الإمـــاراتالـعـربـيـة المتحــدة

CDI Revision Notes

Term 1 (2017-2018)

Grade 10 General

Unit 3 - Fundamentals of Electronics

STUDENT INSTRUCTIONS -

- Student must attempt all questions.
- For this examination, you must have:
(a) An ink pen - blue.
(b) A pencil.
(c) A ruler.
(d) A calculator (if required).
- Electronic devices are not allowed.

Examination Specifications		
Domain	Marks	Time
Section 1-5 Multiple Choice Questions	5 Marks	3-4 minutes
Section 2-5 True or False Statements	5 Marks	3-4 minutes
Section 3-2 Short answer Questions 2 Diagram Questions 1 Matching Task	10 Marks (2×5) 20 Marks (2×10) 10 Marks	8-10 minutes 10-12 minutes 3-5 minutes
	Total - 50 Marks	Total - 35 minutes (5 minutes reading)

SECTION 1 - ELECTRICAL CIRCUITS

Word	Meaning	
Electrical Circuit	A closed path for electrons to move through electrical components, connected by a conductive wire.	
Schematic Diagram	A visual \& graphical representation of an electrical circuit that uses symbols.	
Voltage	The charge difference between two points.	
Current	The rate at which electric charge flows through a certain point.	
Resistance	A materials tendency to resist (oppose) the flow of charge (current).	
DC	An electric current that flows in one direction and has a constant voltage level; used in devices that use batteries or USB cables for power.	
AC	An electric current that periodically changes its direction. The voltage level also reverses with the current. It is used to deliver power to houses, office buildings, etc.	
Battery	An electrical DC power source.	

We use electricity in our daily lives to power our electric devices.

For example -

1. Cars get electric power from batteries.
2. Computers, televisions, air conditioners, celEphone chargers, electrid gates \& electric wall sockets.

Electric current is the flow of electric charge carried by electrons. Electrons are very small particles within atoms. They carry electric energy and flow through defined paths known as electric circuits.

Electronics is described as the science of dealing with electricity.

SIGNAL

For receiving and sending information

- Analog Signals

These signals have an infinite number of values.

Stored in continuous form between minimum and maximum value.

Examples

- Brightness of sun
- Room temperature

- Speaker
- Mixing colors
- Old radio
- Old photograph

- Digital Signals

These signals have a finite set of possible values.
(0 V or 5 V)
Stored inicoded form (0,1) (min., max.)

Examples

- Light switches in a class room

- Power button of phone

- Digital music player

Electric Circuit: Group of electrical components connected by conductors for current flow.

Voltage

 SourceIt causes the current to flow through a circuit.

WWW allinanalbi.com Conductive Path

Through which current flows.

Consumes electric power.

Types of Voltage Source
Sine Wave

Alternating Current : Wall Socket

DC signal

Direct Current : Battery

الإمــاراتراتلعـربـيسه المتحـد وزارةالـتـربيــــة والـتعلميــيـ

ELECTRICAL SCHEMATIC

- Voltage is the difference in charge between two points.
- Measured in Volts (V).

- Current is the rate at which
charge is flowing.
- Measured in Amperes (A).

Ohm's Law

- Resistance is a material's tendency to resist the flow of charge (current).
- Measured in Ohms (Ω).

Problem 1:

Using Ohm's Law, what is the voltage difference between point A and B if the current flowing through the resistor is 15 mA , and the resistance is $\mathbf{1 0 0} \Omega$?

Solution:

$\mathrm{V}=\mathrm{I} \times \mathrm{R}=0.015 \mathrm{~A} \times 100 \Omega=1.5 \mathrm{~V}$

Problem 2:

If the resistor in the previous example is replaced with another resistor, that has double the resistance, how much current would be flowing in the circuit using the same 1.5 V battery as a voltage supply?

Solution:

$V=1.5 / V, a 1$ nanali.conn $R=2 \times 100 \Omega=200 \Omega$ $\mathrm{V}=\mathrm{I} \times \mathrm{R} \longrightarrow \mathrm{I}=\mathrm{V} / \mathrm{R}=1.5 \mathrm{~V} / 200 \Omega=$ $0.0075 \mathrm{~A}=7.5 \mathrm{~mA}$

Problem 3:

Compare the value of the new current with the value of the initial current. Justify your answer.

Solution:

The new current is half the initial current (7.5 is half of 15). When the resistance was doubled, the current flowing became less (half the original current). This is because current is INVERSELY proportional to the resistance.

BATTERIES

- A battery is a common DC power supply.
- A battery is made up of two plates. One plate is positively charged (+), the other plate is negatively charged (-).
- The plates are surrounded by a chemical solution called electrolyte.
- The electrical energy of a battery is made by converting the chemical energy of the battery. This happens when a chemical reaction between the plates and the electrolyte produces a voltage difference between the two plates.
- This makes the electrons flow and generates an electric current.
- The figure below shows some commonly used batteries that are available at the market. Each type has a different voltage.

SERIES CIRCUITS

- Electric current flows in ONE defined path in series circuits.
- The current must flow through the wires, all the way through both light bulbs and back to the battery.

PARALLEL CIRCUITS

- In parallel circuits, electric current has more than one path.
- The components are connected to the same common points, this allows the current to be distributed over the paths.

الإمـــارات اللعـريـيـة المتـحـدة

SECTION 2 - RESISTORS

- Resistors are also used to divide voltages.
- The schematic symbol is shown below -

Tolerance is the maximum electrical or mechanical variations plus or minus in the specifications tolerated without affecting the operations of the device.

The resistance of a resistor

 -bualess \$batmonoonch is

Trakrance $\equiv \pm 5 \%$ of 1000Ω

$$
59 \% 00 \oplus 110000 \Omega==\frac{5}{10} 1010002 \Omega 5 \$ \Omega
$$

$\therefore \mathrm{R} \equiv 188 \theta \Omega \pm 38 \xi$

For the 5-band resistor, the tolerance is $\pm 1 \%$. This means that the real

Thaterimcere $\equiv \pm 1 \%$ of 57Ω

$$
\because R=5 \Rightarrow 8+0.37
$$

\therefore Ris betaveer (56:43) 今2 and (57:57) 今
 56:43 와:

United Arab Emirates Ministry of Education

SECTION 3 - ELECTRONIC CALCULATIONS

Word	Meaning	Image
Breadboard	An electronic base used for building prototypes for electric circuits.	
Multimeter	An electronic device used for measuring different electrical values.	

Breadboard	Multimeter
- There are three main components - (a) Nodes - electronic components are connected to the nodes. (b) Power Rails - It is used to supply the board with power. Internally these nodes are connected vertically. (c) Terminal stripes - These are the horizontally connected nodes They are marked with letters (columns) and numbers (rows) to help build the circuit properly.	- It also checks the continuity in a circuit. - The different values measured are - current (Amps - AC \& DC) - resistance (Ohms), - voltage (Volts - AC or DC) - diode testing - capacitance (Farads) - transistor testing, etc. - It has two probes.

SECTION 4 - EMBEDDED SYSTEMS

Word	Meaning
Embedded system	A computer system that has a specific function within a larger system.
Microcontroller	A minicomputer that fits on a single chip and controls a system.
Processing	A series of actions / steps that lead to a certain result.
Input	The information or data entered into a system.
Output	The information or data produced by a system based on the input information.

- Embedded systems: It is a specialized computer system with a specific function within a larger mechanical or electrical system. Examples include an air conditioner in car; a seatbelt warning in a car, a garden watering system \& a motion sensitive security system.
- An "embedded system" is known as an input. It is a device that contains a computer unit or a microcontroller that reads the changes in an environment. It then controls an output system to change the environment.
- Controller: It is an electronic chip that works as a computer to manage the operation of
 electronic devices. It controls certain machines. It can be programmed to read input and controlling output. It has 3 main parts.

WWW.almanahi.com

Input Unit

- Collects signals
- Ex: temperature sensor

Control Unit

- Processes signals
- Ex: microcontroller

Output Unit

- Sends signals out
- Ex: a/c compressor

A controller has four main parts: central processing unit, random access
memory, read only memory and 1/O ports. When all these parts are
memory, read only memory and

