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Abstract 
 
This overview covers the development of aluminium-
wettable cathodes for the primary aluminium industry in 
the period 2000 to 2009. It continues a review of TiB2/C 
composites, including their physical and mechanical 
properties. This overview also includes the development of 
binders, the manufacture of the composites, their 
application on the cathode surface, and their resistance to 
sodium penetration into the cathode lining. Mathematical 
modelling has been introduced for the drained slope, the 
cathode current distribution, the flow of anode gas bubbles, 
and the heat balance. Practical tests involved not only 
laboratory and bench scales but also use in big electrolysis 
cells operated at more than 160 kA. Although they can 
prolong cell life, the main advantage of aluminium-
wettable cathode coatings appears to be for future multi-
cell designs and for new electrolysis pot designs rather than 
for revamping existing Hall-Héroult aluminium electrolysis 
cells.  
 

Introduction 
 
The development of titanium diboride (TiB2) coated 
cathodes has been reviewed in several earlier publications 
[1-14]. Therefore this overview considers only literature 
which has not been mentioned already in previous updates 
and it forms a continuation of [7]. The most promising 
candidate as aluminium wettable cathode has proved to be 
titanium diboride. This material has attractive features, 
which include: 
 - very low solubility in aluminium 

- resistance to corrosion by molten 
electrolyte   
 - good electrical conductivity 
As it is difficult to make a cathode from TiB2 tiles alone, 
attention has focussed on using TiB2 as a composite or 
coating material on a carbon base. 
 

Manufacture of TiB2 cathodes and coatings 
 
According to de Nora [15], the material to be used as an 
aluminium-wettable electrode in aluminium reduction cells 
comprises an openly porous ceramic structure whose 
surface during operation is exposed to and wetted by 
molten aluminium.  TiB2 is a promising electrode material 
for electrolysis of high temperature molten salt, but it is 
difficult to make TiB2 with a high density structure. The 

preparation routes were reviewed by [16]. Rapp [17] 
proposes to manufacture TiB2 by compaction and at least 
partial sintering of titanium powder and/or titanium hydride 
powder into the desired shape, followed by boriding the 
porous powder at about 1100 – 1200°C .Then, Luo et 
al.[18] tried to improve the densification of hot-pressed 
TiB2 powder by adding metals such as Ni, Co, Mo and Ti. 
Adding liquid titanium can produce high compact samples 
and it avoids the growth of abnormal grains. Tungsten 
silicide was also used [19] to help compact TiB2 powder 
and to improve corrosion resistance against aluminium. 
Unfortunately corrosion resistance of such composites 
suffers in other ways: TiB2 reacts with aluminium to form 
TiAl, and WSi2 dissolves in the cryolite electrolyte.  
A limiting factor in the industrial use of conventional 
titanium diboride was found to be its low resistance to 
cryolite bath, which attacks the grain boundary layer phase. 
In order to avoid grain boundary attack Elektro 
Schmelzwerke Kempten (ESK) [20] developed a special 
sintering technique eliminating the grain boundary.   
 

TiB2-coating by electrodeposition 
 
Simakov et al.[21] proposed the deposition of wettable 
titanium diboride containing coatings in situ from 
temporary, Al2O3-free industrial baths. Diboride coatings 
can be electrodeposited in a wide cryolite ratio range (2.3-
3.0). The total concentration of boron and titanium oxide 
should not exceed 1.2 wt.%, and the proposed current 
density should be in the 0.35-0.55 A/cm2 range. 
Generally the electrolyte to deposit a TiB2-layer in situ had 
the following composition [22-24]: KCl-KF-K2TiF6-KBF4, 
with varying amounts of the constituents. Molten salt 
electrolysis is carried out at 820°C for about 4 hours with a 
current density of 0.3-0.8 A/cm2. The 0.2 mm - thick 
coating bonds very firmly to the cathode substrate. Ban 
[25] improved the electrical conductivity of the bath by 
adding LiF. 
In laboratory tests Devyatkin [26] deposited zirconium 
diboride, another aluminium wettable diboride, from 
cryolite alumina melts containing zirconium and boron 
oxides.    
 

Plasma spraying and micropyretic reaction 
 
Lu et al.[27] used self-propagating high temperature 
synthesis with reduction process to prepare TiB2 powder 
from the TiO2-B2O3-Mg system, and then added MoSi2 to 
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the TiB2 powder. The mixture was then applied to the 
carbon cathode surface by atmospheric plasma spraying. 
They observed that the porosity of TiB2-MoSi2 composite 
coating decreases with increasing MoSi2 content, and the 
microstructure showed a crack-free interface between the 
coating and the substrate. Using such a coating in industrial 
cells should achieve estimated life spans of up to 8 years. 
Another method was proposed by Sekhar and de Nora [28]: 
an adherent TiB2 coating on the surface of a cathode carbon 
is produced by applying a well-chosen micropyretic 
reaction layer from a slurry. When dried and ignited, this 
layer propagates a self-sustaining micropyretic reaction 
across the combustion front, to produce a protective, crack 
free, adherent coating. Normally, the TiB2 containing slurry 
is applied in several layers before ignition.        
   

TiB2 suspension in liquids 
 
A method for providing a protective coating against 
cathode deterioration during operation was proposed by 
Mirchi and Bergeron [29]. A liquid suspension is prepared 
containing TiB2 powder, lignosulfate binder and a phenolic 
resin binder. This coating is preferably applied up to a 
thickness of about 1-3 mm and the coated cathode is air 
dried at room temperature. The coating thickness can be 
increased by applying and drying many layers of the 
suspension. Huni et al. [30] proposed to use aluminium 
oxalate as binder instead of the phenolic resin.  
A colloidal alumina-based TiB2 slurry was used by Sekhar 
et al.[31], de Nora and Duruz [32] and Wang [33] with an 
organic additive selected from polyvinyl alcohol, polyacryl 
acid methyl cellulose, glycol, benzyl phthalate, and 
combinations thereof.   
 

TiB2/C composite manufacture and application as 
slurry 

 
Literature [34 -51] shows that TiB2/C composites were 
often used in laboratory and industrial tests. The 
manufacture of TiB2/C composites was especially 
investigated in the laboratory scale. Li [37] manufactured 
TiB2/C composites with a mass fraction of less than 70% 
TiB2, because the resistance to sodium and bath penetration 
has a maximum at 70% TiB2 content. 
The effects of modified pitch used as binder on properties 
of TiB2/C composite cathodes were investigated by Lü et 
al. [50]. When the treatment temperature increased from 
220°C to 420°C the viscosity increased and the coke yield 
increased from 47% to 70%. 
Ibrahiem et al. [40] examined several recipes of pitch-
bonded TiB2 with respect to adherence, cracking and 
stability during electrolysis. They found a successful recipe 
for crack-free coating: 70% TiB2 + 20% pitch + 7.5% ECA 
+ 2.5% carbon fiber (ECA = electrical calcined anthracite). 
The authors [47] found that the open porosity of pitch and 
furan-based TiB2/C bulk materials was 13.3% and 34.6% 
respectively. They also found [40] that aluminium did not 

wet furan resin-based TiB2 coatings during electrolysis 
because a carbon layer covers the coating surface.   
Ren and coworkers [43] coated some carbon cathode block 
surfaces with TiB2/C compound layer by vibration 
moulding. This method was also used by Wang et al. [62].  
 

Sodium penetration barrier 
 
A primary interest for many scientists was to investigate 
the resistance of TiB2/C composites against sodium and 
bath penetration. Xue et al. [45, 51] found that the sodium 
expansion increased with increasing current density and 
cryolite ratio, but decreased with increased TiB2 content. 
Decreasing sodium expansion with increasing TiB2-content 
was confirmed by Li [37] and Li [52]. Xue [51 reports that 
the rate of sodium penetration into carbon-based cathodes 
follows Fick’s second law when the sodium concentration 
is about or below 0.34%. Then a sodium profile develops in 
the cathode along the penetration direction and it peaks at 
3.5%. But the peak concentrations of NaF and Na3AlF6 are 
much higher in carbon than in TiB2/C materials. According 
to Wang et al. [46], sodium penetrated TiB2/C composites 
by the same mechanism as in a normal carbon cathode. 
Sodium not only penetrated into TiB2/C through pores but 
also through carbon grains inside the TiB2/C cathode. 
Sodium penetrates by vapour diffusion through cathode 
pores and cracks as well as by solid phase diffusion in the 
crystal lattice of cathode. New reaction products with 
sodium expand and weaken the carbon lattice in TiB2/C. 
Experimental investigations of sodium penetration and 
expansion of carbon cathodes during aluminium 
electrolysis were carried out by Liu [53] and Xue et al. 
[54]. They observed that adding B2O3 to the binder phase 
slows sodium penetration but speeds up sodium expansion, 
while adding of TiB2 slows both sodium penetration and 
sodium expansion.     
The unpolarised exposure of TiB2/C to liquid aluminium 
caused aluminium to penetrate the TiB2/C samples through 
open pores, forming a coating of Al4C3 and Al2O3 at the 
interface with the aluminium pool. Ibrahiem et al. [42] 
believe that this is due to the direct reaction between 
aluminium and carbon, or possibly between aluminium and 
other phases formed during cathode baking. Furthermore, 
TiB2 is known to be very sensitive to oxidation in the 
presence of oxygen.  
 

Modelling drained cell 
 
In order to take advantage of aluminium wettable cathodes 
to improve the energy balance in conventional Hall-Héroult 
cells, we need to reduce the interpolar distance 
significantly, so as to reduce the cell voltage and the heat 
produced. This requires major re-design for the magnetic 
effects and heat balance, which is only possible via 
computer modelling. The collector bar installation on the 
current distribution of drained electrolysis cells was 
modelled by Lai et al. [55], who demonstrated that the 
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current distribution will be more even when the collector 
bars are installed horizontally. Based on the principal of 
energy conservation, Lai et al. [56] and Liu [57] adapted 
the heat balance of conventional electrolysis cells by 
modelling the freeze profile, heat dissipation from the cell 
surfaces, and the technical parameters. When retrofitting a 
150 kA conventional cell to a drained electrolysis cell [57], 
the simulation showed that the retrofitted cell could keep 
the thermal balance with a line current of 190 kA, an 
anodic current density of 0.96 A/cm2, an anode cathode 
distance of 2.5 cm, a 16 cm thick alumina cover, and an 
electrolyte bath temperature of 946°C.  
Li [58] simulated the gas-induced bath flow of drained 
reduction cells, while Jiang et al. [59] used a model to 
design the slope of a drained cathode.           
 

Tests in industrial cells and start-up 
 
Besides using a small laboratory cell [60] Chinese  
scientists reported industrial scale tests in smelters with 75 
kA, 160 kA cells [8], and 300 kA cells [43, 44] with good 
results. Li et al. [8] reported that the bottom voltage drop 
decreased by 10 mV and the average current efficiency 
increased by 2%.  
Ren et al. [43] reported that when using TiB2 coating on the 
carbon cathode surface, the voltage drop can be up to 50 
mV less than with conventional cells. This means saving 
about 400 kWh/t Al and improving current efficiency by 1 - 
2.5%. The titanium content in the primary metal will be 
about 0.0025 wt. %. It also economises about 1.7 tonnes of 
Na2CO3 during start-up of the pot.   
In the small electrolysis cell described in [60], the cathode 
slope was 10°, and the dissolution speed of TiB2 into the 
electrolyte was about 1.0 gh-1m-2.    
Andrews, Hardie and Taylor [61] reported excellent cell 
life and reduced energy consumption. RioTinto Alcan, then 
Comalco tested TiB2 coatings in all electrolysis pot types in 
Australia and New Zealand. These ranged from current 
loads of 100 kA in the Bell Bay, Tasmania, smelter over 
150 kA cells in the New Zealand smelter to the Boyne 
Smelter 300 kA potline. Autopsy and cathode wear 
monitoring data have shown that cathode erosion is reduced 
to typically less than 4 mm/y with application of a 
TiB2/composite coating.  
Lai, Li and Chen [63] propose the ideal preheating and 
start-up procedure should ensure low thermal shock, low 
temperature gradient and low expansion stress. They 
recommend flame-heating and optimised start-up 
procedure. Careful start-up is also recommended by de 
Nora et al. [64]. This involves protecting the coated 
cathode surface temporarily with one or several thin 
aluminium sheet(s), laid on the cathode surface for example 
with a boron-containing solution. The aluminium sheet is 
covered with resistor coke up to the bottom of the anode 
facing the cathode. When current passes from the anode to 
the cathode via the resistor coke and the thin aluminium 
sheet it generates heat mainly in the resistor coke.  

 
Cells design and further development 

 
De Nora patented some futuristic conventional cell designs.  
These include: anode and cathodes to be sloped up to about 
60° [65]; V-shaped surfaces and recessed grooves with a 
sloping bottom [66]; aluminium-wettable foams pre-filled 
with aluminium and placed flat on the wettable cathode 
surface [67]; the use of a metal anode in combination with 
wettable cathode [68]; an outer cathode shell housing inner 
electrical conductive cathode holder shells connected to a 
busbar [69]; and a multi-cell aluminium electrolysis pot 
with vertically inclined electrodes [70].  
Northwest Aluminum Technologies is developing another 
approach which differs significantly from the Hall-Héroult 
process. According to Brown [71] and [72], the low 
temperature process employs a more acidic electrolyte than 
cryolite, an alumina slurry, oxygen-generating metal 
anodes, and vertically suspended electrodes. Wetted and 
drained vertical cathodes are crucial to the new process, 
which is under way.  Its progress can be followed up by the 
patent applications of Northwest Aluminum Technologies. 
These include: a multi-electrode electrolytic cell design 
with hollow cathode [73]; a design to collect the produced 
aluminium in a reservoir [74]; a cathode connector to a bus 
bar outside the electrolysis cell [75]; the cathode base 
materials selected from boron carbide and zirconium oxide 
[76]; and a cathode bar extended from a reaction layer 
through a poorly conducting base material [77].    
 

Conclusion 
 
Wettable cathodes appear to be closer to industrial use than 
are inert anodes. 
Recent years have seen much progress in laboratory and 
industrial scale tests using wettable cathodes, as well as in 
understanding how sodium penetrates into the carbon 
cathode of aluminium electrolysis cells. 
So far, the retrofit of conventional cells does not seem to 
offer conclusive advantages. To achieve the full potential 
saving in energy will require radically new cell designs. 
However, TiB2-based composites do help to protect against 
sodium and bath infiltration into the carbon cathode, and 
can thus increase potlife considerably. 
Computer modelling must be used to explore new cell 
designs of more or less conventional cells, which may 
employ inert anodes and/or wettable cathodes.  
As Welch [6] remarked, there are many obstacles. 
However, the likelyhood of successfully developing and 
implementing wettable cathodes industrially has increased 
in recent years. The obstacles are high. To overcome them 
will require a change in attitude, better planning and 
analysis, dedication, time, and many millions of dollars.  
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