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Abstract 

The growth rate, period of oscillation, and spatial shape of interface 

waves in Hall-Heroult cells are determined from a linear stability 

analysis in the three-dimensional domain of liquid bath and metal. 

The linearized Maxwell and momentum equations together with 

the demand for hydrostatic balance at the interface describe a self-

exciting oscillator. The corresponding eigenvalue problem for the 

interface movement is solved numerically. The resulting periods of 

typically 20 -40 i are in good agreement with measurements. 

Both the steady-state as well as the oscillating component of the 

three-dimensional magnetic field and current density pattern are 

included. This gives a consistent description of different instability-

driving mechanisms. 

The spatial distribution of the electromagnetic t o kinetic energy 

transfer is used to localize the regions in the cell which mainly 

cause instabilities . The influences of current intensity, ACD, metal 

pad height, and density ratio on strength and type of instability are 

demonstrated. 

Introduction 

Magnetohydrodynamic ( M H D ) instability in Hall-Heroult cells is 

a physical phenomena caused by an intricated interaction between 

metal /bath interface deformation, current flow, and magnetic field. 

Periodic oscillations of the cell voltage in the range of 20-40« are 

a typical indication of MHD instabilities, also called metal pad roll. 

The associated differences in motion between bath and liquid metal 

lower the current efficiency due to the increased turbulence in the 

interface boundary layer. Increasing the anode-cathode distance 

(ACD) usually suppresses MHD instabilities, but results in a higher 

cell voltage. Metal pad roll with large amplitudes can even lead to 

short-circuits between anode and cathode. 

Avoidance of MHD instabilities is one of the keys to successful 
pot operation. The magnetic field and current distribution in the 
cell are obviously of great influence on the desired stability. Some 
explanations have been published using analytical and numerical 
approaches to describe the mechanisms causing M H D instabilities 
[1-10]. As a result very different criteria were presented to avoid 
instabilities. An overview of these criteria is given in [11, 12]. 

Linear stability methods, assuming a single plane wave as inter-

face distortion, show some physical mechanisms resulting in MHD 

instabilities [4, 6, 9, 13]. Two types of instability are described, 

one originating from horizontal currents in the liquid metal and the 

other f rom gradients in the magnetic field. 

The main disadvantage of applying these theories to real cells is 

the lack of appropriate lateral boundary conditions. The geome-

try of these models is of infinite horizontal size. The reflection of 

large scale waves at the ledge should produce standing waves, re-

sulting from the superposition of propagating waves with opposite 

direction and same amplitude, wave length and oscillation period. 

A positive growth rate of the amplitude of a wave propagating in 

one direction implies damping of the other wave travelling in the 

opposite direction. Thus the instability of waves with a wavelength 

similar to the size of the cell is not explained by these theories. 

Other numerical approaches use a wave equation based on the 

shallow depth approximation [ 1 , 2], or a direct t ime-integration of 

the transient equation of motion [8, 10]. Another semi-dynamic 

model of the cell [3] simulates a rotating interface wave, as has 

been observed in many instances, e.g. [14, 15]. The methods based 

on time-integration are computing intensive and are not applicable 

in an interactive development environment. Other authors usually 

neglect the effect of the magnetic field oscillations. 

An interface wave is accompanied by changes of the current density, 

that always changes the magnetic field present. These magnetic 

field oscillations are of significant amplitude, as has been measured 

and calculated [15, 16]. Therefore their influence on the Lorentz 

forces should be considered in a cell model, especially if steady-state 

horizontal currents are present. A procedure including the effects 

of the three-dimensional steady-state and transient magnetic field 

and current density distribution is needed to predict the tendency 

of cells t o MHD instabilities in a general manner. A mathemati-

cal model allowing such an analysis will be presented in the next 

section. 

Mathematical Model 

The geometry of the underlying model of the Hall-Heroult cell con-
sists of a rectangular box with three horizontal layers representing 
the liquid metal, bath and anodes, c.f. Figure 1. The horizontal 
size of the box is xiXyi, with the origin of the x— and y—axis 
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located at the centre of the cell. The flat metal /bath interface is 

located at z = 0, and the z-axis is directed upward. The heights of 

the liquid metal, bath and anodes are zm, zh, and za. 

Electric potential and current density are defined in the entire cell 

model. Thus the effect of the anodic voltage drop on the distri-

bution of the current density in the metal and bath is included. 

Pressure, velocity, magnetic flux and Lorentz force are considered 

in the liquid metal and bath only. 

Figure 1: Geometry of the cell model. 

The cathode block is not included in the model because of the 

high ratio between the electrical conductivity of the liquid metal 

and cathode carbon. It is assumed that the current entering the 

cathode block is not modified by MHD instabilities. 

The cell model is meshed with nxxny horizontal divisions and with 

nzm,nzb, and nza vertical divisions in the liquid metal, bath and 

anodes. In principle, it is not necessary to use a uniformly spaced 

horizontal mesh. In this way for example the geometry of the centre 

gap between the anodes could be taken into account. However, 

the utilization of symmetry when using a regular mesh reduces the 

computing t ime significantly, especially for the determination of the 

magnetic field. The examples presented here are based on regular 

meshes. 

According to the linear stability theory, all relevant physical field 

quantities in our model are separated into a steady-state and tran-

sient part. The steady-state components, denoted by capital let-

ters, describe a consistent physical system which has no variation 

in t ime. The lower-case perturbed portions are assumed to be 

harmonic functions of t ime: 
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The field components are defined in three-dimensions in the liquid 

bath and metal, with exception of the two-dimensional metal/bath 

interface deformation. The harmonic field amplitudes can be com-

plex to allow for phase shifts. The complex parameter s = sr + iSi 

describes the t ime development of the oscillations. The imaginary 

part corresponds to the oscillation period T with Si = 2z/T. The 

growth rate, sT > 0, or damping rate, tr < 0, of an instability is 

given by the real part of s. The term 'unstable oscillation' will be 

used in conjunction with a positive growth rate, a 'stable oscilla-

t ion ' denotes a vanishing or negative growth rate. 

We will follow here the approach of Sneyd [4]. The linearized 

equation of motion for the perturbed quantities in the liquid bath 

and metal is 

Vp = f - pan, (2) 

where the density p is equal t o pm in the liquid metal and pi, in the 

bath. Influences of the steady-state velocity U and the viscosity of 

the fluids are neglected. Together with the continuity equation for 

an incompressible fluid 

V ■ u = 0, (3) 

the pressure p fulfills the Poisson equation 

Δρ = V · f. (4) 

The linearization allows a direct determination of the divergence of 

the Lorentz forces. The first order terms of the Lorentz force are 

f = j x B + J x b . (5) 

The magnetic flux B includes the magnetic effect of the external 

busbar system, the magnetized steel parts and the steady-state 

current distribution J in the liquid bath and metal. The perturbed 

magnetic flux b is caused by the current fluctuations in the bath 

and metal j and in the anodes. The Maxwell equations 

V x B = μ3, V x b = μί, (6) 

allow the simplification of the divergence of the Lorentz force as 

V - f = - 2 / t J - j . (7) 

It should be mentioned here that the magnetic field b is generated 

not only from the currents in the liquid bath and metal but from the 

current variations in the anodes and studs as well. The magnetic 

field of the current fluctuations in the studs is incorporated by 

assuming the same vertical current as in the anodes. 

The steady-state and transient current density have to be deter-

mined in the complete cell model from Ohm's law J = — C T V # and 

j = —σνφ, where the electrical conductivity σ is equal to σ „ in 

the liquid metal and ch in the bath. The electric potential fulfills 

the Laplace equation 

ΔΦ = 0, Αφ = 0. (8) 

Currents induced by the movement of the fluids or due to the tran-

sient magnetic flux are neglected because the magnetic Reynolds 

number is very small [17, 18]. The induced currents have a damp-

ing effect on instabilities, which is similar to the internal friction 

due to the viscosity. Our model will therefore overestimate the 

onset of instabilities. 

Equation (8) requires the specification of appropriate boundary 

conditions at the bounding surfaces of both fluids. The ratio of 
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electrical conductivities in the cell suggest the assumption of a fixed 

electric potential at the top of the anodes for both the steady-state 

and transient term, and a prescribed steady-state current flow into 

the cathode block, while the transient currents do not enter the 

cathode block. Cold anodes can be simulated by a non-uniform 

resistance in the anode layer, sludge by prescribing an appropriate 

steady-state current density into the cathode block. 

Linearization of Φ with respect to the perturbed interface gives a 

discontinuity in Φ at z = 0. Therefore the potential Φ is written 

as Φ„, and Φ&. The complete set of boundary conditions for the 

perturbed electric potential are then as follows [9]: 

φ = ΰ 

x h 9Φ _ ± h 9Φ 

= 0 

= 0 

at z = zh + za , 

at z = 0 , 

at z = 0 , 

at z = -zm , 

at the ledge. 

(9) 

For a given interface deformation the solution of equations (6) 

and (8) subject to the boundary conditions (9) defines the current 

density, magnetic field and Lorentz forces. 

The boundary conditions for the Poisson equation for the pressure 

(4) can be derived from equation (2) at the boundaries of the metal 

and bath domain. An additional relation derives from the linearized 

hydrostatic balance at the interface, 

pgh = p at 2 = 0, (10) 

where p is the difference in densities and p = p m — Pb is the dis-

continuity of the pressure at z = 0. Together with the linearized 

kinematic boundary condition of the interface uz = sh the normal 

component of the pressure gradient at the boundaries of the liquid 

metal and bath becomes 

d op 
On = /» at the outer boundary, 

at the interface. 
(11) 

In matrix notation, the equations (4) and (11) describe a general 

algebraic eigenvalue problem for the pressure p. This can be trans-

formed to a standard eigenvalue problem for the pressure jump p 

across the interface. Due to its two-dimensionality, the size of the 

standard eigenvalue problem is reduced significantly. 

The discretization of (4) with the source term (7) and boundary 

condition (11) will usually violate Green's theorem slightly. This has 

to be corrected to avoid an improper mass balance. Furthermore 

it is a necessary requirement for conservation of metal and bath 

volume to decrease the number of eigenmodes to nxxny — l. 

analysis of the spatial distribution of the energy transfer into the 

cell, as will be demonstrated in the example sections. For a typical 

mesh with nx = 16, ny = 12, and nzm = n^ = 4, the number of 

Biot-Savard integrations is of the order 109. Efficient coding and 

utilisation of symmetries facilitates the handling of this problem. 

The steady-state magnetic field generated by the external busbar 

system and by the internal currents in the liquid bath and metal, B , 

is calculated on the three-dimensional mesh covering the volume 

of both fluids. The magnetic shielding of the steel shell has been 

taken into account [19]. 

The solved eigenvalue problem allows a further analysis of each 

eigenmode. The eigenvectors representing the pressure jump at 

the interface are transformed into an interface deformation. The 

scaling of the amplitude can be chosen arbitrarily. Normalization 

of the amplitude to a total energy of INm. gives typically a few 

millimetres in amplitude for the wave. 

The velocities in the liquid metal and bath can be obtained from 

equation (2) . The real part of the scalar product of the velocities 

and Lorentz forces gives the distribution of the magnetic energy 

converted to kinetic energy. Time-averaging of the converted en-

ergy , which has twice the frequency of the eigenmode, and integra-

tion over the volume of liquid bath and metal determines the rate 

of energy transferred into the cell. Decomposition of the Lorentz 

force into parts caused by the components of B and J and calcu-

lation of the individual contributions to the energy transfer allows 

the study of their influence on cell stability. 

The variation of cell voltage can be calculated from the interface 

deformation for different t ime steps by an electrical network rep-

resenting the resistances in the anodes and bath. This procedure 

is non-linear with respect to the relationship between the inter-

face deformation and the change in bath resistance. The resulting 

voltage drop usually includes higher order harmonics in t ime. 

Results 

The method described has been used for the design of new high 

amperage cells now operating in Russia [20]. For various configu-

rations of the magnetic field and current distribution calculations 

were performed giving a detailed insight into the intricate interac-

tion of forces related to MHD instabilities. To isolate effects which 

usually occur together, the analysis of stability using artificial mag-

netic fields and current distributions was very helpful. 

The following section will give a comparison of the method applied 

here and analytical solutions. Two examples of MHD instabilities, 

representing the main mechanisms, will be analyzed in more detail. 

The comparison of measurements and calculations of an instability 

observed for a reduction cell are also presented. 

Verification 

A larger problem arises from the necessity to calculate the magnetic 

field b in the bath and metal from the current density j . Although 

the Lorentz forces and thus the magnetic field appear only at the 

boundary of the model, a complete determination of the Lorentz 

forces in the whole cell is desirable. This allows, for example, the 

Without Lorentz forces the solution of the eigenvalue problem 

should yield the periods of the pure gravity wave. For a mode 

with m and n numbers of nodes in the longitudinal and transversal 

direction of the cell, respectively, the analytical solution of the os-

cillation period can be derived from an equation given for example 
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in [1]. Table I compares some periods of gravity oscillations for a 

cell with lx = %m, /y = 3 . 6 m , z m = 0.22 m and ζ^ = 0 .05m. The 

number of mesh points is 71^ = 15, n B = 15, and nzm = nzi, = A. The 

agreement between analytical and numerical results for pure grav-

ity waves indicate the correct numerical representation of equation 

(2) in the limit of vanishing Lorentz forces. 

Table I: Comparison of analytical and numerical oscillation pe-
riods (in seconds) for pure gravity waves and those 
modified by a vertical current, m and n are the number 
of nodes in lateral and transversal directions. 

m, n 
1,0 
2,0 
0,1 
1,1 
3,0 
4,0 
5,0 

pure gravity wave 
analytical 

81.8 
40.9 
36.8 
33.6 
27.3 
20.5 
16.5 

numerical 
81.9 
41.2 
36.9 
33.7 
27.5 
21.1 
17.0 

modified gravity wave 
analytical 

42.4 
31.6 
29.6 
27.8 
23.9 
19.0 
15.6 

numerical 
43.9 
32.1 
30.1 
28.2 
24.4 
19.5 
16.3 

Another test was performed which included the effect of a homo-

geneous vertical current density J . An analytical solution of the 

dispersion relation for a lateral infinite geometry is given in [9]. If 

the magnetic field B is assumed to be constant in z-direction, the 

period of the oscillations is influenced only by the magnitude of the 

vertical current density [21]. 

The numerical model was adapted to this situation by omit t ing the 

Lorentz forces at the lateral boundaries. The analytical solution 

does not include the anode region, so the anodic conductivity was 

assumed to be ten times of that of the liquid metal. The choice of 

B is not critical in this case. Only the vertical Lorentz forces enter 

the eigenvalue problem at the upper and lower boundaries of the 

liquid zones. Their influence on the oscillation is minor. 

For typical current densities of about 0 .7A /cm 2 , the agreement 

between analytical and numerical solution is similar to that for the 

pure gravity wave, Table I. It is remarkable that the influence of 

the vertical current cuts the period of the (l.O)-wave in half. 

Types of Instability 

In principle, there are two self-exciting mechanisms which can force 

MHD instabilities, c.f. Figure 2. One is caused by the interaction of 

the currents j due to the oscillation with the steady-state magnetic 

field B , called here 'type 1 ' . The magnetic field perturbation b 

together with the steady-state current distribution J forms another 

mechanism, 'type 2' . In general, both mechanisms act together 

resulting in a superposition of the Lorentz forces f i and f2. The 

kinetic energy transferred into the cell can be quantified according 

to the type 1 and type 2 mechanism. 

Assuming a homogeneous vertical current density and an instabil-

ity forcing magnetic field situation, it is much more likely that the 

type 1 mechanism is dominant, because of the relative small values 

of b . On the other hand, for a current disturbance in J the type 2 

anodic/cathodic bus bar 
currents system 

steady-state 

Figure 2: The self-exciting mechanisms of the instabilities ( J , j : 
current density; B ,b : magnetic field; U,u: velocity; 
fi,f2: Lorentz forces; H,h: interface deformation). 

mechanism could dominate the instabilities. However, the distur-

bance in B due to J often enables a significant type 1 mechanism 

as well. 

The main question here is under which conditions of J and B will 

the type 1 and 2 mechanisms establish a self-exciting oscillator. It 

has been mentioned that a single standing wave, even if modified by 

Lorentz forces, cannot be unstable. However, the superposition of 

two different standing waves with a phase shift allows interacting 

forces to come into play resulting in a positive growth rate for 

both waves. Mathematically this corresponds to the fact that if 

in the algebraic system two real eigenvalues of two standing waves 

degenerate, the formation of a complex eigenvalue is possible. 

The complex eigenvalues of the algebraic eigenvalue problem con-

sidered here are associated with complex eigenvectors. Therefore, 

the interface deformation of instability modes must include phase 

differences. Accordingly, the maximum deformation of the interface 

appears at different times at different positions. Thus, the unstable 

oscillations form propagating wave crests. In contrast, oscillations 

with a vanishing growth rate appear as deformed standing waves. 

A general classification of instabilities of real cells can be achieved 

by analyzing the development of instabilities with increasing current 

density. Successive calculations of the eigenmodes at increasing 

current loads give a continuous path of eigenmodes. The appropri-

ate magnetic field B has to be recalculated for each current step. 

The growth rate sT of the eigenmodes is shown on the left hand 

side and the corresponding oscillation periods T on the right hand 

side of Figure 3 for current intensities between 0 kA and 165 kA. 

At low currents the oscillation periods show values of those of pure 

gravity modes, as given in Table I. A t this point the standing waves 

can be classified with the number of nodes in each direction. 
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Figure 3: MHD instabilities as a function of current intensity. The letters A to D mark four different instabilities (solid lines), while 
stable oscillations appear as dashed lines. 

Figure 4 illustrates essentially the propagation of wave crests for 

some instabilities, which originate from the standing waves denoted 

at the top and at the left hand side. Each arrow represents a 

single wave crest. It must be noted that the appearance of the 

interface deformation can be very different from the scheme shown 

in Figure 4, if, for example, the symmetry of the magnetic field is 

disturbed. 

Influence of operational parameters 

Parameters like metal height, ACD, and bath density, which are 

directly connected to pot operation procedures, have a large impact 

on cell stability. Although the principle effect of these parameters 

on stability is obvious, i t will be analyzed here to give a quantitative 

measure. 

The cell under consideration is identical to the example analyzed 

in more detail in the next section. While we will focus here on the 

principle influence of operational parameters on the stability, the 

next section will analyze the instabilities themselves. 

The influence of the metal pad height on MHD instabilities is shown 

in Figure 5. An increasing metal height stabilizes the cell signif-

icantly. This is mainly due to the decreasing horizontal current 

density j in the metal. It is remarkable that most instabilities show 

a change in metal height dependence at 15-20cm, which are a typi-

cal values for real cells. Below this metal height, a sharp increase in 

the growth rate is seen. The period of stable oscillations decreases 

with metal pad height in an asymptotic manner. This is typical 

for pure gravity waves as well. In contrast, the characteristics of 

the largest unstable oscillations show an increase in the period with 

metal pad height. 

Figure 6 shows the dependency of instabilities on the ACD. A strong 

decrease of the growth rate with increased ACD reflects the fact 

that the first response of the process control systems to noisy cells 

is usually an increase in the cell voltage by moving up the anode 

beam. The mode with the largest oscillation period (A) is unstable 

Wi th increasing current more and more modes tend to become 

unstable. A growth rate of 0.01 1/s means the doubling of the 

amplitude of the interface deformation within about one minute. 

Accordingly the metal pad roll could develop inside a couple of 

minutes. 

The increasing Lorentz forces deform the standing waves to change 

their shape and period in a complicated manner. Just before two 

stable waves become unstable, their period and shape are nearly 

identical. A rotat ing wave with a single wave crest, for example, 

marked A, originates from the (1,0) and (0 ,1) waves. The oscil-

lation period of unstable waves tends to decrease with increasing 

current. 

It is remarkable that the dependency of the growth rates on the 

current intensity varies. The Lorentz forces are proportional to the 

square of the current density, which might explain the more than 

linear increase in the growth rates with current intensity. An upper 

limit in the current load allowing stable operation can be derived, 

if the threshold of the growth rate, which accounts for fr ict ion, can 

be estimated. 
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Figure 4: Propagation of wave crests for some instabilities clas-

sified according to their originating standing waves. 
Each arrow marks a wave crest. 
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Figure 5: Growth rate and period of oscillations as function of liquid metal height. Unstable oscillations are drawn with solid, stable 
oscillations with dashed lines. 
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Figure 6: Growth rate and period of oscillations as a function of ACD. 

only below an ACD of 6 .8cm, and splits in two stable modes above 

this value. Thus, a slow change of the ACD could result in a 

discontinuous change of the oscillation period, if instabilities are 

present. 

The bath density has a large impact on the stability as well. Keep-

ing the density of the liquid metal constant at pm = 2250 kg/tn3, 
the bath density was modified between ph = 1950 kg/m3 and 

2200 kg/m3. A general trend towards higher instability with in-

creasing bath density is to be expected and was found. At a bath 

density of about 2100 kg/m3, some of the larger modes show a 

sharp increase towards higher instabilities with increasing bath den-

sities. The oscillation periods become longer with increasing bath 

density, similar to the behaviour of pure gravity waves. 

Example 1: Instability caused by external magnetic field 

The prebaked, point-feeder cell discussed in this example has a 

symmetric busbar design with a current of 165 kA. Due to the 

adjacent pot line, the vertical magnetic field of this magnetic un-

compensated cell has an offset of 20G. An analysis of MHD sta-

bility is performed with a uniform vertical current distribution in 

the bath and metal. The deformation of the interface caused by 

the instability with the largest growth rate is shown in Figure 7. 

This oscillation is marked in Figures 3, 5, and 6 with (A) . The real 

and imaginary part of the amplitude h of the interface deformation 

describe the complete t ime development of the wave. A whole os-

cillation cycle is given by a sequence of the real part, the negative 

imaginary part, the negative real part, and finally the imaginary 

part of the interface deformation. 

The wave can be characterized by a single wave crest and trough 

rotating in a counterclockwise direction, as indicated by the arrows. 

However, the shape of the wave is not as simple as a pure superpo-
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Figure 7: Real (top) and negative imaginary part (bottom) of 
the deformation ft of the bath/metal interface (exam-
ple 1). Heights are in millimeter. The arrows indicate 
the direction of propagation of the wave crest and 
trough. 

sition of the (1,0) and (0,1) standing waves. The potential energy 

of the real part of ft is much larger than the corresponding energy of 

the imaginary part. This reflects the cyclic exchange between po-

tential and kinetic energy, which is largest for pure standing waves 

and decreases, as sr increases. 

Figure 8: Kinetic energy density transferred into the liquid 
metal (example 1). Contour values are in units of 
mW/m3. 

The spatial distribution of the kinetic energy transferred into the 

cell in the mid-plane of the liquid metal is shown in Figure 8. Prac-

tically all energy is transferred due to the type 1 mechanism. The 

largest energy transfer is located close to those two corners where 

the positive offset of the vertical magnetic field, due to the adja-

cent pot line, superposes with the positive vertical field of the cell. 

Figure 9: Cell voltage variation for uniform anode currents 
(solid line), cold middle anode (dotted line), and cold 
corner anode (dashed line). 

With this picture in mind appropriate modifications to the busbar 

system can be developed. 

Figure 9 shows the calculated f luctuation of the cell voltage in the 

t ime interval of one oscillation period with three different assump-

tions concerning the anodic configuration. The voltage fluctuations 

for a flat interface is zero. The solid line reflects a uniform anode 

current distribution with the same mean current intensity at all an-

odes. The oscillation period of the voltage is half the period of the 

eigenmode, because the single wave crest maximizes its amplitude 

at two corners during a cycle as can be seen in Figure 7. The 

voltage deviation is always negative due to the nonlinear change in 

local bath resistance with interface deformation. 

A cold anode in the cell, a typical situation after an anode change, 

with half the mean current intensity modifies the variation of the 

cell voltage significantly. Located in the middle of the cell a cold 

anode gives an oscillation period of about 4 0 A for the eigenmode, 

which is nearly the same as for those with a uniform anode current. 

The voltage variation shows a large and a small minimum as a 

function of t ime. Wi th a cold corner anode on the left downstream 

side, the oscillation period of the eigenmode and of the voltage 

fluctuation are both 33 s. Although the three different waves are 

normalized to a total energy of 1 Nm, the wave amplitude height 

for the case of the cold corner anode is up to 15 mm, while only 

11 mm for the two other cases. 

The large differences in the form of voltage f luctuation, are a re-

sult of the nonlinear relationship between the interface deformation 

and the resistance network. This allows the occurrence of higher 

frequencies in the voltage signal than in the eigenmode frequency. 

The positive deviation of the voltage for the cold corner anode in-

dicates the moment when the wave crest is below the cold anode. 

Variations in the cell voltage can be very small if the height of 

the crest is constant and if the mean anode currents are uniform. 

This type of oscillation can be detected only by measurement of 

individual anode or cathode currents, as described in [22], or by 

measuring the magnetic field variations. 
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Figure 9 demonstrates that the analysis of the variation of mea-
sured voltage fluctuations could give valuable information about 
the cause of an instability. 

Example 2: Instability caused by cathodic current disturbance 

In this example, a disturbance of the current density distribution 
in the liquid metal due to sludge on the cathode block is analyzed. 
To simulate this, the current density flow into one third of the 
cathode block on the downstream side of the cell is assumed to 
be zero simulating a large area of muck. The current density J is 
mainly horizontal in the liquid metal above the muck. It generates 
an additional magnetic field mainly on the long sides of the cell 
in the vertical direction, which adds up to B. An asymmetric 
busbar system is chosen to compensate for the offset in the vertical 
magnetic field due to the adjacent pot line. 

Figure 10: Real (top) and negative imaginary part of the inter-
face deformation (bottom) with sludge assumed on 
the left third of the cell (example 2). Heights are in 
millimeter. The arrows indicate the path of propa-
gating wave crests and troughs. 

The largest instability mode, Figure 10, shows two wave crests al-
ternately travelling in the upstream direction. The amplitude of the 
crests increase towards the short side of the cell by up to 20 mm. 
The propagation of the waves and the horizontal currents in the 
liquid metal have opposite direction. This phenomena is in agree-
ment with the analysis in [6], which predicts the same direction of 
propagation for plane waves in the instance of a horizontal current. 

The predominant portion of the kinetic energy transferred into the 
cell, about 99 %, is produced in the liquid metal. Table II separates 
the total transferred energy into the components caused by the 
different terms of the Lorentz forces. The energy input into the 

Figure 11: Magnetic to kinetic energy transfer for the type 1 
instability (example 2). Contour values are mW/m?. 

Figure 12: Magnetic to kinetic energy transfer for the type 2 
instability (example 2). Contour values are mW/m3. 

cell in the mid-plane of the liquid metal is shown in Figure 11 for the 
type 1 and in Figure 12 for the type 2 mechanism. The first one, 
caused by the magnetic field B, has larger values than the latter, 
caused by J . The same fact is reflected by the volume-integrated 
values of the energy input. The energy transfer takes place mainly 
in the left downstream corner of the cell. At this location there is a 
superposition of the energy change originated from the circulating 
wave due to Bz and the wave due to the horizontal currents. 

Table II: Percentage of kinetic energy transferred into the cell 
broken down into different terms contributing to the 
Lorentz force. 

Bzijzllg ~ jyUz) 
By{jxuz - jzux) 

Bz{jyU* - jxUy) 
Jx(byuz - bzuy) 
Jy{bzux — bxuz) 
Jz{bxuy - byux) 

-1U.O70 

0.7% 
92.1% 
21.7% 

0.0% 
-3.9% 

It was noticed that the current disturbances caused by either a non-
uniform anodic current or cathodic current generate similar waves 
if the steady-state, horizontal current distribution and magnetic 
field in the liquid metal are similar. This is not obvious because 
the boundary conditions for the transient current density at the 
anode and cathode are different and the current density in the 

349 



■QMjDGCiMfeOi = From Light Metals 1994, Ulrich Mannweiler, Editor = 

bath is much more influenced by an anodic non-uniform current 
distribution than by a cathodic current disturbance. 

Comparison with Measurements 

Measurements, already published in [15], were used to analyze a 
cell instability. Individual anode currents, the cell voltage, and the 
magnetic field at the corner of the cell were logged for about 400 s. 
The harmonic oscillations in the magnetic field components indi-
cated a typical MHD instability. The measured data are compared 
with the results of a stability calculation for the same cell. 

Input for the numerical MHD analysis comprises the magnetic field 
B, calculated from the busbar arrangement and the shielding of the 
steel shell, and an anode resistance distribution, which reflects the 
time-averaged non-uniform anode current distribution measured. 
The non-uniform anode resistances influence the shape and period 
of the instability only slightly, but they have a large impact on 
the voltage fluctuation. The amplitude of the wave was chosen to 
reflect best the magnitude of the measured cell voltage variation. 
This was achieved with an amplitude of the order of the ACD. 
Thus the bath resistance vanishes at the highest deformation of 
the interface and the current at this anode is limited by the anode 
resistance. The oscillation of the magnetic field was calculated at 
the position of the probe. 

90 100 

40 50 60 
time [s] 

Figure 13: Comparison of the measured (solid) and calculated 
(dashed) cell voltage (top) and variation in magnetic 
field components bx, by, and bz (below) with time. 

Figure 13 shows the measured and calculated cell voltage and mag-
netic field components as they vary with time. The oscillation pe-
riods are in good agreement. In particular the effect that the cell 
voltage shows a higher frequency spectrum than the magnetic field 

components is reflected in the calculations. The largest deviation 
between the measured and calculated data is the phase shift in the 
magnetic field components. This is probably due to varying ad-
ditional currents in the vicinity of the probe, which have a strong 
influence on the measurement. 

This comparison indicates that this linear stability model can sim-
ulate MHD instabilities very realistically. We think that the basic 
physics causing MHD instabilities are represented in our model in 
a correct manner. 

Conclus ion 

A method to analyze the tendency towards MHD instabilities of 
real cells is presented. The effects of the three-dimensional steady-
state and transient magnetic field and current density distribution 
are included giving a set of linearized equations describing the MHD 
physics. 

In principle a MHD instability can be understood to be a super-
position of two different standing waves with the same oscillation 
period and a non-zero phase shift between them. By changing the 
horizontal forces, one wave amplifies the other. 

The interface deformation of an unstable oscillation must appear 
as propagating waves. A classification of the instabilities according 
to the standing waves, from which they originate, is possible. The 
self-exciting oscillator can be driven by two different mechanisms, 
which usually interact together. Rotating waves as well as waves 
travelling opposite to the direction of the horizontal current flow 
caused by a current perturbation in the cell are found. 

The influence of metal pad height, ACD, and bath density on the 
tendency towards instability is in agreement with operational ex-
perience and practice. However the largest influence is definitely 
caused by the current intensity because of its nonlinear effect on 
the Lorentz forces. 

Calculations have shown good agreement with the combined mea-
surements of the voltage fluctuation and the magnetic field vari-
ation. Oscillation periods of the voltage fluctuation, easily ac-
quired from the process control systems, can be predicted within 
this model. Analysis of periodic voltage fluctuations can be per-
formed and compared with calculated voltage variations from the 
MHD model. Under certain circumstances it is already possible 
to determine whether a current disturbance or a magnetic field 
problem has caused the instability. A strong influence of anodic 
or cathodic current disturbances on the formation of instabilities is 
found. The growth rate, oscillation period and shape of the wave 
is a function of the type of disturbance. 

The values for typical growth rates of instabilities are of the order of 
some 0.01 s - 1 . Therefore, an exponential increase in the amplitude 
would require a couple of minutes to develop significant voltage 
fluctuations. This time scale is typical of observations on real cells. 

The code analyzing the MHD instabilities has been incorporated 
into the integrated software package for the development of re-
duction cells [23], and allows an interactive determination and vi-
sualization of the stability situation and problem zones for a cell 
model. 
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