still	get	stuck	in	the	programming	muck.	But	debugging	is	a	very	important
skill	to	have,	and	one	that	you	will	eventually	pick	up	out	of	necessity	and	experience.	As	you	begin	your
PHP	programming	adventure,	I	can	offer	the	following	basic	but	concrete	debugging	tips.
Note	 that	 these	 are	 just	 some	general	 debugging	 techniques,	 specifically	 tailored	 to	 the	 beginning	PHP
programmer.	Chapter	8,	“Error	Handling	and	Debugging,”	goes	into	other	techniques	in	more	detail.

To	debug	a	PHP	script:
	Make	sure	you’re	always	running	PHP	scripts	through	a	URL!
This	 is	perhaps	 the	most	common	beginner’s	mistake.	PHP	code	must	be	 run	 through	 the	web	 server
application,	which	means	it	must	be	requested	via	http://something.	When	you	see	actual	PHP
code	instead	of	the	result	of	that	code’s	execution,	most	likely	you’re	not	running	the	PHP	script	through

http://something


a	URL.
	Know	what	version	of	PHP	you’re	running.
Some	 problems	 will	 arise	 from	 the	 version	 of	 PHP	 in	 use.	 Before	 you	 ever	 use	 any	 PHP-enabled
server,	 run	a	phpinfo.php	 script	 (see	Appendix	A)	or	 reference	 the	PHP_VERSION	 constant	 to
confirm	the	version	of	PHP	in	use.
	Make	sure	display_errors	is	on.
This	is	a	basic	PHP	configuration	setting	(also	discussed	in	Appendix	A).	You	can	confirm	this	setting
by	 executing	 the	 phpinfo()	 function	 (just	 use	 your	 browser	 to	 search	 for	 display_errors	 in	 the
resulting	page).	For	security	reasons,	PHP	may	not	be	set	to	display	the	errors	that	occur.	If	that’s	the
case,	you’ll	end	up	seeing	blank	pages	when	problems	occur.	To	debug	most	problems,	you’ll	need	to
see	 the	 errors,	 so	 turn	 this	 setting	 on	while	 you’re	 learning.	You’ll	 find	 instructions	 for	 doing	 so	 in
Appendix	A.
	Check	the	HTML	source	code.
Sometimes	 the	problem	is	hidden	 in	 the	HTML	source	of	 the	page.	 In	 fact,	 sometimes	 the	PHP	error
message	can	be	hidden	there!
	Trust	the	error	message.
Another	 very	 common	 beginner’s	 mistake	 is	 to	 not	 fully	 read	 or	 trust	 the	 error	 that	 PHP	 reports.
Although	an	error	message	can	often	be	cryptic	and	may	seem	meaningless,	it	can’t	be	ignored.	At	the
very	least,	PHP	is	normally	correct	as	to	the	line	on	which	the	problem	can	be	found.	And	if	you	need
to	relay	that	error	message	to	someone	else	(like	when	you’re	asking	me	for	help),	do	include	the	entire
error	message!
	Take	a	break!
So	many	of	 the	programming	problems	 I’ve	encountered	over	 the	years,	 and	 the	vast	majority	 of	 the
toughest	 ones,	 have	 been	 solved	 by	 stepping	 away	 from	 the	 computer	 for	 a	 while.	 It’s	 easy	 to	 get
frustrated	and	confused,	and	in	such	situations,	any	further	steps	you	take	are	likely	to	only	make	matters
worse.

Review	and	Pursue
Each	chapter	ends	with	a	“Review	and	Pursue”	section	where	you’ll	find	questions	regarding	the	material
just	covered	and	prompts	for	ways	to	expand	your	knowledge	and	experience	on	your	own.	If	you	have
any	problems	with	these	sections,	either	in	answering	the	questions	or	pursuing	your	own	endeavors,	turn
to	the	book’s	supporting	forum	(LarryUllman.com/forums/).

Review
	What	tags	are	used	to	surround	PHP	code?
	What	extension	should	a	PHP	file	have?
	What	does	a	page’s	encoding	refer	to?	What	impact	does	the	encoding	have	on	the	page?
	What	PHP	functions,	or	language	constructs,	can	you	use	to	send	data	to	the	browser?
	How	does	using	single	versus	double	quotation	marks	differ	in	creating	or	printing	strings?
	What	does	it	mean	to	escape	a	character	in	a	string?
	What	are	the	three	comment	syntaxes	in	PHP?	Which	one	can	be	used	over	multiple	lines?
	 What	 character	 do	 all	 variable	 names	 begin	 with?	 What	 characters	 can	 come	 next?	 What	 other

http://LarryUllman.com/forums/


characters	can	be	used	in	a	variable’s	name?
	Are	variable	names	case-sensitive	or	case-insensitive?
	What	is	the	assignment	operator?
	How	do	you	create	a	string	variable?
	What	is	the	concatenation	operator?	What	is	the	concatenation	assignment	operator?
	How	are	constants	defined	and	used?

Pursue
	If	you	don’t	already	know—for	certain—what	version	of	PHP	you’re	running,	check	now.
	Look	up	one	of	the	mentioned	string	functions	in	the	PHP	manual.	Then	check	out	some	of	 the	other
available	string	functions	listed	therein.
	Look	up	one	of	the	mentioned	number	functions	in	the	PHP	manual.	Then	check	out	some	of	the	other
available	number	functions	listed	therein.
	Search	the	PHP	manual	for	the	$_SERVER	variable	to	see	what	other	information	it	contains.
	Create	a	new	script,	from	scratch,	that	defines	and	displays	the	values	of	some	string	variables.	Use
double	 quotation	 marks	 in	 the	 echo	 or	 print	 statement	 that	 outputs	 the	 values.	 For	 added
complexity,	include	some	HTML	in	the	output.	Then	rewrite	the	script	so	that	it	uses	single	quotation
marks	and	concatenation	instead	of	double	quotation	marks.
	Create	a	new	script,	from	scratch,	that	defines,	manipulates,	and	displays	the	values	of	some	numeric
variables.



























































































































2.	Programming	with	PHP

In	This	Chapter
Creating	an	HTML	Form
Handling	an	HTML	Form
Conditionals	and	Operators
Validating	Form	Data
Introducing	Arrays
For	and	While	Loops
Review	and	Pursue

Now	that	you	have	the	fundamentals	of	the	PHP	scripting	language	down,	it’s	time	to	build	on	those	basics
and	 start	 truly	 programming.	 In	 this	 chapter	 you’ll	 begin	 creating	 more	 elaborate	 scripts	 while	 still
learning	some	of	the	standard	constructs,	functions,	and	syntax	of	the	language.
You’ll	 start	 by	 creating	 an	HTML	 form	 and	 then	 learn	 how	 you	 can	 use	 PHP	 to	 handle	 the	 submitted
values.	From	there,	the	chapter	covers	conditionals	and	the	remaining	operators	(Chapter	1,	“Introduction
to	PHP,”	presented	the	assignment,	concatenation,	and	mathematical	operators),	arrays	(another	variable
type),	and	one	last	language	construct,	loops.

Creating	an	HTML	Form
Handling	 an	 HTML	 form	with	 PHP	 is	 an	 important	 process	 in	 any	 dynamic	 web	 site.	 Two	 steps	 are
involved:	 first	you	create	 the	HTML	form	itself,	and	 then	you	create	 the	corresponding	PHP	script	 that
will	receive	and	process	the	form	data.
It	is	outside	the	realm	of	this	book	to	go	into	HTML	forms	in	any	detail,	but	I	will	lead	you	through	one
quick	example	so	 that	 it	may	be	used	 throughout	 the	chapter.	 If	you’re	unfamiliar	with	 the	basics	of	 an
HTML	form,	including	the	various	types	of	elements,	see	an	HTML	resource	for	more	information.
An	HTML	form	is	created	using	the	form	tags	and	various	elements	for	taking	input.	The	form	tags	look
like
Click	here	to	view	code	image

<form	action="script.php"

	method="post">

</form>

In	terms	of	PHP,	the	most	important	attribute	of	your	form	tag	is	action,	which	dictates	to	which	page
the	 form	 data	will	 be	 sent.	 The	 second	 attribute—method—has	 its	 own	 issues	 (see	 the	 “Choosing	 a
Method”	sidebar),	but	post	is	the	value	you’ll	use	most	frequently.
The	 different	 inputs—be	 they	 text	 boxes,	 radio	 buttons,	 select	 menus,	 check	 boxes,	 etc.—are	 placed
within	 the	opening	and	closing	form	 tags.	As	you’ll	 see	 in	 the	next	 section,	what	kinds	of	 inputs	your
form	has	makes	little	difference	to	the	PHP	script	handling	it.	You	should,	however,	pay	attention	to	 the
names	you	give	your	form	inputs—they’ll	be	of	critical	importance	when	it	comes	to	your	PHP	code.



Choosing	a	Method
The	method	attribute	of	a	form	dictates	how	the	data	is	sent	to	the	handling	page.	The	two
options—get	and	post—refer	to	the	HTTP	(Hypertext	Transfer	Protocol)	method	to	be	used.
The	GET	method	 sends	 the	 submitted	 data	 to	 the	 receiving	 page	 as	 a	 series	 of	 name-value
pairs	appended	to	the	URL—for	example,

Click	here	to	view	code	image

http://www.example.com/script.php

	?name=Homer&gender=M&age=35

The	benefit	of	using	the	GET	method	is	that	the	resulting	page	can	be	bookmarked	in	the	user’s
browser	since	it’s	a	complete	URL.	For	that	matter,	you	can	also	click	Back	in	your	browser
to	return	to	a	GET	page,	or	reload	it	without	problems,	none	of	which	is	true	for	POST.	But
there	is	a	limit	in	how	much	data	can	be	transmitted	via	GET,	and	this	method	is	less	secure
since	the	data	is	visible.
Generally	speaking,	GET	is	used	for	requesting	information,	like	a	particular	record	from	a
database	or	the	results	of	a	search	(searches	almost	always	use	GET).	The	POST	method	is
used	when	 an	 action	 is	 expected:	 the	 updating	 of	 a	 database	 record	 or	 the	 sending	 of	 an
email.	 For	 these	 reasons	 I	 will	 primarily	 use	 POST	 throughout	 this	 book,	 with	 noted
exceptions.

To	create	an	HTML	form:
1.	Begin	a	new	HTML	document	in	your	text	editor	or	IDE,	to	be	named	form.html	(Script	2.1):
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Simple	HTML	Form</title>

		<style	type="text/css">

		label	{

					font-weight:	bold;

					color:	#300ACC;

		}

		</style>

</head>

<body>

<!--	Script	2.1	-	form.html	-->

<form	action="handle_form.php"

	method="post">

Script	2.1	This	simple	HTML	form	will	be	used	for	several	of	the	examples	in	this	chapter.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4			<meta	charset="utf-8">

5			<title>Simple	HTML	Form</title>

6			<style	type="text/css">

7			label	{

8						font-weight:	bold;



9						color:	#300ACC;

10									}

11		</style>

12		</head>

13		<body>

14		<!--	Script	2.1	-	form.html	-->

15

16		<form	action="handle_form.php"	method="post">

17

18		<fieldset><legend>Enter	your	information	in	the	form	below:</legend>

19

20		<p><label>Name:	<input	type="text"	name="name"	size="20"	maxlength="40"></label></p>

21

22		<p><label>Email	Address:	<input	type="email"	name="email"	size="40"	maxlength="60"></label></p>

23

24					<p><label	for="gender">Gender:	</label><input	type="radio"	name="gender"	value="M">	Male

							<input	type="radio"	name="gender"	value="F">	Female</p>

25

26					<p><label>Age:

27					<select	name="age">

28								<option	value="0-29">Under	30</option>

29								<option	value="30-60">Between	30	and	60</option>

30								<option	value="60+">Over	60</option>

31					</select></label></p>

32

33					<p><label>Comments:	<textarea	name="comments"	rows="3"	cols="40"></textarea></label></p>

34

35					</fieldset>

36

37					<p	align="center"><input	type="submit"	name="submit"	value="Submit	My	Information"></p>

38

39		</form>

40

41		</body>

42		</html>

The	document	uses	the	same	basic	syntax	for	an	HTML	page	as	in	the	previous	chapter.	I	have	added
some	 inline	 CSS	 (Cascading	 Style	 Sheets)	 in	 order	 to	 style	 the	 form	 slightly	 (specifically,	 making
label	elements	bold	and	blue).
CSS	is	the	preferred	way	to	handle	many	formatting	and	layout	issues	in	an	HTML	page.	You’ll	see	a
little	 bit	 of	 CSS	 here	 and	 there	 in	 this	 book;	 if	 you’re	 not	 familiar	 with	 the	 subject,	 check	 out	 a
dedicated	CSS	reference.
Finally,	an	HTML	comment	indicates	the	file’s	name	and	number.

2.	Add	the	initial	form	tag:
Click	here	to	view	code	image

<form	action="handle_form.php"

	method="post">

Since	 the	action	 attribute	 dictates	 to	 which	 script	 the	 form	 data	 will	 go,	 you	 should	 give	 it	 an
appropriate	name	(handle_form	to	correspond	with	this	page:	form.html)	and	the	.php	extension
(since	a	PHP	script	will	handle	this	form’s	data).

3.	Begin	the	HTML	form:
Click	here	to	view	code	image

<fieldset><legend>Enter	your

	information	in	the	form

	below:</legend>



I’m	using	the	and	HTML	tags	because	they	group	the	form	elements	nicely	(they	add	a	box	around	the
form	with	a	title	at	the	top).	This	isn’t	pertinent	to	the	form	itself,	though.

4.	Add	a	text	and	an	email	input:
Click	here	to	view	code	image

<p><label>Name:	<input	type="text"

	name="name"	size="20"

	maxlength="40"></label></p>

<p><label>Email	Address:

	<input	type="email"	name="email"

	size="40"	maxlength="60">

	</label></p>

These	are	just	simple	text	inputs,	allowing	users	to	enter	their	name	and	email	address	 .	The	label
tags	just	tie	each	textual	label	to	the	associated	element.

Two	form	inputs.
5.	Add	a	pair	of	radio	buttons:
Click	here	to	view	code	image

<p><label	for="gender">Gender:

	</label><input	type="radio"

	name="gender"	value="M">	Male

	<input	type="radio"

	name="gender"	value="F">

	Female</p>

The	radio	buttons	 	both	have	the	same	name,	meaning	that	only	one	of	the	two	can	be	selected.	They
have	different	values,	though.

If	multiple	radio	buttons	have	the	same	name	value,	only	one	can	be	selected	by	the	user.
6.	Add	a	pull-down	menu:
Click	here	to	view	code	image

<p><label>Age:

<select	name="age">

		<option	value="0-29">Under	30

		 	</option>

		<option	value="30-60">Between	30

		 	and	60</option>

		<option	value="60+">Over	60

		 	</option>

</select></label></p>

The	select	tag	starts	the	pull-down	menu,	and	then	each	option	tag	will	create	another	line	in	the
list	of	choices	 .



The	pull-down	menu	offers	three	options,	of	which	only	one	can	be	selected	(in	this	example).
7.	Add	a	text	box	for	comments:
Click	here	to	view	code	image

<p><label>Comments:	<textarea

	name="comments"	rows="3"

	cols="40"></textarea></label></p>

Textareas	are	different	from	text	inputs;	they	are	presented	as	a	box	 ,	not	as	a	single	line.	They	allow
the	user	to	type	much	more	information	and	are	handy	for	taking	user	comments.

The	textarea	form	element	type	allows	for	lots	and	lots	of	text.
8.	Complete	the	form:
Click	here	to	view	code	image

</fieldset>

<p	align="center"><input

	type="submit"	name="submit"

	value="Submit	My	Information">

	</p>

The	 first	 tag	closes	 the	fieldset	 that	was	opened	 in	Step	3.	Then	 a	 submit	 button	 is	 created	 and
centered	using	a	p	tag.	Finally,	the	form	is	closed.

9.	Complete	the	HTML	page:
</body>

</html>

10.	Save	the	file	as	form.html,	place	it	in	your	web	directory,	and	view	it	in	your	browser	 .

The	complete	form,	which	requests	some	basic	information	from	the	user.



Tip
Since	 this	page	contains	 just	HTML,	 it	uses	an	.html	extension.	 It	could	 instead	use	a	.php
extension	without	harm	(since	code	outside	of	the	PHP	tags	is	treated	as	HTML).

Handling	an	HTML	Form
Now	that	the	HTML	form	has	been	created,	it’s	time	to	write	a	bare-bones	PHP	script	to	handle	it.	To	say
that	 this	 script	will	 be	handling	 the	 form	means	 that	 the	PHP	page	will	 do	 something	with	 the	 data	 it
receives	(which	is	the	data	the	user	entered	in	the	form).	In	this	chapter,	the	scripts	will	simply	print	 the
data	back	 to	 the	browser.	 In	 later	examples,	 form	data	will	be	stored	 in	a	MySQL	database,	 compared
against	previously	stored	values,	sent	in	emails,	and	more.
The	beauty	of	PHP—and	what	makes	 it	so	easy	 to	 learn	and	use—is	how	well	 it	 interacts	with	HTML
forms.	PHP	scripts	store	the	received	information	in	special	variables.	For	example,	say	you	have	a	form
with	an	input	defined	like	so:
Click	here	to	view	code	image

<input	type="text"	name="city">

Whatever	 the	 user	 types	 into	 that	 input	 will	 be	 accessible	 via	 a	 PHP	 variable	 named
$_REQUEST[‘city’].	It	is	very	important	that	the	spelling	and	capitalization	match	exactly!	PHP	is
case-sensitive	 when	 it	 comes	 to	 variable	 names,	 so	 $_REQUEST[‘city’]	 will	 work,	 but
$_REQUEST[‘city’]	and	$_REQUEST[‘city’]	will	have	no	value.
This	next	example	will	be	a	PHP	script	 that	handles	 the	already-created	HTML	form	(Script	2.1).	This
script	 will	 assign	 the	 form	 data	 to	 new	 variables	 (to	 be	 used	 as	 shorthand,	 just	 like	 in	 Script	 1.5,
predefined.php).	The	script	will	then	print	the	received	values.

To	handle	an	HTML	form:
1.	Begin	a	new	PHP	document	 in	your	 text	editor	or	 IDE,	 to	be	named	handle_form.php,	 starting
with	the	HTML	(Script	2.2):

Click	here	to	view	code	image
<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Form	Feedback</title>

</head>

<body>

Script	2.2	This	script	receives	and	prints	out	the	information	entered	into	an	HTML	form	(Script	2.1).
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Form	Feedback</title>

6			</head>

7			<body>

8			<?php	#	Script	2.2	-	handle_form.php

9



10		//	Create	a	shorthand	for	the	form	data:

11		$name	=	$_REQUEST['name'];

12		$email	=	$_REQUEST['email'];

13		$comments	=	$_REQUEST['comments'];

14		/*	Not	used:

15		$_REQUEST['age']

16		$_REQUEST['gender']

17		$_REQUEST['submit']

18		*/

19

20		//	Print	the	submitted	information:

21		echo	"<p>Thank	you,	<strong>

				$name</strong>,	for	the	following

				comments:</p>

22		<pre>$comments</pre>

23		<p>We	will	reply	to	you	at	<em>$email

				</em>.</p>\n";

24

25		?>

26		</body>

27		</html>

2.	Add	the	opening	PHP	tag	and	create	a	shorthand	version	of	the	form	data	variables:
Click	here	to	view	code	image

<?php	#	Script	2.2	-	handle_form.php

$name	=	$_REQUEST['name'];

$email	=	$_REQUEST['email'];

$comments	=	$_REQUEST['comments'];

Following	 the	 rules	outlined	before,	 the	data	entered	 into	 the	 first	 form	input,	which	 is	 called	name,
will	be	accessible	through	the	variable	$_REQUEST[‘name’]	(Table	2.1).	The	data	entered	into	the
email	 form	 input,	 which	 has	 a	 name	 value	 of	 email,	 will	 be	 accessible	 through
$_REQUEST[‘email’].	 The	 same	 applies	 to	 the	 comments	 data.	 Again,	 the	 spelling	 and
capitalization	of	your	variables	here	must	exactly	match	the	corresponding	name	values	in	the	HTML
form.



TABLE	2.1 Form	Elements	to	PHP	Variables

Element	Name Variable	Name

name $_REQUEST[‘name	‘]

email $_REQUEST[‘email	‘]

comments $_REQUEST[‘comments	‘]

age $_REQUEST[‘age	‘]

gender $_REQUEST[‘gender	‘]

submit $_REQUEST[‘submit’]

At	this	point,	you	won’t	make	use	of	the	age,	gender,	and	submit	form	elements.
3.	Print	out	the	received	name,	email,	and	comments	values:
Click	here	to	view	code	image

echo	"<p>Thank	you,	<strong>

	$name</strong>,	for	the

	following	comments:</p>

<pre>$comments</pre>

<p>We	will	reply	to	you	at

	<em>$email</em>.</p>\n";

The	submitted	values	are	simply	printed	out	using	the	echo	statement,	double	quotation	marks,	and	a
wee	bit	of	HTML	formatting.

4.	Complete	the	page:
?>

</body>

</html>

5.	Save	the	file	as	handle_form.php	and	place	it	in	the	same	web	directory	as	form.html.
6.	 Test	 both	 documents	 in	 your	 browser	 by	 loading	 form.html	 through	 a	 URL
(http://something)	and	then	filling	out	 	and	submitting	the	form	 .

http://something


To	test	handle_form.php,	you	must	load	the	form	through	a	URL,	then	fill	it	out	and	submit	it.

The	script	should	display	results	like	this.
Because	the	PHP	script	must	be	run	through	a	URL	(see	Chapter	1),	the	form	must	also	be	run	through	a
URL.	Otherwise,	when	you	go	to	submit	the	form,	you’ll	see	PHP	code	 	instead	of	the	proper	result	

.



If	you	see	 the	PHP	code	after	 submitting	 the	 form,	 the	problem	 is	 likely	 that	you	did	not	 access	 the
form	through	a	URL.

Tip
$_REQUEST	is	a	special	variable	type,	known	as	a	superglobal.	It	stores	all	of	the	data	sent	to	a
PHP	 page	 through	 either	 the	 GET	 or	 POST	 method,	 as	 well	 as	 data	 accessible	 in	 cookies.
Superglobals	will	be	discussed	later	in	the	chapter.

Tip
If	you	have	any	problems	with	this	script,	apply	the	debugging	techniques	suggested	in	Chapter	1.
If	you	still	can’t	solve	the	problem,	check	out	the	extended	debugging	techniques	listed	in	Chapter
8,	“Error	Handling	and	Debugging.”	If	you’re	still	stymied,	 turn	to	the	book’s	supporting	forum
for	assistance	(LarryUllman.com/forums/).

Tip
If	the	PHP	script	shows	blank	spaces	where	a	variable’s	value	should	have	been	printed,	it	means
that	the	variable	has	no	value.	The	two	most	likely	causes	are	1)	you	failed	to	enter	a	value	in	the
form,	or	2)	you	misspelled	or	mis-capitalized	the	variable’s	name.

http://LarryUllman.com/forums/


Tip
If	you	see	any	Undefined	variable:	variablename	errors,	this	is	because	the	variables	you	refer	to
have	no	value	and	PHP	is	set	on	the	highest	level	of	error	reporting.	The	previous	tip	provides
suggestions	as	to	why	a	variable	wouldn’t	have	a	value.	Chapter	8	discusses	error	 reporting	 in
detail.

Tip
To	see	how	PHP	handles	the	different	form	input	types,	print	out	the	$_REQUEST[‘age’]	and
$_REQUEST[‘gender’]	values	 .

The	values	of	gender	and	age	correspond	to	those	defined	in	the	form’s	HTML.

Conditionals	and	Operators
PHP’s	three	primary	terms	for	creating	conditionals	are	if,	else,	and	elseif.
Every	conditional	begins	with	an	if	clause:
Click	here	to	view	code	image

if	(condition)	{

		//	Do	something!

}

An	if	can	also	have	an	else	clause:
Click	here	to	view	code	image

if	(condition)	{

}	else	{

		//	Do	something	else!

}		//	Do	something!

An	elseif	clause	allows	you	to	add	more	conditions:
Click	here	to	view	code	image

if	(condition1)	{

		//	Do	something!

}	elseif	(condition2)	{

		//	Do	something	else!



}	else	{

		//	Do	something	different!

}

If	a	condition	is	true,	the	code	in	the	following	braces	({})	will	be	executed.	If	not,	PHP	will	continue	on.
If	there	is	a	second	condition	(after	an	elseif),	that	will	be	checked	for	truth.	The	process	will	continue
—you	 can	 use	 as	 many	 elseif	 clauses	 as	 you	 want—until	 PHP	 hits	 an	 else,	 which	 will	 be
automatically	executed	at	that	point,	or	until	the	conditional	terminates	without	an	else.	For	this	reason,
it’s	important	that	the	else	always	come	last	and	be	treated	as	the	default	action	unless	specific	criteria
—the	conditions—are	met.
A	condition	can	be	true	in	PHP	for	any	number	of	reasons.	To	start,	these	are	true	conditions:

	$var,	if	$var	has	a	value	other	than	0,	an	empty	string,	FALSE,	or	NULL
	isset($var),	if	$var	has	any	value	other	than	NULL,	including	0,	FALSE,	or	an	empty	string
	TRUE,	true,	True,	etc.

In	 the	 second	example,	 a	new	 function,	isset(),	 is	 introduced.	This	 function	 checks	 if	 a	 variable	 is
“set,”	 meaning	 that	 it	 has	 a	 value	 other	 than	 NULL	 (as	 a	 reminder,	 NULL	 is	 a	 special	 type	 in	 PHP,
representing	 no	 set	 value).	 You	 can	 also	 use	 the	 comparative	 and	 logical	 operators	 (Table	 2.2)	 in
conjunction	with	parentheses	to	make	more	complicated	expressions.

TABLE	2.2	Comparative	and	Logical	Operators
Symbol Meaning Type Example
== is	equal	to comparison $x	=	=	$y

!= is	not	equal	to comparison $x	!=	$y

< less	than comparison $x	<	$y

> greater	than comparison $x	>	$y

<= less	than	or	equal	to comparison $x	<=	$y

>= greater	than	or	equal	to comparison $x	>=	$y

! not logical !$x

&& and logical $x	&&	$y

and and logical $x	and	$y

|| or logical $x	||	$y

or or logical $x	or	$y

xor exclusive	or logical $x	xor	$y

To	use	conditionals:
1.	Open	handle_form.php	(refer	to	Script	2.2)	in	your	text	editor	or	IDE,	if	it	is	not	already.
2.	Before	the	echo	statement,	add	a	conditional	that	creates	a	$gender	variable	(Script	2.3):
Click	here	to	view	code	image

if	(isset($_REQUEST['gender']))	{

		$gender	=	$_REQUEST['gender'];

}	else	{

		$gender	=	NULL;

}



Script	2.3	In	this	remade	version	of	handle_form.php,	two	conditionals	are	used	to	validate	the	gender
radio	buttons.
Click	here	to	view	code	image

1				<!doctype	html>

2				<html	lang="en">

3				<head>

4							<meta	charset="utf-8">

5							<title>Form	Feedback</title>

6				</head>

7				<body>

8				<?php	#	Script	2.3	-	handle_form.php	#2

9

10			//	Create	a	shorthand	for	the	form	data:

11			$name	=	$_REQUEST['name'];

12			$email	=	$_REQUEST['email'];

13			$comments	=	$_REQUEST['comments'];

14

15			//	Create	the	$gender	variable:

16			if	(isset($_REQUEST['gender']))	{

17						$gender	=	$_REQUEST['gender'];

18			}	else	{

19						$gender	=	NULL;

20			}

21

22			//	Print	the	submitted	information:

23			echo	"<p>Thank	you,	<strong>$name

					</strong>,	for	the	following	comments:

					</p>

24			<pre>$comments</pre>

25			<p>We	will	reply	to	you	at	<em>$email

					</em>.</p>\n";

26

27			//	Print	a	message	based	upon	the	gender

					value:

28			if	($gender	==	'M')	{

29						echo	'<p><strong>Good	day,

								Sir!</strong></p>';

30			}	elseif	($gender	==	'F')	{

31						echo	'<p><strong>Good	day,

32			Madam!</strong></p>';

33			}	else	{	//	No	gender	selected.

34						echo	'<p><strong>You	forgot	to

								enter	your	gender!</strong></p>';

35			}

36

37			?>

38			</body>

39			</html>

This	is	a	simple	and	effective	way	to	validate	a	form	input	(particularly	a	radio	button,	check	box,	or
select).	 If	 the	 user	 checks	 either	 gender	 radio	 button,	 then	$_REQUEST[‘gender’]	 will	 have	 a
value,	meaning	 that	 the	 condition	isset($_REQUEST[‘gender’])	 is	 true.	 In	 such	 a	 case,	 the
shorthand	version	of	this	variable—$gender—is	assigned	the	value	of	$_REQUEST[‘gender’],
repeating	the	technique	used	with	$name,	$email,	and	$comments.	If	the	user	does	not	click	one	of
the	 radio	 buttons,	 then	 this	 condition	 is	 not	 true,	 and	 $gender	 is	 assigned	 the	 value	 of	 NULL,
indicating	that	it	has	no	value.	Notice	that	NULL	is	not	in	quotes.

3.	After	the	echo	statement,	add	another	conditional	that	prints	a	message	based	on	$gender’s	value:



Click	here	to	view	code	image
if	($gender	==	'M')	{

		echo	'<p><strong>Good	day,

		 	Sir!</strong></p>';

}	elseif	($gender	==	'F')	{

		echo	'<p><strong>Good	day,

		 	Madam!</strong></p>';

}	else	{	//	No	gender	selected.

		echo	'<p><strong>You	forgot	to

		 	enter	your	gender!</strong>

		 	</p>';

}

This	 if-elseif-else	 conditional	 looks	 at	 the	 value	 of	 the	 $gender	 variable	 and	 prints	 a
different	message	for	each	possibility.	It’s	very	important	to	remember	that	the	double	equals	sign	(==)
means	equals,	whereas	a	single	equals	sign	(=)	assigns	a	value.	The	distinction	is	 important	because
the	condition	$gender	==	‘M’	may	or	may	not	be	true,	but	$gender	=	‘M’	will	always	be	true.
Also,	the	values	used	here—M	and	F—must	be	exactly	the	same	as	those	in	the	HTML	form	(the	values
for	each	radio	button).	Equality	is	a	case-sensitive	comparison	with	strings,	so	m	will	not	equal	M.

4.	Save	the	file,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 ,	 ,	and	 .

The	gender-based	conditional	prints	a	different	message	for	each	choice	in	the	form.

The	same	script	will	produce	different	salutations	(compare	with	 )	when	the	gender	value	changes.



If	no	gender	was	selected,	a	message	is	printed	indicating	the	oversight	to	the	user.

Tip
Although	PHP	has	no	strict	formatting	rules,	it’s	standard	procedure	and	good	programming	form
to	make	it	clear	when	one	block	of	code	is	a	subset	of	a	conditional.	Indenting	the	block	 is	 the
norm.

Tip
You	can—and	frequently	will—nest	conditionals	(place	one	inside	another).

Tip
The	first	conditional	in	this	script	(the	isset())	is	a	perfect	example	of	how	to	use	a	default
value.	The	assumption	(the	else)	is	that	$gender	has	a	NULL	value	unless	the	one	condition
is	met:	that	$_REQUEST[‘gender’]	is	set.

Tip
The	braces	used	 to	 indicate	 the	beginning	and	end	of	a	conditional	are	not	 required	 if	 you	 are
executing	only	one	statement.	I	recommend	that	you	almost	always	use	them,	though,	as	a	matter
of	clarity.

Tip
Both	and	and	or	have	 two	representative	operators,	with	slight	 technical	differences	between
them.	For	no	particular	reason,	I	tend	to	use	&&	and	||	instead	of	and	and	or.

Tip
XOR	is	called	the	exclusive	or	operator.	The	conditional	$x	xor	$y	is	true	if	$x	is	true	or	if
$y	is	true,	but	not	both.



Switch
PHP	has	another	type	of	conditional,	called	the	switch,	best	used	in	place	of	a	 long	if-
elseif-else	conditional.	The	syntax	of	switch	is

Click	here	to	view	code	image

switch	($variable)	{

		case	'value1':

				//	Do	this.

				break;

		case	'value2':

				//	Do	this	instead.

				break;

default:

		//	Do	this	then.

		break;

}

The	switch	conditional	compares	the	value	of	$variable	to	the	different	cases.	When	it
finds	a	match,	the	following	code	is	executed,	up	until	the	break.	If	no	match	is	found,	the
default	is	executed,	assuming	it	exists	(it’s	optional).	The	switch	conditional	is	limited
in	its	usage	in	that	it	can	only	check	a	variable’s	value	for	equality	against	certain	cases;	more
complex	conditions	cannot	be	easily	checked.

Validating	Form	Data
A	critical	concept	related	to	handling	HTML	forms	is	that	of	validating	form	data.	In	terms	of	both	error
management	and	security,	you	should	absolutely	never	trust	the	data	being	submitted	by	an	HTML	form.
Whether	erroneous	data	is	purposefully	malicious	or	just	unintentionally	inappropriate,	it’s	up	to	you—the
web	architect—to	test	it	against	expectations.
Validating	 form	 data	 requires	 the	 use	 of	 conditionals	 and	 any	 number	 of	 functions,	 operators,	 and
expressions.	 One	 standard	 function	 to	 be	 used	 is	 isset(),	 which	 tests	 if	 a	 variable	 has	 a	 value
(including	0,	FALSE,	or	an	empty	string,	but	not	NULL).	You	 saw	an	example	of	 this	 in	 the	preceding
script.
One	issue	with	the	isset()	function	is	that	an	empty	string	tests	as	true,	meaning	that	isset()	is	not
an	effective	way	to	validate	 text	 inputs	and	text	boxes	from	an	HTML	form.	To	check	 that	a	user	 typed
something	into	textual	elements,	you	can	use	the	empty()	function.	It	checks	if	a	variable	has	an	empty
value:	an	empty	string,	0,	NULL,	or	FALSE.
The	 first	 aim	of	 form	validation	 is	 seeing	 if	 something	was	 entered	or	 selected	 in	 form	elements.	The
second	goal	is	to	ensure	that	submitted	data	is	of	the	right	type	(numeric,	string,	etc.),	of	the	right	format
(like	an	email	address),	or	a	 specific	acceptable	value	 (like	$gender	being	equal	 to	either	M	 or	F).
Since	handling	forms	is	a	main	use	of	PHP,	validating	form	data	is	a	point	that	will	be	reemphasized	time
and	 again	 in	 subsequent	 chapters.	 But	 first,	 let’s	 create	 a	 new	 handle_form.php	 to	 make	 sure
variables	have	values	before	they’re	referenced	(there	will	be	enough	changes	in	this	version	that	simply
updating	Script	2.3	doesn’t	make	sense).



The	NULL	Coalescing	Operator
New	in	PHP	7	is	 the	NULL	coalescing	operator	(??),	which	simplifies	checking	whether	a
variable	is	set.	Take	this	common	construct	(from	Script	2.3):

Click	here	to	view	code	image

if	(isset($_REQUEST['gender']))	{

			$gender	=	$_REQUEST['gender'];

}	else	{

			$gender	=	NULL;

}

In	PHP	7,	this	could	be	more	succinctly	written	as
Click	here	to	view	code	image

$gender	=	$_REQUEST['gender']	??	NULL;

The	meaning	 is	 the	 same:	 if	$_REQUEST[‘gender’]	 has	 a	 value,	 assign	 that	 value	 to
$gender;	otherwise,	assign	NULL	to	$gender.
Because	PHP	7	 hasn’t	 been	widely	 adopted	 yet,	 the	 book’s	 scripts	won’t	make	 use	 of	 this
operator,	but	feel	free	to	do	so	if	you	are	running	PHP	7	or	higher.

To	validate	your	forms:
1.	Begin	a	new	PHP	script	in	your	text	editor	or	IDE,	to	be	named	handle_form.php,	starting	with
the	initial	HTML	(Script	2.4):

Click	here	to	view	code	image
<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Form	Feedback</title>

</head>

<body>

Script	 2.4	 Validating	 HTML	 form	 data	 before	 you	 use	 it	 is	 critical	 to	 web	 security	 and	 achieving
professional	results.	Here,	conditionals	check	that	every	referenced	form	element	has	a	value.
Click	here	to	view	code	image

1				<!doctype	html>

2				<html	lang="en">

3				<head>

4							<meta	charset="utf-8">

5							<title>Form	Feedback</title>

6							<style	type="text/css>

7							.error	{

8										font-weight:	bold;

9										color:	#C00;

10						}

11						</style>

12			</head>

13			<body>

14			<?php	#	Script	2.4	-	handle_form.php	#3

15

16			//	Validate	the	name:

17			if	(!empty($_REQUEST['name']))	{



18						$name	=	$_REQUEST['name'];

19			}	else	{

20						$name	=	NULL;

21						echo	'<p	class="error">You	forgot	to

								enter	your	name!</p>';

22			}

23

24			//	Validate	the	email:

25			if	(!empty($_REQUEST['email']))	{

26						$email	=	$_REQUEST['email'];

27			}	else	{

28						$email	=	NULL;

29						echo	'<p	class="error">You	forgot	to

								enter	your	email	address!</p>';

30			}

31

32			//	Validate	the	comments:

33			if	(!empty($_REQUEST['comments']))	{

34						$comments	=	$_REQUEST['comments'];

35			}	else	{

36						$comments	=	NULL;

37						echo	'<p	class="error">You	forgot	to

								enter	your	comments!</p>';

38			}

39

40			//	Validate	the	gender:

41			if	(isset($_REQUEST['gender']))	{

42			

43						$gender	=	$_REQUEST['gender'];

44			

45						if	($gender	==	'M')	{

46									$greeting	=	'<p><strong>Good	day,

											Sir!</strong></p>';

47						}	elseif	($gender	==	'F')	{

48									$greeting	=	'<p><strong>Good	day,

											Madam!</strong></p>';

49						}	else	{	//	Unacceptable	value.

50									$gender	=	NULL;

51									echo	'<p	class="error">Gender

											should	be	either	"M"	or	"F"!

											</p>';

52						}

53

54			}	else	{	//	$_REQUEST['gender']

					is	not	set.

55						$gender	=	NULL;

56						echo	'<p	class="error">You	forgot	to

								select	your	gender!</p>';

57			}

58

59			//	If	everything	is	OK,	print	the

					message:

60			if	($name	&&	$email	&&	$gender	&&

					$comments)	{

61

62						echo	"<p>Thank	you,	<strong>$name

								</strong>,	for	the	following

								comments:</p>

63						<pre>$comments</pre>

64						<p>We	will	reply	to	you	at	<em>$email

								</em>.</p>\n";

65

66						echo	$greeting;

67



68			}	else	{	//	Missing	form	value.

69						echo	'<p	class="error">Please	go	back

								and	fill	out	the	form	again.</p>';

70			}

71

72			?>

73			</body>

74			</html>

2.	Within	the	HTML	head,	add	some	CSS	code:
Click	here	to	view	code	image

<style	type="text/css"

	title="text/css"	media="all">

.error	{

		font-weight:	bold;

		color:	#C00;

}

</style>

This	code	defines	one	CSS	class,	called	error.	Any	HTML	element	 that	has	 this	class	name	will	be
formatted	 in	a	bold	 red	color	 (which	will	be	more	apparent	 in	your	browser	 than	 in	 this	black-and-
white	book).

3.	In	the	PHP	block,	check	if	the	name	was	entered:
Click	here	to	view	code	image

if	(!empty($_REQUEST['name']))	{

		$name	=	$_REQUEST['name'];

}	else	{

		$name	=	NULL;

		echo	'<p	class="error">You

		 	forgot	to	enter	your	name!</p>';

}

A	 simple	 way	 to	 check	 that	 a	 form	 text	 input	 was	 filled	 out	 is	 to	 use	 the	 empty()	 function.	 If
$_REQUEST[‘name’]	has	a	value	other	than	an	empty	string,	0,	NULL,	or	FALSE,	assume	that	their
name	 was	 entered	 and	 a	 shorthand	 variable	 is	 assigned	 that	 value.	 If	 $_REQUEST[‘name’]	 is
empty,	the	$name	variable	is	set	to	NULL	and	an	error	message	is	printed.	This	error	message	uses	the
CSS	class.

4.	Repeat	the	same	process	for	the	email	address	and	comments:
Click	here	to	view	code	image

if	(!empty($_REQUEST['email']))	{

		$email	=	$_REQUEST['email'];

}	else	{

		$email	=	NULL;

		echo	'<p	class="error">You

		 	forgot	to	enter	your	email

		 	address!</p>';

}

if	(!empty($_REQUEST['comments']))	{

		$comments	=	$_REQUEST['comments'];

}	else	{

		$comments	=	NULL;

		echo	'<p	class="error">You

		 	forgot	to	enter	your

		 	comments!</p>';

}



Both	variables	receive	the	same	treatment	as	$_REQUEST[‘name’]	in	Step	3.
5.	Begin	validating	the	gender	variable:
Click	here	to	view	code	image

if	(isset($_REQUEST['gender']))	{

		$gender	=	$_REQUEST['gender'];

The	 validation	 of	 the	 gender	 is	 a	 two-step	 process.	 First,	 check	 if	 it	 has	 a	 value	 or	 not,	 using
isset().	 This	 starts	 the	main	if-else	 conditional,	 which	 otherwise	 behaves	 like	 those	 for	 the
name,	email	address,	and	comments.

6.	Check	$gender	against	specific	values:
Click	here	to	view	code	image

if	($gender	==	'M')	{

		$greeting	=	'<p><strong>Good

		 	day,	Sir!</strong></p>';

}	elseif	($gender	==	'F')	{

		$greeting	=	'<p><strong>Good

		 	day,	Madam!</strong></p>';

}	else	{	//	Unacceptable	value.

		$gender	=	NULL;

		echo	'<p	class="error">Gender

		 	should	be	either	"M"	or

		 	"F"!</p>';

}

Within	the	gender	if	clause	is	a	nested	if-elseif-else	conditional	that	tests	the	variable’s	value
against	what’s	acceptable.	This	is	the	second	part	of	the	two-step	gender	validation.
The	conditions	themselves	are	the	same	as	those	in	the	last	script.	If	gender	does	not	end	up	being	equal
to	either	M	or	F,	a	problem	occurred	and	an	error	message	will	be	printed.	The	$gender	variable	is
also	set	to	NULL	in	such	cases,	because	it	has	an	unacceptable	value.
If	$gender	does	have	a	valid	value,	a	gender-specific	message	is	assigned	to	a	new	variable	so	that
the	message	can	be	printed	later	in	the	script.

7.	Complete	the	main	gender	if-else	conditional:
Click	here	to	view	code	image

}	else	{	//	$_REQUEST['gender']

	is	not	set.

		$gender	=	NULL;

		echo	'<p	class="error">You

forgot	to	select	your	gender!

	</p>';

}

This	 else	 clause	 applies	 if	 $_REQUEST	 [‘gender’]	 is	 not	 set.	 The	 complete,	 nested
conditionals	(see	lines	41–57	of	Script	2.4)	successfully	check	every	possibility:

	 $_REQUEST[‘gender’]	is	not	set
	 $_REQUEST[‘gender’]	has	a	value	of	M
	 $_REQUEST[‘gender’]	has	a	value	of	F
	 $_REQUEST[‘gender’]	has	some	other	value
You	may	wonder	how	this	last	case	may	be	possible,	considering	the	values	are	set	in	the	HTML	form.
If	 a	malicious	 user	 creates	 their	 own	 form	 that	 gets	 submitted	 to	 your	handle_form.php	 script



(which	is	very	easy	to	do),	they	could	give	$_REQUEST[‘gender’]	any	value	they	want.
8.	Print	messages	indicating	the	validation	results:
Click	here	to	view	code	image

if	($name	&&	$email	&&	$gender

	&&	$comments)	{

		echo	"<p>Thank	you,	<strong>

		 	$name</strong>,	for	the

		 	following	comments:<br>

		<pre>$comments</pre></p>

		<p>We	will	reply	to	you	at

		 	<em>$email</em>.</p>\n";

		echo	$greeting;

}	else	{	//	Missing	form	value.

		echo	'<p	class="error">Please

		 	go	back	and	fill	out	the	form

		 	again.</p>';

}

The	main	condition	is	true	if	every	listed	variable	has	a	true	value.	Each	variable	will	have	a	value	if	it
passed	 its	 test	 but	 have	 a	 value	 of	NULL	 if	 it	 didn’t.	 If	 every	 variable	 has	 a	 value,	 the	 form	 was
completed,	so	the	Thank	you	message	will	be	printed,	as	will	the	gender-specific	greeting.	If	any	of	the
variables	are	NULL,	the	second	message	will	be	printed	( 	and	 ).

The	script	now	checks	that	every	form	element	was	filled	out	(except	the	age)	and	reports	on	those	that
weren’t.

If	you	skip	even	one	or	two	fields,	the	Thank	you	message	is	not	printed.
9.	Close	the	PHP	section	and	complete	the	HTML	page:

?>

</body>



</html>

10.	Save	the	file	as	handle_form.php,	place	it	in	the	same	web	directory	as	form.html,	and	test	it
in	your	browser.
Fill	out	the	form	to	different	levels	of	completeness	to	test	the	new	script	 .

If	the	form	was	completed	properly,	the	script	behaves	as	it	previously	had.

Tip
To	test	if	a	submitted	value	is	a	number,	use	the	is_numeric()	function.

Tip
In	Chapter	 14,	 “Perl-Compatible	 Regular	 Expressions,”	 you’ll	 see	 how	 to	 validate	 form	 data
using	regular	expressions.

Tip
It’s	 considered	 good	 form	 (pun	 intended)	 to	 let	 users	 know	 which	 fields	 are	 required	 when
they’re	filling	out	the	form	and,	where	applicable,	the	format	of	that	field	(like	a	date	or	a	phone
number).

Introducing	Arrays
Chapter	1	 introduced	 two	scalar	 (single-valued)	variable	 types:	 strings	and	numbers.	Now	 it’s	 time	 to
learn	 about	 another	 type:	 the	array.	 Unlike	 strings	 and	 numbers,	 an	 array	 can	 hold	 multiple	 separate
pieces	of	information.	An	array	is	therefore	like	a	list	of	values,	each	value	being	a	string	or	a	number	or
even	another	array.
Arrays	are	structured	as	a	series	of	key-value	pairs,	where	one	pair	is	an	item	or	element	of	that	array.
For	each	item	in	the	list,	there	is	a	key	(or	index)	associated	with	it	(Table	2.3).



TABLE	2.3	Array	Example	1:	$artists
Key Value
0 The	Mynabirds
1 Jeremy	Messersmith
2 The	Shins
3 Iron	and	Wine
4 Alexi	Murdoch

PHP	 supports	 two	 kinds	 of	 arrays:	 indexed,	 which	 use	 numbers	 as	 the	 keys	 (as	 in	 Table	 2.3),	 and
associative,	 which	 use	 strings	 as	 keys	 (Table	 2.4).	 As	 in	most	 programming	 languages,	 with	 indexed
arrays,	arrays	will	begin	with	the	first	index	at	0,	unless	you	specify	the	keys	explicitly.

TABLE	2.4	Array	Example	2:	$states
Key Value
MD Maryland
PA Pennsylvania
IL Illinois
MO Missouri
IA Iowa

An	array	follows	the	same	naming	rules	as	any	other	variable.	This	means	that,	offhand,	you	might	not	be
able	to	tell	that	$var	is	an	array	as	opposed	to	a	string	or	number.	The	important	syntactical	difference
arises	when	accessing	individual	array	elements.
To	refer	 to	a	specific	value	 in	an	array,	start	with	 the	array	variable	name,	 followed	by	 the	key	within
brackets:
Click	here	to	view	code	image

$band	=	$artists[0];	//	The	Mynabirds

echo	$states['MD'];	//	Maryland

You	can	see	 that	 the	array	keys	are	used	 like	other	values	 in	PHP:	numbers	 (e.g.,	0)	 are	never	quoted,
whereas	strings	(MD)	must	be.
Because	arrays	use	a	different	syntax	than	other	variables	and	can	contain	multiple	values,	printing	them
can	be	trickier.	This	will	not	work	 :

Attempting	to	print	an	array	using	only	the	variable’s	name	results	in	the	word	Array	being	printed.
Click	here	to	view	code	image

echo	"My	list	of	states:	$states";

However,	printing	an	individual	element’s	value	is	simple	if	it	uses	indexed	(numeric)	keys:
Click	here	to	view	code	image

echo	"The	first	artist	is

	$artists[0].";



But	if	the	array	uses	strings	for	the	keys,	the	quotes	used	to	surround	the	key	will	muddle	the	syntax.	The
following	code	will	cause	a	parse	error	 :

Attempting	to	print	an	element	in	an	associative	array	without	using	braces	results	in	a	parse	error.
Click	here	to	view	code	image

echo	"IL	is	$states['IL'].";	//	BAD!

To	fix	this,	wrap	the	array	name	and	key	in	braces	when	an	array	uses	strings	for	its	keys	 :

Attempting	to	print	an	element	in	an	associative	array	while	using	braces	works	as	desired.
Click	here	to	view	code	image

echo	"IL	is	{$states['IL']}.";

If	 arrays	 seem	 slightly	 familiar	 to	 you	 already,	 that’s	 because	 you’ve	 already	 worked	 with	 two:
$_SERVER	(in	Chapter	1)	and	$_REQUEST	(in	this	chapter).	To	acquaint	you	with	another	array	and	to
practice	printing	array	values	 directly,	 one	 final,	 but	 basic,	 version	 of	 the	handle_form.php	 page
will	be	created	using	the	more	specific	$_POST	array	(see	the	sidebar	“Superglobal	Arrays”).

Superglobal	Arrays
PHP	includes	several	predefined	arrays	called	the	superglobal	variables.	They	are	$_GET,
$_POST,	$_REQUEST,	$_SERVER,	$_ENV,	$_SESSION,	and	$_COOKIE.
The	$_GET	variable	is	where	PHP	stores	all	of	the	values	sent	to	a	PHP	script	via	the	GET
method	 (possibly	but	not	necessarily	 from	an	HTML	form).	$_POST	 stores	 all	 of	 the	 data
sent	 to	a	PHP	script	from	an	HTML	form	that	uses	 the	POST	method.	Both	of	 these—along
with	$_COOKIE—are	subsets	of	$_REQUEST,	which	you’ve	been	using.
$_SERVER,	which	was	used	in	Chapter	1,	stores	information	about	the	server	PHP	is	running
on,	 as	 does	$_ENV.	$_SESSION	 and	$_COOKIE	 will	 both	 be	 discussed	 in	 Chapter	 12,
“Cookies	and	Sessions.”
One	aspect	of	good	security	and	programming	is	to	be	precise	when	referring	to	a	variable.
This	means	that,	although	you	can	use	$_REQUEST	to	access	form	data	submitted	through	the
POST	method,	$_POST	would	be	more	accurate.

To	use	arrays:
1.	Begin	a	new	PHP	script	in	your	text	editor	or	IDE,	to	be	named	handle_form.php,	starting	with
the	initial	HTML	(Script	2.5):

Click	here	to	view	code	image
<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Form	Feedback</title>

</head>



<body>

<?php	#	Script	2.5	-

	handle_form.php	#4

2.	Perform	some	basic	form	validation:
Click	here	to	view	code	image

if	(	!empty($_POST['name'])	&&

	!empty($_POST['comments'])	&&

	!empty($_POST['email'])	)	{

In	the	previous	version	of	this	script,	 the	values	are	accessed	by	referring	to	the	$_REQUEST	array.
But	 since	 these	 variables	 come	 from	 a	 form	 that	 uses	 the	 POST	method	 (see	 Script	 2.1),	 $_POST
would	be	a	more	exact,	and	therefore	more	secure,	reference.
This	conditional	checks	that	these	three	text	inputs	are	all	not	empty.	Using	the	and	operator	(&&),	 the
entire	conditional	is	only	true	if	each	of	the	three	subconditionals	is	true.

3.	Print	the	message:
Click	here	to	view	code	image

echo	"<p>Thank	you,	<strong>

	{$_POST['name']}</strong>,	for

	the	following	comments:</p>

<pre>{$_POST['comments']}</pre>

<p>We	will	reply	to	you	at	<em>

	{$_POST['email']}</em>.</p>\n";

Script	2.5	The	superglobal	variables,	like	$_POST	here,	are	just	one	type	of	array	you'll	use	in	PHP.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Form	Feedback</title>

6			</head>

7			<body>

8			<?php	#	Script	2.5	-	handle_form.php	#4

9

10		//	Print	the	submitted	information:

11		if	(	!empty($_POST['name'])	&&	!empty($_POST['comments'])	&&	!empty($_POST['email'])	)	{

12					echo	"<p>Thank	you,	<strong>{$_POST['name']}</strong>,	for	the	following

							comments:</p>

13					<pre>{$_POST['comments']}</pre>

14					<p>We	will	reply	to	you	at	<em>{$_POST['email']}</em>.</p>\n";

15		}	else	{	//	Missing	form	value.

16					echo	'<p>Please	go	back	and	fill	out	the	form	again.</p>';

17		}

18		?>

19		</body>

20		</html>

After	you	comprehend	the	concept	of	an	array,	you	still	need	to	master	the	syntax	involved	in	printing
one.	 When	 printing	 an	 array	 element	 that	 uses	 a	 string	 for	 its	 key,	 use	 the	 braces	 (as	 in
{$_POST[‘name’]}	here)	to	avoid	parse	errors.

4.	Complete	the	conditional	begun	in	Step	2:
Click	here	to	view	code	image



}	else	{	//	Missing	form	value.

		echo	'<p>Please	go	back	and

		 	fill	out	the	form	again.</p>';

}

If	any	of	the	three	subconditionals	in	Step	2	is	not	true	(which	is	to	say,	if	any	of	the	variables	has	an
empty	value),	then	this	else	clause	applies	and	an	error	message	is	printed	 .

If	any	of	the	three	tested	form	inputs	is	empty,	this	generic	error	message	is	printed.
5.	Complete	the	PHP	and	HTML	code:

?>

</body>

</html>

6.	Save	the	file	as	handle_form.php,	place	it	in	the	same	web	directory	as	form.html,	and	test	it
in	your	browser	 .

The	fact	that	the	script	now	uses	the	$_POST	array	has	no	effect	on	the	visible	result.

Tip
Because	PHP	is	lax	with	its	variable	structures,	an	array	can	even	use	a	combination	of	numbers
and	strings	as	its	keys.	The	only	important	rule	is	that	the	keys	of	an	array	must	each	be	unique.



Tip
If	 you	 find	 the	 syntax	 of	 accessing	 superglobal	 arrays	 directly	 to	 be	 confusing	 (e.g.,
$_POST[‘name’]),	you	can	continue	to	use	the	shorthand	technique	at	the	top	of	your	scripts
as	you	have	been:

Click	here	to	view	code	image

$name	=	$_POST['name'];

In	this	script,	you	would	then	need	to	change	the	conditional	and	the	echo	statement	to	refer	to
$name	and	the	other	elements.

Tip
You	only	need	to	use	the	braces	to	surround	an	associated	array	used	within	quotation	marks.	All
of	these	array	references	are	fine:

Click	here	to	view	code	image

echo	$_POST['name'];

echo	"The	first	item	is	$item[0].";

$total	=	number_format($cart

	['total']);

Creating	arrays
The	preceding	example	uses	a	PHP-generated	array,	but	there	will	frequently	be	times	when	you	want	to
create	 your	 own.	 You	 can	 define	 your	 own	 array	 in	 one	 of	 two	 primary	ways.	 First,	 you	 can	 add	 an
element	at	a	time	to	build	one:
Click	here	to	view	code	image

$band[]	=	'Jemaine';

$band[]	=	'Bret';

$band[]	=	'Murray';

As	 arrays	 are	 indexed	 starting	 at	 0,	 $band[0]	 has	 a	 value	 of	 Jemaine;	 $band[1],	 Bret;	 and
$band[2],	Murray.
Alternatively,	you	can	specify	the	key	when	adding	an	element.	But	it’s	important	to	understand	that	if	you
specify	a	key	and	a	value	already	exists	 indexed	with	 that	 same	key,	 the	new	value	will	overwrite	 the
existing	one:
Click	here	to	view	code	image

$band['fan']	=	'Mel';

$band['fan']	=	'Dave';	//	New	value

$fruit[2]	=	'apple';

$fruit[2]	=	'orange';	//	New	value

Instead	of	adding	one	element	at	a	time,	you	can	use	the	array()	function	to	build	an	entire	array	in	one
step:
Click	here	to	view	code	image

$states	=	array(

		'IA'	=>	'Iowa',

		'MD'	=>	'Maryland'



);

(As	PHP	is	generally	insensitive	to	white	space,	you	can	use	this	function	over	multiple	lines	and	indent
the	array	elements	for	added	clarity.)
The	array()	function	can	be	used	whether	or	not	you	explicitly	set	the	key:
Click	here	to	view	code	image

$artists	=	array('Clem	Snide',

	'Shins',	'Eels');

Or,	if	you	set	the	first	numeric	key	value,	the	added	values	will	be	keyed	incrementally	thereafter:
Click	here	to	view	code	image

$days	=	array(1	=>	'Sun',	'Mon',	'Tue');

echo	$days[3];	//	Tue

The	array()	function	is	also	used	to	initialize	an	array	prior	to	referencing	it:
Click	here	to	view	code	image

$tv	=	array();

$tv[]	=	'Flight	of	the	Conchords';

Initializing	an	array	(or	any	variable)	in	PHP	isn’t	required,	but	it	makes	for	clearer	code	and	can	help
avoid	errors.
As	 of	 PHP	 5.4,	 you	 can	 use	 the	 short	 array	 syntax	 instead	 of	 the	array()	 function.	 These	 lines	 are
equivalent	to	the	previous	examples:
Click	here	to	view	code	image

$states	=	[

		'IA'	=>	'Iowa',

		'MD'	=>	'Maryland'

];

$artists	=	['Clem	Snide',	'Shins',

	'Eels'];

$days	=	[1	=>	'Sun',	'Mon',	'Tue'];

$tv	=	[];

Finally,	if	you	want	to	create	an	array	of	sequential	numbers,	you	can	use	the	range()	function:
$ten	=	range(1,	10);

Accessing	entire	arrays
You’ve	already	seen	how	to	access	individual	array	elements	using	its	keys	(e.g.,	$_POST[‘email’]).
This	works	when	you	know	exactly	what	the	keys	are	or	if	you	want	to	refer	to	only	a	single	element.	To
access	every	array	element,	use	the	foreach	loop:
Click	here	to	view	code	image

foreach	($array	as	$value)	{

		//	Do	something	with	$value.

}

The	foreach	loop	will	iterate	through	every	element	in	$array,	assigning	each	element’s	value	to	the
$value	variable.	To	access	both	the	keys	and	values,	use
Click	here	to	view	code	image

foreach	($array	as	$key	=>	$value)	{



		echo	"The	value	at	$key	is	$value.";

}

(You	can	use	any	valid	variable	name	in	place	of	$key	and	$value,	like	just	$k	and	$v,	if	you	prefer.)
Using	arrays,	this	next	script	will	demonstrate	how	easy	it	is	to	make	a	set	of	form	pull-down	menus	for
selecting	a	date	 .

	These	pull-down	menus	will	be	created	using	arrays	and	the	foreach	loop.

To	create	and	access	arrays:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	calendar.php,	starting	with	the
initial	HTML	(Script	2.6):

Click	here	to	view	code	image
<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Calendar</title>

</head>

<body>

<form	action="calendar.php"

	method="post">

<?php	#	Script	2.9	-	calendar.php	#2

Script	2.6	This	form	uses	arrays	to	dynamically	create	three	pull-down	menus.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Calendar</title>

6			</head>

7			<body>

8			<form	action="calendar.php"

				method="post">

9			<?php	#	Script	2.6	-	calendar.php

10

11		//	This	script	makes	three	pull-down



				menus

12		//	for	an	HTML	form:	months,	days,

				years.

13

14		//	Make	the	months	array:

15		$months	=	[1	=>	'January',	'February',	'March',	'April',	'May',	'June',	'July',	'August',	'September',	'October',	'November',	'December'];

16

17		//	Make	the	days	and	years	arrays:

18		$days	=	range(1,	31);

19		$years	=	range(2017,	2027);

20

21		//	Make	the	months	pull-down	menu:

22		echo	'<select	name="month">';

23		foreach	($months	as	$key	=>	$value)	{

24					echo	"<option	value=\"$key\">

							$value</option>\n";

25		}

26		echo	'</select>';

27

28		//	Make	the	days	pull-down	menu:

29		echo	'<select	name="day">';

30		foreach	($days	as	$value)	{

31					echo	"<option	value=\"$value\">

							$value</option>\n";

32		}

33		echo	'</select>';

34

35		//	Make	the	years	pull-down	menu:

36		echo	'<select	name="year">';

37		foreach	($years	as	$value)	{

38					echo	"<option	value=\"$value\">

							$value</option>\n";

39		}

40		echo	'</select>';

41

42		?>

43		</form>

44		</body>

45		</html>

One	thing	to	note	here	is	that	even	though	the	page	won’t	contain	a	complete	HTML	form,	the	form	tags
are	still	required	to	create	the	pull-down	menus.

2.	Create	an	array	for	the	months:
Click	here	to	view	code	image

$months	=	[1	=>	'January',

	'February',	'March',	'April',

	'May',	'June',	'July',	'August',

	'September',	'October',

	'November',	'December'];

This	first	array	will	use	numbers	for	the	keys,	from	1	to	12.	Since	the	value	of	the	first	key	is	specified,
the	following	values	will	be	indexed	incrementally	(in	other	words,	the	1	=>	code	creates	an	array
indexed	from	1	to	12,	instead	of	from	0	to	11).

3.	Create	the	arrays	for	the	days	of	the	month	and	the	years:
Click	here	to	view	code	image

$days	=	range(1,	31);

$years	=	range(2017,	2027);



Using	the	range()	function,	you	can	easily	make	an	array	of	numbers.
4.	Generate	the	month	pull-down	menu:
Click	here	to	view	code	image

echo	'<select	name="month">';

foreach	($months	as	$key	=>

	$value)	{

		echo	"<option	value=\"$key\">

		 	$value</option>\n";

}

echo	'</select>';

The	foreach	 loop	can	quickly	generate	all	of	the	HTML	code	for	the	month	pull-down	menu.	Each
execution	of	the	loop	will	create	a	line	of	code	like	<option	value=”1”>January</option>

.

	Most	of	the	HTML	source	was	generated	by	just	a	few	lines	of	PHP.
5.	Generate	the	day	and	year	pull-down	menus:
Click	here	to	view	code	image

echo	'<select	name="day">';

foreach	($days	as	$value)	{

		echo	"<option	value=\"$value\">

		 	$value</option>\n";

}

echo	'</select>';

//	Make	the	years	pull-down	menu:

echo	'<select	name="year">';

foreach	($years	as	$value)	{

		echo	"<option	value=\"$value\">

		 	$value</option>\n";

}

echo	'</select>';

Unlike	 the	 month	 example,	 both	 the	 day	 and	 year	 pull-down	menus	 will	 use	 the	 same	 data	 for	 the
option’s	value	and	label	(a	number,	 ).	For	that	reason,	there’s	no	need	to	also	fetch	the	array’s	key
with	each	loop	iteration.

6.	Close	the	PHP,	the	form	tag,	and	the	HTML	page:



?>

</form>

</body>

</html>

7.	Save	the	file	as	calendar.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser.

Tip
To	determine	the	number	of	elements	in	an	array,	use	count():

$num	=	count($array);

Tip
The	range()	function	can	also	create	an	array	of	sequential	letters:

$alphabet	=	range('a',	'z');

Tip
An	array’s	key	can	be	multi-worded	strings,	such	as	first	name	or	phone	number.

Tip
The	is_array()	function	confirms	that	a	variable	is	of	the	array	type.

Tip
If	you	see	an	Invalid	argument	supplied	for	foreach()	error	message,	that	means	you	are	trying	to
use	a	foreach	loop	on	a	variable	that	is	not	an	array.

Multidimensional	arrays
When	introducing	arrays,	I	mentioned	that	an	array’s	values	could	be	any	combination	of	numbers,	strings,
and	even	other	arrays.	This	last	option—an	array	consisting	of	other	arrays—creates	a	multidimensional
array.
Multidimensional	arrays	are	much	more	common	than	you	might	expect	but	remarkably	easy	to	work	with.
As	an	example,	start	with	an	array	of	prime	numbers:
$primes	=	[2,	3,	5,	7,	...];

Then	create	an	array	of	sphenic	numbers	(don’t	worry:	I	had	no	idea	what	a	sphenic	number	was	either;	I
had	to	look	it	up):
$sphenic	=	[30,	42,	66,	70,	...];

These	two	arrays	could	be	combined	into	one	multidimensional	array	like	so:
Click	here	to	view	code	image

$numbers	=	[

		'Primes'	=>	$primes,



		'Sphenic'	=>	$sphenic

];

Now,	 $numbers	 is	 a	 multidimensional	 array.	 To	 access	 the	 prime	 numbers	 subarray,	 refer	 to
$numbers[‘Primes’].	To	access	the	prime	number	5,	use	$numbers[‘Primes’][2]	 (it’s	 the
third	element	in	the	array,	but	the	array	starts	indexing	at	0).	To	print	out	one	of	these	values,	surround	the
whole	construct	in	braces:
Click	here	to	view	code	image

echo	"The	first	sphenic	number	is

	{$numbers['Sphenic'][0]}.";

Of	 course,	 you	 can	 also	 access	multidimensional	 arrays	 using	 the	foreach	 loop,	 nesting	 one	 inside
another	if	necessary.	This	next	example	will	do	just	that.

To	use	multidimensional	arrays:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	multi.php,	beginning	with	the
initial	HTML	(Script	2.7):

Click	here	to	view	code	image
<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Multidimensional

		 	Arrays</title>

</head>

<body>

<p>Some	North	American	States,

	Provinces,	and	Territories:</p>

<?php	#	Script	2.7	-	multi.php

Script	2.7	The	multidimensional	array	is	created	by	using	other	arrays	for	its	values.	Two	foreach	loops,
one	nested	inside	the	other,	can	access	every	array	element.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5			<title>Multidimensional	Arrays</title>

6			</head>

7			<body>

8			<p>Some	North	American	States,

				Provinces,	and	Territories:</p>

9			<?php	#	Script	2.7	-	multi.php

10

11		//	Create	one	array:

12		$mexico	=	[

13					'YU'	=>	'Yucatan',

14					'BC'	=>	'Baja	California',

15					'OA'	=>	'Oaxaca'

16		];

17

18		//	Create	another	array:

19		$us	=	[

20					'MD'	=>	'Maryland',



21					'IL'	=>	'Illinois',

22					'PA'	=>	'Pennsylvania',

23					'IA'	=>	'Iowa'

24		];

25

26		//	Create	a	third	array:

27		$canada	=	[

28					'QC'	=>	'Quebec',

29					'AB'	=>	'Alberta',

30					'NT'	=>	'Northwest	Territories',

31					'YT'	=>	'Yukon',

32					'PE'	=>	'Prince	Edward	Island'

33		];

34

35		//	Combine	the	arrays:

36		$n_america	=	[

37					'Mexico'	=>	$mexico,

38					'United	States'	=>	$us,

39					'Canada'	=>	$canada

40		];

41

42		//	Loop	through	the	countries:

43		foreach	($n_america	as	$country	=>

				$list)	{

44

45					//	Print	a	heading:

46					echo	"<h2>$country</h2><ul>";

47

48					//	Print	each	state,	province,		or	territory:

49					foreach	($list	as	$k	=>	$v)	{

50								echo	"<li>$k	-	$v</li>\n";

51					}

52

53					//	Close	the	list:

54					echo	'</ul>';

55

56		}	//	End	of	main	FOREACH.

57

58		?>

59		</body>

60		</html>

This	PHP	page	will	 print	 out	 some	of	 the	 states,	 provinces,	 and	 territories	 found	 in	 the	 three	North
American	countries	(Mexico,	the	United	States,	and	Canada	 ).



The	end	result	of	running	this	PHP	page	(Script	2.7),	where	each	country	 is	printed,	followed	by	an
abbreviated	list	of	its	states,	provinces,	and	territories.
2.	Create	an	array	of	Mexican	states:
Click	here	to	view	code	image

$mexico	=	[

		'YU'	=>	'Yucatan',

		'BC'	=>	'Baja	California',

		'OA'	=>	'Oaxaca'

];

This	is	an	associative	array,	using	the	state’s	postal	abbreviation	as	its	key.	The	state’s	full	name	is	the
element’s	value.	This	is	obviously	an	incomplete	list,	just	used	to	demonstrate	the	concept.

3.	Create	the	second	and	third	arrays:
Click	here	to	view	code	image

$us	=	[

		'MD'	=>	'Maryland',

		'IL'	=>	'Illinois',

		'PA'	=>	'Pennsylvania',

		'IA'	=>	'Iowa'

];

$canada	=	[

		'QC'	=>	'Quebec',

		'AB'	=>	'Alberta',

		'NT'	=>	'Northwest	Territories',

		'YT'	=>	'Yukon',

		'PE'	=>	'Prince	Edward	Island'

];

4.	Combine	all	the	arrays	into	one:



Click	here	to	view	code	image
$n_america	=	[

		'Mexico'	=>	$mexico,

		'United	States'	=>	$us,

		'Canada'	=>	$canada

];

You	don’t	 have	 to	 create	 three	 arrays	 and	 then	 assign	 them	 to	 a	 fourth	 in	 order	 to	make	 the	 desired
multidimensional	 array,	 but	 I	 think	 it’s	 easier	 to	 read	 and	 understand	 this	 way	 (defining	 a
multidimensional	array	in	one	step	makes	for	some	ugly	code).
The	$n_america	array	now	contains	three	elements.	The	key	for	each	element	is	a	string,	which	is
the	country’s	name.	The	value	for	each	element	is	the	array	of	states,	provinces,	and	 territories	 found
within	that	country.

5.	Begin	the	primary	foreach	loop:
Click	here	to	view	code	image

foreach	($n_america	as	$country

	=>	$list)	{

		echo	"<h2>$country</h2><ul>";

Following	 the	 syntax	 outlined	 earlier,	 this	 loop	 will	 access	 every	 element	 of	$n_america.	 This
means	 that	 this	 loop	will	 run	 three	 times.	Within	each	 iteration	of	 the	 loop,	 the	$country	 variable
will	 store	 the	 $n_america	 array’s	 key	 (Mexico,	Canada,	 or	 United	 States).	 Also	 within	 each
iteration	of	the	loop,	the	$list	variable	will	store	the	element’s	value	(the	equivalent	of	$mexico,
$us,	and	$canada).
To	 print	 out	 the	 results,	 the	 loop	 begins	 by	 printing	 the	 country’s	 name	within	H2	 tags.	 Because	 the
states	and	so	forth	should	be	displayed	as	an	HTML	list,	the	initial	unordered	list	tag	(<ul>)	is	printed
as	well.

6.	Create	a	second	foreach	loop:
Click	here	to	view	code	image

foreach	($list	as	$k	=>	$v)	{

		echo	"<li>$k	-	$v</li>\n";

}

This	loop	will	run	through	each	subarray	(first	$mexico,	then	$us,	and	then	$canada).	With	each
iteration	of	this	loop,	$k	will	store	the	abbreviation	and	$v	will	store	the	full	name.	Both	are	printed
out	within	HTML	list	tags.	The	newline	character	is	also	used	to	better	format	the	HTML	source	code.

7.	Complete	the	outer	foreach	loop:
Click	here	to	view	code	image

		echo	'</ul>';

}	//	End	of	main	FOREACH.

After	the	inner	foreach	loop	is	done,	the	outer	foreach	loop	has	to	close	the	unordered	list	begun
in	Step	5.

8.	Complete	the	PHP	and	HTML:
?>

</body>

</html>

9.	Save	the	file	as	multi.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .



10.	If	you	want,	check	out	the	HTML	source	code	to	see	what	PHP	created.

Tip
Multidimensional	arrays	can	also	come	from	an	HTML	form.	For	example,	if	a	form	has	a	series
of	checkboxes	with	the	name	interests[]—

Click	here	to	view	code	image

<input	type="checkbox"	name=

	"interests[]"	value="Music">	Music

<input	type="checkbox"	name=

	"interests[]"	value="Movies">	Movies

<input	type="checkbox"	name=

	"interests[]"	value="Books">	Books

—the	 $_POST	 variable	 in	 the	 receiving	 PHP	 page	 will	 be	 multidimensional.
$_POST[‘interests’]	will	be	an	array,	with	$_POST[‘interests’][0]	storing	the
value	 of	 the	 first	 checked	 box	 (e.g.,	 Movies),	 $_POST[‘interests’][1]	 storing	 the
second	(Books),	and	so	forth.	Note	that	only	the	checked	boxes	will	get	passed	to	the	PHP	page.

Tip
You	can	also	end	up	with	a	multidimensional	array	 if	an	HTML	form’s	select	menu	allows	for
multiple	selections:

Click	here	to	view	code	image

<select	name="interests[]"

	multiple="multiple">

		<option	value="Music">Music

		 	</option>

		<option	value="Movies">Movies

		 	</option>

		<option	value="Books">Books

		 	</option>

		<option	value="Napping">Napping

		 	</option>

</select>

Again,	only	the	selected	values	will	be	passed	to	the	PHP	page.

Sorting	arrays
One	of	 the	many	advantages	 arrays	have	over	 the	other	variable	 types	 is	 the	 ability	 to	 sort	 them.	PHP
includes	several	functions	you	can	use	for	sorting	arrays,	all	simple	in	syntax:
Click	here	to	view	code	image

$names	=	['Moe',	'Larry',	'Curly'];

sort($names);

The	sorting	functions	perform	three	kinds	of	sorts.	First,	you	can	sort	an	array	by	value,	discarding	 the
original	 keys,	 using	sort().	 It’s	 important	 to	 understand	 that	 the	 array’s	 keys	will	 be	 reset	 after	 the
sorting	process,	so	if	the	key-value	relationship	is	important,	you	should	not	use	sort().
Second,	you	can	sort	an	array	by	value	while	maintaining	the	keys,	using	asort().	Third,	you	can	sort
an	 array	 by	 key,	 using	 ksort().	 Each	 of	 these	 can	 sort	 in	 reverse	 order	 if	 you	 change	 them	 to



rsort(),	arsort(),	and	krsort(),	respectively.
To	demonstrate	the	effect	sorting	arrays	will	have,	this	next	script	will	create	an	array	of	movie	titles	and
ratings	(how	much	I	liked	them	on	a	scale	of	1	to	10)	and	then	display	this	list	in	different	ways.

To	sort	arrays:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	,	starting	with	the	initial	HTML
(Script	2.8):

Click	here	to	view	code	image
<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Sorting	Arrays</title>

</head>

<body>

Arrays	and	Strings
Because	 arrays	 and	 strings	 are	 so	 commonly	 used	 together,	 PHP	 has	 two	 functions	 for
converting	between	them:

Click	here	to	view	code	image

$array	=	explode(separator,	$string);

$string	=	implode	(glue,	$array);

The	 key	 to	 using	 and	 understanding	 these	 two	 functions	 is	 the	 separator	 and	 glue
relationships.	When	 turning	an	array	 into	a	 string,	you	establish	 the	glue—the	characters	or
code	that	will	be	inserted	between	the	array	values	in	the	generated	string.	Conversely,	when
turning	a	string	 into	an	array,	you	specify	 the	separator,	which	 is	 the	 token	 that	marks	what
should	become	separate	array	elements.	For	example,	start	with	a	string:

Click	here	to	view	code	image

$s1	=	'Mon-Tue-Wed-Thu-Fri';

$days_array	=	explode('-',	$s1);

The	 $days_array	 variable	 is	 now	 a	 five-element	 array,	 with	Mon	 indexed	 at	 0,	 Tue
indexed	at	1,	and	so	forth.

Click	here	to	view	code	image

$s2	=	implode	(',	',	$days_array);

The	$s2	variable	is	now	a	comma-separated	list	of	days:	Mon,	Tue,	Wed,	Thu,	Fri.

Script	 2.8	 An	 array	 is	 defined	 and	 then	 sorted	 in	 two	 different	 ways:	 first	 by	 key,	 then	 by	 value	 (in
reverse	order).
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Sorting	Arrays</title>



6			</head>

7			<body>

8			<table	border="0"	cellspacing="3"

				cellpadding="3"	align="center">

9			<thead>

10					<tr>

11								<th><h2>Rating</h2></th>

12								<th><h2>Title</h2></th>

13					</tr>

14		</thead>

15		<tbody>

16		<?php	#	Script	2.8	-	sorting.php

17

18		//	Create	the	array:

19		$movies	=	[

20					'Casablanca'	=>	10,

21					'To	Kill	a	Mockingbird'	=>	10,

22					'The	English	Patient'	=>	2,

23					'Stranger	Than	Fiction'	=>	9,

24					'Story	of	the	Weeping	Camel'	=>	5,

25					'Donnie	Darko'	=>	7

26		];

27

28		//	Display	the	movies	in	their	original

				order:

29		echo	'<tr><td	colspan="2"><strong>

				In	their	original	order:</strong></td>

				</tr>';

30		foreach	($movies	as	$title	=>

				$rating)	{

31					echo	"<tr><td>$rating</td>

32					<td>$title</td></tr>\n";

33		}

34

35		//	Display	the	movies	sorted	by	title:

36		ksort($movies);

37		echo	'<tr><td	colspan="2"><strong>

				Sorted	by	title:</strong></td></tr>';

38		foreach	($movies	as	$title	=>

				$rating)	{

39					echo	"<tr><td>$rating</td>

40					<td>$title</td></tr>\n";

41		}

42

43		//	Display	the	movies	sorted	by	rating:

44		arsort($movies);

45		echo	'<tr><td	colspan="2"><strong>

				Sorted	by	rating:</strong></td>

				</tr>';

46		foreach	($movies	as	$title	=>

				$rating)	{

47					echo	"<tr><td>$rating</td>

48					<td>$title</td></tr>\n";

49		}

50		

51		?>

52		</tbody>

53		</table>

54		</body>

55		</html>

2.	Create	an	HTML	table:



Click	here	to	view	code	image
<table	border="0"	cellspacing="3"

	cellpadding="3"	align="center">

<thead>

		<tr>

				<th><h2>Rating</h2></th>

				<th><h2>Title</h2></th>

		</tr>

</thead>

<tbody>

To	make	the	ordered	list	easier	to	read,	it’ll	be	printed	within	an	HTML	table.	The	table	is	begun	here.
3.	Add	the	opening	PHP	tag	and	create	a	new	array:
Click	here	to	view	code	image

<?php	#	Script	2.8	-	sorting.php

$movies	=	[

		'Casablanca'	=>	10,

		'To	Kill	a	Mockingbird'	=>	10,

		'The	English	Patient'	=>	2,

		'Stranger	Than	Fiction'	=>	9,

		'Story	of	the	Weeping	Camel'	=>	5,

		'Donnie	Darko'	=>	7

];

This	array	uses	movie	titles	as	the	keys	and	their	respective	ratings	as	their	values.	This	structure	will
open	 up	 several	 possibilities	 for	 sorting	 the	 whole	 list.	 Feel	 free	 to	 change	 the	movie	 listings	 and
rankings	as	you	see	fit	(just	don’t	chastise	me	for	my	taste	in	films).

4.	Print	out	the	array	as	is:
Click	here	to	view	code	image

echo	'<tr><td	colspan="2">

	<strong>In	their	original	order:

	</strong></td></tr>';

foreach	($movies	as	$title	=>

	$rating)	{

		echo	"<tr><td>$rating</td>

		<td>$title</td></tr>\n";

}

At	this	point	in	the	script,	the	array	is	in	the	same	order	as	it	was	defined.	To	verify	this,	print	it	out.	A
caption	is	first	printed	across	both	table	columns.	Then,	within	the	foreach	loop,	the	key	is	printed	in
the	first	column	and	the	value	in	the	second.	A	newline	is	also	printed	to	improve	the	readability	of	the
HTML	source	code.

5.	Sort	the	array	alphabetically	by	title	and	print	it	again:
Click	here	to	view	code	image

ksort($movies);

echo	'<tr><td	colspan="2">

	<strong>Sorted	by	title:

	</strong></td></tr>';

foreach	($movies	as	$title	=>

	$rating)	{

		echo	"<tr><td>$rating</td>

		<td>$title</td></tr>\n";

}

The	ksort()	function	will	sort	an	array	by	key,	in	ascending	order,	while	maintaining	the	key-value



relationship.	The	rest	of	the	code	is	a	repetition	of	Step	4.
6.	Sort	the	array	numerically	by	descending	rating	and	print	again:
Click	here	to	view	code	image

arsort($movies);

echo	'<tr><td	colspan="2">

	<strong>Sorted	by	rating:

	</strong></td></tr>';

foreach	($movies	as	$title	=>

	$rating)	{

		echo	"<tr><td>$rating</td>

		<td>$title</td></tr>\n";

}

To	sort	by	values	(the	ratings)	while	maintaining	the	keys,	you	would	use	the	asort()	function.	But
since	the	highest-ranking	films	should	be	listed	first,	the	order	must	be	reversed,	using	asort().

7.	Complete	the	PHP,	the	table,	and	the	HTML:
Click	here	to	view	code	image

?>

</tbody>

</table>

</body>

</html>

8.	Save	the	file	as	sorting.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .



	This	page	demonstrates	different	ways	arrays	can	be	sorted.

Tip
To	randomize	the	order	of	an	array,	use	shuffle().

Tip
PHP’s	 natsort()	 function	 can	 be	 used	 to	 sort	 arrays	 in	 a	 more	 natural	 order	 (primarily
handling	numbers	in	strings	better).

Tip
Multidimensional	arrays	can	be	sorted	in	PHP	with	a	little	effort.	See	the	PHP	manual	for	more
information	 on	 the	usort()	 function	 or	 check	 out	 my	PHP	 Advanced	 and	 Object-Oriented
Programming:	Visual	QuickPro	Guide	(Peachpit,	2013).



For	and	While	Loops
The	 last	 language	 construct	 we	 will	 discuss	 in	 this	 chapter	 is	 the	 loop.	 You’ve	 already	 used	 one,
foreach,	 to	 access	 every	 element	 in	 an	 array.	The	other	 two	 types	of	 loops	you’ll	 use	 are	for	 and
while.
The	while	loop	looks	like	this:
Click	here	to	view	code	image

while	(condition)	{

		//	Do	something.

}

As	long	as	the	condition	part	of	 the	loop	is	 true,	 the	loop	will	be	executed.	Once	it	becomes	false,	 the
loop	is	stopped	 .	If	the	condition	is	never	true,	the	loop	will	never	be	executed.	The	while	loop	will
most	frequently	be	used	when	retrieving	results	from	a	database,	as	you’ll	see	in	Chapter	9,	“Using	PHP
with	MySQL.”

A	flowchart	representation	of	how	PHP	handles	a	while	loop.
The	for	loop	has	a	more	complicated	syntax:
Click	here	to	view	code	image

for	(initial	expression;	condition;

	closing	expression)	{



		//	Do	something.

}

Upon	first	executing	the	loop,	the	initial	expression	is	run.	Then	the	condition	is	checked	and,	if	true,	the
contents	 of	 the	 loop	 are	 executed.	 After	 execution,	 the	 closing	 expression	 is	 run	 and	 the	 condition	 is
checked	again.	This	process	continues	until	the	condition	is	false	 .	As	an	example,

A	flowchart	representation	of	how	PHP	handles	the	more	complex	for	loop.
Click	here	to	view	code	image

for	($i	=	1;	$i	<=	10;	$i++)	{

		echo	$i;

}

The	first	time	this	loop	is	run,	the	$i	variable	is	set	to	the	value	of	1.	Then	the	condition	is	checked:	is	1
less	than	or	equal	 to	10?	Since	this	 is	 true,	1	 is	printed	out	(echo	$i).	Then,	$i	 is	 incremented	 to	2
($i++),	the	condition	is	checked,	and	so	forth.	The	result	of	this	script	will	be	the	numbers	1	through	10



printed	out.
The	functionality	of	both	loops	is	similar	enough	that	for	and	while	can	often	be	used	interchangeably.
Still,	experience	will	reveal	that	the	for	loop	is	a	better	choice	for	doing	something	a	known	number	of
times,	whereas	while	is	used	when	a	condition	will	be	true	an	unknown	number	of	times.
In	 this	chapter’s	 last	example,	 the	calendar	script	created	earlier	will	be	 rewritten	using	for	 loops	 in
place	of	two	of	the	foreach	loops.

To	use	loops:
1.	Open	calendar.php	(refer	to	Script	2.6)	in	your	text	editor	or	IDE.
2.	Delete	the	$days	and	$years	arrays	(lines	18–19).
Using	loops,	the	same	result	of	the	two	pull-down	menus	can	be	achieved	without	the	extra	code	and
memory	overhead	involved	with	creating	actual	arrays.	So	these	two	arrays	should	be	deleted,	while
still	keeping	the	$months	array.

3.	Rewrite	the	$days	foreach	loop	as	a	for	loop	(Script	2.9):
Click	here	to	view	code	image

for	($day	=	1;	$day	<=	31;	$day++)	{

		echo	"<option	value=\"$day\">

		 	$day</option>\n";

}

This	standard	for	 loop	begins	by	initializing	the	$day	variable	as	1.	 It	will	continue	 the	 loop	until
$day	is	greater	than	31,	and	upon	each	iteration,	$day	will	be	incremented	by	1.	The	content	of	the
loop	itself	(which	is	executed	31	times)	is	an	echo	statement.

Script	2.9	Loops	are	often	used	in	conjunction	with	or	in	lieu	of	an	array.	Here,	two	for	loops	replace	the
arrays	and	foreach	loops	used	in	the	script	previously.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Calendar</title>

6						</head>

7			<body>

8			<form	action="calendar.php"	method="post">

9			<?php	#	Script	2.9	-	calendar.php	#2

10

11		//	This	script	makes	three	pull-down	menus

12		//	for	an	HTML	form:	months,	days,	years.

13

14		//	Make	the	months	array:

15		$months	=	[1	=>	'January',	'February',	'March',	'April',	'May',	'June',	'July',	'August',	'September',	'October',	'November',	'December'];

16

17		//	Make	the	months	pull-down	menu:

18		echo	'<select	name="month">';

19		foreach	($months	as	$key	=>	$value)	{

20					echo	"<option	value=\"$key\">$value

							</option>\n";

21		}

22		echo	'</select>';



23

24		//	Make	the	days	pull-down	menu:

25		echo	'<select	name="day">';

26		for	($day	=	1;	$day	<=	31;	$day++)	{

27					echo	"<option	value=\"$day\">$day

							</option>\n";

28		}

29		echo	'</select>';

30

31		//	Make	the	years	pull-down	menu:

32		echo	'<select	name="year">';

33		for	($year	=	2017;	$year	<=	2027;

				$year++)	{

34					echo	"<option	value=\"$year\">

							$year</option>\n";

35		}

36		echo	'</select>';

37

38		?>

39		</form>

40		</body>

41		</html>

4.	Rewrite	the	$years	foreach	loop	as	a	for	loop:
Click	here	to	view	code	image

for	($year	=	2017;	$year	<=	2027;

	$year++)	{

		echo	"<option	value=\"$year\">

		 	$year</option>\n";

}

The	structure	of	this	loop	is	fundamentally	the	same	as	the	$day	for	loop,	but	the	$year	variable	is
initially	set	 to	2017	 instead	of	1.	As	 long	as	$year	 is	 less	 than	or	equal	 to	2021,	 the	 loop	will	be
executed.	Within	the	loop,	the	echo	statement	is	run.

5.	Save	the	file,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

This	 calendar	 form	 looks	 the	 same	 as	 it	 had	 previously	 but	 was	 created	 with	 two	 fewer	 arrays
(compare	Script	2.9	with	Script	2.6).



Tip
PHP	also	has	a	do...while	loop	with	a	slightly	different	syntax	(check	the	manual).	This	loop
will	always	be	executed	at	least	once.

Tip
When	 using	 loops,	 watch	 your	 parameters	 and	 conditions	 to	 avoid	 the	 dreaded	 infinite	 loop,
which	occurs	when	a	loop’s	condition	is	never	going	to	be	false.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).
Note:	Some	of	these	questions	and	prompts	rehash	information	covered	in	Chapter	1	in	order	to	reinforce
some	of	the	most	important	points.

Review
	What	is	the	significance	of	a	form’s	attribute?	Of	its	attribute?
	Why	must	an	HTML	form	that	gets	submitted	to	a	PHP	script	be	loaded	through	a	URL?	What	would
happen	upon	submitting	the	form	if	it	were	not	loaded	through	a	URL?
	What	are	the	differences	between	using	single	and	double	quotation	marks	to	delineate	strings?
	What	control	structures	were	introduced	in	this	chapter?
	What	new	variable	type	was	introduced	in	this	chapter?
	What	operator	tests	for	equality?	What	is	the	assignment	operator?
	Why	are	textual	form	elements	validated	using	empty()	but	other	form	elements	are	validated	using
isset()?
	What	is	the	difference	between	an	indexed	array	and	an	associative	array?
	With	what	value	do	indexed	arrays	begin	(by	default)?	If	an	indexed	array	has	ten	elements	in	it,	what
would	the	expected	index	be	of	the	last	element	in	the	array?
	What	are	the	superglobal	arrays?	From	where	do	the	following	superglobals	get	their	values?
	 $_GET
	 $_POST
	 $_COOKIE
	 $_REQUEST
	 $_SESSION
	 $_SERVER
	 $_ENV
	How	can	you	print	an	 individual	 indexed	 array	 item?	How	can	you	print	an	 individual	associative
array	item?	Note:	There	is	more	than	one	answer	to	both	questions.
	What	does	the	count()	function	do?
	What	impact	does	printing	\n	have	on	the	browser?

http://LarryUllman.com/forums/


	Generally	speaking,	when	would	you	use	a	while	 loop?	When	would	you	use	a	for	 loop?	When
would	you	use	a	foreach	loop?	What	is	the	syntax	of	each	loop	type?
	What	is	the	++	operator?	What	does	it	do?

Pursue
	What	version	of	PHP	are	you	using?	If	you	don’t	know,	find	out	now!
	Create	a	new	form	that	 takes	some	 input	 from	the	user	 (perhaps	base	 it	on	a	 form	you	know	you’ll
need	 for	 one	of	 your	projects).	Then	 create	 the	PHP	 script	 that	 validates	 the	 form	data	 and	 reports
upon	the	results.
	Rewrite	 the	gender	conditional	 in	handle_form.php	 (Script	2.4)	 as	 one	 conditional	 instead	 of
two	nested	ones.	Hint:	You’ll	need	to	use	the	AND	operator.
	Rewrite	handle_form.php	(Script	2.4)	to	use	$_POST	instead	of	$_REQUEST.
	 Rewrite	 handle_form.php	 (Script	 2.4)	 so	 that	 it	 validates	 the	 age	 element.	 Hint:	 Use	 the
$gender	 validation	 as	 a	 template,	 this	 time	 checking	 against	 the	 corresponding	 pull-down	 option
values	(0–29,	30–60,	60+).
	Rewrite	the	echo	statement	in	the	final	version	of	handle_form.php	(Script	2.5)	so	that	it	uses
single	quotation	marks	and	concatenation	instead	of	double	quotation	marks.
	If	you’re	using	PHP	7	or	later,	change	some	of	the	conditionals	to	use	the	NULL	coalescing	operator
instead.
	Look	up	in	the	PHP	manual	one	of	the	array	functions	introduced	in	this	book.	Then	check	out	some	of
the	other	array-related	functions	built	into	the	language.
	Create	a	new	array	and	then	display	its	elements.	Sort	the	array	in	different	ways	and	then	display	the
array’s	contents	again.
	Create	a	form	that	contains	a	select	menu	or	series	of	check	boxes	that	allow	for	multiple	sections.
Then,	in	the	handling	PHP	script,	display	the	selected	items	along	with	a	count	of	how	many	the	user
selected.
	 For	 added	 complexity,	 take	 the	 suggested	 PHP	 script	 you	 just	 created	 (that	 handles	 multiple
selections),	and	have	it	display	the	selections	in	alphabetical	order.
	Learn	about	form	validation	in	HTML5.	This	can	provide	a	nicer	user	experience	but	does	not	replace
server-side	validation,	which	is	always	required	as	client-side	validation	is	easily	circumvented.

































































































































































































3.	Creating	Dynamic	Web	Sites

In	This	Chapter
Including	Multiple	Files
Handling	HTML	Forms,	Revisited
Making	Sticky	Forms
Creating	Your	Own	Functions
Review	and	Pursue

With	 the	 fundamentals	 of	 PHP	 under	 your	 belt,	 it’s	 time	 to	 begin	 building	 truly	 dynamic	 web	 sites.
Dynamic	web	sites,	as	opposed	to	the	static	ones	on	which	the	web	was	first	built,	are	easier	to	maintain,
are	more	responsive	to	users,	and	can	alter	their	content	in	response	to	differing	situations.	This	chapter
introduces	 three	new	ideas,	all	commonly	used	to	create	more	sophisticated	web	applications	(Chapter
11,	“Web	Application	Development,”	covers	another	handful	of	topics	along	these	same	lines).
The	first	subject	involves	using	external	files.	This	is	an	important	concept,	as	more	complex	sites	often
demand	compartmentalizing	some	HTML	or	PHP	code.	Then	the	chapter	returns	to	the	subject	of	handling
HTML	forms.	You’ll	 learn	some	new	variations	on	 this	 important	and	 standard	aspect	of	dynamic	web
sites.	Finally,	you’ll	learn	how	to	define	and	use	your	own	functions.

Including	Multiple	Files
To	this	point,	every	script	in	the	book	has	consisted	of	a	single	file	containing	all	of	the	required	HTML
and	PHP	code.	But	 as	you	develop	more	 complex	web	 sites,	 you’ll	 see	 that	 this	 approach	 is	 often	not
practical.	A	better	way	to	create	dynamic	web	applications	is	 to	divide	your	scripts	and	web	sites	 into
distinct	parts,	each	part	being	stored	in	its	own	file.	Frequently,	you	will	use	multiple	files	to	extract	the
HTML	from	the	PHP	or	to	separate	out	commonly	used	processes.
PHP	 has	 four	 functions	 for	 incorporating	 external	 files:	 include(),	 include()_once(),
require(),	and	require_once().	To	use	them,	your	PHP	script	would	have	a	line	like
Click	here	to	view	code	image

include_once('filename.php');

require('/path/to/filename.html');

Using	 any	 one	 of	 these	 functions	 has	 the	 end	 result	 of	 taking	 all	 the	 content	 of	 the	 included	 file	 and
dropping	it	in	the	parent	script	(the	one	calling	the	function)	at	that	juncture.	An	important	consideration
with	included	files	is	that	PHP	will	treat	the	included	code	as	HTML	(i.e.,	send	it	directly	to	the	browser)
unless	the	file	contains	code	within	the	PHP	tags.
In	 terms	 of	 functionality,	 it	 also	 doesn’t	 matter	 what	 extension	 the	 included	 file	 uses,	 be	 it	 .php	 or
.html.	However,	giving	 the	 file	 a	 symbolic	name	and	extension	helps	 to	convey	 its	purpose	 (e.g.,	 an
included	file	of	HTML	might	use	.inc.html).	Also,	note	that	you	can	use	either	absolute	or	relative
paths	to	the	included	file	(see	the	sidebar	for	more).



Absolute	vs.	Relative	Paths
When	referencing	any	external	item,	be	it	an	included	file	in	PHP,	a	CSS	document	in	HTML,
or	an	image,	you	have	the	choice	of	using	either	an	absolute	or	a	relative	path.	An	absolute
file	path	references	a	file	starting	from	the	root	directory	of	the	computer:

Click	here	to	view	code	image

include	('C:/php/includes/file.php');

include('/usr/xyz/includes/file.php');

Assuming	file.php	 exists	 in	 the	 named	 location,	 the	 inclusion	will	work,	 no	matter	 the
location	 of	 the	 referencing—parent—file,	 barring	 any	 permissions	 issues.	 The	 second
example,	in	case	you’re	not	familiar	with	the	syntax,	would	be	a	Unix	and	macOS	X	absolute
path.	Absolute	paths	always	start	with	something	like	C:/	or	/.
A	 relative	 path	 uses	 the	 referencing—parent—file	 as	 the	 starting	 point.	 To	 move	 up	 one
folder,	use	two	periods	together.	To	move	into	a	folder,	use	its	name	followed	by	a	slash.	So
assuming	the	current	script	is	 in	the	www/ex1	 folder	and	you	want	to	include	something	in
www/ex2,	the	code	would	be

Click	here	to	view	code	image

include('../ex2/file.php');

A	relative	path	will	remain	accurate,	even	if	the	site	is	moved	to	another	server,	as	long	as	the
files	maintain	their	current	relationship	to	each	other.

The	include()	and	require()	 functions	are	exactly	 the	same	when	working	properly	but	behave
differently	when	they	fail.	If	an	include()	 function	doesn’t	work	(it	cannot	 include	the	file	for	some
reason),	a	warning	will	be	printed	to	the	browser	 ,	but	the	script	will	continue	to	run.	If	require()
fails,	an	error	is	printed	and	the	script	is	halted	 .

	One	failed	include()	call	generates	these	two	error	messages	(assuming	that	PHP	is	configured	to
display	errors),	but	the	rest	of	the	page	continues	to	execute.



	 The	 failure	 of	 a	require()	 function	 call	will	 print	 an	 error	 and	 terminate	 the	 execution	 of	 the
script.	 If	 PHP	 is	 not	 configured	 to	 display	 errors,	 then	 the	 script	 will	 terminate	 without	 printing	 the
problem	first	(i.e.,	it’d	be	a	blank	page).
Both	functions	also	have	a	*_once()	version,	which	guarantees	that	the	file	in	question	is	included	only
once	regardless	of	how	many	times	a	script	may—presumably	inadvertently—attempt	to	include	it.
Click	here	to	view	code	image

require_once('filename.php');

include_once('filename.php');

Because	require_once()	and	include_once()	 require	extra	work	 from	 the	PHP	module	 (i.e.,
PHP	must	first	check	that	the	file	has	not	already	been	included),	it’s	best	not	to	use	these	two	functions
unless	a	redundant	include	is	likely	to	occur,	which	can	happen	on	complex	sites.
In	this	next	example,	included	files	will	separate	the	primary	HTML	formatting	from	any	PHP	code.	Then,
the	rest	of	the	examples	in	this	chapter	will	be	able	to	have	the	same	appearance—as	if	they	are	all	part	of
the	same	web	site—without	the	need	to	rewrite	the	common	HTML	every	time.	This	technique	creates	a
template	system:	an	easy	way	to	make	large	applications	consistent	and	manageable.	The	focus	in	these
examples	 is	 on	 the	 PHP	 code	 itself;	 you	 should	 also	 read	 the	 “Site	 Structure”	 sidebar	 so	 that	 you
understand	the	organizational	scheme	on	the	server.	If	you	have	any	questions	about	the	CSS	(Cascading
Style	Sheets)	or	HTML	used	in	the	example,	see	a	dedicated	resource	on	those	topics.

To	include	multiple	files:
1.	Design	an	HTML	page	in	your	text	or	WYSIWYG	editor	(Script	3.1	and	 ).



The	HTML	and	CSS	design	as	it	appears	in	the	browser	(without	using	any	PHP).

Script	3.1	The	HTML	template	for	this	chapter's	web	pages.	Download	the	sticky-footer-navbar.css	file
it	uses	from	the	book's	supporting	web	site	(LarryUllman.com).
Click	here	to	view	code	image

1			<!DOCTYPE	html>

2			<html	lang="en">

3			<head>

4			<meta	charset="utf-8">

5			<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

6			<meta	name="viewport"	content="width=device-width,	initial-scale=1">

7			<title>Page	Title</title>

8			<link	rel="stylesheet"	href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css

				/bootstrap.min.css"	integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz

				/K68vbdEjh4u"	crossorigin="anonymous">

9			<link	href="css/sticky-footer-navbar.css"	rel="stylesheet">

10		</head>

11		<body>

12		<nav	class="navbar	navbar-default	navbar-fixed-top">

13					<div	class="container">

14								<div	class="navbar-header"><a	class="navbar-brand"	href="#">Your	Website</a></div>

15								<div	id="navbar"	class="collapse	navbar-collapse">

16											<ul	class="nav	navbar-nav">

17														<li	class="active"><a	href="index.php">Home</a></li>

18														<li><a	href="calculator.php">Calculator</a></li>

19														<li><a	href="#contact">Contact</a></li>

20											</ul>

21								</div>

22					</div>

23		</nav>

24		<div	class="container">

25		<!--	Begin	page	content	-->

26					<div	class="page-header"><h1>Content	Header</h1></div>

http://LarryUllman.com


27					<p>This	is	where	the	page-specific	content	goes.	This	section,	and	the	corresponding

							header,	will	change	from	one	page	to	the	next.</p>

28

29					<p>Volutpat	at	varius	sed	sollicitudin	et,	arcu.	Vivamus	viverra.	Nullam	turpis.	Vestibulum

							sed	etiam.	Lorem	ipsum	sit	amet	dolore.	Nulla	facilisi.	Sed	tortor.	Aenean	felis.	Quisque

							eros.	Cras	lobortis	commodo	metus.	Vestibulum	vel	purus.	In	eget	odio	in	sapien	adipiscing

							blandit.	Quisque	augue	tortor,	facilisis	sit	amet,	aliquam,	suscipit	vitae,	cursus	sed,

							arcu	lorem	ipsum	dolor	sit	amet.</p>

30		<!--	End	page	content	-->

31		</div>

32		<footer	class="footer">

33					<div	class="container">

34								<p	class="text-muted"><p>Copyright	&copy;	2017</p>

35					</div>

36		</footer>

37		</body>

38		</html>

To	start	creating	a	template	for	a	web	site,	design	the	layout	like	a	standard	HTML	page,	 independent
of	any	PHP	code.	For	this	chapter’s	example,	I’ve	created	a	simple	page	using	the	Bootstrap	framework
(http://getbootstrap.com).

2.	Mark	where	any	page-specific	content	goes.
Almost	every	web	site	has	 several	common	elements	on	each	page—header,	navigation,	advertising,
footer,	and	so	on—and	one	or	more	page-specific	sections.	In	the	HTML	page	(Script	3.1),	enclose	the
section	of	the	layout	that	will	change	from	page	to	page	within	HTML	comments	to	indicate	its	status.

Site	Structure
When	 you	 begin	 using	 multiple	 files	 in	 your	 web	 applications,	 the	 overall	 site	 structure
becomes	more	important.	When	laying	out	your	site,	you	must	take	into	account	two	primary
considerations:
	Ease	of	maintenance
	Security
Using	external	files	for	holding	standard	procedures	(i.e.,	PHP	code),	CSS,	JavaScript,	and
the	HTML	design	will	greatly	 improve	the	ease	of	maintaining	your	site	because	commonly
edited	 code	 is	 placed	 in	 one	 central	 location.	 I’ll	 frequently	 make	 an	 includes	 or
templates	 directory	 to	 store	 these	 files	 apart	 from	 the	 main	 scripts	 (the	 ones	 that	 are
accessed	directly	in	the	browser).
I	recommend	using	the	.inc	or	.html	file	extension	for	documents	where	security	is	not	an
issue—such	as	HTML	templates—and	.php	for	files	that	contain	more	sensitive	data,	such
as	database	access	information.	You	can	also	use	both	.inc	and	.html	or	.php	so	that	a
file	 is	 clearly	 indicated	 as	 an	 include	 of	 a	 certain	 type:	 db.inc.php	 or
header.inc.html.

3.	Copy	everything	from	the	first	line	of	the	layout’s	HTML	source	to	just	before	the	page-specific	content
and	paste	it	in	a	new	document	to	be	named	header.html	(Script	3.2):

Script	3.2	The	initial	HTML	for	each	page	is	stored	in	a	header	file.
Click	here	to	view	code	image

1			<!DOCTYPE	html>

http://getbootstrap.com


2			<html	lang="en">

3			<head>

4			<meta	charset="utf-8">

5			<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

6			<meta	name="viewport"

				content="width=device-width,

				initial-scale=1">

7			<title><?php	echo	$page_title;	?>

				</title>

8			<link	rel="stylesheet"	href="https://

				maxcdn.bootstrapcdn.com/bootstrap

				/3.3.7/css/bootstrap.min.css"

				integrity="sha384-BVYiiSIFeK1dGmJRAk

				ycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/

				K68vbdEjh4u"	crossorigin="anonymous">

9			<link	href="css/sticky-footer-navbar

				.css"	rel="stylesheet">

10		</head>

11		<body>

12		<nav	class="navbar	navbar-default

				navbar-fixed-top">

13					<div	class="container">

14								<div	class="navbar-header">

										<a	class="navbar-brand"	href="#">

										Your	Website</a></div>

15								<div	id="navbar"	class="collapse

										navbar-collapse">

16											<ul	class="nav	navbar-nav">

17														<li	class="active"><a

																href="index.php">Home</a>

																</li>

18														<li><a	href="calculator

																.php">Calculator</a></li>

19														<li><a	href="#contact">

																Contact</a></li>

20											</ul>

21								</div>

22					</div>

23		</nav>

24		<div	class="container">

25		<!--	Script	3.2	-	header.html	-->

Click	here	to	view	code	image
<!DOCTYPE	html>

<html	lang="en">

<head>

<meta	charset="utf-8">

<meta	http-equiv="X-UA-Compatible"

content="IE=edge">

<meta	name="viewport"

content="width=device-width,

initial-scale=1">

<title>Page	Title</title>

<link	rel="stylesheet"

href="https://maxcdn

.bootstrapcdn.com/bootstrap

/3.3.7/css/bootstrap.min.css"

integrity="sha384-BVYiiSIF

eK1dGmJRAkycuHAHRg32OmUcww7

on3RYdg4Va+PmSTsz/K68vbdEjh4u"

crossorigin="anonymous">

<link	href="css/sticky-footer

-navbar.css"	rel="stylesheet">



</head>

<body>

<nav	class="navbar

navbar-default	navbar-fixed-top">

		<div	class="container">

					<div	class="navbar-header">

					 <a	class="navbar-brand"

					 href="#">Your	Website</a>

					 </div>

					<div	id="navbar"	class=

					 "collapse	navbar-collapse">

								<ul	class="nav	navbar-nav">

											<li	class="active">

											 <a	href="index.php">

											 Home</a></li>

											<li><a	href="calculator

											 .php">Calculator</a>

											 </li>

											 lt;li><a	href="#contact">

											 Contact</a></li>

								</ul>

					</div>

		</div>

</nav>

<div	class="container">

<!--	Script	3.2	-	header.html	-->

This	 first	 file	 will	 contain	 the	 initial	 HTML	 tags	 (from	 DOCTYPE	 through	 the	 head	 and	 into	 the
beginning	of	the	page	body).	It	also	has	the	code	that	makes	the	web	site	name,	plus	the	horizontal	bar
of	links	across	the	top	 .	All	of	the	page-specific	content	goes	within	the	DIV	that	has	a	class	value
of	container.

4.	Change	the	page’s	title	line	to	read
<?php	echo	$page_title;	?>

The	page	title	(which	appears	at	the	top	of	the	browser	 )	should	be	changeable	on	a	page-by-page
basis.	For	that	to	be	possible,	this	value	will	be	based	on	a	PHP	variable,	which	will	then	be	printed
out.	You’ll	see	how	this	plays	out	shortly.

5.	Save	the	file	as	header.html.
As	stated	already,	included	files	can	use	just	about	any	extension	for	the	filename.	This	 file	 is	called
header.html,	indicating	that	it	is	the	template’s	header	file	and	that	it	contains	primarily	HTML.

6.	Copy	everything	in	the	original	template	from	the	end	of	the	page-specific	content	to	the	end	of	the	page
and	paste	it	in	a	new	file,	to	be	named	footer.html	(Script	3.3):

Click	here	to	view	code	image
<!--	Script	3.3	-	footer.html	-->

</div>

<footer	class="footer">

		<div	class="container">

				<p	class="text-muted">

				 <p>Copyright	&copy;	2017</p>

		</div>

</footer>

</body>

</html>

Script	3.3	The	concluding	HTML	for	each	page	is	stored	in	this	footer	file.



Click	here	to	view	code	image

1			<!--	Script	3.3	-	footer.html	-->

2			</div>

3			<footer	class="footer">

4						<div	class="container">

5									<p	class="text-muted"><p>Copyright	&copy;	2017</p>

6						</div>

7			</footer>

8			</body>

9			</html>

The	footer	file	completes	the	container	DIV	and	creates	the	footer	portion	of	the	page	(which	will	be
the	same	for	every	page	on	the	site),	and	then	the	HTML	document	itself	is	completed.

7.	Save	the	file	as	footer.html.
8.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	index.php	(Script	3.4):
Click	here	to	view	code	image

<?php	#	Script	3.4	-	index.php

Script	3.4	This	script	generates	a	complete	page	by	including	a	template	stored	in	two	external	files.
Click	here	to	view	code	image

1			<?php	#	Script	3.4	-	index.php

2			$page_title	=	'Welcome	to	this	Site!';

3			include('includes/header.html');

4			?>

5

6			<div	class="page-header"><h1>Content	Header</h1></div>

7			<p>This	is	where	the	page-specific	content	goes.	This	section,	and	the	corresponding	header,

				will	change	from	one	page	to	the	next.</p>

8

9			<p>Volutpat	at	varius	sed	sollicitudin	et,	arcu.	Vivamus	viverra.	Nullam	turpis.	Vestibulum

				sed	etiam.	Lorem	ipsum	sit	amet	dolore.	Nulla	facilisi.	Sed	tortor.	Aenean	felis.	Quisque

				eros.	Cras	lobortis	commodo	metus.	Vestibulum	vel	purus.	In	eget	odio	in	sapien	adipiscing

				blandit.	Quisque	augue	tortor,	facilisis	sit	amet,	aliquam,	suscipit	vitae,	cursus	sed,	arcu

				lorem	ipsum	dolor	sit	amet.</p>

10

11		<?php

12		include('includes/footer.html');

13		?>

Since	this	script	will	use	the	included	files	for	most	of	its	HTML,	it	can	begin	and	end	with	the	PHP
tags.

9.	Set	the	$page_title	variable	and	include	the	HTML	header:
Click	here	to	view	code	image

$page_title	=	'Welcome	to	this

Site!';

include('includes/header.html');

The	$page_title	variable	will	store	the	value	that	appears	in	the	top	of	the	browser	window	(and
therefore	 is	 also	 the	 default	 value	when	 a	 person	 bookmarks	 the	 page).	 This	 variable	 is	 printed	 in
header.html	(see	Script	3.2).	By	defining	the	variable	prior	to	including	the	header	file,	the	header
file	will	have	access	to	that	variable.	Remember	that	this	include()	line	has	the	effect	of	dropping
the	contents	of	the	included	file	into	this	page	at	this	spot.



The	include()	function	call	uses	a	relative	path	to	header.html	(see	the	sidebar	“Absolute	vs.
Relative	Paths”).	The	syntax	states	that	in	the	same	folder	as	this	file	is	a	folder	called	includes	and
in	that	folder	is	a	file	named	header.html.

10.	Close	the	PHP	tags	and	add	the	page-specific	content:
Click	here	to	view	code	image

?>

<div	class="page-header">

<h1>Content	Header</h1></div>

<p>This	is	where	the	page-specific

content	goes.	This	section,

and	the	corresponding	header,

will	change	from	one	page	to

the	next.</p>

For	most	pages,	PHP	will	generate	this	content	instead	of	having	static	text.	This	information	could	be
sent	 to	 the	 browser	 using	 echo,	 but	 since	 there’s	 no	 dynamic	 content	 here,	 it’s	 easier	 and	 more
efficient	to	exit	the	PHP	tags	temporarily.	(The	script	and	the	images	have	a	bit	of	extra	Latin	than	is
shown	here,	just	to	fatten	up	the	page.)

11.	Create	a	final	PHP	section	and	include	the	footer	file:
Click	here	to	view	code	image

<?php

include('includes/footer.html');

?>

12.	Save	the	file	as	index.php	and	place	it	in	your	web	directory.
13.	Create	an	includes	directory	in	the	same	folder	as	index.php.	Then	place	header.html	and
footer.html	into	this	includes	directory.

14.	 Create	 a	 css	 directory	 in	 the	 same	 folder	 as	 index.php.	 Then	 place	 sticky-footer-
navbar.css	(part	of	the	downloadable	code	at	LarryUllman.com)	in	it.
Note:	To	save	space,	the	CSS	file	for	this	example—which	controls	the	layout—is	not	included	in	the
book.	You	can	download	the	file	through	the	book’s	supporting	web	site	or	do	without	it	(the	template
will	still	work;	it	just	won’t	look	as	nice).

15.	Test	the	template	system	by	going	to	the	index.php	page	in	your	browser	 .

http://LarryUllman.com


	Now	the	same	layout	 	has	been	created	using	external	files	in	PHP.
The	index.php	page	is	the	key	script	in	the	template	system.	You	do	not	need	to	access	any	of	the
included	files	directly,	because	index.php	will	take	care	of	incorporating	their	contents.	Since	this
is	a	PHP	page,	you	still	need	to	access	it	through	a	URL.

16.	If	desired,	view	the	HTML	source	of	the	page	 .



	The	generated	HTML	source	of	the	page	should	replicate	the	code	in	the	original	template	(refer	 to
Script	3.1).

Tip
In	the	php.ini	configuration	file,	you	can	adjust	the	include_path	setting,	which	dictates
where	PHP	is	and	is	not	allowed	to	retrieve	included	files.

Tip
As	you’ll	see	in	Chapter	9,	“Using	PHP	with	MySQL,”	any	included	file	that	contains	sensitive
information	 (like	 database	 access)	 should	 ideally	 be	 stored	 outside	 of	 the	web	 directory	 so	 it
can’t	be	viewed	within	a	browser.

Tip
Since	require()	 has	more	 impact	 on	 a	 script	when	 it	 fails,	 it’s	 recommended	 for	mission-
critical	includes,	like	those	that	connect	to	a	database.	The	include()	function	would	be	used
for	less	important	inclusions.

Tip
If	a	block	of	PHP	code	contains	only	a	single	executable	statement,	it’s	common	to	place	both	it
and	the	PHP	tags	on	a	single	line:
<?php	include('filename.html');	?>

Handling	HTML	Forms,	Revisited
A	good	portion	of	Chapter	2,	“Programming	with	PHP,”	involves	handling	HTML	forms	with	PHP;	this
makes	sense,	as	a	good	portion	of	web	programming	with	PHP	is	exactly	that.	All	of	those	examples	use
two	 separate	 files:	 one	 that	 displays	 the	 form	 and	 another	 that	 receives	 its	 submitted	 data.	 Although
there’s	certainly	nothing	wrong	with	this	approach,	there	are	advantages	to	putting	the	entire	process	into
one	script.
To	have	one	page	both	display	 and	handle	 a	 form,	 a	 conditional	must	 check	which	 action—display	or
handle—should	be	taken:
Click	here	to	view	code	image

if	(/*	form	has	been	submitted	*/)	{

		//	Handle	the	form.

}	else	{

		//	Display	the	form.

}

The	question,	then,	is	how	to	determine	if	the	form	has	been	submitted.	The	answer	is	simple—after	a	bit
of	explanation.
When	you	have	a	form	that	uses	the	POST	method	and	gets	submitted	back	to	the	same	page,	two	different
types	of	requests	will	be	made	of	that	script	 .	The	first	request,	which	loads	the	form,	will	be	a	GET
request.	This	is	the	standard	request	made	of	most	pages.	When	the	form	is	submitted,	a	second	request	of



the	script	will	be	made,	this	time	a	POST	request	(assuming	the	form	uses	the	POST	method).	Hence,	you
can	test	for	a	form’s	submission	by	checking	the	request	method,	found	in	the	$_SERVER	array:

	The	 interactions	between	 the	user	 and	 this	PHP	 script	on	 the	 server	 involves	 the	user	making	 two
requests	of	this	script.
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

		//	Handle	the	form.

}	else	{

		//	Display	the	form.

}

If	you	want	a	page	to	handle	a	form	and	then	display	it	again	(e.g.,	to	add	a	record	to	a	database	and	then
give	an	option	to	add	another),	drop	the	else	clause:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==

'POST')	{

//	Handle	the	form.

}

//	Display	the	form.

Using	that	code,	a	script	will	handle	a	form	if	it	has	been	submitted	and	display	the	form	every	time	the
page	is	loaded.
To	 demonstrate	 having	 the	 same	 page	 both	 display	 and	 handle	 a	 form,	 let’s	 create	 a	 calculator	 that
estimates	the	cost	and	time	required	to	take	a	car	trip,	based	on	user-entered	values	 .



	The	HTML	form,	completed	by	the	user.

To	handle	HTML	forms:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	calculator.php	(Script	3.5):
Click	here	to	view	code	image

<?php	#	Script	3.5	-	calculator.php

$page_title	=	'Trip	Cost	Calculator';

include('includes/header.html');

Script	3.5	The	calculator.php	script	both	displays	a	simple	form	and	handles	the	form	data;	it	performs
some	calculations	and	reports	on	the	results.
Click	here	to	view	code	image

1			<?php	#	Script	3.5	-	calculator.php

2

3			$page_title	=	'Trip	Cost	Calculator';

4			include('includes/header.html');

5

6			//	Check	for	form	submission:

7			if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

8

9						//	Minimal	form	validation:

10					if	(isset($_POST['distance'],	$_POST['gallon_price'],	$_POST['efficiency'])	&&

11						is_numeric($_POST['distance'])	&&	is_numeric($_POST['gallon_price'])	&&

								is_numeric($_POST['efficiency'])	)	{

12

13								//	Calculate	the	results:

14								$gallons	=	$_POST['distance']	/	$_POST['efficiency'];

15								$dollars	=	$gallons	*	$_POST['gallon_price'];

16								$hours	=	$_POST['distance']/65;

17

18								//	Print	the	results:

19								echo	'<div	class="page-header"><h1>Total	Estimated	Cost</h1></div>

20								<p>The	total	cost	of	driving	'	.	$_POST['distance']	.	'	miles,	averaging	'	.

										$_POST['efficiency']	.	'	miles	per	gallon,	and	paying	an	average	of	$'	.

										$_POST['gallon_price']	.	'	per	gallon,	is	$'	.	number_format	($dollars,	2)	.	'.

										If	you	drive	at	an	average	of	65	miles	per	hour,	the	trip	will	take	approximately	'	.

										number_format($hours,	2)	.	'	hours.</p>';

21

22					}	else	{	//	Invalid	submitted	values.

23								echo	'<div	class="page-header"><h1>Error!</h1></div>

24								<p	class="text-danger">Please	enter	a	valid	distance,	price	per	gallon,	and	fuel

										efficiency.</p>';

25					}

26



27		}	//	End	of	main	submission	IF.

28

29		//	Leave	the	PHP	section	and	create	the	HTML	form:

30		?>

31

32		<div	class="page-header"><h1>Trip	Cost	Calculator</h1></div>

33		<form	action="calculator.php"	method="post">

34					<p>Distance	(in	miles):	<input	type="number"	name="distance"></p>

35		<p>Ave.	Price	Per	Gallon:						<input	type="radio"	name="gallon_price"	value="3.00">	3.00

36								<input	type="radio"	name="gallon_price"	value="3.50">	3.50

37								<input	type="radio"	name="gallon_price"	value="4.00">	4.00

38					</p>

39					<p>Fuel	Efficiency:	<select	name="efficiency">

40								<option	value="10">Terrible</option>

41								<option	value="20">Decent</option>

42								<option	value="30">Very	Good</option>

43								<option	value="50">Outstanding</option>

44					</select></p>

45					<p><input	type="submit"	name="submit"	value="Calculate!"></p>

46		</form>

47

48		<?php	include('includes/footer.html');	?>

This,	and	all	the	remaining	examples	in	the	chapter,	will	use	the	same	template	system	as	index.php
(Script	3.4).	 The	 beginning	 syntax	 of	 each	 page	will	 therefore	 be	 the	 same,	 but	 the	 page	 titles	will
differ.

2.	Write	the	conditional	that	checks	for	a	form	submission:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==

'POST')	{

As	suggested	already,	checking	if	the	page	is	being	requested	via	the	POST	method	is	a	good	test	for	a
form	submission	(so	long	as	the	form	uses	POST).

3.	Validate	the	form:
Click	here	to	view	code	image

if	(isset($_POST['distance'],

$_POST['gallon_price'],

$_POST['efficiency'])	&&

is_numeric($_POST['distance'])	&&

is_numeric($_POST['gallon_price'])

&&	is_numeric($_POST

['efficiency'])	)	{

The	validation	here	is	very	simple:	it	merely	checks	that	three	submitted	variables	are	set	and	are	all
numeric	 types.	You	 can	 certainly	 elaborate	 on	 this,	 perhaps	 checking	 that	 all	 values	 are	 positive	 (in
fact,	Chapter	13,	“Security	Methods,”	has	a	variation	on	this	script	that	does	just	that).
If	the	validation	passes	all	the	tests,	the	calculations	will	be	made;	otherwise,	the	user	will	be	asked	to
try	again.

4.	Perform	the	calculations:
Click	here	to	view	code	image

$gallons	=	$_POST['distance']	/

$_POST['efficiency'];

$dollars	=	$gallons	*	$_POST

['gallon_price'];

$hours	=	$_POST['distance']/65;



The	first	line	calculates	the	number	of	gallons	of	gasoline	the	trip	will	take,	determined	by	dividing	the
distance	by	the	fuel	efficiency.	The	second	line	calculates	the	cost	of	the	fuel	for	the	trip,	determined	by
multiplying	the	number	of	gallons	times	the	average	price	per	gallon.	The	third	line	calculates	how	long
the	trip	will	take,	determined	by	dividing	the	distance	by	65	(representing	65	miles	per	hour).

5.	Print	the	results:
Click	here	to	view	code	image

echo	'<div	class="page-header">

<h1>Total	Estimated	Cost</h1>

</div>

<p>The	total	cost	of	driving	'

.	$_POST['distance']	.	'	miles,

averaging	'	.	$_POST['efficiency']

.	'	miles	per	gallon,	and	paying

an	average	of	$'	.	$_POST

['gallon_price']	.	'	per	gallon,

is	$'	.	number_format

($dollars,	2)	.	'.	If	you	drive

at	an	average	of	65	miles	per

hour,	the	trip	will	take

approximately	'	.	number_format

($hours,	2)	.	'	hours.</p>';

All	of	 the	values	are	printed	out	while	 formatting	 the	cost	and	hours	with	 the	number_format()
function.	 Using	 the	 concatenation	 operator	 (the	 period)	 allows	 the	 formatted	 numeric	 values	 to	 be
appended	to	the	printed	message.

6.	Complete	the	conditionals	and	close	the	PHP	tag:
Click	here	to	view	code	image

		}	else	{	//	Invalid	submitted

		 values.

				echo	'<div	class="page-header">

				 <h1>Error!</h1></div>

				<p	class="text-danger">Please

				 enter	a	valid	distance,

				 price	per	gallon,	and	fuel

				 efficiency.</p>';

		}

}	//	End	of	main	submission	IF.

?>

The	else	clause	completes	the	validation	conditional	(Step	3),	printing	an	error	if	the	three	submitted
values	 aren’t	 all	 set	 and	 numeric	 .	 The	 final	 closing	 curly	 brace	 closes	 the
isset($_SERVER[‘REQUEST_METHOD’]	==	‘POST’)	conditional.	Finally,	the	PHP	section
is	closed	so	that	the	form	can	be	created	without	using	echo	(see	Step	7).



	If	any	one	of	the	submitted	values	is	not	both	set	and	numeric,	an	error	message	is	displayed.
7.	Begin	the	HTML	form:
Click	here	to	view	code	image

<div	class="page-header"><h1>Trip

Cost	Calculator</h1></div>

<form	action="calculator.php"

method="post">

		<p>Distance	(in	miles):	<input

		 type="number"	name="distance">

		 </p>

The	form	itself	is	fairly	obvious,	containing	only	one	new	trick:	the	action	attribute	uses	this	script’s
name	so	that	the	form	submits	back	to	this	page	instead	of	to	another.	The	first	element	within	the	form
is	a	number	input—added	in	HTML5,	where	the	user	can	enter	the	distance	of	the	trip.

8.	Complete	the	form:
Click	here	to	view	code	image

		<p>Ave.	Price	Per	Gallon:

					<input	type="radio"

					 name="gallon_price"

					 value="3.00">	3.00

					<input	type="radio"

					 name="gallon_price"

					 value="3.50">	3.50

					<input	type="radio"

					 name="gallon_price"

					 value="4.00">	4.00

		</p>

		<p>Fuel	Efficiency:

		 <select	name="efficiency">

					<option	value="10">Terrible

					 </option>

					<option	value="20">Decent

					 </option>

					<option	value="30">Very

					 Good</option>

					<option	value="50">

					 Outstanding</option>

		</select></p>

		<p><input	type="submit"

		 name="submit"

		 value="Calculate!"></p>

</form>



The	 form	 uses	 radio	 buttons	 to	 select	 the	 average	 price	 per	 gallon	 (the	 buttons	 are	wrapped	within
span	 tags	 to	 format	 them	similarly	 to	 the	other	 form	elements).	For	 the	 fuel	efficiency,	 the	user	 can
select	from	a	drop-down	menu	of	four	options.	A	submit	button	completes	the	form.

9.	Include	the	footer	file:
Click	here	to	view	code	image

<?php	include('includes/footer

.html');	?>

10.	Save	the	file	as	calculator.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	The	page	performs	the	calculations,	reports	on	the	results,	and	then	redisplays	the	form.

Tip
You	can	also	have	a	form	submit	back	to	itself	by	using	no	value	for	the	action	attribute:

Click	here	to	view	code	image

<form	action=""	method="post">

By	doing	so,	 the	form	will	always	submit	back	 to	 this	same	page,	even	 if	you	 later	change	 the
name	of	the	script.

Tip
The	Bootstrap	framework	has	many	ways	to	make	the	HTML	page	and	the	form	more	attractive
and	 usable.	 I’ve	 forgone	 these	 to	 save	 space,	 but	 check	 out	 the	 Bootstrap	 documentation	 for
details.

Making	Sticky	Forms
A	sticky	form	is	simply	a	standard	HTML	form	that	remembers	how	you	filled	it	out.	This	is	a	particularly
nice	 feature	 for	 end	 users,	 especially	 if	 you	 are	 requiring	 them	 to	 resubmit	 a	 form	 after	 filling	 it	 out
incorrectly	in	the	first	place	(as	in	 	in	the	previous	section).
To	preset	what’s	entered	in	any	text-type	input,	including	number	and	email,	use	its	value	attribute:
Click	here	to	view	code	image



<input	type="text"	name="city"

value="Innsbruck">

To	have	PHP	preset	that	value,	print	the	appropriate	variable	(this	assumes	that	the	referenced	variable
exists):
Click	here	to	view	code	image

<input	type="text"	name="city"

value="<?php	echo	$city;	?>">

This	 is	also	a	nice	example	of	 the	benefit	of	PHP’s	HTML-embedded	nature:	you	can	place	PHP	code
anywhere,	including	within	HTML	tags.
To	 preset	 the	 status	 of	 radio	 buttons	 or	 check	 boxes—to	 pre-check	 them,	 add	 the	 code
checked=”checked”	to	their	input	tags.	Using	PHP,	you	might	write:
Click	here	to	view	code	image

<input	type="radio"	name="gender"

value="F"	<?php	if	($gender	==	'F')	{

echo	'checked="checked"';

}	?>>

As	you	can	see,	the	syntax	can	quickly	get	complicated;	you	may	find	it	easiest	to	create	the	form	element
and	then	add	the	PHP	code	as	a	second	step.
To	preset	the	value	of	a	textarea,	print	the	value	between	the	textarea	tags:
Click	here	to	view	code	image

<textarea	name="comments"	rows="10"

cols="50"><?php	echo	$comments;	?>

</textarea>

Note	that	the	textarea	tag	does	not	have	a	value	attribute	like	the	standard	text	input.
To	preselect	a	pull-down	menu,	add	selected=”selected”	to	the	appropriate	option.	This	is	easy
if	you	also	use	PHP	to	generate	the	menu:
Click	here	to	view	code	image

echo	'<select	name="year">';

for	($y	=	2017;	$y	<=	2027;	$y++)	{

		echo	"<option	value=\"$y\"";

		if	($year	==	$y)	{

				echo	'	selected="selected"';

		}

		echo	">$y</option>\n";

}

echo	'</select>';

With	this	new	information	in	mind,	let’s	rewrite	calculator.php	so	that	it’s	sticky.	Unlike	the	earlier
examples,	the	existing	values	will	be	present	in	$_POST	variables.	Also,	since	 it’s	best	not	 to	refer	 to
variables	unless	they	exist,	conditionals	will	check	that	a	variable	is	set	before	printing	its	value.

To	make	a	sticky	form:
1.	Open	calculator.php	(refer	to	Script	3.5)	in	your	text	editor	or	IDE,	if	it	is	not	already	open.
2.	Change	the	distance	input	to	read	(Script	3.6)
Click	here	to	view	code	image

<p>Distance	(in	miles):



<input	type="number"

name="distance"	value="<?php	if

(isset($_POST['distance']))	echo

$_POST['distance'];	?>"></p>

Script	3.6	The	calculator's	form	now	recalls	the	previously	entered	and	selected	values	(creating	a	sticky
form).
Click	here	to	view	code	image

1			<?php	#	Script	3.5	-	calculator.php

2			

3			$page_title	=	'Trip	Cost	Calculator';

4			include('includes/header.html');

5			

6			//	Check	for	form	submission:

7			if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

8			

9						//	Minimal	form	validation:

10					if	(isset($_POST['distance'],	$_POST['gallon_price'],	$_POST['efficiency'])	&&

11						is_numeric($_POST['distance'])	&&	is_numeric($_POST['gallon_price'])	&&

								is_numeric($_POST['efficiency'])	)	{

12

13								//	Calculate	the	results:

14								$gallons	=	$_POST['distance']	/	$_POST['efficiency'];

15								$dollars	=	$gallons	*	$_POST['gallon_price'];

16								$hours	=	$_POST['distance']/65;

17

18								//	Print	the	results:

19								echo	'<div	class="page-header"><h1>Total	Estimated	Cost</h1></div>

20								<p>The	total	cost	of	driving	'	.	$_POST['distance']	.	'	miles,	averaging	'	.

										$_POST['efficiency']	.	'	miles	per	gallon,	and	paying	an	average	of	$'	.	$_POST['gallon_

										price']	.	'	per	gallon,	is	$'	.	number_format	($dollars,	2)	.	'.	If	you	drive	at	an

										average	of	65	miles	per	hour,	the	trip	will	take	approximately	'	.

										number_format($hours,	2)	.	'	hours.</p>';

21

22					}	else	{	//	Invalid	submitted	values.

23								echo	'<div	class="page-header"><h1>Error!</h1></div>

24								<p	class="text-danger">Please	enter	a	valid	distance,	price	per	gallon,	and	fuel

										efficiency.</p>';

25					}

26

27		}	//	End	of	main	submission	IF.

28

29		//	Leave	the	PHP	section	and	create	the	HTML	form:

30		?>

31

32		<div	class="page-header"><h1>Trip	Cost	Calculator</h1></div>

33		<form	action="calculator.php"	method="post">

34					<p>Distance	(in	miles):	<input	type="number"	name="distance"	value="<?php	if

							(isset($_POST['distance']))	echo	$_POST['distance'];	?>"></p>

35					<p>Ave.	Price	Per	Gallon:

36								<input	type="radio"	name="gallon_price"	value="3.00"	<?php	if

										(isset($_POST['gallon_price'])	&&	($_POST['gallon_price']	==	'3.00'))

										echo	'checked="checked"	';	?>>	3.00

37								<input	type="radio"	name="gallon_price"	value="3.50"	<?php	if

										(isset($_POST['gallon_price'])	&&	($_POST['gallon_price']	==	'3.50'))

										echo	'checked="checked"	';	?>>	3.50ç

38								<input	type="radio"	name="gallon_price"	value="4.00"	<?php	if

										(isset($_POST['gallon_price'])	&&	($_POST['gallon_price']	==	'4.00'))

										echo	'checked="checked"	';	?>>	4.00

39					</p>

40					<p>Fuel	Efficiency:	<select	name="efficiency">

41								<option	value="10"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']



										==	'10'))	echo	'	selected="selected"';	?>>Terrible</option>

42								<option	value="20"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']

										==	'20'))	echo	'	selected="selected"';	?>>Decent</option>

43								<option	value="30"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']

										==	'30'))	echo	'	selected="selected"';	?>>Very	Good</option>

44								<option	value="50"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']

										==	'50'))	echo	'	selected="selected"';	?>>Outstanding</option>

45					</select></p>

46					<p><input	type="submit"	name="submit"	value="Calculate!"></p>

47		</form>

48

49		<?php	include('includes/footer.html');	?>

The	first	change	is	to	add	the	value	attribute	to	the	input.	Then,	print	out	the	value	of	the	submitted
distance	 variable	 ($_POST[‘distance’]).	 Since	 the	 first	 time	 the	 page	 is	 loaded,
$_POST[‘distance’]	has	no	value,	a	conditional	ensures	that	the	variable	is	set	before	attempting
to	print	it.	The	end	result	for	setting	the	input’s	value	is	the	PHP	code

Click	here	to	view	code	image

<?php

if	(isset($_POST['distance']))	{

		echo	$_POST['distance'];

}

?>

This	can	be	condensed	to	the	more	minimal	form	used	in	the	script	(you	can	omit	the	curly	braces	if	you
have	only	one	statement	within	a	conditional	block,	although	I	very	rarely	recommend	that	you	do	so).

3.	Change	the	radio	buttons	to
Click	here	to	view	code	image

<input	type="radio"

name="gallon_price"

value="3.00"	<?php	if

(isset($_POST['gallon_price'])	&&

($_POST['gallon_price']	==

'3.00'))	echo	'checked="checked"

';	?>>	3.00

<input	type="radio"

name="gallon_price"	value="3.50"

<?php	if	(isset($_POST['gallon_

price'])	&&	($_POST['gallon_

price']	==	'3.50'))	echo

'checked="checked"	';	?>>	3.50

<input	type="radio"

name="gallon_price"	value="4.00"

<?php	if	(isset($_POST['gallon_

price'])	&&	($_POST['gallon_

price']	==	'4.00'))	echo

'checked="checked"	';	?>>	4.00

For	each	of	the	three	radio	buttons,	the	following	code	must	be	added	within	the	input	tag:
Click	here	to	view	code	image

<?php	if	(isset($_POST['gallon_

price'])	&&	($_POST['gallon_

price']	==	'XXX'))	echo

'checked="checked"	';	?>

For	each	button,	the	comparison	value	(XXX)	gets	changed	accordingly.



4.	Change	the	select	menu	options	to
Click	here	to	view	code	image

<option	value="10"<?php	if

(isset($_POST['efficiency'])

&&	($_POST['efficiency']

==	'10'))	echo	'	selected=

"selected"';	?>>Terrible

</option>

<option	value="20"<?php	if

(isset($_POST['efficiency'])

&&	($_POST['efficiency']

==	'20'))	echo	'	selected=

"selected"';	?>>Decent

</option>

<option	value="30"<?php	if

(isset($_POST['efficiency'])

&&	($_POST['efficiency']

==	'30'))	echo	'	selected=

"selected"';	?>>Very	Good

</option>

<option	value="50"<?php	if

(isset($_POST['efficiency'])

&&	($_POST['efficiency']

==	'50'))	echo	'	selected=

"selected"';	?>>Outstanding

</option>

For	each	option,	within	the	opening	option	tag,	add	the	following	code:
Click	here	to	view	code	image

<?php	if	(isset($_POST

['efficiency'])	&&	($_POST

'['efficiency']	==	'XX'))	echo	'

selected="selected"';	?>

Again,	just	the	specific	comparison	value	(XX)	must	be	changed	to	match	each	option.
5.	Save	the	file	as	calculator.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	
and	 .



	The	form	now	recalls	the	previously	submitted	values…

	…whether	or	not	the	form	was	completely	filled	out.

Tip
Because	the	price	per	gallon	and	fuel	efficiency	values	are	numeric,	you	can	quote	or	not	quote
the	 comparison	 values	within	 the	 added	 conditionals.	 I	 choose	 to	 quote	 them,	 because	 they’re
technically	strings	with	numeric	values.

Tip
Because	 the	added	PHP	code	 in	 this	example	exists	 inside	 the	HTML	form	element	 tags,	error
messages	may	not	be	obvious.	If	problems	occur,	check	the	HTML	source	of	 the	page	 to	see	 if
PHP	errors	are	printed	within	the	value	attributes	and	the	tags	themselves.

Tip
You	 should	 always	 double-quote	 HTML	 attributes,	 particularly	 the	value	 attribute	 of	 a	 text
input.	If	you	don’t,	multiword	values	like	Elliott	Smith	will	appear	as	just	Elliott	in	the	browser.

Tip
Some	 browsers	 will	 also	 remember	 values	 entered	 into	 forms	 for	 you;	 this	 is	 a	 separate	 but
potentially	overlapping	issue	from	using	PHP	to	accomplish	this.

Creating	Your	Own	Functions
PHP	 has	 a	 lot	 of	 built-in	 functions,	 addressing	 almost	 every	 need	 you	 might	 have.	More	 importantly,
though,	PHP	has	the	capability	for	you	to	define	and	use	your	own	functions	for	whatever	purpose.	The
syntax	for	making	your	own	function	is
Click	here	to	view	code	image

function	function_name()	{

		//	Function	code.

}



The	name	of	your	 function	 can	be	 any	combination	of	 letters,	 numbers,	 and	 the	underscore,	 but	 it	must
begin	 with	 either	 a	 letter	 or	 the	 underscore.	 You	 also	 cannot	 use	 an	 existing	 function	 name	 for	 your
function	(print,	echo,	isset,	and	so	on).	One	perfectly	valid	function	definition	is
Click	here	to	view	code	image

function	do_nothing()	{

		//	Do	nothing!

}

In	PHP,	as	mentioned	in	the	first	chapter,	function	names	are	case-insensitive	(unlike	variable	names),	so
you	could	call	 that	 function	using	do_Nothing()	or	DO_NOTHING()	or	Do_Nothing(),	 and	 so
forth,	but	not	donothing()	or	DoNothing().
The	code	within	the	function	can	do	nearly	anything,	from	generating	HTML	to	performing	calculations	to
calling	other	functions.
The	most	common	reasons	to	create	your	own	functions	are	as	follows:

	To	associate	repeated	code	with	one	function	call
	To	separate	sensitive	or	complicated	processes	from	other	code
	To	make	common	code	bits	easier	to	reuse

This	 chapter	 runs	 through	 a	 couple	 of	 examples,	 and	 you’ll	 see	 some	 others	 throughout	 the	 rest	 of	 the
book.	 For	 this	 first	 example,	 a	 function	 will	 be	 defined	 that	 outputs	 the	 HTML	 code	 for	 generating
theoretical	ads.	This	function	will	then	be	called	twice	on	the	home	page	 .



	The	two	“ads”	are	generated	by	calling	the	same	user-defined	function.

To	create	your	own	function:
1.	Open	index.php	(Script	3.4)	in	your	text	editor	or	IDE.
2.	After	the	opening	PHP	tag,	begin	defining	a	new	function	(Script	3.7):

function	create_ad()	{

Script	3.7	This	version	of	 the	home	page	has	a	user-defined	function	 that	outputs	a	 theoretical	ad.	The
function	is	called	twice	in	the	script,	thus	creating	two	ads.
Click	here	to	view	code	image

1			<?php	#	Script	3.7	-	index.php	#2

2

3			//	This	function	outputs	theoretical	HTML

4			//	for	adding	ads	to	a	web	page.

5			function	create_ad()	{

6					echo	'<div	class="alert	alert-info"	role="alert"><p>This	is	an	annoying	ad!	This	is

						an	annoying	ad!	This	is	an	annoying	ad!	This	is	an	annoying	ad!</p></div>';

7			}	//	End	of	the	function	definition.

8			

9			$page_title	=	'Welcome	to	this	Site!';

10		include('includes/header.html');

11		

12		//	Call	the	function:

13		create_ad();

14		?>

15		

16		<div	class="page-header"><h1>Content	Header</h1></div>

17		<p>This	is	where	the	page-specific	content	goes.	This	section,	and	the	corresponding	header,

				will	change	from	one	page	to	the	next.</p>

18

19		<p>Volutpat	at	varius	sed	sollicitudin	et,	arcu.	Vivamus	viverra.	Nullam	turpis.	Vestibulum

				sed	etiam.	Lorem	ipsum	sit	amet	dolore.	Nulla	facilisi.	Sed	tortor.	Aenean	felis.	Quisque

				eros.	Cras	lobortis	commodo	metus.	Vestibulum	vel	purus.	In	eget	odio	in	sapien	adipiscing

				blandit.	Quisque	augue	tortor,	facilisis	sit	amet,	aliquam,	suscipit	vitae,	cursus	sed,	arcu

				lorem	ipsum	dolor	sit	amet.</p>

20			

21		<?php

22		//	Call	the	function	again:

23		create_ad();

24			

25		include('includes/footer.html');

26		?>

The	function	to	be	written	here	would,	in	theory,	generate	the	HTML	required	to	add	ads	to	a	web	page.
The	function’s	name	clearly	states	its	purpose.
Although	not	required,	it’s	conventional	to	place	a	function	definition	near	the	very	top	of	a	script	or	in
a	separate	file.

3.	Generate	the	HTML:
Click	here	to	view	code	image

echo	'<div	class="alert

alert-info"	role="alert"><p>This

is	an	annoying	ad!	This	is	an

annoying	ad!	This	is	an

annoying	ad!	This	is	an

annoying	ad!</p></div>';



In	a	real	function,	the	code	would	output	actual	HTML	instead	of	a	paragraph	of	text.	For	now,	a	simple
Bootstrap	component	will	suffice.	(The	actual	HTML	would	be	provided	by	the	service	you’re	using	to
generate	and	tracks	ads.)

4.	Close	the	function	definition:
Click	here	to	view	code	image

}	//	End	of	the	function

definition.

It	 can	 be	 helpful	 to	 place	 a	 comment	 at	 the	 end	 of	 a	 function	 definition	 so	 that	 you	 know	 where	 a
definition	starts	and	stops	(it’s	helpful	on	longer	function	definitions,	at	least).

5.	After	including	the	header	and	before	exiting	the	PHP	block,	call	the	function:
create_ad();

The	call	 to	 the	create_ad()	 function	will	have	 the	 result	of	 inserting	 the	 function’s	output	at	 this
point	in	the	script.

6.	Just	before	including	the	footer,	call	the	function	again:
create_ad();

7.	Save	the	file	and	test	it	in	your	browser	 .

Tip
If	you	ever	see	a	call	to	undefined	function	function_name	error,	this	means
that	 you	 are	 calling	 a	 function	 that	 hasn’t	 been	 defined.	 This	 can	 happen	 if	 you	 misspell	 the
function’s	name	 (either	when	defining	or	calling	 it)	or	 if	 you	 fail	 to	 include	 the	 file	where	 the
function	is	defined.

Creating	a	function	that	takes	arguments
Just	 like	 PHP’s	 built-in	 functions,	 those	 you	write	 can	 take	 arguments.	 For	 example,	 the	strlen()
function	takes	as	an	argument	the	string	whose	character	length	will	be	determined.
A	function	can	take	any	number	of	arguments,	but	the	order	in	which	you	list	them	is	critical.	To	allow	for
arguments,	add	variables	to	a	function’s	definition:
Click	here	to	view	code	image

function	print_hello($first,	$last)	{

		//	Function	code.

}

The	variable	names	you	use	in	the	function	definition	are	irrelevant	to	the	rest	of	the	script	(more	on	this
in	the	“Variable	Scope”	sidebar	toward	the	end	of	this	chapter),	but	try	to	use	valid,	meaningful	names.
Once	the	function	is	defined,	you	can	then	call	it	as	you	would	any	other	function	in	PHP,	sending	literal
values	or	variables	to	it:
Click	here	to	view	code	image

print_hello('Jimmy',	'Stewart');

$surname	=	'Stewart';

print_hello('Jimmy',	$surname);

As	with	any	function	in	PHP,	failure	to	send	the	right	number	of	arguments	results	in	an	error	 .



	Failure	to	send	a	function	the	proper	number	(and	sometimes	type)	of	arguments	creates	an	error.
(Technically	 speaking,	 an	 argument	 is	 the	 value	 passed	 when	 calling	 a	 function;	 a	 parameter	 is	 the
variable	in	the	function	definition	that	is	assigned	the	argument	value.)
To	demonstrate	this	concept,	let’s	rewrite	the	calculator	form	so	that	a	user-defined	function	creates	 the
price-per-gallon	radio	buttons.	Doing	so	will	help	to	clean	up	the	messy	form	code.

To	define	functions	that	take	arguments:
1.	Open	calculator.php	(Script	3.6)	in	your	text	editor	or	IDE.
2.	After	the	initial	PHP	tag,	start	defining	the	create_gallon_radio()	function	(Script	3.8):
Click	here	to	view	code	image

function	create_gallon_radio

($value)	{

Script	 3.8	 The	 calculator.php	 form	 now	 uses	 a	 function	 to	 create	 the	 radio	 buttons.	 Unlike	 the
create_ad()	user-defined	function,	this	one	takes	an	argument.
Click	here	to	view	code	image

1			<?php	#	Script	3.8	-	calculator.php	#3

2			

3			//	This	function	creates	a	radio	button.

4			//	The	function	takes	one	argument:	the	value.

5			//	The	function	also	makes	the	button	"sticky."

6			function	create_gallon_radio($value)	{

7			

8						//	Start	the	element:

9						echo	'<input	type="radio"	name="gallon_price"	value="'	.	$value	.	'"';

10				

11					//	Check	for	stickiness:

12					if	(isset($_POST['gallon_price'])	&&	($_POST['gallon_price']	==	$value))	{

13								echo	'	checked="checked"';

14					}

15				

16					//	Complete	the	element:

17					echo	">	$value	";

18				

19		}	//	End	of	create_gallon_radio()	function.

20			

21		$page_title	=	'Trip	Cost	Calculator';

22		include('includes/header.html');

23		

24		//	Check	for	form	submission:

25		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

26		

27					//	Minimal	form	validation:

28					if	(isset($_POST['distance'],	$_POST['gallon_price'],	$_POST['efficiency'])	&&

29					is_numeric($_POST['distance'])	&&	is_numeric($_POST['gallon_price'])	&&

							is_numeric($_POST['efficiency'])	)	{

30		

31							//	Calculate	the	results:

32							$gallons	=	$_POST['distance']	/	$_POST['efficiency'];

33							$dollars	=	$gallons	*	$_POST['gallon_price'];



34							$hours	=	$_POST['distance']/65;

35		

36							//	Print	the	results:

37							echo	'<div	class="page-header"><h1>Total	Estimated	Cost</h1></div>

38							<p>The	total	cost	of	driving	'	.	$_POST['distance']	.	'	miles,	averaging

									'	.	$_POST['efficiency']	.	'	miles	per	gallon,	and	paying	an	average	of	$'	.

									$_POST['gallon_price']	.	'	per	gallon,	is	$'	.	number_format	($dollars,	2)	.	'.

									If	you	drive	at	an	average	of	65	miles	per	hour,	the	trip	will	take	approximately

									'	.	number_format($hours,	2)	.	'	hours.</p>';

39		

40					}	else	{	//	Invalid	submitted	values.

41								echo	'<div	class="page-header"><h1>Error!</h1></div>

42								<p	class="text-danger">Please	enter	a	valid	distance,	price	per	gallon,	and	fuel

										efficiency.</p>';

43					}

44				

45		}	//	End	of	main	submission	IF.

46				

47		//	Leave	the	PHP	section	and	create	the	HTML	form:

48		?>

49		

50		<div	class="page-header"><h1>Trip	Cost	Calculator</h1></div>

51		<form	action="calculator.php"	method="post">

52					<p>Distance	(in	miles):	<input	type="number"	name="distance"	value="<?php	if

							(isset($_POST['distance']))	echo	$_POST['distance'];	?>"></p>

53					<p>Ave.	Price	Per	Gallon:

54					<?php

55					create_gallon_radio('3.00');

56					create_gallon_radio('3.50');

57					create_gallon_radio('4.00');

58					?>

59					</p>

60					<p>Fuel	Efficiency:	<select	name="efficiency">

61								<option	value="10"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']

										==	'10'))	echo	'	selected="selected"';	?>>Terrible</option>

62								<option	value="20"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']

										==	'20'))	echo	'	selected="selected"';	?>>Decent</option>

63								<option	value="30"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']

										==	'30'))	echo	'	selected="selected"';	?>>Very	Good</option>

64								<option	value="50"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']

										==	'50'))	echo	'	selected="selected"';	?>>Outstanding</option>

65					</select></p>

66					<p><input	type="submit"	name="submit"	value="Calculate!"></p>

67		</form>

68

69		<?php	include('includes/footer.html');	?>

The	function	will	create	code	like	this:
Click	here	to	view	code	image

<input	type="radio"

name="gallon_price"	value="XXX"

checked="checked">	XXX

or	this:
Click	here	to	view	code	image

<input	type="radio"

name="gallon_price"

value="XXX">	XXX

To	be	able	to	dynamically	set	the	value	of	each	radio	button,	that	value	must	be	passed	to	the	function



with	each	call.	Therefore,	that’s	the	one	argument	the	function	takes.
Notice	 that	 the	 variable	 used	 in	 the	 function	 definition	 is	 not	$_POST[‘gallon_price’].	 The
function’s	parameter	variable	is	particular	to	this	function	and	has	its	own	name.

3.	Begin	creating	the	radio	button	element:
Click	here	to	view	code	image

echo	'<input	type="radio"

name="gallon_price"	value="'	.

$value	.	'"';

This	code	starts	the	HTML	for	the	radio	button,	including	its	value	attribute,	but	does	not	complete
the	 radio	 button	 so	 that	 “stickiness”	 can	 be	 addressed	 next.	 The	 value	 for	 the	 input	 comes	 from	 the
function	argument.

4.	Make	the	input	“sticky,”	if	appropriate:
Click	here	to	view	code	image

if	(isset($_POST['gallon_price'])

&&	($_POST['gallon_price']	==

$value))	{

		echo	'	checked="checked"';

}

This	code	is	like	that	in	the	original	form,	except	now	the	comparison	value	comes	from	the	function’s
argument.

5.	Complete	the	form	element	and	the	function:
Click	here	to	view	code	image

		echo	">	$value	";

}	//	End	of	create_gallon_radio()

function.

Finally,	the	input	tag	is	closed	and	the	value	is	displayed	afterward,	with	a	space	on	either	side.
6.	Replace	the	hard-coded	radio	buttons	in	the	form	with	three	function	calls:
Click	here	to	view	code	image

<?php

create_gallon_radio('3.00');

create_gallon_radio('3.50');

create_gallon_radio('4.00');

?>

To	 create	 the	 three	 buttons,	 just	 call	 the	 function	 three	 times,	 passing	 different	 values	 for	 each.	 The
numeric	values	are	quoted	here;	otherwise,	PHP	would	drop	the	trailing	zeros.

7.	Save	the	file	as	calculator.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .



	Although	a	user-defined	function	is	used	to	create	the	radio	buttons	(see	Script	3.8),	the	result	is	no
different	to	the	user.

Setting	default	argument	values
Another	 variant	 on	 defining	 your	 own	 functions	 is	 to	 preset	 an	 argument’s	 value.	To	 do	 so,	 assign	 the
parameter	a	value	in	the	function’s	definition:
Click	here	to	view	code	image

function	greet($name,	$msg	=	'Hello')	{

		echo	"$msg,	$name!";

}

As	 the	 result	 of	 setting	 a	 default	 value,	 that	 particular	 argument	 becomes	 optional	 when	 calling	 the
function.	If	a	value	is	passed	to	it,	the	passed	value	is	used;	otherwise,	the	default	value	is	used.
You	can	set	default	values	for	as	many	of	the	parameters	as	you	want,	as	long	as	those	parameters	come
last	in	the	function	definition.	In	other	words,	the	required	parameters	must	always	be	listed	first.
With	the	example	function	just	defined,	any	of	these	will	work:
Click	here	to	view	code	image

greet($surname,	$message);

greet('Zoe');

greet('Sam',	'Good	evening');

However,	just	greet()	will	not	work.	Also,	there’s	no	way	to	pass	$msg	a	value	without	passing	one
to	$name	as	well	(argument	values	must	be	passed	in	order,	and	you	can’t	skip	a	required	parameter).
To	 take	 advantage	 of	 default	 argument	 values,	 let’s	 make	 a	 better	 version	 of	 the
create_gallon_radio()	 function.	 As	 originally	 written,	 the	 function	 only	 creates	 radio	 buttons
with	 a	 name	 of	gallon_price.	 It’d	 be	 better	 if	 the	 function	 could	 be	 used	multiple	 times	 in	 a	 form	 for
multiple	radio	button	groupings	(although	the	function	won’t	be	used	like	that	in	this	script).

To	set	default	argument	values:
1.	Open	calculator.php	(refer	to	Script	3.8)	in	your	text	editor	or	IDE,	if	it	is	not	already.
2.	Change	the	function	definition	line	(line	6)	so	that	it	takes	a	second,	optional	argument	(Script	3.9):



Click	here	to	view	code	image

function	create_radio($value,

$name	=	'gallon_price')	{

Script	3.9	The	redefined	function	now	assumes	a	set	radio	button	name	unless	one	is	specified	when	the
function	is	called.
Click	here	to	view	code	image

1			<?php	#	Script	3.9	-	calculator.php	#4

2			

3			//	This	function	creates	a	radio	button.

4			//	The	function	takes	two	arguments:	the	value	and	the	name.

5			//	The	function	also	makes	the	button	"sticky."

6			function	create_radio($value,	$name	=	'gallon_price')	{

7			

8						//	Start	the	element:

9						echo	'<input	type="radio"	name="'	.	$name	.'"	value="'	.	$value	.	'"';

10		

11					//	Check	for	stickiness:

12					if	(isset($_POST[$name])	&&	($_POST[$name]	==	$value))	{

13								echo	'	checked="checked"';

14					}

15		

16					//	Complete	the	element:

17					echo	">	$value	";

18		

19		}	//	End	of	create_gallon_radio()	function.

20		

21		$page_title	=	'Trip	Cost	Calculator';

22		include('includes/header.html');

23		

24		//	Check	for	form	submission:

25		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

26		

27					//	Minimal	form	validation:

28					if	(isset($_POST['distance'],	$_POST['gallon_price'],	$_POST['efficiency'])	&&

29						is_numeric($_POST['distance'])	&&	is_numeric($_POST['gallon_price'])	&&

								is_numeric($_POST['efficiency'])	)	{

30		

31								//	Calculate	the	results:

32								$gallons	=	$_POST['distance']	/	$_POST['efficiency'];

33								$dollars	=	$gallons	*	$_POST['gallon_price'];

34								$hours	=	$_POST['distance']/65;

35		

36								//	Print	the	results:

37								echo	'<div	class="page-header"><h1>Total	Estimated	Cost</h1></div>

38								<p>The	total	cost	of	driving	'	.	$_POST['distance']	.	'	miles,	averaging	'	.

										$_POST['efficiency']	.	'	miles	per	gallon,	and	paying	an	average	of	$'	.

										$_POST['gallon_price']	.	'	per	gallon,	is	$'	.	number_format	($dollars,	2)	.	'.

										If	you	drive	at	an	average	of	65	miles	per	hour,	the	trip	will	take	approximately	'	.

										number_format($hours,	2)	.	'	hours.</p>';

39		

40					}	else	{	//	Invalid	submitted	values.

41								echo	'<div	class="page-header"><h1>Error!</h1></div>

42								<p	class="text-danger">Please	enter	a	valid	distance,	price	per	gallon,	and	fuel

										efficiency.</p>';

43					}

44

45		}	//	End	of	main	submission	IF.

46		

47		//	Leave	the	PHP	section	and	create	the	HTML	form:

48		?>



49		

50		<div	class="page-header"><h1>Trip	Cost	Calculator</h1></div>

51		<form	action="calculator.php"	method="post">

52					<p>Distance	(in	miles):	<input	type="number"	name="distance"	value="<?php	if

							(isset($_POST['distance']))	echo	$_POST['distance'];	?>"></p>

53					<p>Ave.	Price	Per	Gallon:

54					<?php

55					create_radio('3.00');

56					create_radio('3.50');

57					create_radio('4.00');

58					?>

59					</p>

60					<p>Fuel	Efficiency:	<select	name="efficiency">

61								<option	value="10"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	==

										'10'))	echo	'	selected="selected"';	?>>Terrible</option>

62								<option	value="20"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	==

										'20'))	echo	'	selected="selected"';	?>>Decent</option>

63								<option	value="30"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	==

										'30'))	echo	'	selected="selected"';	?>>Very	Good</option>

64								<option	value="50"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	==

										'50'))	echo	'	selected="selected"';	?>>Outstanding</option>

65					</select></p>

66					<p><input	type="submit"	name="submit"	value="Calculate!"></p>

67		</form>

68		

69		<?php	include('includes/footer.html');	?>

There	 are	 two	 changes	 here.	 First,	 the	 name	 of	 the	 function	 is	 changed	 to	 be	 reflective	 of	 its	more
generic	nature.	Second,	the	function	now	takes	a	second	argument,	$name,	although	that	argument	has	a
default	value,	which	makes	that	argument	optional	when	the	function	is	called.

3.	Change	the	function	definition	so	that	it	uses	the	$name	argument	in	lieu	of	gallon_price:
Click	here	to	view	code	image

echo	'<input	type="radio"

name="'	.	$name	.'"

value="'	.	$value	.	'"';

if	(isset($_POST[$name])	&&

($_POST[$name]	==	$value))	{

		echo	'	checked="checked"';

}

Three	changes	are	necessary.	First,	$name	is	used	for	the	name	attribute	of	the	element.	Second,	the
conditional	 that	 checks	 for	 “stickiness”	 now	 uses	 $_POST[$name]	 twice	 instead	 of
$_POST[‘gallon_price’].

4.	Change	the	function	call	lines:
Click	here	to	view	code	image

create_radio('3.00');

create_radio('3.50');

create_radio('4.00');

The	function	calls	must	be	changed	to	use	the	new	function	name.	But	because	the	second	argument	has
a	default	value,	it	can	be	omitted	in	these	calls.	The	result	is	the	same	as	executing	this	call—
create_radio('4.00',	'gallon_price');

—but	now	the	function	could	be	used	to	create	other	radio	buttons	as	well.
5.	Save	the	file,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .



The	addition	of	the	second	(optional)	argument	has	not	affected	the	functionality	of	the	function.

Tip
To	pass	a	function	no	value	for	an	argument,	use	either	an	empty	string	(‘’),	NULL,	or	FALSE.

Tip
In	the	PHP	manual,	brackets	(	[]	)	are	used	to	indicate	a	function’s	optional	parameters	 .

	 The	 PHP	 manual’s	 description	 of	 the	 number_format()	 function	 shows	 that	 only	 the	 first
argument	is	required.

Returning	values	from	a	function
The	 final	 attribute	 of	 a	 user-defined	 function	 to	 discuss	 is	 that	 of	 returning	 values.	 Some,	 but	 not	 all,
functions	do	this.	For	example,	print	will	return	either	a	1	or	a	0	indicating	its	success,	whereas	echo
will	not.	As	another	example,	the	number_format()	function	returns	a	string,	which	is	the	formatted
version	of	a	number	(see	 	in	the	previous	section).



To	have	a	function	return	a	value,	use	the	return	statement.	This	function	might	return	the	astrological
sign	for	a	given	birth	month	and	day:
Click	here	to	view	code	image

function	find_sign($month,	$day)	{

		//	Function	code.

		return	$sign;

}

A	function	can	return	a	literal	value—say	a	string	or	a	number—or	the	value	of	a	variable	that	has	been
determined	within	the	function.
When	calling	a	function	that	returns	a	value,	you	can	assign	the	function	result	to	a	variable:
Click	here	to	view	code	image

$my_sign	=	find_sign('October',	23);

or	use	it	as	an	argument	when	calling	another	function:
Click	here	to	view	code	image

echo	find_sign('October',	23);

Let’s	update	the	calculator.php	script	so	that	it	uses	a	function	to	determine	the	cost	of	the	trip.

To	have	a	function	return	a	value:
1.	Open	calculator.php	(refer	to	Script	3.9)	in	your	text	editor	or	IDE,	if	it	is	not	already.
2.	After	the	first	function	definition,	begin	defining	a	second	function	(Script	3.10):
Click	here	to	view	code	image

function	calculate_trip_cost

($miles,	$mpg,	$ppg)	{

The	calculate_trip_cost()	 function	 takes	 three	 arguments:	 the	 distance	 to	 be	 traveled,	 the
average	miles	per	gallon,	and	the	average	price	per	gallon.

Script	3.10	Another	 user-defined	 function	 is	 added	 to	 the	 script.	 It	 performs	 the	main	 calculation	 and
returns	the	result.
Click	here	to	view	code	image

1			<?php	#	Script	3.10	-	calculator.php	#5

2			

3			//	This	function	creates	a	radio	button.

4			//	The	function	takes	two	arguments:	the	value	and	the	name.

5			//	The	function	also	makes	the	button	"sticky".

6			function	create_radio($value,	$name	=	'gallon_price')	{

7			

8						//	Start	the	element:

9						echo	'<input	type="radio"	name="'	.	$name	.'"	value="'	.	$value	.	'"';

10				

11					//	Check	for	stickiness:

12					if	(isset($_POST[$name])	&&	($_POST[$name]	==	$value))	{

13									echo	'	checked="checked"';

14					}

15				

16					//	Complete	the	element:

17					echo	">	$value	";

18				

19		}	//	End	of	create_gallon_radio()	function.



20		

21		//	This	function	calculates	the	cost	of	the	trip.

22		//	The	function	takes	three	arguments:	the	distance,	the	fuel	efficiency,	and	the	price	per

				gallon.

23		//	The	function	returns	the	total	cost.

24		function	calculate_trip_cost($miles,	$mpg,	$ppg)	{

25				

26					//	Get	the	number	of	gallons:

27					$gallons	=	$miles/$mpg;

28				

29					//	Get	the	cost	of	those	gallons:

30					$dollars	=	$gallons	*	$ppg;

31				

32					//	Return	the	formatted	cost:

33					return	number_format($dollars,	2);

34				

35		}	//	End	of	calculate_trip_cost()	function.

36				

37		$page_title	=	'Trip	Cost	Calculator';

38		include('includes/header.html');

39		

40		//	Check	for	form	submission:

41		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

42				

43					//	Minimal	form	validation:

44					if	(isset($_POST['distance'],	$_POST['gallon_price'],	$_POST['efficiency'])	&&

45						is_numeric($_POST['distance'])	&&	is_numeric($_POST['gallon_price'])	&&

								is_numeric($_POST['efficiency'])	)	{

46				

47								//	Calculate	the	results:

48								$cost	=	calculate_trip_cost($_POST['distance'],	$_POST['efficiency'],

										$_POST['gallon_price']);

49								$hours	=	$_POST['distance']/65;

50				

51								//	Print	the	results:

52								echo	'<div	class="page-header"><h1>Total	Estimated	Cost</h1></div>

53								<p>The	total	cost	of	driving	'	.	$_POST['distance']	.	'	miles,	averaging	'	.

										$_POST['efficiency']	.	'	miles	per	gallon,	and	paying	an	average	of	$'	.

										$_POST['gallon_price']	.	'	per	gallon,	is	$'	.	$cost	.	'.	If	you	drive	at

										an	average	of	65	miles	per	hour,	the	trip	will	take	approximately	'	.

										number_format($hours,	2)	.	'	hours.</p>';

54				

55					}	else	{	//	Invalid	submitted	values.

56								echo	'<div	class="page-header"><h1>Error!</h1></div>

57								<p	class="text-danger">Please	enter	a	valid	distance,	price	per	gallon,	and	fuel

										efficiency.</p>';

58					}

59				

60		}	//	End	of	main	submission	IF.

61			

62		//	Leave	the	PHP	section	and	create	the	HTML	form:

63		?>

64				

65		<div	class="page-header"><h1>Trip	Cost	Calculator</h1></div>

66		<form	action="calculator.php"	method="post">

67					<p>Distance	(in	miles):	<input	type="number"	name="distance"	value="<?php	if

							(isset($_POST['distance']))	echo	$_POST['distance'];	?>"></p>

68					<p>Ave.	Price	Per	Gallon:

69					<?php

70					create_radio('3.00');

71					create_radio('3.50');

72					create_radio('4.00');

73					?>

74					</p>



75					<p>Fuel	Efficiency:	<select	name="efficiency">

76								<option	value="10"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	==

										'10'))	echo	'	selected="selected"';	?>>Terrible</option>

77								<option	value="20"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	==

										'20'))	echo	'	selected="selected"';	?>>Decent</option>

78								<option	value="30"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	==

										'30'))	echo	'	selected="selected"';	?>>Very	Good</option>

79								<option	value="50"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	==

										'50'))	echo	'	selected="selected"';	?>>Outstanding</option>

80					</select></p>

81					<p><input	type="submit"	name="submit"	value="Calculate!"></p>

82		</form>

83				

84		<?php	include('includes/footer.html');	?>

3.	Perform	the	calculations	and	return	the	formatted	cost:
Click	here	to	view	code	image

		$gallons	=	$miles/$mpg;

		$dollars	=	$gallons	*	$ppg;

		return	number_format($dollars,	2);

}	//	End	of	calculate_trip_cost()

function.

The	 first	 two	 lines	 are	 the	 same	 calculations	 as	 the	 script	 used	 before,	 but	 now	 they	 use	 function
variables.	The	last	thing	the	function	does	is	return	a	formatted	version	of	the	calculated	cost.

4.	Replace	the	two	lines	that	calculate	the	cost	(lines	32–33	of	Script	3.9)	with	a	function	call:
Click	here	to	view	code	image

$cost	=	calculate_trip_cost

($_POST['distance'],	$_

POST['efficiency'],

$_POST['gallon_price']);

Invoking	the	function,	while	passing	it	the	three	required	values,	will	perform	the	calculation.	Since	the
function	 returns	 a	 value,	 the	 results	 of	 the	 function	 call—the	 returned	 value—can	 be	 assigned	 to	 a
variable.

5.	Change	the	echo	statement	to	use	the	new	variable:
Click	here	to	view	code	image

echo	'<div	class="page-header">

<h1>Total	Estimated	Cost</h1>

</div>

<p>The	total	cost	of	driving	'	.

$_POST['distance']	.	'	miles,

averaging	'	.	$_POST['efficiency']

.	'	miles	per	gallon,	and	paying

an	average	of	$'	.	$_POST

['gallon_price']	.	'	per	gallon,

is	$'	.	$cost	.	'.	If	you

drive	at	an	average	of	65

miles	per	hour,	the	trip	will

take	approximately	'	.

number_format($hours,	2)	.	'

hours.</p>';

The	echo	statement	uses	the	$cost	variable	here,	instead	of	$dollars	(as	in	the	previous	version
of	 the	 script).	Also,	 since	 the	$cost	 variable	 is	 formatted	within	 the	 function,	 the	$cost	 function
does	not	need	to	be	applied	within	the	echo	statement	to	this	variable.



6.	Save	the	file,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	The	calculator	now	uses	a	user-defined	function	to	calculate	and	return	the	trip’s	cost.	But	this	change
has	no	impact	on	what	the	user	sees.

Tip
The	return	statement	terminates	the	code	execution	at	that	point,	so	any	code	within	a	function
after	an	executed	return	will	never	run.

Tip
A	function	can	have	multiple	return	statements	(e.g.,	in	a	switch	statement	or	conditional),
but	only	one,	at	most,	will	ever	be	invoked.	For	example,	functions	commonly	do	something	like
this:

Click	here	to	view	code	image

function	some_function	()	{

		if	(/*	condition	*/)	{

				return	TRUE;

		}	else	{

				return	FALSE;

		}

}

Tip
To	have	a	function	return	multiple	values,	use	the	array()	function—or	short	array	syntax—to
return	an	array	of	values:

Click	here	to	view	code	image

return	array($var1,	$var2);



Tip
When	 calling	 a	 function	 that	 returns	 an	 array,	 use	 the	 list()	 function	 to	 assign	 the	 array
elements	to	individual	variables:

Click	here	to	view	code	image

list($v1,	$v2)	=	some_function();

Variable	Scope
Every	variable	in	PHP	has	a	scope	to	it,	which	is	to	say	a	realm	in	which	the	variable—and
therefore	 its	value—can	be	 accessed.	For	 starters,	 variables	have	 the	 scope	of	 the	page	 in
which	they	reside.	If	you	define	$var,	the	rest	of	the	page	can	access	$var	but	other	pages
generally	cannot.
Since	 included	 files	 act	 as	 if	 they	 were	 part	 of	 the	 original	 (including)	 script,	 variables
defined	before	an	include()	line	are	available	to	the	included	file,	as	you’ve	already	seen
with	$page_title	 and	header.html.	 Further,	 variables	 defined	 within	 the	 included
file	are	available	to	the	parent	(including)	script	after	the	include()	line.
User-defined	 functions	 have	 their	 own	 scope:	 variables	 defined	 within	 a	 function	 are	 not
available	outside	of	it,	and	variables	defined	outside	of	a	function	are	not	available	within	it.
For	this	reason,	a	variable	inside	of	a	function	can	have	the	same	name	as	one	outside	of	it	but
still	be	an	entirely	different	variable	with	a	different	value.	This	 is	a	confusing	concept	 for
many	beginning	programmers.
To	alter	the	variable	scope	within	a	function,	you	can	use	the	global	statement:

Click	here	to	view	code	image

function	function_name()	{

							global	$var;

}

$var	=	20;

function_name();	//	Function	call.

In	 this	 example,	$var	 inside	 of	 the	 function	 is	 now	 the	 same	 as	$var	 outside	 of	 it.	 This
means	that	the	function	$var	already	has	a	value	of	20,	and	if	that	value	changes	inside	of	the
function,	the	external	$var’s	value	will	also	change.
Another	option	for	circumventing	variable	scope	is	to	make	use	of	the	superglobals:	$_GET,
$_POST,	$_REQUEST,	 and	 so	 forth.	 These	 variables	 are	 automatically	 accessible	within
your	 functions	(hence,	 they	are	superglobal).	You	can	also	add	elements	 to	 the	$GLOBALS
array	to	make	them	available	within	a	function.
All	of	 that	being	said,	 it’s	almost	always	best	not	 to	use	global	variables	within	a	 function.
Functions	 should	 be	 designed	 so	 that	 they	 receive	 every	 value	 they	 need	 as	 arguments	 and
return	whatever	 value	 or	 values	 need	 to	 be	 returned.	Relying	 on	 global	 variables	within	 a
function	makes	them	more	context	dependent	and,	consequently,	less	useful.
PHP	7	New	Function	Features
PHP	7	adds	new	 features	 to	user-defined	 functions.	To	 start,	 you	can	now	declare	 function
parameters	as	scalar	types:

Click	here	to	view	code	image



function	greet(string	$name)	{

or
Click	here	to	view	code	image

function	test(bool	$testing)	{

PHP	5	had	the	ability	to	declare	parameters	as	arrays	or	classes	(via	type	hinting),	and	PHP
7	expands	this	to	bool,	float,	int,	and	string.	Failure	to	call	the	function	without	the
right	type	of	argument	causes	an	error.
PHP	7	also	adds	the	ability	to	declare	the	type	of	value	returned	by	the	function:

Click	here	to	view	code	image

function	greet(string	$name):	string	{

That	code	forces	the	function	to	return	a	string,	or	creates	an	error	if	it	doesn’t.
PHP	 7.1	 expands	 these	 features	 a	 bit	more.	You	 can	mark	 a	 parameter	 or	 a	 return	 type	 as
“nullable”	by	preceding	it	with	a	question	mark:

Click	here	to	view	code	image

function	greet(string	?$name)	{

That	function	definition	says	that	if	a	name	value	is	provided,	it	must	be	a	string,	but	you	can
also	provide	 the	value	null	 instead.	 Similarly,	 this	 function	will	 return	 either	 a	 string	 or
null:

Click	here	to	view	code	image

function	greet(string	$name):	?string	{

Finally,	PHP	7.1	adds	the	ability	to	indicate	that	a	function	returns	no	value:
Click	here	to	view	code	image

function	test():	void	{

		//	No	return	statement!

}

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	What	is	an	absolute	path?	What	is	a	relative	path?
	What	is	the	difference	between	include()	and	require()?
	What	is	the	difference	between	include()	and	include_once()?	Which	function	should	you
generally	avoid	using	and	why?
	Why	does	it	not	matter	what	extension	is	used	for	an	included	file?
	What	is	the	significance	of	the	$_SERVER[‘REQUEST_METHOD’]	value?
	How	do	you	make	the	following	form	elements	sticky?
	Text	input

http://LarryUllman.com/forums/


	Select	menu
	Radio	button
	Check	box
	Textarea
	If	you	have	a	PHP	error	caused	by	code	placed	within	an	HTML	tag,	where	must	you	look	to	find	the
error	message?
	What	is	the	syntax	for	defining	your	own	function?
	What	is	the	syntax	for	defining	a	function	that	takes	arguments?
	What	 is	 the	syntax	for	defining	a	function	that	 takes	arguments	with	default	values?	How	do	default
values	impact	how	the	function	can	be	called?
	How	do	you	define	and	call	a	function	that	returns	a	value?

Pursue
	Create	a	new	HTML	template	for	the	pages	in	this	chapter.	Use	that	new	template	as	the	basis	for	new
header	and	footer	files.	By	doing	so,	you	should	be	able	to	change	the	look	of	the	entire	site	without
modifying	any	of	the	PHP	scripts.
	Create	a	new	form	and	give	it	the	ability	to	be	“sticky.”	Have	the	form	use	a	textarea	and	a	check	box
(neither	of	which	is	demonstrated	in	this	chapter).
	Change	calculator.php	so	that	it	uses	a	constant	in	lieu	of	the	hard-coded	average	speed	of	65.
(As	written,	the	average	speed	is	a	“magic	number”—a	value	used	in	a	script	without	explanation.)
	Better	yet,	modify	calculator.php	so	that	the	user	can	enter	the	average	speed	or	select	it	from	a
list	of	options.
	Update	the	output	of	calculator.php	so	that	it	displays	the	number	of	days	and	hours	the	trip	will
take	when	the	number	of	hours	is	greater	than	24.
	As	a	more	advanced	trick,	rewrite	calculator.php	so	that	the	create_radio()	function	call
is	in	the	script	only	once	but	still	creates	three	radio	buttons.	Hint:	Use	a	loop.
	 If	 you’re	 using	 PHP	 7	 or	 greater,	 update	 the	 function	 definitions	 to	 use	 parameter	 and	 return	 type
declarations.	(See	the	“PHP	7	New	Function	Features”	sidebar	and	the	PHP	manual	for	details.)
	Learn	more	about	the	Bootstrap	framework	to	better	stylize	the	calculator	form.















































































































































































4.	Introduction	to	MySQL

In	This	Chapter
Naming	Database	Elements
Choosing	Your	Column	Types
Choosing	Other	Column	Properties
Accessing	MySQL
Review	and	Pursue

Because	this	book	discusses	how	to	integrate	several	technologies—primarily	PHP,	SQL,	and	MySQL—a
solid	understanding	of	each	 is	 important	before	you	begin	writing	PHP	scripts	 that	use	SQL	 to	 interact
with	MySQL.	This	chapter	is	a	departure	from	its	predecessors	in	that	it	temporarily	leaves	PHP	behind
to	delve	into	MySQL.
MySQL	is	the	world’s	most	popular	open	source	database	application	(according	to	MySQL’s	web	site,
www.mysql.com)	 and	 is	 commonly	 used	with	 PHP.	 The	MySQL	 software	 comes	with	 the	 database
server	that	stores	the	actual	data,	different	client	applications	for	interacting	with	the	database	server,	and
several	 utilities.	 In	 this	 chapter,	 you’ll	 see	 how	 to	 define	 a	 simple	 table	 using	MySQL’s	 allowed	 data
types	and	other	properties.	Then	you’ll	learn	how	to	interact	with	the	MySQL	server	using	two	different
client	applications.	This	information	will	be	the	foundation	for	the	SQL	taught	in	the	next	chapter.

Naming	Database	Elements
Before	you	start	working	with	databases,	you	have	to	identify	your	needs.	The	purpose	of	the	application
(or	web	site,	in	this	case)	dictates	how	the	database	should	be	designed.	With	that	in	mind,	the	examples
in	this	chapter	and	the	next	will	use	a	database	that	stores	some	user	registration	information.
When	creating	databases	and	tables,	you	should	come	up	with	names	(formally	called	identifiers)	that	are
clear,	meaningful,	and	easy	to	type.	Also,	identifiers

	Should	only	contain	letters,	numbers,	and	the	underscore	(no	spaces)
	Should	not	be	the	same	as	an	existing	keyword	(like	an	SQL	term	or	a	function	name)
	Should	be	treated	as	case-sensitive
	Cannot	be	longer	than	64	characters	(approximately)
	Must	be	unique	within	its	realm

This	last	rule	means	that	a	table	cannot	have	two	columns	with	the	same	name	and	a	database	cannot	have
two	tables	with	the	same	name.	You	can,	however,	use	the	same	column	name	in	two	different	tables	in	the
same	database;	in	fact,	you	often	will	do	this.
As	 for	 the	 first	 three	 rules,	 I	 use	 the	 word	 should,	 as	 these	 are	 good	 policies	 more	 than	 exact
requirements.	 Exceptions	 can	 be	made	 to	 these	 rules,	 but	 the	 syntax	 for	 doing	 so	 can	 be	 complicated.
Abiding	by	these	suggestions	is	a	reasonable	limitation	and	will	help	avoid	complications.

To	name	a	database’s	elements:
1.	Determine	the	database’s	name.
This	is	the	easiest	and,	arguably,	least	important	step.	Just	make	sure	that	the	database	name	is	unique

http://www.mysql.com


for	that	MySQL	server.	If	you’re	using	a	hosted	server,	your	web	host	will	 likely	provide	a	database
name	that	may	or	may	not	include	your	account	or	domain	name.
For	this	first	example,	the	database	will	be	called	sitename,	since	the	information	and	techniques	could
apply	to	any	generic	site.

2.	Determine	the	table	names.
The	 table	names	 just	need	 to	be	unique	within	 this	database,	which	shouldn’t	be	a	problem.	For	 this
example,	which	stores	user	registration	information,	the	only	table	will	be	called	users.

3.	Determine	the	column	names	for	each	table.
The	users	 table	will	have	columns	 to	store	a	user	 ID,	a	 first	name,	a	 last	name,	an	email	address,	a
password,	and	 the	 registration	date.	Table	4.1	 shows	 these	 columns,	with	 sample	data,	 using	proper
identifiers.	Because	MySQL	has	a	function	called	password,	 I’ve	changed	the	name	of	that	column	to
just	pass.	This	isn’t	strictly	necessary	but	is	really	a	good	idea.

TABLE	4.1	users	Table
Column	Name Example
user_id 834
first_name Larry
last_name David
email ld@example.com
pass emily07
registration_date 2017-08-31	19:21:03

For	 the	 user_id	 column,	 there	 are	 two	 common	 approaches.	 Some	 use	 simply	 id	 as	 the	 identifying
column	name	in	any	table	so	that	all	tables	have	an	id	column.	Others	use	a	variation	on	tablename_id:
user_id	or	users_id.

Tip
Chapter	6,	“Database	Design,”	 discusses	 database	 design	 in	more	 detail,	 using	more	 complex
examples.

Tip
To	 be	 precise,	 the	 length	 limit	 for	 the	 names	 of	 databases,	 tables,	 and	 columns	 is	 actually	 64
bytes,	 not	 characters.	 While	 most	 characters	 in	 many	 languages	 require	 1	 byte	 apiece,	 it’s
possible	to	use	a	multibyte	character	in	an	identifier.	But	64	bytes	is	still	a	lot	of	space,	so	this
probably	won’t	be	an	issue	for	you.



Tip
Whether	 or	 not	 an	 identifier	 in	 MySQL	 is	 case-sensitive	 actually	 depends	 on	 many	 things,
because	each	database	is	actually	a	folder	on	the	server	and	each	table	is	actually	one	or	more
files.	 On	 Windows	 and	 normally	 on	 macOS,	 database	 and	 table	 names	 are	 generally	 case-
insensitive.	On	Unix	and	some	macOS	setups,	they	are	case-sensitive.	Column	names	are	always
case-insensitive.	It’s	really	best,	in	my	opinion,	to	always	use	all	lowercase	letters	and	work	as
if	case-sensitivity	applied.

Choosing	Your	Column	Types
Once	you	have	identified	all	of	the	tables	and	columns	that	the	database	will	need,	you	should	determine
each	column’s	data	type.	When	you’re	creating	a	table,	MySQL	requires	that	you	explicitly	state	what	sort
of	 information	each	column	will	contain.	There	are	 three	primary	 types,	which	 is	 true	for	almost	every
database	application:

	Text	(aka	strings)
	Numbers
	Dates	and	times

Within	 each	 of	 these,	 there	 are	 many	 variants—some	 of	 which	 are	 MySQL	 specific.	 Choosing	 your
column	 types	 correctly	 not	 only	 dictates	what	 information	 can	 be	 stored	 and	 how,	 but	 also	 affects	 the
database’s	overall	performance.	Table	4.2	lists	most	of	the	available	types	for	MySQL,	how	much	space
they	take	up,	and	brief	descriptions	of	each	type.	Note	that	some	of	these	limits	may	change	in	different
versions	of	MySQL,	and	 the	character	set	 (to	be	discussed	 in	Chapter	6,	“Database	Design”)	may	also
impact	the	size	of	the	text	types.



TABLE	4.2	MySQL	Data	Types
Type Size Description
CHAR[Length] Length	bytes A	fixed-length	field	from	0	to	255	characters	long

VARCHAR[Length]
String	length	+
1	or	2	bytes A	variable-length	field	from	0	to	65,535	characters	long

TINYTEXT
String	length	+
1	bytes A	string	with	a	maximum	length	of	255	characters

TEXT
String	length	+
2	bytes A	string	with	a	maximum	length	of	65,535	characters

MEDIUMTEXT
String	length	+
3	bytes A	string	with	a	maximum	length	of	16,777,215	characters

LONGTEXT
String	length	+
4	bytes A	string	with	a	maximum	length	of	4,294,967,295	characters

TINYINT[Length] 1	byte Range	of	–128	to	127	or	0	to	255	unsigned
SMALLINT[Length] 2	bytes Range	of	–32,768	to	32,767	or	0	to	65,535	unsigned
MEDIUMINT[Length]3	bytes Range	of	–8,388,608	to	8,388,607	or	0	to	16,777,215	unsigned

INT[Length] 4	bytes Range	of	–2,147,483,648	to	2,147,483,647	or	0	to
4,294,967,295	unsigned

BIGINT[Length] 8	bytes
Range	of	–9,223,372,036,854,775,808	to
9,223,372,036,854,775,807	or	0	to
18,446,744,073,709,551,615	unsigned

FLOAT[Length,

Decimals]
4	bytes A	small	number	with	a	floating	decimal	point

DOUBLE[Length,

Decimals]
8	bytes A	large	number	with	a	floating	decimal	point

DECIMAL[Length,

Decimals]

Length	+	1	or
2	bytes A	DOUBLE	stored	as	a	string,	allowing	for	a	fixed	decimal	point

DATE 3	bytes In	the	format	YYYY-MM-DD
DATETIME 8	bytes In	the	format	YYYY-MM-DD	HH:MM:SS

TIMESTAMP 4	bytes In	the	format	YYYYMMDDHHMMSS;	acceptable	range	starts
in	1970	and	ends	in	the	year	2038

TIME 3	bytes In	the	format	of	HH:MM:SS

ENUM 1	or	2	bytes Short	for	enumeration,	which	means	that	each	column	can	have
one	of	several	possible	values

SET
1,	2,	3,	4,	or	8
bytes

Like	ENUM	except	that	each	column	can	have	more	than	one	of
several	possible	values

Many	of	the	types	can	take	an	optional	Length	attribute,	limiting	their	size.	(The	brackets,	[	],	indicate	an
optional	 parameter	 to	 be	 put	 in	 parentheses.)	 For	 performance	 purposes,	 you	 should	 place	 some
restrictions	on	 how	much	 data	 can	 be	 stored	 in	 any	 column.	But	 understand	 that	 attempting	 to	 insert	 a
string	five	characters	long	into	a	CHAR(2)	column	will	result	in	truncation	of	the	final	three	characters.
Only	the	first	two	characters	would	be	stored;	the	rest	would	be	lost	forever.	This	is	true	for	any	field	in



which	the	size	is	set	(CHAR,	VARCHAR,INT,	etc.).	Thus,	your	length	should	always	correspond	to	the
maximum	possible	value—as	a	number—or	the	longest	possible	string—as	text—that	might	be	stored.
The	various	date	types	have	all	sorts	of	unique	behaviors,	the	most	important	of	which	you’ll	learn	about
in	 this	book.	All	 the	behaviors	are	documented	 in	 the	MySQL	manual.	You’ll	use	 the	DATE	 and	TIME
fields	primarily	without	modification,	so	you	do	not	have	to	worry	too	much	about	their	intricacies.
There	 are	 also	 two	 special	 types—ENUM	 and	SET—that	 allow	 you	 to	 define	 a	 series	 of	 acceptable
values	 for	 that	 column.	 An	 ENUM	 column	 can	 store	 only	 one	 value	 of	 a	 possible	 several	 thousand,
whereas	SET	allows	for	several	of	up	to	64	possible	values.	These	are	available	in	MySQL	but	aren’t
present	in	every	database	application.

To	select	the	column	types:
1.	Identify	whether	a	column	should	be	a	text,	number,	or	date/time	type	(Table	4.3).

TABLE	4.3	users	Table
Column	Name Type
user_id number
first_name text
last_name text
email text
pass text
registration_date date/time

This	is	normally	an	easy	and	obvious	step,	but	you	want	to	be	as	specific	as	possible.	For	example,	the
date	 2006-08-02	 (MySQL	 format)	 could	 be	 stored	 as	 a	 string—August	 2,	 2006.	 But	 if	 you	 use	 the
proper	date	format,	you’ll	have	a	more	useful	database	(and,	as	you’ll	see,	there	are	functions	that	can
turn	2006-08-02	into	August	2,	2006).

2.	Choose	the	most	appropriate	subtype	for	each	column	(Table	4.4).

TABLE	4.4	users	Table
Column	Name Type
user_id MEDIUMINT

first_name VARCHAR

last_name VARCHAR

email VARCHAR

pass CHAR

registration_date DATETIME

For	this	example,	user_id	is	set	as	a	MEDIUMINT,	allowing	for	up	to	nearly	17	million	values	(as	an
unsigned,	or	non-negative,	number).	registration_date	will	be	a	DATETIME.	It	can	store	both	the	date
and	the	specific	time	a	user	registered.	When	deciding	among	the	date	types,	consider	whether	you’ll
want	to	access	just	the	date,	the	time,	or	possibly	both.
When	choosing	a	subtype,	err	on	the	side	of	storing	too	much	information.
The	other	fields	will	be	mostly	VARCHAR,	since	 their	 lengths	will	differ	from	record	 to	record.	The



only	 exception	 is	 the	 password	 column,	 which	 will	 be	 a	 fixed-length	CHAR	 (you’ll	 see	 why	 when
inserting	records	in	the	next	chapter).	See	the	sidebar	“CHAR	vs.	VARCHAR”	for	more	information	on
these	two	types.

CHAR	vs.	VARCHAR
Both	 of	 these	 types	 store	 strings	 and	 can	 be	 set	 with	 a	 maximum	 length.	 The	 primary
difference	between	the	two	is	that	anything	stored	as	a	CHAR	will	always	be	stored	as	a	string
the	 length	 of	 the	 column	 (using	 spaces	 to	 pad	 it;	 these	 spaces	 will	 be	 removed	when	 you
retrieve	 the	 stored	 value	 from	 the	 database).	 Conversely,	 strings	 stored	 in	 a	 VARCHAR
column	 will	 require	 only	 as	 much	 space	 as	 the	 string	 itself.	 So	 the	 word	 cat	 in	 a
VARCHAR(10)	column	requires	4	bytes	of	space	(the	 length	of	 the	string	plus	1),	but	 in	a
CHAR(10)	column,	that	same	word	requires	10	bytes	of	space.	Hence,	generally	speaking,
VARCHAR	columns	tend	to	require	less	disk	space	than	CHAR	columns.
However,	databases	are	normally	faster	when	working	with	fixed-size	columns,	which	is	an
argument	in	favor	of	CHAR.	And	that	same	three-letter	word—cat—in	a	CHAR(3)	uses	only
3	bytes	but	in	a	VARCHAR(10)	requires	4.	So	how	do	you	decide	which	to	use?
If	 a	 string	 field	 will	 always	 be	 of	 a	 set	 length	 (e.g.,	 a	 state	 abbreviation),	 use	 CHAR;
otherwise,	 use	 VARCHAR.	 You	 may	 notice,	 though,	 that	 in	 some	 cases	 MySQL	 defines	 a
column	as	the	one	type—like	CHAR—even	though	you	created	it	as	the	other:	VARCHAR.	This
is	perfectly	normal	and	is	MySQL’s	way	of	improving	performance.

3.	Set	the	maximum	length	for	text	columns	(Table	4.5).

TABLE	4.5	users	Table
Column	Name Type
user_id MEDIUMINT

first_name VARCHAR(20)

last_name VARCHAR(40)

email VARCHAR(60)

pass CHAR(128)

registration_date DATETIME

The	size	of	any	field	should	be	restricted	to	the	smallest	possible	value,	based	on	the	largest	possible
input.	For	example,	if	a	column	stores	a	state	abbreviation,	it	would	be	defined	as	a	CHAR(2).	Other
times	you	might	have	to	guess:	I	can’t	think	of	any	first	names	longer	than	about	10	characters,	but	just
to	be	safe	I’ll	allow	for	up	to	20.

Tip
The	length	attribute	for	numeric	types	does	not	affect	the	range	of	values	that	can	be	stored	in	the
column.	Columns	defined	as	TINYINT(1)	or	TINYINT(20)	can	store	the	exact	same	values.
Instead,	 for	 integers,	 the	 length	 dictates	 the	 display	width;	 for	 decimals,	 the	 length	 is	 the	 total
number	of	digits	that	can	be	stored.



Tip
If	you	need	absolute	precision	when	using	non-integers,	DECIMAL	is	preferred	over	FLOAT	or
DOUBLE.

Tip
MySQL	has	 a	BOOLEAN	 type,	which	 is	 just	 a	TINYINT(1),	 with	 0	meaning	FALSE	 and	 1
meaning	TRUE.

Tip
Many	of	the	data	types	have	synonymous	names:	INT	and	INTEGER,	DEC	and	DECIMAL,	and
so	on.

Tip
Depending	on	the	version	of	MySQL	in	use,	the	TIMESTAMP	field	type	is	automatically	set	as
the	current	date	and	time	when	an	INSERT	or	UPDATE	occurs,	even	if	no	value	is	specified	for
that	 particular	 field.	 If	 a	 table	 has	multiple	TIMESTAMP	 columns,	 only	 the	 first	 one	 will	 be
updated	when	an	INSERT	or	UPDATE	is	performed.

Tip
MySQL	also	has	several	variants	on	the	text	types	that	allow	for	storing	binary	data.	These	types
are	BINARY,	VARBINARY,	TINYBLOB,	MEDIUMBLOB,	 and	LONGBLOB.	 Such	 types	 can	 be
used	for	storing	files	or	encrypted	data.

Choosing	Other	Column	Properties
Besides	deciding	what	data	types	and	sizes	you	should	use	for	your	columns,	consider	a	handful	of	other
properties.
First,	every	column,	regardless	of	type,	can	be	defined	as	NOT	NULL.	The	NULL	value,	in	databases	and
programming,	 is	equivalent	 to	saying	 that	 the	field	has	no	known	value.	 Ideally,	 in	a	properly	designed
database,	every	column	of	every	row	in	every	table	should	have	a	value,	but	that	isn’t	always	the	case.	To
force	a	field	to	have	a	value,	add	the	NOT	NULL	description	to	its	column	type.	For	example,	a	required
dollar	amount	can	be	described	as
cost	DECIMAL(5,2)	NOT	NULL.



Indexes,	Keys,	and	AUTO_INCREMENT
Two	concepts	closely	related	to	database	design	are	indexes	and	keys.	An	index	in	a	database
is	a	way	of	 requesting	 that	 the	database	keep	an	eye	on	 the	values	of	 a	 specific	 column	or
combination	of	 columns	 (loosely	 stated).	The	benefit	 of	 an	 index	 is	 improved	 performance
when	 retrieving	 records	 but	 marginally	 hindered	 performance	 when	 inserting	 records	 or
updating	them.
A	key	in	a	database	table	is	integral	to	the	“normalization”	process	used	for	designing	more
complicated	databases	 (see	Chapter	6).	There	 are	 two	 types	of	keys:	primary	 and	 foreign.
Each	 table	 should	 have	 exactly	 one	 primary	 key,	 and	 the	 primary	 key	 in	 one	 table	 is	 often
linked	as	a	foreign	key	in	another.
A	table’s	primary	key	is	an	artificial	way	to	refer	to	a	record	and	must	abide	by	three	rules:
1.	It	must	always	have	a	value.
2.	That	value	must	never	change.
3.	That	value	must	be	unique	for	each	record	in	the	table.
In	 the	 users	 table,	 user_id	 will	 be	 designated	 as	 a	 PRIMARY	 KEY,	 which	 is	 both	 a
description	of	the	column	and	a	directive	to	MySQL	to	index	it.	Since	user_id	is	a	number—
which	 primary	 keys	 almost	 always	 will	 be,	 the	 AUTO_INCREMENT	 description	 is	 also
added	to	the	column,	which	tells	MySQL	to	use	the	next-highest	number	as	the	user_id	value
for	 each	 added	 record.	 You’ll	 see	 what	 this	 means	 in	 practice	 when	 you	 begin	 inserting
records.

When	creating	a	table,	you	can	also	specify	a	default	value	for	any	column,	regardless	of	type.	In	cases
where	a	majority	of	the	records	will	have	the	same	value	for	a	column,	presetting	a	default	will	save	you
from	 having	 to	 specify	 a	 value	 when	 inserting	 new	 rows	 (unless	 that	 row’s	 value	 for	 that	 column	 is
different	from	the	norm).
Click	here	to	view	code	image

subscribe	ENUM('Yes',	'No')	default	'No'

With	the	subscribe	column,	if	no	value	is	specified	when	adding	a	record,	the	default	will	be	used.
If	 a	 column	 cannot	 be	NULL	 and	 does	 not	 have	 a	 default	 value,	 and	 no	 value	 is	 specified	 for	 a	 new
record,	that	field	will	be	given	a	default	value	based	on	its	type.	For	numeric	types,	the	default	value	is	0.
For	most	date	and	time	types,	the	type’s	version	of	“zero”	will	be	the	default	(e.g.,	0000-00-00).	The	first
TIMESTAMP	column	in	a	table	will	have	a	default	value	of	the	current	date	and	time.	String	types	use	an
empty	string	(‘’)	 as	 the	default	value,	 except	 for	ENUM,	whose	default	value—again,	 if	not	otherwise
specified—is	the	first	possible	enumerated	value	(Yes	in	the	previous	example).
The	number	 types	can	be	marked	as	UNSIGNED,	which	 limits	 the	 stored	data	 to	positive	numbers	and
zero.	This	also	effectively	doubles	the	range	of	positive	numbers	that	can	be	stored	because	no	negative
numbers	will	be	kept	(see	Table	4.2).	You	can	also	flag	the	number	types	as	ZEROFILL,	which	means
that	any	extra	room	will	be	padded	with	zeros.	ZEROFILLs	are	also	automatically	UNSIGNED.
Finally,	when	designing	a	database,	you’ll	need	to	consider	creating	indexes,	adding	keys,	and	using	the
AUTO_INCREMENT	property.	Chapter	6	discusses	these	concepts	in	greater	detail,	but	in	the	meantime,
check	out	the	sidebar	“Indexes,	Keys,	and	AUTO_INCREMENT”	to	learn	how	they	affect	the	users	table.



To	finish	defining	your	columns:
1.	Identify	your	primary	key.
The	primary	key	is	quixotically	both	arbitrary	and	critically	important.	Almost	always	a	number	value,
the	primary	key	is	a	unique	way	to	refer	to	a	particular	record.	For	example,	your	phone	number	has	no
inherent	value	but	is	unique	to	you	(your	home	or	mobile	phone).
In	the	users	table,	user_id	will	be	the	primary	key:	an	arbitrary	number	used	to	refer	to	a	row	of	data.
Again,	Chapter	6	will	go	into	the	concept	of	primary	keys	in	more	detail.

2.	Identify	which	columns	cannot	have	a	NULL	value.
In	this	example,	every	field	is	required	(cannot	be	NULL).	As	an	example	of	a	column	that	could	have
NULL	values,	if	you	stored	people’s	addresses,	you	might	have	address_line1	and	address_line2,	with
the	latter	one	being	optional.	In	general,	 tables	that	have	a	lot	of	NULL	values	suggest	a	poor	design
(more	on	this	in…you	guessed	it…Chapter	6).

3.	Make	any	numeric	type	UNSIGNED	if	it	won’t	ever	store	negative	numbers.
user_id,	which	will	be	a	number,	should	be	UNSIGNED	so	that	it’s	always	positive.	As	a	rule,	primary
keys	should	always	be	unsigned.	Other	examples	of	UNSIGNED	numbers	would	be	the	price	of	items
in	an	e-commerce	example,	a	telephone	extension	for	a	business,	or	a	zip	code.

4.	Establish	the	default	value	for	any	column.
None	of	the	columns	here	logically	implies	a	default	value.

5.	Confirm	the	final	column	definitions	(Table	4.6).

TABLE	4.6	users	Table
Column	Name Type
user_id MEDIUMINT	UNSIGNED	NOT	NULL

first_name VARCHAR(20)	NOT	NULL

last_name VARCHAR(40)	NOT	NULL

email VARCHAR(60)	NOT	NULL

pass CHAR(128)	NOT	NULL

registration_date DATETIME	NOT	NULL

Before	creating	the	tables,	you	should	revisit	the	type	and	range	of	data	you’ll	store	to	make	sure	that
your	database	effectively	accounts	for	everything.

Tip
Text	 columns	 can	 also	 have	 defined	 character	 sets	 and	 collations.	 This	 will	 mean	 more…in
Chapter	6.

Tip
Default	 values	must	 always	 be	 a	 static	 value,	 not	 the	 result	 of	 executing	 a	 function,	with	 one
exception:	 the	 default	 value	 for	 a	 TIMESTAMP	 column	 can	 be	 assigned	 as
CURRENT_TIMESTAMP.



Tip
TEXT	columns	cannot	be	assigned	default	values.

Accessing	MySQL
To	create	tables,	add	records,	and	request	information	from	a	database,	you	need	some	sort	of	client	 to
communicate	with	the	MySQL	server.	Later	in	the	book,	PHP	scripts	will	act	in	this	role,	but	being	able	to
use	another	interface	is	necessary.
Although	oodles	 of	 client	 applications	 are	 available,	 I’ll	 focus	on	 two:	 the	mysql	client	 and	 the	web-
based	 phpMyAdmin.	A	 third	 option,	 the	MySQL	Workbench,	 is	 not	 discussed	 in	 this	 book	 but	 can	 be
found	 at	 the	MySQL	web	 site	 (https://dev.mysql.com/downloads/workbench/),	 should
you	not	be	satisfied	with	these	two	choices.
The	rest	of	this	chapter	assumes	you	have	access	to	a	running	MySQL	server.	If	you	are	working	on	your
own	computer,	see	Appendix	A,	“Installation,”	for	instructions	on	installing	MySQL,	starting	MySQL,	and
creating	MySQL	users,	all	of	which	must	already	be	done	in	order	to	finish	this	chapter.	If	you	are	using	a
hosted	server,	your	web	host	should	provide	you	with	the	database	access.	Depending	on	the	hosting,	you
may	be	provided	with	phpMyAdmin	but	not	be	able	to	use	the	command-line	mysql	client.

Using	the	mysql	client
The	mysql	 client	 is	normally	 installed	with	 the	 rest	of	 the	MySQL	software.	Although	 the	mysql	 client
does	not	 have	 a	pretty	graphical	 interface,	 it’s	 a	 reliable,	 standard	 tool	 that’s	 easy	 to	 use	 and	behaves
consistently	on	many	different	operating	systems.
The	mysql	client	 is	accessed	from	a	command-line	interface,	be	it	 the	Terminal	application	in	Linux	or
macOS	 ,	or	a	DOS	prompt	in	Windows	 .	If	you’re	not	comfortable	with	command-line	interactions,
you	might	find	this	interface	to	be	challenging,	but	it	becomes	easy	to	use	in	no	time.

A	Terminal	window	in	macOS.

A	Windows	DOS	prompt	or	console	(although	the	default	is	for	white	text	on	a	black	background).
To	start	the	application	from	the	command	line,	type	its	name	and	press	Return	or	Enter:
mysql

Depending	on	the	server	(or	your	computer),	you	may	need	to	enter	the	full	path	to	start	the	application.
For	example:

https://dev.mysql.com/downloads/workbench/


	/Applications/MAMP/Library/bin/	
mysql	(macOS,	using	MAMP)

	C:\xampp\mysql\bin\mysql	(Windows,	using	XAMPP)
When	invoking	this	application,	you	can	add	arguments	to	affect	how	it	runs.	The	most	common	arguments
are	 the	 username,	 password,	 and	 hostname	 (computer	 name,	 URL,	 or	 IP	 address)	 you	 want	 to	 use	 to
connect.	You	establish	these	arguments	like	so:
Click	here	to	view	code	image

mysql	-u	username	-h	hostname	-p

The	-p	option	will	cause	the	client	to	prompt	you	for	the	password.	You	can	also	specify	the	password
on	 this	 line	 if	 you	 prefer—by	 typing	 it	 directly	 after	 the	-p	 prompt—but	 it	 will	 be	 visible,	which	 is
insecure.	The	-h	hostname	argument	is	optional,	and	you	can	leave	it	off	unless	you	cannot	connect	to
the	MySQL	server	without	it.
Within	the	mysql	client,	every	statement	(SQL	command)	needs	to	be	terminated	by	a	semicolon.	These
semicolons	are	an	indication	to	the	client	that	the	query	is	complete	and	should	be	run.	The	semicolons,	a
common	point	of	confusion,	are	not	part	of	the	SQL	itself.	What	this	also	means	is	that	you	can	continue
the	same	SQL	statement	over	several	 lines	within	 the	mysql	client,	which	makes	 it	 easy	 to	 read	and	 to
edit,	should	that	be	necessary.
As	a	quick	demonstration	of	accessing	and	using	the	mysql	client,	these	next	steps	will	show	you	how	to
start	the	mysql	client,	select	a	database	to	use,	and	quit	the	client.	Before	following	these	steps,

	The	MySQL	server	must	be	running.
	You	must	have	a	username	and	password	with	proper	access.

Both	are	explained	in	Appendix	A.
As	 a	 side	 note,	 in	 the	 following	 steps	 and	 throughout	 the	 rest	 of	 the	 book,	 I	will	 continue	 to	 provide
images	using	 the	mysql	client	on	both	Windows	and	macOS.	Although	the	appearance	differs,	 the	steps
and	results	will	be	identical.	So	in	short,	don’t	be	concerned	about	why	one	image	shows	the	DOS	prompt
and	the	next	a	Terminal.

To	use	the	mysql	client:
1.	Access	your	system	from	a	command-line	interface.
On	Unix	systems	and	macOS,	this	is	just	a	matter	of	bringing	up	the	Terminal	or	a	similar	application.
If	you	are	using	Windows	and	you	have	installed	MySQL	on	your	computer,	or	press	Windows	Key+R,
type	cmd	in	the	window ,	and	press	Enter	(or	click	OK)	to	bring	up	a	DOS	prompt.



Executing	cmd	within	the	Run	prompt	in	Windows	is	one	way	to	access	a	DOS	prompt	interface.
2.	Invoke	the	mysql	client,	using	the	appropriate	command	 .

Access	the	mysql	client	by	entering	the	full	path	to	the	utility,	along	with	the	proper	arguments.
Click	here	to	view	code	image

/path/to/mysql/bin/mysql	-u	

username	-p

The	pathtomysql	part	of	this	step	will	be	largely	dictated	by	the	operating	system	you	are	running
and	where	MySQL	was	installed.	I’ve	already	provided	two	options,	based	on	installations	of	MAMP
on	macOS	or	XAMPP	on	Windows	(both	are	installed	in	Appendix	A).
The	basic	premise	is	that	you	are	running	the	mysql	client,	connecting	as	username,	and	requesting	to
be	prompted	for	the	password.	Not	to	overstate	the	point,	but	the	username	and	password	values	that
you	use	must	already	be	established	in	MySQL	as	valid	(see	Appendix	A).

3.	Enter	the	password	at	the	prompt	and	press	Return/Enter.
The	password	you	use	here	should	be	for	the	user	you	specified	in	the	preceding	step.	If	you	used	the
proper	 username/password	 combination	 (i.e.,	 someone	with	valid	 access),	 you	 should	be	greeted	 as
shown	in	 .	 If	 access	 is	denied,	you’re	probably	not	using	 the	correct	values	 (see	Appendix	A	 for
instructions	on	creating	users).

If	you	are	successfully	able	to	log	in,	you’ll	see	a	welcome	message	like	this.
4.	Select	the	database	you	want	to	use	 .



After	getting	into	the	mysql	client,	run	a	USE	command	to	choose	the	database	with	which	you	want	to
work.

USE	test;

The	USE	command	selects	the	database	to	be	used	for	every	subsequent	command.	The	test	database	is
one	that	MySQL	installs	by	default.	Assuming	it	exists	on	your	server,	all	users	should	be	able	to	access
it.

5.	Quit	out	of	mysql	 .

Type	either	exit	or	quit	to	terminate	your	MySQL	session	and	leave	the	mysql	client.
exit

You	can	also	use	the	command	quit	to	leave	the	client.	This	step—unlike	most	other	commands	you
enter	in	the	mysql	client—does	not	require	a	semicolon	at	the	end.

6.	Quit	the	Terminal	or	DOS	console	session.
exit

The	 command	exit	 will	 terminate	 the	 current	 session.	 On	Windows,	 it	 will	 also	 close	 the	 DOS
prompt	window.



Tip
If	you	know	in	advance	which	database	you	will	want	to	use,	you	can	simplify	matters	by	starting
mysql	with

Click	here	to	view	code	image

/path/to/mysql/bin/mysql	-u	username

-p	databasename

Tip
To	see	what	else	you	can	do	with	the	mysql	client,	type

Click	here	to	view	code	image

/path/to/mysql/bin/mysql	--help

Tip
The	mysql	client	on	most	systems	allows	you	 to	use	 the	up	and	down	arrows	 to	scroll	 through
previously	entered	commands.	If	you	make	a	mistake	in	typing	a	query,	you	can	scroll	up	to	find
it,	and	then	correct	the	error.

Tip
In	the	mysql	client,	you	can	also	terminate	SQL	commands	using	\G	instead	of	the	semicolon.	For
queries	 that	 return	 results,	 using	\G	 displays	 those	 results	 as	 a	 vertical	 list,	 as	 opposed	 to	 a
horizontal	table,	which	is	sometimes	easier	to	peruse.

Tip
If	you	are	in	a	long	statement	and	make	a	mistake,	cancel	the	current	operation	by	typing	\c	and
pressing	Return	or	Enter.	If	mysql	thinks	a	closing	single	or	double	quotation	mark	is	missing	(as
indicated	by	the	‘>	and	“>	prompts),	you’ll	need	to	enter	the	appropriate	quotation	mark	first.

Using	phpMyAdmin
phpMyAdmin	(www.phpmyadmin.net)	 is	 one	 of	 the	 best	 and	most	 popular	 applications	written	 in
PHP.	 Its	 sole	 purpose	 is	 to	 provide	 an	 interface	 to	 a	MySQL	 server.	 It	 is	 somewhat	 easier	 and	more
natural	to	use	than	the	mysql	client	but	requires	a	PHP	installation	and	must	be	accessed	through	a	web
browser.	If	you’re	running	MySQL	on	your	own	computer,	you	might	find	that	using	the	mysql	client	makes
more	sense,	because	installing	and	configuring	phpMyAdmin	constitutes	unnecessary	extra	work	(although
all-in-one	PHP	and	MySQL	installers	may	do	this	for	you).	If	you	are	using	a	hosted	server,	your	web	host
is	virtually	guaranteed	to	provide	phpMyAdmin	as	the	primary	way	to	work	with	MySQL	and	the	mysql
client	may	not	be	an	option.
Using	phpMyAdmin	isn’t	hard,	but	the	next	steps	run	through	the	basics	so	that	you’ll	know	what	to	do	in
the	following	chapters.

http://www.phpmyadmin.net


To	use	phpMyAdmin:
1.	Access	phpMyAdmin	through	your	web	browser	 .

The	first	phpMyAdmin	page	(when	connected	as	a	MySQL	user	who	can	access	multiple	databases).
The	URL	you	use	will	depend	on	your	situation.	If	running	web	sites	on	your	own	computer,	this	might
be	http://localhost/phpMyAdmin/.	If	running	on	a	hosted	site,	your	web	host	will	provide
you	with	 the	 proper	URL.	Likely,	 phpMyAdmin	would	 be	 available	 through	 the	 site’s	 control	 panel
(should	one	exist).
Note	 that	phpMyAdmin	will	only	work	 if	 it’s	been	properly	configured	 to	connect	 to	MySQL	with	 a
valid	username/password/hostname	combination.

2.	If	possible	and	necessary,	use	the	list	on	the	left	to	select	a	database	to	use	 .



Use	the	list	of	databases	on	the	left	side	of	 the	window	to	choose	with	which	database	you	want	 to
work.	This	is	the	equivalent	of	running	a	USE	databasename	query	within	the	mysql	client.
What	options	you	have	here	will	vary	depending	on	what	MySQL	user	phpMyAdmin	is	connecting	as.
That	user	might	have	access	 to	one	database,	 several	databases,	or	every	database.	On	a	hosted	 site
where	you	have	 just	one	database,	 that	database	will	probably	already	be	selected	 for	you.	On	your
own	 computer,	with	 phpMyAdmin	 connecting	 as	 the	MySQL	 root	 user,	 you	would	 see	 a	 pull-down
menu	or	a	simple	list	of	available	databases .



Selecting	a	table	from	the	left	column	changes	the	options	on	the	right	side	of	the	page.
3.	Click	on	a	table	name	in	the	left	column	to	select	that	table	 .
You	don’t	always	have	to	select	a	table—in	fact,	you	never	will	if	you	just	use	the	SQL	commands	in
this	book,	but	doing	so	can	often	simplify	some	tasks.

4.	Use	the	tabs	and	links	(on	the	right	side	of	the	page)	to	perform	common	tasks.
For	the	most	part,	the	tabs	and	links	are	shortcuts	to	common	SQL	commands.	For	example,	you	can	use
options	 on	 the	 Browse	 tab	 to	 perform	 a	SELECT	 query	 and	 options	 on	 the	 Insert	 tab	 to	 add	 new
records.

5.	Use	the	SQL	tab	 	to	enter	SQL	commands.



The	SQL	tab,	in	the	main	part	of	the	window,	can	be	used	to	run	any	SQL	command.
The	next	three	chapters,	and	a	couple	more	later	in	the	book,	will	provide	SQL	commands	that	must	be
run	to	create,	populate,	and	manipulate	tables.	These	might	look	like
INSERT	INTO	tablename	(col1,	col2)	VALUES	(x,	y)

These	commands	can	be	run	using	the	mysql	client,	phpMyAdmin,	or	any	other	interface.	To	run	them
within	phpMyAdmin,	just	enter	them	into	the	SQL	tab	and	click	Go.

Tip
There’s	a	lot	more	that	can	be	done	with	phpMyAdmin,	but	full	coverage	would	require	a	chapter
in	its	own	right	(and	a	long	chapter	at	that).	The	information	presented	here	will	be	enough	for
you	to	follow	any	of	the	examples	in	the	book,	should	you	not	want	to	use	the	mysql	client.

Tip
phpMyAdmin	 can	be	 configured	 to	 use	 a	 special	 database	 that	will	 record	your	 query	history,
allow	you	to	bookmark	queries,	and	more.	See	the	phpMyAdmin	documentation	for	details.



Tip
One	 of	 the	 best	 reasons	 to	 use	 phpMyAdmin	 is	 to	 transfer	 a	 database	 from	 one	 computer	 to
another.	 Use	 options	 on	 the	 Export	 tab	 in	 phpMyAdmin	 connected	 to	 the	 source	 computer	 to
create	 a	 file	 of	 data.	 Then,	 on	 the	 destination	 computer,	 use	 the	 Import	 tab	 in	 phpMyAdmin
(connected	to	that	MySQL	server)	to	complete	the	transfer.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	What	version	of	MySQL	are	you	using?	If	you	don’t	know,	find	out	now!
	What	characters	can	be	used	in	database,	table,	and	column	names?
	Should	you	treat	database,	table,	and	column	names	as	case-sensitive	or	case-insensitive?
	What	are	the	three	general	column	types?
	What	are	the	differences	between	CHAR	and	VARCHAR?
	How	do	you	determine	what	size	(in	terms	of	subtype	or	length)	a	column	should	be?
	What	are	some	of	the	other	properties	that	can	be	assigned	to	columns?
	What	is	a	primary	key?
	 If	you’re	using	 the	command-line	mysql	client	 to	connect	 to	MySQL,	what	username	and	 password
combination	is	required?

Pursue
	Find	the	online	MySQL	manual	for	your	version	of	MySQL.	Bookmark	it!
	Start	thinking	about	what	databases	you	may	need	for	your	projects.
	If	you	haven’t	yet	changed	the	MySQL	root	user	password	(assuming	you’ve	installed	MySQL	on	your
own	computer),	use	the	instructions	in	Appendix	A	to	do	so	now.

http://LarryUllman.com/forums/












5.	Introduction	to	SQL

In	This	Chapter
Creating	Databases	and	Tables
Inserting	Records
Selecting	Data
Using	Conditionals
Using	LIKE	and	NOT	LIKE
Sorting	Query	Results
Limiting	Query	Results
Updating	Data
Deleting	Data
Using	Functions
Review	and	Pursue

The	 preceding	 chapter	 provided	 a	 quick	 introduction	 to	MySQL.	 That	 chapter	 focused	 on	 two	 topics:
using	MySQL’s	 rules	and	data	 types	 to	define	a	database,	 and	how	 to	 interact	with	 the	MySQL	 server.
This	chapter	moves	on	to	the	lingua	franca	of	databases:	SQL.
SQL,	short	for	Structured	Query	Language,	 is	a	group	of	special	words	used	exclusively	for	 interacting
with	databases.	SQL	 is	 surprisingly	easy	 to	 learn	and	use,	and	yet	 it’s	 amazingly	powerful.	 In	 fact,	 the
hardest	thing	to	do	in	SQL	is	use	it	to	its	full	potential!
In	this	chapter,	you’ll	learn	all	the	SQL	you	need	to	know	to	create	tables,	populate	them,	and	run	other
basic	queries.	The	examples	will	all	use	the	users	table	discussed	and	designed	in	the	preceding	chapter.
Also,	as	with	 that	other	chapter,	 this	chapter	assumes	you	have	access	 to	a	 running	MySQL	server	and
know	how	to	use	a	client	application	to	interact	with	it.

Creating	Databases	and	Tables
The	first	logical	use	of	SQL	will	be	to	create	a	database.	The	syntax	for	creating	a	new	database	is	simply
CREATE	DATABASE	databasename

That’s	all	there	is	to	it	(as	I	said,	SQL	is	easy	to	learn)!
The	CREATE	term	is	also	used	for	making	tables:
Click	here	to	view	code	image

CREATE	TABLE	tablename	(

column1name	description,

column2name	description

...)

After	naming	the	table,	you	define	each	column	within	parentheses.	Each	column-description	pair	should
be	 separated	 from	 the	 next	 by	 a	 comma,	 although	 you	 shouldn’t	 place	 a	 comma	 after	 the	 last	 column
definition.
Should	you	choose	to	create	indexes	at	this	time,	you	can	add	those	at	the	end	of	the	creation	statement,



but	 you	 can	 add	 indexes	 at	 a	 later	 time	 as	 well.	 (Indexes	 are	more	 formally	 discussed	 in	 Chapter	 6,
“Database	Design,”	but	Chapter	4,	“Introduction	to	MySQL,”	introduced	the	topic.)
In	case	you	were	wondering,	SQL	is	case-insensitive.	However,	I	make	it	a	habit	to	capitalize	the	SQL
keywords,	as	in	the	preceding	example	syntax	and	the	following	steps.	Doing	so	helps	to	contrast	the	SQL
terms	from	the	database,	table,	and	column	names.

To	create	databases	and	tables:
1.	Access	MySQL	using	whichever	client	you	prefer.
Chapter	4	shows	how	to	use	two	of	the	most	common	interfaces—the	mysql	command-line	client	and
phpMyAdmin—to	 communicate	 with	 a	MySQL	 server.	 Using	 the	 steps	 in	 the	 previous	 chapter,	 you
should	now	connect	to	MySQL.
Throughout	the	rest	of	this	chapter,	most	of	the	SQL	examples	will	be	entered	using	the	mysql	client,	but
they	will	work	just	the	same	in	phpMyAdmin	or	most	other	client	tools.

2.	Create	and	select	the	new	database	 :

A	new	database,	called	sitename,	is	created	in	MySQL.	It	is	then	selected	for	future	queries.
Click	here	to	view	code	image

CREATE	DATABASE	sitename;

USE	sitename;

This	 first	 line	 creates	 the	 database,	 assuming	 that	 you	 are	 connected	 to	 MySQL	 as	 a	 user	 with
permission	 to	create	new	databases.	The	second	 line	 tells	MySQL	that	you	want	 to	work	within	 this
database	 from	 here	 on	 out.	 Remember	 that	 within	 the	 mysql	 client,	 you	 must	 terminate	 every	 SQL
command	with	a	semicolon,	although	these	semicolons	aren’t	technically	part	of	SQL	itself.	If	executing
multiple	queries	at	once	within	phpMyAdmin,	they	should	also	be	separated	by	semicolons	 .	If	you
are	running	only	a	single	query	within	phpMyAdmin,	no	semicolons	are	necessary.

	The	 same	 commands	 for	 creating	 and	 selecting	 a	 database	 can	 be	 run	within	 phpMyAdmin’s	SQL
window.
If	you	are	using	a	hosting	company’s	MySQL,	 they	will	probably	create	 the	database	for	you.	 In	 that
case,	just	connect	to	MySQL	and	select	the	database.

3.	Create	the	users	table	 :



This	CREATE	SQL	command	will	make	the	users	table.
Click	here	to	view	code	image

CREATE	TABLE	users	(

user_id	MEDIUMINT	UNSIGNED	NOT	NULL

AUTO_INCREMENT,

first_name	VARCHAR(20)	NOT	NULL,

last_name	VARCHAR(40)	NOT	NULL,

email	VARCHAR(60)	NOT	NULL,

pass	CHAR(128)	NOT	NULL,

registration_date	DATETIME	NOT	NULL,

PRIMARY	KEY	(user_id)

);

The	users	 table	was	designed	in	Chapter	4.	There,	the	names,	types,	and	attributes	of	each	column	in
the	table	are	determined	based	on	a	number	of	criteria	(see	that	chapter	for	more	information).	Here,
that	information	is	placed	within	the	CREATE	table	syntax	to	make	the	table	in	the	database.
Because	the	mysql	client	will	not	run	a	query	until	it	encounters	a	semicolon	(or	\G	or	\g),	you	can
enter	statements	over	multiple	lines,	as	in	 	(by	pressing	Return	or	Enter	at	the	end	of	each	line).	This
often	makes	a	query	easier	to	read	and	debug.	In	phpMyAdmin,	you	can	also	run	queries	over	multiple
lines,	although	they	will	not	be	executed	until	you	click	Go.

4.	Confirm	the	existence	of	the	table	 :

	Confirm	the	existence	of,	and	columns	in,	a	table	using	the	SHOW	command.



SHOW	TABLES;

SHOW	COLUMNS	FROM	users;

The	SHOW	command	reveals	the	tables	in	a	database	or	the	column	names	and	types	in	a	table.
Also,	you	might	notice	in	 	that	the	default	value	for	user_id	is	NULL,	even	though	this	column	was
defined	as	NOT	NULL.	This	is	correct	and	has	to	do	with	user_id	being	an	automatically	incremented
primary	key.	MySQL	will	often	make	minor	changes	to	a	column’s	definition	for	better	performance	or
other	reasons.
In	 phpMyAdmin,	 a	 database’s	 tables	 are	 listed	 on	 the	 left	 side	 of	 the	 browser	 window,	 under	 the
database’s	name	 .	Click	a	table’s	name	to	view	its	columns	 .

	phpMyAdmin	shows	that	the	sitename	database	contains	one	table,	named	users.

	phpMyAdmin	shows	a	table’s	definition	on	this	screen	(accessed	by	clicking	the	table’s	name	in	the
left-hand	column).

Tip
The	rest	of	this	chapter	assumes	that	you	are	using	the	mysql	client	or	other	tool	and	have	already
selected	the	sitename	database	with	USE.

Tip
The	order	in	which	you	list	the	columns	when	creating	a	table	has	no	functional	impact,	but	there
are	 stylistic	 suggestions	 for	 how	 to	 order	 them.	 I	 normally	 list	 the	 primary-key	 column	 first,
followed	by	any	foreign-key	columns	(more	on	this	subject	in	the	next	chapter),	followed	by	the
rest	of	the	columns,	concluding	with	any	date	columns.



Tip
When	creating	a	 table,	you	have	 the	option	of	 specifying	 its	 type.	MySQL	supports	many	 table
types,	each	with	 its	own	strengths	and	weaknesses.	 If	you	do	not	 specify	a	 table	 type,	MySQL
will	automatically	create	the	table	using	the	default	type	for	that	MySQL	installation.	Chapter	6
discusses	this	in	more	detail.

Tip
When	creating	tables	and	text	columns,	you	have	the	option	to	specify	its	collation	and	character
set.	Both	come	into	play	when	using	multiple	languages	or	languages	other	than	the	default	for	the
MySQL	server.	Chapter	6	also	covers	these	subjects.

Tip
DESCRIBE	tablename	is	the	same	statement	as	SHOW	COLUMNS	FROM	tablename.

Inserting	Records
After	 a	 database	 and	 its	 table(s)	 have	 been	 created,	 you	 can	 start	 populating	 them	 using	 the	INSERT
command.	There	are	two	ways	that	an	INSERT	query	can	be	written.	With	the	first	method,	you	name	the
columns	to	be	populated:
Click	here	to	view	code	image

INSERT	INTO	tablename	(column1,

column2...)	VALUES	(value1,

value2	...)

INSERT	INTO	tablename	(column4,	

column8)	VALUES	(valueX,	valueY)

Using	this	structure,	you	can	add	rows	of	records,	populating	only	the	columns	that	matter.	The	result	will
be	 that	 any	 columns	 not	 given	 a	 value	will	 be	 treated	 as	NULL	 (or	 given	 a	 default	 value,	 if	 one	was
defined).	Note	that	if	a	coxlumn	cannot	have	a	NULL	value	(it	was	defined	as	NOT	NULL)	and	does	not
have	a	default	value,	not	specifying	a	value	will	cause	an	error	or	warning	 .

	Failure	to	provide,	or	predefine,	a	value	for	a	NOT	NULL	column	results	in	errors	or	warnings.
The	second	format	for	inserting	records	is	not	to	specify	any	columns	at	all	but	to	include	values	for	every
one:



Click	here	to	view	code	image

INSERT	INTO	tablename	VALUES

(value1,	NULL,	value2,	value3,	...)

If	you	use	this	second	method,	you	must	specify	a	value,	even	if	it’s	NULL,	for	every	column.	If	there	are
six	columns	in	the	table,	you	must	list	six	values.	Failure	to	match	the	number	of	values	to	the	number	of
columns	 will	 cause	 an	 error	 .	 For	 this	 and	 other	 reasons,	 the	 first	 format	 of	 inserting	 records	 is
generally	preferable.

	Not	providing	a	value	for	every	column	in	a	 table,	or	named	 in	an	INSERT	 query,	 also	causes	an
error.
MySQL	also	allows	you	to	insert	multiple	rows	at	one	time,	separating	each	record	by	a	comma.
Click	here	to	view	code	image

INSERT	INTO	tablename	(column1,	

column4)	VALUES	(valueA,	valueB),

(valueC,	valueD),

(valueE,	valueF)

While	 you	 can	do	 this	with	MySQL,	 it	 is	 not	 acceptable	within	 the	SQL	 standard	 and	 is	 therefore	 not
supported	by	all	database	applications.	 In	MySQL,	however,	 this	 syntax	 is	 faster	 than	using	 individual
INSERT	queries.
Note	that	in	these	examples,	placeholders	are	used	for	the	actual	table	names,	column	names,	and	values.
Furthermore,	the	examples	forgo	quotation	marks.	In	real	queries,	you	must	abide	by	certain	rules	to	avoid
errors	(see	the	“Quotes	in	Queries”	sidebar).

To	insert	data	into	a	table:
1.	Insert	one	row	of	data	into	the	users	table,	naming	the	columns	to	be	populated	 :

This	 query	 inserts	 a	 single	 record	 into	 the	 users	 table.	 The	 1	 row	 affected	 message	 indicates	 the
success	of	the	insertion.
Click	here	to	view	code	image

INSERT	INTO	users

(first_name,	last_name,	email,

pass,	registration_date)

VALUES	('Larry',	'Ullman',

'email@example.com',

SHA2('mypass',	512),	NOW());



Again,	this	syntax—where	the	specific	columns	are	named—is	more	foolproof	but	not	always	the	most
convenient.	For	the	first	name,	last	name,	and	email	columns,	simple	strings	are	used	for	the	values—
and	strings	must	always	be	quoted.
For	 the	password	and	 registration	date	columns,	 two	 functions	are	being	used	 to	generate	 the	 values
(see	the	sidebar	“Two	MySQL	Functions”).	The	SHA2()	function	will	encrypt	the	password	(mypass
in	this	example).	The	NOW()	function	will	set	the	registration_date	as	this	moment.



Quotes	in	Queries
In	every	SQL	command:
	Numeric	values	shouldn’t	be	quoted.
	String	values	(for	CHAR,	VARCHAR,	and	TEXT	column	types)	must	always	be	quoted.
	Date	and	time	values	must	always	be	quoted.
	Functions	cannot	be	quoted.
	The	word	NULL	must	not	be	quoted.
Unnecessarily	 quoting	 a	 numeric	 value	 normally	 won’t	 cause	 problems	 (although	 you	 still
shouldn’t	do	it),	but	misusing	quotation	marks	in	the	other	situations	will	almost	always	mess
things	up.	Also,	it	does	not	matter	if	you	use	single	or	double	quotation	marks,	as	long	as	you
consistently	pair	them	(an	opening	mark	with	a	matching	closing	one).
And,	 as	 with	 PHP,	 if	 you	 need	 to	 use	 a	 quotation	 mark	 in	 a	 value,	 either	 use	 the	 other
quotation	mark	type	to	encapsulate	it	or	escape	the	mark	by	preceding	it	with	a	backslash:

Click	here	to	view	code	image

INSERT	INTO	tablename	(last_name)

VALUES	('O\'Toole')

This	query	inserts	a	single	record	into	the	users	table.	The	1	row	affected	message	indicates	the
success	of	the	insertion.
Two	MySQL	Functions
Although	 functions	 are	 discussed	 in	 more	 detail	 later	 in	 this	 chapter,	 two	 need	 to	 be
introduced	now:	SHA2()	and	NOW().
The	SHA2()	 function	 is	 one	 way	 to	 encrypt	 data.	 This	 function	 creates	 a	 hashed	 string.
Hashing	is	a	type	of	one-way	encryption	in	that	it	cannot	be	reversed	(i.e.,	you	cannot	decrypt
the	string).	Hashing	functions	are	useful	when	you	need	to	store	sensitive	data	that	need	not	be
viewed	in	an	unencrypted	form	again.	Because	the	output	from	SHA2()	cannot	be	decrypted,
it’s	obviously	not	a	good	choice	for	sensitive	data	that	should	be	protected	but	later	seen,	like
credit	card	numbers.
The	SHA2()	 function	 takes	a	second	argument	 indicating	 the	desired	 length.	A	 longer	hash
output	will	be	more	secure	than	a	shorter	one.	Given	a	length	of	512,	this	function	returns	a
string	that	is	always	exactly	128	characters	long.	This	is	why	the	users	table’s	pass	column	is
defined	as	CHAR(128).
The	NOW()	function	is	handy	for	populating	date,	time,	and	timestamp	columns.	It	returns	the
current	date	and	time	on	the	server.

When	using	any	function	in	an	SQL	statement,	do	not	place	it	within	quotation	marks.	You	also	must	not
have	any	spaces	between	the	function’s	name	and	the	following	parentheses	(so	NOW()	and	not	NOW



()).
2.	Insert	one	row	of	data	into	the	users	table	without	naming	the	columns	 :

Another	record	is	inserted	into	the	table,	this	time	by	providing	a	value	for	every	column	in	the	table.
Click	here	to	view	code	image

INSERT	INTO	users	VALUES

(NULL,	'Zoe',	'Isabella',	

'email2@example.com',	

SHA2('mojito',	512),	NOW());

In	this	second	syntactical	example,	every	column	must	be	provided	with	a	value.	The	user_id	column	is
given	 a	 NULL	 value,	 which	 will	 cause	 MySQL	 to	 use	 the	 next	 logical	 number,	 per	 its
AUTO_INCREMENT	description.	In	other	words,	the	first	record	will	be	assigned	a	user_id	of	1,	the
second,	2,	and	so	on.

3.	Insert	several	values	into	the	users	table	 :

	This	one	query—which	MySQL	allows	but	other	databases	will	not—inserts	several	records	into	the
table	at	once.
Click	here	to	view	code	image

INSERT	INTO	users

(first_name,	last_name,	email,

pass,	registration_date)	VALUES

('John',	'Lennon',

'john@beatles.com',

SHA2('Happin3ss',	512),	NOW()),

('Paul',	'McCartney',

'paul@beatles.com',

SHA2('letITbe',	512),	NOW()),

('George',	'Harrison',

'george@beatles.com	',

SHA2('something',	512),	NOW()),

('Ringo',	'Starr',

'ringo@beatles.com',

SHA2('thisboy',	512),	NOW());

Since	MySQL	allows	you	to	insert	multiple	values	at	once,	you	can	take	advantage	of	this	and	fill	up	the
table	with	records.

4.	Continue	Steps	1	and	2	until	you’ve	thoroughly	populated	the	users	table.
Throughout	the	rest	of	this	chapter	I	will	be	performing	queries	based	on	the	records	I	entered	into	my



database.	 Should	 your	 database	 not	 have	 the	 same	 specific	 records	 as	mine,	 change	 the	 particulars
accordingly.	The	fundamental	thinking	behind	the	following	queries	should	still	apply	regardless	of	the
data,	since	the	sitename	database	has	a	set	column	and	table	structure.

Tip
On	 the	 downloads	 page	 of	 the	 book’s	 supporting	 web	 site	 (LarryUllman.com),	 you	 can
download	 all	 of	 the	 SQL	 commands	 for	 the	 book.	 Using	 some	 of	 those	 commands,	 you	 can
populate	your	users	table	exactly	as	I	have.

Tip
The	term	INTO	in	INSERT	statements	is	optional	in	MySQL.

Tip
phpMyAdmin’s	Insert	tab	allows	you	to	insert	records	using	an	HTML	form	 .

	 phpMyAdmin’s	INSERT	 form	 shows	 a	 table’s	 columns	 and	 provides	 text	 boxes	 for	 entering
values.	The	 pull-down	menu	 lists	 functions	 that	 can	 be	 used,	 like	NOW()	 for	 the	 registration	 date
(although	the	current	version	does	not	support	SHA2()).

Tip
Depending	on	the	version	of	MySQL	in	use,	failure	to	provide	a	value	for	a	column	that	cannot	be
NULL	may	issue	warnings	with	the	INSERT	still	working	 	or	issue	errors	with	the	INSERT
failing.

Tip
You’ll	occasionally	see	uses	of	the	backtick	(`)	in	SQL	commands.	This	character,	found	on	the
same	key	as	the	tilde	(~),	is	different	than	a	single	quotation	mark.	The	backtick	is	used	to	safely
reference	a	table	or	column	name	that	might	be	the	same	as	an	existing	keyword.

http://LarryUllman.com


Tip
If	MySQL	warns	you	about	the	previous	query,	the	SHOW	WARNINGS	command	will	display	the
problem	 .

Tip
An	interesting	variation	on	INSERT	is	REPLACE.	If	the	value	used	for	the	table’s	primary	key,
or	a	UNIQUE	index,	already	exists,	then	REPLACE	updates	that	row.	If	not,	REPLACE	inserts	a
new	row.

Selecting	Data
Now	that	the	database	has	some	records	in	it,	you	can	retrieve	the	stored	information	with	the	most	used
of	all	SQL	terms,	SELECT.	A	SELECT	query	returns	rows	of	records	using	the	syntax
Click	here	to	view	code	image

SELECT	which_columns	FROM	which_table

The	simplest	SELECT	query	is
Click	here	to	view	code	image

SELECT	*	FROM	tablename

The	 asterisk	 means	 that	 you	 want	 to	 retrieve	 every	 column.	 The	 alternative	 would	 be	 to	 specify	 the
columns	to	be	returned,	with	each	separated	from	the	next	by	a	comma:
Click	here	to	view	code	image

SELECT	column1,	column3	FROM	tablename

There	are	a	 few	benefits	 to	being	explicit	about	which	columns	are	selected.	The	first	 is	 performance:
there’s	no	reason	to	fetch	columns	you	will	not	be	using.	The	second	is	order:	you	can	return	columns	in
an	order	other	than	their	layout	in	the	table.	Third—and	you’ll	see	this	later	 in	the	chapter—naming	the
columns	allows	you	to	manipulate	the	values	in	those	columns	using	functions.

To	select	data	from	a	table:
1.	Retrieve	all	the	data	from	the	users	table	 :



	The	SELECT	*	FROM	tablename	query	returns	every	column	for	every	record	stored	in	the	table.
SELECT	*	FROM	users;

This	very	basic	SQL	command	will	retrieve	every	column	of	every	row	stored	within	that	table.
2.	Retrieve	just	the	first	and	last	names	from	users	 :

	Only	two	of	the	columns	for	every	record	in	the	table	are	returned	by	this	query.
Click	here	to	view	code	image

SELECT	first_name,	last_name



FROM	users;

Many	queries	can	be	run	without	specifying	a	database	or	table.	This	query	selects	the	result	of	calling
the	NOW()	unction,	which	returns	the	current	date	and	time	(according	to	MySQL).
Instead	of	showing	the	data	from	every	column	in	the	users	table,	you	can	use	the	SELECT	statement	to
limit	the	results	to	only	the	fields	you	need.

Tip
In	phpMyAdmin,	options	on	the	Browse	tab	run	a	simple	SELECT	query.

Tip
You	 can	 actually	 use	 SELECT	 without	 naming	 tables	 or	 columns—for	 example,	 SELECT
NOW()	 .

Tip
The	order	in	which	you	list	columns	in	your	SELECT	statement	dictates	the	order	in	which	the
values	are	presented	(compare	 	with	 ).



If	a	SELECT	query	specifies	the	columns	to	be	returned,	they’ll	be	returned	in	that	order.

Tip
With	SELECT	 queries,	 you	 can	 even	 retrieve	 the	 same	 column	 multiple	 times,	 a	 feature	 that
enables	you	to	manipulate	the	column’s	data	in	many	different	ways.

Using	Conditionals
The	SELECT	query	as	used	thus	far	will	always	retrieve	every	record	from	a	table.	But	often	you’ll	want
to	 limit	 what	 rows	 are	 returned,	 based	 on	 certain	 criteria.	 This	 can	 be	 accomplished	 by	 adding
conditionals	to	SELECT	queries.	Conditionals	use	the	SQL	term	WHERE	and	are	written	much	as	you’d
write	a	conditional	in	PHP:
Click	here	to	view	code	image

SELECT	which_columns	FROM	

which_table	WHERE	condition(s)

Table	5.1	 lists	 the	most	common	operators	you	would	use	within	a	conditional—for	example,	a	simple
equality	check:
Click	here	to	view	code	image

SELECT	name	FROM	people

WHERE	birth_date	=	'2011-01-26'



TABLE	5.1	MySQL	Operators
Operator Meaning
= Equals
< Less	than
> Greater	than
<= Less	than	or	equal	to
>= Greater	than	or	equal	to
!=	(also	<>) Not	equal	to
IS	NOT	NULL Has	a	value
IS	NULL Does	not	have	a	value
IS	TRUE Has	a	true	value
IS	FALSE Has	a	false	value
BETWEEN Within	a	range
NOT	BETWEEN Outside	of	a	range
IN Found	within	a	list	of	values
NOT	IN Not	found	within	a	list	of	values
OR	(also	||) Where	one	of	two	conditionals	is	true
AND	(also	&&) Where	both	conditionals	are	true
NOT	(also	!) Where	the	condition	is	not	true
XOR Where	only	one	of	two	conditionals	is	true

The	operators	can	be	used	together,	along	with	parentheses,	to	create	more	complex	expressions:
Click	here	to	view	code	image

SELECT	*	FROM	items	WHERE

(price	BETWEEN	10.00	AND	20.00)	AND

(quantity	>	0)

SELECT	*	FROM	cities	WHERE

(zip_code	=	90210)	OR

(zip_code	=	90211)

This	last	example	could	also	be	written	as
SELECT	*	FROM	cities	WHERE

zip_code	IN	(90210,	90211)

To	demonstrate	using	conditionals,	let’s	run	some	more	SELECT	queries	on	the	sitename	database.	The
examples	 that	 follow	 will	 be	 just	 a	 few	 of	 the	 nearly	 limitless	 possibilities.	 Over	 the	 course	 of	 this
chapter	and	the	entire	book,	you	will	see	how	conditionals	are	used	in	all	types	of	queries.

To	use	conditionals:
1.	Select	all	of	the	users	whose	last	name	is	Simpson	 :



	This	query	returns	all	of	the	Simpsons	who	have	registered.
SELECT	*	FROM	users

WHERE	last_name	=	'Simpson';

This	simple	query	returns	every	column	of	every	row	whose	last_name	value	is	Simpson.	(Again,	if	the
data	in	your	table	differs,	you	can	change	any	of	these	queries	accordingly.)

2.	Select	just	the	first	names	of	users	whose	last	name	is	Simpson	 :

	This	query	returns	just	the	first	names	of	all	the	Simpsons	who	have	registered.
SELECT	first_name	FROM	users

WHERE	last_name	=	'Simpson';

Here,	only	one	column—first_name—is	being	 returned	 for	 each	 row.	Although	 it	may	 seem	strange,
you	do	not	have	to	select	a	column	on	which	you	are	performing	a	WHERE.	The	reason	for	this	is	that
the	 columns	 listed	 after	 SELECT	 dictate	 only	 what	 columns	 to	 return	 and	 the	 columns	 listed	 in	 a
WHERE	dictate	which	rows	to	return.

3.	Select	every	column	from	every	record	in	the	users	table	that	does	not	have	an	email	address	 :
SELECT	*	FROM	users

WHERE	email	IS	NULL;

	No	records	are	returned	by	this	query	because	the	email	column	cannot	have	a	NULL	value.	So	this
query	did	work;	it	just	matched	no	records.
The	IS	NULL	conditional	is	the	same	as	saying	does	not	have	a	value.	Keep	in	mind	that	an	empty
string	 is	 different	 than	NULL	 and	 therefore	would	 not	match	 this	 condition.	An	 empty	 string	would,
however,	match



SELECT	*	FROM	users	WHERE	email='';

4.	Select	the	user	ID,	first	name,	and	last	name	of	all	records	in	which	the	password	is	mypass	 :
Click	here	to	view	code	image

SELECT	user_id,	first_name,	

last_name

FROM	users

WHERE	pass	=	SHA2('mypass',	512);

	Conditionals	can	make	use	of	functions,	like	SHA2()	here.
Since	the	stored	passwords	were	encrypted	with	the	SHA2()	function,	you	can	match	a	password	by
using	that	same	encryption	function	in	a	conditional.	SHA2()	is	case-sensitive,	so	this	query	will	work
only	 if	 the	 passwords—stored	 vs.	 queried—match	 exactly.	 Also	 note	 you	must	 use	 the	 same	 length
value—512,	here—as	was	used	to	store	the	password	originally.

5.	Select	the	usernames	whose	user	ID	is	less	than	10	or	greater	than	20	 :
Click	here	to	view	code	image

SELECT	first_name,	last_name

FROM	users	WHERE

(user_id	<	10)	OR	(user_id	>	20);

	This	query	uses	two	conditions	and	the	OR	operator.



This	same	query	could	also	be	written	as
Click	here	to	view	code	image

SELECT	first_name,	last_name	FROM

users	WHERE	user_id

NOT	BETWEEN	10	and	20;

or	even
Click	here	to	view	code	image

SELECT	first_name,	last_name	FROM

users	WHERE	user_id	NOT	IN

(10,	11,	12,	13,	14,	15,	16,	17,	

18,	19,	20);

Tip
You	 can	 perform	mathematical	 calculations	within	 your	 queries	 using	 the	mathematic	 addition
(+),	subtraction	(-),	multiplication	(*),	and	division	(/)	characters.

Tip
MySQL	supports	the	keywords	TRUE	and	FALSE,	case-insensitive.	 Internally,	TRUE	evaluates
to	1	and	FALSE	evaluates	to	0.	So,	in	MySQL,	TRUE	+	TRUE	equals	2.

Using	LIKE	and	NOT	LIKE
Using	numbers,	dates,	and	NULLs	in	conditionals	is	a	straightforward	process,	but	strings	can	be	trickier.
You	can	check	for	string	equality	with	a	query	such	as
SELECT	*	FROM	users

WHERE	last_name	=	'Simpson'

However,	 comparing	 strings	 in	 a	more	 liberal	 manner	 requires	 extra	 operators	 and	 characters.	 If,	 for
example,	you	wanted	to	match	a	person’s	last	name	that	could	be	Smith	or	Smiths	or	Smithson,	you	would
need	a	more	flexible	conditional.	This	is	where	the	LIKE	and	NOT	LIKE	terms	come	in.	These	are	used
—primarily	 with	 strings—in	 conjunction	 with	 two	 wildcard	 characters:	 the	 underscore	 (_),	 which
matches	a	single	character,	and	 the	percentage	sign	 (%),	which	matches	zero	or	more	characters.	 In	 the
last-name	example,	the	query	would	be
SELECT	*	FROM	users

WHERE	last_name	LIKE	'Smith%'

That	query	will	return	all	rows	whose	last_name	value	begins	with	Smith.	Because	it’s	a	case-insensitive
search	by	default,	it	would	also	apply	to	names	that	begin	with	smith.

To	use	LIKE:
1.	Select	all	the	records	in	which	the	last	name	starts	with	Bank	 :

SELECT	*	FROM	users

WHERE	last_name	LIKE	'Bank%';



The	LIKE	SQL	term	adds	flexibility	to	your	conditionals.	This	query	matches	any	record	where	the
last	name	value	begins	with	Bank.
2.	Select	the	name	for	every	record	whose	email	address	is	not	of	the	form	something@authors.com	 :

SELECT	first_name,	last_name

FROM	users	WHERE

email	NOT	LIKE	'%@authors.com';

	A	NOT	LIKE	conditional	returns	records	based	on	what	a	value	does	not	contain.
To	rule	out	the	presence	of	values	in	a	string,	use	NOT	LIKE	with	the	wildcard.

Tip
Queries	 with	 a	LIKE	 conditional	 are	 generally	 slower	 because	 they	 can’t	 take	 advantage	 of
indexes.	Use	LIKE	and	NOT	LIKE	only	if	you	absolutely	have	to.

Tip
The	wildcard	characters	can	be	used	at	the	front	and/or	back	of	a	string	in	your	queries.

SELECT	*	FROM	users	WHERE	last_name

LIKE	'_smith%'



Tip
Although	LIKE	 and	NOT	LIKE	 are	 normally	 used	with	 strings,	 they	 can	 also	 be	 applied	 to
numeric	columns.

Tip
To	use	either	the	literal	underscore	or	the	percentage	sign	in	a	LIKE	or	NOT	LIKE	query,	you
will	need	to	escape	it	(by	preceding	the	character	with	a	backslash)	so	that	it	is	not	confused	with
a	wildcard.

Tip
The	underscore	can	be	used	 in	combination	with	 itself;	 for	example,	LIKE	‘__’	would	 find
any	two-letter	combination.

Tip
In	Chapter	7,	“Advanced	SQL	and	MySQL,”	you’ll	learn	about	FULLTEXT	searches,	which	can
be	more	useful	than	LIKE	searches.

Sorting	Query	Results
By	 default,	 a	 SELECT	 query’s	 results	 will	 be	 returned	 in	 a	 meaningless	 order.	 For	 many	 new	 to
databases,	 this	 is	 an	odd	concept.	To	give	a	meaningful	order	 to	a	query’s	 results,	use	an	ORDER	BY
clause:
Click	here	to	view	code	image

SELECT	*	FROM	tablename	ORDER	BY	

column

SELECT	*	FROM	orders	ORDER	BY	total

The	 default	 order	 when	 using	 ORDER	 BY	 is	 ascending	 (abbreviated	 ASC),	 meaning	 that	 numbers
increase	from	small	to	large,	dates	go	from	oldest	to	most	recent,	and	text	 is	sorted	alphabetically.	You
can	reverse	this	by	specifying	a	descending	order	(abbreviated	DESC):
SELECT	*	FROM	tablename

ORDER	BY	column	DESC

You	can	even	order	the	returned	values	by	multiple	columns:
SELECT	*	FROM	tablename

ORDER	BY	column1,	column2

You	can,	and	frequently	will,	use	ORDER	BY	with	WHERE	or	other	clauses.	When	doing	so,	place	 the
ORDER	BY	after	the	conditions:
Click	here	to	view	code	image

SELECT	*	FROM	tablename	WHERE	

conditions

ORDER	BY	column



To	sort	data:
1.	Select	all	the	users	in	alphabetical	order	by	last	name	 :

	The	records	in	alphabetical	order	by	last	name.
Click	here	to	view	code	image

SELECT	first_name,	last_name	FROM

users	ORDER	BY	last_name;

If	you	compare	these	results	with	those	in	 	in	the	“Selecting	Data”	section,	you’ll	see	the	benefits	of
using	ORDER	BY.

2.	Display	all	the	users	in	alphabetical	order	by	last	name	and	then	first	name	 :
Click	here	to	view	code	image

SELECT	first_name,	last_name	FROM

users	ORDER	BY	last_name	ASC,

first_name	ASC;



	The	records	in	alphabetical	order,	first	by	last	name,	and	then	by	first	name	within	that.
In	this	query,	 the	effect	would	be	that	every	row	is	returned,	first	ordered	by	 last_name,	and	 then	by
first_name	within	the	last_names.	The	effect	is	most	evident	among	the	Simpsons.

3.	Show	all	the	non-Simpson	users	by	date	registered	 :
Click	here	to	view	code	image

SELECT	*	FROM	users

WHERE	last_name	!=	'Simpson'

ORDER	BY	registration_date	DESC;

	All	of	the	users	not	named	Simpson,	displayed	by	date	registered,	with	the	most	recent	listed	first.



You	can	use	an	ORDER	BY	on	any	column	type,	including	numbers	and	dates.	The	clause	can	also	be
used	in	a	query	with	a	conditional,	placing	the	ORDER	BY	after	the	WHERE.

Tip
Because	MySQL	works	naturally	with	any	number	of	languages,	the	ORDER	BY	will	be	based	on
the	collation	being	used	(see	Chapter	6).

Tip
If	the	column	that	you	choose	to	sort	on	is	an	ENUM	type,	the	sort	will	be	based	on	the	order	of
the	possible	ENUM	values	when	 the	column	was	created.	For	example,	 if	you	have	 the	column
gender,	 defined	 as	ENUM(‘M’,	‘F’),	 the	 clause	ORDER	BY	gender	 returns	 the	 results
with	the	M	records	first.

Limiting	Query	Results
Another	SQL	clause	that	can	be	added	to	most	queries	is	LIMIT.	In	a	SELECT	query,	WHERE	dictates
which	records	to	return	and	ORDER	BY	decides	how	those	records	are	sorted,	but	LIMIT	 states	how
many	records	to	return.	It	is	used	like	so:
Click	here	to	view	code	image

SELECT	*	FROM	tablename	LIMIT	x

In	 such	 queries,	 only	 the	 initial	 x	 records	 from	 the	 query	 result	will	 be	 returned.	 To	 return	 only	 three
matching	records,	use
Click	here	to	view	code	image

SELECT	*	FROM	tablename	LIMIT	3

Using	this	format
Click	here	to	view	code	image

SELECT	*	FROM	tablename	LIMIT	x,	y

you	can	have	y	records	returned,	starting	at	x.	To	have	records	11	through	20	returned,	you	would	write
Click	here	to	view	code	image

SELECT	*	FROM	tablename	LIMIT	10,	10

Like	arrays	in	PHP,	result	sets	begin	at	0	when	it	comes	to	LIMITs,	so	10	is	the	11th	record.
Because	SELECT	does	not	 return	 results	 in	any	meaningful	order,	you	almost	always	want	 to	apply	an
ORDER	BY	clause	when	using	LIMIT.	You	can	use	LIMIT	with	WHERE	and/or	ORDER	BY	clauses,
always	placing	LIMIT	last:
Click	here	to	view	code	image

SELECT	which_columns	FROM	tablename

WHERE	conditions	ORDER	BY	column

LIMIT	x

To	limit	the	amount	of	data	returned:
1.	Select	the	last	five	registered	users	 :



Click	here	to	view	code	image
SELECT	first_name,	last_name

FROM	users	ORDER	BY

registration_date	DESC	LIMIT	5;

Using	the	LIMIT	clause,	a	query	can	return	a	specific	number	of	records.
To	return	 the	 latest	of	anything,	sort	 the	data	by	date,	 in	descending	order.	Then,	 to	see	 just	 the	most
recent	five,	add	LIMIT	5	to	the	query.

2.	Select	the	second	person	to	register	 :
Click	here	to	view	code	image

SELECT	first_name,	last_name

FROM	users	ORDER	BY

registration_date	ASC	LIMIT	1,	1;

	Thanks	to	the	LIMIT	clause,	a	query	can	even	return	records	from	the	middle	of	a	group,	using	the
LIMIT	x,	y	format.
This	may	look	strange,	but	it’s	just	a	good	application	of	the	information	learned	so	far.	First,	order	all
the	 records	 by	 registration_date	 ascending,	 so	 the	 first	 people	 to	 register	 would	 be	 returned	 first.
Then,	limit	the	returned	results	to	start	at	1	(which	is	the	second	row)	and	to	return	just	one	record.

Tip
The	LIMIT	x,	y	clause	is	most	frequently	used	when	paginating	query	results	(showing	them	in
blocks	over	multiple	pages).	You’ll	see	this	in	Chapter	10,	“Common	Programming	Techniques.”



Tip
A	LIMIT	 clause	 does	 not	 improve	 the	 execution	 speed	 of	 a	 query,	 since	MySQL	 still	 has	 to
assemble	 the	 entire	 result	 and	 then	 truncate	 the	 list.	 But	 a	 LIMIT	 clause	 will	 minimize	 the
amount	of	data	to	handle	when	it	comes	to	the	mysql	client	or	your	PHP	scripts.

Tip
The	LIMIT	 term	 is	 not	 part	 of	 the	SQL	 standard	 and	 is	 therefore	 (sadly)	 not	 available	 on	 all
databases.

Tip
The	LIMIT	clause	can	be	used	with	most	types	of	queries,	not	just	SELECTs.

Updating	Data
Once	tables	contain	some	data,	you	have	the	potential	need	to	edit	those	existing	records.	This	might	be
necessary	 if	 information	was	 entered	 incorrectly	 or	 if	 the	 data	 changes,	 such	 as	 a	 last	 name	 or	 email
address.	The	syntax	for	updating	records	is
Click	here	to	view	code	image

UPDATE	tablename	SET	column=value

You	can	alter	multiple	columns	at	a	single	time,	separating	each	from	the	next	by	a	comma.
Click	here	to	view	code	image

UPDATE	tablename	SET	column1=valueA,

column5=valueB...

You	will	almost	always	want	to	use	a	WHERE	clause	to	specify	what	rows	should	be	updated:
Click	here	to	view	code	image

UPDATE	tablename	SET	column2=value

WHERE	column5=value

If	you	don’t	use	a	WHERE	clause,	the	changes	would	be	applied	to	every	record.
Updates,	along	with	deletions,	are	one	of	the	most	important	reasons	to	use	a	primary	key.	This	value—
which	should	never	change—can	be	a	reference	point	in	WHERE	clauses,	even	if	every	other	field	needs
to	be	altered.

To	update	a	record:
1.	Find	the	primary	key	for	the	record	to	be	updated	 :
Click	here	to	view	code	image

SELECT	user_id	FROM	users

WHERE	first_name	=	'Michael'

AND	last_name='Chabon';



	Before	updating	a	record,	determine	which	primary	key	to	use	in	the	UPDATE’s	WHERE	clause.
In	this	example,	I’ll	change	the	email	for	this	author’s	record.	To	do	so,	I	must	first	find	that	record’s
primary	key,	which	this	query	accomplishes.

2.	Update	the	record	 :
Click	here	to	view	code	image

UPDATE	users

SET	email='mike@authors.com'

WHERE	user_id	=	18;

	This	query	altered	the	value	of	one	column	in	just	one	row.
To	 change	 the	 email	 address,	 use	 an	UPDATE	 query,	 using	 the	 primary	 key	 (user_id)	 to	 specify	 to
which	record	the	update	should	apply.	MySQL	will	report	upon	the	success	of	the	query	and	how	many
rows	were	affected.

3.	Confirm	that	the	change	was	made	 :
SELECT	*	FROM	users

WHERE	user_id=18;

	As	a	final	step,	you	can	confirm	the	update	by	selecting	the	record	again.
Although	MySQL	 already	 indicated	 the	 update	was	 successful	 ,	 it	 can’t	 hurt	 to	 select	 the	 record
again	to	confirm	that	the	proper	changes	occurred.

Tip
Be	extra	 certain	 to	 use	 a	WHERE	 conditional	whenever	 you	 use	UPDATE	 unless	 you	want	 the
changes	to	affect	every	row.



Tip
If	you	run	an	update	query	that	doesn’t	actually	change	any	values	(like	UPDATE	users	SET
first_name=’mike’	WHERE	user_id=0),	you	won’t	see	any	errors	but	no	rows	will	be
affected	 .

	Queries	that	have	no	effect	still	don’t	count	as	errors.

Tip
To	protect	yourself	against	accidentally	updating	too	many	rows,	apply	a	LIMIT	clause	to	your
UPDATEs:

Click	here	to	view	code	image

UPDATE	users	SET

email='mike@authors.com'

WHERE	user_id	=	18	LIMIT	1

Tip
You	should	never	perform	an	UPDATE	on	a	primary-key	column,	because	the	primary	key	value
should	never	change.	Altering	the	value	of	a	primary	key	could	have	serious	repercussions.

Tip
To	update	a	 record	 in	phpMyAdmin,	you	can	run	an	UPDATE	query	using	 the	SQL	window	or
tab.	Alternatively,	run	a	SELECT	query	to	find	the	record	you	want	to	update,	and	then	click	the
pencil	next	to	the	record.	This	will	bring	up	a	form	like	the	insert	form,	where	you	can	edit	the
record’s	current	values.

Deleting	Data
Along	with	updating	existing	records,	another	step	you	might	need	to	take	is	to	entirely	remove	a	record
from	the	database.	To	do	this,	you	use	the	DELETE	command:
DELETE	FROM	tablename

That	 command	 as	 written	 will	 delete	 every	 record	 in	 a	 table,	 making	 it	 empty	 again.	 Once	 you	 have
deleted	a	record,	there	is	no	way	of	retrieving	it.
In	most	cases,	you’ll	want	to	delete	individual	rows,	not	all	of	them.	To	do	so,	apply	a	WHERE	clause:
Click	here	to	view	code	image

DELETE	FROM	tablename	WHERE	condition



To	delete	a	record:
1.	Find	the	primary	key	for	the	record	to	be	deleted	 :
Click	here	to	view	code	image

SELECT	user_id	FROM	users

WHERE	first_name='Peter'

AND	last_name='Tork';

	The	user_id	value	will	be	used	to	refer	to	this	record	in	a	DELETE	query.
Just	as	in	the	UPDATE	example,	I	first	need	to	determine	which	primary	key	to	use	for	the	delete.

2.	Preview	what	will	happen	when	the	delete	is	made	 :
SELECT	*	FROM	users

WHERE	user_id	=	8;

	To	preview	the	effect	of	a	DELETE	query,	first	run	a	syntactically	similar	SELECT	query.
A	good	trick	for	safeguarding	against	errant	deletions	is	to	first	run	the	query	using	SELECT	*	instead
of	DELETE.	The	results	of	this	query	will	represent	which	row(s)	will	be	affected	by	the	deletion.

3.	Delete	the	record	 :
Click	here	to	view	code	image

DELETE	FROM	users

WHERE	user_id	=	8	LIMIT	1;

	Deleting	one	record	from	the	table.
As	with	the	update,	MySQL	will	report	on	the	successful	execution	of	the	query	and	how	many	rows
were	affected.	At	this	point,	there	is	no	way	of	reinstating	the	deleted	records	unless	you	backed	up	the
database	beforehand.
Even	though	the	SELECT	query	(Step	2	and	 )	returned	only	the	one	row,	just	to	be	extra	careful,	a
LIMIT	1	clause	is	added	to	the	DELETE	query.



4.	Confirm	that	the	change	was	made	 :
Click	here	to	view	code	image

SELECT	user_id	FROM	users

WHERE	first_name='Peter'

AND	last_name='Tork';

	The	record	is	no	longer	part	of	this	table.

Tip
The	preferred	way	to	empty	a	table	is	to	use	TRUNCATE:
TRUNCATE	TABLE	tablename

Tip
To	delete	all	of	the	data	in	a	table,	as	well	as	the	table	itself,	use	DROP	TABLE:
DROP	TABLE	tablename

Tip
To	delete	an	entire	database,	including	every	table	therein	and	all	of	its	data,	use
DROP	DATABASE	databasename

Using	Functions
To	wrap	up	this	chapter,	you’ll	learn	about	several	functions	that	you	can	use	in	your	MySQL	queries.	You
have	 already	 seen	 two—NOW()	 and	SHA2()—but	 those	 are	 just	 the	 tip	 of	 the	 iceberg.	Most	 of	 the
functions	you’ll	see	here	are	used	with	SELECT	queries	to	format	and	alter	the	returned	data,	but	you	may
use	MySQL	functions	in	other	types	of	queries	as	well.
To	apply	a	function	to	a	column’s	values,	the	query	would	look	like
Click	here	to	view	code	image

SELECT	FUNCTION(column)	FROM	tablename

To	 apply	 a	 function	 to	 one	 column’s	 values	while	 also	 selecting	 some	other	 columns,	 you	 can	write	 a
query	like	either	of	these:

	SELECT	*,	FUNCTION(column)	
FROM	tablename

	SELECT	column1,	FUNCTION(column2),	
column3	FROM	tablename

Generally	 speaking,	 the	 latter	 syntax	 is	 preferred,	 because	 it	 returns	 only	 the	 columns	 you	 need	 as



opposed	to	all	of	them.
Before	getting	to	the	actual	functions,	make	note	of	a	couple	more	things.	First,	functions	are	often	applied
to	stored	data	(i.e.,	columns)	but	can	also	be	applied	to	literal	values.	Either	of	these	applications	of	the
UPPER()	function,	which	capitalizes	a	string,	is	valid:
Click	here	to	view	code	image

SELECT	UPPER(first_name)	FROM	users

SELECT	UPPER('this	string')

Second,	while	the	function	names	themselves	are	case-insensitive,	I	will	continue	to	write	them	in	an	all-
capitalized	format,	to	help	distinguish	them	from	table	and	column	names	(I	also	capitalize	SQL	terms).
Third,	an	important	rule	with	functions	is	that	you	cannot	have	spaces	between	the	 function	name	and
the	opening	parenthesis	in	MySQL,	although	spaces	within	the	parentheses	are	acceptable.	And	finally,
when	 using	 functions	 to	 format	 returned	 data,	 you’ll	 often	 want	 to	 make	 uses	 of	 aliases,	 a	 concept
discussed	in	the	sidebar.

Tip
Just	as	 there	are	different	standards	of	SQL	and	different	database	applications	have	 their	own
slight	 variations	on	 the	 language,	 some	 functions	 are	 common	 to	 all	 database	 applications	 and
others	are	particular	to	MySQL.	This	chapter,	and	the	book,	concerns	itself	only	with	the	MySQL
functions.

Tip
Chapter	7	discusses	two	more	categories	of	MySQL	functions:	grouping	and	encryption.

Text	functions
The	first	group	of	functions	we	will	discuss	are	those	meant	for	manipulating	text.	The	most	common	of
the	functions	in	this	category	are	listed	in	Table	5.2.	As	with	most	functions,	these	can	be	applied	to	either
columns	or	literal	values	(both	represented	by	t,	t1,	t2,	etc.).



TABLE	5.2	Text	Functions
Function Usage Returns
CONCAT() CONCAT(t1,	t2,	...) A	new	string	of	the	form	t1t2

CONCAT_WS()
CONCAT_WS(S,	t1,	t2,
...)

A	new	string	of	the	form	t1St2S…

LENGTH() LENGTH(t) The	number	of	characters	in	t
LEFT() LEFT(t,	y) The	leftmost	y	characters	from	t
RIGHT() RIGHT(t,	x) The	rightmost	x	characters	from	t

TRIM() TRIM(t)
t	with	excess	spaces	from	the	beginning	and	end
removed

UPPER() UPPER(t) t	capitalized
LOWER() LOWER(t) t	in	all-lowercase	format
REPLACE() REPLACE(t1,	t2,	t3) The	string	t1	with	instances	of	t2	replaced	with	t3
SUBSTRING()SUBSTRING(t,	x,	y) y	characters	from	t	beginning	with	x	(indexed	from	1)

CONCAT(),	 perhaps	 the	most	 useful	 of	 the	 text	 functions,	 deserves	 special	 attention.	The	CONCAT()
function	 accomplishes	 concatenation,	 for	 which	 PHP	 uses	 the	 period	 (see	 Chapter	 1,	 “Introduction	 to
PHP”).	The	 syntax	 for	 concatenation	 requires	 you	 to	place,	within	parentheses,	 the	various	values	 you
want	assembled,	in	order	and	separated	by	commas:
Click	here	to	view	code	image

SELECT	CONCAT(t1,	t2)	FROM	tablename

While	 you	 can—and	 normally	 will—apply	CONCAT()	 to	 columns,	 you	 can	 also	 incorporate	 strings,
entered	 within	 quotation	 marks.	 For	 example,	 to	 format	 a	 person’s	 name	 as	 First<SPACE>Last,	 you
would	use
Click	here	to	view	code	image

SELECT	CONCAT(first_name,	'	',

last_name)

FROM	users

Because	concatenation	normally	returns	values	in	a	new	format,	it’s	an	excellent	time	to	use	an	alias	(see
the	sidebar):
Click	here	to	view	code	image

SELECT	CONCAT(first_name,	'	',

last_name)

AS	Name	FROM	users

To	format	text:
1.	Concatenate	the	names	without	using	an	alias	 :
Click	here	to	view	code	image

SELECT	CONCAT(last_name,	',	',

first_name)

FROM	users;



	This	simple	concatenation	returns	every	registered	user’s	full	name.	Notice	how	the	column	heading
is	the	use	of	the	CONCAT()	function.
This	query	will	demonstrate	two	things.	First,	 the	users’	last	names,	a	comma	and	a	space,	plus	 their
first	names	are	concatenated	 together	 to	make	one	 string	 in	 the	 format	 of	Last,	First.	 Second,	 as	 the
figure	shows,	if	you	don’t	use	an	alias,	the	returned	data’s	column	heading	will	be	the	function	call.	In
the	mysql	client	or	phpMyAdmin,	this	is	just	unsightly;	when	using	PHP	to	connect	to	MySQL,	this	will
likely	be	a	problem.



Aliases
An	alias	 is	 merely	 a	 symbolic	 renaming	 of	 an	 item	 used	 in	 a	 query,	 normally	 applied	 to
tables,	columns,	or	function	calls.	Aliases	are	created	using	the	term	AS:

Click	here	to	view	code	image

SELECT	registration_date	AS	reg

FROM	users

Aliases	are	case-sensitive	strings	composed	of	numbers,	 letters,	and	 the	underscore	but	are
normally	kept	to	a	very	short	length.	As	you’ll	see	in	the	following	examples,	aliases	are	also
reflected	in	the	captions	for	the	returned	results.	For	the	preceding	example,	the	query	results
returned	will	contain	one	column	of	data,	named	reg	(not	registration_date).
In	MySQL,	if	you’ve	defined	an	alias	for	a	table	or	a	column	used	in	a	query,	the	entire	query
should	consistently	use	that	same	alias	rather	than	the	original	name.	For	example:

Click	here	to	view	code	image

SELECT	first_name	AS	name	FROM

users	WHERE	name='Sam'

This	 differs	 from	 standard	 SQL,	 which	 doesn’t	 support	 the	 use	 of	 aliases	 in	 WHERE
conditionals.

2.	Concatenate	the	names	while	using	an	alias	 :
Click	here	to	view	code	image

SELECT	CONCAT(last_name,	',	',	

first_name)

AS	Name	FROM	users	ORDER	BY	Name;



	By	using	an	alias,	the	returned	data	is	under	the	column	heading	of	Name	(compare	with	 ).
To	use	an	alias,	just	add	AS	aliasname	after	the	item	to	be	renamed.	The	alias	will	be	the	new	title
for	 the	 returned	data.	To	make	 the	 query	 a	 little	more	 interesting,	 the	 same	 alias	 is	 also	 used	 in	 the
ORDER	BY	clause.

3.	Find	the	longest	last	name	 :
Click	here	to	view	code	image

SELECT	LENGTH(last_name)	AS	L,

last_name	FROM	users

ORDER	BY	L	DESC	LIMIT	1;

	By	using	the	LENGTH()	function,	an	alias,	an	ORDER	BY	clause,	and	a	LIMIT	clause,	 this	query
returns	the	length	and	value	of	the	longest	stored	name.
To	determine	which	registered	user’s	 last	name	 is	 the	 longest	 (has	 the	most	characters	 in	 it),	 use	 the



LENGTH()	function.	To	find	the	name,	select	both	the	last	name	value	and	the	calculated	length,	which
is	given	an	alias	of	L.	To	then	find	the	longest	name,	order	all	of	the	results	by	L,	in	descending	order,
but	return	only	the	first	record.

Tip
A	query	like	that	in	Step	3	(also	 )	may	be	useful	for	helping	to	fine-tune	your	column	lengths
once	your	database	has	some	records	in	it.

Tip
MySQL	has	 two	functions	for	performing	regular	expression	searches	on	 text:	REGEXP()	 and
NOT	 REGEXP().	 Chapter	 14,	 “Perl-Compatible	 Regular	 Expressions,”	 introduces	 regular
expressions	using	PHP.

Tip
CONCAT()	 has	 a	 corollary	 function	 called	CONCAT_WS(),	which	 stands	 for	with	 separator.
The	syntax	is	CONCAT_WS(separator,	t1,	t2,	...).	The	separator	will	be	inserted
between	 each	of	 the	 listed	 columns	or	 values.	For	 example,	 to	 format	 a	 person’s	 full	 name	 as
First<SPACE>_Middle<SPACE>_Last,	you	would	write

Click	here	to	view	code	image

SELECT	CONCAT_WS('	',	first,	middle,

last)	AS	Name	FROM	tablename

CONCAT_WS()	 has	 an	added	advantage	over	CONCAT()	 in	 that	 it	will	 ignore	 columns	with
NULL	values.	So	that	query	might	return	Joe	Banks	from	one	record	but	Jane	Sojourner	Adams
from	another.

Numeric	functions
Besides	 the	 standard	 math	 operators	 that	 MySQL	 uses	 for	 addition,	 subtraction,	 multiplication,	 and
division,	there	are	a	couple	dozen	functions	for	formatting	and	performing	calculations	on	numeric	values.
Table	5.3	 lists	 the	most	 common	 of	 these,	 some	 of	which	will	 be	 demonstrated	 shortly.	As	with	most
functions,	these	can	be	applied	to	either	columns	or	literal	values	(both	represented	by	n,	n1,	n2,	etc.).



TABLE	5.3	Numeric	Functions
Function Usage Returns
ABS() ABS(n) The	absolute	value	of	n
CEILING()CEILING(n) The	next-highest	integer	based	upon	the	value	of	n
FLOOR() FLOOR(n) The	integer	value	of	n

FORMAT()
FORMAT(n1,

n2)

n1	formatted	as	a	number	with	n2	decimal	places	and	commas	inserted
every	three	spaces

MOD() MOD(n1,	n2) The	remainder	of	dividing	n1	by	n2
POW() POW(n1,	n2)n1	to	the	n2	power
RAND() RAND() A	random	number	between	0	and	1.0

ROUND()
ROUND(n1,

n2)
n1	rounded	to	n2	decimal	places

SQRT() SQRT(n) The	square	root	of	n

I	want	to	specifically	highlight	three	of	these	functions:	FORMAT(),	ROUND(),	and	RAND().	The	first
—which	 is	 not	 technically	 number-specific—turns	 any	 number	 into	 a	 more	 conventionally	 formatted
layout.	For	example,	if	you	stored	the	cost	of	a	car	as	20198.20,	FORMAT(car_cost,	2)	would	turn
that	number	into	the	more	common	20,198.20.
ROUND()	 will	 take	 one	 value,	 presumably	 from	 a	 column,	 and	 round	 that	 to	 a	 specified	 number	 of
decimal	places.	If	no	decimal	places	are	indicated,	it	will	round	the	number	to	the	nearest	integer.	If	more
decimal	 places	 are	 indicated	 than	 exist	 in	 the	 original	 number,	 the	 remaining	 spaces	 are	 padded	with
zeros	(to	the	right	of	the	decimal	point).
The	RAND()	function,	as	you	might	infer,	is	used	for	returning	random	numbers	 :
SELECT	RAND()

	The	RAND()	function	returns	a	random	number	between	0	and	1.0.
A	further	benefit	to	the	RAND()	function	is	that	it	can	be	used	with	your	queries	to	return	the	results	in	a
random	order:
SELECT	*	FROM	tablename

ORDER	BY	RAND()



To	use	numeric	functions:
1.	Display	a	number,	formatting	the	amount	as	dollars	 :
Click	here	to	view	code	image

SELECT	CONCAT('$',	FORMAT(5639.6,	2))

AS	cost;

	Using	an	arbitrary	example,	this	query	shows	how	the	FORMAT()	function	works.
Using	 the	FORMAT()	 function,	 as	 just	 described,	with	CONCAT(),	 you	 can	 turn	 any	number	 into	 a
currency	format	as	you	might	display	it	in	a	web	page.

2.	Retrieve	a	random	email	address	from	the	table	 :
Click	here	to	view	code	image

SELECT	email	FROM	users

ORDER	BY	RAND()	LIMIT	1;

	This	query	uses	the	RAND()	function	to	select	a	random	record.	Subsequent	executions	of	the	same
query	return	different	random	results.
What	happens	with	this	query	is:	All	the	email	addresses	are	selected;	the	order	they	are	in	is	shuffled
(ORDER	BY	RAND());	and	then	the	first	one	is	returned.	Running	this	same	query	multiple	times	will
produce	different	random	results.	Notice	that	you	do	not	specify	a	column	to	which	RAND()	is	applied.

Tip
Along	with	 the	mathematical	 functions	 listed	here,	 there	are	several	 trigonometric,	exponential,
and	other	types	of	numeric	functions	available.



Tip
The	MOD()	function	is	the	same	as	using	the	percent	sign:
SELECT	MOD(9,2)

SELECT	9%2

It	returns	the	remainder	of	a	division	(1	in	these	examples).

Date	and	time	functions
The	 date	 and	 time	 column	 types	 in	 MySQL	 are	 particularly	 flexible	 and	 useful.	 But	 because	 many
database	users	are	not	familiar	with	all	the	available	date	and	time	functions,	these	options	are	frequently
underused.	Whether	you	want	to	make	calculations	based	on	a	date	or	return	only	the	month	name	from	a
value,	MySQL	has	a	function	for	that	purpose.	Table	5.4	lists	most	of	these;	see	the	MySQL	manual	for	a
complete	 list.	 As	 with	 most	 functions,	 these	 can	 be	 applied	 to	 either	 columns	 or	 literal	 values	 (both
represented	by	dt,	short	for	datetime).

TABLE	5.4	Date	and	Time	Functions
Function Usage Returns
DATE() DATE(dt) The	date	value	of	dt
HOUR() HOUR(dt) The	hour	value	of	dt
MINUTE() MINUTE(dt) The	minute	value	of	dt
SECOND() SECOND(dt) The	second	value	of	dt
DAYNAME() DAYNAME(dt) The	name	of	the	day	for	dt
DAYOFMONTH() DAYOFMONTH(dt) The	numerical	day	value	of	dt
MONTHNAME() MONTHNAME(dt) The	name	of	the	month	of	dt
MONTH() MONTH(dt) The	numerical	month	value	of	dt
YEAR() YEAR(column) The	year	value	of	dt
CURDATE() CURDATE() The	current	date
CURTIME() CURTIME() The	current	time
NOW() NOW() The	current	date	and	time

UNIX_TIMESTAMP()UNIX_TIMESTAMP(dt)The	number	of	seconds	since	the	epoch	until	thecurrent	moment	or	until	the	date	specified

UTC_TIMESTAMP() UTC_TIMESTAMP(dt)

The	number	of	seconds	since	the	epoch	until	the
current	moment	or	until	the	date	specified,	in
Coordinated	Universal	Time	(UTC)

MySQL	supports	 two	data	 types	 that	store	both	a	date	and	a	 time	(DATETIME	and	TIMESTAMP),	one
type	that	stores	just	the	date	(DATE),	one	that	stores	just	the	time	(TIME),	and	one	that	stores	just	a	year
(YEAR).	Besides	allowing	for	different	types	of	values,	each	data	type	also	has	its	own	unique	behaviors
(again,	I	recommend	reading	the	MySQL	manual’s	pages	on	this	for	all	the	details).	But	MySQL	is	very
flexible	as	to	which	functions	you	can	use	with	which	type.	You	can	apply	a	date	function	to	any	value	that
contains	a	date	 (i.e.,	DATETIME,	TIMESTAMP,	and	DATE),	 or	you	can	apply	an	hour	 function	 to	 any
value	that	contains	the	time	(i.e.,	DATETIME,	TIMESTAMP,	and	TIME).	MySQL	will	use	the	part	of	the



value	that	it	needs	and	ignore	the	rest.	What	you	cannot	do,	however,	is	apply	a	date	function	to	a	TIME
value	or	a	time	function	to	a	DATE	or	YEAR	value.

To	use	date	and	time	functions:
1.	Display	the	date	that	the	last	user	registered	 :
Click	here	to	view	code	image

SELECT	DATE(registration_date)	AS

Date	FROM	users	ORDER	BY

registration_date	DESC	LIMIT	1;

	The	date	functions	can	be	used	to	extract	information	from	stored	values.
The	DATE()	function	returns	the	date	part	of	a	value.	To	see	the	date	that	the	last	person	registered,	an
ORDER	BY	clause	lists	the	users,	starting	with	the	most	recently	registered,	and	this	result	is	limited	to
just	one	record.

2.	Display	the	day	of	the	week	that	the	first	user	registered	 :
Click	here	to	view	code	image

SELECT	DAYNAME(registration_date)	AS

Weekday	FROM	users	ORDER	BY

registration_date	ASC	LIMIT	1;

	This	query	returns	the	name	of	the	day	that	a	given	date	represents.
This	is	 like	the	query	in	Step	1,	but	the	results	are	returned	in	ascending	order	and	 the	DAYNAME()
function	is	applied	to	the	registration_date	column.	This	function	returns	Sunday,	Monday,	Tuesday,
etc.,	for	a	given	date.

3.	Show	the	current	date	and	time,	according	to	MySQL	 :
SELECT	CURDATE(),	CURTIME();



	This	query,	not	run	on	any	specific	table,	returns	the	current	date	and	time	on	the	MySQL	server.
To	 show	 what	 date	 and	 time	 MySQL	 currently	 thinks	 it	 is,	 you	 can	 select	 the	 CURDATE()	 and
CURTIME()	functions,	which	return	these	values.	This	is	another	example	of	a	query	that	can	be	run
without	referring	to	a	particular	table.

4.	Show	the	last	day	of	the	current	month	 :
Click	here	to	view	code	image

SELECT	LAST_DAY(CURDATE()),

MONTHNAME(CURDATE());

	Among	the	many	things	MySQL	can	do	with	date	and	time	types	is	determine	the	last	date	in	a	month
or	the	name	value	of	a	given	date.
As	the	last	query	showed,	CURDATE()	returns	the	current	date	on	the	server.	This	value	can	be	used
as	an	argument	to	the	LAST_DAY()	function,	which	returns	the	last	date	in	the	month	for	a	given	date.
The	MONTHNAME()	function	returns	the	name	of	the	current	month.

Tip
The	 date	 and	 time	 returned	 by	 MySQL’s	 date	 and	 time	 functions	 correspond	 to	 those	 on	 the
server,	not	to	those	on	the	client	accessing	the	database.

Tip
Not	mentioned	 in	 this	 section	 or	 in	Table	 5.4	 are	ADDDATE(),	SUBDATE(),	ADDTIME(),
SUBTIME(),	 and	DATEDIFF().	 Each	 can	 be	 used	 to	 perform	 arithmetic	 on	 date	 and	 time
values.	These	can	be	very	useful	(for	example,	to	find	everyone	registered	within	the	past	week),
but	their	syntax	is	cumbersome.	As	always,	see	the	MySQL	manual	for	more	information.

Tip
Chapter	6	discusses	the	concept	of	time	zones	in	MySQL.



Tip
As	of	MySQL	5.0.2,	 the	 server	will	 also	prevent	 invalid	dates	 (e.g.,	February	31,	2017)	 from
being	inserted	into	a	date	or	date/time	column.

Formatting	the	date	and	time
There	are	two	additional	date	and	time	functions	that	you	might	find	yourself	using	more	than	all	the	others
combined:	 DATE_FORMAT()	 and	 TIME_FORMAT().	 There	 is	 some	 overlap	 between	 the	 two	 and
when	you	would	use	one	or	the	other.
DATE_FORMAT()	can	be	used	to	format	both	the	date	and	time	if	a	value	contains	both	(e.g.,	YYYY-MM-
DD	HH:MM:SS).	Comparatively,	TIME_FORMAT()	can	format	only	the	time	value	and	must	be	used	if
only	the	time	value	is	being	stored	(e.g.,	HH:MM:SS).	The	syntax	is
SELECT	DATE_FORMAT(datetime,

formatting)

The	formatting	relies	on	combinations	of	key	codes	and	the	percent	sign	to	indicate	what	values	you	want
returned.	Table	5.5	 lists	 the	 available	 date-	 and	 time-formatting	 parameters.	You	 can	 use	 these	 in	 any
combination,	 along	 with	 literal	 characters,	 such	 as	 punctuation,	 to	 return	 a	 date	 and	 time	 in	 a	 more
presentable	form.



TABLE	5.5	*_FORMAT()	Parameters
Term Usage Example
%e Day	of	the	month 1–31
%d Day	of	the	month,	two	digit 01–31
%D Day	with	suffix 1st–31st
%W Weekday	name Sunday–Saturday
%a Abbreviated	weekday	name Sun–Sat
%c Month	number 1–12
%m Month	number,	two	digit 01–12
%M Month	name January–December
%b Month	name,	abbreviated Jan–Dec
%Y Year 2002
%y Year 02
%l	(lowercase	L) Hour 1–12
%h Hour,	two	digit 01–12
%k Hour,	24-hour	clock 0–23
%H Hour,	24-hour	clock,	two	digit 00–23
%i Minutes 00–59
%S Seconds 00–59
%r Time 8:17:02	PM
%T Time,	24-hour	clock 20:17:02
%p AM	or	PM AM	or	PM

Assuming	 that	 a	 column	 called	 the_date	 has	 the	 date	 and	 time	 of	 1996-04-20	 11:07:45	 stored	 in	 it,
common	formatting	tasks	and	results	would	be

	Time	(11:07:45	AM)
TIME_FORMAT(the_date,	‘%r’)

	Time	without	seconds	(11:07	AM)
TIME_FORMAT(the_date,	‘%l:%i	%p’)

	Date	(April	20th,	1996)
DATE_FORMAT(the_date,	‘%M	%D,	%Y’)

To	format	the	date	and	time:
1.	Return	the	current	date	and	time	as	Month	DD,	YYYY	-	HH:MM	 :
Click	here	to	view	code	image

SELECT	DATE_FORMAT(NOW(),'%M	%e,

%Y	%l:%i');



	The	current	date	and	time,	formatted.
Using	the	NOW()	function,	which	returns	the	current	date	and	time,	you	can	practice	formatting	to	see
what	results	are	returned.

2.	Display	the	current	time,	using	24-hour	notation	 :
Click	here	to	view	code	image

SELECT	TIME_FORMAT(CURTIME(),'%T');

	The	current	time	in	a	24-hour	format.
3.	 Select	 the	 email	 address	 and	 date	 registered,	 ordered	 by	 date	 registered,	 formatting	 the	 date	 as
Weekday	(abbreviated)	Month	(abbreviated)	Day	Year,	for	the	last	five	registered	users	 :

Click	here	to	view	code	image
SELECT	email,

DATE_FORMAT(registration_date,

'%a	%b	%e	%Y')

AS	Date	FROM	users

ORDER	BY	registration_date	DESC

LIMIT	5;



	 The	DATE_FORMAT()	 function	 is	 used	 to	 preformat	 the	 registration	 date	when	 selecting	 records
from	the	users	table.
This	is	just	one	more	example	of	how	you	can	use	these	formatting	functions	to	alter	the	output	of	an
SQL	query.

Tip
In	your	web	applications,	you	 should	almost	 always	use	MySQL	 functions	 to	 format	 any	dates
coming	from	the	database	(as	opposed	 to	 formatting	 the	dates	within	PHP	after	 retrieving	 them
from	the	database).

Tip
The	only	way	to	access	the	date	or	time	on	the	client	(the	user’s	machine)	is	to	use	JavaScript.	It
cannot	be	done	with	PHP	or	MySQL.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	What	version	of	MySQL	are	you	using?	If	you	don’t	know,	find	out	now!
	What	SQL	command	is	used	to	make	a	new	database?	What	command	is	used	to	make	a	new	table	in	a
database?
	What	SQL	command	is	used	to	select	the	database	with	which	you	want	to	work?
	What	SQL	commands	are	used	for	adding	records	to	a	table?	Hint:	There	are	multiple	options.
	What	types	of	values	must	be	quoted	in	queries?	What	types	of	values	shouldn’t	be	quoted?
	What	 does	 the	 asterisk	 in	 SELECT	*	FROM	 tablename	 mean?	 How	 do	 you	 restrict	 which
columns	are	returned	by	a	query?
	What	does	the	NOW()	function	do?
	How	do	you	restrict	which	rows	are	returned	by	a	query?
	How	do	LIKE	and	NOT	LIKE	differ	from	simple	equality	comparisons?	Which	type	of	comparison
will	be	faster?	What	are	the	two	LIKE	and	NOT	LIKE	wildcard	characters?
	How	do	you	affect	the	sorting	of	the	returned	records?	What	is	the	default	sorting	method?	How	do
you	inverse	the	sort?	What	is	the	syntax	for	sorting	by	multiple	columns?
	What	does	the	LIMIT	clause	do?	How	does	LIMIT	x	differ	from	LIMIT	x,	y?
	What	 SQL	 command	 is	 used	 to	 change	 the	 values	 already	 stored	 in	 a	 table?	How	 do	 you	 change
multiple	columns	at	once?	How	do	you	restrict	to	which	rows	the	changes	are	applied?
	What	SQL	command	is	used	to	delete	rows	stored	in	a	table?	How	do	you	restrict	to	which	rows	the
deletions	are	applied?
	What	is	an	SQL	alias?	How	do	you	create	one?	Why	is	an	alias	useful?

http://LarryUllman.com/forums/


Pursue
	If	you	haven’t	done	so	already,	bookmark	the	version	of	the	MySQL	manual	that	matches	the	version	of
MySQL	you	are	running.
	Go	 through	 each	 of	 the	 step	 sequences	 in	 this	 chapter	 again,	 coming	 up	with	 your	 own	 queries	 to
execute	(that	demonstrate	similar	concepts	as	those	in	the	steps).
	Check	out	the	MySQL	manual	pages	for	operators	used	in	conditionals.
	Check	out	the	MySQL	manual	pages	for	some	of	MySQL’s	functions.
	Create,	populate,	and	manipulate	your	own	table	of	data.
	Do	some	more	practice	using	functions	and	aliases.
	Check	out	the	MySQL	manual	pages	for	the	various	date	and	time	types.	Also	check	out	ADDDATE()
and	other	date-related	functions.































































































































6.	Database	Design

In	This	Chapter
Normalization
Creating	Indexes
Using	Different	Table	Types
Languages	and	MySQL
Time	Zones	and	MySQL
Foreign	Key	Constraints
Review	and	Pursue

Now	that	you	have	a	basic	understanding	of	databases,	SQL,	and	MySQL,	this	chapter	begins	the	process
of	 taking	 that	 knowledge	 deeper.	 The	 focus	 in	 this	 chapter,	 as	 the	 title	 states,	 is	 real-world	 database
design.	Like	 the	work	 done	 in	Chapter	4,	“Introduction	 to	MySQL,”	much	 of	 the	 effort	 in	 this	 chapter
requires	paper	and	pen—and	serious	thinking	about	what	your	applications	will	need	to	do.
The	 chapter	 begins	with	 thorough	 coverage	 of	 database	normalization,	 a	 vital	 approach	 to	 the	 design
process.	 After	 that,	 the	 chapter	 turns	 to	 design-related	 concepts	 specific	 to	 MySQL:	 working	 with
indexes,	table	types,	language	support,	times,	and	foreign	key	constraints.
In	 this	 chapter,	 you’ll	 explore	 steps	 involved	 in	 proper	 database	 design	 and	 how	 to	make	 the	most	 of
MySQL.	 You’ll	 also	 plan	 a	 couple	 of	 multi-table	 databases.	 In	 the	 next	 chapter,	 you’ll	 learn	 more
advanced	SQL	and	MySQL,	and	use	these	new	databases	as	examples.

Normalization
Whenever	you	are	working	with	a	relational	database	management	system	such	as	MySQL,	the	first	step
in	creating	and	using	a	database	is	to	establish	the	database’s	structure	(also	called	the	database	schema).
Database	 design,	 also	 known	 as	 data	 modeling,	 is	 crucial	 for	 successful	 long-term	 management	 of
information.	 Using	 a	 process	 called	 normalization,	 you	 carefully	 eliminate	 redundancies	 and	 other
problems	that	would	undermine	the	integrity	of	your	database.
The	 techniques	 you	will	 learn	 over	 the	 next	 few	 pages	will	 help	 ensure	 the	 viability,	 usefulness,	 and
reliability	 of	 your	 databases.	 The	 primary	 example	 to	 be	 discussed—a	 forum	 where	 users	 can	 post
messages—will	be	used	more	explicitly	in	Chapter	17,	“Example—Message	Board,”	but	 the	principles
of	normalization	apply	to	any	database	you	might	create.	(The	sitename	example	as	created	and	used	in
the	past	two	chapters	was	properly	normalized,	even	though	normalization	was	never	discussed.)
Normalization	 was	 developed	 by	 an	 IBM	 researcher	 named	 E.	 F.	 Codd	 in	 the	 early	 1970s	 (he	 also
invented	 the	 relational	 database).	A	 relational	 database	 is	merely	 a	 collection	 of	 data,	 organized	 in	 a
particular	 manner,	 and	 Dr.	 Codd	 created	 a	 series	 of	 rules	 called	 normal	 forms	 that	 help	 define	 that
organization.	 This	 chapter	 discusses	 the	 first	 three	 of	 the	 normal	 forms,	 which	 are	 sufficient	 for	most
database	designs.
Before	you	begin	normalizing	your	database,	you	must	define	the	role	of	the	application	being	developed.
Whether	 it	 means	 that	 you	 thoroughly	 discuss	 the	 subject	 with	 a	 client	 or	 figure	 it	 out	 for	 yourself,
understanding	how	the	information	will	be	accessed	dictates	the	modeling.	Thus,	this	process	will	require
paper	 and	 pen	 rather	 than	 the	MySQL	 software	 itself	 (although	 database	 design	 is	 applicable	 to	 any



relational	database,	not	just	MySQL).
In	 this	 example,	 I	want	 to	 create	 a	message	board	where	users	 can	post	messages	 and	other	 users	 can
reply.	 I	 imagine	 that	 users	 will	 need	 to	 register,	 and	 then	 log	 in	 with	 an	 email	 address/password
combination	to	post	messages.	I	also	expect	that	there	could	be	multiple	forums	for	different	subjects.	 I
have	listed	a	sample	row	of	data	in	Table	6.1.	The	database	itself	will	be	called	forum.

TABLE	6.1	Sample	Forum	Data
Item Example
username troutster
password mypass
actual	name Larry	Ullman
user	email email@example.com
forum MySQL
message	subject Question	about	normalization
message	body I	have	a	question	about…
message	date November	2,	2017	12:20	AM

Tip
One	of	 the	best	ways	 to	determine	what	 information	should	be	stored	 in	a	database	 is	 to	 think
about	 what	 questions	 will	 be	 asked	 of	 the	 database	 and	 what	 data	 would	 be	 included	 in	 the
answers.

Tip
Always	 err	 on	 the	 side	 of	 storing	 more	 information	 than	 you	 might	 need.	 It’s	 easy	 to	 ignore
unnecessary	data	but	impossible	to	later	manufacture	data	that	was	never	stored	in	the	first	place.

Tip
Normalization	can	be	hard	to	learn	if	you	fixate	on	the	little	things.	Each	of	the	normal	forms	is
defined	in	a	very	cryptic	way;	even	when	put	into	layman’s	terms,	they	can	still	be	confounding.
My	best	 advice	 is	 to	 focus	 on	 the	 big	 picture	 as	 you	 follow	 along.	Once	 you’ve	 gone	 through
normalization	and	seen	the	end	result,	the	overall	process	should	be	clear	enough.

Keys
As	 briefly	mentioned	 in	Chapter	4,	keys	 are	 integral	 to	 normalized	 databases.	 There	 are	 two	 types	 of
keys:	primary	and	foreign.	A	primary	key	is	a	unique	identifier	that	has	to	abide	by	certain	rules.	They
must

	Always	have	a	value	(they	cannot	be	NULL)
	Have	a	value	that	remains	the	same	(never	changes)
	Have	a	unique	value	for	each	record	in	a	table

A	good	real-world	example	of	a	primary	key	is	the	U.S.	Social	Security	number:	everyone	has	a	unique



Social	Security	number,	and	that	number	never	changes.	Just	as	the	Social	Security	number	is	an	artificial
construct	used	to	identify	people,	you’ll	frequently	find	creating	an	arbitrary	primary	key	for	each	table	to
be	the	best	design	practice.
The	second	type	of	key	is	a	foreign	key.	Foreign	keys	are	the	representation	in	Table	B	of	the	primary	key
from	Table	A.	If	you	have	a	cinema	database	with	a	movies	table	and	a	directors	table,	the	primary	key
from	directors	 would	 be	 linked	 as	 a	 foreign	 key	 in	movies.	 You’ll	 see	 better	 how	 this	 works	 as	 the
normalization	process	continues.
The	forum	database	is	just	a	simple	table	as	it	stands	(Table	6.1),	but	before	beginning	the	normalization
process,	identify	at	least	one	primary	key.	The	foreign	keys	will	come	in	later	steps.

To	assign	a	primary	key:
1.	Look	for	any	fields	that	meet	the	three	tests	for	a	primary	key.
In	this	example	(Table	6.1),	no	column	fits	all	the	criteria	for	a	primary	key.	The	username	and	email
address	will	 be	 unique	 for	 each	 forum	 user	 but	will	 not	 be	 unique	 for	 each	 record	 in	 the	 database
because	the	same	user	could	post	multiple	messages.	The	same	subject	could	be	used	multiple	times	as
well.	The	message	body	will	likely	be	unique	for	each	message	but	could	change	(if	edited),	violating
one	of	the	rules	of	primary	keys.

2.	If	no	logical	primary	key	exists,	invent	one	(Table	6.2).

TABLE	6.2	Sample	Forum	Data
Item Example
message	ID 325
username troutster
password mypass
actual	name Larry	Ullman
user	email email@example.com
forum MySQL
message	subject Question	about	normalization
message	body I	have	a	question	about…
message	date November	2,	2017	12:20	AM

Frequently,	 you	 will	 need	 to	 create	 a	 primary	 key	 because	 no	 good	 solution	 presents	 itself.	 In	 this
example,	a	message	ID	is	manufactured.	When	you	create	a	primary	key	that	has	no	other	meaning	or
purpose,	it’s	called	a	surrogate	primary	key.

Tip
As	a	rule	of	thumb,	I	name	my	primary	keys	using	at	least	part	of	the	table’s	name	(e.g.,	message)
and	the	word	id.	Some	database	developers	like	to	add	the	abbreviation	pk	to	the	name	as	well.
Some	developers	just	use	id.



Tip
MySQL	 allows	 for	 only	 one	 primary	 key	 per	 table,	 although	 you	 can	 base	 a	 primary	 key	 on
multiple	columns.	A	multiple-column	primary	key	means	the	combination	of	those	columns	must
be	unique	and	never	change.

Tip
Ideally,	 your	 primary	 key	 should	 always	 be	 an	 integer,	 which	 results	 in	 better	 MySQL
performance.

Relationships
Database	relationships	refer	 to	how	the	data	 in	one	 table	relates	 to	 the	data	 in	another.	There	are	 three
types	of	relationships	between	any	two	tables:	one-to-one,	one-to-many,	or	many-to-many.	Two	tables	in
a	database	may	also	be	unrelated.
A	relationship	is	one-to-one	if	one	and	only	one	item	in	Table	A	applies	to	one	and	only	one	item	in	Table
B.	For	example,	each	U.S.	citizen	has	only	one	Social	Security	number,	and	each	Social	Security	number
applies	to	only	one	U.S.	citizen;	no	citizen	can	have	two	Social	Security	numbers,	and	no	Social	Security
number	can	refer	to	two	citizens.
A	relationship	is	one-to-many	if	one	item	in	Table	A	can	apply	to	multiple	items	in	Table	B.	The	terms	on
and	off	will	apply	to	many	switches,	but	each	switch	can	be	in	only	one	state	or	the	other.	A	one-to-many
relationship	is	the	most	common	one	between	tables	in	normalized	databases.
Finally,	a	relationship	is	many-to-many	if	multiple	items	in	Table	A	can	apply	to	multiple	items	in	Table
B.	A	book	can	be	written	by	multiple	authors,	and	authors	can	write	multiple	books.	Although	many-to-
many	relationships	are	common	in	the	real	word,	you	should	avoid	many-to-many	relationships	in	your
design	 because	 they	 lead	 to	 data	 redundancy	 and	 integrity	 problems.	 Instead	 of	 having	many-to-many
relationships,	properly	designed	databases	use	 intermediary	 tables	 that	 break	down	one	many-to-many
relationship	into	two	one-to-many	relationships	 .

	 A	 many-to-many	 relationship	 between	 two	 tables	 will	 be	 better	 represented	 as	 two	 one-to-many
relationships	those	tables	have	with	an	intermediary	table.
Relationships	and	keys	work	together	in	that	a	key	in	one	table	will	normally	relate	to	a	key	in	another,	as
mentioned	earlier.

Tip
Database	modeling	uses	certain	conventions	to	represent	the	structure	of	the	database,	which	I’ll
follow	through	a	series	of	images	in	this	chapter.	The	symbols	for	the	three	types	of	relationships
are	shown	in	 .



	 These	 symbols,	 or	 variations	 on	 them,	 are	 commonly	 used	 to	 represent	 relationships	 in	 database
modeling	schemes.

Tip
The	process	of	database	design	results	in	an	ERD	(entity-relationship	diagram)	or	ERM	(entity-
relationship	 model).	 This	 graphical	 representation	 of	 a	 database	 uses	 shapes	 for	 tables	 and
columns	and	the	symbols	from	 	to	represent	the	relationships.

Tip
Many	programs	 are	 available	 to	 help	 create	 a	 database	 schema,	 including	MySQL	Workbench
(https://www.mysql.com/products/workbench/).	Many	 of	 the	 images	 in	 this	 chapter	 will	 come
from	MySQL	Workbench.

Tip
The	 term	 “relational”	 in	RDBMS	 actually	 stems	 from	 the	 tables,	which	 are	 technically	 called
relations.

First	Normal	Form
As	already	stated,	normalizing	a	database	is	the	process	of	changing	the	database’s	structure	according	to
several	 rules,	 called	 forms.	 Your	 database	 should	 adhere	 to	 each	 rule	 exactly,	 and	 the	 forms	must	 be
followed	in	order.
Every	table	in	a	database	must	have	the	following	two	qualities	to	be	in	First	Normal	Form	(1NF):

	 Each	 column	 must	 contain	 only	 one	 value	 (this	 is	 sometimes	 described	 as	 being	 atomic	 or
indivisible).
	No	table	can	have	repeating	groups	of	related	data.

A	table	containing	one	field	for	a	person’s	entire	address	(street,	city,	state,	zip	code,	country)	would	not
be	1NF	compliant,	because	it	has	multiple	values	in	one	column,	violating	the	first	property.	As	for	 the

https://www.mysql.com/products/workbench/


second,	a	movies	table	that	had	columns	such	as	actor1,	actor2,	actor3,	and	so	on	would	fail	to	be	1NF
compliant	because	of	the	repeating	columns	all	listing	the	exact	same	kind	of	information.
To	 begin	 the	 normalization	 process,	 check	 the	 existing	 structure	 (Table	6.2)	 for	 1NF	 compliance.	Any
columns	 that	 are	 not	 atomic	 should	 be	 broken	 into	 multiple	 columns.	 If	 a	 table	 has	 repeating	 similar
columns,	then	those	should	be	turned	into	their	own,	separate	table.

To	make	a	database	1NF	compliant:
1.	Identify	any	field	that	contains	multiple	pieces	of	information.
Looking	at	Table	6.2,	one	field	is	not	1NF	compliant:	actual	name.	The	example	record	contained	both
the	first	name	and	the	last	name	in	this	one	column.
The	message	date	field	contains	a	day,	a	month,	and	a	year,	plus	a	time,	but	subdividing	past	that	level
of	specificity	isn’t	warranted.	And,	as	the	end	of	the	previous	chapter	shows,	MySQL	can	handle	dates
and	times	quite	nicely	using	the	DATETIME	type.
Other	 examples	 of	 problems	would	 be	 if	 a	 table	 used	 just	 one	 column	 for	multiple	 phone	 numbers
(mobile,	home,	work)	or	stored	a	person’s	multiple	interests	(cooking,	dancing,	skiing,	etc.)	in	a	single
column.

2.	Break	up	any	fields	found	in	Step	1	into	distinct	fields	(Table	6.3).

TABLE	6.3	Forum	Database,	Atomic
Item Example
message	ID 325
username troutster
password mypass
first	name Larry
last	name Ullman
user	email email@example.com
forum MySQL
message	subject Question	about	normalization
message	body I	have	a	question	about…
message	date November	2,	2017	12:20	AM

To	 fix	 this	 problem	 for	 the	 current	 example,	 create	 separate	 first	 name	 and	 last	 name	 fields,	 each
containing	only	one	value.

3.	Turn	any	repeating	column	groups	into	their	own	table.
The	forum	database	doesn’t	have	this	problem	currently,	so	to	demonstrate	what	would	be	a	violation,
consider	Table	6.4.	The	repeating	columns—the	multiple	actor	fields—introduce	two	problems.	First,
there’s	no	getting	around	the	fact	 that	each	movie	will	be	 limited	 to	a	certain	number	of	actors	when
stored	this	way.	Even	if	you	add	columns	actor	1	through	actor	100,	there	will	still	be	that	limit	(of	a
hundred).	Second,	any	record	that	doesn’t	have	the	maximum	number	of	actors	will	have	NULL	values
in	 those	 extra	 columns.	 You	 should	 generally	 avoid	 columns	 with	 NULL	 values	 in	 your	 database
schema.	As	another	concern,	the	actor	and	director	columns	are	not	atomic.



TABLE	6.4	Movies	Table
Column Value
movie	ID 976
movie	title Casablanca
year	released 1943
director Michael	Curtiz
actor	1 Humphrey	Bogart
actor	2 Ingrid	Bergman
actor	3 Peter	Lorre

To	fix	the	problems	in	the	movies	table,	a	second	table	would	be	created	(Table	6.5).	This	table	uses
one	 row	 for	each	actor	 in	a	movie,	which	solves	 the	problems	mentioned	 in	 the	 last	paragraph.	The
actor	names	are	also	broken	up	to	be	atomic.	Notice	as	well	that	a	primary	key	column	should	be	added
to	the	new	table.	The	notion	that	each	table	has	a	primary	key	is	implicit	in	the	First	Normal	Form.

TABLE	6.5	Movies-Actors	Table
ID Movie Actor	First	Name Actor	Last	Name
1 Casablanca Humphrey Bogart
2 Casablanca Ingrid Bergman
3 Casablanca Peter Lorre
4 The	Maltese	Falcon Humphrey Bogart
5 The	Maltese	Falcon Peter Lorre

4.	Double-check	that	all	new	columns	and	tables	created	in	Steps	2	and	3	pass	the	1NF	test.

Tip
The	simplest	way	to	think	about	1NF	is	that	this	rule	analyzes	a	table	horizontally:	inspect	all	of
the	columns	within	a	single	row	to	guarantee	specificity	and	avoid	repetition	of	similar	data.

Tip
Various	resources	will	describe	the	normal	forms	in	somewhat	different	ways,	likely	with	much
more	technical	jargon.	What	is	most	important	is	the	spirit—and	end	result—of	the	normalization
process,	not	the	technical	wording	of	the	rules.

Second	Normal	Form
For	a	database	to	be	in	Second	Normal	Form	(2NF),	the	database	must	first	already	be	in	1NF.	You	must
normalize	 in	order.	Then,	every	column	 in	 the	 table	 that	 is	not	a	 foreign	key	must	be	dependent	on	 the
primary	key.	You	can	normally	identify	a	column	that	violates	this	rule	when	it	has	non-key	values	that	are
the	same	in	multiple	rows.	Such	values	should	be	stored	in	their	own	table	and	related	back	to	the	original
table	through	a	key.
Going	back	to	the	cinema	example,	a	movies	table	(Table	6.4)	would	have	the	director	Martin	Scorsese
listed	20+	times.	This	violates	the	2NF	rule,	as	the	column(s)	that	store	the	directors’	names	would	not	be



keys	 and	would	 not	 be	 dependent	 on	 the	 primary	 key	 (the	movie	 ID).	 The	 fix	 is	 to	 create	 a	 separate
directors	 table	that	stores	the	directors’	information	and	assigns	each	director	a	primary	key.	To	 tie	 the
director	back	to	the	movies,	the	director’s	primary	key	would	also	be	a	foreign	key	in	the	movies	table.
Looking	at	Table	6.5	(for	actors	in	movies),	both	the	movie	name	and	the	actor	names	are	also	in	violation
of	 the	 2NF	 rule:	 they	 aren’t	 keys	 and	 they	 aren’t	 dependent	 on	 the	 table’s	 primary	key.	 In	 the	 end,	 the
cinema	database	 in	 this	minimal	 form	requires	 four	 tables	 .	Each	director’s	name,	movie	name,	and
actor’s	name	will	be	 stored	only	once,	 and	any	non-key	column	 in	 a	 table	 is	 dependent	on	 that	 table’s
primary	key.	In	fact,	normalization	could	be	summarized	as	the	process	of	creating	more	and	more	tables
until	potential	redundancies	have	been	eliminated.

	To	make	the	cinema	database	2NF	compliant	(given	the	information	being	represented),	four	tables
are	necessary.	The	directors	are	represented	in	the	movies	table	through	the	director	ID	key;	the	movies
are	represented	in	the	movies-actors	table	through	the	movie	ID	key;	and	the	actors	are	represented	in	the
movies-actors	table	through	the	actor	ID	key.

To	make	a	database	2NF	compliant:
1.	Identify	any	non-key	columns	that	aren’t	dependent	on	the	table’s	primary	key.
Looking	 at	Table	6.3,	 the	 username,	 first	 name,	 last	 name,	 email,	 and	 forum	values	 are	 all	 non-keys
(message	ID	is	the	only	key	column	currently),	and	none	are	dependent	on	the	message	ID.	Conversely,
the	message	subject,	body,	and	date	are	also	non-keys,	but	these	do	depend	on	the	message	ID.

2.	Create	new	tables	accordingly	 .

	To	make	the	forum	database	2NF	compliant,	three	tables	are	necessary.
The	 most	 logical	 modification	 for	 the	 forum	 database	 is	 to	 make	 three	 tables:	 users,	 forums,	 and
messages.
In	a	visual	representation	of	the	database,	create	a	box	for	each	table,	with	the	table	name	as	a	header
and	all	its	columns	(also	called	its	attributes)	underneath.

3.	Assign	or	create	new	primary	keys	 .



	Each	table	needs	its	own	primary	key.
Using	 the	 techniques	described	 earlier	 in	 the	 chapter,	 ensure	 that	 each	new	 table	has	 a	 primary	 key.
Here	 I’ve	 added	 a	user	 ID	 field	 to	 the	users	 table	 and	 a	 forum	ID	 field	 to	 forums.	 These	 are	 both
surrogate	primary	keys.	Because	the	username	field	in	the	users	table	and	the	name	field	in	the	forums
table	must	be	unique	 for	each	 record	and	must	always	have	a	value,	you	could	have	 them	act	 as	 the
primary	keys	for	their	tables.	However,	this	would	mean	that	these	values	could	never	change	(per	the
rules	 of	 primary	 keys)	 and	 the	 database	 would	 be	 a	 little	 slower,	 using	 text-based	 keys	 instead	 of
numeric	ones.

4.	Create	the	requisite	foreign	keys	and	indicate	the	relationships	 .

	To	relate	the	three	tables,	add	two	foreign	keys	to	the	messages	table,	each	key	representing	one	of
the	other	two	tables.
The	 final	 step	 in	 achieving	2NF	compliance	 is	 to	 incorporate	 foreign	keys	 to	 link	associated	 tables.
Remember	that	a	primary	key	in	one	table	will	often	be	a	foreign	key	in	another.
With	this	example,	the	user	ID	from	the	users	table	links	to	the	user	ID	column	in	the	messages	table.
Therefore,	users	has	a	one-to-many	relationship	with	messages:	each	user	can	post	multiple	messages,
but	each	message	can	be	posted	by	only	one	user.
Also,	the	two	forum	ID	columns	are	linked,	creating	a	one-to-many	relationship	between	messages	and
forums:	each	message	can	only	be	in	one	forum,	but	each	forum	can	have	multiple	messages.
There	is	no	direct	relationship	between	the	users	and	forums	tables.

Tip
Another	way	to	test	for	2NF	is	to	look	at	the	relationships	between	tables.	The	ideal	is	to	create
one-to-one	or	one-to-many	situations.	Tables	that	have	a	many-to-many	relationship	may	need	to
be	restructured.



Tip
Looking	back	at	 ,	 the	movies-actors	 table	 is	an	intermediary	table,	which	turns	the	many-to-
many	relationship	between	movies	and	actors	into	two	one-to-many	relationships.	You	can	often
tell	a	table	is	acting	as	an	intermediary	when	all	 its	columns	are	keys.	In	fact,	 in	that	 table,	 the
primary	key	could	be	the	combination	of	the	movie	ID	and	the	actor	ID.

Tip
A	properly	normalized	database	should	never	have	duplicate	rows	in	the	same	table:	two	or	more
rows	in	which	the	values	in	every	non–primary	key	column	match.

Tip
To	simplify	how	you	conceive	of	 the	normalization	process,	 remember	 that	1NF	 is	a	matter	 of
inspecting	a	table	horizontally,	and	2NF	is	a	vertical	analysis:	hunting	for	repeating	values	over
multiple	rows.

Third	Normal	Form
A	 database	 is	 in	 Third	 Normal	 Form	 (3NF)	 if	 it	 is	 in	 2NF	 and	 every	 non-key	 column	 is	 mutually
independent.	 If	 you	 followed	 the	 normalization	 process	 properly	 to	 this	 point,	 you	may	 not	 have	 3NF
issues.	You	would	know	that	you	have	a	3NF	violation	if	changing	the	value	in	one	column	would	require
changing	 the	 value	 in	 another.	 In	 the	 forum	 example	 thus	 far,	 there	 aren’t	 any	 3NF	 problems,	 but	 I’ll
explain	a	hypothetical	situation	where	this	rule	would	come	into	play.
Take,	as	an	example,	a	database	about	books.	After	applying	the	first	two	normal	forms,	you	might	end	up
with	one	 table	 listing	 the	books,	another	 listing	 the	authors,	and	a	 third	acting	as	 an	 intermediary	 table
between	books	and	authors,	since	there’s	a	many-to-many	relationship	there.	If	the	books	table	listed	the
publisher’s	name	and	address,	that	table	would	be	in	violation	of	3NF	 .	The	publisher’s	address	isn’t
related	to	the	book,	but	rather	to	the	publisher	itself.	In	other	words,	that	version	of	the	books	table	has	a
column	that’s	dependent	on	a	non-key	column:	the	publisher’s	name.

	This	database	as	currently	designed	fails	the	3NF	test.
As	I	said,	the	forum	example	is	fine	as	is,	but	I’ll	outline	the	3NF	steps	just	the	same,	showing	how	to	fix
the	books	example	just	mentioned.

To	make	a	database	3NF	compliant:
1.	Identify	any	fields	in	any	tables	that	are	interdependent.
As	just	stated,	what	you	need	to	look	for	are	columns	that	depend	more	on	each	other	than	they	do	on



the	 record	as	a	whole.	 In	 the	 forum	database,	 this	 isn’t	 an	 issue.	 Just	 looking	at	 the	messages	 table,
each	subject	will	be	specific	to	a	message	ID,	each	body	will	be	specific	to	that	message	ID,	and	so
forth.
With	a	books	example,	the	problematic	fields	are	those	in	the	books	table	that	pertain	to	the	publisher.

2.	Create	new	tables	accordingly.
If	you	found	any	problematic	columns	in	Step	1,	like	address1,	address2,	city,	state,	and	zip	in	a	books
example,	you	would	create	a	separate	publishers	table.	(Addresses	would	be	more	complex	once	you
factor	international	publishers	in.)

3.	Assign	or	create	new	primary	keys.
Every	table	must	have	a	primary	key,	so	add	publisher	ID	to	the	new	tables.

4.	Create	the	requisite	foreign	keys	that	link	any	of	the	relationships	 .

	Going	with	a	minimal	version	of	a	hypothetical	books	database,	one	new	table	is	created	for	storing
the	publisher’s	information.
Finally,	add	a	publisher	ID	to	the	books	table.	This	effectively	links	each	book	to	its	publisher.

Tip
Despite	 the	existence	of	set	 rules	 for	how	to	normalize	a	database,	 two	different	people	 could
normalize	the	same	example	in	slightly	different	ways.	Database	design	does	allow	for	personal
preference	and	 interpretations.	The	 important	 thing	 is	 that	a	database	has	no	clear	and	obvious
NF	violations.	Any	NF	violation	will	likely	lead	to	problems	down	the	road.



Overruling	Normalization
As	much	as	ensuring	 that	a	database	 is	 in	3NF	will	help	guarantee	reliability	and	viability,
you	 won’t	 fully	 normalize	 every	 database	 with	 which	 you	 work.	 Before	 undermining	 the
proper	 methods,	 though,	 understand	 that	 doing	 so	 may	 have	 devastating	 long-term
consequences.
The	two	primary	reasons	to	overrule	normalization	are	convenience	and	performance.	Fewer
tables	 are	 easier	 to	manipulate	 and	comprehend	 than	more	 tables.	Further,	because	of	 their
more	 intricate	 nature,	 normalized	 databases	 will	 most	 likely	 be	 slower	 for	 updating,
retrieving	 data	 from,	 and	 modifying.	 Normalization,	 in	 short,	 is	 a	 trade-off	 between	 data
integrity/scalability	and	simplicity/speed.	On	the	other	hand,	there	are	ways	to	improve	your
database’s	performance	but	few	to	remedy	corrupted	data	that	can	result	from	poor	design.
This	chapter	includes	an	example	where	normalization	is	ignored:	a	message’s	post	date	and
time	is	stored	in	one	field.	As	mentioned,	because	MySQL	is	so	good	with	dates,	there	are	no
dangers	to	this	approach.	Another	situation	where	you	would	overrule	normalization	is	a	table
that	 stored	 a	 person’s	 preference	 for	 a	 certain	 setting,	 such	 as	 “receive	 notifications.”	 If
stored	as	just	Y/N	or	Yes/No	(instead	of	linking	to	an	answers	table),	 there	would	be	many
repeating	values.	But	that	is	fine	in	this	case,	since	those	labels	are	stable	values,	not	likely	to
change	over	time	(i.e.,	it’s	unlikely	that	a	third	option	will	be	invented,	or	that	“Yes”	will	be
renamed,	forcing	a	mass	update	of	half	the	records	in	the	table).
Practice	and	experience	will	teach	you	how	best	to	model	your	database,	but	do	try	to	err	on
the	side	of	abiding	by	the	normal	forms,	particularly	as	you	are	still	mastering	the	concept.

Reviewing	the	design
After	walking	through	the	normalization	process,	it’s	best	to	review	the	design	one	more	time.	You	want
to	make	sure	 that	 the	database	stores	all	 the	data	you	may	ever	need.	Often	 the	creation	of	new	 tables,
thanks	to	normalization,	implies	additional	information	to	record.	For	example,	although	the	original	focus
of	 the	 cinema	 database	 was	 on	 the	 movies,	 now	 that	 there	 are	 separate	 actors	 and	 directors	 tables,
additional	facts	about	those	people	could	be	reflected	in	those	tables.
With	that	in	mind,	although	there	are	many	additional	columns	that	could	be	added	to	the	forum	database,
particularly	 regarding	 the	 user,	 one	 more	 field	 should	 be	 added	 to	 the	messages	 table.	 Because	 one
message	might	be	a	reply	to	another,	some	method	of	indicating	that	relationship	is	required.	One	solution
is	 to	add	a	parent_id	column	to	messages	 .	 If	 a	message	 is	 a	 reply,	 its	parent_id	 value	will	 be	 the
message_id	of	 the	original	message	 (so	message_id	 is	 acting	as	 a	 foreign	key	 to	 this	 same	 table).	 If	 a
message	has	a	parent_id	of	0,	then	it’s	a	new	thread,	not	a	reply	 .



	To	reflect	a	message	hierarchy,	the	parent_id	column	is	added	to	messages.
After	making	any	changes	to	the	tables,	you	must	run	through	the	normal	forms	one	more	 time	 to	ensure
that	the	database	is	still	normalized.	Finally,	choose	the	column	types	and	names,	per	the	steps	in	Chapter
4	 .	Note	that	every	integer	column	is	UNSIGNED,	the	three	primary	key	columns	are	also	designated	as
AUTO_INCREMENT,	and	every	column	is	set	as	NOT	NULL.

	The	final	ERD	for	the	forums	database.
Once	the	schema	is	fully	developed,	it	can	be	created	in	MySQL,	using	the	commands	shown	in	Chapter
5,	“Introduction	to	SQL.”	You’ll	do	that	later	in	the	chapter,	after	learning	a	few	more	things.

Tip
When	you	 have	 a	 primary	 key–foreign	 key	 link	 (like	forum_id	 in	 forums	 to	forum_id	 in
messages),	both	columns	should	be	of	the	same	type	(in	this	case,	TINYINT	UNSIGNED	NOT
NULL).

Creating	Indexes
Indexes	are	a	special	system	that	databases	use	to	improve	the	performance	of	SELECT	queries.	Indexes
can	be	placed	on	one	or	more	columns,	of	any	data	 type,	effectively	 telling	MySQL	 to	pay	attention	 to
those	values.
While	the	maximum	number	of	indexes	that	a	table	can	have	varies,	MySQL	always	guarantees	that	you
can	create	at	least	16	indexes	for	each	table,	and	each	index	can	incorporate	up	to	16	columns.	Although
the	need	 for	a	multicolumn	 index	may	not	 seem	obvious,	 it	will	 come	 in	handy	 for	 searches	 frequently
performed	on	the	same	combinations	of	columns	(e.g.,	first	and	last	name,	city	and	state,	etc.).
Although	 indexes	 are	 an	 integral	 part	 of	 any	 table,	 not	 everything	needs	 to	 be	 indexed.	An	 index	 does
improve	 the	 speed	 of	 reading	 from	databases,	 but	 it	 slows	 down	 queries	 that	 alter	 data	 in	 a	 database
because	the	changes	need	to	be	recorded	in	the	index.
Indexes	are	best	used	on	columns	that	are	frequently	used

	In	the	WHERE	part	of	a	query
	In	an	ORDER	BY	part	of	a	query
	As	the	focal	point	of	a	JOIN	(joins	are	discussed	in	the	next	chapter)

Generally	speaking,	you	should	not	index	columns	that
	Allow	for	NULL	values
	Have	a	very	limited	range	of	values	(such	as	just	Y/N	or	1/0)



MySQL	has	four	types	of	indexes:	INDEX	(the	standard),	UNIQUE	(which	requires	each	row	to	have	a
unique	 value	 for	 that	 column),	 FULLTEXT	 (for	 performing	 FULLTEXT	 searches,	 also	 discussed	 in
Chapter	 7,	 “Advanced	 SQL	 and	MySQL”),	 and	PRIMARY	KEY	 (which	 is	 just	 a	 particular	UNIQUE
index	and	one	you’ve	already	been	using).	Note	that	a	column	should	only	ever	have	a	single	index	on	it,
so	choose	the	index	type	that’s	most	appropriate.
With	this	in	mind,	let’s	continue	designing	the	forum	database	by	identifying	appropriate	indexes.	Later	in
this	chapter,	the	indexes	will	be	defined	when	the	tables	are	created	in	the	database.	To	establish	an	index
when	creating	a	table,	this	clause	is	added	to	the	CREATE	TABLE	command:
Click	here	to	view	code	image

INDEX_TYPE	index_name	(columns)

The	 index	 name	 is	 optional.	 If	 no	 name	 is	 provided,	 the	 index	 will	 take	 the	 name	 of	 the	 column,	 or
columns,	to	which	it	is	applied.	When	indexing	multiple	columns,	separate	them	by	commas,	and	put	them
in	the	order	from	most	to	least	important:
Click	here	to	view	code	image

INDEX	full_name	(last_name,

first_name)

You’ve	already	seen	the	syntax	for	creating	indexes	in	Chapter	5.	This	command	creates	a	 table	with	a
PRIMARY	KEY	index	on	the	user_id	field:
Click	here	to	view	code	image

CREATE	TABLE	users	(

user_id	MEDIUMINT	UNSIGNED	NOT	NULL

AUTO_INCREMENT,

first_name	VARCHAR(20)	NOT	NULL,

last_name	VARCHAR(40)	NOT	NULL,

email	VARCHAR(40)	NOT	NULL,

pass	CHAR(128)	NOT	NULL,

registration_date	DATETIME	NOT	NULL,

PRIMARY	KEY	(user_id)

)

The	last	 thing	you	should	know	about	 indexes	are	 the	 implications	of	 indexing	multiple	columns.	 If	you
add	an	index	on	col1,	col2,	and	col3	(in	that	order),	this	effectively	creates	an	index	for	uses	of	col1,	col1
and	col2	together,	or	on	all	three	columns	together.	It	does	not	provide	an	index	for	referencing	just	col2
or	col3	or	those	two	together.

To	create	indexes:
1.	Add	a	PRIMARY	KEY	index	on	all	primary	keys.
Each	table	should	always	have	a	primary	key	and	therefore	a	PRIMARY	KEY	index.	With	the	forums
database,	 the	 specific	 columns	 to	 be	 indexed	 as	 primary	 keys	 are	 forums.forum_id,
messages.message_id,	and	users.user_id.	(The	syntax	table_name.column_name	is	a	way	to	refer	to	a
specific	column	within	a	specific	table.)

2.	Add	UNIQUE	indexes	to	any	columns	whose	values	cannot	be	duplicated	within	the	table.
The	forums	database	has	three	columns	that	should	always	be	unique	or	else	there	will	be	problems:
forums.name,	users.username,	and	users.email.

3.	Add	FULLTEXT	indexes,	if	appropriate.



FULLTEXT	 indexes	and	FULLTEXT	 searching	are	discussed	 in	 the	next	chapter,	 so	 I	won’t	discuss
this	topic	any	more	here,	but	as	you’ll	discover,	there	is	one	index	to	be	used	in	this	database.

4.	Add	standard	indexes	to	columns	frequently	used	in	a	WHERE	clause.
It	requires	some	experience	to	know	in	advance	which	columns	will	often	be	used	in	WHERE	clauses
and	therefore	ought	to	be	indexed.	With	the	forums	database,	one	common	WHERE	stands	out:	when	a
user	 logs	 in,	 she’ll	 provide	 her	 email	 address	 and	 password.	 The	 query	 to	 confirm	 the	 user	 has
provided	the	correct	information	will	be	something	like	this:

Click	here	to	view	code	image
SELECT	*	FROM	users	WHERE

pass=SHA2('provided_password',

512)	AND

email='provided_email_address'

From	 this	 query,	 you	 can	 reason	 that	 indexing	 the	 combination	 of	 the	 email	 address	 and	 password
would	be	beneficial.

5.	Add	standard	indexes	to	columns	frequently	used	in	ORDER	BY	clauses.
Again,	in	time	such	columns	will	stand	out	while	designing	the	database.	In	the	forums	example,	there’s
one	 column	 left	 that	 would	 be	 used	 in	 ORDER	 BY	 clauses	 that	 isn’t	 already	 indexed:
messages.date_entered.	 This	 column	will	 frequently	 be	 used	 in	ORDER	BY	 clauses,	 since	 the	 site
will,	by	default,	show	all	messages	in	the	order	they	were	entered.

6.	Add	standard	indexes	to	columns	frequently	used	in	JOINs.
You	may	not	know	what	a	JOIN	is	now	(and	the	topic	is	thoroughly	covered	in	Chapter	7),	but	the	most
obvious	candidates	are	the	foreign	key	columns.	Remember	that	a	foreign	key	in	Table	B	relates	to	the
primary	key	in	Table	A.	When	selecting	data	from	the	database,	a	JOIN	will	be	written	based	on	this
relationship.	 For	 that	JOIN	 to	 be	 efficient,	 the	 foreign	 key	 must	 be	 indexed	 (the	 primary	 key	 will
already	have	been	indexed).	In	the	forums	example,	three	foreign	key	fields	in	the	messages	table	ought
to	be	indexed:	forum_id,	parent_id,	and	user_id.
Table	6.6	lists	all	the	indexes	identified	through	these	steps.

TABLE	6.6	The	Forum	Database	Indexes
Column	Name Table Index	Type
forum_id forums PRIMARY

name forums UNIQUE

message_id messages PRIMARY

forum_id messages INDEX

parent_id messages INDEX

user_id messages INDEX

date_entered messages INDEX

user_id users PRIMARY

username users UNIQUE

pass/email users INDEX

email users UNIQUE



Tip
Indexes	can	be	created	after	you	already	have	a	populated	table.	However,	you’ll	get	an	error	and
the	index	will	not	be	created	if	you	attempt	to	add	a	UNIQUE	index	to	a	column	that	has	duplicate
values.

Tip
MySQL	uses	the	term	KEY	as	synonymous	for	INDEX:

Click	here	to	view	code	image

KEY	full_name	(last_name,	

first_name)

Tip
You	can	limit	the	length	of	an	index	to	a	certain	number	of	characters,	such	as	the	first	10:

Click	here	to	view	code	image

INDEX	index_name	(column_name(10))

You	might	do	so	in	situations	where	 the	first	X	characters	will	be	sufficiently	useful	 in	an	ORDER	BY
clause.

Tip
MySQL	 supports	 another	 type	 of	 index:	 SPATIAL.	 It’s	 used	 to	 index	 columns	 that	 store
geometric	data.

Using	Different	Table	Types
A	MySQL	feature	uncommon	in	other	database	applications	is	the	ability	to	use	different	types	of	tables.	A
table’s	 type	 is	 also	 called	 its	 storage	engine.	 Each	 table	 type	 supports	 different	 features,	 has	 its	 own
limits	in	terms	of	how	much	data	it	can	store,	and	even	performs	better	or	worse	under	certain	situations.
Still,	how	you	interact	with	any	table	type—in	terms	of	running	queries—is	consistent	across	them	all.
Historically,	 the	most	important	table	type	was	MyISAM.	Until	version	5.5.5	of	MySQL,	MyISAM	was
the	default	table	type	on	all	operating	systems	(on	Windows,	the	switch	to	a	different	default	was	made	in
an	earlier	version	of	MySQL).	MyISAM	tables	are	great	for	most	applications,	handling	SELECTs	and
INSERTs	 very	 quickly.	The	MyISAM	 storage	 engine	 cannot	 handle	 transactions,	 though,	which	 is	 its
main	drawback	(transactions	are	covered	in	the	next	chapter).	Between	that	feature	and	its	lack	of	row-
level	locking	(the	entire	table	must	be	locked	instead),	MyISAM	tables	are	more	vulnerable	to	corruption
and	data	loss	should	a	crash	occur.
As	of	MySQL	version	5.5.5,	MySQL’s	new	default	storage	engine,	on	all	operating	systems,	is	 InnoDB.
InnoDB	 tables	 can	 be	 used	 for	 transactions	 and	 they	 perform	 UPDATEs	 nicely.	 InnoDB	 tables	 also
support	 foreign	 key	 constraints	 (discussed	 at	 the	 end	 of	 the	 chapter)	 and	 row-level	 locking.	 But	 the
InnoDB	storage	engine	may	be	slower	than	MyISAM	and	requires	more	disk	space	on	the	server.	Also,
before	MySQL	5.6.4,	InnoDB	tables	do	not	support	FULLTEXT	indexes	(covered	in	Chapter	7).



All	that	being	said,	InnoDB	is	the	default	table	type	in	MySQL	and	is	likely	the	one	you’ll	want	to	use.
To	specify	the	storage	engine	when	you	define	a	table,	add	a	clause	to	the	end	of	the	creation	statement:
Click	here	to	view	code	image

CREATE	TABLE	tablename	(

column1name	COLUMNTYPE,

column2name	COLUMNTYPE...

)	ENGINE	=	type

If	 you	 don’t	 specify	 a	 storage	 engine	 when	 creating	 tables,	MySQL	will	 use	 the	 default	 type	 for	 that
MySQL	server.
This	 feature	 of	MySQL	 is	 even	more	 significant	 because	 you	 can	mix	 the	 table	 types	within	 the	 same
database.	This	way,	you	can	best	customize	each	table	for	optimum	features	and	performance.	To	continue
designing	the	forums	database,	the	next	step	is	to	identify	the	storage	engine	to	be	used	by	each	table.

To	establish	a	table’s	type:
1.	Find	your	MySQL	server’s	available	table	types	 :

SHOW	ENGINES;

	To	confirm	what	table	types	your	MySQL	installation	supports,	run	this	command	(in	the	mysql	client,
here,	or	phpMyAdmin).
The	 SHOW	 ENGINES	 command,	 when	 executed	 on	 the	 MySQL	 server,	 will	 reveal	 not	 only	 the
available	storage	engines	but	also	the	default	storage	engine.	It	will	help	to	know	this	information	when
it’s	time	to	choose	a	table	type	for	your	database.

2.	If	any	of	your	tables	requires	a	FULLTEXT	index	and	you’re	not	using	MySQL	5.6.4	or	greater,	make	it
a	MyISAM	table.
Again,	FULLTEXT	 indexes	 and	 searches	 are	discussed	 in	 the	next	 chapter,	 but	 I’ll	 say	now	 that	 the
messages	table	in	the	forums	example	will	require	a	FULLTEXT	index.	Therefore,	this	table	can	use
InnoDB	if	you’re	using	MySQL	5.6.4	or	greater	but	must	be	MyISAM	if	you’re	not.

3.	If	any	of	your	tables	requires	support	for	transactions,	make	it	an	InnoDB	table.
Yes,	again,	transactions	are	discussed	in	the	next	chapter,	but	the	storage	engines	ought	to	be	determined
now.	Neither	the	forums	nor	users	tables	in	the	forums	database	will	require	transactions.

4.	If	neither	of	the	above	applies	to	a	table,	use	the	default	storage	engine.
Table	6.7	identifies	the	storage	engines	to	be	used	by	the	tables	in	the	forums	database	with	the	caveat
that	if	you’re	not	using	MySQL	5.6.4	or	greater,	the	messages	table	should	be	MyISAM.



TABLE	6.7	The	Forum	Database	Table	Types
Table Table	Type
forums InnoDB

messages InnoDB

users InnoDB

Tip
MySQL	has	several	other	table	types,	but	MyISAM	and	InnoDB	are	the	two	most	important,	by
far.	The	MEMORY	 type	 creates	 the	 table	 in	memory,	making	 it	 an	 extremely	 fast	 table	 but	with
absolutely	no	permanence.

Languages	and	MySQL
Chapter	1,	“Introduction	to	PHP,”	briefly	introduced	the	concept	of	encodings.	An	HTML	page	or	PHP
script	can	specify	 its	encoding,	which	dictates	what	characters,	and	 therefore	 languages,	are	supported.
The	 same	 is	 true	 for	 a	 MySQL	 database:	 by	 setting	 your	 database’s	 encoding,	 you	 can	 impact	 what
characters	 can	 be	 stored	 in	 it.	 To	 see	 a	 list	 of	 encodings	 supported	 by	 your	 version	 of	MySQL,	 run	 a
SHOW	CHARACTER	SET	command	 .	Note	that	the	phrase	character	set	is	being	used	in	MySQL	to
mean	encoding	(which	I’ll	generally	follow	in	this	section	to	be	consistent	with	MySQL).



	The	list	of	character	sets	supported	by	this	MySQL	installation.
Each	character	set	in	MySQL	has	one	or	more	collations.	Collation	refers	to	the	rules	used	for	comparing
characters	 in	 a	 set.	 It’s	 like	 alphabetization,	 but	 it	 considers	 numbers,	 spaces,	 and	 other	 characters	 as
well.	Collation	is	 tied	 to	 the	character	set	being	used,	 reflecting	both	 the	kinds	of	characters	present	 in
that	language	and	the	cultural	habits	of	people	who	generally	use	the	language.	For	example,	how	text	is
sorted	in	English	is	not	the	same	as	it	is	in	traditional	Spanish	or	in	Arabic.	Other	considerations	include:
Are	upper-	and	lowercase	versions	of	a	character	considered	to	be	the	same	or	different	(i.e.,	is	it	a	case-
sensitive	comparison)?	How	do	accented	characters	get	sorted?	Is	a	space	counted	or	ignored?
To	view	MySQL’s	available	collations,	run	this	query	 ,	replacing	charset	with	the	proper	value	from
the	result	in	the	last	query	 :



	 The	 list	 of	 collations	 available	 in	 the	 UTF-8	 character	 set.	 The	 first	 one,	 utf_general_ci,	 is	 the
default.
Click	here	to	view	code	image

SHOW	COLLATION	LIKE	'charset%'

The	 results	 of	 this	 query	 will	 also	 indicate	 the	 default	 collation	 for	 that	 character	 set.	 The	 names	 of
collations	use	a	concluding	ci	to	indicate	case-insensitivity,	cs	for	case-sensitivity,	and	bin	for	binary.
Generally	 speaking,	 I	 recommend	 using	 the	 UTF-8	 character	 set,	 with	 its	 default	 collation.	 More
importantly,	the	character	set	in	use	by	the	database	should	match	that	of	your	PHP	scripts.	If	you’re
not	using	UTF-8	in	your	PHP	scripts,	use	the	matching	encoding	in	the	database.	If	 the	default	collation
doesn’t	adhere	to	the	conventions	of	the	language	primarily	in	use,	then	adjust	the	collation	accordingly.
In	MySQL,	 the	server	as	a	whole,	each	database,	each	 table,	and	even	every	string	column	can	have	a
defined	character	set	and	collation.	To	set	these	values	when	you	create	a	database,	use
Click	here	to	view	code	image

CREATE	DATABASE	name



CHARACTER	SET	charset

COLLATE	collation

To	set	these	values	when	you	create	a	table,	use
Click	here	to	view	code	image

CREATE	TABLE	name	(

column	definitions

)

CHARACTER	SET	charset

COLLATE	collation

To	establish	the	character	set	and	collation	for	a	column,	add	the	right	clause	to	the	column’s	definition
(you’d	only	use	this	for	text	types):
Click	here	to	view	code	image

CREATE	TABLE	name	(

something	TEXT

CHARACTER	SET	charset

COLLATE	collation

...)

In	each	of	these	cases,	both	clauses	are	optional.	If	omitted,	a	default	character	set	or	collation	will	be
used.
Establishing	the	character	set	and	collation	when	you	define	a	database	affects	what	data	can	be	stored;
you	cannot	store	a	character	in	a	column	if	its	encoding	doesn’t	support	that	character.	A	second	issue	is
the	encoding	used	to	communicate	with	MySQL.	If	you	want	to	store	Chinese	characters	in	a	table	with	a
Chinese	encoding,	those	characters	will	need	to	be	transferred	using	the	same	encoding.	To	do	so	within
the	mysql	client,	set	the	encoding	using	just
CHARSET	charset

With	phpMyAdmin,	 the	 encoding	 to	 be	 used	 is	 established	 in	 the	 application	 itself	 (i.e.,	written	 in	 the
configuration	file).
At	 this	point	 in	 time,	every	aspect	of	 the	database	design	for	 the	 forums	example	has	been	covered,	so
let’s	create	that	database	in	MySQL,	including	its	indexes,	storage	engines,	character	sets,	and	collations.

To	assign	character	sets	and	collations:
1.	Access	MySQL	using	whatever	client	you	prefer.
Like	 the	 preceding	 chapter,	 this	 one	will	 also	 use	 the	mysql	 client	 for	 all	 of	 its	 examples.	You	 are
welcome	to	use	phpMyAdmin	or	other	tools	as	the	interface	to	MySQL.

2.	Create	the	forum	database	 :
Click	here	to	view	code	image

CREATE	DATABASE	forum

CHARACTER	SET	utf8

COLLATE	utf8_general_ci;

USE	forum;



	The	first	steps	are	to	create	and	select	the	database.
Depending	on	your	setup,	you	may	not	be	allowed	to	create	your	own	databases.	If	that’s	the	case,	just
use	 the	 database	 provided	 to	 you	 and	 add	 the	 following	 tables	 to	 it.	 Note	 that	 in	 the	 CREATE
DATABASE	command,	the	character	set	and	collation	are	also	defined.	By	doing	so	at	this	point,	you
ensure	that	every	table	will	use	those	settings.

3.	Create	the	forums	table	 :
Click	here	to	view	code	image

CREATE	TABLE	forums	(

forum_id	TINYINT	UNSIGNED	NOT	

NULL	AUTO_INCREMENT,

name	VARCHAR(60)	NOT	NULL,

PRIMARY	KEY	(forum_id),

UNIQUE	(name)

)	ENGINE	=	INNODB;

	Creating	the	first	table.
It	does	not	matter	in	what	order	you	create	your	tables,	but	I’ll	make	the	forums	table	first.	Remember
that	you	can	enter	your	SQL	queries	over	multiple	lines	for	convenience.
This	 table	 contains	 only	 two	 columns	 (which	 will	 happen	 frequently	 in	 a	 normalized	 database).
Because	I	don’t	expect	there	to	be	many	forums,	the	primary	key	is	a	really	small	type	(TINYINT).	If
you	wanted	 to	add	descriptions	of	each	 forum,	a	VARCHAR(255)	or	TINYTEXT	 column	 could	 be
added	to	this	table.	This	table	uses	the	InnoDB	storage	engine.

4.	Create	the	messages	table	 :
Click	here	to	view	code	image

CREATE	TABLE	messages	(

message_id	INT	UNSIGNED	

NOT	NULL	AUTO_INCREMENT,

parent_id	INT	UNSIGNED	

NOT	NULL	DEFAULT	0,

forum_id	TINYINT	UNSIGNED	

NOT	NULL,

user_id	MEDIUMINT	UNSIGNED	

NOT	NULL,

subject	VARCHAR(100)	NOT	NULL,



body	LONGTEXT	NOT	NULL,

date_entered	DATETIME	NOT	NULL,

PRIMARY	KEY	(message_id),

INDEX	(parent_id),

INDEX	(forum_id),

INDEX	(user_id),

INDEX	(date_entered)

)	ENGINE	=	INNODB;

	Creating	the	second	table.
The	primary	key	 for	 this	 table	has	 to	be	big,	 since	 it	 could	have	 lots	 and	 lots	 of	 records.	The	 three
foreign	key	columns—forum_id,	parent_id,	and	user_id—will	all	be	 the	same	size	and	 type	as	 their
primary	key	counterparts.	The	subject	is	limited	to	100	characters	and	the	body	of	each	message	can	be
a	lot	of	text.	The	date_entered	field	is	a	DATETIME	type.
All	 three	 tables	 use	 the	 InnoDB	 storage	 engine,	 unless	 you’re	 using	 an	 older	 version	 of	MySQL,	 in
which	case	you’ll	probably	need	to	make	this	one	MyISAM.

5.	Create	the	users	table	 :
Click	here	to	view	code	image

CREATE	TABLE	users	(

user_id	MEDIUMINT	UNSIGNED	

NOT	NULL	AUTO_INCREMENT,

username	VARCHAR(30)	NOT	NULL,

pass	CHAR(128)	NOT	NULL,

first_name	VARCHAR(20)	NOT	NULL,

last_name	VARCHAR(40)	NOT	NULL,

email	VARCHAR(60)	NOT	NULL,

PRIMARY	KEY	(user_id),

UNIQUE	(username),

UNIQUE	(email),

INDEX	login	(pass,	email)

)	ENGINE	=	INNODB;



	The	database’s	third	and	final	table.
Most	of	the	columns	here	mimic	those	in	the	sitename	database’s	users	table,	created	in	the	preceding
two	chapters.	The	pass	column	is	defined	as	,	because	the	function	will	be	used	and	it	always	returns	a
string	128	characters	long	(see	Chapter	5).
This	table	uses	the	InnoDB	engine.

6.	If	desired,	confirm	the	database’s	structure	 :
\SHOW	TABLES;

SHOW	COLUMNS	FROM	forums;

SHOW	COLUMNS	FROM	messages;

SHOW	COLUMNS	FROM	users;



	Check	the	structure	of	any	database	or	table	using	SHOW.
The	SHOW	 command	 reveals	 information	 about	 a	 database	 or	 a	 table.	 This	 step	 is	 optional	 because
MySQL	reports	on	the	success	of	each	query	as	it	is	entered.	Still,	it’s	always	nice	to	remind	yourself
of	a	database’s	structure.

Tip
Collations	in	MySQL	can	also	be	specified	within	a	query,	to	affect	the	results:

SELECT	...	ORDER	BY	column

COLLATE	collation

SELECT	...	WHERE	column	LIKE	'value'

COLLATE	collation



Tip
The	CONVERT()	function	can	convert	text	from	one	character	set	to	another.

Tip
You	 can	 change	 the	 default	 character	 set	 or	 collation	 for	 a	 database	 or	 table	 using	 an	ALTER
command,	discussed	in	Chapter	7.

Tip
Because	different	character	sets	require	more	space	to	represent	a	string,	you	will	likely	need	to
increase	the	size	of	a	column	for	UTF-8	characters.	Do	this	before	changing	a	column’s	encoding
so	that	no	data	is	lost.

Time	Zones	and	MySQL
Chapter	 5	 discussed	 how	 to	 use	 NOW()	 and	 other	 date-	 and	 time-related	 functions.	 That	 chapter
explained	that	these	functions	reflect	the	time	on	the	server.	Therefore,	values	stored	in	a	database	using
these	functions	are	also	storing	the	server’s	time.	That	may	not	sound	like	a	problem,	but	say	you	move
your	 site	 from	one	 server	 to	 another:	 you	 export	 all	 the	data,	 import	 it	 into	 the	 other,	 and	 everything’s
fine…unless	the	two	servers	are	in	different	time	zones,	in	which	case	all	the	dates	are	now	technically
off.	 For	 some	 sites,	 such	 an	 alteration	 wouldn’t	 be	 a	 big	 deal,	 but	 what	 if	 your	 site	 features	 paid
memberships?	That	means	 some	people’s	membership	might	 expire	 several	 hours	 early,	 and	 for	 others
several	hours	late!	The	goal	of	a	database	is	to	reliably	store	information,	and	such	possibilities	simply
won’t	do.
The	solution	to	this	particular	problem	is	to	store	dates	and	times	in	a	time	zone–neutral	way.	Doing	so
requires	something	called	UTC	(Coordinated	Universal	Time,	and,	yes,	the	abbreviation	doesn’t	exactly
match	 the	 term).	 UTC,	 like	 Greenwich	Mean	 Time	 (GMT),	 provides	 a	 common	 point	 of	 origin,	 from
which	all	times	in	the	world	can	be	expressed	as	UTC	plus	or	minus	some	hours	and	minutes	(Table	6.8).

TABLE	6.8	UTC	Offsets
City Time
New	York	City,	U.S. UTC–4
Cape	Town,	South	Africa UTC+2
Mumbai,	India UTC+5:30
Auckland,	New	Zealand UTC+13
Kathmandu,	Nepal UTC+5:45
Santiago,	Chile UTC[nd]3
Dublin,	Ireland UTC+1

Fortunately,	you	don’t	have	to	know	these	values	or	perform	any	calculations	to	determine	UTC	for	your
server.	Instead,	the	UTC_DATE()	function	returns	the	UTC	date,	UTC_TIME()	returns	the	current	UTC
time,	and	UTC_TIMESTAMP()	returns	the	current	date	and	time.
Once	you	have	stored	a	UTC	time,	you	can	retrieve	the	time	adjusted	to	reflect	the	server’s	or	the	user’s



location.	To	change	a	date	and	time	from	any	one	time	zone	to	another,	use	CONVERT_TZ()	 :
CONVERT_TZ(dt,	from,	to)

	A	conversion	of	the	current	UTC	date	and	time	to	the	American	Eastern	Daylight	Time	(EDT).
The	first	argument	is	a	date	and	time	value,	like	the	result	of	a	function	or	what’s	stored	in	a	column.	The
second	and	third	arguments	are	named	time	zones.	To	use	this	function,	the	list	of	time	zones	must	already
be	stored	in	MySQL,	which	may	or	may	not	be	the	case	for	your	installation	(see	the	sidebar).	If	you	see
NULL	results	 ,	check	out	the	MySQL	manual	for	how	to	install	the	time	zones	on	your	server.

	The	CONVERT_TZ()	function	will	return	NULL	if	it	references	an	invalid	time	zone	or	if	the	time
zones	haven’t	been	installed	in	MySQL	(which	is	the	case	here).
To	use	this	information,	let’s	start	populating	the	forums	database,	recording	the	message	posted	date	and
time	using	UTC.

Using	Time	Zones	in	MySQL
MySQL	 does	 not	 necessarily	 install	 support	 for	 time	 zones	 by	 default.	 To	 use	 named	 time
zones,	you	must	make	sure	that	five	specific	tables	in	the	mysql	database	are	populated.	While
MySQL	may	not	automatically	do	this	for	you,	it	does	provide	the	tools	to	do	this	yourself.
This	process	is	just	complicated	enough	that	there’s	not	room	to	discuss	it	in	this	book	(not	for
every	 possible	 contingency,	 operating	 system,	 etc.).	 But	 you	 can	 find	 the	 instructions	 by
looking	up	“server	time	zone	support”	in	the	MySQL	manual.
If	 you	 continue	 to	use	 time	zones	 in	MySQL,	you	 also	need	 to	keep	 this	 information	 in	 the
mysql	database	updated.	The	rules	for	time	zones,	in	particular	when	and	how	they	observe
daylight	 saving	 time,	 change	 often	 enough.	 Again,	 the	MySQL	manual	 has	 instructions	 for
updating	your	time	zones.

To	work	with	UTC:
1.	Access	the	forum	database	using	whatever	client	you	prefer.



Like	 the	 preceding	 chapter,	 this	 one	 will	 also	 use	 the	 mysql	 client	 for	 all	 its	 examples.	 You	 are
welcome	to	use	phpMyAdmin	or	other	tools	as	the	interface	to	MySQL.

2.	If	necessary,	change	the	encoding	to	UTF-8	 :
CHARSET	utf8;

	The	character	set	used	to	communicate	with	MySQL	should	match	that	used	in	the	database.
Because	the	database	uses	UTF-8	as	its	character	set,	the	communication	with	the	database	should	use
the	same.	This	 line,	explained	 in	 the	previous	section	of	 the	chapter,	does	exactly	 that.	Note	 that	you
only	need	to	do	this	when	using	the	mysql	client.	Also,	if	you’re	not	using	UTF-8,	change	the	command
accordingly.

3.	Add	some	new	records	to	the	forums	table	 :
Click	here	to	view	code	image

INSERT	INTO	forums	(name)	VALUES

('MySQL'),	('PHP'),	('Sports'),

('HTML'),	('CSS'),	('Kindling');

	Adding	records	to	the	forums	table.
Since	the	messages	table	relies	on	values	retrieved	from	both	the	forums	and	users	 tables,	those	two
tables	need	to	be	populated	first.	With	this	command,	only	the	name	column	must	be	provided	a	value
(the	table’s	forum_id	column	will	be	given	an	automatically	incremented	integer	by	MySQL).

4.	Add	some	records	to	the	users	table	 :
Click	here	to	view	code	image

INSERT	INTO	users	(username,	pass,

first_name,	last_name,	email)

VALUES

('troutster',	SHA2('mypass',	512),

'Larry',	'Ullman',

'lu@example.com'),

('funny	man',	SHA2('monkey',	512),

'David',	'Brent',

'db@example.com'),

('Gareth',	SHA2('asstmgr',	512),

'Gareth',	'Keenan',

'gk@example.com');

INSERT	INTO	users	(username,	pass,

first_name,	last_name,	email)

VALUES

('tim',	SHA2('psych',	512)	,	'Tim',



'Canterbury',	'tc@example.com'),

('finchy',	SHA2('jerk',	512),

'Chris',	'Finch',	'

cf@example.com');

	Adding	records	to	the	users	table.
If	you	have	any	questions	about	the	INSERT	syntax	or	use	of	the	SHA1( )	function	here,	see	Chapter
5.

5.	Add	new	records	to	the	messages	table	 :
Click	here	to	view	code	image

SELECT	*	FROM	forums;

SELECT	user_id,	username

FROM	users;

INSERT	INTO	messages	(parent_id,

forum_id,	user_id,	subject,

body,	date_entered)	VALUES

(0,	1,	1,	'Question	about

normalization.',	'I''m	confused

about	normalization.	For	the

second	normal	form	(2NF),	I

read...',	UTC_TIMESTAMP()),

(0,	1,	2,	'Database	Design',

'I''m	creating	a	new	database

and	am	having	problems	with	the

structure.	How	many

tables	should	I	have?...',

UTC_TIMESTAMP()),

(2,	1,	2,	'Database	Design',

'The	number	of	tables

your	database	includes...',

UTC_TIMESTAMP()),

(0,	1,	3,	'Database	Design',

'Okay,	thanks!',	UTC_TIMESTAMP()),

(0,	2,	3,	'PHP	Errors',	'I''m	using

the	scripts	from	Chapter	3	and

I	can''t	get	the	first

calculator	example	to	work.

When	I	submit	the	form...',

UTC_TIMESTAMP());



	Populating	the	messages	table	requires	knowing	foreign	key	values	from	users	and	forums.
Because	two	of	the	fields	in	the	messages	table	(forum_id	and	user_id)	relate	to	values	in	other	tables,
you	 need	 to	 know	 those	 values	 before	 inserting	 new	 records	 into	 this	 table.	 For	 example,	when	 the
troutster	user	creates	a	new	message	in	the	MySQL	forum,	the	INSERT	will	have	a	forum_id	of	1	and
a	user_id	of	1.
This	is	further	complicated	by	the	parent_id	column,	which	should	store	the	message_id	to	which	the
new	message	is	a	reply.	The	second	message	added	to	the	database	will	have	a	message_id	of	2,	so
replies	to	that	message	need	a	parent_id	of	2.
With	your	PHP	scripts—once	you’ve	created	an	interface	for	this	database,	this	process	will	be	much
easier,	but	it’s	important	to	comprehend	the	theory	in	SQL	terms	first.
For	 the	date_entered	 field,	 the	 value	 returned	 by	 the	UTC_TIMESTAMP()	 function	 will	 be	 used.
Using	the	UTC_TIMESTAMP()	function,	the	record	will	store	the	UTC	date	and	time,	not	the	date	and
time	on	the	server.

6.	Repeat	Steps	3–5	to	populate	the	database.
The	rest	of	the	examples	in	this	chapter	and	the	next	will	use	the	populated	database.	You’ll	probably
want	 to	 download	 the	 SQL	 commands	 from	 the	 book’s	 corresponding	 web	 site,	 although	 you	 can
populate	the	tables	with	your	own	examples	and	then	just	change	the	queries	in	the	rest	of	the	chapter
accordingly.

7.	View	the	most	recent	record	in	the	messages	table,	using	the	stored	date	and	time	 :
Click	here	to	view	code	image

SELECT	message_id,	subject,	

date_entered	FROM	messages

ORDER	BY	date_entered	DESC	

LIMIT	1;



	The	record	that	was	just	inserted,	which	reflects	a	time	four	hours	ahead	(the	server	is	UTC-4).
As	you	can	see	in	the	figure	and	the	table	definition,	UTC	times	are	stored	just	the	same	as	non-UTC
times.	What’s	not	obvious	in	the	figure	is	that	the	record	just	inserted	reflects	a	time	four	hours	ahead	of
the	server	(because	my	particular	server	is	in	a	time	zone	four	hours	behind	UTC).

8.	Retrieve	the	same	record	converting	the	date_entered	to	your	time	zone	 :
Click	here	to	view	code	image

SELECT	message_id,	subject,

CONVERT_TZ(date_entered,	

'UTC',	'US/Eastern')	AS	local

FROM	messages	ORDER	BY

date_entered	DESC	LIMIT	1;

	The	UTC-stored	date	and	time	converted	to	my	local	time.
Using	the	CONVERT_TZ( )	function,	you	can	convert	any	date	and	time	to	a	different	time	zone.	For
the	from	time	zone,	use	UTC.	For	the	to	time	zone,	use	yours	(see	the	MySQL	manual	to	find	the	right
value	to	use).
If	you	get	a	NULL	result	 ,	either	the	name	of	one	of	your	time	zones	is	wrong	or	MySQL	hasn’t	had
its	time	zones	loaded	yet	(see	the	sidebar).

Tip
However	you	decide	to	handle	dates,	the	key	is	to	be	consistent.	If	you	decide	to	use	UTC,	then
always	use	UTC.

Tip
UTC	is	also	known	as	Zulu	time,	represented	by	the	letter	Z.



Tip
Besides	being	time	zone	and	daylight	saving	time	agnostic,	UTC	is	also	more	accurate.	It	factors
in	irregular	leap	seconds	that	compensate	for	the	inexact	movement	of	the	planet.

Foreign	Key	Constraints
A	feature	of	the	InnoDB	table	type,	not	supported	in	other	storage	engines,	is	the	ability	to	apply	foreign
key	constraints.	When	you	have	related	tables,	 the	foreign	key	in	Table	B	relates	 to	 the	primary	key	 in
Table	A	(for	ease	of	understanding,	it	may	help	to	think	of	Table	B	as	the	child	to	Table	A’s	parent).	For
example,	in	the	forums	database,	the	messages.user_id	field	is	tied	to	users.user_id.	If	the	administrator
were	 to	 delete	 a	 user	 account,	 the	 relationship	 between	 those	 tables	 would	 be	 broken	 because	 the
messages	 table	 would	 have	 records	 with	 a	 user_id	 value	 that	 doesn’t	 exist	 in	 users.	 Foreign	 key
constraints	set	rules	as	to	what	should	happen	when	a	break	would	occur,	including	preventing	that	break.
The	syntax	for	creating	a	foreign	key	constraint	is
FOREIGN	KEY	(item_name)

REFERENCES	table	(column)

This	goes	within	a	CREATE	TABLE	or	ALTER	TABLE	statement.
The	item	name	is	the	foreign	key	column	in	the	current	table.	The	table(column)	clause	is	a	reference	to
the	 parent	 table	 column	 to	 which	 this	 foreign	 key	 should	 be	 constrained.	 If	 you	 just	 use	 this	 minimal
constraint	 definition—only	 identifying	 the	 relationship	 without	 stating	 what	 should	 happen	 when	 the
constraint	would	be	broken—MySQL	will	throw	an	error	if	you	attempt	to	delete	the	parent	record	while
child	records	exist	 .	MySQL	will	also	throw	an	error	if	you	attempt	to	create	a	child	record	using	a
parent	ID	that	doesn’t	exist	 .

	 This	 error	 indicates	 that	MySQL	 is	 preventing	 a	 query	 from	 deleting	 a	 parent	 record	 because	 the
record	is	constrained	to	one	or	more	existing	children	records.

	Foreign	key	constraints	also	affect	INSERT	queries.
You	can	dictate	what	alternative	actions	should	occur	by	following	the	previous	syntax	with	one	or	both
of	these:
ON	DELETE	action

ON	UPDATE	action

There	 are	 five	 action	options,	 but	 two—RESTRICT	 and	NO	ACTION—are	 synonymous	 and	 also	 the



default	(i.e.,	the	same	as	if	you	don’t	specify	the	action	at	all).	A	third	action	option—SET	DEFAULT—
doesn’t	work	on	InnoDB	tables.	That	leaves	CASCADE	and	SET	NULL.	If	the	action	set	is	SET	NULL,
the	removal	of	a	parent	record	will	result	in	setting	the	corresponding	foreign	keys	in	the	child	table	 to
NULL.	 If	 that	 table	defines	 that	column	as	NOT	NULL,	which	 it	 almost	always	 should,	deletion	of	 the
parent	record	will	trigger	an	error.
The	action	is	the	most	useful	option.	It	tells	the	database	to	apply	the	same	changes	to	the	related	table.
With	this	instruction,	if	you	delete	the	parent	record,	MySQL	will	also	delete	the	child	records	with	that
parent	ID	as	its	foreign	key.
Only	the	InnoDB	table	type	supports	foreign	key	constraints,	so	both	tables	in	the	relationship	must	be	of
the	InnoDB	type.	Also,	for	MySQL	to	be	able	to	compare	the	foreign	key–primary	key	values,	the	related
columns	must	be	of	equitable	types.	This	means	that	numeric	columns	must	be	the	same	type	and	size;	text
columns	must	use	the	same	character	set	and	collation.
With	the	forums	example,	you	can	create	foreign	key	constraints	if	you’re	using	version	5.6.4	or	greater	of
MySQL	(and	you	created	 the	messages	 table	using	 the	 InnoDB	storage	engine).	 If	you	didn’t	create	 the
messages	 table	using	 the	 InnoDB	storage	engine,	 then	 it’s	 impossible	 to	use	 foreign	key	constraints,	 as
messages	is	the	only	table	related	to	another—messages	relates	to	both	forums	and	users.
As	you	may	not	be	able	to	use	foreign	key	constraints	with	the	existing	example,	let’s	instead	use	a	new
hypothetical	example	for	banking	 .

	The	banking	database	could	be	used	for	virtual	banking.
The	 customers	 table	 stores	 all	 the	 information	 particular	 to	 a	 customer.	 It	 would	 logically	 also	 store
contact	information	and	so	forth.	The	accounts	table	stores	the	accounts	for	each	customer,	including	the
type—Checking	 or	 Savings—and	 balance.	 Each	 customer	 may	 have	 more	 than	 one	 account,	 but	 each
account	is	associated	with	only	one	customer	(for	a	bit	of	simplicity).	In	the	real	world,	the	table	might
also	store	the	date	the	account	was	opened	and	use	a	as	the	balance,	thereby	representing	all	transactions
in	cents	instead	of	dollars	with	decimals.	Finally,	the	transactions	table	stores	every	movement	of	money
from	one	account	to	another.	Again,	to	make	the	example	a	bit	easier	to	follow,	the	example	assumes	that
only	accounts	within	this	same	system	will	interact.	Note	that	the	transactions	table	has	two	one-to-many
relationships	 with	 accounts	 (not	 one	 many-to-many).	 Each	 transaction’s	 to_account_id	 value	 will	 be
associated	with	a	 single	account,	but	each	account	could	be	 the	“to”	account	multiple	 times.	The	 same
applies	to	the	“from”	account.	Finally,	foreign	key	constraints	are	applied	to	preserve	the	integrity	of	the
data.
In	this	next	series	of	steps,	you’ll	create	and	populate	this	database,	paying	attention	to	the	constraints.	In
the	next	chapter,	this	same	database	will	be	used	to	demonstrate	transactions	and	encryption.



To	create	foreign	key	constraints:
1.	Access	MySQL	using	whatever	client	you	prefer.
Like	the	preceding	chapter,	this	one	will	use	the	mysql	client	for	all	its	examples.	You	are	welcome	to
use	phpMyAdmin	or	other	tools	as	the	interface	to	MySQL.

2.	Create	the	banking	database	 :
Click	here	to	view	code	image

CREATE	DATABASE	banking

CHARACTER	SET	utf8

COLLATE	utf8_general_ci;

USE	banking;

	A	new	database	is	being	created	for	this	example.
As	always,	depending	on	your	setup,	you	may	not	be	allowed	to	create	your	own	databases.	If	not,	just
use	the	database	provided	to	you	and	add	the	following	tables	to	it.

3.	If	necessary,	change	the	communication	encoding	to	UTF-8:
CHARSET	utf8;

4.	Create	the	customers	table	 :
Click	here	to	view	code	image

CREATE	TABLE	customers	(

customer_id	INT	UNSIGNED	NOT	NULL

AUTO_INCREMENT,

first_name	VARCHAR(20)	NOT	NULL,

last_name	VARCHAR(40)	NOT	NULL,

PRIMARY	KEY	(customer_id),

INDEX	full_name	(last_name,

first_name)

)	ENGINE	=	INNODB;

	Creating	the	customers	table.
The	customers	table	just	stores	the	customer’s	ID—the	primary	key—and	name	(in	two	columns).	An
index	is	also	placed	on	the	full	name,	in	case	it	might	be	used	in	ORDER	BY	and	other	query	clauses.
So	that	the	database	can	use	foreign	key	constraints,	every	table	will	use	the	InnoDB	storage	engine.

5.	Create	the	accounts	table	 :



Click	here	to	view	code	image
CREATE	TABLE	accounts	(

account_id	INT	UNSIGNED

NOT	NULL	AUTO_INCREMENT,

customer_id	INT	UNSIGNED

NOT	NULL,

type	ENUM('Checking',	'Savings')

NOT	NULL,

balance	DECIMAL(10,2)	UNSIGNED

NOT	NULL	DEFAULT	0.0,

PRIMARY	KEY	(account_id),

INDEX	(customer_id),

FOREIGN	KEY	(customer_id)

REFERENCES	customers

(customer_id)	ON	DELETE	NO

ACTION	ON	UPDATE	NO	ACTION

)	ENGINE	=	INNODB;

	Creating	the	accounts	table.
The	accounts	 table	 stores	 the	 account	 ID,	 customer	 ID,	 account	 type,	 and	balance.	The	customer_id
column	has	an	index	on	it,	since	it	will	be	used	in	JOINs	(in	Chapter	7).	More	importantly,	the	column
is	constrained	to	customers.customer_id,	thereby	protecting	both	tables.	Even	though	NO	ACTION	 is
the	default	constraint,	I’ve	included	it	in	the	definition	for	added	clarity.
Note	that	you	must	create	the	accounts	table	after	creating	customers	or	else	the	attempt	will	fail	(due
to	trying	to	impose	a	constraint	involving	a	table	that	doesn’t	exist).

6.	Create	the	transactions	table	 :
Click	here	to	view	code	image

CREATE	TABLE	transactions	(

transaction_id	INT	UNSIGNED

NOT	NULL	AUTO_INCREMENT,

to_account_id	INT	UNSIGNED

NOT	NULL,

from_account_id	INT	UNSIGNED

NOT	NULL,

amount	DECIMAL(5,2)	UNSIGNED

NOT	NULL,

date_entered	TIMESTAMP	NOT	NULL,

PRIMARY	KEY	(transaction_id),

INDEX	(to_account_id),

INDEX	(from_account_id),

INDEX	(date_entered),

FOREIGN	KEY	(to_account_id)

REFERENCES	accounts	(account_id)

ON	DELETE	NO	ACTION	ON	UPDATE

NO	ACTION,



FOREIGN	KEY	(from_account_id)

REFERENCES	accounts	(account_id)

ON	DELETE	NO	ACTION	ON	UPDATE

NO	ACTION

)	ENGINE	=	INNODB;

	Creating	the	third,	and	final,	table:	transactions.
The	final	table	will	be	used	to	record	all	movements	of	monies	among	the	accounts.	To	do	so,	it	stores
both	account	IDs	(the	“to”	and	“from”),	the	amount,	and	the	date/time.	Indexes	are	added	accordingly,
and	both	account	IDs	are	constrained	to	the	accounts	table.

7.	Populate	the	customers	and	accounts	tables	 :
Click	here	to	view	code	image

INSERT	INTO	customers

(first_name,	last_name)

VALUES	('Sarah',	'Vowell'),

('David',	'Sedaris'),

('Kojo',	'Nnamdi');

INSERT	INTO	accounts

(customer_id,	balance)

VALUES	(1,	5460.23),	(2,	909325.24),

(3,	892.00);

INSERT	INTO	accounts

(customer_id,	type,	balance)

VALUES	(2,	'Savings',	13546.97);

	Three	records	are	added	to	both	the	customers	and	accounts	tables.
First,	sample	data	is	entered	into	the	first	two	tables	(the	third	will	be	used	in	the	next	chapter).	Note



that	because	the	accounts.type	column	is	defined	as	an	ENUM	NOT	NULL,	if	no	value	is	provided	for
that	column,	the	first	item	in	the	ENUM	definition—Checking—will	be	used.

8.	Attempt	to	put	data	into	the	accounts	table	for	which	there	is	no	customer	 :
Click	here	to	view	code	image

INSERT	INTO	accounts

(customer_id,	type,	balance)

VALUES	(10,	'Savings',	200.00);

	Again,	as	in	 ,	the	constraint	denies	the	INSERT	query	due	to	an	invalid	value	from	the	parent	table.
The	foreign	key	constraint	present	in	the	accounts	table	will	prevent	an	account	being	created	without	a
valid	customer	ID—a	pretty	useful	check	in	the	real	world.

9.	Attempt	to	delete	a	record	from	the	customers	table	for	which	there	is	an	accounts	record	 :

	Because	the	customer	with	an	ID	of	2	has	one	or	more	records	in	the	accounts	 table,	the	customers
record	cannot	be	deleted.

DELETE	FROM	customers

WHERE	customer_id=2;

The	 constraint	 will	 also	 prevent	 the	 deletion	 of	 customer	 records	 when	 that	 customer	 still	 has	 an
account.
Despite	 the	 constraint,	 you	 could	 still	 delete	 a	 customer	 record	 if	 the	 customer	 does	 not	 have	 any
records	in	the	accounts	table.

Tip
To	delete	constrained	records,	you	must	first	delete	all	the	children	records,	and	then	the	parent
record.

Tip
Foreign	key	constraints	 require	 that	 all	 columns	 in	 the	constraint	be	 indexed.	Normal	database
design	would	suggest	this	is	the	case,	but	if	the	correct	indexes	do	not	exist,	MySQL	will	create
them	when	the	constraint	is	defined.



Tip
Similar	to	constraints	are	triggers.	Simply	put,	a	trigger	is	a	way	of	telling	the	database	“when	X
happens	 to	 this	 table,	do	Y.”	For	example,	when	 inserting	a	 record	 in	Table	A,	another	 record
might	be	created	or	updated	in	Table	B.	See	the	MySQL	manual	for	more	on	triggers.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	Why	is	normalization	important?
	What	are	the	two	types	of	keys?
	What	are	the	three	types	of	table	relationships?
	How	do	you	fix	the	problem	of	a	many-to-many	relationship	between	two	tables?
	What	are	the	four	types	of	indexes?	What	general	types	of	columns	should	be	indexed?	What	general
types	of	columns	should	not	be	indexed?
	What	are	the	two	most	common	MySQL	table	types?	What	is	the	default	table	type	for	your	MySQL
installation?
	 What	 is	 a	 character	 set?	 What	 is	 a	 collation?	 What	 impact	 does	 the	 character	 set	 have	 on	 the
database?	What	impact	does	the	collation	have?	What	character	set	and	collation	are	you	using?
	What	is	UTC?	How	do	you	find	the	UTC	time	in	MySQL?	How	do	you	convert	from	UTC	to	another
time	zone’s	time?
	What	are	foreign	key	constraints?	What	table	type	supports	foreign	key	constraints?

Pursue
	 You	 may	 want	 to	 consider	 downloading,	 installing,	 and	 learning	 to	 use	 the	 MySQL	 Workbench
application.	It	can	be	quite	useful.
	If	you	don’t	fully	grasp	the	process	of	normalization—and	that’s	perfectly	understandable—search	for
additional	tutorials	online	or	ask	a	question	in	my	support	forums.
	Design	your	own	database	using	the	information	presented	here.

http://LarryUllman.com/forums/






















































7.	Advanced	SQL	and	MySQL

In	This	Chapter
Performing	Joins
Grouping	Selected	Results
Advanced	Selections
Performing	FULLTEXT	Searches
Optimizing	Queries
Performing	Transactions
Database	Encryption
Review	and	Pursue

This,	the	last	chapter	dedicated	to	SQL	and	MySQL	(although	most	of	the	rest	of	the	book	will	use	these
technologies	in	some	form	or	another),	discusses	the	higher-end	concepts	often	needed	to	work	with	more
complicated	 databases,	 like	 those	 created	 in	 the	 previous	 chapter.	 The	 first	 such	 topic	 is	 the	JOIN,	 a
critical	 SQL	 term	 for	 querying	 normalized	 databases	 with	 multiple	 tables.	 From	 there,	 the	 chapter
introduces	 a	 category	of	 functions	 that	 are	 specifically	 used	when	grouping	 query	 results,	 followed	 by
more	complex	ways	to	select	values	from	a	table.
In	 the	middle	of	 the	 chapter,	 you’ll	 learn	how	 to	perform	FULLTEXT	 searches,	which	 can	 add	 search
engine–like	 functionality	 to	 any	 site.	Next	up	 is	 the	EXPLAIN	 command;	 it	 provides	 a	way	 to	 test	 the
efficiency	of	your	database	schema	and	your	queries.	The	chapter	concludes	with	coverage	of	transactions
and	database	encryption.

Performing	Joins
Because	 relational	 databases	 are	 more	 complexly	 structured,	 they	 sometimes	 require	 special	 query
statements	to	retrieve	the	information	you	need	most.	For	example,	if	you	wanted	to	know	what	messages
are	in	the	MySQL	forum	(using	the	forum	database	created	in	the	previous	chapter),	you	would	need	to
first	find	the	forum_id	for	MySQL:
Click	here	to	view	code	image

SELECT	forum_id	FROM	forums	WHERE

name='MySQL'

Then	 you	 would	 use	 that	 number	 to	 retrieve	 all	 the	 records	 from	 the	messages	 table	 that	 have	 that
forum_id:
Click	here	to	view	code	image

SELECT	*	FROM	messages	WHERE

forum_id=1

This	one	simple—and,	in	a	forum,	often	necessary—task	would	require	two	separate	queries.	By	using	a
join,	you	can	perform	both	requests	in	a	single	query.
A	join	is	an	SQL	query	that	uses	two	or	more	tables	and	produces	a	virtual	table	of	results.	Whenever	you
need	to	simultaneously	retrieve	information	from	more	than	one	table,	a	join	is	what	you’ll	probably	use.



Joins	can	be	written	in	many	ways,	but	the	basic	syntax	is
SELECT	what_columns

FROM	tableA

JOIN_TYPE	tableB

JOIN_CLAUSE

Because	joins	involve	multiple	tables,	the	what_columns	can	include	columns	in	any	named	table.	And
since	joins	often	return	so	much	information,	it’s	normally	best	to	specify	exactly	what	columns	you	want
returned,	instead	of	selecting	them	all.
When	selecting	from	multiple	tables,	you	must	use	the	dot	syntax	(table.column)	if	the	tables	named	in	the
query	have	columns	with	 the	same	name.	This	 is	often	 the	case	when	dealing	with	relational	databases
because	a	primary	key	from	one	table	may	have	the	same	name	as	a	foreign	key	in	another.	If	you	are	not
explicit	when	referencing	your	columns,	you’ll	get	an	error	 :
Click	here	to	view	code	image

SELECT	forum_id	FROM	messages

INNER	JOIN	forums

ON	messages.forum_id=forums.forum_id

	Generically	referring	to	a	column	name	present	in	multiple	tables	will	cause	an	ambiguity	error.

The	two	main	types	of	joins	are	inner	and	outer,	and	there	are	subtypes	within	both.	As	you’ll	see	with
outer	joins,	the	order	in	which	you	reference	the	tables	does	matter.
The	 join	 clause	 is	 where	 you	 indicate	 the	 relationship	 between	 the	 joined	 tables.	 For	 example,
forums.forum_id	should	equal	messages.forum_id	in	the	previous	code.
You	can	also	use	WHERE	and	ORDER	BY	clauses	with	a	join,	as	you	would	with	any	SELECT	query.
As	a	 last	note,	before	getting	 into	 joins	more	 specifically,	 the	SQL	concept	of	 an	alias—introduced	 in
Chapter	5,	“Introduction	 to	SQL”—will	 come	 in	handy	when	writing	 joins.	Often	 an	 alias	will	 just	 be
used	as	a	shorthand	way	of	referencing	the	same	table	multiple	times	within	the	same	query.	If	you	don’t
recall	the	syntax	for	creating	aliases,	or	how	they’re	used,	revisit	that	part	of	Chapter	5.
As	in	the	previous	two	chapters,	this	chapter	will	use	the	command-line	mysql	client	to	execute	queries,
but	you	can	also	use	phpMyAdmin	or	another	tool.	The	chapter	assumes	you	know	how	to	connect	to	the
MySQL	server	and	declare	the	character	set	to	use,	if	necessary.

Inner	joins
An	inner	join	returns	all	 the	records	from	the	named	tables	wherever	a	match	is	made.	For	example,	 to
find	every	message	posted	in	the	MySQL	forum,	the	inner	join	would	be	written	as	
Click	here	to	view	code	image

SELECT	m.message_id,	m.subject,

f.name

FROM	messages	AS	m	INNER	JOIN

forums	AS	f



ON	m.forum_id	=	f.forum_id

WHERE	f.name	='MySQL'

	 This	 join	 returns	 three	 columns	 from	 two	 tables	 where	 the	 forum_id	 value—1—represents	 the
MySQL	forum.

This	 join	 is	 selecting	 two	 columns	 from	 the	messages	 table	 (aliased	 as	m)	 and	 one	 column	 from	 the
forums	table	(aliased	as	f)	under	two	conditions.	First,	the	f.name	column	must	have	a	value	of	MySQL.
This	 will	 return	 the	 forum_id	 of	 1.	 Second,	 the	 forum_id	 value	 in	 the	 forums	 table	 must	 match	 the
forum_id	value	in	the	messages	table.	Because	of	the	equality	comparison	being	made	across	both	tables
(),	this	is	known	as	an	equijoin.
As	an	alternative	syntax,	if	the	column	in	both	tables	being	used	in	the	equality	comparison	has	the	same
name,	you	can	simplify	your	query	with	USING:
Click	here	to	view	code	image

SELECT	m.message_id,	m.subject,	

f.name

FROM	messages	AS	m	INNER	JOIN	

forums	AS	f

USING	(forum_id)

WHERE	f.name	=	'MySQL'

To	use	inner	joins:
1.	Connect	to	MySQL	and	select	the	forum	database.
2.	Retrieve	the	forum	name	and	message	subject	for	every	record	in	the	messages	table	 :
Click	here	to	view	code	image

SELECT	f.name,	m.subject	FROM	

forums

AS	f	INNER	JOIN	messages	AS	m

USING	(forum_id)	ORDER	BY	f.name;

	A	basic	inner	join	that	returns	only	two	columns	of	values.



This	query	will	effectively	replace	 the	 forum_id	value	 in	 the	messages	 table	with	 the	corresponding
name	value	from	the	 forums	 table	 for	each	of	 the	records	 in	 the	messages	 table.	The	result	 is	 that	 it
displays	the	textual	version	of	the	forum	name	for	each	message	subject.
Notice	that	you	can	still	use	ORDER	BY	clauses	in	joins.

3.	Retrieve	the	subject	and	date	entered	for	every	message	posted	by	the	user	funny	man	 :
Click	here	to	view	code	image

SELECT	m.subject,

DATE_FORMAT(m.date_entered,'%M	%D,	

%Y')	AS	Date

FROM	users	AS	u

INNER	JOIN	messages	AS	m

USING	(user_id)

WHERE	u.username	=	'funny	man';

	A	slightly	more	complicated	version	of	an	inner	join,	based	on	the	users	and	messages	tables.



This	join	also	uses	two	tables:	users	and	messages.	The	linking	column	for	the	two	tables	is	user_id,
so	 that’s	 placed	 in	 the	 clause.	 The	 conditional	 identifies	 the	 user	 being	 targeted,	 and	 the
DATE_FORMAT()	function	will	help	format	the	date_entered	value.

4.	Find	the	forums	that	have	had	the	five	most	recent	postings	 :
Click	here	to	view	code	image

SELECT	f.name	FROM	forums	AS	f

INNER	JOIN	messages	AS	m

USING	(forum_id)

ORDER	BY	m.date_entered	DESC

LIMIT	5;

	An	ORDER	BY	clause	and	a	LIMIT	clause	are	applied	to	this	join,	which	returns	the	forums	with	the
five	most	recent	messages.

Since	the	only	information	that	needs	to	be	returned	is	the	forum	name,	that’s	the	sole	column	selected
by	 this	 query.	The	 join	 is	 then	 across	 the	 forums	 and	messages	 table,	 linked	 via	 the	 forum_id.	 The
query	 to	 that	 point	 would	 return	 every	 message	 matched	 with	 the	 forum	 it’s	 in.	 That	 result	 is	 then
ordered	by	the	date_entered	column,	in	descending	order,	and	restricted	to	just	the	first	five	records.



Tip
Inner	joins	can	also	be	written	without	formally	using	the	phrase	INNER	JOIN.	To	do	so,	place
a	 comma	 between	 the	 table	 names	 and	 turn	 the	 ON,	 or	 USING,	 clause	 into	 another	 WHERE
condition:

Click	here	to	view	code	image

SELECT	m.message_id,	m.subject,	

f.name	

FROM	messages	AS	m,	forums	AS	f	

WHERE	m.forum_id	=	f.forum_id

AND	f.name	=	'MySQL'

Tip
Joins	 that	do	not	 include	a	 join	 clause	 (ON	or	USING)	or	 a	WHERE	 clause	 (e.g.,	SELECT	*
FROM	urls	INNER	JOIN	url_associations)	 are	 called	 full	 joins	 and	 will	 return
every	record	from	both	tables.	This	construct	can	have	unwieldy	results	with	larger	tables.

Tip
A	NULL	 value	 in	 a	 column	 referenced	 in	 an	 inner	 join	will	 never	 be	 returned,	 because	NULL
matches	no	other	value,	including	NULL.

Tip
MySQL’s	supported	join	types	differ	slightly	from	the	SQL	standard.	For	example,	SQL	supports
a	 CROSS	 JOIN	 and	 an	 INNER	 JOIN	 as	 two	 separate	 things,	 but	 in	 MySQL	 they	 are
syntactically	the	same.

Outer	Joins
Whereas	an	inner	join	returns	records	based	on	making	matches	between	two	tables,	an	outer	 join	will
return	records	that	are	matched	by	both	tables,	and	will	return	records	that	don’t	match.	In	other	words,
an	inner	join	is	exclusive	but	an	outer	join	is	 inclusive.	There	are	three	outer	 join	subtypes:	 left,	right,
and	full,	with	left	being	the	most	important.	Here	is	an	example	of	a	left	join:
Click	here	to	view	code	image

SELECT	f.*,	m.subject	FROM	forums	AS	f

LEFT	JOIN	messages	AS	m

ON	f.forum_id	=	m.forum_id

The	most	important	consideration	with	left	joins	is	which	table	gets	named	first.	In	this	example,	all	the
forums	 records	 will	 be	 returned	 along	 with	 all	 the	messages	 information,	 if	 a	 match	 is	 made.	 If	 no
messages	 records	match	 a	 forums	 row,	 then	NULL	 values	will	 be	 returned	 for	 the	 selected	messages
columns	instead	 .

	An	outer	 join	returns	all	 the	records	from	the	first	 table	 listed,	with	non-matching	records	from	the
second	table	replaced	with	NULL	values.



As	with	an	 inner	 join,	 if	 the	column	 in	both	 tables	being	used	 in	 the	equality	comparison	has	 the	 same
name,	you	can	simplify	your	query	with	USING:
Click	here	to	view	code	image

SELECT	f.*,	m.subject	FROM	forums	AS	f

LEFT	JOIN	messages	AS	m

USING	(forum_id)

A	right	outer	join	does	the	opposite	of	a	left	outer	join:	it	returns	all	the	applicable	records	from	the	right-
hand	table,	along	with	matches	from	the	left-hand	table.	This	query	is	equivalent	to	the	previous	one:
Click	here	to	view	code	image

SELECT	f.*,	m.subject	FROM	messages

AS	m

RIGHT	JOIN	forums	AS	f

USING	(forum_id)

Historically,	the	left	join	is	preferred	over	the	right.
A	full	outer	 join	is	 like	a	combination	of	a	 left	outer	 join	and	a	right	outer	 join.	In	other	words,	all	 the
matching	records	from	both	tables	will	be	returned,	along	with	all	the	records	from	the	left-hand	table	that
do	not	have	matches	in	the	right-hand	table,	along	with	all	the	records	from	the	right-hand	table	that	do	not
have	matches	 in	 the	 left-hand	 table.	MySQL	 does	 not	 directly	 support	 the	 full	 outer	 join,	 but	 you	 can
replicate	that	functionality	using	a	left	join,	a	right	join,	and	a	UNION	statement.	A	full	outer	join	is	not
often	needed,	but	see	the	MySQL	manual	if	you’re	curious	about	it	or	unions.



To	use	outer	joins:
1.	Connect	to	MySQL	and	select	the	forum	database,	if	you	have	not	already.
2.	Retrieve	every	username	and	every	message	ID	posted	by	those	users	 :
Click	here	to	view	code	image

SELECT	u.username,	m.message_id

FROM	users	AS	u

LEFT	JOIN	messages	AS	m

USING	(user_id);

	This	left	join	returns	for	every	user,	every	posted	message	ID.	If	a	user	hasn’t	posted	a	message	(like
finchy	at	the	top),	the	message	ID	value	will	be	NULL.

If	you	were	to	run	an	inner	join	like	this,	a	user	who	had	not	yet	posted	a	message	would	not	be	listed	
.	Hence,	an	outer	join	is	required	to	be	inclusive	of	all	users.	Note	that	the	fully	included	table	(here,

users)	must	be	the	first	table	listed	in	a	left	join.

	This	inner	join	will	not	return	any	users	who	haven’t	yet	posted	messages	(see	finchy	at	the	top	of	
).



3.	Retrieve	every	forum	name	and	every	message	submission	date	in	 that	forum	in	order	of	submission
date	 :

Click	here	to	view	code	image
SELECT	f.name,

DATE_FORMAT(m.date_entered,

'%M	%D,	%Y')	AS	Date

FROM	forums	AS	f

LEFT	JOIN	messages	AS	m

USING	(forum_id)

ORDER	BY	date_entered	DESC;

This	left	outer	join	returns	every	forum	name	and	the	date	of	every	message	posted	in	that	forum.





Performing	Self-Joins
It’s	possible	with	SQL	to	perform	a	self-join:	join	a	table	with	itself.	For	example,	with	the
messages	 table,	 the	parent_id	 column	 is	 a	way	of	 indicating	which	postings	 are	 replies	 to
other	 postings.	 To	 retrieve	 a	 single	 hierarchy	 of	 postings,	 a	SELECT	 query	 must	 join	 the
messages	table	with	itself,	equating	parent_id	with	message_id	in	the	process.
This	may	sound	confusing	or	impossible,	but	it’s	not.	The	trick	with	self-joins	is	to	treat	the
two	references	to	the	same	table	as	if	they	were	single	references	to	two	different	tables.	To
pull	that	off,	assign	a	different	alias	to	each	table	reference.	The	already	described	example
would	be	written	like	so:

Click	here	to	view	code	image

SELECT	m1.subject,	m2.subject	AS	Reply

FROM	messages	AS	m1

LEFT	JOIN	messages	AS	m2

ON	m1.message_id=m2.parent_id

WHERE	m1.parent_id=0

That	 query	 first	 selects	 every	 root-level	message—those	with	 a	 0	parent_id	 value—in	 the
first	messages	 table	 instance,	 m1.	 Those	 records	 are	 then	 outer	 joined	 with	 the	 second
messages	table	instance,	m2.	If	you	run	this	query	yourself,	you’ll	see	that	the	root	message’s
subject	is	selected,	along	with	the	subject	of	that	message’s	reply,	if	applicable.
Self-joins	aren’t	 the	most	popular	 join	 type,	but	 they	can	sometimes	solve	a	problem	better
than	most	other	solutions.

This	is	really	just	a	variation	on	the	join	in	Step	2,	this	time	swapping	the	forums	 table	for	the	users
table.

Tip
Joins	can	be	created	using	conditionals	involving	any	columns,	not	just	the	primary	and	foreign
keys,	although	that’s	the	most	common	basis	for	comparison.

Tip
You	 can	 perform	 joins	 across	 multiple	 databases	 using	 the	 database.table.column
syntax,	as	long	as	every	database	is	on	the	same	server	(you	cannot	do	this	across	a	network)	and
you’re	connected	as	a	user	with	permission	to	access	every	database	involved.

Tip
The	word	OUTER	in	a	left	outer	join	is	optional	and	often	omitted.	To	be	formal,	you	could	write

Click	here	to	view	code	image

SELECT	f.name,

DATE_FORMAT(m.date_entered,

'%M	%D,	%Y')	AS

Date	FROM	forums	AS	f

LEFT	OUTER	JOIN	messages	AS	m



USING	(forum_id)

ORDER	BY	date_entered	DESC;

Joining	three	or	more	tables
There	are	two	more	ways	joins	can	be	used	with	which	you	ought	to	be	familiar:	self-joins,	discussed	in
the	sidebar,	and	joins	on	three	or	more	tables.
When	joining	three	or	more	tables,	it	helps	to	remember	that	a	join	between	two	tables	creates	a	virtual
table	 of	 results.	When	you	 add	 a	 third	 table,	 the	 join	 is	 between	 this	 initial	 virtual	 table	 and	 the	 third
referenced	table	 .	The	syntax	for	a	three-table	join	is	of	the	format
Click	here	to	view	code	image

SELECT	what_columns	FROM	tableA

JOIN_TYPE	tableB	JOIN_CLAUSE

JOIN_TYPE	tableC	JOIN_CLAUSE

	How	a	join	across	three	tables	works:	by	first	creating	a	virtual	table	of	results,	and	then	by	joining
the	third	table	to	that.



The	join	types	do	not	have	to	beoin	across	three	tables	works:	by	first	creati	the	same	in	both	cases—one
could	be	an	inner	and	the	other	an	outer—and	the	join	clauses	are	almost	certain	to	be	different.	You	can
even	add	WHERE,	ORDER	BY,	and	LIMIT	clauses	to	the	end	of	this.	Simply	put,	 to	perform	a	join	on
more	than	two	tables,	just	continue	to	add	JOIN_TYPE	tableX	JOIN_CLAUSE	sections	as	needed.
There	are	three	likely	problems	you’ll	have	with	joins	that	span	three	or	more	tables:

	A	simple	syntax	error,	especially	when	you	use	parentheses	to	separate	out	the	clauses
	An	ambiguous	column	error,	which	is	common	enough	among	any	join	type



	A	lack	of	results	returned
Should	the	last	of	these	happen	to	you,	simplify	the	join	down	to	just	two	tables	to	confirm	the	result,	and
then	try	to	reapply	the	additional	join	clauses	to	find	where	the	problem	is.

To	use	joins	on	three	tables	or	more:
1.	Connect	to	MySQL	and	select	the	forum	database,	if	you	have	not	already.
2.	Retrieve	the	message	ID,	subject,	and	forum	name	for	every	message	posted	by	the	user	troutster	 :
Click	here	to	view	code	image

SELECT	m.message_id,	m.subject,

f.name

FROM	users	AS	u

INNER	JOIN	messages	AS	m

USING	(user_id)

INNER	JOIN	forums	AS	f

USING	(forum_id)

WHERE	u.username	=	'troutster';

	An	inner	join	across	all	three	tables.

This	 join	 is	 like	one	earlier	 in	 the	chapter,	but	 this	one	 takes	 things	a	step	further	by	 incorporating	a
third	table.

3.	Retrieve	the	username,	message	subject,	and	forum	name	for	every	user	 :
Click	here	to	view	code	image

SELECT	u.username,	m.subject,	f.name

FROM	users	AS	u

LEFT	JOIN	messages	AS	m

USING	(user_id)

LEFT	JOIN	forums	AS	f

USING	(forum_id);



	This	left	 join	returns	for	every	user,	every	posted	message	subject,	and	every	forum	name.	 If	a	user
hasn’t	posted	a	message	(like	finchy	at	the	top),	his	or	her	subject	and	forum	name	values	will	be	NULL.

Whereas	the	query	in	Step	2	performs	two	inner	joins,	this	one	performs	two	outer	joins.	The	process
behind	this	query	is	visually	represented	by	the	diagram	in	 .

4.	Find	the	users	who	have	had	the	five	most	recent	postings,	while	also	selecting	the	message	subject
and	the	forum	name	 :

This	inner	join	returns	values	from	all	three	tables,	with	applied	ORDER	BY	and	LIMIT	clauses.



Click	here	to	view	code	image
SELECT	u.username,	m.subject,	f.name

FROM	users	AS	u

INNER	JOIN	messages	AS	m

USING	(user_id)

INNER	JOIN	forums	AS	f

USING	(forum_id)

ORDER	BY	m.date_entered	DESC

LIMIT	5;

To	 retrieve	 the	username,	 the	message	 subject,	 and	 the	 forum	name,	 a	 join	 across	 all	 three	 tables	 is
required.	Since	the	query	is	looking	only	for	users	who	have	posted,	an	inner	join	is	appropriate.	The
result	of	the	two	joins	will	be	every	username,	with	every	message	they	posted,	in	every	forum.	That
result	is	then	ordered	by	the	message’s	date_entered	column,	and	limited	to	just	the	first	five	records.

Grouping	Selected	Results
Chapter	5	discussed	and	demonstrated	several	different	categories	of	 functions	you	can	use	 in	MySQL.
Another	category,	used	for	more	complex	queries,	is	the	grouping	or	aggregate	functions	(Table	7.1).

TABLE	7.1	Grouping	Functions
Function Returns
AVG() The	average	of	the	values	in	a	column
COUNT() The	number	of	values	in	a	column
GROUP_CONCAT() The	concatenation	of	a	column’s	values
MAX() The	largest	value	in	a	column
MIN() The	smallest	value	in	a	column
SUM() The	sum	of	all	the	values	in	a	column

Whereas	most	of	the	functions	covered	in	Chapter	5	manipulate	a	single	value	in	a	single	row	at	a	time
(e.g.,	 formatting	 the	 value	 in	 a	 date	 column),	 what	 the	 grouping	 functions	 return	 is	 based	 on	 a	 value



present	 in	a	single	column	over	a	set	of	 rows.	For	example,	 to	 find	 the	average	account	balance	 in	 the
banking	database,	you	would	run	this	query	 :
Click	here	to	view	code	image

SELECT	AVG(balance)	FROM	accounts

The	AVG()	function	is	used	to	find	the	average	of	all	the	account	balances.

To	find	the	smallest	and	largest	account	balances,	use	 :
Click	here	to	view	code	image

SELECT	MAX(balance),	MIN(balance)

FROM	accounts

	The	MAX()	and	MIN()	functions	return	the	largest	and	smallest	account	values	found	in	the	table.

To	simply	count	the	number	of	records	in	a	table	(or	result	set),	apply	COUNT()	to	either	every	column
or	every	column	that’s	guaranteed	to	have	a	value:
Click	here	to	view	code	image

SELECT	COUNT(*)	FROM	accounts

The	 AVG(),	 COUNT(),	 and	 SUM()	 functions	 can	 also	 use	 the	 DISTINCT	 keyword	 so	 that	 the
aggregation	 applies	 only	 to	 distinct	 values.	For	 example,	SELECT	COUNT(customer_id)	FROM
accounts	will	 return	 the	number	of	accounts,	but	SELECT	COUNT(DISTINCT	customer_ID)
FROM	accounts	will	return	the	number	of	customers	that	have	accounts	 .

	 The	COUNT()	 function,	 with	 or	 without	 the	 DISTINCT	 keyword,	 simply	 counts	 the	 number	 of
records	in	a	record	set.



The	aggregate	functions	as	used	on	their	own	return	individual	values,	as	in	 ,	 ,	and	 .	When	 the
aggregate	functions	are	used	with	a	GROUP	BY	clause,	a	single	aggregate	value	will	be	returned	for	each
row	in	the	result	set :
Click	here	to	view	code	image

SELECT	AVG(balance),	customer_id

FROM	accounts

GROUP	BY	customer_id

	Use	the	GROUP	BY	clause	with	an	aggregating	function	to	group	the	aggregate	results.

You	can	apply	combinations	of	WHERE,	ORDER	BY,	and	LIMIT	conditions	to	a	GROUP	BY,	 structuring
your	query	like	this:
Click	here	to	view	code	image

SELECT	what_columns	

FROM	table

WHERE	condition	

GROUP	BY	column

ORDER	BY	column	



LIMIT	x,	y

A	GROUP	BY	clause	can	also	be	used	in	a	join.	Remember	that	a	join	returns	a	new,	virtual	table	of	data,
so	any	grouping	would	then	apply	to	that	virtual	table.

To	group	data:
1.	Connect	to	MySQL	and	select	the	banking	database.
2.	Count	the	number	of	registered	customers	 :

SELECT	COUNT(*)	FROM	customers;

	This	aggregating	query	counts	the	number	of	records	in	the	customers	table.

COUNT()	is	perhaps	the	most	popular	grouping	function.	With	it,	you	can	quickly	count	records,	like
the	 number	 of	 records	 in	 the	 customers	 table	 here.	 The	COUNT()	 function	 can	 be	 applied	 to	 any
column	that’s	certain	to	have	a	value,	such	as	*	(i.e.,	every	column)	or	customer_id,	the	primary	key.
Notice	that	not	all	queries	using	the	aggregate	functions	necessarily	have	GROUP	BY	clauses.

3.	Find	the	total	balance	of	all	accounts	by	customer,	counting	the	number	of	accounts	in	the	process	 :
Click	here	to	view	code	image

SELECT	SUM(balance)	AS	Total,

COUNT(account_id)	AS	Number,

customer_id

FROM	accounts

GROUP	BY	(customer_id);

This	GROUP	BY	 query	 aggregates	 all	 of	 the	 accounts	 by	 customer_id,	 returning	 the	 sum	 of	 each
customer’s	accounts,	and	the	total	number	of	accounts	the	customer	has,	in	the	process.



This	query	 is	 an	 extension	of	 that	 in	Step	2,	 but	 instead	of	 counting	 just	 the	 customers,	 it	 counts	 the
number	of	accounts	associated	with	each	customer	and	totals	the	account	balances,	too.

4.	Repeat	the	query	from	Step	3,	selecting	the	customer’s	name	instead	of	their	ID	
:

Click	here	to	view	code	image
SELECT	SUM(balance)	AS	Total,

COUNT(account_id)	AS	Number,

CONCAT(c.last_name,	',	',

c.first_name)	AS	Name

FROM	accounts	AS	a

INNER	JOIN	customers	AS	c

USING	(customer_id)

GROUP	BY	(a.customer_id)

ORDER	BY	Name;

This	GROUP	BY	query	is	like	that	in	 ,	but	also	returns	the	customer’s	name	and	sorts	the	results	by
name	(which	requires	a	join).

To	 retrieve	 the	 customer’s	 name,	 instead	 of	 his	 or	 her	 ID,	 a	 join	 is	 required:	 INNER	 JOIN
customers	USING	(customer_id).	 Next,	 aliases	 are	 added	 for	 easier	 references,	 and	 the
GROUP	BY	clause	is	modified	to	specify	to	which	customer_id	field	the	grouping	should	be	applied.
Thanks	to	the	join,	the	customer’s	name	can	be	selected	as	the	concatenation	of	the	customer’s	first	and
last	names,	a	comma,	and	a	space.	And	finally,	the	results	can	be	sorted	by	the	customer’s	name	(note
that	another	reference	to	the	alias	is	used	in	the	ORDER	BY	clause).
Remember	that	if	you	used	an	outer	join	instead	of	an	inner	join,	you	could	then	retrieve	customers	who
did	not	have	account	balances.

5.	Concatenate	each	customer’s	balance	into	a	single	string	 :
Click	here	to	view	code	image

SELECT	GROUP_CONCAT(balance),

CONCAT(c.last_name,	',	',

c.first_name)	AS	Name

FROM	accounts	AS	a

INNER	JOIN	customers	AS	c

USING	(customer_id)



GROUP	BY	(a.customer_id)

ORDER	BY	Name;

A	variation	on	the	query	in	 ,	this	query	retrieves	the	concatenation	of	all	account	balances	for	each
customer.

The	GROUP_CONCAT()	function	is	a	useful	and	often	overlooked	aggregating	tool.	As	you	can	see	in
the	figure,	by	default	this	function	concatenates	values,	separating	each	with	a	comma.

Tip
NULL	is	a	peculiar	value,	and	it’s	interesting	to	know	that	GROUP	BY	will	group	NULL	values
together,	since	they	have	the	same	nonvalue.

Tip
You	 should	 be	 careful	 how	 you	 apply	 the	COUNT()	 function,	 since	 it	 counts	 only	 non-NULL
values.	Be	 certain	 to	 use	 it	 either	 on	 every	 column	 (*)	 or	 on	 columns	 that	will	 never	 contain
NULL	values	(like	the	primary	key).

Tip
The	GROUP	BY	clause,	and	the	functions	listed	here,	take	some	time	to	figure	out,	and	MySQL
will	report	an	error	whenever	your	syntax	is	inapplicable.	Experiment	within	the	mysql	client	or
phpMyAdmin	 to	determine	 the	 exact	wording	of	 any	query	you	might	want	 to	 run	 from	 a	PHP
script.

Tip
A	related	clause	is	HAVING,	which	is	like	a	WHERE	condition	applied	to	a	group.



Tip
You	cannot	apply	SUM()	and	AVG()	to	date	or	time	values.	Instead,	you’ll	need	to	convert	date
and	time	values	to	seconds,	perform	the	SUM()	or	AVG(),	and	then	convert	that	value	back	to	a
date	and	time.

Advanced	Selections
The	 previous	 two	 sections	 of	 the	 chapter	 present	 more	 advanced	 ways	 to	 select	 data	 from	 complex
structures.	 But	 even	 with	 the	 use	 of	 the	 aggregate	 functions,	 the	 data	 being	 selected	 is	 comparatively
straightforward.	Sometimes,	though,	you’ll	need	to	select	data	conditionally,	as	if	you	were	using	an	if-
else	 clause	within	 the	query	 itself.	This	 is	possible	 in	SQL	 thanks	 to	 the	control	 flow	 and	advanced
comparison	functions.
To	start,	GREATEST()	returns	the	largest	value	in	a	list	 :
Click	here	to	view	code	image

SELECT	GREATEST(col1,	col2)	FROM	table

SELECT	GREATEST(235,	1209,	59)

	The	GREATEST()	function	returns	the	biggest	value	in	a	list.

LEAST()	returns	the	smallest	value	in	a	list:
Click	here	to	view	code	image

SELECT	LEAST(col1,	col2)	FROM	table

SELECT	LEAST(235,	1209,	59)

Note	 that	unlike	 the	aggregate	functions,	which	apply	 to	a	 list	of	values	found	in	 the	same	column	over
multiple	rows,	the	comparison	and	control	flow	functions	apply	to	multiple	columns	within	the	same	row
(or	list	of	values).
Another	useful	comparison	function	is	COALESCE().	It	returns	the	first	non-NULL	value	in	a	list:
Click	here	to	view	code	image

SELECT	COALESCE(col1,	col2)	FROM	table

If	 none	 of	 the	 listed	 items	 has	 a	 value,	 the	 function	 returns	NULL.	 You’ll	 see	 an	 example	 in	 the	 step
sequence	that	follows.
Whereas	COALESCE()	simply	returns	the	first	non-NULL	value,	you	can	use	IF()	to	return	any	value,
based	on	a	condition:
Click	here	to	view	code	image



SELECT	IF(condition,	return_if_true,

return_if_false)

If	 the	condition	is	 true,	 the	second	argument	to	the	function	is	returned;	otherwise,	 the	 third	argument	 is
returned.	As	an	example,	assuming	a	table	stored	the	value	0	or	1	in	a	preferences	column,	a	query	could
select	No	or	Yes	instead	 :
Click	here	to	view	code	image

SELECT	IF(receive_emails=1,	'Yes',	'No')

FROM	preferences

	The	IF()	function	can	dictate	the	returned	value	based	on	a	conditional.

As	these	functions	return	values,	they	could	even	be	used	in	other	query	types:
Click	here	to	view	code	image

INSERT	INTO	prefernces

(receive_emails)	VALUES

(IF(something='Y',	1,	0))

The	CASE()	function	is	a	more	complicated	tool	that	can	be	used	in	different	ways.	The	first	approach	is
to	treat	CASE()	like	PHP’s	switch	conditional:
Click	here	to	view	code	image

SELECT	CASE	col1

WHEN	value1	THEN	return_this

ELSE	return_that

END

FROM	table

The	preferences	example	could	be	rewritten	as
Click	here	to	view	code	image

SELECT	CASE	receive_emails

WHEN	1	THEN	'Yes'

ELSE	'NO'



END

FROM	preferences

The	CASE()	function	can	have	additional	WHEN	clauses.	The	ELSE	is	also	always	optional:
Click	here	to	view	code	image

SELECT	CASE	receive_emails

WHEN	1	THEN	'Yes'

WHEN	0	THEN	'No'

END

FROM	preferences

If	you’re	not	looking	to	perform	a	simple	equality	test,	you	can	write	conditions	into	a	CASE()	 :
Click	here	to	view	code	image

SELECT	message_id,

CASE	WHEN	date_entered	>

NOW()	THEN	'Future'

ELSE	'PAST'

END	AS	Posted

FROM	messages

	CASE()	can	be	used	like	IF()	to	customize	the	returned	value.

Again,	 you	 can	 add	 multiple	 WHEN...THEN	 clauses,	 as	 needed,	 and	 omit	 the	 ELSE,	 if	 that’s	 not
necessary.
To	practice	using	these	functions,	let’s	run	a	few	more	queries	on	the	forum	database.	Heads	up:	they’re
going	to	get	a	little	complicated.

To	perform	advanced	selections:
1.	Connect	to	MySQL	and	select	the	forum	database.
2.	For	each	forum,	find	the	date	and	time	of	the	most	recent	post,	or	return	N/A	if	the	forum	has	no	posts	

:



Click	here	to	view	code	image
SELECT	f.name,

COALESCE(MAX(m.date_entered),

'N/A')	AS	last_post

FROM	forums	AS	f

LEFT	JOIN	messages	AS	m

USING	(forum_id)

GROUP	BY	(m.forum_id)

ORDER	BY	m.date_entered	DESC;

The	COALESCE()	function	is	used	to	turn	NULL	values	into	the	string	N/A	(see	the	last	record).

To	start,	to	find	both	the	forum	name	and	the	date	of	the	latest	posting	in	that	forum,	a	join	is	necessary
—specifically,	an	outer	join,	as	there	may	be	forums	without	postings.	To	find	the	most	recent	posting
in	each	forum,	the	aggregating	MAX()	function	is	applied	to	the	date_entered	column,	and	the	results
must	be	grouped	by	 the	 forum_id	 (so	 that	MAX()	 is	 applied	 to	 each	 subset	 of	 postings	within	 each
forum).
The	 results	at	 that	point,	without	 the	COALESCE()	 function	call,	would	 return	NULL	 for	 any	 forum
without	any	messages	in	it.	The	final	step	is	to	apply	COALESCE()	so	that	the	string	N/A	is	returned
should	MAX(m.date_entered)	have	a	NULL	value.

3.	 For	 each	 message,	 append	 the	 string	 (REPLY)	 to	 the	 subject	 if	 the	 message	 is	 a	 reply	 to	 another
message	 :

Click	here	to	view	code	image
SELECT	message_id,

CASE	parent_id	WHEN	0	THEN	subject

ELSE	CONCAT(subject,	'	(Reply)	')

END	AS	subject

FROM	messages;

Here,	the	string	(Reply)	is	appended	to	the	subject	of	any	message	that	is	a	reply	to	another	message.



The	records	in	the	messages	tables	that	have	a	parent_id	other	than	0	are	replies	to	existing	messages.
For	these	messages,	let’s	append	(REPLY)	 to	 the	subject	value	to	 indicate	 that.	To	accomplish	this,	a
CASE	statement	returns	just	the	subject,	unadulterated,	if	the	parent_id	value	equals	0.	If	the	parent_id
value	does	not	equal	0,	the	string	(REPLY)	is	concatenated	to	the	subject,	again	thanks	to	CASE.	This
whole	 construct	 is	 assigned	 the	 alias	 of	 subject,	 so	 it’s	 still	 returned	 under	 the	 original	 “subject”
heading.

4.	For	each	user,	find	the	number	of	messages	they’ve	posted,	converting	zeros	to	the	string	None	 :
Click	here	to	view	code	image

SELECT	u.username,

IF(COUNT(message_id)	>	0,

COUNT(message_id),	'None')	AS	Posts

FROM	users	AS	u

LEFT	JOIN	messages	AS	m

USING	(user_id)

GROUP	BY	(u.user_id);

Thanks	to	an	IF()	call,	the	count	of	posted	messages	is	displayed	as	None	for	any	user	who	has	not
yet	posted	a	message.



This	is	somewhat	of	a	variation	on	the	query	in	Step	2.	A	left	join	bridges	users	and	messages,	to	grab
both	the	username	and	the	count	of	messages	posted.	To	perform	the	count,	the	results	are	grouped	by
users.user_id.	 The	 query	 to	 this	 point	would	 return	 0	 for	 every	 user	 that	 has	 not	 yet	 posted	 .	 To
convert	 those	 zeros	 to	 the	 string	None,	while	maintaining	 the	 non-zero	 counts,	 the	IF()	 function	 is
applied.	That	 function’s	 first	argument	establishes	 the	condition	 if	 the	count	 is	greater	 than	zero.	The
second	argument	says	that	the	count	should	be	returned	when	that	condition	is	true.	The	third	argument
says	that	the	string	None	should	be	returned	when	that	condition	is	false.

What	the	query	results	would	look	like	(compare	with	 )	without	using	IF().

Tip
The	IFNULL()	function	can	sometimes	be	used	instead	of	COALESCE().	Its	syntax	is

Click	here	to	view	code	image

IFNULL(value,	return_if_null)



If	the	first	argument,	such	as	a	named	column,	has	a	NULL	value,	then	the	second	argument	is	returned.	If
argument	does	not	have	a	NULL	value,	the	value	of	that	argument	is	returned.

Performing	FULLTEXT	Searches
In	Chapter	5,	the	LIKE	keyword	was	introduced	to	perform	somewhat	simple	string	matches	like
Click	here	to	view	code	image

SELECT	*	FROM	users

WHERE	last_name	LIKE	'Smith%'

This	type	of	conditional	is	effective	enough	but	is	still	very	limiting.	For	example,	it	would	not	allow	you
to	 do	Google-like	 searches	 using	multiple	words.	 For	 those	 kinds	 of	 situations,	 you	 need	FULLTEXT
searches.	 Over	 the	 next	 several	 pages,	 you’ll	 learn	 everything	 you	 need	 to	 know	 about	 FULLTEXT
searches	and	you’ll	learn	some	more	SQL	tricks	in	the	process.

Creating	a	FULLTEXT	Index
To	start,	FULLTEXT	searches	require	a	FULLTEXT	index.	This	index	type,	as	previewed	in	Chapter	6,
“Database	Design,”	can	be	created	on	a	MyISAM	table,	or	on	an	InnoDB	table	if	you	are	using	MySQL
5.6.4	or	greater.	These	next	examples	will	use	the	messages	table	in	the	forum	database.	The	first	step,
then,	is	to	add	a	FULLTEXT	 index	on	the	body	and	subject	columns.	Adding	 indexes	 to	existing	 tables
requires	using	the	ALTER	command,	as	described	in	the	sidebar.



Altering	Tables
The	 ALTER	 SQL	 term	 is	 primarily	 used	 to	 modify	 the	 structure	 of	 an	 existing	 table.
Commonly	 this	 means	 adding,	 deleting,	 or	 changing	 the	 columns,	 but	 it	 also	 includes	 the
addition	of	indexes.	An	ALTER	statement	can	even	be	used	for	renaming	the	table	itself.	The
basic	syntax	of	ALTER	is
ALTER	TABLE	tablename	CLAUSE

There	are	many	possible	clauses;	Table	7.2	 lists	the	most	common	ones,	where	 t	 represents
the	table’s	name,	c	a	column’s	name,	and	i	an	index’s	name.	As	always,	 the	MySQL	manual
covers	the	topic	in	exhaustive	detail.

TABLE	7.2	ALTER	TABLE	Clauses
Clause Usage Meaning
ADD

COLUMN

ALTER	TABLE	t	ADD	COLUMN	c

TYPE
Adds	a	new	column	to	the	table

CHANGE

COLUMN

ALTER	TABLE	t	CHANGE	COLUMN

c	c	TYPE

Changes	the	data	type	and	properties	of	a
column

DROP

COLUMN
ALTER	TABLE	t	DROP	COLUMN	c

Removes	a	column	from	a	table,	including
all	of	its	data

ADD	INDEX
ALTER	TABLE	t	ADD	INDEX	i

(c)
Adds	a	new	index	on	c

DROP

INDEX
ALTER	TABLE	t	DROP	INDEX	i Removes	an	existing	index

RENAME	TO
ALTER	TABLE	t	RENAME	TO

new_t
Changes	the	name	of	a	table

You	can	also	change	a	 table’s	character	set	and	collation	using	ALTER	t	CONVERT	TO
CHARACTER	SET	x	COLLATE	y.

To	add	a	FULLTEXT	index:
1.	Connect	to	MySQL	and	select	the	forum	database,	if	you	have	not	already.
2.	Confirm	the	messages	table’s	type	 :

To	confirm	a	table’s	type,	use	the	SHOW	TABLE	STATUS	command.



SHOW	TABLE	STATUS\G

The	 SHOW	 TABLE	 STATUS	 query	 returns	 a	 fair	 amount	 of	 information	 about	 each	 table	 in	 the
database,	including	the	 table’s	storage	engine.	Because	so	much	information	 is	 returned	by	 the	query,
the	command	concludes	with	\G	instead	of	a	semicolon.	This	tells	the	mysql	client	to	return	the	results
as	a	vertical	list	instead	of	a	table	(which	is	sometimes	easier	to	read).	If	you’re	using	phpMyAdmin	or
another	interface,	you	can	omit	the	\G	(just	as	you	can	omit	concluding	semicolons).
To	 just	 find	 the	 information	 for	 the	messages	 table,	you	can	use	 the	query	SHOW	TABLE	STATUS
LIKE	‘messages’.

3.	If	the	messages	table	does	not	support	FULLTEXT	indexes,	change	the	storage	engine:
Click	here	to	view	code	image

ALTER	TABLE	messages	ENGINE=MyISAM;

This	is	only	necessary	if	the	table	isn’t	currently	of	the	correct	type.	Acceptable	types	include	MyISAM
for	any	version	of	MySQL	and	InnoDB	as	of	MySQL	5.6.4.



4.	Add	the	FULLTEXT	index	to	the	messages	table :
Click	here	to	view	code	image

ALTER	TABLE	messages	

ADD	FULLTEXT(body,	subject);

The	FULLTEXT	index	is	added	to	the	messages	table.

The	 syntax	 for	 adding	 any	 index,	 regardless	 of	 type,	 is	 ALTER	 TABLE	 tablename	 ADD

INDEX_TYPE	index_name	(columns).	The	index	name	is	optional.
Here,	the	body	and	subject	columns	get	a	FULLTEXT	index,	to	be	used	in	FULLTEXT	searches	later
in	this	chapter.

Tip
Inserting	 records	 into	 tables	with	FULLTEXT	 indexes	 can	 be	 slower	 because	 of	 the	 complex
index	that’s	required.

Tip
FULLTEXT	 searches	 can	 successfully	 be	 used	 in	 a	 simple	 search	 engine.	But	 a	 index	 can	 be
applied	only	to	a	single	table	at	a	time,	so	more	elaborate	sites,	with	content	stored	in	multiple
tables,	would	benefit	from	using	a	more	formal	search	engine.

Performing	Basic	FULLTEXT	Searches
Once	you’ve	established	a	FULLTEXT	index	on	a	column	or	columns,	you	can	start	querying	against	it,
using	MATCH...AGAINST	in	a	WHERE	conditional:
Click	here	to	view	code	image

SELECT	*	FROM	tablename	WHERE	

MATCH	(columns)	AGAINST	(terms)

MySQL	will	return	matching	rows	in	order	of	a	mathematically	calculated	relevance,	 just	 like	a	search
engine.	When	doing	so,	certain	rules	apply:

	Strings	are	broken	down	into	their	individual	keywords.
	Keywords	fewer	than	four	characters	long	are	ignored.
	Very	popular	words,	called	stopwords,	are	ignored.
	If	more	than	50	percent	of	the	records	match	the	keywords,	no	records	are	returned.

This	last	fact	is	problematic	to	many	users	as	they	begin	with	FULLTEXT	searches	and	wonder	why	no



results	are	returned.	When	you	have	a	sparsely	populated	table,	there	just	won’t	be	sufficient	records	for
MySQL	to	return	relevant	results.

To	perform	FULLTEXT	searches:
1.	Connect	to	MySQL	and	select	the	forum	database,	if	you	have	not	already.
2.	Thoroughly	populate	the	messages	table,	focusing	on	adding	lengthy	bodies.
Once	again,	SQL	INSERT	commands	can	be	downloaded	from	this	book’s	corresponding	site	or	you
can	make	up	your	own	and	adjust	the	following	queries	accordingly.

3.	Run	a	simple	FULLTEXT	search	on	the	word	database	 :
Click	here	to	view	code	image

SELECT	subject,	body	FROM	messages

WHERE	MATCH	(body,	subject)

AGAINST	('database');

A	basic	FULLTEXT	search.

This	is	a	very	simple	example	that	will	return	some	results	if	at	least	one	and	less	than	50	percent	of	the
records	in	the	messages	table	have	the	word	“database”	in	their	body	or	subject.	Note	that	the	columns
referenced	in	must	be	the	same	as	those	on	which	the	index	was	made.	In	this	case,	you	could	use	either
body,	or	,	but	you	could	not	use	just	or	just	 .

A	 FULLTEXT	 query	 can	 be	 run	 only	 on	 the	 same	 column	 or	 combination	 of	 columns	 that	 the
FULLTEXT	index	was	created	on.	With	this	query,	even	though	the	combination	of	body	and	subject	has
a	FULLTEXT	index,	attempting	to	run	the	match	on	just	subject	will	fail.

4.	Run	the	same	FULLTEXT	search	while	also	showing	the	relevance	 :
Click	here	to	view	code	image

SELECT	subject,	body,

MATCH	(body,	subject)

AGAINST	('database')	AS	R

FROM	messages

WHERE

MATCH	(body,	subject)



AGAINST	('database')\G

The	 relevance	 of	 a	FULLTEXT	 search	 can	 be	 selected,	 too.	 In	 this	 case,	 you’ll	 see	 that	 the	 two
records	with	the	word	“database”	in	both	the	subject	and	body	have	higher	relevance	than	the	record	that
contains	the	word	in	just	the	subject.

If	you	use	the	same	MATCH...AGAINST	expression	as	a	selected	value,	the	actual	relevance	will	be
returned.	As	 in	 the	 previous	 section	 of	 the	 chapter,	 to	make	 the	 results	 easier	 to	 view	 in	 the	mysql
client,	the	query	is	terminated	using	\G,	thereby	returning	the	results	as	a	vertical	list.

5.	Run	a	FULLTEXT	search	using	multiple	keywords	 :
Click	here	to	view	code	image

SELECT	subject,	body	FROM	messages

WHERE	MATCH	(body,	subject)

AGAINST	('html	xhtml');

Using	the	FULLTEXT	search,	you	can	easily	find	messages	that	contain	multiple	keywords.

With	 this	 query,	 a	match	will	 be	made	 if	 the	 subject	 or	 body	 contains	 either	word.	Any	 record	 that
contains	both	words	will	be	ranked	higher.



Tip
Remember	that	if	a	FULLTEXT	search	returns	no	records,	this	means	either	that	no	matches	were
made	or	that	over	half	of	the	records	match.

Tip
For	 sake	of	 simplicity,	 all	 the	queries	 in	 this	 section	 are	 simple	SELECT	 statements.	You	 can
certainly	use	FULLTEXT	searches	within	joins	or	more	complex	queries.

Tip
MySQL	 comes	 with	 several	 hundred	 stopwords	 already	 defined.	 These	 are	 part	 of	 the
application’s	source	code.

Tip
The	minimum	 keyword	 length—four	 characters	 by	 default—is	 a	 configuration	 setting	 you	 can
change	in	MySQL.

Tip
FULLTEXT	searches	are	case-insensitive	by	default.

Performing	Boolean	FULLTEXT	Searches
The	basic	FULLTEXT	search	is	nice,	but	a	more	sophisticated	FULLTEXT	search	can	be	accomplished
using	its	Boolean	mode.	To	do	so,	add	the	phrase	IN	BOOLEAN	MODE	to	the	AGAINST	clause:
Click	here	to	view	code	image

SELECT	*	FROM	tablename	WHERE

MATCH	(columns)

AGAINST	('terms'	IN	BOOLEAN	MODE)

Boolean	mode	has	a	number	of	operators	(Table	7.3)	to	tweak	how	each	keyword	is	treated:
Click	here	to	view	code	image

SELECT	*	FROM	tablename	WHERE

MATCH	(columns)

AGAINST	('+database	-mysql'

IN	BOOLEAN	MODE)



TABLE	7.3	Boolean	Mode	Operators
Operator Meaning
+ Must	be	present	in	every	match
- Must	not	be	present	in	any	match
~ Lowers	a	ranking	if	present
* Wildcard
< Decrease	a	word’s	importance
> Increase	a	word’s	importance
“	“ Must	match	the	exact	phrase
( Create	subexpressions

In	 that	 example,	 a	 match	 will	 be	 made	 if	 the	 word	 database	 is	 found	 and	 mysql	 is	 not	 present.
Alternatively,	the	tilde	(~)	is	used	as	a	milder	form	of	the	minus	sign,	meaning	that	the	keyword	can	be
present	in	a	match,	but	such	matches	should	be	considered	less	relevant.
The	wildcard	character	(*)	matches	variations	on	a	word,	so	cata*	matches	catalog,	catalina,	and	so
on.	Two	operators	explicitly	state	what	keywords	are	more	(>)	or	less	(<)	important.	Finally,	you	can	use
double	quotation	marks	to	hunt	for	exact	phrases	and	parentheses	to	make	subexpressions;	just	be	certain
to	use	single	quotation	marks	to	wrap	the	keywords.
The	 following	 query	would	 look	 for	 records	 with	 the	 phrase	Web	 develop	 with	 the	 word	 html	 being
required	and	the	word	JavaScript	detracting	from	a	match’s	relevance:
Click	here	to	view	code	image

SELECT	*	FROM	tablename

WHERE	MATCH	(columns)

AGAINST('>"Web	develop"

+html	~JavaScript'

IN	BOOLEAN	MODE)

When	using	Boolean	mode,	keep	in	mind	these	differences	in	how	FULLTEXT	searches	work:
	If	a	keyword	is	not	preceded	by	an	operator,	the	word	is	optional	but	a	match	will	be	ranked	higher	if
it	is	present.
	Results	will	be	returned	even	if	more	than	50	percent	of	the	records	match	the	search.
	The	results	are	not	automatically	sorted	by	relevance.

Because	of	this	last	fact,	you’ll	also	want	to	sort	the	returned	records	by	their	relevance,	as	demonstrated
in	 the	 next	 sequence	 of	 steps.	 One	 important	 rule	 that’s	 the	 same	 with	 Boolean	 searches	 is	 that	 the
minimum	word	length	(four	characters	by	default)	still	applies.	Trying	to	require	a	shorter	word	using	a
plus	sign	(+php)	still	won’t	work.

To	perform	FULLTEXT	Boolean	searches:
1.	Connect	to	MySQL	and	select	the	forum	database,	if	you	have	not	already.
2.	Run	a	simple	FULLTEXT	search	that	finds	HTML,	XHTML,	or	(X)HTML	 :
Click	here	to	view	code	image

SELECT	subject,	body	FROM

messages	WHERE	MATCH(body,	subject)

AGAINST	('*HTML'	IN	BOOLEAN	MODE)\G



A	simple	Boolean-mode	FULLTEXT	search.

The	 term	HTML	may	appear	 in	messages	 in	many	 formats,	 including	HTML,	XHTML,	 or	 (X)HTML.
This	Boolean	mode	query	will	find	all	of	those,	thanks	to	the	wildcard	character	(*).
To	make	the	results	easier	to	view,	I’m	using	the	\G	trick	mentioned	earlier	in	the	chapter,	which	tells
the	mysql	client	to	return	the	results	vertically,	not	horizontally.

3.	Find	matches	involving	databases,	with	an	emphasis	on	normal	forms	 :
Click	here	to	view	code	image

SELECT	subject,	body	FROM	messages

WHERE	MATCH	(body,	subject)

AGAINST	('>"normal	form*"

+database*'

IN	BOOLEAN	MODE)\G

This	search	looks	for	variations	on	two	different	keywords,	ranking	the	one	higher	than	the	other.



This	query	first	finds	all	records	that	have	database,	databases,	etc.	and	normal	form,	normal	 forms,
etc.	in	them.	The	database*	term	is	required	(as	indicated	by	the	plus	sign),	but	emphasis	is	given	to
the	normal	form	clause	(which	is	preceded	by	the	greater-than	sign).

4.	Repeat	the	query	from	Step	2,	with	a	greater	importance	on	XHTML,	returning	the	results	in	order	of
relevance	 :

Click	here	to	view	code	image
SELECT	subject,	body,

MATCH	(body,	subject)

AGAINST	('*HTML	>XHTML'	IN

BOOLEAN	MODE)	AS	R

FROM	messages	WHERE	MATCH

(body,	subject)

AGAINST	('*HTML	>XHTML'	IN

BOOLEAN	MODE)

ORDER	BY	R	DESC\G

This	modified	version	of	an	earlier	query	selects,	and	then	sorts	the	results	by,	the	relevance.



This	 is	 like	 the	 earlier	 query,	 but	 now	 XHTML	 is	 specifically	 given	 extra	 weight.	 This	 query
additionally	selects	the	calculated	relevance,	and	the	results	are	returned	in	that	order.

Tip
MySQL	 5.1.7	 added	 another	 FULLTEXT	 search	 mode:	 natural	 language.	 This	 is	 the	 default
mode,	if	no	other	mode	(like	Boolean)	is	specified.

Tip
The	WITH	QUERY	EXPANSION	modifier	 can	 increase	 the	 number	 of	 returned	 results.	 Such
queries	perform	two	searches	and	return	one	result	set.	It	bases	a	second	search	on	terms	found	in
the	most	relevant	results	of	the	initial	search.	While	a	WITH	QUERY	EXPANSION	search	can
find	results	that	would	not	otherwise	have	been	returned,	it	can	also	return	results	 that	aren’t	at
all	relevant	to	the	original	search	terms.

Optimizing	Queries
Once	you	have	a	complete	and	populated	database,	and	have	a	sense	as	to	what	queries	will	commonly	be
run	on	it,	it’s	a	good	idea	to	take	some	steps	to	optimize	your	queries	and	your	database.	Doing	so	will
ensure	you’re	getting	the	best	possible	performance	out	of	MySQL	(and	therefore,	your	site).



To	start,	the	sidebar	reemphasizes	key	design	ideas	that	have	already	been	suggested	in	this	book.	Along
with	these	tips	are	two	simple	techniques	for	optimizing	existing	tables.	One	way	to	improve	MySQL’s
performance	 is	 to	 run	 an	 OPTIMIZE	 command	 on	 occasion.	 This	 query	 will	 rid	 a	 table	 of	 any
unnecessary	overhead,	thereby	improving	the	speed	of	any	interactions	with	it:
OPTIMIZE	TABLE	tablename

Running	this	command	is	particularly	beneficial	after	changing	a	table	via	an	ALTER	command,	or	after	a
table	has	had	lots	of	DELETE	queries	run	on	it,	leaving	virtual	gaps	among	the	records.
Second,	you	can	occasionally	use	the	ANALYZE	command:
ANALYZE	TABLE	tablename

Executing	this	command	updates	the	indexes	on	the	table,	thereby	improving	their	usage	in	queries.	You
could	 execute	 it	whenever	massive	 amounts	 of	 data	 stored	 in	 the	 table	 changes	 (e.g.,	 via	UPDATE	 or
INSERT	commands).
Speaking	of	queries,	as	you’re	probably	realizing	by	now,	there	are	often	many	ways	of	accomplishing	the
same	goal.	To	find	out	 the	most	efficient	approach,	 it	helps	 to	understand	how	exactly	MySQL	will	run
that	 query.	 This	 can	 be	 accomplished	 using	 the	 EXPLAIN	 SQL	 keyword.	 Explaining	 queries	 is	 an
advanced	topic,	but	I’ll	introduce	the	fundamentals	here,	and	you	can	always	see	the	MySQL	manual	or
search	online	for	more	information.

Database	Optimization
The	performance	of	your	database	is	primarily	dependent	on	its	structure	and	indexes.	When
creating	databases,	try	to
	Choose	the	best	storage	engine
	Use	the	smallest	data	type	possible	for	each	column
	Define	columns	as	NOT	NULL	whenever	possible
	Use	integers	as	primary	keys
	Judiciously	define	indexes,	selecting	the	correct	type	and	applying	them	to	the	right	column	or
columns
	Limit	indexes	to	a	certain	number	of	characters,	if	possible
	Avoid	creating	too	many	indexes
	Make	sure	that	columns	to	be	used	as	the	basis	of	joins	are	of	the	same	type	and,	in	the	case	of
strings,	use	the	same	character	set	and	collation

To	explain	a	query:
1.	Find	a	query	that	may	be	resource-intensive.
Good	candidates	are	queries	that	do	any	of	the	following:
	Join	two	or	more	tables
	Use	groupings	and	aggregate	functions
	Have	 WHERE	clauses
For	example,	this	query	from	earlier	in	the	chapter	meets	two	of	these	criteria:

Click	here	to	view	code	image



SELECT	SUM(balance)	AS	Total,

COUNT(account_id)	AS	Number,

CONCAT(c.last_name,	',	',

c.first_name)	AS	Name

FROM	accounts	AS	a

INNER	JOIN	customers	AS	c	USING

(customer_id)

GROUP	BY	(a.customer_id)

ORDER	BY	Name;

2.	Connect	to	MySQL	and	select	the	applicable	database,	if	you	have	not	already.
3.	Execute	the	query	on	the	database,	prefacing	it	with	EXPLAIN	 :
Click	here	to	view	code	image

EXPLAIN	SELECT	SUM(balance)

AS	Total,

COUNT(account_id)	AS	Number,

CONCAT(c.last_name,	',	',

c.first_name)	AS	Name

FROM	accounts	AS	a

INNER	JOIN	customers	AS	c	USING

(customer_id)

GROUP	BY	(a.customer_id)

ORDER	BY	Name;

This	EXPLAIN	output	reveals	how	MySQL	will	go	about	processing	the	query.

If	you’re	using	the	mysql	client,	you’ll	find	it	also	helps	to	use	the	concluding	\G	trick	(instead	of	the
semicolon)	to	make	the	output	more	legible.	The	output	itself	will	be	one	row	of	information	for	every
table	used	in	the	query.	The	tables	are	listed	in	the	same	order	that	MySQL	must	access	them	to	execute
the	query.
I’ll	walk	through	the	key	parts	of	the	output,	but	to	begin,	the	select_type	value	should	be	SIMPLE	for
most	SELECT	 queries,	 and	would	 be	 different	 if	 the	 query	 involves	 a	UNION	 or	 subquery	 (see	 the
MySQL	manual	for	more	on	either	UNIONs	or	subqueries).

4.	Check	out	the	type	value.
Table	7.4	lists	the	different	type	values,	from	best	to	worst.	The	MySQL	manual	discusses	what	each
means	in	detail,	but	understand	first	that	eq_ref	is	the	best	you’ll	commonly	see	and	ALL	is	the	worst.	A
type	of	eq_ref	means	that	an	index	is	being	properly	used	and	an	equality	comparison	is	being	made.



TABLE	7.4	Join	Types
Type
system

const

eq_ref

ref

fulltext

ref_or_null

index_merge

unique_subquery

index_subquery

range

index

ALL

Note	 that	you’ll	 sometimes	see	ALL	 because	 the	 table	has	very	 few	 records	 in	 it,	 in	which	case	 it’s
more	efficient	for	MySQL	to	scan	the	table	rather	than	use	an	index.	This	is	presumably	the	case	with

,	since	the	accounts	table	only	has	four	records.
5.	Check	out	the	possible_keys	value.
The	possible_keys	 value	 indicates	which	 indexes	 exist	 that	MySQL	might	 be	 able	 to	 use	 to	 find	 the
corresponding	rows	 in	 this	 table.	 If	 you	have	 a	NULL	 value	 here,	 there	 are	 no	 indexes	 that	MySQL
thinks	would	be	useful.	Therefore,	you	might	benefit	from	creating	an	index	on	that	table’s	applicable
columns.

6.	Check	out	the	key,	key_len,	and	ref	values.
Whereas	possible_keys	 indicates	 what	 indexes	 might	 be	 usable,	 key	 says	 what	 index	 MySQL	 will
actually	 use	 for	 that	 query.	Occasionally,	 you’ll	 find	 a	 value	 here	 that’s	 not	 listed	 in	possible_keys,
which	is	OK.	If	no	key	is	being	used,	that	almost	always	indicates	a	problem	that	can	be	remedied	by
adding	an	index	or	modifying	the	query.
The	key_len	value	indicates	the	length	(i.e.,	the	size)	of	the	key	that	MySQL	used.	Generally,	shorter	is
better	here,	but	don’t	worry	about	it	too	much.
The	ref	column	indicates	which	columns	MySQL	compared	to	the	index	named	in	the	key	column.

7.	Check	out	the	rows	value.
This	column	provides	an	estimate	of	how	many	rows	in	the	table	MySQL	thinks	it	will	need	to	examine.
Once	again,	lower	is	better.	In	fact,	on	a	join,	a	rough	estimate	of	the	efficiency	can	be	determined	by
multiplying	all	the	rows	values	together.
Often	in	a	join,	the	number	of	rows	to	be	examined	should	go	from	more	to	less,	as	in	 .

Another	explanation	of	a	query,	this	one	a	join	across	three	tables.



8.	Check	out	the	Extra	value.
Finally,	this	column	reports	any	additional	information	about	how	MySQL	will	execute	the	query	 that
may	be	useful.	Two	phrases	you	don’t	want	to	find	here	are	Using	filesort	and	Using	temporary.	Both
mean	that	extra	steps	are	required	to	complete	the	query	(e.g.,	a	GROUP	BY	clause	often	requires	that
MySQL	create	a	temporary	table).
If	Extra	 says	anything	along	 the	 lines	of	 Impossible	X	or	No	matching	Y,	 that	means	your	query	has
clauses	that	are	always	false	and	can	be	removed.

9.	Modify	your	table	or	queries	and	repeat!
If	the	output	suggests	problems	with	how	the	query	is	being	executed,	you	can	consider	doing	any	of	the
following:
	Changing	the	particulars	of	the	query
	Changing	the	properties	of	a	table’s	columns
	Adding	or	modifying	a	table’s	indexes



Remember	 that	 the	 validity	 of	 the	 explanation	 will	 depend,	 in	 part,	 on	 how	 many	 rows	 are	 in	 the
involved	tables	(as	explained	in	Step	4,	MySQL	may	skip	indexes	for	small	tables).	Also	understand
that	not	all	queries	are	fixable.	Simple	SELECT	queries	and	even	joins	can	sometimes	be	improved,
but	 there’s	 little	we	can	do	 to	 improve	 the	efficiency	of	a	GROUP	BY	query,	considering	everything
MySQL	must	do	to	aggregate	data.

Tip
The	EXPLAIN	EXTENDED	command	provides	a	few	more	details	about	a	query:

EXPLAIN	EXTENDED	SELECT...

Tip
Problematic	 queries	 can	 also	 be	 found	 by	 enabling	 certain	 MySQL	 logging	 features,	 but	 that
requires	administrative	control	over	the	MySQL	server.

Tip
In	terms	of	performance,	MySQL	deals	with	more,	smaller	tables	better	than	it	does	fewer,	larger
tables.	That	being	said,	a	normalized	database	structure	should	always	be	the	primary	goal.

Tip
In	MySQL	terms,	a	“big”	database	has	thousands	of	tables	and	millions	of	rows.

Performing	Transactions
A	database	 transaction	 is	 a	 sequence	 of	 queries	 run	 during	 a	 single	 session.	 For	 example,	 you	might
insert	a	record	into	one	table,	insert	another	record	into	another	table,	and	maybe	run	an	update.	Without
using	transactions,	each	individual	query	takes	effect	immediately	and	cannot	be	undone	(the	queries,	by
default,	are	automatically	committed).	With	transactions,	you	can	set	start	and	stop	points	and	then	enact
or	 retract	 all	 the	 queries	 between	 those	 points	 as	 needed:	 if	 one	 query	 failed,	 all	 the	 queries	 can	 be
undone.
Commercial	 interactions	 commonly	 require	 transactions,	 even	 something	 as	 basic	 as	 transferring	 $100
from	my	bank	account	to	yours.	What	seems	like	a	simple	process	requires	several	steps:

	Confirm	that	I	have	$100	in	my	account.
	Decrease	my	account	by	$100.
	Verify	the	decrease.
	Increase	the	amount	of	money	in	your	account	by	$100.
	Verify	that	the	increase	worked.

If	any	of	the	steps	failed,	all	of	them	should	be	undone.	For	example,	if	the	money	couldn’t	be	deposited	in
your	account,	it	should	be	returned	to	mine	until	the	entire	transaction	can	go	through.
The	 ability	 to	 execute	 transactions	 depends	 on	 the	 features	 of	 the	 storage	 engine	 in	 use.	 To	 perform
transactions	with	MySQL,	you	must	use	the	InnoDB	table	type	(or	storage	engine).
To	begin	a	new	transaction	in	the	mysql	client,	type



START	TRANSACTION;

Once	your	transaction	has	begun,	you	can	now	run	your	queries.	Once	you	have	finished,	you	can	either
enter	COMMIT	to	enact	all	the	queries	or	ROLLBACK	to	undo	the	effect	of	all	the	queries.
After	you	have	either	committed	or	rolled	back	the	queries,	the	transaction	is	considered	complete,	and
MySQL	returns	to	an	autocommit	mode.	This	means	that	any	queries	you	execute	take	immediate	effect.
To	start	another	transaction,	just	type	START	TRANSACTION.
It	is	important	to	know	that	certain	types	of	queries	cannot	be	rolled	back.	Specifically,	those	that	create,
alter,	truncate	(empty),	or	delete	tables	or	that	create	or	delete	databases	cannot	be	undone.	Furthermore,
using	such	a	query	has	the	effect	of	committing	and	ending	the	current	transaction.
Second,	 understand	 that	 transactions	 are	 particular	 to	 each	 connection.	One	user	 connected	 through	 the
mysql	client	has	a	different	transaction	than	another	mysql	client	user,	both	of	which	are	different	from	a
connected	PHP	script.
Finally,	 you	 cannot	 perform	 transactions	 using	 phpMyAdmin.	 Each	 submission	 of	 a	 query	 through
phpMyAdmin’s	SQL	window	or	tab	is	an	individual	and	complete	transaction,	which	cannot	be	undone
with	subsequent	submissions.
With	this	in	mind,	let’s	use	transactions	with	the	banking	database	to	perform	the	already	mentioned	task.

To	perform	transactions:
1.	Connect	to	MySQL	and	select	the	banking	database.
2.	Begin	a	transaction	and	show	the	table’s	current	values	 :
Click	here	to	view	code	image

START	TRANSACTION;

SELECT	*	FROM	accounts;

A	transaction	is	begun	and	the	existing	table	records	are	shown.

3.	Subtract	$100	from	David	Sedaris’s	(or	any	user’s)	checking	account.
Click	here	to	view	code	image

UPDATE	accounts

SET	balance	=	(balance-100)

WHERE	account_id=2;

Using	an	UPDATE	query,	a	little	math,	and	a	WHERE	conditional,	you	can	subtract	100	from	a	balance.
Although	 MySQL	 will	 indicate	 that	 one	 row	 was	 affected,	 the	 effect	 is	 not	 permanent	 until	 the



transaction	is	committed.
4.	Add	$100	to	Sarah	Vowell’s	checking	account:
Click	here	to	view	code	image

UPDATE	accounts

SET	balance	=	(balance+100)

WHERE	account_id=1;

This	is	the	opposite	of	Step	3,	as	if	$100	were	being	transferred	from	the	one	person	to	the	other.
5.	Confirm	the	results	 :

SELECT	*	FROM	accounts;

Two	UPDATE	queries	are	executed	and	the	results	are	viewed.

As	you	can	see	in	the	figure,	the	one	balance	is	100	more	and	the	other	is	100	less	than	they	originally
were	 .

6.	Roll	back	the	transaction:
ROLLBACK;

To	demonstrate	how	transactions	can	be	undone,	let’s	undo	the	effects	of	these	queries.	The	command
returns	 the	database	to	how	it	was	prior	 to	starting	the	transaction.	The	command	also	 terminates	 the
transaction,	returning	MySQL	to	its	autocommit	mode.

7.	Confirm	the	results	 :
SELECT	*	FROM	accounts;

Because	 the	 ROLLBACK	 command	 was	 used,	 the	 potential	 effects	 of	 the	 UPDATE	 queries	 were
ignored.



The	query	should	reveal	the	contents	of	the	table	as	they	originally	were.
8.	Repeat	Steps	2	through	4.
To	see	what	happens	when	the	transaction	is	committed,	the	two	UPDATE	queries	will	be	run	again.	Be
certain	to	start	the	transaction	first,	though,	or	the	queries	will	automatically	take	effect!

9.	Commit	the	transaction	and	confirm	the	results	 :
COMMIT;

SELECT	*	FROM	accounts;

Invoking	the	COMMIT	command	makes	the	transaction’s	effects	permanent.

Once	 you	 enter	COMMIT,	 the	 entire	 transaction	 is	 permanent,	meaning	 that	 any	 changes	 are	 now	 in
place.	COMMIT	also	ends	the	transaction,	returning	MySQL	to	autocommit	mode.

Tip
One	of	the	great	features	of	transactions	is	that	they	offer	protection	should	a	random	event	occur,
such	 as	 a	 server	 crash.	 Either	 a	 transaction	 is	 executed	 in	 its	 entirety	 or	 all	 the	 changes	 are
ignored.

Tip
To	alter	MySQL’s	autocommit	nature,	type

SET	AUTOCOMMIT=0;

Then	you	do	not	need	to	type	START	TRANSACTION	and	no	queries	will	be	permanent	until	you	type
COMMIT	(or	use	an	ALTER,	CREATE,	etc.,	query).

Tip
You	can	create	savepoints	in	transactions:

SAVEPOINT	savepoint_name;

Then	you	can	roll	back	to	that	point:
ROLLBACK	TO	SAVEPOINT	savepoint_name;



Database	Encryption
Up	to	this	point,	pseudo-encryption	has	been	accomplished	in	the	database	using	the	SHA2()	function.	In
the	sitename	and	forum	databases,	the	user’s	password	has	been	stored	after	running	it	through	SHA2().
Although	using	the	function	in	this	way	is	perfectly	fine	(and	quite	common),	the	function	doesn’t	provide
real	encryption;	the	SHA2()	function	returns	a	representation	of	a	value,	called	a	hash,	not	an	encrypted
version	of	 the	value.	By	 storing	 the	hashed	version	of	 some	data,	 comparisons	 can	 still	 be	made	 later
(such	as	upon	login),	but	the	original	data	cannot	be	retrieved	from	the	database.	If	you	need	to	store	data
in	a	protected	way	while	still	being	able	to	view	the	data	in	its	original	form	at	some	later	point,	other
MySQL	functions	are	necessary.
MySQL	has	several	encryption	and	decryption	functions	built	into	the	software.	If	you	require	data	to	be
stored	 in	 an	 encrypted	 form	 that	 can	 be	 decrypted,	 you’ll	 want	 to	 use	 AES_ENCRYPT()	 and
AES_DECRYPT().	The	AES_ENCRYPT()	function	is	the	most	secure	encryption	option.
These	functions	take	two	arguments:	the	data	being	encrypted	or	decrypted	and	a	salt	argument.	The	salt
argument	 is	a	string	 that	helps	 to	 randomize	 the	encryption.	Let’s	 look	at	 the	encryption	and	decryption
functions	first,	and	then	I’ll	return	to	the	salt.
To	add	a	record	to	a	table	while	encrypting	the	data,	the	query	might	look	like
Click	here	to	view	code	image

INSERT	INTO	users	(username,	pass)

VALUES	('troutster',	AES_ENCRYPT

('mypass',	'nacl19874salt!'))

The	encrypted	data	 returned	by	 the	AES_ENCRYPT()	 function	will	 be	 in	binary	 format.	To	 store	 that
data	in	a	table,	the	column	must	be	defined	as	one	of	the	binary	types	(e.g.,	VARBINARY	or	BLOB).
To	run	a	 login	query	for	 the	record	 just	 inserted	(matching	a	submitted	username	and	password	against
those	in	the	database),	you	would	write
Click	here	to	view	code	image

SELECT	*	FROM	users	WHERE

username	=	'troutster'	AND

AES_ENCRYPT('mypass',	

'nacl19874salt!')	=	pass

Returning	 to	 the	 issue	of	 the	salt,	 the	exact	 same	salt	must	be	used	 for	both	encryption	and	decryption,
which	means	that	the	salt	must	be	stored	somewhere	as	well.	Contrary	to	what	you	might	think,	it’s	safe	to
store	the	salt	in	the	database,	even	in	the	same	row	as	the	salted	data.	This	is	because	the	purpose	of	the
salt	is	to	make	the	encryption	process	harder	to	crack	(specifically,	by	a	“rainbow”	attack).	Such	attacks
are	done	remotely,	using	brute	force.	Conversely,	if	someone	can	see	everything	stored	in	your	database,
you	have	bigger	problems	to	worry	about	(i.e.,	all	your	data	has	been	breached).
Finally,	to	get	the	maximum	benefit	from	“salting”	the	stored	data,	each	piece	of	stored	data	should	use	a
salt	that’s	unique,	long,	and	binary.
The	MySQL	manual	recommends	running	the	salt	through	the	SHA2()	function	to	increase	its	length.	Use
the	UNHEX()	function	to	convert	it	to	binary:
Click	here	to	view	code	image

INSERT	INTO	users	(username,	pass)

VALUES	('troutster',	AES_ENCRYPT

('mypass',	UNHEX(SHA2('nacl19874salt!',

512))))



To	put	all	this	together,	let’s	add	PIN	and	salt	columns	to	the	banking.customers	table,	and	then	store	an
encrypted	version	of	each	customer’s	PIN.

To	encrypt	and	decrypt	data:
1.	Access	MySQL	and	select	the	banking	database:
2.	Add	the	two	new	columns	to	the	customers	table	 :
Click	here	to	view	code	image

ALTER	TABLE	customers

ADD	COLUMN	pin	VARBINARY(16)

NOT	NULL;

ALTER	TABLE	customers

ADD	COLUMN	nacl	VARBINARY(64)

NOT	NULL;

Two	columns	are	added	to	the	customers	table.

The	 first	 column,	pin,	 will	 store	 an	 encrypted	 version	 of	 the	 user’s	 PIN.	 For	 a	 PIN	 of	 four	 digits,
AES_ENCRYPT()	 returns	 a	 binary	 value	 16	 characters	 long,	 so	 the	 pin	 column	 is	 defined	 as
VARBINARY(16).	 The	 second	 column	 stores	 the	 salt,	 which	 will	 be	 run	 through	 SHA2()	 and
UNHEX(),	resulting	in	another	binary	type,	this	time	with	a	length	of	64.

3.	Update	the	first	customer’s	PIN :
Click	here	to	view	code	image

UPDATE	customers	SET	nacl	=

UNHEX(SHA2(RAND(),	512))

WHERE	customer_id=1;

UPDATE	customers	SET

pin=AES_ENCRYPT(1234,	nacl)

WHERE	customer_id=1;

A	record	is	updated,	using	an	encryption	function	to	protect	the	PIN.



The	 first	 query	 updates	 the	 customer’s	 record,	 adding	 a	 salt	 value	 to	 the	nacl	 column.	 That	 random
value	is	obtained	by	applying	the	SHA2()	function	to	the	output	from	the	RAND()	function.	This	will
create	 a	 string	 128	 characters	 long,	 such	 as	 ee26b0dd4af7e749aa1a8ee
3c10ae9923f618980772e473f8819a	 5d4940e0db27ac185f8a0e1d5f84f
88bc887fd67b143732c304cc5fa9ad	 8e6f57f50028a8ff.	 This	 is	 then	 converted	 to	 binary	 using
UNHEX().
The	second	query	stores	the	customer’s	PIN—1234,	using	the	already-stored	nacl	value	as	the	salt.

4.	Retrieve	the	PIN	in	an	unencrypted	form	 :
Click	here	to	view	code	image

SELECT	customer_id,	

AES_DECRYPT(pin,	nacl)	AS	pin	

FROM	customers

WHERE	customer_id=1;

The	record	has	been	retrieved,	decrypting	the	PIN	in	the	process.

This	query	returns	the	decrypted	PIN	for	the	customer	with	a	customer_id	of	1.	Any	value	stored	using
AES_ENCRYPT()	can	be	retrieved	(and	matched)	using	AES_DECRYPT()	if	the	same	salt	is	used.

5.	Check	out	the	customer’s	record	without	using	decryption	 :
Click	here	to	view	code	image

SELECT	*	FROM	customers

WHERE	customer_id=1\G

Encrypted	data	is	stored	in	an	unreadable	format	(here,	as	a	binary	string	of	data).



As	you	can	see	 in	 the	 figure,	 the	encrypted	version	of	 the	PIN	and	 the	binary	version	of	 the	 salt	 are
unreadable.

Tip
As	a	rule	of	 thumb,	use	SHA2()	 for	 information	 that	will	never	need	 to	be	viewable,	 such	as
passwords	 and	 perhaps	 usernames.	 Use	 AES_ENCRYPT()	 for	 information	 that	 needs	 to	 be
protected	but	may	need	 to	be	viewable	at	 a	 later	date,	 such	as	 credit	 card	 information,	Social
Security	numbers,	addresses	(perhaps),	and	so	forth.

Tip
As	a	 reminder,	never	 storing	credit	 card	numbers	and	other	high-risk	data	 is	always	 the	 safest
option.

Tip
The	same	salting	technique	can	be	applied	to	SHA2()	and	other	functions.

Tip
Be	 aware	 that	 data	 sent	 to	 the	MySQL	 server,	 or	 received	 from	 it,	 could	 be	 intercepted	 and
viewed.	Better	security	can	be	had	by	using	an	SSL	connection	to	the	MySQL	database.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	What	are	the	two	primary	types	of	joins?
	Why	are	aliases	often	used	with	joins?
	Why	 is	 it	 considered	often	necessary	and	at	 least	 a	best	practice	 to	use	 the	 table.column	 syntax	 in
joins?
	What	impact	does	the	order	of	tables	used	have	on	an	outer	join?
	How	do	you	create	a	self-join?
	What	are	the	aggregate	functions?
	What	impact	does	the	DISTINCT	keyword	have	on	an	aggregate	function?	What	impact	does	GROUP
BY	have	on	an	aggregate	function?
	What	kind	of	index	is	required	to	perform	FULLTEXT	searches?	What	type	of	storage	engine?
	What	impact	does	it	have	when	you	conclude	a	SELECT	query	with	\G	instead	of	a	semicolon	in	the
mysql	client?
	How	do	IN	BOOLEAN	MODE	FULLTEXT	searches	differ	from	standard	FULLTEXT	searches?
	What	commands	can	you	use	to	improve	a	table’s	performance?

http://LarryUllman.com/forums/


	How	do	you	examine	the	efficiency	of	a	query?
	Why	doesn’t	the	forum	database	support	transactions?
	How	do	you	begin	a	transaction?	How	do	you	undo	the	effects	of	a	transaction	in	progress?	How	do
you	make	the	effects	of	the	current	transaction	permanent?
	What	kind	of	column	type	is	required	to	store	the	output	from	the	AES_ENCRYPT()	function?
	What	are	the	important	criteria	for	the	salt	used	in	the	encryption	process?

Pursue
	Come	up	with	more	join	examples	for	 the	 forum	and	banking	databases.	Perform	inner	 joins,	outer
joins,	and	joins	across	all	three	tables.
	 Check	 out	 the	MySQL	manual	 pages	 if	 you’re	 curious	 about	 the	UNION	 SQL	 command	 or	 about
subqueries.
	Perform	some	more	grouping	exercises	on	the	banking	or	forum	databases.
	Practice	running	FULLTEXT	searches	on	the	forum	database.
	Examine	other	queries	to	see	the	results.
	 Read	 the	 MySQL	 manual	 pages,	 and	 other	 online	 tutorials,	 on	 explaining	 queries	 and	 optimizing
tables.
	Play	with	transactions	some	more.
	Research	the	subjects	of	salting	passwords	and	rainbow	attacks	to	learn	more.









































































































































8.	Error	Handling	and	Debugging

In	This	Chapter
Error	Types	and	Basic	Debugging
Displaying	PHP	Errors
Adjusting	Error	Reporting	in	PHP
Creating	Custom	Error	Handlers
PHP	Debugging	Techniques
SQL	and	MySQL	Debugging	Techniques
Review	and	Pursue

If	you’re	working	through	this	book	sequentially	(which	would	be	for	the	best),	the	next	subject	to	learn	is
how	to	use	PHP	and	MySQL	together.	However,	that	process	will	undoubtedly	generate	errors,	errors	that
can	be	tricky	to	debug.	So	before	moving	on	to	new	concepts,	these	next	few	pages	address	the	bane	of	the
programmer:	errors.	As	 you	 gain	 experience,	 you’ll	make	 fewer	 errors	 and	 learn	 your	 own	debugging
methods,	 but	 there	 are	 plenty	 of	 tools	 and	 techniques	 the	 beginner	 can	 use	 to	 help	 ease	 the	 learning
process.
This	chapter	has	three	main	threads.	One	focus	is	on	learning	about	the	various	kinds	of	errors	 that	can
occur	when	developing	dynamic	websites	 and	what	 their	 likely	causes	are.	 Second,	 several	 debugging
techniques	 are	 taught,	 in	 a	 step-by-step	 format.	Finally,	 you’ll	 see	 different	 techniques	 for	 handling	 the
errors	that	do	occur	in	the	most	graceful	manner	possible.

Error	Types	and	Basic	Debugging
When	developing	web	applications	with	PHP	and	MySQL,	you	end	up	with	potential	bugs	in	one	of	four
or	more	 technologies.	You	could	have	HTML	 issues,	PHP	problems,	SQL	errors,	 or	MySQL	mistakes.
The	first	step	in	fixing	any	bug	is	identifying	its	source.
HTML	 problems	 are	 often	 the	 least	 disruptive	 and	 the	 easiest	 to	 catch.	 You	 normally	 know	 there’s	 a
problem	when	your	layout	is	all	messed	up.	Some	steps	for	catching	and	fixing	these,	as	well	as	general
debugging	hints,	are	discussed	in	the	next	section.
PHP	errors	are	the	ones	you’ll	see	most	often,	since	this	language	will	be	at	the	heart	of	your	applications.
PHP	errors	fall	into	three	general	areas:

	Syntactical
	Run-time
	Logical

Syntactical,	or	parse,	errors	are	 the	most	common	and	 the	easiest	 to	 fix.	You’ll	see	 them	if	you	merely
omit	 a	 semicolon.	Such	errors	 stop	 the	 script	 from	executing,	 and	 if	display_errors	 is	 on	 in	your	PHP
configuration,	PHP	will	show	an	error,	including	the	line	PHP	thinks	it’s	on	 .	If	display_errors	is	off,
you’ll	see	a	blank	page.	You’ll	learn	more	about	display_errors	later	in	this	chapter.



	Parse	errors—which	you’ve	probably	seen	many	times	over	by	now—are	the	most	common	sort	of
PHP	error,	particularly	for	beginning	programmers.
Run-time	errors	include	those	things	that	don’t	stop	a	PHP	script	from	executing	(like	parse	errors	do)	but
do	stop	the	script	from	doing	everything	it	was	supposed	to	do.	Examples	include	calling	a	function	using
the	 wrong	 number	 or	 types	 of	 parameters.	 With	 these	 errors,	 PHP	 will	 normally	 display	 a	 message
indicating	the	exact	problem	 	(again,	assuming	that	display_errors	is	on).

Misusing	a	function	(calling	 it	with	 improper	parameters)	will	create	errors	during	 the	execution	of
the	script.
The	final	category	of	error—logical—is	actually	 the	worst,	because	PHP	won’t	necessarily	report	 it	 to
you.	These	are	out-and-out	bugs—problems	that	aren’t	obvious	and	don’t	stop	the	execution	of	a	script.
Tricks	for	solving	these	PHP	errors	will	be	demonstrated	in	just	a	few	pages.
SQL	 errors	 are	 normally	 a	matter	 of	 syntax,	 and	 they’ll	 be	 reported	when	 you	 try	 to	 run	 the	 query	 in
MySQL.	For	example,	I’ve	done	this	too	many	times	 :
DELETE	*	FROM	tablename

MySQL	will	report	any	errors	found	in	the	syntax	of	an	SQL	command.
The	syntax	is	just	wrong,	a	confusion	with	the	SELECT	syntax	(SELECT	*	FROM	tablename).	The
correct	syntax	is
DELETE	FROM	tablename



The	Right	Mentality
Before	getting	much	further,	a	word	regarding	errors:	they	happen	to	the	best	of	us.	Even	 the
author	of	this	book	sees	more	than	enough	errors	in	his	development	duties	(but	rest	assured
that	the	code	in	this	book	should	be	bug-free).	Thinking	that	you’ll	get	to	a	skill	level	where
errors	 never	 occur	 is	 a	 fool’s	 dream,	 but	 there	 are	 techniques	 for	 minimizing	 errors,	 and
knowing	how	to	quickly	catch,	handle,	and	fix	errors	is	a	major	skill	in	its	own	right.	So	try
not	 to	 become	 frustrated	 as	 you	 make	 errors;	 instead,	 bask	 in	 the	 knowledge	 that	 you’re
becoming	a	better	debugger!

Again,	MySQL	will	raise	a	red	flag	when	you	have	SQL	errors,	so	these	aren’t	that	difficult	to	find	and
fix.	 With	 modern	 web	 sites,	 the	 catch	 is	 that	 you	 don’t	 always	 have	 static	 queries	 but	 often	 ones
dynamically	generated	by	PHP.	In	such	cases,	if	there’s	an	SQL	syntax	problem,	the	issue	is	probably	in
your	PHP	code.
Besides	 reporting	 on	 SQL	 errors,	 MySQL	 has	 its	 own	 errors	 to	 consider.	 An	 inability	 to	 access	 the
database	 is	 a	 common	 one	 and	 a	 showstopper	 at	 that	 .	 You’ll	 also	 see	 errors	 when	 you	 misuse	 a
MySQL	function	or	ambiguously	refer	to	a	column	in	a	join.	Again,	MySQL	will	report	any	such	error	in
specific	detail.	Keep	in	mind	that	when	a	query	doesn’t	return	the	records	or	otherwise	have	the	result	you
expect,	that’s	not	a	MySQL	or	SQL	error,	but	rather	a	logical	one.	Toward	the	end	of	this	chapter	you’ll
see	how	to	solve	SQL	and	MySQL	problems.

An	inability	to	connect	to	a	MySQL	server	or	a	specific	database	is	a	common	MySQL	error.
But	as	you	should	walk	before	you	can	run,	the	next	section	covers	the	fundamentals	of	debugging	dynamic
web	sites,	starting	with	the	basic	checks	you	should	make	and	how	to	fix	HTML	problems.

Basic	debugging	steps
This	first	sequence	of	steps	may	seem	obvious,	but	when	it	comes	to	debugging,	missing	one	of	these	steps
leads	 to	an	unproductive	and	extremely	 frustrating	debugging	experience.	And	while	 I’m	at	 it,	 I	 should
mention	that	the	best	piece	of	general	debugging	advice	is	this:
When	you	get	frustrated,	step	away	from	the	computer!
I	have	solved	almost	all	of	 the	most	perplexing	issues	I’ve	come	across	by	taking	a	break,	clearing	my
head,	 and	 coming	 back	 to	 the	 code	 with	 fresh	 eyes.	 Readers	 in	 the	 book’s	 supporting	 forum
(LarryUllman.com/forums/)	have	frequently	found	this	to	be	true	as	well.	Trying	to	forge	ahead
when	you’re	frustrated	tends	to	make	things	worse.	Much	worse.

To	begin	debugging	any	problem:
	Make	sure	that	you	are	running	the	right	page.
It’s	altogether	too	common	that	you	try	to	fix	a	problem	and	no	matter	what	you	do,	it	never	goes	away.
The	reason	is	you’ve	actually	been	editing	a	different	page	than	you	thought.	Verify	that	the	name	and
location	of	the	file	being	executed	matches	that	of	the	file	you’re	editing.	In	this	regard,	using	an	all-in-

http://LarryUllman.com/forums/


one	IDE,	such	as	Adobe	Dreamweaver	(www.adobe.com/go/dreamweaver),	is	an	advantage.
	Make	sure	that	you	have	saved	your	latest	changes.
An	unsaved	document	will	continue	to	have	the	same	problems	it	had	before	you	edited	it	(because	the
edits	haven’t	been	enacted).	One	of	the	many	reasons	I	like	the	TextMate	(www.macromates.com)
text	editor	is	that	it	automatically	saves	every	document	when	the	application	loses	focus.
	Make	sure	that	you	run	all	PHP	pages	through	the	URL.
Because	PHP	works	through	a	web	server	(Apache,	IIS,	etc.),	running	any	PHP	code	requires	that	you
access	 the	 page	 through	 a	 URL	 (http://www.example.com/page.php	 or
http://localhost/page.php).	If	you	double-click	a	PHP	page	to	open	it	in	a	browser	(or	use
the	browser’s	File	>	Open	option),	you’ll	see	the	PHP	code,	not	the	executed	result.	This	also	occurs	if
you	load	an	HTML	page	without	going	through	a	URL	(which	will	work	on	its	own)	but	then	submit	the
form	to	a	PHP	page	 .

PHP	code	will	be	executed	only	if	run	through	a	URL.	This	means	that	forms	that	submit	to	a	PHP	page
must	also	be	loaded	through	http://.

	Know	what	versions	of	PHP	and	MySQL	you	are	running.
Some	problems	are	specific	to	a	certain	version	of	PHP	or	MySQL.	For	example,	some	functions	are
added	 in	 later	 versions	 of	 PHP,	 and	 MySQL	 added	 significant	 new	 features	 in	 version	 5.	 Run	 a
phpinfo()	script	 	(see	Appendix	A,	“Installation,”	for	a	script	example)	and	open	a	mysql	client
session	 	 to	determine	this	 information.	phpMyAdmin	will	often	report	on	the	versions	involved	as
well	(but	don’t	confuse	the	version	of	phpMyAdmin	with	the	versions	of	PHP	or	MySQL).

http://www.adobe.com/go/dreamweaver
http://www.macromates.com


A	phpinfo()	script	is	one	of	your	best	tools	for	debugging,	informing	you	of	the	PHP	version	and
how	it’s	configured.

When	you	connect	to	a	MySQL	server,	it	will	let	you	know	the	version	number	in	use.
	Know	what	web	server	you	are	running.
Similarly,	 some	problems	and	 features	 are	unique	 to	your	web	 serving	application—Apache,	 IIS,	 or
Nginx.	You	 should	 know	which	 one	 you	 are	 using,	 and	which	 version,	 from	when	 you	 installed	 the
application.	If	you’re	using	a	web	host,	the	hosting	company	can	provide	you	with	this	information.
	Try	executing	pages	in	a	different	browser.
Every	developer	should	have	and	use	at	 least	 two	browsers.	 If	you	test	your	pages	 in	different	ones,
you’ll	be	able	to	see	if	the	problem	has	to	do	with	your	script	or	a	particular	browser.	Normally,	only
HTML	and	CSS	problems	can	arise	 (or	disappear)	when	you	 switch	 browsers;	 rarely	will	 PHP,	 let



alone	MySQL	or	SQL,	errors	be	browser	specific.
	 If	 possible,	 try	 executing	 the	page	using	 a	different	web	 server,	 version	of	PHP,	 and/or	 version	 of
MySQL.
PHP	and	MySQL	errors	sometimes	stem	from	particular	configurations	and	versions	on	one	server.	 If
something	works	on	one	server	but	not	another,	then	you’ll	know	that	the	script	isn’t	inherently	at	fault.
From	there	it’s	a	matter	of	using	phpinfo()	scripts	to	see	what	server	settings	may	be	different.

Tip
If	 taking	 a	 break	 is	 one	 thing	 you	 should	 do	 when	 you	 become	 frustrated,	 here’s	 what	 you
shouldn’t	do:	send	off	one	or	multiple	panicky	and	persnickety	emails	to	a	writer,	to	a	newsgroup
or	mailing	list,	or	to	anyone	else.	When	it	comes	to	asking	for	free	help	from	strangers,	patience
and	pleasantries	garner	much	better	and	faster	results.

Tip
For	that	matter,	I	strongly	advise	against	randomly	guessing	at	solutions.	I’ve	seen	far	 too	many
people	only	complicate	matters	further	by	taking	stabs	at	solutions	without	a	full	understanding	of
what	the	attempted	changes	should	or	should	not	do.

Tip
There’s	another	different	realm	of	errors	that	you	could	classify	as	usage	errors:	what	goes	wrong
when	the	site’s	users	don’t	do	what	you	thought	they	would.	As	a	golden	rule,	write	your	code	so
that	it	doesn’t	break	even	if	the	user	doesn’t	do	anything	right	or	does	everything	wrong!	In	other
words,	 make	 no	 assumptions.	 There’s	 a	 quote	 from	 Doug	 Linder	 that	 applies	 here:	 “A	 good
programmer	is	someone	who	looks	both	ways	before	crossing	a	one-way	street.”



Book	Errors
If	you’ve	followed	an	example	 in	 this	book	and	something’s	not	working	right,	what	should
you	do?
1.	Double-check	your	code	or	steps	against	those	in	the	book.
2.	Use	the	index	at	the	back	of	the	book	to	see	if	I	reference	a	script	or	function	in	an	earlier
page	(you	may	have	missed	an	important	usage	rule	or	tip).

3.	View	the	PHP	manual	for	a	specific	function	to	see	if	it’s	available	in	your	version	of	PHP
and	to	verify	how	the	function	is	used.

4.	Check	out	the	book’s	errata	page	(through	the	supporting	website,	LarryUllman.com)	to
see	 if	 an	 error	 in	 the	 code	 does	 exist	 and	 has	 been	 reported.	 Don’t	 post	 your	 particular
problem	there	yet,	though!

5.	Triple-check	your	code	and	use	all	the	debugging	techniques	outlined	in	this	chapter.
6.	Search	the	book’s	supporting	forum	to	see	if	others	have	had	this	problem	and	if	a	solution
has	already	been	determined.

7.	 If	all	else	fails,	use	 the	book’s	supporting	forum	to	ask	for	assistance.	When	you	do,	make
sure	 you	 include	 all	 the	 pertinent	 information	 (version	 of	 PHP,	 version	 of	 MySQL,	 the
debugging	steps	you	took	and	what	the	results	were,	etc.).

Debugging	HTML
Debugging	HTML	is	relatively	easy.	The	source	code	is	very	accessible,	most	problems	are	overt,	and
attempts	 at	 fixing	 the	 HTML	 don’t	 normally	make	 things	 worse	 (as	 can	 happen	with	 PHP).	 Still,	 you
should	follow	some	basic	steps	to	find	and	fix	an	HTML	problem.

To	debug	an	HTML	error:
	Check	the	source	code.
If	you	have	an	HTML	problem,	you’ll	almost	always	need	to	check	the	source	code	of	the	page	to	find
it.	How	you	view	the	source	code	depends	on	the	browser	being	used,	but	normally	 it’s	a	matter	of
finding	“developer	tools”	or	“view	source.”
	Use	a	validation	tool	 .

http://LarryUllman.com


Validation	tools	like	the	one	provided	by	the	W3C	(World	Wide	Web	Consortium)	are	good	for	finding
problems	and	making	sure	your	HTML	conforms	to	standards.
Validation	 tools,	 like	 the	one	at	http://validator.w3.org,	 are	great	 for	 finding	mismatched
tags,	broken	tables,	and	other	problems.
	Use	a	great	debugging	browser.
The	debugging	tools	built	into	browsers	have	come	a	long	way	over	the	years,	and	most	of	them	have
comparable	 tools.	Find	 a	browser	 that	 you	 like	best,	 that	 has	great	 debugging	 tools	 (look	 online	 for
tutorials,	if	you	want),	and	master	what	it	offers.
	Test	the	page	in	another	browser.
PHP	 code	 is	 generally	 browser-independent,	meaning	 you’ll	 get	 consistent	 results	 regardless	 of	 the
client.	Not	so	with	HTML.	Sometimes	a	particular	browser	has	a	quirk	that	affects	the	rendered	page.
Running	the	same	page	 in	another	browser	 is	 the	easiest	way	to	know	if	 it’s	an	HTML	problem	or	a
browser	quirk.

Tip
The	first	step	toward	fixing	any	kind	of	problem	is	understanding	what’s	causing	it.	Remember
the	 role	 each	 technology—HTML,	PHP,	 SQL,	 and	MySQL—plays	 as	 you	 debug.	 If	 your	 page
doesn’t	look	right,	that’s	an	HTML	problem.	If	your	HTML	is	dynamically	generated	by	PHP,	it’s
still	an	HTML	problem,	but	you’ll	need	to	work	with	the	PHP	code	to	make	it	right.

http://validator.w3.org


Displaying	PHP	Errors
PHP	provides	remarkably	useful	and	descriptive	error	messages	when	things	go	awry.	Unfortunately,	PHP
doesn’t	show	these	errors	when	running	using	its	default	configuration.	This	policy	makes	sense	for	live
servers,	 where	 you	 don’t	 want	 the	 end	 users	 seeing	 PHP-specific	 error	 messages,	 but	 it	 also	 makes
everything	that	much	more	confusing	for	 the	beginning	PHP	developer.	To	be	able	 to	see	PHP’s	errors,
you	must	turn	on	the	display_errors	directive,	either	in	an	individual	script	or	for	the	PHP	configuration
as	a	whole.
To	turn	on	display_errors	in	a	script,	use	the	ini_set()	function.	As	its	arguments,	this	function	takes
a	directive	name	and	what	setting	that	directive	should	have:

ini_set('display_errors',	1);

Including	this	line	in	a	script	will	turn	on	display_errors	for	that	script.	The	only	downside	is	that	if	your
script	has	a	syntax	error	 that	prevents	 it	 from	running	at	all,	 then	you’ll	still	see	a	blank	page.	To	have
PHP	 display	 errors	 for	 the	 entire	 server,	 you’ll	 need	 to	 edit	 its	 configuration,	 as	 discussed	 in	 the
“Configuring	PHP”	section	of	Appendix	A.
To	turn	on	display_errors:
1.	 Create	 a	 new	 PHP	 document	 in	 your	 text	 editor	 or	 IDE,	 to	 be	 named	 display_errors.php
(Script	8.1):

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Displaying	Errors</title>

</head>

<body>

<h2>Testing	Display	Errors</h2>

<?php	#	Script	8.1	-

display_errors.php

Script	8.1	The	ini_set()	function	can	be	used	to	tell	a	PHP	script	to	reveal	any	errors	that	might	occur.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">



5						<title>Displaying	Errors</title>

6			</head>

7			<body>

8			<h2>Testing	Display	Errors</h2>

9			<?php	#	Script	8.1	-	display_errors.php

10		

11		//	Show	errors:

12		ini_set('display_errors',	1);

13		

14		//	Create	errors:

15		foreach	($var	as	$v)	{}

16		$result	=	1/0;

17		

18		?>

19		</body>

20		</html>

2.	After	the	initial	PHP	tags,	add

ini_set('display_errors',	1);

From	this	point	in	this	script	forward,	any	errors	that	occur	will	be	displayed.
3.	Create	some	errors:

foreach	($var	as	$v)	{	}

$result	=	1/0;

To	test	the	display_errors	setting,	the	script	needs	to	have	at	least	one	error.	This	first	line	doesn’t	even
try	to	do	anything,	but	it’s	guaranteed	to	cause	an	error.	There	are	actually	two	issues	here:	first,	there’s
a	reference	to	a	variable	($var)	that	doesn’t	exist;	second,	a	non-array	($var)	 is	being	used	 in	 the
foreach	loop	as	if	it	were	an	array.
The	second	 line	 is	a	classic	division	by	zero,	which	 is	not	allowed	 in	programming	 languages	or	 in
math.

4.	Complete	the	page:
?>

</body>

</html>

5.	Save	the	file	as	display_errors.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	
.



	With	display_errors	turned	on	(for	this	script),	the	page	reports	the	errors	when	they	occur.
6.	If	you	want,	change	the	first	line	of	PHP	code	to	read

ini_set('display_errors',	0);

Then	save	and	retest	the	script	 .

	With	display_errors	turned	off	(for	this	page),	the	same	errors	are	no	longer	reported.	Unfortunately,
they	still	exist.

Tip
There	are	limits	as	to	what	PHP	settings	the	ini_set()	function	can	be	used	to	adjust.	See	the
PHP	manual	for	specifics	as	to	what	can	and	cannot	be	changed	using	it.

Tip
As	a	reminder,	changing	the	display_	errors	setting	in	a	script	only	works	so	long	as	that	script
runs	(i.e.,	it	cannot	have	any	parse	errors).	To	be	able	to	always	see	any	errors	that	occur,	you’ll
need	to	enable	display_errors	in	PHP’s	configuration	file	(again,	see	the	appendix).



Adjusting	Error	Reporting	in	PHP
Once	 you	 have	 PHP	 set	 to	 display	 the	 errors	 that	 occur,	 you	 might	 want	 to	 adjust	 the	 level	 of	 error
reporting.	Your	PHP	installation	as	a	whole,	or	individual	scripts,	can	be	set	to	report	or	ignore	different
types	of	errors.	Table	8.1	lists	most	of	the	levels,	but	they	can	generally	be	one	of	these	three	kinds:

	Notices,	which	do	not	stop	the	execution	of	a	script	and	may	not	necessarily	be	a	problem
	Warnings,	which	indicate	a	problem	but	don’t	stop	a	script’s	execution
	Errors,	which	stop	a	script	from	continuing	(including	the	ever-common	parse	error,	which	prevents
scripts	from	running	at	all)

TABLE	8.1	Error-Reporting	Levels
NumberConstant Report	On
1 E_ERROR Fatal	run-time	errors	(that	stop	execution	of	the	script)
2 E_WARNING Run-time	warnings	(nonfatal	errors)
4 E_PARSE Parse	errors
8 E_NOTICE Notices	(things	that	could	or	could	not	be	a	problem)

256 E_USER_ERROR
User-generated	error	messages,	generated	by	the	trigger_error()
function

512 E_USER_WARNINGUser-generated	warnings,	generated	by	the	trigger_error()	function
1024 E_USER_NOTICE User-generated	notices,	generated	by	the	trigger_error()	function
2048 E_STRICT Recommendations	for	compatibility	and	interoperability
8192 E_DEPRECATED Warnings	about	code	that	won’t	work	in	future	versions	of	PHP
32767 E_ALL All	errors,	warnings,	and	recommendations

As	a	 rule	of	 thumb,	you’ll	want	PHP	 to	 report	on	any	kind	of	error	while	you’re	developing	a	 site	 but
report	no	specific	errors	once	the	site	goes	live.	For	security	and	aesthetic	purposes,	it’s	generally	unwise
for	a	public	user	to	see	PHP’s	detailed	error	messages.



Suppressing	Errors	with	@
Individual	 errors	 can	 be	 suppressed	 in	 PHP	 using	 the	 error	 suppression	 operator,	 @.	 For
example,	if	you	don’t	want	PHP	to	report	if	it	couldn’t	include	a	file,	you	would	code

@include	('config.inc.php');

Or	if	you	don’t	want	to	see	a	“division	by	zero”	error:

$x	=	8;

$y	=	0;

$num	=	@($x/$y);

The	@	symbol	will	work	only	on	expressions,	like	function	calls	or	mathematical	operations.
You	cannot	use	@	before	conditionals,	loops,	function	definitions,	and	so	forth.
As	a	 rule	of	 thumb,	 I	 recommend	 that	@	be	used	on	 functions	whose	execution,	 should	 they
fail,	will	not	affect	the	functionality	of	the	script	as	a	whole.	Or	you	can	choose	not	to	display
PHP’s	 errors	 by	 handling	 them	 more	 gracefully	 yourself	 (a	 topic	 discussed	 later	 in	 this
chapter).

Frequently,	 error	messages—particularly	 those	 dealing	with	 the	 database—will	 reveal	 certain	 behind-
the-scenes	 aspects	 of	 your	web	 application	 that	 are	 best	 not	 shown.	Although	 you	 hope	 these	will	 be
worked	out	during	the	development	stage,	that	may	not	be	the	case.
You	can	universally	adjust	the	level	of	error	reporting	following	the	instructions	in	Appendix	A.	Or	you
can	 adjust	 this	 behavior	 on	 a	 script-by-script	 basis	 using	 the	error_reporting()	 function.	 This
function	is	used	to	establish	what	type	of	errors	PHP	should	report	on	within	a	specific	page.	The	function
takes	 either	 a	 number	or	 a	 constant,	 using	 the	values	 in	Table	8.1	 (the	 PHP	manual	 lists	 a	 few	others,
related	to	the	core	of	PHP	itself).

error_reporting(0);	//	Show	no	errors.

A	setting	of	0	turns	error	reporting	off	entirely	(errors	will	still	occur;	you	just	won’t	see	them	anymore).
Conversely,	error_reporting(E_ALL)	 will	 tell	 PHP	 to	 report	 on	 every	 error	 that	 occurs.	 The
numbers	can	be	added	up	to	customize	the	level	of	error	reporting,	or	you	could	use	the	bitwise	operators
—	(or),	(not),	(and)—with	the	constants.	With	the	following	setting,	any	non-notice	error	will	be	shown:

error_reporting(E_ALL	&	~E_NOTICE);

To	adjust	error	reporting:
1.	Open	display_errors.php	(Script	8.1)	in	your	text	editor	or	IDE,	if	you	haven’t	already.
To	play	around	with	error	reporting	levels,	use	display_errors.php	as	an	example.



2.	After	adjusting	the	display_errors	setting,	add	(Script	8.2)

error_reporting(E_ALL);

Script	8.2	This	script	will	demonstrate	how	error	reporting	can	be	manipulated	in	PHP.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Reporting	Errors</title>

6			</head>

7			<body>

8			<h2>Testing	Error	Reporting</h2>

9			<?php	#	Script	8.2	-	report_errors.php

10		

11		//	Show	errors:

12		ini_set('display_errors',	1);

13		

14		//	Adjust	error	reporting:

15		error_reporting(E_ALL);

16		

17		//	Create	errors:

18		foreach	($var	as	$v)	{}

19		$result	=	1/0;

20		

21		?>

22		</body>

23		</html>

For	development	purposes,	have	PHP	notify	you	of	all	errors,	notices,	warnings,	and	recommendations.
Setting	the	level	of	error	reporting	to	E_ALL	will	accomplish	that.
Because	E_ALL	is	a	constant,	it’s	not	enclosed	in	quotation	marks.

3.	Save	the	file	as	report_errors.php,	place	it	in	your	web	directory,	and	run	it	in	your	browser	
.

	On	the	highest	 level	of	error	reporting,	PHP	has	 two	warnings	and	one	notice	for	 this	page	(Script
8.2).



I	also	altered	the	page’s	title	and	the	heading,	but	both	are	immaterial	to	the	point	of	this	exercise.
4.	Change	the	level	of	error	reporting	to	something	different	and	retest	 	and	 .

	The	same	page	(Script	8.2)	after	disabling	the	reporting	of	notices.

	The	same	page	again	(Script	8.2)	with	error	reporting	turned	off	(set	to	0).	The	result	is	the	same	as	if
display_errors	were	disabled.	Of	course,	the	errors	still	occur;	they’re	just	not	being	reported.

Tip
The	numeric	value	of	E_ALL	in	Table	8.1	can	differ	from	one	version	of	PHP	to	the	next.

Tip
Because	you’ll	often	want	to	adjust	the	display_errors	and	error_reporting	for	every	page	in	a
web	 site,	 you	might	want	 to	 place	 those	 lines	 of	 code	 in	 a	 separate	PHP	 file	 that	 can	 then	 be
included	by	other	PHP	scripts.

Tip
The	scripts	in	this	book	were	all	written	with	PHP’s	error	reporting	on	the	highest	level	(with	the
intention	of	catching	every	possible	problem).



Tip
The	trigger_error()	 function	 is	 a	way	 to	 programmatically	 generate	 an	 error	 in	 a	 PHP
script.	 Its	 first	argument	 is	 an	error	message;	 its	 second,	optional,	 argument	 is	 a	numeric	error
type,	corresponding	to	the	values	in	Table	8.1.	By	default	the	type	will	be	E_USER..

if	(/*	some	condition	*/)	{

			trigger_error('Something	Bad

			 Happened!');

}

Creating	Custom	Error	Handlers
Another	option	for	error	management	with	your	sites	 is	 to	alter	how	PHP	handles	errors.	By	default,	 if
display_errors	is	enabled	and	an	error	is	caught	(that	falls	under	the	level	of	error	reporting),	PHP	will
print	the	error,	in	a	somewhat	simplistic	form,	within	some	minimal	HTML	tags	 .

	The	HTML	source	code	shows	how	PHP	formats	errors	by	default.
Some	PHP	installations	will	use	even	more	elaborate	error	reporting	 .



	Additional	debugging	information,	which	can	include	a	walkthrough	of	the	code	involved,	is	output	by
some	PHP	configurations.
You	can	override	how	errors	are	handled	by	creating	your	own	function	that	will	be	called	when	errors
occur.	For	example:

function	report_errors(arguments)	{

		//	Do	whatever	here.

}

set_error_handler('report_errors');

The	 PHP	set_error_handler()	 function	 is	 used	 to	 name	 the	 user-defined	 function	 to	 be	 called
when	 an	 error	 occurs.	 The	 handling	 function	 (report_errors,	 in	 this	 case)	 will,	 at	 that	 time,	 receive
several	values	that	can	be	used	in	any	possible	manner.
This	function	can	be	written	to	take	up	to	five	arguments.	In	order,	these	arguments	are	an	error	number
(corresponding	to	Table	8.1),	a	textual	error	message,	the	name	of	the	file	where	the	error	was	found,	the
specific	line	number	on	which	it	occurred,	and	the	variables	that	existed	at	the	time	of	the	error.	Defining
a	function	that	accepts	all	these	arguments	might	look	like

function	report_errors($num,	$msg,	

$file,	$line,	$vars)	{...

To	make	use	of	this	concept,	we	will	rewrite	the	report_errors.php	file	(Script	8.2)	one	last	time.

To	create	your	own	error	handler:
1.	Open	report_errors.php	(Script	8.2)	in	your	text	editor	or	IDE,	if	you	haven’t	already.



2.	Remove	the	ini_set()	and	error_reporting()	lines	(Script	8.3).

Script	8.3	By	defining	your	 own	error-handling	 function,	 you	 can	 customize	how	errors	 are	 treated	 in
your	PHP	scripts.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Handling	Errors</title>

6			</head>

7			<body>

8			

9			<h2>Testing	Error	Handling</h2>

10		<?php	#	Script	8.3	-	handle_errors.php

11		

12		//	Flag	variable	for	site	status:

13		define('LIVE',	FALSE);

14		

15		//	Create	the	error	handler:

16		function	my_error_handler($e_number,	$e_message,	$e_file,	$e_line,	$e_vars)	{

17		

18					//	Build	the	error	message:

19					$message	=	"An	error	occurred	in	script	'$e_file'	on	line	$e_line:	$e_message\n";

20		

21					//	Append	$e_vars	to	$message:

22					$message	.=	print_r	($e_vars,	1);

23		

24					if	(!LIVE)	{	//	Development	(print	the	error).

25								echo	'<pre>'	.	$message	.	"\n";

26								debug_print_backtrace();

27								echo	'</pre><br>';

28					}	else	{	//	Don't	show	the	error.

29								echo	'<div	class="error">A	system	error	occurred.	We	apologize	for	the

										inconvenience.</div><br>';

30					}

31		

32		}	//	End	of	my_error_handler()	definition.

33		

34		//	Use	my	error	handler:

35		set_error_handler('my_error_handler');

36		

37		//	Create	errors:

38		foreach	($var	as	$v)	{}

39		$result	=	1/0;

40		

41		?>

42		</body>

43		</html>

When	you	 establish	 your	 own	 error-handling	 function,	 the	 error	 reporting	 levels	 no	 longer	 have	 any
meaning,	 so	 the	 line	 that	 adjusts	 them	 can	 be	 removed.	Adjusting	 the	display_errors	 setting	 is	 also
meaningless,	since	the	error-handling	function	will	control	whether	or	not	errors	are	displayed.

3.	Before	the	script	creates	the	errors,	add
define('LIVE',	FALSE);

This	constant	will	be	a	flag	used	to	 indicate	 if	 the	site	 is	currently	 live.	It’s	an	 important	distinction,



because	how	you	handle	errors	and	what	you	reveal	in	the	browser	should	differ	greatly	when	you’re
developing	a	site	and	when	a	site	is	live.
This	constant	is	being	set	outside	of	the	function	for	two	reasons.	First,	I	want	to	treat	the	function	as	a
black	box	 that	does	what	 I	need	 it	 to	do	without	having	 to	go	 in	and	 tinker	with	 it.	Second,	 in	many
sites,	there	might	be	other	settings	(like	the	database	connectivity	information)	that	are	also	live	versus
development-specific.	Conditionals	could,	therefore,	also	refer	to	this	constant	to	adjust	those	settings.

4.	Begin	defining	the	error-handling	function:

function	my_error_handler

($e_number,	$e_message,

$e_file,	$e_line,	$e_vars)	{

The	my_error_handler()	 function	 is	 set	 to	 receive	 the	 full	 five	 arguments	 that	 a	 custom	 error
handler	can.

5.	Create	the	error	message	using	the	received	values.

$message	=	"An	error	occurred	in

script	'$e_file'	on	line

$e_line:	$e_message\n";

The	error	message	will	begin	by	referencing	the	filename	and	line	number	where	 the	error	occurred.
Added	 to	 this	 is	 the	actual	 error	message.	These	values	 are	passed	 to	 the	 function	when	 it	 is	 called
(when	an	error	occurs).

6.	Add	any	existing	variables	to	the	error	message:

$message	.=	print_r($e_vars,	1);

The	$e_vars	 variable	 will	 receive	 all	 the	 variables	 that	 exist,	 and	 their	 values,	 when	 the	 error
happens.	Because	this	might	contain	useful	debugging	information,	it’s	added	to	the	message.
The	 print_r()	 function	 is	 normally	 used	 to	 print	 out	 a	 variable’s	 structure	 and	 value;	 it	 is
particularly	useful	with	arrays.	If	you	call	the	function	with	a	second	argument	(1	or	TRUE),	the	result
is	returned	instead	of	printed.	So,	this	line	adds	all	of	the	variable	information	to	$message.

7.	Print	a	message	that	will	vary,	depending	on	whether	or	not	the	site	is	live:



if	(!LIVE)	{

	echo	'<pre>'	.	$message	.	"\n";

	debug_print_backtrace();

	echo	'</pre><br>';

}	else	{

		echo	'<div	class="error">

A	system	error	occurred.	

We	apologize	for	the	

inconvenience.</div><br>';

}

If	the	site	is	not	live	(if	LIVE	is	FALSE),	which	would	be	the	case	while	the	site	is	being	developed,	a
detailed	error	message	should	be	printed	 .	For	ease	of	viewing,	the	error	message	is	printed	within
HTML	PRE	tags.	Furthermore,	a	useful	debugging	function,	debug_print_backtrace(),	is	also
called.	This	function	returns	a	slew	of	 information	about	what	functions	have	been	called,	what	 files
have	been	included,	and	so	forth.

	During	the	development	phase,	detailed	error	messages	are	printed	in	the	web	browser.	(In	a	more
real-world	script,	with	more	code,	the	messages	would	be	more	useful.)



If	the	site	is	live,	a	simple	mea	culpa	will	be	printed,	letting	the	user	know	that	an	error	occurred	but
not	 what	 the	 specific	 problem	 is	 .	 Under	 this	 situation,	 you	 could	 also	 use	 the	error_log()
function	(see	the	sidebar)	to	have	the	detailed	error	message	emailed	or	written	to	a	log.

	 Once	 a	 site	 has	 gone	 live,	 more	 user-friendly	 (and	 less	 revealing)	 errors	 are	 printed.	 Here,	 one
message	is	printed	for	each	of	the	three	errors	in	the	script.
8.	Complete	the	function	and	tell	PHP	to	use	it:

}

set_error_handler

('my_error_handler');

This	 second	 line	 is	 the	 important	 one,	 telling	PHP	 to	use	 the	 custom	error	 handler	 instead	of	PHP’s
default	handler.

Logging	PHP	Errors
In	Script	8.3,	errors	are	handled	by	simply	printing	them	out	in	detail	or	not	printing	them	at
all.	Another	option	is	to	log	the	errors—making	a	permanent	note	of	them.	For	this	purpose,
the	error_log()	function	instructs	PHP	how	to	file	an	error.	Its	syntax	is
error_log(message,	type,	

destination,	extra	headers);

The	message	value	should	be	the	text	of	the	logged	error	(i.e.,	$message	in	Script	8.3).	The
type	 dictates	 how	 the	 error	 is	 logged.	The	 options	 are	 the	 numbers	 0,	 1,	 3,	 and	 4:	 use	 the
computer’s	default	 logging	method	(0),	send	it	 in	an	email	(1),	write	 it	 to	a	 text	 file	 (3),	or
send	it	to	the	web	server’s	logging	handler	(4).
The	destination	parameter	can	be	either	the	name	of	a	file	(for	log	type	3)	or	an	email	address
(for	log	type	1).	The	extra	headers	argument	is	used	only	when	sending	emails	(log	type	1).
Both	the	destination	and	extra	headers	are	optional.

9.	Save	the	file	as	handle_errors.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	
.

10.	Change	the	value	of	LIVE	to	TRUE,	save,	and	retest	the	script	 .



To	see	how	the	error	handler	behaves	with	a	live	site,	change	just	this	one	value.

Tip
If	 your	 PHP	 page	 uses	 special	 HTML	 formatting—like	 CSS	 tags	 to	 affect	 the	 layout	 and	 font
treatment—add	this	information	to	your	error	reporting	function.

Tip
Obviously	 in	a	 live	site	you’ll	probably	need	 to	do	more	 than	apologize	 for	 the	 inconvenience
(particularly	 if	 the	 error	 significantly	 affects	 the	 page’s	 functionality).	 Still,	 this	 example
demonstrates	how	you	can	easily	adjust	error	handling	to	suit	the	situation.

Tip
If	 you	don’t	want	 the	 error-handling	 function	 to	 report	 on	 every	notice,	 error,	 or	warning,	 you
could	 check	 the	 error	 number	 value	 (the	 first	 argument	 sent	 to	 the	 function).	 For	 example,	 to
ignore	notices	when	the	site	is	live,	you	would	change	the	main	conditional	to

if	(!LIVE)	{

	echo	'<pre>'	.	$message	.	"\n";

	debug_print_backtrace();

	echo	'</pre><br>';

}	elseif	($e_number	!=	E_NOTICE)	{

		echo	'<div	class="error">A	system	

error	occurred.	We	apologize	

for	the	inconvenience.</div>	

<br>';

}

PHP	Debugging	Techniques
When	 it	 comes	 to	debugging,	what	you’ll	best	 learn	 from	experience	are	 the	causes	of	 certain	 types	of
errors.	 Understanding	 the	 common	 causes	will	 shorten	 the	 time	 it	 takes	 to	 fix	 errors.	 To	 expedite	 the
learning	process,	Table	8.2	lists	the	likely	reasons	for	the	most	common	PHP	errors.



TABLE	8.2	Common	PHP	Errors
Error Likely	Cause
Blank	Page HTML	problem,	or	PHP	error	and	display_errors	or	error_reporting	is	off.

Parse	error Missing	semicolon;	unbalanced	curly	braces,	parentheses,	or	quotation	marks;	or	use	of	an
unescaped	quotation	mark	in	a	string.

Empty
variable	value

Forgot	the	initial	$,	misspelled	or	miscapitalized	the	variable	name,	or	inappropriate
variable	scope	(with	functions).

Undefined
variable

Reference	made	to	a	variable	before	it	is	given	a	value	or	an	empty	variable	value	(see
those	potential	causes).

Call	to
undefined
function

Misspelled	function	name,	PHP	is	not	configured	to	use	that	function	(like	a	MySQL
function),	or	document	that	contains	the	function	definition	was	not	included.

Cannot
redeclare
function

Two	definitions	of	your	own	function	exist;	check	within	included	files.

Headers
already	sent

White	space	exists	in	the	script	before	the	PHP	tags,	data	has	already	been	printed,	or	a
file	has	been	included.

The	 first,	 and	most	 common,	 type	 of	 error	 that	 you’ll	 run	 across	 is	 syntactical	 and	will	 prevent	 your
scripts	 from	executing.	An	error	 like	 this	will	 result	 in	messages	 like	 the	one	 in	 ,	which	every	PHP
developer	has	seen	too	many	times.	To	avoid	making	this	sort	of	mistake	when	you	program,	be	sure	to

	The	parse	error	prevents	a	script	from	running	because	of	invalid	PHP	syntax.	This	one	was	caused
by	omitting	a	semicolon.

	End	every	statement	(but	not	language	constructs	like	loops	and	conditionals)	with	a	semicolon.
	Balance	all	quotation	marks,	parentheses,	curly	braces,	and	square	brackets	(each	opening	character
must	be	closed).
	Be	 consistent	with	 your	 quotation	marks	 (single	 quotes	 can	 be	 closed	 only	with	 single	 quotes	 and
double	quotes	with	double	quotes).
	Escape,	using	the	backslash,	all	single-	and	double-quotation	marks	within	strings,	as	appropriate.

One	thing	you	should	also	understand	about	syntactical	errors	is	that	just	because	the	PHP	error	message
says	the	error	is	occurring	on	line	12,	that	doesn’t	mean	the	mistake	is	on	that	line.	At	the	very	least,	it	is
not	uncommon	for	there	to	be	a	difference	between	what	PHP	thinks	is	line	12	and	what	your	text	editor
indicates	 is	 line	 12.	 So	 although	 PHP’s	 direction	 is	 useful	 in	 tracking	 down	 a	 problem,	 treat	 the	 line
number	referenced	as	more	of	a	starting	point	than	an	absolute.
If	PHP	reports	an	error	on	 the	 last	 line	of	your	document,	 this	 is	almost	always	because	a	mismatched
parenthesis,	curly	brace,	or	quotation	mark	was	not	caught	until	that	moment.
The	 second	 type	 of	 error	 you’ll	 encounter	 results	 from	 misusing	 a	 function.	 This	 error	 occurs,	 for



example,	when	a	function	is	called	without	the	proper	arguments.	This	error	is	discovered	by	PHP	when
attempting	to	execute	the	code.	In	later	chapters	you’ll	probably	see	such	errors	when	using	the	function,
cookies,	or	sessions.
To	fix	errors,	you’ll	need	to	do	a	little	detective	work	to	see	what	mistakes	were	made	and	where.	For
starters,	though,	always	thoroughly	read	and	trust	the	error	message	PHP	offers.	Although	the	referenced
line	number	may	not	 always	be	 correct,	 a	PHP	error	 is	 very	descriptive,	 normally	helpful,	 and	 almost
always	100	percent	correct.

To	debug	your	scripts:
	Turn	on	display_errors.
Use	 the	 earlier	 steps	 to	 enable	display_errors	 for	 a	 script	 or,	 if	 possible,	 the	 entire	 server,	 as	 you
develop	your	applications.
	Use	comments.
Just	as	you	can	use	comments	to	document	your	scripts,	you	can	also	use	them	to	rule	out	problematic
lines.	If	PHP	is	giving	you	an	error	on	line	12,	then	commenting	out	that	line	should	get	rid	of	the	error.
If	not,	 then	you	know	the	error	 is	elsewhere.	 Just	be	careful	 that	you	don’t	 introduce	more	errors	by
improperly	 commenting	 out	 only	 a	 portion	 of	 a	 code	 block:	 the	 syntax	 of	 your	 scripts	 must	 be
maintained.
	Use	the	print	and	echo	functions.
In	more	 complicated	 scripts,	 I	 frequently	 use	echo	 statements	 to	 leave	myself	 notes	 as	 to	 what	 is
happening	as	the	script	is	executed	 .	When	a	script	has	several	steps,	it	may	not	be	easy	to	know	if
the	problem	is	occurring	in	step	2	or	step	5.	By	using	an	echo	statement,	you	can	narrow	the	problem
down	to	the	specific	juncture.

	More	 complex	 debugging	 can	 be	 accomplished	 by	 leaving	 yourself	 notes	 as	 to	what	 the	 script	 is
doing.

	Check	what	quotation	marks	are	being	used	for	printing	variables.
It’s	not	uncommon	for	programmers	to	mistakenly	use	single	quotation	marks	and	then	wonder	why	their



variables	are	not	printed	properly.	Remember	that	single	quotation	marks	treat	text	literally	and	that	you
must	use	double	quotation	marks	to	print	out	the	values	of	variables.

	Track	variables	 .

	Printing	the	names	and	values	of	variables	is	the	easiest	way	to	track	them	over	the	course	of	a	script.
It	is	easy	for	a	script	not	to	work	because	you	referred	to	the	wrong	variable	or	the	right	variable	by	the
wrong	 name	or	 because	 the	 variable	 does	 not	 have	 the	 value	 you	would	 expect.	 To	 check	 for	 these
possibilities,	use	print	or	echo	statements	to	print	out	the	values	of	variables	at	important	points	in
your	scripts.	This	is	simply	a	matter	of
echo	"<p>\$var	=	$var</p>\n";

or
echo	"<p>\$var	is	$var</p>\n";

The	 first	 dollar	 sign	 is	 escaped	 so	 that	 the	 variable’s	 name	 is	 printed.	 The	 second	 reference	 of	 the
variable	will	print	its	value.
	Print	array	values.
For	 more	 complicated	 variable	 types	 (arrays	 and	 objects),	 the	 print_r()	 and	 var_dump()
functions	will	 print	 out	 their	 values	without	 the	need	 for	 loops.	Both	 functions	 accomplish	 the	 same
task,	although	var_dump()	is	more	detailed	in	its	reporting	than	print_r().



Using	die()	and	exit()
Two	 functions	 that	 are	often	used	with	error	management	are	die()	 and	exit()(they’re
technically	language	constructs,	not	functions,	but	who	cares?).	When	a	die()	or	exit()
is	called	in	your	script,	 the	entire	script	 is	 terminated.	Both	are	useful	for	stopping	a	script
from	continuing	should	something	important—like	establishing	a	database	connection—fail	to
happen.	You	 can	 also	pass	 to	die()	 and	exit()	 a	 string	 that	will	 be	 printed	 out	 in	 the
browser.
You’ll	commonly	see	die()	or	exit()	used	in	an	OR	conditional.	For	example:
include('config.inc.php')	OR	

die('Could	not	open	the	file.');

With	 a	 line	 like	 that,	 if	 PHP	 could	 not	 include	 the	 configuration	 file,	 the	die()	 statement
would	be	executed	and	the	“Could	not	open	the	file”	message	would	be	printed.	You’ll	see
variations	 on	 this	 throughout	 this	 book	 and	 in	 the	 PHP	 manual,	 since	 it’s	 a	 quick,	 but
potentially	excessive,	way	to	handle	errors	without	using	a	custom	error	handler.

Tip
Many	 text	 editors	 include	 utilities	 to	 check	 for	 balanced	 parentheses,	 brackets,	 and	 quotation
marks.

Tip
If	you	cannot	 find	 the	parse	error	 in	a	complex	script,	begin	by	using	 the	/*	*/	comments	 to
render	the	entire	PHP	code	inert.	Then	continue	to	uncomment	sections	at	a	time	(by	moving	the
opening	 or	 closing	 comment	 characters)	 and	 rerun	 the	 script	 until	 you	 deduce	 what	 lines	 are
causing	the	error.	Watch	how	you	comment	out	control	structures,	 though;	 the	curly	braces	must
continue	to	be	matched	in	order	to	avoid	parse	errors.	For	example:

if	(condition)	{

					/*	Start	comment.

					Inert	code.

					End	comment.	*/

}

Tip
To	make	the	results	of	print_r()	more	readable	in	the	web	browser,	wrap	it	within	HTML
<pre>	(preformatted)	tags.	This	one	line	is	one	of	my	favorite	debugging	tools:



echo	'<pre>'	.	print_r	($var,	1)	.	

'</pre>';

SQL	and	MySQL	Debugging	Techniques
The	most	common	SQL	errors	are	caused	by	the	following	issues:

	Unbalanced	use	of	quotation	marks	or	parentheses
	Unescaped	apostrophes	in	column	values
	Misspelling	a	column	name,	table	name,	or	function
	Ambiguously	referring	to	a	column	in	a	join
	Placing	a	query’s	clauses	(WHERE,	GROUP	BY,	ORDER	BY,	LIMIT)	in	the	wrong	order

Furthermore,	when	using	MySQL	you	can	also	run	across	the	following:
	Unpredictable	or	inappropriate	query	results
	Inability	to	access	the	database

Since	you’ll	be	running	the	queries	for	your	dynamic	web	sites	from	PHP,	you’ll	need	a	methodology	for
debugging	SQL	and	MySQL	errors	within	that	context	(PHP	will	not	report	a	problem	with	your	SQL).

Debugging	SQL	problems
To	decide	if	you	are	experiencing	a	MySQL	(or	SQL)	problem	rather	than	a	PHP	one,	you	need	a	system
for	finding	and	fixing	the	issue.	Fortunately,	the	steps	you	should	take	to	debug	MySQL	and	SQL	problems
are	easy	to	define	and	should	be	followed	without	thinking.	If	you	ever	have	any	MySQL	or	SQL	errors	to
debug,	just	abide	by	this	sequence	of	steps.
To	hammer	the	point	home,	this	next	sequence	of	steps	is	probably	the	most	useful	debugging	technique	in
this	 chapter	 and	 the	 entire	 book.	 You’ll	 likely	 need	 to	 follow	 these	 steps	 in	 any	 PHP-MySQL	 web
application	when	you’re	not	getting	the	results	you	expected.

To	debug	your	SQL	queries:
1.	Print	out	any	applicable	queries	in	your	PHP	script	 .



	Knowing	exactly	what	query	a	PHP	script	 is	 attempting	 to	execute	 is	 the	most	useful	 first	 step	 for
solving	SQL	and	MySQL	problems.
As	you’ll	see	in	the	next	chapter,	SQL	queries	will	often	be	assigned	to	a	variable,	particularly	when
you	 use	 PHP	 to	 dynamically	 create	 them.	 Using	 the	 code	 echo	$query	 (or	 whatever	 the	 query
variable	 is	 called)	 in	 your	 PHP	 scripts,	 you	 can	 send	 to	 the	 browser	 the	 exact	 query	 being	 run.
Sometimes	this	step	alone	will	help	you	see	what	the	real	problem	is.

2.	Run	the	query	in	the	mysql	client	or	other	tool	 .

	To	understand	what	result	a	PHP	script	is	receiving,	run	the	same	query	through	a	separate	interface.
In	 this	case,	 the	problem	 is	 the	 reference	 to	 the	password	 column,	when	 the	 table’s	 column	 is	 actually
called	just	pass.
The	most	foolproof	method	of	debugging	an	SQL	or	MySQL	problem	is	to	run	the	query	used	 in	your
PHP	scripts	through	an	independent	application—the	mysql	client,	phpMyAdmin,	or	the	like.	Doing	so
will	give	you	the	same	result	that	the	original	PHP	script	receives	but	without	the	overhead,	hassle,	or
mystery.
If	 the	 independent	 application	 returns	 the	 expected	 result	 but	 you	 are	 still	 not	 getting	 the	 proper
behavior	 in	your	PHP	script,	 then	you	will	know	that	 the	problem	lies	within	 the	 script	 itself,	not	 in
your	SQL	command	or	the	MySQL	database.

3.	 If	 the	 problem	 still	 isn’t	 evident,	 rewrite	 the	 query	 in	 its	 most	 basic	 form,	 and	 then	 keep	 adding
dimensions	back	 in	until	you	discover	which	clause	 is	causing	 the	problem.	Continue	 to	use	a	 third-
party	 interface	 to	MySQL	 to	 do	 this	 (i.e.,	 put	 away	 the	 PHP	 script	 until	 you’ve	 got	 the	 SQL	 query
working	properly).
Sometimes	it’s	difficult	to	debug	a	query	because	there’s	too	much	going	on.	Like	commenting	out	most
of	a	PHP	script,	taking	a	query	down	to	its	bare	minimum	structure	and	slowly	building	it	back	up	can
be	the	easiest	way	to	debug	complex	SQL	commands.

Debugging	access	problems
Access-denied	error	messages	are	the	most	common	problem	beginning	developers	encounter	when	using
PHP	to	interact	with	MySQL.	These	are	among	the	common	solutions:

	Reload	MySQL	after	altering	the	privileges	so	that	the	changes	take	effect.	Either	use	the	mysqladmin
tool	 or	 run	FLUSH	PRIVILEGES	 in	 the	 mysql	 client.	 You	must	 be	 logged	 in	 as	 a	 user	 with	 the
appropriate	permissions	to	do	this	(see	Appendix	A	for	more).
	 Double-check	 the	 password	 used.	 The	 error	 message	 Access	 denied	 for	 user:	 ‘user@localhost’
(Using	 password:	 YES)	 frequently	 indicates	 that	 the	 password	 is	 wrong	 or	 mistyped.	 (This	 is	 not
always	the	cause	but	is	the	first	thing	to	check.)
	The	error	message	Can’t	connect	to…	(error	number	2002)	indicates	that	MySQL	either	is	not	running
or	is	not	running	on	the	socket	or	TCP/IP	port	tried	by	the	client.



Tip
MySQL	keeps	its	own	error	logs,	which	are	very	useful	in	solving	MySQL	problems	(like	why
MySQL	won’t	even	start).	MySQL’s	error	log	will	be	located	in	the	MySQL	data	directory	and
titled	hostname.err.

Tip
The	 MySQL	 manual	 is	 very	 detailed,	 containing	 SQL	 examples,	 function	 references,	 and	 the
meanings	of	error	codes.	Make	the	manual	your	friend	and	turn	to	it	when	confusing	errors	pop
up.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	Why	must	PHP	scripts	be	run	through	a	URL?
	What	 version	 of	 PHP	 are	 you	 using?	What	 version	 of	MySQL?	What	 version	 of	what	web	 server
application	are	you	using?	On	what	operating	system?
	What	debugging	steps	should	you	take	if	the	rendered	web	page	doesn’t	look	right	in	your	browser?
	 Do	 you	 have	 display_errors	 enabled	 on	 your	 server?	 Why	 is	 enabling	 display_errors	 useful	 on
development	servers?	Why	is	revealing	errors	a	bad	thing	on	production	servers?
	How	does	the	level	of	error_reporting	affect	PHP	scripts?	To	what	level	of	error_reporting	is	your
PHP	server	set?
	What	does	the	@	operator	do?
	What	are	the	benefits	of	using	your	own	error-handling	function?	What	impact	does	the	error-reporting
level	have	when	using	your	own	error-handling	function?
	How	can	print	or	echo	be	used	as	debugging	tools?	Hint:	There	are	many	correct	answers.
	What	is	the	method	for	fixing	PHP-SQL-MySQL	bugs?

Pursue
	Learn	about	the	debugging	tools	built	into	your	favorite	browser.
	Enable	display_errors	on	your	development	server,	if	you	can.
	If	you	can,	set	PHP’s	level	of	error	reporting	to	E_ALL	on	your	development	server.
	Check	out	 the	PHP	manual’s	page	 for	 the	debug_print_backtrace()	 function	 to	 learn	more
about	it.
	Consider	using	a	professional-grade	IDE	that	provides	built-in	debugging	tools.

http://LarryUllman.com/forums/








9.	Using	PHP	with	MySQL

In	This	Chapter
Modifying	the	Template
Connecting	to	MySQL
Executing	Simple	Queries
Retrieving	Query	Results
Ensuring	Secure	SQL
Counting	Returned	Records
Updating	Records	with	PHP
Review	and	Pursue

Now	that	you	have	a	sufficient	amount	of	PHP,	SQL,	and	MySQL	experience	under	your	belt,	it’s	time	to
put	 all	 the	 technologies	 together.	 PHP’s	 strong	 integration	 with	 MySQL	 is	 just	 one	 reason	 so	 many
programmers	have	embraced	it;	it’s	impressive	how	easily	you	can	use	the	two	together.
This	chapter	will	use	 the	existing	sitename	database—created	 in	Chapter	5,	“Introduction	 to	SQL”—to
build	a	PHP	interface	for	interacting	with	the	users	 table.	The	knowledge	taught	and	the	examples	used
here	will	be	the	basis	for	all	your	PHP-MySQL	web	applications,	because	the	principles	involved	are	the
same	for	any	PHP-MySQL	interaction.
Before	 heading	 into	 this	 chapter,	 you	 should	 be	 comfortable	with	 everything	 covered	 in	 the	 first	 eight
chapters,	 including	 the	 error	 debugging	 and	 handling	 techniques	 just	 taught	 in	 the	 previous	 chapter.
Finally,	 remember	 that	you	need	a	PHP-enabled	web	 server	 and	 access	 to	 a	 running	MySQL	server	 to
execute	the	following	examples.

Modifying	the	Template
Since	 all	 the	 pages	 in	 this	 chapter	 and	 the	 next	 will	 be	 part	 of	 the	 same	 web	 application,	 it’ll	 be
worthwhile	to	use	a	common	template	system.	Instead	of	creating	a	new	template	from	scratch,	the	layout
from	Chapter	3,	“Creating	Dynamic	Web	Sites,”	will	be	used	again,	with	only	a	minor	modification	to	the
header	file’s	navigation	links.

To	make	the	header	file:
1.	Open	header.html	(Script	3.2)	in	your	text	editor	or	IDE.
2.	Change	the	list	of	links	to	read	as	follows	(Script	9.1):
Click	here	to	view	code	image

<ul	class=”nav	navbar-nav”>

		<li	class=”active”><a	href=

		 ”index.php”>Home</a></li>

		<li><a	href=”register.php”>

		 Register</a></li>

		<li><a	href=”view_users.php”>

		 View	Users</a></li>

		<li><a	href=”password.php”>

		 Change	Password</a></li>

</ul>



Script	9.1	The	site’s	header	file,	used	for	the	pages’	template,	modified	with	new	navigation	links.
Click	here	to	view	code	image

1			<!DOCTYPE	html>

2			<html	lang=”en”>

3			<head>

4			<meta	charset=”utf-8”>

5			<meta	http-equiv=”X-UA-Compatible”	content=”IE=edge”>

6			<meta	name=”viewport”	content=”width=device-width,	initial-scale=1”>

7			<title><?php	echo	$page_title;	?></title>

8			<link	rel=”stylesheet”	href=”https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css

				/bootstrap.min.css”	integrity=”sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz

				/K68vbdEjh4u”	crossorigin=”anonymous”>

9			<link	href=”css/sticky-footer-navbar.css”	rel=”stylesheet”>

10		</head>

11		<body>

12		<nav	class=”navbar	navbar-default	navbar-fixed-top”>

13					<div	class=”container”>

14								<div	class=”navbar-header”><a	class=”navbar-brand”	href=”#”>Your	Website</a></div>

15								<div	id=”navbar”	class=”collapse	navbar-collapse”>

16								<ul	class=”nav	navbar-nav”>

17											<li	class=”active”><a	href=”index.php”>Home</a></li>

18											<li><a	href=”register.php”>Register</a></li>

19											<li><a	href=”view_users.php”>View	Users</a></li>

20											<li><a	href=”password.php”>Change	Password</a></li>

21								</ul>

22								</div>

23					</div>

24		</nav>

25		<div	class=”container”>

26		<!--	Script	9.1	-	header.html	-->

All	the	examples	in	this	chapter	will	involve	the	registration,	view	users,	and	change	password	pages.
The	date	form	and	calculator	links	from	Chapter	3	can	be	deleted.

3.	Save	the	file	as	header.html.
4.	 Place	 the	 new	 header	 file	 in	 your	 web	 directory,	 within	 the	 includes	 folder,	 along	 with
footer.html	 (Script	 3.3)	 and	style.css	 (available	 for	 download	 from	 the	 book’s	 supporting
website,	LarryUllman.com).

5.	Test	the	new	header	file	by	running	index.php	in	your	browser	 .

http://LarryUllman.com


	The	dynamically	generated	home	page	with	new	navigation	links.

Tip
For	a	preview	of	this	site’s	structure,	see	the	sidebar	“Organizing	Your	Documents”	in	the
next	section.

Tip
Remember	 that	you	can	use	any	 file	extension	 for	your	 template	 files,	 including	.inc	 or
.php.

Connecting	to	MySQL
The	first	step	for	interacting	with	MySQL—connecting	to	the	server—requires	the	appropriately	named
mysqli_connect()	function:
Click	here	to	view	code	image

$dbc	=	mysqli_connect(hostname,	

username,	password,	db_name);

The	 first	 three	 arguments	 sent	 to	 the	 function—hostname,	username,	 and	password—are	 based	 on	 the
users	and	privileges	established	within	MySQL	(see	Appendix	A,	“Installation,”	for	more	 information).
Commonly	(but	not	always),	the	host	value	will	be	localhost.



The	 fourth	 argument	 is	 the	 name	 of	 the	 database	 to	 use.	 This	 is	 the	 equivalent	 of	 saying	 USE
databasename	within	the	mysql	client.
If	the	connection	was	made,	the	$dbc	variable,	short	for	database	connection	(but	you	can	use	any	name
you	want,	of	course),	will	become	a	reference	point	for	all	your	subsequent	database	interactions.	Most	of
the	PHP	functions	for	working	with	MySQL	will	take	this	variable	as	its	first	argument.
If	 a	 connection	 problem	 occurred,	 you	 can	 call	 mysqli_connect_error(),	 which	 returns	 the
connection	error	message.	It	takes	no	arguments	and	so	would	be	called	using	just
mysqli_connect_error();

Once	you’ve	connected	 to	 the	database,	you	should	 set	 the	encoding	 for	 the	 interaction.	You	can	do	 so
with	the	mysqli_set_charset()	function:
Click	here	to	view	code	image

mysqli_set_charset($dbc,	‘utf8’);

The	value	used	as	 the	 encoding—the	 second	argument—should	match	 that	of	your	PHP	scripts	 and	 the
collation	of	your	database	(see	Chapter	6,	“Database	Design,”	for	more	on	MySQL	collations).	If	you	fail
to	do	this,	all	data	will	be	transferred	using	the	default	character	set,	which	could	cause	problems.
To	start	using	PHP	with	MySQL,	let’s	create	a	special	script	that	makes	the	connection.	Other	PHP	scripts
that	require	a	MySQL	connection	can	then	include	this	file.

To	connect	to	and	select	a	database:
1.	 Create	 a	 new	 PHP	 document	 in	 your	 text	 editor	 or	 IDE,	 to	 be	 named	 mysqli_connect.php
(Script	9.2):

Click	here	to	view	code	image
<?php	#	Script	9.2	-

mysqli_connect.php

Script	9.2	The	mysqli_connect.php	 script	will	 be	 used	 by	 every	 other	 script	 in	 this	 chapter.	 It
establishes	a	connection	to	MySQL,	selects	the	database,	and	sets	the	encoding.
Click	here	to	view	code	image

1			<?php	#	Script	9.2	-	mysqli_connect.php

2			

3			//	This	file	contains	the	database	access	information.

4			//	This	file	also	establishes	a	connection	to	MySQL,

5			//	selects	the	database,	and	sets	the	encoding.

6			

7			//	Set	the	database	access	information	as	constants:

8			define(‘DB_USER’,	‘username’);

9			define(‘DB_PASSWORD’,	‘password’);

10		define(‘DB_HOST’,	‘localhost’);

11		define(‘DB_NAME’,	‘sitename’);

12			

13		//	Make	the	connection:

14		$dbc	=	@mysqli_connect(DB_HOST,	DB_USER,	DB_PASSWORD,	DB_NAME)	OR	die(‘Could	not	connect	to	MySQL:	‘	.	mysqli_connect_error()	);

15		

16		//	Set	the	encoding...

17		mysqli_set_charset($dbc,	‘utf8’);

This	file	will	be	included	by	other	PHP	scripts,	so	it	doesn’t	need	to	contain	any	HTML.



2.	Set	the	MySQL	host,	username,	password,	and	database	name	as	constants:
Click	here	to	view	code	image

define(‘DB_USER’,	‘username’);

define(‘DB_PASSWORD’,	‘password’);

define(‘DB_HOST’,	‘localhost’);

define(‘DB_NAME’,	‘sitename’);

I	prefer	to	establish	these	values	as	constants	for	security	reasons	(they	cannot	be	changed	 this	way),
but	that	isn’t	required.	In	general,	setting	these	values	as	some	sort	of	variable	or	constant	makes	sense
so	that	you	can	separate	the	configuration	parameters	from	the	functions	that	use	them—but	again,	this	is
not	obligatory.
When	writing	your	script,	change	these	values	to	ones	that	will	work	on	your	setup.	If	you	have	been
provided	with	a	MySQL	username/password	combination	and	a	database	(like	for	a	hosted	site),	use
that	information	here.	Or,	if	possible,	follow	the	steps	in	Appendix	A	to	create	a	user	who	has	access	to
the	sitename	database,	and	insert	those	values	here.	Whatever	you	do,	don’t	just	use	the	values	written
in	this	book’s	code	unless	you	know	for	certain	they	will	work	on	your	server!

3.	Connect	to	MySQL:
Click	here	to	view	code	image

$dbc	=	@mysqli_connect	(DB_HOST,

DB_USER,	DB_PASSWORD,	DB_NAME)	

OR	die(‘Could	not	connect	to

MySQL:	‘	.	mysqli_connect_	

error()	);

The	mysqli_connect()	function,	if	it	successfully	connects	to	MySQL,	will	return	a	resource	link
that	corresponds	to	the	open	connection.	This	link	will	be	assigned	to	the	$dbc	variable	so	that	other
functions	can	make	use	of	this	connection.
The	function	call	is	preceded	by	the	error	suppression	operator	(@).	This	prevents	the	PHP	error	from
being	displayed	in	the	browser.	This	is	preferable	in	this	specific	case,	since	the	error	will	be	handled
by	the	OR	die()	clause.
If	the	mysqli_connect()	function	cannot	return	a	valid	resource	link,	then	the	OR	die()	part	of
the	statement	is	executed	(because	the	first	part	of	the	OR	will	be	false,	so	the	second	part	must	be	true).
As	discussed	in	the	preceding	chapter,	the	die()	function	terminates	the	execution	of	the	script.	The
function	can	also	take	as	an	argument	a	string	that	will	be	printed	to	the	browser.	In	this	case,	the	string
is	a	combination	of	Could	not	connect	to	MySQL:	and	the	specific	MySQL	error	 .	Using	this	blunt
error	management	system	makes	debugging	much	easier	as	you	develop	your	sites.

	If	there	were	problems	connecting	to	MySQL,	an	informative	message	is	displayed	and	the	script	is
halted.
4.	Set	the	encoding:
Click	here	to	view	code	image

mysqli_set_charset($dbc,	‘utf8’);



The	final	step	in	this	script	is	to	set	the	encoding	for	all	future	communications.
5.	Save	the	file	as	mysqli_connect.php.
Since	this	file	contains	information—the	database	access	data—that	must	be	kept	private,	it	will	use	a
.php	extension.	With	a	.php	extension,	even	if	malicious	users	ran	this	script	in	their	browser,	they
would	not	see	the	page’s	actual	content.
You	may	also	note	that	I	did	not	include	a	terminating	PHP	tag:	?>.	This	is	allowed	in	PHP	(when	the
script	ends	with	PHP	code),	and	has	a	benefit	to	be	explained	in	subsequent	chapters.

6.	Ideally,	place	the	file	outside	of	the	web	document	directory	 .

	A	visual	representation	of	a	server’s	web	documents,	where	mysqli_connect.php	is	not	stored
within	the	main	directory	(htdocs).
Because	 the	 file	 contains	 sensitive	MySQL	access	 information,	 it	 ought	 to	be	 stored	 securely.	 If	 you
can,	place	it	in	the	directory	immediately	above	or	otherwise	outside	of	the	web	directory.	This	way,
the	file	will	not	be	accessible	from	a	browser.	See	the	“Organizing	Your	Documents”	sidebar	for	more.

7.	Temporarily	place	a	copy	of	the	script	within	the	web	directory	and	run	it	in	your	browser	 .



	 If	 the	MySQL	connection	 script	works	properly,	 the	 end	 result	will	 be	 a	blank	page	 (no	HTML	 is
generated	by	the	script).
To	test	 the	script,	you’ll	want	 to	place	a	copy	on	the	server	so	that	 it’s	accessible	from	the	browser,
which	means	it	must	be	in	the	web	directory.	If	the	script	works	properly,	the	result	should	be	a	blank
page	 .	 If	 you	 see	 an	Access	 denied…	 or	 similar	 message	 ,	 it	 means	 that	 the	 combination	 of
username,	password,	and	host	does	not	have	permission	to	access	the	particular	database.

8.	Remove	the	temporary	copy	from	the	web	directory.

Organizing	Your	Documents
Chapter	3	introduced	the	concept	of	site	structure	while	developing	the	first	web	application.
Now	that	pages	will	begin	using	a	database	connection	script,	the	topic	is	more	important.
Should	 the	database	connectivity	 information	 (username,	password,	host,	and	database)	 fall
into	malicious	 hands,	 it	 could	 be	 used	 to	 steal	 your	 information	 or	wreak	 havoc	 upon	 the
database	as	a	whole.	Therefore,	you	cannot	keep	a	script	like	mysqli_connect.php	too
secure.
The	best	recommendation	for	securing	such	a	file	is	to	store	it	outside	of	the	web	documents
directory.	If,	for	example,	the	htdocs	folder	in	 	 is	 the	root	of	 the	web	directory	(in	other
words,	 the	 URL	 www.example.com	 leads	 there),	 then	 not	 storing
mysqli_connect.php	 anywhere	 within	 the	 htdocs	 directory	 means	 it	 will	 never	 be
accessible	via	the	browser.	Granted,	the	source	code	of	PHP	scripts	is	not	viewable	from	the
browser	(only	the	data	sent	to	the	browser	by	the	script	is),	but	you	can	never	be	too	careful.
If	 you	 aren’t	 allowed	 to	 place	 documents	 outside	 of	 the	 web	 directory,	 placing
mysqli_connect.php	in	the	web	directory	is	less	secure,	but	not	the	end	of	the	world.
Second,	 I	 recommend	 using	 a	 .php	 extension	 for	 your	 connection	 scripts.	 A	 properly
configured	 and	 working	 server	 will	 execute	 rather	 than	 display	 code	 in	 such	 a	 file.
Conversely,	if	you	use	just	.inc	as	your	extension,	that	page’s	contents	would	be	displayed
in	the	browser	if	accessed	directly.

Tip
The	same	values	used	in	Chapter	5	to	log	in	to	the	mysql	client	should	work	from	your	PHP
scripts.

Tip
If	 you	 receive	 an	 error	 that	 claims	mysqli_connect()	 is	 an	 “undefined	 function,”	 it
means	that	PHP	has	not	been	compiled	with	support	for	the	Improved	MySQL	Extension.
See	the	appendix	for	installation	information.

Tip
If	 you	 see	 a	Could	not	connect...	 error	 message	 when	 running	 the	 script	 ,	 it
likely	means	that	MySQL	isn’t	running.



	 Another	 reason	 why	 PHP	 might	 not	 be	 able	 to	 connect	 to	 MySQL	 (besides	 using	 invalid
username/password/hostname/database	information)	is	if	MySQL	isn’t	currently	running.

Tip
In	 case	 you	 are	 curious,	 	 shows	 what	 would	 happen	 if	 you	 didn’t	 use	 @	 before
mysqli_connect()	and	an	error	occurred.

	If	you	don’t	use	the	error	suppression	operator	(@),	you’ll	see	both	the	PHP	error	and	the	custom	OR
die()	error.

Tip
If	you	don’t	need	 to	 select	 the	database	when	establishing	a	 connection	 to	MySQL,	omit
that	argument	from	the	mysqli_connect()	function:

Click	here	to	view	code	image

$dbc	=	mysqli_connect(hostname,	

username,	password);

Then,	when	appropriate,	you	can	select	the	database	using:
Click	here	to	view	code	image

mysqli_select_db($dbc,	db_name);



Executing	Simple	Queries
Once	you	have	successfully	connected	 to	and	selected	a	database,	you	can	start	executing	queries.	 The
queries	 can	 be	 as	 basic	 as	 inserts,	 updates,	 and	 deletions	 or	 as	 involved	 as	 complex	 joins	 returning
numerous	 rows.	 Regardless	 of	 the	 SQL	 command	 type,	 the	 PHP	 function	 for	 executing	 a	 query	 is
mysqli_query():
Click	here	to	view	code	image

result	=	mysqli_query(dbc,	query);

The	function	takes	the	database	connection	as	its	first	argument	and	the	query	itself	as	the	second.	Within
the	context	of	a	complete	PHP	script,	I	normally	assign	the	query	to	another	variable,	called	$query	or
just	$q,	so	running	a	query	might	look	like
Click	here	to	view	code	image

$r	=	mysqli_query($dbc,	$q);

For	simple	queries	that	do	not	return	records,	like	INSERT,	UPDATE,	DELETE,	etc.,	the	$r	variable—
short	for	result—will	be	either	TRUE	or	FALSE,	depending	on	whether	the	query	executed	successfully.
Keep	in	mind	that	“executed	successfully”	means	that	it	ran	without	error;	it	doesn’t	mean	that	the	query’s
execution	necessarily	had	the	desired	result;	you’ll	need	to	test	for	that.
For	 complex	 queries	 that	 return	 records	 (SELECT	 being	 the	 most	 important	 of	 these),	$r	 will	 be	 a
resource	link	to	the	results	of	the	query	if	it	worked	or	be	FALSE	if	it	did	not.	Thus,	you	can	use	this	code
to	test	if	the	query	successfully	ran:
Click	here	to	view	code	image

$r	=	mysqli_query($dbc,	$q);

if	($r)	{	//	Worked!

If	the	query	did	not	successfully	run,	some	sort	of	MySQL	error	must	have	occurred.	To	find	out	what	that
error	was,	call	the	mysqli_error()	function:
Click	here	to	view	code	image

echo	mysqli_error($dbc);

The	function’s	lone	argument	is	the	database	connection.
One	 final,	 albeit	 optional,	 step	 in	 your	 script	would	 be	 to	 close	 the	 existing	MySQL	 connection	 once
you’re	finished	with	it:
Click	here	to	view	code	image

mysqli_close($dbc);

This	 function	call	 is	not	 required,	because	PHP	will	automatically	close	 the	connection	at	 the	end	of	a
script,	but	it	does	make	for	good	programming	form	to	incorporate	it.
To	demonstrate	this	process,	let’s	create	a	registration	script.	It	will	show	the	form	when	first	accessed	

,	handle	the	form	submission,	and,	after	validating	all	the	data,	insert	the	registration	information	 into
the	users	table	of	the	sitename	database.



	The	registration	form.
As	a	forewarning,	this	script	knowingly	has	a	security	hole	in	it	(depending	on	the	version	of	PHP	in	use,
and	its	settings),	to	be	remedied	later	in	the	chapter.

To	execute	simple	queries:
1.	Begin	a	new	PHP	script	in	your	text	editor	or	IDE,	to	be	named	register.php	(Script	9.3):
Click	here	to	view	code	image

<?php	#	Script	9.3	-	register.php

$page_title	=	‘Register’;

include(‘includes/header.html’);

Script	9.3	The	registration	script	adds	a	record	to	the	database	by	running	an	INSERT	query.
Click	here	to	view	code	image

1			<?php	#	Script	9.3	-	register.php

2			//	This	script	performs	an	INSERT	query	to	add	a	record	to	the	users	table.

3			

4			$page_title	=	‘Register’;

5			include(‘includes/header.html’);

6			

7			//	Check	for	form	submission:

8			if	($_SERVER[‘REQUEST_METHOD’]	==	‘POST’)	{

9			

10					$errors	=	[];	//	Initialize	an	error	array.

11				

12					//	Check	for	a	first	name:

13					if	(empty($_POST[‘first_name’]))	{

14								$errors[]	=	‘You	forgot	to	enter	your	first	name.’;

15					}	else	{

16								$fn	=	trim($_POST[‘first_name’]);

17					}



18				

19					//	Check	for	a	last	name:

20					if	(empty($_POST[‘last_name’]))	{

21								$errors[]	=	‘You	forgot	to	enter	your	last	name.’;

22					}	else	{

23								$ln	=	trim($_POST[‘last_name’]);

24					}

25				

26					//	Check	for	an	email	address:

27					if	(empty($_POST[‘email’]))	{

28								$errors[]	=	‘You	forgot	to	enter	your	email	address.’;

29					}	else	{

30								$e	=	trim($_POST[‘email’]);

31					}

32				

33					//	Check	for	a	password	and	match	against	the	confirmed	password:

34					if	(!empty($_POST[‘pass1’]))	{

35								if	($_POST[‘pass1’]	!=	$_POST[‘pass2’])	{

36											$errors[]	=	‘Your	password	did	not	match	the	confirmed	password.’;

37								}	else	{

38											$p	=	trim($_POST[‘pass1’]);

39								}

40					}	else	{

41								$errors[]	=	‘You	forgot	to	enter	your	password.’;

42					}

43				

44					if	(empty($errors))	{	//	If	everything’s	OK.

45				

46								//	Register	the	user	in	the	database...

47				

48								require(‘../mysqli_connect.php’);	//	Connect	to	the	db.

49				

50								//	Make	the	query:

51								$q	=	“INSERT	INTO	users	(first_name,	last_name,	email,	pass,	registration_date)

										VALUES	(‘$fn’,	‘$ln’,	‘$e’,	SHA2(‘$p’,	512),	NOW()	)”;

52								$r	=	@mysqli_query($dbc,	$q);	//	Run	the	query.

53								if	($r)	{	//	If	it	ran	OK.

54				

55											//	Print	a	message:

56											echo	‘<h1>Thank	you!</h1>

57								<p>You	are	now	registered.	In	Chapter	12	you	will	actually	be	able	to	log	in!

										</p><p><br></p>’;

58				

59								}	else	{	//	If	it	did	not	run	OK.

60				

61											//	Public	message:

62											echo	‘<h1>System	Error</h1>

63											<p	class=”error”>You	could	not	be	registered	due	to	a	system	error.	We	apologize	for

													any	inconvenience.</p>’;

64				

65											//	Debugging	message:

66											cecho	‘<p>’	.	mysqli_error($dbc)	.	‘<br><br>Query:	‘	.	$q	.	‘</p>’;

67				

68								}	//	End	of	if	($r)	IF.

69				

70								mysqli_close($dbc);	//	Close	the	database	connection.

71				

72								//	Include	the	footer	and	quit	the	script:

73								include(‘includes/footer.html’);

74								exit();

75				

76					}	else	{	//	Report	the	errors.

77				

78								echo	‘<h1>Error!</h1>



79								<p	class=”error”>The	following	error(s)	occurred:<br>’;

80								foreach	($errors	as	$msg)	{	//	Print	each	error.

81											echo	“	-	$msg<br>\n”;

82								}

83								echo	‘</p><p>Please	try	again.</p><p><br></p>’;

84				

85					}	//	End	of	if	(empty($errors))	IF.

86				

87		}	//	End	of	the	main	Submit	conditional.

88		?>

89		<h1>Register</h1>

90		<form	action=”register.php”	method=”post”>

91					<p>First	Name:	<input	type=”text”	name=”first_name”	size=”15”	maxlength=”20”	value=”<?php

							if	(isset($_POST[‘first_name’]))	echo	$_POST[‘first_name’];	?>”></p>

92					<p>Last	Name:	<input	type=”text”	name=”last_name”	size=”15”	maxlength=”40”	value=”<?php	if

				(isset($_POST[‘last_name’]))	echo	$_POST[‘last_name’];	?>”></p>

93					<p>Email	Address:	<input	type=”email”	name=”email”	size=”20”	maxlength=”60”	value=”<?php	if

							(isset($_POST[‘email’]))	echo	$_POST[‘email’];	?>”	>	</p>

94					<p>Password:	<input	type=”password”	name=”pass1”	size=”10”	maxlength=”20”	value=”<?php	if

							(isset($_POST[‘pass1’]))	echo	$_POST[‘pass1’];	?>”	></p>

95					<p>Confirm	Password:	<input	type=”password”	name=”pass2”	size=”10”	maxlength=”20”

							value=”<?php	if	(isset($_POST[‘pass2’]))	echo	$_POST[‘pass2’];	?>”	></p>

96					<p><input	type=”submit”	name=”submit”	value=”Register”></p>

97		</form>

98		<?php	include(‘includes/footer.html’);	?>

The	fundamentals	of	this	script—using	included	files,	having	the	same	page	both	display	and	handle	a
form,	and	creating	a	sticky	form—come	from	Chapter	3.	See	that	chapter	if	you’re	confused	about	any
of	these	concepts.

2.	Create	the	submission	conditional	and	initialize	the	$errors	array:
Click	here	to	view	code	image

if	($_SERVER[‘REQUEST_METHOD’]	= =
’POST’)	{

		$errors	=	[];

This	script	will	both	display	and	handle	the	HTML	form.	This	first	conditional	will	check	for	how	the
script	 is	being	requested,	 to	know	when	to	process	the	form	(again,	 this	comes	from	Chapter	3).	The
$errors	variable	will	be	used	 to	store	every	error	message	 (one	 for	each	form	input	not	properly
filled	out).

3.	Validate	the	first	name:
Click	here	to	view	code	image

if	(empty($_POST[‘first_name’]))	{

		$errors[ ]	=	‘You	forgot	to
enter	your	first	name.	‘;

}	else	{

		$fn	=	trim($_POST[‘first_name’]);

}

As	discussed	in	Chapter	3,	the	empty()	function	provides	a	minimal	way	of	ensuring	that	a	text	field
was	filled	out.	If	 the	 first	name	field	was	not	 filled	out,	an	error	message	 is	added	 to	 the	$errors
array.	Otherwise,	$fn	is	set	to	the	submitted	value,	after	trimming	off	any	extraneous	spaces.	By	using
this	new	variable—which	is	obviously	short	for	first_name—it	will	be	syntactically	easier	to	write	the
query	later.

4.	Validate	the	last	name	and	email	address:



Click	here	to	view	code	image
if	(empty($_POST[‘last_name’]))	{

		$errors[ ]	=	‘You	forgot	to
		 enter	your	last	name.	‘;

}	else	{

		$ln	=	trim($_POST[‘last_name’]);

}

if	(empty($_POST[‘email’]))	{

		$errors[ ]	=	‘You	forgot	to
		 enter	your	email	address.	‘;

}	else	{

		$e	=	trim($_POST[‘email’]);

}

These	 lines	 are	 essentially	 the	 same	 as	 those	 validating	 the	 first	 name	 field.	 In	 both	 cases	 a	 new
variable	will	be	created,	assuming	that	the	minimal	validation	was	passed.

5.	Validate	the	passwords:
Click	here	to	view	code	image

if	(!empty($_POST[‘pass1’]))	{

if	($_POST[‘pass1’]	!=	

$_POST[‘pass2’])	{

$errors[ ]	=	‘Your	password
did	not	match	the	confirmed	

password.	‘;

}	else	{

$p	=	trim($_POST[‘pass1’]);

}

}	else	{

$errors[ ]	=	‘You	forgot	to
enter	your	password.	‘;

}

To	validate	the	password,	the	script	needs	to	check	the	pass1	input	for	a	value	and	then	confirm	that	the
pass1	value	matches	the	pass2	value	(meaning	the	password	and	confirmed	password	are	the	same).

6.	Check	if	it’s	OK	to	register	the	user:
if	(empty($errors))	{

If	the	submitted	data	passed	all	the	conditions,	the	$errors	array	will	have	no	values	in	it	(it	will	be
empty),	so	this	condition	will	be	true	and	it’s	safe	to	add	the	record	to	the	database.	If	the	$errors
array	 is	not	empty,	 then	 the	appropriate	error	messages	should	be	printed	 (see	Step	11)	 and	 the	user
given	another	opportunity	to	register.

7.	Include	the	database	connection:
Click	here	to	view	code	image

require(‘../mysqli_connect.php’);

This	line	of	code	will	insert	the	contents	of	the	mysqli_connect.php	file	into	this	script,	thereby
creating	a	connection	to	MySQL	and	selecting	the	database.	You	may	need	to	change	the	reference	to	the
location	of	the	file	as	it	is	on	your	server	(as	written,	this	line	assumes	that	mysqli_connect.php
is	in	the	parent	folder	of	the	current	folder).

8.	Add	the	user	to	the	database:
Click	here	to	view	code	image

$q	=	“INSERT	INTO	users

(first_name,	last_name,	email,	

pass,	registration_date)	VALUES



(‘$fn’,	‘$ln’,	‘$e’,	SHA2(‘$p’,	

512),	NOW()	)”;

$r	=	@mysqli_query($dbc,	$q);

The	query	itself	is	like	those	demonstrated	in	Chapter	5.	The	SHA2()	function	is	used	to	encrypt	the
password,	 and	NOW()	 is	 used	 to	 set	 the	 registration	date	 as	 this	moment.	 (In	Chapter	13,	 “Security
Methods,”	you’ll	learn	a	PHP	solution	for	hashing	and	matching	the	registration	password.)
After	assigning	the	query	to	a	variable,	it	is	run	through	the	mysqli_query()	function,	which	sends
the	 SQL	 command	 to	 the	 MySQL	 database.	 As	 in	 the	 mysqli_connect.php	 script,	 the
mysqli_query()	call	is	preceded	by	@	to	suppress	any	ugly	errors.	If	a	problem	occurs,	the	error
will	be	handled	more	directly	in	the	next	step.

9.	Report	on	the	success	of	the	registration:
Click	here	to	view	code	image

if	($r)	{

		echo	‘<h1>Thank	you!</h1>

<p>You	are	now	registered.

In	Chapter	12	you	will	actually

be	able	to	log	in!</p><p><br>

</p>’;

}	else	{

		echo	‘<h1>System	Error</h1>

		<p	class=”error”>You	could	not

		 be	registered	due	to	a	system	

		 error.	We	apologize	for	any

		 inconvenience.</p>’;

		echo	‘<p>’	.	mysqli_error($dbc)

		 .	‘<br><br>Query:	‘	.	$q	.

		 ’</p>’;

}	//	End	of	if	($r)	IF.

The	$r	 variable,	 which	 is	 assigned	 the	 value	 returned	 by	 mysqli_query(),	 can	 be	 used	 in	 a
conditional	to	test	for	the	successful	operation	of	the	query.
If	$r	has	a	TRUE	value,	then	a	Thank	you!	message	is	displayed	 .	If	$r	has	a	FALSE	value,	error
messages	are	printed.	For	debugging	purposes,	the	error	messages	will	include	both	the	error	spit	out
by	 MySQL	 (thanks	 to	 the	 mysqli_error()	 function)	 and	 the	 query	 that	 was	 run	 .	 This
information	is	critical	to	debugging	the	problem.	You	would	not	want	to	display	this	kind	of	information
on	a	live	site,	however.



	If	the	user	could	be	registered	in	the	database,	this	message	is	displayed.

	Any	MySQL	errors	caused	by	the	query	will	be	printed,	as	will	the	query	that	was	being	run.
10.	Close	the	database	connection	and	complete	the	HTML	template:
Click	here	to	view	code	image

mysqli_close($dbc);

include(‘includes/footer.html’);

exit();

Closing	 the	connection	 isn’t	 required	but	 is	a	good	policy.	Then	 the	footer	 is	 included	and	 the	script
terminated	 (thanks	 to	 the	exit()	 function).	 If	 those	 two	 lines	 weren’t	 here,	 the	 registration	 form
would	be	displayed	again	(which	isn’t	necessary	after	a	successful	registration).

11.	Print	out	any	error	messages	and	close	the	submit	conditional:
Click	here	to	view	code	image



		}	else	{	//	Report	the	errors.

				echo	‘<h1>Error!</h1>

				<p	class=”error”>The	following

				 error(s)	occurred:<br>’;

				foreach	($errors	as	$msg)	{	

				 //	Print	each	error.

						echo	“	-	$msg<br>\n”;

				}

				echo	‘</p><p>Please	try

				 again.</p><p><br></p>’;

		}	//	End	of	if	(empty($errors))

		 IF.

}	//	End	of	the	main	Submit

conditional.

The	else	clause	is	invoked	if	there	were	any	errors.	In	that	case,	all	of	the	errors	are	displayed	using
a	foreach	loop	 .

	Each	form	validation	error	is	reported	to	the	user	so	that	they	may	try	registering	again.
The	final	closing	brace	closes	the	main	submit	conditional.	The	main	conditional	is	a	simple	if,	not	an
if-else,	so	that	the	form	can	be	made	sticky	(again,	see	Chapter	3).

12.	Close	the	PHP	section	and	begin	the	HTML	form:
Click	here	to	view	code	image

?>

<h1>Register</h1>

<form	action=”register.php”

method=”post”>

		<p>First	Name:	

		 <input	type=”text”

		 name=”first_name”	size=”15”	

		 maxlength=”20”	value=”<?php	if

		 (isset($_POST[‘first_name’]))

		 echo	$_POST[‘first_name’];	?>”>



		 </p>

		<p>Last	Name:	<input	type=”text”

		 name=”last_name”	size=”15”	

		 maxlength=”40”	value=”<?php	if

		 (isset($_POST[‘last_name’]))

		 echo	$_POST[‘last_name’];	?>”>

		 </p>

The	 form	 is	 simple,	with	one	 text	 input	 for	 each	 field	 in	 the	users	 table	 (except	 for	 the	user_id	 and
registration_date	columns,	which	will	automatically	be	populated).	Each	 input	 is	made	sticky,	using
code	like

Click	here	to	view	code	image
value=”<?php	if	(isset($_POST[‘v’]))

echo	$_POST[‘v’];	?>”

Also,	 I	 strongly	 recommend	 that	 you	 use	 the	 same	 name	 for	 your	 form	 inputs	 as	 the	 corresponding
column	 in	 the	 database	where	 that	 value	will	 be	 stored.	 Further,	 you	 should	 set	 the	maximum	 input
length	in	the	form	equal	 to	the	maximum	column	length	in	 the	database.	Such	habits	help	 to	minimize
errors.

13.	Complete	the	HTML	form:
Click	here	to	view	code	image

		<p>Email	Address:	<input

		 type=”email”	name=”email”	

		 size=”20”	maxlength=”60”

		 value=”<?php	if

		 (isset($_POST[‘email’]))	echo

		 $_POST[‘email’];	?>”	>	</p>

		<p>Password:	<input

		 type=”password”	name=”pass1”	

		 size=”10”	maxlength=”20”

		 value=”<?php	if

		 (isset($_POST[‘pass1’]))	echo

		 $_POST[‘pass1’];	?>”	></p>

		<p>Confirm	Password:	<input

		 type=”password”	name=”pass2”	

		 size=”10”	maxlength=”20”

		 value=”<?php	if

		 (isset($_POST[‘pass2’]))	echo

		 $_POST[‘pass2’];	?>”	></p>

		<p><input	type=”submit”

		 name=”submit”

		 value=”Register”></p>

</form>

This	is	all	much	like	that	in	Step	12,	with	the	addition	of	a	submit	button.
As	 a	 side	 note,	 I	 don’t	 need	 to	 follow	 my	 maxlength	 recommendation	 (from	 Step	 12)	 with	 the
password	 inputs,	 because	 they	will	 be	 encrypted	with	SHA2(),	which	 always	 creates	 a	 string	 of	 a
fixed	length.	And	since	there	are	two	password	inputs,	they	can’t	both	use	the	same	name	as	the	column
in	the	database.

14.	Complete	the	template:
Click	here	to	view	code	image

<?php	include(‘includes/

footer.html’);	?>



15.	Save	the	file	as	register.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser.
Note	 that	 if	you	use	an	apostrophe	 in	one	of	 the	 form	values,	 it	will	 likely	break	 the	query	 .	 The
section	“Ensuring	Secure	SQL”	later	in	this	chapter	will	show	how	to	protect	against	this.

	 Apostrophes	 in	 form	 values	 (like	 the	 last	 name	 here)	 will	 conflict	 with	 the	 apostrophes	 used	 to
delineate	values	in	the	query.

Tip
After	running	the	script,	you	can	always	ensure	that	it	worked	by	using	the	mysql	client	or
phpMyAdmin	to	view	the	records	in	the	users	table.

Tip
You	should	not	end	your	queries	with	a	semicolon	in	PHP,	as	you	do	when	using	the	mysql
client.	When	working	with	MySQL,	 this	 is	 a	 common,	 albeit	 harmless,	mistake	 to	 make.
When	working	with	other	database	applications	(Oracle,	for	one),	doing	so	will	make	your
queries	unusable.

Tip
As	a	reminder,	the	mysqli_query()	function	returns	a	TRUE	value	if	the	query	could	be
executed	on	the	database	without	error.	This	does	not	necessarily	mean	that	the	result	of
the	 query	 is	 what	 you	 were	 expecting.	 Later	 scripts	 will	 demonstrate	 how	 to	 more
accurately	gauge	the	success	of	a	query.



Tip
You	are	not	obligated	to	create	a	$q	variable	as	I	tend	to	do;	you	could	directly	insert	your
query	text	into	mysqli_query().	However,	as	the	construction	of	your	queries	becomes
more	complex,	using	a	variable	will	be	the	only	option.

Tip
Practically	 any	 query	 you	 would	 run	 in	 the	 mysql	 client	 can	 also	 be	 executed	 using
mysqli_query().

Tip
Another	benefit	of	the	Improved	MySQL	Extension	over	the	standard	extension	is	that	the
mysqli_multi_query()	 function	 lets	 you	 execute	multiple	 queries	 at	 one	 time.	 The
syntax	for	doing	so,	particularly	if	the	queries	return	results,	is	a	bit	more	complicated,	so
see	the	PHP	manual	if	you	have	this	need.

Retrieving	Query	Results
The	preceding	section	of	this	chapter	demonstrates	how	to	execute	simple	queries	on	a	MySQL	database.
A	simple	query,	as	I’m	calling	it,	could	be	defined	as	one	that	begins	with	INSERT,	UPDATE,	DELETE,
or	ALTER.	What	all	four	of	these	have	in	common	is	that	they	return	no	data,	just	an	indication	of	 their
success.	Conversely,	a	SELECT	query	generates	information—it	will	return	rows	of	records—that	has	to
be	handled	by	other	PHP	functions.
The	primary	 tool	 for	handling	SELECT	 query	 results	 is	mysqli_fetch_array(),	 which	 uses	 the
query	result	variable	(that	I’ve	been	calling	$r)	and	returns	one	row	of	data	at	a	time,	in	an	array	format.
You’ll	want	to	use	this	function	within	a	loop	that	will	continue	to	access	every	returned	row	as	long	as
there	are	more	to	be	read.	The	basic	construction	for	reading	every	record	from	a	query	is
Click	here	to	view	code	image

while	($row	=	mysqli_fetch_array($r))	{

		//	Do	something	with	$row.

}

You	will	almost	always	want	to	use	a	while	loop	to	fetch	the	results	from	a	SELECT	query.
The	mysqli_fetch_array()	 function	 takes	an	optional	 second	parameter	specifying	what	 type	of
array	is	returned:	associative,	indexed,	or	both.	An	associative	array	allows	you	to	refer	to	column	values
by	name,	whereas	an	 indexed	array	 requires	you	 to	use	only	numbers,	 starting	at	0	 for	 the	 first	 column
returned.	Each	 parameter	 is	 defined	 by	 a	 constant	 listed	 in	Table	9.1,	 with	MYSQLI_BOTH	 being	 the
default.	 The	MYSQLI_NUM	 setting	 is	 marginally	 faster	 and	 uses	 less	 memory	 than	 the	 other	 options.
Conversely,	 MYSQLI_ASSOC	 is	 more	 overt	 ($row[‘column’]	 rather	 than	 $row[3])	 and	 may
continue	to	work	even	if	the	query	changes.



TABLE	9.1	mysqli_fetch_array()	Constants
Constant Example
MYSQLI_ASSOC $row[‘column’]

MYSQLI_NUM $row[0]

MYSQLI_BOTH $row[0]	or	$row[‘column’]

An	optional	step	you	can	 take	when	using	mysqli_fetch_array()	would	be	 to	 free	up	 the	query
result	resources	once	you	are	done	using	them:
mysqli_free_result($r);

This	line	removes	the	overhead	(memory)	taken	by	$r.	It’s	an	optional	step,	since	PHP	will	automatically
free	up	the	resources	at	the	end	of	a	script,	but—like	using	mysqli_close()—it	does	make	for	good
programming	form.
To	 demonstrate	 how	 to	 handle	 results	 returned	 by	 a	 query,	 let’s	 create	 a	 script	 for	 viewing	 all	 the
currently	registered	users.

To	retrieve	query	results:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	view_users.php	(Script	9.4):
Click	here	to	view	code	image

<?php	#	Script	9.4	-	view_users.php

$page_title	=	‘View	the	Current	

Users’;

include(‘includes/header.html’);

echo	‘<h1>Registered	Users</h1>’;

Script	9.4	The	view_users.php	script	runs	a	static	query	on	the	database	and	prints	all	the	returned
rows.
Click	here	to	view	code	image

1			<?php	#	Script	9.4	-	view_users.php

2			//	This	script	retrieves	all	the	records	from	the	users	table.

3			

4			$page_title	=	‘View	the	Current	Users’;

5			include(‘includes/header.html’);

6			

7			//	Page	header:

8			echo	‘<h1>Registered	Users</h1>’;

9			

10		require(‘../mysqli_connect.php’);	//	Connect	to	the	db.

11		

12		//	Make	the	query:

13		$q	=	“SELECT	CONCAT(last_name,	‘,	‘,	first_name)	AS	name,	DATE_FORMAT(registration_date,

				‘%M	%d,	%Y’)	AS	dr	FROM	users	ORDER	BY	registration_date	ASC”;

14		$r	=	@mysqli_query($dbc,	$q);	//	Run	the	query.

15				

16		if	($r)	{	//	If	it	ran	OK,	display	the	records.

17		

18					//	Table	header.

19					echo	‘<table	width=”60%”>

20					<thead>

21					<tr>

22								<th	align=”left”>Name</th>

23								<th	align=”left”>Date	Registered</th>



24					</tr>

25					</thead>

26					<tbody>

27		‘;

28				

29					//	Fetch	and	print	all	the	records:

30					while	($row	=	mysqli_fetch_array($r,	MYSQLI_ASSOC))	{

31								echo	‘<tr><td	align=”left”>’	.	$row[‘name’]	.	‘</td><td	align=”left”>’	.	$row[‘dr’]	.

										‘</td></tr>

32								‘;

33					}

34				

35					echo	‘</tbody></table>’;	//	Close	the	table.

36				

37					mysqli_free_result($r);	//	Free	up	the	resources.

38				

39		}	else	{	//	If	it	did	not	run	OK.

40				

41					//	Public	message:

42					echo	‘<p	class=”error”>The	current	users	could	not	be	retrieved.	We	apologize	for	any

							inconvenience.</p>’;

43				

44					//	Debugging	message:

45					echo	‘<p>’	.	mysqli_error($dbc)	.	‘<br><br>Query:	‘	.	$q	.	‘</p>’;

46				

47		}	//	End	of	if	($r)	IF.

48				

49		mysqli_close($dbc);	//	Close	the	database	connection.

50				

51		include(‘includes/footer.html’);

52		?>

2.	Connect	to	and	query	the	database:
Click	here	to	view	code	image

require(‘../mysqli_connect.php’);

$q	=	“SELECT	CONCAT(last_name,

’,	‘,	first_name)	AS	name,	

DATE_FORMAT(registration_date,

’%M	%d,	%Y’)	AS	dr	FROM	users	

ORDER	BY	registration_date	ASC”;

$r	=	@mysqli_query	($dbc,	$q);

The	query	here	will	return	two	columns	 :	the	users’	names	(formatted	as	Last	Name,	First	Name)
and	the	date	they	registered	(formatted	as	Month	DD,	YYYY).	Because	both	columns	are	formatted	using
MySQL	functions,	aliases	are	given	to	the	returned	results	(name	and	dr,	accordingly).	See	Chapter	5	if
you	are	confused	by	any	of	this	syntax.



	The	query	results	as	run	within	the	mysql	client.
3.	Create	an	HTML	table	for	displaying	the	query	results:
Click	here	to	view	code	image

if	($r)	{

		echo	‘<table	width=”60%”>

		<thead>

		<tr>

					<th	align=”left”>Name</th>

					<th	align=”left”>Date	

					 Registered</th>

		</tr>

		</thead>

		<tbody>

‘;

If	the	$r	variable	has	a	TRUE	value,	then	the	query	ran	without	error	and	the	results	can	be	displayed.
To	do	that,	start	by	making	a	table	and	a	header	row	in	HTML.

4.	Fetch	and	print	each	returned	record:
Click	here	to	view	code	image

while	($row	=	mysqli_fetch_array

($r,	MYSQLI_ASSOC))	{

		echo	‘<tr><td	align=”left”>’	.

		 $row[‘name’]	.	‘</td><td	

		 align=”left”>’	.	$row[‘dr’]	.



		 ’</td></tr>

		‘;

}

Next,	loop	through	the	results	using	mysqli_fetch_array()	and	print	each	fetched	row.	Notice
that	 within	 the	 while	 loop,	 the	 code	 refers	 to	 each	 returned	 value	 using	 the	 proper	 alias:
$row[‘name’]	 and	 $row[‘dr’].	 The	 script	 could	 not	 refer	 to	 $row[‘first_name’]	 or
$row[‘date_registered’]	because	no	such	field	name	was	returned	 .

5.	Close	the	HTML	table	and	free	up	the	query	resources:
Click	here	to	view	code	image

echo	‘</tbody></table>’;

mysqli_free_result($r);

Again,	this	is	an	optional	step	but	a	good	one	to	take.
6.	Complete	the	main	conditional:
Click	here	to	view	code	image

}	else	{

		echo	‘<p	class=”error”>The

		 current	users	could	not	be	

		 retrieved.	We	apologize	for

		 any	inconvenience.</p>’;

		echo	‘<p>’	.	mysqli_error($dbc)

		 .	‘<br><br>Query:	‘	.	$q	.

		 ’</p>’;

}	//	End	of	if	($r)	IF.

As	in	the	register.php	example,	there	are	two	kinds	of	error	messages	here.	The	first	is	a	generic
message,	 the	 type	 you’d	 show	 in	 a	 live	 site.	 The	 second	 is	 much	 more	 detailed,	 printing	 both	 the
MySQL	error	and	the	query—both	are	critical	for	debugging	purposes.

7.	Close	the	database	connection	and	finish	the	page:
Click	here	to	view	code	image

mysqli_close($dbc);

include(‘includes/footer.html’);

?>

8.	Save	the	file	as	view_users.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .



All	of	the	user	records	are	retrieved	from	the	database	and	displayed	in	the	browser.

Tip
The	 function	 mysqli_fetch_row()	 is	 the	 equivalent	 of	 mysqli_fetch_array
($r,	MYSQLI_NUM);.

Tip
The	 function	 mysqli_fetch_assoc()	 is	 the	 equivalent	 of	 mysqli_fetch_array
($r,	MYSQLI_ASSOC);.

Tip
As	with	any	associative	array,	when	you	retrieve	records	from	the	database,	you	must	refer
to	 the	 selected	 columns	or	 aliases	 exactly	 as	 they	 are	 in	 the	database	 or	query.	 In	 other
words,	the	keys	are	case-sensitive.

Tip
If	you	are	in	a	situation	where	you	need	to	run	a	second	query	inside	your	loop,	be	certain	to
use	different	 variable	names	 for	 that	query.	For	 example,	 the	 inner	 query	would	use	 and
instead	of	and	.	If	you	don’t	do	this,	you’ll	encounter	logical	errors.



Tip
I	 sometimes	 see	 beginning	PHP	developers	muddle	 the	 process	 of	 fetching	query	 results.
Remember	 that	 you	 must	 execute	 the	 query	 using	 mysqli_query(),	 and	 then	 use
mysqli_fetch_array()	 to	 retrieve	 a	 single	 row	of	 information.	 If	 you	have	multiple
rows	to	retrieve,	use	a	while	loop.

Ensuring	Secure	SQL
Database	security	with	respect	to	PHP	comes	down	to	three	broad	issues:

	Protecting	the	MySQL	access	information
	Not	revealing	too	much	about	the	database
	Being	cautious	when	running	queries,	particularly	those	involving	user-submitted	data

You	 can	 accomplish	 the	 first	 objective	 by	 securing	 the	MySQL	 connection	 script	 outside	 of	 the	 web
directory	so	that	it	 is	never	viewable	through	a	browser	(see	 	 in	“Connecting	to	MySQL”	earlier).	 I
discussed	this	in	some	detail	earlier	in	the	chapter.	The	second	objective	is	attained	by	not	letting	the	user
see	PHP’s	error	messages	or	your	queries:	in	these	scripts,	that	information	is	printed	for	your	debugging
purposes;	you’d	never	want	to	do	that	on	a	live	site.
For	 the	 third	objective,	 there	are	numerous	 steps	you	can	and	should	 take,	all	based	on	 the	premise	of
never	 trusting	user-supplied	data.	First,	validate	 that	 some	value	has	been	 submitted	or	 that	 it	 is	of	 the
proper	type	(number,	string,	etc.).	Second,	use	the	Filter	extension	(discussed	in	Chapter	13)	or	 regular
expressions	 (discussed	 in	 Chapter	 14,	 “Perl-Compatible	 Regular	 Expressions”)	 to	 make	 sure	 that
submitted	data	matches	what	you	would	expect	it	to	be.	Third,	you	can	typecast	some	values	to	guarantee
that	 they’re	 numbers.	 A	 fourth	 recommendation	 is	 to	 run	 user-submitted	 data	 through	 the
mysqli_real_escape_string()	 function.	 This	 function	 makes	 data	 safe	 to	 use	 in	 a	 query	 by
escaping	what	could	be	problematic	characters.	It’s	used	like	so:
Click	here	to	view	code	image

$safe	=	mysqli_real_escape_string	

($dbc,	data);

To	 understand	 why	 this	 is	 necessary,	 see	 	 in	 “Executing	 Simple	 Queries”	 earlier.	 The	 use	 of	 the
apostrophe	in	the	user’s	last	name	made	the	query	syntactically	invalid:
Click	here	to	view	code	image

INSERT	INTO	users	(first_name,

last_name,	email,	pass,	

registration_date)	VALUES	(‘Peter’,

’O’Toole’,	‘petey@example.net’,	

SHA2(‘aPass8’,	512),	NOW()	)

In	that	example,	valid	user	data	broke	the	query,	which	is	not	good.	But	if	your	PHP	script	allows	for	this
possibility,	a	malicious	user	can	purposefully	submit	problematic	characters—the	apostrophe	being	one
example—to	 hack	 into,	 or	 damage,	 your	 database.	 For	 security	 purposes,
mysqli_real_escape_string()	 should	 be	 used	 on	 every	 text	 input	 in	 a	 form.	To	 demonstrate
this,	let’s	revamp	register.php	(Script	9.3).

To	use	mysqli_real_escape_string():



1.	Open	register.php	(Script	9.3)	in	your	text	editor	or	IDE,	if	you	haven’t	already.
2.	Move	the	inclusion	of	the	mysqli_	connect.php	file	(line	48	in	Script	9.3)	to	just	after	the	main
conditional	(Script	9.5).

Script	9.5	The	register.php	 script	now	uses	 the	mysqli_real_escape_string()	 function
to	make	submitted	data	safe	to	use	in	a	query.
Click	here	to	view	code	image

1			<?php	#	Script	9.5	-	register.php	#2

2			//	This	script	performs	an	INSERT	query	to	add	a	record	to	the	users	table.

3			

4			$page_title	=	‘Register’;

5			include(‘includes/header.html’);

6			

7			//	Check	for	form	submission:

8			if	($_SERVER[‘REQUEST_METHOD’]	==	‘POST’)	{

9			

10					require(‘../mysqli_connect.php’);	//	Connect	to	the	db.

11				

12					$errors	=	[];	//	Initialize	an	error	array.

13				

14					//	Check	for	a	first	name:

15					if	(empty($_POST[‘first_name’]))	{

16								$errors[]	=	‘You	forgot	to	enter	your	first	name.’;

17					}	else	{

18								$fn	=	mysqli_real_escape_string($dbc,	trim($_POST[‘first_name’]));

19					}

20				

21					//	Check	for	a	last	name:

22					if	(empty($_POST[‘last_name’]))	{

23								$errors[]	=	‘You	forgot	to	enter	your	last	name.’;

24					}	else	{

25								$ln	=	mysqli_real_escape_string($dbc,	trim($_POST[‘last_name’]));

26					}

27				

28					//	Check	for	an	email	address:

29					if	(empty($_POST[‘email’]))	{

30								$errors[]	=	‘You	forgot	to	enter	your	email	address.’;

31					}	else	{

32								$e	=	mysqli_real_escape_string($dbc,	trim($_POST[‘email’]));

33					}

34				

35					//	Check	for	a	password	and	match	against	the	confirmed	password:

36					if	(!empty($_POST[‘pass1’]))	{

37								if	($_POST[‘pass1’]	!=	$_POST[‘pass2’])	{

38											$errors[]	=	‘Your	password	did	not	match	the	confirmed	password.’;

39								}	else	{

40											$p	=	mysqli_real_escape_string($dbc,	trim($_POST[‘pass1’]));

41								}

42					}	else	{

43								$errors[]	=	‘You	forgot	to	enter	your	password.’;

44					}

45				

46					if	(empty($errors))	{	//	If	everything’s	OK.

47				

48								//	Register	the	user	in	the	database...

49				

50								//	Make	the	query:

51								$q	=	“INSERT	INTO	users	(first_name,	last_name,	email,	pass,	registration_date)	VALUES

										(‘$fn’,	‘$ln’,	‘$e’,	SHA2(‘$p’,	512),	NOW()	)”;



52								$r	=	@mysqli_query	($dbc,	$q);	//	Run	the	query.

53								if	($r)	{	//	If	it	ran	OK.

54				

55											//	Print	a	message:

56											echo	‘<h1>Thank	you!</h1>

57											<p>You	are	now	registered.	In	Chapter	12	you	will	actually	be	able	to	log	in!

													</p><p><br></p>’;

58				

59											}	else	{	//	If	it	did	not	run	OK.

60				

61														//	Public	message:

62														echo	‘<h1>System	Error</h1>

63														<p	class=”error”>You	could	not	be	registered	due	to	a	system	error.	We	apologize	for

																any	inconvenience.</p>’;

64				

65														//	Debugging	message:

66														echo	‘<p>’	.	mysqli_error($dbc)	.	‘<br><br>Query:	‘	.	$q	.	‘</p>’;

67				

68											}	//	End	of	if	($r)	IF.

69				

70								mysqli_close($dbc);	//	Close	the	database	connection.

71				

72								//	Include	the	footer	and	quit	the	script:

73								include(‘includes/footer.html’);

74								exit();

75				

76					}	else	{	//	Report	the	errors.

77				

78								echo	‘<h1>Error!</h1>

79								<p	class=”error”>The	following	error(s)	occurred:<br>’;

80								foreach	($errors	as	$msg)	{	//	Print	each	error.

81											echo	“	-	$msg<br>\n”;

82								}

83								echo	‘</p><p>Please	try	again.</p><p><br></p>’;

84				

85					}	//	End	of	if	(empty($errors))	IF.

86				

87					mysqli_close($dbc);	//	Close	the	database	connection.

88				

89		}	//	End	of	the	main	Submit	conditional.

90		?>

91		<h1>Register</h1>

92		<form	action=”register.php”	method=”post”>

93					<p>First	Name:	<input	type=”text”	name=”first_name”	size=”15”	maxlength=”20”	value=”<?php

							if	(isset($_POST[‘first_name’]))	echo	$_POST[‘first_name’];	?>”></p>

94					<p>Last	Name:	<input	type=”text”	name=”last_name”	size=”15”	maxlength=”40”	value=”<?php

							if	(isset($_POST[‘last_name’]))	echo	$_POST[‘last_name’];	?>”></p>

95					<p>Email	Address:	<input	type=”email”	name=”email”	size=”20”	maxlength=”60”	value=”<?php

							if	(isset($_POST[‘email’]))	echo	$_POST[‘email’];	?>”	>	</p>

96					<p>Password:	<input	type=”password”	name=”pass1”	size=”10”	maxlength=”20”	value=”<?php

							if	(isset($_POST[‘pass1’]))	echo	$_POST[‘pass1’];	?>”	></p>

97					<p>Confirm	Password:	<input	type=”password”	name=”pass2”	size=”10”	maxlength=”20”	value=”<?php	if

							(isset($_POST[‘pass2’]))	echo	$_POST[‘pass2’];	?>”	></p>

98					<p><input	type=”submit”	name=”submit”	value=”Register”></p>

99		</form>

100	<?php	include(‘includes/footer.html’);	?>

Because	 the	 mysqli_real_escape_string()	 function	 requires	 a	 database	 connection,	 the
mysqli_connect.php	script	must	be	required	earlier	in	the	script.

3.	Change	the	validation	routines	to	use	the	mysqli_real_escape_string()	function,	replacing
each	 occurrence	 of	 $var	 =	 trim($_POST[‘var’])	 with	 $var	 =



mysqli_real_escape_string($dbc,	trim($_POST[‘var’])):
Click	here	to	view	code	image

$fn	=	mysqli_real_escape_string

($dbc,	trim($_POST[‘first_name’]));

$ln	=	mysqli_real_escape_string

($dbc,	trim($_POST[‘last_name’]));

$e	=	mysqli_real_escape_string

($dbc,	trim($_POST[‘email’]));

$p	=	mysqli_real_escape_string

($dbc,	trim($_POST[‘pass1’]));

Instead	of	just	assigning	the	submitted	value	to	each	variable	($fn,	$ln,	etc.),	the	values	will	be	run
through	the	mysqli_real_escape_string()	function	first.	The	trim()	 function	is	still	used
to	get	rid	of	any	unnecessary	spaces.

4.	Add	a	second	call	to	mysqli_close()	before	the	end	of	the	main	conditional:
mysqli_close($dbc);

To	be	consistent,	 since	 the	database	connection	 is	opened	as	 the	first	step	of	 the	main	conditional,	 it
should	be	closed	as	the	last	step	of	this	same	conditional.	It	still	needs	to	be	closed	before	including	the
footer	and	terminating	the	script	(lines	73	and	74),	though.

5.	Save	the	file	as	register.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 	and	
.

	Values	with	apostrophes	in	them,	like	a	person’s	last	name,	will	no	longer	break	the	INSERT	query,
thanks	to	the	mysqli_real_	escape_string()	function.



	Now	the	registration	process	will	handle	problematic	characters	and	be	more	secure.

Tip
The	mysqli_real_escape_string()	function	escapes	a	string	in	accordance	with	the
language	being	used	(i.e.,	the	collation),	which	is	an	advantage	using	this	function	has	over
alternative	solutions.

Tip
If	you	see	results	like	those	in	 ,	it	means	that	the	mysqli_real_escape_string()
function	cannot	access	the	database	(because	it	has	no	connection,	like	$dbc).

	Since	the	mysqli_real_escape_string()	function	requires	a	database	connection,	using
it	without	that	connection	(e.g.,	before	including	the	connection	script)	can	lead	to	other	errors.

Tip
If	you	look	at	the	values	stored	in	the	database	(using	the	mysql	client,	phpMyAdmin,	or	the
like),	 you	 will	 not	 see	 the	 apostrophes	 and	 other	 problematic	 characters	 stored	 with
preceding	 backslashes.	 This	 is	 correct.	 The	 backslashes	 keep	 the	 problematic	 characters
from	breaking	the	query,	but	the	backslashes	are	not	themselves	stored.



Counting	Returned	Records
The	 next	 function	 to	 discuss	 is	 mysqli_num_rows().	 This	 function	 returns	 the	 number	 of	 rows
retrieved	by	a	SELECT	query.	It	takes	one	argument,	the	query	result	variable:
$num	=	mysqli_num_rows($r);

Although	simple	in	purpose,	this	function	is	very	useful.	It’s	necessary	if	you	want	to	paginate	your	query
results	 (an	example	of	 this	 can	be	 found	 in	 the	next	 chapter).	 It’s	 also	 a	good	 idea	 to	use	 this	 function
before	you	attempt	to	fetch	any	results	using	a	while	loop	(because	there’s	no	need	to	fetch	the	results	if
there	aren’t	any,	and	attempting	to	do	so	may	cause	errors).	 In	 this	next	sequence	of	steps,	 let’s	modify
view_users.php	to	list	the	total	number	of	registered	users.

To	modify	view_users.php:
1.	Open	view_users.php	(refer	to	Script	9.4)	in	your	text	editor	or	IDE,	if	you	haven’t	already.
2.	Before	the	if	($r)	conditional,	add	this	line	(Script	9.6):

$num	=	mysqli_num_rows($r);

Script	9.6	Now	the	view_users.php	script	will	display	the	total	number	of	registered	users,	thanks
to	the	mysqli_num_rows()	function.
Click	here	to	view	code	image

1			<?php	#	Script	9.6	-	view_users.php	#2

2			//	This	script	retrieves	all	the	records	from	the	users	table.

3			

4			$page_title	=	‘View	the	Current	Users’;

5			include(‘includes/header.html’);

6			

7			//	Page	header:

8			echo	‘<h1>Registered	Users</h1>’;

9			

10		require(‘../mysqli_connect.php’);	//	Connect	to	the	db.

11		

12		//	Make	the	query:

13		$q	=	“SELECT	CONCAT(last_name,	‘,	‘,	first_name)	AS	name,	DATE_FORMAT(registration_date,	‘%M	%d,	%Y’)	AS	dr	FROM	users	ORDER	BY	registration_date	ASC”;

14		$r	=	@mysqli_query($dbc,	$q);	//	Run	the	query.

15		

16		//	Count	the	number	of	returned	rows:

17		$num	=	mysqli_num_rows($r);

18		

19		if	($num	>	0)	{	//	If	it	ran	OK,	display	the	records.

20		

21					//	Print	how	many	users	there	are:

22					echo	“<p>There	are	currently	$num	registered	users.</p>\n”;

23		

24					//	Table	header.

25					echo	‘<table	width=”60%”>

26					<thead>

27					<tr>

28								<th	align=”left”>Name</th>

29								<th	align=”left”>Date	Registered</th>

30					</tr>

31					</thead>

32					<tbody>

33		‘;

34		

35					//	Fetch	and	print	all	the	records:



36					while	($row	=	mysqli_fetch_array($r,	MYSQLI_ASSOC))	{

37								echo	‘<tr><td	align=”left”>’	.	$row[‘name’]	.	‘</td><td	align=”left”>’	.	$row[‘dr’]	.

										‘</td></tr>

38								‘;

39					}

40		

41					echo	‘</tbody></table>’;	//	Close	the	table.

42		

43					mysqli_free_result($r);	//	Free	up	the	resources.

44		

45		}	else	{	//	If	no	records	were	returned.

46		

47					echo	‘<p	class=”error”>There	are	currently	no	registered	users.</p>’;

48		

49		}

50		

51		mysqli_close($dbc);	//	Close	the	database	connection.

52		

53		include(‘includes/footer.html’);

54		?>

This	line	will	assign	the	number	of	rows	returned	by	the	query	to	the	$num	variable.
3.	Change	the	original	$r	conditional	to

if	($num	>	0)	{

The	conditional	as	it	was	written	before	was	based	on	whether	the	query	did	or	did	not	successfully
run,	not	whether	any	records	were	returned.	Now	it	will	be	more	accurate.

4.	Before	creating	the	HTML	table,	print	the	number	of	registered	users:
Click	here	to	view	code	image

echo	“<p>There	are	currently

$num	registered	users.</p>\n”;

5.	Change	the	else	part	of	the	main	conditional	to	read
Click	here	to	view	code	image

echo	‘<p	class=”error”>There	are

currently	no	registered	users.	

</p>’;

Modifying	register.php
The	 mysqli_num_rows()	 function	 could	 be	 applied	 to	 register.php	 to	 prevent
someone	from	registering	with	the	same	email	address	multiple	times.	Although	the	UNIQUE
index	 on	 that	 column	 in	 the	 database	will	 prevent	 that	 from	 happening,	 such	 attempts	will
create	 a	MySQL	 error.	 To	 avoid	 this	 using	 PHP,	 run	 a	SELECT	 query	 to	 confirm	 that	 the
email	address	isn’t	currently	registered.	That	query	would	be	simply

Click	here	to	view	code	image

SELECT	user_id	FROM	users	WHERE	

email=’$e’

You	 would	 run	 this	 query	 (using	 the	 mysqli_query()	 function)	 and	 then	 call
mysqli_num_rows().	 If	 mysqli_num_rows()	 returns	 0,	 you	 know	 that	 the	 email
address	hasn’t	already	been	registered	and	it’s	safe	to	run	the	INSERT.



The	 original	 conditional	 was	 based	 on	 whether	 the	 query	 worked.	 Hopefully,	 you’ve	 successfully
debugged	the	query	so	that	it	is	working	and	the	original	error	messages	are	no	longer	needed.	Now	the
error	message	just	indicates	if	no	records	were	returned.

6.	Save	the	file	as	view_users.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	The	number	of	registered	users	is	now	displayed	at	the	top	of	the	page.

Updating	Records	with	PHP
The	last	technique	in	this	chapter	shows	how	to	update	database	records	through	a	PHP	script.	Doing	so
requires	 an	 UPDATE	 query,	 and	 its	 successful	 execution	 can	 be	 verified	 with	 PHP’s
mysqli_affected_rows()	function.
While	 the	mysqli_num_rows()	 function	will	 return	 the	 number	 of	 rows	 generated	 by	 a	SELECT
query,	mysqli_affected_rows()	returns	the	number	of	rows	affected	by	an	INSERT,	UPDATE,	or
DELETE	query.	It’s	used	like	so:
Click	here	to	view	code	image

$num	=	mysqli_affected_rows($dbc);

Unlike	mysqli_num_rows(),	the	one	argument	the	function	takes	is	the	database	connection	($dbc),
not	the	results	of	the	previous	query	($r).
The	 following	 example	 will	 be	 a	 script	 that	 allows	 registered	 users	 to	 change	 their	 password.	 It
demonstrates	two	important	ideas:

	Checking	a	submitted	username	and	password	against	registered	values	(the	key	to	a	login	system	as
well)
	Updating	database	records	using	the	primary	key	as	a	reference

As	with	the	registration	example,	this	one	PHP	script	will	both	display	the	form	 	and	handle	it.



	The	form	for	changing	a	user’s	password.

To	update	records	with	PHP:
1.	Begin	a	new	PHP	script	in	your	text	editor	or	IDE,	to	be	named	password.php	(Script	9.7):
Click	here	to	view	code	image

<?php	#	Script	9.7	-	password.php

$page_title	=	‘Change	Your

Password’;

include(‘includes/header.html’);

Script	 9.7	 The	 password.php	 script	 runs	 an	 UPDATE	 query	 on	 the	 database	 and	 uses	 the
mysqli_affected_rows()	function	to	confirm	the	change.
Click	here	to	view	code	image

1			<?php	#	Script	9.7	-	password.php

2			//	This	page	lets	a	user	change	their	password.

3			

4			$page_title	=	‘Change	Your	Password’;

5			include(‘includes/header.html’);

6			

7			//	Check	for	form	submission:

8			if	($_SERVER[‘REQUEST_METHOD’]	==	‘POST’)	{

9			

10					require(‘../mysqli_connect.php’);	//	Connect	to	the	db.

11				

12					$errors	=	[];	//	Initialize	an	error	array.

13				

14					//	Check	for	an	email	address:

15					if	(empty($_POST[‘email’]))	{

16								$errors[]	=	‘You	forgot	to	enter	your	email	address.’;

17					}	else	{

18								$e	=	mysqli_real_escape_string($dbc,	trim($_POST[‘email’]));

19					}

20				

21					//	Check	for	the	current	password:

22					if	(empty($_POST[‘pass’]))	{



23								$errors[]	=	‘You	forgot	to	enter	your	current	password.’;

24					}	else	{

25								$p	=	mysqli_real_escape_string($dbc,	trim($_POST[‘pass’]));

26					}

27				

28					//	Check	for	a	new	password	and	match

29					//	against	the	confirmed	password:

30					if	(!empty($_POST[‘pass1’]))	{

31								if	($_POST[‘pass1’]	!=	$_POST[‘pass2’])	{

32											$errors[]	=	‘Your	new	password	did	not	match	the	confirmed	password.’;

33								}	else	{

34											$np	=	mysqli_real_escape_string($dbc,	trim($_POST[‘pass1’]));

35								}

36					}	else	{

37								$errors[]	=	‘You	forgot	to	enter	your	new	password.’;

38					}

39				

40					if	(empty($errors))	{	//	If	everything’s	OK.

41				

42								//	Check	that	they’ve	entered	the	right	email	address/password	combination:

43								$q	=	“SELECT	user_id	FROM	users	WHERE	(email=’$e’	AND	pass=SHA2(‘$p’,	512)	)”;

44								$r	=	@mysqli_query($dbc,	$q);

45								$num	=	@mysqli_num_rows($r);

46								if	($num	==	1)	{	//	Match	was	made.

47				

48											//	Get	the	user_id:

49											$row	=	mysqli_fetch_array($r,	MYSQLI_NUM);

50				

51											//	Make	the	UPDATE	query:

52											$q	=	“UPDATE	users	SET	pass=SHA2(‘$np’,	512)	WHERE	user_id=$row[0]”;

53											$r	=	@mysqli_query($dbc,	$q);

54				

55											if	(mysqli_affected_rows($dbc)	==	1)	{	//	If	it	ran	OK.

56				

57														//	Print	a	message.

58														echo	‘<h1>Thank	you!</h1>

59														<p>Your	password	has	been	updated.	In	Chapter	12	you	will	actually	be	able	to	log

																in!</p><p><br></p>’;

60				

61											}	else	{	//	If	it	did	not	run	OK.

62				

63											//	Public	message:

64											echo	‘<h1>System	Error</h1>

65											<p	class=”error”>Your	password	could	not	be	changed	due	to	a	system	error.

													We	apologize	for	any	inconvenience.</p>’;

66				

67											//	Debugging	message:

68											echo	‘<p>’	.	mysqli_error($dbc)	.	‘<br><br>Query:	‘	.	$q	.	‘</p>’;

69				

70								}

71				

72								mysqli_close($dbc);	//	Close	the	database	connection.

73				

74								//	Include	the	footer	and	quit	the	script	(to	not	show	the	form).

75								include(‘includes/footer.html’);

76								exit();

77				

78								}	else	{	//	Invalid	email	address/password	combination.

79											echo	‘<h1>Error!</h1>

80											<p	class=”error”>The	email	address	and	password	do	not	match	those	on	file.</p>’;

81								}

82				

83					}	else	{	//	Report	the	errors.

84				



85								echo	‘<h1>Error!</h1>

86								<p	class=”error”>The	following	error(s)	occurred:<br>’;

87								foreach	($errors	as	$msg)	{	//	Print	each	error.

88											echo	“	-	$msg<br>\n”;

89								}

90								echo	‘</p><p>Please	try	again.</p><p><br></p>’;

91				

92					}	//	End	of	if	(empty($errors))	IF.

93				

94					mysqli_close($dbc);	//	Close	the	database	connection.

95				

96		}	//	End	of	the	main	Submit	conditional.

97		?>

98		<h1>Change	Your	Password</h1>

99		<form	action=”password.php”	method=”post”>

100				<p>Email	Address:	<input	type=”email”	name=”email”	size=”20”	maxlength=”60”	value=”<?php

							if	(isset($_POST[‘email’]))	echo	$_POST[‘email’];	?>”	>	</p>

101				<p>Current	Password:	<input	type=”password”	name=”pass”	size=”10”	maxlength=”20”

							value=”<?php	if	(isset($_POST[‘pass’]))	echo	$_POST[‘pass’];	?>”	></p>

102				<p>New	Password:	<input	type=”password”	name=”pass1”	size=”10”	maxlength=”20”

							value=”<?php	if	(isset($_POST[‘pass1’]))	echo	$_POST[‘pass1’];	?>”	></p>

103				<p>Confirm	New	Password:	<input	type=”password”	name=”pass2”	size=”10”

							maxlength=”20”	value=”<?php	if	(isset($_POST[‘pass2’]))	echo	$_POST[‘pass2’];	?>”	></p>

104				<p><input	type=”submit”	name=”submit”	value=”Change	Password”></p>

105		</form>

106		<?php	include(‘includes/footer.html’);	?>

2.	Start	the	main	conditional:
Click	here	to	view	code	image

if	($_SERVER[‘REQUEST_METHOD’]	= =
’POST’)	{

Since	this	page	both	displays	and	handles	the	form,	it’ll	use	the	standard	conditional	to	check	for	 the
form’s	submission.

3.	Include	the	database	connection	and	create	an	array	for	storing	errors:
Click	here	to	view	code	image

require(‘../mysqli_connect.php’);

$errors	=	[];

The	initial	part	of	this	script	mimics	the	registration	form.
4.	Validate	the	email	address	and	current	password	fields:
Click	here	to	view	code	image

if	(empty($_POST[‘email’]))	{

		$errors[ ]	=	‘You	forgot	to
		 enter	your	email	address.	‘;

}	else	{

		$e	=	mysqli_real_escape_string

		 ($dbc,	trim($_POST[‘email’]));

}

if	(empty($_POST[‘pass’]))	{

		$errors[ ]	=	‘You	forgot	to
		enter	your	current	password.	‘;

}	else	{

		$p	=	mysqli_real_escape_string

		 ($dbc,	trim($_POST[‘pass’]));

}

The	form	 	has	four	inputs:	the	email	address,	the	current	password,	and	two	for	the	new	password.



The	process	for	validating	each	of	these	is	the	same	as	it	is	in	register.php.	Any	data	that	passes
the	 validation	 test	 will	 be	 trimmed	 and	 run	 through	 the	 mysqli_real_escape_string()
function	so	that	it	is	safe	to	use	in	a	query.

5.	Validate	the	new	password:
Click	here	to	view	code	image

if	(!empty($_POST[‘pass1’]))	{

		if	($_POST[‘pass1’]	!=	

		 $_POST[‘pass2’])	{

				$errors[ ]	=	‘Your	new
				 password	did	not	match	the	

				 confirmed	password.	‘;

		}	else	{

				$np	=	mysqli_real_escape_	

				 string($dbc,	trim

				 ($_POST[‘pass1’]));

		}

}	else	{

		$errors[ ]	=	‘You	forgot	to
		 enter	your	new	password.	‘;

}

This	 code	 is	 also	 exactly	 like	 that	 in	 the	 registration	 script,	 except	 that	 a	 valid	 new	 password	 is
assigned	to	a	variable	called	$np	(because	$p	represents	the	current	password).

6.	If	all	the	tests	are	passed,	retrieve	the	user’s	ID:
Click	here	to	view	code	image

if	(empty($errors))	{

		$q	=	“SELECT	user_id	FROM	users

		WHERE	(email=’$e’	AND	pass=SHA2

		 (‘$p’,	512)	)”;

		$r	=	@mysqli_query($dbc,	$q);

		$num	=	@mysqli_num_rows($r);

This	first	query	will	return	just	the	user_id	field	for	the	record	that	matches	the	submitted	email	address
and	password	 .	To	compare	the	submitted	password	against	the	stored	one,	encrypt	it	again	with	the
SHA1()	 function.	 If	 the	 user	 is	 registered	 and	 has	 correctly	 entered	 both	 the	 email	 address	 and
password,	exactly	one	column	from	one	 row	will	be	selected	 (since	 the	email	value	must	 be	unique
across	all	rows).	Finally,	this	one	record	is	assigned	as	an	array	(of	one	element)	to	the	$row	variable.

	The	result	when	running	the	SELECT	query	from	the	script	(the	first	of	two	queries	it	has)	within	the
mysql	client.
If	this	part	of	the	script	doesn’t	work	for	you,	apply	the	standard	debugging	methods:	remove	the	error
suppression	operators	(@)	so	that	you	can	see	what	errors,	if	any,	occur;	use	the	mysqli_error()
function	to	report	any	MySQL	errors;	and	print,	then	run	the	query	using	another	interface	 .

7.	Update	the	database	for	the	new	password:
Click	here	to	view	code	image

$q	=	“UPDATE	users	SET	pass=SHA2

(‘$np’,	512)	WHERE	user_id=$row	

[0]”;

$r	=	@mysqli_query($dbc,	$q);

This	query	will	change	 the	password—using	 the	new	submitted	value—where	 the	user_id	column	is
equal	to	the	number	retrieved	from	the	previous	query.



8.	Check	the	results	of	the	query:
Click	here	to	view	code	image

if	(mysqli_affected_rows($dbc)	==

1)	{

		echo	‘<h1>Thank	you!</h1>

		<p>Your	password	has	been

		 updated.	In	Chapter	12	you	

		 will	actually	be	able	to	log

		 in!</p><p><br></p>’;

}	else	{	//	If	it	did	not	run	OK.

		echo	‘<h1>System	Error</h1>

		<p	class=”error”>Your	password

		 could	not	be	changed	due	to	a	

		 system	error.	We	apologize

		 for	any	inconvenience.</p>’;

		echo	‘<p>’	.	mysqli_error($dbc)

		 .	‘<br><br>Query:	‘	.	$q	.

		 ’</p>’;

}

This	 part	 of	 the	 script	 again	 works	 like	 register.php.	 In	 this	 case,	 if
mysqli_affected_rows()	 returns	 the	 number	 1,	 the	 record	 has	 been	 updated,	 and	 a	 success
message	will	be	printed.	If	not,	both	a	public,	generic	message	and	a	more	useful	debugging	message
will	be	printed.

9.	Close	the	database	connection,	include	the	footer,	and	terminate	the	script:
Click	here	to	view	code	image

mysqli_close($dbc);

include(‘includes/footer.html’);

exit();

At	this	point	in	the	script,	the	UPDATE	query	has	been	run.	It	either	worked	or	it	did	not	(because	of	a
system	 error).	 In	 both	 cases,	 there’s	 no	 need	 to	 show	 the	 form	 again,	 so	 the	 footer	 is	 included	 (to
complete	 the	page)	and	 the	 script	 is	 terminated,	using	 the	exit()	 function.	Prior	 to	 that,	 just	 to	be
thorough,	the	database	connection	is	closed.

10.	Complete	the	if	($num	==	1)	conditional:
Click	here	to	view	code	image

}	else	{

		echo	‘<h1>Error!</h1>

		<p	class=”error”>The	email

		 address	and	password	do	not	

		 match	those	on	file.</p>’;

}

If	 mysqli_num_rows()	 does	 not	 return	 a	 value	 of	 1,	 then	 the	 submitted	 email	 address	 and
password	do	not	match	 those	 in	 the	database	and	 this	error	 is	printed.	 In	 this	case,	 the	 form	will	be
displayed	again	so	that	the	user	can	enter	the	correct	information.

11.	Print	any	validation	error	messages:
Click	here	to	view	code	image

}	else	{	

		echo	‘<h1>Error!</h1>

		<p	class=”error”>The	following

		 error(s)	occurred:<br>’;

		foreach	($errors	as	$msg)	{	

					echo	“	-	$msg<br>\n”;



		}

		echo	‘</p><p>Please	try	again.

		 </p><p><br></p>’;

}	//	End	of	if	(empty($errors))	IF.

This	else	clause	applies	if	the	$errors	array	is	not	empty	(which	means	that	the	form	data	did	not
pass	all	the	validation	tests).	As	in	the	registration	page,	the	errors	will	be	printed.

12.	Close	the	database	connection	and	complete	the	PHP	code:
		mysqli_close($dbc);

}

?>

13.	Display	the	form:
Click	here	to	view	code	image

<h1>Change	Your	Password</h1>

<form	action=”password.php”

		method=”post”>

		<p>Email	Address:	<input

		 type=”email”	name=”email”	

		 size=”20”	maxlength=”60”

		 value=”<?php	if

		 (isset($_POST[‘email’]))

		 echo	$_POST[‘email’];	?>”	>

		 </p>

		<p>Current	Password:	<input

		 type=”password”	name=”pass”	

		 size=”10”	maxlength=”20”

		 value=”<?php	if

		 (isset($_POST[‘pass’]))	echo

		 $_POST[‘pass’];	?>”	></p>

		<p>New	Password:	<input

		 type=”password”	name=”pass1”	

		 size=”10”	maxlength=”20”

		 value=”<?php	if

		 (isset($_POST[‘pass1’]))	echo

		 $_POST[‘pass1’];	?>”	></p>

		<p>Confirm	New	Password:

		 <input	type=”password”	

		 name=”pass2”	size=”10”

		 maxlength=”20”	value=”<?php	

		 if	(isset($_POST[‘pass2’]))	echo

		 $_POST[‘pass2’];	?>”	></p>

		<p><input	type=”submit”

		 name=”submit”	value=”Change	

		 Password”></p>

</form>

The	 form	 takes	 three	 different	 inputs	 of	 type	 password—the	 current	 password,	 the	 new	 one,	 and	 a
confirmation	of	 the	new	password—and	one	email	 input	for	 the	email	address.	Every	 input	 is	sticky,
too.

14.	Include	the	footer	file:
Click	here	to	view	code	image

<?php	include(‘includes/

footer.html’);	?>

15.	Save	the	file	as	password.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 	and	
.



	The	password	was	changed	in	the	database.

	 If	 the	 entered	 email	 address	 and	 password	 don’t	 match	 those	 on	 file,	 the	 password	 will	 not	 be
updated.

Tip
If	 you	 delete	 every	 record	 from	 a	 table	 using	 the	 command	 TRUNCATE	 tablename,
mysqli_affected_rows()	will	 return	 0,	 even	 if	 the	 query	was	 successful	 and	 every
row	was	removed.	This	is	just	a	quirk.



Tip
If	 an	 UPDATE	 query	 runs	 but	 does	 not	 actually	 change	 the	 value	 of	 any	 column	 (for
example,	a	password	is	replaced	with	the	same	password),	mysqli_affected_rows()
will	return	0.

Tip
The	mysqli_affected_rows()	conditional	used	here	could	(and	maybe	should)	also	be
applied	to	the	register.php	script	to	confirm	that	one	record	was	added.	That	would	be
a	more	exacting	condition	to	check	than	if	($r).

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	What	version	of	PHP	are	you	using?	What	version	of	MySQL?	Does	your	PHP-MySQL	combination
support	the	Improved	MySQL	Extension?
	 What	 is	 the	 most	 important	 sequence	 of	 steps	 for	 debugging	 PHP-MySQL	 problems	 (explicitly
covered	at	the	end	of	Chapter	8,	“Error	Handling	and	Debugging”)?
	What	hostname,	username,	and	password	combination	do	you,	specifically,	use	to	connect	to	MySQL?
	What	PHP	code	is	used	to	connect	to	a	MySQL	server,	select	the	database,	and	establish	the	encoding?
	What	encoding	are	you	using?	Why	is	it	necessary	for	the	PHP	scripts	to	use	the	same	encoding	that	is
used	to	interact	with	MySQL	as	is	used	for	storing	the	text	in	the	database?
	Why	is	it	preferable	to	store	the	mysqli_connect.php	script	outside	of	the	web	root	directory?
And	what	is	the	web	root	directory?
	Why	shouldn’t	live	sites	show	MySQL	errors	and	the	queries	being	run?
	What	syntax	will	you	almost	always	use	to	handle	the	results	of	a	SELECT	query?	What	syntax	could
you	use	if	the	SELECT	query	returns	only	a	single	row?
	Why	is	it	important	to	use	the	mysqli_real_escape_string()	function?
	After	what	kind	of	queries	would	you	use	the	mysqli_num_rows()	function?
	After	what	types	of	queries	would	you	use	the	mysqli_affected_rows()	function?

Pursue
	 If	 you	 don’t	 remember	 how	 the	 template	 system	works,	 or	 how	 to	 use	 the	include()	 function,
revisit	Chapter	3.
	 Use	 the	 information	 covered	 in	 Chapter	 8	 to	 apply	 your	 own	 custom	 error	 handler	 to	 this	 site’s
examples.
	 Change	 the	 use	 of	mysqli_num_rows()	 in	view_users.php	 so	 that	 it’s	 called	 only	 if	 the
query	had	a	TRUE	result.
	Apply	 the	mysqli_num_rows()	 function	 to	register.php,	 as	 suggested	 in	 the	 “Modifying

http://LarryUllman.com/forums/


register.php”	sidebar.
	Apply	the	mysqli_affected_rows()	function	to	register.php	to	confirm	that	the	INSERT
worked.
	If	you	want,	create	scripts	that	interact	with	the	banking	database.	Easy	projects	to	begin	with	include
viewing	 all	 customers,	 viewing	 all	 accounts	 (do	 a	JOIN	 to	 also	 show	 the	 customer’s	 name),	 and
adding	to	or	subtracting	from	an	account’s	balance.















































































































































10.	Common	Programming	Techniques

In	This	Chapter
Sending	Values	to	a	Script
Using	Hidden	Form	Inputs
Editing	Existing	Records
Paginating	Query	Results
Making	Sortable	Displays
Review	and	Pursue

Now	that	you	have	a	little	PHP	and	MySQL	interaction	under	your	belt,	it’s	time	to	kick	things	up	a	notch.
This	 chapter	 is	 like	 Chapter	 3,	 “Creating	 Dynamic	 Web	 Sites,”	 in	 that	 it	 covers	 myriad	 independent
topics.	 But	 what	 these	 have	 in	 common	 is	 that	 they	 demonstrate	 common	 PHP-MySQL	 programming
techniques.	You	won’t	 learn	any	new	functions	here;	 instead,	you’ll	 see	how	 to	use	 the	knowledge	you
already	possess	to	create	standard	web	functionality.
The	examples	 themselves	will	broaden	 the	application	started	 in	 the	preceding	chapter	by	 adding	new,
popular	 features.	You’ll	 see	 several	 tricks	 for	managing	database	 information,	 in	particular	 editing	and
deleting	records	using	PHP.	At	the	same	time,	a	couple	of	new	ways	of	passing	data	to	your	PHP	pages
will	be	introduced.	The	final	sections	of	the	chapter	add	features	to	the	view_users.php	page.

Sending	Values	to	a	Script
In	the	examples	so	far,	all	the	data	received	in	the	PHP	script	came	from	what	the	user	entered	in	a	form.
There	are,	however,	 two	different	ways	you	can	pass	variables	and	values	 to	a	PHP	script,	both	worth
knowing.
The	first	method	is	to	make	use	of	HTML’s	hidden	input	type:
Click	here	to	view	code	image

<input	type="hidden"	name="do"	

value="this">

If	this	code	is	anywhere	between	the	form	tags,	the	variable	$_POST[‘do’]	will	have	a	value	of	this
in	 the	 handling	 PHP	 script,	 assuming	 that	 the	 form	 uses	 the	 POST	method.	 If	 the	 form	 uses	 the	 GET
method,	then	$_GET[‘do’]	would	have	that	value.	With	that	in	mind,	you	can	skip	the	creation	of	the
form	and	just	directly	append	a	name=value	pair	to	the	URL:
Click	here	to	view	code	image

www.example.com/page.php?do=this

Again,	with	this	specific	example,	page.php	receives	a	variable	called	$_GET[‘do’]	with	a	value
of	this.
To	demonstrate	this	GET	method	trick,	a	new	version	of	the	view_users.php	script,	first	created	in
the	previous	chapter,	will	be	written.	This	one	will	provide	links	to	pages	that	will	allow	you	to	edit	or
delete	an	existing	user’s	record.	The	links	will	pass	 the	user’s	ID	to	 the	handling	pages,	both	of	which
will	also	be	written	in	this	chapter.



To	manually	send	values	to	a	PHP	script:
1.	Open	view_users.php	(Script	9.6)	in	your	text	editor	or	IDE.
2.	Change	the	SQL	query	to	read	(Script	10.1)
Click	here	to	view	code	image

$q	=	"SELECT	last_name,

first_name,	DATE_FORMAT

(registration_date,	'%M	%d,	%Y')

AS	dr,	user_id	FROM	users	ORDER

BY	registration_date	ASC";

Script	10.1	The	view_users.php	script,	started	in	Chapter	9,	“Using	PHP	with	MySQL,”	now	modified
so	that	it	presents	Edit	and	Delete	links,	passing	the	user's	ID	number	along	in	each	URL.
Click	here	to	view	code	image

1			<?php	#	Script	10.1	-	view_users.php	#3

2			//	This	script	retrieves	all	the	records	from	the	users	table.

3			//	This	new	version	links	to	edit	and	delete	pages.

4			

5			$page_title	=	'View	the	Current	Users';

6			include('includes/header.html');

7			echo	'<h1>Registered	Users</h1>';

8			

9			require('../mysqli_connect.php');

10

11		//	Define	the	query:

12		$q	=	"SELECT	last_name,	first_name,	DATE_FORMAT(registration_date,	'%M	%d,	%Y')	AS	dr,	user_id	FROM	users	ORDER	BY	registration_date	ASC";

13		$r	=	@mysqli_query($dbc,	$q);

14		

15		//	Count	the	number	of	returned	rows:

16		$num	=	mysqli_num_rows($r);

17		

18		if	($num	>	0)	{	//	If	it	ran	OK,	display	the	records.

19		

20					//	Print	how	many	users	there	are:

21					echo	"<p>There	are	currently	$num	registered	users.</p>\n";

22		

23					//	Table	header:

24					echo	'<table	width="60%">

25					<thead>

26					<tr>

27								<th	align="left"><strong>Edit</strong></th>

28								<th	align="left"><strong>Delete</strong></th>

29								<th	align="left"><strong>Last	Name</strong></th>

30								<th	align="left"><strong>First	Name</strong></th>

31								<th	align="left"><strong>Date	Registered</strong></th>

32					</tr>

33					</thead>

34					<tbody>

35					';

36		

37					//	Fetch	and	print	all	the	records:

38					while	($row	=	mysqli_fetch_array($r,	MYSQLI_ASSOC))	{

39								echo	'<tr>

40											<td	align="left"><a	href="edit_user.php?id='	.	$row['user_id']	.	'">Edit</a></td>

41											<td	align="left"><a	href="delete_user.php?id='	.	$row['user_id']	.	'">Delete</a></td>

42											<td	align="left">'	.	$row['last_name']	.	'</td>

43											<td	align="left">'	.	$row['first_name']	.	'</td>

44											<td	align="left">'	.	$row['dr']	.	'</td>

45								</tr>



46								';

47					}

48		

49					echo	'</tbody></table>';

50					mysqli_free_result($r);

51		

52		}	else	{	//	If	no	records	were	returned.

53					echo	'<p	class="error">There	are	currently	no	registered	users.</p>';

54		}

55		

56		mysqli_close($dbc);

57		

58		include('includes/footer.html');

59		?>

The	query	has	been	changed	in	a	couple	of	ways.	First,	the	first	and	last	names	are	selected	separately,
not	 concatenated	 together.	 Second,	 the	user_id	 is	 also	 now	 being	 selected,	 since	 that	 value	will	 be
necessary	in	creating	the	links.

3.	Add	three	more	columns	to	the	main	table:
Click	here	to	view	code	image

echo	'<table	width="60%">

<thead>

<tr>

		<th	align="left"><strong>Edit

		 </strong></th>

		<th	align="left"><strong>

		 Delete</strong></th>

		<th	align="left"><strong>

		 Last	Name</strong></th>

		<th	align="left"><strong>

		 First	Name</strong></th>

		<th	align="left"><strong>

		 Date	Registered</strong></th>

</tr>

</thead>

<tbody>

';

In	the	previous	version	of	the	script,	there	were	only	two	columns:	one	for	the	name	and	another	for	the
date	the	user	registered.	The	name	column	has	been	separated	into	its	two	parts	and	two	new	columns
have	been	added:	one	for	the	Edit	link	and	another	for	the	Delete	link.

4.	Change	the	echo	statement	within	the	while	loop	to	match	the	table’s	new	structure:
Click	here	to	view	code	image

echo	'<tr>

		<td	align="left">

		 <a	href="edit_user.php?id='	.

		 $row['user_id']	.	'">Edit</a>

		 </td>

		<td	align="left">

		 <a	href="delete_user.php?id='

		 .	$row['user_id']	.	'">Delete

		 </a></td>

		<td	align="left">'	.

		 $row['last_name']	.	'</td>

		<td	align="left">'	.

		 $row['first_name']	.	'</td>

		<td	align="left">'	.	$row['dr']

		 .	'</td>



</tr>

';

For	each	record	returned	from	the	database,	this	line	will	print	out	a	row	with	five	columns.	The	last
three	columns	are	obvious	and	easy	to	create;	just	refer	to	the	returned	column	name.
For	 the	 first	 two	columns,	which	provide	 links	 to	 edit	or	delete	 the	user,	 the	 syntax	 is	 slightly	more
complicated.	 The	 desired	 end	 result	 is	 HTML	 code	 like	 <a	 href="edit_user.php?

id=X">Edit</a>,,	where	X	 is	 the	 user’s	 ID.	Knowing	 this,	 all	 the	PHP	code	has	 to	 do	 is	 print
$row[‘user_id’]	for	X,	being	mindful	of	the	quotation	marks	to	avoid	parse	errors.
Because	the	HTML	attributes	use	a	lot	of	double	quotation	marks	and	this	echo	statement	requires	a
lot	of	variables	to	be	printed,	I	find	it	easiest	to	use	single	quotes	for	the	HTML	and	then	to	concatenate
the	variables	to	the	printed	text.

5.	Save	the	file	as	view_users.php,	place	it	in	your	web	directory,	and	run	it	in	your	browser	 .

	The	revised	version	of	the	view_users.php	page,	with	new	columns	and	links.
There’s	no	point	in	clicking	the	new	links,	though,	because	those	scripts	have	not	yet	been	created.

6.	If	you	want,	view	the	HTML	source	of	the	page	to	see	each	dynamically	generated	link	 .

	Part	of	the	HTML	source	of	the	page	(see	 )	shows	how	the	user’s	ID	is	added	to	each	link’s	URL.



Tip
To	 append	 multiple	 variables	 to	 a	 URL,	 use	 this	 syntax:	 page.php?

name1=value1&name2=value2&name3=value3.	 It’s	 simply	 a	 matter	 of	 using	 the
ampersand,	plus	another	name-value	pair.

Tip
One	trick	to	adding	variables	to	URLs	is	that	strings	should	be	encoded	to	ensure	that	the	value	is
handled	properly.	For	example,	the	space	in	the	string	Elliott	Smith	would	be	problematic.	The
solution	then	is	to	use	the	urlencode( )	function:

Click	here	to	view	code	image

$url	=	'page.php?name='	.	

urlencode('Elliott	Smith');

You	only	need	 to	 do	 this	when	programmatically	 adding	values	 to	 a	URL.	When	 a	 form	uses	 the	GET
method,	it	automatically	encodes	the	data.

Using	Hidden	Form	Inputs
In	the	preceding	example,	a	new	version	of	the	view_users.php	script	was	written.	It	now	includes
links	 to	 the	edit_user.php	and	delete_user.php	 pages,	passing	each	a	user’s	 ID	 through	 the
URL.	This	next	example,	delete_user.php,	will	take	the	passed	user	ID	and	allow	the	administrator
to	delete	that	user.	Although	you	could	have	this	page	simply	execute	a	DELETE	query	as	soon	as	the	page
is	accessed,	to	prevent	an	inadvertent	deletion	there	should	be	multiple	steps	 :



	This	graphic	outlines	the	steps	to	be	executed	by	the	user	deletion	script.
1.	The	page	must	check	that	it	received	a	numeric	user	ID.
2.	A	message	will	confirm	that	this	user	should	be	deleted.
3.	The	user	ID	will	be	stored	in	a	hidden	form	input.
4.	Upon	submission	of	this	form,	the	user	will	actually	be	deleted.

To	use	hidden	form	inputs:
1.	Begin	 a	new	PHP	document	 in	your	 text	 editor	or	 IDE,	 to	be	named	delete_user.php	 (Script
10.2):

Click	here	to	view	code	image
<?php	#	Script	10.2	–

delete_user.php

Script	 10.2	 This	 script	 expects	 a	 user	 ID	 to	 be	 passed	 to	 it	 through	 the	 URL.	 It	 then	 presents	 a
confirmation	form	and	deletes	the	user	upon	submission.
Click	here	to	view	code	image



1			<?php	#	Script	10.2	-	delete_user.php

2			//	This	page	is	for	deleting	a	user	record.

3			//	This	page	is	accessed	through	view_users.php.

4			

5			$page_title	=	'Delete	a	User';

6			include('includes/header.html');

7			echo	'<h1>Delete	a	User</h1>';

8			

9			//	Check	for	a	valid	user	ID,	through	GET	or	POST:

10		if	(	(isset($_GET['id']))	&&	(is_numeric($_GET['id']))	)	{	//	From	view_users.php

11					$id	=	$_GET['id'];

12		}	elseif	(	(isset($_POST['id']))	&&	(is_numeric($_POST['id']))	)	{	//	Form	submission.

13					$id	=	$_POST['id'];

14		}	else	{	//	No	valid	ID,	kill	the	script.

15					echo	'<p	class="error">This	page	has	been	accessed	in	error.</p>';

16					include('includes/footer.html');

17					exit();

18		}

19		

20		require('../mysqli_connect.php');

21		

22		//	Check	if	the	form	has	been	submitted:

23		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

24		

25					if	($_POST['sure']	==	'Yes')	{	//	Delete	the	record.

26		

27								//	Make	the	query:

28								$q	=	"DELETE	FROM	users	WHERE	user_id=$id	LIMIT	1";

29								$r	=	@mysqli_query($dbc,	$q);

30								if	(mysqli_affected_rows($dbc)	==	1)	{	//	If	it	ran	OK.

31		

32											//	Print	a	message:

33											echo	'<p>The	user	has	been	deleted.</p>';

34		

35								}	else	{	//	If	the	query	did	not	run	OK.

36											echo	'<p	class="error">The	user	could	not	be	deleted	due	to	a	system	error.</p>';

													//	Public	message.

37											echo	'<p>'	.	mysqli_error($dbc)	.	'<br>Query:	'	.	$q	.	'</p>';	//	Debugging	message.

38								}

39		

40					}	else	{	//	No	confirmation	of	deletion.

41								echo	'<p>The	user	has	NOT	been	deleted.</p>';

42					}

43		

44		}	else	{	//	Show	the	form.

45		

46					//	Retrieve	the	user's	information:

47					$q	=	"SELECT	CONCAT(last_name,	',	',	first_name)	FROM	users	WHERE	user_id=$id";

48					$r	=	@mysqli_query($dbc,	$q);

49		

50					if	(mysqli_num_rows($r)	==	1)	{	//	Valid	user	ID,	show	the	form.

51		

52								//	Get	the	user's	information:

53								$row	=	mysqli_fetch_array($r,	MYSQLI_NUM);

54		

55								//	Display	the	record	being	deleted:

56								echo	"<h3>Name:	$row[0]</h3>

57								Are	you	sure	you	want	to	delete	this	user?";

58		

59								//	Create	the	form:

60								echo	'<form	action="delete_user.php"	method="post">

61					<input	type="radio"	name="sure"	value="Yes">	Yes

62					<input	type="radio"	name="sure"	value="No"	checked="checked">	No



63					<input	type="submit"	name="submit"	value="Submit">

64					<input	type="hidden"	name="id"	value="'	.	$id	.	'">

65					</form>';

66		

67					}	else	{	//	Not	a	valid	user	ID.

68								echo	'<p	class="error">This	page	has	been	accessed	in	error.</p>';

69					}

70		

71		}	//	End	of	the	main	submission	conditional.

72		

73		mysqli_close($dbc);

74		

75		include('includes/footer.html');

76		?>

2.	Include	the	page	header:
Click	here	to	view	code	image

$page_title	=	'Delete	a	User';

include('includes/header.html');

echo	'<h1>Delete	a	User</h1>';

This	document	will	use	the	same	template	system	as	the	other	pages	in	the	application.	See	Chapter	9
and	Chapter	3	for	clarification,	if	needed.

3.	Check	for	a	valid	user	ID	value:
Click	here	to	view	code	image

if	(	(isset($_GET['id']))	&&

(is_numeric($_GET['id']))	)

{	//	From	view_users.php

		$id	=	$_GET['id'];

}	elseif	(	(isset($_POST['id']))	&&

(is_numeric($_POST['id']))	)

{	//	Form	submission.

		$id	=	$_POST['id'];

}	else	{	//	No	valid	ID,	kill	the

script.

		echo	'<p	class="error">This

		 page	has	been	accessed	in

		 error.</p>';

		include('includes/footer.html');

		exit();

}

This	script	relies	on	having	a	valid	user	ID,	to	be	used	in	a	DELETE	query’s	WHERE	clause.	The	first
time	 this	page	 is	 accessed,	 the	user	 ID	should	be	passed	 in	 the	URL	 (the	page’s	URL	will	 end	with
delete_user.php?id=X)	after	clicking	the	Delete	link	in	the	view_users.php	page.	The	first
if	condition	checks	for	such	a	value	and	that	the	value	is	numeric.
As	you	will	see,	the	script	will	then	store	the	user	ID	value	in	a	hidden	form	input.	When	the	form	is
submitted	 (back	 to	 this	 same	 page),	 the	 script	 will	 receive	 the	 ID	 through	 $_POST.	 The	 second
condition	checks	this	and,	again,	that	the	ID	value	is	numeric.
If	neither	of	these	conditions	is	TRUE,	then	the	page	cannot	proceed,	so	an	error	message	is	displayed
and	the	script’s	execution	is	terminated	 .



	If	the	page	does	not	receive	a	number	ID	value,	this	error	is	shown.
4.	Include	the	MySQL	connection	script:
Click	here	to	view	code	image

require_once('../mysqli_connect

.php');

Both	 of	 this	 script’s	 processes—showing	 the	 form	 and	 handling	 the	 form—require	 a	 database
connection,	so	this	line	is	outside	of	the	main	submit	conditional	(Step	5).

5.	Begin	the	main	submit	conditional:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	= =
'POST')	{

To	 test	 for	a	 form	submission,	 the	script	uses	 the	same	conditional	 first	explained	 in	Chapter	3	 (and
also	used	in	Chapter	9).

6.	Delete	the	user,	if	appropriate:
Click	here	to	view	code	image

if	($_POST['sure']	= =	'Yes')	{
		$q	=	"DELETE	FROM	users	WHERE

		 user_id=$id	LIMIT	1";

		$r	=	@mysqli_query($dbc,	$q);

The	form	 	will	force	the	user	to	click	a	radio	button	to	confirm	the	deletion.	This	little	requirement
prevents	 any	 accidents.	 Thus,	 the	 handling	 process	 first	 checks	 that	 the	 correct	 radio	 button	 was
selected.	If	so,	a	basic	DELETE	query	is	defined,	using	the	user’s	ID	in	the	WHERE	clause.	A	LIMIT
clause	is	added	to	the	query	as	an	extra	precaution.

	The	page	confirms	the	user	deletion	using	this	simple	form.
7.	Check	if	the	deletion	worked	and	respond	accordingly:



Click	here	to	view	code	image
if	(mysqli_affected_rows($dbc)	==

1)	{

		echo	'<p>The	user	has	been

		 deleted.</p>';

}	else	{

		echo	'<p	class="error">The	user

		 could	not	be	deleted	due	to

		 a	system	error.</p>';	//

		 Public	message.

		echo	'<p>'	.	mysqli_error($dbc)

		 .	'<br>Query:	'	.	$q	.	'</p>';

}

The	 mysqli_affected_rows( )	 function	 checks	 that	 exactly	 one	 row	 was	 affected	 by	 the
DELETE	query.	If	so,	a	happy	message	is	displayed	 .	If	not,	an	error	message	is	sent	out.

	If	you	select	Yes	in	the	form	(see	 )	and	click	Submit,	this	should	be	the	result.
Keep	 in	 mind	 that	 it’s	 possible	 that	 no	 rows	 were	 affected	 without	 a	MySQL	 error	 occurring.	 For
example,	 suppose	 the	query	 tries	 to	delete	 the	 record	where	 the	user	 ID	 is	 equal	 to	42000	 (and	 that
record	 doesn’t	 exist).	 In	 that	 case,	 no	 rows	 will	 be	 deleted	 but	 no	MySQL	 error	 will	 occur.	 Still,
because	of	the	checks	made	when	the	form	is	first	loaded,	it	would	take	a	fair	amount	of	hacking	by	the
user	to	get	to	that	point.

8.	Complete	the	$_POST[‘sure’]	conditional:
Click	here	to	view	code	image

}	else	{

		echo	'<p>The	user	has	NOT	been

		 deleted.</p>';

}

If	the	user	did	not	explicitly	select	the	Yes	button,	the	user	will	not	be	deleted	and	this	message	will	be
displayed	 .

	If	you	do	not	select	Yes	in	the	form,	no	database	changes	are	made.
9.	Begin	the	else	clause	of	the	main	submit	conditional:

}	else	{

The	page	will	either	handle	the	form	or	display	it.	Most	of	the	code	prior	to	this	takes	effect	if	the	form
has	been	submitted	(if	$_SERVER[‘REQUEST_METHOD’]	equals	POST).	The	 code	 from	here	on



takes	effect	if	the	form	has	not	yet	been	submitted,	in	which	case	the	form	should	be	displayed.
10.	Retrieve	the	information	for	the	user	being	deleted:
Click	here	to	view	code	image

$q	=	"SELECT	CONCAT(last_name,	',

',	first_name)	FROM	users	WHERE

user_id=$id";

$r	=	@mysqli_query($dbc,	$q);

if	(mysqli_num_rows($r)	= =	1)	{
$row	=	mysqli_fetch_array($r,

MYSQLI_NUM);

To	confirm	that	the	script	received	a	valid	user	ID	and	to	state	exactly	who	is	being	deleted	(refer	back
to	 ),	the	to-be-deleted	user’s	name	is	retrieved	from	the	database	 .

Running	the	same	SELECT	query	in	the	mysql	client.
The	conditional—checking	that	a	single	row	was	returned—ensures	that	a	valid	user	ID	was	provided
to	the	script.	If	so,	that	one	record	is	fetched	into	the	$row	variable.

11.	Display	the	record	being	deleted:
Click	here	to	view	code	image

echo	"<h3>Name:	$row[0]</h3>

Are	you	sure	you	want	to	delete

this	user?	";

To	help	prevent	accidental	deletions	of	 the	wrong	 record,	 the	name	of	 the	user	 to	be	deleted	 is	 first
displayed.	That	value	 is	available	 in	$row[0],	because	 the	mysqli_fetch_array( )	 function
(in	 Step	 10)	 uses	 the	MYSQLI_NUM	 constant,	 thereby	 assigning	 the	 returned	 record	 to	$row	 as	 an
indexed	array.	The	user’s	name	is	the	first,	and	only,	column	in	the	returned	record,	so	it’s	indexed	at	0
(as	arrays	normally	begin	indexing	at	0).

12.	Create	the	form:
Click	here	to	view	code	image

echo	'<form	action="delete_

user.php"	method="post">

<input	type="radio"	name="sure"

value="Yes">	Yes

<input	type="radio"	name="sure"

value="No"	checked="checked">	No

<input	type="submit"	name="submit"

value="Submit">

<input	type="hidden"	name="id"

value="'	.	$id	.	'">

</form>';

The	form	posts	back	to	this	same	page.	It	contains	two	radio	buttons,	with	the	same	name	but	different
values,	a	submit	button,	and	a	hidden	input.	The	most	important	step	here	is	that	the	user	ID	($id)	 is



stored	as	a	hidden	form	input	so	that	the	handling	process	can	also	access	this	value	 .

The	user	ID	is	stored	as	a	hidden	input	so	that	it’s	available	when	the	form	is	submitted.
13.	Complete	the	mysqli_num_rows( )	conditional:
Click	here	to	view	code	image

}	else	{

		echo	'<p	class="error">This	page

		 has	been	accessed	in	error.

		 </p>';

}

If	 no	 record	 was	 returned	 by	 the	SELECT	 query	 (because	 an	 invalid	 user	 ID	 was	 submitted),	 this
message	is	displayed.
If	you	see	this	message	when	you	test	this	script	but	don’t	understand	why,	apply	the	standard	debugging
steps	outlined	at	the	end	of	Chapter	8,	“Error	Handling	and	Debugging.”

14.	Complete	the	PHP	page:
Click	here	to	view	code	image

}

mysqli_close($dbc);

include('includes/footer.html');

?>

The	closing	brace	finishes	the	main	submission	conditional.	Then	the	MySQL	connection	is	closed	and
the	footer	is	included.

15.	Save	the	file	as	delete_user.php	and	place	 it	 in	your	web	directory	(it	 should	be	 in	 the	same
directory	as	view_users.php).

16.	Run	the	page	by	first	clicking	a	Delete	link	in	the	view_users.php	page.

Tip
Hidden	form	elements	don’t	display	in	the	web	browser	but	are	still	present	in	the	HTML	source
code	 .	For	this	reason,	never	store	anything	there	that	must	be	kept	truly	secure.

Tip
Using	 hidden	 form	 inputs	 and	 appending	 values	 to	 a	 URL	 are	 just	 two	 ways	 to	 make	 data
available	 to	 other	 PHP	 pages.	 Two	 more	 methods—cookies	 and	 sessions—are	 thoroughly
covered	in	Chapter	12,	“Cookies	and	Sessions.”



Editing	Existing	Records
A	common	practice	with	database-driven	websites	is	having	a	system	in	place	so	that	you	can	easily	edit
existing	 records.	 This	 concept	 seems	 daunting	 to	 many	 beginning	 programmers,	 but	 the	 process	 is
surprisingly	 straightforward.	 For	 the	 following	 example—editing	 registered	 user	 records—the	 process
combines	skills	this	book	has	already	taught:

	Making	sticky	forms
	Using	hidden	inputs
	Validating	registration	data
	Executing	simple	queries

This	next	example	 is	generally	very	similar	 to	delete_user.php	 and	will	 also	be	 linked	 from	 the
view_users.php	script	(when	a	person	clicks	Edit).	A	form	will	be	displayed	with	the	user’s	current
information,	allowing	for	those	values	to	be	changed	 .	Once	the	form	is	submitted,	if	the	data	passes	all
the	validation	routines	an	UPDATE	query	will	be	run	to	update	the	database.

The	form	for	editing	a	user’s	record.

To	edit	an	existing	database	record:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	edit_user.php	(Script	10.3):
Click	here	to	view	code	image

<?php	#	Script	10.3	-

edit_user.php

$page_title	=	'Edit	a	User';

include('includes/header.html');

echo	'<h1>Edit	a	User</h1>';

Script	 10.3	 The	 edit_user.php	 page	 first	 displays	 the	 user's	 current	 information	 in	 a	 form.	 Upon
submission	of	the	form,	the	record	will	be	updated	in	the	database.
Click	here	to	view	code	image

1			<?php	#	Script	10.3	-	edit_user.php

2			//	This	page	is	for	editing	a	user	record.

3			//	This	page	is	accessed	through	view_users.php.

4			

5			$page_title	=	'Edit	a	User';

6			include('includes/header.html');

7			echo	'<h1>Edit	a	User</h1>';



8			

9			//	Check	for	a	valid	user	ID,	through	GET	or	POST:

10		if	(	(isset($_GET['id']))	&&	(is_numeric($_GET['id']))	)	{	//	From	view_users.php

11					$id	=	$_GET['id'];

12		}	elseif	(	(isset($_POST['id']))	&&	(is_numeric($_POST['id']))	)	{	//	Form	submission.

13					$id	=	$_POST['id'];

14		}	else	{	//	No	valid	ID,	kill	the	script.

15					echo	'<p	class="error">This	page	has	been	accessed	in	error.</p>';

16					include('includes/footer.html');

17					exit();

18		}

19		

20		require('../mysqli_connect.php');

21		

22		//	Check	if	the	form	has	been	submitted:

23		if	($_SERVER['REQUEST_METHOD']	==

				'POST')	{

24		

25					$errors	=	[];

26		

27					//	Check	for	a	first	name:

28					if	(empty($_POST['first_name']))	{

29								$errors[]	=	'You	forgot	to	enter

										your	first	name.';

30					}	else	{

31								$fn	=	mysqli_real_escape_	string($dbc,	trim($_POST	['first_name']));

32					}

33		

34					//	Check	for	a	last	name:

35					if	(empty($_POST['last_name']))	{

36								$errors[]	=	'You	forgot	to	enter

										your	last	name.';

37					}	else	{

38								$ln	=	mysqli_real_escape_string($dbc,	trim($_POST['last_name']));

39					}

40		

41					//	Check	for	an	email	address:

42					if	(empty($_POST['email']))	{

43								$errors[]	=	'You	forgot	to	enter	your	email	address.';

44					}	else	{

45								$e	=	mysqli_real_escape_string

										($dbc,	trim($_POST['email']));

46					}

47		

48					if	(empty($errors))	{	//	If

							everything's	OK.

49		

50								//	Test	for	unique	email	address:

51								$q	=	"SELECT	user_id	FROM	users

										WHERE	email='$e'	AND	user_id	!=

										$id";

52								$r	=	@mysqli_query($dbc,	$q);

53								if	(mysqli_num_rows($r)	==	0)	{

54		

55											//	Make	the	query:

56											$q	=	"UPDATE	users	SET	first_name='$fn',	last_name='$ln',	email='$e'

													WHERE	user_id=$id	LIMIT	1";

57											$r	=	@mysqli_query($dbc,	$q);

58											if	(mysqli_affected_rows($dbc)	==	1)	{	//	If	it	ran	OK.

59		

60														//	Print	a	message:

61														echo	'<p>The	user	has	been	edited.</p>';

62		

63											}	else	{	//	If	it	did	not	run	OK.



64														echo	'<p	class="error">The	user	could	not	be	edited	due	to	a	system	error.

																We	apologize	for	any	inconvenience.</p>';	//	Public	message.

65														echo	'<p>'	.	mysqli_error($dbc)	.	'<br>Query:	'	.	$q	.	'</p>';

																//	Debugging	message.

66											}

67		

68								}	else	{	//	Already	registered.

69											echo	'<p	class="error">The	email	address	has	already	been	registered.</p>';

70								}

71		

72					}	else	{	//	Report	the	errors.

73		

74								echo	'<p	class="error">The	following	error(s)	occurred:<br>';

75								foreach	($errors	as	$msg)	{	//	Print	each	error.

76											echo	"	-	$msg<br>\n";

77								}

78								echo	'</p><p>Please	try	again.</p>';

79		

80					}	//	End	of	if	(empty($errors))	IF.

81		

82		}	//	End	of	submit	conditional.

83		

84		//	Always	show	the	form...

85		

86		//	Retrieve	the	user's	information:

87		$q	=	"SELECT	first_name,	last_name,	email	FROM	users	WHERE	user_id=$id";

88		$r	=	@mysqli_query($dbc,	$q);

89		

90		if	(mysqli_num_rows($r)	==	1)	{	//	Valid

				user	ID,	show	the	form.

91		

92					//	Get	the	user's	information:

93					$row	=	mysqli_fetch_array($r,

							MYSQLI_NUM);

94		

95					//	Create	the	form:

96					echo	'<form	action="edit_user.php"

							method="post">

97		<p>First	Name:	<input	type="text"

				name="first_name"	size="15"	maxlength="15"

				value="'	.	$row[0]	.

				'"></p>

98		<p>Last	Name:	<input	type="text"

				name="last_name"	size="15"

				maxlength="30"	value="'	.	$row[1]	.

				'"></p>

99		<p>Email	Address:	<input	type="email"

				name="email"	size="20"	maxlength="60"

				value="'	.	$row[2]	.	'">	</p>

100	<p><input	type="submit"	name="submit"

				value="Submit"></p>

101	<input	type="hidden"	name="id"	value="'

				.	$id	.	'">

102	</form>';

103

104	}	else	{	//	Not	a	valid	user	ID.

105				echo	'<p	class="error">This	page	has

				been	accessed	in	error.</p>';

106	}

107		

108	mysqli_close($dbc);

109		

110	include('includes/footer.html');

111	?>



2.	Check	for	a	valid	user	ID	value:
Click	here	to	view	code	image

if	(	(isset($_GET['id']))	&&

(is_numeric($_GET['id']))	)	{

		$id	=	$_GET['id'];

}	elseif	(	(isset($_POST['id']))	&&

(is_numeric($_POST['id']))	)	{

		$id	=	$_POST['id'];

}	else	{	//	No	valid	ID,	kill	the

script.

		echo	'<p	class="error">This	page

		 has	been	accessed	in	error.

		 </p>';

		include('includes/footer.html');

		exit();

}

This	validation	routine	is	exactly	the	same	as	that	in	delete_user.php,	confirming	that	a	numeric
user	 ID	has	been	 received,	whether	 the	page	has	 first	been	accessed	 from	view_users.php	 (the
first	condition)	or	upon	submission	of	the	form	(the	second	condition).

3.	Include	the	MySQL	connection	script	and	begin	the	main	submit	conditional:
Click	here	to	view	code	image

require_once('../mysqli_

connect.php');

if	($_SERVER['REQUEST_METHOD']	= =
'POST')	{

$errors	=	[];

Like	the	registration	examples	you	have	already	done,	this	script	makes	use	of	an	array	to	track	errors.
4.	Validate	the	first	name:
Click	here	to	view	code	image

if	(empty($_POST['first_name']))	{

		$errors[]	=	'You	forgot	to

		 enter	your	first	name.';

}	else	{

		$fn	=	mysqli_real_escape_

		 string($dbc,	trim

		 ($_POST['first_name']));

}

The	form	 	is	like	a	registration	page	but	without	the	password	fields	(see	the	second	tip).	The	form
data	can	therefore	be	validated	by	applying	the	same	techniques	used	in	a	registration	script.	As	with	a
registration	 example,	 the	 validated	 data	 is	 trimmed	 and	 then	 run	 through
mysqli_real_escape_string(	)	for	security.

5.	Validate	the	last	name	and	email	address:
Click	here	to	view	code	image

if	(empty($_POST['last_name']))	{

		$errors[]	=	'You	forgot	to

		 enter	your	last	name.';

}	else	{

		$ln	=	mysqli_real_escape_

		 string($dbc,	trim

		 ($_POST['last_name']));



}

	

//	Check	for	an	email	address:

if	(empty($_POST['email']))	{

		$errors[]	=	'You	forgot	to

		 enter	your	email	address.';

}	else	{

		$e	=	mysqli_real_escape_

		 string($dbc,	trim($_POST

		 ['email']));

}

6.	If	there	were	no	errors,	check	that	the	submitted	email	address	is	not	already	in	use:
Click	here	to	view	code	image

if	(empty($errors))	{

		$q	=	"SELECT	user_id	FROM	users

		 WHERE	email='$e'	AND	user_id

		 !=	$id";

		$r	=	@mysqli_query($dbc,	$q);

		if	(mysqli_num_rows($r)	==	0)	{

The	 integrity	 of	 the	 database	 and	 of	 the	 application	 as	 a	whole	 partially	 depends	 on	 having	 unique
email	address	values	in	the	users	table.	That	requirement	guarantees	that	the	login	system,	which	uses	a
combination	of	the	email	address	and	password	(to	be	developed	in	Chapter	12),	works.	Because	the
form	 allows	 for	 altering	 the	 user’s	 email	 address	 (see	 ),	 special	 steps	 must	 be	 taken	 to	 ensure
uniqueness	 of	 that	 value	 across	 every	 database	 record.	 To	 understand	 this	 query,	 let’s	 consider	 two
possibilities.
In	the	first,	the	user’s	email	address	is	being	changed.	In	this	case	you	just	need	to	run	a	query	making
sure	that	 that	particular	email	address	isn’t	already	registered:	SELECT	user_id	FROM	users
WHERE	email=’$e’.
In	 the	 second	possibility,	 the	user’s	 email	 address	will	 remain	 the	 same.	 In	 this	 case,	 it’s	OK	 if	 the
email	address	is	already	in	use,	because	it’s	already	in	use	for	this	user.
To	write	one	query	that	will	work	for	both	possibilities,	don’t	check	to	see	if	the	email	address	is	being
used,	but	rather	see	if	it’s	being	used	by	anyone	else—hence:
SELECT	user_id	FROM	users	WHERE

email='$e'	AND	user_id	!=	$id

If	this	query	returns	no	records,	it’s	safe	to	run	the	UPDATE	query.
7.	Update	the	database:
Click	here	to	view	code	image

$q	=	"UPDATE	users	SET

first_name='$fn',	last_name=

'$ln',	email='$e'	WHERE

user_id=$id	LIMIT	1";

$r	=	@mysqli_query($dbc,	$q);

The	UPDATE	 query	 is	 like	 examples	you	could	have	 seen	 in	Chapter	5,	“Introduction	 to	SQL.”	 The
query	updates	three	fields—first	name,	last	name,	and	email	address—using	the	values	submitted	by	the
form.	This	system	works	because	 the	form	is	preset	with	 the	existing	values.	So,	 if	you	edit	 the	 first
name	in	the	form	but	nothing	else,	the	first	name	value	in	the	database	is	updated	using	this	new	value,
but	 the	 last	 name	 and	 email	 address	 values	 are	 “updated”	 using	 their	 current	 values.	This	 system	 is
much	easier	 than	 trying	 to	determine	which	 form	values	have	 changed	and	updating	 just	 those	 in	 the
database.



8.	Report	on	the	results	of	the	update:
Click	here	to	view	code	image

if	(mysqli_affected_rows($dbc)	==

1)	{

		echo	'<p>The	user	has	been

		 edited.</p>';

}	else	{

		echo	'<p	class="error">The	user

		 could	not	be	edited	due	to	a

		 system	error.	We	apologize

		 for	any	inconvenience.</p>';

	echo	'<p>'	.	mysqli_error($dbc)

	 .	'<br>Query:	'	.	$q	.	'</p>';

}

The	mysqli_affected_rows()	function	will	return	the	number	of	rows	in	the	database	affected
by	the	most	recent	query.	If	any	of	the	three	form	values	was	altered,	then	this	function	will	return	the
value	1.	This	conditional	tests	for	that	and	prints	a	message	indicating	success	or	failure.
Keep	 in	 mind	 that	 the	 mysqli_	 affected_rows()	 function	 will	 return	 a	 value	 of	 0	 if	 an
UPDATE	command	successfully	ran	but	didn’t	actually	affect	any	records.	Therefore,	if	you	submit	this
form	without	changing	any	of	the	form	values,	a	system	error	is	displayed,	which	may	not	technically	be
correct.	Once	you	have	this	script	effectively	working,	you	could	change	the	error	message	to	indicate
that	no	alterations	were	made	if	mysqli_affected_rows()	returns	0.

9.	Complete	the	email	conditional:
Click	here	to	view	code	image

}	else	{	//	Already	registered.

		echo	'<p	class="error">The

		 email	address	has	already

		 been	registered.</p>';

}

This	else	completes	the	conditional	that	checked	whether	an	email	address	was	already	being	used	by
another	user.	If	so,	that	message	is	printed.

10.	Complete	the	$errors	conditional:
Click	here	to	view	code	image

}	else	{	//	Report	the	errors.

		echo	'<p	class="error">The

		 following	error(s)

		 occurred:<br>';

		foreach	($errors	as	$msg)	{

		 //	Print	each	error.

					echo	"	-	$msg<br>\n";

		}

		echo	'</p><p>Please	try	again.

		 </p>';

}	//	End	of	if	(empty($errors))	IF.

The	else	is	used	to	report	any	errors	in	the	form	(namely,	a	lack	of	a	first	name,	last	name,	or	email
address),	just	like	in	the	registration	script.

11.	Complete	the	submission	conditional:
}	//	End	of	submit	conditional.

The	 final	 closing	 brace	 completes	 the	 main	 submit	 conditional.	 In	 this	 example,	 the	 form	 will	 be



displayed	whenever	the	page	is	accessed.	After	submitting	the	form,	the	database	will	be	updated,	and
the	form	will	be	shown	again,	now	displaying	the	latest	information.

12.	Retrieve	the	information	for	the	user	being	edited:
Click	here	to	view	code	image

$q	=	"SELECT	first_name,

last_name,	email	FROM	users

WHERE	user_id=$id";

$r	=	@mysqli_query($dbc,	$q);

if	(mysqli_num_rows($r)	==	1)	{

$row	=	mysqli_fetch_array($r,

MYSQLI_NUM);

To	populate	the	form	elements,	the	current	information	for	the	user	must	be	retrieved	from	the	database.
This	query	is	like	the	one	in	delete_user.php.	The	conditional—checking	that	a	single	row	was
returned—ensures	that	a	valid	user	ID	was	provided.

13.	Display	the	form:
Click	here	to	view	code	image

echo	'<form	action="edit_user.php"

method="post">

<p>First	Name:	<input	type="text"

name="first_name"	size="15"

maxlength="15"	value="'	.

$row[0]	.	'"></p>

<p>Last	Name:	<input	type="text"

name="last_name"	size="15"

maxlength="30"	value="'	.

$row[1]	.	'"></p>

<p>Email	Address:	<input

type="email"	name="email"

size="20"	maxlength="60"

value="'	.	$row[2]	.	'">	</p>

<p><input	type="submit"

name="submit"	value="Submit">

</p>

<input	type="hidden"	name="id"

value="'	.	$id	.	'">

</form>';

The	 form	 has	 but	 three	 text	 inputs,	 each	 of	 which	 is	 made	 sticky	 using	 the	 data	 retrieved	 from	 the
database.	Again,	 the	user	ID	($id)	 is	stored	as	a	hidden	form	input	so	that	 the	handling	process	can
also	access	this	value.

14.	Complete	the	mysqli_num_rows()	conditional:
Click	here	to	view	code	image

}	else	{

		echo	'<p	class="error">This

page	has	been	accessed	in	error.

</p>';

}

If	no	record	was	returned	from	the	database	because	an	invalid	user	ID	was	submitted,	this	message	is
displayed.

15.	Complete	the	PHP	page:
Click	here	to	view	code	image

mysqli_close($dbc);



include('includes/footer.html');

?>

16.	 Save	 the	 file	 as	 edit_user.php	 and	 place	 it	 in	 your	 web	 directory	 (in	 the	 same	 folder	 as
view_users.php).

17.	Run	the	page	by	first	clicking	an	Edit	link	in	the	view_users.php	page	 	and	 .

The	new	values	are	displayed	in	the	form	after	successfully	updating	the	database	(compare	with	the
form	values	in	 ).

If	you	try	to	change	a	record	to	an	existing	email	address	or	if	you	omit	an	input,	errors	are	reported.

Tip
As	written,	the	sticky	form	always	shows	the	values	retrieved	from	the	database.	This	means	that
if	an	error	occurs,	the	database	values	will	be	used,	not	the	ones	the	user	just	entered	(if	those	are
different).	 To	 change	 this	 behavior,	 the	 sticky	 form	 would	 have	 to	 check	 for	 the	 presence	 of
$_POST	variables,	using	those	if	they	exist,	or	the	database	values	if	not.



Tip
This	 edit	 page	 does	 not	 include	 the	 functionality	 to	 change	 the	 password.	 That	 concept	 was
already	 demonstrated	 in	password.php	 (Script	 9.7).	 If	 you	 would	 like	 to	 incorporate	 that
functionality	here,	keep	in	mind	that	you	cannot	display	the	current	password,	since	it	is	stored	in
a	 hashed	 format	 (i.e.,	 it’s	 not	 decryptable).	 Instead,	 just	 present	 two	 boxes	 for	 changing	 the
password	(the	new	password	input	and	a	confirmation).	If	these	values	are	submitted,	update	the
password	in	the	database	as	well.	If	these	inputs	are	left	blank,	do	not	update	the	password	in	the
database.

Paginating	Query	Results
Pagination	 is	 a	concept	you’re	 familiar	with	even	 if	you	don’t	know	 the	 term.	When	you	use	a	 search
engine	 like	 Google,	 it	 displays	 the	 results	 as	 a	 series	 of	 pages	 and	 not	 as	 one	 long	 list.	 The
view_users.php	script	could	benefit	from	this	feature.
Paginating	query	results	makes	extensive	use	of	the	LIMIT	SQL	clause	introduced	in	Chapter	5.	LIMIT
restricts	which	subset	of	the	matched	records	is	returned.	To	paginate	the	returned	results	of	a	query,	each
iteration	of	the	page	will	run	the	same	query	using	different	LIMIT	parameters.	The	first	page	viewing
will	request	the	first	X	records;	the	second	page	viewing,	the	second	group	of	X	records;	and	so	forth.	To
make	this	work,	two	values	must	be	passed	from	page	to	page	in	the	URL,	like	the	user	IDs	passed	from
the	view_users.php	page.	The	first	value	is	the	total	number	of	pages	to	be	displayed.	The	second
value	 is	an	 indicator	of	which	 records	 the	page	should	display	with	 this	 iteration	 (i.e.,	where	 to	 begin
fetching	records).
Another,	more	 cosmetic	 technique	will	 be	 demonstrated	 here:	 displaying	 each	 row	 of	 the	 table—each
returned	record—using	an	alternating	background	color	 .	This	effect	will	be	achieved	with	ease,	using
the	ternary	operator	(see	the	sidebar	“The	Ternary	Operator”).

Alternating	the	table	row	colors	makes	this	list	of	users	more	legible	(every	other	row	has	a	light	gray
background).
There’s	a	lot	of	good,	new	information	to	be	covered	here,	so	to	make	it	easier	to	follow	along,	let’s	write
this	version	from	scratch	instead	of	trying	to	modify	Script	10.1.



To	paginate	view_users.php:
1.	 Begin	 a	 new	 PHP	 document	 in	 your	 text	 editor	 or	 IDE,	 to	 be	 named	view_users.php	 (Script
10.4):

Click	here	to	view	code	image
<?php	#	Script	10.4	–

view_users.php	#4

$page_title	=	'View	the	Current

Users';

include('includes/header.html');

echo	'<h1>Registered	Users</h1>';

require_once('../mysqli_

connect.php');

Script	10.4	This	new	version	of	view_users.php	incorporates	pagination	so	that	the	users	are	listed	over
multiple	browser	pages.
Click	here	to	view	code	image

1			<?php	#	Script	10.4	-	#4

2			//	This	script	retrieves	all	the	records	from	the	users	table.

3			//	This	new	version	paginates	the	query	results.

4			

5			$page_title	=	'View	the	Current	Users';

6			include('includes/header.html');

7			echo	'<h1>Registered	Users</h1>';

8			

9			require_once	('../mysqli_connect.php');

10		

11		//	Number	of	records	to	show	per	page:

12		$display	=	10;

13		

14		//	Determine	how	many	pages	there	are...

15		if	(isset($_GET['p'])	&&	is_numeric($_GET['p']))	{	//	Already	been	determined.

16		

17					$pages	=	$_GET['p'];

18		

19		}	else	{	//	Need	to	determine.

20		

21					//	Count	the	number	of	records:

22					$q	=	"SELECT	COUNT(user_id)	FROM	users";

23					$r	=	@mysqli_query($dbc,	$q);

24					$row	=	@mysqli_fetch_array($r,	MYSQLI_NUM);

25					$records	=	$row[0];

26		

27					//	Calculate	the	number	of	pages...

28					if	($records	>	$display)	{	//	More	than	1	page.

29								$pages	=	ceil	($records/$display);

30					}	else	{

31								$pages	=	1;

32					}

33		

34		}	//	End	of	p	IF.

35		

36		//	Determine	where	in	the	database	to	start	returning	results...

37		if	(isset($_GET['s'])	&&	is_numeric($_GET['s']))	{

38					$start	=	$_GET['s'];

39		}	else	{

40					$start	=	0;

41		}

42		



43		//	Define	the	query:

44		$q	=	"SELECT	last_name,	first_name,	DATE_FORMAT(registration_date,	'%M	%d,	%Y')	AS	dr,

				user_id	FROM	users	ORDER	BY	registration_date	ASC	LIMIT	$start,	$display";

45		$r	=	@mysqli_query($dbc,	$q);

46		

47		//	Table	header:

48		echo	'<table	width="60%">

49		<thead>

50		<tr>

51					<th	align="left"><strong>Edit</strong></th>

52					<th	align="left"><strong>Delete</strong></th>

53					<th	align="left"><strong>Last	Name</strong></th>

54					<th	align="left"><strong>First	Name</strong></th>

55					<th	align="left"><strong>Date	Registered</strong></th>

56		</tr>

57		</thead>

58		<tbody>

59		';

60		

61		//	Fetch	and	print	all	the	records....

62		

63		$bg	=	'#eeeeee';	//	Set	the	initial	background	color.

64		

65		while	($row	=	mysqli_fetch_array($r,	MYSQLI_ASSOC))	{

66		

67					$bg	=	($bg=='#eeeeee'	?	'#ffffff'	:	'#eeeeee');	//	Switch	the	background	color.

68		

69					echo	'<tr	bgcolor="'	.	$bg	.	'">

70								<td	align="left"><a	href="edit_user.php?id='	.	$row['user_id']	.	'">Edit</a></td>

71								<td	align="left"><a	href="delete_user.php?id='	.	$row['user_id']	.	'">Delete</a></td>

72								<td	align="left">'	.	$row['last_name']	.	'</td>

73								<td	align="left">'	.	$row['first_name']	.	'</td>

74								<td	align="left">'	.	$row['dr']	.	'</td>

75					</tr>

76					';

77		

78		}	//	End	of	WHILE	loop.

79		

80		echo	'</tbody></table>';

81		mysqli_free_result($r);

82		mysqli_close($dbc);

83		

84		//	Make	the	links	to	other	pages,	if	necessary.

85		if	($pages	>	1)	{

86		

87					//	Add	some	spacing	and	start	a	paragraph:

88					echo	'<br><p>';

89		

90					//	Determine	what	page	the	script	is	on:

91					$current_page	=	($start/$display)	+	1;

92		

93					//	If	it's	not	the	first	page,	make	a	Previous	link:

94					if	($current_page	!=	1)	{

95								echo	'<a	href="view_users.php?s='	.	($start	-	$display)	.	'&p='	.	$pages	.

										'">Previous</a>	';

96					}

97		

98					//	Make	all	the	numbered	pages:

99					for	($i	=	1;	$i	<=	$pages;	$i++)	{

100							if	($i	!=	$current_page)	{

101										echo	'<a	href="view_users.php?s='	.	(($display	*	($i	-	1)))	.	'&p='	.	$pages	.

													'">'	.	$i	.	'</a>	';

102							}	else	{



103										echo	$i	.	'	';

104							}

105				}	//	End	of	FOR	loop.

106		

107				//	If	it's	not	the	last	page,	make	a	Next	button:

108				if	($current_page	!=	$pages)	{

109							echo	'<a	href="view_users.php?s='	.	($start	+	$display)	.	'&p='	.	$pages	.

										'">Next</a>';

110				}

111		

112				echo	'</p>';	//	Close	the	paragraph.

113		

114	}	//	End	of	links	section.

115

116	include('includes/footer.html');

117	?>

2.	Set	the	number	of	records	to	display	per	page:
$display	=	10;

By	 establishing	 this	 value	 as	 a	 variable	 here,	 you’ll	make	 it	 easy	 to	 change	 the	 number	 of	 records
displayed	on	each	page	 later.	Also,	 this	value	will	be	used	multiple	 times	 in	 this	 script,	 so	 it’s	 best
represented	as	a	single	variable	(you	could	also	represent	this	value	as	a	constant,	if	you’d	rather).

3.	Check	if	the	number	of	required	pages	has	been	already	determined:
Click	here	to	view	code	image

if	(isset($_GET['p'])	&&

is_numeric($_GET['p']))	{

		$pages	=	$_GET['p'];

}	else	{

For	 this	 script	 to	display	 the	users	over	several	page	viewings,	 it	will	need	 to	determine	how	many
total	pages	of	results	will	be	required.	The	first	time	the	script	is	run,	this	number	must	be	calculated.
For	 every	 subsequent	 call	 to	 this	page,	 the	 total	number	of	pages	will	 be	passed	 to	 the	 script	 in	 the
URL,	making	 it	 available	 in	$_GET[‘p’].	 If	 this	 variable	 is	 set	 and	 is	 numeric,	 its	 value	will	 be
assigned	to	the	$pages	variable.	If	not,	then	the	number	of	pages	will	need	to	be	calculated.

4.	Count	the	number	of	records	in	the	database:
Click	here	to	view	code	image

$q	=	"SELECT	COUNT(user_id)	FROM

users";

$r	=	@mysqli_query($dbc,	$q);

$row	=	@mysqli_fetch_array($r,

MYSQLI_NUM);

$records	=	$row[0];

Using	 the	  	 function,	 introduced	 in	Chapter	7,	“Advanced	SQL	and	MySQL,”	 you	 can	 easily	 find	 the
number	 of	 records	 in	 the	users	 table	 (i.e.,	 the	 number	 of	 records	 to	 be	 paginated).	 This	 query	will
return	a	single	row	with	a	single	column:	the	number	of	records	 .



The	result	of	running	the	counting	query	in	the	mysql	client.

The	Ternary	Operator
This	example	uses	an	operator	not	introduced	before,	called	the	ternary	operator.	Its	structure
is
(condition)	?	valueT	:	valueF

The	condition	in	parentheses	will	be	evaluated;	if	it	is	TRUE,	the	first	value	will	be	returned
(valueT).	If	the	condition	is	FALSE,	the	second	value	(valueF)	will	be	returned.
Because	 the	 ternary	 operator	 returns	 a	 value,	 the	 entire	 structure	 is	 often	 used	 to	 assign	 a
value	to	a	variable	or	used	as	an	argument	for	a	function.	For	example,	the	line

Click	here	to	view	code	image

echo	(isset($var))	?	'SET'	:	'NOT	SET';

will	print	out	SET	or	NOT	SET,	depending	on	the	status	of	the	variable	$var.
In	 this	version	of	 the	view_users.php	 script,	 the	 ternary	operator	 is	used	 to	 toggle	 the
value	of	a	variable	between	two	options.	The	variable	itself	will	then	be	used	to	dictate	the
background	color	of	each	record	in	the	table.	There	are	certainly	other	ways	to	set	this	value,
but	the	ternary	operator	is	the	most	concise.

5.	Mathematically	calculate	how	many	pages	are	required:
Click	here	to	view	code	image

if	($records	>	$display)	{

		$pages	=	ceil	($records/$display);

}	else	{

		$pages	=	1;

}

The	number	of	pages	required	to	display	all	the	records	is	based	on	the	total	number	of	records	to	be
shown	and	the	number	to	display	per	page	(as	assigned	to	the	$display	variable).	If	there	are	more
records	 in	 the	 result	 set	 than	 there	 are	 records	 to	 be	 displayed	 per	 page,	 multiple	 pages	 will	 be
required.	To	calculate	exactly	how	many	pages,	 take	 the	next	highest	 integer	 from	the	division	of	 the
two	 (the	 ceil()	 function	 returns	 the	 next	 highest	 integer).	 For	 example,	 if	 there	 are	 25	 records
returned	and	10	are	being	displayed	per	page,	then	3	pages	are	required	(the	first	page	will	display	10,
the	second	page	10,	and	the	third	page	5).	If	$records	is	not	greater	than	$display,	only	one	page
is	necessary.

6.	Complete	the	number	of	pages	if-else:



}	//	End	of	p	IF.

7.	Determine	the	starting	point	in	the	database:
Click	here	to	view	code	image

if	(isset($_GET['s'])	&&	

is_numeric($_GET['s']))	{

		$start	=	$_GET['s'];

}	else	{

		$start	=	0;

}

The	second	parameter	 that	 the	script	will	 receive—on	subsequent	viewings	of	 the	page—will	be	 the
starting	record.	This	corresponds	to	the	first	number	in	a	LIMIT	x,	y	clause.	Upon	initially	calling
the	script,	the	first	ten	records—0	through	9—should	be	retrieved	(because	$display	has	a	value	of
10).	The	second	page	would	show	records	10	through	19;	the	third,	20	through	29;	and	so	forth.
The	 first	 time	 this	 page	 is	 accessed,	 the	$_GET[‘s’]	 variable	 will	 not	 be	 set,	 and	 so	$start
should	be	0	(the	first	 record	 in	a	LIMIT	 clause	 is	 indexed	at	0).	Subsequent	pages	will	 receive	 the
$_GET[‘s’]	variable	from	the	URL,	and	it	will	be	assigned	to	$start.

8.	Write	the	SELECT	query	with	a	LIMIT	clause:
Click	here	to	view	code	image

$q	=	"SELECT	last_name,

first_name,	DATE_FORMAT

(registration_date,	'%M	%d,	%Y')

AS	dr,	user_id

FROM	users

ORDER	BY	registration_date	ASC

LIMIT	$start,	$display";

$r	=	@mysqli_query($dbc,	$q);

The	LIMIT	clause	dictates	with	which	record	to	begin	retrieving	($start)	and	how	many	to	return
($display)	from	that	point.	The	first	time	the	page	is	run,	the	query	will	be	SELECT	last_name,
first_name	...	LIMIT	0,	10.	Clicking	to	the	next	page	will	result	in	SELECT	last_name,
first_name	...	LIMIT	10,	10.

9.	Create	the	HTML	table	header:
Click	here	to	view	code	image

echo	'<table	width="60%">

<thead>

<tr>

		<th	align="left"><strong>Edit

		 </strong></th>

		<th	align="left"><strong>

		 Delete</strong></th>

		<th	align="left"><strong>

		 Last	Name</strong></th>

		<th	align="left"><strong>

		 First	Name</strong></th>

		<th	align="left"><strong>

		 Date	Registered</strong></th>

</tr>

</thead>

<tbody>

';

To	simplify	this	script	a	bit,	I’m	assuming	that	there	are	records	to	be	displayed.	To	be	more	formal,



this	script,	prior	to	creating	the	table,	would	invoke	the	mysqli_num_rows()	function	and	have	a
conditional	that	confirms	that	some	records	were	returned.

10.	Initialize	the	background	color	variable:
$bg	=	'#eeeeee';

To	make	each	row	have	its	own	background	color,	we	use	a	variable	to	store	that	color.	To	start,	 the
$bg	variable	is	assigned	a	value	of	#eeeeee,	a	light	gray.	This	color	will	alternate	with	white	(#ffffff).

11.	Begin	the	while	loop	that	retrieves	every	record,	and	then	swap	the	background	color:
Click	here	to	view	code	image

while	($row	=	mysqli_fetch_array

($r,	MYSQLI_ASSOC))	{

$bg	=	($bg=	='#eeeeee'	?	'#ffffff'

:	'#eeeeee');

The	 background	 color	 used	 by	 each	 row	 in	 the	 table	 is	 assigned	 to	 the	$bg	 variable.	 Because	 the
background	color	should	alternate,	this	one	line	of	code	will,	upon	each	iteration	of	the	loop,	assign	the
opposite	color	to	$bg.	If	$bg	is	equal	to	#eeeeee,	then	it	will	be	assigned	the	value	of	#ffffff,	and	vice
versa	(again,	see	the	sidebar	for	the	syntax	and	explanation	of	the	ternary	operator).	For	the	first	row
fetched,	$bg	is	initially	equal	to	#eeeeee	(see	Step	10)	and	will	therefore	be	assigned	#ffffff,	making	a
white	background.	For	the	second	row,	$bg	is	not	equal	to	#eeeeee,	so	it	will	be	assigned	that	value,
making	a	gray	background.

12.	Print	the	records	in	a	table	row:
Click	here	to	view	code	image

echo	'<tr	bgcolor="'	.	$bg	.	'">

		<td	align="left"><a	href="edit_

		 user.php?id='	.	$row['user_id']

		 .	'">Edit</a></td>

		<td	align="left">

		 <a	href="delete_user.php?id='

		 .	$row['user_id']	.

		 '">Delete</a></td>

		<td	align="left">'	.

		 $row['last_name']	.	'</td>

		<td	align="left">'	.

		 $row['first_name']	.	'</td>

		<td	align="left">'	.

		 $row['dr']	.	'</td>

</tr>

';

This	code	differs	in	only	one	way	from	that	in	the	previous	version	of	this	script:	the	initial	TR	tag	now
includes	 the	 bgcolor	 attribute,	 whose	 value	 will	 be	 the	 $bg	 variable	 (so	 #eeeeee	 and	 #ffffff,
alternating).

13.	Complete	 the	while	 loop	and	 the	 table,	 free	up	 the	query	 result	 resources,	 and	close	 the	database
connection:
}	//	End	of	WHILE	loop.

echo	'</tbody></table>';

mysqli_free_result($r);

mysqli_close($dbc);

14.	Begin	a	section	for	displaying	links	to	other	pages,	if	necessary:
if	($pages	>	1)	{

	echo	'<br><p>';



If	 the	 script	 requires	multiple	 pages	 to	 display	 all	 the	 records,	 it	 needs	 the	 appropriate	 links	 at	 the
bottom	of	the	page	 .

15.	Determine	the	current	page	being	viewed:
Click	here	to	view	code	image

$current_page	=	($start/$display)

+	1;

To	make	the	links,	the	script	must	first	determine	the	current	page.	This	can	be	calculated	as	the	starting
number	 divided	 by	 the	 display	 number,	 plus	 1.	 For	 example,	 on	 the	 second	 viewing	 of	 this	 page,
$start	 will	 be	 10	 (because	 on	 the	 first	 instance,	$start	 is	 0),	 making	 the	$current_page
value	2:	(10/10)	+	1	=	2.

16.	Create	a	link	to	the	previous	page,	if	necessary:
Click	here	to	view	code	image

if	($current_page	!=	1)	{

		echo	'<a	href="view_users.

		 php?s='	.	($start	-	$display)

		 .	'&p='	.	$pages	.	'">Previous

		 </a>	';

}

If	the	current	page	is	not	the	first	page,	it	should	also	have	a	Previous	link	to	the	earlier	result	set	 .
This	isn’t	strictly	necessary,	but	it	is	nice.

The	Previous	link	will	appear	only	if	the	current	page	is	not	the	first	one	(compare	with	 ).
Each	 link	will	 be	made	 up	 of	 the	 script	 name,	 plus	 the	 starting	 point	 and	 the	 number	 of	 pages.	 The
starting	point	for	the	previous	page	will	be	the	current	starting	point	minus	the	number	being	displayed.
These	values	must	be	passed	in	every	link,	or	the	pagination	will	fail.

17.	Make	the	numeric	links:
Click	here	to	view	code	image

for	($i	=	1;	$i	<=	$pages;	$i++)	{

		if	($i	!=	$current_page)	{

				echo	'<a	href="view_

				 users.php?s='	.	(($display	*

				 ($i	-	1)))	.	'&p='	.	$pages

				 .	'">'	.	$i	.	'</a>	';

		}	else	{

				echo	$i	.	'	';

		}

}	//	End	of	FOR	loop.

The	bulk	of	the	links	will	be	created	by	looping	from	1	to	the	total	number	of	pages.	Each	page	will	be
linked	 except	 for	 the	 current	 one.	 For	 each	 link,	 the	 starting	 point	 value,	 s,	 will	 be	 calculated	 by
multiplying	the	number	of	records	to	display	per	page	times	one	less	than	$i.	For	example,	on	page	3,



$i	–	1	is	2,	meaning	s	will	be	20.
18.	Create	a	Next	link:
Click	here	to	view	code	image

if	($current_page	!=	$pages)	{

		echo	'<a	href="view_

		 users.php?s='	.	($start	+

		 $display)	.	'&p='	.	$pages	.

		 '">Next</a>';

}

Finally,	a	Next	page	link	will	be	displayed,	assuming	this	is	not	the	final	page	 .

The	final	results	page	will	not	display	a	Next	link	(compare	with	 	and	 ).
19.	Complete	the	page:
Click	here	to	view	code	image

		echo	'</p>';

}	//	End	of	links	section.

include('includes/footer.html');

?>

20.	Save	the	file	as	view_users.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser.

Tip
This	example	paginates	a	simple	query,	but	if	you	want	to	paginate	a	more	complex	query,	 like
the	results	of	a	search,	it’s	not	that	much	more	complicated.	The	main	difference	is	that	whatever
terms	are	used	in	the	query	must	be	passed	from	page	to	page	in	the	links.	If	the	main	query	is	not
exactly	the	same	from	one	viewing	of	the	page	to	the	next,	the	pagination	will	fail.

Tip
If	 you	 run	 this	 example	 and	 the	 pagination	 doesn’t	match	 the	 number	 of	 results	 that	 should	 be
returned	(for	example,	the	counting	query	indicates	there	are	150	records	but	the	pagination	only
creates	 3	 pages,	 with	 10	 records	 on	 each),	 it’s	 most	 likely	 because	 the	 main	 query	 and	 the
COUNT()	 query	 are	 too	 different.	 These	 two	 queries	 will	 never	 be	 the	 same,	 but	 they	 must
perform	the	same	join	(if	applicable)	and	have	the	same	WHERE	and/or	GROUP	BY	clauses	to	be
accurate.



Tip
No	error	handling	has	been	included	in	this	script,	since	I	know	the	queries	function	as	written.	If
you	have	problems,	remember	your	MySQL/SQL	debugging	steps:	print	the	query,	run	it	using	the
mysql	client	or	phpMyAdmin	to	confirm	the	results,	and	invoke	the	mysqli_error()	function
as	needed.

Making	Sortable	Displays
There’s	another	common	feature	that	could	be	added	to	view_users.php.	In	its	current	state,	the	list
of	users	 is	displayed	 in	order	by	 the	date	 they	registered.	 It	would	be	nice	 to	be	able	 to	view	them	by
name	as	well.
From	a	MySQL	perspective,	accomplishing	 this	 task	 is	easy:	 just	change	 the	ORDER	BY	 clause	of	 the
SELECT	query.	Therefore,	adding	a	sorting	feature	to	the	script	merely	requires	additional	PHP	code	that
will	 change	 the	ORDER	BY	 clause.	 A	 logical	 way	 to	 do	 this	 is	 to	 link	 the	 column	 headings	 so	 that
clicking	them	changes	the	display	order.	As	you	hopefully	can	guess,	this	involves	using	the	GET	method
to	pass	a	parameter	back	to	this	page	indicating	the	preferred	sort	order.

To	make	sortable	links:
1.	Open	view_users.php	(Script	10.4)	in	your	text	editor	or	IDE,	if	you	haven’t	already.
2.	After	determining	the	starting	point	($s),	define	a	$sort	variable	(Script	10.5):
Click	here	to	view	code	image

$sort	=	(isset($_GET['sort']))	?

$_GET['sort']	:	'rd';

Script	10.5	 This	 latest	 version	 of	 the	view_users.php	 script	 creates	 clickable	 links	 out	 of	 the	 table's
column	headings.
Click	here	to	view	code	image

1			<?php	#	Script	10.5	-	#5

2			//	This	script	retrieves	all	the	records	from	the	users	table.

3			//	This	new	version	allows	the	results	to	be	sorted	in	different	ways.

4			

5			$page_title	=	'View	the	Current	Users';

6			include('includes/header.html');

7			echo	'<h1>Registered	Users</h1>';

8			

9			require('../mysqli_connect.php');

10		

11		//	Number	of	records	to	show	per	page:

12		$display	=	10;

13		

14		//	Determine	how	many	pages	there	are...

15		if	(isset($_GET['p'])	&&	is_numeric($_GET['p']))	{	//	Already	been	determined.

16					$pages	=	$_GET['p'];

17		}	else	{	//	Need	to	determine.

18					//	Count	the	number	of	records:

19					$q	=	"SELECT	COUNT(user_id)	FROM	users";

20					$r	=	@mysqli_query($dbc,	$q);

21					$row	=	@mysqli_fetch_array($r,	MYSQLI_NUM);

22					$records	=	$row[0];

23					//	Calculate	the	number	of	pages...

24					if	($records	>	$display)	{	//	More	than	1	page.



25								$pages	=	ceil	($records/$display);

26					}	else	{

27								$pages	=	1;

28					}

29		}	//	End	of	p	IF.

30		

31		//	Determine	where	in	the	database	to	start	returning	results...

32		if	(isset($_GET['s'])	&&	is_numeric($_GET['s']))	{

33					$start	=	$_GET['s'];

34		}	else	{

35					$start	=	0;

36		}

37		

38		//	Determine	the	sort...

39		//	Default	is	by	registration	date.

40		$sort	=	(isset($_GET['sort']))	?	$_GET['sort']	:	'rd';

41		

42		//	Determine	the	sorting	order:

43		switch	($sort)	{

44					case	'ln':

45								$order_by	=	'last_name	ASC';

46								break;

47					case	'fn':

48								$order_by	=	'first_name	ASC';

49								break;

50					case	'rd':

51								$order_by	=	'registration_date	ASC';

52								break;

53					default:

54								$order_by	=	'registration_date	ASC';

55								$sort	=	'rd';

56								break;

57		}

58		

59		//	Define	the	query:

60		$q	=	"SELECT	last_name,	first_name,	DATE_FORMAT(registration_date,	'%M	%d,	%Y')	AS	dr,

				user_id	FROM	users	ORDER	BY	$order_by	LIMIT	$start,	$display";

61		$r	=	@mysqli_query($dbc,	$q);	//	Run	the	query.

62		

63		//	Table	header:

64		echo	'<table	width="60%">

65		<thead>

66		<tr>

67					<th	align="left"><strong>Edit</strong></th>

68					<th	align="left"><strong>Delete</strong></th>

69					<th	align="left"><strong><a	href="view_users.php?sort=ln">Last	Name</a></strong>

							</th>

70					<th	align="left"><strong><a	href="view_users.php?sort=fn">First	Name</a></strong>

							</th>

71					<th	align="left"><strong><a	href="view_users.php?sort=rd">Date	Registered</a>

							</strong></th>

72		</tr>

73		</thead>

74		<tbody>

75		';

76		

77		//	Fetch	and	print	all	the	records....

78		$bg	=	'#eeeeee';

79		while	($row	=	mysqli_fetch_array($r,	MYSQLI_ASSOC))	{

80					$bg	=	($bg=='#eeeeee'	?	'#ffffff'	:	'#eeeeee');

81								echo	'<tr	bgcolor="'	.	$bg	.	'">

82								<td	align="left"><a	href="edit_user.php?id='	.	$row['user_id']	.	'">Edit</a></td>

83								<td	align="left"><a	href="delete_user.php?id='	.	$row['user_id']	.	'">Delete</a></td>



84								<td	align="left">'	.	$row['last_name']	.	'</td>

85								<td	align="left">'	.	$row['first_name']	.	'</td>

86								<td	align="left">'	.	$row['dr']	.	'</td>

87					</tr>

88					';

89		}	//	End	of	WHILE	loop.

90		

91		echo	'</tbody></table>';

92		mysqli_free_result($r);

93		mysqli_close($dbc);

94		

95		//	Make	the	links	to	other	pages,	if	necessary.

96		if	($pages	>	1)	{

97		

98					echo	'<br><p>';

99					$current_page	=	($start/$display)	+	1;

100		

101				//	If	it's	not	the	first	page,	make	a	Previous	button:

102				if	($current_page	!=	1)	{

103							echo	'<a	href="view_users.php?s='	.	($start	-	$display)	.	'&p='	.	$pages	.	'&sort='	.	$sort	.	'">Previous</a>	';

104				}

105		

106				//	Make	all	the	numbered	pages:

107				for	($i	=	1;	$i	<=	$pages;	$i++)	{

108							if	($i	!=	$current_page)	{

109										echo	'<a	href="view_users.php?s='	.	(($display	*	($i	-	1)))	.	'&p='	.	$pages	.

													'&sort='	.	$sort	.	'">'	.	$i	.	'</a>	';

110							}	else	{

111										echo	$i	.	'	';

112							}

113				}	//	End	of	FOR	loop.

114		

115				//	If	it's	not	the	last	page,	make	a	Next	button:

116				if	($current_page	!=	$pages)	{

117							echo	'<a	href="view_users.php?s='	.	($start	+	$display)	.	'&p='	.	$pages	.

										'&sort='	.	$sort	.	'">Next</a>';

118				}

119		

120				echo	'</p>';	//	Close	the	paragraph.

121		

122	}	//	End	of	links	section.

123

124	include('includes/footer.html');

125	?>

The	$sort	variable	will	be	used	to	determine	how	the	query	results	are	to	be	ordered.	This	line	uses
the	ternary	operator	(see	the	sidebar	in	the	previous	section	of	the	chapter)	to	assign	a	value	to	$sort.
If	$_GET[‘sort’]	is	set,	which	will	be	the	case	after	the	user	clicks	any	link,	then	$sort	 should
be	assigned	that	value.	If	$_GET[‘sort’]	is	not	set,	then	$sort	is	assigned	a	default	value	of	rd
(short	for	registration	date).

3.	Determine	how	the	results	should	be	ordered:
Click	here	to	view	code	image

switch	($sort)	{

		case	'ln':

				$order_by	=	'last_name	ASC';

				break;

		case	'fn':

				$order_by	=	'first_name	ASC';

				break;

		case	'rd':



				$order_by	=

				 'registration_date	ASC';

				break;

		default:

				$order_by	=

				 'registration_date	A				SC';

				$sort	=	'rd';

				break;

}

The	switch	checks	$sort	against	several	expected	values.	If,	for	example,	it	is	equal	to	ln,	then	the
results	should	be	ordered	by	the	last	name	in	ascending	order.	The	assigned	$order_by	variable	will
be	used	in	the	SQL	query.
If	$sort	has	a	value	of	fn,	then	the	results	should	be	in	ascending	order	by	first	name.	If	the	value	is
rd,	then	the	results	will	be	in	ascending	order	of	registration	date.	This	is	also	the	default	case.	Having
this	 default	 case	 here	 protects	 against	 a	malicious	 user	 changing	 the	 value	 of	$_GET[‘sort’]	 to
something	that	could	break	the	query.

4.	Modify	the	query	to	use	the	new	$order_by	variable:
Click	here	to	view	code	image

$q	=	"SELECT	last_name,

first_name,	DATE_FORMAT

(registration_date,	'%M	%d,	%Y')

AS	dr,	user_id

FROM	users

ORDER	BY	$order_by

LIMIT	$start,	$display";

By	 this	 point,	 the	$order_by	 variable	 has	 a	 value	 indicating	 how	 the	 returned	 results	 should	 be
ordered	(for	example,	registration_date	ASC),	so	it	can	be	easily	added	to	the	query.	Remember	that
the	ORDER	BY	clause	comes	before	the	LIMIT	clause.	If	the	resulting	query	doesn’t	run	properly	for
you,	print	it	out	and	inspect	its	syntax.

5.	Modify	the	table	header	echo	statement	to	create	links	out	of	the	column	headings:
Click	here	to	view	code	image

echo	'<table	width="60%">

<thead>

<tr>

		<th	align="left"><strong>Edit

		 </strong></th>

		<th	align="left">

		 <strong>Delete</strong></th>

		<th	align="left"><strong>

		 <a	href="view_users.php?sort=

		 ln">Last	Name</a></strong>

		 </th>

		<th	align="left"><strong>

		 <a	href="view_users.php?sort=

		 fn">First	Name</a></strong>

		 </th>

		<th	align="left"><strong>

		 <a	href="view_users.php?sort=

		 rd">Date	Registered</a>

		 </strong></th>

</tr>

</thead>

<tbody>

';



To	turn	 the	column	headings	 into	clickable	 links,	 just	surround	 them	with	 the	A	 tag.	The	value	of	 the
href	 attribute	 for	 each	 link	 corresponds	 to	 the	 acceptable	 values	 for	$_GET[‘sort’]	 (see	 the
switch	in	Step	3).

6.	Modify	the	echo	statement	that	creates	the	Previous	link	so	that	the	sort	value	is	also	passed:
Click	here	to	view	code	image

echo	'<a	href="view_users.php?s='

.	($start	-	$display)	.	'&p='

.	$pages	.	'&sort='	.	$sort	.

'">Previous</a>	';

Add	another	name=value	pair	 to	the	Previous	 link	so	that	 the	sort	order	 is	also	sent	 to	each	page	of
results.	If	you	don’t,	then	the	pagination	will	fail,	because	the	ORDER	BY	clause	will	differ	from	one
page	to	the	next.

7.	Repeat	Step	6	for	the	numbered	pages	and	the	Next	link:
Click	here	to	view	code	image

echo	'<a	href="view_users.php?s='	

.	(($display	*	($i	-	1)))	.	'&p='	

.	$pages	.	'&sort='	.	$sort	.	

'">'	.	$i	.	'</a>	';

echo	'<a	href="view_users.php?s='	

.	($start	+	$display)	.	'&p='	

.	$pages	.	'&sort='	.	$sort	.	

'">Next</a>';

8.	Save	the	file	as	view_users.php,	place	it	 in	your	web	directory,	and	run	it	 in	your	browser	
and	 .

After	clicking	the	First	Name	column,	the	results	are	shown	in	ascending	order	by	first	name.



After	 clicking	 the	Last	 Name	 column,	 and	 then	 clicking	 to	 the	 second	 paginated	 display,	 the	 page
shows	the	second	group	of	results	in	ascending	order	by	last	name.

Tip
An	important	security	concept	was	also	demonstrated	in	this	example.	Instead	of	using	the	value
of	$_GET[‘sort’]	directly	in	the	query,	it’s	checked	against	assumed	values	in	a	switch.	If,
for	some	reason,	$_GET[‘sort’]	has	a	value	other	than	would	be	expected,	the	query	uses	a
default	sorting	order.	The	point	 is	 this:	don’t	make	assumptions	about	 received	data,	and	don’t
use	unvalidated	data	in	an	SQL	query.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	What	is	the	standard	sequence	of	steps	for	debugging	PHP-MySQL	problems	(explicitly	conveyed	at
the	end	of	Chapter	8)?
	What	are	the	two	ways	of	passing	values	to	a	PHP	script	(aside	from	user	input)?
	What	security	measures	do	the	delete_user.php	and	edit_user.php	scripts	take	to	prevent
malicious	or	accidental	deletions?
	 Why	 is	 it	 safe	 to	 use	 the	 $id	 value	 in	 queries	 without	 running	 it	 through
mysqli_real_escape_string()	first?
	In	what	situation	will	the	mysqli_affected_rows()	function	return	a	false	negative	(i.e.,	report

http://LarryUllman.com/forums/


that	no	records	were	affected	despite	the	fact	that	the	query	ran	without	error)?
	What	is	the	ternary	operator?	How	is	it	used?
	What	two	values	are	required	to	properly	paginate	query	results?
	How	do	you	alter	a	query	so	that	its	results	are	paginated?
	 If	 a	 paginated	query	 is	 based	on	 additional	 criteria	 (beyond	 those	 used	 in	 a	LIMIT	 clause),	what
would	happen	if	those	criteria	are	not	also	passed	along	in	every	pagination	link?
	Why	is	it	important	not	to	directly	use	the	value	of	$_GET[‘sort’]	in	a	query?
	Why	is	it	important	to	pass	the	sorting	value	along	in	each	pagination	link?

Pursue
	Change	 the	delete_user.php	and	edit_user.php	 pages	 so	 that	 they	both	display	 the	user
being	affected	in	the	browser	window’s	title	bar.
	Modify	edit_user.php	so	that	you	can	also	change	a	user’s	password.
	If	you’re	up	for	a	challenge,	modify	edit_user.php	so	that	the	form	elements’	values	come	from
$_POST,	if	set,	and	the	database	if	not.
	Change	the	value	of	the	$display	variable	in	view_users.php	to	alter	the	pagination.
	Paginate	another	query	result,	such	as	a	list	of	accounts	or	customers	found	in	the	banking	database.
	 Create	 delete	 and	 edit	 scripts	 for	 the	 banking	 database.	 You’ll	 have	 to	 factor	 in	 the	 foreign	 key
constraints	in	place,	which	limit,	for	example,	the	deletion	of	customers	that	still	have	accounts.













































































































































11.	Web	Application	Development

In	This	Chapter
Sending	Email
Handling	File	Uploads
PHP	and	JavaScript
Understanding	HTTP	Headers
Date	and	Time	Functions
Performing	Transactions
Review	and	Pursue

The	preceding	 two	 chapters	 focus	 on	 using	PHP	and	MySQL	 together	 (which	 is,	 after	 all,	 the	 primary
point	of	 this	book).	But	 there’s	 still	 a	 lot	of	PHP-centric	material	 to	be	covered.	Taking	a	quick	break
from	using	 PHP	with	MySQL,	 this	 chapter	 covers	 a	 handful	 of	 techniques	 that	 are	 often	 used	 in	more
complex	web	applications.
The	first	topic	covered	in	this	chapter	is	sending	email	using	PHP.	It’s	a	very	common	thing	to	do	and	is
surprisingly	simple	(assuming	that	the	server	is	properly	set	up).	After	that,	the	chapter	has	examples	that
cover:	handling	file	uploads	through	an	HTML	form,	using	PHP	and	JavaScript	together,	and	how	to	use
the	header()	function	to	manipulate	the	browser.	The	chapter	concludes	by	touching	on	some	of	the	date
and	time	functions	available	in	PHP.

Sending	Email
One	of	my	absolute	favorite	things	about	PHP	is	how	easy	it	is	to	send	an	email.	On	a	properly	configured
server,	the	process	is	as	simple	as	using	the	mail()	function:
mail(to,	subject,	body,	[headers]);

The	to	value	should	be	an	email	address	or	a	series	of	addresses,	separated	by	commas.	Any	of	these	are
allowed:

	email@example.com
	email1@example.com,	email2@example.com
	Actual	Name	<email@example.com>
	Actual	Name	<email@example.com>,	This	Name	<email2@example.com>

The	subject	value	will	create	the	email’s	subject	line,	and	body	is	where	you	put	the	contents	of	the	email.
To	make	things	more	legible,	variables	are	often	assigned	values	and	then	used	in	the	mail()	function	call:
Click	here	to	view	code	image

$to	=	'email@example.com';

$subject	=	'This	is	the	subject';

$body	=	'This	is	the	body.

It	goes	over	multiple	lines.';

mail($to,	$subject,	$body);

As	you	can	see	in	the	assignment	to	the	$body	variable,	you	can	create	an	email	message	that	goes	over
multiple	lines	by	having	the	text	do	exactly	that	within	the	quotation	marks.	You	can	also	use	the	newline



character	(\n)	within	double	quotation	marks	to	accomplish	this:
Click	here	to	view	code	image

$body	=	"This	is	the	body.\nIt	goes	

over	multiple	lines.";

This	 is	 all	 very	 straightforward,	 and	 there	 are	 only	 a	 couple	 of	 caveats.	 First,	 the	 subject	 line	 cannot
contain	the	newline	character	(\n).	Second,	each	line	of	the	body	should	be	no	longer	than	70	characters	in
length	 (this	 is	 more	 of	 a	 recommendation	 than	 a	 requirement).	 You	 can	 accomplish	 this	 using	 the
wordwrap()	function.	It	will	insert	a	newline	into	a	string	every	X	number	of	characters.	To	wrap	text	to
70	characters,	use
$body	=	wordwrap($body,	70);

PHP	mail()	Dependencies
PHP’s	mail()	 function	doesn’t	actually	send	 the	email	 itself.	 Instead,	 it	 tells	 the	mail	server
running	 on	 the	 computer	 to	 do	 so.	What	 this	means	 is	 that	 the	 computer	 on	which	 PHP	 is
running	must	have	a	working	mail	server	for	this	function	to	work.
If	you	have	a	computer	 running	a	Unix	variant	or	 if	you	are	 running	your	website	 through	a
professional	 host,	 this	 should	 not	 be	 a	 problem.	 But	 if	 you	 are	 running	 PHP	 on	 your	 own
desktop	or	laptop	computer,	you’ll	probably	need	to	make	adjustments.
If	 you	 are	 running	Windows	 and	have	 an	 Internet	 service	 provider	 (ISP)	 that	 provides	 you
with	an	SMTP	server	(like	smtp.comcast.net),	this	information	can	be	set	in	the	php.ini	 file
(see	 Appendix	 A,	 “Installation”).	 Unfortunately,	 this	 will	 only	 work	 if	 your	 ISP	 does	 not
require	 authentication—a	 username	 and	 password	 combination—to	 use	 the	 SMTP	 server.
Otherwise,	 you’ll	 need	 to	 install	 an	 SMTP	 server	 on	 your	 computer.	 There	 are	 plenty
available;	just	search	the	Internet	for	free	windows	smtp	server	and	you’ll	see	some	options.
The	XAMPP	application,	which	Appendix	A	recommends	you	use,	includes	the	Mercury	mail
server.
If	you	are	running	macOS,	you’ll	need	to	enable	the	built-in	SMTP	server	(either	sendmail	or
postfix,	depending	on	the	specific	version	you	are	running).	You	can	find	instructions	online
for	 doing	 so	 (search	 with	 enable	 sendmail	 “macOS”).	 If	 you’re	 using	 MAMP,	 per	 the
recommendation	in	Appendix	A,	search	online	for	sending	email	with	MAMP.

The	mail()	function	takes	a	fourth,	optional	parameter	for	additional	headers.	This	is	where	you	could	set
the	From,	Reply-To,	Cc,	Bcc,	and	similar	settings.	For	example:
Click	here	to	view	code	image

mail($to,	$subject,	$body,	

'From:	reader@example.com');

To	use	multiple	headers	of	different	types	in	your	email,	separate	each	with	\r\n:
Click	here	to	view	code	image

$headers	=	"From:	John@example.com	

\r\n";

$headers	.=	"Cc:	Jane@example.com,	

Joe@example.com\r\n";

mail($to,	$subject,	$body,	$headers);

Although	 this	 fourth	argument	 is	optional,	 it	 is	advised	 that	you	always	 include	a	From	value	(although



that	can	also	be	established	in	PHP’s	configuration	file).
To	use	 the	mail()	 function,	 let’s	create	a	page	 that	 shows	a	contact	 form	 	and	 then	handles	 the	 form
submission,	validating	the	data	and	sending	it	along	in	an	email.	This	example	will	also	provide	a	nice	tip
you’ll	sometimes	use	on	pages	with	sticky	forms.

	A	standard	contact	form.
Note	two	things	before	running	this	script:	First,	for	this	example	to	work,	the	computer	on	which	PHP	is
running	must	have	a	working	mail	server.	If	you’re	using	a	hosted	site,	this	shouldn’t	be	an	issue;	on	your
own	computer,	you’ll	likely	need	to	take	preparatory	steps	(see	the	accompanying	sidebar).	I	will	say	in
advance	that	these	steps	can	be	daunting	for	the	beginner;	it	will	likely	be	easiest	and	most	gratifying	to
use	a	hosted	site	for	this	particular	script.
Second,	this	example,	while	functional,	could	be	manipulated	by	bad	people,	allowing	them	to	send	spam
through	 your	 contact	 form	 (not	 just	 to	 you	 but	 to	 anyone).	 The	 steps	 for	 preventing	 such	 attacks	 are
provided	in	Chapter	13,	“Security	Methods.”	Following	along	and	testing	this	example	is	just	fine;	relying
on	it	as	your	long-term	contact	form	solution	is	a	bad	idea.

To	send	email:
1.	Begin	a	new	PHP	script	in	your	text	editor	or	IDE,	to	be	named	email.php	(Script	11.1):
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Contact	Me</title>

</head>

<body>

<h1>Contact	Me</h1>

<?php	#	Script	11.1	-	email.php

Script	11.1	This	page	displays	a	contact	 form	that,	upon	submission,	will	send	an	email	with	 the	form
data	to	an	email	address.



Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Contact	Me</title>

6			</head>

7			<body>

8			<h1>Contact	Me</h1>

9			<?php	#	Script	11.1	-	email.php

10				

11		//	Check	for	form	submission:

12		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

13				

14					//	Minimal	form	validation:

15					if	(!empty($_POST['name'])	&&	!empty($_POST['email'])	&&	!empty($_POST['comments'])	)	{

16				

17								//	Create	the	body:

18								$body	=	"Name:	{$_POST['name']}\n\nComments:	{$_POST['comments']}";

19				

20								//	Make	it	no	longer	than	70	characters	long:

21								$body	=	wordwrap($body,	70);

22				

23								//	Send	the	email:

24								mail('your_email@example.com',	'Contact	Form	Submission',	$body,	"From:	{$_POST['email']}");

25				

26								//	Print	a	message:

27								echo	'<p><em>Thank	you	for	contacting	me.	I	will	reply	some	day.</em></p>';

28				

29								//	Clear	$_POST	(so	that	the	form's	not	sticky):

30								$_POST	=	[];

31				

32					}	else	{

33								echo	'<p	style="font-weight:	bold;	color:	#C00">Please	fill	out	the	form	completely.	</p>';

34					}

35				

36		}	//	End	of	main	isset()	IF.

37				

38		//	Create	the	HTML	form:

39		?>

40		<p>Please	fill	out	this	form	to	contact	me.</p>

41		<form	action="email.php"	method="post">

42					<p>Name:	<input	type="text"	name="name"	size="30"	maxlength="60"	value="<?php	if

							(isset($_POST['name']))	echo	$_POST['name'];	?>"></p>

43					<p>Email	Address:	<input	type="email"	name="email"	size="30"	maxlength="80"	value="<?php	if

							(isset($_POST['email']))	echo	$_POST['email'];	?>"></p>

44					<p>Comments:	<textarea	name="comments"	rows="5"	cols="30"><?php	if

							(isset($_POST['comments']))	echo	$_POST['comments'];	?></textarea></p>

45					<p><input	type="submit"	name="submit"	value="Send!"></p>

46		</form>

47		</body>

48		</html>

None	of	the	examples	in	this	chapter	will	use	a	template,	like	those	in	the	past	two	chapters,	so	it	starts
with	the	standard	HTML.

2.	Create	the	conditional	for	checking	if	the	form	has	been	submitted	and	validate	the	form	data:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==

'POST')	{



		if	(!empty($_POST['name'])	&&

!empty($_POST['email'])	&&

!empty($_POST['comments'])	)	{

The	form	contains	three	text	inputs	(technically,	one	is	a	textarea).	The	empty()	function	will	confirm
that	 something	was	 entered	 into	 each.	 In	Chapter	13,	 you’ll	 learn	how	 to	use	 the	Filter	 extension	 to
confirm	that	the	supplied	email	address	has	a	valid	format.

3.	Create	the	body	of	the	email:
Click	here	to	view	code	image

$body	=	"Name:	{$_POST['name']}\n\n

Comments:	{$_POST['comments']}";

$body	=	wordwrap($body,	70);

The	email’s	body	will	start	with	the	prompt	Name:,	followed	by	the	name	entered	into	the	form.	Then
the	same	treatment	is	given	to	the	comments.	The	wordwrap()	function	then	formats	the	whole	body	so
that	each	line	is	only	70	characters	long.

4.	Send	the	email	and	print	a	message	in	the	browser:
Click	here	to	view	code	image

mail('your_email@example.com',

'Contact	Form	Submission',

$body,	"From:	{$_POST['email']}");

echo	'<p><em>Thank	you	for

contacting	me.	I	will	reply

some	day.</em></p>';

Assuming	the	server	is	properly	configured,	this	one	line	will	send	the	email.	You	will	need	to	change
the	to	value	to	your	actual	email	address.	The	From	value	will	be	the	email	address	from	the	form.	The
subject	will	be	a	literal	string.
There’s	 no	 easy	 way	 of	 confirming	 that	 the	 email	 was	 successfully	 sent,	 let	 alone	 received,	 but	 a
generic	message	is	printed.

5.	Clear	the	$_POST	array;
$_POST	=	[];

In	 this	example,	 the	form	will	always	be	shown,	even	upon	successful	submission.	The	form	will	be
sticky	in	case	the	user	omitted	something	 .	However,	if	the	mail	was	sent,	there’s	no	need	to	show
the	values	 in	 the	form	again.	To	avoid	that,	 the	$_POST	array	can	be	cleared	of	 its	values	using	 the
short	array	syntax.



	The	contact	form	will	remember	the	user-supplied	values.
6.	Complete	the	conditionals:
Click	here	to	view	code	image

		}	else	{

				echo	'<p	style="font-weight:

				 bold;	color:	#C00">

				 Please	fill	out	the	form

				 completely.</p>';

		}

}	//	End	of	main	isset()	IF.

?>

The	error	message	contains	some	inline	CSS	so	that	the	error	appears	as	red	and	bold.
7.	Begin	the	form:
Click	here	to	view	code	image

<p>Please	fill	out	this	form	to

contact	me.</p>

<form	action="email.php"

method="post">

		<p>Name:	<input	type="text"

		 name="name"	size="30"

		 maxlength="60"	value="<?php

		 if	(isset($_POST['name']))	echo

		 $_POST['name'];	?>"></p>

		<p>Email	Address:	<input

		 type="email"	name="email"

		 size="30"	maxlength="80"

		 value="<?php	if	(isset($_POST

		 ['email']))	echo	$_POST

		 ['email'];	?>"></p>

The	form	will	submit	back	to	this	same	page	using	the	POST	method.	The	first	two	inputs	are	of	type
text;	both	are	made	sticky	by	checking	if	 the	corresponding	$_POST	variable	has	a	value.	 If	so,	 that



value	is	printed	as	the	current	value	for	that	input.	Because	the	$_POST	array	is	cleared	out	in	Step	5,
$_POST[‘name’]	 and	 the	 like	 will	 not	 be	 set	 when	 this	 form	 is	 viewed	 again,	 after	 its	 previous
successful	completion	and	submission.

8.	Complete	the	form:
Click	here	to	view	code	image

		<p>Comments:	<textarea

		 name="comments"	rows="5"

		 cols="30"><?php	if	(isset

		 ($_POST['comments']))	echo

		 $_POST['comments'];

		 ?></textarea></p>

		<p><input	type="submit"

		 name="submit"	value="Send!">

		 </p>

</form>

The	comments	input	is	a	textarea,	which	does	not	use	a	value	attribute.	Instead,	to	be	made	sticky,	the
value	is	printed	between	the	opening	and	closing	textarea	tags.

9.	Complete	the	HTML	page:
</body>

</html>

10.	Save	the	file	as	email.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	Successful	completion	and	submission	of	the	form.
11.	Check	your	email	to	confirm	that	you	received	the	message	 .



	The	resulting	email	(from	the	data	in	 ,	albeit	using	a	different	From	address).
If	 you	don’t	 actually	 get	 the	 email,	 you’ll	 need	 to	 do	 some	debugging	work.	With	 this	 example,	 you
should	confirm	with	your	host	(if	using	a	hosted	site)	or	yourself	(if	running	PHP	on	your	server)	that
there’s	a	working	mail	server	installed.	You	should	also	test	 this	using	different	email	addresses	(for
both	the	to	and	from	values).	Also,	watch	that	your	spam	filter	isn’t	eating	up	the	message.

Tip
The	mail()function	 takes	an	optional	 fifth	argument,	 for	 additional	parameters	 to	be	 sent	 to	 the
mail-sending	application.

Tip
The	mail()	function	returns	a	1	or	a	0	indicating	the	success	of	the	function	call.	This	is	not	the
same	 thing	 as	 the	 email	 successfully	 being	 sent	 or	 received.	Again,	 you	 cannot	 easily	 test	 for
either	using	PHP.

Tip
Although	it’s	easy	to	send	a	simple	message	with	the	mail()	function,	sending	HTML	emails	or
emails	with	attachments	involves	more	work.	I	discuss	how	you	can	do	both	in	my	book	PHP	5
Advanced:	Visual	QuickPro	Guide	(Peachpit	Press,	2007).

Handling	File	Uploads
Chapters	 2,	 “Programming	 with	 PHP,”	 and	 3,	 “Creating	 Dynamic	 Web	 Sites,”	 go	 over	 the	 basics	 of
handling	HTML	forms	with	PHP.	For	the	most	part,	every	type	of	form	element	can	be	handled	the	same	in
PHP,	with	 one	 exception:	 file	 uploads.	 The	 process	 of	 uploading	 a	 file	 has	 two	 dimensions.	 First	 the
HTML	form	must	be	displayed,	with	the	proper	code	to	allow	for	file	uploads.	Upon	submission	of	the
form,	the	server	will	first	store	the	uploaded	file	in	a	temporary	directory,	so	the	next	step	is	for	the	PHP
script	to	copy	the	uploaded	file	to	its	final	destination.
For	this	process	to	work,	several	things	must	be	in	place:

	PHP	must	run	with	the	correct	settings.
	A	temporary	storage	directory	must	exist	with	the	correct	permissions.



	The	final	storage	directory	must	exist	with	the	correct	permissions.
The	next	section	will	cover	the	server	setup	to	allow	for	file	uploads;	then	I’ll	show	you	how	to	create	a
PHP	script	that	does	the	uploading.

Allowing	for	file	uploads
As	I	said,	certain	settings	must	be	established	for	PHP	to	be	able	to	handle	file	uploads.	I’ll	first	discuss
why	or	when	you’d	need	to	make	these	adjustments	before	walking	you	through	the	steps.
The	first	issue	is	PHP	itself.	There	are	several	settings	in	PHP’s	configuration	file	(php.ini)	 that	dictate
how	PHP	handles	uploads,	specifically	stating	how	large	of	a	file	can	be	uploaded	and	where	the	upload
should	temporarily	be	stored	(Table	11.1).	Generally	speaking,	you’ll	need	to	edit	this	file	if	any	of	these
conditions	apply:

TABLE	11.1	File	Upload	Configurations
Setting Value	Type Importance
file_uploads Boolean Enables	PHP	support	for	file	uploads
max_input_time integer Indicates	how	long,	in	seconds,	a	PHP	script	is	allowed	to	run
post_max_size integer Size,	in	bytes,	of	the	total	allowed	POST	data
upload_max_filesize integer Size,	in	bytes,	of	the	largest	possible	file	upload	allowed
upload_tmp_dir string Indicates	where	uploaded	files	should	be	temporarily	stored

	file_uploads	is	disabled.
	PHP	has	no	temporary	directory	to	use.
	You	will	be	uploading	very	large	files	(larger	than	2	MB).

If	you	don’t	have	access	to	your	php.ini	file—if	you’re	using	a	hosted	site,	for	example—presumably	the
host	has	already	configured	PHP	to	allow	for	file	uploads.
The	second	issue	is	the	location	of,	and	permissions	on,	the	temporary	directory.	This	is	where	PHP	will
store	the	uploaded	file	until	your	PHP	script	moves	it	to	its	final	destination.	If	you	installed	PHP	on	your
own	Windows	computer,	you	might	need	to	take	steps	here.	macOS	and	Unix	users	need	not	worry	about
this—a	temporary	directory	already	exists	for	such	purposes	(a	special	directory	called	/tmp).
Finally,	the	destination	folder	must	be	created	and	have	the	proper	permissions	established	on	it.	This	is	a
step	that	everyone	must	take	for	every	application	that	handles	file	uploads.	Because	there	are	important
security	 issues	 involved	 in	 this	 step,	 please	 also	make	 sure	 that	 you	 read	 and	 understand	 the	 sidebar
“Secure	Folder	Permissions.”
With	all	of	this	in	mind,	let’s	go	through	the	steps.



Secure	Folder	Permissions
There’s	 normally	 a	 trade-off	 between	 security	 and	 convenience.	With	 this	 example,	 it’d	 be
more	 convenient	 to	 place	 the	 uploads	 folder	 within	 the	 web	 document	 directory	 (the
convenience	 arises	with	 respect	 to	 how	 easily	 the	 uploaded	 images	 can	 be	 viewed	 in	 the
browser),	but	doing	that	is	less	secure.
For	PHP	to	be	able	to	place	files	in	the	uploads	folder,	it	needs	to	have	write	permissions	on
that	directory.	On	most	servers,	PHP	is	running	as	the	same	user	as	the	web	server	itself.	On	a
hosted	server,	this	means	that	all	X	number	of	sites	being	hosted	are	running	as	the	same	user.
Creating	a	folder	that	PHP	can	write	 to	means	creating	a	 folder	 that	everyone	can	write	 to.
Literally	anyone	with	a	site	hosted	on	the	server	can	now	move,	copy,	or	write	files	to	your
uploads	 folder	 (assuming	 that	 they	 know	 it	 exists).	 This	 even	means	 that	 a	malicious	 user
could	copy	a	troublesome	PHP	script	to	your	uploads	directory.	However,	since	the	uploads
directory	in	this	example	is	not	within	the	web	directory,	such	a	PHP	script	cannot	be	run	in	a
browser.	It’s	less	convenient	to	do	things	this	way,	but	more	secure.
If	you	must	keep	the	uploads	folder	publicly	accessible,	and	if	you’re	using	the	Apache	web
server,	you	could	 limit	 access	 to	 the	uploads	 folder	using	an	 .htaccess	 file.	Basically,	 you
would	state	 that	only	 image	files	 in	 the	folder	be	publicly	viewable,	meaning	 that	even	 if	a
PHP	script	were	to	be	placed	there,	it	could	not	be	executed.	Or,	because	you’ll	learn	how	to
use	 proxy	 scripts	 later	 in	 this	 chapter,	 you	 could	 deny	 all	 external	 access	 to	 that	 folder.
Information	on	how	to	use	.htaccess	files	can	be	found	in	Appendix	A.
Sometimes	 even	 the	 most	 conservative	 programmer	 will	 make	 security	 concessions.	 The
important	point	is	that	you’re	aware	of	the	potential	concerns	and	that	you	do	the	most	you	can
to	minimize	the	danger.

To	prepare	the	server:
1.	Run	the	phpinfo()	function	to	confirm	your	server	settings	 .



	A	phpinfo()	script	returns	all	the	information	regarding	your	PHP	setup,	including	all	the	file-upload
handling	stuff.
The	phpinfo()	 function	 prints	 out	 a	 slew	 of	 information	 about	 your	 PHP	 setup.	 It’s	 one	 of	 the	most
important	functions	in	PHP,	if	not	the	most	(in	my	opinion).	Search	for	the	settings	listed	in	Table	11.1
and	 confirm	 their	 values.	 Make	 sure	 that	 file_uploads	 has	 a	 value	 of	 On	 and	 that	 the	 limit	 for
upload_max_filesize	(2	MB,	by	default)	and	post_max_size	(8	MB)	won’t	be	a	restriction	for	you.	If
you	are	running	PHP	on	Windows,	see	whether	upload_tmp_dir	has	a	value.	If	it	doesn’t,	that	might	be
a	problem	(you’ll	know	for	certain	after	running	the	PHP	script	that	handles	the	file	upload).	For	non-
Windows	users,	if	this	value	says	no	value,	that’s	perfectly	fine.
By	the	way,	another	advantage	of	using	an	all-in-one	installer,	such	as	XAMPP	for	Windows	or	MAMP
for	macOS,	is	that	the	installer	should	properly	configure	these	settings,	too.

2.	If	necessary,	open	php.ini	in	your	text	editor.
If	there’s	anything	you	saw	in	Step	1	that	needs	to	be	changed,	or	if	something	happens	when	you	go	to
handle	 a	 file	 upload	 using	 PHP,	 you’ll	 need	 to	 edit	 the	 php.ini	 file.	 To	 find	 this	 file,	 see	 the
Configuration	File	(php.ini)	path	value	in	the	phpinfo()	output.	This	indicates	exactly	where	this	file
is	on	your	computer	(also	see	Appendix	A	for	more).
If	 you	 are	 not	 allowed	 to	 edit	 your	php.ini	 file	 (if,	 for	 instance,	 you’re	 using	 a	 hosted	 server),	 then
presumably	any	necessary	edits	would	have	already	been	made	to	allow	for	file	uploads.	If	not,	you’ll
need	to	request	these	changes	from	your	hosting	company	(which	may	or	may	not	agree	to	make	them).

3.	Search	the	php.ini	file	for	the	configuration	to	be	changed	and	make	any	edits	 .



	The	File	Uploads	subsection	of	the	php.ini	file.
For	example,	in	the	File	Uploads	section,	you’ll	see	these	three	lines:
file_uploads	=	On

;upload_tmp_dir	=

upload_max_filesize	=	2M

The	first	line	dictates	whether	or	not	uploads	are	allowed.	The	second	states	where	the	uploaded	files
should	be	temporarily	stored.	On	most	operating	systems,	including	macOS	and	Unix,	this	setting	can	be
left	commented	out	(preceded	by	a	semicolon)	without	any	problem.
If	you	are	running	Windows	and	need	to	create	a	temporary	directory,	set	this	value	to	C:\tmp,	making
sure	that	the	line	is	not	preceded	by	a	semicolon.	Again,	using	XAMPP	on	Windows	7,	I	did	not	need	to
create	a	temporary	directory,	so	you	may	be	able	to	get	away	without	one	too.
Finally,	a	maximum	upload	file	size	is	set	(the	M	is	shorthand	for	megabytes	in	configuration	settings).

4.	Save	the	php.ini	file	and	restart	your	web	server.
How	you	restart	your	web	server	depends	on	the	operating	system	and	web-serving	application	being
used.	See	Appendix	A	for	instructions.

5.	Confirm	the	changes	by	rerunning	the	phpinfo()	script.
Before	going	any	further,	confirm	that	the	necessary	changes	have	been	enacted	by	repeating	Step	1.

6.	If	you	are	running	Windows	and	need	to	create	a	temporary	directory,	add	a	tmp	folder	within	C:\	and
make	sure	that	everyone	can	write	to	that	directory	 .



	Windows	users	need	to	make	sure	that	the	C:\tmp	(or	whatever	directory	is	used)	is	writable	by	PHP.
PHP,	through	your	web	server,	will	temporarily	store	the	uploaded	file	in	the	upload_tmp_dir.	For	this
to	work,	the	web	user	(if	your	web	server	runs	as	a	particular	user)	must	have	permission	to	write	to
the	folder.
In	all	likelihood,	you	may	not	have	to	change	the	permissions,	but	to	do	so,	depending	on	what	version
of	Windows	you	are	running,	you	can	normally	adjust	the	permissions	by	right-clicking	the	folder	and
selecting	Properties.	Within	the	Properties	window	there	should	be	a	Security	tab,	where	you	can	set
permissions.	 It	 may	 also	 be	 under	 Sharing.	 Windows	 uses	 a	 more	 lax	 permissions	 system,	 so	 you
probably	won’t	have	to	change	anything	unless	the	folder	is	deliberately	restricted.
macOS	and	Unix	users	can	skip	this	step	since	the	temporary	directory—	/tmp—has	open	permissions
already.	XAMPP	on	Windows	also	creates	its	own	temp	directory	for	you.

7.	Create	a	new	directory,	called	uploads,	in	a	directory	outside	of	the	web	root	directory.
All	of	the	uploaded	files	will	be	permanently	stored	in	the	uploads	directory.	If	you’ll	be	placing	your
PHP	script	in	the	C:\xampp\htdocs\ch11	directory,	then	create	a	C:\xampp\uploads	directory.	Or	if	the
files	 are	 going	 in	 /Users/~<username>/Sites/ch11,	 make	 a	 /Users/~<username>/uploads	 folder.
Figure	 	 shows	 the	 structure	 you	 should	 establish,	 and	 the	 sidebar	 discusses	 why	 this	 step	 is
necessary.



	Assuming	that	htdocs	is	the	web	root	directory	(http://www.example.com	or	http://localhost	points
there),	then	the	uploads	directory	needs	to	be	placed	outside	of	it.
8.	Set	the	permissions	on	the	uploads	directory	so	that	the	web	server	can	write	to	it.
Again,	Windows	users	can	use	 the	Properties	window	to	make	 these	changes,	although	it	may	not	be
necessary.	And	macOS	users	can…
A.	Select	the	folder	in	the	Finder.
B.	Press	Command+I.
C.	Allow	everyone	to	Read	&	Write,	under	the	Sharing	&	Permissions	panel	 .



	Adjusting	the	properties	on	the	uploads	folder	in	macOS.
If	you’re	using	a	hosted	site,	 the	host	 likely	provides	a	control	panel	 through	which	you	can	 tweak	a
folder’s	settings,	or	you	might	be	able	to	do	this	within	your	FTP	application.
Depending	on	your	operating	system,	you	may	be	able	to	upload	files	without	first	taking	this	step.	You
can	try	the	following	script	before	altering	the	permissions,	just	to	see.	If	you	see	messages	like	those	in

,	then	you	will	need	to	make	some	adjustments.



	If	PHP	could	not	move	the	uploaded	image	over	to	the	uploads	folder	because	of	a	permissions	issue,
you’ll	see	an	error	message	like	this	one.	Fix	the	permissions	on	uploads	to	correct	this.

Tip
Unix	users	can	use	the	chmod	command	to	adjust	a	folder’s	permissions.	The	proper	permissions
in	Unix	terms	can	be	either	755	or	777.

Tip
Because	 of	 the	 time	 it	 can	 take	 to	 upload	 a	 large	 file,	 you	 may	 also	 need	 to	 change	 the
max_input_time	 value	 in	 the	 php.ini	 file	 or	 temporarily	 bypass	 it	 using	 the	 set_time_limit()
function	in	your	script.

Tip
File	and	directory	permissions	can	be	complicated	stuff,	particularly	if	you’ve	never	dealt	with
them	before.	If	you	have	problems	with	these	steps	or	the	next	script,	search	the	web	or	turn	to	the
book’s	corresponding	forum	(www.LarryUllman.com/forums/).

Uploading	files	with	PHP
Now	that	the	server	has	(hopefully)	been	set	up	to	properly	allow	for	file	uploads,	you	can	create	the	PHP
script	that	does	the	actual	file	handling.	There	are	two	parts	to	such	a	script:	the	HTML	form	and	the	PHP
code.
The	required	syntax	for	a	form	to	handle	a	file	upload	has	three	parts:
Click	here	to	view	code	image

<form	enctype="multipart/form-data"

action="script.php"	method="post">

<input	type="hidden"

name="MAX_FILE_SIZE"	value="30000">

http://www.LarryUllman.com/forums/


File	<input	type="file"

name="upload">

The	enctype	part	of	the	initial	form	tag	indicates	that	the	form	should	be	able	to	handle	multiple	types	of
data,	including	files.	If	you	want	to	accept	file	uploads,	you	must	include	this	enctype!	Also	note	that	the
form	must	use	the	POST	method.	The	MAX_FILE_SIZE	hidden	input	is	a	form	restriction	on	how	large
the	 chosen	 file	 can	 be,	 in	 bytes,	 and	must	 come	 before	 the	 file	 input.	Although	 it’s	 easy	 for	 a	 user	 to
circumvent	this	restriction,	it	should	still	be	used.	Finally,	the	file	input	type	will	create	the	proper	button
in	the	form	( 	and	 ).

	The	file	input	as	it	appears	in	Edge	on	Windows.

	The	file	input	as	it	appears	in	Google	Chrome	on	macOS.
Upon	form	submission,	the	uploaded	file	can	be	accessed	using	the	$_FILES	superglobal.	The	variable
will	be	an	array	of	values,	listed	in	Table	11.2.

TABLE	11.2	The	$_FILES	Array
Index Meaning
name The	original	name	of	the	file	(as	it	was	on	the	user’s	computer)
type The	MIME	type	of	the	file,	as	provided	by	the	browser
size The	size	of	the	uploaded	file	in	bytes
tmp_name The	temporary	filename	of	the	uploaded	file	as	it	was	stored	on	the	server
error The	error	code	associated	with	any	problem

Once	the	file	has	been	received	by	the	PHP	script,	the	move_uploaded_file()	function	can	transfer	it	from
the	temporary	directory	to	its	permanent	location.
Click	here	to	view	code	image

move_uploaded_file

(temporary_filename,

/path/to/destination/filename);

This	next	script	will	let	the	user	select	a	file	on	his	or	her	computer	and	will	then	store	it	in	the	uploads
directory.	The	script	will	check	that	the	file	is	of	an	image	type,	specifically	a	JPEG	or	PNG.	In	the	next
section	of	this	chapter,	another	script	will	list,	and	create	links	to,	the	uploaded	images.

To	handle	file	uploads	in	PHP:
1.	Create	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	upload_image.php	(Script	11.2):
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Upload	an	Image</title>

		<style>



		.error	{

				font-weight:	bold;

				color:	#C00;

		}

		</style>

</head>

<body>

<?php	#	Script	11.2	-

upload_image.php

Script	11.2	This	script	allows	the	user	to	upload	an	image	file	from	their	computer	to	the	server.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Upload	an	Image</title>

6						<style	type="text/css"	title="text/css"	media="all">

7						.error	{

8									font-weight:	bold;

9									color:	#C00;

10					}

11					</style>

12		</head>

13		<body>

14		<?php	#	Script	11.2	-	upload_image.php

15				

16		//	Check	if	the	form	has	been	submitted:

17		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

18		

19					//	Check	for	an	uploaded	file:

20					if	(isset($_FILES['upload']))	{

21				

22								//	Validate	the	type.	Should	be

										JPEG	or	PNG.

23								$allowed	=	['image/pjpeg',	'image/

										jpeg',	'image/JPG',	'image/X-

										PNG',	'image/PNG',	'image/png',

										'image/x-png'];

24								if	(in_array($_FILES['upload']

										['type'],	$allowed))	{

25				

26											//	Move	the	file	over.

27											if	(move_uploaded_file	($_

													FILES['upload']['tmp_name'],

													"../uploads/{$_FILES['upload']

													['name']}"))	{

28														echo	'<p><em>The	file	has

																been	uploaded!</em></p>';

29											}	//	End	of	move...	IF.

30				

31								}	else	{	//	Invalid	type.

32											echo	'<p	class="error">Please

													upload	a	JPEG	or	PNG	image.

													</p>';

33								}

34				

35					}	//	End	of	isset($_FILES['upload'])	IF.

36				

37					//	Check	for	an	error:



38					if	($_FILES['upload']['error']	>	0)	{

39								echo	'<p	class="error">The	file

										could	not	be	uploaded	because:

										<strong>';

40				

41											//	Print	a	message	based	upon	the

													error.

42											switch	($_FILES['upload']

													['error'])	{

43														case	1:

44																	print	'The	file	exceeds	the

																			upload_max_filesize	setting

																			in	php.ini.';

45																	break;

46														case	2:

47																	print	'The	file	exceeds	the

																			MAX_FILE_SIZE	setting	in

																			the	HTML	form.';

48																	break;

49														case	3:

50																	print	'The	file	was	only

																			partially	uploaded.';

51																	break;

52														case	4:

53																	print	'No	file	was

																			uploaded.';

54																	break;

55														case	6:

56																	print	'No	temporary	folder

																			was	available.';

57																	break;

58														case	7:

59																	print	'Unable	to	write	to

																			the	disk.';

60																	break;

61														case	8:

62																	print	'File	upload

																			stopped.';

63																	break;

64														default:

65																	print	'A	system	error

																			occurred.';

66														break;

67								}	//	End	of	switch.

68

69								print	'</strong></p>';

70

71					}	//	End	of	error	IF.

72

73					//	Delete	the	file	if	it	still	exists:

74					if	(file_exists	($_FILES['upload']

							['tmp_name'])	&&	is_file($_

							FILES['upload']['tmp_name'])	)	{

75								unlink	($_FILES['upload']

										['tmp_name']);

76					}

77				

78		}	//	End	of	the	submitted	conditional.

79		?>

80		

81		<form	enctype="multipart/form-data"

				action="upload_image.php"	method="post">

82				

83					<input	type="hidden"	name="MAX_FILE_



							SIZE"	value="524288">

84				

85					<fieldset><legend>Select	a	JPEG	or

							PNG	image	of	512KB	or	smaller	to	be

							uploaded:</legend>

86				

87					<p><strong>File:</strong>	<input

							type="file"	name="upload"></p>

88				

89					</fieldset>

90					<div	align="center"><input

				type="submit"	name="submit"

				value="Submit"></div>

91				

92		</form>

93		</body>

94		</html>

This	script	will	make	use	of	one	CSS	class	to	format	any	errors.
2.	Check	if	the	form	has	been	submitted	and	that	a	file	was	selected:

if	($_SERVER['REQUEST_METHOD']	= =
'POST')	{

	if	(isset($_FILES['upload']))	{

Since	this	form	will	have	no	other	fields	to	be	validated	 ,	this	is	the	only	conditional	required.	You
could	also	validate	the	size	of	the	uploaded	file	to	determine	if	it	fits	within	the	acceptable	range	(refer
to	the	$_FILES[‘upload’][	‘size’]	value).

This	very	basic	HTML	form	only	takes	one	input:	a	file.
3.	Check	that	the	uploaded	file	is	of	the	proper	type:

$allowed	=	['image/pjpeg',	



'image/jpeg',	'image/JPG',	

'image/X-PNG',	'image/PNG',	

'image/png',	'image/x-png'];

if	(in_array($_FILES['upload']	

['type'],	$allowed))	{

The	file’s	type	is	its	MIME	type,	indicating	what	kind	of	file	it	is.	The	browser	can	determine	and	may
provide	this	information,	depending	on	the	properties	of	the	selected	file.
To	validate	the	file’s	type,	first	create	an	array	of	allowed	options.	The	list	of	allowed	types	is	based
on	 accepting	 JPEGs	 and	 PNGs.	 Some	 browsers	 have	 variations	 on	 the	 MIME	 types,	 so	 those	 are
included	here	as	well.	If	the	uploaded	file’s	type	is	in	this	array,	the	file	is	valid	and	should	be	handled.

4.	Copy	the	file	to	its	new	location	on	the	server:

if	(move_uploaded_file

($_FILES['upload']['tmp_name'],

"../uploads/{$_FILES['upload']

['name']}"))	{

		echo	'<p><em>The	file	has	been

uploaded!</em></p>';

}	//	End	of	move...	IF.

The	move_uploaded_file()	function	will	move	the	file	from	its	temporary	to	its	permanent	location	(in
the	uploads	folder).	The	file	will	retain	its	original	name.	Generally	it’s	best	to	rename	uploaded	files
—for	security	purposes—but	doing	so	requires	a	database	or	other	system	for	tracking	the	original	and
new	filenames.
As	a	rule,	you	should	always	use	a	conditional	 to	confirm	that	a	 file	was	successfully	moved,	 rather
than	just	assuming	that	the	move	worked.

5.	Complete	the	image	type	and	isset	($_FILES[‘upload’])	conditionals:

	}	else	{	//	Invalid	type

		echo	'<p	class="error">

Please	upload	a	JPEG	or	PNG

image.</p>';

	}

}	//	End	of	isset($_FILES

['upload'])	IF.



The	first	else	clause	completes	the	if	begun	in	Step	3.	It	applies	if	a	file	was	uploaded	but	it	wasn’t	of
the	right	MIME	type	 .

	If	the	user	uploads	a	file	that’s	not	a	JPEG	or	PNG,	this	is	the	result.
6.	Check	for,	and	report	on,	any	errors:

if	($_FILES['upload'][	'error']	>

0)	{

	echo	'<p	class="error">The	file

could	not	be	uploaded	because:

<strong>';

If	an	error	occurred,	then	$_FILES	[‘upload’][	‘error’]	will	have	a	value	greater	than	0.	In	such	cases,
this	script	will	report	what	the	error	was.

7.	Begin	a	switch	that	prints	a	more	detailed	error:



switch	($_FILES['upload']['error'])	{

case	1:

print	'The	file	exceeds	the	

upload_max_filesize	setting

in	php.ini.';

break;

case	2:

print	'The	file	exceeds	the	

MAX_FILE_SIZE	setting	in	the

HTML	form.';

break;

case	3:

print	'The	file	was	only	

partially	uploaded.';

break;

case	4:

print	'No	file	was	uploaded.';

break;

There	are	several	possible	reasons	a	file	could	not	be	uploaded	and	moved.	The	first	and	most	obvious
one	 is	 if	 the	permissions	are	not	set	properly	on	 the	destination	directory.	 In	such	a	case,	you'll	 see	an
appropriate	error	message	(see	 	in	the	previous	section	of	the	chapter).	PHP	will	often	also	store	an
error	number	in	the	$_FILES['upload']['error']variable.	The	numbers	correspond	to	specific	problems,
from	0	to	4,	plus	6	through	8	(oddly	enough,	there	is	no	5).	The	conditional	here	prints	out	 the	problem
according	 to	 the	error	number.	The	case	 is	 added	 for	 future	 support	 (if	 different	numbers	 are	 added	 in
later	versions	of	PHP).
For	 the	 most	 part,	 these	 errors	 are	 useful	 to	 you,	 the	 developer,	 and	 not	 things	 you'd	 indicate	 to	 the
average	user.
8.	Complete	the	switch:



	case	6:

		print	'No	temporary	folder

was	available.	';

	break;

	case	7:

		print	'Unable	to	write	to

the	disk.	';

	break;

	case	8:

	print	'File	upload	stopped.	';

	break;

	default:

		print	'A	system	error

occurred.	';

	break;

}	//	End	of	switch.

9.	Complete	the	error	if	conditional:
					print	'</strong></p>';

}	//	End	of	error	IF.

10.	Delete	the	temporary	file	if	it	still	exists:

if	(file_exists	($_FILES['upload']

['tmp_name'])	&&	is_file($_FILES

['upload'][	'tmp_name'])	)	{

		unlink	($_FILES['upload']

['tmp_name']);

}



If	the	file	was	uploaded	but	it	could	not	be	moved	to	its	final	destination	or	some	other	error	occurred,
then	 that	 file	 is	 still	 sitting	on	 the	 server	 in	 its	 temporary	 location.	To	 remove	 it,	 apply	 the	unlink()
function.	Just	to	be	safe,	prior	to	applying	unlink(),	a	conditional	checks	that	the	file	exists	and	that	it	is
a	file	(because	the	file_exists()	function	will	return	TRUE	if	the	named	item	is	a	directory).

11.	Complete	the	PHP	section:
}	//	End	of	the	submitted	conditional.

?>

12.	Create	the	HTML	form:

<form	enctype="multipart/

form-data"	action="upload_

image.php"	method="post">

		<input	type="hidden"

name="MAX_FILE_SIZE"

value="524288">

		<fieldset><legend>Select	a	JPEG

or	PNG	image	of	512KB	or

smaller	to	be	uploaded:

</legend>

		<p><strong>File:</strong>

<input	type="file"

name="upload"></p>

		</fieldset>

		<div	align="center"><input

type="submit"	name="submit"

value="Submit"></div>

</form>

This	 form	 is	 very	 simple	 ,	 but	 it	 contains	 the	 three	 necessary	 parts	 for	 file	 uploads:	 the	 form’s
enctype	attribute,	the	MAX_FILE_SIZE	hidden	input,	and	the	file	input.

13.	Complete	the	HTML	page:
</body>



</html>

14.	Save	the	file	as	upload_image.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	( 	and	
).

	The	result	upon	successfully	uploading	and	moving	a	file.

	The	result	upon	attempting	to	upload	a	file	that	is	too	large.
If	you	want,	you	can	confirm	that	the	script	works	by	checking	the	contents	of	the	uploads	directory.

Tip
Omitting	the	enctype	form	attribute	is	a	common	reason	for	file	uploads	to	mysteriously	fail.

Tip
The	existence	of	an	uploaded	file	can	also	be	validated	with	the	is_uploaded_file()	function.

Tip
Windows	users	must	use	either	forward	slashes	or	double	backslashes	to	refer	to	directories	(so
C:\\	or	C:/	but	not	C:\).	This	is	because	the	backslash	is	the	escape	character	in	PHP.

Tip
The	move_uploaded_file()	 function	will	overwrite	an	existing	 file	without	warning	 if	 the	new
and	existing	files	both	have	the	same	name.



Tip
The	is	a	restriction	in	the	browser	as	to	how	large	a	file	can	be,	although	not	all	browsers	abide
by	this	restriction.	The	PHP	configuration	file	has	its	own	restrictions.	You	can	also	validate	the
uploaded	file	size	within	the	receiving	PHP	script.

Tip
In	Chapter	13,	you’ll	 learn	a	method	 for	 improving	 the	 security	of	 this	 script	by	validating	 the
uploaded	file’s	type	more	reliably.

PHP	and	JavaScript
Although	PHP	and	JavaScript	are	fundamentally	different	technologies,	they	can	be	used	together	to	make
better	websites.	The	most	significant	difference	between	the	two	languages	is	that	JavaScript	is	primarily
client-side	(meaning	it	runs	in	the	browser)	and	PHP	is	always	server-side.	Therefore,	JavaScript	can	do
such	things	as	detect	the	size	of	the	browser	window,	create	pop-up	windows,	and	react	to	mouseovers,
whereas	PHP	can	do	nothing	like	these	things.	Conversely,	PHP	can	interact	with	MySQL	on	the	server,
but	(browser-based)	JavaScript	cannot.
Although	PHP	cannot	do	certain	things	that	JavaScript	can,	PHP	can	be	used	to	create	JavaScript,	just	as
PHP	 can	 create	 HTML.	 To	 be	 clear,	 in	 a	 browser,	 JavaScript	 is	 incorporated	 by	 and	 interacts	 with
HTML,	but	PHP	can	dynamically	generate	JavaScript	code,	just	as	you’ve	been	using	PHP	to	dynamically
generate	HTML.
To	 demonstrate	 this,	 we	 will	 create	 one	 PHP	 script	 that	 lists	 all	 the	 images	 uploaded	 by	 the
upload_image.php	script	 .	The	PHP	script	will	also	create	each	image	name	as	a	clickable	link.	The
links	themselves	will	call	a	JavaScript	function	 	that	creates	a	pop-up	window.	The	pop-up	window
will	show	the	clicked	image.	This	example	will	in	no	way	be	a	thorough	discussion	of	JavaScript,	but	it
does	adequately	demonstrate	how	the	various	technologies—PHP,	HTML,	and	JavaScript—can	be	used
together.	In	Chapter	15,	“Introducing	jQuery,”	you’ll	learn	how	to	use	the	jQuery	JavaScript	framework	to
add	all	sorts	of	functionality	to	PHP-based	scripts.



	This	PHP	page	dynamically	creates	a	list	of	all	the	uploaded	images.

	Each	 image’s	name	 is	 linked	as	a	call	 to	a	 JavaScript	 function.	The	 function	call’s	parameters	 are
created	by	PHP.

Creating	the	JavaScript	File
Even	though	JavaScript	and	PHP	are	two	different	languages,	they	are	similar	enough	that	it’s	possible	to
dabble	 with	 JavaScript	 without	 any	 formal	 training.	 Before	 we	 create	 the	 JavaScript	 code	 for	 this
example,	I’ll	explain	a	few	of	the	fundamentals.
First,	JavaScript	code	can	be	added	to	an	HTML	page	in	one	of	two	ways:	inline	or	through	an	external
file.	To	add	inline	JavaScript,	place	the	JavaScript	code	between	HTML	script	tags:
<script>

//	Actual	JavaScript	code.

</script>

To	use	an	external	JavaScript	file,	add	an	src	attribute	to	the	script	tag:

<script	src="somefile.js"></script>

Your	HTML	pages	can	have	multiple	uses	of	the	script	tag,	but	each	can	only	include	an	external	file	or
have	some	JavaScript	code—not	both.
In	both	uses,	before	HTML5	the	script	tag	would	include	a	type	attribute	with	a	value	of	text/javascript.
As	of	HTML5,	that’s	no	longer	required.
JavaScript	files	use	a	.js	extension.	The	file	should	use	the	same	encoding	(as	set	in	your	text	editor	or
IDE)	as	the	HTML	script	that	will	include	the	file.	You	can	indicate	the	file’s	encoding	in	the	script	tag:

<script	charset="utf-8"

src="somefile.js">

</script>

Whether	you	place	your	JavaScript	code	within	script	tags	or	in	an	external	file,	there	are	no	opening	and
closing	JavaScript	tags,	like	the	opening	and	closing	PHP	tags.
Next,	know	that	variables	in	JavaScript	are	case-sensitive,	just	like	PHP,	but	variables	in	JavaScript	do
not	begin	with	dollar	signs.
Finally,	one	of	the	main	differences	between	JavaScript	and	PHP	is	that	JavaScript	is	an	object-oriented
programming	(OOP)	language.	Whereas	PHP	can	be	used	in	both	a	procedural	approach,	as	most	of	this
book	 demonstrates,	 and	 an	 object-oriented	 approach	 (introduced	 in	 Chapter	 16,	 “An	 OOP	 Primer”),
JavaScript	 is	 only	 ever	 an	 object-oriented	 language.	 This	 means	 you’ll	 see	 the	 “dot”	 syntax	 like
something.something()	or	something.something.something.



That’s	 enough	 of	 the	 basics;	 in	 the	 following	 script,	 I’ll	 explain	 the	 particulars	 of	 each	 bit	 of	 code	 in
sufficient	detail.	In	this	next	sequence	of	steps,	you’ll	create	a	separate	JavaScript	file	that	will	define	one
JavaScript	 function.	The	 function	 itself	will	 take	 three	 arguments—an	 image’s	 name,	 its	width,	 and	 its
height.	The	function	will	use	these	values	to	create	a	pop-up	window	specifically	for	that	image.

To	create	JavaScript	with	PHP:
1.	Begin	a	new	JavaScript	document	in	your	text	editor	or	IDE,	to	be	named	function.js	(Script	11.3):

//	Script	11.3	-	function.js

Script	11.3	The	function.js	script	defines	a	JavaScript	function	for	creating	the	pop-up	window	that	will
show	an	individual	image.
Click	here	to	view	code	image

1			//	Script	11.3	-	function.js

2						

3			//	Make	a	pop-up	window	function:

4			function	create_window(image,	width,	height)	{

5			

6						//	Add	some	pixels	to	the	width	and	height:

7						width	=	width	+	10;

8						height	=	height	+	10;

9			

10					//	If	the	window	is	already	open,

11					//	resize	it	to	the	new	dimensions:

12					if	(window.popup	&&	!window.popup.closed)	{

13								window.popup.resizeTo(width,	height);

14					}

15				

16					//	Set	the	window	properties:

17					var	specs	=	"location=no,scrollbars=no,menubar=no,toolbar=no,resizable=yes,left=0,top=0,

							width="	+	width	+	",height="	+	height;

18				

19					//	Set	the	URL:

20					var	url	=	"show_image.php?image="	+	image;

21				

22					//	Create	the	pop-up	window:

23					popup	=	window.open(url,	"ImageWindow",	specs);

24					popup.focus();

25				

26		}	//	End	of	function.

Again,	there	are	no	opening	JavaScript	tags	here;	you	can	just	start	writing	JavaScript	code.	Comments
in	Java-Script	can	use	either	the	single	line	(//)	or	multiline	(/*	*/)	syntax.

2.	Begin	the	JavaScript	function:

function	create_window(image,

width,	height)	{

The	JavaScript	create_window()	 function	will	accept	 three	parameters:	 the	 image’s	name,	 its	width,
and	its	height.	Each	of	these	will	be	passed	to	this	function	when	the	user	clicks	a	link.	The	exact	values
of	the	image	name,	width,	and	height	will	be	determined	by	PHP.
The	syntax	for	creating	a	function	in	JavaScript	is	like	a	user-defined	function	in	PHP,	except	that	the



variables	do	not	have	initial	dollar	signs.
3.	Add	10	pixels	to	the	received	width	and	height	values:

width	=	width	+	10;

height	=	height	+	10;

Some	pixels	will	be	added	to	the	width	and	height	values	to	create	a	window	slightly	larger	 than	 the
image	itself.	Math	in	JavaScript	uses	the	same	operators	as	in	pretty	much	every	language.

4.	Resize	the	pop-up	window	if	it	is	already	open:

if	(window.popup	&&

!window.popup.closed)	{

		window.popup.resizeTo(width,

height);

}

Later	in	the	function,	a	window	will	be	created,	associated	with	the	popup	variable.	If	the	user	clicks
one	 image	name,	 creating	 the	 pop-up	window,	 and	 then	 clicks	 another	 image’s	 name	without	 having
closed	the	first	pop-up	window,	the	new	image	will	be	displayed	in	a	mis-sized	window.	To	prevent
that,	a	bit	of	code	here	first	checks	if	the	pop-up	window	exists	and	if	it	is	not	closed.	If	both	conditions
are	 TRUE	 (the	window	 is	 already	 open),	 the	window	will	 be	 resized	 according	 to	 the	 new	 image
dimensions.	This	is	accomplished	by	calling	the	resizeTo()	method	of	the	popup	object	(a	method	 is
the	OOP	term	for	a	function).

5.	Determine	the	properties	of	the	pop-up	window:

var	specs	=	"location=no,

scrollbars=no,	menubar=no,

toolbar=no,resizable=yes,left=0,

top=0,width="	+width	+

",height="	+	height;

This	line	creates	a	new	JavaScript	variable	with	a	name	of	specs.	The	var	keyword	before	the	variable
name	is	the	preferred	way	to	create	variables	within	a	function	(specifically,	it	creates	a	variable	local
to	the	function).	Note	that	the	 image,	width,	and	height	variables	didn’t	use	 this	keyword,	since	they
were	created	as	the	arguments	to	a	function.
This	variable	will	be	used	to	establish	the	properties	of	the	pop-up	window.	The	window	will	have	no
location	bar,	scroll	bars,	menus,	or	toolbars;	it	should	be	resizable;	it	will	be	located	in	the	upper-left
corner	of	the	screen;	and	it	will	have	a	width	of	width	and	a	height	of	height .



	The	pop-up	window	created	by	JavaScript.
With	 strings	 in	 JavaScript,	 the	 plus	 sign	 is	 used	 to	 perform	 concatenation	 (whereas	 PHP	 uses	 the
period).

6.	Define	the	URL:

var	url	=	"show_image.php?image="	

+	image;

This	 code	 sets	 the	 URL	 of	 the	 pop-up	 window—the	 page	 the	 window	 should	 load.	 That	 page	 is
show_image.php,	to	be	created	later	in	this	chapter.	The	show_image.php	script	expects	to	receive	an
image’s	name	in	the	URL,	so	the	value	of	the	url	variable	is	show_image.php?image=	plus	the	name	of
the	image	concatenated	to	the	end	 .

7.	Create	the	pop-up	window:



popup	=	window.open(url,

"ImageWindow",	specs);

popup.focus();

Finally,	 the	 pop-up	window	 is	 created	 using	 the	open()	method	 of	 the	window	 object.	 The	window
object	is	a	global	JavaScript	object	created	by	the	browser	to	refer	to	the	open	windows.	The	open()
method’s	first	argument	is	the	page	to	load,	the	second	is	the	title	to	be	given	to	the	window,	and	the
third	 is	a	 list	of	properties.	Note	 that	 the	creation	of	 this	window	is	assigned	 to	 the	popup	 variable.
Because	this	variable’s	creation	does	not	begin	with	the	keyword	var,	popup	will	be	a	global	variable.
This	is	necessary	for	multiple	calls	of	this	function	to	reference	that	same	variable.
Finally,	focus	is	given	to	the	new	window,	meaning	it	should	appear	above	the	current	window.

8.	Save	the	script	as	function.js.
9.	Place	the	script,	or	a	copy,	in	the	js	folder	of	your	web	directory.
JavaScript,	like	CSS,	ought	to	be	separated	out	when	organizing	your	web	directory.	Normally,	external
JavaScript	files	are	placed	in	a	folder	named	js,	javascript,	or	scripts.

Creating	the	PHP	Script
Now	that	 the	JavaScript	code	required	by	 the	page	has	been	created,	 it’s	 time	 to	create	 the	PHP	 script
itself	(which	will	output	the	HTML	that	calls	the	JavaScript	function).	The	purpose	of	this	script	is	to	list
all	the	images	already	uploaded	by	upload_image.php.	To	do	this,	PHP	needs	to	dynamically	retrieve	the
contents	of	the	uploads	directory.	That	can	be	done	via	the	scandir()	function.	It	returns	an	array	listing
the	files	in	a	given	directory	(it	was	added	in	PHP	5).
The	PHP	 script	must	 link	 each	displayed	 image	name	as	 a	 call	 to	 the	 just-defined	 JavaScript	 function.
That	function	expects	to	receive	three	arguments:	the	image’s	name,	its	width,	and	its	height.	For	PHP	to
find	 these	 last	 two	 values,	 the	 script	 will	 use	 the	 getimagesize()	 function.	 It	 returns	 an	 array	 of
information	for	a	given	image	(Table	11.3).

TABLE	11.3	The	getimagesize()	Array
Element Value Example
0 image’s	width	in	pixels 423
1 image’s	height	in	pixels 368
2 image’s	type 2	(representing	JPG)
3 appropriate	HTML	img	tag	data height=”368”	width=”423”
mime image’s	MIME	type image/png

To	create	JavaScript	with	PHP:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	images.php	(Script	11.4):

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Images</title>



Script	 11.4	 The	 images.php	 script	 uses	 JavaScript	 and	 PHP	 to	 create	 links	 to	 images	 stored	 on	 the
server.	The	images	will	be	viewable	through	show_image.php	(Script	11.5).
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Images</title>

6						<script	charset="utf-8"	src="js/function.js"></script>

7			</head>

8			<body>

9			<p>Click	on	an	image	to	view	it	in	a	separate	window.</p>

10		<ul>

11		<?php	#	Script	11.4	-	images.php

12		//	This	script	lists	the	images	in	the	uploads	directory.

13				

14		$dir	=	'../uploads';	//	Define	the	directory	to	view.

15				

16		$files	=	scandir($dir);	//	Read	all	the	images	into	an	array.

17				

18		//	Display	each	image	caption	as	a	link	to	the	JavaScript	function:

19		foreach	($files	as	$image)	{

20				

21					if	(substr($image,	0,	1)	!=	'.')	{	//	Ignore	anything	starting	with	a	period.

22				

23								//	Get	the	image's	size	in	pixels:

24								$image_size	=	getimagesize("$dir/$image");

25				

26								//	Make	the	image's	name	URL-safe:

27								$image_name	=	urlencode($image);

28				

29								//	Print	the	information:

30								echo	"<li><a	href=\"javascript:create_window('$image_name',$image_size[0],	$image_size[1])\">$image</a></li>\n";

31				

32					}	//	End	of	the	IF.

33				

34		}	//	End	of	the	foreach	loop.

35		?>

36		</ul>

37		</body>

38		</html>

2.	Include	the	JavaScript	file:

<script	charset="utf-8"

src="js/function.js"></script>

You	can	use	the	script	tags	anywhere	in	an	HTML	page,	but	inclusions	of	external	files	are	commonly
performed	in	the	document’s	head.	The	reference	to	function.js	assumes	that	the	file	will	be	found	in
the	js	directory,	with	the	js	directory	being	in	the	same	directory	as	this	current	script	(see	 	under
“Handling	File	Uploads”).

3.	Complete	the	HTML	head	and	begin	the	body:



</head>

<body>

<p>Click	on	an	image	to	view	it	

in	a	separate	window.</p>

4.	Begin	an	HTML	unordered	list:
<ul>

To	make	things	simple,	this	script	displays	each	image	as	an	item	in	an	unordered	list.
5.	Start	the	PHP	code	and	create	an	array	of	images	by	referring	to	the	uploads	directory:

<?php	#	Script	11.4	-	images.php

$dir	=	'../uploads	';

$files	=	scandir($dir);

This	script	will	automatically	list	and	link	all	of	the	images	stored	in	the	uploads	folder	(presumably
put	there	by	upload_image.php,	Script	11.3).	The	code	begins	by	defining	the	directory	as	a	variable
so	that	it’s	easier	to	refer	to.	Then	the	scandir()	function,	which	returns	an	array	of	files	and	directories
found	within	a	folder,	assigns	that	information	to	an	array	called	$files.

6.	Begin	looping	through	the	$files	array:

foreach	($files	as	$image)	{

		if	(substr($image,	0,	1)	!=

'.	')	{

This	loop	will	go	through	every	image	in	the	array	and	create	a	list	item	for	it.	Within	the	loop,	there	is
one	 conditional	 that	 checks	 if	 the	 first	 character	 in	 the	 file’s	 name	 is	 a	 period.	 On	 non-Windows
systems,	hidden	files	start	with	a	period,	the	current	directory	is	referred	to	using	just	a	single	period,
and	two	periods	refers	to	the	parent	directory.	Since	these	might	be	included	in	$files,	they	need	to	be
weeded	out.

7.	Get	the	image	information	and	encode	its	name:

$image_size	=	getimagesize

("$dir/$image");

$image_name	=	urlencode($image);

The	getimagesize()	function	returns	an	array	of	information	about	an	image	(Table	11.3).	The	values



returned	 by	 this	 function	 will	 be	 used	 to	 set	 the	 width	 and	 height	 sent	 to	 the	 create_window()
JavaScript	function.
Next,	 the	urlencode()	 function	makes	 a	 string	 safe	 to	 pass	 in	 a	URL.	Because	 the	 image	 name	may
contain	 characters	 not	 allowed	 in	 a	 URL	 (and	 it	 will	 be	 passed	 in	 the	 URL	 when	 invoking
show_image.php),	the	name	should	be	encoded.

8.	Print	the	list	item:

echo	"<li><a	href=\"javascript:

create_window('$image_name',

$image_size[0],$image_size[1])\">

$image</a></li>\n";

Finally,	the	loop	creates	the	HTML	list	item,	consisting	of	the	linked	image	name.	The	link	itself	 is	a
call	 to	 the	 JavaScript	 create_window()	 function.	 In	 order	 to	 execute	 the	 JavaScript	 function	 from
within	 HTML,	 preface	 it	 with	 javascript:.	 (There’s	 much	 more	 to	 calling	 JavaScript	 from	 within
HTML,	but	just	use	this	syntax	for	now.)
The	 function’s	 three	 arguments	 are	 the	 image’s	 name,	 its	width,	 and	 its	 height.	 Because	 the	 image’s
name	will	be	a	string,	it	must	be	wrapped	in	quotation	marks.

9.	Complete	the	if	conditional,	the	foreach	loop,	and	the	PHP	section:
	}	//	End	of	the	IF.

}	//	End	of	the	foreach	loop.

?>

10.	Complete	the	unordered	list	and	the	HTML	page:
</ul>

</body>

</html>

11.	 Save	 the	 file	 as	 images.php,	 place	 it	 in	 your	 web	 directory	 (in	 the	 same	 directory	 as
upload_image.php),	and	test	it	in	your	browser	 .
Note	that	clicking	the	links	will	not	work	yet	because	show_image.php—the	page	the	pop-up	window
attempts	to	load—hasn’t	been	created.

12.	View	the	source	code	to	see	the	dynamically	generated	links	 .
Notice	how	the	parameters	to	each	function	call	are	appropriate	to	the	specific	image.

Tip
Different	browsers	will	handle	the	sizing	and	display	of	the	window	differently.	In	my	tests,	for
example,	 Google	 Chrome	 always	 required	 that	 the	 window	 be	 at	 least	 a	 certain	 width,	 and
Internet	Explorer	would	pad	the	displayed	image	on	all	four	sides.



Tip
Some	versions	of	Windows	create	a	Thumbs.db	 file	 in	 a	 folder	of	 images.	You	might	want	 to
check	for	this	value	in	the	conditional	in	Step	6	that	weeds	out	some	returned	items.	That	code
would	be

if	(	(substr($image,	0,	1)	!=	'.	')

&&	($image	!=	'Thumbs.db')	)	{

Tip
Not	to	belabor	the	point,	but	almost	everything	web	developers	do	with	JavaScript	(for	example,
resize	or	move	the	browser	window)	cannot	be	done	using	server-side	PHP.

Tip
There	is	a	little	overlap	between	the	PHP	and	JavaScript.	Both	can	set	and	read	cookies,	create
HTML,	and	do	some	browser	detection.

Understanding	HTTP	Headers
The	 images.php	 script,	 just	 created,	 displays	 a	 list	 of	 image	 names,	 each	 of	 which	 is	 linked	 to	 a
JavaScript	function	call.	That	JavaScript	function	creates	a	pop-up	window	which	loads	a	PHP	script	that
will	 reveal	 the	 image.	 This	may	 sound	 like	 a	 lot	 of	work	 for	 little	 effort,	 but	 there’s	 a	method	 to	my
madness.	A	trivial	reason	for	this	approach	is	that	JavaScript	is	required	to	create	a	window	sized	to	fit
the	image	(as	opposed	to	creating	a	pop-up	window	of	any	size,	with	the	image	in	it).	More	importantly,
because	 the	 images	 are	 being	 stored	 in	 the	 uploads	 directory,	 ideally	 stored	 outside	 of	 the	 web	 root
directory,	the	images	cannot	be	viewed	directly	in	the	browser	using	either	of	the	following:
http://www.example.com/uploads

/image.png

or
<img	src="image.png">

The	reason	neither	of	these	will	work	is	that	files	and	folders	located	outside	of	the	web	root	directory
are,	by	definition,	unavailable	via	a	browser.	This	 is	a	good	 thing,	because	 it	 allows	you	 to	 safeguard
content,	providing	it	only	when	appropriate.	To	make	that	content	available	through	a	browser,	you	need
to	create	a	proxy	script	in	PHP.	A	proxy	script	just	fulfills	a	role,	such	as	providing	a	file	(displaying	an
image	is	the	same	thing	as	providing	a	file	to	the	browser).	Thus,	given	the	proxy	script	proxy.php,	 the
previous	examples	could	be	made	to	work	using	either	 :
http://www.example.com/proxy.php?

image=image.png



	A	proxy	script	is	able	to	provide	access	to	content	on	the	server	that	would	otherwise	be	unavailable.
or
<img	src="proxy.php?image=image.png">

This,	 of	 course,	 is	 exactly	 what’s	 being	 done	 with	 show_image.php,	 linked	 in	 the	 create_window()
JavaScript	 function.	 But	 how	 does	 proxy.php,	 or	 show_image.php,	 work?	 The	 answer	 lies	 in	 an
understanding	of	HTTP	headers.
HTTP	(Hypertext	Transfer	Protocol)	is	the	technology	at	the	heart	of	the	web	and	defines	the	way	clients
and	 servers	 communicate.	When	 a	 browser	 requests	 a	 page,	 it	 receives	 a	 series	 of	 HTTP	 headers	 in
return.	This	happens	behind	the	scenes;	most	users	aren’t	aware	of	this	at	all.
PHP’s	 built-in	 header()	 function	 can	 be	 used	 to	 take	 advantage	 of	 this	 protocol.	 The	 most	 common
example	of	 this	will	 be	 demonstrated	 in	 the	 next	 chapter,	when	 the	header()	 function	will	 be	 used	 to
redirect	the	browser	from	the	current	page	to	another.	Here,	you’ll	use	it	to	send	files	to	the	browser.
In	theory,	the	header()	function	is	easy	to	use.	Its	syntax	is
header(header	string);

The	list	of	possible	header	strings	is	quite	long,	since	headers	are	used	for	everything	from	redirecting	the
browser,	to	sending	files,	to	creating	cookies,	to	controlling	page	caching,	and	much,	much	more.	Starting
with	something	simple,	to	use	header()	to	redirect	the	browser,	type

header('Location:

http://www.example.com/page.php');

That	line	will	send	the	browser	from	the	page	it’s	on	over	to	that	other	URL.	You’ll	see	examples	of	this
in	the	next	chapter.
In	this	next	example,	which	will	send	an	image	file	to	the	browser,	three	header	calls	are	used.	The	first	is
Content-Type.	This	indicates	to	the	browser	what	kind	of	data	is	about	to	follow.	The	Content-Type	value
matches	the	data’s	MIME	type.	This	line	lets	the	browser	know	it’s	about	to	receive	a	PDF	file:



header("Content-Type:application

/pdf\n");

Next,	you	can	use	Content-Disposition,	which	tells	the	browser	how	to	treat	the	data:

header("Content-Disposition:

attachment;	filename=\"somefile

.pdf\"\n");

The	attachment	value	will	prompt	the	browser	to	download	the	file	 .	An	alternative	is	to	use	inline,
which	tells	the	browser	to	display	the	data,	assuming	that	the	browser	can.	The	filename	attribute	is	just
that:	 it	 tells	 the	 browser	 the	 name	 associated	with	 the	 data.	 Some	 browsers	 abide	 by	 this	 instruction;
others	do	not.

	Edge	prompts	the	user	to	download	the	file	because	of	the	attachment	Content-Disposition	value.
A	third	header	to	use	for	downloading	files	is	Content-Length.	This	is	a	value,	in	bytes,	corresponding	to
the	amount	of	data	to	be	sent.
header("Content-Length:	4096\n");

That’s	the	basics	with	respect	to	using	the	header()	function.	Before	getting	to	the	example,	note	that	if	a
script	uses	multiple	header()	calls,	each	should	be	terminated	by	a	newline	(\n),	as	in	the	preceding	code
snippets.	More	importantly,	the	absolutely	critical	thing	to	remember	about	the	header()	function	is	that	it
must	be	called	before	anything	is	sent	to	the	browser.	This	includes	HTML	or	even	blank	spaces.	If	your
code	has	any	echo	or	print	statements,	has	blank	lines	outside	of	PHP	tags,	or	includes	files	that	do	any	of
these	things	before	calling	header(),	you’ll	see	an	error	message	like	that	shown	in	 .

	The	headers	already	sent	error	means	that	the	browser	was	sent	something—HTML,	plain	text,	even
a	space—prior	to	using	the	header()	function.

To	use	the	header()	function:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	show_image.php	(Script	11.5):

<?php	#	Script	11.5	-



show_image.php

$name	=	FALSE;

Script	 11.5	 This	 script	 retrieves	 an	 image	 from	 the	 server	 and	 sends	 it	 to	 the	 browser,	 using	 HTTP
headers.
Click	here	to	view	code	image

1			<?php	#	Script	11.5	-	show_image.php

2			//	This	page	displays	an	image.

3			

4			$name	=	FALSE;	//	Flag	variable:

5			

6			//	Check	for	an	image	name	in	the	URL:

7			if	(isset($_GET['image']))	{

8			

9						//	Make	sure	it	has	an	image's

							extension:

10					$ext	=	strtolower	(	substr

							($_GET['image'],	-4));

11				

12					if	(($ext	==	'.jpg')	OR	($ext	==

							'jpeg')	OR	($ext	==	'.png'))	{

13				

14								//	Full	image	path:

15								$image	=	"../uploads/

										{$_GET['image']}";

16				

17								//	Check	that	the	image	exists

										and	is	a	file:

18								if	(file_exists($image)	&&

										(is_file($image)))	{

19				

20											//	Set	the	name	as	this	image:

21											$name	=	$_GET['image'];

22				

23								}	//	End	of	file_exists()	IF.

24				

25					}	//	End	of	$ext	IF.

26				

27		}	//	End	of	isset($_GET['image'])	IF.

28				

29		//	If	there	was	a	problem,	use	the

				default	image:

30		if	(!$name)	{

31					$image	=	'images/unavailable.png';

32					$name	=	'unavailable.png';

33		}

34				

35		//	Get	the	image	information:

36		$info	=	getimagesize($image);

37		$fs	=	filesize($image);

38				

39		//	Send	the	content	information:

40		header	("Content-Type:

				{$info['mime']}\n");

41		header	("Content-Disposition:	inline;

				filename=\"$name\"\n");

42		header	("Content-Length:	$fs\n");

43		

44		//	Send	the	file:

45		readfile($image);



Because	 this	 script	will	 use	 the	header()	 function,	 nothing—absolutely	 nothing—can	 be	 sent	 to	 the
browser.	That	means	no	HTML,	not	even	a	blank	line,	tab,	or	space	before	the	opening	PHP	tag.
The	$name	variable	will	be	used	as	a	 flag,	 indicating	whether	all	 the	validation	 routines	have	been
passed.

2.	Check	for	an	image	name:
if	(isset($_GET['image']))	{

The	script	needs	to	receive	a	valid	image	name	in	the	URL.	This	should	be	appended	to	the	URL	in	the
JavaScript	function	that	calls	this	page	(see	function.js,	Script	11.3).

3.	Validate	the	image’s	extension:

$ext	=	strtolower(

substr($_GET['image'],	-4));

		if	(($ext	= =	'.jpg')	OR
($ext	= ='jpeg')	OR
($ext	= =	'.png'))	{

The	next	check	is	that	the	file	to	be	sent	to	the	browser	has	a	.jpeg,	.jpg,	or	.png	extension.	This	way
the	 script	won’t	 try	 to	 send	something	bad	 to	 the	user.	For	example,	 if	 a	malicious	user	 changed	 the
address	in	the	pop-up	window	from	http://www.example.com/show_image.php?image=image.png	to
http://www.example.com/show_image.php?image=../../../path/to/something/important,	 this
conditional	would	catch,	and	prevent,	that	hack.
To	validate	the	extension,	the	substr()	function	returns	the	last	four	characters	from	the	image’s	name
(the	-4	accomplishes	this).	The	extension	is	also	run	through	the	strtolower()	function	so	that	.PNG	and
.png	are	treated	the	same.	Then	a	conditional	checks	to	see	if	$ext	is	equal	to	any	of	the	three	allowed
values.

4.	Check	that	the	image	is	a	file	on	the	server:

$image	=	"../uploads/{$_GET

['image']}	";

if	(file_exists($image)	&&

(is_file($image)))	{

Before	 attempting	 to	 send	 the	 image	 to	 the	 browser,	make	 sure	 that	 it	 exists	 and	 that	 it	 is	 a	 file	 (as
opposed	 to	a	directory).	As	a	 security	measure,	 the	 image’s	 full	path	 is	defined	as	 a	 combination	of
../uploads	and	the	received	image	name.

5.	Set	the	value	of	the	flag	variable	to	the	image’s	name:
$name	=	$_GET['image'];

Once	the	image	has	passed	all	of	these	tests,	the	$name	variable	is	assigned	the	value	of	the	image.



6.	Complete	the	conditionals	begun	in	Steps	2,	3,	and	4:

	}	//	End	of	file_exists()	IF.

	}	//	End	of	$ext	IF.

}	//	End	of	isset($_GET['image'])	IF.

There	are	no	else	clauses	for	any	of	these	three	conditions.	If	all	three	conditions	aren’t	TRUE,	then	the
flag	variable	$name	will	still	have	a	FALSE	value.

7.	If	no	valid	image	was	received	by	this	page,	use	a	default	image:

if	(!$name)	{

	$image	=	'images/unavailable.png';

	$name	=	'unavailable.png';

}

If	 the	image	doesn’t	exist,	 if	 it	 isn’t	a	file,	or	 if	 it	doesn’t	have	the	proper	extension,	 then	 the	$name
variable	will	still	have	a	value	of	FALSE.	In	such	cases,	a	default	image	will	be	used	instead	 .	The
image	itself	can	be	downloaded	from	the	book’s	corresponding	website	(LarryUllman.com,	found	with
all	the	downloadable	code)	and	should	be	placed	in	an	images	folder.	The	images	folder	should	be	in
the	same	directory	as	this	script,	not	in	the	same	directory	as	the	uploads	folder.

	This	image	will	be	shown	whenever	there’s	a	problem	with	showing	the	requested	image.
8.	Retrieve	the	image’s	information:

$info	=	getimagesize($image);

$fs	=	filesize($image);

To	send	a	file	to	the	browser,	the	script	needs	to	know	the	file’s	MIME	type	and	size.	An	image	file’s
type	can	be	found	using	getimagesize().	The	file’s	size,	in	bytes,	is	found	using	filesize().	Because	the

http://LarryUllman.com


$image	 variable	 represents	 either	 ../uploads/{$_GET[‘image’]}	 or	 images/unavailable.png,	 these
lines	will	work	on	both	the	correct	and	the	unavailable	image.

9.	Send	the	file:

header("Content-Type:	{$info

['mime']}\n");

header("Content-Disposition:

inline;	filename=\"$name\"\n");

header("Content-Length:	$fs\n");

readfile($image);

These	header()	calls	will	send	the	file	data	to	the	browser.	The	first	line	uses	the	image’s	MIME	type
for	the	value	of	the	Content-Type	header.	The	second	line	tells	the	browser	the	name	of	the	file	and	that
it	should	be	displayed	in	the	browser	(inline).	The	last	header()	function	indicates	how	much	data	is	to
be	expected.
The	file	data	itself	is	sent	using	the	readfile()	function,	which	reads	in	a	file	and	immediately	sends	the
content	to	the	browser.

10.	Save	the	file	as	show_image.php,	place	it	 in	your	web	directory,	in	the	same	folder	as	 images.php,
and	test	it	in	your	browser	by	clicking	a	link	in	images.php	 .



	This	image	is	displayed	by	having	PHP	send	the	file	to	the	browser.
Notice	 that	 this	page	contains	no	HTML.	It	only	sends	an	 image	file	 to	 the	browser.	Also	note	 that	 I
omitted	the	terminating	PHP	tag.	This	is	acceptable,	and	in	certain	situations	like	this,	preferred.	If	you
included	the	closing	PHP	tag,	and	you	inadvertently	had	an	extra	space	or	blank	line	after	that	tag,	the
browser	could	have	problems	displaying	the	image	(because	the	browser	will	have	received	the	image
data	of	X	length,	matching	the	Content-Length	header,	plus	a	bit	of	extra	data).

Tip
I	cannot	stress	strongly	enough	that	nothing	can	be	sent	to	the	browser	before	using	the	header()
function.	 Even	 an	 included	 file	 that	 has	 a	 blank	 line	 after	 the	 closing	 PHP	 tag	 will	 make	 the
header()	function	unusable.



Tip
To	avoid	problems	when	using	header(),	you	can	call	the	headers_sent()	function	first.	It	returns
a	Boolean	value	indicating	if	something	has	already	been	sent	to	the	browser:

if	(!headers_sent())	{

	//	Use	the	header()	function.

}	else	{

	//	Do	something	else.

}

Output	buffering,	demonstrated	in	Chapter	18,	“Example—User	Registration,”	can	also	prevent	problems
when	using	header().

Tip
Debugging	scripts	like	this,	where	PHP	sends	data,	not	text,	to	the	browser,	can	be	challenging.
For	help,	use	one	of	the	many	developer	plug-ins	for	the	Edge	browser	 .

	Browser	debugging	tools,	like	those	in	Edge	shown	here,	include	the	ability	to	see	what	headers
were	sent	by	a	page	and/or	server.	This	can	be	useful	debugging	information.

Tip
You	can	also	indicate	to	the	browser	the	page’s	encoding	using	PHP	and	the	header()	function:

<?php	header('Content-Type:

text/html;	charset=UTF-8');	?>



This	can	be	more	effective	 than	using	a	META	 tag,	but	 it	does	 require	 the	page	 to	be	a	PHP	script.	 If
using	this,	it	must	be	the	first	line	in	the	page,	before	any	HTML.

Tip
A	proxy	script	can	send	to	the	browser	only	a	single	file	(or	image)	at	a	time.

Date	and	Time	Functions
Chapter	5,	“Introduction	 to	SQL,”	demonstrates	 a	handful	of	great	date	 and	 time	 functions	 that	MySQL
supports.	 Naturally,	 PHP	 has	 its	 own	 date	 and	 time	 functions.	 To	 start,	 there’s
date_default_timezone_set().	This	function	is	used	to	establish	the	default	time	zone	(which	can	also	be
set	in	PHP’s	configuration	file).
date_default_timezone_set(tz);

The	 tz	 value	 is	 a	 string	 like	America/New_York	 or	Pacific/Auckland.	 There	 are	 too	many	 to	 list	 here
(Africa	alone	has	over	50),	but	see	the	PHP	manual	for	them	all.	Note	that	as	of	PHP	5.1,	the	default	time
zone	must	be	set,	either	in	a	script	or	in	PHP’s	configuration	file,	prior	to	calling	any	of	the	date	and	time
functions,	or	else	you’ll	see	a	warning.
Next	up,	the	checkdate()	function	takes	a	month,	a	day,	and	a	year	and	returns	a	Boolean	value	indicating
whether	that	date	exists	(or	existed).	It	even	considers	leap	years.	This	function	can	be	used	to	ensure	that
a	user	supplied	a	valid	date	(birth	date	or	other):

if	(checkdate(month,	day,	year))	{	//	OK!

Perhaps	the	most	frequently	used	function	is	the	aptly	named	date().	 It	returns	the	date	and/or	time	as	a
formatted	string.	It	takes	two	arguments:
date(format,	[timestamp]);

The	timestamp	is	an	optional	argument	representing	the	number	of	seconds	since	the	Unix	epoch	(midnight
on	January	1,	1970)	for	the	date	in	question.	It	allows	you	to	get	information,	like	the	day	of	the	week,	for
a	particular	date.	If	a	timestamp	is	not	specified,	PHP	will	just	use	the	current	time	on	the	server.
There	are	myriad	formatting	parameters	available	(Table	11.4),	and	they	can	be	used	in	conjunction	with
literal	text.	For	example:

echo	date('F	j,	Y');	//	January	26,	2018

echo	date('H:i');	//	23:14

echo	date('D');	//	Fri



TABLE	11.4	Date()	Function	Formatting
Character Meaning Example
Y Year	as	4	digits 2017
y Year	as	2	digits 11
L Is	it	a	leap	year? 1	(for	yes)
n Month	as	1	or	2	digits 2
m Month	as	2	digits 02
F Month February
M Month	as	3	letters Feb
j Day	of	the	month	as	1	or	2	digits 8
d Day	of	the	month	as	2	digits 08
l	(lower-	case	L) Day	of	the	week Monday
D Day	of	the	week	as	3	letters Mon
w Day	of	the	week	as	a	single	digit 0	(Sunday)
z Day	of	the	year:	0	to	365 189
t Number	of	days	in	the	month 31
S English	ordinal	suffix	for	a	day,	as	2	characters rd
g Hour;	12-hour	format	as	1	or	2	digits 6
G Hour;	24-hour	format	as	1	or	2	digits 18
h Hour;	12-hour	format	as	2	digits 06
H Hour;	24-hour	format	as	2	digits 18
i Minutes 45
s Seconds 18
u Microseconds 1234
a am	or	pm am
A AM	or	PM PM
U Seconds	since	the	epoch 1499550481
e Timezone UTC
I	(capital	i) Is	it	daylight	savings? 1	(for	yes)
O Difference	from	GMT +0600

You	can	find	the	timestamp	for	a	particular	date	using	the	mktime()	function:

$stamp	=	mktime(hour,	minute,

second,	month,	day,	year);

If	 called	with	 no	 arguments,	mktime()	 returns	 the	 current	 timestamp,	which	 is	 the	 same	 as	 calling	 the
time()	function.



Finally,	the	getdate()	function	can	be	used	to	return	an	array	of	values	(Table	11.5)	for	a	date	and	time.
For	example:

$today	=	getdate();

echo	$today['month'];	//	October

TABLE	11.5	The	getdate()	Array
Key Value Example
year year 2017
mon month 11
month month	name November
mday day	of	the	month 24
weekday day	of	the	week Thursday
hours hours 11
minutes minutes 56
seconds seconds 47

This	function	also	 takes	an	optional	 timestamp	argument.	 If	 that	argument	 is	not	used,	getdate()	 returns
information	for	the	current	date	and	time.
These	are	just	a	handful	of	the	many	date	and	time	functions	PHP	has.	For	more,	see	the	PHP	manual.	To
practice	working	with	these	functions,	let’s	modify	images.php	(Script	11.4)	in	a	couple	of	ways.	First,
the	script	will	show	each	image’s	uploaded	date	and	time.	Second,	while	a	change	is	being	made	to	the
layout,	the	script	will	show	each	image’s	file	size,	too	 .

	The	revised	images.php	shows	two	more	pieces	of	information	about	each	image.

To	use	the	date	and	time	functions:
1.	Open	images.php	(Script	11.4)	in	your	text	editor	or	IDE,	if	you	haven’t	already.



2.	As	the	first	line	of	code	after	the	opening	PHP	tag,	establish	the	time	zone	(Script	11.6):

date_default_timezone_set

('America/New_York');

Script	11.6	 This	modified	 version	 of	 images.php	 (Script	 11.4)	 uses	 PHP's	 date	 and	 time	 functions	 to
report	some	information	to	the	user.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Images</title>

6						<script	charset="utf-8"	src="js/function.js"></script>

7			</head>

8			<body>

9			<p>Click	on	an	image	to	view	it	in	a	separate	window.</p>

10		<ul>

11		<?php	#	Script	11.6	-	images.php

12		//	This	script	lists	the	images	in	the	uploads	directory.

13		//	This	version	now	shows	each	image's	file	size	and	uploaded	date	and	time.

14				

15		//	Set	the	default	timezone:

16		date_default_timezone_set('America/New_York');

17				

18		$dir	=	'../uploads';	//	Define	the	directory	to	view.

19				

20		$files	=	scandir($dir);	//	Read	all	the	images	into	an	array.

21				

22		//	Display	each	image	caption	as	a	link	to	the	JavaScript	function:

23		foreach	($files	as	$image)	{

24				

25					if	(substr($image,	0,	1)	!=	'.')	{	//	Ignore	anything	starting	with	a	period.

26				

27								//	Get	the	image's	size	in	pixels:

28								$image_size	=	getimagesize("$dir/$image");

29				

30								//	Calculate	the	image's	size	in	kilobytes:

31								$file_size	=	round(	(filesize("$dir/$image"))	/	1024)	.	"kb";

32				

33								//	Determine	the	image's	upload	date	and	time:

34								$image_date	=	date("F	d,	Y	H:i:s",	filemtime("$dir/$image"));

35				

36								//	Make	the	image's	name	URL-safe:

37								$image_name	=	urlencode($image);

38				

39								//	Print	the	information:

40								echo	"<li><a	href=\"javascript:create_window('$image_name',$image_size[0],

										$image_size[1])\">$image</a>	$file_size	($image_date)</li>\n";

41				

42					}	//	End	of	the	IF.

43				

44		}	//	End	of	the	foreach	loop.

45				

46		?>

47		</ul>

48		</body>



49		</html>

Before	calling	any	of	the	date	and	time	functions,	the	time	zone	must	be	established.	To	find	your	time
zone,	see	www.php.net/timezones.

3.	Within	the	foreach	loop,	after	getting	the	image’s	dimensions,	calculate	its	file	size:

$file_size	=	round(	(filesize

("$dir/$image"))	/	1024)	.	"kb";

The	filesize()	function	was	first	used	in	the	show_image.php	script.	It	returns	the	size	of	a	file	in	bytes.
To	calculate	the	kilobytes	of	a	file,	divide	this	number	by	1,024	(the	number	of	bytes	in	a	kilobyte)	and
round	it	off.

4.	On	the	next	line,	determine	the	image’s	modification	date	and	time:

$image_date	=	date("F	d,	Y	H:i:s",

filemtime("$dir/$image"));

To	find	a	file’s	modification	date	and	time,	call	the	filemtime()	function,	providing	the	function	with	the
file,	 or	 directory,	 to	 be	 examined.	This	 function	 returns	 a	 timestamp,	which	 can	 then	 be	 used	 as	 the
second	argument	to	the	date(),	which	will	format	the	timestamp	accordingly.
If	you’re	perplexed	by	what’s	happening	here,	you	can	break	the	code	into	two	steps:

$filemtime	=	filemtime

("$dir/$image");

$image_date	=	date("F	d,	Y	H:i:s

",	$filemtime);

5.	Change	the	echo	statement	so	that	it	also	prints	the	file	size	and	modification	date:

echo	"<li><a	href=\"javascript:

create_window('$image_name',

$image_size[0],$image_size[1])\">

$image</a>	$file_size

($image_date)</li>\n";

Both	are	printed	outside	of	the	A	tag,	so	they	aren’t	part	of	the	links.
6.	Save	the	file	as	images.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser.

http://www.php.net/timezones


Tip
The	date()	function	has	some	parameters	that	are	used	for	informative	purposes,	not	formatting.
For	example,	date(‘L’)	returns	1	or	0	indicating	if	it’s	a	leap	year;	date(‘t’)	returns	the	number
of	days	in	the	current	month;	and	date(‘I’)	returns	a	1	if	it’s	currently	daylight	saving	time.

Tip
PHP’s	date	functions	reflect	the	time	on	the	server	(because	PHP	runs	on	the	server);	you’ll	need
to	use	JavaScript	if	you	want	to	determine	the	date	and	time	on	the	user’s	computer.

Tip
In	Chapter	16,	you’ll	learn	how	to	use	the	new	DateTime	class	to	work	with	dates	and	times	in
PHP.

Performing	Transactions
Switching	gears	for	the	last	example	in	this	chapter,	let’s	see	how	to	perform	database	transactions	using	a
PHP	script.	Chapter	7,	“Advanced	SQL	and	MySQL,”	demonstrates	how	to	perform	transactions	using	the
mysql	client.	A	database	transaction	is	a	sequence	of	steps	that	can	be	guaranteed	to	all	execute	or	all	fail.
This	is	accomplished	by	committing	or	rolling	back	the	previously	made	queries.
To	perform	transactions	with	a	PHP	script,	first	disable	the	autocommit	behavior:

mysqli_autocommit($dbc,	FALSE);

Next,	execute	queries	as	you	otherwise	would:
$r	=	@mysqli_query($dbc,	$q);

Then,	based	on	the	results	of	the	query,	either	commit	the	transactions	or	roll	them	back:
mysqli_commit($dbc);

or
mysqli_rollback($dbc);

As	an	example	of	this,	the	following	script	performs	a	transfer	of	funds	from	one	bank	account	to	another:
just	a	web	version	of	the	mysql	example	used	in	Chapter	7	 .



	The	funds	transfer	form.

To	handle	file	uploads	in	PHP:
1.	Create	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	transfer.php	(Script	11.7):

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Transfer	Funds</title>

</head>

<body>

<h1>Transfer	Funds</h1>

<?php	#	Script	11.7	-	transfer.php

Script	11.7	This	script	uses	MySQL	transactions	to	guarantee	the	complete	success	or	failure	of	multiple
queries.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Transfer	Funds</title>

6			</head>

7			<body>

8			<h1>Transfer	Funds</h1>

9			<?php	#	Script	11.7	-	transfer.php

10		//	This	page	performs	a	transfer	of	funds	from	one	account	to	another.



11		//	This	page	uses	transactions.

12		

13		//	Always	need	the	database	connection:

14		$dbc	=	mysqli_connect('localhost',	'root',	'password',	'banking')	OR	die('Could	not	connect	to

				MySQL:	'	.	mysqli_connect_error()	);

15				

16		//	Check	if	the	form	has	been	submitted:

17		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

18				

19					//	Minimal	form	validation:

20					if	(isset($_POST['from'],	$_POST['to'],	$_POST['amount'])	&&

21						is_numeric($_POST['from'])	&&	is_numeric($_POST['to'])	&&	is_numeric($_POST['amount'])	)	{

22				

23								$from	=	$_POST['from'];

24								$to	=	$_POST['to'];

25								$amount	=	$_POST['amount'];

26				

27								//	Make	sure	enough	funds	are	available:

28								$q	=	"SELECT	balance	FROM	accounts	WHERE	account_id=$from";

29								$r	=	@mysqli_query($dbc,	$q);

30								$row	=	mysqli_fetch_array($r,	MYSQLI_ASSOC);

31								if	($amount	>	$row['balance'])	{

32											echo	'<p	class="error">Insufficient	funds	to	complete	the	transfer.</p>';

33								}	else	{

34											//	Turn	autocommit	off:

35											mysqli_autocommit($dbc,	FALSE);

36				

37											$q	=	"UPDATE	accounts	SET	balance=balance-$amount	WHERE	account_id=$from";

38											$r	=	@mysqli_query($dbc,	$q);

39											if	(mysqli_affected_rows($dbc)	==	1)	{	//	If	it	ran	OK.

40				

41														$q	=	"UPDATE	accounts	SET	balance=balance+$amount	WHERE	account_id=$to";

42														$r	=	@mysqli_query($dbc,	$q);

43														if	(mysqli_affected_rows($dbc)	==	1)	{	//	If	it	ran	OK.

44				

45																	mysqli_commit($dbc);

46																	echo	'<p>The	transfer	was	a	success!</p>';

47				

48														}	else	{

49																	mysqli_rollback($dbc);

50																	echo	'<p>The	transfer	could	not	be	made	due	to	a	system	error.	We	apologize

					for	any	inconvenience.</p>';	//	Public	message.

51																	echo	'<p>'	.	mysqli_error($dbc)	.	'<br>Query:	'	.	$q	.	'</p>';	//	Debugging

					message.

52														}

53				

54											}	else	{

55														mysqli_rollback($dbc);

56														echo	'<p>The	transfer	could	not	be	made	due	to	a	system	error.	We	apologize	for

																any	inconvenience.</p>';	//	Public	message.

57														echo	'<p>'	.	mysqli_error($dbc)	.	'<br>Query:	'	.	$q	.	'</p>';

																//	Debugging	message.

58											}

59				

60								}

61				

62					}	else	{	//	Invalid	submitted	values.

63								echo	'<p>Please	select	a	valid	"from"	and	"to"	account	and	enter	a	numeric	amount	to

										transfer.</p>';

64					}

65				

66				break;

67		}	//	End	of	submit	conditional.

68		//	Always	show	the	form...



69				

70		//	Get	all	the	accounts	and	balances	as	OPTIONs	for	the	SELECT	menus:

71		$q	=	"SELECT	account_id,	CONCAT(last_name,	',	',	first_name)	AS	name,	type,	balance	FROM

				accounts	LEFT	JOIN	customers	USING	(customer_id)	ORDER	BY	name";

72		$r	=	@mysqli_query($dbc,	$q);

73		$options	=	'';

74		while	($row	=	mysqli_fetch_array($r,	MYSQLI_ASSOC))	{

75					$options	.=	"<option	value=\"{$row['account_id']}\">{$row['name']}	({$row['type']})

							\${$row['balance']}</option>\n";

76		}

77				

78		//	Create	the	form:

79		echo	'<form	action="transfer.php"	method="post">

80		<p>From	Account:	<select	name="from">'	.	$options	.	'</select></p>

81		<p>To	Account:	<select	name="to">'	.	$options	.	'</select></p>

82		<p>Amount:	<input	type="number"	name="amount"	step="0.01"	min="1"></p>

83		<p><input	type="submit"	name="submit"	value="Submit"></p>

84		</form>';

85				

86		mysqli_close($dbc);

87		?>

88		</body>

89		</html>

2.	Create	a	database	connection:

$dbc	=	mysqli_connect('localhost',

'root',	'password',	'banking')	OR

die('Could	not	connect	to	MySQL:

'	.	mysqli_connect_error()	);

This	example	uses	the	banking	database.	You’ll	need	to	update	the	code	to	use	the	proper	username	and
password	for	your	setup.

3.	Check	if	the	form	has	been	submitted	and	that	the	minimum	requirements	are	met:

if	($_SERVER['REQUEST_METHOD']	= =
'POST')	{

		if	(isset($_POST['from'],	$_POST

['to'],	$_POST['amount'])	&&



			is_numeric($_POST['from'])	&&

is_numeric($_POST['to'])	&&

is_numeric($_POST['amount'])

)	{

							$from	=	$_POST['from'];

							$to	=	$_POST['to'];

							$amount	=	$_POST['amount'];

The	 form	only	 has	 three	 inputs.	 The	most	minimal	 validation	 of	 them	 confirms	 that	 all	 three	 have	 a
numeric	value.	If	so,	three	variables	are	assigned	the	values	to	make	referring	to	them	easier.
The	“Review	and	Pursue”	 section	 at	 the	 end	 of	 the	 chapter	will	make	 several	 recommendations	 for
improving	this	script,	such	as	checking	that	a	positive	amount	is	being	transferred.

4.	Make	sure	there	are	enough	funds	to	be	transferred:

$q	=	"SELECT	balance	FROM	accounts

WHERE	account_id=$from";

$r	=	@mysqli_query($dbc,	$q);

$row	=	mysqli_fetch_array($r,

MYSQLI_ASSOC);

if	($amount	>	$row['balance'])	{

		echo	'<p	class="error">

Insufficient	funds	to

complete	the	transfer.</p>';

}	else	{

There’s	no	point	in	attempting	to	transfer	more	funds	than	are	available,	so	this	script	first	checks	that
the	amount	being	transferred	is	not	greater	than	the	amount	in	the	account.	If	it	is,	an	insufficient	funds
message	is	shown	 .



	Trying	to	transfer	more	money	than	the	“from”	account	has	results	in	an	error.
5.	Turn	autocommit	off	and	update	the	“from”	account:

mysqli_autocommit($dbc,	FALSE);

$q	=	"UPDATE	accounts	SET

balance=balance-$amount	WHERE

account_id=$from";

$r	=	@mysqli_query($dbc,	$q);

if	(mysqli_affected_rows($dbc)

==	1)	{

This	is	the	same	query	as	in	Chapter	7.	If	one	row	was	affected,	the	query	worked	successfully.
6.	Update	the	“to”	account:

$q	=	"UPDATE	accounts	SET

balance=balance+$amount	WHERE

account_id=$to";

$r	=	@mysqli_query($dbc,	$q);

if	(mysqli_affected_rows($dbc)

==	1)	{



This	is	the	corollary	query,	adding	funds	to	the	other	account.
7.	Commit	the	transactions	and	indicate	success:

mysqli_commit($dbc);

echo	'<p>The	transfer	was	a

success!</p>';

If	both	queries	affected	one	row,	the	transactions	can	be	committed	and	the	message	shown	 .

	A	successful	transfer	of	funds!
8.	Upon	error,	roll	back	the	transaction	and	print	a	message:



}	else	{

		mysqli_rollback($dbc);

		echo	'<p>The	transfer	could

not	be	made	due	to	a	system

error.	We	apologize	for	any

inconvenience.</p>';	//	Public

message.

										echo	'<p>'	.	mysqli_

error($dbc)	.	'<br>Query:

'	.	$q	.	'</p>';	//

Debugging	message.

}

}	else	{

		mysqli_rollback($dbc);

		echo	'<p>The	transfer	could	not

be	made	due	to	a	system

error.	We	apologize	for	any

inconvenience.</p>';	//	Public

message.

		echo	'<p>'	.	mysqli_error($dbc)

.	'<br>Query:	'	.	$q	.	'</p>';

//	Debugging	message.

}

This	completes	the	conditionals	begun	in	Step	6	and	Step	5,	respectively.
9.	Complete	the	validation	and	form	submission	conditionals:



					}	else	{	//	Invalid	submitted

values.

										echo	'<p>Please	select	a

valid	"from"	and	"to"

account	and	enter	a	numeric

amount	to	transfer.</p>';

		}

}	//	End	of	submit	conditional.

10.	Retrieve	every	account:

$q	=	"SELECT	account_id,	CONCAT

(last_name,	',	',	first_name)	AS

name,	type,	balance	FROM

accounts	LEFT	JOIN	customers

USING	(customer_id)	ORDER	BY

name";

$r	=	@mysqli_query($dbc,	$q);

$options	=	'';

while	($row	=	mysqli_fetch_array

($r,	MYSQLI_ASSOC))	{

		$options	.=	"<option	value=\"

{$row['account_id']}\">

{$row['name']}	({$row['type']})

\${$row['balance']}</option>\n";

}

As	the	form	has	two	identical	select	menus	 ,	it’ll	be	most	efficient	to	retrieve	the	accounts	once	and



reuse	 that	 information.	To	do	 that,	 a	query	 fetches	 each	customer’s	name,	 account	 type,	balance,	 and
account	ID	 .

	The	same	query	run	through	the	mysql	client.
This	 information	 is	 then	used	 to	dynamically	build	up	 the	 series	of	HTML	options	 to	be	 used	 in	 the
select	menus.	The	account	ID	is	the	value	and	the	other	three	columns	are	used	in	the	displayed	text	 .

	The	HTML	source	of	the	select	menus.
11.	Create	the	HTML	form:



echo	'<form	action="transfer.php"

method="post">

<p>From	Account:	<select

name="from">'	.	$options	.

'</select></p>

<p>To	Account:	<select	name="to">'

.	$options	.	'</select></p>

<p>Amount:	<input	type="number"

name="amount"	step="0.01"

min="1"></p>

<p><input	type="submit"

name="submit"

value="Submit"></p>

</form>';

The	 form	only	has	 two	select	menus	and	 the	amount	being	 transferred.	 In	 theory	 the	HTML5	 number
input	type	ensures	only	a	numeric	value	is	entered.	The	min	attribute	requires	a	minimum	value	of	1,
and	the	step	value	allows	a	decimal	value	to	be	entered.

12.	Close	the	database	connection:
mysqli_close($dbc);

13.	Complete	the	PHP	and	HTML	page:
?>

</body>

</html>

14.	Save	the	file	as	transfer.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser.

Tip
To	 state	 what	 is	 hopefully	 obvious,	 a	 script	 that	 actually	 transfers	 funds	 from	 one	 account	 to
another	would	have	layers	upon	layers	upon	layers	of	security	added	to	it.



Tip
The	 client-side	 validation	 provided	 by	 the	 number	 input	 type—requiring	 a	 positive	 transfer
amount—is	 nice,	 but	 all	 client-side	 validation	 is	 easily	 circumvented.	 Server-side	 validation
matters	most.

Tip
Although	it’s	not	a	problem	that	this	script	allows	for	a	“transfer”	from	an	account	to	itself,	you
can	 prevent	 that	 using	 validation	 in	 the	 PHP	 code.	 Smart	 JavaScript	 code	 could	 also	make	 it
impossible	to	select	the	same	account	in	both	menus.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	What	function	is	used	to	send	email?	What	are	the	function’s	arguments?	What	does	the	server	need	to
send	email?
	Does	it	make	a	difference	whether	\n	is	used	within	single	or	double	quotation	marks?
	Can	you	easily	know	for	certain	if,	or	when,	a	recipient	received	an	email	sent	by	PHP?
	What	debugging	steps	can	you	take	if	you	aren’t	receiving	any	email	that	should	be	sent	from	a	PHP
script?
	How	do	folder	permissions	come	into	play	for	handling	uploaded	files?
	What	two	directories	are	used	in	handling	file	uploads?
	What	additional	attribute	must	be	made	to	the	opening	form	tag	in	order	to	handle	a	file	upload?
	What	is	a	MIME	type?
	In	what	ways	are	PHP	and	JavaScript	alike?	How	are	they	different?
	What	tag	is	used	to	add	JavaScript	to	an	HTML	page?
	What	does	the	var	keyword	mean	in	JavaScript?
	What	is	the	concatenation	operator	in	JavaScript?
	What	does	the	PHP	header()	function	do?
	What	do	headers	already	sent	error	messages	mean?
	What	is	a	proxy	script?	When	might	a	proxy	script	be	necessary?
	What	does	the	readfile()	function	do?
	How	do	you	start	a	MySQL	transaction	in	a	PHP	script?	How	do	you	commit	the	changes?	How	do
you	roll	back	the	changes?

Pursue
	Create	a	more	custom	contact	form.	Have	the	PHP	script	also	send	a	more	custom	email,	including	any
other	data	requested	by	the	form.

http://LarryUllman.com/forums/


	 Search	 online	 using	 the	 keywords	 php	 email	 spam	 filters	 to	 learn	 techniques	 for	 improving	 the
successful	delivery	of	PHP-sent	email	(i.e.,	to	minimize	the	chances	of	spam	filters	eating	legitimate
emails).
	Make	a	variation	on	upload_image.php	 that	 supports	 the	uploading	of	different	 file	 types.	Create	a
corresponding	version	of	show_image.php.	Note:	You’ll	need	to	do	some	research	on	MIME	types	to
complete	these	challenges.
	If	you’re	feeling	adventurous,	come	up	with	a	system	(probably	a	database)	for	renaming—and	storing
data	about—uploaded	files.
	Check	out	the	PHP	manual	page	for	the	glob()	function,	which	can	be	used	instead	of	scandir().
	 Add	 validations	 to	 the	 transfers	 script	 to	 prevent	 a	 negative	 transfer	 or	 the	 selection	 of	 the	 same
account	for	both	the	“to”	and	“from.”
	If	you’d	like	to	learn	another	advanced	database	trick,	look	into	locking	and	unlocking	MySQL	tables
and	 rows.	 Ideally	 the	 transfers	 script	 would	 lock	 the	 “from”	 account,	 thereby	 preventing	 multiple
simultaneous	transfers	from	making	the	balance	negative.
	A	lot	of	information	and	new	functions	were	introduced	in	this	chapter.	Check	out	the	PHP	manual	for
some	of	them	to	learn	more.



















































12.	Cookies	and	Sessions

In	This	Chapter
Making	a	Login	Page
Making	the	Login	Functions
Using	Cookies
Using	Sessions
Improving	Session	Security
Review	and	Pursue

The	Hypertext	Transfer	Protocol	(HTTP)	is	a	stateless	 technology,	meaning	that	each	HTML	page	is	an
unrelated	entity.	HTTP	has	no	method	for	tracking	users	or	retaining	variables	as	a	person	traverses	a	site.
Without	 the	 server	 being	 able	 to	 track	 a	 user,	 there	 can	 be	 no	 shopping	 carts	 or	 custom	 website
personalization.	Using	a	server-side	technology	like	PHP,	you	can	overcome	the	statelessness	of	the	web.
The	two	best	PHP	tools	for	this	purpose	are	cookies	and	sessions.
The	 key	 difference	 between	 cookies	 and	 sessions	 is	 that	 cookies	 store	 data	 in	 the	 user’s	 browser	 and
sessions	 store	data	on	 the	 server	 itself.	Sessions	are	generally	more	 secure	 than	cookies	 and	can	 store
much	more	information.	Because	both	technologies	are	easy	to	use	with	PHP	and	are	worth	knowing,	this
chapter	 covers	 both	 cookies	 and	 sessions.	 The	 examples	 for	 demonstrating	 this	 information	will	 be	 a
login	system,	based	on	the	existing	sitename	database.

Making	a	Login	Page
A	login	process	involves	just	a	few	components	 :



The	login	process.
	A	form	for	submitting	the	login	information
	A	validation	routine	that	confirms	the	necessary	information	was	submitted
	A	database	query	that	compares	the	submitted	information	against	the	stored	information
	Cookies	or	sessions	to	store	data	that	reflects	a	successful	login

Subsequent	pages	can	then	have	checks	to	confirm	that	the	user	is	logged	in	(to	limit	access	to	that	page	or
add	 features).	 There	 is	 also,	 of	 course,	 a	 logging-out	 process,	which	 involves	 clearing	 the	 cookies	 or
session	data	that	represent	a	logged-in	status.
To	start	all	 this,	 let’s	 take	some	of	 these	common	elements	and	place	them	into	separate	files.	Then	 the
pages	that	require	this	functionality	can	include	the	necessary	files.	Breaking	up	the	logic	 this	way	will



make	some	of	the	following	scripts	easier	to	read	and	write,	as	well	as	cut	down	on	their	redundancies.
You’ll	define	 two	 includable	 files.	This	 first	 script	will	contain	 the	bulk	of	a	 login	page,	 including	 the
header,	the	error	reporting,	the	form,	and	the	footer	 .

The	login	form	and	page.

To	make	a	login	page:
1.	Begin	 a	 new	PHP	page	 in	 your	 text	 editor	 or	 IDE,	 to	 be	 named	login_page.inc.php	 (Script
12.1):

Click	here	to	view	code	image
<?php	#	Script	12.1	–

login_page.inc.php

Script	 12.1	 The	 login_page.inc.php	 script	 creates	 the	 complete	 login	 page,	 including	 the	 form,	 and
reports	any	errors.	It	will	be	included	by	other	pages	that	need	to	show	the	login	page.
Click	here	to	view	code	image

1			<?php	#	Script	12.1	-	login_page.inc.php

2			//	This	page	prints	any	errors	associated	with	logging	in

3			//	and	it	creates	the	entire	login	page,	including	the	form.

4			

5			//	Include	the	header:

6			$page_title	=	'Login';

7			include('includes/header.html');

8			

9			//	Print	any	error	messages,	if	they	exist:

10		if	(isset($errors)	&&	!empty($errors))	{

11					echo	'<h1>Error!</h1>

12					<p	class="error">The	following	error(s)	occurred:<br>';

13					foreach	($errors	as	$msg)	{

14								echo	"	-	$msg<br>\n";

15					}

16					echo	'</p><p>Please	try	again.</p>';

17		}

18		

19		//	Display	the	form:

20		?><h1>Login</h1>

21		<form	action="login.php"	method="post">

22					<p>Email	Address:	<input	type="email"	name="email"	size="20"	maxlength="60">	</p>



23					<p>Password:	<input	type="password"	name="pass"	size="20"	maxlength="20"></p>

24					<p><input	type="submit"	name="submit"	value="Login"></p>

25		</form>

26		

27		<?php	include('includes/footer.html');	?>

2.	Include	the	header:
Click	here	to	view	code	image

$page_title	=	'Login';

include('includes/header.html');

This	chapter	will	make	use	of	the	same	template	system	first	created	in	Chapter	3,	“Creating	Dynamic
Web	Sites,”	then	modified	in	Chapter	9,	“Using	PHP	with	MySQL.”

3.	Print	any	error	messages,	if	they	exist:
Click	here	to	view	code	image

if	(isset($errors)	&&

!empty($errors))	{

		echo	'<h1>Error!</h1>

		<p	class="error">The	following

error(s)	occurred:<br>';

		foreach	($errors	as	$msg)	{

										echo	"	-	$msg<br>\n";

		}

		echo	'</p><p>Please	try	again.

</p>';

}

This	code	was	also	developed	back	 in	Chapter	9,	although	an	additional	isset()	 clause	has	been
added	as	an	extra	precaution.	If	any	errors	exist	(in	the	$errors	array	variable),	they’ll	be	printed	
.



	As	with	other	scripts	in	this	book,	form	errors	are	displayed	above	the	form	itself.
4.	Display	the	form:
Click	here	to	view	code	image

?><h1>Login</h1>

<form	action="login.php"

method="post">

		<p>Email	Address:	<input

		 type="email"	name="email"

		 size="20"	maxlength="60">	</p>

		<p>Password:	<input

		 type="password"	name="pass"

		 size="20"	maxlength="20"></p>

		<p><input	type="submit"

		 name="submit"	value="Login">

		 </p>

</form>

The	HTML	form	needs	only	two	text	inputs:	one	for	an	email	address	and	a	second	for	the	password.
The	 names	 of	 the	 inputs	 match	 those	 in	 the	 users	 table	 of	 the	 sitename	 database	 (which	 this	 login
system	is	based	on).
To	make	it	easier	to	create	the	HTML	form,	the	PHP	section	is	closed	first.	The	form	is	not	sticky,	but
you	could	easily	add	code	to	accomplish	that.

5.	Complete	the	page:
<?php	include('includes/footer

.html');	?>

6.	 Save	 the	 file	 as	login_page.inc.php	 and	 place	 it	 in	 your	web	 directory	 (in	 the	includes
folder,	along	with	the	files	from	Chapter	3	and	Chapter	9:	header.html	and	footer.html).
The	 page	 will	 use	 an	.inc.php	 extension	 to	 indicate	 both	 that	 it’s	 an	 includable	 file	 and	 that	 it
contains	PHP	code.

Tip
It	 may	 seem	 illogical	 that	 this	 script	 includes	 the	 header	 and	 footer	 file	 from	 within	 the
includes	directory	when	this	script	will	also	be	within	that	same	directory.	This	code	works
because	 this	 script	 will	 be	 included	 by	 pages	 within	 the	 main	 directory;	 thus	 the	 include
references	are	with	respect	to	the	parent	file,	not	this	one.

Making	the	Login	Functions
Along	with	the	login	page	that	was	stored	in	login_page.inc.php,	there’s	a	bit	of	functionality	that
will	be	common	to	several	scripts	in	this	chapter.	In	this	next	script,	also	to	be	included	by	other	pages	in
the	login/logout	system,	two	functions	will	be	defined.
First,	 many	 pages	 will	 end	 up	 redirecting	 the	 user	 from	 one	 page	 to	 another.	 For	 example,	 upon
successfully	logging	in,	the	user	will	be	taken	to	loggedin.php.	If	a	user	accesses	loggedin.php
and	 they	 aren’t	 logged	 in,	 they	 should	 be	 taken	 to	 index.php.	 Redirection	 uses	 the	 header()
function,	introduced	in	Chapter	11,	“Web	Application	Development.”	The	syntax	for	redirection	is
Click	here	to	view	code	image

header	('Location:	http://www.example

.com/page.php');



Because	this	function	will	send	the	browser	to	page.php,	the	current	script	should	be	terminated	using
exit()	immediately	after	this:
Click	here	to	view	code	image

header	('Location:	http://www.example

.com/page.php');

exit();

If	you	don’t	call	,	the	current	script	will	continue	to	run	(just	not	in	the	browser).
The	 location	 value	 in	 the	 header()	 call	 should	 be	 an	 absolute	 URL
(www.example.com/page.php	 instead	 of	 just	 page.php).	 You	 can	 hard-code	 this	 value	 into
every	header()	call	or,	better	yet,	have	PHP	dynamically	determine	 it.	The	first	 function	 in	 this	next
script	will	do	just	that,	and	then	redirect	the	user	to	that	absolute	URL.
The	other	bit	of	code	that	will	be	used	by	multiple	scripts	in	this	chapter	validates	the	login	form.	This	is
a	three-step	process:
1.	Confirm	that	an	email	address	was	provided.
2.	Confirm	that	a	password	was	provided.
3.	Confirm	that	the	provided	email	address	and	password	match	those	stored	in	the	database	(during	 the
registration	process).

This	 next	 script	 will	 define	 two	 different	 functions.	 The	 details	 of	 how	 each	 function	 works	 will	 be
explained	in	the	steps	that	follow.

To	create	the	login	functions:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	login_functions.inc.php
(Script	12.2):

Click	here	to	view	code	image
<?php	#	Script	12.2	-

login_functions.inc.php

Script	12.2	The	login_functions.inc.php	script	defines	two	functions	that	will	be	used	by	different	scripts
in	the	login/logout	process.
Click	here	to	view	code	image

1			<?php	#	Script	12.2	-	login_functions.inc.php

2			//	This	page	defines	two	functions	used	by	the	login/logout	process.

3			

4			/*	This	function	determines	an	absolute	URL	and	redirects	the	user	there.

5				*	The	function	takes	one	argument:	the	page	to	be	redirected	to.

6				*	The	argument	defaults	to	index.php.

7				*/

8			function	redirect_user($page	=	'index.php')	{

9			

10					//	Start	defining	the	URL...

11					//	URL	is	http://	plus	the	host	name

							plus	the	current	directory:

12					$url	=	'http://'	.	$_SERVER

							['HTTP_HOST']	.	dirname

							($_SERVER['PHP_SELF']);

13				

14					//	Remove	any	trailing	slashes:

15					$url	=	rtrim($url,	'/\\');

16				



17					//	Add	the	page:

18					$url	.=	'/'	.	$page;

19				

20					//	Redirect	the	user:

21					header("Location:	$url");

22					exit();	//	Quit	the	script.

23				

24		}	//	End	of	redirect_user()	function.

25				

26		

27		/*	This	function	validates	the	form	data

				(the	email	address	and	password).

28			*	If	both	are	present,	the	database	is	queried.

29			*	The	function	requires	a	database	connection.

30			*	The	function	returns	an	array	of	information,	including:

31			*	-	a	TRUE/FALSE	variable	indicating	success

32			*	-	an	array	of	either	errors	or	the	database	result

33			*/

34		function	check_login($dbc,	$email	=	'',	$pass	=	'')	{

35				

36					$errors	=	[];	//	Initialize	error	array.

37				

38					//	Validate	the	email	address:

39					if	(empty($email))	{

40								$errors[]	=	'You	forgot	to	enter	your	email	address.';

41					}	else	{

42								$e	=	mysqli_real_escape_string	($dbc,	trim($email));

43					}

44				

45					//	Validate	the	password:

46					if	(empty($pass))	{

47								$errors[]	=	'You	forgot	to	enter	your	password.';

48					}	else	{

49								$p	=	mysqli_real_escape_string	($dbc,	trim($pass));

50					}

51				

52					if	(empty($errors))	{	//	If

							everything's	OK.

53				

54								//	Retrieve	the	user_id	and

										first_name	for	that	email/password

										combination:

55								$q	=	"SELECT	user_id,	first_name

										FROM	users	WHERE	email='$e'	AND

										pass=SHA2('$p',	512)";

56								$r	=	@mysqli_query($dbc,	$q);

										//	Run	the	query.

57				

58								//	Check	the	result:

59								if	(mysqli_num_rows($r)	==	1)	{

60				

61											//	Fetch	the	record:

62											$row	=	mysqli_fetch_array($r,

													MYSQLI_ASSOC);

63				

64											//	Return	true	and	the	record:

65											return	[true,	$row];

66				

67								}	else	{	//	Not	a	match!

68											$errors[]	=	'The	email	address

													and	password	entered	do	not

													match	those	on	file.';

69								}



70				

71					}	//	End	of	empty($errors)	IF.

72				

73					//	Return	false	and	the	errors:

74					return	[false,	$errors];

75				

76		}	//	End	of	check_login()	function.

Since	this	file	will	be	included	by	other	files,	it	does	not	need	to	contain	any	HTML.
2.	Begin	defining	a	new	function:
Click	here	to	view	code	image

function	redirect_user($page	=

'index.php')	{

The	redirect_user()	function	will	create	an	absolute	URL	that’s	correct	for	the	site	running	these
scripts,	and	then	redirect	the	user	to	that	page.	The	benefit	of	doing	this	dynamically	(as	opposed	to	just
hard-coding	http://www.example.com/page.php)	is	that	you	can	develop	your	code	on	one
server,	such	as	your	own	computer,	and	then	move	it	to	another	server	without	ever	needing	to	change
this	code.
The	 function	 takes	 one	 optional	 argument:	 the	 final	 destination	 page	 name.	 The	 default	 value	 is
index.php.

3.	Start	defining	the	URL:
Click	here	to	view	code	image

$url	=	'http://'	.	$_SERVER

['HTTP_HOST']	.	dirname

($_SERVER['PHP_SELF']);

To	start,	$url	is	assigned	the	value	of	http://	plus	the	hostname	(which	could	be	either	localhost	or
www.example.com).	To	this	is	added	the	name	of	the	current	directory	using	the	dirname()	function,
in	case	the	redirection	is	taking	place	within	a	subfolder.	$_SERVER[‘PHP_SELF’]	refers	to	the
current	script	 (which	will	be	 the	one	calling	 this	function),	 including	 the	directory	name.	That	whole
value	might	be	/somedir/page.php.	The	dirname()	function	will	return	just	the	directory	part	from
that	value	(i.e.,	/somedir/).

4.	Remove	any	ending	slashes	from	the	URL:
$url	=	rtrim($url,	'/\\');

Because	the	existence	of	a	subfolder	might	add	an	extra	slash	(/)	or	backslash	(\,	for	Windows),	the
function	needs	to	remove	that.	To	do	so,	apply	the	rtrim()	function.	By	default,	this	function	removes
spaces	 from	 the	 right	 side	of	 a	 string.	 If	 provided	with	 a	 list	 of	 characters	 to	 remove	 as	 the	 second
argument,	 it’ll	 chop	 those	 off	 instead.	 The	 characters	 to	 be	 removed	 are	 /	 and	 \.	 But	 since	 the
backslash	is	the	escape	character	in	PHP,	you	need	to	use	\\	to	refer	to	a	single	backslash.	With	this
one	 line	 of	 code,	 if	 $url	 concludes	 with	 either	 of	 these	 characters,	 the	 rtrim()	 function	 will
remove	them.

5.	Append	the	specific	page	to	the	URL:
$url	.=	'/'	.	$page;

Next,	the	specific	page	name	is	concatenated	to	the	$url.	It’s	preceded	by	a	slash	because	any	trailing
slashes	were	removed	in	Step	4	and	you	can’t	have	www.example.compage.php	as	the	URL.
This	may	all	seem	to	be	quite	complicated,	but	it’s	a	very	effective	way	to	ensure	that	the	redirection



works	 no	 matter	 on	 what	 server,	 or	 from	 what	 directory,	 the	 script	 is	 being	 run	 (as	 long	 as	 the
redirection	is	taking	place	within	that	directory).

6.	Redirect	the	user	and	complete	the	function:
Click	here	to	view	code	image

	header("Location:	$url");

	exit();	//	Quit	the	script.

}	//	End	of	redirect_user()	function.

The	final	steps	are	to	send	a	Location	header	and	terminate	the	execution	of	the	script.
7.	Begin	a	new	function:
Click	here	to	view	code	image

function	check_login($dbc,

$email	=	'',	$pass	=	'')	{

This	 function	will	 validate	 the	 login	 information.	 It	 takes	 three	 arguments:	 the	 database	 connection,
which	is	required;	the	email	address,	which	is	optional;	and	the	password,	which	is	also	optional.
Although	 this	 function	 could	 access	 $_POST[‘email’]	 and	 $_POST[‘pass’]	 directly,	 it’s
better	if	the	function	is	passed	these	values,	making	the	function	more	independent.

8.	Validate	the	email	address	and	password:
Click	here	to	view	code	image

$errors	=	[];	//	Initialize	error

array.

if	(empty($email))	{

		$errors[]	=	'You	forgot	to

		 enter	your	email	address.';

}	else	{

		$e	=	mysqli_real_escape_string

		 ($dbc,	trim($email));

}

if	(empty($pass))	{

		$errors[]	=	'You	forgot	to

		 enter	your	password.';

}	else	{

		$p	=	mysqli_real_escape_string

		 ($dbc,	trim($pass));

}

This	validation	routine	is	similar	to	that	used	in	the	registration	page.	If	any	problems	occur,	they’ll	be
added	 to	 the	array,	which	will	eventually	be	used	on	 the	 login	page	(see	 	under	“Making	a	Login
Page”).	Note	that	 this	array	is	local	 to	 the	function.	Even	though	it	has	 the	same	name,	 this	 is	not	 the
same	$errors	 variable	 that	 is	 used	 in	 the	 login	 page.	 Code	 later	 in	 the	 function	 will	 return	 this
variable’s	value,	and	code	in	the	scripts	that	call	this	function	will	then	assign	this	returned	value	to	the
proper,	global	array,	usable	on	the	login	page.

9.	If	no	errors	occurred,	run	the	database	query:
Click	here	to	view	code	image

if	(empty($errors))	{

		$q	=	"SELECT	user_id,	first_

		 name	FROM	users	WHERE	email=

		 '$e'	AND	pass=SHA2('$p',	512)";

		$r	=	@mysqli_query($dbc,	$q);

The	 query	 selects	 the	 user_id	 and	 first_name	 values	 from	 the	 database	 where	 the	 submitted	 email



address	 (from	 the	 form)	matches	 the	stored	email	address	and	 the	SHA2()	 version	of	 the	 submitted
password	matches	the	stored	password	 .

	 The	 results	 of	 the	 login	 query,	 shown	 in	 the	mysql	 client,	 if	 the	 user	 submitted	 the	 proper	 email
address/password	combination.
Keep	 in	mind	 this	 approach	works	only	 if	both	 the	 registration	and	 login	 scripts	 encrypt	or	 hash	 the
password	 using	 the	 exact	 same	 method.	 In	 Chapter	 13,	 “Security	 Methods,”	 you’ll	 learn	 how	 to
securely	hash	passwords	using	just	PHP.

10.	Check	the	results	of	the	query:
Click	here	to	view	code	image

if	(mysqli_num_rows($r)	= =	1)	{
		$row	=	mysqli_fetch_array

		 ($r,	MYSQLI_ASSOC);

	return	[true,	$row];

If	the	query	returned	one	row,	then	the	login	information	was	correct.	The	results	are	then	fetched	into
$row.	The	final	step	in	a	successful	login	is	to	return	two	pieces	of	information	back	to	the	requesting
script:	 the	Boolean	 true,	 indicating	 that	 the	 login	was	 a	 success,	 and	 the	data	 fetched	 from	MySQL.
Using	the	short	array	syntax	(or	the	array()	 function),	both	 the	Boolean	value	and	the	$row	array
can	be	returned	by	this	function.

11.	If	no	record	was	selected	by	the	query,	create	an	error:
Click	here	to	view	code	image

}	else	{	//	Not	a	match!

		$errors[ ]	=	'The	email	address
		 and	password	entered	do	not

		 match	those	on	file.';

}

If	 the	query	did	not	return	one	row,	then	an	error	message	is	added	to	the	array.	It	will	end	up	being
displayed	on	the	login	page	 .



	 If	 the	 user	 entered	 an	 email	 address	 and	 password,	 but	 they	 don’t	match	 the	 values	 stored	 in	 the
database,	this	is	the	result	in	the	browser.
12.	Complete	the	conditional	begun	in	Step	9	and	complete	the	function:
Click	here	to	view	code	image

	}	//	End	of	empty($errors)	IF.

	return	[false,	$errors];

}	//	End	of	check_login()	function.

The	final	step	is	for	the	function	to	return	a	value	of	false,	indicating	that	login	failed,	and	to	return	the
$errors	array,	which	stores	the	reason(s)	for	failure.	This	return	statement	can	be	placed	here—
at	 the	 end	of	 the	 function	 instead	of	within	 a	 conditional—because	 the	 function	will	 only	 get	 to	 this
point	if	the	login	failed.	If	the	login	succeeded,	the	return	line	in	Step	10	will	stop	the	function	from
continuing	(a	function	stops	as	soon	as	it	executes	a	return).

13.	 Save	 the	 file	 as	 login_functions.inc	 .php	 and	 place	 it	 in	 your	 web	 directory	 (in	 the
includes	folder,	along	with	header.html,	footer.html,	and	login_page.inc.php).
This	page	will	also	use	an	.inc.php	extension	to	indicate	both	that	it’s	an	includable	file	and	that	it
contains	PHP	code.
As	with	some	other	includable	files	created	in	this	book	(although	not	login_page.inc.php),	the
closing	PHP	tag—?>—is	omitted.	Doing	so	prevents	potential	complications	that	can	arise	should	an
includable	file	have	an	errant	blank	space	or	line	after	the	closing	tag.

Tip
The	scripts	 in	 this	chapter	 include	no	debugging	code	 (like	 the	MySQL	error	or	query).	 If	 you
have	problems	with	these	scripts,	apply	the	debugging	techniques	outlined	in	Chapter	8,	“Error
Handling	and	Debugging.”



Tip
You	can	add	name-value	pairs	to	the	URL	in	a	header()	call	to	pass	values	to	the	target	page:

Click	here	to	view	code	image

$url	.=	'?name='	.	urlencode(value);

Using	Cookies
Cookies	are	a	way	for	a	server	to	store	information	on	the	user’s	machine.	This	is	one	way	that	a	site	can
remember	or	track	a	user	over	the	course	of	a	visit.	Think	of	a	cookie	as	being	like	a	name	tag:	you	tell
the	server	your	name	and	it	gives	you	a	sticker	to	wear.	Then	it	can	know	who	you	are	by	referring	back	to
that	name	tag	 .

	How	cookies	are	sent	back	and	forth	between	the	server	and	the	client.
In	 this	 section,	 you	will	 learn	 how	 to	 set	 a	 cookie,	 retrieve	 information	 from	 a	 stored	 cookie,	 alter	 a
cookie’s	settings,	and	then	delete	a	cookie.

Setting	cookies
The	most	important	thing	to	understand	about	cookies	is	that	they	must	be	sent	from	the	server	to	the	client
prior	to	any	other	information.	Should	the	server	attempt	to	send	a	cookie	after	the	browser	has	already
received	HTML—even	an	extraneous	white	space—an	error	message	will	result	and	the	cookie	will	not
be	sent	 .	This	is	by	far	the	most	common	cookie-related	error,	but	it	is	easily	fixed.	If	you	see	such	a
message:



	The	headers	already	sent…	error	message	is	all	too	common	when	creating	cookies.	Pay	attention	to
what	the	error	message	says	in	order	to	find	and	fix	the	problem.
1.	Note	the	script	and	line	number	following	output	started	at.
2.	Open	that	script	and	head	to	that	line	number.
3.	Remove	the	blank	space,	line,	text,	HTML,	or	whatever	that	is	outputted	by	that	line.

Testing	for	Cookies
To	 effectively	 program	 using	 cookies,	 you	 need	 to	 be	 able	 to	 accurately	 test	 for	 their
presence.	The	best	way	 to	do	so	 is	 to	have	your	browser	ask	what	 to	do	when	receiving	a
cookie.	 In	such	a	case,	 the	browser	will	prompt	you	with	 the	cookie	 information	each	 time
PHP	attempts	to	send	a	cookie.
Different	 versions	 of	 different	 browsers	 on	 different	 platforms	 all	 define	 their	 cookie-
handling	 policies	 in	 different	 places.	 Search	 online	 for	 instructions	 for	 your	 browser	 of
choice.
Alternatively,	most	debugging	tools	built	into	browsers	provide	a	way	to	view	cookies.	This
information	is	normally	located	under	an	“Application”	or	“Network”	section.	Again,	search
online	for	the	particulars	for	your	browser.

Cookies	are	sent	via	the	setcookie()	function:
setcookie(name,	value);

setcookie('name',	'Nicole');

The	second	line	of	code	will	send	a	cookie	to	the	browser	with	a	name	of	name	and	a	value	of	Nicole	 .

	Viewing	a	received	cookie	in	Google	Chrome’s	developer	tools.
You	 can	 continue	 to	 send	 more	 cookies	 to	 the	 browser	 with	 subsequent	 uses	 of	 the	 setcookie()
function:
Click	here	to	view	code	image

setcookie('ID',	263);

setcookie('email',	'email@example.com');

As	for	the	cookies	name,	it’s	best	not	to	use	white	spaces	or	punctuation,	and	pay	attention	 to	 the	exact
case	used.



To	send	a	cookie:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	login.php	(Script	12.3):
Click	here	to	view	code	image

<?php	#	Script	12.3	-	login.php

Script	12.3	Upon	a	successful	login,	the	login.php	script	creates	two	cookies	and	redirects	the	user.
Click	here	to	view	code	image

1			<?php	#	Script	12.3	-	login.php

2			//	This	page	processes	the	login	form	submission.

3			//	Upon	successful	login,	the	user	is	redirected.

4			//	Two	included	files	are	necessary.

5			//	Send	NOTHING	to	the	web	browser	prior	to	the	setcookie()	lines!

6			

7			//	Check	if	the	form	has	been	submitted:

8			if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

9			

10					//	For	processing	the	login:

11					require('includes/login_functions.inc.php');

12				

13					//	Need	the	database	connection:

14					require('../mysqli_connect.php');

15				

16					//	Check	the	login:

17					list($check,	$data)	=

							check_login($dbc,	$_POST['email'],

							$_POST['pass']);

18				

19					if	($check)	{	//	OK!

20				

21								//	Set	the	cookies:

22								setcookie('user_id',

										$data['user_id']);

23								setcookie('first_name',

										$data['first_name']);

24				

25								//	Redirect:

26								redirect_user('loggedin.php');

27				

28					}	else	{	//	Unsuccessful!

29				

30								//	Assign	$data	to	$errors	for

										error	reporting

31								//	in	the	login_page.inc.php	file.

32								$errors	=	$data;

33				

34					}

35				

36					mysqli_close($dbc);	//	Close	the

							database	connection.

37				

38		}	//	End	of	the	main	submit	conditional.

39				

40		//	Create	the	page:

41		include('includes/login_page.inc.php');

42		?>

For	 this	 example,	 let’s	make	 a	login.php	 script	 that	 works	 in	 conjunction	with	 the	 scripts	 from
Chapter	9.	This	script	will	also	require	the	two	files	created	at	the	beginning	of	the	chapter.

2.	If	the	form	has	been	submitted,	include	the	two	helper	files:



Click	here	to	view	code	image
if	($_SERVER['REQUEST_METHOD']	= =
'POST')	{

		require('includes/login_

		 functions.inc.php');

		require('../mysqli_connect.php');

This	 script	 will	 do	 two	 things:	 handle	 the	 form	 submission	 and	 display	 the	 form.	 This	 conditional
checks	for	the	submission.
Within	 the	 conditional,	 the	 script	 must	 include	 both	 login_functions.inc.php	 and
mysqli_connect.php	 (which	was	created	in	Chapter	9	and	should	still	be	 in	 the	same	 location
relative	 to	 this	 script;	 change	your	 code	 here	 if	your	mysqli_connect.php	 is	 not	 in	 the	 parent
directory	of	the	current	directory).
I’ve	chosen	to	use	require()	 in	both	cases,	 instead	of	include(),	because	a	 failure	 to	 include
either	of	these	scripts	makes	the	login	process	impossible.

3.	Validate	the	form	data:
Click	here	to	view	code	image

list($check,	$data)	=

check_login($dbc,	$_

POST['email'],	$_POST['pass']);

After	 including	 both	 files,	 the	 check_login()	 function	 can	 be	 called.	 It’s	 passed	 the	 database
connection	 (which	 comes	 from	 mysqli_connect.php),	 along	 with	 the	 email	 address	 and	 the
password	(both	of	which	come	from	the	form).	As	an	added	precaution,	 the	script	could	confirm	that
both	variables	are	set	and	not	empty	prior	to	invoking	the	function.
This	function	returns	an	array	of	two	elements:	a	Boolean	value	and	an	array	(of	user	data	or	errors).
To	assign	those	returned	values	to	variables,	apply	the	list()	function.	The	first	value	returned	by
the	function	(the	Boolean)	will	be	assigned	to	$check.	The	second	value	returned	(either	the	$row	or
$errors	array)	will	be	assigned	to	$data.

4.	If	the	user	entered	the	correct	information,	log	them	in:
Click	here	to	view	code	image

if	($check)	{	//	OK!

		setcookie('user_id',

		 $data['user_id']);

		setcookie('first_name',

		 $data['first_name']);

The	$check	variable	indicates	the	success	of	the	login	attempt.	If	it	has	a	TRUE	value,	then	$data
contains	the	user’s	ID	and	first	name.	These	two	values	can	be	used	in	cookies.
Generally	 speaking,	 you	 should	 never	 store	 a	 database	 table’s	 primary	 key	 value,	 such	 as
$data[‘user_id’],	in	a	cookie,	because	cookies	can	be	manipulated	easily.	In	this	situation,	it’s
not	going	to	be	a	problem	since	the	user_id	value	 isn’t	actually	used	anywhere	 in	 the	site	(it’s	being
stored	in	the	cookie	for	demonstration	purposes).

5.	Redirect	the	user	to	another	page:
redirect_user('loggedin.php');

Using	 the	function	defined	earlier	 in	 the	chapter,	 the	user	will	be	 redirected	 to	another	 script	upon	a
successful	login.	The	specific	page	to	be	redirected	to	is	loggedin.php.

6.	Complete	the	$check	conditional	(started	in	Step	4)	and	then	close	the	database	connection:



}	else	{

	$errors	=	$data;

}

mysqli_close($dbc);

If	$check	 has	 a	 FALSE	value,	 then	 the	$data	 variable	 is	 storing	 the	 errors	 generated	within	 the
check_login()	 function.	 If	so,	 the	errors	should	be	assigned	 to	 the	$errors	 variable,	 because
that’s	 what	 the	 code	 in	 the	 script	 that	 displays	 the	 login	 page—login_page.inc.php—is
expecting.

7.	Complete	the	main	submit	conditional	and	include	the	login	page:
Click	here	to	view	code	image

}

include('includes/login_

page.inc.php');

?>

This	 login.php	 script	 itself	 primarily	 performs	 validation,	 by	 calling	 the	 check_login()
function,	 and	 handles	 the	 cookies	 and	 redirection.	 The	 login_page.inc.php	 file	 contains	 the
login	page	itself,	so	it	just	needs	to	be	included.

8.	Save	 the	 file	 as	login.php,	 place	 it	 in	 your	web	 directory	 (in	 the	 same	 folder	 as	 the	 files	 from
Chapter	9),	and	load	this	page	in	your	browser	(see	 	under	“Making	a	Login	Page”).

Tip
If	you	want,	you	can	submit	the	form	erroneously,	but	you	cannot	correctly	log	in	yet,	as	the	final
destination—loggedin.php—hasn’t	been	written.

Tip
Cookies	 are	 limited	 to	 about	 4	 KB	 of	 total	 data,	 and	 each	 browser	 can	 remember	 a	 limited
number	of	cookies	from	any	one	site.	This	limit	is	50	cookies	for	most	of	the	current	browsers
(but	if	you’re	sending	out	50	different	cookies,	you	may	want	to	rethink	how	you	do	things).

Tip
The	setcookie()	function	is	one	of	the	few	functions	in	PHP	that	could	have	different	results
in	different	browsers,	since	each	browser	treats	cookies	in	its	own	way.	Be	sure	to	test	your	web
sites	in	multiple	browsers	on	different	platforms	to	ensure	consistency.

Tip
If	 the	 first	 two	 included	 files	 send	anything	 to	 the	browser	or	even	have	blank	 lines	or	 spaces
after	the	closing	PHP	tag,	you’ll	see	a	headers	already	sent	error.	This	is	why	neither	includes
the	terminating	PHP	tag.



Accessing	cookies
To	 retrieve	 a	 value	 from	 a	 cookie,	 you	 only	 need	 to	 refer	 to	 the	 $_COOKIE	 superglobal,	 using	 the
appropriate	cookie	name	as	the	key	(as	you	would	with	any	array).	For	example,	to	retrieve	the	value	of
the	cookie	established	with	the	line
Click	here	to	view	code	image

setcookie('username',	'Trout');

you	would	refer	to	$_COOKIE[‘username’].
In	the	following	example,	the	cookies	set	by	the	login.php	script	will	be	accessed	in	two	ways.	First,
a	check	will	be	made	 that	 the	user	 is	 logged	 in	 (otherwise,	 that	user	shouldn’t	be	accessing	 this	page).
Second,	the	user	will	be	greeted	by	his	or	her	first	name,	which	was	stored	in	a	cookie.

To	access	a	cookie:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	loggedin.php	(Script	12.4):
Click	here	to	view	code	image

<?php	#	Script	12.4	-	loggedin.php

Script	12.4	The	loggedin.php	script	prints	a	greeting	to	a	user	thanks	to	a	stored	cookie.
Click	here	to	view	code	image

1			<?php	#	Script	12.4	-	loggedin.php

2			//	The	user	is	redirected	here	from	login.php.

3			

4			//	If	no	cookie	is	present,	redirect	the	user:

5			if	(!isset($_COOKIE['user_id']))	{

6			

7						//	Need	the	functions:

8						require('includes/login_functions.inc.php');

9						redirect_user();

10				

11		}

12				

13		//	Set	the	page	title	and	include	the

				HTML	header:

14		$page_title	=	'Logged	In!';

15		include('includes/header.html');

16				

17		//	Print	a	customized	message:

18		echo	"<h1>Logged	In!</h1>

19		<p>You	are	now	logged	in,

				{$_COOKIE['first_name']}!</p>

20		<p><a	href=\"logout.php\">Logout</a>

				</p>";

21				

22		include('includes/footer.html');

23		?>

The	user	will	be	redirected	to	this	page	after	successfully	logging	in.	The	script	will	greet	the	user	by
first	name,	using	the	cookie.

2.	Check	for	the	presence	of	a	cookie:
Click	here	to	view	code	image

if	(!isset($_COOKIE['user_id']))	{

Since	a	user	shouldn’t	be	able	to	access	this	page	unless	he	or	she	is	logged	in,	check	for	a	cookie	that



should	have	been	set	(in	login.php).
3.	Redirect	any	user	who	is	not	logged	in:
Click	here	to	view	code	image

		require('includes/login_

		 functions.inc.php');

		redirect_user();

}

If	the	user	is	not	logged	in,	he	or	she	will	be	automatically	redirected	to	the	main	page.	This	is	a	simple
way	to	limit	access	to	content.

4.	Include	the	page	header:
Click	here	to	view	code	image

$page_title	=	'Logged	In!	';

include('includes/header.html');

5.	Welcome	the	user,	referencing	the	cookie:
Click	here	to	view	code	image

echo	"<h1>Logged	In!</h1>

<p>You	are	now	logged	in,

{$_COOKIE['first_name']}!</p>

<p><a	href=\"logout.php\">Logout

</a></p>";

To	 greet	 the	 user	 by	 name,	 refer	 to	 the	 $_COOKIE[‘first_name’]	 variable,	 enclosed	 within
braces	 to	 avoid	 parse	 errors.	 A	 link	 to	 the	 logout	 page	 (to	 be	 written	 later	 in	 the	 chapter)	 is	 also
printed.

6.	Complete	the	HTML	page:
Click	here	to	view	code	image

include('includes/footer.html');

?>

7.	Save	the	file	as	,	place	it	in	your	web	directory	(in	the	same	folder	as	login.php),	and	test	it	in	your
browser	by	logging	in	through	 .

	If	you	used	the	correct	email	address	and	password,	you’ll	see	this	page	after	logging	in.
Since	these	examples	use	the	same	database	as	those	in	Chapter	9,	you	should	be	able	to	log	in	using



the	registered	username	and	password	submitted	at	that	time.
8.	Use	your	browser’s	developer	 tools	 to	 see	 the	cookies	being	set	 ,	 change	 the	cookie	 settings	 for
your	browser,	and	test	again.

	The	two	generated	cookies.

Tip
Some	browsers	(e.g.,	Internet	Explorer)	will	not	adhere	to	your	cookie-prompting	preferences	for
cookies	sent	over	localhost.

Tip
A	 cookie	 is	 not	 accessible	 until	 the	 setting	 page	 (e.g.,	 login.php)	 has	 been	 reloaded	 or
another	page	has	been	accessed	(in	other	words,	you	cannot	set	and	access	a	cookie	in	the	same
page).

Tip
If	users	decline	a	cookie	or	have	their	browser	set	not	to	accept	them,	they	will	automatically	be
redirected	to	the	home	page	in	this	example,	even	if	they	successfully	logged	in.	For	this	reason,
you	may	want	to	let	users	know	that	cookies	are	required.

Tip
The	European	Union	(EU)	has	laws	with	respect	to	user	privacy	and	cookies.	If	your	site	serves
EU	users,	take	the	time	to	research	what	steps	you	ought	to	take	to	be	compliant.

Setting	cookie	parameters
Although	 passing	 just	 the	 name	 and	 value	 arguments	 to	 the	setcookie()	 function	will	 suffice,	 you
ought	 to	be	aware	of	 the	other	 arguments	 available.	The	 function	 can	 take	up	 to	 five	more	parameters,
each	of	which	will	alter	the	definition	of	the	cookie.
Click	here	to	view	code	image

setcookie(name,	value,	expiration,

path,	host,	secure,	httponly);

The	 expiration	 argument	 is	 used	 to	 set	 a	 definitive	 length	 of	 time	 for	 a	 cookie	 to	 exist,	 specified	 in
seconds	since	the	epoch	(the	epoch	is	midnight	on	January	1,	1970).	If	it	is	not	set	or	if	it’s	set	to	a	value
of	0,	the	cookie	will	continue	to	be	functional	until	the	user	closes	the	browser.	These	cookies	are	said	to
last	for	the	browser	session	(also	indicated	in	 ).



To	set	a	specific	expiration	time,	add	a	number	of	minutes	or	hours	to	the	current	moment,	retrieved	using
the	time()	function.	The	following	line	will	set	the	expiration	time	of	the	cookie	to	be	30	minutes	 (60
seconds	times	30	minutes)	from	the	current	moment:
Click	here	to	view	code	image

setcookie(name,	value,	time()+1800);

The	path	and	host	arguments	are	used	to	limit	a	cookie	to	a	specific	folder	within	a	web	site	(the	path)	or
to	a	 specific	host	 (www.example.com	or	192.168.0.1).	For	 example,	you	could	 restrict	 a	 cookie	 to
exist	only	while	a	user	is	within	the	admin	folder	of	a	domain	(and	the	admin	folder’s	subfolders):
Click	here	to	view	code	image

setcookie(name,	value,	expire,

'/admin/');

Setting	the	path	to	/	will	make	the	cookie	visible	within	an	entire	domain	(web	site).	Setting	the	domain
to	 .example.com	 will	 make	 the	 cookie	 visible	 within	 an	 entire	 domain	 and	 every	 subdomain
(www.example.com,	admin.example.com,	pages.example.com,	etc.).
The	 secure	 value	 dictates	 that	 a	 cookie	 should	 be	 sent	 only	 over	 a	 secure	 HTTPS	 connection.	 A	 1
indicates	that	a	secure	connection	must	be	used,	and	a	0	says	that	a	standard	connection	is	fine.
Click	here	to	view	code	image

setcookie(name,	value,	expire,	

path,	host,	1);

If	your	site	is	using	a	secure	connection,	you	ought	to	restrict	any	cookies	to	HTTPS	as	well.
Finally,	 added	 in	PHP	5.2	 is	 the	httponly	 argument.	A	Boolean	value	 is	 used	 to	make	 the	 cookie	 only
accessible	 through	 HTTP	 (and	 HTTPS).	 Enforcing	 this	 restriction	 will	 make	 the	 cookie	 more	 secure
(preventing	some	hack	attempts)	but	is	not	supported	by	all	browsers	as	of	this	writing.
Click	here	to	view	code	image

setcookie(name,	value,	expire,	path,

host,	secure,	TRUE);

As	with	all	functions	that	take	arguments,	you	must	pass	the	setcookie()	values	in	order.	To	skip	any
parameter,	use	NULL,	0,	or	an	empty	string;	don’t	use	FALSE.	The	expiration	and	secure	values	are	both
integers	and	are	therefore	not	quoted.
To	demonstrate	this	 information,	 let’s	add	an	expiration	setting	to	the	login	cookies	so	 that	 they	 last	 for
only	one	hour.

To	set	a	cookie’s	parameters:
1.	Open	in	your	text	editor	(refer	to	Script	12.3),	if	you	haven’t	already.
2.	Change	 the	 two	setcookie()	 lines	 to	 include	 an	 expiration	date	 that’s	 60	minutes	 away	 (Script
12.5):

Click	here	to	view	code	image
setcookie('user_id',	$data

['user_id'],	time()+3600,

'/',	'',	0,	0);

setcookie('first_name',	$data

['first_name'],	time()+3600,

'/',	'',	0,	0);



Script	12.5	The	login.php	script	now	uses	every	argument	the	setcookie()	function	can	take.
Click	here	to	view	code	image

1			<?php	#	Script	12.5	-	login.php	#2

2			//	This	page	processes	the	login	form	submission.

3			//	The	script	now	adds	extra	parameters	to	the	setcookie()	lines.

4			

5			//	Check	if	the	form	has	been	submitted:

6			if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

7			

8						//	Need	two	helper	files:

9						require('includes/login_functions.inc.php');

10					require('../mysqli_connect.php');

11				

12					//	Check	the	login:

13					list	($check,	$data)	=	check_login($dbc,	$_POST['email'],	$_POST['pass']);

14				

15					if	($check)	{	//	OK!

16				

17								//	Set	the	cookies:

18								setcookie('user_id',	$data['user_id'],	time()+3600,	'/',	'',	0,	0);

19								setcookie('first_name',	$data['first_name'],	time()+3600,	'/',	'',	0,	0);

20				

21								//	Redirect:

22								redirect_user('loggedin.php');

23				

24					}	else	{	//	Unsuccessful!

25				

26								//	Assign	$data	to	$errors	for

										login_page.inc.php:

27								$errors	=	$data;

28				

29					}

30				

31					mysqli_close($dbc);	//	Close	the

							database	connection.

32				

33		}	//	End	of	the	main	submit	conditional.

34				

35		//	Create	the	page:

36		include('includes/login_page.inc.php');

37		?>

With	 the	 expiration	 date	 set	 to	time()	+	3600	 (60	minutes	 times	 60	 seconds),	 the	 cookie	will
continue	to	exist	for	an	hour	after	it	is	set.	Next,	the	path,	host,	and	secure	parameters	are	then	set	to
logical	defaults.
For	the	final	parameter,	which	accepts	a	Boolean	value,	you	can	also	use	0	to	represent	FALSE	(PHP
will	handle	 the	conversion	 for	you).	Doing	so	 is	a	good	 idea,	 since	using	 false	 in	 any	of	 the	 cookie
arguments	can	cause	problems.

3.	Save	the	script,	place	it	in	your	web	directory,	and	test	it	in	your	browser	by	logging	in	 .



	Changes	to	the	setcookie()	parameters,	like	an	expiration	date	and	time,	will	be	reflected	in	the
cookie	sent	to	the	browser	(compare	with	 ).

Tip
Some	browsers	have	difficulties	with	cookies	that	do	not	list	every	argument.	Explicitly	stating
every	 parameter—even	 as	 an	 empty	 string—will	 achieve	 more	 reliable	 results	 across	 all
browsers.

Tip
Here	are	some	general	guidelines	for	cookie	expirations:	If	the	cookie	should	last	as	long	as	the
user’s	session,	do	not	set	an	expiration	time;	if	the	cookie	should	continue	to	exist	after	the	user
has	closed	and	reopened	his	or	her	browser,	set	an	expiration	time	weeks	or	months	ahead;	and	if
the	cookie	can	constitute	a	security	risk,	set	an	expiration	time	of	an	hour	or	fraction	thereof	so
that	the	cookie	does	not	continue	to	exist	too	long	after	a	user	has	left	his	or	her	browser.

Tip
For	security	purposes,	you	could	set	a	5-	or	10-minute	expiration	time	on	a	cookie	and	have	the
cookie	re-sent	with	every	new	page	the	user	visits	(assuming	that	 the	cookie	exists).	This	way,
the	cookie	will	continue	to	persist	as	long	as	the	user	is	active	but	will	automatically	die	5	or	10
minutes	after	the	user’s	last	action.

Tip
E-commerce	 and	 other	 privacy-related	 web	 applications	 should	 use	 an	 SSL	 (Secure	 Sockets
Layer)	connection	for	all	transactions,	including	the	cookie.

Tip
Be	careful	with	cookies	created	by	scripts	within	a	directory.	If	the	path	isn’t	specified,	then	that
cookie	will	be	available	to	other	scripts	only	within	that	same	directory.

Deleting	cookies
The	 final	 thing	 to	 understand	 about	 using	 cookies	 is	 how	 to	 delete	 one.	 Although	 a	 cookie	 will
automatically	 expire	when	 the	 user’s	 browser	 is	 closed	 or	when	 the	 expiration	 date/time	 is	met,	 often
you’ll	want	to	manually	delete	the	cookie	instead.	For	example,	in	web	sites	that	have	login	capabilities,
you	will	want	to	delete	any	cookies	when	the	user	logs	out.
Although	the	setcookie()	function	can	take	up	to	seven	arguments,	only	one	is	required:	the	cookie
name.	If	you	send	a	cookie	that	consists	of	a	name	without	a	value,	it	will	have	the	same	effect	as	deleting
the	existing	cookie	of	the	same	name.	For	example,	to	create	the	cookie	first_name,	you	use	this	line:
Click	here	to	view	code	image

setcookie('first_name',	'Tyler');

To	delete	the	first_name	cookie,	you	would	code



setcookie('first_name');

As	an	added	precaution,	you	can	also	set	an	expiration	date	that’s	in	the	past:
Click	here	to	view	code	image

setcookie('first_name',	'',	time()-3600);

To	demonstrate	all	of	this,	let’s	add	a	logout	capability	to	the	site.	The	link	to	the	logout	page	appears	on
loggedin.php.	As	 an	 added	 feature,	 the	 header	 file	will	 be	 altered	 so	 that	 a	Logout	 link	 appears
when	the	user	is	logged	in	and	a	Login	link	appears	when	the	user	is	logged	out.

To	delete	a	cookie:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	logout.php	(Script	12.6):
Click	here	to	view	code	image

<?php	#	Script	12.6	-	logout.php

Script	12.6	The	logout.php	script	deletes	the	previously	established	cookies.
Click	here	to	view	code	image

1			<?php	#	Script	12.6	-	logout.php

2			//	This	page	lets	the	user	logout.

3			

4			//	If	no	cookie	is	present,	redirect	the	user:

5			if	(!isset($_COOKIE['user_id']))	{

6			

7						//	Need	the	function:

8						require('includes/login_functions.inc.php');

9						redirect_user();

10				

11		}	else	{	//	Delete	the	cookies:

12					setcookie('user_id',	'',

							time()-3600,	'/',	'',	0,	0);

13					setcookie('first_name',	'',

							time()-3600,	'/',	'',	0,	0);

14		}

15				

16		//	Set	the	page	title	and	include	the

				HTML	header:

17		$page_title	=	'Logged	Out!';

18		include('includes/header.html');

19				

20		//	Print	a	customized	message:

21		echo	"<h1>Logged	Out!</h1>

22		<p>You	are	now	logged	out,

				{$_COOKIE['first_name']}!</p>";

23				

24		include('includes/footer.html');

25		?>

2.	Check	for	the	existence	of	a	user_id	cookie;	if	it	is	not	present,	redirect	the	user:
Click	here	to	view	code	image

if	(!isset($_COOKIE['user_id']))	{

		require('includes/login_

		 functions.inc.php');

		redirect_user();

As	with	loggedin.php,	if	the	user	is	not	already	logged	in,	this	page	should	redirect	the	user	to	the
home	page.	There’s	no	point	in	trying	to	log	out	a	user	who	isn’t	logged	in!



3.	Delete	the	cookies,	if	they	exist:
Click	here	to	view	code	image

}	else	{	//	Delete	the	cookies:

		setcookie('user_id',	'',

		 time()-3600,	'/',	'',	0,	0);

		setcookie('first_name',	'',

		 time()-3600,	'/',	'',	0,	0);

}

If	the	user	is	logged	in,	these	two	cookies	will	effectively	delete	the	existing	ones.	Except	for	the	value
and	the	expiration,	the	other	arguments	should	have	the	same	values	as	they	do	when	the	cookies	were
created.

4.	Make	the	remainder	of	the	PHP	page:
Click	here	to	view	code	image

$page_title	=	'Logged	Out!';

include('includes/header.html');

echo	"<h1>Logged	Out!</h1>

<p>You	are	now	logged	out,

{$_COOKIE['first_name']}!</p>";

include('includes/footer.html');

?>

The	page	itself	 is	also	much	like	the	loggedin.php	page.	Although	it	may	seem	odd	that	you	can
still	 refer	 to	 the	 first_name	 cookie	 (that	 was	 just	 deleted	 in	 this	 script),	 it	 makes	 perfect	 sense
considering	the	process:
A.	This	page	is	requested	by	the	client.
B.	The	server	reads	the	available	cookies	from	the	client’s	browser.
C.	The	page	is	run	and	does	its	thing	(including	sending	new	cookies	that	delete	the	existing	ones).
Thus,	in	short,	the	original	first_name	cookie	data	is	available	to	this	script	when	it	first	runs.	The	set
of	cookies	sent	by	this	page—the	delete	cookies—aren’t	available	to	this	page,	so	the	original	values
are	still	usable.

5.	 Save	 the	 file	 as	 logout.php	 and	 place	 it	 in	 your	 web	 directory	 (in	 the	 same	 folder	 as
login.php).

To	create	the	logout	link:
1.	Open	header.html	(refer	to	Script	9.1)	in	your	text	editor	or	IDE.
2.	Add	a	final	navigation	item	(Script	12.7):
Click	here	to	view	code	image

<li><?php

if	(	(isset($_COOKIE['user_id']))

&&	(basename($_SERVER['PHP_SELF'])

!=	'logout.php')	)	{

		echo	'<a	href="logout.php">

		 Logout</a>';

}	else	{

		echo	'<a	href="login.php">

		 Login</a>';

}

?></li>



Script	12.7	The	header.html	file	now	displays	either	a	Login	or	a	Logout	link,	depending	on	the	user's
current	status.
Click	here	to	view	code	image

1			<!DOCTYPE	html>

2			<html	lang="en">

3			<head>

4			<meta	charset="utf-8">

5			<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

6			<meta	name="viewport"	content="width=device-width,	initial-scale=1">

7			<title><?php	echo	$page_title;	?></title>

8			<link	rel="stylesheet"	href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.

				min.css"	integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"

				crossorigin="anonymous">

9			<link	href="css/sticky-footer-navbar.css"	rel="stylesheet">

10		</head>

11		<body>

12		<nav	class="navbar	navbar-default	navbar-fixed-top">

13					<div	class="container">

14								<div	class="navbar-header"><a	class="navbar-brand"	href="#">Your	Website</a></div>

15								<div	id="navbar"	class="collapse	navbar-collapse">

16								<ul	class="nav	navbar-nav">

17											<li	class="active"><a	href="index.php">Home</a></li>

18											<li><a	href="register.php">Register</a></li>

19											<li><a	href="view_users.php">View	Users</a></li>

20											<li><a	href="password.php">Change	Password</a></li>

21		<li><?php	//	Create	a	login/logout	link:

22		if	(	(isset($_COOKIE['user_id']))	&&	(basename($_SERVER['PHP_SELF'])	!=	'logout.php')

				)	{

23					echo	'<a	href="logout.php">Logout</a>';

24		}	else	{

25					echo	'<a	href="login.php">Login</a>';

26		}

27		?></li>

28								</ul>

29								</div>

30					</div>

31		</nav>

32		<div	class="container">

33		<!--	Script	12.7	-	header.html	-->

Instead	of	having	a	permanent	login	link	in	the	navigation	area,	it	should	display	a	Login	link	if	the	user
is	not	logged	in	 	or	a	Logout	link	if	the	user	is	 .	The	preceding	conditional	will	accomplish	just
that,	depending	on	the	presence	of	a	cookie.



	The	home	page	with	a	Login	link.

	After	the	user	logs	in,	the	page	now	has	a	Logout	link.
For	 that	condition,	 if	 the	cookie	 is	set,	 the	user	 is	 logged	 in	and	can	be	shown	the	 logout	 link.	 If	 the
cookie	 is	not	set,	 the	user	should	be	shown	 the	 login	 link.	There	 is	one	catch,	however:	because	 the
logout.php	script	would	ordinarily	display	a	logout	link	(because	the	cookie	exists	when	the	page
is	first	being	viewed),	the	conditional	has	to	also	check	that	the	current	page	is	not	the	logout.php
script.	An	easy	way	to	dynamically	determine	the	current	page	is	to	apply	the	basename()	 function
to	$_SERVER[‘PHP_SELF’].



3.	Save	the	file,	place	it	in	your	web	directory	(within	the	includes	folder),	and	test	the	login/logout
process	in	your	browser	 .

The	result	after	logging	out.

Tip
Due	to	a	bug	in	how	Internet	Explorer	on	Windows	handles	cookies,	you	may	need	to	set	the	host
parameter	 to	false	 in	order	 to	get	 the	 logout	process	 to	work	when	developing	on	your	own
computer	(i.e.,	through	localhost).

Tip
When	deleting	a	cookie,	you	should	always	use	 the	same	parameters	 that	 set	 the	cookie	 (aside
from	the	value	and	expiration,	naturally).	If	you	set	the	host	and	path	in	the	creation	cookie,	use
them	again	in	the	deletion	cookie.

Tip
To	hammer	the	point	home,	remember	that	the	deletion	of	a	cookie	does	not	take	effect	until	 the
page	has	been	reloaded	or	another	page	has	been	accessed.	In	other	words,	the	cookie	will	still
be	available	to	a	page	after	that	page	has	deleted	it.

Using	Sessions
Another	method	of	making	data	available	to	multiple	pages	of	a	web	site	is	to	use	sessions.	The	premise
of	 a	 session	 is	 that	data	 is	 stored	on	 the	 server,	not	 in	 the	browser,	 and	a	 session	 identifier	 is	used	 to
locate	a	particular	user’s	record	(i.e.,	the	session	data).	This	session	identifier	is	normally	stored	in	the
user’s	browser	via	a	cookie,	but	the	sensitive	data	itself—like	the	user’s	ID,	name,	and	so	on—always
remains	on	the	server.
The	question	may	arise:	why	use	sessions	at	all	when	cookies	work	just	fine?	First,	sessions	are	 likely
more	secure	in	that	all	of	the	recorded	information	is	stored	on	the	server	and	not	continually	sent	back



and	forth	between	the	server	and	the	client.	Second,	you	can	store	more	data	 in	a	session.	Third,	some
users	 reject	 cookies	or	 turn	 them	off	 completely.	Sessions,	while	designed	 to	work	with	 a	 cookie,	 can
function	without	them,	too.
To	demonstrate	sessions—and	to	compare	them	with	cookies—let’s	rewrite	the	previous	set	of	scripts.

Setting	session	variables
The	most	important	rule	with	respect	to	sessions	is	that	each	page	that	will	use	them	must	begin	by	calling
the	session_start()	 function.	This	 function	 tells	PHP	 to	either	begin	a	new	session	or	access	an
existing	one.	This	function	must	be	called	before	anything	is	sent	to	the	browser!
The	first	time	this	function	is	used,	session_start()	will	attempt	to	send	a	cookie	with	a	name	of
PHPSESSID	 (the	 default	 session	 name)	 and	 a	 value	 of	 something	 like
a61f8670baa8e90a30c878df89a2074b	(32	hexadecimal	letters,	the	session	ID).	Because	of	this	attempt
to	send	a	cookie,	session_start()	must	be	called	before	any	data	is	sent	to	the	browser,	as	is	the
case	when	using	the	setcookie()	and	header()	functions.

Sessions	vs.	Cookies
This	chapter	has	examples	accomplishing	the	same	tasks—logging	in	and	logging	out—using
both	cookies	and	sessions.	Obviously,	both	are	easy	 to	use	 in	PHP,	but	 the	 true	question	 is
when	to	use	one	or	the	other.
Sessions	have	the	following	advantages	over	cookies:
	They	are	generally	more	secure	(because	the	data	is	being	retained	on	the	server).
	They	allow	for	more	data	to	be	stored.
	They	can	be	used	without	cookies.
Whereas	cookies	have	the	following	advantages	over	sessions:
	They	are	easier	to	program.
	They	require	less	of	the	server.
	They	can	be	made	to	last	far	longer.
In	 general,	 to	 store	 and	 retrieve	 just	 a	 couple	 of	 small	 pieces	 of	 information,	 or	 to	 store
information	 for	 a	 longer	 duration,	 use	 cookies.	 For	most	 of	 your	web	 applications,	 though,
you’ll	use	sessions.

Once	the	session	has	been	started,	values	can	be	registered	to	the	session	using	the	normal	array	syntax,
using	the	$_SESSION	superglobal:
Click	here	to	view	code	image

$_SESSION['key']	=	value;

$_SESSION['name']	=	'Roxanne';

$_SESSION['id']	=	48;

Let’s	update	the	login.php	script	with	this	in	mind.

To	begin	a	session:
1.	Open	login.php	(refer	to	Script	12.5)	in	your	text	editor	or	IDE.
2.	Replace	the	setcookie()	lines	(18–19)	with	these	lines	(Script	12.8):



Click	here	to	view	code	image
session_start();

$_SESSION['user_id']	=

$data['user_id'];

$_SESSION['first_name']	=

$data['first_name'];

Script	12.8	This	version	of	the	login.php	script	uses	sessions	instead	of	cookies.
Click	here	to	view	code	image

1			<?php	#	Script	12.8	-	login.php	#3

2			//	This	page	processes	the	login	form	submission.

3			//	The	script	now	uses	sessions.

4			

5			//	Check	if	the	form	has	been	submitted:

6			if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

7			

8						//	Need	two	helper	files:

9						require('includes/login_functions.inc.php');

10					require('../mysqli_connect.php');

11				

12					//	Check	the	login:

13					list	($check,	$data)	=	check_login($dbc,	$_POST['email'],	$_POST['pass']);

14				

15					if	($check)	{	//	OK!

16				

17								//	Set	the	session	data:

18								session_start();

19								$_SESSION['user_id']	=	$data['user_id'];

20								$_SESSION['first_name']	=	$data['first_name'];

21				

22								//	Redirect:

23								redirect_user('loggedin.php');

24				

25					}	else	{	//	Unsuccessful!

26				

27								//	Assign	$data	to	$errors	for	login_page.inc.php:

28								$errors	=	$data;

29				

30					}

31				

32					mysqli_close($dbc);	//	Close	the	database	connection.

33				

34		}	//	End	of	the	main	submit	conditional.

35				

36		//	Create	the	page:

37		include('includes/login_page.inc.php');

38		?>

The	first	step	is	to	begin	the	session.	Since	there	are	no	echo	statements,	inclusions	of	HTML	files,	or
even	blank	spaces	in	the	script	so	far,	it	will	be	safe	to	use	session_start()	at	this	point	in	the
script	(although	the	function	call	could	be	placed	at	the	top	of	the	script	as	well).	Then,	two	key-value
pairs	are	added	to	the	$_SESSION	superglobal	array	to	register	the	user’s	first	name	and	user	ID	to
the	session.

3.	Save	the	page	as	login.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .



	The	login	form	remains	unchanged	to	the	end	user,	but	the	underlying	functionality	now	uses	sessions.
Although	loggedin.php	and	the	header	and	script	will	need	to	be	rewritten,	you	can	still	 test	 the
login	script	and	see	the	resulting	cookie	 .	The	loggedin.php	page	should	redirect	you	back	to
the	home	page,	though,	since	it’s	still	checking	for	the	presence	of	a	$_COOKIE	variable.

	This	 cookie,	 created	by	PHP’s	session_start()	 function,	 stores	 the	 session	 ID	 in	 the	 user’s
browser.

Tip
Because	sessions	will	normally	send	and	read	cookies,	you	should	always	try	to	begin	them	as
early	in	the	script	as	possible.	Doing	so	will	help	you	avoid	the	problem	of	attempting	to	send	a
cookie	after	the	headers	(HTML	or	white	space)	have	already	been	sent.

Tip
If	 you	 want,	 you	 can	 set	 session.auto_start	 in	 the	 php.ini	 file	 to	 1,	 making	 it
unnecessary	to	use	session_start()	on	each	page.	This	does	put	a	greater	toll	on	the	server
and,	for	that	reason,	shouldn’t	be	used	without	some	consideration	of	the	circumstances.



Tip
You	can	store	arrays	in	sessions	(making	$_SESSION	a	multidimensional	array),	just	as	you	can
store	strings	or	numbers.	You	cannot	store	resources	(e.g.,	a	database	connection)	 in	a	session,
however.

Accessing	session	variables
Once	a	session	has	been	started	and	variables	have	been	registered	to	it,	you	can	create	other	scripts	that
will	access	those	variables.	To	do	so,	each	script	must	first	enable	sessions	using	session_start().
This	 function	 will	 give	 the	 current	 script	 access	 to	 the	 previously	 started	 session	 (if	 it	 can	 read	 the
PHPSESSID	value	stored	in	the	cookie)	or	create	a	new	session	if	it	cannot.	Understand	that	if	the	current
session	 ID	 cannot	 be	 found	 and	 a	 new	 session	 ID	 is	 generated,	 none	 of	 the	 data	 stored	 under	 the	 old
session	 ID	 will	 be	 available.	 I	 mention	 this	 here	 because	 if	 you’re	 having	 problems	 with	 sessions,
checking	the	session	ID	value	to	see	if	it	changes	from	one	page	to	the	next	is	the	first	debugging	step.
Assuming	that	there	was	no	problem	accessing	the	current	session,	to	then	refer	to	a	session	variable,	use
$_SESSION[‘var’],	as	you	would	refer	to	any	other	array.

To	access	session	variables:
1.	Open	loggedin.php	(refer	to	Script	12.4)	in	your	text	editor	or	IDE.
2.	Add	a	call	to	the	session_start()	function	(Script	12.9):

session_start();

Script	12.9	 The	 loggedin.php	 script	 is	 updated	 so	 that	 it	 refers	 to	$_SESSION	 and	 not	$_COOKIE
(changes	are	required	on	two	lines).
Click	here	to	view	code	image

1			<?php	#	Script	12.9	-	loggedin.php	#2

2			//	The	user	is	redirected	here	from	login.php.

3			

4			session_start();	//	Start	the	session.

5			

6			//	If	no	session	value	is	present,	redirect	the	user:

7			if	(!isset($_SESSION['user_id']))	{

8			

9						//	Need	the	functions:

10					require('includes/login_functions.

							inc.php');

11					redirect_user();

12				

13		}

14				

15		//	Set	the	page	title	and	include	the

				HTML	header:

16		$page_title	=	'Logged	In!';

17		include('includes/header.html');

18				

19		//	Print	a	customized	message:

20		echo	"<h1>Logged	In!</h1>

21		<p>You	are	now	logged	in,

				{$_SESSION['first_name']}!</p>

22		<p><a	href=\"logout.php\">Logout</a>

				</p>";

23		



24		include('includes/footer.html');

25		?>

Every	 PHP	 script	 that	 either	 sets	 or	 accesses	 session	 variables	must	 use	 the	session_start()
function.	This	 line	must	be	called	before	 the	header.html	 file	 is	 included	and	before	anything	 is
sent	to	the	browser.

3.	Replace	the	references	to	$_COOKIE	with	$_SESSION	(lines	5	and	19	of	the	original	file):
if	(!isset($_SESSION['user_id']))	{

and
Click	here	to	view	code	image

echo	"<h1>Logged	In!</h1>

<p>You	are	now	logged	in,

{$_SESSION['first_name']}!</p>

<p><a	href=\"logout.php\">Logout

</a></p>";

Switching	 a	 script	 from	 cookies	 to	 sessions	 requires	 only	 that	 you	 change	 uses	 of	 $_COOKIE	 to
$_SESSION	(assuming	that	the	same	names	were	used).

4.	Save	the	file	as	loggedin.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .
5.	 Replace	 the	 reference	 to	 $_COOKIE	 with	$_SESSION	 in	header.html	 (from	 Script	 12.7	 to
Script	12.10):
if	(isset($_SESSION['user_id']))	{

Script	12.10	The	header.html	file	now	also	references	$_SESSION	instead	of	$_COOKIE.
Click	here	to	view	code	image

1			<!DOCTYPE	html>

2			<html	lang="en">

3			<head>

4			<meta	charset="utf-8">

5			<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

6			<meta	name="viewport"	content="width=device-width,	initial-scale=1">

7			<title><?php	echo	$page_title;	?></title>

8			<link	rel="stylesheet"	href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.

				min.css"	integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"

				crossorigin="anonymous">

9			<link	href="css/sticky-footer-navbar.css"	rel="stylesheet">

10		</head>

11		<body>

12		<nav	class="navbar	navbar-default	navbar-fixed-top">

13					<div	class="container">

14								<div	class="navbar-header"><a	class="navbar-brand"	href="#">Your	Website</a></div>

15								<div	id="navbar"	class="collapse	navbar-collapse">

16								<ul	class="nav	navbar-nav">

17											<li	class="active"><a	href="index.php">Home</a></li>

18											<li><a	href="register.php">Register</a></li>

19											<li><a	href="view_users.php">View	Users</a></li>

20											<li><a	href="password.php">Change	Password</a></li>

21		<li><?php	//	Create	a	login/logout	link:

22		if	(isset($_SESSION['user_id']))	{

23					echo	'<a	href="logout.php">Logout</a>';

24		}	else	{

25					echo	'<a	href="login.php">Login</a>';

26		}

27		?></li>

28								</ul>



29								</div>

30					</div>

31		</nav>

32		<div	class="container">

33		<!--	Script	12.10	-	header.html	-->

For	the	Login/Logout	 links	to	function	properly	(notice	the	incorrect	link	in	 ),	 the	reference	to	the
cookie	variable	within	the	header	file	must	be	switched	over	to	sessions.	The	header	file	does	not	need
to	call	the	session_start()	function,	since	it	will	be	included	by	pages	that	do.

	After	logging	in,	the	user	is	redirected	to	loggedin.php,	which	will	welcome	the	user	by	name
using	the	stored	session	value.
Note	that	this	conditional	does	not	need	to	check	if	the	current	page	is	the	logout	page,	because	session
data	behaves	differently	than	cookie	data	(I’ll	explain	this	further	in	the	next	section	of	the	chapter).

6.	 Save	 the	 header	 file,	 place	 it	 in	 your	web	directory	 (in	 the	includes	 folder),	 and	 test	 it	 in	 your
browser	 .

	With	the	header	file	altered	for	sessions,	the	proper	Login/Logout	links	will	be	displayed	(compare
with	 ).



Tip
For	 the	Login/Logout	 links	 to	work	on	 the	other	pages	(register.php,	index.php,	etc.),
you’ll	need	to	add	the	session_start()	command	to	each	of	those.

Tip
As	a	reminder	of	what	I	already	said,	if	you	have	an	application	where	the	session	data	does	not
seem	 to	 be	 accessible	 from	 one	 page	 to	 the	 next,	 it	 could	 be	 because	 a	 new	 session	 is	 being
created	on	each	page.	To	check	for	this,	compare	the	session	ID	(the	last	few	characters	of	 the
value	will	suffice)	to	see	if	it	is	the	same.	You	can	see	the	session’s	ID	by	viewing	the	session
cookie	as	it	is	sent	or	by	invoking	the	session_id()	function:

echo	session_id();

Tip
Session	 variables	 are	 available	 as	 soon	 as	 you’ve	 established	 them.	 So,	 unlike	 when	 using
cookies,	 you	 can	 assign	 a	 value	 to	 $_SESSION[‘var’]	 and	 then	 refer	 to
$_SESSION[‘var’]	later	in	that	same	script.

Tip
The	session_status()	function,	added	in	PHP	5.4,	returns	a	constant	indicating	the	session
status:	PHP_SESSION_DISABLED,	PHP_SESSION_NONE,	and	PHP_SESSION_ACTIVE.

Deleting	session	variables
When	using	sessions,	you	ought	to	create	a	method	of	deleting	the	session	data.	In	the	current	example,	this
would	be	necessary	when	the	user	logs	out.
Whereas	a	cookie	system	only	requires	that	another	cookie	be	sent	to	destroy	the	existing	cookie,	sessions
are	slightly	more	demanding,	since	there	are	both	the	cookie	on	the	client	and	 the	data	on	 the	server	 to
consider.
To	delete	an	individual	session	variable,	use	the	unset()	function	(which	works	with	any	variable	in
PHP):
unset($_SESSION['var']);

But	to	delete	every	session	variable,	you	shouldn’t	use	unset();	instead,	reset	the	$_SESSION	array:
$_SESSION	=	[];

Finally,	to	remove	all	of	the	session	data	from	the	server,	call	session_destroy():
session_destroy();

Note	that	prior	to	using	any	of	these	methods,	the	page	must	begin	with	session_start()	so	that	the
existing	session	is	accessed.	Let’s	update	the	logout.php	script	to	clean	out	the	session	data.



To	delete	a	session:
1.	Open	logout.php	(Script	12.6)	in	your	text	editor	or	IDE.
2.	Immediately	after	the	opening	PHP	line,	start	the	session	(Script	12.11):

session_start();

Script	12.11	Destroying	a	session,	as	you	would	in	a	logout	page,	requires	special	syntax	to	delete	the
session	cookie	and	the	session	data	on	the	server,	as	well	as	to	clear	out	the	$_SESSION	array.
Click	here	to	view	code	image

1			<?php	#	Script	12.11	-	logout.php	#2

2			//	This	page	lets	the	user	logout.

3			//	This	version	uses	sessions.

4			

5			session_start();	//	Access	the

				existing	session.

6			

7			//	If	no	session	variable	exists,

				redirect	the	user:

8			if	(!isset($_SESSION['user_id']))	{

9			

10					//	Need	the	functions:

11					require('includes/login_functions.

							inc.php');

12					redirect_user();

13				

14		}	else	{	//	Cancel	the	session:

15				

16					$_SESSION	=	[];	//	Clear	the

							variables.

17					session_destroy();	//	Destroy	the

							session	itself.

18					setcookie('PHPSESSID',	'',	time()-

							3600,	'/',	'',	0,	0);	//	Destroy

							the	cookie.

19				

20		}

21				

22		//	Set	the	page	title	and	include	the

				HTML	header:

23		$page_title	=	'Logged	Out!';

24		include('includes/header.html');

25				

26		//	Print	a	customized	message:

27		echo	"<h1>Logged	Out!</h1>

28		<p>You	are	now	logged	out!</p>";

29				

30		include('includes/footer.html');

31		?>

Anytime	 you	 are	 using	 sessions,	 you	must	 call	 the	session_start()	 function,	 preferably	 at	 the
very	beginning	of	a	page.	This	is	true	even	if	you	are	deleting	a	session.

3.	Change	the	conditional	so	that	it	checks	for	the	presence	of	a	session	variable:
Click	here	to	view	code	image

if	(!isset($_SESSION['user_id']))	{

As	with	the	logout.php	script	in	the	cookie	examples,	if	the	user	is	not	currently	logged	in,	he	or
she	will	be	redirected.



4.	Replace	the	setcookie()	lines	(that	delete	the	cookies)	with
Click	here	to	view	code	image

$_SESSION	=	[];

session_destroy();

setcookie('PHPSESSID',	'',

time()-3600,	'/',	'',	0,	0);

The	 first	 line	 here	 will	 reset	 the	 entire	$_SESSION	 variable	 as	 a	 new	 array,	 erasing	 its	 existing
values.	The	second	 line	 removes	 the	data	 from	 the	server,	and	 the	 third	sends	a	cookie	 to	delete	 the
existing	session	cookie	in	the	browser.

Garbage	Collection
Garbage	collection	with	respect	to	sessions	is	the	process	of	the	server	automatically	deleting
the	 session	 files	 (where	 the	actual	data	 is	 stored).	Creating	a	 logout	 system	 that	 destroys	 a
session	is	ideal,	but	there’s	no	guarantee	all	users	will	formally	log	out	as	 they	should.	For
this	reason,	PHP	includes	a	cleanup	process.
Whenever	 the	session_start()	 function	 is	 called,	PHP’s	garbage	 collection	kicks	 in,
checking	the	last	modification	date	of	each	session	(a	session	is	modified	whenever	variables
are	 set	 or	 retrieved).	 Two	 settings	 dictate	 garbage	 collection:	 session.gc_maxlifetime	 and
session.gc_probability.	 The	 first	 states	 after	 how	many	 seconds	 of	 inactivity	 a	 session	 is
considered	idle	and	will	therefore	be	deleted.	The	second	setting	determines	the	probability
that	garbage	collection	 is	performed,	on	a	scale	of	1	 to	100.	With	 the	default	settings,	each
call	to	session_start()	has	a	1	percent	chance	of	invoking	garbage	collection.	If	PHP
does	start	the	cleanup,	any	sessions	that	have	not	been	used	in	more	than	1,440	seconds	will
be	deleted.
You	can	change	 these	settings	using	 the	ini_set()	 function,	although	be	careful	 in	doing
so.	 Too	 frequent	 or	 too	 probable	 garbage	 collection	 can	 bog	 down	 the	 server	 and
inadvertently	end	the	sessions	of	slower	users.

5.	Remove	the	reference	to	$_COOKIE	in	the	message:
echo	"<h1>Logged	Out!</h1>

<p>You	are	now	logged	out!</p>";

Unlike	when	using	the	cookie	version	of	the	logout.php	script,	you	cannot	refer	to	the	user	by	first
name	anymore,	since	all	of	that	data	has	been	deleted.

6.	Save	the	file	as	logout.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .



	The	logout	page	(now	featuring	sessions).

Tip
The	header.html	file	only	needs	to	check	if	$_SESSION[‘user_id’]	 is	set,	and	not	if
the	page	is	the	logout	page,	because	by	the	time	the	header	file	is	included	by	logout.php,	all
of	 the	 session	 data	will	 have	 already	 been	 destroyed.	 The	 destruction	 of	 session	 data	 applies
immediately,	unlike	with	cookies.

Tip
Never	 set	$_SESSION	 equal	 to	 NULL	 and	 never	 use	 unset($_SESSION).	 Either	 could
cause	problems	on	some	servers.

Tip
In	case	it’s	not	absolutely	clear	what’s	going	on,	there	exist	three	kinds	of	information	within	a
session:	the	session	identifier	(which	is	stored	in	a	cookie	by	default),	the	session	data	(which	is
stored	in	a	text	file	on	the	server),	and	the	$_SESSION	array	(which	is	how	a	script	accesses
the	session	data	in	the	text	file).	Just	deleting	the	cookie	doesn’t	remove	the	data	file,	and	vice
versa.	Clearing	out	 the	$_SESSION	 array	would	erase	 the	data	 from	 the	 text	 file,	but	 the	 file
itself	 would	 still	 exist,	 as	 would	 the	 cookie.	 The	 three	 steps	 outlined	 in	 this	 logout	 script
effectively	remove	all	traces	of	the	session.

Improving	Session	Security
Because	important	information	is	normally	stored	in	a	session	(you	should	never	store	sensitive	data	in	a
cookie),	 security	 becomes	more	of	 an	 issue.	With	 sessions	 there	 are	 two	 areas	 to	 pay	 attention	 to:	 the
session	ID,	which	is	a	reference	point	to	the	session	data,	and	the	session	data	itself,	stored	on	the	server.
A	malicious	person	is	far	more	likely	to	hack	into	a	session	through	the	session	ID	than	the	data	on	the
server,	so	I’ll	focus	on	that	side	of	things	here.	In	the	tips	at	the	end	of	this	section	I	mention	two	ways	to
protect	the	session	data	itself.



The	 session	 ID	 is	 the	 key	 to	 the	 session	 data.	 By	 default,	 PHP	 will	 store	 this	 in	 a	 cookie,	 which	 is
preferable	 from	 a	 security	 standpoint.	 It	 is	 possible	 in	 PHP	 to	 use	 sessions	 without	 cookies,	 but	 that
leaves	 the	 application	 vulnerable	 to	 session	 hijacking:	 If	 malicious	 user	 Alice	 can	 learn	 user	 Bob’s
session	ID,	Alice	can	easily	trick	a	server	into	thinking	that	Bob’s	session	ID	is	also	Alice’s	session	ID.
At	that	point,	Alice	would	be	riding	the	coattails	of	Bob’s	session	and	would	have	access	to	Bob’s	data.
Storing	the	session	ID	in	a	cookie	makes	it	somewhat	harder	to	steal.

Changing	the	Session	Behavior
As	part	of	PHP’s	support	for	sessions,	there	are	over	20	different	configuration	options	you
can	set	for	how	PHP	handles	sessions.	For	the	full	list,	see	the	PHP	manual,	but	I’ll	highlight	a
few	of	the	most	important	ones	here.	Note	two	rules	about	changing	the	session	settings:
1.	All	changes	must	be	made	before	calling	session_start().
2.	The	same	changes	must	be	made	on	every	page	that	uses	sessions.
Most	of	the	settings	can	be	set	within	a	PHP	script	using	the	ini_set()	function	(discussed
in	Chapter	8):

Click	here	to	view	code	image

ini_set(parameter,	new_setting);

For	example,	to	require	the	use	of	a	session	cookie	(as	mentioned,	sessions	can	work	without
cookies	but	it’s	less	secure),	use

Click	here	to	view	code	image

ini_set('session.use_only_cookies',	1);

Another	 change	 you	 can	make	 is	 to	 the	 name	 of	 the	 session	 (perhaps	 to	 use	 a	more	 user-
friendly	one).	To	do	so,	call	the	session_name()	function:
session_name('YourSession');

The	benefits	of	creating	your	own	session	name	are	twofold:	it’s	marginally	more	secure	and
it	may	be	better	received	by	the	end	user	(since	the	session	name	is	the	cookie	name	the	end
user	will	see).	The	session_name()	function	can	also	be	used	when	deleting	the	session
cookie:

Click	here	to	view	code	image

setcookie(session_name(),'',	time()-3600);

If	not	provided	with	an	argument,	this	function	instead	returns	the	current	session	name.
Finally,	there’s	also	the	session_set_cookie_params()	function.	It’s	used	to	tweak
the	settings	of	the	session	cookie:

Click	here	to	view	code	image

session_set_cookie_params(expire,	path,	host,	secure,	httponly);

Note	 that	 the	expiration	 time	of	 the	cookie	 refers	only	 to	 the	 longevity	of	 the	cookie	 in	 the
browser,	not	to	how	long	the	session	data	will	be	stored	on	the	server.

One	method	 of	 preventing	 hijacking	 is	 to	 store	 some	 sort	 of	 user	 identifier	 in	 the	 session,	 and	 then	 to
repeatedly	 double-check	 this	 value.	 The	 HTTP_USER_AGENT—a	 combination	 of	 the	 browser	 and



operating	system	being	used—is	a	likely	candidate	for	this	purpose.	This	adds	a	layer	of	security	in	that
one	person	could	hijack	another	user’s	session	only	if	they	are	both	running	the	exact	same	browser	and
operating	system.	As	a	demonstration	of	this,	let’s	modify	the	examples	one	last	time.

To	use	sessions	more	securely:
1.	Open	login.php	(refer	to	Script	12.8)	in	your	text	editor	or	IDE.
2.	After	assigning	the	other	session	variables,	also	store	the	HTTP_USER_AGENT	value	(Script	12.12):
Click	here	to	view	code	image

$_SESSION['agent']	=	sha1

($_SERVER['HTTP_USER_AGENT']);

Script	 12.12	 This	 final	 version	 of	 the	 login.php	 script	 also	 stores	 an	 encrypted	 form	 of	 the	 user's
HTTP_USER_AGENT	(the	browser	and	operating	system	of	the	client)	in	a	session.
Click	here	to	view	code	image

1			<?php	#	Script	12.12	-	login.php	#4

2			//	This	page	processes	the	login	form	submission.

3			//	The	script	now	stores	the	HTTP_USER_AGENT	value	for	added	security.

4			

5			//	Check	if	the	form	has	been	submitted:

6			if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

7			

8						//	Need	two	helper	files:

9						require('includes/login_functions.

							inc.php');

10					require('../mysqli_connect.php');

11				

12					//	Check	the	login:

13					list	($check,	$data)	=	check_

							login($dbc,	$_POST['email'],

							$_POST['pass']);

14				

15					if	($check)	{	//	OK!

16				

17								//	Set	the	session	data:

18								session_start();

19								$_SESSION['user_id']	=

										$data['user_id'];

20								$_SESSION['first_name']	=

										$data['first_name'];

21				

22								//	Store	the	HTTP_USER_AGENT:

23								$_SESSION['agent']	=	sha1

										($_SERVER['HTTP_USER_AGENT']);

24				

25								//	Redirect:

26								redirect_user('loggedin.php');

27				

28					}	else	{	//	Unsuccessful!

29				

30								//	Assign	$data	to	$errors	for

										login_page.inc.php:

31								$errors	=	$data;

32				

33					}

34				

35					mysqli_close($dbc);	//	Close	the	database	connection.

36				

37		}	//	End	of	the	main	submit	conditional.



38		

39		//	Create	the	page:

40		include('includes/login_page.inc.php');

41		?>

The	HTTP_USER_AGENT	 is	 part	 of	 the	 $_SERVER	 array	 (you	 may	 recall	 using	 it	 way	 back	 in
Chapter	 1,	 “Introduction	 to	 PHP”).	 It	 will	 have	 a	 value	 like	Mozilla/4.0	 (compatible;	 MSIE	 8.0;
Windows	NT	6.1…).
Instead	 of	 you	 storing	 this	 value	 in	 the	 session	 as	 is,	 it’ll	 be	 run	 through	 the	sha1()	 function	 for
slightly	 improved	 security.	 That	 function	 returns	 a	 32-character	 hexadecimal	 string	 (called	 a	 hash)
based	on	a	value.	In	theory,	no	two	strings	will	have	the	same	sha1()	result.

3.	Save	the	file	and	place	it	in	your	web	directory.
4.	Open	loggedin.php	(Script	12.9)	in	your	text	editor	or	IDE.
5.	Change	the	!isset($_SESSION[‘user_id’])	conditional	to	(Script	12.13):
Click	here	to	view	code	image

if	(!isset($_SESSION['agent'])	OR

($_SESSION['agent']	!=	sha1

($_SERVER['HTTP_USER_AGENT'])	))	{

Script	 12.13	 This	 loggedin.php	 script	 now	 confirms	 that	 users	 accessing	 this	 page	 have	 the	 same
HTTP_USER_AGENT	as	they	did	when	they	logged	in.
Click	here	to	view	code	image

1			<?php	#	Script	12.13	-	loggedin.php	#3

2			//	The	user	is	redirected	here	from	login.php.

3			

4			session_start();	//	Start	the	session.

5			

6			//	If	no	session	value	is	present,	redirect	the	user:

7			//	Also	validate	the	HTTP_USER_AGENT!

8			if	(!isset($_SESSION['agent'])

				OR	($_SESSION['agent']	!=	md5($_

				SERVER['HTTP_USER_AGENT'])	))	{

9			

10					//	Need	the	functions:

11					require('includes/login_functions.inc.php');

12					redirect_user();

13				

14		}

15				

16		//	Set	the	page	title	and	include	the

				HTML	header:

17		$page_title	=	'Logged	In!';

18		include('includes/header.html');

19				

20		//	Print	a	customized	message:

21		echo	"<h1>Logged	In!</h1>

22		<p>You	are	now	logged	in,

				{$_SESSION['first_name']}!</p>

23		<p><a	href=\"logout.php\">Logout</a>

				</p>";

24		

25		include('includes/footer.html');

26		?>

This	conditional	checks	two	things.	First,	 it	sees	if	 the	$_SESSION[‘agent’]	variable	 is	not	set
(this	part	is	just	as	it	was	before,	although	agent	is	being	used	instead	of	user_id).	The	second	part	of



the	 conditional	 checks	 if	 the	sha1()	 version	 of	$_SERVER[‘HTTP_USER_AGENT’]	 does	 not
equal	the	value	stored	in	$_SESSION[‘agent’].	If	either	of	these	conditions	is	true,	the	user	will
be	redirected.

6.	Save	this	file,	place	it	in	your	web	directory,	and	test	in	your	browser	by	logging	in.

Preventing	Session	Fixation
Another	 specific	 kind	of	 session	 attack	 is	 known	 as	 session	 fixation.	 This	 approach	 is	 the
opposite	 of	 session	 hijacking.	 Instead	 of	 malicious	 user	 Alice	 finding	 and	 using	 Bob’s
session	ID,	she	creates	her	own	session	ID	(perhaps	by	logging	in	legitimately),	and	then	gets
Bob	to	access	the	site	using	that	session.	The	hope	is	that	Bob	would	then	do	something	that
would	unknowingly	benefit	Alice.
You	can	help	protect	against	these	types	of	attacks	by	changing	the	session	ID	after	a	user	logs
in.	The	session_regenerate_id()	does	just	that,	providing	a	new	session	ID	to	refer
to	the	current	session	data.	You	can	use	this	function	on	sites	for	which	security	is	paramount
(like	e-commerce	or	online	banking)	or	in	situations	when	it’d	be	particularly	bad	if	certain
users	(i.e.,	administrators)	had	their	sessions	manipulated.

Tip
For	 critical	 uses	 of	 sessions,	 require	 the	 use	 of	 cookies	 and	 transmit	 them	 over	 a	 secure
connection,	 if	 at	 all	 possible.	 You	 can	 even	 set	 PHP	 to	 only	 use	 cookies	 by	 setting
session.use_only_cookies	to	1.

Tip
By	default,	a	server	stores	every	session	file	for	every	site	within	the	same	temporary	directory,
meaning	any	site	could	theoretically	read	any	other	site’s	session	data.	If	you	are	using	a	server
shared	with	other	domains,	changing	the	session.save_path	from	its	default	setting	will	be
more	 secure.	 For	 example,	 it’d	 be	 better	 if	 you	 stored	 your	 site’s	 session	 data	 in	 a	 dedicated
directory	particular	to	your	site.

Tip
The	 session	data	 itself	 can	 also	be	 stored	 in	 a	database	 rather	 than	 a	 text	 file.	This	 is	 a	more
secure,	 but	 more	 programming-intensive,	 option.	 I	 show	 how	 to	 do	 this	 in	 my	 book	 PHP	 5
Advanced:	Visual	QuickPro	Guide.

Tip
The	 user’s	 IP	 address	 (the	 network	 address	 from	which	 the	 user	 is	 connecting)	 is	 not	 a	 good
unique	 identifier,	 for	 two	 reasons.	 First,	 a	 user’s	 IP	 address	 can,	 and	 normally	 does,	 change
frequently	 (ISPs	 dynamically	 assign	 them	 for	 short	 periods	 of	 time).	 Second,	 many	 users
accessing	 a	 site	 from	 the	 same	network	 (like	 a	home	network	or	 an	 office)	 could	 all	 have	 the
same	IP	address.



Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	What	code	is	used	to	redirect	the	user’s	browser	from	one	page	to	the	next?
	What	does	the	headers	already	sent	error	message	mean?
	What	value	does	store?	What	value	does	store?
	What	does	the	dirname()	function	do?
	What	does	the	rtrim()	function	do?	What	arguments	can	it	take?
	How	do	you	write	a	function	that	returns	multiple	values?	How	do	you	call	such	a	function?
	What	arguments	can	the	setcookie()	function	take?
	How	do	you	reference	values	previously	stored	in	a	cookie?
	How	do	you	delete	an	existing	cookie?
	Are	cookies	available	immediately	after	being	sent	(on	the	same	page)?	Why	can	you	still	refer	to	a
cookie	(on	the	same	page)	after	it	is	deleted?
	What	debugging	steps	can	you	take	when	you	have	problems	with	cookies?
	What	does	the	basename()	function	do?
	How	do	you	begin	a	session?
	How	do	you	reference	values	previously	stored	in	a	session?
	Is	session	data	available	immediately	after	being	assigned	(on	the	same	page)?
	How	do	you	terminate	a	session?
	What	debugging	steps	can	you	take	when	you	have	problems	with	sessions?

Pursue
	 If	you	have	not	already	done	so,	 learn	how	to	view	cookie	data	 in	your	browser.	When	developing
sites	that	use	cookies,	enable	the	option	so	that	the	browser	prompts	you	when	cookies	are	received.
	Make	the	login	form	sticky.
	Add	code	to	the	handling	of	the	$errors	variable	on	the	login	page	that	uses	a	foreach	 loop	 if
$errors	is	an	array,	or	just	prints	the	value	of	$errors	otherwise.
	Modify	the	redirect_user()	function	so	that	it	can	be	used	to	redirect	the	user	to	a	page	within
another	directory.
	Implement	another	cookie	example,	such	as	storing	a	user’s	preference	in	the	cookie,	and	then	base	a
look	or	feature	of	a	page	on	the	stored	value	(when	present).
	Change	the	code	in	logout.php	(Script	12.11)	so	that	it	uses	the	session_name()	function	to
dynamically	set	the	name	value	of	the	session	cookie	being	deleted.
	 Implement	 another	 session	 example,	 if	 you’d	 like	 more	 practice	 with	 sessions	 (you’ll	 get	 more
practice	later	in	the	book,	too).
	Check	out	the	PHP	manual	pages	for	any	new	function	introduced	in	this	chapter	with	which	you’re	not
comfortable.

http://LarryUllman.com/forums/


	Check	out	the	PHP	manual	pages	on	cookies	and	sessions	(two	separate	sections)	to	learn	more.	Also
read	some	of	the	user-submitted	comments	for	additional	tips.











































































































































13.	Security	Methods

In	This	Chapter
Preventing	Spam
Validating	Data	by	Type
Validating	Files	by	Type
Preventing	XSS	Attacks
Using	the	Filter	Extension
Preventing	SQL	Injection	Attacks
Securing	Passwords	with	PHP
Review	and	Pursue

The	 security	of	 your	web	 applications	 is	 such	 an	 important	 topic	 that	 it	 really	 cannot	 be	 overstressed.
Although	security-related	issues	have	been	mentioned	throughout	this	book,	this	chapter	will	help	to	fill	in
certain	gaps,	finalize	other	points,	and	teach	several	new	things.
The	topics	discussed	here	include	preventing	spam,	typecasting	variables,	preventing	cross-site	scripting
(XSS)	 and	 SQL	 injection	 attacks,	 using	 the	 Filter	 extension,	 validating	 uploaded	 files	 by	 type,	 and
managing	 passwords	 in	 PHP.	 This	 chapter	 will	 use	 six	 examples	 to	 best	 demonstrate	 these	 concepts.
Some	other	common	security	issues	and	best	practices	will	be	mentioned	in	sidebars	as	well.

Preventing	Spam
Spam	is	nothing	short	of	a	plague,	cluttering	up	the	Internet	and	email	inboxes.	There	are	steps	you	can
take	 to	 avoid	 receiving	 spam	at	 your	 email	 accounts,	 but	 in	 this	 book	 the	 focus	 is	 on	preventing	 spam
being	sent	through	your	PHP	scripts.
Chapter	11,	“Web	Application	Development,”	shows	how	easy	it	is	to	send	email	using	PHP’s	mail()
function.	The	example	 there,	 a	 contact	 form,	 took	 some	 information	 from	 the	user	 	 and	 sent	 it	 to	 an
email	address.	Although	it	may	seem	like	there’s	no	harm	in	this	system,	it	contains	a	security	hole.	But
first,	here’s	some	background	on	what	an	email	actually	is.



	A	simple,	standard	HTML	contact	form.
Regardless	 of	 how	 an	 email	 is	 sent,	 how	 it’s	 formatted,	 and	what	 it	 looks	 like	when	 it’s	 received,	 an
email	contains	two	parts:	a	header	and	a	body.	The	header	includes	such	information	as	the	to	and	from
addresses,	 the	subject,	 the	date,	and	more	 .	Each	item	in	 the	header	 is	on	its	own	line,	 in	 the	format
Name:	value.	The	body	of	the	email	is	exactly	what	you	think	it	is:	the	actual	body	text	of	the	email.

	The	raw	source	version	of	the	email	sent	by	the	contact	form	 .
In	looking	at	PHP’s	mail()	function—
mail(to,	subject,	body	[,headers]);

—you	can	see	that	one	of	the	arguments	goes	straight	to	the	email’s	body	and	the	rest	appear	in	its	header.
To	send	spam	to	your	address	(as	in	Chapter	11’s	example),	all	a	person	would	have	to	do	is	enter	the
spam	message	into	the	comments	section	of	the	form	 .	That’s	bad	enough,	but	to	send	spam	to	anyone
else	 at	 the	 same	 time,	 all	 the	 user	would	 have	 to	 do	 is	 add	Bcc:	poorsap@example.org,	 followed	 by
some	sort	of	line	terminator	(like	a	newline	or	carriage	return),	to	the	email’s	header.	With	the	example	as
is,	 this	 just	means	 entering	 the	 following	 into	 the	 from	 value	 of	 the	 contact	 form:	me@example.com\n



Bcc:poorsap@example.org.

A	Security	Approach
The	most	important	concept	to	understand	about	security	is	that	it’s	not	a	binary	state:	don’t
think	of	a	website	or	script	as	being	either	secure	or	not	secure.	Security	isn’t	a	switch	that
you	 turn	on	and	off;	 it’s	a	 scale	 that	you	can	move	up	and	down.	When	you	program,	 think
about	what	you	can	do	to	make	your	site	more	secure	and	what	you’ve	done	that	makes	it	less
secure.	Also,	keep	in	mind	that	 improved	security	normally	comes	at	a	cost	of	convenience
(both	 to	 you,	 the	 programmer,	 and	 to	 the	 end	 user)	 and	 performance.	 Increased	 security
normally	means	more	code,	more	checks,	and	more	required	of	the	server.	When	developing
web	 applications,	 the	 goal	 is	 to	 achieve	 a	 level	 of	 security	 that’s	 appropriate	 for	 the
particular	situation.	And	then	err	on	the	side	of	being	a	tad	too	secure,	just	to	be	prudent.

You	might	think	that	safeguarding	everything	that	goes	into	an	email’s	header	would	be	sufficiently	safe,
but	because	an	email	is	just	one	document,	bad	input	in	a	body	can	impact	the	header,	too.
You	can	apply	a	couple	of	preventive	techniques	to	this	contact	form.	First,	validate	any	email	addresses
by	using	regular	expressions,	covered	in	Chapter	14,	“Perl-Compatible	Regular	Expressions,”	or	by	using
the	Filter	 extension,	discussed	 in	 just	 a	 few	pages.	Second,	now	 that	you	 know	what	 an	 evildoer	must
enter	to	send	spam	(Table	13.1),	watch	for	those	characters	and	strings	in	form	values.	If	a	value	contains
anything	from	 that	 list,	don’t	use	 that	value	 in	a	 sent	email.	 (The	 last	 four	values	 in	Table	13.1	 are	 all
different	ways	of	creating	newlines.)

TABLE	13.1	Spam	Tip-offs
Strings
content-type:
mime-version:
multipart-mixed:
content-transfer-encoding:
bcc:
cc:
to:
\r
\n
%0a
%0d

In	this	next	example,	a	modification	of	the	email	script	from	Chapter	11,	I’ll	define	a	function	that	scrubs
all	potentially	dangerous	characters	from	provided	data.	Two	new	PHP	functions	will	be	used	as	well:
str_replace()	and	array_map().	Both	will	be	explained	in	detail	in	the	steps	that	follow.

To	prevent	spam:
1.	Open	email.php	(Script	11.1)	in	your	text	editor	or	IDE.
To	complete	this	spam-purification,	the	email	script	needs	to	be	modified.



2.	After	checking	for	the	form	submission,	begin	defining	a	function	(Script	13.1):
Click	here	to	view	code	image

function	spam_scrubber($value)	{

Script	 13.1	 This	 version	 of	 the	 script	 can	 now	 safely	 send	 emails	 without	 concern	 for	 spam.	 Any
problematic	characters	will	be	caught	by	the	spam_scrubber()	function.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Contact	Me</title>

6			</head>

7			<body>

8			<h1>Contact	Me</h1>

9			<?php	#	Script	13.1	-	email.php	#2

10		//	This	version	now	scrubs	dangerous	strings	from	the	submitted	input.

11				

12		//	Check	for	form	submission:

13		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

14		

15					/*	The	function	takes	one	argument:	a	string.

16						*	The	function	returns	a	clean	version	of	the	string.

17						*	The	clean	version	may	be	either	an	empty	string	or

18						*	just	the	removal	of	all	newline	characters.

19						*/

20						function	spam_scrubber($value)	{

21				

22									//	List	of	very	bad	values:

23									$very_bad	=	['to:',	'cc:',	'bcc:',	'content-type:',	'mime-version:',

											'multipart-mixed:',	'content-transfer-encoding:'];

24				

25									//	If	any	of	the	very	bad	strings	are	in

26									//	the	submitted	value,	return	an	empty	string:

27									foreach	($very_bad	as	$v)	{

28												if	(stripos($value,	$v)	!==	false)	return	'';

29									}

30				

31									//	Replace	any	newline	characters	with	spaces:

32									$value	=	str_replace(["\r",	"\n",	"%0a",	"%0d"],	'	',	$value);

33				

34									//	Return	the	value:

35									return	trim($value);

36				

37						}	//	End	of	spam_scrubber()	function.

38				

39						//	Clean	the	form	data:

40						$scrubbed	=	array_map('spam_scrubber',	$_POST);

41				

42						//	Minimal	form	validation:

43						if	(!empty($scrubbed['name'])	&&	!empty($scrubbed['email'])	&&

								!empty($scrubbed['comments'])	)	{

44				

45									//	Create	the	body:

46									$body	=	"Name:	{$scrubbed['name']}\n\nComments:	{$scrubbed['comments']}";

47				

48									//	Make	it	no	longer	than	70	characters	long:

49									$body	=	wordwrap($body,	70);

50				

51									//	Send	the	email:

52									mail('your_email@example.com',	'Contact	Form	Submission',	$body,	"From:



											{$scrubbed['email']}");

53				

54									//	Print	a	message:

55									echo	'<p><em>Thank	you	for	contacting	me.	I	will	reply	some	day.</em></p>';

56				

57									//	Clear	$scrubbed	(so	that	the	form's	not	sticky):

58									$scrubbed	=	[];

59				

60						}	else	{

61									echo	'<p	style="font-weight:	bold;	color:	#C00">Please	fill	out	the	form	completely.	</p>';

62						}

63				

64		}	//	End	of	main	isset()	IF.

65			

66		//	Create	the	HTML	form:

67		?>

68		<p>Please	fill	out	this	form	to	contact	me.</p>

69		<form	action="email.php"	method="post">

70					<p>Name:	<input	type="text"	name="name"	size="30"	maxlength="60"	value="<?php	if

							(isset($scrubbed['name']))	echo	$scrubbed['name'];	?>"></p>

71					<p>Email	Address:	<input	type="email"	name="email"	size="30"	maxlength="80"

							value="<?php	if	(isset($scrubbed['email']))	echo	$scrubbed['email'];	?>"></p>

72					<p>Comments:	<textarea	name="comments"	rows="5"	cols="30"><?php	if

							(isset($scrubbed['comments']))	echo	$scrubbed['comments'];	?></textarea></p>

73					<p><input	type="submit"	name="submit"	value="Send!"></p>

74		</form>

75		</body>

76		</html>

This	 function	will	 take	 one	 argument:	 a	 string.	Normally,	 I	would	 define	 functions	 at	 the	 top	 of	 the
script,	or	in	a	separate	file,	but	to	make	things	simpler,	I	will	define	it	within	the	submission-handling
block	of	code.

3.	Create	a	list	of	really	bad	things	that	wouldn’t	be	in	a	legitimate	contact	form	submission:
Click	here	to	view	code	image

$very_bad	=	['to:',	'cc:',	'bcc:',

'content-type:',	'mime-version:',

'multipart-mixed:',

'content-transfer-encoding:'];

Any	of	these	strings	should	not	be	present	in	an	honest	contact	form	submission	(it’s	possible	someone
might	legitimately	use	to:	in	their	comments,	but	unlikely).	If	any	of	these	strings	are	present,	then	this	is
a	spam	attempt.	To	make	it	easier	 to	test	for	 them,	you	place	them	in	an	array,	which	will	be	 looped
through	(Step	4).	The	comparison	in	Step	4	will	be	case-insensitive,	so	each	of	the	dangerous	strings	is
written	in	all	lowercase	letters.

4.	Loop	through	the	array.	If	a	very	bad	thing	is	found,	return	an	empty	string	instead:
Click	here	to	view	code	image

foreach	($very_bad	as	$v)	{

		if	(stripos($value,	$v)	!==

false)	return	'';

}

The	foreach	loop	will	access	each	item	in	the	$very_bad	array	one	at	a	time,	assigning	each	item
to	$v.	Within	the	loop,	the	stripos()	function	will	check	if	the	item	is	in	the	string	provided	to	this
function	as	$value.	The	stripos()	function	performs	a	case-insensitive	search	(so	it	would	match
bcc:,	Bcc:,	bCC:,	 etc.).	The	 function	 returns	 a	Boolean	TRUE	 if	 the	needle	 is	 found	 in	 the	haystack
(e.g.,	looking	for	occurrences	of	$v	in	$value).	The	conditional	therefore	says	that	if	that	function’s



results	do	not	equal	FALSE	(i.e.,	$v	was	found	in	$value),	return	an	empty	string.
Therefore,	 for	 each	of	 the	dangerous	 character	 strings,	 the	 first	 time	 that	 any	of	 them	 is	 found	 in	 the
submitted	 value,	 the	 function	will	 return	 an	 empty	 string	 and	 terminate	 (functions	 automatically	 stop
executing	once	they	hit	a	return).

5.	Replace	any	newline	characters	with	spaces:
Click	here	to	view	code	image

$value	=	str_replace(["\r",	"\n",

"%0a",	"%0d"],	'	',	$value);

Newline	characters,	which	are	represented	by	\r,	\n	,	%0a,	and	%0d,	may	or	may	not	be	problematic.
A	newline	character	is	required	to	send	spam	(or	else	you	can’t	create	the	proper	header)	but	will	also
appear	 if	 a	 user	 just	 hits	Enter	 or	Return	while	 typing	 in	 a	 textarea	 box.	 For	 this	 reason,	 any	 found
newlines	will	just	be	replaced	by	a	space.	This	means	that	the	submitted	value	could	lose	some	of	 its
formatting,	but	that’s	a	reasonable	price	to	pay	to	stop	spam.
The	 str_replace()	 function	 looks	 through	 the	 value	 in	 the	 third	 argument	 and	 replaces	 any
occurrences	of	the	characters	in	the	first	argument	with	the	character	or	characters	in	the	second.	Or	as
the	PHP	manual	puts	it:

Click	here	to	view	code	image
mixed	str_replace(mixed	$search,

mixed	$replace,	mixed	$subject)

This	 function	 is	 very	 flexible	 in	 that	 it	 can	 take	 strings	 or	 arrays	 for	 its	 three	 arguments	 (the	mixed
means	it	accepts	a	mix	of	argument	types).	Hence,	this	line	of	code	in	the	script	assigns	to	the	$value
variable	its	original	value,	with	any	newline	characters	replaced	by	a	single	space.
There	is	a	case-insensitive	version	of	this	function,	but	it’s	not	necessary	here,	as,	for	example,	\r	is	a
carriage	return	but	\R	is	not.

6.	Return	the	value	and	complete	the	function:
Click	here	to	view	code	image

	return	trim($value);

}	//	End	of	spam_scrubber()

function.

Finally,	this	function	returns	the	value,	trimmed	of	any	leading	and	ending	spaces.	Keep	in	mind	that	the
function	will	get	to	this	point	only	if	none	of	the	very	bad	things	was	found.

7.	After	the	function	definition,	invoke	the	spam_scrubber()	function:
Click	here	to	view	code	image

$scrubbed	=	array_map

('spam_scrubber',	$_POST);

This	approach	is	beautiful	 in	its	simplicity!	The	function	has	two	required	arguments.	The	first	 is	 the
name	of	the	function	to	call.	In	this	case,	that’s	spam_scrubber	(without	the	parentheses,	because	you’re
providing	the	function’s	name,	not	calling	the	function).	The	second	argument	is	an	array.
What	array_map()	 does	 is	 apply	 the	 named	 function	 once	 for	 each	 array	 element,	 sending	 each
array	element’s	 value	 to	 that	 function	 call.	 In	 this	 script,	$_POST	 has	 four	 elements—name,	 email,
comments,	 and	 submit—meaning	 that	 the	spam_scrubber()	 function	 will	 be	 called	 four	 times,
thanks	 to	 array_map().	 After	 this	 line	 of	 code,	 the	 $scrubbed	 array	 will	 end	 up	 with	 four
elements:	$scrubbed[‘name’]	will	have	the	value	of	$_POST[‘name’]	after	 running	 it	 through



spam_scrubber(),	$scrubbed[‘email’]	 will	 have	 the	 same	 value	 as	$_POST[‘email’]
after	running	it	through	spam_scrubber(),	and	so	forth.
This	 one	 line	 of	 code	 then	 takes	 an	 entire	 array	 of	 potentially	 tainted	 data	 (),	 cleans	 it	 using	 ,	 and
assigns	the	result	to	a	new	variable.	Here’s	the	most	important	thing	about	this	technique:	from	here	on
out,	the	script	must	use	the	$scrubbed	array	(which	is	clean),	not	(which	is	still	potentially	dirty).

8.	Change	the	form	validation	to	use	this	new	array:
Click	here	to	view	code	image

if	(!empty($scrubbed['name'])	&&

!empty($scrubbed['email'])	&&

!empty($scrubbed['comments'])	)	{

Each	of	 these	elements	could	have	an	empty	value	for	 two	reasons:	 first,	 if	 the	user	 left	 them	empty;
second,	if	the	user	entered	one	of	the	bad	strings	in	the	field ,	which	would	be	turned	into	an	empty
string	by	the	spam_scrubber()	function .

	The	presence	of	cc:	in	the	comments	field	will	prevent	this	submission	from	being	sent	in	an	email	
.



	The	email	was	not	sent	because	of	the	very	bad	characters	used	in	the	comments,	which	gets	 turned
into	an	empty	string	by	the	spam	prevention	function.
9.	Change	the	creation	of	the	$body	variable	so	that	it	uses	the	clean	values:
Click	here	to	view	code	image

$body="Name:

{$scrubbed['name']}\n\nComments:

{$scrubbed['comments']}";

10.	Change	the	invocation	of	the	mail()	function	to	use	the	clean	email	address:
Click	here	to	view	code	image

mail('your_email@example.com',

'Contact	Form	Submission',	$body,

"From:	{$scrubbed['email']}");

Remember	to	use	your	own	email	address	in	the	mail()	call,	or	you’ll	never	get	the	message!
11.	Change	line	30	(of	the	original	script)	to	clear	the	$scrubbed	array	instead	of	the	$_POST	array:

$scrubbed	=	[];

This	line	wipes	out	the	form	data	upon	successful	submission.
12.	Change	the	form	so	that	it	uses	the	$scrubbed	version	of	the	values:
Click	here	to	view	code	image

<p>Name:	<input	type="text"

name="name"	size="30"

maxlength="60"	value="<?php	if

(isset($scrubbed['name']))	echo

$scrubbed['name'];	?>"></p>

<p>Email	Address:	<input

type="email"	name="email"

size="30"	maxlength="80"

value="<?php	if	(isset($scrubbed

['email']))	echo	$scrubbed



['email'];	?>"></p>

<p>Comments:	<textarea

name="comments"	rows="5"	cols="30"><?php	if	(isset($scrubbed

['comments']))	echo	$scrubbed

['comments'];	?></textarea></p>

13.	Save	the	script	as	email.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 	and	 .

Although	 the	comments	 field	contains	newline	characters	 (created	by	pressing	Enter	or	Return),	 the
email	will	still	be	sent	 .

	The	received	email,	with	the	newlines	in	the	comments	 	turned	into	spaces.

Tip
Using	 the	array_map()	 function	 as	 I	 have	 in	 this	 example	 is	 convenient	 but	 not	without	 its
downsides.	 First,	 it	 blindly	 applies	 the	spam_scrubber()	 function	 to	 the	 entire	$_POST
array,	 even	 to	 the	 submit	 button.	 This	 isn’t	 harmful,	 but	 it	 is	 unnecessary.	 Second,	 any
multidimensional	 arrays	 within	 $_POST	 will	 be	 lost.	 In	 this	 specific	 example,	 that’s	 not	 a
problem,	but	it	is	something	to	be	aware	of.



Tip
To	 prevent	 automated	 submissions	 to	 any	 form,	 you	 could	 use	 a	 CAPTCHA	 test.	 These	 are
prompts	 that	 can	 only	 be	 understood	 by	 humans	 (in	 theory).	 Although	 this	 is	 commonly
accomplished	 using	 an	 image	 of	 random	 characters,	 the	 same	 thing	 can	 be	 achieved	 using	 a
question	like	“What	is	two	plus	two?”	or	“On	what	continent	is	China?”	Checking	for	the	correct
answer	to	this	question	would	then	be	part	of	the	validation	routine.

Validating	Data	by	Type
For	 the	 most	 part,	 the	 form	 validation	 used	 in	 this	 book	 thus	 far	 has	 been	 rather	 minimal,	 often	 just
checking	whether	 a	 variable	 has	 any	 value	 at	 all.	 In	many	 situations,	 this	 is	 the	 best	 you	 can	 do.	 For
example,	there’s	no	perfect	test	for	what	a	valid	street	address	is	or	what	a	user	might	enter	in	a	comments
field.	Still,	much	of	the	data	you’ll	work	with	can	be	validated	in	stricter	ways.	In	the	next	chapter,	 the
sophisticated	 concept	 of	 regular	 expressions	 will	 demonstrate	 just	 that.	 But	 here	 I’ll	 cover	 the	 more
approachable	ways	you	can	validate	some	data	by	type.
PHP	supports	many	types	of	data:	strings,	numbers	(integers	and	floats),	arrays,	and	so	on.	For	each	of
these,	there’s	a	specific	function	that	checks	if	a	variable	is	of	that	type	(Table	13.2).	You’ve	already	seen
the	is_numeric()	function	in	action	in	earlier	chapters,	and	is_array()	is	great	for	confirming	a
variable	is	acceptable	to	use	in	a	foreach	loop.	Each	function	returns	TRUE	if	the	submitted	variable
is	of	a	certain	type	and	FALSE	otherwise.

TABLE	13.2	Type	Validation	Functions
Function Checks	For
is_array() Arrays
is_bool() Booleans	(TRUE,	FALSE)
is_float() Floating-point	numbers
is_int() Integers
is_null() NULLs
is_numeric() Numeric	values,	even	as	a	string	(e.g.,	‘20’)
is_resource() Resources,	like	a	database	connection
is_scalar() Scalar	(single-valued)	variables
is_string() Strings



Two	Validation	Approaches
A	large	part	of	 security	 is	based	on	validation:	 if	data	comes	 from	outside	of	 the	 server—
from	HTML	 forms,	 the	URL,	 cookies—it	 can’t	 be	 trusted.	 (A	 higher	 level	 of	 security	 also
validates	any	data	coming	from	outside	of	the	script,	including	sessions	and	databases.)	There
are	 two	 types	 of	 validation:	whitelist	 and	 blacklist.	 In	 the	Widget	 Cost	 Calculator	 in	 this
chapter,	we	know	that	all	values	must	be	positive,	that	they	must	all	be	numbers,	and	that	the
quantity	must	be	an	 integer	 (the	other	 two	numbers	 could	be	 integers	or	 floats;	 it	makes	no
difference).	Typecasting	forces	the	inputs	 to	be	numbers,	and	a	check	confirms	that	 they	are
positive.	At	this	point,	the	assumption	is	that	the	input	is	valid.	This	is	a	whitelist	approach:
these	values	are	good;	anything	else	is	bad.
The	 preventing	 spam	 example	 uses	 a	 blacklist	 approach.	 That	 script	 knows	 exactly	which
characters	are	bad	and	invalidates	input	that	contains	them.	All	other	input	is	considered	to	be
good.
Many	 security	 experts	 prefer	 the	 whitelist	 approach,	 but	 it	 can’t	 always	 be	 used.	 Each
example	will	dictate	which	approach	will	work	best,	but	it’s	important	to	use	one	or	the	other.
Don’t	just	assume	that	data	is	safe	without	some	sort	of	validation.

In	 PHP,	 you	 can	 even	 change	 a	 variable’s	 type	 after	 it’s	 been	 assigned	 a	 value.	 Doing	 so	 is	 called
typecasting,	and	you	accomplish	it	by	entering	the	destination	type	in	parentheses	before	 the	variable’s
name:
$var	=	20.2;

echo	(int)	$var;	//	20

Depending	on	the	original	and	destination	types,	PHP	will	convert	the	variable’s	value	accordingly:
$var	=	20;

echo	(float)	$var;	//	20.0

With	numeric	values,	the	conversion	is	straightforward,	but	with	other	variable	types,	more	complex	rules
apply:
$var	=	'trout';

echo	(int)	$var;	//	0

In	most	circumstances,	you	don’t	need	to	cast	a	variable	from	one	type	to	another,	since	PHP	will	often
automatically	do	so	as	needed.	But	forcibly	casting	a	variable’s	type	can	be	a	good	security	measure	in
your	 web	 applications.	 To	 show	 how	 you	 might	 use	 this	 notion,	 let’s	 create	 a	 calculator	 script	 for
determining	the	total	purchase	price	of	an	item	 .



	The	HTML	form	takes	three	inputs:	a	quantity,	a	price,	and	a	tax	rate.
Before	getting	into	this	example,	let’s	think	a	moment	about	the	role	HTML5	plays	here.	HTML5	supports
built-in	 client-side	 validation .	 For	 example,	 the	email.php	 script	 (Script	 13.1)	 won’t	 allow	 the
form	 to	 be	 submitted	 with	 a	 syntactically	 invalid	 email	 address.	 This	 is	 great	 in	 terms	 of	 the	 user
experience;	 however,	 it’s	 not	 a	 true	 security	 measure.	 It’s	 rather	 easy	 for	 a	 malicious	 user	 to	 bypass
client-side	validation	by	manipulating	the	HTML	source	code	in	the	browser	or	by	submitting	data	to	your
server	directly	without	using	the	form	at	all.

	HTML5	validation	rules	prevent	invalid	data	from	being	submitted.
Although	you	can	and	should	take	advantage	of	the	client-side	validation	HTML5	offers,	never	rely	on	it
as	a	security	method!
And	in	case	you’re	curious,	the	easiest	way	for	you	as	the	developer	to	bypass	the	HTML5	validation	(for
testing	purposes)	is	to	add	the	novalidate	attribute	to	the	opening	form	tag:
Click	here	to	view	code	image

<form	action="calculator.php"

method="post"	novalidate>



To	use	typecasting:
1.	 Begin	 a	 new	 PHP	 document	 in	 your	 text	 editor	 or	 IDE,	 to	 be	 named	calculator.php	 (Script
13.2):

Click	here	to	view	code	image
<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Widget	Cost

Calculator</title>

</head>

<body>

<?php	#	Script	13.2	-

calculator.php

Script	13.2	By	 typecasting	variables,	 this	 script	more	definitively	validates	 that	data	 is	of	 the	correct
format.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Widget	Cost	Calculator</title>

6			</head>

7			<body>

8			<?php	#	Script	13.2	-	calculator.php

9			//	This	script	calculates	an	order	total	based	upon	three	form	values.

10				

11		//	Check	if	the	form	has	been	submitted:

12		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

13				

14					//	Cast	all	the	variables	to	a	specific	type:

15					$quantity	=	(int)	$_POST['quantity'];

16					$price	=	(float)	$_POST['price'];

17					$tax	=	(float)	$_POST['tax'];

18				

19					//	All	variables	should	be	positive!

20					if	(	($quantity	>	0)	&&	($price	>	0)	&&	($tax	>	0)	)	{

21				

22								//	Calculate	the	total:

23								$total	=	$quantity	*	$price;

24								$total	+=	$total	*	($tax/100);

25				

26								//	Print	the	result:

27								echo	'<p>The	total	cost	of	purchasing	'	.	$quantity	.	'	widget(s)	at	$'	.	number_

										format($price,	2)	.	'	each,	plus	tax,	is	$'	.	number_format($total,	2)	.	'.</p>';

28				

29					}	else	{	//	Invalid	submitted	values.

30								echo	'<p	style="font-weight:	bold;	color:	#C00">Please	enter	a	valid	quantity,	price,

										and	tax	rate.</p>';

31					}

32				

33		}	//	End	of	main	isset()	IF.

34				

35		//	Leave	the	PHP	section	and	create	the	HTML	form.

36		?>

37		<h2>Widget	Cost	Calculator</h2>

38		<form	action="calculator.php"	method="post">

39					<p>Quantity:	<input	type="number"	name="quantity"	step="1"	min="1"	value="<?php	if



							(isset($quantity))	echo	$quantity;	?>"></p>

40					<p>Price:	<input	type="number"	name="price"	step=".01"	min="0.01"	value="<?php	if

							(isset($price))	echo	$price;	?>"></p>

41					<p>Tax	(%):	<input	type="text"	name="tax"	step=".01"	min="0.01"	value="<?php	if

							(isset($tax))	echo	$tax;	?>"></p>

42					<p><input	type="submit"	name="submit"	value="Calculate!"></p>

43		</form>

44		</body>

45		</html>

2.	Check	if	the	form	has	been	submitted:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==

'POST')	{

Like	 many	 previous	 examples,	 this	 one	 script	 will	 both	 display	 the	 HTML	 form	 and	 handle	 its
submission.

3.	Cast	all	the	variables	to	a	specific	type:
Click	here	to	view	code	image

$quantity	=	(int)	$_POST

['quantity'];

$price	=	(float)	$_POST['price'];

$tax	=	(float)	$_POST['tax'];

The	form	itself	has	three	number	boxes	 .	Although	the	HTML5	validation	requires	each	be	a	number,
that	check	cannot	be	relied	on	for	security	purposes.
For	the	calculation	to	be	reliable,	the	quantity	must	be	an	integer,	and	both	price	and	tax	are	acceptable
as	floats	(i.e.,	could	contain	decimal	points).	To	force	these	constraints,	cast	each	one	to	a	specific	type
in	PHP.

4.	Check	if	the	variables	have	proper	values:
Click	here	to	view	code	image

if	(	($quantity	>	0)	&&

($price	>	0)	&&	($tax	>	0)	)	{

For	this	calculator	to	work,	the	three	variables	must	be	specific	types	(see	Step	3).	More	importantly,
they	must	all	be	positive	numbers.	This	conditional	checks	for	that	prior	to	performing	the	calculations.
Note	that,	per	the	rules	of	typecasting,	if	the	posted	values	are	not	numbers,	they	will	be	cast	to	0	and
therefore	not	pass	this	conditional.
Again,	the	HTML5	validation	also	ensures	that	values	greater	than	0	are	entered	in	the	form,	but	you
cannot	assume	the	client-side	validation	applied.

5.	Calculate	and	print	the	results:
Click	here	to	view	code	image

$total	=	$quantity	*	$price;

$total	+=	$total	*	($tax/100);

echo	'<p>The	total	cost	of

purchasing	'	.	$quantity	.	'

widget(s)	at	$'	.	number_format

($price,	2)	.	'	each,	plus	tax,

is	$'	.	number_format

($total,	2)	.	'.</p>';

To	calculate	the	total,	first	the	quantity	is	multiplied	by	the	price.	To	apply	the	tax	to	the	total,	the	value



of	the	total	 times	the	tax	divided	by	100	(e.g.,	6.5%	becomes	 .065)	 is	 then	added,	using	 the	addition
assignment	 shortcut	operator.	The	number_format()	 function	 is	 used	 to	 print	 both	 the	 price	 and
total	values	in	the	proper	format .

	The	results	of	the	calculation	when	the	form	is	properly	completed.
6.	Complete	the	conditionals:
Click	here	to	view	code	image

		}	else	{	//	Invalid	submitted

		 values.

				echo	'<p	style="font-weight:

				 bold;	color:	#C00">Please

				 enter	a	valid	quantity,

				 price,	and	tax	rate.</p>';

		}

}	//	End	of	main	isset()	IF.

A	little	CSS	is	used	to	create	a	bold,	red	error	message,	should	there	be	a	problem.
7.	Begin	the	HTML	form:
Click	here	to	view	code	image

<h2>Widget	Cost	Calculator</h2>

<form	action="calculator.php"

method="post">

		<p>Quantity:	<input

		 type="number"	name="quantity"

		 step="1"	min="1"	value="<?php

		 if	(isset($quantity))	echo

		 $quantity;	?>"></p>

The	HTML	form	is	simple	and	posts	back	to	this	same	page.	The	inputs	will	have	a	sticky	quality,	so
the	user	can	 see	what	was	previously	entered.	For	example,	by	 referring	 to	$quantity	 instead	of
$_POST[‘quantity’],	the	form	will	reflect	the	value	for	each	input	as	it	was	typecast.
To	add	in	client-side	validation,	each	number	input	requires	a	minimum	value	of	either	1	or	.01.	Integer
inputs	like	the	quantity	use	a	step	value	of	1;	the	decimal	inputs	will	use	.01.

8.	Complete	the	HTML	form:
Click	here	to	view	code	image



			<p>Price:	<input	type="number"

			 name="price"	step=".01"

			 min="0.01"	value="<?php	if

			 (isset($price))	echo	$price;

			 ?>"></p>

			<p>Tax	(%):	<input	type="text"

			 name="tax"	step=".01"	min="0.01"

			 value="<?php	if	(isset($tax))

			 echo	$tax;	?>"></p>

			<p><input	type="submit"

			 name="submit"

			 value="Calculate!"></p>

</form>

9.	Complete	the	HTML	page:
</body>

</html>

10.	Save	the	file	as	calculator.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	
and	 .

	If	invalid	values	are	entered,	such	as	floats	for	the	quantity	or	strings	for	the	tax…



	…they’ll	be	cast	 into	more	appropriate	 formats.	The	negative	price	will	also	keep	 this	 calculation
from	being	made	(although	the	casting	won’t	change	that	value).

Tip
You	should	definitely	use	typecasting	when	working	with	numbers	within	SQL	queries.	Numbers
aren’t	quoted	in	queries,	so	if	a	string	is	somehow	used	in	a	number’s	place,	there	will	be	an	SQL
syntax	error.	If	you	typecast	such	variables	to	an	integer	or	float	first,	the	query	may	not	work	(in
terms	of	returning	a	record)	but	will	still	be	syntactically	valid.	You’ll	frequently	see	this	in	this
book’s	last	three	chapters.

Tip
As	 I	 implied,	 regular	 expressions	 are	 a	 more	 advanced	 method	 of	 data	 validation	 and	 are
sometimes	your	best	bet.	But	using	type-based	validation,	when	feasible,	will	certainly	be	faster
(in	 terms	 of	 processor	 speed)	 and	 less	 prone	 to	 programmer	 error	 (did	 I	mention	 that	 regular
expressions	are	complex?).

Tip
The	rules	of	how	values	are	converted	from	one	data	type	to	another	are	somewhat	complicated.
If	you	want	to	get	into	the	details,	see	the	PHP	manual.

Validating	Files	by	Type
Chapter	11	includes	an	example	of	handling	file	uploads	in	PHP.	Because	uploading	files	allows	users	to
place	 a	more	 potent	 type	 of	 content	 on	 your	 server	 (compared	with	 just	 the	 text	 sent	 via	 a	 form),	 you
cannot	be	too	mindful	of	security	when	it	comes	to	handling	them.	In	that	particular	example,	the	uploaded
file	 was	 validated	 by	 checking	 its	 MIME	 type.	 Specifically,	 with	 an	 uploaded	 file,
$_FILES[‘upload’][‘type’]	refers	to	the	MIME	type	provided	by	the	uploading	browser.	This
is	a	good	start,	but	it’s	easy	for	a	malicious	user	to	trick	the	browser	into	providing	a	false	MIME	type.	A
more	reliable	way	of	confirming	a	file’s	type	is	to	use	the	Fileinfo	extension.
Added	in	PHP	5.3,	the	Fileinfo	extension	determines	a	file’s	type	(and	encoding)	by	hunting	for	“magic
bytes”	or	“magic	numbers”	within	the	file.	For	example,	the	data	that	makes	up	a	GIF	image	must	begin
with	the	ASCII	code	that	represents	either	GIF89a	or	GIF87a;	 the	data	 that	makes	up	a	PDF	file	starts
with	%PDF.
To	use	Fileinfo,	start	by	creating	a	Fileinfo	resource:
$fileinfo	=	finfo_open(kind);

The	kind	value	will	be	one	of	several	constants,	 indicating	 the	 type	of	resource	you	want	 to	create.	To
determine	a	file’s	type,	the	constant	is	FILEINFO_MIME_TYPE:
Click	here	to	view	code	image

$fileinfo	=	finfo_open

(FILEINFO_MIME_TYPE);

Next,	call	the	finfo_file()	function,	providing	the	Fileinfo	resource	and	a	reference	to	the	file	you
want	to	examine:



finfo_file($fileinfo,	$filename);

This	function	returns	the	file’s	MIME	type	(given	the	already	created	resource),	based	on	the	file’s	actual
magic	bytes.
Finally,	once	you’re	done,	you	should	close	the	Fileinfo	resource:
finfo_close($fileinfo);

Our	next	script	will	use	this	information	to	confirm	that	an	uploaded	file	is	an	RTF	(Rich	Text	Format).
Note	that	you’ll	be	able	to	test	this	example	only	if	you	are	using	version	5.3	of	PHP	or	later.

To	validate	files	by	type:
1.	Begin	a	new	PHP	script	in	your	text	editor	or	IDE,	to	be	named	upload_rtf.php	(Script	13.3):
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Upload	an	RTF	Document

		 </title>

</head>

<body>

<?php	#	Script	13.3	-

upload_rtf.php

Script	13.3	Using	the	Fileinfo	extension,	this	script	does	a	good	job	of	confirming	an	uploaded	file's	type.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Upload	an	RTF	Document</title>

6			</head>

7			<body>

8			<?php	#	Script	13.3	-	upload_rtf.php

9			

10		//	Check	if	the	form	has	been	submitted:

11		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

12				

13					//	Check	for	an	uploaded	file:

14					if	(isset($_FILES['upload'])	&&	file_exists($_FILES['upload']['tmp_name']))	{

15				

16								//	Validate	the	type.	Should	be	RTF.

17								//	Create	the	resource:

18								$fileinfo	=	finfo_open(FILEINFO_MIME_TYPE);

19				

20								//	Check	the	file:

21								if	(finfo_file($fileinfo,	$_FILES['upload']['tmp_name'])	==	'text/rtf')	{

22				

23											//	Indicate	it's	okay!

24											echo	'<p><em>The	file	would	be	acceptable!</em></p>';

25				

26											//	In	theory,	move	the	file	over.	In	reality,	delete	the	file:

27											unlink($_FILES['upload']['tmp_name']);

28				

29								}	else	{	//	Invalid	type.

30											echo	'<p	style="font-weight:	bold;	color:	#C00">Please	upload	an	RTF	document.</p>';



31								}

32				

33								//	Close	the	resource:

34								finfo_close($fileinfo);

35				

36					}	//	End	of	isset($_FILES['upload'])	IF.

37				

38					//	Add	file	upload	error	handling,	if	desired.

39				

40		}	//	End	of	the	submitted	conditional.

41		?>

42				

43		<form	enctype="multipart/form-data"	action="upload_rtf.php"	method="post">

44					<input	type="hidden"	name="MAX_FILE_SIZE"	value="524288">

45					<fieldset><legend>Select	an	RTF	document	of	512KB	or	smaller	to	be	uploaded:</legend>

46					<p><strong>File:</strong>	<input	type="file"	name="upload"></p>

47					</fieldset>

48					<div	align="center"><input	type="submit"	name="submit"	value="Submit"></div>

49		</form>

50		</body>

51		</html>

2.	Check	if	the	form	has	been	submitted:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==

'POST')	{

This	same	script	will	both	display	and	handle	the	form.
3.	Check	for	an	uploaded	file:
Click	here	to	view	code	image

if	(isset($_FILES['upload'])	&&

file_exists($_FILES['upload']

['tmp_name']))	{

This	script	first	confirms	that	the	$_FILES[‘upload’	variable	is	set,	which	would	be	the	case	after
a	 form	 submission.	 The	 conditional	 then	 confirms	 that	 the	 uploaded	 file	 exists	 (by	 default,	 in	 the
temporary	directory).	This	clause	prevents	attempts	to	validate	the	file’s	type	should	the	upload	have
failed	(e.g.,	because	the	selected	file	was	too	large).

4.	Create	the	Fileinfo	resource:
Click	here	to	view	code	image

$fileinfo	=	finfo_open

(FILEINFO_MIME_TYPE);

This	 line,	 as	 already	 explained,	 creates	 a	 Fileinfo	 resource	whose	 specific	 purpose	 is	 to	 retrieve	 a
file’s	MIME	type.

5.	Check	the	file’s	type:
Click	here	to	view	code	image

if	(finfo_file($fileinfo,

$_FILES['upload']['tmp_name'])	==

'text/rtf')	{

		echo	'<p><em>The	file	would	be

		 acceptable!</em></p>';

If	the	finfo_file()	function	returns	a	value	of	 text/rtf	 for	 the	uploaded	file,	 then	the	file	has	 the
proper	type	for	the	purposes	of	this	script.	In	that	case,	a	message	is	printed	 .



If	the	selected	and	uploaded	document	has	a	valid	RTF	MIME	type,	the	user	will	see	this	result.
6.	Delete	the	uploaded	file:
Click	here	to	view	code	image

unlink($_FILES['upload']['tmp_name']);

In	a	real-world	example,	the	script	would	now	move	the	file	over	to	its	final	destination	on	the	server.
Because	this	script	is	simply	for	the	purpose	of	validating	a	file’s	type,	the	file	can	be	removed	instead.

7.	Complete	the	type	conditional:
Click	here	to	view	code	image

}	else	{	//	Invalid	type.

		echo	'<p	style="font-weight:

bold;	color:	#C00">Please

upload	an	RTF	document.</p>';

}

If	the	uploaded	file’s	MIME	type	is	not	text/rtf,	the	script	will	print	an	error	message	 .

Uploaded	files	without	the	proper	MIME	type	are	rejected.
8.	Close	the	Fileinfo	resource:

finfo_close($fileinfo);

The	final	step	is	to	close	the	open	Fileinfo	resource	once	it’s	no	longer	needed.
9.	Complete	the	remaining	conditionals:
Click	here	to	view	code	image

		}	//	End	of	isset($_FILES

['upload'])	IF.

}	//	End	of	the	submitted

conditional.

?>



You	 could	 also	 add	 debugging	 information,	 such	 as	 the	 related	 uploaded	 error	message,	 if	 an	 error
occurs.

10.	Create	the	form:
Click	here	to	view	code	image

<form	enctype="multipart

/form-data"	action="upload_rtf

.php"	method="post">

		<input	type="hidden"	name=

		 "MAX_FILE_SIZE"	value="524288">

		<fieldset><legend>Select	an	RTF

		 document	of	512KB	or	smaller

		 to	be	uploaded:</legend>

		<p><strong>File:</strong>	<input

		 type="file"	name="upload"></p>

		</fieldset>

		<div	align="center"><input

		 type="submit"	name="submit"

		 value="Submit"></div>

</form>

The	form	uses	the	proper	enctype	attribute,	has	a	MAX_FILE_SIZE	 recommendation	 in	a	hidden
form	input,	and	uses	a	file	input	type:	the	three	requirements	for	accepting	file	uploads.	That’s	all	there
is	to	this	example	(as	in	 	and	 ).

11.	Complete	the	page:
</body>

</html>

12.	Save	the	file	as	upload_rtf.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser.

Tip
The	 same	 Fileinfo	 resource	 can	 be	 applied	 to	multiple	 files.	 Just	 close	 the	 resource	 after	 the
script	is	done	with	the	resource.

Preventing	XSS	Attacks
HTML	is	simply	plain	text,	like	<strong>,	which	is	given	special	meaning	by	browsers	(as	by	making
text	bold).	Because	of	this	fact,	your	website’s	user	could	easily	put	HTML	in	their	form	data,	like	in	the
comments	 field	 in	 the	 email	 example.	 What	 may	 seem	 trivial	 ends	 up	 being	 a	 significant	 concern,
however.
Many	 dynamically	 driven	 web	 applications	 take	 the	 information	 submitted	 by	 a	 user,	 store	 it	 in	 a
database,	and	then	redisplay	that	information	on	another	page.	Think	of	a	forum,	as	just	one	example.	At
the	very	least,	if	a	user	enters	HTML	code	in	their	data,	such	code	could	throw	off	the	layout	and	aesthetic
of	your	site.	Taking	this	a	step	further,	JavaScript	is	also	just	plain	text,	but	text	that	has	special	meaning
—executable	meaning—within	a	browser.	 If	malicious	code	entered	 into	a	form	were	redisplayed	 in	a
browser	 ,	 it	could	create	pop-up	windows	 ,	steal	cookies,	or	 redirect	 the	browser	 to	other	sites.
Such	attacks	are	referred	to	as	cross-site	scripting	 (XSS).	As	in	the	email	example,	where	you	need	to
look	for	and	nullify	bad	strings	found	in	data,	prevention	of	XSS	attacks	is	accomplished	by	addressing
any	potentially	dangerous	PHP,	HTML,	or	JavaScript.



	The	malicious	and	savvy	user	can	enter	HTML,	CSS,	and	JavaScript	into	textual	form	fields.

The	 JavaScript	 entered	 into	 the	 comments	 field	 	 would	 create	 this	 alert	 window	 when	 the
comments	were	displayed	in	the	browser.
PHP	 includes	 a	 handful	 of	 functions	 for	 handling	 HTML	 and	 other	 code	 found	 within	 strings.	 These
include	the	following:

	 htmlspecialchars(),	 which	 turns	 &,	 ‘,”,	 <,	 and	 >	 into	 an	 HTML	 entity	 format	 (&amp;,
&quot;,	etc.)
	htmlentities(),	which	turns	all	applicable	characters	into	their	HTML	entity	format
	strip_tags(),	which	removes	all	HTML	and	PHP	tags

These	three	functions	are	roughly	listed	in	order	from	least	disruptive	to	most.	Which	function	you’ll	want
to	 use	 depends	 on	 the	 application	 at	 hand.	 To	 demonstrate	 how	 these	 functions	 work	 and	 differ,	 let’s
create	a	simple	PHP	page	that	takes	some	text	and	runs	it	through	these	functions,	printing	the	results	 .



	Thanks	 to	 the	htmlentities()	and	strip_tags()	 functions,	malicious	code	entered	 into	 a
form	field	 	can	be	rendered	inert.

To	prevent	XSS	attacks:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	xss.php	(Script	13.4):
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>XSS	Attacks</title>

</head>

<body>

<?php	#	Script	13.4	-	xss.php

Script	13.4	Applying	 the	htmlentities()	 and	 strip_tags()	 functions	 to	 submitted	 text	 can	 prevent	XSS
attacks.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>XSS	Attacks</title>

6			</head>

7			<body>

8			<?php	#	Script	13.4	-	xss.php

9			

10					if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

11				

12					//	Apply	the	different	functions,	printing	the	results:

13					echo	"<h2>Original</h2><p>{$_POST['data']}</p>";

14					echo	'<h2>After	htmlentities()</h2><p>'	.	htmlentities($_POST['data']).	'</p>';

15					echo	'<h2>After	strip_tags()</h2><p>'	.	strip_tags($_POST['data']).	'</p>';

16				

17		}

18		//	Display	the	form:

19		?>

20		<form	action="xss.php"	method="post">

21					<p>Do	your	worst!	<textarea	name="data"	rows="3"	cols="40"></textarea></p>

22					<div	align="center"><input	type="submit"	name="submit"	value="Submit"></div>

23		</form>

24		</body>

25		</html>

2.	Check	for	the	form	submission	and	print	the	received	data	in	its	original	format:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==

'POST')	{

		echo	"<h2>Original</h2><p>

		 {$_POST['data']}</p>";

In	order	for	us	to	compare	and	contrast	what	was	originally	received	with	the	result	after	applying	the
functions,	the	original	value	must	first	be	printed.

3.	Apply	the	htmlentities()	function,	printing	the	results:
Click	here	to	view	code	image



echo	'<h2>After	htmlentities()

</h2><p>'	.	htmlentities

($_POST['data']).	'</p>';

So	 that	 submitted	 information	 does	 not	 mess	 up	 a	 page	 or	 hack	 the	 browser,	 it’s	 run	 through	 the
htmlentities()	function.	With	this	function,	any	HTML	entity	will	be	translated;	for	instance,	<
and	>	will	become	&lt;	and	&gt;,	respectively.

4.	Apply	the	strip_tags()	function,	printing	the	results:
Click	here	to	view	code	image

echo	'<h2>After	strip_tags()

</h2><p>'	.	strip_tags

($_POST['data']).	'</p>';

The	strip_tags()	function	completely	takes	out	any	HTML,	JavaScript,	or	PHP	tags.	It’s	therefore
the	most	foolproof	function	to	use	on	submitted	data.

5.	Complete	the	PHP	section:
}

?>

6.	Display	the	HTML	form:
Click	here	to	view	code	image

<form	action="xss.php"	method="post">

			<p>Do	your	worst!	<textarea

		 name="data"	rows="3"	cols="40">	

		 </textarea></p>

		<div	align="center"><input

		 type="submit"	name="submit"	

		 value="Submit"></div>

</form>

The	form	 	has	only	one	field	for	the	user	to	complete:	a	textarea.
7.	Complete	the	page:

</body>

</html>

8.	Save	the	page	as	xss.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser.
9.	View	the	source	code	of	the	page	to	see	the	full	effect	of	these	functions	 .

This	snippet	of	the	page’s	HTML	source	 	shows	the	original,	submitted	value,	the	value	after	using
html_entities(),	and	the	value	after	using	strip_tags().



Tip
Both	htmlspecialchars()	and	htmlentities()	take	an	optional	parameter	indicating
how	quotation	marks	should	be	handled.	See	the	PHP	manual	for	specifics.

Tip
The	strip_tags()	 function	 takes	 an	optional	parameter	 indicating	what	 tags	 should	not	be
stripped.

Click	here	to	view	code	image

$var	=	strip_tags($var,	'<p><br>');

Tip
Unrelated	 to	 security	 but	 quite	 useful	 is	 the	nl2br()	 function.	 It	 turns	 every	 return	 (such	 as
those	entered	into	a	textarea)	into	an	HTML	<br>	tag.

Using	the	Filter	Extension
Earlier,	this	chapter	introduced	the	concept	of	typecasting,	which	is	a	good	way	to	force	a	variable	to	be
of	the	right	type.	In	the	next	chapter,	you’ll	learn	about	regular	expressions,	which	can	validate	both	the
type	 of	 data	 and	 its	 specific	 contents	 or	 format.	 PHP	 5.2	 introduced	 the	 Filter	 extension
(www.php.net/filter),	 an	 important	 tool	 that	 bridges	 the	 gap	 between	 the	 relatively	 simple
approach	of	typecasting	and	the	more	complex	concept	of	regular	expressions.
The	Filter	extension	can	be	used	for	one	of	two	purposes:	validating	data	or	sanitizing	 it.	A	validation
process,	as	you	know	well	by	now,	confirms	that	data	matches	expectations.	Sanitization,	by	comparison,
alters	data	by	removing	inappropriate	characters	to	make	the	data	meet	expectations.
The	most	important	function	in	the	Filter	extension	is	filter_var():
Click	here	to	view	code	image

filter_var(variable,	filter[,options]);

The	 function’s	 first	 argument	 is	 the	 variable	 to	 be	 filtered,	 the	 second	 is	 the	 filter	 to	 apply,	 and	 the
optional	 third	argument	 is	 for	adding	additional	criteria.	Table	13.3	 lists	 the	validation	 filters,	 each	of
which	is	represented	as	a	constant.

http://www.php.net/filter


TABLE	13.3	Validation	Filters
Constant
FILTER_VALIDATE_BOOLEAN

FILTER_VALIDATE_EMAIL

FILTER_VALIDATE_FLOAT

FILTER_VALIDATE_INT

FILTER_VALIDATE_IP

FILTER_VALIDATE_MAC

FILTER_VALIDATE_REGEXP

FILTER_VALIDATE_URL

For	example,	to	confirm	that	a	variable	has	a	decimal	value,	you	would	use
Click	here	to	view	code	image

if	(filter_var($var,

FILTER_VALIDATE_FLOAT))	{

A	couple	of	filters	 take	an	optional	parameter,	 the	most	common	being	the	FILTER_VALIDATE_INT
filter,	which	has	min_range	and	max_range	options	 for	controlling	 the	 smallest	 and	 largest	 acceptable
values.	For	example,	this	next	bit	of	code	confirms	that	 the	$age	variable	 is	an	integer	between	1	and
120	(inclusive):
Click	here	to	view	code	image

if	(filter_var($var,

FILTER_VALIDATE_INT,	['min_range'

=>	1,	'max_range'	=>	120]))	{

To	sanitize	data,	you’ll	still	use	the	filter_var()	 function,	but	use	one	of	 the	sanitization	filters	as
listed	in	Table	13.4.

TABLE	13.4	Sanitization	Filters
Constant
FILTER_SANITIZE_EMAIL

FILTER_SANITIZE_ENCODED

FILTER_SANITIZE_MAGIC_QUOTES

FILTER_SANITIZE_NUMBER_FLOAT

FILTER_SANITIZE_NUMBER_INT

FILTER_SANITIZE_FULL_SPECIAL_CHARS

FILTER_SANITIZE_SPECIAL_CHARS

FILTER_SANITIZE_STRING

FILTER_SANITIZE_STRIPPED

FILTER_SANITIZE_URL

FILTER_UNSAFE_RAW

Many	 of	 the	 filters	 duplicate	 other	 PHP	 functions.	 For	 example,	 FILTER_SANITIZE_



MAGIC_QUOTES	 is	 the	 same	 as	 applying	 addslashes(),
FILTER_SANITIZE_SPECIAL_CHARS	 can	 be	 used	 in	 lieu	 of	 htmlspecialchars(),	 and
FILTER_SANITIZE_STRING()	 can	 be	 used	 as	 a	 replacement	 for	 strip_tags().	 The	 PHP
manual	lists	several	additional	flags,	as	constants,	that	can	be	used	as	the	optional	third	argument	to	affect
how	each	 filter	 behaves.	As	 an	 example	 of	 applying	 a	 sanitizing	 filter,	 this	 code	 is	 equivalent	 to	 how
strip_tags()	is	used	in	xss.php	(Script	13.4):
Click	here	to	view	code	image

echo	'<h2>After	strip_tags()</h2><p>'

.	filter_var($_POST['data'],

FILTER_SANITIZE_STRING)	.	'</p>';

If	you	get	hooked	on	using	the	Filter	extension,	you	may	appreciate	the	consistency	of	being	able	to	use	it
for	all	data	sanitization,	even	when	functions	such	as	strip_tags()	exist.
So	 you	 can	 practice	 this,	 the	 next	 example	 will	 update	 calculator.php	 (Script	 13.2)	 so	 that	 it
sanitizes	all	the	incoming	data.

To	use	the	Filter	extension:
1.	Open	calculator.php	(Script	13.2)	in	your	text	editor	or	IDE.
2.	Change	the	assignment	of	the	$quantity	variable	to	(Script	13.5)
Click	here	to	view	code	image

$quantity	=	(isset($_POST

['quantity']))	?	filter_var

($_POST['quantity'],

FILTER_VALIDATE_INT,

['min_range'	=>	1])	:	NULL;

Script	13.5	Using	the	Filter	extension,	this	script	sanitizes	incoming	data	rather	than	typecasting	it,	as	in
the	earlier	version	of	the	script.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Widget	Cost	Calculator</title>

6			</head>

7			<body>

8			<?php	#	Script	13.5	-	calculator.php	#2

9			//	This	version	of	the	script	uses	the	Filter	extension	instead	of	typecasting.

10				

11					//	Check	if	the	form	has	been	submitted:

12					if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

13				

14					//	Sanitize	the	variables:

15					$quantity	=	(isset($_POST['quantity']))	?	filter_var($_POST['quantity'],	FILTER_VALIDATE_INT,	['min_range'	=>	1])	:	NULL;

16					$price	=	(isset($_POST['price']))	?	filter_var($_POST['price'],	FILTER_SANITIZE_NUMBER_FLOAT,	FILTER_FLAG_ALLOW_FRACTION)	:	NULL;

17					$tax	=	(isset($_POST['tax']))	?	filter_var($_POST['tax'],	FILTER_SANITIZE_NUMBER_FLOAT,	FILTER_FLAG_ALLOW_FRACTION)	:	NULL;

18				

19					//	All	variables	should	be	positive!

20					if	(	($quantity	>	0)	&&	($price	>	0)	&&	($tax	>	0)	)	{

21				

22								//	Calculate	the	total:

23								$total	=	$quantity	*	$price;

24								$total	+=	$total	*	($tax/100);



25				

26								//	Print	the	result:

27								echo	'<p>The	total	cost	of	purchasing	'	.	$quantity	.	'	widget(s)	at	$'	.	number_format($price,	2)	.	'	each,	plus	tax,	is	$'	.	number_format($total,	2)	.	'.</p>';

28				

29					}	else	{	//	Invalid	submitted	values.

30								echo	'<p	style="font-weight:	bold;	color:	#C00">Please	enter	a	valid	quantity,	price,

										and	tax	rate.</p>';

31					}

32				

33		}	//	End	of	main	isset()	IF.

34		

35		//	Leave	the	PHP	section	and	create	the	HTML	form.

36		?>

37		<h2>Widget	Cost	Calculator</h2>

38		<form	action="calculator.php"	method="post">

39					<p>Quantity:	<input	type="number"	name="quantity"	step="1"	min="1"	value="<?php	if

							(isset($quantity))	echo	$quantity;	?>"></p>

40					<p>Price:	<input	type="number"	name="price"	step=".01"	min="0.01"	value="<?php	if

							(isset($price))	echo	$price;	?>"></p>

41					<p>Tax	(%):	<input	type="text"	name="tax"	step=".01"	min="0.01"	value="<?php	if

							(isset($tax))	echo	$tax;	?>"></p>

42					<p><input	type="submit"	name="submit"	value="Calculate!"></p>

43		</form>

44		</body>

45		</html>

This	 version	 of	 the	 script	 will	 improve	 on	 its	 predecessor	 in	 a	 couple	 of	 ways.	 First,	 each	 POST
variable	 is	 checked	 for	 existence	 using	 isset(),	 instead	 of	 assuming	 the	 variable	 exists.	 If	 the
variable	 is	 not	 set,	 then	 $quantity	 is	 assigned	 NULL.	 If	 the	 variable	 is	 set,	 it’s	 run	 through
filter_var(),	sanitizing	the	value	as	an	integer	greater	than	1.
The	sanitized	value	is	then	assigned	to	$quantity.	All	this	code	is	written	using	the	ternary	operator,
introduced	 in	Chapter	10,	“Common	Programming	Techniques,”	 for	 brevity’s	 sake.	As	 an	if-else
conditional,	the	same	code	would	be	written	as:

Click	here	to	view	code	image
if	(isset($_POST['quantity']))	{

				$quantity	=	filter_var($_POST

				 ['quantity'],	FILTER_VALIDATE_

				 INT,	['min_range'	=>	1]);

}	else	{

				$quantity	=	NULL;

}

3.	Change	the	assignment	of	the	$price	variable	to
Click	here	to	view	code	image

$price	=	(isset($_POST['price']))	?

filter_var($_POST['price'],

FILTER_SANITIZE_NUMBER_FLOAT,

FILTER_FLAG_ALLOW_FRACTION)	:

NULL;

This	code	is	a	repetition	of	that	in	Step	2,	except	that	the	sanitizing	filter	insists	that	the	data	be	a	float.
The	additional	argument,	FILTER_FLAG_ALLOW_FRACTION,	says	that	it’s	acceptable	for	the	value
to	use	a	decimal	point.

4.	Change	the	assignment	of	the	$tax	variable	to
Click	here	to	view	code	image

$tax	=	(isset($_POST['tax']))	?



filter_var($_POST['tax'],	FILTER_

SANITIZE_NUMBER_FLOAT,	FILTER_

FLAG_ALLOW_FRACTION)	:	NULL;

This	is	a	repetition	of	the	code	in	Step	3.
5.	Save	the	page,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 	and	 .

Invalid	values	in	submitted	form	data…

…will	be	nullified	by	the	Filter	extension	(as	opposed	to	typecasting,	which,	for	example,	converted
the	string	cat	to	the	number	0).

Tip
The	filter_has_var()	function	confirms	whether	a	variable	with	a	given	name	exists.



Tip
The	filter_input_array()	function	allows	you	to	apply	an	array	of	filters	to	an	array	of
variables	in	one	step.	For	details	(and	perhaps	to	be	blown	away),	see	the	PHP	manual.

Preventing	SQL	Injection	Attacks
Another	 type	 of	 attack	 that	 malicious	 users	 can	 attempt	 is	 SQL	 injection.	 As	 the	 name	 implies,	 SQL
injection	is	an	attempt	to	insert	bad	code	into	a	site’s	SQL	queries.	One	aim	of	such	attacks	is	that	they
would	create	a	syntactically	invalid	query,	thereby	revealing	something	about	the	script	or	database	in	the
resulting	error	message	 .	An	even	bigger	aspiration	is	that	the	injection	attack	could	alter,	destroy,	or
expose	the	stored	data.

	 If	 a	 site	 reveals	 a	 detailed	 error	 message	 and	 doesn’t	 properly	 handle	 problematic	 characters	 in
submitted	values,	hackers	can	learn	a	lot	about	your	server.
Fortunately,	SQL	 injection	attacks	are	 rather	 easy	 to	prevent.	Start	by	validating	all	 data	 to	 be	 used	 in
queries	 (and	 perform	 typecasting,	 or	 apply	 the	 Filter	 extension,	 whenever	 possible).	 Second,	 use	 a
function	 like	mysqli_real_escape_string(),	 which	 makes	 data	 safe	 to	 use	 in	 queries.	 This
function	was	introduced	in	Chapter	9,	“Using	PHP	with	MySQL.”	Third,	don’t	show	detailed	errors	on
live	sites.



Prepared	Statement	Performance
Prepared	 statements	 can	be	more	 secure	 than	 running	queries	 in	 the	old-fashioned	way,	but
they	may	also	be	faster.	If	a	PHP	script	sends	the	same	query	to	MySQL	multiple	times,	using
different	values	each	time,	prepared	statements	can	really	speed	things	up.	In	such	cases,	the
query	 itself	 is	 only	 sent	 to	MySQL	 and	 parsed	 once.	 Then,	 the	 values	 are	 sent	 to	MySQL
separately.
As	a	trivial	example,	the	following	code	would	run	100	queries	in	MySQL:

Click	here	to	view	code	image

$q	=	'INSERT	INTO	counter	(num)	VALUES	(?)';

$stmt	=	mysqli_prepare($dbc,	$q);

mysqli_stmt_bind_param($stmt,	'i',	$n);

for	($n	=	1;	$n	<=	100;	$n++)	{

mysqli_stmt_execute($stmt);

}

Even	 though	 the	query	 is	being	run	100	 times,	 the	 full	 text	 is	only	being	 transferred	 to,	 and
parsed	by,	MySQL	once.	MySQL	versions	5.1.17	and	later	include	a	caching	mechanism	that
may	also	improve	the	performance	of	other	uses	of	prepared	statements.

An	alternative	to	using	mysqli_real_escape_string()	is	to	use	prepared	statements.	Prepared
statements	were	added	to	MySQL	in	version	4.1,	and	PHP	can	use	them	as	of	version	5.	When	you	are	not
using	prepared	statements,	 the	entire	query,	 including	 the	SQL	syntax	and	 the	specific	values,	 is	sent	 to
MySQL	as	one	long	string.	MySQL	then	parses	and	executes	it.	With	a	prepared	query,	the	SQL	syntax	is
sent	to	MySQL	first,	where	it	is	parsed,	making	sure	it’s	syntactically	valid	(e.g.,	confirming	that	the	query
does	not	refer	to	tables	or	columns	that	don’t	exist).	Then	the	specific	values	are	sent	separately;	MySQL
assembles	 the	 query	 using	 those	 values,	 and	 then	 executes	 it.	 The	 benefits	 of	 prepared	 statements	 are
important:	greater	security	and	potentially	better	performance.	I’ll	focus	on	the	security	aspect	here,	but
see	the	sidebar	for	a	discussion	of	performance.
Prepared	statements	can	be	created	out	of	any	INSERT,	UPDATE,	DELETE,	or	SELECT	query.	Begin	by
defining	your	query,	marking	placeholders	using	question	marks.	As	an	example,	take	the	SELECT	query
from	edit_user.php	(Script	10.3):
$q	=	"SELECT	first_name,	last_name,

email	FROM	users	WHERE	user_id=$id";

As	a	prepared	statement,	this	query	becomes
$q	=	"SELECT	first_name,	last_name,

email	FROM	users	WHERE	user_id=?";

Next,	prepare	the	statement	in	MySQL,	assigning	the	results	to	a	PHP	variable:
$stmt	=	mysqli_prepare($dbc,	$q);

At	this	point,	MySQL	will	parse	the	query,	but	it	won’t	execute	it.
Next,	 you	bind	 PHP	variables	 to	 the	 query’s	 placeholders.	 In	 other	words,	 you	 state	 that	 one	 variable
should	 be	 used	 for	 the	 first	 question	 mark,	 another	 variable	 for	 the	 next	 question	 mark,	 and	 so	 on.
Continuing	with	the	same	example,	you	would	code
mysqli_stmt_bind_param($stmt,	'i',	$id);



The	i	part	of	the	command	indicates	what	kind	of	value	should	be	expected,	using	the	characters	listed	in
Table	13.5.	 In	 this	 case,	 the	query	expects	 to	 receive	one	 integer.	As	another	 example,	here’s	how	 the
login	query	from	Chapter	12,	“Cookies	and	Sessions,”	would	be	handled:

TABLE	13.5	Bound	Value	Types
Letter Represents
d Decimal
i Integer
b Blob	(binary	data)
s All	other	types

$q	=	"SELECT	user_id,	first_name

FROM	users	WHERE	email=?	AND

pass=SHA2(?,	512)";

$stmt	=	mysqli_prepare($dbc,	$q);

mysqli_stmt_bind_param($stmt,	'ss',

$e,	$p);

In	this	example,	something	interesting	is	also	revealed:	even	though	both	the	email	address	and	password
values	are	strings,	they	are	not	placed	within	quotes	 in	the	query.	This	is	another	difference	between	a
prepared	statement	and	a	standard	query.
Once	the	statement	has	been	bound,	you	can	assign	values	to	the	PHP	variables	(if	that	hasn’t	happened
already)	and	then	execute	the	statement.	Using	the	login	example,	that’d	be
$e	=	'email@example.com';

$p	=	'mypass';

mysqli_stmt_execute($stmt);

The	values	of	$e	and	$p	will	be	used	when	the	prepared	statement	is	executed.
To	 see	 this	 process	 in	 action,	 let’s	write	 a	 script	 that	 adds	 a	 post	 to	 the	messages	 table	 in	 the	 forum
database	(created	in	Chapter	6,	“Database	Design”).	I’ll	also	use	the	opportunity	to	demonstrate	a	couple
of	the	other	prepared	statement-related	functions.

To	use	prepared	statements:
1.	Begin	a	new	PHP	script	in	your	text	editor	or	IDE,	to	be	named	post_message.php	(Script	13.6):
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Post	a	Message</title>

</head>

<body>

<?php	#	Script	13.6	-

post_message.php

Script	13.6	This	script,	which	represents	a	simplified	version	of	a	message	posting	page,	uses	prepared
statements	as	a	way	of	preventing	SQL	injection	attacks.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>



4						<meta	charset="utf-8">

5						<title>Post	a	Message</title>

6			</head>

7			<body>

8			<?php	#	Script	13.6	-	post_message.php

9			

10		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

11				

12					//	Validate	the	data	(omitted)!

13				

14					//	Connect	to	the	database:

15					$dbc	=	mysqli_connect('localhost',	'username',	'password',	'forum');

16				

17					//	Make	the	query:

18					$q	=	'INSERT	INTO	messages	(forum_id,	parent_id,	user_id,	subject,	body,

							date_entered)	VALUES	(?,	?,	?,	?,	?,	NOW())';

19				

20					//	Prepare	the	statement:

21					$stmt	=	mysqli_prepare($dbc,	$q);

22				

23					//	Bind	the	variables:

24					mysqli_stmt_bind_param($stmt,	'iiiss',	$forum_id,	$parent_id,	$user_id,	$subject,

							$body);

25				

26					//	Assign	the	values	to	variables:

27					$forum_id	=	(int)	$_POST['forum_id'];

28					$parent_id	=	(int)	$_POST['parent_id'];

29					$user_id	=	3;	//	The	user_id	value	would	normally	come	from	the	session.

30					$subject	=	strip_tags($_POST['subject']);

31					$body	=	strip_tags($_POST['body']);

32				

33					//	Execute	the	query:

34					mysqli_stmt_execute($stmt);

35				

36					//	Print	a	message	based	upon	the	result:

37					if	(mysqli_stmt_affected_rows($stmt)	==	1)	{

38								echo	'<p>Your	message	has	been	posted.</p>';

39					}	else	{

40								echo	'<p	style="font-weight:	bold;	color:	#C00">Your	message	could	not	be	posted.</p>';

41								echo	'<p>'	.	mysqli_stmt_error($stmt)	.	'</p>';

42					}

43				

44					//	Close	the	statement:

45					mysqli_stmt_close($stmt);

46				

47					//	Close	the	connection:

48					mysqli_close($dbc);

49				

50		}	//	End	of	submission	IF.

51				

52		//	Display	the	form:

53		?>

54		<form	action="post_message.php"	method="post">

55				

56					<fieldset><legend>Post	a	message:</legend>

57				

58					<p><strong>Subject</strong>:	<input	name="subject"	type="text"	size="30"	maxlength="100">	</p>

59				

60					<p><strong>Body</strong>:	<textarea	name="body"	rows="3"	cols="40"></textarea></p>

61				

62					</fieldset>

63					<div	align="center"><input	type="submit"	name="submit"	value="Submit"></div>

64					<input	type="hidden"	name="forum_id"	value="1">



65					<input	type="hidden"	name="parent_id"	value="0">

66				

67		</form>

68		</body>

69		</html>

2.	Check	for	form	submission	and	connect	to	the	forum	database:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==

'POST')	{

		$dbc	=	mysqli_connect

('localhost',	'username',

'password',	'forum');

Note	that,	for	brevity’s	sake,	I’m	omitting	basic	data	validation	and	error	reporting.	Although	a	real	site
(a	more	realized	version	of	this	script	can	be	found	in	Chapter	17,	“Example—Message	Board”)	would
check	 that	 the	 message	 subject	 and	 body	 aren’t	 empty	 and	 that	 the	 various	 ID	 values	 are	 positive
integers,	this	script	will	still	be	relatively	safe,	thanks	to	the	security	offered	by	prepared	statements.
This	example	will	use	the	forum	database,	created	in	Chapter	6.

3.	Define	and	prepare	the	query:
Click	here	to	view	code	image

$q	=	'INSERT	INTO	messages

(forum_id,	parent_id,	user_id,

subject,	body,	date_entered)

VALUES	(?,	?,	?,	?,	?,	NOW())';

$stmt	=	mysqli_prepare($dbc,	$q);

This	 syntax	 has	 already	 been	 explained.	 The	 query	 is	 defined,	 using	 placeholders	 for	 values	 to	 be
assigned	later.	Then	the	function	sends	this	to	MySQL,	assigning	the	result	to	$stmt.
The	query	itself	was	first	used	in	Chapter	6.	It	populates	six	fields	in	the	messages	table.	The	value	for
the	column	will	be	the	result	of	the	function,	not	a	bound	value.

4.	Bind	the	appropriate	variables	and	create	a	list	of	values	to	be	inserted:
Click	here	to	view	code	image

mysqli_stmt_bind_param($stmt,

'iiiss',	$forum_id,	$parent_id,

$user_id,	$subject,	$body);

$forum_id	=	(int)	$_POST

['forum_id'];

$parent_id	=	(int)	$_POST

['parent_id'];

$user_id	=	3;

$subject	=	strip_tags($_POST

['subject']);

$body	=	strip_tags($_POST['body']);

The	first	line	says	that	three	integers	and	two	strings	will	be	used	in	the	prepared	statement.	The	values
will	be	found	in	the	variables	to	follow.
For	 those	variables,	 the	subject	and	body	values	come	straight	 from	the	 form	 ,	 after	 running	 them
through	strip_tags()	 to	 remove	 any	 potentially	 dangerous	 code.	 The	 forum	 ID	 and	 parent	 ID
(which	 indicates	 if	 the	message	 is	 a	 reply	 to	 an	 existing	message	 or	 not)	 also	 come	 from	 the	 form.
They’ll	be	 typecast	 to	 integers	 (for	 added	 security,	you	would	confirm	 that	 they’re	positive	 numbers
after	typecasting	them,	or	you	could	use	the	Filter	extension).



The	simple	HTML	form.
The	user	ID	value,	in	a	real	script,	would	come	from	the	session,	where	it	would	be	stored	when	the
user	logged	in.

5.	Execute	the	query:
mysqli_stmt_execute($stmt);

Finally,	the	prepared	statement	is	executed.
6.	Print	the	results	of	the	execution	and	complete	the	loop:
Click	here	to	view	code	image

if	(mysqli_stmt_affected_rows

($stmt)	= =	1)	{
		echo	'<p>Your	message	has	been

		 posted.</p>';

}	else	{

		echo	'<p	style="font-weight:

		 bold;	color:	#C00">Your

		 message	could	not	be	posted.

		 </p>';

		echo	'<p>'	.	mysqli_stmt_error

		 ($stmt)	.	'</p>';

}

The	successful	insertion	of	a	record	can	be	confirmed	using	the	function,	which	works	as	you	expect	it
would	 (returning	 the	 number	 of	 affected	 rows).	 In	 that	 case,	 a	 simple	 message	 is	 printed	 .	 If	 a
problem	occurred,	the	function	returns	the	specific	MySQL	error	message.	This	is	for	your	debugging
purposes,	not	to	be	used	in	a	live	site.	That	being	said,	often	the	PHP	error	message	is	more	useful	than
that	returned	by	mysqli_stmt_error() .



	If	one	record	in	the	database	was	affected	by	the	query,	this	will	be	the	result.

	Error	reporting	with	prepared	statements	can	be	confounding	sometimes!
7.	Close	the	statement	and	the	database	connection:

mysqli_stmt_close($stmt);

mysqli_close($dbc);

The	 first	 function	 closes	 the	 prepared	 statement,	 freeing	 up	 the	 resources.	At	 this	 point,	$stmt	 no
longer	has	a	value.	The	second	function	closes	the	database	connection.

8.	Complete	the	PHP	section:
}	//	End	of	submission	IF.

?>

9.	Begin	the	form:
Click	here	to	view	code	image

		<form	action="post_message.php"

		 method="post">

		<fieldset><legend>Post	a

		 message:</legend>

		<p><strong>Subject</strong>:

		 <input	name="subject"

		 type="text"	size="30"

		 maxlength="100"></p>

		<p><strong>Body</strong>:

		 <textarea	name="body"	rows="3"

		 cols="40"></textarea></p>

</fieldset>

The	form	begins	with	just	a	subject	text	input	and	a	textarea	for	the	message’s	body.
10.	Complete	the	form:
Click	here	to	view	code	image

<div	align="center"><input

type="submit"	name="submit"

value="Submit"></div>

<input	type="hidden"

name="forum_id"	value="1">

<input	type="hidden"

name="parent_id"	value="0">

The	form	contains	two	fields	the	user	would	fill	out	and	two	hidden	inputs	that	store	values	the	query
needs.	In	a	real	version	of	this	script,	the	forum_id	and	parent_id	values	would	be	determined



dynamically.
11.	Complete	the	page:

</body>

</html>

12.	Save	the	file	as	post_message.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	
.

	 Selecting	 the	most	 recent	 entry	 in	 the	messages	 table	 confirms	 that	 the	 prepared	 statement	 (Script
13.6)	worked.	Notice	that	the	HTML	was	stripped	out	of	the	post	but	the	quotes	are	still	present.

Tip
There	are	two	kinds	of	prepared	statements.	Here	I	have	demonstrated	bound	parameters,	where
PHP	variables	are	bound	to	a	query.	The	other	type	is	bound	results,	where	the	results	of	a	query
are	bound	to	PHP	variables.

Securing	Passwords	with	PHP
How	secure	a	user	account	system	is	will	depend	largely	on	how	passwords	are	handled.	Passwords	can
be	stored	on	the	server	in	three	ways:

	In	plain	text,	which	is	a	terrible	thing	to	do
	In	an	encrypted	format,	which	can	be	decrypted
	In	a	hashed	format,	which	can’t	be	decrypted

If	 you	 store	 passwords	 in	 an	 encrypted	 format,	 it’s	 safe	 from	 prying	 eyes	 and	 can	 be	 retrieved	 when
necessary.	But	if	someone	gets	onto	your	server	and	can	find	your	code	for	performing	the	decryption,	that
person	will	be	able	to	view	every	user’s	password.	And	it	turns	out	that	you	don’t	need	passwords	to	be
decryptable;	it	doesn’t	matter	whether	anyone	can	ever	see	the	plain	text	in	its	original	form	again.
An	alternative	is	to	create	a	hash	of	the	password.	A	hash	is	a	representation	of	data.	For	example,	MD5
is	 a	 hashing	 algorithm	 that’s	 been	 around	 for	 years.	 The	 MD5	 hash	 of	 the	 word	 password	 is
5f4dcc3b5aa765d61d8327deb882cf99;	 the	 MD5	 hash	 of	 the	 word	 omnivore	 is
04f7696e917f292f99925f80fcdb1db1.	You	can	create	a	hash	out	of	any	piece	of	data,	and,	in	theory,	no
two	pieces	of	data	have	the	same	hash.



Preventing	Brute-Force	Attacks
In	a	brute-force	attack,	a	malicious	user	tries	to	log	in	to	a	secure	system	by	making	lots	of
attempts	 in	 the	 hopes	 of	 eventual	 success.	 It’s	 not	 a	 sophisticated	 type	 of	 attack,	 hence	 the
name	“brute	 force.”	For	example,	 if	you	have	a	 login	process	 that	 requires	 a	username	and
password,	there	is	a	limit	to	the	possible	number	of	username/password	combinations.	That
limit	may	be	 in	 the	billions	or	 trillions,	but	 still,	 it’s	 a	 finite	number.	Using	algorithms	and
automated	processes,	brute-force	attacks	repeatedly	try	combinations	until	they	succeed.
The	best	way	to	prevent	brute-force	attacks	from	succeeding	is	requiring	users	to	register	long
passwords.	Although	requiring	a	combination	of	characters,	numbers,	and	symbols	prevents
dictionary	attacks,	using	longer	passwords	requires	exponentially	more	computing	power	 to
crack.
Also,	don’t	give	 indications	as	 to	why	a	 login	failed:	saying	 that	a	username	and	password
combination	isn’t	correct	gives	away	nothing,	but	saying	that	a	username	isn’t	right	or	that	the
password	isn’t	right	for	that	username	says	too	much.
To	stop	a	brute-force	attack	in	its	 tracks,	you	could	also	limit	 the	number	of	incorrect	 login
attempts	by	a	given	IP	address.	IP	addresses	do	change	frequently,	but	in	a	brute-force	attack,
the	same	IP	address—or	pool	of	IP	addresses—would	be	trying	to	log	in	multiple	times	in	a
matter	of	minutes.	You	would	have	to	track	incorrect	logins	by	IP	address,	and	then,	after	X
number	of	invalid	attempts,	block	that	IP	address	for,	say,	24	hours.	Or,	if	you	didn’t	want	to
go	that	far,	you	could	use	an	“incremental	delay”	defense:	each	incorrect	login	from	the	same
IP	address	creates	an	added	delay	in	the	response	(use	PHP’s	sleep()	function	to	create	the
delay).	Humans	might	not	notice	or	be	bothered	by	such	delays,	but	automated	attacks	most
certainly	would.

Storing	the	hash	version	of	a	password	is	more	secure	in	that	 it	can’t	be	decrypted.	If	hackers	get	your
data,	the	best	they	can	do	is	create	hashes	of	common	words	in	the	hopes	that	they	find	the	matching	hash
(this	is	called	a	dictionary	attack).	But	storing	a	hash	still	makes	logging	in	possible.	When	a	user	logs	in,
the	hashed	version	of	the	user’s	login	password	just	needs	to	equal	the	already	stored	hashed	version.	If
the	two	hashes	equate,	the	submitted	password	is	correct.
Once	you’ve	decided	to	hash	the	passwords,	you’ll	need	to	choose	what	hashing	algorithm	(or	formula)	to
use	and	where	the	hashing	should	take	place.	By	the	latter	I	mean	that	you	can	hash	the	password	either	in
the	database	or	in	your	PHP	code.



More	Security	Recommendations
This	 chapter	 covers	many	 specific	 techniques	 for	 improving	your	web	 security.	Here	 are	 a
handful	of	other	recommendations:
	Do	your	best	to	limit	what	information	is	requested	from	the	user	and	what	the	site	stores.	The
less	information	handled	by	the	site	 in	any	way,	 the	less	data	you	have	to	worry	about	being
stolen.
	Make	it	your	job	to	study,	follow,	and	abide	by	security	recommendations.	Don’t	just	rely	on
the	advice	of	one	chapter,	one	book,	or	one	author.
	Don’t	retain	user-supplied	names	for	uploaded	files.
	Watch	 how	 database	 references	 are	 used.	 For	 example,	 if	 a	 person’s	 user	 ID	 is	 that	 user’s
primary	key	from	the	database	and	this	 is	stored	in	a	cookie	(as	 in	Chapter	12),	a	malicious
user	just	needs	to	change	that	cookie	value	to	access	another	user’s	account.
	Don’t	 show	detailed	error	messages	 (this	point	was	 repeated	 in	Chapter	8,	“Error	Handling
and	Debugging”).
	Use	cryptography	(this	is	discussed	in	Chapter	7,	“Advanced	SQL	and	MySQL,”	with	respect
to	 the	database,	and	 in	my	book	PHP	5	Advanced:	Visual	QuickPro	Guide	 (Peachpit	Press,
2007)	with	respect	to	the	server).
	Don’t	 store	 credit	 card	numbers,	 social	 security	numbers,	banking	 information,	 and	 the	 like.
The	 only	 exception	 to	 this	 would	 be	 if	 you	 have	 deep	 enough	 pockets	 to	 pay	 for	 the	 best
security	and	to	cover	the	lawsuits	that	arise	when	this	data	is	stolen	from	your	site	(which	will
inevitably	happen).
	Use	SSL.	A	secure	connection	is	one	of	the	best	protections	a	server	can	offer	a	user.
	Reliably	 and	 consistently	 protect	 every	 page	 and	 directory	 that	 needs	 it.	Never	 assume	 that
people	won’t	find	sensitive	areas	just	because	there’s	no	link	to	them.	If	access	to	a	page	or
directory	should	be	limited,	make	sure	it	is.

My	 final	 recommendation	 is	 to	 be	 aware	of	 your	 own	 limitations.	As	 the	programmer,	 you
probably	approach	a	script	thinking	how	it	should	be	used.	This	is	not	the	same	as	to	how	it
will	be	used,	either	accidentally	or	on	purpose.	Try	to	break	your	site	 to	see	what	happens.
Do	bad	things;	do	the	wrong	thing.	Have	other	people	try	to	break	it,	too	(it’s	normally	easy	to
find	 such	 volunteers).	 When	 you	 code,	 if	 you	 assume	 that	 no	 one	 will	 ever	 use	 a	 page
properly,	it’ll	be	much	more	secure	than	if	you	assume	people	always	will.

Since	Chapter	 5,	 “Introduction	 to	 SQL,”	 the	MySQL	SHA2()	 function	 has	 been	 used	 for	 passwords.
Normally	 I	 recommend	having	 the	database	do	 as	much	 as	 possible,	 but	 PHP	now	has	 a	 sophisticated
hashing	function	—password_hash()—added	 to	 the	 language	as	of	PHP	5.5.	This	means	you	must
have	a	current	version	of	PHP	to	use	it	(as	of	this	writing,	the	most	current	version	is	only	5.5.3).
If	 you	 aren’t	 running	 PHP	 5.5	 or	 greater,	 you	 can	 use	 an	 external	 library	 found	 at	 .	 This	 library	 was
created	 by	 Anthony	 Ferrara	 ()	 and	 is	 the	 basis	 for	 the	 version	 implemented	 in	 PHP	 5.5.	 The	 library
requires	PHP	5.3.7	or	greater.
This	code	hashes	passwords	securely	using	this	new	function:
$hash	=	password_hash($password,

PASSWORD_DEFAULT);



The	 function	 automatically	 creates	 and	 uses	 a	 proper	 salt.	 When	 provided	 with	 the
PASSWORD_DEFAULT	 constant	as	 the	 second	argument,	 it	 also	 selects	and	uses	 the	best,	most	 secure
hashing	algorithm	available.
To	 verify	 a	 password	 upon	 login,	 use	 the	password_verify()	 function.	 Its	 first	 argument	 is	 the
submitted,	unhashed	password.	The	second	is	the	stored,	hashed	password:
Click	here	to	view	code	image

if	(password_verify($password,	$hash))	{

				/*	Valid	*/

}	else	{

				/*	Invalid	*/

}

To	use	this,	let’s	update	the	registration	and	login	process	for	the	sitename	database	in	a	series	of	three
steps:
1.	Change	the	pass	column	type	in	the	database.
2.	Update	the	registration	script	to	use	PHP’s	password_hash()	function.
3.	Update	the	login	script	to	use	PHP’s	password_verify()	function.
Note	that	changing	the	hashing	mechanism	renders	all	currently	stored	passwords	in	the	database	unusable
(i.e.,	you’d	never	just	casually	change	the	password-handling	methodology	on	a	live	site).

To	update	the	database:
1.	Connect	to	MySQL	and	select	the	sitename	database,	if	you	have	not	already.
2.	Change	the	users.pass	column’s	type	 :

To	change	a	column’s	type,	use	a	modify	query.
Click	here	to	view	code	image

ALTER	TABLE	users	MODIFY	COLUMN

pass	VARCHAR(256)	NOT	NULL;

The	ALTER	TABLE	query	 lets	you	change	an	existing	 table,	and	 the	MODIFY	COLUMN	part	of	 the
query	 is	how	you	change	a	column’s	definition.	The	column	is	being	converted	 to	a	VARCHAR	up	 to
256	characters	in	length,	and	it	cannot	have	null	values.

3.	Wipe	out	all	the	existing	passwords	 :

The	existing	passwords	are	eliminated	using	this	query.
UPDATE	users	SET	pass=	'	';



Since	the	existing	passwords	won’t	work	with	the	PHP-based	hashing	(when	someone	attempts	to	 log
in),	they	might	as	well	be	erased.	Because	the	column	does	not	allow	for	null	values,	an	empty	string	is
assigned	instead.

To	update	the	registration	process:
1.	Open	register.php	(refer	to	Script	9.5)	in	your	text	editor	or	IDE.
2.	Change	the	assignment	of	the	$p	variable	(line	32)	so	it	uses	PHP	for	the	hashing	(Script	13.7):
Click	here	to	view	code	image

$p	=	password_hash(trim($_POST

['pass1']),	PASSWORD_DEFAULT);

Script	13.7	The	updated	registration	page	now	hashes	the	password	using	PHP	instead	of	MySQL.
Click	here	to	view	code	image

1			<?php	#	Script	13.7	-	register.php	#3

2			//	This	script	performs	an	INSERT	query	to	add	a	record	to	the	users	table.

3			

4			$page_title	=	'Register';

5			include('includes/header.html');

6			

7			//	Check	for	form	submission:

8			if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

9			

10					require('../mysqli_connect.php');	//	Connect	to	the	db.

11				

12					$errors	=	[];	//	Initialize	an	error	array.

13				

14					//	Check	for	a	first	name:

15					if	(empty($_POST['first_name']))	{

16								$errors[]	=	'You	forgot	to	enter	your	first	name.';

17					}	else	{

18								$fn	=	mysqli_real_escape_string($dbc,	trim($_POST['first_name']));

19					}

20				

21					//	Check	for	a	last	name:

22					if	(empty($_POST['last_name']))	{

23								$errors[]	=	'You	forgot	to	enter	your	last	name.';

24					}	else	{

25								$ln	=	mysqli_real_escape_string($dbc,	trim($_POST['last_name']));

26					}

27				

28					//	Check	for	an	email	address:

29					if	(empty($_POST['email']))	{

30								$errors[]	=	'You	forgot	to	enter	your	email	address.';

31					}	else	{

32								$e	=	mysqli_real_escape_string($dbc,	trim($_POST['email']));

33					}

34				

35					//	Check	for	a	password	and	match	against	the	confirmed	password:

36					if	(!empty($_POST['pass1']))	{

37								if	($_POST['pass1']	!=	$_POST['pass2'])	{

38											$errors[]	=	'Your	password	did	not	match	the	confirmed	password.';

39								}	else	{

40											$p	=	password_hash(trim($_POST['pass1']),	PASSWORD_DEFAULT);

41								}

42					}	else	{

43								$errors[]	=	'You	forgot	to	enter	your	password.';

44					}



45				

46					if	(empty($errors))	{	//	If	everything's	OK.

47				

48								//	Register	the	user	in	the	database...

49				

50								//	Make	the	query:

51								$q	=	"INSERT	INTO	users	(first_name,	last_name,	email,	pass,	registration_date)	VALUES	('$fn',	'$ln',	'$e',	'$p',	NOW()	)";

52								$r	=	@mysqli_query($dbc,	$q);	//	Run	the	query.

53								if	($r)	{	//	If	it	ran	OK.

54				

55											//	Print	a	message:

56											echo	'<h1>Thank	you!</h1>

57								<p>You	are	now	registered.	In	Chapter	12	you	will	actually	be	able	to	log	in!

										</p><p><br></p>';

58				

59								}	else	{	//	If	it	did	not	run	OK.

60				

61											//	Public	message:

62											echo	'<h1>System	Error</h1>

63											<p	class="error">You	could	not	be	registered	due	to	a	system	error.	We	apologize	for

													any	inconvenience.</p>';

64				

65											//	Debugging	message:

66											echo	'<p>'	.	mysqli_error($dbc)	.	'<br><br>Query:	'	.	$q	.	'</p>';

67				

68								}	//	End	of	if	($r)	IF.

69				

70								mysqli_close($dbc);	//	Close	the	database	connection.

71				

72								//	Include	the	footer	and	quit	the	script:

73								include('includes/footer.html');

74								exit();

75				

76					}	else	{	//	Report	the	errors.

77

78								echo	'<h1>Error!</h1>

79								<p	class="error">The	following

										error(s)	occurred:<br>';

80								foreach	($errors	as	$msg)	{	//

										Print	each	error.

81											echo	"	-	$msg<br>\n";

82								}

83								echo	'</p><p>Please	try	again.

										</p><p><br></p>';

84

85					}	//	End	of	if	(empty($errors))	IF.

86

87					mysqli_close($dbc);	//	Close	the

							database	connection.

88

89		}	//	End	of	the	main	Submit	conditional.

90		?>

91		<h1>Register</h1>

92		<form	action="register.php"	method="post">

93					<p>First	Name:	<input	type="text"

							name="first_name"	size="15"

							maxlength="20"	value="<?php	if

							(isset($_POST['first_name']))	echo

							$_POST['first_name'];	?>"></p>

94					<p>Last	Name:	<input	type="text"

							name="last_name"	size="15"

							maxlength="40"	value="<?php	if

							(isset($_POST['last_name']))	echo

							$_POST['last_name'];	?>"></p>



95					<p>Email	Address:	<input	type="email"

							name="email"	size="20"	maxlength="60"

							value="<?php	if	(isset($_POST['email']))

							echo	$_POST['email'];	?>"	>	</p>

96					<p>Password:	<input	type="password"

							name="pass1"	size="10"	maxlength="20"

							value="<?php	if	(isset($_POST['pass1']))

							echo	$_POST['pass1'];	?>"	></p>

97					<p>Confirm	Password:	<input

							type="password"	name="pass2"

							size="10"	maxlength="20"	value="<?php

							if	(isset($_POST['pass2']))	echo

							$_POST['pass2'];	?>"	></p>

98					<p><input	type="submit"	name="submit"

							value="Register"></p>

99		</form>

100	<?php	include('includes/footer.html');	?>

The	 hashed	 password	 does	 not	 need	 to	 be	 run	 through	 the	mysqli_real_escape_string()
function	since	no	hashed	value	could	contain	any	problematic	characters.

3.	Update	the	INSERT	query	so	it	no	longer	uses	the	MySQL	SHA2()	function:
Click	here	to	view	code	image

$q	=	"INSERT	INTO	users

(first_name,	last_name,	email,

pass,	registration_date)	VALUES

('$fn',	'$ln',	'$e',	'$p',	NOW()	)";

The	query	now	just	uses	$p	as	the	value	being	stored.
4.	Save	the	file	as	register.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 	and	

.

To	the	user,	the	registration	should	look	and	function	the	same	as	before.



Fetching	the	registered	user	from	the	database	shows	the	hashed	password.
You’ll	 need	 to	 place	 it	 in	 the	 same	directory	with	 the	 other	 site	 files	 from	Chapter	9	 (and	 also	 this
chapter).

To	update	the	login	process:
1.	Open	login_functions.inc.php	(refer	to	Script	12.2)	in	your	text	editor	or	IDE.
2.	Change	the	assignment	to	the	$p	variable	so	it	no	longer	uses	mysqli_real_escape_string()
(Script	13.8):

Script	13.8	The	updated	 login	 functions	 script	 now	verifies	 the	user's	 password	using	PHP	 instead	of
MySQL.
Click	here	to	view	code	image

1			<?php	#	Script	13.8	-	login_functions.inc.php	#2

2			//	This	page	defines	two	functions	used	by	the	login/logout	process.

3			

4			/*	This	function	determines	an	absolute	URL	and	redirects	the	user	there.

5				*	The	function	takes	one	argument:	the	page	to	be	redirected	to.

6				*	The	argument	defaults	to	index.php.

7				*/

8			function	redirect_user($page	=	'index.php')	{

9			

10					//	Start	defining	the	URL...

11					//	URL	is	http://	plus	the	host	name	plus	the	current	directory:

12					$url	=	'http://'	.	$_SERVER['HTTP_HOST']	.	dirname($_SERVER['PHP_SELF']);

13				

14					//	Remove	any	trailing	slashes:

15					$url	=	rtrim($url,	'/\\');

16				

17					//	Add	the	page:

18					$url	.=	'/'	.	$page;

19				

20					//	Redirect	the	user:

21					header("Location:	$url");

22					exit();	//	Quit	the	script.

23				

24		}	//	End	of	redirect_user()	function.

25		

26		

27		/*	This	function	validates	the	form	data	(the	email	address	and	password).

28			*	If	both	are	present,	the	database	is	queried.

29			*	The	function	requires	a	database	connection.

30			*	The	function	returns	an	array	of	information,	including:

31			*	-	a	TRUE/FALSE	variable	indicating	success

32			*	-	an	array	of	either	errors	or	the	database	result



33			*/

34		function	check_login($dbc,	$email	=	'',	$pass	=	'')	{

35				

36					$errors	=	[];	//	Initialize	error	array.

37				

38					//	Validate	the	email	address:

39					if	(empty($email))	{

40								$errors[]	=	'You	forgot	to	enter	your	email	address.';

41					}	else	{

42								$e	=	mysqli_real_escape_string($dbc,	trim($email));

43					}

44				

45					//	Validate	the	password:

46					if	(empty($pass))	{

47								$errors[]	=	'You	forgot	to	enter	your	password.';

48					}	else	{

49								$p	=	trim($pass);

50					}

51				

52					if	(empty($errors))	{	//	If	everything's	OK.

53				

54								//	Retrieve	the	user_id	and	first_name	for	that	email/password	combination:

55								$q	=	"SELECT	user_id,	first_name	FROM	users	WHERE	email='$e'";

56								$r	=	@mysqli_query($dbc,	$q);	//	Run	the	query.

57				

58								//	Check	the	result:

59								if	(mysqli_num_rows($r)	==	1)	{

60				

61											//	Fetch	the	record:

62											$row	=	mysqli_fetch_array($r,	MYSQLI_ASSOC);

63				

64											//	Check	the	password:

65											if	(password_verify($p,	$row['pass']))	{

66														unset($row['pass']);

67														return	[true,	$row];

68											}	else	{

69														$errors[]	=	'The	email	address	and	password	entered	do	not	match	those	on	file.';

70											}

71				

72								}	else	{	//	Not	a	match!

73											$errors[]	=	'The	email	address	and	password	entered	do	not	match	those	on	file.';

74								}

75				

76					}	//	End	of	empty($errors)	IF.

77				

78					//	Return	false	and	the	errors:

79					return	[false,	$errors];

80				

81		}	//	End	of	check_login()	function.

$p	=	trim($pass);

The	password	won’t	be	used	in	the	query	so	it	need	not	be	escaped.	In	fact,	for	a	match	to	be	made,	it
shouldn’t	be!
The	trim()	function	is	still	applied	as	the	password	is	trimmed	upon	registration,	too.

3.	Change	the	SELECT	query	so	that	it	only	uses	the	email	address	in	the	conditional	and	also	retrieves
the	stored	password:

Click	here	to	view	code	image
$q	=	"SELECT	user_id,	first_name,

pass	FROM	users	WHERE	email='$e'";



Because	the	password	must	now	be	verified	in	PHP,	it	must	be	retrieved	by	the	query.	The	conditional
only	checks	that	the	email	address	exists.

4.	Replace	this	line	(line	65	of	Script	12.2)—
return	[true,	$row];

with	the	new	logic:
Click	here	to	view	code	image

if	(password_verify($p,	$row

['pass']))	{

		unset($row['pass']);

		return	[true,	$row];

}	else	{

		$errors[]	=	'The	email	address

		 and	password	entered	do	not

		 match	those	on	file.';

}

The	previous	version	of	 this	 function	returned	 the	value	TRUE	plus	 the	user	 ID	and	first	name	 if	 the
query	returned	one	row.	Now	the	logic	needs	to	be	expanded	since	the	retrieval	of	a	single	row	only
confirms	the	email	address	exists.
After	fetching	the	row	of	data,	 the	conditional	 invokes	password_verify(),	comparing	 the	 just-
submitted	password	against	the	previously	stored	password.	If	password_verify()	returns	a	true
value,	the	check_login()	function	can	return	true	and	$row	as	it	did	before.	However,	as	$row
now	also	includes	the	fetched	password,	that	should	be	removed—unset—from	the	variable	first.
If	 the	 password	wasn’t	 a	match,	 the	 same	 generic	 error	message	 is	 returned.	As	 you	 learned	 in	 the
“Preventing	Brute-Force	Attacks”	 sidebar,	 it’s	 best	 not	 to	 be	 too	 specific	 as	 to	why	 a	 login	 attempt
failed.

5.	Save	the	page	as	login_functions.inc.php,	place	it	in	your	web	directory	(in	the	includes
folder),	and	test	it	in	your	browser	 .

The	 login	with	 the	new	hashing	mechanism	worked!	 (Note	 that	 the	user	was	 registered	with	 a	 first
name	of	“Password.”)



Tip
Many	sites	today	are	ensuring	even	better	security	by	not	using	a	password	at	all,	instead	using
single-access	tokens.	Search	online	to	learn	more.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	What	are	some	of	the	inappropriate	strings	and	characters	that	could	be	indicators	of	potential	spam
attempts?
	What	does	the	stripos()	function	do?	What	is	its	syntax?
	What	does	the	str_replace()	function	do?	What	is	its	syntax?
	What	does	the	array_map()	function	do?	What	is	its	syntax?
	What	is	typecasting?	How	do	you	typecast	a	variable	in	PHP?
	What	function	is	used	to	move	an	uploaded	file	to	its	final	destination	on	the	server?
	What	is	the	Fileinfo	extension?	How	is	it	used?
	What	does	the	htmlspecialchars()	function	do?
	What	does	the	htmlentities()	function	do?
	What	does	the	strip_tags()	function	do?
	What	function	converts	newline	characters	into	HTML	break	tags?
	What	is	the	most	important	function	in	the	Filter	extension?	How	is	it	used?
	 What	 are	 prepared	 statements?	 What	 benefits	 might	 prepared	 statements	 have	 over	 the	 standard
method	of	querying	a	database?
	What	is	the	syntax	for	using	prepared	statements?
	How	do	you	hash	a	password	in	PHP?
	How	do	you	check	a	previously	hashed	password	in	PHP?

Pursue
	 If	 you	 haven’t	 applied	 the	 Filter	 function	 (for	 email	 validation)	 and	 the	 spam_scrubber()
function	to	a	contact	form	used	on	one	of	your	sites,	do	so	now!
	Change	calculator.php	to	allow	for	no	tax	rate.
	Update	,	from	Chapter	3,	“Creating	Dynamic	Web	Sites,”	so	that	it	also	uses	typecasting	or	the	Filter
extension.	 (As	 a	 reminder,	 that	 calculator	 determined	 the	 cost	 of	 a	 car	 trip,	 based	 on	 the	 distance,
average	miles	per	gallon,	and	average	price	paid	per	gallon.)
	Modify	upload_rtf.php	so	that	it	reports	the	actual	MIME	type	for	the	uploaded	file,	should	it
not	be	text/rtf.
	Create	a	PHP	script	that	reports	the	MIME	type	of	any	uploaded	file.
	 Apply	 the	 strip_tags()	 function	 to	 a	 previous	 script	 in	 the	 book,	 such	 as	 the	 registration

http://LarryUllman.com/forums/


example,	to	prevent	inappropriate	code	from	being	stored	in	the	database.
	Apply	 the	 Filter	 function	 to	 the	 login	 process	 in	 Chapter	 12	 to	 guarantee	 that	 the	 submitted	 email
address	meets	the	email	address	format,	prior	to	using	it	in	a	query.
	Apply	the	Filter	function,	or	typecasting,	to	the	delete_user.php	and	edit_user.php	scripts
from	Chapter	10.
	Apply	the	Fileinfo	extension	to	the	show_image.php	script	from	Chapter	11.
	Add	more	 stringent	 validation	 to	 the	 registration	 script,	 including	using	 the	Filter	 extension	 for	 the
email	address	and	requiring	a	longer	password.
	Update	the	registration	and	login	scripts	to	use	prepared	statements.



















































































































































14.	Perl-Compatible	Regular	Expressions

In	This	Chapter
Creating	a	Test	Script
Defining	Simple	Patterns
Using	Quantifiers
Using	Character	Classes
Finding	All	Matches
Using	Modifiers
Matching	and	Replacing	Patterns
Review	and	Pursue

Regular	 expressions	 are	 an	 amazingly	 powerful—but	 often	 taxing—tool	 available	 in	 most	 of	 today’s
programming	 languages	 and	 even	 in	 many	 applications.	 Think	 of	 regular	 expressions	 as	 an	 elaborate
system	of	matching	patterns.	You	 first	write	 the	pattern	and	 then	use	one	of	PHP’s	built-in	 functions	 to
apply	the	pattern	to	a	value	(regular	expressions	are	applied	to	strings,	even	if	that	means	a	string	with	a
numeric	value).	Whereas	a	string	function	could	see	if	the	name	John	is	in	some	text,	a	regular	expression
could	just	as	easily	find	John,	Jon,	and	Jonathon.
Because	 the	 regular	 expression	 syntax	 is	 so	complex,	while	 the	 functions	 that	use	 them	are	 simple,	 the
focus	in	 this	chapter	will	be	on	mastering	the	syntax	in	 little	bites.	The	PHP	code	will	be	very	simple;
later	chapters	will	better	incorporate	regular	expressions	into	real-world	scripts.

Creating	a	Test	Script
Regular	expressions	are	a	matter	of	applying	patterns	to	values.	The	application	of	the	pattern	to	a	value
is	accomplished	using	one	of	a	handful	of	functions;	the	most	important	is	.	This	function	returns	a	0	or	1,
indicating	whether	the	pattern	matched	the	string.	Its	basic	syntax	is
preg_match(pattern,	subject);

The	preg_match()	function	will	stop	once	it	finds	a	single	match.	If	you	need	to	find	all	the	matches,
use	preg_match_all().	That	function	will	be	discussed	toward	the	end	of	the	chapter.
When	providing	the	pattern	to	preg_match(),	it	needs	to	be	placed	within	quotation	marks,	since	it’ll
be	a	string.	Because	many	escaped	characters	within	double	quotation	marks	have	special	meaning	(like
\n),	I	advocate	using	single	quotation	marks	to	define	your	patterns.
Second,	within	the	quotation	marks,	the	pattern	needs	to	be	encased	within	delimiters.	The	delimiter	can
be	any	character	that’s	not	alphanumeric	or	the	backslash,	and	the	same	character	must	be	used	to	mark	the
beginning	 and	 end	 of	 the	 pattern.	Commonly,	 you’ll	 see	 forward	 slashes	 used.	 To	 see	 if	 the	word	 cat
contains	the	letter	a,	you	would	code	(spoiler	alert:	it	does)
if	(preg_match('/a/',	'cat'))	{

If	 you	 need	 to	match	 a	 forward	 slash	 in	 the	 pattern,	 use	 a	 different	 delimiter,	 like	 the	 pipe	 (|)	 or	 an
exclamation	mark	(!).
The	bulk	of	this	chapter	covers	all	the	rules	for	defining	patterns.	To	best	learn	by	example,	let’s	start	by



creating	a	simple	PHP	script	that	takes	a	pattern	and	a	string	 	and	returns	the	regular	expression	result	
.

	The	HTML	form,	which	will	be	used	for	practicing	regular	expressions.

	The	script	will	print	what	values	were	used	in	the	regular	expression	and	what	the	result	was.	The
form	will	also	be	made	sticky	to	remember	previously	submitted	values.

To	match	a	pattern:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	pcre.php	(Script	14.1).
Click	here	to	view	code	image

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Testing	PCRE</title>

</head>

<body>

<?php	#	Script	14.1	-	pcre.php

Script	14.1	The	complex	regular	expression	syntax	will	be	best	taught	and	demonstrated	using	this	PHP
script.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">



3			<head>

4						<meta	charset="utf-8">

5						<title>Testing	PCRE</title>

6			</head>

7			<body>

8			<?php	#	Script	14.1	-	pcre.php

9			//	This	script	takes	a	submitted	string	and	checks	it	against	a	submitted	pattern.

10				

11		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

12				

13					//	Trim	the	strings:

14					$pattern	=	trim($_POST['pattern']);

15					$subject	=	trim($_POST['subject']);

16				

17					//	Print	a	caption:

18					echo	"<p>The	result	of	checking<br><strong>$pattern</strong><br>against<br>$subject<br>is

				";

19				

20					//	Test:

21					if	(preg_match($pattern,	$subject)	)	{

22								echo	'TRUE!</p>';

23					}	else	{

24								echo	'FALSE!</p>';

25					}

26				

27		}	//	End	of	submission	IF.

28		//	Display	the	HTML	form.

29		?>

30		<form	action="pcre.php"	method="post">

31					<p>Regular	Expression	Pattern:	<input	type="text"	name="pattern"	value="<?php	if

				(isset($pattern))	echo	htmlentities($pattern);	?>"	size="40">	(include	the	delimiters)</p>

32					<p>Test	Subject:	<input	type="text"	name="subject"	value="<?php	if	(isset($subject))	echo

				htmlentities($subject);	?>"	size="40"></p>

33					<input	type="submit"	name="submit"	value="Test!">

34		</form>

35		</body>

36		</html>

2.	Check	for	the	form	submission:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==

'POST')	{

3.	Treat	the	incoming	values:
Click	here	to	view	code	image

$pattern	=	trim($_POST['pattern']);

$subject	=	trim($_POST['subject']);

The	 form	will	 submit	 two	values	 to	 this	 same	 script.	Both	 should	be	 trimmed,	 just	 to	make	 sure	 the
presence	of	any	extraneous	spaces	doesn’t	skew	the	results.	I’ve	omitted	a	check	that	each	input	isn’t
empty,	but	you	could	include	that	if	you	wanted.

4.	Print	a	caption:
Click	here	to	view	code	image

echo	"<p>The	result	of	checking

<br><strong>$pattern</strong>

<br>against<br>$subject<br>is	";

As	you	can	see	 ,	the	form-handling	part	of	this	script	will	start	by	printing	the	values	submitted.



5.	Run	the	regular	expression:
Click	here	to	view	code	image

if	(preg_match($pattern,

$subject)	)	{

	echo	'TRUE!</p>';

}	else	{

	echo	'FALSE!</p>';

}

To	test	the	pattern	against	the	string,	feed	both	to	the	preg_match()	function.	If	this	function	returns
1,	that	means	a	match	was	made,	this	condition	will	be	TRUE,	and	the	word	TRUE	will	be	printed.	If
no	match	was	made,	the	condition	will	be	FALSE	and	that	will	be	stated	 .

	 If	 the	pattern	does	not	match	 the	 string,	 this	will	 be	 the	 result.	This	 submission	 and	 response	 also
convey	that	regular	expressions	are	case-sensitive	by	default.
6.	Complete	the	submission	conditional	and	the	PHP	block:

}	//	End	of	submission	IF.

?>

7.	Create	the	HTML	form:
Click	here	to	view	code	image

<form	action="pcre.php"

method="post">

		<p>Regular	Expression

		 Pattern:	<input	type="text"

		 name="pattern"	value="<?php

		 if	(isset($pattern))	echo

		 htmlentities($pattern);

		 ?>"	size="40">	(include	the

		 delimiters)</p>

		<p>Test	Subject:	<input

		 type="text"	name="subject"

		 value="<?php	if	(isset

		 ($subject))	echo	htmlentities

		 ($subject);	?>"	size="40"></p>

		<input	type="submit"

		 name="submit"	value="Test!">

</form>



The	form	contains	two	text	boxes,	both	of	which	are	sticky	(using	the	trimmed	version	of	the	values).
Because	the	two	values	might	include	quotation	marks	and	other	characters	that	would	conflict	with	the
form’s	“stickiness,”	each	variable’s	value	is	sent	through	htmlentities(),	too.

8.	Complete	the	HTML	page:
</body>

</html>

9.	Save	the	file	as	pcre.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser.
Although	 you	 don’t	 know	 the	 rules	 for	 creating	 patterns	 yet,	 you	 could	 use	 any	 other	 literal	 value.
Remember	to	use	delimiters	around	the	pattern	or	you’ll	see	an	error	message	 .

	If	you	fail	to	wrap	the	pattern	in	matching	delimiters,	you’ll	see	an	error	message.

Tip
Many	text	editors	allow	you	to	use	regular	expressions	to	match	and	replace	patterns	within	and
throughout	several	documents.

Tip
The	 PCRE	 functions	 all	 use	 the	 established	 locale.	A	 locale	 reflects	 a	 computer’s	 designated
country	and	language,	among	other	settings.

Tip
Previous	versions	of	PHP	 supported	 another	 type	of	 regular	 expressions	 called	POSIX.	These
have	since	been	dropped	from	the	language.



Defining	Simple	Patterns
Using	one	of	PHP’s	regular	expression	functions	is	really	easy;	defining	patterns	to	use	is	hard.	There	are
lots	 of	 rules	 for	 creating	 a	 pattern.	You	 can	use	 these	 rules	 separately	 or	 in	 combination,	making	 your
pattern	either	quite	simple	or	very	complex.	To	start,	then,	you’ll	see	what	characters	are	used	to	define	a
simple	pattern.	As	a	formatting	rule,	I’ll	define	patterns	in	bold	and	will	indicate	what	the	pattern	matches
in	italics.	Just	to	keep	things	cleaner.	the	patterns	in	these	explanations	won’t	be	placed	within	delimiters
or	quotes	(both	are	needed	when	used	within	preg_match()).
The	first	type	of	character	you	will	use	for	defining	patterns	is	a	literal.	A	literal	is	a	value	that	is	written
exactly	as	it	is	interpreted.	For	example,	the	pattern	a	will	match	the	letter	a,	ab	will	match	ab,	and	so
forth.	Therefore,	assuming	a	case-insensitive	search	is	performed,	rom	will	match	any	of	 the	following
strings,	since	they	all	contain	rom:

	CD-ROM
	Rommel	crossed	the	desert.
	I’m	writing	a	roman	à	clef.

Along	 with	 literals,	 your	 patterns	 will	 use	meta-characters.	 These	 are	 special	 symbols	 that	 have	 a
meaning	beyond	their	literal	value	(Table	14.1).	While	a	simply	means	a,	 the	period	(.)	will	match	any
single	character	except	 for	a	newline	(.	matches	a,	b,	c,	 the	underscore,	a	 space,	etc.,	 just	not	\n).	 To
match	any	meta-character,	you	will	need	 to	escape	 it,	much	as	you	escape	a	quotation	mark	 to	print	 it.
Hence	 \.	 will	 match	 the	 period	 itself.	 So	 1.99	 matches	 1.99	 or	 1B99	 or	 1299	 (a	 1	 followed	 by	 any
character	followed	by	99)	but	1\.99	only	matches	1.99.

TABLE	14.1	Meta-Characters
Character Meaning
\ Escape	character
^ Indicates	the	beginning	of	a	string
$ Indicates	the	end	of	a	string
. Any	single	character	except	newline
| Alternatives	(or)
[ Start	of	a	class
] End	of	a	class
( Start	of	a	subpattern
) End	of	a	subpattern
{ Start	of	a	quantifier
} End	of	a	quantifier

Two	meta-characters	specify	where	certain	characters	must	be	found.	There	is	the	caret	(^),	which	marks
the	 beginning	 of	 a	 pattern.	There	 is	 also	 the	 dollar	 sign	 ($),	which	marks	 the	 conclusion	 of	 a	 pattern.
Accordingly,	^a	will	match	 any	 string	 beginning	with	 an	a,	whereas	a$	 will	 correspond	 to	 any	 string
ending	with	an	a.	Therefore,	^a$	will	only	match	a	(a	string	that	both	begins	and	ends	with	a).
These	two	meta-characters—the	caret	and	the	dollar	sign—are	crucial	to	validation,	because	validation
normally	requires	checking	the	value	of	an	entire	string,	not	just	the	presence	of	one	string	in	another.	For
example,	using	an	email-matching	pattern	without	those	two	characters	will	match	any	string	containing	an



email	address.	Using	an	email-matching	pattern	that	begins	with	a	caret	and	ends	with	a	dollar	sign	will
match	a	string	that	contains	only	a	valid	email	address.
Regular	 expressions	 also	 make	 use	 of	 the	 pipe	 (|)	 as	 the	 equivalent	 of	 or:	 a|b	 will	 match	 strings
containing	either	a	or	b.	 (Using	the	pipe	within	patterns	is	called	alternation	or	branching.)	So	yes|no
accepts	 either	 of	 those	 two	words	 in	 their	 entirety	 (the	 alternation	 is	not	 just	 between	 the	 two	 letters
surrounding	it:	s	and	n).
Once	you	comprehend	the	basic	symbols,	then	you	can	begin	to	use	parentheses	to	group	characters	 into
more	involved	patterns.	Grouping	works	as	you	might	expect:	(abc)	will	match	abc,	(trout)	will	match
trout.	 Think	 of	 parentheses	 as	 being	 used	 to	 establish	 a	 new	 literal	 of	 a	 larger	 size.	 Because	 of
precedence	 rules	 in	PCRE,	yes|no	and	 (yes)|(no)	 are	equivalent.	But	 (even|heavy)	handed	 will	match
either	even	handed	or	heavy	handed.

To	use	simple	patterns:
1.	Load	pcre.php	in	your	browser,	if	you	haven’t	already.
2.	Check	whether	a	string	contains	the	letters	cat	 .

	Looking	for	a	cat	in	a	string.
To	do	so,	use	the	literal	cat	as	the	pattern	and	any	number	of	strings	as	the	subject.	Any	of	the	following
would	be	 a	match:	 catalog,	catastrophe,	my	 cat	 left.	 For	 the	 time	 being,	 use	 all	 lowercase	 letters,
since	cat	will	not	match	Cat	 .



	PCRE	performs	a	case-sensitive	comparison	by	default.
Remember	to	use	delimiters	around	the	pattern	as	well	(see	the	figures).

3.	Check	whether	a	string	starts	with	cat	 .

The	caret	in	a	pattern	means	that	the	match	has	to	be	found	at	the	start	of	the	string.
To	have	a	pattern	apply	to	the	start	of	a	string,	use	the	caret	as	the	first	character	(^cat).	The	sentence
my	cat	left	will	not	be	a	match	now.

4.	Check	whether	a	string	contains	the	word	color	or	colour	 .



By	using	the	pipe	meta-character,	the	performed	search	can	be	more	flexible.
The	pattern	to	look	for	the	American	or	British	spelling	of	this	word	is	col(o|ou)r.	The	first	three	letters
—col—must	be	present.	This	needs	to	be	followed	by	either	an	o	or	ou.	Finally,	an	r	is	required.

Tip
If	you	are	 looking	 to	match	an	exact	 string	within	 another	 string,	use	 the	strstr()	 function,
which	 is	 faster	 than	 regular	 expressions.	 In	 fact,	 as	 a	 rule	 of	 thumb,	 you	 should	 use	 regular
expressions	only	if	the	task	at	hand	cannot	be	accomplished	using	any	other	function	or	technique.

Tip
You	can	escape	a	 lot	of	characters	 in	a	pattern	using	\Q	and	\E.	Every	character	within	 those
will	be	treated	literally	(so	\Q$2.99?\E	matches	$2.99?).

Tip
To	match	a	single	backslash,	you	have	to	use	\\\\.	The	reason	is	that	matching	a	backslash	in	a
regular	expression	requires	you	to	escape	the	backslash,	resulting	in	\\.	Then	to	use	a	backslash
in	a	PHP	string,	it	also	has	to	be	escaped,	so	escaping	both	backslashes	means	a	total	of	four.

Using	Quantifiers
You’ve	just	seen	and	practiced	with	a	couple	of	the	meta-characters,	the	most	important	of	which	are	the
caret	and	 the	dollar	 sign.	Next,	 there	are	 three	meta-characters	 that	allow	for	multiple	occurrences:	a*
will	match	zero	or	more	a’s	(no	a’s,	a,	aa,	aaa,	etc.);	a+	matches	one	or	more	a’s	(a,	aa,	aaa,	etc.,	but
there	must	be	at	least	one);	and	a?	will	match	up	to	one	a	(a	or	no	a’s	match).	These	meta-characters	all
act	as	quantifiers	in	your	patterns,	as	do	the	curly	braces.	Table	14.2	lists	all	the	quantifiers.



TABLE	14.2	Quantifiers
Character Meaning
? 0	or	1
* 0	or	more
+ 1	or	more
{x} Exactly	x	occurrences
{x,y} Between	x	and	y	(inclusive)
{x,} At	least	x	occurrences

To	match	a	certain	quantity	of	a	thing,	put	the	quantity	between	braces	({}),	stating	a	specific	number,	just
a	minimum,	or	both	a	minimum	and	a	maximum.	Thus,	a{3}	will	match	aaa;	a{3,}	will	match	aaa,	aaaa,
etc.	(three	or	more	a’s);	and	a{3,5}	will	match	just	aaa,	aaaa,	and	aaaaa	(between	three	and	five).
Note	that	quantifiers	apply	to	the	thing	that	came	before	it,	so	a?	matches	zero	or	one	a’s,	ab?	matches	an
a	followed	by	zero	or	one	b’s,	but	(ab)?	matches	zero	or	one	ab’s.	Therefore,	to	match	color	or	colour,
you	could	also	use	colou?r	as	the	pattern.

To	use	quantifiers:
1.	Load	pcre.php	in	your	browser,	if	you	haven’t	already.
2.	Check	whether	a	string	contains	the	letters	c	and	t,	with	one	or	more	letters	in	between	 .

	The	plus	sign,	when	used	as	a	quantifier,	requires	that	one	or	more	of	a	thing	be	present.
To	do	so,	use	c.+t	as	 the	pattern	and	any	number	of	strings	as	 the	subject.	Remember	 that	 the	period
matches	any	character	(except	for	 the	newline).	Each	of	 the	following	would	be	a	match:	cat,	count,
coefficient,	etc.	The	word	doctor	would	not	match,	since	there	are	no	letters	between	the	c	and	 the	 t
(although	doctor	would	match	c.*t).

3.	Check	whether	a	string	matches	either	cat	or	cats	 .



	You	can	check	for	the	plural	form	of	many	words	by	adding	s?	to	the	pattern.
To	start,	if	you	want	to	make	an	exact	match,	use	both	the	caret	and	the	dollar	sign.	Then	you’d	have	the
literal	 text	cat,	 followed	 by	 an	 s,	 followed	 by	 a	 question	mark	 (representing	 0	 or	 1	 s’s).	 The	 final
pattern—^cats?$—matches	cat	or	cats	but	not	my	cat	left	or	I	like	cats.

4.	Check	whether	a	string	ends	with	.33,	.333,	or	.3333	 .

	The	braces	let	you	dictate	the	acceptable	range	of	quantities	present.
To	find	a	period,	escape	it	with	a	backslash:	\..	To	find	a	three,	use	a	literal	3.	To	find	a	range	of	3’s,
use	the	braces	({}).	Putting	this	together,	the	pattern	is	\.3{2,4}.	Because	the	string	should	end	with	this
(nothing	else	can	follow),	conclude	the	pattern	with	a	dollar	sign:	\.3{2,4}$.
Admittedly,	this	is	kind	of	a	silly	example	(I’m	not	sure	when	you’d	need	to	do	exactly	this),	but	it	does
demonstrate	several	things.	This	pattern	will	match	lots	of	things—12.333,	varmit.3333,	.33,	look	 .33
—but	not	12.3	or	12.334.

5.	Match	a	five-digit	number	 .



	The	proper	test	for	confirming	that	a	number	contains	five	digits.
A	number	can	be	any	one	of	the	numbers	0	through	9,	so	the	heart	of	the	pattern	is	(0|1|2|3|4|5|6|7|8|9).
Plainly	said,	this	means	a	number	is	a	0	or	a	1	or	a	2	or	a	3….	To	make	it	a	five-digit	number,	follow
this	with	a	quantifier:	 (0|1|2|3|4|5|6|7|8|9){5}.	Finally,	 to	match	 this	 exactly	 (as	opposed	 to	matching	a
five-digit	number	within	a	string),	use	the	caret	and	the	dollar	sign:	^(0|1|2|3|4|5|6|7|8|9){5}$.
This,	of	course,	is	one	way	to	match	a	U.S.	zip	code,	a	very	useful	pattern.

Tip
When	 using	 braces	 to	 specify	 a	 number	 of	 characters,	 you	must	 always	 include	 the	minimum
number.	The	maximum	is	optional:	a{3}	and	a{3,}	are	acceptable,	but	a{,3}	is	not.

Tip
Although	 learning	 how	 to	write	 and	 execute	 your	 own	 regular	 expressions	 demonstrates	 good
dedication	to	programming,	numerous	working	examples	are	available	already	by	searching	 the
Internet.

Using	Character	Classes
As	the	last	example	demonstrated	( 	in	the	previous	section),	relying	solely	on	literals	in	a	pattern	can
be	tiresome.	Having	to	write	out	all	 those	digits	to	match	any	number	is	silly.	Imagine	if	you	wanted	 to
match	any	four-letter	word:	 (̂a|b|c|d…){4}$	(and	that	doesn’t	even	take	into	account	uppercase	letters)!
To	make	these	common	references	easier,	you	can	use	character	classes.
Classes	 are	 created	 by	 placing	 characters	within	 brackets	 ([]).	 For	 example,	 you	 can	match	 any	 one
vowel	with	 [aeiou].	 This	 is	 equivalent	 to	 (a|e|i|o|u).	Or	 you	 can	 use	 the	 hyphen	 to	 indicate	 a	 range	 of
characters:	 [a-z]	 is	 any	 single	 lowercase	 letter	 and	 [A-Z]	 is	 any	 uppercase,	 [A-Za-z]	 is	 any	 letter	 in
general,	and	[0-9]	matches	any	digit.	As	an	example,	[a-z]{3}	would	match	abc,	def,	oiw,	etc.
Within	classes,	most	of	the	meta-characters	are	treated	literally,	except	for	four.	The	backslash	is	still	the
escape,	but	the	caret	(^)	is	a	negation	operator	when	used	as	the	first	character	in	the	class.	So	[^aeiou]
will	match	any	non-vowel.	The	only	other	meta-character	within	a	class	 is	 the	dash,	which	 indicates	 a
range.	(If	the	dash	is	used	as	the	last	character	in	a	class,	it’s	a	literal	dash.)	And,	of	course,	the	closing



bracket	(])	still	has	meaning	as	the	terminator	of	the	class.
Naturally,	a	class	can	have	both	ranges	and	literal	characters.	A	person’s	first	name,	which	can	contain
letters,	spaces,	apostrophes,	and	periods,	could	be	represented	by	[A-z	‘.]	(again,	the	period	doesn’t	need
to	be	escaped	within	the	class,	since	it	loses	its	meta-meaning	there).
Along	with	creating	your	own	classes,	there	are	six	already-defined	classes	that	have	their	own	shortcuts
(Table	14.3).	The	digit	and	space	classes	are	easy	to	understand.	The	term	word	doesn’t	mean	“word”	in
the	language	sense	but	rather	as	in	a	string	unbroken	by	spaces	or	punctuation.

TABLE	14.3	Character	Classes
Class Shortcut Meaning
[0-9] \d Any	digit
[\f\r\t\n\v] \s Any	white	space
[A-Za-z0-9_] \w Any	word	character
[^0-9] \D Not	a	digit
[^\f\r\t\n\v] \S Not	white	space
[^A-Za-z0-9_] \W Not	a	word	character

Using	this	information,	the	five-digit	number	(aka,	zip	code)	pattern	could	more	easily	be	written	as	^[0-
9]{5}$	or	^\d{5}$.	As	another	example,	can\s?not	will	match	both	can	not	and	cannot	 (the	word	can,
followed	by	zero	or	one	space	characters,	followed	by	not).

To	use	character	classes:
1.	Load	pcre.php	in	your	browser,	if	you	haven’t	already.
2.	Check	whether	a	string	is	formatted	as	a	valid	U.S.	zip	code	 .

The	pattern	to	match	a	U.S.	zip	code,	in	either	the	five-digit	or	five-plus-four	format.
A	U.S.	zip	code	always	starts	with	five	digits	(^\d{5}).	But	a	valid	zip	code	could	also	have	a	dash
followed	by	another	four	digits	(-\d{4}$).	To	make	this	last	part	optional,	use	the	question	mark	(the	0
or	1	quantifier).	This	complete	pattern	is	then	^(\d{5})(-\d{4})?$.	To	make	it	all	clearer,	the	first	part
of	the	pattern	(matching	the	five	digits)	is	also	grouped	in	parentheses,	although	this	 isn’t	required	in



this	case.
3.	Check	whether	a	string	contains	no	spaces	 .

The	no-white-space	shortcut	can	be	used	to	ensure	that	a	submitting	string	is	contiguous.
The	 \S	 character	 class	 shortcut	will	match	 non-space	 characters.	 To	make	 sure	 that	 the	 entire	 string
contains	no	spaces,	use	the	caret	and	the	dollar	sign:	^\S$.	If	you	don’t	use	those,	then	all	the	pattern	is
confirming	is	that	the	subject	contains	at	least	one	non-space	character.

4.	Validate	an	email	address	 .

A	pretty	good	and	reliable	validation	for	email	addresses.
The	 pattern	 ^[\w.-]+@[\w.-]+\.[A-Za-z]{2,6}$	 provides	 for	 reasonably	 good	 email	 validation.	 It’s
wrapped	in	the	caret	and	the	dollar	sign,	so	the	string	must	be	a	valid	email	address	and	nothing	more.
An	email	address	starts	with	letters,	numbers,	and	the	underscore	(represented	by	\w),	plus	a	period	(.)
and	a	dash.	This	first	block	will	match	 larryullman,	 larry77,	 larry.ullman,	 larry-ullman,	and	so	on.
Next,	all	email	addresses	include	one	and	only	one	@.	After	that,	 there	can	be	any	number	of	letters,
numbers,	periods,	and	dashes.	This	 is	 the	domain	name:	 larryullman,	smith-jones,	amazon.co	 (as	 in
amazon.co.uk),	 etc.	Finally,	 all	 email	 addresses	 conclude	with	one	period	and	between	 two	and	 six
letters.	This	accounts	for	.com,	.edu,	.info,	.travel,	and	so	forth.



Tip
I	 think	 that	 the	 zip	 code	 example	 is	 a	 great	 demonstration	 of	 how	 complex	 and	 useful	 regular
expressions	are.	One	pattern	accurately	tests	for	both	formats	of	the	zip	code,	which	is	fantastic.
But	when	you	put	this	into	your	PHP	code,	with	quotes	and	delimiters,	it’s	not	easily	understood:

Click	here	to	view	code	image

if	(preg_match	('/^(\d{5})(-\d{4})?$/',	

$zip))	{

That	certainly	looks	like	gibberish,	right?

Tip
This	 email	 address	 validation	 pattern	 is	 pretty	 good,	 although	 not	 perfect.	 It	will	 allow	 some
invalid	addresses	to	pass	through	(like	ones	starting	with	a	period	or	containing	multiple	periods
together).	 However,	 a	 100	 percent	 foolproof	 validation	 pattern	 is	 ridiculously	 long,	 and
frequently	 using	 regular	 expressions	 is	 really	 a	matter	 of	 trying	 to	 exclude	 the	 bulk	 of	 invalid
entries	without	inadvertently	excluding	any	valid	ones.

Tip
Regular	expressions,	particularly	PCRE	ones,	can	be	extremely	complex.	When	you’re	starting
out,	it’s	just	as	likely	that	your	use	of	them	will	break	the	validation	routines	rather	than	improve
them.	That’s	why	practicing	like	this	is	important.

Using	Boundaries
Boundaries	are	shortcuts	for	helping	to	find,	um,	boundaries.	In	a	way,	you’ve	already	seen
this:	using	the	caret	and	the	dollar	sign	to	match	the	beginning	or	end	of	a	value.	But	what	if
you	wanted	to	match	boundaries	within	a	value?
The	clearest	boundary	is	between	a	word	and	a	non-word.	A	“word”	in	this	case	is	not	cat,
month,	 or	 zeitgeist,	 but	 in	 the	\w	 shortcut	 sense:	 the	 letters	A	 through	Z	 (both	 upper-	 and
lowercase),	plus	the	numbers	0	through	9,	and	the	underscore.	To	use	words	as	boundaries,
we	 have	 the	 \b	 shortcut.	 To	 use	 non-word	 characters	 as	 boundaries,	 we	 have	 \B.	 So	 the
pattern	\bfor\b	matches	they’ve	come	for	you	but	doesn’t	match	force	or	forebode.	Therefore,
\bfor\B	would	match	force	but	not	they’ve	come	for	you	or	informal.

Finding	All	Matches
Going	back	 to	 the	PHP	functions	used	with	Perl-compatible	 regular	expressions,	preg_match()	has
been	used	just	to	see	whether	or	not	a	pattern	matches	a	value.	But	the	script	hasn’t	been	reporting	what,
exactly,	in	the	value	did	match	the	pattern.	You	can	find	out	this	information	by	providing	a	variable	as	a
third	argument	to	the	function:
Click	here	to	view	code	image

preg_match(pattern,	subject,	$match);



The	$match	variable	will	contain	the	first	match	found	(because	this	function	only	returns	the	first	match
in	a	value).	To	find	every	match,	use	preg_match_all().	Its	syntax	is	the	same:
Click	here	to	view	code	image

preg_match_all(pattern,	subject,

$matches);

This	function	will	return	the	number	of	matches	made,	or	FALSE	if	none	were	found.	It	will	also	assign	to
$matches	every	match	made.	Let’s	update	the	PHP	script	to	print	the	returned	matches,	and	then	run	a
couple	of	more	tests.

To	report	all	matches:
1.	Open	pcre.php	(Script	14.1)	in	your	text	editor	or	IDE,	if	you	haven’t	already.
2.	Change	the	invocation	of	preg_match()	to	(Script	14.2)
Click	here	to	view	code	image

if	(preg_match_all($pattern,

$subject,	$matches)	)	{

Script	14.2	To	reveal	exactly	what	values	 in	a	string	match	which	patterns,	 this	 revised	version	of	 the
script	will	print	each	match.	You	can	retrieve	the	matches	by	naming	a	variable	as	the	third	argument	in
preg_match()	or	preg_match_all().
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Testing	PCRE</title>

6			</head>

7			<body>

8			<?php	#	Script	14.2	-	matches.php

9			//	This	script	takes	a	submitted	string

				and	checks	it	against	a	submitted

				pattern.

10		//	This	version	prints	every	match	made.

11				

12		if	($_SERVER['REQUEST_METHOD']	==	'POST')

				{

13				

14		//	Trim	the	strings:

15		$pattern	=	trim($_POST['pattern']);

16		$subject	=	trim($_POST['subject']);

17				

18		//	Print	a	caption:

19		echo	"<p>The	result	of

				checking<br><strong>$pattern</strong><br>

				against<br>$subject<br>is	";

20				

21		//	Test:

22		if	(preg_match_all($pattern,

				$subject,	$matches)	)	{

23					echo	'TRUE!</p>';

24				

25					//	Print	the	matches:

26					echo	'<pre>'	.	print_r($matches,	1)	.	'</pre>';

27				

28		}	else	{



29					echo	'FALSE!</p>';

30		}

31				

32		}	//	End	of	submission	IF.

33		//	Display	the	HTML	form.

34		?>

35		<form	action="matches.php"

				method="post">

36		<p>Regular	Expression	Pattern:

				<input	type="text"	name="pattern"

				value="<?php	if	(isset($pattern))	echo

				htmlentities($pattern);	?>"	size="40">

				(include	the	delimiters)</p>

37		<p>Test	Subject:	<textarea

				name="subject"	rows="5"

				cols="40"><?php	if	(isset($subject))

				echo	htmlentities($subject);

				?></textarea></p>

38		<input	type="submit"	name="submit"

				value="Test!">

39		</form>

40		</body>

41		</html>

There	 are	 two	 changes	 here.	 First,	 the	 actual	 function	 being	 called	 is	 different.	 Second,	 the	 third
argument	is	provided	a	variable	name	that	will	be	assigned	every	match.

3.	After	printing	the	value	TRUE,	print	the	contents	of	$matches:
Click	here	to	view	code	image

echo	'<pre>'	.	print_r($matches,

1)	.	'</pre>';

Using	print_r()	 to	 output	 the	 contents	 of	 the	 variable	 is	 the	 easiest	 way	 to	 know	what’s	 in
$matches	(you	could	use	a	foreach	loop	instead).	As	you’ll	see	when	you	run	this	script,	this
variable	will	be	an	array	whose	first	element	is	an	array	of	matches	made.

4.	Change	the	form’s	action	attribute	to	matches.php:
Click	here	to	view	code	image

<form	action="matches.php"

method="post">

This	script	will	be	renamed,	so	the	action	attribute	must	be	changed,	too.
5.	Change	the	subject	input	to	be	a	textarea:
Click	here	to	view	code	image

<p>Test	Subject:	<textarea

name="subject"	rows="5"

cols="40"><?php	if	(isset

($subject))	echo	htmlentities

($subject);	?></textarea></p>

To	be	able	to	enter	in	more	text	for	the	subject,	this	element	will	become	a	textarea.



Being	Less	Greedy
A	 key	 component	 to	 Perl-compatible	 regular	 expressions	 is	 the	 concept	 of	greediness.	 By
default,	 PCRE	 will	 attempt	 to	 match	 as	 much	 as	 possible.	 For	 example,	 the	 pattern	 <.+>
matches	any	HTML	tag.	When	tested	on	a	string	like	<a	href=”page.php”>Link</a>,	it	will
actually	match	 that	entire	string,	 from	the	opening	<	 to	 the	closing	one.	This	string	contains
three	possible	matches,	 though:	 the	 entire	 string,	 the	 opening	 tag	 (from	<a	 to	“>),	 and	 the
closing	tag	(</a>).
To	 overrule	 greediness,	 make	 the	 match	 lazy.	 A	 lazy	 match	 will	 contain	 as	 little	 data	 as
possible.	 Any	 quantifier	 can	 be	 made	 lazy	 by	 following	 it	 with	 the	 question	 mark.	 For
example,	the	pattern	<.+?>	would	return	two	matches	in	the	preceding	string:	the	opening	tag
and	 the	 closing	 tag.	 It	 would	 not	 return	 the	 whole	 string	 as	 a	 match.	 (This	 is	 one	 of	 the
confusing	 aspects	 of	 the	 regular	 expression	 syntax:	 the	 same	 character—here,	 the	 question
mark—can	have	different	meanings	depending	on	its	context.)
Another	way	 to	make	patterns	 less	 greedy	 is	 to	 use	 negative	 classes.	The	 pattern	<[^>]+>
matches	everything	between	the	opening	and	closing	<>	except	for	a	closing	>.	So	using	this
pattern	would	have	the	same	result	as	using	<.+?>.	This	pattern	would	also	match	strings	that
contain	newline	characters,	which	the	period	excludes.

6.	Save	the	file	as	matches.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser.
For	the	first	test,	use	for	as	the	pattern	and	This	is	a	formulaic	test	for	informal	matches.	as	the	subject

.	It	may	not	be	proper	English,	but	it’s	a	good	test	subject.



	This	first	test	returns	three	matches,	since	the	literal	text	for	was	found	three	times.
For	the	second	test,	change	the	pattern	to	for.*	 .	The	result	may	surprise	you,	the	cause	of	which	is
discussed	in	the	sidebar	“Being	Less	Greedy.”	To	make	 this	search	 less	greedy,	 the	pattern	could	be
changed	to	for.*?,	whose	results	would	be	the	same	as	those	in .

	Because	 regular	 expressions	 are	 “greedy”	by	default	 (see	 the	 sidebar),	 this	 pattern	 finds	 only	 one
match	in	the	string.	That	match	happens	to	start	with	the	first	instance	of	for	and	continues	until	the	end	of
the	string.
For	the	third	test,	use	for[\S]*,	or,	more	simply	for\S*	 .	This	has	the	effect	of	making	the	match	stop
as	soon	as	a	white	space	character	is	found	(because	the	pattern	wants	to	match	for	 followed	by	any
number	of	non–white	space	characters).



	This	revised	pattern	matches	strings	that	begin	with	for	and	end	on	a	word.
For	 the	 final	 test,	 use	 \b[a-z]*for[a-z]*\b	 as	 the	 pattern	 .	 This	 pattern	makes	 use	 of	 boundaries,
discussed	in	the	sidebar	“Using	Boundaries,”	earlier	in	the	chapter.



	Unlike	the	pattern	in	 ,	this	one	matches	entire	words	that	contain	for	(informal	here,	formal	in	 ).

Tip
The	 preg_split()	 function	 will	 take	 a	 string	 and	 break	 it	 into	 an	 array	 using	 a	 regular
expression	pattern.

Using	Modifiers
The	majority	of	 the	special	characters	you	can	use	 in	 regular	expression	patterns	are	 introduced	 in	 this
chapter.	 One	 final	 type	 of	 special	 character	 is	 the	 pattern	 modifier.	 Table	 14.4	 lists	 these.	 Pattern
modifiers	are	different	from	the	other	meta-characters	in	that	they	are	placed	after	the	closing	delimiter.

TABLE	14.4	Pattern	Modifiers
Character Result
A Anchors	the	pattern	to	the	beginning	of	the	string
i Enables	case-insensitive	mode
m Enables	multiline	matching
s Has	the	period	match	every	character,	including	newline
x Ignores	most	white	space
U Performs	a	non-greedy	match



Of	 these	modifiers,	 the	most	 important	 is	 i,	which	 enables	 case-insensitive	 searches.	All	 the	 examples
using	 variations	 on	 for	 (in	 the	 previous	 sequence	 of	 steps)	would	 not	match	 the	word	For.	 However,
/for.*/i	would	be	a	match.	Note	that	I	am	including	the	delimiters	in	that	pattern,	since	the	modifier	goes
after	the	closing	delimiter.	Similarly,	the	last	step	in	the	previous	sequence	referenced	the	sidebar	“Being
Less	Greedy”	and	stated	how	for.*?	would	perform	a	lazy	search.	So	would	/for.*/U.
The	multiline	mode	is	interesting	in	that	you	can	make	the	caret	and	the	dollar	sign	behave	differently.	By
default,	each	applies	to	the	entire	value.	In	multiline	mode,	the	caret	matches	the	beginning	of	any	line	and
the	dollar	sign	matches	the	end	of	any	line.

To	use	modifiers:
1.	Load	matches.php	in	your	browser,	if	you	haven’t	already.
2.	Validate	a	list	of	email	addresses	 .

	A	list	of	email	addresses,	one	per	line,	can	be	validated	using	the	multiline	mode.	Each	valid	address
is	stored	in	$matches.
To	do	 so,	use	 /^[\w.-]+@[\w.-]+\.[A-Za-z]{2,6}\r?$/m	 as	 the	pattern.	You’ll	 see	 that	 I’ve	 added	 an
optional	carriage	return	(\r?)	before	the	dollar	sign.	This	is	necessary	because	some	of	the	lines	will
contain	returns	and	others	won’t.	And	in	multiline	mode,	the	dollar	sign	matches	the	end	of	a	line.	(To
be	more	flexible,	you	could	use	\s?	instead.)

3.	Validate	a	list	of	U.S.	zip	codes	 .



	Validating	a	list	of	zip	codes,	one	per	line.
Very	similar	to	the	example	in	Step	2,	the	pattern	is	now	/^(\d{5})(-\d{4})?\s?$/m.	You’ll	see	that	I’m
using	the	more	flexible	\s?	instead	of	\r?.
You’ll	 also	notice	when	you	 try	 this	yourself	 (or	 in	 )	 that	 the	$matches	 variable	 contains	 a	 lot
more	information	now.	This	will	be	explained	in	the	next	section	of	the	chapter.

Tip
To	 always	match	 the	 start	 or	 end	 of	 a	 pattern,	 regardless	 of	 the	multiline	 setting,	 you	 can	 use
shortcuts.	Within	 the	 pattern,	 the	 shortcut	\A	will	match	 only	 the	 very	 beginning	 of	 the	 value,
matches	the	very	end,	and	matches	any	line	end,	like	in	single-line	mode.



Tip
It’s	 probably	 best	 to	 use	 the	 Filter	 extension,	 covered	 in	 Chapter	 13,	 “Security	 Methods,”	 to
validate	 an	 email	 address	 or	 a	 URL.	 But	 if	 you	 have	 to	 validate	 a	 list	 of	 either,	 the	 Filter
extension	won’t	cut	it,	and	regular	expressions	will	be	required.

Matching	and	Replacing	Patterns
The	 last	 subject	 to	 discuss	 in	 this	 chapter	 is	 how	 to	match	 and	 replace	 patterns	 in	 a	 value.	 Although
preg_match()	and	preg_match_all()	will	 find	 things	for	you,	 if	you	want	 to	do	a	search	and
replace,	you’ll	need	to	use	preg_replace().	Its	syntax	is
Click	here	to	view	code	image

preg_replace(pattern,	replacement,

subject);

This	function	takes	an	optional	fourth	argument	limiting	the	number	of	replacements	made.
To	replace	all	instances	of	cat	with	dog,	you	would	use
Click	here	to	view	code	image

$str	=	preg_replace('/cat/',	'dog',

'I	like	my	cat');

This	function	returns	the	altered	value	(or	unaltered	value	if	no	matches	were	made),	so	you’ll	likely	want
to	assign	it	to	a	variable	or	use	it	as	an	argument	to	another	function	(like	printing	it	by	calling	echo).
Also,	 as	 a	 reminder,	 the	above	 is	 just	 an	example:	you’d	never	want	 to	 replace	one	 literal	 string	with
another	using	regular	expressions;	use	str_replace()	instead.
There	is	a	related	concept	to	discuss	that	is	involved	with	this	function:	back	referencing.	In	a	zip	code–
matching	pattern—^(\d{5})(-\d{4})?$—there	are	two	groups	within	parentheses:	the	first	five	digits	and
the	optional	dash	plus	 four-digit	extension.	Within	a	 regular	expression	pattern,	PHP	will	automatically
number	parenthetical	groupings	beginning	at	1.	Back	referencing	allows	you	 to	 refer	 to	each	 individual
section	by	using	$	plus	 the	corresponding	number.	For	example,	 if	you	match	 the	zip	code	94710-0001
with	this	pattern,	referring	back	to	$2	will	give	you	-0001.	The	code	$0	refers	to	the	whole	initial	string.
This	is	why	 	in	the	previous	section	shows	entire	zip	code	matches	in	$matches[0],	the	matching
first	five	digits	in	$matches[1],	and	any	matching	dash	plus	four	digits	in	$matches[2].
To	practice	with	this,	let’s	modify	Script	14.2	to	also	take	a	replacement	input	 .



	 One	 use	 of	 preg_replace()	 would	 be	 to	 replace	 variations	 on	 inappropriate	 words	 with
symbols	representing	their	omission.

To	match	and	replace	patterns:
1.	Open	matches.php	(Script	14.2)	in	your	text	editor	or	IDE,	if	you	haven’t	already.
2.	Add	a	reference	to	a	third	incoming	variable	(Script	14.3):
Click	here	to	view	code	image

$replace	=	trim($_POST['replace']);

Script	14.3	To	test	the	preg_replace()	function,	which	replaces	a	matched	pattern	in	a	string	with	another
value,	you	can	use	this	third	version	of	the	PCRE	test	script.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Testing	PCRE	Replace</title>

6			</head>

7			<body>

8			<?php	#	Script	14.3	-	replace.php

9			//	This	script	takes	a	submitted	string	and	checks	it	against	a	submitted	pattern.

10		//	This	version	replaces	one	value	with	another.

11				

12		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

13				

14					//	Trim	the	strings:

15					$pattern	=	trim($_POST['pattern']);

16					$subject	=	trim($_POST['subject']);

17					$replace	=	trim($_POST['replace']);

18				

19					//	Print	a	caption:

20					echo	"<p>The	result	of	replacing<br><strong>$pattern</strong><br>with<br>$replace<br>in<br>

							$subject<br><br>";

21				

22					//	Check	for	a	match:

23					if	(preg_match($pattern,	$subject)	)	{

24								echo	preg_replace($pattern,	$replace,	$subject)	.	'</p>';

25					}	else	{

26								echo	'The	pattern	was	not	found!</p>';



27					}

28				

29		}	//	End	of	submission	IF.

30				//	Display	the	HTML	form.

31		?>

32		<form	action="replace.php"	method="post">

33					<p>Regular	Expression	Pattern:	<input	type="text"	name="pattern"	value="<?php	if

							(isset($pattern))	echo	htmlentities($pattern);	?>"	size="40">	(include	the	delimiters)</p>

34					<p>Replacement:	<input	type="text"	name="replace"	value="<?php	if	(isset($replace))

							echo	htmlentities($replace);	?>"	size="40"></p>

35					<p>Test	Subject:	<textarea	name="subject"	rows="5"	cols="40"><?php	if	(isset($subject))

							echo	htmlentities($subject);	?></textarea></p>

36					<input	type="submit"	name="submit"	value="Test!">

37		</form>

38		</body>

39		</html>

As	you	 can	 see	 in	 ,	 the	 third	 form	 input	 (added	 between	 the	 existing	 two)	 takes	 the	 replacement
value.	That	value	is	also	trimmed	to	get	rid	of	any	extraneous	spaces.

3.	Change	the	caption:
Click	here	to	view	code	image

echo	"<p>The	result	of	replacing

<br><strong>$pattern</strong>

<br>with<br>$replace<br>in<br>

$subject<br><br>";

The	caption	will	print	all	the	incoming	values	prior	to	applying	preg_replace().
4.	Change	the	regular	expression	conditional	so	that	it	calls	preg_replace()	only	if	a	match	is	made:
Click	here	to	view	code	image

if	(preg_match($pattern,

$subject)	)	{

					echo	preg_replace($pattern,

					 $replace,	$subject)	.'</p>';

}	else	{

					echo	'The	pattern	was	not

					 found!</p>';

}

You	can	call	without	running	first.	If	no	match	was	made,	then	no	replacement	will	occur.	But	to	make	it
clear	when	a	match	is	or	is	not	being	made	(which	is	always	good	to	confirm,	considering	how	tricky
regular	 expressions	 are),	 the	 function	 will	 be	 applied	 first.	 If	 it	 returns	 a	 TRUE	 value,	 then
preg_replace()	is	called,	printing	the	results	 .	Otherwise,	a	message	is	printed	indicating	that
no	match	was	made	 .



The	resulting	text	has	uses	of	bleep,	bleeps,	bleeped,	bleeper,	and	bleeping	replaced	with	****.

If	the	pattern	is	not	found	within	the	subject,	the	subject	will	not	be	changed.
5.	Change	the	form’s	action	attribute	to	replace.php:



Click	here	to	view	code	image
<form	action="replace.php"

method="post">

This	file	will	be	renamed,	so	this	value	needs	to	be	changed	accordingly.
6.	Add	a	text	input	for	the	replacement	string:
Click	here	to	view	code	image

<p>Replacement:	<input

type="text"	name="replace"

value="<?php	if	(isset($replace))

echo	htmlentities($replace);	?>"

size="40"></p>

7.	Save	the	file	as	replace.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	Another	use	of	preg_replace()	is	dynamically	turning	email	addresses	into	clickable	links.	See
the	HTML	source	code	for	the	full	effect	of	the	replacement.
As	 a	 good	 example,	 you	 can	 turn	 an	 email	 address	 found	 within	 some	 text	 into	 its	 HTML	 link
equivalent:	 <a	 href=”mailto:email@example.com”>email@example.com</a>.	 The
pattern	for	matching	an	email	address	should	be	familiar	by	now:	^[\w.-]+@[\w.-]+\.[A-Za-z]{2,6}$.
However,	because	the	email	address	could	be	found	within	some	text,	the	caret	and	dollar	sign	need	to
be	replaced	by	the	word	boundaries	shortcut:	\b.	The	final	pattern	is	therefore	/\b[\w.-]+@[\w.-]+\.[A-
Za-z]{2,6}\b/.
To	 refer	 to	 this	matched	email	 address,	you	can	 refer	 to	$0	 (because	$0	 refers	 to	 the	 entire	match,
whether	 or	 not	 parentheses	 are	 used).	 So	 the	 replacement	 value	 would	 be	<a	 href=”mailto:$0”>
$0</a>.	Because	HTML	is	involved	here,	look	at	the	HTML	source	code	of	the	resulting	page	for	the
best	idea	of	what	happened.



Tip
Back	 references	 can	 even	 be	 used	 within	 the	 pattern.	 For	 example,	 if	 a	 pattern	 included	 a
grouping	(i.e.,	a	subpattern),	that	would	be	repeated.

Tip
I’ve	introduced,	somewhat	quickly,	the	bulk	of	the	PCRE	syntax	here,	but	there’s	much	more	to	it.
Once	 you’ve	 mastered	 all	 this,	 you	 can	 consider	 moving	 on	 to	 anchors,	 named	 subpatterns,
comments,	lookarounds,	possessive	quantifiers,	and	more.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	What	function	is	used	to	match	a	regular	expression?	What	function	is	used	to	find	all	matches	of	a
regular	expression?	What	function	is	used	to	replace	matches	of	a	regular	expression?
	What	characters	can	you	use	and	not	use	to	delineate	a	regular	expression?
	How	do	you	match	a	literal	character	or	string	of	characters?
	What	are	meta-characters?	How	do	you	escape	a	meta-character?
	What	meta-character	do	you	use	to	bind	a	pattern	to	the	beginning	of	a	string?	To	the	end?
	How	do	you	create	subpatterns	(aka	groupings)?
	What	are	the	quantifiers?	How	do	you	require	0	or	1	of	a	character	or	string?	0	or	more?	1	or	more?
Precisely	X	occurrences?	A	range	of	occurrences?	A	minimum	of	occurrences?
	What	are	character	classes?
	What	meta-characters	still	have	meaning	within	character	classes?
	What	shortcut	represents	the	“any	digit”	character	class?	The	“any	white	space”	class?	“Any	word”?
What	shortcuts	represent	the	opposite	of	these?
	What	are	boundaries?	How	do	you	create	boundaries	in	patterns?
	How	do	you	make	matches	“lazy”?	And	what	does	that	mean	anyway?
	What	are	the	pattern	modifiers?
	What	is	back	referencing?	How	does	it	work?

Pursue
	Search	online	for	a	PCRE	“cheat	sheet”	(PHP	or	otherwise)	that	lists	all	the	meaningful	characters	and
classes.	Print	the	cheat	sheet	and	keep	it	beside	your	computer.
	Practice,	practice,	practice!

http://LarryUllman.com/forums/


















































15.	Introducing	jQuery

In	This	Chapter
What	Is	jQuery?
Incorporating	jQuery
Using	jQuery
Selecting	Page	Elements
Event	Handling
DOM	Manipulation
Using	Ajax
Review	and	Pursue

As	 JavaScript	has	developed	 into	a	more	valuable	 language	over	 the	past	 two	decades,	 its	meaningful
usage	has	become	commonplace	in	today’s	web	sites.	Accordingly,	many	PHP	developers	are	expected	to
know	a	bit	of	JavaScript	as	well.	Often	this	means	learning	jQuery,	a	popular	JavaScript	framework.
Although	this	chapter	cannot	present	full	coverage	of	JavaScript	or	jQuery,	you’ll	learn	more	than	enough
to	be	able	to	add	to	your	PHP-based	projects	the	features	that	users	have	come	to	expect.	In	the	process,
you’ll	 also	 learn	 some	basics	 of	 programming	 in	 JavaScript	 in	 general,	 and	 get	 a	 sense	 of	 into	which
areas	of	jQuery	you	may	want	to	further	delve.

What	Is	jQuery?
To	grasp	jQuery,	you	must	have	a	solid	sense	of	what	JavaScript	is.	As	discussed	in	Chapter	11,	“Web
Application	Development,”	JavaScript	 is	a	programming	language	that’s	primarily	used	to	add	dynamic
features	to	HTML	pages.	Unlike	PHP,	which	always	runs	on	the	server,	JavaScript	generally	runs	on	 the
client	(JavaScript	is	starting	to	be	used	as	a	server-side	tool,	too,	although	that’s	still	more	on	the	fringe).
PHP,	precisely	because	it	is	server-side,	is	browser-agnostic	for	the	most	part;	very	few	things	you’ll	do
in	 PHP	 will	 have	 different	 results	 from	 one	 browser	 to	 the	 next.	 Conversely,	 precisely	 because	 it’s
running	 in	 the	browser,	JavaScript	code	often	has	 to	be	customized	 for	 the	variations	 in	browsers.	For
many	years,	this	was	the	bane	of	the	web	developer:	creating	reliable	cross-browser	code.	Overcoming
this	hurdle	is	one	of	the	many	strengths	of	jQuery	(www.jquery.com	 ).

http://www.jquery.com


	The	home	page	for	the	jQuery	JavaScript	framework.
jQuery	is	a	JavaScript	framework.	A	framework	is	defined	as	a	library	of	code	whose	use	can	expedite
and	simplify	development.	The	core	of	the	jQuery	framework	can	handle	all	key	JavaScript	functionality,
as	you’ll	see	in	this	chapter.	But	the	framework	is	extendable	via	plug-ins	to	provide	other	features,	such
as	the	ability	to	create	a	dynamic,	paginated,	sortable	table	of	data.	In	fact,	several	useful	user	interface
tools	have	been	wrapped	inside	their	own	bundle,	jQuery	UI	(www.jqueryui.com	 ).	There’s	also
jQuery	Mobile	(www.jquerymobile.com),	which	supports	a	touch	interface	and	other	features	commonly
used	on	smartphones	and	tablets.

http://www.jqueryui.com
http://www.jquerymobile.com


The	home	page	 for	 the	 jQuery	User	 Interface	 library	 (jQuery	UI),	which	works	 in	conjunction	with
jQuery.

Debugging	JavaScript
To	this	point,	you	may	not	have	 thought	 it	so	wonderful	 that	PHP	dumped	all	 its	errors	 into
your	 browser,	 shoving	 your	 mistakes	 in	 your	 face.	 Until	 now.	 When	 HTML	 pages	 have
JavaScript	 errors,	 you	 rarely	 are	 notified.	 To	 debug	 problematic	 JavaScript	 code,	 the	 first
thing	you’ll	need	to	do	is	see	what	actual	errors	exist.
The	first	tool	you’ll	need	when	programming	in	JavaScript	is	a	good	debugging	browser.	For
years,	 Firefox	 (www.mozilla.com)	was	 the	 clear	 champion	 in	 this	 regard,	with	Opera
(www.opera.com)	and	Google	Chrome	(www.google.com/chrome/)	close	behind.
By	now,	all	the	major	browsers,	including	Microsoft’s	Internet	Explorer	and	Edge,	include	a
solid	set	of	developer	 tools.	Look	online	for	 instructions	on	using	 the	developer	 tools	built
into	your	favorite	browser.
While	 researching,	 you	 may	 want	 to	 also	 see	 what	 additional	 extensions	 exist	 for	 your
browser.	Running	your	JavaScript-enabled	pages	in-browser	with	excellent	developer	tools
or	extensions	will	make	it	easier	for	you	to	debug	any	problems	that	occur.

http://www.mozilla.com
http://www.opera.com
http://www.google.com/chrome/


Many	 JavaScript	 frameworks	 are	 out	 there,	 and	 in	 no	way	 am	 I	 claiming	 jQuery	 is	 the	 best.	 I	 do	 use
jQuery	frequently,	however,	and	it	quickly	earned	a	place	as	one	of	the	premier	JavaScript	frameworks.
As	you’ll	soon	see,	 jQuery	has	a	simple,	albeit	cryptic,	syntax,	and	by	using	 it,	you	can	manipulate	 the
Document	Object	Model	(DOM)	with	aplomb.	This	is	to	say	that	you	can	easily	reference	elements	within
an	 HTML	 page,	 thereby	 grabbing	 the	 values	 of	 form	 inputs,	 adding	 or	 removing	 any	 kind	 of	 HTML
element,	changing	element	properties,	and	so	forth.
Before	 getting	 into	 the	 particulars	 of	 using	 jQuery,	 I	 want	 you	 to	 understand	 that	 jQuery	 is	 just	 a
JavaScript	 framework,	 meaning	 that	 what	 you’ll	 actually	 be	 doing	 over	 the	 next	 several	 pages	 is
JavaScript	programming.	JavaScript	as	a	language,	though	similar	in	some	ways	to	PHP,	differs	in	other
ways,	such	as	how	variables	are	created,	what	character	is	used	to	perform	concatenation,	and	so	forth.
Moreover,	JavaScript	is	an	object-oriented	language,	meaning	the	syntax	you’ll	sometimes	see	will	be
that	 much	 different	 than	 the	 procedural	 PHP	 programming	 you’ve	 done	 to	 this	 point	 (the	 next	 chapter
introduces	object-oriented	programming	[OOP]	in	PHP).	Because	you’ll	inevitably	have	problems—like
simply	omitting	a	closing	brace—you’llneed	to	know	a	bit	about	how	to	debug	JavaScript.	For	a	quick
introduction	to	that	subject,	see	the	sidebar.
For	examples	of	server-side	JavaScript,	check	out	Node	(www.nodejs.org).

Incorporating	jQuery
JavaScript	 is	 built	 into	 all	 graphical	 browsers	 by	 default,	 meaning	 no	 special	 steps	must	 be	 taken	 to
include	JavaScript	in	an	HTML	page	(users	have	the	option	of	disabling	JavaScript,	although	statistically
few	do).	jQuery	is	a	framework	of	code,	though;	to	use	it,	a	page	must	first	incorporate	the	jQuery	library.
Including	any	external	JavaScript	file	in	an	HTML	page	involves	the	script	tag,	providing	the	name	of
the	external	file	as	the	value	of	its	src	attribute:
<script	src="file.js"></script>

The	jQuery	framework	file	will	have	a	name	like	jquery-X.Y.Z.min.js,	where	X.Y.Z	is	the	version
number	 (3.2.1	as	of	 this	writing).	The	min	 part	of	 the	 file’s	name	 indicates	 that	 the	 JavaScript	 file	has
been	minified.	Minification	 is	the	removal	of	spaces,	newlines,	and	comments	from	code.	The	result	 is
code	that’s	barely	legible	 	but	still	completely	functional.	The	benefit	of	minified	code	is	that	it	will
load	in	the	browser	slightly	faster	because	it	will	be	a	marginally	smaller	file	size.

http://www.nodejs.org


What	the	minified	jQuery	code	looks	like.
The	 following	 set	 of	 steps	 will	 walk	 you	 through	 installing	 the	 jQuery	 library	 on	 your	 server	 and
incorporating	it	into	an	HTML	page;	see	the	sidebar	for	an	alternative	approach.

To	incorporate	jQuery:
1.	Load	www.jquery.com	in	your	browser.
2.	At	the	top	of	the	page,	click	Download	jQuery.
3.	On	the	resulting	page,	download	the	compressed,	production	version	 .

The	links	for	downloading	the	current	version	of	jQuery.
4.	If	the	JavaScript	loads	directly	instead	of	being	downloaded,	save	the	page	on	your	computer.
Because	the	resulting	file	is	just	JavaScript,	it	may	load	directly	in	your	browser	 .	If	so,	save	the	file
as	jquery-X.Y.Z.min.js,	where	X.Y.Z	is	the	actual	version	number.

http://www.jquery.com


Using	Hosted	jQuery
This	 chapter	 recommends	 that	 you	 download	 a	 copy	 of	 jQuery	 and	 place	 it	 in	 your	 web
directory.	Upon	doing	so,	you	just	need	to	update	the	script	tag	to	point	to	the	location	of
the	jQuery	file	on	your	site.	I	want	to	mention	an	alternative	solution,	though:	using	a	hosted
version	of	jQuery.	By	this,	I	mean	that	instead	of	using	a	version	of	the	jQuery	library	stored
on	 your	 own	web	 server,	 you	 could	 use	 a	 version	 stored	 elsewhere	 online.	 For	 example,
Google	 provides	 copies	 of	 many	 JavaScript	 frameworks	 for	 public	 use
(http://code.google.com/apis/libraries/).	 To	 use	 Google’s	 copy	 of	 the
jQuery	library,	you’d	use	the	following	code:
<script	src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js">

</script>

If	you	use	Google’s	hosted	version	of	jQuery,	your	site	(i.e.,	your	site’s	visitors)	will	 likely
see	 a	 performance	 boost,	 due	 to	Google’s	 Content	 Delivery	Network	 (CDN)	 and	 the	 way
browsers	cache	media.
On	the	other	hand,	using	a	hosted	version	makes	your	site’s	functionality	dependent	on	another
site’s	 uptime.	 And	 your	 site	 is	 more	 vulnerable	 from	 a	 security	 perspective	 since	 it’s
assuming	the	other	site	is	serving	the	jQuery	library	and	not	a	virus.	All	that	being	said,	it’s
fairly	safe	 to	say	 that	Google’s	uptime	and	security	model	 is	probably	better	 than	yours	 (or
mine)!

5.	Move	the	downloaded	file	to	a	js	folder	within	your	web	server	directory.
All	 the	 JavaScript	 files	 to	 be	 used	 by	 this	 chapter’s	 examples	will	 be	 placed	within	 a	 subdirectory
named	js.

6.	Begin	a	new	HTML	document	in	your	text	editor	or	IDE,	to	be	named	test.html	(Script	15.1):
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Testing	jQuery</title>

</head>

<body>

		<!--	Script	15.1	-	test.html	-->

</body>

</html>

Script	15.1	This	blank	HTML	page	shows	how	the	jQuery	library	can	be	included.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Testing	jQuery</title>

6						<script	src="js/jquery-3.2.1.min.js">	</script>

7			</head>

8			<body>

9						<!--	Script	15.1	-	test.html	-->

10		</body>

http://code.google.com/apis/libraries/


11		</html>

This	very	first	example	will	simply	test	the	incorporation	and	basic	use	of	the	jQuery	library.
7.	Within	the	HTML	head,	include	jQuery:
Click	here	to	view	code	image

<script	src="js/jquery-3.2.1.min.

js"></script>

The	script	tag	is	used	to	include	a	JavaScript	file.	Conventionally,	script	tags	are	placed	within
the	HTML	page’s	head,	although	that’s	not	required	(or	always	the	case).	The	value	of	the	src	attribute
needs	 to	match	 the	name	and	 location	of	your	 jQuery	 library.	 In	 this	case,	 the	assumption	 is	 that	 this
HTML	page	is	in	the	same	directory	as	the	js	folder,	created	as	part	of	Step	5.

8.	Save	the	file	as	test.html.
Because	this	script	won’t	be	executing	any	PHP,	it	uses	the	.html	extension.

9.	If	you	want,	load	the	page	in	your	browser	and	check	for	errors.
As	this	is	just	an	HTML	page,	you	can	load	it	directly	in	a	browser,	without	going	through	a	URL.	You
can	then	use	your	browser’s	error	console	or	other	development	tools	(see	the	“Debugging	JavaScript”
sidebar)	to	check	that	no	errors	occurred	in	loading	the	JavaScript	file.

Using	jQuery
Once	you	successfully	have	jQuery	incorporated	into	an	HTML	page,	you	can	begin	using	it.	 jQuery,	or
any	JavaScript	code,	can	be	written	between	opening	and	closing	script	tags:
<script>

//	JavaScript	goes	here.

</script>

(Note	that	in	JavaScript,	the	double	slashes	create	comments,	just	as	in	PHP.)
Alternatively,	you	can	place	jQuery	and	JavaScript	code	within	a	separate	file,	and	then	include	that	file
using	the	script	tags,	just	as	you	included	the	jQuery	library.	This	is	the	route	to	be	used	in	this	chapter,
to	further	separate	the	JavaScript	from	the	HTML.
To	be	clear,	an	HTML	page	can	have	multiple	uses	of	the	script	tags,	and	the	same	script	tag	cannot
both	include	an	external	file	and	contain	JavaScript	code.
The	code	placed	within	a	script	 tag	will	be	executed	as	 soon	as	 the	browser	encounters	 it.	This	 is
often	problematic,	though,	because	JavaScript	is	frequently	used	to	interact	with	the	DOM;	if	immediately
executed	JavaScript	code	references	a	DOM	element,	the	code	will	fail,	since	that	DOM	element	will	not
have	been	encountered	by	the	browser	at	that	point	 .	The	only	reliable	way	to	reference	DOM	elements
is	after	the	browser	has	knowledge	of	the	entire	DOM.



	A	browser	reads	a	page	as	the	HTML	is	loaded,	meaning	that	JavaScript	code	cannot	reference	DOM
elements	until	the	browser	has	seen	them	all.
In	standard	JavaScript,	you	can	have	code	be	executed	after	the	page	is	completely	loaded	by	referencing
window.onload.	In	jQuery,	the	preferred	method	is	to	confirm	that	the	web	document	is	ready:
$(document).ready(some_function);

As	mentioned	already,	 the	 jQuery	syntax	can	seem	especially	strange	for	 the	uninitiated,	so	I’ll	explain
this	in	detail.	First	of	all,	the	code	is	how	elements	and	such	within	the	browser	are	selected	in	jQuery.	In
this	case,	the	item	being	selected	is	the	entire	HTML	document.	To	this	selection,	the	function	is	applied.
It	 takes	one	argument:	a	 function	 to	be	called.	Note	 that	 the	argument	 is	 a	 reference	 to	 the	 function:	 its
name,	without	quotation	marks.	Separately,	would	have	 to	be	defined,	wherein	 the	actual	work—which
should	be	done	when	the	document	is	loaded—takes	place.
An	alternative	 syntax	 is	 to	use	 an	anonymous	 function,	which	 is	 a	 function	 definition	without	 a	 name.
Anonymous	functions	are	common	to	JavaScript	(anonymous	functions	are	possible	in	PHP,	too,	but	less
common).	 To	 create	 an	 anonymous	 function,	 the	 function’s	 definition	 is	 placed	 in	 line,	 in	 lieu	 of	 the
function’s	name:
Click	here	to	view	code	image

$(document).ready(function()	{

	//	Function	code.

});

Because	the	need	to	execute	code	when	the	browser	is	ready	is	so	common,	this	whole	construct	is	often
simplified	in	jQuery	to	just:
$(function()	{

	//	Function	code.

});

The	syntax	is	unusual,	especially	the	});	at	the	end,	so	be	mindful	of	this	as	you	program.	As	with	any
programming	language,	incorrect	JavaScript	syntax	will	make	the	code	inoperable.
To	test	jQuery,	this	next	sequence	of	steps	will	create	a	JavaScript	alert	once	the	document	is	ready	 .
After	you	have	this	simple	test	working,	you	can	safely	begin	using	jQuery	more	practically.



	 This	 JavaScript	 alert	 is	 created	 once	 jQuery	 recognizes	 that	 the	HTML	 document	 is	 ready	 in	 the
browser.

To	use	jQuery:
1.	Create	a	new	JavaScript	document	in	your	text	editor	or	IDE,	to	be	named	test.js	(Script	15.2):

//	Script	15.2	-	test.js

Script	15.2	This	 simple	 JavaScript	 file	creates	an	alert	 to	 test	 successful	 incorporation	and	use	of	 the
jQuery	library.
Click	here	to	view	code	image

1			//	Script	15.2	-	test.js

2			//	This	script	is	included	by	test.html.

3			//	This	script	just	creates	an	alert	to	test	jQuery.

4			

5			//	Do	something	when	the	document	is	ready:

6			$(function()	{

7						

8						//	Alert!

9						alert('Ready!');

10						

11		});

A	JavaScript	file	has	no	script	tags—those	are	in	the	HTML	document—or	other	opening	tags.	You
can	just	begin	entering	JavaScript	code.	Again,	a	double	slash	creates	a	comment.

2.	Create	an	alert	when	the	document	is	ready:
$(function()	{

alert('Ready!');

});

This	 is	 just	 the	 syntax	 already	 explained,	 with	 a	 call	 to	alert()	 in	 place	 of	 the	Function	 code
comment	shown	earlier.	The	alert()	function	takes	a	string	as	its	argument,	which	will	be	used	in
the	presented	alert	box	 .

3.	Save	the	file	as	test.js	in	your	web	server’s	js	directory.
4.	Open	test.html	(Script	15.1)	in	your	text	editor	or	IDE.
The	next	step	is	to	update	the	HTML	page	so	that	it	includes	the	new	JavaScript	file.

5.	After	including	the	jQuery	library,	include	the	new	JavaScript	file	(Script	15.3):
Click	here	to	view	code	image

<script	src="js/test.js"></script>

Script	15.3	The	updated	test	HTML	page	loads	a	new	JavaScript	file.



Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Testing	jQuery</title>

6						<script	src="js/jquery-3.2.1.min.js">	</script>

7						<script	src="js/test.js"></script>

8			</head>

9			<body>

10					<!--	Script	15.3	-	test.html	#2	-->

11		</body>

12		</html>

Assuming	that	the	test.js	JavaScript	file	is	placed	in	the	same	directory	as	the	jQuery	library,	with
the	same	relative	location	to	test.html,	this	code	will	successfully	incorporate	it.

6.	Save	the	HTML	page	and	test	it	in	your	browser	 .
If	you	do	not	see	the	alert	window,	you’ll	need	to	debug	the	JavaScript	code.

Tip
Technically,	in	OOP,	a	function	is	called	a	method.	For	the	duration	of	this	chapter,	I’ll	continue
to	use	the	term	“function,”	as	it’s	likely	to	be	more	familiar	to	you.

Tip
The	code	$()	is	shorthand	for	calling	the	jQuery()	function.

Tip
jQuery’s	“ready”	status	is	slightly	different	than	JavaScript’s	onload:	the	latter	also	waits	for
the	 loading	 of	 images	 and	 other	media,	whereas	 jQuery’s	 ready	 status	 is	 triggered	 by	 the	 full
loading	of	the	DOM.

Selecting	Page	Elements
Once	you’ve	got	basic	jQuery	functionality	working,	the	next	thing	to	learn	is	how	to	select	page	elements.
Being	able	 to	do	 so	will	 allow	you	 to	hide	and	 show	 images	or	 blocks	of	 text,	manipulate	 forms,	 and
more.
You’ve	 already	 seen	 how	 to	 select	 the	 web	 document	 itself:	 $(document).	 To	 select	 other	 page
elements,	use	CSS	selectors	in	place	of	document:

	#something	selects	the	element	with	an	id	value	of	something.
	.something	selects	every	element	with	a	class	value	of	something.
	something	selects	every	element	of	something	type	(e.g.,	p	selects	every	paragraph).

Those	three	rules	are	more	than	enough	to	get	you	started,	but	know	that	unlike	document,	each	of	these
gets	 placed	 within	 quotation	 marks.	 For	 example,	 the	 code	 $(‘a’)	 selects	 every	 link	 and
$(‘#caption’)	selects	the	element	with	an	id	value	of	caption.	By	definition,	no	two	elements	in	a



single	HTML	page	should	have	the	same	identifying	value;	thus,	to	reference	individual	elements	on	the
page,	#something	is	the	easiest	solution.
These	rules	can	be	combined	as	well:

	$(‘img.landscape’)	selects	every	image	with	a	class	of	landscape.
	$(‘#register	input’)	selects	every	input	element	found	within	an	element	that	has	an	id	of
register.

For	the	next	jQuery	example,	a	JavaScript-driven	version	of	the	Widget	Cost	Calculator	form,	like	the	one
from	Chapter	13,	“Security	Methods,”	will	be	developed.	In	these	next	few	steps,	the	HTML	page	will	be
created,	with	the	appropriate	elements,	classes,	and	unique	identifiers	to	be	easily	manipulated	by	jQuery	

.

The	Widget	Cost	Calculator	as	an	HTML	form.

To	create	the	HTML	form:
1.	Open	test.html	(Script	15.3)	in	your	text	editor	or	IDE,	if	you	haven’t	already.
Since	this	file	is	already	jQuery	enhanced,	it’ll	be	easiest	to	just	update	it.

2.	Change	the	page’s	title	(Script	15.4):
Click	here	to	view	code	image

<title>Widget	Cost	Calculator

</title>

Script	15.4	In	this	HTML	page	is	a	form	with	three	textual	inputs	for	performing	a	calculation.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Widget	Cost	Calculator</title>

6						<link	rel="stylesheet"	href="css/style.css">

7						<script	src="js/jquery-3.2.1.min.js"></script>

8						<script	src="js/calculator.js"></script>

9			</head>

10					<body>

11					<!--	Script	15.4	-	calculator.html	-->



12		<h1>Widget	Cost	Calculator</h1>

13		<p	id="results"></p>

14		<form	action="calculator.php"	method="post"	id="calculator">

15					<p	id="quantityP">Quantity:	<input	type="number"	name="quantity"	id="quantity"

							step="1"	min="1"></p>

16					<p	id="priceP">Price:	<input	type="number"	name="price"	id="price"	step="0.01"

							min="0.01"></p>

17					<p	id="taxP">Tax	(%):	<input	type="number"	name="tax"	id="tax"	step="0.01"

							min="0.01"></p>

18					<p><input	type="submit"	name="submit"	id="submit"	value="Calculate!"></p>

19		</form>

20		</body>

21		</html>

3.	After	the	page	title,	incorporate	a	CSS	file:
Click	here	to	view	code	image

<link	rel="stylesheet"

href="css/style.css">

To	make	the	form	a	bit	more	attractive,	some	CSS	code	will	style	it.	You	can	find	the	CSS	file	in	the
book’s	corresponding	downloads	at	LarryUllman.com.
The	 CSS	 file	 also	 defines	 two	 significant	 classes—error	 and	 errorMessage,	 to	 be	 manipulated	 by
jQuery	later	in	the	chapter.	The	first	turns	everything	red;	the	second	italicizes	text	(but	the	class	will	be
more	meaningful	as	a	way	of	identifying	a	group	of	similar	items).	In	time,	you’ll	see	how	these	classes
are	used.

4.	Change	the	second	tag	so	that	it	references	,	not	:
Click	here	to	view	code	image

<script	src="js/calculator.js">

</script>

The	JavaScript	for	this	example	will	go	in	calculator.js,	 to	be	written	subsequently.	It	will	be
stored	in	the	same	js	folder	as	the	other	JavaScript	documents.

5.	Within	the	HTML	body,	create	an	empty	paragraph	and	begin	a	form:
Click	here	to	view	code	image

<h1>Widget	Cost	Calculator</h1>

<p	id="results"></p>

<form	action="calculator.php"

method="post"	id="calculator">

The	paragraph	with	 the	id	 of	 results	 but	 no	 content	will	 be	 used	 later	 in	 the	 chapter	 to	 present	 the
results	of	the	calculations.	It	has	a	unique	id	value,	for	easy	reference.	The	form,	too,	has	a	unique	id
value.	The	form,	in	theory,	would	be	submitted	to	calculator.php	(a	separate	script,	not	actually
written	in	this	chapter),	but	that	submission	will	be	interrupted	by	JavaScript.

6.	Create	the	first	form	element:
Click	here	to	view	code	image

<p	id="quantityP">Quantity:

<input	type="number"

name="quantity"	id="quantity"

step="1"	min="1"></p>

Each	form	input,	as	originally	written	in	Chapter	13,	involved	the	textual	prompt,	the	element	itself,	and
a	paragraph	surrounding	both.	To	the	paragraph	and	form	input,	unique	id	values	are	added.

http://LarryUllman.com


Note	 that	 I	 tend	 to	 use	 “camel-case”	 style	 names—quantityP—in	 object-oriented	 languages	 such	 as
JavaScript.	This	approach	just	better	follows	OOP	conventions	(conversely,	I	would	use	quantity_p	in
procedural	PHP	code).

7.	Create	the	remaining	two	form	elements:
Click	here	to	view	code	image

<p	id="priceP">Price:

<input	type="number"

name="price"	id="price"

step="0.01"	min="0.01"></p>

<p	id="taxP">Tax	(%):

<input	type="number"	name="tax"

id="tax"	step="0.01"	min="0.01">

</p>

8.	Complete	the	form	and	the	HTML	page:
Click	here	to	view	code	image

		<p><input	type="submit"

		 name="submit"	id="submit"

		 value="Calculate!"></p>

</form>

</body>

</html>

The	 submit	 button	 also	 has	 a	 unique	id,	 but	 that’s	 for	 the	 benefit	 of	 the	 CSS;	 it	 won’t	 actually	 be
referenced	in	the	JavaScript.

9.	Save	the	page	as	calculator.html	and	load	it	in	your	browser	 .
Even	though	the	second	JavaScript	file,	calculator.js,	has	not	yet	been	written,	the	form	is	still
loadable.

Tip
jQuery	has	 its	own	additional,	custom	selectors,	allowing	you	 to	select	page	elements	 in	more
sophisticated	ways.	For	examples,	see	the	jQuery	manual.

Event	Handling
JavaScript,	 like	PHP,	 is	often	used	to	respond	to	events.	Differently,	 though,	events	 in	JavaScript	 terms
are	primarily	user	actions	within	the	browser,	such	as	the	following:

	Moving	the	cursor	over	an	image	or	piece	of	text
	Clicking	a	link
	Changing	the	value	of	a	form	element
	Submitting	a	form

To	handle	events	in	JavaScript,	you	apply	an	event	listener	(also	called	an	event	handler)	to	an	element;
you	tell	JavaScript	that	when	A	event	happens	to	B	element,	the	C	function	should	be	called.	In	jQuery,
event	listeners	are	assigned	using	the	syntax
selection.eventType(function);

The	selection	part	would	be	 like	$(‘.something’)	or	$(‘a’):	whatever	 element	or	 elements	 to
which	 the	 event	 listener	 should	 be	 applied.	 The	 eventType	 value	 will	 differ	 based	 on	 the	 selection.



Common	 values	 are	 change,	 focus,	 mouseover,	 click,	 submit,	 and	 select:	 different	 events	 can	 be
triggered	by	different	HTML	elements.	In	jQuery,	these	are	all	actually	the	names	of	functions	being	called
on	the	selection.	These	functions	take	one	argument:	a	function	to	be	called	when	the	event	occurs	on	that
selection.	Commonly,	 the	function	 to	be	 invoked	is	written	 inline,	anonymously.	For	example,	 to	handle
the	event	of	any	image	being	moused-over,	you	would	code
Click	here	to	view	code	image

$('img').mouseover(function()	{

	//	Do	this!

});

This	construct	should	look	familiar—test.js	assigns	an	event	handler	that	listens	for	the	ready	event
occurring	on	the	HTML	document.
Let’s	 take	 this	 new	 information	 and	 apply	 it	 to	 the	HTML	page	 already	 begun.	At	 this	 point,	 an	 event
listener	 can	 be	 added	 to	 the	 form	 so	 that	 its	 submission	 can	 be	 handled.	 In	 this	 case,	 the	 form’s	 three
inputs	 will	 be	 minimally	 validated,	 the	 total	 calculation	 will	 be	 performed,	 and	 the	 results	 of	 the
calculation	displayed	in	an	alert	 .	To	do	all	this,	you	need	to	know	one	more	thing:	to	fetch	the	values
entered	into	the	textual	form	inputs	requires	the	val()	function.	It	returns	the	value	for	the	selection,	as
you’ll	see	in	these	next	steps.

The	calculations	are	displayed	using	an	alert	box	(for	now).

To	handle	the	form	submission:
1.	Open	test.js	in	your	text	editor	or	IDE.
Since	the	test.js	file	already	has	the	proper	syntax	for	executing	code	when	the	browser	is	ready,
it’ll	be	easiest	and	most	foolproof	to	start	with	it.

2.	Remove	the	existing	alert()	call	(Script	15.5).

Script	15.5	This	 JavaScript	 file	 is	 included	by	calculator.html	 (Script	 15.4).	Upon	 submission	 of	 the
form,	the	form's	values	are	validated	and	a	calculation	performed.
Click	here	to	view	code	image

1			//	Script	15.5	-	calculator.js

2			//	This	script	is	included	by

				calculator.html.



3			//	This	script	handles	and	validates

				the	form	submission.

4			

5			//	Do	something	when	the	document	is

				ready:

6			$(function()	{

7						

8						//	Assign	an	event	handler	to	the

							form:

9						$('#calculator').submit(function()	{

10										

11								//	Initialize	some	variables:

12								var	quantity,	price,	tax,	total;

13										

14								//	Validate	the	quantity:

15								if	($('#quantity').val()	>	0)	{

16								

17											//	Get	the	quantity:

18											quantity	=	$('#quantity').

													val();

19								

20								}	else	{	//	Invalid	quantity!

21								

22											//	Alert	the	user:

23											alert('Please	enter	a	valid

													quantity!');

24								

25								}

26								

27								//	Validate	the	price:

28								if	($('#price').val()	>	0)	{

29											price	=	$('#price').val();

30								}	else	{

31											alert('Please	enter	a	valid

													price!');

32								}

33								

34								//	Validate	the	tax:

35								if	($('#tax').val()	>	0)	{

36											tax	=	$('#tax').val();

37								}	else	{

38											alert('Please	enter	a	valid

													tax!');

39								}

40							

41								//	If	appropriate,	perform	the

										calculations:

42								if	(quantity	&&	price	&&	tax)	{

43						

44											total	=	quantity	*	price;

45											total	+=	total	*	(tax/100);

46												

47											//	Display	the	results:

48											alert('The	total	is	$'	+

													total);

49

50								}

51

52								//	Return	false	to	prevent	an

										actual	form	submission:

53								return	false;

54							

55					});	//	End	of	form	submission.

56				



57		});	//	End	of	document	ready.

All	the	following	code	will	go	in	place	of	the	original	alert().
3.	In	place	of	the	alert()	call,	add	an	event	handler	to	the	form’s	submission:
Click	here	to	view	code	image

$('#calculator').submit(function()	{

});	//	End	of	form	submission.

The	selector	grabs	a	reference	to	the	form,	which	has	an	id	value	of	calculator.	To	this	selection	the
submit()	function	is	applied,	so	that	when	the	form	is	submitted,	the	inline	anonymous	function	will
be	called.	Because	the	syntax	can	be	so	tricky,	my	recommendation	is	 to	add	this	block	of	code,	and
then	write	the	contents	of	the	anonymous	function—found	in	the	following	steps.	Note	that	this	and	the
following	code	go	within	the	existing	$(document).ready()	{ }	block.

4.	Within	the	new	anonymous	function,	initialize	four	variables:
var	quantity,	price,	tax,	total;

In	JavaScript,	the	var	keyword	is	used	to	declare	a	variable.	It	can	also	declare	multiple	variables	at
once,	if	separated	by	commas.	Note	that	variables	in	JavaScript	do	not	have	an	initial	dollar	sign,	like
those	in	PHP.

5.	Validate	the	quantity:
Click	here	to	view	code	image

if	($('#quantity').val()	>	0)	{

		quantity	=	$('#quantity').val();

}	else	{

		alert('Please	enter	a	valid

		 quantity!');

}

For	each	of	the	three	form	inputs,	the	value	needs	to	be	a	number	greater	than	zero.	The	value	entered
can	be	found	by	calling	the	function	on	the	selected	element.	If	the	returned	value	is	greater	than	zero,
then	the	value	is	assigned	to	the	local	variable	.	Otherwise,	an	alert	box	indicates	the	problem	to	the
user	 .	This	is	admittedly	a	tedious	use	of	alerts;	you’ll	learn	a	smoother	approach	in	the	next	section
of	the	chapter.

If	a	form	element	does	not	have	a	positive	numeric	value,	an	alert	box	indicates	the	error.



As	 a	 reminder,	 HTML5	will	 also	 validate	 the	 inputs	 in	 supported	 browsers.	 To	 disable	 that	 while
testing,	add	novalidate	to	the	opening	form	tag:

Click	here	to	view	code	image
<form	action="calculator.php"

method="post"	id="calculator"

novalidate>

6.	Repeat	the	validation	for	the	other	two	form	inputs:
Click	here	to	view	code	image

if	($('#price').val()	>	0)	{

		price	=	$('#price').val();

}	else	{

		alert('Please	enter	a	valid

		 price!');

}

if	($('#tax').val()	>	0)	{

		tax	=	$('#tax').val();

}	else	{

		alert('Please	enter	a	valid

		 tax!');

}

7.	If	all	three	variables	have	valid	values,	perform	the	calculations:
Click	here	to	view	code	image

if	(quantity	&&	price	&&	tax)	{

		total	=	quantity	*	price;

		total	+=	total	*	(tax/100);

This	code	should	be	fairly	obvious	by	now:	 it	 looks	almost	exactly	as	 it	would	 in	PHP,	save	for	 the
lack	of	dollar	signs	in	front	of	each	variable’s	name.

8.	Report	the	total:
Click	here	to	view	code	image

alert('The	total	is	$'	+	total);

Again,	a	crude	alert	window	will	be	used	to	display	the	results	of	the	calculation	 .	As	you	can	see	in
this	code,	the	plus	sign	performs	concatenation	in	JavaScript.

9.	Complete	the	conditional	begun	in	Step	7	and	return	the	value	false:
}

return	false;

Having	the	function	return	false	prevents	the	form	from	being	submitted	to	the	script	that’s	identified
as	the	form’s	action.

10.	Save	the	page	as	calculator.js	(in	the	js	folder)	and	test	the	calculator	in	your	browser.
Note	that	if	you	already	had	calculator.html	loaded	in	your	browser,	you’ll	need	to	refresh	the
browser	to	load	the	updated	JavaScript.

Tip
There	are	many	jQuery	plug-ins	specifically	intended	for	validating	forms,	but	I	wanted	to	keep
this	simple	(and	explain	core	JavaScript	concepts	in	the	process).



Tip
It	 is	 possible	 to	 format	 numbers	 in	 JavaScript—for	 example,	 so	 they	 always	 contain	 two
decimals—but	it’s	not	easily	done.	For	this	reason,	and	because	I	didn’t	want	to	detract	from	the
more	important	information	being	covered,	the	results	of	the	calculation	may	not	always	look	as
good	as	they	should.

Tip
With	jQuery,	if	the	browser	supports	it,	the	JavaScript	code	will	perform	the	calculations.	If	 the
user	has	JavaScript	disabled,	or	if	the	user	has	a	really	old	browser,	the	JavaScript	will	not	take
effect	and	the	form	will	be	submitted	as	per	usual	(here,	to	the	nonexistent	calculator.php).

DOM	Manipulation
One	of	 the	most	 critical	uses	of	 JavaScript	 in	general,	 and	 jQuery	 in	particular,	 is	manipulation	 of	 the
DOM:	changing,	in	any	way,	the	contents	of	the	browser.	Normally,	DOM	manipulation	is	manifested	by
altering	what	the	user	sees;	how	easily	you	can	do	this	in	jQuery	is	one	of	its	strengths.
Once	you’ve	selected	the	element	or	elements	to	be	manipulated,	applying	any	number	of	jQuery	functions
to	the	selection	will	change	its	properties.	For	starters,	the	hide()	and	show()	functions	…um…hide
and	show	the	selection.	Thus,	to	hide	a	form	(perhaps	after	the	user	has	successfully	completed	it),	you
would	use
$('#actualFormId').hide();

Similar	to	show()	and	hide()	are	fadeIn()	and	fadeOut().	These	functions	also	reveal	or	hide
the	selection,	but	do	so	with	a	bit	of	effect	added	in.
Another	 way	 to	 impact	 the	 DOM	 is	 to	 change	 the	 CSS	 classes	 that	 apply	 to	 a	 selection.	 The
addClass()	function	applies	a	CSS	class	and	removeClass()	 removes	one.	The	following	code
adds	the	emphasis	class	to	a	specific	blockquote	and	removes	it	from	all	paragraphs:
Click	here	to	view	code	image

$('#blockquoteID').addClass

('emphasis');

$('p').removeClass('emphasis');

The	toggleClass()	function	can	be	used	to	toggle	the	application	of	a	class	to	a	selection.
The	already	mentioned	functions	generally	change	the	properties	of	the	page’s	elements,	but	you	can	also
change	 the	 contents	 of	 those	 elements.	 In	 the	 previous	 section,	 you	 used	 the	val()	 function,	 which
returns	the	value	of	a	form	element.	But	when	provided	with	an	argument,	val()	assigns	a	new	value	to
that	form	element:
$('#something').val('cat');

Similarly,	the	html()	function	returns	the	HTML	contents	of	an	element	and	text()	returns	the	textual
contents.	Both	functions	can	also	take	arguments	used	to	assign	new	HTML	and	text,	accordingly.
Let’s	use	all	this	information	to	finish	off	the	widget	cost	calculator.	A	few	key	changes	will	be	made:

	Errors	will	be	indicated	by	applying	the	error	class.
	Errors	will	also	be	indicated	by	hiding	or	showing	error	messages	 .



	Error	messages	are	now	displayed	next	to	the	problematic	form	inputs.
	The	final	total	will	be	written	to	the	page	 .

	The	results	of	the	calculations	are	now	displayed	above	the	form.
	Alerts	will	not	be	used.

There	are	a	couple	of	ways	of	showing	and	hiding	error	messages.	The	simplest,	to	be	implemented	here,
is	to	manually	add	the	messages	to	the	form	and	then	toggle	their	visibility	using	JavaScript.	Accordingly,
these	steps	begin	by	updating	the	HTML	page.

To	manipulate	the	DOM:
1.	Open	calculator.html	in	your	text	editor	or	IDE,	if	you	haven’t	already.
2.	Between	the	quantity	form	element	and	its	closing	paragraph	tag,	add	an	error	message	(Script	15.6):
Click	here	to	view	code	image

<p	id="quantityP">Quantity:

<input	type="number"

name="quantity"	id="quantity"

step="1"	min="1"><span

class="errorMessage"

id="quantityError">Please	enter

a	valid	quantity!</span></p>

Script	15.6	The	updated	HTML	page	has	hardcoded	error	messages	beside	the	key	form	inputs.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">



3			<head>

4						<meta	charset="utf-8">

5						<title>Widget	Cost	Calculator</title>

6						<link	rel="stylesheet"	href="css/style.css"	type="text/css"	media="screen">

7						<script	src="js/jquery-3.2.1.min.js"></script>

8						<script	src="js/calculator.js"></script>

9			</head>

10		<body>

11					<!--	Script	15.6	-	calculator.html	#2	-->

12		<h1>Widget	Cost	Calculator</h1>

13		<p	id="results"></p>

14		<form	action="calculator.php"	method="post"	id="calculator">

15					<p	id="quantityP">Quantity:	<input	type="number"	name="quantity"	id="quantity"

							step="1"	min="1"><span	class="errorMessage"	id="quantityError">Please	enter	a	valid

							quantity!</span></p>

16					<p	id="priceP">Price:	<input	type="number"	name="price"	id="price"	step="0.01"

							min="0.01"><span	class="errorMessage"	id="priceError">Please	enter	a	valid	price!

							</span></p>

17					<p	id="taxP">Tax	(%):	<input	type="number"	name="tax"	id="tax"	step="0.01"

							min="0.01"><span	class="errorMessage"	id="taxError">Please	enter	a	valid	tax!

							</span></</p>

18					<p><input	type="submit"	name="submit"	id="submit"	value="Calculate!">	p>

19		</form>

20		</body>

21		</html>

Now	following	the	input	is	a	textual	error,	which	also	has	a	unique	.	The	span	containing	the	error	also
uses	 the	 errorMessage	 class.	 This	 impacts	 the	 message’s	 formatting,	 thanks	 to	 the	 external	 CSS
document,	and	makes	 it	 easier	 for	 jQuery	 to	 globally	 hide	 all	 error	messages	 upon	 first	 loading	 the
page.

3.	Repeat	Step	2	for	the	other	two	form	inputs:
Click	here	to	view	code	image

<p	id="priceP">Price:

<input	type="number"

name="price"	id="price"

step="0.01"	min="0.01"><span

class="errorMessage"

id="priceError">Please	enter	a

valid	price!</span></p>

<p	id="taxP">Tax	(%):	<input

type="number"	name="tax"	id="tax"

step="0.01"	min="0.01"></p>

<p><input	type="submit"

name="submit"	id="submit"

value="Calculate!"><span

class="errorMessage"

id="taxError">Please	enter	a

valid	tax!</span></p>

4.	Save	the	file.
5.	Open	calculator.js	in	your	text	editor	or	IDE,	if	it	is	not	already	open.
6.	Remove	all	existing	alert()	calls	(Script	15.7).

Script	15.7	Using	jQuery,	the	JavaScript	code	now	manipulates	the	DOM	instead	of	using	alert()	calls.
Click	here	to	view	code	image

1			//	Script	15.7	-	calculator.js	#2



2			//	This	script	is	included	by	calculator.html.

3			//	This	script	handles	and	validates	the	form	submission.

4			

5			//	Do	something	when	the	document	is	ready:

6			$(function()	{

7			

8						//	Hide	all	error	messages:

9						$('.errorMessage').hide();

10				

11					//	Assign	an	event	handler	to	the	form:

12					$('#calculator').submit(function()	{

13				

14								//	Initialize	some	variables:

15								var	quantity,	price,	tax,	total;

16				

17								//	Validate	the	quantity:

18								if	($('#quantity').val()	>	0)	{

19				

20											//	Get	the	quantity:

21											quantity	=	$('#quantity').val();

22				

23											//	Clear	an	error,	if	one	existed:

24											$('#quantityP').removeClass('error');

25				

26											//	Hide	the	error	message,	if	it	was	visible:

27											$('#quantityError').hide();

28				

29								}	else	{	//	Invalid	quantity!

30				

31											//	Add	an	error	class:

32											$('#quantityP').addClass('error');

33				

34											//	Show	the	error	message:

35											$('#quantityError').show();

36				

37								}

38				

39								//	Validate	the	price:

40								if	($('#price').val()	>	0)	{

41											price	=	$('#price').val();

42											$('#priceP').removeClass('error');

43											$('#priceError').hide();

44								}	else	{

45											$('#priceP').addClass('error');

46											$('#priceError').show();

47								}

48				

49								//	Validate	the	tax:

50								if	($('#tax').val()	>	0)	{

51											tax	=	$('#tax').val();

52											$('#taxP').removeClass('error');

53											$('#taxError').hide();

54								}	else	{

55											$('#taxP').addClass('error');

56											$('#taxError').show();

57								}

58				

59								//	If	appropriate,	perform	the	calculations:

60								if	(quantity	&&	price	&&	tax)	{

61				

62											total	=	quantity	*	price;

63											total	+=	total	*	(tax/100);

64				



65											//	Display	the	results:

66											$('#results').html('The	total	is	<strong>$'	+	total	+	'</strong>.');

67				

68								}

69				

70											//	Return	false	to	prevent	an	actual	form	submission:

71											return	false;

72				

73					});	//	End	of	form	submission.

74				

75		});	//	End	of	document	ready.

7.	Before	the	submit	event	handler,	hide	every	element	with	the	error-	Message	class:
$('.errorMessage').hide();

The	 selector	 grabs	 a	 reference	 to	 any	 element	 of	 any	 type	 that	 has	 a	 class	 of	 errorMessage.	 In	 the
HTML	form,	this	applies	only	to	the	three	span	tags.

8.	In	the	if	clause	code	after	assigning	a	value	to	the	local	quantity	variable,	remove	the	error	class
and	hide	the	error	message:

Click	here	to	view	code	image
$('#quantityP').removeClass

('error');

$('#quantityError').hide();

As	you’ll	see	 in	Step	9,	when	the	user	enters	an	 invalid	quantity,	 the	quantity	paragraph	(with	an	id
value	 of	 quantityP)	 will	 be	 assigned	 the	 error	 class	 and	 the	 quantity	 error	 message	 (i.e.,
#quantityError)	will	 be	 shown.	 If	 the	user	 entered	 an	 invalid	 quantity	 but	 then	 entered	 a	 valid	 one,
those	two	effects	must	be	undone,	using	the	code	shown	here.
In	the	case	that	an	invalid	quantity	was	never	submitted,	the	quantity	paragraph	will	not	have	the	error
class	 and	 the	 quantity	 error	message	will	 still	 be	 hidden.	 In	 situations	where	 jQuery	 is	 asked	 to	 do
something	that’s	not	possible,	such	as	hiding	an	already	hidden	element,	jQuery	just	ignores	the	request.

9.	If	the	quantity	is	not	valid,	add	the	error	class	and	show	the	error	message:
Click	here	to	view	code	image

$('#quantityP').addClass('error');

$('#quantityError').show();

This	code	does	the	opposite	of	that	in	Step	8.	Note	that	it	goes	within	the	else	clause.
10.	Repeat	Steps	8	and	9	for	the	price,	making	that	if-else	read:
Click	here	to	view	code	image

if	($('#price').val()	>	0)	{

		price	=	$('#price').val();

		$('#priceP').removeClass('error');

		$('#priceError').hide();

}	else	{

		$('#priceP').addClass('error');

		$('#priceError').show();

}

11.	Repeat	Steps	8	and	9	for	the	tax,	making	that	if-else	read:
Click	here	to	view	code	image

if	($('#tax').val()	>	0)	{

		tax	=	$('#tax').val();



		$('#taxP').removeClass('error');

		$('#taxError').hide();

}	else	{

		$('#taxP').addClass('error');

		$('#taxError').show();

}

12.	After	calculating	the	total,	within	the	same	if	clause,	update	the	results	paragraph:
Click	here	to	view	code	image

$('#results').html('The	total	is

<strong>$'	+	total	+	'</strong>.');

Instead	of	using	an	alert	box,	you	can	write	the	total	message	to	the	HTML	page	dynamically.	One	way
of	doing	so	is	by	changing	the	text	or	HTML	of	an	element	on	the	page.	The	page	already	has	an	empty
paragraph	for	this	purpose,	with	an	value	of	results.	To	change	the	text	found	within	the	paragraph,	you
would	apply	the	function.	To	change	the	HTML	found	within	the	paragraph,	use	html()	instead.

13.	Save	the	page	as	calculator.js	(in	the	js	folder)	and	test	the	calculator	in	your	browser.
Again,	 remember	 that	 you	must	 reload	 the	HTML	page	 (because	 both	 the	HTML	and	 the	 JavaScript
have	been	updated).

Tip
jQuery	will	not	throw	an	error	if	you	attempt	to	select	page	elements	that	don’t	exist.	jQuery	will
also	not	throw	an	error	if	you	call	a	function	on	nonexistent	elements.

Tip
In	 JavaScript,	 as	 in	 other	OOP	 languages,	 you	 can	 “chain”	 function	 calls	 together,	 performing
multiple	actions	at	one	time.	This	code	reveals	a	previously	hidden	paragraph,	adds	a	new	class,
and	changes	its	textual	content,	all	in	one	line:

Click	here	to	view	code	image

$('#pId').show().addClass('thisClass').

text('Hello,	world!	');

Tip
You	can	change	the	attributes	of	a	selection	using	the	attr()	function.	Its	first	argument	is	the
attribute	to	be	impacted;	the	second,	the	new	value.	For	example,	the	following	code	will	disable
a	submit	button	by	adding	the	property	disabled=”disabled”:

Click	here	to	view	code	image

$('#submitButtonId').attr('disabled',

'disabled');

Tip
You	can	add,	move,	or	remove	elements	using	the	prepend(),	append(),	remove(),	and
other	functions.	See	the	jQuery	manual	for	specifics.



Using	Ajax
Along	with	DOM	manipulation,	another	key	use	of	JavaScript	and	jQuery	is	Ajax.	The	term	Ajax	was	first
coined	in	2005,	although	browser	support	was	mixed	for	years.	Come	2017,	Ajax	is	a	standard	feature	of
many	dynamic	web	sites,	and	its	straightforward	use	is	supported	by	all	the	major	browsers.	But	what	is
Ajax?
Ajax	can	mean	many	things,	involving	several	different	technologies	and	approaches,	but	at	the	end	of	the
day,	Ajax	is	simply	the	use	of	JavaScript	to	perform	a	server-side	request	unbeknownst	to	the	user.	In	a
standard	 request	model—which	 is	 to	 say	 pretty	much	 every	 other	 example	 in	 this	 book—the	 user	may
begin	 on,	 say,	 login.html.	 Upon	 submission	 of	 the	 form,	 the	 browser	 will	 be	 taken	 to	 perhaps
login.php,	where	the	actual	form	validation	is	done,	the	registration	in	the	database	takes	place,	and
the	results	are	displayed	 .	(Even	if	the	same	PHP	script	both	displays	and	handles	a	form,	the	standard
request	model	requires	two	separate	and	overt	requests	of	that	same	page.)

	A	standard	client-server	request	model,	with	the	browser	constantly	reloading	entire	HTML	pages.
With	 the	Ajax	model,	 the	 form	submission	will	be	hijacked	by	 JavaScript,	which	will	 in	 turn	 send	 the
form	 data	 to	 a	 server-side	 PHP	 script.	 That	 PHP	 script	 does	 whatever	 validation	 and	 other	 tasks
necessary,	and	then	returns	only	data	to	the	client-side	JavaScript,	indicating	the	results	of	the	operation.
The	client-side	JavaScript	then	uses	the	returned	data	to	update	the	HTML	page	 .	Although	there	are
more	steps,	 the	user	will	be	unaware	of	most	of	 them	and	will	be	able	 to	continue	 interacting	with	 the
HTML	page	while	this	process	takes	place.



	With	Ajax,	 server	 requests	 are	made	 behind	 the	 scenes,	 and	 the	 browser	 can	 be	 updated	without
reloading.

Tip
The	foundation	of	the	Ajax	process	is	a	JavaScript	object	of	type	XMLHttpRequest,	sometimes
abbreviated	XHR.	However,	 the	 request	 can	be	made	over	other	protocols	besides	HTTP	 and
other	data	types	are	more	commonly	returned	than	XML.

Creating	the	form
Incorporating	Ajax	into	a	web	site	results	in	an	improved	user	experience,	more	similar	to	how	desktop
applications	behave.	There	can	also	be	better	performance,	with	less	data	transmitted	back	and	forth	(e.g.,
an	entire	second	page	of	HTML,	like	login.php,	does	not	need	to	be	transmitted).
You	 already	 know	much	 of	 the	 information	 required	 for	 performing	Ajax	 transactions:	 form	 validation
with	 JavaScript,	 form	 validation	 with	 PHP,	 and	 using	 JavaScript	 to	 update	 the	 DOM.	 The	 last	 bit	 of
knowledge	you	need	is	how	to	perform	the	actual	Ajax	request	using	jQuery.	Over	the	next	several	pages,
you’ll	create	the	HTML	form,	the	server-side	PHP	script,	and	the	intermediary	JavaScript,	all	for	the	sake
of	handling	a	 login	 form.	To	 shorten	 and	 simplify	 the	 code	 a	bit,	 I’ve	 cut	 a	 couple	of	 corners,	 but	 I’ll
indicate	exactly	when	I	do	so,	and	every	cut	will	be	in	an	area	you	could	easily	flesh	out	on	your	own.

Creating	the	form
The	login	form	simply	needs	two	inputs:	one	for	an	email	address	and	another	for	a	password	 .	The
form	will	use	the	same	techniques	for	displaying	errors	and	indicating	results	as	calculator.html	

.



	The	login	form.

	Error	messages	are	revealed	beside	each	form	element.

To	create	the	form:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	login.php	(Script	15.8):
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>Login</title>

		<link	rel="stylesheet"

href="css/style.css">

Script	 15.8	 The	 login	 form	 has	 one	 text	 input	 for	 the	 email	 address,	 a	 password	 input,	 and	 a	 submit
button.	Other	elements	exist	to	be	manipulated	by	jQuery.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>Login</title>

6						<link	rel="stylesheet"

							href="css/style.css">

7						<script	src="js/jquery-3.2.1.min.js">



							</script>

8						<script	src="js/login.js"></script>

9			</head>

10		<body>

11					<!--	Script	15.8	-	login.php	-->

12		<h1>Login</h1>

13		<p	id="results"></p>

14		<form	action="login.php"	method="post"	id="login">

15					<p	id="emailP">Email	Address:

							<input	type="email"	name="email"

							id="email"><span	class="errorMessage"

							id="emailError">Please	enter	your

							email	address!</span></p>

16					<p	id="passwordP">Password:

							<input	type="password"

							name="password"	id="password">

							<span	class="errorMessage"

							id="passwordError">Please	enter	your

							password!</span></p>

17					<p><input	type="submit"	name="submit"

							value="Login!"></p>

18		</form>

19		</body>

20		</html>

This	will	actually	be	a	PHP	script,	not	just	an	HTML	file.	The	page	uses	the	same	external	CSS	file	as	.
2.	Incorporate	the	jQuery	library	and	a	second	JavaScript	file:
Click	here	to	view	code	image

<script	src="js/jquery-3.2.1.min.

js"></script>

<script	src="js/login.js"></script>

The	page	will	use	the	same	jQuery	library	as	.	The	page-specific	JavaScript	will	go	in	.	Both	will	be
stored	in	the	folder,	found	in	the	same	directory	as	this	script.

3.	Complete	the	HTML	head	and	begin	the	body:
Click	here	to	view	code	image

</head>

<body>

		<!--	Script	15.8	-	login.php	-->

<h1>Login</h1>

<p	id="results"></p>

Within	 the	 body,	 before	 the	 form,	 is	 an	 empty	 paragraph	 with	 an	id	 of	 results,	 to	 be	 dynamically
populated	with	jQuery	later	 .



	 Upon	 successfully	 logging	 in,	 the	 form	 will	 disappear	 and	 a	 message	 will	 appear	 just	 under	 the
header.
4.	Create	the	form:
Click	here	to	view	code	image

<form	action="login.php"

method="post"	id="login">

		<p	id="emailP">Email

		 Address:	<input	type="email"

		 name="email"	id="email"><span

		 class="errorMessage"

		 id="emailError">Please	enter

		 your	email	address!</span></p>

		<p	id="passwordP">Password:

		 <input	type="password"

		 name="password"

		 id="password"><span

		 class="errorMessage"

		 id="passwordError">Please

		 enter	your	password!</span>

		 </p>

		<p><input	type="submit"

		 name="submit"	value="Login!">

		 </p>

</form>

This	 form	 is	 quite	 like	 that	 in	 calculator.html.	 Both	 form	 elements	 are	 wrapped	 within
paragraphs	that	have	unique	id	values,	making	it	easy	for	jQuery	to	apply	the	error	class	when	needed.
Both	 elements	 are	 followed	 by	 the	 default	 error	 message,	 to	 be	 hidden	 and	 shown	 by	 jQuery	 as
warranted.

5.	Complete	the	HTML	page:
</body>

</html>

6.	Save	the	page	as	login.php	and	load	it	in	your	browser.
Remember	that	this	is	a	PHP	script,	so	it	must	be	accessed	through	a	URL	(http://something).

Creating	the	server-side	script
The	previous	sequence	of	steps	goes	through	creating	the	client	side	of	the	process:	the	HTML	form.	Next,
I’m	going	to	skip	ahead	and	look	at	the	server	side:	the	PHP	script	that	handles	the	form	data.	This	script
must	do	two	things:

http://something


1.	Validate	the	submitted	data.
2.	Return	a	string	indicating	the	results.
For	simplicity’s	sake,	the	PHP	script	will	merely	compare	the	submitted	values	against	hardcoded	ones,
but	you	could	easily	modify	this	code	to	perform	a	database	query	instead.
In	terms	of	the	Ajax	process,	the	important	thing	is	that	this	PHP	script	only	ever	returns	a	single	string	
,	without	any	HTML	or	other	markup	 .	This	is	mandatory,	because	the	entire	output	of	the	PHP	script	is
what	the	JavaScript	performing	the	Ajax	request	will	receive.	And,	as	you’ll	see	in	the	JavaScript	for	this
example,	 the	PHP	script’s	output	will	be	 the	basis	for	 the	error	reporting	and	DOM	manipulation	 to	be
performed.

	The	results	of	the	server-side	PHP	script	when	a	proper	request	is	made.

	The	HTML	source	of	the	server-side	PHP	script	shows	that	the	only	output	is	a	simple	string,	without
any	HTML	at	all.

To	handle	the	Ajax	request:
1.	 Begin	 a	 new	 PHP	 document	 in	 your	 text	 editor	 or	 IDE,	 to	 be	 named	login_ajax.php	 (Script
15.9):
<?php	#	Script	15.9	-

login_ajax.php

Script	15.9	This	PHP	script	will	receive	the	Ajax	request	from	JavaScript.	It	performs	some	validation
and	returns	simple	strings	to	indicate	the	results.



Click	here	to	view	code	image

1			<?php	#	Script	15.9	-	login_ajax.php

2			//	This	script	is	called	via	Ajax	from

				login.php.

3			//	The	script	expects	to	receive	two

				values	in	the	URL:	an	email	address	and

				a	password.

4			//	The	script	returns	a	string

				indicating	the	results.

5			

6			//	Need	two	pieces	of	information:

7			if	(isset($_GET['email'],

				$_GET['password']))	{

8			

9						//	Need	a	valid	email	address:

10					if	(filter_var($_GET['email'],

							FILTER_VALIDATE_EMAIL))	{

11									

12								//	Must	match	specific	values:

13								if	(	($_GET['email']	==

										'email@example.com')	&&

										($_GET['password']	==	'testpass')

										)	{

14						

15											//	Set	a	cookie,	if	you	want,

													or	start	a	session.

16				

17											//	Indicate	success:

18											echo	'CORRECT';

19															

20								}	else	{	//	Mismatch!

21											echo	'INCORRECT';

22								}

23										

24					}	else	{	//	Invalid	email	address!

25								echo	'INVALID_EMAIL';

26					}

27				

28		}	else	{	//	Missing	one	of	the	two

				variables!

29					echo	'INCOMPLETE';

30		}

31				

32		?>

Again,	this	script	is	not	meant	to	be	executed	directly,	so	it	contains	no	HTML.
2.	Validate	that	an	email	address	and	a	password	were	received	in	the	URL:
Click	here	to	view	code	image

if	(isset($_GET['email'],

$_GET['password']))	{

A	GET	request	will	be	made	of	this	script;	therefore,	the	first	thing	the	code	does	is	confirm	that	both
an	email	address	and	a	password	were	passed	to	it.

3.	Validate	that	the	submitted	email	address	is	of	the	proper	syntax:
Click	here	to	view	code	image

if	(filter_var($_GET['email'],

FILTER_VALIDATE_EMAIL))	{



Using	the	Filter	extension,	the	provided	email	address	is	also	checked	for	basic	syntax.
4.	If	the	submitted	values	are	correct,	indicate	success:
Click	here	to	view	code	image

if	(	($_GET['email']	==

'email@example.com')	&&	($_GET

['password']	==	'testpass')	)	{

	echo	'CORRECT';

As	 already	mentioned,	 this	 code	 just	 compares	 the	 submitted	 values	 against	 two	 static	 strings.	 You
could	easily	swap	out	this	code	for	a	database	query,	like	those	in	Chapter	12,	“Cookies	and	Sessions.”
At	 this	 point	 you	 could	 also	 set	 a	 cookie	 or	 begin	 a	 session	 (although	 see	 the	 following	 tip	 for	 the
“gotchas”	involved	with	doing	so).
Most	importantly,	the	script	simply	echoes	the	word	CORRECT,	without	any	other	HTML	( 	and	 ).

5.	Complete	the	three	conditionals:
Click	here	to	view	code	image

							}	else	{

										echo	'INCORRECT';

							}

				}	else	{

							echo	'INVALID_EMAIL';

				}

}	else	{

				echo	'INCOMPLETE';

}

These	three	else	clauses	complete	the	conditionals	begun	in	Steps	2,	3,	and	4.	Each	simply	prints	a
string	indicating	a	certain	status.	The	JavaScript	associated	with	the	login	form,	to	be	written	next,	will
take	different	actions	based	on	each	of	the	possible	results.

6.	Complete	the	PHP	page:
?>

7.	 Save	 the	 file	 as	 login_ajax.php,	 and	 place	 it	 in	 the	 same	 folder	 of	 your	 web	 directory	 as
login.php.
The	two	files	must	be	in	the	same	directory	for	the	Ajax	request	to	work.

Tip
It’s	perfectly	acceptable	for	the	server-side	PHP	script	in	an	Ajax	process	to	set	cookies	or	begin
a	session.	Keep	in	mind,	however,	that	the	page	in	the	browser	has	already	been	loaded,	meaning
that	page	cannot	access	cookies	or	sessions	created	after	the	fact.	You’ll	need	to	use	JavaScript
to	update	the	page	after	creating	a	cookie	or	starting	a	session,	but	subsequent	pages	loaded	in	the
browser	will	have	full	access	to	cookie	or	session	data.

Creating	the	JavaScript
The	final	step	is	to	create	the	JavaScript	that	interrupts	the	form	submission,	sends	the	data	to	the	server-
side	 PHP	 script,	 reads	 the	 PHP	 script’s	 results,	 and	 updates	 the	DOM	accordingly.	 This	 is	 the	 “glue”
between	 the	 client-side	HTML	 form	 and	 the	 server-side	 PHP.	 All	 the	 JavaScript	 form	 validation	 and
DOM	manipulation	will	be	quite	similar	to	what	you’ve	already	seen	in	this	chapter.	Two	new	concepts
will	be	introduced.



First,	 you’ll	 need	 to	 know	how	 to	 create	 a	generic	object	 in	 JavaScript.	 In	 this	 case,	 one	 object	will
represent	the	data	to	be	sent	to	the	PHP	script	and	another	will	represent	the	options	for	the	Ajax	request.
Here	is	how	you	create	a	new	object	in	JavaScript:
Click	here	to	view	code	image

var	objectName	=	new	Object();

The	next	chapter	gets	into	OOP	in	more	detail,	but	understand	now	that	this	just	creates	a	new	variable	of
type	Object.	The	 capital	 letter	 “O”	Object	 is	 a	 blank	 template	 in	 JavaScript	 (since	 JavaScript	 is	 an
object-oriented	language,	most	variables	are	objects	of	some	type).	Once	you’ve	created	the	object,	you
can	add	values	to	it	using	the	syntax:
Click	here	to	view	code	image

objectName.property	=	value;

If	you’re	new	to	JavaScript	or	OOP,	it	may	help	to	think	of	the	generic	object	as	being	 like	an	 indexed
array,	with	a	name	and	a	corresponding	value.
The	second	new	piece	of	information	is	the	usage	of	jQuery’s	ajax()	function.	This	function	performs
an	Ajax	 request.	 It	 takes	 as	 its	 lone	 argument	 the	 request’s	 settings.	As	 part	 of	 the	 jQuery	 library,	 it’s
invoked	like	so:
$.ajax(settings);

That’s	the	basic	premise;	the	particulars	will	be	discussed	in	detail	in	the	following	code.

To	perform	an	Ajax	request:
1.	Begin	a	new	JavaScript	file	in	your	text	editor	or	IDE,	to	be	named	login.js	(Script	15.10):

//	Script	15.10	-	login.js

Script	 15.10	 The	 JavaScript	 code	 in	 this	 file	 performs	 an	 Ajax	 request	 of	 a	 server-side	 script	 and
updates	the	DOM	based	on	the	returned	response.
Click	here	to	view	code	image

1			//	Script	15.10	-	login.js

2			//	This	script	is	included	by	login.php.

3			//	This	script	handles	and	validates	the

				form	submission.

4			//	This	script	then	makes	an	Ajax

				request	of	login_ajax.php.

5			

6			//	Do	something	when	the	document	is	ready:

7			$(function()	{

8						

9						//	Hide	all	error	messages:

10					$('.errorMessage').

							hide();

11						

12					//	Assign	an	event	handler	to	the

							form:

13					$('#login').submit(function()	{

14										

15								//	Initialize	some	variables:

16								var	email,	password;

17										

18								//	Validate	the	email	address:

19								if	($('#email').val().length



										>=	6)	{

20						

21											//	Get	the	email	address:

22											email	=	$('#email').val();

23						

24											//	Clear	an	error,	if	one

													existed:

25											$('#emailP').removeClass

													('error');

26				

27											//	Hide	the	error	message,

													if	it	was	visible:

28											$('#emailError').hide();

29											

30								}	else	{	//	Invalid	email	address!

31						

32											//	Add	an	error	class:

33											$('#emailP').addClass

													('error');

34				

35											//	Show	the	error	message:

36											$('#emailError').show();

37				

38								}

39										

40								//	Validate	the	password:

41								if	($('#password').val().length	>	0)	{

42											password	=	$('#password').val();

43											$('#passwordP').removeClass('error');

44											$('#passwordError').hide();

45								}	else	{

46											$('#passwordP').addClass('error');

47											$('#passwordError').show();

48								}

49																				

50								//	If	appropriate,	perform	the	Ajax	request:

51								if	(email	&&	password)	{

52						

53											//	Create	an	object	for	the	form	data:

54											var	data	=	new	Object();

55											data.email	=	email;

56											data.password	=	password;

57															

58											//	Create	an	object	of	Ajax	options:

59											var	options	=	new	Object();

60				

61											//	Establish	each	setting:

62											options.data	=	data;

63											options.dataType	=	'text';

64											options.type	=	'get';

65											options.success	=	function(response)	{

66																	

67														//	Worked:

68														if	(response	==	'CORRECT')	{

69						

70																	//	Hide	the	form:

71																	$('#login').hide();

72						

73																	//	Show	a	message:

74																	$('#results').removeClass('error');

75																	$('#results').text('You	are	now	logged	in!');

76																										

77														}	else	if	(response	==	'INCORRECT')	{



78																	$('#results').text('The	submitted	credentials	do	not	match	those	on	file!');

79																	$('#results').addClass('error');

80														}	else	if	(response	==	'INCOMPLETE')	{

81																	$('#results').text('Please	provide	an	email	address	and	a	password!');

82																	$('#results').addClass('error');

83														}	else	if	(response	==	'INVALID_EMAIL')	{																																											

84																	$('#results').text('Please	provide	your	email	address!');

85																	$('#results').addClass('error');

86														}

87																				

88											};	//	End	of	success.

89											options.url	=

													'login_ajax.php';

90				

91											//	Perform	the	request:

92											$.ajax(options);

93							

94								}	//	End	of	email	&&	password	IF.

95							

96								//	Return	false	to	prevent	an

										actual	form	submission:

97								return	false;

98								

99					});	//	End	of	form	submission.

100		

101	});	//	End	of	document	ready.

2.	Add	the	jQuery	code	for	handling	the	“ready”	state	of	the	document:
$(function()	{

});

The	JavaScript	needs	to	start	with	this	code	in	order	to	set	the	table	once	the	browser	is	ready.	Because
of	the	complicated	syntax,	I	think	it’s	best	to	add	this	entire	block	of	code	first	and	then	place	all	the
subsequent	code	within	the	braces.

3.	Hide	every	element	that	has	the	errorMessage	class:
$('.errorMessage').hide();

The	selector	grabs	a	reference	to	any	element	of	any	type	that	has	a	class	of	errorMessage.	 In	 the
HTML	form,	this	applies	only	to	the	three	span	tags.	Those	will	be	hidden	by	this	code	as	soon	as	the
DOM	is	loaded.

4.	Create	an	event	listener	for	the	form’s	submission:
Click	here	to	view	code	image

$('#login').submit(function()	{

});

This	code	 is	virtually	 the	same	as	 that	 in	 the	calculator	 form.	All	 the	 remaining	code	will	go	within
these	braces.

5.	Initialize	two	variables:
var	email,	password;

These	two	variables	will	act	as	local	representations	of	the	form	data.
6.	Validate	the	email	address:
Click	here	to	view	code	image

if	($('#email').val().length	>=	6)	{

		email	=	$('#email').val();



		$('#emailP').removeClass('error');

		$('#emailError').hide();

The	calculator	form	validated	that	all	the	numbers	were	greater	than	zero,	which	isn’t	an	appropriate
validation	for	the	login	form.	Instead,	the	conditional	confirms	that	the	string	length	of	the	value	of	the
email	input	is	greater	than	or	equal	to	6	(six	characters	being	the	absolute	minimum	required	for	a	valid
email	address,	such	as	a@b.cc).	You	could	also	use	regular	expressions	in	JavaScript	to	perform	more
stringent	validation,	but	I’m	trying	to	keep	this	simple	(and	the	server-side	PHP	script	will	validate	the
email	address	as	well,	as	you’ve	already	seen).
If	the	email	address	value	passes	the	minimal	validation,	it’s	assigned	to	the	local	variable.	Next,	the
error	 class	 is	 removed	 from	 the	 paragraph,	 in	 case	 it	was	 added	previously,	 and	 the	 email-specific
error	is	hidden,	in	case	it	was	shown	previously.

7.	Complete	the	email	address	conditional:
Click	here	to	view	code	image

}	else	{

		$('#emailP').addClass('error');

		$('#emailError').show();

}

This	code	completes	the	conditional	begun	in	Step	6.	The	code	is	the	same	as	that	used	in	,	adding	the
error	class	to	the	entire	paragraph	and	showing	the	error	message	 .

8.	Validate	the	password:
Click	here	to	view	code	image

if	($('#password').val().length	>	

0)	{

		password	=	$('#password').val();

		$('#passwordP').removeClass	

('error');

		$('#passwordError').hide();

}	else	{

		$('#passwordP').addClass('error');

		$('#passwordError').show();

}

For	 the	password,	 the	minimum	 length	would	 likely	be	determined	by	 the	 registration	process.	As	 a
placeholder,	 this	 code	 just	 confirms	 a	 positive	 string	 length.	Otherwise,	 this	 code	 is	 essentially	 the
same	as	that	in	the	previous	two	steps.

9.	If	both	values	were	received,	store	them	in	a	new	object:
Click	here	to	view	code	image

if	(email	&&	password)	{

		var	data	=	new	Object();

		data.email	=	email;

		data.password	=	password;

The	premise	behind	this	code	was	explained	before	these	steps.	First	a	new,	generic	object	is	created.
Then	a	property	of	that	object	named	email	is	created	and	then	assigned	the	value	of	the	email	address.
Finally,	a	property	named	password	is	created	and	then	assigned	the	value	of	the	entered	password.	If	it
helps	to	imagine	this	code	in	PHP	terms,	the	equivalent	would	be

Click	here	to	view	code	image
$data	=	array();

$data['email']	=	$email;

$data['password']	=	$password;



10.	Create	a	new	object	for	the	Ajax	options,	and	establish	the	first	three	settings:
Click	here	to	view	code	image

var	options	=	new	Object();

options.data	=	data;

options.dataType	=	'text';

options.type	=	'get';

Here,	another	generic	object	is	created.	Next,	a	property	named	data	is	assigned	the	value	of	the	data
object.	This	property	of	the	options	object	stores	the	data	being	passed	to	the	PHP	script	as	part	of
the	Ajax	request.
The	 second	 setting	 is	 the	 data	 type	 expected	 back	 from	 the	 server-side	 request.	 As	 the	 PHP	 script
login_ajax.php	 returns	 (i.e.,	 prints)	 a	 simple	 string,	 the	 value	 here	 is	 text.	 The	 dataType
setting	impacts	how	the	JavaScript	will	attempt	to	work	with	the	returned	response;	it	needs	to	match
what	the	actual	server	response	will	be.
The	 type	 setting	 is	 the	 type	of	 request	being	made,	with	get	and	post	 the	 two	most	common.	A	GET
request	is	the	default,	so	it	does	not	need	to	be	assigned	here,	but	the	code	is	being	explicit	anyway.
To	 be	 clear,	 because	 of	 the	 name	 of	 the	 properties	 in	 the	data	 object—email	 and	password—and
because	of	the	type	value	of	get,	the	login_ajax.php	script	will	receive	$_GET[‘email’]	and
$_GET[‘password’].	If	you	were	to	change	the	names	of	the	properties	in	data,	or	the	value	of
options.type,	 the	 server-side	 PHP	 script	 would	 receive	 the	Ajax	 data	 in	 different	 superglobal
variables.

11.	Begin	defining	what	should	happen	upon	a	successful	Ajax	request:
Click	here	to	view	code	image

		options.success	=	function

		 (response)	{

};	//	End	of	success.

The	success	property	defines	what	the	JavaScript	should	do	when	the	Ajax	query	works.	By	“work,”
I	mean	that	the	JavaScript	can	perform	a	request	of	the	server-side	page	and	receive	a	result.	For	what
should	actually	happen,	an	anonymous	function	is	assigned	to	this	property.	In	this	step,	the	anonymous
function	is	defined	and	the	assignment	line	is	completed.	The	code	in	subsequent	steps	will	go	between
these	curly	brackets.
As	you	can	see,	the	anonymous	function	takes	one	argument:	the	response	from	the	server-side	script,
assigned	 to	 the	response	variable.	As	already	explained,	 the	 response	 received	by	 the	 JavaScript
will	be	the	entirety	of	whatever	is	outputted	by	the	PHP	script.

12.	Within	the	anonymous	function	created	in	Step	11,	if	the	server	response	equals	CORRECT,	hide	the
form	and	update	the	page:

Click	here	to	view	code	image
if	(response	==	'CORRECT')	{

		$('#login').hide();

		$('#results').removeClass('error');

		$('#results').text('You	are	now

		 logged	in!');

When	 the	 user	 submits	 the	 correct	 credentials—email@example.com	 and	 testpass,	 will	 return	 the
string	CORRECT.	In	that	case,	the	JavaScript	will	hide	the	entire	login	form	and	assign	a	string	to	 the
results	paragraph,	indicating	such	 .	Because	incorrect	submissions	may	have	added	the	error	class
to	this	paragraph	(see	Step	13),	that	class	is	also	removed	here.



13.	If	the	server	response	equals	INCORRECT,	indicate	an	error:
Click	here	to	view	code	image

}	else	if	(response	==	'INCORRECT')	{

		$('#results').text('The	submitted	

		 credentials	do	not	match	those	

		 on	file!	');

		$('#results').addClass('error');

When	 the	user	 submits	 a	password	and	a	 syntactically	valid	 email	 address	but	does	not	 provide	 the
correct	specific	values,	the	server-side	PHP	script	will	return	the	string	INCORRECT.	 In	that	case,	a
different	string	is	assigned	to	the	results	paragraph	and	the	error	class	is	applied	to	the	paragraph	as
well	 .

	The	results	upon	providing	invalid	login	credentials.
14.	Add	clauses	for	the	other	two	possible	server	responses:
Click	here	to	view	code	image

}	else	if	(response	==

'INCOMPLETE')	{

		$('#results').text('Please

		 provide	an	email	address	and

		 a	password!	');

		$('#results').addClass('error');

}	else	if	(response	==

'INVALID_EMAIL')	{

		$('#results').text('Please

		 provide	your	email	address!

		 ');

		$('#results').addClass('error');

}

These	are	repetitions	of	the	code	in	Step	13,	with	different	messages.	This	is	the	end	of	the	code	that
goes	within	the	property’s	anonymous	function.

15.	Add	the	url	property	and	make	the	request:
Click	here	to	view	code	image

options.url	=	'login_ajax.php';

$.ajax(options);

The	url	property	of	the	Ajax	object	names	the	actual	server-side	script	to	which	the	request	should	be
sent.	As	long	as	login.php	and	login_ajax.php	are	in	the	same	directory,	this	reference	will
work.



Finally,	after	establishing	all	of	the	request	options,	the	request	is	performed.
16.	Complete	the	conditional	begun	in	Step	9	and	return	false:
Click	here	to	view	code	image

}	//	End	of	email	&&	password	IF.

return	false;

If	the	email	and	password	variables	do	not	have	TRUE	values,	no	Ajax	request	is	made	(i.e.,	that
conditional	 has	 no	else	 clause).	 Finally,	 the	 value	 false	 is	 returned	 here	 to	 prevent	 the	 actual
submission	of	the	form.

17.	Save	the	page	as	login.js	(in	the	js	folder)	and	test	the	login	form	in	your	browser.

Tip
Here’s	a	debugging	tip:	it	often	helps	to	run	the	server-side	script	directly	 	to	confirm	that	it
works	(e.g.,	that	it	doesn’t	contain	a	parse	or	other	error).

Tip
An	 improvement	you	could	make	 to	 this	process	would	be	 to	have	 the	 server-side	PHP	 script
respond	 in	 JSON	 (JavaScript	 Object	 Notation)	 format	 instead.	 Search	 online	 for	 details	 on
returning	JSON	from	a	PHP	script	and	using	JSON	in	JavaScript.

Tip
Because	 JavaScript	 can	 be	 disabled	 by	 users,	 you	 can	 never	 rely	 strictly	 on	 JavaScript	 form
validation.	You	must	always	also	use	server-side	PHP	validation	to	protect	your	web	site.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

Review
	What	is	JavaScript?	How	does	JavaScript	compare	to	PHP?
	What	is	jQuery?	What	is	the	relationship	between	jQuery	and	JavaScript?
	How	is	an	external	JavaScript	file	incorporated	into	an	HTML	page?	How	is	JavaScript	code	placed
within	the	HTML	page	itself?
	Why	 is	 it	 important	 to	wait	 until	 the	 entire	DOM	has	 been	 loaded	 to	 execute	 JavaScript	 code	 that
references	DOM	elements?
	Why	are	unique	identifiers	in	the	DOM	necessary?
	In	jQuery,	how	do	you	select	elements	of	a	given	tag	type?	How	do	you	select	elements	that	have	a
certain	class?	How	do	you	select	a	specific	element?
	 In	 jQuery,	 how	 do	 you	 add	 an	 event	 listener	 to	 a	 page	 element	 (or	 elements)?	What	 is	 an	 event
listener?
	Why	must	you	reload	HTML	pages	after	altering	their	JavaScript?

http://LarryUllman.com/forums/


	What	are	some	of	the	jQuery	functions	you	can	use	to	manipulate	the	DOM?
	What	is	Ajax?	Why	is	Ajax	a	“good	thing”?
	Why	must	an	HTML	page	that	performs	a	server-side	request	be	loaded	through	a	URL?
	How	do	you	create	a	generic	object	in	JavaScript?
	 What	 impact	 does	 the	 Ajax	 request’s	 type	 property	 have?	 What	 impact	 do	 the	 names	 of	 the
properties	in	the	data	object	have?

Pursue
	Head	to	the	jQuery	web	site	and	start	perusing	the	jQuery	documentation.
	Check	out	jQuery	UI	and	what	it	can	do	for	your	HTML	pages.
	Use	the	jQuery	documentation,	or	simply	search	online,	for	some	of	jQuery’s	plug-ins.	Attempt	to	use
one	or	more	of	them	in	an	HTML	page.
	Once	 you	 feel	 comfortable	with	 the	Ajax	 process,	 search	 online	 for	 information	 about	 performing
Ajax	requests	using	JSON	to	represent	the	data	transmitted	back	to	the	JavaScript.
	See	what	happens	when	you	reference	a	DOM	element	in	JavaScript	before	the	entire	DOM	has	been
loaded.	 Witnessing	 this	 should	 help	 you	 recognize	 what’s	 happening	 when	 you	 inevitably	 and
accidentally	fail	to	wait	until	the	browser	is	ready	before	referencing	the	DOM.
	Update	calculator.js	so	that	the	results	paragraph	is	initially	cleared	on	each	form	submission.
By	 doing	 so,	 the	 results	 of	 previous	 submissions	 won’t	 be	 shown	 upon	 subsequent	 invalid
submissions.
	Modify	login_ajax.php	so	that	it	uses	a	database	to	confirm	successful	login.
	Modify	login_ajax.php	so	that	it	sends	a	cookie	or	begins	a	session.	Create	a	secondary	PHP
script	that	accesses	the	created	cookie	or	session.
	Modify	login.php	 so	 that	 it	 also	performs	 the	 login	validation,	 should	 the	user	have	 JavaScript
disabled.	Hint:	This	is	simpler	than	you	might	think—just	use	PHP	to	handle	the	form	submission	(in
the	same	file)	as	if	JavaScript	were	not	present	at	all.





































































































































16.	An	OOP	Primer

In	This	Chapter
Fundamentals	and	Syntax
Working	with	MySQL
The	DateTime	Class
Review	and	Pursue

PHP	 is	 somewhat	unusual	as	a	 language	 in	 that	 it	 can	be	used	both	procedurally,	 as	most	of	 this	book
demonstrates,	 and	 as	 an	 object-oriented	 programming	 (OOP)	 language.	 There	 are	 merits	 to	 both
approaches,	and	you	ought	to	be	familiar	with	each	(in	due	time,	at	least).
Unfortunately,	mastery	 of	OOP	 requires	 lots	 of	 time	 and	 information:	my	PHP	Advanced	 and	Object-
Oriented	Programming:	Visual	QuickPro	Guide	(Peachpit	Press)	spends	200	pages	on	the	subject!	Still,
one	of	 the	great	 things	about	OOP	 is	 that	you	can	use	 it	without	 fully	knowing	 it.	You’ll	 see	what	 this
means	shortly.
This	chapter	is	a	primer	for	OOP	in	PHP.	Some	of	the	examples	will	replicate	procedural	ones	already
shown	 in	 the	 book	 to	 best	 compare	 and	 contrast	 the	 two	 approaches.	 Various	 sidebars	 and	 tips	 will
mention	other	uses	of	OOP	in	PHP,	many	of	which	will	not	have	procedural	equivalents.

Fundamentals	and	Syntax
If	 you’ve	 never	 done	 any	 object-oriented	 programming,	 both	 the	 concept	 and	 the	 syntax	 can	 be	 quite
foreign.	Simply	put,	all	applications,	or	scripts,	 involve	 taking	actions	with	 information:	validating	 it,
manipulating	it,	storing	it	in	a	database,	and	so	forth.	Philosophically,	procedural	programming	is	written
with	a	focus	on	the	actions:	do	this,	then	this,	then	this;	OOP	is	data-centric,	focusing	more	on	the	kinds	of
information	being	used.

OOP	fundamentals
OOP	in	PHP	begins	with	 the	definition	of	a	class,	which	 is	a	 template	 for	a	particular	 type	of	data:	an
employee,	a	user,	a	page	of	content,	and	so	forth.	A	class	definition	contains	both	variables	and	functions.
Syntactically,	a	variable	in	a	class	definition	is	called	an	attribute	or	property,	and	a	function	in	a	class
definition	is	called	a	method.	Combined,	the	attributes	and	methods	are	the	members	of	the	class.
As	a	theoretical	example,	you	might	have	a	class	called	Car.	Note	that	class	names	conventionally	begin
with	an	uppercase	letter.	The	properties	of	a	Car	would	include	make,	model,	year,	odometer,	and
so	 forth:	 all	 information	 that	 can	 be	 known	 about	 a	 car.	A	Car’s	 properties	 can	 be	 set,	 changed,	 and
retrieved,	and	 the	values	of	 the	properties	distinguish	 this	Car	 from	 that	Car.	A	Car’s	methods—the
things	 that	 the	 car	 can	 do—would	 include	start(),	drive(),	park(),	 and	turnOff().	 These
actions	are	common	to	all	Cars.



OOP	vs.	Procedural
Discussions	 as	 to	 the	 merits	 of	 OOP	 vs.	 procedural	 programming	 can	 quickly	 escalate	 to
verbal	wars,	with	each	side	fiercely	advocating	for	their	approach.	PHP	is	somewhat	unique
in	that	you	have	a	choice	(by	comparison,	C	is	strictly	a	procedural	language	and	Java	object-
oriented).	In	my	opinion,	each	programming	style	has	its	strengths	and	weaknesses,	but	neither
is	“better”	than	the	other.
Procedural	programming	is	arguably	faster	to	learn	and	use,	particularly	for	smaller	projects.
But	procedural	code	can	be	harder	 to	maintain	and	expand,	especially	 in	more	complicated
sites,	and	has	the	potential	to	be	buggier.
Code	written	using	OOP,	on	the	other	hand,	may	be	easier	to	maintain,	specifically	on	 larger
projects,	and	may	be	more	appropriate	 in	 team	environments.	But	OOP	is	harder	 to	master,
and	when	not	done	well,	is	that	much	more	challenging	to	remedy.
In	time,	you’ll	naturally	come	up	with	your	own	opinions	and	preferences.	The	real	lesson,	to
me,	is	to	take	advantage	of	the	fact	that	PHP	allows	for	both	syntaxes,	and	not	to	limit	yourself
to	just	one	style	regardless	of	the	situation.

In	the	introduction	to	this	chapter,	I	stated	that	you	can	use	OOP	without	really	knowing	it.	By	that	I	mean
that	it’s	very	easy,	and	common	enough,	to	use	an	existing	class	definition	for	your	own	needs.	In	fact,	the
reusability	of	code—particularly	code	created	by	others—is	one	of	the	key	benefits	of	OOP.	What	takes	a
lot	of	effort,	at	least	to	do	it	right,	is	to	master	the	design	process:	understanding	what	members	to	define
and,	more	importantly,	how	to	implement	sophisticated	OOP	concepts	such	as

	Inheritance
	Access	control
	Overriding	methods
	Scope	resolution
	Abstraction
	And	so	on

When	you’re	 interested	 in	 learning	how	 to	properly	create	your	own	classes,	you	can	 read	more	 about
these	subjects	in	my	PHP	Advanced	and	Object-Oriented	Programming:	Visual	QuickPro	Guide,	among
other	 resources,	 but	 in	 this	 chapter,	 let’s	 focus	 on	 using	 existing	 classes	 instead	 of	 creating	 your	 own
custom	ones.

OOP	syntax	in	PHP
Let’s	say	someone	has	gone	through	the	process	of	designing	and	defining	a	Car	class.	Most	classes	are
not	used	directly;	rather,	you	create	an	instance	of	that	class—a	specific	variable	of	the	class’s	type.	That
instance	is	called	an	object.	In	PHP,	an	instance	is	created	using	the	new	keyword:
$obj	=	new	ClassName();

$mine	=	new	Car();

Whereas	the	code	$name	=	‘Larry’	creates	a	variable	of	type	string,	this	code	creates	a	variable	of
type	Car.	 Everything	 that’s	 part	 of	Car’s	 definition—every	 property	 (i.e.,	 variable)	 and	method	 (i.e.,
function)—is	now	embedded	in	$mine.
Behind	the	scenes	(i.e.,	in	the	class	definition),	a	special	method	called	the	constructor	is	automatically



invoked	when	a	new	object	of	that	type	is	generated.	The	constructor	normally	provides	whatever	initial
setup	 would	 be	 required	 by	 the	 subsequent	 usage	 of	 that	 object.	 For	 example,	 the	 MySQLi	 class’s
constructor	 establishes	 a	 connection	 to	 the	 database	 and	 the	DateTime	 class’s	 constructor	 creates	 a
reference	to	an	exact	date	and	time	(both	the	MySQLi	and	DateTime	classes	will	be	explicitly	used	in
this	chapter).
If	 the	 constructor	 takes	 arguments,	 like	 any	 function	 can,	 those	 may	 be	 provided	 when	 the	 object	 is
created:
Click	here	to	view	code	image

$mine	=	new	Car('Honda',	'Fit',	2008);

Once	you	have	an	object,	you	reference	its	properties	(i.e.,	variables)	and	call	its	methods	(i.e.,	functions)
using	the	syntax
Click	here	to	view	code	image

$object_name->member_name:

$mine->color	=	'Purple';

$mine->start();

The	first	 line	 (theoretically)	assigns	 the	value	Purple	 to	 the	object’s	color	property.	The	 second	 line
invokes	 the	object’s	start()	method.	As	with	 any	 function	 call,	 the	 parentheses	 are	 required.	 If	 the
method	takes	arguments,	those	can	be	provided,	too:
$mine->drive('Forward');

Sometimes	you’ll	use	an	object’s	properties	as	you	would	any	other	variable:
Click	here	to	view	code	image

$mine->odometer	+=	20;

echo	"My	car	currently	has

$mine->odometer	miles	on	it.";

If	an	object’s	method	returns	a	value,	the	method	can	be	invoked	in	the	same	manner	as	any	function	that
returns	a	value:
Click	here	to	view	code	image

//	The	fill()	method	takes	a

number	of

//	gallons	being	added	and	returns

//	how	full	the	tank	is:

$tank	=	$mine->fill(8.5);

And	that’s	really	enough	to	know	about	OOP	to	start	using	it.	As	you’ll	see,	the	examples	over	 the	next
few	pages	will	replicate	functionality	explained	earlier	in	the	book	so	that	the	contrasting	approaches	to
the	same	end	result	should	help	you	better	understand	what’s	going	on.

Tip
In	 documentation,	 you’ll	 see	 the	ClassName::method_name()	 syntax.	 This	 is	 a	 way	 of
specifying	to	which	class	a	method	belongs.



Tip
One	 of	 the	major	 changes	 in	 PHP	 5.3	was	 support	 for	 namespaces.	 Namespaces,	 in	 layman’s
terms,	 provide	 a	way	 to	 group	multiple	 class	 definitions	 under	 a	 single	 title.	Namespaces	 are
useful	for	organizing	code,	as	well	as	preventing	conflicts	(e.g.,	differentiating	between	my	Car
class	and	your	Car	class).

Tip
Classes	can	also	have	their	own	constants,	 just	as	 they	have	their	own	variables	and	functions.
Class	constants	are	normally	used	without	an	instance	of	that	class,	as	in

Click	here	to	view	code	image
echo	ClassName::CONSTANT_NAME;

More	OOP	Classes
There	 are	 more	 OOP	 classes	 defined	 in	 PHP	 than	 just	 those	 illustrated	 in	 this	 chapter,
although	I	think	the	MySQLi	and	DateTime	classes	are	the	two	most	obviously	accessible
and	usable.	The	 largest	body	of	classes	can	be	 found	 in	 the	Standard	PHP	Library	 (SPL),
built	into	PHP	as	of	version	5.0,	and	greatly	expanded	in	version	5.3.
The	 SPL	 provides	 high-end	 classes	 in	 several	 categories:	 exception	 handling,	 iterators
(loops	 that	 can	work	 on	 any	 collection	 of	 data),	 custom	 data	 types,	 and	more.	 The	 SPL	 is
definitely	for	more	advanced	PHP	programmers	and	is	most	beneficial	for	otherwise	strongly
or	entirely	OOP-based	code.
There	 are	 several	 good	 classes	 defined	 for	 internationalization	 purposes,	 too
(www.php.net/intl).	These	classes	define	some	of	the	functionality	originally	intended
as	part	of	the	now-defunct	PHP	6,	including	the	ability	to	sort	words,	format	numbers,	and	so
forth,	in	a	manner	customized	to	the	given	locale	(a	locale	is	a	combination	of	the	language,
cultural	habits,	and	other	unique	choices	for	a	region).

Working	with	MySQL
Just	 as	 you	 can	 write	 PHP	 code	 in	 both	 procedural	 and	 object-oriented	 styles,	 the	MySQL	 Improved
extension	 can	 similarly	 be	 used	 either	 way	 to	 interact	 with	 a	 database.	 Chapter	 9,	 “Using	 PHP	 with
MySQL,”	 introduced	 the	 basics	 of	 the	 procedural	 approach.	 As	 a	 comparison,	 this	 chapter	 will	 run
through	the	same	functionality	using	OOP.
There	are	three	defined	classes	that	you	will	use	in	this	chapter:

	MySQLi,	the	primary	class,	provides	a	database	connection,	a	querying	method,	and	more.
	MySQLi_Result	is	used	to	handle	the	results	of	SELECT	queries	(among	others).
	 MySQLi_Stmt	 is	 for	 performing	 prepared	 statements	 (introduced	 in	 Chapter	 13,	 “Security
Methods”).

For	each,	I’ll	explain	the	basic	usage	and	walk	you	through	an	example	script.	For	a	full	listing	of	all	the
possibilities—all	the	properties	and	methods	of	each	class—see	the	PHP	manual.

http://www.php.net/intl


Creating	a	connection
As	with	the	procedural	approach,	creating	a	connection	is	the	first	step	in	interacting	with	MySQL	when
using	object	notation.	With	the	MySQLi	class,	a	connection	is	established	when	the	object	is	instantiated
(i.e.,	when	the	object	is	created),	by	passing	the	appropriate	connection	values	to	the	constructor:
Click	here	to	view	code	image

$mysqli	=	new	MySQLi(hostname,

username,	password,	database);

Even	 though	 this	 is	 OOP,	 you	 would	 use	 the	 same	MySQL	 values	 as	 you	 would	 when	 programming
procedurally,	or	when	connecting	to	MySQL	using	the	command-line	client	or	other	interface.
If	a	connection	could	not	be	made,	the	connect_error	property	will	store	the	reason	why	 :
Click	here	to	view	code	image

if	($mysqli->connect_error)	{

			echo	$mysqli->connect_error;

}

	A	MySQL	connection	error.
Next,	you	should	establish	the	character	set:
Click	here	to	view	code	image

$mysqli->set_charset(charset);

$mysqli->set_charset('utf8');

At	this	point,	you’re	ready	to	execute	your	queries,	to	be	covered	next.
After	executing	the	queries,	call	the	close()	method	to	close	the	database	connection:
$mysqli->close();

To	be	extra	tidy,	you	can	delete	the	object,	too:
unset($mysqli);

To	practice	 this,	 let’s	write	a	PHP	script	 that	 connects	 to	MySQL.	Because	 the	 subsequent	 two	 scripts
will	be	updates	of	scripts	 from	Chapter	9	and	will	use	 the	same	 template	as	Chapter	9,	you’ll	want	 to
place	these	next	three	scripts	in	the	same	web	directories	you	used	for	Chapter	9.

To	make	an	OOP	MySQL	connection:
1.	 Begin	 a	 new	 PHP	 script	 in	 your	 text	 editor	 or	 IDE,	 to	 be	 named	mysqli_oop_connect.php
(Script	16.1):

Click	here	to	view	code	image



<?php	#	Script	16.1	-

mysqli_oop_connect.php

This	script	will	largely	follow	the	same	approach	as	mysqli_connect.php	in	Chapter	9.	 It	will
contain	no	HTML.

2.	Set	the	database	connection	parameters	as	constants:
Click	here	to	view	code	image

DEFINE('DB_USER',	'username');

DEFINE('DB_PASSWORD',	'password');

DEFINE('DB_HOST',	'localhost');

DEFINE('DB_NAME',	'sitename');

As	always,	you’ll	need	to	change	the	particulars	to	be	correct	for	your	server.	As	with	Chapter	9,	 this
chapter’s	examples	will	make	use	of	the	sitename	database.

3.	Create	a	MySQLi	object:
Click	here	to	view	code	image

$mysqli	=	new	MySQLi(DB_HOST,

DB_USER,	DB_PASSWORD,	DB_NAME);

This	is	the	syntax	already	explained,	using	the	constants	as	the	values	to	be	passed	to	the	constructor.
4.	If	an	error	occurred,	show	it:
Click	here	to	view	code	image

if	($mysqli->connect_error)	{

			echo	$mysqli->connect_error;

			unset($mysqli);

If	 the	MySQLi	 object’s	connect_error	 property	 has	 a	 value,	 it	means	 that	 the	 script	 could	 not
establish	a	connection	to	the	database.	In	that	case,	the	connection	error	is	displayed	 ,	and	the	object
variable	is	unset,	since	it’s	useless.

5.	If	a	connection	was	made,	establish	the	encoding:
Click	here	to	view	code	image

}	else	{

		$mysqli->set_charset('utf8');

}

Remember	that	the	encoding	used	to	communicate	with	MySQL	needs	to	match	the	encoding	set	by	the
HTML	pages	and	by	the	database.

6.	Save	the	script	as
mysqli_oop_connect.php.

As	with	most	files	in	this	book	that	are	meant	to	be	included	by	other	scripts,	this	one	omits	the	closing
PHP	tag.

7.	Ideally,	place	the	file	outside	of	the	web	document	directory.
Because	 the	 file	 contains	 sensitive	MySQL	access	 information,	 it	 ought	 to	be	 stored	 securely.	 If	 you
can,	place	it	in	the	directory	immediately	above	or	otherwise	outside	of	the	web	directory	(see	Chapter
9	for	particulars).
Again,	 the	 following	 two	 scripts	will	 use	 the	 template	 that	Chapter	9	 used,	 so	 you	 should	 store	 this
connection	script	in	the	same	directory	as	mysqli_connect.php	from	Chapter	9.

8.	Temporarily	place	a	copy	of	the	script	within	the	web	directory	and	run	it	in	your	browser.



To	test	 the	script,	you’ll	want	 to	place	a	copy	on	 the	server	so	 that	 it’s	accessible	 from	 the	browser
(which	means	it	must	be	in	the	web	directory).	If	the	script	works	properly,	the	result	should	be	a	blank
page.	If	you	see	an	Access	denied…	or	similar	message	 ,	it	means	that	the	combination	of	username,
password,	and	host	does	not	have	permission	to	access	the	particular	database.

9.	Remove	the	temporary	copy	from	the	web	directory.

Script	16.1	 This	 script	 creates	 a	 new	MySQLi	 object,	 through	which	 database	 interactions	will	 take
place.
Click	here	to	view	code	image

1			<?php	#	Script	16.1	-	mysqli_oop_connect.php

2			//	This	file	contains	the	database	access	information.

3			//	This	file	also	establishes	a	connection	to	MySQL,

4			//	selects	the	database,	and	sets	the	encoding.

5			//	The	MySQL	interactions	use	OOP!

6			

7			//	Set	the	database	access	information	as	constants:

8			DEFINE('DB_USER',	'username');

9			DEFINE('DB_PASSWORD',	'password');

10		DEFINE('DB_HOST',	'localhost');

11		DEFINE('DB_NAME',	'sitename');

12		

13		//	Make	the	connection:

14		$mysqli	=	new	MySQLi(DB_HOST,	DB_USER,	DB_PASSWORD,	DB_NAME);

15		

16		//	Verify	the	connection:

17		if	($mysqli->connect_error)	{

18					echo	$mysqli->connect_error;

19					unset($mysqli);

20		}	else	{	//	Establish	the	encoding.

21					$mysqli->set_charset('utf8');

22		}

Tip
You	can	use	print_r()	to	learn	about,	and	debug,	objects	in	PHP	code	 :

Click	here	to	view	code	image

echo	'<pre>'	.	print_r($mysqli,	1)	.

'</pre>';



	Using	print_r()	on	an	object,	perhaps	wrapped	within	preformatted	tags	to	make	its	output	easier
to	read,	reveals	the	object’s	many	property	names	and	values.

Tip
Since	 the	$mysqli	 object	 is	 unset	 if	 no	 connection	 is	made,	 any	 script	 that	 needs	 it	 can	 be
written	to	test	for	a	successful	connection	by	just	using

Click	here	to	view	code	image

if	(isset($mysqli))	{	//	Do	whatever.

For	brevity’s	sake,	this	test	is	omitted	in	subsequent	scripts,	but	know	it’s	possible.

Tip
The	MySQLi	constructor	takes	two	more	arguments:	the	port	to	use	and	the	socket.	When	running
MAMP	or	XAMPP	(see	Appendix	A,	“Installation”),	you	may	need	to	provide	the	port.

Tip
The	 MySQLi::character_set_name()	 method	 returns	 the	 current	 character	 set.	 The
MySQLi::get_charset()	method	returns	the	character	set,	collation,	and	more.

Tip
You	can	change	the	database	used	by	the	current	connection	via	the	select_db()	method:

Click	here	to	view	code	image

$mysqli->select_db(dbname);



Executing	simple	queries
Once	you’ve	successfully	established	a	connection	to	the	MySQL	server,	you	can	begin	using	the	MySQLi
object	to	query	the	database.	For	that,	call	the	appropriately	named	query()	method:
$mysqli->query(query);

Its	 lone	 argument	 is	 the	SQL	command	 to	 be	 executed,	which	 I	 normally	 assign	 to	 a	 separate	 variable
beforehand:
Click	here	to	view	code	image

$q	=	'SELECT	*	FROM	tablename';

$mysqli->query($q);

You	can	test	for	the	query’s	error-free	execution	by	using	the	method	call	as	a	condition:
Click	here	to	view	code	image

if	($mysqli->query($q))	{	//	Worked!

Alternatively,	you	can	check	the	error	property	 :
Click	here	to	view	code	image

if	($mysqli->error)	{	//	Did	not	work!

			echo	$mysqli->error;

}

	A	problem	with	a	query	results	in	a	MySQL	error.
If	 the	 query	 just	 executed	was	 an	INSERT,	 you	 can	 retrieve	 the	 automatically	 generated	 primary	 key
value	via	the	insert_id	property:
$id	=	$mysqli->insert_id;

If	 the	 query	 just	 executed	 was	 an	UPDATE,	INSERT,	 or	DELETE,	 you	 can	 retrieve	 the	 number	 of



affected	 rows—how	 many	 rows	 were	 updated,	 inserted,	 or	 deleted—from	 the	 affected_rows
property:
Click	here	to	view	code	image

echo	"$mysqli->affected_rows	rows

were	affected	by	the	query.";

The	last	thing	to	know,	before	executing	any	queries,	is	how	to	sanctify	data	used	in	the	query.	To	do	so,
apply	the	real_escape_method()	to	a	string	variable	beforehand:
Click	here	to	view	code	image

$var	=	$mysqli->real_escape_

string($var);

This	is	equivalent	to	invoking	mysqli_real_escape_string(),	and	it	prevents	apostrophes	and
other	problematic	characters	from	breaking	the	syntax	of	the	SQL	command.
Using	all	this	information,	the	next	set	of	steps	will	rewrite	register.php	(Script	13.7)	from	Chapter
13	using	OOP.

To	execute	simple	queries:
1.	Open	register.php	(Script	13.7)	in	your	text	editor	or	IDE.
2.	Change	the	inclusion	of	the	MySQL	connection	script	to	(Script	16.2)
Click	here	to	view	code	image

require('../mysqli_oop_connect.php');

Assuming	that	mysqli_oop_connect.php	is	in	the	directory	above	this	one,	this	code	will	work.
If	your	directory	structure	differs,	change	the	reference	to	the	file	accordingly.

3.	Change	each	use	of	mysqli_real_escape_string()	to:
Click	here	to	view	code	image

$mysqli->real_escape_string():

$fn	=	$mysqli->real_escape_string

(trim($_POST['first_name']));

$ln	=	$mysqli->real_escape_string

(trim($_POST['last_name']));

$e	=	$mysqli->real_escape_string

(trim($_POST['email']));

Three	pieces	of	data—all	strings,	naturally—are	escaped	for	added	protection	 in	 the	query.	 Because
the	script	now	uses	the	MySQL	Improved	extension	using	an	object-oriented	approach,	these	four	lines
should	be	changed.

4.	Update	how	the	query	is	executed	(line	52	of	the	original	script):
$mysqli->query($q);

To	execute	a	query	on	the	database	using	OOP,	call	the	object’s	query()	method,	providing	it	with
the	query	to	be	run.

5.	Change	the	confirmation	of	the	query’s	execution	to	read	(originally	line	53)
Click	here	to	view	code	image

if	($mysqli->affected_rows	= =	1)	{

The	previous	version	of	the	script	used	the	result	variable	to	confirm	that	the	query	worked:



if	($r)	{

Here,	the	conditional	more	formally	asserts	that	the	number	of	affected	rows	equals	1.

Script	16.2	This	updated	version	of	the	registration	script	uses	the	MySQL	Improved	extension	via	OOP.
Click	here	to	view	code	image

1			<?php	#	Script	16.2	-	register.php	#4

2			//	This	script	performs	an	INSERT	query	to	add	a	record	to	the	users	table.

3			

4			$page_title	=	'Register';

5			include('includes/header.html');

6			

7			//	Check	for	form	submission:

8			if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

9			

10					require('mysqli_oop_connect.php');	//	Connect	to	the	db.

11			

12					$errors	=	[];	//	Initialize	an	error	array.

13			

14					//	Check	for	a	first	name:

15					if	(empty($_POST['first_name']))	{

16								$errors[]	=	'You	forgot	to	enter	your	first	name.';

17					}	else	{

18								$fn	=	$mysqli->real_escape_string(trim($_POST['first_name']));

19					}

20			

21					//	Check	for	a	last	name:

22					if	(empty($_POST['last_name']))	{

23								$errors[]	=	'You	forgot	to	enter	your	last	name.';

24					}	else	{

25								$ln	=	$mysqli->real_escape_string(trim($_POST['last_name']));

26					}

27			

28					//	Check	for	an	email	address:

29					if	(empty($_POST['email']))	{

30								$errors[]	=	'You	forgot	to	enter	your	email	address.';

31					}	else	{

32								$e	=	$mysqli->real_escape_string(trim($_POST['email']));

33					}

34			

35					//	Check	for	a	password	and	match	against	the	confirmed	password:

36					if	(!empty($_POST['pass1']))	{

37								if	($_POST['pass1']	!=	$_POST['pass2'])	{

38											$errors[]	=	'Your	password	did	not	match	the	confirmed	password.';

39								}	else	{

40											$p	=	password_hash(trim($_POST['pass1']),	PASSWORD_DEFAULT);

41								}

42					}	else	{

43								$errors[]	=	'You	forgot	to	enter	your	password.';

44					}

45			

46					if	(empty($errors))	{	//	If	everything's	OK.

47			

48								//	Register	the	user	in	the	database...

49			

50								//	Make	the	query:

51								$q	=	"INSERT	INTO	users	(first_name,	last_name,	email,	pass,	registration_date)

										VALUES	('$fn',	'$ln',	'$e',	'$p',	NOW()	)";

52								$r	=	@$mysqli->query($q);	//	Run	the	query.

53								if	($mysqli->affected_rows	==	1)	{	//	If	it	ran	OK.

54			



55											//	Print	a	message:

56											echo	'<h1>Thank	you!</h1>

57								<p>You	are	now	registered.	In	Chapter	12	you	will	actually	be	able	to	log	in!

										</p><p><br></p>';

58

59								}	else	{	//	If	it	did	not	run	OK.

60

61											//	Public	message:

62											echo	'<h1>System	Error</h1>

63											<p	class="error">You	could	not	be	registered	due	to	a	system	error.	We	apologize	for

													any	inconvenience.</p>';

64

65											//	Debugging	message:

66											echo	'<p>'	.	$mysqli->error	.	'<br><br>Query:	'	.	$q	.	'</p>';

67			

68								}	//	End	of	if	($r)	IF.

69			

70								$mysqli->close();	//	Close	the	database	connection.

71								unset($mysqli);

72			

73								//	Include	the	footer	and	quit	the	script:

74								include('includes/footer.html');

75								exit();

76			

77					}	else	{	//	Report	the	errors.

78			

79								echo	'<h1>Error!</h1>

80								<p	class="error">The	following	error(s)	occurred:<br>';

81								foreach	($errors	as	$msg)	{	//	Print	each	error.

82											echo	"	-	$msg<br>\n";

83								}

84								echo	'</p><p>Please	try	again.</p><p><br></p>';

85			

86					}	//	End	of	if	(empty($errors))	IF.

87			

88								$mysqli->close();	//	Close	the	database	connection.

89								unset($mysqli);

90			

91			}	//	End	of	the	main	Submit	conditional.

92			?>

93			<h1>Register</h1>

94			<form	action="register.php"	method="post">

95						<p>First	Name:	<input	type="text"	name="first_name"	size="15"	maxlength="20"	value="<?php

								if	(isset($_POST['first_name']))	echo	$_POST['first_name'];	?>"></p>

96						<p>Last	Name:	<input	type="text"	name="last_name"	size="15"	maxlength="40"	value="<?php	if

								(isset($_POST['last_name']))	echo	$_POST['last_name'];	?>"></p>

97						<p>Email	Address:	<input	type="email"	name="email"	size="20"	maxlength="60"	value="<?php	if

								(isset($_POST['email']))	echo	$_POST['email'];	?>"	>	</p>

98						<p>Password:	<input	type="password"	name="pass1"	size="10"	maxlength="20"	value="<?php	if

								(isset($_POST['pass1']))	echo	$_POST['pass1'];	?>"	></p>

99						<p>Confirm	Password:	<input	type="password"	name="pass2"	size="10"	maxlength="20"

								value="<?php	if	(isset($_POST['pass2']))	echo	$_POST['pass2'];	?>"	></p>

100					<p><input	type="submit"	name="submit"	value="Register"></p>

101		</form>

102		<?php	include('includes/footer.html');	?>

6.	Update	the	debugging	error	message	to	use	the	object	(line	66	of	the	original	script):
Click	here	to	view	code	image

echo	'<p>'	.	$mysqli->error	.

'<br><br>Query:	'	.	$q	.	'</p>';



Instead	of	invoking	the	mysqli_error()	function,	the	error	property	of	the	object	will	store	the
database	reported	problem	 .

7.	Finally,	change	both	instances	where	the	database	connection	is	closed	to
$mysqli->close();

unset($mysqli);

The	 first	 line	closes	 the	connection.	The	second	 line	 removes	 the	variable	 from	existence.	This	 step
frees	up	the	used	memory	and	though	not	obligatory,	is	a	professional	touch.
The	original	script	closed	the	database	connection	in	two	places;	make	sure	you	update	both.

8.	Save	the	script,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	If	all	of	the	code	was	updated	as	appropriate,	the	registration	script	should	work	as	it	did	before.

Fetching	results
The	previous	section	demonstrated	how	to	execute	“simple”	queries,	which	is	how	I	categorize	queries
that	don’t	return	rows	of	results.	When	executing	SELECT	queries,	the	code	is	a	bit	different,	because	you
have	to	handle	the	query’s	results.	First,	after	establishing	the	MySQLi	object,	you	run	the	query	on	the
database	using	the	query()	method.	If	the	query	is	expected	to	return	a	result	set,	assign	the	results	of
the	method	invocation	to	another	variable:
Click	here	to	view	code	image

$q	=	'SELECT	*	FROM	tablename';

$result	=	$mysqli->query($q);

The	$result	 variable	will	 be	 an	 object	 of	 type	MySQLi_Result:	 just	 as	 some	 functions	 return	 a
string	 or	 an	 integer,	 MySQLi::query()	 will	 return	 a	 MySQLi_Result	 object.	 Its	 num_rows
property	will	reflect	the	number	of	records	in	the	query	result:
if	($result->num_rows	>	0)	{

		//	Handle	the	results.

If	you	have	only	one	row	returned	by	the	query,	you	can	just	call	the	fetch_array()	method	to	get	it:
Click	here	to	view	code	image

$row	=	$result->fetch_array();



This	 method,	 like	 the	 procedural	 mysqli_fetch_array()	 counterpart,	 takes	 a	 constant	 as	 an
optional	 argument	 to	 indicate	 whether	 the	 returned	 row	 should	 be	 treated	 as	 an	 associative	 array
(MYSQLI_ASSOC),	an	 indexed	array	(MYSQLI_NUM),	 or	both	 (MYSQLI_BOTH).	MYSQLI_BOTH	 is
the	default	value.
When	you	have	multiple	records	to	fetch,	you	can	do	so	using	a	loop:
Click	here	to	view	code	image

while	($row	=	$result->fetch_array

(MYSQLI_NUM))	{

		//	Use	$row.

}

With	 that	 code,	$row	within	 the	 loop	will	 be	 an	 array,	meaning	 you	 access	 individual	 columns	 using
either	$row[0]	 or	$row[‘column’]	 (assuming	 you’re	 using	 the	 appropriate	 constant).	 If	 you’re
really	enjoying	the	OOP	syntax,	you	can	use	the	fetch_object()	method	instead,	thereby	creating	an
object	instead	of	an	array:
Click	here	to	view	code	image

$q	=	'SELECT	user_id,	first_name

FROM	users';

$result	=	$mysqli->query($q);

while	($row	=	$result->fetch_object

())	{

		//	Use	$row->user_id

		//	Use	$row->first_name

}

Once	you’re	done	with	the	results,	you	should	free	the	resources	they	required:
$result->free();

Let’s	take	this	information	to	update	view_users.php	(Script	9.6).

To	retrieve	query	results:
1.	Open	view_users.php	(Script	9.6)	in	your	text	editor	or	IDE.
I’ve	chosen	to	update	this	version	since	it’s	shorter,	but	feel	free	to	update	a	later	version	of	the	same
script	if	you’d	rather.

2.	Change	the	inclusion	of	the	MySQL	connection	script	to	(Script	16.3)
Click	here	to	view	code	image

require('../mysqli_oop_connect.php');

Script	16.3	The	MySQLi	and	MySQLi_Result	classes	are	used	in	this	script	to	fetch	records	from	the
database.
Click	here	to	view	code	image

1						<?php	#	Script	16.3	-	view_users.php	#6

2						//	This	script	retrieves	all	the	records	from	the	users	table.

3						//	This	is	an	OOP	version	of	the	script	from	Chapter	10.

4						

5						$page_title	=	'View	the	Current	Users';

6						include('includes/header.html');

7						

8						//	Page	header:

9						echo	'<h1>Registered	Users</h1>';



10				

11				require('../mysqli_oop_connect.php');	//	Connect	to	the	db.

12				

13				//	Make	the	query:

14				$q	=	"SELECT	CONCAT(last_name,	',	',	first_name)	AS	name,	DATE_FORMAT(registration_date,	'%M	%d,	%Y')	AS	dr	FROM	users	ORDER	BY	registration_date	ASC";

15				$r	=	$mysqli->query($q);	//	Run	the	query.

16				

17				//	Count	the	number	of	returned	rows:

18				$num	=	$r->num_rows;

19				

20				if	($num	>	0)	{	//	If	it	ran	OK,	display	the	records.

21				

22									//	Print	how	many	users	there	are:

23									echo	"<p>There	are	currently	$num	registered	users.</p>\n";

24				

25									//	Table	header.

26									echo	'<table	width="60%">

27									<thead>

28									<tr><td	align="left"><strong>Name	</strong></td><td	align="left"><strong>Date	Registered</strong></td></tr>

29									</thead>

30									<tbody>

31				';

32				

33									//	Fetch	and	print	all	the	records:

34									while	($row	=	$r->fetch_	object())	{

35															echo	'<tr><td	align="left">'	.	$row->name	.	'</td><td	align="left">'	.	$row->dr	.	'</td></tr>

36															';

37									}

38				

39									echo	'</tbody></table>';	//	Close	the	table.

40				

41									$r->free();	//	Free	up	the	resources.

42									unset($r);

43				

44				}	else	{	//	If	no	records	were	returned.

45				

46									echo	'<p	class="error">There	are	currently	no	registered	users.</p>';

47				

48				}

49				

50				//	Close	the	database	connection.

51				$mysqli->close();

52				unset($mysqli);

53				

54				include('includes/footer.html');

55				?>

Again,	the	path	needs	to	be	correct	for	your	setup.
3.	Change	the	execution	of	the	query	to	(originally	line	14)

$r	=	$mysqli->query($q);

Regardless	 of	 the	 type	 of	 query	 being	 executed,	 the	 same	 MySQLi::query()	 method	 is	 called.
Here,	though,	the	results	of	executing	the	query	are	assigned	to	a	new	variable,	which	will	be	an	object
of	type	MySQLi_Result.
For	 brevity,	 I’m	 calling	 this	 variable	 just	$r,	 but	 you	 can	 use	 the	more	 formal	$result,	 if	 you’d
prefer.

4.	Alter	how	the	number	of	returned	rows	is	determined	to	(line	17	of	the	original	script):
$num	=	$r->num_rows;



The	 result	 object’s	num_rows	 property	 reflects	 the	 number	 of	 records	 returned	 by	 the	 query.	 This
value	is	assigned	to	the	variable	$num,	as	before.
Note	that	this	is	a	property,	not	a	method	(it’s	$r->num_rows,	not	$r->num_rows()).

5.	Change	the	while	loop	to	read
Click	here	to	view	code	image

while	($row	=	$r->fetch_object())	{

The	change	here	is	that	the	MySQLi_Result	object’s	fetch_object()	function	is	called	instead
of	invoking	mysqli_fetch_array().

6.	Within	the	while	loop,	change	how	each	column’s	value	is	printed:
Click	here	to	view	code	image

echo	'<tr><td	align="left">'	.

$row->name	.	'</td>

<td	align="left">'	.	$row->dr	.

'</td></tr>

';

Since	the	$row	variable	is	now	an	object,	object	notation,	instead	of	array	notation,	must	be	used	to
refer	 to	 the	 columns	 in	 each	 row:	$row->name	 and	$row->dr	 instead	 of	$row[‘name’]	 and
$row[‘dr’].

7.	Change	how	the	resources	are	freed:
$r->free();

unset($r);

To	 free	 the	 memory	 taken	 by	 the	 returned	 results,	 call	 the	 MySQLi_Result	 object’s	 free()
method.	Furthermore,	since	that	object	won’t	be	used	anymore	in	the	script,	it	can	be	unset.

8.	Update	how	the	database	connection	is	closed:
$mysqli->close();

unset($mysqli);

9.	Save	the	script,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .



	 The	 object-oriented	 version	 of	view_users.php	 (Script	 16.3)	 looks	 the	 same	 as	 the	 original
procedural	version.

Tip
The	real	benefit	of	using	the	fetch_object()	method	is	that	you	can	have	the	results	fetched
as	a	particular	type	of	object.	For	example,	say	you	have	defined	a	Car	class	in	PHP	and	a	script
fetches	all	the	stored	information	about	cars	from	the	database.	In	the	PHP	script,	each	record	can
be	 fetched	 as	 an	 object	 of	 the	Car	 class	 type.	 By	 doing	 so,	 you’ll	 have	 created	 a	 PHP	Car
object,	whose	data	is	populated	from	the	database	record,	but	you	can	still	invoke	the	methods	of
the	Car	class.

Prepared	statements
Chapter	13	introduced	another	way	of	executing	queries:	using	prepared	statements.	Prepared	statements
can	offer	improved	security,	and	possibly	even	better	performance,	over	the	standard	approach	to	running
queries.	Naturally,	you	can	execute	prepared	statements	using	the	MySQL	Improved	extension	as	objects.
The	steps	are	the	same:	after	creating	a	MySQLi	object	(and	therefore	a	connection	to	the	database),	you

	Prepare	the	query
	Bind	the	parameters
	Execute	the	query

In	actual	code	that	looks	like:
Click	here	to	view	code	image

$q	=	'INSERT	INTO	tablename

(this,	that)	VALUES	(?,	?)';

$stmt	=	$mysqli->prepare($q);



$stmt->bind_param('si',	$this,	$that);

$this	=	'Larry';

$that	=	234;

$stmt->execute();

The	MySQLi::prepare()	method	returns	an	object	of	 type	MySQLi_Stmt.	That	object	has	a	 few
key	properties:

	affected_rows	 stores	 how	many	 rows	were	 affected	 by	 the	 statement,	 normally	 applicable	 to
INSERT,	UPDATE,	and	DELETE	queries.
	num_rows	reflects	the	number	of	records	in	the	result	set	for	a	SELECT	query.
	insert_id	stores	the	automatically	generated	ID	value	for	the	previous	INSERT	query.
	error	represents	any	error	that	might	have	occurred.

Once	you’re	done	executing	the	prepared	statement,	you	should	close	the	statement:
$stmt->close();

Let’s	apply	this	information	by	updating	post_message.php	(Script	13.6).	This	is	a	standalone	script
that	uses	the	forum	database	and	isn’t,	in	Chapter	13	or	this	chapter,	tied	to	any	other	scripts.

To	execute	prepared	statements:
1.	Open	post_message.php	(Script	13.6)	in	your	text	editor	or	IDE.
2.	Change	the	creation	of	the	database	connection	to	(Script	16.4)
Click	here	to	view	code	image

$mysqli	=	new	MySQLi('localhost',

'username',	'password',	'forum');

$mysqli->set_charset('utf8');

Script	16.4	 In	 this	version	of	 a	 script	 from	Chapter	13,	 the	MySQLi_Stmt	 class	 is	 used	 to	 execute	 a
prepared	statement.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5			<title>Post	a	Message</title>

6			</head>

7			<body>

8			<?php	#	Script	16.4	-	post_message.php	#2

9			//	This	is	an	OOP	version	of	the	script	from	Chapter	13.

10				

11		if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

12				

13					//	Validate	the	data	(omitted)!

14				

15					//	Connect	to	the	database:

16					$mysqli	=	new	MySQLi('localhost',	'username',	'password',	'forum');

17					$mysqli->set_charset('utf8');

18					

19					//	Make	the	query:

20					$q	=	'INSERT	INTO	messages	(forum_id,	parent_id,	user_id,	subject,	body,

							date_entered)	VALUES	(?,	?,	?,	?,	?,	NOW())';

21					

22					//	Prepare	the	statement:



23					$stmt	=	$mysqli->prepare($q);

24					

25					//	Bind	the	variables:

26					$stmt->bind_param('iiiss',	$forum_id,	$parent_id,	$user_id,	$subject,	$body);

27					

28					//	Assign	the	values	to	variables:

29					$forum_id	=	(int)	$_POST['forum_id'];

30					$parent_id	=	(int)	$_POST['parent_id'];

31					$user_id	=	3;	//	The	user_id	value	would	normally	come	from	the	session.

32					$subject	=	strip_tags($_POST['subject']);

33					$body	=	strip_tags($_POST['body']);

34				

35					//	Execute	the	query:

36					$stmt->execute();

37					

38					//	Print	a	message	based	upon	the	result:

39					if	($stmt->affected_rows	==	1)	{

40											echo	'<p>Your	message	has	been	posted.</p>';

41					}	else	{

42											echo	'<p	style="font-weight:	bold;	color:	#C00">Your	message	could	not	be	posted.</p>';

43											echo	'<p>'	.	$stmt->error	.	'</p>';

44					}

45					

46					//	Close	the	statement:

47					$stmt->close();

48					unset($stmt);

49					

50					//	Close	the	connection:

51					$mysqli->close();

52					unset($mysqli);

53				

54		}	//	End	of	submission	IF.

55			

56		//	Display	the	form:

57		?>

58		<form	action="post_message.php"	method="post">

59				

60					<fieldset><legend>Post	a	message:</legend>

61					

62					<p><strong>Subject</strong>:	<input	name="subject"	type="text"	size="30"	maxlength="100">

							</p>

63					

64					<p><strong>Body</strong>:	<textarea	name="body"	rows="3"	cols="40"></textarea></p>

65					

66					</fieldset>

67					<div	align="center"><input	type="submit"	name="submit"	value="Submit"></div>

68					<input	type="hidden"	name="forum_id"	value="1">

69					<input	type="hidden"	name="parent_id"	value="0">

70				

71		</form>

72		</body>

73		</html>

The	previous	version	of	the	script	did	not	use	a	separate	connection	script,	and	neither	will	 this	one.
Make	sure	your	values	are	correct	for	connecting	to	the	forum	database	on	your	server.

3.	Alter	the	preparation	of	the	query	to	read	(line	21	of	the	original	script):
$stmt	=	$mysqli->prepare($q);

The	MySQLi::prepare()	method	 prepares	 a	 statement,	 taking	 the	 query	 as	 its	 lone	 argument.	 It
returns	an	object	of	type	MySQLi_Stmt,	assigned	to	$stmt	here.



4.	Change	the	binding	of	parameters	to
Click	here	to	view	code	image

$stmt->bind_param('iiiss',

$forum_id,	$parent_id,	$user_id,

$subject,	$body);

This	 code	 change	 is	 simply	 from	 mysqli_stmt_bind_param($stmt...	 to	 $stmt-
>bind_param(....	 The	method’s	 first	 argument	 is	 an	 indicator	 of	 the	 data	 types	 to	 follow.	 The
subsequent	arguments	are	the	PHP	variables	to	which	the	query’s	placeholders	are	bound.

5.	Update	the	execution	of	the	statement	to
$stmt->execute();

6.	Change	the	conditional	that	tests	the	success	to
Click	here	to	view	code	image

if	($stmt->affected_rows	= =	1)	{

To	confirm	the	success	of	an	INSERT	query,	check	the	number	of	affected	rows,	here	referencing	the
affected_rows	property	of	the	MySQLi_Stmt	object.

7.	Change	the	error	reporting	to	use
Click	here	to	view	code	image

echo	'<p>'	.	$stmt->error	.	'</p>';

At	this	point	in	the	script,	an	error	would	most	likely	be	the	result	of	something	like	using	a	duplicate
value	for	a	column	that	must	be	unique.	If	there	was	a	syntactical	error	in	the	query,	that	would	be	in
$mysqli->error	after	preparing	the	query.

8.	Update	how	the	statement	is	closed:
$stmt->close();

unset($stmt);

9.	Alter	how	the	database	connection	is	closed:
$mysqli->close();

unset($mysqli);

10.	Save	the	script,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 	and	 .

	The	HTML	form	for	posting	a	new	message.



	The	new	message	has	been	successfully	stored	in	the	database.

The	DateTime	Class
The	 DateTime	 class	 was	 added	 in	 PHP	 version	 5.2.	 An	 alternative	 to	 the	 date-	 and	 time-related
functions	 introduced	 in	 Chapter	 11,	 “Web	 Application	 Development,”	 the	DateTime	 class	 packages
together	all	 the	 functionality	you	might	need	 for	manipulating	dates	and	 times.	 It’s	especially	useful	 for
converting	and	comparing	dates	and	times.
To	begin,	create	a	new	DateTime	object:
$dt	=	new	DateTime();

If	 created	without	providing	any	arguments	 to	 the	constructor,	 the	generated	DateTime	 argument	will
represent	the	current	date	and	time.	To	create	a	representation	of	a	specific	date	and	time,	provide	that	as
the	first	argument:
Click	here	to	view	code	image

$dt	=	new	DateTime('2018-04-20');

$dt	=	new	DateTime('2018-04-20	11:15');

There	 are	many	 acceptable	 formats	 for	 specifying	 the	 date	 and	 time,	 and	 they	 are	 detailed	 in	 the	 PHP
manual.	 You	 can	 also	 establish	 the	 date	 or	 time	 after	 creating	 the	 object	 using	 the	setDate()	 and
setTime()	methods.	The	setDate()	method	expects	 to	 receive,	 in	order,	 the	desired	year,	month,
and	day.	The	setTime()	method	takes	the	hour,	minute,	and	optional	seconds	as	its	arguments:
$dt	=	new	DateTime();

$dt->setDate(2018,	4,	20);

$dt->setTime(11,	15);



Outbound	Parameters
As	 in	Chapter	 13,	 the	post_message.php	 script	 is	 a	 demonstration	 of	 using	 inbound
parameters:	 associating	 placeholders	 in	 a	 query	 with	 PHP	 variables.	 You	 can	 also	 use
outbound	parameters:	binding	the	values	returned	by	a	query	to	PHP	variables.	To	start,	you
prepare	the	query:

Click	here	to	view	code	image

$q	=	'SELECT	this,	that	FROM	tablename';

$stmt	=	$mysqli->prepare($q);

Then	you	bind	the	returned	rows	to	variables:
Click	here	to	view	code	image

$stmt->bind_result($this,	$that);

Next,	 you	 call	 the	MySQLi_Stmt::fetch()	 method,	 most	 likely	 as	 part	 of	 a	while
loop:
while	($stmt->fetch())	{

}

Within	the	while	loop,	$this	and	$that	will	store	each	record’s	returned	columns.
Outbound	 parameters	 don’t	 offer	 added	 security,	 like	 inbound	 parameters,	 or	 necessarily
better	 performance,	 but	 if	 you	 have	 a	 query	 that	 uses	 prepared	 statements,	 it	 would	make
sense	to	use	both	inbound	and	outbound	parameters.	For	example,	take	a	login	query:

Click	here	to	view	code	image

SELECT	user_id,	first_name,	pass	FROM	users	WHERE	email='?'

You	would	use	inbound	parameters	to	represent	the	submitted	email	address	but	use	outbound
parameters	for	the	retrieved	user	ID,	first	name,	and	password	from	that	same	query.

The	DateTime	object	will	allow	you	to	establish	only	valid	dates	and	times,	throwing	an	exception	for
invalid	ones	 :
$dt	=	new	DateTime('2018-13-42');

	Attempting	to	create	a	DateTime	object	with	an	invalid	date	or	time	results	in	an	exception.



Exceptions	are	a	topic	not	previously	introduced.	Whereas	procedural	code	may	generate	errors,	objects
throw	exceptions	(yes,	it’s	said	that	they’re	thrown).	When	you	get	further	along	with	OOP,	you’ll	learn
how	to	use	try...catch	blocks	to	“catch”	and	handle	thrown	exceptions.
The	DateTime	 constructor	 takes	 an	 optional	 second	 argument,	 which	 is	 the	 time	 zone	 to	 use.	 If	 not
provided,	the	default	time	zone	for	that	PHP	installation	applies.	You	can	also	change	the	time	zone	after
the	fact	by	using	setTimezone().	Note	that	both	the	setTimezone()	method	and	 the	constructor
take	DateTimeZone	objects	as	arguments,	not	strings:
Click	here	to	view	code	image

$tz	=	new	DateTimeZone

('America/New_York');

$dt->setTimezone($tz);

Once	you	have	a	DateTime	object,	you	can	manipulate	its	value	by	adding	and	subtracting	time	periods.
One	way	to	do	so	is	with	the	modify()	method:
Click	here	to	view	code	image

$dt->modify('+1	day');

$dt->modify('-1	month');

$dt->modify('next	Thursday');

The	values	you	can	provide	to	the	method	are	quite	flexible,	and	correspond	to	those	that	are	usable	in	the
strtotime()	function	(which	converts	a	string	to	a	timestamp;	see	the	PHP	manual	for	details).
The	add()	method	 is	 used	 to	 add	 a	 time	period	 to	 the	 represented	date	 and	 time.	 It	 takes	 as	 its	 lone
argument	an	object	of	type	DateInterval:
Click	here	to	view	code	image

$di	=	new	DateInterval(interval);

$dt->add($di);

There’s	a	specific	notation	used	to	set	the	interval,	always	starting	with	the	letter	P,	for	“period.”	After
that,	add	an	integer	and	a	period	designator:	Y,	for	years;	M,	for	months;	D,	for	days;	W,	for	weeks;	H,	for
hours;	M,	for	minutes;	and	S,	for	seconds.	You	may	wonder	how	the	letter	M	can	represent	both	months
and	minutes;	 this	 is	possible	because	hours,	minutes,	 and	seconds	should	also	be	preceded	by	a	T,	 for
time.	These	characters	should	be	combined	in	order	from	largest	to	smallest	(i.e.,	from	years	to	seconds).
Here	are	some	examples:

	P3W	represents	three	weeks.
	P2Y3M	represents	two	years	and	three	months.
	P2M3DT4H18M43S	represents	two	months,	three	days,	four	hours,	18	minutes,	and	43	seconds.

The	sub()	method	functions	just	the	same	as	add(),	but	subtracts	the	time	period	from	the	object:
Click	here	to	view	code	image

$di	=	new	DateInterval('P2W');

//	2	weeks

$dt->sub($di);

The	diff()	method	 returns	 a	DateInterval	 object	 that	 reflects	 the	 amount	 of	 time	 between	 two
DateTime	objects:
$diff	=	$dt->diff($dt2);

The	DateInterval	 class	 defines	 several	 properties	 for	 representing	 the	 calculated	 interval:	y	 for



years,	m	 for	 months,	 d	 for	 days,	 h	 for	 hours,	 i	 for	 minutes,	 s	 for	 seconds,	 and	 days,	 which	 also
represents	days.
The	 last	 DateTime	 class	 method	 you	 should	 be	 familiar	 with	 is	 format(),	 which	 returns	 the
represented	date	formatted	as	you	want	it:
echo	$dt->format(format);

For	the	formatting,	you	can	use	the	same	characters	as	the	date()	function,	covered	in	Chapter	11.
To	 demonstrate	 all	 this	 information,	 this	 next	 script	will	 perform	 a	 task	 needed	 by	many	web	 sites:	 it
allows	the	user	to	enter	two	dates	to	create	a	range	 .	The	script	will	make	use	of	the	new	HTML5	date
input	type	to	provide	a	good	interface	to	the	user .

	A	simple	form	for	entering	two	dates,	with	the	format	specified.	Confusingly,	although	the	value	is	set
and	passed	as	YYYY-MM-DD	(check	the	HTML	source	to	confirm),	modern	browsers	may	still	format
the	displayed	value	to	your	regional	norm	(MM/DD/YYYY	here).

	How	the	Microsoft	Edge	browser	renders	the	input	type	selector.
This	script	will	perform	top-quality	validation	of	 the	submitted	dates	and	calculate	 the	number	of	days
between	them	 .	The	information	presented	could	easily	be	applied	to,	say,	a	hotel	registration	system
or	the	like.	The	script	will	use	much	of	the	information	just	presented	and	even	do	a	straight	comparison
of	two	DateTime	objects,	a	feature	possible	since	PHP	5.2.2.



	 If	 two	valid	dates	 are	 submitted,	with	 the	 ending	date	 coming	 after	 the	 starting	date,	 the	 dates	 are
displayed	again,	along	with	the	calculated	interval.

To	use	the	DateTime	class:
1.	Begin	a	new	PHP	script	in	your	text	editor	or	IDE,	to	be	named	datetime.php,	 starting	with	 the
HTML	(Script	16.5):

Click	here	to	view	code	image
<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>DateTime	Usage</title>

Script	16.5	Emulating	common	date	selection	functionality,	this	script	accepts	and	validates	two	dates.
Click	here	to	view	code	image

1			<!doctype	html>

2			<html	lang="en">

3			<head>

4						<meta	charset="utf-8">

5						<title>DateTime	Usage</title>

6						<style>

7						body	{

8									font-family:	Verdana,	Arial,	Helvetica,	sans-serif;

9									font-size:	12px;

10								margin:	10px;

11					}

12					label	{	font-weight:	bold;	}

13					.error	{	color:	#F00;	}

14					</style>

15		</head>

16		<body>

17		<?php	#	Script	16.5	-	datetime.php

18		

19		//	Set	the	start	and	end	date	as	today

				and	tomorrow	by	default:

20		$start	=	new	DateTime();

21		$end	=	new	DateTime();

22		$end->modify('+1	day');

23		

24		//	Default	format	for	displaying	dates:

25		$format	=	'Y-m-d';

26		

27		//	This	function	validates	a	provided

				date	string.



28		//	The	function	returns	an	array--month,

				day,	year--if	valid.

29		function	validate_date($date)	{

30		

31					//	Break	up	the	string	into	its

							parts:

32					$array	=	explode('-',	$date);

33					

34					//	Return	FALSE	if	there	aren't	3

							items:

35					if	(count($array)	!=	3)	return	false;

36					

37					//	Return	FALSE	if	it's	not	a	valid

							date:

38					if	(!checkdate($array[1],	$array[2],	$array[0]))	return	false;

39					

40					//	Return	the	array:

41					return	$array;

42		

43		}	//	End	of	validate_date()	function.

44		

45		//	Check	for	a	form	submission:

46		if	(isset($_POST['start'],

				$_POST['end']))	{

47		

48					//	Call	the	validation	function	on

							both	dates:

49					if	(	(list($sy,	$sm,	$sd)	=	validate_

							date($_POST['start']))	&&	(list($ey,

							$em,	$ed)	=	validate_date($_POST

							['end']))	)	{

50		

51								//	If	it's	okay,	adjust	the

										DateTime	objects:

52								$start->setDate($sy,	$sm,	$sd);

53								$end->setDate($ey,	$em,	$ed);

54								

55								//	The	start	date	must	come	first:

56								if	($start	<	$end)	{

57								

58											//	Determine	the	interval:

59											$interval	=	$start->

													diff($end);

60								

61											//	Print	the	results:

62											echo	"<p>The	event	has	been

													planned	starting	on	{$start->

													format($format)}	and	ending	on

													{$end->format($format)},	which

													is	a	period	of	$interval->days

													day(s).</p>";

63								

64								}	else	{	//	End	date	must	be

										later!

65											echo	'<p	class="error">The

													starting	date	must	precede	the

													ending	date.</p>';

66								}

67		

68					}	else	{	//	An	invalid	date!

69								echo	'<p	class="error">One	or

										both	of	the	submitted	dates	was

										invalid.</p>';

70					}



71		

72		}	//	End	of	form	submission.

73		

74		//	Show	the	form:

75		?>

76		<h2>Set	the	Start	and	End	Dates	for	the

				Thing</h2>

77		<form	action="datetime.php"

				method="post">

78		

79					<p><label	for="start">Start

							Date:</label>	<input	type="date"

							name="start"	value="<?php	echo

							$start->format($format);	?>">

							(YYYY-MM-DD)</p>

80					<p><label	for="end">End	Date:</

							label>	<input	type="date"	name="end"

							value="<?php	echo	$end->format

							($format);	?>">	(YYYY-MM-DD)</p>

81					

82					<p><input	type="submit"

							value="Submit"></p>

83		</form>

84		</body>

85		</html>

2.	Add	a	splash	of	CSS:
Click	here	to	view	code	image

<style>

body	{

		font-family:	Verdana,	Arial,

		 Helvetica,	sans-serif;

		font-size:	12px;

		margin:	10px;

}

label	{	font-weight:	bold;	}

.error	{	color:	#F00;	}

</style>

Only	the	error	class	here	is	significant	in	terms	of	the	functionality.	It	will	format	error	messages	in	red
text.

3.	Complete	the	head	and	begin	the	body	and	the	PHP	section:
Click	here	to	view	code	image

</head>

<body>

<?php	#	Script	16.5	-	datetime.php

4.	Create	two	DateTime	objects:
$start	=	new	DateTime();

$end	=	new	DateTime();

Whether	the	form	has	been	submitted	or	not,	two	DateTime	objects	are	first	created,	both	of	which
will	be	instantiated	using	the	current	date	and	time.	Subsequently,	one	or	both	objects	will	be	assigned
new	values.

5.	Add	one	day	to	the	end	date:
$end->modify('+1	day');



By	default,	when	the	page	 is	 first	 loaded,	 the	form	will	be	preset	with	 today	as	 the	starting	date	and
tomorrow	as	the	ending	date.	To	determine	the	ending	date,	simply	modify	the	object’s	current	value,
adding	one	day.
Using	the	DateInterval	object	and	the	DateTime::add()	method,	you	can	do	the	same	thing
like	so:

Click	here	to	view	code	image
$day	=	new	DateInterval('P1D');

$end->add($day);

6.	Establish	the	default	format	for	displayed	dates:
$format	=	'Y-m-d';

The	 script	 will	 use	 a	 formatted	 version	 of	 the	 date	 in	 four	 places.	 Assigning	 the	 preferred	 format
—YYYY-MM-DD—to	a	variable	makes	it	easier	to	change	later,	if	desired.
This	specific	format	string	is	used	because	that’s	what	the	date	input	type	requires	to	preset	a	value.

7.	Begin	defining	a	function:
Click	here	to	view	code	image

function	validate_date($date)	{

$array	=	explode('-',	$date);

Both	submitted	dates	will	need	to	be	validated	in	a	couple	of	ways,	and	whenever	you	have	repeating
code	in	a	script	or	application,	defining	a	function	to	execute	that	code	may	make	sense.	This	function
takes	a	date	string	(not	a	DateTime	object)	as	its	lone	argument.	The	string	will	be	the	user-submitted
value,	something	like	2018/08/02.	The	first	thing	the	function	does	is	break	up	the	string	into	its	three
separate	parts—year,	month,	and	day—using	the	explode()	function.	The	resulting	array	is	assigned
to	the	$array	variable.

8.	If	the	array	does	not	contain	three	elements,	return	false:
Click	here	to	view	code	image

if	(count($array)	!=	3)	return	false;

The	 first	 thing	 the	 function	 does	 is	 confirm	 that	 it	 has	 exactly	 three	 discrete	 values	 to	 work	 with,
representing	a	year,	month,	and	day.	If	the	array	does	not	contain	three	elements,	the	function	returns	the
value	false	to	indicate	an	invalid	date.	The	explode()	line	in	Step	7	and	this	line	invalidate	any
submitted	value	that	doesn’t	fit	the	pattern	X-Y-Z	(although	that	could	still	be	cat-dog-zebra).
Note	that	normally	I	would	recommend	always	using	brackets	in	conditionals,	but	I’ve	made	this	code
as	short	as	possible	by	omitting	them,	and	keeping	the	entire	construct	on	a	single	line.	Also	remember
that	as	soon	as	a	function	executes	a	return	statement,	the	function	is	exited.

9.	If	the	provided	date	isn’t	a	valid	date,	return	false:
Click	here	to	view	code	image

if	(!checkdate($array[1],	$array[2],

$array[0]))	return	false;

Similar	to	Step	8,	this	code	invokes	PHP’s	checkdate()	function	to	confirm	that	the	provided	date
actually	exists.	If	the	date	does	not	exist,	such	as	2011/13/43,	the	function	again	returns	false.
Note	 that	 the	 incoming	 format	 is	Y-m-d	 but	 that	 the	checkdate()	 function	 takes	 the	 arguments	 as
month,	day,	and	year.

10.	Return	the	date	array	and	complete	the	function:



Click	here	to	view	code	image
		return	$array;

}	//	End	of	validate_date()

function.

If	 the	 provided	 date	 is	 of	 the	 correct	 format	 and	 corresponds	 to	 an	 existing	 date,	 the	 array	 of	 date
elements	is	returned	by	the	function.

11.	If	the	form	has	been	submitted,	validate	the	user-submitted	values:
Click	here	to	view	code	image

if	(isset($_POST['start'],

$_POST['end']))	{

		if	(	(list($sy,	$sm,	$sd)	=	

		 validate_date($_POST['start']))	

		 &&	(list($ey,	$em,	$ed)	=	

		 validate_date($_POST['end']))	)	{

If	 the	 two	 variables	 are	 set,	 meaning	 the	 form	 has	 been	 submitted,	 both	 are	 run	 through	 the
validate_date()	function.	If	that	function	returns	FALSE	for	either	date,	this	conditional	will	be
FALSE.	If	the	function	returns	an	array	for	both	dates,	assigned	to	corresponding	month,	day,	and	year
variables,	then	the	results	can	be	determined	and	displayed.

12.	Reset	the	dates	to	the	user-submitted	dates:
Click	here	to	view	code	image

$start->setDate($sy,	$sm,	$sd);

$end->setDate($ey,	$em,	$ed);

Because	the	provided	dates	are	valid	at	this	point,	both	objects	can	be	updated	to	represent	 the	user-
entered	dates.	To	do	so,	the	setDate()	method	is	invoked,	providing	it	with	the	individual	values.

13.	If	the	end	date	comes	after	the	start	date,	calculate	the	interval	between	them:
Click	here	to	view	code	image

if	($start	<	$end)	{

		$interval	=	$start->diff($end);

Just	 as	 you	 can	 compare	 two	 numbers	 to	 see	 if	 one	 is	 greater	 than	 or	 less	 than	 the	 other,	 you	 can
compare	two	DateTime	objects.	If	the	end	date	does	come	later,	then	the	difference	between	the	two
dates	 is	 calculated	 by	 invoking	 the	 diff()	 method	 on	 one	 object	 and	 providing	 the	 other	 as	 its
argument.	 The	 result	 is	 assigned	 to	 the	 $interval	 variable,	 which	 will	 be	 an	 object	 of	 type
DateInterval.

14.	Print	the	results:
echo	"<p>The	event	has	been

planned	starting	on	{$start->

format($format)}	and	ending	on

{$end->format($format)},	which

is	a	period	of	$interval->days

day(s).</p>";

Finally,	 the	 results	are	displayed	 .	As	you	 can	 see,	 it’s	 possible	 to	 invoke	object	methods	within
quotation	 marks,	 thereby	 printing	 the	 output	 of	 that	 function	 call,	 but	 you	 have	 to	 wrap	 the	 whole
construct	in	curly	brackets.	Referencing	attributes,	such	as	$interval->days,	does	not	require	the
curly	brackets.

15.	Complete	the	conditionals	begun	in	Steps	11	and	13:
Click	here	to	view	code	image



		}	else	{	//	End	date	must	be

		 later!

				echo	'<p	class="error">The

				 starting	date	must	precede

				 the	ending	date.</p>';

		}

}	else	{	//	An	invalid	date!

		echo	'<p	class="error">One	or

		 both	of	the	submitted	dates

		 was	invalid.</p>';

}

The	first	else	clause	applies	if	both	dates	are	valid,	but	the	end	date	does	not	follow	the	start	date	 .
The	 second	 else	 clause	 applies	 if	 either	 of	 the	 submitted	 dates	 does	 not	 pass	 the
validate_date()	test.	In	this	case,	both	dates	will	retain	the	default	settings	 .

	The	result	if	the	provided	starting	date	actually	follows	the	entered	ending	date.

	The	result	if	either	submitted	date	does	not	correspond	to	a	valid	date.
16.	Complete	the	form	submission	conditional,	close	the	PHP	block,	and	begin	the	HTML	form:
Click	here	to	view	code	image

}	//	End	of	form	submission.

?>

<h2>Set	the	Start	and	End	Dates

for	the	Thing</h2>

<form	action="datetime.php"

method="post">

17.	Create	the	two	inputs	for	the	dates:
Click	here	to	view	code	image

<p><label	for="start">Start	Date:



</label>	<input	type="date"

name="start"	value="<?php	echo

$start->format($format);	?>">

(YYYY-MM-DD)</p>

<p><label	for="end">End

Date:</label>	<input	type="date"

name="end"	value="<?php	echo

$end->format($format);	?>">

(YYYY-MM-DD)</p>

For	 each	 input,	 the	 value	 is	 preset	 by	 calling	 the	format()	method	 of	 the	 associated	 object.	 The
required	format	that	the	date	needs	to	be	entered	in	is	also	indicated	in	parentheticals.

18.	Complete	the	form	and	the	HTML	page:
Click	here	to	view	code	image

	<p><input	type="submit"

value="Submit"></p>

</form>

</body>

</html>

19.	Save	the	script	as	datetime.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser.
If,	when	you	 run	 this	 script,	 you	 see	 an	 exception	 about	 relying	upon	 the	 system’s	 time	 zone	 setting,
invoke	 date_default_timezone_set(),	 as	 explained	 in	 Chapter	 11,	 prior	 to	 creating	 the
DateTime	objects.

Tip
The	DateTime::getTimestamp()	method	returns	 the	Unix	 timestamp	for	 the	represented
date	and	time.

Tip
Internally,	the	DateTime	class	represents	the	dates	and	times	as	a	64-bit	number,	meaning	it	can
represent	dates	from	approximately	292	billion	years	ago	to	292	billion	years	from	now.

Tip
Several	 constants	 in	 the	 DateTime	 class	 represent	 common	 date-time	 formats,	 such	 as
DateTime::COOKIE.

Tip
The	DateTime	methods	are	also	represented	in	procedural	versions.

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).

http://LarryUllman.com/forums/


Review
	What	is	a	class?	What	is	a	method?	What	are	variables	defined	within	classes	called?
	What	is	an	object?	How	do	you	create	an	object	in	PHP?	How	do	you	call	an	object’s	methods?
	What	is	a	constructor?
	What	is	the	syntax	for	creating	a	MySQLi	object?
	How	do	you	execute	any	kind	of	query	using	MySQLi?
	How	 do	 you	make	 string	 data	 safe	 to	 use	 in	 a	 query,	 when	 using	MySQLi?	 Hint:	 There	 are	 two
answers.
	How	do	you	check	for,	and	display,	a	MySQLi	error?
	How	do	you	fetch	the	results	of	SELECT	queries	using	the	MySQLi	(and	other)	objects?	What	is	the
difference	 between	 using	 MySQLi_Result::fetch_array()	 and
MySQLi_Result::fetch_object()?
	How	do	you	execute	a	prepared	statement	using	the	MySQLi	and	MySQLi_Stmt	classes?
	What	 syntax	 is	 used	 to	 create	 a	 new	DateTime	 object?	What	 are	 the	 two	ways	 you	 can	 set	 the
object’s	date	and/or	time?
	What	is	an	exception?

Pursue
	When	you’re	interested	in	learning	more	about	OOP,	consider	reading	a	book	or	tutorial	on	the	generic
subject	of	OOP,	without	respect	to	any	given	programming	language.
	Check	out	the	PHP	manual’s	documentation	on	OOP	in	PHP	(www.php.net/oop).
	Revisit	Chapter	9	 if	 you’re	 unclear	 as	 to	 the	need	 to	 apply	real_escape_string()	 to	 string
data	used	in	queries.
	 Rewrite	 some	 of	 the	 other	 scripts	 from	 Chapter	 9	 and	 Chapter	 10,	 “Common	 Programming
Techniques,”	using	MySQLi.
	 Read	 through	 the	 full	 documentation	 for	 the	 DateTime	 class	 in	 the	 PHP	 manual
(www.php.net/datetime).
	Learn	about	the	strtotime()	function	in	the	PHP	manual	(www.php.net/strtotime).
	If	you	want	a	big	challenge,	apply	the	information	presented	in	the	previous	chapter,	along	with	 the
jQuery	 UI	 Datepicker	 tool,	 to	 create	 two	 JavaScript	 date	 selectors	 for	 the	 datetime.php
script.

http://www.php.net/oop
http://www.php.net/datetime
http://www.php.net/strtotime


















































































































































17.	Example—Message	Board

In	This	Chapter
Making	the	Database
Writing	the	Templates
Creating	the	Index	Page
Creating	the	Forum	Page
Creating	the	Thread	Page
Posting	Messages
Review	and	Pursue

The	functionality	of	a	message	board	(aka	a	forum)	is	rather	simple:	a	post	can	either	start	a	new	topic	or
be	 in	 response	 to	 an	 existing	one;	 posts	 are	 added	 to	 a	 database	 and	 then	displayed	on	 a	 page.	That’s
about	it.	Of	course,	sometimes	implementing	simple	concepts	can	be	quite	hard!
To	make	this	example	even	more	exciting	and	useful,	it’s	going	to	be	not	just	a	message	board	but	rather	a
multilingual	message	board.	Each	language	will	have	its	own	forum,	and	the	key	elements—navigation,
prompts,	introductory	text,	etc.—will	be	language-specific.
To	focus	on	the	most	important	aspects	of	this	web	application,	this	chapter	omits	some	others.	The	three
glaring	 omissions	 will	 be	 user	 management,	 error	 handling,	 and	 administration.	 This	 shouldn’t	 be	 a
problem	for	you,	though,	as	the	next	chapter	goes	over	user	management	and	error	handling	in	great	detail.
As	for	the	administration,	you’ll	find	some	recommendations	at	the	chapter’s	end.

Making	the	Database
The	first	step,	naturally,	is	to	create	the	database.	A	sample	message	board	database	 	was	developed	in
Chapter	6,	“Database	Design.”	Although	that	database	is	perfectly	fine,	a	variation	on	it	will	be	used	here
instead	 .	I’ll	compare	the	two	to	better	explain	the	changes.

	The	model	for	the	forum	database	developed	in	Chapter	6.



	The	revised	model	for	the	forum	database	to	be	used	in	this	chapter
To	start,	the	forums	table	is	replaced	with	a	languages	table.	Both	serve	the	same	purpose:	allowing	for
multiple	forums.	In	this	new	database,	the	topic—PHP	and	MySQL	for	Dynamic	Web	Sites—will	be	the
same	 in	every	forum,	but	each	forum	will	use	a	different	 language.	The	posts	will	differ	 in	each	forum
(this	won’t	be	a	translation	of	the	same	forum	in	multiple	languages).	The	languages	table	stores	the	name
of	a	language	in	its	own	alphabet	and	in	English,	for	the	administrator’s	benefit	(this	assumes,	of	course,
that	English	is	the	administrator’s	primary	language).
The	 threads	 table	 in	 the	 new	 database	 acts	 like	 the	messages	 table	 in	 the	 old	 one,	 with	 one	 major
difference.	Just	as	the	old	messages	table	relates	to	forums,	threads	 relates	to	the	 languages	and	users
tables;	 each	 message	 can	 be	 in	 only	 one	 forum	 and	 by	 only	 one	 user;	 each	 forum	 can	 have	 multiple
messages;	 and	 each	 user	 can	 post	multiple	messages.	 However,	 this	 threads	 table	 will	 store	 only	 the
subject,	not	the	message	itself.
There	are	a	couple	of	reasons	for	this	change.	First,	having	a	subject	repeat	multiple	times	with	each	reply
(replies,	 in	my	 experience,	 almost	 always	 have	 the	 same	 subject	 anyway)	 is	 unnecessary.	 Second,	 the
same	goes	for	the	lang_id	association	(it	doesn’t	need	to	be	in	each	reply	if	each	reply	is	associated	with
a	 single	 thread).	 Third,	 I’m	 changing	 the	 way	 a	 thread’s	 hierarchy	 will	 be	 indicated	 in	 this	 database
(you’ll	see	how	in	the	next	paragraph),	and	changing	the	table	structures	helps	in	that	regard.	Finally,	the
threads	table	will	be	used	every	time	a	user	looks	at	the	posts	in	a	forum.	Removing	the	message	bodies
from	that	table	will	improve	the	performance	of	those	queries.
Moving	on	to	the	posts	table,	its	sole	purpose	is	to	store	the	actual	bodies	of	the	messages	associated	with
a	 thread.	 In	 Chapter	 6’s	 database,	 the	messages	 table	 had	 a	 parent_id	 column,	 used	 to	 indicate	 the
message	 to	which	a	new	message	was	a	 response.	 It	was	hierarchical:	message	3	might	be	 the	starting
post;	message	18	might	be	a	response	to	3,	message	20	a	response	to	18,	and	so	on	 .	That	version	of
the	database	more	directly	indicated	the	responses;	this	version	will	store	only	the	thread	that	a	message
goes	under:	messages	18	and	20	both	use	a	thread_id	of	3.	This	alteration	will	make	showing	a	 thread
much	more	efficient	(in	terms	of	the	PHP	and	MySQL	required),	and	the	date/time	that	each	message	was
posted	can	be	used	to	order	them.



	How	the	relationship	among	messages	was	indicated	using	the	older	database	schema.
Those	three	tables	provide	the	bulk	of	the	forum	functionality.	The	database	also	needs	a	users	table.	In
this	version	of	the	forum,	only	registered	users	can	post	messages,	which	I	think	is	a	really,	really,	really
good	policy	(it	cuts	way	down	on	spam	and	hack	attempts).	Registered	users	can	also	have	their	default
language	(from	the	languages	table)	and	time	zone	recorded	along	with	their	account	information,	to	give
them	a	more	personalized	experience.	A	combination	of	their	username	and	password	would	be	used	to
log	in.
The	 final	 table,	words,	 is	 necessary	 to	make	 the	 site	multilingual.	 This	 table	will	 store	 translations	 of
common	elements:	navigation	links,	form	prompts,	headers,	and	so	forth.	Each	language	in	 the	site	will
have	one	 record	 in	 this	 table.	 It’ll	 be	 a	nice	 and	 surprisingly	 easy	 feature	 to	 use.	Arguably,	 the	words
listed	in	this	table	could	also	go	in	the	languages	table,	but	then	the	implication	would	be	that	the	words
are	also	related	to	the	threads	table,	which	would	not	be	the	case.
That’s	 the	 thinking	 behind	 this	 new	database	 design.	You’ll	 learn	more	 as	 you	 create	 the	 tables	 in	 the
following	steps.	As	with	the	other	examples	in	this	book,	you	can	also	download	the	SQL	necessary	for
this	chapter—the	commands	suggested	in	these	steps,	plus	more—from	the	book’s	corresponding	web	site
((LarryUllman.com).).

To	make	the	database:
1.	Access	your	MySQL	server	and	set	the	character	set	to	be	used	for	communicating	 :

http://LarryUllman.com


	 To	 use	 Unicode	 data	 in	 queries,	 you	 need	 to	 change	 the	 character	 set	 used	 to	 communicate	 with
MySQL.

CHARSET	utf8;

I’ll	be	using	the	mysql	client	in	the	figures,	but	you	can	use	whatever	interface	you’d	like.	The	first	step,
though,	has	to	be	changing	the	character	set	to	UTF-8	for	the	queries	to	come.	If	you	don’t	do	this,	some
of	 the	characters	 in	 the	queries	will	be	stored	as	gibberish	 in	 the	database	(see	 the	sidebar	“Strange
Characters”).	Note	 that	 if	you’re	using	phpMyAdmin,	you’ll	need	 to	establish	 the	character	set	 in	 its
configuration	file.

Strange	Characters
If,	 when	 you’re	 implementing	 this	 chapter’s	 example,	 you	 see	 strange	 characters—boxes,
numeric	 codes,	 or	 question	 marks	 instead	 of	 actual	 language	 characters—there	 might	 be
several	 reasons	 why.	 When	 this	 happens,	 the	 underlying	 issue	 is	 one	 of	 mismatching
encodings	(or,	in	database	terms,	character	sets).
A	 computer’s	 ability	 to	 display	 a	 character	 depends	 on	 both	 the	 file’s	 encoding	 and	 the
characters	 (i.e.,	 fonts)	 supported	 by	 the	 operating	 system.	 This	 means	 that	 every	 PHP	 or
HTML	page	must	use	the	proper	encoding.	In	addition,	the	database	in	MySQL	must	use	 the
proper	encoding	(as	indicated	in	the	steps	for	creating	the	database).	Third,	and	this	can	be	a
common	cause	of	problems,	the	communication	between	PHP	and	MySQL	must	also	use	the
proper	encoding.	I	address	this	issue	in	the	mysqli_connect.php	script.	Finally,	if	you
use	the	mysql	client,	phpMyAdmin,	or	another	tool	to	populate	the	database,	that	interaction
must	use	the	proper	encoding,	too.

2.	Create	a	new	database	 :



	Creating	and	selecting	the	database	for	this	example.	This	database	uses	the	UTF-8	character	set	so
that	it	can	support	multiple	languages.
Click	here	to	view	code	image

CREATE	DATABASE	forum2	CHARACTER SET	utf8;USE	forum2;

So	as	not	to	muddle	things	with	the	tables	created	in	the	original	forum	database	(from	Chapter	6),	a
new	database	will	be	created.
If	you’re	using	a	hosted	site	and	cannot	create	your	own	databases,	use	the	database	provided	for	you
and	select	that.	If	your	existing	database	has	tables	with	these	same	names—words,	languages,	threads,
users,	and	posts,	rename	the	tables	(either	the	existing	or	the	new	ones)	and	change	the	code	in	the	rest
of	the	chapter	accordingly.
Whether	you	create	this	database	from	scratch	or	use	a	new	one,	it’s	very	important	that	the	tables	use
the	UTF-8	encoding	to	be	able	to	support	multiple	languages	(see	Chapter	6	for	more).	If	you	are	using
an	existing	database	and	don’t	want	to	potentially	cause	problems	by	changing	the	character	set	for	all
your	tables,	just	add	the	CHARACTER	SET	utf8	clause	to	each	table	definition	(Steps	3	through	7).

3.	Create	the	languages	table	 :

	Creating	the	languages	table.
Click	here	to	view	code	image

CREATE	TABLE	languages	(

lang_id	TINYINT	UNSIGNED	NOT	NULL

	 AUTO_INCREMENT,

lang	VARCHAR(60)	NOT	NULL,

lang_eng	VARCHAR(20)	NOT	NULL,

PRIMARY	KEY	(lang_id),

UNIQUE	(lang)

);

This	is	the	simplest	table	of	the	bunch.	There	won’t	be	many	languages	represented,	so	the	primary	key
(lang_id)	can	be	a	TINYINT.	The	lang	column	is	defined	a	bit	 larger,	since	 it’ll	 store	characters	 in
other	languages,	which	may	require	more	space.	This	column	must	also	be	unique.	Note	that	I	don’t	call
this	column	“language,”	because	that’s	a	reserved	keyword	in	MySQL	(actually,	I	could	still	call	it	that,
and	 you’ll	 see	 what	 would	 be	 required	 to	 do	 that	 in	 Step	 7).	 The	 lang_eng	 column	 is	 the	 English
equivalent	of	the	language	so	that	the	administrator	can	easily	see	which	languages	are	which.

4.	Create	the	threads	table	 :



Creating	 the	 threads	 table.	This	 table	 stores	 the	 topic	 subjects	 and	associates	 them	with	a	 language
(i.e.,	a	forum).
Click	here	to	view	code	image

CREATE	TABLE	threads	(

thread_id	INT	UNSIGNED	NOT	NULL

	 AUTO_INCREMENT,

lang_id	TINYINT(3)	UNSIGNED

	 NOT	NULL,

user_id	INT	UNSIGNED	NOT	NULL,

subject	VARCHAR(150)	NOT	NULL,

PRIMARY	KEY	(thread_id),

INDEX	(lang_id),

INDEX	(user_id)

);

The	threads	table	contains	four	columns	and	relates	to	both	the	languages	and	users	tables	(through	the
lang_id	 and	user_id	 foreign	 keys,	 respectively).	 The	 subject	 here	 needs	 to	 be	 long	 enough	 to	 store
subjects	in	multiple	languages	(characters	take	up	more	bytes	in	non-Western	languages).
The	columns	that	will	be	used	in	joins	and	WHERE	clauses—lang_id	and	user_id—are	indexed,	as	is
thread_id	(as	a	primary	key,	it	will	be	indexed).

5.	Create	the	posts	table	 :

	Creating	the	posts	table,	which	links	to	both	threads	and	users.
Click	here	to	view	code	image

CREATE	TABLE	posts	(

post_id	INT	UNSIGNED	NOT	NULL

	 AUTO_INCREMENT,

thread_id	INT	UNSIGNED	NOT	NULL,

user_id	INT	UNSIGNED	NOT	NULL,

message	TEXT	NOT	NULL,

posted_on	DATETIME	NOT	NULL,

PRIMARY	KEY	(post_id),

INDEX	(thread_id),



INDEX	(user_id)

);

The	main	 column	 in	 this	 table	 is	message,	which	 stores	 each	post’s	 body.	Two	 columns	 are	 foreign
keys,	tying	into	the	threads	and	users	tables.	The	posted_on	column	is	of	type	DATETIME	but	will	use
UTC	 (Coordinated	Universal	Time;	 see	Chapter	6).	Nothing	 special	 needs	 to	 be	 done	 here	 for	 that,
though.

6.	Create	the	users	table	 :

	Creating	a	bare-bones	version	of	the	users	table.
Click	here	to	view	code	image

CREATE	TABLE	users	(

user_id	MEDIUMINT	UNSIGNED	NOT

	 NULL	AUTO_INCREMENT,

lang_id	TINYINT	UNSIGNED

	 NOT	NULL,

time_zone	VARCHAR(30)	NOT	NULL,

username	VARCHAR(30)	NOT	NULL,

pass	VARCHAR(255)	NOT	NULL,

email	VARCHAR(60)	NOT	NULL,

PRIMARY	KEY	(user_id),

UNIQUE	(username),

UNIQUE	(email),

INDEX	login	(username,	pass)

);

For	 the	 sake	 of	 brevity,	 I’m	 omitting	 some	 of	 the	 other	 columns	 you’d	 put	 in	 this	 table,	 such	 as
registration	date,	first	name,	and	last	name.	For	more	on	creating	and	using	a	table	like	this,	see	the	next
chapter.
In	my	thinking	about	 this	site,	 I	expect	users	will	select	 their	preferred	language	and	 time	zone	when
they	 register	 so	 that	 they	can	have	a	more	personalized	experience.	They	can	 also	have	 a	username,
which	will	 be	 displayed	 in	 posts	 (instead	 of	 their	 email	 address).	Both	 the	 username	 and	 the	 email
address	must	be	unique,	which	is	something	you’d	need	to	address	in	the	registration	process.

7.	Create	the	words	table	 :



	Creating	the	words	table,	which	stores	representations	of	key	words	in	different	languages.
Click	here	to	view	code	image

CREATE	TABLE	words	(

word_id	TINYINT	UNSIGNED	NOT	NULL

	 AUTO_INCREMENT,

lang_id	TINYINT	UNSIGNED	NOT	NULL,

title	VARCHAR(80)	NOT	NULL,

intro	TINYTEXT	NOT	NULL,

home	VARCHAR(30)	NOT	NULL,

forum_home	VARCHAR(40)	NOT	NULL,

`language`	VARCHAR(40)	NOT	NULL,

register	VARCHAR(30)	NOT	NULL,

login	VARCHAR(30)	NOT	NULL,

logout	VARCHAR(30)	NOT	NULL,

new_thread	VARCHAR(40)	NOT	NULL,

subject	VARCHAR(30)	NOT	NULL,

body	VARCHAR(30)	NOT	NULL,

submit	VARCHAR(30)	NOT	NULL,

posted_on	VARCHAR(30)	NOT	NULL,

posted_by	VARCHAR(30)	NOT	NULL,

replies	VARCHAR(30)	NOT	NULL,

latest_reply	VARCHAR(40)	NOT	NULL,

post_a_reply	VARCHAR(40)	NOT	NULL,

PRIMARY	KEY	(word_id),

UNIQUE	(lang_id)

);

This	table	will	store	different	translations	of	common	elements	used	on	the	site.	Some	elements—home,
forum_home,	 language,	register,	 login,	 logout,	 and	new_thread—will	 be	 the	 names	 of	 links.	Other
elements—subject,	body,	 submit—are	 used	 on	 the	 page	 for	 posting	 messages.	 Another	 category	 of
elements	is	those	used	on	the	forum’s	main	page:	posted_on,	posted_by,	replies,	and	latest_reply.
Some	of	 these	will	be	used	multiple	 times	in	 the	site,	and	yet,	 this	 is	still	an	incomplete	 list.	As	you
implement	the	site	yourself,	you’ll	see	other	places	where	word	definitions	could	be	added.
Each	column	is	of	VARCHAR	type,	except	for	intro,	which	is	a	body	of	text	to	be	used	on	the	main	page.
Most	of	 the	columns	have	a	 limit	of	30,	allowing	for	characters	 in	other	 languages	 that	 require	more
bytes,	except	for	a	handful	of	columns	that	might	need	to	be	bigger.



For	 each	 column,	 its	 name	 implies	 the	 value	 to	 be	 stored	 in	 that	 column.	 For	 one—language—I’ve
used	 a	 MySQL	 keyword	 simply	 to	 demonstrate	 how	 that	 can	 be	 done.	 The	 fix	 is	 to	 surround	 the
column’s	 name	 in	 backticks	 so	 that	 MySQL	 doesn’t	 confuse	 this	 column’s	 name	 with	 the	 keyword
“language.”

8.	Populate	the	languages	table:
Click	here	to	view	code	image

INSERT	INTO	languages	(lang,	lang_eng)	VALUES

('English',	'English'),

('Português',	'Portuguese'),

('Français',	'French'),

('Norsk',	'Norwegian'),

('Romanian',	'Romanian'),

('',	'Greek'),

('Deutsch',	'German'),

('Srpski',	'Serbian'),

(' ',	'Japanese'),

('Nederlands',	'Dutch');

This	is	just	a	handful	of	the	languages	the	site	will	represent	thanks	to	some	assistance	provided	to	me
(see	the	sidebar	“A	Note	on	Translations”).	For	each,	the	native	and	English	word	for	that	language	is
stored	 .

	The	populated	languages	table,	with	each	language	written	in	its	own	alphabet.

A	Note	on	Translations
Several	 readers	around	 the	world	were	kind	enough	 to	provide	me	with	 translations	of	key
words,	names,	message	subjects,	and	message	bodies.	For	 their	help,	 I’d	 like	 to	 extend	my
sincerest	 thanks	 to	 (in	 no	 particular	 order):	 Angelo	 (Portuguese),	 Iris	 (German),	 Johan
(Norwegian),	 Gabi	 (Romanian),	 Darko	 (Serbian),	 Emmanuel	 and	 Jean-François	 (French),
Andreas	 and	 Simeon	 (Greek),	 Darius	 (Filipino/Tagalog),	 Olaf	 (Dutch),	 and	 Tsutomu
(Japanese).
If	you	know	one	of	these	languages,	you	may	see	linguistic	mistakes	made	in	this	text	or	in	the
corresponding	 images.	 If	 so,	 it’s	 almost	 certainly	 my	 fault,	 having	 miscommunicated	 the
words	I	needed	translated	or	improperly	entered	the	responses	into	the	database.	I	apologize
in	advance	for	any	such	mistakes	but	hope	you’ll	focus	more	on	the	database,	the	code,	and
the	functionality.	My	thanks,	again,	to	those	who	helped!



9.	Populate	the	users	table	 :

	A	few	users	are	added	manually,	since	there	is	no	registration	process	in	this	site	(but	see	Chapter	18,
“Example—User	Registration,”	for	that).
Click	here	to	view	code	image

INSERT	INTO	users	(lang_id,

		 time_zone,	username,	pass,

		 email)	VALUES

	(1,	'US/Eastern',	'troutster',	'',

		 'email@example.com'),

	(7,	'Europe/Berlin',	'Ute',	'',

		 'email1@example.com'),

	(4,	'Europe/Oslo',	'Silje',	'',

		 'email2@example.com'),

	(2,	'America/Sao_Paulo',	'João',	'',

		 'email3@example.com'),

	(1,	'Pacific/Auckland',	'kiwi',	'',

		 'kiwi@example.org');

Because	the	PHP	scripts	will	show	the	users	associated	with	posts,	a	couple	of	users	are	necessary.	A
language	and	a	time	zone	are	associated	with	each	(see	Chapter	6	for	more	on	time	zones	in	MySQL).
Each	user’s	password	will	be	represented	as	an	empty	string	for	now—real	password	hashing	would
be	done	using	PHP’s	password_hash()	function	(see	Chapter	13,	“Security	Methods,”	for	more).

10.	Populate	the	words	table:
Click	here	to	view	code	image

INSERT	INTO	words	VALUES

(NULL,	1,	'PHP	and	MySQL	for

	 Dynamic	Web	Sites:	The	Forum!',

	 '<p>Welcome	to	our	site....

	 please	use	the	links	above...

	 blah,	blah,	blah.</p>\r\n<p>

	 Welcome	to	our	site....please

	 use	the	links	above...blah,

	 blah,	blah.</p>',	'Home',	'Forum

	 Home',	'Language',	'Register',

	 'Login',	'Logout',	'New	Thread',

	 'Subject',	'Body',	'Submit',

	 'Posted	on',	'Posted	by',

	 'Replies',	'Latest	Reply',	'Post

	 a	Reply'),

These	 are	 the	 words	 associated	 with	 each	 term	 in	 English.	 The	 record	 has	 a	 lang_id	 of	 1,	 which
matches	the	lang_id	for	English	in	the	languages	 table.	The	SQL	to	 insert	words	for	other	 languages
into	this	table	is	available	from	the	book’s	supporting	website.



Tip
This	chapter	doesn’t	go	through	the	steps	for	creating	the	mysqli_connect.php	page,	which
connects	to	the	database.	Instead,	just	copy	the	one	from	Chapter	9,	“Using	PHP	with	MySQL.”
Then	 change	 the	 parameters	 in	 the	 script	 to	 use	 a	 valid	 username/password/hostname
combination	to	connect	to	the	forum2	database.

Tip
As	 a	 reminder,	 the	 foreign	 key	 in	 one	 table	 should	 be	 of	 the	 exact	 same	 type	 and	 size	 as	 the
matching	primary	key	in	another	table.

Writing	the	Templates
This	example,	like	any	site	containing	lots	of	pages,	will	make	use	of	a	template	to	separate	out	the	bulk
of	 the	presentation	 from	 the	 logic.	Following	 the	 instructions	 laid	out	 in	Chapter	3,	“Creating	Dynamic
Web	Sites,”	a	header	file	and	a	footer	file	will	store	most	of	the	HTML	code.	Each	PHP	script	will	then
include	these	files	to	make	a	complete	HTML	page	 .	But	this	example	is	a	little	more	complicated.

	The	basic	layout	and	appearance	of	the	site.
One	of	the	goals	of	this	site	is	to	serve	users	in	many	different	languages.	Accomplishing	that	involves	not
just	letting	them	post	messages	in	their	native	language	but	making	sure	they	can	use	the	whole	site	in	their
native	language	as	well.	This	means	that	the	page	title,	the	navigation	links,	the	captions,	the	prompts,	and
even	the	menus	need	to	appear	in	their	language	 .

	The	home	page	viewed	in	Norwegian	(compare	with	
The	instructions	for	making	the	database	illustrate	how	this	is	accomplished:	by	storing	translations	of	all
key	words	in	a	table.	The	header	file,	therefore,	needs	to	pull	out	all	these	key	words	so	that	they	can	be
used	as	needed.	This	header	file	will	also	display	different	links	based	on	whether	the	user	is	logged	in	or



not.	 Adding	 just	 one	 more	 little	 twist:	 if	 the	 user	 is	 on	 the	 forum	 page,	 viewing	 all	 the	 threads	 in	 a
language,	the	user	will	also	be	given	the	option	to	post	a	new	thread	 .

	The	added	link	allowing	the	user	to	start	a	new	thread	in	the	current	forum.
The	template	itself	uses	Bootstrap	(www.getbootstrap.com)	for	the	formatting	and	layout.	All	the
required	CSS	and	JavaScript	files	are	either	inline	or	loaded	via	a	CDN.

To	make	the	template:
1.	Begin	a	new	document	in	your	text	editor	or	IDE,	to	be	named	header.html	(Script	17.1):
Click	here	to	view	code	image

<?php	#	Script	17.1	-	header.htmlheader('Content-Type:	text/html; charset=UTF-8');

Script	17.1	The	header.html	file	begins	the	template.	It	also	sets	the	page's	encoding,	starts	the	session,
and	retrieves	the	language-specific	key	words	from	the	database.
Click	here	to	view	code	image

1						<l?php	#	Script	17.1	-	header.html

2						/*	This	script...

3							*	-	starts	the	HTML	template

4							*	-	indicates	the	encoding	using	header()

5							*	-	starts	the	session

6							<l*	-	gets	the	language-specific	words	from	the	database

7							*	-	lists	the	available	languages

8							*/

9						

10				//	Indicate	the	encoding:

11				header('Content-Type:	text/html;	charset=UTF-8');

12				

13				//	Start	the	session:

14				session_start();

15				

16				//	For	testing	purposes:

17				$_SESSION['user_id']	=	1;

18				$_SESSION['user_tz']	=	'America/New_York';

19				//	For	logging	out:

20				//$_SESSION	=	[];

21				

22				//	Need	the	database	connection:

23				require('../mysqli_connect.php');

24				

25				//	Check	for	a	new	language	ID...

26				//	Then	store	the	language	ID	in	the	session:

27				if	(isset($_GET['lid'])	&&

28							filter_var($_GET['lid'],

									FILTER_VALIDATE_INT,

									array('min_range'	=>	1))

29					)	{

30					$_SESSION['lid']	=	$_GET['lid'];

31			}	elseif	(!isset($_SESSION['lid']))	{

32							$_SESSION['lid']	=	1;	//	Default.

33			}

http://www.getbootstrap.com


34				

35				//	Get	the	words	for	this	language:

36				$q	=	"SELECT	*	FROM	words	WHERE	lang_id	=	{$_SESSION['lid']}";

37				$r	=	mysqli_query($dbc,	$q);

38				if	(mysqli_num_rows($r)	==	0)	{	//	Invalid	language	ID!

39				

40							//	Use	the	default	language:

41							$_SESSION['lid']	=	1;	//	Default.

42							$q	=	"SELECT	*	FROM	words	WHERE	lang_id	=	{$_SESSION['lid']}";

43							$r	=	mysqli_query($dbc,	$q);

44				

45		}

46				

47		//	Fetch	the	results	into	a	variable:

48		$words	=	mysqli_fetch_array	($r,	MYSQLI_ASSOC);

49				

50		//	Free	the	results:

51		mysqli_free_result($r);

52		?>

53		<l!DOCTYPE	html>

54		<lhtml	lang="en">

55		<lhead>

56						<lmeta	charset="utf-8">

57						<lmeta	http-equiv="X-UA-Compatible"

								content="IE=edge">

58						<lmeta	name="viewport"

								content="width=device-width,

								initial-scale=1">

59						<ltitle><?php	echo	$words['title'];

								?></title>

60						<llink	rel="stylesheet"

								href="https://maxcdn.bootstrapcdn.

								com/bootstrap/3.3.7/css/bootstrap.

								min.css"	integrity="sha384-BVYi

								iSIFeK1dGmJRAkycuHAHRg32OmUcww7

								on3RYdg4Va+PmSTsz/K68vbdEjh4u"

								crossorigin="anonymous">

61						<lstyle	type="text/css">

62		body	{

63				padding-top:	50px;

64		}

65		.starter-template	{

66				padding:	40px	15px;

67				text-align:	left;

68		}

69		</style>

70		</head>

71		<body>

72		<nav	class="navbar	navbar-inverse

				navbar-fixed-top">

73							<ldiv	class="container">

74					<ldiv	class="navbar-header">

75												<la	class="navbar-brand"	href="index.php">Site	Name</a>

76					<l/div>

77					<ldiv	id="navbar"	class="collapse	navbar-collapse">

78										<lul	class="nav	navbar-nav">

79		<?php	//	Display	links:

80				

81		//	Default	links:

82		echo	'<li><a	href="index.php">'	.	$words['home']	.	'</a></li>

83		<li><a	href="forum.php">'	.	$words['forum_home']	.	'</a></li>';

84				

85		//	Display	links	based	upon	login	status:

86		if	(isset($_SESSION['user_id']))	{



87				

88					//	If	this	is	the	forum	page,	add	a	link	for	posting	new	threads:

89					if	(basename($_SERVER['PHP_SELF'])	==	'forum.php')	{

90								echo	'<li><a	href="post.php">'	.	$words['new_thread']	.	'</a></li>';

91					}

92				

93		//	Add	the	logout	link:

94		echo	'<li><a	href="logout.php">'	.	$words['logout']	.	'</a></li>';

95				

96		}	else	{

97				

98					//	Register	and	login	links:

99					echo	'<li><a	href="register.php">'	.	$words['register']	.	'</a></li>

100				<lli><a	href="login.php">'	.	$words['login']	.	'</a></li>';

101		}

102		

103		//	Retrieve	all	the	languages...

104		echo	'<li	class="dropdown"><a	href="forum.php"	class="dropdown-toggle"	data-toggle="dropdown"

					role="button"	aria-haspopup="true"	aria-expanded="false">'	.	$words['language']	.	'

					<lspan	class="caret"></span></a>

105		<lul	class="dropdown-menu">';

106		

107		$q	=	"SELECT	lang_id,	lang	FROM	languages	ORDER	BY	lang_eng	ASC";

108		$r	=	mysqli_query($dbc,	$q);

109		if	(mysqli_num_rows($r)	>	0)	{

110				while	($menu_row	=	mysqli_fetch_array($r,	MYSQLI_NUM))	{

111						echo	'<li><a	href="forum.php?lid='	.	$menu_row[0]	.	'">'	.	$menu_row[1]	.	'</a></li>';

112				}

113		}

114		mysqli_free_result($r);

115		?>

116																	<l/ul></li>

117												<l/ul>

118								<l/div><!--	navbar	-->

119				<l/div><!--	container	-->

120		<l/nav>

121		

122		<ldiv	class="container">

123			<ldiv	class="starter-template">

Since	 this	 script	will	need	 to	do	a	 fair	 amount	of	data	validation	and	 retrieval,	 it	 starts	with	 a	PHP
block.	The	script	also	indicates	to	the	browser	its	encoding—UTF-8—using	the	header()	 function.
The	idea	of	setting	the	encoding	via	a	header()	function	call	was	mentioned	in	a	tip	in	Chapter	11,
“Web	Application	Development.”	This	isn’t	absolutely	required	since	you	could	set	the	encoding	in	the
HTML	 instead,	 but	 because	 the	 application	 may	 work	 with	 multiple	 languages,	 this	 is	 an	 extra
precaution.

2.	Start	a	session:
Click	here	to	view	code	image

session_start();

$_SESSION['user_id']	=	1;

$_SESSION['user_tz']	=

	 'America/New_York';

//	$_SESSION	=	[];

To	track	users	after	they	log	in,	the	site	will	use	sessions.	Since	the	site	doesn’t	have	registration	and
login	functionality	in	this	chapter,	two	lines	can	virtually	log	in	the	user.	Ordinarily,	both	values	would
come	 from	 a	 database,	 but	 they’ll	 be	 set	 here	 for	 testing	 purposes.	 To	 virtually	 log	 the	 user	 out,
uncomment	the	third	line.



3.	Include	the	database	connection:
Click	here	to	view	code	image

require('../mysqli_connect.php');

As	with	many	other	examples	in	this	book,	the	assumption	is	that	the	mysqli_connect.php	script
is	stored	in	the	directory	above	the	current	one,	outside	of	the	web	root.	If	that	won’t	be	the	case	for
you,	change	this	code	accordingly.

4.	Determine	the	language	ID:
Click	here	to	view	code	image

if	(isset($_GET['lid'])	&&

			filter_var($_GET['lid'],	

			 FILTER_VALIDATE_INT,	

			 array('min_range'	=>	1))

			)	{

			$_SESSION['lid']	=	$_GET['lid'];

}	elseif	(!isset($_SESSION['lid']))	{

				$_SESSION['lid']	=	1;	//	Default.

}

Next,	the	language	ID	value	(abbreviated	lid)	needs	to	be	established.	The	language	ID	controls	what
language	is	used	for	all	the	site	elements,	and	it	also	dictates	the	forum	to	be	viewed.	The	language	ID
could	be	 found	 in	 the	 session,	 after	 retrieving	 that	 information	 upon	 a	 successful	 login	 (because	 the
user’s	 language	 ID	 is	 stored	 in	 the	 users	 table).	 Alternatively,	 any	 user	 can	 change	 the	 displayed
language	 on	 the	 fly	 using	 the	 language	 dropdown	 in	 the	 navigation	 links	 (see	 ).	 In	 that	 case,	 the
submitted	language	ID	needs	to	be	validated	as	an	integer	greater	than	1;	this	is	easily	accomplished	by
using	the	Filter	extension	(see	Chapter	13).
The	second	clause	applies	if	the	page	did	not	receive	a	language	ID	in	the	URL	and	the	language	ID	has
not	 already	 been	 established	 in	 the	 session.	 In	 that	 case,	 a	 default	 language	 is	 selected.	 This	 value
corresponds	to	English	in	the	languages	table	in	the	database.	You	can	change	it	to	any	ID	that	matches
the	default	language	you’d	like	to	use.

5.	Get	the	keywords	for	this	language:
Click	here	to	view	code	image

$q	=	"SELECT	*	FROM	words	WHERE

	 lang_id	=	{$_SESSION['lid']}	";

$r	=	mysqli_query($dbc,	$q);

The	next	step	in	the	header	file	is	to	retrieve	from	the	database	all	the	key	words	for	the	given	language.
6.	If	the	query	returned	no	records,	get	the	default	words:
Click	here	to	view	code	image

if	(mysqli_num_rows($r)	==	0)	{

	$_SESSION['lid']	=	1;

	$q	=	"SELECT	*	FROM	words	WHERE

	 lang_id	=	{$_SESSION['lid']}	";

	$r	=	mysqli_query($dbc,	$q);

}

It’s	possible,	albeit	unlikely,	that	$_SESSION[‘lid’]	does	not	equate	to	a	record	from	the	words
table.	In	that	case,	the	query	would	return	no	records	(but	run	without	error).	Consequently,	the	default
language	 words	 must	 now	 be	 retrieved.	 Notice	 that	 neither	 this	 block	 of	 code,	 nor	 that	 in	 Step	 5,
actually	fetches	the	returned	record.	That	will	happen,	for	both	potential	queries,	in	Step	7.



7.	Fetch	the	retrieved	words	into	an	array,	free	the	resources,	and	close	the	PHP	section:
Click	here	to	view	code	image

$words	=	mysqli_fetch_array

	 ($r,	MYSQLI_ASSOC);

mysqli_free_result($r);

?>

After	 this	point,	 the	$words	 array	 represents	 all	 the	navigation	 and	 common	elements	 in	 the	user’s
selected	language	(or	the	default	language).
Calling	mysqli_free_result()	isn’t	necessary	but	makes	for	tidy	programming.

8.	Start	the	HTML	page:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html	lang="en">

<head>

						<meta	charset="utf-8">

						<meta	http-equiv="X-UA-

	 Compatible"	content="IE=edge">

				<meta	name="viewport"

	 content="width=device-width,	

	 initial-scale=1">

		<title><?php	echo	

	 $words['title'];	?></title>

Note	that	the	encoding	is	also	indicated	in	a	META	tag,	even	though	the	PHP	header()	call	already
identifies	the	encoding.	This	is	just	a	matter	of	being	thorough.
The	header	file	as	written	uses	as	the	title	of	every	page	a	value	in	the	$words	array	(i.e.,	 the	page
title	will	always	be	the	same	for	every	page	in	a	chosen	language).	You	could	easily	modify	this	code
so	 that	 the	page’s	 title	 is	 a	 combination	of	 the	 language	word	 and	 a	 page-specific	 variable,	 such	 as
$page_title	used	in	Chapter	3	and	subsequent	examples.

9.	Add	the	CSS:
Click	here	to	view	code	image

<link	rel="stylesheet"

			 href="https://maxcdn.

			 bootstrapcdn.com/

			 bootstrap/3.3.7/css/

			 bootstrap.min.css"

			 integrity="sha384-BVYiiSIF

			 eK1dGmJRAkycuHAHRg32OmUcww

			 7on3RYdg4Va+PmSTsz

			 /K68vbdEjh4u"

				crossorigin="anonymous">

				<style	type="text/css">

body	{

			padding-top:	50px;

}

.starter-template	{

		padding:	40px	15px;

		text-align:	left;

}</style>

This	is	all	taken	from	the	Bootstrap	starter	template.	Normally	you’d	put	all	CSS	in	an	external	file,	but
because	there’s	so	little	of	it,	I’m	putting	the	additional	CSS	in	the	document	itself.

10.	Complete	the	HTML	head	and	begin	the	page:



Click	here	to	view	code	image

</head>

<body>

<nav	class="navbar	navbar-inverse

	 navbar-fixed-top">

		<div	class="container">

							<div	class="navbar-

					 header">

							<a	class="navbar-

							 brand"	href="index.

							 php">Site	Name</a>

			</div>

			<div	id="navbar"

		 class="collapse

		 navbar-collapse">

						<ul	class="nav

						 navbar-nav">

The	only	repeating	content	on	the	page	is	the	navigation	bar	across	the	top,	begun	here.
11.	Start	displaying	the	links:
Click	here	to	view	code	image

<?php	//	Display	links:

echo	'<li><a	href="index.php">'	.

$words['home']	.	'</a></li>

<li><a	href="forum.php">'	.	$words

	 ['forum_home']	.	'</a></li>';

The	first	two	links	will	always	appear,	whether	or	not	the	user	is	logged	in	and	regardless	of	the	page
the	user	is	currently	viewing.	For	each	link,	the	text	of	the	link	itself	will	be	language	specific.

12.	If	the	user	is	logged	in,	show	“new	thread”	and	logout	links:
Click	here	to	view	code	image

if	(isset($_SESSION['user_id']))	{

				if	(basename($_SERVER['PHP_

					 SELF'])	==	'forum.php')	{

									echo	'<li><a	href="post.

								 php">'	.	$words['new_

								 thread']	.	'</a></li>';

					}

				echo	'<li><a	href="logout.php">'

				 .	$words['logout']	.	'</a></li>';

Confirmation	 of	 the	 user’s	 logged-in	 status	 is	 achieved	 by	 checking	 for	 the	 presence	 of	 a
$_SESSION[‘user_id’]	 variable.	 If	 it’s	 set,	 then	 the	 logout	 link	can	be	created.	Before	 that,	 a
check	is	made	to	see	if	this	is	the	forum.php	page.	If	so,	then	a	link	to	start	a	new	thread	is	created
(users	can	only	create	new	threads	 if	 they’re	on	 the	 forum	page;	you	wouldn’t	want	 them	to	create	a
new	thread	on	some	of	the	other	pages,	like	the	home	page,	because	it	wouldn’t	be	clear	to	which	forum
the	thread	should	be	posted).	The	code	for	checking	what	page	it	is,	using	the	basename()	function,
was	first	introduced	in	Chapter	12,	“Cookies	and	Sessions.”

13.	Display	the	links	for	users	not	logged	in:
Click	here	to	view	code	image

}	else	{

			echo	'<li><a	href="register.php">'

			 .	$words['register']	.	'</a></li>

				<li><a	href="login.php">'	.



		 $words['login']	.	'</a></li>';

}

If	the	user	isn’t	logged	in,	links	are	provided	for	registering	and	logging	in.
14.	Start	the	dropdown	for	choosing	a	language:
Click	here	to	view	code	image

echo	'<li	class="dropdown">	

	 <a	href="forum.php"	

	 class="dropdown-toggle"	

	 data-toggle="dropdown"	

	 role="button"	aria-haspopup="true"	

	 aria-expanded="false">'	.	

	 $words['language']	.	'	

	 <span	class="caret"></span></a>

<ul	class="dropdown-menu">';

The	user	can	choose	a	language	(which	is	also	a	forum)	via	a	dropdown	navigation	menu	 .	The	text
for	the	dropdown	will	be	the	word	“language,”	in	the	user’s	default	language.

	The	language	dropdown	menu,	with	each	option	in	its	native	language.
15.	Retrieve	every	language	from	the	database,	and	add	each	to	the	menu:
Click	here	to	view	code	image

$q	=	"SELECT	lang_id,	lang	FROM

	 languages	ORDER	BY	lang_eng	ASC";

$r	=	mysqli_query($dbc,	$q);

if	(mysqli_num_rows($r)	>	0)	{

		while	($menu_row	=	mysqli_fetch_

			 array($r,	MYSQLI_NUM))	{

			echo	'<li><a	href="forum.

			 php?lid='	.	$menu_row[0]	.

			 '">'	.	$menu_row[1]	.	'</a>

			 </li>';

	}

}

mysqli_free_result($r);

This	query	retrieves	the	languages	and	the	language	ID	from	the	languages	 table.	Each	is	added	as	a
list	item	to	the	dropdown	menu.



Each	 link	points	 to	forum.php	 and	 passes	 along	 the	 language	 ID	 in	 the	URL,	 as	 a	 lid	 parameter.
When	users	select	their	language,	they’ll	be	taken	to	the	forum	of	their	choice.
Again,	 calling	 mysqli_free_result()	 isn’t	 required,	 but	 doing	 so	 can	 help	 limit	 bugs	 and
improve	 performance.	 In	 particular,	 when	 you	 have	 pages	 that	 run	 multiple	 SELECT	 queries,
mysqli_free_result()	can	help	avoid	confusion	issues	between	PHP	and	MySQL.

16.	Complete	the	PHP	section	and	the	initial	content:
Click	here	to	view	code	image

?>

																	</ul></li>

														</ul>

								</div><!--	navbar	-->

					</div><!--	container	-->

		</nav>

	<div	class="container">

	<div	class="starter-template">

17.	Save	the	file	as	header.html.
Even	though	it	contains	a	fair	amount	of	PHP,	this	script	will	still	use	the	.html	extension	(which	I
prefer	to	use	for	template	files).	Make	sure	that	the	file	is	saved	using	UTF-8	encoding.

18.	Create	a	new	document	in	your	text	editor	or	IDE,	to	be	named	footer.html	(Script	17.2):
Click	here	to	view	code	image

<!--	Script	17.2	-	footer.html	-->

19.	Complete	the	HTML	page:
Click	here	to	view	code	image

	</div><!--	starter-template	-->

		</div><!--	container	-->

		<script	src="https://ajax.

	 googleapis.com/ajax/libs/

	 jquery/3.2.1/jquery.min.js">

	 </script>

	<script	src="https://maxcdn.

	 bootstrapcdn.com/bootstrap/

	 3.3.7/js/bootstrap.min.js"

	 integrity="sha384-Tc5IQib027

	 qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2

	 mCWNIpG9mGCD8wGNIcPD7Txa"

	 crossorigin="anonymous"></script>

		</body>

		</html>

There’s	 no	 content	 in	 the	 footer;	 it	 just	 completes	 the	DIVs	 begun	 in	 the	 header	 and	 includes	 two
JavaScript	files.	Again,	this	comes	from	the	Bootstrap	template.

20.	Save	the	file	as	footer.html.
Again,	make	sure	that	the	file	is	saved	using	UTF-8	encoding.

21.	Place	both	files	in	your	web	directory,	within	a	folder	named	includes.

Script	17.2	The	footer	file	completes	the	HTML	page.
Click	here	to	view	code	image

1						<!--	Script	17.2	-	footer.html	-->

2											</div><!--	starter-template	-->



3						</div><!--	container	-->

4						

5						<!--	Bootstrap	core	JavaScript

6						==================================================	-->

7						<!--	Placed	at	the	end	of	the	document	so	the	pages	load	faster	-->

8						<script	src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>

9						<script	src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"	integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa"	crossorigin="anonymous"></script>

10				</body>

11				</html>

Creating	the	Index	Page
The	index	page	in	this	example	won’t	do	that	much.	It	will	provide	some	introductory	text	and	the	links
for	 the	user	 to	 register,	 log	 in,	choose	 the	preferred	 language/forum,	and	so	forth.	From	a	programming
perspective,	it	will	show	how	the	template	files	are	to	be	used.

To	make	the	home	page:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	index.php	(Script	17.3):

Script	17.3	The	home	page	includes	the	header	and	footer	files	to	make	a	complete	HTML	document.	It
also	prints	some	introductory	text	in	the	chosen	language.
Click	here	to	view	code	image

1						<?php	#	Script	17.3	-	index.php

2						//	This	is	the	main	page	for	the	site.

3						

4						//	Include	the	HTML	header:

5						include('includes/header.html');

6						

7						//	The	content	on	this	page	is	introductory	text

8						//	pulled	from	the	database,	based	upon	the

9						//	selected	language:

10				echo	$words['intro'];

11				

12				//	Include	the	HTML	footer	file:

13				include('includes/footer.html');

14				?>

Click	here	to	view	code	image
<?php	#	Script	17.3	-	index.php

Because	all	the	HTML	is	in	the	included	files,	this	page	can	begin	with	the	opening	PHP	tags.
2.	Include	the	HTML	header:
Click	here	to	view	code	image

include('includes/header.html');

The	included	file	uses	the	header()	and	session_start()	functions,	so	you	have	to	make	sure
that	nothing	is	sent	to	the	browser	prior	to	this	line.	That	shouldn’t	be	a	problem	as	long	as	there	are	no
spaces	before	the	opening	PHP	tag.

3.	Print	the	language-specific	content:
echo	$words['intro'];

The	$words	array	 is	defined	within	 the	header	file.	 It	can	be	referred	 to	here,	since	 the	header	file
was	 just	 included.	 The	 value	 indexed	 at	 intro	 is	 a	 bit	 of	 welcoming	 text	 in	 the	 selected	 or	 default
language.



4.	Complete	the	page:
Click	here	to	view	code	image

include('includes/footer.html');?>

That’s	it	for	the	home	page!
5.	Save	the	file	as	index.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	(see	 	and	

	in	the	previous	section).
Once	again,	make	sure	that	the	file	is	saved	using	UTF-8	encoding.	This	will	be	the	last	time	I	remind
you!

Creating	the	Forum	Page
The	next	page	in	the	website	is	the	forum	page,	which	displays	the	threads	in	a	forum	(each	language	is	its
own	forum).	The	page	will	use	the	language	ID,	passed	to	this	page	in	a	URL	and/or	stored	in	a	session,	to
know	what	threads	to	display.
The	basic	functionality	of	this	page—running	a	query,	displaying	the	results—	is	simple	 .	The	query
this	page	uses	is	perhaps	the	most	complex	one	in	the	book.	It’s	complicated	for	three	reasons:

	The	forum	page,	which	lists	information	about	the	threads	in	a	given	language.	The	threads	are	linked
to	a	page	where	they	can	be	read.

	It	performs	a	JOIN	across	three	tables.
	It	uses	three	aggregate	functions	and	a	GROUP	BY	clause.
	It	converts	the	dates	to	the	user’s	time	zone,	but	only	if	the	person	viewing	the	page	is	logged	in.

So,	again,	the	query	is	intricate,	but	I’ll	go	through	it	in	detail	in	the	following	steps.

To	write	the	forum	page:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	forum.php	(Script	17.4):

Script	17.4	This	script	performs	one	rather	complicated	query	to	display	five	pieces	of	information—the
subject,	 the	 original	 poster,	 the	date	 the	 thread	was	 started,	 the	number	of	 replies,	 and	 the	 date	 of	 the
latest	reply—for	each	thread	in	a	forum.
Click	here	to	view	code	image

1						<?php	#	Script	17.4	-	forum.php

2						//	This	page	shows	the	threads	in	a	forum.



3						include('includes/header.html');

4						

5						//	Retrieve	all	the	messages	in	this	forum...

6						

7						//	If	the	user	is	logged	in	and	has	chosen	a	time	zone,

8						//	use	that	to	convert	the	dates	and	times:

9						if	(isset($_SESSION['user_tz']))	{

10									$first	=	"CONVERT_TZ(p.posted_on,	'UTC',	'{$_SESSION['user_tz']}')";

11									$last	=	"CONVERT_TZ(p.posted_on,	'UTC',	'{$_SESSION['user_tz']}')";

12				}	else	{

13							$first	=	'p.posted_on';

14							$last	=	'p.posted_on';

15				}

16				

17				//	The	query	for	retrieving	all	the	threads	in	this	forum,	along	with	the	original	user,

18				//	when	the	thread	was	first	posted,	when	it	was	last	replied	to,	and	how	many	replies	it's	had:

19				$q	=	"SELECT	t.thread_id,	t.subject,	username,	COUNT(post_id)	-	1	AS	responses,

						MAX(DATE_FORMAT($last,	'%e-%b-%y	%l:%i	%p'))	AS	last,	MIN(DATE_FORMAT($first,

					'%e-%b-%y	%l:%i	%p'))	AS	first	FROM	threads	AS	t	INNER	JOIN	posts	AS	p	USING	(thread_id)

					INNER	JOIN	users	AS	u	ON	t.user_id	=	u.user_id	WHERE	t.lang_id	=	{$_SESSION['lid']}	GROUP	BY

					(p.thread_id)	ORDER	BY	last	DESC";

20			$r	=	mysqli_query($dbc,	$q);

21			if	(mysqli_num_rows($r)	>	0)	{

22			

23									//	Create	a	table:

24									echo	'<table	class="table	table-striped">

25									<thead>

26															<tr>

27																				<th>'	.	$words['subject']	.	'</th>

28																				<th>'	.	$words['posted_by']	.	'</th>

29																				<th>'	.	$words['posted_on']	.	'</th>

30																				<th>'	.	$words['replies']	.	'</th>

31																				<th>'	.	$words['latest_reply']	.	'</th>

32															</tr>

33									</thead>

34									<tbody>';

35				

36									//	Fetch	each	thread:

37									while	($row	=	mysqli_fetch_array($r,	MYSQLI_ASSOC))	{

38				

39															echo	'<tr>

40																									<td><a	href="read.php?tid='	.	$row['thread_id']	.	'">'	.	$row['subject']	.	'</a>	</td>

41																									<td>'	.	$row['username']	.	'</td>

42																									<td>'	.	$row['first']	.	'</td>

43																									<td>'	.	$row['responses']	.	'</td>

44																									<td>'	.	$row['last']	.	'</td>

45																				</tr>';

46				

47									}

48				

49									echo	'</tbody></table>';	//	Complete	the	table.

50				

51				}	else	{

52							echo	'<p>There	are	currently	no	messages	in	this	forum.</p>';

53				}

54				

55				//	Include	the	HTML	footer	file:

56				include('includes/footer.html');

57				?>

Click	here	to	view	code	image
<?php	#	Script	17.4	-	forum.phpinclude('includes/header.html');



2.	Determine	what	dates	and	times	to	use:
Click	here	to	view	code	image

if	(isset($_SESSION['user_tz']))	{

			$first	=	"CONVERT_TZ

		 (p.posted_on,	'UTC',

		 '{$_SESSION['user_tz']}')";

			$last	=	"CONVERT_TZ(p.posted_on,

	 'UTC',	'{$_SESSION['user_tz']}')";

}	else	{

			$first	=	'p.posted_on';

			$last	=	'p.posted_on';

}

As	already	stated,	the	query	will	format	the	date	and	time	to	the	user’s	time	zone	(presumably	selected
during	the	registration	process),	but	only	if	the	viewer	is	logged	in.	Presumably,	this	information	would
be	retrieved	from	the	database	and	stored	in	the	session	upon	login.
To	make	the	query	dynamic,	what	exact	date/time	value	should	be	selected	will	be	stored	in	a	variable
to	 be	 used	 in	 the	 query	 later	 in	 the	 script.	 If	 the	 user	 is	 not	 logged	 in,	 which	 means	 that
$_SESSION[‘user_tz’]	is	not	set,	the	two	dates—when	a	thread	was	started	and	when	the	most
recent	reply	was	posted—will	be	unadulterated	values	from	the	table.	In	both	cases,	the	table	column
being	referenced	is	posted_on	in	the	posts	table	(p	will	be	an	alias	to	posts	in	the	query).
If	 the	user	 is	 logged	 in,	 the	$_SESSION['user_tz']	 function	will	be	used	 to	convert	 the	value
stored	in	posted_on	from	UTC	to	the	user’s	chosen	time	zone.	See	Chapter	6	for	more	on	this	function.
Note	that	using	this	function	requires	that	your	MySQL	installation	include	the	 list	of	 time	zones	(see
Chapter	6	for	more).

3.	Define	and	execute	the	query:
Click	here	to	view	code	image

$q	=	"SELECT	t.thread_id,	t.subject,

	 username,	COUNT(post_id)	-	1	AS

	 responses,	MAX(DATE_FORMAT($last,

	 '%e-%b-%y	%l:%i	%p'))	AS	last,

	 MIN(DATE_FORMAT($first,	'%e-%b-%y

	 %l:%i	%p'))	AS	first	FROM	threads

	 AS	t	INNER	JOIN	posts	AS	p	USING

	 (thread_id)	INNER	JOIN	users	AS

	 u	ON	t.user_id	=	u.user_id	WHERE

	 t.lang_id	=	{$_SESSION['lid']}

	 GROUP	BY	(p.thread_id)	ORDER	BY

	 last	DESC";

$r	=	mysqli_query($dbc,	$q);

if	(mysqli_num_rows($r)	>	0)	{

The	query	needs	 to	 return	six	 things:	 the	 ID	of	each	 thread,	 the	subject	of	each	 thread	(which	 comes
from	the	threads	table),	the	name	of	the	user	who	posted	the	thread	in	the	first	place	(from	users),	 the
number	of	replies	to	each	thread,	the	date	the	thread	was	started,	and	the	date	the	thread	last	had	a	reply
(all	from	posts).
The	overarching	structure	of	this	query	is	a	join	between	threads	and	posts	using	the	thread_id	column
(which	 is	 the	 same	 in	 both	 tables).	This	 result	 is	 then	 joined	with	 the	users	 table	 using	 the	user_id
column.
As	 for	 the	 selected	 values,	 three	 aggregate	 functions	 are	 used	 (see	 Chapter	 7	 “Advanced	 SQL	 and
MySQL”):	COUNT(),	MIN(),	 and	MAX().	 Each	 is	 applied	 to	 a	 column	 in	 the	posts	 table,	 so	 the
query	has	a	GROUP	BY	(p.thread_id)	clause.	MIN()	and	MAX()	are	used	to	return	the	earliest



(for	the	original	post)	and	latest	dates.	Both	will	be	shown	on	the	forum	page	(see	 ).	The	latest	date
is	 also	 used	 to	 order	 the	 results	 so	 that	 the	 most	 recent	 activity	 always	 gets	 returned	 first.	 The
COUNT()	function	is	used	to	count	the	number	of	posts	in	a	given	thread.	Because	the	original	post	is
also	in	the	posts	table,	it	will	be	factored	into	COUNT()	as	well,	so	1	is	subtracted	from	that	value.
Finally,	aliases	are	used	to	make	the	query	shorter	to	write	and	to	make	it	easier	to	use	the	results	in	the
PHP	 script.	 If	 you’re	 confused	 by	 what	 this	 query	 returns,	 execute	 it	 using	 the	 mysql	 client	 	 or
phpMyAdmin.

	The	results	of	running	the	complex	query	in	the	mysql	client.
4.	Create	a	table	for	the	results:
Click	here	to	view	code	image

echo	'<table	class="table	table-striped">

<thead>

					<tr>

											<th>'	.	$words['subject']	.	

	 '</th>

											<th>'	.	$words['posted_by']	.	

	 '</th>

											<th>'	.	$words['posted_on']	.	

	 '</th>

											<th>'	.	$words['replies']	.	

	 '</th>

											<th>'	.	$words['latest_reply']	.	

	 '</th>

					</tr>

</thead>

<tbody>';

As	 with	 some	 items	 in	 the	 header	 file,	 the	 captions	 for	 the	 columns	 in	 this	 HTML	 page	 will	 use
language-specific	terminology.

5.	Fetch	and	print	each	returned	record:
Click	here	to	view	code	image

while	($row	=	mysqli_fetch_array

	 ($r,	MYSQLI_ASSOC))	{

		echo	'<tr>

								<td><a	href="read.php?tid='

								 .	$row['thread_id']	.	'">'

								 .	$row['subject']	.

								 '</a></td>

															<td>'	.	$row['username']	.

								 '</td>

															<td>'	.	$row['first']	.

								 '</td>

															<td>'	.	$row['responses']	.

								 '</td>

															<td>'	.	$row['last']	.



								 '</td>

														</tr>';

	

}

This	code	is	fairly	simple,	and	there	are	similar	examples	many	times	over	in	this	book.	The	thread’s
subject	is	linked	to	read.php,	passing	that	page	the	thread	ID	in	the	URL.

6.	Complete	the	page:
Click	here	to	view	code	image

	echo	'</tbody></table>';

}	else	{

			echo	'<p>There	are	currently	no

		 messages	in	this	forum.</p>';

}

include('includes/footer.html');

?>

This	else	clause	applies	if	the	query	returned	no	results.	In	actuality,	this	message	should	also	be	in
the	user’s	chosen	 language.	 I’ve	omitted	 that	 for	 the	 sake	of	brevity.	To	 fully	 implement	 this	 feature,
create	another	column	in	the	words	table	and	store	for	each	language	the	translated	version	of	this	text.

7.	Save	the	file	as	forum.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	The	forum.php	page,	viewed	in	another	language	(compare	with	

Tip
If	you	see	no	values	for	the	dates	and	times	when	you	run	this	script,	it	is	probably	because	your
MySQL	installation	hasn’t	been	updated	with	the	full	list	of	time	zones.

Tip
As	noted	in	the	chapter’s	introduction,	I’ve	omitted	all	error	handling	in	this	example.	If	you	have
problems	 with	 the	 queries,	 apply	 the	 debugging	 techniques	 outlined	 in	 Chapter	 8,	 “Error
Handling	and	Debugging.”

Creating	the	Thread	Page
Next	up	is	the	page	for	viewing	all	the	messages	in	a	thread	 .	This	page	is	accessed	by	clicking	a	link
in	forum.php	 .	Thanks	 to	a	simplified	database	structure,	 the	query	used	by	 this	script	 is	not	 that
complicated	(with	the	database	design	from	Chapter	6,	this	page	would	have	been	much	more	complex).
All	 this	 page	 has	 to	 do,	 then,	 is	make	 sure	 it	 receives	 a	 valid	 thread	 ID,	 display	 every	message,	 and
display	the	form	for	users	to	add	their	own	replies.



	The	read.php	page	shows	every	message	in	a	thread.

	Part	of	the	source	code	from	forum.php	shows	how	the	thread	ID	is	passed	to	read.php	in	the
URL.

To	make	read.php:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	read.php	(Script	17.5):



Script	17.5	The	read.php	page	shows	all	of	the	messages	in	a	thread,	in	order	of	ascending	posted	date.
The	page	also	shows	the	thread's	subject	at	the	top	and	includes	a	form	for	adding	a	reply	at	the	bottom.
Click	here	to	view	code	image

1						<?php	#	Script	17.5	-	read.php

2						//	This	page	shows	the	messages	in	a	thread.

3						include('includes/header.html');

4						

5						//	Check	for	a	thread	ID...

6						$tid	=	FALSE;

7						if	(isset($_GET['tid'])	&&	filter_var($_GET['tid'],	FILTER_VALIDATE_INT,	array('min_range'	=>	1))	)	{

8						

9											//	Create	a	shorthand	version	of	the	thread	ID:

10									$tid	=	$_GET['tid'];

11				

12									//	Convert	the	date	if	the	user	is	logged	in:

13									if	(isset($_SESSION['user_tz']))	{

14												$posted	=	"CONVERT_TZ(p.posted_on,	'UTC',	'{$_SESSION['user_tz']}')";

15									}	else	{

16												$posted	=	'p.posted_on';

17									}

18				

19									//	Run	the	query:

20									$q	=	"SELECT	t.subject,	p.message,	username,	DATE_FORMAT($posted,	'%e-%b-%y	%l:%i	%p')	AS	posted	FROM	threads	AS	t	LEFT	JOIN	posts	AS	p	USING	(thread_id)	INNER	JOIN	users	AS	u	ON	p.user_id	=	u.user_id	WHERE	t.thread_id	=	$tid	ORDER	BY	p.posted_on	ASC";

21									$r	=	mysqli_query($dbc,	$q);

22									if	(!(mysqli_num_rows($r)	>	0))	{

23												$tid	=	FALSE;	//	Invalid	thread	ID!

24									}

25				

26				}	//	End	of	isset($_GET['tid'])	IF.

27				

28				if	($tid)	{	//	Get	the	messages	in	this	thread...

29				

30									$printed	=	FALSE;	//	Flag	variable.

31				

32									//	Fetch	each:

33									while	($messages	=	mysqli_fetch_array($r,	MYSQLI_ASSOC))	{

34				

35															//	Only	need	to	print	the	subject	once!

36															if	(!$printed)	{

37																	echo	"<h2>{$messages	['subject']}</h2>\n";

38																	$printed	=	TRUE;

39															}

40				

41															//	Print	the	message:

42															echo	"<p>{$messages['username']}	({$messages['posted']})<br>{$messages['message']}</p><br>\n";

43				

44									}	//	End	of	WHILE	loop.

45				

46									//	Show	the	form	to	post	a	message:

47									include('includes/post_form.php');

48				

49				}	else	{	//	Invalid	thread	ID!

50								echo	'<p	class="bg-danger">This	page	has	been	accessed	in	error.</p>';

51				}

52				

53				include('includes/footer.html');

54				?>

Click	here	to	view	code	image
<?php	#	Script	17.5	-	read.phpinclude('includes/header.html');



2.	Begin	validating	the	thread	ID:
Click	here	to	view	code	image

$tid	=	FALSE;

if	(isset($_GET['tid'])	&&

	 filter_var($_GET['tid'],

	 FILTER_VALIDATE_INT,

	 array('min_range'	=>	1))	)	{

To	start,	a	flag	variable	is	defined	as	FALSE,	a	way	of	saying	that	you	want	to	prove	that	the	thread	ID
is	valid,	which	is	the	most	important	aspect	of	this	script.	Next,	a	check	confirms	that	the	thread	ID	was
passed	in	the	URL	and	that	it	is	an	integer	greater	than	1.	This	is	done	using	the	Filter	extension	(see
Chapter	13).	Finally,	the	value	passed	to	the	page	is	assigned	to	the	$tid	variable	so	that	it	no	longer
has	a	FALSE	value.

3.	Determine	whether	the	dates	and	times	should	be	adjusted:
Click	here	to	view	code	image

if	(isset($_SESSION['user_tz']))	{

			$posted	=	"CONVERT_TZ

		 (p.posted_on,	'UTC',

		 '{$_SESSION['user_tz']}')";

}	else	{

			$posted	=	'p.posted_on';

}

As	in	the	forum.php	page	(Script	17.4),	the	query	will	format	all	 the	dates	and	times	in	the	user’s
time	zone	if	the	user	is	logged	in.	To	be	able	to	adjust	the	query	accordingly,	this	variable	stores	either
the	column’s	name	(posted_on,	from	the	posts	table)	or	the	invocation	of	MySQL’s	CONVERT_TZ()
function.

4.	Run	the	query:
Click	here	to	view	code	image

$q	=	"SELECT	t.subject,	p.message,

	 username,	DATE_FORMAT($posted,

	 '%e-%b-%y	%l:%i	%p')	AS	posted

	 FROM	threads	AS	t	LEFT	JOIN

	 posts	AS	p	USING	(thread_id)

	 INNER	JOIN	users	AS	u	ON	p.user_

	 id	=	u.user_id	WHERE	t.thread_id

	 =	$tid	ORDER	BY	p.posted_on	ASC";

$r	=	mysqli_query($dbc,	$q);

if	(!(mysqli_num_rows($r)	>	0))	{

		$tid	=	FALSE;	//	Invalid

		 thread	ID!

}

This	query	is	like	the	query	on	the	forum	page,	but	it’s	been	simplified	in	two	ways.	First,	it	doesn’t	use
any	of	the	aggregate	functions	or	a	GROUP	BY	clause.	Second,	it	returns	only	one	date	and	time.	The
query	 is	 still	 a	 JOIN	 across	 three	 tables	 to	 get	 the	 subject,	 message	 bodies,	 and	 usernames.	 The
records	 are	 ordered	 by	 their	 posted	 dates	 in	 ascending	 order	 (i.e.,	 from	 the	 first	 post	 to	 the	 most
recent).
If	the	query	doesn’t	return	any	rows,	then	the	thread	ID	isn’t	valid	and	the	flag	variable	is	made	false
again.

5.	Complete	the	$_GET[‘tid’]	conditional	and	check,	again,	for	a	valid	thread	ID:
Click	here	to	view	code	image



}	//	End	of	isset($_GET['tid'])	IF.if	($tid)	{

Before	printing	the	messages	in	the	thread,	one	last	conditional	is	used.	This	conditional	would	be	false
if
	No	 $_GET[‘tid’]	value	was	passed	to	this	page.
	A	 $_GET[‘tid’]	value	was	passed	to	the	page,	but	it	was	not	an	integer	greater	than	0.
	A	 $_GET[‘tid’]	value	was	passed	to	the	page	and	it	was	an	integer	greater	than	0,	but	it	matched
no	thread	records	in	the	database.

6.	Print	each	message:
Click	here	to	view	code	image

$printed	=	FALSE;

	while	($messages	=	mysqli_fetch_

				 array($r,	MYSQLI_ASSOC))	{

				if	(!$printed)	{

				echo	"<h2>{$messages

				 ['subject']}</h2>\n";

					$printed	=	TRUE;

		}

			echo	"<p>{$messages['username']}

			 ({$messages['posted']})<br>

			 {$messages['message']}</p>

			 <br>\n";

	}	//	End	of	WHILE	loop.

As	you	can	see	in	 ,	the	thread	subject	needs	to	be	printed	only	once.	However,	the	query	will	return
the	 subject	 for	 each	 returned	 message	 .	 To	 achieve	 this	 effect,	 a	 flag	 variable	 is	 created.	 If
$printed	 is	FALSE,	then	the	subject	needs	to	be	printed.	This	would	be	the	case	for	the	first	row
fetched	from	the	database.	Once	that’s	been	displayed,	$printed	is	set	to	TRUE	so	that	the	subject	is
not	printed	again.	Then	the	username,	posted	date,	and	message	are	displayed.



	The	results	of	the	read.php	query	when	run	in	the	mysql	client.	This	version	of	the	query	converts
the	dates	to	the	logged-in	user’s	preferred	time	zone.
7.	Include	the	form	for	posting	a	message:
Click	here	to	view	code	image

include('includes/post_form.php');

Because	users	could	post	messages	in	two	ways—as	a	reply	to	an	existing	thread	and	as	the	first	post	in
a	 new	 thread—the	 form	 for	 posting	messages	 is	 defined	within	 a	 separate	 file	 (to	 be	 created	 next),
stored	within	the	includes	directory.

8.	Complete	the	page:
Click	here	to	view	code	image

}	else	{	//	Invalid	thread	ID!

		echo	'<p	class="bg-danger">This

	 page	has	been	accessed	in

	 error.</p>';

}

include('includes/footer.html');

?>

Again,	in	a	complete	site,	this	error	message	would	also	be	stored	in	the	words	table	in	each	language.
Then	you	would	write

Click	here	to	view	code	image



echo	"<p	class="bg-danger">{$words

	 ['access_error']}</p>";

9.	Save	the	file	as	read.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	The	read.php	page,	viewed	in	Japanese

Posting	Messages
The	final	 two	pages	 in	 this	application	are	 the	most	 important,	because	you	won’t	have	 threads	 to	 read
without	 them.	Two	files	 for	posting	messages	are	 required:	one	will	make	 the	 form,	and	 the	other	will
handle	the	form.

Creating	the	form
The	first	page	required	for	posting	messages	is	post_form.php.	It	has	some	contingencies:

	It	can	only	be	included	by	other	files	and	never	accessed	directly.
	 It	 should	be	displayed	only	 if	 the	user	 is	 logged	 in	 (which	 is	 to	 say	only	 logged-in	users	 can	post
messages).
	If	it’s	being	used	to	add	a	reply	to	an	existing	message,	it	only	needs	a	message	body	input	 .



	The	form	for	posting	a	message,	as	shown	on	the	thread-viewing	page.
	If	it’s	being	used	to	create	a	new	thread,	it	needs	both	subject	and	body	inputs	 .

	The	same	form	for	posting	a	message,	if	being	used	to	create	a	new	thread.
	It	needs	to	be	sticky	 .



	The	form	will	recall	entered	values	when	not	completed	correctly.
Still,	all	of	this	can	be	accomplished	in	60	lines	of	code	and	some	smart	conditionals.

To	create	post_form.php:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	post_form.php	(Script	17.6):

Script	17.6	This	script	will	be	included	by	other	pages	(notably,	read.php	and	post.php).	 It	displays	a
form	for	posting	messages	that	is	also	sticky.
Click	here	to	view	code	image

1						<?php	#	Script	17.6	-	post_form.php

2						//	This	page	shows	the	form	for	posting	messages.

3						//	It's	included	by	other	pages,	never	called	directly.

4						

5						//	Redirect	if	this	page	is	called	directly:

6						if	(!isset($words))	{

7											header	("Location:	http://www.example.com/index.php");

8											exit();

9						}

10				

11				//	Only	display	this	form	if	the	user	is	logged	in:

12				if	(isset($_SESSION['user_id']))	{

13				

14									//	Display	the	form:

15									echo	'<form	action="post.php"	method="post"	accept-charset="utf-8">';

16				

17									//	If	on	read.php...

18									if	(isset($tid)	&&	$tid)	{

19				

20															//	Print	a	caption:

21															echo	'<h3>'	.	$words['post_a_reply']	.	'</h3>';

22				

23															//	Add	the	thread	ID	as	a	hidden	input:

24															echo	'<input	name="tid"	type="hidden"	value="'	.	$tid	.	'">';

25				

26									}	else	{	//	New	thread

27				

28															//	Print	a	caption:

29															echo	'<h3>'	.	$words['new_thread']	.	'</h3>';

30				

31															//	Create	subject	input:

32															echo	'<div	class="form-group">	<label	for="subject">'	.	$words['subject']	.	'</label>	<input	name="subject"	type="text"	class="form-control"	size="60"	maxlength="100"	';



33				

34															//	Check	for	existing	value:

35															if	(isset($subject))	{

36																				echo	"value=\"$subject\"	";

37															}

38				

39															echo	'></div>';

40				

41									}	//	End	of	$tid	IF.

42				

43									//	Create	the	body	textarea:

44									echo	'<div	class="form-group"><label	for="subject">'	.	$words['body']	.	'</label>	<textarea	name="body"	class="form-control"	rows="10"	cols="60">';

45				

46									if	(isset($body))	{

47															echo	$body;

48									}

49				

50									echo	'</textarea></div>';

51				

52									//	Finish	the	form:

53									echo	'<input	name="submit"	type="submit"	class="form-control"	value="'	.	$words['submit']	.	'">

54									</form>';

55				

56				}	else	{

57							echo	'<p	class="bg-warning">You	must	be	logged	in	to	post	messages.</p>';

58				}

59				

60				?>

Click	here	to	view	code	image
<?php	#	Script	17.6	-	post_form.php

2.	Redirect	the	browser	if	this	page	has	been	accessed	directly:
Click	here	to	view	code	image

if	(!isset($words))	{

			header	("Location:	http://www.

			 example.com/index.php");

	exit();

}

This	script	does	not	include	the	header	and	footer	and	therefore	won’t	make	a	complete	HTML	page.
Consequently,	 the	 script	 must	 be	 included	 by	 a	 script	 that	 does	 all	 that.	 PHP	 has	 no
been_included()	 function	 that	will	 indicate	whether	 this	page	was	 included	or	 loaded	directly.
Instead,	since	 I	 know	 that	 the	header	 file	 creates	 a	$words	 variable,	 if	 that	 variable	 isn’t	 set,	 then
header.html	hasn’t	been	included	prior	to	this	script	and	the	browser	should	be	redirected.
Change	the	URL	in	the	header()	call	to	match	your	site.

3.	Confirm	that	the	user	is	logged	in	and	begin	the	form:
Click	here	to	view	code	image

if	(isset($_SESSION['user_id']))	{

			echo	'<form	action="post.php"

			 method="post"

			 accept-charset="utf-8">';

Because	 only	 registered	 users	 can	 post,	 the	 script	 checks	 for	 the	 presence	 of
$_SESSION[‘user_id’]	 before	 displaying	 the	 form.	 The	 form	 itself	 will	 be	 submitted	 to
post.php,	to	be	written	next.	The	accept-charset	attribute	is	added	to	the	form	to	make	it	clear
that	UTF-8	text	is	acceptable	(although	this	isn’t	technically	required,	since	each	page	uses	the	UTF-8



encoding	already).
4.	Check	for	a	thread	ID:
Click	here	to	view	code	image

if	(isset($tid)	&&	$tid)	{

	echo	'<h3>'	.	$words['post_a_

	 reply']	.	'</h3>';

	echo	'<input	name="tid"

	 type="hidden"	value="'	.

	 $tid	.	'">';

This	is	where	things	get	a	little	bit	tricky.	As	mentioned	earlier,	and	as	shown	in	 	and	 ,	the	form
will	differ	slightly	depending	on	how	it’s	being	used.	When	included	on	read.php,	the	form	will	be
used	to	provide	a	reply	to	an	existing	thread.	To	check	for	this	scenario,	the	script	sees	if	$tid	(short
for	thread	ID)	is	set	and	if	it	has	a	TRUE	value.	That	will	be	the	case	when	this	page	is	included	by
read.php.	When	this	script	is	included	by	post.php,	$tid	will	be	set	but	have	a	FALSE	value.
If	this	conditional	is	true,	the	language-specific	version	of	“Post	a	Reply”	will	be	printed	and	the	thread
ID	will	be	stored	in	a	hidden	form	input.

5.	Complete	the	conditional	begun	in	Step	4:
Click	here	to	view	code	image

}	else	{	//	New	thread

				echo	'<h3>'	.	$words	

				 ['new_thread']	.	'</h3>';

				echo	'<div	class="form-group">	

			 <label	for="subject">'	.	

			 $words['subject']	.	'</label>	

			 <input	name="subject"	

			 type="text"	class="form-control"	

			 size="60"	maxlength="100"	';

				if	(isset($subject))	{

								echo	"value=\"$subject\"	";

				}

				echo	'></div>';

	}	//	End	of	$tid	IF.

If	this	is	not	a	reply,	then	the	caption	should	be	the	language-specific	version	of	“New	Thread”	and	a
subject	input	should	be	created.	That	input	needs	to	be	sticky.	To	check	for	that,	look	for	the	existence
of	a	$subject	variable.	This	variable	will	be	created	in	post.php,	and	that	file	will	then	include
this	page.

6.	Create	the	textarea	for	the	message	body:

Click	here	to	view	code	image
echo	'<div	class="form-group">

<label	for="subject">'	.	$words

['body']	.	'</label>	<textarea

name="body"	class="form-control"

rows="10"	cols="60">';

if	(isset($body))	{

		echo	$body;

}

echo	'</textarea></div>';

Both	 uses	 of	 this	 page	will	 have	 this	 textarea.	 Like	 the	 subject,	 it	will	 be	made	 sticky	 if	 a	$body
variable	(defined	in	post.php)	exists.	For	both	inputs,	the	prompts	will	be	language-specific.

7.	Complete	the	form:



Click	here	to	view	code	image
echo	'<input	name="submit"	

	 type="submit"	class="form-control"	

	 value="'	.	$words['submit']	.	'">

</form>';

All	that’s	left	is	a	language-specific	submit	button	 .

	The	form	prompts	and	even	the	submit	button	will	be	in	the	user’s	chosen	language	(compare	with	the
other	figures	in	this	section	of	the	chapter).
8.	Complete	the	page:
Click	here	to	view	code	image

}	else	{

		echo	'<p	class="bg-warning">You

		 must	be	logged	in	to	post

		 messages.</p>';

}

?>

Once	again,	you	could	store	this	message	in	the	words	table	and	use	the	translated	version	here.	I	didn’t
only	for	the	sake	of	simplicity.

9.	Save	the	file	as	post_form.php,	place	it	in	the	includes	folder	of	your	web	directory,	and	test
it	in	your	browser	by	accessing	read.php	 .



	The	result	of	the	post_form.php	page	if	the	user	is	not	logged	in	(remember	that	you	can	emulate
not	being	logged	in	by	using	the	$_SESSION	=	[];	line	in	the	header	file).

Handling	the	form
This	 file,	post.php,	will	primarily	be	used	 to	handle	 the	 form	submission	 from	post_form.php.
That	sounds	simple	enough,	but	there’s	a	bit	more	to	it.	This	page	will	actually	be	called	in	three	different
ways:

	To	handle	the	form	for	a	thread	reply
	To	display	the	form	for	a	new	thread	submission
	To	handle	the	form	for	a	new	thread	submission

This	means	that	the	page	will	be	accessed	using	either	POST	(modes	1	and	3)	or	GET	(mode	2).	Also,	the
data	that	will	be	sent	to	the	page,	and	therefore	needs	to	be	validated,	will	differ	between	modes	1	and	3	

.

	The	various	uses	of	the	post.php	page.
Adding	 to	 the	complications,	 if	a	new	thread	 is	being	created,	 two	queries	must	be	run:	one	 to	add	 the
thread	to	the	threads	table	and	a	second	to	add	the	new	thread	body	to	the	posts	table.	If	the	submission	is
a	reply	to	an	existing	thread,	then	only	one	query	is	required,	inserting	a	record	into	posts.
Of	course,	 successfully	pulling	 this	off	 is	 just	a	matter	of	using	 the	 right	conditionals,	 as	you’ll	 see.	 In
terms	of	validation,	the	subject	and	body,	as	text	types,	will	just	be	checked	for	a	non-empty	value.	All
tags	will	be	stripped	from	the	subject	(because	why	should	 it	have	any?)	and	turned	into	entities	 in	 the
body.	 This	 will	 allow	 for	 HTML,	 JavaScript,	 and	 PHP	 code	 to	 be	written	 in	 a	 post	 but	 still	 not	 be



executed	when	 the	 thread	 is	 shown	 (because	 in	 a	 forum	 about	web	 development,	 you’ll	 need	 to	 show
some	code).

To	create	post.php:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	post.php	(Script	17.7):

Script	17.7	The	post.php	page	will	process	the	form	submissions	when	a	message	is	posted.	This	page
will	be	used	to	both	create	new	threads	and	handle	replies	to	existing	threads.
Click	here	to	view	code	image

1						<?php	#	Script	17.7	-	post.php

2						//	This	page	handles	the	message	post.

3						//	It	also	displays	the	form	if	creating	a	new	thread.

4						include('includes/header.html');

5						

6						if	($_SERVER['REQUEST_METHOD']	==	'POST')	{	//	Handle	the	form.

7						

8											//	Language	ID	is	in	the	session.

9											//	Validate	thread	ID	($tid),	which	may	not	be	present:

10										if	(isset($_POST['tid'])	&&	filter_var($_POST['tid'],	FILTER_VALIDATE_INT,	array('min_range'	=>	1))	)	{

11															$tid	=	$_POST['tid'];

12									}	else	{

13												$tid	=	FALSE;

14									}

15				

16									//	If	there's	no	thread	ID,	a	subject	must	be	provided:

17									if	(!$tid	&&	empty($_POST['subject']))	{

18															$subject	=	FALSE;

19															echo	'<p	class="bg-danger">Please	enter	a	subject	for	this	post.</p>';

20									}	elseif	(!$tid	&&	!empty($_POST['subject']))	{

21															$subject	=	htmlspecialchars(strip_tags($_POST['subject']));

22									}	else	{	//	Thread	ID,	no	need	for	subject.

23															$subject	=	TRUE;

24									}

25				

26									//	Validate	the	body:

27									if	(!empty($_POST['body']))	{

28															$body	=	htmlentities($_POST['body']);

29									}	else	{

30															$body	=	FALSE;

31															echo	'<p	class="bg-danger">Please	enter	a	body	for	this	post.</p>';

32									}

33				

34									if	($subject	&&	$body)	{	//	OK!

35				

36												//	Add	the	message	to	the	database...

37				

38												if	(!$tid)	{	//	Create	a	new	thread.

39																$q	=	"INSERT	INTO	threads	(lang_id,	user_id,	subject)	VALUES	({$_SESSION['lid']},	{$_SESSION['user_id']},	'"	.	mysqli_real_escape_string($dbc,	$subject)	.	"')";

40																$r	=	mysqli_query($dbc,	$q);

41																if	(mysqli_affected_rows($dbc)	==	1)	{

42																				$tid	=	mysqli_insert_id($dbc);

43																}	else	{

44																			echo	'<p	class="bg-danger">Your	post	could	not	be	handled	due	to	a	system	error.	</p>';

45																}

46																}	//	No	$tid.

47				

48																if	($tid)	{	//	Add	this	to	the	replies	table:

49																$q	=	"INSERT	INTO	posts	(thread_id,	user_id,	message,	posted_on)	VALUES	($tid,	{$_SESSION['user_id']},	'"	.	mysqli_real_escape_string($dbc,	$body)	.	"',	UTC_TIMESTAMP())";

50																$r	=	mysqli_query($dbc,	$q);

51																if	(mysqli_affected_rows($dbc)	==	1)	{



52																							echo	'<p	class="bg-success">Your	post	has	been	entered.</p>';

53																				}	else	{

54																									echo	'<p	class="bg-danger">Your	post	could	not	be	handled	due	to	a	system	error.</p>';

55																				}

56															}	//	Valid	$tid.

57				

58									}	else	{	//	Include	the	form:

59															include('includes/post_form.php');

60									}

61				

62				}	else	{	//	Display	the	form:

63				

64									include('includes/post_form.php');

65				

66				}

67				

68				include('includes/footer.html');

69				?>

Click	here	to	view	code	image
<?php	#	Script	17.7	-	post.phpinclude('includes/header.html');

This	page	will	use	the	header	and	footer	files,	unlike	post_form.php.
2.	Check	for	the	form	submission	and	validate	the	thread	ID:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==

	 'POST')	{

	if	(isset($_POST['tid'])	&&

	 filter_var($_POST['tid'],

	 FILTER_VALIDATE_INT,

	 array('min_range'	=>	1))	)	{

				$tid	=	$_POST['tid'];

			}	else	{

						$tid	=	FALSE;

			}

The	thread	ID	will	be	present	if	the	form	was	submitted	as	a	reply	to	an	existing	thread	(the	thread	ID	is
stored	as	a	hidden	input	 ).	The	validation	process	is	fairly	routine,	thanks	to	the	Filter	extension.

	The	 source	 code	 of	read.php	 shows	 how	 the	 thread	 ID	 is	 stored	 in	 the	 form.	This	 indicates	 to
post.php	that	the	submission	is	a	reply,	not	a	new	thread.
3.	Validate	the	message	subject:
Click	here	to	view	code	image

if	(!$tid	&&	empty($_POST

	 ['subject']))	{

		$subject	=	FALSE;

		echo	'<p	class="bg-danger">

	 Please	enter	a	subject	for

	 this	post.</p>';

}	elseif	(!$tid	&&	!empty($_POST

	 ['subject']))	{



		$subject	=	htmlspecialchars

	 (strip_tags($_POST['subject']));

}	else	{	//	Thread	ID,	no	need

	 for	subject.

		$subject	=	TRUE;

}

The	tricky	part	about	validating	the	subject	is	that	three	scenarios	exist.	First,	if	there’s	no	valid	thread
ID,	then	this	should	be	a	new	thread	and	the	subject	can’t	be	empty.	If	the	subject	element	is	empty,	then
an	error	occurred	and	a	message	is	printed.
In	 the	second	scenario,	 there’s	no	valid	 thread	 ID	and	 the	subject	 isn’t	 empty,	meaning	 this	 is	a	new
thread	and	the	subject	was	entered,	so	it	should	be	handled.	In	this	case,	any	tags	are	removed,	using	the
strip_tags()	 function,	 and	htmlspecialchars()	 will	 turn	 any	 remaining	 quotation	marks
into	 their	 entity	 format.	 Calling	 this	 second	 function	 will	 prevent	 problems	 should	 the	 form	 be
displayed	 again	 and	 the	 subject	 placed	 in	 the	 input	 to	 make	 it	 sticky.	 To	 be	 more	 explicit,	 if	 the
submitted	subject	contains	a	double	quotation	mark	but	 the	body	wasn’t	completed,	 the	 form	will	be
shown	again	with	the	subject	placed	within	value=””,	and	the	double	quotation	mark	in	the	subject
will	cause	problems.
The	third	scenario	is	when	the	form	has	been	submitted	as	a	reply	to	an	existing	thread.	In	 that	case,
$tid	will	be	valid	and	no	subject	is	required.

4.	Validate	the	body:
Click	here	to	view	code	image

if	(!empty($_POST['body']))	{

			$body	=	htmlentities($_POST

			 ['body']);

}		else	{

			$body	=	FALSE;

			echo	'<p	class="bg-danger">

	 Please	enter	a	body	for	this

	 post.</p>';

}

This	is	a	much	easier	validation,	since	the	body	is	always	required.	If	present,	 it	will	be	run	through
htmlentities().

5.	Check	whether	the	form	was	properly	filled	out:
if	($subject	&&	$body)	{

6.	Create	a	new	thread,	when	appropriate:
Click	here	to	view	code	image

if	(!$tid)	{	//	Create	a	new	thread.

				$q	=	"INSERT	INTO	threads	

			 (lang_id,	user_id,	subject)	

			 VALUES	({$_SESSION['lid']},	

			 {$_SESSION['user_id']},	'"	.	

			 mysqli_real_escape_string($dbc,	

			 $subject)	.	"')";

					$r	=	mysqli_query($dbc,	$q);

					if	(mysqli_affected_rows($dbc)	==	

	 1)	{

						$tid	=	mysqli_insert_id($dbc);

					}	else	{

									echo	'<p	class="bg-danger">Your	

	 post	could	not	be	handled	

	 due	to	a	system	error.</p>';



					}

}	//	No	$tid.

If	 there’s	no	 thread	 ID,	 then	 this	 is	a	new	 thread	and	a	query	must	be	 run	on	 the	 threads	 table.	That
query	 is	 simple,	populating	 the	 three	columns.	Two	of	 these	values	come	 from	 the	 session	 (after	 the
user	 has	 logged	 in).	 The	 other	 is	 the	 subject,	 which	 is	 run	 through
mysqli_real_escape_string().	 Because	 the	 subject	 already	 had	 strip_tags()	 and
htmlspecialchars()	applied	to	it,	you	could	probably	get	away	with	not	using	this	function,	but
there’s	no	need	to	take	that	risk.
If	the	query	worked,	meaning	it	affected	one	row,	then	the	new	thread	ID	is	retrieved.

7.	Add	the	record	to	the	posts	table:
Click	here	to	view	code	image

if	($tid)	{	//	Add	this	to	the

	 replies	table:

		$q	=	"INSERT	INTO	posts

	 (thread_id,	user_id,	message,

	 posted_on)	VALUES	($tid,

	 {$_SESSION['user_id']},	'"	.

	 mysqli_real_escape_string

	 ($dbc,	$body)	.	"',

	 UTC_TIMESTAMP())";

	$r	=	mysqli_query($dbc,	$q);

		if	(mysqli_affected_rows($dbc)

	 ==	1)	{

		echo	'<p	class="bg-success">

	 Your	post	has	been	entered.

	 </p>';

		}	else	{

					echo	'<p	class="bg-danger">

	 Your	post	could	not	be

	 handled	due	to	a	system

	 error.</p>';

		}

}	//	Valid	$tid.

This	 query	 should	 only	 be	 run	 if	 the	 thread	 ID	 exists.	 That	will	 be	 the	 case	 if	 this	 is	 a	 reply	 to	 an
existing	thread	or	if	the	new	thread	was	just	created	in	the	database	(Step	6).	If	that	query	failed,	then
this	query	won’t	be	run.
The	query	populates	four	columns	in	the	table,	using	the	thread	ID;	the	user	ID	(from	the	session);	the
message	body,	 run	 through	mysqli_real_escape_string()	 for	security;	and	 the	posted	date.
For	this	last	value,	the	UTC_TIMESTAMP()	column	is	used	so	that	it’s	not	tied	to	any	one	time	zone
(see	Chapter	6).
Note	that	for	all	the	printed	messages	in	this	page,	I’ve	just	used	hard-coded	English.	To	finish	rounding
out	the	examples,	each	of	these	messages	should	be	stored	in	the	words	table	and	printed	here	instead.

How	This	Example	Is	Complicated
In	 the	 introduction	 to	 this	 chapter,	 I	 state	 that	 the	 example	 is	 fundamentally	 simple	 but	 that
sometimes	the	simple	things	take	some	extra	effort	to	do.	So	how	is	this	example	complicated,
in	my	opinion?
First,	supporting	multiple	languages	does	add	a	couple	of	issues.	If	the	encoding	isn’t	handled
properly	everywhere—when	creating	the	pages	in	your	text	editor	or	IDE,	in	communicating
with	 MySQL,	 in	 the	 browser,	 etc.—things	 can	 go	 awry.	 Also,	 you	 must	 have	 the	 proper



translations	 for	 every	 language	 for	 every	 bit	 of	 text	 that	 the	 site	might	 need.	 This	 includes
error	messages	(ones	the	user	should	actually	see),	the	bodies	of	emails,	and	so	forth.
How	 the	 PHP	 files	 are	 organized	 and	what	 they	 do	 also	 complicates	 things.	 In	 particular,
some	variables	are	created	in	one	file	but	used	in	another.	Doing	this	can	lead	to	confusion	at
best	 and	 bugs	 at	 the	 worst.	 To	 overcome	 those	 problems,	 I	 recommend	 adding	 lots	 of
comments	indicating	where	variables	come	from	or	where	else	they	might	be	used.	Also,	try
to	 use	 unique	 variable	 names	 within	 pages	 so	 that	 they	 are	 less	 likely	 to	 conflict	 with
variables	in	included	files.
Finally,	this	example	was	complicated	by	the	way	only	one	page	is	used	to	display	the	posting
form	and	only	one	page	is	used	to	handle	it,	despite	the	fact	that	messages	can	be	posted	in
two	different	ways,	with	different	expectations.

8.	Complete	the	page:
Click	here	to	view	code	image

			}	else	{	//	Include	the	form:

			include('includes/

		 post_form.php');

			}

}	else	{	//	Display	the	form:

			include('includes/

		 post_form.php');

}

include('includes/footer.html');

?>

The	first	else	clause	applies	if	the	form	was	submitted	but	not	completed.	In	that	case,	the	form
will	be	included	again	and	can	be	sticky,	since	it	will	have	access	to	the	$subject	and	$body
variables	 created	 by	 this	 script.	 The	 second	else	 clause	 applies	 if	 this	 page	 was	 accessed
directly	(by	clicking	a	link	in	the	navigation),	thereby	creating	a	GET	request	(i.e.,	without	a	form
submission).

9.	Save	the	file	as	post.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	( 	and	
).

	The	result	if	no	subject	was	provided	while	attempting	to	post	a	new	thread.



	The	reply	has	been	successfully	added	to	the	thread.
Administering	the	Forum
Much	 of	 the	 administration	 of	 the	 forum	would	 involve	 user	management,	 discussed	 in	 the
next	chapter.	Depending	on	who	is	administering	the	forum,	you	might	also	create	forms	for
managing	the	languages	and	lists	of	translated	words.
Administrators	would	 also	 likely	have	 the	 authority	 to	 edit	 and	delete	posts	 or	 threads.	To
accomplish	this,	store	a	user	level	in	the	session	as	well	(the	next	chapter	shows	you	how).	If
the	logged-in	user	is	an	administrator,	add	links	to	edit	and	delete	threads	on	forum.php.
Each	 link	 would	 pass	 the	 thread	 ID	 to	 a	 new	 page	 (like	 edit_user.php	 and
delete_user.php	 from	 Chapter	 10,	 “Common	 Programming	 Techniques”).	 When
deleting	a	thread,	you	have	to	make	sure	you	delete	all	the	records	in	the	posts	table	that	also
have	that	thread	ID.	A	foreign	key	constraint	(see	Chapter	6)	can	help	in	this	regard.
Finally,	an	administrator	could	edit	or	delete	individual	posts	(the	replies	to	a	thread).	Again,
check	for	the	user	level	and	then	add	links	to	read.php	(a	pair	of	links	after	each	message).
The	 links	would	pass	 the	post	 ID	 to	edit	 and	delete	pages	 (different	 ones	 than	 are	used	on
threads).

Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).
Note:	Most	of	these	questions	and	some	of	the	prompts	rehash	information	covered	in	earlier	chapters	to
reinforce	some	of	the	most	important	points.

Review
	What	impact	does	a	database’s	character	set,	or	a	PHP	or	HTML	page’s	encoding,	have?
	Why	does	the	encoding	and	character	set	have	to	be	the	same	everywhere?	What	happens	if	there	are
differences?
	What	is	a	primary	key?	What	is	a	foreign	key?
	What	is	the	benefit	of	using	UTC	for	stored	dates	and	times?
	How	do	you	begin	a	session	in	PHP?	How	do	you	store	a	value	in	a	session?	How	do	you	retrieve	a
previously	stored	value?
	How	do	you	create	an	alias	in	an	SQL	command?	What	are	the	benefits	of	using	an	alias?

http://LarryUllman.com/forums/


Pursue
	Review	Chapter	6	if	you	need	a	refresher	on	database	design.
	Review	Chapter	6	to	remind	yourself	as	to	what	kinds	of	columns	in	a	table	should	be	indexed.
	Review	Chapter	6’s	section	on	time	zones	if	your	MySQL	installation	is	not	properly	converting	the
dates	and	times	from	the	UTC	time	zone	to	another	(i.e.,	if	the	returned	converted	date	value	is	NULL).
	Review	Chapter	7	for	a	refresher	on	joins	and	the	aggregating	functions.
	Modify	the	header	and	other	files	so	that	each	page’s	title	uses	both	the	default	language	page	title	and
a	subtitle	based	on	the	page	being	viewed	(e.g.,	the	name	of	the	thread	currently	shown).
	Add	pagination—see	Chapter	10—to	the	forum.php	script.
	 If	 you	 want,	 add	 the	 necessary	 columns	 to	 the	words	 table,	 and	 the	 appropriate	 code	 to	 the	 PHP
scripts,	so	that	every	navigational,	error,	and	other	element	is	language	specific.	Use	a	web	site	such
as	Google	Translate	(https://translate.google.com/)	for	the	translations.
	Apply	the	redirect_user()	function	from	Chapter	12	to	post_form.php	here.
	Create	 a	 search	page	 for	 this	 forum.	 If	 you	need	 some	help,	 see	 the	search.php	 basic	 example
available	in	the	downloadable	code.

https://translate.google.com/






















































































































































18.	Example—User	Registration

In	This	Chapter
Creating	the	Templates
Writing	the	Configuration	Scripts
Creating	the	Home	Page
Registration
Activating	an	Account
Logging	In	and	Logging	Out
Password	Management
Review	and	Pursue

The	 second	 example	 in	 the	 book—a	user	 registration	 system—has	 already	 been	 touched	 on	 in	 several
other	 chapters,	 because	 the	 registration,	 login,	 and	 logout	 processes	make	 for	 good	 examples	 of	many
concepts.	 But	 this	 chapter	 will	 place	 all	 those	 ideas	 within	 the	 same	 context	 using	 a	 consistent
programming	approach.
Users	will	 be	 able	 to	 register,	 log	 in,	 log	 out,	 and	 change	 their	 password.	This	 chapter	 includes	 three
features	not	shown	elsewhere:	the	ability	to	reset	a	password,	should	it	be	forgotten;	the	requirement	that
users	activate	their	account	before	they	can	log	in;	and	support	for	different	user	levels,	allowing	you	to
control	the	available	content	according	to	the	type	of	user	logged	in.
As	in	the	preceding	chapter,	the	focus	here	will	be	on	the	public	side	of	things,	but	along	the	way	you’ll
see	recommendations	as	to	how	this	application	could	easily	be	expanded	or	modified,	including	how	to
add	administrative	features.

Creating	the	Templates
The	application	in	this	chapter	will	use	a	new	template	design	 .	This	template	makes	extensive	use	of
Cascading	Style	Sheets	(CSS),	creating	a	clean	look	without	the	need	for	images.	The	layout	for	this	site
is	derived	from	one	freely	provided	by	BlueRobot	(www.bluerobot.com).

The	basic	appearance	of	this	web	application.
Creating	 this	 chapter’s	 example	begins	with	 two	 template	 files:	header.html	 and	footer.html.

http://www.bluerobot.com


As	 in	 the	 Chapter	 12,	 “Cookies	 and	 Sessions,”	 examples,	 the	 footer	 file	 will	 display	 certain	 links
depending	on	whether	or	not	the	user	is	logged	in,	determined	by	checking	for	the	existence	of	a	session
variable.	Taking	this	concept	one	step	further,	additional	links	will	be	displayed	if	the	logged-in	user	 is
also	an	administrator	(a	session	value	will	indicate	such).
The	header	 file	will	begin	sessions	and	output	buffering,	whereas	 the	 footer	 file	will	 terminate	output
buffering.	Output	buffering	hasn’t	been	formally	covered	in	this	book,	but	it’s	introduced	sufficiently	in	the
sidebar.

To	make	header.html:
1.	Begin	a	new	document	in	your	text	editor	or	IDE,	to	be	named	header.html	(Script	18.1):
Click	here	to	view	code	image

<?php	#	Script	18.1	-	header.html

Script	18.1	The	header	file	begins	the	HTML,	starts	the	session,	and	turns	on	output	buffering.
Click	here	to	view	code	image

1						<?php	#	Script	18.1	-	header.html

2						//	This	page	begins	the	HTML	header	for

							the	site.

3						

4						//	Start	output	buffering:

5						ob_start();

6						

7						//	Initialize	a	session:

8						session_start();

9						

10					//	Check	for	a	$page_title	value:

11					if	(!isset($page_title))	{

12								$page_title	=	'User	Registration';

13					}

14					?>

15					<!doctype	html>

16					<html	lang="en">

17					<head>

18								<meta	charset="utf-8">

19								<title><?php	echo	$page_title;

													?></title>

20								<link	rel="includes/layout.css">

21					</head>

22					<body>

23					<div	id="Header">User	Registration</div>

24					<div	id="Content">

25					<!--	End	of	Header	-->



Using	Output	Buffering
By	default,	anything	that	a	PHP	script	prints	or	any	HTML	outside	of	the	PHP	tags	(even	 in
included	files)	is	immediately	sent	to	the	browser.	Output	buffering	(or	output	control,	as	the
PHP	manual	 calls	 it)	 is	 a	 PHP	 feature	 that	 overrides	 this	 behavior.	 Instead	 of	 immediately
sending	HTML	 to	 the	 browser,	 that	 output	will	 be	 placed	 in	 a	 buffer—temporary	memory.
Then,	 when	 the	 buffer	 is	 flushed,	 it’s	 sent	 to	 the	 browser.	 There	 can	 be	 a	 performance
improvement	 with	 output	 buffering,	 but	 the	 main	 benefit	 is	 that	 it	 eradicates	 those	 pesky
headers	 already	 sent	 error	messages.	 Some	 functions—header(),	setcookie(),	 and
session_start()—can	 only	 be	 called	 if	 nothing	 has	 been	 sent	 to	 the	 browser.	With
output	buffering,	nothing	will	be	sent	to	the	browser	until	the	end	of	the	page,	so	you	are	free
to	call	these	functions	at	any	point	in	a	script.
To	 begin	 output	 buffering,	 invoke	 the	ob_start()	 function.	Once	 you	 call	 it,	 the	 output
from	every	echo,	print,	and	similar	function	call	will	be	sent	 to	a	memory	buffer	rather
than	the	browser.	Conversely,	HTTP	calls	(like	header()	and	setcookie())	will	not	be
buffered	and	will	operate	as	usual.
At	the	conclusion	of	the	script,	call	the	ob_end_flush()	function	to	send	the	accumulated
buffer	 to	 the	 browser.	Or	 use	 the	ob_end_clean()	 function	 to	 delete	 the	 buffered	 data
without	sending	it.	Both	functions	have	the	secondary	effect	of	turning	off	output	buffering.

2.	Begin	output	buffering	and	start	a	session:
ob_start();

session_start();

This	website	will	 use	 output	 buffering,	 eliminating	 any	 error	messages	 that	 could	 occur	when	 using
HTTP	headers,	redirecting	the	user,	or	sending	cookies.	Every	page	will	make	use	of	sessions	as	well.
It’s	safe	to	place	the	session_start()	call	after	ob_start(),	since	nothing	has	been	sent	to	the
browser	yet.
Because	 every	 public	 page	 will	 use	 both	 output	 buffering	 and	 sessions,	 placing	 these	 lines	 in	 the
header.html	 file	 saves	 the	 hassle	 of	 placing	 them	 in	 every	 single	 page.	 In	 addition,	 if	 you	 later
want	to	change	the	session	settings	(for	example),	you	need	to	edit	just	this	one	file.

3.	Check	for	a	$page_title	variable	and	close	the	PHP	section:
Click	here	to	view	code	image

if	(!isset($page_title))	{

$page_title	=	'User	Registration';

}

?>

As	in	the	other	times	this	book	has	used	a	template	system,	the	page’s	title—which	appears	at	the	top	of
the	 browser	 window—will	 be	 set	 on	 a	 page-by-page	 basis.	 This	 conditional	 checks	 if	 the
$page_title	variable	has	a	value	and,	 if	 it	doesn’t,	 sets	 it	 to	a	default	 string.	This	 is	a	nice,	but
optional,	check	to	include	in	the	header.

4.	Create	the	HTML	head:
Click	here	to	view	code	image

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">



		<title><?php	echo	$page_title;

	 ?></title>

		<link	rel="includes/layout.css">

</head>

The	PHP	$page_title	variable	is	printed	between	the	title	tags	here.	Then,	the	CSS	document
is	included.	It	will	be	called	layout.css	and	stored	in	a	folder	called	includes.	You	can	find	the
CSS	file	in	the	downloadable	code	found	at	the	book’s	supporting	web	site	(LarryUllman.com).

Script	18.2	The	footer	file	concludes	the	HTML,	displaying	links	based	on	the	user	status	(logged	in	or
not,	administrator	or	not),	and	flushes	the	output	to	the	browser.
Click	here	to	view	code	image

1						<!--	Start	of	Footer	-->

2						</div><!--	Content	-->

3						

4						<div	id="Menu">

5									<a	href="index.php"	title="Home	Page">Home</a><br>

6									<?php	#	Script	18.2	-	footer.html

7												//	This	page	completes	the	HTML	template.

8						

9												//	Display	links	based	upon	the	login	status:

10											if	(isset($_SESSION['user_id']))	{

11					

12														echo	'<a	href="logout.php"	title="Logout">Logout</a><br>

13								<a	href="change_password.php"	title="Change	Your	Password">Change	Password</a><br>

14											';

15					

16														//	Add	links	if	the	user	is	an	administrator:

17														if	($_SESSION['user_level']	==	1)	{

18																	echo	'<a	href="view_users.php"	title="View	All	Users">View	Users</a><br>

19											<a	href="#">Some	Admin	Page</a><br>

20														';

21														}

22					

23											}	else	{	//	Not	logged	in.

24														echo	'<a	href="register.php"	title="Register	for	the	Site">Register</a><br>

25								<a	href="login.php"	title="Login">Login</a><br>

26								<a	href="forgot_password.php"	title="Password	Retrieval">Retrieve	Password</a><br>

27											';

28											}

29											?>

30								<a	href="#">Some	Page</a><br>

31								<a	href="#">Another	Page</a><br>

32					</div><!--	Menu	-->

33					

34					</body>

35					</html>

36					<?php	//	Flush	the	buffered	output.

37					ob_end_flush();

38					?>

5.	Begin	the	HTML	body:
Click	here	to	view	code	image

<body>

<div	id="Header">User	Registration

</div>

<div	id="Content">

The	body	creates	the	banner	across	the	top	of	the	page	and	then	starts	the	content	part	of	the	web	page

http://LarryUllman.com


(up	until	Welcome!	in	 ).
6.	Save	the	file	as	header.html.

To	make	footer.html:
1.	Begin	a	new	document	in	your	text	editor	or	IDE,	to	be	named	footer.html	(Script	18.2):
Click	here	to	view	code	image

</div><!--	Content	-->

<div	id="Menu">

		<a	href="index.php"	title="Home

	 Page">Home</a><br>

		<?php	#	Script	18.2	-

	 footer.html

2.	If	the	user	is	logged	in,	show	logout	and	change	password	links:
Click	here	to	view	code	image

if	(isset($_SESSION['user_id']))	{

		echo	'<a	href="logout.php"

	 title="Logout">Logout</a><br>

<a	href="change_password.php"

title="Change	Your	Password">

Change	Password</a><br>

';

If	the	user	is	logged	in	(which	means	that	$_SESSION[‘user_id’]	is	set),	the	user	will	see	links
to	log	out	and	to	change	his	or	her	password	 .

The	user	will	see	these	navigation	links	while	logged	in.
3.	If	the	user	is	also	an	administrator,	show	some	other	links:
Click	here	to	view	code	image

if	($_SESSION['user_level']	==	1)	{

		echo	'<a	href="view_users.php"

	 title="View	All	Users">

	 View	Users</a><br>

<a	href="#">Some	Admin	Page

</a><br>

';

}

If	the	logged-in	user	also	happens	to	be	an	administrator,	she	or	he	should	see	some	extra	links	 .	To
test	for	this,	check	the	user’s	access	level,	which	will	also	be	stored	in	a	session.	A	level	value	of	1
will	indicate	that	the	user	is	an	administrator	(nonadministrators	will	have	a	level	of	0).



	A	logged-in	administrator	will	see	extra	links	(compare	with	 ).
4.	Show	the	links	for	non-logged-in	users	and	complete	the	PHP	block:
Click	here	to	view	code	image

}	else	{	//	Not	logged	in.

		echo	'<a	href="register.php"

	 title="Register	for	the	Site">

	 Register</a><br>

<a	href="login.php"	title="Login">

Login</a><br>

<a	href="forgot_password.php"

title="Password	Retrieval">

Retrieve	Password</a><br>

';

}

?>

If	the	user	isn’t	logged	in,	she	or	he	will	see	links	to	register,	log	in,	and	reset	a	forgotten	password	 .

	If	not	logged	in,	the	user	will	see	these	links.
5.	Complete	the	HTML:
Click	here	to	view	code	image

<a	href="#">Some	Page</a><br	/>

<a	href="#">Another	Page</a><br	/>

</div>

</body>

</html>

Two	dummy	links	are	included	for	other	pages	you	could	add.
6.	Flush	the	buffer:

<?php

ob_end_flush();

?>



The	footer	file	will	send	the	accumulated	buffer	to	the	browser,	completing	the	output	buffering	begun
in	the	header	script	(again,	see	the	sidebar).

7.	Save	the	file	as	footer.html	and	place	it,	along	with	header.html	and	layout.css	 (from
the	book’s	supporting	web	site),	in	your	web	directory,	storing	all	three	in	an	includes	folder	 .

	The	directory	structure	of	the	site	on	the	web	server,	assuming	htdocs	is	the	document	root	(where
www.example.com	points).

Tip
If	 this	 site	has	 any	page	 that	does	not	make	use	of	 the	header	 file	but	does	need	 to	work	with
sessions,	 that	script	must	call	session_start()	on	 its	own.	 If	you	fail	 to	do	so,	 that	page
won’t	be	able	to	access	the	session	data.



Tip
In	 more	 recent	 versions	 of	 PHP,	 output	 buffering	 is	 enabled	 by	 default.	 The	 buffer	 size—the
maximum	 number	 of	 bytes	 stored	 in	 memory—is	 4096,	 but	 this	 can	 be	 changed	 in	 PHP’s
configuration	file.

Tip
The	ob_get_contents()	function	will	return	the	current	buffer	so	that	it	may	be	assigned	to
a	variable,	should	the	need	arise.

Tip
The	ob_flush()	function	will	send	the	current	contents	of	the	buffer	to	the	browser	and	then
discard	them,	allowing	a	new	buffer	to	be	started.	This	function	allows	your	scripts	to	maintain
more	 moderate	 buffer	 sizes.	 Conversely,	 ob_end_flush()	 turns	 off	 output	 buffering	 after
sending	the	buffer	to	the	browser.

Tip
The	ob_clean()	function	deletes	the	current	contents	of	the	buffer	without	stopping	the	buffer
process.

Tip
PHP	 will	 automatically	 run	 ob_end_flush()	 at	 the	 conclusion	 of	 a	 script	 if	 it	 is	 not
otherwise	done.

Writing	the	Configuration	Scripts
This	web	 site	will	make	use	 of	 two	 configuration-type	 scripts.	One,	config.inc.php,	will	 be	 the
most	important	script	in	the	entire	application.	It	will

	Have	comments	about	the	site	as	a	whole
	Define	constants
	Establish	site	settings
	Dictate	how	errors	are	handled
	Define	any	necessary	functions

Because	it	does	all	this,	the	configuration	script	will	be	included	by	every	other	page	in	the	application.
The	 second	 configuration-type	 script,	 mysqli_connect.php,	 will	 store	 all	 the	 database-related
information.	It	will	be	included	only	by	those	pages	that	need	to	interact	with	the	database.

Making	a	configuration	file
The	configuration	file	is	going	to	serve	many	important	purposes.	It’ll	be	like	a	cross	between	the	site’s
owner’s	manual	and	its	preferences	file.	The	first	purpose	of	this	file	will	be	to	document	the	site	overall:
who	created	 it,	when,	why,	 for	whom,	and	so	forth.	The	version	 in	 the	book	will	omit	all	 that,	but	you
should	put	this	information	in	your	script	(or	separately	in	a	README	file).	The	second	role	will	be	to
define	all	sorts	of	constants	and	settings	that	the	various	pages	will	use.



Third,	 the	 configuration	 file	 will	 establish	 the	 error-management	 policy	 for	 the	 site.	 The	 technique
involved—creating	your	own	error-handling	function—was	covered	 in	Chapter	8,	“Error	Handling	and
Debugging.”	As	in	that	chapter,	during	the	development	stages,	every	error	will	be	reported	in	 the	most
detailed	way	 .

	During	the	development	stages	of	the	web	site,	all	errors	should	be	as	obvious	and	as	informative	as
possible.
Along	with	the	specific	error	message,	all	the	existing	variables	will	be	shown,	as	will	the	current	date
and	 time.	 The	 error	 reporting	 will	 be	 formatted	 so	 that	 it	 fits	 within	 the	 site’s	 template.	 During	 the
production,	or	live,	stage	of	the	site,	errors	will	be	handled	more	gracefully	 .	At	that	time,	the	detailed
error	messages	will	not	be	printed	in	the	browser	but	instead	sent	to	an	email	address.

	If	errors	occur	when	the	site	is	live,	the	user	will	see	only	a	message	like	this	(but	a	detailed	error
message	will	be	emailed	to	the	administrator).
Finally,	this	script	could	define	any	functions	that	might	be	used	multiple	times	in	the	site.	This	site	won’t
have	any,	but	that	would	be	another	logical	use	of	such	a	file.

To	write	the	configuration	file:
1.	 Begin	 a	 new	 PHP	 document	 in	 your	 text	 editor	 or	 IDE,	 to	 be	 named	config.inc.php	 (Script
18.3):

Script	 18.3	 This	 configuration	 script	 dictates	 how	 errors	 are	 handled,	 defines	 sitewide	 settings	 and
constants,	and	could	(but	doesn't)	declare	any	necessary	functions.
Click	here	to	view	code	image

<?php	#	Script	18.3	-	config.inc.php

1						<?php	#	Script	18.3	-	config.inc.php



2						/*	This	script:

3							*	-	define	constants	and	settings

4							*	-	dictates	how	errors	are	handled

5							*	-	defines	useful	functions

6							*/

7						

8						//	Document	who	created	this	site,	when,

							why,	etc.

9						

10					

11					//	**********************************	//

12					//	************	SETTINGS	************	//

13					

14					//	Flag	variable	for	site	status:

15					define('LIVE',	FALSE);

16					

17					//	Admin	contact	address:

18					define('EMAIL',	'InsertRealAddressHere');

19					

20					//	Site	URL	(base	for	all	redirections):

21					define('BASE_URL',

							'http://www.example.com/');

22					

23					//	Location	of	the	MySQL	connection

							script:

24					define('MYSQL',

							'/path/to/mysqli_connect.php');

25					

26					//	Adjust	the	time	zone	for	PHP	5.1	and

							greater:

27					date_default_timezone_set

							('America/New_York');

28					

29					//	************	SETTINGS	************	//

30					//	**********************************	//

31					

32					

33					//	******************************************	//

34					//	************	ERROR	MANAGEMENT	************	//

35					

36					//	Create	the	error	handler:

37					function	my_error_handler($e_number,	$e_message,	$e_file,	$e_line,	$e_vars)	{

38					

39								//	Build	the	error	message:

40								$message	=	"An	error	occurred	in	script	'$e_file'	on	line	$e_line:	$e_message\n";

41					

42								//	Add	the	date	and	time:

43								$message	.=	"Date/Time:	"	.	date('n-j-Y	H:i:s')	.	"\n";

44					

45								if	(!LIVE)	{	//	Development	(print	the	error).

46					

47											//	Show	the	error	message:

48											echo	'<div	class="error">'	.	nl2br($message);

49					

50											//	Add	the	variables	and	a	backtrace:

51											echo	'<pre>'	.	print_r	($e_vars,	1)	.	"\n";

52											debug_print_backtrace();

53											echo	'</pre></div>';

54					

55								}	else	{	//	Don't	show	the	error:

56					

57											//	Send	an	email	to	the	admin:

58											$body	=	$message	.	"\n"	.	print_r	($e_vars,	1);

59											mail(EMAIL,	'Site	Error!',	$body,	'From:	email@example.com');



60					

61											//	Only	print	an	error	message	if	the	error	isn't	a	notice:

62											if	($e_number	!=	E_NOTICE)	{

63														echo	'<div	class="error">A	system	error	occurred.	We	apologize	for	the

					inconvenience.</div><br>';

64									}

65						}	//	End	of	!LIVE	IF.

66					

67					}	//	End	of	my_error_handler()	definition.

68					

69					//	Use	my	error	handler:

70					set_error_handler('my_error_handler');

71					

72					//	************	ERROR	MANAGEMENT	************	//

73					//	******************************************	//

2.	Establish	two	constants	for	error	reporting:
define('LIVE',	FALSE);

define('EMAIL',

'InsertRealAddressHere');

The	LIVE	constant	will	be	used	as	it	was	in	Chapter	8.	If	it	is	FALSE,	detailed	error	messages	are	sent
to	the	browser	 .	Once	the	site	goes	live,	this	constant	should	be	set	to	TRUE	so	that	detailed	error
messages	are	never	revealed	to	the	user	 .	The	EMAIL	constant	is	where	the	error	messages	will	be
sent	when	the	site	is	live.	You	would	obviously	use	your	own	email	address	for	this	value.

3.	Establish	two	constants	for	sitewide	settings:
Click	here	to	view	code	image

define('BASE_URL',

'http://www.example.com/');

define('MYSQL',

'/path/to/mysqli_connect.php');

These	two	constants	are	defined	just	to	make	it	easier	to	do	certain	things	in	the	other	scripts.	The	first,
BASE_URL,	refers	to	the	root	domain	(http://www.example.com/),	with	an	ending	slash.	If	developing
on	 your	 own	 computer,	 this	 might	 be	 http://localhost/	 or	 http://localhost/ch18/.	 When	 a	 script
redirects	the	browser,	the	code	can	simply	be	something	like

Click	here	to	view	code	image
header('Location:	'	.	BASE_URL

.'page.php');

The	second	constant,	MYSQL,	is	an	absolute	path	to	the	MySQL	connection	script	(to	be	written	next).
Setting	this	as	an	absolute	path	ensures	that	any	file	can	include	the	connection	script	by	referring	to	this
constant:
require(MYSQL);

Change	both	values	to	correspond	to	your	environment.	When	using	XAMPP	on	Windows,	for	example,
the	proper	value	for	the	MYSQL	constant	may	be	C:\\xampp\mysqli_connect.php.
If	 you	move	 the	 site	 from	 one	 server	 or	 domain	 to	 another,	 just	 change	 these	 two	 constants	 and	 the
application	will	still	work.

4.	Establish	any	other	sitewide	settings:
Click	here	to	view	code	image

date_default_timezone_set

('America/New_York);



As	mentioned	in	Chapter	11,	“Web	Application	Development,”	any	use	of	a	PHP	date	or	time	function
requires	that	the	time	zone	be	set.	Change	this	value	to	match	your	time	zone	(see	the	PHP	manual	for
the	list	of	zones).

5.	Begin	defining	the	error-handling	function:
Click	here	to	view	code	image

function	my_error_handler

($e_number,	$e_message,	$e_file,

$e_line,	$e_vars)	{

$message	=	"An	error	occurred	in

script	'$e_file'	on	line

$e_line:	$e_message\n";

The	function	definition	will	be	like	the	one	explained	in	Chapter	8.	The	function	expects	to	receive	five
arguments:	the	error	number,	the	error	message,	the	script	in	which	the	error	occurred,	the	line	number
on	which	PHP	thinks	the	error	occurred,	and	an	array	of	variables	that	existed	at	the	time	of	the	error.
Then	 the	function	begins	defining	 the	$message	 variable,	 starting	with	 the	 information	provided	 to
this	function.

6.	Add	the	current	date	and	time:
Click	here	to	view	code	image

$message	.=	"Date/Time:	"	.

date('n-j-Y	H:i:s')	.	"\n";

To	make	 the	error	 reporting	more	useful,	 it	will	 include	 the	current	date	and	 time	 in	 the	message.	A
newline	character	terminates	the	string	to	make	the	resulting	display	more	legible.

7.	If	the	site	is	not	live,	show	the	error	message	in	detail:
Click	here	to	view	code	image

if	(!LIVE)	{	//	Development	(print

the	error).

	echo	'<div	class="error">'	.

	 nl2br($message);

	echo	'<pre>'	.	print_r

	 ($e_vars,	1)	.	"\n";

	debug_print_backtrace();

	echo	'</pre></div>';

As	mentioned	earlier,	if	the	site	isn’t	live,	the	entire	error	message	is	printed	for	any	type	of	error.	The
message	 is	placed	within	<div	class=”error”>,	which	will	 format	 the	message	 per	 the	 rules
defined	in	the	site’s	CSS	file.	The	first	part	of	the	error	message	is	the	string	already	defined,	with	the
added	 touch	 of	 converting	 newlines	 to	 HTML	 break	 tags.	 Then,	 within	 preformatted	 tags,	 all	 the
variables	 that	exist	 at	 the	 time	of	 the	error	are	 shown,	along	with	a	backtrace	 (a	 history	of	 function
calls	and	such).	See	Chapter	8	for	more	explanation	on	any	of	this.

8.	If	the	site	is	live,	email	the	details	to	the	administrator	and	print	a	generic	message	for	the	visitor:
Click	here	to	view	code	image

}	else	{	//	Don't	show	the	error:

		$body	=	$message	.	"\n"	.

	 print_r	($e_vars,	1);

	mail(EMAIL,	'Site	Error!',	$body,

	 'From:	email@example.com');

	if	($e_number	!=	E_NOTICE)	{

			echo	'<div	class="error">

			 A	system	error	occurred.

			 We	apologize	for	the



			 inconvenience.</div><br>';

		}

}	//	End	of	!LIVE	IF.

If	the	site	is	live,	the	detailed	message	should	be	sent	in	an	email	and	the	user	should	see	only	a	generic
message.	 To	 take	 this	 one	 step	 further,	 the	 generic	message	will	 not	 be	 printed	 if	 the	 error	 is	 of	 a
specific	type:	E_NOTICE.	Such	errors	occur	for	things	like	referring	to	a	variable	that	does	not	exist,
which	may	or	may	not	be	a	problem.	To	avoid	potentially	inundating	the	user	with	error	messages,	only
print	the	error	message	if	$e_number	is	not	equal	to	E_NOTICE,	which	is	a	constant	defined	in	PHP
(see	the	PHP	manual).

9.	Complete	the	function	definition	and	tell	PHP	to	use	your	error	handler:
Click	here	to	view	code	image

}

set_error_handler

('my_error_handler');

You	must	use	the	set_error_handler()	function	to	tell	PHP	to	use	your	own	function	for	errors.
10.	 Save	 the	 file	 as	 config.inc.php,	 and	 place	 it	 in	 your	 web	 directory	 within	 the	 includes

folder.
Note	 that	 in	keeping	with	many	other	examples	 in	 this	book,	because	 this	 script	will	be	 included	by
other	PHP	scripts	it	omits	the	terminating	PHP	tag.

Making	the	database	script
The	 second	 configuration-type	 script	 will	 be	mysqli_connect.php,	 the	 database	 connection	 file
used	multiple	 times	 in	 the	 book	 already.	 Its	 purpose	 is	 to	 connect	 to	MySQL,	 select	 the	 database,	 and
establish	the	character	set	in	use.	If	a	problem	occurs,	this	script	will	make	use	of	the	error-handling	tools
established	 in	config.inc.php.	 To	 do	 so,	 this	 script	will	 call	 the	trigger_error()	 function
when	appropriate.	The	trigger_error()	function	lets	you	tell	PHP	that	an	error	occurred.	Of	course
PHP	 will	 handle	 that	 error	 using	 the	 my_error_handler()	 function,	 as	 established	 in	 the
configuration	script.

To	connect	to	the	database:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	mysqli_connect.php	(Script
18.4):

Click	here	to	view	code	image
<?php	#	Script	18.4	-

mysqli_connect.php

Script	18.4	This	script	connects	to	the	ch18	database.	If	it	can't,	then	the	error	handler	will	be	triggered,
passing	it	the	MySQL	connection	error.
Click	here	to	view	code	image

1						<?php	#	Script	18.4	-	mysqli_connect.php

2						//	This	file	contains	the	database	access	information.

3						//	This	file	also	establishes	a	connection	to	MySQL

4						//	and	selects	the	database.

5						

6						//	Set	the	database	access	information	as	constants:

7						define('DB_USER',	'username');

8						define('DB_PASSWORD',	'password');



9						define('DB_HOST',	'localhost');

10					define('DB_NAME',	'ch18');

11					

12					//	Make	the	connection:

13					$dbc	=	@mysqli_connect	(DB_HOST,	DB_USER,	DB_PASSWORD,	DB_NAME);

14					

15					//	If	no	connection	could	be	made,	trigger	an	error:

16					if	(!$dbc)	{

17								trigger_error('Could	not	connect	to	MySQL:	'	.	mysqli_connect_error()	);

18					}	else	{	//	Otherwise,	set	the	encoding:

19								mysqli_set_charset($dbc,	'utf8');

20					}

2.	Set	the	database	access	information:
Click	here	to	view	code	image

DEFINE('DB_USER',	'username');

DEFINE('DB_PASSWORD',	'password');

DEFINE('DB_HOST',	'localhost');

DEFINE('DB_NAME',	'ch18');

As	always,	change	these	values	to	those	that	will	work	for	your	MySQL	installation.
3.	Attempt	to	connect	to	MySQL	and	select	the	database:
Click	here	to	view	code	image

$dbc	=	@mysqli_connect(DB_HOST,DB_

USER,	DB_PASSWORD,	DB_NAME);

In	 previous	 scripts,	 if	 this	 function	 didn’t	 return	 the	 proper	 result,	 the	die()	 function	 was	 called,
terminating	 the	execution	of	 the	 script.	Since	 this	 site	will	be	using	a	custom	error-handling	 function
instead,	I’ll	rewrite	the	connection	process.
Any	errors	raised	by	this	function	call	will	be	suppressed	(thanks	to	the	@)	and	handled	using	the	code
in	the	next	step.

4.	Handle	any	errors	if	the	database	connection	was	not	made:
Click	here	to	view	code	image

if	(!$dbc)	{

		trigger_error('Could	not

	 connect	to	MySQL:	'	.

	 mysqli_connect_error()	);

If	 the	 script	 could	 not	 connect	 to	 the	 database,	 the	 error	 message	 should	 be	 sent	 to	 the
my_error_handler()	function.	By	doing	so,	the	error	will	be	handled	according	to	the	currently
set	 management	 technique	 (live	 stage	 versus	 development).	 Instead	 of	 calling
my_error_handler()	 directly,	 use	 trigger_error(),	 whose	 first	 argument	 is	 the	 error
message	 .



	A	database	connection	error	occurring	during	the	development	of	the	site.
5.	Establish	the	encoding:
Click	here	to	view	code	image

}	else	{

	mysqli_set_charset($dbc,	'utf8');

}

If	a	database	connection	could	be	made,	 the	encoding	used	 to	communicate	with	 the	database	 is	 then
established.	See	Chapter	9,	“Using	PHP	with	MySQL,”	for	details.

6.	Save	the	file	as	mysqli_connect.php,	and	place	it	in	the	directory	above	the	web	document	root.
This	script,	as	an	 includable	file,	also	omits	 the	 terminating	PHP	tag.	As	with	other	examples	 in	 this
book,	 ideally	 the	file	should	not	be	within	 the	web	directory,	but	wherever	you	put	 it,	make	sure	 the
value	of	the	MYSQL	constant	(in	config.inc.php)	matches.

7.	Create	the	database	 .
See	the	sidebar	“Database	Schema”	for	a	discussion	of	the	database	and	the	command	required	to	make
the	one	table.	If	you	cannot	create	your	own	database,	just	add	the	table	to	whatever	database	you	have
access	 to.	Also	make	sure	 that	you	edit	 the	mysqli_connect.php	 file	 so	 that	 it	uses	 the	proper
username/password/hostname	combination	to	connect	to	this	database.

	Creating	the	database	for	this	chapter.



Tip
On	one	hand,	it	might	make	sense	to	place	the	contents	of	both	configuration	files	in	one	script	for
ease	 of	 reference.	 On	 the	 other	 hand,	 doing	 so	 would	 add	 unnecessary	 overhead	 (namely,
connecting	to	and	selecting	the	database)	to	scripts	that	don’t	require	a	database	connection	(e.g.,
index.php).

Tip
In	 general,	 define	 common	 functions	 in	 the	 configuration	 file	 or	 a	 separate	 functions	 file.	One
exception	would	be	any	function	that	requires	a	database	connection.	If	you	know	that	a	function
will	 be	used	only	on	pages	 that	 also	 connect	 to	MySQL,	 then	defining	 that	 function	within	 the
mysqli_connect.php	script	is	only	logical.

Database	Schema
The	database	being	used	by	this	application	is	called	ch18.	The	database	currently	consists	of
only	one	table,	users.	To	create	the	table,	use	this	SQL	command:

Click	here	to	view	code	image

CREATE	TABLE	users	(

user_id	INT	UNSIGNED	NOT	NULL	AUTO_INCREMENT,

first_name	VARCHAR(20)	NOT	NULL,

last_name	VARCHAR(40)	NOT	NULL,

email	VARCHAR(60)	NOT	NULL,

pass	VARCHAR(255)	NOT	NULL,

user_level	TINYINT(1)	UNSIGNED	NOT	NULL	DEFAULT	0,

active	CHAR(32),

registration_date	DATETIME	NOT	NULL,

PRIMARY	KEY	(user_id),

UNIQUE	KEY	(email)

);

Most	of	the	table’s	structure	should	be	familiar	to	you	by	now;	it’s	quite	similar	to	the	users
table	in	the	sitename	database,	used	in	several	examples	in	this	book.	One	new	addition	is	the
active	 column,	 which	 will	 indicate	 whether	 or	 not	 a	 user	 has	 activated	 their	 account	 (by
clicking	a	link	in	the	registration	email).	This	column	will	either	store	the	32-character-long
activation	code	or	have	a	NULL	value.	Because	the	active	column	may	have	a	NULL	value,	it
cannot	be	defined	as	NOT	NULL.	If	you	do	define	active	as	NOT	NULL,	no	one	will	ever	be
able	to	log	in	(you’ll	see	why	later	in	the	chapter).	The	other	new	addition	is	the	user_level
column,	which	will	differentiate	the	kinds	of	users	the	site	has.

Creating	the	Home	Page
The	home	page	for	the	site,	called	index.php,	will	be	a	model	for	the	other	pages	on	the	public	side.	It
will	 require	 the	configuration	 file	 (for	 error	management)	 and	 the	header	 and	 footer	 files	 to	 create	 the
HTML	design.	This	page	will	also	welcome	the	user	by	name,	assuming	the	user	is	logged	in	 .



	If	the	user	is	logged	in,	the	index	page	will	greet	them	by	name.

To	write	index.php:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	index.php	(Script	18.5):

Script	18.5	The	script	for	the	site's	home	page,	which	will	greet	a	logged-in	user	by	name.
Click	here	to	view	code	image

1			 <?php	#	Script	18.5	-index.php		

2			 //	This	is	the	main	page	for	the	site.		

3			 	

4			 //	Include	the	configuration	file:		

5			 require('includes/config.inc.php');		

6			 	

7			 //	Set	the	page	title	and	include	the		

	 HTML	header:		

8			 $page_title	=	'Welcome	to	this	Site!';		

9			 include('includes/header.html');		

10			 	

11			 //	Welcome	the	user	(by	name	if	they	are		

	 logged	in):		

12			 echo	'<h1>Welcome';		

13			 if	(isset($_SESSION['first_name']))	{		

14			 echo	",	{$_SESSION['first_name']}";		

15			 }		

16			 echo	'!</h1>';		

17			 ?>		

18			 <p>Spam	spam	spam	spam	spam	spam		

19			 spam	spam	spam	spam	spam	spam		

20			 spam	spam	spam	spam	spam	spam		

21			 spam	spam	spam	spam	spam	spam.</p>		

22			 <p>Spam	spam	spam	spam	spam	spam		

23			 spam	spam	spam	spam	spam	spam		

24			 spam	spam	spam	spam	spam	spam		

25			 spam	spam	spam	spam	spam	spam.</p>		

26			 	

27			 <?php	include('includes/footer.html');	?>		

Click	here	to	view	code	image
<?php	#	Script	18.5	-	index.php

2.	Include	the	configuration	file,	set	the	page	title,	and	include	the	HTML	header:
Click	here	to	view	code	image

require('includes/config.inc.php');



$page_title	=	'Welcome	to	this

Site!	';

include('includes/header.html');

The	script	includes	the	configuration	file	first	so	that	everything	that	happens	afterward	will	be	handled
using	 the	 error-management	 processes	 established	 in	 this	 file.	 Then,	 the	 header.html	 file	 is
included,	which	will	start	output	buffering,	begin	the	session,	and	create	the	initial	part	of	 the	HTML
layout.

3.	Greet	the	user	and	complete	the	PHP	code:
Click	here	to	view	code	image

echo	'<h1>Welcome';

if	(isset($_SESSION['first_name']))	{

		echo	",	{$_SESSION['first_name']}

		 ";

}

echo	'!</h1>';

?>

The	Welcome	message	will	be	printed	to	all	users.	If	a	$_SESSION[‘first_name’]	variable	is
set,	 the	 user’s	 first	 name	 will	 also	 be	 printed.	 The	 end	 result	 will	 be	 either	 just	Welcome!	 	 or
Welcome,	<Your	Name>!	 .

	If	the	user	is	not	logged	in,	this	is	the	home	page	that’s	displayed.
4.	Create	the	content	for	the	page:

<p>Spam	spam...</p>

You	might	 want	 to	 consider	 putting	 something	 more	 useful	 on	 the	 home	 page	 of	 a	 real	 site.	 Just	 a
suggestion….

5.	Include	the	HTML	footer:
Click	here	to	view	code	image

<?php	include('includes/footer.

html');	?>

The	footer	file	will	complete	the	HTML	layout	(primarily	the	menu	bar	on	the	right	side	of	the	page)
and	conclude	the	output	buffering.

6.	Save	the	file	as	index.php,	place	it	in	your	web	directory,	and	test	it	in	a	browser.



Registration
The	registration	script	was	first	started	in	Chapter	9.	It	has	since	been	improved	on	in	many	ways.	This
version	of	register.php	will	do	the	following:

	Both	display	and	handle	the	form
	Validate	the	submitted	data	using	regular	expressions	and	the	Filter	extension
	Redisplay	the	form	with	the	values	remembered	if	a	problem	occurs	(the	form	will	be	sticky)
	Process	the	submitted	data	using	the	mysqli_real_escape_string()	function	for	security
	Ensure	a	unique	email	address
	Use	PHP	to	securely	hash	the	password
	Send	an	email	containing	an	activation	link	(users	will	have	to	activate	their	account	prior	to	logging
in—see	the	“Activation	Process”	sidebar)

To	write	register.php:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	register.php	(Script	18.6):
Click	here	to	view	code	image

<?php	#	Script	18.6	-	register.php

Script	 18.6	 The	 registration	 script	 uses	 regular	 expressions	 for	 security	 and	 a	 sticky	 form	 for	 user
convenience.	It	sends	an	email	to	the	user	upon	a	successful	registration.
Click	here	to	view	code	image

1						<?php	#	Script	18.6	-	register.php

2						//	This	is	the	registration	page	for	the	site.

3						require('includes/config.inc.php');

4						$page_title	=	'Register';

5						include('includes/header.html');

6					

7						if	($_SERVER['REQUEST_METHOD']	==	'POST')	{	//	Handle	the	form.

8					

9										//	Need	the	database	connection:

10									require(MYSQL);

11			

12									//	Trim	all	the	incoming	data:

13									$trimmed	=	array_map('trim',	$_POST);

14			

15									//	Assume	invalid	values:

16									$fn	=	$ln	=	$e	=	$p	=	FALSE;

17			

18									//	Check	for	a	first	name:

19									if	(preg_match('/^[A-Z	\'.-]{2,20}$/i',	$trimmed['first_name']))	{

20													$fn	=	mysqli_real_escape_string($dbc,	$trimmed['first_name']);

21									}	else	{

22												echo	'<p	class="error">Please	enter	your	first	name!</p>';

23									}

24			

25									//	Check	for	a	last	name:

26									if	(preg_match('/^[A-Z	\'.-]{2,40}$/i',	$trimmed['last_name']))	{

27													$ln	=	mysqli_real_escape_string($dbc,	$trimmed['last_name']);

28									}	else	{

29												echo	'<p	class="error">Please	enter	your	last	name!</p>';

30									}

31			

32									//	Check	for	an	email	address:

33									if	(filter_var($trimmed['email'],	FILTER_VALIDATE_EMAIL))	{



34													$e	=	mysqli_real_escape_string($dbc,	$trimmed['email']);

35									}	else	{

36												echo	'<p	class="error">Please	enter	a	valid	email	address!</p>';

37									}

38			

39									//	Check	for	a	password	and	match	against	the	confirmed	password:

40									if	(strlen($trimmed['password1'])	>=	10)	{

41												if	($trimmed['password1']	==	$trimmed['password2'])	{

42															$p	=	password_hash($trimmed['password1'],	PASSWORD_DEFAULT);

43												}	else	{

44															echo	'<p	class="error">Your	password	did	not	match	the	confirmed	password!</p>';

45															}

46									}	else	{

47												echo	'<p	class="error">Please	enter	a	valid	password!</p>';

48									}

49			

50									if	($fn	&&	$ln	&&	$e	&&	$p)	{	//	If	everything's	OK...

51			

52												//	Make	sure	the	email	address	is	available:

53												$q	=	"SELECT	user_id	FROM	users	WHERE	email='$e'";

54												$r	=	mysqli_query($dbc,	$q)	or	trigger_error("Query:	$q\n<br>MySQL	Error:	"	.	mysqli_error($dbc));

55			

56															if	(mysqli_num_rows($r)	==	0)	{	//	Available.

57			

58																		//	Create	the	activation	code:

59																		$a	=	md5(uniqid(rand(),	true));

60			

61																		//	Add	the	user	to	the	database:

62																		$q	=	"INSERT	INTO	users	(email,	pass,	first_name,	last_name,	active,	registration_date)	VALUES	('$e',	'$p',	'$fn',	'$ln',	'$a',	NOW()	)";

63																		$r	=	mysqli_query($dbc,	$q)	or	trigger_error("Query:	$q\n<br>MySQL	Error:	"	.	mysqli_error($dbc));

64			

65																		if	(mysqli_affected_rows($dbc)	==	1)	{	//	If	it	ran	OK.

66			

67																						//	Send	the	email:

68																						$body	=	"Thank	you	for	registering	at	<whatever	site>.	To	activate	your	account,	please	click	on	this	link:\n\n";

69																						$body	.=	BASE_URL	.	'activate.php?x='	.	urlencode($e)	.	"&y=$a";

70																						mail($trimmed['email'],	'Registration	Confirmation',	$body,	'From:	admin@sitename.com');

71			

72																						//	Finish	the	page:

73																						echo	'<h3>Thank	you	for	registering!	A	confirmation	email	has	been	sent	to	your	address.	Please	click	on	the	link	in	that	email	in	order	to	activate	your	account.</h3>';

74																						include('includes/footer.html');	//	Include	the	HTML	footer.

75																						exit();	//	Stop	the	page.

76			

77																				}	else	{	//	If	it	did	not	run	OK.

78																							echo	'<p	class="error">You	could	not	be	registered	due	to	a	system	error.	We	apologize	for	any	inconvenience.</p>';

79																				}

80			

81														}	else	{	//	The	email	address	is	not	available.

82																	echo	'<p	class="error">That	email	address	has	already	been	registered.	If	you	have	forgotten	your	password,	use	the	link	at	right	to	have	your	password	sent	to	you.</p>';

83															}

84			

85									}	else	{	//	If	one	of	the	data	tests	failed.

86												echo	'<p	class="error">Please	try	again.</p>';

87									}

88			

89									mysqli_close($dbc);

90			

91				}	//	End	of	the	main	Submit	conditional.

92				?>

93			

94				<h1>Register</h1>

95				<form	action="register.php"	method="post">

96									<fieldset>

97			



98									<p><strong>First	Name:</strong>	<input	type="text"	name="first_name"	size="20"	maxlength="20"	value="<?php	if	(isset($trimmed['first_name']))	echo	$trimmed['first_name'];	?>"></p>

99			

100							<p><strong>Last	Name:</strong>	<input	type="text"	name="last_name"	size="20"	maxlength="40"	value="<?php	if	(isset($trimmed['last_name']))	echo	$trimmed['last_name'];	?>"></p>

101

102							<p><strong>Email	Address:</strong>	<input	type="email"	name="email"	size="30"	maxlength="60"	value="<?php	if	(isset($trimmed['email']))	echo	$trimmed['email'];	?>">	</p>

103

104							<p><strong>Password:</strong>	<input	type="password"	name="password1"	size="20"	value="<?php	if	(isset($trimmed['password1']))	echo	$trimmed['password1'];	?>">	<small>At	least	10	characters	long.</small></p>

105

106							<p><strong>Confirm	Password:</strong>	<input	type="password"	name="password2"	size="20"	value="<?php	if	(isset($trimmed['password2']))	echo	$trimmed['password2'];	?>"></p>

107							</fieldset>

108

109							<div	align="center"><input	type="submit"	name="submit"	value="Register"></div>

110

111		</form>

112

113		<?php	include('includes/footer.html');	?>

2.	Include	the	configuration	file	and	the	HTML	header:
Click	here	to	view	code	image

require('includes/config.inc.php');

$page_title	=	'Register';

include('includes/header.html');

3.	Create	 the	conditional	 that	checks	 for	 the	 form	submission	and	 then	 include	 the	database	connection
script:

Click	here	to	view	code	image
if	($_SERVER['REQUEST_METHOD']	==

'POST')	{

	require	(MYSQL);

Because	 the	 full	 path	 to	 the	 mysqli_connect.php	 script	 is	 defined	 as	 a	 constant	 in	 the
configuration	 file,	 the	 constant	 can	 be	 used	 as	 the	 argument	 to	 require().	 The	 benefit	 to	 this
approach	is	that	any	file	stored	anywhere	in	the	site,	even	within	a	subdirectory,	can	use	this	same	code
to	successfully	include	the	connection	script.

4.	Trim	the	incoming	data	and	establish	some	flag	variables:
Click	here	to	view	code	image

$trimmed	=	array_map('trim',

$_POST);

$fn	=	$ln	=	$e	=	$p	=	FALSE;

The	 first	 line	 runs	 every	 element	 in	$_POST	 through	 the	trim()	 function,	 assigning	 the	 returned
result	to	the	new	$trimmed	array.	The	explanation	for	this	line	can	be	found	in	Chapter	13,	“Security
Methods,”	when	array_map()	was	 used	with	 data	 to	 be	 sent	 in	 an	 email.	 In	 short,	 the	trim()
function	will	 be	 applied	 to	 every	value	 in	$_POST,	 saving	 the	hassle	of	 applying	trim()	 to	 each
individually.
The	second	line	initializes	four	variables	as	FALSE.	This	one	line	is	just	a	shortcut	in	lieu	of
$fn	=	FALSE;

$ln	=	FALSE;

$e	=	FALSE;

$p	=	FALSE;

5.	Validate	the	first	and	last	names:
Click	here	to	view	code	image

if	(preg_match('/^[A-Z	\'.-]



{2,20}$/i',	$trimmed['first_

name']))	{

		$fn	=	mysqli_real_escape_string

		 ($dbc,	$trimmed['first_name']);

}	else	{

		echo	'<p	class="error">Please

		 enter	your	first	name!</p>';

}

if	(preg_match('/^[A-Z	\'.-]

{2,40}$/i',	$trimmed

['last_name']))	{

		$ln	=	mysqli_real_escape_string

		 ($dbc,	$trimmed['last_name']);

}	else	{

		echo	'<p	class="error">Please

		 enter	your	last	name!</p>';

}

Much	 of	 the	 form	 will	 be	 validated	 using	 regular	 expressions,	 covered	 in	 Chapter	 14,	 “Perl-
Compatible	Regular	Expressions.”	For	the	first	name	value,	the	assumption	is	that	it	will	contain	only
letters,	a	period	(as	 in	an	 initial),	an	apostrophe,	a	space,	and	 the	dash.	Further,	 the	value	should	 be
within	the	range	of	2	to	20	characters	long.	To	guarantee	that	the	value	contains	only	these	characters,
the	caret	and	 the	dollar	 sign	are	used	 to	match	both	 the	beginning	and	end	of	 the	 string.	While	using
Perl-compatible	regular	expressions,	the	entire	pattern	must	be	placed	within	delimiters	(the	forward
slashes).
If	 this	 condition	 is	 met,	 the	 $fn	 variable	 is	 assigned	 the	 value	 of	 the
mysqli_real_escape_string()	version	of	 the	submitted	value;	otherwise,	$fn	will	 still	be
FALSE	and	an	error	message	is	printed	 .

	If	the	first	name	value	does	not	pass	the	regular	expression	test,	an	error	message	is	printed.
The	same	process	is	used	to	validate	the	last	name,	although	that	regular	expression	allows	for	a	longer
length.	Both	patterns	are	also	case-insensitive,	thanks	to	the	i	modifier.
One	thing	to	be	aware	of	when	using	regular	expressions	to	validate	strings	is	cultural	bias.	The	pattern
used	to	validate	these	names	works	fine	for	most	non-accented	European	names	but	fails	for	names	with
non-Latin	 characters.	 This	 registration	 script	 also	 assumes	 every	 user	 has	 two	 names,	 which	 is	 not
always	 the	 case.	 Try	 to	 be	 aware	 of	 who	 your	 users	 are	 and	 then	 strike	 the	 right	 balance	 between
proper	validation	and	improper	assumptions.

6.	Validate	the	email	address	 :



	The	submitted	email	address	must	be	of	the	proper	format.
Click	here	to	view	code	image

if	(filter_var($trimmed['email''],

FILTER_VALIDATE_EMAIL))	{

	$e	=	mysqli_real_escape_string

	 ($dbc,	$trimmed['email']);

}	else	{

	echo	'<p	class="error">Please

enter	a	valid	email	address!

</p>';

}

An	email	address	can	easily	be	validated	using	the	Filter	extension,	discussed	in	Chapter	13
7.	Validate	the	passwords:
Click	here	to	view	code	image

if	(strlen($trimmed['password1'])

>=	10)	{

		if	($trimmed['password1']	==

		 $trimmed['password2'])	{

				$p	=	password_hash

				 ($trimmed['password1'],

				 PASSWORD_DEFAULT);

		}	else	{

				echo	'<p	class="error">Your

				 password	did	not	match	the

				 confirmed	password!</p>';

		}

}	else	{

		echo	'<p	class="error">Please

enter	a	valid	password!</p>';

}

The	password	must	be	at	least	10	characters	 .	This	may	seem	too	lax,	but	the	truth	when	it	comes	to
security	 is	 that	 requiring	 longer	 passwords—ideally	 longer	 than	 10	 characters,	 even—is	 the	 most
important	 security	 factor.	 Further,	 while	 requiring	 numbers,	 capital	 letters,	 and	 symbols	 may	 help
against	dictionary	attacks,	mostly	they	just	make	it	harder	for	users	to	remember	their	password	(i.e.,
themustideallydictionary	is	a	more	secure	password	than	Password1B!).



	The	passwords	are	checked	for	the	proper	length	and…
There	is	no	maximum	length	limit.
Finally,	the	first	password	(password1)	must	match	the	confirmed	password	(password2)	 .

	…that	the	password	value	matches	the	confirmed	password	value.
Assuming	 the	 password	 passes	 both	 validations,	 it’s	 run	 through	 the	 PHP	 password_hash()
function	so	it’s	ready	to	be	stored.

8.	If	every	test	was	passed,	check	for	a	unique	email	address:
Click	here	to	view	code	image

if	($fn	&&	$ln	&&	$e	&&	$p)	{

			$q	=	"SELECT	user_id	FROM	users

	 WHERE	email='$e'";

	$r	=	mysqli_query($dbc,	$q)

	 or	trigger_error("Query:

	 $q\n<br>MySQL	Error:	"	.

	 mysqli_error($dbc));

If	the	form	passed	every	test,	this	conditional	will	be	TRUE.	Then	the	script	must	search	the	database	to
see	whether	 the	 submitted	 email	 address	 is	 currently	 being	 used,	 since	 that	 column’s	 value	must	 be
unique	 across	 each	 record.	 As	 with	 the	MySQL	 connection	 script,	 if	 a	 query	 doesn’t	 run,	 call	 the
trigger_error()	 function	to	 invoke	the	self-defined	error	reporting	function.	The	specific	error
message	will	include	both	the	query	being	run	and	the	MySQL	error	 	so	that	the	problem	can	easily
be	debugged.



	If	a	MySQL	query	error	occurs,	it	should	be	easier	to	debug	thanks	to	this	informative	error	message.
9.	If	the	email	address	is	unused,	register	the	user:
Click	here	to	view	code	image

if	(mysqli_num_rows($r)	==	0)

{	//	Available.

		$a	=	md5(uniqid(rand(),	true));

		$q	=	"INSERT	INTO	users	(email,

	 pass,	first_name,	last_name,

	 active,	registration_date)

	 VALUES	('$e',	'$p',	'$fn',	'$ln',

	 '$a',	NOW()	)";

	$r	=	mysqli_query($dbc,	$q)

	 or	trigger_error("Query:

	 $q\n<br>MySQL	Error:	"	.

	 mysqli_error($dbc));

The	query	itself	is	rather	simple,	but	it	does	require	the	creation	of	a	unique	activation	code.	Generating
that	 requires	 the	 rand(),	 uniqid(),	 and	 md5()	 functions.	 Of	 these,	 uniqid()	 is	 the	 most
important;	it	creates	a	unique	identifier.	It’s	fed	the	rand()	function	to	help	generate	a	more	random
value.	Finally,	the	returned	result	is	hashed	using	md5(),	which	creates	a	string	exactly	32	characters
long	(a	hash	is	a	mathematically	calculated	representation	of	a	piece	of	data).	You	do	not	need	to	fully
comprehend	these	three	functions;	just	note	that	the	result	will	be	a	unique	32-character	string.
As	for	the	query	itself,	it	should	be	familiar	enough	to	you.	Most	of	the	values	come	from	variables	in
the	 PHP	 script,	 after	 applying	 trim()	 and	 mysqli_real_escape_string()	 to	 them.	 The
MySQL	 NOW()	 function	 is	 used	 to	 set	 the	 registration	 date	 as	 the	 current	 moment.	 Because	 the
user_level	column	has	a	default	value	of	0	(i.e.,	not	an	administrator),	that	column	does	not	have	to	be
provided	a	value	in	this	query.	Presumably	the	site’s	main	administrator	would	edit	a	user’s	record	to
give	him	or	her	administrative	power	after	the	user	has	registered.

10.	Send	an	email	if	the	query	worked:
Click	here	to	view	code	image

if	(mysqli_affected_rows($dbc)	==

1)	{

	$body	=	"Thank	you	for

	 registering	at	<whatever

	 site>.	To	activate	your

	 account,	please	click	on	this



	 link:\n\n";

	$body	.=	BASE_URL	.	'activate.

	 php?x='	.	urlencode($e)	.

	 "&y=$a";

	mail($trimmed['email'],

	 'Registration	Confirmation',

	 $body,	'From:	admin@sitename.

	 com');

With	this	registration	process,	the	important	thing	is	that	the	confirmation	mail	gets	sent	to	your	users,
because	 they	will	not	be	able	 to	 log	 in	until	 after	 they’ve	activated	 their	 account.	This	 email	 should
contain	a	link	to	the	activation	page,	activate.php.	The	link	to	that	page	starts	with	BASE_URL,
which	is	defined	in	config.inc.php.	The	link	also	passes	two	values	along	in	the	URL.	The	first,
generically	called	x,	will	be	the	user’s	email	address,	encoded	so	that	it’s	safe	to	have	in	a	URL.	The
second,	 y,	 is	 the	 activation	 code.	 The	 URL,	 then,	 will	 be	 something	 like
http://www.example.com/activate.php?x=email%40example.com&y=
901e09ef25bf6e3ef95c93088450b008.

Activation	Process
New	in	this	chapter	is	an	activation	process,	where	users	have	to	click	a	link	in	an	email	to
confirm	their	accounts	prior	to	being	able	to	log	in.	Using	a	system	like	this	prevents	bogus
registrations	from	being	usable.	If	an	invalid	email	address	is	entered,	that	account	can	never
be	 activated.	 And	 if	 someone	 registered	 another	 person’s	 address,	 hopefully	 the	 maligned
person	would	not	activate	this	undesired	account.
From	 a	 programming	 perspective,	 this	 process	 requires	 the	 creation	 of	 a	 unique	 activation
code	 for	 each	 registered	 user,	 to	 be	 stored	 in	 the	 users	 table.	 The	 code	 is	 then	 sent	 in	 a
confirmation	email	to	the	user	(as	part	of	a	link).	When	the	user	clicks	the	link,	she	or	he	will
be	 taken	 to	 a	 page	 on	 the	 site	 that	 activates	 the	 account	 (by	 removing	 that	 code	 from	 the
record).	The	result	 is	 that	no	one	can	register	and	activate	an	account	without	receiving	the
confirmation	email	(i.e.,	without	having	a	valid	email	address	that	the	registrant	controls).

11.	Tell	the	user	what	to	expect	and	complete	the	page:
Click	here	to	view	code	image

echo	'<h3>Thank	you	for

	 registering!	A	confirmation

	 email	has	been	sent	to	your

	 address.	Please	click	on	the

	 link	in	that	email	in	order	to

	 activate	your	account.</h3>';

include('includes/footer.html');

exit();

A	thank-you	message	is	printed	out	upon	successful	registration,	along	with	the	activation	instructions	
.	Then	the	footer	is	included	and	the	page	is	terminated.



	The	resulting	page	after	a	user	has	successfully	registered.
12.	Print	errors	if	the	query	failed:
Click	here	to	view	code	image

}	else	{	//	If	it	did	not	run	OK.

		echo	'<p	class="error">You	could

		 not	be	registered	due	to	a

		 system	error.	We	apologize

		 for	any	inconvenience.</p>';

}

If	the	query	failed	for	some	reason,	meaning	that	mysqli_affected_rows()	did	not	return	1,	an
error	message	is	printed	to	the	browser.	Because	of	the	security	methods	implemented	in	this	script,	the
live	version	of	the	site	should	never	have	a	problem	at	this	juncture.

13.	Complete	the	conditionals	and	the	PHP	code:
Click	here	to	view	code	image

				}	else	{	//	The	email	address

				 is	not	available.

						echo	'<p	class="error">That

						 email	address	has

						 already	been	registered.

						 If	you	have	forgotten

						 your	password,	use	the

						 link	at	right	to	have

						 your	password	sent	to

						 you.</p>';

				}

		}	else	{	//	If	one	of	the	data

		 tests	failed.

			echo	'<p	class="error">Please

			 try	again.</p>';

		}

		mysqli_close($dbc);

}	//	End	of	the	main	Submit

conditional.

?>

The	first	else	is	executed	if	a	person	attempts	to	register	with	an	email	address	that	has	already	been
used	 .	The	second	else	applies	when	the	submitted	data	fails	one	of	the	validation	routines	(see	
through	 ).

	If	an	email	address	has	already	been	registered,	the	user	is	told	as	much.
14.	Begin	the	HTML	form	 :



	The	registration	form	as	it	looks	when	the	user	first	arrives.
Click	here	to	view	code	image

<h1>Register</h1>

<form	action="register.php"

method="post">

		<fieldset>

		<p><strong>First	Name:</strong>

	 <input	type="text"

	 name="first_name"	size="20"

	 maxlength="20"	value="<?php	if

	 (isset($trimmed['first_name']))

	 echo	$trimmed['first_name'];

	 ?>"></p>

The	HTML	form	has	 text	 inputs	for	all	 the	values.	Each	 input	has	a	name	and	a	maximum	length	 that
match	 the	 corresponding	 column	 definition	 in	 the	 users	 table.	 The	 form	 will	 be	 sticky,	 using	 the
trimmed	values.

15.	Add	inputs	for	the	last	name	and	email	address:
Click	here	to	view	code	image

<p><strong>Last	Name:</strong>

<input	type="text"

name="last_name"	size="20"

maxlength="40"	value="<?php	if

(isset($trimmed['last_name']))

echo	$trimmed['last_name'];

?>"></p>

<p><strong>Email	Address:</strong>

<input	type="email"

name="email"	size="30"

maxlength="60"	value="<?php	if

(isset($trimmed['email']))	echo

$trimmed['email'];	?>">	</p>

16.	Add	inputs	for	the	password	and	the	confirmation	of	the	password:
Click	here	to	view	code	image

<p><strong>Password:</strong>

<input	type="password"



name="password1"

size="20"	value="<?php	if

(isset($trimmed['password1']))

echo	$trimmed['password1'];	?>">

<small>At	least	10	characters

long.</small></p>

<p><strong>Confirm	Password:

</strong>	<input	type="password"

name="password2"	size="20"

value="<?php	if	(isset($trimmed

['password2']))	echo	$trimmed

['password2'];	?>"></p>

When	you	are	placing	restrictions	for	the	input’s	format,	including	its	length,	it’s	best	to	indicate	those
requirements	to	the	user	in	the	form	itself.	When	you	do	so,	the	site	won’t	report	an	error	to	the	user	for
doing	something	the	user	didn’t	know	she	or	he	couldn’t	do.

17.	Complete	the	HTML	form:
Click	here	to	view	code	image

	</fieldset>

	<div	align="center"><input

	 type="submit"	name="submit"

	 value="Register"	/></div>

</form>

18.	Include	the	HTML	footer:
Click	here	to	view	code	image

<?php	include('includes/footer.

html');	?>

19.	Save	the	file	as	register.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser.

Tip
Because	every	column	in	the	users	table	cannot	be	NULL	(except	for	active),	each	input	must	be
correctly	filled	out.	If	a	table	has	an	optional	field,	you	should	still	confirm	that	it	is	of	the	right
type	if	submitted,	but	not	require	it.

Tip
Except	for	encrypted	fields	(such	as	 the	password),	 the	maximum	length	of	 the	form	inputs	and
regular	expressions	should	correspond	to	the	maximum	length	of	the	column	in	the	database.

Activating	an	Account
As	described	in	the	“Activation	Process”	sidebar	earlier	 in	 the	chapter,	each	user	will	have	to	activate
his	or	her	account	prior	 to	being	able	 to	 log	 in.	Upon	successfully	 registering,	 the	user	will	 receive	an
email	containing	a	link	to	activate.php	 .	This	link	also	passes	two	values	to	this	page:	the	user’s
registered	email	address	and	a	unique	activation	code.	To	complete	the	registration	process—to	activate
the	account—the	user	will	need	 to	click	 that	 link,	 taking	 the	user	 to	 the	activate.php	 script	on	 the
web	site.



	The	registration	confirmation	email.
The	activate.php	script	needs	to	first	confirm	that	those	two	values	were	received	in	the	URL.	Then,
if	the	received	two	values	match	those	stored	in	the	database,	the	activation	code	will	be	removed	from
the	record,	indicating	an	active	account.

To	create	the	activation	page:
1.	Begin	a	new	PHP	script	in	your	text	editor	or	IDE,	to	be	named	activate.php	(Script	18.7):
Click	here	to	view	code	image

<?php	#	Script	18.7	-	activate.php

require('includes/config.inc.php');

$page_title	=	'Activate	Your

Account';

include('includes/header.html');

2.	Validate	the	values	that	should	be	received	by	the	page:
Click	here	to	view	code	image

if	(isset($_GET['x'],	$_GET['y'])

		&&	filter_var($_GET['x'],

		 FILTER_VALIDATE_EMAIL)

		&&	(strlen($_GET['y'])	==	32	)

		)	{

When	the	user	clicks	the	link	in	the	registration	confirmation	email,	two	values	will	be	passed	to	this
page:	 the	 email	 address	 and	 the	 activation	 code.	 Both	 values	must	 be	 present	 and	 validated	 before
attempting	to	use	them	in	a	query	activating	the	user’s	account.
The	 first	 step	 is	 to	 ensure	 that	 both	values	 are	 set.	Since	 the	isset()	 function	 can	 simultaneously
check	 for	 the	 presence	 of	 multiple	 variables,	 the	 first	 part	 of	 the	 validation	 condition	 is
isset($_GET[‘x’],	$_GET[‘y’]).

Script	18.7	To	activate	an	account,	the	user	must	come	to	this	page,	passing	it	her	or	his	email	address
and	activation	code	(all	part	of	the	link	sent	in	an	email	upon	registering).
Click	here	to	view	code	image

1						<?php	#	Script	18.7	-	activate.php

2						//	This	page	activates	the	user's	account.

3						require('includes/config.inc.php');

4						$page_title	=	'Activate	Your	Account';

5						include('includes/header.html');



6					

7						//	If	$x	and	$y	don't	exist	or	aren't	of	the	proper	format,	redirect	the	user:

8						if	(isset($_GET['x'],	$_GET['y'])

9										&&	filter_var($_GET['x'],	FILTER_VALIDATE_EMAIL)

10									&&	(strlen($_GET['y'])	==	32	)

11									)	{

12			

13									//	Update	the	database...

14									require(MYSQL);

15									$q	=	"UPDATE	users	SET	active=NULL	WHERE	(email='"	.	mysqli_real_escape_string	($dbc,	$_GET['x'])	.	"'	AND	active='"	.	mysqli_real_escape_string($dbc,	$_GET['y'])	.	"')	LIMIT	1";

16									$r	=	mysqli_query($dbc,	$q)	or	trigger_error("Query:	$q\n<br>MySQL	Error:	"	.	mysqli_error($dbc));

17			

18									//	Print	a	customized	message:

19									if	(mysqli_affected_rows($dbc)	==	1)	{

20												echo	"<h3>Your	account	is	now	active.	You	may	now	log	in.</h3>";

21									}	else	{

22											echo	'<p	class="error">Your	account	could	not	be	activated.	Please	re-check	the	link	or	contact	the	system	administrator.</p>';

23									}

24			

25									mysqli_close($dbc);

26			

27					}	else	{	//	Redirect.

28			

29									$url	=	BASE_URL	.	'index.php';	//	Define	the	URL.

30									ob_end_clean();	//	Delete	the	buffer.

31									header("Location:	$url");

32									exit();	//	Quit	the	script.

33			

34					}	//	End	of	main	IF-ELSE.

35			

36					include('includes/footer.html');

37					?>

Second,	$_GET[‘x’]	 must	 be	 in	 the	 format	 of	 a	 valid	 email	 address.	 The	 same	 code	 as	 in	 the
registration	script	can	be	used	for	that	purpose	(either	the	Filter	extension	or	a	regular	expression).
Third,	for	y	(the	activation	code),	the	last	clause	in	the	conditional	checks	that	this	string’s	length	(how
many	 characters	 are	 in	 it)	 is	 exactly	 32.	 The	 md5()	 function,	 which	 created	 the	 activation	 code,
always	returns	a	string	32	characters	long.

3.	Attempt	to	activate	the	user’s	account:
Click	here	to	view	code	image

require	(MYSQL);

$q	=	"UPDATE	users	SET	active=NULL

WHERE	(email='"	.	mysqli_real_

escape_string($dbc,	$_GET['x'])

.	"'	AND	active='"	.	mysqli_

real_escape_string($dbc,

$_GET['y'])	.	"')	LIMIT	1";

$r	=	mysqli_query($dbc,	$q)	or

trigger_error("Query:	$q\n<br>

MySQL	Error:	"	.	mysqli_error

($dbc));

If	 all	 three	 conditions	 (in	 Step	 2)	 are	 TRUE,	 an	 UPDATE	 query	 is	 run.	 This	 query	 removes	 the
activation	code	from	the	user’s	record	by	setting	the	active	column	to	NULL.	Before	using	the	values	in
the	query,	both	are	run	through	mysqli_real_escape_string()	for	extra	security.

4.	Report	on	the	success	of	the	query:
Click	here	to	view	code	image



if	(mysqli_affected_rows($dbc)	==

1)	{

		echo	"<h3>Your	account	is	now

	 active.	You	may	now	log	in.

	 </h3>";

}	else	{

		echo	'<p	class="error">Your

	 account	could	not	be

	 activated.	Please	re-check

	 the	link	or	contact	the

	 system	administrator.</p>';

}

If	one	row	was	affected	by	the	query,	then	the	user’s	account	is	now	active	and	a	message	says	as	much	
.	If	no	rows	are	affected,	the	user	is	notified	of	the	problem	 .	This	would	most	likely	happen	if

someone	tried	to	fake	the	x	and	y	values	or	if	there’s	a	problem	in	following	the	link	from	the	email	to
the	browser.

	If	 the	database	could	be	updated	using	 the	provided	email	address	and	activation	code,	 the	user	 is
notified	that	the	account	is	now	active.

	If	an	account	is	not	activated	by	the	query,	the	user	is	told	of	the	problem.
5.	Complete	the	main	conditional:
Click	here	to	view	code	image

	mysqli_close($dbc);

}	else	{	//	Redirect.

	$url	=	BASE_URL	.	'index.php';

	ob_end_clean();

	header("Location:	$url");



	exit();

}	//	End	of	main	IF-ELSE.

The	else	 clause	 takes	 effect	 if	$_GET[‘x’]	 and	$_GET[‘y’]	 are	 not	 of	 the	 proper	 value	 and
length.	In	such	a	case,	the	user	is	just	redirected	to	the	index	page.	The	ob_end_clean()	line	here
deletes	the	buffer	(whatever	was	to	be	sent	to	the	browser	up	to	this	point,	stored	in	memory),	since	it
won’t	be	used.

6.	Complete	the	page:
include('includes/footer.html');

?>

7.	Save	the	file	as	activate.php,	place	it	in	your	web	directory,	and	test	it	by	clicking	the	link	in	the
registration	email.

Tip
If	you	wanted	to	be	a	little	more	forgiving,	you	could	have	this	page	print	an	error	message	if	the
correct	 values	 are	 not	 received,	 rather	 than	 redirect	 users	 to	 the	 index	 page	 (as	 if	 they	 were
attempting	to	hack	the	site).

Tip
I	 specifically	 use	 the	 vague	 x	 and	y	 as	 the	 names	 in	 the	URL	 for	 security	 purposes.	Although
someone	may	figure	out	that	the	one	is	an	email	address	and	the	other	is	a	code,	it’s	sometimes
best	not	to	be	explicit	about	such	things.

Logging	In	and	Logging	Out
In	Chapter	12	you	created	many	versions	of	login.php	and	logout.php	scripts,	using	variations	on
cookies	 and	 sessions.	 Here	 both	 scripts	 will	 be	 created	 once	 again,	 this	 time	 adhering	 to	 the	 same
practices	as	the	rest	of	this	chapter’s	web	application.	The	login	query	itself	 is	slightly	different	 in	this
example	in	that	it	must	also	check	that	the	active	column	has	a	NULL	value,	which	is	the	indication	that
the	user	has	activated	his	or	her	account.

To	write	login.php:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	login.php	(Script	18.8):
Click	here	to	view	code	image

<?php	#	Script	18.8	-	login.php

require('includes/config.inc.php');

$page_title	=	'Login';

include('includes/header.html');

2.	Check	whether	the	form	has	been	submitted	and	require	the	database	connection:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==

'POST')	{

	require	(MYSQL);

3.	Validate	the	submitted	data:
Click	here	to	view	code	image

if	(!empty($_POST['email']))	{



		$e	=	mysqli_real_escape_string

	 ($dbc,	$_POST['email']);

}	else	{

		$e	=	FALSE;

		echo	'<p	class="error">You

	 forgot	to	enter	your	email

	 address!</p>';

}

if	(!empty($_POST['pass']))	{

		$p	=	trim($_POST['pass']);

}	else	{

		$p	=	FALSE;

		echo	'<p	class="error">You

	 forgot	to	enter	your

	 password!</p>';

}

There	 are	 two	 ways	 of	 thinking	 about	 the	 validation.	 On	 the	 one	 hand,	 you	 could	 use	 regular
expressions	and	the	Filter	extension,	copying	the	same	code	from	register.php,	to	validate	these
values.	On	the	other	hand,	 the	 true	 test	of	 the	values	will	be	whether	or	not	 the	 login	query	returns	a
record,	so	you	could	arguably	skip	more	stringent	PHP	validation.	This	script	uses	the	latter	thinking.
If	the	user	does	not	enter	any	values	into	the	form,	error	messages	will	be	printed	 .

	The	login	form	checks	only	if	values	were	entered	without	using	regular	expressions.
4.	If	both	validation	routines	were	passed,	retrieve	the	user	information:
Click	here	to	view	code	image

if	($e	&&	$p)	{	//	If

	 everything's	OK.

		$q	=	"SELECT	user_id,

	 first_name,	user_level,	pass

	 FROM	users	WHERE	email='$e'

	 AND	active	IS	NULL";

		$r	=	mysqli_query($dbc,	$q)

	 or	trigger_error("Query:

	 $q\n<br>MySQL	Error:	"	.

	 mysqli_error($dbc));

The	 query	will	 attempt	 to	 retrieve	 the	 user	 ID,	 first	 name,	 user	 level,	 and	 password	 for	 the	 record
whose	email	address	matches	that	submitted.	The	query	has	to	retrieve	the	password	since	it	will	be



validated	with	PHP.
The	query	also	checks	that	the	active	column	has	a	NULL	value,	meaning	that	the	user	has	successfully
accessed	the	activate.php	page.
If	you	know	an	account	has	been	activated	but	you	still	can’t	log	in	using	the	proper	values,	it’s	likely
because	your	active	column	was	erroneously	defined	as	NOT	NULL.

Script	18.8	 The	 login	 page	will	 redirect	 the	 user	 to	 the	 home	 page	 after	 registering	 the	 user	 ID,	 first
name,	and	access	level	in	a	session.
Click	here	to	view	code	image

1						<?php	#	Script	18.8	-	login.php

2						//	This	is	the	login	page	for	the	site.

3						require('includes/config.inc.php');

4						$page_title	=	'Login';

5						include('includes/header.html');

6					

7						if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

8									require(MYSQL);

9					

10									//	Validate	the	email	address:

11									if	(!empty($_POST['email']))	{

12												$e	=	mysqli_real_escape_string($dbc,	$_POST['email']);

13									}	else	{

14												$e	=	FALSE;

15												echo	'<p	class="error">You	forgot	to	enter	your	email	address!	</p>';

16									}

17			

18									//	Validate	the	password:

19									if	(!empty($_POST['pass']))	{

20												$p	=	trim($_POST['pass']);

21									}	else	{

22												$p	=	FALSE;

23												echo	'<p	class="error">You	forgot	to	enter	your	password!</p>';

24									}

25			

26									if	($e	&&	$p)	{	//	If	everything's	OK.

27			

28													//	Query	the	database:

29													$q	=	"SELECT	user_id,	first_name,	user_level,	pass	FROM	users	WHERE	email='$e'	AND	active	IS	NULL";

30													$r	=	mysqli_query($dbc,	$q)	or	trigger_error("Query:	$q\n<br>MySQL	Error:	"	.	mysqli_error($dbc));

31			

32													if	(@mysqli_num_rows($r)	==	1)	{	//	A	match	was	made.

33			

34																			//	Fetch	the	values:

35																			list($user_id,	$first_name,	$user_level,	$pass)	=	mysqli_fetch_array($r,	MYSQLI_NUM);

36																			mysqli_free_result($r);

37			

38																			//	Check	the	password:

39																			if	(password_verify($p,	$pass))	{

40			

41																							//	Store	the	info	in	the	session:

42																							$_SESSION['user_id']	=	$user_id;

43																							$_SESSION['first_name']	=	$first_name;

44																							$_SESSION['user_level']	=	$user_level;

45																							mysqli_close($dbc);

46			

47																							//	Redirect	the	user:

48																							$url	=	BASE_URL	.	'index.php';	//	Define	the	URL.

49																							ob_end_clean();	//	Delete	the	buffer.

50																							header("Location:	$url");



51																							exit();	//	Quit	the	script.

52			

53																				}	else	{

54			

55																						echo	'<p	class="error">Either	the	email	address	and	password	entered	do	not	match	those	on	file	or	you	have	not	yet	activated	your	account.</p>';

56																				}

57			

58															}	else	{	//	No	match	was	made.

59																		echo	'<p	class="error">Either	the	email	address	and	password	entered	do	not	match	those	on	file	or	you	have	not	yet	activated	your	account.</p>';

60															}

61			

62									}	else	{	//	If	everything	wasn't	OK.

63												echo	'<p	class="error">Please	try	again.</p>';

64									}

65			

66									mysqli_close($dbc);

67			

68				}	//	End	of	SUBMIT	conditional.

69				?>

70			

71				<h1>Login</h1>

72				<p>Your	browser	must	allow	cookies	in	order	to	log	in.</p>

73				<form	action="login.php"	method="post">

74									<fieldset>

75									<p><strong>Email	Address:</strong>	<input	type="email"	name="email"	size="20"	maxlength="60"></p>

76									<p><strong>Password:</strong>	<input	type="password"	name="pass"	size="20"></p>

77									<div	align="center"><input	type="submit"	name="submit"	value="Login"></div>

78									</fieldset>

79				</form>

80			

81				<?php	include('includes/footer.html');	?>

5.	If	a	match	was	made	in	the	database,	retrieve	the	values:
Click	here	to	view	code	image

if	(@mysqli_num_rows($r)	==	1)	{

		list($user_id,	$first_name,

		 $user_level,	$pass)	=	mysqli_

		 fetch_array($r,	MYSQLI_NUM);

		mysqli_free_result($r);

The	login	process	consists	of	storing	the	retrieved	values	in	the	session	(which	was	already	started	in
header.html)	and	then	redirecting	the	user	to	the	home	page.	But	first	the	database	values	need	to
be	fetched	into	local	variables.
The	list()	function	has	not	been	formally	discussed	in	the	book,	but	you	may	have	run	across	it.	It’s
a	 shortcut	 function	 that	 allows	 you	 to	 assign	 array	 elements	 to	 other	 variables.	 Since
mysqli_fetch_array()	will	 always	 return	 an	 array,	 even	 if	 it’s	 an	 array	 of	 just	 one	 element,
using	list()	can	save	having	to	write

Click	here	to	view	code	image
$row	=	mysqli_fetch_array($r,

MYSQLI_NUM);

$user_id	=	$row[0];

6.	Verify	the	password	and	redirect	the	user:
Click	here	to	view	code	image

if	(password_verify($p,	$pass))	{

		$_SESSION['user_id']	=	$user_id;

		$_SESSION['first_name']	=

	 $first_name;



		$_SESSION['user_level']	=

	 $user_level;

		mysqli_close($dbc);

		$url	=	BASE_URL	.	'index.php';

		ob_end_clean();

		header("Location:	$url");

		exit();

The	first	line	was	explained	in	Chapter	13.	If	a	match	is	made,	the	user’s	information	is	stored	in	the
session	and	the	user	is	redirected	to	the	home	page.
The	ob_end_clean()	function	will	delete	the	existing	buffer	(the	output	buffering	is	also	begun	in
header.html),	since	it	will	not	be	used.

7.	Complete	the	conditionals	and	close	the	database	connection:
Click	here	to	view	code	image

						}	else	{

									echo	'<p	class="error">

									 Either	the	email

									 address	and	password

									 entered	do	not	match

									 those	on	file	or	you

									 have	not	yet	activated

									 your	account.</p>';

						}

				}	else	{	//	No	match	was	made.

							echo	'<p	class="error">

							 Either	the	email	address

							 and	password	entered	do

							 not	match	those	on

							 file	or	you	have	not	yet

							 activated	your	account.

							 </p>';

				}

		}	else	{	//	If	everything

		 wasn't	OK.

			echo	'<p	class="error">Please

			 try	again.</p>';

		}

		mysqli_close($dbc);

}	//	End	of	SUBMIT	conditional.

?>

The	error	message	 	indicates	that	the	login	process	could	fail	for	two	possible	reasons.	One	is	that
the	submitted	email	address	and	password	do	not	match	those	on	file.	The	other	reason	is	that	the	user
has	not	yet	activated	the	account.



	An	error	message	is	displayed	if	the	login	query	does	not	return	a	single	record.
8.	Display	the	HTML	login	form	 :

	The	login	form.
Click	here	to	view	code	image

<h1>Login</h1>

<p>Your	browser	must	allow

cookies	in	order	to	log	in.</p>

<form	action="login.php"

method="post">

		<fieldset>

		<p><strong>Email	Address:

	 </strong>	<input	type="email"

	 name="email"	size="20"

	 maxlength="60"></p>

		<p><strong>Password:</strong>

	 <input	type="password"

	 name="pass"	size="20"></p>

		<div	align="center"><input

	 type="submit"	name="submit"

	 value="Login"></div>

	</fieldset>

</form>

The	 login	 form,	 like	 the	 registration	 form,	will	 submit	 the	data	back	 to	 itself.	This	one	 is	not	 sticky,
though,	but	you	could	add	that	functionality.
Notice	that	the	page	includes	a	message	informing	the	user	that	cookies	must	be	enabled	to	use	the	site
(if	a	user	does	not	allow	cookies,	she	or	he	will	never	get	access	to	the	logged-in	user	pages).

9.	Include	the	HTML	footer:



Click	here	to	view	code	image
<?php	include('includes/footer.

html');	?>

10.	Save	the	file	as	login.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	Upon	successfully	 logging	 in,	 the	user	will	be	redirected	 to	 the	home	page,	where	 the	user	will	be
greeted	by	name.

To	write	logout.php:
1.	Begin	a	new	PHP	document	in	your	text	editor	or	IDE,	to	be	named	logout.php	(Script	18.9):
Click	here	to	view	code	image

<?php	#	Script	18.9	-	logout.php

require('includes/config.inc.php');

$page_title	=	'Logout';

include('includes/header.html');

Script	18.9	The	logout	page	destroys	all	of	the	session	information,	including	the	cookie.
Click	here	to	view	code	image

1				<?php	#	Script	18.9	-	logout.php

2				//	This	is	the	logout	page	for	the	site.

3				require('includes/config.inc.php');

4				$page_title	=	'Logout';

5				include('includes/header.html');

6					

7				//	If	no	first_name	session	variable	exists,	redirect	the	user:

8				if	(!isset($_SESSION['first_name']))	{

9					

10							$url	=	BASE_URL	.	'index.php';	//	Define	the	URL.

11							ob_end_clean();	//	Delete	the	buffer.

12							header("Location:	$url");

13							exit();	//	Quit	the	script.

14			

15				}		else	{	//	Log	out	the	user.

16			

17								$_SESSION	=	[];	//	Destroy	the	variables.

18								session_destroy();	//	Destroy	the	session	itself.

19								setcookie(session_name(),	'',	time()-3600);	//	Destroy	the	cookie.

20			

21				}

22			

23				//	Print	a	customized	message:



24				echo	'<h3>You	are	now	logged	out.</h3>';

25			

26				include('includes/footer.html');

27				?>

2.	Redirect	the	user	if	she	or	he	is	not	logged	in:
Click	here	to	view	code	image

if	(!isset($_SESSION['first_name']))	{

		$url	=	BASE_URL	.	'index.php';

		ob_end_clean();

		header("Location:	$url");

		exit();

If	the	user	is	not	currently	logged	in	(determined	by	checking	for	a	$_SESSION[‘first_name’]
variable),	the	user	will	be	redirected	to	the	home	page	(because	there’s	no	point	in	trying	to	log	the	user
out).

3.	Log	out	the	user	if	she	or	he	is	currently	logged	in:
Click	here	to	view	code	image

}	else	{	//	Log	out	the	user.

		$_SESSION	=	[];

		session_destroy();

		setcookie	(session_name(),'',

	 time()-3600);

}

To	log	the	user	out,	the	session	values	will	be	reset,	the	session	data	will	be	destroyed	on	the	server,
and	the	session	cookie	will	be	deleted.	These	lines	of	code	were	first	used	and	described	in	Chapter
12.	The	cookie	name	will	be	the	value	returned	by	the	session_name()	function.	If	you	decide	to
change	the	session	name	later,	this	code	will	still	be	accurate.

4.	Print	a	logged-out	message	and	complete	the	PHP	page:
Click	here	to	view	code	image

echo	'<h3>You	are	now	logged	out.

</h3>';

include('includes/footer.html');

?>

5.	Save	the	file	as	logout.php,	place	it	in	your	web	directory,	and	test	it	in	your	browser	 .

	The	results	of	successfully	logging	out.



Password	Management
The	final	aspect	of	the	public	side	of	this	site	is	the	management	of	passwords.	There	are	two	processes
to	consider:	resetting	a	forgotten	password	and	changing	an	existing	one.

Resetting	a	password
It	inevitably	happens	that	people	forget	their	login	passwords	for	web	sites,	so	having	a	contingency	plan
for	these	occasions	is	important.	One	option	would	be	to	have	the	user	email	the	administrator	when	this
occurs,	but	administering	a	site	is	difficult	enough	without	that	extra	hassle.	Instead,	this	site	will	have	a
script	whose	purpose	is	to	reset	a	forgotten	password.
Because	the	passwords	stored	in	the	database	are	encrypted	using	PHP’s	password_hash()	function,
there’s	no	way	to	retrieve	an	unencrypted	version	(the	database	actually	stores	a	hashed	version	of	 the
password,	not	an	encrypted	version).	The	alternative	is	to	create	a	new,	random	password	and	change	the
existing	password	to	this	value.	Rather	than	just	display	the	new	password	in	the	browser	(that	would	be
terribly	insecure),	the	new	password	will	be	emailed	to	the	address	with	which	the	user	registered.

To	write	forgot_password.php:
1.	 Begin	 a	 new	 PHP	 document	 in	 your	 text	 editor	 or	 IDE,	 to	 be	 named	forgot_password.php
(Script	18.10):

Click	here	to	view	code	image
<?php	#	Script	18.10	-

forgot_password.php

require('includes/config.inc.php');

$page_title	=	'Forgot	Your

Password';

include('includes/header.html');

2.	 Check	 whether	 the	 form	 has	 been	 submitted,	 include	 the	 database	 connection,	 and	 create	 a	 flag
variable:

Click	here	to	view	code	image
if	($_SERVER['REQUEST_METHOD']	==

'POST')	{

	require	(MYSQL);

	$uid	=	FALSE;

An	Alternative	Approach
The	primary	negative	to	this	password	reset	approach	is	that	it	allows	anyone	to	force-change
anyone	else’s	password	as	long	as	the	email	address	has	been	registered.	That	wouldn’t	deny
the	actual	registered	user	access,	but	it	is	annoying.
An	alternative	approach	 that	avoids	 this	problem	requires	adding	one	more	step.	 Instead	of
immediately	 resetting	 the	 password,	 send	 an	 email	 to	 the	 user	 with	 a	 link	 to	 reset	 the
password.	If	it’s	a	legitimate	request	from	the	registered	user,	the	user	will	click	the	link,	the
site	can	reset	the	password,	and	the	user	can	then	log	in.	If	it’s	not	a	legitimate	request	from
the	 registered	 user,	 the	 user	 can	 just	 ignore	 the	 email	 and	 his	 or	 her	 current	 password	 is
retained	(add	a	note	to	the	email	saying	such).

Script	 18.10	 The	 forgot_password.php	 script	 allows	 users	 to	 reset	 their	 password	 without
administrative	assistance.



Click	here	to	view	code	image
1						<?php	#	Script	18.10	-	forgot_password.php

2						//	This	page	allows	a	user	to	reset	their	password,	if	forgotten.

3						require('includes/config.inc.php');

4						$page_title	=	'Forgot	Your	Password';

5						include('includes/header.html');

6					

7						if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

8											require(MYSQL);

9					

10									//	Assume	nothing:

11									$uid	=	FALSE;

12			

13									//	Validate	the	email	address...

14									if	(!empty($_POST['email']))	{

15			

16															//	Check	for	the	existence	of	that	email	address...

17															$q	=	'SELECT	user_id	FROM	users	WHERE	email="'.	mysqli_real_escape_string	($dbc,	$_POST['email'])	.	'"';

18															$r	=	mysqli_query($dbc,	$q)	or	trigger_error("Query:	$q\n<br>MySQL	Error:	"	.	mysqli_error($dbc));

19			

20															if	(mysqli_num_rows($r)	==	1)	{	//	Retrieve	the	user	ID:

21																				list($uid)	=	mysqli_fetch_array($r,	MYSQLI_NUM);

22															}	else	{	//	No	database	match	made.

23																				echo	'<p	class="error">The	submitted	email	address	does	not	match	those	on	file!</p>';

24															}

25			

26									}	else	{	//	No	email!

27															echo	'<p	class="error">You	forgot	to	enter	your	email	address!	</p>';

28										}	//	End	of	empty($_POST['email'])	IF.

29			

30									if	($uid)	{	//	If	everything's	OK.

31			

32															//	Create	a	new,	random	password:

33															$p	=	substr(md5(uniqid(rand(),	true)),	3,	15);

34															$ph	=	password_hash($p);

35			

36															//	Update	the	database:

37															$q	=	"UPDATE	users	SET	pass='$ph'	WHERE	user_id=$uid	LIMIT	1";

38															$r	=	mysqli_query($dbc,	$q)	or	trigger_error("Query:	$q\n<br>MySQL	Error:	"	.	mysqli_error($dbc));

39			

40															if	(mysqli_affected_rows($dbc)	==	1)	{	//	If	it	ran	OK.

41			

42																				//	Send	an	email:

43																				$body	=	"Your	password	to	log	into	<whatever	site>	has	been	temporarily	changed	to	'$p'.	Please	log	in	using	this	password	and	this	email	address.	Then	you	may	change	your	password	to	something	more	familiar.";

44																				mail($_POST['email'],	'Your	temporary	password.',	$body,	'From:	admin@sitename.com');

45			

46																				//	Print	a	message	and	wrap	up:

47																				echo	'<h3>Your	password	has	been	changed.	You	will	receive	the	new,	temporary	password	at	the	email	address	with	which	you	registered.	Once	you	have	logged	in	with	this	password,	you	may	change	it	by	clicking	on	the	"Change	Password"	link.</h3>';

48																				mysqli_close($dbc);

49																				include('includes/footer.html');

50																				exit();	//	Stop	the	script.

51			

52															}	else	{	//	If	it	did	not	run	OK.

53																				echo	'<p	class="error">Your	password	could	not	be	changed	due	to	a	system	error.	We	apologize	for	any	inconvenience.</p>';

54															}

55			

56									}	else	{	//	Failed	the	validation	test.

57															echo	'<p	class="error">Please	try	again.</p>';

58									}

59			

60									mysqli_close($dbc);

61			

62				}	//	End	of	the	main	Submit	conditional.



63				?>

64			

65				<h1>Reset	Your	Password</h1>

66				<p>Enter	your	email	address	below	and	your	password	will	be	reset.</p>

67				<form	action="forgot_password.php"	method="post">

68									<fieldset>

69									<p><strong>Email	Address:</strong>	<input	type="email"	name="email"	size="20"	maxlength="60"	value="<?php	if	(isset($_POST['email']))	echo	$_POST['email'];	?>"></p>

70									</fieldset>

71									<div	align="center"><input	type="submit"	name="submit"	value="Reset	My	Password"></div>

72				</form>

73			

74				<?php	include('includes/footer.html');	?>

This	 form	will	 take	an	email	 address	 input	and	change	 the	password	 for	 that	 record.	To	do	 that,	 the
script	first	needs	to	retrieve	the	user	ID	value	that	matches	the	submitted	email	address.	To	begin	that
process,	a	flag	variable	is	assigned	a	FALSE	value	as	an	assumption	of	no	valid	user	ID.

3.	Validate	the	submitted	email	address:
Click	here	to	view	code	image

if	(!empty($_POST['email']))	{

		$q	=	'SELECT	user_id	FROM

		 users	WHERE	email="'.

		 mysqli_real_escape_string

		 ($dbc,	$_POST['email'])	.	'"';

	$r	=	mysqli_query($dbc,	$q)	or

		 trigger_error("Query:	$q\n<br>

		 MySQL	Error:	"	.	mysqli_error

		 ($dbc));

This	 is	a	 simple	validation	 for	a	 submitted	email	 address	 (without	using	a	 regular	expression	or	 the
Filter	extension).	If	the	submitted	value	is	not	empty,	an	attempt	is	made	to	retrieve	the	user	ID	for	that
email	address	in	the	database.	You	could,	of	course,	add	more	stringent	validation	if	you’d	prefer.

4.	Retrieve	the	selected	user	ID:
Click	here	to	view	code	image

if	(mysqli_num_rows($r)	==	1)	{

		list($uid)	=	mysqli_fetch_array

		 ($r,	MYSQLI_NUM);

}	else	{

		echo	'<p	class="error">The

		 submitted	email	address	does

		 not	match	those	on	file!</p>';

}

If	the	query	returns	one	row,	it’ll	be	fetched	and	assigned	to	$uid	(short	for	user	ID).	This	value	will
be	needed	to	update	the	database	with	the	new	password,	and	it’ll	also	be	used	as	a	flag	variable.
If	no	matching	record	could	be	found	for	the	submitted	email	address,	an	error	message	is	displayed	
.	For	security	purposes,	you	could	be	more	vague,	saying	something	like	If	the	email	address	has	been
registered,	a	temporary	password	has	been	sent	there.



	If	the	user	entered	an	email	address	that	is	not	found	in	the	database,	an	error	message	is	shown.
5.	Report	on	no	submitted	email	address:
Click	here	to	view	code	image

}	else	{	//	No	email!

			echo	'<p	class="error">You	

		 forgot	to	enter	your	email	

		 address!</p>';

}	//	End	of	empty($_POST['email'])	IF.

If	no	email	address	was	provided,	that	is	also	reported	 .

	Failure	to	provide	an	email	address	also	results	in	an	error.
6.	Create	a	new,	random	password:
Click	here	to	view	code	image

if	($uid)	{

		$p	=	substr(md5(uniqid(rand(),

		 true)),	3,	15);

		$ph	=	password_hash($p);

Creating	a	new,	random	password	will	make	use	of	four	PHP	functions.	The	first	is	uniqid(),	which
will	return	a	unique	identifier.	It	 is	fed	the	arguments	rand()	and	true,	which	makes	 the	returned
string	more	random.	This	returned	value	is	then	sent	through	the	md5()	function,	which	calculates	the



MD5	hash	of	a	string.	At	this	stage,	a	hashed	version	of	the	unique	ID	is	returned,	which	ends	up	being
a	string	32	characters	long.	This	part	of	the	code	is	similar	to	that	used	to	create	the	activation	code	in
activate.php	(Script	18.7).
From	this	string,	 the	password	 is	created	by	pulling	out	fifteen	characters	starting	with	 the	 third	one,
using	 the	substr()	 function.	All	 in	 all,	 this	 code	will	 return	 a	 very	 random	and	meaningless	 ten-
character	string	(containing	both	letters	and	numbers)	to	be	used	as	the	temporary	password.
Note	that	the	creation	of	a	new,	random	password	is	only	necessary	if	$uid	has	a	TRUE	value	by	this
point.
Although	 this	 represents	 an	 acceptable	 way	 of	 creating	 a	 new	 password,	 if	 you’re	 using	 PHP	 7	 or
greater,	you	can	use	the	more	secure	random_bytes()	function	instead.

7.	Update	the	password	in	the	database:
Click	here	to	view	code	image

$q	=	"UPDATE	users	SET	pass='$ph'

WHERE	user_id=$uid	LIMIT	1";

$r	=	mysqli_query($dbc,	$q)

or	trigger_error("Query:

$q\n<br>MySQL	Error:	"	.

mysqli_error($dbc));

if	(mysqli_affected_rows($dbc)	==

1)	{

Using	 the	 user	 ID	 (the	 primary	 key	 for	 the	 table)	 that	 was	 retrieved	 earlier,	 the	 password	 for	 this
particular	user	is	updated	to	the	password_hash()	version	of	$p,	the	random	password.

8.	Email	the	password	to	the	user:
Click	here	to	view	code	image

$body	=	"Your	password	to	log

into	<whatever	site>	has	been

temporarily	changed	to	'$p'.

Please	log	in	using	this

password	and	this	email

address.	Then	you	may	change

your	password	to	something	more

familiar.";

mail($_POST['email'],	'Your

temporary	password.',	$body,

'From:	admin@sitename.com');

Next,	the	user	needs	to	be	emailed	the	new	password	so	that	she	or	he	may	log	in	 .	It’s	safe	to	use
$_POST[‘email’]	in	the	mail()	code,	because	to	get	to	this	point,	$_POST[‘email’]	must
match	an	address	already	stored	in	the	database.	That	address	would	have	already	been	validated	via
the	Filter	extension	(or	a	regular	expression)	in	the	registration	script.



	The	email	message	received	after	resetting	a	password.
9.	Complete	the	page:
Click	here	to	view	code	image

echo	'<h3>Your	password	has	been

changed.	You	will	receive	the

new,	temporary	password	at	the

email	address	with	which	you

registered.	Once	you	have

logged	in	with	this	password,

you	may	change	it	by	clicking

on	the	"Change	Password"	link.

</h3>';

mysqli_close($dbc);

include('includes/footer.html');

exit();	//	Stop	the	script.

Next,	a	message	is	printed	and	the	page	is	completed	so	as	not	to	show	the	form	again	 .

	The	resulting	page	after	successfully	resetting	a	password.
10.	Complete	the	conditionals	and	the	PHP	code:
Click	here	to	view	code	image

				}	else	{	//	If	it	did	not

						 run	OK.

					echo	'<p	class="error">Your

						 password	could	not	be



						 changed	due	to	a	system

						 error.	We	apologize	for

						 any	inconvenience.</p>';

				}

		}	else	{	//	Failed	the

validation	test.

										echo	'<p	class="error">Please

try	again.</p>';

		}

		mysqli_close($dbc);

}	//	End	of	the	main	Submit

conditional.

?>

The	 first	else	 clause	 applies	 only	 if	 the	UPDATE	 query	 did	 not	 work,	 which	 hopefully	 shouldn’t
happen	on	a	 live	site.	The	second	else	 applies	 if	 the	user	didn’t	 submit	an	email	address	or	 if	 the
submitted	email	address	didn’t	match	any	in	the	database.

11.	Make	the	HTML	form	 :

	The	simple	form	for	resetting	a	password.
Click	here	to	view	code	image

<h1>Reset	Your	Password</h1>

<p>Enter	your	email	address

below	and	your	password	will	be

reset.</p>

<form	action="forgot_password.

php"	method="post">

		<fieldset>

		<p><strong>Email	Address:

		 </strong>	<input	type="email"

		 name="email"	size="20"

		 maxlength="60"	value="<?php

		 if	(isset($_POST['email']))

		 echo	$_POST['email'];	?>"></p>

		</fieldset>

		<div	align="center"><input

		 type="submit"	name="submit"

		 value="Reset	My	Password">

		 </div>

</form>

The	 form	 takes	 only	 one	 input,	 the	 email	 address.	 If	 there	 is	 a	 problem	 when	 the	 form	 has	 been
submitted,	the	submitted	email	address	value	will	be	shown	again	(i.e.,	the	form	is	sticky).

12.	Include	the	HTML	footer:
Click	here	to	view	code	image

<?php	include('includes/footer.

html');	?>

13.	 Save	 the	 file	 as	 forgot_password.php,	 place	 it	 in	 your	 web	 directory,	 and	 test	 it	 in	 your
browser.

14.	Check	your	email	to	see	the	resulting	message	after	a	successful	password	reset	 .



Changing	a	password
The	change_password.php	script	was	initially	written	in	Chapter	9	(called	just	password.php),
as	an	example	of	an	UDPATE	query.	The	one	developed	here	will	be	very	similar	in	functionality	but	will
differ	in	that	only	users	who	are	logged	in	will	be	able	to	access	it.	Therefore,	the	form	will	only	need	to
accept	the	new	password	and	a	confirmation	of	it	(the	user’s	existing	password	and	email	address	will
have	already	been	confirmed	by	the	login	page).

To	write	change_password.php:
1.	 Begin	 a	 new	 PHP	 document	 in	 your	 text	 editor	 or	 IDE,	 to	 be	 named	change_password.php
(Script	18.11):

Click	here	to	view	code	image
<?php	#	Script	18.11	-

change_password.php

require('includes/config.inc.php');

$page_title	=	'Change	Your

Password';

include('includes/header.html');

Script	18.11	With	this	page,	users	can	change	an	existing	password	(if	they	are	logged	in).
Click	here	to	view	code	image

1						<?php	#	Script	18.11	-	change_password.php

2						//	This	page	allows	a	logged-in	user	to	change	their	password.

3						require('includes/config.inc.php');

4						$page_title	=	'Change	Your	Password';

5						include('includes/header.html');

6					

7						//	If	no	user_id	session	variable	exists,	redirect	the	user:

8						if	(!isset($_SESSION['user_id']))	{

9					

10							$url	=	BASE_URL	.	'index.php';	//	Define	the	URL.

11							ob_end_clean();	//	Delete	the	buffer.

12							header("Location:	$url");

13							exit();	//	Quit	the	script.

14			

15				}

16			

17				if	($_SERVER['REQUEST_METHOD']	==	'POST')	{

18								require(MYSQL);

19			

20								//	Check	for	a	new	password	and	match	against	the	confirmed	password:

21								$p	=	FALSE;

22								if	(strlen($_POST['password1'])	>=	10)	{

23												if	($_POST['password1']	==	$_POST['password2'])	{

24												$p	=	password_hash($_POST['password1'],	PASSWORD_DEFAULT);

25										}	else	{

26												echo	'<p	class="error">Your	password	did	not	match	the	confirmed	password!</p>';

27										}

28								}	else	{

29											echo	'<p	class="error">Please	enter	a	valid	password!</p>';

30								}

31			

32								if	($p)	{	//	If	everything's	OK.

33			

34												//	Make	the	query:

35												$q	=	"UPDATE	users	SET	pass='$p'	WHERE	user_id={$_SESSION['user_id']}	LIMIT	1";

36												$r	=	mysqli_query($dbc,	$q)	or	trigger_error("Query:	$q\n<br>MySQL	Error:	"	.	mysqli_error($dbc));

37												if	(mysqli_affected_rows($dbc)	==	1)	{	//	If	it	ran	OK.



38			

39																//	Send	an	email,	if	desired.

40																echo	'<h3>Your	password	has	been	changed.</h3>';

41																mysqli_close($dbc);	//	Close	the	database	connection.

42																include('includes/footer.html');	//	Include	the	HTML	footer.

43																exit();

44			

45															}	else	{	//	If	it	did	not	run	OK.

46			

47																				echo	'<p	class="error">Your	password	was	not	changed.	Make	sure	your	new	password	is	different	than	the	current	password.	Contact	the	system	administrator	if	you	think	an	error	occurred.</p>';

48			

49															}

50			

51									}	else	{	//	Failed	the	validation	test.

52												echo	'<p	class="error">Please	try	again.</p>';

53									}

54			

55									mysqli_close($dbc);	//	Close	the	database	connection.

56			

57				}	//	End	of	the	main	Submit	conditional.

58				?>

59			

60				<h1>Change	Your	Password</h1>

61				<form	action="change_password.php"	method="post">

62									<fieldset>

63									<p><strong>New	Password:</strong>	<input	type="password"	name="password1"	size="20">	<small>At	least	10	characters	long.</small></p>

64									<p><strong>Confirm	New	Password:</strong>	<input	type="password"	name="password2"	size="20"></p>

65									</fieldset>

66									<div	align="center"><input	type="submit"	name="submit"	value="Change	My	Password"></div>

67				</form>

68			

69				<?php	include('includes/footer.html');	?>

2.	Redirect	if	the	user	is	not	logged	in:
Click	here	to	view	code	image

if	(!isset($_SESSION['user_id']))	{

		$url	=	BASE_URL	.	'index.php';

ob_end_clean();

		header("Location:	$url");

		exit();

}

The	assumption	 is	 that	 this	page	 is	only	 to	be	accessed	by	 logged-in	users.	To	enforce	 this	 idea,	 the
script	checks	for	the	existence	of	the	$_SESSION[‘user_id’]	variable	(which	would	be	required
by	the	UPDATE	query).	If	this	variable	is	not	set,	then	the	user	will	be	redirected.

3.	Check	if	the	form	has	been	submitted	and	include	the	MySQL	connection:
Click	here	to	view	code	image

if	($_SERVER['REQUEST_METHOD']	==

'POST')	{

	require	(MYSQL);

The	 key	 to	 understanding	 how	 this	 script	 performs	 is	 remembering	 that	 there	 are	 three	 possible
scenarios:	 the	user	 is	not	 logged	 in	 (and	 therefore	 redirected),	 the	user	 is	 logged	 in	and	viewing	 the
form,	and	the	user	is	logged	in	and	has	submitted	the	form.
The	user	will	get	to	this	point	in	the	script	only	if	she	or	he	logged	in.	Otherwise,	the	user	would	have
been	 redirected	by	now.	At	 this	point	 the	 script	 just	needs	 to	determine	whether	or	not	 the	 form	has
been	submitted.



4.	Validate	the	submitted	password:
Click	here	to	view	code	image

$p	=	FALSE;

if	(strlen($_POST['password1'])	>=

10)	{

		if	($_POST['password1']	==

		 $_POST['password2'])	{

				$p	=	password_hash($_POST

		 ['password1']	,	PASSWORD_

		 DEFAULT);

		}	else	{

					echo	'<p	class="error">Your

		 password	did	not	match	the

		 confirmed	password!</p>';

		}

	}	else	{

		echo	'<p	class="error">Please

	 enter	a	valid	password!</p>';

	}

The	new	password	should	be	validated	using	the	same	tests	as	those	in	the	registration	process.	Error
messages	will	be	displayed	if	problems	are	found	 .

5.	Update	the	password	in	the	database:

	As	in	the	registration	process,	the	user’s	new	password	must	pass	the	length	requirement;	otherwise,
the	user	will	see	error	messages.
Click	here	to	view	code	image

if	($p)	{	//	If	everything's	OK.

		$q	=	"UPDATE	users	SET	pass='$p'

		 WHERE	user_id={$_SESSION

		 ['user_id']}	LIMIT	1";

		$r	=	mysqli_query($dbc,	$q)

		 or	trigger_error("Query:	$q\n

		 <br>MySQL	Error:	"	.

		 mysqli_error($dbc));

Using	the	user’s	ID—stored	in	the	session	when	the	user	logged	in—the	password	field	can	be	updated
in	the	database.	The	LIMIT	1	clause	isn’t	strictly	necessary	but	adds	extra	insurance.

6.	If	the	query	worked,	complete	the	page:
Click	here	to	view	code	image

if	(mysqli_affected_rows($dbc)	==

	 1)	{

		echo	'<h3>Your	password	has	been

	 changed.</h3>';

		mysqli_close($dbc);

		include('includes/footer.html');

		exit();



If	the	update	worked,	a	confirmation	message	is	printed	to	the	browser	 .

	The	script	has	successfully	changed	the	user’s	password.

Site	Administration
For	 this	application,	how	the	site	administration	works	depends	on	what	you	want	 it	 to	do.
One	 additional	 page	 you	 would	 probably	 want	 for	 an	 administrator	 would	 be	 a
view_users.php	 script,	 like	 the	one	created	 in	Chapter	9	 and	modified	 in	Chapter	 10,
“Common	 Programming	 Techniques.”	 It’s	 already	 listed	 in	 the	 administrator’s	 links.	 You
could	 use	 such	 a	 script	 to	 link	 to	 an	 edit_user.php	 page,	 which	 would	 allow	 the
administrator	 to	 manually	 activate	 an	 account,	 declare	 that	 a	 user	 is	 an	 administrator,	 or
change	a	person’s	password.	An	administrator	could	also	delete	a	user	using	such	a	page.
Although	the	footer	file	creates	links	to	administrative	pages	only	if	the	logged-in	user	is	an
administrator,	every	administration	page	should	also	include	such	a	check.

7.	Complete	the	conditionals	and	the	PHP	code:
Click	here	to	view	code	image

				}	else	{	//	If	it	did	not

				 run	OK.

						echo	'<p	class="error">

						 Your	password	was	not

						 changed.	Make	sure	your

						 new	password	is	different

						 than	the	current	password.

						 Contact	the	system

						 administrator	if	you	think

						 an	error	occurred.</p>';

				}

		}	else	{	//	Failed	the

		 validation	test.

					echo	'<p	class="error">

Please	try	again.</p>';

		}

		mysqli_close($dbc);

}	//	End	of	the	main	Submit

conditional.

?>

The	first	else	clause	applies	if	the	mysqli_affected_rows()	function	did	not	return	a	value	of
1.	This	could	occur	for	two	reasons.	The	first	is	 that	a	query	or	database	error	happened.	Hopefully,
that’s	not	likely	on	a	live	site,	after	you’ve	already	worked	out	all	the	bugs.	The	second	reason	is	that
the	user	tried	to	“change”	the	password	but	entered	the	same	password	again.	In	that	case,	the	UPDATE
query	wouldn’t	affect	any	rows	because	the	password	column	in	the	database	wouldn’t	be	changed.	A
message	implying	such	is	printed.

8.	Create	the	HTML	form	 :



	The	Change	Your	Password	form.
Click	here	to	view	code	image

<h1>Change	Your	Password</h1>

<form	action="change_password.php"

method="post">

		<fieldset>

		<p><strong>New	Password:

		 </strong>	<input

		 type="password"

		 name="password1"	size="20">

		 <small>At	least	10	characters

		 long.</small></p>

		<p><strong>Confirm	New

		 Password:</strong>	<input

		 type="password"

		 name="password2"	size="20">

		 </p>

		</fieldset>

		<div	align="center"><input

		 type="submit"	name="submit"

		 value="Change	My	Password">

		 </div>

</form>

This	 form	 takes	 two	 inputs:	 the	new	password	and	a	 confirmation	of	 it.	A	description	of	 the	proper
format	is	given	as	well.	Because	the	form	is	so	simple	it’s	not	sticky,	but	that’s	a	feature	you	could	add.

9.	Complete	the	HTML	page:
Click	here	to	view	code	image

<?php	include('includes/footer.

html');	?>

10.	 Save	 the	 file	 as	 change_password.php,	 place	 it	 in	 your	 web	 directory,	 and	 test	 it	 in	 your
browser.

Tip
Once	this	script	has	been	completed,	users	can	reset	their	password	with	the	previous	script	and
then	 log	 in	 using	 the	 temporary,	 random	 password.	 After	 logging	 in,	 users	 can	 change	 their
password	back	to	something	easier	to	remember	with	this	page.

Tip
Because	the	site’s	authentication	does	not	rely	on	the	user’s	password	from	page	to	page	(in	other
words,	 the	 password	 is	 not	 checked	 on	 each	 subsequent	 page	 after	 logging	 in),	 changing	 a
password	will	not	require	the	user	to	log	back	in.



Review	and	Pursue
If	you	have	any	problems	with	the	review	questions	or	the	pursue	prompts,	turn	to	the	book’s	supporting
forum	(LarryUllman.com/forums/).
Note:	Most	of	these	questions	and	some	of	the	prompts	rehash	information	covered	in	earlier	chapters	to
reinforce	some	of	the	most	important	points.

Review
	What	is	output	buffering?	What	are	the	benefits	of	using	it?
	Why	shouldn’t	detailed	error	information	be	displayed	on	live	sites?
	Why	must	the	active	column	in	the	users	table	allow	for	NULL	values?	What	is	the	result	if	active	is
defined	as	NOT	NULL?
	What	are	the	three	steps	in	terminating	a	session?
	What	does	the	session_name()	function	do?
	What	are	 the	differences	between	 truly	encrypting	data	and	creating	a	hash	 representation	of	 some
data?

Pursue
	Check	out	the	PHP	manual’s	pages	for	output	buffering	(or	output	control).
	Check	out	the	PHP	manual’s	pages	for	the	rand(),	uniqid(),	and	md5()	functions.
	Check	out	the	PHP	manual’s	page	for	the	trigger_error()	function.
	Apply	the	same	validation	techniques	to	login.php	as	used	in	register.php.
	Make	the	login	form	sticky.
	Add	a	last_login	DATETIME	field	to	the	users	 table	and	update	its	value	when	a	user	logs	in.	Use
this	information	to	indicate	to	the	user	how	long	it	has	been	since	the	last	time	she	or	he	accessed	the
site.
	If	you’ve	added	the	last_login	field,	use	it	to	print	a	message	on	the	home	page	as	to	how	many	users
have	logged	in	in	the	past,	say,	hour	or	day.
	Validate	 the	submitted	email	address	 in	forgot_password.php	using	 the	Filter	extension	or	a
regular	expression.
	Check	out	the	PHP	manual’s	page	for	the	list()	function.
	 Create	view_users.php	 and	edit_user.php	 scripts	 as	 recommended	 in	 the	 final	 sidebar.
Restrict	access	to	these	scripts	to	administrators	(those	users	whose	access	level	is	1).

http://LarryUllman.com/forums/


















































































































































































































A.	Installation

In	This	Appendix
Installation	on	Windows
Installation	on	macOS
Managing	MySQL	Users
Testing	Your	Installation
Configuring	PHP
Configuring	Apache

There	 are	 three	 technical	 requirements	 for	 executing	 all	 this	 book’s	 examples:	 MySQL	 (the	 database
application),	PHP	(the	scripting	language),	and	the	web	server	application	(that	PHP	runs	through).	This
appendix	describes	the	installation	of	these	tools	on	two	different	platforms—Windows	10	and	macOS.	If
you	are	using	a	hosted	web	site,	all	of	this	will	already	be	provided	for	you,	but	these	products	are	all
free	and	easy	enough	to	install,	so	putting	them	on	your	own	computer	still	makes	sense.
After	 covering	 installation,	 the	 appendix	 discusses	 related	 issues	 that	will	 be	 of	 importance	 to	 almost
every	user.	First,	I	introduce	how	to	create	users	in	MySQL.	Next,	I	demonstrate	how	to	test	your	PHP	and
MySQL	installation,	showing	techniques	you’ll	want	to	use	when	you	begin	working	on	any	server	for	the
first	 time.	Then,	you’ll	 learn	 how	 to	 configure	PHP	 to	 change	how	 it	 runs.	Finally,	 I	 introduce	how	 to
change	the	Apache	web	server’s	behavior	to	address	common	needs.

Installation	on	Windows
Although	 you	 can	 certainly	 install	 a	 web	 server	 (such	 as	 Apache,	 Nginx,	 or	 IIS),	 PHP,	 and	 MySQL
individually	on	a	Windows	computer,	 I	strongly	recommend	you	use	an	all-in-one	 installer	 instead.	 It’s
simply	easier	and	more	reliable	to	do	so.
Several	all-in-one	installers	are	out	there	for	Windows.	The	four	that	I	see	mentioned	most	frequently	are

	XAMPP	(www.apachefriends.org)
	WAMP	(www.wampserver.com/en/)
	AMPPS	(www.ampps.com)
	Bitnami	(www.bitnami.com),	which	also	partners	with	XAMPP

For	this	appendix,	I’ll	use	XAMPP,	which	runs	on	most	modern	versions	of	Windows.
Along	with	Apache,	PHP,	and	MySQL,	XAMPP	also	installs	the	following:

	phpMyAdmin,	the	web-based	interface	to	a	MySQL	server
	OpenSSL,	for	secure	connections
	A	mail	server	(for	sending	email)
	Several	useful	extensions

As	of	this	writing,	XAMPP	(Version	7.1.7)	 installs	PHP	7.1.7,	Apache	2.4.26,	and	phpMyAdmin	4.7.0.
There	is	one	catch,	however!
As	 of	 XAMPP	 5.5.30,	 the	 installer	 includes	 MariaDB	 (www.mariadb.com)	 instead	 of	 MySQL.
MariaDB	is	an	open	source	fork	of	MySQL	that	is	functionally	equivalent.	Despite	the	fact	that	XAMPP

http://www.apachefriends.org
http://www.wampserver.com/en/
http://www.ampps.com
http://www.bitnami.com
http://www.mariadb.com


installs	MariaDB	instead	of	MySQL,	you	shouldn’t	have	any	problems	following	all	the	MySQL-specific
instructions	or	code	in	this	book.

On	Firewalls
Modern	 versions	 of	Windows	 include	 a	 firewall,	which	 prevents	 communications	 in	many
ways,	the	most	common	of	which	is	over	ports:	an	access	point	to	a	computer.	You	can	also
download	and	install	third-party	firewalls.	Firewalls	improve	the	security	of	your	computer,
but	 they	may	also	 interfere	with	your	ability	 to	 run	Apache,	MySQL,	and	some	of	 the	other
tools	used	by	XAMPP	because	they	all	use	ports.
When	 running	 XAMPP	 for	 the	 first	 time,	 or	 during	 the	 installation	 process,	 if	 you	 see	 a
security	prompt	indicating	that	the	firewall	is	blocking	Apache,	MySQL,	or	the	like,	choose
Unblock	or	Allow	access.	Otherwise,	you	can	configure	your	 firewall	manually	 through	 the
operating	system	settings.
The	ports	that	need	to	be	open	are	as	follows:	80	for	Apache,	3306	for	MySQL,	and	25	for
the	Mercury	mail	server.	If	you	have	any	problems	starting	or	accessing	one	of	these,	disable
your	firewall	and	see	if	it	works	then.	If	so,	you’ll	know	the	firewall	is	the	problem	and	that	it
needs	to	be	reconfigured.
Just	to	be	clear,	firewalls	aren’t	found	just	on	Windows,	but	in	terms	of	the	instructions	in	this
appendix,	the	presence	of	a	firewall	will	more	likely	trip	up	a	Windows	user	than	any	other.

I’ll	run	through	the	installation	process	in	these	next	steps.	Note	that	if	you	have	any	problems,	you	can
use	the	book’s	supporting	forum	(LarryUllman.com/forums/),	but	you’ll	probably	have	more	luck
turning	to	the	XAMPP	site	(it	is	their	product,	after	all).	Also,	the	installer	works	well	and	isn’t	that	hard
to	 use,	 so	 rather	 than	 detail	 every	 single	 step	 in	 the	 process,	 I’ll	 highlight	 the	 most	 important
considerations.

To	install	XAMPP	on	Windows:
1.	Download	the	latest	release	of	XAMPP	for	Windows	from	www.apachefriends.org	 .

	From	the	Apache	Friends	web	site,	grab	the	latest	installer	for	Windows.
I	 suggest	 that	you	grab	 the	 latest	version	of	PHP	available,	 although	you’ll	be	 fine	with	most	of	 this
book’s	content	if	you	use	a	PHP	5	version	instead.

2.	On	your	computer,	double-click	the	downloaded	file	to	begin	the	installation	process.
3.	When	prompted	 ,	install	all	the	components.

http://LarryUllman.com/forums/
http://www.apachefriends.org


	The	XAMPP	components	that	can	be	installed.
Admittedly,	you	don’t	need	Tomcat—a	Java	server—or	Perl,	but	it’s	fine	to	install	them,	too.

4.	When	prompted	 ,	install	XAMPP	somewhere	other	than	in	the	Program	Files	directory.

	Select	where	XAMPP	should	be	installed.
You	shouldn’t	 install	 it	 in	 the	Program	Files	directory	because	of	a	permissions	 issue	 in	Windows.	 I
recommend	installing	XAMPP	in	your	root	directory	(e.g.,	C:\).
Wherever	you	decide	to	install	the	program,	make	note	of	that	location,	because	you’ll	need	to	know	it
several	other	times	as	you	work	through	this	appendix.

5.	After	the	installation	process	has	done	its	thing,	opt	to	start	the	XAMPP	Control	Panel.
6.	To	start,	stop,	and	configure	XAMPP,	use	the	XAMPP	Control	Panel	 .



	The	XAMPP	Control	Panel,	used	to	manage	the	software.
Apache	has	to	be	running	for	every	chapter	in	this	book.	MySQL	must	be	running	for	about	half	of	the
chapters.	Mercury	is	the	mail	server	that	XAMPP	installs.	It	needs	to	be	running	in	order	to	send	email
using	PHP	(see	Chapter	11,	“Web	Application	Development”).

7.	Immediately	set	a	password	for	the	root	MySQL	user.
How	you	do	this	is	explained	in	the	“Managing	MySQL	Users”	section	later	in	this	appendix.

Tip
The	XAMPP	Control	Panel’s	various	admin	links	will	take	you	to	different	web	pages	(on	your
server)	and	other	resources.

Tip
See	the	“Configuring	PHP”	section	to	learn	how	to	configure	PHP	by	editing	the	php.ini	file.

Tip
Whenever	you	restart	your	computer,	you’ll	need	to	restart	the	XAMPP	services.

Tip
Your	 web	 root	 directory—where	 your	 PHP	 scripts	 should	 be	 placed	 to	 test	 them—is	 the
htdocs	 folder	 in	 the	 directory	 where	 XAMPP	 was	 installed.	 Following	 my	 installation
instructions,	this	would	be	C:\xampp\htdocs.



Installation	on	macOS
macOS	is	at	its	heart	a	version	of	Unix,	and	because	PHP	and	MySQL	were	originally	written	for	Unix-
like	systems,	numerous	options	are	available	for	installing	them	on	macOS.	In	fact,	macOS	already	comes
with	Apache	installed,	saving	you	that	step.
Seasoned	developers	and	those	at	home	in	the	Terminal	will	likely	want	to	install	PHP	and	MySQL	using
package	 installers	 such	 as	http://php-osx.liip.ch/	 and	Homebrew	 (http://brew.sh/).
But	for	beginners,	I	recommend	using	an	all-in-one	installer	such	as

	XAMPP	(www.apachefriends.org)
	AMPPS	(www.ampps.com)
	Bitnami	(www.bitnami.com),	which	also	partners	with	XAMPP
	MAMP	(www.mamp.info)

Not	 only	 are	 these	 installers	 relatively	 foolproof,	 but	 they	 also	 won’t	 leave	 you	 scrambling	 when	 an
operating	system	update	overwrites	your	Apache	configuration	file.	For	this	appendix,	I’ll	use	XAMPP,
which	runs	on	macOS	10.6	and	later.
Along	with	Apache,	PHP,	and	MySQL,	XAMPP	also	installs	the	following:

	phpMyAdmin,	the	web-based	interface	to	a	MySQL	server
	OpenSSL,	for	secure	connections
	Several	useful	extensions

As	of	this	writing,	XAMPP	(Version	7.1.7)	 installs	PHP	7.1.7,	Apache	2.4.26,	and	phpMyAdmin	4.7.0.
There	is	one	catch,	however!
As	 of	 XAMPP	 5.5.30,	 the	 installer	 includes	 MariaDB	 (www.mariadb.com)	 instead	 of	 MySQL.
MariaDB	is	an	open	source	fork	of	MySQL	that	is	functionally	equivalent.	Despite	the	fact	that	XAMPP
installs	MariaDB	instead	of	MySQL,	you	shouldn’t	have	any	problems	following	all	the	MySQL-specific
instructions	or	code	in	this	book.
I’ll	run	through	the	installation	process	in	these	next	steps.	Note	that	if	you	have	any	problems,	you	can
use	the	book’s	supporting	forum	(LarryUllman.com/forums/),	but	you’ll	probably	have	more	luck
turning	to	the	XAMPP	site	(it	is	their	product,	after	all).	Also,	the	installer	works	well	and	isn’t	that	hard
to	 use,	 so	 rather	 than	 detail	 every	 single	 step	 in	 the	 process,	 I’ll	 highlight	 the	 most	 important
considerations.

To	install	XAMPP	on	macOS:
1.	Download	the	latest	release	of	XAMPP	for	macOS	from	www.apachefriends.org	 .

http://php-osx.liip.ch/
http://brew.sh/
http://www.apachefriends.org
http://www.ampps.com
http://www.bitnami.com
http://www.mamp.info
http://www.mariadb.com
http://LarryUllman.com/forums/
http://www.apachefriends.org


	From	the	Apache	Friends	web	site,	grab	the	latest	installer	for	macOS.
I	 suggest	 that	you	grab	 the	 latest	version	of	PHP	available,	 although	you’ll	be	 fine	with	most	of	 this
book’s	content	if	you	use	a	PHP	5	version	instead.

2.	On	your	computer,	double-click	the	downloaded	file	to	mount	the	disc	image.
3.	In	the	mounted	disk	image,	double-click	the	package	installer	to	begin	the	installation	process.
4.	When	prompted	 ,	install	all	the	components.

	The	XAMPP	components	that	can	be	installed.
You’ll	see	only	two,	broad	options;	install	both.

5.	After	the	installation	process	has	done	its	thing	 ,	opt	to	launch	XAMPP.



	The	installation	of	XAMPP	is	complete!
6.	To	start,	stop,	and	configure	XAMPP,	use	the	XAMPP	Control	Panel	 .

	The	XAMPP	Control	Panel,	used	to	manage	the	software.
Apache	has	to	be	running	for	every	chapter	in	this	book.	MySQL	must	be	running	for	about	half	of	the
chapters.	You	 probably	won’t	 ever	 need	 the	 FTP	 application,	 because	 you	 can	 just	move	 your	 files
directly.

7.	Immediately	set	a	password	for	the	root	MySQL	user.
How	you	do	this	is	explained	in	the	“Managing	MySQL	Users”	section	later	in	this	appendix.

Tip
See	the	“Configuring	PHP”	section	to	learn	how	to	configure	PHP	by	editing	the	php.ini	file.

Tip
Whenever	you	restart	your	computer,	you’ll	need	to	restart	the	XAMPP	services.



Tip
Your	web	root	directory—where	your	PHP	scripts	should	be	placed	in	order	to	test	them—is	the
htdocs	 folder	 in	 the	 directory	 where	 XAMPP	 was	 installed.	 This	 would	 be
/Applications/XAMPP/xamppfiles/htdocs.

Managing	MySQL	Users
Once	you’ve	 successfully	 installed	MySQL,	you	can	begin	 creating	MySQL	users.	A	MySQL	user	 is	 a
fundamental	 security	 concept,	 limiting	 access	 to,	 and	 influence	 over,	 stored	 data.	 Just	 to	 clarify,	 your
databases	 can	 have	 several	 different	 users,	 just	 as	 your	 operating	 system	might.	But	MySQL	users	 are
different	from	operating	system	users.	While	learning	PHP	and	MySQL	on	your	own	computer,	you	don’t
necessarily	need	to	create	new	users,	but	live	production	sites	need	to	have	dedicated	MySQL	users	with
appropriate	permissions.
The	 initial	MySQL	 installation	 comes	with	one	user	 (named	 root)	with	 no	 password	 set	 (except	when
using	MAMP,	which	sets	a	default	password	of	root).	At	the	very	least,	you	should	create	a	new,	secure
password	 for	 the	 root	 user	 after	 installing	MySQL.	 After	 that,	 you	 can	 create	 other	 users	 with	 more
limited	permissions.	As	a	rule,	you	shouldn’t	use	the	root	user	for	normal,	day-to-day	operations.
I’ll	walk	you	 through	both	processes	over	 the	next	 couple	of	 pages.	Note	 that	 if	 you’re	using	 a	 hosted
server,	 they’ll	 likely	 create	 the	 MySQL	 users	 for	 you.	 These	 instructions	 require	 use	 of	 either	 the
command-line	mysql	 client	 or	 phpMyAdmin.	 If	 you	 don’t	 know	how	 to	 access	 either	 of	 these	 on	 your
computer,	quickly	read	the	“Accessing	MySQL”	section	of	Chapter	4,	“Introduction	to	MySQL.”

Setting	the	root	user	password
When	you	 install	MySQL,	 no	value—or	no	 secure	 password—is	 established	 for	 the	 root	 user.	 This	 is
certainly	a	security	risk	that	should	be	remedied	before	you	begin	to	use	the	server	(since	the	root	user	has
unlimited	powers).
You	can	set	any	user’s	password	using	either	phpMyAdmin	or	 the	mysql	client,	as	 long	as	 the	MySQL
server	 is	 running.	 If	MySQL	 isn’t	 currently	 running,	 start	 it	 now	using	 the	 steps	 outlined	 earlier	 in	 the
appendix.
Second,	you	must	be	connected	to	MySQL	as	the	root	user	in	order	to	be	able	to	change	the	root	user’s
password.

To	assign	a	password	to	the	root	user	via	the	MySQL	client:
1.	Connect	to	the	MySQL	client.
See	Chapter	4	for	detailed	instructions,	if	needed.

2.	Enter	the	following	command,	replacing	the	password	with	the	password	you	want	to	use	 :

Updating	the	root	user’s	password	using	SQL	within	the	MySQL	client.
Click	here	to	view	code	image

SET	PASSWORD	FOR

'root'@'	localhost'	=



PASSWORD('thepassword');

Keep	in	mind	that	passwords	in	MySQL	are	case-sensitive,	so	Kazan	and	kazan	aren’t	interchangeable.
The	term	PASSWORD	that	precedes	the	actual	quoted	password	tells	MySQL	to	encrypt	that	string.	And
there	cannot	be	a	space	between	PASSWORD	and	the	opening	parenthesis.

3.	Exit	the	MySQL	client:
exit

4.	Test	the	new	password	by	logging	in	to	the	MySQL	client	again.
Now	that	a	password	has	been	established,	you	need	to	add	 the	-p	 flag	 to	 the	connection	command.
You’ll	see	an	Enter	password:	prompt,	where	you	enter	the	just-created	password.

To	assign	a	password	to	the	root	user	via	phpMyAdmin:
1.	Open	phpMyAdmin	in	your	browser.
See	the	preceding	set	of	steps	for	detailed	instructions.

2.	On	the	home	page,	click	the	Privileges	tab.
You	can	always	click	the	home	icon,	in	the	upper-left	corner,	to	get	to	the	home	page.

3.	In	the	list	of	users,	click	the	Edit	Privileges	icon	on	the	root	user’s	row	 .

The	list	of	MySQL	users,	as	shown	in	phpMyAdmin.
4.	Use	the	Change	Password	form	 ,	found	farther	down	the	resulting	page,	to	change	the	password.

The	form	for	updating	a	MySQL	user’s	password	within	phpMyAdmin.
5.	Change	the	root	user’s	password	in	phpMyAdmin’s	configuration	file,	if	necessary.
The	result	of	changing	the	root	user’s	password	will	likely	be	that	phpMyAdmin	is	denied	access	to	the
MySQL	server.	This	is	because	phpMyAdmin,	on	a	local	server,	normally	connects	 to	MySQL	as	the
root	user,	with	the	root	user’s	password	hard-coded	into	a	configuration	file.	After	following	Steps	1–
4,	 find	 the	 config.inc.php	 file	 in	 the	 phpMyAdmin	 directory—likely



/Applications/MAMP/bin/phpMyAdmin	 (macOS	 with	 MAMP)	 or
C:\xampp\phpMyAdmin	 (Windows	with	XAMPP).	Open	 that	 file	 in	 any	 text	 editor	 or	 IDE	 and
change	this	next	line	to	use	the	new	password:
$cfg['Servers'][$i]['password']	=

'the_new_password';

Then	save	the	file	and	reload	phpMyAdmin	in	your	browser.

Creating	users	and	privileges
After	you	have	MySQL	successfully	up	and	running,	and	after	you’ve	established	a	password	for	the	root
user,	you	can	add	other	users.	To	improve	the	security	of	your	databases,	you	should	always	create	new
users	to	access	your	databases	rather	than	always	using	the	root	user.
The	MySQL	privileges	system	was	designed	to	ensure	proper	authority	for	certain	commands	on	specific
databases.	 This	 technology	 is	 how	 a	 web	 host,	 for	 example,	 can	 let	 several	 users	 access	 several
databases	without	 concern.	Each	 user	 in	 the	MySQL	 system	 can	 have	 specific	 capabilities	 on	 specific
databases	 from	specific	hosts	 (computers).	The	root	user—the	MySQL	root	user,	not	 the	system’s—has
the	 most	 power	 and	 is	 used	 to	 create	 subusers,	 although	 subusers	 can	 be	 given	 rootlike	 powers
(inadvisably	so).
When	a	user	attempts	to	do	something	with	the	MySQL	server,	MySQL	first	checks	to	see	if	the	user	has
permission	to	connect	to	the	server	at	all	(based	on	the	username,	the	user’s	host,	 the	user’s	password,
and	 the	 information	 in	 the	mysql	 database’s	user	 table).	 Second,	MySQL	checks	 to	 see	 if	 the	 user	 has
permission	to	run	the	specific	SQL	statement	on	the	specific	databases—for	example,	to	select	data,	insert
data,	or	create	a	new	table.	Table	A.1	lists	most	of	the	various	privileges	you	can	set	on	a	user-by-user
basis.

TABLE	A.1	MySQL	Privileges
PRIVILEGE ALLOWS

SELECT Read	rows	from	tables.
INSERT Add	new	rows	of	data	to	tables.
UPDATE Alter	existing	data	in	tables.
DELETE Remove	existing	data	from	tables.
INDEX Create	and	drop	indexes	in	tables.
ALTER Modify	the	structure	of	a	table.
CREATE Create	new	tables	or	databases.
DROP Delete	existing	tables	or	databases.
RELOAD Reload	the	grant	tables	(and	therefore	enact	user	changes).
SHUTDOWN Stop	the	MySQL	server.
PROCESS View	and	stop	existing	MySQL	processes.
FILE Import	data	into	tables	from	text	files.
GRANT Create	new	users.
REVOKE Remove	users’	permissions.

There	are	a	handful	of	ways	to	set	users	and	privileges	in	MySQL,	but	to	start,	you	should	formally	create
the	user:



Click	here	to	view	code	image

CREATE	USER	'username'@'hostname'

IDENTIFIED	BY	'password';

This	command	creates	a	user	without	any	abilities.	The	username	has	a	maximum	length	of	32	characters.
When	creating	a	username,	be	sure	to	avoid	spaces	(use	the	underscore	instead),	and	note	that	usernames
are	case-sensitive.
The	hostname	is	the	computer	from	which	the	user	is	allowed	to	connect.	This	could	be	a	domain	name,
such	as	www.example.com,	or	an	IP	address.	Normally,	localhost	is	specified	as	the	hostname,	meaning
that	the	MySQL	user	must	be	connecting	from	the	same	computer	that	the	MySQL	database	is	running	on.
To	allow	for	any	host,	use	the	hostname	wildcard	character	(%):
Click	here	to	view	code	image

CREATE	USER	'username'@'%'

IDENTIFIED	BY	'password';

But	that	is	also	not	recommended.	When	it	comes	to	creating	users,	it’s	best	to	be	explicit	and	confining.
The	password	has	no	length	limit	but	is	also	case-sensitive.	The	passwords	are	encrypted	in	the	MySQL
database,	 meaning	 they	 can’t	 be	 recovered	 in	 a	 plain-text	 format.	 Omitting	 the	 IDENTIFIED	 BY
‘password’	 clause	 results	 in	 that	 user	 not	 being	 required	 to	 enter	 a	 password	 (which,	 once	 again,
should	be	avoided).
Next	the	user	needs	to	be	granted	permissions.	The	syntax	goes	like	this:
Click	here	to	view	code	image

GRANT	privileges	ON	database.*

TO	'username'@'hostname'

IDENTIFIED	BY	'password';

For	 the	privileges	 aspect	of	 this	 statement,	you	can	 list	 specific	privileges	 from	Table	A.1,	or	you	can
allow	 for	 all	 of	 them	 by	 using	 ALL	 (which	 isn’t	 prudent).	 The	 database.*	 part	 of	 the	 statement
specifies	 which	 database	 and	 tables	 the	 user	 can	 work	 on.	 You	 can	 name	 specific	 tables	 using	 the
database.tablename	 syntax	 or	 allow	 for	 every	 database	with	*.*	 (again,	 not	 prudent).	 Finally,
you	can	specify	the	username,	the	hostname,	and	a	password.
As	an	example	of	this	process,	you’ll	create	two	new	users	with	specific	privileges	on	a	new	database
named	temp.	Keep	in	mind	that	you	can	grant	permissions	only	to	users	on	existing	databases.	This	next
sequence	will	also	show	how	to	create	a	database.

To	create	new	users:
1.	Log	in	to	the	MySQL	client	as	a	root	user.
Use	the	steps	explained	in	Chapter	4	to	do	this,	if	you	don’t	already	know.	You	must	be	logged	in	as	a
user	capable	of	creating	databases	and	other	users.

2.	Create	the	temp	database:
CREATE	DATABASE	temp;

Creating	 a	 database	 is	 quite	 easy,	 using	 the	 preceding	 syntax.	 This	 command	will	 work	 as	 long	 as
you’re	connected	as	a	user	with	the	proper	privileges.

3.	Create	a	user	that	has	basic-level	privileges	on	the	temp	database	 :



Creating	a	user	that	can	perform	basic	tasks	on	one	database.
Click	here	to	view	code	image

CREATE	USER	'webuser'@'localhost'

IDENTIFIED	BY	'BroWs1ng';

GRANT	SELECT,	INSERT,	UPDATE,	DELETE

ON	temp.*	TO	'webuser'@'localhost';

The	generic	webuser	user	can	browse	 through	records	(	 from	tables)	and	add	(),	modify	(),	or	 them.
The	 user	 can	 only	 connect	 from	 localhost	 (from	 the	 same	 computer)	 and	 can	 only	 access	 the	 temp
database.

4.	Apply	the	changes	 :

Don’t	forget	this	step	before	you	try	to	access	MySQL	using	the	newly	created	users.
FLUSH	PRIVILEGES;

The	changes	just	made	won’t	take	effect	until	you’ve	told	MySQL	to	reset	the	list	of	acceptable	users
and	privileges,	which	is	what	this	command	does.	Forgetting	this	step	and	then	being	unable	to	access
the	database	using	the	newly	created	users	is	a	common	mistake.

Tip
Any	database	whose	name	begins	with	test_	can	be	modified	by	any	user	who	has	permission	to
connect	to	MySQL.	Therefore,	be	careful	not	to	create	a	database	named	this	way	unless	it	truly
is	experimental.

Tip
The	DROP	command	removes	users	and	the	REVOKE	command	removes	permissions.



Creating	Users	in	phpMyAdmin
To	 create	 users	 in	 phpMyAdmin,	 start	 by	 clicking	 the	 Privileges	 tab	 on	 the	 phpMyAdmin
home	page.	On	the	Privileges	page,	click	Add	A	New	User.	Complete	the	Add	A	New	User
form	to	define	the	user’s	name,	host,	password,	and	privileges.	Then	click	Go.	This	creates
the	user	with	general	privileges	but	no	database-specific	privileges.
On	the	resulting	page,	select	the	database	to	apply	the	user’s	privileges	to	and	then	click	Go.
On	the	next	page,	select	the	privileges	this	user	should	have	on	that	database,	and	then	click
Go	again.	This	completes	 the	process	of	creating	rights	 for	 that	user	on	 that	database.	Note
that	this	process	allows	you	to	easily	assign	a	user	different	rights	on	different	databases.
Finally,	click	your	way	back	to	the	Privileges	tab	on	the	home	page	and	then	click	the	Reload
The	Privileges	link.

Testing	Your	Installation
Now	 that	 you’ve	 installed	 everything	 and	 created	 the	 necessary	 MySQL	 users,	 you	 should	 test	 the
installation.	Two	quick	PHP	scripts	can	be	used	for	this	purpose.	In	all	likelihood,	if	an	error	occurred,
you	would	already	know	it	by	now,	but	these	steps	will	allow	you	to	perform	tests	on	your	(or	any	other)
server	before	getting	into	complicated	PHP,	or	PHP	and	MySQL,	programming.
The	 first	 script	 being	 run	 is	 phpinfo.php.	 It	 both	 tests	 if	 PHP	 is	 enabled	 and	 shows	 a	 ton	 of
information	about	the	PHP	installation.	As	simple	as	this	script	is,	it	is	one	of	the	most	important	scripts
PHP	developers	ever	write,	in	my	opinion,	because	it	provides	so	much	valuable	knowledge.
The	second	script	will	serve	two	purposes.	It	will	first	see	if	support	for	MySQL	has	been	enabled.	If	not,
you’ll	need	to	see	the	next	section	of	this	chapter	to	change	that.	The	script	will	also	test	if	the	MySQL
user	has	permission	to	connect	to	a	specific	MySQL	database.

To	test	PHP:
1.	Create	the	following	PHP	document	in	a	text	editor	or	IDE	(Script	A.1):

<?php

phpinfo();

?>

Script	A.1	The	phpinfo.php	script	tests	and	reports	on	the	PHP	installation.
Click	here	to	view	code	image

1			<?php

2			phpinfo();

3			?>

The	phpinfo()	 function	returns	 the	configuration	 information	for	a	PHP	installation	 in	a	 table.	 It’s
the	perfect	tool	to	test	that	PHP	is	working	properly.
You	can	use	almost	any	application	to	create	your	PHP	script	as	long	as	it	can	save	the	file	in	a	plain-
text	format.

2.	Save	the	file	as	phpinfo.php.
You	 need	 to	 be	 certain	 that	 the	 file’s	 extension	 is	 just	 .php.	 Be	 careful	 when	 using	 Notepad	 on
Windows;	 it	will	 secretly	 append	.txt.	 Similarly,	TextEdit	 on	macOS	wants	 to	 save	 everything	 as
.rtf.



3.	Place	the	file	in	the	proper	directory	on	your	server.
What	the	proper	directory	is	depends	on	your	operating	system	and	your	web	server.	If	you	are	using	a
hosted	site,	check	with	the	hosting	company.	For	users	who	installed	XAMPP,	the	directory	is	called
htdocs	and	is	within	the	XAMPP	directory.

4.	Test	the	PHP	script	by	accessing	it	in	your	browser	 .

The	information	for	this	server’s	PHP	configuration.
Run	this	script	in	your	browser	by	going	to	http://your.url.here/phpinfo.php.	On	your
own	computer,	this	may	be	something	like	http://localhost/phpinfo.php	(XAMPP).

To	test	PHP	and	MySQL:
1.	Create	a	new	PHP	document	in	your	text	editor	or	IDE	(Script	A.2):

Script	A.2	The	mysqli_test.php	 script	 tests	 for	MySQL	support	 in	PHP	and	 if	 the	proper	MySQL	user
privileges	have	been	set.
Click	here	to	view	code	image

1			<?php

2			mysqli_connect('localhost',	'webuser',	'BroWs1ng',	'temp');

3			?>

http://your.url.here/phpinfo.php


Click	here	to	view	code	image
<?php

mysqli_connect('localhost',

'webuser',	'BroWsIng',	'temp');

?>

This	 script	 will	 attempt	 to	 connect	 to	 the	 MySQL	 server	 using	 the	 username	 and	 password	 just
established	in	this	appendix.

2.	Save	the	file	as	mysqli_test.php,	place	it	in	the	proper	directory	for	your	web	server,	and	test	it
in	your	browser.
If	the	script	was	able	to	connect,	the	result	will	be	a	blank	page.	If	it	could	not	connect,	you	should	see
an	error	message	like	 .	Most	likely	this	indicates	a	problem	with	the	MySQL	user’s	privileges	or	the
provided	information	(see	the	preceding	section	of	this	chapter).

The	script	was	not	able	to	connect	to	the	MySQL	server.

Tip
For	security	reasons,	you	should	not	leave	the	phpinfo.php	script	on	a	live	server	because	it
gives	away	too	much	information.

Tip
If	you	run	a	PHP	script	in	your	browser	and	it	attempts	to	download	the	file,	then	your	web	server
is	 not	 recognizing	 that	 file	 extension	 as	 PHP.	 Check	 your	 Apache	 (or	 other	 web	 server)
configuration	to	correct	this.

Tip
PHP	scripts	must	always	be	run	from	a	URL	starting	with	http://.	They	cannot	be	run	directly	off	a
hard	drive	(as	if	you	had	opened	it	in	your	browser).

Tip
If	a	PHP	script	cannot	connect	to	a	MySQL	server,	it	is	normally	because	of	a	permissions	issue.
Double-check	the	username,	password,	and	host	being	used,	and	be	absolutely	certain	to	flush	the
MySQL	privileges.



Enabling	Extension	Support
Many	 PHP	 configuration	 options	 can	 be	 altered	 by	 just	 editing	 the	 php.ini	 file.	 But
enabling	 (or	 disabling)	 an	 extension—in	 other	 words,	 adding	 support	 for	 extended
functionality—requires	more	effort.	To	enable	support	for	an	extension	for	just	a	single	PHP
page,	you	can	use	the	dl()	 function.	Enabling	support	 for	an	extension	for	all	PHP	scripts
requires	a	bit	of	work.	Unfortunately,	for	Unix	and	macOS	users,	you’ll	need	to	rebuild	PHP
with	support	for	this	new	extension	(a	process	that’s	not	for	the	faint	of	heart).	Windows	users
have	it	easier:
First,	edit	the	php.ini	file	(see	the	steps	in	this	section),	removing	the	semicolon	before	the
extension	you	want	 to	enable.	For	example,	 to	enable	 Improved	MySQL	Extension	support,
you’ll	need	to	find	the	line	that	says
;extension=php_mysqli.dll

and	remove	that	semicolon.
Next,	 find	 the	 line	 that	 sets	 the	 extension__dir	 and	 adjust	 this	 for	 your	 PHP	 installation.
Assuming	you	installed	PHP	using	XAMPP	into	C:\xampp,	then	your	php.ini	file	should
say

Click	here	to	view	code	image

extension_dir	=	"C:/xampp/php/ext"

This	tells	PHP	where	to	find	the	extension.
Next,	make	sure	that	the	actual	extension	file,	php_mysqli.dll	in	this	example,	exists	in
the	extension	directory.
Save	the	php.ini	file	and	restart	your	web	server.	If	the	restart	process	indicates	an	error
finding	the	extension,	double-check	to	make	sure	that	the	extension	exists	in	the	extension_dir
and	that	your	pathnames	are	correct.	If	you	continue	to	have	problems,	search	the	web	or	use
the	book’s	corresponding	forum	for	assistance.

Configuring	PHP
One	 of	 the	 benefits	 of	 installing	PHP	on	 your	 own	 computer	 is	 that	 you	 can	 configure	 it	 however	 you
prefer.	How	PHP	runs	is	determined	by	the	php.ini	configuration	file,	which	is	normally	created	when
PHP	is	installed.
Changing	PHP’s	behavior	 is	very	simple	and	will	most	 likely	be	required	at	some	point	 in	 time.	Just	a
few	of	the	things	you’ll	want	to	consider	adjusting	are

	Whether	or	not	display_errors	is	on
	The	default	level	of	error	reporting
	Support	for	the	Improved	MySQL	Extension	functions
	SMTP	values	for	sending	emails

What	each	of	these	means—if	you	don’t	already	know—is	covered	in	the	book’s	chapters	and	in	the	PHP
manual.	But	for	starters,	I	highly	recommend	that	you	make	sure	that	display_errors	is	on	and	that	you	set
error	reporting	to	its	highest	level.
Changing	PHP’s	configuration	is	simple.	The	short	version	is:	edit	the	file	and	then	restart	the	web	server.



But	because	many	different	problems	can	arise,	I’ll	cover	configuration	in	more	detail.	If	you	are	looking
to	enable	support	for	an	extension,	like	the	MySQL	functions,	the	configuration	is	more	complicated	(see
the	sidebar).

To	alter	PHP’s	configuration:
1.	In	your	browser,	execute	a	script	that	invokes	the	phpinfo()	function.
The	phpinfo()	function,	discussed	in	the	previous	section	of	the	appendix	(see	 ),	reveals	oodles
of	information	about	the	PHP	installation.

2.	In	the	browser’s	output,	search	for	Loaded	Configuration	File	 .

Use	a	phpinfo()	script	to	confirm	the	active	PHP	configuration	file	to	be	edited.
The	value	next	to	this	text	is	the	location	of	the	active	configuration	file.	This	will	be	something	 like
C:\xampp\php\php.ini	 or	 /Applications/MAMP/conf/php5.3/php.ini.	 Your
server	may	have	multiple	php.ini	files	on	it,	but	this	is	the	one	that	counts.
If	there	is	no	value	for	the	Loaded	Configuration	File,	your	server	has	no	active	php.ini	file.	In	that
case,	 you’ll	 need	 to	 download	 the	 PHP	 source	 code,	 from	 www.php.net,	 to	 find	 a	 sample
configuration	file.

3.	Open	the	php.ini	file	in	any	text	editor.
If	you	go	to	the	directory	listed	and	there’s	no	php.ini	file	there,	you’ll	need	to	download	this	file
from	the	PHP	web	site	(it’s	part	of	the	PHP	source	code).

Enabling	Mail
The	PHP	mail()	function	works	only	if	the	computer	running	PHP	has	access	to	sendmail	or
another	mail	server.	One	way	to	enable	the	mail()	function	is	to	set	the	smtp	value	in	the
php.ini	 file	 (for	 Windows	 only).	 This	 approach	 works,	 for	 example,	 if	 your	 Internet
provider	has	 an	SMTP	address	you	can	use.	Unfortunately,	you	can’t	use	 this	value	 if	your
ISP’s	SMTP	server	requires	authentication.
For	Windows,	 there	 are	 also	 a	 number	 of	 free	 SMTP	 servers,	 like	Mercury.	 It’s	 installed
along	with	XAMPP,	or	you	can	install	it	yourself	if	you’re	not	using	XAMPP.
macOS	 comes	 with	 a	 mail	 server	 installed—postfix	 and/or	 sendmail—that	 needs	 to	 be
enabled.	Search	Google	for	instructions	on	manually	enabling	your	mail	server	on	macOS.
Alternatively,	you	can	search	some	of	the	PHP	code	libraries	to	learn	how	to	use	an	SMTP
server	that	requires	authentication.

4.	Make	any	changes	you	want,	keeping	in	mind	the	following:
	Comments	are	marked	using	a	semicolon.	Anything	after	the	semicolon	is	ignored.
	Instructions	on	what	most	of	the	settings	mean	are	included	in	the	file.

http://www.php.net


	The	top	of	the	file	lists	general	information	with	examples.	Do	not	change	these	 values!	Change	the
settings	where	they	appear	later	in	the	file.

	For	safety	purposes,	don’t	change	any	original	settings.	Just	comment	them	out	(by	 preceding	the	line
with	a	semicolon)	and	then	add	the	new,	modified	line	afterward.

	Add	a	comment	(using	the	semicolon)	to	mark	what	changes	you	made	and	when.	For	 example:
Click	here	to	view	code	image

;	display_errors	=	Off

;	Next	line	added	by	LEU	08/28/2017

display_errors	=	On

5.	Save	the	php.ini	file.
6.	Restart	your	web	server.
You	 do	 not	 have	 to	 restart	 the	 entire	 computer,	 just	 the	web	 serving	 application	 (Apache,	 IIS,	 etc.).
How	 you	 do	 this	 depends	 on	 the	 application	 being	 used,	 the	 operating	 system,	 and	 the	 installation
method.	XAMPP	users	can	use	the	XAMPP	Control	Panel.

7.	Rerun	the	phpinfo.php	script	to	make	sure	the	changes	took	effect.

Tip
If	you	edit	the	php.ini	file	and	restart	the	web	server	but	your	changes	don’t	take	effect,	make
sure	you’re	editing	the	proper	php.ini	file	(you	may	have	more	than	one	on	your	computer).

Configuring	Apache
Like	PHP,	Apache	is	an	open	source	technology	and	has	become	a	dominant	force	in	web	technologies.	If
you	installed	XAMPP	on	your	computer,	you	now	have	a	functional	version	of	Apache.	If	you’re	using	a
hosted	web	site,	more	than	likely	you’re	being	provided	with	Apache	there	as	well.
Once	Apache	with	support	for	PHP	has	successfully	been	installed,	many	PHP	programmers	never	 think
twice	about	the	web	server.	But	as	you	continue	to	learn	about	web	development,	picking	up	a	bit	more
knowledge	of	Apache	is	a	logical	next	step.
The	 most	 common	 reasons	 you’ll	 need	 to	 know	 more	 about	 Apache	 include	 being	 able	 to	 do	 the
following:

	Create	virtual	hosts
	Add	Secure	Sockets	Layer	(SSL)	support
	Protect	directories
	Enable	URL	rewrites

These,	 and	 other	 changes	 to	 Apache’s	 behavior,	 can	 be	 made	 in	 two	 ways:	 by	 editing	 the	 primary
configuration	file	or	by	creating	directory-specific	files.	The	primary	configuration	file	is	httpd.conf,
found	 within	 a	 directory,	 and	 it	 dictates	 how	 the	 entire	 Apache	 web	 server	 runs.	 An	 .htaccess
(pronounced	“H-T	access”)	file	 is	placed	within	the	web	directories	and	is	used	to	affect	how	Apache
behaves	within	just	that	folder	and	subfolders.
Generally	speaking,	it’s	preferred	to	make	changes	in	the	httpd.conf	file,	since	this	file	needs	to	be
read	only	by	the	web	server	each	time	the	server	is	started.	Conversely,	.htaccess	files	must	be	read
by	the	web	server	once	for	every	request	to	to	which	an	.htaccess	file	might	apply.	For	example,	if
you	 have	 www.example.com/	 somedir/.htaccess,	 any	 request	 to



www.example.com/somedir/whatever	 requires	 reading	 the	 .htaccess	 file,	 as	 well	 as
reading	 an	.htaccess	 file	 that	might	 exist	 in	www.example.com/.	On	 the	 other	 hand,	 in	 shared
hosting	environments,	individual	users	are	not	allowed	to	customize	the	entire	Apache	configuration,	but
they	may	be	allowed	to	use	.htaccess	to	make	changes	that	affect	only	their	sites.
Over	the	next	few	pages,	I’ll	explain	some	of	the	fundamentals	for	working	with	these	two	types	of	files.
In	the	process,	you’ll	learn	how	to	perform	some	standard	Apache	customizations.

Tip
To	be	safe,	I	recommend	making	a	backup	copy	of	your	original	Apache	configuration	file	before
pursuing	any	of	the	subsequent	edits.

Tip
In	this	book,	I	cannot	adequately	explain	how	to	enable	HTTPS	(HTTP	over	an	SSL)	as	the	key
component—obtaining	 and	 installing	 an	 SSL	 certificate	 varies	 too	much	 from	 one	 person	 and
server	 to	 the	 next.	 Look	 online	 for	 specific	 details,	 or	 post	 a	 message	 in	 my	 support	 forums
(LarryUllman.com/forums/),	 if	 you	 need	 assistance.	 If	 you	 have	 a	 hosted	 account
wherein	you	want	to	enable	SSL,	speak	with	your	hosting	company.

Creating	virtual	hosts
When	 you	 install	 Apache	 on	 a	 computer,	 Apache	 is	 set	 up	 to	 serve	 one	 web	 site,	 such	 as
www.example.com.	 For	 the	 web	 site	 being	 served,	 Apache	 associates	 a	 hostname	 (and/or	 an	 IP
address)	 with	 a	 directory	 on	 the	 server,	 called	 the	 web	 document	 root.	 When	 a	 user	 visits
www.example.com,	Apache	provides	files	from	that	site’s	directory .

The	web	server	associates	a	URL	or	hostname	with	a	directory	or	file	on	the	computer.
But	Apache	can	easily	be	configured	to	serve	several	different	sites,	all	hosted	on	the	same	computer,	by
creating	virtual	hosts.	After	establishing	one	or	more	virtual	hosts,	Apache	will	know	that	when	a	user
makes	a	request	of	www.example.com,	documents	from	X	directory	should	be	served	but	requests	of
www.example.net	should	be	pointed	to	the	documents	from	Y	directory .

http://LarryUllman.com/forums/


Thanks	 to	 virtual	 hosts,	 different	 directories	 on	 the	 computer	 can	 be	 associated	 with	 different
hostnames.
Understand	 that	 setting	 up	 virtual	 hosts	 does	 not,	 in	 fact,	 make	 www.example.com	 or
www.example.net	 a	 valid	 domain	 name,	 accessible	 over	 the	 Internet.	Accomplishing	 that	 requires
use	of	DNS	 (Domain	Name	System),	 a	much	more	complicated	 subject.	You	can,	however,	use	virtual
hosts	to	create	different	hosts	for	your	own	development	projects	on	your	home	computer,	as	explained	in
the	following	sequence.

To	create	a	virtual	host:
1.	Open	httpd.conf	in	any	text	editor	or	IDE.
If	you’re	using	XAMPP	on	Windows,	the	file	to	open	is	C:\xampp\apache\conf\httpd.conf
(assuming	XAMPP	is	installed	in	the	root	of	the	C	drive).	If	you’re	using	XAMPP	on	macOS,	the	file	to
open	is	/Applications/XAMPP/xampfiles/etc/httpd.conf.

2.	At	the	very	end	of	the	configuration	file,	add
NameVirtualHost	127.0.0.1

Virtual	 hosts	 are	 conventionally	 defined	 at	 the	 end	 of	 the	 configuration	 file	 (or	 in	 a	 separate
configuration	 file,	 to	 be	 included	 by	 this	 one).	 This	 line	 says	 that	 Apache	 should	 watch	 for	 named
virtual	 hosts	 (as	 opposed	 to	 IP	 address-based	 virtual	 hosts)	 on	 the	 127.0.0.1	 IP	 address.	 This	 is	 a
special	IP	address,	always	equating	to	localhost	(i.e.,	this	same	computer).
Depending	on	your	server,	this	line	may	already	be	present	in	the	configuration	file,	but	prefaced	by	a
#,	which	makes	it	a	comment	(i.e.,	renders	it	ineffectual).	In	that	case,	just	remove	the	#.

3.	On	the	next	line,	add
<VirtualHost	127.0.0.1>

</VirtualHost>

The	VirtualHost	tags	are	used	to	create	a	new	virtual	host.	For	each	opening	tag,	there	needs	to	be
a	 closing	 one.	Within	 the	 opening	 tag,	 the	 IP	 address	 or	 hostname	 to	 watch	 for	 is	 identified	 here:
127.0.0.1.	This	value	needs	to	match	that	used	on	the	NameVirtualHost	line.
The	rest	of	the	virtual	host	definition	will	go	between	these	opening	and	closing	tags.

4.	Within	the	virtual	host	tags,	add
DocumentRoot	/path/to/folder



ServerName	servername

The	DocumentRoot	directive	indicates	the	web	root	directory	for	the	virtual	host:	 in	other	words,
where	 the	 actual	 files	 for	 this	 site	 can	 be	 found.	 On	 XAMPP	 on	 Windows,	 this	 value	 might	 be
C:/xampp/htdocs/something.	 On	 XAMPP	 on	 macOS,	 this	 value	 might	 be
/Applications/XAMPP/xamppfiles/htdocs/something.
The	ServerName	 is	where	you	put	the	hostname:	what	you’ll	enter	 into	 the	browser	 to	access	 this
site.
As	an	example,	if	you	wanted	to	create	a	virtual	host	for	the	forums	site	from	Chapter	17,	“Example—
Message	Board,”	 you	 could	 create	 a	 new	 folder	within	htdocs,	 called	forums,	 and	 copy	 all	 the
applicable	 scripts	 there.	 Then	 you	 would	 use	 C:/xampp/htdocs/forums	 or
/Applications/XAMPP/xamppfiles/htdocs/forums	as	the	DocumentRoot	value.	For
the	 ServerName	 value,	 I	 would	 use	 something	 meaningful,	 such	 as	 forums.local:	 a	 local
version	of	a	forums	site.

5.	Add	a	second	virtual	host	for	localhost :

The	new	directives	added	to	the	end	of	the	Apache	configuration	file.
Click	here	to	view	code	image

<VirtualHost	127.0.0.1>

		DocumentRoot	"C:/xampp/htdocs"

		ServerName	localhost

</VirtualHost>

The	 previous	 set	 of	 steps	 created	 a	 new	 virtual	 host,	 but	 in	 the	 process,	 the	 one	 original	 web	 site
(localhost,	 the	 default	 for	 your	 own	 computer)	 will	 become	 unusable.	 The	 fix	 is	 to	 create	 another
virtual	host	for	that	site.

6.	Save	the	configuration	file.
7.	Restart	Apache.
Any	 changes	 to	 the	 configuration	 file	will	 not	 take	 effect	 until	 the	web	 server	 is	 restarted.	You	 can
restart	Apache	using	the	XAMPP	control	panel.
If	there	is	an	error	in	the	configuration	file,	Apache	will	not	be	able	to	start	and	you’ll	need	to	check	the
error	logs	to	find	out	why.
Note	 that	 you	 can’t	 access	 the	 virtual	 host	 using	 your	 browser	 yet,	 as	 you	 still	 need	 to	 update	 your
computer’s	list	of	hosts.



Tip
The	default	Apache	configuration	file,	httpd.conf,	has	comments	 in	 it	 indicating	what	each
section	of	code	does.	You	can	browse	through	it	to	learn	some	things	about	configuring	Apache.

Tip
The	 DocumentRoot	 value,	 or	 any	 value	 in	 the	 httpd.conf	 file,	 must	 be	 quoted	 if	 it
contains	spaces.

Tip
The	 definition	 of	 a	 virtual	 host	 can	 contain	 other	 directives,	 but	 I’m	 trying	 to	 introduce	 these
fundamental	Apache	concepts	as	simply	as	possible.

Tip
It’s	actually	preferable	to	have	Apache	only	listen	for	activity	on	a	specific	port,	commonly	80.	In
that	case,	the	virtual	hosts	configuration	would	start

NameVirtualHost	127.0.0.1:80

<VirtualHost	127.0.0.1:80>

Tip
On	a	full-scale	web	server,	it’s	preferable	to	create	multiple	configuration	files,	which	will	then
be	read	and	used	by	the	primary	configuration	file.	On	your	own	personal	computer,	without	too
much	customization,	a	single	configuration	file	is	fine.

Updating	your	computer’s	hosts
The	previous	sequence	of	steps	created	a	virtual	host	in	Apache,	allowing	you	to	access,	in	this	example,
the	forums	web	site	by	going	to	http://forums.local	in	your	browser.	There	is	a	catch,	however:
if	you	were	to	enter	that	URL	into	your	browser,	the	browser	would	attempt	to	find	forums.local	on
the	Internet	and	would	be	unable	to	do	so .	To	solve	this	dilemma,	you	need	to	tell	your	browser(s)	that
forums.local	 can	 be	 found	 on	 your	 computer.	 This	 is	 done	 by	modifying	 your	 operating	 system’s
hosts	file,	per	these	directions.



The	error	that	Edge	displays	when	it	can’t	find	the	local	virtual	host.

To	update	your	computer’s	hosts:
1.	Open	your	computer’s	hosts	file	in	any	text	editor	or	IDE.
This	is	the	only	tricky	part	of	this	process:	finding	and	opening	the	hosts	file.	On	macOS	and	Unix,
the	hosts	 file	 is	/etc/hosts	 (there’s	 no	 file	 extension),	where	/	 refers	 to	 the	 computer’s	 root
directory.	On	macOS,	/etc	is	a	hidden	directory,	making	hosts	a	hidden	file.	There	are	three	easy
ways	of	finding	this	file:
	Use	your	editing	application	to	open	it	directly,	if	the	application	is	capable	 of	opening	hidden	files.
	 In	 the	 Finder,	 select	 Go	 >	 Go	 To	 Folder,	 and	 enter	 /etc	 in	 the	 prompt	 	 to	 open	 the	/etc
directory	in	the	Finder.	Then	drag	the	hosts	file	onto	the	editing	application	in	the	Dock.

The	Finder’s	Go	>	Go	To	Folder	option	can	be	used	to	access	hidden	directories.



	Use	the	Terminal	to	find	and	open	the	file.
On	 Windows,	 barring	 a	 nonstandard	 installation,	 the	 file	 in	 question	 is
C:\Windows\System32\drivers\etc\hosts.	 Unfortunately,	 you	 may	 have	 permissions
issues	in	trying	to	edit	this	file.	I	had	good	luck	by	opening	Notepad	in	administrator	mode	(right-click
on	Notepad	in	the	Start	Menu	to	be	given	this	option ),	and	then	opening	the	file	within	Notepad.

You	can	open	Notepad	in	administrator	mode	in	order	to	edit	system	files.
2.	At	the	very	end	of	the	file,	add

127.0.0.1	forums.local

This	 associates	 the	 name	 forums.local	 with	 the	 IP	 address	 127.0.0.1,	 which	 is	 to	 say	 the	 same
computer.

3.	Save	the	file.
4.	Load	http://forums.local	in	your	browser .

The	forums	site,	available	locally	through	the	URL	http://forums.local.

Tip
Repeat	these	two	sequences	of	steps—creating	the	virtual	host	in	Apache	and	adding	the	host	to
your	 hosts	 file—anytime	 you	 want	 to	 create	 a	 new	web	 site	 project	 with	 its	 own	 associated
hostname.

Using	.htaccess	files
As	already	stated,	all	Apache	configuration	can	be	accomplished	within	the	httpd.conf	file.	In	fact,
doing	so	is	preferred.	But	the	configuration	file	is	not	always	available	for	you	to	edit,	so	it’s	worth	also
knowing	how	to	use	.htaccess	files	to	change	how	a	site	functions.
An	.htaccess	file	is	just	a	plain-text	file,	with	the	name	.htaccess	 (again,	no	file	extension,	and
the	initial	period	makes	this	a	hidden	file).	When	placed	within	a	web	directory,	the	directives	defined	in
the	.htaccess	file	will	apply	to	that	directory	and	its	subdirectories.
A	 common	 hang-up	 when	 using	 .htaccess	 files	 is	 that	 permission	 must	 be	 granted	 to	 allow
.htaccess	to	make	server	behavior	changes.	Depending	on	the	installation	and	configuration,	Apache,
on	 the	strictest	 level	of	security,	will	not	allow	.htaccess	 files	 to	change	Apache	behavior.	This	 is



accomplished	with	code	like	the	following,	in	httpd.conf:
<Directory	/>

AllowOverride	None

</Directory>

The	Directory	directive	is	used	within	httpd.conf	to	modify	Apache’s	behavior	within	a	specific
directory.	In	the	previous	code,	the	root	directory	(/)	 is	 the	 target,	meaning	that	Apache	will	not	allow
overrides—changes—made	within	any	directories	on	the	computer	at	all.	Prior	to	creating	.htaccess
files,	then,	the	main	configuration	file	must	be	set	to	allow	overrides	in	the	applicable	web	directory	(or
directories).
The	 AllowOverride	 directive	 takes	 one	 or	 more	 flags	 indicating	 what,	 specifically,	 can	 be
overridden:

	AuthConfig,	for	using	authorization	and	authentication
	FileInfo,	for	performing	redirects	and	URL	rewriting
	Indexes,	for	listing	directory	contents
	Limit,	for	restricting	access	to	the	directory
	Options,	for	setting	directory	behavior,	such	as	the	ability	to	execute	CGI	scripts	or	to	index	folder
contents
	All
	None



Setting	the	Default	Directory	Page
Commonly,	 browsers	 make	 requests	 without	 specifying	 a	 file,	 such	 as
www.example.com/	or	www.example.com/folder/.	 In	 these	 cases,	Apache	must
decide	as	 to	what	 to	do.	Historically,	Apache	provides	an	index.htm	 or	index.html
file,	if	one	exists	in	the	directory.	If	no	index	file	exists,	and	if	directory	browsing	is	allowed
by	the	server,	Apache	will	instead	reveal	a	list	of	files	in	the	directory	(this	is	not	secure,	but
you’ve	no	doubt	seen	this	online	before).
The	applicable	directive	to	tell	Apache	what	to	do	in	these	situations	is	DirectoryIndex.
Following	 it,	 you	 list	 the	 file	 to	 use	 as	 the	 folder’s	 index,	with	multiple	 options	 placed	 in
order	 of	 preference.	 For	 example,	 the	 following	 will	 attempt	 to	 load	 index.htm,	 then
index.html	if	index.htm	does	not	exist,	then	index.php	if	index.html	does	not
exist:

Click	here	to	view	code	image

DirectoryIndex	index.htm	index.html	index.php

Similarly,	the	ErrorDocument	directive	tells	Apache	what	file	to	provide	when	a	server
error	occurs.	Its	syntax	is

Click	here	to	view	code	image

ErrorDocument	error_code	/page.html

The	error	code	value	comes	 from	 the	server	 status	codes,	 such	as	401	 (Unauthorized),	403
(Forbidden),	and	500	(Internal	Server	Error).	For	each	code	you	can	dictate	what	page	should
be	served.	Note	that	you’ll	want	to	provide	an	absolute	path	to	the	error	files	(i.e.,	start	them
with	/,	which	is	the	web	root	directory).

For	 example,	 to	 allow	 AuthConfig	 and	 FileInfo	 to	 be	 overridden	 within	 the	 forums	 directory	 (just
created),	the	httpd.conf	file	should	include
Click	here	to	view	code	image

<Directory	/path/to/forums>

AllowOverride	AuthConfig	FileInfo

</Directory>

As	 long	 as	 this	 code	 comes	 after	 any	 AllowOverride	 None	 block,	 an	 .htaccess	 file	 in	 the
forums	directory	will	be	able	to	make	some	changes	to	Apache’s	behavior	when	serving	files	from	that
directory	(and	its	subdirectories).

To	allow	.htaccess	overrides:
1.	Open	httpd.conf	in	any	text	editor	or	IDE.
2.	Within	the	VirtualHost	tag	for	the	site	in	question,	add
Click	here	to	view	code	image

<Directory	/path/to/directory>

</Directory>

The	 Directory	 tag	 is	 how	 you	 customize	 Apache	 behavior	 within	 a	 specific	 directory	 or	 its
subdirectories.	Within	 the	opening	 tag,	provide	an	absolute	path	 to	 the	directory	 in	question,	 such	as



C:\xampp\htdocs\somedir	or	/Applications/MAMP/htdocs/somedir.
3.	Within	the	Directory	tags,	add	 :

The	updated	virtual	hosts	configuration,	now	allowing	for	overrides	within	the	forums	web	directory.
AllowOverride	All

This	 is	 a	heavy-handed	solution,	but	 it	will	do	 the	 trick.	On	a	 live,	publicly	available	 server,	 you’d
want	to	be	more	specific	about	what	exact	settings	can	be	overridden,	but	on	your	home	computer,	this
won’t	be	a	problem.

4.	Save	the	configuration	file.
5.	Restart	Apache.

Tip
The	Directory	directive	does	not	have	to	go	within	the	VirtualHost	tag	for	the	involved
site,	but	it	makes	sense	to	place	it	there.

Tip
If	a	directory	is	not	allowed	to	override	a	setting,	the	file	will	just	be	ignored.

Tip
Anything	accomplished	within	an	.htaccess	file	can	also	be	achieved	using	a	Directory
tag	within	httpd.conf.

Enabling	URL	rewriting
The	 final	 topic	 to	be	discussed	 in	 this	 appendix	 is	how	 to	perform	URL	rewriting.	URL	 rewriting	 has
gained	attention	as	part	of	the	overbearing	focus	on	search	engine	optimization	(SEO),	but	URL	rewriting
has	been	a	useful	tool	for	years.	With	a	dynamically	driven	site,	like	an	e-commerce	store,	a	value	will
often	be	passed	to	a	page	in	the	URL	to	indicate	what	category	of	products	to	display,	resulting	in	URLs
such	 as	www.example.com/category.php?id=23.	 The	 PHP	 script,	category.php,	 would
then	 use	 the	 value	 of	$_GET[‘id’]	 to	 know	 what	 products	 to	 pull	 from	 the	 database	 and	 display.
(There	are	oodles	of	similar	examples	in	this	book.)



With	URL	rewriting	applied,	 the	URL	shown	 in	 the	browser,	visible	 to	 the	end	user,	and	 referenced	 in
search	 engine	 results	 can	 be	 transformed	 into	 something	 more	 obviously	 meaningful,	 such	 as
www.example.com/category/23/	 or,	 better	 yet,
www.example.com/category/garden+gnomes/.	 Apache,	 via	URL	 rewriting,	 takes	 the	more
user-friendly	URL	and	parses	it	into	something	usable	by	the	PHP	scripts.	This	is	made	possible	by	the
Apache	mod_rewrite	module.	To	use	it,	the	.htaccess	file	must	first	check	for	the	module	and	turn
on	the	rewrite	engine:
<IfModule	mod_rewrite.c>

RewriteEngine	on

</IfModule>

After	enabling	 the	engine,	and	before	 the	closing	IfModule	 tag,	you	add	 rules	dictating	 the	 rewrites.
The	syntax	is
RewriteRule	match	rewrite

For	example,	you	could	do	the	following	(although	it’s	not	a	good	use	of	mod_rewrite):
RewriteRule	somepage.php	otherpage.php

Part	 of	 the	 complication	 with	 performing	 URL	 rewrites	 is	 that	 Perl-compatible	 regular	 expressions
(PCRE)	 are	 needed	 to	 most	 flexibly	 find	 matches.	 If	 you’re	 not	 already	 comfortable	 with	 regular
expressions,	you’ll	need	to	read	Chapter	14,	“Perl-Compatible	Regular	Expressions,”	to	follow	the	rest
of	this	material.
For	 example,	 to	 treat	 www.example.com/category/23	 as	 if	 it	 were
www.example.com/category.php?id=23,	you	would	have	the	following	rule:
Click	here	to	view	code	image

RewriteRule	^category/([0-9]+)/?$

category.php?id=$1

The	initial	caret	(^)	says	that	the	expression	must	match	the	beginning	of	the	string.	After	that	should	be
the	word	category,	followed	by	a	slash.	Then,	any	quantity	of	digits	follows,	concluding	with	an	optional
slash	(allowing	for	both	category/23	and	category/23/).	The	dollar	sign	closes	 the	match,	meaning	that
nothing	can	follow	the	optional	slash.	That’s	the	pattern	for	the	example	match	(and	it’s	a	simple	pattern	at
that,	really).



Changing	PHP’s	Configuration
If	PHP	is	running	as	an	Apache	module,	you	can	also	change	how	PHP	runs	within	specific
directories	 using	 an	Apache	.htaccess	 file.	 The	 directives	 to	 use	 are	php_flag	 and
php_value:
php_flag	item	value

php_value	item	value

The	php_flag	directive	is	for	any	setting	that	has	an	on	or	off	value;	php_value	 is	 for
any	other	setting.	For	example:

Click	here	to	view	code	image

php_flag	display_errors	on

php_value	error_reporting	30719

Note	 that	 you	 cannot	 use	 PHP	 constants,	 such	 as	 E_ALL	 for	 the	 highest	 level	 of	 error
reporting,	since	this	code	is	within	Apache	configuration	files,	not	within	PHP	scripts.
(You	can	also	change	how	PHP	runs	by	editing	the	httpd.conf	file,	but	if	you’re	going	to
make	a	global	server	change	that	requires	a	restart	of	Apache	anyway,	you	might	as	well	just
edit	the	PHP	configuration	file	instead.)

The	rewrite	part	is	what	will	actually	be	executed,	unbeknownst	to	the	browser	and	the	end	user.	In	this
line,	that’s	category.php?id=$1.	The	$1	is	a	backreference	to	the	first	parenthetical	grouping	in	the
match	 (e.g.,	 23).	 Thus,	www.example.com/category/23	 is	 treated	 by	 the	 server	 as	 if	 the	URL
were	actually	www.example.com/category.php?id=23.
This	is	the	underlying	premise	with	mod_rewrite.	Unfortunately,	mastering	mod_rewrite	 requires
mastery,	or	near	mastery,	of	PCRE,	which	can	be	daunting.	If	you	want	to	practice	this,	you	can	take	the
simple	example	just	explained	and	apply	it	to	any	of	the	examples	in	the	book	in	which	a	value	is	passed
in	the	URL.	For	example,	in	Chapter	10,	“Common	Programming	Techniques,”	a	user	ID	is	passed	in	the
URL	to	delete_user.php	and	edit_user.php.	Both	could	be	transformed	into	“prettier”	URLs,
such	as	www.example.com/delete/45/	or	www.example.com/edit/895/.
As	 always,	 search	 online	 for	 more	 information	 on	 this	 subject,	 should	 you	 be	 interested,	 and	 post	 a
question	in	the	supporting	forums	(LarryUllman.com/forums/)	if	you	run	into	problems.





































Index

Numbers
1NF	(first	normal	form),	171–173
2NF	(second	normal	form),	174–176
3NF	(third	normal	form),	177–178
8-bit	Unicode	Transformation	Format,	2

Comment	and	Operator	Symbols
--	operator,	23
–	operator,	23
!	operator,	45
!=	operator,	142
%	operator,	23
&&	operator,	45,	48,	142
*	operator,	23
/*	and	*/,	using	with	comments,	10
??	operator,	49
@	operator,	using	to	suppress	errors,	252,	274
|	operator,	142
||	operator,	45,	48,	142
+	+	operator,	23
+	operator,	23
<	operator,	45,	142
<!--	and	-->	tags,	using	with	comments,	10
<=	operator,	45,	142
<>	operator,	142
=	=	operator,	45
=	operator,	142
>	operator,	45,	142
>=	operator,	45,	142

Symbols
\	(backslash)
escape	sequence,	29
matching,	466
escaping	characters,	6

`	(backtick)	in	SQL	commands,	139
(Boolean	mode)	operator,	229
–	(Boolean	mode	operator),	229
+	(Boolean	mode)	operator,	229
<	(Boolean	mode	operator),	229



>	(Boolean	mode	operator),	229
(	(Boolean	mode	operator),	229
*	(Boolean	mode	operator),	229
=	(Boolean	mode)	operator,	229
[]	(brackets),	104,	469–471
{}	(braces)
arrays,	56,	58,	62
conditionals,	45
using	with	characters,	468
using	with	conditionals,	48

.=	(concatenation	operator),	22
$	(dollar	sign)
escape	sequence,	29
preceding	variables,	14

“	(double	quotation	mark),	29–31,	94
‘	‘	(empty	string),	using,	49,	51,	104
=	(equals	sign),	using	with	variables,	14,	142
\	\	(escape	sequence),	29
%	(percentage	sign),	using	to	match	records,	145–146
#	(pound	sign),	using	with	comments,	10
‘	(single	quotation	mark),	29–31
.	(period)	operator,	21–22
;	(semicolons),	using	with	queries,	132–133
/	and	//	(slashes),	8,	10,	23
_	(underscore),	using	to	match	records,	145–146

A
ABS()	function,	159
absolute	vs.	relative	paths,	76
access	problems,	debugging,	265
account	activation,	614–616
accounts	table,	202
creating,	200
populating,	202

action	attribute,	using	with	form	tag,	36,	90
activation	page,	creating,	614–617
activation	process,	611
ADD	COLUMN	clause,	224
ADD	INDEX	clause,	224
ADDDATE()	function,	163
addition	operator,	23
ADDTIME()	function,	163
administration,	633



Adobe	Dreamweaver,	3
ads,	creating,	96
advanced	selections,	performing,	222–223.	See	also	SELECT	command
AES_ENCRYPT()	function,	239
age	element,	using	with	HTML	forms,	42,	44
aggregate	functions,	216
Ajax.	See	also	jQuery
creating	form,	506–509
JavaScript,	511
overview,	505–506
server	requests,	506
server-side	script,	509–511

Ajax	request
anonymous	functions,	516
debugging,	517
event	listener,	512
handling,	510
performing,	512–517

aliases,	157
ALTER	privilege,	643
ALTER	statement,	224
AMPPS	installer,	636
ANALYZE	command,	232
and	and	AND	operators,	45,	142
anonymous	functions
Ajax	request,	516
jQuery,	489–490

Apache
AllowOverride	directive,	658
changing	PHP’s	configuration,	661
configuring,	652–661
default	directory	page,	658
Directory	directive,	659
.htaccess	file,	657–659
updating	hosts,	656–657
URL	rewriting,	660
virtual	hosts,	653–655

applications,	finding,	3
arithmetic	operators
precedence,	25
types,	23
using,	144

array	elements,	assigning	to	variables,	109
array_map()	function,	424



arrays.	See	also	associative	arrays
asort()	function,	66
braces	({}),	56,	58,	62
combining,	64
count()	function,	62
creating	and	accessing,	59–62
features,	14,	55–56
foreach	loop,	59–60
is_array()	function,	62
keys,	55,	58
ksort()	function,	66
multidimensional,	62–65
natsort()	function,	69
number	of	elements,	62
$_POST,	57–58
range()	function,	62
rsort()	function,	66
sorting,	66–69
storing	in	sessions,	406
and	strings,	66
superglobal,	56
using,	57–58
usort()	function,	69

AS	term,	157
ASC	and	DESC	sorting,	147–148
asort()	and	arsort()	functions,	66
assignment	operator,	using	with	variables,	14,	25
associative	arrays,	287.	See	also	arrays
attr()	function,	using	with	jQuery,	504
AUTO_INCREMENT,	120–121
AUTOCOMMIT,	altering,	238
AVG()	function,	216–217,	219

B
background	color	variable,	initializing,	328
backslash	(\)
escape	sequence,	29
matching,	466
using	to	escape	characters,	6

backtick	(`)	in	SQL	commands,	139
banking	database,	198
BETWEEN	operator,	142
“big”	databases,	235.	See	also	databases



BIGINT[]	data	types,	117,	198
binary,	converting	to,	239
BINARY	text	type,	119
Bitnami	installer,	636
blacklist	validation,	425
blank	pages,	debugging,	8,	260
blank	spaces,	44
body	tag,	placement,	4
Boolean	FULLTEXT	searches,	performing,	229–231
Boolean	variables,	14
Bootstrap	framework,	90
bound	variable	types,	443.	See	also	variables
boundaries,	using,	471
braces	({})
arrays,	56,	68,	62
conditionals,	45
using	with	characters,	468
using	with	conditionals,	48

brackets	([]),	104,	469–471
break	element,	48
browser
sending	data	to,	6–9
sending	HTML	code,	8,	11–12

brute-force	attacks,	preventing,	449
buffer	size,	limit,	593

C
calculator.html	file
DOM	manipulation,	500–504
jQuery,	496–497

calculator.js	page,	saving,	498
calculator.php	script
creating,	86–90
default	argument	values,	101–104
Filter	extension,	439–441
radio	buttons,	98–100
rewriting,	91–94
validating	data	by	type,	430
values	from	functions,	105–109

calendar	form,	60,	72
calendar.php,	creating,	60–62
call	to	undefined	function	error,	260
cannot	redeclare	function	error,	260
capitalizing	characters,	22



CAPTCHA	test,	424
carriage	return,	29
CASCADE	action,	198
CASE()	function,	221
case	insensitivity,	6
CEILING()	function,	159
CHANGE	COLUMN	clause,	224
CHAR[Length]	data	type,	117–118
character	classes,	using,	469–471
character	sets
assigning,	188–190
changing,	224
listing,	186

characters.	See	also	meta-characters
capitalizing,	22
escaping,	6
escaping	in	patterns,	466
mismatching	encodings,	550
representing,	2

chmod	command,	adjusting	folder	permissions,	349
cinema	database,	174
class	meta-characters,	464
classes,	using	brackets	([])	with,	469–471
client-server	request	model,	505
closing	database	connections,	281
COALESCE()	function,	220
code	blocks,	indenting,	48
collations
assigning,	188–190
changing,	224
using	with	character	sets,	186–187

column	lengths,	fine	tuning,	158
column	names,	determining,	115
column	properties,	choosing,	120–122
column	types,	choosing,	116–119
columns
applying	functions,	155
changing	definition,	452
including	in	indexes,	181
listing	in	SELECT	statements,	141
listing	in	tables,	134
populating,	137

comments
using	with	HTML	forms,	42



writing,	10–13
COMMIT,	using	with	transactions,	236,	238
comparative	operators,	45
comparison	functions,	220.	See	also	functions
CONCAT()	function,	156–158,	219
CONCAT_WS()	function,	158
concatenating	strings,	21–22
conditionals
and	operators,	45–48
in	SQL,	142–144

configuration	file,	making,	594–598
configuration	script
connecting	to	database,	599–601
database	script,	598
using,	594

configuring
Apache,	652–661
PHP,	649–651

connecting	to	MySQL,	270–274
connection	script,	securing,	288
constants
vs.	triggers,	203
using,	26–28
vs.	variables,	26

contact	form,	339
CONVERT()	function,	190
CONVERT_TZ()	function,	192,	567
cookies
accessing,	394–396
data	limitation,	394
deleting,	399–400,	403
in	directories,	398
generating,	396
logout	link,	400–403
requiring,	415
sending,	392–394
vs.	sessions,	404
setting,	390–391
setting	parameters,	396–398
testing	for,	391

COUNT()	function
grouping	selected	results,	216–217,	219
paginating	query	results,	324,	330
creating	forum	page,	569



count()	function,	using	with	arrays,	62
counting	returned	records,	293–295
CREATE	privilege,	643
CREATE	SQL	command,	132–133
create_ad()	function,	defining,	96–97
create_window()	function,	358
CROSS	JOIN,	209
CSS	(Cascading	Style	Sheets),	37
CSS	files,	declaring	encoding,	5
CSS	selectors,	using	with	jQuery,	492
CURDATE()	function,	161–162
CURTIME()	function,	161–162
customers	table,	populating,	202

D
Darwin	operating	system,	28
data
deleting,	153–154
encrypting,	137
encrypting	and	decrypting,	240–241
grouping,	218–219
inserting	into	tables,	136–139
limiting	amount	returned,	149–150
selecting,	140–141
selecting	conditionally,	220
sending	to	browser,	6–9
sorting,	147–148
updating,	151–152
validating	by	type,	425–430

data	types,	116–117,	119
data	validation.	See	validating
database	connection
changing,	526
closing,	281

database	design.	See	also	normalization
conventions,	171
ERD	(entity-relationship	diagram),	171
explained,	168
foreign	key	constraints,	197–203
indexes,	181–183
languages,	186–190
reviewing,	179–180
table	types,	184–185
time	zones,	191–196



database	structure,	confirming,	190
databases.	See	also	“big”	databases;	MySQL;	SQL	(Structured	Query	Language)
AUTO_INCREMENT,	120
connecting	to,	270–274
creating	in	SQL,	132–134
DATE	and	TIME	fields,	116
deciding	on	contents,	168
default	values,	122
deleting,	154
encrypting,	239–241
ENUM	data	type,	116
forms,	171
identifiers,	114
indexes	and	keys,	120
Length	attribute,	116
length	limits,	115
message	board,	548–556
naming	elements,	114–115
optimizing,	232
PRIMARY	KEY,	120
relationships,	170–171
revealing	information	about,	190
schema,	168,	171,	601
selecting,	270–274
SET	data	type,	116
table	names,	114–115
TEXT	columns,	122

DATE	and	TIME	fields,	116
date	and	time	functions,	161–165,	370–373
date	constant,	creating,	27
DATE	data	type,	117
DATE()	function,	161
DATEDIFF()	function,	163
DateTime	class,	538–545.	See	also	time	and	date	functions
DATETIME	data	type,	117
DateTime::COOKIE,	545
DateTime::getTimestamp()	method,	545
DAYNAME()	function,	161–162
DAYOFMONTH()	function,	161
debugging.	See	also	errors
access	problems,	265
Ajax	request,	517
beginning,	246–248
best	practices,	248



blank	pages,	8
HTML	errors,	8,	249
JavaScript,	485
overview,	244–245
PHP	objects,	526
PHP	scripts,	5,	8,	261–263,	369
SQL	queries,	264–265
steps,	32–33,	246
techniques,	260–264

DECIMAL[Length,	Decimals]	data	type,	117,	119
decimals,	14,	25
decrement	operator,	23
decrypting	data,	240–241
default	element,	48
define()	function,	constants,	26
DELETE	privilege,	643
delete.user.php	script,	310–312.	See	also	users	table
deleting
cookies,	399–400,	403
data,	153–154
databases,	154
records,	203
session	variables,	409–411

DESC	and	ASC	sorting,	147–148
DESCRIBE	tablename,	134
die()	function,	263
directories,	referring	to,	355
display_errors,	33,	250–251,	261–263
division
operator,	23
returning	integer	quotient,	25

documents,	organizing,	273
dollar	sign	($)
escape	sequence,	29
preceding	variables,	14

DOM	manipulation,	498–504.	See	also	jQuery
DOS	prompt,	accessing	and	exiting,	124–126
double	quotation	mark	(“),	29–31,	94
DOUBLE[Length,	Decimals]	data	type,	117,	119
do.while	loops,	72
DROP	COLUMN	clause,	224
DROP	INDEX	clause,	224
DROP	privilege,	643
dynamic	scripts,	17



dynamic	web	sites
HTML	forms,	85–90
multiple	files,	76–84
sticky	forms,	91–94

E
E_*	constants,	252
echo	function,	6–7.	See	also	print	function
arrays,	68
calculator.php	script,	87
constants,	27
debugging	scripts,	261–263
handle_form.php,	43,	46
language	construct,	8
mathematical	calculations,	25
over	multiple	lines,	9
quotation	marks,	29,	31
strings,	18,	20
Trip	Cost	Calculator,	88
validation	results,	53
variables,	16

echo	statement,	sortable	links,	335
editing	records,	316–322
edit.user.php	script,	316–319
else	clause,	89
else	conditional,	45–48
elseif	conditional,	45–48
email,	sending,	338–343
email	addresses,	validating,	470–471
email	conditional,	320
email	element,	using	with	HTML	forms,	42
email	input,	adding	to	HTML	forms,	39
email.php	script,	339–343,	420
embedding	PHP	code,	5
empty()	function,	49,	51,	104
empty	variable	value	error,	260
encoding.	See	also	mismatching	encodings
declaring,	5
displaying,	186
indicating	to	browser,	2

encrypting	data,	137,	239–241,	350
enctype,	using	with	form	tag,	350,	355
Enter	and	Return,	10
ENUM	data	type,	116–117,	121,	148



equals	(=)	operator,	14,	142
ERD	(entity-relationship	diagram),	171,	180
error	handlers,	customizing,	255–259
error	management,	die()	and	exit(),	263
error	reporting,	adjusting,	252–254
error	types,	overview,	244–245
error_log()	function,	259
errors.	See	also	debugging;	warnings
causes,	264
displaying,	33
echo,	6
INSERT,	139
NULL,	139
revealing	in	PHP,	250
suppressing	with	@,	252,	274

$errors	conditional,	321
escape	meta-character,	464
escape	sequences,	29
escaping	characters,	6
event	handling,	jQuery,	495–498
event	listener,	creating	for	Ajax	request,	512
exclusive	or	operator,	45,	48
executing	queries,	276–283,	526–531
exit	command,	126
exit()	function,	263
EXPLAIN	EXTENDED	command,	235
EXPLAIN	keyword,	232–235
extension	support,	enabling,	649
extensions,	3,	269
external	files.	See	files;	multiple	files	PHP	files

F
FALSE	keyword,	144
fetch_object()	method,	534
FILE	privilege,	643
file	uploads
allowing	for,	344–345
configurations,	344
directory	access,	348
with	PHP,	350–355
preparing	server,	346–349
secure	folder	permissions,	345
set_time_limit()	function,	349
validating,	355



Fileinfo	extension,	432–434
files,	validating	by	type,	431–434.	See	also	multiple	files;	PHP	files
$_FILES	array,	350
Filter	extension
vs.	regular	expressions,	477
using,	438–441

firewalls	and	installation,	636
first	normal	form	(1NF),	171–173
first.php	script
creating,	3–5
sending	data	to	browser,	7

FLOAT[Length,	Decimals]	data	type,	117,	119
floating-point	type,	14,	25
FLOOR()	function,	159
folder	permissions,	securing,	345
footer.html	file

saving,	564
user	registration,	590–593

for	loops,	70–72
foreach	loop,	using	with	arrays,	59–60,	63–65
foreign	key	constraints
action	options,	197
CASCADE	action,	198
creating,	199–203
requirement,	203

foreign	keys
adding,	176
message	board,	556

forgot_pasword.php,	writing,	624–629
form	data,	validating,	49–54
form	tag,	using,	36,	38
FORMAT()	function,	159–160
form.html	script,	37–38
forms.	See	hidden	forms;	HTML	forms;	sticky	forms
forum	administration,	585
forum	data,	168–169
forum	database
Atomic,	172
ERD	(entity-relationship	diagram),	180
indexes,	183
message	board,	548

forum	page,	making	for	message	board,	566–570
forum.php	file,	saving,	570
forums	table



character	sets	and	collations,	189–190
UTC	(Coordinated	Universal	Time),	193

FULLTEXT	index,	181,	185,	224–226
FULLTEXT	searches,	performing,	226–228
function	calls,	chaining,	504
function	parameters,	declaring,	111.	See	also	parameters
function.js	script,	358–360
functions.	See	also	comparison	functions
applying	to	columns,	155
arguments	without	values,	104
array()	function,	109
creating,	95–97
default	argument	values,	101–104
grouping,	216–217
looking	up,	22
multiple	values,	109
$name	argument,	103
naming,	95
return	statement,	109
returning	values,	105–109
in	SQL,	155–165
syntax,	95
taking	arguments,	97–100
text,	156–158
user-defined,	111

funds	transfer	form,	374

G
garbage	collection,	411
gender	element
using	with	HTML	forms,	42,	44,	47
validating,	52

get	and	post,	using	with	HTML	forms,	36
GET	method
sending	values	to	scripts,	306
using	with	HTML	forms,	36

GET	request,	85
getdate()	function,	370–371
getimagesize()	array,	360
$GLOBALS	array,	110
GMT	(Greenwich	Mean	Time),	191
GRANT	privilege,	643
greater	than	operator,	45,	142
greater	than	or	equal	to	operator,	45,	142



GREATEST()	function,	220
greet()	function,	111
GROUP	BY	clause
aggregate	functions,	217
message	board,	566

GROUP_CONCAT()	function,	216–217,	219
grouping
data,	218–219
functions,	216–217

H
handle_errors.php,	saving,	259
handle_form.php

conditionals,	46–47
creating,	42
testing,	43
validating	forms,	50,	54

HAVING	clause,	219
header	file,	making	for	template,	268–269
header()	function,	365–369
header.html	file
creating,	80–81
login	and	logout	links,	400–401
$_SESSION,	408
templates	for	message	board,	557–564
user	registration,	588–593

headers	already	sent	error,	260
hex.	See	UNHEX()	function
hidden	forms,	inputs,	310–315.	See	also	sticky	forms;	HTML	forms
home	page
message	board,	565
user	registration,	602–603

HOUR()	function,	161
.htaccess	file,	345,	652,	657–659
HTML	attributes,	double-quoting,	94
HTML	code,	sending	to	browser,	8,	11–12
HTML	document,	creating,	4
HTML	errors,	debugging,	8,	249
.html	extension,	3,	40
HTML	forms,	54.	See	also	hidden	forms;	sticky	forms
action	attribute,	90
creating,	36–40
elements	to	variables,	42
fields,	54



GET	and	POST	methods,	36
GET	request,	85
handling,	41–44,	85–90
input	types,	44
inputs,	39,	41
jQuery,	492–494
multidimensional	arrays,	65
POST	method,	85
pull-down	menus,	39,	61–62
radio	buttons,	39
select	menu	options,	94
submitting	back,	90
text	and	email	inputs,	39
text	box,	40
textarea	element,	40
Trip	Cost	Calculator,	86
validating,	50

HTML	resources,	5
HTML	table,	using	with	arrays,	67
HTML	templates,	78–79
HTML5	page,	2
HTML5	validation	rules,	426
HTML-embedded	scripted	language,	2
htmlentities()	function,	435–436
htmlspecialchars()	function,	435–437,	583
HTTP	(Hypertext	Transfer	Protocol),	381
http://,	using	with	PHP	code,	5,	7
HTTP	headers,	364–369
httpd.conf	file,	652

I
IDE	(integrated	development	environment),	2–3
identifiers	in	databases,	114–115
if	conditional,	45–48,	52
IF()	function,	220–221,	223
if-else	conditional,	52
if-elseif-else	conditional,	47
IFNULL()	function,	223
images.php	script
date	and	time	functions,	371–373
HTTP	headers,	364
JavaScript	and	PHP,	361–362

IN	operator,	142
include()	functions,	76–77,	84



increment	operator,	23
indenting	code	blocks,	48
index	page	for	message	board,	565
INDEX	privilege,	643
INDEX	type,	181
indexes
creating,	181–183
and	keys,	120

index.php	file
creating,	82–83
creating	functions,	96–97
home	page	for	user	registration,	602–603

ini_set()	function,	250–251
inner	joins,	207–209,	211
InnoDB	storage	engine,	184
INSERT	command
errors,	139
records,	135–139

INSERT	privilege,	643
INSERT	query,	running,	276–279
installation
firewalls,	636
macOS,	639–640
testing,	646–648
Windows,	636–638

INT[Length]	data	type,	117
intdiv()	function,	25
integers,	14,	25
INTO	term,	139
is	equal	to	operator,	45
IS	FALSE	operator,	142
is	not	equal	to	operator,	45
IS	NOT	NULL	operator,	142
IS	NULL	operator,	142
IS	TRUE	operator,	142
is_*	type	validation	functions,	425
is_array()	function,	62
is_numeric()	function,	54
is_uploaded_file()	function,	355
isset()	function,	45,	48–49

J
JavaScript.	See	also	jQuery



chaining	function	calls,	504
creating	for	Ajax,	511
debugging,	485
and	PHP,	356–363

JavaScript	files,	creating	for	PHP,	357–360
JOIN,	using	with	message	board,	566
joining	tables,	213–215
joins
across	databases,	213
and	conditionals,	213
inner	joins,	207–209
outer	joins,	210–212
performing,	206–207
self-joins,	212–213
types,	209,	234

jQuery.	See	also	Ajax;	DOM	manipulation;	JavaScript
anonymous	functions,	489–490
append()	function,	504
attr()	function,	504
CSS	selectors,	492
DOM	manipulation,	499–504
event	handling,	495–498
hosted	version,	487
HTML	page	and	browser	load,	489
incorporating,	486–488
overview,	484–485
page	elements,	492–494
prepend()	function,	504
“ready”	status,	491
remove()	function,	504
using,	489–491

jQuery()	function,	calling,	491
JSON	(JavaScript	Object	Notation),	517

K
KEY	vs.	INDEX,	183
keys
explained,	169
and	indexes,	120

ksort()	and	krsort()	functions,	66,	68

L
language	encoding,	2
languages,	186,	584



languages	table,	including	in	message	board,	548,	551
LEAST()	function,	220
LEFT()	function,	156
left	joins,	211–212
Length	attribute,	116
LENGTH()	function,	156,	158
less	than	operator,	45,	142
less	than	or	equal	to	operator,	45,	142
LIKE	and	NOT	LIKE,	145–146
LIKE	keyword,	224
LIMIT	clause,	149–150,	323
limiting	query	results,	in	SQL,	149–150
links,	making	sortable,	331–335.	See	also	URLs
list()	function,	109
loggedin.php	script,	394–395
securing	sessions,	413–414
session	variables,	407–409

logging	PHP	errors,	259
logical	errors,	244
logical	operators,	45
login	functions,	making,	385–389
login	page,	making,	382–384
login	process,	updating	to	secure	passwords,	455–457
login_ajax.php	script,	creating,	510
login_function.inc.php	script,	455–457
login.js	file,	creating,	512
Login/Logout	links,	using,	409
login.php	script,	392
Ajax	form,	506–509
encrypting	data,	413
sessions,	405
setcookie()	function,	397–398
user	registration,	617–622

logout	link,	creating,	400–403
logout.php	script,	user	registration,	622–623
LONGBLOB	text	type,	119
LONGTEXT	data	type,	117
loops,	for	and	while,	70–72
LOWER()	function,	156
lowercase	strings,	22

M
macOS
Darwin,	28



XAMPP	installer,	639–640
mail()	function,	650
dependencies	in	PHP,	338
using,	339–343

malicious	code,	protecting	against,	435
many-to-many	relationships,	170
MariaDB,	636
matches,	finding,	472–475
matches.php	file,	saving,	474
matching
backslash	(\),	466
patterns,	461–463
records,	145–146
and	replacing	patterns,	478–481
strings,	466

math	operators,	23
mathematical	calculations,	144
MAX()	function,	216–217,	569
MAX_FILE_SIZE	restriction,	355
MEDIUMBLOB	text	type,	119
MEDIUMINT[Length]	data	type,	117
MEDIUMTEXT	data	type,	117
MEMORY	table	type,	185
message	board
complications,	584
database,	548–556
foreign	keys,	556
forum	administration,	585
forum	page,	566–570
index	page,	565
language	dropdown	menu,	563
languages,	554
languages	table,	548,	551
mismatching	encodings,	550
posting	messages,	576–585
posts	table,	549,	552
relationships,	549
removing	tags,	583
tables,	548–549
templates,	557–564
thread	page,	571–575
threads	table,	548–549,	552,	583
translations,	555
users	table,	553,	555



words	table,	549,	553–554,	556
message	hierarchy,	reflecting,	179
messages	table
creating,	189
UTC	(Coordinated	Universal	Time),	194

meta	tag,	indicating	encoding,	2
meta-characters,	using	in	patterns,	464.	See	also	characters
method	attribute,	using	with	form	tag,	36
MIME	type,	433
MIN()	function,	216–217,	569
MINUTE()	function,	161
mismatching	encodings,	550.	See	also	encoding
MOD()	function,	159–160
modifiers,	using,	476–477
modulus	operator,	23
MONTH()	function,	161
MONTHNAME()	function,	161
move_uploaded_file()	function,	355
movies	table,	172
movies-actors	table,	173
multidimensional	arrays,	62–65
multiple	files.	See	also	files;	PHP	files
absolute	vs.	relative	paths,	76
functions,	76–77
includes	directory,	78
including,	78–84
site	structure,	78
templates	directory,	78

multiplication	operator,	23
multivalued	variables,	14
MylSAM	table	type,	184
MySQL.	See	also	databases;	SQL	(Structured	Query	Language)
accessing,	123–129
column	properties,	120–122
column	types,	116–119
connecting	to,	270–272
data	types,	117
database	elements,	114–115
default	values,	123
operators,	142
testing,	648
text	types	for	binary	data,	119
web	site,	113

MySQL	and	OOP



creating	connections,	523–526
executing	queries,	526–531
fetching	results,	531–533
outbound	parameters,	538
prepared	statements,	534

mysql	client,	123–127
MySQL	Extension,	283
MySQL	users,	managing,	641–645
MySQL	version,	confirming,	247
MySQLi	constructor,	arguments,	526
MySQLi	object,	creating,	525
mysqli_affected_rows()	conditional,	303,	313,	320
mysqli_close()	function,	291
mysqli_connect()	function,	270–274
mysqli_fetch_array()	constants,	284,	287
mysqli_num_rows()	function,	296
mysqli_query()	function,	280,	283,	287
mysqli_real_escape_string()	vs.	prepared	statements,	442–443
mysqli_real_escape_string(),	using,	288–292,	318
MySQLi::character_set_name()	method,	526
MySQLi::prepare()	method,	534

N
\n	(newline	character),	10
\n	escape	sequence,	29
name	element,	using	with	HTML	forms,	42
natsort()	function,	69
nesting	conditionals,	48
newline	character	(\n),	10,	29
nonscalar	variables,	14
normalization.	See	also	database	design
1NF	(first	normal	form),	171–173
2NF	(second	normal	form),	174–176
3NF	(third	normal	form),	177–178
flexibility,	178
keys,	169
overruling,	178
overview,	167–168
primary	keys,	169
relationships,	170–171

NOT	BETWEEN	operator,	142
not	equal	to	operator,	142
NOT	IN	operator,	142
NOT	LIKE	and	LIKE,	145–146



NOT	NULL	columns,	120
NOT	NULL	values,	in	tables,	135
not	operator,	45
NOT	operator,	142
NOT	REGEXP()	function,	158
Notepad,	warning	against,	3
NOW()	function,	137,	139,	141,	161
NULL	coalescing	operator,	49
NULL	columns,	120–121
NULL	values
grouping	results,	219
inner	joins,	209
and	quotation	marks,	136
in	tables,	135

NULL	variables,	14,	45
number	types,	UNSIGNED,	121
number_format()	function,	23,	88
numbers
is_numeric()	function,	54
testing	for,	54
using,	23–25

numeric	functions,	159–160

O
ob_clean()	function,	593
ob_end_flush()	function,	593
ob_flush()	function,	593
ob_get_contents()	function,	593
objects,	14
one-to-many	relationships,	170,	176
one-to-one	relationships,	170,	176
OOP	(object-oriented	programming)
classes,	522
DateTime	class,	522,	538–545
fundamentals,	520–521
MySQLi	class,	522
vs.	procedural,	520
syntax	in	PHP,	521–522

OOP	and	MySQL
creating	connections,	523–526
executing	queries,	526–531
fetching	results,	531–533
outbound	parameters,	538



prepared	statements,	534
operators
and	conditionals,	45–48,	142
ternary,	324

OPTIMIZE	command,	232
OR	operator,	142,	144
or	operator,	45
ORDER	BY	clause,	147–148
organizing	documents,	273
outbound	parameters,	538.	See	also	parameters
outer	joins,	210–212
output	buffering,	589

P
paginating	query	results,	323–330
parameters,	indicating,	104.	See	also	function	parameters;	outbound	parameters
parse	errors,	debugging,	8,	244,	260
password_verify()	function,	451,	457
password.php	script,	297–302
passwords
changing,	296,	629–633
resetting,	624–629
root	user,	641–642
securing	with	PHP,	449–457
storing	hash	versions,	450
validating,	299

passwords,	validating,	279
patterns
back	referencing,	478,	481
defining,	464–466
escaping	characters,	466
greediness,	473–474
matching,	461–463
matching	and	replacing,	478–481
matching	start	and	end,	477
meta-characters,	464

pcre.php	file
character	classes,	470–471
creating,	465
quantifiers,	467–468
reporting	matches,	472–475
saving,	463

percentage	sign	(%),	using	to	match	records,	145–146
period	(.)	operator,	21–22



permissions	forum,	349
PHP
changing	configuration	for	Apache,	661
configuring,	649–651
confirming	server	settings,	346
and	JavaScript,	356–363
mail()	dependencies,	338
securing	passwords,	449–457
testing,	646–648
updating	records,	296–303
uploading	files,	350–355

PHP	code
adding,	2
embedding,	5
in	HTML	tags,	91
running	through	http://,	5
test	script,	3

PHP	errors
displaying,	250–251
examples,	260
logging,	259

.php	extension,	3
PHP	files,	extensions,	3.	See	also	files;	multiple	files
PHP	manual,	accessing,	22
PHP	objects,	debugging,	526
PHP	scripts
accessing	via	URLs,	4–5
altering	output,	20
commenting,	11–13
debugging,	5,	33,	261–263,	369
for	JavaScript,	360–363
making,	3–5
revealing	errors,	250
sending	values	to,	306–309

PHP	tags,	inserting,	4
PHP	validation,	517
PHP	version,	confirming,	247
phpinfo()	function
display_errors,	33
file	uploads,	346
invoking,	650
version	confirmation,	247

php.ini	configuration	file
altering	configuration,	650–651



file	uploads,	344
include_path	setting,	84

phpMyAdmin	client
accessing	tables,	134
creating	users,	645
executing	queries,	132–133
inserting	records,	139
listing	tables,	134
root	user	password,	642
SELECT	queries,	141
using,	123–129

pipe	(|),	using	with	regular	expressions,	465
pop-up	window
creating,	360
resizing,	359

$_POST	array,	57–58
POST	method,	using	with	HTML	forms,	36,	85
post_form.php	script,	creating,	576–580
post_message.php

prepared	statements,	535–537
saving,	448

posting	messages,	576–585
post.php	script,	creating,	580–585
pound	sign	(#),	using	with	comments,	10
POW()	function,	159
predefined	variables,	14–17
preg_match()	function,	460,	472
preg_replace()	function,	478,	480–481
preg_split()	function,	475
prepared	statements
OOP	and	MySQL,	534–537
using,	442–448

PRIMARY	KEY,	120–121,	181–182
primary	keys
assigning,	169
2NF	(second	normal	form),	175
foreign-key	link,	180

print	function.	See	also	echo	function
debugging	scripts,	261–263
language	construct,	8
over	multiple	lines,	9
using,	6–7

privileges	in	MySQL,	643–644
procedural	vs.	OOP,	520



PROCESS	privilege,	643
proxy	scripts,	364,	369
pull-down	menus,	using	on	HTML	forms,	39,	61–62,	91

Q
quantifiers
meta-characters,	464
using,	467–468

queries.	See	also	simple	queries
executing,	132–133,	275–283,	526–531
explaining,	233–235
optimizing,	232–235
quotation	marks,	136
running,	141

query	results
fetching,	531–534
limiting,	149–150
paginating,	323–330
retrieving,	284–287
sorting,	147–148

quit	command,	126
quotation	marks
vs.	`	(backtick),	139
printing,	6
in	queries,	136
single	vs.	double,	29–31
variables,	18

R
\r	escape	sequence,	29
radio	buttons,	using	on	HTML	forms,	39,	92,	98–100
RAND()	function,	159–160,	240
range()	function,	using	with	arrays,	62
ranges,	MySQL	operators,	142
read.php	page,	571–575,	582
records.	See	also	returned	records
adding	to	databases,	276–279
deleting,	153–154,	203
editing,	316–322
inserting	in	phpMyAdmin,	139
inserting	in	SQL,	135–139
matching,	145–146
updating	with	PHP,	296–303

REGEXP()	function,	158



register.php	script
executing	queries,	526–531
modifying,	295
mysqli_real_escape_string(),	289–291
securing	passwords,	452–454
user	registration,	604–613

registration	script,	creating,	275–283,	604–613
regular	expressions
character	classes,	469–471
data	validation,	430
defining	patterns,	464–466
vs.	Filter	extension,	477
finding	matches,	472–475
greediness,	473–474
lazy	matches,	473
matching	and	replacing	patterns,	478–481
matching	patterns,	461–463
modifiers,	476–477
pipe	(|),	465
preg_match()	function,	460
quantifiers,	467–468
searches,	158
test	script,	460–463

relationships,	170–171
relative	vs.	absolute	paths,	76
RELOAD	privilege,	643
RENAME	TO	clause,	224
REPLACE	command,	139
REPLACE()	function,	156
report_errors	script,	saving,	254
$_REQUEST	variable,	42,	44
require()	functions,	76–77,	84
resetting	passwords,	624–629
resource	variable	type,	14
return,	creating,	9–10
return	statement,	using	with	functions,	109
returned	records,	counting,	293–295.	See	also	records
REVOKE	privilege,	643
RIGHT()	function,	156
right	joins,	210–211
ROLLBACK,	using	with	transactions,	236
root	user	password,	setting,	641–642
ROUND()	function,	159
round()	function,	23



rsort()	function,	66
RTF	MIME	type,	433
run-time	errors,	244

S
sanitization	filters,	438
savepoints,	creating	in	transactions,	238
scalar	values,	using	with	constants,	26
scalar	variables,	14
schema,	168,	171,	601
scripts.	See	PHP	scripts
searches,	FULLTEXT,	224–231
SECOND()	function,	161
second	normal	form	(2NF),	174–176
second.php	script,	saving,	7
security.	See	also	SQL	security
approach,	419
recommendations,	450
of	sortable	links,	335

SELECT	command,	140.	See	also	advanced	selections
and	joins,	206–207
listing	columns,	141

SELECT	privilege,	643
select_db()	method,	526
selecting	data,	140–141,	158
self-joins,	212–213
semicolons	(;),	using	with	queries,	132–133
sending	email,	338–343
server	settings,	confirming,	346
server-side	PHP	validation,	517
$_SESSION,	408,	411
session	behavior,	changing,	412
session	fixation,	preventing,	415
session	hijacking,	412–413
session	security,	improving,	412–415
session	variables
accessing,	407–409
deleting,	409–411
setting,	404

session_start(),	calling,	593
sessions
beginning,	405–406
vs.	cookies,	404
garbage	collection,	411



storing	arrays	in,	406
SET	data	type,	116–117
setcookie()	function,	394,	396,	398
sha1()	function,	413–414
SHA2()	function,	137,	139,	144,	239
SHOW	CHARACTER	SET	command,	186
SHOW	COLLATION	LIKE	command,	187
SHOW	command,	189–190
SHOW	ENGINES	command,	185
SHOW	WARNINGS	command,	139
show_image.php,	361,	367–368
SHUTDOWN	privilege,	643
simple	queries,	284.	See	also	queries
single	quotation	mark	(‘),	29–31
site	administration,	633
site	structure,	78
sitename	database,	132–134
slashes	(/	and	//),	including	with	tags,	8,	10,	23
SMALLINT[Length]	data	type,	117
sortable	displays,	making,	331–335
sorting
arrays,	66–69
query	results,	147–148

source,	readability,	9
spacing,	altering,	9–10
spam,	preventing,	418–424
spam_scrubber()	function,	421–424
SPATIAL	index,	183
SQL	(Structured	Query	Language).	See	also	databases;	MySQL
conditionals,	142–144
databases,	132–134
deleting	data,	153–154
functions,	155–165
LIKE	and	NOT	LIKE,	145–146
limiting	query	results,	149–150
records,	135–139
selecting	data,	140–141
sorting	query	results,	147–148
tables,	132–134
updating	data,	151–152

SQL	commands
`	(backtick),	139
downloading,	139
entering,	129



SQL	errors,	causes,	264
SQL	injection	attacks,	preventing,	442–448
SQL	queries,	debugging,	264–265
SQL	security,	ensuring,	288–292.	See	also	security
SQRT()	function,	159
sticky	forms,	making,	91–94,	321–322.	See	also	hidden	forms;	HTML	forms
sticky-footer-navbar.css	file,	79
storage	engine,	specifying,	184
string	meta-characters,	464
strings
and	arrays,	66
concatenating,	21–22
converting	case,	22
functions,	22
matching,	466
meta-characters,	466
using,	18–21
variable	type,	14

strip_tags()	function,	435–437,	583
strstr()	function,	466
strtolower()	function,	22
strtoupper()	function,	22
SUBDATE()	function,	163
Sublime	Text,	3
submission	conditional,	321
submit	element,	using	with	HTML	forms,	42
subpattern	meta-characters,	464
SUBSTRING()	function,	156
SUBTIME()	function,	163
subtraction	operator,	23
SUM()	function,	216–217,	219
superglobal	arrays,	56–58,	110
switch	conditional,	48
syntactical	errors,	244–245
syntax
basics,	2
comments,	11
for	making	functions,	95

T
\t	escape	sequence,	29
tab	escape	sequence,	29
table	names,	determining,	114–115
table	types,	using,	184–185



tables
analyzing	horizontally,	173
analyzing	vertically,	176
confirming,	134
creating	in	SQL,	132–134
emptying,	154
inserting	data,	136–139
as	intermediaries,	176
joining,	213–215
listing	columns,	134
relationships,	170
revealing	information	about,	190
selecting	data,	140–141
and	text	columns,	134
types,	134

tags
including	slashes,	8
removing,	583

templates
directory,	78
message	board,	557–564
modifying,	268–269
storing	in	external	files,	82
user	registration,	588–593

Terminal,	accessing	and	exiting,	124–126
ternary	operator,	324
test()	function,	111
test.html	file
HTML	form	for	jQuery,	492–494
jQuery,	488–491

test.js	document
creating,	490
event	handling,	496–498

text,	converting	character	sets,	190
text	box,	adding	to	HTML	form,	40
text	columns,	using	with	tables,	134
TEXT	data	type,	117,	122
text	functions,	156–158
text	input,	adding	to	HTML	forms,	39
textarea	element,	40
third	normal	form	(3NF),	177–178
thread	page,	creating	for	message	board,	571–575
Thumbs.db	file,	363
time	and	date	functions,	161–165,	370–373.	See	also	DateTime	class



TIME	data	type,	117
time	zones,	191–196
TIMESTAMP	data	type,	117,	119,	121
TINYTEXT	data	type,	117
TINYBLOB	text	type,	119
TINYINT[Length]	data	type,	117,	119
transactions
performing,	236–238
uploads	in	PHP,	374–379

transactions	table,	creating,	201
transfer.php,	374–379
translations,	noting	in	message	board,	555
triggers	vs.	constraints,	203
TRIM()	function,	156
Trip	Cost	Calculator,	86,	89–90,	94,	100,	104
TRUE	keyword,	144
TRUE	or	FALSE	variables,	14
TRUNCATE	command,	154,	303
type	validation	functions,	425
typecasting	variables,	427–430,	438

U
ucfirst()	function,	22
ucwords()	function,	22
undefined	variables,	44,	260
underscore	(_),	using	to	match	records,	145–146
UNHEX()	function,	239–240
Unicode	data,	using	in	queries,	550
Unicode	version	9.0.0,	2
UNION	statement
explaining	queries,	233
using	with	joins,	211

UNIQUE	index,	139,	181
UNIX_TIMESTAMP()	function,	161
UNSIGNED	number	types,	121–122
UPDATE	privilege,	643
updating
data,	151–152
records	with	PHP,	296–303

upload_rtf.php	script,	creating,	431
uploading	files.	See	file	uploads
UPPER()	function,	155–156
uppercase	strings,	22



URL	rewriting,	enabling	in	Apache,	660
URLs.	See	also	links
appending	variables,	309
using	to	access	PHP	scripts,	4–5,	7

user	ID	value,	validating,	317
user	registration
account	activation,	614–616
activation	process,	611
configuration	scripts,	594–601
database	schema,	601
home	page,	602–603
logging	in	and	out,	617–623
output	buffering,	589
password	management,	624–633
registration,	604–613
site	administration,	633
templates,	588–593

user-defined	functions,	111
users.	See	MySQL	users
users	and	privileges,	creating,	643–645
users	table,	114–115,	119,	122.	See	also	delete.user.php	script
character	sets	and	collations,	189–190
creating,	133
inserting	values,	138
UTC	(Coordinated	Universal	Time),	193

usort()	function,	69
UTC	(Coordinated	Universal	Time),	191–196
UTC_TIMESTAMP()	function,	161
UTF-8	encoding,	2,	187,	199

V
validating
data	by	type,	425–430
email	addresses,	470–471
files	by	type,	431–434
form	data,	49–54,	88
passwords,	279
server-side	PHP,	517

validation,	approaches,	425
values
MySQL	operators,	142
sending	to	scripts,	306–309

VARBINARY	text	type,	119
VARCHAR[Length]	data	type,	117–118



variable	scope,	110
variables.	See	also	bound	variable	types
altering	output,	20
appending	to	URLs,	309
checking,	49
vs.	constants,	26
HTML	forms,	42
and	numbers,	24
and	strings,	19
typecasting,	427–428
undefined,	44
using,	14–17

versions,	confirming,	247
vi	editor,	3
view_users.php	script
counting	returned	records,	293–295
object-oriented	version,	534
paginating,	323–330
retrieving	query	results,	285–286
sending	values	to	scripts,	306–307
sortable	links,	331–335

virtual	hosts,	using	with	Apache,	653–655

W
W3C	validation	tools,	using,	249
WAMP	installer,	636
warnings,	showing,	139.	See	also	errors
web	server,	confirming,	247–248
WHEN	clauses,	advanced	selections,	221
WHERE	conditional,	using	with	UPDATE,	151–152
while	loops,	70–72,	284,	287
white	space,	10
whitelist	validation,	425
Widget	Cost	Calculator,	425
Windows,	XAMPP	installer,	637–638
WITH	QUERY	EXPANSION	modifier,	231

X
XAMPP	installer
accessing,	636
Windows,	636–637

XML-style	tags,	4
XOR	operator,	142
xor	operator,	45,	48



XSS	attacks,	preventing,	435–437

Y
YEAR()	function,	161

Z
ZEROFILL	number	type,	121
zones.	See	time	zones
Zulu	time.	See	UTC	(Coordinated	Universal	Time)


	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	Table of Contents
	Introduction
	Chapter 1 Introduction to PHP
	Basic Syntax
	Sending Data to the Browser
	Writing Comments
	What Are Variables?
	Introducing Strings
	Concatenating Strings
	Introducing Numbers
	Introducing Constants
	Single vs. Double Quotation Marks
	Basic Debugging Steps
	Review and Pursue

	Chapter 2 Programming with PHP
	Creating an HTML Form
	Handling an HTML Form
	Conditionals and Operators
	Validating Form Data
	Introducing Arrays
	For and While Loops
	Review and Pursue

	Chapter 3 Creating Dynamic Web Sites
	Including Multiple Files
	Handling HTML Forms, Revisited
	Making Sticky Forms
	Creating Your Own Functions
	Review and Pursue

	Chapter 4 Introduction to MySQL
	Naming Database Elements
	Choosing Your Column Types
	Choosing Other Column Properties
	Accessing MySQL
	Review and Pursue

	Chapter 5 Introduction to SQL
	Creating Databases and Tables
	Inserting Records
	Selecting Data
	Using Conditionals
	Using LIKE and NOT LIKE
	Sorting Query Results
	Limiting Query Results
	Updating Data
	Deleting Data
	Using Functions
	Review and Pursue

	Chapter 6 Database Design
	Normalization
	Creating Indexes
	Using Different Table Types
	Languages and MySQL
	Time Zones and MySQL
	Foreign Key Constraints
	Review and Pursue

	Chapter 7 Advanced SQL and MySQL
	Performing Joins
	Grouping Selected Results
	Advanced Selections
	Performing FULLTEXT Searches
	Optimizing Queries
	Performing Transactions
	Database Encryption
	Review and Pursue

	Chapter 8 Error Handling and Debugging
	Error Types and Basic Debugging
	Displaying PHP Errors
	Adjusting Error Reporting in PHP
	Creating Custom Error Handlers
	PHP Debugging Techniques
	SQL and MySQL Debugging Techniques
	Review and Pursue

	Chapter 9 Using PHP with MySQL
	Modifying the Template
	Connecting to MySQL
	Executing Simple Queries
	Retrieving Query Results
	Ensuring Secure SQL
	Counting Returned Records
	Updating Records with PHP
	Review and Pursue

	Chapter 10 Common Programming Techniques
	Sending Values to a Script
	Using Hidden Form Inputs
	Editing Existing Records
	Paginating Query Results
	Making Sortable Displays
	Review and Pursue

	Chapter 11 Web Application Development
	Sending Email
	Handling File Uploads
	PHP and JavaScript
	Understanding HTTP Headers
	Date and Time Functions
	Performing Transactions
	Review and Pursue

	Chapter 12 Cookies and Sessions
	Making a Login Page
	Making the Login Functions
	Using Cookies
	Using Sessions
	Improving Session Security
	Review and Pursue

	Chapter 13 Security Methods
	Preventing Spam
	Validating Data by Type
	Validating Files by Type
	Preventing XSS Attacks
	Using the Filter Extension
	Preventing SQL Injection Attacks
	Securing Passwords with PHP
	Review and Pursue

	Chapter 14 Perl-Compatible Regular Expressions
	Creating a Test Script
	Defining Simple Patterns
	Using Quantifiers
	Using Character Classes
	Finding All Matches
	Using Modifiers
	Matching and Replacing Patterns
	Review and Pursue

	Chapter 15 Introducing jQuery
	What Is jQuery?
	Incorporating jQuery
	Using jQuery
	Selecting Page Elements
	Event Handling
	DOM Manipulation
	Using Ajax
	Review and Pursue

	Chapter 16 An OOP Primer
	Fundamentals and Syntax
	Working with MySQL
	The DateTime Class
	Review and Pursue

	Chapter 17 Example—Message Board
	Making the Database
	Writing the Templates
	Creating the Index Page
	Creating the Forum Page
	Creating the Thread Page
	Posting Messages
	Review and Pursue

	Chapter 18 Example—User Registration
	Creating the Templates
	Writing the Configuration Scripts
	Creating the Home Page
	Registration
	Activating an Account
	Logging In and Logging Out
	Password Management
	Review and Pursue

	Appendix A Installation
	Installation on Windows
	Installation on macOS
	Managing MySQL Users
	Testing Your Installation
	Configuring PHP
	Configuring Apache

	Index

