Essential Readings in Light Metals

Aluminum Reduction Technology

Edited by Geoff Bearne, Marc Dupuis and Gary Tarcy

WILEY

Copyright © 2013 by The Minerals, Metals & Materials Society. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of The Minerals, Metals, & Materials Society, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http:// www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Wiley also publishes books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit the web site at www.wiley.com. For general information on other Wiley products and services or for technical support, please contact the Wiley Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 978-1118-63574-2

Printed in the United States of America.

10987654321

TABLE OF CONTENTS

Preface Lead Editors	
Editorial Team	xxiii
Part 1: Fundamentals	
Section Introduction	1
Overview	
Principles of Aluminum Electrolysis W. Haupin	3
Bath Properties	
The Solubility of Aluminum in Cryolite Melts K. Yoshida and E. Dewing	12
Viscosity of Molten NaF-AlF ₃ -Al ₂ O ₃ -CaF ₂ Mixtures: Selecting and Fitting Models in a Complex System <i>T. Hertzberg, K. Tørklep, and H. Øye</i>	19
On the Solubility of Aluminium Carbide in Cryolitic Melts – Influence on Cell Performance R. Ødegård, Å. Sterten, and J. Thonstad	25
Liquidus Curves for the Cryolite - AlF ₃ - CaF ₂ - Al ₂ O ₃ System in Aluminum Cell Electrolytes <i>R. Peterson and A. Tabereaux</i>	33
The Solubility of Aluminium in Cryolitic Melts R. Ødegård, Å. Sterten, and J. Thonstad	39
Dissolved Metals in Cryolitic Melts X. Wang, R. Peterson, and N. Richards	49
Electrical Conductivity of Cryolitic Melts X. Wang, R. Peterson, and A. Tabereaux	57
Electrical Conductivity of Molten Cryolite-Based Mixtures Obtained with a Tube-type Cell Made of Pyrolytic Boron Nitride	65
Liquidus Temperature and Alumina Solubility in the System Na ₃ -AlF ₆ -AlF ₃ -LiF-CaF ₂ -MgF ₂ A.Solheim, S. Rolseth, E. Skybakmoen, L. Støen, Å. Sterten, and T. Støre	73
Unconventional Bath	
Lithium-Modified Low Ratio Electrolyte Chemistry for Improved Performance in Modern Reduction Cells	83

Production of Aluminum with Low Temperature Fluoride Melts	89
T. Beck	

Alumina Dissolution

The Structure of Alumina Dissolved in Cryolite Melts
The Dissolution of Alumina in Cryolite Melts
Further Studies of Alumina Dissolution Under Conditions Similar to Cell Operation
Anode Effect Mechanism
Studies on Anode Effect in Aluminium Electrolysis
Direct Observation of the Anode Effect by Radiography
On the Anode Effect in Aluminum Electrolysis
Energy and Voltage Breakdown
Anodic Overpotentials in the Electrolysis of Alumina
Cathode Voltage Loss in Aluminum Smelting Cells
Interpreting the Components of Cell Voltage
Thermodynamics of Electrochemical Reduction of Alumina
Field Study of the Anodic Overvoltage in Prebaked Anode Cells
Current Efficiency
Current Efficiency and Alumina Concentration
Continuous Measurement of Current Efficiency, by Mass Spectrometry, on a 280 KA Prototype Cell
The Influence of Dissolved Metals in Cryolitic Melts on Hall Cell Current Inefficiency
The Interaction Between Current Efficiency and Energy Balance in Aluminium Reduction Cells

A Laboratory Study of Current Efficiency in Cryolitic Melts	
P. Solli, T. Haarberg, T. Eggen, E. Skybakmoen, and Å. Sterten	
Current Efficiency Studies in a Laboratory Aluminium Cell Using the Oxygen Balance Method M. Dorreen, M. Hyland, and B. Welch	204
Current Efficiency in Prebake and Søderberg Cells G. Tarcy and K. Tørklep	211
Physical Properties	
Bath/Freeze Heat Transfer Coefficients: Experimental Determination and Industrial Application M. Taylor and B. Welch	
Sludge in Operating Aluminium Smelting Cells P. Geay, B. Welch, and P. Homsi	
The Behaviour of Phosphorus Impurities in Aluminium Electrolysis Cells E. Haugland, G. Haarberg, E. Thisted, and J. Thonstad	
Cell Studies	
See-through Hall-Heroult Cell. W. Haupin and W. McGrew	234
Metal Pad Velocity Measurements in Prebake and Soderberg Reduction Cells A. Tabereaux and R. Hester	
Metal Pad Velocity Measurements by the Iron Rod Method B. Bradley, E. Dewing, and J. Rogers	251
On the Bath Flow, Alumina Distribution and Anode Gas Release in Aluminium Cells O. Kobbeltvedt and B. Moxnes	257
Bubble Noise from Søderberg Pots M. Jensen, T. Pedersen, and K. Kalgraf	
Recommended Reading	

Part 2: Modeling

Thermal Balance

Simulation of Thermal, Electric and Chemical Behaviour of an Aluminum Cell on a Digital Computer A. Ek and G. Fladmark	.275
Estimation of Frozen Bath Shape in an Aluminum Reduction Cell by Computer Simulation Y. Arita, N. Urata, and H. Ikeuchi	279
A Water-Model Study of the Ledge Heat Transfer in an Aluminium Cell	. 286

Computation of Aluminum Reduction Cell Energy Balance Using ANSYS [®] Finite Element Models	294
Thermo-Electric Design of a 400 kA Cell Using Mathematical Models: A Tutorial M. Dupuis	303
A Modelling Approach to Estimate Bath and Metal Heat Transfer Coefficients D. Severo and V. Gusberti	309
MHD and Stability	
Computer Model for Magnetic Fields in Electrolytic Cells Including the Effect of Steel Parts	315
The Effect of Some Operating Variables on Flow in Aluminum Reduction Cells E. Tarapore	322
Magnetics and Metal Pad Instability N. Urata	330
Stability of Aluminum Cells – A New Approach R. Moreau and D. Ziegler	336
Analysis of Magnetohydrodynamic Instabilities in Aluminum Reduction Cells M. Segatz and C. Droste	342
Magnetohydrodynamic Effect of Anode Set Pattern on Cell Performance	352
Stability of Interfacial Waves in Aluminium Reduction Cells P. Davidson and R. Lindsay	359
Using a Magnetohydrodynamic Model to Analyze Pot Stability in Order to Identify an Abnormal Operating Condition J. Antille and R. von Kaenel	367
Wave Mode Coupling and Instability in the Internal Wave in Aluminum Reduction Cells	373
Comparison of Various Methods for Modeling the Metal-Bath Interface	379
Bubbles and Bath Flow	
Physical Modelling of Bubble Behaviour and Gas Release from Aluminum Reduction Cell Anodes S. Fortin, M. Gerhardt, and A. Gesing	385
Coupled Current Distribution and Convection Simulator for Electrolysis Cells K. Bech, S. Johansen, A. Solheim, and T. Haarberg	396
Effect of the Bubble Growth Mechanism on the Spectrum of Voltage Fluctuations in the Reduction Cell L. Kiss and S. Poncsák	402
Modeling the Bubble Driven Flow in the Electrolyte as a Tool for Slotted Anode Design Improvement D. Severo, V. Gusberti, E. Pinto, and R. Moura	409

Other

Planning Smelter Logistics: A Process Modeling Approach I. Eick, D. Vogelsang, and A. Behrens	. 415
CFD Modeling of the Fjardaal Smelter Potroom Ventilation J. Berkoe, P. Diwakar, L. Martin, B. Baxter, C. Read, P. Grover, and D. Ziegler	. 421
Heat Transfer Considerations for DC Busbars Sizing A. Schneider, T. Plikas, D. Richard, and L. Gunnewiek	. 427
The Impact of Cell Ventilation on the Top Heat Losses and Fugitive Emissions in an Aluminium Smelting Cell H. Abbas, M. Taylor, M. Farid, and J. Chen	. 433
Mathematical Modelling of Aluminum Reduction Cell Potshell Deformation	. 439
Recommended Reading	. 445

Part 3: Design

Section Introduction	19
----------------------	----

New Cell Design

Development of Large Prebaked Anode Cells by Alcoa	
G. Holmes, D. Fisher, J. Clark, and W. Ludwig	
Aluminium Pechiney 280 kA Pots B. Langon and P. Varin	
AP 50: The Pechiney 500 kA Cell C. Vanvoren, P. Homsi, J. Basquin, and T. Beheregaray	
The Pot Technology Development in China X. Yang, J. Zhu, and K. Sun	

Cell Retrofit

VAW Experience in Smelter Modernization V. Sparwald, G. Wendt, and G. Winkhaus	474
From 110 to 175 kA: Retrofit of VAW Rheinwerk Part I: Modernization Concept D. Vogelsang, I. Eick, M. Segatz, and C. Droste	479
From 110 to 175 kA: Retrofit of VAW Rheinwerk Part II: Construction & Operation J. Ghosh, A. Steube, and B. Levenig	485
Productivity Increase at Søral Smelter <i>T. Johansen, H. Lange, and R. von Kaenel</i>	489
Reduction Cell Technology Development at Dubal Through 20 Years	494

Potline Amperage Increase from 160 kA to 175 kA during One Month B. Moxnes, E. Furu, O. Jakobsen, A. Solbu, and H. Kvande	
AP35: The Latest High Performance Industrially Available New Cell Technology C. Vanvoren, P. Homsi, B. Fève, B. Molinier, and Y. di Giovanni	
Tomago Aluminium AP22 Project L. Fiot, C. Jamey, N. Backhouse, and C. Vanvoren	
Development of D18 Cell Technology at Dubal D. Whitfield, A. Said, M. Al-Jallaf, and A. Mohammed	
New Cathodes in Aluminum Reduction Cells N. Feng, Y. Tian, J. Peng, Y. Wang, X. Qi, and G. Tu	

Other

Dimensioning of Cooling Fins for High-Amperage Reduction Cells I. Eick and D. Vogelsang	
Satisfying Financial Institutions for Major Capital Projects	534
Development and Deployment of Slotted Anode Technology at Alcoa	
Innovative Solutions to Sustainability in Hydro H. Lange, N. Holt, H. Linga, and L. Solli	545
Recommended Reading	

Part 4: Operations

Anode Change

Current Pickup and Temperature Distribution in Newly Set Prebaked Hall-Heroult Anodes	
R. Ødegård, A. Solheim, and K. Thovsen	
Thermal Effects by Anode Changing in Prebake Reduction Cells	562
F. Aune, M. Bugge, H. Kvande, T. Ringstad, and S. Rolseth	

Material Issues

Considerations in the Selection of Alumina for Smelter Operation	. 569
Alumina Transportation to Cells	. 574
Study of Alumina Behavior in Smelting Plant Storage Tanks	. 581

New Aerated Distribution (ADS) and Anti Segregation (ASS) Systems for Alumina M. Karlsen, A. Dyrøy, B. Nagell, G. Enstad, and P. Hilgraf	. 590
Beryllium in Pot Room Bath S. Lindsay and C. Dobbs	. 596
Hard Gray Scale N. Dando and S. Lindsay	. 602
Aluminum Fluoride — A Users Guide S. Lindsay	.608

Anode Cover and Crust

Crusting Behavior of Smelter Aluminas D. Townsend and L. Boxall	.613
On Alumina Phase Transformation and Crust Formation in Aluminum Cells R. Oedegard, S. Roenning, S. Rolseth, and J. Thonstad	. 622
Heat Transfer, Thermal Conductivity, and Emissivity of Hall-Heroult Top Crust K. Rye, J. Thonstad, and X. Liu	. 630
Improving Anode Cover Material Quality at Nordural — Quality Tools and Measures H. Gudmundsson	639
Operational Improvement	
Appraisal of the Operation of Horizontal-Stud Cells with the Addition of Lithium Flouride	. 645

Technical Results of Improved Soederberg Cells	.652
H. Hosoi, M. Sugaya, and S. Tosaka	
Strategies for Decreasing the Unit Energy and Environmental Impact of Hall-Héroult Cells	.659
N. Richards	

Operational and Control Improvements in Reduction Lines at Aluminium Delfzijl	669
M. Stam, M. Taylor, J. Chen, and S. van Dellen	

Power Modulation and Supply Issues

Modeling Power Modulation	. 674
Smelters in the EU and the Challenge of the Emission Trading Scheme H. Kruse	. 679
Challenges in Power Modulation D. Eisma and P. Patel	. 683

Cell Start-up and Restart

Section Introduction.	737
Part 5: Control	
Recommended Reading	735
Simultaneous Preheating and Fast Restart of 50 Aluminium Reduction Cells in an Idled Potline	729
Loss in Cathode Life Resulting from the Shutdown and Restart of Potlines at Aluminum Smelters	723
Cell Preheat/Start-up and Early Operation.	718
Potline Startup with Low Anode Effect Frequency W. Kristensen, G. Höskuldsson, and B. Welch	712
Brazil 2001 Energy Crisis – The Albras Approach	707
The Economics of Shutting and Restarting Primary Aluminium Smelting Capacity	599
Thermal Bake-Out of Reduction Cell Cathodes – Advantages and Problem Areas	594
Hibernating Large Søderberg Cells	589

Overview

Overview of Process Control in Reduction Cells and Potlines	.739
P. Homsi, J. Peyneau, and M. Reverdy	

Alumina Control

A Demand Feed Strategy for Aluminium Electrolysis Cells K. Robilliard and B. Rolofs	747
Design Considerations for Selecting the Number of Point Feeders in Modern Reduction Cells	752
Pseudo Resistance Curves for Aluminium Cell Control – Alumina Dissolution and Cell Dynamics	760
Aiming For Zero Anode Effects W. Haupin and E. Seger	767
Reduction of CF ₄ Emissions from the Aluminum Smelter in Essen <i>M. Iffert, J. Opgen-Rhein, and R. Ganther</i>	774

The Initiation, Propagation and Termination of Anode Effects in Hall-Héroult Cells	782
TMS, G. Tarcy, and A. Tabereaux	

Heat Balance Control

Operation of 150 kA Prebaked Furnaces with Automatic Voltage Control R. Bacchiega, A. Innocenti, M. Holzmann, and B. Panebianco	786
Bath Chemistry Control System D. Salt	798
The Liquidus Enigma W. Haupin	804
Control of Bath Temperature P. Entner	808
Noise Classification in the Aluminum Reduction Process L. Banta, C. Dai, and P. Biedler	812
Increased Current Efficiency and Reduced Energy Consumption at the TRIMET Smelter Essen Using 9 Box Matrix Control <i>T. Rieck, M. Iffert, P. White, R. Rodrigo, and R. Kelchtermans</i>	817
A Nonlinear Model Based Control Strategy for the Aluminium Electrolysis Process S. Koläs and S. Wasbø	825
Probes and Sensors	
Bath and Liquidus Temperature Sensor for Molten Salts P. Verstreken and S. Benninghoff	830
Anode Signal Analysis — The Next Generation in Reduction Cell Control J. Keniry and E. Shaidulin	838

Alcoa STARprobe™	. 844
X. Wang, B. Hosler, and G. Tarcy	

Recommended Reading

Part 6: Environmental

ection Introduction

HF and Other Gaseous Emission

A Study of Factors Affecting Fluoride Emission from 10,000 Ampere Experimental Aluminum Reduction Cells	57
The Characterisation of Aluminium Reduction Cell Fume	55
Factors Affecting Fluoride Evolution from Hall-Heroult Smelting Cells	70

A Study of the Equilibrium Adsorption of Hydrogen Fluoride on Smelter Grade Aluminas W. Lamb	879
The Role and Fate of SO ₂ in the Aluminium Reduction Cell Dry Scrubbing Systems W. Lamb	889
Sulphur Containing Compounds in the Anode Gas from Aluminium Cells, A Laboratory Investigation R. Oedegard, S. Roenning, Å. Sterten, and J. Thonstad	898
Mathematical Model of Fluoride Evolution from Hall-Héroult Cells W. Haupin and H. Kvande	903
Factors Influencing Cell Hooding and Gas Collection Efficiencies M. Karlsen, V. Kielland, H. Kvande, and S. Vestre	910
Sulfur and Fluorine Containing Anode Gases Produced during Normal Electrolysis and Approaching an Anode Effect M. Dorreen, D. Chin, J. Lee, M. Hyland, and B. Welch	918
Understanding the Effects of the Hydrogen Content of Anodes on Hydrogen Fluoride Emissions from Aluminium Cells E. Patterson, M. Hyland, V. Kielland, and B. Welch	924
Effect of Open Holes in the Crust on Gaseous Fluoride Evolution from Pots M. Slaugenhaupt, J. Bruggeman, G. Tarcy, and N. Dando	930
Alumina Structural Hydroxyl as a Continuous Source of HF M. Hyland, E. Patterson, and B. Welch	936
Investigation of Solutions to Reduce Fluoride Emissions from Anode Butts and Crust Cover Material G. Girault, M. Faure, J. Bertolo, S. Massambi, and G. Bertran	942
Gas Capture and Treatment	
Global Considerations of Aluminium Electrolysis on Energy and the Environment <i>R. Huglen and H. Kvande</i>	948
The Surface Chemistry of Secondary Alumina from the Dry Scrubbing Process	956
SO ₂ Emission Control in the Aluminium Industry S. Strömmen, E. Björnstad, and G. Wedde	962
Reduction of HF Emissions from the TRIMET Aluminum Smelter (Optimizing Dry Scrubber Operations and Its Impact on Process Operations)	968
Handling CO ₂ EQ from an Aluminum Electrolysis Cell O. Lorentsen, A. Dyrøy, and M. Karlsen	975
Dry Scrubbing for Modern Pre-Bake Cells S. Lindsay and N. Dando	981
Pot Gas Heat Recovery and Emission Control A. Sorhuus and G. Wedde	987
The Applicability of Carbon Capture and Sequestration in Primary Aluminium Smelters	993

Material Issues

Dusting Properties of Industrial Aluminas)9
Perfluorocarbon (PFC) Emissions	
Evaluation of Fluorocarbon Emissions from the Aluminum Smelting Process)7
Perfluorocarbon (PFC) Generation at Primary Aluminum Smelters	.5
Factors Affecting PFC Emissions from Commercial Aluminum Reduction Cells	24
Protocol for Measurement of Tetrafluoromethane and Hexafluoroethane from Primary Aluminum Production	\$2
On Continuous PFC Emission Unrelated to Anode Effects	;7
Recommended Reading	13

Part 7: Alternative Processes

Section Introduction	1 7
----------------------	------------

Overview

Impact of Alternative Processes for Aluminium Production on Energy Requirements K. Grjotheim and B. Welch	. 1049
Alternate Smelting Processes for Aluminum	. 1056

Carbothermic

Technoeconomic Assessment of the Carbothermic Reduction Process for Aluminum Production)70
Solid State Carbothermal Reduction of Alumina	076

Other

Production of Aluminum-Silicon Alloys from Sand and Clay in Hall Cells	1082
Bench Scale Electrolysis of Alumina in Sodium Fluoride–Aluminum Fluoride Melts Below 900°C W. Sleppy and C. Cochran	1089

Electrolysis of Alumina in a Molten Salt at 760°C. A. LaCamera	
Aluminum Reduction via Near Room Temperature Electrolysis in Ionic Liquids B. Wu, R. Reddy, and R. Rogers	
Recommended Reading	
Author Index	

PREFACE

This Aluminum Reduction Technology volume in the *Essential Readings in Light Metals* collection has been created to give people with an interest in the industry, whatever their level of expertise, easy access to a tremendous body of knowledge that exists in The Minerals, Metals & Materials Society's annual *Light Metals* proceedings publications.

It is incredible to think that around 1,500 papers have been published on aluminium reduction technology subjects in *Light Metals*. The 1962 AIME International Symposium on the Extractive Metallurgy of Aluminum, held in New York, started the ball rolling and the conference has been held annually since 1971. The proceedings publication adopted the title *Light Metals* that year. This collection of papers represents the editors' best efforts to choose the most influential papers on aluminum reduction technology published in the *Light Metals* volume. As such, it draws from papers from 1963 and from the period 1971 to 2011 inclusive (proceedings were not published in the other years). The collection therefore spans almost 50 years of development.

We have selected 162 papers for this book and, although forming a large volume, it represents only 11% of the available material. The resulting collection, while comprehensive, is a mere starting point and we have referenced 256 additional papers in the recommended reading lists at the end of each section.

For convenience the editorial team has categorized the papers into seven main aluminium reduction technology themes:

- 1. Fundamentals
- 2. Modeling
- 3. Design
- 4. Operations

- 5. Control
- 6. Environmental
- 7. Alternative processes

The first six themes deal with aspects of conventional Hall-Héroult electrolytic reduction technology, whereas the last theme has papers on nonconventional processes. Papers relating specifically to cathodes and anodes (including inert anode technology) can be found in the Electrode Technology volume (Volume 4 of the *Essential Readings in Light Metals* collection). To avoid excessive bias toward particular themes, the numbers of papers selected in each theme reflect roughly the distribution found in the annual *Light Metals* volume. For example, approximately 23% of papers in the annual proceedings relate to reduction fundamentals and so that proportion is mirrored in this book.

For ease of reference, the papers in each of the seven sections have been clustered by subthemes. Please refer to the table of contents (pages v-xvi) to help find papers on your specific topics of interest.

This volume has the following objectives:

- Give a knowledge boost to those who are new to the industry
- Provide a reference for those who are tackling a given problem and want to know what has been done in the past on that particular issue
- Give a historical progression of technology development
- Cover all key areas of the relevant technology

The editorial team has been guided by the following selection criteria:

- Papers that described breakthroughs in the science
- Papers that have had a big impact on the industry
- Review papers that bring together the current (at the time) thinking on key topics and that have stood the test of time
- Papers rated highly by peers for their importance and influence and supported, where appropriate, by citations and best paper awards

The assistance of the other members of the editorial team (whose names are given below) in the screening and selection of papers was indispensable. We express our high appreciation for their efforts.

- John Chen
- Halldór Guðmundsson
- Nancy Jorunn Holt
- Margaret Hyland
- Pascal Lavoie
- Ketil Rye
- Alton Tabereaux
- Jayson Tessier
- Xiangwen Wang

We recognize that no attempt to create a collection such as this can be perfect because of the subjectivity of the paper selection process. Other teams might have chosen some different papers. However, the editors believe that this volume contains the cream of the *Light Metals* reduction papers from the last five decades and, as such, it is a valuable resource.

Geoff Bearne Marc Dupuis Gary Tarcy Lead Editors

LEAD EDITORS

Geoff Bearne

Geoff Bearne has worked in the aluminum industry for more than 30 years. He graduated in engineering from the City University (London) and worked initially in the electrical power industry. He was employed by Dubai Aluminium Limited for eight years from 1981 and then joined Rio Tinto's aluminium product group at their research center in Melbourne, Australia. Over a 22 year period in Australia, Geoff held a number of leadership roles, concluding as General Manager of the research center. During this period he led the development and transfer of CD200 reduction cell technology. Since the acquisition of Alcan by Rio Tinto in 2007, Geoff has held senior management roles with Rio Tinto Alcan, including Director of Primary Metal Technology and R&D, based in Voreppe, France. He is currently General Manager, Technology Delivery Systems with Rio Tinto Technology and Innovation. Geoff has published 16 papers and was editor of *Light Metals 2009*.

Marc Dupuis

Marc Dupuis is a consultant specializing in the applications of mathematical modeling for the aluminium industry since 1994, the year when he founded his own consulting company, GeniSim Inc. Before that, he graduated with a Ph.D. in chemical engineering from Laval University in Quebec City in 1984, and then worked for 10 years as a research engineer for Alcan International. His main research interests are the development of mathematical models of the Hall-Héroult cell dealing with the thermoelectric, thermomechanic, electromagnetic, and hydrodynamic aspects of the problem. He was also involved in the design of experimental high amperage cells and the retrofit of many existing cell technologies.

Gary Tarcy

Gary Tarcy is the Manager of Smelting R&D at Alcoa Technical Center, New Kensington, Pennsylvania, USA. Gary has worked for Alcoa for 34 years. He holds 26 patents and has published 31 papers. In 1986 he was the winner of the Alcoa Chapter of Sigma Xi best technical paper award and in 2000 the winner of Alcoa's Arthur Vining Davis Award for Technical Excellence. In 2005 he was the winner of the TMS Light Metals Award for best paper. In 2011 he won the TMS Light Metals Award for the best paper for the second time and also won the Professor Barry Welch Best Paper at the 10th Australasian Smelting Technology Conference. In 2006 he was the winner of the alumni of the year from the Department of Chemistry. Only six such awards have ever been given. Gary is also an invited lecturer for the TMS Industrial Electrolysis course and has been an invited lecturer at several of the Australasian Aluminum Smelting and Technology Conferences. Gary holds both B.S. and M.S. degrees in chemistry from Bowling Green State University where he specialized in the study of electrochemistry and photo-electrochemistry.

EDITORIAL TEAM

John Chen

John J.J. Chen is a professor with the Chemical and Materials Engineering Department at the University of Auckland where he also earned his Ph.D. in engineering in 1980. He has won the TMS Best Reduction Technology Paper Award (1992, 1993, and 1996) and has been on the TMS Light Metals Division Council and the Aluminum Committee. John is a Fellow of the Institute of Chemical Engineers (UK), Institute of Professional Engineers New Zealand, and the Royal Society of New Zealand. He has worked in an aluminum smelter for three years, and has been an academic for more than 30 years, with eight of those (1996–2004) as the Head of the Department of Chemical and Materials Engineering, University of Auckland. He has published over 270 papers in international journals and conference proceedings, and more than 60 proprietary technical reports. His current research includes a number of areas in aluminium smelting technology and decision science as it applies to process control.

Halldór Guðmundsson

Halldór Guðmundsson was awarded a B.Sc. in Physics from the University of Iceland in 1986 and an M.Sc. in Materials Science from the University of Virginia, USA, in 1989. He was a metallurgist for nine years at the Innovation Center of Iceland, working in the field of applied research, testing, and consulting. Halldór joined Nordural in 1998 as laboratory manager responsible for cast house quality control and environmental management. He moved to electrolysis in 2004 as a process engineer with emphasis on process control, alumina, and anode quality. He has been technical manager of reduction since 2009 and has been a lecturer at the Mechanical Engineering Department of the University of Iceland since 1992. He achieved a Master of Engineering Studies in Aluminium Reduction Technology from the University of Auckland in 2009.

Nancy Jorunn Holt

Nancy Jorunn Holt is currently Manager External R&D for Primary Technology in Hydro Aluminium and looking after academic involvements in support of Hydro's technology developments beyond HAL4e and operation support for primary production. She has been with Hydro since 1991 and earlier worked on development for the electrolysis, specializing in mathematical modeling and environment topics. She has contributed to TMS as both author and session chair on several occasions. Nancy has also, for 10 years, been involved in several major smelter improvement programs, mainly as project manager.

Margaret Hyland

Margaret Hyland is a Professor in the Department of Chemical and Materials Engineering, University of Auckland, and Associate Director of the Light Metals Research Centre. Margaret's expertise is in environmental performance, especially fluoride emissions and their capture, as well as design and performance of carbon materials. Margaret has worked with major aluminum producers and suppliers for the past 20 years. She is a four-time winner of the TMS Light Metals and Carbon Awards. Margaret established the successful postgraduate certificate and masters programs in Light Metals Reduction Technology offered by the Light Metals Research Centre, providing advanced training aluminum reduction technology. Margaret has authored over 250 refereed publications and technical reports.

Pascal Lavoie

Pascal Lavoie obtained his bachelor's degree in Materials and Metallurgical Engineering from Université Laval, Québec, Canada. He joined Noranda's Magnola magnesium smelter as process engineer. When Magnola was curtailed, he moved to Noranda New Madrid smelter as metallurgical process engineer and obtained a Lean Six Sigma Black Belt certification. In 2006, Pascal joined the Light Metals Research Centre of the University of Auckland as Manager – International projects. He led a team conducting more than 40 industrially based R&D projects. Since 2011, Pascal has also been Chief Engineer of the Centre. In 2006, he received the TMS Light Metals Division Young Leader award and has been on the LMD council and various committees since.

Ketil Rye

Ketil Rye was awarded an M.Sc. in Metallurgy from the Norwegian University of Technology, Trondheim, in 1987. He completed a Ph.D. in Electrochemistry from the same university in 1992. Ketil was a Research Scientist with SINTEF Materials Technology in Norway from 1992 to 1994; a Smelting R&D Engineer with Elkem Aluminium Mosjøen, Norway, from 1994 until 2001; and then Smelting R&D Manager with Elkem Aluminium Mosjøen until 2008. Subsequently he was Technical Director with Elkem Aluminium and, since 2009, has been Production Manager at Alcoa Mosjøen, Norway.

Alton Tabereaux

Alton Tabereaux has been a technical consultant in resolving issues and improving productivity at aluminum smelters since 2007. He graduated with a Ph.D. in Inorganic Chemistry from the University of Alabama in 1971. He then worked for 33 years as a Technical Manager of Research and Process Technology for both Reynolds Aluminum and Alcoa Primary Metals. In 1994 and 2000 Alton was recipient of the *JOM* Best Technical Paper Award. He was the editor of *Light Metals 2004* and received the TMS Light Metals Distinguished Service Award in 2007 and the TMS Technology Award in 2008. Alton has been a lecturer at the annual Carnegie Mellon University Aluminum Electrolysis Course/TMS Industrial Aluminum Electrolysis Courses since 1985, the Australasian Aluminum Smelting and Technology Conferences since 1989, and the annual International Course on Process Metallurgy of Aluminium held in Trondheim, Norway since 1991. He has published over 65 technical papers and obtained 17 U.S. patents in advances in the aluminum electrolysis process.

Jayson Tessier

Jayson Tessier earned his Ph.D. in 2010 from Université Laval, Quebec City, Canada, in chemical engineering and is currently a staff research engineer at Alcoa within the Global Primary Metal Technology Development group. Jayson is mainly involved in the optimization of reduction cell performance through the reduction of process variation. Over the years, Jayson has contributed to TMS and other international conferences and journals through the submissions of technical papers since 2004. With other Alcoa colleagues, Jayson was the recipient of the Professor Barry Welch Best Paper Award at the 10th Australasian Smelting Technology Conference.

Xiangwen Wang

Xiangwen Wang, a technical specialist and veteran in aluminum reduction technology, is currently a Technology Program Manager at the Alcoa Global Primary Metal Technology Development group. He has worked in the aluminum industry for 24 years. He obtained both his B.S. and M.S. in Non-Ferrous Process Metallurgy from Northeast University, China, and his Ph.D. in metallurgy from Colorado School of Mines. He joined Reynolds Metals in 1988, and now at Alcoa specializes in aluminum reduction with the areas of interest in molten salt chemistry, electrochemistry, advanced measurements and applications in smelting cells, laboratory R&D, and technology transfer and deployment in production plants. Xiangwen was one of the pioneers in developing and deploying slotted anode technology across smelters, and most recently he invented, developed, and deployed the STARProbeTM system which instantly measures cryolite electrolyte properties real-time in potrooms. He holds numerous patents and has many publications. He was a two-time winner of the TMS Light Metals Award for best paper in 1991 and 2011 and also was a corecipient of the Professor Barry Welch Best Paper at the 10th Australasian Smelting Technology Conference.