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Small periodic disturbances are superposed to the 

equilibrium shape of the interface between cryolite 

and aluminum, and a linear analysis of their proper-

ties is proposed. Perturbations of electric quantities 

are first calculated, and then perturbations of velo-

cities and pressure in the two liquids follow from 3D 

Navier-Stokes equations with a linear drag. The 

result is a characteristic equation which relates the 

parameters of the disturbance (wave length, rate of 

amplification) to the parameters of the cell (current 

densities, thicknesses of liquid layers, friction 

coefficients, equilibrium velocities...). 

It is found that two different kinds of instabi-

lities may develop. One is the classical Kelvin-

Helmhol-ts instability of sheared interfaces slightly 

modified by MHD effects ; it may generate small scale 

disturbances (20 cm). The other is a new instabili-

ty, essentially electromagnetic in nature, able to 

generate large scale waves (1.5 m) propagating in 

the direction of horizontal current. 

INTRODUCTION 

The interest in the instabilities of aluminum 

reduction cells and in appropriate techniques for pre-

venting their development became more important 

during the past few years. The main reason is 

undoubtedly the perspectives of development of new 

cells with electric current up to 200 K Amp or more, 

and it is remarkable that such an increase of interest 

coincides with the 100th anniversary of the invention 

of smelting techniques by Hall and Heroult. 

Two main papers |1,2| were concerned with ana-

lytical models of these instabilities in simplified 

conditions. They both neglect viscosity or any other 

damping effect. Urata's model |l| is quite close to 

real cells, but the different mechanisms (influence 

of shear at the interface, of finite size of the two 

rectangular liquid layers, of the horizontal electric 

current, etc) are studied in different sections and 

do not belong to the same and unique theory. Sneyd's 

analysis |2|, the most recent paper on the subject, 

apparently ignores Urata's pioneering work, and is 

limited to an extremely idealized model without any 

horizontal electric current, an ingredient reputed to 

be at the root of the phenomenon. For this reason 

these two papers do not take into account the exact 

force field acting on disturbances of the interface 

and do not start with equations complete enough to 

allow a full description of the real instabilities. 

This certainly explains the differencies between 

predictions from Urata's theory and experiments on a 

real pot |3|. 

The purposes of this new paper on the subject is 

i) to propose some progress in the analysis of the 

key physical mechanisms of these instabilities, ii) 

to introduce a better theoretical basis for modelling 

the phenomena and iii) to provide some relation 

between the parameters of the cell (geometry, electric 

current, magnetic field...) and the properties of 

disturbances of the interface (wave length, rate of 

amplification, phase velocity...). This new analysis 

takes into account the horizontal current in the alu-

minum as well as the mean velocities of the two 

superposed liquids and the influence of turbulence. It 

is however still a first step in the sense that the 

finite size of the cell and the variations along the 
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interface of unperturbed quantities (velocities, 

electric current, magnetic field...) are not taken 

into account. The friction on the electrodes and the 

vertical transport of momentum in each liquid layer 

are modelled with the linear assumption introduced by 

Moreau and Evans |4|, which was recently confirmed by 

a laboratory experiment |5|. 

The solution is : 

s t + i k . r , . = A e .f UJ 

i i t h 

σ - g+ chkH.shk(2-h) 
f + ( z ) J o σ ' σ shkh.chkH + σ shkH.chkh 

(6) 

THE DISTURBANCE OF ELECTRIC QUANTITIES 
β -a. 

f (z) = J 
chkh.shk(z+H) 

0 0 " σ shkh.chkH + σ,shkH.chkh 
(7) 

In the equilibrium state the curvature of the 

interface is supposed to be negligible. According to 

the general linear theory of hydrodynamic stability 

(see Chandrasekhar |6|) a disturbance of that inter-

face by the form 

Expressions of the disturbances for the current 

density directly follow : 

j = - σ A eSt+i--i . if(z) k + f'(z) λ (8) 

z = A e 
o 

st + i k.r 
(1) 

is introduced, characterized by a wave vector k, the 

two components of which (k and k ) are real numbers. 
x y 

The increment s has to be determined as a function of 

k. and of the parameters of the cell. The stability 

criterion is obviously Re(s) < 0. 

The disturbance of the electric potential due 

to (1) comes from the Laplace equation Δφ=0, together 

with the boundary conditions at the electrodes which 

are assumed to be sufficiently conductive so that 

φ(ζ=1ι) = φ(ζ=-Η) = 0, (2) 

λ being the unit vector in the z direction. Thus the 

magnetic field induced by such an electric current 

is : 

u „ Λ st+ik.r _, s — , 
b = μσ A e F(z) . τ χ λ 
— k — 

with 

Fjz) = - iJ 

F (z) = - iJ 

σ -σ chkH.chk(z-h) 
a shkh.chkH + σ shkH.chkh 

chkh.chk(z+H) 
σ shkh.chkH + σ shkH.chkh 

(10) 

and at the interface where the total potential and the 

normal component of the electric current density 

are continuous 

THE DISTURBANCE OF THE FORCES 

Lorentz forces per unit volume may be written so: 

Φ(ζ ) + φ (z ) = Φ (z ) 
+ o + o — o 

9φ 

dn 

3φ_ 

-(zo) (3) 

(4) 

J. + J λ + j „ + i λ x 
—H v — "m v — 

SH + Β ν λ + Μ ¥ χ λ ) 

There are five linear vector products distinguishable 

in such a linear stability analysis : 

(Subscripts + or - refer to the side z>0 or z<0 of 

the interface, capital letters to unperturbed quanti-

ties, and small letters to their disturbances.) 

f, = J λ x b (r x λ)= J b t 
—l v — k — v k 

f, = J λ x BIT 
—2 v — —H 

According to Moreau and Evans (4) the unperturbed 

electric potential at the interface is taken as 

J 
Φ(ζ ) = -~ z (5) 

o σ o K J 

in the two liquids (J is the uniform vertical compo-

nent of the current density). This does not imply 

that the electric current in the aluminum is neglec-

ted, since it is a second order term in ζ£. 

£3 " J«
 X Bv A 

U = i f l x ^ H 

f 5 = 4 x b (- x X) 

(11) 

It may first be noticed that three of them have 

no influence at all on the disturbance, specifically 

those related to the undisturbed magnetic field 
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-H 
+ Bv λ. This result is not obvious. It comes i) 

from the fact that the combination of f„ and f, which 
—i. —4 

intervenes in the detailed treatment of the motion 

equations 

37 (VH-f2) + Δ ^ . λ ) - ίσΔφ λ.. (k x B ) 

is necessarly zero because Δφ = 0, and ii) from 

the fact that f_ only intervenes through the scalar 

product k_.̂f_ which is identically zero. Therefore 

any uniform external magnetic field has no influence 

on periodic disturbances such as (1). This is in 

agreement with Urata's conclusion |3| that the dis-

tribution of the magnetic field rather than its 

absolute intensity may have some influence. 

Therefore only the elementary forces f_. and f_ , 

representing the interaction between the undisturbed 

current JTT + J λ and the disturbance of the magne-
—H v — 

tic field b_, are relevant. The force f. is easy to 

interpret. It represents the well known pinch effect. 

Near a bulge of the interface, it is directed towards 

the center of the bulge where extra-current is 

passing. The effect acts on the two fluids but with 

different intensities. It can be predicted that an 

extra-pressure 6p appears at the center of the bulge 

in order to balance the pinching forces, with diffe-

rent values <5p and <5p_ in the two liquids. The sign 

of the difference 6p +6p controls the stabilizing, 
+ — 

or destabilizing, character of this "differential 

pinch effect". 

The force f, is vertical and is confined within 

the aluminum layer where J is non zero. Being pro-
—n 

portional to b, which is not in phase with the defor-

mation of the interface, it tends to elevate the 

aluminum on one side of a bulge and to lower it on 

the other side, thus provoking some propagation in 

the direction of JTT as well as some torque on each 

half wave length of the interface. One may suppose 

that such a torque is a source of vorticity and is 

destabilizing. 

Expressions of the relevant forces are : 

. T2 ch k(z-h) , st + ik.r 
f. = IJJJ , ,, A e . r —1+ o sh kh k 

(12) 

f · T (, T z\ ch k(z+H) 
i,_ = ^ J o ( J o + J 1 H} th kh.ch kH 

f - ;,,τ CT I ch k(z+H) st+ik.r , ,.., 
t = IUJ (J . -r-j — , . A e .A (14) 
— 5 - o —H k th kh.ch kH — 

In (13) the expression of the vertical current 

density in the aluminum is written J + J. ^ whereas 
O I H 

in cryolite (eq. 12) it is just J , as in Moreau and 

Evans 14 . 

MOTION EQUATIONS 

Writing u + wX the local disturbance of velocity 
ri — 

in each fluid, the linearized motion equations are : 

V„.u„ + |ϋ = 0 
H -H dz 

au,, ·, « 

T F + % · v H H = " p V + p(ii+i2
+ V ^ S H 

ΙΈ+ %-Vw = - i S + ^ + i 5
) " - (15) 

As in |4| the symbol IL stands for the local value 

of the mean horizontal velocity, and K is the friction 

coefficient. They may have different values in the 

two liquids, and UTT should vary with position. However 
—n 

in this first step of the theory the variation of U 
"Tl 

in the horizontal directions is not taken into 

account. Notice that the velocity field associated 

with the disturbance is three-dimensional. This is 

necessary to express the kinematic conditions at the 

interface : 
dz 

w (o) = (-T£> = (s + i k.U )z 
+ dt + + o 

dz 
w_(o) = (-j2-)_ (s k.U )i (16) 

The other boundary conditions on this velocity are : 

w (z = h) = w_(z = - H) = 0 

Let this perturbation also be written as : 

st+i lc.£ 

st+i k.r 

(17) 

UJJ = U(z) e 

w = W(z) e 

p = P(z) e st+i k.r 

f_. = F^z) e 
st+ik.r (18) 

A est+ik.r ( 1 3 ) 

Equations (15) give the following system of ordinary 

differential equations : 
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ik.Ug 

(s + K + ik.U) υ 
H — 

^ Ρ + 1(F1+F2+F3) 

(z + K + ik.U„) W = - - P' + -(F.+Fj 
H p p —4 —5 

(19) 

Its general solution satisfying the boundary condi-

tions (16) and (17) is straightforward. 

DISPERSION EQUATION AND MAIN RESULTS 

As in classical theory |δ| of sheared interfaces, 

the condition of continuity of the pressure at the 

interface yields this supplementary condition 

P+(o) + P(o) = - A g(p_-p+) + Tk (20) 

where g is gravity and T surface tension. The expres-

sion of P (o) and P_(o) directly follow from the 

solution of (19), (16) and (17), and may be substi-

tuted into (20) , giving the dispersion equation : 

P_ß_(ß_+K_) P+ß+(ß++K+) 

th kH 

uJ2, 
(-

th kh 

kH kh 

gk(p_-p+) )-Tk
3 

thkh sh 2kH sh 2kh 

2kH thkH ^oJ1 
4 thkh sh 2kH kH 

(1-2i kH cos (21) 

The symbols ß and ß_ stand for s + ik.U and 

s + ik_.£ _> and Θ is the angle between k and J . 

The most unstable wave vectors are those oriented in 

the same direction as X . Then in the following cos £ 
—rl 

is supposed to be 1 to focus on the most unstable 

disturbance. 

When J and J. are zero this equation is nothing 

but the classical dispersion equation for a sheared 

interface (with particular assumption on the friction 

in each liquid layer). The two first terms at the 

right hand side exhibit the stabilizing influence of 

gravity (because p_ > p ) and surface tension 

(efficient for k large). The destabilizing mechanism 

responsible for Kelvin-Helmholtz instability lies at 

the left hand side of (21) in terms involving |u -U_|. 

This classical results are only slightly changed by 

our special assumption on friction law. They bring to 

the curve (a) on Fig. 1 which shows typical curves of 

neutral stability (such that Re(s) = 0) for different 

conditions. It is essentially characterized by two 

asymptotic branches, one controlled by gravity (small 

wave numbers), the other by surface tension (large 

wave numbers), and by a minimum which corresponds to 

critical conditions. 

When J and J. are taken into account the results 
o 1 

may change dramatically. To enlighten the physics of 

the phenomenon it is interesting to consider first the 

case of liquid layers of infinite depth. Then the 

differential pinch effect is identically zero. Against 

this the term in J J. overthrows the behaviour at 
o 1 _„ 

small wave numbers since it is predominant (as k ) 

upon the gravity term (as k ) and since the asympto-

tic branch to the neutral curve is always negative. 

Ihis means that a second critical value of the wave 

number exists kÄÄ, below which stability is impos-

sible. Of course, the higher the electric current, or 

the smaller the friction coefficient, the larger this 

critical wave number k. 

16p2^k 

Fig. 1 - General pattern of curves of neutral stabi-
lity and their asymptotic behaviour, when liquid 
thicknesses are infinite, (a) : ordinary Kelvin-
Helmholtz neutral curve when J = 0 . '(b) : Typical 
curves in the presence of electric current. 
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However the depths of aluminum and cryolite 

are finite. Taking this into account changes again 

the behaviour, since a new asymptotic branch, 

-3 

strictly positive and varying as k , is now pre-

dominant at very small k. The neutral curve may 

now have two minima. The one located at value kA 

corresponds to the most unstable mode in the 

presence of the shear |U -U | ; it is only slightly 

modified by the electromagnetic effects which are 

almost negligible at large wave numbers. For 

typical cells of today this minimum kA corres-

ponds to wave lengths of the order of 15 to 

20 cm. The other minimum located at values kAA, 

much smaller than k^, corresponds to some purely 

electromagnetic instability. For cells of today 

the corresponding wave length is of the order of 

1 .5 to 2 m. 

TABLE 1 : Numerical values used in calculations 
of curves of Fig. 2 and 3 

h 

H 

Lx 

Ly 

J 
o 

μ 

σ_ 

p+ 

p_ 

T 

0.05 m 

0.15 m 

7.00 m 

2.50 ü 
4 -2 

10 A.m 

1.26 x 10 6 kg.A 2.i 

3.3 x 106 A.V~1.m~1 

200 

2088 Kg.m 

2270 Kg.m" 

0.50 Kg.s" 

A.V 

■3 

•1 -1 
.m 

It is straightforward to solve numerically the 

dispersion equation (21) and to examine in detail how 

each parameter acts on the stability criterion. To 

give an idea of the main tendencies a few curves of 

neutral stability have been plotted on Fig. 2 using 

typical values of the cell parameters given in ΤΑΕΙ,Ε 1. 

These numerical results clearly confirm the behaviour 

just discussed above. They show the negligible influ-

ence of electric parameters and friction on the criti-

cal wave number k (̂  55 m ) as well as on the criti-

cal shear VA (̂  0.12 m.s ). In addition they put in 

evidence the drastic influence of these quantities 

for small wave numbers. It appears that a sufficient 

level of turbulence, providing friction coefficient 

-1 
K > 0.1 s , may completly stabilize the electroma-
gnetic effects. On the contrary, when κ < 0.055 s 

the minimum at kÄÄ becomes negative, what means that 

disturbances with k of the order of 4 m should be 

unstable even without any mean motion of the two 

liquids. 

-K= 0.5 
UNSTABLE 

WAVE NUMBER (m-1) 

Fig. 2 - Curves of neutral stability deduced from 
equation (21) for values given in Table 1, when 
J./J = 4 , for different values of κ = K = K. 1 o + -

2 0 N » * 10 

WAVE NUMBER k (nrr1) 

Fig. 3 - Curve of neutral stability without any mean 
motion deduced from equation (23) for values given in 
Table 1, when κ+ = K_ = 0.06 s

 1 

■1 
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A new hydrodynamic instability is therefore 

demonstrated, almost independent of the mean motion 

in the two liquids. It is interesting to study this 

phenomenon in itself, assuming that U = V_ = 0 

(and cos Θ = 1). The dispersion equation then 

becomes : 

2 
a s + b s + c - i d = 0 (22) 

with the following definition of the coefficients : 

At this stage the theory is only developped at 

a first level, ignoring the horizontal variations of 

undisturbed quantities (magnetic field, electric 

current, velocities) as well as the finite size of 

the cell. Therefore the results are still limited 

to the general behaviour and improvements are neces-

sary before applying them to a particular pot. Never-

theless some predictions are in agreement with repor-

ted observations |3| : 

d = 

th kH th 

P K P 

th kH th 

o 1 th 

kh 

K
+ 

kh 

kH 

c = gk(p_ + p+) + TK 

MJ' 
°e_ k-n kh 

th kh 

th kh th kh 

U j J 1 01 u 
o 1 , 2kH 

sh 2kH 

th kH, 
4thkh sh 2kH kH 

The equation of the curves of neutral stability 

2 2 
ad - cb = 0 

as been studied in the typical conditions of Table 1. 

with K = K 
+ 

= 0.06 s 
■1 

Fig. 3 shows that values 

J./J ^ 4 are sufficient to destabilize wave numbers 
1 ° - _! 

of the order of 4 m with such a small friction. The 

horizontal current in the aluminum J may be estima-

ted from J with relation 

_2 
H 

because of continuity of electric current. Values 

of J./J of the order of 10 are quite plausible. One 

is therefore inclined to consider that the electro-

magnetic instability just analysed could be the root 

of the large scale oscillations observed in some 

cells. 

CONCLUDING REMARKS 

A new formulation of the problem of instabili-

ties in the Hall Heroult cells is proposed. It is 

based on full Navier-Stokes equations and on an 

explicit calculation of the electromagnetic forces 

associated with the disturbance. The analysis follows 

the classical technique of the linear theory of hydro-

dynamic stability, except that a linear assumption is 

used for the friction on the electrodes in each fluid, 

previously introduced for modelling the mean flows |4j 

and verified in a laboratory experiment |5|. 

- An electromagnetic instability may develop if the 

horizontal current density in the aluminum liquid 

is large enough. 

- It may generate large scale waves (1.5 to 2 m) 

propagating in the direction of horizontal current. 

- Small scale waves (15 to 20 cm) driven by the shear 

of the interface may be superposed. 

In the frame of this linear analysis each unsta-

ble mode is independent of the others. Non-linear 

theories, which are now tractable, should be necessary 

to analyse the interactions between modes, and to 

predict the evolution in time of the instability. In 

this context it is remarkable that increasing the 

turbulence level in the two liquids (or increasing 

the friction coefficients) may stabilize the distur-

bances. This suggests the existence of some mechani-

sm of saturation, and inclines to develop non-linear 

models able to distinguish conditions of saturation 

from conditions of developing chaos. 
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