
2. FURNACES, MELTING, FLUXING, 
AND ALLOYING 

In this section we have grouped papers related to preparing the liquid metal for casting. It includes 
papers on sodium, lithium, and calcium pickup and removal and how alloy hardeners behave when 
added to the melt. Removal of inclusions via settling is also an important step in the process at this 
stage. The industry's move away from dangerous chlorine gas toward the addition of halide fluxes 
as a safer alternative that does not compromise on melt quality is also documented. 
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Abstract 

Starting with a 60-equation nonlinear dynamic model 
of the aluminum casting furnace, a model 
reduction is carried out to obtain a tenth-order 
model. Then variational calculus is applied 
to the reduced model to solve a fuel-optimal 
control problem. It is shown that for the casting 
furnace, optimal control is possible through the use 
of a reduced model and the application of 
appropriate optimization methods. A fuel economy 
close to 11% is obtained using the optimal fuel 
flowrate instead of the conventional constant fuel 
flowrate. 

Introduction 

The casting furnace is the centerpiece of the 
primary aluminum manufacturing process. It receives 
hot liquid metal coming from the electrolytic cells, 
brings it to a specified temperature and maintains 
it there while various preparations such as stir-
ring, fluxing, alloying, skimming are made before 
casting takes place. While some solid charge can be 
simultaneously melted during the heating period, the 
main task is still liquid metal heating, holding and 
preparation. 

The casting furnace consists of two parts, the 
combustion chamber on top where a burner provides 
the heat, and the metal below. It consumes large 
amounts of energy, and an optimal fuel control, 
even if it leads to only a few percentage points in 
fuel savings, will be worthwhile. Figure 1 
describes a 72-ton casting furnace with a 4800 kW 
burner. 

The analytic model 

The best way to model a complex industrial process 
like the one taking place in the casting furnace is 
to write the equations describing the physical 
phenomena involved. We thus obtain the analytic 
model, also called the process model. The furnace 
is seen as made of three main components: the gas, 
the metal, and the refractories that form the roof 
of the combustion chamber. The gas is seen as well 
stirred; the metal and the refractories are treated 
as one-dimensional conducting media. Equations are 

Figure 1 Cutaway views of the casting furnace 
A- Lengthwise B- Across 

(1,2) roof (3) stack (4) burner 
(5) doors (6,7,8) floor (9,10) metal 
(11) siphon (12) spout 
(13) thermocouples 

written for the conservation of energy, mass and 
chemical species. They are complemented with the 
heat conduction equations inside the metal and the 
refractories, and the radiative heat transfer 
equations between the gas, the metal and the 
refractories. To solve this model with good accura-
cy, 60 one-dimensional slices were used to 
discretize the system. This results in a 60th-order 
nonlinear system. This model, duly validated, 
provides a good representation of the real furnace. 
The model and simulation results are presented in 
C13. 

For control purpose, clearly one cannot use 
this cumbersome system of equations, which, while 
ensuring good representativity, induces the 
designer to lose sight of the crucial elements 
of a control problem. A model reduction is 
necessary. 
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The reduced model M C T = Q . - Qra - Q_ e e 8 f "· g g 8 
(1) 

To obtain a reduced model of the form y = Ay + Bu, 
we use a statistical approach based on the data 
produced by simulations made with the analytic 
model. The elements of A and B will be obtained by 
a statistical approach based on least square 
approximation C2J. Two questions must be 
addressed. How many variables are needed for the 
reduced model, and can the reduced model be made 
linear? 

where 

(a T 2 + a T + a,/T + A,)u (2) 
1 g 2 g 3 g 4 

0 = A h (T -T ) + ofiS T " - (l(S G+S S )T " 
m m r n g m m g m m r m 

+ as S I " 
r in r 

(3) 

The answer to the first question depends on the 
extent to which the temperatures vary inside each of 
the two conducting media, namely the metal and the 
refractories. The more they vary, the finer the 
discretization must be. This constitutes an impor-
tant aspect of model reduction. Based on the 
temperature profiles inside each of the two conduct-
ing media given by the analytic model, it was 
determined that the metal would be discretized into 
3 slices and the refractories into 6. This, in 
addition to the gas seen as a well stirred body, 
makes a total of 10 finite volumes, and the system 
is of tenth order. The state variables are the gas 
temperature, the 3 metal temperatures and the 6 
refractory temperatures. The control variable is 
the fuel flowrate. 

The second question requires more investigation. A 
full linearization was first tried in which the time 
derivative of each state variable was expressed as a 
linear combination of other state variables and/or 
control variable. The conduction equations inside 
the metal and the refractories are per se linear. 
But there are 4 nonlinear expressions of heat 
flowrates namely the heat generated by fuel com-
bustion in the chamber, the heat transferred to the 
metal, the heat transferred to the refractories, and 
the heat loss from the roof to the ambient atmo-
sphere. The last three are convective-radiative, 
causing considerable nonlinearities. All four heat 
flowrates were linearized as functions of tempera-
tures. The heat generated by fuel combustion is 
also a linear function of fuel flow. The linear 
model thus obtained turned out to be represen-
tative of the analytic model in terms of 
temperature outputs. Among other things, the 
linearization showed that clearly the statistical 
approach was applicable to this model reduction 
problem. 

However when the linear model is applied to fuel 
optimization, its representativity becomes inade-
quate. For the purpose of predicting the dynamic 
behavior of the furnace, a discrepancy of a few 
degrees in the output temperatures between analytic 
model and linear model is acceptable. For opti-
mization purpose it is a different story. Here is 
an example. With an initial metal temperature of 
685°C submitted to one hour of heating, the final 
temperature given by the analytic model is 701°C, 
and by the linear model is 699.2"C. This is a good 
approximation. Yet it represents a relative error 
of (701-699.2)/(701-685) - 11%. Since a fuel 
optimization is likely to yield an improvement of a 
few percentage points, there is a strong motivation 
to develop a reduced model that is even more 
representative. To do so it is necessary to keep 
the nonlinearities in the heat flow expressions 
instead of linearizing them as done previously. The 
worst nonlinear equation, that of the gas, is 
presented here for illustrative purpose. 

Q = A h (T -T ) + OGS T h - O(SJG+S SjT k x r r r g r r g r r m r 

+ as S T (4) 

Instead of trying to linearize Equation (1) with 

respect to T , T , T and u, the expression for Q, 
g m r f 

as given by Equation (2) is kept nonlinear as it is. 
In the expressions for Q and Q , the gas-to-surface 

m y r ....̂  
directed interchange areas GS and GS are approxi-

m r 
mated by a third-power polynomial in T . The 

g ,. 
directed interchange areas, surface-to-gas (S G, 
- -+ - ■* ► m 

S G) and surface-to-surface (S S , S S ), are 
r ra r r m 

approximated by second-power polynomials in both 

temperatures involved. For example: 
GS 

1 8 2 g 3 g 
(5) 

S G = c T z+c T z+c T T +c,„T +c,,T +c (6) 
m g g 10 in 11 g m 12 g 13 m lit ' 

The coefficients c , c 
least square approximation method. The result is a 

are determined by the 
:thod. The res 

set of ten nonlinear equations of the form: 

f (Tj, u) (7) 

where T . are the state variables and u the control 
variable1 (fuel flowrate) . 

As the reduced model is to be used for fuel optimi-
zation later, it must be valid not for a single 
value of u but for a range of u values. In other 
words the approximation must be done not around one 
operating point but over a whole range. The range 
chosen is 50 S u 5 500 m3/h of natural gas. The 
upper limit is the nominal flowrate of the burner, 
the lower limit is dictated by flame stability. The 
data used in the model reduction is obtained by 
running the analytic model with different u values 
by steps of 50 m3/h from 50 to 500. 

Figures 2, 3, 4 respectively present the gas 
temperature, the central-node metal temperature and 
the refractories inner-surface temperature given by 
the analytic model and the reduced tenth-order 
model. The coincidence of the curves confirms the 
validity of the reduced model. The central-node 
metal temperature of Figure 3 plays a crucial role 
in furnace control. It is measured by a thermo-
couple and serves as controlled output variable for 
the optimization problem that follows. 
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Figure 2 Gas temperature obtained from analyt ic 
model and from reduced tenth-order model. 
Constant fuel flowrate 450 m3/h. 
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Figure 3 Central-node metal temperature obtained 
from analytic model and from reduced 
tenth-order model. Constant fuel flowrate 
450m3/h. 
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Figure 4 Refractories inner-surface temperature 
obtained from analytic model and from 
reduced tenth-order model. Constant fuel 
flowrate 450m3/h. 
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Fuel-optimal control 

In the foregoing, a reduced nonlinear tenth-order 
model was obtained by applying the least square 
approximation technique to the simulated data 
produced by the analytic model of the furnace. We 
now use the reduced model to solve the fuel-optimal 
control problem. The problem is to find a time-
varying fuel flowrate to bring the mass of 
liquid metal from an initial temperature to a 
prescribed final temperature in a given time with 
minimum fuel. The state variables, from now on 
denoted by y(t), are the ten temperatures in the 
system: one in the gas, three in the metal and six 
in the roof refractories. The control variable u(t) 
is the fuel flowrate. The controlled output 
variable is the central-node metal temperature. 
Pontryagin's maximum principle will be used to 
formulate the optimization as a two-point boundary 
value problem. 

Essentially it is a Lagrange problem where the 
equality constraints on the state variables y(t) are 
provided by the state equations forming the reduced 
model: 

y(t) = f[y(t), u(t), t] (8) 

An inequality constraint is imposed on the control 
variable as an upper limit u = 500 m3/h and a 
lower limit u . = 50 m3/h: "lax 

min 

50 S u(t) S 500 for 0 S t i t (9) 

Such inequality constraint is equivalent to this 
equality constraint where γ is a slack variable: 

Cu(t) - u ] [u - u(t)] - y2(t) = 0 (10) 
min max v ' 

which clearly forces u(t) to stay in the admissible 
range. 

The cost function to be minimized is 

1 '-' 
J n 

dt (11) 

where u is the fuel flowrate and tf the final time. 
The choice of u 2 instead of u as the integrand is to 
avoid the linearity of u in the expression of J; 
such linearity would yield as optimal solution a 
bang-bang control, an uninteresting option for the 
problem at hand. 

The initial conditions are given by the known gas, 
metal and refractory temperature values at the 
beginning of the one hour heating period, which is 
the object of the optimization problem at hand. The 
final condition of interest is the average metal 
temperature at the end of the one hour heating 
period. In practice however, metal temperature is 
measured by a thermocouple positioned at mid-depth 
of the metal which corresponds to the central node 
in the metal. So this central-node metal tempera-
ture is taken as controlled output variable. In 
this work the final condition is defined as a 
central-node metal temperature of 705°C. 



■QMJDGK](!GaO$ 1 From Light Metals 1990, Christian M. Bickert, Editor 

To the problem thus formulated, we apply the Euler-
Lagrange equation to obtain the conditions for an 
optimum. The Euler-Lagrange equation is written for 
each component of y(t), u(t) and y(t), and the 
terminal transversality conditions are applied to 
account for the final condition of the problem. 
The optimal control problem then becomes a 
two-point boundary value problem made of 23 
algebraic and differential equations, namely the 10 
state equations, the 10 Euler-Lagrange equations, 
the optimality condition, and the two algebraic 
equations resulting from the inequality constraint 
on y(t). 

The problem was discretized into 73 grid points and 
solved by the relaxation method on a VAX-11/785. 
After several attempts to reduce computing time, the 
number of iterations was decreased from 156 to 8, 
and the required CPU time shrunk from 74 to 2 
minutes. Work is still continuing to further 
improve speed and accuracy C3]. 

Results 

Figure 5 shows the optimal time-varying fuel 
flowrate u (t) obtained, as compared with the 

opt 

the gas and refractory inner-surface temperatures 
also decrease. But even during this second half 
period, the gas and the refractories keep sending 
energy, mainly by radiation, to the metal thus 
continuing to raise its temperature. However the 
energy lost through the stack gas decreases 
considerably due to the lower gas temperature. To 
verify the above arguments, a comparison was made 
between the two energy balances, one obtained 
with constant fuel u = 450 m3/h, the other with 
» n t ( t ) . opt 

Table I: Partial reproduction of the energy balances 
obtained with constant u and with u (t) 

opt 

ENERGY (MJ) u=450 u=u ft) COMPARISON 
opt 

Absorbed by me ta l 1918.7 1825.2 -4 .8% 

Absorbed by r e f r a c t o r i e s 3572.3 3156.7 -11.6% 

Lost through s t a c k 10436.7 9229.8 -11.6% 

Sum of t he above 15927.7 14211.7 -10.8% 
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Figure 5 Optimal fuel flowrate calculated by the 
model. Straight line represents the 
conventional constant fuel flowrate of 
450m3/h. 

conventional nonoptimal constant fuel flowrate 
of 450 m3/h. Optimality calls for a maximum 
fuel flowrate of 500 m3/m during the first 20 
minutes or so, followed by a decreasing fuel 
until time t . The gain on fuel cost, calculated as 
the percent decrease of the area under the u(t) 
curve is 10.9%. Total fuel consumption is reduced 
from 450 m3 to 
period. 

40 lm3 for the one-hour heating 

Table 1 shows that with u (t), the energy to 
be provided by the fuel decreases substantially, 
the biggest chunk in terms of megajoules is the 
decrease in the stack loss. The energy absorbed 
by the metal decreases somewhat, but the decrease 
in the energy absorbed by the refractories is 
more important. This illustrates the contribution 
of the refractories to raise the metal tempera-
ture in the second half of the heating period 
during which direct heating by the fuel is 
reduced. 

Note that the difference between the 10.8% savings 
appearing in Table I and the 10.9% total savings 
comes from the fact that Table I is only a partial 
reproduction of the energy balances where other 
items (e.g. the refractories heat loss to atmo-
sphere) do not appear. 

Figures 6, 7 and 8 show respectively the gas temper-
ature , the central-node metal temperature and the 
refractory inner-surface temperature. Each of these 
temperatures is calculated first with constant u = 
450 then with u (t), to show the effect of opti-
mization. The most eloquent effects are found on 
Figures 6 and 8 showing the gas and refractory 
temperatures decreasing drastically toward the end 
of the heating period. 

Each of the figures from 6 to 8 also presents the 
temperatures obtained by running the analytic model 
with u t(t) as input. The purpose is to show that 
the optimal solution obtained by the reduced model 
also gives the same results when applied to the 
analytic model. 

The resulting fuel savings can be explained as 
follows. While the constant fuel causes all 
temperatures in the system to increase continually 
from time 0 to t , the optimal fuel flowrate 
causes the temperatures to increase for 
about half of the one hour heating period. 
Subsequently the fuel flow decreases, and 

The optimal solution suggested makes sense economi-
cally. Based on a cost of $0.17 per cubic meter of 
natural gas, and a daily average of 3 batches per 
furnace, a 10.9% fuel reduction yields a yearly 
savings of 31 000$ per furnace. Also worth mention-
ing are the impact on the environment (less stack 
discharge) and the increase in the life expectancy 



■QMjoGraciGaß 

ίΤ 
in 
rr 

rr 
Ill 
n, ? 
LU 
1 -

1400 

13S0 

1300 

1250 

1200 

1150 

1100 

1050 

1000 

950 

900 

ANALYTIC MODEL USNG OPTWAL FUEL FLOW 

10th ORDER MODEL USING OPTIMAL FUEL FLOW 

ANALYTIC MODEL USING 450 m»3/h 

0 10 20 30 40 50 60 
TIME (min) 

Figure 6 Gas temperature obtained with optimal fuel 
and constant fuel, showing the effect of 
optimization. 
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Central-node metal temperature obtained 
with optimal fuel and constant fuel. 
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Figure 8 Refractories inner-surface temperature 
obtained with optimal fuel and constant 
fuel, showing the effect of optimization 
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of the refractories, submitted to less fuel 
combustion. 

Conclusion 

It has been shown that by applying variational 
calculus and Pontryagin's maximum principle to the 
reduced tenth-order nonlinear model of the 
aluminum casting furnace, one can solve the optimal 
fuel problem. The conclusion to be retained is 
that it is possible to solve the optimal control 
problems for this class of industrial processes, 
characterized by a complex, high-ordered 
analytic model reduced to a relatively low-ordered 
nonlinear model. Since the fuel cost for these 
processes is high, even an improvement of a few 
percentage points is worth the effort. In 
this paper, optimization was performed on the 
principal energy-consuming operation, namely the 
first one-hour heating period of the batch. 
With some additional work to model the other 
operations in the sequence (stirring, fluxing, 
alloying, skimming) it is possible to perform the 
optimization over the complete batch. This suggests 
a direction for further development based on this 
groundwork. 

Acknowledgements 

This study is an extension of a project on the 
mathematical modelling of the aluminum casting 
furnace, jointly undertaken by the Universite du 
Quebec a Chicoutimi (UQAC) and Alcan International 
Ltd with the collaboration of Alcan Smelters 
and Chemicals Ltd, both of Jonquiere, Quebec, 
Canada. The analytic model was part of the 
results of this joint project. The optimal control 
reported here is the object of the project 
extension. We thank Alcan for authorizing this 
publication. We acknowledge the financial support 
of the NSERC of Canada. 

Nomenclature 

J 

M 
g 

% 

T 
T 

area of metal surface 

area of refractory inner surface 

coefficients of the approximating 

polynomials 

specific heat of gas 

convective heat transfer coefficient 

gas-to-metal 

convective heat transfer coefficient 

gas-to-refractories 

cost function 

mass of gas 

heat generated by fuel combustion 

heat flowrate to metal 

heat flowrate to refractories 

gas temperature 

metal surface temperature 

[m2] 

Cm*] 

[J /kg-J] 

CW/m2 

[W/tn2 

[kg] 
[W] 

[W] 

[W] 

[K] 

[K] 

•K] 

•K] 
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T 

T 
i 

t 

'f " 

u = 

y 

GS*. S 

refractory inner surface 

temperature of node 

time 

final time 

fuel flowrate 

state variables 

S , S G = directed 

i 

temperature 

interchange areas 

[K] 

[K] 

[S] 

[s] 

[m3/h] 

[K] 

[m2] 

Stefan-Boltzmann constant [ν/τη2·Κ-] 
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