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Chapter 0

Preliminaries

0.1 Polynomials and Rational

Fuctions

1. 3x+ 2 < 8
3x < 8� 2
3x < 6
x < 2

2. 3� 2x < 7
�2x < 4
x > �2

3. 1  2� 3x < 6
1� 2  �3x < 6� 2
�1  �3x < 4
1

3
� x > �4

3

4. �2 < 2x� 3  5
1 < 2x  8
1

2
< x  4

5.
x+ 2

x� 4
� 0

x+ 2 � 0, x� 4 > 0 or x+ 2  0, x� 4 < 0
x � �2, x > 4 or x  �2, x < 4
x > 4 or x  �2

6.
2x+ 1

x+ 2
< 0

2x+ 1 < 0, x+ 2 > 0 or 2x+ 1 > 0, x+ 2 < 0
x < � 1

2

, x > �2 or x > � 1

2

, x < �2

�2 < x < �1

2
(Since x > � 1

2

, x < �2 is not

possible).

7. x2 + 2x� 3 � 0
(x+ 3) (x� 1) � 0
x � 1 or x  �3

8. x2 � 5x� 6 < 0
(x� 6) (x+ 1) < 0
�1 < x < 6

9. |x+ 5 | < 2 �2 < x+ 5 < 2
�2� 5 < x < 2� 5
�7 < x < �3.

10. |2x+ 1 | < 4
�4 < 2x+ 1 < 4
�4� 1 < 2x < 4� 1
�5 < 2x < 3

�5

2
< x <

3

2

11. Yes. The slope of the line joining the points

(2, 1) and (0, 2) is �1

2
, which is also the slope

of the line joining the Points (0, 2) and (4, 0).

12. No. The slope of the line joining the points
(3, 1) and (4, 4) is 3, while the slope of the
line joining the points (4, 4) and (5, 8) is 4.

13. No. The slope of the line joining the points
(4, 1) and (3, 2) is �1, while the slope of the

line joining the points (3, 2) and (1, 3) is �1

2
.

14. No. The slope of the line joining the points
(1, 2) and (2, 5) is 3, but the slope of line join-

ing the points (2, 5) and (4, 8) is
3

2
.

15. (a) d {(1, 2) , (3, 6)}
=
q

(3� 1)2 + (6� 2)2

=
p
4 + 16 =

p
20

(b) m =
y
2

� y
1

x
2

� x
1

=
6� 2

3� 1
= 2

(c) The equation of line is
y = m (x� x

0

) + y
0

y = 2 (x� 1) + 2
y = 2x

16. (a) d {(1, �2) , (�1, �3)}

=
q

(�1� 1)2 + (�3 + 2)2

=
p
4 + 1 =

p
5

(b) m =
y
2

� y
1

x
2

� x
1

=
�3 + 2

�1� 1
=

1

2
(c) The equation of line is

y = m (x� x
0

) + y
0

y =
1

2
(x� 1) + (�1)

y =
x� 3

2

17. (a) d {(0.3,�1.4) , (�1.1,�0.4)}

=
q

(�1.1� 0.3)2 + (�0.4 + 1.4)2

=
q

(�1.4)2 + 1 =
p
2.96

(b) m =
y
2

� y
1

x
2

� x
1

=
�0.4 + 1.4

�1.1� 0.3
= � 1

1.4

1
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(c) The equation of line is
y = m (x� x

0

) + y
0

y = � 1

1.4
(x� 0.3)� 1.4

1.4y = �x� 1.66
x+ 1.4y = �1.66

18. (a) d {(1.2, 2.1) , (3.1, 2.4)}

=
q

(3.1� 1.2)2 + (2.4� 2.1)2

=
q

(1.9)2 + (0.3)2

=
p
3.61 + 0.09 =

p
3.7

(b) m =
y
2

� y
1

x
2

� x
1

=
2.4� 2.1

3.1� 1.2
=

0.3

1.9
⇡ 0.16

(c) The equation of line is
y = m (x� x

0

) + y
0

y = (0.16) (x� 1.2)� 2.1
y = 0.16x� 2.292

19. y = 2 (x� 1) + 3 = 2x+ 1

4

3

1

2
−1

0

−5

5

5

4

2

3

0

−2

1

−3

−4

−1−2−3−4−5

20. y = 1

1.6

0.0

−0.8

−1.6

y

2.0

1.2

0.8

0.4

−0.4

−1.2

−2.0

x
210−1−2

21. y = 1.2 (x� 2.3) + 1.1 = 1.2x� 1.66

y

4

4

2

2

−2

−4

0
x

5

5

3

1

3

0

−1

−3

1

−5

−1−2−3−4−5

22. y = �1

4
(x+ 2) + 1 = �1

4
x+

1

2

y

4

4

2

2

−2

−4

0
x

5

5

3

1

3
0

−1

−3

1

−5

−1−2−3−4−5

23. Parallel. Both have slope 3.

24. Neither. Slopes are 2 and 4.

25. Perpendicular. Slopes are �2 and
1

2
.

26. Neither. Slopes are 2 and �2.

27. Perpendicular. Slopes are 3and �1

3
.

28. Parallel. Both have slope �1

2
.

29. (a) y = 2 (x� 2) + 1

(b) y = �1

2
(x� 2) + 1

30. (a) y = 3x+ 3

(b) y = �1

3
x+ 3

31. (a) y = 2 (x� 3) + 1

(b) y = �1

2
(x� 3) + 1

32. (a) y = �1

(b) x = 0

33. Slope m =
3� 1

2� 1
=

2

1
= 2

Equation of line is y = 2 (x� 1) + 1 = 2x� 1.
When x = 4, y = 7.
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34. Slope m =
1

2

Equation of line is y =
1

2
(x+ 2) + 1.

When x = 4, y = 4.

35. Yes, passes vertical line test.

36. Yes, passes vertical line test.

37. No. The vertical line x = 0 meets the curve
twice; nearby vertical lines meet it three times.

38. No, does not pass vertical line test.

39. Both: This is clearly a cubic polynomial, and
also a rational function because it can be writ-
ten as

f (x) =
x3 � 4x+ 1

1
.

This shows that all polynomials are rational.

40. Rational.

41. Rational.

42. Neither: Contains square root.

43. We need the function under the square root to
be non-negative. x+ 2 � 0 when x � �2. The
domain is {x 2 R|x � �2} = [�2, 1) .

44. Negatives are permitted inside the cube root.
There are no restrictions, so the domain is
(�1, 1) or all real numbers.

45. The function is defined only if
x2 � x� 6 � 0 and x 6= 5
(x� 3) (x+ 2) � 0 and x 6= 5
x  �2 or x � 3 and x 6= 5
(�1, �2] [ [3, 5) [ (5,1)

46. We need the numerator function under square
root be non-negative. x2 � 4 � 2, when
|x| � 2 Also the denominator cannot be zero.
9 � x2 > 0, when |x| < 3 The domain is
(�3, �2]

S

[2, 3).

47. The denominator cannot be zero. x2 � 1 = 0
whenx = ±1. The domain is
{x 2 R|x 6= ±1}
= (�1,�1) [ (�1, 1) [ (1, 1)

48. The denominator cannot be zero.
x2 + 2x� 6 = 0 when x = �1±

p
7.

The domain is
n

x 2 R|x 6= �1±
p
7
o

=
⇣

�1,�1�
p
7
⌘

[
⇣

�1�
p
7, �1 +

p
7
⌘

[
⇣

�1 +
p
7, 1

⌘

49. f (0) = 02 � 0� 1 = �1
f (2) = 22 � 2� 1 = 1
f (�3) = (�3)2 � (�3)� 1 = 11

f

✓

1

2

◆

=

✓

1

2

◆

2

� 1

2
� 1 = �5

4

50. f (1) =
3

1
= 1

f (10) =
3

10
= 0.3

f (100) =
3

100
= 0.03

f

✓

1

3

◆

=
3
1

3

= 9

51. Again, the only constraint we know for sure is
that x should not be negative, i.e., a reasonable
domain would be {x|x � 0} .

52. Width can be anywhere from 0 to 200 feet. A
reasonable domain is {x|0  x  200} .

53. Answers vary. There may well be a positive
correlation (more study hours = better grade),
but not necessarily a functional relation.

54. Answers vary. Evidence supports a relation-
ship.

55. Answers vary. While not denying a negative
correlation (more exercise = less weight), there
are too many other factors (metabolic rate,
diet) to be able to quantify a person’s weight
as a function just of the amount of exercise.

56. Answers vary. Objects of all weights fall at the
same speed unless friction a↵ects them di↵er-
ently.

57. A flat interval corresponds to an interval of
constant speed; going up means that the speed
is increasing while the graph going down means
that the speed is decreasing. It is likely that
the bicyclist is going uphill when the graph is
going down and going downhill when the graph
is going up.

58. Influxes of immigrants occur where graph rises.
War and plague occur where graph falls.

59. The x�intercept occurs where
0 = x2 � 2x� 8 = (x� 4) (x+ 2), so x = 4 or
x = �2 ; y�intercept at y = 02�2 (0)�8 = �8

60. The x� intercept occurs where
0 = x2 + 4x + 4 = (x+ 2)2, so x = �2; y�
intercept at y = 02 + 4 (0) + 4 = 4.
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61. The x�intercept occurs where
0 = x3 � 8 = (x� 2)

�

x2 + 2x+ 4
�

, so x = 2
(using the quadratic formula on the quadratic
factor gives the solutions x = �1 ±

p
�3, nei-

ther of which is real so neither contributes a
solution); y�intercept at y = 03 � 8 = �8.

62. The x�intercept occurs where
0 = x3 � 3x2 + 3x� 1 = (x� 1)3, so x = 1
y�intercept at y = (0)3�3(0)2+3 (0)�1 = �1.

63. The x�intercept occurs where the numerator
is zero, at 0 = x4 � 4 = (x� 2) (x+ 2), so

x = ±2; y�intercept at y =
(0)2 � 4

0 + 1
= �4.

64. The x-intercept occurs where the numerat or

is zero, at x =
1

2
; y�intercept at

y =
2 (0)� 1

(0)2 � 4
=

1

4
.

65. x2 � 4x+ 3 = (x� 3) (x� 1), so the zeros are
x = 1 and x = 3.

66. x2 + x� 12 = (x+ 4) (x� 3), so the zeros are
x = �4 and x = 3.

67. Quadratic formula gives

x =
4±

p
16� 8

2

= 2±
p
2

68. Quadratic formula gives

x =
�4±

p

42 � 4 (2) (�1)

2 (2)

=
�2±

p
6

2

69. x3 � 3x2 + 2x = x (x� 2) (x� 1) .
So, the zeros are x = 0, 1 and 2.

70. x3 � 2x2 � x+ 2 = (x� 2) (x� 1) (x+ 1) . So,
the zeros are x = �1, 1 and 2.

71. With t = x3, x6 + x3 � 2 becomes t2 + t � 2
and factors as (t+ 2) (t� 1) . The expression
is zero only if one of the factors is zero, i.e., if
t = 1 or t = �2. With x = t1/3 , the first oc-
curs only if x = (1)1/3 = 1. The latter occurs

only if x = (�2)1/3, about �1.2599.

72. x3 + x2 � 4x� 4 = (x� 2) (x+ 1) (x+ 2).
So, the zeros are x = �2, �1 and 2.

73. Substitute y = x2 + 2x+ 3 into y = x+ 5
x2 + 2x+ 3 = x+ 5

x2 + x� 2 = 0
(x+ 2) (x� 1) = 0
x = �2 or x = 1
When x = �2, y = 3
When x = 1, y = 6
The points of intersection are (�2, 3) and
(1, 6).

74. Substitute y = x2+4x�2 into y = 2x2+x�6
x2 + 4x� 2 = 2x2 + x� 6
x2 � 3x� 4 = 0
(x� 4)(x+ 1) = 0
x = 4 or x = �1
When x = 4, y = 30
When x = �1, y = �5
The points of intersection are (4, 30) and
(�1, �5).

75. If B (h) = �1.8h + 212, then we can solve
B (h) = 98.6 for h as follows:
98.6 = �1.8h+ 212
1.8h = 113.4

h =
113.4

1.8
= 63

This altitude (63, 000 feet above sea level, more
than double the height of Mt. Everest) would
be the elevation at which we humans boil alive
in our skins. Of course the cold of space and
the near-total lack of external pressure create
additional complications which we shall not try
to analyze.

76. Let x represent compression and L (x) repre-
sent spin rate. Given the points (120, 9100)
and (60, 10, 000), the linear function is
y = �15 (x� 60) + 10, 000.
The spin rate of a 90-compression ball is 9550,
and the spin rate of a 100-compression ball is
9400.

77. This is a two-point line-fitting problem. If a
point is interpreted as (x, y)=(temperature,
chirp rate), then the two given points are
(79, 160) and (64, 100) . The slope being
160� 100

79� 64
=

60

15
= 4, we could write

y � 100 = 4 (x� 64) or y = 4x� 156.

78. From problem 77 we know the temperature is

a function of chirping rate, T (r) =
1

4
r + 39,

where r is measured in chirps per minute. The
number of chirps in 15 seconds will then be
1

4
r, and the temperature may conveniently be

found by adding 39.
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79. Her winning percentage is calculated by the

formula P =
100w

t
, where P is the winning

percentage, w is the number of games won
and t is the total number of games. Plugging
in w = 415 and t = 415 + 120 = 535, we
find her winning percentage is approximately
P ⇡ 77.57, so we see that the percentage dis-
played is rounded up from the actual percent-
age. Let x be the number of games won in a
row. If she doesn’t lose any games, her new
winning percentage will be given by the for-

mula P =
100(415 + x)

535 + x
. In order to have her

winning percentage displayed as 80%, she only
needs a winning percentage of 79.5 or greater.
Thus, we must solve the inequality

79.5  100(415 + x)

535 + x

79.5  100(415 + x)

535 + x
79.5 (535 + x)  41500 + 100x
42532.5 + 79.5x  41500 + 100x
1032.5  20.5x
50.4  x
(In the above, we are allowed to multiply both
sides of the inequality by 535 + x because we
assume x(the number of wins in a row) is pos-
itive.) Thus she must win at least 50.4 times
in a row to get her winning percentage to dis-
play as 80% Since she can’t win a fraction of a
game, she must win at least 51 games in a row.

0.2 Graphing Calculators and

Computer Algebra Sys-

tems

1. (a) Intercepts: x = ±1, y = �1. Minimum
occur at (0,�1). No asymptotes.

1.6

0.0

−0.8

−1.6

y

2.0

1.2

0.8

0.4

−0.4

−1.2

−2.0

x
210−1−2

(b) Intercepts: y = 8 (No x-intercepts). Min-
imum at (�1, 7). No asymptotes.

x

18

14

2

−10 6

16

8

4

8

6

0
−8 10−6 40

12

−2 2

y 10

−4

2. (a) Intercepts: x =
p
3 = ±1.73, y = 3.

Maximum at (0, 3). No asymptotes.

x

5

1

−1
−5

4

0−4 3

−2

−3

3

−5

−1 2

2

−2−3 4

−4

0

y

1 5

(b) Intercepts: x ⇡ 0.566, 19.434, y = �11.
Maximum at (10, 89). No asymptotes.

15105

y

0
20

50

25

75

−5 0
x

100

25

3. (a) Intercepts: x = �1, y = 1. No extrema
or asymptotes.
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4
0

x −4
−5 2

12

−1−3

−8

1−4

20

4

−2

−12

8

−20

3

16

−16

y

50

(b) Intercepts:
x ⇡ �4.066, �0.72 and 4.788, y =
�14. Local minimum: Approximately
at (2.58, �48.427). Local maximum:
Approximately at (�2.58, 20.4225). No
asymptotes.

2.5
0

5.0

50

25

−25

0.0

−50

−2.5−5.0

4. (a) Intercepts: x = 3
p
10 ⇡ 2.1544, y = 10.

No extrema or asymptotes.

1

5

−5

2

15

10

0
0−1−2

(b) Intercepts: x ⇡ 0.0334, �5.494 and 5.46,
y = �1. Local minimum: Approximately
at (�3.16,�64.24). Local maximum: Ap-
proximately at (3.16, 62.245). No asymp-
totes.

2.5
0

5.0

50

25

−25

0.0

−50

−2.5−5.0

5. (a) Intercepts: x = ±1, y = �1. Minimum at
(0,�1). No asymptotes.

−1.6

−2

1.6

0.0

0.4

0

−1.2

2

y

1

−2.0

x

0.8

−0.4

2.0

−1

−0.8

1.2

(b) Intercepts: x ⇡ 0.475, �1.395, y =
�1. Minimum at (approximately)
(�1/ 3

p
2,�2.191). No asymptotes.

2−2
x

−1

2

0
0

−1

−2

y

1

1

−3

6. (a) Intercepts: x = ± 4
p
2, y = 2. Maximum

at (0, 2). No asymptotes.
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10

−3

−2

2

1

−1−2

−1

3

0

y

3
x

−3

2

(b) Intercepts: x ⇡ ±2.33, and ±0.74, y =
3. Local maximum at (0, 3). Minima at
(±

p
3,�6). No asymptotes.

3
x

2.5

0.0
1−3

y

0

−5.0

−2 −1 2

−7.5

−10.0

5.0

−2.5

7. (a) Intercepts: x ⇡ �1.149, y = 2. No ex-
trema or asymptotes

0

−2

5

0

−4

−3

−5

x
1

−1

3

2

1

2−1

4

−2

y

(b) Intercepts: x ⇡ 0.050, y = �1. The two

local maxima occur at x =

s

24�
p
176

10

and x = �

s

24 +
p
176

10
, while the two

local minima occur at x =

s

24 +
p
176

10

and x = �

s

24�
p
176

10
. No asymptotes.

−20

−2

8

3

−12

0

x

16

20

−4

4

−8

1−3 0

12

−1

−16

y

2

8. (a) Intercepts: x = 5
p
12, y = 12. No extrema

or asymptotes

y

−2

−10

0

−5

−1

10

20

210

15

5

x

(b) Intercepts: x ⇡ �4.56, y =
1. Local maximum at approximately
(�3.67, 143.42). Local Minimum at ap-
proximately (�0.33, 0.98), No asymp-
totes.

2−2

−50

y

150

50

200

100

x
0−4

0

Close up of the behavior near the origin:
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0.0−0.1

false

1.03

−0.3

1.01

1.04

−0.2

1.02

1.0

−0.4

0.99

−0.5
x

0.20.1

9. (a) Intercepts: y = �3 (no x-intercepts). No
extrema. Horizontal asymptote y = 0.
Vertical asymptote x = 1.

x
0−2

8

5−4 31

y

2 4

6

10

−4

−2

−10

−1−3

−8

−5

2

−6

4

0

(b) Intercepts y = 0 (and x = 0). No ex-
trema. Horizontal asymptote y = 3. Ver-
tical asymptote x = 1.

−4

y

x

8

4

4
0

−8

−6

1

10

6

5

2

−2
3

−10

−1−3−5 0

−4

2−2

(c) Intercepts y = 0 (and x = 0). Lo-
cal maximum at (0, 0).Local minimum at
(2, 12).Vertical asymptote x = 1. Slant
asymptote y = 3x+ 3.

10

20

−5

−20

x
543

30

−10

−3 2

y

0−1−4 1−2
0

10. (a) No x-intercept. y-intercept at y = 2. No
extrema. Horizontal asymptote y = 0.
Vertical asymptote x = �2.

10

20

−5

−20

x
51 43

30

−10

−3 2

y

0−1−4 −2
0

(b) Intercepts x = 0, y = 0. No extrema.
Horizontal asymptote y = 4. Vertical
asymptote x = �2.

y

16

8

4
x

−10
0

20

10

12

−8

0

4

2

−20

−12

−2−6 6−8
−4

8−4

−16

(c) Intercepts x = 0, y = 0. Local maximum
at (�4,�32). Local minimum at (0, 0).
Vertical asymptote x = �2. Slant asymp-
tote y = 4x� 8.
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−10

−50

50

30

10

2

−30

−10

y

x

40

20

8

−40

0

−20

0−4−8 104 6−6 −2

11. (a) Intercepts are y = � 1

2

(No x-intercepts).
Local maximum: At

�

0,� 1

2

�

. Horizontal
asymptote: y = 0. Vertical asymptotes:
x = ±2

4

1−2−3

2

0
2

1

−3

−5
x

−4

y

−4

3

5

−1 0
−1

3 4 5

−2

−5

(b) Intercepts: x = 0, y = 0. No extrema.
Vertical asymptotes:x = ±2. No horizon-
tal asymptotes.

4
−1

−2

4

x

−3

−4

5

y

2

3

1 5

−2

1

−1 20

−4

3−5
0

−5

−3

(c) Intercepts: x = 0, y = 0. Local max-
imum: At (0, 0). Vertical asymptotes:
x = ±2. Horizontal asymptotes: y = 2

2.5

5.0

−5.0

0.0

y

x
7.5

−7.5

2.5−2.5

−2.5

5.0

−7.5
0.0

−5.0

7.5

12. (a) No intercepts.

Local maximum: At (0,�2

3
). Vertical

asymptotes: At x = ±3. Horizontal
asymptote: y = 0

6

2−2 10−4

4

−10

8

y

−2

8

−6

0

−8

−8 0−10 −6 4
x

−4

10

6

2

(b) Intercepts: x = 0, y = 0. No extrema.
Vertical asymptotes: x = ±3. No hori-
zontal asymptotes.

−8

6

6

y

−6−10

−10

4

−2
820

−6

10

10

−4

2

4

8

0

x
−4 −2−8

(c) Intercepts: x = 0, y = 0. Local max-
imum: At (0, 0). Vertical asymptotes:
x = ±3. Horizontal asymptote: y = 6
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5

10
0

x

10

0 5

y

15−15

−10

−5

−5

−10

−15

15

13. (a) Intercepts: y =
3

4
(no x-intercepts). Max-

imum at (0,
3

4
). Horizontal asymptote

y = 0.

0.2

0.3

−10
x

5

0.9

0

0.8

0.7

0.5

0.0
10−5

0.1

−15

0.4

15

0.6

y

(b) No x-intercept. y-intercept at y =
2

3
.

Maximum at (0,
2

3
). Horizontal asymp-

tote y = 0.

0.3

10

0.4

15
x

0.6

−10 −5

0.1

5

0.2

y

−15 0

0.8

0.0

0.5

0.7

14. (a) Intercepts: x = �2, y = �1

3
. No ex-

trema. Horizontal asymptotes at y = 0.
Vertical asymptotes at x = �3 and x = 2.

4

1−2−3

2

0
2

1

−3

−5
x

−4

y

−4

3

5

−1 0
−1

3 4 5

−2

−5

(b) Intercepts at x = 1, y = � 1

3

. Local maxi-
mum at approximately (3.83, 0.09). Local
minimum at approximately (�1.83, 2.91).
Horizontal asymptote y = 0. Vertical
asymptotes x = �3 and x = �1.

5.0

2.5

7.5

5.0

y

−2.5
x

−5.0

0.0−7.5 −5.0
0.0

−2.5

−10.0

2.5

10.0

15. (a) Intercepts: x = 0, y = 0. No extrema.
Horizontal asymptotes: x = ±3. No ver-
tical asymptotes.

y

82

−4

−5

−8 −4−6 4

−3

60
0

4

1

−10
x

−2 10

2

3

5

−1

−2

(b) No extrema or intercepts. Vertical
asymptotes: x = ±2. Horizontal asymp-
totes: y = ±3
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y

x
2

−8

−8

6

10

−10 60−2
0

−4 8 10
−2

−6

−10

−6 4

8

2

−4

4

16. (a) Intercepts: x = 0, y = 0. No extrema.
Horizontal asymptotes: y = ±2. No ver-
tical asymptotes.

5

−3

−1

y

40

−5

3
0

5

2

2
−1

−3

1

−5 1

4

−4

−4

3

−2

−2
x

(b) No intercepts or extrema. Vertical
asymptotes: x = ±1. Horizontal asymp-
totes: y = ±2

−4−5 3

4

2

−3

50
−1

−1

−4

42
0

5

−2
x

1

−5

y

3

−3

1

−2

17. Vertical asymptotes where
x2 � 4 = 0 ) x = ±2.

18. Vertical asymptotes where
x2 � 9 = 0 ) x = ±3.

19. Vertical asymptotes where
x2 + 3x� 10 = 0
) (x+ 5) (x� 2) = 0
) x = �5 or x = 2

20. Vertical asymptotes where
x2 � 2x� 15 = (x� 5) (x+ 3) = 0

) x = �3 or x = 5

21. Vertical asymptotes where
x3 + 3x2 + 2x = 0
) x

�

x2 + 3x+ 2
�

= 0
) x (x+ 2) (x+ 1) = 0
) x = 0,�2 or x = �1
Since none of these x values make the numer-
ator zero, they are all vertical asymptotes.

22. Vertical asymptotes where
x2 � 9 = 0 ) x = ±3.

23. A window with �0.1  x  0.1 and �0.0001 
y  0.0001 shows all details.

8

−6

−0.05

−4

10−5

−8

−2
−0.1

y

0.05 0.1

4

0.0

2

0

6

x

10

24. A window with �4  x  12 and �1600  y 
2000 shows all details.

y

500

−500

−1,500

2,000

1,500

1,000

0

−1,000

x
10.07.55.02.50.0−2.5

25. A window with �15  x  15 and �80  y 
80 shows all details.

−10−15 −5

−25

−75

75

5

−50

y

0
15100

50

25

x
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26. A window with �3  x  4 and �80  y  30
shows all details.

y

4

−20

−40

0
0

−1 3

−70

10

−50

−60

30

−30

−10

20

−3 1

−80

x
−2 2

27. A window with �10  x  10 and �5  y  2
shows all details.

−1

10−2

2

0

y

8

−4

1

−3

−2

x
2 6−8 −6

−5

−10 0 4−4

28. A window with�10  x  10 and�11  y  2
shows all details.

−4

−2.5

−7.5

−8
x

1086420−2

y

0.0

−5.0

−6

−10.0

−10

29. Graph of y =
p

(x� 1)� (x2 � 1) :

1.2
0.0

1.0 1.05 1.15

0.05

0.95 1.25

y 0.1

−0.1

1.1

−0.05
x

0.15

0.9

0.2

The blow-up makes it appear that there are
two intersection points. Solving algebraically,p
x� 1 = x2 � 1 (for x � 1) when

x� 1 =
�

x2 � 1
�

2

= ((x� 1) (x+ 1))2

= (x� 1)2(x+ 1)2

We see that x = 1 is one solution (obvious from
the start), while for any other, we can cancel
one factor of x� 1 and find
1 = (x� 1) (x+ 1)2 =

�

x2 � 1
�

(x+ 1)

= x3 + x2 � x� 1
Hence x3+x2�x�2 = 0. By solver or spread-
sheet, this equation has only the one solution
x ⇡ 1.206.

30. Graph of y =
p

(x2 + 4)� (x2 + 2) :

2−4 3 6

y

−2

−2.5

−6

−10.0

0.0

−7.5

x
1

−5.0

5−3 0−1 4−5

Graph shows one intersection at x = 0.

31. Graph of y = (x3 � 3x2)� (1� 3x) :

1.51.00.0 2.0

−1.5

−0.5

0.0

0.5

0.5
x

−2.0

y −1.0

1.0

The graph shows the only intersection near
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x = 1. Solving algebraically,
x3 � 3x2 = 1� 3x

) x3 � 3x2 + 3x� 1 = 0

) (x� 1)3 = 0

) x = 1
So there is only one solution: x = 1.

32. Graph of y = (x3 + 1)� (�3x2 � 3x) :

−1.0

−1.0

x

−0.4

−0.5

0.4

y

0.2

0.0
−0.2

−1.5

0.8

−0.8

−0.6

0.6

−2.0

1.0

0.0

Graph shows only intersection near x = �1.
Algebraically, x3 + 1 = �3x2 � 3x when
x3 + 3x2 + 3x+ 1 = (x+ 1)3 = 0 and the only
solution is x = �1.

33. Graph of y = (x2 � 1)
2 � (2x+ 1)3 :

5.0−2.5

−500

x

−750

−1,000

10.02.50.0
0

−250

−5.0 7.5

y

After zooming out, the graph shows that there
are two solutions: one near zero, and one
around ten. Algebraically,
�

x2 � 1
�

2/3

= 2x+ 1

)
�

x2 � 1
�

2

= (2x+ 1)3

) x4 � 2x2 + 1 = 8x3 + 12x2 + 6x+ 1
) x4 � 8x3 � 14x2 � 6x = 0
) x

�

x3 � 8x2 � 14x� 6
�

= 0
We thus confirm the obvious solution x = 0,
and by solver or spreadsheet, find the second
solution x ⇡ 9.534.

34. Graph of y = (x+ 1)2 � (2� x)3 :

y

10

x

−4

−6

8

2

2

−10

−2
−1

−8

6

0
0

4

1−2

Graph shows one solution at approximately
x = 0.62.

35. Graph of y = cosx� (x2 � 1) :

3

−4

−1−2

−3

5

−5

−2
y

1 2

1

0
0

−1

2

x

4

The graph shows that there are two solutions:
x ⇡ ±1.177 by calculator or spreadsheet

36. Graph of y = sinx� (x2 + 1) :

−1

0 2

−2

−1

y

1

0

−4

x
−2 1

−3

Graph shows no intersections.

37. Calculator shows zeros at approximately
�1.879, 0.347 and 1.532.

38. Calculator shows zeros at approximately
3.87, 0.79 and �0.66.

39. Calculator shows zeros at approximately .5637
and 3.0715.

40. Calculator shows zeros at approximately 1 and
0.54.
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41. Calculator shows zeros at approximately
�5.248 and 10.006.

42. Calculator shows zeros at approximately
2.02,� 0.26,� 1.10 and �2.04.

43. The graph of y = x2 on the window �10  x 
10,�10  y  10 appears identical (except for
labels) to the graph of y = 2(x� 1)2 + 3 if the
latter is drawn on a graphing window centered
at the point (1, 3) with 1�5

p
2  x  1+5

p
2,

�7  y  13.

44. The graph of y = x4 is below the graph of
y = x2 when �1  x  1, and above it when
x > 1. Both graphs have roughly the same up-
ward parabola shape, but y = x4 is flatter at
the bottom.

45.
p

y2 is the distance from (x, y) to the x-axis
q

x2 + (y � 2)2 is the distance from (x, y) to

the point (0, 2). If we require that these be the
same, and we square both quantities, we have
y2 = x2 + (y � 2)2

y2 = x2 + y2 � 4y + 4

4y = x2 + 4

y =
1

4
x2 + 1

In this relation, we see that y is a quadratic
function of x. The graph is commonly known
as a parabola.

46. The distance between (x, y) and the x-axis is
p

y2. The distance between (x, y)and (1, 4)

is
q

(x� 1)2 + (y � 4)2. Setting these equal

and squaring both sides yields y2 = (x� 1)2 +
(y � 4)2 which simplifies to y = 1

8

(x� 1)2+16
(a parabola).

0.3 Inverse Fuctions

1. f (x) = x5 and g (x) = x1/5

f (g (x)) = f
⇣

x1/5

⌘

=
⇣

x1/5

⌘

5

= x

g (f (x)) = g
�

x5

�

=
�

x5

�

1/5

= x(5/5 ) = x

2. f (x) = 4x3 and g (x) =

✓

1

4
x

◆

1/3

f (g (x)) = 4

 

✓

1

4
x

◆

1/3

!

3

= 4

✓

1

4
x

◆

= x

g (f (x)) =

✓

1

4
4x3

◆

1/3

= x

3. f(x) = 2x3 + 1 and g(x) = 3

r

x� 1

2

f (g (x)) = 2

 

3

r

x� 1

2

!

3

+ 1

= 2

✓

x� 1

2

◆

+ 1 = x

g (f (x)) =
3

r

f (x)� 1

2

=
3

r

2x3 + 1� 1

2
=

3
p
x3 = x

4. f(x) =
1

x+ 2
and g(x) =

1� 2x

x

f (g (x)) =
1

1�2x

x

+ 2
=

1
1�2x

x

+ 2x

x

= x

g (f (x)) =
1� 2

⇣

1

x+2

⌘

1

x+2

=

✓

1� 2

✓

1

x+ 2

◆◆

(x+ 2)

= (x+ 2)� 2 = x

5. The function is one-to-one since f(x) = x3 is
one-to-one. To find the inverse function, write
y = x3 � 2
y + 2 = x3

3
p

y + 2 = x
So f�1 (x) = 3

p
x+ 2

−1 10−5 −2

4

3

54
x

0

−1

2

−4

1

−3

y
−3

2

−2

−4 3

−5

5

6. The function is one-to-one with inverse
f�1 (x) = 3

p
x� 4
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−4

8

−8 4

2

y

0
−6

4

−10

6

0

−6

10−2

10

−4 8
−2x

−8

2 6−10

7. The graph of y = x5is one-to-one and hence
so is f(x) = x5 � 1. To find a formula for the
inverse, write
y = x5 � 1
y + 1 = x5

5
p

y + 1 = x
So f�1 (x) = 5

p
x+ 1

y

0 4−5 −3

−3

4

3 5

5

2
−1

−2

1

−4

−5

−1

2

−2
0

3

−4

1

x

8. The function is one-to-one with inverse
f�1 (x) = 5

p
x� 4.

5

0
−5

2

−3

−3 2 5

4

x

−4

−1
0

−2

1

−5

−1−2 3

y

1

−4

3

4

9. The function is not one-to-one since it is an
even function (f(�x) = f(x)). In particular,
f (2) = 18 = f(�2).

10. Not one-to-one. Fails horizontal line test.

11. Here, the natural domain requires that the
radicand (the object inside the radical) be
nonnegative. Hence x � �1 is required, while

all function values are non negative. Therefore
the inverse, if defined at all, will be defined
only for nonnegative numbers. Sometimes one
can determine the existence of an inverse in
the process of trying to find its formula. This
is an example: Write

y =
p

x3 + 1
y2 = x3 + 1
y2 � 1 = x3

3
p

y2 � 1 = x
The left side is a formula for f�1(y), good for

y � 0. Therefore, f�1(x) = 3
p

x2 � 1 when-
ever x � 0.

0

21

−2

−2

3

3

2

−1 x
−1

y
1

0

12. Not one-to-one. Fails horizontal line test.

13. (a) Since f (0) = �1, we know f�1(�1) = 0

(b) Since f (1) = 4, we know f�1(4) = 1

14. (a) Since f (0) = 1, we know f�1(1) = 0.

(b) Since f (2) = 13, we know f�1 (13) = 2.

15. (a) Since f (�1) = �5, we know f�1(�5) =
�1.

(b) Since f (1) = 5, we know f�1 (5) = 1.

16. (a) Since f (2) = 38, we know f�1(38) = 2

(b) Since f (1) = 3, we know f�1 (3) = 1.

17. (a) Since f (2) = 4, we know f�1(4) = 2.

(b) Since f (0) = 2, we know f�1 (2) = 0.

18. (a) Since f (1) = 3, we know f�1(3) = 1

(b) Since f (0) = 1, we know f�1 (1) = 0.
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19. Reflect the graph across the line y = x.

−4

y

x

4

−2

2

5

3

4 5−2 2
−1

1

−5

−3 1−4−5

−3

0−1 3
0

20. Reflect the graph across the line y = x.

−3

2 5
0

−1
3

2

0

3

−3−5 1−2 −1

−2

5

−4

1

4

−5

−4

4

x

y

21. Reflect the graph across the line y = x.

4−3 −2−4

−2

0

−4

3

−1
5

−5

x
1

y

1

0

2

−1 3

4

2−5

−3

5

22. Reflect the graph across the line y = x.

2.4

−3.2

−2−4

−2.4

4.0

−4.0

−1.6
y

2 4

0.8

0
0.0

−0.8

1.6

x

3.2

23. The range of function f is the domain of its in-

verse. Therefore, if the range of f is all y > 0,
then the domain of the f�1 is x > 0.

24. If the graph of f includes (a, b), then b =
f (a), which implies f�1(b) = a. Therefore,
the graph of f�1 includes (b, a).

25. If the line y = 3 does not intersect the graph
of f , there is no x such that f (x) = 3. Hence
f�1 is not defined at x = 3.

26. The range of function f�1 is the domain of the
function f . Therefore, if the domain of f is
all real numbers, the range of f�1 is all real
numbers.

27. If f(x) = x3 � 5, then the horizontal line test
is passed, so f(x) is one-to-one.

−3.2

−6 8

2.4

x

0.0
−8 4

4.0

y

−2

1.6

−2.4

3.2

−0.8
6−4 0−10

−1.6

2 10

−4.0

0.8

28. Not one-to-one. Fails horizontal line test.

29. The function f(x) = x3 + 2x� 1 easily passes
the horizontal line test and is invertible.

0.4

x

y

0

0.8

−1.2

−1.6

−10 4

1.2

−4
−0.4

−8 6 8

−0.8

−6
0.0

1.6

102−2

30. Not one-to-one. Fails horizontal line test.

31. Not one-to-one. Fails horizontal line test.

32. The function f(x) = x5+4x3�2 is one-to-one.
The graph of the inverse is
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2 10

−1.0

1.0

−6

−0.5

6−2
0.0

y

8−10 0

0.5

x
4−4−8

33. If f(x) =
1

x+ 1
, then the horizontal line test

is passed, so f(x) is one-to-one.

y

4

4

2

0

−2

1−4
x

−4

−5

5

5

3

1

30 2

−3

−2 −1−3−5
−1

34. Not one-to-one. Fails horizontal line test.

35. If f(x) =
x

x+ 4
, then the horizontal line test

is passed, so f(x) is one-to-one.

y

16

4

8

2

−8

−16

0
x

20

5

12

4

3
0

−4

−12

1

−20

−1−2−3−4−5

36. The function f(x) =
xp
x2+4

is one-to-one.

The graph of the inverse is

8

6

0

−2

−10

1.0

y

4

2

−1.0

−4

0.0
x

0.5−0.5

10

−6

−8

37. f (g (x)) = (g (x))2 =
�p

x
�

2

= x

g (f (x)) =
p

f (x) =
p
x2 = |x|

Because x � 0, the absolute value is the same
as x. Thus these functions (both defined only
when x � 0) are inverses.

6

5 9

3

5

2

6 71

8

x

4

2

y

3

1

10

8

9

40
0

7

10

38. f (x) = x2 � 1 (x � 0) and g (x) =p
x+ 1 (x � �1). f (g (x)) =

�

p
x+ 1

�

2 � 1 =

x and g (f (x)) =
p

(x2 � 1) + 1 = x (because
x � 0), therefore f and g are inverse functions.

0
0

−8

−6

4

6

−10

8

8

2

−4

−8 −2 2 6−4

4

−2
−10 −6 10

10

39. With f(x) = x2 defined only for x  0, (shown
below as the upper left graph) the horizontal
line test is easily passed. The formula for the
inverse function g is g(x) = �

p
x shown below

as the lower right graph and defined only for
x � 0.
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3

1
−1

3−1

−5

−4

2

0

−3

−2
0

2

4

−4

5

1

−2

−5 −3

5

4

40. The inverse function is f�1(x) = �
p
x� 2.

−10

8
0

−6

−8

−4 6−8−10

−4

−2
−2

8

4

4

0 2

6

−6 10

2

10

41. The graph of y = (x� 2)2 is a simple parabola
with vertex at (2, 0). If we take only the right
half {x � 2} (shown below as the lower right
graph) the horizontal line test is easily passed,
and the formula for the inverse function g is
g(x) = 2 +

p
x defined only for x � 0 and

shown below as the upper left graph.

4

2 64 10−2

2

−8 8

−8

−10

−2

−4

6

−4 0−6

10

−6

−10

8

0

42. f (x) = (x+ 1)4 is one-to-one for x � �1. The
inverse is f�1 (x) = x1/4 � 1 for x � 0.

1.2

1−2
−0.4

−1.2

−0.8

2.0

0.0
0

−1.6

2

0.8

−1

1.6

0.4

−2.0

43. In the first place, for f(x) to be defined,
the radicand must be nonnegative, i.e., 0 
x2 � 2x = x(x � 2) which entails either x  0
or x � 2. One can restrict the domain to ei-
ther of these intervals and have an invertible
function. Taking the latter for convenience,
the inverse will be found as follows:
y =

p

x2 � 2x
y2 = x2 � 2x = (x� 1)2 � 1
y2 + 1 = (x� 1)2
p

y2 + 1 = ± (x� 1)
With x � 2 and the left side nonnegative, we
must choose the plus sign. We can then write
x = 1 +

p

y2 + 1. The right side is now a
formula for f�1(y) seemingly good for any y,
but we recall from the original formula (as a
radical) that y must be nonnegative. We sum-
marize the conclusion:

f�1 (x) = 1 +
p

x2 + 1, (x � 0)

This is the upper graph below. The lower

graph is the original f(x) =
p

x2 � 2x. Had we
chosen {x  0}, the “other half of the domain”,
and called the new function h, (same formula
as f but a di↵erent domain, not shown) we
would have come by choosing the minus sign,
to the formula

h�1 (x) = 1�
p

x2 + 1, (x � 0) .

The two inverse formulae, if graphed together,
fill out the right half of the hyperbola �x2 +
(y � 1)2 = 1
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−2 4 50 1

2

0

4

2

1

−3

−5

−1

−2

−4−5 −3
−1

5

3

−4

3

44. y =
x

x2 � 4
is one-to-one for x > 2. To

solve for x, clear the denominator and use
the quadratic formula yx2 � x � 4y = 0 so

x =
1±

p

1 + 16y2

2y
. Since x > 2, we use the

plus sign. Switch x and y to get f�1 (x) =
1 +

p
1 + 16x2

2x
for x > 0.

6

1

6

10

8

84 1072
0

30

3

9

9

4

5

7

1

2

5

45. The function sin(x) (solid below) is increasing
and one-to-one on the interval �⇡

2

 x  ⇡

2

.
One does not “find” the inverse in the sense
of solving the equation y = sin (x) and obtain-
ing a formula. It is done only in theory or
as a graph. The name of the inverse is the
“arcsin” function (y = arcsin(x) shown dot-
ted), and some of its properties are developed
in the next section.

1.0

1.0

0.0
0.0

−1.0

x
1.5

1.5

0.5

0.5

−0.5

−1.5

−0.5−1.0−1.5

46. f(x) = cosx(solid graph) is one-to-one for
0  x  ⇡. The inverse is cos�1x(dotted
graph) for �1  x  1

x

2.8

0.0

1.2

−0.4

3.2

0.4

2.4

2.0

2

0.8

0

−0.8

31

1.6

−1

47. A company’s income is not in fact a function of
time, but a function of a time interval (income
is defined as the change in net worth). When
income is viewed as a function of time, it is usu-
ally after picking a fixed time interval (week,
month, quarter, or year) and assigning the in-
come for the period in a consistent manner to
either the beginning or the ending date as in
“...income for the quarter beginning...”. This
much said, income more often than not rises
and falls over time, so the function is unlikely
to be one-to-one. In short, income functions
usually do not have inverses.

48. Height of a person over time is not one-to-one
since it stays fairly constant.

49. During an interval of free fall following a drop,
the height is decreasing with time and (barring
a powerful updraft, as with hail) an inverse ex-
ists. After impact, if there is a bounce then
some of the heights are repeated and the func-
tion is no longer one-to-one on the expanded
time interval.

50. Height of a ball thrown upward will be one-to-
one until it reaches its apex, so on this domain
it has an inverse.

51. Two three-dimensional shapes with congruent
profiles will cast identical shadows if the con-
gruent profiles face the light source. Such ob-
jects need not be fully identical in shape. (For
an example, think of a sphere and a hemisphere
with the flat side of the latter facing the light).
The shadow as a function of shape is not one-
to-one and does not have an inverse.

52. The number of calories burned increases as
running speed increases. This is likely one-to-
one and will have an inverse.
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53. The usual meaning of a “ten percent cut in
salary” is that the new salary is 90% of the
old. Thus after a ten percent raise the salary
is 1.1 times the original, and after a subse-
quent ten percent cut, the salary is 90% of the
raised salary, or .9 times 1.1 times the origi-
nal salary. The combined e↵ect is 99% of the
original, and therefore the ten percent raise
and the ten percent cut are not inverse oper-
ations. The 10%-raise function is y = f (x) =
(1.1)x, and the inverse relation is x = y/1.1 =
(0.90909...) y. Thus f�1 (x) = (0.90909)x and
in the language of cuts, this is a pay cut of
fractional value 1 � 0.90909... = 0.090909... or
9.0909...percent.

54. (a) If x is the original salary of the employee,
then the new salary is y = f(x) = 1.06x+

500. The inverse relation is x =
y � 500

1.06
.

Therefore, f�1(x) =
x� 500

1.06
.

(b) If x is the original salary of the em-
ployee, then the new salary is y = f (x) =
1.06 (x+ 500). The inverse relation is x =
y � 530

1.06
. Therefore, f�1(x) =

x� 530

1.06
.

0.4 Trigonometric and Inverse

Trigonometric Functions

1. (a)
⇣⇡

4

⌘

✓

180�

⇡

◆

= 45�

(b)
⇣⇡

3

⌘

✓

180�

⇡

◆

= 60�

(c)
⇣⇡

6

⌘

✓

180�

⇡

◆

= 30�

(d)

✓

4⇡

3

◆✓

180�

⇡

◆

= 240�

2. (a)

✓

3⇡

5

◆✓

180�

⇡

◆

= 108�

(b)
⇣⇡

7

⌘

✓

180�

⇡

◆

⇡ 25.71�

(c) 2

✓

180�

⇡

◆

⇡ 114.59
�

(d) 3

✓

180�

⇡

◆

⇡ 171.89�

3. (a) (180�)
⇣ ⇡

180�

⌘

= ⇡

(b) (270�)
⇣ ⇡

180�

⌘

=
3⇡

2

(c) (120�)
⇣ ⇡

180�

⌘

=
2⇡

3

(d) (30�)
⇣ ⇡

180�

⌘

=
⇡

6

4. (a) 40�
⇡

180�
=

2⇡

9

(b) 80�
⇡

180�
=

4⇡

9

(c) 450�
⇡

180�
=

5⇡

2

(d) 390�
⇡

180�
=

13⇡

6

5. 2 cos (x)� 1 = 0 when cos (x) = 1/2. This oc-
curs whenever x = ⇡

3

+ 2k⇡ or x = �⇡

3

+ 2k⇡
for any integer k.

6. 2 sinx + 1 = 0 when sinx = � 1

2

. This occurs
whenever x = �⇡

6

+2k⇡ or x = � 5⇡

6

+2k⇡ for
any integer k.

7.
p
2 cos (x)� 1 = 0 when cos (x) = 1/

p
2. This

occurs whenever x = ⇡

4

+2k⇡ or x = �⇡

4

+2k⇡
for any integer k.

8. 2 sinx�
p
3 = 0 when sinx =

p
3

2

. This occurs
whenever x = ⇡

3

+2k⇡ or x = 2⇡

3

+2k⇡ for any
integer k.

9. sin2x�4 sinx+3 = (sinx� 1) (sinx� 3) when
sinx = 1 (sinx 6= 3 for any x). This occurs
whenever x = ⇡

2

+ 2k⇡ for any integer k.

10. sin2x�2 sinx�3 = (sinx� 3) (sinx+ 1) when
sinx = �1 (sinx 6= 3 for any x). sinx = �1
whenever x = 3⇡

2

+ 2k⇡ for any integer k.

11. sin2x+ cosx� 1 =
�

1� cos2x
�

+ cosx� 1

= (cosx) (cosx� 1) = 0
when cosx = 0 or cosx = 1. This occurs
whenever x = ⇡

2

+ k⇡ or x = 2k⇡ for any
integer k.

12. Use the sine double angle formula to get
2 sinx cosx � cosx = (2 sinx� 1) cosx = 0
then (2 sinx� 1) = 0 whenever x = ⇡

6

+ 2k⇡
or x = 5⇡

6

+ 2k⇡ and cosx = 0 whenever
x = ⇡

2

+ k⇡ for any integer k.

13. cos2x + cosx = (cosx) (cosx+ 1) = 0 when
cosx = 0 or cosx = �1 this occurs whenever
x = ⇡

2

+ k⇡ or x = ⇡ + 2k⇡ for any integer k.

14. sin2x � sinx = sinx (sinx� 1) = 0 whenever
x = k⇡ or x = ⇡

2

+ 2k⇡ for any integer k.
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15. The graph of f(x) = sin 2x.

4 6

1.0

0.6

3

0.2

−1
−0.2

1

−0.6

−3

−1.0

2

0.8

5

0.4

0

0.0

−0.4

−2

−0.8

−4−5−6

16. The graph of f(x) = cos 3x.

x
320-1-2-3

0.5

0
1

-0.5

1

-1

17. The graph of f(x) = tan 2x.

x

8

2

0

−4

0

−8

y

10

6

3

4

2

−2
1

−6

−10

−1−2−3

18. The graph of f(x) = sec 3x.

x
321

y

0

4

-1

2

0
-2

-2

-4

-3

19. The graph of f(x) = 3 cos (x� ⇡/2).

2

0.0 2.5−2.5

0

−2

5.0

4

−4

−5.0
x

y

20. The graph of f(x) = 4 cos (x+ ⇡).

4−2 31

2.4

2

4.0

3.2

−1
−0.8

−2.4

−4.0

−3.2

1.6

0

0.8

0.0

−1.6

−3−4−5−6 5 6

21. The graph of f(x) = sin 2x� 2 cos 2x.
3

2

−1

−2

x
2

1

−2

0

−3

40−4

y

22. The graph of f(x) = cos 3x� sin 3x.

x
321

-0.5

0
-1-2

1

0.5

-1

0-3

23. The graph of f(x) = sinx sin 12x.
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y

1.5

1

0.5

0

-0.5

-1

-1.5

x

420-2-4

24. The graph of f(x) = sinx cos 12x.

1

0.6

−0.6

2

1.0

−2

−1.0

0.4

−0.4

−1

0.8

0.0

−3 −0.2 0

0.2

3

−0.8

25. Amplitude is 3, period is 2⇡

2

= ⇡,
frequency is 1

⇡

.

26. Amplitude is 2, period is 2⇡

3

,
frequency is 3

2⇡

.

27. Amplitude is 5, period is 2⇡

3

,
frequency is 3

2⇡

.

28. Amplitude is 3, period is 2⇡

5

,
frequency is 5

2⇡

.

29. Amplitude is 3, period is 2⇡

2

= ⇡, frequency is
1

⇡

. We are completely ignoring the presence of
�⇡/2. This has an influence on the so-called
“phase shift”which will be studied in Chapter
6.

30. Amplitude is 4, period is 2⇡

3

,
frequency is 3

2⇡

.

31. Amplitude is 4 (the graph oscillates between
�4 and 4, so we may ignore the minus sign),
period is 2⇡, frequency is 1

2⇡

.

32. Amplitude is 2, period is 2⇡

3

,
frequency is 3

2⇡

.

33. sin(↵� �) = sin (↵+ (��))
= sin↵ cos (��) + sin (��) cos↵
= sin↵ cos� � sin� cos↵

34. cos(↵� �) = cos (↵+ (��))
= cos↵ cos (��)� sin↵ sin (��)
= cos↵ cos� + sin↵ sin�

35. (a) cos (2✓) = cos(✓ + ✓)

= cos (✓) cos (✓)� sin (✓) sin (✓)

= cos2✓ � sin2✓

= cos2✓ �
�

1� cos2✓
�

= 2cos2✓ � 1

(b) Just continue on, writing
cos (2✓) = 2cos2✓ � 1

= 2
�

1� sin2✓
�

� 1

= 1� 2sin2✓

36. (a) Divide sin2✓ + cos2✓ = 1 by cos2✓ to get
sin2✓

cos2✓
+ 1 =

1

cos2✓
or tan2✓ + 1 = sec2✓.

(b) Dividing sin2✓+cos2✓ = 1 by sin2✓ yields
cot2✓ + 1 = csc2✓

37. cos�1(0) =
⇡

2
) ✓ =

⇡

2
Any arbitrary point on the unit circle is
(cos ✓, sin ✓), therefore the ordered pair on the
circle is (0, 1).

38. tan�1(0) = 0 ) ✓ = 0
The ordered pair on the circle is (1, 0).

39. sin�1(�1) = �⇡

2

) ✓ = �⇡

2

The ordered pair on the circle is (0, �1).

40. cos�1(1) = 0 ) ✓ = 0
The ordered pair on the circle is (1, 0).

41. sec�1(1) = 0 ) ✓ = 0
The ordered pair on the circle is (1, 0).

42. tan�1(�1) = �⇡

4

) ✓ = �⇡

4

The ordered pair on the circle is
⇣

1p
2

, � 1p
2

⌘

.

43. sec�1(2) =
⇡

3
) ✓ =

⇡

3
The ordered pair on the circle is

⇣

1

2

,
p
3

2

⌘

.

44. csc�1(2) =
⇡

6
) ✓ =

⇡

6
The ordered pair on the circle is

⇣p
3

2

, 1

2

⌘

.

45. cot�1(1) =
⇡

4
) ✓ =

⇡

4
The ordered pair on the circle is

⇣

1p
2

, 1p
2

⌘

.

46. tan�1(
p
3) =

⇡

3
) ✓ =

⇡

3
The ordered pair on the circle is

⇣

1

2

,
p
3

2

⌘

.
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47. Use the formula
cos(x+�) = cosx cos��sin� sinx. Now we see
that cos� must equal 4/5 and sin� must equal
3/5. Since (4/5)2+(3/5)2 = 1, this is possible.
We see that � = sin�1 (3/5) ⇡ 0.6435 radians,
or 36.87�.

48. Use the formula
sin(x + �) = sinx cos� + sin� cosx. Now we
see that cos� must equal 2/

p
5 and sin� must

equal 1/
p
5. Since (2/

p
5)

2

+(1/
p
5)

2

= 1, this
is possible. We see that � = sin�1

�

2/
p
5
�

⇡
0.4636 radians, or 26.57�.

49. cos(2x) has period
2⇡

2
= ⇡ and sin(⇡x) has

period
2⇡

⇡
= 2. There are no common inte-

ger multiples of the periods, so the function
f (x) = cos (2x) + 3 sin (⇡x) is not periodic.

50. sinx has period 2⇡ and cos
p
2x has periodp

2⇡. There are no common integer multi-
ples of the periods, so the function f(x) =
sinx� cos

p
2x is not periodic.

51. sin(2x) has period
2⇡

2
= ⇡ and cos (5x) has pe-

riod
2⇡

5
. The smallest integer multiple of both

of these is the fundamental period, and it is
2⇡.

52. cos 3x has period
2⇡

3
and sin 7x has period

2⇡

7
.

The smallest integer multiple of both of these
is the fundamental period, and it is 2⇡.

53. cos2✓ = 1�sin2✓ = 1�
✓

1

3

◆

2

= 1� 1

9
=

8

9
Be-

cause ✓ s in the first quadrant, its cosine is non-

negative. Hence cos ✓ =

r

8

9
=

2
p
2

3
= 0.9428.

54. First quadrant, 3-4-5 right triangle, so sin ✓ =
3

5
.

55. Second quadrant, 1-
p
3-2 right triangle, so

cos ✓ = �
p
3

2
.

56. Second quadrant, 1-
p
3-2 right triangle, so

tan ✓ = � 1p
3
.

57. Assume 0 < x < 1 and give the temporary
name ✓ to sin�1 (x). In a right triangle with
hypotenuse 1 and one leg of length x, the an-
gle ✓ will show up opposite the x-side, and the

adjacent side will have length
p
1� x2 Write

cos
�

sin�1 (x)
�

= cos (✓)

=

p
1� x2

1
=
p

1� x2

The formula is numerically correct it he cases
x = 0 and x = 1, and both sides are even func-
tions of x, i.e. f (�x) = f (x) so the formula is
good for �1  x  1.

58. tan�1x relates to a triangle in the first or
fourth quadrant with opposite side x, adja-
cent side 1, and hypotenuse

p
x2+1. There-

fore, cos
�

tan�1x
�

=
1p

x2 + 1
. This is valid

for all x.

59. Assume 1 < x and give the temporary name
✓ to sec�1(x). In a right triangle with hy-
potenuse x and one leg of length 1, the angle ✓
will show up adjacent to the side of length 1,
and the opposite side will have length

p
x2 � 1.

Write
tan

�

sec�1 (x)
�

= tan (✓)

=

p
x2 � 1

1
=
p

x2 � 1

The formula is numerically correct in the case
x � 1. Dealing with negative x is trickier: as-
sume x > 1 for the moment. The key identity
is sec�1 (�x) = ⇡� sec�1 (x). Taking tangents
on both sides and applying the identity

tan (a� b) =
tan (a)� tan (b)

1 + tan (a) tan (b)
with a = ⇡, tan (a) = 0, b = sec�1x, we find

tan
�

sec�1x
�

=
0� tan

�

sec�1x
�

1 + 0

= �
p

x2 � 1 = �
q

(�x)2 � 1
In this identity, �x (on both sides) plays the
role of an arbitrary number < �1. Conse-
quently, the final formula is tan

�

sec�1x
�

=

�
p
x2 � 1 whenever x  �1.

60. cos�1x relates to a triangle in the first or
second quadrant with adjacent side x, hy-
potenuse 1, and opposite side

p
1� x2. There-

fore cot
�

cos�1x
�

=
xp

1� x2

is valid for �1 
x  1.

61. One can use the formula sin
�

cos�1x
�

=p
1� x2 derived in the text:

sin

✓

cos�1

✓

1

2

◆◆

=

s

1�
✓

1

2

◆

2

=

p
3

2

62. sin�1

✓

1

2

◆

=
⇡

6
and cos

⇣⇡

6

⌘

=

p
3

2
.



24 CHAPTER 0. PRELIMINARIES

63. cos�1

�

3

5

�

relates to a triangle in the first
quadrant with adjacent side 3 and hypotenuse
5, so the opposite side must be 4 and then

tan

✓

cos�1

✓

3

5

◆◆

=
4

3
.

64. sin�1

✓

2

3

◆

relates to a triangle in the first

quadrant with opposite side 2 and hypotenuse

3, so csc

✓

sin�1

✓

2

3

◆◆

=
3

2
.

65. From graph the three solutions are 0, 1.109,
and 3.698.

66. From graph the three solutions are 0 and ±2.28

67. From graph the two solutions are ±1.455

68. From graph the two solutions are 0 and 0.88

69. Let h be the height of the rocket. Then
h

2
= tan 20� ) h = 2 tan 20� ⇡ 0.73(miles)

70. The person and the shadow form a right trian-
gle similar to the triangle formed by the light-
pole and the distance from the base of the pole
to the tip of the shadow. If x represents the
height of the pole, we have that
x

4 + 2
=

6

2
and therefore x = 18.

71. Let h be the height of the steeple. Then
h

80 + 20
= tan 50�

) h = 100 tan 50� ⇡ 119.2 (feet).

72. If the steeple is 200 inside the building, the
height is 100 tan 50� ⇡ 119.18 feet. If the
steeple is 210 inside the building, the height
is 101 tan 50� ⇡ 120.37 feet. The di↵erence is
1.19 feet.

73. Using feet as the measuring standard, we find

tanA =
20/12

x
=

5

3x
) A (x) = tan�1

✓

5

3x

◆

The graph of y = A(x) (of course, one has
to choose an appropriate range to make this a
function):

8

1.0

4

−1.0

x
10

1.5

0.5

6

0.0

−0.5

−1.5

20−2−4−6−8−10

74. From the center of the hole to the left (or right)
edge is 2.25 inches. Consider the right trian-
gle formed by the golfer, the center of the hole
and the left edge. The angle at the golfer is

tan�1

✓

2.25

x

◆

. The margin of error is then

twice that, or A = 2tan�1

✓

2.25

x

◆

.

75. Presumably, the given amplitude (170) is the
same as the “peak voltage” (v

p

). Recalling an
earlier discussion (#25 this section): the role
of ! there is played by 2⇡f here, the frequency
in cycles per second (Hz) was !/2⇡, which is
now the f -parameter (2⇡f/2⇡). The period
was 2⇡/! (which is now 1/f), given in this
case to be ⇡/30 (seconds). So, apparently, the
frequency is f = 30/⇡ (cycles per second) and

the meter voltage is
170p
2
⇡ 120.2

76. Revolutions per minute measures frequency.
The period is the reciprocal. The period of

a 33
1

3
rpm record is

3

100
minutes per revolu-

tion. Similarly, the period of a 45 rpm record

is
1

45
minutes per revolution.

77. There seems to be a certain slowly increasing
base for sales (110 + 2t), and given that the

sine function has period
2⇡

⇡/6
= 12 months, the

sine term apparently represents some sort of
seasonally cyclic pattern. If we assume that
travel peaks at Thanksgiving, the e↵ect is that
time zero would correspond to a time one quar-
terperiod (3 months) prior to Thanksgiving, or
very late August.
The annual increase for the year beginning at
time t is given by s (t+ 12) � s (t) and auto-
matically ignores both the seasonal factor and
the basic 110, and indeed it is the constant
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2 ⇥ 12 = 24 (in thousands of dollars per year
and independent of the reference point t).

78. The graph of sin 8t+ sin 8t looks like

 

3

2

1

-1

-2

-3

 
60300-30-60

The graph of sin 8t+ sin 8.1t looks like

 

3

2

1

-1

-2

-3

 
60300-30-60

The di↵erence in frequency produces clearly
audible beats (to the trained ear).

79. As luck would have it, the trig functions
csc and cot, being reciprocals respectively of
sine and tangent, have inverses almost exactly
where the other two do, both on the interval
⇥

�⇡

2

, ⇡

2

⇤

but excluding the origin where neither
is defined, and excluding the lower endpoint in
the case of the cotangent. The range for the
sine is [�1, 1], hence the range for the csc is
{|x| � 1} and this is the domain for csc�1.
The tangent assumes all values, and so does
the cot (zero included as a value by convention
when x = ⇡/2 or x = �⇡/2), so the domain
for cot�1 is universal. Finally, we simply copy
the language of the others:
y = csc�1 (x) if |x| � 1,
y lies in

⇥

�⇡

2

, ⇡

2

⇤

and x = csc (y).
y = cot�1 (x) if y lies in

�

�⇡

2

, ⇡

2

⇤

, and x =
cot (y).

80. Let a be the distance from the ball to the
ground directly beneath it, let b be the distance
along the ground from home plate to the point

directly below the ball, and let c be the dis-
tance from the outfielder to the point directly
below the ball. Then tan = a/b, tan↵ = a/c

and tan� = b/c, so that tan =
tan↵

tan�
. There-

fore  = tan�1

tan↵

tan�
.

0.5 Exponential and Logarith-

mic Functions

1. 2�3 =
1

23
=

1

8

2. 4�2 =
1

42
=

1

16

3. 31/2 =
p
3

4. 62/5 = 5
p
62 = 5

p
36

5. 52/3 = 3
p
52 = 3

p
25

6. 4�2/3 =
1

3
p
42

=
1

3
p
16

=
1

3
p
8 · 2

=
1

2 3
p
2

7.
1

x2

= x�2

8.
3
p
x2 = x2/3

9.
2

x3

= 2x�3

10.
4

x2

= 4x�2

11.
1

2
p
x
=

1

2x1/2

=
1

2
x�1/2

12.
3

2
p
x3

=
3

2x3/2

=
3

2
x�3/2

13. 43/2 =
�

p
4
�

3

= 23 = 8

14. 82/3 =
�

3
p
8
�

2

= 22 = 4

15.

p
8

21/2
=

p
8p
2
=

p
4 = 2

16.
2

(1/3)2
=

2

(1/9)
= 18

17. 2e�1/2 ⇡ 1.213

18. 4e�2/3 ⇡ 2.05

19.
12

e
⇡ 4.415

20.
14p
e
⇡ 8.49
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21. Both the graphs have same y-intercept.

y

−2

1

−1
x

3210

4

−1

3

2

0

−3

Graph of f(x): Dotted line.
Graph of g(x): Solid line.

22. For the graph f(x), y-intercept is 2 and for
the graph g(x), y-intercept is 4.

−7.5

3

−1
x

5.02.50.0−2.5−5.0

y

4

2

−10.0

1

0

Graph of f(x): Dotted line.
Graph of g(x): Solid line.

23. For the graph f(x), y-intercept is 3 and for
the graph g(x), y-intercept is 2.

y

3

1

−1

−1
x

4

4

3

2

0

210

Graph of f(x): Dotted line.
Graph of g(x): Solid line.

24. For both the graphs, y-intercept is 1. The
graph of e�x

2

approaches the x-axis faster

than the graph of e�
x

2

4 .

y

0.0

x
2−2

1.5

−0.5

40

0.5

−4

1.0

−1.0

Graph of f(x): Dotted line.
Graph of g(x): Solid line.

25. The graph f (x) is defined for positive values
of x only and the graph g(x) is defined for all
nonzero value of x.

0.0

5.0

2

−5.0

x
−2

y

−2.5

40

2.5

−4

−7.5

Graph of f(x): Dotted line.
Graph of g(x): Solid line.

26. Both the graphs f(x) and g(x) are same.
5

3

−1

−3

−5

−2

y

4

2

1

0

−2

−4

x
420−4

Graph of f(x) : Dotted line.
Graph of g(x) : Solid line.

27. e2x = 2
) ln e2x = ln 2
) 2x = ln 2

) x =
ln 2

2
⇡ 0.3466
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28. e4x = 3
) 4x = ln 3

) x =
ln 3

4
⇡ 0.2747

29. ex
�

x2 � 1
�

= 0 ) x2 � 1 = 0(Since ex 6= 0).
Hence x = 1 or x = �1.

30. xe�2x + 2e�2x = 0 ) x+ 2

e2x
= 0 ) x = �2

31. 4 lnx = �8
) lnx = �2

) x = e�2 =
1

e2
⇡ 0.13533

32. x2 lnx� 9 lnx = 0
)
�

x2 � 9
�

lnx = 0
So either lnx = 0 or x2 � 9 = 0
) x = 1, x = ±3

33. e2 ln x = 4
) 2 lnx = ln 4
) lnx2 = ln 4
) x2 = 4
) x = ±2
But in the original equation we had the expres-
sion e2 ln x so x 6= �2 and thus the only solution
is x = 2.

34. ln
�

e2x
�

= 6 ) 2x = 6 ) x = 3

35. ex = 1 + 6e�x

) e2x � ex � 6 = 0
) (ex � 3) (ex + 2) = 0
) ex � 3 = 0 (Since ex + 2 6= 0)
) x = ln 3

36. lnx+ ln(x� 1) = ln 2
Taking the exponential of both sides we get
) x(x� 1) = 2
) x2 � x� 2 = 0
) (x� 2)(x+ 1) = 0
) x = �1 or x = 2
But lnx is not defined for x = �1. Hence x = 2
is the only solution.

37. (a) log
3

9 = log
3

�

32
�

= 2

(b) log
4

64 = log
4

�

43
�

= 3

(c) log
3

1

27
= log

3

�

3�3

�

= �3

38. (a) log
4

1

16
= log

4

1

42
= log

4

4�2 = �2

(b) log
4

2 = log
4

41/2 =
1

2

(c) log
9

3 = log
9

91/2 =
1

2

39. (a) log
3

7 =
ln 7

ln 3
⇡ 1.771

(b) log
4

60 =
ln 60

ln 4
⇡ 2.953

(c) log
3

1

24
=

ln (1/24)

ln 3
⇡ �2.893

40. (a) log
3

1

10
= � ln 10

ln 3
⇡ �1.66

(b) log
4

3 =
ln 3

ln 4
⇡ 0.79

(c) log
9

8 =
ln 8

ln 9
⇡ 0.95

41. ln 3� ln 4 = ln 3

4

42. 2 ln 4� ln 3 = ln
42

3
= ln

16

3

43. 1

2

ln 4� ln 2 = 1

2

· 2 ln 2� ln 2 = 0

44. 3 ln 2� ln 1

2

= ln 2

3

1/2

= ln 16

45. ln 3

4

+ 4 ln 2 = ln 3

2

2 + ln 24 = ln
�

3

2

2 · 24
�

=
ln
�

3 · 22
�

= ln (12)

46. ln 9� 2 ln 3 = ln 9

3

2 = ln 1 = 0

47. f(0) = 2 ) a ) 2.
Then f(2) = 6 gives 2e2b = 6, so 2b = ln 3

and b =
1

2
ln 3. So f(x) = 2e(

1
2 ln 3)x =

2
h

eln(3)
i

x/2

= 2 · 3x/2

48. f(0) = 3 ) a = 3.
Then f(3) = 4 gives 3e3b = 4, so 3b = ln 4

3

and

b = 1

3

ln 4

3

. So f(x) = 4e(
1
2 ln

1
2 )x.

49. f(0) = 4 ) a = 4.
Then f(2) = 2 gives 4e2b = 2, so 2b = ln 1

2

and

b = 1

2

ln 1

2

. So f(x) = 4e(
1
2 ln

1
2 )x.

50. f(0) = 5 ) a = 5.
Then f(1) = 2 gives 5eb = 2, so and b = ln 2

5

.

So f(x) = 5e(ln
2
5 )x.

51. We know that coshx =
ex + e�x

2
. To show

that coshx � 1 for all x is the same as showing
that coshx � 1 � 0 for all x. So we ask when

is the expression coshx � 1 =
ex + e�x

2
� 1

greater than or equal to 0?
We have:
ex + e�x

2
� 1 � 0 if and only if

ex + e�x � 2

2
� 0 if and only if

ex + e�x � 2 � 0 if and only if
ex + 1� 2e�x � 0 if and only if *
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ex � 2e�x + 1 � 0 if and only if
(ex � 1)2 � 0
But (ex � 1)2 is always greater than or equal
to 0 since it is squared. It is actually equal to
0 at x = 0(i.e., cosh 0 = 1), so the range of
y = coshx is y � 1.
* In the * step (above), we have multiplied on
both sides by ex, which we are allowed to do
since ex > 0 for all x. To show that the range
of the hyperbolic sine is all real numbers, let
a be any real number and solve the equation
sinh(x) = a. Let u = ex. Then
u� 1

u

2
= a if and only if

u2 � 1 = 2au if and only if
u2 � 2au� 1 = 0 if and only if

u =
2a±

p
4a2 + 4

2
= a+

p

a2 + 1.

We simplified and chose the positive square
root because u > 0. Because we found a unique
solution no matter what a we had started with,
we have shown that the range of y = sinhx is
the whole real line.

52. cosh2x� sinh2x

=

✓

ex + e�x

2

◆

2

�
✓

ex � e�x

2

◆

2

=
e2x + 2 + e�2x

4
� e2x � 2 + e�2x

4
=

4

4
= 1

53. Since sinh�1(0) = 0, the equation is solved
only by x2 � 1 = 0, hence x = 1 or x = �1.

54. cosh (3x+ 2) = 0 has no solutions because
coshx � 1 for all x.

55. 1�
✓

9

10

◆

10

⇡ 0.651

56. The percentage decreases by almost 1%

57. We take on faith, whatever it may mean, that

lim
n!1

✓

1 +
1

n

◆

n

= e

Just to take a sample starting with n = 25,
the numbers are
✓

26

25

◆

25

,

✓

27

26

◆

26

,

✓

28

27

◆

27

and so on. If we

were to try taking a similar look at the num-

bers in lim
n!1

✓

1� 1

n

◆

n

, the numbers starting

at n = 26 would be

✓

25

26

◆

26

,

✓

26

27

◆

27

,

✓

27

28

◆

28

, and so on.

We could rewrite these as

"

✓

25

26

◆

25

#

26
25

,

"

✓

26

27

◆

26

#

27
26

,

"

✓

27

28

◆

27

#

28
27

Here, the numbers inside the square brack-
ets are the reciprocals of the numbers in the
original list, which were all pretty close to
e. Therefore these must all be pretty close
to 1/e . As to the external powers, they are
all close to 1 and getting closer. This limit
must be 1/e . The expression in question must

approach 1� 1

e
⇡ 0.632.

58. If y = axm then ln y = ln(axm) = ln a +
lnxm = ln a+m lnx. Direct substitutions show
that v = mu+ b, and this is the equation of a
line.

59.
u = lnx .78846 .87547 .95551
v = ln y 2.6755 2.8495 3.0096

u = lnx 1.0296 1.0986 1.1632
v = ln y 3.1579 3.2958 3.4249

10.5

 

3

2

1

0

 

m =
3.4249� 2.6775

1.1632� .78846
⇡ 2.

Then we solve 2.6755 = 2 · (.78846) + b to
find b ⇡ 1.099. Now b = ln a, so a = eb ⇡
3.001, and the function is y = 3.001x2.

60.
u = lnx 1.0296 1.0986 1.1632
v = ln y 2.2375 2.3408 2.4380

u = lnx 1.2238 1.2809 1.3350
v = ln y 2.5289 2.6145 2.6953
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1.31.251.21.151.1

2.7

2.6

1.05

2.5

2.4

2.3

m =
2.6953� 2.2375

1.3350� 1.0296
= 1.4990 ⇡ 3

2
.

Then we solve 2.6953 = 3

2

(1.3350) + b to find
b = .6928. Now b = ln a, so a = eb ⇡ 1.9993 ⇡
2, and the function is y = 2x3/2.

61. We compute u = lnx and v = ln y for x values
in number of decades since 1780 and y values
in millions.

u = lnx 0 0.693 1.099 1.386
v = ln y 1.36 1,668 1.974 2.262

u = lnx 1.609 1.792 1.946 2.079
v = ln y 2.549 2.839 3.14 3.447

 

4

3

2

1

0

 
21

This plot does not look linear, which makes it
clear that the population is not modeled by a
power of x. The discussion in the Chapter has
already strongly indicated that an exponential
model is fairly good.

62.
x 2.2 2.4 2.6
ln y 2.6755 2.8495 3.0096

x 2.8 3.0 3.2
ln y 3.1579 3.2958 3.4249

2.42.2

3.4

3.3

3.2

3.1

3

2.9

2.8

2.7

3.232.82.6

This plot is slightly bowed concave down. The
log-log plot looks more linear, and the function
is modeled better by a power function.

63. (a) 7 = � log[H+] ) [H+] = 10�7

(b) [H+] = 10�8

(c) [H+] = 10�9

For each increase in pH of one, [H+] is re-
duced to one tenth of its previous value.

64. If the pH = 2.5 = � log[H+], then [H+] =
10�2.5 ⇡ 3.16 ⇥ 10�3. If the pH = 7.5 =
� log[H+], then [H+] = 10�7.5 ⇡ 3.16⇥ 10�8.
The concentration of hydrogen ions in blood is
smaller by a factor of 105.

65. (a) logE = 4.4 + 1.5(4) = 10.4 ) E = 1010.4

(b) logE = 4.4 + 1.5(5) = 11.9 ) E = 1011.9

(c) logE = 4.4 + 1.5(6) = 13.4 ) E = 1013.4

For each increase in M of one, E is in-
creased by a factor of 101.5 ⇡ 31.6.

66. (a) 80 = 10 log

✓

I

10�12

◆

) 8 = log

✓

I

10�12

◆

) 108 =
I

10�12

) I = 10810�12 = 10�4

(b) I = 10�3

(c) I = 10�2

For each increase in dB of ten, I increases
by a factor of 10.

67. The issue is purely whether or not y =
0 when x = 315, i.e., whether or
not cosh(315/127.7) = cosh(2.4667 . . .) =
5.9343 . . . is the same as (757.7)/(127.7) =
5.9334 . . . We see that it’s pretty close, and
these numbers would be considered equal ac-
cording to the level of accuracy reported in the
original measurements.
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68. If y = �c(x � 315)(x + 315), the x inter-
cepts are at x = ±315 and are 630 feet apart
as desired. The y intercept will be 630 pro-
vided that �c(0 � 315)(0 + 315) = 630, or if

c =
630

3152
=

2

315

600

300

200

x

300

400

200
0

100-100-300

500

100

0-200

The parabola is narrower than the hyperbolic
cosine.

69. f = f(x) = 220ex ln(2)

= 220eln(2
x

) = 220 · 2x

70. From problem 69, the frequency as a function
of the number of octaves above the A below
middle C is f(x) = 220 · 2x. We have then

f(
1

4
) = 220 · 21/4 ⇡ 261.6 Hz.

0.6 Transformations of Func-

tions

1. (f � g)(x) = f(g(x)) = g(x) + 1 =
p
x� 3 + 1

with domain {x|x � 3}.
(g � f)(x) = g(f(x))

=
p

f(x)� 1

=
p

(x+ 1)� 3 =
p
x� 2

with domain {x|x � 2}.

2. f(g(x)) =
p
x+ 1� 2

with domain {x|x � �1}.
g(f(x)) =

p

(x� 2) + 1 =
p
x� 1

with domain {x|x � 1}.

3. (f � g)(x) = f(lnx) = eln x = x
with domain {x|x > 0}.
(g � f)(x) = g(ex) = ln ex = x
with domain (�1,1) or all real numbers.

4. f(g(x)) =
p
1� lnx. For the domain, we need

(1 � lnx) � 0, so 0  x  e, but also the do-
main of lnx is x > 0 so the domain of f(g(x))
is {x | 0 < x  e}.
g(f(x)) = ln

p
1� x on {x |x < 1}.

5. (f � g)(x) = f(sinx) = sin2 x+ 1
with domain (�1, 1) or all real numbers.
(g � f)(x) = g(x2 + 1) = sin(x2 + 1)
with domain (�1, 1) or all real numbers.

6. f(g(x)) =
1

(x2 � 2)2 � 1

=
1

x4 � 4x2 + 3

=
1

(x2 � 3)(x2 � 1)

This is valid if x 6= ±
p
3 and x 6= ±1.

g(f(x)) =

✓

1

x2 � 1

◆

2

� 2. This is valid if

x 6= ±1.

7.
p

x4 + 1 = f(g(x)) when f(x) =
p
x and

g(x) = x4 + 1, for example.

8. 3
p
x+ 3 = f(g(x)) when f(x) = 3

p
x and g(x) =

x+ 3, for example.

9.
1

x2 + 1
= f(g(x)) when f(x) = 1/x and g(x) =

x2 + 1, for example.

10.
1

x2

+ 1 = f(g(x)) when f(x) = x + 1 and

g(x) = 1/x2, for example.

11. (4x+ 1)2 + 3 = f(g(x)) when
f(x) = x2 + 3 and g(x) = 4x+ 1, for example.

12. 4(x+ 1)2 + 3 = f(g(x)) when
f(x) = 4x2 + 3 and g(x) = x+ 1, for example.

13. sin3 x = f(g(x)) when f(x) = x3 and g(x) =
sinx, for example.

14. sin(x3) = f(g(x)) when f(x) = sinx and
g(x) = x3, for example.

15. ex
2
+1 = f(g(x)) when f(x) = ex and g(x) =

x2 + 1, for example.

16. e4x�2 = f(g(x)) when f(x) = ex and g(x) =
4x� 2, for example.

17.
3p

sinx+ 2
= f(g(h(x)) when f(x) = 3/x,

g(x) =
p
x, and h(x) = sinx + 2, for exam-

ple.

18.
p

e4x + 1 = f(g(h(x))) when f(x) =
p
x,

g(x) = x+ 1, and h(x) = e4x, for example.

19. cos3(4x � 2) = f(g(h(x))) when f(x) = x3,
g(x) = cosx, and h(x) = 4x� 2, for example.

20. ln
p

x2 + 1 = f(g(h(x))) when f(x) = lnx,
g(x) =

p
x, and h(x) = x2 + 1, for example.
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21. 4ex
2

� 5 = f(g(h(x))) when f(x) = 4x � 5,
g(x) = ex, and h(x) = x2, for example.

22. [tan�1(3x+1)]2 = f(g(h(x))) when f(x) = x2,
g(x) = tan�1 x, and h(x) = 3x + 1, for exam-
ple.

23. Graph of f(x)� 3:

y

−2

−2.5
x

543210

5.0

−1

2.5

0.0

−5.0

−3−4−5

24. Graph of f(x+ 2):

0-2-4

y

10

8

6

4

2

0

-2

-4

x
42

25. Graph of f(x� 3):

y

4

−4

0

x
543210−1−2

6

−3

2

−2

−5

26. Graph of f(x) + 2:

0-2-4

y

10

8

6

4

2

0

-2

-4

x
42

27. Graph of f(2x):

y

0

−2

3

2

1

−1

−3

x
210−1−2

28. Graph of 3f(x):

y

0

30

20

-2

10

0
-4

-10

x
42

29. Graph of �3f (x) + 2:
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y
2.5

−4

−2.5

x
543210−1−2

5.0

−3

0.0

−5.0

−5

30. Graph of 3f(x+ 2):

y

0

30

20

-2

10

0
-4

-10

x
42

31. Graph of f(x� 4):

x

1086420
y

10

5

0

-5

-10

32. Graph of f(x+ 3):

x
420-2-4-6-8

y

10

5

0

-5

-10

33. Graph of f(2x):

y

5

x
543210−1−2−3

10

0

−5

−5 −4

−10

34. Graph of f(2x� 4):

y

0

10

-2

5

0
-4

-5

-10

x
42

35. Graph of f(3x+ 3):

10

5

0

-5

-10

x

20-2-4
y

36. Graph of 3f(x):

y

0

10

-2

5

0
-4

-5

-10

x
42
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37. Graph of 2f(x)� 4:

y

−4

5

−5

x
543210−1−2−3

10

0

−5

−10

38. Graph of 3f(x) + 3:

y

0

10

-2

5

0
-4

-5

-10

x
42

39. f(x) = x2 + 2x+ 1 = (x+ 1)2.
Shift y = x2 to the left 1 unit.

40. f(x) = x2 � 4x+ 4 = (x� 2)2.
This is the graph of x2 shifted 2 to the right.

41. f(x) = x2 + 2x+ 4 = (x2 + 2x+ 1) + 4� 1
= (x+ 1)2 + 3

Shift y = x2 to the left 1 unit and up 3 units.

42. f(x) = x2 � 4x+ 2 = x2 � 4x+ 4� 2
= (x� 2)2 � 2

This is the graph of x2 shifted 2 to the right
and 2 down.

43. f(x) = 2x2 + 4x+ 4
= 2(x2 + 2x+ 1) + 4� 2
= 2(x+ 1)2 + 2

Shift y = x2 to the left 1 unit, then multiply
the scale on the y-axis by 2, then shift up 2
units.

44. f(x) = 3x2 � 6x+ 2 = 3(x� 1)2 � 1.
This is the graph of x2 with the y-scale multi-
plied by 3, shifted 1 to the right and 1 down.

45. Graph is reflected across the x-axis and the
scale on the y-axis is multiplied by 2.

46. Graph is reflected across the x-axis, vertical
scale tripled.

47. Graph is reflected across the x-axis, the scale
on the y-axis is multiplied by 3, and the graph
is shifted up 2 units.

48. Graph is reflected across the x-axis, vertical
scale doubled, and shifted down 1 unit.

49. Graph is reflected across the y-axis.

50. Graph is reflected across the y-axis and then
reflected across the x-axis, i.e. graph is rotated
by an angle 2⇡ about the origin.

51. (�x + 1)2 + 2(�x + 1) = (x � 1)2 � 2(x � 1).
Therefore graph is shifted 1 unit to the right.

52. Graph is reflected across the y-axis, horizontal
scale tripled, and shifted down 3 units.

53. The graph is reflected across the x-axis and the
scale on the y-axis is multiplied by |c|.

54. For c < 0, the graph of f(cx) is the mirror
image across the y-axis of f(x) with the hori-
zontal scale multiplied by 1/|c|.

55. The graph of y = |x|3 is identical to that of
y = x3 to the right of the y-axis because for
x > 0 we have |x|3 = x3. For y = |x|3 the
graph to the left of the y-axis is the reflection
through the y-axis of the graph to the right
of the y-axis. In general to graph y = f(|x|)
based on the graph of y = f(x), the procedure
is to discard the part of the graph to the left of
the y-axis, and replace it by a reflection in the
y-axis of the part to the right of the y-axis.

56. If f(x) = x3, then
f(�x) = (�x)3 = �x3 = �f(x).
If in general you have the right half of a graph
satisfying f(�x) = �f(x), you can rotate 180�

about the origin to see the left half.

57. The rest of the first 10 iterates of f(x) = cosx
with x

0

= 1 are:
x
4

= cos .65 ⇡ .796
x
5

= cos .796 ⇡ .70
x
6

= cos .70 ⇡ .765
x
7

= cos .765 ⇡ .721
x
8

= cos .721 ⇡ .751
x
9

= cos .751 ⇡ .731
x
10

= cos .731 ⇡ .744
Continuing in this fashion and retaining more
decimal places, one finds that x

36

through x
40

are all 0.739085. The same process is used with
a di↵erent x

0

.
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58. We have x
1

= f(x
0

) so x
2

= f(x
1

) = f(f(x
0

))
and x

3

= f(x
2

) = f(f(f(x
0

))) and so on.
The graphs of cosx, cos cosx, cos cos cosx, and
cos cos cos cosx:

−0.5
0−2

y

2

2.0

0.0

−1−3 1

0.5

3

1.5

x

1.0

−1.0

The limiting line is y = 0.739085.

59. They converge to 0. One of the problems
in Chapter 2 asks the student to prove that
| sin(x)| < |x| for all but x = 0. This would
show that 0 is the only solution to the equa-
tion sin(x) = x and o↵ers a partial explanation
(see the comments for #61) of the phenomena
which the student observes.

60. If you start with a number x with |x| < 1, the
iterations converge to 0. If you start with a
number x with |x| > 1, the iterations diverge
quickly. If you start with x = ±1, the itera-
tions all equal 1.

61. If the iterates of a function f (starting from
some point x

0

) are going to go toward (and
remain arbitrarily close to) a certain num-
ber L, this number L must be a solution
of the equation f(x) = x. For the list of
iterates x

0

, x
1

, x
2

, x
3

, . . . is, apart from the
first term, the same list as the list of num-
bers f(x

0

), f(x
1

), f(x
2

), f(x
3

), . . . . (Remem-
ber that x

n+1

is f(x
n

).) If any of the numbers
in the first list are close to L, then the f -values
(in the second list) are close to f(L). But since
the lists are identical ( apart from the first term
x
0

which is not in the second list), it must be
true that L and f(L) are the same number.
If conditions are right (and they are in the two
cases f(x) = cos(x) (#57) and f(x) = sin(x)
(#59), this “convergence” will indeed occur,
and since there is in these cases only one solu-
tion x about 0.739085 in (#57) and x = 0 in
(#59) it won’t matter where you started.

62. The only fixed point is x = 0, since this is the
only solution to sinx = x. One can see that

this is the only solution by graphing y = sinx
and y = x on the same axes and looking for
intersection points.

Ch. 0 Review Exercises

1. m =
7� 3

0� 2
=

4

�2
= �2

2. m =
4� 1

1� 3
= �3

2

3. These lines both have slope 3. They are paral-
lel unless they are coincident. But the first line
includes the point (0, 1) which does not satisfy
the equation of the second line. The lines are
not coincident.

4. m
1

= �1/m
2

, so the lines are perpendicular.

5. Let P = (1, 2), Q = (2, 4), R = (0, 6).

Then PQ has slope
4� 2

2� 1
= 2

QR has slope
6� 4

0� 2
= �1

RP has slope
2� 6

1� 0
= �4

Since no two of these slopes are negative recip-
rocals, none of the angles are right angles. The
triangle is not a right triangle.

6. The slopes between points seem to be alter-
nating between 950 and 1050. If the pattern
continues, the next points will be (4, 6100),
(5, 7050), and (6, 8100).

3

5000

2.5

4500

4000

2

3500

3000

1.5

2500

10.50

7. The line apparently goes through (1, 1) and
(3, 2). If so the slope would be m = 2�1

3�1

= 1

2

.
The equation would be
y = 1

2

(x� 1) + 1 or y = 1

2

x+ 1

2

.
Using the equation with x = 4, we find y =
1

2

(4) + 1

2

= 5

2

.

8. f(0) = �4, f(2) = �6, and f(4) = 0.
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9. Using the point-slope method, we find y =
� 1

3

(x+ 1)� 1

10. y = 1

4

(x� 0)� 2 = 1

4

x� 2

11. The graph passes the vertical line test, so it is
a function.

12. Fails vertical line test: not a function.

13. The radicand cannot be negative, hence we re-
quire 4 � x2 � 0 ) 4 � x2. Therefore the
natural domain is {x| � 2  x  2} or, in
“interval-language”: [�2, 2].

14. The function is not defined where the denomi-
nator is zero, so the domain for f(x) is {x|x 6=
±
p
2}.

15. Intercepts at x = �4 and 2, and y = �8. Local
minimum at x = �1. No asymptotes.

y

10

5

0

-5

-10

x

6420-2-4-6

16. Intercepts at x ⇡ 2.36, 0.17 and �2.53, and
y = 1. Local maximum at x = �

p
2. Local

minimum at x =
p
2. No asymptotes.

-80

0-2-4 2

-40

x

80

4

40

0

17. Intercepts at x = �1 and 1, and y = 1. Local
minimum at x = 1 and at x = �1. Local max-
imum at x = 0. No asymptotes.

y

10

8

6

4

2

0

x

3210-1-2-3

18. Intercepts at x ⇡ 1.97,�0.82, and �1.89, and
y = �1. Local maximums at x ⇡ �1.52 and
0.29. Local minimums at x ⇡ �0.29 and 1.52.
No asymptotes.

10

x

5

0
2

-5

-10

10-1-2

19. Intercept at y = 0 and at x = 0. No extrema.
Horizontal asymptote y = 4. Vertical asymp-
tote x = �2.

y

20

15

10

5

0

-5

-10

x

1050-5-10

20. Intercept at y = 1. No x-intercept since the
function is undefined at x = 2. No extrema.
Horizontal asymptote y = 0. Vertical asymp-
tote x = �1.
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y

x

2

10

1

0
5

-1

-2

0-5-10

21. Intercept at y = 0 and x = k⇡

3

for integers k.
Extrema: y takes maximum 1 and minimum
�1 with great predictability and regularity. No
asymptotes.

y

1.5

1

0.5

0

-0.5

-1

-1.5

x

3210-1-2-3

22. Intercept at y = 0 and x = k⇡

4

for inte-
gers k. No extrema. Vertical asymptotes at
x = (2k+1)⇡

8

for integers k

-1

-2

-3

x
210-1-2

y

3

2

1

0

23. Intercept at y = 2 and from the
amplitude/phase shift form f(x) =p
5 sin

�

x+ sin�1(2/
p
5)
�

, we could write down
all the intercepts only at considerable incon-
venience. Extrema: y takes maximum

p
5 and

minimum �
p
5 with great predictability and

regularity. No asymptotes.

y

4

2

0

-2

-4

x

6420-2-4-6

24. Intercept y = 1. Local maximums at x =
(2k+1)⇡

2

for integers k. Local minimums at
x = k⇡ for integers k. Vertical asymptotes
at x = (2k+1)⇡

4

for integers k.

0-2-4

y

3

2

1

0

-1
x

-2

-3

42

25. Intercept y = 4 (no x-intercepts). No extrema.
Left horizontal asymptote y = 0.

-1-2-3

y

10

8

6

4

2

0

x

3210

26. Intercept y = 3 (no x-intercepts). No extrema.
Horizontal asymptote y = 0.
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10

0

5

0
-0.2-0.4

x
0.4

20

0.2

15

27. Intercept x = 1/3 (no y-intercepts). No ex-
trema. Vertical asymptote x = 0.

y

4

3

2

1

0

-1

-2

-3

x

3210-1

28. No intercepts, extrema, or asymptotes.
Function only defined for x > 0.

-4

0-2-4
x

4

4

2

0
2

-2

29. Intercepts at x = �4 and 2, and y = �8.

30. Intercepts y = 1, and x = ±1.

31. Vertical asymptote x = �2.

32. Vertical asymptote at x = �1. This is where
the denominator is zero (and the numerator is
not zero). Note that the function is not defined
at x = 2.

33. x2 � 3x � 10 = (x � 5)(x + 2). The zeros are
when x = 5 and x = �2.

34. x3 + 4x2 + 3x = x(x + 3)(x + 1). Zeros are
x = 0,�1 and �3.

35. Guess a root: x = 1. Factor the left side:
(x � 1)(x2 � 2x � 2). Solve the quadratic by
formula:

x =
2±

p

22 � 4(1)(�2)

2
= 1±

p
3.

Complete list of three roots: x = 1, x =
1�

p
3 ⇡ �.732, x = 1 +

p
3 ⇡ 2.732.

36. Zeros are at x ⇡ 1.618, and �0.618. Exact
values are x = (1±

p
5)/2.

37. There are 3 solutions, one at x = 0 and the
other two negatives of one another. The value
in question is .928632 . . . , found using the func-
tion “Goal Seek” in Excel. The result can be
checked, and a graphing calculator can find
them by graphing y = x3 and y = sinx on the
same axes and finding the intersection points.

38. The graph shows two zeros. Squaring both
sides gives x2+1 = x4�2x2+1, or 0 = x4�3x2.
The solutions are x = ±

p
3. (x = 0 is an ex-

traneous solution.)

39. Let h be the height of the telephone pole. Then
h

50

= tan 34� ) h = 50 tan 34� ⇡ 33.7 feet.

40. The triangle in the first quadrant with adja-
cent side 1 and hypotenuse 5 has opposite sidep
24, so sin ✓ =

p
24

5

.

41. (a) 5�1/2 =
1

51/2
=

1p
5
=

p
5

5

(b) 3�2 =
1

32
=

1

9

42. (a)
2p
x
=

2

x1/2

= 2x�1/2

(b)
3

x2

= 3x�2

43. ln 8� 2 ln 2 = ln 8� ln 22

= ln 8� ln 4 = ln
�

8

4

�

= ln 2

44. eln 4x = 8 ) 4x = 8 and x = 2.

45. 3e2x = 8 ) e2x = 8

3

) ln e2x = ln
�

8

3

�

) 2x = ln
�

8

3

�

) x = 1

2

ln 8

3

46. 2 ln 3x = 5 ) ln 3x = 5

2

) e5/2 = 3x, so x = 1

3

e5/2.
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47. The natural domain for f is the full real line.
The natural domain for g is {x|1  x}. Be-
cause f has a universal domain, the natural
domain for f � g is the same as the domain
for g, namely {x|1  x}. Because g requires
its inputs be not less than 1, the domain for
g � f is the set of x for which 1  f(x), i.e.,
{x|1  x2} = {x|1  |x|}, or in interval lan-
guage (�1,�1] [ [1,1).

The formulae are easier:

(f � g)(x) = f(
p
x� 1)

= (
p
x� 1)2 = x� 1

(g � f)(x) = g(x2) =
p
x2 � 1

Caution: the formula for f � g is defined for
any x, but the domain for f � g is restricted as
stated earlier. The formula must be viewed as
irrelevant outside the domain.

48. (f � g)(x) =
⇣

1

x

2�1

⌘

2

and

(g � f)(x) = 1

x

4�1

are both valid for x 6= ±1.

49. e3x
2
+2 = f(g(x)) for f(x) = ex and g(x) =

3x2 + 2.

50.
p
sinx+ 2 = f(g(x)) for f(x) =

p
x and

g(x) = sinx+ 2.

51. x2 � 4x+ 1 = x2 � 4x+ 4� 4 + 1, so
f(x) = (x � 2)2 � 3. The graph of f(x) is the
graph of x2 shifted two units to the right and
three units down.

52. x2 + 4x+ 6 = (x2 + 4x+ 4) + 2, so
f(x) = (x + 2)2 + 2. The graph of f(x) is the
graph of x2 shifted two units to the left and
two units up.

53. Like x3, the function f(x) = x3 � 1 passes the
horizontal line test and is one-to-one. To find
a formula for the inverse, solve for x to find
(y + 1)1/3 = x then switch x and y to get
f�1(x) = (x+ 1)1/3 for all x.

54. e�4x is one-to-one, and its inverse is � 1

4

lnx.

55. The function is even (f(�x) = f(x)). Ev-
ery horizontal line (except y = 0) which meets
the curve at all automatically meets it at least
twice. The function is not one-to-one. There
is no inverse.

56. x3 � 2x + 1 is not one-to-one as it fails the
horizontal line test.

57. The inverse of x5 + 2x3 � 1:

y

0.5

1

0

-1

-0.5

x

1050-5-10

58. The inverse of x3 + 5x+ 2:

y

0.5

1

0

-1

-0.5

x

1050-5-10

59. The inverse of
p
x3 + 4x:

y

3

4

2

0

x

80 2 4

1

106

60. The inverse of ex
3
+2x:

y

0.5

1

0

-0.5

-1

x

2015100 5

61. On the unit circle, y = sin ✓ = 1 when ✓ = ⇡

2

.
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Hence, sin�1 1 = ⇡

2

.

62. On the unit circle, x = cos ✓ = �1/2 when
y = sin ✓ = ±

p
3/2 in the second or third

quadrant. This coincides with a 30�-60�-90�

or ⇡

6

-⇡
3

-⇡
2

triangle, so cos�1(� 1

2

) = 2⇡/3 or
cos�1(� 1

2

) = 4⇡/3.

63. Since tan ✓ = sin ✓

cos ✓

we want y = cos ✓ to be
equal to �x = � sin ✓ on the unit circle. This
happens when ✓ = �⇡/4 and ✓ = 3⇡/4. Hence,
tan�1(�1) = �⇡

4

or tan�1(�1) = 3⇡

4

.

64. We have that csc�1(�2) = sin�1(� 1

2

). On the
unit circle, y = sin ✓ = �1/2 when x = cos ✓ =
±
p
3/2 in the third or fourth quadrant. This

coincides with a 30�-60�-90� or ⇡

6

-⇡
3

-⇡
2

trian-
gle, so csc�1(�2) = sin�1(� 1

2

) = �⇡/6 or
csc�1(�2) = 7⇡/6.

65. If an angle ✓ has sec(✓) = 2, then it has

cos(✓) = 1/2. Its sine could be ±
p
3

2

. But

if ✓ = sec�1(2), then in addition to all that
has been stated, it is in the first quadrant, and
the choice of sign (for its sine) is positive. In

summary, sin(sec�1 2) = sin ✓ =
p
3

2

.

66. cos�1(4/5) relates to a triangle in quadrant 1
with adjacent side 4 and hypotenuse 5, so the
opposite side must be 3, and the tangent of this
angle is 3

4

.

67. sin�1

�

sin
�

3⇡

4

��

= sin�1

⇣p
2

2

⌘

= ⇡

4

68. sin(�⇡

4

) = �
p
2

2

. cos�1(�
p
2

2

) relates to a tri-
angle in the second quadrant with angle 3⇡

4

.

69. sin 2x = 1 )
2x = ⇡

2

+ 2k⇡ for any integer k so
x = ⇡

4

+ k⇡ for any integer k.

70. cos 3x = 1

2

whenever
3x = ±⇡

3

+ 2k⇡ for any integer k, or
x = ±⇡

9

+ 2k⇡

3

for any integer k.



Chapter 1

Limits and

Continuity

1.1 A Brief Preview of

Calculus

1. (a) The slope appears to be 2.

Second point m
sec

(2, 5) 3
(1.1, 2.21) 2.1

(1.01, 2.0201) 2.01
(0, 1) 1

(0.9, 1.81) 1.9
(0.99, 1.9801) 1.99

(b) The slope appears to be 4.

Second point m
sec

(3, 10) 5
(2.1, 5.41) 4.1

(2.01, 5.0401) 4.01
(1, 2) 3

(1.9, 4.61) 3.9
(1.99, 4.9601) 3.99

2. (a) The slope appears to be 3.

Second point m
sec

(2, 10) 7
(1.1, 3.331) 3.31

(1.01, 3.030301) 3.0301
(0, 2) 1

(0.9, 2.729) 2.71
(0.99, 2.970299) 2.9701

(b) The slope appears to be 12.

Second point m
sec

(3, 27) 19
(2.1, 11.261) 12.61

(2.01, 10.120601) 12.0601
(1, 3) 7

(1.9, 8.859) 11.41
(1.99, 9.880599) 11.9401

3. (a) The slope appears to be 0.

Second point m
sec

(1, 0.5403) �0.4597
(0.1, 0.995) �0.05

(0.01, 0.99995) �0.005
(-1, 0.5403) 0.4597
(-0.1, 0.995) 0.05

(-0.01, 0.99995) 0.005

(b) The slope appears to be 1.

Second point m
sec

(1, 0.5403) 0.9466
(1.5, 0.0707) 0.9986
(1.57, 0.0008) 1
(2.5, -0.8011) 0.8621
(2, -0.4161) 0.9695
(1.6, -0.0292) 1

4. (a) The slope appears to be 1

2

.

Second point m
sec

(1,
p
2) 0.4142

(0.1, 1.0488) 0.488
(0.01, 1.004988) 0.4988

(-1, 0) 1
(-0.1, 0.9487) 0.513

(-0.01, 0.99499) 0.501

(b) The slope appears to be 0.25.

Second point m
sec

(2, 1.7321) 0.2679
(2.9, 1.9748) 0.252
(2.99, 1.9975) 0.25
(4, 2.2361) 0.2361
(3.1, 2.0248) 0.248
(3.01, 2.0025) 0.25

5. (a) The slope appears to be 1.

Second point m
sec

(1, e) 1.718282
(0.1, 1.1052) 1.051709
(0.01, 1.0101) 1.005017
(-1, 0.3679) 0.632121
(-0.1, 0.9048) 0.951626
(-0.01, 0.9901) 0.995017

(b) The slope appears to be 2.72.

40
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Second point m
sec

(0, 1) 1.7183
(0.9, 2.4596) 2.587
(0.99, 2.6912) 2.71
(2, 7.3891) 4.6708
(1.1, 3.0042) 2.859
(1.01, 2.7456) 2.73

6. (a) The slope appears to be 1.

Second point m
sec

(0.1, -2.3026) 2.5584
(0.9, -0.1054) 1.054

(0.99, -0.01005034) 1.005034
(2, 0.6931) 0.6931

(1.1, 0.09531) 0.9531
(1.01, 0.00995) 0.995

Note that we used 0.1 rather than 0 as an
evaluation point because lnx is not de-
fined at 0.

(b) The slope appears to be 0.5.

Second point m
sec

(1, 0) 0.6931
(1.9, 0.6419) 0.512
(1.99, 0.6881) 0.5
(3, 1.0986) 0.4055
(2.1, 0.7419) 0.488
(2.01, 0.6981) 0.5

7. (a) For the x-values of our points here we use
(approximations of) 0, ⇡

8

, ⇡

4

, 3⇡

8

, and ⇡

2

.

Left Right Length
(0, 1) (0.393, 0.92) 0.400

(0.393, 0.92) (0.785, 0.71) 0.449
(0.785, 0.71) (1.18, 0.383) 0.509
(1.18, 0.383) (1.571, 0) 0.548

Total 1.906

(b) For the x-values of our points here we use
(approximations of) 0, ⇡

16

, ⇡

8

, 3⇡

16

, ⇡

4

, 5⇡

16

,
3⇡

8

, 7⇡

16

, and ⇡

2

.

Left Right Length
(0, 1) (0.196, 0.98) 0.197

(0.196, 0.98) (0.393, 0.92) 0.204
(0.393, 0.92) (0.589, 0.83) 0.217
(0.589, 0.83) (0.785, 0.71) 0.232
(0.785, 0.71) (0.982, 0.56) 0.248
(0.982, 0.56) (1.178, 0.38) 0.262
(1.178, 0.38) (1.37, 0.195) 0.272
(1.37, 0.195) (1.571, 0) 0.277

Total 1.909

(c) Actual length approximately 1.9101.

8. (a) For the x-values of our points here we use
(approximations of) 0, ⇡

8

, ⇡

4

, 3⇡

8

, and ⇡

2

.

Left Right Length
(0, 0) (0.393, 0.38) 0.548

(0.393, 0.38) (0.785, 0.71) 0.509
(0.785, 0.71) (1.18, 0.924) 0.449
(1.18, 0.924) (1.57, 1) 0.400

Total 1.906

(b) For the x-values of our points here we use
(approximations of) 0, ⇡

16

, ⇡

8

, 3⇡

16

, ⇡

4

, 5⇡

16

,
3⇡

8

, 7⇡

16

, and ⇡

2

.

Left Right Length
(0, 0) (0.196, 0.2) 0.277

(0.196, 0.2) (0.39, 0.38) 0.272
(0.39, 0.38) (0.589, 0.56) 0.262
(0.589, 0.56) (0.785, 0.71) 0.248
(0.785, 0.71) (0.982, 0.83) 0.232
(0.982, 0.83) (1.18, 0.924) 0.217
(1.18, 0.924) (1.374, 0.98) 0.204
(1.374, 0.98) (1.571, 1) 0.197

Total 1.909

(c) Actual length approximately 1.9101.

9. (a)
Left Right Length
(0, 1) (0.75, 1.323) 0.817

(0.75, 1.323) (1.5, 1.581) 0.793
(1.5, 1.581) (2.25, 1.803) 0.782
(2.25, 1.803) (3, 2) 0.776

Total 3.167

(b)
Left Right Length
(0, 1) (0.375, 1.17) 0.413

(0.375, 1.17) (0.75, 1.323) 0.404
(0.75, 1.323) (1.125, 1.46) 0.399
(1.125, 1.46) (1.5, 1.58) 0.395
(1.5, 1.58) (1.88, 1.696) 0.392
(1.88, 1.696) (2.25, 1.80) 0.390
(2.25, 1.80) (2.63, 1.904) 0.388
(2.63, 1.904) (3, 2) 0.387

Total 3.168

(c) Actual length approximately 3.168.

10. (a)
Left Right Length
(1, 1) (1.25, 0.8) 0.3202

(1.25, 0.8) (1.5, 0.67) 0.2833
(1.5, 0.67) (1.75, 0.571) 0.2675
(1.75, 0.571) (2, 0.5) 0.2600

Total 1.1310
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(b)
Left Right Length
(1, 1) (1.125, 0.89) 0.167

(1.125, 0.89) (1.25, 0.8) 0.153
(1.25, 0.8) (1.375, 0.73) 0.145

(1.375, 0.73) (1.5, 0.67) 0.139
(1.5, 0.67) (1.625, 0.62) 0.135

(1.625, 0.62) (1.75, 0.57) 0.133
(1.75, 0.57) (1.875, 0.53) 0.131
(1.875, 0.53) (2, 0.5) 0.129

Total 1.132

(c) Actual length approximately 1.1321.

11. (a)
Left Right Length
(-2, 5) (-1, 2) 3.162
(-1, 2) (0, 1) 1.414
(0, 1) (1, 2) 1.414
(1, 2) (2, 5) 3.162

Total 9.153

(b)
Left Right Length
(-2, 5) (-1.5, 3.25) 1.820

(-1.5, 3.25) (-1, 2) 1.346
(-1, 2) (-0.5, 1.25) 0.901

(-0.5, 1.25) (0, 1) 0.559
(0, 1) (0.5, 1.25) 0.559

(0.5, 1.25) (1, 2) 0.901
(1, 2) (1.5, 3.25) 1.346

(1.5, 3.25) (2, 5) 1.820

Total 9.253

(c) Actual length approximately 9.2936.

12. (a)
Left Right Length
(-1, 1) (-0.5, 1.875) 1.0078

(-0.5, 1.875) (0, 2) 0.5154
(0, 2) (0.5, 2.125) 0.5154

(0.5, 2.125) (1, 3) 1.0078

Total 3.0463

(b)
Left Right Length
(-1, 1) (-0.75, 1.58) 0.630

(-0.75, 1.58) (-.5, 1.88) 0.388
(-.5, 1.88) (-0.25, 1.98) 0.273

(-0.25, 1.98) (0, 2) 0.251
(0, 2) (0.25, 2.016) 0.251

(0.25, 2.016) (0.5, 2.13) 0.273
(0.5, 2.13) (0.75, 2.42) 0.388
(0.75, 2.42) (1, 3) 0.630

Total 3.084

(c) Actual length approximately 3.0957.

13. (a) The sum of the areas of the rectangles is
11/8 = 1.375.

0

0.8

0

x

0.5-0.5 1-1

0.4

1

0.2

0.6

(b) The sum of the areas of the rectangles is
43/32 = 1.34375.

0.8

x

1-1 0.5
0

0.4

0.6

1

-0.5

0.2

0

14. (a) The width of the entire region
(�1  x  1) is 2, so the width of each
rectangle is 2/16 = 0.125.

The left endpoints of the rectangles are

�1, �1 + 2

16

, . . . , �1 + 28

16

, �1 + 30

16

so the midpoints of the rectangles are

�1 + 1

16

, �1 + 3

16

, . . . , �1 + 31

16

.

The heights of the rectangles are then
given by the function f(x) = 1 � x

2

evaluated at those midpoints. We multi-
ply each height by the width (0.125) and
add them all to obtain the approximation
1.3359375 for the area.

(b) Using the same method as in (a), the
width of the rectangles is now

2/32 = 0.0625, and the midpoints are

�1 + 1

32

, �1 + 3

32

, . . . , �1 + 63

32

.

The approximation is 1.333984375.

(c) Using the same method as in (a), the
width of the rectangles is now

2/64 = 0.03125, and the midpoints are

�1 + 1

64

, �1 + 3

64

, . . . , �1 + 127

64

.
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The approximation is 1.333496094.

The actual area is 4/3.

15. The following is a graph with 4 rectangles:

0

x

32.52

0.8

1.510 0.5

0.4

0.2

1

0.6

(a) Using the same method as in exercise 13,
the width of the rectangles is ⇡/16, and
the midpoints are
⇡

16

, 3⇡

16

, . . . , 15⇡

16

.

The approximation is 2.003216378.

(b) Using the same method as in exercise 13,
the width of the rectangles is now ⇡/32,
and the midpoints are
⇡

32

, 3⇡

32

, . . . , 31⇡

32

.

The approximation is 2.000803417.

(c) Using the same method as in exercise 13,
the width of the rectangles is now ⇡/64,
and the midpoints are
⇡

64

, 3⇡

64

, . . . , 63⇡

64

.

The approximation is 2.000200812.

The actual area is 2.

16. The following is a graph with 4 rectangles:

0

0.8

x

10.80.60.40.20

0.4

1

0.2

0.6

(a) Using the same method as in exercise 13,
the width of the rectangles is 1/16, and
the midpoints are
1

16

, 3

16

, . . . , 15

16

.

The approximation is 0.249511719.

(b) Using the same method as in exercise 13,
the width of the rectangles is now 1/32,
and the midpoints are
1

32

, 3

32

, . . . , 31

32

.

The approximation is 0.24987793.

(c) Using the same method as in exercise 13,
the width of the rectangles is now 1/64,
and the midpoints are
1

64

, 3

64

, . . . , 63

64

.

The approximation is 0.249969482.

The actual area is 1/4.

17. The function represents a quarter of the circle
in the first quadrant, with the center as the
origin and radius 1.

(a)
Left Right Length
(0,1) (0.25, 0.9682) 0.2520

(0.25, 0.9682) (0.5, 0.866) 0.2773
(0.5, 0.866) (0.75, 0.661) 0.3200
(0.75, 0.661) (1, 0) 0.7066

Total 1.5559

(b)
Left Right Length
(0,1) (0.125, 0.9922) 0.1252

(0.125, 0.9922) (0.25, 0.9682) 0.1273
(0.25, 0.9682) (0.375, 0.927) 0.1316
(0.375, 0.927) (0.5, 0.866) 0.1391
(0.5, 0.866) (0.625, 0.7806) 0.1514

(0.625, 0.7806) (0.75, 0.6614) 0.1727
(0.75, 0.6614) (0.875, 0.4841) 0.2169
(0.875, 0.4841) (1, 0) 0.5

Total 1.5642

The exact length of the curve is equal to
the
1

4
(circumference of the circle)

=
2⇡(1)

4
=

⇡

2
.

18. The function represents a quarter of the circle
in the first quadrant, with the center as the
origin and radius 3.

(a)
Left Right Length
(0, 3) (0.75, 2.905) 0.756

(0.75, 2.905) (1.5, 2.598) 0.810
(1.5, 2.598) (2.25, 1.984) 0.969
(2.25, 1.984) (3, 0) 2.121

Total 4.656
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(b)
Left Right Length
(0, 3) (0.375, 2.976) 0.376

(0.375, 2.976) (0.75, 2.905) 0.382
(0.75, 2.905) (1.125, 2.781) 0.395
(1.125, 2.781) (1.5, 2.598) 0.417
(1.5, 2.598) (1.875, 2.342) 0.454

(1.875, 2.342) (2.25, 1.984) 0.518
(2.25, 1.984) (2.625, 1.452) 0.651
(2.625, 1.452) (3, 0) 1.5

Total 4.693

The exact length of the curve is equal to
the
1

4
(circumference of the circle)

=
2⇡(3)

4
=

3⇡

2
.

1.2 The Concept of Limit

1. The graph of y =

✓
x

2 � 1

x� 1

◆
is as follows

−2

y

3

1

0

1

3

2

−1

−2 −1−3 2

−3

0
x

x f(x) x f(x)
0.9 1.9 1.1 2.1
0.99 1.99 1.01 2.01
0.999 1.999 1.001 2.001
0.9999 1.9999 1.0001 2.0001

Notice that the table and the graph both sug-
gest that, as x gets closer and closer to 1 from

the left as well as from the right

✓
x

2 � 1

x� 1

◆
gets

closer and closer to 2.This can be verified using
factorization as follows:

lim
x!1

x

2 � 1

x� 1
= lim

x!1

(x� 1) (x+ 1)

(x� 1)

= lim
x!1

(x+ 1) = 2

2. The graph of y =

✓
x

2 + x

x

2 � x� 2

◆
is as follows

−3

2

−2

2

4

−1
x

1

3

−1

−5

1

4−2

−4

0

3

y

5

0

x f(x) x f(x)
-0.9 0.3103 -1.1 0.3548
-0.99 0.3311 -1.01 0.3355
-0.999 0.3331 -1.001 0.3336
-0.9999 0.3334 -1.0001 0.3334

Notice that the table and the graph both sug-
gest that, as x gets closer and closer to -1 from

the left as well as from the right

✓
x

2 + x

x

2 � x� 2

◆

gets closer and closer to
1

3
. This can be verified

using factorization as follows:

lim
x!�1

x

2 + x

x

2 � x� 2
= lim

x!�1

x(x+ 1)

(x� 2) (x+ 1)

= lim
x!�1

x

x� 2
=

1

3

3. The graph of y =

✓
x� 2

x

2 � 4

◆
is as follows

y

0.8

−2

−1.2

0
x

−0.8

2

0.4

−0.4
3

−1.6

1.2

−2.0

0.0
−3 −1 1

2.0

1.6

x f(x) x f(x)
1.9 0.2564 2.1 0.2439
1.99 0.2506 2.01 0.2494
1.999 0.2501 2.001 0.2499
1.9999 0.25 2.0001 0.25

Notice that the table and the graph both sug-
gest that, as x gets closer and closer to 2 from

the left as well as from the right

✓
x� 2

x

2 � 4

◆
gets
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closer and closer to
1

4
. This can be verified us-

ing factorization as follows

lim
x!2

x� 2

x

2 � 4
= lim

x!2

x� 2

(x� 2)(x+ 2)

= lim
x!2

1

(x+ 2)
=

1

4

4. The graph of y =

 
(x� 1)2

x

2 + 2x� 3

!
is as follows

y

8

8

4

4

−4

−8

0
x

10

10

6

2

6

0

−2

−6

2

−10

−2−4−6−8−10

x f(x) x f(x)
0.9 -0.0256 1.1 0.0244
0.99 -0.0025 1.01 0.0025
0.999 -0.0003 1.001 0.0003
0.9999 -0.00003 1.0001 0.00003

Notice that the table and the graph both
suggest that, as x gets closer and closer to
1 from the left as well as from the right 

(x� 1)2

x

2 + 2x� 3

!
gets closer and closer to 0.

This can be verified using factorization as fol-
lows

lim
x!1

(x� 1)2

x

2 + 2x� 3
= lim

x!1

(x� 1)2

(x� 1) (x+ 3)

= lim
x!1

(x� 1)

(x+ 3)
= 0

5. The graph of y =

✓
x

2 � 1

x� 1

◆
is as follows

y

8

4

0
4

−4

−8

0
x

10

10

6

2

6
−2

−6

2

−10

−2 8−4−6−8−10

x f(x) x f(x)
2.9 3.3333 3.1 2.7273
2.99 3.0303 3.01 2.9703
2.999 3.003 3.001 2.997
2.9999 3.0003 3.0001 2.9997

Notice that the table and the graph both
suggest that, as x gets closer and closer to
1 from the left as well as from the right✓

3x� 9

x

2 � 5x+ 6

◆
gets closer and closer to 3.

This can be verified using factorization as fol-
lows

lim
x!3

3x� 9

x

2 � 5x+ 6
= lim

x!3

3(x� 3)

(x� 3)(x� 2)

= lim
x!3

3

x� 2
= 3

6. The graph of y =

✓
2 + x

x

2 + 2x

◆
is as follows

1 2

1

0−2

y

3

3

−2

2

−3

−1

−1−3

0

x

x f(x) x f(x)
-1.9 -0.5263 -2.1 -0.4762
-1.99 -0.5025 -2.01 -0.4975
-1.999 -0.5003 -2.001 -0.4998
-1.9999 -0.50001 -2.0001 -0.49998

lim
x!�2

2 + x

x

2 + 2x
= lim

x!�2

2 + x

x(x+ 2)

= lim
x!�2

1

x

= �1

2

7. (a) lim
x!0

�
f(x) = �2

(b) lim
x!0

+
f(x) = 2

(c) lim
x!0

f(x) Does not exist.

(d) lim
x!�2

�
f(x) = 2

(e) lim
x!�2

+
f(x) = 2

(f) lim
x!�2

f(x) = 2

(g) lim
x!�1

f(x) = 0

(h) lim
x!�3

f(x) = 1
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8. (a) lim
x!1

�
f(x) = 1

(b) lim
x!1

+
f(x) = 1

(c) lim
x!1

f(x) = 1

(d) lim
x!2

�
f(x) = �1

(e) lim
x!2

+
f(x) = 3

(f) lim
x!2

f(x) does not exist.

(g) lim
x!3

�
f(x) = 2.5

(h) lim
x!�3

f(x) = 1.5

9. (a) lim
x!2

�
f(x) = lim

x!2

�
2x = 4

(b) lim
x!2

+
f(x) = lim

x!2

+
x

2 = 4

(c) lim
x!2

f(x) = 4

(d) lim
x!1

f(x) = lim
x!1

2x = 2

(e) lim
x!3

f(x) = lim
x!3

x

2 = 32 = 9

y

16

12

8

4

0

x

43210-1

10. (a) lim
x!0

�
f(x) = lim

x!0

�
x

3 � 1 = �1

(b) lim
x!0

+
f(x) = lim

x!0

+

p
x+ 1� 2

= �1

(c) lim
x!0

f(x) = �1

(d) lim
x!�1

f(x) = lim
x!�1

x

3 � 1 = �2

(e) lim
x!3

f(x) = lim
x!3

p
x+ 1� 2 = 0

y

x

0.5

1
0

-0.5

0.5

-1

-1.5

0-0.5-1

11. f(1.5) = 2.22, f(1.1) = 2.05,
f(1.01) = 2.01, f(1.001) = 2.00.

The values of f(x) seem to be approaching 2
as x approaches 1 from the right.

f(0.5) = 1.71, f(0.9) = 1.95,
f(0.99) = 1.99, f(0.999) = 2.00.

The values of f(x) seem to be approaching 2 as
x approaches 1 from the left. Since the limits
from the left and right exist and are the same,
the limit exists.

12. f(�1.5) = �0.4
f(�1.1) = �0.4762
f(�1.01) = �0.4975
f(�1.001) = �0.4998

The values of f(x) seem to be approaching
�0.5 as x approaches �1 from the left.

f(�0.5) = �0.6667
f(�0.9) = �0.5263
f(�0.99) = �0.5025
f(�0.999) = �0.5003

The values of f(x) seem to be approaching
�0.5 as x approaches �1 from the right. Since
the limits from the left and right exist and are
the same, the limit exists.

13. By inspecting the graph, and using a sequence
of values (as in exercises 11 and 12), we see
that the limit is approximately 1.

14. The numerical evidence suggests that the func-
tion the function blows up at x = 1. From the
graph we see that the function has a vertical
asymptote at x = 1.

15.
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x y = f(x)
0.9 0.290960
0.6 0.062177
0.2 1.388⇥ 10�11

-0.2 1.388⇥ 10�11

-0.6 0.062177
-0.9 0.290960

By inspecting the graph and using a sequence
of values, we see that the limit is approximately
0.

16.

x y = f(x)
0.9 0.949122
0.99 0.994991
0.999 0.999500
1.001 1.000500
1.01 1.005000
1.1 1.049206

By inspecting the graph, and using a sequence
of values, we see that the limit is approximately
1.

17. The limit exists and equals 1.

18. The limit exists and equals 1.

19. The limit does not exist because the graph os-
cillates wildly near x = 0.

20. By inspecting the graph, and using a sequence
of values (as in exercises 11 and 12), we see
that the limit is approximately 3/2.

21. The numerical evidence suggests that

lim
x!2

�

x�2

|x�2| = �1 while lim
x!2

+

x�2

|x�2| = 1

so lim
x!2

x�2

|x�2| does not exist. There is a break

in the graph at x = 2.

22. The function approaches 1/2 from the left, and
�1/2 from the right. Since these are not equal,
the limit does not exist.

23. One possibility:

y

4

2

0

-2

-4

x

3210-1-2-3

24. One possibility:

y

3

x

2.5

2

3

1.5

1

2

0.5

0
10-1-2-3

25. One possibility:

y

5

4

3

2

1

0

-1

x

210-1-2

26. One possibility:

0-2-4

y

3

2

1

0

-1

-2

x

-3

42

27. Numerical and graphical evidence show that
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the limits lim
x!1

x

2 + 1

x� 1
and lim

x!2

x+ 1

x

2 � 4
do not

exist (both have vertical asymptotes). Our
conjecture is that if g(a) = 0 and f(a) 6= 0,

lim
x!a

f(x)

g(x)
does not exist.

28. lim
x!�1

x+ 1

x

2 + 1
= 0 and lim

x!⇡

sinx

x

= 0. If the

numerator f(a) = 0, and the denominator

g(a) 6= 0, then the limit lim
x!a

f(x)

g(x)
= 0.

29. The first argument gives the correct value; the
second argument is not valid because it looks
only at certain values of x.

30. From the values shown in table below, we can
conclude f(x) tends to infinity as x tends to 0.

x f(x)
0.1 9.9990
0.01 99.0099
0.001 500

For x > 0, as x decreases, the value of function
starts decreasing sharply as shown in table be-
low.

x f(x)
0.0001 99.0099
0.00001 9.9990
0.000001 1
0.0000001 0.1
0.00000001 0.01

0.0000000001 0.000001

For x < 0, as x increases, the value of function
starts increasing sharply as shown in table be-
low.

x f(x)
-0.0001 -99.0099
-0.00001 -9.9990
-0.000001 -1
-.0000001 -0.1
-.00000001 -0.01

-.0000000001 -0.000001

Notice that the table suggests that, as x gets
closer and closer to 0 from the left as well

as from the right

✓
x

x

2 + 0.000001

◆
gets closer

and closer to 0. Therefore

lim
x!0

f (x) = lim
x!0

✓
x

x

2 + 0.000001

◆
= 0

31. (a)

x (1 + x)
1
x

x (1 + x)
1
x

0.1 2.59 �0.1 2.87
0.01 2.70 �0.01 2.73
0.001 2.7169 �0.001 2.7196

lim
x!0

(1 + x)1/x ⇡ 2.7182818

(b) We see that 1/x is increasing without
bound when x is approaches 0. While it
is true that 1 raised to any power is 1,
numbers close to 1 raised to large enough
powers may be very far from 1.

32.
x x

sec x

0.1 0.099
0.01 0.010
0.001 0.001

lim
x!0

+
x

sec x = 0

For negative x the values of xsec x are usually
not real numbers, so lim

x!0

�
x

sec x = 0 does not

exist.

33. Possible answers:

f(x) =
x

2

x

g(x) =

(
1 if x  0

�1 if x > 0

34. There are many possibilities. Here is a simple
one

f(x) =

8
<

:

�x x < 0
3 x = 0
x x > 0

35. By inspecting the graph, and using a sequence
of values (as in exercises 11 and 12), we see
that the limit is approximately 1/2.

2

1

1.5

0.5

0.5

0

x

2.521.50 1 3

36. By inspecting the graph, and using a sequence
of values (as in exercises 11 and 12), we see
that the limit is approximately 1/2.
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37. The limit of h(!) as ! ! 0+ seems to be 0.

6

0.4

4
x

0.5

2

0.2

100

0.1

8
0

0.3

For ! = 0, the ball position the batter sees at
t = 0.4 is the same as what he tries to hit.

38. The graph of function

f(!) =
0.625

!

2

h
1� sin

⇣
2.72! +

⇡

2

⌘i

is shown below.

x

f(x)

2.5

0.5

y

3.0

2.0

1.5

1.0

0.0

x
543210

Also, the di↵erent values of the function are
shown in table below.

! f(!)
0.1 2.2978
0.01 2.3119
0.001 2.3120
0.0001 2.3120
0.00001 2.3120

Notice that the table and the graph both
suggest that, as ! gets closer and closer to

0 from the right
0.625

!

2

h
1� sin

⇣
2.72! +

⇡

2

⌘i

gets closer and closer to 2.3120.

39. For 3  t  4, f(t) = 8, so lim
t!3.5

f(t) = 8.

Also lim
t!4

�
f(t) = 8.

On the other hand, for 4  t  5, f(t) = 10,

so lim
t!4

+
f(t) = 10.

Hence lim
t!4

f(t) does not exist.

x

20151050

y

14

12

10

8

6

4

2

0

40. The limit does not exist at t = 1, 2, 3, 4, and
5 hours. In each case the limit from the left is
two dollars less than the limit from the right.
We would be in a hurry to move our car just
before the hour to try to save $2. Just after
the hour, we can relax and take our time as
the next price increase doesn’t come until the
next hour.

1.3 Computation of Limits

1. lim
x!0

(x2 � 3x+ 1) = 02 � 3(0) + 1 = 1

2. lim
x!2

3
p
2x+ 1 = 3

p
2(2) + 1 = 3

p
5.

3. lim
x!0

cos�1(x2) = cos�1 0 =
⇡

2
.

4. lim
x!2

x� 5

x

2 + 4
=

2� 5

22 + 4
= �3

8

5. lim
x!3

x

2 � x� 6

x� 3

= lim
x!3

(x� 3)(x+ 2)

x� 3
= lim

x!3

(x+ 2) = 3 + 2 = 5

6. lim
x!1

x

2 + x� 2

x

2 � 3x+ 2

= lim
x!1

(x� 1)(x+ 2)

(x� 1)(x� 2)

= lim
x!1

(x+ 2)

(x� 2)
=

3

�1
= �3.

7. lim
x!2

x

2 � x� 2

x

2 � 4

= lim
x!2

(x� 2)(x+ 1)

(x+ 2)(x� 2)

= lim
x!2

x+ 1

x+ 2
=

2 + 1

2 + 2
=

3

4



50 CHAPTER 1. LIMITS AND CONTINUITY

8. lim
x!1

x

3 � 1

x

2 + 2x� 3

= lim
x!1

(x� 1)(x2 + x+ 1)

(x+ 3)(x� 1)

= lim
x!1

x

2 + x+ 1

x+ 3
=

12 + 1 + 1

1 + 3
=

3

4

9. lim
x!0

sinx

tanx
= lim

x!0

sinx
sin x

cos x

= lim
x!0

cosx = cos 0 = 1

10. lim
x!0

tanx

x

= lim
x!0

sinx

x cosx

=

✓
lim
x!0

sinx

x

◆✓
lim
x!0

1

cosx

◆
= 1.

11. lim
x!0

xe

�2x+1

x

2 + x

= lim
x!0

x(e�2x+1)

x(x+ 1)

= lim
x!0

e

�2x+1

x+ 1
=

e

�2(0)+1

0 + 1
= e

12. lim
x!0

x

2csc2x = lim
x!0

x

2

sin2x

=

 
lim
x!0

1
sin x

x

! 
lim
x!0

1
sin x

x

!
= 1

13. lim
x!0

p
x+ 4� 2

x

= lim
x!0

p
x+ 4� 2

x

✓p
x+ 4 + 2p
x+ 4 + 2

◆

= lim
x!0

x+ 4� 4

x(
p
x+ 4 + 2)

= lim
x!0

x

x(
p
x+ 4 + 2)

= lim
x!0

1p
x+ 4 + 2

=
1p
4 + 2

=
1

2 + 2
=

1

4

14. lim
x!0

2x

3�
p
x+ 9

= lim
x!0

2x

(3�
p
x+ 9)

(3 +
p
x+ 9)

(3 +
p
x+ 9)

= lim
x!0

2x(3 +
p
x+ 9)

�x

= lim
x!0

�2(3 +
p
x+ 9) = �12

15. lim
x!1

x� 1p
x� 1

= lim
x!1

(
p
x+ 1)(

p
x� 1)p

x� 1
= lim

x!1

(
p
x+ 1) =

p
1 + 1 = 2

16. lim
x!4

x

3 � 64

x� 4
= lim

x!4

(x� 4)
�
x

2 + 4x+ 16
�

(x� 4)

= lim
x!4

�
x

2 + 4x+ 16
�

= 42 + 4⇥ 4 + 16 = 48

17. lim
x!1

✓
1

x� 1
� 2

x

2 � 1

◆

= lim
x!1

✓
1

x� 1
� 2

(x� 1)(x+ 1)

◆

= lim
x!1

✓
x+ 1

(x� 1)(x+ 1)
� 2

(x� 1)(x+ 1)

◆

= lim
x!1

✓
x� 1

(x� 1)(x+ 1)

◆

= lim
x!1

✓
1

x+ 1

◆
=

1

2

18. Undefined. The limit from the right is 0, but
the limit from the left does not exist.

19. lim
x!0

1� e

2x

1� e

x

= lim
x!0

(1� e

x) (1 + e

x)

1� e

x

= lim
x!0

(1 + e

x) = 2

20. lim
x!0

+

sin(|x|)
x

= lim
x!0

+

sin(x)

x

= 1

lim
x!0

�

sin(|x|)
x

= lim
x!0

�

sin(�x)

x

= lim
x!0

�

� sin(x)

x

= �1

Since the limit from the left does not equal the
limit from the right, we see that lim

x!0

sin(|x|)
x

does not exist.

21. lim
x!2

�
f(x) = lim

x!2

�
2x = 2(2) = 4

lim
x!2

+
f(x) = lim

x!2

+
x

2 = 22 = 4

lim
x!2

f(x) = 4

22. Undefined. The limit from the left is 2, but the
limit from the right is -2.

23. lim
x!�1

�
f(x) = lim

x!�1

�
(2x+ 1)

= 2(�1) + 1 = �1

lim
x!�1

+
f(x) = lim

x!�1

+
3 = 3

Therefore lim
x!�1

f(x) does not exist.

24. lim
x!1

�
f(x) = 3,

lim
x!1

+
f(x) = lim

x!1

+
2x+ 1 = 3,

Therefore lim
x!1

f(x) = 3.
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25. lim
h!0

(2 + h)2 � 4

h

= lim
h!0

(4 + 4h+ h

2)� 4

h

= lim
h!0

4h+ h

2

h

= lim
h!0

4 + h = 4

26. lim
h!0

(1 + h)3 � 1

h

= lim
h!0

1 + 3h+ 3h2 + h

3 � 1

h

= lim
h!0

h(3 + 3h+ h

2)

h

= lim
h!0

3 + 3h+ h

2 = 3

27. Consider f(x) =
sinx

x

and a polynomial

p(x) = x

2 � 4 such that p(2) = 0.

Also lim
x!0

sinx

x

= 1.

Therefore by the theorem 3.4(viii),

lim
x!a

f(p(x)) = L

) lim
x!2

sin(x2 � 4)

x

2 � 4
= 1.

28. lim
x!0

tanx

5x
= lim

x!0

sinx

5x cosx

= lim
x!0

✓
1

5

sinx

x

1

cosx

◆

=
1

5

✓
lim
x!0

sinx

x

◆✓
lim
x!0

1

cosx

◆

=
1

5
(1)(1) =

1

5

29.
x

2

x

2 sin (1/x)

�0.1 0.0054
�0.01 5⇥ 10�5

�0.001 �8⇥ 10�7

0.1 �0.005
0.01 �5⇥ 10�5

0.001 8⇥ 10�7

Conjecture: lim
x!0

x

2 sin (1/x) = 0.

Let f(x) = �x

2

, h(x) = x

2.

Then f(x)  x

2 sin
�
1

x

�
 h(x)

lim
x!0

(�x

2) = 0, lim
x!0

(x2) = 0

Therefore, by the Squeeze Theorem,

lim
x!0

x

2 sin
�
1

x

�
= 0.

0.01

0

0.005

0.10.05

-0.005

0

-0.01

-0.1 -0.05

x

30. You cannot use the Squeeze Theorem as in ex-
ercise 29 because the secant function is not
bounded between -1 and 1 like the sine func-
tion is. This is di�cult to investigate graph-
ically because of the infinitely many vertical
asymptotes as x approaches 0.

31. Let f(x) = 0, h(x) =
p
x. We see that

f(x) 
p
x cos2(1/x)  h(x),

lim
x!0

+
0 = 0, lim

x!0

+

p
x = 0

Therefore, by the Squeeze Theorem,

lim
x!0

+

p
x cos2

�
1

x

�
= 0.

0.01

0

0.005

0.10.05

-0.005

0

-0.01

-0.1 -0.05

x

32. Saying that |f(x)|  M for all x is the same as
saying �M  f(x)  M for all x.

This implies that

�Mx

2  x

2

f(x)  Mx

2

.

Since ±Mx

2 ! 0 as x ! 0, the Squeeze The-
orem shows that lim

x!0

x

2

f(x) = 0.

33. Velocity is given by the limit

lim
h!0

f(2 + h)� f(2)

h

= lim
h!0

(2 + h)2 + 2� (22 + 2)

h

= lim
h!0

4h+ h

2

h

= lim
h!0

4 + h = 4.
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34. Velocity is given by the limit

lim
h!0

f(0 + h)� f(0)

h

= lim
h!0

h

2 + 2� 2

h

= lim
h!0

h = 0.

35. Velocity is given by the limit

lim
h!0

f(0 + h)� f(0)

h

= lim
h!0

(0 + h)3 � (0)3

h

= lim
h!0

h

3

h

= lim
h!0

h

2 = 0.

36. Velocity is given by the limit

lim
h!0

f(1 + h)� f(1)

h

= lim
h!0

(1 + h)3 � 1

h

= 3

(see exercise 26).

37. lim
x!0

+

p
1� cosx

x

=

r
1

2
=

p
2

2

38. lim
x!0

1� cos2 x

x

2

= lim
x!0

sin2 x

x

2

=

✓
lim
x!0

sinx

x

◆✓
lim
x!0

sinx

x

◆
= 1.

39. lim
x!a

�
f(x) = lim

x!a

�
g(x) = g(a) because g(x) is

a polynomial. Similarly,

lim
x!a

+
f(x) = lim

x!a

+
h(x) = h(a).

40. Evaluate g(a) and h(a). If they are equal, the
limit exists and is this value. If they are not
equal, the limit does not exist.

41. (a) lim
x!2

(x2 � 3x+ 1)

= 22 � 3(2) + 1 (Theorem 3.2)
= �1

(b) lim
x!0

x� 2

x

2 + 1

=
lim
x!0

(x� 2)

lim
x!0

(x2 + 1)
(Theorem 3.1(iv))

=
lim
x!0

x� lim
x!0

2

lim
x!0

x

2 + lim
x!0

1
(Theorem 3.1(ii))

=
0� 2

0 + 1
(Equations 3.1, 3.2, and 3.5)

= �2

42. (a) lim
x!�1

(x+ 1) sinx

= lim
x!�1

(x+ 1) lim
x!�1

sinx

(Theorem 3.1).
Using Theorems 3.2 and 3.4 we get that
this is equal to (�1 + 1) sin(�1) = 0.

(b) By Theorem 3.1,

lim
x!1

xe

x

tanx
=

( lim
x!1

x)( lim
x!1

e

x)

lim
x!1

tanx
.

Using Theorem 3.2 and Theorem 3.4 we

see that this equals
e

tan 1
.

43. lim
x!a

[2f(x)� 3g(x)]

= 2 lim
x!a

f(x)� 3 lim
x!a

g(x)

= 2(2)� 3(�3) = 13

44. lim
x!a

[3f(x)g(x)]

= 3( lim
x!a

f(x))( lim
x!a

g(x))

= 3(2)(�3) = �18

45. lim
x!a

[f(x)]2

g(x)
=

h
lim
x!a

f(x)
i
2

lim
x!a

g(x)
=

(2)2

�3
= �4

3

46. lim
x!a

2f (x)h(x)

f(x) + h(x)

=
2
⇣
lim
x!a

f(x)
⌘⇣

lim
x!a

h(x)
⌘

lim
x!a

f(x) + lim
x!a

h(x)

=
2(2)(0)

2 + 0
= 0

47. lim
x!0

p (p (p (p (x))))

= lim
x!0

p

�
p

�
p

�
x

2 � 1
���

= lim
x!0

p

⇣
p

⇣�
x

2 � 1
�
2 � 1

⌘⌘

= lim
x!0

p

�
p

�
x

4 � 2x2

��

= lim
x!0

p

⇣�
x

4 � 2x2

�
2 � 1

⌘

= lim
x!0

p

�
x

8 � 4x6 + 4x4 � 1
�

= lim
x!0

�
x

8 � 4x6 + 4x4 � 1
�
2 � 1

= (�1)2 � 1 = 0

48. lim
x!0

p (3 + 2p (x� p (x)))

= lim
x!0

p

�
3 + 2p

�
x�

�
x

2 � 1
���

= lim
x!0

p

�
3 + 2p

�
x� x

2 + 1
��

= lim
x!0

p

⇣
3 + 2

⇣�
x� x

2 + 1
�
2 � 1

⌘⌘

= lim
x!0

p

⇣
3 + 2

�
x� x

2 + 1
�
2 � 2

⌘

= lim
x!0

p

⇣
2
�
x� x

2 + 1
�
2

+ 1
⌘

= lim
x!0

⇣
2
�
x� x

2 + 1
�
2

+ 1
⌘
2

� 1

=
⇣
2
�
0� 02 + 1

�
2

+ 1
⌘
2

� 1 = 8
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49. We can’t split the limit of a product into a
product of limits unless we know that both
limits exist; the limit of the product of a term
tending toward 0 and a term with an unknown
limit is not necessarily 0 but instead is un-
known.

50. The limit of a quotient is not the quotient of
the limits if the denominator is 0. The fraction
0

0

is indeterminate, and can equal any finite
value or be undefined.

51. One possibility is f(x) = 1

x

, g(x) = � 1

x

.

52. f(x) = x, g(x) = 1

x

. lim
x!0

f(x)g(x) = 1, but

lim
x!0

g(x) does not exist.

53. Yes. If lim
x!a

[f(x) + g(x)] exists, then, it would

also be true that

lim
x!a

[f(x) + g(x)]� lim
x!a

f(x)

exists. But by Theorem 3.1 (ii)

lim
x!a

[f(x) + g(x)]� lim
x!a

f(x)

= lim
x!a

[[f(x) + g(x)]� [f(x)]]

= lim
x!a

g(x)

so lim
x!a

g(x) would exist, but we are given that

lim
x!a

g(x) does not exist.

54. False. For example, let f(x) = 1/x. lim
x!0

f(x)

does not exist, but lim
x!0

1

f(x)

= lim
x!0

x = 0.

55. lim
x!0

+
(1 + x)1/x = e ⇡ 2.71828

56. lim
x!0

e

1/x does not exist.

57. lim
x!0

+
x

�x

2

= 1

58. lim
x!0

+
x

ln x does not exist.

59. When x is small and positive, 1/x is large and
positive, so tan�1(1/x) approaches ⇡/2. But
when x is small and negative, 1/x is large and
negative, so tan�1(1/x) approaches �⇡/2. So
the limit does not exist.

60. lim
x!0

ln | 1
x

| does not exist.

61. lim
x!a

[f(x)]3

=
h
lim
x!a

f(x)
i h

lim
x!a

f(x)
i h

lim
x!a

f(x)
i

= L · L · L = L

3

lim
x!a

[f(x)]4 =
h
lim
x!a

f(x)
i h

lim
x!a

[f(x)]3
i

= L · L3 = L

4

62. Since we have a starting place, and we have
shown that we can always get from one step
to the next, the theorem must be true for any
positive integer.

Given that lim
x!a

f(x) = L.

Assume that lim
x!a

[f(x)]k = L

k.

Now lim
x!a

[f(x)]k+1 = lim
x!a

[f(x)]kf(x)

= lim
x!a

[f(x)]k lim
x!a

f(x) = L

k

L = L

k+1.

Therefore lim
x!a

[f(x)]n = L

n for any positive in-

teger n.

63. lim
x!3

�
[x] = 2; lim

x!3

+
[x] = 3

Therefore lim
x!3

[x] does not exist.

64. (a) lim
x!1

[x] does not exist.

Approaches 0 from left, 1 from right.

(b) lim
x!1.5

[x] = 1.

(c) lim
x!1.5

[2x] does not exist.

Approaches 2 from left, 3 from right.

(d) lim
x!1

x� [x] does not exist.

Approaches 1 from left, 0 from right.

65. lim
x!0

+
T (x) = lim

x!0

+
(0.14x) = 0 = T (0).

lim
x!10,000

�
T (x) = 0.14(10,000) = 1400

lim
x!10,000

+
T (x) = 1500 + 0.21(10,000) = 3600

Therefore lim
x!10,000

T (x) does not exist.

A small change in income should result in a
small change in tax liability. This is true near
x = 0 but is not true near x = 10,000. As your
income grows past $10,000 your tax liability
jumps enormously.

66. If lim
x!0

+
T (x) = 0, then a = 0. If lim

x!20,000

ex-

ists, then b must be 2400. These limits should
exist so that $0 income corresponds to $0 tax,
and so that the tax function doesn’t have sud-
den jumps.
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1.4 Continuity and its

Consequences

1. f (x) =
x

2 + x� 2

x+ 2
=

(x+ 2)(x� 1)

(x+ 2)

Notice that the graph of f is a straight line, but
with a hole in it at x = �2. So, f is contin-
uous whenever x 6= �2. f(x) has a removable
discontinuity at x = �2. The discontinuity
can be removed by redefining the function as
g(x) = x� 1.

2. f (x) =
x

2 � x� 6

x� 3
=

(x� 3) (x+ 2)

(x� 3)

Notice that the graph of f is a straight line, but
with a hole in it at x = 3. So, f is continuous
whenever x 6= 3. f(x) has a removable discon-
tinuity at x = 3. The discontinuity can be re-
moved by redefining the function g(x) = x+2.

3. f(x) =
x� 1

(x+ 1)(x� 1)
has a removable discon-

tinuity at x = 1 and a non-removable discon-
tinuity at x = �1; the removable discontinuity
is removed by

g(x) =
1

x+ 1
.

4. f(x) is discontinuous where the denominator is
0. The function is not defined at x = �2 and
x = 1. (Not removable.)

5. No discontinuities.

6. f(x) is discontinuous where the denominator is
0. The function is not defined at x = 1 ±

p
5.

(Not removable.)

7. f(x) =
x

2 sinx

cosx
has non-removable discontinu-

ities at x = ⇡

2

+ k⇡ for any integer k.

8. Discontinuous wherever sinx = 0. That is
x = k⇡ for any integer k. (Not removable.)

9. By sketching the graph, or numerically, one can
see that lim

x!0

x lnx2 = 0. Thus, one can remove

the discontinuity at x = 0 by defining

g(x) =

⇢
x lnx2 if x 6= 0
0 if x = 0

10. Here f (x) =
3

lnx2

=
3

2 ln |x| ,

which is defined for all real x whenever

x 6= 0,±1. It has non- removable discontinuity
at x = 1 and x = �1 and removable discontin-
uty at x = 0. We can remove the discontinuty

at x = 0 by defining

g(x) =

⇢
3

ln x

2 if x 6= 0
0 if x = 0

11. f(x) has a non-removable discontinuity at

x = 1.

12. Continuous everywhere since lim
x!0

sinx

x

= 1,

and f(0) = 1.

13. f(x) has a non-removable discontinuity at

x = 1:
lim

x!�1

�
f(x) = lim

x!�1

�
(3x� 1) = �4

lim
x!�1

+
f(x) = lim

x!�1

+
(x2 + 5x) = �4

lim
x!1

�
f(x) = lim

x!1

�
(x2 + 5x) = 6

lim
x!1

+
f(x) = lim

x!1

+
(3x3) = 3

14. f(x) is undefined at x = 0, and therefore dis-
continuous there. If f(0) is defined to be 0, the
function is continuous everywhere.

15. f(1) is not defined and lim
x!1

f(x) does not exist.

16. Discontinuous because function is not defined
at x = 1.

17. f(0) is not defined and lim
x!0

f(x) does not exist.

18. The function is discontinuous at x = 0, as it is
not defined at x = 0.

19. lim
x!2

�
f(x) = lim

x!2

�
(x2) = 4

lim
x!2

+
f(x) = lim

x!2

+
(3x� 2) = 4

lim
x!2

f(x) = 4; f(2) = 3

lim
x!2

f(x) 6= f(2)

20. Discontinuous because function is not defined
at x = 2.

21. Continuous where x+ 3 > 0, i.e. on (�3,1)

22. Continuous where x

2 � 4 > 0, i.e. on (1,�2)
and (2,1).

23. Continuous everywhere, i.e. on (�1,1).

24. Continuous where x� 1 > 0, i.e. on (1,1).

25. sin�1 (x+ 2) is continuous on interval [-3, -1].

26. ln(sinx) is continuous whenever sinx > 0, that
is on the interval (2k⇡, (2k + 1)⇡) for all in-
tegral values of k.
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27. f(x) is continuous, on interval [-1, 1 ) when-
ever x 6=

p
2.

28. f(x) is continuous on the intervals (�1, �1)
and (2, 1)

29. lim
x!10000

�
T (x) = lim

x!10000

�
0.14x

= 0.14(10,000) = 1400

lim
x!10000

+
T (x) = lim

x!10000

+
(c+ 0.21x)

= c+ 0.21(10,000)

= c+ 2100

c+ 2100 = 1400
c = �700

A small change in income should not result in
a big change in tax, so the tax function should
be continuous.

30. If lim
x!0

+
T (x) = 0, then a = 0.

If lim
x!20,000

T (x) exists, then b must be 2400.

31. For T (x) to be continuous at x = 141,250 we
must have

lim
x!141,250

�
T (x) = lim

x!141,250

+
T (x).

Now
lim

x!141,250

�
T (x) = lim

x!141,250

�
(.30)(x)a

= (.30)(141,250)� 5685

= 36690.

On the other hand,
lim

x!141,250

+
T (x) = lim

x!141,250

+
(.35)(x)� b

= (.35)(141,250)� b

= 49437.50� b.

Hence
b = 49437.50� 36690 = 12,747.50.

For T (x) to be continuous at x = 307,050

we must have

lim
x!307,050

�
T (x) = lim

x!307,050

+
T (x).

Now
lim

x!307,050

�
T (x)

= lim
x!307,050

�
(.35)(x)� b

= (.35)(307,050)� 12,747.5

= 94,720.

On the other hand,
lim

x!307,050

+
T (x)

= lim
x!307,050

+
(.386)(x)� c

= (.386)(307,050)� c

= 118521.3� c.

Hence
c = 118,521.3� 94720 = 23801.3.

32. lim
x!6,000

�
T (x) = lim

x!6,000

�
0.10x

= $600.

lim
x!6,000

+
T (x) = lim

x!6,000

+
0.15x� 300

= $600.

So T (6, 000) = $600 = lim
x!6,000

T (x), and

T (x) is continuous at x = 6, 000.

33. (a) The first two rows of the following ta-
ble (together with the Intermediate Value
Theorem) show that f(x) has a root in
[2, 3]. In the following rows, we use the
midpoint of the previous interval as our
new x. When f(x) is positive, we use the
left half, and when f(x) is negative, we
use the right half of the interval. (Be-
cause the function goes from negative to
positive. If the function went from pos-
itive to negative, the intervals would be
reversed.)

x f(x)
2 �3
3 2
2.5 �0.75
2.75 0.5625
2.625 �0.109375
2.6875 0.223
2.65625 0.557

The zero is in the interval
[2.625, 2.65625].

(b) On repeated application of intermediate
value theorem, we get

x f(x)
-3 2
-2 -3
-2.5 -0.75
-2.75 0.5625
-2.625 -0.109375
-2.6875 0.2227
-2.65625 0.0557

The interval in which f (x) has a zero is
[-2.65625, -2.625 ] which is 1

32

that of the
given interval.

34. (a) The first two rows of the following ta-
ble (together with the Intermediate Value
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Theorem) show that f(x) has a root in
[2, 3]. In the following rows, we use the
midpoint of the previous interval as our
new x. When f(x) is positive, we use the
left half, and when f(x) is negative, we
use the right half of the interval. (Be-
cause the function goes from negative to
positive. If the function went from pos-
itive to negative, the intervals would be
reversed.)

x f(x)
2 �2
3 13
2.5 3.625
2.25 0.3906
2.125 �0.9043
2.1875 �0.2825
2.21875 0.4758

The zero is in the interval
(2.1875, 2.21875).

(b) On repeated application of intermediate
value theorem, we get

x f(x)
-1 1
0 -2

-0.5 -0.125
-0.75 0.5781
-0.625 0.2559
-0.5625 0.0720
-0.53125 -0.0249

The interval in which f (x) has a zero is
[�0.5625,� 0.5] which is 1

32

that of the
given interval.

35. The first two rows of the following table (to-
gether with the Intermediate Value Theorem)
show that f(x) has a root in [�2,�1]. In the
following rows, we use the midpoint of the pre-
vious interval as our new x. When f(x) is pos-
itive, we use the right half, and when f(x) is
negative, we use the left half of the interval.

x f(x)
0 1
1 �0.46
0.5 0.378
0.75 �0.018
0.625 0.186
0.6875 0.085
0.71875 0.034

The zero is in the interval
[0.71875, 0.75].

36. The first two rows of the following table (to-
gether with the Intermediate Value Theorem)
show that f(x) has a root in [�2,�1]. In the
following rows, we use the midpoint of the pre-
vious interval as our new x. When f(x) is pos-
itive, we use the left half, and when f(x) is
negative, we use the right half of the interval.

x f(x)
�1 �0.6321
0 1

�0.5 0.1065
�0.75 �0.2776
�0.625 �0.0897
�0.5625 0.0073
�0.59375 �0.0415

The zero is in the interval
(�0.59375,�0.5625).

37. The function is continuous on the intervals

(�6.5,�2) , (�2, 1) , (1, 4) and (4, 7)

38. The function is continuous on the intervals

(�6, �2) , (�2, 0) , (0, 4) and (4, 7).

39. lim
x!0

�
f(x) = lim

x!0

�
2
sinx

x

= 2 lim
x!0

�

sinx

x

= 2

Hence a must equal 2 if f is continuous.

lim
x!0

�
f(x) = lim

x!0

�
b cosx

= b lim
x!0

�
cosx = b,

so b and a must equal 2 if f is continuous.

40. We need ae

0 + 1 = sin�1 0, so a = �1.

We need 22 � 2 + b = sin�1 1, so b = ⇡

2

� 2.

41. First note that
lim

x!3

+
f(x) = lim

x!3

+
ln(x� 2) + x

2

= ln(3� 2) + 32 = 9.

Also f(3) = 2e3b + 1,

so if f is continuous, 2e3b + 1 must equal 9;

that is e3b = 4, so b = ln 4

3

. Then note that

f(0) = 2e(b)(0) + 1 = 3.

Also,
lim

x!0

�
f(x) = lim

x!0

�
a(tan�1

x+ 2)

= a(tan�1 0 + 2)

= a(0 + 2) = 2a,

so a must equal 3/2 if f is continuous.
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42. Corollary 4.1: Suppose that g is continuous at
a and f is continuous at g(a). Then, the com-
position f � g is continuous at a.

Proof: Note that f is continuous at g(a), and
lim
x!a

g(x) = g(a) Therefore, Theorem 4.3 tells

us that lim
x!a

f(g(x)) = f( lim
x!a

g(x)).

This is equal to f(g(a)) since g is continuous
at a. Since f(g(a)) = lim

x!a

f(g(x)), f � g is con-

tinuous at x = a.

43. lim
x!2

+
f(x) = lim

x!2

+
(3x� 3) = 3

f(2) = 22 = 4

Thus f(x) is not continuous from the right at
x = 2.

44. Yes, f(x) is continuous from the right at x = 2,
because
lim

x!2

+
f(x) = f(2) = 3.

45. A function is continuous from the left at x = a

if lim
x!a

�
f(x) = f(a).

(a) lim
x!2

�
f(x) = lim

x!2

�
x

2 = 4

f(2) = 5
Thus f(x) is not continuous from the left
at x = 2.

(b) lim
x!2

�
f(x) = lim

x!2

�
x

2 = 4

f(2) = 3
Thus f(x) is not continuous from the left
at x = 2.

(c) lim
x!2

�
f(x) = lim

x!2

�
x

2 = 4

f(2) = 4
Thus f(x) is continuous from the left at
x = 2.

(d) f(x) is not continuous from the left at
x = 2 because f(2) is undefined.

46. (a) Limit might exist if g(a) is also 0.

(b) f(x) is definitely discontinuous because
f(a) does not exist.

47. lim
x!0

xf(x) = lim
x!0

x lim
x!0

f(x)

= 0f(0) = 0

48. The function

f(x) =

⇢
-1 x  0
1 0 < x

is not continuous at x = 0, but xf(x) equals
|x| and lim

x!0

xf(x) = 0.

49. lim
x!a

g(x) = lim
x!a

|f(x)| =
��� lim
x!a

f(x)
���

= |f(a)| = g(a).

50. It is not true. The function f(x) from the
solution to exercise 64 is a counter-example.
|f(x)| = 1 for all x, and so |f(x)| is continu-
ous, but f(x) is not.

51. Let b � a. Then

lim
x!b

h(x) = lim
x!b

(max
atb

f(t))
= max

atb

(lim
t!b

f(t))
= h(b)

since f is continuous. Thus, h is continuous for
x � a.

No, the property would not be true if f were
not assumed to be continuous. A counterex-
ample is

f(x) =

⇢
1 if a  x < b

2 if b  x

Then h(x) = 1 for a  x < b, and h(x) = 2 for
x � b. Thus, h is not continuous at x = b.

52. lim
x!0

f(g(x)) = lim
x!0

(2x)2 = 0.

f( lim
x!0

g(x)) = f( lim
x!0

2x) = f(0) = 4.

lim
x!0

f(g(x)) 6= f( lim
x!0

g(x)).

53. We already know f(x) 6= 0 for a < x < b.

Suppose f(d) < 0 for some d, a < d < b.

Then by the Intermediate Value Theorem,
there is an e in the interval [c, d] such that
f(e) = 0. But this e would also be between
a and b, which is impossible. Thus, f(x) > 0
for all a < x < b.

54. The Intermediate Value Theorem does not ap-
ply because the function is not continuous over
the interval [�1, 2] (it is undefined at x = 0).
The method of bisections converges to the dis-
continuity at x = 0.

55. Define a function g(x) = f(x)�x. As the func-
tion f is continuous on the interval [a, b], g is
also continuous on the interval [a, b].

Also f(a) > a ) g (a) = f (a)� a > 0 and

f(b) < b ) g (b) = f (b)� b < 0.

Hence by using corollary 4.2, there is at least
one number

c 2 (a, b) such that g(c) = 0.

Therefore, f(c)� c = 0 or f(c) = c.
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56. Theorem 4.2: Suppose that f and g are con-
tinuous at x = a. Then (ii) (f ·g) is continuous
at x = a and (iii) (f/g) is continuous at x = a.

Proof: (ii) lim
x!a

f(x) ·g(x) = lim
x!a

f(x) · lim
x!a

g(x)

by Theorem 3.1. This equals

f(a) · g(a) = (f · g)(a) since f and g are con-
tinuous at x = a.

(iii) lim
x!a

f(x)/g(x) = lim
x!a

f(x)/ lim
x!a

g(x) by

Theorem 3.1. This equals

f(a)/g(a) = (f/g)(a) since f and g are contin-
uous at x = a and g(a) 6= 0.

57. The function f(x) is discontinuous where the
denominator is 0, that is, at x = 0, x = 1 and
x = 2.

y

1.5

1

0.5

0

-0.5

-1

-1.5

x

43210-1-2

58. Using the method of bisections starting with
interval [�3,�2] yields

x f(x)
�3 �177
�2 5
�2.5 �47.16
�2.25 �14.17
�2.125 �3.14
�2.0625 1.256
�2.09375 �0.858

The root is in (�2.09375,�2.0625). The actual
root is approximately �2.08136.

The other root, approximately 1.15538, is
found similarly.

59.

100

80

60

40

20

0

x

140120100806040200

y

The graph is discontinuous at x = 100. This is
when the box starts moving.

60.

x

1612840

52000

50000

48000

46000

44000

42000

40000

38000

The function s(t) has jump discontinuities ev-
ery three months when the salary suddenly in-
creases by $2000. In the function f(t), the
$2000 increase occurs gradually over the 3
month period, so f(t) is continuous. It might
be easier to do calculations with f(t) because
it is continuous and because it is given by a
simpler formula.

61. Let f(t) be her distance from home as a func-
tion of time on Monday. Let g(t) be her dis-
tance from home as a function of time on Tues-
day. Let t be given in minutes, with t = 0
corresponding to 7:13 a.m. Then she leaves
home at t = 0 and arrives at her destination at
t = 410. Let h(t) = f(t) � g(t). If h(t) =0 for
some t, then the saleswoman was at exactly the
same place at the same time on both Monday
and Tuesday. h(0) = f(0)� g(0) = �g(0) < 0
and h(410) = f(410) � g(410) = f(410) > 0.
By the Intermediate Value Theorem, there is a
t in the interval [0, 410] such that h(t) = 0.

62. My car was going forward as I approached
the stop sign, rolled backward for a moment,
then proceded forward again, so my car’s ve-
locity was positive, then negative, then posi-
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tive again. Because my car’s velocity is contin-
uous, the Intermediate Value Theorem guar-
antees that the velocity must have been 0 in
between changing from positive to negative,
and again 0 between changing from negative to
positive. This stopping is instantaneous; the
police o�cer wanted to see me stop for long
enough to look both ways and determine if it
was safe to proceed.

63. Need g(30) = 100 and g(34) = 0.

We may take g(T ) to be linear.

m =
0� 100

34� 30
= �25

y = �25(x� 34)
g(T ) = �25(T � 34)

1.5 Limits Involving

Infinity; Asymptotes

1. (a) lim
x!1

�

1� 2x

x

2 � 1
= 1.

(b) lim
x!1

+

1� 2x

x

2 � 1
= �1.

(c) Does not exist.

2. (a) lim
x!�1

�

1� 2x

x

2 � 1
= 1.

(b) lim
x!�1

+

1� 2x

x

2 � 1
= �1.

(c) Does not exist.

3. (a) lim
x!2

�

x� 4

x

2 � 4x+ 4
= �1

(b) lim
x!2

+

x� 4

x

2 � 4x+ 4
= �1

(c) lim
x!2

x� 4

x

2 � 4x+ 4
= �1

4. (a) lim
x!�1

�

1� x

(x+ 1)2
= 1

(b) lim
x!�1

+

1� x

(x+ 1)2
= 1

(c) lim
x!�1

1� x

(x+ 1)2
= 1

5. lim
x!�2

+

x

2 + 2x� 1

x

2 � 4
= 1,

lim
x!�2

�

x

2 + 2x� 1

x

2 � 4
= �1

and hence

lim
x!�2

x

2 + 2x� 1

x

2 � 4
does not exist.

6. lim
x!�1

�
(x2 � 2x� 3)�2/3 = 1.

As x approaches �1, x

2 � 2x � 3 is small,
so (x2 � 2x � 3)2/3 is small and positive, so
(x2 � 2x � 3)�2/3 is large and positive, so the
limit is 1.

7. lim
x!0

+
cotx = 1,

lim
x!0

�
cotx = �1 and

lim
x!0

cotx does not exist.

8. lim
x!⇡

2
+
xsec2x = 1,

lim
x!⇡

2
�
xsec2x = 1

and
lim
x!⇡

2

xsec2x = 1.

9. lim
x!1

x

2 + 3x� 2

3x2 + 4x� 1

= lim
x!1

x

2

�
1 + 3

x

� 2

x

2

�

x

2

�
3 + 4

x

� 1

x

2

�

=
lim
x!1

�
1 + 3

x

� 2

x

2

�

lim
x!1

�
3 + 4

x

� 1

x

2

� =
1

3

10. lim
x!1

2x2 � x+ 1

4x2 � 3x� 1

= lim
x!1

2x2 � x+ 1

4x2 � 3x� 1

✓
1/x2

1/x2

◆

= lim
x!1

2� 1/x+ 1/x2

4� 3/x� 1/x2

=
1

2
.

11. lim
x!�1

�xp
4 + x

2

= lim
x!�1

�x

�x

q
4

x

2 + 1

= lim
x!�1

1q
4

x

2 + 1

=
1p
1
= 1

12. lim
x!1

2x2 � 1

4x3 � 5x� 1
= 0.

13. lim
x!1

ln

✓
x

2 + 1

x� 3

◆

= lim
x!1


ln

✓
1 + 1

x

2

1

x

� 3

x

2

◆�

= lim
x!1


ln

✓
1 + 1

x

2

1

x

� 3

x

2

◆�

= lim
x!1

[lnx] = 1
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14. lim
x!0

+
[ln (x sinx)] = lim

x!0

+
(lnx) = �1

15. lim
x!0

+
e

� 2
x

3 = lim
x!1

1

e

x

= 0

16. lim
x!1

e

�(x+1)

(x2+2) = lim
x!1

e

 
�x

2( 1
x

+ 1
x

2 )

x

2(1+ 2
x

2 )

!

= lim
x!1

e

"
�( 1

x

+ 1
x

2 )
(1+ 2

x

2 )

#

= 1

17. lim
x!1

cot�1

x = 0.

(Compare Example 5.8) We are looking for the
angle that ✓ must approach as cot ✓ goes to
1. Look at the graph of cot ✓. To define the
inverse cotangent, you must pick one branch
of this graph, and the standard choice is the
branch immediately to the right of the y-axis.
Then as cot ✓ goes to 1, the angle goes to 0.

18. lim
x!1

sec�1

✓
x

2 + 1

x+ 1

◆

= lim
x!1

sec�1

"
x

2

�
1 + 1

x

2

�

x

2

�
1

x

+ 1

x

2

�
#

= lim
x!1

sec�1(x) =
⇡

2

19. lim
x!0

+

⇣
sin
⇣
e

� 1
x

2

⌘⌘
= lim

x!�1
(sin (ex))

= lim
x!0

+
(sinx) = 0,

lim
x!0

�

⇣
sin
⇣
e

� 1
x

2

⌘⌘

= lim
x!�1

(sin (ex))

= lim
x!0

+
(sinx) = 0

and hence
) lim

x!0

⇣
sin
⇣
e

� 1
x

2

⌘⌘
= 0.

20. lim
x!1

sin(tan�1

x) = lim
x!⇡

2

(sinx) = 1.

21. lim
x!⇡

2
�
e

� tan x = lim
x!1

e

�x

= lim
x!�1

e

x = 0, but

lim
x!⇡

2
+
e

� tan x = lim
x!�1

e

�x

= lim
x!1

e

x = 1,

so the limit does not exist.

22. lim
x!0

+
tan�1(lnx) = lim

x!�1
tan�1

x

= �⇡

2

.

23. (a) 4 � x

2 = 0 ) 4 = x

2 so we have vertical
asymptotes at x = ±2.
f(x) ! 1 as x ! �2�

f(x) ! �1 as x ! �2+

f(x) ! 1 as x ! 2�

f(x) ! �1 as x ! 2+

Again, we have

lim
x!±1

x

4� x

2

= lim
x!±1

x

x

2

�
4

x

2 � 1
�

= lim
x!±1

1

x

�
4

x

2 � 1
� = 0.

So there is a horizontal asymptote at

y = 0.

(b) Vertical asymptotes at x = ±2.

f(x) ! 1 as x ! 2� and x ! �2+.

f(x) ! �1 as x ! 2+ and x ! �2�.

Horizontal asymptote at y = �1.

24. (a) Since 4 + x

2 is never 0, there are no ver-
tical asymptotes. We have

lim
x!1

xp
4 + x

2

= lim
x!1

x

x

q
4

x

2 + 1

= lim
x!1

1q
4

x

2 + 1

=
1p
1
= 1

and
lim

x!�1

xp
4 + x

2

= lim
x!�1

x

�x

q
4

x

2 + 1

= lim
x!�1

�1q
4

x

2 + 1

=
�1p
1
= �1,

so there are horizontal asymptotes at

y = 1 and y = �1.

(b) The function is only defined in (�2, 2).
Two one-sided vertical asymptotes at

x = ±2. f(x) ! 1 as x ! 2�, and

f(x) ! �1 as x ! �2+.

No horizontal asymptotes.

25. The denominator factors:

x

2 � 2x� 3 = (x� 3)(x+ 1).

Since neither x = 3 nor x = �1 are zeros of
the numerator, we see that f(x) has vertical
asymptotes at x = 3 and x = �1.
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f(x) ! �1 as x ! 3�,
f(x) ! 1 as x ! 3+,
f(x) ! 1 as x ! �1�, and
f(x) ! �1 as x ! �1+.

We have

lim
x!±1

3x2 + 1

x

2 � 2x� 3

= lim
x!±1

3 + 1/x2

1� 2/x� 3/x2

= 3.

So there is a horizontal asymptote at y = 3.

26. Vertical asymptote at x = �2.

f(x) ! 1 as x ! �2�.
f(x) ! �1 as x ! �2+ and x ! �2�.
Again, we have

lim
x!±1

1� x

x

2 + x� 2
= 0

So there is a horizontal asymptote at y = 0.

27. The function is continuous for all x, so no ver-
tical asymptotes. We have

lim
x!1

4 tan�1

x� 1 = 4( lim
x!1

tan�1

x)� 1

= 4(⇡/2)� 1

= 2⇡ � 1

and

lim
x!�1

4 tan�1

x� 1

= 4( lim
x!�1

tan�1

x)� 1

= 4(�⇡/2)� 1

= �2⇡ � 1,

so there are horizontal asymptotes

at y = 2⇡ � 1 and y = �2⇡ � 1.

28. The function lnx has a one-sided vertical
asymptote at x = 0, so f(x) = ln(1 � cosx)
will have a vertical asymptote whenever

1� cosx = 0, i.e., whenever cosx = 1.

This happens when x = 2k⇡ for any integer k.
Since 1� cosx � 0 for all x, f(x) is defined at
all points except for these vertical asymptotes.
Thus as f(x) approaches any of these asymp-
totes (from either side), it behaves like lnx ap-
proaching 0 from the right, so f(x) ! �1 as
x approaches any of these asymptotes from ei-
ther side.

29. Vertical asymptotes at x = ±2.

The slant asymptote is y = �x.

30. Vertical asymptote at x = 2.

The slant asymptote is y = x+ 2.

31. Vertical asymptotes at x = �1±
p
17

2

.

The slant asymptote is y = x� 1.

32. Vertical asymptote at x = � 3
p
2.

The slant asymptote is y = x.

33. lim
x!0

+

80x�.3 + 60

2x�.3 + 5

✓
x

.3

x

.3

◆

= lim
x!0

+

80 + 60x.3

2 + 5x.3

=
80

2
= 40 mm

lim
x!1

80x�.3 + 60

2x�.3 + 5
=

60

5
= 12 mm

34. Re-write the function as

f(x) =
80 + 60x0.3

8 + 15x0.3

to see that the size with no light is

f(0) = 10 mm, and the size with infinite light
is lim

x!1
f(x) = 4 mm.

35. f(x) =
80x�0.3 + 60

10x�0.3 + 30

36. g(x) = 4x�0.4 + 4

) f(x) = 20x

�0.4
+16

4x

�0.4
+4

Therefore, lim
x!0

+
f(x) = lim

x!0

+

(20x�0.4
+16)·x0.4

(4x

�0.4
+4)·x0.4

= lim
x!0

+

20+16x

0.4

4+4x

0.4 = 20

4

= 5 and

lim
x!1

f(x) = lim
x!1

20x

�0.4
+16

4x

�0.4
+4

= 4

37. As in Example 5.10, the terminal velocity is

�
q

32

k

. When k = 0.00064, the terminal veloc-

ity is �
q

32

.00064

⇡ �224. When k = 0.00128,

the terminal velocity is �
q

32

.00128

⇡ �158.

Solve
q

32

ak

= 1

2

q
32

k

. Squaring both sides,

32

ak

=
1

4
· 32
k

so a = 4.

38. Looking at the graph, we estimate the time to
90% of terminal velocity is about 20 seconds.
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0

-200

-100

-300

-400

20 6040100 50

x

30

The terminal velocity when k = 0.001 is 178.9,
and 90% of terminal velocity is 161.0. From
the graph we see that it takes about 8.2s to
reach 90% of terminal velocity.

t
30252015

0
10

-40

5

-120

-80

-160

0

39. When x is large, the value of the fraction is
very close to 1

2

.

40. When x is large, the value of the fraction is
very close to 3.

41. When x is large, the value of the fraction is
very close to 1

2

.

42. When x is large and negative, the value of the
fraction is very close to 2.

43. lim
x!1

x

3 + 4x+ 5

e

x/2

= 0.

44. lim
x!1

(ex/3 � x

4) = 1.

45. lim
x!0

e

x � 1

x

= 1.

46. lim
x!0

ln(x2)

x

2

= �1.

47. lim
x!0

+
x

1/(ln x) = e ⇡ 2.71828

48. lim
x!0

+
x

1
x = 0

49. We multiply by
p
4x2 � 2x+ 1 + 2xp
4x2 � 2x+ 1 + 2x

to get:

lim
x!1

(
p
4x2 � 2x+ 1� 2x)

= lim
x!1

�2x+ 1p
4x2 � 2x+ 1 + 2x

· 1/x
1/x

= lim
x!1

�2 + 1/xp
4� 2/x+ 1/x2 + 2

=
�2p
4 + 2

= �1

2
.

50. lim
x!1

(
p
5x2 + 4x+ 7�

p
5x2 + x+ 3)

If we multiply by
p
5x2 + 4x+ 7 +

p
5x2 + x+ 3p

5x2 + 4x+ 7 +
p
5x2 + x+ 3

,

we get

lim
x!1

(5x2 + 4x+ 7)� (5x2 + x+ 3)p
5x2 + 4x+ 7 +

p
5x2 + x+ 3)

= lim
x!1

3x+ 4p
5x2 + 4x+ 7 +

p
5x2 + x+ 3

= lim
x!1

3 + 4

xq
5 + 4

x

+ 7

x

2 +
q
5 + 1

x

+ 3

x

2

=
3

2
p
5
=

3
p
5

10

51. Suppose the degree of q is n. If we divide both
p(x) and q(x) by x

n, then the new denomi-
nator will approach a constant while the new
numerator tends to1, so there is no horizontal
asymptote.

52. If the degree of the polynomial in the denom-
inator is larger, the horizontal asymptote is
y = 0.

53. When we do long division, we get a remainder
of x+ 2, so the degree of p is one greater than
the degree of q.

54. If the horizontal asymptote is y = 2, the de-
grees of the numerator and denominator must
be the same.

55. The function q(x) = �2(x� 2)(x� 3) satisfies
the given conditions.

56. The function q(x) =
x

2

2
� 9

2
satisfies the given

conditions.

57. The function g(x) = x

2 + 3 satisfies the given
conditions.
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58. The function g(x) =
2

⇡

·tan�1

x·(x�4) satisfies

the given conditions.

59. True.

60. False if b = 0; otherwise true.

61. False.

62. True

63. True.

64. False. For example, f(x) = 2x and g(x) = x.

65. g(x) = sinx, h(x) = x at a = 0

66. (a) lim
x!�1

p

n

(x)

= lim
x!�1

�
a

n

x

n + a

n�1

x

n�1 + · · ·+ a

0

�

= lim
x!�1

h
x

n

⇣
a

n

+
a

n�1

x

+ · · ·+ a

0

x

⌘i

= lim
x!�1

a

n

x

n

When the degree n is odd, if a
n

is posi-
tive, the limit as x ! �1 is �1, and if
a

n

is negative, the limit as x ! �1 is
+1.

(b) As in part (a), we have
lim

x!�1
p

n

(x) = lim
x!�1

a

n

x

n

When the degree n is even, if a
n

is pos-
itive, the limit as x ! �1 is +1, and
if a

n

is negative, the limit as x ! �1 is
�1.

67. h(0) =
300

1 + 9(.80)
=

300

10
= 30 mm

lim
t!1

300

1 + 9(.8t)
= 300 mm

68. Length at t = 0 is h(0) = 20 mm. Length
eventually is lim

t!1
h(t) = 50 mm.

69. lim
t!1

v

N

= lim
t!1

Ft

m

= 1

lim
t!1

v

E

= lim
t!1

Fctp
m

2

c

2 + F

2

t

2

= lim
t!1

Fct

t

q
m

2
c

2

t

2 + F

2

= lim
t!1

Fcq
m

2
c

2

t

2 + F

2

=
Fcp
F

2

= c

70. f(t) ! 0 as t ! 0 and t ! 1. This makes
sense because the drug will require some time
to reach the muscles, and should wear o↵ over
time.

71. We must restrict the domain to v

0

� 0 be-
cause the formula makes sense only if the
rocket is launched upward. To find v

e

, set
19.6R � v

2

0

= 0. Using R ⇡ 6,378,000 me-
ters, we get v

0

=
p
19.6R ⇡ 11,180m/s. If the

rocket is launched with initial velocity � v

e

, it
will never return to earth; hence v

e

is called
the escape velocity.

2E10

1E10

1.5E10

10000

5E9

0E0
2000 6000

x

4000 80000

1.6 Formal Definition of the

Limit

1. We want |3x� 0| < "

, 3|x| < "

, |x| = |x� 0| < "/3
Take � = "/3.

2. We want |3x� 3| < "

, 3|x� 1| < "

, |x� 1| < "/3
Take � = "/3.

3. We want |3x+ 2� 8| < "

, |3x� 6| < "

, 3|x� 2| < "

, |x� 2| < "/3
Take � = "/3.

4. We want |3x+ 2� 5| < "

, |3x� 3| < "

, 3|x� 1| < "

, |x� 1| < "/3
Take � = "/3.

5. We want |3� 4x� (�1)| < "

, |� 4x+ 4| < "

, 4|� x+ 1| < "

, 4|x� 1| < "

, |x� 1| < "/4
Take � = "/4.
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6. We want |3� 4x� 7| < "

, |� 4x� 4| < "

, 4|� x� 1| < "

, 4|x+ 1| < "

, |x+ 1| < "/4
Take � = "/4.

7. We want

����
x

2 + x� 2

x� 1
� 3

���� < ".

We have���x
2
+x�2

x�1

� 3
��� =

��� (x+2)(x�1)

x�1

� 3
���

= |x+ 2� 3|

= |x� 1|

Take � = ".

8. We want

����
x

2 � 1

x+ 1
� (�2)

���� < ".

We have���x
2�1

x+1

+ 2
��� =

��� (x+1)(x�1)

x+1

+ 2
���

= |x� 1 + 2|

= |x+ 1|

Take � = ".

9. We want
��
x

2 � 1� 0
��
< ".

We have |x2 � 1| = |x � 1||x + 1|. We require
that � < 1, i.e., |x � 1| < 1 so 0 < x < 2 and
|x+ 1| < 3. Then
|x2 � 1| = |x� 1||x+ 1| < 3|x� 1|.
Requiring this to be less than " gives
|x� 1| < "/3, so � = min{1, "/3}.

10. We want
��
x

2 � x+ 1� 1
��
< ".

We have |x2 � x| = |x||x� 1|. We require that
� < 1, i.e., |x�1| < 1 so 0 < x < 2 and |x| < 2.
Then
|x2 � x| = |x||x� 1| < 2|x� 1|.
Requiring this to be less than " gives
|x� 1| < "/2, so � = min{1, "/2}.

11. We want
��
x

2 � 1� 3
��
< ".

We have |x2 � 4| = |x � 2||x + 2|. We require
that � < 1, i.e., |x � 1| < 1 so 1 < x < 3 and
|x+ 2| < 5. Then
|x2 � 4| = |x� 2||x+ 2| < 5|x� 2|.
Requiring this to be less than " gives
|x� 2| < "/5, so � = min{1, "/5}.

12. We want
��
x

3 + 1� 1
��
< ", i.e., |x3| < ".

Take � = 3
p
".

13. Let f(x) = mx+b. Since f(x) is continous, we
know that lim

x!a

f(x) = ma + b. So we want to

find a � which forces |mx+ b� (ma+ b)| < ".
But
|mx+ b� (ma+ b)| = |mx�ma|

= |m||x� a|.
So as long as |x� a| < � = "/|m|, we will have
|f(x)� (ma+ b)| < ". This � clearly does not
depend on a. This is due to the fact that f(x)
is a linear function, so the slope is constant,
which means that the ratio of the change in y

to the change in x is constant.

14. Since the � obtained in exercise 9 is di↵erent
from that of exercise 11, we see immediately
that the value of � for lim

x!a

(x2+b) does depend

on a. In this case the ratio of the change in y

to the change in x depends very much on the
value of a. Near the origin, the graph is not
very steep at all, while away from the origin
the graph can become very steep indeed.

15. (a) From the graph, we determine that we can
take � = 0.316, as shown below.

y

1.1

1.05

1

0.95

0.9

x

0.30.20.10-0.1-0.2-0.3

(b) From the graph, we determine that we can
take � = 0.223, as shown below.

y

1.04

1.02

1

0.98

0.96

x

0.20.10-0.1-0.2

16. (a) From the graph, we determine that we can
take � = 0.45, as shown below.
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y

1.1

1.05

1

0.95

0.9

x

0.40.20-0.2-0.4

(b) From the graph, we determine that we can
take � = 0.315, as shown below.

y

1.04

1.02

1

0.98

0.96

x

0.30.20.10-0.1-0.2-0.3

17. (a) From the graph, we determine that we can
take � = 0.38, as shown below.

2

1.96

1.92

x

1.31.21.110.90.80.7

y

2.08

2.04

(b) From the graph, we determine that we can
take � = 0.2, as shown below.

y

2.04

2.02

2

1.98

1.96

x

1.21.110.90.8

18. (a) From the graph, we determine that we can
take � = 0.02, as shown below.

y

3.08

3.04

3

2.96

2.92

x

1.021.0110.990.98

(b) From the graph, we determine that we can
take � = 0.01, as shown below.

y

3.04

3.02

3

2.98

2.96

x

1.011.00510.9950.99

19. For a function f(x) defined on some open in-
terval (c, a) we say
lim

x!a

�
f(x) = L

if, given any number " > 0, there is another
number � > 0 such that whenever x 2 (c, a)
and a� � < x < a, we have |f(x)� L| < ".

For a function f(x) defined on some open in-
terval (a, c) we say
lim

x!a

+
f(x) = L

if, given any number " > 0, there is another
number � > 0 such that whenever x 2 (a, c)
and a < x < a+ �, we have |f(x)� L| < ".

20. Note that

����
1

x

� 1

���� =
����
1� x

x

����. As x ! 1�, we

see that 1 � x > 0 and x > 0 (we need not
consider negative values of x). Thus we need

to solve the inequality
1� x

x

< 0.1:
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1� x

x

< 0.1

1� x < 0.1x

1 < 1.1x

1

1.1
< x

0.909090 . . . < x

Thus we take
�

1

= 1� 0.909090 . . . = 0.090909 . . ..
Similarly, as x ! 1+, we have x � 1 > 0 and
x > 0. Therefore we need
x� 1

x

< 0.1

x� 1 < 0.1x

0.9x < 1

x <

1

0.9
x < 1.111111 . . .

Thus we take
�

2

= 1.111111 . . .� 1 = 0.111111 . . ..

In the definition of the limit we need to take
the smaller � (�

1

) to ensure that |f(x)�L| < "

on both sides of a = 1.

To prove that lim
x!1

1/x = 1, we take � < 1/2,

so that 1/2 < x < 3/2. Then����
1� x

x

���� <
����
1� x

1

2

����

= 2|1� x|
= 2|x� 1|

To get this to be less than ", we take

� = min{1/2, "/2}.

21. (a) As x ! 1+, x� 1 > 0 so we compute
2

x� 1
> 100

2 > 100(x� 1)

2

100
> x� 1

So take � = 2/100.

(b) As x ! 1�, x� 1 < 0 so we compute
2

x� 1
< �100

2 > �100(x� 1)

� 2

100
< x� 1

2

100
> �x+ 1 = |x� 1|

So take � = 2/100.

22. (a) We look at the graph of cotx as x ! 0+

and we find that we should take

� = 0.00794.

(b) We look at the graph of cotx as x ! ⇡

�

and we find that we should take

� = 0.0098.

23. We want M such that if x > M ,����
x

2 � 2

x

2 + x+ 1
� 1

���� < 0.1

We have����
x

2 � 2

x

2 + x+ 1
� 1

����

=

����
x

2 � 2� (x2 + x+ 1)

x

2 + x+ 1

����

=

����
�x� 3

x

2 + x+ 1

����

=

����
x+ 3

x

2 + x+ 1

����
Now, as long as x > 3, we have����

x+ 3

x

2 + x+ 1

���� <
����

2x

x

2 + x

����

=

����
2

x+ 1

����

We want

����
2

x+ 1

���� < 0.1. Since x ! 1, we can

take x > 0, so we solve
2

x+ 1
< 0.1 to get

x > 19, i.e., M = 19.

24. We look at the graph of
e

x + x

e

x � x

2

as x gets larger

and we find that we should take M = 7.

25. We have����
x

2 + 3

4x2 � 4
� 1

4

���� =
����
x

2 + 3� (x2 � 1)

4x2 � 4

����

=

����
4

4x2 � 4

����

=

����
1

x

2 � 1

����
Since x ! �1, we may take x < �1 so that

x

2 � 1 > 0. We now need
1

x

2 � 1
< 0.1. Solv-

ing for x gives |x| >
p
11 ⇡ 3.3166. So we can

take N = �4.

26. We have����
3x2 � 2

x

2 + 1
� 3

���� =
����
3x2 � 2� (3x2 + 3)

x

2 + 1

����

=

����
�5

x

2 + 1

����

=

����
5

x

2 + 1

����

We now need
5

x

2 + 1
< 0.1.

Solving for x gives |x| > 7, i.e., N = �7.
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27. Let " > 0 be given and assume "  1/2.

Let N = �( 1
"

� 2)1/2. Then if x < N ,����
1

x

2 + 2
� 3� (�3)

���� =
����

1

x

2 + 2

����

<

�����
1

�
�( 1

"

� 2)1/2
�
2

+ 2

����� = "

28. Let " > 0 be given and let M = "

�1/2 + 7.

Then if x > M ,����
1

(x� 7)2

���� <

�����
1

�
"

�1/2 + 7� 7
�
2

����� = "

29. Let N < 0 be given and let � = 4
p
�2/N .

Then for any x such that |x+ 3| < �,����
�2

(x+ 3)4

���� >

�����
�2

( 4
p
�2/N)4

����� = |N |

30. Let M > 0 be given and let � =
p
3/M .

Then for any x such that |x� 7| < �,����
3

(x� 7)2

���� >

�����
3

(
p
3/M)2

����� = |M |

31. Let " > 0 be given and let M = "

�1/k.

Then if x > M ,����
1

x

k

���� <

�����
1

�
"

�1/k

�
k

����� = "

32. Let " > 0 be given and let N = �"

�1/2k.

Then if x < N ,����
1

x

2k

���� <

�����
1

�
�"

�1/2k

�
2k

����� = "

33. We observe that lim
x!1

�
f(x) = 2 and

lim
x!1

+
f(x) = 4. For any x 2 (1, 2),

|f(x)� 2| = |x2 + 3� 2| = |x2 + 1| > 2.
So if "  2, there is no � > 0 to satisfy the
definition of limit.

34. We observe that lim
x!0

�
f(x) = �1 and

lim
x!0

+
f(x) = �2. For any x 2 (�1, 0),

|f(x)� (�2)| = |x2 � 1 + 2| = |x2 + 1| > 1.
So if "  1, there is no � > 0 to satisfy the
definition of limit.

35. We observe that lim
x!1

�
f(x) = 2 and

lim
x!1

+
f(x) = 4. For any x 2 (1,

p
2),

|f(x)� 2| = |5� x

2 � 2|
= |3� x

2| > |3� (
p
2)2| = 1.

So if "  1, there is no � > 0 to satisfy the
definition of limit.

36. We observe that lim
x!2

�
f(x) = 1 and

lim
x!2

+
f(x) = 4.

For any x 2 (2, 3),
|f(x)� 1| = |x2 � 1| > 3.
So if "  3, there is no � > 0 to satisfy the
definition of limit.

37. Let L = lim
x!a

f(x). Given any " > 0, we

know there exists � > 0 such that whenever
0 < |x� a| < �, we have

|f(x)� L| < "

|c| .

Here, we can take "/|c| instead of " because
there is such a � for any ", including "/|c|. But
now we have
|c · f(x)� c · L| = |c| · |f(x)� L|

< |c| · "

|c| = ".

Therefore, lim
x!a

c · f(x) = c · L, as desired.

38. Let L

1

= lim
x!a

f(x). Then, given any " > 0,

there exists �

1

> 0 such that whenever 0 <

|x� a| < �

1

, we have

|f(x)� L

1

| < "

2
.

Similarly, let L

2

= lim
x!a

g(x). Then, given any

" > 0, there exists �

2

> 0 such that whenever
0 < |x� a| < �

2

, we have

|g(x)� L

2

| < "

2
.

Note that
|(f(x) + g(x))� (L

1

+ L

2

)|
= |(f(x)� L

1

) + (g(x)� L

2

)|
 |f(x)� L

1

|+ |g(x)� L

2

|
by the triangle inequality. So whenever � =
min{�

1

, �

2

}, we have
|(f(x) + g(x))� (L

1

+ L

2

)|
 |f(x)� L

1

|+ |g(x)� L

2

|

<

"

2
+

"

2
= "

as desired. The proof for f(x)�g(x) is similar,
noting that
|(f(x)� g(x))� (L

1

� L

2

)|
= |(f(x)� L

1

) + (�1)(g(x)� L

2

)|
 |f(x)� L

1

|+ |g(x)� L

2

|.
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39. Let " > 0 be given. Since lim
x!a

f(x) = L, there

exists �
1

> 0 such that whenever

0 < |x� a| < �

1

, we have
|f(x)� L| < ".

In particular, we know that
L� " < f(x).
Similarly, since lim

x!a

h(x) = L, there exists

�

2

> 0 such that whenever 0 < |x�a| < �

2

, we
have
|h(x)� L| < ".

In particular, we know that h(x) < L+ ".

Let � = min{�
1

, �

2

}.

Then whenever 0 < |x� a| < �, we have
L� " < f(x)  g(x)  h(x) < L+ ".

Therefore
|g(x)� L| < "

and so lim
x!a

g(x) = L as desired.

40. Let " > 0 be given. If x < a, there exists
�

1

> 0 such that if 0 < |x � a| < �

1

, then
|f(x) � L| < ". Likewise, if x > a, there ex-
ists �

2

> 0 such that if 0 < |x � a| < �

2

, then
|f(x) � L| < ". Let � = min{�

1

, �

2

}. Then
for any x such that 0 < |x � a| < �, we have
|f(x)� L| < ".

41. We want to find, for any given " > 0, a � > 0
such that whenever 0 < |r � 2| < �, we have
|2r2 � 8| < ". We see that
|2r2 � 8| = 2|r2 � 4| = 2|r � 2||r + 2|.
Since we want a radius close to 2, we may take
|r � 2| < 1 which implies |r + 2| < 5 and so
|2r2 � 8| < 10|r � 2|
whenever |r � 2| < 1. If we then take

� = min{1, "/10}, we see that whenever

0 < |r � 2| < �, we have

|2r2 � 8| < 10 · �  10 · "

10
= ".

42. We want to find, for any given " > 0, a � > 0
such that whenever 0 < |r � 1

2

| < �, we have
| 4
3

⇡r

3 � ⇡

6

| < ". We see that����
4

3
⇡r

3 � ⇡

6

���� =
4⇡

3

����r �
1

2

����

����r
2 +

r

2
+

1

4

���� .

Since we want a radius close to 1/2, we may
take |r � 1/2| < 1/2 so 0 < r < 1. Since the
function r

2 + r/2+ 1/4 is increasing on the in-
terval (0, 1), we see that��
r

2 + r

2

+ 1

4

��
< 1 + 1

2

+ 1

4

= 7

4

whenever |r � 1/2| < 1/2.

If we then take � = min

⇢
1

2
,

3"

7⇡

�
, we have

����
4

3
⇡r

3 � ⇡

6

���� <
7⇡

3

����r �
1

2

����

<

7⇡

3
· 3"
7⇡

= ".

1.7 Limits and

Loss-of-Significance Errors

1. The limit is 1

4

.

x

1E78E66E64E62E60E0

y

0.5

0.4

0.3

0.2

0.1

0

We can rewrite the function as

f(x) =

x(
p

4x2 + 1� 2x) ·
p
4x2 + 1 + 2xp
4x2 + 1 + 2x

=
x(4x2 + 1� 4x2)p

4x2 + 1 + 2x

=
xp

4x2 + 1 + 2x

to avoid loss-of-significance errors.

In the table below, the middle column contains
values calculated using

f(x) = x(
p
4x2 + 1 � 2x), while the third

column contains values calculated using the
rewritten f(x).

x old f(x) new f(x)
1 0.236068 0.236068
10 0.249844 0.249844
100 0.249998 0.249998
1000 0.250000 0.250000
10000 0.250000 0.250000
100000 0.249999 0.250000
1000000 0.250060 0.250000
10000000 0.260770 0.250000
100000000 0.000000 0.250000
1000000000 0.000000 0.250000

2. The limit is � 1

4

.
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y

0

-0.1

-0.2

-0.3

-0.4

-0.5

x

0E0-2E6-4E6-6E6-8E6-1E7

We can rewrite the function as

x(
p

4x2 + 1 + 2x)
(
p
4x2 + 1� 2x)

(
p
4x2 + 1� 2x)

=
x

(
p
4x2 + 1� 2x)

to avoid loss-of-significance errors.

3. The limit is 1.

x

1E148E136E134E132E130E0

y

1.1

1.05

1

0.95

0.9

We can rewrite the function as

p
x(
p
x+ 4�

p
x+ 2) ·

p
x+ 4 +

p
x+ 2p

x+ 4 +
p
x+ 2

=

p
x[(x+ 4)� (x+ 2)]p
x+ 4 +

p
x+ 2

=
2
p
xp

x+ 4 +
p
x+ 2

to avoid loss-of-significance errors.

In the table below, the middle column contains
values calculated using

f(x) =
p
x

�p
x+ 4�

p
x+ 2

�
, while the third

column contains values calculated using the
rewritten f(x).

x old f(x) new f(x)
1 0.504017 0.504017
10 0.877708 0.877708
100 0.985341 0.985341
1000 0.998503 0.998503
10000 0.999850 0.999850
100000 0.999985 0.999985
1000000 0.999998 0.999999
10000000 1.000000 1.000000
100000000 1.000000 1.000000
1000000000 1.000000 1.000000
10000000000 1.000000 1.000000

1E+11 0.999990 1.000000
1E+12 1.000008 1.000000
1E+13 0.999862 1.000000
1E+14 0.987202 1.000000
1E+15 0.942432 1.000000
1E+16 0.000000 1.000000
1E+17 0.000000 1.000000

4. The limit is 4.

y

5

4

3

2

1

0

x

1000080006000400020000

We can rewrite the function as

x

2(
p

x

4 + 8� x

2)
(
p
x

4 + 8 + x

2)

(
p
x

4 + 8 + x

2)

=
8x2

(
p
x

4 + 8 + x

2)

to avoid loss-of-significance errors.

5. The limit is 1.

y

1.1

1.05

1

0.95

0.9

x

1E78E66E64E62E60E0

We can multiply f(x) by
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p
x

2 + 4 +
p
x

2 + 2p
x

2 + 4 +
p
x

2 + 2

to rewrite the function as

x[x2 + 4� (x2 + 2)]p
x

2 + 4 +
p
x

2 + 2

=
2xp

x

2 + 4 +
p
x

2 + 2

to avoid loss-of-significance errors.

In the table below, the middle column contains
values calculated using

f(x) =
�p

x

2 + 4�
p
x

2 + 2
�
, while the third

column contains values calculated using the
rewritten f(x).

x old f(x) new f(x)
1 0.504017 0.504017
10 0.985341 0.985341
100 0.999850 0.999850
1000 0.999998 0.999999
10000 1.000000 1.000000
100000 1.000000 1.000000
1000000 1.000008 1.000000
10000000 0.987202 1.000000
100000000 0.000000 1.000000
1000000000 0.000000 1.000000

6. The limit is 0.

y

0.2

0.1

0

-0.1

-0.2

x

10000008000006000004000002000000

We can rewrite the function as

x(
p

x

3 + 8� x

3/2)
(
p
x

3 + 8 + x

3/2)

(
p
x

3 + 8 + x

3/2)

=
8x

(
p
x

3 + 8 + x

3/2)

to avoid loss-of-significance errors.

7. The limit is 1/6.

y

0.3

0.25

0.2

0.15

0.1

x

1E-65E-70E0-5E-7-1E-6

We can rewrite the function as
1� cos 2x

12x2

· 1 + cos 2x

1 + cos 2x

=
sin2 2x

12x2(1 + cos 2x)

to avoid loss-of-significance errors.

In the table below, the middle column contains

values calculated using f(x) =
1� cos 2x

12x2

,

while the third column contains values cal-
culated using the rewritten f(x). Note that
f(x) = f(�x) and so we get the same values
when x is negative (which allows us to conjec-
ture the two-sided limit as x ! 0).

x old f(x) new f(x)
1 0.118012 0.118012
0.1 0.166112 0.166112
0.01 0.166661 0.166661
0.001 0.166667 0.166667
0.0001 0.166667 0.166667
0.00001 0.166667 0.166667
0.000001 0.166663 0.166667
0.0000001 0.166533 0.166667
0.00000001 0.185037 0.166667
0.000000001 0 0.166667

1E-10 0 0.166667

8. The limit is 1

2

.

x

1E-65E-70E0-5E-7-1E-6

y

0.8

0.7

0.6

0.5

0.4

0.3

0.2

We can rewrite the function as



1.7. LIMITS AND LOSS-OF-SIGNIFICANCE ERRORS 71

(1� cosx)

x

2

(1 + cosx)

(1 + cosx)

=
1� cos2 x

x

2(1 + cosx)

=
sin2 x

x

2(1 + cosx)

to avoid loss-of-significance errors.

9. The limit is 1

2

.

0.10.050-0.05-0.1

y

1

0.8

0.6

0.4

0.2

0

x

We can rewrite the function as

1� cosx3

x

6

1 + cosx3

1 + cosx3

=
sin2(x3)

x

6(1 + cosx3)

to avoid loss-of-significance errors.

In the table below, the middle column contains
values calculated using

f(x) = 1�cos x

3

x

6 , while the third column con-
tains values calculated using the rewritten
f(x). Note that f(x) = f(�x) and so we
get the same values when x is negative (which
allows us to conjecture the two-sided limit as
x ! 0).

x old f(x) new f(x)
1 0.459698 0.459698
0.1 0.500000 0.500000
0.01 0.500044 0.500000
0.001 0.000000 0.500000
0.0001 0.000000 0.500000

10. The limit is 1

2

.

0-0.5-1

y

0.6

0.55

0.5

0.45

0.4

x

10.5

We can rewrite the function as

(1� cosx4)

x

8

(1 + cosx4)

(1 + cosx4)

=
1� cos2 x4

x

8(1 + cosx4)

=
sin2 x4

x

8(1 + cosx4)

to avoid loss-of-significance errors.

11. The limit is 2/3.

x

1E78E66E64E62E60E0

y

0.74

0.72

0.7

0.68

0.66

0.64

0.62

We can multiply f(x) by

1 = g(x)

g(x)

where

g(x) = (x2 + 1)
2
3 + (x2 + 1)

1
3 (x2 � 1)

1
3

+ (x2 � 1)
2
3

to rewrite the function as 2x

4/3

g(x)

to avoid loss-of-significance errors.

In the table below, the middle column contains
values calculated using

f(x) = x

4/3( 3
p
x

2 + 1 � 3
p
x

2 � 1), while the
third column contains values calculated using
the rewritten f(x).
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x old f(x) new f(x)
1 1.259921 1.259921
10 0.666679 0.666679
100 0.666667 0.666667
1000 0.666667 0.666667
10000 0.666668 0.666667
100000 0.666532 0.666667
1000000 0.63 0.666667
10000000 2.154435 0.666667
100000000 0.000000 0.666667
1000000000 0.000000 0.666667

12. The limit is 7/3.

y

2.4

2.3

2.2

2.1

x

1E158E146E144E142E140E0

We can multiply f(x) by

(x+ 4)
2
3 + (x+ 4)

1
3 (x� 3)

1
3 + (x� 3)

2
3

(x+ 4)
2
3 + (x+ 4)

1
3 (x� 3)

1
3 + (x� 3)

2
3

to rewrite the function as

7x2/3

(x+ 4)
2
3 + (x+ 4)

1
3 (x� 3)

1
3 + (x� 3)

2
3

to avoid loss-of-significance errors.

In the table below, the middle column contains
values calculated using

f(x) = x

2/3( 3
p
x+ 4� 3

p
x� 3), while the third

column contains values calculated using the
rewritten f(x).

x old f(x) new f(x)
1 2.969897 1.259921
10 2.307850 2.307850
100 2.326111 2.326110
1000 2.332561 2.332561
10000 2.333256 2.333256
100000 2.333326 2.333326
1000000 2.333333 2.333333
10000000 2.333333 2.333333
100000000 2.333332 2.333333
1000000000 2.33337 2.333333
10000000000 2.333327 2.333333

1E+11 2.333253 2.333333
1E+12 2.3 2.333333
1E+13 2.320794 2.333333
1E+14 2.154435 2.333333
1E+15 0.000000 2.333333
1E+16 0.000000 2.333333

13. lim
x!1

x

2 + x� 2

x� 1

= lim
x!1

(x+ 2)(x� 1)

x� 1
= lim

x!1

(x+ 2) = 3

lim
x!1

x

2 + x� 2.01

x� 1
does not exist, since when x

is close to 1, the numerator is close to �.01 (a
small but non-zero number) and the denomi-
nator is close to 0.

14. lim
x!2

x� 2

x

2 � 4

= lim
x!2

x� 2

(x� 2)(x+ 2)
=

1

4

and lim
x!2

x� 2

x

2 � 4.01
= 0.

15. f(1) = 0; g(1) = 0.00159265
f(10) = 0; g(10) = �0.0159259
f(100) = 0; g(100) = �0.158593
f(1000) = 0; g(1000) = �0.999761

16. Answer depends upon CAS.

17. (1.000003� 1.000001)⇥ 107 = 20
On a computer with a 6-digit mantissa, the
calculation would be

(1.00000� 1.00000)⇥ 107 = 0.

18. The answer with a six-digit mantissa is 0.

The exact answer is 50.

Ch. 1 Review Exercises

1. The slope appears to be 2.
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Second point m
sec

(3, 3) 3
(2.1, 0.21) 2.1

(2.01, 0.0201) 2.01
(1,�1) 1

(1.9,�0.19) 1.9
(1.99,�0.0199) 1.99

2. The slope appears to be 2.

Second point m
sec

(�0.2,�0.3894) 1.9471
(�0.1,�0.1987) 1.9867
(�0.01,�0.02) 2
(0.2, 0.3894) 1.9471
(0.1, 0.1987) 1.9876
(0.01, 0.02) 2

3. (a) For the x-values of our points here we use
(approximations of) 0, ⇡

16

, ⇡

8

, 3⇡

16

, and ⇡

4

.

Left Right Length
(0, 0) (0.2, 0.2) 0.276

(0.2, 0.2) (0.39, 0.38) 0.272
(0.39, 0.38) (0.59, 0.56) 0.262
(0.59, 0.56) (0.785, 0.71) 0.248

Total 1.058

(b) For the x-values of our points here we use
(approximations of) 0, ⇡

32

, ⇡

16

, 3⇡

32

, ⇡

8

, 5⇡

32

, 3⇡

16

,
7⇡

32

, and ⇡

4

.

Left Right Length
(0, 0) (0.1, 0.1) 0.139

(0.1, 0.1) (0.2, 0.2) 0.138
(0.2, 0.2) (0.29, 0.29) 0.137

(0.29, 0.29) (0.39, 0.38) 0.135
(0.39, 0.38) (0.49, 0.47) 0.132
(0.49, 0.47) (0.59, 0.56) 0.129
(0.59, 0.56) (0.69, 0.63) 0.126
(0.69, 0.63) (0.785, 0.71) 0.122

Total 1.058

4. (a)

Left Right Length
(0, 0) ( ⇡

16

, 0.1951) 0.2768
( ⇡

16

, 0.1951) ( 2⇡
16

, 0.3827) 0.2716
( 2⇡
16

, 0.3827) ( 3⇡
16

, 0.5556) 0.2616
( 3⇡
16

, 0.5556) (⇡
4

, 0.7071) 0.2480

Total 1.058

(b)

Left Right Length
(0, 0) ( ⇡

32

, 0.0980) 0.1387
( ⇡

32

, 0.0980) ( 2⇡
32

, 0.1951) 0.1381
( 2⇡
32

, 0.1951) ( 3⇡
32

, 0.2903) 0.1368
( 3⇡
32

, 0.2903) ( 4⇡
32

, 0.3827) 0.1348
( 4⇡
32

, 0.3827) ( 5⇡
32

, 0.4714) 0.1323
( 5⇡
32

, 0.4714) ( 6⇡
32

, 0.5556) 0.1293
( 6⇡
32

, 0.5556) ( 7⇡
32

, 0.6344) 0.1259
( 7⇡
32

, 0.6344) (⇡
4

, 0.7071) 0.1222

Total 1.0581

5. Let f(x) =
tan�1

x

2

x

2

.

x f(x)
0.1 0.999966669
0.01 0.999999997
0.001 1.000000000
0.0001 1.000000000
0.00001 1.000000000
0.000001 1.000000000

Note that f(x) = f(�x), so the results for neg-
ative x will be the same as above. The limit
appears to be 1.

6. lim
x!1

x

2 � 1

lnx2

= 1.

7. Let f(x) =
x+ 2

|x+ 2| .

x f(x)
�1.9 1
�1.99 1
�1.999 1
�2.1 �1
�2.01 �1
�2.001 �1

lim
x!�2

x+ 2

|x+ 2| does not exist.

8. lim
x!0

(1 + 2x)1/x = e

2 ⇡ 7.389.

9. Let f(x) =

✓
1 +

2

x

◆
x

.

x f(x)
10 6.1917
100 7.2446
1000 7.3743
10,000 7.3876

lim
x!1

✓
1 +

2

x

◆
x

= e

2 ⇡ 7.4

10. lim
x!1

x

2/x = 1.
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11. (a) lim
x!�1

�
f(x) = 1.

(b) lim
x!�1

+
f(x) = �2.

(c) lim
x!�1

f(x) does not exist.

(d) lim
x!0

f(x) = 0.

12. (a) lim
x!1

�
f(x) = 1.

(b) lim
x!1

+
f(x) = 3.

(c) lim
x!1

f(x) does not exist.

(d) lim
x!2

f(x) = 2.

13. x = �1, x = 1

14. One possible graph:

-1

x

2

2

1.5

-0.5

1

0.5

0-1-2
0

1

15. lim
x!2

x

2 � x� 2

x

2 � 4

= lim
x!2

(x� 2)(x+ 1)

(x+ 2)(x� 2)

= lim
x!2

x+ 1

x+ 2
=

3

4
.

16. lim
x!1

x

2 � 1

x

2 + x� 2

= lim
x!1

(x� 1)(x+ 1)

(x+ 2)(x� 1)

= lim
x!1

x+ 1

x+ 2
=

2

3
.

17. lim
x!0

+

x

2 + xp
x

4 + 2x2

= lim
x!0

+

x(x+ 1)

x

p
x

2 + 2

= lim
x!0

+

x+ 1p
x

2 + 2

=
1p
2

but

lim
x!0

�

x

2 + xp
x

4 + 2x2

= lim
x!0

�

x(x+ 1)

(�x)
p
x

2 + 2

= lim
x!0

�
� x+ 1p

x

2 + 2

= � 1p
2

Since the left and right limits are not equal,

lim
x!0

x

2 + xp
x

4 + 2x2

does not exist.

18. lim
x!0

+
e

� cot x = lim
x!1

e

�x = 0

but

lim
x!0

�
e

� cot x = lim
x!�1

e

�x = 1

Since the left and right limits are not equal,
lim
x!0

e

� cot x does not exist.

19. lim
x!0

(2 + x) sin(1/x)

= lim
x!0

2 sin(1/x);

however, since lim
x!0

sin(1/x) does not exist, it

follows that lim
x!0

(2 + x) sin(1/x) also does not

exist.

20. lim
x!0

sinx2

x

2

= 1.

21. lim
x!2

f(x) = 5.

22. lim
x!1

�
f(x) = lim

x!1

�
(2x+ 1) = 3

lim
x!1

+
f(x) = lim

x!1

+
(x2 + 1) = 2

lim
x!1

f(x) does not exist.

23. Multiply the function by

(1 + 2x)
2
3 + (1 + 2x)

1
3 + 1

(1 + 2x)
2
3 + (1 + 2x)

1
3 + 1

to get

lim
x!0

3
p
1 + 2x� 1

x

= lim
x!0

2

(1 + 2x)
2
3 + (1 + 2x)

1
3 + 1

=
2

3

24. lim
x!1

x� 1p
10� x� 3

lim
x!1

x� 1p
10� x� 3

·
p
10� x+ 3p
10� x+ 3

lim
x!1

(x� 1)(
p
10� x+ 3)

10� x� 9

lim
x!1

(x� 1)(
p
10� x+ 3)

1� x

lim
x!1

�(1� x)(
p
10� x+ 3)

1� x

lim
x!1

�(
p
10� x+ 3) = �6

25. lim
x!0

cot(x2) = 1
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26. lim
x!1

tan�1

✓
x

x

2 � 2x+ 1

◆

= lim
x!1

tan�1

✓
x

(x� 1)2

◆

= lim
x!1

tan�1

x =
⇡

2

27. lim
x!1

x

2 � 4

3x2 + x+ 1

= lim
x!1

x

2

�
1� 4

x

2

�

x

2

�
3 + 1

x

+ 1

x

2

�

= lim
x!1

1� 4

x

2

3 + 1

x

+ 1

x

2

=
1

3

28. lim
x!1

2xp
x

2 + 4

1/x

1/x

= lim
x!1

2p
1 + 4/x2

= 2

29. Since lim
x!⇡/2

tan2 x = +1, it follows that

lim
x!⇡/2

e

� tan

2
x = 0.

30. lim
x!�1

e

�x

2

= 0.

31. lim
x!1

ln 2x = lim
x!1

(ln 2 + lnx)

= ln 2 + lim
x!1

lnx = 1

32. lim
x!0

+
ln 3x = �1

33. lim
x!�1

2x

x

2 + 3x� 5

= lim
x!�1

2x

x

2

�
1 + 3

x

+ 5

x

2

�

= lim
x!�1

2

x

�
1 + 3

x

+ 5

x

2

� = 0

34. lim
x!�2

2x

x

2 + 3x+ 2

= lim
x!�2

2x

(x+ 2)(x+ 1)
does not exist. Approaches �1 from the left,
and 1 from the right.

35. Let u = � 1

3x
, so that

2

x

= �6u. Then,

lim
x!0

+
(1� 3x)2/x

= lim
u!�1

✓
1 +

1

u

◆�6u

=


lim

u!�1

✓
1 +

1

u

◆
u

��6

= e

�6

and

lim
x!0

�
(1� 3x)2/x

= lim
u!1

✓
1 +

1

u

◆�6u

=


lim
u!1

✓
1 +

1

u

◆
u

��6

= e

�6

Thus, lim
x!0

(1� 3x)2/x = e

�6.

36. lim
x!0

+

2x� |x|
|3x|� 2x

= lim
x!0

+

2x� x

3x� 2x
= lim

x!0

+

x

x

= 1

but

lim
x!0

�

2x� |x|
|3x|� 2x

lim
x!0

�

2x� (�x)

�3x� 2x

lim
x!0

�

3x

�5x
= �3

5

Thus the limit does not exit.

37. 0  x

2

x

2 + 1
< 1

) �2 |x|  2x3

x

2 + 1
< 2 |x|

lim
x!0

�2 |x| = 0; lim
x!0

2 |x| = 0

By the Squeeze Theorem,

lim
x!0

2x3

x

2 + 1
= 0.

38. The first two rows of the following table show
that f(x) has a root in [1, 2]. In the following
rows, we use the midpoint of the previous in-
terval as our new x. When f(x) is positive, we
use the left half, and when f(x) is negative, we
use the right half of the interval.

x f(x)
1 �1
2 5
1.5 0.875
1.25 �0.2969
1.375 0.22246
1.3125 �0.0515
1.34375 0.0826

The zero is in the interval (1.3125, 1.34375).

39. f(x) =
x� 1

x

2 + 2x� 3
=

x� 1

(x+ 3)(x� 1)

has a non-removable discontinuity at x = �3
and a removable discontinuity at x = 1.
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40. f(x) =
x+ 1

(x� 2)(x+ 2)
is discontinuous at

x = ±2. Not removable.

41. lim
x!0

�
f(x) = lim

x!0

�
sinx = 0

lim
x!0

+
f(x) = lim

x!0

+
x

2 = 0

lim
x!2

�
f(x) = lim

x!2

�
x

2 = 4

lim
x!2

+
f(x) = lim

x!2

+
(4x� 3) = 5

f has a non-removable discontinuity at x = 2.

42. f(x) = x cotx has discontinuities wherever
sinx is zero, namely x = k⇡ for any integer
k. The discontinuity at x = 0 is removable
because lim

x!0

x cotx = 1. The other discontinu-

ities are not removable.

43. f(x) =
x+ 2

x

2 � x� 6
=

x+ 2

(x� 3)(x+ 2)

continuous on (�1,�2), (�2, 3) and (3,1).

44. f(x) is continuous wherever 3x� 4 > 0 i.e., on
the interval ( 4

3

,1).

45. f(x) = sin(1+e

x) is continuous on the interval
(�1,1).

46. f(x) is continuous wherever x2 � 4 � 0 i.e., on
the intervals (�1,�2] and [2,1).

47. f(x) =
x+ 1

(x� 2)(x� 1)
has vertical asymptotes

at x = 1 and x = 2.

lim
x!±1

x+ 1

x

2 � 3x+ 2

= lim
x!±1

x

�
1 + 1

x

�

x

2

�
1� 3

x

+ 2

x

2

�

= lim
x!±1

1 + 1

x

x

�
1� 3

x

+ 2

x

2

� = 0

So f(x) has a horizontal asymptote at y = 0.

48. Vertical asymptote at x = 4. Horizontal
asymptote at y = 0. (Removable discontinu-
uity at x = �2.)

49. f(x) =
x

2

x

2 � 1
=

x

2

(x+ 1)(x� 1)

has vertical asymptotes at x = �1 and x = 1.

lim
x!±1

x

2

x

2 � 1

= lim
x!±1

x

2

x

2

�
1� 1

x

2

�

= lim
x!±1

1

1� 1

x

2

=
1

1
= 1

So f(x) has a horizontal asymptote at y = 1.

50. Vertical asymptotes at x = 2 and x = �1.
Long division reveals the slant asymptote

y = x+ 1.

51. lim
x!0

+
2e1/x = 1,

so x = 0 is a vertical asymptote.

lim
x!1

2e1/x = 2, lim
x!�1

2e1/x = 2,

so y = 2 is a horizontal asymptote.

52. Horizontal asymptotes at y = ± 3⇡

2

.

53. f(x) has a vertical asymptote when e

x = 2,
that is, x = ln 2.

lim
x!1

3

e

x � 2
= 0

lim
x!�1

3

e

x � 2
= �3

2

so y = 0 and y = �3/2 are horizontal asymp-
totes.

54. Vertical asymptote at x = 2. No horizontal or
slant asymptotes.

55. The limit is 1

4

.

x

1E-65E-70E0-5E-7-1E-6

y

0.3

0.25

0.2

0.15

0.1

We can rewrite the function as

1� cosx

2x2

=

✓
1� cosx

2x2

◆✓
1 + cosx

1 + cosx

◆

=
1� cos2 x

2x2(1 + cosx)
=

sin2 x

2x2(1 + cosx)

to avoid loss-of-significance errors.

In the table below, the middle column con-
tains values calculated using f(x) = 1�cos x

2x

2 ,
while the third column contains values cal-
culated using the rewritten f(x). Note that
f(x) = f(�x) and so we get the same values
when x is negative (which allows us to conjec-
ture the two-sided limit as x ! 0).
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x old f(x) new f(x)
1 0.229849 0.229849
0.1 0.249792 0.249792
0.01 0.249998 0.249998
0.001 0.250000 0.250000
0.0001 0.250000 0.250000
0.00001 0.250000 0.250000
0.000001 0.250022 0.250000
0.0000001 0.249800 0.250000
0.00000001 0.000000 0.250000
0.000000001 0.000000 0.250000

56. The limit is 1

2

.

x

1E78E66E64E62E60E0

y

0.6

0.55

0.5

0.45

0.4

We can rewrite the function as

x(
p

x

2 + 1� x)
(
p
x

2 + 1 + x)

(
p
x

2 + 1 + x)

=
x

(
p
x

2 + 1 + x)

to avoid loss-of-significance errors.



Chapter 2

Di↵erentiation

2.1 Tangent Line and
Velocity

1. Slope is

lim
h!0

f(1 + h)� f(1)

h

= lim
h!0

(1 + h)2 � 2� (�1)

h

= lim
h!0

h

2 + 2h

h

= lim
h!0

(h+ 2) = 2.

Tangent line is y = 2(x�1)�1 or y = 2x�3.

3

−7.5

0 2
x

5.0

−2

−2.5

2.5
1

0.0
−1−3

−5.0

2. Slope is

lim
h!0

f(0 + h)� f(0)

h

= lim
h!0

h

2

h

= 0.

Tangent line is y = �2.

1

−3

−2

−1

2−3

y

0

x

2

−1 0

−2

3

3

1

3. Slope is

lim
h!0

f(�2 + h)� f(�2)

h

= lim
h!0

(�2 + h)2 � 3(�2 + h)� (10)

h

= lim
h!0

�7h+ h

2

h

= �7.

Tangent line is y = �7(x+ 2) + 10

−2

20

40

−4 6 10

−60

8

−40

2−6 4

60

0
−10

x

80

−8

100

0
−20

120

4. Slope is

lim
h!0

f(1 + h)� f(1)

h

= lim
h!0

(1 + 3h+ 3h2 + h

3) + (1 + h)� 2

h

= lim
h!0

4h+ 3h2 + h

3

h

= lim
h!0

4 + 3h+ h

2 = 4.

Tangent line is y = 4(x� 1) + 2.

10

30

20

1−1

5

25

2

−5

15

0

x
3

y

0

5. Slope is

78
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lim
h!0

f(1 + h)� f(1)

h

= lim
h!0

2

(1+h)+1

� 2

1+1

h

= lim
h!0

2

2+h

� 1

h

= lim
h!0

⇣
2�(2+h)

2+h

⌘

h

= lim
h!0

⇣
�h

2+h

⌘

h

= lim
h!0

�1

2 + h

= �1

2
.

Tangent line is y = �1

2
(x� 1) + 1 or

y = �x

2
+

3

2
.

y

3.2

4

1.6

2

−1.6

−3.2

−2
x

4.0

5

2.4

0.8

3

0.0

−0.8

−2.4

1

−4.0

−1−4 −3−5 0

6. Slope is

lim
h!0

f(0 + h)� f(0)

h

= lim
h!0

h

h�1

� 0

h

= lim
h!0

1

h� 1
= �1

Tangent line is y = �x.

0.8

x

3.2

0.0

y

4.0

2.4

1

1.6

−0.8
−1

−4.0

20

−3.2

−2

−2.4

−1.6

7. Slope is

lim
h!0

f(�2 + h)� f(�2)

h

= lim
h!0

p
(�2 + h) + 3� 1

h

= lim
h!0

p
h+ 1� 1

h

= lim
h!0

p
h+ 1� 1

h

·
p
h+ 1 + 1p
h+ 1 + 1

= lim
h!0

(h+ 1)� 1

h(
p
h+ 1 + 1)

= lim
h!0

1p
h+ 1 + 1

=
1

2
.

Tangent line is y =
1

2
(x+2)+1 or y =

1

2
x+2.

1.6

−4.0

3.2

0.0

2.4

4.0

−1.6

0.8

−0.8

y
−2.4

−4

−3.2

2−2 40
x

8. Slope is

lim
h!0

f(1 + h)� f(x)

h

= lim
h!0

p
(1 + h) + 3�

p
1 + 3

h

= lim
h!0

p
h+ 4� 2

h

= lim
h!0

p
h+ 4� 2

h

·
p
h+ 4 + 2p
h+ 4 + 2

= lim
h!0

h+ 4� 4

h

· 1p
h+ 4 + 2

= lim
h!0

1p
h+ 4 + 2

=
1

4
.

Tangent line is y =
1

4
(x� 1) + 2.

4

1

10.07.55.02.50.0−2.5

3

2

9. f (x) = x

3 � x

No. Points (x, y) Slope
(a) (1,0) and (2,6) 6
(b) (2,6) and (3,24) 18
(c) (1.5,1.875) and (2,6) 8.25
(d) (2,6) and (2.5,13.125) 14.25
(e) (1.9,4.959) and (2,6) 10.41
(f) (2,6) and (2.1,7.161) 11.61

(g) Slope seems to be approximately 11.
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10. f (x) =
p
x

2 + 1
No. Points (x, y) Slope
(a) (1,1.414) and (2,2.236) 0.504
(b) (2,2.236) and (3,3.162) 0.926
(c) (1.5,1.803) and (2,2.236) 0.867
(d) (2,2.236) and (2.5,2.269) 0.913
(e) (1.9,2.147) and (2,2.236) 0.89
(f) (2,2.236) and (2.1,2.325) 0.899

(g) Slope seems to be approximately 0.89.

11. f(x) =
x� 1

x+ 1
No. Points (x, y) Slope
(a) (1,0) and (2,0.33) 0.33
(b) (2,0.33) and (3,0.5) 0.17
(c) (1.5,0.2) and (2,0.33) 0.26
(d) (2,0.33) and (2.5,0.43) 0.2
(e) (1.9,0.31) and (2,0.33) 0.2
(f) (2,0.33) and (2.1,0.35) 0.2

(g) Slope seems to be approximately 0.2.

12. f(x) = e

x

No. Points (x, y) Slope
(a) (1,2.718) and (2,7.389) 4.671
(b) (2,7.389) and (3,20.085) 12.696
(c) (1.5,4.481) and (2,7.389) 5.814
(d) (2,7.389) and (2.5,12.182) 9.586
(e) (1.9,6.686) and (2,7.389) 7.03
(f) (2,7.389) and (2.1,8.166) 7.77

(g) Slope seems to be approximately 7.4

13. C, B, A, D. At the point labeled C, the slope
is very steep and negative. At the point B,
the slope is zero and at the point A, the slope
is just more than zero. The slope of the line
tangent to the point D is large and positive.

14. In order of increasing slope: D (large nega-
tive), C (small negative), B (small positive),
and A (large positive).

15. (a) Velocity at time t = 1 is,

lim
h!0

s(1 + h)� s(1)

h

= lim
h!0

�4.9(1 + h)2 + 5� (0.1)

h

= lim
h!0

�4.9(1 + 2h+ h

2) + 5� (0.1)

h

= lim
h!0

�9.8h� 4.9h2

h

= lim
h!0

h (�9.8� 4.9h)

h

= �9.8.

(b) Velocity at time t = 2 is,

lim
h!0

s(2 + h)� s(2)

h

= lim
h!0

�4.9(2 + h)2 + 5� (�14.6)

h

= lim
h!0

�4.9(4 + 4h+ h

2) + 5� (�14.6)

h

= lim
h!0

�19.6h� 4.9h2

h

= lim
h!0

h (�19.6� 4.9h)

h

= �19.6

16. (a) Velocity at time t = 0 is,

lim
h!0

s(0 + h)� s(0)

h

= lim
h!0

4h� 4.9h2

h

= lim
h!0

h (4� 4.9h)

h

= 4� lim
h!0

4.9h = 4.

(b) Velocity at time t = 1 is,

lim
h!0

s(1 + h)� s(1)

h

= lim
h!0

4(1 + h)� 4.9(1 + h)2 � (�0.9)

h

= lim
h!0

4 + 4h� 4.9� 9.8h� 4.9h2 + 0.9

h

= lim
h!0

�5.8h� 4.9h2

h

= lim
h!0

h (�5.8� 4.9h)

h

= �5.8

17. (a) Velocity at time t = 0 is,

lim
h!0

s(0 + h)� s(0)

h

= lim
h!0

p
h+ 16� 4

h

·
p
h+ 16 + 4p
h+ 16 + 4

= lim
h!0

(h+ 16)� 16

h(
p
h+ 16 + 4)

= lim
h!0

1p
h+ 16 + 4

=
1

8

(b) Velocity at time t = 2 is,

lim
h!0

s(2 + h)� s(2)

h

= lim
h!0

p
18 + h�

p
18

h

Multiplying by

p
h+ 18 +

p
18p

h+ 18 +
p
18

gives

= lim
h!0

(h+ 18)� 18

h(
p
h+ 18 +

p
18)

= lim
h!0

1p
h+ 18 +

p
18

=
1

2
p
18

18. (a) Velocity at time t = 2 is,

lim
h!0

s(2 + h)� s(2)

h

= lim
h!0

4

(2+h)

� 2

h

= lim
h!0

4�4�2h

(2+h)

h
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= lim
h!0

�2h

h(2 + h)
= lim

h!0

�2

2 + h

= �1.

(b) Velocity at time t = 4 is,

lim
h!0

s(4 + h)� s(4)

h

= lim
h!0

4

(4+h)

� 1

h

= lim
h!0

4�1(4+h)

(4+h)

h

= lim
h!0

4�4�h

(4+h)

h

= lim
h!0

�h

h(4 + h)
= lim

h!0

�1

4 + h

= �1

4

19. (a) Points: (0, 10) and (2, 74)

Average velocity:
74� 10

2
= 32

(b) Second point: (1, 26)

Average velocity:
74� 26

1
= 48

(c) Second point: (1.9, 67.76)

Average velocity:
74� 67.76

0.1
= 62.4

(d) Second point: (1.99, 73.3616)

Average velocity:
74� 73.3616

0.01
= 63.84

(e) The instantaneous velocity seems to be
64.

20. (a) Points: (0, 0) and (2, 26)

Average velocity:
26� 0

2� 0
= 13

(b) Second point: (1, 4)

Average velocity:
26� 4

2� 1
= 22

(c) Second point: (1.9, 22.477)

Average velocity:
26� 22.477

2� 1.9
= 35.23

(d) Second point: (1.99, 25.6318)
Average velocity:
26� 25.6318

2� 1.99
= 36.8203

(e) The instantaneous velocity seems to be
approaching 37.

21. (a) Points: (0, 0) and (2,
p
20)

Average velocity:

p
20� 0

2� 0
= 2.236068

(b) Second point: (1, 3)

Average velocity:

p
20� 3

2� 1
= 1.472136

(c) Second point: (1.9,
p
18.81)

Average velocity:p
20�

p
18.81

2� 1.9
= 1.3508627

(d) Second point: (1.99,
p
19.8801)

Average velocity:p
20�

p
19.88

2� 1.99
= 1.3425375

(e) One might conjecture that these num-
bers are approaching 1.34. The exact

limit is
6p
20

⇡ 1.341641.

22. (a) Points: (0, �2.7279) and (2, 0)
Average velocity:
0� (�2.7279)

2� 0
= 1.3639

(b) Second point: (1, �2.5244)
Average velocity:
0� (�2.5244)

2� 1
= 2.5244

(c) Second point: (1.9, �0.2995)
Average velocity:
0� (�0.2995)

2� 1.9
= 2.995

(d) Second point: (1.99, �0.03)

Average velocity:
0� (�0.03)

2� 1.99
= 3

(e) The instantaneous velocity seems to be
3.

23. A graph makes it apparent that this function
has a corner at x = 1.

y

4

4

2

2

−2

−4

0
x

5

5

3

1

3
0

−1

−3

1

−5

−1−2−3−4−5

Numerical evidence suggests that,

lim
h!0

+

f(1 + h)� f(1)

h

= 1

while lim
h!0

�

f(1 + h)� f(1)

h

= �1.

Since these are not equal, there is no tangent
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line.

24. Tangent line does not exist at x = 1 because
the function is not defined there.

y

8

8

4

4

−4

−8

0
x

10

10

6

2

6

0

−2

−6

2

−10

−2−4−6−8−10

25. From the graph it is clear that, curve is not
continuous at x = 0 therefore tangent line
at y = f(x) at x = 0 does not exist.

−2

5.0

0.0
−6 1086420

10.0

7.5

2.5

−4

−2.5

−8−10

Also,

lim
h!0

�

f(0 + h)� f(0)

h

= lim
h!0

�

h

2 � 1� (�1)

h

= lim
h!0

�

h

2

h

= lim
h!0

�
h = 0

Similarly,

lim
h!0

+

f(0 + h)� f(0)

h

= lim
h!0

+

h+ 1� (1)

h

= lim
h!0

+

h

h

= 1.

Numerical evidence suggest that,

lim
h!0

�

f(0 + h)� f(0)

h

6= lim
h!0

+

f(0 + h)� f(0)

h

.

Therefore tangent line does not exist at
x = 0.

26. From the graph it is clear that, the curve of
y = f(x) is not smooth at x = 0 therefore
tangent line at x = 0 does not exist.

5

4

3
0

−2

1

−4

5

3

4

2

1

−1

2

−3

−5

0−1−2−3−4−5

Also,

lim
h!0

�

f(0 + h)� f(0)

h

= lim
h!0

�

�2h

h

= �2

lim
h!0

+

f(0 + h)� f(0)

h

= lim
h!0

+
(h� 4) = �4.

Numerical evidence suggest that,

lim
h!0

�

f(0 + h)� f(0)

h

6= lim
h!0

+

f(0 + h)� f(0)

h

.

Therefore tangent line does not exist at x =
0.

27. Tangent line at x = ⇡ to y = sinx as below:

2

6
0

2

3

x
1

−1

5

−2

−3

30 1 4

28. Tangent line at x = 0 to y = tan�1

x as be-
low:

−2.5

0.0
105

−5.0

−5

5.0

2.5

0−10

29. Since the graph has a corner at x = 0, tan-
gent line does not exist.
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30. The tangent line overlays the line:

2

x

1.5

1

2

0.5

0
1.510.50

31. (a)

f(4)� f(2)

2
= 21,034

Since f(b)�f(a)

b�a

is the average rate of
change of function f between a and b.
The expression tells us that the average
rate of change of f between a = 2 to
b = 4 is 21,034. That is the average
rate of change in the bank balance be-
tween Jan. 1, 2002 and Jan. 1, 2004 was
21,034 ($ per year).

(b) 2 [f (4)� f (3.5)] = 25,036
Note that 2[f(4) � f(3.5)] = f(4) �
f(3.5)/2. The expression says that the
average rate of change in balance be-
tween July 1, 2003 and Jan. 1, 2004
was 25,036 ($ per year).

(c) lim
h!0

f(4 + h)� f(4)

h

= 30,000

The expression says that the instanta-
neous rate of change in the balance on
Jan. 1, 2004 was 30,000 ($ per year).

32. (a)

f(40)� f(38)

2
= �2103

Since f(b)�f(a)

b�a

is the average rate of
change of function between a and b. The
expression tells us that the average rate
of change of f between a = 38 to b = 40
is �2103. That is the average rate of de-
preciation between 38 and 40 thousand
miles.

(b) f(40)� f(39) = �2040
The expression says that the average
rate of depreciation between 39 and 40
thousand miles is �2040.

(c) lim
h!0

f(40 + h)� f(40)

h

= �2000

The expression says that the instanta-
neous rate of depreciation in the value
of the car when it has 40 thousand miles
is �2000.

33. v

avg

=
f(s)� f(r)

s� r

v

avg

=
f(s)� f(r)

s� r

=
as

2 + bs+ c� (ar2 + br + c)

s� r

=
a(s2 � r

2) + b(s� r)

s� r

=
a(s+ r)(s� r) + b(s� r)

s� r

= a(s+ r) + b

Let v(r) be the velocity at t = r. We have,
v(r) =

lim
h!0

f(r + h)� f(r)

h

= lim
h!0

a(r + h)2 + b(r + h) + c� (ar2 + bh+ c)

h

= lim
h!0

a(r2 + 2rh+ h

2) + bh� ar

2

h

= lim
h!0

h(2ar + ah+ b)

h

= lim
h!0

(2ar + ah+ b) = 2ar + b

So, v(r) = 2ar + b.

The same argument shows that v(s) =
2as+ b.
Finally
v(r) + v(s)

2
=

(2ar + b) + (2as+ b)

2

=
2a(s+ r) + 2b

2
= a(s+ r) + b = v

avg

34. f(t) = t

3�t works with r = 0, s = 2. The av-

erage velocity between r and s is,
6� 0

2� 0
= 3.

The instantaneous velocity at r is

lim
h!0

(0 + h)3 � (0 + h)� 0

h

= 0

and the instantaneous velocity at s is,

lim
h!0

(2 + h)3 � (2 + h)� 6

h

= lim
h!0

8 + 12h+ 6h2 + h

3 � 2� h� 6

h

= lim
h!0

11 + 6h+ h

2 = 11

so, the average between the instantaneous
velocities is 5.5.

35. (a) y = x

3 + 3x+ 1
y

0 = 3x2 + 3
Since the slope needed to be 5, y0 = 5.
3x2 + 3 = 5
) 3x2 = 5� 3
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) x

2 =
2

3

) x = ±
r

2

3
Therefore, slope of tangent line at x =r

2

3
and x = �

r
2

3
to y = x

3 + 3x + 1

equals 5.

(b) Since the slope needed to be 1, y0 = 1.
3x2 + 3 = 1 which has no real roots.
Therefore slope of tangent line to y =
x

3 + 3x+ 1 cannot equals 1.

36. (a) From the graph it is clear that y = x

2+1
and y = x do not intersect.

10

0
5

−10

5

10

−5

0−5−10

(b) y = x

2 + 1 and y = x

y = x

2 + 1 ) y

0 = 2x
y = x ) y

0 = 1
For, y = x

2 + 1
y

0 = 2x = 1.
2x = 1

) x =
1

2

Therefore, tangent line at x =
1

2
to

y = x

2+1 is parallel to the tangent lines
to y = x.

37. (a) y = x

3 + 3x+ 1

lim
h!0

f(1 + h)� f(x)

h

= lim
h!0

(1 + h)3 + 3(1 + h) + 1� 5

h

= lim
h!0

(1+3h+3h

2
+h

3
)+(3+3h)+1�5

h

= lim
h!0

6h+ 3h2 + h

3

h

= lim
h!0

h

�
6 + 3h+ h

2

�

h

= 6

The point correponding to x = 1 is
(1, 5). So, line with slope 6 through
point (1,5) has equation y = 6 (x� 1)+5
or y = 6x� 1.

(b) From part (a) we have, equation of tan-

gent line is y = 6x� 1.
Given that y = x

3 + 3x+ 1.
Therefore, we write
x

3 + 3x+ 1 = 6x� 1
x

3 � 3x+ 2 = 0
(x� 1)

�
x

2 + x� 2
�
= 0

(x� 1)(x� 1) (x+ 2) = 0
(x� 1)2 (x+ 2) = 0.
Therefore, tangent line intersects y =
x

3 +3x+1 at more then one point that
is at x = 1 and x = �2.

(c) y = x

2 + 1

lim
h!0

f(c+ h)� f(c)

h

= lim
h!0

(c+ h)2 + 1�
�
c

2 + 1
�

h

= lim
h!0

(c2 + 2ch+ h

2) + 1�
�
c

2 + 1
�

h

= lim
h!0

c

2 + 2ch+ h

2 + 1� c

2 � 1

h

= lim
h!0

2ch+ h

2

h

= lim
h!0

h (2c+ h)

h

= 2c

The point correponding to x = c is�
c, c

2 + 1
�
. So, line with slope 2c

through point
�
c, c

2 + 1
�
has equation

y = 2c (x� c)+c

2+1 or y = 2cx�c

2+1.
Given that y = x

2 + 1
Therefore,
x

2 + 1 = 2cx� c

2 + 1
x

2 � 2cx+ c

2 = 0
(x� c)2 = 0.
Therefore, tangent line intersects y =
x

2+1 only at one point that is at x = c.

38. Let x = h+ a. Then h = x� a and clearly
f(a+ h)� f(a)

h

=
f(x)� f(a)

x� a

.

It is also clear that, x ! a if and only if
h ! 0. Therefore, if one of the two limits
exists, then so does the other and

lim
h!0

f(a+ h)� f(a)

h

= lim
x!a

f(x)� f(a)

x� a

.

39. The slope of the tangent line at p = 1 is ap-
proximately
�20� 0

2� 0
= �10

which means that at p = 1 the freezing tem-
perature of water decreases by 10 degrees
Celsius per 1 atm increase in pressure. The
slope of the tangent line at p = 3 is approx-
imately
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�11� (�20)

4� 2
= 4.5

which means that at p = 3 the freezing tem-
perature of water increases by 4.5 degrees
Celsius per 1 atm increase in pressure.

40. The slope of the tangent line at v = 50 is

approximately
47� 28

60� 40
= .95.

This means that at an initial speed of 50mph
the range of the soccer kick increases by .95
yards per 1 mph increase in initial speed.

41. The hiker reached the top at the highest
point on the graph (about1.75 hours). The
hiker was going the fastest on the way up at
about 1.5 hours. The hiker was going the
fastest on the way down at the point where
the tangent line has the least (i.e most neg-
ative) slope, at about 4 hours at the end of
the hike. Where the graph is level the hiker
was either resting or walking on flat ground.

42. The tank is the fullest at the first spike (at
around 8 A.M.). The tank is the emptiest
just before this at the lowest dip (around
7 A.M.). The tank is filling up the fastest
where the graph has the steepest positive
slope (in between 7 and 8 A.M.). The tank
is emptying the fastest just after 8 A.M.
where the graph has the steepest negative
slope. The level portions most likely repre-
sent night when waterusage is at a minimum.

43. A possible graph of the temperature with
respect to time:

y

100

80

60

40

20

0

x

20151050

Graph of the rate of change of the tem-
perature:

y

0

-4

-8

-12

x

20151050

44. Possible graph of bungee-jumpers height:

x

350

300

250

20

150

15

100

50

1050

200

A graph of the bungee-jumper s velocity:

50

0

-50

-100

-150

x
20151050

2.2 The Derivative

1. Using (2.1):

f

0(1) = lim
h!0

f(1 + h)� f(1)

h

= lim
h!0

3(1 + h) + 1� (4)

h

= lim
h!0

3h

h

= lim
h!0

3 = 3

Using (2.2):

lim
b!1

f(b)� f(1)

b� 1

= lim
b!1

3b+ 1� (3 + 1)

b� 1
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= lim
b!1

3b� 3

b� 1

= lim
b!1

3(b� 1)

b� 1
= lim

b!1

3 = 3

2. Using (2.1):

f

0(1) = lim
h!0

f(1 + h)� f(1)

h

= lim
h!0

3(1 + h)2 + 1� 4

h

= lim
h!0

6h+ 3h2

h

= lim
h!0

6 + 3h = 6

Using (2.2):

f

0(1) = lim
x!1

f(x)� f(1)

x� 1

= lim
x!1

(3x2 + 1)� 4

x� 1

= lim
x!1

3(x� 1)(x+ 1)

x� 1
= lim

x!1

3(x+ 1) = 6

3. Using (2.1): Since
f(1 + h)� f(1)

h

=

p
3(1 + h) + 1� 2

h

=

p
4 + 3h� 2

h

·
p
4 + 3h+ 2p
4 + 3h+ 2

=
4 + 3h� 4

h(
p
4 + 3h+ 2)

=
3h

h(
p
4 + 3h+ 2)

=
3p

4 + 3h+ 2
=

3p
4 + 3h+ 2

,

we have

f

0(1) = lim
h!0

f(1 + h)� f(1)

h

= lim
h!0

3p
4 + 3h+ 2

=
3p

4 + 3(0) + 2
=

3

4
Using (2.2): Since
f(b)� f(1)

b� 1

=

p
3b+ 1� 2

b� 1

=
(
p
3b+ 1� 2)(

p
3b+ 1 + 2)

(b� 1)(
p
3b+ 1 + 2)

=
(3b+ 1)� 4

(b� 1)
p
3b+ 1 + 2

=
3(b� 1)

(b� 1)
p
3b+ 1 + 2

=
3p

3b+ 1 + 2
,

we have

f

0(1) = lim
b!1

f(b)� f(1)

b� 1

= lim
b!1

3p
3b+ 1 + 2

=
3p
4 + 2

=
3

4

4. Using (2.1):

f

0(2) = lim
h!0

f(2 + h)� f(2)

h

= lim
h!0

3

(2+h)+1

� 1

h

= lim
h!0

3

3+h

� 3+h

3+h

h

= lim
h!0

�h

3+h

h

= lim
h!0

�1

3 + h

= �1

3
Using (2.2):

f

0(2) = lim
x!2

f(x)� f(2)

x� 2

= lim
x!2

3

x+1

� 1

x� 2

= lim
x!2

3

x+1

� x+1

x+1

x� 2

= lim
x!2

�(x�2)

x+1

x� 2

= lim
x!2

�1

x+ 1
= �1

3

5. lim
h!0

f(x+ h)� f(x)

h

= lim
h!0

3(x+ h)2 + 1� (3(x)2 + 1)

h

= lim
h!0

3x2 + 6xh+ 3h2 + 1� (3x2 + 1)

h

= lim
h!0

6xh+ 3h2

h

= lim
h!0

(6x+ 3h) = 6x

6. f

0(x) = lim
h!0

f(x+ h)� f(x)

h

= lim
h!0

(x+ h)2 � 2(x+ h) + 1� f(x)

h

= lim
h!0

2xh+ h

2 � 2h

h

= lim
h!0

h(2x+ h� 2)

h

= 2x� 2

7. lim
b!x

f (b)� f (x)

b� x

= lim
b!x

b

3 + 2b� 1�
�
x

3 + 2x� 1
�

b� x
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= lim
b!x

(b� x)
�
b

2 + bx+ x

2 + 2
�

b� x

= lim
b!x

b

2 + bx+ x

2 + 2

= 3x2 + 2

8. f

0 (x) =

lim
h!0

f (x+ h)� f (x)

h

= lim
h!0

(x+h)

4�2(x+h)

2
+1�f(x)

h

= lim
h!0

⇥
4x3 + 6x2

h+ 4xh2 + h

3 � 4x� 2h
⇤

= 4x3 � 4x

9. lim
b!x

f(b)� f(x)

b� x

= lim
b!x

3

b+1

� 3

x+1

b� x

= lim
b!x

3(x+1)�3(b+1)

(b+1)(x+1)

b� x

= lim
b!x

�3(b� x)

(b+ 1)(x+ 1)(b� x)

= lim
b!x

�3

(b+ 1)(x+ 1)

=
�3

(x+ 1)2

10. f

0(x) = lim
h!0

f(x+ h)� f(x)

h

= lim
h!0

2

2(x+h)�1

� 2

2x�1

h

= lim
h!0

2(2x�1)�2(2x+2h�1)

(2x+2h�1)(2x�1)

h

= lim
h!0

�4h

(2x+2h�1)(2x�1)

h

= lim
h!0

�4

(2x+ 2h� 1)(2x� 1)

=
�4

(2x� 1)2

11. f(t) =
p
3t+ 1

f

0(t) = lim
b!t

f(b)� f(t)

(b� t)

= lim
b!t

p
3b+ 1�

p
3t+ 1

(b� t)

Multiplying by

p
3b+ 1 +

p
3t+ 1p

3b+ 1 +
p
3t+ 1

gives

f

0(t) = lim
b!t

(3b+ 1)� (3t+ 1)

(b� t)
�p

3b+ 1 +
p
3t+ 1

�

= lim
b!t

3(b� t)

(b� t)
�p

3b+ 1 +
p
3t+ 1

�

= lim
b!t

3p
3b+ 1 +

p
3t+ 1

=
3

2
p
3t+ 1

12. f(t) =
p
2t+ 4

f

0(t) = lim
b!t

f(b)� f(t)

(b� t)

= lim
b!t

p
2b+ 4�

p
2t+ 4

(b� t)

Multiplying by

p
2b+ 4 +

p
2t+ 4p

2b+ 4 +
p
2t+ 4

gives

f

0(t) = lim
b!t

(2b+ 4)� (2t+ 4)

(b� t)
�p

2b+ 4 +
p
2t+ 4

�

= lim
b!t

2(b� t)

(b� t)
�p

2b+ 4 +
p
2t+ 4

�

= lim
b!t

2p
2b+ 4 +

p
2t+ 4

=
2

2
p
2t+ 4

=
1p

2t+ 4

13. (a) The derivative should look like:
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(b) The derivative should look like:
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14. (a) The derivative should look like:

y

4

4

2

2
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0
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3

0
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(b) The derivative should look like:

y
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0
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1

−5
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15. (a) The derivative should look like:

−1

0

−3

1

3

−1

2

y

32−2

−2

0−3
x

1

(b) The derivative should look like:

4
−1

y

4

2
x

0

5

5

3

1

−3

−1−3 1−5 −4 −2

−2

−4

−5

2
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16. (a) The derivative should look like:

4−3 3−4−5

10

−1 20

2

1
−2

0
5

−4

−2

y

6

8

x
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−6

−10

4

(b) The derivative should look like:

2

3.2

0.0
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−3.2

y

4.0

2.4
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0.8
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−4.0

x
4−4 0−2

17. (a) The function should look like:
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y

8
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4
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6
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(b) The function should look like:
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x

18. (a) The function should look like:

y
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(b) The function should look like:
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19. The left-hand derivative is

D�f(0) = lim
h!0

�

f(h)� f(0)

h

= lim
h!0

�

2h+ 1� 1

h

= 2

The right-hand derivative is

D

+

f(0) = lim
h!0

+

f(h)� f(0)

h

= lim
h!0

+

3h+ 1� 1

h

= 3

Since the one-sided limits do not agree (2 6=
3), f

0(0) does not exist.

20. The left-hand derivative is

D�f(0) = lim
h!0

+

f(h)� f(0)

h

= lim
h!0

�

0� 0

h

= 0

The right-hand derivative is

D
+

f(0) = lim
h!0

�

f(h)� f(0)

h

= lim
h!0

+

2h

h

= 2

Since the one-sided limits do not agree (0 6=
2), f

0(0) does not exist.

21. The left-hand derivative is

D�f(0) = lim
h!0

�

f(h)� f(0)

h

= lim
h!0

�

h

2 � 0

h

= 0

The right-hand derivative is
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D

+

f(0) = lim
h!0

+

f(h)� f(0)

h

= lim
h!0

+

h

3 � 0

h

= 0

Since the one-sided limits are same (0 = 0),
f

0(0) exist.

22. The left-hand derivative is

D�f(0) = lim
h!0

+

f(h)� f(0)

h

= lim
h!0

�

2h

h

= 2

The right-hand derivative is

D
+

f(0) = lim
h!0

�

f(h)� f(0)

h

= lim
h!0

+

h

2 + 2h

h

= lim
h!0

+

h(h+ 2)

h

= lim
h!0

+
h+ 2 = 2

Since the one-sided limits are same (2 = 2),
f

0(0) exist.

23. f(x) =
xp

x

2 + 1

x f(x)
f(x)� f(1)

x� 1
1.1 0.7399401 0.3283329
1.01 0.7106159 0.3509150
1.001 0.7074601 0.3532884
1.0001 0.7071421 0.3535268
1.00001 0.7071103 0.3535507

The evidence of this table strongly suggests
that the di↵erence quotients (essentially) in-
distinguishable from the values (themselves)
0.353. If true, this would mean that f

0(1)
⇡ 0.353.

24. f(x) = xe

x

2

x f(x)
f(x)� f(2)

x� 2
1.1 172.7658734 635.6957329
1.01 114.2323717 503.6071639
1.001 109.6888867 492.5866054
1.0001 109.2454504 491.5034872
1.00001 109.201214 491.3953621
1.000001 109.1967915 491.3845515
1.0000001 109.1963492 491.3834702
1.00000001 109.1963050 491.3833622

The evidence of this table strongly suggests
that the di↵erence quotients (essentially) in-
distinguishable from the values (themselves)
491.383. If true, this would mean that f 0(2)
⇡ 491.383.

25. f(x) = cos 3x

x f(x)
f(x)� f(0)

x� 0
0.1 0.9553365 �0.4466351
0.01 0.9995500 �0.0449966
0.001 0.9999955 �0.0045000
0.0001 1.0000000 �0.0004500
0.00001 1.0000000 �0.0000450

The evidence of this table strongly suggests
that the di↵erence quotients (essentially) in-
distinguishable from the values (themselves)
0. If true, this would mean that f 0(0) ⇡ 0.

26. f(x) = ln 3x

x f(x)
f(x)� f(2)

x� 2
2.1 1.8405496 0.4879016
2.01 1.7967470 0.4987542
2.001 1.7922593 0.4998757
2.0001 1.7918095 0.4999875
2.00001 1.7917645 0.4999988
2.000001 1.7917600 0.4999999
2.0000001 1.7917595 0.5000000

The evidence of this table strongly suggests
that the di↵erence quotients (essentially) in-
distinguishable from the values (themselves)
0.5. If true, this would mean that f

0(2)
⇡ 0.5.

27. Compute average velocities:
Time Interval Average Velocity

(1.7, 2.0) 9.0
(1.8, 2.0) 9.5
(1.8, 2.0) 10.0
(2.0, 2.1) 10.0
(2.0, 2.2) 9.5
(2.0, 2.3) 9.0

Our best estimate of velocity at t = 2 is 10.

28. Compute average velocities:



2.2. THE DERIVATIVE 91

Time Interval Average Velocity
(1.7, 2.0) 8
(1.8, 2.0) 8.5
(1.8, 2.0) 9.0
(2.0, 2.1) 8.0
(2.0, 2.2) 8.0
(2.0, 2.3) 7.67

A velocity of between 8 and 9 seems to be a
good guess.

29. (a) f(x) = |x|+ |x� 2|

4−6

−6

2

32
−2

−4

8

0

−8

1

10

5−2

6

−3 60

4

−5

−10

−1−4

f(x) is not di↵erentiable at x = 0 and
x = 2.

(b) f(x) = |x2 � 4x|

1 40

−5.0

−2.5

−1−3

2.5

0.0

y

6−6 −5 52−4 3−2

5.0

x

f(x) is not di↵erentiable at x = 0 and
x = 4.

30. (a) g(x) = e

�2/x

y

4
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1

3

0
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−3

1

−5

−1−2−3−4−5

g(x) is not di↵erentiable at x = 0.

(b) g(x) = e

�2/(x

3�x)

y

4

4

2

2

−2

−4

0
x

5

5

3

1

3
0

−1

−3

1

−5

−1−2−3−4−5

g(x) is not di↵erentiable at x = 0 and
x = ±1.

31. lim
h!0

(0 + h)p � 0p

h

= lim
h!0

h

p

h

= lim
h!0

h

p�1

The last limit does not exist when p < 1,
equals 1 when p = 1 and is 0 when p > 1.
Thus f(0) exists when p � 1.

32. f (x) =

⇢
x

2 + 2x x < 0
ax+ b x � 0

For h < 0, f(h) = h

2 + 2h, f(0) = b

D�f(0) = lim
h!0

�

f(h)� f(0)

h

= lim
h!0

�

h

2 + 2h� b

h

For f to be di↵erentiable D�f(0) must ex-
ist.
D�f(0) exists if and only if b = 0.
Substituting b = 0, we get

D�f(0) = lim
h!0

�

h

2 + 2h

h

= lim
h!0

�
(h+ 2) = 2

For h > 0, f(h) = ah+ b, f(0) = b

D

+

f(0) = lim
h!0

+

f(h)� f(0)

h

= lim
h!0

+

ah+ b� b

h

= lim
h!0

+

ah

h

= a

D

+

f(0) = 2 if and only if a = 2.

33. Let f(x) = �1� x

2 then for all, we have
f(x)  x. But at x = �1, we find f(�1) =
�2 and

f

0(�1) = lim
h!0

f(�1 + h)� f(�1)

h

= lim
h!0

�1� (�1 + h)2 � (�2)

h

= lim
h!0

1� (1� 2h+ h

2)

h

= lim
h!0

2h� h

2

h

= lim
h!0

(2� h) = 2.

So, f 0(x) is not always less than 1.



92 CHAPTER 2. DIFFERENTIATION

34. This is not always true. For example the
function f(x) = �x

2 + x satisfies the hy-
potheses but f 0 (x) > 1 for all x < 0 as the
following graph shows.
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35. lim
x!a

[f(x)]2 � [f(a)]2

x

2 � a

2

= lim
x!a

[f(x)� f(a)] [f(x) + f(a)]

(x� a) (x+ a)

=


lim
x!a

[f(x)� f(a)]

(x� a)

� 
lim
x!a

[f(x) + f(a)]

(x+ a)

�

= f

0(a)
2f(a)

2a
=

f(a)f 0(a)

a

36. Let u = ch so h =
u

c

. Then we have

lim
h!0

f(a+ ch)� f(a)

h

= lim
u

c

!0

f(a+ u)� f(a)
u

c

= lim
u!0

f(a+ u)� f(a)
u

c

= lim
u!0

c

✓
f(a+ u)� f(a)

u

◆

= c lim
u!0

f(a+ u)� f(a)

u

= cf

0(a)

37. Because the curve appears to be bending up-
ward, the slopes of thesecant lines (based
at x = 1 and with upper endpoint beyond
1) will increase with the upper endpoint.
This has also the e↵ect that any one of
these slopes is greater than the actual deriva-

tive. Therefore f

0(1) <

f(1.5)� f(1)

0.5
<

f(2)� f(1)

1
. As to where f(1) fits in this

list it seems necessary to read the graph and
come up with estimates of f(1) about 4, and
f(2) about 7. That would put the third num-
ber in the above list at about 3, comfortably
less than f(1).

38. Note that f(0) � f(�1) is the slope of the
secant line from x = �1 to x = 0 (about),

and that
f(0)� f(�0.5)

0.5
is the slope of the

secant line from x = �0.5 to x = 0 (about-
0.5). f(0) = 3 and f

0(0) = 0. In increasing

order, we have f(0)�f(�1),
f(0)� f(�0.5)

0.5
f

0(0), and f

0(0).

39. One possible such graph:
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40. One possible such graph:

0
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41.

d

dx

�
x

2

�
= 2x = 2x1

d

dx

�
x

3

�
= 3x24

d

dx

�
x

4

�
= 4x3

In general
d

dx

(xn) = nx

n�1

42.

d

dx

(xn) = nx

n�1

p
x = x

1/2

d

dx

�p
x

�
=

d

dx

⇣
x

1/2

⌘
=

1

2
x

�1/2 =
1

2
p
x

1

x

= x

�1

d

dx

✓
1

x

◆
=

d

dx

�
x

�1

�
= �1x�2 =

�1

x

2

43. We estimate the derivative at x = 2.5 as fol-

lows
1.62� 1.11

2.7� 2.39
=

0.51

0.31
= 1.64516.

For every increase of 1 meter in height of
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serving point, there is an increase of 1.64516�

in margin of error.

44. We estimate the derivative at x = 2.854 as
follows
2.12� 1.62

3� 2.7
=

0.5

0.3
= 1.66666.

For every increase of 1 meter in height
of serving point, there is an increase of
1.66666�in margin of error.

45. We compile the rate of change in ton-MPG
over each of the four two-year intervals for
which data is given:

Intervals Rate of change
(1992,1994) 0.4
(1994,1996) 0.4
(1996,1998) 0.4
(1998,2000) 0.2

These rates of change are measured in Ton-
MPG per year. Either the first or second
(they happen to agree) could used as an es-
timate for the one-year “1994”while only the
is a promising estimate for the one-year in-
terval “2000”. The mere that all these num-
bers are positive that e�ciency is improving,
the last number being smaller to suggest that
the rate of improvement is slipping.

46. The average rate of change from 1992 to 1994
is 0.05, and from 1994 to 1996 is 0.1, so a
good estimate of the rate of change in 1994
is 0.75. The average rate of change from 1998
to 2000 is�0.2, and this is a good for the rate
of change in 2000. Comparing to exercise 35,
we see that the MPG per ton increased, but
the actual MPG for vehicles decreased. The
weight of vehicles must have increased, if the
weight remained then the actual MPG would
have increased.

47. (a) meters per second

(b) items per dollar

48. c

0(t) will represent the rate of change in
amount of chemical and will be measured in
grams per minute. p

0(x) will represent the
rate of change of mass and will be measured
in kg per meter.

49. If f 0(t) < 0, the function is negatively sloped
and decreasing, meaning the stock is losing
value with the passing of time. This may be
the basis for selling the stock if the current
trend is expected to be a long term one.

50. You should buy the stock with value g(t).
It is cheaper because f(t) > g(t), and grow-

ing faster because f

0(t) < g

0(t) (or possibly
declining more slowly).

51. The following sketches are consistent with
the hypotheses of infection I

0(t) rate rising,
peaking and returning to zero. We started
with the derivative (infection rate) and had
to think backwards to construct the function
I(t). One can see in I(t) the slope increasing
up to the time of peak infection rate there-
after the slope decreasing but not the values.
They merely level o↵.

0.50
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1
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10.50

52. One possible graph of the population P (t):

x
14121086420

4000

3000

2000

1000



94 CHAPTER 2. DIFFERENTIATION

Graph of P 0(t):
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53. Because the curve appears to be bending up-
ward the slopes of the secant lines (based
at x = 1 and with upper endpoint beyond
1) will increase with the upper endpoint.
This has also the e↵ect that any one of
these slopes is greater than the actual actual
derivative. Therefore

f

0(1) <
f(1.5)� f(1)

0.5
<

f(2)� f(1)

1
.

As to where f(1) fits in this list it seems nec-
essary to read the graph and come up with
estimates of f(1) about 4, and f(2) about
7. That would put the third number in the
above list at about 3 comfortablyless than
f(1).

54. f (t) =

⇢
0.1t if 0 < t  2 · 104

2 · 103 + (t� 2 · 104)0.16 if t > 2 · 104
This is another example of a piecewise lin-
ear function (this one is continuous), and
although not di↵erentiable at the income
x = 20000, elsewhere we have

f

0 (x) =

⇢
0.1 0 < t < 20000
0.16 t > 20000

2.3 Computation of
Derivatives: The Power Rule

1. f

0(x) =
d

dx

(x3)� d

dx

(2x) +
d

dx

(1)

= 3x2 � 2
d

dx

(x) + 0

= 3x2 � 2(1)

= 3x2 � 2

2. f

0(x) = 9x8 � 15x4 + 8x� 4

3. f

0(t) =
d

dt

(3t3)� d

dt

⇣
2
p
t

⌘

= 3
d

dt

(t3)� 2
d

dt

⇣
t

1/2

⌘

= 3(3t2)� 2

✓
1

2
t

�1/2

◆

= 9t2 � 1p
t

4. f(s) = 5s1/2 � 4s2 + 3

f

0(s) =
5

2
s

�1/2 � 8s

=
5

2
p
s

� 8s

5. f

0 (w) =
d

dw

✓
3

w

◆
� d

dw

(8w) +
d

dw

(1)

= 3
d

dw

�
w

�1

�
� 8

d

dw

(w) + 0

= 3
�
�w

�2

�
� 8 (1)

= � 3

w

2

� 8

6. f

0 (y) =
d

dy

✓
2

y

4

◆
� d

dy

�
y

3

�
+

d

dy

(2)

= 2
d

dy

�
y

�4

�
� d

dy

�
y

3

�
+ 0

= 2
�
�4y�5

�
� 3

�
y

2

�

= � 8

y

5

� 3y2

7. h

0 (x) =
d

dx

✓
10
3
p
x

◆
� d

dx

(2x) +
d

dx

(⇡)

= 10
d

dx

⇣
x

�1/3

⌘
� 2

d

dx

(x) + 0

= 10

✓
�1

3
x

�4/3

◆
� 2

= � 10

3x 3
p
x

� 2

8. h

0 (x) =
d

dx

(12x)� d

dx

�
x

2

�
� d

dx

✓
3

3
p
x

2

◆

= 12
d

dx

(x)� d

dx

�
x

2

�
� 3

d

dx

⇣
x

�2/3

⌘

= 12� 2x� 3

✓
�2

3
x

�5/3

◆

= 12� 2x+
2

x

3
p
x

2
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9. f

0(s) =
d

ds

2s3/2 � d

ds

⇣
3s�1/3

⌘

= 2
d

ds

⇣
s

3/2

⌘
� 3

d

ds

⇣
s

�1/3

⌘

= 2

✓
3

2
s

1/2

◆
� 3

✓
�1

3
s

�4/3

◆

= 3s1/2 + s

�4/3

= 3
p
s+

1
3
p
s

4

10. f

0(t) = 3⇡t⇡�1 � 2.6t0.3

11. f(x) =
3x2 � 3x+ 1

2x

=
3x2

2x
� 3x

2x
+

1

2x

=
3

2
x� 3

2
+

1

2
x

�1

f

0(x) =
d

dx

✓
3

2
x

◆
� d

dx

✓
3

2

◆
+

d

dx

✓
1

2
x

�1

◆

=
3

2

d

dx

(x)� 0 +
1

2

d

dx

(x�1)

=
3

2
(1) +

1

2
(�1x�2)

=
3

2
� 1

2x2

12. f (x) =
4x2 � x+ 3p

x

= 4x3/2 � x

1/2 + 3x�1/2

f

0 (x) = 6x1/2 � 1

2
x

�1/2 � 3

2
x

�3/2

13. f(x) = x(3x2 �
p
x)

= 3x3 � x

3/2

f

0(x) = 3
d

dx

(x3)� d

dx

⇣
x

3/2

⌘

= 3(3x2)�
✓
3

2
x

1/2

◆

= 9x2 � 3

2

p
x

14. f(x) = 3x3 + 3x2 � 4x� 4,

f

0(x) = 9x2 + 6x� 4

15. f

0 (t) =
d

dt

�
t

4 + 3t2 � 2
�

= 4t3 + 6t

f

00 (t) =
d

dt

�
4t3 + 6t

�

= 12t2 + 6

16. f(t) = 4t2 � 12 +
4

t

2

= 4t2 � 12 + 4t�2

f

0(t) =
d

dt

(4t2 � 12 + 4t�2)

= 8t2 � 0 + 4(�2t�3) = 8t2 � 8t�3

f

00(t) =
d

dt

(8t� 8t�3) = 8� 8(�3t�4)

= 8 + 24t�4

f

000(t) =
d

dt

(8 + 24t�4) = 0 + 24(�4t�5)

= �96t�5 = �96

t

5

17. f(x) = 2x4 � 3x�1/2

df

dx

= 8x3 +
3

2
x

�3/2

d

2
f

dx

2 = 24x2 � 9

4

x

�5/2

18. f(x) = x

6 �
p
x = x

6 � x

1/2

df

dx

=
d

dx

⇣
x

6 � x

1/2

⌘
= 6x5 � 1

2
x

�1/2

d

2

f

dx

2

=
d

dx

✓
6x5 � 1

2
x

�1/2

◆

= 30x4 � 1

2

✓
�1

2
x

�3/2

◆

= 30x4 +
1

4
x

�3/2

19. f

0 (x) =
d

dx

✓
x

4 + 3x2 � 2p
x

◆

= 4x3 + 6x+ x

�3/2

f

00 (x) =
d

dx

⇣
4x3 + 6x+ x

�3/2

⌘

= 12x2 + 6� 3

2
x

�5/2

f

000 (x) =
d

dx

✓
12x2 + 6� 3

2
x

�5/2

◆

= 24x+
15

4
x

�7/2

f

4 (x) =
d

dx

✓
24x+

15

4
x

�7/2

◆

= 24� 105

8
x

�9/2

20. f

0(x) = 10x9 � 12x3 + 2
f

00(x) = 90x8 � 36x2

f

000(x) = 720x7 � 72x
f

(4)(x) = 5040x6 � 72
f

(5)(x) = 30240x5

21. s(t) = �16t2 + 40t+ 10
v(t) = s

0(t) = �32t+ 40
a(t) = v

0(t) = s

00(t) = �32

22. s (t) = �4.9t2 + 12t� 3
v (t) = s

0 (t) = �9.8t+ 12
a (t) = v

0 (t) = s

00 (t) = �9.8
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23. s(t) =
p
t+ 2t2 = t

1/2 + 2t2

v(t) = s

0(t) =
1

2
t

�1/2 + 4t

a(t) = v

0(t) = s

00(t) = �1

4
t

�3/2 + 4

24. s(t) = 10� 10t�1

v(t) = s

0(t) = 10t�2

a(t) = s

00(t) = �20t�3

25. h (t) = �16t2 + 40t+ 5
v (t) = h

0 (t) = �32t+ 40
a (t) = v

0 (t) = h

00 (t) = �32

(a) At time t

0

= 1
v (1) = 8, object is going up.
a (1) = �32, speed is decreasing.

(b) At time t

0

= 2
v (2) = �24, object is going down.
a (2) = �32, speed is increasing.

26. h (t) = 10t2 � 24t
v (t) = h

0 (t) = 20t� 24
a (t) = v

0 (t) = h

00 (t) = 20

(a) At time t

0

= 2
v (2) = 16, object is going up.
a (2) = 20, speed is increasing.

(b) At time t

0

= 1
v (1) = �4, object is going down.
a (1) = 20, speed is decreasing.

27. f(x) = x

2 � 2, a = 2, f(2) = 2,
f

0(x) = 2x, f 0(2) = 4
The equation of the tangent line is
y = 4(x� 2) + 2 or y = 4x� 6.

28. f(2) = 1, f 0(x) = 2x� 2, f 0(2) = 2
Line through with slope 2 is
y = 2(x� 2) + 1.

29. f(x) = 4
p
x� 2x, a = 4

f(4) = 4
p
4� 2(4) = 0.

f

0(x) =
d

dx

⇣
4x1/2 � 2x

⌘

= 2x�1/2 � 2 =
2p
x

� 2

f

0(4) = 1� 2 = �1
The equation of the tangent line is

y = �1 (x� 4) + 0 or y = �x+ 4.

30. f (x) = 3
p
x+ 4, a = 2

f (2) = 3
p
2 + 4

f

0 (x) =
d

dx

⇣
3x1/2 + 4

⌘
=

3

2
x

�1/2 =
3

2
p
x

f

0 (2) =
3

2
p
2

The equation of tangent line through
�
2, 3

p
2 + 4

�
with slope

3

2
p
2
is

y =
3

2
p
2
(x� 2) + 3

p
2 + 4.

31. (a) The graph of f 0 is as follows:

2.5
0

5.0

10

5

−5

0.0

−10

−2.5−5.0

The graph of f 00 is as follows.

y

4

4

2

2

−2

−4

0
x

5

5

3

1

3
0

−1

−3

1

−5

−1−2−3−4−5

(b) The graph of f 0 is as follows.

5
0

10

10

5

−5

0

−10

−5−10
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The graph of f 00 is as follows.

−10

50
0

−5 10

10

5

−5

−10

32. (a) The graph of f 0 is as follows.

5
0

10

10

5

−5

0

−10

−5−10

The graph of f 00 is as follows
10

0
5

−10

5

10

−5

0−5−10

(b) The graph of f 0 is as follows.

−10

50
0

−5 10

10

5

−5

−10

The graph of f 00 is as follows.

5
0

10

10

5

−5

0

−10

−5−10

33. (a) f(x) = x

3 � 3x+ 1
f

0(x) = 3x2 � 3
The tangent line to y = f(x) is horizon-
tal when
f

0(x) = 0
) 3x2 � 3 = 0
) 3(x2 � 1) = 0
) 3(x+ 1)(x� 1) = 0
x = �1 or x = 1.

(b) The graph shows that the first is a rel-
ative maximum, the second is a relative
minimum.

0
3210−1−2−3

10

5

−5

−10

(c) Now to determine the value(s) of x for
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which the tangent line to y = f(x) inter-
sects the axis at 45o angle that is when
f

0 (x) = 1.
3x2 � 3 = 1
(x2 � 1) = 1

3

x

2 = 4

3

x = ± 2p
3

34. (a) Now to determine the value(s) of x for
which the tangent line to y = f (x) inter-
sects the axis at 45o angle that is when
f

0 (x) = 1
3x2 � 3 = 1
3
�
x

2 � 1
�
= 1

�
x

2 � 1
�
=

1

3

x

2 =
4

3

x = ± 2p
3

(b) The graph shows that the function has
global minimum at (1, �1)

5
0

10

10

5

−5

0

−10

−5−10

(c) Now to determine the value (s) of for
which the tangent line to y = f (x) inter-
sects the axis at 45o angle that is when
f

0 (x) = 1
4x3 � 4 = 1
�
x

3 � 1
�
=

1

4

x

3 =
5

4
=

✓
5

2

◆
1/3

35. (a) f (x) = x

2/3

f

0 (x) =
2

3
x

�1/3 =
2

3 3
p
x

The slope of the tangent line to y =
f (x) does not exist where the deriva-
tive is undefined, which is only when
x=0.

2.8

1.2

1

3.6

2.0

2.4

0.8

3.2

1.6

−2
0.0

0 2

0.4

y

−1
x

The graphical significance of this point
is that there is vertical tangent here.

(b) f (x) = |x� 3|

f

0(x) =

⇢
1 whenx > 3
�1when x < 3

f

0 (x) is not defined at x = 3.

y

4

4

2

2

−2

−4

0
x

5

5

3

1

3
0

−1

−3

1

−5

−1−2−3−4−5

Though the graph of function is contin-
uous at x = 3 tangent line does not exist
as at this point there is sharp corner.

(c) f (x) =
��
x

2 � 3x� 4
��

f

0 (x) =

⇢
2x� 3 when x > 4 or x < �1
�2x+ 3 when � 1 < x < 4

f

0(x) is not defined at x = �1, 4.

y

8

8

4

4

−4

−8

0
x

10

10

6

2

6
0

−2

−6

2

−10

−2−4−6−8−10

The graph shows that the function has
global minima at (�1, 0) and(4, 0).
The function has relative maximum at
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✓
3

2
,

25

4

◆
.

36. (a) f (x) = x

1/9

f

0 (x) =
1

9
x

�8/9 =
1

9x8/9

The f

0 (x) is not defined at x = 0.

−1.2

−0.4

−2.0

2.0

5

0.8

0.4

3

1.6

1.2

−2 1

0.0

0

−1.6

−1−4 −3 4−5

−0.8

2

The graphical significance of this point
is that there is vertical tangent here.

(b) f (x) = |x+ 2|

f

0 (x) =

⇢
1 when x > �2
�1 when x < �2

The f

0 (x) is not defined at x = �2.

y

4

4

2

2

−2

−4

0
x

5

5

3

1

3

0

−1

−3

1

−5

−1−2−3−4−5

Though the graph of function is contin-
uous at x = �2, tangent line does not
exist as at this point there is sharp cor-
ner.

(c) f (x) =
��
x

2 + 5x+ 4
�� = |(x+ 4)(x+ 1)|

f

0 (x) =

⇢
2x+ 5 when x < �4 or x > �1
�2x� 5 when � 4 < x < �1

The f

0(x) is not defined at x = �4, �1.

x

4

2.5

0

−2

−2.5

−4

y

5

3

5.0

2

1

−1
0.0

−3

−5

−5.0−7.5−10.0

The graph shows that the function has
global minima at (�4, 0) and (�1, 0).
The function has relative maxima at
(�2.5, 2.25).

37. (a) y = x

3 � 3x+ 1
y

0 = 3x2 � 3 = 3
�
x

2 � 1
�

The tangent line to y = f (x) intersects
the x-axis at a 45� angle when
f

0 (x) = 1
, 3

�
x

2 � 1
�
= 1

, x

2 = 1 +
1

3

, x =
2p
3
or x = � 2p

3
(b) The tangent line to y = f (x) intersects

the x-axis at a 30� angle when

f

0 (x) =
1p
3
.

, 3
�
x

2 � 1
�
=

1p
3

, x

2 = 1 +
1

3
p
3

, x =

✓
1 +

1

3
p
3

◆
1/2

or

x = �
✓
1 +

1

3
p
3

◆
1/2

38. Answers depend on CAS.

39. f(x) = ax

2 + bx+ c, f(0) = c

f

0(x) = 2ax+ b, f 0(0) = b

f

00(x) = 2a, f 00(0) = 2a
Given f

00(0) = 3, we learn 2a = 3, or
a = 3/2. Given f

0(0) = 2 we learn 2 = b,
and given f(0) = �2, we learn c = �2. In
the end

f(x) = ax

2 + bx+ c =
3

2
x

2 + 2x� 2

40. (a) f(x) =
p
x = x

1/2

f

0(x) =
1

2
x

�1/2

f

00(x) =
1

2

✓
�1

2

◆
x

�3/2
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f

000(x) =

✓
1

2

◆✓
�1

2

◆✓
�3

2

◆
x

�5/2

f

(n) (x)

= (�1)n�1

1.3.5... (2n� 3)

2n
x

�(2n�1)/2

= (�1)n�1

.

1.2.3... (2n� 2)

2n.2.4... (2n� 2)
x

�(2n�1)/2

= (�1)n�1

.

(2n� 2)!

22n�1 (n� 1)!
x

�(2n�1)/2

(b) f

0(x) = �2x�3

f

00(x) = 6x�4

f

000(x) = �24x�5

The pattern is
f

(n)(x) = (�1)n(n+ 1)!x�n�2

41. For y =
1

x

, we have y

0 = � 1

x

2

. Thus, the

slope of the tangent line at x = a is � 1

a

2

.

When a = 1, the slope of the tangent line at
(1, 1) is �1, and the equation of the tangent
line is y = �x + 2. The tangent line inter-
sects the axes at (0, 2) and (2, 0). Thus, the

area of the triangle is
1

2
(2)(2) = 2.

When a = 2, the slope of the tangent line

at

✓
2,

1

2

◆
is �1

4
, and the equation of the

tangent line is y = �1

4
x + 2. The tangent

line intersects the axes at (0, 1) and (4, 0).

Thus, the area of the triangle is
1

2
(4)(1) = 2.

In general, the equation of the tangent line is

y = �
✓

1

a

2

◆
x +

2

a

. The tangent line inter-

sects the axes at (0,
2

a

) and (2a, 0). Thus,

the area of the triangle is
1

2
(2a)

✓
2

a

◆
= 2.

42. For y =
1

x

2

= x

�2, we have

f

0(x) = �2x�3 = � 2

x

3

Thus, the slope of the tangent line at

x = a is � 2

a

3

.

When a = 1, the slope of the tangent line at
(1, 1) is �2, and the equation of the tangent
line is y = �2x + 3. The tangent line inter-

sects the axes at (0, 3) and

✓
3

2
, 0

◆
. Thus

the area of the triangle is
1

2
(3)(

3

2
) =

9

4
.

When a = 2, the slope of the tangent line

at

✓
2,

1

4

◆
is �1

4
, and the equation of the

tangent line is

y = �1

4
x +

3

4
. The tangent line intersects

the axes at
�
0, 3

4

�
and (3, 0). Thus the area

of the triangle is
1

2
(
3

4
)(3) =

9

8
.

Since
9

4
6= 9

8
, we see that the result for exer-

cise 41 does not hold here.

43. (a) g

0(x) = lim
h!0

g(x+ h)� g(x)

h

= lim
h!0

1

h


max

atx+h

f(t)� max
atx

f(t)

�

= lim
h!0

1

h

[f(x+ h)� f(x)]

= f

0(x)

(b) g

0(x) = lim
h!0

g(x+ h)� g(x)

h

= lim
h!0

1

h


max

atx+h

f(t)� max
atx

f(t)

�

= lim
h!0

1

h

[f(a)� f(a)] = 0

44. (a) g

0(x) = lim
h!0

g(x+ h)� g(x)

h

= lim
h!0

1

h


min

atx+h

f(t)� min
atx

f(t)

�

= lim
h!0

1

h

[f(a)� f(a)] = 0

(b) g

0(x) = lim
h!0

g(x+ h)� g(x)

h

= lim
h!0

1

h


min

atx+h

f(t)� min
atx

f(t)

�

= lim
h!0

1

h

[f(x+ h)� f(x)]

= f

0(x)

45. Try f(x) = cx

4 for some constant c. Then
f

0(x) = 4cx3 so c must be 1. One possible
answer is f(x) = x

4.

46. Try f(x) = cx

5 for some constant c. Then
f

0(x) = 5cx4 so c must be 1. One possible
answer is f(x) = x

5.

47. f

0(x) =
p
x = x

1/2

f(x) =
2

3
x

3/2 is one possible function

48. If f

0(x) = x

�2, then f(x) = �x

�1 is one
possible function.

49. w(b) = cb

3/2

w

0(b) =
3c

2
b

1/2 =
3c
p
b

2
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w

0(b) > 1 when
3c
p
b

2
> 1,

p
b >

2

3c

b >

4

9c2
Since c is constant, when b is large enough

b will be greater than
4

9c2
. After this point,

when b increases by 1 unit, the leg width w

is increasing by more than 1 unit, so that leg
width is increasing faster than body length.
This puts a limitation on the size of land an-
imals since, eventually, the body will not be
long enough to accomodate the width of the
legs.

50. World Record Times Mens Track

Dist. T ime Ave. f(d)
400 43.18 9.26 9.25
800 101.11 7.91 8.17
1000 131.96 7.58 7.86
1500 206.00 7.28 9.25
2000 284.79 7.02 6.95

Here, distance is in meters, time is in seconds
and hence average in metersper second.
The function f(d) is quite close to predicting
the average speed of worldrecord pace.
v

0(d) represents the rate of change in average
speed over d meters per meter. v0(d) tells us
how much v(d) would change if d changed to
d+ 1.

51. We can approximate

f

0(2000) ⇡ 9039.5� 8690.7

2001� 1999
= 174.4. This

is the rate of change of the GDP in billions
of dollars per year.
To approximate f

00(2000), we first estimate

f

0(1999) ⇡ 9016.8� 8347.3

2000� 1998
= 334.75

and f

0(1998) ⇡ 8690.7� 8004.5

1999� 1997
= 343.1

Since these values are decreasing, f 00(2000)
is negative. We estimate

f

00(2000) ⇡ 174.4� 334.75

2000� 1999
= �160.35

This represents the rate of change of the rate
of change of the GDP over time. In 2000, the
GDP is increasing by a rate of 174.4 billion
dollars per year, but this increase is decreas-
ing by a rate of 160.35 billion dollars-per-
year per year.

52. f

0(2000) can be approximated by the aver-
age rate of change from 1995 to 2000.

f

0(2000) ⇡ 4619� 4353

2000� 1995
= 53.2

This is the rate of change of weight of SUVs
over time. In 2000the weight of SUVs is in-
creasing by 53.2 pounds per year.
Similarly approximate f

0(1995) ⇡ 32.8 and
f

0(1990) ⇡ 26.8 The second derivative is def-
initely positive. We can approximate

f

00(2000) ⇡ 53.2� 32.8

2000� 1995
= 4.08.

This is the rate of change in the rate of
change of the weight of SUVs. Notonly
are SUVs getting heavier at a rate of 53.2
pounds per year, this rateis itself increas-
ing at a rate of about 4 pounds-per-year per
year.

53. Newton’s Law states that force equals mass
times acceleration. That is, if F (t) is the
driving force at time t, then m · f 00(t) =
m · a(t) = F (t) in which m is the mass, ap-
propriately unitized. The third derivative of
the distance function is then
f

000(t) = a

0(t) = 1

m

F

0(t).
It is both the derivative of the accelera-
tion and directly proportional to the rate
of change in force. Thus an abrupt change
in acceleration or “jerk”is the direct conse-
quence of an abrupt changein force.

2.4 The Product and
Quotient Rules

1. f(x) = (x2 + 3)(x3 � 3x+ 1)

f

0(x) =
d

dx

(x2 + 3) · (x3 � 3x+ 1)

+ (x2 + 3) · d

dx

(x3 � 3x+ 1)

= (2x)(x3 � 3x+ 1)

+ (x2 + 3)(3x2 � 3)

2. f(x) = (x3 � 2x2 + 5)(x4 � 3x2 + 2)

f

0(x) =
d

dx

(x3 � 2x2 + 5)(x4 � 3x2 + 2)

+ (x3 � 2x2 + 5)
d

dx

(x4 � 3x2 + 2)

= (3x2 � 4x)(x4 � 3x2 + 2)

+ (x3 � 2x2 + 5)(4x3 � 6x)

3. f(x) = (
p
x+ 3x)

✓
5x2 � 3

x

◆

= (x1/2 + 3x)(5x2 � 3x�1)
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f

0(x) =

✓
1

2
x

�1/2 + 3

◆
(5x2 � 3x�1)

+ (x1/2 + 3x)(10x+ 3x�2)

4. f(x) = (x3/2 � 4x)(x4 � 3x�2 + 2)

f

0(x) =
d

dx

(x3/2 � 4x)(x4 � 3x�2 + 2)

+ (x3/2 � 4x)
d

dx

(x4 � 3x�2 + 2)

= (
3

2
x

1/2 � 4)(x4 � 3x�2 + 2)

+ (x3/2 � 4x)(4x3 + 6x�3)

5. g(t) =
3t� 2

5t+ 1

g

0 (t) =
((5t+1)

d

dt

(3t�2))�((3t�2)

d

dt

(5t+1))
(5t+1)

2

=
3(5t+ 1)� 5(3t� 2)

(5t+ 1)2

=
15t+ 3� 15t+ 10

(5t+ 1)2
=

13

(5t+ 1)2

6. g(t) =
t

2 + 2t+ 5

t

2 � 5t+ 1
g

0(t) =
((t2�5t+1)

d

dt

(t

2
+2t+5))�((t2+2t+5)

d

dt

(t

2�5t+1))
(t

2�5t+1)

2

=
(t2 � 5t+ 1)(2t+ 2)� (t2 + 2t+ 5)(2t� 5)

(t2 � 5t+ 1)2

7. f(x) =
3x� 6

p
x

5x2 � 2
=

3(x� 2x1/2)

5x2 � 2
f

0(x) =

3
((5x2�2)

d

dx

(x�2x

1/2
)�(x�2x

1/2
)

d

dx

(5x

2�2))
(5x

2�2)

2

= 3

�
(5x2 � 2)(1� x

�1/2)� (x� 2x1/2)(10x)
�

(5x2 � 2)2

8. f(x) =
6x� 2x�1

x

2 + x

1/2

f

0(x)

=
(x

2
+x

1/2
)

d

dx

(6x�2x

�1
)�(6x�2x

�1
)

d

dx

(x

2
+x

1/2
)

(x

2
+x

1/2
)

2

=
(x

2
+x

1/2
)(6+2x

�2
)�(6x�2x

�1
)(2x+

1
2x

�1/2
)

(x

2
+x

1/2
)

2

9. f(u) =
(u+ 1)(u� 2)

u

2 � 5u+ 1
=

u

2 � u� 2

u

2 � 5u+ 1
f

0(u) =
((u2�5u+1)

d

du

(u

2�u�2))�((u2�u�2)

d

du

(u

2�5u+1))
(u

2�5u+1)

2

= (u

2�5u+1)(2u�1)�(u

2�u�2)(2u�5)

(u

2�5u+1)

2

= 2u

3�10u

2
+2u�u

2
+5u�1�2u

3
+2u

2
+4u+5u

2�5u�10

(u

2�5u+1)

2

=
�4u2 + 6u� 11

(u2 � 5u+ 1)2

10. f(u) =
(2u)(u+ 3)

u

2 + 1
=

2u2 + 6u

u

2 + 1
f

0(u) =

((u2
+1)

d

du

(2u

2
+6u))�((2u2

+6u)

d

du

(u

2
+1))

(u

2
+1)

2

=
(u2 + 1)(4u+ 6)� (2u2 + 6u)(2u)

(u2 + 1)2

=
4u3 + 6u2 + 4u+ 6� 4u3 � 12u2

(u2 + 1)2

=
�6u2 + 4u+ 6

(u2 + 1)2

=
2(�3u2 + 2u+ 3)

(u2 + 1)2

11. We do not recommend treating this one as a
quotient, but advise preliminary simplifica-
tion.

f(x) =
x

2 + 3x� 2p
x

=
x

2

p
x

+
3xp
x

� 2p
x

= x

3/2 + 3x1/2 � 2x�1/2

f

0(x) =
3

2
x

1/2 +
3

2
x

�1/2 + x

�3/2

12. f(x) =
x

2 � 2x

x

2 + 5x
f

0(x) =
(x2 + 5x) d

dx

(x2 � 2x)� (x2 � 2x) d

dx

(x2 + 5x)

(x2 + 5x)2

=
(x2 + 5x)(2x� 2)� (x2 � 2x)(2x+ 5)

(x2 + 5x)2

13. We simplify instead of using the product
rule.
h(t) = t( 3

p
t+ 3) = t

4/3 + 3t

h

0(t) =
4

3
3
p
t+ 3

14. h(t) =
t

2

3
+

5

t

2

=
1

3
t

2 + 5t�2

h

0(t) =
2

3
t� 10t�3

15. f(x) = (x2 � 1)
x

3 + 3x2

x

2 + 2

f

0(x) =
d

dx

(x2 � 1) · (x
3 + 3x2

x

2 + 2
)

+ (x2 � 1) · d

dx

(
x

3 + 3x2

x

2 + 2
)

We have
d

dx

(
x

3 + 3x2

x

2 + 2
) =

(x2 + 2) d

dx

(x3 + 3x2)� (x3 + 3x2) d

dx

(x2 + 2)

(x2 + 2)2

=
(x2 + 2) · (3x2 + 6x)� (x3 + 3x2) · (2x)

(x2 + 2)2

=
3x4 + 6x2 + 6x3 + 12x� (2x4 + 6x3)

(x2 + 2)2
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=
x

4 + 6x2 + 12x

(x2 + 2)2

So, f 0(x) =

(2x) · (x
3 + 3x2

x

2 + 2
)+ (x2 � 1) · x

4 + 6x2 + 12x

(x2 + 2)2

16. f(x) =
(x+ 2)(x� 1)(x+ 1)

x(x+ 1)

=
x

2 + x� 2

x

= x+ 1� 2x�1

f

0(x) = 1 + 2x�2

17. f(x) = (x2 + 2x)(x4 + x

2 + 1)

f

0(x) =


d

dx

(x2 + 2x)

�
(x4 + x

2 + 1)

+


d

dx

(x4 + x

2 + 1)

�
(x2 + 2x)

= (2x+ 2)(x4 + x

2 + 1)

+ (4x3 + 2x)(x2 + 2x)
At x = a = 0, we get:
f(0) = 0
f

0(0) = 2
Threfore, the line with slope 2 and pass-
ing through the point (0, 0) has equation
y = 2x.

18. f(x) = (x3 + x+ 1)(3x2 + 2x� 1)

f

0(x) =


d

dx

(x3 + x+ 1)

�
(3x2 + 2x� 1)

+


d

dx

(3x2 + 2x� 1)

�
(x3 + x+ 1)

= (3x2 + 1)(3x2 + 2x� 1)

+ (6x+ 2)(x3 + x+ 1)
At x = a = 1, we get:
f(1) = 12
f

0(1) = (3+1)(3+2�1)+(6+2)(1+1+1) =
40
Therfore, the line with slope 40 and pass-
ing through the point (1, 12) has equation
y = 40 (x� 1) + 12.

19. f(x) =
x+ 1

x+ 2
By The Quotient Rule, we have
f

0(x)

=

�
(x+ 2) d

dx

(x+ 1)
�
�
�
(x+ 1) d

dx

(x+ 2)
�

(x+ 2)2

=
(x+ 2)� (x+ 1)

(x+ 2)2
=

1

(x+ 2)2
.

At x = a = 0,

f(0) =
0 + 1

0 + 2
=

1

2

f

0(0) =
1

4
.

The line with slope
1

4
and passing through

the point

✓
0,

1

2

◆
has equation y =

1

4
x+

1

2
.

20. f(x) =
x+ 3

x

2 + 1
By The Quotient Rule, we have
f

0(x) =
�
(x2 + 1) d

dx

(x+ 3)
�
�
�
(x+ 3) d

dx

(x2 + 1)
�

(x2 + 1)2

=
(x2 + 1)� (x+ 3)(2x)

(x2 + 1)2

=
(x2 + 1)� (2x2 + 6x)

(x2 + 1)2

=
x

2 + 1� 2x2 � 6x

(x2 + 1)2

=
�x

2 � 6x+ 1

(x2 + 1)2
.

At x = a = 1,
f(1) = 1+3

1

2
+1

= 2

f

0(1) =
�1� 6 + 1

(1 + 1)2
= �6

4
= �3

2
.

The line with slope �3

2
and passing

through the point (1, 2) has equation y =

�3

2
(x� 1) + 2.

21. h(x) = f(x)g(x)
h

0(x) = f

0(x)g(x) + g

0(x)f(x)

(a) At x = a = 0,
h(0) = f(0)g(0) = (�1)(3) = �3
h

0(0) = f

0(0)g(0) + g

0(0)f(0)

= (�1)(3) + (�1)(�1) = �2.
So, the equation of the tangent line is
y = �2x� 3.

(b) At x = a = 1,
h(1) = f(1)g(1) = (�2)(1) = �2
h

0(1) = f

0(1)g(1) + g

0(1)f(1)

= (3)(1) + (�2)(�2) = 7.
So, the equation of the tangent line is
y = 7(x� 1)� 2 or y = 7x� 9.

22. h(x) =
f(x)

g(x)

h

0(x) =
g(x)f 0(x)� f(x)g0(x)

(g(x))2

(a) At x = a = 1,

h(1) =
f(1)

g(1)
= �2

1
= �2
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h

0(1) =
g(1)f 0(1)� f(1)g0(1)

(g(1))2

=
(1)(3)� (�2)(�2)

12

=
3� 4

1
= �1.

So, the equation of the tangent line is
y = �(x� 1)� 2.

(b) At x = a = 0,

h(0) = f(0)

g(0)

= � 1

3

h

0(0) =
g(0)f 0(0)� f(0)g0(0)

(g(0))2

=
(�1)(3)� (�1)(�1)

(3)2

=
�3� 1

9

= �4

9
.

So, the equation of the tangent line is

y = �4

9
x� 1

3
.

23. h(x) = x

2

f(x)
h

0(x) = 2xf(x) + x

2

f

0(x)

(a) At x = a = 1,
h(1) = 12f(1) = �2

h

0(1) = 2⇥ 1⇥ f(1) + 12f 0(1)

= (2)(�2) + (3) = �4 + 3 = �1.
So, the equation of the tangent is y =
�1(x� 1)� 2 or y = �x� 1.

(b) At x = a = 0,
h(0) = 02f(0) = 0
h

0(0) = 2⇥ 0⇥ f(0) + 02f 0(0) = 0.
So, the equation of the tangent is y = 0.

24. h(x) =
x

2

g(x)

h

0(x) =
2xg(x)� x

2

g

0(x)

(g(x))2

(a) At x = a = 1,

h(1) =
12

g(1)
=

1

1
= 1

h

0(1) =
2⇥ 1⇥ g(1)� 12g0(1)

(g(1))2

=
(2)(1)(1)� (1)(�2)

12

=
2 + 2

1
= 4.

So, the equation of tangent line is y =
4(x� 1) + 1.

(b) At x = a = 0,

h(0) =
02

g(0)
=

0

3
= 0

h

0(0) =
2⇥ 0⇥ g(0)� 02g0(0)

(g(0))2
= 0.

So, the equation of the tangent line is
y = 0.

25. The rate at which the quantity Q changes is
Q

0. Since the amount is said to be “decreas-
ing at a rate of 4%” we have to ask “4%
of what?” The answer in this type of con-
text is usually 4% of itself. In other words,
Q

0 = �0.04Q.

As for P , the 3% rate of increase would
translate as P 0 = 0.03P. By the product rule
with R = PQ, we have:
R

0 = (PQ)0 = P

0
Q+ PQ

0

= (0.03P )Q+ P (�0.04Q)
= �(0.01)PQ = (�0.01)R.

In other words, revenue is decreasing at a
rate of 1%.

26. Revenue will be constant when the deriva-
tive is 0. Substituting, Q0 = �0.04Q and,
P

0 = aP into the expression for R0 gives,
R

0 = �0.04QP + aQP

R

0 = (�0.04 + a)QP.

This is zero when a = 0.04, so price must
increase by 4%.

27. R

0 = Q

0
P +QP

0

At a certain moment of time (call it t

0

)
we are given P (t

0

) = 20 ($/item) , Q(t
0

) =
20, 000(items)
P

0(t
0

) = 1.25 ($/item/year)
Q

0(t
0

) = 2, 000 (item/year)
R

0(t
0

) = 2, 000(20) + (20, 000)1.25
R

0(t
0

) = 65, 000 ( $/year) .
So, revenue is increasing by $65, 000/year at
the time t

0

.

28. We are given P = $14, Q = 12, 000 and
Q

0 = 1, 200. We want R0 = $20, 000. Substi-
tuting these values in to the expression for
R

0 (see exercise 25) yields:
20, 000 = 1200 · 14 + 12, 000 · P 0

Solve to get P 0 = 0.27 dollars per year.

29. If u(m) =
82.5m� 6.75

m+ 0.15
then using the quo-

tient rule,
du

dm

=
(m+ 0.15)(82.5)� (82.5m� 6.75)1

(m+ 0.15)2

=
19.125

(m+ 0.15)2
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which is clearly positive. It seems to be say-
ing that initial ball speed is an increasing
function of the mass of the bat. Meanwhile,

u

0(1) =
19.125

1.152
⇡ 14.46

u

0(1.2) =
19.125

1.352
⇡ 10.49,

which suggests that the rate at which this
speed is increasing is decreasing.

30. u

0(M) =
(M + 1.05) d

dM

(86.625� 45M)

(M + 1.05)2

�
d

dM

(M + 1.05)(86.625� 45M)

(M + 1.05)2

=
(�45M � 47.25)� (86.625� 45M)

(M + 1.05)2

=
�133.875

(M + 1.05)2

This quantity is negative. In baseball terms,
as the mass of the baseball increases, the
initial velocity decreases.

31. If u(m) =
14.11

m+ 0.05
=

282.2

20m+ 1
, then

du

dm

=
(20m+ 1) · 0� 282.2(20)

(20m+ 1)2

=
�5644

(20m+ 1)2
.

This is clearly negative, which means that
impact speed of the ball is a decreasing func-
tion of the weight of the club. It appears
that the explanation may have to do with
the stated fact that the speed of the club is
inversely proportional to its mass. Although
the lesson of Example 4.6 was that a heavier
club makes for greater ball velocity, that was
assuming a fixed club speed, quite a di↵erent
assumption from this problem.

32. u

0(v) =
0.2822

0.217
⇡ 1.3. The initial speed of

the ball increases 1.3 times more than the
increase in club speed.

33.

d

dx

[f(x)g(x)h(x)] =
d

dx

[(f(x)g(x))h(x)]

= (f(x)g(x))h0(x) + h(x)
d

dx

(f(x)g(x))

= (f(x)g(x))h0(x)

+ h(x) (f(x)g0(x) + g(x)f 0(x))

= f

0(x)g(x)h(x) + f(x)g0(x)h(x)

+ f(x)g(x)h0(x)
In the general case of a product of n func-
tions, the derivative will have n terms to be
added, each term a product of all but one of

the functions multiplied by the derivative of
the missing function.

34. The derivative of g(x)�1 =
1

g(x)
is

d

dx

h
g(x)�1

i
=

g(x) d

dx

(1)� (1) d

dx

g(x)

g(x)2

= � g

0(x)

g(x)2
= �g

0(x)(g(x))�2

as claimed. The derivative of f(x)(g(x))�1 is
then f

0(x)(g(x))�1 + f(x)(�g

0(x)(g(x))�2).

35. f

0(x) =


d

dx

(x2/3)

�
(x2 � 2)(x3 � x+ 1)

+ x

2/3


d

dx

(x2 � 2)

�
(x3 � x+ 1)

+ x

2/3(x2 � 2)
d

dx

(x3 � x+ 1)

=
2

3
x

�1/3(x2 � 2)(x3 � x+ 1)

+ x

2/3(2x)(x3 � x+ 1)

+ x

2/3(x2 � 2)(3x2 � 1)

36. f

0(x) = 1(x3 � 2x+ 1)(3� 2/x)

+ (x+ 4)(3x2 � 2)(3� 2/x)

+ (x+ 4)(x3 � 2x+ 1)(2/x2)

37. f

0(x) = lim
h!0

f(x+ h)� f(x)

h

f

0(0) = lim
h!0

f(h)� f(0)

h

= lim
h!0

hg(h)� 0

h

= lim
h!0

hg(h)

h

= lim
h!0

g(h) = g(0)

Since, g is continuous at x = 0. When
g(x) = |x|, g(x) is continuous but not dif-
ferentiable at x = 0. We have

f(x) = x|x| =
⇢
�x

2

x < 0
x

2

x � 0
This is di↵erentiable at x = 0.

38. f (x) = (x� a) g (x)

f

0 (x) = lim
h!0

f (a+ h)� f (a)

h

= lim
h!0

(a+ h� a) g (a+ h)

h

= lim
h!0

hg (a+ h)

h

= lim
h!0

g (a+ h)

= g (a)
As g is continuous at x = a, hence f(x) is
di↵erentiable.
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39. f(x) =
x

x

2 + 1

f

0(x) =

�
x

2 + 1
�
� x (2x)

(x2 + 1)2

=
x

2 + 1� 2x2

(x2 + 1)2
=

�x

2 + 1

(x2 + 1)2

f

00(x)

=

�
x

2 + 1
�
2

(�2x)�
�
�x

2 + 1
�
2
�
x

2 + 1
�
(2x)

(x2 + 1)4

=

�
x

2 + 1
�
(�2x)�

�
�x

2 + 1
�
(4x)

(x2 + 1)3

=
�2x3 � 2x+ 4x3 � 4x

(x2 + 1)3
=

2x3 � 6x

(x2 + 1)3

At maxima or minima of f

0, we have
f

00(x) = 0. So, 2x3 � 6x = 0

2x
�
x

2 � 3
�
= 0

2x = 0 , x2 � 3 = 0

x = 0, x = ±
p
3

f

0 (0) =
�02 + 1

(02 + 1)2
= 1

f

0
⇣
±
p
3
⌘
=

�
�
±
p
3
�
2

+ 1
⇣�

±
p
3
�
2

+ 1
⌘
2

=
�3 + 1

(3 + 1)2
= � 2

16
= �1

8

Therefore, �1

8
 m = f

0(x)  1.

So, the function f has maximum slopem = 1

at x = 0 and minimum slope m = �1

8
at

x = ±
p
3.

In the graph of f(x) in below, the point
B(0, 0) has maximum slope 1 and the points

A(�
p
3, �

p
3

4

), C(
p
3,

p
3

4

) have minimum
slope � 1

8

.

C

A

B

y

0.8

2

0.0

−0.4

0

−0.8

1.0

0.6

3

0.4

0.2

−0.2
1

−0.6

−1.0

−1−2−3
x

40. f(x) =
xp

x

2 + 1

f

0(x) =

�p
x

2 + 1
�
� x

⇣
1

2

p
x

2
+1

⇥ 2x
⌘

(x2 + 1)

=

�p
x

2 + 1
�
� x

2
p
x

2
+1

(x2 + 1)

=
x

2 + 1� x

2

(x2 + 1)
3
2

=
�
x

2 + 1
�� 3

2

Since x

2 + 1 > 0, m > 0.

f

00(x) = �3

2

�
x

2 + 1
�� 5

2 (2x)

= �3x
�
x

2 + 1
�� 5

2 = �3x
For maxima or minima of f

00(x), we have
f

00(x) = 0. So, x = 0

f

0 (0) =
�
02 + 1

�� 3
2 = 1

Therefore 0 < m = f

0(x)  1
In the graph of f(x) in below, the point
A(0, 0) has maximum slope 1.

A

−0.6

1

y

0.0

x
−1 2

1.0

0.6

0

0.4

−0.8

−0.2
−2

−1.0

−3

0.2

−0.4

3

0.8

41. Answers depend on CAS.

42. For any constant k, the derivative of
sin kx is k cos kx.
Graph of d

dx

sinx :

1

0

0.5

6

-0.5

-1

-2 2

x

-4 0 4-6

Graph of d

dx

sin 2x



2.4. THE PRODUCT AND QUOTIENT RULES 107

2

0

1

6

-1

-2

-2 2

x

-4 0 4-6

Graph of d

dx

sin 3x

3

1

-3

2

0

-2

0-4 2-6 4-2

x

-1

6

43. CAS answers may vary.

44. The function f(x) simplifies to f(x) = 2x,
so f

0(x) = 2. CAS answers vary, but should
simplify to 2.

45. If F (x) = f(x)g(x), then
F

0(x) = f

0(x)g(x) + f(x)g0(x) and
F

00(x) = f

00(x)g(x) + f

0(x)g0(x)

+ f

0(x)g0(x) + f(x)g00(x)

= f

00(x)g(x) + 2f 0(x)g0(x) + f(x)g00(x)
F

000(x) = f

000(x)g(x) + f

00(x)g0(x)

+ 2f 00(x)g0(x) + 2f 0(x)g00(x)

+ f

0(x)g00(x) + f(x)g000(x)

= f

000(x)g(x) + 3f 00(x)g0(x)

+ 3f 0(x)g00(x) + f(x)g000(x).
One can see obvious parallels to the bino-
mial coe�cients as they come from Pascal’s
Triangle:
(a+ b)2 = a

2 + 2ab+ b

2

(a+ b)3 = a

3 + 3a2b+ 3ab2 + b

3

.

On this basis, one could correctly predict the
pattern of the fourth or any higher deriva-
tive.

46. F

(4)(x) = f

(4)

g + 4f 000
g

0 + 6f 00
g

00 + 4f 0
g

000 +
fg

(4)

47. If g(x) = [f(x)]2 = f(x)f(x), then
g

0(x) = f

0(x)f(x)+ f(x)f 0(x) = 2f(x)f 0(x).

48. g(x) = f(x)[f(x)]2, so
g

0(x) = f

0(x)[f(x)]2 + f(x)(2f(x)f 0(x))

= 3[f(x)]2f 0(x)

The derivative of [f(x)]n is n[f(x)]n�1

f

0(x).

49. lim
x!0

f(x) = 0 and lim
x!1

f(x) = 1 . Without

any activator there is no enzyme. With un-
limited amount of activator, the amount of
enzyme approaches 1.

f(x) =
x

2.7

1 + x

2.7

f

0(x) =

�
1 + x

2.7

�
(2.7)x1.7 � (2.7)x2.7

x

1.7

(1 + x

2.7)2

=
2.7x1.7

(1 + x

2.7)2

The fact that 0 < f(x) < 1 when x > 0
suggest to us that f may be a kind of con-
centration ratio or percentage of presence of
the allosteric enzymes in some systems. If so,
the derivetive would be interpreted as rate of
change of concentration per unit activator.

50. lim
x!0

f(x) = 1 and lim
x!1

f(x) = 0. With-

out any inhibitor the amount of enzyme ap-
proaches 1. With unlimited amount of in-
hibitor, the amount of enzyme approaches

0. f 0(x) = � 2.7x1.7

(1 + x

2.7)2

For positive x, f

0 is negative. Increase in
the amount of inhibitor leads to a decrease
in the amount of enzyme.

51. (a) r =
1

0.55

c

+
0.45

h

=


0.55

c

+
0.45

h

��1

d

dc

(r) =
d

dc


0.55

c

+
0.45

h

��1

=
�1

⇥
0.55

c

+ 0.45

h

⇤
2

d

dc


0.55

c

+
0.45

h

�

=
0.55

c

2

⇥
0.55

c

+ 0.45

h

⇤
2

Therefore, from the above equation we

can say that
dr

dc

> 0, for every c.

(b) Similarly,
dr

dh

=
0.45

h

2

⇥
0.55

c

+ 0.45

h

⇤
2

.

Hence, from the above equation we can

say that
dr

dh

> 0, for every h.

(c) r =
1

0.55

c

+ 0.45

h

When c = h, we get
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r =
1

0.55

h

+ 0.45

h

= h = c.

(d) If c < h

r =
ch

0.55h+ 0.45c
r

c

=
h

0.55h+ 0.45c
>

h

0.55h+ 0.45h
= 1

So, r > c. And

r =
ch

0.55h+ 0.45c
r

h

=
c

0.55h+ 0.45c
<

c

0.55c+ 0.45c
= 1

So, r < h and hence c < r < h.

Now, r is an increasing function and
h = c , we have r = f(h) = c. Hence for
any value of h greater than c, we have
the corresponding value of r greater
than c.

dr

dh

=
0.55

c

2

⇥
0.55

c

+ 0.45

h

⇤
2

=
0.45c2

(0.55h+ 0.45c)2
<

0.45c2

c

2

= 0.45

Also, from part (b),
dr

dh

=
0.45c2

(0.55h+ 0.45c)2

and from part (d),
r

h

=
c

0.55h+ 0.45c

) 0.45
⇣
r

h

⌘
2

< 0.45

) r < h

Graph of r with respect to h when c = 20:

30

70

50

10

30

10

100908070605040

80

60

20

40

20

0

0

When c is constant, r remain stable for large
h.

2.5 The Chain Rule

1. f(x) = (x3 � 1)2

Using the chain rule:
f

0(x) = 2(x3 � 1)(3x2) = 6x2(x3 � 1)

Using the product rule:
f(x) = (x3 � 1)(x3 � 1)
f

0(x) = (3x2)(x3 � 1) + (x3 � 1)(3x2)

= 2(3x2)(x3 � 1)

= 6x2(x3 � 1)
Using preliminary multiplication:
f(x) = x

6 � 2x3 + 1
f

0(x) = 6x5 � 6x2

= 6x2(x3 � 1)

2. f(x) = (x2 + 2x+ 1)(x2 + 2x+ 1)
Using the product rule:
f

0(x) = (2x+ 2)(x2 + 2x+ 1)

+ (x2 + 2x+ 1)(2x+ 2)
Using the chain rule:
f

0(x) = 2(x2 + 2x+ 1)(2x+ 2)

3. f(x) = (x2 + 1)
3

Using the chain rule:

f

0(x) = 3(x2 + 1)
2 · 2x

Using preliminary multiplication:
f(x) = x

6 + 3x4 + 3x2 + 1
f

0(x) = 6x5 + 12x3 + 6x

4. f(x) = (2x+ 1)4

Using preliminary multiplication:
f(x) = 16x4 + 32x3 + 24x2 + 8x+ 1
f

0(x) = 64x3 + 96x2 + 48x+ 8.
Using the chain rule:
f

0(x) = 4(2x+ 1)3(2) = 8(2x+ 1)3

5. (a) By the chain rule:

f

0(x) = 3
�
x

3 � x

�
2

d

dx

�
x

3 � x

�

= 3
�
x

3 � x

�
2

�
3x2 � 1

�

(b) By the chain rule:

f

0(x) =
1

2
p
x

2 + 4

d

dx

�
x

2 + 4
�

=
1

2
p
x

2 + 4
· 2x =

xp
x

2 + 4

6. (a) By the chain rule:

f

0(x) = 4
�
x

3 + x� 1
�
3

d

dx

�
x

3 + x� 1
�

= 4
�
x

3 + x� 1
�
3

�
3x2 + 1

�

(b) By the chain rule:
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f

0(x) =
1

2

r
4x� 1

x

d

dx

✓
4x� 1

x

◆

=
1

2

r
4x� 1

x

✓
4 +

1

x

2

◆

=
4 +

1

x

2

2

r
4x� 1

x

7. (a) f(t) = t

5

p
t

3 + 2
By the product rule:

f

0 (t) = 5t4
p
t

3 + 2 + t

5

d

dt

⇣p
t

3 + 2
⌘

By the chain rule:

f

0 (t) = 5t4
p
t

3 + 2 + t

5

1

2
p
t

3 + 2

d

dt

�
t

3 + 2
�

= 5t4
p
t

3 + 2 + t

5

1

2
p
t

3 + 2
3t2

=

�
5t4

p
t

3 + 2
� �

2
p
t

3 + 2
�
+ 3t7

2
p
t

3 + 2

=
10t4

�
t

3 + 2
�
+ 3t7

2
p
t

3 + 2

=
10t7 + 20t4 + 3t7

2
p
t

3 + 2

=
13t7 + 20t4

2
p
t

3 + 2

(b) f(t) =
�
t

3 + 2
�p

t

By the product rule:

f

0(t) = 3t2
p
x+

�
t

3 + 2
� 1

2
p
t

=
6t3 + t

3 + 2

2
p
t

=
7t3 + 2

2
p
t

8. (a) f(t) =
�
t

4 + 2
�p

t

2 + 1
By the product rule:

f

0(t) =4t3
p
t

2 + 1

+
�
t

4 + 2
�
d

dt

⇣p
t

2 + 1
⌘

By the chain rule:

f

0(t) = 4t3
p
t

2 + 1

+
�
t

4 + 2
� 1

2
p
t

2 + 1
(2t)

= 4t3
p
t

2 + 1 +
t

�
t

4 + 2
�

p
t

2 + 1

=
4t3

�
t

2 + 1
�
+ t

�
t

4 + 2
�

p
t

2 + 1

=
4t5 + 4t3 + t

5 + 2tp
t

2 + 1

=
5t5 + 4t3 + 2tp

t

2 + 1

(b) f(t) =
p
t

⇣
t

4/3 + 3
⌘

By the product rule:

f

0(t) =
1

2
p
t

⇣
t

4/3 + 3
⌘
+

4

3
t

1/3

p
t

=
1

2
p
t

⇣
t

4/3 + 3
⌘
+

4

3
t

1/3

t

1/2

=
1

2
p
t

⇣
t

4/3 + 3
⌘
+

4

3
t

5/6

9. (a) f(u) =
u

2 + 1

u+ 4
By the quotient rule:

f

0(u) =
(u+ 4) (2u)�

�
u

2 + 1
�

(u+ 4)2

=
2u2 + 8u� u

2 � 1

(u+ 4)2

=
u

2 + 8u� 1

(u+ 4)2

(b) f(u) =
u

3

(u2 + 4)2

By the quotient rule:

f

0(u) =
(u2

+4)2(3u2)�(u3) d

du

(u2
+4)2

(u

2
+4)

4

By the chain rule:

f

0(u) =

�
u

2 + 4
�
2

�
3u2

�
� 2u3

�
u

2 + 4
�
(2u)

(u2 + 4)4

=

�
u

2 + 4
� ⇥

3u2

�
u

2 + 4
�
� 4u4

⇤

(u2 + 4)4

=
3u2

�
u

2 + 4
�
� 4u4

(u2 + 4)3

=
3u4 + 12u2 � 4u4

(u2 + 4)3

=
12u2 � u

4

(u2 + 4)3
=

u

2

�
12� u

2

�

(u2 + 4)3

10. (a) f(x) =
x

2 � 1

x

2 + 1
By the quotient rule:

f

0(x) =

�
x

2 + 1
�
(2x)�

�
x

2 � 1
�
(2x)

(x2 + 1)2

=
(2x)

�
x

2 + 1� x

2 + 1
�

(x2 + 1)2

=
4x

(x2 + 1)2
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(b) f(x) =
x

2 + 4

(x3)2

By the quotient rule:

f

0(x) =
x

6 (2x)�
�
x

2 + 4
� �

6x5

�

(x6)2

=
2x7 � 6x7 � 24x5

x

12

=
�4x7 � 24x5

x

12

= �
4x5

�
x

2 + 6
�

x

12

= �
4
�
x

2 + 6
�

x

7

11. (a) g(x) =
xp

x

2 + 1
By the quotient rule:

g

0(x) =

p
x

2 + 1� (x) d

dx

�p
x

2 + 1
�

(x2 + 1)
By the chain rule:

g

0(x) =

p
x

2 + 1 � (x)
⇣

1

2

p
x

2
+1

⌘
(2x)

(x2 + 1)

=

p
x

2 + 1 � x

2
p
x

2
+1

(x2 + 1)

=
x

2 + 1 � x

2

p
x

2 + 1 (x2 + 1)

=
1p

x

2 + 1 (x2 + 1)

=
1

(x2 + 1)3/2

(b) g(x) =

r
x

x

2 + 1
By the chain rule:

g

0(x) =
1

2

r
x

x

2 + 1

d

dx

✓
x

x

2 + 1

◆

By the quotient rule:

g

0(x) =
1

2

r
x

x

2 + 1

 �
x

2 + 1
�
� x(2x)

(x2 + 1)2

!

=
1

2

r
x

x

2 + 1

 
x

2 + 1� 2x2

(x2 + 1)2

!

=
1

2
p
x

 
1� x

2

(x2 + 1)3/2

!

=
1� x

2

2
p
x(x2 + 1)3/2

12. (a) g(x) = x

2

p
x+ 1

By the product rule:

g

0(x) = 2x
p
x+ 1 +

�
x

2

�
d

dx

�p
x+ 1

�

By the chain rule:

g

0(x) = 2x
p
x+ 1 +

�
x

2

� 1

2
p
x+ 1

= 2x
p
x+ 1 +

x

2

2
p
x+ 1

=
4x (x+ 1) + x

2

2
p
x+ 1

=
4x2 + 4x+ x

2

2
p
x+ 1

=
5x2 + 4x

2
p
x+ 1

(b) g(x) =
q
(x2 + 1)

�p
x+ 1

�
3

By the chain rule:

g

0(x) =

d

dx

h�
x

2 + 1
�
(
p
x+ 1)

3

i

2
q
(x2 + 1) (

p
x+ 1)

3

By the product rule:

g

0(x) =

⇣
2x(

p
x+1)3

⌘
+(x2

+1) d

dx

(
p
x+1)3

2

q
(x

2
+1)(

p
x+1)3

.

By the chain rule:

g

0(x) =
1

2
q
(x2 + 1) (

p
x+ 1)

3

⇣
2x
�p

x+ 1
�
3

+3
�
x

2 + 1
� �p

x+ 1
�
2

1

2
p
x

◆

13. (a) h(x) = 6
�
x

2 + 4
��1/2

By the chain rule:

h

0(x) = 6⇥
✓
�1

2

◆�
x

2 + 4
��3/2

(2x)

=
�6x

(x2 + 4)3/2

(b) h(x) =

p
x

2 + 4

6
By the chain rule:

h

0(x) =
1

6
· 1

2
p
x

2 + 4

d

dx

�
x

2 + 4
�

=
1

6
· 1

2
p
x

2 + 4
(2x)

=
x

6
p
x

2 + 4

14. (a) h(t) =

�
t

3 + 4
�
5

8
By the chain rule:
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h

0(t) =
5

8

�
t

3 + 4
�
4

d

dt

�
t

3 + 4
�

=
5

8

�
t

3 + 4
�
4

�
3t2

�

=
15t2

8

�
t

3 + 4
�
4

(b) h(t) = 8
�
t

3 + 4
��5

By the chain rule:

h

0(t) = 8⇥ (�5)
�
t

3 + 4
��6

d

dt

�
t

3 + 4
�

= �40
�
t

3 + 4
��6

�
3t2

�

= �120t2
�
t

3 + 4
��6

15. (a) f(x) =
⇣p

x

3 + 2 + 2x
⌘�2

By the chain rule:
f

0(x)

= �2
�p

x

3 + 2 + 2x
��3

d

dx

�p
x

3 + 2 + 2x
�

= �2
�p

x

3 + 2 + 2x
��3

⇣
3x

2

2

p
x

3
+2

+ 2
⌘

= �2

(
p
x

3
+2+2x)3

⇣
3x

2
+4

p
x

3
+2

2

p
x

3
+2

⌘

= � 3x

2
+4(

p
x

3
+2)

(
p
x

3
+2+2x)3

p
x

3
+2

(b) f(x) =
p
x

3 + 2 + 2x�2

By the chain rule:
f

0(x) =
1

2
p
x

3 + 2 + 2x�2

d

dx

�
x

3 + 2 + 2x�2

�

=
1

2
p
x

3 + 2 + 2x�2

�
3x2 � 4x�3

�

=
3x2 � 4x�3

2
p
x

3 + 2 + 2x�2

16. (a) f(x) =
q
4x2 + (8� x

2)2

By the chain rule:

f

0(x) =
8x� 4x

�
8� x

2

�

2
q
4x2 + (8� x

2)2

=
8x� 32x+ 4x3

2
q
4x2 + (8� x

2)2

=
�24x+ 4x3

2
q
4x2 + (8� x

2)2

=
2x3 � 12xq

4x2 + (8� x

2)2

(b) f(x) =
⇣p

4x2 + 8� x

2

⌘
2

By the chain rule:
f

0(x) =
2
�p

4x2 + 8� x

2

�
d

dx

�p
4x2 + 8� x

2

�

= 2
�p

4x2 + 8� x

2

� ⇣
4xp

4x

2
+8

� 2x
⌘

= 2
�p

4x2 + 8� x

2

� ⇣
4x�2x

p
4x

2
+8p

4x

2
+8

⌘

= 4
�p

4x2 + 8� x

2

� ⇣
2x�x

p
4x

2
+8p

4x

2
+8

⌘

17. f(x) = x

3 + 4x � 1 is a one-to-one function
with f(0) = �1 and f

0(0) = 4. Therefore
g(�1) = 0 and

g

0(�1) =
1

f

0(g(�1))
=

1

f

0(0)
=

1

4
.

18. f(x) = x

5 + 4x � 2 is a one-to-one function
with f(0) = �2 and f

0(0) = 4. Therefore
g(�2) = 0 and

g

0(�2) =
1

f

0(g(�2))
=

1

f

0(0)
=

1

4

.

19. f(x) = x

5 +3x3 + x is a one-to-one function
with f(1) = 5 and f

0(1) = 5 + 9 + 1 = 15.
Therefore g(5) = 1 and

g

0(5) =
1

f

0(g(5))
=

1

f

0(1)
=

1

15
.

20. f(x) = x

3 + 2x + 1 is a one-to-one function
with f(�1) = �2 and f

0(�1) = 5. Therefore
g(�2) = �1 and

g

0(�2) =
1

f

0(g(�2))
=

1

f

0(�1)
=

1

5
.

21. f(x) =
p
x

3 + 2x+ 4 is a one-to-one func-
tion and f(0) = 2 so g(2) = 0. Meanwhile,

f

0(x) =
1

2
p
x

3 + 2x+ 4
(3x2 + 2)

f

0(0) = 1/2

g

0(2) =
1

f

0(g(2))
=

1

f

0(0)
= 2.

22. f(x) =
p
x

5 + 4x3 + 3x+ 1 is a one-to-one
function and f(1) = 3 so g(3) = 1. Mean-
while,

f

0(x) =
5x4 + 12x2 + 3

2
p
x

5 + 4x3 + 3x+ 1

f

0(1) =
20

6
=

10

3

g

0(3) =
1

f

0(g(3))
=

1

f

0(1)
=

3

10
.

23. f(x) =
3

vuut
x

s

x

4 + 2x 4

r
8

x+ 2
Use Chain rule to find the derivative of the
function. We can also use Product rule.
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24. f(x) =
3x2 + 2

q
x

3 + 4

x

4

(x3 � 4)
p
x+ 2

Use Quotient rule to find the derivative of
the function. We can also use Chain rule
and Product rule.

25. f(t) =

r
t

2 +
4

t

3

✓
8t+ 5

2t� 1

◆
3

Use product rule to find the derivative of the
function. We can also use chain rule and
Quotient rule.

26. f(t) =

 
3t+

4
p
t

2 + 1

t� 5

!
3

Use Chain rule to find the derivative of the
function. We can also use Quotient rule.

27. f(x) =
p
x

2 + 16, a = 3, f(3) = 5

f

0(x) =
1

2
p
x

2 + 16
(2x) =

xp
x

2 + 16

f

0(3) =
3p

32 + 16
=

3

5

So, the tangent line is y =
3

5
(x� 3) + 5 or

y =
3

5
x+

16

5
.

28. f(�2) =
3

4

f

0(x) =
�12x

(x2 + 4)2

f

0(�2) =
24

64
=

3

8
The equation of the tangent line is

y =
3

8
(x+ 2) +

3

4
.

29. s(t) =
p
t

2 + 8

v(t) = s

0(t) =
2t

2
p
t

2 + 8
=

tp
t

2 + 8
m/s

v(2) =
2p
12

=
1p
3
=

p
3

3
m/s

30. s(t) =
60tp
t

2 + 1

v(t) =

p
t

2 + 1(60)� 60t 1

2

p
t

2
+1

2t

t

2 + 1
m/s

v(2) =
60
p
5� 240p

5

5
=

12
p
5

5
m/s

31. h

0(x) = f

0(g(x))g0(x)
h

0(1) = f

0(g(1))g0(1) = f

0(2) · (�2) = �6

32. h

0(x) = f

0(g(x))g0(x)
h

0(2) = f

0(g(2))g0(2) = f

0(3) · (4) = �12

33. As a temporary device given any f , set
g(x) = f(�x). Then by the chain rule,

g

0(x) = f

0(�x)(�1) = �f

0(�x).

In the even case (g = f) this reads f 0(�x) =
�f

0(x) and shows f 0 is odd.
In the odd case (g = �f and therefore
g

0 = �f

0), this reads �f

0(x) = �f

0(�x) or
f

0(x) = f

0(�x) and shows f 0 is even.

34. To say that f(x) is symmetric about the line
x = a is the same as saying that f(a+ x) =
f(a�x). Taking derivatives (using the chain
rule), we have
d

dx

f(a+ x) = f

0(a+ x)

d

dx

f(a� x) = f

0(a� x)(�1) = �f

0(a� x).

Thus, f 0(a+x) = �f

0(a�x) and the graph of
f

0(x) is symmetric through the point (a, 0).

35. (a) Chain rule gives,
d

dx

f

�
x

2

�
= f

0 �
x

2

�
d

dx

�
x

2

�

= f

0 �
x

2

�
(2x)

= 2xf 0 �
x

2

�
.

(b) Chain rule gives,
d

dx

[f(x)]2 = 2f(x)
d

dx

f(x)

= 2f(x)f 0(x).

(c) Chain rule gives,
d

dx

f (f(x)) = f

0 (f(x))
d

dx

f(x)

= f

0 (f(x)) f 0(x).

36. (a) Chain rule gives,
d

dx

f

�p
x

�
= f

0 �p
x

�
d

dx

�p
x

�

= f

0 �p
x

� 1

2
p
x

.

(b) Chain rule gives,
d

dx

⇣p
f (x)

⌘
=

1

2
p

f (x)

d

dx

f (x)

=
1

2
p

f (x)
f

0 (x) .

(c) Chain rule gives,
d

dx

[f (xf(x))]

= f

0 (xf(x))
d

dx

(xf(x))

and product rule gives

= f

0 (xf(x))

✓
f(x) + x

d

dx

f(x)

◆

= f

0 (xf(x)) (f(x) + xf

0(x)) .
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37. (a) Chain rule gives,
d

dx


f

✓
1

x

◆�
= f

0
✓
1

x

◆
.

d

dx

✓
1

x

◆

= f

0
✓
1

x

◆
.

✓
� 1

x

2

◆

= �
✓

1

x

2

◆
.f

0
✓
1

x

◆
.

(b) Chain rule gives,

d

dx

✓
1

f (x)

◆
=

 
� 1

f(x)2

!
.

d

dx

f (x)

=

 
� 1

f(x)2

!
.f

0 (x) .

(c) Chain rule gives,
d

dx


f

✓
x

f (x)

◆�

= f

0
✓

x

f (x)

◆
d

dx

✓
x

f (x)

◆

and quotient rule gives,

= f

0
✓

x

f (x)

◆ 
f (x)� xf

0 (x)

[f (x)]2

!
.

38. (a) Chain rule gives,
d

dx

�
1 + f(x2)

�
= f

0 �
x

2

�
d

dx

�
x

2

�

= f

0 �
x

2

�
(2x) = 2xf 0 �

x

2

�
.

(b) Chain rule gives,
d

dx

[1 + f(x)]2

= 2 [1 + f(x)]
d

dx

(1 + f(x))

= 2 [1 + f(x)] f 0 (x) = 2f 0 (x) [1 + f(x)] .

(c) Chain rule gives,
d

dx

[f (1 + f(x))]

= f

0 (1 + f(x)) .
d

dx

(1 + f(x))

= f

0 (1 + f(x) ) f 0(x)
= f

0 (x) f 0 (1 + f(x)) .

39.

d

dx

f (g (x)) = f

0 (g (x)) g0 (x)

(a) At x = 0 : g0(0) = 1, g(0) = 1,
d

dx

f (g (0)) = f

0 (g (0)) g0 (0)

= f

0(1) · g0(0) = 3⇥ 1 = 3

(b) At x = 1 : g0(1) does not exist.

So
d

dx

f (g (1)) does not exist.

(c) At x = 3 :
g

0(3) = 3, g(3) = 1
d

dx

f (g (3)) = f

0 (g (3)) g0 (3)

= f

0(1) · g0(3) = 3⇥ 3 = 9

40.

d

dx

g (f (x)) = g

0 (f (x)) f 0 (x)

(a) At x = 0 :

f

0(0) does not exist. So
d

dx

g (f (0)) does

not exist.

(b) At x = 1 :
f

0(1) = 3, f(1) = 0,
d

dx

g (f (1)) = g

0 (f (1)) f 0 (1)

= g

0(0) · f 0(1) = 1⇥ 3 = 3

(c) At x = 3 :
f

0(3) = 0, f(3) = 3,
d

dx

g (f (3)) = g

0 (f (3)) f 0 (3)

= g

0(3) · f 0(3) = 3⇥ 0 = 0

41. (a) f (x) =
p

x

2 + 4
By the chain rule:

f

0 (x) =
1

2
p
x

2 + 4

d

dx

�
x

2 + 4
�

=
2x

2
p
x

2 + 4

=
xp

x

2 + 4

By the

quotient rule:

f

00 (x) =

p
x

2 + 4� x

d

dx

�p
x

2 + 4
�

(x2 + 4)

=

p
x

2 + 4� x

2x

2

p
x

2
+4

(x2 + 4)

=

p
x

2 + 4� x

2
p
x

2
+4

(x2 + 4)

=
x

2 + 4� x

2

p
x

2 + 4 (x2 + 4)

=
4

(x2 + 4)3/2

(b) f (t) = 2
�
t

2 + 4
��1/2

By the chain rule:

f

0 (t) = 2 · �1

2

�
t

2 + 4
��3/2

d

dt

�
t

2 + 4
�

=
�1

(t2 + 4)3/2
(2t)

=
�2t

(t2 + 4)3/2
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By the quotient rule:

f

00 (t) =

�2

"�
t

2 + 4
�
3/2 � t

d

dt

�
t

2 + 4
�
3/2

(t2 + 4)3

#

= �2


(t2+4)3/2�t( 3

2 )(t
2
+4)1/2 d

dt

(t2+4)
(t

2
+4)

3

�

= �2


(t2+4)3/2�t( 3

2 )(t
2
+4)1/22t

(t

2
+4)

3

�

= �2

"�
t

2 + 4
�
3/2 � 3t2

�
t

2 + 4
�
1/2

(t2 + 4)3

#

=

"
�2

�
t

2 + 4
�
3/2

+ 6t2
�
t

2 + 4
�
1/2

(t2 + 4)3

#

=

"�
t

2 + 4
�
1/2

⇥
�2

�
t

2 + 4
�
+ 6t2

⇤

(t2 + 4)3

#

=

"
�2t2 � 8 + 6t2

(t2 + 4)5/2

#

=
4t2 � 8

(t2 + 4)5/2
=

4
�
t

2 � 2
�

(t2 + 4)5/2

42. (a) By the chain rule:

h

0 (t) = 2
�
t

3 + 3
�
d

dt

�
t

3 + 3
�

= 2
�
t

3 + 3
� �

3t2
�
= 6t5 + 18t2

h

00 (t) = 30t4 + 36t

(b) g(s) = 3
�
s

2 + 1
��2

By the chain rule:

g

0(s) = 3 (�2)
�
s

2 + 1
��3

d

ds

�
s

2 + 1
�

= �6
�
s

2 + 1
��3

(2s)

=
�12s

(s2 + 1)3

By the product and chain rule:

g

00 (s) =
d

dx

�
�12s(s2 + 1)�3

�

= �12
⇣�

s

2 + 1
��3 � 6s2

�
s

2 + 1
��4

⌘

= �12(s2 + 1)�4

�
s

2 + 1� 6s2
�

= �12(1� 5s2)

(s2 + 1)4

43. (a) f(x) = (x3 � 3x2 + 2x)
1/3

f

0 (x) =
d

dx

�
x

3 � 3x2 + 2x
�

3(x3 � 3x2 + 2x)2/3

=
3x2 � 6x+ 2

3(x3 � 3x2 + 2x)2/3

The derivetive of f does not exist at val-
ues of x for which

x

3 � 3x2 + 2x = 0

x(x2 � 3x+ 2) = 0

x(x� 1)(x� 2) = 0.
Thus, the derivative of f does not exist
for x = 0, 1, and 2. The derivative fails
to exist at these points because the tan-
gent lines at these points are vertical.

(b) f(x) =
p
x

4 � 3x3 + 3x2 � x

f

0(x) =
d

dx

�
x

4 � 3x3 + 3x2 � x

�

2
p
x

4 � 3x3 + 3x2 � x

=
4x3 � 9x2 + 6x� 1

2
p
x

4 � 3x3 + 3x2 � x

The derivative of f does not exist at val-
ues of x for which
x

4 � 3x3 + 3x2 � x = 0

x

�
x

3 � 3x2 + 3x� 1
�
= 0

x(x� 1)3 = 0.
Thus, the derivative of x does not exist
for x = 0 and 1. The derivative fails to
exist at these points because the tangent
lines at these points are vertical.

44. Multiply numerator and denominator by
g (x+ h)� g (x).

lim
h!0

⇣
f(g(x+h))�f(g(x))

h

⌘⇣
g(x+h)�g(x)

g(x+h)�g(x)

⌘

The above step is not well documented and
in this step we use the assumption that
g

0 (x) 6= 0. Since g

0(x) 6= 0 implies that
g(x+ h)� g(x) 6= 0 for h 6= 0.

45. f(x) = (x2 + 3)2 · 2x
Recognizing the “2x” as the derivative of
x

2 + 3, we guess g(x) = c(x2 + 3)3 where
c is some constant.
g

0(x) = 3c(x2 + 3)2 · 2x
which will be f(x) only if 3c = 1, so c = 1/3,
and

g(x) =
(x2 + 3)3

3
.

46. A good initial guess is (x3 + 4)5/3, then ad-
just the constant to get

g(x) =
1

5
(x3 + 4)5/3.

47. f(x) =
xp

x

2 + 1
.

Recognizing the “x” as half the derivative
of x2 + 1, and knowing that di↵erentiation
throws the square root into the denomina-
tor, we guess g(x) = c

p
x

2 + 1 where c is
some constant and find that

g

0(x) =
c

2
p
x

2 + 1
(2x)
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will match f(x) if c = 1, so

g(x) =
p

x

2 + 1.

48. A good initial guess is (x2+1)�1, then adjust
the constant to get

g(x) = �1

2
(x2 + 1)�1

.

2.6 Derivatives of
Trigonometric Functions

1. f (x) = 4 sin 3x� x

f

0 (x) = 4 (cos 3x) (3)� 1

= 12 cos 3x� 1

2. f (x) = 4x2 � 3 tan 2x
f

0 (x) = 4 (2x)� 3 sec2(2x) (2)

= 8x� 6 sec2(2x)

3. f (t) = tan32t� csc43t
f

0 (t) = 3tan2 (2t) sec2 (2t) (2)

� 4csc3 (3t) [� csc (3t) cot (3t)] (3)

= 6tan2 (2t) sec2 (2t)

+ 12csc4 (3t) cot (3t)

4. f (t) = t

2 + 2cos24t
f

0 (t) = 2t+ 4 cos (4t) [� sin (4t)] (4)

= 2t� 16 sin (4t) cos (4t)

5. f(x) = x cos 5x2

f

0(x) = (1) cos 5x2 + x(� sin 5x2) · 10x
= cos 5x2 � 10x2 sin 5x2

6. f (x) = x

2 sec 4x
f

0 (x) = x

2 (sec 4x tan 4x) 4 + (sec 4x) 2x

= 4x2 (sec 4x tan 4x) + 2x sec (4x)

7. f(x) =
sin(x2)

x

2

f

0(x) =
x

2 cos(x2) · 2x� sin(x2) · 2x
x

4

=
2x[x2 cos(x2)� sin(x2)]

x

4

=
2[x2 cos(x2)� sin(x2)]

x

3

8. f (x) =
x

2

csc4 (2x)
f

0 (x) =

2x[csc4(2x)]�4x

2[csc3(2x)][� csc(2x) cot(2x)](2)

[csc

4
(2x)]

2

=
2x

csc4 (2x)
+

8x2

⇥
csc4 (2x) cot (2x)

⇤

[csc4 (2x)]2

=
2x

csc4 (2x)
+

8x2 cot (2x)

csc4 (2x)

=
2x+ 8x2 cot (2x)

csc4 (2x)

9. f (t) = sin 3t sec 3t = tan 3t

f

0 (t) =
d

dt

[tan (3t)] = sec2 (3t) (3)

= 3sec2 (3t)

10. f (t) =
p
cos 5t sec 5t

=

s

cos 5t · 1

(cos 5t)
= 1

f

0 (t) =
d

dt

(1) = 0

11. f (w) =
1

sin 4w

f

0 (w) =
�1

(sin 4w)2
cos 4w (4)

=
�4 cos 4w

sin24w

12. f (w) = w

2sec23w
f

0 (w) = w

2 (2 sec 3w) (sec 3w tan 3w) (3)

+ sec2 (3w) (2w)

= 6w2sec23x tan 3w + 2w sec23w

13. f (x) = 2 sin (2x) cos (2x)
f

0 (x) = 2 {sin (2x) [� sin (2x)] (2)

+ cos (2x) [cos (2x)] (2)}
= �4sin2 (2x) + 4cos2 (2x)

= 4cos2 (2x)� 4sin2 (2x)

14. f (x) = 4sin2 (3x) + 4cos2 (3x)

= 4
⇥
sin2 (3x) + cos2 (3x)

⇤
= 4

f

0 (x) =
d

dx

(4) = 0

15. f(x) = tan
p

x

2 + 1

f

0(x) = (sec2
p

x

2 + 1)

·
✓
1

2

◆
(x2 + 1)

�1/2

(2x)

=
xp

x

2 + 1
sec2

p
x

2 + 1

16. f(x) = 4x2 sinx sec 3x
f

0(x) = 8x sinx sec 3x+ 4x2[cosx sec 3x

+ sinx sec 3x tan 3x(3)]
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17. f (x) = sin3
⇣
cos

p
x

3 + 2x2

⌘

f

0 (x) = 3sin2
⇣
cos

p
x

3 + 2x2

⌘

· cos
⇣
cos

p
x

3 + 2x2

⌘

·
⇣
� sin

p
x

3 + 2x2

⌘

· 1
2

�
x

3 + 2x2

��1/2

�
3x2 + 4x

�

=
3

2

�
3x2 + 4x

� �
x

3 + 2x2

��1/2

· sin2
⇣
cos

p
x

3 + 2x2

⌘

· cos
⇣
cos

p
x

3 + 2x2

⌘

·
⇣
� sin

p
x

3 + 2x2

⌘

18. f (x) = tan4
⇥
sin2

�
x

3 + 2x
�⇤

f

0 (x) = 4
⇥
tan3

�
sin2

�
x

3 + 2x
��⇤

·
⇥
sec2

�
sin2

�
x

3 + 2x
��⇤

·
⇥
2 sin

�
x

3 + 2x
�⇤

·
⇥
cos

�
x

3 + 2x
�⇤

·
�
3x2 + 2

�

19. (a) f (x) = sinx2

f

0 (x) = cos
�
x

2

�
· (2x) = 2x cos

�
x

2

�

(b) f (x) = sin2x
f

0 (x) = 2 sinx cosx

(c) f (x) = sin 2x
f

0 (x) = cos 2x (2) = 2 cos 2x

20. (a) f (x) = cos
p
x

f

0 (x) =
�
� sin

p
x

�
.

1

2
(x)�1/2

= �1

2
(x)�1/2 sin

p
x

(b) f (x) =
p
cosx

f

0 (x) =
1

2
(cosx)�1/2

. (� sinx)

= �1

2
sinx(cosx)�1/2

(c) f (x) = cos

✓
1

2
x

◆

f

0 (x) = � sin

✓
1

2
x

◆
.

✓
1

2

◆

= �1

2
sin

✓
1

2
x

◆

21. (a) f (x) = sinx2 tanx
f

0 (x) = sinx2

�
sec2x

�
+ 2x cosx2 tanx

(b) f (x) = sin2 (tanx)
f

0 (x) = 2 sin (tanx) · cos (tanx) · sec2x
(c) f (x) = sin

�
tan2x

�

f

0 (x) =
⇥
cos

�
tan2x

�⇤
(2 tanx)

�
sec2x

�

= (2 tanx)
�
sec2x

� ⇥
cos

�
tan2x

�⇤

22. (a) f (x) = secx2 tanx2

f

0 (x) = sec3
�
x

2

�
(2x)

+ tan2
�
x

2

�
sec

�
x

2

�
(2x)

= 2x sec x

2

⇥
sec2 x2 + tan2 x2

⇤

(b) f (x) = sec2 (tanx)
f

0 (x) = 2 sec (tanx) [sec (tanx)

. tan (tanx)]
�
sec2x

�

(c) f (x) = sec
�
tan2x

�

f

0 (x) =
⇥
sec

�
tan2x

�
tan

�
tan2x

�⇤

· (2 tanx)
�
sec2x

�

=
�
2 tanxsec2x

�

·
⇥
sec

�
tan2x

�
tan

�
tan2x

�⇤

23. f

⇣
⇡

8

⌘
= sin

⇡

2
= 1

f

0(x) = 4 cos 4x

f

0
⇣
⇡

8

⌘
= 4 cos

⇡

2
= 0

So, the equation of the tangent line is

y = 0
⇣
x� ⇡

8

⌘
+ 1 i.e. y = 1.

24. f(0) = 0
f

0(x) = 3sec23x,
f

0(0) = 3.
So, the equation of tangent line is y = 3x.

25. f

⇣
⇡

2

⌘
=
⇣
⇡

2

⌘
2

cos
⇣
⇡

2

⌘
= 0

f

0 (x) = x

2 (� sinx) + cosx (2x)

= �x

2 (sinx) + (2x) cosx

f

0
⇣
⇡

2

⌘
= � ⇡

2

4
sin

⇡

2
+ 2 · ⇡

2
cos

⇡

2
= � ⇡

2

4
So, the equation of the tangent line is

y = � ⇡

2

4

⇣
x� ⇡

2

⌘
.

26. f

⇣
⇡

2

⌘
=

⇡

2
f

0(x) = sinx+ x cosx, so f

0
⇣
⇡

2

⌘
= 1.

So, the equation of the tangent line is y = x.

27. s(t) = t

2 � sin(2t), t
0

= 0
v(t) = s

0(t) = 2t� 2 cos(2t)
v(0) = 0� 2 cos(0) = 0� 2 = �2 ft/s

28. s(t) = 4 + 3 sin t, t

0

= ⇡

v(t) = s

0(t) = 3 cos t
v(⇡) = �3 ft/s
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29. s(t) =
cos t

t

, t

0

= ⇡

v(t) = s

0(t) = �1

t

2 cos t+ 1

t

(� sin t)

v(⇡) = �cos⇡

⇡

2

� sin⇡

⇡

=
1

⇡

2

� 1

⇡

(0) =
1

⇡

2

ft/s

30. s(t) = t cos(t2 + ⇡), t

0

= 0

v(t) = s

0(t) = cos(t2 + ⇡)� 2t2 sin(t2 + ⇡)

v(0) = cos⇡ � 0 = �1 ft/s.

31. (a) f(t) = 4 sin 3t. The velocity at time t is
f

0(t) = 12 cos 3t.

(b) The maximum speed is 12.

(c) The maximum speed of 12 occurs when
the vertical position is zero.

32. (a) The velocity is f 0(t) = 12 cos 3t which is
0 when 3t = k⇡

2

or t = k⇡

6

for any odd
integer k.

(b) The location of the spring at these times
is given (for any odd integer k) by
f

�
k

⇡

6

�
= 4 sin

�
3k ⇡

6

�
= 4 sin

�
k

⇡

2

�
=

±4.

(c) The spring changes directions at the top
and bottom.

33. (a) lim
x!0

sin 3x

x

= lim
x!0

3 sin 3x

3x

= 3 · lim
x!0

sin(3x)

(3x)

= 3 · 1 = 3

(b) lim
t!0

sin t

4t
=

1

4
lim
t!0

sin t

t

=
1

4
· 1 =

1

4

(c) lim
x!0

cosx� 1

5x
=

1

5
lim
x!0

cosx� 1

x

= 0

(d) Let u = x

2: then u ! 0 as x ! 0, and

lim
x!0

sinx2

x

2

= lim
u!0

sinu

u

= 1

34. (a) lim
t!0

2t

sin t
= lim

t!0

2
sin t

t

= 2

(b) Let u = x

2 : then u ! 0 as x ! 0, and

lim
x!0

cosx2 � 1

x

2

= lim
u!0

cosu� 1

u

= 0

(c) lim
x!0

sin 6x

sin 5x
= lim

x!0

6 sin 6x

6x

5 sin 5x

5x

=
6

5

(d) lim
x!0

tan 2x

x

= lim
x!0

sin 2x

cos 2x

x

= lim
x!0

2 sin 2x

2x

1

cos 2x
= 2

35. f (x) = sin (2x) = 20 sin (2x)
f

0 (x) = 2 cos 2x = 21 cos (2x)

f

00 (x) = �4 sin 2x = �22 sin (2x)
f

000 (x) = �8 cos 2x = �23 cos (2x)
f

(4) (x) = 16 sin 2x = 24 sin (2x)

f

(75) (x) =
⇣
f

(72)

⌘
(3)

(x)

=
⇣
f

(18·4)
⌘
(3)

(x)

= 272f 000 (x)

= 272
⇥
�23 cos (2x)

⇤

= �275 cos (2x)

f

(150) (x) =
⇣
f

(148)

⌘
(2)

(x)

=
⇣
f

(37·4)
⌘
(2)

(x)

= 2148f 00 (x)

= 2148
⇥
�22 sin (2x)

⇤

= �2150 sin (2x)

36. f (x) = cos (3x) = 30 cos (3x)
f

0 (x) = �3 sin 3x = �31 sin (3x)
f

00 (x) = �9 cos 3x = �32 cos (3x)
f

000 (x) = 27 sin 3x = 33 sin (3x)
f

(4) (x) = 81 cos 3x = 34 cos (3x)

f

(77) (x) =
⇣
f

(76)

⌘
(1)

(x)

=
⇣
f

(19·4)
⌘
(1)

(x)

= 376f 0 (x)

= 376
⇥
�31 sin (3x)

⇤

= �377 sin (3x)

f

(120) (x) =
⇣
f

(120)

⌘
(x)

=
⇣
f

(30·4)
⌘
(x)

= 3120 cos (3x)

37. Since, 0  sin ✓  ✓, we have
�✓  � sin ✓  0 which implies
�✓  sin(�✓)  0,

so for �⇡

2
 ✓  0

we have ✓  sin ✓  0.
We also know that
lim

✓!0

�
✓ = 0 = lim

✓!0

�
0,

so the Squeeze Theorem implies that
lim

✓!0

�
sin ✓ = 0.

38. Since cos2✓ + sin2✓ = 1, we have

cos ✓ =
p
1� sin2✓. Then

lim
✓!0

cos ✓ = lim
✓!0

p
1� sin2✓ = ±1.

Since cos ✓ is a continuous function and
cos 0 = 1, we conclude that lim

✓!0

cos ✓ = 1
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39. If f(x) = cos(x), then
f(x+ h)� f(x)

h

=
cos(x+ h)� cos(x)

h

=
cosx cosh� sinx sinh� cosx

h

= (cosx)
(cosh� 1)

h

� (sinx)

✓
sinh

h

◆
.

Taking the limit according to lemma 6.1

f

0(x) = lim
h!0

f(x+ h)� f(x)

h

= (cosx) · lim
h!0

cosh� 1

h

� (sinx) · lim
h!0

sinh

h

= cosx · 0� sinx · 1 = � sinx

40.

d

dx

cotx =
d

dx

⇣cosx
sinx

⌘

=
sinx(� sinx)� cosx cosx

sin2x

= � 1

sin2x
= �csc2x

d

dx

secx =
d

dx

✓
1

cosx

◆

=
cosx · 0� 1(� sinx)

cos2x

=
sinx

cosx

✓
1

cosx

◆
= secx tanx.

d

dx

cscx =
d

dx

✓
1

sinx

◆
=

sinx · 0� 1 cosx

sin2x

= � 1

sinx

⇣cosx
sinx

⌘
= � cscx cotx.

41. Answers depend on CAS.

42. Answers depend on CAS.

43. Answers depend on CAS.

44. Answers depend on CAS.

45. (a) If x 6= 0, then f is continuous by The-
orem 4.2 in Section 1.4, and f is di↵er-
entiable by the Quotient rule ( Theorem
4.2 in Section 2.4) Thus, we only need to
check x = 0. To see that f is continuous
at x = 0.

lim
x!0

f(x) = lim
x!0

sinx

x

= 1

(By Lemma 6.3)
Since lim

x!0

f(x) = f(0), f is continuous

at x = 0.

To see that f is di↵erentiable at x = 0.

f

0 (a) = lim
x!a

f(x)� f(a)

x� a

f

0 (0) = lim
x!a

f(x)� f(0)

x� 0

f

0 (0) = lim
x!a

sin x

x

� 1

x

In the proof of Lemma 6.3, equation 6.8
was derived:

1 >

sinx

x

> cosx.

Thus, 0 >

sinx

x

� 1 > cosx� 1 and

therefore if x > 0,

0 >

sin x

x

� 1

x

>

cosx� 1

x

and if x < 0,

0 <

sin x

x

� 1

x

<

cosx� 1

x

By lemma 6.4, lim
x!0

cosx� 1

x

= 1.

By applyings squeeze theorem to previ-
ous two inequalities, we obtain

lim
x!0

sin x

x

� 1

x

= 1 so, f 0 (0) = 0.

(b) From part(a) and quotient rule we have,

f

0 (x) =

⇢
0 x = 0

x cos x�sin x

x

2 x 6= 0

Thus to show that f

0 (x) is continous,
we need only to show that

lim
x!0

f

0 (x) = f

0 (0) = 0.

lim
x!0

f

0 (x) = lim
x!0

x cosx� sinx

x

2

= lim
x!0

x

�
cosx� sin x

x

�

x

2

= lim
x!0

�
cosx� sin x

x

�

x

= 0

Since, lim
x!0

sinx

x

= 1.

46. We use the assumption that x is in radians
in Lemma 6.3. The derivative of sinx

�
=

sin(
⇡

180
� x) is

⇡

180
� cos(x

�
). The factor of

⇡

180
� comes from applying the chain rule.

47. The Sketch: y = x and y = sinx
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y

2

1

0

-1

-2

x

3210-1-2-3

It is not possible visually to either detect or
rule out intersections near x = 0 (other than
zero itself).

We have that f

0(x) = cosx, which is less
than 1 for 0 < x < 1. If sinx � x for some
x in the interval (0, 1), then there would be
a point on the graph of y = sinx which lies
above the line y = x, but then (since sinx is
continuous) the slope of the tangent line of
sinx would have to be greater than 1 or equal
to at some point in that interval, contradict-
ing f

0(x) < 1. Since sinx < x for 0 < x < 1,
we have for � sinx > �x for 0 < x < 1.
Then � sinx = sin(�x) so sin(�x) > �x

for 0 < x < 1, which is the same as saying
sinx > x for �1 < x < 0.

Since �1  sinx  1, the only interval on
which y = sinx might intersect y = x is [-1,
1]. We know they intersect at x = 0 and we
just showed that they do not intersect on the
intervals (-1, 0) and (0, 1). So the only other
points they might intersect are x = ±1, but
we know that sin(±1) 6= ±1, so these graphs
intersect only at x = 0.

48. 0 < k  1 produces one intersection. For
1 < k < 7.8 (roughly) there are exactly
three intersections. For k ⇡ 7.8 there are
5 intersections. For k > 7.8 there are 7 or
more intersections.

2.7 Derivatives of
Exponential and Logarithmic
Functions

1. f

0(x) = 3x2

.e

x + x

3

.e

x = x

2

e

x(x+ 3)

2. f

0(x) = 2e2x cos 4x+ e

2x(� sin 4x)4

3. f(t) = t+ 2t

f

0(t) = 1 + 2t log 2

4. f(t) = t43t

f

0(t) = 43t + t43t (ln 4) 3 = 43t (1 + 3t ln 4)

5. f

0(x) = 2e4x+1(4) = 8e4x+1

6. f

0(x) = e

�x, so f

0(x) = �e

�x.

7. h(x) = ( 1
3

)
x

2

h

0
(x) = ln( 1

3

) · 2x · ( 1
3

)
x

2

= 2x · ln( 1
3

) · ( 1
3

)
x

2

= �2x · ln(3) · ( 1
3

)
x

2

8. h(x) = 4�x

2

h

0(x) = 4�x

2

· ln(4) · (�2x)

= �2x · 4�x

2

· ln(4)

9. f(u) = e

u

2
+4u

f

0(u) = e

u

2
+4u · d

du

(u2 + 4u)

= e

u

2+4u

· (2u+ 4)

10. f(x) = 3etan x

f

0(x) = 3etan x · d

dx

(tanx)

= 3etan xsec2x

11. f(w) =
e

4w

w

f

0(w) =
w · 4e4w � e

4w · 1
w

2

=
e

4w(4w � 1)

w

2

12. f(w) =
w

e

6w

f

0(w) =
1 · e6w � w · e6w · 6

(e6w)2

=
e

6w � 6we6w

(e6w)2
=

(1� 6w)

e

6w

13. f

0(x) =
1

2x
.(2) =

1

x

14. f(x) =
1

2
ln 8 +

1

2
lnx

f

0(x) =
1

2x

15. f(t) = ln(t3 + 3t)

f

0(t) =
1

t

3 + 3t
· (3t+ 3)

=
3t2 + 3

t

3 + 3t
=

3
�
t

2 + 1
�

t (t2 + 3)
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16. f(t) = t

3 ln(t)

f

0(t) = 3t2 · ln (t) + t

3 · 1
t

= 3t2 ln (t) + t

2

17. g(x) = ln(cosx)

g

0(x) =
1

cosx
(� sinx) = � tanx

18. g(x) = cosx ln(x2 + 1)

g

0(x) = ln(x2 + 1) · (� sinx) +
2x cosx

x

2 + 1

=
2x cosx

x

2 + 1
� sinx · ln(x2 + 1)

19. (a) f(x) = sin(lnx2)

f

0(x) = cos(lnx2) · 2x
x

2

=
2 cos(lnx2)

x

(b) g(t) = ln(sin t2)

g

0(t) =
1

sin t2
· cos t2 · 2t

=
cos t2 · 2t
sin t2

= 2t cot(t2)

20. (a) f (x) =

p
ln x

x

f

0(x) =
x · 1

2

(lnx)�
1
2 · 1

x

� (lnx)
1
2 · 1

x

2

=

1

2

p
ln x

�
p
ln x

x

2

=
1� 2 lnx

2x2

p
ln x

(b) g(t) =
ln

p
t

t

g

0(t) =
t · 1

2

p
t

· t� 1
2 � ln

p
t

t

2

=
1

2

� ln
p
t

t

2

=
1� 2 · ln

p
t

2t2

21. (a) h(x) = e

x · lnx
h

0(x) = e

x · 1
x

+ ln x · ex

(b) f(x) = e

ln x

f

0(x) = e

ln x · 1
x

22. (a) h(x) = 2e
x

h

0(x) = 2e
x

· ex · ln 2

(b) f(x) =
e

x

2x

f

0(x) =
2x · ex � e

x · 2x · ln 2

(2x)2

=
e

x(1� ln 2)

2x

23. (a) f(x) = ln (sinx)

f

0 (x) =
1

sinx
· cosx = cotx

(b) f (t) = ln (sec t+ tan t)

f

0 (t) =
sec t tan t+ sec2t

sec t+ tan t
= sec t

24. (a) f (x) =
3
p
e

2x · x3

f

0(x) =
1

3

�
e

2x · x3

�� 2
3 ·

�
3x2

e

2x + 2x3

e

2x

�

=
x

2 · e2x · (3 + 2x)

3(e2x · x3)
2
3

(b) f(w) = 3
p
e

2w + w

3

f

0(w) =
1

3
(e2w + w

3)
� 2

3 · (2e2w + 3w2)

25. f (x) = 3ex
2

f (1) = 3e1
2

= 3e

f

0 (x) = 3ex
2

2x

f

0 (1) = 3e1
2

2 (1) = 6e
So, the equation of the tangent line is,
y = 6e (x� 1) + 3e.

26. f (x) = 3x
e

f (1) = 31
e

= 3
f

0 (x) = 3x
e

ln 3 · ex(e�1)

f

0 (1) = 3 ln 3 · e
So, the equation of the tangent line is,
y = 3 ln 3 · e (x� 1) + 3.

27. f (1) = 0

f

0 (x) = 2x lnx+ x

2

.

1

x

= 2x lnx+ x

f

0 (1) = 2 · 1 ln 1 + 1 = 2 · 0 + 1 = 1
So the equation of tangent line is
y = 1 (x� 1) + 0 or y = x� 1.

28. f(x) = 2 ln x

3

f

0(x) =
2

x

3

· 3x2 =
6

x

Slope = f

0(x) at x = 1.

Slope m =
6

1
= 6.

Equation of the line passing through (x
1

, y

1

)
with slope m is y � y

1

= m(x� x

1

).
At x

1

= 1, y1 = f(1) = 2. ln 13 = 0.
Therefore equation is y � 0 = 6 · (x � 1) or
y = 6x� 6.

29. (a) f (x) = xe

�2x

Given that, the tangent line to f(x)
is horizontal. Therefore slope is zero.
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Hence,
f

0 (x) = e

�2x � 2xe�2x = 0
e

�2x(1� 2x) = 0

x =
1

2
.

(b) f(x) = x · e�3x

Given that, the tangent line to f(x)
is horizontal. Therefore slope is zero.
Hence,
f

0(x) = x · (�3e�3x) + e

�3x = 0.

) e

�3x (�3x+ 1) = 0

) 3x� 1 = 0

) x =
1

3

30. (a) f(x) = x

2 · e�2x

Given that, the tangent line to f(x)
is horizontal. Therefore slope is zero.
Hence,
f

0(x) = x

2 · (�2e�2x) + 2x · e�2x = 0

) �x+ 1 = 0

) x = 1

(b) f(x) = x

2 · e�3x

Given that, the tangent line to f(x)
is horizontal. Therefore slope is zero.
Hence,
f

0(x) = x

2 · (�3e�3x) + 2x · e�3x = 0

) �3x+ 2 = 0

) x =
2

3
.

31. v

0 (t) = 100.3t ln 3
v

0 (t)

v (t)
=

100.3t ln 3

100.3t
= ln 3 ⇡ 1.10

So, the percentage change is about 110%

32. v

0 (t) = 1004t (ln 4)
v

0 (t)

v (t)
= ln 4 ⇡ 1.3863

The instantaneous percentage rate of change
is 138.6%

33. v (t) = 40e0.4t

v

0 (t) = 40e0.4t (0.4) = 16e0.4t

v

0 (t)

v (t)
=

16e0.4t

40e0.4t
= 0.4

The instantaneous percentage rate of change
is 40%.

34. v (t) = 60e�0.2t

v

0 (t) = 60e�0.2t (�0.2) = �12e�0.2t

v

0
(t)

v(t)

= � 12e

�0.2t

60e

�0.2t = �0.2
The instantaneous percentage rate of change
is �20%.

35. p (t) = 200.3t

ln (p (t)) = ln (200) + t ln (3)
p

0
(t)

p(t)

= d

dt

[ln (p (t))] = ln 3 ⇡ 1.099,
so the rate of change of population is about
110% per unit of time.

36. The population after t days will be p (t) =
500.2t/4. The rate of change is p

0 (t) =
500.2t/4 (ln 2) (1/4). So the relative rate of

change is
ln 2

4
⇡ 0.1733. Therefore the per-

centage rate of change is about 17.3%.

37. c (t) =
6

2e�8t + 1
= 6

�
2e�8t + 1

��1

c

0 (t) = �6
�
2e�8t + 1

��2

.

�
�16e�8t

�

=
96e�8t

(2e�8t + 1)2

Since e�8t

> 0 for any t both numerator and
denominator are positive,so that c

0 (t) > 0.
Then, since c (t) is an increasing function
with a limiting value of 6 (as t goes to infin-
ity) the concentration never exceeds (indeed,
never reaches) the value of 6.

38. c

0 (t) = �10
�
9e�10t + 2

��2

�
�90e�10t

�

=
900e�10t

(9e�10t + 2)2

Since e

�10t

> 0 for all t, c0 (t) > 0 for all t,
and c(t) is increasing for all t. This forces,
c (t) < lim

t!1
c (t) = 5

39. f (x) = x

sin x

ln f (x) = sinx. lnx
f

0 (x)

f (x)
=

d

dx

(sinx. lnx)

= cosx. lnx+
sinx

x

f

0 (x) = x

sin x

✓
x cosx. lnx+ sinx

x

◆

40. f (x) = x

4�x

2

ln f (x) =
�
4� x

2

�
lnx

f

0 (x)

f (x)
= �2x lnx+

�
4� x

2

� 1

x

f

0 (x) = x

4�x

2

✓
�2x lnx+

�
4� x

2

� 1

x

◆

41. f (x) = (sinx)x

ln f (x) = x. ln (sinx)
f

0 (x)

f (x)
=

d

dx

(x. ln (sinx))

=
x cosx

sinx
+ ln (sinx)

= x cotx+ ln (sinx)
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f

0 (x) = (sinx)x. (x cotx+ ln (sinx))

42. f (x) =
�
x

2

�
4x

ln f (x) = 8x lnx
f

0 (x)

f (x)
= 8 lnx+ 8x

1

x

f

0 (x) =
�
x

2

�
4x

(8 lnx+ 8)

43. f (x) = x

ln x

ln f (x) = lnx. lnx = ln2x
f

0 (x)

f (x)
=

d

dx

�
ln2x

�
=

2 lnx

x

f

0 (x) = x

ln x


2 lnx

x

�
= 2x[(ln x)�1] ln x

44. f (x) = x

p
x

ln f (x) =
p
x lnx

f

0 (x)

f (x)
=

1

2
p
x

lnx+
p
x

1

x

f

0 (x) = x

p
x

✓
1

2
p
x

lnx+
1p
x

◆

45. Let (a, ln a) be the point of intersection of
the tangent line and the graph of y = f(x).
f(x) = lnx

f

0(x) =
1

x

m = f

0 (a) =
1

a

Since the tangent line passes through the ori-
gin,the equation of the tangent line is

y = mx =
1

a

x.

Since (a, ln a) is a point on the tangent line

ln a =
1

a

a = 1 so, a = e.

Second part: Let (a, ea) be the point of in-
tersection of the tangent line and the graph
of y = f (x) .
f (x) = e

x

f

0 (x) = e

x

m = f

0 (a) = e

a

Since the tangent passes through the origin,
the equation of the tangent line is

y = mx = e

a

x.

Since (a, ea) is a point on the tangent line,

e

a = e

a

a

so, a = 1. The slope of the tangent line in
y = lnx is 1/e while the slope of the tangent
line in y = e

x is e.

46. We approximate lim
h!0

a

h � 1

h

for a = 3.

h

a

h � 1

h

0.01 1.10466919
0.001 1.09921598
0.0001 1.09867264
0.00001 1.09861832
-0.01 1.09259958
-0.001 1.09800903
-0.0001 1.09855194

The limit seems to be approaching approxi-
mately 1.0986, which is very close to ln 3 ⇡
1.09861

Second part: We approximate lim
h!0

a

h � 1

h

for a =
1

3
.

h

a

h � 1

h

0.01 -1.09259958
0.001 -1.09800904
0.0001 -1.09855194
0.00001 -1.09860625
�0.01 �1.10466919
�0.001 �1.09921598
�0.0001 �1.09867264

The limit seems to be approaching approx-
imately, �1.0986, which is very close to

ln
1

3
⇡ 1.09861228867

47. Answers depend on CAS.

48. Answers depend on CAS.

49. f (x) =
a+ bx

1 + cx

f (0) = a

f

0 (x) =
b (1 + cx)� (a+ bx) c

(1 + cx)2
=

b� ac

(1 + cx)2

f

0 (0) = b� ac

f

00 (x) =
�2c (b� ac)

(1 + cx)3

f

00 (0) = �2c (b� ac)
Now,
f (0) = 1 ) a = 1.
f

0 (0) = 1 ) b� ac = 1 ) b� c = 1
f

00 (0) = 1 ) �2c (b� ac) = 1

) 2c (b� c) = �1

) 2c = �1

) c = �1

2

So, a = 1, b = 1 + c =
1

2
, c = �1

2
and
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f(x) =
2 + x

2� x

.

The graphs of ex and
2 + x

2� x

are as follows:

y

16

8

8

4

−8

−16

−4 0
x

20

10

12

4

6
0

−4

−12

2

−20

−2−8 −6−10

50. If g (x) = e

x, then
g

0 (x) = e

x and g

00 (x) = e

x so

g (0) = g

0 (0) = g

00 (0) = 1

If f (x) = a+ bx+ cx

2

, then f (0) = a,

f

0 (x) = b+ 2cx

f

0 (0) = b

f

00 (x) = 2c

f

00 (0) = 2c

1 = g (0) = f (0) = a so, a = 1

1 = g

0 (0) = f

0 (0) = b so, b = 1

1 = g

00 (0) = f

00 (0) = 2c so, c =
1

2

In summary,a = 1, b = 1, c =
1

2
and

g (x) = 1 + x +
1

2
x

2. The graphs of the

functions e

x,1 + x +
1

2
x

2 and the Pade ap-

proximation of e

x, which is
2 + x

2� x

are as

follows:

10

10

5

−10

50
0

−5

−5

−10

51. f (x) = e

�x

2
/2

f

0 (x) = e

�x

2
/2

. (�2x/2 )

= �xe

�x

2
/2

f

00 (x) = �
h
x

⇣
�xe

�x

2
/2

⌘
+ 1.e�x

2
/2

i

= xe

�x

2
/2

�
x

2 � 1
�

This will be zero only when x = ±1

52. f (x) = e

�x

2
/8

, f

0 (x) = (�x/4) e�x

2
/8

and
f

00 (x) = (�1/4 ) e�x

2
/8 +

�
x

2

/16
�
e

�x

2
/8

= e

�x

2
/8

�
(�1/4 ) + x

2

/16
�
.

This is zero when x = ±2. The graph is flat-
ter in the middle, but the tails are thicker.

53. It helps immensely to leave the name f as
it was in #51 and give a new name g to the
new function here, so that

g (x) = e

�(x�m)

2
/2c

2

= f(u)

in which u =
x�m

c

. Then

g

0 (x) = f

0 (u)
du

dx

=
f

0 (u)

c

=
�uf (u)

c

=
� (x�m) e�(x�m)

2
/2c

2

c

2

g

00 (x) =
d

dx

✓
f

0 (u)

c

◆
=

f

00 (u) du

dx

c

=
f

00 (u)

c

2

=

�
u

2 � 1
�
f (u)

c

2

=

⇣
(x�m)2 � c

2

⌘
e

�(x�m)

2
/2c

2

c

4

This will be zero only when, x = m± c.

54. f (x) = e

�(x�m)

2
/2c

2

f

0 (x) =
� (x�m)

c

2

e

�(x�m)

2
/2c

2

,

and this is equal to zero when x = m.

55. f (t) = e

�t cos t
v (t) = f

0 (t) = �e

�t cos t+ e

�t (� sin t)

= �e

�t (cos t+ sin t)
If the velocity is zero, it is because
cos t = � sin t, so

t =
3⇡

4
,

7⇡

4
, · · · , (3 + 4n)⇡

4
, · · ·

Position when velocity is zero:
f (3⇡/4 ) = e

�3⇡/4 cos (3⇡/4 )

= e

�3⇡/4

⇣
�1/

p
2
⌘
⇡ �.067020

f (7⇡/4 ) = e

�7⇡/4 cos (7⇡/4 )

= e

�7⇡/4

⇣
�1/

p
2
⌘
⇡ .002896
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Graph of the velocity function:

0

-0.4

-0.2

-0.6

-1

-0.8

32 51 60
t

4

56. f

0 (t) = �2e�2t sin 3t+ 3e�2t cos 3t
= e

�2t (�2 sin 3t+ 3 cos 3t)

3

2

0

2.5

1.5

0.5

1.50

-0.5

2.52
t

1 3

1

0.5

The velocity of the spring is zero when
it is changing direction at the top and
bottom of the motion.This occurs when
3 cos 3t = 2 sin 3t or tan 3t = 3/2 ,

i.e., at t =
1

3
tan�1 (3/2 ) ⇡ 0.3276

The

position of the spring at this time is ap-
proximate.

57. Graphically the maximum velocity seems to
occur at,t = ⇡ .

58. Graphically,the maximum velocity seems to
occur at t = 0; the maximum velocity is not
reached on t � 0.

59. Consider f (x) = Ax

n

✓

n

+x

n

for A,n,✓ > 0

f (x) =
A

�
✓

x

�
n

+ 1

ln f (x) = lnA� ln

✓
✓

x

◆
n

+ 1

�

On di↵rentiating with respect to x

1

f(x)

f

0 (x) = � 1

[( ✓

x

)n+1]
.n

�
✓

x

�
n�1

.

�
� ✓

x

2

�

f

0 (x) =
An

h�
✓

x

�
n

+ 1
i
2

�
✓

x

�
n

x

f

0 (x) > 0 if and only if x > 0 (A, n, ✓ > 0)

Also, lim
x!0

f(x) = lim
x!0


A

( ✓

x

)n+1

�
= A

u = ln

✓
f(x)/A

1� f(x)/A

◆

= ln

0

@
1

( ✓

x

)n+1

1� 1

( ✓

x

)n+1

1

A

= ln

 
1

�
✓

x

�
n

!

= �n ln

✓
✓

x

◆

= �n (ln ✓ � lnx)

= �n ln ✓ + n lnx

= nv � n ln ✓
Therefore, u is a linear function of v.

Graph of (x, y) in below:

x
10986 7

25

3 4

100

0

y
50

50 1

75

2

From the graph, we can see that y = f(x) !
100 as x ! 1.

The table gives (u, v) values as follows:

x y u = ln
y

100� y

v = lnx

1 2 -3.8918 0
2 13 -1.9009 0.6931
3 32 -.75377 1.098
4 52 .80012 1.3863
5 67 .70818 1.6094
6 77 1.2083 1.7918
7 84 1.6582 1.9459
8 88 1.9924 2.0794
9 91 2.3136 2.1972

The graph of (u, v) points are as below
which are almost linear.
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2.0

1.6

0.0
−4

x
0

1.2

−0.4
−2 543

2.8

−1 1

2.4

0.4

0.8

−3−5 2

3.2

Comparing the line passing through the
points (u, v) with v = 1

n

u+ ln✓, we get 1

n

=
0.3679, ln ✓ = 1.3458 and hence n = 2.7174,
✓ = 3.8413.

60. Answers very depending on source.Linear
growth corrseponds to constant slope. In
other words the population changes by the
same fixed amount per year. In exponen-
tial growth, the size of the change depends
on the sizeof the population. The percent-
age change is the same though from year to
year.

2.8 Implicit Di↵erentiation
and Inverse Trignometric
Fuction

1. Explicitly:
4y2 = 8� x

2

y

2 =
8� x

2

4

y = ±
p
8� x

2

2
(choose plus to fit(2,1))

For y =

p
8� x

2

2
,

y

0 =
1

2

(�2x)

2
p
8� x

2

=
�x

2
p
8� x

2

,

y

0(2) =
�1

2
.

Implicitly:
d

dx

(x2 + 4y2) =
d

dx

(8)

2x+ 8y · y0 = 0

y

0 = �2x

8y
= � x

4y

At (2, 1) : y

0 = �2

4
= �1

2

2. Explicitly:

y =
4
p
x

x

3 � x

2

y

0 =

�
x

3 � x

2

�
2p
x

� 4
p
x

�
3x2 � 2x

�

(x3 � x

2)2

Implicitly di↵erentiating:

3x2

y + x

3

y

0 � 2p
x

= 2xy + x

2

y

0
,

And we solve for y0 to get

y

0 =
2xy + 2p

x

� 3x2

y

x

3 � x

2

.

Substitute x = 2 into the first expression,

and (x, y) =
⇣
2,

p
2
⌘
, into the second to

get y0 = �7
p
2

4
.

3. Explicitly:
y(1� 3x2) = cosx

y =
cosx

1� 3x2

y

0(x) =
(1� 3x2)(� sinx)� cosx(�6x)

(1� 3x2)2

=
� sinx+ 3x2 sinx+ 6x cosx

(1� 3x2)2

y

0(0) = 0.
Implicitly:
d

dx

(y � 3x2

y) =
d

dx

(cosx)

y

0 � 3x2

y

0 � 6xy = � sinx
y

0(1� 3x2) = 6xy � sinx

y

0 =
6xy � sinx

1� 3x2

At (0, 1) : y0 = 0(again)

4. Explicitly:

y = �x±
p
x

2 � 4
At the point (�2, 2), the sign is irrelevant,
so we choose
y = �x+

p
x

2 � 4

y

0 = �1 +
2x

2
p
x

2 � 4
= �1 +

xp
x

2 � 4
Implicitly di↵erentiating:
y

0 + 2y + 2xy0 = 0,
and we solve for y0 :

y

0 =
�2y

2x+ 2y
Substitute x = �2 in the first expression and
(x, y) = (�2, 2) in to the second expression
to see that y0 is undefined. There is a vertical
tangent at this point.

5.

d

dx

(x2

y

2 + 3y) =
d

dx

(4x)

2xy2 + x

22yy0 + 3y0 = 4
y

0(2x2

y + 3) = 4� 2xy2

y

0 =
4� 2xy2

2x2

y + 3

6. 3y3 + 3x(3y2)y0 � 4 = 20yy0
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(9xy2 � 20y)y0 = 4� 3y3

y

0 =
3y3 � 4

20y � 9xy2

7.

d

dx

(
p
xy � 4y2) =

d

dx

(12)

1

2
p
xy

· d

dx

(xy)� 8y · y0 = 0

1

2
p
xy

.(xy0 + y)� 8y · y0 = 0

(xy0 + y)� 16y · y0pxy = 0
y

0(x� 16y
p
xy) = �y

y

0 =
�y

(x� 16y
p
xy)

=
y

16y
p
xy � x

8. cos(xy)(y + xy

0) = 2x

y

0 =
2x� y cos(xy)

x cos(xy)

9. x+ 3 = 4xy + y

3

1 =
d

dx

(4xy + y

3) = 4(xy0 + y) + 3y2y0

1� 4y = (4x+ 3y2)y0

y

0 =
1� 4y

3y2 + 4x

10. 3x+ y

3 � 4y

x+ 2
= 10x2

Di↵rentiating with respect to x,
d

dx

✓
3x+ y

3 � 4y

x+ 2

◆
=

d

dx

�
10x2

�

By the Chain rule and Product rule,

3 + 3y2y0 �
"
(x+ 2) 4y0 � 4y

(x+ 2)2

#
= 20x

3(x+ 2)2 + 3y2y0(x+ 2)2

�4y0 (x+ 2) + 4y = 20x(x+ 2)2

3y2y0(x+ 2)2 � 4y0 (x+ 2)

= 20x(x+ 2)2 � 3(x+ 2)2 � 4y

y

0 (x+ 2)
⇥
3y2 (x+ 2)� 4

⇤

= (x+ 2)2 (20x� 3)� 4y

y

0 =
(x+ 2)2 (20x� 3)� 4y

(x+ 2) [3y2 (x+ 2)� 4]

11.

d

dx

(ex
2
y � e

y)) =
d

dx

(x)

e

x

2
y

d

dx

(ex
2
y)� e

y

y

0 = 1

e

x

2
y(2xy + x

2

y

0)� e

y

y

0 = 1

y

0(x2

e

x

2
y � e

y) = 1� 2xyex
2
y

y

0 =
1� 2xyex

2

(x2

e

x

2
y � e

y)

12. e

y + xe

y

y

0 � 3y0 sinx� 3y cosx = 0

y

0 =
3y cosx� e

y

xe

y � 3 sinx

13. y

2

p
x+ y � 4x2 = y

Di↵rentiating with respect to x,
d

dx

�
y

2

p
x+ y � 4x2

�
=

d

dx

(y)

By the Chain rule and Product rule,
d

dx

�
y

2

p
x+ y

�
� 4

d

dx

�
x

2

�
=

d

dx

(y)

y

2

✓
1

2
p
x+ y

◆
(1 + y

0)

�

+ 2yy0
p
x+ y � 8x = y

0

y

2 + y

2

y

0 + 4yy0(x+ y)� 16x
p
x+ y

= 2y0
p
x+ y

y

2

y

0 + 4yy0(x+ y)� 2y0
p
x+ y

= 16x
p
x+ y � y

2

y

0 ⇥
y

2 + 4y(x+ y)� 2
p
x+ y

⇤

= 16x
p
x+ y � y

2

y

0 =
16x

p
x+ y � y

2

y

2 + 4y(x+ y)� 2
p
x+ y

14. x cos (x+ y)� y

2 = 8
Di↵rentiating with respect to x,
d

dx

�
x cos (x+ y)� y

2

�
=

d

dx

(8)

By the Chain rule and Product rule,
d

dx

(x cos (x+ y))� d

dx

�
y

2

�
=

d

dx

(8)

cos (x+ y)�x sin (x+ y) (1 + y

0)� 2yy0 = 0
cos (x+ y)� x sin (x+ y)� x sin (x+ y) y0

�2yy0 = 0
y

0 (�x sin (x+ y)� 2y)

= x sin (x+ y)� cos (x+ y)

y

0 =
x sin (x+ y)� cos (x+ y)

�x sin (x+ y)� 2y

y

0 =
cos (x+ y)� x sin (x+ y)

x sin (x+ y) + 2y

15. e

4y � ln
�
y

2 + 3
�
= 2x

Di↵rentiating with respect to x,
d

dx

�
e

4y � ln
�
y

2 + 3
��

=
d

dx

(2x)

By the Chain rule and Product rule,
d

dx

�
e

4y

�
� d

dx

�
ln
�
y

2 + 3
��

=
d

dx

(2x)

e

4y (4y0)� 2yy0

y

2 + 3
= 2

4e4y
�
y

2 + 3
�
y

0 � 2yy0 = 2
�
y

2 + 3
�

y

0 �4e4y
�
y

2 + 3
�
� 2y

�
= 2

�
y

2 + 3
�

y

0 =
2
�
y

2 + 3
�

4e4y (y2 + 3)� 2y

16. e

x

2

y � 3
p

y

2 + 2 = x

2 + 1
Di↵rentiating with respect to x,
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d

dx

⇣
e

x

2

y � 3
p
y

2 + 2
⌘
=

d

dx

�
x

2 + 1
�

By the Chain rule and Produt rule,
d

dx

⇣
e

x

2

y

⌘
� 3

d

dx

⇣p
y

2 + 2
⌘
= 2x

e

x

2

(2x) y + e

x

2

y

0 � 3 · 2yy0

2
p
y

2 + 2
= 2x

2xyex
2

+ e

x

2

y

0 � 3yy0p
y

2 + 2
= 2x

2xyex
2p

y

2 + 2 + e

x

2

y

0
p
y

2 + 2� 3yy0

= 2x
p
y

2 + 2

y

0
⇣
e

x

2p
y

2 + 2� 3y
⌘
= 2x

p
y

2 + 2

�2xyex
2p

y

2 + 2

y

0 =
2x
p
y

2 + 2
⇣
1� ye

x

2
⌘

e

x

2
p
y

2 + 2� 3y

17. Rewrite: x2 = 4y3

Di↵erentiate by x : 2x = 12y2y0

y

0 =
2x

12y2

At (2, 1) : y0 = 2

6·12 = 1

3

The equation of the tangent line is

y � 1 =
1

3
(x� 2) or y =

1

3
(x+ 1).

1.25

1.5

1.0

0.25

0.0
4

0.75

2

0.5

0
x

31

18. 2xy2 + x

22y.y0 = 4, so y

0 =
4� 2xy2

2x2

y

.

y

0 at (1, 2) is �1, and the equation of the
line is y = �1(x� 1) + 2.

0

2

y

−2

10

−1

−4

−3

−8

31

−10

−5

8

54

4

−6

−4 0

6

2
x−2

19. x

2

y

2 = 3y + 1
Di↵rentiating with respect to x,
d

dx

�
x

2

y

2

�
=

d

dx

(3y + 1)

By using the Product Rule we have,
2xy2 + 2yy0x2 = 3y0

y

0 =
2xy2

3� 2yx2

At (2, 1), y0 = �4

5
.

The equation of the tangent line is given by

y � 1 = �4

5
(x� 2) .

y

0.5

4

1.0

2.0

0.0

x
31

3.0

0 2

1.5

2.5

20. x

3

y

2 = �2xy � 3
Di↵rentiating with respect to x,
d

dx

�
x

3

y

2

�
=

d

dx

(�2xy � 3)

By using Product Rule,
3x2

y

2 + 2yy0x3 = �2y � 2y0

y

0 �2x3

y + 2x
�
= �2y � 3x2

y

2

y

0 = �2y + 3x2

y

2

2x3

y + 2x
Substituting x = �1 and y = �3,

y

0 (�1) = �2 (�3) + 3(�1)2(�3)2

2(�1)3 (�3) + 2 (�1)

= ��6 + 27

6� 2
= �21

4
The equation of the tangent line is

(y + 3) = �21

4
(x+ 1) .
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−5.0

x
−2

10.0

−2.5

0.0

2.5

5.0

−4 −1−3

y

7.5

−5

21. 4y2 = 4x2 � x

4

8yy0 = 8x� 4x3

y

0 =
x(2� x

2)

2y
.

The slope of the tangent line at (1,
p
3

2

) is

m =
1(2� 12)

2.(
p
3

2

)
=

1p
3
=

p
3

3
.

The equation of the tangent line is

y �
p
3

2
=

p
3

3
(x� 1)

y ==

p
3

3
x+

p
3

6
.

−1

1

y

3

−3
0

−3

−2 20
x

−1

2

3

−2

1

22. x

4 � 8x2 = �8y2

4x3 � 16x = �16yy0

y

0 =
�(4x3 � 16x)

16y
=

4x(4� x

2)

16y

The slope of the tangent line at (2, �
p
2) is

m =
2(4� 22)

4(�
p
2)

= 0.

The equation of the tangent line is y = �
p
2.

y

0.0

1.0

x
3.02.52.01.5

0.5

0.5

−0.5

0.0
1.0

−1.0

23.

d

dx

(x2

y

2 + 3x� 4y) =
d

dx

(5)

x

22yy0 + 2xy2 + 3� 4y0 = 0
Di↵erentiate both sides of this with respect
to x :
d

dx

(x22yy0 + 2xy2 + 3� 4y0) =
d

dx

(0)

2(2xyy0 + x

2(y0)
2

+ x

2

yy

00) + 2(2xyy0 + y

2)

� 4y00 = 0.

y

0 + x

2(y0)
2

+ x

2

yy

00 +2xyy0 + y

2 � 2y00 = 0.

y

0 + x

2(y0)
2

+ y

2 = y

00(2� x

2

y)

y

00 =
4xyy0 + x

2(y0)2 + y

2

2� x

2

y

24.

d

dx

(x2/3 + y

2/3) =
d

dx

(4)

2

3
x

�1/3 +
2

3
y

�1/3

y

0 = 0

Multiply by 3

2

and implicitly di↵erentiate
again:

�1

3
x

�4/3 � 1

3
y

�4/3

y

0
y

0 + y

�1/3

y

00 = 0
so

y

00 =
x

�4/3 + y

�4/3(y0)2

3y�1/3

25.

d

dx

(y2) =
d

dx

(x3 � 6x+ 4 cos y)

2yy0 = 3x2 � 6� 4 sin y.y0.
Di↵erentiating again with respect to x :

2yy00+2(y0)
2

= 6x�4
h
sin y.y00 + cos y.(y0)

2

i

yy

00 + (y0)
2

= 3x� 2 sin y.y00 � 2 cos y.(y0)
2

y

00(y + 2 sin y) = 3x� (2 cos y + 1) (y0)
2

y

00 =
3x� (2 cos y + 1) (y0)2

y + 2 sin y

26.

d

dx

(exy + 2y � 3x) =
d

dx

(sin y)

e

xy(y + xy

0) + 2y0 � 3 = cos y.y0

Di↵erentiating again with respect to x :
e

xy(y + xy

0)
2

+ e

xy(y0 + y

0 + xy

00) + 2y00

= � sin y(y0)
2

+ cos y.y00

and
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y

00 =
e

xy(y + xy

0)2 + 2exyy0 + sin y(y0)2

cos y � xe

xy � 2

27. (y � 1)2 = 3xy + e

4y

Di↵rentiating with respect to x,

d

dx

(y � 1)2 =
d

dx

�
3xy + e

4y

�

By the Chain and Product rule,
2 (y � 1) y0 = 3y + 3xy0 + 4e4yy0

Di↵rentiating with respect to x,

d

dx

[2 (y � 1) y0] =
d

dx

⇥
3y + 3xy0 + 4e4yy0

⇤

By the Chain and Product rule,
2 (y � 1) y00 + 2(y0)

2

= 3y0 + 3xy00 + 3y0 + 4e4yy00 + 16e4y(y0)
2

2 (y � 1) y00 � 3xy00 � 4e4yy00

= 6y0(x) + 16e4y(y0)
2 � 2(y0)

2

y

00 ⇥2 (y � 1)� 3x� 4e4y
⇤

= 2y0
�
3 + 8e4yy0 � y

0�

y

00 =
2y0

�
3 + 8e4yy0 � y

0�

2 (y � 1)� 3x� 4e4y

28. (x+ y)2 � e

y+1 = 3x
Di↵rentiating with respect to x,
d

dx

h
(x+ y)2 � e

y+1

i
=

d

dx

(3x)

By the Chain rule,
2 (x+ y) (1 + y

0)� e

y+1

y

0 = 3
Di↵rentiating with respect to x,

d

dx

⇥
2 (x+ y) (1 + y

0)� e

y+1

y

0⇤ = 0

By the Chain and Product rule,
2 (x+ y) y00 + 2(1 + y

0)
2 � e

y+1

y

00

� e

y+1(y0)
2

= 0

y

00 ⇥2 (x+ y)� e

y+1

⇤

= e

y+1(y0)
2 � 2(1 + y

0)
2

y

00 =
e

y+1(y0)2 � 2(1 + y

0)2

2 (x+ y)� e

y+1

29. (a) f(x) = sin�1

�
x

3 + 1
�

Di↵rentiating with respect to x,

f

0 (x) =
d

dx

⇥
sin�1

�
x

3 + 1
�⇤

.

By the Chain rule we get,

f

0 (x) =
1q

1� (x3 + 1)2

d

dx

�
x

3 + 1
�

=
1q

1-(x3+1)2

�
3x2

�

=
3x2

q
1� (x3 + 1)2

.

(b) f(x) = sin�1

�p
x

�

Di↵rentiating with respect to x,

f

0(x) =
d

dx

⇥
sin�1

�p
x

�⇤
.

By the Chain rule, we get

f

0(x) =
1q

1� (
p
x)

2

d

dx

�p
x

�

=
1p
1� x

✓
1

2
p
x

◆

=
1

2
p
x (1� x)

30. (a) f (x) = cos�1

�
x

2 + x

�

Di↵rentiating with respect to x,

f

0 (x) =
d

dx

⇥
cos�1

�
x

2 + x

�⇤
.

By using Chain rule,

f

0 (x) =
�1q

1� (x2 + x)2

d

dx

�
x

2 + x

�

=
� (2x+ 1)q
1� (x2 + x)2

(b) f (x) = cos�1

✓
2

x

◆

Di↵rentiating with respect to x,

f

0 (x) =
d

dx


cos�1

✓
2

x

◆�

By using Chain rule,

f

0 (x) =
�1q

1�
�
2

x

�
2

d

dx

✓
2

x

◆

=
�1q

1�
�

4

x

2

�

✓
�2

x

2

◆

=
2

x

p
x

2 � 4

31. (a) f (x) = tan�1

�p
x

�

Di↵rentiating with respect to x,

f

0 (x) =
d

dx

⇥
tan�1

�p
x

�⇤
.

By the Chain rule,

f

0 (x) =
1

1 + (
p
x)

2

d

dx

�p
x

�

=
1

(1 + x)

✓
1

2
p
x

◆

=
1

2
p
x (1 + x)

(b) f (x) = tan�1

✓
1

x

◆

Di↵rentiating with respect to x,

f

0 (x) =
d

dx


tan�1

✓
1

x

◆�
.

By the Chain rule,
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f

0 (x) =
1

1 +
�
1

x

�
2

d

dx

✓
1

x

◆

=
1�

1 + 1

x

2

�
✓
�1

x

2

◆

=
�1

(x2 + 1)

32. (a) f (x) =
p
2 + tan�1

x

Di↵rentiating with respect to x,

f

0 (x) =
d

dx

⇣p
2 + tan�1

x

⌘
.

By the Chain rule,

f

0 (x) =
1

2
p
2 + tan�1

x

d

dx

�
2 + tan�1

x

�

=
1

2
p
2 + tan�1

x

✓
1

1 + x

2

◆

=
1

2 (1 + x

2)
p
2 + tan�1

x

(b) f (x) = e

tan

�1
x

Di↵rentiating with respect to x,

f

0 (x) =
d

dx

⇣
e

tan

�1
x

⌘
.

By the Chain rule,

f

0 (x) =
⇣
e

tan

�1
x

⌘✓ 1

1 + x

2

◆

=
e

tan

�1
x

1 + x

2

33. (a) f (x) = 4 sec
�
x

4

�

Di↵rentiating with respect to x,

f

0 (x) =
d

dx

�
4 sec

�
x

4

��

By Chain rule,

f

0 (x) = 4 sec
�
x

4

�
tan

�
x

4

�
d

dx

�
x

4

�

= 4 sec
�
x

4

�
tan

�
x

4

� �
4x3

�

= 16x3 sec
�
x

4

�
tan

�
x

4

�

(b) f (x) = 4sec�1

�
x

4

�

Di↵rentiating with respect to x,

f

0 (x) =
d

dx

�
4sec�1

�
x

4

��
.

By Chain rule,

f

0 (x) = 4
1

x

4

q
(x4)2 � 1

d

dx

�
x

4

�

= 4
1

x

4

p
x

8 � 1

�
4x3

�

=
16

x

p
x

8 � 1

34. (a) f (x) = sin�1

✓
1

x

◆

Di↵rentiating with respect to x,

f

0 (x) =
d

dx

✓
sin�1

✓
1

x

◆◆
.

By the Chain rule,

f

0 (x) =
1q

1�
�
1

x

�
2

d

dx

✓
1

x

◆

=
xp

x

2 � 1

✓
�1

x

2

◆

= � 1

x

p
x

2 � 1
(b) f (x) = c sc�1 (x)

Di↵rentiating with respect to x,

f

0 (x) =
d

dx

c sc�1 (x) .

By the Chain rule,

f

0 (x) = � 1

x

p
x

2 � 1
.

35. In example 8.6,we are given

✓

0(d) =
2(�130)

4 + d

2

Setting this equal to -3 and solving for d

gives d

2 = 82 ) d = 9 feet. The better can
track the ball after they would have to start
swinging(when the ball is 30 feet away),but
not all the way to home plate.

36. From example 8.6, the rate of angle is

✓

0(t) =
1

1 + [d(t)
2

]
2

✓
d

0(t)

2

◆

Given a maximum rotational rate of ✓0(t) =
�3 (radians/second), the distance from the
plate at which a player can track the ball can
be obtained by solving the equation

�3 =
2d0(t)

4 + [d(t)]2

for d(t) in terms of d0(t) This leads to

d(t) =

p
�6.d0(t)� 36

3
if d

0(t)  �6 which may be reasonable since
the distance is decreasing as the ball ap-
proaches the plate. We get d (t) = 4 for
d

0 (t) = �30 ft/sec and d (t) = 9.45 for
d

0(t) = �140 ft/sec. This would mean a
player can track the ball to within 4 feet from
the plate in slowpitch, but only to within
9.45 feet from the plate in the major leagues.

37. Suppose that d is the distance from ball
to home plate and ✓ is the angle of gaze
Since distance is changing with time, there-
fore d = d (t). The velocity 130 ft/sec means
that d0 (t) = �130

✓ (t) = tan�1


d (t)

3

�

The rate of change of angle is then



2.8. IMPLICIT DIFFERENTIATION AND INVERSE TRIGNOMETRIC FUCTION 131

✓

0 (t) =
1

1 +
⇣

d(t)

3

⌘
2

d

0 (t)

3

=
3d0 (t)

9 + [d (t)]2
radians/second

when d

00 (t) = 0.
The rate of the change is then

✓

0 (t) =
3 (�130)

9
= �43.33 radians/sec.

38. Let d is the distance from ball to home plate
and ✓ is the angle of gaze, Since distance is
changing with time therefore d = d (t) . The
velocity 130 ft/sec means that d0 (t) = �130,

✓ (t) = tan�1


d (t)

x

�

The rate of change of angle is then

✓

0 (t) =
1

1 +
⇣

d(t)

x

⌘
2

d

0 (t)

x

=
xd

0 (t)

x

2 + [d (t)]2
radians/second

when d (t) = 0,
The rate of the change is then

✓

0 (t) =
x (�130)

x

2

radians/second

=
�130

x

= �3 radians/second

Therefore, x = �130

�3

= 43.33

39.

d

dx

(x2 + y

2 � 3y) =
d

dx

(0)

2x+ 2y.y0 � 3y0 = 0
y

0(2y � 3) = �2x

y

0 =
2x

3� 2y

Horizontal tangents:
From the formula, y0 = 0 only when x = 0.
When x = 0 we have 0+y

2�3y = 0. There-
fore y = 0 and y = 3 are the horizontal tan-
gents.
Vertical tangents:
The denominator in y

0 must be zero.
3� 2y = 0
y = 1.5
When y = 1.5,
x

2 + (1.5)2 � 3(1.5) = 0
x

2 = 2.25
x = ±1.5
x = ±1.5 are the vertical tangents.

1

3

2

5

−5

−3

−2 5

2

−2

−1

4

0

4−3−5

1

−1
0−4 3

−4

40.

d

dx

(x2 + y

2 � 2y) =
d

dx

(3)

2x+ 2yy0 � 2y0 = 0
x+ y

0(y � 1) = 0
y

0(y � 1) = �x

y

0 =
x

1� y

Horizontal tangents:
The curve has horizontal tangents when y

0 =
0 i.e. when x = 0.

At x = 0, y =
2±

p
4� 4(�3)

2
=

2± 4

2
which gives y = 3 or y = �1. Therefore
y = 3 and y = �1 are the horizontal tan-
gents to the curve.
Vertical tangents:
The curve has vertical tangents when the de-
nominator in y

0 is 0 which gives y = 1.
At y = 1, x = ±2
Therefore, x = ±2 are the vertical tangents
to curve.

5

−3

4

1

−5

−2 5

2

−2

−1

3

−1
−4 3−3−5 10 4

0
2

−4

41. (a) x

2

y

2 + 3y = 4x
To find the derivative of y, we use Im-
plicit di↵erentiation.

(b) x

2

y + 3y = 4x
The derivative of y can be found directly
and implicitly.

(c) 3xy + 6x2 cosx = y sinx
The derivative of y can be found directly
and implicitly.

(d) 3xy + 6x2 cos y = y sinx
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By using Implicit di↵erentiation we can
find the derivative of y.

42. f (x) = sin�1 (sinx)

= sin�1 (sin [2n⇡ � (2n⇡ � x)])

= sin�1 (� sin (2n⇡ � x))

= �sin�1 [sin (2n⇡ � x)]

In the interval
⇣
2n⇡ � ⇡

2
, 2n⇡ +

⇡

2

⌘
,

�⇡

2
 2n⇡ � x  ⇡

2
.

So, f (x) = � (2n⇡ � x) = x� 2n⇡.
Again,
f (x) = sin�1 (sinx)

= sin�1 (sin [(2n⇡ + ⇡)� (2n⇡ + ⇡ � x)])

= sin�1 (sin (2n⇡ + ⇡ � x))

= sin�1 [sin (2n⇡ + ⇡ � x)]

In the interval
h
2n⇡ + ⇡ � ⇡

2
, 2n⇡ + ⇡ +

⇡

2

i
,

�⇡

2

 2n⇡ + ⇡ � x  ⇡

2

.

So, f (x) = (2n+ 1)⇡ � x.
Therefore f

0 (x) = 1 for all x 2�
2n⇡ � ⇡

2

, 2n⇡ + ⇡

2

�
and f

0 (x) = �1 for
all x 2

�
2n⇡ + ⇡ � ⇡

2

, 2n⇡ + ⇡ + ⇡

2

�
. At

the points x = n⇡ ± ⇡

2

, f 0 (x) is not defined.
Here n is any integer.
From the graph of f(x) in below, we can
check the above values of f 0(x).

1.6

4

0.4

0

−1.2

x
−8 106

0.0

0.8

1.2

2
−0.4
−2

−0.8

−4

−2.0

−1.6

−6−10

2.0

8

43. Let y = sin�1

x+ cos�1

x

dy

dx

=
1p

1� x

2

+
�1p
1� x

2

= 0

Therefore, y = c, where c is a constant. To
determine c, substitute any convenient value
of x, such as x = 0
sin�1

x+ cos�1

x = c

sin�10 + cos�10 = c, so c =
⇡

2
Thus sin�1

x+ cos�1

x =
⇡

2

44. Let y = sin�1

✓
xp

x

2 + 1

◆

dy

dx

=
1r

1�
⇣

xp
x

2
+1

⌘
2

· d

dx

✓
xp

x

2 + 1

◆

=

 
1q

1� x

2

x

2+1

!
.

✓p
x

2
+1�x(1/2)(x

2
+1)

� 1
2
(2x)

x

2
+1

◆

=
1� x

2

x

2
+1q

1� x

2

x

2
+1

.

p
x

2 + 1

x

2 + 1

=

q
1� x

2

x

2
+1p

x

2 + 1
.

 p
x

2 + 1p
x

2 + 1

!

=
1

1 + x

2

Thus sin�1

✓
xp

x

2 + 1

◆
= y =

Z
1

1 + x

2

dx

= tan�1(x) + c for some constant c.
Substitute x = 0 in to the above expression
to find c = 0 and so

sin�1

✓
xp

x

2 + 1

◆
= tan�1

x

45.

d

dx

(x2

y � 2y) =
d

dx

(4)

2xy + x

2

y

0 � 2y0 = 0
y

0(x2 � 2) = �2xy

y

0 =
2xy

(2� x

2)
The derivative is undefined at x = ±

p
2, sug-

gesting that there might be vertical tangent
lines at these points. Similarly, y

0 = 0 at
y = 0 suggesting that there might be a hor-
izontal tangent line at this point. However,
plugging x = ±

p
2 into the original equa-

tion gives 0 = 4, a contradiction which shows
that there are no points on the curve with x

value ±
p
2. Likewise, plugging y = 0 in the

original equation gives 0 = 4. Again,this is
a contradiction which shows that there are
no points on the graph with y value of 4.
Sketching the graph, we see that there is a
horizontal asymptote at y = 0 and vertical
asymptote at x = ±

p
2

−10

y −5

0−2
x

5

−4
0

10

2 4
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46. For the first type of curve, y + xy

0 = 0 and

y

0 =
�y

x

.

For the second type of curve, 2x � 2yy0 = 0

and y

0 =
x

y

.

At any point of intersection, the tangent line
to the first curve is perpendicular to the tan-
gent line to the second curve.

47. If y
1

=
c

x

then y

1

0 = � c

x

2

= �y

1

x

.

If y

2

2 = x

2 + k then 2y
2

y

2

0 = 2x and

y

2

0 =
x

y

2

. If we are at a particular point

(x
0

, y

0

) on both graphs, this means y
1

(x
0

) =
y

0

= y

2

(x
0

) and

y

1

0
.y

2

0 =

✓
�y

0

x

0

◆
.

✓
x

0

y

0

◆
= �1.

This means that the slopes are negative re-
ciprocals and the curves are orthogonal.

48. For the first type of curve, 2x+2yy0 = c and

y

0 =
c� 2x

2y
.

For the second type of curve, 2x+2yy0 = ky

0

and y

0 =
2x

k � 2y
.

Multiply the first x/x and the second by y/y.

This gives y

0 =
cx� 2x2

2xy
=

y

2 � x

2

2xy
, and

y

0 =
2xy

ky � y

2

=
2xy

x

2 � y

2

.

These are negative reciprocals of each other,
so the families of the curve are orthogonal.

49. For the first type of curve, y0 = 3cx2

.

For the second type of curve, 2x+ 6yy0 = 0,

y

0 = �2x

6y
= � x

3y
= � x

3cx3

= � 1

3cx2

.

These are negative reciprocals of each other,
so the families of the curve are orthogonal.

50. For the first type of curve, y0 = 4cx3.
For the second type of curve, 2x+ 8yy0 = 0.

y

0 =
�2x

8y
=

�x

4y
=

�x

4cx4

=
�1

4cx3

.

These are negative reciprocals of each other,
so the families of the curve orthogonal.

51. Conjecture: The family of functions
{y

1

= cx

n} is orthogonal to the family of
functions

�
x

2 + ny

2 = k

 
wherever n 6= 0.

If y
1

= cx

n, then y

1

0 = ncx

n�1 =
ny

1

x

.

If ny
2

2 = �x

2 + k, then 2ny
2

. (y
2

0) = �2x
and y

2

0 = �x

ny2
.

If we are at a particular point (x
0

, y

0

) on
both graphs, this means y

1

(x
0

) = y

0

=
y

2

(x
0

) and

y

1

0
.y

2

0 =

✓
ny

0

x

0

◆
.

✓
� x

0

ny

0

◆
= �1.

This means that the slopes are negative re-
ciprocals and the curves are orthogonal.

52. The domain of the function sin�1

x is
[�1, 1] and the domain of the function
sec�1

x is (�1,�1)[ (1,1). Therefore, the
function sin�1

x+ sec�1

x is not defined.

53. (a) Both of the points(�3, 0) and (0, 3) are
on the curve:
02 = (�3)3 � 6(�3) + 9

32 = 03 � 6(0) + 9
The equation of the line through these

points has slope=
0� 3

�3� 0
= 1 and y-

intercept 3, so y = x+ 3.
This line intersects the curve at:
y

2 = x

3 � 6x+ 9
(x+ 3)2 = x

3 � 6x+ 9
x

2 + 6x+ 9 = x

3 � 6x+ 9
x

3 � 12x� x

2 = 0
x

�
x

2 � x� 12
�
= 0

Therefore x = 0,�3 or 4 and so third
point is (4, 7).

5

x
−5

4−2

y

10

0
0

−10

2

(b) 32 = (�1)3 � 6(�1) + 4 is true.

2yy0 = 3x2 � 6, so y

0 =
3x2 � 6

2y
and

at (�1, 3) the slope is -
1

2
. The line is

y = � 1

2

(x+ 1) + 3.
To find the other point of intersection,
substitute the equation of the line in to
the equation for the elliptic curve and
simplify:✓
�1

2
x+

5

2

◆
2

= x

3 � 6x+ 4

x

2 � 10x+ 25 = 4x3 � 24x+ 16
4x3 � x

2 � 14x� 9 = 0.
We know already that x = �1 is a so-
lution(actually a double solution) so we
can factor out (x + 1). Long division
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yields (x+ 1)2(4x2 � 9).
The second point has x-coordinate 9

4

,
which can be substituted into the equa-

tion for the line to get y =
11

8
.

54. The equation of the circle is x2 + (y � c)2 =
r

2. Di↵erentiating implicitly gives

2x+ 2(y � c).y0 = 0 so y

0 =
x

(c� y)
.

At the point of tangency, the derivatives
must be the same. Since the derivative
of y = x

2 is 2x, we must solve the equa-

tion 2x =
x

(c� y)
. This gives y = c � 1

2
,

as desired. Since y = x

2, plugging, y =

c � 1

2
into the equation of the circle gives

✓
c� 1

2

◆
2

+

✓
c� 1

2
� c

◆
2

= r

2

c� 1

2
+

1

4
= r

2

c = r

2 +
1

4

55. The viewing angle is given by the formula

✓ (x) = tan�1

✓
3

x

◆
� tan�1

✓
1

x

◆
.

This will be maximum where the derivative
is zero.

✓

0(x) =
1

1 +
�
3

x

�
2

.

�3

x

2

� 1

1 + x

2

.

�1

x

2

=
1

1 + x

2

� 3

9 + x

2

.

This is zero when
1

1 + x

2

=
3

9 + x

2

) x

2 =

3 ) x =
p
3

56. If A is the viewing angle formed between
the rays from the person’s eye to the top of
the frame and to the bottom of the frame,
and if x is the distance between the person
and the wall, then since the frame extends
from 6 to 8 feet, we have tan A = 2

x

, or

A = arctan

✓
2

x

◆
.

Then
dA

dx

=
1

1 +
�
2

x

�
2

.

✓
�2

x

2

◆
=

�2

x

2 + 4

Since the derivative is negative, the angle
is decreasing function of x. Strictly speak-

ing arctan

✓
2

x

◆
is undefined at x = 0 but

arctan

✓
2

x

◆
! ⇡

2
as x ! 0. The angle a

continues to enlarge(upto a right angle) as x
decreases to zero. In this case, the maximal
viewing angle is not a feasible one.

57. x

2 + y

2 = 9
Di↵erentiating the above equation implic-
itly, we get 2x+ 2yy0 = 0

x+ yy

0 = 0 ) y

0 = �x

y

At (2.9, 0.77), y0 gives slope of the tangent.

y

0|
(2.9,0.77)

=
�2.9

0.77
= �3.77

Therefore the equation of the tangent line is
y � 0.77 = �3.77(x � 2.9) ) y = �3.77x +
11.7
Let (x

1,

y

1

) be any point on the line such
that the distance is 300 feet. Therefore
(x

1

� 2.9)2 + (y
1

� 0.77)2 = 3002. Sub-
stitute the value of x as x

1

and y

1

, as
y

1

= �3.77x
1

+11.7 into the above equation
we get,
(x

1

� 2.9)2 + (�3.77x
1

+ 11.7� 0.77)2 =
90000
(x

1

� 2.9)2 + (�3.77x
1

+ 10.93)2 = 90000
15.21x

1

2 � 88.41x
1

� 89872.13 = 0
Solving the above quadratic equation, we
get x

1

= 79.83, x
1

= �74.02

Since the sling shot is rotating in the counter
clockwise direction, we have to consider the
negative value of x

1

. Therefore substituting
the negative value of x

1

into the equation,
y

1=

� 3.77x+ 11.70

we get y
1

= �3.77(�74.02) + 11.7 = 290.75
Therefore (�74.02, 290.75) is the required
point.
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2.9 The Hyperbolic
Functions

1. Graph of f(x) = cosh(2x) is:

y

2

0

5

4

3

1

−1x
210−1−2

2. Graph of f(x) = cosh(3x) is:

5

3

−1

y

4

2

1

0

x
10−1

3. Graph of f(x) = tanh(4x) is:

−2

x
10−1

−1y

2

1

0

4. Graph of f(x) = sinh(3x) is:

−1

2.5

−2.5

x
210

y

5.0

0.0

−2

−5.0

5. (a) f

0(x) =
d

dx

(cosh 4x)

= sinh 4x
d

dx

(4x)

= 4 sinh 4x

(b) f

0(x) =
d

dx

cosh4x

=
d

dx

(coshx)4

= 4(coshx)3 (sinhx)

= 4 sinhx · cosh3x

6. (a) f

0(x) =
d

dx

�
sinh

�p
x

��

= cosh
�p

x

�
d

dx

�p
x

�

= cosh
�p

x

�✓ 1

2
p
x

◆

=
cosh (

p
x)

2
p
x

(b) f

0(x) =
d

dx

⇣p
sinhx

⌘

=
1

2
p
sinhx

d

dx

(sinhx)

=
1

2
p
sinhx

(coshx)

=
coshx

2
p
sinhx

7. (a) f

0(x) =
d

dx

�
tanhx2

�

= sech2x2 · d

dx

�
x

2

�

=
�
sech2x2

�
· (2x)

= 2x sech2x2

(b) f

0(x) =
d

dx

(tanhx)2

= 2 tanhx sech2x
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8. (a) f

0(x) =
d

dx

(sech 3x)

= �sech 3x tanh 3x
d

dx

(3x)

= �3 sech 3x tanh 3x

(b) f

0(x) =
d

dx

(cschx)3

= 3
�
csch2x

�
d

dx

(csch x)

= 3
�
csch2x

�
(�csch x cothx)

= �3 csch3x cothx

9. (a) f

0(x) =
d

dx

�
x

2 sinh 5x
�

= x

2

d

dx

(sinh 5x) + sinh 5x
d

dx

�
x

2

�

= x

2 cosh 5x
d

dx

(5x) + sinh 5x (2x)

= 5x2 cosh 5x+ 2x sinh 5x

(b) f(x) =
x

2 + 1

csch3x
= (x2 + 1) sinh3 x

f

0(x) = 2x sinh3 x+ (x2 + 1)
d

dx

(sinh3 x)

= 2x sinh3 x+ (x2 + 1)3 sinh2 x coshx

= 2x sinh3 x+ 3(x2 + 1) sinh2 x coshx

10. (a) f

0(x) =
d

dx

✓
cosh 4x

x+ 2

◆

=
(x+ 2) d

dx

cosh 4x� cosh 4x d

dx

(x+ 2)

(x+ 2)2

=
(x+ 2) sinh 4x (4)� cosh 4x (1)

(x+ 2)2

=
4 (x+ 2) sinh 4x� cosh 4x

(x+ 2)2

(b) f

0(x) =

d

dx

�
x

2 tanh
�
x

3 + 4
��

= x

2

d

dx

tanh
�
x

3 + 4
�

+ tanh
�
x

3 + 4
�

d

dx

�
x

2

�

= x

2sech2
�
x

3 + 4
� �

3x2

�

+ tanh
�
x

3 + 4
�
(2x)

= 3x4sech2
�
x

3 + 4
�
+ 2x tanh

�
x

3 + 4
�

11. (a) f

0(x) =
d

dx

�
cosh�12x

�

=
1q

(2x)2 � 1

d

dx

(2x)

=
2p

4x2 � 1

(b) f

0(x) =
d

dx

�
sinh�1

x

2

�

=
1p

1 + x

4

d

dx

�
x

2

�

=
2xp
1 + x

4

12. (a) f

0(x) =
d

dx

�
tanh�13x

�

=
1

1� (3x)2
d

dx

(3x)

=
3

1� 9x2

(b) f

0(x) =
d

dx

�
x

2cosh�14x
�

= x

2

d

dx

�
cosh�14x

�
+ cosh�14x

d

dx

�
x

2

�

= x

2

1q
(4x)2 � 1

(4) + cosh�14x (2x)

=
4x2

p
16x2 � 1

+ 2x cosh�14x

13.

d

dx

(coshx) =
d

dx

✓
e

x + e

�x

2

◆

=
e

x � e

x

2
= sinhx

d

dx

(tanhx)

=
d

dx

✓
sinhx

coshx

◆

=
coshx d

dx

(sinhx)� sinhx d

dx

(coshx)

cosh2x

=
cosh2x� sinh2x

cosh2x
=

1

cosh2x
= sech2x

14.

d

dx

[cothx] =
d

dx


coshx

sinhx

�

=
sinhx · sinhx� coshx · coshx

(sinhx)2

=
sinh2x� cosh2x

sinh2x

=
�1

sinh2x
= csch2x
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d

dx

[sechx] =
d

dx


1

coshx

�

= � 1

cosh2x
sinhx

= � 1

coshx
· sinhx
coshx

= �sechx tanhx

d

dx

[cschx] =
d

dx


1

sinhx

�

= � 1

sinh2x
coshx

= � 1

sinhx
· coshx
sinhx

= �cschx cothx

15. First, e

x

> e

�x if x > 0 and e

x

< e

�x if

x < 0. Since sinhx =
e

x � e

�x

2
, we have

that ex � e

�x

> 0 if x > 0 and e

x � e

�x

< 0
if x < 0. Therefore sinhx > 0 if x > 0 and
sinhx < 0 if x < 0.

16. cosh2x� sinh2x

=

✓
e

x + e

�x

2

◆
2

�
✓
e

x � e

�x

2

◆
2

=
1

4

⇥�
e

2x + 2 + e

�2x

�
�
�
e

2x � 2 + e

�2x

�⇤

=
1

4
(4) = 1

17. If y = cosh�1

x then x = cosh y and x =
e

y + e

�y

2
.

Also sinh y =
e

y � e

�y

2
. Then

e

y = cosh y + sinh y

= cosh y +
q
sinh2y

= cosh y +
q
cosh2y � 1

= x+
p
x

2 � 1

So, y = cosh�1

x = ln
⇣
x+

p
x

2 � 1
⌘

18. If y = tanh�1

x then x = tanh y and

x =
e

y � e

�y

e

y + e

�y

Applying Componendo and Dividendo Rule,

1 + x

1� x

=
2ey

2e�y

1 + x

1� x

= e

2y

e

2y =
1 + x

1� x

y =
1

2
ln

✓
1 + x

1� x

◆

19. coshx+ sinhx =
e

x + e

�x

2
+

e

x � e

�x

2
= e

x

20. cosh(�x) =
e

�x + e

x

2
= coshx

sinh(�x) =
e

�x � e

x

2
= � sinhx

21. Since e

�x term tend to 0 as x tend to 1.

lim
x!1

e

x � e

�x

e

x + e

�x

= 1,

lim
x!�1

e

x � e

�x

e

x + e

�x

= lim
x!1

e

�x � e

x

e

�x + e

x

= �1

22. tanhx =
e

x

+e

�x

2

e

x

+e

�x

2

· 2e
x

2ex
=

e

2x � 1

e

2x + 1

23. Given, y = a cosh
�
x

b

�
. The hanging cable is

as shown in the figure: From figure, a = 10
and y = 10 cosh

�
x

b

�
. The point B (20, 20) is

on the catenary.

) 20 = 10 cosh

✓
20

b

◆

) 2 = cosh

✓
20

b

◆

) 20

b

= cosh�1(2) = ln(2 +
p
3)

h
cosh�1(x) = ln

⇣
x+

p
x

2 � 1
⌘i

) b =
20

ln(2 +
p
3)

-
x

6
y

0

A B

20m 20m10m

40m

24. Given, y = a cosh
⇣
x

b

⌘
. The hanging cable

is as shown in the figure: From figure,

a = 10 and y = 10 cosh
⇣
x

b

⌘
. Let
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A ⌘ (�x

1

, 30) and B ⌘ (x
2

, 20) such that
AB = 40.

d(A,B) =
q
(x

1

+ x

2

)2 + 100

1600 = (x
1

+ x

2

)2 + 100
x

1

+ x

2

=
p
1500 ...(1)

The point A (�x

1

, 10) is on the catenary.

30 = 10 cosh

✓
�x

1

b

◆

3 = cosh
⇣
x

1

b

⌘

) x

1

= bcosh�1(3)
) x

1

= b ln(3 +
p
8)

The point A (x
2

, 20) is on the catenary.

20 = 10 cosh
⇣
x

2

b

⌘

2 = cosh
⇣
x

2

b

⌘

) x

2

= bcosh�1(2)
) x

2

= b ln(2 +
p
3)

By using (1),
b ln[(3 +

p
8)(2 +

p
3) =

p
1500

b =

p
1500

ln[(3 +
p
8)(2 +

p
3)]

-
x

6
y

XXXXXXXXXXXX

0

C B

A

30m 20m10m

40m

25. (a) Given that

v(t) = �
r

mg

k

tanh

(r
kg

m

t

)

Now, find terminal velocity(V )
V = lim

t!1
v(t)

= �
r

mg

k

lim
t!1

tanh

(r
kg

m

t

)

= �
r

mg

k

lim
t!1

tanh {ct}

By putting

r
kg

m

= c,

V = �
r

mg

k

lim
t!1

sinh ct

cosh ct

= �
r

mg

k

lim
t!1

⇣
e

ct�e

�ct

2

⌘

⇣
e

ct

+e

�ct

2

⌘

= �
r

mg

k

lim
t!1

e

2ct � 1

e

2ct + 1

= �
r

mg

k

lim
t!1

d

dt

�
e

2ct � 1
 

d

dt

{e2ct + 1}
By L’Hospital’s rule,

= �
r

mg

k

lim
t!1

2ce2ct

2ce2ct

= �
r

mg

k

(1)

lim
t!1

v(t) = �
r

mg

k

(b) From (a), we get

V = �
r

mg

k

V

2 =
mg

k

mg = kV

2

26. For the first skydiver:
Terminal velocity is -80m/s.
Distance in 2 seconds is 19.41m.
Distance in 4 second is 75.45m.
For the second skydiver:
Terminal velocity is -40m/s.
Distance in 2 seconds is 18.86m.
Distance in 4 seconds is 68.35m.

27. For an initial velocity v

0

= 2000, we set the
derivative of the velocity equal to 0 and solve
the resulting equation in a CAS. The maxi-
mum acceleration of -9.797 occurs at about
206 seconds.

2.10 The Mean Value
Theorem

1. f(x) = x

2 + 1 , [�2, 2]

f(�2) = 5 = f(2).
As a polynomial f(x) is continious on
[�2, 2], di↵erentiable on (�2, 2), and the
condition’s of Roll’s Theorem hold. There
exists c 2 (�2, 2) such that f

0(c) = 0. But
f

0(c) = 2c ) c = 0
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1

2

x
−1

4

2

3

−2 0

y

0

−1

1

2. f(x) = x

2 + 1, [0, 2]
f(x) is continuous on [0, 2] and di↵eren-
tiable on (0, 2), so the conditions of the
Mean Value Theorem hold. We need to find
c so that

f

0(c) =
f(2)� f(0)

2� 0
=

5� 1

2� 0
= 2.

f

0(x) = 2x = 2 when x = 1, so c = 1.

y

1

1.00.5

5

4

0
2.00.0

x
1.5

2

3

3. f(x) = x

3 + x

2 on [0, 1] with f(0) = 0,
f(1) = 2. As a polynomial, f(x) is contin-
uous on [0, 1] and di↵erentiable on (0, 1).
Since the conditions of the Mean Value The-
orem hold, there exists a number c 2 (0, 1)
such that

f

0(c) =
f(1)� f(0)

1� 0
=

2� 0

1� 0
= 2.

But f 0(c) = 3c2 + 2c.
) 3c2 + 2c = 2 ) 3c2 + 2c� 2 = 0.
By the quadratic formula,

c =
�2±

p
22 � 4(3)(�2)

2(3)

=
�2±

p
28

6

=
�2± 2

p
7

6
=

�1±
p
7

3
) c ⇡ �1.22 or c ⇡ 0.55
But since �1.22 /2 (0, 1), we accept only the

other alternatives: c =
�1±

p
7

3
⇡ 0.55

1.00.5
0.0

x
−0.5

2.0

0.0

1.5

0.25 0.75

1.0

0.5

4. f(x) = x

3 + x

2 on [�1, 1]
f(x) is continuous on [�1, 1] and di↵eren-
tiable on (�1, 1). So the conditions of the
Mean Value Theorem hold. We need to find
c so that

f

0(c) =
f(1)� f(�1)

1� (�1)
=

2� 0

2
= 1.

f

0(x) = 3x2+2x = 1 when x = �1 or x =
1

3
,

so c =
1

3

−0.4

0.8

0.4

0.2

−0.8

x
0.5−0.5 0.0

y

1.0

−0.6

0.6

−0.2

−1.0

1.0−1.0
0.0

5. f(x) = sinx, [0, ⇡/2 ],

f(0) = 0, f(⇡/2 ) = 1.
As a trig function, f(x) is continuous on
[0, 2] and di↵erintiable 0n (0, ⇡/2 ). The
conditions of the Mean Value Theorem hold,
and there exists c 2 (0,⇡/2) such that

f

0(c) =
f(⇡

2

)� f(0)
⇡

2

� 0

=
1� 0
⇡

2

� 0
=

2

⇡

But f

0(c) = cos(c), and c is to be in the
first quadrant, therefore c = cos�1

�
2

⇡

�
⇡ .88
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x

0.25

1.51.25

1.0

0.5

0.750.50.25

0.75

0.0
0.0

1.0

6. f(x) = sinx, [�⇡, 0]
f(x) is continuous on [�⇡, 0], and di↵eren-
tiable on (�⇡, 0). Also, sin(�⇡) = 0 =
sin(0). So the conditions of Roll’s Theorem
hold. We need to find c so that f 0(c) = 0.

f

0(x) = cosx = 0, on (�⇡, 0) when x = �⇡

2
,

so c = �⇡

2
.

−2.5−3.0 −0.5

−0.7

−0.8

−0.5

0.0
−2.0

−0.2

−0.6

−0.9

−0.3

−1.5 −1.0

−0.4

x
0.0

−1.0

−0.1

7. Let f(x) = x

3 + 5x + 1. As a polynomial,
f(x) is continuous and di↵erentiable, for all
x, with f

0(x) = 3x2+5, which is positive for
all x. So f(x) is strictly increasing for all x.
Therefore the equation can have at most one
solution. Since f(x) is negative at x = �1
and positive at x = 1 and f(x) is continuous,
there must be a solution to f(x) = 0.

8. The derivative is 3x2+4 > 0 for all x. There-
fore the function is strictly increasing, and so
the equation can have at most one solution.
Because the function is negative at x = 0
and positive at x = 1, and continuous, we
know the equation has exactly one solution.

9. Let f(x) = x

4 + 3x2 � 2. The derivative is
f

0(x) = 4x3 + 6x. This is nagative for neg-
ative x, and positive for positive x so f(x)
strictly decreasing on (�1, 0) and strictly
increasing on (0, 1). Since f(0) = �2 6= 0,
f(x) can have at most one zero for x < 0

and one zero for x > 0. The function is con-
tinuous everywhere and f(�1) = 2 = f(1),
f(0) < 0. Therefore f(x) = 0 has exactly
one solution between x = �1 and x = 0, and
f(x) = 0 has exactly one solution between
x = 0 and x = 1, and no other solutions.

10. Let f(x) = x

4 + 6x2 � 1. The derivative is
f

0(x) = 4x3 + 12x. This is nagative for neg-
ative x, and positive for positive x so f(x) is
strictly decreasing on (�1, 0) and strictly
increasing on (0, 1). Since f(0) = �1 6= 0,
f(x) can have at most one zero for x < 0
and one zero for x > 0. The function is con-
tinuous everywhere and f(�1) = 6 = f(1),
f(0) < 0. Therefore f(x) = 0 has exactly
one solution between x = �1 and x = 0, ex-
actly one solution between x = 0 and x = 1,
and no other solutions.

11. f(x) = x

3+ax+b, a > 0. Any cubic(actyally
any odd degree) polynomial heads in oppo-
site directions (±1) as x goes to the op-
positely signed infinities, and therefore by
the Intermediate Value Theorem f(x) has
atleast one root. For the uniqueness, we look
at the derivative, in this case 3x2 + a. Be-
cause a > 0 by assumption, this expression
is strictly positive. The function is strictly
increasing and can have at most one root.
Hence f(x) has exactly one root.

12. The derivative is f

0(x) = 4x3 + 2ax. This
is nagative for negative x, and positive for
positive x so f(x) is strictly decreasing on
(�1, 0) and strictly increasing on (0,1), So
can have at most one zero for x < 0 and
one zero for x > 0. The function is contin-
uous everywhere and f(0) = �b < 0 and
lim

x!±1
f(x) = 1, therefore f(x) has exactly

one solution for x < 0, and similarly exactly
one solution for x > 0, and no other solu-
tions.

13. f(x) = x

5 + ax

3 + bx+ c, a > 0, b > 0. Here
is another odd degree polynomial(see #11)
with atleast one root. f 0(x) = 5x4+3ax2+b

is evidently strictly positive because of our
assumption about a, b. Exactly as in #11,
f(x) has exactly one root.

14. A third degree polynomial p(x) has atleast
one zero because

lim
x!±1

p(x) = ± lim
x!1

p(x) = ±1,

and it is continuous. Say this zero is at
x = c. Then we know p(x) factors into
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p(x) = (x�c)q(x), where q(x) is a quadratic
polynomial. Quadratic polynomial have at-
most two zeros so p(x) has atmost three ze-
ros.

15. f(x) = x

2.
One candidate: g

0

(x) = kx

3.
Because we require x

2 = g

0
0

(x) = 3kx2, we
must have 3k = 1, k = 1/3.
Most general solution: g(x) = g

0

(x) + c =
x

3

/3 + c, where c is an arbitrary constant.

16. If g0(x) = 9x4, then g(x) =
9

5
x

5 + c for any

constant c.

17. Although the obvious first candidate is
g

0

(x) = �1/x, due to disconnection of the
domain by the discontinuity at x = 0, we
could add di↵erent constants, one for nega-
tive x, another for positive x. Thus the most
general solution is:

g(x) =

⇢
�1/x+ a when x > 0
�1/x+ b when x < 0

18. If g0(x) =
p
x, then g(x) =

2

3
x

3/2+ c for any

constant c.

19. If g0(x) = sinx, then g(x) = � cosx + c for
any constant c.

20. If g0(x) = cosx, then g(x) = sinx+c for any
constant c.

21. If g0(x) =
4

1 + x

2

then g(x) = 4tan�1(x)+c.

22. If g0(x) =
2p

1� x

2

then g(x) = 2sin�1(x)+

c.

23. If derivative g0(x) is positive at a single point
x = b, then g(x) is an increasing function
for x su�ciently near b, i .e., g(x) > g(b)
for x > b but su�ciently near b. In this
problem ,we will apply that remark to f

0 at
x = 0, and conclude from f

00(0) > 0 that
f

0(x) > f

0(0) = 0 for x > 0 but su�ciently
small. This being true about the derivative
f

0, it tells us that f itself is increasing on
some interval (0, a) and in particular that
f(x) > f(0) = 0 for 0 < x < a. On the other
side(the nagative side) f 0 is negative, f is de-
creasing(to zero) and therefore likewise posi-
tive. In summary, x = 0 is a genuine relative
minimum.

24. The function cosx is continuous and di↵er-
entiable everywhere, so for any u and v we
can apply the Mean Value Theorem to get

cosu� cos v

u� v

= sin c for some c between u

and v. We know �1  sinx  1, so taking

absolute values, we get

����
cosu� cos v

u� v

����  1,

or |cosu� cos v|  |u� v|.
25. Consider the function g(x) = x� sinx, obiv-

iously with g(0) = 0 and g

0(x) = 1�cosx. If
there was ever point a > 0 with sin(a) � a,
(g(a)  0), then by the MVT applied to go g

on the interval [0, a] , there would be a point

c (0 < c < a) with g

0(c) =
g(a)� g(0)

a� 0

=
g(a)

a

 0.

This would read 1 � cos c = g

0(c)  0 or
cos c � 1. The latter condition is possible
only if cos(c) = 1 and sin(c) = 0, in which
case c(being positive) would be at minimum
⇡. But even this unlikelycase we still would
have sin(a)  1 < ⇡  c < a.
Since sin a < a for all a > 0, we have
� sin a > �a for all a > 0, but � sin a =
sin(�a) so we have sin(�a) > �a for all
a > 0. This is the same as saying sin a > a

for all a < 0 so in absolute value we have
|sin a| < |a| for all a 6= 0.
Thus the only possible solution to the equa-
tion sinx = x is x = 0, which we know to be
true.

26. The function tan�1

x is continuous and dif-
ferentiable everywhere, so for any a 6= 0 we
can apply the Mean Value Theorem to get
tan�1

a� tan�10

a� 0
=

1

1 + c

2

for some c be-

tween 0 and a. Taking absolute values, we

get

����
tan�1

a

a

���� =
1

1 + c

2

< 1, so
��tan�1

a

��
<

|a| for a 6= 0. This means that the only so-
lution to tan�1

x = x is x = 0.

27. Since the inverse sine function is increasing
on the interval [0, 1) (it has positive deriva-
tive) we start from the previously proven
inequality sinx < x for 0 < x. If indeed
0 < x < 1, we can apply the inverse sine and
conclude x = sin�1(sinx) < sin�1(x).

28. The function tanx is continuous and di↵er-
entiable for |x| < ⇡/2, so for any a 6= 0 in
(�⇡/2, ⇡/2), we can apply the Mean Value

Theorem to get
tan a� tan 0

a� 0
= sec 2

c for

some c between 0 and a. Taking absolute

values, we get

����
tan a

a

���� =
��sec 2

c

��
> 1, so
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|tan a| > |a| for a 6= 0. Of course tan 0 = 0,
so |tan a| � |a| for all |a| < ⇡/2.

29. If f 0(x) > 0 for all x then for each (a, b) with
a < b we know there exists c 2 (a, b) such
that

f(b)� f(a)

b� a

= f

0(c) > 0.

a < b makes the denominator positive, and
so we must have the numerator also positive,
which implies f(a) < f(b).

30. Let a < b. f is di↵erentiable on (a, b) and
continuous on [a, b], since it is di↵erentiable
for all x. This means that

f(b)� f(a)

b� a

= f

0(c)

for some c 2 (a, b). Therefore f(b)� f(a) =
f

0(c) (b� a) is negative, and f(a) > f(b).

31. f

0(x) = 3x2 +5. This is positive for all x, so
f(x) is increasing.

32. f

0(x) = 5x4 + 9x2 � 0 for all x. f 0 = 0 only
at x = 0, so f(x) is increasing.

33. f

0(x) = �3x2 � 3. This is nagative for all x,
so f(x) is decreasing.

34. f

0(x) = 4x3 + 4x is negative for negative x,
and positive for positive x, so f(x) is nei-
ther an increasing function nor a decreasing
function.

35. f

0(x) = e

x. This is positive for all x, so f(x)
is increasing.

36. f

0(x) = �e

�x

< 0 for all x, so f(x) is a
decreasing function.

37. f

0(x) =
1

x

f

0(x) > 0 for x > 0, that is, for all x in the
domain of f . So f(x) is increasing.

38. f

0(x) =
1

x

2

.2x =
2

x

is negative for negative

x, and positive for positive x, so f(x) is nei-
ther an increasing function nor a decreasing
function.

39. The average velocity on [a, b] is
s(b)� s(a)

b� a

.

By the Mean Value Theorem, there exists a

c 2 (a, b) such that s0(c) =
s(b)� s(a)

b� a

Thus, the instantaneous velocity at t = c is
equal to the average velocity between times
t = a and t = b.

40. Let f(t) be the distance the first runner has
gone after time t and let g(t) be the distance
the second runner has gone after time t. The
functions f(t) and g(t) will be continuous
and di↵erentiable. Let h(t) = f(t) � g(t).
At t = 0, f(0) = 0 and g(0) = 0 so h(0) = 0.
At t = a, f(a) > g(a) so h(a) > 0. Sim-
ilarly, at t = b, f(b) < g(b) so h(b) < 0.
Thus, by the Intermideate Value Theorem,
there is time t = t

0

for t

0

2 (a, b) where
h(t

0

) = 0. Rolle’s Theorem then says that
there is time t = c where c 2 (0, t

0

) such
that h

0(c) = 0. But h

0(t) = f

0(t) � g

0(t),
so h

0(c) = f

0(c) � g

0(c) = 0 implies that
f

0(c) = g

0(c), i.e., at time t = c the runners
are going exactly the same speed.

41. Define h(x) = f(x) � g(x). Then h is dif-
ferentiable because f and g are, and h(a) =
h(b) = 0. Apply Rolle’s Theorem to h on
[a, b] to conclude thet there exists c 2 (a, b)
such that h

0(c) = 0. Thus, f

0(c) = g

0(c),
and so f and g have parallel tangent lines at
x = c.

42. As in #41, let h(x) = f(x) � g(x). Again,
h is continuous and di↵erentiable on the
appropriate intervals because f and g are.
Since f(a)� f(b) = g(a)� g(b) (by assump-
tion), we have f(a) = g(a) � g(b) + f(b).
Then,

h(a) = f(a)� g(a)

= g(a)� g(b) + f(b)� g(a)

= f(b)� g(b) = h(b).
Rolle’s Theorem then tells us that there ex-
ists c 2 (a, b) such that h0(c) = 0 or f 0(c) =
g

0(c) so that f and g have parallel tangent
lines at x = c.

43. f(x) = 1/x on [�1, 1]. We easily see that
f(1) = 1, f(�1) = �1, and f

0(x) = �1/x2.
If we try to find the c in the interval (�1, 1)
for which

f

0(c) =
f(1)� f(1)

1� (�1)
=

1� (�1)

1� (�1)
= 1,

the equation would be �1/c2 = 1 or c

2 =
�1. There is of course no such c, and the ex-
planation is that the function is not defined
for x = 0 2 (�1, 1) and so the function is
not continuous.
The hypotheses for the Mean Value Theorem
are not fulfilled.

44. f(x) is not continuous on [�1, 2], and not
di↵erentiable on (�1, 2). Can we find
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f

0(c) =
f(2)� f(�1)

2� (�1)
=

1

4

� 1

3
= �1

4
?

f

0(x) = � 2

x

3

= �1

4
when x = 2. This is not

in (�1, 2), so no c makes the conclusion of
Mean Value Theorem true.

45. f(x) = tanx on [0, ⇡], f 0(x) = sec2x. We
know the tangent has a massive discontinu-
ity at x = ⇡/2, so as in #44, we should not
be surprised if the Mean Value Theorem does
not apply. As applied to the interval [0, ⇡]
it would say

sec2c = f

0(c) =
f(⇡)� f(0)

⇡ � 0

=
tan⇡ � tan 0

⇡ � 0
= 0.

But secant = 1/cosine is never 0 in the in-
terval (�1, 1), so no such c exists.

46. f(x) is not di↵erentiable on (�1, 1). Can we
find c with

f

0(c) =
f(1)� f(�1)

1� (�1)
=

1� (�1)

2
= 1 ?

f

0(x) =
1

3
x

�2/3 = 1 when x = ±
�
1

3

�
3/2

.

These are both in (�1, 1), so we can use ei-
ther of these as c to make the conclusion of
Mean Value Theorem true.

47. f(x) =

⇢
2x when x  0
2x� 4 when x > 0

f(x) = 2x � 4 is continuous and di↵eren-
tiable on (0, 2). Also, f(0) = 0 = f(2). But
f

0(x) = 2 on (0, 2), so there is no c such that
f

0(c) = 0. Rolle’s Theorem requires that
f(x) be continuous on the closed interval,
but we have a jump discontinuity at x = 0,
which is enough to preclude the applicability
of Rolle’s.

48. f(x) = x

2 is counter-example. The flaw in
the proof is that we do not have f

0(c) = 0.

Ch. 2 Review Exercises

1.

3.4� 2.6

1.5� 0.5
=

0.8

1
= 0.8

2. C (large negative), B (small negative), A

(small positive), and D (large positive)

3. f

0(2) =
f(2 + h)� f(2)

h

= lim
h!0

(2 + h)2 � 2(2 + h)� (0)

h

= lim
h!0

4 + 4h+ h

2 � 4� 2h

h

= lim
h!0

2h+ h

2

h

= lim
h!0

2 + h = 2

4. f

0(1) = lim
x!1

f(x)� f(1)

x� 1

= lim
x!1

1 + 1

x

� 2

x� 1

= lim
x!1

�(x�1)

x

x� 1

= lim
x!1

�1

x

= �1

5. f

0(1) = lim
h!0

f(1 + h)� f(1)

h

= lim
h!0

p
1 + h� 1

h

= lim
h!0

p
1 + h� 1

h

·
p
1 + h+ 1p
1 + h+ 1

= lim
h!0

1 + h� 1

h(
p
1 + h+ 1)

= lim
h!0

1p
1 + h+ 1

=
1

2

6. f

0(0) = lim
x!0

f(x)� f(0)

x� 0

= lim
x!0

x

3 � 2x

x

= lim
x!0

x

2 � 2 = �2

7. f

0(x) = lim
h!0

f(x+ h)� f(x)

h

= lim
h!0

(x+ h)3 + (x+ h)� (x3 + x)

h

= lim
h!0

3x2

h+ 3xh2 + h

3 + h

h

= lim
h!0

3x2 + 3xh+ h

2 + 1

= 3x2 + 1

8. f

0(x) = lim
h!0

f(x+ h)� f(x)

h

= lim
h!0

3

x+h

� 3

x

h

= lim
h!0

3x�3(x+h)

x(x+h)

h

= lim
h!0

�3h

x(x+h)

h

= lim
h!0

�3

x(x+ h)
=

�3

x

2

9. The point is (1, 0). y0 = 4x3 � 2 so the slope
at x = 1 is 2, and the equation of the tangent
line is y � 0 = 2(x� 1) or y = 2x� 2.
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10. The point is (0, 0). y0 = 2 cos 2x, so the slope
at x = 0 is 2, and the equation of the tangent
line is y = 2x.

11. The point is (0, 3). y0 = 6e2x, so the slope at
x = 0 is 6, and the equation of the tangent
line is y � 3 = 6(x� 0) or y = 6x+ 3.

12. The point is (0, 1). y

0 =
2x

2
p
x

2 + 1
, so the

slope at x = 0 is 0, and the equation of the
tangent line is y = 1.

13. Find the slope to y � x

2

y

2 = x� 1 at (1, 1).
d

dx

(y � x

2

y

2) =
d

dx

(x� 1)

y

0 � 2xy2 � x

22y · y0 = 1
y

0(1� x

22y) = 1 + 2xy2

y

0 =
1 + 2xy2

1� 2x2

y

At (1, 1):

y

0 =
1 + 2(1)(1)2

1� 2(1)2(1)
=

3

�1
= �3

The equation of the tangent line is
y � 1 = �3(x� 1) or y = �3x+ 4.

14. Implicitly di↵erentiating:
2yy0 + e

y + xe

y

y

0 = �1, and

y

0 =
�1� e

y

2y + xe

y

.

At (2, 0) the slope is �1, and the equation
of the tangent line is y = �(x� 2).

15. s(t) = �16t2 + 40t+ 10
v(t) = s

0(t) = �32t+ 40
a(t) = v

0(t) = �32

16. s(t) = �9.8t2 � 22t+ 6
v(t) = s

0(t) = �19.6t� 22
a(t) = s

00(t) = �19.6

17. s(t) = 10e�2t sin 4t
v(t) = s

0(t)
= 10

�
�2e�2t sin 4t+ 4e�2t cos 4t

�

a(t) = v

0(t)
= 10 · (�2)

⇥
�2e�2t sin 4t+ e

�2t4 cos 4t
⇤

+ 10(4) ·
⇥
�2e�2t cos 4t� e

�2t4 sin 4t
⇤

= 160e�2t cos 4t� 120e�2t sin 4t

18. s(t) =
p
4t+ 16� 4

v(t) = s

0(t) =
4

2
p
4t+ 16

=
2p

4t+ 16
a(t) = s

00(t)

=
�2 · 4

2(4t+ 16)3/2
=

�4

(4t+ 16)3/2

19. v(t) = s

0(t) = �32t+ 40
v(1) = �32(1) + 40 = 8

The ball is rising.
v(2) = �32(2) + 40 = �24
The ball is falling.

20. v(t) = s

0(t) = 20e�2t(2 cos 4t� sin 4t)
v(0) = 40 and v(⇡) = 40e�2⇡ ⇡ 0.075. The
mass attached to the spring is moving in the
same direction, much faster at t = 0.

21. (a) m

sec

=
f(2)� f(1)

2� 1

=

p
3�

p
2

1
⇡ .318

(b) m

sec

=
f(1.5)� f(1)

1.5� 1

=

p
2.5�

p
2

.5
⇡ .334

(c) m

sec

=
f(1.1)� f(1)

1.1� 1

=

p
2.1�

p
2

.1
⇡ .349

Best estimate for the slope of the tangent
line: (c) (approximately .349).

22. Point at x = 1 is (1, 7.3891).

(a) m

sec

=
f(2)� f(1)

2� 1

=
e

4 � e

2

1
⇡ 47.2091

(b) m

sec

=
f(1.5)� f(1)

1.5� 1

=
e

3 � e

2

.5
⇡ 25.3928

(c) m

sec

=
f(1.1)� f(1)

1.1� 1

=
e

2.2 � e

2

.1
⇡ 16.3590

Best estimate for the slope of the tangent
line: (c) (approximately 16.3590).

23. f

0(x) = 4x3 � 9x2 + 2

24. f

0(x) =
2

3
x

�1/3 � 8x

25. f

0(x) = �3

2
x

�3/2 � 10x�3

=
�3

2x
p
x

� 10

x

3

26. f

0(x) =

p
x(�3 + 2x)

x

�
(2� 3x+ x

2) 1

2

p
x

x

27. f

0(t) = 2t(t+ 2)3 + t

2 · 3(t+ 2)2 · 1
= 2t(t+ 2)3 + 3t2(t+ 2)2

= t(t+ 2)2(5t+ 4)

28. f

0(t) = 2t(t3 � 3t+ 2) + (t2 + 1)(3t2 � 3)
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29. g

0(x) =
(3x2 � 1) · 1� x(6x)

(3x2 � 1)2

=
3x2 � 1� 6x2

(3x2 � 1)2

= � 3x2 + 1

(3x2 � 1)2

30. g(x) = 3x� 1

x

g

0(x) = 3 + 1

x

2

31. f

0(x) = 2x sinx+ x

2 cosx

32. f

0(x) = 2x cosx2

33. f

0(x) = sec2
p
x · 1

2
p
x

34. f

0(x) =
1

2
p
tanx

sec2 x

35. f

0(t) = csc t · 1 + t · (� csc t · cot t)
= csc t� t csc t cot t

36. f

0(t) = 3 cos 3t cos 4t� 4 sin 3t sin 4t

37. u

0(x) = 2e�x

2

(�2x) = �4xe�x

2

38. u

0(x) = 2(2e�x)(�2e�x) = �8e�2x

39. f

0(x) = 1 · lnx2 + x · 1

x

2 · 2x
= lnx2 + 2

40. f

0(x) =
1

2
p
lnx+ 1

· 1
x

41. f

0 (x) =
1

2
· 1

sin 4x
· cos 4x · 4 = 2 cot 4x

42. f

0 (x) = e

tan( x2
+1 ) · sec2

�
x

2 + 1
�
· 2 · x

= 2xetan( x
2
+1 )sec2

�
x

2 + 1
�

43. f

0(x) = 2

✓
x+ 1

x� 1

◆
d

dx

✓
x+ 1

x� 1

◆

= 2

✓
x+ 1

x� 1

◆
(x� 1)� (x+ 1)

(x� 1)2

= 2

✓
x+ 1

x� 1

◆
�2

(x� 1)2

=
�4(x+ 1)

(x� 1)3

44. f

0(x) =
3

2
p
3x

e

p
3x

45. f

0(t) = e

4t · 1 + te

4t · 4 = (1 + 4t)e4t

46. f

0(x) =
(x� 1)26� 6x · 2(x� 1)

(x� 1)4

47. The given function is well defined only for
x = 0. Hence it is not di↵erentiable.

48. f

0 (x) = cos
�
cos�1

�
x

2

��
·

0

@ �2xq
1� (x2)2

1

A

=
�2x3

p
1� x

4

49.

1

1 + (cos 2x)2
· (�2 sin 2x)

50.

1

3x2

p
(3x2)2 � 1

· 6x

51. The derivative should look roughly like:

 

10

5

-5

-10

 
321-1-2-3

52. The derivative should look roughly like:

10

5

4

-10

x

0

-5

20-2-4

53. f(x) = x

4 � 3x3 + 2x2 � x� 1
f

0(x) = 4x3 � 9x2 + 4x� 1
f

00(x) = 12x2 � 18x+ 4

54. f(x) = (x+ 1)1/2

f

0(x) =
1

2
(x+ 1)�1/2

f

00(x) =
�1

4
(x+ 1)�3/2

f

000(x) =
3

8
(x+ 1)�5/2

55. f(x) = xe

2x

f

0(x) = 1 · e2x + xe

2x · 2 = e

2x + 2xe2x

f

00(x) = e

2x · 2 + 2 ·
�
e

2x + 2xe2x
�

= 4e2x + 4xe2x

f

000(x) = 4e2x · 2 + 4
�
e

2x + 2xe2x
�

= 12e2x + 8xe2x
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56. f(x) = 4(x+ 1)�1

f

0(x) = �4(x+ 1)�2

f

00(x) = 8(x+ 1)�3

57. f

00 (x) = 2 · 2 · sec (2x) · sec (2x) tan (2x) · 2x
= 8sec2 (2x) tan (2x)

58. Let f(x) = [p(x)]2, where
p(x) = x

6 � 3x4 + 2x3 � 7x+ 1
p

0(x) = 6x5 � 12x3 + 6x2 � 7
p

00(x) = 30x4 � 36x2 + 12x
p

000(x) = 120x3 � 72x+ 12
p

(4)(x) = 360x2 � 72
Then
f

(4)(x) = 6[p00(x)]2 + 8[p0(x)][p000(x)] +
2[p(x)][p(4)(x)]

59. f(x) = sin 3x
f

0(x) = cos 3x · 3 = 3 cos 3x
f

00(x) = 3(� sin 3x · 3) = �9 sin 3x
f

000(x) = �9 cos 3x · 3 = �27 cos 3x
f

(26)(x) = �326 sin 3x

60. For f(x) = e

�2x, each derivative multiplies
by a factor of �2, so
f

(31)(x) = (�2)31e�2x.

61. R(t) = P (t)Q(t)
R

0(t) = Q

0(t) · P (t) +Q(t) · P 0(t)
P (0) = 2.4($)
Q(0) = 12 (thousands)
Q

0(t) = �1.5 (thousands per year)
P

0(t) = 0.1 ($ per year)
R

0(0) = (�1.5) · (2.4) + 12 · (0.1)
= �2.4 (thousand $ per year)

Revenue is decreasing at a rate of $2400 per
year.

62. The relative rate of change is v

0
(t)

v(t)

. v

0(t) =

200( 3
2

)t ln 3

2

, so the relative rate of change is
ln 3

2

⇡ 0.4055, giving an instantaneous per-
centage rate of change of 40.55%.

63. f(t) = 4 cos 2t
v(t) = f

0(t) = 4(� sin 2t) · 2
= �8 sin 2t

(a) The velocity is zero when
v(t) = �8 sin 2t = 0, i.e., when
2t = 0,⇡, 2⇡, . . . so when
t = 0,⇡/2,⇡, 3⇡/2, . . .
f(t) = 4 for t = 0,⇡, 2⇡, . . .
f(t) = 4 cos 2t = �4 for
t = ⇡/2, 3⇡/2, . . .
The position of the spring when the ve-
locity is zero is 4 or �4.

(b) The velocity is a maximum when
v(t) = �8 sin 2t = 8, i.e., when

2t = 3⇡/2, 7⇡/2, . . . so
t = 3⇡/4, 7⇡/4, . . .
f(t) = 4 cos 2t = 0 for
t = 3⇡/4, 7⇡/4, . . .
The position of the spring when the ve-
locity is at a maximum is zero.

(c) Velocity is at a minimum when
v(t) = �8 sin 2t = �8, i.e., when
2t = ⇡/2, 5⇡/2, . . . so
t = ⇡/4, 5⇡/4, . . .
f(t) = 4 cos 2t = 0 for
t = ⇡/4, 5⇡/4, . . .
The position of the spring when the ve-
locity is at a minimum is also zero.

64. The velocity is given by
f

0(t) = �2e�2t sin 3t+ 3e�2t cos 3t.

65.

d

dx

(x2

y � 3y3) =
d

dx

(x2 + 1)

2xy + x

2

y

0 � 3 · 3y2 · y0 = 2x
y

0(x2 � 9y2) = 2x� 2xy

y

0 =
2x(1� y)

x

2 � 9y2

66.

d

dx

(sin(xy) + x

2) =
d

dx

(x� y)

cos(xy)(y + xy

0) + 2x = 1� y

0

y

0 =
1� 2x� y cos(xy)

x cos(xy) + 1
.

67.

d

dx

✓
y

x+ 1
� 3y

◆
=

d

dx

tanx

(x+ 1)y0 � y · (1)
(x+ 1)2

� 3y0 = sec2 x

y

0(x+ 1)� y = (x+ 1)2(3y0 + sec2 x)

y

0 =
sec2 x(x+ 1)2 + y

(x+ 1)[1� 3(x+ 1)]

68.

d

dx

(x� 2y2) =
d

dx

(3ex/y)

1� 2yy0 = 3ex/y · y � xy

0

y

2

1� 2yy0 =
3ex/y

y

� 3ex/yxy0

y

2

y

0 =
3e

x/y

y

� 1

3xe

x/y

y

2 � 2y

69. When x = 0, �3y3 = 1, y = �1

3p
3

(call this

a).

From our formula (#65), we find y

0 = 0 at
this point. To find y

00, implicitly di↵erenti-
ate the first derivative (second line in #65):

2(xy0 + y) + (2xy0 + x

2

y

00)
� 9

⇥
2y(y0)2 + y

2

y

00⇤ = 2

At (0, a) with y

0 = 0, we find
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2a� 9a2y00 = 2,

y

00 =
�2 3

p
3

9

⇣
3
p
3 + 1

⌘

Below is a sketch of the graph of x2

y�3y3 =
x

2 + 1.

y

2

-6

4

0

x

-5-10

-4

-2

50 10

70. Plugging in x = 0 gives �2y = 0 so y = 0.
Plugging (0, 0) into the formula for y0 gives a
slope of �1/2. Implicitly di↵erentiating the
third line of the solution to #37 gives

y

00(x+ 1) + y

0 � y

0

= 2(x+ 1)(3y0 + sec2 x)
+ (x+ 1)2(3y00 + 2 secx · secx tanx)

Plugging in x = 0, y = 0 and y

0 = �1/2
gives

y

00 = 2(�3/2 + sec2(0))
+ (1)2(3y00 + 2 sec2(0) tan(0))

y

00 = 1 + 3y00.
So at x = 0, y00 = �1/2.

The graph is:

0-2-4

y

3

2

1

0

-1
x

-2

-3

42

71. y

0 = 3x2 � 12x = 3x(x� 4)

(a) y

0 = 0 for x = 0 (y = 1), and x = 4
(y = �31) so there are horizontal tan-
gent lines at (0, 1) and (4,�31).

(b) y

0 is defined for all x, so there are no
vertical tangent lines.

72. y

0 =
2

3
x

�1/3

(a) The derivative is never 0, so the tangent
line is never horizontal.

(b) The derivative is undefined at x = 0 and
the tangent is vertical there.

73.

d

dx

(x2

y � 4y) =
d

dx

x

2

2xy + x

2

y

0 � 4y0 = 2x
y

0(x2 � 4) = 2x� 2xy

y

0 =
2x� 2xy

x

2 � 4
=

2x(1� y)

x

2 � 4

(a) y

0 = 0 when x = 0 or y = 1.
At y = 1, x2 · 1� 4 · 1 = x

2

x

2 � 4 = x

2

This is impossible, so there is no x for
which y = 1.
At x = 0, 02 · y � 4y = 02, so y = 0.
Therefore, there is a horizontal tangent
line at (0, 0).

(b) y

0 is not defined when x

2 � 4 = 0, or
x = ±2. At x = ±2, 4y � 4y = 4 so
the function is not defined at x = ±2.
There are no vertical tangent lines.

74. y

0 = 4x3 � 2x = 2x(2x2 � 1).

(a) The derivative is 0 at x = 0 and x =

±
q

1

2

, and the tangent line is horizontal

at those points.

(b) The tangent line is never vertical.

75. f(x) is continuous and di↵erentiable for all
x, and f

0(x) = 3x2 + 7, which is positive
for all x. By Theorem 9.2, if the equation
f(x) = 0 has two solutions, then f

0(x) = 0
would have at least one solution, but it has
none. We discussed at length (Section 2.9)
why every odd degree polynomial has at
least one root, so in this case there is exactly
one root.

76. The derivative is 5x4 + 9x2. This is non-
negative for all x. f(x) is increasing func-
tion so can have at most one zero. Since
f(0) = �2, f(1) = 2, f(x) has exactly one
solution.

77. f(x) = x

5 +2x3 � 1 is a one-to-one function
with f(1) = 2, f 0(1) = 11. If g is the name
of the inverse, then g(2) = 1 and

g

0(2) =
1

f

0(g(2))
=

1

f

0(1)
=

1

11
.
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0
y

1

-1

-10

0.5

-1.5

x

2010

1.5

-20

-0.5

0

78. Since e

0

3
+2·0 = 1, the derivative of the in-

verse at x = 1 will be one over the deriva-
tive of ex

3
+2x at x = 0. The derivative of

e

x

3
+2x is (3x2 + 2)ex

3
+2x and this is 2 when

x = 0. Therefore the derivative of the in-
verse to e

x

3
+2x at x = 1 is 1/2.

The graph is the graph of e

x

3
+2x reflected

across the line y = x.

y

0

-0.5

x

-1

-1.5

2

-2

1.510.50

79. Let a > 0. We know that f(x) = cosx � 1
is continuous and di↵erentiable on the inter-
val (0, a). Also f

0(x) = sinx  1 for all x.
The Mean Value Theorem implies that there
exists some c in the interval (0, a) such that
f

0(c) = sin c. But

f

0(c) =
cos a� 1� (cos 0� 1)

a� 0

=
cos a� 1

a

.

Since this is equal to sin c and sin c  1 for
any c, we get that

cos a� 1  a

as desired. This works for all positive a, but
since cosx�1 is symmetric about the y axis,
we get

| cosx� 1|  |x|.

They are actually equal at x = 0.

80. This is an example of a Taylor polynomial.
Later, Taylor’s theorem will be used to prove
such inequalities. For now, one can use mul-
tiple derivatives and argue that the rate of
the rate of the rate of change (etc.) increases
as one moves left to right through the in-
equalities.

81. To show that g(x) is continuous at x = a, we
need to show that the limit as x approaches
a of g(x) exists and is equal to g(a). But

lim
x!a

g(x) = lim
x!a

f(x)� f(a)

x� a

,

which is the definition of the derivative of
f(x) at x = a. Since f(x) is di↵erentiable
at x = a, we know this limit exists and is
equal to f

0(a), which, in turn, is equal to
g(a). Thus g(x) is continuous at x = a.

82. We have

f(x)� T (x)

= f(x)� f(a)� f

0(a)(x� a)

=

✓
f(x)� f(a)

x� a

� f

0(a)

◆
(x� a)

Letting e(x) =
f(x)� f(a)

x� a

� f

0(a), we ob-

tain the desired form. Since f(x) is di↵eren-
tiable at x = a, we know that

lim
x!a

f(x)� f(a)

x� a

= f

0(a)

so

lim
x!a

e(x) = lim
x!a

f(x)� f(a)

x� a

� f

0(a)

= 0.

83. f(x) = x

2 � 2x on [0, 2]
f(2) = 0 = f(0)

If f 0(c) =
f(2)� f(0)

2� 0
=

0� 0

2
= 0

then 2c� 2 = f

0(c) = 0 so c = 1.

84. f(x) is continuous on [0, 2] and di↵erentiable
on (0, 2), so the Mean Value Theorem ap-
plies. We need to find c so that

f

0(c) =
f(2)� f(0)

2� 0
=

6� 0

2� 0
= 3.

f

0(x) = 3x2 � 1 = 3 when x =
p
4/3, so

c = 2
p
3/3.

85. f(x) = 3x2 � cosx
One trial: g

o

(x) = kx

3 � sinx
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g

0
o

(x) = 3kx2 � cosx
Need 3k = 3, k = 1, and the general solution
is
g(x) = g

o

(x) + c = x

3 � sinx+ c

for c an arbitrary constant.

86. If g0(x) = x

3 � e

2x, then g(x) must be
1

4
x

4 � 1

2
e

2x + c,

for any constant c.

87. x = 1 is to be double root of
f(x) = (x3 + 1)� [m(x� 1) + 2]

= (x3 + 1� 2)�m(x� 1)
= (x3 � 1)�m(x� 1)
= (x� 1)

⇥
x

2 + x+ 1�m

⇤

Let g(x) = x

2 + x + 1 � m. Then x = 1 is
a double root of f only if (x� 1) is a factor

of g, in which case g(1) = 0. Therefore we
require 0 = g(1) = 3 � m or m = 3. Now
g(x) = x

2 + x� 2 = (x� 1)(x+ 2),
f(x) = (x� 1)g(x) = (x� 1)2(x+ 2)
and x = 1 is a double root.
The line tangent to the curve y = x

3 + 1 at
the point (1, 2) has slope y

0 = 3x2 = 3(1) =
3(= m). The equation of the tangent line is
y�2 = 3(x�1) or y = 3x�1(= m(x�1)+2).

88. We are asked to find m so that
x

3 + 2x� [m(x� 2) + 12]
= x

3 + (2�m)x+ (2m� 12)
has a double root. A cubic with a double
root factors as
(x� a)2(x� b)
= x

3 � (2a+ b)x2 + (2ab+ a

2)x� a

2

b.
Equating like coe�cients gives a system of
equations
2a+ b = 0,
2ab+ a

2 = 2�m, and
�a

2

b = 2m� 12.
The first equation gives b = �2a. Substi-
tuting this into the second equation gives
m = 2+ 3a2. Substituting these results into
the third equation gives a cubic polynomial
in a with zeros a = �1 and a = 2. This gives
two solutions: m = 5 and m = 14.
f

0(x) = 3x2 + 2, so f

0(2) = 14. The tangent
line at (2, 12) is y = 14(x� 2) + 12.
The second solution corresponds to the tan-
gent line to f(x) at x = �1, which happens
to pass through the point (2, 12).

89. Given,f =
1

2L

r
T

P

) df

dT

=
1

4L
p
pT

as

T is an independent variable and p , L are
constants. Tightening the string means in-
creasing the tension, resulting in decrease
in df

dT

, which means there is a decrease in
the rate of change of frequency with re-
spect to the tension in the string. On the
other end, loosening the string means de-
creasing the tension, resulting in increase
in df

dT

, which means there is a increase in
the rate of change of frequency with re-
spect to the tension in the string. Also,

f =
1

2L

r
T

P

) df

dL

= � 1

2L2

s
T

p

.When

the guitarist plays the notes by pressing
the string against a fret; he is increasing
the length and hence decreasing the rate of
change of frequency of vibration with re-
spect to the length of the string.



Chapter 3

Applications of
Di↵erentiation

3.1 Linear Approximations
and Newtons Method

1. (a) f(x) =
p
x, x0 = 1

f(x0) = f(1) =
p
1 = 1

f 0(x) =
1

2
x�1/2

f 0(x0) = f 0(1) =
1

2
So,
L(x) = f(x0) + f 0(x0) (x� x0)

= 1 +
1

2
(x� 1)

=
1

2
+

1

2
x

(b) Using the approximation L(x) to estimatep
1.2, we get

p
1.2 = f(1.2) ⇡ L(1.2) =

1

2
+

1

2
(1.2) = 1.1

2. (a) f(x0) = f(0) = 1 and

f 0(x) =
1

3
(x+ 1)

�2/3

So, f 0(0) =
1

3
The Linear approximation is,

L(x) = 1 +
1

3
(x� 0) = 1 +

1

3
x

(b) Using the approximation L(x) to estimate
3
p
1.2, we get 3

p
1.2 = f(0.2) ⇡ L(0.2) =

1 +
1

3
(0.2) = 1.066

3. (a) f(x) =
p
2x+ 9, x0 = 0

f (x0) = f (0) =
p
2 · 0+9 = 3

f 0 (x) =
1

2
(2x+ 9)�1/2 · 2

= (2x+ 9)�1/2

f 0 (x0) = f 0 (0) = (2 · 0 + 9)�1/2 =
1

3
So,
L(x) = f (x0) + f 0 (x0) (x� x0)

= 3 +
1

3
(x� 0)

= 3 +
1

3
x

(b) Using the approximation L(x) to esti-
mate

p
8.8, we get

p
8.8 = f(�0.1) ⇡

L(�0.1) = 3 +
1

3
(�0.1) = 3 � 0.033 =

2.967

4. (a) f(x) =
2

x
, x0 = 1

f(x0) = f(1) = 2

f 0(x) = � 2

x2
and so f 0(1) = �2

The linear approximation is
L(x) = 2 + (�2) (x� 1)

(b) Using the approximation L(x) to estimate
2

0.99
, we get

2

0.99
= f(0.99) ⇡ L(0.99) =

2 + (�2)(0.99� 1) = 2.02

5. (a) f(x) = sin 3x, x0 = 0
f(x0) = sin(3 · 0) = 0
f 0(x) = 3 cos 3x
f 0(x0) = f 0(0) = 3 cos(3 · 0) = 3
So,
L(x) = f(x0) + f 0(x0) (x� x0)

= 0 + 3 (x� 0)

= 3x

(b) Using the approximation L(x) to esti-
mate sin(0.3), we get sin(0.3) = f(0.1) ⇡
L(0.1) = 3(0.1) = 0.3

6. (a) f(x) = sinx, x0 = ⇡
f(x0) = sin⇡ = 0
f 0(x) = cosx
f 0(x0) = f 0(⇡) = cos⇡ = �1
The linear approximation is,
L(x) = f(x0) + f 0(x0) (x� x0)

= 0 + (�1) (x� ⇡) = ⇡ � x

(b) Using the approximation L(x) to esti-
mate sin(3.0), we get sin(3.0) = f(3.0) ⇡
L(3.0) = ⇡ � 3.0

7. (a) f(x) = 4
p
16 + x, x0 = 0

f(0) = 4
p
16 + 0 = 2

f 0(x) =
1

4
(16 + x)�3/4

f 0(0) =
1

4
(16 + 0)�3/4 =

1

32

150
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L(x) = f(0) + f 0(0)(x� 0)

= 2 +
1

32
x

= 2 +
1

32
(0.04) = 2.00125

(b) L(0.08) = 2 +
1

32
(0.08) = 2.0025

(c) L(0.16) = 2 +
1

32
(0.16) = 2.005

8. (a) f(x) = sinx, x0 = 0
f (0) = 0
f 0(x) = cosx
f 0 (0) = cos 0 = 1
L(x) = f (0) + f 0 (0) (x� 0)

= 0 + 1 · x
L(0.1) = 0.1

(b) f(x) = sinx, x0 = ⇡
3

f
⇣⇡
3

⌘
=

p
3

2

f 0
⇣⇡
3

⌘
= cos

⇡

3
=

1

2
L(x) = f

⇣⇡
3

⌘
+ f 0

⇣⇡
3

⌘⇣
x� ⇡

3

⌘

L(1) =

p
3

2
+

1

2

⇣
1� ⇡

3

⌘
⇡ 0.842

(c) f(x) = sinx, x0 =
2⇡

3

f

✓
2⇡

3

◆
=

p
3

2

f 0
✓
2⇡

3

◆
= cos

2⇡

3
= �1

2

L(x) = f

✓
2⇡

3

◆
+ f 0

✓
2⇡

3

◆✓
x� 2⇡

3

◆

=

p
3

2
� 1

2

✓
x� 2⇡

3

◆

L

✓
9

4

◆
=

p
3

2
� 1

2

✓
9

4
� 2⇡

3

◆
⇡ 0.788

9. (a) L(x) = f(20) +
18� 14

20� 30
(x� 20)

L(24) ⇡ 18� 4

10
(24� 20)

= 18� 0.4(4)

= 16.4 games

(b) L(x) = f(40) +
14� 12

30� 40
(x� 40)

f(36) ⇡ 12� 2

10
(36� 40)

= 12� 0.2(�4)

= 12.8 games

10. (a) L(x) = f(80) +
120� 84

80� 60
(x� 80)

L(72) = 120 +
36

20
(72� 80)

= 120 + 1.8(�8)

= 105.6 cans

(b) L(x) = f(100) +
168� 120

100� 80
(x� 100)

L(94) = 168� 48

20
(94� 100)

= 168� 2.4(�6)

= 182.4 cans

11. (a) L(x) = f(200) +
142� 128

220� 200
(x� 200)

L(208) = 128 +
14

20
(208� 200)

= 128 + 0.7(8) = 133.6

(b) L(x) = f(240) +
142� 136

220� 240
(x� 240)

L(232) = 136� 6

20
(232� 240)

= 136� 0.3(�8) = 138.4

12. (a) L(x) = f(10) +
14� 8

10� 5
(x� 10)

L(8) = 14 +
6

5
(�2) = 11.6

(b) L(x) = f(10) +
14� 8

10� 5
(x� 10)

L(12) = 14 +
6

5
(2) = 16.4

13. f(x) = x3 + 3x2 � 1 = 0, x0 = 1
f 0(x) = 3x2 + 6x

(a) x1 = x0 �
f(x0)

f 0(x0)

= 1� 13 + 3 · 12 � 1

3 · 12 + 6 · 1

= 1� 3

9
=

2

3

x2 = x1 �
f(x1)

f 0(x1)

=
2

3
�
�
2
3

�3
+ 3

�
2
3

�2 � 1

3
�
2
3

�2
+ 6

�
2
3

�

=
79

144
⇡ 0.5486

(b) 0.53209

14. f(x) = x3 + 4x2 � x� 1, x0 = �1
f 0(x) = 3x2 + 8x� 1
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(a) x1 = x0 �
f(x0)

f 0(x0)

= �1� 3

�6
= �1

2

x2 = x1 �
f(x1)

f 0(x1)

= �1

2
� 0.375

�4.25
= �0.4117647

(b) The root is x ⇡ �0.4064206546.

15. f(x) = x4 � 3x2 + 1 = 0, x0 = 1
f 0(x) = 4x3 � 6x

(a) x1 = x0 �
f(x0)

f 0(x0)

= 1�
✓
14 � 3 · 12 + 1

4 · 13 � 6 · 1

◆
=

1

2

x2 = x1 �
f(x1)

f 0(x1)

=
1

2
�
 �

1
2

�4 � 3
�
1
2

�2
+ 1

4
�
1
2

�3 � 6
�
1
2

�

!

=
5

8

(b) 0.61803

16. f(x) = x4 � 3x2 + 1, x0 = �1
f 0(x) = 4x3 � 6x

(a) x1 = x0 �
f(x0)

f 0(x0)

= �1� �1

2
= �1

2

x2 = x1 �
f(x1)

f 0(x1)

= �1

2
� 0.3125

2.5
= �0.625

(b) The root is x ⇡ �0.6180339887.

17. Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = x3 + 4x2 � 3x+ 1, and
f 0(x) = 3x2 + 8x� 3

y

2.5

0

x

30

5.0

20

10

−10

0.0−2.5−5.0

Start with x0 = �5 to find the root near �5:
x1 = �4.718750, x2 = �4.686202,
x3 = �4.6857796, x4 = �4.6857795

18. From the graph, we see two roots:

210-1 3

15

10

5

0

-5

-10

-15

-20

4

Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = x4 � 4x3 + x2 � 1, and
f 0(x) = 4x3 � 12x2 + 2x
Start with x0 = 4 to find the root below 4:
x1 = 3.791666667, x2 = 3.753630030, x3 =
3.7524339, x4 = 3.752432297
Start with x = �1 to find the root just above
�1:
x1 = �0.7222222222,
x2 = �0.5810217936,
x3 = �0.5416512863,
x4 = �0.5387668233,
x5 = �0.5387519962

19. Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = x5 + 3x3 + x� 1, and
f 0(x) = 5x4 + 9x2 + 1
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y

0.5

−5

x

10

1.0

5

0

−10

0.0−0.5−1.0

Start with x0 = 0.5 to find the root near 0.5:
x1 = 0.526316, x2 = 0.525262,
x3 = 0.525261, x4 = 0.525261

20. Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = cosx� x, and
f 0(x) = � sinx� 1

y

−4

2.5

−2.5

x
543210−1−2−3

5.0

0.0

−5

−5.0

Start with x0 = 1 to find the root near 1:
x1 = 0.750364, x2 = 0.739113,
x3 = 0.739085, x4 = 0.739085

21. Use xi+1 = xi � f(x
i

)
f 0(x

i

) with

f(x) = sinx� x2 + 1, and
f 0(x) = cosx� 2x

y

−4

2.5

−2.5

x
543210−1−2−3

5.0

0.0

−5

−5.0

Start with x0 = �0.5 to find the root near
�0.5:

x1 = �0.644108, x2 = �0.636751
x3 = �0.636733, x4 = �0.636733
Start with x0 = 1.5 to find the root near 1.5:
x1 = 1.413799, x2 = 1.409634
x3 = 1.409624, x4 = 1.409624

22. Use xi+1 = xi � f(x
i

)
f 0(x

i

) with

f(x) = cosx2 � x, and
f 0(x) = 2x sinx2 � 1

y

3

2

1

0

-1

x

-2

210-1-2

Start with x0 = 1 to find the root between 0
and 1:
x1 = 0.8286590991, x2 = 0.8016918647,
x3 = 0.8010710854, x4 = 0.8010707652

y

3

2

1

0

-1

x

-2

210-1-2

23. Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = ex + x, and
f 0(x) = ex + 1

y

−2

5

−5
x

3210

20

−1

15

10

0

−3

Start with x0 = �0.5 to find the root between
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0 and -1:
x1 = �0.566311, x2 = �0.567143
x3 = �0.567143, x4 = �0.567143

24. Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = e�x �
p
x, and

f 0(x) = �e�x � 1

2
p
x

1

0.5

0

-0.5

-1

21.510.50

Start with x0 = 0.5 to find the root close to
0.5:
x1 = 0.4234369253, x2 = 0.4262982542,
x3 = 0.4263027510

25. f(x) = x2 � 11; x0 = 3;
p
11 ⇡ 3.316625

26. Newton’s method for
p
x near x = 23 is xn+1 =

1
2 (xn + 23/xn). Start with x0 = 5 to get:
x1 = 4.8, x2 = 4.7958333, and x3 = 4.7958315.

27. f(x) = x3 � 11; x0 = 2; 3
p
11 ⇡ 2.22398

28. Newton’s method for 3
p
x near x = 23 is

xn+1 = 1
3 (2xn + 23/x2

n). Start with x0 = 3
to get:
x1 = 2.851851851, x2 = 2.843889316, and
x3 = 2.884386698

29. f(x) = x4.4 � 24; x0 = 2; 4.4
p
24 ⇡ 2.059133

30. Newton’s method for 4.6
p
x near x = 24 is

xn+1 = 1
4.6 (3.6xn+24/x3.6

n ). Start with x0 = 2
to get:
x1 = 1.995417100, x2 = 1.995473305, and
x3 = 1.995473304

31. f(x) = 4x3 � 7x2 + 1 = 0, x0 = 0
f 0(x) = 12x2 � 14x

x1 = x0 �
f(x0)

f 0(x0)
= 0� 1

0
The method fails because f 0(x0) = 0. Roots
are 0.3454, 0.4362, 1.659.

32. Newton’s method fails because f 0 = 0. As long

as the sequence avoids xn = 0 and xn =
7

6
(the

zeros of f 0), Newton’s method will succeed.
Which root is found depends on the starting
place.

33. f(x) = x2 + 1, x0 = 0
f 0(x) = 2x

x1 = x0 �
f(x0)

f 0(x0)
= 0� 1

0
The method fails because f 0(x0) = 0. There
are no roots.

34. Newton’s method fails because the function
does not have a root!

35. f(x) =
4x2 � 8x+ 1

4x2 � 3x� 7
= 0, x0 = �1

Note: f(x0) = f(�1) is undefined, so New-
ton’s Method fails because x0 is not in the do-
main of f . Notice that f(x) = 0 only when
4x2 � 8x + 1 = 0. So using Newton’s Method
on g(x) = 4x2 � 8x+ 1 with x0 = �1 leads to
x ⇡ .1339. The other root is x ⇡ 1.8660.

36. The slope tends to infinity at the zero. For ev-
ery starting point, the sequence does not con-
verge.

37. (a) With x0 = 1.2,
x1 = 0.800000000,
x2 = 0.950000000,
x3 = 0.995652174,
x4 = 0.999962680,
x5 = 0.999999997,
x6 = 1.000000000,
x7 = 1.000000000

(b) With x0 = 2.2,
x0 = 2.200000, x1 = 2.107692,
x2 = 2.056342, x3 = 2.028903,
x4 = 2.014652, x5 = 2.007378,
x6 = 2.003703, x7 = 2.001855,
x8 = 2.000928, x9 = 2.000464,
x10 = 2.000232, x11 = 2.000116,
x12 = 2.000058, x13 = 2.000029,
x14 = 2.000015, x15 = 2.000007,
x16 = 2.000004, x17 = 2.000002,
x18 = 2.000001, x19 = 2.000000,
x20 = 2.000000
The convergence is much faster with x0 =
1.2.

38. Starting with x0 = 0.2 we get a sequence that
converges to 0 very slowly. (The 20th itera-
tion is still not accurate past 7 decimal places).
Starting with x0 = 3 we get a sequence that
quickly converges to ⇡. (The third iteration is
already accurate to 10 decimal places!)
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39. (a) With x0 = �1.1
x1 = �1.0507937,
x2 = �1.0256065,
x3 = �1.0128572,
x4 = �1.0064423,
x5 = �1.0032246,
x6 = �1.0016132,
x7 = �1.0008068,
x8 = �1.0004035,
x9 = �1.0002017,
x10 = �1.0001009,
x11 = �1.0000504,
x12 = �1.0000252,
x13 = �1.0000126,
x14 = �1.0000063,
x15 = �1.0000032,
x16 = �1.0000016,
x17 = �1.0000008,
x18 = �1.0000004,
x19 = �1.0000002,
x20 = �1.0000001,
x21 = �1.0000000,
x22 = �1.0000000

(b) With x0 = 2.1
x0 = 2.100000000,
x1 = 2.006060606,
x2 = 2.000024340,
x3 = 2.000000000,
x4 = 2.000000000
The rate of convergence in (a) is slower
than the rate of convergence in (b).

40. From exercise 37, f(x) = (x�1)(x�2)2. New-
ton’s method converges slowly near the double
root. From exercise 39, f(x) = (x�2)(x+1)2.
Newton’s method again converges slowly near
the double root. In exercise 38, Newton’s
method converges slowly near 0, which is a zero
of both x and sinx but converges quickly near
⇡, which is a zero only of sinx.

41. f(x) = tanx, f(0) = tan 0 = 0
f 0(x) = sec2 x, f 0(0) = sec2 0 = 1
L(x) = f(0) + f 0(0)(x� 0)

= 0 + 1(x� 0) = x

L(0.01) = 0.01

f(0.01) = tan 0.01 ⇡ 0.0100003
L(0.1) = 0.1
f(0.1) = tan(0.1) ⇡ 0.1003
L(1) = 1
f(1) = tan 1 ⇡ 1.557

42. The linear approximation for
p
1 + x at x = 0

is L(x) = 1 + 1
2x. The error when x = 0.01 is

0.0000124, when x = 0.1 is 0.00119, and when
x = 1 is 0.0858.

43. f(x) =
p
4 + x

f(0) =
p
4 + 0 = 2

f 0(x) =
1

2
(4 + x)�1/2

f 0(0) =
1

2
(4 + 0)�1/2 =

1

4

L(x) = f(0) + f 0(0)(x� 0) = 2 +
1

4
x

L(0.01) = 2 +
1

4
(0.01) = 2.0025

f(0.01) =
p
4 + 0.01 ⇡ 2.002498

L(0.1) = 2 +
1

4
(0.1) = 2.025

f(0.1) =
p
4 + 0.1 ⇡ 2.0248

L(1) = 2 +
1

4
(1) = 2.25

f(1) =
p
4 + 1 ⇡ 2.2361

44. The linear approximation for ex at x = 0 is
L(x) = 1 + x. The error when x = 0.01 is
0.0000502, when x = 0.1 is 0.00517, and when
x = 1 is 0.718.

45. (a) f(0) = g(0) = h(0) = 1, so all pass
through the point (0, 1).
f 0(0) = 2(0 + 1) = 2,
g0(0) = 2 cos(2 · 0) = 2, and
h0(0) = 2e2·0 = 2,
so all have slope 2 at x = 0.
The linear approximation at x = 0 for all
three functions is L(x) = 1 + 2x.

(b) Graph of f(x) = (x+ 1)2 :

y

2

2

0

0
x

5

3

4

3

1

1
−1

−1−2−3

Graph of f(x) = 1 + sin(2x):
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0

y

3

3

2

1

5

4

1

−2 −1−3 2
−1

0
x

Graph of f(x) = e2x:

y

2

2

0

0
x

5

3

4

3

1

1

−1

−1−2−3

46. (a) f(0) = g(0) = h(0) = 0, so all pass
through the point (0, 0).
f 0(0) = cos 0 = 1,

g0(0) =
1

1 + 02
= 1, and

h0(0) = cosh 0 = 1,
so all have slope 1 at x = 0.
The linear approximation at x = 0 for all
three functions is L(x) = x.

(b) Graph of f(x) = sinx:

2

x

1

0
2

-1

-2

10-1-2

Graph of g(x) = tan�1 x:

2

x

1

0
2

-1

-2

10-1-2

Graph of h(x) = sinhx:

x

1

2

0
21

-2

-3

0-1-2

3

-1

sinx is the closest fit, but sinhx is close.

47. (a) 4
p
16.04 = 2.0012488

L(0.04) = 2.00125
|2.0012488� 2.00125| = .00000117

(b) 4
p
16.08 = 2.0024953

L(.08) = 2.0025
|2.0024953� 2.0025| = .00000467

(c) 4
p
16.16 = 2.0049814

L(.16) = 2.005
|2.0049814� 2.005| = .0000186

48. If you graph | tanx � x|, you see that the dif-
ference is less than .01 on the interval �.306 <
x < .306 (In fact, a slightly larger interval
would work as well).

49. The first tangent line intersects the x-axis at a
point a little to the right of 1. So x1 is about
1.25 (very roughly). The second tangent line
intersects the x-axis at a point between 1 and
x1, so x2 is about 1.1 (very roughly). Newton’s
Method will converge to the zero at x = 1.
Starting with x0 = �2, Newton’s method con-
verges to x = �1.
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y

3

2

1

0

-1

x

-2

210-1-2

Starting with x0 = 0.4, Newton’s method con-
verges to x = 1.

y

3

2

1

0

-1

x

-2

210-1-2

50. It wouldn’t work because f 0(0) = 0. x0 = 0.2
works better as an initial guess. After jumping
to x1 = 2.55, the sequence rapidly decreases
toward x = 1. Starting with x0 = 10, it takes
several steps to get to 2.5, on the way to x = 1.

51. xn+1 = xn � f(xn)

f 0(xn)

= xn �
✓
x2
n � c

2xn

◆

= xn � x2
n

2xn
+

c

2xn

=
xn

2
+

c

2xn

=
1

2

✓
xn +

c

xn

◆

If x0 <
p
a, then a/x0 >

p
a, so x0 <

p
a <

a/x0.

52. The root of xn � c is n

p
c, so Newton’s method

approximates this number.
Newton’s method gives

xi+1 = xi �
f(xi)

f 0(xi)
= xi �

xn
i � c

nxn�1
i

=
1

n
(nxi � xi + cx1�n

i ),

as desired.

53. (a) f(x) = x2 � x� 1

f 0(x) = 2x� 1

At x0 =
3

2

f(x0) =

✓
3

2

◆2

� 3

2
� 1 = �1

4
and

f 0(x0) = 2

✓
3

2

◆
� 1 = 2

By Newton’s formula,

x1 = x0 �
f(x0)

f 0(x0)
=

3

2
�

� 1
4

2
=

13

8

(b) f(x) = x2 � x� 1
f 0(x) = 2x� 1
At x0 = 5

3

f(x0) =

✓
5

3

◆2

� 5

3
� 1 =

1

9
and

f 0(x0) = 2

✓
5

3

◆
� 1 =

7

3
By Newton’s formula,

x1 = x0 �
f(x0)

f 0(x0)

=
5

3
�

1
9
7
3

=
5

3
� 1

21
=

34

21

(c) f(x) = x2 � x� 1
f 0(x) = 2x� 1
At x0 = 8

5

f(x0) =

✓
8

5

◆2

� 8

5
� 1 = � 1

25
and

f 0(x0) = 2

✓
8

5

◆
� 1 =

11

5
By Newton’s formula,

x1 = x0 �
f(x0)

f 0(x0)

=
8

5
�

� 1
25

11
5

=
8

5
+

1

55
=

89

55

(d) From part (a),

sincex0 =
F4

F3
, hence x1 =

F7

F6
.

From part (b),

since x0 =
F5

F4
hence x1 =

F9

F8
.

From part (c),

since x0 =
F6

F5
hence x1 =

F11

F10
.

Thus in general if x0 =
Fn+1

Fn
, then x1 =

F2n+1

F2n
implies m = 2n+ 1 and k = 2n

(e) Given x0 =
3

2
, then lim

n!1

Fn+1

Fn
will be
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the zero of the function f(x) = x2 �
x � 1 which is 1.618034. Therefore,

lim
n!1

Fn+1

Fn
= 1.618034

54. The general form of functionf(x) is,

fn(x) =
1

5

�
2n+2x� 3

�
for

1

2n
< x <

1

2n�1
.

Hence

f 0(x) = fn
0(x) =

2n+2

5
for

1

2n
< x <

1

2n�1
.

By Newton’s method,

x1 =
3

4
�

f
�
3
4

�

f 0
�
3
4

� =
3

4
�

f1
�
3
4

�

f1
0 � 3

4

�

=
3

4
� (3/5 )

(8/5 )
=

3

8
=

x0

2

Similarly, x2 =
x1

2
=

x0

22
and x3 =

x0

23

Continuing this, we get, xn�1 =
x0

2n�1
It may

also be observed that, for each fn(x)

x0 =
(1/2n) +

�
1/2n+1

�

2
=

3

2n+1
,

xn =
x0

2n
=

3

22n+1
) xn+1 =

3

22n+2
which

is the zero of F . Therefore Newton’s method
converges to zero of F .

55. For small x we approximate ex by x+ 1
(see exercise 44)
Le2⇡d/L � e�2⇡d/L

e2⇡d/L + e�2⇡d/L

⇡
L
⇥�
1 + 2⇡d

L

�
�
�
1� 2⇡d

L

�⇤
�
1 + 2⇡d

L

�
+
�
1� 2⇡d

L

�

⇡
L
�
4⇡d
L

�

2
= 2⇡d

f(d) ⇡ 4.9

⇡
· 2⇡d = 9.8d

56. If f(x) =
8⇡hcx�5

ehc/(kTx) � 1
, then using the linear

approximation we see that

f(x) ⇡ 8⇡hcx�5

(1 + hc
kTx )� 1

= 8⇡kTx�4

as desired.

57. W (x) =
PR2

(R+ x)2
, x0 = 0

W 0(x) =
�2PR2

(R+ x)3

L(x) = W (x0) +W 0(x0)(x� x0)

=
PR2

(R+ 0)2
+

✓
�2PR2

(R+ 0)3

◆
(x� 0)

= P � 2Px

R

L(x) = 120� .01(120) = P � 2Px

R

= 120� 2 · 120x
R

.01 =
2x

R
x = .005R = .005(20,900,000)

= 104,500 ft

58. If m = m0(1� v2/c2)1/2, then
m0 = (m0/2)(1 � v2/c2)�1/2(�2v/c2), and
m0 = 0 when v = 0. The linear approxima-
tion is the constant function m = m0 for small
values v.

59. The only positive solution is 0.6407.

60. The smallest positive solution of the first equa-
tion is 0.132782, and for the second equa-
tion the smallest positive solution is 1, so the
species modeled by the second equation is cer-
tain to go extinct. This is consistent with the
models, since the expected number of o↵spring
for the population modeled by the first equa-
tion is 2.2, while for the second equation it is
only 1.3

61. The linear approximation for the inverse tan-
gent function at x = 0 is
f(x) ⇡ f(0) + f 0(0)(x� 0)
tan�1(x) ⇡ tan�1(0) + 1

1+02 (x� 0)

tan�1(x) ⇡ x
Using this approximation,

� = tan�1

✓
3[1� d/D]� w/2

D � d

◆

� ⇡ 3[1� d/D]� w/2

D � d
If d = 0, then � ⇡ 3�w/2

D . Thus, if w or D
increase, then � decreases.

62. d0(✓) = D(w/6 sin ✓)
d(0) = D(1� w/6) so
d(✓) ⇡ d(0) + d0(0)(✓ � 0)

= D(1� w/6) + 0(✓) = D(1� w/6),
as desired.

3.2 Indeterminate Forms and
L’Hôpital’s Rule

1. lim
x!�2

x+ 2

x2 � 4

= lim
x!�2

x+ 2

(x+ 2)(x� 2)

= lim
x!�2

1

x� 2
= �1

4
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2. lim
x!2

x2 � 4

x2 � 3x+ 2

= lim
x!2

(x� 2)(x+ 2)

(x� 2)(x� 1)

= lim
x!2

x+ 2

x� 1
= 4

3. lim
x!1

3x2 + 2

x2 � 4

= lim
x!1

3 + 2
x2

1� 4
x2

=
3

1
= 3

4. lim
x!�1

x+ 1

x2 + 4x+ 3
is type

1
1 ;

we apply L’Hôpital’s Rule to get

lim
x!�1

1

2x+ 4
= 0.

5. lim
t!0

e2t � 1

t
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
t!0

d
dt

�
e2t � 1

�

d
dt t

lim
t!0

2e2t

1
=

2

1
= 2

6. lim
t!0

sin t

e3t � 1
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
t!0

d
dt (sin t)

d
dt (e

3t � 1)
= lim

t!0

cos t

3e3t
=

1

3

7. lim
t!0

tan�1t

sin t
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
t!0

d
dt

�
tan�1t

�

d
dt (sin t)

= lim
t!0

1/(1 + t2)

cos t
= 1

8. lim
t!0

sin t

sin�1t
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
t!0

d
dt (sin t)

d
dt

�
sin�1t

� = lim
t!0

cos t

1/(
p
1� t2)

= 1

9. lim
x!⇡

sin 2x

sinx
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
x!⇡

2 cos 2x

cosx
=

2(1)

�1
= �2.

10. lim
x!�1

cos�1 x

x2 � 1
is undefined (numerator goes to

⇡, denominator goes to 0).

11. lim
x!0

sinx� x

x3
is type

0

0
;

we apply L’Hôpital’s Rule thrice to get

= lim
x!0

cosx� 1

3x2
= lim

x!0

� sinx

6x

= lim
x!0

� cosx

6
= �1

6
.

12. lim
x!0

tanx� x

x3
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
x!0

sec2 x� 1

3x2
.

Apply L’Hôpital’s Rule twice more to get

lim
x!0

2 sec2 x tanx

6x

= lim
x!0

4 sec2 x tan2 x+ 2 sec4 x

6
=

1

3
.

13. lim
t!1

p
t� 1

t� 1
= lim

t!1

p
t� 1

t� 1
·
p
t+ 1p
t+ 1

= lim
t!1

(t� 1)

(t� 1)
p
t+ 1

= lim
t!1

1p
t+ 1

=
1

2

14. lim
t!1

ln t

t� 1
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
t!1

d
dt (ln t)
d
dt (t� 1)

= lim
t!1

1
t

1
= 1

15. lim
x!1

x3

ex
is type

1
1 ;

we apply L’Hôpital’s Rule thrice to get

lim
x!1

3x2

ex
= lim

x!1

6x

ex

= lim
x!1

6

ex
= 0.

16. lim
x!1

ex

x4
is type

1
1 ;

we apply L’Hôpital’s Rule four times to get

lim
x!1

ex

4x3
= lim

x!1

ex

12x2

= lim
x!1

ex

24x
= lim

x!1

ex

24
= 1.

17. limx!0
x cosx� sinx

x sin2 x
is type

1
1 ;

we apply L’Hôpital’s Rule twice to get

limx!0
cosx� x sinx� cosx

sin2 x+ 2x sinx cosx

= lim
x!0

�x sinx

sinx (sinx+ 2x cosx)
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= lim
x!0

�x

sinx+ 2x cosx

= lim
x!0

�1

cosx+ 2 cosx� 2x sinx

= �1

3
.

18. Rewrite as one fraction, we have

lim
x!0

✓
cotx� 1

x

◆
= lim

x!0

✓
x cosx� sinx

x sinx

◆

which is of type
0

0
we apply L’Hôpital’s Rule to get

= lim
x!0

✓
cosx� x sinx� cosx

sinx+ x cosx

◆

= lim
x!0

 
d
dx (�x sinx)

d
dx (sinx+ x cosx)

!

= lim
x!0

✓
� sinx� x cosx

cosx+ cosx� x sinx

◆
= 0

19. Rewrite as one fraction, we have

lim
x!0

✓
x+ 1

x
� 2

sin 2x

◆

= lim
x!0

✓
(x+ 1) sin 2x� 2x

x sin 2x

◆
is type

0

0
;

we apply L’Hôpital’s Rule four times to get

lim
x!0

 
d
dx (x+ 1) sin 2x� 2x

d
dx (x sin 2x)

!

= lim
x!0

✓
sin 2x+ 2(x+ 1) cos 2x� 2

sin 2x+ 2x cos 2x

◆

= lim
x!0

 
d
dx (sin 2x+ 2(x+ 1) cos 2x� 2)

d
dx (sin 2x+ 2x cos 2x)

!

= lim
x!0

✓
2 cos 2x+ 2 cos 2x� 4(x+ 1) sin 2x

2 cos 2x+ 2 cos 2x� 4x sin 2x

◆

=
4

4
= 1

20. lim
x!⇡

2

✓
tanx+

1

x� ⇡
2

◆

In this case the limit has the form (1 - 1).

Rewrite tanx as
sinx

cosx
and then as one frac-

tion, we get

lim
x!⇡

2

✓
tanx+

1

x� ⇡
2

◆

= lim
x!⇡

2

✓
sinx

cosx
+

1

x� ⇡
2

◆

= lim
x!⇡

2

 �
x� ⇡

2

�
sinx+ cosx�

x� ⇡
2

�
cosx

!
is type

0

0

we apply L’Hôpital’s Rule to get

= lim
x!⇡

2

 
sinx+

�
x� ⇡

2

�
cosx� sinx

cosx�
�
x� ⇡

2

�
sinx

!

= lim
x!⇡

2

 �
x� ⇡

2

�
cosx

cosx�
�
x� ⇡

2

�
sinx

!
= 0

21. lim
x!1

lnx

x2
is type

1
1

we apply L’Hôpital’s Rule to get

lim
x!1

1/x

2x
= lim

x!1

1

2x2
= 0.

22. lim
x!1

lnxp
x

is type
1
1 ;

we apply L’Hôpital’s Rule to get

lim
x!1

1
x
1

2
p
x

= lim
x!1

2p
x
= 0.

23. lim
t!1

t

et
is type

1
1

we apply L’Hôpital’s Rule to get

lim
t!1

d
dt (t)
d
dt (e

t)
= lim

t!1

1

et
= 0.

24. lim
t!1

sin 1
t

1
t

is type
0

0
we apply L’Hôpital’s Rule to get

= lim
t!1

- 1
t2 cos

1
t

� 1
t2

= lim
t!1

cos
1

t
= 1.

25. lim
t!1

ln (ln t)

ln t
As t approaches ln from below, ln t is a small
negative number. Hence ln (ln t) is undefined,
so the limit is undefined.

26. lim
t!0

✓
sin (sin t)

sin t

◆
is type

0

0
we apply L’Hôpital’s Rule to get

lim
t!0

✓
cos (sin t) cos t

cos t

◆
= 1.

27. lim
x!0

✓
sin (sinhx)

sinh (sinx)

◆
is type

0

0
we apply L’Hôpital’s Rule to get

lim
x!0

✓
cos (sinhx) coshx

cosh (sinx) cosx

◆
= 1

28. lim
x!0

✓
sinx� sinhx

cosx� coshx

◆

= lim
x!0

✓
2 sinx� ex + e�x

2 cosx� ex � e�x

◆

= lim
x!0

✓
2ex sinx� e2x + 1

2ex cosx� e2x � 1

◆
is type

0

0
we apply L’Hôpital’s Rule twice to get

lim
x!0

✓
2ex cosx+ 2ex sinx� 2e2x

�2ex sinx+ 2ex cosx� 2e2x

◆

= lim
x!0

✓
cosx+ sinx� 1

cosx� sinx� 1

◆
is type

0

0

= lim
x!0

✓
� sinx+ cosx

� sinx� cosx

◆
= �1
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29. lim
x!0+

lnx

cotx
is type

1
1

we apply L’Hôpital’s Rule to get

lim
x!0+

1/x

� csc2 x

= lim
x!0+

✓
� sinx · sinx

x

◆
= (0)(1) = 0.

30. lim
x!0+

p
x

lnx
= 0 (numerator goes to 0 and de-

nominator goes to �1).

31. lim
x!1

⇣p
x2 + 1� x

⌘

= lim
x!1

 ⇣p
x2 + 1� x

⌘ p
x2 + 1 + xp
x2 + 1 + x

!

= lim
x!1

✓
x2 + 1� x2

p
x2 + 1 + x

◆

= lim
x!1

1p
x2 + 1 + x

= 0

32. lim
x!1

lnx � x = lim
x!1

ln x
x � 1

1
x

= �1 since the

numerator goes to �1 and the denominator
goes to 0+. (Recall Example 2.8 which shows

lim
x!1

lnx

x
= 0.)

33. Let y =

✓
1 +

1

x

◆x

) ln y = x ln

✓
1 +

1

x

◆
. Then

lim
x!1

ln y = lim
x!1

x ln

✓
1 +

1

x

◆

= lim
x!1

ln
�
1 + 1

x

�

1/x

= lim
x!1

1
1+ 1

x

�
� 1

x2

�

�1/x2

= lim
x!1

1

1 + 1
x

= 1.

Hence lim
x!1

y = lim
x!1

eln y = e.

34. Notice that the limit in question has the inde-
terminate form 11. Also, note that as x gets

large,

����
x+ 1

x� 2

���� =
x+ 1

x� 2
.

Define y =

✓
x+ 1

x� 2

◆p
x2�4

. Then

ln y =
p
x2 � 4 ln

✓
x+ 1

x� 2

◆
and

lim
x!1

ln y = lim
x!1

✓p
x2 � 4 ln

✓
x+ 1

x� 2

◆◆

= lim
x!1

0

BB@

ln

✓
x+ 1

x� 2

◆

1p
x2�4

1

CCA

This last limit has indeterminate form
0

0
, so

we can apply L’Hôpital’s Rule and simplify to
find that the above is equal to

lim
x!1

�3(x2 � 4)3/2

�x3 + x2 + 2x
and this is equal to 3. So

lim
x!1

ln y = 3.

Thus lim
x!1

y = lim
x!1

eln y = e3 ⇡ 20.086.

35. lim
x!0+

✓
1p
x
�

p
xp

x+ 1

◆

= lim
x!0+

✓p
x+ 1� (

p
x)2

p
x
p
x+ 1

◆

= lim
x!0+

✓p
x+ 1� x

p
x
p
x+ 1

◆

= 1.

36. lim
x!1

p
5� x� 2p
10� x� 3

is type
0

0
we apply L’Hôpital’s Rule to get

lim
x!1

1
2 (5� x)�1/2(�1)
1
2 (10� x)�1/2(�1)

= lim
x!1

p
10� xp
5� x

=
3

2
.

37. Let y = (1/x)x. Then ln y = x ln(1/x). Then
lim

x!0+
ln y = lim

x!0+
x ln(1/x) = 0, by Exercise

27. Thus lim
x!0+

y = lim
x!0+

eln y = 1.

38. Let y = lim
x!0+

(cosx)1/x. Then

ln y = lim
x!0+

1

x
ln cosx

= lim
x!0+

ln(cosx)

x
is type

0

0
so apply L’Hôpital’s Rule to get

lim
x!0+

� tanx

1
= 0.

Therefore the limit is y = e0 = 1.

39. lim
t!1

✓
t� 3

t+ 2

◆t

= lim
t!1

(t� 3)t

(t+ 2)t

= lim
t!1

�
1� 3

t

�t
�
1 + 2

t

�t =
lim
t!1

�
1� 3

t

�t

lim
t!1

�
1 + 2

t

�t

=
lim
t!1

�
1 + �3

t

�t

lim
t!1

�
1 + 2

t

�t =
e�3

e2
= e�5

40. lim
t!1

✓
t� 3

2t+ 1

◆t

= lim
t!1

✓
1� 3

t

2 + 1
t

◆t
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= lim
t!1

�
1� 3

t

�t

2t
⇣
1 + 1/2

t

⌘t = lim
t!1

e�3

2te1/2
= 0

41. L’Hôpital’s rule does not apply. As x ! 0, the
numerator gets close to 1 and the denominator
is small and positive. Hence the limit is 1.

42. lim
x!0

ex � 1

x2
is type

0

0
, but lim

x!0

ex

2x
is not, so

L’Hôpital’s Rule does not apply to this limit.

43. L’Hôpital’s rule does not apply. As x ! 0, the
numerator is small and positive while the de-
nominator goes to �1. Hence the limit is 0.

Also lim
x!0

2x

2/x
, which equals lim

x!0
x2, is not of

the form
0

0
so L’Hôpital’s rule doesn’t apply

here either.

44. lim
x!0

sinx

x2
is type

0

0
, but lim

x!0

cosx

2x
is not, so

L’Hôpital’s rule does not apply. This limit is
undefined because the numerator goes to 1 and
the denominator goes to 0.

45. lim
x!0+

cscxp
x

In this case limit has the form
1
0

, L’Hôspital’s

Rule should not be used.

46. lim
x!0+

x�3/2

lnx
is type

1
�1 . In this case

L’Hôspital’s Rule should be used.

47. lim
x!1

x2 � 3x+ 1

tan�1x
= 1. In this case limit has

the form 1. So L’Hôspital’s Rule should not
be used.

48. lim
x!1

ln
�
x2
�

ex/3
is type

1
1 . So L’Hôspital’s Rule

should be used.

49. (a) Starting with lim
x!0

sin 3x

sin 2x
, we cannot

“cancel sin”to get lim
x!0

3x

2x
. We can cancel

the x’s in the last limit to get the final an-
swser of 3/2. The first step is likely to give
a correct answer because the linear ap-
proximation of sin 3x is 3x, and the linear
approximation of sin 2x is 2x. The linear
approximations are better the closer x is
to zero, so the limits are likely to be the
same.

(b) lim
x!0

sinnx

sinmx
is type 0

0 ;

we apply L’Hôpital’s Rule to get

lim
x!0

n cosnx

m cosmx
=

n

m
.

50. (a) lim
x!0

sinx2

x2
= lim

x!0

2x cosx2

2x

= lim
x!0

cosx2 = 1,

which is the same as lim
x!0

sinx

x
.

(b) lim
x!0

1� cosx2

x4

= lim
x!0

2x sinx2

4x3
= lim

x!0

sinx2

2x2

=
1

2
lim
x!0

sinx2

x2
=

1

2
(by part (a)),

while

lim
x!0

1� cosx

x2
= lim

x!0

sinx

2x
=

1

2
(1) =

1

2
so both of these limits are the same.

(c) Based on the patterns found in exercise
45, we should guess

lim
x!0

sinx3

x3
= 1 and lim

x!0

1� cosx3

x6
=

1

2
.

51. (a)
(x+ 1)(2 + sinx)

x(2 + cosx)

(b)
x

ex

(c)
3x+ 1

x� 7

(d)
3� 8x

1 + 2x

52. (a) lim
x!1

x� lnx = 1 (see exercise 32).

(b) lim
x!1

p
x2 + 1� x = 0 (see exercise 31).

(c) lim
x!1

p
x2 + 4x� x

= lim
x!1

(
p
x2 + 4x� x)

= lim
x!1

4xp
x2 + 4x+ x

= lim
x!1

4x 1
x

(
p
x2 + 4x+ x)

1

x

= lim
x!1

4q
1 + 4

x + 1
= 2,

where to get from the second to
the third line, we have multiplied by
(
p
x2 + 4x+ x)

(
p
x2 + 4x+ x)

.



3.2. INDETERMINATE FORMS AND L’HÔPITAL’S RULE 163

53. lim
x!1

ex = lim
x!1

xn = 1

lim
x!1

ex

xn
= 1. Since n applications of

L’Hôpital’s rule yields

lim
x!1

ex

n!
= 1.

Hence ex dominates xn.

54. lim
x!1

lnx = lim
x!1

xp = 1.

lim
x!1

lnx

xp
is of type

1
1

we use L’Hôpital’s Rule to get

lim
x!1

1
x

pxp�1
= lim

x!1

1

pxp
= 0 (since p > 0).

Therefore, xp dominates lnx.

55. lim
t!1

⇣
e

t

2 � t3
⌘

Since e
t

2 dominates t3. So

lim
t!1

⇣
e

t

2 � t3
⌘
= 1

56. lim
x!1

✓p
x� lnxp

x

◆
is type

1
1 .

we apply L’Hôpital’s Rule to get

lim
x!1

 
1

2
p
x
� 1

x

1
2
p
x

!
= lim

x!1

✓
x� 2

p
x

x

◆

= lim
x!1

✓
1� 2p

x

◆
= 1.

57. lim
x!1

ln
�
x3 + 2x+ 1

�

ln (x2 + x+ 2)
we apply L’Hôpital’s Rule

lim
x!1

 
d
dx

�
ln
�
x3 + 2x+ 1

��

d
dx (ln (x2 + x+ 2))

!

= lim
x!1

 
3x2+2

x3+2x+1
2x+1

x2+x+2

!

= lim
x!1

✓
3x4 + 3x3 + 8x2 + 2x+ 4

2x4 + x3 + 4x2 + 4x+ 1

◆
=

3

2
In general, for numerator and denominator the
highest degee of polynomials p and q, such that
p(x) > 0 and q(x) > 0 for x > 0,

should be the lim
x!1

ln(p(x))
ln(q(x)) .

58. lim
x!1

ln
�
e3x + x

�

ln (e2x + 4)
is

1
1 ;

we apply L’Hôpital’s Rule

lim
x!1

 
d
dx

�
ln
�
e3x + x

��

d
dx (ln (e2x + 4))

!

= lim
x!1

 
3e3x+1
e3x+x

2e2x

e2x+4

!

= lim
x!1

✓
3e5x + 12e3x + e2x + 4

2e5x + 2xe2x

◆
=

3

2

In general,when the degree of exponential term
in the numerator and denominator are di↵er-

ent, then the lim
x!1

ln
�
ekx + p(x)

�

ln (ecx + q(x))
for polyno-

mials p and q and positive numbers. k and c
will be the fraction of degrees that is k

c .

59. If x ! 0, then x2 ! 0, so if lim
x!0

f(x)

g(x)
= L,

then lim
x!0

f(x2)

g(x2)
= L (but not conversely). If

a 6= 0 or 1, then lim
x!a

f(x)

g(x)
involves the be-

havior of the quotient near a, while lim
x!a

f(x2)

g(x2)
involves the behavior of the quotient near the
di↵erent point a2.

60. Functions f(x) = |x| and g(x) = x work.

lim
x!0

f(x)

g(x)
does not exist as it approaches �1

from the left and it approaches 1 from the

right, but lim
x!0

f(x2)

g(x2)
= 1.

61. lim
!!0

2.5(4!t� sin 4!t)

4!2

= lim
!!0

2.5(4t� 4t cos 4!t)

8!

= lim
!!0

2.5(16t2 sin 4!t)

8
= 0

62. lim
!!0

2.5� 2.5 sin(4!t+
⇡

2
)

4!2
is type 0

0 ;

we apply L’Hôpital’s Rule to get

lim
!!0

�10t cos(4!t+ ⇡
2 )

8!

= lim
!!0

40t2 sin(4!t+ ⇡
2 )

8
= 5t2.

t
0.60.50.40.3

1

0.20.1

2

0

1.5

0

0.5

63. The area of triangular region 1 is
(1/2)(base)(height)
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= (1/2)(1� cos ✓)(sin ✓).
Let P be the center of the circle. The area of
region 2 equals the area of sector APC minus
the area of triangle APB. The area of the
sector is ✓/2, while the area of triangle APB
is
(1/2)(base)(height)
= (1/2)(cos ✓)(sin ✓).
Hence the area of region 1 divided by the area
of region 2 is
(1/2)(1� cos ✓)(sin ✓)

✓/2� (1/2)(cos ✓)(sin ✓)

=
(1� cos ✓)(sin ✓)

✓ � cos ✓ sin ✓

=
sin ✓ � cos ✓ sin ✓

✓ � cos ✓ sin ✓

=
sin ✓ � (1/2) sin 2✓

✓ � (1/2) sin 2✓

Then lim✓!0
sin ✓ � (1/2) sin 2✓

✓ � (1/2) sin 2✓

= lim
✓!0

cos ✓ � cos 2✓

1� cos 2✓

= lim
✓!0

� sin ✓ + 2 sin 2✓

2 sin 2✓

= lim
✓!0

� cos ✓ + 4 cos 2✓

4 cos 2✓

=
�1 + 4(1)

4(1)
=

3

4

64. lim
x!0+

160x�0.4 + 90

8x�0.4 + 10

= lim
x!0+

160 + 90x0.4

8 + 10x0.4
=

160

8
= 20. If there

is no light, the pupils will expand to this
size. This is the largest the pupils can get.

lim
x!1

160x�0.4 + 90

8x�0.4 + 10
=

90

10
= 9. As the amount

of light grows, the pupils shrink, and the size
approaches 6mm in the limit. This is the small-
est possible size of the pupils.

65. (a) V =
p
40mg tanh

�p
g

40m t
�
, therefore

lim
t!1

V

= lim
t!1

p
40mg

 
e
p

g

40m t � e�
p

g

40m t

e
p

g

40m t + e�
p

g

40m t

!

=
p
40mg lim

t!1

 
1� e�2

p
g

40m t

1 + e�2
p

g

40m t

!

=
p
40mg

as t ! 1; 2

r
g

40m
t ! 1 and

e�2
p

g

40m t ! 0 This means, when the time
increases indefinitely, its velocity reachesp
40mg.

(b) lim
m!0

V

= lim
m!0

p
40mg

 
e
p

g

40m t � e�
p

g

40m t

e
p

g

40m t + e�
p

g

40m t

!

= lim
m!0

p
40mg

 
1� e�2

p
g

40m t

1 + e�2
p

g

40m t

!

= lim
m!0

p
40mg lim

m!0

 
1� e�2

p
g

40m t

1 + e�2
p

g

40m t

!

= 0
as m ! 0; 2

p
g

40m t ! 1 and

e�2
p

g

40m t ! 0. This means, when the
mass is negligible, its velocity is 0.

(c) lim
m!1

V

= lim
m!1

p
40mg

 
e
p

g

40m t � e�
p

g

40m t

e
p

g

40m t + e�
p

g

40m t

!

= lim
m!1

p
40mg

 
e2
p

g

40m t � 1

e2
p

g

40m t + 1

!

as m ! 1; 2
p

g
40m t ! 0 and

e2
p

g

40m t ! 1

= lim
m!1

 
1

e2
p

g

40m t + 1

!
lim

m!1

⇣
e2
p

g

40m t � 1
⌘

�
1/
p
40mg

�

= (1/2 ) lim
(2
p

g

40m t)!0

✓
e
2
p

g

40m
t�1

2
p

g

40m t

◆�
2
p
g t
�

=
p
g t

This means, when the increases indefi-
nitely, its velocity reaches

p
gt.

66. lim
c!1

S = lim
c!1

⇢
8⇡
3 c2

⇣
d2

16c2 + 1
⌘3/2

� 1

��

= 8⇡
3 lim

c!1

✓
c2

h
(d2+16c2)3/2 �64c3

i

64c3

◆

= ⇡
24 lim

c!1

✓ h
(d2+16c2)3/2 �64c3

i

c

◆
is type

1
1 ;

we apply L’Hôpital’s Rule to get
⇡

24
lim
c!1


3

2

�
d2 + 16c2

�1/2
(32c)� 192c2

�

= 2⇡ lim
c!1

c
h�
d2 + 16c2

�1/2 � 4c2
i

which on rationalising gives

2⇡ lim
c!1

c
⇥�
d2 + 16c2

�
� 16c2

⇤
h
(d2 + 16c2)1/2 + 4c2

i =
⇡d2

4
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3.3 Maximum and Minimum
Values

1. (a) f(x) =
1

x2 � 1
on (0, 1) [ (1,1)

f 0(x) =
�2x

(x2 � 1)2

x = 0 is critical point.
f(0) = �1 is absolute maximum value but
0 is not included. Hence f has no absolute
extrema on interval (0, 1) [ (1,1).

(b) f(x) =
1

x2 � 1
on (-1, 1)

f 0(x) =
�2x

(x2 � 1)2

x = 0 is the only critical point.
f(0) = �1 is absolute maximum value of
f(x). Hence f has no absolute minimum
on interval (�1, 1)

(c) No absolute extrema. (They would be at
the endpoints which are not included in
the interval.)

(d) f(x) =
1

x2 � 1
on


�1

2
,
1

2

�

f 0(x) =
�2x

(x2 � 1)2

x = 0 is critical point.
f has an absolute maximum value of
f(0) = �1. f assumes its minimum at

two points x = ±1

2
and minimum value is

f

✓
�1

2

◆
= f

✓
1

2

◆
= �4

3
.

2. (a) f(x) =
x2

(x� 1)2
on (�1, 1) [ (1,1)

f 0(x) =
2x(x� 1)2 � 2x2 (x� 1)

(x� 1)4
= 0

x = 0 is critical point.
f has an absolute minimum value of
f(0) = 0 at x = 0 and no absolute maxi-
mum occurs.

(b) f(x) =
x2

(x� 1)2
on (�1, 1)

f 0(x) =
2x(x� 1)2 � 2x2 (x� 1)

(x� 1)4
= 0

x = 0 is critical point.
f has an absolute minimum value f(0) =
0 at x = 0 and there is no absolute maxi-
mum.

(c) The function does not have a maximum
or minimum. The minimum would be at
x = 0 (not included in this interval) while

the asymptote at x = 1 precludes an ab-
solute maximum.

(d) f(x) =
x2

(x� 1)2
on [�2, �1]

f 0(x) =
2x(x� 1)2 � 2x2 (x� 1)

(x� 1)4

=
�2x(x� 1)

(x� 1)4
< 0 on [�2, �1]

f(x) is decreasing function on [�2, �1] .
f(x) is maximum at x = �2 and mini-
mum at x = �1.

3. (a) f(x) = x2 + 5x� 1
f 0(x) = 2x+ 5
2x+ 5 = 0
x = �5/2 is a critical number.
This is a parabola opening upward, so we
have a minimum at x = �5/2.

(b) f(x) = �x2 + 4x+ 2
f 0(x) = �2x+ 4 = 0 when x = 2.
This is a parabola opening downward, so
we have a maximum at x = 2.

4. (a) f(x) = x3 � 3x+ 1
f 0(x) = 3x2 � 3

= 3(x2 � 1)
= 3(x+ 1)(x� 1) = 0

x = ±1 are critical numbers and f(1) =
�1, f(�1) = 3.
This is a cubic with a positive leading co-
e�cient so x = �1 is a local max, x = 1
is a local min.

(b) f(x) = �x3 + 6x2 + 2
f 0(x) = �3x2 + 12x = �3x(x + 4) = 0
when x = 0 and x = �4.
f(0) = 2, f(�4) = 162.
This is a cubic with a negative leading
coe�cient so x = 0 is a local min and
x = �4 is a local max.

5. (a) f(x) = x3 � 3x2 + 6x
f 0(x) = 3x2 � 6x+ 6
3x2 � 6x+ 6 = 3(x2 � 2x+ 2) = 0
We can use the quadratic formula to find
the roots, which are x = 1±

p
�1. These

are imaginary so there are no real critical
points.

(b) f (x) = �x3 + 3x2 � 3x
f 0 (x) = �3x2 + 6x� 3

= 3
�
�x2 + 2x� 1

�

= �3
�
x2 � 2x+ 1

�

= �3(x� 1)2



166 CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

f 0 (x) = 3(x� 1)2= 0 when x = 1.
Since f(x) is a cubic with only one critical
number it is neither local min nor max.

6. (a) f (x) = x4 � 2x2 + 1
f 0 (x) = 4x3 � 4x

= 4x
�
x2 � 1

�

= 4x (x� 1) (x+ 1)
f 0 (x) = 0 when x = 0, ±1.
x = 0, ±1 are critical numbers. x = 0
is local maximum and x = ±1 are local
minimum.

(b) f (x) = x4 � 3x3 + 2
f 0 (x) = 4x3 � 9x2

= x2 (4x� 9)
f 0 (x) = 0 when x = 0, 9

4 .
x = 0, 9

4 are critical points. x = 9
4 is local

minimum and x = 0 is neither max nor
min.

7. f(x) = x4 � 3x3 + 2
f 0(x) = 4x3 � 9x2

4x3 � 9x2 = x2(4x� 9) = 0
x = 0, 9/4 are critical numbers

5

2

−5

10

3
0

−10

10−1

x = 9/4 is a local min; x = 0 is neither a local
max nor min.

8. f(x) = x4 + 6x2 � 2
f 0(x) = 4x3+12x = 0 when x = 0 (minimum).

1

0

2

4

2

−2

0

−4

−1−2

9. f(x) = x3/4 � 4x1/4

f 0(x) =
3

4x1/4
� 1

x3/4

If x 6= 0, f 0(x) = 0 when 3x3/4 = 4x1/4

x = 0, 16/9 are critical numbers.
x = 16/9 is a local min, x = 0 is a local maxi-
mum.

0

−2

3

−4

1098765

−1

4

−3

−5

210

10. f(x) = (x2/5 � 3x1/5)2

f 0(x) = 2(x2/5 � 3x1/5)

✓
2

5x3/5
� 3

5x4/5

◆

f 0(x) = 0 when x = 35 (minimum) and

x =

✓
3

2

◆5

(maximum).

f 0(x) is undefined when x = 0 (minimum).

250

5

3

150

1

300

6

4

200

2

0
100500
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11. f(x) = sinx cosx on [0, 2⇡]
f 0(x) = cosx cosx+ sinx(� sinx)

= cos2 x� sin2 x
cos2 x� sin2 x = 0
cos2 x = sin2 x
cosx = ± sinx
x = ⇡/4, 3⇡/4, 5⇡/4, 7⇡/4
are critical numbers.
x = ⇡/4, 5⇡/4 are local max, x = 3⇡/4, 7⇡/4
are local min.
Also x = 0 is local minimum and x = 2⇡ is
local maximum.

20
x

65

0.0

−0.5

1

0.5

−0.25

3 4

0.25

12. f(x) =
p
3 sinx+ cosx

f 0(x) =
p
3 cosx�sinx = 0 when tan(x) =

p
3

or x = ⇡/3+ k⇡ for any integer k (maxima for
even k and minima for odd k).

0

x
6543210

2

1

−1

−2

13. f(x) =
x2 � 2

x+ 2
Note that x = �2 is not in the domain of f .

f 0(x) =
(2x)(x+ 2)� (x2 � 2)(1)

(x+ 2)2

=
2x2 + 4x� x2 + 2

(x+ 2)2

=
x2 + 4x+ 2

(x+ 2)
f 0(x) = 0 when x2 +4x+2 = 0, so the critical
numbers are x = �2±

p
2.

x = �2 +
p
2 is a local min; x = �2 +

p
2 is a

local max.

5 10

−10

20

0

−20

−5

10

0−10

14. f(x) =
x2 � x+ 4

x� 1

f 0(x) =
(x� 1)(2x� 1)� (x2 � x+ 4)

(x� 1)2

=
(x� 3)(x+ 1)

(x� 1)2
= 0

when x = �1 (maximum) and x = 3 (mini-
mum). f 0(x) is undefined when x = 1 (not in
domain of f).

−8

0

−20

1086420−2−4−6

20

10

−10

−10

15. f(x) =
ex + e�x

2

f 0(x) =
ex � e�x

2
f 0(x) = 0 when ex = e�x, that is, x = 0.
f 0(x) is defined for all x, so x = 0 is a critical
number. x = 0 is a local min.
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5.0

−5.0

10.0

7.5

2.5

0.0

−2.5
5.02.50.0−2.5−5.0

16. f(x) = xe�2x

f 0(x) = e�2x � 2xe�2x = 0 when x = 1
2 (max-

imum).

5.0

0.0

2

−5.0

54

2.5

3

−2.5

−7.5

1

−10.0

0−1−2−3−4−5

17. f(x) = x4/3 + 4x1/3 + 4x�2/3

f is not defined at x = 0.

f 0(x) =
4

3
x1/3 +

4

3
x�2/3 � 8

3
x�5/3

=
4

3
x�5/3(x2 + x� 2)

=
4

3
x�5/3(x� 1)(x+ 2)

x = �2, 1 are critical numbers.
x = �2 and x = 1 are local minima.

10

50

−8 1086420−2−4

40

30

20

−10 −6

18. f(x) = x7/3 � 28x1/3

f 0(x) =
7

3
x4/3 � 28

3
x�2/3 = 0 when x = �2

(local maximum) and x = 2 (local minimum).

f 0(x) is undefined at x = 0 (neither)

30

8

−10

−30

20

10

10

0

−20

6420−2−4−6−8−10

19. f(x) = 2x
p
x+ 1 = 2x(x+ 1)1/2

Domain of f is all x � �1.
f 0(x) = 2(x+ 1)1/2 + 2x

�
1
2 (x+ 1)�1/2

�

=
2(x+ 1) + xp

x+ 1

=
3x+ 2p
x+ 1

f 0(x) = 0 for 3x+ 2 = 0, x = �2/3.
x = �2/3 is critical numbers.
f 0(x) is undefined for x = �1.

25

15

2

5

54

20

3

10

0
1

−5

0−1−2−3−4−5

x = �2/3 is a local min. x = �1 is an end-
point and local maximum.

20. f(x) =
xp

x2 + 1

f 0(x) =

p
x2 + 1� x2

p
x2 + 1

x2 + 1

=
1

(x2 + 1)3/2
6= 0 for any x, and f(x)

has no critical points.
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1.0

0.0
5

−1.0

0.5

10

−0.5

0−5−10

21. Because of the absolute value sign, there may
be critical numbers where the function x2 � 1
changes sign; that is, at x = ±1. For x > 1
and for x < �1, f(x) = x2� 1 and f 0(x) = 2x,
so there are no critical numbers on these in-
tervals. For �1 < x < 1, f(x) = 1 � x2 and
f 0(x) = �2x, so 0 is a critical number.

0

3210−1−2−3

8

6

4

2

The graph confirms this analysis and shows
there is a local max at x = 0 and local min
at x = ±1.

22. f (x) = 3
p
(x3 � 3x2) =

�
x3 � 3x2

� 1
3

f 0 (x) =
1

3
· 3x2 � 6x

(x3 � 3x2)
2
3

=
1

3
· 3x2 � 6x

(x3 � 3x2)
2
3

= 0

when x = 2.
x = 2 is critical number. x = 2 is local mini-
mum. x = 0 is local maximum.

4

6

4−2 2

−2

6

8

0

−8

−6
x

y

−8 −4

−10

0 108

−6

−4

2

23. First, let’s find the critical numbers for x < 0.
In this case,
f(x) = x2 + 2x� 1
f 0(x) = 2x+ 2 = 2(x+ 1)
so the only critical number in this interval is
x = �1 and it is a local minimum.
Now for x > 0,
f(x) = x2 � 4x+ 3
f 0(x) = 2x� 4 = 2(x� 2)
so the only critical number is x = 2 and it is a
local minimum.

2

x

−3

0

5

−1

3

−2

1

−5

−5

−4 2 5
−1

0

4

431−2

−4

−3

Finally, since f is not continuous and hence not
di↵erentiable at x = 0. Indeed, x = 0 is a local
maximum.

24. f 0(x) = cosx for �⇡ < x < ⇡, and f 0(x) =
� sec2 x for |x| � ⇡.
f 0(x) = 0 for x = �⇡/2 (minimum) and
x = ⇡/2 (maximum).

0.0

x
10.0

7.5

−2.5

0.0

5.0

7.5

2.5

2.5

y

10.0

−2.5 5.0

f 0(x) is undefined for x = (2k+1)⇡2 for integers
k 6= �1 or 0 (not in domain of f).

25. f(x) = x3 � 3x+ 1
f 0(x) = 3x2 � 3 = 3(x2 � 1)
f 0(x) = 0 for x = ±1.

(a) On [0, 2], 1 is the only critical number.
We calculate:
f(0) = 1
f(1) = �1 is the abs min.
f(2) = 3 is the abs max.
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(b) On the interval [�3, 2], we have both 1
and �1 as critical numbers.
We calculate:
f(�3) = �17 is the abs min.
f(�1) = 3 is the abs max.
f(1) = �1
f(2) = 3 is also the abs max.

26. f(x) = x4 � 8x2 + 2
f 0(x) = 4x3�16x = 0 when x = 0 and x = ±2.

(a) On [�3, 1]:
f(�3) = 11, f(�2) = �14, f(0) = 2, and
f(1) = �5.
The abs min on this interval is f(�2) =
�14 and the abs max is f(�3) = 11.

(b) On [�1, 3]:
f(�1) = �5, f(2) = �14, and f(3) = 11.
The abs min on this interval is f(2) = �14
and the abs max is f(3) = 11.

27. f(x) = x2/3

f 0(x) = 2
3x

�1/3 = 2
3 3px

f 0(x) 6= 0 for any x, but f 0(x) undefined for
x = 0, so x = 0 is critical number.

(a) On [�4, �2]:
0 62 [�4,�2] so we only look at endpoints.
f(�4) = 3

p
16 ⇡ 2.52

f(�2) = 3
p
4 ⇡ 1.59

So f(�4) = 3
p
16 is the abs max and

f(�2) = 3
p
4 is the abs min.

(b) On [�1, 3], we have 0 as a critical num-
ber.
f(�1) = 1
f(0) = 0 is the abs min.
f(3) = 32/3 is the abs max.

28. f(x) = sinx+ cosx
f 0(x) = cosx� sinx = 0 when x = ⇡

4 + k⇡ for
integers k.

(a) On [0, 2⇡]:
f(0) = 1, f(⇡/4) =

p
2, f(5⇡/4) = �

p
2,

and f(2⇡) = 1.
The abs min on this interval is f(5⇡/4) =
�
p
2 and the abs max is f(⇡/4) =

p
2.

(b) On [⇡/2, ⇡]:
f(⇡/2) = 1, f(⇡) = �1.
The abs min on this interval is f(⇡) = �1
and the abs max is f(⇡/2) = 1.

29. f(x) = e�x2

f 0(x) = �2xe�x2

Hence x = 0 is the only critical number.

(a) On [0, 2]:
f(0) = 1 is the abs max.
f(2) = e�4 is the abs min.

(b) On [�3, 2]:
f(�3) = e�9 is the abs min.
f(0) = 1 is the abs max.
f(2) = e�4

30. f(x) = x2e�4x

f 0(x) = 2xe�4x�4x2e�4x = 0 when x = 0 and
x = 1/2.

(a) On [�2, 0]:
f(�2) = 4e8, f(0) = 0.
The abs min is f(0) = 0 and the abs max
is f(�2) = 4e8.

(b) On [0, 4]:
f(1/2) = e�2/4, f(4) = 16e�16.
The abs min is f(0) = 0 and the abs max
is f(1/2) = e�2/4.

31. f(x) =
3x2

x� 3
Note that x = 3 is not in the domain of f .

f 0(x) =
6x(x� 3)� 3x2(1)

(x� 3)2

=
6x2 � 18x� 3x2

(x� 3)2

=
3x2 � 18x

(x� 3)2

=
3x(x� 6)

(x� 3)2

The critical points are x = 0, x = 6.

(a) On [�2, 2]:
f(�2) = �12/5
f(2) = �12
f(0) = 0
Hence abs max is f(0) = 0 and abs min
is f(2) = �12.

(b) On [2, 8], the function is not continuous
and in fact has no absolute max or min.

32. f(x) = tan�1(x2)

f 0(x) =
2x

1 + x4
= 0 when x = 0.

(a) On [0, 1]:
f(0) = 0 and f(1) = ⇡/4.
The abs min is f(0) = 0 and the abs max
is f(1) = ⇡/4.

(b) On [�3, 4]:
f(�3) ⇡ 1.46, f(0) = 0, and f(4) ⇡ 1.51.
The abs min is f(0) = 0 and the abs max
is f(4) = tan�1 16.
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33. f(x) =
x

x2 + 1

f 0(x) =

�
x2 + 1

�
· 1� x · (2x)

(x2 + 1)2

=

�
x2 + 1

�
· 1� x · (2x)

(x2 + 1)2
=

�x2 + 1

(x2 + 1)2
= 0

when x = ±1.
x = ±1 are critical numbers.

(a) On [0, 2]:

f(0) =
0

02 + 1
= 0 is the abs minimum.

f(2) =
2

22 + 1
=

2

5

f(1) =
1

2
is the abs maximum.

(b) On [�3, 3]:

f(3) = � 3

10

f(�1) = �1

2
is the abs minimum.

f(1) =
1

2
is the abs maximum.

f(3) =
3

10

34. f(x) =
3x

x2 + 16

f 0(x) =

�
x2 + 16

�
· 3� 3x · (2x)

(x2 + 16)2

=

�
x2 + 16

�
· 3� 3x · (2x)

(x2 + 16)2
= 0

=
�3x2 + 48

(x2 + 16)2
= 0 when x = ±4.

x = ±4 are critical numbers.

(a) On [0, 2]:

f(0) =
0

02 + 16
= 0 is the abs minimum.

f(2) =
2

22 + 1
=

3

10
is the abs maximum.

(b) on [0, 6]:
f(0) = 0 is abs minimum.

f(4) =
3

8
is abs maximum.

f(6) =
9

26

35. f 0(x) = 4x3 � 6x+ 2 = 0 at about x = 0.3660,
�1.3660 and at x = 1.

(a) f(�1) = �3, f(1) = 1.
The absolute min is (�1,�3) and
the absolute max is approximately
(0.3660, 1.3481).

(b) The absolute min is approximately
(�1.3660,�3.8481) and the absolute max
is (�3, 49).

36. f 0(x) = 6x5 � 12x � 2 = 0 at about �1.3673,
�0.5860 and 1.4522.

(a) f(�1) = 1, f(1) = �3. f(�0.5860) =
1.8587.
The absolute min is f(1) = �3
and the absolute max is approximately
f(�0.5860) = 1.8587.

(b) f(�2) = 21 and f(2) = 13. f(�1.3673) =
�.2165 and f(1.4522) = �5.8675.
The absolute min is approximately
f(1.4522) = �5.8675 and the absolute
max is f(�2) = 21.

37. f 0(x) = sinx+ x cosx = 0 at x = 0 and about
2.0288 and 4.9132.

(a) The absolute min is (0, 3) and the abso-
lute max is (±⇡/2, 3 + ⇡/2).

(b) The absolute min is approximately
(4.9132,�1.814) and the absolute max is
approximately (2.0288, 4.820).

38. f 0(x) = 2x + ex = 0 at approximately x =
�0.3517.

(a) f(0) = 1 and f(1) = 1 + e ⇡ 3.71828.
f 0(x) 6= 0 on this interval, so the absolute
min is f(0) = 1 and the absolute max is
f(1) = 1 + e ⇡ 3.71828.

(b) f(�2) ⇡ 4.1353 and f(2) ⇡ 11.3891.
f(�0.3517) = 0.8272.
The absolute min is approximately
f(�0.3517) = 0.8272 and the absolute
max is approximately f(2) = 11.3891.

39. On [�2, 2], the absolute maximum is 3 and the
absolute minimum doesn’t exist.

y

1

−2.5

x

5.0

2

2.5

0.0

−5.0

0−1−2
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40. On (�2, 2) minimum is 2 and the maximum
does not exist. (The maximum would exist at
the endpoints which are not included in the in-
terval.)

2

1

0

x
210-1-2

y

6

5

4

3

41. On (�2, 2) the absolute maximum is 4 and the
absolute minimum is 2.

y

5

4

3

2

1

0

x

210-1-2

42. Absolute extrema do not exist because of the
vertical asymptote.

y

x

10

2

5

0
1

-5

-10

0-1-2

43. f(x) = x3 + cx+ 1
f 0(x) = 3x2 + c
We know (perhaps from a pre-calculus course)
that for any cubic polynomial with positive
leading coe�cient, when x is large and posi-
tive the value of the polynomial is very large
and positive, and when x is large and negative,
the value of the polynomial is very large and
negative.

Type 1: c > 0. There are no critical numbers.
As you move from left to right, the graph of f
is always rising.
Type 2: c < 0 There are two critical numbers
x = ±

p
�c/3. As you move from left to right,

the graph rises until we get to the first critical
number, then the graph must fall until we get
to the second critical number, and then the
graph rises again. So the critical number on
the left is a local maximum and the critical
number on the right is a local minimum.
Type 3: c = 0. There is only one critical num-
ber, which is neither a local max nor a local
min.

44. The derivative of a fourth-order polynomial
is a cubic polynomial. We know that cubic
polynomials must have one root, and can have
up to three roots. If p(x) is a fourth-order
polynomial, we know that

lim
x!1

p(x) = lim
x!�1

p(x) = 1

if the coe�cient of x4 is positive, and
is �1 if the coe�cient of x4 is nega-
tive. This guarantees that at least one of
the critical numbers will be an extremum.

2

4

1
x

8

12

0
-1 0-2

3.2

3

2.8

2.6

2.4

2.2

2

x
21.510.50-0.5-1
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1

0

x
210-1-2

6

5

4

3

2

-1

45. f(x) = x3 + bx2 + cx+ d
f 0(x) = 3x2 + 2bx+ c
The quadratic formula says that the critical
numbers are

x =
�2b±

p
4b2 � 12c

6

=
�b±

p
b2 � 3c

3
.

So if c < 0, the quantity under the square root
is positive and there are two critical numbers.
This is like the Type 2 cubics in Exercise 53.
We know that as x goes to infinity, the poly-
nomial x3 + bx2 + cx + d gets very large and
positive, and when x goes to minus infinity, the
polynomial is very large but negative. There-
fore, the critical number on the left must be a
local max, and the critical number on the right
must be a local min.

46. f 0(x) = 3x2 + 2bx + c = 0 when x =
�2b±

p
4b2 � 12c

6
. Adding these values to-

gether yields �2b/3.

47. f(x) = x4 + cx2 + 1
f 0(x) = 4x3 + 2cx = 2x(2x2 + c)
So x = 0 is always a critical number.

Case 1: c � 0. The only solution to 2x(2x2 +
c) = 0 is x = 0, so x = 0 is the only critical
number. This must be a minimum, since we
know that the function x4 + cx2 + 1 is large
and positive when |x| is large (so the graph is
roughly U-shaped). We could also note that
f(0) = 1, and 1 is clearly the absolute mini-
mum of this function if c � 0.

Case 2: c < 0. Then there are two other crit-
ical numbers x = ±

p
�c/2. Now f(0) is still

equal to 1, but the value of f at both new crit-
ical numbers is less than 1. Hence f(0) is a
local max, and both new critical numbers are
local minimums.

48. f 0(x) = 4x3 + 3cx2 = 0 when x = 0 and
x = �3c/4. Only x = �3c/4 will be an ex-
treme point (an absolute minimum). x = 0
will be an inflection point.

49. Since f is di↵erentiable on (a, b), it is continu-
ous on the same interval. Since f is decreasing
at a and increasing at b, f must have a local
minimum for some value c, where a < c < b.
By Fermat’s theorem, c is a critical number for
f . Since f is di↵erentiable at c, f 0(c) exists,
and therefore f 0(c) = 0.

50. Graph of f(x) = x2 + 1 and g(x) = lnx:

y

2.5

−2.5
x

5.0

5.0

2.5

0.0

−5.0

0.0−2.5−5.0

h(x) = f(x)� g(x) = x2 + 1� lnx
h0(x) = 2x� 1/x = 0
2x2 = 1
x = ±

p
1/2

x =
p

1/2 is min
f 0(x) = 2x
g0(x) = 1/x

f 0
⇣p

1/2
⌘
= 2
p
1/2 =

p
2

g0
⇣p

1/2
⌘
= 1p

1/2
=

p
2

So the tangents are parallel. If the tangent
lines were not parallel, then they would be
getting closer together in one direction. Since
the tangent lines approximate the curves, this
should mean the curves are also getting closer
together in that direction.

51. Graph of f(x) =
x2

x2 + 1
:



174 CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

0.6

0.8

0.2

0.4

0

x

543210

f 0(x) =
2x(x2 + 1)� x2(2x)

(x2 + 1)2

=
2x

(x2 + 1)2

f 00(x) =
2(x2 + 1)2 � 2x · 2(x2 + 1) · 2x

(x2 + 1)4

=
2(x2 + 1)

⇥
(x2 + 1)� 4x2

⇤

(x2 + 1)4

=
2
⇥
1� 3x2

⇤

(x2 + 1)3

f 00(x) = 0 for x = ± 1p
3
,

x = � 1p
3

/2 (0,1)

x =
1p
3
is steepest point.

52. Graph of f(x) = e�x2

:

1

0.8

0.6

0.4

0.2

0

x
210-1-2

f(x) is steepest where f 0(x) = �2xe�x2

is
maximum.
f 00(x) = �2e�x2

+ 4x2e�x2

= 0 when x =
±
p
2/2. This is where f(x) is steepest.

53. With t = 90 and r = 1/30, we have

P (n) =
3n

n!
e�3. We compute P for the first few

values of n:

n P

0 e�3

1 3e�3

2 4.5e�3

3 4.5e�3

4 3.375e�3

Once n > 3, the values of P will decrease as
n increases. This is due to the fact that to
get P (n + 1) from P (n), we multiply P (n)
by 3/(n + 1). Since n > 3, 3/(n + 1) < 1
and so P (n + 1) < P (n). Thus we see from
the table that P is maximized at n = 3 (it
is also maximized at n = 2). It makes sense
that P would be maximized at n = 3 because

(90 mins)

✓
1

30
goals/min

◆
= 3 goals.

54. f(p) = pm(1� p)n�m

f 0(p) = mpm�1(1� p)n�m

� pm(n�m)(1� p)n�m�1

To find the critical numbers, we set f 0(p) = 0
which gives
mpm�1(1� p)n�m

� pm(n�m)(1� p)n�m�1 = 0
mpm�1(1� p)n�m

= pm(n�m)(1� p)n�m�1

m(1� p) = p(n�m)
m�mp = pn� pm
p = m/n.
Since this is the only critical number, f(p) is
continuous, f(0) = f(1) = 0 and f(m/n) > 0,
p = m/n must maximize f(p).

55. y = x5 � 4x3 � x+ 10, x 2 [�2, 2]
y0 = 5x4 � 12x2 � 1
x = �1.575, 1.575 are critical numbers of y.
There is a local max at x = �1.575, local min
at x = 1.575.
x = �1.575 represents the top and x = 1.575
represents the bottom of the roller coaster.
y00(x) = 20x3 � 24x = 4x(5x2 � 6) = 0
x = 0, ±

p
6/5 are critical numbers of y0. We

calculate y0 at the critical numbers and at the
endpoints x = ±2:
y0(0) = �1

y0
⇣
±
p
6/5
⌘
= �41/5

y0 (±2) = 31
So the points where the roller coaster is mak-
ing the steepest descent are x = ±

p
6/5, but

the steepest part of the roller coast is during
the ascents at ±2.

56. To maximize entropy, we find the critical num-
bers of H.
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H 0(x) = � lnx� 1 + ln(1� x) + 1 = 0
where lnx = ln(1�x), or where x = 1�x. That
is x = 1/2. This maximizes unpredictablility
since for this value, errors and non-errors are
equally likely.

57. W (t) = a · e�be�t

as t ! 1,�be�t ! 0, so W (t) ! a.

W 0(t) = a · e�be�t · be�t

as t ! 1, be�t ! 0, so W 0(t) ! 0.

W 00(t) = (a · e�be�t · be�t) · be�t

+ (a · e�be�t

) · (�be�t)

= a · e�be�t · be�t [be�t � 1]
W 00(t) = 0 when be�t = 1
e�t = b�1

� t = ln b�1

t = ln b
W 0(ln b) = a · e�be� ln b · be� ln b

= a · e�b( 1
b

) · b · 1
b = ae�1

Maximum growth rate is ae�1 when t = ln b.

58. R0([S]) =
(Km + [S])Rm � [S]Rm

(Km + [S])2
6= 0. The

function doesn’t have a true maximum, but
lim

[S]!1
R = Rm. The rate of reaction ap-

proaches Rm but never reaches it.

59. Label the triangles as illustrated.

x

A
B

2

1

tan(A+B) = 3/x
A+B = tan�1 (3/x)

tanB = 1/x
B = tan�1(1/x)

Therefore,
A = (A+B)�B
A = tan�1 (3/x)� tan�1 (1/x)
dA

dx
=

�3/x2

1 + (3/x)2
� �1/x2

1 + (1/x)2

=
1

x2 + 1
� 3

x2 + 9
The maximum viewing angle will occur at a
critical value.
dA

dx
= 0

1

x2 + 1
=

3

x2 + 9
x2 + 9 = 3x2 + 3
2x2 = 6
x2 = 3
x =

p
3 ft ⇡ 1.73 ft

This is a maximum because when x is large
and when x is a little bigger than 0, the angle
is small.

60. (a) For the hockey player, m\AHB is the
shooting angle ✓.

A
Q
Q
Q

Q
Q
Q

Q
Q
Q

Q
Q
Q

QQ

B

H

6 1

d

A
A
A
A
A
A
A
A
AA

Therefore,

✓ = tan�1

✓
7

d

◆
� tan�1

✓
1

d

◆

Hence,

✓0 =
1

1 +
�
49
d2

�
✓
�7

d2

◆
� 1

1 +
�

1
d2

�
✓
�1

d2

◆

=
�7

d2 + 49
+

1

d2 + 1

To get the maximum angle,

✓0 =
�7

d2 + 49
+

1

d2 + 1
= 0

�7d2 � 7 + d2 + 49 = 0
6d2 = 42
d =

p
7

(b) For the hockey player, m\AHB is the
shooting angle ✓.

A
@
@
@

@
@
@

@
@
@@

B

H

5 1

d

�
�
�
�

�
�
�

�
��
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Therefore,

✓ = tan�1

✓
5

d

◆
+ tan�1

✓
1

d

◆

Hence,

✓0 =
1

1 +
�
25
d2

�
✓
�5

d2

◆
+

1

1 +
�

1
d2

�
✓
�1

d2

◆

= � 5
d2+25 � 1

d2+1

The function is decreasing as the deriva-
tive is negative. Hence the angle is maxi-
mum when ✓ is minimum = 0.

(c) For the hockey player, m\AHC is the
shooting angle, ✓.

A C
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

B

H

2 1

d

4
@
@
@
@
@
@
@
@
@@

C
C
C
C
C
C
C
C
CC

Therefore,

✓ = tan�1

✓
7

d

◆
� tan�1

✓
5

d

◆

Hence,

✓0 =
1

1 +
�
49
d2

�
✓
�7

d2

◆
� 1

1 +
�
25
d2

�
✓
�5

d2

◆

= � 7
d2+49 + 5

d2+25

To get the maximum angle,

✓0 = � 7

d2 + 49
+

5

d2 + 25
= 0

�7d2 � 175 + 5d2 + 245 = 0
2d2 = 70
d =

p
35

3.4 Increasing and Decreasing
Functions

1. y = x3 � 3x+ 2
y0 = 3x2 � 3 = 3(x2 � 1)

= 3(x+ 1)(x� 1)
x = ±1 are critical numbers.
(x + 1) > 0 on (�1, 1), (x + 1) < 0 on
(�1, �1)
(x�1) > 0 on (1, 1), (x�1) < 0 on (�1, �1)
3(x + 1)(x � 1) > 0 on (1, 1) [ (�1, �1) so

y is increasing on (1, 1) and on (�1, �1)
3(x+1)(x� 1) < 0 on (�1, 1), so y is decreas-
ing on (�1, 1).
y00 = 6x
y00 = �6 < 0 at x = �1
Hence the function is a local maximum at
x = �1.
y00 = 6 > 0 at x = 1. Hence y(1) = 0 is a local
minimum.

y

2

−20

x

40

4

20

0

−40

0−2−4

2. y = x3 + 2x2 + 1
y0 = 3x2 + 4x = x(3x+ 4)
The function is increasing when x < � 4

3 , de-
creasing when � 4

3 < x < 0, and increasing
when x > 0.
y00 = 6x+ 4
y00 = �12 < 0 at x = � 4

3
Hence f(� 4

3 ) is a local maximum at x = � 4
3 .

y00 = 4 > 0 at x = 0
Hence y(0) is a local minimum at x = 0.

x
10.5

4

3

0

2

1

-0.5
0

-1

-1

-2

-1.5-2-2.5

3. y = x4 � 8x2 + 1
y0 = 4x3 � 16x = 4x(x2 � 4)

= 4x(x� 2)(x+ 2)
x = 0, 2,�2 are critical numbers.
4x > 0 on (0, 1), 4x < 0 on (�1, 0)
(x� 2) > 0 on (2, 1), (x� 2) < 0 on (�1, 2)
(x + 2) > 0 on (�2, 1), (x + 2) < 0 on
(�1, �2)
4(x � 2)(x + 2) > 0 on (�2, 0) [ (2, 1), so
the function is increasing on (�2, 0) and on
(2, 1).



3.4. INCREASING AND DECREASING FUNCTIONS 177

4(x� 2)(x+2) < 0 on (�1, �2)[ (0, 2), so y
is decreasing on (�1, �2) and on (0, 2).
y00 = 12x2 � 16
At x = 0, y00 < 0. Hence y(0) is a local maxi-
mum at x = 0.
y00 = 12(±2)2 � 16 > 0 at x = ±2. Hence
y(±2) are local minima at x = ±2.

y

2

−20

x

40

4

20

0

−40

0−2−4

4. y = x3 � 3x2 � 9x+ 1
y0 = 3x2 � 6x� 9 = 3(x� 3)(x+ 1).
The function is increasing when x < �1, de-
creasing when �1 < x < 3, and increasing
when x > 3.
y00 = 6x� 6
y00 = �12 < 0 at x = �1. Hence the function
is a local maximum at x = �1.
y00 = 12 > 0 at x = 3. Hence the function is a
local minimum at x = 3.

x
420-2

20

10

0

-10

-20

-30

-40

5. y = (x+ 1)2/3

y0 = 2
3 (x+ 1)�1/3 = 2

3 3px+1

y0 is not defined for x = �1
2

3 3px+1
> 0 on (�1,1), y is increasing

2
3 3px+1

< 0 on (�1,�1), y is decreasing

The graph has minimum at x = �1.

y

−1
x

1

2−2

4

3

2

0

40−4

6. y = (x� 1)1/3

y0 = 1
3 (x� 1)�2/3.

The function is increasing for all x. The slope
approaches vertical as x approaches 1.
The graph has no extrema.

x
420-2

1.5

1

0.5

0

-0.5

-1

-1.5

7. y = sinx+ cosx
y0 = cosx� sinx = 0
cosx = sinx
x = ⇡/4, 5⇡/4, 9⇡/4, etc. cosx� sinx > 0 on
(�3⇡/4,⇡/4) [ (5⇡/4, 9⇡/4) [ . . .
cosx � sinx < 0 on (⇡/4, 5⇡/4) [
(9⇡/4, 13⇡/4) [ . . .
So y = sinx+ cosx is decreasing on
(⇡/4, 5⇡/4) , (9⇡/4, 13⇡/4),
etc., and is increasing on
(�3⇡/4,⇡/4) , (5⇡/4, 9⇡/4), etc.
y00 = � sinx� cosx

y00 = � 2p
2
< 0 at x = ⇡/4, x = 9⇡/4, etc.

Hence the function is local maximum at
x = ⇡/4, x = 9⇡/4, etc.
y00 =

p
2 > 0 at x = 5⇡/4, x = 13⇡/4 etc.

Hence the function is local minimum at
x = 5⇡/4, x = 13⇡/4 etc.
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y

0

−2

x

3

2

5
−1

−5 100−10

1

−3

8. y = sin2 x
y0 = 2 sinx cosx.
The function is increasing for 0 < x < ⇡

2 , and
decreasing for ⇡

2 < x < ⇡, and this pattern re-
peats with period ⇡.
y00 = 2 cos 2x
y00 = �2 < 0 at x = ⇡/2, x = 3⇡/2, etc.
Hence the function is local maximum at x =
⇡/2, x = 3⇡/2, etc.
y00 =

p
2 > 0 at x = 0, x = ⇡, etc.

Hence the function is a local minimum x = 0,
x = ⇡, etc.

0.6

0.4

0.2

x

0
420-2

1

0.8

9. y = ex
2�1

y0 = ex
2�1 · 2x = 2xex

2�1

x = 0
2xex

2�1 > 0 on (0,1), y is increasing

2xex
2�1 < 0 on (�1, 0), y is decreasing

y00 = 2ex
2�1

⇥
2x2 + 1

⇤

y00 = 0.736 > 0 at x = 0. Hence the function
is a local minimum at x = 0.

y

10

8

6

4

2

0

x

210-1-2

10. y = ln(x2 � 1)

y0 =
2x

x2 � 1
.

The function is defined for |x| > 1. The func-
tion is decreasing for x < �1 and increasing
for x > 1.
The graph has no extrema.

2

-4
0

-2

-2

-4

x
420

11. y = x4 + 4x3 � 2
y0 = 4x3 + 12x2 = 4x2(x+ 3)
Critical numbers are x = 0, x = �3.
4x2(x+ 3) > 0 on (�3, 0) [ (0,1)
4x2(x+ 3) < 0 on (�1,�3)
Hence x = �3 is a local minimum and x = 0
is not an extremum.

12. y = x5 � 5x2 + 1
y0 = 5x4 � 10x = 5x(x3 � 2).
At x = 0 the slope changes from positive
to negative indicating a local maximum. At
x = 3

p
2 the slope changes from negative to

positive indicating a local minimum.

13. y = xe�2x

y0 = 1 · e�2x + x · e�2x(�2)
= e�2x � 2xe�2x

= e�2x(1� 2x)
x = 1

2
e�2x(1� 2x) > 0 on (�1, 1/2)
e�2x(1� 2x) < 0 on (1/2,1)
So y = xe�2x has a local maximum at x = 1/2.
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14. y = x2e�x

y0 = 2xe�x � x2e�x = xe�x(2� x).
At x = 0 the slope changes from negative to
positive indicating a local minimum. At x = 2
the slope changes from positive to negative in-
dicating a local maximum.

15. y = tan�1(x2)

y0 =
2x

1 + x4

Critical number is x = 0.
2x

1 + x4
> 0 for x > 0

2x

1 + x4
< 0 for x < 0. Hence x = 0 is a local

minimum.

16. y = sin�1
�
1� 1

x2

�

y0 =
2

x3
· 1q

1� (1� 1
x2 )2

.

The derivative is never 0 and is defined where
the function is defined, so there are no critical
points.

17. y =
x

1 + x3
Note that the function is not de-

fined for x = �1.

y0 =
1(1 + x3)� x(3x2)

(1 + x3)

=
1 + x3 � 3x3

(1 + x3)2

=
1� 2x3

(1 + x3)2

Critical number is x = 3
p
1/2

y0 > 0 on (�1,�1) [ (�1,� 3
p
1/2)

y0 < 0 on ( 3
p
1/2,1)

Hence x = 3
p
1/2 is a local max.

18. y =
x

1 + x4

y0 =
(1 + x4)� 4x4

(1 + x4)2
=

1� 3x4

(1 + x4)2
.

At x = � 4
p
1/3 the slope changes from nega-

tive to positive indicating a local minimum. At
x = 4

p
1/3 the slope changes from positive to

negative incicating a local maximum.

19. y =
p
x3 + 3x2 = (x3 + 3x2)1/2

Domain is all x � �3.

y0 =
1

2
(x3 + 3x2)�1/2(3x2 + 6x)

=
3x2 + 6x

2
p
x3 + 3x2

=
3x(x+ 2)

2
p
x3 + 3x2

x = 0,�2,�3 are critical numbers.
y0 undefined at x = 0,�3

y0 > 0 on (�3,�2) [ (0,1)
y0 < 0 on (�2, 0)
So y =

p
x3 + 3x2 has local max at x = �2,

local min at x = 0, �3.

20. y = x4/3 + 4x1/3

y0 =
4

3
x1/3 +

4

3x2/3
=

4

3
· x+ 1

x2/3
.

At x = �1 the slope changes from negative to
positive indicating a local minimum. At x = 0
the slope is vertical and is positive on positive
side and negative on negative side, so this is
neither a minimum nor a maximum.

21. y0 = 4x3 � 45x2 � 4x+ 40
Local minima at x = �0.9474, 11.2599; local
max at 0.9374.
Local behavior near x = 0 looks like

y

2,500

−2,500
x

20151050−5

5,000

−10

0

−5,000

Global behavior of the function looks like

y

1

−20
x

40

2

20

0

−40

0−1−2

22. y0 = 4x3 � 48x2 � 0.2x + 0.5 = 0 at ap-
proximately x = �0.1037 (local minimum),
x = 0.1004 (local maximum), and x = 12.003
(local minimum).
Local behavior near x = 0 looks like



180 CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

0-0.2-0.4

0.5

0

-0.5

-1

-1.5

-2

-2.5

x
0.40.2

Global behavior of the function looks like

2000

0

-2000

x

-4000

-6000

151050-5

23. y0 = 5x4 � 600x+ 605
Local minima at x = �1.0084, 10.9079; local
maxima at x = �10.9079, 1.0084.
Local behavior near x = 0 looks like

105

x

1

10

y

2

0

20

−1

−2

0−10−20

Global behavior of the function looks like

y

1

−250

x

500

2

250

0

−500

0−1−2

24. y0 = 4x3 � 1.5x2 � 0.04x + 0.02 = 0 at ap-
proximately x = �0.1121 (local minimum),
x = 0.1223 (local maximum), and x = 0.3648
(local minimum).

x
0.60.40.20-0.2-0.4

1.12

1.08

1.04

1

25. y0 = (2x+ 1)e�2x + (x2 + x+ 0.45)(�2)e�2x

Local min at x = �0.2236; local max at
x = 0.2236.
Local behavior near x = 0 looks like

−2

105

1

−4

−1

x
543210−1

y

2

−3

0

−2

−5

Global behavior of the function looks like
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0.425

x
0.30.20.10.0−0.1−0.2−0.3

y

0.5

0.475

0.45

0.4

26. y0 = 5x4 ln(8x2) + x5 16x

8x2

= x4(5 ln(8x2) + 2) = 0 at approximately
x = ±0.2895 (a local maximum and local min-
imum). The derivative and the function are
undefined at x = 0, but the slope is negative
on both sides (neither a minimum nor a maxi-
mum).
Locally, near x = ±0.2895, the function looks
like

0.002

0.001

0

-0.001

-0.002

x
0.40.20-0.2-0.4

Globally, the function looks like a quintic

x
3210

500

-1

1000

-2

-500

0
-3

-1000

27. One possible graph:

y

10

5

0

-5

-10

x

43210-1-2

28. One possible graph:

x
43210

y

-1

5

-2

4

3

-3

2

1

0

29. One possible graph:

8

2.5

4

−7.5

x
10

y

5.0

0.0

6

−2.5

−5.0

−10.0

20−2−4−6−8−10

30. One possible graph:

x
54

y

3

5

2

4

3

1

2

1

0
0

-1

31. One possible graph:
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2

5.0

40
x

5−2 3

2.5

−4

−5.0

1−1

0.0

−2.5y

−3−5

32. One possible graph:

y

5

−2.5

−5

x
5.02.5

10

0.0

0

−10

−5.0

33. y =
x

x2 � 1

y0 =
x2 � 1� x(2x)

(x2 � 1)2

= � x2 + 1

(x2 � 1)2

There are no values of x for which y0 = 0.
There are no critical points, because the values
for which y0 does not exist (that is, x = ±1)
are not in the domain.
There are vertical asymptotes at x = ±1, and
a horizontal asymptote at y = 0. This can be
verified by calculating the following limits:

limx!±1
x

x2 � 1
= 0

lim
x!�1

x

x2 � 1
= 1

lim
x!1

x

x2 � 1
= �1

8

0

−4

−8

y

10

6

4

2

−2

−6

−10

x
210−2 −1

34. y =
x2

x2 � 1
has vertical asymptotes at x = ±1

and horizontal asymptote y = 1.

y0 =
(x2 � 1)2x� 2x(x2)

(x2 � 1)2
=

�2x

(x2 � 1)2
.

At x = 0 the slope changes from positive to
negative indicating a local maximum.

x
32

y

1

4

0

2

0
-1

-2

-4

-2-3

35. y =
x2

x2 � 4x+ 3
=

x2

(x� 1)(x� 3)
Vertical asymptotes x = 1, x = 3. When |x| is
large, the function approaches the value 1, so
y = 1 is a horizontal asymptote.

y0 =
2x(x2 � 4x+ 3)� x2(2x� 4)

(x2 � 4x+ 3)2

=
2x3 � 8x2 + 6x� 2x3 + 4x2

(x2 � 4x+ 3)2

=
�4x2 + 6x

(x2 � 4x+ 3)2

=
2x(�2x+ 3)

(x2 � 4x+ 3)2

=
2x(�2x+ 3)

[(x� 3)(x� 1)]2

Critical numbers are x = 0 (local min) and
x = 3/2 (local max).
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y

8

8

4

4

−4

−8

0
x

10

10

6

2

6

0

−2

−6

2

−10

−2−4−6−8−10

36. y =
x

1� x4
has vertical asymptotes at x = ±1

and horizontal asymptote y = 0.

y0 =
(1� x4) + 4x4

(1� x4)2
=

1 + 3x4

(1� x4)2
6= 0 for any

x and is defined where the function is defined.

x
32

y

1

4

0

2

0
-1

-2

-4

-2-3

37. y =
xp

x2 + 1

y0 =

p
x2 + 1� x2/

p
x2 + 1

x2 + 1

=
1

(x2 + 1)3/2

The derivative is never zero, so there are no
critical points. To verify that there are hori-

zontal asymptotes at y = ±1: y =
xp

x2 + 1

=
x

p
x2
q

1 + 1
x2

=
x

|x|
q
1 + 1

x2

Thus,

limx!1
x

|x|
q

1 + 1
x2

= 1

lim
x!�1

x

|x|
q

1 + 1
x2

= �1

x

1.6

2

0.0

−0.8

0

−1.6

y

2.0

1.2

3

0.8

0.4

−0.4
1

−1.2

−2.0

−1−2−3

38. y =
x2 + 2

(x+ 1)2
has a vertical asymptote at

x = �1, and a horizontal asymptote at y = 1.

y0 =
2x(x+ 1)2 � (x2 + 2)2(x+ 1)

(x+ 1)4

=
2(x� 2)(x+ 1)

(x+ 1)4

x = 2 is the only critical number. Since
f 0(0) < 0 and f 0(3) > 0, we see that f(2)
is a local minimum.

y

x

6

6

5

4

4

3

2

2

1

0
0-2-4

39. The derivative is

y0 =
�3x4 + 120x3 � 1

(x4 � 1)2
.

We estimate the critical numbers to be approx-
imately 0.2031 and 39.999.
The following graph shows global behavior:

−1

400

0

−200

−400

x

y

500

300

200

100

−100

−300

−500

20−2 1

The following graphs show local behavior:
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30.4

31.2

30.8

30

x

0.50.40.2 0.30 0.1

2E-6

4E-6

3E-6

1E-6

0E0

-1E-6

x

5045403530

40. The derivative is

y0 =
�2x5 + 32x3 � 2x

(x4 � 1)2
.

We estimate the critical numbers to be approx-
imately ±0.251, ±3.992 and x = 0.
The following graph shows global behavior:

8.15

8.05

x

0.40.20-0.4 -0.2

8.25

8.2

8.1

8

The following graphs show local behavior:

y

0.04

0.02

0

-0.02

-0.04

x

-2-2.5-3-3.5-4-4.5-5

8.15

8.05

x

0.40.20-0.4 -0.2

8.25

8.2

8.1

8

41. The derivative is y0 =
�x2 � 120x+ 1

(x2 + 1)2
.

We estimate the critical numbers to be approx-
imately 0.008 and �120.008.
The following graph shows global behavior:

x

1050-5-10

y

100

80

60

40

20

0

The following graphs show local behavior:

0.002

-0.002

x

-50-100-150-250-300-350 -200-400

0.004

0

-0.004

6.0002E1

5.9998E1

6.0004E1

6E1

5.9996E1

x

0.020.0150.005 0.010
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42. The derivative is y0 =
�x2 + 120x� 1

(x2 � 1)2
.

We estimate the critical numbers to be approx-
imately 0.008 and 119.992.
The following graph shows global behavior:

−250

x
3210−1−2−3

y

500

250

0

−500

The following graphs show local behavior:

0.002

-0.002

x

20018016012010080 14060

0.004

0

-0.004

6.0002E1

5.9998E1

6.0004E1

6E1

5.9996E1

x

0.020.0150.005 0.010

43. Let f(x) = 3 + e�x; then f(0) = 4, f 0(x) =
�e�x < 0, so f is decreasing. But f(x) =
3 + e�x = 0 has no solution.

44. Let y1 and y2 be two points in the domain
of f�1 with y1 < y2. Let x1 = f�1(y1) and
x2 = f�1(y2). We want to show x1 < x2. Sup-
pose not. Then x2  x1. But then, since f
is increasing, f(x2)  f(x1). That is y2  y1,
which contradicts our choice of y1 and y2.

45. The domain of sin�1 x is the interval [�1, 1].
The function is increasing on the entire do-
main.

46. sin�1

✓
2

⇡
tan�1 x

◆
is defined for all x. The

derivative,
2

⇡(1 + x2)
q

1� ( 2⇡ tan�1 x)2
> 0

for all x. The function is increasing every-
where.

47. TRUE. If x1 < x2, then g(x1) < g(x2) since
g is increasing, and then f(g(x1)) < f(g(x2))
since f is increasing.

48. We can say that g(1) < g(4) and g(f(1)) <
g(f(4)), but it is not possible to determine the
maximum and minimum values without more
information.

49. f 0(0) = limx!0
f(x)� f(0)

x� 0

= lim
x!0

f(x)

x

= lim
x!0


1 + 2x sin

✓
1

x

◆�
= 1

For x 6= 0,
f 0(x)

= 1 + 2


2x sin

✓
1

x

◆
+ x2

✓
�1

x2

◆
cos

✓
1

x

◆�

= 1 + 4x sin

✓
1

x

◆
� 2 cos

✓
1

x

◆

For values of x close to the origin, the mid-
dle term of the derivative is small, and since
the last term �2 cos(1/x) reaches its minimum
value of�2 in every neighborhood of the origin,
f 0 has negative values on every neighborhood
of the origin. Thus, f is not increasing on any
neighborhood of the origin. This conclusion
does not contradict Theorem 4.1 because the
theorem states that if a function’s derivative
is positive for all values in an interval, then it
is increasing in that interval. In this example,
the derivative is not positive throughout any
interval containing the origin.

50. We have f 0(x) = 3x2, so f 0(x) > 0 for all x 6= 0,
but f 0(0) = 0. Since f 0(x) > 0 for all x 6= 0, we
know f(x) is increasing on any interval not con-
taining 0. We know that if x1 < 0 then x3

1 < 0
and if x2 > 0 then x3

2 > 0. If x1 < 0 and
x2 = 0 then x3

1 < 03 = 0, so f(x) is increasing
on intervals of the form (x1, 0). Similarly, f(x)
is increasing on intervals of the form (0, x2).
Finally, on intervals of the form (x1, x2) where
x1 < 0 < x2, we have x3

1 < 0 < x3
2 so f(x) is

again increasing on these intervals. Thus f(x)
is increasing on any interval.
This does not contradict Theorem 4.1 because
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Theorem 4.1 is not an “if and only if” state-
ment. It says that if f 0(x) > 0, then f is in-
creasing (on that interval) but it does not say
that if f 0(x) is not strictly positive that f is
not increasing.

51. f is continuous on [a, b], and c 2 (a, b) is a
critical number.

(i) If f 0(x) > 0 for all x 2 (a, c) and f 0(x) < 0
for all x 2 (c, b), by Theorem 3.1, f is in-
creasing on (a, c) and decreasing on (c, b),
so f(c) > f(x) for all x 2 (a, c) and
x 2 (c, b). Thus f(c) is a local max.

(ii) If f 0(x) < 0 for all x 2 (a, c) and f 0(x) > 0
for all x 2 (c, b), by Theorem 3.1, f is de-
creasing on (a, c) and increasing on (c, b).
So f(c) < f(x) for all x 2 (a, c) and
x 2 (c, b). Thus f(c) is a local min.

(iii) If f 0(x) > 0 on (a, c) and (c, b), then
f(c) > f(x) for all x 2 (a, c) and f(c) <
f(x) for all x 2 (c, b), so c is not a lo-
cal extremum. If f 0(x) < 0 on (a, c) and
(c, b), then f(c) < f(x) for all x 2 (a, c)
and f(c) > f(x) for all x 2 (c, b), so c is
not a local extremum.

52. If f(a) = g(a) and f 0(x) > g0(x) for all x > a,
then f(x) > g(x) for all x > a. Graphically,
this makes sense: f and g start at the same
place, but f is increasing faster, therefore f
should be larger than g for all x > a. To prove
this, apply the Mean Value Theorem to the
function f(x)� g(x).
If x > a then there exists a number c between
a and x with

f 0(c)� g0(c) =
(f(x)� g(x))� (f(a)� g(a))

x� a
.

Multiply by (x�a) (and recall f(a) = g(a)) to
get (x � a)(f 0(c) � g0(c)) = f(x) � g(x). The
lefthand side of this equation is positive, there-
fore f(x) is greater than g(x).

53. Let f(x) = 2
p
x, g(x) = 3� 1/x.

Then f(1) = 2
p
1 = 2, and g(1) = 3 � 1 = 2,

so f(1) = g(1).

f 0(x) =
1p
x
, g0(x) =

1

x2

So f 0(x) > g0(x) for all x > 1, and

f(x) = 2
p
x > 3� 1

x
= g(x) for all x > 1.

54. Let f(x) = x and g(x) = sinx.
Then f(0) = g(0). f 0(x) = 1. g0(x) = cosx.
cosx  1 for all x, therefore exercise 52 implies
that x > sinx for all x > 0.

55. Let f(x) = ex, g(x) = x+ 1.
Then f(0) = e0 = 1, g(0) = 0 + 1 = 1, so
f(0) = g(0).
f 0(x) = ex, g0(x) = 1
So f 0(x) > g0(x) for x > 0.
Thus f(x) = ex > x+ 1 = g(x) for x > 0.

56. Let f(x) = x� 1 and g(x) = lnx.
Then f(1) = g(1). f 0(x) = 1. g0(x) = 1

x .
1/x  1 for all x > 1, therefore exercise 52
implies that x� 1 > lnx for all x > 1.

57. f(x) = x3 + bx2 + cx+ d
f 0(x) = 3x2 + 2bx+ c
f 0(x) � 0 for all x if and only if
(2b)2 � 4(3)(c)  0
if and only if 4b2  12c
if and only if b2  3c.
Using the quadratic formula, we find

x2 =
�3b±

p
9b2 � 20c

10
.

Thus, if 9b2 < 20c, then the roots are imagi-
nary and so f 0(x) � 0 for all x. If this is not
the case, then we need to consider

x = ±
r

�3b±
p
9b2 � 20c

10
.

Now we need the expression inside the square
root to be less than or equal to 0, which is the
same as requiring the numerator of the expres-
sion inside the square root to be less than or
equal to 0. So we need both
�3b <

p
9b2 � 20c and

�3b < �
p
9b2 � 20c.

Of course, both are true if and only if the lat-
ter is true. In conclusion, f(x) is an increasing
function if 9b2 < 20c or �3b < �

p
9b2 � 20c.

58. TRUE. (f � g)0 (c) = f 0(g(c))g0(c) = 0, since c
is a critical number of g.

59. s(t) =
p
t+ 4 = (t+ 4)1/2

s0(t) =
1

2
(t+ 4)�1/2 =

1

2
p
t+ 4

> 0

So total sales are always increasing at the rate

of
1

2
p
t+ 4

thousand dollars per month.

60. s0(t) =
1

2
p
t+ 4

> 0 for all t > 0. If s rep-

resents the total sales so far, then s cannot
decrease. The rate of new sales can decrease,
but we cannot lose sales that already have oc-
curred.
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61. (a) µ0(�10) ⇡ 0.0048� 0.0043

�12� (�8)

=
0.0005

�4
= �0.000125

(b) µ0(�6) ⇡ 0.0048� 0.0043

�4� (�8)

=
0.0005

4
= 0.000125

Whether the warming of the ice due to
skating makes it easier or harder depends
on the current temperature of the ice. As
seen from these examples, the coe�cient
of friction µ is decreasing when the tem-
perature is �10� and increasing when the
temperature is �6�.

62. We find the derivative of f(t):

f 0(t) =
a2 + t2 � t(2t)

(a2 + t2)2

=
a2 � t2

(a2 + t2)2
.

The denominator is always positive, while the
numerator is positive when a2 > t2, i.e., when
a > t. We now find the derivative of ✓(x):

✓0(x) =
1

1 +

✓
29.25

x

◆2

✓
�29.25

x2

◆

� 1

1 +

✓
10.75

x

◆2

✓
�10.75

x2

◆

=
�29.25

x2 + (29.25)2
+

10.75

x2 + (10.75)2
.

We consider each of the two terms of the last
line above as instances of f(t), the first as
�f(29.25) and the second as f(10.75). Now,
for any given x where x � 30, this x is our a
in f(t) and since a = x is greater than 29.25
and greater than 10.75, f(t) is increasing for
these two t values and this value of a. Thus
f(29.25) > f(10.75). This means that
✓0(x) = �f(29.25) + f(10.75) < 0
(where a = x) and so ✓(x) is decreasing for
x � 30. Since ✓(x) is increasing for x � 30, the
announcers would be wrong to suggest that the
angle increases by backing up 5 yards when the
team is between 50 and 60 feet away from the
goal post.

3.5 Concavity and the Second
Derivative Test

1. f 0(x) = 3x2 � 6x+ 4
f 00(x) = 6x� 6 = 6(x� 1)
f 00(x) > 0 on (1,1)
f 00(x) < 0 on (�1, 1)
So f is concave down on (�1, 1) and concave
up on (1, 1).
x = 1 is a point of inflection.

2. f 0(x) = 4x3 � 12x+ 2 and f 00(x) = 12x2 � 12.
The graph is concave up where f 00(x) is pos-
itive, and concave down where f 00(x) is nega-
tive. Concave up for x < �1 and x > 1, and
concave down for �1 < x < 1.
x = �1, 1 are points of inflection.

3. f(x) = x+ 1
x = x+ x�1

f 0(x) = 1� x�2

f 00(x) = 2x�3

f 00(x) > 0 on (0, 1)
f 00(x) < 0 on (�1, 0)
So f is concave up on (0, 1) and concave down
on (�1, 0).
x = 0 is a point of inflection.

4. y0 = 1 � (1 � x)�2/3 and y00 = �2
3 (1 � x)�5/3.

Concave up for x > 1 and concave down for
x < 1.
x = 1 is a point of inflection.

5. f 0(x) = cosx+ sinx
f 00(x) = � sinx+ cosx
f 00(x) < 0 on . . .

�
⇡
4 ,

5⇡
4

�
[
�
9⇡
4 , 13⇡

4

�
. . .

f 00(x) > 0 on . . .
�
3⇡
4 , ⇡

4

�
[
�
5⇡
4 , 9⇡

4

�
. . .

f is concave down on . . .
�
⇡
4 ,

5⇡
4

�
[
�
9⇡
4 , 13⇡

4

�
. . .,

concave up on . . .
�
3⇡
4 , ⇡

4

�
[
�
5⇡
4 , 9⇡

4

�
. . .

x = k⇡ + ⇡
4 are the points of inflection for any

interger k.

6. f 0(x) =
2x

1 + x4
and f 00(x) =

2� 6x4

(1 + x4)2
.

Concave up for � 4

r
1

3
< x < 4

r
1

3
, and concave

down for x < � 4

r
1

3
and x > 4

r
1

3
.

x = � 4

r
1

3
, 4

r
1

3
are the points of inflection.

7. f 0(x) =
4

3
x1/3 +

4

3
x�2/3

f 00(x) =
4

9
x�2/3 +

8

9
x�5/3

=
4

9x2/3

✓
1� 2

x

◆
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The quantity
4

9x2/3
is never negative, so the

sign of the second derivative is the same as the

sign of 1 � 2

x
. Hence the function is concave

up for x > 2 and x < 0, and is concave down
for 0 < x < 2.
x = 02 are the points of inflection.

8. f 0(x) = e�4x�4xe�4x and f 00(x) = 8e�4x(2x�
1).
Concave up for x > 1/2, and concave down for
x < 1/2.
x = 1/2 is the point of inflection.

9. f(x) = x4 + 4x3 � 1
f 0(x) = 4x3 + 12x2 = x2(4x+ 12)
So the critical numbers are x = 0 and x = �3.
f 00(x) = 12x2 + 24x
f 00(0) = 0 so the second derivative test for
x = 0 is inconclusive.
f 00(�3) = 36 > 0 so x = �3 is a local mini-
mum.

10. f(x) = x4 + 4x2 + 1
f 0(x) = 4x3 + 8x
So the only critical number is x = 0.
f 00(x) = 12x2 + 8
f 00(0) = 8 > 0 so x = 0 is a local minimum.

11. f(x) = xe�x

f 0(x) = e�x � xe�x = e�x(1� x)
So the only critical number is x = 1.
f 00(x) = �e�x � e�x + xe�x = e�x(�2 + x)
f 00(1) = e�1(�1) < 0 so x = 1 is a local maxi-
mum.

12. f(x) = e�x2

f 0(x) = �2xe�x2

So the only critical number is x = 0.
f 00(x) = �2e�x2

+ 4x2e�x2

f 00(0) = �2 + 0 < 0 so x = 0 is a local maxi-
mum.

13. f(x) =
x2 � 5x+ 4

x

f 0(x) =
(2x� 5)x� (x2 � 5x+ 4)(1)

x2

=
x2 � 4

x2

So the critical numbers are x = ±2.

f 00(x) =
(2x)(x2)� (x2 � 4)(2x)

x4
=

8x

x4

f 00(2) = 1 > 0 so x = 2 is a local minimum.
f 00(�2) = �1 < 0 so x = �2 is a local maxi-
mum.

14. f(x) =
x2 � 1

x

f 0(x) =
(2x)(x)� (x2 � 1)(1)

x2

=
x2 + 1

x2

There are no critical numbers and so there are
no local extrema.

15. y = (x2 + 1)2/3

y0 =
2

3
(x2 + 1)�1/3(2x)

f 0(x) =
4x(x2 + 1)�1/3

3
So the only critical number is x = 0.
y00 =
4

3


(x2 + 1)�1/3 +

✓
�2x2

3

◆
(x2 + 1)�4/3

�

=
4

3

(x2 + 1� 2x2

3 )

(x2 + 1)4/3
=

4

9

(3x2 + 3� 2x2)

(x2 + 1)4/3

=
4

9

(x2 + 3)

(x2 + 1)4/3

So the function is concave up everywhere, de-
creasing for x < 0, and increasing for x > 0.
Also x = 0 is a local min.

15

−5

5

x
105

20

0

10

−10

16. f(x) = x lnx
f 0(x) = lnx+ 1
So the only critical number is e�1.
f 00(x) = 1/x
f 00(e�1) = e > 0 so f(x) has a local minimum
at x = e�1.
The domain of f(x) is (0,1).
f 0(x) < 0 on (0, e�1) so f(x) is decreasing on
this interval. f 0(x) > 0 on (e�1,1), so f(x) is
increasing on this interval.
f 00(x) > 0 for all x in the domain of f(x), so
f(x) is concave up for all x > 0.
Finally, f(x) has a vertical asymptote at x = 0
such that f(x) ! 1 as x ! 0+.
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20

15

10

0

5

x

108420 6

17. f(x) =
x2

x2 � 9

f 0(x) =
2x(x2 � 9)� x2(2x)

(x2 � 9)2

=
�18x

(x2 � 9)2

=
�18x

{(x+ 3)(x� 3)}2
f 00(x) =
�18(x2 � 9)2 + 18x · 2(x2 � 9) · 2x

(x2 � 9)4

=
54x2 + 162

(x2 � 9)3

=
54(x2 + 3)

(x2 � 9)3

f 0(x) > 0 on (�1,�3) [ (�3, 0)
f 0(x) < 0 on (0, 3) [ (3,1)
f 00(x) > 0 on (�1,�3) [ (3,1)
f 00(x) < 0 on (�3, 3)

f 00(0) =
162

(�9)3

f is increasing on (�1,�3)[ (�3, 0), decreas-
ing on (0, 3)[(3,1), concave up on (�1,�3)[
(3,1), concave down on (�3, 3), x = 0 is a lo-
cal max.
f has a horizontal asymptote of y = 1 and ver-
tical asymptotes at x = ±3.

y

8

8

4

4

−4

−8

0
x

10

10

6

2

6

0

−2

−6

2

−10

−2−4−6−8−10

18. f(x) =
x

x+ 2
The domain of f(x) is {x|x 6= �2}.

There is a vertical asymptote at x = �2 such
that f(x) ! 1 as x ! �2� and f(x) ! �1
as x ! �2+.

f 0(x) =
x+ 2� x

(x+ 2)2
=

2

(x+ 2)2

So there are no critical numbers. Furthermore,
f 0(x) > 0 for all x 6= �2, so f(x) is increasing
everywhere.
f 00(x) = �4(x+ 2)�3

f 00(x) > 0 on (�1, �2) (so f(x) is concave up
on this interval)
f 00(x) > 0 on (�2, 1) (so f(x) is concave down
on this interval)

y

8

4

−4

−8

10

6

2

0

−2

−6

−10

x
420−2−4

19. f(x) = sinx+ cosx
f 0(x) = cosx� sinx
f 00(x) = � sinx� cosx
f 0(x) = 0 when x = ⇡/4 + k⇡ for all integers
k. When k is even, f 00(⇡/4 + k⇡) = �

p
2 < 0

so f(x) has a local maximum. When k is odd,
f 00(⇡/4 + k⇡) =

p
2 > 0 so f(x) has a local

minimum.
f 0(x) < 0 on the intervals of the form (⇡/4 +
2k⇡,⇡/4+ (2k+1)⇡), so f(x) is decreasing on
these intervals.
f 0(x) > 0 on the intervals of the form (⇡/4 +
(2k+1)⇡,⇡/4+(2k+2)⇡), so f(x) is increasing
on these intervals.
f 00(x) > 0 on the intervals of the form (3⇡/4+
2k⇡, 3⇡/4 + (2k + 1)⇡) so f(x) is concave up
on these intervals.
f 00(x) < 0 on the intervals of the form (3⇡/4+
(2k+1)⇡, 3⇡/4+ (2k+2)⇡) so f(x) is concave
down on these intervals.
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x

1

2.5−2.5
0

−1

5.0

2

−2

−5.0 0.0

y

20. y = e�x sinx
y0 = �e�x sinx + e�x cosx = 0 when x =
⇡/4 + k⇡ for integers k.
y00 = �2e�x cosx = 0 at ⇡/2+2k⇡ for integers
k. These are inflection points. The function is
concave up for �⇡/2 < x < ⇡/2 and concave
down for ⇡/2 < x < 3⇡/2, and the pattern re-
peats with period 2⇡. The critical values are
all extrema, and they alternate between max-
ima and minima.

0-2

100

50

-4

-100

-50

-6 2

150

0

x

21. f(x) = x3/4 � 4x1/4

Domain of f(x) is {x|x � 0}.

f 0(x) =
3

4
x�1/4 � x�3/4 =

3
4

p
x� 1

x3/4

So x = 0 and x = 16/9 are critical points, but
because of the domain we only need to really
consider the latter.
f 0(1) = �1/4 so f(x) is decreasing on (0, 16/9).

f 0(4) =
0.5

43/4
> 0 so f(x) is increasing on

(16/9,1).
Thus x = 16/9 is the location of a local mini-
mum for f(x).
f 00(x) = �3

16 x
�5/4 + 3

4x
�7/4

=
�3
16

p
x+ 3

4

x7/4

The critical number here is x = 16. We find
that f 00(x) > 0 on the interval (0, 16) (so f(x)
is concave up on this interval) and f 00(x) < 0

on the interval (16,1) (so f(x) is concave
down on this interval).

1

-1

-3

x

30252015100

3

2

5
0

-2

22. f(x) = x2/3 � 4x1/3

f 0(x) = 2
3x

�1/3 � 4
3x

�2/3

=
2
3x

1/3 � 4
3

x2/3

So x = 0 and x = 8 are critical numbers.
f 0(�1) < 0 so f(x) is decreasing for x < 0.
f 0(1) < 0 so f(x) is decreasing for 0 < x < 8.
f 0(27) > 0 so f(x) is increasing on 8 < x.
f 00(x) = � 2

9x
�4/3 + 8

9x
�5/3

=
� 2

9x
1/3 + 8

9

x5/3

The critical numbers here are x = 0 and
x = 64.
f 00(�1) < 0 so f(x) is concave down on
(�1, 0).
f 00(1) > 0 so f(x) is concave up on (0, 64).
f 00(125) < 0 so f(x) is concave down on
(64,1).

50

30

40

0

20

0

10

x

400300200-100 100 500

23. The easiest way to sketch this graph is to no-
tice that

f(x) = x|x| =
(
x2 x � 0

�x2 x < 0
Since

f 0(x) =

(
2x x � 0

�2x x < 0
there is a critical point at x = 0. However, it is
neither a local maximum nor a local minimum.
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Since

f 00(x) =

(
2 x > 0

�2 x < 0
there is an inflection point at the origin. Note
that the second derivative does not exist at
x = 0.

4

20

2

−20

x
5

y

30

10

3

0

−10

−30

10−1−2−3−4−5

24. The easiest way to sketch this graph is to no-
tice that

f(x) = x2|x| =
(
�x3 x < 0

x3 x � 0
since

f 0(x) =

(
�3x2 x < 0

3x2 x � 0

there is a critical point (and local minimum)
at x = 0. Since

f 00(x) =

(
�6x x < 0

6x x � 0
there is a critical point at the origin but this is
not an inflection point.

y

2

0

−20

0
x

30

3

20

10

−10

1

−30

−1−2−3

25. f(x) = x1/5(x+ 1) = x6/5 + x1/5

f 0(x) = 6
5x

1/5 + 1
5x

�4/5

= 1
5x

�4/5(6x+ 1)

f 00(x) = 6
25x

�4/5 � 4
25x

�9/5

= 2
25x

�9/5(3x� 2)
Note that f(0) = 0, and yet the derivatives
do not exist at x = 0. This means that there
is a vertical tangent line at x = 0. The first
derivative is negative for x < �1/6 and posi-

tive for �1/6 < x < 0 and x > 0. The second
derivative is positive for x < 0 and x > 2/3,
and negative for 0 < x < 2/3. Thus, there is
a local minimum at x = �1/6 and inflection
points at x = 0 and x = 2/3.

1

3

1

0
0

x

2-2

2

-1

26. f(x) =

p
x

1 +
p
x

The domain of f(x) is {x|x � 0}.

f 0(x) =
1
2x

�1/2(1 +
p
x)�

p
x( 12x

�1/2)

(x+
p
x)2

=
x�1/2

2(1 +
p
x)2

The only critical point is x = 0, which we
need not consider because of the domain. Since
f 0(1) > 0, f(x) is increasing on (0,1).

f 00(x) =
�x�3/2(1 +

p
x)2 � 2x�1/2(1 +

p
x)x�1/2

4(1 +
p
x)4

=
�(x�1/2 + 3)

4x(1 +
p
x)3

The critical numbers are x = 0 (which we again
ignore) and x = 1/9. Since f 00(1) < 0 and
f 00(1/16) < 0, f(x) is concave down on (0,1).

0.5

0.3

0.1

x

32.521.510.50

0.6

0.4

0.2

0

27. f(x) = x4 � 26x3 + x
f 0(x) = 4x3 � 78x2 + 1
The critical numbers are approximately
�0.1129, 0.1136 and 19.4993.
f 0(�1) < 0 implies f(x) is decreasing on
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(�1,�0.1129).
f 0(0) > 0 implies f(x) is increasing on
(�0.1129, 0.1136).
f 0(1) < 0 implies f(x) is decreasing on
(0.1136, 19.4993).
f 0(20) > 0 implies f(x) is increasing on
(19.4993,1).
Thus f(x) has local minimums at x = �0.1129
and x = 19.4993 and a local maximum at
x = 0.1136.
f 00(x) = 12x2 � 156x = x(12x� 156)
The critical numbers are x = 0 and x = 13.
f 00(�1) > 0 implies f(x) is concave up on
(�1, 0).
f 00(1) < 0 implies f(x) is concave down on
(0, 13).
f 00(20) > 0 implies f(x) is concave up on
(13,1).

20

30

20

10

−20

105

25

15

5

0

x
400

28. f(x) = 2x4 � 11x3 + 17x2

f 0(x) = 8x3 � 33x2 + 34x
= x(8x� 17)(x� 2)

The critical numbers are x = 0, x = 2 and
x = 17/8.
f 00(x) = 24x2 � 66x+ 34
f 00(0) > 0 implies f(x) is concave up at x = 0
so f(x) has a local minimum here and f(x) is
decreasing on (�1, 0).
f 00(2) < 0 implies f(x) is concave down at
x = 2 so f(x) has a local maximum here and
f(x) is increasing on (0, 2).
f 00(17/8) > 0 implies f(x) is concave up at
x = 17/8 so f(x) has a local minimum here and
f(x) is decreasing on (2, 17/8) and increasing
on (17/8,1).
f 00(x) = 2(12x2 � 33x+ 17)
The critical numbers are

x =
33±

p
273

24
= 2.0635, 0.6866.

So f(x) is concave up on (�1, 0.6866) and
(2.0635,1) and f(x) is concave down on
(0.6866, 2.0635).
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20
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6
0

103

x

30

25

15

8

5

420−2−4−6−8−10

29. y = 3
p
2x2 � 1

y0 =
4x

3(2x2 � 1)2/3
= 0 at x = 0 and is unde-

fined at x = ±
p
1/2.

y00 =
�4(2x2 + 3)

9(2x2 � 1)5/3
is never 0, and is undefined

where y0 is.
The function changes concavity at x =
±
p

1/2, so these are inflection points. The
slope does not change at these values, so they
are not extrema. The Second Derivative Test
shows that x = 0 is a minimum.

2

1

0
0

-2-4
x

64

4

3

2

-1

-6

30. f(x) =
p
x3 + 1

f(x) is defined for x � �1.
f 0(x) = 1

2 (x
3 + 1)�1/2(3x2)

The critical numbers are x = �1 (which we ig-
nore because of the domain) and x = 0.
f 0(�1/2) > 0 so f(x) is increasing on (�1, 0).
f 0(1) > 0 so f(x) is also increasing on (0,1)
so f(x) has no relative extrema.
f 00(x) =
3

2
·
2x(x3 + 1)1/2 � x2 1

2 (x
3 + 1)�1/23x2

x3 + 1

=
2x(x3 + 1)� 3

2x
4

(x3 + 1)3/2

=
� 1

2x
4 + 2x

(x3 + 1)3/2

The critical numbers are x = 0 and x = 41/3

(and x = �1, which we need not consider).
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f 00(�1/2) < 0 so f(x) is concave down on
(�1, 0). f 00(1) > 0 so f(x) is concave up on
(0, 41/3). f 00(2) > 0 so f(x) is concave up on
(41/3,1).

3

5

1

4

2

0

x

310-1 2

31. f(x) = x4 � 16x3 + 42x2 � 39.6x+ 14
f 0(x) = 4x3 � 48x2 + 84x� 39.6
f 00(x) = 12x2 � 96x+ 84

= 12(x2 � 8x+ 7)
= 12(x� 7)(x� 1)

f 0(x) > 0 on (.8952, 1.106) [ (9.9987,1)
f 0(x) < 0 on (�1, .8952) [ (1.106, 9.9987)
f 00(x) > 0 on (�1, 1) [ (7,1)
f 00(x) < 0 on (1, 7)
f is increasing on (.8952, 1.106) and on
(9.9987,1), decreasing on (�1, .8952) and on
(1.106, 9.9987), concave up on (�1, 1)[(7,1),
concave down on (1, 7), x = .8952, 9.9987 are
local min, x = 1.106 is local max, x = 1, 7 are
inflection points.

300000

400000

100000

200000

0

x

3020100-20 -10

32. y = x4 + 32x3 � 0.02x2 � 0.8x
y0 = 4x3 + 96x2 � 0.04x � 0.8 = 0 at approxi-
mately x = �24, �0.09125, and 0.09132.
y00 = 12x2 + 192x � 0.04 = 0 at approxi-
mately x = 16.0002 and 0.0002, and changes
sign at these values, so these are inflection
points. The Second Derivative Test shows
that x = �24 and 0.09132 are minima, and
that x = �0.09125 is a maxima. The extrema
near x = 0 look like this:

0.08

0.04

0

-0.04

-0.08

x
0.20.10-0.1-0.2

The
global behavior looks like this:

50000

x

0

-50000

10

-100000

0-10-20-30

100000

33. f(x) = x
p
x2 � 4; f undefined on (�2, 2)

f 0(x) =
p
x2 � 4
+ x

�
1
2

�
(x2 � 4)�1/2(2x)

=
p
x2 � 4 +

x2

p
x2 � 4

=
2x2 � 4p
x2 � 4

f 00(x) =
4x

p
x2 � 4� (2x2 � 4) 12 (x

2 � 4)�1/2(2x)

x2 � 4

=
4x(x2 � 4)� (2x2 � 4)x

(x2 � 4)3/2

=
2x3 � 12x

(x2 � 4)3/2
=

2x(x2 � 6)

(x2 � 4)3/2

f 0(x) > 0 on (�1,�2) [ (2,1)
f 00(x) > 0 on

�
�
p
6, 2
�
[
�p

6,1
�

f 00(x) < 0 on
�
�1,�

p
6
�
[
�
2,
p
6
�

f is increasing on (�1,�2) and on (2,1),
concave up on

�
�
p
6,�2

�
[
�p

6,1
�
, concave

down on
�
�1,�

p
6
�
[
�
2,
p
6
�
, x = ±

p
6 are

inflection points.
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34. f(x) =
2xp
x2 + 4

f 0(x) =
2
p
x2 + 4� 2x( 12 )(x

2 + 4)�1/22x

(x2 + 4)

=
8

(x2 + 4)3/2

f 0(x) is always positive, so there are no critical
points and f(x) is always increasing.
f 00(x) = 8(� 3

2 )(x
2 + 4)�5/2(2x)

=
�24x

(x2 + 4)5/2

The only critical point is x = 0. Since
f 00(�1) > 0, f(x) is concave up on (�1, 0).
Also f 00(1) < 0, so f(x) is concave down on
(0,1) and x = 0 is an inflection point for f .

8
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0.0
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35. The function has horizontal asymptote y = 0,
and is undefined at x = ±1.

y0 =
�2x

x4 � 2x2 + 2
= 0

only when x = 0.

y00 =
2(3x4 � 2x2 � 2)

(x4 � 2x2 + 2)2
= 0

at approximately x = ±1.1024 and changes
sign there, so these are inflection points (very
easy to miss by looking at the graph). The
Second Derivative Test shows that x = 0 is a
local maximum.

1

0.5

x

0
0 6

-1.5

4-4

1.5

-0.5

-1

2-2-6

36. f(x) = e�2x cosx
f 0(x) = �2e�2x cosx� e�2x sinx

= e�x(�2 cosx� sinx)
f 00(x) = �2e�2x(�2 cosx� sinx)

+ e�2x(2 sinx� cosx)
= e�2x(4 sinx+ 3 cosx)

f 0(x) = 0 when sinx = �2 cosx so when
x = k⇡ + tan�1(�2) for any integer k.
f 00(2k⇡ + tan�1(�2)) < 0 so there are local
maxima at all such points, while f 00((2k+1)⇡+
tan�1(�2)) > 0, so there are local minima at
all such points. f 00(x) = 0 when 4 sinx =
�3 cosx or x = k⇡ + tan�1(�3/4) for any in-
teger k. All such points x are inflection points.
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37. One possible graph:
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38. One possible graph:
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39. One possible graph:
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40. One possible graph:
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41. f(x) = ax3 + bx2 + cx+ d
f 0(x) = 3ax2 + 2bx+ c
f 00(x) = 6ax+ 2b
Thus, f 00(x) = 0 for x = �b/3a. Since f 00

changes sign at this point, f has an inflection
point at x = �b/3a. Note that a 6= 0.

For the quartic function (where again a 6= 0),
f(x) = ax4 + bx3 + cx2 + dx+ e
f 0(x) = 4ax3 + 3bx2 + 2cx+ d
f 00(x) = 12ax2 + 6bx+ 2c

= 2(6ax2 + 3bx+ c)
The second derivative is zero when

x =
�3b±

p
9b2 � 24ac

12a

=
�3b±

p
3(3b2 � 8ac)

12a

There are two distinct solutions to the previous
equation (and therefore two inflection points)
if and only if 3b2 � 8ac > 0.

42. Since f 0(0) = 0 and f 00(0) > 0, f(x) must have
a local minimum at x = 0. Since we also know
that f(0) = 0, this means that there is some
neighborhood (possibly very small) of 0 such
that for all x in this neighborhood (exluding
x = 0), f(x) > 0.

Similarly, g0(0) = 0 and g00(0) < 0 implies that
g(x) must have a local maximum at x = 0.
Again we know that g(0) = 0, so there is some
neighborhood of 0 such that for all x in this
neighborhood (exluding x = 0), g(x) < 0.

On the smaller of these two neighborhoods, we
know that g(x) < 0 < f(x).

43. Let f(x) = �1� x2. Then
f 0(x) = �2x
f 00(x) = �2
so f is concave down for all x, but
�1� x2 = 0 has no solution.

44. The statement is true.

45. f(x) is concave up on (�1, �0.5) and
(0.5, 1); f(x) is concave down on (�0.5, 0.5).
f(x) is decreasing on the intervals (�1, 1) and
(0, 1) ; increasing on the intervals (�1, 0) and
(1,1). f(x) has local maxima at 0 and min-
ima at -1 and 1. Inflection points of f(x) are
�0.5 and 0.5.

46. f(x) is concave up on (1, 1); f(x) is concave
down on (�1, 1). f(x) is increasing on the in-
tervals (�1, 0) and (2, 1); decreasing on the
intervals (0, 2). Inflection point of f(x) is 1.

47. (a) For #45 :
The interval of increase is (�1, �1.5)
and (1.5, 1) . The interval of decrease
is(�1.5, 1.5) . Minima at x = 1.5 and
Maxima at x = �1.5. It is concave up for
(�1, 0) [ ( 1, 1 ) . It is concave down for
(�1, �1) [ ( 0, 1 ) . The points of inflec-
tion are x = 0 and ± 1.

For #46:
The interval of increase is

�
� 1

2 ,
1
2

�
[

(3, 1) . The interval of decrease is�
�1, � 1

2

�
[
�
1
2 , 3

�
Minima at x = 1

2and
Maxima at x = � 1

2 , 3. It is concave
up for(�1, 0) [ ( 2, 1 ) . It is concave
down for(0, 2) . The points of inflection
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are x = 0 , 2..

(b) For #45:
It is concave up for (�1, �1.5) [
(1.5, 1) . It is concave down for
(�1.5, 1.5) . The points of inflection are
x = 0 and ± 1.5.

For #46:
It is concave up for

�
� 1

2 ,
1
2

�
[ (3, 1) . It

is concave down for
�
�1, � 1

2

�
[
�
1
2 , 3

�
.

The points of inflection are x = ± 1
2 , 3..

48. If f 00(c) < 0, then f 0 is decreasing at c. Because
f 0(c) = 0, this means that f 0 > 0 to the left of
c and f 0 < 0 to the right of c. Therefore, by the
First Derivative Test, f(c) is a local maximum.
The proof of the second claim is similar.

49. Add and subtract 16 to complete square.
x4 � 8x2 + 10

= x4 � 8x2 + 16 + 10� 16

=
�
x2 � 4

�2 � 6
Therefore, absolute minimum occurs when�
x2 � 4

�2
= 0. That is absolute minimum is

�6 and occurs when x = ±2.

Similarly, add and subtract 9 to x4 � 6x2 + 1.
x4 � 6x2 + 1

= x4 � 6x2 + 9 + 1� 9

=
�
x2 � 3

�2 � 8

Therefore, absolute minimum occurs when�
x2 � 3

�2
= 0. That is absolute minimum is

�8 and occurs whenx = ±
p
3.

50. f (x) = x4 + bx3 + cx2 + dx+ 2
f 0 (x) = 4x3 + 3bx2 + 2cx+ d
f 00 (x) = 12x2 + 6bx+ 2c

To find inflection points, solve f 00 (x) = 0.

x =
�6b±

p
36b2 � 96c

24
x is real only if 36b2 � 96c > 0

) c <
3

8
b2

The critical numbers are

x =
�6b+

p
36b2 � 96c

24
and

x =
�6b�

p
36b2 � 96c

24
Therefore sum of x-coordinates

=
�6b+

p
36b2 � 96c

24
+

�6b�
p
36b2 � 96c

24

=
�6b+

p
36b2 � 96c� 6b�

p
36b2 � 96c

24

=
�12b

24
=� b

2

51. We need to know w0(0) to know if the depth is
increasing.

52. We assume the sick person’s temperature is too
high, and not too low. We do need to know
T 0(0) in order to tell which is better.

If T 00(0) = 2 and T 0 > 0, the person’s temper-
ature is rising alarmingly.

If T 00(0) = �2 and T 0 > 0, the person’s tem-
perature is increasing, but leveling o↵.
Negative T 00 is better if T 0 > 0.

If T 00(0) = 2 and T 0 < 0, the person’s temper-
ature is decreasing and leveling o↵.

If T 00(0) = �2 and T 0 < 0, the person’s tem-
perature is dropping too steeply to be safe.
Positive T 00 is probably better if T 0 < 0.

53. s(x) = �3x3 + 270x2 � 3600x+ 18000
s0(x) = �9x2 + 540x� 3600
s00(x) = �18x+ 540 = 0
x = 30. This is a max because the graph of
s0(x) is a parabola opening down. So spend
$30,000 on advertising to maximize the rate of
change of sales. This is also the inflection point
of s(x).

54. Q0(t) measures the number of units produced
per hour. If this number is larger, the worker
is more e�cient.
Q0(t) = �3t2 + 12t + 12 will be maximized
where
Q00 = �6t + 12 = 0, or t = 2 hours. (This
is a maximum by the First Derivative Test.)
It is reasonable to call this inflection point the
point of diminishing returns, because after this
point, the e�ciency of the worker decreases.

55. C(x) = .01x2 + 40x+ 3600

C(x) =
C(x)

x
= .01x+ 40 + 3600x�1

C
0
(x) = .01� 3600x�2 = 0

x = 600. This is a min because C̄ 00(x) =
7200x�3 > 0 for x > 0, so the graph is con-
cave up. So manufacture 600 units to minimize
average cost.

56. Solving c0 = 0 yields t = 19.8616. The Sec-
ond Derivative Test shows this is a maximum.
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Solving c00 = 0 yields t = 41.8362. Suppose a
second drug produced a similar plasma concen-
tration graph, with the same maximum, but a
later inflection point. Then the plasma concen-
tration decays faster for the second drug, since
it takes longer for the rate of decay to level o↵.

57. Since the tangent line points above the sun, the
sun appears higher in the sky than it really is.

3.6 Overview of Curve
Sketching

1. f(x) = x3 � 3x2 + 3x
= x(x2 � 3x+ 3)

The only x-intercept is x = 0; the y-intercept
is (0, 0).
f 0(x) = 3x2 � 6x+ 3

= 3(x2 � 2x+ 1) = 3(x� 1)2

f 0(x) > 0 for all x, so f(x) is increasing for all
x and has no local extrema.
f 00(x) = 6x� 6 = 6(x� 1)
There is an inflection point at x = 1: f(x) is
concave down on (�1, 1) and concave up on
(1,1).
Finally, f(x) ! 1 as x ! 1 and f(x) ! �1
as x ! �1.

0.8

25

−0.8
x

4.84.03.22.41.6

50

0
0.0

−25

−50

−1.6−2.4

2. f(x) = x4 � 3x2 + 2x
= x(x3 � 3x+ 2)

The x-intercepts are x = �2, x = 1 and x = 0;
the y-intercept is (0, 0).
f 0(x) = 4x3 � 6x+ 2

= 2(2x3 � 3x+ 1)
The critical numbers are x = �1.366, 0.366
and 1.
f 0(x) > 0 on (�1.366, 0.366) and (1, 1), so
f(x) is increasing on these intervals. f 0(x) < 0
on (�1, �1.366) and (0.366, 1), so f(x) is de-
creasing on these intervals. Thus f(x) has local
minima at x = �1.366 and x = 1 and a local
maximum at x = 0.366.

f 00(x) = 12x2 � 6 = 6(2x2 � 1)
The critical numbers here are x = ±1/

p
2.

f 00(x) > 0 on (�1,�1/
p
2) and (1/

p
2,1) so

f(x) is concave up on these intervals. f 00(x) <
0 on (�1/

p
2, 1/

p
2) so f(x) is concave down

on this interval. Thus f(x) has inflection
points at x = ±1/

p
2.

Finally, f(x) ! 1 as x ! ±1.

y
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−10

x
3210

15

−1

10

5

−5

−3

3. f(x) = x5 � 2x3 + 1
The x-intercepts are x = 1 and x ⇡ �1.5129;
the y-intercept is (0, 1).
f 0(x) = 5x4 � 6x2 = x2(5x2 � 6)
The critical numbers are x = 0 and x =
±
p
6/5. Plugging values from each of the

intervals into f 0(x), we find that f 0(x) > 0
on (�1,�

p
6/5) and (

p
6/5,1) so f(x) is

increasing on these intervals. f 0(x) < 0 on
(�
p
6/5, 0) and (0,

p
6/5) so f(x) is decreas-

ing on these intervals. Thus f(x) has a local
maximum at �

p
6/5 and a local minimum atp

6/5.
f 00(x) = 20x3 � 12x = 4x(5x2 � 3)
The critical numbers are x = 0 and x =
±
p

3/5. Plugging values from each of the in-
tervals into f 00(x), we find that f 00(x) > 0
on (�

p
3/5, 0) and (

p
3/5,1) so f(x) is con-

cave up on these intervals. f 00(x) < 0 on
(�1, �

p
3/5) and (0,

p
3/5) so f(x) is con-

cave down on these intervals. Thus f(x) has
inflection points at all three of these critical
numbers.
Finally, f(x) ! 1 as x ! 1 and f(x) ! �1
as x ! �1.
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5.0
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4. f (x) = x4 + 4x3 � 1
The x-intercepts are x ⇡ �4.01541 and x ⇡
0.6012; the y-intercept is (0,�1).
f 0 (x) = 4x3 + 12x2 = 4x2 (x+ 3)
The critical numbers are x = 0 and x = �3.
Plugging values from each of the intervals into
f 0(x), we find that f 0(x) > 0 on (�3, 0) and
(0, 1) so f(x) is increasing on these intervals.
f 0(x) < 0 on (�1, �3) so f(x) is decreasing
on these intervals. Thus f(x) has a local min-
imum at �3.
f 00 (x) = 12x2 + 24x = 12x (x+ 2)
The critical numbers are x = 0 and x = �2.
Plugging values from each of the intervals into
f 00(x), we find that f 00(x) > 0 on (�1, �2)
and (0, 1) so f(x) is concave up on (�1, �2)
and (0, 1). f 00(x) < 0 on (�2, 0) so f(x) is
concave down on (�2, 0). The graph has in-
flection points at �2 and 0.

Finally, f(x) ! 1 as x ! 1 and f(x) ! 1
as x ! �1.

y
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−10

x
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−20

−25
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5. f(x) = x+
4

x
=

x2 + 4

x
This function has no x- or y-intercepts. The
domain is {x|x 6= 0}.
f(x) has a vertical asymptote at x = 0 such
that f(x) ! �1 as x ! 0� and f(x) ! 1 as
x ! 0+.

f 0(x) = 1� 4x�2 =
x2 � 4

x2

The critical numbers are x = ±2. We find
that f 0(x) > 0 on (�1,�2) and (2,1) so
f(x) is increasing on these intervals. f 0(x) < 0
on (�2, 0) and (0, 2), so f(x) is decreasing on
these intervals. Thus f(x) has a local maxi-
mum at x = �2 and a local minimum at x = 2.
f 00(x) = 8x�3

f 00(x) < 0 on (�1, 0) so f(x) is concave down
on this interval and f 00(x) > 0 on (0,1) so
f(x) is concave up on this interval, but f(x)
has an asymptote (not an inflection point) at
x = 0.
Finally, f(x) ! �1 as x ! �1 and f(x) !
1 as x ! 1.
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−16
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2

−20
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6. f(x) =
x2 � 1

x
= x� 1

x
There are x-intercepts at x = ±1, but no y-
intercepts. The domain is {x|x 6= 0}.
f(x) has a vertical asymptote at x = 0 such
that f(x) ! 1 as x ! 0� and f(x) ! �1 as
x ! 0+.
f 0(x) = 1 + x�2 > 0, So there is no critical
numbers. f(x) is increasing function.
f 00(x) = �2x�3

f 00(x) > 0 on (�1, 0) so f(x) is concave up on
this interval and f 00(x) < 0 on (0,1) so f(x)
is concave down on this interval, but f(x) has
an vertical asymptote (not an inflection point)
at x = 0.
Finally, f(x) ! �1 as x ! �1 and
f(x) ! 1 as x ! 1.



3.6. OVERVIEW OF CURVE SKETCHING 199
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7. f (x) =
x2 + 4

x3
has no x-interscept and no y-

interscept. The domain of f includes all real
numbers x 6= 0. f(x) has a vertical asymptote
at x = 0

f 0 (x) =
2x
�
x3
�
�
�
x2 + 4

� �
3x2
�

(x3)2

=
�
�
x2 + 12

�

x4

Since f 0 (x) = 0 has no real roots, the graph
has no extrema. f 0(x) < 0 on (�1, 0) and
(0,1) so f(x) is decreasing on these inter-

vals. f 00 (x) = �
"
x4 (2x)�

�
x2 + 12

� �
4x3
�

(x4)2

#

=
2
⇥
x2 + 24

⇤

x5

f 00(x) < 0 on (�1, 0) so f(x) is concave down
on this interval and f 00(x) > 0 on (0,1) so
f(x) is concave up on this interval, but f(x)
has an asymptote (not an inflection point) at
x = 0.
Finally, f(x) ! 0 as x ! �1 and f(x) ! 0 as
x ! 1. Therefore, the graph has horizontal
asymptot y = 0.
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0

1
−20

−40
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8. f (x) =
x� 4

x3

The graph has x-intercepts at x = 4, but no
y-intercepts. The domain of f includes all real
numbers x 6= 0. f(x) has a vertical asymptote
at x = 0

f 0 (x) =
x3 � (x� 4)

�
3x2
�

(x3)2

=
�2x+ 12

x4

The critical numbers is x = 6. We find that
f 0(x) > 0 on (�1, 0) and (0,6) so f(x) is
increasing on these intervals. f 0(x) < 0 on
(6,1), so f(x) is decreasing on these intervals.
Therefore, the graph has a local maximum at
x = 6.

f 00 (x) =

�
x4
�
(�2)� (�2x+ 12)

�
4x3
�

(x4)2

=
6x� 48

x5

f 00(x) > 0 on (�1, 0) and (8,1) so f(x) is
concave up on this interval and f 00(x) < 0 on
(0, 8) so f(x) is concave down on this interval,
but f(x) has an inflection point at x = 8.
Finally, f(x) ! 0 as x ! �1 and f(x) ! 0 as
x ! 1. Therefore, the graph has horizontal
asymptote y = 0.
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9. f (x) =
2x

x2 � 1
The graph has x-intercept and y-intercept at
(0, 0). The domain of f includes all real num-
bers x = ±1. f(x) has vertical asymptotes at
x = ±1.

f 0 (x) =
2
�
x2 � 1

�
� (2x) (2x)

(x2 � 1)2

=
�2
�
x2 + 1

�

(x2 � 1)2

Since f 0 (x) = 0 has no real roots, the graph
has no extrema. f 0(x) < 0 on (�1, �1),
(�1, 0), (0, 1) and (1, 1) so f(x) is decreasing
on these intervals.

f 00 (x) = �2

"
2x
�
x2 � 1

� ⇥
x2 � 1� 2x2 � 2

⇤

(x2 � 1)4

#

=
4x
⇥
x2 + 3

⇤

(x2 � 1)3

f 00(x) > 0 on (�1, 0) and (1,1) so f(x) is
concave up on this interval and f 00(x) < 0 on
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(�1,�1) and (0, 1) so f(x) is concave down on
this interval, but f(x) has an inflection point
at x = 0.
Finally, f(x) ! 0 as x ! �1 and f(x) ! 0 as
x ! 1. Therefore, the graph has horizontal
asymptote y = 0.

0

10

8

2

−2

−6

8

10

6

−4

4

0

6

−4

−8

−2−8 −6−10

−10

2 4

10. f (x) =
3x2

x2 + 1
The graph has x-intercept and y-intercept at
(0, 0). The domain of f includes all real num-
bers.

f 0 (x) =

�
x2 + 1

�
(6x)�

�
3x2
�
(2x)

(x2 + 1)2

=
6x

(x2 + 1)2

f 0(x) < 0 on (�1, 0) so f(x) is decreasing on
these intervals and f 0(x) > 0 on (0,1) so f(x)
is increasing on these interval.

f 00 (x) =

�
x2 + 1

� ⇥
6
�
x2 + 1

�
� 24x2

⇤

(x2 + 1)4

=
6� 18x2

(x2 + 1)3

The critical numbers are x = ±
q

1
3 . We find

that f 00(x) > 0 on
⇣
�
q

1
3 ,
q

1
3

⌘
so f(x) is

concave up on this interval and we find that

f 00(x) < 0 on
⇣
�1,�

q
1
3

⌘
and

⇣q
1
3 ,1

⌘
so

f(x) is concave down on this interval, but the

graph has inflection points at x = ±
q

1
3 .

Finally, f(x) ! 3 as x ! �1 and f(x) ! 3 as
x ! 1. Therefore, the graph has horizontal
asymptote at y = 3.
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5

4
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0
100−10

11. f (x) = (x+ sinx)
The graph has x-intercepts and y-intercepts at
(0, 0). The domain of f includes all real num-
bers.
f 0(x) = 1 + cosx � 0,therefore the graph has
no extrema and f(x) is a increasing function.
f 00 (x) = � sinx
f 00(x) < 0 on (2n⇡, (2n+ 1)⇡) so f(x) is con-
cave down on this interval and we find that
f 00(x) > 0 on ((2n+ 1)⇡, 2 (n+ 1)⇡) so f(x)
is concave up on this interval, but the graph
has inflection points at x = n⇡.
Finally, f(x) ! �1 as x ! �1 and f(x) !
1 as x ! 1. Therefore, the graph has no
horizontal asymptote.
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12. f (x) = sinx� cosx
f 0 (x) = cosx+ sinx is zero for x = n⇡ � ⇡

4 .
f 00 (x) = � sinx+ cosx
When n is even, f 00(x) > 0 and so f is mini-
mum at x = n⇡ � ⇡

4 .
When n is odd, f 00(x) < 0 and so f is maxi-
mum at x = n⇡ � ⇡

4 .
f 00(x) = 0 for x = n⇡+ ⇡

4 . So inflection points
are n⇡ + ⇡

4 .
f 00(x) < 0 on

�
⇡
4 + n⇡, 5⇡

4 + n⇡
�
so f(x) is

concave down on this interval and we find that
f 00(x) > 0 on

�
5⇡
4 + n⇡, 9⇡

4 + n⇡
�
so f(x) is

concave up on this interval.
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13. f(x) = x lnx
The domain is {x|x > 0}. There is an x-
intercept at x = 1 and no y-intercept.
f 0(x) = lnx+ 1
The only critical number is x = e�1. f 0(x) < 0
on (0, e�1) and f 0(x) > 0 on (e�1,1) so
f(x) is decreasing on (0, e�1) and increasing
on (e�1,1). Thus f(x) has a local minimum
at x = e�1.
f 00(x) = 1/x, which is positive for all x in the
domain of f , so f(x) is always concave up.
f(x) ! 1 as x ! 1.

2.5

1.5

0.5

x

32.521.510.50

3

2

1

0

14. f(x) = x lnx2

The domain is {x|x 6= 0}. There are x-
intercepts at x = ±1 but no y-intercept.
f 0(x) = lnx2 + 2
The critical numbers are x = ±e�1. f 00(x) =
2/x, so x = �e�1 is a local maximum and
x = e�1 is a local minimum. f(x) is increasing
on (�1,�e�1) and (e�1,1); f(x) is decreas-
ing on (�e�1, 0) and (0, e�1). f(x) is concave
down on (�1, 0) and concave up on (0,1).
f(x) ! �1 as x ! 1 and f(x) ! 1 as
x ! 1.

2.5

−2.5
x

3210−1−2

5.0

−3

0.0

−5.0

15. f(x) =
p
x2 + 1

The y-intercept is (0, 1). There are no x-
intercepts.
f 0(x) = 1

2 (x
2 + 1)�1/22x = xp

x2+1
The only

critical number is x = 0. f 0(x) < 0 when x < 0
and f 0(x) > 0 when x > 0 so f(x) is increas-
ing on (0,1) and decreasing on (�1, 0). Thus
f(x) has a local minimum at x = 0.

f 00(x) =

p
x2 + 1� x 1

2 (x
2 + 1)�1/22x

x2 + 1

=
1

(x2 + 1)3/2

Since f 00(x) > 0 for all x, we see that f(x) is
concave up for all x.
f(x) ! 1 as x ! ±1.
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16. f(x) =
p
2x� 1

The domain is {x|x � 1/2}. There is an x-
intercept at x = 1/2.
f 0(x) = 1

2 (2x� 1)�1/22 = 1p
2x�1

f 0(x) is undefined at x = 1/2, but this is an
endpoint of f(x) and there are no other criti-
cal points. Since f 0(x) is positive for all x in
the domain of f , we see that f(x) is increasing
for all x in the domain.
f 00(x) = � 1

2 (2x� 1)�3/22 = �1
(2x�1)3/2

f 00(x) < 0 for all x in the domain of f , so f is
concave down for all x for which it is defined.
f(x) ! 1 as x ! 1.
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1
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0.5

x

32.521.50.50 1

17. f(x) = (x3 � 3x2 + 2x)1/3

f 0(x) =
3x2 � 6x+ 2

3(x3 � 3x2 + 2x)2/3

There are critical numbers at x =
3±

p
3

3
, 0,

1 and 2.

f 00(x) =
�6x2 + 12x� 8

9(x3 � 3x2 + 2x)5/3

with critical numbers x = 0, 1 and 2. f 00(x)
changes sign at these values, so these are in-
flection points. The Second Derivative test

shows that x =
3 +

p
3

3
is a minimum, and

x =
3�

p
3

3
is a maximum.

f(x) ! �1 as x ! �1 and f(x) ! 1 as
x ! 1.

0
0 2

x
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1
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18. f(x) = (x3 � 3x2 + 2x)1/2

f(x) is defined for 0  x  1 and x � 2.
f(x) ! 1 as x ! 1.

f 0(x) =
3x2 � 6x+ 2

2(x3 � 3x2 + 2x)1/2

There are critical numbers at x =
3±

p
3

3
, 0,

1 and 2.

f 00(x) =
3x4 � 12x3 + 12x2 � 4

4(x3 � 3x2 + 2x)3/2

with critical numbers x = 0, 1 and 2 and
x ⇡ �0.4679 and 2.4679. f(x) is undefined at
x = �0.4679, so we do not consider this point.

f 00(x) changes sign at x = 2.4679, so this is an
inflection point. The Second Derivative test

shows that x =
3�

p
3

3
is a maximum.

At x = 0, 1, 2, f(x) is minimum.
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19. f (x) = x5/3 � 5x2/3

The domain of f includes all real numbers.

f 0(x) =
5

3
x

2
3 � 10

3
x� 1

3

=
5

3

⇣
x

2
3 � 2x� 1

3

⌘

=
5

3

✓
x� 2

x1/3

◆

Critical number is x = 2.
f 0(x) > 0 on (�1, 0) and (2,1). So f(x) is
increasing on these intervals.
f 0(x) < 0 on (0, 2) and so f(x) is decreasing
on this interval.
Therefore f(x) is maximum at x = 0 and min-
imum at x = 2.

f 00 (x) =
5

3

✓
2

3
x� 1

3 +
2

3
x� 4

3

◆

=
10

9

⇣
x� 1

3 + x� 4
3

⌘

=
10

9

✓
x+ 1

x4/3

◆

The critical number is at x = 0, �1. f 00(x)
changes sign at these values, so these are in-
flection points. f(x) ! �1 as x ! �1 and
f(x) ! 1 as x ! 1.
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20. f(x) = x3 � 3

400
x = x(x2 � 3

400
)

The y-intercept (also an x-intercept) is (0, 0)
and there are also x-intercepts at x = ±

p
3/20.

f 0(x) = 3x2 � 3

400
The critical numbers are x = ±1/20.
f 00(x) = 6x, so x = �1/20 is a local maximum
and x = 1/20 is a local minimum. f(x) is in-
creasing on (�1,�1/20) and (1/20,1) and
decreasing on (�1/20, 1/20). It is concave up
on (0,1) and concave down on (�1, 0), with
an inflection point at x = 0.
f(x) ! �1 as x ! �1 and f(x) ! 1 as
x ! 1.
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21. f(x) = e�2/x

f 0(x) = e�2/x

✓
2

x2

◆
=

2

x2
e�2/x

f 00(x) =
�4

x3
e�2/x +

2

x2
e�2/x

✓
2

x2

◆

=
4

x4
e�2/x � 4

x3
e�2/x

f 0(x) > 0 on (�1, 0) [ (0,1)
f 00(x) > 0 on (�1, 0) [ (0, 1)
f 00(x) < 0 on (1,1)
f increasing on (�1, 0) and on (0,1), con-
cave up on (�1, 0) [ (0, 1), concave down on
(1,1), inflection point at x = 1. f is unde-
fined at x = 0.

lim
x!0+

e�2/x = lim
x!0+

1

e2/x
= 0 and

lim
x!0�

e�2/x = 1
So f has a vertical asymptote at x = 0.
lim
x!1

e�2/x = lim
x!�1

e�2/x = 1

So f has a horizontal asymptote at y = 1.
Global graph of f(x):

y

10

5

0

-5

-10

x

1050-5-10

Local graph of f(x):

0

-0.2

-0.4

x

32.521.510.50
y

0.4

0.2

22. f(x) = e1/x
2

The function has a vertical asymptote at x = 0
such that f(x) ! 1 as x approaches 0 from
the right or left. There is a horizontal asymp-
tote of y = 1 as x ! ±1.

f 0(x) =
�2

x3
· e1/x

2

f 0(x) > 0 for x < 0, so f(x) is increasing on
(�1, 0) and f 0(x) < 0 for x > 0, so f(x) is
decreasing on (�1, 0).

f 00(x) =
2e1/x

2

(3x2 + 2)

x6

is positive for all x 6= 0, so f(x) is concave up
for all x 6= 0.
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42

23. f (x) =
1

x3 � 3x2 � 9x+ 1

f 0(x) = � 3x2 � 6x� 9

(x3 � 3x2 � 9x+ 1)2
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The critical numbers are x = �1, 3.

f 00 (x) =
6
�
6x4 � 4x3 � 7x2 + 12x+ 2

�

(x3 � 3x2 � 9x+ 1)3

The Second Derivative test shows that the
graph has a local minimum at x = �1 and
a local maximum at x = 3. The graph has
a vertical asymptote at x = �1.9304. Sim-
ilarly, the graph has vertical asymptotes at
x = 0.1074 and 4.8231.
f(x) ! 0 as x ! �1 and f(x) ! 0 as x ! 1.
Therefore, the graph has horizontal asymptote
y = 0.

43210−6

2.5

0.0
−4

−2.5

6−2−3 5−1

−5.0

−5

5.0

24. f (x) =
1

x3 + 3x2 + 4x+ 1

f 0 (x) = � 3x2 + 6x+ 4

(x3 + 3x2 + 4x+ 1)2

Since f 0 (x) = 0 has no real roots, the graph
has no extrema.

f 00 (x) =
12x4 + 48x3 + 78x2 + 66x+ 26

(x3 + 3x2 + 4x+ 1)3

The Critical number is x = �0.316722.
f 00 (x) > 0 on (�0.3176722,1) so the graph
is concave up on this interval. f 00 (x) < 0
on (�1,�0.3176722) so the graph is concave
down on this interval. the graph has a vertical
asymptote at x = �0.3176722. f(x) ! 0 as
x ! �1 and f(x) ! 0 as x ! 1.
Therefore, the graph has horizontal asymptote
y = 0.
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25. f(x) = (x3 � 3x2 + 2x)2/3

f 0(x) =
2(3x2 � 6x+ 2)

3(x3 � 3x2 + 2x)1/3

There are critical numbers at x =
3±

p
3

3
, 0,

1 and 2.

f 00(x) =
18x4 � 72x3 + 84x2 � 24x� 8

9(x3 � 3x2 + 2x)4/3

with critical numbers x = 0, 1 and 2 and
x ⇡ �0.1883 and 2.1883. f 00(x) changes sign
at these last two values, so these are inflection
points. The Second Derivative test shows that

x =
3±

p
3

3
are both maxima. Local minima

occur at x = 0, 1 and 2.
f(x) ! 1 as x ! ±1.

6

4

2

0

x

43210-2 -1

8

26. f(x) = x6 � 10x5 � 7x4 + 80x3 + 12x2 � 192x
f(x) ! 1 as x ! ±1.
f 0(x) = 6x5� 50x4� 28x3+240x2+24x� 192
Critical numbers at approximately x =
�1.9339, �1.0129, 1, 1.9644, and 8.3158.
f 00(x) = 30x4 � 200x3 � 84x2 + 480x+ 24
Critical numbers at approximately x =
�1.5534, �0.0496, 1.5430, and 6.7267, and
changes sign at each of these values, so these
are inflection points. The Second Derivative
Test shows that x = �1.9339, 1, and 8.3158
are local minima, and x = �1.0129 and 1.9644
are local maxima. The extrema near x = 0
look like this:

200
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100

0
-1

-100

-2 1
x

2

The inflection points, and the global behavior
of the function can be seen on the following
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graph.
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27. f(x) =
x2 + 1

3x2 � 1
Note that x = ±

p
1/3 are not in the domain

of the function, but yield vertical asymptotes.

f 0(x) =
2x(3x2 � 1)� (x2 + 1)(6x)

(3x2 � 1)2

=
(6x3 � 2x)� (6x3 + 6x)

(3x2 � 1)2

=
�8x

(3x2 � 1)2

So the only critical point is x = 0.

f 0(x) > 0 for x < 0
f 0(x) < 0 for x > 0
so f is increasing on (�1,�

p
1/3) and on

(�
p

1/3, 0); decreasing on (0,
p
1/3) and on

(
p

1/3,1). Thus there is a local max at x = 0.

f 00(x) = 8 · 9x2 + 1

(3x2 � 1)3

f 00(x) > 0 on (�1,�
p
1/3) [ (

p
1/3,1)

f 00(x) < 0 on (�
p
1/3,

p
1/3)

Hence f is concave up on (�1,�
p
1/3) and on

(
p

1/3,1); concave down on (�
p
1/3,

p
1/3).

Finally, when |x| is large, the function ap-
proached 1/3, so y = 1/3 is a horizontal asymp-
tote.

y

10

5

0

-5

-10

x

3210-1-2-3

28. f(x) =
5x

x3 � x+ 1
Looking at the graph of x3 � x + 1, we see

that there is one real root, at approximately
�1.325; so the domain of the function is all x
except for this one point, and x = �1.325 will
be a vertical asymptote. There is a horizontal
asymptote of y = 0.

f 0(x) = 5
1� 2x3

(x3 � x� 1)2

The only critical point is x = 3
p
1/2. By the

first derivative test, this is a local max.

f 00(x) = 10
3x5 + x3 � 6x2 + 1

(x3 � x+ 1)3

The numerator of f 00 has three real roots,
which are approximately x = �.39018, x =
.43347, and x = 1.1077. f 00(x) > 0 on
(�1,�1.325) [ (�.390, .433) [ (1.108,1)
f 00(x) < 0 on (�1.325,�.390) [ (.433, 1.108)
So f is concave up on (�1,�1.325) [
(�.390, .433) [ (1.108,1) and concave down
on (�1.325,�.390) [ (.433, 1.108). Hence x =
�.39018, x = .43347, and x = 1.1077 are in-
flection points.

x

8

2

0

−4

0

−8

y

10

6

3

4

2

−2
1

−6

−10

−1−2−3

29. f(x) = x2
p
x2 � 9

f is undefined on (�3, 3).

f 0(x) = 2x
p

x2 � 9+x2

✓
1

2
(x2 � 9)�1/2 · 2x

◆

= 2x
p

x2 � 9 +
x3

p
x2 � 9

=
2x(x2 � 9) + x3

p
x2 � 9

=
3x3 � 18xp

x2 � 9
=

3x(x2 � 6)p
x2 � 9

=
3x(x+

p
6)(x�

p
6)p

x2 � 9

Critical points ±3. (Note that f is undefined
at x = 0, ±

p
6.)
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f 00(x) =
(9x2 � 18)

p
x2 � 9

x2 � 9

�
(3x3 � 18x) · 1

2 (x
2 � 9)�1/2 · 2x

x2 � 9

=
(9x2 � 18)(x2 � 9)� x(3x3 � 18x)

(x2 � 9)3/2

=
(6x4 � 81x2 + 162)

(x2 � 9)3/2

f 00(x) = 0 when

x2 =
81±

p
812 � 4(6)(162)

2(6)

=
81±

p
2673

12
=

1

4
(27±

p
297)

So x ⇡ ±3.325 or x ⇡ ±1.562, but these latter
values are not in the same domain. So only
±3.325 are potential inflection points.
f 0(x) > 0 on (3,1)
f 0(x) < 0 on (�1,�3)
f 00(x) > 0 on (�1,�3.3) [ (3.3,1)
f 00(x) < 0 on (�3.3,�3) [ (3, 3.3)
f is increasing on (3,1), decreasing on
(�1,�3), concave up on (�1,�3.3) [
(3.3,1), concave down on (�3.3,�3)[(3, 3.3).
x = ±3.3 are inflection points.
Global graph of f(x):

−5

500

x
1050

750

250

−10
0

Local graphs of f(x):

x

30

43.5

10

32.52

40

20

0

20

x

0
-2-2.5-3-3.5-4

40

30

10

30. f(x) = 3
p
2x2 � 1

f 0(x) =
4x

3(2x2 � 1)2/3

f 0(x) = 0 at x = 0 and is undefined at
x = ±

p
1/2.

f 00(x) =
�4(2x2 + 3)

9(2x2 � 1)5/3

f 00(x) is never 0, and is undefined where f 0

is. The function changes concavity at x =
±
p

1/2, so these are inflection points. The
slope does not change at these values, so they
are not extrema. The Second Derivative Test
shows that x = 0 is a minimum.
f(x) ! 1 as x ! ±1.

2

1

0
0

-2-4
x

64

4

3

2

-1

-6

31. f(x) = e�2x sinx
f 0(x) = e�2x(cosx� 2 sinx)
f 00(x) = e�2x(3 sinx� 4 cosx)
f 0(x) = 0 when cosx = 2 sinx; that is,
when tanx = 1/2; that is, when x =
k⇡ + tan�1(1/2), where k is any integer.
f 0(x) < 0, and f is decreasing, on intervals of
the form (2k⇡ + tan�1( 12 ), (2k + 1)⇡ + tan�1( 12 ))
f 0(x) > 0 and f is increasing, on intervals of
the form ((2k � 1)⇡ + tan�1( 12 ), 2k⇡ + tan�1( 12 ))
Hence f has a local max at x = 2k⇡ +
tan�1(1/2) and a local min at x = (2k +
1)⇡ + tan�1(1/2).
f 00(x) = 0 when 3 sinx = 4 cosx; that
is, when tanx = 4/3; that is, when x =
k⇡ + tan�1(4/3). The sign of f 00 changes at
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each of these points, so all of them are inflec-
tion points.

y

4

8

2

4

−2

−4

0
x

5

10

3

1

6

0

−1

−3

2

−5

−2−4−6−8−10

32. f(x) = sinx� 1
2 sin 2x

f 0(x) = cosx� cos 2x
f 0(x) = 0 when x = 2k⇡, 2⇡/3 + 2k⇡, or
4⇡/3 + 2k⇡.
f 00(x) = � sinx+ 2 sin 2x
f 00(x) = 0 when x = 0, ⇡ and approximately
±1.3181, and the pattern repeats with period
2⇡. f 00 changes sign at each of these values, so
these are inflection points. The First Deriva-
tive Test shows that x = 2k⇡ is neither a min-
imum nor a maximum. The Second Derivative
Test shows that the other critical numbers are
extrema that alternate between minima and
maxima.

1

0.5

0

-0.5

-1

5
x

-5 100-10

33. f(x) = x4 � 16x3 + 42x2 � 39.6x+ 14
f 0(x) = 4x3 � 48x2 + 84x� 39.6
f 00(x) = 12x2 � 96x+ 84

= 12(x2 � 8x+ 7)
= 12(x� 7)(x� 1)

f 0(x) > 0 on (.8952, 1.106) [ (9.9987,1)
f 0(x) < 0 on (�1, .8952) [ (1.106, 9.9987)
f 00(x) > 0 on (�1, 1) [ (7,1)
f 00(x) < 0 on (1, 7)
f is increasing on (.8952, 1.106) and on
(9.9987,1), decreasing on (�1, .8952) and on
(1.106, 9.9987), concave up on (�1, 1)[(7,1),
concave down on (1, 7), x = .8952, 9.9987 are
local min, x = 1.106 is local max, x = 1, 7 are

inflection points.
f(x) ! 1 as x ! ±1.
Global graph of f(x):

10000

0

x

20151050-5-10

40000

30000

20000

Local graph of f(x):

2.5

2

1.5

1

0.5

x

1.41.210.80.6

34. f(x) = x4 + 32x3 � 0.02x2 � 0.8x
f 0(x) = 4x3 + 96x2 � 0.04x� 0.8
f 0(x) = 0 at approximately x = �24,
�0.09125, and 0.09132.
f 00(x) = 12x2 + 192x� 0.04
f 00(x) = 0 at approximately x = 16.0002 and
0.0002, and changes sign at these values, so
these are inflection points. The Second Deriva-
tive Test shows that x = �24 and 0.09132 are
minima, and that x = �0.09125 is a maxima.
The extrema near x = 0 look like this:

0.08

0.04

0

-0.04

-0.08

x
0.20.10-0.1-0.2

The global behavior looks like this:
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50000

x

0

-50000

10

-100000

0-10-20-30

100000

35. f(x) =
25� 50

p
x2 + 0.25

x

= 25

 
1� 2

p
x2 + 0.25

x

!

= 25

 
1�

p
4x2 + 1

x

!

Note that x = 0 is not in the domain of the
function.

f 0(x) = 25

 
1�

p
4x2 + 1

x2
p
4x2 + 1

!

We see that there are no critical points. In-
deed, f 0 < 0 wherever f is defined. One can
verify that

f 00(x) > 0 on (0,1)
f 00(x) < 0 on (�1, 0)
Hence the function is concave up on (0,1) and
concave down on (�1, 0).

lim
x!1

25� 50
p
x2 + 0.25

x

= lim
x!1

25

x
� 50

p
x2 + 0.25

x

= lim
x!1

0� 50
x
q

1 + 0.25
x2

x

= lim
x!1

�50

r
1 +

0.25

x2
= �50

lim
x!�1

25� 50
p
x2 + 0.25

x

= lim
x!1

25

x
� 50

p
x2 + 0.25

x

= lim
x!�1

0� 50
(�x)

q
1 + 0.25

x2

x

= lim
x!1

50

r
1 +

0.25

x2
= 50

So f has horizontal asymptotes at y = 50 and
y = �50.

20

0

40

-40

-20

x

105-5 0-10

36. f(x) = tan�1

✓
1

x2 � 1

◆

The function has horizontal asymptote y = 0,
and is undefined at x = ±1.

f 0(x) =
�2x

x4 � 2x2 + 2
f 0(x) = 0 only when x = 0.

f 00(x) =
2(3x4 � 2x2 � 2)

(x4 � 2x2 + 2)2

f 00(x) = 0 at approximately x = ±1.1024
and changes sign there, so these are inflection
points (very easy to miss by looking at the
graph). The Second Derivative Test shows that
x = 0 is a local maximum.

1

0.5

x

0
0 6

-1.5

4-4

1.5

-0.5

-1

2-2-6

37. f(x) = x4 + cx2

f 0(x) = 4x3 + 2cx
f 00(x) = 12x2 + 2c
c = 0: 1 extremum, 0 inflection points
c < 0: 3 extrema, 2 inflection points
c > 0: 1 extremum, 0 inflection points
c ! �1: the graph widens and lowers
c ! +1: the graph narrows

38. f(x) = x4 + cx2 + x
f 0(x) = 4x3 + 2cx+ 1
f 00(x) = 12x2 + 2c
If c is negative, there will be two solutions to
f 00 = 0, and these will be inflection points. For
c > 0 there will be no solutions to f 00 = 0,
and no inflection points. For c = 0, f 00 = 0
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when x = 0, but does not change sign there,
so this is not an inflection point. f 0 = 0 has
one solution, corresponding to a minimum, for
all c > �1.5. For c = �1.5, there is a second
critical point which is neither a minimum nor
a maximum. For c < �1.5 there are three crit-
ical points, two minima and a maximum. As
c ! 1 the curve has one minimum, and nar-
rows. As c ! �1, the two minima get farther
apart and drop lower. The local maximum ap-
proaches (0, 0).

39. f(x) =
x2

x2 + c2

f 0(x) =
2c2x

(x2 + c2)2

f 00(x) =
2c4 � 6c2x2

(x2 + c2)3

If c = 0: f(x) = 1, except that f is undefined
at x = 0. c < 0, c > 0: horizontal asymp-
tote at y = 1, local min at x = 0, since the
derivative changes sign from negative to posi-
tive at x = 0; also there are inflection points at
x = ±c/

p
3. As c ! �1, c ! +1: the graph

widens.

40. f(x) = e�x2/c

f 0(x) =
�2x

c
· e�x2/c

f 00(x) =
�2c+ 4x2

c2
· e�x2/c

For c > 0 the graph is a bell curve centered
at its maximum point (0, 1), and the inflection
points are at x = ±

p
c/2. As c ! 1, the

curve widens.

The function is not defined for c = 0.

For c < 0, there are no inflection points, and
x = 0 is a minimum. The graph is cup shaped
and widens as c ! �1.

41. When c = 0, f(x) = sin(0) = 0.

Since sinx is an odd function, sin(�cx) =
� sin(cx). Thus negative values of c give the
reflection through the x-axis of their positive
counterparts. For large values of c, the graph
looks just like sinx, but with a very small pe-
riod.

42. When c = 0, we have f(x) = x2
p
�x2, which

is undefined.

Since x2
p
c2 � x2 = x2

p
(�c)2 � x2, the func-

tion is the same regardless of whether c is neg-
ative or positive. The function is always 0 at
x = 0 and undefined for |x| > |c|. Where it

is defined, f(x) � 0, attaining its minimum
at x = 0. It reaches its maximum value at
x = ±

p
2c2/3. At these points, f attains the

value 2
p
3|c|3/9. The function looks generally

the same as |c| gets large, with the domain and
range increasing as |c| does.

43. f(x) =
3x2 � 1

x
= 3x� 1

x
y = 3x is a slant asymptote.

0 4

10

−10

x
5

y

15

5

3

0

−5

−15

−2 −1−4 −3−5 1 2

44. f(x) =
3x2 � 1

x� 1
= 3x+ 3 +

2

x� 1
,

so the slant asymptote is y = 3x+ 3.

y

20

15

10

5

0

x-5

-10

6

-15

420-2-4-6

45. f(x) =
x3 � 2x2 + 1

x2
= x� 2 +

1

x2

y = x� 2 is a slant asymptote.

y

8

4

4

1 2

−4

−2
x

10

5

6

2

3

0

−2

−6

−8

−10

−1−4 −3−5 0

46. f(x) =
x3 � 1

x2 � 1
= x+

x� 1

x2 � 1
,
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so the slant asymptote is y = x.

-10

x
6420-2

y

-4

10

-6

5

0

-5

47. f(x) =
x4

x3 + 1
= x� x

x3 + 1

y = x is a slant asymptote.

0.0

x
3210−1

5.0

−5.0

2.5

y

−2−3

−2.5

48. f(x) =
x4 � 1

x3 + x
= x+

�x2 � 1

x3 + x
,

so the slant asymptote is y = x.

-10

x
6420-2

y

-4

10

-6

5

0

-5

49. One possibility:

f(x) =
3x2

(x� 1)(x� 2)

50. One possibility:

f(x) =
x

x2 � 1

51. One possibility:

f(x) =
2xp

(x� 1)(x+ 1)

52. One possibility:

f(x) =
2x2

(x� 1)(x� 3)

53. lim
x!1


x4 � x2 + 1

x2 � 1
� x2

�

= lim
x!1


x4 � x2 + 1� x2(x2 � 1)

x2 � 1

�

= lim
x!1


1

x2 � 1

�
= 0

Thus f(x) =
x4 � x2 + 1

x2 � 1
has x2 as an asymp-

tote.

8,000

6,000

4,000

0

10,000

9,000

7,000

5,000

3,000

2,000

1,000

2001000−100−200

54. (a) f (x) =
x4

x+ 1

=
x4 � 1 + 1

x+ 1

=

�
x2 + 1

�
(x+ 1) (x� 1)

x� 1
+

1

x+ 1

=
�
x2 + 1

�
(x+ 1) +

1

x+ 1
One possible polynomial is p(x) =�
x2 + 1

�
(x+ 1). Then |f(x)� p(x)| =��� 1

x+1

���! 0 as x ! 1.

(b) f (x) =
x5 � 1

x+ 1

=
x5 + 1� 2

x+ 1

= x4 � x3 + x2 � x+ 1� 2

x+ 1
One possible polynomial is p(x) = x4 �
x3 + x2 � x + 1. Then |f (x)� p (x)| =��� 2
x+1

���! 0 as x ! 1.
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(c) f(x) =
x6 � 2

x+ 1

=
x6 � 1� 1

x+ 1

=

�
x3 � 1

� �
x3 + 1

�
� 1

x+ 1

=

�
x3 � 1

�
(x+ 1)

�
x2 � x+ 1

�
� 1

x+ 1

=
�
x3 � 1

� �
x2 � x+ 1

�
� 1

x+ 1
One possible polynomial is p(x) =�
x3 � 1

� �
x2 � x+ 1

�
. Then |f (x)� p(x)| =��� 1

x+1

���! 0 as x ! 1.

55. f(x) = sinhx =
ex � e�x

2

f 0(x) =
ex + e�x

2
f 0(x) > 0 for all x so f(x) is always increasing
and has no extrema.

f 00(x) =
ex � e�x

2
f 00(x) = 0 only when x = 0 and changes sign
here, so f(x) has an inflection point at x = 0.

3

2

1

-1

-2

0

-3

x

210-1-2

f(x) = coshx =
ex + e�x

2

f 0(x) =
ex � e�x

2
f 0(x) = 0 only when x = 0.

f 00(x) =
ex + e�x

2
f 00(x) > 0 for all x, so f(x) has no inflection
points, but x = 0 is a minimum.

50

30

10

x

420-2-4

70

60

40

20

0

56. For y = sinhx we need to use � 1
2e

�x instead
of 1

2e
�x. To explain the enveloping behavior,

note that:

lim
x!�1

sinhx = lim
x!�1

ex � e�x

2

= lim
x!�1

� e�x

2

lim
x!1

sinhx = lim
x!1

ex � e�x

2

= lim
x!1

ex

2

0.8

1.6

2.4

−2.4

−0.8
2−1

3.2

0.0

−3.2

0−2
x

−1.6

1

To explain the enveloping behavior for y =
coshx, note that:

lim
x!�1

coshx = lim
x!�1

ex + e�x

2

= lim
x!�1

e�x

2

lim
x!1

coshx = lim
x!1

ex + e�x

2

= lim
x!�1

ex

2
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3

1−1

2

−2 20

0

1

x

57. f(x) = xe�bx

f(0) = 0
f(x) > 0 for x > 0

lim
x!1

xe�bx = lim
x!1

x

ebx
= lim

x!1

1

bebx
= 0

(by L’Hôpital’s rule)
f 0(x) = e�bx (1� bx), so there is a unique crit-
ical point at x = 1/b, which must be the maxi-
mum. The bigger b is, the closer the max is to
the origin. For time since conception, 1/b rep-
resents the most common gestation time. For
survival time, 1/b represents the most common
life span.

58. From the graph we can count 15 maxima and
16 minima in the range 0  x  10. Using a
CAS to solve
f 0(x) = � sin(10x+ 2 cosx)(10� 2 sinx) = 0,
we find the following values of x at the extrema.

Minima Maxima
0.11549 0.44806
0.80366 1.18055
1.57080 1.96104
2.33793 2.69353
3.02610 3.33776
3.63216 3.91326
4.18477 4.45009
4.71239 7.97469
5.24001 5.51152
5.79261 6.08702
6.39868 6.73125
7.08685 7.46374
7.85398 8.24422
8.62112 8.97672
9.30929 9.62094
9.91535

59. f (x) = A = tan�1

✓
29.25

x

◆
� tan�1

✓
10.75

x

◆

f 0 (x) =

"
x2

x2 + (29.25)2

✓
�29.25

x2

◆#

�
"

x2

x2 + (10.75)2

✓
�10.75

x2

◆#

f 0 (x) = 0 )
�29.25

x2 + (29.25)2
+

10.75

x2 + (10.75)2
= 0

x = 17.73 ft.
Substitue x = 17.73 in f (x) .

A = tan�1

✓
29.25

17.73

◆
� tan�1

✓
10.75

17.73

◆

= 58.78� 31.23

= 27.55�

Now x is increased to (x+ 15) .
f (x+ 15) = A

= tan�1

✓
29.25

x+ 15

◆
� tan�1

✓
10.75

x+ 15

◆

f 0 (x+ 15)

=

2

64
1

1 +
⇣

29.25
x+15

⌘2

 
�29.25

(x+ 15)2

!3

75

�

2

64
1

1 +
⇣

10.75
x+15

⌘2

 
�10.75

(x+ 15)2

!3

75

=
�29.25

(x+ 15)2 + (29.25)2

+
10.75

(x+ 15)2 + (10.75)2

f 0 (x) = 0 ) x = 2.73 ft.
Substitute x = 2.73 in f (x) .

A = tan�1

✓
29.25

2.73

◆
� tan�1

✓
10.75

2.73

◆

= 84.67� 75.75

= 8.92�

Therefore, A decreases by 18.63�.

60. x(t) =
2.5

w
t� 2.5

4w2
sin 4wt

Since 0  t  0.68. Hence

0  x(t) 
⇣

(2.5)(0.68)
w � 2.5

4w2 sin (4w (0.68))
⌘


�
1.7
w � 2.5

4w2 sin (2.72w)
�


⇣

6.8w�2.5sin(2.72w)
4w2

⌘

Taking limit as w ! 0

lim
w!0

0  lim
w!0

x (t)  lim
w!0

⇣
6.8w�2.5sin(2.72w)

4w2

⌘

(by L’Hôpital’s rule)
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lim
w!0

✓
6.8w � 2.5sin (2.72w)

4w2

◆

= lim
w!0

6.8� 6.8 cos (2.72w)

8w
(by L’Hôpital’s rule)

lim
w!0

18.496 sin (2.72w)

8
= 0

Hence
lim
w!0

0  lim
w!0

x(t)  0.

As w ! 0, x(t) ! 0 that is the knuckleball
will move in a straight direction.

3.7 Optimization

1. A = xy = 1800

y =
1800

x

P = 2x+ y = 2x+
1800

x

P 0 = 2� 1800

x2
= 0

2x2 = 1800
x = 30
P 0(x) > 0 for x > 30
P 0(x) < 0 for 0 < x < 30
So x = 30 is min.

y =
1800

x
=

1800

30
= 60

So the dimensions are 300 ⇥ 600 and the mini-
mum perimeter is 120 ft.

2. If y is the length of fence opposite the river,
and x is the length of the other two sides, then
we have the constraint 2x + y = 96. We wish
to maximize
A = xy = x(96� 2x).
A0 = 96� 4x = 0 when x = 24.
A00 = �4 < 0 so this gives a maximum. Rea-
sonable possible values of x range from 0 to 48,
and the area is 0 at these extremes. The maxi-
mum area is A = 1152, and the dimensions are
x = 24, y = 48.

3. P = 2x+ 3y = 120
3y = 120� 2x

y = 40� 2

3
x

A = xy

A(x) = x

✓
40� 2

3
x

◆

A0(x) = 1

✓
40� 2

3
x

◆
+ x

✓
�2

3

◆

= 40� 4

3
x = 0

40 =
4

3
x

x = 30
A0(x) > 0 for 0 < x < 30
A0(x) < 0 for x > 30.

So x = 30 is max, y = 40� 2

3
· 30 = 20.

So the dimensions are 200 ⇥ 300.

4. Let x be the length of the sides facing each
other and y be the length of the third side.
We have the constraint that xy = 800, or
y = 800/x. We also know that x > 6 and
y > 10. The function we wish to minimize is
the length of walls needed, or the side length
minus the width of the doors.
L = (y � 10) + 2(x� 6) = 800/x+ 2x� 22.
L0 = �800/x2 + 2 = 0 when x = 20.
L00 = 1600/x3 > 0 when x = 20 so this is
a minimum. Possible values of x range from
6 to 80. L(6) = 123.3, L(80) = 148, and
L(20) = 58. To minimize the length of wall,
the facing sides should be 20 feet, and the third
side should be 40 feet.

5. A = xy

P = 2x+ 2y

2y = P � 2x

y =
P

2
� x

A(x) = x

✓
P

2
� x

◆

A0(x) = 1 ·
✓
P

2
� x

◆
+ x(�1)

=
P

2
� 2x = 0

P = 4x

x =
P

4
A0(x) > 0 for 0 < x < P/4
A0(x) < 0 for x > P/4

So x = P/4 is max,

y =
P

2
� x =

P

2
� P

4
=

P

4
So the dimensions are P

4 ⇥ P
4 . Thus we have a

square.



214 CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

6. We have a rectangle with sides x and y and
area A = xy, and that we wish to minimize
the perimeter,

P = 2x+ 2y = 2x+ 2 · A
x
.

P 0 = 2� 2A

x2
= 0 when x =

p
A.

P 00 = 4A/x3 > 0 here, so this is a minimum.
Possible values of x range from 0 to 1. As x
approaches these values the perimeter grows
without bound. For fixed area, the rectan-
gle with minimum perimeter has dimensions
x = y =

p
A, a square.

7. V = l · w · h
V (x) = (10� 2x)(6� 2x) · x, 0  x  3
V 0(x) = �2(6� 2x) · x+ (10� 2x)(�2) · x

+ (10� 2x)(6� 2x)

= 60� 64x+ 12x2

= 4(3x2 � 16x+ 15)

= 0

x =
16±

p
(�16)2 � 4 · 3 · 15

6

=
8

3
±

p
19

3

x =
8

3
+

p
19

3
> 3.

V 0(x) > 0 for x < 8/3�
p
19/3

V 0(x) < 0 for x > 8/3�
p
19/3

So x =
8

3
�

p
19

3
is a max.

8. If we cut squares out of the corners of a 12” by
16” sheet and fold it into a box, the volume of
the resulting box will be

V = x(12� 2x)(16� 2x)
= 4x3 � 56x2 + 192x,

where the value of x must be between 0 and 6.
V 0 = 12x2 � 112x+ 192 = 0
when x = 14±2

p
13

3 ⇡ 7.07 and 2.26. The crit-

ical value x = 14+2
p
13

3 is outside of the rea-
sonable range. The volume is 0 when x is 0
or 6. The First Derivative Test shows that
x = 14�2

p
13

3 gives the maximum volume.

9. (a) V = l · w · h
The volume of the first box (without top)
is
V1 = V1(x) = (6� 2x)2(x) = 4x(3� x)2

where 0 < x < 3. The volume of the
second box (without top and bottom) is
V2 = V2(x) = x3.
Thus, we find the absolute maximum of

the continuous function
V = V (x) = V1(x)+V2(x) = 4x(3� x)2+
x3

on the interval 0 < x < 3.
V 0(x) = 4(3� x)2 + 4x (2 (3� x) (�1)) + 3x2

= 4
�
9� 6x+ x2

�
� 8x (3� x) + 3x2

= 15x2 � 48x+ 36

= (x� 2) (15x� 18)
Now compare the value of the function at
the critical points.
V (1.2) = 17.28

V (2) = 16
Therefore, the value x = 1.2 maximizes
the sum of volumes of the boxes.

(b) The volume of the first box (without top)
is
V1 = V1(x) = (6� 2x)(4� 2x)(x)
= 4x(3� x)(2� x), where 0 < x < 2
The volume of the second box (without
top and bottom) is
V2 = V2(x) = x3.
Thus, we find the absolute maximum of
the continuous function
V = V (x) = V1(x) + V2(x)
= 4x(3� x)(2� x) + x3, on the interval
0 < x < 2.
We have,
V 0(x) = 4 (3� x) (2� x) + 4x (2� x) (�1)

+ 4x (3� x) (�1) + 3x2

= 4
�
6� 5x+ x2

�
� 4x (2� x)

� 4x (3� x) + 3x2

= 15x2 � 40x+ 24
Now compare the value of the function at
the critical points.
V (0.91169) = 9.0

V (1.75496) = 5.4
Therefore, x = 0.91169 maximizes the
sum of volumes of the boxes.

10. The volume of the first box (without top) is
V1 = V1(x) = (6� 2x)(d� 2x)(x),
where 0 < x < min{d

2 , 3}
The volume of the second box (without top and
bottom) is
V2 = V2(x) = x3.
Thus, we find the absolute maximum of the
continuous function
V = V (x) = V1(x) + V2(x)
= x(6� 2x)(d� 2x) + x3, on the interval
0 < x < min{d

2 , 3}
We have,
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V 0(x) = (�2x)(d� 2x)� 2x(6� 2x)

+ (d� 2x)(6� 2x) + 3x2

= 15x2 � 24x� 4dx+ 6d

= 15x2 � x(24 + 4d) + 6d = 0
To get real values of x, (24+4d)2�4·15·6d � 0
and this is ture for all d > 0.
Therefore for each d > 0, we can find x such
that V is maximum.

11. d =
p
(x� 0)2 + (y � 1)2

y = x2

d =
p
x2 + (x2 � 1)2

= (x4 � x2 + 1)1/2

d0(x) =
1

2
(x4 � x2 + 1)�1/2(4x3 � 2x)

=
2x(2x2 � 1)

2
p
x4 � x2 + 1

= 0

x = 0,±
p
1/2;

f(0) = 1, f(
p
1/2) = 3/4, f(�

p
1/2) = 3

4 ;

Thus x = ±
p
1/2 are min, and the points on

y = x2 closest to (0, 1) are (
p
1/2, 1/2) and

(�
p

1/2, 1/2).

12. Points on the curve y = x2 can be written
(x, x2). The distance from such a point to (3, 4)
is
D =

p
(x� 3)2 + (x2 � 4)2

=
p
x4 � 7x2 � 6x+ 25.

We numerically approximate the solution of

D0 =
2x3 � 7x� 3p

x4 � 7x2 � 6x+ 25
= 0 to be x ⇡

2.05655, and two negative solutions. The neg-
ative critical numbers clearly do not minimize
the distance. The closest point is approxi-
mately (2.05655, 4.22940).

13. d =
p
(x� 0)2 + (y � 0)2

y = cosx

d =
p
x2 + cos2 x

d0(x) =
2x� 2 cosx sinx

2
p
x2 + cos2 x

= 0

x = cosx sinx

x = 0
So x = 0 is min and the point on y = cosx
closest to (0, 0) is (0, 1).

14. Points on the curve y = cosx can be written
(x, cosx). The distance from such a point to
(1, 1) is

D =
p

(x� 1)2 + (cosx� 1)2

=
p

x2 � 2x+ cos2 x� 2 cosx+ 2
We numerically approximate the solution of

D0 =
x� 1� cosx sinx+ sinxp

x2 � 2x+ cos2 x� 2 cosx+ 2
= 0

to be x ⇡ 0.789781. The First or Second
Derivative Test shows that this is a minimum
distance. The closest point is approximately
(0.789781, 0.704001).

15. For (0, 1), (
p
1/2, 1/2) on y = x2, we have

y0 = 2x, y0(
p

1/2) = 2 ·
p

1/2 =
p
2 and

m =
1
2 � 1

�
q

1
2 � 0

=
1p
2
.

For (0, 1), (�
p
1/2, 1/2) on y = x2, we have

y0(�
p
1/2) = 2(�

p
1/2) = �

p
2 and

For (3, 4), (2.06, 4.2436) on y = x2, we have
y0(2.06) = 2(2.06) = 4.12 and

m =
4.2436� 4

2.06� 3
= �0.2591 ⇡ � 1

4.12
.

16. For (3, 9), (1, 8) on y = 9� x2, we have
y0 = �2x, y0(1) = �2 · 1 = �2 and

m =
8� 9

1� 3
=

1

2
.

For (5, 11), (0.79728, 8.364) on y = 9 � x2, we
have y0(0.79728) = �2(0.79728) = �1.59456
and

m =
8.364� 11

0.79728� 5
= 0.6272 ⇡ 1

1.59456
.

17. Cost: C = 2(2⇡r2) + 2⇡rh
Convert from fluid ounces to cubic inches:
12 fl oz = 12 fl oz · 1.80469 in3/fl oz

= 21.65628 in3

Volume: V = ⇡r2h so

h =
V

⇡r2
=

21.65628

⇡r2

C = 4⇡r2 + 2⇡r

✓
21.65628

⇡r2

◆

C(r) = 4⇡r2 + 43.31256r�1

C 0(r) = 8⇡r � 43.31256r�2

=
8⇡r3 � 43.31256

r2

r = 3

r
43.31256

8⇡
= 1.198900

when C 0(r) = 0.
C 0(r) < 0 on (0, 1.1989)
C 0(r) > 0 on (1.1989,1)
Thus r = 1.1989 minimizes the cost and

h =
21.65628

⇡(1.1989)2
= 4.795700.

18. If the top and bottom of the cans are 2.23 times
as thick as the sides, then the new cost func-
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tion will be

C(r) = 2⇡

✓
2.23r2 +

21.65628

⇡r

◆
.

Then C 0(r) = 2⇡

✓
4.46r � 21.65628

⇡r2

◆
= 0

when r = 3

r
21.65628

4.46⇡
⇡ 1.156.

The First Derivative Test shows this is a mini-
mum, and we can verify that the cost increases
without bound as r ! 0 and r ! 1.

19. Let x be the distance from the connection
point to the easternmost development. Then
0  x  5.
f(x) =

p
32 + (5� x)2 +

p
42 + x2,

0  x  5
f 0(x) = �(9 + (5� x)2)�1/2(5� x)

+
1

2
(16 + x2)�1/2(2x)

=
x� 5p

9 + (5� x)2
+

xp
16 + x2

= 0

x =
20

7
⇡ 2.857

f(0) = 4 +
p
34 ⇡ 9.831

f

✓
20

7

◆
=

p
74 ⇡ 8.602

f(5) = 3 +
p
41 ⇡ 9.403

So x = 20/7 is minimum. The length of new
line at this point is approximately 8.6 miles.
Since f(0) ⇡ 9.8 and f(5) ⇡ 9.4, the water
line should be 20/7 miles west of the second
development.

20. Say the pipeline intersects the shore at a dis-
tance x from the closest point on the shore
to the oil rig. Then x will be between 0
and 8. The length of underwater pipe is then
W =

p
x2 + 252, and the length of pipe con-

structed on land will be L =
p
(8� x)2 + 52.

The total cost will be C = 50W + 20L.

We numerically solve

C 0 =
50xp

625 + x2
+

10(2x� 16)p
x2 � 16x+ 89

= 0

to find x ⇡ 5.108987. The first derivative test
shows that this gives a minimum. The cost at
this value is $1391 thousand. The cost when
x = 0 is $1439 thousand, and the cost when
x = 8 is $1412 thousand, so x = 5.108987 gives
the absolute minimum cost.

21. (a) C(x) = 5
p
16 + x2 + 2

p
36 + (8� x)2

0  x  8

C(x) = 5
p
16 + x2 + 2

p
100� 16x+ x2

C 0(x) = 5

✓
1

2

◆
(16 + x2)�1/2 · 2x

+ 2

✓
1

2

◆
(100� 16x+ x2)�1/2(2x� 16)

=
5xp

16 + x2
+

2x� 16p
100� 16x+ x2

= 0

x ⇡ 1.2529

C(0) = 40

C(1.2529) ⇡ 39.0162

C(8) ⇡ 56.7214

The highway should emerge from the
marsh 1.2529 miles east of the bridge.

(b) If we build a straight line to the inter-
change, we have x = (3.2).

Since C(3.2)�C(1.2529) ⇡ 1.963, we save
$1.963 million.

22. (a) Say the road intersects the edge of the
marsh at a distance x from the closest
point on the edge to the bridge. Then
x will be between 0 and 8. The length of
road over marsh is now M =

p
x2 + 42,

and the length of road constructed on dry
land will be L =

p
(8� x)2 + 62. The to-

tal cost will be C = 6M + 2L.

We numerically solve

C 0 =
6xp

16 + x2
+

2x� 16p
x2 � 16x+ 100

= 0

to find x ⇡ 1.04345. The first deriva-
tive test shows that this gives a minimum.
The cost at this value is $43.1763 mil-
lion. The cost when we use the solution
x = 1.2529 from exercise 19 is $43.2078
million, so the increase is $31,500.

(b) C(x) = 5
p
16 + x2 + 3

p
36 + (8� x)2

0  x  8

C 0(x) =
5xp

16 + x2
+

3x� 24p
100� 16x+ x2

Setting C 0(x) = 0 yields

x ⇡ 1.8941

C(0) = 50

C(1.8941) ⇡ 47.8104

C(8) ⇡ 62.7214
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The highway should emerge from the
marsh 1.8941 miles east of the bridge. So
if we must use the path from exercise 21,
the extra cost is
C(1.2529)� C(1.8941)
= 48.0452� 47.8104 = 0.2348
or about $234.8 thousand.

23. Let r denote the running speed, and s be the
swimming speed and let f(y) be the time to
get to the ball. Since time = distance/speed,
we have

f(y) =
z � y

r
+

p
x2 + y2

s

Solving f 0(y) = 0 for y, we get y =
sxp

r2 � s2
.

Substitute x = 4m and z = 8m. Therefore, we
have

y =
(0.9) (4)q

(6.4)2 � (0.9)2

⇡ 0.56815.

Therefore, Elvis should enter into the water at
y ⇡ 0.56815.

From the equation y =
xp

r/s+ 1
p
r/s� 1

, we

get that the value of y is independent of z > 1.

24. Let r denote the running speed, and s be the
swimming speed and let f(y) be the time to
get to the ball. Since time = distance/speed,
we have

f(y) =
z � y

r
+

p
x2 + y2

s

Solving f 0(y) = 0 for y, we get y =
sxp

r2 � s2
.

Substitute r = 6.4 and s = 0.9.

y =
0.9xq

(6.4)2 � (0.9)2
⇡ 0.144x

Therefore, for any x the optimal entry point is
approximately y = 0.144x.

25. T (x) =

p
1 + x2

v1
+

p
1 + (2� x)2

v2

T 0(x) =
1

v1
· 1
2
(1 + x2)�1/2 · 2x

+
1

v2
(1 + (2� x)2)�1/2 · (2� x)(�1)

=
x

v1
p
1 + x2

+
x� 2

v2
p

1 + (2� x)2

Note that

T 0(x) =
1

v1
· xp

1 + x2

� 1

v2
· (2� x)p

1 + (2� x)2

=
1

v1
sin ✓1 �

1

v2
sin ✓2

When T 0(x) = 0, we have
1

v1
sin ✓1 =

1

v2
sin ✓2

sin ✓1
sin ✓2

=
v1
v2

26. The distance light travels is

D =
p
22 + x2 +

p
12 + (4� x)2.

We maximize this by solving

D0 =
xp

4 + x2
+

2x� 8

2
p
x2 � 8x+ 17

= 0

to find x = 8/3. For this value of x,
✓1 = ✓2 = tan�1(3/4). (Or simply note similar
triangles.)

27. V (r) = cr2(r0 � r)

V 0(r) = 2cr(r0 � r) + cr2(�1)

= 2crr0 � 3cr2

= cr(2r0 � 3r)
V 0(r) = 0 when r = 2r0/3
V 0(r) > 0 on (0, 2r0/3)
V 0(r) < 0 on (2r0/3,1)
Thus r = 2r0/3 maximizes the velocity.
r = 2r0/3 < r0, so the windpipe contracts.

28. We wish to minimize

E(✓) =
csc ✓

r4
+

1� cot ✓

R4
.

We find

E0(✓) = �csc ✓ cot ✓

r4
+

1 + cot2 ✓

R4

=
� cos ✓R4 + r4

r4R4 sin2 ✓
.

This is zero when cos ✓ = r4/R4, so ✓ =
cos�1(r4/R4). The derivative changes from
negative to positive here, so this gives a mini-
mum as desired.
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29. p(x) =
V 2x

(R+ x)2

p0(x) =
V 2(R+ x)2 � V 2x · 2(R+ x)

(R+ x)4

=
V 2R2 � V 2x2

(R+ x)4

p0(x) = 0 when x = R
p0(x) > 0 on (0, R)
p0(x) < 0 on (R,1)
Thus x = R maximizes the power absorbed.

30. If the meter registers 115 volts, then v =
115

p
2. The function V (t) = v sin(2⇡ft) has

amplitude v, so the maximum value of the volt-
age is 115

p
2.

31. ⇡r + 4r + 2w = 8 + ⇡

w =
8 + ⇡ � r(⇡ + 4)

2

A(r) =
⇡r2

2
+ 2rw

=
⇡r2

2
+ r(8 + ⇡ � r(⇡ + 4))

= r2
⇣
�4� ⇡

2

⌘
+ r(8 + ⇡)

A0(r) = �2r
⇣
4 +

⇡

2

⌘
+ (8 + ⇡) = 0

A0(r) = 0 when r = 1
A0(r) > 0 on (0, 1)
A0(r) < 0 on (1,1)

Thus r = 1 maximizes the area so

w =
8 + ⇡ � (⇡ + 4)

2
= 2.

The dimensions of the rectangle are 2⇥ 2.

32. Let x be the distance from the end at which the
wire is cut. Due to symmetry, we may consider
0  x  1. We wish to minimize the area of
the squares formed by the two pieces. The to-
tal area is

A(x) =
⇣x
4

⌘2
+

✓
2� x

4

◆2

=
2x2 � 4x+ 4

16
.

We compute

A0(x) =
x

4
� 1

4
= 0 when x = 1.

A00 =
1

4
> 0, so this is a minimum.

We check A(0) = 1/4 and A(1) = 1/8 and see
that cutting the wire in half minimizes the area
of the two squares.

33. l ⇥ w = 92, w = 92/l
A(l) = (l + 4)(w + 2)

= (l + 4) (92/l + 2)
= 92 + 368/l + 2l + 8
= 100 + 368l�1 + 2l

A0(l) = �368l�2 + 2

=
2l2 � 368

l2
A0(l) = 0 when l =

p
184 = 2

p
46

A0(l) < 0 on (0, 2
p
46)

A0(l) > 0 on (2
p
46,1)

So l = 2
p
46 minimizes the total area. When

l = 2
p
46, w = 92

2
p
46

=
p
46.

For the minimum total area, the printed area
has width

p
46 in. and length 2

p
46 in., and

the advertisement has overall width
p
46+2 in.

and overall length 2
p
46 + 4 in.

34. Let x and y be the width and height of the ad-
vertisement. Then xy = 120 and y = 120/x.
We wish to maximize the printed area

A = (x� 2)(y � 3) = (x� 2)(
120

x
� 3)

= 126� 3x� 240

x
.

We find A0 = �3 +
240

x2
= 0 when x = 4

p
5.

The first Derivative Test shows that this is a
maximum. The smallest x could be is 2, and
this gives A(2) = 0. The largest x could be is
40, and this also gives A(40) = 0. Thus, we
see that the dimensions which maximize the
printed area are x = 4

p
5 and y = 6

p
5.

35. (a) Let L represent the length of the ladder.
Then from the diagram, it follows that
L = a sec ✓ + b csc ✓.
Therefore,

dL

d✓
= a sec ✓ tan ✓ � b csc ✓ cot ✓

0 = a sec ✓ tan ✓ � b csc ✓ cot ✓

a sec ✓ tan ✓ = b csc ✓ cot ✓

b

a
=

sec ✓ tan ✓

csc ✓ cot ✓

=
1

cos ✓

sin ✓

cos ✓

sin ✓

1

sin ✓

cos ✓
= tan3 ✓

Thus,
tan ✓ = 3

p
b/a

✓ = tan�1
⇣

3
p

b/a
⌘

= tan�1
⇣

3
p

4/5
⌘

⇡ 0.748 rad or 42.87 degrees
Thus, the length of the longest ladder
that can fit around the corner is approxi-
mately
L = a sec ✓ + b csc ✓
= 5 sec(0.748) + 4 csc(0.748)
⇡ 12.7 ft
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(b) From part (a), we have that ✓ =
tan�1( 3

p
b/a) is the critical number lim-

iting the length of the ladder. Thus
tan ✓ = b1/3/a1/3. We can then draw
a right triangle with ✓ as one angle and
the length of the side opposite ✓ equal to
b1/3 and the length of the side adjacent
to ✓ equal to a1/3. By the Pythagorean
Theorem, the hypotenuse of this triangle
is (a2/3 + b2/3)1/2. From this triangle, we
find

sin ✓ =
b1/3

(a2/3 + b2/3)1/2
and

cos ✓ =
a1/3

(a2/3 + b2/3)1/2
so

csc ✓ =
(a2/3 + b2/3)1/2

b1/3
and

sec ✓ =
(a2/3 + b2/3)1/2

a1/3
.

Thus
L = a sec ✓ + b csc ✓

= a · (a
2/3 + b2/3)1/2

a1/3
+ b · (a

2/3 + b2/3)1/2

b1/3

= a2/3(a2/3 + b2/3)1/2 + b2/3(a2/3 + b2/3)1/2

= (a2/3 + b2/3)(a2/3 + b2/3)1/2

= (a2/3 + b2/3)3/2.

(c) Using the result of part (b) and solving
for b:

L = (a2/3 + b2/3)3/2

L2/3 = a2/3 + b2/3

b2/3 = L2/3 � a2/3

b = (L2/3 � a2/3)3/2

= (82/3 � 52/3)3/2

⇡ 1.16 ft

(d) This was already done in part (c) while
solving for b:
b = (L2/3 � a2/3)3/2.

36. (a) R(x) =
35x� x2

x2 + 35

R0(x) = �35
x2 + 2x� 35

(x2 + 35)2

= �35
(x� 5)(x+ 7)

(x2 + 35)2

Hence the only critical number for x � 0
is x = 5 (that is, 5000 items). This
must correspond to the absolute maxi-
mum, since R(0) = 0 and R(x) is nega-

tive for large x. So maximum revenue is
R(5) = 2.5 (that is, $2500).

(b) To maximize

R(x) =
cx� x2

x2 + c
,

we compute

R0(x) =
c(c� 2x� x2)

(x2 + c)2
.

This is zero when x2 + 2x� c = 0, so

x =
�2±

p
4 + 4c

2
.

The First Derivative Test shows that

x =
�2 +

p
4 + 4c

2
is a maximum.

37. (a) Q0(t) is e�ciency because it represents the
number of additional items produced per
unit time.
Q(t) = �t3 + 12t2 + 60t
Q0(t) = �3t2 + 24t+ 60

= 3(�t2 + 8t+ 20)
This is the quantity we want to maximize.

Q00(t) = 3(�2t + 8) so the only critical
number is t = 4 hours. This must be
the maximum since the function Q0(t) is
a parabola opening down.

(b) The worker’s e�ciency, Q0 is maximized
at the point of diminishing returns be-
cause at this point Q00 changes from pos-
itive to negative. The First Derivative
Test applied to Q0 shows that Q0 has a
local maximum at this point. (This as-
sumes that the graph of Q changes from
concave up to concave down at the inflec-
tion point. If this was reversed, the inflec-
tion point would not be a point of dimin-
ishing returns, and the e�ciency would be
minimized at such a point.)

38. (a) Let C(t) be the total cost of the tickets.
Then
C(t) =(price per ticket)(# of tickets)
C(t) = (40� (t� 20))(t)

= (60� t)(t) = 60t� t2

for 20 < t < 50. Then C 0(t) = 60� 2t, so
t = 30 is the only critical number. This
must correspond to the maximum since
C(t) is a parabola opening down.

(b) If each additional ticket over 20 reduces
the cost-per-ticket by c dollars, then the
total cost for ordering x tickets (with x
between 20 and 50) is
C(x) = (40� c(x� 20))x

= (40 + 20c)x� cx2.
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This is a downward facing parabola with

one maximum at x =
20 + 10c

c
. If we

want the maximum cost to be at x = 50,
we must choose c so that the peak of the
parabola is at or to the right of 50. The

value of x =
20 + 10c

c
increases as c de-

creases, and equals 50 when c = 1
2 . Any

discount of 50 cents or less will cause the
maximum cost to occur when the group
orders 50 tickets.

39. R =
2v2 cos2 ✓

g
(tan ✓ � tan�)

R0(✓) =
2v2

g
[2 cos ✓(� sin ✓)(tan ✓ � tan�)

+ cos2 ✓ · sec2 ✓
⇤

=
2v2

g


�2 cos ✓ sin ✓ · sin ✓

cos ✓
+2 cos ✓ sin ✓ tan�

+cos2 ✓ · 1

cos2 ✓

�

=
2v2

g

⇥
�2 sin2 ✓ + sin(2✓) tan� + 1

⇤

=
2v2

g

⇥
�2 sin2 ✓ + sin(2✓) tan�

+(sin2 ✓ + cos2 ✓)
⇤

=
2v2

g
[sin(2✓) tan�

+(cos2 ✓ � sin2 ✓)
⇤

=
2v2

g
[sin(2✓) tan� + cos(2✓)]

R0(✓) = 0 when

tan� =
� cos(2✓)

sin(2✓)
= � cot(2✓)

= � tan
⇣⇡
2
� 2✓

⌘

= tan
⇣
2✓ � ⇡

2

⌘

Hence � = 2✓ � ⇡/2, so

✓ =
1

2

⇣
� +

⇡

2

⌘

=
�

2
+

⇡

4
=

��

2
+ 45�

i. � = 10�, ✓ = 50�

ii. � = 0�, ✓ = 45�

iii. � = �10�, ✓ = 40�

40. A = 4xy
dA

dx
= 4 (xy0 + y)

To determine y0 =
dy

dx
, use the equation for the

ellipse:

1 =
x2

a2
+

y2

b2

0 =
2x

a2
+

2yy0

b2
2yy0

b2
= �2x

a2

y0 = � b2

a2
x

y
Substituting this expression for y0 into the ex-

pression for
dA

dx
, we get

dA

dx
= xy0 + y

= x

✓
� b2

a2
x

y

◆
+ y

= � b2

a2
x2

y
+ y

The area is maximized when its derivative is
zero:

0 = � b2

a2
x2

y
+ y

b2

a2
x2

y
= y

x2

a2
=

y2

b2
Substituting the previous relationship into the
equation for the ellipse, we get
x2

a2
=

y2

b2
=

1

2
and therefore,

x =
ap
2

and y =
bp
2

Thus, the maximum area is

A = 4
ap
2

bp
2
= 2ab

Since the area of the circumscribed rectangle
is 4ab, the required ratio is

2ab : ⇡ab : 4ab = 1 :
⇡

2
: 2

41. Let Vc be the volume of the cylinder, h be the
height of the cylinder and r the radius of the
cylinder so that
Vc = h⇡r2.
Let Vs be the volume of the sphere and R be
the radius of the sphere so that

Vs =
4

3
⇡R3.

Draw the sphere on coordinate axes with cen-
ter (0, 0) and inscribe the cylinder. Then draw
a right triangle as follows: draw a straight line
from the origin to the side of the cylinder (this
line has length r, the radius of the cylinder);
draw a line from this point to the point where
the cylinder meets the sphere (this line has
length h/2, half the height of the cylinder);
connect this point with the origin to create the
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hypotenuse of the triangle (this line has length
R, the radius of the sphere). Thus we see that

R2 = r2 +

✓
h

2

◆2

.

Now we have

Vs =
4

3
⇡

✓
r2 +

h2

4

◆3/2

.

Taking the derivative of both sides with respect
to h gives

0 = 2⇡

✓
r2 +

h2

4

◆1/2✓
2rr0 +

h

2

◆
.

Solving for r0, we find r0 = �h/4r. Taking the
derivative with respect to h of both sides of the
formula for the volume for the cylinder yields
dVc

dh
= ⇡r2 + 2h⇡rr0.

Plugging in the formula we found for r0 gives
dVc

dh
= ⇡r2 + 2h⇡r

✓
�h

4r

◆

= ⇡r2 � h2⇡

2
.

To maximize the volume of the cylinder, we set
this equal to 0 and find that the volume of the
cylinder is maximized when h2 = 2r2. In this
case, the formula relating R, r and h above
gives

h =

r
4

3
R2 =

2Rp
3
.

The maximum volume of the cylinder is then
Vc = h⇡r2

=
⇡h3

2
=

⇡
⇣

2Rp
3

⌘3

2

=
1p
3

✓
4

3
⇡R3

◆

=
1p
3
Vs.

42. Suppose that a = b in the isoscles triangle, so
that
A2 = s(s� a)(s� b)(s� c) = s(s� a)2(s� c)

Since s =
1

2
(a+ b+ c), it follows that

s = 1
2 (2a+c) = a+ c

2 , so that s�a = c
2 . Thus,

A2 = s

✓
c2

4

◆
(s� c)

=
s

4

�
sc2 � c3

�

Since s is a constant (it’s half of the perimeter),
we can now di↵erentiate to get

2A
dA

dc
=

s

4

�
2sc� 3c2

�

0 = c(2s� 3c)

Thus, the area is maximized when 2s�3c = 0,
which means c = 2

3s. Solving for a, we get

a = s� c

2
= s� s

3
=

2

3
s.

Thus, the area is maximized when a = b = c;
in other words the area is maximized when the
triangle is equilateral.

The maximum area is

A =
p
s(s� c)3 =

r
s
⇣s
3

⌘3

=
s2

9

p
3 =

p2

36

p
3

3.8 Related Rates

1. V (t) = (depth)(area) = ⇡
48 [r(t)]

2

(units in cubic feet per min)

V 0(t) =
⇡

48
2r(t)r0(t) =

⇡

24
r(t)r0(t)

We are given V 0(t) = 120
7.5 = 16.

Hence 16 =
⇡

24
r(t)r0(t) so

r0(t) =
(16)(24)

⇡r(t)
.

(a) When r = 100,

r0(t) =
(16)(24)

100⇡
=

96

25⇡
⇡ 1.2223 ft/min,

(b) When r = 200,

r0(t) =
(16)(24)

200⇡
=

48

25⇡
⇡ 0.61115 ft/min

2. V = (depth)(area).
1

8

00
=

1

96

0
, so

V (t) = 1
96⇡r(t)

2.

Di↵erentiating we find
dV

dt
=

2⇡

96
r(t)

dr

dt
.

Using 1 ft3 = 7.5 gal, the rate of change of vol-

ume is
90

7.5
= 12. So when r(t) = 100,

12 =
2⇡

96
100

dr

dt
, and

dr

dt
=

144

25⇡
feet per minute.

3. (a) From #1,

V 0(t) =
⇡

48
2r(t)r0(t) =

⇡

24
r(t)r0(t),

so
g

7.5
=

⇡

24
(100)(.6) = 2.5⇡,

so g = (7.5)(2.5)⇡

= 18.75⇡ ⇡ 58.905 gal/min.

(b) If the thickness is doubled, then the rate
of change of the radius is halved.
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4. (a) t = hours elapsed since injury
r = radius of the infected area
A = area of the infection
A = ⇡r2

A0(t) = 2⇡r(t) · r0(t)
When r = 3 mm, r0 = 1 mm/hr,
A0 = 2⇡(3)(1) = 6⇡ mm2/hr

(b) We have A0(t) = 2⇡rr0(t), and r0(t) = 1
mm/hr, so when the radius is 6 mm we
have
A0(t) = 2⇡ · 6 · 1 = 12⇡mm2/hr.
This rate is larger when the radius is
larger because the area is changing by
the same amount along the entire circum-
ference of the circle. When the radius
is larger, there is more circumerence, so
the same change in radius causes a larger
change in area.

5. V (t) =
4

3
⇡[r(t)]3

V 0(t) = 4⇡[r(t)]2r0(t) = Ar0(t)
If V 0(t) = kA(t), then

r0(t) =
V 0(t)

A(t)
=

kA(t)

A(t)
= k.

6. We have A0(t) = 2⇡rr0(t), and r0(t) = 5
ft/min, so when the radius is 200 ft we have
A0(t) = 2⇡ · 200 · 5 = 2, 000⇡ ft2/min.

7. (a) 102 = x2 + y2

0 = 2x
dx

dt
+ 2y

dy

dt
dy

dt
= �x

y

dx

dt

= �6

8
(3)

= �2.25 ft/s

(b) We have

cos ✓(t) =
x(t)

10
.

Di↵erentiating with respect to t gives

� sin ✓(t) · ✓0(t) = x0(t)

10
.

When the bottom is 6 feet from the wall,
the top of the ladder is 8 feet from the
floor and this distance is the opposite side
of the triangle from theta. Thus, at this
point, sin ✓ = 8/10. So

� 8

10
✓0(t) =

3

10

✓0(t) = �3

8
rad/s.

8. (a) ✓ = ⇡ � tan�1

✓
40

60� x

◆
� tan�1

✓
20

x

◆

d✓

dx
= �

40
⇣

1
60�x

⌘2

1 +
⇣

40
60�x

⌘2 +
20
x2

1 +
�
20
x

�2

When x = 30, this becomes

d✓

dx
= �

40
�

1
30

�2

1 +
�
40
30

�2 +
20
900

1 +
�
20
30

�2

= � 1

1625
rad/ft

d✓

dt
=

d✓

dx

dx

dt

=

✓
� 1

1625

◆
(4)

⇡ �0.00246 rad/s

(b) As in the solution to #8(a), let x be the
distance from the 200 building to the per-
son. To find the maximum ✓, we set
d✓

dx
= 0 and solve for x:

0 = �
40

✓
1

60� x

◆2

1 +

✓
40

60� x

◆2 +

20

x2

1 +

✓
20

x

◆2

20

x2 + 40
=

40

(60� x)2 + 1
0 = 20x2 + 2400x� 56000
0 = x2 + 120x� 2800
Using the quadratic formula, we find two
roots:
x = �60± 80
We discard the x value obtained from the
minus sign as it is negative and does not
make sense for our problem. The other
value is x = 20. We find ✓0(10) > 0 and
✓0(30) < 0, so x = 20 must be a maximum
as desired.

9. (a) We know [x(t)]2 + 42 = [s(t)]2. Hence
2x(t)x0(t) = 2s(t)s0(t), so

x0(t) =
s(t)s0(t)

x(t)
=

�240s(t)

x(t)
. When x =

40, s =
p

402 + 42 = 4
p
101, so at that

moment

x0(t) =
(�240)(4

p
101)

40
= �24

p
101.

So the speed is 24
p
101 ⇡ 241.2mph.

(b) From #9(a), we have

x0(t) =
s(t)s0(t)

x(t)
=

�240s(t)

x(t)
.

This time the height is 6 miles, so s =p
402 + 62 = 2

p
409, so at that moment

x0(t) =
(�240)(2

p
409)

40
= �12

p
409.
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So the speed is 12
p
409 ⇡ 242.7mph. The

di↵erence in height does not make a large
di↵erence in the speed of the plane.

10. (a) If the police car is not moving, then
x0(t) = 0, but all the other data are un-
changed. So

d0(t) =
x(t)x0(t) + y(t)y0(t)p

[x(t)]2 + [y(t)]2

=
�(1/2)(50)p
1/4 + 1/16

=
�100p

5
⇡ �44.721.

This is more accurate.

(b) If the police car is at the intersection, then
the rate of change the police car measures
is
0 · (�40) + 1

2 · (�50)
q

1
4 + 0

= �50,

the true speed of the car.

11. d0(t) =
x(t)x0(t) + y(t)y0(t)p

[x(t)]2 + [y(t)]2

=
�(1/2)(

p
2� 1)(50)� (1/2)(50)p

1/4 + 1/4
= �50.

12. The radar gun will read less than the actual
speed if the police car is not at the intersection,
and is travelling away from the intersection.

13. From the table, we see that the recent trend is
for advertising to increase by $2000 per year.
A good estimate is then x0(2) ⇡ 2 (in units of
thousands). Starting with the sales equation
s(t) = 60� 40e�0.05x(t),
we use the chain rule to obtain
s0(t) = �40e�0.05x(t)[�0.05x0(t)]

= 2x0(t)e�0.05x(t).
Using our estimate that x0(2) ⇡ 2 and since
x(2) = 20, we get s0(2) ⇡ 2(2)e�1 ⇡ 1.471.
Thus, sales are increasing at the rate of ap-
proximately $1471 per year.

14. The year 2 rate of change for the average cost

is given by C
0
(t) =

�94

x2
· x0(t).

From the table we see that in year two x = 9.4
and x0 = 0.6, so

C
0
(t) =

�94

9.42
· 0.6 = �0.6383 per year.

15. C(x) = 10 +
100

x

C
0
(x(t)) =

�100

x2
· x0(t)

C
0
(10) = �1(2) = �2 dollars per item, so av-

erage cost is decreasing at the rate of $2 per
year.

16. The rate of change of sales is
s0 = 0.8e�0.04xx0(t).
We are given x = 40 and x0(t) = 1.5, so
s0 = 0.8e�0.04·40 · 1.5 = 0.242 thousand dollars
per year.

17. (a) We have tan ✓ =
x

2
, so

d

dt
(tan ✓) =

d

dt

⇣x
2

⌘

sec2 ✓ · ✓0 = 1

2
x0

✓0 =
1

2 sec2 ✓
· x0 =

x0 cos2 ✓

2

at x = 0, we have tan ✓ =
x

2
=

0

2
so ✓ = 0

and we have x0 = �130ft/s so

✓0 =
(�130) · cos2 0

2
= �65 rad/s.

(b) x = 2 tan ✓, so
dx

dt
= 2 sec2 ✓

d✓

dt
. ✓ = 0

(and sec ✓ = 1) as the ball crosses home

plate, so
d✓

dt
=

1

2

dx

dt
. For this to be less

than 3 radians per sec, the pitch must be
less than 6 ft/sec.

18. (a) t = number of seconds since launch
x = height of rocket in miles after t sec-
onds
✓ = camera angle in radians after t sec-
onds

tan ✓ =
x

2
d

dx
(tan ✓) =

d

dx

⇣x
2

⌘

sec2 ✓ · ✓0 = 1

2
x0

✓0 =
cos2 ✓ · x0

2
When x = 3, tan ✓ = 3/2, so cos ✓ =
2/

p
13.

✓0 =

⇣
2p
13

⌘2
(.2)

2
⇡ .03 rad/s

(b) If the height of the rocket is x, then
x = 2 tan ✓, and
dx

dt
= 2 sec2 ✓

d✓

dt
.

When x = 1 and
dx

dt
= 0.2, we have

0.2 = 2 · 5
4
· d✓
dt

and
d✓

dt
= 0.08 radians

per sec. This is larger because the angle
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changes more quickly when the rocket is
close to the ground. When the rocket is
far away, large changes in height result in
small changes in the angle, since the angle
is approaching a limit of ⇡/2.

19. (a) Let ✓ be the angle between the end of
the shadow and the top of the lamppost.

Then tan ✓ =
6

s
and tan ✓ =

18

s+ x
, so

x+ s

18
=

s

6
d

dx

✓
x+ s

18

◆
=

d

dx

⇣s
6

⌘

x0 + s0

18
=

s0

6
x0 + s0 = 3s0

s0 =
x0

2
Since x0 = 2, s0 = 2/2 = 1 ft/s.

(b) From #19(a), s0 = x0/2. Since x0 = �3,
s0 = �3/2 ft/s.

20. (a) P (t) · V 0(t) + P 0(t)V (t) = 0
P 0(t)

V 0(t)
= �P (t)

V (t)
= � c

V (t)2

(b) Solving Boyle’s Law for P gives P =
c

V
.

Then di↵erentiating gives

P 0(V ) =
�c

V 2
, the same as P 0(t)/V 0(t).

21. Let r(t) be the length of the rope at time t and
x(t) be the distance (along the water) between
the boat and the dock.

r(t)2 = 36 + x(t)2

2r(t)r0(t) = 2x(t)x0(t)

x0(t) =
r(t)r0(t)

x(t)
=

�2r(t)

x(t)

=
�2

p
36 + x2

x
When x = 20, x0 = �2.088; when x = 10,
x0 = �2.332.

22. The volume of a cone is V =
1

3
⇡r2h, and we

know that this cone has r =
h

2
, so we have

V =
⇡

12
h3. Di↵erentiating gives

dV

dt
=

⇡h2

4
· dh
dt

.

We are given that
dV

dt
= 5m3/s, so when h = 2

meters, we have

5 =
⇡22

4
· dh
dt

,

so
dh

dt
=

5

⇡
meters per second.

23. f(t) =
1

2L(t)

s
T

⇢
=

110

L(t)
.

f 0(t) =
�110

L(t)2
L0(t).

When L = 1/2, f(t) = 220 cycles per second.
If L0 = �4 at this time, then f 0(t) = 1760 cy-
cles per second per second. It will only take
1/8 second at this rate for the frequency to go
from 220 to 440, and raise the pitch one octave.

24. V =
4

3
⇡r3

dV

dt
=

4

3
⇡(3r2)

dr

dt
= 4⇡r2

dr

dt

1 = 4⇡r2
dr

dt
dr

dt
=

1

4⇡r2

When r = .01,
dr

dt
=

2500

⇡

When r = .1,
dr

dt
=

25

⇡
.

At first, the radius expands rapidly; later it
expands more slowly.

25. (a) Let R represent the radius of the circular
surface of the water in the tank.
V (R) = ⇡

h
602(602 �R2)1/2�

1

3
(602 �R2)3/2 +

2

3
603
�

dV

dR
= ⇡


602

✓
1

2

◆
(602 �R2)�1/2(�2R)�

1

3

✓
3

2

◆
(602 �R2)1/2(�2R)

�

= ⇡


�602Rp
602 �R2

+R
p
602 �R2

�

= ⇡R


�602 + 602 �R2

p
602 �R2

�

=
�⇡R3

p
602 �R2

dR

dt
=

dV/dt

dV/dR

=
10

dV/dR

=
�10

p
602 �R2

⇡R3

i. Substituting R = 60 into the previ-

ous equation, we get
dR

dt
= 0.
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ii. We need to determine the value of R
when the tank is three-quarters full.
The volume of the spherical tank is
4

3
⇡603, so when the tank is three-

quarters full, V (R) = ⇡603. Substi-
tuting this value into the formula for
V (R) and solving for R (using a CAS,
for example) we get R ⇡ 56.265. Sub-
stituting this value into the formula
for dR/dt, we get

dR
dt =

�10
p
602 �R2

⇡R3

⇡ �10
p
602 � 56.2652

⇡56.2653

⇡ �0.00037 ft/s

(b) Assuming the tank is at least half full, we
can represent the height of the water in
the tank by h(t) =

p
602 �R2 + 60.

Di↵erentiating gives

h0(t) =
1

2
(602 �R2)�1/2(�2R)R0(t)

= �(602 �R2)�1/2R ·R0(t)

=
�(602 �R2)�1/2R · (�10

p
602 �R2)

⇡R3
.

Here we have used the expression for R0(t)
found in exercise 35.

i. Substituting R = 60 into the previ-
ous equation, we get h0(t) = 0.

ii. Substituting R ⇡ 56.265 into the for-
mula for h0(t) gives h0(t) ⇡ 0.001006
ft/s.

26. (a) The volume of the conical pile is V =
1

3
⇡r2h. Since h = 2r, we can write the

volume as

V =
1

3
⇡

✓
h

2

◆2

h =
1

12
⇡h3 Thus,

dV

dt
=

⇡h2

4
· dh
dt

20 =
⇡62

4
· dh
dt

dh

dt
=

20

9⇡
dr

dt
=

10

9⇡
(b) In this case, we have r = h so

V =
1

3
⇡h2h =

⇡h3

3
Thus V 0(t) = ⇡h2h0(t) so when the height
is 6 feet,

h0(t) = r0(t) =
20

36⇡
=

5

9⇡
.

27. (a) Let an object move around the circle
x2(t) + y2(t) = r2. Both x and y coor-
dinates are the functions of t and r is a
constant.

320 5

0.0

−5.0

−2 −1 1−5 −3

5.0

−2.5

4−4

2.5

Therefore, on di↵erentiating w.r.t. t, we
get
2x(t)x0(t) + 2y(t)y0(t) = 0

x(t)x0(t) + y(t)y0(t) = 0

Therefore, y0(t) =
�x(t)x0(t)

y(t)
and

x0(t) = �y(t)y0(t)

x(t)
Thus, if x(t) = 0, then y0(t) = 0 and if
y(t) = 0, then x0(t) = 0
From the graph it can be observed that:
At x(t) = 0 the tangent is horizontal

which means
y0(t)

x0(t)
= 0 ) y0(t) = 0 and

At y(t) = 0 the tangent is vertical which

means
x0(t)

y0(t)
= 0 ) x0(t) = 0

(b) An object move around the asteroid
x2/3(t) + y2/3(t) = 1. Both x and y
coordinates are the functions of time.

−4

0.0

543210−1−2−3

5.0

2.5

−2.5

−5

−5.0

Therefore, on di↵erentiating w.r.t. t, we
get
2

3
x�1/3(t)x0(t) +

2

3
y�1/3(t)y0(t) = 0

x(t)[y0(t)]
3
+ y(t)[x0(t)]

3
= 0
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y0(t) =

✓
�y(t)

x(t)

◆1/3

x0(t) and

x0(t) =

✓
�x(t)

y(t)

◆1/3

y0(t)

thus, if x(t) = 0, then y(t) = 1, x0(t) = 0
and if y(t) = 0, then x(t) = 1, y0(t) = 0
From the graph it can be observed that,
at x(t) = 0 the tangent is vertical which

means
x0(t)

y0(t)
= 0 ) x0(t) = 0 and

at y(t) = 0 the tangent is horizontal which

means
y0(t)

x0(t)
= 0 ) y0(t) = 0

28. (a) Let ✓ be the angle of the light at the
shadow as shown in figure below:

L

h(t)

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

S

100

x� 1010

64� h(t)

✓

O

Then,

tan ✓ =
h(t)

x(t)� 10
=

100

x(t)

) x(t) =
1000

100� h(t)

x0(t) =
1000h0(t)

[100� h(t)]2

= �
8000

p
(64� h(t))

[100� h(t)]2

At h = 0,

x0(t) = �
8000

p
(64� 0)

[100� 0]2

= �64000

10000
= �6.4

(b) |x0(t)| = 8000

p
(64� h(t))

[100� h(t)]2

At maxima or minima of |x0(t)|,
d

dx
|x0(t)| = 0

)
� 1

2 (64� h(t))�1/2h0(t)

[100� h(t)]2

+

p
(64� h(t)

[100� h(t)]3
· 2h0(t) = 0

) �h0(t){(100�h(t))�4(64�h(t))} = 0
) h0(t) = 0 or 100�256�h(t)+4h(t) = 0
) h0(t) = 0 or h(t) = 52
At h0(t) = 0 : |x0(t)| = 0
At h(t) = 52 :

|x0(t)| = 8000

p
64� h(t)

[100� h(t)]2

= 8000

p
(64� 52)

(100� 52)2
= 12.02

Therefore, h(t) = 52 is the height in which
|x0(t)| is maximum.

29. (a) d (t) =
q
(x (t)� 8)2 + (0� 4)2

therefore d0 (t) = (x(t)�8)x0(t)p
(x(t)�8)2+16

Now d0 (t) = 0.9 and x0 (t) = 6.4
gives x (t) = 8.5681

hence t = x(t)�x(0)
x0(t) = 8.5681

6.4 = 1.3388

(b) Thus the location at this moment is
(8.5681, 0)

30. ✓ = tan�1

✓
2s

vT

◆

d✓

dt
=

�
� 2s

T

�
v�2v0(t)

1 +
�
2s
vT

�2

=
�2sv0(t)

Tv2
⇥
1 + 4s2

v2T 2

⇤

=
�2sTv0(t)

T 2v2 + 4s2

For T = 1, s = 0.6 and v0(t) = 1,

d✓

dT
=

�1.2

v2 + 1.44

(a)
d✓

dT
=

�1.2

2.44
⇡ �0.4918 rad/s

(b)
d✓

dT
=

�1.2

5.44
⇡ �0.2206 rad/s

3.9 Rates of Change in
Economics and the Sci-
ences

1. The marginal cost function is
C 0(x) = 3x2 + 40x+ 90.
The marginal cost at x = 50 is C 0(50) =
9590. The cost of producing the 50th item is
C(50)� C(49) = 9421.
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2. The marginal cost function is
C 0(x) = 4x3 + 28x+ 60.
The marginal cost at x = 50 is C 0(50) =
501460. The cost of producing the 50th item
is C(50)� C(49) = 486645.

3. The marginal cost function is
C 0(x) = 3x2 + 42x+ 110.
The marginal cost at x = 100 is C 0(100) =
34310. The cost of producing the 100th item
is C(100)� C(99) = 33990.

4. The marginal cost function is
C 0(x) = 3x2 + 22x+ 40.
The marginal cost at x = 100 is C 0(100) =
32240. The cost of producing the 100th item
is C(100)� C(99) = 31930.

5. C 0(x) = 3x2 � 60x+ 300
C 00(x) = 6x� 60 = 0
x = 10 is the inflection point because C 00(x)
changes from negative to positive at this value.
After this point, cost rises more sharply.

6. A linear model doesn’t reflect the capacity of
the stadium, or the presence of a certain num-
ber of fans who would attend no matter what
the price, but away from the extremes a linear
model might serve adequately. For ticket price
x, the revenue function is
R(x) = x(�3, 000x+ 57, 000)

= �3, 000x2 + 57, 000x.
We solve
R0(x) = �6, 000x+ 57, 000 = 0
and find that x = 9.5 dollars per ticket is the
critical number. Since R00 = �6, 000 < 0, this
is a maximum.

7. C(x) = C(x)/x = 0.1x+ 3 +
2000

x

C
0
(x) = 0.1� 2000

x2

Critical number is x = 100
p
2 ⇡ 141.4.

C
0
(x) is negative to the left of the critical num-

ber and positive to the right, so this must be
the minimum.

8. The average cost function is

C(x) =
0.2x3 + 4x+ 4000

x

= 0.2x2 + 4 +
4000

x
.

C
0
(x) = 0.4x� 4000

x2
= 0

when x ⇡ 21.54. This is a minimum because

C
00
= 0.4 +

4000

x3
> 0 at this x.

9. C(x) = C(x)/x = 10
e0.02x

x

C
0
(x) = 10e.02x

✓
.02x� 1

x2

◆

Critical number is x = 50. C
0
(x) is negative to

the left of the critical number and positive to
the right, so this must be the minimum.

10. The average cost function is

C(x) =

p
x3 + 800

x
and

C
0
(x) =

x3 � 1600

2x2
p
x3 + 800

.

This is zero when x = 3
p
1600. This is a mini-

mum because

C
00
=

5, 120, 000 + 12, 800x3 � x6

4x3(x3 + 800)3/2
> 0 at this

x.

11. (a) C(x) = 0.01x2 + 40x+ 3600
C 0(x) = 0.02x+ 40

C(x) =
C(x)

x
= 0.01x+ 40 +

3600

x
C 0(100) = 42

C(100) = 77

so C 0(100) < C(100)

C(101) = 76.65 < C(100)

(b) C 0(x) = 0.02x+ 40
C 0(1000) = 60

C(x) =
0.01x2 + 40x+ 3600

x
C(1000) = 53.6

C(1001) = 53.6064

(c) C
0
(x) = 0.01� 3600

x2
= 0

so x = 600 is min and

C 0(600) = 52

C(600) = 52

12. (a) P (x) = R(x)� C(x)
P 0(x) = R0(x)� C 0(x) = 0
R0(x) = C 0(x)

(b) P (x) = (10x� 0.001x2)� (2x+ 5, 000).
P 0(x) = 8� 0.002x = 0 if x = 4, 000.
This is a maximum because P 00(x) =
�0.002 < 0.

13. E =
p

f(p)
f 0(p)

=
p

200(30� p)
(�200) =

p

p� 30

To solve
p

p� 30
< �1, multiply both sides
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by the negative quantity p � 30, to get p >
(�1)(p � 30) or p > 30 � p, so 2p > 30, so
15 < p < 30.

14. E =
pf 0(p)

f(p)
=

p(�200)

200(20� p)
=

p

p� 20
p

p� 20
< �1 when p > 20 � p, so demand is

elastic when 10 < p < 20.

15. f(p) = 100p(20� p) = 100(20p� p2)

E =
p

f(p)
f 0(p)

=
p

100p(20� p)
(100)(20� 2p)

=
20� 2p

20� p

To solve
20� 2p

20� p
< �1, multiply both sides by

the positive quantity 20 � p to get 20 � 2p <
(�1)(20� p), or 20� 2p < p� 20, so 40 < 3p,
so 40/3 < p < 20.

16. E =
pf 0(p)

f(p)

=
p(600� 120p)

60p(10� p)
=

2p� 10

p� 10

If
2p� 10

p� 10
< �1 for positive p, then p � 10

must be negative. this means
2p� 10

p� 10
< �1

when 2p � 10 > 10 � p, so demand is elastic

when
20

3
< p < 10.

17. [pf(p)]0 < 0
if and only if p0f(p) + pf 0(p) < 0
if and only if f(p) + pf 0(p) < 0
if and only if pf 0(p) < �f(p)

if and only if pf 0(p)
f(p) < �1

18. The percentage change in quantity purchased

(using the chain rule) is Q0(I)·I0

Q(I) . The percent-

age change in income is I0

I .
The income elasticity of demand is then
Q0(I)·I0

Q(I) · I
I0 or Q0(I)·I

Q(I) .

19. (a) Rewrite x0 (t) as f (x) = 2x[4� x].
f 0 (x) = 2 (4� x) + 2x (�1)

= 8� 4x
f 0 (x) = 0 ) x = 2 where the f (x) is
maximum

(b) The critical points of x0 (t) = 2x[4�x] are
x = 0 and x = 4.

x0 (t) > 0, 0 < x (t) < 4

x0 (t) < 0, x > 4 or x < 0
Therefore, the limiting concentration is 4.

20. (a) Rewrite x0 (t) as f (x) = 0.5x[5� x].
f 0 (x) = 0.5 (5� x) + 0.5x (�1)

= 2.5� x
f 0 (x) = 0 ) x = 2.5 where the f (x) is
maximum.

(b) The critical points of x0 (t) = 0.5x[5 � x]
are x = 0 and x = 5.
x0 (t) > 0, 0 < x (t) < 5

x0 (t) < 0, x > 5 or x < 0
Therefore, the limiting concentration is 5.

21. y0(t) = c · y(t)[K � y(t)]
y(t) = Kx(t)
y0(t) = Kx0(t)
Kx0(t) = c ·Kx(t)[K �Kx(t)]

x0(t) = c ·Kx(t)[1� x(t)]

= rx(t)[1� x(t)]

r = cK

22. The given conditions translate into equations
3 = c · 2(K � 2) and 4 = c · 4(K � 4). Solving
the first equation for c and substituting into
the second equation gives
4 = 4·3(K�4)

2(K�2) ) K = 8 and c = 1/4.

23. x0(t) = [a� x(t)][b� x(t)]
for x(t) = a,
x0(t) = [a� a][b� a] = 0
So the concentration of product is staying the
same.
If a < b and x(0) = 0 then x0(t) > 0 for
0 < x < a < b
x0(t) < 0 for a < x < b
Thus x(t) = a is a maximum.

24. x(0) =
a[1� e�(b�a)·0]

1�
�
a
b

�
e�(b�a)·0

=
a[1� 1]

1�
�
a
b

� = 0

lim
t!1

x(t) = a[1�0]
1�0 = a

For a = 2 and b = 3 the graph looks like this:
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1

0.5

0

t
1086420

y

3

2.5

2

1.5

25. The first inflection point occurs around f =
1/3, before the step up. The second occurs
at the far right of the graph. The equivalence
point is presumably more stable. The first in-
flection point would be hard to measure, since
the pH takes drastic leap right after the inflec-
tion point occurs.

26. Recall that we are assuming 0 < f < 1. As
f ! 1�,
p0(f) = 1

f(1�f) ! 1

27. R(x) =
rx

k + x
, x � 0

R0(x) =
rk

(k + x)2

There are no critical numbers. Any possible
maximum would have to be at the endpoint
x = 0, but in fact R is increasing on [0,1), so
there is no maximum (although as x goes to
infinity, R approaches r).

28. PV 7/5 = c
d

dP

⇣
PV 7/5

⌘
=

d

dP
(c) = 0

V 7/5 +
7

5
PV 2/5 dV

dP
= 0

V +
7

5
P
dV

dP
= 0

dV

dP
=

�5

7

V

P
.

But V 7/5 = c/P , so V = (c/P )5/7. Hence
dV

dP
=

�5

7

V

P

=
�5

7

(c/P )5/7

P
=

�5c5/7

7P 12/7
.

As pressure increases, volume decreases.

29. m0(x) = 4 � cosx, so the rod is less dense at
the ends.

30. m0(x) = 3(x� 1)2 + 6.
Density is maximum at the ends and at a min-
imum in the middle.

31. m0(x) = 4, so the rod is homogeneous.

32. m0(x) = 8x.
Density increases from 0 at the left end to a
maximum at the right end.

33. Q0(t) = e�2t · (�2)(cos 3t� 2 sin 3t)
+ e�2t((� sin 3t · 3)� 2 cos 3t · 3)

= e�2t(�8 cos 3t+ sin 3t) amps

34. Q0(t) = et(3 cos 2t+ sin 2t)
+ et(�6 sin 2t+ 2 cos 2t)

= 5et(cos 2t� sin 2t) amps

35. As t ! 1, Q(t) ! 4 sin 3t, so e�3t cos 2t is
called the transient term and 4 sin 3t is called
the steady-state value.
Q0(t) = e�3t · (�3) cos 2t
+ e�3t(� sin 2t · 2) + 4 cos 3t · 3

= e�3t(�3 cos 2t� 2 sin 2t)
+ 12 cos 3t

The transient term is e�3t(�3 cos 2t� 2 sin 2t)
and the steady-state value is 12 cos 3t.

36. Q0(t) = �2e�2t(cos t� 2 sin t)
+ e�2t(� sin t� 2 cos t)
+ e�3t � 3te�3t � 8 sin 4t

Q0(t) = e�2t(�4 cos t+ 3 sin t)
+ e�3t(1� 3t)� 8 sin 4t

The transient term is e�2t(�4 cos t+ 3 sin t) +
e�3t(1 � 3t) and the steady-state value is
�8 sin 4t.

37. The rate of population growth is given by
f(p) = 4p(5� p) = 4(5p� p2)
f 0(p) = 4(5� 2p),
so the only critical number is p = 2.5. Since
the graph of f is a parabola opening down, this
must be a max.

38. The rate of growth R = 2p(7 � 2p), so R0 =
14� 8p = 0 when p = 7/4. This is a maximum
because R00 = �8 < 0.

39. p0(t) =
�B(1 +Ae�kt)0

(1 +Ae�kt)2

=
�B(�kAe�kt)

(1 +Ae�kt)2

=
kABe�kt

(1 +Ae�kt)2

=
kABe�kt

1 + 2Ae�kt +A2e�2kt

=
kAB

ekt + 2A+A2e�kt

As t goes to infinity, the exponential term goes
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to 0, and so the limiting population is
B

1 +A(0)
= B.

40. If the inflection point is p = 120, then the max-
imum population is B = 240. If the initial pop-
ulation is p(0) = 40, then

40 =
240

1 +A
.

We solve to get A = 5. If then p(12) = 160, we
have the equation

160 =
240

1 + 5e�12k

which we can solve to get

k =
ln 10

12
.

41. For a = 70, b = 0.2, f(t) =
70

1 + 3e�0.2t
=

70(1 + 3e�0.2t)�1

f(2) =
7� 0

1 + 3e�0.2·2 ⇡ 23

f 0(t) = �70(1 + 3e�0.2t)�2(3e�0.2t)(�0.2)

=
42e�0.2t

(1 + 3e�0.2t)2

f 0(2) =
42e0.2·2

(1 + 3e�0.2·2)2
⇡ 3.105

This says that at time t = 2 hours, the rate at
which the spread of the rumor is increasing is
about 3% of the population per hour.

lim
t!1

f(t) =
70

1 + 0
= 70

so 70% of the population will eventually hear
the rumor.

42. f 0(t) = �0.02e�0.02t + 0.42e�0.42t

f 0(t) = 0 when 0.42e�0.42t = 0.02e�0.02t, or
e�0.4t = 0.02/0.42. So we see that

t = � ln 0.047619

0.4
⇡ 7.6113

is the critical value. The Second Derivative
Test shows that it is a maximum.

43. f 0(x) =
�64x�1.4(4x�0.4 + 15)

(4x�0.4 + 15)2

� (160x�0.4 + 90)(�1.6x�1.4)

(4x�0.4 + 15)2

=
�816x�1.4

(4x�0.4 + 15)2
< 0

So f(x) is decreasing. This shows that pupils
shrink as light increases.

44. T (x) = 102� 1

6
x2 +

1

54
x3.

To maximize |T 0(x)|, we find all extrema of
T 0(x) and compare their magnitudes.

T 0(x) =
�1

3
x+

1

18
x2.

T 00(x) =
�1

3
+

1

9
x = 0 when x = 3.

We test the critical numbers and the endpoints:

T 0(0) = 0, T 0(6) = 0, and T 0(3) =
�1

2
. The

dosage that maximizes sensitivity is 3 mg.

45. If v is not greater than c, the fish will never
make any headway. E0(v) = v(v�2c)

(v�c)2 so the
only critical number is v = 2c. When v is large,
E(v) is large, and when v is just a little big-
ger than c, E(v) is large, so we must have a
minimum.

46. We wish to minimize P = 1
v + cv3.

P 0 = �1
v2 + 3cv2 = 0 when v = 4

q
1
3c .

P 00 = 2
v3 +6cv > 0 at this velocity, so this gives

the minimum power.

47. (a) xy = c
y = c

x

Time spent to cover y miles =
y

r1
Time spent to cover x miles=

x

r2
So, the total time spent (T ) =

y

r1
+

x

r2
Now by taking f (x) = T we get:

f (x) =

✓
y

r1
+

x

r2

◆

=

✓
c

r1

1

x
+

x

r2

◆

f 0 (x) =
�c

r1
· 1

x2
+

1

r2
f 0 (x) = 0 )
�cr2 + r1x2 = 0
r1x2 = cr2
x2 =

cr2
r1

x =

r
cr2
r1

Substitute x =

r
cr2
r1

in y = c
x .

y =
cq
cr2
r1

=

r
r1c

r2

Therefore, when x =

r
cr2
r1

and y =
r

r1c

r2
, the time spent by the commuter

is minimum.

(b) Time spent driving at r1 =
y

r1
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=

q
r1c
r2

r1
=

r
c

r1r2

Time spent driving at r2 =
x

r2

=

q
r2c
r1

r2
=

r
c

r1r2
Therefore, equal time is spent driving at
r1 and r2.

48. (a) C (v) = avp+ b
p

v

C 0 (v) = ap+

✓
�bp

v2

◆

C 0 (v) = 0 ) ap+

✓
�bp

v2

◆
= 0

a+

✓
�b

v2

◆
= 0

a =
b

v2

v2 =
b

a

v = ±
r

b

a

C 00(v) =
bp

v3

C 00(v) > 0 at v =

r
b

a
.

Therefore, v =
q

b
a to minimize C (v).

(b) C (v) = ap
v2

v � vc
+ b

p

v � vc

C 0 (v) = ap

"
(v � vc) (2v)� v2

(v � vc)
2

#

+

"
�bp

(v � vc)
2

#

=
1

(v � vc)
2

⇥
2apv (v � vc)� apv2 � bp

⇤

=
1

(v � vc)
2

⇥
apv2 � 2apvcv � bp

⇤

C 0 (v) = 0 )
apv2 � 2apvcv � bp = 0

v =
2apvc ±

q
(2apvc)

2 + 4abp2

2ap

v = vc ±
r
vc2 +

b

a

Therefore, v = vc ±
r
vc2 +

b

a
minimizes

C (v)

Ch. 3 Review Exercises

1. f(x) = e3x, x0 = 0,
f 0(x) = 3e3x

L(x) = f(x0) + f 0(x0)(x� x0)
= f(0) + f 0(0)(x� 0)
= e3·0 + 3e3·0x
= 1 + 3x

2. f 0(x) =
2x

2
p
x2 + 3

.

f(1) = 2, and f 0(1) = 1/2.
L(x) = 1

2 (x� 1) + 2.

3. f(x) = 3
p
x = x1/3, x0 = 8

f 0(x) = 1
3x

�2/3

L(x) = f(x0) + f 0(x0)(x� x0)
= f(8) + f 0(8)(x� 8)
= 3

p
8 + 1

3 (8)
�2/3(x� 8)

= 2 + 1
12 (x� 8)

L(7.96) = 2 + 1
12 (7.96� 8) ⇡ 1.99666

4. sin 3 is close to sin⇡. If y = sinx, y0 = cosx.
The point is (⇡, 0) and the slope is �1. The
linear approximation of sinx at x = ⇡ is
L(x) = �(x� ⇡), so
sin 3 ⇡ �(3� ⇡) ⇡ 0.14159.

5. From the graph of f(x) = x3 +5x� 1, there is
one root.
f 0(x) = 3x2 + 5
Starting with x0 = 0, Newton’s method gives
x1 = 0.2, x2 = 0.198437, and x3 = 0.198437.

6. From the graph of f(x) = x3 � e�x, there is
one root.
f 0(x) = 3x2 + e�x

Starting with x0 = 1, Newton’s method gives
x1 = 0.8123, x2 = 0.7743, and x3 = 0.7729,
which is accurate to 4 decimal places.

7. Near an inflection point, the rate of change
of the rate of change of f(x) is very small so
there aren’t any big dropo↵s or sharp increases
nearby to make the linear approximation inac-
curate.

8. If y =
1

1� x
, then y0 =

1

(1� x)2
.

For “small” x, x is near 0. The point on the
curve when x = 0 is (0, 1), and the slope is 1,
so the linear approximation is L(x) = x + 1,
and this is valid for “small” x.

9. lim
x!1

x3 � 1

x2 � 1
is type 0

0 ;
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L’Hôpital’s Rule gives

lim
x!1

3x2

2x
=

3

2
.

10. lim
x!0

sinx

x2 + 3x
is type 0

0 ;

L’Hôpital’s Rule gives

lim
x!0

cosx

2x+ 3
=

1

3
.

11. lim
x!0

e2x

x4 + 2
is type 1

1 ;

applying L’Hôpital’s Rule twice gives:

lim
x!1

2e2x

4x3

= lim
x!1

4e2x

12x2
= lim

x!1

8e2x

24x

= lim
x!1

16e2x

24
= 1

12. lim
x!1

(x2e�3x) = lim
x!1

x2

e3x
is type 1

1 ;

applying L’Hôpital’s Rule twice gives:

lim
x!1

2x

3e3x

= lim
x!1

2

9e3x
= 0

13. L = lim
x!2+

����
x+ 1

x� 2

����

p
x2�4

lnL = lim
x!2+

✓p
x2 � 4 ln

����
x+ 1

x� 2

����

◆

= lim
x!2+

0

@
ln
���x+1
x�2

���
(x2 � 4)�1/2

1

A

= lim
x!2+

0

@

���x�2
x+1

��� �3
(x�2)2

�x(x2 � 4)�3/2

1

A

= lim
x!2+

✓
3(x2 � 4)3/2

x(x+ 1)(x� 2)

◆

= lim
x!2+

✓
3(x� 2)1/2(x+ 2)3/2

x(x+ 1)

◆

lnL = 0

L = 1

14. lim
x!1

x ln

✓
1 +

1

x

◆
= lim

x!1

ln
�
1 + 1

x

�

1
x

is type 0
0 so we can apply L’Hôpital’s Rule:

lim
x!1

1

(1+ 1
x

)
(�x�2)

�x�2

= lim
x!1

1�
1 + 1

x

� = 1

15. lim
x!0+

(tanx lnx) = lim
x!0+

✓
lnx

cotx

◆

= lim
x!0+

✓
1/x

� csc2 x

◆

= lim
x!0+

�
✓
sin2 x

x

◆

= � lim
x!0+

✓
sinx

x
sinx

◆

= (�1)(0) = 0

16. lim
x!0

tan�1 x

sin�1 x
is type 0

0 ;

we can apply L’Hôpital’s Rule:

lim
x!0

1
1+x2

1p
1�x2

= lim
x!0

p
1� x2

1 + x2
= 1

17. f 0(x) = 3x2 + 6x� 9 = 3(x2 + 2x� 3)
= 3(x+ 3)(x� 1)

So the critical numbers are x = 1 and x = �3.
f 0(x) > 0 on (�1,�3) [ (1,1)
f 0(x) < 0 on (�3, 1)
Hence f is increasing on (�1,�3) and on
(1,1) and f is decreasing on (�3, 1). Thus
there is a local max at x = �3 and a local min
at x = 1.

f 00(x) = 3(2x+ 2) = 6(x+ 1)
f 00(x) > 0 on (�1,1)
f 00(x) < 0 on (�1,�1)
Hence f is concave up on (�1,1) and concave
down on (�1,�1), and there is an inflection
point at x = �1.

18. f 0(x) = 4x3 � 4
f 0(x) = 0 when x = 1, and this is the only
critical number. The function is decreasing for
x < 1 and increasing for x > 1.
f 00 = 12x2 > 0 when x = 1, so this is a lo-
cal minimum. f 00 = 0 when x = 0, but does
not change sign there, so there are no inflection
points. The function is concave up everywhere.

19. f 0(x) = 4x3 � 12x2 = 4x2(x� 3)
x = 0, 3 are critical numbers.
f 0(x) > 0 on (3,1)
f 0(x) < 0 on (�1, 0) [ (0, 3)
f increasing on (3,1), decreasing on (�1, 3)
so x = 3 is a local min.
f 00(x) = 12x2 � 24x = 12x(x� 2)
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f 00(x) > 0 on (�1, 0) [ (2,1)
f 00(x) < 0 on (0, 2)
f is concave up on (�1, 0) [ (2,1), concave
down on (0, 2) so x = 0, 2 are inflection points.

20. f 0(x) = 3x2 � 6x� 24 = 3(x� 4)(x+ 2)
f 0(x) = 0 when x = 4 and x = �2. The func-
tion is increasing for x < �2, then decreasing
for �2 < x < 4, and increasing for x > 4.
x = �2 represents a local maximum, and x = 4
represents a local minimum.
f 00(x) = 6x� 6
f 00(x) = 0 when x = 1, and changes sign there,
so x = 1 is an inflection point. The function
is concave down for x < 1 and concave up for
x > 1.

21. f 0(x) = e�4x + xe�4x(�4) = e�4x(1 � 4x)
x = 1/4 is a critical number.
f 0(x) > 0 on

�
�1, 1

4

�

f 0(x) < 0 on
�
1
4 ,1

�

f increasing on
�
�1, 1

4

�
, decreasing on�

� 1
4 ,1

�
so x = 1/4 is a local max.

f 00(x) = e�4x(�4)(1� 4x) + e�4x(�4)
= �4e�4x(2� 4x)

f 00(x) > 0 on
�
1
2 ,1

�

f 00(x) < 0 on
�
�1, 1

2

�

f is concave up on
�
1
2 ,1

�
, concave down on�

�1, 1
2

�
so x = 1/2 is inflection point.

22. f 0(x) = 2x lnx+ x = x(2 lnx+ 1)
f 0(x) = 0 when lnx = �1/2, so x = e�1/2.
(x = 0 is not a critical number because it is not
in the domain of the function.) The function
is decreasing for 0 < x < e�1/2, and increasing
for x > e�1/2. The critical number x = e�1/2

represents a minimum.
f 00(x) = 2 lnx+ 3
f 00(x) = 0 when x = e�3/2 and the sign
changes from negative to positive there, so this
is an inflection point. The function is concave
down for 0 < x < e�3/2 and concave up for
x > e�3/2.

23. f 0(x) =
x2 � (x� 90)(2x)

x4

=
�(x� 180)

x3

x = 180 is the only critical number.
f 0(x) < 0 on (�1, 0) [ (180,1)
f 0(x) > 0 on (0, 180)
f(x) is decreasing on (�1, 0) [ (180,1) and
increasing on (0, 180) so f(x) has a local max-
imum at x = 180.

f 00(x) = �x3 � (x� 180)(3x2)

x6

= ��2x+ 540

x4

f 00(x) < 0 on (�1, 0) [ (0, 270)
f 00(x) > 0 on (270,1) so x = 90 is an inflec-
tion point.

24. f 0(x) =
4x

3(x2 � 1)1/3

f 0(x) = 0 at x = 0 and is undefined at x = ±1.
The function is decreasing for x < �1, increas-
ing for �1 < x < 0, decreasing for 0 < x < 1,
and increasing for 1 < x. Critical numbers
x = ±1 are minima, and x = 0 is a maximum.

f 00(x) =
4(x2 � 3)

9(x2 � 1)4/3

f 00(x) = 0 when x = ±
p
3, and undefined

for x = ±1. The function is concave up for
x < �

p
3, concave down for �

p
3 < x < �1,

concave down for �1 < x < 1, concave down
for 1 < x <

p
3, and concave up for

p
3 < x.

The inflection points are x = ±
p
3.

25. f 0(x) =
x2 + 4� x(2x)

(x2 + 4)2

=
4� x2

(x2 + 4)2

x = ±2 are critical numbers.
f 0(x) > 0 on (�2, 2)
f 0(x) < 0 on (�1,�2) [ (2,1)
f increasing on (�2, 2), decreasing on
(�1,�2) and on (2,1) so f had a local min
at x = �2 and a local max at x = 2.
f 00(x) =
�2x(x2 + 4)2 � (4� x2)[2(x2 + 4) · 2x]

(x2 + 4)4

=
2x3 � 24x

(x2 + 4)3

f 00(x) > 0 on
�
�
p
12, 0

�
[
�p

12,1
�

f 00(x) < 0 on
�
�1,�

p
12
�
[
�
0,
p
12
�

f is concave up on
�
�
p
12, 0

�
[
�p

12,1
�
,

concave down on
�
�1,�

p
12
�
[
�
0,
p
12
�
so

x = ±
p
12, 0 are inflection points.

26. f 0(x) =
2

(x2 + 4)3/2

f 0(x) is never zero and is defined for all x, so
there are no critical numbers. The function is
increasing for all x.

f 00(x) =
�6x

(x2 + 4)5/2

f 00(x) = 0 when x = 0. The function is con-
cave up for x < 0, concave down for x > 0, and
the inflection point is x = 0.

27. f 0(x) = 3x2 + 6x� 9
= 3(x+ 3)(x� 1)
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x = �3, x = 1 are critical numbers, but
x = �3 /2 [0, 4].
f(0) = 03 + 3 · 02 � 9 · 0 = 0
f(4) = 43 + 3 · 42 � 9 · 4 = 76
f(1) = 13 + 3 · 12 � 9 · 1 = �5
So f(4) = 76 is absolute max on [0, 4], f(1) =
�5 is absolute min.

28. First note that f(x) =
p
x(x� 1)(x� 2) is

only defined on [0, 1][[2,1). So we are looking
at the intervals [0, 1] [ [2, 3].

f 0(x) =
3x2 � 6x+ 2

2
p
x3 � 3x2 + 2x

The numerator has roots x = 3±
p
3

3 , but f(x)

is only defined at 3�
p
3

3 . The denominator has
zeros at x = 0, 1 and 2. Plus we have to check
the values of f at the endpoint x = 3. We find:
f(0) = 0

f( 3�
p
3

3 ) ⇡ 0.6204
f(1) = 0
f(2) = 0
f(3) =

p
6 ⇡ 2.4495

Thus f(x) has an absolute maximum on this
interval at x = 3 and absolute minimums at
x = 0, x = 1 and x = 2.

29. f 0(x) = 4
5x

�1/5

x = 0 is critical number.
f(�2) = (�2)4/5 ⇡ 1.74
f(3) = (3)4/5 ⇡ 2.41
f(0) = (0)4/5 = 0
f(0) = 0 is absolute min, f(3) = 34/5 is abso-
lute max.

30. f 0(x) = 2xe�x � x2e�x = xe�x(2� x)
f 0(x) = 0 when x = 0 and x = 2. We test f(x)
at the critical numbers in the interval [�1, 4],
and the endpoints.
f(�1) = e ⇡ 2.718
f(0) = 0
f(2) = 4/e2 ⇡ 0.541
f(4) = 16/e4 ⇡ 0.293
The absolute maximum is f(�1) = e, and the
absolute minimum is f(0) = 0.

31. f 0(x) = 3x2 + 8x+ 2

f 0(x) = 0 when

x =
�8±

p
64� 24

6
= �4

3
±

p
10

3

x = �4

3
�

p
10

3
is local max, x = �4

3
+

p
10

3
is

local min.

32. f 0(x) = 4x3 � 6x+ 2
= 2(x� 1)(2x2 + 2x� 1)

f 0(x) = 0 when x = 1 and x =
�1±

p
3

2
, and

the derivative changes sign at these values, so
these critical numbers are all extrema.

33. f 0(x) = 5x4 � 4x+ 1 = 0
x ⇡ 0.2553, 0.8227
local min at x ⇡ 0.8227,
local max at x ⇡ 0.2553.

34. f 0(x) = 5x4 + 8x� 4
f 0(x) = 0 at approximately x = �1.3033 and
x = 0.4696 (found using Newton’s method,
or a CAS numerical solver). The derivative
changes sign at these values so they correspond
to extrema: x = �1.3033 is a local max and
x = 0.4696 is a local min.

35. One possible graph:

 

5

-5

 
5-5

36. One possible graph:

x
3

1

2

0.5

0
1

-0.5

-1

0-1-2-3

37. f 0(x) = 4x3 + 12x2 = 4x2(4x+ 3)
f 00(x) = 12x2 + 24x = 12x(x+ 2)
f 0(x) > 0 on (�3, 0) [ (0,1)
f 0(x) < 0 on (�1,�3)
f 00(x) > 0 on (�1,�2) [ (0,1)
f 00(x) < 0 on (�2, 0)
f increasing on (�3,1), decreasing on
(�1,�3), concave up on (�1,�2) [ (0,1),
concave down on (�2, 0), local min at x = �3,
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inflection points at x = �2, 0.
f(x) ! 1 as x ! ±1.

y

100

80

60

40

20

0

-20

-40

x

20-2-4

38. f 0(x) = 4x3 + 8x
f 0(x) = 0 when x = 0.
f 00 = 12x2 + 8 > 0 at x = 0, so this is a min-
imum. f 00(x) > 0 for all x so there are no
inflection points.
f(x) ! 1 as x ! ±1.

x

100

3

80

60

2

40

20

1
0
0-1-2-3

39. f 0(x) = 4x3 + 4 = 4(x3 + 1)
f 00(x) = 12x2

f 0(x) > 0 on (�1,1)
f 0(x) < 0 on (�1,�1)
f 00(x) > 0 on (�1, 0) [ (0,1)
f increasing on (�1,1), decreasing on
(�1,�1), concave up on (�1,1), local min
at x = �1.
f(x) ! 1 as x ! ±1.

0

x

3210-1-2-3

20

y

100

80

60

40

40. f 0(x) = 4x3 � 8x
f 0(x) = 0 when x = 0 and x = ±

p
2.

f 00 = 12x2 � 8 < 0 at x = 0, so this is a max-
imum. f 00(x) > 0 for x = ±

p
2, so these are

minima.
f 00(x) = 0 when x = ±

p
2/3, and changes sign

there, so these are inflection points.
f(x) ! 1 as x ! ±1.

x
321

40

0

30

20

-1

10

0
-2-3

41. f 0(x) =
x2 + 1� x(2x)

(x2 + 1)2

=
1� x2

(x2 + 1)2

f 00(x) =
�2x(x2 + 1)2 � (1� x2)2(x2 + 1)2x

(x2 + 1)4

=
2x(x2 � 3)

(x2 + 1)4

f 0(x) > 0 on (�1, 1)
f 0(x) < 0 on (�1,�1) [ (1,1)
f 00(x) > 0 on

�
�
p
3, 0
�
[
�p

3,1
�

f 00(x) < 0 on
�
�1,�

p
3
�
[
�
0,
p
3
�

f increasing on (�1, 1), decreasing on
(�1,�1) and on (1,1), concave up on

⇣
�
p
3, 0
⌘
[
⇣p

3,1
⌘
,

concave down on

⇣
�1,�

p
3
⌘
[
⇣
0,
p
3
⌘
,

local min at x = �1, local max at x = 1, in-
flection points at 0, ±

p
3.

lim
x!1

x

x2 + 1
= lim

x!�1

x

x2 + 1
= 0

So f has a horizontal asymptote at y = 0.
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0

-1

-2

x

420-2-4
y

2

1

42. f 0(x) = � x2 + 1

(x2 � 1)2

is undefined when f(x) is undefined, and is
never zero. There are no extrema. There are
vertical asymptotes at x = ±1, and horizontal
asymptote y = 0.

f 00(x) =
2x(x2 + 3)

(x2 � 1)3

f 00(x) = 0 when x = 0, and this is the inflec-
tion point: f(x) is concave down on (�1,�1)
and (0, 1); f(x) is concave up on (�1, 0) and
(1,1).

x
32

y

1

4

0

2

0
-1

-2

-4

-2-3

43. f 0(x) =
(2x)(x2 + 1)� x2(2x)

(x2 + 1)2

=
2x

(x2 � 1)2

f 00(x) =
2(x2 + 1)2 � 2x · 2(x2 + 1)2x

(x2 + 1)4

=
2� 6x2

(x2 + 1)3

f 0(x) > 0 on (0,1)
f 0(x) < 0 on (�1, 0)

f 00(x) > 0 on
⇣
�
q

1
3 ,
q

1
3

⌘

f 00(x) < 0 on
⇣
�1,�

q
1
3

⌘
[
⇣q

1
3 ,1

⌘

f increasing on (0,1) decreasing on (�1, 0),

concave up on

 
�
r

1

3
,

r
1

3

!
,

concave down on
 
�1,�

r
1

3

!
[
 r

1

3
,1
!
,

local min at x = 0, inflection points at x =
±
p

1/3.

lim
x!1

x2

x2 + 1
= lim

x!�1

x2

x2 + 1
= 1

So f has a horizontal asymptote at y = 1.

y

2

1

0

-1

-2

x

420-2-4

44. f 0(x) = � 2x

(x2 � 1)2

f 0(x) = 0 when x = 0, and is undefined when
f(x) is undefined. There is a local maximum
at x = 0. There are vertical asymptotes at
x = ±1, and horizontal asymptote y = 1.

f 00(x) =
2(3x2 + 1)

(x2 � 1)3

f 00(x) 6= 0 for any x, and there are no inflec-
tion points: f(x) is concave up on (�1,�1)[
(1,1) and concave down on (�1, 1).

x
32

y

1

4

0

2

0
-1

-2

-4

-2-3
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45. f 0(x) =
3x2(x2 � 1)� x3(2x)

(x2 � 1)2

=
x4 � 3x2

(x2 � 1)2

f 00(x) =
(4x3 � 6x)(x2 � 1)2

(x2 � 1)4

� (x4 � 3x2)2(x2 � 1)2x

(x2 � 1)4

=
2x3 + 6x

(x2 � 1)4

f 0(x) > 0 on
�
�1,�

p
3
�
[
�p

3,1
�

f 0(x) < 0 on
�
�
p
3,�1

�
[ (�1, 0) [ (0, 1) [�

1,
p
3
�

f 00(x) > 0 on (�1, 0) [ (1,1)
f 00(x) < 0 on (�1,�1) [ (0, 1)
f increasing on (�1,�

p
3) and on (

p
3,1);

decreasing on (�
p
3,�1) and on (�1, 1) and

on (1,
p
3); concave up on (�1, 0)[(1,1), con-

cave down on (�1,�1)[(0, 1); x = �
p
3 local

max; x =
p
3 local min; x = 0 inflection point.

f is undefined at x = �1 and x = 1.

lim
x!1+

x3

x2 � 1
= 1, and

lim
x!1�

x3

x2 � 1
= �1

So f has vertical asymptotes at x = 1 and
x = �1.

-5

-10

x

420-2-4
y

10

5

0

46. f 0(x) = � 8x

(x2 � 1)2

f 0(x) = 0 when x = 0, and is undefined
when f(x) is undefined. f(x) is increasing
on (�1,�1) and (�1, 0); f(x) is decreasing
on (0, 1) and (1,1). There is a local maxi-
mum at x = 0. There are vertical asymptotes
at x = ±1, and horizontal asymptote y = 0.

f 00(x) =
8(3x2 + 1)

(x2 � 1)3

f 00(x) 6= 0 for any x, and there are no inflec-
tion points. f(x) is concave up on (�1,�1)

and (1,1); f(x) is concave down on (�1, 1).

-10

x
3210-1

y

-2

10

-3

5

0

-5

47. d =
p
(x� 2)2 + (y � 1)2

=
p
(x� 2)2 + (2x2 � 1)2

f(x) = (x� 2)2 + (2x2 � 1)2

f 0(x) = 2(x� 2) + 2(2x2 � 1)4x
= 16x3 � 6x� 4

f 0(x) = 0 when x ⇡ 0.8237
f 0(x) < 0 on (�1, 0.8237)
f 0(x) > 0 on (0.8237,1)
So x ⇡ 0.8237 corresponds to the closest point.
y = 2x2 = 2(0.8237)2 = 1.3570
(0.8237, 1.3570) is closest to (2, 1).

48. We compute the slope of the tangent line to
y = 2x2 at the closest point (0.8237, 1.3570).
When x = 0.8237, we get y0 = 3.2948.
The slope of the line between (2, 1) and
(0.8237, 1.3570) is

1� 1.3570

2� 0.8237
= �0.3035 =

�1

3.2948
,

so the lines are perpendicular.

49. C(x) = 6
p
42 + (4� x)2 + 2

p
22 + x2

C 0(x) =
6 · 1

2 [16 + (4� x)2]�1/2 · 2(4� x)(�1)

+ 2 1
2 (4 + x2)�1/2 · 2x

=
6(x� 4)p

16 + (4� x)2
+

2xp
4 + x2

C 0(x) = 0 when x ⇡ 2.864
C 0(x) < 0 on (0, 2.864)
C 0(x) > 0 on (2.864, 4)
So x ⇡ 2.864 gives the minimum cost. Locate
highway corner 4� 2.864 = 1.136 miles east of
point A.

50. Let F (v) = e�v/2. Then F 0(v) = �0.5e�v/2,
so F 0(v) < 0 for all v. Thus F (v) is decreasing
for all v. This says that as the speed of contrac-
tion increases, the force produced decreases.

Let P (v) = ve�v/2. Then
P 0(v) = e�v/2(1� 1

2v).
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P 0(v) = 0 when v = 2. We check that
P 0(0) > 0 and P 0(4) < 0 so v = 2 is in fact
a maximum.

51. Area: A = 2⇡r2 + 2⇡rh
Convert to in3:
16 fl oz = 16 fl oz · 1.80469 in3/fl oz

= 28.87504in3

Volume: V = ⇡r2h

h =
Vol

⇡r2
=

28.87504

⇡r2

A(r) = 2⇡

✓
r2 +

28.87504

⇡r

◆

A0(r) = 2⇡

✓
2r � 28.87504

⇡r2

◆

2⇡r3 = 28.87504

r = 3

r
28.87504

2⇡
⇡ 1.663

A0(r) < 0 on (0, 1.663)
A0(r) > 0 on (1.663,1)

So r ⇡ 1.663 gives the minimum surface area.

h =
28.87504

⇡(1.663)2
⇡ 3.325

52. If C(x) = 0.02x2 + 4x+ 1200,
then C 0(x) = 0.04x+ 4 > 0 for positive values
of x (number of items manufactured). This
must be positive because the cost function
must be increasing. It must cost more to man-
ufacture more items.
C 00(x) = 0.04 > 0. This means that the cost
per item is rising as the number of items pro-
duced increases. (For an e�cient process, the
cost per item should decrease as the number of
items increases.)

53. Let ✓1 be the angle from the horizontal to the
upper line segment defining ✓ and let ✓2 be the
angle from the horizontal to the lower line seg-
ment defining ✓. Then the length of the side

opposite ✓2 is
H � P

2
while the length of the

side opposite ✓1 is
H + P

2
. Then

✓(x) = ✓1 � ✓2

= tan�1

✓
H + P

2x

◆

� tan�1

✓
H � P

2x

◆

and so

✓0(x) =
1

1 +
�
H+P
2x

�2

✓
�H + P

2x2

◆

� 1

1 +
�
H�P
2x

�2

✓
�H � P

2x2

◆
.

We set this equal to 0:

0 =
�2(H + P )

4x2 + (H + P )2
+

2(H � P )

4x2 + (H � P )2

and solve for x:

2(H + P )

4x2 + (H + P )2
=

2(H � P )

4x2 + (H � P )2

8x2(H + P )� 8x2(H � P )

= 2(H � P )(H + P )2

� 2(H + P )(H � P )2

8x2(2P ) = 2(H � P )(H + P )(2P )

x2 =
H2 � P 2

4

x =

p
H2 � P 2

2
.

54. From exercise 53 we know that

✓0(x) =
�2(H + P )

4x2 + (H + P )2
+

2(H � P )

4x2 + (H � P )2

and that the function ✓(x) is maximized at

x =

p
H2 � P 2

2
.

Plugging in the appropriate H and P values
for high school shows that ✓(x) is maximized
by x ⇡ 23.9792. This is not in the range spec-
ified. In order to find out whether ✓(x) is in-
creasing or decreasing in the interval specified
we plug the H and P values into the expression
for ✓0(x) and then plug in a value in our inter-
val, say 55. We find that ✓0(55) ⇡ �0.00392.
Since this is negative, ✓(x) is decreasing on this
interval, so the announcers must be wrong.

Following the same procedure for college, we
find that ✓(x) is maximized by x ⇡ 17.7324
and ✓0(55) ⇡ �0.00412 so again the announc-
ers would be wrong.

Finally, for pros we see that ✓(x) is maximized
at x = 0 and ✓0(55) ⇡ �0.0055 so the announc-
ers would be wrong once again. In this situa-
tion there is no x value for which the announc-
ers would be correct, but in the high school
and college situations, if the field goal is taken
from some x less than the x which maximized
✓(x), the announcers would be correct.
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55. Q0(t) = �3e�3t sin 2t+ e�3t cos 2t · 2
= e�3t(2 cos 2t� 3 sin 2t) amps

56. f(x) = 0.3x(4�x), f 0(x) = 1.2�0.6x = 0 when
x = 2, and changes from positive to negative
there, so this represents a maximum.

57. ⇢(x) = m0(x) = 2x
As you move along the rod to the right, its
density increases.

58. With no studying, the person scores f(0) =
90

1 + 4
= 18.

f 0(x) =
144e�0.4t

(1 + 4e�0.4t)2
.

If the student were to study one hour, the score
will increase by approximately

f 0(0) =
144

25
= 5.76 points.

59. C 0(x) = 0.04x+ 20
C 0(20) = 0.04(20) + 20 = 20.8
C(20)� C(19) =
0.02(20)2 + 20(20) + 1800

� [0.02(19)2 + 20(19) + 1800]
= 20.78

60. C(x) =
0.02x2 + 20x+ 1800

x

= 0.02x+ 20 +
1800

x
,

C
0
(x) = 0.02� 1800

x2

C
0
(x) = 0 when x = 300, and the deriva-

tive changes from negative to positive here, so
x = 300 gives the minimum average cost.



Chapter 4

Integration

4.1 Antiderivatives

1.
x

4

4
,

x

4

4
+ 3,

x

4

4
� 2

 
−3

 

2

10

−2 3

20

−1

5

1

15

2.
x

4

4
� x

2

2
,

x

4

4
� x

2

2
� 1,

x

4

4
� x

2

2
+ 4

0

3

2

5

2

4

−1
−2

1

1
x

0−1

6

3. e

x

, e

x + 1, ex � 3

x
21−1

7.5

0.0

−2

5.0

−2.5

2.5

0

4. sinx, sinx+ 2, sinx� 5

−2

3−3 210

−4

2

x

0

−1

−6

−2

5.

Z
(3x4 � 3x)dx =

3

5
x

5 � 3

2
x

2 + c

6.

Z
(x3 � 2)dx =

1

4
x

4 � 2x+ c

7.

Z ✓
3
p
x� 1

x

4

◆
dx = 2x3/2 +

x

�3

3
+ c

8.

Z ✓
2x�2 +

1p
x

◆
dx

= �2x�1 + 2x1/2 + c

9.

Z
x

1/3 � 3

x

2/3

dx =

Z
(x�1/3 � 3x�2/3)dx

=
3

2
x

2/3 � 9x1/3 + c

10.

Z
x+ 2x3/4

x

5/4

dx =

Z
(x�1/4 + 2x�1/2)dx

=
4

3
x

3/4 + 4x1/2 + c

11.

Z
(2 sinx+ cosx)dx = �2 cosx+ sinx+ c

12.

Z
(3 cosx� sinx)dx = 3 sinx+ cosx+ c

13.

Z
2 secx tanxdx = 2 secx+ c

240
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14.

Z
4p

1� x

2

dx = 4arcsinx+ c

15.

Z
5 sec2 xdx = 5 tanx+ c

16.

Z
4 cosx

sin2 x
dx = �4 cscx+ c

17.

Z
(3ex � 2)dx = 3ex � 2x+ c

18.

Z
(4x� 2ex)dx = 2x2 � 2ex + c

19.

Z
(3 cosx� 1/x)dx = 3 sinx� ln |x|+ c

20.

Z
(2x�1 + sinx)dx = 2 ln |x|� cosx+ c

21.

Z
4x

x

2 + 4
dx = 2 ln |x2 + 4|+ c

22.

Z
3

4x2 + 4
dx =

3

4
tan�1

x+ c

23.

Z
cosx

sinx
dx = ln | sinx|+ c

24.

Z
(2 cosx� e

x)dx = 2 sinx� e

x + c

25.

Z
e

x

e

x + 3
dx = ln | ex + 3|+ c

26.

Z
e

x + 3

e

x

dx =

Z
(1 + 3e�x)dx

= x� 3e�x + c

27.

Z
x

1/4(x5/4 � 4)dx =

Z
(x3/2 � 4x1/4)dx

=
2

5
x

5/2 � 16

5
x

5/4 + c

28.

Z
x

2/3(x�4/3 � 3)dx =

Z
(x�2/3 � 3x2/3)dx

= 3x1/3 � 9

5
x

5/3 + c

29.
d

dx

ln |secx+ tanx|

=
1

secx+ tanx

d

dx

(secx+ tanx)

=
secx tanx+ sec2x

secx+ tanx

=
secx (tanx+ secx)

secx+ tanx= secx

30.
d

dx

ln |sinx · 2|

=
1

sinx · 2
d

dx

(sinx · 2)

=
2 cosx

2 sinx
= cotx

31. (a) N/A

(b) By Power Formula,
Z
(
p
x

3 + 4)dx =
2

5
x

5/2 + 4x+ c.

32. (a) By Power Formula,Z
3x2 � 4

x

2

dx =

Z
(3� 4x�2)dx

= 3x+ 4x�1 + c

(b) N/A

33. (a) N/A

(b) By Reversing derivative formula,Z
sec2 xdx = tanx+ c

34. (a) By Power Formula,Z ✓
1

x

2

� 1

◆
dx = � 1

x

� x+ c

(b) N/A

35. Finding the antiderivative,

f(x) = 3ex +
x

2

2
+ c.

Since f(0) = 4,
we have 4 = f(0) = 3 + c.
Therefore,

f(x) = 3ex +
x

2

2
+ 1.

36. Finding the antiderivative,
f(x) = 4 sinx+ c.
Since f(0) = 3,
we have 3 = f(0) = c.
Therefore,
f(x) = 4 sinx+ 3.

37. Finding the antiderivative
f

0(x) = 4x3 + 2ex + c

1

.
Since, f 0 (0) = 2.
We have 2 = f

0 (0) = 2 + c

1

and therefore
f

0(x) = 4x3 + 2ex.
Finding the antiderivative,
f(x) = x

4 + 2ex + c

2

.
Since f (0) = 3,
We have 3 = f (0) = 2 + c

2

Therefore,
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f(x) = x

4 + 2ex + 1.

38. Finding the antiderivative,
f

0(x) = 5x4 + e

2x + c

1

.
Since f

0 (0) = �3,
we have �3 = f

0 (0) = 1 + c

1

Therefore,
f

0(x) = 5x4 + e

2x � 4.
Finding the antiderivative,

f(x) = x

5 +
e

2x

2
� 4x+ c

2

.

Since f (0) = 2,

We have 2 = f (0) =
1

2
+ c

2

Therefore,

f(x) = x

5 +
e

2x

2
� 4x+

3

2
.

39. Taking antiderivatives,
f

0 (t) = 2t+ t

2 + c

1

f (t) = t

2 +
t

3

3
+ c

1

t+ c

2

Since f (0) = 2,
we have 2 = f (0) = c

2

Therefore,

f (t) = t

2 +
t

3

3
+ c

1

t+ 2.

Since f (3) = 2,
we have
2 = f (3) = 9 + 9 + 3c

1

+ 2
� 6 = c

1

Therefore,

f (t) =
t

3

3
+ t

2 � 6t+ 2.

40. Taking antiderivatives,
f

0(t) = 4t+ 3t2 + c

1

f(t) = 2t2 + t

3 + c

1

t+ c

2

Since f (1) = 3,
we have 3 = f (1) = 2 + 1 + c

1

+ c

2

Therefore,
c

1

+ c

2

= 0
Since f (�1) = �2,
we have �2 = f (�1) = 2� 1� c

1

+ c

2

Therefore, �c

1

+ c

2

= �3.
So, c

1

= 3

2

and c

2

= � 3

2

Hence,

f(t) = t

3 + 2t2 +
3

2
t� 3

2
.

41. Taking antiderivatives,
f

00(x) = 3 sinx+ 4x2

f

0(x) = �3 cosx+
4

3
x

3 + c

1

f(x) = �3 sinx+
1

3
x

4 + c

1

x+ c

2

.

42. Taking antiderivatives,
f

00(x) = x

1/2 � 2 cosx

f

0(x) =
2

3
x

3/2 � 2 sinx+ c

1

f(x) =
4

15
x

5/2 + 2 cosx+ c

1

x+ c

2

.

43. Taking antiderivatives,
f

000(x) = 4� 2/x3

f

00(x) = 4x+ x

�2 + c

1

f

0(x) = 2x2 � x

�1 + c

1

x+ c

2

f(x) =
2

3
x

3 � ln |x|+ c

1

2
x

2 + c

2

x+ c

3

44. Taking antiderivatives,
f

000(x) = sinx� e

x

f

00(x) = � cosx� e

x + c

1

f

0(x) = � sinx� e

x + c

1

x+ c

2

f(x) = cosx� e

x +
c

1

2
x

2 + c

2

x+ c

3

45. Position is the antiderivative of velocity,
s(t) = 3t� 6t2 + c.
Since s(0) = 3, we have c = 3. Thus,
s(t) = 3t� 6t2 + 3.

46. Position is the antiderivative of velocity,
s(t) = �3e�t � 2t+ c.
Since s(0) = 0, we have �3 + c = 0 and there-
fore c = 3. Thus,
s(t) = �3e�t � 2t+ 3.

47. First we find velocity, which is the antideriva-
tive of acceleration,
v(t) = �3 cos t+ c

1

.
Since v(0) = 0 we have
�3 + c

1

= 0, c
1

= 3 and
v(t) = �3 cos t+ 3.
Position is the antiderivative of velocity,
s(t) = �3 sin t+ 3t+ c

2

.
Since s(0) = 4, we have c

2

= 4. Thus,
s(t) = �3 sin t+ 3t+ 4.

48. First we find velocity, which is the antideriva-
tive of acceleration,

v(t) =
1

3
t

3 + t+ c

1

.

Since v(0) = 4 we have c

1

= 4 and

v(t) =
1

3
t

3 + t+ 4.

Position is the antiderivative of velocity,

s(t) =
1

12
t

4 +
1

2
t

2 + 4t+ c

2

.

Since s(0) = 0, we have c

2

= 0. Thus,

s(t) =
1

12
t

4 +
1

2
t

2 + 4t.
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49. (a) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

x

7.5

2.5

−2.5

−0.8−4.0

y

10.0

5.0

3.2
0.0

−5.0

1.60.0−1.6−3.2 2.40.8−2.4

(b) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

4.8

x
31

7.2

20

8.8

−1−3

4.0

5.6

6.4

3.2

2.4

8.0

−2

50. (a) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

y

0

10

2−4

14

x

8

12

4

−4

−2

6

0

2

−2

(b) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

−10

x
31

5

20

15

−1−3

−5

0

10

−2

51. We start by taking antiderivatives:
f

0(x) = x

2

/2� x+ c

1

f(x) = x

3

/6� x

2

/2 + c

1

x+ c

2

.
Now, we use the data that we are given. We
know that f(1) = 2 and f

0(1) = 3, which gives
us
3 = f

0(1) = 1/2� 1 + c

1

,
and
1 = f(1) = 1/6� 1/2 + c

1

+ c

2

.
Therefore c

1

= 7/2 and c

2

= �13/6 and the
function is

f(x) =
x

3

6
� x

2

2
+

7x

2
� 13

6
.

52. We start by taking antiderivatives:
f

0(x) = 3x2 + 4x+ c

1

f(x) = x

3 + 2x2 + c

1

x+ c

2

.
Now, we use the data that we are given. We
know that f(�1) = 1 and f

0(�1) = 2, which
gives us
2 = f

0(�1) = �1 + c

1

,
and
1 = f(�1) = 1� c

1

+ c

2

.
Therefore c

1

= 3 and c

2

= 3 and the function
is
f(x) = x

3 + 2x2 + 3x� 3.

53.
d

dx

⇥
sinx2

⇤
= 2x cosx2

Therefore,Z
2x cosx2

dx = sinx2 + c

54.
d

dx

h
(x3 + 2)3/2

i
=

9

2
x

2(x3 + 2)1/2

Therefore,Z
x

2

p
x

3 + 2dx =
2

9
(x3 + 2)3/2 + c

55.
d

dx

⇥
x

2 sin 2x
⇤
= 2(x sin 2x+ x

2 cos 2x)

Therefore,
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Z �
x sin 2x+ x

2 cos 2x
�
dx

=
1

2
x

2 sin 2x+ c

56.
d

dx

x

2

e

3x

=
2xe3x � 3x2

e

3x

e

6x

Therefore,Z
2xe3x � 3x2

e

3x

e

6x

dx =
x

2

e

3x

+ c

57.

Z
x cos(x2)p
sin(x2)

dx =
p

sin(x2) + c

58.
d

dx

�
2
p
x sinx

�
= 2

p
x cosx+

1p
x

sinx
Z ✓

2
p
x cosx+

1p
x

sinx

◆
dx

= 2
p
x sinx+ c

59. Use a CAS to find antiderivatives and verify by
computing the derivatives:
For 11.1(b):Z

secxdx = ln | secx+ tanx|+ c

Verify:
d

dx

ln | secx+ tanx|

=
secx tanx+ sec2 x

secx+ tanx
= secx

For 11.1(f):Z
x sin 2xdx =

sin 2x

4
� x cos 2x

2
+ c

Verify:
d

dx

✓
sin 2x

4
� x cos 2x

2

◆

=
2 cos 2x

4
� cos 2x� 2x sin 2x

2
= x sin 2x

60. Use a CAS to find antiderivatives and verify by
computing the derivatives:
For 31(a): The answer is too complicated to be
presented here.

For 32(b):
1

9

 
3x+

p
3 ln

2
p
3� 3x

2
p
3 + 3x

!
+ c

Verify:

d

dx

"
1

9

 
3x+

p
3 ln

2
p
3� 3x

2
p
3 + 3x

!#

=
1

9

 
3 +

2
p
3 + 3x

2
p
3� 3x

·

�3(2
p
3 + 3x)� 3(2

p
3� 3x)

(2
p
3 + 3x)2

!

=
1

9

✓
3� 36

12� 9x2

◆
=

x

2

3x2 � 4
For 33(a): Almost the same as in Exercise 59,
example 1.11 (b).

For 34(b):
1

2
ln

x� 1

x+ 1
+ c

Verify:
d

dx

✓
1

2
ln

x� 1

x+ 1

◆

=
1

2
· x+ 1

x� 1
· (x+ 1)� (x� 1)

(x+ 1)2

=
1

x

2 � 1

61. Use a CAS to find antiderivatives and verify by
computing the derivatives:

(a)

Z
x

2

e

�x

3

dx = �1

3
e

�x

3

+ c

Verify:
d

dx

✓
�1

3
e

�x

3

◆

= �1

3
e

�x

3

· (�3x2)

= x

2

e

�x

3

(b)

Z
1

x

2 � x

dx = ln |x�1|� ln |x|+c Verify:

d

dx

(ln |x� 1|� ln |x|)

=
1

x� 1
� 1

x

=
x� (x� 1)

x(x� 1)

=
1

x(x� 1)
=

1

x

2 � x

(c)

Z
secxdx = ln | secx+ tanx|+ c

Verify:
d

dx

[ln | secx+ tanx|]

=
secx tanx+ sec2 x

secx+ tanx

=
secx(secx+ tanx)

secx+ tanx
= secx

62. Use a CAS to find antiderivatives and verify
by computing the derivatives:

(a)

Z
x

x

4 + 1
dx =

1

2
arctanx2 + c

Verify:
d

dx

✓
1

2
arctanx2

◆

=
1

2
· 1

x

4 + 1
· 2x =

x

x

4 + 1

(b)

Z
3x sin 2xdx

=
3

4
sin 2x� 3x

2
cos 2x+ c
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Verify:
d

dx

✓
3

4
sin 2x� 3x

2
cos 2x

◆

=
3

2
cos 2x� 3

2
cos 2x+ 3x sin 2x

= 3x sin 2x

(c)

Z
lnxdx = x lnx� x+ c

Verify:
d

dx

(x lnx� x) = lnx+ 1� 1

= lnx

63.

Z �1p
1� x

2

dx = cos�1(x) + c

1

Z �1p
1� x

2

dx = � sin�1(x) + c

2

Therefore,
cos�1

x+ c

1

= � sin�1

x+ c

2

Therefore,
sin�1

x+ cos�1

x = constant
To find the value of the constant, let x be any
convenient value.
Suppose x = 0; then sin�1 0 = 0 and cos�1 0 =
⇡/2, so

sin�1

x+ cos�1

x =
⇡

2

64. To derive these formulas, all that needs to be
done is to take the derivatives to see that the
integrals are correct:
d

dx

(tanx) = sec2 x

d

dx

(secx) = secx tanx

65. To derive these formulas, all that needs to be
done is to take the derivatives to see that the
integrals are correct:
d

dx

(ex) = e

x

d

dx

�
�e

�x

�
= e

�x

66. (a)

Z
1

kx

dx =
1

k

Z
1

x

dx

=
1

k

ln |x|+ c

1

(b)

Z
1

kx

dx =
1

k

Z
k

kx

dx

=
1

k

ln |kx|+ c

2

Because
1

k

ln |kx| = 1

k

(ln |k|+ ln |x|)

=
1

k

ln |x|+ 1

k

ln |k| = 1

k

ln |x|+ c

The two antiderivatives are both correct.

67. The key is to find the velocity and position
functions. We start with constant acceleration
a, a constant. Then, v(t) = at + v

0

where v

0

is the initial velocity. The initial velocity is 30
miles per hour, but since our time is in seconds,
it is probably best to work in feet per second
(30mph = 44ft/s). v(t) = at+ 44.
We know that the car accelerates to 50 mph
(50mph = 73ft/s) in 4 seconds, so v(4) = 73.

Therefore, a · 4 + 44 = 73 and a =
29

4
ft/s

So,

v(t) =
29

4
t+ 44 and

s(t) =
29

8
t

2 + 44t+ s

0

where s
0

is the initial position. We can assume
the the starting position is s

0

= 0.

Then, s(t) =
29

8
t

2 + 44t and the distance

traveled by the car during the 4 seconds is
s(4) = 234 feet.

68. The key is to find the velocity and position
functions. We start with constant acceleration
a, a constant. Then, v(t) = at + v

0

where v

0

is the initial velocity. The initial velocity is 60
miles per hour, but since our time is in seconds,
it is probably best to work in feet per second
(60mph = 88ft/s). v(t) = at+ 88.
We know that the car comes to rest in 3 sec-
onds, so v(3) = 0.
Therefore,
a(3)+88 = 0 and a = �88/3ft/s (the accelera-
tion should be negative since the car is actually
decelerating.
So,

v(t) = �88

3
t+ 88 and

s(t) = �44

3
t

2 + 88t+ s

0

where s

0

is the initial

position. We can assume the the starting po-
sition is s

0

= 0.

Then, s(t) = �44

3
t

2 + 88t and the stopping

distance is s(3) = 132 feet.

69. To estimate the acceleration over each inter-
val, we estimate v

0(t) by computing the slope
of the tangent lines. For example, for the in-
terval [0, 0.5]:

a ⇡ v(0.5)� v(0)

0.5� 0
= �31.6 m/s2.

Notice, acceleration should be negative since
the object is falling.
To estimate the distance traveled over the in-
terval, we estimate the velocity and multiply
by the time (distance is rate times time). For
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an estimate for the velocity, we will use the
average of the velocities at the endpoints. For
example, for the interval [0, 0.5], the time inter-
val is 0.5 and the velocity is �11.9. Therefore
the position changed is (�11.9)(0.5) = �5.95
meters. The distance traveled will be 5.95 me-
ters (distance should be positive).
Interval Accel Dist

[0.0, 0.5] �31.6 5.95
[0.5, 1.0] �2 12.925
[1.0, 1.5] �11.6 17.4
[1.5, 2.0] �3.6 19.3

70. To estimate the acceleration over each inter-
val, we estimate v

0(t) by computing the slope
of the tangent lines. For example, for the in-
terval [0, 1.0]:

a ⇡ v(1.0)� v(0)

1.0� 0
= �9.8 m/s2.

Notice, acceleration should be negative since
the object is falling.
To estimate the distance traveled over the in-
terval, we estimate the velocity and multiply
by the time (distance is rate times time). For
an estimate for the velocity, we will use the av-
erage of the velocities at the endpoints. For
example, for the interval [0, 1.0], the time in-
terval is 1.0 and the velocity is �4.9. Therefore
the position changed is (�4.9)(1.0) = �4.9 me-
ters. The distance traveled will be 4.9 meters
(distance should be positive).
Interval Accel Dist

[0.0, 1.0] �9.8 4.9
[1.0, 2.0] �8.8 14.2
[2.0, 3.0] �6.3 21.75
[3.0, 4.0] �3.6 26.7

71. To estimate the speed over the interval, we
first approximate the acceleration over the in-
terval by averaging the acceleration at the end-
point of the interval. Then, the velocity will be
the acceleration times the length of time. The
slope of the tangent lines. For example, for the
interval [0, 0.5] the average acceleration is �0.9
and v(0.5) = 70 + (�0.9)(0.5) = 69.55.
And, the distance traveled is the speed times
the length of time. For the time t = 0.5, the

distance would be
70 + 69.55

2
⇥0.5 ⇡ 34.89 me-

ters.

Time Speed Dist

0 70 0
0.5 69.55 34.89
1.0 70.3 69.85
1.5 70.35 105.01
2.0 70.65 104.26

72. To estimate the speed over the interval, we first
approximate the acceleration over the interval
by averaging the acceleration at the endpoint
of the interval. Then, the velocity will be the
acceleration times the length of time. the slope
of the tangent lines. For example, for the in-
terval [0.0, 0.5] the average acceleration is �0.8
and v(0.5) = 20+(�0.8)(.5) = 19.6. Of course,
speed is the absolute value of the velocity.
And, the distance traveled is the average speed
times the length of time. For the time t = 0.5,

the distance would be
20 + 19.6

2
⇥ 0.5 = 9.9

meters.
Time Speed Dist

0 20 0
0.5 19.6 9.9
1.0 17.925 19.281
1.5 16.5 27.888
2.0 16.125 34.044

4.2 Sums And Sigma Notation

1. The given sum is the sum of twice the
squares of the integers from 1 to 14.

2(1)2 + 2(2)2 + 2(3)2 + . . .+ 2(14)2 =
14X

i=1

2i2

2. The given sum is the sum of squares
roots of the integers from 1 to 14.p
2� 1 +

p
3� 1 +

p
4� 1 + . . .+

p
15� 1

=
p
1 +

p
2 +

p
3 + ... +

p
13 +

p
14

=
14X

i=1

p
i

3. (a)
50X

i=1

i

2 =
(50)(51)(101)

6
= 42, 925

(b)

 
50X

i=1

i

!
2

=

✓
50(51)

2

◆
2

= 1, 625, 625

4. (a)
10X

i=1

p
i

= 1 +
p
2 +

p
3 +

p
4 +

p
5 +

p
6
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+
p
7 +

p
8 +

p
9 +

p
10

⇡ 22.47

(b)

vuut
10X

i=1

i =

r
10(11)

2
=

p
55

5.
6X

i=1

3i2 = 3 + 12 + 27 + 48 + 75 + 108

= 273

6.
7X

i=3

i

2 + i = 12 + 20 + 30 + 42 + 56

= 160

7.
10X

i=6

(4i+ 2)

= (4(6) + 2) + (4(7) + 2) + (4(8) + 2)
+ (4(9) + 2) + (4(10) + 2)
= 26 + 30 + 34 + 38 + 42
= 170

8.
8X

i=6

(i2 + 2)

= (62 + 2) + (72 + 2) + (82 + 2)
= 38 + 51 + 66 = 155

9.
70X

i=1

(3i� 1) = 3 ·
70X

i=1

i� 70

= 3 · 70(71)
2

� 70 = 7, 385

10.
45X

i=1

(3i� 4) = 3
45X

i=1

i� 4
45X

i=1

1

= 3

✓
45(46)

2

◆
� 4(45) = 2925

11.
40X

i=1

(4� i

2) = 160�
40X

i=1

i

2

= 160� (40)(41)(81)

6
= 160� 22, 140 = �21, 980

12.
50X

i=1

(8� i) = 8
50X

i=1

1�
50X

i=1

i

= 8(50)� 50(51)

2
= �875

13.
100X

n=1

�
n

2 � 3n+ 2
�

=
100X

n=1

n

2 � 3
100X

n=1

n+
100X

n=1

2

=
(100)(101)(201)

6
� 3

100(101)

2
+ 200

= 338, 350� 15, 150 + 200 = 323, 400

14.
140X

n=1

�
n

2 + 2n� 4
�

=
140X

n=1

n

2 + 2
140X

n=1

n�
140X

n=1

4

=
(140)(141)(281)

6
+ 2

✓
140(141)

2

◆
� 4 (140)

= 943, 670

15.
30X

i=3

h
(i� 3)2 + i� 3

i

=
30X

i=3

(i� 3)2 +
30X

i=3

(i� 3)

=
27X

n=0

n

2 +
27X

n=0

n (substitute i� 3 = n)

= 0 +
27X

n=1

n

2 + 0 +
27X

n=1

n

=
27 (28) (55)

6
+

27 (28)

2
= 7308

16.
20X

i=4

(i� 3) (i+ 3) =
20X

i=4

�
i

2 � 9
�

=
20X

i=4

i

2 � 9
20X

i=4

1

=
20X

i=1

i

2�
3X

i=1

i

2�9
20X

i=4

1

=
20 (21) (41)

6
� 1� 4� 9� 9 (17)

= 2703

17.
nX

k=3

�
k

2 � 3
�

=
nX

k=3

k

2+
nX

k=3

(�3)

=
nX

k=1

k

2 �
2X

k=1

k

2

+
nX

k=1

(�3)�
2X

k=1

(�3)

=
n (n+ 1) (2n+ 1)

6
� 1� 4

+ (�3)n� (�3) (2)

=
n (n+ 1) (2n+ 1)

6
� 5� 3n+ 6
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=
n (n+ 1) (2n+ 1)

6
� 3n+ 1

18.
nX

k=0

�
k

2 + 5
�

=
nX

k=0

k

2 +
nX

k=0

5

= 0 +
nX

k=1

k

2 + 5 +
nX

k=1

5

=
n (n+ 1) (2n+ 1)

6
+ 5 + 5n

19.
nX

i=1

f(x
i

)�x

=
5X

i=1

(x2

i

+ 4x
i

) · 0.2

= (0.22 + 4(0.2))(0.2) + . . .

+ (12 + 4)(0.2)
= (0.84)(0.2) + (1.76)(0.2)
+ (2.76)(0.2) + (3.84)(0.2)
+ (5)(0.2)

= 2.84

20.
nX

i=1

f(x
i

)�x

=
5X

i=1

(3x
i

+ 5) · 0.4

= (3(0.4) + 5)(0.4) + . . .

+ (3(2) + 5)(0.4)
= (6.2)(0.4) + (7.4)(0.4)
+ (8.6)(0.4) + (9.8)(0.4)
+ (11)(0.4)

= 17.2

21.
nX

i=1

f(x
i

)�x

=
10X

i=1

(4x2

i

� 2) · 0.1

= (4(2.1)2 � 2)(0.1) + . . .

+ (4(3)2 � 2)(0.1)
= (15.64)(0.1) + (17.36)(0.1)
+ (19.16)(0.1) + (21.04)(0.1)
+ (23)(0.1) + (25.04)(0.1)
+ (27.16)(0.1) + (29.36)(0.1)
+ (31.64)(0.1) + (34)(0.1)

= 24.34

22.
nX

i=1

f(x
i

)�x

=
10X

i=1

(x3 + 4) · 0.1

= ((2.05)3 + 4)(0.1) + . . .

+ ((2.95)3 + 4)(0.1)
= (202.4375)(0.1)
= 20.24375

23.
nX

i=1

1

n

"✓
i

n

◆
2

+ 2

✓
i

n

◆#

=
1

n

"
nX

i=1

i

2

n

2

+ 2
nX

i=1

i

n

#

=
1

n

"
1

n

2

nX

i=1

i

2 +
2

n

nX

i=1

i

#

=
1

n


1

n

2

✓
n(n+ 1)(2n+ 1)

6

◆

+
2

n

✓
n(n+ 1)

2

◆�

=
n(n+ 1)(2n+ 1)

6n3

+
n(n+ 1)

n

2

lim
n!1

nX

i=1

1

n

"✓
i

n

◆
2

+ 2

✓
i

n

◆#

= lim
n!1


n(n+ 1)(2n+ 1)

6n3

+
n(n+ 1)

n

2

�

=
2

6
+ 1 =

4

3

24.
nX

i=1

1

n

"✓
i

n

◆
2

� 5

✓
i

n

◆#

=
1

n

"
nX

i=1

i

2

n

2

� 5
nX

i=1

i

n

#

=
1

n

"
1

n

2

nX

i=1

i

2 � 5

n

nX

i=1

i

#

=
1

n


1

n

2

✓
n(n+ 1)(2n+ 1)

6

◆

� 5

n

✓
n(n+ 1)

2

◆�

=
n(n+ 1)(2n+ 1)

6n3

� 5n(n+ 1)

2n2

=
�13n2 � 12n+ 1

6n2

lim
n!1

nX

i=1

1

n

"✓
i

n

◆
2

� 5

✓
i

n

◆#

= lim
n!1

�13n2 � 12n+ 1

6n2

= lim
n!1

�13

6
� 12

6n
+

1

6n2
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= �13

6

25.
nX

i=1

1

n

"
4

✓
2i

n

◆
2

�
✓
2i

n

◆#

=
1

n

"
16

nX

i=1

i

2

n

2

� 2
nX

i=1

i

n

#

=
1

n

"
16

n

2

nX

i=1

i

2 � 2

n

nX

i=1

i

#

=
1

n


16

n

2

✓
n(n+ 1)(2n+ 1)

6

◆

� 2

n

✓
n(n+ 1)

2

◆�

=
16n(n+ 1)(2n+ 1)

6n3

� n(n+ 1)

n

2

lim
n!1

nX

i=1

1

n

"
4

✓
2i

n

◆
2

�
✓
2i

n

◆#

= lim
n!1


16n(n+ 1)(2n+ 1)

6n3

� n(n+ 1)

n

2

�

=
16

3
� 1 =

13

3

26.
nX

i=1

1

n

"✓
2i

n

◆
2

+ 4

✓
i

n

◆#

=
1

n

"
nX

i=1

4i2

n

2

+ 4
nX

i=1

i

n

#

=
1

n

"
4

n

2

nX

i=1

i

2 +
4

n

nX

i=1

i

#

=
1

n


4

n

2

✓
n(n+ 1)(2n+ 1)

6

◆

+
4

n

✓
n(n+ 1)

2

◆�

=
4n(n+ 1)(2n+ 1)

6n3

+
4n(n+ 1)

2n2

=
10n2 + 12n+ 2

3n2

lim
n!1

nX

i=1

1

n

"✓
2i

n

◆
2

+ 4

✓
i

n

◆#

= lim
n!1

10n2 + 12n+ 2

3n2

= lim
n!1

10

3
+

12

3n
+

2

3n2

=
10

3

27. Want to prove that

nX

i=1

i

3 =
n

2(n+ 1)2

4

is true for all integers n � 1.
For n = 1, we have
1X

i=1

i

3 = 1 =
12(1 + 1)2

4
,

as desired.
So the proposition is true for n = 1.
Next, assume that
kX

i=1

i

3 =
k

2(k + 1)2

4
,

for some integer k � 1.
In this case, we have by the induction assump-
tion that for n = k + 1,
nX

i=1

i

3 =
k+1X

i=1

i

3 =
kX

i=1

i

3 + (k + 1)3

=
k

2(k + 1)2

4
+ (k + 1)3

=
k

2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4

=
n

2(n+ 1)2

4
as desired.

28. Want to prove that
nX

i=1

i

5 =
n

2(n+ 1)2(2n2 + 2n� 1)

12

is true for all integers n � 1.
For n = 1, we have
1X

i=1

i

3 = 1 =
12(1 + 1)2(2 + 2� 1)

12
,

as desired.
So the proposition is true for n = 1.
Next, assume that
kX

i=1

i

5 =
k

2(k + 1)2(2k2 + 2k � 1)

12
,

for some integer k � 1.
In this case, we have by the induction assump-
tion that for n = k + 1,
nX

i=1

i

5 =
k+1X

i=1

i

5 =
kX

i=1

i

5 + (k + 1)5

=
k

2(k + 1)2(2k2 + 2k � 1)

12
+ (k + 1)5

=
k

2(k + 1)2(2k2 + 2k � 1) + 12(k + 1)5

12

=
(k + 1)2[k2(2k2 + 2k � 1) + 12(k + 1)3]

12
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=
(k + 1)2[2k4 + 14k3 + 35k2 + 36k + 12]

12

=
(k + 1)2(k2 + 4k + 4)(2k2 + 6k + 3)

12

=
n

2(n+ 1)2(2n2 + 2n� 1)

12
as desired.

29.
10X

i=1

(i3 � 3i+ 1)

=
10X

i=1

i

3 � 3
10X

i=1

i+ 10

=
100(11)2

4
� 3

10(11)

2
+ 10

= 2, 870

30.
20X

i=1

(i3 + 2i)

=
20X

i=1

i

3 + 2
20X

i=1

i

=
400(21)2

4
+ 2

20(21)

2
= 44, 520

31.
100X

i=1

(i5 � 2i2)

=
100X

i=1

i

5 � 2
100X

i=1

i

2

=
(1002)(1012)[2(1002) + 2(100)� 1]

12

� 2
100(101)(201)

6
= 171, 707, 655, 800

32.
100X

i=1

(2i5 + 2i+ 1)

= 2
100X

i=1

i

5 + 2
100X

i=1

i+ 100

= 2
(1002)(1012)[2(1002) + 2(100)� 1]

12

+ 2 · 100(101)
2

+ 100

= 343, 416, 675, 200

33.
nX

i=1

(ca
i

+ db

i

) =
nX

i=1

ca

i

+
nX

i=1

db

i

= c

nX

i=1

a

i

+ d

nX

i=1

b

i

34. When n = 0, a =
a� ar

1� r

.

Assume the formula holds for n = k�1, which
gives

a+ ar + · · · ark�1 =
a� ar

k

1� r

.

Then for n = k,

we have a+ ar + · · · ark
= a+ ar + · · · ark�1 + ar

k

=
a� ar

k

1� r

+ ar

k

=
a� ar

k + ar

k(1� r)

1� r

=
a� ar

k + ar

k � ar

k+1

1� r

=
a� ar

k+1

1� r

=
a� ar

n+1

1� r

as desired.

35.
nX

i=1

e

6i/n

✓
6

n

◆

=
6

n

nX

i=1

e

6i/n

=
6

n

✓
e

6/n � e

6

1� e

6/n

◆

=
6

n

✓
1� e

6

1� e

6/n

� 1

◆

=
6

n

1� e

6

1� e

6/n

� 6

n

Now lim
x!1

6

n

= 0, and

lim
x!1

6

n

1� e

6

1� e

6/n

= 6(1� e

6) lim
x!1

1/n

1� e

6/n

= 6(1� e

6) lim
x!1

1

�6e6/n

= e

6 � 1.

Thus lim
x!1

nX

i=1

e

6i/n

6

n

= e

6 � 1.

36.
nX

i=1

e

(2i)/n

2

n

=
2

n

✓
e

2/n � e

2

1� e

2/n

◆

=
2

n

✓
1� e

2

1� e

2/n

� 1

◆
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=
2

n

1� e

2

1� e

2/n

� 2

n

Now lim
x!1

2

n

= 0, and

lim
x!1

2

n

1� e

2

1� e

2/n

= 2(1� e

2) lim
x!1

1/n

1� e

2/n

= 2(1� e

2) lim
x!1

1

�2e2/n

= e

2 � 1.

Thus lim
x!1

nX

i=1

e

2i/n

2

n

= e

2 � 1.

37. Distance
= 50(2) + 60(1) + 70(1/2) + 60(3)
= 375 miles.

38. Distance
= 50(1) + 40(1) + 60(1/2) + 55(3)
= 285 miles.

39. On the time interval [0, 0.25], the estimated ve-

locity is the average velocity
120 + 116

2
= 118

feet per second.
We estimate the distance traveled during the
time interval [0, 0.25] to be
(118)(0.25� 0) = 29.5 feet.
Altogether, the distance traveled is estimated
as
= (236/2)(0.25) + (229/2)(0.25)
+ (223/2)(0.25) + (218/2)(0.25)
+ (214/2)(0.25) + (210/2)(0.25)
+ (207/2)(0.25) + (205/2)(0.25)

= 217.75 feet.

40. On the time interval [0, 0.5], the estimated ve-

locity is the average velocity
10 + 14.9

2
= 12.45

meters per second. We estimate the distance
fallen during the time interval [0, 0.5] to be
(12.45)(0.5� 0) = 6.225 meters.
Altogether, the distance fallen (estimated)
= (12.45)(0.5) + (17.35)(0.5)
+ (22.25)(0.5) + (27.15)(0.5)
+ (32.05)(0.5) + (36.95)(0.5)
+ (41.85)(0.5) + (46.75)(0.5)

= 118.4 meters.

4.3 Area

1. (a) Evaluation points:
0.125, 0.375, 0.625, 0.875.

Notice that �x = 0.25.
A

4

= [f(0.125) + f(0.375) + f(0.625)
+ f(0.875)](0.25)

= [(0.125)2 + 1 + (0.375)2 + 1
+ (0.625)2 + 1 + (0.875)2 + 1](0.25)

= 1.38125.

x

0.60.4 1.20.8

0.5

0

2

0.2
0

1.5

1

1

(b) Evaluation points:
0.25, 0.75, 1.25, 1.75.
Notice that �x = 0.5.
A

4

= [f(0.25) + f(0.75) + f(1.25)
+ f(1.75)](0.5)

= [(0.25)2 + 1 + (0.75)2 + 1 + (1.25)2

+ 1 + (1.75)2 + 1](0.5)
= 4.625.

0 1

7

2

6

5

4

3

2

1

0

x
2.51.50.5-0.5

2. (a) Evaluation points:
1.125, 1.375, 1.625, 1.875.
Notice that �x = 0.25.
A

4

= [f(1.125) + f(1.375) + f(1.625)
+ f(1.875)](0.25)

= [(1.125)3 � 1 + (1.375)3 � 1
+ (1.625)3 � 1 + (1.875)3 � 1](0.25)

= 2.7265625.
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2

6

x

21.81.61.41.2

4

7

5

0

3

1

1

(b) Evaluation points:
1.25, 1.75, 2.25, 2.75.
Notice that �x = 0.5.
A

4

= [f(1.25) + f(1.75) + f(2.25)
+ f(2.75)](0.5)

= [(1.25)3 � 1 + (1.75)3 � 1
+ (2.25)3 � 1 + (2.75)3 � 1](0.5)

= 17.75.

2 2.51.51
x

0

30

25

20

15

10

5

3

3. (a) Evaluation points:
⇡/8, 3⇡/8, 5⇡/8, 7⇡/8.
Notice that �x = ⇡/4.
A

4

= [f(⇡/8) + f(3⇡/8) + f(5⇡/8)
+ f(7⇡/8)](⇡/4)

= [sin(⇡/8) + sin(3⇡/8) + sin(5⇡/8)
+ sin(7⇡/8)](⇡/4)

= 2.05234.

0

x

32.52

0.8

1.510 0.5

0.4

0.2

1

0.6

(b) Evaluation points:
⇡/16, 3⇡/16, 5⇡/16, 7⇡/16, 9⇡/16,

11⇡/16, 13⇡/16, 15⇡/16.
Notice that �x = ⇡/8.
A

4

= [f(⇡/16) + f(3⇡/16) + f(5⇡/16)
+ f(7⇡/16)+ f(9⇡/16)+ f(11⇡/16)
+ f(13⇡/16) + f(15⇡/16)](⇡/8)

= [sin(⇡/16) + sin(3⇡/16) + sin(5⇡/16)
+ sin(7⇡/16) + sin(9⇡/16)
+ sin(11⇡/16) + sin(13⇡/16)
+ sin(15⇡/16)](⇡/8)

= 2.0129.

0.8

0.5 2.5
0

3

0.4

0.6

1

1.5

0.2

x

210

4. (a) Evaluation points:
�0.75, �0.25, 0.25, 0.75.
Notice that �x = 0.5.
A

4

= [f(�0.75) + f(�0.25) + f(0.25)
+ f(0.75)](0.5)

= [4� (�0.75)2 + 4� (�0.25)2 + 4
� (0.25)2 + 4� (0.75)2](0.5)

= 7.375.

x

0.50-0.5

3

1-1

1

4

0

2

(b) Evaluation points:
�2.75, �2.25, �1.75, �1.25.
Notice that �x = 0.5.
A

4

= [f(�2.75) + f(�2.25) + f(�1.75)
+ f(�1.25)](0.5)

= [4� (�2.75)2 + 4� (�2.25)2 + 4
� (�1.75)2 + 4� (�1.25)2](0.5)

= �0.625.
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-6

-3 -2.5 -2

-4

-1.5
x

0

-2

2

-1

5. (a) There are 16 rectangles and the evalua-
tion points are given by c

i

= i�x where i

is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

16

15X

i=0

"✓
i

16

◆
2

+ 1

#
⇡ 1.3027

(b) There are 16 rectangles and the evalua-

tion points are given by c

i

= i�x +
�x

2
where i is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

16

15X

i=0

"✓
i

16
+

1

32

◆
2

+ 1

#

⇡ 1.3330

(c) There are 16 rectangles and the evalua-
tion points are given by c

i

= i�x + �x

where i is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

16

15X

i=0

"✓
i

16
+

1

16

◆
2

+ 1

#

⇡ 1.3652

6. (a) There are 16 rectangles and the evalua-
tion points are given by c

i

= i�x where i

is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

8

15X

i=0

"✓
i

8

◆
2

+ 1

#
⇡ 4.4219

(b) There are 16 rectangles and the evalua-

tion points are given by c

i

= i�x +
�x

2
where i is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

8

15X

i=0

"✓
i

8
+

1

16

◆
2

+ 1

#
⇡ 4.6640

(c) There are 16 rectangles and the evalua-
tion points are given by c

i

= i�x + �x

where i is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

8

15X

i=0

"✓
i

8
+

1

8

◆
2

+ 1

#
⇡ 4.9219

7. (a) There are 16 rectangles and the evalua-
tion points are the left endpoints which
are given by
c

i

= 1 + i�x where i is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
3

16

15X

i=0

r
1 +

3i

16
+ 2 ⇡ 6.2663

(b) There are 16 rectangles and the evalua-
tion points are the midpoints which are
given by

c

i

= 1 + i�x +
�x

2
where i is from 0 to

15.

A

16

= �x

15X

i=0

f(c
i

)

=
3

16

15X

i=0

r
1 +

3i

16
+

3

32
+ 2

⇡ 6.3340

(c) There are 16 rectangles and the evalua-
tion points are the right endpoints which
are given by
c

i

= 1 + i�x where i is from 1 to 16.

A

16

= �x

16X

i=1

f(c
i

)

=
3

16

16X

i=1

r
1 +

3i

16
+ 2 ⇡ 6.4009

8. (a) There are 16 rectangles and the evalua-
tion points are the left endpoints which
are given by
c

i

= �1 + i�x��x

where i is from 1 to 16.

A

16

= �x

16X

i=1

f(c
i

)
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=
1

8

16X

i=1

e

�2(�1+

i

8�
1
8 ) ⇡ 4.0991

(b) There are 16 rectangles and the evalua-
tion points are the midpoints which are
given by

c

i

= �1 + i�x� �x

2
where i is from 1 to 16.

A

16

= �x

16X

i=1

f(c
i

)

=
1

8

16X

i=1

e

�2(�1+

i

8�
1
16 ) ⇡ 3.6174

(c) There are 16 rectangles and the evalua-
tion points are the right endpoints which
are given by
c

i

= �1 + i�x where i is from 1 to 16.

A

16

= �x

16X

i=1

f(c
i

)

=
1

8

16X

i=1

e

�2(�1+

i

8 ) ⇡ 3.1924

9. (a) There are 50 rectangles and the evalua-
tion points are given by c

i

= i�x where i

is from 0 to 49.

A

50

= �x

50X

i=0

f(c
i

)

=
⇡

100

50X

i=0

cos

✓
⇡i

100

◆
⇡ 1.0156

(b) There are 50 rectangles and the evalua-

tion points are given by c

i

=
�x

2
+ i�x

where i is from 0 to 49.

A

50

= �x

50X

i=0

f(c
i

)

=
⇡

100

50X

i=0

cos

✓
⇡

200
+

⇡i

100

◆

⇡ 1.00004

(c) There are 50 rectangles and the evalua-
tion points are given by c

i

= �x + i�x

where i is from 0 to 49.

A

50

= �x

50X

i=0

f(c
i

)

=
⇡

100

50X

i=0

cos

✓
⇡

100
+

⇡i

100

◆

⇡ 0.9842

10. (a) There are 100 rectangles and the evalu-
ation points are left endpoints which are

given by c

i

= �1 + i�x � �x where i is
from 1 to 100.

A

100

= �x

100X

i=1

f(c
i

)

=
2

100

100X

i=1

"✓
�1 +

2i

100
� 2

100

◆
3

� 1

#

⇡ �2.02

(b) There are 100 rectangles and the evalua-
tion points are midpoints which are given

by c

i

= �1+ i�x� �x

2
where i is from 1

to 100.

A

100

= �x

100X

i=1

f(c
i

)

=
2

100

100X

i=1

"✓
�1 +

2i

100
� 1

100

◆
3

� 1

#

= �2

(c) There are 100 rectangles and the evalua-
tion points are right endpoints which are
given by c

i

= �1 + i�x where i is from 1
to 100.

A

100

= �x

100X

i=1

f(c
i

)

=
2

100

100X

i=1

"✓
�1 +

2i

100

◆
3

� 1

#
⇡ �1.98

11. (a) �x =
1

n

. We will use right endpoints as

evaluation points, x
i

=
i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
1

n

nX

i=1

"✓
i

n

◆
2

+ 1

#
=

1

n

3

nX

i=1

i

2 + 1

=
1

n

3

✓
n(n+ 1)(2n+ 1)

6

◆
+ 1

=
8n2 + 3n+ 1

6n2

Now to compute the exact area, we take
the limit as n ! 1:

A = lim
n!1

A

n

= lim
n!1

8n2 + 3n+ 1

6n2

= lim
n!1

8

6
+

3

6n
+

1

6n2

=
4

3

(b) �x =
2

n

. We will use right endpoints as

evaluation points, x
i

=
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x
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=
2

n

nX

i=1

"✓
2i

n

◆
2

+ 1

#

=
2

n

nX

i=1

"✓
2i

n

◆
2

+ 1

#

=
2

n

nX

i=1

✓
2i

n

◆
2

+
2

n

nX

i=1

1

=
8

n

3

nX

i=1

i

2 + 2

=
8

n

3


n (n+ 1) (2n+ 1)

6

�
+ 2

=
8

n

2


(n+ 1) (2n+ 1)

6

�
+ 2

=
4

3n2

�
2n2 + 3n+ 1

�
+ 2

=
14n2 + 12n+ 4

3n2

Now, to compute the exact area, we take
the limit as n ! 1 :
A = lim

n!1
A

n

= lim
n!1

14n2 + 12n+ 4

3n2

=
14

3

(c) �x =
2

n

We will use right endpoints as

evaluation points,x
i

= 1 +
2i

n

.

A

n

=
nX

i=1

f (x
i

)�x

=
nX

i=1

�
x

i

2 + 1
�✓ 2

n

◆

=
2

n

nX

i=1

 ✓
1 +

2i

n

◆
2

+ 1

!

=
2

n

nX

i=1

✓
2 +

4i

n

+
4i2

n

2

◆

= 4 +
8

n

2

nX

i=1

i+
8

n

3

nX

i=1

i

2

= 4 +
8

n

2

✓
n (n+ 1)

2

◆

+
8

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

= 4 +

✓
4n+ 4

n

◆
+


8n2 + 12n+ 4

3n2

�

Now, to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

✓
4 +

4n+ 4

n

+
8n2 + 12n+ 4

3n2

◆

= 4 + 4 +
8

3
=

32

3

12. (a) �x =
1

n

. We will use right endpoints as

evaluation points, x
i

=
i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
1

n

nX

i=1

"✓
i

n

◆
2

+ 3

✓
i

n

◆#

=
1

n

3

nX

i=1

i

2 +
3

n

2

nX

i=1

i

=
1

n

3

✓
n(n+ 1)(2n+ 1)

6

◆

+
3

n

2

✓
n(n+ 1)

2

◆

=
11n2 + 12n+ 1

6n2

Now to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

11n2 + 12n+ 1

6n2

= lim
n!1

11

6
+

12

6n
+

1

6n2

=
11

6

(b) �x =
2

n

. We will use right endpoints as

evalution points, x
i

=
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
2

n

nX

i=1

"✓
2i

n

◆
2

+ 3

✓
2i

n

◆#

=
8

n

3

nX

i=1

i

2 +
12

n

2

nX

i=1

i

=
8

n

3


n (n+ 1) (2n+ 1)

6

�

+
12

n

2


n (n+ 1)

2

�

=

"�
8n2 + 12n+ 4

�

3n2

#
+


6n+ 6

n

�

Now, to compute the exact area, we take
the limit as n ! 1 : A = lim

n!1
A

n

= lim
n!1

 �
8n2 + 12n+ 4

�

3n2

+
6n+ 6

n

!

=
8

3
+ 6 =

26

3
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(c) �x =
2

n

. We will use right endpoints as

evalution points, x
i

= 1 +
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
nX

i=1

⇥
x

i

2 + 3x
i

⇤ 2
n

=
2

n

nX

i=1

"✓
1 +

2i

n

◆
2

+ 3

✓
1 +

2i

n

◆#

=
2

n

nX

i=1

✓
4 +

10i

n

+
4i2

n

2

◆

= 8 +
20

n

2

nX

i=1

i+
8

n

3

nX

i=1

i

2

= 8 +
20

n

2

✓
n (n+ 1)

2

◆

+
8

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

= 8+
10

n

(n+ 1)+
4

3n2

�
2n2 + 3n+ 1

�

Now, to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

8 +
10

n

(n+ 1) +
4

3n2

�
2n2 + 3n+ 1

��

= 8 + 10 +
8

3
=

62

3

13. (a) �x =
1

n

. We will use right endpoints as

evalution points, x
i

=
i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
1

n

nX

i=1

"
2

✓
i

n

◆
2

+ 1

#

=
2

n

3

nX

i=1

i

2 + 1

=
2

n

3


n (n+ 1) (2n+ 1)

6

�
+ 1

=

�
5n2 + n+ 1

�

3n2

Now, to compute the exact area, we take
the limit as n ! 1 :
A = lim

n!1
A

n

= lim
n!1

"�
5n2 + n+ 1

�

3n2

#
=

5

3
.

(b) �x =
2

n

. We will use right endpoints as

evalution points, x
i

= �1 +
2i

n

.

A

n

=
nX

i=1

f (x
i

)�x

=
nX

i=1

�
2x

i

2 + 1
�✓ 2

n

◆

=
2

n

nX

i=1

 
2

✓
�1 +

2i

n

◆
2

+ 1

!

=
2

n

nX

i=1

✓
3� 8i

n

+
8i2

n

2

◆

= 6� 16

n

2

nX

i=1

i+
16

n

3

nX

i=1

i

2

= 6� 16

n

2

✓
n (n+ 1)

2

◆

+
16

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

= 6�
✓
8n+ 8

n

◆
+

✓
16n2 + 24n+ 8

3n2

◆

Now, to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

6�
✓
8n+ 8

n

◆
+

✓
16n2 + 24n+ 8

3n2

◆�

= 6� 8 +
16

3
=

10

3

(c) �x =
2

n

. We will use right endpoints as

evaluation points, x
i

= 1 +
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
2

n

nX

i=1

2

✓
1 +

2i

n

◆
2

+ 1

=
2

n

nX

i=1

✓
8i2

n

2

+
8i

n

+ 3

◆

=
16

n

3

nX

i=1

i

2 +
16

n

2

nX

i=1

i+ 6

=
16

n

3

✓
n(n+ 1)(2n+ 1)

6

◆

+
16

n

2

✓
n(n+ 1)

2

◆
+ 6

=
16n(n+ 1)(2n+ 1)

6n3



4.3. AREA 257

+
16n(n+ 1)

2n2

+ 6

Now to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

✓
16n(n+ 1)(2n+ 1)

6n3

+
16n(n+ 1)

2n2

+ 6

◆

= lim
n!1

32

6
+

16

2
+ 6 =

58

3

14. (a) �x =
1

n

. We will use right endpoints as

evalution points, x
i

=
i

n

.

A

n

=
nX

i=1

f(x
i

)�x =
nX

i=1

�
4x

i

2 � x

i

� 1
n

=
1

n

nX

i=1

"
4

✓
i

n

◆
2

�
✓
i

n

◆#

=
1

n

nX

i=1

✓
4i2

n

2

� i

n

◆�

=
4

n

nX

i=1

i

2

n

2

� 1

n

nX

i=1

i

n

=
4

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

� 1

n

2

✓
n (n+ 1)

2

◆

=
2

3n2

�
2n2 + 3n+ 1

�
� 1

2n
(n+ 1)

=
5

6
+

3

2n
+

2

3n2

Now, to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

✓
5

6
+

3

2n
+

2

3n2

◆

=
5

6

(b) �x =
2

n

. We will use right endpoints as

evalution points, x
i

= �1 +
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x =
nX

i=1

⇥
4x

i

2 � x

i

⇤ 2
n

=
2

n

nX

i=1

"
4

✓
�1 +

2i

n

◆
2

�
✓
�1 +

2i

n

◆#

=
2

n

nX

i=1

✓
5� 18i

n

+
16i2

n

2

◆

=
10

n

nX

i=1

1� 36

n

2

nX

i=1

i+
32

n

3

nX

i=1

i

2

= 10� 36

n

2

✓
n (n+ 1)

2

◆

+
32

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

= 10� 18

n

(n+ 1) +
16

3n2

�
2n2 + 3n+ 1

�

=
8

3
� 2

n

+
16

3n2

Now, to compute the exact area, we take
the limit as n ! 1 :
A = lim

n!1
A

n

= lim
n!1

✓
8

3
� 2

n

+
16

3n2

◆

=
8

3

(c) �x =
2

n

. We will use right endpoints as

evaluation points x
i

= 1 +
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x =
nX

i=1

⇥
4x

i

2 � x

i

⇤ 2
n

=
2

n

nX

i=1

"
4

✓
1 +

2i

n

◆
2

�
✓
1 +

2i

n

◆#

=
2

n

nX

i=1

✓
3 +

14i

n

+
16i2

n

2

◆

=
6

n

nX

i=1

1 +
28

n

2

nX

i=1

i+
32

n

3

nX

i=1

i

2

= 6 +
28

n

2

✓
n (n+ 1)

2

◆

+
32

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

= 6+
14

n

(n+ 1)+
16

3n2

�
2n2 + 3n+ 1

�

=
92

3
+

30

n

+
16

3n2

Now, to compute the exact area, we take
the limit as n ! 1:

A = lim
n!1

A

n

= lim
n!1

✓
92

3
+

30

n

+
16

3n2

◆

=
92

3
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15.
n Left Midpoint Right

Endpoint Endpoint

10 10.56 10.56 10.56
50 10.662 10.669 10.662
100 10.6656 10.6672 10.6656
500 10.6666 10.6667 10.6666
1000 10.6667 10.6667 10.6667
5000 10.6667 10.6667 10.6667

16.
n Left Midpoint Right

Endpoint Endpoint

10 0.91940 1.00103 1.07648
50 0.98421 1.00004 1.01563
100 0.99213 1.00001 1.00783
500 0.99843 1.00000 1.00157
1000 0.99921 1.00000 1.00079
5000 0.99984 1.00000 1.00016

17.
n Left Midpoint Right

Endpoint Endpoint

10 15.48000 17.96000 20.68000
50 17.4832 17.9984 18.5232
100 17.7408 17.9996 18.2608
500 17.9480 17.9999 18.0520
1000 17.9740 17.9999 18.0260
5000 17.9948 17.9999 18.0052

18.
n Left Midpoint Right

Endpoint Endpoint

10 �2.20000 �2 �1.80000
50 �2.04000 �2 �1.96000
100 �2.02000 �2 �1.98000
500 �2.00400 �2 �1.99600
1000 �2.00200 �2 �1.99800
5000 �2.00040 �2 �1.99960

19. Let L, M , and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.
Then: L < M < A < R.

x

432

200

600

3.5

1000

2.5

800

400

0

20. Let L, M , and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.
Then: L < A < M < R.

32.5

50

21.5
x

1

250

200

150

100

0

21. Let L, M , and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.
Then: R < A < M < L.

0.02

x

0.12

2
0

0.1

0.08

42.5

0.06

0.04

3 3.5

22. Let L, M , and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.
Then: R < A < M < L.

32.5

50

21.5
x

1

250

200

150

100

0

23. There are many possible answers here. One
possibility is to use x = 1/6 on [0, 0.5] and
x =

p
23/6 on [0.5, 1].

24. There are many possible answers here. One
possibility is to use x = 1/4 on [0, 0.5] and
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x = 25/36 on [0.5, 1].

25. (a) We subdivide the interval [a, b] into n

equal subintervals. If you are located at
a + (b � a)/n (the first right endpoint),
then each step of distance�x takes you to
a new right endpoint. To arrive at the i-
th right endpoint, you have to take (i�1)
steps to the right of distance �x. There-
fore,
c

i

= a+ (b� a)/n+ (i� 1)�x = a+ i�x.

(b) We subdivide the interval [a, b] into n

equal subintervals. The first evaluation
point is a + �x/2. From this evaluation
point, each step of distance �x takes you
to a new evaluation point. To arrive at
the i-th evaluation point, you have to take
(i � 1) steps to the right of distance �x.
Therefore,
c

i

= a+�x/2 + (i� 1)�x

= a+ (i� 1/2)�x, for i = 1, . . . , n.

26. (a) We subdivide the interval [a, b] into n

equal subintervals. If you are located at a
(the first left endpoint), then each step of
distance �x takes you to a new left end-
point. To arrive at the i-th left endpoint,
you have to take (i� 1) steps to the right
of distance �x. Therefore,
c

i

= a+ (i� 1)�x.

(b) We subdivide the interval [a, b] into n

equal subintervals. The first evaluation
point is a + �x/3. From this evaluation
point, each step of distance �x takes you
to a new evaluation point. To arrive at
the i-th evaluation point, you have to take
(i � 1) steps to the right of distance �x.
Therefore,
c

i

= a+�x/3 + (i� 1)�x

= a+ (i� 2/3)�x, for i = 1, . . . , n.

27. Consider interval [2, 4] , then �x =
2

n

.

Use right endpoints as evaluation points,

x

i

=

✓
2 +

2i

n

◆
.

A = lim
n!1

nX

i=1

" r
2 +

2i

n

!
2

n

#

= lim
n!1

nX

i=1

"
p
2

 r
1 +

i

n

!
2

n

#

Hence,

A

2

= lim
n!1

nX

i=1

"
p
2

 r
1 +

i

n

!
2

n

#
.

28. Consider interval[0, 2] , then �x =
2

n

.

Use mid points as evaluation points, x

i

=⇣
2(i�1)

n

+ 2i

n

⌘

2
.

A = lim
n!1

nX

i=1

2

4

0

@

s
2(i�1)

n

+ 2i

n

2

1

A 2

n

3

5

= lim
n!1

nX

i=1

" r
2i� 2 + 2i

2n

!
2

n

#

Hence,

A = lim
n!1

nX

i=1


1p
n

⇣p
2i� 1

⌘ 2

n

�
.

Assume
i = k + 1.

A =
n�1X

k=0


1p
n

⇣p
2 (k + 1)� 1

⌘ 2

n

�

=
nX

k=1


1p
n

⇣p
2k + 1

⌘ 2

n

�

hence,

A

1

=
nX

k=1


1p
n

⇣p
2k + 1

⌘ 2

n

�
.

29. U

4

=
2

4

4X

i=1

✓
i

2

◆
2

=
1

8

4X

i=1

i

2 =
1

8

⇥
12 + 22 + 32 + 42

⇤

=
30

8
= 3.75 L

4

=
2

4

4X

i=1

✓
i� 1

2

◆
2

=
1

8

4X

i=1

i

2 =
1

8

⇥
02 + 12 + 22 + 32

⇤

=
14

8
= 1.75

30. The function f(x) = x

2 is symmetric on the
two intervals [�2, 0] and [0, 2], so the upper
sum U

8

is just double the value of U
4

as cal-
culated in Exercise 35, and the same is for L

8

.

The answers are
U

8

= 2 · 3.75 = 7.5, L
8

= 2 · 1.75 = 3.5.

31. (a) U

n

=
2

n

nX

i=1

✓
2i

n

◆
2

=

✓
2

n

◆
3

nX

i=1

i

2

=

✓
2

n

◆
3

n(n+ 1)(2n+ 1)

6
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=
4

3

n(n+ 1)(2n+ 1)

n

3

=
4

3

✓
1 +

1

n

◆✓
2 +

1

n

◆

lim
n!1

U

n

=
4

3
(2) =

8

3

(b) L

n

=
2

n

nX

i=1

✓
2(i� 1)

n

◆
2

=

✓
2

n

◆
3

nX

i=1

(i� 1)2

=

✓
2

n

◆
3

n�1X

i=1

i

2

=

✓
2

n

◆
3 (n� 1)(n)(2n� 1)

6

=
4

3

(n� 1)(n)(2n� 1)

n

3

=
4

3

✓
1� 1

n

◆✓
2� 1

n

◆

lim
n!1

L

n

=
4

3
(2) =

8

3

32. (a) U

n

=
2

n

nX

i=1

"✓
0 +

2

n

i

◆
3

+ 1

#

=
2

n

nX

i=1

"✓
2i

n

◆
3

+ 1

#

=

✓
2

n

◆
4

nX

i=1

i

3 +
nX

i=1

1

=
24

n

4


n

2(n+ 1)2

4
+

2

n

(n)

�

=
4(n+ 1)2

n

2

+ 2

=
4(n2 + 2n+ 1)

n

2

+ 2

= 6 +
8

n

+
4

n

2

lim
n!1

U

n

= 6

(b) L

n

=
2

n

n�1X

i=0

"✓
0 +

2

n

i

◆
3

+ 1

#

=
2

n

n�1X

i=0

"✓
2i

n

◆
3

+ 1

#

=

✓
2

n

◆
4

n�1X

i=0

i

3 +
nX

i=1

1

=
24

n

4


(n� 1)2n2

4
+

2

n

(n)

�

=
4(n� 1)2

n

2

+ 2

=
4(n2 � 2n+ 1)

n

2

+ 2

= 6� 8

n

+
4

n

2

lim
n!1

L

n

= 6

33. Here, f (x) = a

2 � x

2 and interval is [�a, a].

Hence �x =
2a

n

.

Use right endpoints as evaluation points,

x

i

=

✓
�a+

2ai

n

◆
.

A

n

=
nX

i=1

f(x
i

)�x

=
nX

i=1

�
a

2 � x

i

2

�
�x

=
nX

i=1

" 
a

2 �
✓
�a+

2ia

n

◆
2

!
2a

n

#

=
nX

i=1

✓
4ia2

n

� 4i2a2

n

2

◆
2a

n

�

=
8a3

n

2

nX

i=1

i�8a3

n

3

nX

i=1

i

2

=
8a3

n

2

✓
n (n+ 1)

2

◆

� 8a3

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

=
4a3

n

(n+ 1)� 4a3

3n3

�
2n2 + 3n+ 1

�

Now, to compute the exact area, we take the
limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1


4a3

n

(n+ 1)� 4a3

3n3

�
2n2 + 3n+ 1

��

=

✓
4� 8

3

◆
a

3 =
4

3
a

3

=
2

3
(2a)

�
a

2

�

34. Here,f (x) = ax

2and interval is [0, b].

Hence �x =
b

n

.

Use right endpoints as evaluation points, x
i

=✓
bi

n

◆
.

A

n

=
nX

i=1

f(x
i

)�x
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=
nX

i=1

�
ax

i

2

�
�x

=
nX

i=1

"
a

✓
bi

n

◆
2

b

n

#

=
ab

3

n

3

nX

i=1

i

2

=
ab

3

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

=
ab

3

6n2

�
2n2 + 3n+ 1

�

Now, to compute the exact area, we take the
limit as n ! 1 :
A = lim

n!1
A

n

= lim
n!1


ab

3

6n2

�
2n2 + 3n+ 1

��

=
2ab3

6
=

ab

3

3
=

1

3
b

�
ab

2

�

35. Using left hand endpoints:
L

8

= [f(0.0)+f(0.1)+f(0.2)+f(0.3)+f(0.4)+
f(0.5) + f(0.6) + f(0.7)](0.1)
= (2.0 + 2.4 + 2.6 + 2.7 + 2.6 + 2.4 + 2.0 +
1.4)(0.1) = 1.81
Right endpoints:
R

8

= [f(0.1)+f(0.2)+f(0.3)+f(0.4)+f(0.5)+
f(0.6) + f(0.7) + f(0.8)](0.2)
= (2.4 + 2.6 + 2.7 + 2.6 + 2.4 + 2.0 + 1.4 +
0.6)(0.1) = 1.67

36. Using left hand endpoints:
L

8

= [f().0)+f(0.2)+f(0.4)+f(0.6)+f(0.8)+
f(1.0) + f(1.2) + f(1.4)](0.2)
= (2.0 + 2.2 + 1.6 + 1.4 + 1.6 + 2.0 + 2.2 +
2.4)(0.2) = 3.08
Right endpoints:
R

8

= [f(0.2)+f(0.4)+f(0.6)+f(0.8)+f(1.0)+
f(1.2) + f(1.4) + f(1.6)](0.2)
= (2.2 + 1.6 + 1.4 + 1.6 + 2.0 + 2.2 + 2.4 +
2.0)(0.2) = 3.08

37. Using left hand endpoints:
L

8

= [f(1.0)+f(1.1)+f(1.2)+f(1.3)+f(1.4)+
f(1.5) + f(1.6) + f(1.7)](0.1)
= (1.8 + 1.4 + 1.1 + 0.7 + 1.2 + 1.4 + 1.82 +
2.4)(0.1) = 1.182
Right endpoints:
R

8

= [f(1.1)+f(1.2)+f(1.3)+f(1.4)+f(1.5)+
f(1.6) + f(1.7) + f(1.8)](0.1)
= (1.4 + 1.1 + 0.7 + 1.2 + 1.4 + 1.82 + 2.4 +
2.6)(0.1) = 1.262

38. Using left hand endpoints:
L

8

= [f(1.0)+f(1.2)+f(1.4)+f(1.6)+f(1.8)+
f(2.0) + f(2.2) + f(2.4)](0.2)

= (0.0 + 0.4 + 0.6 + 0.8 + 1.2 + 1.4 + 1.2 +
1.4)(0.2) = 1.40
Right endpoints:
R

8

= [f(1.2)+f(1.4)+f(1.6)+f(1.8)+f(2.0)+
f(2.2) + f(2.4) + f(2.6)](0.2)
= (0.4 + 0.6 + 0.8 + 1.2 + 1.4 + 1.2 + 1.4 +
1.0)(0.2) = 1.60

39. A ⇡ (0.2 � 0.1)(0.002) + (0.3 � 0.2)(0.004) +
(0.4 � 0.3)(0.008) + (0.5 � 0.4)(0.014) +
(0.6 � 0.5)(0.026) + (0.7 � 0.6)(0.048) +
(0.8 � 0.7)(0.085) + (0.9 � 0.8)(0.144) +
(0.95 � 0.9)(0.265) + (0.98 � 0.95)(0.398) +
(0.99� 0.98)(0.568) + (1� 0.99)(0.736) + 1/2 ·
[(0.1� 0)(0.002)
+(0.2�0.1)(0.004�0.002)+(0.3�0.2)(0.008�
0.004) + (0.4 � 0.3)(0.014 � 0.008) + (0.5 �
0.4)(0.026 � 0.014) + (0.6 � 0.5)(0.048 �
0.026) + (0.7 � 0.6)(0.085 � 0.048) + (0.8 �
0.7)(0.144 � 0.085) + (0.9 � 0.8)(0.265 �
0.144) + (0.95 � 0.9)(0.398 � 0.265) + (0.98 �
0.95)(0.568 � 0.398) + (0.99 � 0.98)(0.736 �
0.568) (1� 0.99)(1� 0.736)]
⇡ 0.092615 The Lorentz curve looks like:

0.6

10.80.60.4

1

0.2

0.8

0.4

0.2

0

40. Obviously G = A

1

/A

2

is greater or equal to
0. From the above figure we see that the
Lorentz curve is below the diagonal line y = x

on the interval [0, 1], hence the area A

1


the area A

2

. Furthermore, A
2

= the area of
the triangle formed by the points (0, 0), (1, 0)
and (1, 1), hence equal to 1/2. Now G =
A

1

/A

2

= 2A
1

. Using the date in Exercise 33,
G ⇡ 2 · 0.092615 = 0.185230.

4.4 The Definite Integral

1. We know thatZ
3

0

�
x

3 + x

�
dx ⇡

nX

i=1

�
c

3

i

+ c

i

�
�x

Where c

i

=
x

i

+ x

i�1

2
, x

i

=
3i

n

, n = 6.
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Here c

i

=
3i

6

+ 3(i�1)

6

2
=

(2i� 1)

4
.

nX

i=1

�
c

3

i

+ c

i

�
.

3

n

=
6X

i=1

"
(2i� 1)3

64
+

(2i� 1)

4

#
.

1

2

=

✓
1

64
+

1

4
+

27

64
+

3

4
+

125

64
+

5

4
+

343

64

+
7

4
+

729

64
+

9

4
+

1331

64
+

11

4

◆
.

1

2

)
Z

3

0

�
x

3 + x

�
dx ⇡ 24.47

2. We know thatZ
3

0

p
x

2 + 1dx ⇡
nX

i=1

q
c

2

i

+ 1�x

Where c

i

=
x

i

+ x

i�1

2
, x

i

=
3i

n

, n = 6.

Here c

i

=
3i

6

+ 3(i�1)

6

2
=

(2i� 1)

4
.

nX

i=1

q
c

2

i

+ 1

✓
3

n

◆

=
6X

i=1

0

@
s✓

2i� 1

4

◆
2

+ 1

1

A
.

1

2

=

 p
17

4
+

5

4
+

p
41

4
+

p
65

4

+

p
97

4
+

p
137

4

!
.

1

2

)
Z

3

0

p
x

2 + 1dx ⇡ 5.64

3. We know thatZ
⇡

0

sinx2

dx ⇡
nX

i=1

�
sin c2

i

�
�x.

Where c

i

=
x

i

+ x

i�1

2
, x

i

=
i⇡

n

, n = 6.

Herec
i

=
⇡i

6

+ ⇡(i�1)

6

2
=

(2i� 1)⇡

12
.

nX

i=1

�
sin c2

i

� ⇣
⇡

n

⌘

=
6X

i=1

"
sin

✓
(2i� 1)⇡

12

◆
2

#
.

⇣
⇡

6

⌘

=

"
sin
⇣
⇡

12

⌘
2

+ sin

✓
3⇡

12

◆
2

+ sin

✓
5⇡

12

◆
2

+sin

✓
7⇡

12

◆
2

+ sin

✓
9⇡

12

◆
2

+ sin

✓
11⇡

12

◆
2

#
.

⇡

6

)
Z

⇡

0

sinx2

dx ⇡ 0.8685

4. We know thatZ
2

�2

e

�x

2

dx ⇡
nX

i=1

e

�c

2
i�x.

Where c

i

=
x

i

+ x

i�1

2
, x

i

= �2 +
4i

n

, n = 6.

Here,

c

i

=

�
�2 + 4i

6

�
+
h
�2 + 4(i�1)

6

i

2
=

2i� 7

3
.

nX

i=1

e

�c

2
i

✓
4

n

◆
=

6X

i=1

e

�c

2
i

✓
4

6

◆

=
h
e

�25/9 + e

�1 + e

�1/9

+e

�1/9 + e

�1 + e

�25/9

i
.

2

3

=
h
e

�25/9 + e

�1 + e

�1/9

i
.

4

3

)
Z

2

�2

e

�x

2

dx ⇡ 1.7665

5. Notice that the graph of y = x

2 is above the
x-axis. So,

R
3

1

x

2

dx is the area of the region
bounded by y = x

2 and the x-axis, between
x = 1 and x = 3.

6. Notice that the graph of y = e

x is above the
x-axis. So,

R
1

0

e

x

dx is the area of the region
bounded by y = e

x, and the x-axis, between
x = 0 and x = 1.

7. Notice that the graph of y = x

2 � 2 is below
the x�axis for |x| 

p
2 above the, x�axis for

|x| �
p
2.

Also,Z
2

0

�
x

2 � 2
�
dx

=

Z p
2

0

�
x

2 � 2
�
dx+

Z
2

p
2

�
x

2 � 2
�
dx.

So,
R
2

0

�
x

2 � 2
�
dx is the additon of the ar-

eas of the regions bounded by y = x

2 � 2and
the x�axis, between x = 0 and x =

p
2 (which

is below the x�axis) and between x =
p
2 and

x = 2 (which is above the x�axis)

8. Notice that the graph of y = x

3 � 3x2 + 2x
is below the x-axis, for 1  x  2 and x  0
and above the x-axis, for all other values of x.
Also,Z

2

0

�
x

3 � 3x2 + 2x
�
dx

=

Z
1

0

�
x

3 � 3x2 + 2x
�
dx

+

Z
2

1

�
x

3 � 3x2 + 2x
�
dx
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So,

Z
2

0

�
x

3 � 3x2 + 2x
�
dx is the additon of

the areas of the regions bounded by
y = x

3 � 3x2 + 2x and the x-axis between
x = 0 and x = 1 (which is above the x-axis)
and between x = 1 and x = 2 (which is below
the x-axis).

9. For n rectangles, �x =
1

n

, x
i

= i�x.

R

n

=
nX

i=1

f(x
i

)�x

=
nX

i=1

2x
i

�x =
1

n

nX

i=1

2

✓
i

n

◆
=

2

n

2

nX

i=1

i

=
2

n

2

✓
n(n+ 1)

2

◆
=

(n+ 1)

n

To compute the value of the integral, we take
the limit as n ! 1,Z

1

0

2xdx = lim
n!1

R

n

= lim
n!1

(n+ 1)

n

= 1

10. For n rectangles, �x =
1

n

, x

i

= 1 + i�x.

R

n

=
nX

i=1

f(x
i

) �x

=
nX

i=1

2x
i

�x =
1

n

nX

i=1

2

✓
1 +

i

n

◆

=
2

n

nX

i=1

1 +
2

n

2

nX

i=1

i

=
2

n

(n) +
2

n

2

✓
n(n+ 1)

2

◆

= 2 +
(n+ 1)

n

To compute the value of the integral, we take
the limit as n ! 1,Z

2

1

2xdx = lim
n!1

R

n

= lim
n!1

2 +
(n+ 1)

n

= 2 + 1 = 3

11. For n rectangles,

�x =
2

n

, x

i

= i�x =
2i

n

.

R

n

=
nX

i=1

f(x
i

)�x

=
nX

i=1

(x2

i

)�x =
2

n

nX

i=1

✓
2i

n

◆
2

=
2

n

nX

i=1

4i2

n

2

=
8

n

3

nX

i=1

i

2

=
8

n

3

✓
n(n+ 1)(2n+ 1)

6

◆

=
4(n+ 1)(2n+ 1)

3n2

To compute the value of the integral, we take
the limit as n ! 1,Z

2

0

x

2

dx = lim
n!1

R

n

= lim
n!1

4(n+ 1)(2n+ 1)

3n2

=
8

3

12. For n rectangles,

�x =
3

n

, x

i

= i�x =
3i

n

.

R

n

=
nX

i=1

f(x
i

)�x

=
nX
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i

+ 1)�x =
3

n

nX

i=1

2

✓
3i

n

◆
2

+ 1

=
3

n

nX

i=1

18i2

n

2

+ 1

=
54

n

3

nX

i=1

i

2 +
3

n

nX

i=1

1

=
54

n

3

✓
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◆
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9(n+ 1)(2n+ 1)

n

2
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To compute the value of the integral, we take
the limit as n ! 1,Z

3

0

(x2 + 1)dx = lim
n!1

R

n

= lim
n!1

9(n+ 1)(2n+ 1)

n

2

+ 3

= 9 + 3 = 12

13. For n rectangles, �x =
2

n

,

x

i

= 1 + i�x = 1 +
2i

n

R

n

=
nX

i=1

f(x
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To compute the value of the integral, we take
the limit as n ! 1,Z

3

1

(x2 � 3)dx = lim
n!1

R

n

=
8

2
+

16

6
� 4 =

8

3

14. For n rectangles,

�x =
4

n

, x

i

= �2 + i�x = �2 +
4i

n

R

n
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nX

i=1

f(x
i

)�x =
nX

i=1

(x2

i
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=
4

n

nX
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✓
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n
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n� 64

n
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✓
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+
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3

✓
n(n+ 1)(2n+ 1)

6

◆

= 12� 32(n+ 1)

n

+
32(n+ 1)(2n+ 1)

3n2

To compute the value of the integral, we take
the limit as n ! 1,Z

2

�2

(x2 � 1)dx = lim
n!1

R

n

= lim
n!1


12� 32(n+ 1)

n

+
32(n+ 1)(2n+ 1)

3n2

�

= 12� 32 +
64

3
=

4

3

15. Notice that the graph of y = 4 � x

2 is above
the x-axis between x = �2 and x = 2:Z

2

�2

(4� x

2)dx

16. Notice that the graph of y = 4x � x

2 is above
the x-axis between x = 0 and x = 4:Z

4

0

(4x� x

2)dx

17. Notice that the graph of y = x

2 � 4 is below
the x-axis between x = �2 and x = 2. Since
we are asked for area and the area in question
is below the x-axis, we have to be a bit careful.

Z
2

�2

�(x2 � 4)dx

18. Notice that the graph of y = x

2 � 4x is below
the x-axis between x = 0 and x = 4. Since we
are asked for area and the area in question is
below the x-axis, we have to be a bit careful.Z

4

0

�(x2 � 4x)dx

19.

Z
⇡

0

sinxdx

20. �
Z

0

�⇡/2

sinxdx+

Z
⇡/4

0

sinxdx

21. The total distance is the total area under the
curve whereas the total displacement is the
signed area under the curve. In this case, from
t = 0 to t = 4, the function is always positive
so the total distance is equal to the total dis-
placement. This means we want to compute

the definite integral

Z
4

0

40(1 � e

�2t)dt. We

compute various right hand sums for di↵erent
values of n:

n R

n

10 146.9489200
20 143.7394984
50 141.5635684

100 140.7957790
500 140.1662293
1000 140.0865751

It looks like these are converging to about 140.
So, the total distance traveled is approximately
140 and the final position is
s(b) ⇡ s(0) + 140 = 0 + 140 = 140.

22. The total distance is the total area under the
curve whereas the total displacement is the
signed area under the curve. In this case, from
t = 0 to t = 4, the function is always posi-
tive so the total distance is equal to the total
displacement. This means we want to com-
pute the definite integral

R
4

0

30e�t/4

dt. We
compute various right hand sums for di↵erent
values of n:

n R

n

10 72.12494524
20 73.97390774
50 75.09845086

100 75.47582684
500 75.77863788
1000 75.81654616



4.4. THE DEFINITE INTEGRAL 265

It looks like these are converging to about 75.8.
So, the total distance traveled is approximately
75.8 and the final position is
s(b) ⇡ s(0) + 75.8 = �1 + 75.8 = 74.8.

23.

Z
4

0

f(x)dx

=

Z
1

0

f(x)dx+

Z
4

1

f(x)dx

=

Z
1

0

2xdx+

Z
4

1

4dx
Z

1

0

2xdx is the area of a triangle with base

1 and height 2 and therefore has area =
1

2

(1)(2) = 1.Z
4

1

4dx is the area of a rectangle with base 3

and height 4 and therefore has area = (3)(4) =
12.
ThereforeZ

4

0

f(x)dx = 1 + 12 = 13

24.

Z
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Z
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0

f(x)dx+

Z
4

2

f(x)dx

=

Z
2

0

2dx+

Z
4

2

3xdx
Z

2

0

2dx is the area of a square with base 2 and

height 2 (it is, after all, a square) and therefore
has area = 4.Z

4

2

3xdx is a trapezoid with height 3 and bases

6 and 12 and therefore has area (using the for-
mula in the front of the text)

area =
1

2
(6 + 12)(2) = 18.

ThereforeZ
4

0

f(x)dx = 4 + 18 = 22

25. f
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28. f
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29. The function f(x) = 3 cosx2 is decreasing on
[⇡/3,⇡/2]. Therefore, on this interval, the
maximum occurs at the left endpoint and is
f(⇡/3) = 3 cos(⇡2

/9). The minimum occurs at
the right endpoint and is f(⇡/2) = 3 cos(⇡2

/4).
Using these to estimate the value of the inte-
gral gives the following inequality:
⇡

6
· (3 cos ⇡

2

4
) 

Z
⇡/2

⇡/3

3 cosx2

dx

 ⇡

6
· (3 cos ⇡

2

9
)

�1.23 
Z

⇡/2

⇡/3

3 cosx2

dx  0.72

30. The function f(x) = e

�x

2

is decreasing on
[0, 1/2]. Therefore, on this interval, the maxi-
mum occurs at the left endpoint and is f(0) =
1. The minimum occurs at the right endpoint
and is f(1/2) = e

�1/4. Using these to estimate
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the value of the integral gives the following in-
equality:
1

2
(e�1/4) 

Z
1/2

0

e

�x

2

dx  1

2
(1)

0.3894 
Z

1/2

0

e

�x

2

dx  0.5

31. The function f(x) =
p
2x2 + 1 is increasing

on [0, 2]. Therefore, on this interval, the maxi-
mum occurs at the right endpoint and is f(2) =
3. The minimum occurs at the left endpoint
and is f(0) = 1. Using these to estimate the
value of the integral gives the following inequal-
ity:

(2)(1) 
Z

2

0

p
2x2 + 1dx  (2)(3)

2 
Z

2

0

p
2x2 + 1dx  6

32. The function f(x) =
3

x

3 + 2
is decreasing

on [�1, 1]. Therefore, on this interval, the
maximum occurs at the left endpoint and is
f(�1) = 3. The minimum occurs at the right
endpoint and is f(1) = 1. Using these to esti-
mate the value of the integral gives the follow-
ing inequality:

(2)(1) 
Z

1

�1

3

x

3 + 2
dx  (2)(3)

2 
Z

1

�1

3

x

3 + 2
dx  6

33. We are looking for a value c, such that

f(c) =
1

2� 0

Z
2

0

3x2

dx

Since

Z
2

0

3x2

dx = 8, we want to find c so that

f(c) = 4 or, 3c2 = 4
Solving this equation using the quadratic for-

mula gives c = ± 2p
3

We are interested in the value that is in the

interval [0, 2], so c =
2p
3
.

34. We are looking for a value c, such that

f(c) =
1

1� (�1)

Z
1

�1

(x2 � 2x)dx

Since

Z
1

�1

(x2 � 2x)dx =
2

3
, we want to find c

so that f(c) =
1

3
or, c2 � 2c =

1

3

Solving this equation using the quadratic for-

mula gives c =
3± 2

p
3

3

We are interested in the value that is in the

interval [�1, 1], so c =
3� 2

p
3

3
.

35. (a)

Z
2

0

f(x)dx+

Z
3

2

f(x)dx =

Z
3

0

f(x)dx

(b)

Z
3

0

f(x)dx�
Z

3

2

f(x)dx =

Z
2

0

f(x)dx

36. (a)

Z
2

0

f(x)dx+

Z
1

2

f(x)dx =

Z
1

0

f(x)dx

(b)

Z
2

�1

f(x)dx+

Z
3

2

f(x)dx =

Z
3

�1

f(x)dx

37. (a)

Z
3

1

(f (x) + g (x)) dx

=

Z
3

1

f (x) dx+

Z
3

1

g (x) dx

= 3 + (�2) = 1

(b)

Z
3

1

(2f (x)� g (x)) dx

= 2

Z
3

1

f (x) dx�
Z

3

1

g (x) dx

= 2 (3)� (�2) = 8

38. (a)

Z
3

1

(f (x)� g (x)) dx

=

Z
3

1

f (x) dx�
Z

3

1

g (x) dx

= 3� (�2) = 5

(b)

Z
3

1

(4g (x)� 3f (x)) dx

= 4

Z
3

1

g (x) dx� 3

Z
3

1

f (x) dx

= 4 (�2)� 3 (3) = �17

39. (a)

3

2

1

2 31
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(b)

12

8

4

3 421

40. (a)

1

0 1

(b)

8

6

4

2

2-2 0

41. (a) Notice that x

2 sinx is a continuous func-
tion for all values of x and
for 1  x  2,
sinx  x

2 sinx  4 sinx.
On using theorem 4.3,we getZ

2

1

sinxdx 
Z

2

1

x

2 sinxdx


Z

2

1

4 sinxdx

(cos 1� cos 2) 
Z

2

1

x

2 sinxdx

 4 (cos 1� cos 2)

(b) Notice that x

2 sinx is a continuous func-
tion for all values of x and
for 1  x  2, x2 sin 1  x

2 sinx  x

2 .
On using theorem 4.3,we get

sin 1

Z
2

1

x

2

dx 
Z

2

1

x

2 sinxdx


Z

2

1

x

2

dx

sin 1
x

3

3

����
2

1


Z

2

1

x

2 sinxdx  x

3

3

����
2

1

7

3
sin 1 

Z
2

1

x

2 sinxdx  7

3

(c) Let us evaluate

Z
2

1

x

2 sinxdx

using

Z
2

1

x

2 sinxdx ⇡
nX

i=1

c

2

i

sin c
i

�x

and n = 6

Where c

i

=
x

i

+ x

i�1

2
, x

i

= 1 +
i

6
,

Here c

i

=
2 + i

6

+ (i�1)

6

2

=
(2i+ 11)

12
nX

i=1

�
c

2

i

sin c
i

�✓ 1

n

◆

=

"✓
13

12

◆
2

sin

✓
13

12

◆
+

✓
15

12

◆
2

sin

✓
15

12

◆

+

✓
17

12

◆
2

sin

✓
17

12

◆
+

✓
19

12

◆
2

sin

✓
19

12

◆

+

✓
21

12

◆
2

sin

✓
21

12

◆
+

✓
23

12

◆
2

sin

✓
23

12

◆#
.

1

6

Therefore,

Z
2

1

x

2 sinxdx ⇡ 2.2465

(cos 1� cos 2) 
Z

2

1

x

2 sinxdx

 4 (cos 1� cos 2)
) 0.9564  2.2465  3.8257
and
7

3
sin 1 

Z
2

1

x

2 sinxdx  7

3
) 1.9634  2.2465  2.3333
The second inequality gives a range which
is more closer to the value of the integral.
Therefore, part (b) is more useful than
part (a).

42. Notice that x

2

e

�
p
x is a continuous function

for all values of x � 0.
For 1  x  2,

e

�
p
2  e

�
p
x  e

�1
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Therefore x

2

e

�
p
2  x

2

e

�
p
x  x

2

e

�1

Thus, on using theorem 4.3.Z
2

1

x

2

e

�
p
2

dx 
Z

2

1

x

2

e

�
p
x

dx 
Z

2

1

x

2

e

�1

dx

e

�
p
2

x

3

3

����
2

1


Z

2

1

x

2

e

�
p
x

dx  e

�1

x

3

3

����
2

1

7

3
e

�
p
2 

Z
2

1

x

2

e

�
p
x

dx  7

3
e

�1

0.5672 
Z

2

1

x

2

e

�
p
x

dx  0.8583

43. This is just a restatement of the Integral Mean
Value Theorem.

44. Let c =
a+ b

2
. By definition,

Z
b

a

f(x)dx = lim
n!1

nX

i=1

f(c
i

)�x.

We can choose n to be always even, so that
n = 2m, andZ

b

a

f(x)dx = lim
n!1

nX

i=1

f(c
i

)�x

= lim
m!1

mX

i=1

f(c
i

)�x+ lim
m!1

nX

i=m+1

f(c
i

)�x

=

Z
c

a

f(x)dx+

Z
b

c

f(x)dx

45. Between x = 0 and x = 2, the area below the
x-axis is much less than the area above the x-
axis. Therefore

R
2

0

f(x)dx > 0

46. Between x = 0 and x = 2, the area above the
x-axis is much greater than the area below the
x-axis. Therefore

R
2

0

f(x)dx > 0

47. Between x = 0 and x = 2, the area below the
x-axis is slightly greater than the area above
the x-axis. Therefore

R
2

0

f(x)dx < 0

48. Between x = 0 and x = 2, the area below the
x-axis is much greater than the area above the
x-axis. Therefore

R
2

0

f(x)dx < 0

49.

Z
2

0

3xdx =
1

2
bh =

1

2
(2)(6) = 6

50.

Z
4

1

2xdx =
1

2
(a+ b)h =

1

2
(2 + 8)(3)

= 15

51.

Z
2

0

p
4� x

2 =
1

4
⇡r

2 =
1

4
⇡

�
22
�
= ⇡

52.

Z
0

�3

p
9� x

2

dx =
1

4
⇡r

2 =
1

4
⇡32

=
9⇡

4

53. (a) Given limit

lim
n!1

1

n

h
sin
⇣
⇡

n

⌘
+ ....+ sin

⇣
n⇡

n

⌘i

= lim
n!1

1

n

"
nX

i=1

sin

✓
i⇡

n

◆#

We know that

lim
x!1


nP

i=1

f(c
i

)�x

�
=
R
b

a

f(x)dx

Where c

i

= a+ i�x and �x =

✓
b� a

n

◆

On comparision,we get

c

i

=
i

n

,�x =
1

n

and

f(x) = sin(⇡x) ) a = 0, b = 1
Therefore

lim
n!1

1

n

"
nX

i=1

sin

✓
i⇡

n

◆#
=

Z
1

0

sin(⇡x)dx

(b) Given limit

= lim
n!1


n+ 1

n

2

+
n+ 2

n

2

+ ...+
2n

n

2

�

= lim
n!1

1

n

"
nX

i=1

n+ i

n

#

We know that

lim
x!1

"
nX

i=1

f(c
i

)�x

#
=

Z
b

a

f(x)dx

Where c

i

= a+ i�x and �x =

✓
b� a

n

◆

On comparision,we get

c

i

=
i

n

,�x =
1

n

and f(x) = 1 + x

) a = 0, b = 1
Therefore,

lim
n!1

1

n

"
nX

i=1

n+ i

n

�x

#
=

Z
1

0

(1 + x)dx

(c) Given limit

lim
n!1

"
f

�
1

n

�
+ f

�
2

n

�
+ ...+ f

�
n

n

�

n

#

= lim
n!1

1

n

"
nX

i=1

f

✓
i

n

◆#

We know that

lim
x!1

"
nX

i=1

f(c
i

)�x

#
=

Z
b

a

f(x)dx

Where c

i

= a+ i�x and �x =

✓
b� a

n

◆
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On comparision,we get

c

i

=
i

n

and �x = 1

n

) a = 0, b = 1
Therefore,

lim
n!1

1

n

"
nX

i=1

f

✓
i

n

◆#
=

Z
1

0

f(x)dx

54.
1

b� a

Z
b

a

f(x)dx = v

Z
b

a

f(x)dx = v(b� a)

and
1

c� b

Z
c

b

f(x)dx = w

Z
c

b

f(x)dx = w(c� b)

The average value of f over [a, c] is
1

c� a

Z
c

a

f(x)dx

=
1

c� a

"Z
b

a

f(x)dx+

Z
c

b

f(x)dx

#

=
1

c� a

[v(b� a) + w(c� b)]

=
v(b� a) + w(c� b)

c� a

55. Since b(t) represents the birthrate (in births
per month), the total number of births from
time t = 0 to t = 12 is given by the integralR
12

0

b(t) dt.
Similarly, the total number of deaths from time
t = 0 to t = 12 is given by the integralR
12

0

a(t) dt.
Of course, the net change in population is the
number of birth minus the number of deaths:
Population Change
= Births�Deaths

=

Z
12

0

b(t) dt�
Z

12

0

a(t) dt

=

Z
12

0

[b(t)� a(t)] dt.

Next we solve the inequality
410� 0.3t > 390 + 0.2t
20 > 0.5t then t < 40 months .
Therefore b(t) > a(t) when t < 40 months.
The population is increasing when the birth
rate is greater than the death rate, which is
during the first 40 month. After 40 months,
the population is decreasing. The population-
would reach a maximum at t = 40 months.

56. Since b(t) represents the birthrate (in births

per month), the total number of births from
time t = 0 to t = 12 is given by the integralZ

12

0

b(t)dt.

Similarly, the total number of deaths from time
t = 0 to t = 12 is given by the integralZ

12

0

a(t)dt.

Of course, the net change in population is the
number of birth minus the number of deaths:
Population Change
= Births�Deaths

=

Z
12

0

b(t)dt�
Z

12

0

a(t)dt

=

Z
12

0

[b(t)� a(t)]dt.

By graphing b(t) and a(t) we see that their
graphs intersect 9 times, at
t ⇡ 38.5, 40.1, 44.4, 46.9, 50.2, 53.6,
56.1, 60.5, 61.9.
This tells us that we have b(t) > a(t) on the
intervals
(0, 38.5), (40.1, 44.4), (46.9, 50.2),
(53.6, 56.1), (60.5, 61.9).
The maximum population will occur when t =
50.2.

404

402

396

60
t

394

50200

398

400

392

3010 70

390

40

57. From PV = 10 we get P (V ) = 10/V . By
definition,Z

4

2

P (V ) dV =

Z
4

2

10

V

dV

=
nX

i=1

2

n

· 10

2 + 2i

n

An estimate of the value of this integral is
setting n = 100, and then the integral ⇡ 6.93

58. The average temperature over the year is
1

12

Z
12

0

64� 24 cos
⇣
⇡

6
t

⌘
dt. If you look at the

graphs T (t) and f(t) = 64 you should be able
to see that the area under T (t) and f(t) be-
tween t = 0 to t = 12 are equal. This means
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that the average temperature is 64.

0
102
t

128640

80

60

40

20

59. Since r is the rate at which items are shipped,
rt is the number of items shipped between time
0 and time t. Therefore, Q � rt is the num-
ber of items remaining in inventory at time t.
Since Q � rt = 0 when t = Q/r, the formula
is valid for 0  t  Q/r. The average value of
f(t) = Q� rt on the time interval [0, Q/r] is

1

Q/r � 0

Z
Q/r

0

f(t)dt

=
r

Q

Z
Q/r

0

(Q� rt)dt

=
r

Q


Qt� 1

2
rt

2

�
Q/r

0

=
r

Q


Q

2

r

� r

2

Q

2

r

2

�

=
r

Q


Q

2

2r

�
=

Q

2
.

60. f(Q) = c

0

D

Q

+ c

c

Q

2

f

0(Q) = �c

0

D

Q

2

+
c

c

2
Setting f

0(Q) = 0 gives
c

0

D

Q

2

=
c

c

2

Q =

r
2c

0

D

c

c

. This is the right answer of Q

minimizing the total cost f(Q), since when the
value of Q is very small, the value of D/Q

will get very big, and when the value of Q

is very small, the value of Q/2 will get very
big. This means that the function f(Q) is de-
creasing on the interval [0,

p
2c

0

D/c

c

] and in-

creasing on the interval [
p

2c
0

D/c

c

,1]. When

Q =
p
2c

0

D/c

c

,

c

0

D

Q

=
c

0

Dq
2c0D

c

c

= c

c

q
2c0D

c

c

2
= c

c

Q

2
.

61. Delivery is completed in time Q/p, and since
in that time Qr/p items are shipped, the in-
ventory when delivery is completed is

Q� Qr

p

= Q

✓
1� r

p

◆
.

The inventory at any time is given by

g(t) =

8
<

:
(p� r)t for t 2

h
0, Q

p

i

Q� rt for t 2
h
Q

p

,

Q

r

i

The graph of g has two linear pieces. The av-
erage value of g over the interval [0, Q/r] is the
area under the graph (which is the area of a
triangle of base Q/r and height Q(1�r/p)) di-
vided by the length of the interval (which is the
base of the triangle). Thus the average value
of the function is (1/2)bh divided by b, which
is
(1/2)h = (1/2)Q(1� r/p).
This time the total cost is

f(Q) = c

0

D

Q

+ c

c

Q

2
(1� r

p

)

f

0(Q) = �c

0

D

Q

2

+
c

c

(1� r

p

)

2

f

0(Q) = 0 gives
c

0

D

Q

2

=
c

c

2
(1� r

p

)

Q =

s
2c

0

D

c

c

(1� r/p)
.

The order size to minimize the total cost is

Q =

s
2c

0

D

c

c

(1� r/p)
.

62. Use the result from Exercise 60,

Q =

r
2c

0

D

c

c

=

r
2(50, 000)(4000)

3800
⇡ 324.44.

Since this quantity already takes advantage of
largest possible discount, the order size that
minimizes the total cost is about 324.44 items.

63. The maximum of
F (t) = 9� 108(t� 0.0003)2

occurs when 108(t� 0.0003)2 reaches its mini-
mum, that is, when t = 0.0003. At that time
F (0.0003) = 9 thousand pounds.
We estimate the value of
Z

0.0006

0

[9� 108(t� 0.0003)2] dt using midpoint

sum and n = 20, and getm�v ⇡ 0.00360 thou-
sand pound-seconds, so �v ⇡ 360 ft per sec-
ond.

64. The impulse-momentum equation of Prob-
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lem 65 gives 5�v

=

Z
0.4

0

(1000� 25, 000(t� 0.2)2) dt

=

Z
0.4

0

(�25000t2 + 10000t) dt

Using a midpoint sum and n = 20 gives an
approximation for this integral of 267.0. This
means 5�v ⇡ 267 and �v ⇡ 53.4 m/s

4.5 The Fundamental Theorem

of Calculus

1.

Z
2

0

(2x� 3)dx =
�
x

2 � 3x
�����

2

0

= �2

2.

Z
3

0

�
x

2 � 2
�
dx =

✓
x

3

3
� 2x

◆����
3

0

= 3

3.

Z
1

�1

�
x

3 + 2x
�
dx =

✓
x

4

4
+ x

2

◆����
1

�1

= 0

4.

Z
2

0

�
x

3 + 3x� 1
�
dx

=

✓
x

4

4
� 3x2

2
� x

◆����
2

0

= �4

5.

Z
4

1

✓
x

p
x+

3

x

◆
dx

=

✓
2

5
x

5/2 + 3 log x

◆����
4

1

=
2

5
· 32 + 3 log 4� 2

5
.1� 3 log 1

=
62

5
+ 3 log 4

6.

Z
2

1

✓
4x� 2

x

2

◆
dx =

✓
2x2 +

2

x

◆����
2

1

= 5

7.

Z
1

0

�
6e�3x + 4

�
dx =

✓
6e�3x

�3
+ 4x

◆����
1

0

= � 2

e

3

+ 4 + 2� 0 = � 2

e

3

+ 6

8.

Z
2

0

✓
e

2x � 2e3x

e

3x

◆
dx

=

Z
2

0

�
e

�x � 2
�
dx =

�
�e

�x � 2x
�����

2

0

= � 1

e

2

� 3

9.

Z
⇡

⇡/2

(2 sinx� cosx)dx = �2 cosx� sinx

�����

⇡

⇡/2

= 3

10.

Z
⇡/2

⇡/4

3 cscx cotxdx = (�3 cscx)

�����

⇡/2

⇡/4

= �3 + 3
p
2

11.

Z
⇡/4

0

(sec t tan t) dt = sec t

�����

⇡/4

0

=
p
2� 1

12.

Z
⇡/4

0

sec2tdt = tan t

�����

⇡/4

0

= 1

13.

Z
1/2

0

3p
1� x

2

dx = 3sin�1

x

�����

1/2

0

= 3
⇣
⇡

6
� 0
⌘
=

⇡

2

14.

Z
1

�1

4

1 + x

2

dx = 4arctanx

����
1

�1

= 2⇡

15.

Z
4

1

t� 3

t

dt

=

Z
4

1

�
1� 3t�1

�
dt = (t� 3 ln |t|)

����
4

1

= 3� 3 ln 4

16.

Z
4

0

t (t� 2) dt =

✓
t

3

3
� t

2

◆����
4

0

=
16

3

17.

Z
t

0

⇣
e

x/2

⌘
2

dx = (ex)

����
t

0

= e

t � 1

18.

Z
t

0

�
sin2x+ cos2x

�
dx

=

Z
t

0

1dx = (x)

����
t

0

= t

19. The graph of y = 4 � x

2 is above the x-axis
over the interval [�2, 2].Z

2

�2

�
4� x

2

�
dx =

✓
4x� x

3

3

◆����
2

�2

=
32

3

20. The graph of y = x

2 � 4x is below the x-axis
over the interval [0, 4].
Z

4

0

�
�
x

2 � 4x
�
dx =

✓
�x

3

3
+ 2x2

◆����
4

0

=
32

3

21. The graph of y = x

2 is above the x-axis over
the interval [0, 2] .Z

2

0

x

2

dx =
x

3

3

����
2

0

=
8

3
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22. The graph of y = x

3 is above the x-axis over
the interval
[0, 3] .Z

3

0

x

3

dx =

✓
x

4

4

◆����
3

0

=
81

4

23. The graph of y = sinx is above the x-axis over
the interval [0,⇡] .Z

⇡

0

sinxdx = � cosx

����
⇡

0

= 2

24. The graph of y = sinx is below the x-axis over
the interval

⇥
�⇡

2

, 0
⇤
and above the x-axis over

the interval
⇥
0, ⇡

4

⇤
. Hence we need to compute

two seperate integrals and add them together:
Z

0

�⇡/2

� sinxdx+

Z
⇡/4

0

sinxdx

= 1 +

✓
1� 1p

2

◆
= 2� 1p

2
.

25. f

0 (x) = x

2 � 3x+ 2

26. f

0 (x) = x

2 � 3x� 4

27. f

0 (x) =
⇣
e

�(x2)2 + 1
⌘

d

dx

�
x

2

�

= 2x
⇣
e

�x

4

+ 1
⌘

28. f

0 (x) = � secx

29. f (x) =

Z
0

e

x

sin t2dt+

Z
2�x

0

sin t2dt

f

0 (x) = � sin e2x
d

dx

(ex)

+ sin (2� x)2
d

dx

(2� x)

= �e

x sin e2x � sin (2� x)2

30. f (x) =

Z
0

2�x

e

2t

dt+

Z
xe

x

0

e

2t

dt

f

0 (x) = �e

2(2�x)

d

dx

(2� x)

+ e

2(xe

x

)

d

dx

(xex)

= e

4�2x + e

2xe

x

(xex + e

x)

31. f (x) =

Z
0

x

2

sin (2t) dt+

Z
x

3

0

sin (2t) dt

f

0 (x) = � sin
�
2x2

�
d

dx

�
x

2

�

+ sin
�
2x3

�
d

dx

�
x

3

�

= �2x sin
�
2x2

�
+ 3x2 sin

�
2x3

�

32. f (x) ==

Z
0

3x

�
t

2 + 4
�
dt+

Z
sin x

0

�
t

2 + 4
�
dt

= �
Z

3x

0

�
t

2 + 4
�
dt+

Z
sin x

0

�
t

2 + 4
�
dt

f

0 (x) = �
�
9x2 + 4

�
d

dx

(3x)

+
�
sin2x+ 4

�
d

dx

(sinx)

= �27x2 � 12 + sin2x cosx+ 4 cosx

33. s (t) = 40t+ cos t+ c,

s (0) = 0 + cos 0 + c = 2

so therefore c = 1 and s (t) = 40t+ cos t+ 1.

34. s (t) = 10et + c,

s (0) = 10 + c = 2

so therefore c = �8 and s (t) = 10e�t � 8.

35. v (t) = 4t� t

2

2
+ c

1

,

v (0) = c

1

= 8

so therefore c

1

= 8 and v (t) = 4t� t

2

2
+ 8.

s (t) = 2t2 � t

3

6
+ 8t+ c

2

,

s (0) = c

2

= 0

so therefore c

2

= 0 and s (t) = 2t2 � t

3

6
+ 8t.

36. v (t) = 16t� t

3

3
+ c

1

,

v (0) = c

1

= 0

so therefore c

1

= 0 and

v (t) = 16t� t

3

3
.

s (t) = 8t2 � t

4

12
+ c

2

,

s (0) = c

2

= 30

so therefore c

2

= 30 and s (t) = 8t2 � t

4

12
+ 30.

37. Let w (t) be the number of gallons in the tank
at time t.

(a) The water level decreases if w

0 (t) =
f (t) < 0 i.e. if f (t) = 10 sin t < 0, for
which ⇡ < t < 2⇡.

Alternatively, the water level increases if
w

0 (t) = f (t) > 0 i.e. if f (t) = 10 sin t >
0, for which 0 < t < ⇡.

(b) Now,we start with

w

0 (t) = 10 sin t

Therefore,

Z
⇡

0

w

0 (t) dt =

Z
⇡

0

10 sin tdt

w (⇡)� w (0) = � 10 cos t|⇡
0
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But w (0) = 100.

Therefore,

w (⇡)� 100 = �10 (�1� 1) = 20
) w (⇡) = 120.

Therefore the tank will have 120 gallons
at t = ⇡.

38. Let w (t) be the number of thousand gallons in
the pond at time t.

(a) The water level decreases if w

0 (t) =
f (t) < 0 i.e. if f (t) = 4t � t

2

< 0, for
which 4 < t  6.

Alternatively, the water level increases if
w

0 (t) = f (t) > 0 i.e. if f (t) = 4t�t

2

> 0,
for which 0 < t < 4.

(b) Now, we start with w

0 (t) = 4t�t

2

, There-
foreZ

6

0

w

0 (t) dt =

Z
6

0

�
4t� t

2

�
dt

w (6)� w (0) =

✓
2t2 � t

3

3

◆����
6

0

But w (0) = 40.

Therefore,

w (6)� 40 = 72� 72 = 0
) w (6) = 40.

Therefore the pond has 40,000 gallons at
t=6.

39. y

0 (x) = sin
p
x

2 + ⇡

2.
At the point in question, y (0) = 0 and y

0 (0) =
sin⇡ = 0. Therefore, the tangent line has slope
0 and passes through the point (0, 0). The
equation of this line is y = 0.

40. y

0 (x) = ln
�
x

2 + 2x+ 2
�
.

At the point in question, y (�1) = 0 and
y

0 (�1) = ln 1 = 0. Therefore, the tangent
line has slope 0 and passes through the point
(�1, 0). The equation of this line is y = 0.

41. y

0 (x) = cos
�
⇡x

3

�
.

At the point in question, y (2) = 0 and y

0 (2) =
cos 8⇡ = 1. Therefore, the tangent line has
slope 1 and passes through the point (2, 0).
The equation of this line is y = x� 2.

42. y

0 (x) = e

�x

2
+1.

At the point in question, y (0) = 0 and y

0 (0) =
e. Therefore, the tangent line has slope e and
passes through the point (0, 0). The equation
of this line is y = ex.

43.

Z
2

0

p
x

2 + 1dx = lim
n!1

nX

i=1

2

n

s✓
2i

n

+ 1

◆

Estimating using n = 20, we get the Riemann
sum ⇡ 2.96.

44.

Z
2

0

�p
x+ 1

�
2

dx =

Z
2

0

�
x+ 2

p
x+ 1

�
dx

=

✓
x

2

2
+

4

3
x

3
2 + x

◆����
2

0

= 4 +
8
p
2

3
.

45.

Z
4

1

x

2

x

2 + 4
dx = lim

n!1

nX

i=1

3

n

⇣
1 + (3i/n)2

⌘

(3i/n)2 + 4

Estimating using n = 20, we get the Riemann
sum ⇡ 1.71.

46.
R
4

1

x

2 + 4

x

2

dx =
R
4

1

1 +
4

x

2

dx =
�
x� 4x�1

�����
4

1

= 6

47.

Z
⇡/4

0

sinx

cos2x
dx

=

Z
⇡/4

0

tanx secxdx = secx

�����

⇡/4

0

=
p
2� 1

48.

Z
⇡/4

0

tanx

sec2x
dx =

Z
⇡/4

0

sinx cosxdx

=

Z
⇡/4

0

1

2
sin 2xdx =

✓
�1

4
cos 2x

◆�����

⇡/4

0

=
1

4

49. From the graph of f(x),
Z

3

0

f (x) dx <

Z
2

0

f (x) dx <

Z
1

0

f (x) dx.

The function increases if g

0 (x) = f (x) > 0
i.e. when x < 1 or x > 3. Thus, the function
g (x) is increasing in the intervals (�1, 1) and
(3,1). The function g (x) has critical points
at g0 (x) = 0. i.e. when x = 1 or x = 3. There-
fore the critical points of g(x) are x = 1 and
x = 3.

50.

Z
1

0

f (x) dx <

Z
3

0

f (x) dx <

Z
2

0

f (x) dx.

The function increases if g0 (x) = f (x) > 0 i.e.
when 0 < x < 2 or x > 4. Thus, the function
g (x) is increasing in the intervals (0, 2) and
(4,1). The function g (x) has critical points
at g0 (x) = 0 i.e.when x = 0, x = 2 and x = 4.
Therefore the critical points of g(x) are x = 0,
x = 2 and x = 4.
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51. If you look at the graph of 1/x2, it is obvious
that there is positive area between the curve
and the x-axis over the interval [�1, 1]. In ad-
dition to this, there is a vertical asymptote in
the interval that we are integrating over which
should alert us to a possible problem.

The problem is that 1/x2 is not continuous
on [�1, 1] (the discontinuity occurs at x = 0)
and that continuity is one of the conditions in
the Fundamental Theorem of Calculus, Part
I(Theorem 4.1).

y

50

40

30

20

10

0

x

10.50-0.5-1

52. If you look at the graph of sec2x, it is obvious
that there is positive area between the curve
and the x-axis over the interval [0,⇡]. In ad-
dition to this, there is a vertical asymptote in
the interval that we are integrating over which
should alert us to a possible problem. The
problem is that sec2x is not continuous on [0,⇡]
and that continuity is one of the conditions in
the Fundamental Theorem of Calculus, Part I
(Theorem 4.1).

x

y

4

10

8

3

6

4

2

2

0
10-1

53. The integrals in parts (a) and (c) are improper,
because the integrands have asymptotes at one
of the limits of integration. The Fundamental
Theorem of Calculus applies to the integral in
part (b).

54. The Fundamental Theorem of Calculus applies
to the integral in part (a). The integral in part

(b) is improper since the point x = 3 lies in

the interval [0, 4], and
1

(x� 3)2
is not defined

at x = 3. The integral in part (c) is improper
since the point x = ⇡/2 lies in the interval
[0, 2], and secx is not defined at x = ⇡/2.

55. f

ave

=
1

3� 1

Z
3

1

�
x

2 � 1
�
dx

=
1

2

✓
x

3

3
� x

◆����
3

1

=
10

3

56. f

ave

=
1

1� 0

Z
1

0

�
2x� 2x2

�
dx

=

✓
x

2 � 2x3

3

◆����
1

0

=
1

3

57. f

ave

=
1

⇡/2� 0

Z
⇡/2

0

cosxdx

=
2

⇡

(sinx)|⇡/2
0

=
2

⇡

58. f

ave

=
1

2� 0

Z
2

0

e

x

dx

=
1

2
(ex)

����
2

0

=
1

2

�
e

2 � 1
�

59. (a) Using the Fundamental Theorem of Cal-
culus, it follows that an antiderivative of

e

�x

2

is

Z
x

a

e

�t

2

dt where a is a constant.

(b) Using the Fundamental Theorem of Cal-
culus, it follows that an antiderivative of

sin
p
x

2 + 1 is

Z
x

a

sin
p

t

2 + 1dt where a

is a constant.

60. It may be observed that f is piecewise contin-
uous over its domain.
For 0 < x  4,

g(x) =

Z
x

0

f (t) dt =

Z
x

0

�
t

2 + 1
�
dt

=

✓
t

3

3
+ t

◆����
x

0

=
x

3

3
+ x

Now, for x > 4

g(x) =

Z
x

0

f (t) dt

=

Z
4

0

f (t) dt+

Z
x

4

f (t) dt

=

Z
4

0

�
t

2 + 1
�
dt+

Z
x

4

�
t

3 � t

�
dt

=

✓
t

3

3
+ t

◆����
4

0

+

✓
t

4

4
� t

2

2

◆����
x

4
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=

✓
43

3
+ 4

◆
+

✓
x

4

4
� x

2

2
� 44

4
+

42

2

◆

=
x

4

4
� x

2

2
� 92

3

g (x) =

(
x

3

3

+ x for 0 < x  4
x

4

4

� x

2

2

� 92

3

for 4 < x

Consider

g

0 (4) = lim
h!0

g (4 + h)� g (4)

h

= lim
h!0

1

h

"Z
4+h

0

f (t) dt�
Z

4

0

f (t) dt

#

= lim
h!0

1

h

Z
4+h

4

f (t) dt.

The Right Hand Limit:

lim
h!0

+

1

h

Z
4+h

4

f (t) dt

= lim
h!0

+

1

h

Z
4+h

4

�
t

3 � t

�
dt

= lim
h!0

+

1

h


t

4

4
� t

2

2

�
4+h

4

= lim
h!0

+

1

h

"
(4 + h)4

4
� (4 + h)2

2
� 44

4
+

42

2

#

= lim
h!0

+

1

h


h

4

4
+ 4h3 � 47h2

2
+ 60h

�

= lim
h!0

+


h

3

4
+ 4h2 � 47h

2
+ 60

�
= 60.

Now, the Left Hand Limit:

lim
h!0

�

1

h

Z
4+h

4

f (t) dt

= lim
h!0

�

1

h

Z
4+h

4

�
t

2 + 1
�
dt

= lim
h!0

�

1

h


t

3

3
+ t

�
4+h

4

= lim
h!0

�

1

h

"
(4 + h)3

3
+ 4 + h� 43

3
� 4

#

= lim
h!0

+

1

h


h

3 + 12h2 + 48h+ 64

3
+ h� 64

3

�

= lim
h!0

+


h

2

3
+ 4h+ 17

�
= 17.

Therefore, g

0 (4) doesn’t exist though f (4)
exists. Therefore g

0(x) = f(x) is not true for
all x � 0.

61. f

0 (x) = x

2 � 3x+ 2.
Setting f

0 (x) = 0, we get (x� 1) (x� 2) = 0
which implies x = 1, 2.

f

0 (x) =

⇢
> 0 when t < 1 or t > 2
< 0 when 1 < t < 2

f (1) =

Z
1

0

�
t

2 � 3t+ 2
�
dt

=

✓
t

3

3
� 3t2

2
+ 2t

◆����
1

0

=
5

6

f (2) =

Z
2

0

�
t

2 � 3t+ 2
�
dt

=

✓
t

3

3
� 3t2

2
+ 2t

◆����
2

0

=
2

3
Hence f (x) has a local maximum at the

point

✓
1,

5

6

◆
and local minimum at the point

✓
2,

2

3

◆
.

62. g (x) =

Z
x

0

Z
u

0

f (t) dt

�
du

g

0 (x) =

Z
x

0

f (t) dt

g

00 (x) = f (x)
A zero of f corresponds to a zero of the second
derivative of g (possibly an inflection point of
g).

63. When a < 2 or a > 2, f is continuous. Using
the Fundamental Theorem of Calculus,h
lim
x!a

F (x)
i
� F (a)

= lim
x!a

[F (x)� F (a)]

= lim
x!a

Z
x

0

f (t) dt�
Z

a

0

f (t) dt

�

= lim
x!a

Z
x

a

f (t) dt

�
= 0

When a = 2,

lim
x!a

�

Z
x

a

f (t) dt

�
= lim

x!2

�

Z
x

2

tdt

�

= lim
x!2

�


t

2

2

�
x

2

= lim
x!2

�


x

2

2
� 22

2

�
= 0

and lim
x!a

+

Z
x

a

f (t) dt

�

= lim
x!2

+

Z
x

2

(t+ 1) dt

�

= lim
x!2

+


t

2

2
+ t

�
x

2

= lim
x!2

+


x

2

2
+ x� 22

2
� 2

�

= 0
Thus, for all value of a,h
lim
x!a

F (x)
i
� F (a) = 0

lim
x!a

F (x) = F (a)

Thus, F is continuous for all x. However, F 0 (2)
does not exist, which is shown as follows:

F

0 (2) = lim
h!0

F (2 + h)� F (2)

h
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= lim
h!0

1

h

"Z
2+h

0

f (t) dt�
Z

2

0

f (t) dt

#

= lim
h!0

1

h

Z
2+h

2

f (t) dt

We will show that this limit does not exist by
showing that the left and right limits are dif-
ferent. The right limit is

lim
h!0

+

1

h

Z
2+h

2

f (t) dt

= lim
h!0

+

1

h

Z
2+h

2

(t+ 1) dt

= lim
h!0

+

1

h


t

2

2
+ t

�
2+h

2

= lim
h!0

+

1

h

"
(2 + h)2

2
+ 2 + h� 22

2
� 2

#

= lim
h!0

+

1

h


h

2 + 4h+ 4

2
+ 2 + h� 4

�

= lim
h!0

+

1

h


h

2

2
+ 3h

�

= lim
h!0

+

1

h


h

2
+ 3

�
= 3

The left limit is

lim
h!0

�

1

h

Z
2+h

2

f (t) dt

= lim
h!0

�

1

h

Z
2+h

2

tdt

= lim
h!0

�

1

h


t

2

2

�
2+h

2

= lim
h!0

�

1

h

"
(2 + h)2

2
� 22

2

#

= lim
h!0

�

1

h


h

2 + 4h+ 4

2
� 2

�

= lim
h!0

�

1

h


h

2
+ 2

�
= 2

Thus, F 0(2) does not exist. This result does
not contradict the Fundamental Theorem of
Calculus, because in this situation, f(x) is not
continuous, and thus The Fundamental Theo-
rem of Calculus does not apply.

64. When x = 0,
lim
n!1

g

n

(x) = lim
n!1

f (xn)

= lim
n!1

f (0) = f (0)

When 0 < x < 1,
lim

n!x

n

= 0, and then

lim
n!1

g

n

(x) = lim
n!1

f (xn)

= f

⇣
lim

n!1
x

n

⌘
= f (0)

= lim
n!1

f (0) = f (0)

When x = 1,

lim
n!1

g

n

(x) = lim
n!1

f (xn)

= lim
n!1

f (1) = f (1) .

Thus the integral
R
1

0

g

n

(x) dx represents the
net area between the graph of f (xn) and the
x-axis. As n approaches 1,

f (xn) !
⇢

f (0) when 0  x < 1
f (1) when x = 1

Thus the integral
R
1

0

g

n

(x) dx approaches the
area of the shape of a rectangle with length
1 and width f (0) (possibly negative), which

means lim
n!1

R
1

0

g

n

(x) dx = f (0).

65.

Z
x

0

[f (t)� g (t)] dt

=

Z
x

0

[55 + 10 cos t� (50 + 2t)] dt

=

Z
x

0

[5 + 10 cos t� 2t] dt

= 5t+ sin t� t

2

��x
0

= 5x+ sinx� x

2

Since we are integrating the di↵erence in
speeds, the integral represents the distance
that Katie is ahead at time x. Of course, if
this value is negative, is means that Michael is
really ahead.

66. (a) CS =

Z
Q

0

D (q) dq � PQ

=

Z
Q

0

�
150q � 2q � 3q2

�
dq � PQ

=
�
150q � q

2 � q

3

���Q
0

� PQ

= 150Q�Q

2 �Q

3

�
�
150� 2Q� 3Q2

�
Q

= Q

2 + 2Q3

.

When Q = 4,
CS = 16 + 2 (64) = 144 dollors
When Q = 6, CS = 36 + 2 (216) =
468 dollors
The consumer surplus is higher for Q = 6
than that for Q = 4.

(b) CS =

Z
Q

0

D (q) dq � PQ

=

Z
Q

0

40e�0.05q

dq � PQ

=
�
�800e�0.05q

���Q
0

� PQ

= �800e�0.05Q + 800� 40e�0.05Q

= �840e�0.05Q + 800.
When Q = 10, CS = �840e�0.5 + 800 ⇡
290.5 dollors
When Q = 20, CS = �840e�1 + 800 ⇡
491.0 dollors
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The consumer surplus is higher for Q =
20 than that for Q = 10.

67. The next shipment must arrive when the in-
ventory is zero. This occurs at time T : f (t) =
Q� r

p
t

f (T ) = 0 = Q� r

p
T

r

p
T = Q

T =
Q

2

r

2

The average value of f on [0,T] is
1

T

Z
T

0

f (t) dt

=
1

T

Z
T

0

⇣
Q� rt

1/2

⌘
dt

=
1

T


Qt� 2

3
rt

3/2

�
T

0

=
1

T


QT � 2

3
rT

3/2

�

= Q� 2

3
r

p
T

= Q� 2

3
r

Q

r

=
Q

3

68. The total annual cost f (Q) = c

0

D

Q

+ c

c

A =

c

0

D

Q

+ c

c

Q

3

f

0 (Q) = �c

0

D

Q

2

+ c

c

1

3
f

0 (Q) = 0

gives that Q =
q

3c0D

c

c

.

This value of Q minimizes the total cost, since

f

0 (Q)

8
<

:
> 0 when Q <

q
3c0D

c

c

< 0 when Q >

q
3c0D

c

c

When Q =

r
3c

0

D

c

c

,

c

0

D

Q

= c

0

Dp
3c

0

D/c

c

= c

c

Q

3
= c

c

A

4.6 Integration By Substitu-

tion

1. Let u = x

3 + 2 and then du = 3x2

dx andZ
x

2

p
x

3 + 2dx =
1

3

Z
u

�1/2

du

=
2

9
u

3/2 + c =
2

9
(x3 + 2)u3/2 + c.

2. Let u = x

4 + 1and then du = 4x3

dx and

Z
x

3(x4 + 1)
�2/3

dx =
1

4

Z
u

�2/3

du

=
3

4
u

1/3 + c =
3

4
(x4 + 1)

1/3

+ c.

3. Let u =
p
x+ 2 and then du =

1

2
x

�1/2

dx and
Z

(
p
x+ 2)

3

p
x

dx = 2

Z
u

3

du

=
2

4
u

4 + c =
1

2
(
p
x+ 2)

4

+ c.

4. Let u = sinxand then du = cosxdx andZ
sinx cosxdx =

Z
udu

=
u

2

2
+ c =

sin2x

2
+ c.

5. Let u = x

4 + 3 and then du = 4x3

dx andZ
x

3

p
x

4 + 3dx =
1

4

Z
u

1/2

du

=
1

6
u

3/2 + c =
1

6
(x4 + 3)

3/2

+ c.

6. Let u = 1 + 10x, and then du = 10dx andZ p
1 + 10xdx =

1

10

Z p
udu

=
1

10

Z
u

1/2

du =
1

15
u

3/2 + c

=
1

15
(1 + 10x)3/2 + c.

7. Let u = cosx and then du = � sinxdx andZ
sinxp
cosx

dx = �
Z

dup
u

= �2
p
u+ c = �2

p
cosx+ c.

8. Let u = sinx and then du = cosxdx andZ
sin3x cosxdx =

Z
u

3

du

=
u

4

4
+ c =

sin4x

4
+ c.

9. Let u = t

3 and then du = 3t2dt andZ
t

2 cos t3dt =
1

3

Z
cosudu

=
1

3
sinu+ c =

1

3
sin t3 + c

10. Let u = cos t + 3 and then du = � sin tdt andZ
sin t(cos t+ 3)3/4dt = �

Z
u

3/4

du

= �4

7
u

7/4 + c = �4

7
(cos t+ 3)7/4 + c.

11. Let u = x

2 + 1 and then du = 2xdx andZ
xe

x

2
+1

dx =

Z
1

2
e

u

du =
1

2
e

u + c

=
1

2
e

x

2
+1 + c
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12. Let u = e

x + 4 and then du = e

x

dx andZ
e

x

p
e

x + 4dx =

Z p
udu =

2

3
u

3/2 + c

=
1

2
(ex + 4)3/2 + c

13. Let u =
p
x and then du = 1

2

p
x

dx and
Z

e

p
x

p
x

dx = 2

Z
e

u

du = 2eu + c = 2e
p
x + c

14. Let u =
1

x

and then du = � 1

x

2

dx and
Z

cos
�
1

x

�

x

2

dx = �
Z

cosudu = � sinu+ c

= � sin
1

x

+ c

15. Let u = lnx and then du = 1

x

dx and
Z p

lnx

x

dx =

Z p
udu =

2

3
u

3/2 + c

=
2

3
(lnx)3/2 + c

16. Let u = tanx and then du = sec2xdx and
Let u = lnx and then du = 1

x

dx andZ
sec2x

p
tanxdx =

Z
u

1/2

du

=
2

3
u

3/2 + c =
2

3
(
p
tanx)

3/2

+ c

17. Let t =
p
u+ 1 and then

dt =
1

2
u

�1/2

du =
1

2
p
u

du and

Z
1p

u (
p
u+ 1)

du = 2

Z
1

t

dt = 2 ln |t|+ c

= 2 ln
��p

u+ 1
��+ c = 2 ln

�p
u+ 1

�
+ c

18. Let u = v

2 + 4 and then du = 2vdv andZ
v

v

2 + 4
dv =

1

2

Z
1

u

du =
1

2
ln |u|+ c

=
1

2
ln
��
v

2 + 4
��+ c =

1

2
ln
�
v

2 + 4
�
+ c

19. Let u = lnx + 1 and then du =
1

x

dx and
Z

4

x(lnx+ 1)2
dx = 4

Z
u

�2

du

= �4u�1 + c = �4(lnx+ 1)�1 + c

20. Let u = cos 2x and then du = �2 sin 2xdx andZ
tan 2xdx =� 1

2

Z
1

u

du

= �1

2
ln |u|+ c = �1

2
ln | cos 2x|+ c

21. Let u = sin�1

x and then du =
1p

1� x

2

dx and

Let u = cos 2x and then du = �2 sin 2xdx and

Z
(sin�1

x)
3

p
1� x

2

dx =

Z
u

3

du

=
u

4

4
+ c =

(sin�1

x)
4

4
+ c

22. Let u = x

2 and then du = 2xdx andZ
xp

1� x

4

dx =
1

2

Z
1p

1� u

2

du

=
1

2
sin�1

u+ c =
1

2
sin�1

x

2 + c

23. (a) Let u = x

2 and then du = 2xdx andZ
xp

1� x

4

dx =
1

2

Z
1p

1� u

2

du

=
1

2
sin�1

u+ c =
1

2
sin�1

x

2 + c

(b) Let u = 1 � x

4 and then du = �4x3

dx

andZ
x

3

(1� x

4)1/2
dx = �1

4

Z
u

�1/2

du

= �1

2
u

1/2 + c = �1

2
(1� x

4)
1/2

+ c

24. (a) Let u = x

3 and then du = 3x2

dx andZ
x

2

1 + x

6

dx =
1

3

Z
1

1 + u

2

du

=
1

3
tan�1

u+ c =
1

3
tan�1

x

3 + c

(b) Let u = 1 + u

6 and then du = 6x5

dx andZ
x

5

1 + x

6

dx =
1

6

Z
1

u

du

=
1

6
ln |u|+ c =

1

6
ln |1 + x

6|+ c

25. (a)

Z
1 + x

1 + x

2

dx

=

Z
1

1 + x

2

dx+

Z
x

1 + x

2

dx

= tan�1

x+ c

1

+

Z
x

1 + x

2

dx

Let u = 1 + x

2 and then du = 2xdx.

= tan�1

x+ c

1

+
1

2

Z
1

u

du

= tan�1

x+ c

1

+
1

2
ln |u|+ c

2

= tan�1

x+
1

2
ln
��1 + x

2

��+ c

= tan�1

x+
1

2
ln
�
1 + x

2

�
+ c

(b)

Z
1 + x

1� x

2

dx =

Z
1 + x

(1� x) (1 + x)
dx

=

Z
1

1� x

dx

Let u = 1� x and then du = �dx.

= �
Z

1

u

du = � ln |u|+ c

= � ln |1� x|+ c
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26. (a) Let u = x

3/2 and then

du =
3

2
x

1/2

dx =
3

2

p
xdx and

Z
3
p
x

1 + x

3

dx = 2

Z
1

1 + u

2

du

= 2tan�1

u+ c = 2tan�1

⇣
x

3/2

⌘
+ c

(b) Let u = x

5
2 and then

du =
5

2
x

3
2
dx =

5

2
x

p
xdx and

Z
x

p
x

1 + x

5

dx =
2

5

Z
1

1 + u

2

du

=
2

5
tan�1

u+ c =
2

5
tan�1

⇣
x

5/2

⌘
+ c

27. Let u = t+ 7 and then du = dt, t = u� 7 andZ
2t+ 3

t+ 7
dt =

Z
2 (u� 7) + 3

u

du

=

Z ✓
2� 11

u

◆
du = 2u� 11 ln |u|+ c

= 2 (t+ 7)� 11 ln |t+ 7|+ c

28. Let u = t + 3 and then du = dt andZ
t

2

(t+ 3)1/3
dt =

Z
(u� 3)2

u

1/3

du

=

Z ⇣
u

5/3 � 6u2/3 + 9u�1/3

⌘
du

=
3

8
u

8/3 � 18

5
u

5/3 +
18

2
u

2/3 + c

=
3

8
(t+ 3)8/3� 18

5
(t+ 3)5/3+

18

2
(t+ 3)2/3+ c

29. Let u =
p
1 +

p
x and then (u2 � 1)

2

= x,
2(u2 � 1)(2u)du = dx andZ

1p
1 +

p
x

dx =

Z
4u(u2 � 1)

u

du

= 4

Z
(u2 � 1)du = 4(

u

3

3
� u) + c

=
4

3
(1 +

p
x)

3/2 � 4(1 +
p
x)

1/2

+ c

30. Let u = x

2 and then du = 2xdx andZ
dx

x

p
x

4 � 1
=

Z
du/2

u

p
u

2 � 1

=
1

2
sec�1

u+ c =
1

2
sec�1

x

2 + c

31. Let u = x

2 + 1 and then u = 2xdx, u(0) = 1,
u(2) = 5 andZ

2

0

x

p
x

2 + 1dx =
1

2

Z
5

1

p
udu

=
1

2
.

2

3
u

3/2

����
5

1

=
1

3
(
p
125� 1) =

5

3

p
5� 1

3

32. Let u = ⇡x

2 and then du = 2⇡xdx and
Z

3

1

x sin(⇡x2)dx =
1

2⇡

Z
9⇡

⇡

sinudu = (sinu)

����
9⇡

⇡

=

0

33. Let u = t

2 + 1 and then du = 2tdt,

u (�1) = 2 = u (1) andZ
1

�1

t

(t2 + 1)1/2
dt =

1

2

Z
2

2

u

�1/2

du = 0

34. Let u = t

3 and then du = 3t2dt,

u (0) = 0, u (2) = 8 andZ
2

0

t

2

e

t

3

dt =
1

3

Z
8

0

e

u

du =
1

3
e

u

����
8

0

=
1

3

�
e

8 � 1
�

35. Let u = e

x and then du = e

x

dx,

u(0) = 1, u(2) = e

2 and

Z
2

0

e

x

1 + e

2x

dx =

Z
e

2

1

1

1 + u

2

du = tan�1

u

�����

e

2

1

= tan�1

e

2 � ⇡

4

36. Let u = 1 + e

x and then du = e

x

dx,

u (0) = 2, u (2) = 1 + e

2 and

Z
2

0

e

x

1 + e

x

dx =

Z
1+e

2

2

1

u

du = ln (u)

�����

1+e

2

2

= ln
�
1 + e

2

�
� ln (2) = ln

✓
1 + e

2

2

◆

37. Let u = sinx and then du = cosxdx
u(⇡/4) = 1/

p
2, u(⇡/2) = 1 and

Z
⇡/2

⇡/4

cotxdx =

Z
1

1/

p
2

1

u

du = ln |u|

�����

1

1/

p
2

= ln
p
2

38. Let u = lnx and then du =
1

x

dx, u(1) = 0,

u(e) = 1 and
Z

e

1

lnx

x

dx =

Z
1

0

udu =
u

2

2

����
1

0

=
1

2

39.

Z
4

1

x� 1p
x

dx =

Z
4

1

(x1/2 � x

�1/2)dx

= (
2

3
x

3/2 � 2x1/2)

����
4

1

= (
16

3
� 4)� (

2

3
� 2) =

8

3

40. Let u = x

2 + 1 and then du = 2xdx andZ
1

0

x

(x2 + 1)1/2
dx =

1

2

Z
2

1

u

�1/2

du

= (u1/2)
���
2

1

=
p
2� 1

41. (a)

Z
⇡

0

sinx2

dx ⇡ .77 using midpoint evalu-

ation with n � 40.
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(b) Let u = x

2 and then du = 2xdx and
Z

⇡

0

x sinx2

dx =
1

2

Z
⇡

2

0

sinudu

=
1

2
(� cosu)

����
⇡

2

0

= �1

2
cos⇡2 +

1

2
⇡ 0.95134

42. (a) Let u = x

2 and then du = 2xdx,

u(�1) = 1, u(1) = 1 and

Z
1

�1

xe

�x

2

dx =

1

2

Z
1

1

e

�u

du = 0

(b)

Z
1

�1

e

�x

2

⇡ 1.4937 using midpoint evalua-

tion with n � 50.

43. (a)

Z
2

0

4x2

(x2 + 1)2
dx ⇡ 1.414 using right end-

point evaluation with n � 50.

(b) Let u = x

2 + 1 and then du = 2xdx,
x

2 = u� 1 andZ
2

0

4x3

(x2 + 1)2
dx =

Z
5

1

2.
u� 1

u

2

du

=

Z
5

1

(2u�1 � 2u�2)du

= (2 ln |u|+ 2u�1)
��5
1

= 2 ln 5� 8

5

44. (a)

Z
⇡/4

0

secxdx ⇡ .88 using midpoint evalu-

ation with n � 10.

(b)

Z
⇡/4

0

sec2xdx = (tanx)

�����

⇡/4

0

= 1.

45.
1

2

Z
4

0

f(u)du.

46.
1

3

Z
8

1

f(u)du.

47.

Z
1

0

f(u)du.

48.

Z
4

0

f(
p
x)p
x

dx = 2

Z
2

0

f(u)du.

49.

Z
a

�a

f(x)dx

=

Z
0

�a

f(x)dx+

Z
a

0

f(x)dx

Let u = �x and du = �dx in the first integral.
Then

Z
a

�a

f(x)

= �
Z

0

�a

f(�u)du+

Z
a

0

f(x)dx

=

Z
a

0

f(�u)du+

Z
a

0

f(x)dx

If f is even, then f(�u) = f(u), and soZ
a

�a

f(x)dx

=

Z
a

0

f(u)du+

Z
a

0

f(x)dx

=

Z
a

0

f(x)dx+

Z
a

0

f(x)dx

= 2

Z
a

0

f(x)dx

If f is odd, then f(�u) = �f(u), and soZ
a

�a

f(x)dx

= �
Z

a

0

f(u)du+

Z
a

0

f(x)dx

= �
Z

a

0

f(x)dx+

Z
a

0

f(x)dx

= 0

50. First, let u = x� T, then for any a,Z
a+T

T

f(x)dx =

Z
a

0

f(u+ T )du

=

Z
a

0

f(u)du =

Z
a

0

f(x)dx

If we let a = T, then we getZ
T

a

f(x)dx =

Z
2T

T

f(x)dx.

If we let a = 2T, then we getZ
2T

0

f(x)dx =

Z
3T

T

f(x)dx

and thenZ
T

0

f(x)dx =

Z
2T

T

f(x)dx

=

Z
2T

0

f(x)dx�
Z

T

0

f(x)dx

=

Z
3T

T

f(x)dx�
Z

2T

T

f(x)dx

=

Z
3T

2T

f(x)dx

It is straight forward to see that for any integer
i,
Z

T

0

f(x)dx =

Z
(i+1)T

iT

f(x)dx

Now suppose 0  a  T , then
Z

T

0

f(x)dx�
Z

a+T

a

dx
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=

Z
a

0

f(x)dx�
Z

a+T

T

f(x)dx

So

Z
T

0

f(x)dx =

Z
a+T

a

dx

Now suppose a is any number. Then a must lie
in some interval [iT, (i+1)T ] for some interger
i. Use the similar method as in above, we shall
get
Z

(i+1)T

iT

f(x)dx =

Z
a+T

a

f(x)dx

And since

Z
(i+1)T

iT

f(x)dx =

Z
T

0

f(x)dx,

we get

Z
T

0

f(x)dx =

Z
a+T

a

f(x)dx

51. (a) Let u = 10� x, so that du = �dx. Then,

I =

Z
10

0

p
x

p
x+

p
10� x

dx

= �
Z

x=10

x=0

p
10� up

10� u+
p
u

du

= �
Z

u=0

u=10

p
10� up

10� u+
p
u

du

=

Z
u=10

u=0

p
10� up

10� u+
p
u

du

I =

Z
x=10

x=0

p
10� xp

10� x+
p
x

dx

The last equation follows from the previ-
ous one because u and x are dummy vari-
ables of integration. Now note thatp

x

p
x+

p
10� x

=

p
x+

p
10� x�

p
10� x

p
x+

p
10� x

= 1�
p
10� x

p
x+

p
10� x

Thus,Z
10

0

p
x

p
x+

p
10� x

dx

=

Z
10

0


1�

p
10� x

p
x+

p
10� x

�
dx

=

Z
10

0

1dx�
Z

10

0

p
10� x

p
x+

p
10� x

dx

I =

Z
10

0

1dx� I

2I = 10
I = 5

(b) Let u = a� x, so that
du = �dx Then,

I =

Z
a

0

f(x)

f(x) + f(a� x)
dx

= �
Z

0

a

f(a� u)

f(a� u) + f(u)
du

=

Z
a

0

f(a� u)

f(a� u) + f(u)
du

I =

Z
a

0

f(a� x)

f(a� x) + f(x)
dx

The last equation follows from the previ-
ous one because u and x are dummy vari-
ables of integration. Now note that

f(x)

f(x) + f(a� x)

=
f(x) + f(a� x)� f(a� x)

f(x) + f(a� x)

= 1� f(a� x)

f(a� x) + f(x)
Thus,Z

a

0

f(x)

f(x) + f(a� x)
dx

=

Z
a

0


1� f(a� x)

f(a� x) + f(x)

�
dx

=

Z
a

0

1dx�
Z

a

0

f(a� x)

f(a� x) + f(x)
dx

2I = a

I = a/2

52. (a) Let u = 6� x, so that du = �dx.
Then,

I =

Z
4

2

sin2(9� x)

sin2(9� x) + sin2(x+ 3)
dx

= �
Z

2

4

sin2(u+ 3)

sin2(u+ 3) + sin2(9� u)
du

=

Z
4

2

sin2(u+ 3)

sin2(u+ 3) + sin2(9� u)
du

=

Z
4

2

sin2(x+ 3)

sin2(x+ 3) + sin2(9� x)
dx

=

Z
4

2


1� sin2(9� x)

sin2(x+ 3) + sin2(9� x)

�
dx

I =

Z
4

2

1dx� I

2I = 2
I = 1

(b) Let u = 6� x, so that du = �dx.
Then,

I =

Z
4

2

f(9� x)

f(9� x) + f(x+ 3)
dx

= �
Z

2

4

f(u+ 3)

f(u+ 3) + f(9� u)
du

=

Z
4

2

f(u+ 3)

f(u+ 3) + f(9� u)
du

=

Z
4

2

f(x+ 3)

f(x+ 3) + f(9� x)
dx
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=

Z
4

2


1� f(9� x)

f(x+ 3) + f(9� x)

�
dx

I =

Z
4

2

1dx� I

2I = 2
I = 1

53. Let 6�u = x+4; that is, let u = 2�x, so that
du = �dx.
Then,

I =

Z
2

0

f(x+ 4)

f(x+ 4) + f(6� x)
dx

= �
Z

0

2

f(6� u)

f(6� u) + f(u+ 4)
du

=

Z
2

0

f(6� u)

f(6� u) + f(u+ 4)
du

=

Z
2

0

f(6� x)

f(6� x) + f(x+ 4)
dx

=

Z
2

0

f(6� x) + f(x+ 4)� f(x+ 4)

f(6� x) + f(x+ 4)
dx

=

Z
2

0


1� f(x+ 4)

f(6� x) + f(x+ 4)

�
dx

I =

Z
2

0

1dx� I

2I = 2
I = 1

54. (a) Let u = x

1/6, so that du = 1

6

x

�5/6

dx.
Then,

I =

Z
1

x

5/6 + x

2/3

dx

=

Z
x

�5/6

dx

1 + x

�1/6

=

Z
6 du

1 + 1

u

=

Z
6u

u+ 1
du

Let v = u+1, then dv = du and u = v�1.

Then, I =

Z
6u

u+ 1
du

=

Z
6(v � 1)

v

dv

=

Z ✓
6� 6

v

◆
dv

= 6v � 6 ln |v|+ c

= 6(u+ 1)� 6 ln |u+ 1|+ c

= 6(x1/6 + 1)� 6 ln |x1/6 + 1|+ c

(b) Let u = x

1/6, so that du = (1/6)x�5/6

dx,
which means 6u5

du = dx.
Thus,Z

1p
x+ 3

p
x

dx

= 6

Z
u

5

u

3 + u

2

du

= 6

Z
u

3

u+ 1
du

= 6

Z 
u

2 � u+ 1� 1

u+ 1

�
du

= 6


u

3

3
� u

2

2
+ u� ln |u+ 1|

�
+ c

= 2x1/2 � 3x1/3 + 6x1/6

= �6 ln |x1/6 + 1|+ c

(c) Let u = x

1/q, then q du = x

(1�q)/q

dx, and

I =

Z
1

x

(p+1)/q + x

p/q

dx

=

Z
x

(1�q)/q

dx

x

(p+2�q)/q + x

(p+1�q)/q

dx

= q

Z
1

u

p+2�q + u

p+1�q

du

= q

Z
u

q�1�p

u+ 1
du

The rest of the calculation will depend on
the values of p and q.

55. First let u = ln
p
x, so that du =

x

�1/2(1/2)x�1/2

dx, so that 2du =
1

x

dx. Then,
Z

1

x ln
p
x

dx = 2

Z
1

u

du

= 2 ln |u|+ c

= 2 ln | ln
p
x|+ c

Now use the substitution u = lnx, so that
du = 1

x

dx. Then,
Z

1

x ln
p
x

dx =

Z
1

x ln(x1/2)
dx

=

Z
1

x

�
1

2

�
lnx

dx

= 2

Z
1

u

du

= 2 ln |u|+ c

1

= 2 ln | lnx|+ c

1

The two results di↵er by a constant, and
so are equivalent, as can be seen as follows:
2 ln | ln

p
x| = 2 ln | ln(x1/2)|

= 2 ln

����
1

2
lnx

����

= 2


ln

1

2
+ ln | lnx|

�

= 2 ln
1

2
+ 2 ln | lnx|

= 2 ln | lnx|+ constant

56. The area of the region bounded by the curve
y = ⇡x� x

2 and x-axis, where 0  x  1 isZ
1

0

�
⇡x� x

2

�
dx
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=

✓
⇡

x

2

2
� x

3

3

◆����
1

0

=
⇡

2
� 1

3
.

The area of the region bounded by the curve
y =

�
⇡ cosx� cos2x

�
sinx and x-axis, where

0  x  ⇡

2

is
R
⇡/2

0

�
⇡ cosx� cos2x

�
sinxdx.

Let u = cosx and then du = � sinxdx.

u (0) = 1, u
⇣
⇡

2

⌘
= 0.

=

Z
0

1

�
�⇡u+ u

2

�
du

= �⇡

✓
u

2

2

◆
+

u

3

3

����
0

1

=
⇡

2
� 1

3
Thus, the areas are equal.

1.5

0.5

2.5

2.0

1.0

0.0

1.00.750.50.250.0

2.0

1.8

1.6

1.4

1.2

1.0

0.6

0.8

0.4

0.2

0.0

57. The point is that if we let u = x

4

, then we get
x = ±u

1/4

, and so we need to pay attention to
the sign of u and x. A safe way is to solve the
original indefinite integral in terms of x, and
then solve the definite integral using boundary
points in terms of x.Z

1

�2

4x4

dx =

Z
x=1

x=�2

u

1/4

du

=
4

5
u

5/4

����
x=1

x=�2

=
4

5
x

5

����
x=1

x=�2

=
4

5

⇣
15 � (�2)5

⌘
=

4

5
(1� (�32)) =

132

5

58. The problem is that it is not true on entire in-

terval [0,⇡] that cosx =
p

1� sin2x. This is
only true on the interval

⇥
0, ⇡

2

⇤
. To make this

substitution correctly, one must break up the
integral:Z

⇡

0

cosx(cosx)dx

=

Z
⇡/2

0

cosx(cosx)dx+

Z
⇡

⇡/2

cosx(cosx)dx

=

Z
x=⇡/2

x=0

p
1� u

2

du

�
Z

x=⇡

x=⇡/2

p
1� u

2

du

=

✓
u

2
+

sin�1

u

2

◆����
x=⇡/2

x=0

�
✓
u

2
+

sin�1

u

2

◆����
x=⇡

x=⇡/2

=

✓
sinx

2
+

sin�1(sinx)

2

◆����
x=⇡/2

x=0

�
✓
sinx

2
+

sin�1(sinx)

2

◆����
x=⇡

x=⇡/2

=

✓
1

2
+

⇡

4

◆
� 0� 0 +

✓
1

2
+

⇡

4

◆

= 1 +
⇡

2

59. Let u = 1/x, so that du = �1/x2

dx, which
means that �1/u2

du = dx. Then,Z
1

0

1

x

2 + 1
dx = �

Z
1

1/a

1/u2

1/u2 + 1
du

=

Z
1/a

1

1

1 + u

2

du =

Z
1/a

1

1

1 + x

2

dx

The last equation follows from the previous one
because u and x are dummy variables of inte-
gration. Thus,

tan�1

x

��1
a

= tan�1

x

��1/a
1

tan�11� tan�1

a = tan�1

1

a

� tan�11

tan�1

a+ tan�1

1

a

= 2tan�11

tan�1

a+ tan�1

1

a

=
⇡

2

60. If u = 1/x, then du = �dx/x

2 andZ
1

|x|
p
x

2 � 1
dx

=

Z
1

x

2

p
x

2 � 1
dx

= �
Z

1p
1� u

2

du

= �sin�1

u+ c

= �sin�11/x+ c
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On the other hand,Z
1

|x|
p
x

2 � 1
dx = sec�1

x+ c

1

So �sin�11/x = sec�1

x+ c

2

.

Let x = 1, we get
sin�11 = sec�11 + c

2

⇡

2
= 0 + c

2

c

2

=
⇡

2

61. x =

R
2

�2

x

p
4� x

2

dx

R
2

�2

p
4� x

2

dx

Examine the denominator of x, the graph ofp
4� x

2, which is indeed a semicircle, is sym-
metric over the two intervals [�2, 0] and [0, 2],
while multiplying by x changes the symmetry
into anti-symmetry. In other words,Z

0

�2

x

p
4� x

2

dx = �
Z

2

0

x

p
4� x

2

dx

so thatZ
2

�2

x

p
4� x

2

dx

=

Z
0

�2

x

p
4� x

2

dx+

Z
2

0

x

p
4� x

2

dx = 0

Hence x = 0.
Now the integral

R
2

�2

p
4� x

2

dx is the area of
a semicircle with radius 2, thus its value is
(1/2)⇡22 = 2⇡. Then

y =

R
2

�2

�p
4� x

2

�
2

dx

2
R
2

�2

p
4� x

2

dx

=

R
2

�2

�
4� x

2

�
dx

2.2⇡

=

R
0

�2

�
4� x

2

�
dx+

R
2

0

�
4� x

2

�
dx

4⇡

=
2
R
2

0

�
4� x

2

�
dx

4⇡

=

R
2

0

�
4� x

2

�
dx

2⇡

=
1

2⇡

✓
4x� x

3

3

◆����
2

0

=
8

3⇡

62. These animals are likely to be found 0.7 miles
from the pond. Let u = �x

2, then du =
�2xdx, u(0) = 0, u(2) = �4 andZ

2

0

xe

�x

2

dx = �1

2

Z �4

0

e

u

du

= �1

2

�
e

�4 � 1
�
=

1� e

�4

2

0.4

0.2

0.3

x

20 0.5
0

1 1.5

0.1

63. V (t) = V

p

sin(2⇡ft)V 2(t)

= V

2

p

sin2(2⇡ft)

= V

2

p

✓
1

2
� 1

2
cos (4⇡ft)

◆

=
V

2

p

2
(1� cos (4⇡ft))

rms =

s

f

Z
1/f

0

V

2 (t) dt

=

s

f

Z
1/f

0

V

2

p

2
(1� cos (4⇡ft)) dt

=
V

p

p
fp
2

s✓
t� sin (4⇡ft)

4⇡f

◆����
1/f

0

=
V

p

p
fp
2

r
1

f

=
V

pp
2

64.

Z
2

�2

f

2 (t)dt

=

Z �1

�2

1dt+

Z
1

�1

t

2

dt+

Z
2

1

1dt

= 1 +
2

3
+ 1 =

8

3

rms =

s
1

4

Z
2

1

f

2 (t) dt

=

s
1

4

✓
8

3

◆
=

r
2

3

t
0

1

2

0.5

0
1

-0.5

-1

-1-2
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4.7 Numerical Integration

1. Midpoint Rule:

1R

0

�
x

2 + 1
�
dx

⇡ 1

4


f

✓
1

8

◆
+ f

✓
3

8

◆
+ f

✓
5

8

◆
+ f

✓
7

8

◆�

=
85

64
Trapezoidal Rule:

1R

0

�
x

2 + 1
�
dx

⇡ 1� 0

2 (4)


f (0) + 2f

✓
1

4

◆
+ 2f

✓
1

2

◆
+ 2f

✓
3

4

◆

+f (1)]

=
43

32
Simpson’s Rule:

1R

0

�
x

2 + 1
�
dx

=
1� 0

3 (4)


f (0) + 4f

✓
1

4

◆
+ 2f

✓
1

2

◆
+ 4f

✓
3

4

◆

+f (1)]

=
4

3

2. Midpoint Rule:

2R

0

�
x

2 + 1
�
dx

⇡ 1

2


f

✓
1

4

◆
+ f

✓
3

4

◆
+ f

✓
5

4

◆
+ f

✓
7

4

◆�

=
1

2

✓
17

16
+

25

16
+

41

16
+

65

16

◆

=
37

8
Trapezoidal Rule:

2R

0

�
x

2 + 1
�
dx

⇡ 1

4


f (0) + 2f

✓
1

2

◆
+ 2f (1) + 2f

✓
3

2

◆

+f (2)]

=
1

4

✓
1 +

5

2
+ 4 +

13

2
+ 5

◆

=
19

4
Simpson’s Rule:

2R

0

�
x

2 + 1
�
dx

=
1

6


f (0) + 4f

✓
1

2

◆
+ 2f (1) + 4f

✓
3

2

◆

+f (2)]

=
1

6
(1 + 5 + 4 + 13 + 5)

=
14

3

3. Midpoint Rule:

3R

1

1

x

dx

⇡ 3� 1

4


f

✓
5

4

◆
+ f

✓
7

4

◆
+ f

✓
9

4

◆
+ f

✓
11

4

◆�

=
1

2

✓
4

5
+

4

7
+

4

9
+

4

11

◆

=
3776

3465

Trapezoidal Rule:

3R

1

1

x

dx

⇡ 3� 1

2 (4)


f (1) + 2f

✓
3

2

◆
+ 2f (2) + 2f

✓
5

2

◆

+f (3)]

=
1

4

✓
1 +

4

3
+ 1 +

4

5
+

1

3

◆

=
67

60

Simpson’s Rule:

3R

1

1

x

dx

=
3� 1

3 (4)


f (1) + 4f

✓
3

2

◆
+ 2f (2) + 4f

✓
5

2

◆

+f (3)]

=
1

6

✓
1 +

8

3
+ 1 +

8

5
+

1

3

◆

=
11

10

4. Midpoint Rule:

1R

�1

�
2x� x

2

�
dx

⇡ 1

2


f

✓
�3

4

◆
+ f

✓
�1

4

◆
+ f

✓
1

4

◆
+ f

✓
3

4

◆�

=
1

2

✓
�33

16
� 9

16
+

7

16
+

15

16

◆

=
�5

8

Trapezoidal Rule:

1R

�1

�
2x� x

2

�
dx

⇡ 1

4


f (�1) + 2f

✓
�1

2

◆
+ 2f (0) + 2f

✓
1

2

◆

+f (1)]
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=
1

4

✓
�3� 5

2
+ 0 +

3

2
+ 1

◆

= �3

4
Simpson’s Rule:
1R

�1

�
2x� x

2

�
dx

⇡ 1

6


f (�1) + 4f

✓
�1

2

◆
+ 2f (0) + 4f

✓
1

2

◆

+f (1)]

=
1

6
(�3� 5 + 0 + 3 + 1)

= �2

3

5. Midpoint Rule:

ln 4� 1.366162 = 1.386294� 1.366162
= 0.020132

Trapezoidal Rule:

ln 4� 1.428091 = 1.386294� 1.428091
= �0.041797

Simpson’s Rule:

ln 4� 1.391621 = 1.386294� 1.391621
= �0.005327

Hence, the approximation using Simpson’s
Rule is too small and the Approximation us-
ing Trapezoidal Rule is too large.

6. Midpoint Rule:
ln 8� 1.987287 = 2.079442� 1.987287
= 0.092155
Trapezoidal Rule:
ln 8� 2.289628 = 2.079442� 2.289628
= �0.210186
Simpson’s Rule:
ln 8� 2.137327 = 2.079442� 2.137327
= �0.057885
Hence, the approximation using Simpson’s
Rule is too small and the Approximation us-
ing Trapezoidal Rule is too large.

7. Midpoint Rule:
sin 1� 0.843666 = 0.841471� 0.843666
= �0.002195
Trapezoidal Rule: sin 1 � 0.837084 =
0.841471� 0.837084
= 0.004387
Simpson’s Rule:
sin 1� 0.841489 = 0.841471� 0.841489
= �0.000018
Hence, the approximation using Simpson’s
Rule is too small and the Approximation us-
ing Trapezoidal Rule is too large.

8. Midpoint Rule: e

2 � 7.322986 = 7.389056 �
7.322986
= 0.06607
Trapezoidal Rule: e

2 � 7.52161 = 7.389056 �
7.52161
= �0.132554
Simpson’s Rule: e

2 � 7.391210 = 7.389056 �
7.391210
= �0.002154
Hence, the approximation using Simpson’s
Rule is too small and the Approximation us-
ing Trapezoidal Rule is too large.

9.
⇡R

0

cosx2

dx

n Midpoint Trapezoidal Simpson

10 0.5538 0.5889 0.5660
20 0.5629 0.5713 0.5655
50 0.5652 0.566 0.5657

10.

⇡

4R

0

sin⇡x2

dx

n Midpoint Trapezoidal Simpson

10 0.386939 0.385578 0.386476
20 0.386600 0.386259 0.386485
50 0.386504 0.386450 0.386486

11.
2R

0

e

�x

2

dx

n Midpoint Trapezoidal Simpson

10 0.88220 0.88184 0.88207
20 0.88211 0.88202 0.88208
50 0.88209 0.88207 0.88208

12.
3R

0

e

�x

2

dx

n Midpoint Trapezoidal Simpson

10 0.886210 0.886202 0.886207
20 0.886208 0.886206 0.886207
50 0.886207 0.886207 0.886207

13.
⇡R

0

e

cos x

dx

n Midpoint Trapezoidal Simpson

10 3.9775 3.9775 3.9775
20 3.9775 3.9775 3.9775
50 3.9775 3.9775 3.9775

14.
1R

0

3
p
x

2 + 1dx

n Midpoint Trapezoidal Simpson

10 3.333017 3.336997 3.334337
20 3.334012 3.335007 3.334344
50 3.334291 3.334450 3.334344
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15. The exact value of this integral is
1R

0

5x4

dx = x

5

��1
0

= 1� 0 = 1

n Midpoint EM

n

10 1.00832 8.3⇥ 10�3

20 1.00208 2.1⇥ 10�3

40 1.00052 5.2⇥ 10�3

80 1.00013 1.3⇥ 10�3

n Trapezoidal ET

n

10 0.98335 1.6⇥ 10�2

20 0.99583 4.1⇥ 10�3

40 0.99869 1.0⇥ 10�3

80 0.99974 2.6⇥ 10�4

n Simpson ES

n

10 1.000066 6.6⇥ 10�5

20 1.0000041 4.2⇥ 10�6

40 1.00000026 2.6⇥ 10�7

80 1.00000016 1.6⇥ 10�8

16. The exact value of this integral is
2R

1

1

x

dx = ln 2

n Midpoint EM

n

10 0.692835 3.1⇥ 10�4

20 0.693069 7.8⇥ 10�5

40 0.693128 2.0⇥ 10�5

80 0.693142 4.9⇥ 10�6

n Trapezoidal ET

n

10 0.693771 6.2⇥ 10�4

20 0.693303 1.6⇥ 10�4

40 0.693186 3.9⇥ 10�5

80 0.693157 9.8⇥ 10�6

n Simpson ES

n

10 0.693150 3.1⇥ 10�6

20 0.693147 1.9⇥ 10�7

40 0.693147 1.2⇥ 10�8

80 0.693147 8.0⇥ 10�10

17. The exact value of this integral is
⇡R

0

cosxdx = sinx|⇡
0

= 0

n Midpoint EM

n

10 0 0
20 0 0
40 0 0
80 0 0

n Trapezoidal ET

n

10 0 0
20 0 0
40 0 0
80 0 0

n Simpson ES

n

10 0 0
20 0 0
40 0 0
80 0 0

18. The exact value of this integral is
⇡

4Z

0

cosxdx =
1p
2

n Midpoint EM

n

10 0.707289 1.8⇥ 10�4

20 0.707152 4.5⇥ 10�5

40 0.707118 1.1⇥ 10�5

80 0.707110 2.8⇥ 10�6

n Trapezoidal ET

n

10 0.706743 3.6⇥ 10�4

20 0.707016 9.1⇥ 10�5

40 0.707084 2.3⇥ 10�5

80 0.707101 5.7⇥ 10�6

n Simpson ES

n

10 0.7071087 1.5⇥ 10�7

20 0.7071068 9.5⇥ 10�9

40 0.7071068 6⇥ 10�10

80 0.7071068 6⇥ 10�10

19. If you double the error in the Midpoint Rule is
divided by 4, the error in the Trapezoidal Rule
is divided by 4 and the error in the Simpson’s
Rule is divided by 16.

20. If you halve the interval length b� a the error
in the Midpoint Rule is divided by 8, the error
in the Trapezoidal Rule is divided by 8 and the
error in the Simpson’s Rule is divided by 32.

21. Trapezoidal Rule:
2R

0

f (x) dx

⇡ 2� 0

2 (8)
[f (0) + 2f (0.25) + 2f (0.5)

+ 2f (0.75) + 2f (1) + 2f (1.25) + 2f (1.5)
+ 2f (1.75) + f (2)]

=
1

8
[4.0 + 9.2 + 10.4 + 9.6 + 10 + 9.2 + 8.8

+ 7.6 + 4.0]
= 9.1
Simpson’s Rule:
2R

0

f (x) dx

⇡ 2� 0

3 (8)
[f (0) + 4f (0.25) + 2f (0.5)

+ 4f (0.75) + 2f (1) + 4f (1.25) + 2f (1.5)
+4f (1.75) + f (2)]
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=
1

12
[4.0 + 18.4 + 10.4 + 19.2 + 10.0

+18.4 + 8.8 + 15.2 + 4.0]
⇡ 9.033

22. Trapezoidal Rule:
2R

0

f (x) dx

⇡ 0.25

2
[f (0) + 2f (0.25) + 2f (0.5)

+2f (0.75) + 2f (1) + 2f (1.25) + 2f (1.5)
+2f (1.75) + f (2)]

=
0.25

2
[(1.0) + 2(0.6) + 2(0.2) + 2(�0.2)

+ 2(�0.4) + 2(0.4) + 2(0.8)
+ 2(1.2) + (2.0)]
= 1.025.
Simpson’s Rule:
2R

0

f (x) dx

⇡ 0.25

3
[f (0) + 4f (0.25) + 2f (0.5)

+ 4f (0.75) + 2f (1) + 4f (1.25) + 2f (1.5)
+4f (1.75) + f (2)]

=
0.25

3
[(1.0) + 4 (0.6) + 2 (0.2) + 4 (�0.2)

+2 (�0.4) + 4 (0.4) + 2 (0.8) + 4 (1.2) + (2.0)]
⇡ 1.016667

23. (a) f (x) =
1

x

, f

00 (x) =
2

x

3

, f

(4) (x) =
24

x

5

.

Then K = 2, L = 24. Hence according to
Theorems 9.1 and 9.2,

|ET

4

|  2
(4� 1)3

12 · 42 ⇡ 0.281

|EM

4

|  2
(4� 1)3

24 · 42 ⇡ 0.141

|ES

4

|  24
(4� 1)5

180 · 42 ⇡ 0.127

(b) Using Theorems 9.1 and 9.2, and the cal-
culation in Example 9.10, we find the
following lower bounds for the number
of steps needed to guarantee accuracy of
10�7 in Exercise 5:

Midpoint:

r
2 · 33

24 · 10�7

⇡ 4745

Trapezoidal:

r
2 · 33

14 · 10�7

⇡ 6709

Simpson’s:
4

r
24 · 35

180 · 10�7

⇡ 135

24. (a) f(x) = cosx, f 00(x) = � cosx,
f

(4)(x) = cosx.Then K = L = 1.

Hence according to
Theorems 9.1 and 9.2,

|ET

4

|  1
1

12 · 42 ⇡ 0.005

|EM

4

|  1
1

24 · 42 ⇡ 0.003

|ES

4

|  1
1

180 · 44 ⇡ 2.17⇥ 10�5

(b) Midpoint: |E
n

|K (b� a)3

24n2

=
1

24n2

We want
1

24n2

 107

24n2 � 107

n

2 � 107

24

n �
r

107

24
⇡ 645.5

So need n � 646.

Trapezoid: |ET

n

|K (b� a)3

12n2

=
1

12n2

We want n2 � 107

12

n �
r

107

12
⇡ 912.87

n � 913

Simpson: |ES

n

|L (b� a)5

180n4

=
1

180n4

1

180n4

 10�7

180n4 � 107

n

4 � 107

180

n � 4

r
107

180
⇡ 15.4

So need n � 16.

25. (a) f(x) = lnx. Hence, f

0(x) = 1

x

and
f

00(x) = � 1

x

2 . Therefore |f 00(x)|  1.
The error using Trapezoidal Rule is

|E (T
n

)|  1
(2� 1)3

12n2

 10�6

|E (T
n

)|  1

12n2

 10�6

Solving for n,

|E (T
n

)|  1

12
106  n

2

n �
r

1

12
106

⇡ 288.67

(b) f(x) = lnx. Hence, f 0(x) = 1

x

, f

00(x) =
� 1

x

2 . Therefore |f 00(x)|  1.

The error using Midpoint Rule is
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|E (M
n

)|  1
(2� 1)3

24n2

 10�6

|E (M
n

)|  1

24n2

 10�6

Solving for n,

|E (M
n

)|  1

24
106  n

2

n �
r

1

24
106

⇡ 204.12

(c) f(x) = lnx. Hence, f 0(x) =
1

x

,

f

00(x) = � 1

x

2

, f

000(x) =
2

x

3

and f

(4) (x) =

� 6

x

4

. Therefore
���f (4) (x)

���  6.

The error using Simpson’s Rule is

|E (S
n

)|  6
(2� 1)4

180n4

 10�6

|E (S
n

)|  1

30n4

 10�6

Solving for n,

|E (S
n

)|  1

30
106  n

4

n � 4

r
1

30
106

⇡ 13.5

26. (a) f(x) = x lnx. Hence, f 0(x) = 1+lnx and

f

00(x) =
1

x

. Therefore |f 00(x)|  1.

|E (T
n

)|  1
(4� 1)3

12n2

 10�6

|E (T
n

)|  27

12n2

 10�6

Solving for n,

|E (T
n

)|  27

12
106  n

2

n �
r

27

12
106

= 1500.

(b) f(x) = x lnx. Hence, f 0(x) = 1 + lnx,

f

00(x) =
1

x

. Therefore |f 00(x)|  1.

The error using Trapezoidal Rule is

|E (M
n

)|  1
(4� 1)3

24n2

 10�6

|E (M
n

)|  27

24n2

 10�6

Solving for n,

|E (M
n

)|  27

24
106  n

2

n �
r

27

24
106

⇡ 1060.66

(c) f(x) = x lnx. Hence, f 0(x) = 1 + lnx,

f

00(x) =
1

x

, f

000(x) = � 1

x

2

and f

(4) (x) =
2

x

3

.

Therefore
���f (4) (x)

���  2.

The error using Simpson’s Rule is

|E (S
n

)|  2
(4� 1)4

180n4

 10�6

|E (S
n

)|  9

10n4

 10�6

Solving for n,

|E (S
n

)|  9

10
106  n

4

n � 4

r
9

10
106

⇡ 30.8

27. (a) f(x) = e

x

2

. Hence, f 0(x) = 2xex
2

,

f

00(x) = 2ex
2 �

2x2 + 1
�
. Therefore,

|f 00(x)|  6e ⇡ 16.3097.
The error using Trapezoidal Rule is

|E (T
n

)|  16.3097
(1� 0)3

12n2

 10�6

|E (T
n

)|  16.3097

12n2

 10�6

Solving for n,

|E (T
n

)|  16.3097

12
106  n

2

n �
r

16.3097

12
106

⇡ 1165.

(b) f(x) = e

x

2

. Hence, f 0(x) = 2xex
2

,

f

00(x) = 2ex
2 �

2x2 + 1
�
. Therefore,

|f 00(x)|  6e ⇡ 16.3097.
The error using Trapezoidal Rule is

|E (M
n

)|  16.3097
(1� 0)3

24n2

 10�6

|E (M
n

)|  16.3097

24n2

 10�6

Solving for n,

|E (M
n

)|  16.3097

24
106  n

2

n �
r

16.3097

24
106

⇡ 824.36

(c) f(x) = e

x

2

. Hence,

f

0(x) = 2xex
2

,

f

00(x) = 2ex
2 �

2x2 + 1
�
,

f

000(x) = 4ex
2 �

2x3 + 3x
�

f

(4) (x) = 4ex
2 �

4x4 + 12x2 + 3
�
.
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Therefore, |f 00(x)|  76e ⇡ 206.5823.
The error using Simpson’s Rule is

|E (S
n

)|  206.5823
(1� 0)4

180n4

 10�6

|E (S
n

)|  206.5823

180n2

 10�6

Solving for n,

|E (S
n

)|  206.5823

180
106  n

2

n � 4

r
206.5823

180
106

⇡ 32.7307.

28. (a) f(x) = xe

x

Hence,
f

0(x) = e

x (x+ 1)
f

00(x) = e

x (x+ 2)
Therefore,

|f 00(x)|  4e2 ⇡ 21.21
The error using Midpoint Rule is

|E (M
n

)|  21.21
(2� 1)3

24n2

 10�6

|E (M
n

)|  21.21

24n2

 10�6

Solving for n,

|E (M
n

)|  2402.0293

24
106  n

2

n �
r

21.21

24
106

⇡ 940.0797838

(b) f(x) = xe

x

Hence,
f

0(x) = e

x (x+ 1)
f

00(x) = e

x (x+ 2)
Therefore,

|f 00(x)|  4e2 ⇡ 21.21
The error using Trapezoidal Rule is

|E (T
n

)|  21.21
(2� 1)3

12n2

 10�6

|E (T
n

)|  21.21

12n2

 10�6

Solving for n,

|E (T
n

)|  21.21

12
106  n

2

n �
r

21.21

12
106

⇡ 1329.473580

(c) f(x) = xe

x

Hence,

f

0(x) = e

x (x+ 1) , f 00(x) = e

x (x+ 2)
f

000(x) = e

x (x+ 3)
f

(4) (x) = e

x (x+ 4)
Therefore,

���f (4) (x)
���  6e2 ⇡ 31.82

The error using Simpson’s Rule is

|E (S
n

)|  31.82
(2� 1)4

180n4

 10�6

|E (S
n

)|  31.82

180n2

 10�6

Solving for n,

|E (S
n

)|  31.82

180
106  n

2

n � 4

r
31.82

180
106

⇡ 20.50486515

29. We use K = 60, L = 120

n EM

n

Error Bound

10 8.3⇥ 10�3 2.5⇥ 10�2

n ET

n

Error Bound

10 1.6⇥ 10�2 5⇥ 10�2

n ES

n

Error Bound

10 7.0⇥ 10�5 6.6⇥ 10�3

30. We use K = L = 1.

n EM

n

Error Bound

10 0 1.3⇥ 10�2

n ET

n

Error Bound

10 0 2.6⇥ 10�2

n ES

n

Error Bound

10 0 1.7⇥ 10�4

31. (a) Left Endpoints:Z
2

0

f(x)dx

⇡ 2� 0

4
[f(0) + f(.5) + f(1)

+f(1.5)]

=
1

2
(1 + .25 + 0 + .25)

= .75

(b) Midpoint Rule:Z
2

0

f(x)dx

⇡ 2� 0

4
[f(.25) + f(.75)

+f(1.25) + f(1.75)]

=
1

2
(.65 + .15 + .15 + .65)

= .7

(c) Trapezoidal Rule:Z
2

0

f(x)dx
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⇡ 2� 0

2(4)
[f(0) + 2f(.5) + 2f(1)

+2f(1.5) + f(2)]

=
1

4
(1 + .5 + 0 + .5 + 1)

= .75

(d) Simpson’s rule:

2Z

0

f(x) dx

=
2

12
[f(0) + 4f(0.5) + 2f(1)

+4f(1.5) + f(2)]

=
1

6
[1 + 4(0.25) + 2(0) + 4(0.25) + 1]

=
1

6
[4]

= 0.66666

32. (a) Left Endpoints:Z
2

0

f(x)dx

⇡ 1

2
(f(0) + f(.5) + f(1) + f(1.5))

=
1

2
(0.5 + 0.8 + 0.5 + 0.1)

= 0.95

(b) Midpoint Rule:Z
2

0

f(x) dx

⇡ 1

2
(0.7 + 0.8 + 0.4 + 0.2)

= 1.05

(c) Trapezoidal Rule:Z
2

0

f(x)dx

⇡ 1

4
[0.5 + 2(0.8) + 2(0.5) + 2(0.1)

+ 0.5]
= 0.95

(d) Simpson’s rule:

2Z

0

f(x) dx

=
2� 0

12
[f(0) + 4f(0.5) + 2f(1)

+4f(1.5) + f(2)]

=
1

6
[0.5 + 4(0.9) + 2(0.5) + 4(0.1) + 0.5]

=
1

6
[0.5 + 3.6 + 1 + 0.4 + 0.5]

= 1

33. (a) Midpoint Rule:

M

n

<

bR
a

f (x)dx

(b) Trapezoidal Rule:

T

n

>

bR
a

f (x)dx

(c) Simpson’s Rule:
Not enough information.

34. (a) Midpoint Rule:

M

n

<

bR
a

f (x)dx

(b) Trapezoidal Rule:

T

n

>

bR
a

f (x)dx

(c) Simpson’s Rule:

S

n

�
bR
a

f (x)dx

35. (a) Midpoint Rule:

M

n

>

bR
a

f (x)dx

(b) Trapezoidal Rule:

T

n

<

bR
a

f (x)dx

(c) Simpson’s Rule:
Not enough information.

36. (a) Midpoint Rule: M
n

>

bR
a

f (x)dx

(b) Trapezoidal Rule: T
n

<

bR
a

f (x)dx

(c) Simpson’s Rule: S
n


bR
a

f (x)dx

37. (a) Midpoint Rule: M
n

<

bR
a

f (x)dx

(b) Trapezoidal Rule: T
n

>

bR
a

f (x)dx

(c) Simpson’s Rule: S
n

=
bR
a

f (x)dx

38. (a) Midpoint Rule: M
n

=
bR
a

f (x)dx

(b) Trapezoidal Rule: T
n

=
bR
a

f (x)dx

(c) Simpson’s Rule: S
n

=
bR
a

f (x)dx
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39. 1

2

(R
L

+R

R

)

=
n�1P
i=0

f (x
i

) +
nP

i=1

f (x
i

)

= f (x
0

) +
n�1P
i=1

f (x
i

) +
n�1P
i=1

f (x
i

) + f (x
n

)

= f (x
0

) + 2
n�1P
i=1

f (x
i

) + f (x
n

) = T

n

40.

x

y

0 0.5 1

2

1

41. I

1

=
1R

0

p
1� x

2

dx is one fourth of the area of

a circle with radius 1, so

1Z

0

p
1� x

2

dx =
⇡

4

I

2

=

1Z

0

1

1 + x

2

dx = arctan x|1
0

= arctan 1� arctan 0 =
⇡

4
n S

n

(
p
1� x

2) S

n

( 1

1+x

2 )

4 0.65652 0.78539
8 0.66307 0.78539

The second integral

Z
1

1 + x

2

dx provides a

better algorithm for estimating ⇡.

42.

hZ

�h

�
Ax

2 +Bx+ c

�
dx

=

✓
A

3
x

3 +
B

2
x

2 + cx

◆����
h

�h

=
2

3
Ah

3 + 2Ch

=
h

3

�
2Ah2 + 6C

�

=
h

3
[f (�h) + 4f (0) + f (h)]

43. (a)

1Z

�1

xdx = 0

✓
� 1p

3

◆
+

✓
1p
3

◆
= 0

(b)

1Z

�1

x

2

dx =
2

3
✓
� 1p

3

◆
2

+

✓
1p
3

◆
3

=
2

3

(c)

1Z

�1

x

3

dx = 0

✓
� 1p

3

◆
3

+

✓
1p
3

◆
3

= 0

44. Simpson’s Rule with n = 2 :
1Z

�1

⇡ cos
⇣
⇡x

2

⌘
dx

⇡ 2

6

✓
f (�1) + 4f

✓
�1

3

◆
+ f (1)

◆

=
1

3


⇡ cos

✓
�⇡

2

◆
+ 4⇡ cos

✓
�⇡

6

◆
+ ⇡ cos

⇣
⇡

2

⌘�

=
⇡

3

⇣
0 + 2

p
3 + 0

⌘
=

2⇡p
3

⇡ 3.6276

Gaussian quadrature:
1Z

�1

⇡ cos
⇣
⇡x

2

⌘
dx

⇡ f

✓
�1p
3

◆
+ f

✓
1p
3

◆

= ⇡ cos

✓
� ⇡

2
p
3

◆
+ ⇡ cos

✓
⇡

2
p
3

◆

⇡ 3.87164

45. Simpson’s Rule is not applicable because
sinx

x

is not defined at x = 0. L = lim
x!0

sinx

x

= lim
x!0

cosx

1
= cos 0 = 1

The two functions f (x) and
sinx

x

di↵er only

at one point,so
⇡R

0

f (x) dx =
⇡R

0

sinx

x

dx We can

now apply Simpson’s Rule with n = 2 :
⇡R

0

f (x) dx

⇡ ⇡

6

✓
1 +

4 sin⇡
⇡

2

+
sin⇡

⇡

◆

=
⇡

2

✓
1

3
+

8

3⇡

◆
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⇡ ⇡

2
· 1.18

46. The function
sinx

x

is not defined at x = 0, and

it is symmetric across the y-axis. We define a
new function

f(x) =

⇢
sinx/x if x 6= 0
1 if x = 0

over the interval [0,⇡/2], and

Z
⇡/2

�⇡/2

sinx

x

dx =

2

Z
⇡/2

0

f(x)dx

Use Simpson’s Rule on n = 2:Z
⇡/2

0

f(x)dx

⇡ ⇡

12

 
1 +

p
2

2

⇡/4
+

1

⇡/2

!

⇡ ⇡

2
· 15.22

Hence
Z

⇡/2

�⇡/2

sinx

x

dx ⇡ ⇡

2
· 30.44

47. Let I be the exact integral. Then we have

T

n

� I ⇡ �2(M
n

� I)
T

n

� I ⇡ 2I � 2M
n

T

n

+ 2M
n

⇡ 3I
T

n

3
+

2

3
M

n

⇡ I

48. The text does not say this, but we want to
show that

1

3

T

n

+ 2

3

M

n

= S

2n

In this case, we have data points:
x

0

, x

1

, x

2

, x

3

, ..., x

2n

.

The midpoint rule will use the points:
x

1

, x

3

, ..., x

2n�1

.

The trapezoidal rule will use the points:
x

0

x

2

, ..., x

2n

.

1

3
T

n

+
2

3
M

n

=

✓
1

3

◆✓
b� a

2n

◆
[f (x

0

) + 2f (x
2

) + 2f (x
4

)

+ ...+ 2f (x
2n�2

) + f (x
2n

)]

+

✓
2

3

◆✓
b� a

n

◆
⇥ [f (x

1

) + f (x
3

)

+ f (x
5

) + ...+ f (x
2n�1

) + f (x
2n

)]

=

✓
b� a

2n

◆
[f (x

0

) + 4f (x
1

) + 2f (x
2

)

+ 4f (x
3

) + 2f (x
4

) + ...+ 2f (x
2n�2

)
+ 4f (x

2n�1

) + f (x
2n

)]
= S

2n

49. f(x) + f(1� x)

=
x

2

2x2 � 2x+ 1
+

(1� x)2

2(1� x)2 � 2(1� x) + 1

=
x

2

2x2 � 2x+ 1

+
(1� x)2

2 (1� 2x+ x

2)� 2 + 2x+ 1

=
x

2

2x2 � 2x+ 1
+

(1� x)2

2x2 � 2x+ 1

=
x

2

x

2 + (x� 1)2
+

(1� x)2

(1� x)2 + x

2

=
x

2 + (1� x)2

x

2 + (1� x)2

= 1
By Trapezoidal Rule,
1Z

0

f (x) dx

=
(1� 0)

2n
[f(x

0

) + 2f(x
1

)

+ 2f(x
2

) + ...+ 2f(x
n�1

) + f(x
n

)]

=
(1� 0)

2n


f(0) + 2f(

1

n

)

+ 2f(
2

n

) + ...+ 2f(
n� 1

n

) + f(1)

�

as f(x) + f(1� x) = 1,
we have,
f(0) + f(1) = 1,

f(
1

n

) + f(
n� 1

n

) = 1

f(
2

n

) + f(
n� 2

n

) = 1
.

.

.

f(
n� 1

n

) + f(
1

n

) = 1

Adding the above n equations, we get

f(0) + 2f(

1

n

) + ..+ 2f(
n� 1

n

) + f(1)

�
= n

Hence,
1Z

0

f (x) dx =
1

2n
(n) =

1

2

50.

nZ

0

x

n

dx

=

✓
n� 0

2n

◆
[f

0

+ 2f
1

+ 2f
2

+ ...+ 2f
n�1

+ f

n

]

=
1

2
[f(0) + 2f(1) + 2f(2) + 2f(3) + .........

+ 2f(n� 1) + f(n)]

=
1

2
[(nn) + 2(1n + 2n + 3n + .......+ (n� 1)n]
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Now
nZ

0

x

n

dx =
x

n+1

n+ 1

����
n

0

=
n

n+1

n+ 1

The sum of the areas of the trapezoids is
greater than the area defined by the curve

over the interval 0 to n.
n

n+1

n+ 1
<

n

n

2
+ 1n +

2n + 3n + ...+ (n� 1)n

n

n+1

n+ 1
+

n

n

2
< 1n + 2n ++...+ (n� 1)n + n

n

2nn+1 + n

n+1 + n

n

2(n+ 1)
< 1n + 2n + .........+ n

n

3nn+1 + n

n

2(n+ 1)
< 1n + 2n + 3n + ..........+ n

n

(3n+ 1)

2(n+ 1)
n

n

< 1n + 2n + 3n + .........+ n

n

4.8 The Natural

Logarithm As An

Integral

1. ln 4 = ln 4� ln 1 = lnx|4
1

=

Z
4

1

dx

x

0.5

x
5

1.25

43

0.25

21

0.75

0

1.0

0.0

1.5

2. ln 5 =

Z
5

1

dx

x

x
5

1.25

0.75

3

0.25

1

1.5

4

0.5

0

1.0

2 6

0.0

3. ln 8.2 =

Z
8.2

1

dx

x

1.25

0.75

0.25

x
62

1.0

0.0

80

0.5

4

1.5

4. ln 24 =

Z
24

1

dx

x

x
25

1.25

0.75

15

0.25

5

1.5

20

0.5

0

1.0

10 30

0.0

5. ln 4 =

Z
4

1

dx

x

⇡ 3

12

✓
1

1
+ 4

1

1.75
+ 2

1

1.5
+ 4

1

3.25
+

1

4

◆

⇡ 1.3868

6. ln 5 =

Z
5

1

dx

x

⇡ 4

12

✓
1

1
+ 4

1

2
+ 2

1

3
+ 4

1

4
+

1

5

◆

⇡ 1.6108

7. (a) Simpson’s Rule with n = 32 :

ln 4 =
R
4

1

dx

x

⇡ 1.386296874
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(b) Simpson’s Rule with n = 64 :

ln 4 =
R
4

1

dx

x

⇡ 1.386294521

8. (a) Simpson’s Rule with n = 32 :

ln 4 =
R
4

1

dx

x

⇡ 1.609445754

(b) Simpson’s Rule with n = 64 :

ln 4 =
R
4

1

dx

x

⇡ 1.609438416

9.
7

2
ln 2

10. ln 2

11. ln

 
32 ·

p
3

9

!
= 1

2

ln 3

12. ln

✓
1

9

· 1

9

3

◆
= �5 ln 3

13.
1p

x

2 + 1
.

1

2

�
x

2 + 1
�� 1

2
.2x

14.
5x4 sinx cosx+ x

5cos2x� x

5 sinx

x

5 sinx cosx

15.
x

5 + 1

x

4

·
4x3

�
x

5 + 1
�
� x

4

�
5x4

�

(x5 + 1)2

16.

r
x

5 + 1

x

3

· 1
2
·
✓

x

3

x

5 + 1

◆�1/2

·
3x2

�
x

5 + 1
�
� x

3

�
5x4

�

(x5 + 1)2

17.
d

dx

1

2

 
ln
�
x

2 + 1
�

ln 7

!

=
1

2 ln 7

d

dx

�
ln
�
x

2 + 1
��

=
1

ln 7

✓
x

x

2 + 1

◆

18.
d

dx

✓
x ln 2

ln 10

◆
=

ln 2

ln 10

d

dx

(x) = log
10

2

19. Let y = 3sin x

On taking natural logarithm.

ln y = ln
�
3sin x

�
= sinx ln 3

1

y

dy

dx

=
d

dx

(sinx ln 3) = ln 3
d

dx

(sinx)

1

y

dy

dx

= (ln 3) cosx

dy

dx

= y (ln 3) cosx

dy

dx

= 3sin x (ln 3) cosx

20. y = 4
p
x

On taking natural logarithm.

ln y = ln
⇣
4
p
x

⌘
=

p
x ln 4

1

y

dy

dx

=
d

dx

�p
x ln 4

�

= (ln 4)
d

dx

�p
x

�

= (ln 4)

✓
1

2
p
x

◆

dy

dx

= y

(ln 4)

2
p
x

dy

dx

=
4
p
x (ln 4)

2
p
x

21.

Z
1

x lnx
dx = ln |lnx|+ c

22.

Z
1p

1� x

2sin�1

x

dx = ln
��sin�1

x

��+ c

23. Let u = x

2

, du = 2xdxZ
x3x

2

dx =
1

2

Z
3udu =

3x
2

2 ln 3
+ c

24. Let u = 2x, du = 2x(ln 2)dxZ
2x sin (2x) dx =

1

ln 2

Z
sin (u) du

=
� cos (2x)

ln 2
+ c

25. Let u =
2

x

, du =

✓
�2

x

2

◆
dx

Z
e

2/x

x

2

dx = �1

2

Z
e

u

du

= � 1

2eu
+ c = �1

2
e

2/x + c

26. Let u = lnx3

, du =

✓
3

x

◆
dx

Z
sin
�
lnx3

�

x

dx =
1

3

Z
sinudu

= �1

3
cosu+ c

= �1

3
cos
�
lnx3

�
+ c

27.

Z
1

0

x

2

x

3 � 4
dx

=
1

3
ln
��
x

3 � 4
��1
0

=
1

3
ln 3� 1

3
ln 4 =

1

3
ln

3

4

28.

Z
1

0

e

x � e

�x

e

x + e

�x

dx

= ln
��
e

x + e

�x

����1
0
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= ln
�
e+ e

�1

�
� ln 2

= ln

✓
e+ e

�1

2

◆

29.

Z
1

0

tanxdx =

Z
1

0

sinx

cosx
dx

= � ln |cosx||1
0

= � ln |cos 1|� ln |cos 0|
= � ln (cos 1)

30. Let u = lnx, du =
dx

xZ
lnx

x

dx =

Z
udx =

u

2

2
+ c

=
(lnx)2

2
+ c

Z
2

1

lnx

x

dx =
(lnx)2

2

�����

2

1

=
ln22

2
� ln21

2
=

ln22

2

31. ln
⇣
a

b

⌘
= ln

✓
a · 1

b

◆
= ln a+ ln

✓
1

b

◆

= ln a� ln b

32. Consider x = 2�n, where n is any integer for
x > 0.

On taking natural logarithm.

lnx = ln 2�n

) lnx = �n ln 2
Now x ! 0, 2�n ! 0 ) n ! 1
) lim

x!0+

(lnx) = lim
n!1

(�n ln 2)

= � (ln 2) lim
n!1

(n).

But, ln 2 ⇡ 0.6931 and lim
n!1

n = 1
) lim

x!0+

(lnx) = �1.

33. We know that by definition, ln(n) =

Z
n

1

1

x

dx

which is the area bounded by the curve y =
1

x

,

the positive x-axis between the ordinates x = 1

and x = n. Let y = f(x) =
1

x

.

1 43

y

2 6

2

0
0

5

1

3

x
5

4

From the graph, it may be observed that the

area bounded by y =
1

x

; the x-axis between

the ordinates x = 1 and x = n is lesser than
the shaded area which is the sum of areas of
the (n� 1) rectangles having width 1 unit and
height f (i)
Thus from the graph,
Z

n

1

1

x

dx <

n�1X

i=1

(f (i)⇥ 1)

ln(n) < f (1) + f (2) + f (3) + ...

..+ f (n� 1)

or ln(n) < 1 +
1

2
+ .....+

1

n� 1

Hence proved. We know that,

lim
n!1

ln(n) = 1

lim
n!1

✓
1 +

1

2
+ .....+

1

n� 1

◆
� lim

n!1
ln(n)

= 1

34. We know that by definition,

ln(n) =

Z
n

1

1

x

dx

which is the area bounded by the curve

y =
1

x

, the positive x-axis between the ord-

nates x = 1 and x = n.

Let y = f(x) =
1

x

.

y

2

20
x

5

5

4

3

4

1

1
0

3
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Let us consider (n � 1) rectangles, having
width 1 unit and height f (i+ 1) where i =
1, 2, 3, ........, n� 1. Thus from the graph,
Z

n

1

1

x

dx >

n�1X

i=1

(f (i+ 1)⇥ 1)

ln(n) > f (2) + f (3) + .....+ f (n)

or ln(n) >
1

2
+

1

3
.....+

1

n

.

35. Since the domain of the function y = lnx

is (0,1) , f 0 (x) =
1

x

> 0 for x > 0. So f

is increasing throughout the domain. Simi-

larly, f

00 (x) = � 1

x

2

< 0 for x > 0. There-

fore, the graph is concave down everywhere,
the graph of the function y = lnx is as below.

2

2.0
0

1.0 3.0

3

2.5

1

−1

1.5

−2

−3

0.50.0

36. Proof of (ii)

By using the rules of logarithm we have,

ln

✓
e

r

e

s

◆
= ln (er)� ln (es)

= r ln e� s ln e = r � s = ln
�
e

r�s

�

Since lnx is one to one, it follows that

e

r

e

s

= e

r�s

.

Proof of (iii)

By using the rules of logarithm we have,

ln (er)t = t ln (er) = rt ln e = ln
�
e

rt

�

Since lnx is one to one, it follows that

(er)t = e

rt

.

37. h = ln eh =

Z
e

h

1

1

x

dx =
e

h � 1

x̄

,

for some x̄ in (0, h)
e

h � 1

h

= x̄

as h ! 0+, x̄ ! 0, then

lim
h!0

+

e

h � 1

h

= 0

� h = ln e�h =

Z
e

�h

1

1

x

dx =
e

�h � 1

x̄

,

for some x̄ in (�h, 0)
e

�h � 1

�h

= x̄

as h ! 0+,�h ! 0�, x̄ ! 0, then

lim
h!0

+

e

�h � 1

�h

= 0

38. f (x) = lnx, then f

0 (x) = 1

x

and f

0 (1) = 1.
On the other hand

f

0 (a) = lim
x!a

lnx� ln a

x� a

f

0 (1) = lim
x!1

lnx� ln 1

x� 1
= 1

lim
x!1

lnx

x� 1
= 1

Thus the reciprocal of
lnx

x� 1
has the same

limit,

lim
x!1

x� 1

lnx
= 1

Substituting x = e

h

, lim
h!0

e

h � 1

h

= 1

39. (a) Given that, y = ln(x+1) by using a linear
approximation.

f(x) ⇡ f(x
0

) + f

0(x
0

) (x� x

0

)

For small value of x,

f(x) ⇡ f(0) + f

0(0) (x� 0)
ln(1 + x) ⇡ 0 + 1 · (x� 0)
ln(1 + x) ⇡ x.

(b) By using area under the curve.

Area the rectangle

= f(1) · x = x

Also,

Z
1+x

1

1

t

dt = ln t|1+x

1

= ln(1 + x)� ln(1)
= ln(1 + x).

As x approaches to zero, we get:
ln(1 + x) ⇡ x

40. f (x) = lnx� 1

f

0 (x) =
1

x

x

0

= 3

x

1

= x

0

� f (x
0

)

f

0 (x
0

)
= 3� ln 3� 1

1

3

= 6� 3 ln 3 ⇡ 2.704163133

x

2

= x

1

� f (x
1

)

f

0 (x
1

)
⇡ 2.718245098

x

3

= x

2

� f (x
2

)

f

0 (x
2

)
⇡ 2.718281827

e ⇡ 2.718282183
Three steps are needed to start at x

0

= 3 and
obtain five digits of accuracy.
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41. f (x) =
1

1 + e

�x

2

1.0

0

−1.0

3

2.0

1.5

0.5

1
0.0

−0.5

−1−2−3

Using lim
x!1

e

�x = 0 we get

lim
x!1

1

1 + e

�x

= 1.

Using lim
x!�1

e

�x = 1 we get

lim
x!1

1

1 + e

�x

= 0.

The function f(x) is increasing over (�1,1)
and when x = 0,

f (0) =
1

1 + 1
=

1

2
.

So g(x) =

⇢
0 if x < 0
1 if x � 0

The threshold value for g(x) to switch is x = 0.
One way of modifying the function to move
the threshold to x = 4 is to let f (x) =

1

1 + e

�(x�4)

.

42. 1� (9/10)10 ⇡ 0.65132
1� (19/20)20 ⇡ 0.64151
1� (9/10)10 > 1� (19/20)20

The probability of winning is lower.

When taking the limit as n ! 1,

lim
n!1


1�

✓
n� 1

n

◆
n

�

= 1� lim
n!1

✓
n� 1

n

◆
n

= 1� lim
n!1

✓
1 +

�1

n

◆
n

= 1� e

�1

43. s(x) = x

2 ln(1/x)
s

0(x) = 2x ln 1/x+ x

2 · x · (�1/x2)
= 2x ln(1/x)� x = x(2 ln(1/x)� 1)

s

0(x) = 0 gives
x = 0 (which is impossible) or
ln(1/x) = 1/2, x = e

�1/2

.

Since s

0(x)

⇢
< 0 if x < e

�1/2

> 0 if x > e

�1/2

The value x = e

�1/2 maximizes the transmis-
sion speed.

44. ln


lim

n!1

✓
1 +

1

n

◆
n

�

= lim
n!1

ln

✓
1 +

1

n

◆
n

= lim
n!1

n ln

✓
1 +

1

n

◆

= lim
n!1

ln(1 + 1/n)

1/n

= lim
n!1

�1/n2

�1/n2(1 + 1/n)

= lim
n!1

1

1 + 1/n

= 1

Ch. 4 Review Exercises

1.

Z
(4x2 � 3) dx =

4

3
x

3 � 3x+ c

2.

Z
(x� 3x5) dx =

x

2

2
� 1

2
x

6 + c

3.

Z
4

x

dx = 4 ln |x|+ c

4.

Z
4

x

2

dx = � 4

x

+ c

5.

Z
2 sin 4x dx = �1

2
cos 4x+ c

6.

Z
3 sec2 x dx = 3 tanx+ c

7.

Z
(x� e

4x) dx =
x

2

2
� 1

4
e

4x + c

8.

Z
3
p
x dx = 2x3/2 + c

9.

Z
x

2 + 4

x

dx =

Z
(x+ 4x�1) dx

=
x

2

2
+ 4 ln |x|+ c

10.

Z
x

x

2 + 4
dx =

1

2
ln(x2 + 4) + c

11.

Z
e

x(1� e

�x) dx =

Z
(ex � 1) dx

= e

x � x+ c
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12.

Z
e

x(1 + e

x)2 dx

=

Z
(ex + 2e2x + e

3x) dx

= e

x + e

2x +
1

3
e

3x + c

13. Let u = x

2 + 4, then du = 2x dx and
Z

x

p
x

2 + 4 dx

=
1

2

Z
u

1/2

du =
1

3
u

3/2 + c

=
1

3
(x2 + 4)3/2 + c

14.

Z
x(x2 + 4) dx =

Z
(x3 + 4x) dx

=
x

4

4
+ 2x2 + c

15. Let u = x

3

, du = 3x2

dxZ
6x2 cosx3

dx = 2

Z
cosu du

= 2 sinu+ c = 2 sinx3 + c

16. Let u = x

2

, du = 2x dxZ
4x secx2 tanx2

dx

= 2

Z
secu tanu du

= 2 secu+ c = 2 secx2 + c

17. Let u = 1/x, du = �1/x2

dxZ
e

1/x

x

2

dx = �
Z

e

u

du

= �e

u + c = �e

1/x + c

18. Let u = lnx, du = dx/xZ
lnx

x

dx =

Z
u du

=
u

2

2
+ c =

(lnx)2

2
+ c

19.

Z
tanx dx =

Z
sinx

cosx
dx

= � ln | cosx|+ c

20. Let u = 3x+ 1, du = 3 dxZ p
3x+ 1dx =

1

3

Z
u

1/2

du

=
1

3
· 2
3
u

3/2 + c =
2

9
(3x+ 1)3/2 + c

21. f(x) =

Z
(3x2 + 1) dx = x

3 + x+ c

f(0) = c = 2
f(x) = x

3 + x+ 2

22. f(x) =

Z
e

�2x

dx = �1

2
e

�2x + c

f(0) = �1

2
+ c = 3

c =
7

2

f(x) = �1

2
e

�2x +
7

2

23. s(t) =

Z
(�32t+ 10) dt

= �16t2 + 10t+ c

s(0) = c = 2
s(t) = �16t2 + 10t+ 2

24. v(t) =

Z
6 dt = 6t+ c

1

v(0) = c

1

= 10
v(t) = 6t+ 10

s(t) =

Z
(6t+ 10) dt = 3t2 + 10t+ c

2

s(0) = c

2

= 0
s(t) = 3t2 + 10t

25.
6X

i=1

(i2 + 3i)

= (12 + 3 · 1) + (22 + 3 · 2) + (32 + 3 · 3)
+ (42 + 3 · 4) + (52 + 3 · 5) + (62 + 3 · 6)
= 4 + 10 + 18 + 28 + 40 + 54
= 154

26.
12X

i=1

i

2 = 650

27.
100X

i=1

(i2 � 1)

=
100X

i=1

i

2 �
100X

i=1

1

=
100(101)(201)

6
� 100

= 338, 250

28.
100X

i=1

(i2 + 2i)

=
100X

i=1

i

2 + 2 ·
100X

i=1

i

=
100(101)(201)

6
+ 100(101)

= 348, 450

29.
1

n

3

nX

i=1

(i2 � i)

=
1

n

3

 
nX

i=1

i

2 � ·
nX

i=1

i

!
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=
1

n

3

✓
n(n+ 1)(2n+ 1)

6
� n(n+ 1)

2

◆

=
(n+ 1)(2n+ 1)

6n2

� n+ 1

2n2

lim
n!1

1

n

3

nX

i=1

(i2 � i)

= lim
n!1

✓
(n+ 1)(2n+ 1)

6n2

� n+ 1

2n2

◆

=
2

6
� 0 =

1

3

30. Evaluation points: 0.25, 0.75, 1.25, 1.75

Riemann sum = �x

nX

i=1

f(c
i

)

=
2

4

4X

i=1

(c2
i

� 2c
i

)

=
1

2

⇥
(0.252 � 2 · 0.25) + (0.752 � 2 · 0.75)

+(1.252 � 2 · 1.25) + (1.752 � 2 · 1.75)
⇤

= �2.75

1

-0.4

0

-0.8

0.4

0.50
x

1.5 2

31. Riemann sum =
2

8

8X

i=1

c

2

i

= 2.65625

32. Riemann sum =
2

8

8X

i=1

c

2

i

= 0.6875

33. Riemann sum =
3

8

8X

i=1

c

2

i

⇡ 4.668

34. Riemann sum =
1

8

8X

i=1

c

2

i

⇡ 0.6724

35.

(a) Left-endpoints:Z
1.6

0

f(x) dx

⇡ 1.6� 0

8
(f(0) + f(.2) + f(.4)

+ f(.6) + f(.8) + f(1) + f(1.2)
+ f(1.4))

=
1

5
(1 + 1.4 + 1.6 + 2 + 2.2 + 2.4

+ 2 + 1.6)
= 2.84

(b) Right-endpoints:Z
1.6

0

f(x) dx

⇡ 1.6� 0

8
(f(.2) + f(.4) + f(.6)

+ f(.8) + f(1) + f(1.2) + f(1.4)
+ f(1.6))

=
1

5
(1.4 + 1.6 + 2 + 2.2 + 2.4

+ 2 + 1.6 + 1.4)
= 2.92

(c) Trapezoidal Rule:Z
1.6

0

f(x) dx

⇡ 1.6� 0

2(8)
[f(0) + 2f(.2) + 2f(.4)

+ 2f(.6) + 2f(.8) + 2f(1)
+ 2f(1.2) + 2f(1.4) + f(1.6)]

= 2.88

(d) Simpson’s Rule:Z
1.6

0

f(x) dx

⇡ 1.6� 0

3(8)
[f(0) + 4f(.2) + 2f(.4)

+ 4f(.6) + 2f(.8) + 4f(1)
+ 2f(1.2) + 4f(1.4) + f(1.6)]

⇡ 2.907

36.

(a) Left-endpoints:Z
4.2

1

f(x) dx

⇡ (0.4)[f(1.0) + f(1.4) + f(1.8)
+ f(2.2) + f(2.6) + f(3.0)
+ f(3.4) + f(3.8)]

= (0.4)(4.0 + 3.4 + 3.6 + 3.0
+ 2.6 + 2.4 + 3.0 + 3.6)

= 10.24

(b) Right-endpoints:Z
4.2

1

f(x) dx

⇡ (0.4)[f(1.4) + f(1.8) + f(2.2)
+ f(2.6) + f(3.0) + f(3.4)
+ f(3.8) + f(4.2)]

= (0.4)(3.4 + 3.6 + 3.0 + 2.6
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+ 2.4 + 3.0 + 3.6 + 3.4)
= 10.00

(c) Trapezoidal Rule:Z
4.2

1

f(x) dx

⇡ 0.4

2
[f(1.0) + 2f(1.4) + 2f(1.8)

+ 2f(2.2) + 2f(2.6) + 2f(3.0)
+ 2f(3.4) + 2f(3.8) + f(4.2)]

= (0.2)[4.0 + 2(3.4) + 2(3.6)
+ 2(3.0) + 2(2.6) + 2(2.4)
+ 2(3.0) + 2(3.6) + 3.4]

= 10.12

(d) Simpson’s Rule:Z
4.2

1

f(x) dx

⇡ 0.4

3
[f(1.0) + 4f(1.4) + 2f(1.8)

+ 4f(2.2) + 2f(2.6) + 4f(3.0)
+ 2f(3.4) + 4f(3.8) + f(4.2)]

=
0.4

3
[4.0 + 4(3.4) + 2(3.6)

+ 4(3.0) + 2(2.6) + 4(2.4)
+ 2(3.0) + 4(3.6) + 3.4]

⇡ 10.05333

37. See Example 7.10.

Simpson’s Rule is expected to be most accu-
rate.

38. In this situation, the Midpoint Rule will be less
than the actual integral. The Trapezoid Rule
will be an overestimate.

39. We will compute the area A

n

of n rectangles
using right endpoints. In this case �x = 1

n

and
x

i

= i

n

A

n

=
nX

i=1

f(x
i

)�x =
1

n

nX

i=1

f

✓
i

n

◆

=
1

n

nX

i=1

2 ·
✓
i

n

◆
2

=
2

n

3

nX

i=1

i

2

=

✓
2

n

3

◆
n(n+ 1)(2n+ 1)

6

=
(n+ 1)(2n+ 1)

3n2

Now, to find the integral, we take the limit:Z
1

0

x

2

dx = lim
n!1

A

n

= lim
n!1

(n+ 1)(2n+ 1)

3n2

=
2

3

40. We will compute the area A

n

of n rectangles

using right endpoints. In this case �x =
2

n

and x

i

=
2i

n

A

n

=
nX

i=1

f(x
i

)�x =
2

n

nX

i=1

f

✓
2i

n

◆

=
2

n

nX

i=1

✓
2i

n

◆
2

+ 1

=
8

n

3

nX

i=1

i

2 +
2

n

nX

i=1

1

=

✓
8

n

3

◆
n(n+ 1)(2n+ 1)

6
+

✓
2

n

◆
n

=
4(n+ 1)(2n+ 1)

3n2

+ 2

Now, to find the integral, we take the limit:Z
2

0

(x2 + 1) dx = lim
n!1

A

n

= lim
n!1

✓
4(n+ 1)(2n+ 1)

3n2

+ 2

◆

=
8

3
+ 2 =

14

3

41. Area =

Z
3

0

(3x� x

2) dx

=

✓
3x2

2
� x

3

3

◆ ���
3

0

=
9

2

42. Area

=

Z
1

0

(x3 � 3x2 + 2x) dx

�
Z

2

1

(x3 � 3x2 + 2x) dx

=
1

4
+

1

4
=

1

2

43. The velocity is always positive, so distance
traveled is equal to change in position.

Dist =

Z
2

1

(40� 10t) dt

= (40t� 5t2)
���
2

1

= 25

44. The velocity is always positive, so distance
traveled is equal to change in position.

Dist =

Z
2

0

20e�t/2

dt = (�40e�t/2)
���
2

0

= 40(�e

�1 + 40) ⇡ 25.2848
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45. f

ave

=
1

2

Z
2

0

e

x

dx =
e

2 � 1

2
⇡ 3.19

46. f

ave

=
1

4

Z
4

0

(4x� x

2) dx =
8

3

47.

Z
2

0

(x2 � 2) dx =

✓
x

3

3
� 2x

◆ ���
2

0

= �4

3

48.

Z
1

�1

(x3 � 2x) dx =

✓
x

4

4
� x

2

◆ ���
1

�1

= 0

49.

Z
⇡/2

0

sin 2x dx = �1

2
cos 2x

���
⇡/2

0

= 1

50.

Z
⇡/4

0

sec2 x dx = tanx
���
⇡/4

0

= 1

51.

Z
10

0

(1� e

�t/4) dt

=
⇣
t+ 4e�t/4

⌘ ���
10

0

= 6 + 4e�5/2

52.

Z
1

0

te

�t

2

dt

=

✓
�1

2
e

�t

2

◆ ���
1

0

= �1

2
(e�1 � 1)

53.

Z
2

0

x

x

2 + 1
dx =

1

2
ln |x2 + 1|

���
2

0

=
ln 5

2

54.

Z
2

1

lnx

x

dx =

✓
ln2 x

2

◆ ���
2

1

=
ln2 2

2

55.

Z
2

0

x

p
x

2 + 4 dx

=

✓
1

2
· 2
3
· (x2 + 4)3/2

◆ ���
2

0

=
16
p
2� 8

3

56.

Z
2

0

x(x2 + 1) dx

=

✓
1

4
(x2 + 1)2

◆ ���
2

0

= 6

57.

Z
1

0

(ex � 2)2 dx =

Z
1

0

(e2x�4e

x

+4) dx

=

✓
1

2
e

2x � 4ex + 4x

◆ ���
2

0

=

✓
e

2

2
� 4e+ 4

◆
�
✓
1

2
� 4

◆

=
e

2

2
� 4e+

15

2

58.

Z
⇡

�⇡

cos(x/2) dx

= (2 sin(x/2))
���
⇡

�⇡

= 4

59. f

0(x) = sinx2 � 2

60. f

0(x) =
p
(x2)2 + 1 · 2x

61.

a) Midpoint Rule:Z
1

0

p
x

2 + 4 dx

⇡ 1� 0

4


f

✓
1

8

◆
+ f

✓
3

8

◆

+f

✓
5

8

◆
+ f

✓
7

8

◆�

⇡ 2.079

b) Trapezoidal Rule:Z
1

0

p
x

2 + 4 dx

⇡ 1� 0

2(4)


f(0) + 2f

✓
1

4

◆

+2f

✓
1

2

◆
+ 2f

✓
3

4

◆

+f(1)]
⇡ 2.083

c) Simpson’s Rule:Z
1

0

p
x

2 + 4 dx

⇡ 1� 0

3(4)


f(0) + 4f

✓
1

4

◆

+2f

✓
1

2

◆
+ 4f

✓
3

4

◆
+ f(1)

�

⇡ 2.080

62.

a) Midpoint Rule:Z
2

0

e

�x

2
/4

dx

⇡ 2

4
[f(0.25) + f(0.75)

+ f(1.25) + f(1.75)]
⇡ 1.497494

b) Trapezoidal Rule:Z
2

0

e

�x

2
/4

dx

⇡ 2

8
[f(0) + 2f(.5) + 2f(1)
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+ 2f(1.5) + f(2)]
⇡ 1.485968

c) Simpson’s Rule:Z
2

0

e

�x

2
/4

dx

⇡ 2

12
[f(0) + 4f(.5) + 2f(1)

+ 4f(1.5) + f(2)]
⇡ 1.493711

63.
n Midpoint Trapezoid Simpson’s

20 2.08041 2.08055 2.08046
40 2.08045 2.08048 2.08046

64.
n Midpoint Trapezoid Simpson’s

20 1.493802 1.493342 1.493648
40 1.493687 1.493572 1.493648

65. Consider u = tanh
�
t

2

�
=

sinh
�
t

2

�

cosh
�
t

2

�

=

⇣
e

t

2 �e

� t

2

2

⌘

⇣
e

t

2
+e

� t

2

2

⌘ =

⇣
e

t

2 � e

� t

2

⌘

⇣
e

t

2 + e

� t

2

⌘

therefore
1� u

2

1 + u

2

=
1�

⇣
e

t

2 �e

� t

2

e

t

2
+e

� t

2

⌘
2

1 +
⇣

e

t

2 �e

� t

2

e

t

2
+e

� t

2

⌘
2

=

⇣
e

t

2 + e

� t

2

⌘
2

�
⇣
e

t

2 � e

� t

2

⌘
2

⇣
e

t

2 + e

� t

2

⌘
2

+
⇣
e

t

2 � e

� t

2

⌘
2

=
2 (et + e

�t)

4
= cosh t ,

similarly,
2u

1 + u

2

=

2

⇣
e

t

2 �e

� t

2

⌘

⇣
e

t

2
+e

� t

2

⌘

1 +
⇣

e

t

2 �e

� t

2

e

t

2
+e

� t

2

⌘
2

=
2
⇣
e

t

2 � e

� t

2

⌘⇣
e

t

2 + e

� t

2

⌘

⇣
e

t

2 + e

� t

2

⌘
2

+
⇣
e

t

2 � e

� t

2

⌘
2

=
2 (et � e

�t)

4
= sinh t

(a)

Z
1

sinh t+ cosh t
dt

=

Z
1

2u

(1�u

2
)

+ (1+u

2
)

(1�u

2
)

du

(Put:u = tanh(t/2))

=

Z �
1� u

2

�

(1 + u)2
du

=

Z ✓
1� u

1 + u

◆
du

=

Z ✓
2

1 + u

� 1

◆
du

= 2 ln (1 + u)� u

= 2 ln (1 + tanh(t/2))� tanh(t/2)

(b)

Z
sinh t+ cosh t

1 + cosh t
dt

=

Z
2u

(1�u

2
)

+
(1+u

2)
(1�u

2
)

1 + (1+u

2
)

(1�u

2
)

du

=

Z
(1 + u)2

2
du

=
1

2

 
(1 + u)3

3

!

=
(1 + tanh(t/2))3

6



Chapter 5

Applications of

the Definite

Integral

5.1 Area Between Curves

1. Area =

Z
3

1

⇥
x3 �

�
x2 � 1

�⇤
dx

=

✓
x4

4
� x3

3
+ x

◆����
3

1

=

✓
81

4
� 27

3
+ 3

◆
�
✓
1

4
� 1

3
+ 1

◆

=
160

12
=

40

3

2. Area =

Z
2

0

[(x2 + 2)� cosx]dx

=

✓
x3

3
+ 2x� sinx

◆����
2

0

=
20

3
� sin 2

3. Area =

Z
0

�2

[ex � (x� 1)] dx

=

✓
ex � x2

2
+ x

◆����
0

�2

= (1� 0 + 0)�
✓
e�2 � 4

2
+ (�2)

◆

= 5� e�2

4. Area =

Z
4

1

(x2 � e�x)dx

=

✓
x3

3
+ e�x

◆����
4

1

= 21 + e�4 � e�1

5. Area =

Z
2

�2

⇥
7� x2 �

�
x2 � 1

�⇤
dx

=

✓
8x� 2x3

3

◆����
2

�2

=

✓
16� 16

3

◆
�
✓
�16 +

16

3

◆

=
64

3

1−2
0

−3

3

−1
−1

4

2

0

6

x

7

−2

5

3

8

2

1

6. Area =

Z p
2

�
p
2


x2

2
� (x2 � 1)

�
dx

=
4
p
2

3

1

0.8

0

1.2

−0.4

2.8

2

2.0

x

0.0

−0.8

−1−2

0.4

1.6

2.4

7. Area =

Z
2

�1

(3x+ 2� x3)dx =
27

4

6

14

2

2

16

1
−2

8

10

12

0

x
−1

4

0

8. Area =

Z
1

0

(
p
x� x2)dx =

1

3

304
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1.6

0.8

1.2

x

0.4

10 0.80.4 1.20.2
0

0.6

9. Area =

Z p
ln 4

0

⇣
4xe�x

2

� x
⌘
dx

= �2e�x

2

� x2

2

����

p
ln 4

0

= �2


1

4
� 1

�
� ln 4

2

=
3� ln 4

2

3

2

0

2.5

1.5

1.5 20 2.51

x

1

3

0.5

0.5

10. Area =

Z
0

�1

✓
2

x2 + 1
+ x

◆
dx

+

Z
1

0

✓
2

x2 + 1
� x

◆
dx

= (2 tan�1 x+
x2

2
)

����
0

�1

+(2 tan�1 x� x2

2
)

����
1

0

=

✓
⇡

4
� 1

2

◆
+

✓
⇡

4
� 1

2

◆

=
⇡

2
� 1

2.0

2.5

x
0−1

0.0

1

1.0

−2 3

1.5

2

3.0

0.5

−3

11. Area =

Z
0

�2


x� 5x

x2 + 1

�
dx

+

Z
2

0


5x

x2 + 1
� x

�
dx

= 2

Z
2

0


5x

x2 + 1
� x

�
dx

= 2

✓
5

2
ln
��x2 + 1

��� x2

2

◆����
2

0

= 5[ln 5� ln 1]� [4� 0]
= 5 ln 5� 4

1

2

x
0−1

−3

1

−1

−2 3
0

2

3

−2

−3

12. Area =

Z
⇡/4

0

(cosx� sinx)dx

+

Z
5⇡/4

⇡/4

(sinx� cosx)dx

+

Z
2⇡

5⇡/4

(cosx� sinx)dx

= (sinx+ cosx)|⇡/4
0

+(� cosx� sinx)|5⇡/4
⇡/4

+(sinx+ cosx)|2⇡
5⇡/4

= 4
p
2
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1

0

0.5

6

-0.5

2 4

x

1 3 50

-1

13. Area =

Z
0

�.7145

(1� x2)� exdx

=

✓
�ex + x� x3

3

◆����
0

�.7145

= (�1 + 0� 0)� (�1.08235)
= .08235

1.6

0.8

1.2

x

0.4

0.2-0.8-1 0-0.4 0.4-0.6
0

-0.2

14. Area ⇡
Z

0.72449

�1.2207

[(1� x)� x4]dx

⇡ 1.845787

3.5

2.5

0.5

3

2

-0.5
0

0.5 1

x

1.5

0

1

-1

15. Area =

Z
.8767

0

�
sinx� x2

�
dx

=

✓
� cosx� x3

3

◆����
.8767

0

⇡ .135697

0.5

0.75

x
0.250.0

−0.5

0.5

0.0

−0.25 1.0

0.25

0.75

1.0

−0.25

−0.5

16. Area ⇡
Z

0.89055

�.89055

(cosx� x4)dx

⇡ 1.330782

−0.5

1.0

0.5

0.0

0.25

0.0

0.75

−1.0

0.5

1.0
x

17. Area =

Z
1.3532

�1

�
2 + x� x4

�
dx

=

✓
2x+

x2

2
� x5

5

◆����
1.3532

�1

= 4.01449

16

8

12

2

4

1-1.5

x

0.5 1.5-1 -0.5
0
0

18. Area ⇡
Z

1.5645

0.13793

[lnx� (x2 � 2)]dx

⇡ 1.124448
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0.5

-0.5

0

-1

-2

0.6 0.80.2 1.60.4 1.2

x

1

-1.5

1.4

19. Area =

Z
1

0

[(2� y)� y]dy

=

Z
1

0

[2� 2y]dy

=
�
2y � y2

���1
0

= 1� 0 = 1

2

1

1.5

2

x

1.5

0.5

1
0
0 0.5

Area of triangle = 1

2

(base)(height)
= 1

2

· (2) · (1) = 1

20. Area =

Z
2

0

[(6� y)� y]dy

=

Z
2

0

(6� 2y)dy

=
�
6y � y2

���2
0

= (12� 4)� (0� 0)
= 8

y

1.5

2

x

1

640 53
0

0.5

1 2

Area of Trapazium = 1

2

(a+ b)(h)
= 1

2

· (8) · (2) = 8

21. Area =

Z
1

0

[x� (�x)]dx

= 2

Z
1

0

xdx = x2

����
1

0

= 1� 0 = 1

y

0.5

1

0.2
0

-1

-0.5

x

10.80.60 0.4

Area of triangle = 1

2

(base)(height)
= 1

2

· (2) · (1) = 1

22. Area =

Z
2

1

⇥
3y �

�
2 + y2

�⇤
dy

=

✓
3

2
y2 � 2y � y3

3

◆����
2

1

=

✓
6� 4� 8

3

◆
�
✓
3

2
� 2� 1

3

◆

=
1

6

y

1.8

1

2

1.6

x

65.54.54

1.2

1.4

53 3.5

23. Area =

Z
1

�3

[(3� x2)� 2x]dx =
32

3
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2

-2

0

-4

-6

-1 1-3 -2

x

0

24. Area =

Z
2

�2

(4� y2)dy =
32

3

4

−1

2 3

y

0

−2

1

2

0 1
x

25. Area =

Z
ln 2

0

(4e�x � ex)dx ⇡ 1

1.25

1.5

1.0

3.5

1.5

3.0

0.0 0.25 0.5

2.5

4.0

2.0

x
1.0

4.5

0.75

26. Area =

Z
4

1

✓
lnx

x
� 1� x

x2 + 1

◆
dx

=

Z
4

1

lnx

x
dx�

Z
4

1

1

x2 + 1
dx

+
1

2

Z
4

1

2x

x2 + 1

=


ln2 x

2
� tan�1 x+

1

2
ln |x2 + 1|

�
4

1

=
ln4

2
� tan�14 +

ln 17

2
+

⇡

4
� ln 2

2

0.0

x
41

y

0.4

−0.2

2 3

0.2

27.

Z
.4

0

f
c

(x) ⇡ .4

3(4)
{f

c

(0) + 4f
c

(.1)

+ 2f
c

(.2) + 4f
c

(.3) + f
c

(.4)} = 291.67Z
.4

0

f
e

(x) ⇡ .4

3(4)
{f

e

(0) + 4f
e

(.1)

+ 2f
e

(.2) + 4f
e

(.3) + f
e

(.4)} = 102.33R
.4

0

f
c

(x)�
R
.4

0

f
e

(x)
R
.4

0

f
c

(x)
⇡ 291.67� 102.33

291.67

= .6491 . . . .
1� .6491 = .3508,

so the proportion of energy retained is about
35.08%.

28. Energy =

R
m

0

[f
c

(x)� f
e

(x)]dx
R
m

0

f
c

(x)dx

=

R
m

0

f
c

(x)dx
R
m

0

f
c

(x)dx
�
R
m

0

f
e

(x)dx
R
m

0

f
c

(x)dx

= 1�
R
m

0

f
e

(x)dx
R
m

0

f
c

(x)dx
Z

0.18

0

f
c

(x)dx

⇡ 0.045

3
[f

c

(0) + 4f
c

(0.045) + 2f
c

(0.09)

+ 4f
c

(0.135) + f
c

(0.18)]

=
0.045

3
[0 + 4(200) + 2(500) + 4(1000)

+ 1800]
= 114
Z

0.18

0

f
e

(x)dx

⇡ 0.045

3
[f

e

(0) + 4f
e

(0.045) + 2f
e

(0.09)

+ 4f
e

(0.135) + f
e

(0.18)]

=
0.045

3
(0 + 4(125) + 2(350) + 4(700)

+ 1800)
= 87

Putting these together gives the proportion of
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energy lost as

Energy ⇡ 1� 87

114
⇡ 0.2368.

29.

Z
3

0

f
s

(x) ⇡ 3

3(4)
{f

s

(0) + 4f
s

(.75)

+ 2f
s

(1.5) + 4f
s

(2.25) + f
s

(3)} = 860

Z
3

0

f
r

(x) ⇡ 3

3(4)
{f

r

(0) + 4f
r

(.75)

+ 2f
r

(1.5) + 4f
r

(2.25) + f
r

(3)} = 800

1�
✓
860� 800

860

◆
= .9302

Energy returned by the tendon is 93.02%.

30. As in Exercise 28, the proportion of energy re-
turned by the arch is given by

1�
R
8

0

f
s

(x)dx
R
8

0

f
r

(x)dxZ
8

0

f
s

(x)dx

⇡ 2

3
[f

s

(0) + 4f
s

(2) + 2f
s

(4) + 4f
s

(6) + f
s

(8)]

=
2

3
[0 + 4(300) + 2(1000) + 4(1800) + 3500]

⇡ 8366.67
Z

8

0

f
r

(x)dx

⇡ 2

3
[f

r

(0) + 4f
r

(2) + 2f
r

(4) + 4f
r

(6) + f
r

(8)]

=
2

3
[0 + 4(150) + 2(700) + 4(1300) + 3500]

⇡ 7133.33

Putting these together gives the proportion of
energy lost as

Energy ⇡ 1� 7133.33

8366.67
⇡ 0.1474.

31. A =
1

b� a

Z
b

a

f(x)dx =
1

3� 0

Z
3

0

x2dx

=

✓
1

3
· x

3

3

◆����
3

0

=
27

9
� 0 = 3

Relative to the interval [0, 3], the inequality
x2 < 3 holds only on the subinterval [0,

p
3).

We findZ p
3

0

�
3� x2

�
dx =

✓
3x� x3

3

◆����

p
3

0

= (3
p
3�

p
3)� (0� 0)

= 2
p
3, whereasZ

3

p
3

�
x2 � 3

�
dx =

✓
x3

3
� 3x

◆����
3

p
3

= (9� 9)� (
p
3� 3

p
3)

= 2
p
3, the same.

32. Draw the graphs of the given functions,

y =
2

(x+ 1)
and y =

2x

(x2 + 1)
for x > 0.

x

−0.8

2.8

0.8

2.0

y

0.4

1.6

3

0.0

4
−0.4

2−1 0

2.4

1.2

1

It may be observed from the graph that these
functions cut each other at a single point at
x = 1. From the graph it is observed that

the curve y =
2

(x+ 1)
lies above the curve

y =
2x

(x2 + 1)
for 0  x  1, for x > 1,

y =
2x

(x2 + 1)
lies above the curve y =

2

(x+ 1)
Let us find the area bounded by these curves
between x = 0 and x = 1. It is given by
1Z

0

✓
2

(x+ 1)
� 2x

(x2 + 1)

◆
dx

=
⇣
ln (x+ 1)2 � ln

�
x2 + 1

�⌘���
1

0

= ln 2 > ln

✓
3

2

◆

) 0 < t < 1

Therefore

ln

✓
3

2

◆
=

tZ

0

✓
2

(x+ 1)
� 2x

(x2 + 1)

◆
dx

i.e. ln

✓
3

2

◆
=
⇣
ln (x+ 1)2 � ln

�
x2 + 1

�⌘���
t

0

or ln

✓
3

2

◆
= ln

 
(t+ 1)2

(t2 + 1)

!

) 3t2 + 3 = 2(t2 + t+ 1)
i.e. t = 2±

p
3

But as 0 < t < 1, we consider t = 2�
p
3

33. Let y
1

= ax2 + bx + c, y
2

= mx + n, and
u = y

1

� y
2

. If we assume that a < 0, then
y
1

> y
2

on (A,B) and the area between the
curves is given by the integral
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Z
B

A

(y
1

� y
2

)dx

=

Z
B

A

udx = ux|B
A

�
Z

B

A

xdu.

By assumption, u is zero (y
1

= y
2

) at both A
and B, so the first part of the last expression
is zero. We must now show that

�
Z

B

A

xdu = �
Z

B

A

x[2ax+ (b�m)]dx

is the same as
|a|(B �A)3/6
= |a|(B3 � 3B2A+ 3BA2 �A3)/6.

But again because u = 0 at both A and B, we
know that
aA2 + bA+ c = mA+ n and
aB2 + bB + c = mB + n.

By subtraction of the first from second, fac-
toring out (and canceling) B � A, we learn
a(B + A) = m � b, so that our target inte-
gral is also given by

�2a

Z
B

A

x(x� A+B

2
)dx

= |a|{2(B3 �A3)/3� (A+B)(B2 �A2)/2}
and the student who cares enough can finish
the details.

The case in which a > 0(y
2

> y
1

) is not essen-
tially di↵erent.

34. Perhaps the most straightforward way to han-
dle this problem is by brute force. First, the
area is given by

Area = ±
Z

B

A

[(ax3 + bx2 + cx+ d)

� (kx2 +mx+ n)]dx

=
a

4
(A4 �B4) +

(b� k)

3
(B3 �A3)

+
(c�m)

2
(B2 �A2) + (d� n)(B �A).

We can set up equations for the fact that the
graphs meet at A and B. At A and B, we set
the functions equal. At B, we set the deriva-
tives equal.
aA3 + bA2 + cA+ d = kA2 +mA+ n
aB3 + bB2 + cB + d = kB2 +mB + n
3aB2 + 2bB + c = 2kB +m

We now have a system of equations. We solve
the last equation for m and plug the result
in for m in the previous two equations. This
transforms the three equations to
aA3 + (b� k)A2 � 3aAB2

� 2(b� k)AB + d� n = 0

� 2aB3 � (b� k)B2 + d� n = 0
m = 3aB2 + 2(b� k)B + c.

We solve the second equation for n and plug
the result into the first equation which then
gives
aA3 + (b� k)A2 � 2(b� k)AB � 3aAB2

+ 2aB3 + (b� k)B2 = 0
n = �2aB3 � (b� k)B2 + d
m = 3aB2 + 2(b� k)B + c.

Finally, solving the first equation for k gives
k = aA+ 2aB + b.

We now substitute m, then n and then finally
k in to the equation for area. After simplifying
this finally gives

Area =
±a(A�B)4

12
.

35. Let the upper parabola be
y = y

1

= qx2 + v + h and let the lower be
y = y

2

= px2+v. They are to meet at x = w/2,
so we must have
qw2/4 + h = pw2/4, hence
h = (p� q)w2/4 or (q � p)w2 = �4h.

Using symmetry, the area between the curves
is given by the integral

2

Z
w/2

0

(y
1

� y
2

)dx

= 2

Z
w/2

0

[h+ (q � p)x2]dx

= 2[hw/2 + (q � p)w3/24]
= w[h+ (q � p)w2/12]
= w[h� 4h/12] = (2/3)wh.

36. Solve the equation 2� x2 = mx we get

x =
m±

p
m2 + 8

2
So the area between y = 2� x2 and y = mx is
Z

(m+

p
m

2
+8)/2

(m�
p
m

2
+8)/2

(2� x2 �mx)dx

=

✓
2x� x3

3
� mx2

2

◆����
(m+

p
m

2
+8)/2

(m�
p
m

2
+8)/2

=
1

6
(m2 + 8)3/2

The minimum of (m2 + 8)3/2/6 happens when
m = 0 and then
1

6
(m2 + 8)3/2 =

1

6
· 83/2 =

8
p
2

3

37. Solve for x in x� x2 = L we get

x =
1±

p
1� 4L

2

A
1

=

Z
(1�

p
1�4L)/2

0

[L� (x� x2)]dx
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=

✓
Lx� x2

2
+

x3

3

◆����
(1�

p
1�4L)/2

0

A
2

=

Z
(1+

p
1�4L)/2

(1�
p
1�4L)/2

[(x� x2)� L]dx

=

✓
x2

2
� x3

3
� Lx

◆����
(1+

p
1�4L)/2

(1�
p
1�4L)/2

By setting A
1

= A
2

, we get the final answer

L =
16

3
.

38. Solve for x in x� x2 = kx we get
x = 0, x = 1� k

And the areas are

A
1

+A
2

=

Z
1

0

(x� x2)dx =
1

6

A
2

=

Z
1�k

0

kxdx+

Z
1

1�k

(x� x2)dx

=
kx2

2

����
1�k

0

+

✓
x2

2
� x3

3

◆����
1

1�k

=
k(1� k)2

2
+

1

6
� (1� k)2

2
+

(1� k)3

3

=
1

6
· [1� (1� k)3]

We want A
1

= A
2

, that is, we want A
2

= 1/12,
that is,

1� (1� k)3 =
1

2

(1� k)3 =
1

2

1� k =
1
3
p
2

k = 1� 1
3
p
2

39. (a) Consider
2R

0

�
2x� x2

�
dx

The integrand consists of the two curves
y = 2x and y = x2. Both these curves
intersect, when 2x = x2 i.e. whenx =
0 orx = 2. therefore The given integral
represents the area between the curves
y = 2x and y = x2 Which is A

2

.

(b) Consider
2R

0

�
4� x2

�
dx

The integrand consists of two curves y = 4
and y = x2. Both these curves intersect
when 4 = x2 i.e. when x = �2 orx = 2.
But we consider x = 2, as the area lies
in the 1st Quadrant therefore the given
integral represents the area between the
curves y = 4 and y = x2 which is A

1

+A
2

.

(c) Consider
4R

0

�
2�p

y
�
dy

Here the limits of integration correspond
to the y-coordinates of the point of inter-
section of the two curves. This is because
here the variable is y and not x. The in-
tegrand consists of two curves x = 2 and
x =

p
y
�
i.e. y = x2 withx > 0

�
. Both

these curves intersect, when 2 =
p
y

i.e. when y = 4. therefore The given in-
tegral represents the area between the
curves x = 2 and x =

p
y which is A

3

(d) Consider

4Z

0

⇣p
y � y

2

⌘
dy

Here the limits of integration correspond
to the y-coordinates of the point of in-
tersection of the two curves. This is be-
cause here the variable is y and not x.
The integrand consists of two curves x =
p
y
�
i.e. y = x2 withx > 0

�
and x =

y

2
.

Both these curves intersect, when
y

2
=

p
y i.e. when y2 � 4y = 0 i.e. at y =

0and y = 4. therefore the given integral
represents the area between the curves

x =
p
y and x =

y

2
which is A

2

(same

as part (a)).

40. (a) Consider the area A
2

+A
3

. It may be ob-
served from the part (a) of the Exercise
39 that, A

2

is the area bounded by the
curves y = 2x, y = x2 between the or-
dinates x = 0 and x = 2. It may also
be observed from the part (c) of the Ex-
ercise 39 that, A

3

is the area bounded by
the curves x = 2 and y = x2 i.e.x =

p
y

therefore from the given figure A
2

+A
3

is
the area bounded by the curves y = 2x
i.e. x = y

2

and x = 2. therefore

A
2

+A
3

=

4Z

0

⇣
2� y

2

⌘
dy.

Note that here we have y as the variable.

(b) Consider the area A
1

+A
2

, refer part (b)
of the Exercise 39 It is in fact the converse
of that part.

(c) Consider the area A
1

, from the given fig-
ure it may be observed that, A

1

is the area
bounded by curves y = 4 and y = 2x. Be-
tween the ordinates x = 0 and x = 2.

Therefore A
1

=
2R

0

(4� 2x) dx
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(d) A
3

refer part (c) or the Exercise 39. Note
that here we have y as the variable.

41. The area between two curves y = sin2 (x) and
y = 1, for 0  x  t is given by:

f (t) =

tZ

0

�
1� sin2x

�
dx =

tZ

0

�
cos2x

�
dx

=
1

2

tZ

0

(1 + cos 2x) dx

=
1

2
[x]t

0

+
1

4
[sin 2x]t

0

) f (t) =
1

2
t+

1

4
sin 2t

For finding the critical points,
f 0 (t) = 0, therefore
1

2
+

1

4
cos 2t · (2) = 0.

) 1 + cos 2t = 0
or cos 2t = �1
) 2t = n⇡ for n = 1, 3, 5, ......

or t =
n⇡

2
for n = 1, 3, 5, ......

Now, f 00 (t) = � sin 2t substituting the value
of t in f 00 (t), we get f 00 (t) = 0. Therefore,

t =
n⇡

2
for n = 1, 3, 5, ...... are the points of

inflection.

42. Given g (x) is a continuous function of x, for
x � 0 and |g (x)|  1. f (t) is the area between
y = g (x) and y = 1 for 0  x  t, therefore

f (t) =
tR

0

(1� g (x)) dx. As g (x) has the local

maxima at x = a, g0 (a) = 0 and g00 (a) < 0.
Now from (1)
f 0 (t) = (1� g (t))
) f 00 (t) = �g0 (t)
) f 00 (a) = �g0 (a) = 0
also f 0 (a) = (1� g (a)) � 0.
Thus f (t) has an point of inflection at x = a
and a need not be the critical point, it is only
if g (a) = 1. If there is a local minima at x = a,
then g0 (a) = 0 and g00 (a) > 0. This does not
a↵ect the answer.

43. f(4) = 16.1e.07(4) = 21.3
g(4) = 21.3e.04(4�4) = 21.3
21.3 represents the consumption rate (million
barrels per year) at time t = 4 (1/1/74).Z

10

4

⇣
16.1e.07t � 21.3e.04(t�4)

⌘
dt

=
⇣
230e.07t � 532.5e.04(t�4)

⌘���
10

4

= 14.4 million barrels saved

44. Area =

Z
10

0

[76e0.03t � (50� 6e0.09t)] dt

⇡ 483.616
This area represents amount of wood used
by firewood that was not replaced with new
growth.

45. For t � 0,
b(t) = 2e.04t � 2e.02t = d(t)Z

10

0

�
2e.04t � 2e.02t

�
dt

=
�
50e.04t � 100e.02t

���10
0

= 2.45 million people.
This number represents births minus deaths,
hence population growth over the ten-year in-
terval.

46. These curves intersect when

T =
ln 3� ln 2

.02
⇡ 20.27325541

The area between the curves for 0  t  T
is the decrease in population from 0  t  T
(because b(t) < d(t) in this time period).

The area between the curves for T  t  30
is the increase in population from T  t  30
(because b(t) > d(t) in this time period).

The change in population is given by the inte-
gral:

�P =

Z
3

0

[b(t)� d(t))] dt

=

Z
3

0

2e0.04t � 4e0.02t dt

⇡ 7.3120 million people

47. Without formulae or tables, only rough or
qualitative estimates are possible.

time 1 2 3 4 5

amount 397 403 401 412 455

V (3) ⇡ 374, V (4) ⇡ 374, V (5) ⇡ 404

0 1 2 3 4 5
350

400

450

time

g
al

lo
n
s

48. The change in amount of water is equal to the
integral of the di↵erence between the functions
(the rate in minus the rate out). Approximat-
ing this integral:Z

1

0

(Into�Out) dt ⇡ 0
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Z
2

0

(Into�Out) dt ⇡ �8
Z

3

0

(Into�Out) dt ⇡ �26
Z

4

0

(Into�Out) dt ⇡ �26
Z

5

0

(Into�Out) dt ⇡ 4

Therefore V (1) = 400, V (2) ⇡ 392,
V (3) ⇡ 374, V (4) ⇡ 374, V (5) ⇡ 404.

t
54

y

3

440

2

420

400

1

380

360

0

49. In this set-up, p is price and q is quantity. We
find that D(q) = S(q) only if D(q) = S(q).

10� q

40
= 2 +

q

120
+

q2

1200

12000� 30q = 2400 + 10q + q2

q2 + 40q � 9600 = 0
(q � 80)(q + 120) = 0

within the range of the picture only at q = 80.
Thus q⇤ = 80 and p⇤ = D(q⇤) = S(q⇤) = 8.

Consumer surplus, as an area, is that part of
the picture below the D curve, above p = p⇤,
and to the left of Q = q⇤.

Numerically in this case the consumer surplus
isZ

q

⇤

0

[D(q)� p⇤] dq =

Z
80

0

⇣
2� q

40

⌘
dq

= 2q � q2

80

����
80

0

= 160� 80 = 80.

The units are dollars (q counting items, p in
dollars per item).

50. The intersection point is approximately
(q⇤, p⇤) = (76, 8). Therefore

PS = p⇤q⇤ �
Z

q

⇤

0

S(q) dq

= (8)(76)�
Z

76

0

✓
2 +

q

120
+

q2

1200

◆
dx

=
86849

225
⇡ 386.00.

51. The curves, meeting as they do at 2 and 5, rep-
resent the derivatives C 0 and R0. The area (a)
between the curves over the interval [0, 2] is the
loss resulting from the production of the first
2000 items. The area (b) between the curves
over the interval [2, 5] is the profit resulting
from the production of the next 3000 items.
The area (c), as the sum of the two previous
(call it (a) + (b)), is without meaning. How-
ever, the di↵erence (b)�(a) would be the total
profit on the first 5000 items, or, if negative,
would represent the loss. The area (d) between
the curves over the interval [5, 6] represents the
loss attributable to the (unprofitable) produc-
tion of the next thousand items after the first
5000.

52. Profit increases when revenue is larger than
cost. The point x = 2 represents a local min-
imum in profit. The point x = 5 represents a
local maximum in profit.

5.2 Volume: Slicing,

Disks and Washers

1. V =

Z
3

�1

A(x)dx =

Z
3

�1

(x+ 2)dx

=

✓
x2

2
+ 2x

◆����
3

�1

=

✓
9

2
+ 6

◆
�
✓
1

2
� 2

◆

= 12

2. V =

Z
10

0

10e0.01xdx =
�
1000e0.01x

�����
10

0

= 1000(e0.1 � 1)

3. V = ⇡

Z
2

0

(4� x)2dx = �⇡

3
(4� x)3

���
2

0

= �⇡

3
(8� 64) =

56⇡

3

4. V =

Z
4

1

2(x+ 1)2dx

=

Z
4

1

(2x2 + 4x+ 2)dx = 78

5. (a) f(0) = 750, f(500) = 0

f(x) = �75

50
x+ 750

V =

Z
500

0

✓
�75

50
x+ 750

◆
2

dx

=
50

75
·
✓
7503

3
� 0

◆
= 93, 750, 000 ft3
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(b) In this case, essentially the same integral
is set up as in Part (a):

V =

Z
250

0

✓
750

500

◆
2

(500� y)2dy

= 82, 031, 250 cubic feet

6. f(0) = 300, f(160) = 0

f(x) = �15

8
x+ 300

V =

Z
1

0

60

✓
�15

8
x+ 300

◆
2

dx

=
8

15
·
✓
3003

3
� 0

◆
= 4, 800, 000 ft3

This volume is one-eighth of the volume in Ex-
ample 2.1.

7. The key observation in this problem is that by
simple proportions, had the steeple continued
to a point it would have had height 36, hence
6 extra feet. One can copy the integration
method, integrating only to 30, or one can sub-
tract the volume of the missing “point” from
the full pyramid. Either way the answer is
3236

3
�
✓
1

2

◆
2

· 6
3
=

215

2
ft3.

8. This volume is easily computed using elemen-
tary geometry formulas. Using calculus and
the triangular cross sections, the area of cross
sections is 150, so the total volume is

V =

Z
60

0

150dx = 9000.

9. V =

Z
60

0

⇡x2dy = ⇡

Z
60

0

60[60� y]dy

= 60⇡


60y � y2

2

�
60

0

= 60⇡


602 � 602

2

�

=
603⇡

2
= 108000⇡ ft3

10. The radius of the cross-section is given by
r = x, therefore the volume is given by

V =

120Z

0

⇡x2dy = ⇡

120Z

0

120 (120� y)dy

= 120⇡ ·

120y � y2

2

�
120

0

= 120⇡


1202 � 1202

2

�

=
1203⇡

2
= 864, 000⇡ft3.

11. V = ⇡

Z
2⇡

0

⇣
4 + sin

x

2

⌘
2

dx

= ⇡

Z
2⇡

0

⇣
16 + 8 sin

x

2
+ sin2

x

2

⌘
dx

= ⇡

✓
16x� 16 cos

x

2
+

1

2
x� 1

2
sinx

◆����
2⇡

0

= 33⇡2 + 32⇡ in3

12. V =

Z
2⇡

0

⇡
⇣
4� sin

x

2

⌘
2

dx

=

Z
2⇡

0

⇡
⇣
16� 8 sin

x

2
+ sin2

x

2

⌘
dx

= 33⇡2 � 32⇡ in3

13. V =

Z
1

0

A(x)dx

⇡ 1

3(10)
[A(0) + 4A(.1) + 2A(.2)

+ 4A(.3) + 2A(.4) + 4A(.5)
+ 2A(.6) + 4A(.7) + 2A(.8)
+ 4A(.9) +A(1.0)]

=
7.4

30
⇡ 0.2467cm3
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14. V =

Z
1.2

0

A(x)dx

⇡ 0.2

3
[f(0.0) + 4f(0.2) + 2f(0.4)

+ 4f(0.6) + 2f(0.8) + 4f(1.0)
+ f(1.2)]

=
0.2

3
[0 + 4(0.2) + 2(0.3) + 4(0.2)

+ 2(0.4) + 4(0.2) + 0]
⇡ 0.253333.

15. V =

Z
2

0

A(x)dx

⇡ 2

3(4)
[A(0) + 4A(.5) + 2A(1)

+4A(1.5) +A(2)]
= 2.5 ft3

16. V =

Z
0.8

0

A(x)dx

⇡ 0.1

3
[f(0.0) + 4f(0.1) + 2f(0.2)

+ 4f(0.3) + 2f(0.4) + 4f(0.5)
+ 2f(0.6) + 4f(0.7) + f(0.8)]

=
0.1

3
[2.0 + 4(1.8) + 2(1.7) + 4(1.6)

+ 2(1.8) + 4(2.0) + 2(2.1) + 4(2.2)
+ 2.4]

⇡ 1.533333

17. (a) V = ⇡

Z
2

0

(2� x)2dx

= �⇡

✓
(2� x)3

3

◆����
2

0

=
8⇡

3

(b) V = ⇡

Z
2

0

⇥
32 � {3� (2� x)}2

⇤
dx

= ⇡

Z
2

0

⇥
9� {1 + x}2

⇤
dx

= ⇡

"
9x|2

0

� (1 + x)3

3

����
2

0

#

= ⇡


18� 33 � 13

3

�
=

28⇡

3

18. (a) V = ⇡

p
2Z

�
p
2

h�
4� x2

�
2 � (x2)

2

i
dx

= ⇡


16x� 8x3

3

�����

p
2

�
p
2

= ⇡

 
64
p
2

3

!

(b) V = ⇡

p
2Z

�
p
2

�
4� x2

�
2 �

�
x2

�
2

dx

= ⇡

 
64
p
2

3

!

19. (a) V = ⇡

Z
2

0

(y2)2dy = ⇡

Z
2

0

y4dy

= ⇡

✓
y5

5

◆����
2

0

=
32⇡

5

(b) V = ⇡

Z
2

0

(4)2dy

� ⇡

Z
2

0

(4� y2)2dy

= ⇡

Z
2

0

(�y4 + 8y2)dy

= ⇡

✓
�y5

5
+

8y3

3

◆����
2

0

= ⇡

✓
�32

5
+

64

3

◆
� (0 + 0)

�

=
224⇡

15

20. (a) V = ⇡

1Z

0

(
p
y)2dy � ⇡

1Z

0

�
y2
�
2

dy

= ⇡

✓
y2

2
� y5

5

◆����
1

0

= ⇡

✓
1

2
� 1

5

◆

=
3⇡

10

(b) V = ⇡

1Z

0

�
1� y2

�
2

dy � ⇡

1Z

0

(1�p
y)2dy

= ⇡

1Z

0

�
y4 � 2y2 � y + 2

p
y
�
dy

= ⇡

 
y5

5
� 2y3

3
� y2

2
+

4y
3
2

3

!�����

1

0

= ⇡

✓
1

5
� 2

3
� 1

2
+

4

3

◆
=

11⇡

30

21. (a) V = 4⇡e2 � ⇡

Z
e

2

1

(ln y)2dy

= 4⇡e2

� [y(ln y)2 � 2y ln y + 2y]
��e2
1

= 4⇡e2 � (2e2 � 2)
= 2⇡(e2 + 1).
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(b) V = ⇡

Z
2

0

(ex + 2)2 dx

� ⇡

Z
2

0

(2)2dx

= ⇡

Z
2

0

�
e2x + 4ex

�
dx

= ⇡

✓
e2x

2
+ 4ex

◆����
2

0

= ⇡

✓
e4

2
+ 4e2

◆
�
✓
1

2
+ 4

◆�

= ⇡

✓
e4

2
+ 4e2 � 9

2

◆

22. (a) V = ⇡

Z
⇡/4

�⇡/4

[22 � (2� secx)2]dx

=

 
4⇡

Z
⇡/4

�⇡/4

secxdx

!

= �
⇣
⇡ tanx|⇡/4�⇡/4

⌘

⇡ 15.868

(b) V = ⇡

Z
⇡/4

�⇡/4

sec2 xdx

= ⇡ tanx|⇡/4�⇡/4

= 2⇡

23. (a) V = ⇡

Z
1

0

✓r
x

x2 + 2

◆
2

dx

=
⇡

2
ln |x2 + 2|

��1
0

=
⇡

2
ln

3

2
⇡ 0.637

(b) V = ⇡

Z
1

0

"
32 �

✓
3�

r
x

x2 + 2

◆
2

#
dx

= ⇡

Z
1

0

✓
6

r
x

x2 + 2
� 3x

x2 + 2

◆
dx

= 6⇡

Z
1

0

r
x

x2 + 2
dx

= � 3⇡

2
ln |x2 + 2|

����
1

0

⇡ 7.4721

24. e�x

2

= x2 when x ⇡ ±0.753

(a) V = ⇡

Z
0.753

0.753

[(e�x

2

)2 � (x2)2]dx

⇡ 3.113

(b) V = ⇡

Z
0.753

0.753

[(e�x

2

+ 1)2

� (x2 + 1)2]dx

⇡ 9.266

0.0
x

0.75

1.0

0.25

0.0

−0.5 0.5 1.0

0.5

−1.0

25. (a) V =

4Z

0

⇡

✓
4� y

2

◆
2

dy

=
⇡

4

4Z

0

�
16� 8y + y2

�
dy

=
⇡

4


16y � 4y2 +

y3

3

�
4

0

=
⇡

4


64� 64 +

64

3

�
=

16⇡

3

(b) V =

2Z

0

⇡ (4� 2x)2dx

= ⇡

2Z

0

�
16� 16x+ 4x2

�
dx

= ⇡


16x� 16

x2

2
+

4x3

3

�
2

0

= ⇡


32� 32 +

32

3

�
=

32⇡

3

(c) V =

2Z

0

⇡(4)2dx�
2Z

0

⇡(2x)2dx

= ⇡

2Z

0

�
16� 4x2

�
dx

= ⇡


16x� 4x3

3

�
2

0

= ⇡


32� 32

3

�
=

64⇡

3

(d) V =

2Z

0

⇡(8� 2x)2dx�
2Z

0

⇡(4)2dx

= ⇡

2Z

0

�
64� 32x+ 4x2 � 16

�
dx

= ⇡


48x� 32

x2

2
+

4x3

3

�
2

0
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= ⇡


96� 64 +

32

3

�
=

128⇡

3

(e) V =

4Z

0

⇡(2)2dy �
4Z

0

⇡
⇣y
2

⌘
2

dy

= ⇡

4Z

0

✓
4� y2

4

◆
dy

= ⇡


4y � 1

4
· y

3

3

�
4

0

= ⇡


16� 16

3

�
=

32⇡

3

(f) V =

4Z

0

⇡

✓
8� y

2

◆
2

dy �
4Z

0

⇡(2)2dy

= ⇡

4Z

0

✓
64� 16y + y2

4
� 4

◆
dy

=
⇡

4


64y � 16

y2

2
+

y3

3
� 16y

�
4

0

= ⇡


64 +

64

3

�
=

256⇡

3

26. (a) V =

Z
2

�2

⇡
�
4� x2

�
2

dx =
512⇡

15

(b) V =

Z
4

0

⇡(
p
y)2dy = 8⇡

(c) V =

Z
2

�2

⇡
⇥
(6� x2)2 � 22

⇤
dx

=
384⇡

5

(d) V =

Z
2

�2

⇡
⇥
62 � (2 + x2)2

⇤
dx

=
1408⇡

15

(e) V =

Z
4

0

⇡
⇥
(2 +

p
y)2 � (2�p

y)2
⇤
dy

=

Z
4

0

8⇡ y1/2dy =
16

3
⇡y3/2

����
4

0

=
128

3
⇡

(f) V =

Z
4

0

⇡
⇥
(4 +

p
y)2 � (4�p

y)2
⇤
dy

=

Z
4

0

16⇡ y1/2dy =
32

3
⇡y3/2

����
4

0

=
256

3
⇡

27. (a) V =

Z
1

0

⇡(1)2dy �
Z

1

0

⇡ (
p
y)2 dy

= ⇡

Z
1

0

(1� y)dy

= ⇡

✓
y � y2

2

◆����
1

0

=
⇡

2

(b) V =

Z
1

0

⇡
�
x2

�
2

dx

= ⇡
x5

5

����
1

0

=
⇡

5

(c) V =

Z
1

0

⇡ (1�p
y)2 dy

= ⇡

Z
1

0

⇣
1� 2y1/2 + y

⌘
dy

= ⇡

✓
y � 4

3
y3/2 +

y2

2

◆����
1

0

=
⇡

6

(d) V =

Z
1

0

⇡(1)2dx�
Z

1

0

⇡
�
1� x2

�
2

dx

= ⇡

Z
1

0

�
2x2 � x4

�
dx

= ⇡

✓
2

3
x3 � x5

5

◆����
1

0

=
7⇡

15

(e) V =

Z
1

0

⇡(2)2dy �
Z

⇡ (1 +
p
y)2 dy

= ⇡

Z
1

0

⇣
3� 2y1/2 � y

⌘
dy

= ⇡

✓
3y � 4

3
y3/2 � y2

2

◆����
1

0

=
7⇡

6

(f) V =

Z
1

0

⇡
�
x2 + 1

�
2

dx

= �
Z

1

0

⇡(1)2dx

= ⇡

Z
1

0

�
x4 + 2x2

�
dx

= ⇡

✓
x5

5
+

2

3
x3

◆����
1

0

=
13⇡

15

28. (a) V =

Z
1

0

⇡x2dx =
⇡

3

(b) V =

Z
0

�1

⇡
⇥
1� (1 + y)2

⇤
dy

+

Z
1

0

⇡
⇥
1� (1� y)2

⇤
dy

=
2⇡

3
+

2⇡

3
=

4⇡

3

(c) V =

Z
1

0

⇡
⇥
(1 + x)2 � (1� x)2

⇤
dx

= 2⇡
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(d) V =

Z
1

0

⇡
⇥
(1 + x)2 � (1� x)2

⇤
dx

= 2⇡

29. V = ⇡

Z
h

0

✓r
y

a

◆
2

dy

=
⇡

a

Z
h

0

ydy =
⇡h2

2a

The volume of a cylinder of height h and ra-

dius
p
h/a is h · ⇡(

p
h/a)2 =

⇡h2

a

30. The confusing thing here is that the h of Exer-
cise 29 is not the h of this problem. Realizing
this,

V =
⇡(h/a)2

2a
=

⇡h2

2a3

31. We can choose either x or y to be our integra-
tion variable,

V = ⇡

Z
1

�1

dx = ⇡x|1�1

= 2⇡

32. This is, of course, a solid ball. Notice that
y =

p
1� x2.

V =

Z
1

�1

⇡(
p
1� x2)2dx =

4⇡

3

33. The line connecting the two points (0, 1) and
(1,�1) has equation

y = �2x+ 1 or x =
1� y

2
.

V =

Z
1

�1

⇡

✓
1� y

2

◆
2

dy

= ⇡

✓
y

4
� y2

4
+

y3

12

◆����
1

�1

=
2⇡

3

34. The fact that the ratios is 3 : 2 : 1 is easy to

confirm since we know the volumes are 2⇡,
4⇡

3

and
2⇡

3
.

-1

-1

-1 -0.5

-0.5

-0.5

0
00

0.50.5

0.5

1

1

1

35. V = ⇡

Z
r

�r

⇣p
r2 � y2

⌘
2

dy

= ⇡

Z
r

�r

(r2 � y2)dy

= ⇡ (r2y � y3

3
)

����
r

�r

=
4

3
⇡r3

36. V =

Z
h

0

⇡
⇣
� r

h
y + r

⌘
2

dy =
⇡r2h

3

37. If we compute the two volumes using disks par-
allel to the base, we have identical cross sec-
tions, so the volumes are the same.

38. They have the same areas. This can be seen
by using elementary geometrical formulas for
area or by considering integrals. The area of
the parallelograms is given by the integral of
the heights of the line segments from 0 to 5.
The heights of the line segments are equal.

39. (a) If each of these line segments is the base
of square, then the cross-sectional area is
evidently

A(x) = 4(1� x2).

The volume would be

V
a

=

Z
1

�1

A(x)dx

= 2

Z
1

0

A(x)dx = 8

✓
x� x3

3

◆����
1

0

=
16

3
.

(b) These segments I
x

cannot be the literal
“bases” of circles, because circles “sit” on
a single point of tangency. They could
however be diameters. Assuming so, the
cross sectional area would be “⇡/2 times
radius-squared” or ⇡(1 � x2)/2. The re-
sulting volume would be ⇡/8 times the
previous case, or 2⇡/3.

40. (a) V =

Z
0

�1

[2(x+ 1)]2 dx =
4

3
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(b) Note that the area of an equilateral tri-
angle with side length l is

p
3l2/4. This

means that for a slice we have
A(x) =

p
3(x+ 1)2/4

and

V =

Z
0

�1

p
3(x+ 1)2

4
dx =

p
3

12

41. Reasoning as in Exercise 39, the line segment
I
x

is [x2, 2 � x2], (1  x  1). The length of
this segment is
(2� x2)� x2 = 2(1� x2),

hence in case (a)
A(x) = 4(1� x2)2 = 4(1� 2x2 + x4).

The volume would again be

V = 2

Z
1

0

A(x)dx

= 8

✓
x� 2x3

3
+

x5

5

◆����
1

0

= 8

✓
1� 2

3
+

1

5

◆
=

64

15
.

With the same provisos as in Exercise 39, the
answer to (b) would be ⇡/8 times the (a)-case,
or 8⇡/15.

For (c), the volume would be
p
3/4 times the

(a)-case, or 16
p
3/15.

42. (a) In this case, A(x) = (lnx)2 and

V =

Z
2

1

(lnx)2dx

= 2(ln 2)2 � 4 ln 2 + 2.

(b) In this case, A(x) =
⇡

2

✓
lnx

2

◆
2

and

V =

Z
2

1

⇡

2

✓
lnx

2

◆
2

dx

=
(ln 2)2

4
� ln 2

2
+

1

4
.

43. This time the line segment I
x

is [0, e�2x], (0 
x  ln 5). If (a) this is the base of a square, the
cross-sectional area is A(x) = (e�2x)2 = e�4x.
The volume V

a

would be the integral
Z

ln 5

0

A(x)dx

=

Z
ln 5

0

e�4xdx =
�e�4x

4

����
ln 5

0

=
1�

�
1

5

�
4

4
=

156

625
= .2496.

In the (b)-case, the segment I
x

is the base of
a semicircle, so the cross-sectional area would

be✓
1

2

◆
⇡

✓
e�2x

2

◆
2

=
⇣⇡
8

⌘
e�4x.

The resulting volume V
b

would be

(⇡/8)V
a

=
39⇡

1250
⇡ .09802.

44. (a) In this case, A(x) = (x2 �
p
x)2 and

V =

Z
1

0

(x2 �
p
x)2dx =

9

70

(b) In this case,

A(x) = ⇡

✓
x2 �

p
x

2

◆
2

and

V =

Z
1

0

⇡

✓
x2 �

p
x

2

◆
2

dx =
9

280

45. We must estimate ⇡
R
3

0

[f(x)]2dx.

The given table can be extended to give these
respective values for

f(x)2 : 4, 1.44, .81, .16, 1.0, 1.96, 2.56.

Simpson’s approximation to the integral would
be

3

(3)(6)
{4 + 4(1.44) + 2(.81)

+ 4(.16) + 2(1.0) +4(1.96) + 2.56} .
The sum in the braces is 24.42, and this must
be multiplied by ⇡/6 giving a final answer of
12.786.

46. Use Simpson’s rule.

V =

Z
2

0

⇡[f(x)]2dx

⇡ ⇡(0.25)

3
[(4.0)2 + 4(3.6)2 + 2(3.4)2

+ 4(3.2)2 + 2(3.5)2 + 4(3.8)2 + 2(4.2)2

+ 4(4.6)2 + (5.0)2]
⇡ 94.01216

47. In this problem, let x = g(y) be the equation
of the given curve describing the shape of the
container. For each height y, let V (y) be the
volume of fluid in the container when the depth
is y. Later we will estimate V (y). For now, one
knows that V (y) is the integral of ⇡[g(y)]2, or
by the fundamental theorem of calculus, that
dV

dy
= ⇡[g(y)]2.

In actual practice, y and hence V are functions
of t (time). Our primary interest is in y as a
function of t, but we will obtain this informa-
tion indirectly, first finding V as a function of y.
It appears that g(y) is about 2y for 0 < y < 1,
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which leads to [g(y)]2 = 4y2, V (y) = 4⇡y3/3
(on 0 < y < 1), and V (1) = 4⇡/3 = 4.2. We’ll
keep the formula in mind for later, but for now
will use the value at y = 1 and the crude trape-
zoidal estimate
V (y + 1) = V (y) + ⇡[g2(y) + g2(y + 1)]/2
to compile the following table:

y g(y) g2(y) V (y)

1 2 4 4.2
2 2 9 24.6
3 3 9 52.9
4 3 9 81.2
5 4 16 120.4

The assumption of uniform flow rate amounts
to dV/dt = constant, and if we start the clock
(t = 0) as we begin the flow, we get V = kt
for some k. The above table, supplemented by
the formula when y < 1, can be read to give
y (vertical) as a function of V (horizontal).
But because V = kt, the graph looks exactly
the same if the horizontal units are time. In
the following picture, we have scaled it on the
assumption of a flow rate of 120.4 cubic units
per minute, a rate which requires one minute
to fill the container. The previous formula
4⇡y3/3 = V (= kt = (120.4)t) (on 0 < y < 1),
becomes y = (3.06)t1/3 for very small t, and
accounts for the (barely discernible) vertical
tangent at t = 0.

0

1

2

3

4

5

height

time

48.

y

5

4

3

2

1

t

0
86420

49.

1.6

0.0

−0.8

−1.6

1

y

2.0

1.2

0.8

0.4

−0.4

−1.2

−2.0

2−2 0
x
−1

For the points of intersection, solve
1� (x� 1)2 = 1� x2

thatis,x2 � 2x+ 1 = x2

or x =
1

2
) y = ±

p
3

2
The desired volume V is the sum of the volume
V
1

generated by revolving the arc of the circle
x2 + y2 = 1 about the x-axis from x = 1

2

to
x = 1 and the volumeV

2

generated by revolv-
ing the arc of the circle (x� 1)2+y2 = 1 about
the x-axis from x = 0 to x = 1

2

.

Therefore V = V
1

+ V
2

where,

V
1

= ⇡

1Z

1/2

�
1� x2

�
dx = ⇡

✓
x� x3

3

◆����
1

1/2

= ⇡

✓
1� 1

3

◆
�
✓
1

2
� 1

24

◆�
=

5⇡

24

and V
2

= ⇡

1/2Z

0

⇣
1� (x� 1)2

⌘
dx

= ⇡

1/2Z

0

�
2x� x2

�
dx = ⇡


x2 � x3

3

�����
1/2

0

=
5⇡

24
V = V

1

+ V
2

⇡ 1.308997

50.

2

1

0

0−1

2

−2

−2

y

1
x

−1

The required region is formed by intersection
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of revolving circle x2 + y2 = 4 about y-axis
and revolving x = 1,�4  y  4about y-axis.
Desired volume V is the volume obtained by
revolving the shaded region R about the x-axis
where R is bounded by x = 0, x = 1 and the
arc of the circle x2 + y2 = 4

x = 1 ) y = ±
p
3

R = R
1

+R
2

+R
3

R1 is bounded by x = 0, x2 + y2 = 4, y =
p
3

R2 is bounded by x = 0, y =
p
3, y = �

p
3

R3 is bounded by x = 0, x2 + y2 = 4, y = �
p
3

Let V1 ,V2 ,V3 be the respective volumes ob-
tained by revolving R1 , R2 , R3 about y-axis

V
1

=

2Z

p
3

⇡
�
4� y2

�
dy

= ⇡


4y � y3

3

�����
2

p
3

= ⇡

 
16

3
� 8

p
3

3

!

V
2

= ⇡

p
3Z

�
p
3

1dy = 2⇡
p
3

V
3

= V
1

V = V
1

+ V
2

+ V
3

=
2⇡

3

⇣
16� 5

p
3
⌘

5.3 Volumes by

Cylindrical Shells

1. Radius of a shell: r = 2� x
Height of a shell: h = x2

V =

Z
1

�1

2⇡(2� x)x2dx

= 2⇡

✓
2x3

3
� x4

4

◆����
1

�1

=
8⇡

3

y

0.5 1.0−1.0 −0.5 0.0

0.25

x

1.0

0.0

0.75

0.5

2. Radius of a shell: r = 2 + x
Height of a shell: h = x2

V =

Z
1

�1

2⇡(2 + x)x2dx =
8⇡

3

y

0.5 1.0−1.0 −0.5 0.0

0.25

x

1.0

0.0

0.75

0.5

3. Radius of a shell: r = x
Height of a shell: h = 2x

V =

Z
1

0

2⇡x(2x)dx

=
4⇡

3
x3

����
1

0

=
4⇡

3

−0.5

1.0

0.5

0.0

−1.0

1.00.750.50.250.0

4. Radius of a shell: r = 2� x.
Height of a shell: h = 2x.

V =

Z
1

0

2⇡(2� x)(2x)dx =
8⇡

3

−0.5

1.0

0.5

0.0

−1.0

1.00.750.50.250.0

5. Radius of a shell: r = x.
eight of a shell: h = f(x) =

p
x2 + 1.

V =

4Z

0

2⇡x
p
x2 + 1dx
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= ⇡

4Z

0

2x
p

x2 + 1dx

= ⇡

0

@2
�
x2 + 1

� 3
2

3

1

A

������

4

0

=
2⇡

3

h
(17)

3
2 � 1

i

⇡ 144.7076

2

0
3

4

x
20

y

3

41

1

6. Radius of a shell: r = 2� x.
Height of a shell: h = f(x) = x2.

V =
1R

�1

2⇡ (2� x) x2dx = 8⇡

3

y

0.5 1.0−1.0 −0.5 0.0

0.25

x

1.0

0.0

0.75

0.5

7. Radius of a shell: r = 2� y.
Height of a shell: h = f(y) = 2

p
1� y2.

V =

1Z

�1

2⇡ (2� y) 2
p
1� y2dy

= 4⇡

1Z

�1

(2� y)
p
1� y2dy

= 8⇡

1Z

�1

p
1� y2dy � 4⇡

1Z

�1

y
p
1� y2dy

= 16⇡
⇣⇡
4

⌘
� 0 = 4⇡2

0.8

−0.6

x
1.0

0.6

1.0

−1.0

0.0
0.0

0.4

−1.0 0.5

0.2

−0.4

−0.5
−0.2

−0.8

8. Radius of a shell: r = 4� y.
Height of a shell: h = f(y) = 2

p
4� y2.

V =

2Z

�2

2⇡ (4� y) 2
p
4� y2dy

= 4⇡

2Z

�2

(4� y)
p

4� y2dy

= 2

0

@8⇡

2Z

�2

p
4� y2dy � 2⇡

2Z

�2

y
p

4� y2dy

1

A

= 2 (8⇡ (2⇡))� 0 = 32⇡2

1.6

−1.2

x
2

1.2

2.0

−2.0

0.0

0

0.8

−2 1

0.4

−0.8

−1
−0.4

−1.6

9. V =

Z
1

�1

2⇡(x+ 2)
�
(2� x2)� x2

�
dx

= 2⇡

Z
1

�1

�
4 + 2x� 4x2 � 2x3

�
dx

= 2⇡

✓
4x+ x2 � 4x3

3
� x4

2

◆����
1

�1

=
32⇡

3

10. V =

Z
1

�1

2⇡(2� x)
�
(2� x2)� x2

�
dx

= 2⇡

Z
1

�1

�
4� 2x� 4x2 + 2x3

�
dx

= 2⇡

✓
4x� x2 � 4x3

3
+

x4

2

◆����
1

�1

=
32⇡

3



5.3. VOLUMES BY CYLINDRICAL SHELLS 323

11. V =

Z
2

�2

2⇡(2 + y)(4� y2)dy

= 2⇡

✓
8y + 2y2 � 2y3

3
� y4

4

◆����
2

�2

=
128⇡

3

12. V =

Z
2

�2

2⇡(2� y)(4� y2)dy

= 2⇡

✓
8y � 2y2 � 2y3

3
+

y4

4

◆����
2

�2

=
128⇡

3

13. V =

2Z

0

2⇡ (3� x) (ex � x� 1) dx

= 2⇡

2Z

0

�
(3� x) ex � 2x+ x2 � 3

�
dx

= 2⇡


[(4� x) ex � x2 +

x3

3
� 3x

�����
2

0

= 2⇡

✓
2e2 � 4 +

8

3
� 6

◆
� (4� 3)

�

⇡ 21.6448

14. V =

Z
2

�1

2⇡(3� x)(x� (x2 � 2))dx

= 2⇡

Z
2

�1

�
6 + x� 4x2 + x3

�
dx

= 2⇡

✓
6x+

x2

2
� 4x3

3
+

x4

4

◆����
2

�1

=
45⇡

2

15. V =

Z
4

�2

2⇡(5� y)[9� (y � 1)2]dy

=

Z
4

�2

(y3 � 7y2 + 2y + 40) dy

=

✓
y4

4
� 7y3

3
+ y2 + 40y

◆����
4

�2

= 288⇡

16. V =

Z
4

�2

2⇡(3 + y)[9� (y � 1)2]dy

=

Z
4

�2

(�y3 � y2 + 14y + 24)dy

=

✓
�y4

4
� y3

3
+ 7y2 + 24y

◆����
4

�2

= 288⇡

17. (a) V =

Z
4

2

2⇡(y) (y � (4� y)) dy

= 2⇡

Z
4

2

�
2y2 � 4y

�
dy

= 2⇡

✓
2y3

3
� 2y2

◆����
4

2

=
80⇡

3

(b) V =

Z
2

0

2⇡(x) (4� (4� x)) dx

=

Z
4

2

2⇡(x)(4� x)dx

= 2⇡

✓
x3

3

◆����
2

0

+ 2⇡

✓
2x2 � x3

3

◆����
4

2

= 2⇡

✓
8

3
+

16

3

◆
= 16⇡

(c) V =

Z
4

2

⇡ (4� (4� y))2 dy

=

Z
4

2

⇡(4� y)2dy

= ⇡

Z
4

2

y2dy

� ⇡

Z
4

2

(16� 8y + y2)dy

= ⇡

Z
4

2

(�16 + 8y)dy

= ⇡ (�16y + 4y2)
��4
2

= 16⇡

(d) V =

Z
4

2

2⇡(4� y) (y � (4� y)) dy

= 2⇡

Z
4

2

�
�2y2 + 12y � 16

�
dy

= 2⇡

✓
�2y3

3
+ 6y2 � 16y

◆����
4

2

=
16⇡

3

18. (a) V = ⇡

Z
0

�2

⇥
(x+ 4)2 � (�x)2

⇤
dx

= ⇡

Z
0

�2

(8x+ 16)dx

= ⇡ (4x2 + 16x)
��0
�2

= 32⇡

(b) V = 2⇡

Z
0

�2

(2+x) · [(x+2)� (�x� 2)]dx

= 2⇡

Z
0

�2

(2x2 + 8x+ 8)dx

= 2⇡

✓
2x3

3
+ 4x2 + 8x

◆����
0

�2

=
32⇡

3
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(c) V = 2⇡

Z
0

�2

(�x) · [(x+ 2)� (�x� 2)]dx

= 2⇡

Z
0

�2

(�2x2 � 4x)dx

= 2⇡

✓
�2x3

3
� 2x2

◆����
0

�2

=
16⇡

3

(d) V = ⇡

Z
0

�2

(x+ 2)2dx

= ⇡

Z
0

�2

(x2 + 4x+ 4)dx

= ⇡ (
x3

3
+ 2x2 + 4x)

����
0

�2

=
8⇡

3

19. (a) Method of shells.

V =

Z
3

�2

2⇡(3� x)[x� (x2 � 6)]dx

=

Z
3

�2

2⇡(�x3 � 4x2 � 3x+ 18)dx

=
625⇡

6
(b) Method of washers.

V =

Z
3

�2

⇡[(x2 � 6)2 � x2]dx

=

Z
3

�2

⇡(x4 � 13x2 + 36)dx

=
250⇡

3
(c) Method of shells.

V =

Z
3

�2

2⇡(3 + x)[x� (x2 � 6)]dx

=

Z
3

�2

2⇡(x3 � 2x2 + 9x+ 18)dx

=
875⇡

6
(d) Method of washers.

V =

Z
3

�2

⇡[(6 + x)2 � (x2)2]dx

=

Z
3

�2

⇡(�x4 + x2 + 12x+ 36)dx

=
500⇡

3

20. (a) V = ⇡

Z
2

�1

[(3 + y)2 � (y2 + 1)2]dy

= ⇡

Z
2

�1

(�y4 � y2 + 6y + 8)dy

= ⇡

✓
�y5

5
� y3

3
+ 3y2 + 8y

◆����
2

�1

=
117⇡

5

(b) V = 2⇡

Z
2

�1

(y + 1)[((2 + y)� y2]dy

= 2⇡

Z
2

�1

(�y3 + 3y + 2)dy

= 2⇡

✓
�y4

4
+

3y2

2
+ 2y

◆����
2

�1

=
27⇡

2

(c) V = ⇡

Z
2

�1

[(4 + y)2 � (y2 + 2)2]dy

= ⇡

Z
2

�1

(�y4 � 3y2 + 8y + 12)dy

= ⇡

✓
�y5

5
� y3 + 4y2 + 12y

◆����
2

�1

=
162⇡

5

(d) V = 2⇡

Z
2

�1

(y + 2)[(2 + y)� y2]dy

= 2⇡

Z
2

�1

(�y3 � y2 + 4y + 4) dy

= 2⇡

✓
�y4

4
� y3

3
+ 2y2 + 4y

◆����
2

�1

=
45⇡

2

21. (a) V =

Z
1

0

⇡(2� x)2dx

�
Z

1

0

⇡
�
x2

�
2

dx

= ⇡

Z
1

0

(x2 � 4x+ 4)dx

� ⇡

Z
1

0

x4dx

= ⇡

Z
1

0

(�x4 + x2 � 4x+ 4)dx

= ⇡

✓
x5

5
+

x3

3
� 2x2 + 4x

◆����
1

0

=
32⇡

15

(b) V =

Z
1

0

2⇡x
�
2� x� x2

�
dx

= 2⇡

Z
1

0

�
2x� x2 � x3

�
dx

= 2⇡

✓
x2 � x3

3
� x4

4

◆����
1

0
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=
5⇡

6

(c) V =

Z
1

0

2⇡(1� x)(2� x� x2)dx

= 2⇡

Z
1

0

�
x3 � 3x+ 2

�
dx

= 2⇡

✓
x4

4
� 3x2

2
+ 2x

◆����
1

0

=
3⇡

2

(d) V =

Z
1

0

⇡
�
2� 2x2

�
2

dx

=

Z
1

0

⇡ (2� (2� x))2 dx

= ⇡

Z
1

0

(x4 � 4x2 + 4)dx� ⇡

Z
1

0

x2dx

= ⇡

Z
1

0

(x4 � 5x2 + 4)dx

= ⇡

✓
x5

5
� 5x3

3
+ 4x

◆����
1

0

=
38⇡

15

22. (a) V = ⇡

Z
1

0

[(2� x2)2 � x2]dx

= ⇡

Z
1

0

(x4 � 5x2 + 4)dx

= ⇡

✓
x5

5
� 5x3

3
+ 4x

◆
dx

=
97⇡

60

(b) V = 2⇡

Z
1

0

x(2� x2 � x)dx

= 2⇡

Z
1

0

(�x3 � x2 + 2x)dx

= 2⇡

✓
�x4

4
� x3

3
+ x2

◆
dx

=
3⇡

5

(c) V = 2⇡

Z
1

0

(x+ 1)(2� x2 � x)dx

= 2⇡

Z
1

0

(�x3 � 2x2 + x+ 2)dx

= 2⇡

✓
�x4

4
� 2x3

3
+

x2

2
+ 2x

◆
dx

=
21⇡

10

(d) V = ⇡

Z
1

0

[(2� x2 + 1)2

� (x+ 1)2]dx

= ⇡

Z
1

0

(x4 � 7x2 � 2x+ 8)dx

= ⇡

✓
x5

5
� 7x3

3
� x2 + 8x

◆
dx

=
187⇡

60

0.5

0.0 0.50.25

1.5

x

2.0

0.75

1.0

1.0
0.0

23. (a) V = 2⇡

Z
1

0

y(2� y � y2)dy

= 2⇡

Z
1

0

(�y3 � y2 + 2y)dy

= 2⇡

✓
�y4

4
� y33 + y2

◆����
1

0

=
5⇡

6

(b) V = 2⇡

Z
1

0

[(2� y)2 � (y2)2]dy

= 2⇡

Z
1

0

(�y4 + y2 � 4y + 4)dy

= 2⇡

✓
�y5

5
+

y3

3
� 2y2 + 4y

◆����
1

0

=
64⇡

15

2

0

1

20

-2

x

0.5 1.5

-1

1

24. (a) V ⇡ 2⇡

Z
0.79

0

y[(2� y)� ln(y + 1)]dy

⇡ 2.08

(b) V ⇡ ⇡

Z
0.79

0

[(2� y)2 � ln2(y + 1)]dy
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⇡ 6.20

y

0.2

0.4

0

x

43

-0.2

1 2

25. (a) V ⇡ 2⇡

Z
0.89

�0.89

(2� x) · (cosx� x4) dx

⇡ 16.72

(b) V ⇡ ⇡

Z
0.89

�0.89

[(2� x4)2 � (2� cosx)2]dx

⇡ 12.64

(c) V ⇡ ⇡

Z
0.89

�0.89

[(cosx)2 � (x4)2]dx

⇡ 4.09

(d) V ⇡ 2 · 2⇡
Z

0.89

0

x(cosx� x4)dx

⇡ 2.99

1

0.6

0.8

0.4

0

0.2

-1 0.5-0.5 10

x

26. (a) V ⇡ ⇡

Z
0.85

0

[(1� x2)2 � (1� sinx)2]dx

⇡ 0.57

(b) V ⇡ 2⇡

Z
0.85

0

(1� x) · (sinx� x2)dx

⇡ 0.47

(c) V ⇡ 2⇡

Z
0.85

0

x(sinx� x2)dx

⇡ 0.38

(d) V ⇡ ⇡

Z
0.85

0

[(sinx)2 � (x2)2]dx

⇡ 0.28

1

0.6

0.8

0.4

0

0.2

0.4 0.60.2

x

0.8 10

27. Axis of revolution: y-axis
Region bounded by: x =

p
y, x = y

y

1

0.5

x

10.50

28. Axis of revolution: y-axis
Region bounded by:
x = 4� y2, x = 0, y = 0

10

y

2

1.5

1

0.5

0

x

432

29. Axis of revolution: y-axis
Region bounded by: y = x, y = x2
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1
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0.8

0.4

0
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0.4 0.60.2

x

0.8 10

30. Axis of revolution: y = 4
Region bounded by:
y = x, y = �x, y = 2

y

1.5

2

x

20 1-1

0.5

-2

1

0

31. If the r-interval [0, R] is partitioned by points
r
i

, the circular band

{r2
i

 x2 + y2  r2
i+1

}

has approximate area c(r
i

)�r
i

(length times
thickness). The limit of the sum of these areas

is A = lim
nP

i=1

c(r
i

)�r
i

=
R
R

0

c(r)dr Because

we know that c(r) = 2⇡r,
we can evaluate the integral, getting

2⇡
r2

2

����
R

0

= ⇡R2.

32. If we think of the area of a circle of radius R
as being built up as described in Problem 61,
then

A =

Z
R

0

2⇡rdr Viewed as a function of R, the

derivative is
dA

dR
= 2⇡R so this is, of course, not a coinci-

dence.

33. The volume that we are looking for is twice
the volume of a shell with radius x and heightp
1� x2.

In other words, The bead is mathematically

the solid formed up from revolving the region
bounded by y =

p
1� x2, x = 1/2

and the x-axis around the y-axis.
Therefore

V = 2 ·
Z

1

1/2

2⇡x
p

1� x2dx

Let u = 1� x2, du = �2xdx,

and V = 4⇡

Z
1

1/2

x
p

1� x2dx

= �1

2
4⇡

Z
0

3/4

u1/2du

= 2⇡ · 2
3
u3/2

���
3/4

0

=

p
3⇡

2
cm3.

34. The size of the sphere is 4⇡/3 cm3, so we look
for the value of c such that

4⇡

Z
1

c

x
p

1� x2dx =
2

3
⇡.

V = 4⇡

Z
1

c

x
p
1� x2dx

=
4

3
⇡(1� c2)3/2 =

2

3
⇡

Hence we want the size of the hole to be

c =

r
1�

p
3
1

4
⇡ 0.6 cm.

35. V =

Z
1

0

x(1� x2)dx

=

Z
1

0

(x� x3)dx

=

✓
x2

2
� x4

4

◆����
1

0

=
1

4

V
1

=

Z
1

c

x(1� x2)dx

=

✓
x2

2
� x4

4

◆����
1

c

=
1

4
� c2

2
+

c4

4

We want

V � V
1

=
1

10
V

Then
c2

2
� c4

4
=

1

40
c ⇡ 0.2265

36. V = 4⇡

Z
4

0

y

s

30

✓
1� y2

16

◆
dy

Let u = 1� y2/16, du = �ydy/8

V = �32
p
30⇡

Z
0

1

u1/2du
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= 32
p
30⇡ · 2

3
=

64
p
30⇡

3

y

6

4

2

0

-2

-4

-6

x

6420-2-4-6

5.4 Arc Length and

Surface Area

1. For n = 2, the evaluations points are 0, 0.5, 1
s ⇡ s

1

+ s
2

=
p
(0� 0.5)2 + [f(0)� f(0.5)]2

+
p
(1� 0.5)2 + [f(1)� f(0.5)]2

=
p
0.52 + 0.54 +

p
0.52 + 0.752

⇡ 1.460

For n = 4, the evaluations points:
0, 0, 25, 0.5, 0.75, 1

s ⇡
4X

i=1

s
i

⇡ 1.474

2. For n = 2, the evaluations points are 0, 0.5, 1
s ⇡ s

1

+ s
2

⇡ 1.566

For n = 4, the evaluations points:
0, 0, 25, 0.5, 0.75, 1

s ⇡
4X

i=1

s
i

⇡ 1.591

3. For n = 2, the evaluations points are
0,⇡/2,⇡
s ⇡ s

1

+ s
2

=
p
(⇡/2)2 + [cos(⇡/2)� cos 0]2

+
p
(⇡/2)2 + [cos⇡ � cos(⇡/2)]2

=
p
⇡2 + 4 ⇡ 3.724

For n = 4, the evaluations points:
0,⇡/4,⇡/2, 3⇡/4,⇡

s ⇡
4X

i=1

s
i

⇡ 3.790

4. For n = 2, the evaluation points are 1, 2, 3
s ⇡ s

1

+ s
2

=
p
12 + (ln 2� ln 1)2

+
p

12 + (ln 3� ln 2)2

⇡ 2.296
For n = 4, the evaluation points are
1, 1.5, 2, 2.5, 3

s ⇡
4X

i=1

s
i

⇡ 4.161

5. This is a straight line segment from (0, 1) to
(2, 5). As such, its length is

s =
p
(5� 1)2 + (2� 0)2

=
p
20 = 2

p
5

6. s =

Z
1

�1

r
1 +

x2

1� x2

dx

=

Z
1

�1

1p
1� x2

dx

=
�
sin�1 x

���1
�1

= ⇡

7. y0(x) = 6x1/2, the arc length integrand isp
1 + (y0)2 =

p
1 + 36x.

Let u = 1 + 36x then

s =

Z
2

1

p
1 + 36xdx

=

Z
73

37

p
u

✓
du

36

◆

=
2

3(36)
u3/2

����
73

37

=
1

54
(73

p
73� 37

p
37)

⇡ 7.3824

8. s =

Z
1

0

q
1 + (e2x � e�2x)2dx

=

Z
1

0

p
e4x � 1 + e�4xdx

⇡ 3.056

9. y0(x) =
2x

4
� 1

2x
=

1

2

✓
x� 1

x

◆

1 + (y0)2 = 1 +
1

4

✓
x2 � 2 +

1

x2

◆

=
1

4

✓
x2 + 2 +

1

x2

◆

=


1

2

✓
x+

1

x

◆�
2

s =
1

2

Z
2

1

✓
x+

1

x

◆
dx
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=
1

2

✓
x2

2
+ lnx

◆����
2

1

=
1

2

✓
3

2
+ ln 2

◆

⇡ 1.0965

10. y0(x) =
1

2
(x2 + x�2)

s =

Z
3

1

s

1 +

✓
x2

2
+

1

2x2

◆
2

dx

=
1

2

Z
3

1

p
x8 + 6x4 + 1

x2

dx

⇡ 5.152

11. x0(y) =
y3

2
� 1

2y3
=

1

2

✓
y3 � 1

y3

◆

1 + (x0)2 = 1 +
1

4

✓
y6 � 2 +

1

y6

◆

=
1

4

✓
y6 + 2 +

1

y6

◆

=


1

2
(y3 +

1

y3
)

�
2

s =

Z �1

�2

p
1 + (x0)2 dy

= ��1

�2

Z �1

�2

✓
y3 +

1

y3

◆
dy

=
1

2

 
�y4

4

����
�1

�2

+
1

2y2

����
�1

�2

!

=
1

2

✓
15

4
+

3

8

◆
=

33

16

12. Here x (y) = ey/2 + e� y/2

x0(y) =
1

2

⇣
ey/2 � e�y/2

⌘

Now

s =

1Z

�1

s

1 +


1

2

�
ey/2 � e�y/2

��2
dy

=
1

2

1Z

�1

⇣
ey/2 + e�y/2

⌘
dy

=

1Z

0

⇣
ey/2 + e�y/2

⌘
dy

= 2
⇣
ey/2 � e�y/2

⌘���
1

0

= 2

✓
e� 1p

e

◆

13. y0(x) =
x1/2

2
� x�1/2

2

=
1

2

✓p
x� 1p

x

◆

1 + (y0)2 = 1 +
1

4

✓
x� 2 +

1

x

◆

=
1

4

✓
x+ 2 +

1

x

◆

=


1

2

✓p
x+

1p
x

◆�
2

s =

Z
4

1

p
1 + (y0)2

=
1

2

Z
4

1

✓p
x+

1p
x

◆
dx

=
x3/2

3

����
4

1

+
p
x
��4
1

=
7

3
+ 1 =

10

3

14. Here f (x) = 2 ln
�
4� x2

�

) f
0
(x) =

�4x

(4� x2)

1+
⇣
f

0
(x)
⌘
2

= 1+

✓
�4x

(4� x2)

◆
2

=

✓
4 + x2

4� x2

◆
2

Now , s =

1Z

0

✓
4 + x2

4� x2

◆
dx = 2 ln (3)� 1

15. s =

Z
1

�1

q
1 + (3x2)2dx

=

Z
1

�1

p
1 + 9x4dx ⇡ 3.0957

16. s =

Z
2

�2

p
1 + 9x4dx ⇡ 17.2607

17. s =

Z
2

0

p
1 + (2� 2x)2dx ⇡ 2.9578

18. s =

Z
⇡/4

0

p
1 + sec4 xdx ⇡ 1.2780

19. s =

Z
⇡

0

p
1 + (� sinx)2dx

=

Z
⇡

0

p
1 + sin2 xdx ⇡ 3.8201

20. s =

Z
3

1

r
1 +

1

x2

dx ⇡ 2.3020

21. s =

Z
⇡

0

p
1 + (x sinx)2dx = 4.6984

22. s =

Z
⇡

0

p
1 + e�x sin2 xdx ⇡ 13.1152
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23. Here f (x) = 10
⇣
ex/20 + e�x/20

⌘

) f
0
(x) =

10

20

⇣
ex/20 � e�x/20

⌘

1 +
⇣
f

0
(x)
⌘
2

= 1 +

✓
1

2

⇣
ex/20 � e�x/20

⌘◆2

=

✓
1

2

⇣
ex/20 + e�x/20

⌘◆2

Now,

s =

20Z

�20

1

2

⇣
ex/20 + e�x/20

⌘
dx

=

20Z

0

⇣
ex/20 + e�x/20

⌘
dx

= 20
⇣
ex/20 � e�x/20

⌘���
20

0

= 20
�
e� e�1

�
⇡ 47.0080

24. s =

Z
30

�30

s

1 +


1

2

�
ex/30 � e�x/30

��2
dx

=

Z
30

�30

1

2

⇣
ex/30 + e�x/30

⌘
dx

=
⇣
15ex/30 � 15e�x/30

⌘���
30

�30

= 30e� 30e�1 ⇡ 70.51207161ft.

25. In Example 4.4, y(x) = 5(ex/10 + e�x/10)
y(0) = 5(e0 + e0) = 10
y(�10) = y(10)
= 5(e1 + e�1) = 15.43
sag = 15.43� 10 = 5.43 ft

A lower estimate for the arc length given the
sag would be

2
p
(10)2 + (sag)2

= 2
p
100 + 29.4849 ⇡ 22.76

This looks good against the calculated arc
length of 23.504.

26. If x2/3 + y2/3 = 1, then in the first quad-
rant, y = (1� x2/3)3/2 and taking only the
first-quadrant case (which would produce one
fourth of the total length s), we have y =
3

2
(1� x2/3)1/2

✓
�2

3
x�1/3

◆

= �x�1/3(1� x2/3)1/2

(y0)2 = x�2/3(1� x2/3) = x�2/3 � 1

s = 4

Z
1

0

p
1 + y02dx

= 4

Z
1

0

p
x�2/3dx

= 4

Z
1

0

x�1/3dx

= 4

✓
3

2

◆
x2/3

���
1

0

= 6

There are some technicalities in fully justifying
the preceding computation, since the integrand
(x�1/3) is unbounded at x = 0, but the con-
clusion is sound.

x

y

10

1

27. y = 0 when x = 0 and when x = 60, so the
punt traveled 60 yards horizontally.

y0(x) = 4� 2

15
x =

2

15
(30� x)

This is zero only when x = 30, at which point
the punt was (30)2/15 = 60 yards high.

s =

Z
60

0

s

1 +

✓
4� 2

15
x

◆
2

dx

⇡ 139.4 yards

v =
s

4 sec
=

139.4 yards

4 sec
· 3 feet

1 yard

= 104.55 ft/s

60

40

0

50

30

x

30 50

10

20

0 4020 6010

28. Since y(100) = 0, the ball traveled 100
yards. The maximum height of the ball is

y(50) =
25

3
yards. The arc length is s =

Z
100

0

s

1 +


1

300
(100� 2x)

�
2

dx

⇡ 101.82215 yards
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40 600 8020 100

29. S = 2⇡

Z
1

0

y ds

= 2⇡

Z
1

0

x2

p
1 + (2x)2dx

⇡ 3.8097

30. S =

Z
⇡

0

2⇡ sinx
p
1 + cos2 xdx

⇡ 14.42360

31. S = 2⇡

Z
2

0

y ds

= 2⇡

Z
2

0

(2x� x2)
p
1 + (2� 2x)2dx

⇡ 10.9654

32. S =

Z
0

�2

2⇡(x3 � 4x)
p
1 + (3x2 � 4)2dx

⇡ 67.06557

33. S = 2⇡

Z
1

0

y ds

= 2⇡

Z
1

0

ex
p
1 + e2xdx ⇡ 22.9430

34. S =

Z
2

1

2⇡ lnx

r
1 +

1

x2

dx

⇡ 2.86563

35. S = 2⇡

Z
⇡/2

0

y ds

= 2⇡

Z
⇡/2

0

cosx
p
1 + sin2 xdx

⇡ 7.2117

36. S =

Z
2

1

2⇡
p
x

r
1 +

1

4x
dx ⇡ 8.28315

37. s
1

=

Z
1

0

q
1 + (6x5)2dx

=

Z
1

0

p
1 + 36x10dx ⇡ 1.672

s
2

=

Z
1

0

q
1 + (8x7)2dx

=

Z
1

0

p
1 + 64x14dx ⇡ 1.720

s
3

=

Z
1

0

q
1 + (10x9)2dx

=

Z
1

0

p
1 + 100x18dx ⇡ 1.75

As n ! 1, the length approaches 2, since one
can see that the graph of y = xn on [0, 1] ap-
proaches a path consisting of the horizontal
line segment from (0, 0) to (1, 0) followed by
the vertical line segment from (1, 0) to (1, 1).

38. (a) For 0  x < 1, we have lim
n!1

xn = 0

Therefore, the length of the limiting curve
is 1 (the limiting curve is a horizontal
line). Connecting the limiting curve to
the endpoint at (1, 1) adds an additional
length of 1 for a total length of 2.

(b) y
1

= x4, y0
1

= 4x3

y
2

= x2, y0
2

= 2x

Since both are increasing for positive x, y
1

is “steeper” (y
2

is “flatter”) if and only if
y0
1

> y0
2

, i.e.,

4x3 > 2x, x2 >
1

2
, x >

r
1

2

39. (a) L
1

=

Z
⇡/6

�⇡/6

p
1 + cos2 xdx ⇡ 1.44829

L
2

=

s
⇣
sin

⇡

6
� sin

⇣
�⇡

6

⌘⌘
2

+

✓
2⇡

6

◆
2

⇡ 1.44797 Hence

L
2

L
1

=
1.44797

1.44829
⇡ .9998

(b) L
1

=

Z
⇡/2

�⇡/2

p
1 + cos2xdx ⇡ 3.8202

L
2

=

r⇣
2 sin

⇡

2

⌘
2

+ (⇡)2

=
p
⇡2 + 4 = 3.7242

Hence
L
2

L
1

⇡ 0.9749

40. (a) L
1

=

Z
5

3

p
1 + (ex)2dx ⇡ 128.3491

L
2

=
p
22 + (e5 � e3)2 ⇡ 128.3432

Hence
L
2

L
1

⇡ 0.9999
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(b) L
1

=

Z �3

�5

p
1 + (ex)2dx ⇡ 2.0006

L
2

=
p
22 + (e�5 � e�3)2 ⇡ 2.0005

Hence
L
2

L
1

⇡ 0.9999

41. (a) Considering only the vertical segment x =
1, (�1 < y < 1), the area after rotation,
as an integral in y, would be

2⇡

Z
y=1

y=�1

xds(y) = 2⇡

Z
1

�1

(1)
p
1 + 02dy

= 2⇡y|1�1

= 4⇡
(height times circumference)

The full solid of revolution is a cylinder
with radius 1, and its top and bottom
each have area ⇡(1)2 = ⇡. Hence the total
surface area is 4⇡ + ⇡ + ⇡ = 6⇡.

(b) S =

Z
1

�1

2⇡
p
1� y2

vuut1 +

 
yp

1� y2

!
2

dy

=

Z
1

�1

2⇡
p
1� y2

s
1p

1� y2
dy

=

Z
1

�1

2⇡ dy = 4⇡

(c) The equation for the right segment of the
triangle is x = (1 � y)/2. Hence the re-

sulting area is 2⇡

Z
y=1

y=�1

xds(y)

= 2⇡

Z
1

�1

✓
1� y

2

◆s

1 +

✓
�1

2

◆
2

dy

= 2⇡

Z
1

�1

✓
1� y

2

◆r
5

4
dy

=
⇡
p
5

2

✓
y � y2

2

◆����
1

�1

= ⇡
p
5

The full revolved figure is a cone with
added base of radius 1 (and area ⇡).
Hence the total surface area
⇡
p
5 + ⇡(

p
5 + 1)⇡.

(d) 6⇡ : 4⇡ : (
p
5 + 1)⇡ = 3 : 2 : ⌧

0.5

-1

1

1

0 0.5
0

-0.5

-0.5-1

42. (a) Surface area of a right circular cylinder of
radius r and height h.

y=h

x=r

y

4

2

2

x

5

3

−1

3

1

0 1−2 −1−3

0

Consider a line x = r and 0  y  h
rotating about the y � axis to form a
Right Circular Cylinder.
Here f (y) = r
Therefore, the surface area

S =

hZ

0

2⇡f (y)
q
1 + (f 0 (y))2dy

=

hZ

0

2⇡r
q
1 + (0)2dy = 2⇡rh

(b) Surface area of a sphere of radius r

x

2

2

−2

y

3

1

3
0

−1

−3

10−1−2−3

Consider a semicircle of radius r with
centre as the origin, its equation is
y =

p
r2 � x2
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for �r  x  r Rotating it about the
x� axis we get a sphere Here

f (x) =
p
r2 � x2

Therefore, the surface area

S = 2⇡

rZ

�r

f (x)
q
1 + (f 0 (x))2dx

= 2⇡

rZ

�r

p
r2 � x2

s

1 +

✓
�xp
r2 � x2

◆
2

dx

= 2⇡

rZ

�r

p
r2 � x2

r
1 +

x2

r2 � x2

dx

= 2⇡

rZ

�r

p
r2 � x2

r
r2 � x2 + x2

r2 � x2

dx

= 2⇡

rZ

�r

p
r2 � x2

r
r2

r2 � x2

dx

= 2⇡

rZ

�r

rdx

= 4⇡r2

(c) Surface area of cone of radius r and
height h

r

1.5

2

2.0

1

0.5

y

0
1.0

−2

−1

0.0
x

Consider a line y = ( r
h

)x Rotating it
about the x�axis, we get a cone of radius
r and height h Here
f (x) = ( r

h

)x
Therefore, the surface area

S = 2⇡

hZ

0

f (x)
q
1 + (f 0 (x))2dx

= 2⇡

hZ

0

rx

h

r
1 +

⇣ r
h

⌘
2

dx

= 2⇡

hZ

0

rx

h

r
r2 + h2

h2

dx

= 2⇡

hZ

0

rx

h2

p
r2 + h2dx

=
2⇡r

p
r2 + h2

h2

✓
x2

2

◆����
h

0

= ⇡r
p

r2 + h2 = ⇡rl

where l =
p
r2 + h2 is the slanted height

of the cone.

43.

1

15

5

1098765432

20

10

0
0

For the path along the positive x � axis, the
equation of the path is f (x) = 0 Therefore
f

0
(x) = 0 The distance covered along the

x� axis is

L
1

=

sZ

0

q
1 + f 0 (x)dx =

sZ

0

dx ) L
1

= s

Now, for the path along the curve

y =
2

3
(x)3/2

The equation of the path is

f (x) =
2

3
(x)3/2

Therefore

f
0
(x) =

2

3
· 3
2
· x1/2 ) f

0
(x) = x1/2

The distance covered along these curve is

L
2

=

Z
s

0

q
1 + f 0 (x)dx =

Z
s

0

p
1 + x dx

L
2

=
2

3
(s+ 1)3/2 � 2

3

(a) Consider L
2

= 2L
1

L
2

L
1

=
2(s+ 1)

3
2 � 2

3s
= 2

) (s+ 1)
3
2 = 3s+ 1 or

(s+ 1)3 = (3s+ 1)2

) s3 � 6s2 � 3s = 0
Thus s = 0 or s = 6.464102
or s = �0.464102

But s > 0,
therefore s = 6.464102
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(b) Consider the motion of the person along
the x� axis

Let g (t) be the distance walked along the
x� axis
Therefore g(t) = t, 0  t  x,) g

0
(t) = 1

Now, consider the motion of the person

along the curve y =
2

3
(x)3/2

f (t) =
2

3
(t)3/2 is the distance walked

along the curve y =
2

3
(x)3/2, 0  t  x

Therefore

f (t) =
2

3
(t)3/2, 0  t  x ) f

0
(t) =

p
t

The ratio of the speeds =
f

0
(t)

g0(t)
=

p
t

1
= 2

) t = 4

44. (a)
d

dx

p
2

Z
x

0

s

1� sin2 u

3
du

=
1

2

p
2 ·
p
4� 2 sin2 x

=
p
1 + cos2 x

(b)
d

dx

✓
1

4
x
p
1 + 16x6 +

Z
3/4p

1 + 16x6

dx

◆

=

✓
1

4

p
1 + 16x6

+
12x6

p
1 + 16x6

◆
+

3/4p
1 + 16x6

=
1/4(1 + 16x6)p

1 + 16x6

+
12x6

p
1 + 16x6

+
3/4p

1 + 16x6

=
1 + 16x6

p
1 + 16x6

=
p
1 + 16x6

5.5 Projectile Motion

1. y(0) = 80, y0(0) = 0

2. y(0) = 100, y0(0) = 0

3. y(0) = 60, y0(0) = 10

4. y(0) = 20, y0(0) = �4

5. The initial conditions are
y(0) = 30 and y0(0) = 0
We want to find y0(t) when y(t) = 0.

We start with the equation y00(t) = �32.
Integrating gives y0(t) = �32t+ c

1

.
From the initial velocity, we have

0 = y0(0) = �32(0) + c
1

, and so y0(t) = �32t
Integrating again gives y(t) = �16t2 + c

2

.
From the initial position, we have
30 = y(0) = �16(0) + c

2

and so
y(t) = �16t2 + 30.

Solving y(t) = 0 gives t = ±
q

15

8

The posi-

tive solution is the solution we are interested
in. This is the time when the diver hits the
water. The diver’s velocity is therefore

y0
⇣q

15

8

⌘
= �32

q
15

8

⇡ �43.8 ft/sec

6. The initial conditions are
y(0) = 120 and y0(0) = 0
We want to find y0(t) when y(t) = 0. We start
with the equation y00(t) = �32.
Integrating gives y0(t) = �32t+ c

1

.
From the initial velocity, we have
0 = y0(0) = �32(0) + c

1

, and so y0(t) = �32t.

Integrating again gives y(t) = �16t2+c
2

. From
the initial position, we have
120 = y(0) = �16(0) + c

2

and so
y(t) = �16t2 + 120.

Solving y(t) = 0 gives t = ±
q

15

2

. The

positive solution is the solution we are inter-
ested in. This is the time when the diver hits
the water. The diver’s velocity is therefore

y0
 r

15

2

!
= �32

r
15

2
ft/sec

7. If an object is dropped (time zero, zero ini-
tial velocity) from an initial height of y

0

, then
the impact moment is t

0

=
p
y
0

/4 and the im-
pact velocity (ignoring possible negative sign)
is v

impact

= 32t
0

= 8
p
y
0

Therefore if the object is dropped from 30 ft,
the impact velocity is
8
p
30 ⇡ 43.8178 feet per second.

If dropped from 120 ft, impact velocity is
8
p
120 ⇡ 87.6356 feet per second.

From 3000 ft, impact velocity is
8
p
3000 ⇡ 438.178 feet per second.

From a height of h y
0

, the impact velocity is
8
p
hy

0

= 8
p
h
p
y
0

=
p
h
�
8
p
y
0

�
,

which is to say that impact velocity increases
by a factor of

p
h when initial height increases

by a factor of h.

8. Ignoring air friction we have initial conditions
y(0) = 555.427 and y0(0) = 0.

Integrating y00(t) = �32 gives
y0(t) = �32t+ c

1

. The initial condition gives
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0 = y0(0) = �32(0) + c
1

and therefore
y0(t) = �32t.

Integrating again gives y(t) = �16t+ c
2

.

The initial condition gives
555.427 = y(0) = �16(0) + c

2

and therefore
y(t) = �16t2 + 555.427.

We will assume that the baseball player catches
the ball when it is 6 feet above the ground, so
we solve
6 = y(t) = �16t2 + 555.427. Solving gives
t ⇡ ±5.86. We use the positive solution.
The velocity at this time is
y0(5.86) = �16(5.86) = �93.75 ft/sec
(If you assume the ball is caught at ground
level, the ball will be going 94.27 ft/sec.)

9. As y00 (t) = �9.8, y0 (t) = �9.8t+ y0 (0)

Therefore, y (t) = �4.9t2 + y0 (0) t+ y (0)

where y(0) represents the height of the cli↵ and
y(4) = 0.
Now, y (4) = �4.9 (16) + 4 (0) + y (0)

Thus, y (0) = 78.4 is the height of the cli↵ in
meters.

10. Let y (t) be the height of the boulder.
Therefore y00 (t) = �9.8; y (3) = 0 and
y0 (0) = 0
Thus, y0 (t) = �9.8t+ y0 (0) and
y (t) = �4.9t2 + y0 (0) t+ y (0)
Thus,
y (3) = �4.9 (9) + y (0) ) y (0) = 43.1meters

11. Let y (t) be the height at any time t.
Here v0 (t) = �9.8
Therefore v (t) = �9.8 t+ v (0) = �9.8t+ 19.6
or y0 (t) = �9.8 t+ 19.6
) y (t) = �4.9t2 + 19.6 t+ y (0) .

But y (0) = 0 therefore, y (t) = �4.9t2 + 19.6 t
which is the height at ay time t. Also the ve-
locity at any instant t is
v (t) = �9.8 t+ 19.6 = �9.8 (t� 2)

Now for the maximum height,
v (t) = 0 ) t = 2.
Therefore, maximum height is
y (2) = �4.9(2)2 + 19.6 (2) + y (0) = 19.6

He remains in the air until y (t) = 0.
That is, till�4.9t2+19.6t = 0 ) t = 0 or t = 4
Therefore, the amount of time he spent in the
air is 4sec.
The velocity with which he smacks back is
v (4) = �9.8 (4� 2) = �19.6m/s

12. Let y (t) be the height at any time t.
Here v0 (t) = �9.8,
Therefore v (t) = �9.8t+ v (0)
) y0 (t) = �9.8 t+ v (0)
) y (t) = �4.9t2 + v (0) t+ y (0) .

But y (0) = 0.
Therefore, y (t) = �4.9t2 + v (0) t which is the
height at any time t.
Now the maximum height is reached when

y0 (t) = 0 that is when t =
v (0)

9.8
.

Therefore for the maximum height

y

✓
v (0)

9.8

◆
= �4.9

✓
v (0)

9.8

◆
2

+ v (0)

✓
v (0)

9.8

◆

) 78.4 = �4.9

✓
v (0)

9.8

◆
2

+ v (0)

✓
v (0)

9.8

◆

) (v (0))2

9.8


�4.9

9.8
+ 1

�
= 78.4

) v (0) = 39.2m/s

13. Reviewing the solution to Exercise 11, the dif-
ference is that v(0) is unknown. However, we
still see that
y = �16t2 + tv(0) = �t[16t� v(0)] (factoring,
rather than completing the square). The sec-
ond time that y = 0 can be seen to occur at
time t

2

= v(0)/16, at which time
v(t

2

) = �32t
2

+ v(0) = v(0)(�2 + 1) = �v(0)

Now we see
v(t) = �32t+ v(0) = �32t+ 16t

2

= �16(2t� t
2

)

The peak was therefore at time t
2

/2, at which
time the height was �(t

2

/2)[16t2/2� v(0)]
= �(t2/2)[(v(0)/2)� v(0)]
= �(v(0)/32)[�v(0)/2] = v(0)2/64.

In summary, y
max

= [v(0)/8]2 in this problem
(and more generally, y

max

= [v(0)/8]2 + y(0)).
If y

max

= 20 inches = 5/3 feet, then
v(0)/8 =

p
5/3, and

v(0) = 8
p

5/3 ⇡ 10.33 feet per second.

This is considerably less than Michael Jordan’s
initial velocity of about 17 feet per second, but
the di↵erence in velocity is not as dramatic as
in height (20 inches to 54 inches).

14. For a given initial velocity of v
0

, the velocity
and position are given by
y0 = �32t+ v

0

y = �16t2 + v
0

t

The maximum occurs when y0 = 0 or when
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t
0

=
v
0

32
and the maximum height is

y(t
0

) = �16
⇣ v

0

32

⌘
2

+ v
0

⇣ v
0

32

⌘
=
⇣v

0

8

⌘
2

Therefore if the new initial velocity was 1.1v
0

(an increase of 10%), the new maximum height
would be✓
1.1v

0

8

◆
2

= 1.21
⇣v

0

8

⌘
2

In other words, it would be an increase in
height by 21%.

15. (a) If the initial conditions are
y(0) = H and y0(0) = 0

Integrating y00(t) = �32 gives

y0(t) = �32t+ c
1

.

The initial condition gives
y0(t) = �32t+ v

0

= �32t.

Integrating gives
y(t) = �16t2 + c

2

.

The initial condition gives
y(t) = �16t2 +H.

The impact occurs when y(t
0

) = 0 or
when t

0

=
p
y
0

/4 =
p
H/4. Therefore

the impact velocity is
y0(t

0

) = �32t
0

= �8
p
H

(b) If the initial conditions are
y(0) = 0 and y0(0) = v

0

Integrating y00(t) = �32 gives
y0(t) = �32t+ c

1

.
The initial condition gives
y0(t) = �32t+ v

0

.
Integrating gives
y(t) = �16t2 + v

0

t+ c
2

.
The initial condition gives
y(t) = �16t2 + v

0

t.

The maximum occurs when y0(t) = 0 or
when t = v

0

/32.
Therefore the maximum height is

y
⇣ v

0

32

⌘
= �16v2

0

322
+

v2
0

32
=

v
0

64
.

16. (a) The time t
0

when the lead ball hits the
ground satisfies

179 = 12800 ln

✓
cosh

✓
t
0

20

◆◆

cosh

✓
t
0

20

◆
= e179/12800

t
0

⇡ 3.3526

At time t
0

, the height of the wood ball is

179� 7225

8
ln

✓
cosh

✓
16

85
t
0

◆◆

⇡ 179� 169.0337 = 9.9663 ft

(b) The time t
1

that the wood ball need to
hit the ground satisfies

179 =
7225

8
ln

✓
cosh

✓
16

85
t
1

◆◆

cosh

✓
16

85
t
1

◆
= e1432/7225

t
1

⇡ 3.4562
The wood ball need to be released about
t
1

= t
0

= 0.1036 seconds earlier.

17. The starting point is
y00 = �9.8, y0(0) = 98 sin(⇡/3) = 49

p
3.

We get y(t) = �4.9t2 + ty0(0)
= �4.9t(t� [v(0)/4.9])
= �4.9t(t� 10

p
3)

The flight time is 10
p
3. As to the horizontal

range, we have x0(t) constant and forever equal
to 98 cos(⇡/3) = 49. Therefore x(t) = 49t and
in this case, the horizontal range is 49(10

p
3)

(meters).

18. Here y0 (0) = 40 sin
⇣⇡
6

⌘
= 20

Therefore y (t) = �4.9t2 + 20t
= t (�4.9t+ 20)

) the time of flight = t =
20

4.9
= 4.082

Now, for the horizontal range x (t)

x0 (t) = 40 cos
⇣⇡
6

⌘
= 20

p
3

Therefore
x (t) = 20

p
3t and

x (4.082) = 20 (1.7321) (4.082) = 141.3919

Repeating the same for the angle 600

y0 (0) = 40 sin
⇣⇡
3

⌘
= 34.6410

Therefore
y (t) = �4.9t2 + (34.6410) t
) y (t) = t (�4.9t+ 34.6410)

) the time of flight = t =
34.6410

4.9
= 7.0696

Now, for the horizontal range x (t)

x0 (t) = 40 cos
⇣⇡
3

⌘
= 20

Therefore x (t) = 20t and
x (7.0696) = 20 (7.0696) = 141.3919

19. This problem modifies Example 5.5 by using
a service angle of 6� (where the Example 5.5
used 7�) and no other changes. Here the serve
hits the net.

Next we want to find the range for which the
serve will be in.

If ✓ is the angle, then the initial conditions are
x0(0) = 176 cos ✓, x(0) = 0
y0(0) = 176 sin ✓, y(0) = 10
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Integrating x00(t) = 0 and y00(t) = �32, then
using the initial conditions gives
x0(t) = 176 cos ✓
x(t) = 176(cos ✓)t
y0(t) = �32t+ 176 sin ✓
y(t) = �16t2 + 176(sin ✓)t+ 10

To make sure the serve is in, we see what hap-
pens at the net and then when the ball hits
the ground. First, the ball passes the net when
x = 39 or when 39 = 176(cos ✓)t. Solving gives

t =
39

176 cos ✓
Plugging this in for the function

y(t) gives

y

✓
39

176 cos ✓

◆

= �16

✓
39

176 cos ✓

◆
2

+ 176(sin ✓)

✓
39

176 cos ✓

◆
+ 10

= �1521

1936
sec2 ✓ + 39 tan ✓ + 10

We want to ensure that this value is greater
than 3 so we determine the values of ✓ that give
y > 3 (using a graphing calculator or CAS).
This restriction means that we must have
�0.15752 < ✓ < 1.5507

Next, we want to determine when the ball hits
the ground. This is when
0 = y(t) = �16t2 + 176(sin ✓)t+ 10
We solve this equation using the quadratic for-
mula to get

t =
�176 sin ✓ ±

p
1762 sin2 ✓ + 640

�32
We are interested in the positive solution, so

t =
176 sin ✓ +

p
1762 sin2 ✓ + 640

32
Substituting this in to
x(t) = 176(cos ✓)t gives

x = 44 cos ✓
⇣
22 sin ✓ +

p
484 sin2 ✓ + 10

⌘

We want to determine the values of ✓ that en-
sure that x < 60. Using a graphing calculator
or a CAS gives ✓ < �0.13429

Putting together our two conditions on ✓ now
gives the possible range of angles for which the
serve will be in:
�0.15752 < ✓ < �0.13429

20. In these tennis problems, the issue is purely
geometric. Time is irrelevant. One can obtain
valuable information by eliminating time and
writing y as a function of x. For example, with

service angle of ✓ (in degrees below the hori-
zontal), initial speed v

0

, and initial height h,
one has

y(t) = �16t2 � tv
0

sin ✓ + h,
x(t) = tv

0

cos ✓, and hence

y = f(x) =
�16x2

v2
0

cos2 ✓
� x sin ✓

cos ✓
+ h

Now one could put x = 60 (the serve would be
in if f(60) < 0), or put x = 39 (the serve would
clear the net if f(39) > 3. If one were to set
f(60) = 0 and solve for v

0

, one would obtain
a critical speed (call it v

1

) for the given (h, ✓),
above which the serve would be out. Solving
f(39) = 3 one would obtain a second critical
speed (call it v

2

), below which the serve would

hit the net. Below we tabulate v
1

and v
2

for
h = 10 and selected values of ✓.

In the 7� line, we see that it would be neces-
sary to reduce the service speed to 149ft./sec.
to get it in, and the net would not be a prob-
lem. The 7.6� line has these interesting fea-
tures: the service at 176 ft./sec. is out, whereas
the service at 170 ft./sec. is in.

h ✓ v
1

v
2

feet degrees ft/sec ft/sec

10 7.0 149.0 105.7
10 7.6 171.5 117.4
10 8.0 193.6 127.8

21. Let (x(t), y(t)) be the trajectory. In this case
y(0) = 6, x(0) = 0
y0(0) = 0, x0(0) = 130
x00(t) ⌘ 0, x0(t) ⌘ 130
x(t) = 130t

This is 60 at time t = 6/13. Meanwhile,
y00(t) = �32, y0(t) = �32t
y(t) = �16t2 + 6

y

✓
6

13

◆
= �16

✓
6

13

◆
2

+ 6 =
438

169

y

✓
6

13

◆
⇡ 2.59 ft

22. If the initial speed is now 80 ft/s, the equations
become
x(t) = 80t
y(t) = �16t2 + 6

The ball crosses home plate when x = 60, or
when t = 3/4. At the home plate, we then
have,
y(3/4) = �16(3/4)2 + 6 = �3

In other words, the ball is “under” the ground
and the ball hits the ground before reaching
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home plate.

23. Let (x(t), y(t)) be the trajectory. In this case
5� is converted to ⇡/36 radians.

y(0) = 5, x(0) = 0
y0(0) = 120 sin ⇡

36

⇡ 10.46
x0(0) = 120 cos ⇡

36

⇡ 119.54
x00(0) ⌘ 0
x0(t) ⌘ 119.54
x(t) = 119.54t
This is 120 when
t = 120/119.54 = 1.00385 . . .

Meanwhile,
y00(t) = �32
y0(t) = �32t+ 10.46
y(t) = �16t2 + 10.46t+ 5
y(1.00385) = �16(1.00385)2

+ 10.46(1.00385) + 5
y(1.00385) ⇡ �.62 ft

24. We are assuming that the height at 120 feet is
the same as the release height 5. Let ✓ be the
angle of release (above the horizontal).
We have
y(t) = �16t2 + 120t sin ✓ + 5
x(t) = 120t cos ✓

Thus x(t) will be 120 when t = 1/cos✓, at
which time y(t) will be 5 only if
�16

cos2 ✓
+ 120

sin ✓

cos ✓
= 0

Hence if 120 sin ✓ cos ✓ = 16
60 sin 2✓ = 16
2✓ = sin�1(16/60) = .2699 . . . ,
✓ = .135 (radians) or about 7.7�

To find the aim, we need the length of the ver-
tical leg of a right triangle with opposite angle
7.7�, and adjacent leg 120 ft. Thus the player
should aim
120 tan(7.7�) ⇡ 120 tan(.135) ⇡ 16.2 ft

above the first baseman’s head.

25. (a) Assuming that the ramp height h is the
same as the height of the cars, this prob-
lem seems to be asking for the initial
speed v

0

required to achieve a horizontal
flight distance of 125 feet from a launch
angle of 30� above the horizontal. We
may assume x(0) = 0, y(0) = h, and we
find

y0(0) = v
0

sin
⇡

6
=

v
0

2

x0(0) = v
0

cos
⇡

6
=

p
3

2
v
0

y00(t) ⌘ �32, x00(t) ⌘ 0

y0(t) = �32t+
v
0

2
, x0(t) =

p
3

2
v
0

y(t) = �16t2 +
v
0

2
t+ h,

x(t) =

p
3

2
v
0

t.

x(t) will be 125 if t = 250/
�p

3⌫
0

�
at

which time we require that y be h. There-
fore

�16

✓
250p
3v

0

◆
2

+
v
0

2

✓
250p
3v

0

◆
= 0

v
0

=

s
8000p

3
⇡ 68ft/s

(b) With an angle of 45� = ⇡/4, the equa-
tions become
y0(0) = v

0

sin
⇡

4
=

v
0p
2

x0(0) = v
0

cos
⇡

4
=

v
0p
2

y00(t) = �32, x00(t) = 0

y0(t) = �32t+
v
0p
2
, x0(t) =

v
0p
2

y(t) = �16t2 +
v
0

tp
2
+ h,

x(t) =
v
0

tp
2

where h is the height of the ramp.

We now solve x(t) = 125 which gives

t
0

= t =
125

p
2

v
0

At this distance, we want the car to be at
a height h to clear the cars. This gives
the equation y(t

0

) = h, or

�16

 
125

p
2

v
0

!
2

+
125v

0

p
2

v
0

p
2

+ h = h

Solving for v
0

gives
v
0

= 20
p
10 ⇡ 63.24 ft/s.

26. Let (x(t), y(t)) be the trajectory. In this case,
y(0) = 256, x(0) = 0
y0(0) = 0, x0(0) = 100
y00(t) ⌘ 32, x00(t) ⌘ 0
y0(t) = �32t, y(t) = �16t2 + 256
x0(t) = 100, x(t) = 100t

y will be zero when t = 4, at which time x will
be 400. This is the drift distance.

27. (a) In this case with
✓
0

= 0 and ! = 1
x00(t) = �25 sin(4t)
x0(0) = x(0) = 0

x0(t) =
25

4
cos 4t� 25

4
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x(t) =
25

16
sin 4t� 25

4
t

(b) With ✓
0

=
⇡

2
and ! = 1

x00(t) = �25 sin
⇣
4t+

⇡

2

⌘

x0(0) = x(0) = 0

x0(t) =
25

4
cos
⇣
4t+

⇡

2

⌘

x(t) =
25

16
sin
⇣
4t+

⇡

2

⌘
� 25

16

28. (a) With ✓
0

=
⇡

4
and ! = 2

x00(t) = �25 sin
⇣
8t+

⇡

4

⌘

x0(0) = 0 = x(0)

x0(t) =
25

8
cos
⇣
8t+

⇡

4

⌘
� 25

p
2

16

x(t) =
25

64
sin
⇣
8t+

⇡

4

⌘
� 25

p
2

16
t� 25

p
2

128

(b) With ✓
0

=
⇡

4
and ! = 1

x00(t) = �25 sin(4t+ ⇡/4)

x0(0) = x(0) = 0

x0(t) =
25

4
cos(4t+ ⇡/4)� 25

p
2

8

x(t) =
25

16
sin(4t+ ⇡/4)

25t
p
2

8
� 25

p
2

32

29. The initial conditions are
s(0) = 0, s0(0) = 0.

Integrating s00(t) = �32 gives
s0(t) = �32t+ c

1

.
The initial condition gives
s0(t) = �32t.
Integrating gives
s(t) = �16t2 + c

2

.
The initial condition gives
s(t) = �16t2.
Realizing that �32 was given in feet per
second2,and we are using centimeters now,
we use, 1 foot = 30.48 cms
and get
s(t) = �487.68t2 cm

The yardstick is grabbed when s(t
0

) = �d,
that is when

t
0

=

p
d

487.68
⇡ 0.045

p
d

30. Using the result from Exercise 15,
v
1

= 8
p
H.

Now we need to compute how big v
2

is in order
for the ball to rebound to cH.

The initial conditions are
v(0) = v

2

, s(0) = 0.
Integrating a(t) = �32 gives
v(t) = �16t+ v(0) = �16t+ v

2

Integrating again we get
s(t) = �8t2 + v

2

t+ s(0) = �8t2 + v
2

t
s(t

0

) = cH when v(t
0

) = 0, that is when
t
0

= v
2

/16

� 8
⇣ v

2

16

⌘
2

+ v
2

⇣ v
2

16

⌘
= cH

v2
2

32
= cH

v
2

=
p
32cH

Now the coe�cient of restitution is
v
2

v
1

=

p
32cH

8
p
H

=

r
c

2

31. From Exercise 5, time of impact is

t =

p
30

4
seconds.

2 1

2

somersaults corresponds to 5⇡ radians of
revolution.
Therefore the average angular velocity is
5⇡p
30/4

=
20⇡p
30

⇡ 11.47 rad/sec

32. The initial conditions are
y(0) = 10, y0(0) = 160 sin 45�

x(0) = 0, and x0(0) = 160 cos 45�

Integrating x00(t) = 0 and y00(t) = �32 and us-
ing the initial conditions gives
x0(t) = 80

p
2

x(t) = (80
p
2)t

y0(t) = �32t+ 80
p
2

y(t) = �16t2 + (80
p
2)t+ 10.

We now want to solve for when y(t) = 5, which
gives the equation
�16t2 + (80

p
2)t+ 10 = 5

Solving gives

t =
�80

p
2±

p
12800 + 640

�32
⇡ �0.087, 7.16.

We, of course, take the positive solution.
x(7.16) = (80

p
2)(7.16) ⇡ 810.1.

So, place the net 810.1 feet away from the can-
non.
y0(7.16) = �32(7.16) + 80

p
2 ⇡ 116.0

Since we have x0 = 80
p
2 ⇡ 113.1, this means

that the impact velocity is
v =

p
(x0)2 + (y0)2

=
p
(116.0)2 + (113.1)2 ⇡ 162.0

which means the Flying Zucchini comes down
squash.(We should have known this—the ve-
locity at a height of 10 should have been equal
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to his initial velocity so his velocity at a height
of of 5 should be slightly higher, which it is.)

33. Let (x(t), y(t)) be the trajectory of the cen-
ter of the basketball. We are assuming that
y(0) = 6, x(0) = 0, the angle of launch ✓ of the

shot is 52� (✓ =
13⇡

45
in radians) and the initial

speed is 25 feet per second. Therefore

y0(0) = 25 sin
13⇡

45
⇡ 19.70

x0(0) = 25 cos
13⇡

45
⇡ 15.39

y00(t) ⌘ �32, x00(t) ⌘ 0
y0(t) = �32t+ 19.70, x0(t) ⌘ 15.39
y(t) = �16t2 + 19.70t+ 6,
x(t) = 15.39t.
x will be 15 when t is about
15/15.39 = .9746 . . . , at which time y will be
about
�16(.9746 . . .)2 + 19.70(.9746 . . .) + 6 ⇡ 10

In other words, the center of the ball is at po-
sition (15, 10) and the shot is good. More gen-
erally, with unknown ✓, the number 19.70 is
replaced by 25 sin ✓, while the number 15.39 is
replaced by 25 cos ✓. y will be exactly 10 if

�16t2 + 25t sin ✓ + 6 = 10

t =
25 sin ✓ +

p
625 sin2 ✓ � 256

32
x = 25t cos ✓.

As a function of ✓, this last expression is
too complicated to use calculus (easily) to
maximize and minimize it on the ✓-interval
(48�, 57�), but quick spreadsheet calculations
give these values:
(Observe that x is not a monotonic function of
✓ in this range. It takes its maximum when ✓ is
between 52.4 and 52.5 degrees. The evidence is
overwhelming that all the shots will be good.)

✓ t x

degrees seconds feet

48.0 0.8757 14.6484
49.0 0.9021 14.7958
50.0 0.9274 14.9024
51.0 0.9516 14.9710
52.0 0.9748 15.0038
52.1 0.9771 15.0051
52.2 0.9793 15.0062
52.3 0.9816 15.0069
52.4 0.9838 15.0073
52.5 0.9861 15.0073
52.6 0.9883 15.0070
52.7 0.9905 15.0064
52.8 0.9928 15.0054
52.9 0.9950 15.0042
53.0 0.9972 15.0026
54.0 1.0187 14.9690
55.0 1.0394 14.9044
56.0 1.0594 14.8100
57.0 1.0787 14.6869

34. Let(x (t) , y (t)) be the trajectory of the centre
of the basketball.

Here y (0) = 8, x (0) = 0, ✓ = 300 and v = 27.

Therefore y’(0)=27sin
⇡

6
= 13.5 and

x0(0) = 27 cos
⇡

6
= 23.3827

y00(t) ⌘ �32 ) y0(t) = �32t+ 13.5,
Or y(t) = �16t2 + 13.5t+ 8 also,
x00(t) ⌘ 0 ) x0(t) ⌘ 23.3827

That is x(t) = (23.3827) t

(a) Consider x (t) = 15

) t =
15

23.3827
⇡ 0.6415,

for which
y (0.6415)
= �16(0.6415)2 + 13.50 (0.6415) + 8
= 10.0759

Now, y(t) = 10 ) t ⇡ 0.6520 for which

x(0.6520) = (23.3827) (0.6520)
⇡ 15.2455

It is evident from the above calcula-
tions that the centre of the ball passes
through (15, 10.0759) and (15.2455, 10).
This means that the centre of the ball goes
through the basket. The graph of the mo-
tion is as follows
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7.5

x
302520151050

y

10.0

5.0

2.5

0.0

(b) When x (t) = 14.25 ) t ⇡ 0.6094 this
gives y(t) = 10.2849.
That is (14.25, 10.2845) lies on the curve.
Therefore the minimum distance between
the centre of the ball and the front rim is
0.2845. The minimum distance between
the centre of the ball and the back rim at
(15.75, 10) is 0.50450.

(c) If the ball is of diameter, then its radius
is . Since the minimum distance between
the center of the ball and the front rim is
less than the radius of the ball, the ball
hits the front rim.

35. (a) 85� = 17

36

⇡ radiance.

x0(0) = 100 · cos
�
17

36

⇡
�
⇡ 8.72

y0(0) = 100 · sin
�
17

36

⇡
�
⇡ 99.62

x00(0) = �20
y00(0) = 0

y(t) = 99.62t
x(t) = �10t2 + 8.72t
y(t

0

) = 90 when t
0

= 0.903
x(t

0

) = x(0.903) ⇡ �0.29

The ball just barely gets into the goal.

(b) Use the calculation from Exercise 35.(a),
y(t

1

) = 10 when t
1

= 0.100
x(t

1

) = x(0.100) ⇡ 0.775

The kick does not go around the wall.

36. Let (x(t), y(t)) be the trajectory of the ship.
Some of our data is in feet, so we will take
g = �32 in this problem. We have
y00(t) = 32
y0(t) = �32t+ y0(0)
y(t) = �16t2 + y0(0)t+ y(0)
x0(t) ⌘ c
x(t) = ct+ x(0)

Solving for t, we have
1

c
(x� x(0)) = t.

Substituting this expression for t in y(t), we
have
y � y(0)

= �16


1

c
(x� x(0))

�
2

+ y0(0)


1

c
(x� x(0))

�

Hence the path is a parabola.
Turning to the question of the duration of
weightlessness, we can assume x(0) = 0, and
we know that y0(t) = 0 when y � y(0) = 2500.
For this unknown time t

1

(the moment when
y0 is zero), we have 0 = �32t

1

+ y0(0).
Therefore t

1

= y0(0)/32, and

2500 = y(t
1

)� y(0)

= �16


y0(0)

32

�
2

+ y0(0)


y0(0)

32

�

=
y0(0)2

64
,

hence y0(0)2 = 64(2500)
y0(0) = 8(50) = 400, and
t
1

= 400/32 = 25/2.

We now know that y � y(0) = �16t2 + 400t
for all t.

The second time (t
2

) that y(t) = y(0) (af-
ter time zero) occurs when t = 400/16 =
25 seconds.
This is the duration of the weightless experi-
ence. Note that t

2

= 2t
1

. The plane must pull
out of the dive soon after this time.

37. Let y(t) be the height of the first ball at time
t, and let v

0y

be the initial velocity. We can
assume y(0) = 0. As usual, we have
y00 = �32, y0 = �32t+ v

0y

,
y = �16t2 + tv

0y

.

The second return to height zero is at time
t = 16/v

0y

. If this is to be 5/2, then v
0y

= 40.
But the maximum occurs at time
v
0y

/32 = 5/4
at which time the height (y(5/4)) is
�16(25/16) + 40(5/4) = 25feet.
For eleven balls, the di↵erence is that the sec-
ond return to zero is to be at time 11/4, hence
v
0y

= 44, and the maximum height is 30.25.

38. In this case, we start with initial conditions
x0(0) = v

0x

, x(0) = 0; y0(0) = v
0y

, y(0) = 0.
Integrating x00(t) = 0 and y00(t) = �32 and us-
ing the initial conditions gives
x0(t) = v

0x

x(t) = v
0x

t
y0(t) = �32t+ v

0y

y(t) = �16t+ v
0y

t
The ball is caught when y(t) = 0 so we solve
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this equation to get t =
v
0y

16
. Plugging this

into x(t) gives the horizontal distance

! = x
⇣v

0y

16

⌘
=

v
0x

v
0y

16
.

39. The student must first study the solution to
Exercise 38. Here we have the additional x-
component of the motion, which as in so many
problems is x(t) = tv

0x

. With initial speed of
v
0

, and initial angle ↵ from the vertical, we
have v

0y

= v
0

cos↵ and
v
0x

= v
0

sin↵.The horizontal distance at
elapsed time v

0y

/16 (time of return to initial
height) is by formula
x(v

0y

/16) = (v
0y

/16)v
0x

which defines !.
As in Exercise 37, the maximum height occurs
at time v

0y

/32, and at this time the height h
is

�16(v
0y

/32)2 + v
0y

(v
0y

/32) = v2
0y

/64
= (v0y/64)(16!/v

0x

)
= (!/4)(cos↵/ sin↵) = !/(4 tan↵).

Thus ! = 4h tan↵.

40. The linear approximation is tan�1 x = x,
i.e., tanx ⇡ x From Exercise 43, we have
! = 4h tan↵

Applying the linearization gives
! = 4h tan↵ ⇡ 4h↵
or ↵ ⇡ !

4h

This shows that �↵ ⇡ �!

4h

41. We must use the result

�↵ ⇡ �!

4h
from Exercise 40.

With h = 25 from Exercise 51 (10 balls) and
! = 1, we get
�↵ about 1/100 = .01 radians
or about .6�

42. In this case, the height to juggle 11 balls is
30.25 feet. Therefore with �! = 1, we get

�↵ ⇡ �!

4h
=

1

4(30.25)
⇡ 0.0083 rad or about

0.47�.

43. With trajectory (x, y), and assuming
x(0) = 0 and y(0) = 0, we have by now seen
many times the conclusion y = �gt2 + tv sin ✓.

The return to ground level occurs at time
t = 2v sin ✓/g, at which time the horizontal
range is x = tv cos ✓ = v2 sin(2✓)/g.

With v = 60 ft per second and ✓ = 25�, and
on earth with g = 32, this is about 86 feet, a

short chip shot. On the moon with g = 5.2, it
is about 530.34 ft.

44. Let ((x(t), y(t)) be the trajectory of the initial
burst of water. If the angle of inclination of
the hose is ✓, we have the relations
tan ✓ = m
sin ✓ =

mp
1 +m2

cos ✓ =
1p

1 +m2

We assume x(0) =0 and y(0) = 0 and then find
y00(t) ⌘ �32
y0(t) = �32t+ v sin ✓
y = y(t) = �16t2 + tv sin ✓

y = y(t) =� 16t2 +
tvmp
1 +m2

x0(t) ⌘ v cos ✓

x = x(t) = tv cos ✓ =
tvp

1 +m2

Solving the last equation in the form

t =
x
p
1 +m2

v
and inserting this in the y-formula, we find

y = �16x2

(1 +m2)

v2
+mx.

45. Let (x(t), y(t)) be the trajectory of the paint
ball, and let z(t) be the height of the target at
time t. We do assume that
y(0) = z(0) (target opposite shooter at timeof
shot) and
y0(0) = 0 (aiming directly at the target, hence
using an initially horizontal trajectory), and as
a result y � z has second derivative 0, and ini-
tial value 0.

However, this only tells us that
y � z = [y0(0)� z0(0)]t = �z0(0)t
and if the target is already in motion (z0(0)
not zero), the shot may miss at 20 feet or any
distance.

If on the other hand, the target is stationary
at the moment of the shot, then the shot hits
at20 feet or any other distance.

46. In this problem, we have the falling object with
initial conditions
y0
1

(0) = 0, y
1

(0) = 100.

The object that is launched from the ground
has initial conditions
y0
2

(0) = 40, y
2

(0) = 0

We now integrate the equations
y00
1

(t) = �32 and y00
2

(t) = �32, using the initial
conditions, to get



5.6. APPLICATIONS OF INTEGRATION TO PHYSICS AND ENGINEERING 343

y0
1

(t) = �32t
y
1

(t) = �16t2 + 100
y0
2

(t) = �32t+ 40
y
2

(t) = �16t2 + 40t

Now, we just solve y
1

(t) = y
2

(t), or
�16t2 + 100 = �16t2 + 40t
Solving gives t = 2.5, so the objects collide af-
ter 2.5 seconds and this collision occurs at a
height of y

1

(2.5) = 0.

This may seem odd, but notice that the max-
imum height of the y

2

object is only 25 feet.
What this means is that the y

2

object goes up
and then down and then the y

1

object only
catches the y

1

object when both objects actu-
ally hit the ground!

47. (a) The speed at the bottom is given by
1

2
mv2 = mgH, v =

p
2gH

(b) Use the result from (a)

v =
p
2gH =

p
2 · 16g = 4

p
2g

= 4
p
2 · 32 = 32ft/s

(c) At half way down,
1

2
mv2 +mh8 = mh16,

v =
p
2 · (16� 8)g = 4

p
g

= 4
p
32 ⇡ 22.63ft/s

(d) At half way down, the slope of the line
tangent to y = x2 is, 2 ·

p
8 = 4

p
2

Hence we know thatv
y

v
x

= 4
p
2

At the same time,
(v

y

)2 + (v
x

)2 = (4
p
g)2

v2
x

=
16g

33

v
x

= 4

r
g

33
⇡ 3.939 ft/s

v
y

= 16

r
2g

33
⇡ 22.282 ft/s

48. First we compute the speed v of the bowling
ball at the moment when it rolls right out of
the window.

30 = 16t2
0

, t
0

=

p
30

4

10 = t
0

v
0

, v
0

=
40p
30

.

From conservation of energy
1

2
mv2 = mgh,

1

2
m

✓
40p
30

◆
2

= mgh

80

3
= 32 · h,

h =
5

6

The height of the ramp should be
5

6
.

5.6 Applications of Integration

to Physics and Engineering

1. We first determine the value of the spring con-
stant k. We convert to feet so that our units
of work is in foot-pounds.

5 = F (1/3) =
k

3
and so k = 15.

W =

Z
6

0

F (x)dx

=

Z
1/2

0

15xdx =
15

8
foot-pounds.

2. We first determine the value of the spring con-
stant k. We convert to feet so that our units
of work is in foot-pounds.

10 = F (1/6) =
k

6
and so k = 60.

W =

Z
3

0

F (x)dx

=

Z
1/4

0

60xdx =
15

8
foot-pounds.

3. The force is constant (250 pounds) and the dis-
tance is 20/12 feet, so the work is
W = Fd = (250)(20/12)
= 1250/3foot-pounds.

4. The force is constant (300 pounds) and the dis-
tance is 6 feet, so the work is
W = Fd = (300)(6) = 1800 foot-pounds.

5. If x is between 0 and 30, 000 feet, then the
weight of the rocket at altitude x is

10000� 1

15
x.

Therefore the work is
Z

30,000

0

⇣
10,000� x

15

⌘
dx

=

✓
10,000x� x2

30

◆����
30,000

0

= 270,000,000 ft-lb

6. If x is between 0 and 10, 000 feet, then the

weight of the rocket at altitude x is 8000� x

10
.

Therefore the work done is
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W =

Z
10,000

0

⇣
8000� x

10

⌘
dx

= 60, 800, 000ft-lb

7. The weight of the 40 feet long chain is 1000
pounds. Therefore the weight of the 30 feet
long chain is 750 pounds. The force acting here
is 750 pounds and the distance traced due to
the applied force is 30 feet. Hence the work
done is

W = Fd
= (750) · (30)
= 22500 foot-pounds.

8. Let x be the distance of the bucket from the
initial position. Consequently x increases from
0 to 80. As the sand from the bucket leaks at
rate of 2 lb/s, the weight of bucket at the dis-
tance x is

�
100� x

2

�
. Therefore work done is

W =

Z
80

0

⇣
100� x

2

⌘
dx =

✓
100x� x2

4

◆
80

0

= 8000� 1600
= 6400 ft-lb.

9. (a) W =

Z
1

0

800x(10x)dx

=

✓
400x2 � 800

3
x3

◆����
1

0

=
400

3
mile-lb

= 704,000 ft-lb

(b) Horsepower is not equal to 800x(1 � x)
because this is the derivative with respect
to distance and not with respect to time.
Average horsepower is the ratio of
total work done divided by time:
704, 000 ft-lb

80 s
= 16 hp

10. (a) W =

Z
100

0

62.4⇡(100x� x2)(200 + x)dx

= 62.4⇡

Z
100

0

�
20,000x� 100x2 � x3

�
dx

= 8,168,140,899 ft-lb

(b) This is the same as Exercise 10.(a) except
the limits of integration change to reflect
that the tank is only filled half way:

W =

Z
50

0

62.4⇡(100x� x2)(200 + x)dx

= 3, 777, 765, 166 ft-lb

11. (a)

�

�

x

Let x represent the distance measured (in
ft) from the bottom of the tank, as shown
in the above diagram. The entire tank
corresponds to the interval
0  x  9.843 ( 1 mt = 3.281 ft).
Let us partition the tank into
0 = x

0

< x
1

< x
2

< ... < x
n

= 9.843.

such that

x
i

� x
i�1

= �x =
9.843

n

for each i = 1, 2, 3, , n.

This partitions the tank into n lay-
ers, each corresponding to an interval
[x

i�1

, x
i

].

Let us consider a water layer correspond-
ing to [x

i�1

, x
i

], which is a cylinder of
height �x and radius 3.281 ft(1mt) . This
layer must be pumped at a distance of
(9.843� c

i

) for c
i

2 [x
i�1

, x
i

]

Thus the force exerted in doing so,is
F
i

⇡ (Volume of the cylindrical slice)
⇥ (Weight of the water per unit volume)
⇡ ⇡(3.281)2 (�x)⇥ (62.4)
⇡ 2110.31 (�x)

Thus the corresponding work done
W

i

= 2110.31 (9.843� c
i

) (�x)

Therefore the total work done

W = lim
n!1

nX

i=1

(2110.31 (9.843� c
i

) (�x))

= 2110.31

9.843Z

0

(9.843� x)dx

= 2110.31

✓
9.843x� x2

2

◆����
9.843

0

= 102228.48 feet pounds

(b)
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�

�

x

Let x represent the distance measured (in
ft) from the bottom of the tank, as shown
in the above diagram. The entire tank
corresponds to the interval 0  x  3.281
(as 1mt = 3.281 ft). Let us partition the
tank into
0 = x

0

< x
1

< x
2

< ... < x
n

= 3.281.
such that

x
i

� x
i�1

= �x =
3.281

n
for each

i =1,2,3,,n. This partitions the tank
into n layers, each corresponding to an
interval [x

i�1

, x
i

]. Let us consider a
water layer corresponding to [x

i�1

, x
i

].
Which is a cuboid of length 9.843, width
2
p
6.562x� x2 and height �x.

The width is calculated with the help of
the following figure.

S

O

r

P

x

A B

In the above figure O is the centre of the
circle of radius r. OP = r � x,

AP =
q
r2 � (r � x)2 =

p
2rx� x2;

AB = 2
p
2rx� x2

The said layer must be pumped at a
distance of (2r � c

i

) for c
i

2 [x
i�1

, x
i

].
Thus the force exerted in doing so, is
F
i

⇡ (Volume of the cuboid shaped slice)
⇥ (Weight of the water per unit volume)
= (length⇥ width⇥ height)⇥ (62.4)

⇡
⇣
9.843⇥ 2

p
6.562x� x2 ⇥�x

⌘
⇥

(62.4)

⇡ 1228.41
p

6.562x� x2 (�x)

Thus the corresponding work done
W

i

= 1228.41
p
6.562x� x2 (6.562� c

i

) (�x)
Therefore the total work done

W = (1228.41)

⇥ lim
n!1

nX

i=1

⇣p
6.562x� x2 (6.562� c

i

)�x
⌘

= 1228.41

6.562Z

0

p
6.562x� x2 (6.562� x)dx

= 136304.64 feet pounds

12. We set up our coordinates similar to Example
6.3, with x representing vertical distance from
the vertex (the bottom of the tank). If slice
the water in horizontal slices, these slices have

radius r =
x

2
and the volume of a cylindrical

slice is ⇡r2�x =
⇡x2

4
�x. The weight density

of water is 62.4, which gives the force exerted
by this slice of water as 15.6⇡x2�x. This slice
of water must travel up a distance of 10 � x
and therefore the work required to pump this
slice out of the tank is

W
i

⇡ 15.6⇡x2�x(10� x)

⇡ 15.6(10� x)⇡x2�x

Now, we add up the work for all the slices and
turn it into an integral.

W =

Z
10

0

15.6(10� x)⇡x2dx

= 15.6⇡

✓
2500

3

◆

⇡ 40841 foot-pounds

13. W =

Z
10

0

axdx =
100a

2

W
1

=

Z
c

0

axdx =
ac2

2

W
1

=
W

2
gives

ac2

2
=

1

2

100a

2

c =
p
50 ⇡ 7.1 feet

The answer is greater than 5 feet because the
deeper the laborer digs, the more distance it is
required for him to lift the dirt out of the hole.

14. By calculation, the width at x feet depth is
5� x/2, therefore

W (x) =

Z
x

0

t

✓
5� t

2

◆
dt = v52x2 � 1

9
x3
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W (6) = 66

Solving
5

2
x2 � 1

9
x3 = 33 we get

x ⇡ 4.0 feet

15. We estimate the integral using Simpson’s Rule:

J =

Z
.0008

0

F (t)dt

⇡ .0008

3(8)
[0 + 4(1000) + 2(2100)

+ 4(4000) + 2(5000) + 4(5200)
+ 2(2500) + 4(1000) + 0]

⇡ 2.133
2.13 = J = m�v = .01�v
�v = 213 ft/sec
The velocity after impact is therefore
213� 100 = 113 ft/sec.

16. We compute the impulse using Simpson’s rule:

J ⇡ .6

3(6)
[0 + 4(8000) + 2(16, 000)

+4(24, 000)+2(15, 000)+4(9000)[5pt] +0]
⇡ 7533.3
7533.3 = J = m�v = 200�v
�v = 37.7 ft/sec

Since the velocity after the crash is zero, this
number is the estimated original velocity.

17. F 0(t) is zero at t = 3, and the maximum thrust
is F (3) = 30/e ⇡ 11.0364

It is implicit in the drawing that the thrust
is zero after time 6. Therefore the impulse isZ

6

0

10te�t/3dt = 90� 270e�2 ⇡ 53.55.

18. The impulse is

J =

Z
6

0

F (t) dt = 48. The impulse of Exer-

cise 17 was about 53.55 which means that the
rocket of Exercise 17 would have greater veloc-
ity and therefore a higher altitude.

19. m =

Z
6

0

⇣x
6
+ 2
⌘
dx = 15

M =

Z
6

0

x
⇣x
6
+ 2
⌘
dx = 48

Therefore,

x̄ =
M

m
=

48

15
=

16

5
= 3.2

So the center of mass is to the right of x = 3.

20. m =

Z
6

0

⇣
3� x

6

⌘
dx = 15

M =

Z
6

0

x
⇣
3� x

6

⌘
dx = 42

So, therefore

x =
M

m
=

42

15
=

14

5
= 2.8

So the center of mass is to the left of x = 3.

21. m =

Z
27

�3

✓
1

46
+

x+ 3

690

◆
2

dx

=
690

3

✓
1

46
+

x+ 3

690

◆
3

�����

27

�3

⇡ .0614 slugs ⇡ 31.5 oz

22. m =

Z
32

0

✓
1

46
+

x+ 3

690

◆
2

dx

⇡ 0.08343 slugs ⇡ 42.418 oz

23. M =

Z
27

�3

x

✓
1

46
+

x+ 3

690

◆
2

dx

⇡ 1.0208

x̄ =
M

m
=

1.0208

.0614
⇡ 16.6 in.

This is 3 inches less than the bat of Example
6.5, a reflection of the translation three inches
to the left on the number line.

24. M =

Z
32

0

x

✓
1

46
+

x+ 3

690

◆
2

dx

⇡ 1.72495

x̄ =
M

m
= 20.6745

Compared to the baseball bat of Example 6.5,
this baseball bat is longer and therefore has
more mass further out.

25. m =

Z
30

0

.00468

✓
3

16
+

x

60

◆
dx

⇡ .0614 slugs

M =

Z
30

0

.00468x

✓
3

16
+

x

60

◆
dx

⇡ 1.0969

weight = m(32)(16) = 31.4 oz

x̄ =
M

m
=

1.0969

.0614
⇡ 17.8 in.

26. The center of mass of the wooden bat of Ex-
ample 6.5 is at 19.6 inches. The center of mass
of the aluminum bat of Exercise 25 is at 17.8
inches—moving the sweet spot to the inside.

27. Area of the base is
1

2
(3 + 1) = 2.

Area of the body is 1⇥ 4 = 4.

Area of the tip is
1

2
(1⇥ 1) =

1

2
.
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Base:

m =

Z
1

0

⇢(3� 2x)dx =
5

12
⇡ .4167.

Body:

m =

Z
5

1

⇢dx = 12⇢

x̄ =
M

m
= 3

Tip:

m =

Z
6

5

⇢(6� x)dx ⇡ 2.67⇢

x̄ =
M

m
=

16

3
⇡ 5.33

28. We use the coordinate system as in Exercise 29,
with x = 0 corresponding to the left of the
rocket.

From Exercise 27, the base has total mass
5

6
⇢

and center of mass at x =
5

12
.

From Exercise 27, the body has total mass 12⇢
and center of mass at x = 3.

From Exercise 27, the tip has total mass
1

2
⇢

and center of mass at x =
16

3
.

The total mass of these three particles is

m =
40

3
⇢ and the moment of these particles is

M =

✓
5

6
⇢

◆✓
5

12

◆
+ (12⇢)(3)

+

✓
1

2
⇢

◆✓
16

3

◆

=
2809

72
⇢

The center of mass of the system is

x =
M

m
=

✓
2809

72
⇢

◆✓
3

40⇢

◆

=
2809

960
⇡ 2.926

29. The x-coordinate of the centroid is the same
as the center of mass from x = 0 to x = 4 with

density ⇢(x) =
3

2
x, hence

x̄ =
M

m
=

R
4

0

3/2 · x2dx
R
4

0

3/2 · xdx
=

8

3

The y-coordinate of the centroid is the same
as the center of mass from y = 0 to y = 6 with

density ⇢(y) = 6� 2

3
y, hence

ȳ =
M

m
=

R
6

0

2/3 ·
�
6y � 2

3

y2
�
dy

R
6

0

2/3 ·
�
6� 2

3

y
�
dy

= 2

So the center of the given triangle is the point
(8/3, 2).

3.6

5

3

2.8

1

4.0

6

4

3.2

2

0
2.42.01.61.20.80.40.0

30. Again we need to find both the x-coordinate
and y-coordinate of the centroid. But in this
case, since everything is symmetric, in fact we
can easily see that the centroid is going to be
(4, 2).

6.4

2.8

2.0

4.8

1.2

3.2 8.0

4.0

7.2

3.6

3.2

2.4

5.6

1.6

0.8

4.0

0.4

0.0
2.41.60.80.0

31. This time the x-coordinate of the centroid is
obviously x = 0, so the question remains to
find the y-coordinate.

This is the same as finding the center of mass
from y = 0 to y = 4 with density
⇢(y) =

p
4� y, hence

ȳ =
M

m
=

R
4

0

y
p
4� y dy

R
4

0

p
4� ydy

=
�
R
0

4

(4u1/2 � u3/2) du

�
R
0

4

u1/2 du

=
(8/3 · u3/2 � 2/5 · u5/2)

��4
0

2/3 · u3/2

��4
0

=
8

5

So the centroid is the pint (0, 8/5).
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4.0

0−2

1.2

1

0.4

2.0

3.6

2.4

0.8

2.8

x

0.0
−1

3.2

1.6

2

32. This time the y-coordinate is obviously y = 0.
The x-coordinate can found using the density
⇢(x) = 2x, from x = 0 to x = 4, and

x̄ =
M

m
=

R
4

0

2x2dx
R
4

0

2xdx
=

8

3

So the centroid is (8/3, 0).

3.2

1.6

0.0
2.4

−1.6

1.6 4.0

4.0

3.6

3.2

2.4

0.8

2.8
−0.8

−2.4

2.0

−3.2

−4.0

1.20.80.40.0

33. With x the depth, the horizontal width is a
linear function of x, given by x+ 40. Hence,

F =

Z
60

0

62.4x(x+ 40)dx

= 62.4

✓
x3

3
+ 20x2

◆����
60

0

= 8,985,600 lb

34. In this case, we just change the limits of inte-
gration.

F =

Z
60

10

62.4x(x+ 40) dx = 8, 840, 000 lb

35. Let x be the vertical deviation above the cen-
ter of the window, the horizontal width of the
window is given by 2

p
25� x2, depth of water

40 + x, and hydrostatic force

62.4

Z
5

�5

(x+ 40)2
p

25� x2dx

= 62.4

Z
5

�5

2x
p
25� x2dx

+ 62.4(40)

Z
5

�5

2
p
25� x2dx

⇡ 196, 035 pounds.

36. Let x be the distance from the surface of the
water. For a given value of x, the width of the
window is constant, 40. The force exerted on
the window by a slice of water, of depth x is
F
i

⇡ (62.4)(40)x�x.

We sum these forces up over the height of the
window and turn it into an integral:

F =

Z
10

0

(62.5)(10)xdx = 31, 250 lb.

37. Assuming that the center of the circular win-
dow descends to 1000 feet, then by the previous
principle, after converting the three inch radius
to 1/4 feet, we get F = 12,252 pounds. An al-
ternate calculation in which x is the deviation
downward from the top edge of the window,
would be

F =

Z
0.5

0

62.4(999.75 + x)

· 2
p
(0.25)2 � (0.25� x)2dx

=

Z
0.5

0

124.8(999.75 + x)
p
0.5x� x2dx

⇡ 12, 252 lb

38. Due to the fact that the size of the watch is so
small, we can assume that the force will be ap-
proximately the same regardless of orientation
of the watch.
The hydrostatic force is given by F = ⇢dA
where, ⇢ is the density of the water (62.4),
d is the depth (60), and A is the area, A =
⇡(1/12)2.
Putting these together gives
F ⇡ (62.4)(60)(⇡/144) ⇡ 81.68 lb.

39. (100 tons)(20 miles/hr)

=
(100 · 2000 lbs)(20 · 5280 ft)

3600sec

⇡ 5,866,667 ft-lb/s

=
5,866,667

550
hp

⇡ 10, 667 hp

40. This is a matter of slicing and approximating.
Divide the subinterval [a, b] into n equal subin-
tervals. Then, we take the limit as n ! 1,
which turns the Riemann sum into an integral.

J ⇡
nX

i=1

F (t
i

)�t.
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J = lim
n!1

nX

i=1

F (t
i

)�t =

Z
b

a

F (t) dt

41. The bat in Exercise 23 models the bat of Ex-
ample 6.5 choked up 3 in.

From Example 6.5:

f(x) =

✓
1

46
+

x

690

◆
2

;
Z

27

�3

f(x) · x2dx ⇡ 27.22.

From Exercise 23:

f(x) =

✓
1

46
+

x+ 3

690

◆
2

;
Z

27

�3

f(x) · x2dx ⇡ 20.54.

Reduction in moment:
27.22� 20.54

27.22
⇡ 24.5%

42. m =

Z
28

0

✓
1

46
+

x

690

◆
2

dx

+

Z
30

28

✓
1

92
+

x

690

◆
2

dx

⇡ 0.05918 slugs.

M =

Z
28

0

x

✓
1

46
+

x

690

◆
2

dx

+

Z
30

28

x

✓
1

92
+

x

690

◆
2

dx

⇡ 1.1398 slugs

x̄ =
M

m
⇡ 19.258

The center of mass moves in.

43.

Z
a

�a

2⇢x2b

r
1� x2

a2
dx =

1

4
⇢⇡a3b

44. If the racket was solid wood, then the second
moment would be

M
0

=

Z
a

�a

2⇢bx2

r
1� x2

a2
dx = ⇢

⇡

4
a3b

But, the racket is not solid wood. We have
to subtract the contribution to the second mo-
ment from the empty space. This amount is
equal to the second moment of a smaller wood
racket:

M
1

=

Z
a�w

�(a�w)

2⇢(b� w)x2

·

s

1� x2

(a� w)2
dx

= ⇢
⇡

4
(a� w)3(b� w)

Therefore the second moment is
M = M

0

�M
1

= ⇢
⇡

4

⇥
a3b� (a� w)3(b� w)

⇤

45. Using the formula in Exercise 42, we find that
the moments are 1323.8 for the wooden racket,
1792.9 for the mid-sized racket, and 2361.0 for
the oversized racket. The ratios are
mid

wood
⇡ 1.35,

over

wood
⇡ 1.78

46.
dM

da
= ⇢

⇡

4

⇥
3a2b� 3(a� w)2(b� w)

⇤

Since a > a� w and b > b� w

dM

da
> 0.

Therefore as a increases, M increases.
dM

dw
= ⇢

⇡

4

⇥
3(a� w)2(b� w) + (a� w)3

⇤

It is easy to see that
dM

dw
> 0. Therefore as w

increases M increases making the racket more
stable.

5.7 Probability

1. f(x) = 4x3 � 0 for 0  x  1 andZ
1

0

4x3dx = x4

��1
0

= 1� 0 = 1

2. f(x) =
3

8
x2 � 0 on the interval [0, 2] and

Z
2

0

3

8
x2dx = 1.

3. f(x) = x+ 2x3 � 0 for 0  x  1 and
Z

1

0

(x+ 2x3)dx =
x2

2
+

x4

2

����
1

0

= 1

4. f(x) = cosx � 0 over [0,⇡/2] andZ
⇡/2

0

cosxdx = 1.

5. f(x) =
1

2
sinx � 0 over [0,⇡] and

Z
⇡

0

1

2
sinxdx =

1

2
� cosx

����
⇡

0

= 1.

6. f(x) = e�x/2 � 0 over [0, ln 4] andZ
ln 4

0

e�x/2dx = �2e�x/2

���
ln 4

0

= 1.

7. We solve for c:

1 =

Z
1

0

cx3dx =
c

4
which gives c = 4.
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8. We solve for c:

1 =

Z
1

0

cx+ x2dx =
c

2
+

1

3

which gives c =
4

3
.

9. We solve for c:

1 =

Z
1

0

ce�4xdx = � c

4
(e�4 � 1)

which gives c =
4

1� e�4

.

10. We solve for c:

1 =

Z
2

0

2ce�cxdx = 2� 2e�2c

which gives c =
1

2
ln 2.

11. We solve for c:

1 =

Z
1

0

c

1 + x2

= c tan�1x
��1
0

= c
⇣⇡
4
� 0
⌘
= c

⇡

4

which gives c =
4

⇡
⇡ 1.2732

12. We solve for c:

1 =

Z
1

0

cp
1� x2

= c sin�1x
��1
0

= c
⇣⇡
2
� 0
⌘
= c

⇡

2

) c =
2

⇡
⇡ 0.6366

13. P (70  x  72)

=

Z
72

70

.4p
2⇡

e�.08(x�68)

2

dx ⇡ 0.157

14. P (76  X  80)

=

Z
80

76

0.4p
2⇡

e�0.08(x�68)

2

dx ⇡ 0.00068634

15. P (84  x  120)

=

Z
120

84

.4p
2⇡

e�.08(x�68)

2

dx ⇡ 7.76⇥ 10�11

16. P (14  X  60)

=

Z
60

14

0.4p
2⇡

e�0.08(x�68)

2

dx ⇡ 0.00068714

17. P

✓
0  x  1

4

◆
=

Z
1/4

0

6e�6xdx

= �e�6x

��1/4
0

= (�e�3/2 + 1) ⇡ .77687

18. P (0  X  0.5) =

Z
0.5

0

6e�6xdx ⇡ 0.95021

19. P (1  x  2) =

Z
2

1

6e�6xdx

= �e�6x

��2
1

= (�e�12 + e�6) ⇡ .00247

20. P (3  X  10) =

Z
10

3

6e�6xdx

⇡ 1.52300⇥ 10�8

21. P (0  x  1) =

Z
1

0

4xe�2xdx

= 1� 3e�2 ⇡ .594

22. P (1  X  2) =

Z
2

1

4xe�2xdx ⇡ 0.31443

23. Mean:

Z
10

0

x(4xe�2x)dx ⇡ 0.9999995

24. The maximum is at x =
1

2
and the mean is at

x ⇡ 0.31443.

210-1

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

x
43

25. (a) Mean: µ =

Z
b

a

xf(x)dx =

Z
1

0

3x3dx

=
3

4
= 0.75

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx =

Z
m

0

3x2dx = m3

which gives m =
1
3
p
2
⇡ 0.7937.

26. (a) Mean: µ =

Z
b

a

xf(x)dx =

Z
1

0

4x4dx

=
4

5
= 0.8

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx =

Z
m

0

4x3dx = m4

which gives m =
1
4
p
2
⇡ 0.8409.
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27. (a) Mean: µ =

Z
b

a

xf(x)dx

=

Z
1

0

x

✓
4/⇡

1 + x2

◆
dx ⇡ 0.4413

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx

=

Z
m

0

✓
4/⇡

1 + x2

◆
dx

=
4

⇡

�
tan�1x

���m
0

=
4

⇡
tan�1m

) m = tan
⇡

8
⇡ 0.4142

28. (a) Mean: µ =

Z
b

a

xf(x)dx

=

Z
1

0

x

✓
2/⇡p
1� x2

◆
dx

⇡ 0.6366

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx

=

Z
m

0

✓
2/⇡p
1� x2

◆
dx

=
2

⇡
sin�1x

��m
0

=
2

⇡

�
sin�1m� 0

�

=
2

⇡
sin�1m

) m = sin
⇡

4
⇡ 0.7071

29. (a) Mean: µ =

Z
b

a

xf(x)dx

=

Z
⇡

0

1

2
x sinxdx

=
1

2
(sinx� x cosx)

����
⇡

0

=
⇡

2

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx

=

Z
m

0

sinxdx =
1

2
(1� cosm)

which gives

m = cos�1(0) =
⇡

2
⇡ 1.57.

30. (a) Mean: µ =

Z
b

a

xf(x)dx

=

Z
⇡/2

0

x cosxdx

=
⇡

2
� 1 ⇡ 0.57080

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx

=

Z
m

0

cosxdx = sinm

which gives m =
⇡

6
⇡ 0.5236.

31. Density f(x) = ce�4x, [0, b] , b > 0

1 =

Z
b

0

ce�4xdx

= � c

4
e�4x

���
b

0

= � c

4

�
e�4b � 1

�

c =
4

1� e�4b

As b ! 1, c ! 4

32. From Exercise 31, c =
4

1� e�4b

µ =

Z
b

0

cxe�4xdx

=
c

16

⇥
1� e�4b(1 + 4b)

⇤

=
1� e�4b(1 + 4b)

4(1� e�4b)

Now, taking the limit,

lim
b!1

µ =
1

4

33. Density f(x) = ce�6x, [0, b] , b > 0

1 =

Z
b

0

ce�6xdx

=
�c

6
e�6x

����
b

0

= � c

6

�
e�6b � 1

�

c =
6

1� e�6b

As b ! 1, c ! 6

µ =

Z
b

0

xce�6xdx

=
ce�6c

36
(�6x� 1)

����
b

0

=
ce�6b

36
(�6b� 1) +

c

36

As b ! 1, µ ! 1

6

34. c =
A

1� e�ab

µ =
1� e�ab(1 + ab)

a(1� e�ab)

lim
b!1

µ =
1

a
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35. To find the probability of these events, we add
the probabilities.

(a) P (X � 5) = 0.0514 + 0.0115 + 0.0016 +
0.0001 = 0.0646

(b) P (X  4) = 0.0458 + 0.1796 + 0.2953 +
0.2674 + 0.1473
= 0.9354

(c) P (X � 6) = 0.0115 + 0.0016 + 0.0001
= 0.0132

(d) P (X = 3 or X = 4)
= 0.2674 + 0.1473
= 0.4147

36. (a) P (X = 2 or X = 3) = 0.441 + 0.343
= 0.784

(b) P (X � 1) = 0.189+0.441+0.343 = 0.973

37. (a) Suppose the statement is not true. Then
there must be a game before which the
player’s winning percentage is smaller
than 75% and after which the player’s
winning percentage is greater than 75%.
Then there are integers a and b (note that
a � m, b � n and a � b = m � n), such
that
a

b
<

3

4
and

a+ 1

b+ 1
>

3

4
. Then

4a < 3b, and 4a+ 4 > 3b+ 3
3b+ 4 > 4a+ 4 > 3b+ 3.

But there is no integer between the two
numbers 3b+4 and 3b+3, and thus such
situation will never happen. Thus there
must be a game after which the player’s
winning percentage is exactly 75%.

(b) Using the same argument as in the previ-
ous problem, we can conclude that:

If after a certain game, a game player’s
winning percentage is strictly less than

100
k

k + 1
, and then the player wins sev-

eral games in a row so that the win-

ning percentage exceeds 100
k

k + 1
, then

at some point in this process the player’s

winning percentage is exactly 100
k

k + 1
.

38. First the first quartile, we solve

0.25 =

Z
c

0

ln 2e�(ln 2)x/2dx

= 2
⇣
1� e�(ln 2)c/2

⌘

Solving gives
c = �2 ln(7/8)/ ln 2 ⇡ 0.3853 days.

For the third quartile, we solve

0.75 =

Z
c

0

ln 2e�(ln 2)x/2dx

= 2
⇣
1� e�(ln 2)c/2

⌘

Solving gives
c = �2 ln(5/8)/ ln 2 ⇡ 1.3561 days.

39. f(x) =
.4p
2⇡

e�.08(x�68)

2

f 0(x) =
�.064p

2⇡
(x� 68)e�.08(x�68)

2

f 00(x) =
�.064p

2⇡
e�.08(x�68)

2

·
�
1� .16(x� 68)2

�

The second derivative is zero when
x� 68 = ±1/

p
0.16 = ±1/0.4 = ±5/2

Thus the standard deviation is
5

2
.

40. For this, we have µ = 68 and � =
5

2
.

P (µ� �  X  µ+ �)
= P (65.5 < X < 70.5) ⇡ 0.6827
P (µ� 2�  X  µ+ 2�)
= P (63 < X < 73) ⇡ 0.9545
P (µ� 3�  X  µ+ 3�)
= P (60.5 < X < 75.5) ⇡ 0.9973

41. f 0(p) = mpm�1(1� p)n�m

� (n�m)pm(1� p)n�m�1

f 0(p) = 0 when p =
m

n
and

f 0(p)

⇢
< 0 if p < m/n
> 0 if p > m/n

Hence f(p) is maximized when p =
m

n
.

In common senses, in order for an event to hap-
pen m times in n tries, the probability of the
event itself should be about m/n.

42. In the picture, although it might appear that
y > 1/2, the conditions are that 0  y  1/2,
and the labeling in the drawing implies that the
lower line is the closer. This is indeed always an
allowable assumption (by turning the picture
upside down if necessary). In the right triangle
whose hypotenuse is the lower half-needle, the
vertical side is of length (sin ✓)/2. Therefore
the needle hits the lower line if y�(sin ✓)/2  0,
or if y  (sin ✓)/2. As to the actual probabil-
ity ratio, the denominator is just ⇡/2, while
the numerator is

�cos ✓

2

����
⇡

0

=
� cos⇡ + cos 0

2
=

2

2
= 1.
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The total probability of hitting a line is thus
2/⇡ ⇡ 63.66%.

43. To find the maximum, we take the derivative
and set it equal to zero:

f 0(x) = �2ax(bx� 1)(bx+ 1)e�b

2
x

2

= 0. This

gives critical numbers x = 0,±1

b
.

Since this will be a pdf for the interval [0, 4m],
we only have to check that there is a maximum

at
1

b
. An easy check shows that

f 0(x) > 0 on the interval


0,

1

b

�
and

f 0(x) < 0 for x >
1

b
. Therefore there is a

maximum at x = m =
1

b
(the most common

speed).

To find a in terms of m, we want the total

probability equal to 1. Since m =
1

b
, we also

make the substitution b =
1

m
.

1 =

Z
4m

0

ax2e�x

2
/m

2

dx

Solving for a gives

a =

✓Z
4m

0

x2e�x

2
/m

2

dx

◆�1

Note: this integral is not expressible in terms
of elementary functions, so we will leave it like
this. Using a CAS, one can find that
a ⇡ 2.2568m�3

44. f(t) = t�3/2e0.38t�100/t

Z
40

0

k · f(t)dt = 1 for k = 0.000318.

Z
30

20

0.000318 · f(t)dt ⇡ 0.0134

45. The probability of a 2k-goal game ending in a
k � k tie is

(2k) =
(2k) · · · (k + 1)

(k) · · · (1) pk(1� p)k

f(2k) < f(2k � 2) for general k.
f(2k)

f(2k � 2)
= 2

2k � 1

k
p (1� p)

Here
2k � 1

k
= 2� 1

k
< 2.

On the other hand,✓
p� 1

2

◆
2

� 0, p2 � p+
1

4
� 0

p� p2  1

4
, p(1� p)  1

4

Now we get
f(2k)

f(2k � 2)
= 2

2k � 1

k
p (1� p)

< 2 · 2 · 1
4
= 1. So f(2k) < f(2k � 2). In other

words, the probability of a tie is decreasing as
the number of goals increases.

46. The probability HTT appears first is the mean
of that probability over the four possibilities
for the first two coin tosses.

Let P(HT) be the probability HTT appears
first following HT.

Suppose the first two throws are HH. Then the
third throw can be either H or T. If it’s H,
then we are back in the same position: the pre-
ceding two throws are HH. But if it’s T, then
player B has won. So the probability of player
A winning in this case is 0. Putting the two
possibilities for the third throw together, as a
mean, the probability that player A wins fol-
lowing HH is:

P (HH) =
1

2
⇥ P (HH) +

1

2
⇥ 0 =

1

2
P (HH).

Now suppose the first two throws are HT. If
the third throw is H, then neither player has
won, and the probability HTT will ultimately
win is (by definition) P(TH). (The last two
throws were TH.) On the other hand, if the
third throw is T, then player A has won! So
this time the weighted mean for the probabil-
ity that player A wins, following HT is:

P (HH) =
1

2
⇥ P (TH) +

1

2
⇥ 1 =

1

2
P (TH) +

1

2
Similarly, we get

P (TH) =
1

2
⇥ P (HH) +

1

2
⇥ P(HT) and

P (TT) =
1

2
⇥ P (TH) +

1

2
⇥ P(TT).

Therefore, we have
P(HH) = 0
P(HT) = P(HT)/4 + 1/2 P(HT) = 2/3
P(TH) = P(HT)/2 = 1/3
P(TT) = P(TH) P(TT) = 1/3
The mean of these four results gives us the
probability of HTT appearing before HHT is
1/3. Hence, the probability of HHT appearing
before HTT is 2/3. Therefore, player B is twice
as likely to win.

47. (a) The functions f (x) and g (x) are the pdfs,
such that f (x) = a+ bx+ cx2 ;
f
�
x2

�
= g (x).

Therefore by definition,
f (x) ; g (x) � 0 andZ

1

0

f(x)dx =

Z
1

0

g(x)dx = 1

Consider f(x) = a+ bx+ cx2 and
g(x) = f(x2) = a+ bx2 + cx4.
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Thus, 1 =

Z
1

0

f(x)dx

=

Z
1

0

�
a+ bx+ cx2

�
dx

=

✓
ax+ b

x2

2
+ c

x3

3

◆����
1

0

) a+
b

2
+

c

3
= 1..... (1)

and 1 =

Z
1

0

g(x)dx

=

Z
1

0

�
a+ bx2 + cx4

�
dx

=

✓
ax+ b

x3

3
+ c

x5

5

◆����
1

0

) a+
b

3
+

c

5
= 1..... (2)

Solving (1) and (2), we get,

b = �4c

5
; a = 1 +

c

15
;

Thus f (x) = 1 +
c

15
� 4c

5
x+ cx2

or f (x) =

�
15cx2 � 12cx+ c+ 15

�

15

(b) Mean of pdf g:

µ =

Z
b

a

xg(x)dx

=

Z
1

0

x

�
15cx4 � 12cx2 + c+ 15

�

15
dx

=
1

15

Z
1

0

�
15cx5 � 12cx3 + (c+ 15)x

�
dx

=
1

15

✓
15cx6

6
� 12cx4

4
+

(c+ 15)x2

2

◆����
1

0

= 0.5

Ch. 5 Review Exercises

1. Area =

Z
⇡

0

�
x2 + 2� sinx

�
dx

=

✓
x3

3
+ 2x+ cosx

◆����
⇡

0

=
⇡3

3
+ 2⇡ � 2

2. Area =

Z
1

0

(ex � e�x) dx

= (ex + e�x)
���
1

0

= e+ e�1 � 2

3. Area =

Z
1

0

x3 �
�
2x2 � x

�
dx

=

✓
x4

4
� 2

3
x3 +

x2

2

◆����
1

0

=
1

12

4. First solve x2 � 3 = �x2 + 5 to find that the
intersections points are x = �2, 2.

Area =

Z
2

�2

[(�x2 + 5)� (x2 � 3)] dx

=

✓
�2

3
x3 + 8x

◆ ���
2

�2

=
64

3
.

5. Solving e�x = 2� x2 we get
x ⇡ �0.537, 1.316

Area ⇡
Z

1.316

�.537

�
2� x2 � ex

�
dx

=

✓
2x� x3

3
+ e�x

◆����
1.316

�.537

⇡ 1.452

6. First solve y2 = 1� y to find that the intersec-

tions points are y =
�1±

p
5

2
.

Area =

Z �1+
p

5
2

�1�
p

5
2

[(1� y)� y2] dy

=

✓
y � y2

2
� y3

3

◆����

�1+
p

5
2

�1�
p

5
2

=
5
p
5

6
.

7. Area =

Z
1

0

x2 dx+

Z
2

1

(2� x) dx

=
x3

3

����
1

0

+

✓
2x� x2

2

◆����
2

1

=
1

3
+ (4� 2)�

✓
2� 1

2

◆
=

5

6

8. Area =

Z
2

0

x2 dx =
8

3

9. If P is the population at time t, the equation
is

P 0(t) = birth rate� death rate
= (10 + 2t)� (4 + t) = 6 + t

Thus P = 6t+ t2/2 + P (0), so at time t = 6,

P (6) = 36 + 18 + 10,000 = 10,054.

Alternatively,

A =

Z
6

0

[(10 + 2t)� (4 + t)]dt
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=

Z
6

0

(6 + t)dt =

✓
6t+

t2

2

◆����
6

0

= 54

population = 10,000 + 54 = 10,054

10. For this we use Simpson’s rule on the function
(f � g)(x).
Z

2

0

[f(x)� g(x)] dx

⇡ 0.2

3
[(3.2�1.2)+4(3.5�1.5)+2(3.8�1.6) +

4(3.7�2.2)+2(3.2�2.0)+4(3.4�2.4) +2(3.0�
2.2)+4(2.8�2.1)+2(2.3�2.3) +4(2.9�2.8)+
(3.4� 2.4)]
⇡ 2.1733.

11. V =

Z
2

0

⇡(3 + x)2 dx

= ⇡

Z
2

0

(9 + 6x+ x2) dx

= ⇡

✓
9x+ 3x2 +

x3

3

◆����
2

0

=
98⇡

3

12. If we consider slices perpendicular to the x-
axis, then the area of a slice is equal to (10 +
2x)(4 + x) (length times depth). We integrate
the areas from x = 0 to x = 2:

Area =

Z
2

0

(10 + 2x)(4 + x) dx

=
364

3
⇡ 121.33 cubic feet.

13. Use trapezoidal estimate:

V = 0.4

✓
0.4

2
+ 1.4 + 1.8 + 2.0 + 2.1

+ 1.8 + 1.1 +
0.4

2

◆

⇡ 4.2

14. (a) V =

Z
1

0

⇡x4 dx =
⇡

5

(b) V =

Z
1

0

⇡(1� y) dy =
⇡

2

(c) V =

Z
1

0

⇡[(2�p
y)2 � 1] dy =

5⇡

6

(d) V =

Z
1

0

⇡[(2 + x2)2 � 2] dx =
53

15

15. (a) V =

Z
2

�2

⇡(4)2 dx�
Z

2

�2

⇡(x2)2 dx

= ⇡

Z
2

�2

(16� x4) dx

= ⇡

✓
16x� x5

5

◆����
2

�2

=
256⇡

5

(b) V =

Z
4

0

⇡(
p
y)2dy = ⇡

Z
4

0

ydy

=
⇡y2

2

����
4

0

= 8⇡

(c) V =

Z
4

0

⇡(2 +
p
y)2dy

�
Z

4

0

⇡(2�p
y)2dy

= ⇡

Z
4

0

(4 + 4y1/2 + y)dy

� ⇡

Z
4

0

(4� 4y1/2 + y)dy

= ⇡

Z
4

0

(8y1/2)dy

= 8⇡ · 2
3
y3/2

����
4

0

=
128⇡

3

(d) V =

Z
2

�2

⇡(6)2 dx

�
Z

2

�2

⇡(x2 + 2)2 dx

= ⇡

Z
2

�2

(�x4 � 4x2 + 32) dx

= ⇡

✓
�x5

5
� 4x3

3
+ 32x

◆����
2

�2

=
1408⇡

15

16. (a) V =

Z
2

0

⇡(4x2 � x2) dx = 8⇡

(b) V =

Z
2

0

⇡

✓
y2 � y2

4

◆
dy

+

Z
4

2

⇡

✓
4� y2

4

◆
dy

= 2⇡ +
10⇡

3
=

16⇡

3

(c) V

=

Z
2

0

⇡


(1 + y)2 �

⇣
1 +

y

2

⌘
2

�
dy

+

Z
4

2

⇡


9�

⇣
1 +

y

2

⌘
2

�
dy

= 4⇡ +
16⇡

3
=

28⇡

3
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(d) V =

Z
2

0

⇡[(4� x)2 � (4� 2x)2] dx

= 8⇡

17. (a) V =

Z
1

0

2⇡y((2� y)� y)dy

= 2⇡

Z
1

0

(2y � 2y2)dy

= 2⇡

✓
y2 � 2y3

3

◆����
1

0

=
2⇡

3

(b) V =

Z
1

0

⇡(2� y)2dy

�
Z

1

0

⇡(y)2dy

= ⇡

Z
1

0

(4� 4y)dy

= ⇡ (4y � 2y2)
��1
0

= 2⇡

(c) V =

Z
1

0

⇡((2� y) + 1)2dy

�
Z

1

0

⇡(y + 1)2dy

= ⇡

Z
1

0

(9� 6y + y2)dy

� ⇡

Z
1

0

(y2 + 2y + 1)dy

= ⇡

Z
1

0

(8� 8y)dy

= ⇡ (8y � 4y2)
��1
0

= 4⇡

(d) V =

Z
1

0

2⇡(4� y)((2� y)� y)dy

= 2⇡

Z
1

0

(8� 10y + 2y2)dy

= 2⇡

✓
8y � 5y2 +

2y3

3

◆����
1

0

=
22⇡

3

18. (a) Method of shells.

V =

Z
2

0

2⇡y[(4� y2)� (y2 � 4)] dy

= 16⇡

(b) V =

Z
2

�2

⇡(4� y2)2 dy =
512⇡

15

(c) V =

Z
2

�2

⇡[(8� y2)2 � y4] dy

=
512⇡

3

(d) Method of shells.

V =

Z
2

�2

2⇡(4� y)[(4� y2)

� (y2 � 4)] dy

=
208⇡

3

19. s =

Z
1

�1

q
1 + (4x3)2 dx ⇡ 3.2

20. s =

Z
0

�1

p
1 + (2x+ 1)2 dx ⇡ 1.14779

21. s

Z
2

�2

s

1 +

✓
ex/2

2

◆
2

dx ⇡ 4.767

22. s =

Z
⇡

0

p
1 + 4 cos2 2x dx ⇡ 5.27037

23. S =

Z
1

0

2⇡(1� x2)
p

1 + 4x2 dx

⇡ 5.483

24. S =

Z
1

0

2⇡x3

p
1 + 9x4 dx ⇡ 3.56312

25. h00(t) = �32
h(0) = 64, h0(0) = 0
h0(t) = �32t
h(t) = �16t2 + 64

This is zero when t = 2, at which time h0(2) =
�32(2) = �64. The speed at impact is re-
ported as 64 feet per second.

26. In this case we have the equations

h00(t) = �32
h(0) = 64 h0(0) = 4
h0(t) = �32t+ 4
h(t) = �16t2 + 4t+ 64

This is zero when

t = t
0

=
1 +

p
257

8
Therefore the velocity at impact is

h0(t
0

) =
�32(1 +

p
257)

8
+ 4

= �4
p
257 ⇡ �64.125 ft/s

27. y00(t) = �32, x00(t) = 0,
y(0) = 0, x(0) = 0

y0(0) = 48 sin
⇣⇡
9

⌘

x0(0) = 48 cos
⇣⇡
9

⌘

y0(0) ⇡ 16.42, x0(0) ⇡ 45.11
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y0(t) = �32t+ 16.42
y(t) = �16t2 + 16.42t

This is zero at t = 1.026. Meanwhile,

x0(t) ⌘ 45.11
x(t) = 45.11t
x(1.026) = 45.11(1.026) ⇡ 46.3 ft This is the
horizontal range.

28. In this case we have the equations

y00(t) = �32, x00(t) = 0
y(0) = 6, x(0) = 0

y0(0) = 48 sin
⇡

9
, x0(0) = 48 cos

⇡

9
y0(t) = �32t+ 48 sin

⇡

9
x0(t) = 48 cos

⇡

9
y(t) = �16t2 + 48t sin

⇡

9
+ 6

x(t) = 48t cos
⇡

9
We now solve y(t) = 0 or

�16t2 + 48t sin
⇡

9
+ 6 = 0

which gives t ⇡ 1.3119, this is the time of flight.

The horizontal range is

x(1.3119) ⇡ 59.17 feet.

29. y(0) = 6, x(0) = 0

y0(0) = 80 sin

✓
2⇡

45

◆
⇡ 11.13,

x0(0) = 80 cos

✓
2⇡

45

◆
⇡ 79.22

y00(t) = �32, x00(t) = 0
y0(t) = �32t+ 11.13
y(t) = �16t2 + 11.13t+ 6
x0(t) = 79.22
x(t) = 79.22t

This is 120 (40 yards) when t is about 1.51. At
this time, the vertical height (if still in flight)
would be
y(1.51) = �16(1.51)2 + 11.13(1.51) + 6
= �13.6753,

Since this is negative, we conclude the ball is
not still in flight, has hit the ground, and was
not catchable.

30. If we repeat Exercise 29, but we’ll leave the

angle as ✓ (we will plug in ✓ = 24� =
2⇡

15
later

too).

Our equations become
y(0) = 6, x(0) = 0
y0(0) = 80 sin ✓, x0(0) = 80 cos ✓
y00(t) = �32, x00(t) = 0

Integrating and using the initial conditions
gives
y0(t) = �32t+ 80 sin ✓
x0(t) = 80 cos ✓
y(t) = �16t2 + 80t sin ✓ + 6
x(t) = 80t cos ✓

We solve for the time when the ball is 40 yards
down the field:
120 = x(t) = 80t cos ✓
Solving gives

t
0

= t =
3

2
sec ✓

The height at this time is

y(t
0

) = �16

✓
3

2
sec ✓

◆
2

+ 80

✓
3

2
sec ✓

◆
sin ✓ + 6

= �36 sec2 ✓ + 120 tan ✓ + 6

Let us say that the ball is catchable if it is be-
tween 0 and 8 feet high when the ball reaches
the 40 yard point (the player can dive or jump
to catch a low or high ball). To determine when
this occurs, we graph the function and see that
for the ball to be catchable it must be thrown
with angle in the range:
15.23� < ✓ < 19.51�

theta
22

y

20

12

8

18

4

0
16

-4

14

31. h00(t) = �32
h0(0) = v

0

h(0) = 0
h0(t) = �32t+ v

0

This is zero at t = v
0

/32.

h
⇣ v

0

32

⌘
= �16

✓
v2
0

322

◆
+

v2
0

32
=

v2
0

64
If this is to be 128, then clearly v

0

must be

p
(64)(128) = 64

p
2 ft/sec.

Impact speed from ground to ground is the
same as launch speed, which can be verified
by first finding the time t of return to ground:
�16t2 + v

0

t = 0



358 CHAPTER 5. APPLICATIONS OF THE DEFINITE INTEGRAL

t = v
0

/16
and then compiling

h0 (v
0

/16) = �32(v
0

/16) + v
0

= �v
0

32. We want to determine how far in the x-
direction the drop travels. We have initial con-
ditions
x0(0) = 100, x(0) = 0
y0(0) = 0, y(0) = 120
x0(t) = 100, x(t) = 100t,
y0(t) = �32t, y(t) = �16t2 + 120

We first solve 0 = y = �16t2 + 120 to get

t =

r
15

2
. This is when the supplies hit the

ground. We plug this into the equation x(t) to
determine how far the supplies traveled.

x

 r
15

2

!
= 100

r
15

2
⇡ 273.86

So, the supplies should be dropped 273.86 feet
before the target.

33. F = kx, 60 = k · 1, k = 60

W =

Z
2/3

0

60x dx = 30x2

��2/3
0

=
30 · 4
9

=
40

3
ft-lb

34. Remember to convert miles to feet.

W =

Z
8

0

(800 + 2x) dx

= 6464 mile-pounds
= 3.413⇥ 107 foot-pounds.

35. m =

Z
4

0

�
x2 � 2x+ 8

�
dx

=

✓
x3

3
� x2 + 8x

◆����
4

0

=
112

3

M =

Z
4

0

x
�
x2 � 2x+ 8

�
dx

=

Z
4

0

�
x3 � 2x2 + 8x

�
dx

=

✓
x4

4
� 2x3

3
+ 4x2

◆����
4

0

=
256

3

x̄ =
M

m
=

256

3

112

3

=
256

112
=

16

7

Center of mass is greater than 2 because the
object has greater density on the right side of
the interval [0, 4].

36. m =

Z
2

0

(x2 � 2x+ 8) dx =
44

3
.

M =

Z
2

0

x(x2 � 2x+ 8) dx =
44

3
.

x =
M

m
= 1

The center of mass is at one because the den-
sity function is symmetrical about the point
x = 1. (The graph of y = x2 � 2x + 8 is a
parabola with vertex at x = 1.)

37. F =

Z
80

0

62.4x(140� x) dx

= 62.4

Z
80

0

(140x� x2) dx

= 62.4

✓
70x2 � x3

3

◆����
80

0

= 62.4(80)2(130/3)

⇡ 17,305,600 lb

38. F =

Z
10

5

62.4(20)x dx = 46800 lb

39. J ⇡ .0008

3(8)
{0 + 4(800) + 2(1600)

+ 4(2400) + 2(3000) + 4(3600)
+2(2200) + 4(1200) + 0}
= 1.52

J = m�v

1.52 = .01�v
�v = 152 ft/s
152� 120 = 32 ft/s

40. J =

Z
2

0

3000t(2� t) dt = 4000

Since J = m�v, we have �v =
4000

100
= 40 and

the speed before the collision must have been
40 feet per second (about 23.7 miles per hour).

41. f(x) = x+ 2x3 on [0, 1]
f(x) � 0 for 0  x  1 and

Z
1

0

�
x+ 2x3

�
dx =

✓
x2

2
+

x4

2

◆����
1

0

= 1

42. The function is positive on the interval, and

Z
ln 2

0

8

3
e�2x dx = 1.
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43.

1 =

Z
2

1

c

x2

dx =
�c

x

����
2

1

=
�c

2
+ c =

c

2

Therefore c = 2

44. We want to solve for c:

1 =

Z
4

0

ce�2x dx =
c

2
(1� e�8)

Solving gives

c =
2

1� e�8

.

45. (a) P (x < .5) =

Z
.5

0

4e�4x dx

= �e�4x

��.5
0

= 1� e�2 ⇡ .864

(b) P (.5  x  1) =

Z
1

.5

4e�4x dx

= �e�4x

��1
.5

= �e�4 + e�2 ⇡ .117

46. (a) P

✓
X <

1

12

◆
=

Z
1/12

0

9xe�3x dx

= 1� 5

4
e�1/4 ⇡ 0.026499

(b) P

✓
1

2
< X < 1

◆
=

Z
1

1/2

9xe�3x dx

=
5

2
e�3/2 � 4e�3 ⇡ 0.35868

47. (a) µ =

Z
1

0

x
�
x+ 2x3

�
dx

=
x3

3
+

2x5

5

����
1

0

=
11

15
⇡ 0.7333

(b)
1

2
=

Z
c

0

�
x+ 2x3

�
dx

=
x2

2
+

x4

2

����
c

0

=
c2

2
+

c4

2

Therefore c2 + c4 = 1,

c =

s
�1 +

p
5

2
⇡ 0.786

48. (a) µ =

Z
ln 2

0

8

3
xe�2x dx

=
1

2
� 1

3
ln 2 ⇡ 0.26895

(b) For the median, we have to solve the equa-
tion

0.5 =

Z
m

0

8

3
e�2x dx =

4

3
(1� e2m)

Solving gives

m =
1

2
ln(8/5) ⇡ 0.23500



Chapter 6

Integration

Techniques

6.1 Review of Formulas

and Techniques

1.

Z
e

ax

dx =
1

a

e

ax + c, for a 6= 0.

2.

Z
cos(ax)dx =

1

a

sin(ax) + c, for a 6= 0.

3.

Z
1p

a

2 � x

2
dx =

Z
1q

1�
�
x

a

�2

✓
1

a

◆
dx

Let u =
x

a

, du =
1

a

dx.

=

Z
1p

1� u

2
du = sin�1 (u) + c

= sin�1
⇣
x

a

⌘
+ c, a > 0.

4.

Z
b

|x|
p
x

2 � a

2
dx

=

Z
b

|x|
q�

x

a

�2 � 1

✓
1

a

◆
dx

Let u =
x

a

, du =
1

a

dx and |au| = |x| .

=

Z
b

|au|
p
u

2 � 1
du

=
b

|a|

Z
1

|u|
p
u

2 � 1
du

=
b

|a| sec
�1 (u) + c

=
b

|a| sec
�1
⇣
x

a

⌘
+ c, a > 0.

5.

Z
sin(6t)dt = �1

6
cos(6t) + c

6.

Z
sec 2t tan 2t dt =

1

2
sec 2t+ c

7.

Z
(x2 + 4)2dx =

Z
(x4 + 8x2 + 16)dx

=
x

5

5
+

8

3
x

3 + 16x+ c

8.

Z
x(x2 + 4)2dx =

Z
(x5 + 8x3 + 16x)dx

=
x

6

6
+ 2x4 + 8x2 + c

9.
3

16 + x

2
dx =

3

4
tan�1 x

4
+ c

10.
2

4 + 4x2
dx =

1

2
tan�1

x+ c

11.

Z
1p

3� 2x� x

2
dx

=

Z
1p

4� (x+ 1)2
dx = arcsin

✓
x+ 1

2

◆
+ c

12.

Z
x+ 1p

3� 2x� x

2
dx

= �1

2

Z �2(x+ 1)p
4� (x+ 1)2

dx

= �1

2
· 2[4� (x+ 1)2]1/2 + C

= �
p
4� (x+ 1)2 + c

13.

Z
4

5 + 2x+ x

2
dx

= 4

Z
1

4 + (x+ 1)2
dx = 2 tan�1

✓
x+ 1

2

◆
+ c

14.

Z
4x+ 4

5 + 2x+ x

2
dx

= 2

Z
2(x+ 1)

4 + (x+ 1)2
dx = 2 ln | 4 + (x+ 1)2|+ c

15.

Z
4t

5 + 2t+ t

2
dt

=

Z
4t+ 4

5 + 2t+ t

2
dt�

Z
4

5 + 2t+ t

2
dt

= 2 ln
���4 + (t+ 1)2

���� 2tan�1

✓
t+ 1

2

◆
+ c

16.

Z
t+ 1

t

2 + 2t+ 4
dt =

Z
2 (t+ 1)

(t+ 1)2 + 3
dt

=
1

2
ln
���(t+ 1)2 + 3

���+ c

17.

Z
e

3�2x
dx = �1

2
e

3�2x + c

18.

Z
3e�6x

dx = �3

6
e

�6x + c

360
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19. Let u = 1 + x

2/3
, du =

2

3
x

�1/3
dx

Z
4

x

1/3(1 + x

2/3)
dx = 4

✓
3

2

◆Z
u

�1
du

= 6 ln |u|+ C = 6 ln |1 + x

2/3|+ c

20. Let u = 1 + x

3/4
, du =

3

4
x

�1/4
dx

Z
2

x

1/4 + x

dx =

Z
2

x

1/4(1 + x

3/4)
dx

= 2

✓
4

3

◆Z
u

�1
du =

8

3
ln |u|+ C

=
8

3
ln |1 + x

3/4|+ c

21. Let u =
p
x, du =

1

2
p
x

dx

Z
sin

p
xp

x

dx = 2

Z
sinudu

= �2 cosu+ C = �2 cos
p
x+ c

22. Let u =
1

x

, du = � 1

x

2
dx

Z
cos(1/x)

x

2
dx = �

Z
cosudu

= � sinu+ C = � sin
1

x

+ c

23. Let u = sinx, du = cosxdxZ
⇡

0
cosxesin x

dx =

Z 0

0
e

u

du = 0

24. Let u = tanx, du = sec2 xdxZ
⇡/2

0
sec2 xetan x

dx =

Z 1

0
e

u

du

= e

u

���
1

0
= e� 1

25.

Z 0

�⇡/4
secx tanxdx

= secx
���
0

�⇡/4
= 1�

p
2

26.

Z
⇡/2

⇡/4
csc2 xdx = � cotx

���
⇡/2

⇡/4
= 1

27. Let u = x

3
, du = 3x2

dx

x

2

1 + x

6
dx =

1

3

Z
1

1 + u

2
du

=
1

3
tan�1

u+ C =
1

3
tan�1

x

3 + c

28.

Z
x

5

1 + x

6
dx =

1

6
ln(1 + x

6) + c

29.
1p

4� x

2
dx = sin�1 x

2
+ c

30. Let u = e

x

, du = e

x

dx

e

x

p
1� e

2x
dx =

Z
1p

1� u

2
du

= sin�1
u+ C = sin�1

e

x + c

31. Let u = x

2
, du = 2xdxZ

xp
1� x

4
dx =

1

2

Z
1p

1� u

2
du

=
1

2
sin�1

u+ C =
1

2
sin�1

x

2 + c

32. Let u = 1� x

4
, du = �4x3

dxZ
2x3

p
1� x

4
dx = �1

2

Z
u

�1/2
du

= �u

1/2 + C = �(1� x

4)1/2 + c

33.

Z
1 + x

1 + x

2
dx

=

Z
1

1 + x

2
dx+

1

2

Z
2x

1 + x

2
dx

= tan�1
x+

1

2
ln |1 + x

2|+ c

34.

Z
1p

x+ x

dx

=

Z
x

�1/2 · 1

1 + x

1/2
dx

= 2 ln | 1 + x

1/2|+ c

35.

Z
lnx2

x

dx = 2

Z
lnx

✓
1

x

◆
dx

Let u = lnx, du =
1

x

dx.

= 2

Z
u du = u

2 + c = (lnx)2 + c

36.

Z 3

1
e

2 ln x

dx =

Z 3

1
x

2
dx =

x

3

3

����
3

1

=
26

3

37.

Z 4

3
x

p
x� 3dx

=

Z 4

3
(x� 3 + 3)

p
x� 3dx

=

Z 4

3
(x� 3)3/2dx+ 3

Z 4

3
(x� 3)1/2dx

=
2

5
(x� 3)5/2

����
4

3

+ 3 · 2
3
(x� 3)3/2

����
4

3

=
12

5

38.

Z 1

0
x(x� 3)2dx

=

Z 1

0
(x3 � 6x2 + 9x)dx

=

✓
x

4

4
� 2x3 +

9

2
x

2

◆����
1

0

=
11

4
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39.

Z 4

1

x

2 + 1p
x

dx

=

Z 4

1
x

3/2
dx+

Z 4

1
x

�1/2
dx

=
2

5
x

5/2

����
4

1

+ 2x1/2
���
4

1
=

72

5

40.

Z 0

�2
xe

�x

2

dx = � 1

2
e

�x

2

����
0

�2

=
e

�4 � 1

2

41.

Z
5

3 + x

2
dx =

5p
3
arctan

xp
3
+ c

Z
5

3 + x

3
dx: N/A

42.

Z
sin(3x)dx =

1

3

Z
sin(3x)3dx

Let u = 3x, du = 3dx.

=
1

3

Z
(sinu)du = �1

3
cosu+ c

= �1

3
cos(3x) + c.

Z
sin3xdx =

Z
(sin2x) sinxdx

=

Z
(1� cos2x)sinxdx

Let u = cosx, du = � sinxdx.

=

Z �
1� u

2
�
(�du) =

Z
u

2
du�

Z
du

=
u

3

3
� u =

cos3x

3
� cosx.

43.

Z
lnxdx: N/A

Substituting u = lnx,Z
lnx

2x
dx =

1

4
ln2 x+ c

44. Substituting u = x

4
Z

x

3

1 + x

8
dx =

1

4
arctanx4 + c

Z
x

4

1 + x

8
dx: N/A

45.

Z
e

�x

2

dx: N/A

Substituting u = �x

2Z
xe

�x

2

dx = �1

2
e

�x

2

+ c

46.

Z
secxdx: N/A

Z
sec2 xdx = tanx+ c

47.

Z 2

0
f(x)dx

=

Z 1

0

x

x

2 + 1
dx+

Z 2

1

x

2

x

2 + 1
dx

=
1

2
ln |x2 + 1|

���
1

0
+

Z 2

1

✓
1� 1

x

2 + 1

◆
dx

=
1

2
ln 2 + (x� arctanx)

���
2

1

=
ln 2

2
+ 1 +

⇡

4
� arctan 2

48.

Z
4x+ 1

2x2 + 4x+ 10
dx

=

Z
4x+ 4

2x2 + 4x+ 10
dx�

Z
3

2x2 + 4x+ 10
dx

= ln |2x2 + 4x+ 10|� 3

2

Z
1

(x+ 1)2 + 4
dx

= ln |2x2 + 4x+ 10|� 3

4
tan�1

✓
x+ 1

2

◆
+ c

49.

Z
1

(1 + x

2)
dx = tan�1 (x) + c.

Z
x

(1 + x

2)
dx =

1

2

Z
2x

(1 + x

2)
dx

=
1

2
ln
�
1 + x

2
�
+ c.

Z
x

2

(1 + x

2)
dx =

Z
x

2 + 1� 1

(1 + x

2)
dx

=

Z �
x

2 + 1
�

(x2 + 1)
dx�

Z
1

(1 + x

2)
dx

=

Z
dx�

Z
1

(1 + x

2)
dx

= x� tan�1 (x) + c.

Z
x

3

(1 + x

2)
dx =

1

2

Z
x

2

(1 + x

2)
2xdx

Let u = x

2
, du = 2xdx.

=
1

2

Z
u

1 + u

du =
1

2

Z
u+ 1� 1

1 + u

du

=
1

2

⇢Z
u+ 1

1 + u

du�
Z

1

1 + u

du

�

=
1

2

⇢Z
du �

Z
1

1 + u

du

�

=
1

2
(u� ln (1 + u)) + c

=
1

2
x

2 � 1

2
ln
�
1 + x

2
�
+ c.

Hence we can generalize this as follows,Z ✓
x

n

1 + x

2

◆
dx

=
1

n� 1
x

n�1 �
Z ✓

x

n�2

1 + x

2

◆
dx

50.

Z
x

1 + x

4
dx =

1

2

Z
1

1 + x

4
2xdx



6.2. INTEGRATION BY PARTS 363

Let u = x

2
, du = 2xdx.

=
1

2

Z
1

1 + u

2
du =

1

2
tan�1 (u) + c

=
1

2
tan�1

�
x

2
�
+ c.

Z
x

3

1 + x

4
dx =

1

4

Z
1

1 + x

4
4x3

dx

Let u = 1 + x

4
, du = 4x3

.

=
1

4

Z
1

u

du =
1

4
ln (u) + c

=
1

4
ln
�
1 + x

4
�
+ c.

Z
x

5

1 + x

4
dx

=
1

2

Z
x

4

1 + x

4
2xdx

Let u = x

2
, du = 2xdx.

=
1

2

Z
u

2

1 + u

2
du =

1

2

Z
u

2 + 1� 1

1 + u

2
du

=
1

2

⇢Z
u

2 + 1

1 + u

2
du�

Z
1

1 + u

2
du

�

=
1

2

⇢Z
du�

Z
1

1 + u

2
du

�

=
1

2

�
u� tan�1 (u)

 
+ c

=
1

2

�
x

2 � tan�1
�
x

2
� 

+ c.

Hence we can generalize this as follows,Z
x

4n+1

1 + x

4
dx =

1

2

⇢
x

2n�2

n� 1

�
�
Z

x

4(n�1)+1

1 + x

4
dx

and
Z

x

4n+3

1 + x

4
dx =

1

4

⇢
x

2n

n

�
�
Z

x

4(n�1)+3

1 + x

4
dx

6.2 Integration by Parts

1. Let u = x, dv = cosxdx
du = dx, v = sinx.Z

x cosxdx = x sinx�
Z

sinxdx

= x sinx+ cosx+ c

2. Let u = x, dv = sin 4xdx

du = dx, v = �1

4
cos 4x

Z
x sin 4x dx

= �1

4
x cos 4x�

Z
�1

4
cos 4x dx

= �1

4
x cos 4x+

1

16
sin 4x+ c.

3. Let u = x, dv = e

2x
dx

du = dx, v =
1

2
e

2x
.

Z
xe

2x
dx =

1

2
xe

2x �
Z

1

2
e

2x
dx

=
1

2
xe

2x � 1

4
e

2x + c.

4. Let u = lnx, dv = x dx

du =
1

x

dx and v =
x

2

2
.

Z
x lnx dx =

1

2
x

2 lnx�
Z

1

2
x dx

=
1

2
x

2 lnx� 1

4
x

2 + c.

5. Let u = lnx, dv = x

2
dx

du =
1

x

dx, v =
1

3
x

3
.

Z
x

2 lnxdx =
1

3
x

3 lnx�
Z

1

3
x

3 · 1
x

dx

=
1

3
x

3 lnx� 1

3

Z
x

2
dx

=
1

3
x

3 lnx� 1

9
x

3 + c.

6. Let u = lnx, du =
1

x

dx.

Z
lnx

x

dx =

Z
udu =

u

2

2
+ c =

1

2
(lnx)2 + c.

7. Let u = x

2
, dv = e

�3x
dx

du = 2xdx, v = �1

3
e

�3x

I =

Z
x

2
e

�3x
dx

= �1

3
x

2
e

�3x �
Z ✓

�1

3
e

�3x

◆
· 2xdx

= �1

3
x

2
e

�3x +
2

3

Z
xe

�3x
dx

Let u = x, dv = e

�3x
dx

du = dx, v = �1

3
e

�3x

I = �1

3
x

2
e

�3x

+
2

3


�1

3
xe

�3x �
Z ✓

�1

3
e

�3x

◆
dx

�

= �1

3
x

2
e

�3x � 2

9
xe

�3x +
2

9

Z
e

�3x
dx

= �1

3
x

2
e

�3x � 2

9
xe

�3x � 2

27
e

�3x + c

8. Let u = x

3
, du = 3x2

dx.Z
x

2
e

x

3

dx =
1

3

Z
e

u

dx =
1

3
e

u + c

=
1

3
e

x

3

+ c.

9. Let I =

Z
e

x sin 4xdx

u = e

x

, dv = sin 4xdx

du = e

x

dx, v = �1

4
cos 4x
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I = �1

4
e

x cos 4x�
Z ✓

�1

4
cos 4x

◆
e

x

dx

= �1

4
e

x cos 4x+
1

4

Z
e

x cos 4xdx

Use integration by parts again, this time let
u = e

x

, dv = cos 4xdx

du = e

x

dx, v =
1

4
sin 4x

I = �1

4
e

x cos 4x

+
1

4

✓
1

4
e

x sin 4x�
Z

1

4
(sin 4x)exdx

◆

I = �1

4
e

x cos 4x+
1

16
e

x sin 4x� 1

16
I

So,
17

16
I = �1

4
e

x cos 4x+
1

16
e

x sin 4x+ c1

I = � 4

17
e

x cos 4x+
1

17
e

x sin 4x+ c

10. Let, u = e

2x
, dv = cosx dx so that,

du = 2e2x dx and v = sinx.Z
e

2x cosx dx

= e

2x sinx� 2

Z
e

2x sinx dx

Let, u = e

2x, dv = sinx dx so that,
du = 2e2x dx and v = � cosx.Z

e

2x sinx dx

= �e

2x cosx+ 2

Z
e

2x cosx dx

Z
e

2x cosx dx

= e

2x sinx+ 2e2x cosx� 4

Z
e

2x cosx dx

Now we notice that the integral on both of
these is the same, so we bring them to one side
of the equation.

5

Z
e

2x cosx dx

= e

2x sinx+ 2e2x cosx+ c1Z
e

2x cosx dx

=
1

5
e

2x sinx+
2

5
e

2x cosx+ c

11. Let I =

Z
cosx cos 2xdx

and u = cosx, dv = cos 2xdx

du = sinxdx, v =
1

2
sin 2x

I =
1

2
cosx sin 2x�

Z
1

2
sin 2x(� sinx)dx

=
1

2
cosx sin 2x+

1

2

Z
sinx sin 2xdx

Let,u = sinx, dv = sin 2xdx

du = cosxdx v = �1

2
cos 2x

I =
1

2
cosx sin 2x+

1

2


�1

2
cos 2x sinx

�
Z ✓

�1

2
cos 2x

◆
cosxdx

�

=
1

2
cosx sin 2x � 1

4
cos 2x sinx+

1

4
Idx

So,
3

4
I =

1

2
cosx sin 2x� 1

4
cos 2x sinx+ c1

I =
2

3
cosx sin 2x� 1

3
cos 2x sinx+ c

12. Here we use the trigonometric identity:
sin 2x = 2 sinx cosx.

We then make the substitution
u = sinx, du = cosx dx.Z

sinx sin 2x dx =

Z
2 sin2 x cosx dx

=

Z
2u2

du =
2

3
u

3 + c =
2

3
sin3 x+ c

This integral can also be done by parts, twice.
If this is done, an equivalent answer is ob-
tained:
1

3
cosx sin 2x� 2

3
cos 2x sinx+ c

13. Let u = x, dv = sec2 xdx
du = dx, v = tanxZ

x sec2 xdx = x tanx�
Z

tanxdx

= x tanx�
Z

sinx

cosx
dx

Let u = cosx, du = � sinxdxZ
x sec2 xdx = x tanx+

Z
1

u

du

= x tanx+ ln |u|+ c

= x tanx+ ln |cosx|+ c

14. Let u = (lnx)2, dv = dx

du = 2
lnx

x

dx, v = x

I =

Z
(lnx)2dx

= x(lnx)2 �
Z

x · 2 lnx
x

dx

= x(lnx)2 � 2

Z
lnxdx

Integration by parts again,

u = lnx, dv = dxdu =
1

x

dx, v = x

I = x(lnx)2 � 2


x lnx�

Z
x · 1

x

dx

�

= x(lnx)2 � 2x lnx+ 2

Z
dx
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= x(lnx)2 � 2x lnx+ 2x+ c

15. Let u = x

2, dv = xe

x

2

dx so that, du = 2x dx

and v =
1

2
e

x

2

(v is obtained using substitu-

tion).Z
x

3
e

x

2

dx =
1

2
x

2
e

x

2

�
Z

xe

x

2

dx

=
1

2
x

2
e

x

2

� 1

2
e

x

2

+ c

16. Let u = x

2
, dv =

 
x

(4 + x

2)3/2

!
dx

du = 2xdx, v = � 1p
4 + x

2
Z

x

3

(4 + x

2)3/2
dx =

Z
x

2

 
x

(4 + x

2)3/2

!
dx

= � x

2

p
4 + x

2
+

Z
1p

4 + x

2
2xdx

= � x

2

p
(4 + x

2)
+ 2
p
(4 + x

2) + c.

17. Let u = ln(sinx), dv = cosxdx

du =
1

sinx
· cosxdx, v = sinx

I =

Z
cosx ln(sinx)dx

= sinx ln(sinx)

�
Z

sinx · 1

sinx
· cosxdx

= sinx ln(sinx)�
Z

cosxdx

= sinx ln(sinx)� sinx+ c

18. This is a substitution u = x

2
.Z

x sinx2
dx =

1

2

Z
sinudu

= �1

2
cosu+ c = �1

2
cosx2 + c.

19. Let u = x, dv = sin 2xdx

du = dx, v = �1

2
cos 2x

Z 1

0
x sin 2xdx

= �1

2
x cos 2x

����
1

0

�
Z 1

0

✓
�1

2
cos 2x

◆
dx

= �1

2
(1 cos 2� 0 cos 0) +

1

2

Z 1

0
cos 2xdx

= �1

2
cos 2 +

1

2


1

2
sin 2x

�1

0

= �1

2
cos 2 +

1

4
(sin 2� sin 0)

= �1

2
cos 2 +

1

4
sin 2

20. Let u = 2x, dv = cosx dx

du = 2 dxandv = sinx.Z
⇡

0
2x cosxdx = 2x sinx|⇡0 � 2

Z
⇡

0
sinxdx

= (2x sinx+ 2 cosx)|⇡0 = �4.

21.

Z 1

0
x

2 cos⇡xdx

Let u = x

2
, dv = cos⇡xdx,

du = 2xdx, v =
sin⇡x

⇡

.

Z 1

0
x

2cos⇡xdx = x

2 sin⇡x

⇡

����
1

0

�
Z 1

0

sin⇡x

⇡

2xdx

= (0� 0)� 2

⇡

Z 1

0
x sin (⇡x) dx

= � 2

⇡

Z 1

0
x sin (⇡x) dx

Let u = x, dv = sin(⇡x)dx,

du = dx, v = �cos(⇡x)

⇡

.

� 2

⇡

Z 1

0
xsin(⇡x)dx

= � 2

⇡

(
�x cos(⇡x)

⇡

����
1

0

�
Z 1

0
�cos(⇡x)

⇡

dx

)

= � 2

⇡

(
(�cos⇡

⇡

� 0) +
1

⇡


sin(⇡x)

⇡

�1

0

)

= � 2

⇡

⇢
1

⇡

+
1

⇡

(0� 0)

�
= � 2

⇡

2

22.

Z 1

0
x

2
e

3x
dx

Let u = x

2
, dv = e

3x
dx,

du = 2xdx, v =
e

3x

3
.

Z 1

0
x

2
e

3x
dx =

x

2
e

3x

3

����
1

0

�
Z 1

0

e

3x

3
2xdx

=
1

3

�
e

3 � 0
�
� 2

3

Z 1

0
xe

3x
dx.

Let u = x, dv = e

3x
dx,

dv = dx, v =
e

3x

3
.

e

3

3
� 2

3

Z 1

0
xe

3x
dx

=
e

3

3
� 2

3

(
x

e

3x

3

����
1

0

�
Z 1

0

e

3x

3
dx

)

=
e

3

3
� 2

3

⇢✓
e

3

3

◆
�
Z 1

0

e

3x

3
dx

�

=
e

3

3
� 2

3

(✓
e

3

3

◆
�

e

3x

9

�1

0

)

=
e

3

3
� 2

3

⇢✓
e

3

3

◆
� 1

9

�
e

3 � 1
��
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=
e

3

3
� 2e3

9
+

2

27

�
e

3 � 1
�

=
e

3

3
� 2e3

9
+

2e3

27
� 2

27
=

5e3

27
� 2

27

23.

Z 10

1
ln 2xdx

Let u = ln 2x, dv = dx

du =
1

x

dx, v = x.

Z 10

1
ln (2x)dx = x ln (2x)|101 �

Z 10

1
x

1

x

dx

= (10 ln(20)� ln 2)�
Z 10

1
dx

= (10 ln(20)� ln 2)� [x]101
= (10 ln(20)� ln 2)� (10� 1)
= (10 ln(20)� ln 2)� 9.

24. Let, u = lnx, dv = x dx

du =
1

x

dx, v =
x

2

2
.

Z 2

1
x lnxdx =

1

2
x

2 lnx

����
2

1

�
Z 2

1

1

2
xdx

=

✓
1

2
x

2 lnx� 1

4
x

2

◆����
2

1

= 2 ln 2� 3

4
.

25.

Z
x

2
e

ax

dx

Let u = x

2
, dv = e

ax

dx,

du = 2xdx, v =
e

ax

a

.

Z
x

2
e

ax

dx = x

2 e
ax

a

�
Z

e

ax

a

2xdx

=
x

2
e

ax

a

� 2

a

Z
xe

ax

dx.

Let u = x, dv = e

ax

dx,

dv = dx, v =
e

ax

a

.

x

2
e

ax

a

� 2

a

Z
xe

ax

dx

=
x

2
e

ax

a

� 2

a

⇢
x

e

ax

a

�
Z

e

ax

a

dx

�

=
x

2
e

ax

a

� 2

a

⇢
xe

ax

a

� e

ax

a

2

�
+ c

=
x

2
e

ax

a

� 2xeax

a

2
+

2eax

a

3
+ c, a 6= 0.

26.

Z
x sin (ax) dx

Let u = x, dv = sin axdx,

du = dx, v = �cos ax

a

.

Z
xsin (ax) dx

= x

� cos (ax)

a

�
Z

�cos (ax)

a

dx

= �x cos (ax)

a

+
sin (ax)

a

2
+ c, a 6= 0.

27.

Z
(xn) (lnx) dx =

Z
(lnx) (xn) dx

Let u = lnx, dv = x

n

dx,

du =
1

x

dx, v =
x

n+1

(n+ 1)
.

Z
(lnx)(xn) dx

= (lnx)
x

n+1

(n+ 1)
�
Z

x

n+1

(n+ 1)

dx

x

=
x

n+1 (lnx)

(n+ 1)
�
Z

x

n

(n+ 1)
dx

=
x

n+1 (lnx)

(n+ 1)
� x

n+1

(n+ 1)2
+ c, n 6= �1.

28.

Z
(sin ax) (cos bx) dx

Let u = sin ax, dv = (cos bx) dx

du = a (cos ax) dx, v =
sin bx

b

.

Z
sin ax cos bx dx

= (sin ax)
sin bx

b

�
Z

a

✓
sin bx

b

◆
(cos ax) dx

=
(sin ax) (sin bx)

b

� a

b

Z
(cos ax) (sin bx) dx

Let u = cos ax, dv = sin bxdx,

du = �a (sin ax) dx, v = �cos bx

b

.

sin ax sin bx

b

� a

b

Z
cos ax sin bx dx

=
sin ax sin bx

b

� a

b

⇢
cos ax

� cos bx

b

�
Z � cos bx

b

(� sin ax) adx

�

=
sin ax sin bx

b

� a

b

⇢
� cos ax cos bx

b

�a

b

Z
cos bx sin ax dx

�

=
sin ax sin bx

b

+
a cos ax cos bx

b

2

+
⇣
a

b

⌘2 Z
sin ax cos bx dx

Z
sin ax cos bx dx

=
sin ax sin bx

b

+
a cos ax cos bx

b

2

+
⇣
a

b

⌘2 Z
sin ax cos bx dx

Z
sin ax cos bx dx�

⇣
a

b

⌘2 Z
sin ax cos bx dx

=
sin ax sin bx

b

+
a cos ax cos bx

b

2
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✓
1� a

2

b

2

◆Z
sin ax cos bx dx

=
sin ax sin bx

b

+
a cos ax cos bx

b

2Z
sin ax cos bx dx

=

✓
b

2

b

2 � a

2

◆✓
sin ax sin bx

b

+
a cos ax cos bx

b

2

◆

Z
sin ax cos bx dx

=

✓
1

b

2 � a

2

◆
(b sin ax sin bx+ a cos ax cos bx) ,

a 6= 0 b 6= 0.

29. Letu = cosn�1
x, dv = cosxdx

du = (n� 1)(cosn�2
x)(� sinx)dx, v = sinxZ

cosn xdx

= sinx cosn�1
x

�
Z

(sinx)(n� 1)(cosn�2
x)(� sinx)dx

= sinx cosn�1
x

+

Z
(n� 1)(cosn�2

x)(sin2 x)dx

= sinx cosn�1
x

+

Z
(n� 1)(cosn�2

x)(1� cos2 x)dx

= sinx cosn�1
x

+

Z
(n� 1)(cosn�2

x� cosn x)dx

Thus,

Z
cosn xdx

= sinx cosn�1
x+

Z
(n� 1) cosn�2

xdx

� (n� 1)

Z
cosn xdx.

n

Z
cosn xdx = sinx cosn�1

x

+ (n� 1)

Z
cosn�2

xdx

Z
cosn xdx

=
1

n

sinx cosn�1
x+

n� 1

n

Z
cosn�2

xdx

30. Let u = sinn�1
x, dv = sinx dx

du = (n� 1) sinn�2
x cosx, v = � cosx.Z

sinn xdx

= � sinn�1
x cosx

+ (n� 1)

Z
cos2 x sinn�2

xdx

= � sinn�1
x cosx

+ (n� 1)

Z
(1� sin2 x) sinn�2

xdx

= � sinn�1
x cosx

� (n� 1)

Z
sinn�2

xdx

+ (n� 1)

Z
sinn xdx

n

Z
sinn xdx

= � sinn�1
x cosx

� (n� 1)

Z
sinn�2

xdx

Z
sinn xdx = � 1

n

sinn�1
x cosx

� n� 1

n

Z
sinn�2

xdx

31.

Z
x

3
e

x

dx = e

x(x3 � 3x2 + 6x� 6) + c

32.

Z
cos5 xdx

=
1

5
cos4 sinx+

4

5

Z
cos3 xdx

=
1

5
cos4 sinx

+
4

5

✓
1

3
cos2 x sinx+

2

3

Z
cosxdx

◆

=
1

5
cos4 sinx+

4

15
cos2 x sinx

+
8

15
sinx+ c

33.

Z
cos3 xdx

=
1

3
cos2 x sinx+

2

3

Z
cosxdx

=
1

3
cos2 x sinx+

2

3
sinx+ c

34.

Z
sin4 xdx

= �1

4
sin3 x cosx+

3

4

Z
sin2 xdx

= �1

4
sin3 x cosx+

3

4

✓
1

2
x� 1

4
sin 2x

◆

35.

Z 1

0
x

4
e

x

dx

= e

x(x4 � 4x3 + 12x2 � 24x+ 24)
��1
0

= 9e� 24

36. Using the work done in Exercise 34,Z
⇡/2

0
sin4 xdx

=

✓
�1

4
sin3 x cosx+

3

8
x� 3

16
sin 2x

◆����
⇡/2

0

=
3⇡

16

37.

Z
⇡/2

0
sin5 xdx
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= �1

5
sin4 x cosx

����
⇡/2

0

+
4

5

Z
⇡/2

0
sin3 xdx

= �1

5
sin4 x cosx

����
⇡/2

0

+
4

5

✓
�1

3
sin2 x cosx� 2

3
cosx

◆����
⇡/2

0
(Using Exercise 30)

= �1

5

⇣
sin4

⇣
⇡

2

⌘
cos

⇡

2
� sin4 0 cos 0

⌘

+
4

5

✓
�1

3
sin2

⇣
⇡

2

⌘
cos

⇡

2
� 2

3
cos

⇡

2

◆

=
8

15

38. Here we will again use the work we did in Ex-
ercise 34.Z

sin6 xdx

= �1

6
sin5 x cosx+

5

6

Z
sin4 xdx

= �1

6
sin5 x cosx

+
5

6

✓
�1

4
sin3 x cosx+

3

8
x� 3

16
sin 2x

◆
+ c

= �1

6
sin5 x cosx� 5

24
sin3 x cosx

+
15

48
x� 15

96
sin 2x+ c

We now just have to plug in the endpoints:Z
⇡/2

0
sin6 xdx

=

✓
�1

6
sin5 x cosx� 5

24
sin3 x cosx

+
15

48
x� 15

96
sin 2x

◆����
⇡/2

0

=
15⇡

96

39. m even :Z
⇡/2

0
sinm xdx

=
(m� 1)(m� 3) . . . 1

m(m� 2) . . . 2
· ⇡
2

m odd:Z
⇡/2

0
sinm xdx

=
(m� 1)(m� 3) . . . 2

m(m� 2) . . . 3

40. m even:Z
⇡/2

0
cosm xdx

=
⇡(n� 1)(n� 3)(n� 5) · · · 1

2n(n� 2)(n� 4) · · · 2
m odd:

Z
⇡/2

0
cosm xdx

=
(n� 1)(n� 3)(n� 5) · · · 2

n(n� 2)(n� 4) · · · 3 .

41. Let u = cos�1
x, dv = dx

du = � 1p
1� x

2
dx, v = x

I =

Z
cos�1

xdx

= x cos�1
x�

Z
x

✓
� 1p

1� x

2

◆
dx

= x cos�1
x+

Z
xp

1� x

2
dx

Substituting u = 1� x

2
, du = �2xdx

I = x cos�1
x+

Z
1p
u

✓
�1

2
du

◆

= x cos1 x� 1

2

Z
u

�1/2
du

= x cos�1
x� 1

2
· 2u1/2 + c

= x cos�1
x�

p
1� x

2 + c

42. Let u = tan�1
x, dv = dx

du =
1

1 + x

2
dx, v = x

I =

Z
tan�1

xdx = x tan�1
x�

Z
x

1 + x

2
dx

Substituting u = 1 + x

2
,

I = x tan�1
x� 1

2
ln(1 + x

2) + c.

43. Substituting u =
p
x, du =

1

2
p
x

dx

I =

Z
sin

p
xdx = 2

Z
u sinudu

= 2(�u cosu+ sinu) + c

= 2(�
p
x cos

p
x+ sin

p
x) + c

44. Substituting w =
p
x

dw =
1

2
p
x

dx =
1

2w
dx

I =

Z
e

p
x

dx =

Z
2wewdx

Next, using integration by parts
u = 2w, dv = e

w

dw

du = 2dw, v = e

w

I = 2wew � 2

Z
e

w

dw

= 2wew � 2ew + c = 2
p
xe

p
x � 2e

p
x + c

45. Let u = sin(lnx), dv = dx

du = cos(lnx)
dx

x

, v = x

I =

Z
sin(lnx)dx

= x sin(lnx)�
Z

cos(lnx)dx
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Integration by parts again,
u = cos(lnx), dv = dx

du = � sin(lnx)
dx

x

, v = x

Z
cos(lnx)dx

= x cos(lnx) +

Z
sin(lnx)dx

I = x sin(lnx)� x cos(lnx)� I

2I = x sin(lnx)� x cos(lnx) + c1

I =
1

2
x sin(lnx)� 1

2
x cos(lnx) + c

46. Let u = 4 + x

2
, du = 2xdx

I =

Z
x ln(4 + x

2)dx

=
1

2

Z
lnudu =

1

2
(u lnu� u) + C

=
1

2
[(4 + x

2) ln(4 + x

2)� 4� x

2] + c

47. Let u = e

2x
, du = 2e2xdx

I =

Z
e

6x sin(e2x)dx =
1

2

Z
u

2 sinudu

Let v = u

2
, dw = sinudu

dv = 2udu, w = � cosu

I =
1

2

✓
�u

2 cosu+ 2

Z
u cosudu

◆

= �1

2
u

2 cosu+

Z
u cosudu

= �1

2
u

2 cosu+ (u sinu+ cosu) + c

= �1

2
e

4x cos(e2x) + e

2x sin(e2x)

+ cos(e2x) + c

48. Let u = 3
p
x = x

1/3
, du =

1

3
x

�2/3
dx,

3u2
du = dx

I =

Z
cosx1/3

dx = 3

Z
u

2 cosudu

Let v = u

2
, dw = cosudu

dv = 2udu,w = sinu

I = 3

✓
u

2 sinu� 2

Z
u sinudu

◆

= 3u2 sinu� 6

Z
u sinudu

= 3u2 sinu� 6

✓
�u cosu+

Z
cosudu

◆

= 3u3 sinu+ 6u cosu� 6 sinu+ c

= 3x sin 3
p
x+ 6 3

p
x cos 3

p
x� 6 sin 3

p
x+ c

49. Let u = 3
p
x = x

1/3
, du =

1

3
x

�2/3
dx,

3u2
du = dx

I =

Z
e

3p
x

dx = 3

Z
u

2
e

u

du

= 3

✓
u

2
e

u � 2

Z
ue

u

du

◆

= 3u2
e

u � 6

✓
ue

u �
Z

e

u

du

◆

= 3u2
e

u � 6ueu + 6eu + c

Hence

Z 8

0
e

3p
x

dx =

Z 2

0
3u2

e

u

du

=
�
3u2

e

u � 6ueu + 6eu
���2

0
= 6e2 � 6

50. Let u = tan�1
x, dv = xdx

du =
dx

1 + x

2
, v =

x

2

2

I =

Z
x tan�1

xdx

= tan�1
x

x

2

2
� 1

2

Z
x

2

1 + x

2
dx

= tan�1
x

x

2

2

� 1

2

Z
1dx�

Z
1

1 + x

2
dx

�

= tan�1
x

x

2

2
� 1

2

�
x� tan�1

x

�
+ C

= tan�1
x

x

2

2
� x

2
+

1

2
tan�1

x+ c

Hence

Z 1

0
x tan�1

xdx

=

✓
tan�1

x

x

2

2
� x

2
+

1

2
tan�1

x

◆����
1

0

=
⇡

4
� 1

2

51. n times. Each integration reduces the power of
x by 1.

52. 1 time. The first integration by parts gets rid
of the lnx and turns the integrand into a sim-
ple integral. See, for example, Problem 4.

53. (a) As the given problem,
R
x sinx2

dx can
be simplified by substituting x

2 = u, we
can solve the example using substitution
method.

(b) As the given integral,
R
x

2 sinx dx can not
be simplified by substitution method and
can be solved using method of integration
by parts.

(c) As the integral,
R
x lnx dx can not be sim-

plified by substitution and can be solved
using the method of integration by parts.

(d) As the given problem,

Z
lnx

x

dx can be

simplified by substituting , lnx = u we
can solve the example by substitution
method.

54. (a) As this integral,
R
x

3
e

4x
dx can not be

simplified by substitution method and can
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be solved by using the method of integra-
tion by parts.

(b) As the given problem,
R
x

3
e

x

4

dx can be
simplified by substituting x

4 = u, we can
solve the example using the substitution
method.

(c) As the given problem,

Z
x

�2
e

4
x

dx can be

simplified by substituting
1

x

= u, we can

solve the example using the substitution
method.

(d) As this integral,
R
x

2
e

�4x
dx can not be

simplified by substitution and can be
solved by using the method of integration
by parts.

55. First column: each row is the derivative of the
previous row; Second column: each row is the
antiderivative of the previous row.

56.
sinx

x

4 � cosx +
4x3 � sinx �

12x2 cosx +
24x sinx �
24 � cosx +

Z
x

4 sinxdx

= �x

4 cosx+ 4x3 sinx+ 12x2 cosx
� 24x sinx� 24 cosx+ c

57.
cosx

x

4 sinx +
4x3 � cosx �

12x2 � sinx +
24x cosx �
24 sinx +

Z
x

4 cosxdx

= x

4 sinx+ 4x3 cosx� 12x2 sinx
� 24x cosx+ 24 sinx+ c

58.
e

x

x

4
e

x +
4x3

e

x �
12x2

e

x +
24x e

x �
24 e

x +
Z

x

4
e

x

dx

= (x4 � 4x3 + 12x2 � 24x+ 24)ex + c

59.
e

2x

x

4
e

2x
/2 +

4x3
e

2x
/4 �

12x2
e

2x
/8 +

24x e

2x
/16 �

24 e

2x
/32 +

Z
x

4
e

2x
dx

=

✓
x

4

2
� x

3 +
3x2

2
� 3x

2
+

3

4

◆
e

2x + c

60.
cos 2x

x

5 sin 2x/2 +
5x4 � cos 2x/4 �
20x3 � sin 2x/8 +
60x2 cos 2x/16 �
120x sin 2x/32 +
120 � cos 2x/64 �

Z
x

5 cos 2xdx

=
1

2
x

5 sin 2x +
5

4
x

4 cos 2x

� 20

8
x

3 sin 2x� 60

16
x

2 cos 2x

+
120

32
x sin 2x+

120

64
cos 2x+ c

61.
e

�3x

x

3 �e

�3x
/3 +

3x2
e

�3x
/9 �

6x �e

�3x
/27 +

6 e

�3x
/81 �

Z
x

3
e

�3x
dx

=

✓
�x

3

3
� x

2

3
� 2x

9
� 2

27

◆
e

�3x + c

62.
x

2

lnx x

3
/3 +

x

�1
x

4
/12 +

�x

�2
x

5
/60 +

The table will never terminate.

63. (a) Use the identity
cosA cosB

=
1

2
[cos(A�B) + cos(A+B)]

This identity givesZ
⇡

�⇡

cos(mx) cos(nx)dx
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=

Z
⇡

�⇡

1

2
[cos((m� n)x)

+ cos((m+ n)x)]dx

=
1

2


sin((m� n)x)

m� n

+
sin((m+ n)x)

m+ n

�����
⇡

�⇡

= 0

It is important that m 6= n because oth-
erwise cos((m� n)x) = cos 0 = 1

(b) Use the identity
sinA sinB

=
1

2
[cos(A�B)� cos(A+B)]

This identity givesZ
⇡

�⇡

sin(mx) sin(nx)dx

=

Z
⇡

�⇡

1

2
[cos((m� n)x)

� cos((m+ n)x)]dx

=
1

2


sin((m� n)x)

m� n

� sin((m+ n)x)

m+ n

�����
⇡

�⇡

= 0

It is important that m 6= n because oth-
erwise cos((m� n)x) = cos 0 = 1

64. (a) Use the identity
cosA sinB

=
1

2
[sin(B +A)� sin(B �A)]

This identity givesZ
⇡

�⇡

cos(mx) sin(nx) dx

=

Z
⇡

�⇡

1

2
[sin((n+m)x)

� sin((n�m)x)] dx

=
1

2


�cos((n+m)x)

n+m

+
cos((n�m)x)

n�m

�����
⇡

�⇡

= 0

(b) We have seen thatZ
cos2 xdx =

1

2
x+

1

4
cos(2x) + c

Hence by letting u = nx:Z
⇡

�⇡

cos2(nx)dx

=
1

n

Z
n⇡

�n⇡

cos2 udu

=
1

n

✓
1

2
u+

1

4
cos(2u)

◆����
n⇡

�n⇡

= ⇡

And then

Z
⇡

�⇡

sin2(nx)dx

=

Z
⇡

�⇡

(1� cos2(nx))dx

=

Z
⇡

�⇡

dx�
Z

⇡

�⇡

cos2(nx)dx

= 2⇡ � ⇡ = ⇡

65. The only mistake is the misunderstanding of

antiderivatives. In this problem,

Z
e

x

e

�x

dx

is understood as a group of antiderivatives of
e

x

e

�x, not a fixed function. So the subtraction

by

Z
e

x

e

�x

dx on both sides of
Z

e

x

e

�x

dx = �1 +

Z
e

x

e

�x

dx

does not make sense.

66. V = ⇡

Z
⇡

0
(x
p
sinx)2dx = ⇡

Z
⇡

0
x

2 sinxdx

Using integration by parts twice we getZ
x

2 sinxdx

= �x

2 cosx+ 2

Z
x cosxdx

= �x

2 cosx+ 2(x sinx�
Z

sinxdx)

= �x

2 cosx+ 2x sinx+ 2 cosx+ c

Hence,
V = (�x

2 cosx+ 2x sinx+ 2 cosx)
��⇡
0

= ⇡

2 � 4 ⇡ 5.87

67. Let u = lnx, dv = e

x

dx

du =
dx

x

, v = e

x

Z
e

x lnxdx = e

x lnx�
Z

e

x

x

dx

Z
e

x lnxdx+

Z
e

x

x

dx = e

x lnx+ C

Hence,Z
e

x

✓
lnx+

1

x

◆
dx = e

x lnx+ c

68. We can guess the formula:Z
e

x(f(x) + f

0(x))dx = e

x

f(x) + c

and prove it by taking the derivative:
d

dx

(exf(x)) = e

x

f(x) + e

x

f

0(x)
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= e

x(f(x) + f

0(x))

69. Consider,

Z 1

0
f

00(x)g (x) dx

Choose u = g (x) and dv = f

00(x)dx,
so that du = g

0 (x) dx and , v = f

0 (x) .

Hence, we haveZ 1

0
g (x)f 00(x)dx

= g (x) f 0 (x)|10 �
Z 1

0
f

0 (x)g0 (x) dx

= (g (1) f 0 (1)� g (0) f 0 (0))

�
Z 1

0
g

0 (x)f 0 (x) dx

From the given data.

= (0� 0)�
Z 1

0
g

0 (x)f 0 (x) dx.

Choose, u = g

0 (x) and dv = f

0(x)dx,
so that,du = g

00 (x) dx and v = f (x) .

Hence, we have

�
Z 1

0
g

0 (x)f 0 (x) dx

= �
⇢
g

0 (x) f (x)|10 �
Z 1

0
f (x) g00 (x) dx

�

= � {(g0 (1) f (1)� g

0 (0) f (0) )

�
Z 1

0
f (x) g00 (x) dx

�

From the given data.

= �
⇢
(0� 0 )�

Z 1

0
f (x) g00 (x) dx

�

=

Z 1

0
f (x) g00 (x) dx.

70. Consider,Z
b

a

f

00 (x) (b� x) dx =

Z
b

a

(b� x) f 00 (x) dx

Choose u = (b� x) and dv = f

00 (x) dx,
so that du = �dx and v = f

0 (x) .

Hence, we have:Z
b

a

(b� x)f 00 (x) dx

= (b� x) f 0 (x)|b
a

+

Z
b

a

f

0 (x) dx

= (0� [(b� a) f 0 (a)]) +

Z
b

a

f

0 (x) dx

= � [(b� a) f 0 (a)] + f (x)|b
a

= � [(b� a) f 0 (a)] + f (b)� f (a)Z
b

a

f

00 (x) (b� x) dx

= � [(b� a) f 0 (a)] + f (b)� f (a)

f (b) = f (a) + (b� a) f 0 (a)

+

Z
b

a

f

00 (x) (b� x) dx

Consider

Z
b

0
x sin (b� x) dx

=

Z
b

0
(b� x) sinxdx =

Z
b

0
(sinx) (b� x) dx

Now, consider
f (x) = x� sinx ) f

0 (x) = 1� cosx

and f

00 (x) = sinx.
Therefore, using
f (b) = f (a) + f

0 (a) (b� a)

+

Z
b

a

f

00 (x) (b� x) dx,

we get
b� sin b = 0� sin 0 + f

0 (0) (b� 0)

+

Z
b

0
(sinx) (b� x) dx

) |sin b� b| =

�����

Z
b

0
x sin (b� x) dx

�����.

Further,

|sin b� b| =

�����

Z
b

0
x sin (b� x) dx

����� 

�����

Z
b

0
xdx

�����,

as sin (b� x)  1.

Thus, |sin b� b|  b

2

2
.

Therefore the error in the approximation

sinx ⇡ x is at most
1

2
x

2.

6.3 Trigonometric

Techniques of

Integration

1. Let u = sinx, du = cosxdxZ
cosx sin4 xdx =

Z
u

4
du

=
1

5
u

5 + c =
1

5
sin5 x+ c

2. Let u = sinx, du = cosxdxZ
cos3 x sin4 xdx =

Z
(1� u

2)u4
du

=
u

5

5
� u

7

7
+ c

=
sin5 x

5
� sin7 x

7
+ c

3. Let u = sin 2x, du = 2 cos 2xdx.Z
⇡/4

0
cos 2xsin32xdx

=
1

2

Z 1

0
u

3
du =

1

2


u

4

4

�1

0

=
1

8
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4. Let u = cos 3x, du = �3 sinxdx.Z
⇡/3

⇡/4

�
cos33x

� �
sin33x

�
dx

= �1

3

Z �1

�1/
p
2
u

3
�
1� u

2
�
du

= �1

3


u

4

4
� u

6

6

��1

�1p
2

= �1

3

✓
3

16
� 7

48

◆
= � 1

72

5. Let u = cosx, du = � sinxdxZ
⇡/2

0
cos2 x sinxdx =

Z 0

1
u

2(�du)

=

✓
�1

3
u

3

◆����
0

1

=
1

3

6. Let u = cosx, du = � sinxdxZ 0

�⇡/2
cos3 x sinxdx = �

Z 1

0
u

3
du = �1

7.

Z
cos2 (x+ 1) dx

=
1

2

Z
(1 + cos 2 (x+ 1))dx

=
1

2
x+

1

4
(sin 2 (x+ 1)) + c.

8. Let u = x� 3, du = dxZ
sin4(x� 3)dx =

Z
sin4udu

=

Z �
sin2u

�2
du

=

Z
(1� cos 2u)

2
⇥ (1� cos 2u)

2
du

=

Z
1

4

�
1� 2 cos 2u+ cos22u

�

=
1

4

Z 
1� 2 cos 2u+

1

2
(1 + cos 4u)

�
du

=
3

8
u� 1

4
sin 2u+

1

32
cos 4u+ c

=
3

8
(x� 3)� 1

4
sin 2 (x� 3)

+
1

32
cos 4 (x� 3) + c.

9. Let u = secx, du = secx tanxdxZ
tanx sec3 xdx

=

Z
tanx secx sec2 xdx

=

Z
u

2
du =

1

3
u

3 + c =
1

3
sec3 x+ c

10. Let u = cotx, du = � csc2 xdxZ
cotx csc4 xdx

= �
Z

cotx(1 + cot2 x) · csc2 xdx

= �
Z

(u+ u

3)du = �u

2

2
� u

4

4
+ C

= �cot2 x

2
� cot4

4
+ c

11. Let u = x

2 + 1, so that du = 2xdx.Z
xtan3

�
x

2 + 1
� �

sec
�
x

2 + 1
��

dx

=
1

2

Z
tan3u (secu) du

=
1

2

Z ⇥�
sec2u� 1

�
tanu (secu)

⇤
du

Let secu = t, dt = tanu secudu

=
1

2

Z �
t

2 � 1
�
dt =

1

2


t

3

3
� t

�
+ c

=
1

2


sec3u

3
� secu

�
+ c

=
1

6
sec3

�
x

2 + 1
�
� 1

2
sec
�
x

2 + 1
�
+ c.

12. Let u = 2x+ 1, so that du = 2dx.Z
tan (2x+ 1) .sec3 (2x+ 1) dx

=
1

2

Z
tanu. secu.sec2udu

=
1

2

Z
sec2utanu secudu

Let t = secu, so that dt = tanu secudu.

=
1

2

Z
t

2
dt =

1

2


t

3

3

�
+ c

=
1

2


sec3u

3

�
+ c =

1

6
sec3 (2x+ 1) + c.

13. Let u = cotx, du =
�
�csc2x

�
dxZ

cot2x csc4xdx =

Z
cot2x

�
1 + cot2x

�
csc2xdx

= �
Z

u

2
�
1 + u

2
�
du

= �u

3

3
� u

5

5
+ c

= � (cotx)3

3
� (cotx)5

5
+ c.

14. Let u = cotx, du =
�
�csc2x

�
dx.Z

cot2x csc2xdx = �
Z

u

2
du

= �u

3

3
+ c =

cot3x

3
+ c.

15. Let u = tanx, du = sec2 xdxZ
⇡/4

0
tan4 x sec4 xdx

=

Z
⇡/4

0
tan4 x sec2 x sec2 xdx
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=

Z
⇡/4

0
tan4 x(1 + tan2 x) sec2 xdx

=

Z 1

0
u

4(1 + u

2) du

=

Z 1

0
(u4 + u

6)du =
u

5

5
+

u

7

7

����
1

0

=
12

35

16. Let u = tanx, du = sec2 xdx.Z
⇡/4

⇡/4
tan4 x sec2 xdx

=

Z 1

�1
u

4
du =

u

5

5

����
1

�1

=
2

5

17.

Z
cos2 x sin2 xdx

=

Z
1

2
(1 + cos 2x) · 1

2
(1� cos 2x)dx

=
1

4

Z
(1� cos2 2x)dx

=
1

4

Z 
1� 1

2
(1 + cos 4x)

�
dx

=
1

4

✓
1

2
x� 1

8
sin 4x

◆
+ c

=
1

8
x� 1

32
sin 4x+ c

18.

Z
(cos2 x+ sin2 x)dx =

Z
1dx = x+ c

19. Let u = cosx, du = � sinxdxZ 0

�⇡/3

p
cosx sin3 xdx

=

Z 0

�⇡/3

p
cosx(1� cos2 x) sinxdx

=

Z 1

1/2

p
u(1� u

2)(�du)

=

Z 1

1/2
(u5/2 � u

1/2)du

=


2

7
u

7/2 � 2

3
u

3/2

�����
1

1/2

=
25

168

p
2� 8

21

20. Let u = cotx, du = � csc2 xdxZ
⇡/2

⇡/4
cot2 x csc4 xdx

=

Z
⇡/2

⇡/4
cot2 x csc2 x csc2 xdx

=

Z
⇡/2

⇡/4
cot2 x(1 + cot2 x) csc2 xdx

= �
Z 0

1
u

2(1 + u

2)du

= �

u

3

3
+

u

5

5

�����
0

1

=
1

3
+

1

5
=

8

15

21. Let x = 3 sin ✓,�⇡

2
< ✓ <

⇡

2
dx = 3 cos ✓ d✓Z

1

x

2
p
9� x

2
dx =

Z
3 cos ✓

9 sin2 ✓ · 3 cos ✓
d✓

=
1

9

Z
csc2 ✓d✓ = �1

9
cot ✓ + C

By drawing a diagram, we see that if

x = sin ✓, then cot ✓ =

p
9� x

2

x

.

Thus the integral = �
p
9� x

2

9x
+ c

22. Let x = 4 sin ✓,�⇡

2
< ✓ <

⇡

2
,

dx = 4 cos ✓d✓Z
1

x

2
p
16� x

2
dx =

Z
cos ✓

16 sin2 ✓ cos ✓
d✓

=
1

16

Z
csc2 ✓d✓ = � 1

16
cot ✓ + c

= �
p
16� x

2

16x
+ c

23. Let x = 4sin✓, so that dx = 4 cos ✓d✓.Z
x

2

p
16� x

2
dx =

Z �
16sin2✓

�
4 cos ✓

q
16� (4 sin ✓)2

d✓

= 64

Z �
sin2✓

�
cos ✓

p
16� 16sin2✓

d✓

= 64

Z �
sin2✓

�
cos ✓

4
q�

1� sin2✓
�d✓

= 16

Z
sin2✓ cos ✓

cos ✓
d✓ = 16

Z
sin2✓d✓

= 16

Z ✓
1� cos 2✓

2

◆
d✓

= 8

Z
d✓ �

Z
(cos 2✓) d✓

�

= 8


✓ � sin 2✓

2

�
+ c

= 8sin�1
⇣
x

4

⌘
� 4 sin

h
2sin�1

⇣
x

4

⌘i
+ c.

= 8sin�1
⇣
x

4

⌘
� x

p
16� x

2

2
+ c

24. Let x = 3 sin ✓, so that dx = 3 cos ✓d✓.Z
x

3

p
9� x

2
dx

=

Z
27
�
sin3✓

�
q

9� (3 sin ✓)2
(3 cos ✓) d✓

= 81

Z
sin3✓p

9� 9sin2✓
(cos ✓) d✓

= 81

Z ✓
sin3✓

3 cos ✓

◆
cos ✓d✓ = 27

Z
sin3✓d✓

= 27

Z ✓
3 sin ✓ � sin 3✓

4

◆
d✓
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=
27

4


3

Z
sin ✓d✓ �

Z
sin 3✓d✓

�

=
27

4


�3 cos ✓ +

cos 3✓

3

�
+ c

=
27

4

n
�3 cos

h
sin�1

⇣
x

3

⌘i

+
cos
⇥
sin�1

�
x

3

�⇤

3

)
+ c.

25. This is the area of a quarter of a circle of radius
2,Z 2

0

p
4� x

2
dx = ⇡

26. Let u = 4� x

2
, du = �2xdxZ 1

0

xp
4� x

2
dx = �

Z 3

4

du

2
p
u

= �u

1/2
���
3

4
= 2�

p
3

27. Let x = 3 sec ✓, dx = 3 sec ✓ tan ✓d✓.

I =

Z
x

2

p
x

2 � 9
dx

=

Z
27 sec2 ✓ sec ✓ tan ✓p

9 sec2 ✓ � 9
d✓

=

Z
9 sec3 ✓d✓

Use integration by parts.
Let u = sec ✓ and dv = sec2 ✓d✓. This givesZ

sec3 ✓d✓

= sec ✓ tan ✓ �
Z

sec ✓ tan2 ✓d✓

= sec ✓ tan ✓ �
Z

sec ✓(sec2 ✓ � 1)d✓

= sec ✓ tan ✓ +

Z
sec ✓d✓ �

Z
sec3 ✓d✓

2

Z
sec3 ✓d✓

= sec ✓ tan ✓ +

Z
sec ✓d✓

Z
sec3 ✓d✓

=
1

2
sec ✓ tan ✓ +

1

2

Z
sec ✓ d✓

This leaves us to compute

Z
sec ✓d✓.

For this notice if u = sec ✓ + tan ✓ then
du = sec ✓ tan ✓ + sec2 ✓.Z

sec ✓d✓

=

Z
sec ✓(sec ✓ + tan ✓)

sec ✓ + tan ✓
d✓

=

Z
1

u

du = ln |u|+ c

= ln | sec ✓ + tan ✓|+ c

Putting all these together and using

sec ✓ =
x

3
, tan ✓ =

p
x

2 � 9

3
:

Z
x

2

p
x

2 � 9
dx =

Z
9 sec3 ✓ d✓

=
9

2
sec ✓ tan ✓ +

9

2

Z
sec ✓ d✓

=
9

2
sec ✓ tan ✓ +

9

2
ln | sec ✓ + tan ✓|+ c

=
9

2

⇣
x

3

⌘ p
x

2 � 9

3

!

+
9

2
ln

�����
x

3
+

p
x

2 � 9

3

�����+ c

=
x

p
x

2 � 9

2
+

9

2
ln

�����
x+

p
x

2 � 9

3

�����+ c

28. Let u = x

2 � 1, du = 2xdxZ
x

3
p
x

2 � 1dx

=
1

2

Z
x

2
p

x

2 � 1(2x)dx

=
1

2

Z
(u+ 1)

p
udu

=
1

2

Z
u

3/2 + u

1/2
du

=
1

2

✓
2u5/2

5
+

2u3/2

3

◆
+ c

=
1

5
(x2 � 1)5/2 +

1

3
(x2 � 1)3/2 + c

29. Let x = 2 sec ✓, dx = 2 sec ✓ tan ✓d✓Z
2p

x

2 � 4
dx =

Z
4 sec ✓ tan ✓

2 tan ✓
d✓

= 2

Z
sec ✓d✓

= 2 ln |2 sec ✓ + 2 tan ✓|+ c

= 2 ln
���x+

p
x

2 � 4
���+ c

30. Let x = 2 sec ✓, dx = 2 sec ✓ tan ✓d✓Z
xp

x

2 � 4
dx =

Z
4 sec2 ✓ tan ✓

2 tan ✓
d✓

= 2

Z
sec2 ✓d✓ = 2 tan ✓ + C =

p
x

2 � 4 + c

31.

Z p
4x2 � 9

x

dx =

Z p
4x2 � 9

4x2
4xdx

Let u =
p
4x2 � 9,

du =
1

2
p
4x2 � 9

8xdx =
1

2u
8xdx

or udu = 4xdx.

Hence, we haveZ p
4x2 � 9

x

dx
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=

Z
u

u

2 + 9
udu =

Z
u

2

u

2 + 9
du

=

Z
u

2 + 9� 9

u

2 + 9
du =

Z
du�

Z
9

u

2 + 9
du

= u� 9tan�1
⇣
u

3

⌘
+ c

=
p
4x2 � 9� 9tan�1

 p
4x2 � 9

3

!
+ c.

32. Let x = 2 sec ✓, dx = 2 tan ✓ sec ✓d✓.Z p
x

2 � 4

x

2
dx

=

Z p
4sec2✓ � 4

4sec2✓
(2 tan ✓ sec ✓) d✓

=

Z
2 tan ✓

4sec2✓
(2 tan ✓ sec ✓) d✓

=

Z
tan2✓

sec ✓
d✓ =

Z
sec2✓ � 1

sec ✓
d✓

=

Z
sec ✓d✓ �

Z
1

sec ✓
d✓

=

Z
sec ✓d✓ �

Z
cos ✓d✓

= ln |sec ✓ + tan ✓|� sin ✓ + c

= ln
���sec

h
sec�1

⇣
x

2

⌘i
+ tan

h
sec�1

⇣
x

2

⌘i���

� sin
h
sec�1

⇣
x

2

⌘i
+ c

= ln
���
⇣
x

2

⌘
+ tan

h
sec�1

⇣
x

2

⌘i���

� sin
h
sec�1

⇣
x

2

⌘i
+ c.

33. Let x = 3 tan ✓, dx = 3 sec2 ✓d✓Z
x

2

p
9 + x

2
dx

=

Z
27 tan2 ✓ sec2 ✓p

9 + 9 tan2 ✓
d✓

=

Z
9 tan2 ✓ sec ✓d✓

= 9

Z
(sec2 ✓ � 1) sec ✓d✓

= 9

Z
sec3 ✓d✓ � 9

Z
sec ✓d✓

=
9

2
sec ✓ tan ✓ � 9

2
ln | sec ✓ + tan ✓|+ c

=
9

2

 p
9 + x

2

3

!⇣
x

3

⌘

� 9

2
ln

�����

p
9 + x

2

3
+

x

3

�����+ c

=
x

p
9 + x

2

2
� 9

2
ln

�����
x+

p
9 + x

2

3

�����+ c

34. Let x = 2
p
2 tan ✓, dx = 2

p
2 sec2 ✓d✓Z

x

3
p
8 + x

2
dx

=

Z
(16

p
2 tan3 ✓)(2

p
2 sec ✓)d✓

= 64

Z
tan3 ✓ sec ✓ d✓

= 64

Z
(sec2 ✓ � 1)(sec ✓ tan ✓ d✓)

= 64

Z
(u2 � 1)du =

64

3
u

3 � 64u+ c

=
64

3
sec3 ✓ � 64 sec ✓ + c

=
64

3

 p
8 + x

2

2
p
2

!3

� 64

 p
8 + x

2

2
p
2

!
+ c

=
2
p
2

3
(8 + x

2)3/2 � 16
p
2(8 + x

2)1/2 + c

35. Let x = 4 tan ✓, dx = 4 sec2 ✓d✓Z p
16 + x

2
dx

=

Z p
16 + 16 tan2 ✓ · 4 sec2 ✓d✓

= 16

Z
sec3 ✓d✓

= 16

✓
1

2
sec ✓ tan ✓ +

1

2

Z
sec ✓d✓

◆

= 8 sec ✓ tan ✓ + 8

Z
sec ✓d✓

= 8 sec ✓ tan ✓ + 8 ln |sec ✓ + tan ✓|+ c

=
1

2
x

p
16 + x

2

+ 8 ln

����
1

4

p
16 + x

2 +
x

4

����+ c

36. Let x = 2 tan ✓, dx = 2 sec2 ✓d✓Z
1p

4 + x

2
dx =

Z
2 sec2 ✓

2 sec ✓
d✓

=

Z
sec ✓d✓ = ln | sec ✓ + tan ✓|+ c

= ln

�����
x+

p
4 + x

2

2

�����+ c

37. Let u = x

2 + 8, du = 2xdxZ 1

0
x

p
x

2 + 8dx =
1

2

Z 9

8
u

1/2
du

=
1

3
u

3/2

����
9

8

=
27� 16

p
2

3

38. Let x = 3 tan ✓, dx = 3 sec2 ✓ d✓

I =

Z
x

2
p
x

2 + 9dx

=

Z
27 tan2 ✓ sec2 ✓

p
9 tan2 ✓ + 9dx

= 81

Z
tan2 ✓ sec3 ✓dx

= 81

Z
(sec2 ✓ � 1) sec3 ✓dx
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= 81

Z
(sec5 ✓ � sec3 ✓)dx

To compute
R
sec5 ✓ d✓, we use integration by

parts with u = sec3 ✓ and dv = sec2 ✓d✓.Z
sec5 ✓ d✓

= sec3 ✓ tan ✓ �
Z

3 sec3 ✓ tan2 ✓d✓

= sec3 ✓ tan ✓ � 3

Z
sec3 ✓(sec2 ✓ � 1)d✓

= sec3 ✓ tan ✓ � 3

Z
(sec5 ✓ � sec3 ✓)d✓

4

Z
sec5 ✓d✓

= sec3 ✓ tan ✓ + 3

Z
sec3 ✓d✓

Z
sec5 ✓d✓

=
1

4
sec3 ✓ tan ✓ +

3

4

Z
sec3 ✓d✓

To compute
R
sec3 ✓d✓ and

R
sec ✓ d✓, see Ex-

ercise 27.
Putting all this together gives:

I = 81

Z
(sec5 ✓ � sec3 ✓)dx

=
81

4
sec3 ✓ tan ✓ +

243

4

Z
sec3 ✓d✓

� 81

Z
sec3 ✓d✓

=
81

4
sec3 ✓ tan ✓ � 81

4

Z
sec3 ✓d✓

=
81

4
sec3 ✓ tan ✓ � 81

8
sec ✓ tan ✓

� 81

8
ln | sec ✓ + tan ✓|+ c

We don’t worry about the result being in terms
of x since this is a definite integral. Our lim-
its of integration are x = 0 and x = 2. In
terms of ✓ this means the limits of integration

correspond to ✓ = 0 and tan ✓ =
2

3
.

Z 2

0
x

2
p
x

2 + 9dx

=

✓
81

4
sec3 ✓ tan ✓ � 81

8
sec ✓ tan ✓

�81

8
ln | sec ✓ + tan ✓|

◆����
x=2

x=0

=

0

@81

4

 p
13

3

!3✓
2

3

◆
� 81

8

 p
13

3

!✓
2

3

◆

�81

8
ln

�����

p
13

3
+

2

3

�����

!

�
✓
81

4
(1)(0)� 81

8
(1)(0)� 81

8
ln |1 + 0|

◆

=
17

p
13

4
� 81

8
ln

�����
2 +

p
13

3

�����

39. Let x = tan ✓, dx = sec2✓d✓.Z
x

3

p
1 + x

2
dx =

Z ✓
tan3✓

sec ✓

◆
sec2✓d✓

=

Z �
tan2✓

�
(tan ✓ sec ✓) d✓

Let t = sec ✓, dt = tan ✓ sec ✓d✓.

=

Z �
sec2✓ � 1

�
tan ✓ sec ✓d✓

=

Z �
t

2 � 1
�
dt =


t

3

3
� t

�
+ c

=


sec3✓

3
� sec ✓

�
+ c

=

"
sec3

�
tan�1

x

�

3
� sec

�
tan�1

x

�
#
+ c.

40. Let x = 2 tan ✓, d✓ =
�
2sec2✓

�
d✓.Z

x+ 1p
4 + x

2
dx

=

Z ✓
2 tan ✓ + 1p
4 + 4tan2✓

◆
2sec2✓d✓

=

Z ✓
2 tan ✓ + 1

2 sec ✓

◆�
2sec2✓

�
d✓

=

Z
(2 tan ✓ + 1) (sec ✓) d✓

= 2

Z
sec ✓ tan ✓d✓ +

Z
sec ✓d✓

= 2 sec ✓ + ln |sec ✓ + tan ✓|+ c

= 2 sec
h
tan�1

⇣
x

2

⌘i
+ ln

���sec
h
tan�1

⇣
x

2

⌘i

+ tan
h
tan�1

⇣
x

2

⌘i���+ c

= 2 sec
h
tan�1

⇣
x

2

⌘i

+ ln
���sec

h
tan�1

⇣
x

2

⌘i
+
⇣
x

2

⌘���+ c.

41.

Z
xp

x

2 + 4x
dx

=
1

2

Z
2x+ 4� 4p

x

2 + 4x
dx

=
1

2

Z
2x+ 4p
x

2 + 4x
dx� 1

2

Z
4p

x

2 + 4x
dx

Let u = x

2 + 4x, du = (2x+ 4) dx.

=
1

2

Z
dup
u

� 1

2

Z
4p

x

2 + 4x� 4 + 4
dx

= u

1/2 � 1

2

Z
4q

(x+ 2)2 � 4
dx

=
p
(x2 + 4x)

� 2 log

�
x

2 + 4x
�
+
q
(x+ 2)2 � 4

�
+ c.

42.

Z
2p

x

2 � 6x
dx =

Z
2p

x

2 � 6x+ 9� 9
dx
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=

Z
2q

(x� 3)2 � 9
dx

Let u = x� 3, du = dx.

=

Z
2p

u

2 � 9
du

Let u = 3 sec ✓, du = 3 sec ✓ tan ✓d✓.

=

Z
2q

(3 sec ✓)2 � 9
3 sec ✓ tan ✓d✓

= 2

Z
1p

sec2✓ � 1
sec ✓ tan ✓d✓

= 2

Z
1

tan ✓
sec ✓ tan ✓d✓

= 2

Z
sec ✓d✓ = 2 ln |sec ✓ + tan ✓|+ c

= 2 ln
���sec

⇣
sec�1

⇣
u

3

⌘⌘

+ tan
⇣
sec�1

⇣
u

3

⌘⌘���+ c

= 2 ln
���
⇣
u

3

⌘
+ tan

⇣
sec�1

⇣
u

3

⌘⌘���+ c

= 2 ln

����

✓
x� 3

3

◆

+tan

✓
sec�1

✓
x� 3

3

◆◆����+ c.

43.

Z
xp

10 + 2x+ x

2
dx

=

Z
xp

9 + 1 + 2x+ x

2
dx

=

Z
xq

(x+ 1)2 + 9
dx

=

Z
x+ 1� 1q
(x+ 1)2 + 9

dx

=

Z
x+ 1q

(x+ 1)2 + 9
dx�

Z
1q

(x+ 1)2 + 9
dx

Let u = x+ 1, du = dx.

=

Z
up

u

2 + 9
du�

Z
1p

u

2 + 9
du

=
1

2

Z
2up
u

2 + 9
du�

Z
1p

u

2 + 32
du

Let t = u

2 + 9, dt = 2udu.

=
1

2

Z
dtp
t

dt� log
h
u+

p
u

2 + 32
i
+ c

=
p
t� log

h
u+

p
u

2 + 32
i
+ c

=
p
u

2 + 9� log
h
u+

p
u

2 + 9
i
+ c

=
q
(x+ 1)2 + 9

� log


(x+ 1) +

q
(x+ 1)2 + 9

�
+ c.

44.

Z
2p

4x� x

2
dx =

Z
2p

4� 4 + 4x� x

2
dx

=

Z
2q

4� (x� 2)2
dx

Let u = x� 2, du = dx.

=

Z
2p

4� u

2
du

Let u = 2 sin ✓, du = 2 cos d✓.

=

Z
2q

4� (2 sin ✓)2
2 cos ✓d✓

= 2

Z
1p

1� sin2✓
cos ✓d✓

= 2

Z
1

cos ✓
cos ✓d✓ = 2

Z
d✓ = 2✓ + c

= 2sin�1
⇣
u

2

⌘
+ c = 2sin�1

✓
x� 2

2

◆
+ c.

45. Using u = tanx, givesZ
tanx sec4 xdx

=

Z
tanx(1 + tan2 x) sec2 xdx

=

Z
u(1 + u

2)du =

Z
(u+ u

3)du

=
1

2
u

2 +
1

4
u

4 + c

=
1

2
tan2 x+

1

4
tan4 x+ c

Using u = secx, givesZ
tanx sec4 xdx

=

Z
tanx secx sec3 xdx

=

Z
u

3
du =

1

4
u

4 + c =
1

4
sec4 x+ c

46. Using u = tanx givesZ
tan3 x sec4 xdx =

Z
u

3(u2 + 1)du

=
u

6

6
+

u

4

4
+ c1

=
tan6 x

6
+

tan4 x

4
+ c2

Using u = secx givesZ
tan3 x sec4 xdx =

Z
(u2 � 1)u3

du

=
u

6

6
� u

4

4
=

sec6 x

6
� sec4 x

4

=
(tan2 x+ 1)3

6
� (tan2 x+ 1)2

4

=
tan6 x

6
+

tan4 x

4
� 1

12
+ c1

=
tan6 x

6
+

tan4 x

4
+ c2

47. (a) This is using integration by parts followed
by substitution
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u = secn�2
x, dv = sec2 xdx

du = (n � 2) secn�2
x tanxdx, v = tanx

I =

Z
secn xdx = secn�2

x tanx

� (n� 2)

Z
secn�2(sec2 x� 1)dx

= secn�2
x tanx

� (n� 2)

Z
(secn x� secn�2

x)dx

= secn�2
x tanx� (n� 2)I

+ (n� 2)

Z
secn�2

xdx (n� 1)I

= secn�2
x tanx + (n � 2)

Z
secn�2

xdx

I =
secn�2

x tanx

n� 1
+

n� 2

n� 1

Z
secn�2

xdx

(b)

Z
sec3 xdx

=
1

2
secx tanx+

1

2

Z
secxdx

=
1

2
secx tanx+

1

2
ln | secx+ tanx|+ c

(c)

Z
sec4 xdx

=
1

3
sec3 x tanx+

2

3

Z
sec2 xdx

=
1

3
sec3 x tanx+

2

3
tanx+ c

(d)

Z
sec5 xdx

=
1

4
sec3 x tanx+

3

4

Z
sec3 xdx

=
1

4
sec3 x tanx+

3

8
secx tanx

+
3

8
ln | secx+ tanx|+ c

48. Make the substitution x = a sin ✓.

4b

a

Z
a

0

p
a

2 � x

2
dx =

4b

a

Z
a

0

p
a

2 � x

2
dx

=
4b

a

Z
⇡/2

0
a cos ✓

p
a

2 � a

2 sin2 ✓d✓

= 4b

Z
⇡/2

0
a cos2 ✓d✓

= 4ab

✓
1

2
x+

1

4
sin 2x

◆����
⇡/2

0

= ab⇡

49.

Z
cscxdx =

Z
cscx

cscx+ cotx

cscx+ cotx
dx

=

Z
(cscx) cotx+ csc2x

cscx+ cotx
dx

Letu = cscx+ cotx,
du = � (cscx) cotx� csc2x.

= �
Z

1

u

du = � ln |u|+ c

= � ln |cscx+ cotx|+ c.

= ln |cscx� cotx|+ c.

Z
csc3xdx =

Z
cscx.csc2xdx

u = cscx, dv = csc2xdx
du = � cscx. cotx, v = � cotxZ

csc3xdx

= � cscx. cotx

�
Z

(� cotx) (� cscx. cotx)dx

= � cscx cotx�
Z �

cscx.cot2x
�
dx

= � cscx cotx�
Z

cscx.
�
csc2x� 1

�
dx

= � cscx cotx�
Z �

csc3x
�
dx+

Z
cscxdx

2

Z
csc3xdx = � cscx cotx+

Z
cscxdx

= � cscx cotx+ ln |cscx� cotx|+ cZ
csc3xdx

=
1

2
(� cscx cotx+ ln |cscx� cotx|) + c

50.

Z
1

cosx� 1
dx

=

Z
cosx+ 1

(cosx� 1) (cosx+ 1)
dx

= �
Z

cosx+ 1

sin2x
dx

= �
Z ✓

1

sinx

◆✓
cosx

sinx
+

1

sinx

◆
dx

= �
Z

cscx (cotx+ cscx) dx

=

Z
� cscx cotx� csc2xdx

=

Z
(� cscx cotx) dx+

Z �
�csc2x

�
dx

= cscx+ cotx+ c and,Z
1

cosx+ 1
dx

=

Z
cosx� 1

(cosx� 1) (cosx+ 1)
dx

= �
Z

cosx� 1

sin2x
dx

= �
Z ✓

1

sinx

◆✓
cosx

sinx
� 1

sinx

◆
dx

= �
Z

cscx (cotx� cscx) dx

=

Z
� cscx cotx+ csc2xdx

=

Z
(� cscx cotx) dx�

Z �
�csc2x

�
dx

= cscx� cotx+ c

51. Using a CAS we get
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(Ex 3.2)

Z
cos4 x sin3 xdx

= �1

7
sinx2 cosx5 � 2

35
cosx5 + c

(Ex 3.3)

Z p
sinx cos5 xdx

=
2

11
sinx11/2 � 4

7
sinx7/2

+
2

3
sinx3/2 + c

(Ex 3.5)

Z
cos4 xdx

=
1

4
cosx3 sinx+

3

8
cosx sinx+

3

8
x+ c

(Ex 3.6)

Z
tan3 x sec3 xdx

= 1/5
sinx4

cosx5
+ 1/15

sinx4

cosx3

� 1/15
sinx4

cosx
� 1/15 sinx2 cosx

� 2/15 cosx+ c

Obviously my CAS used di↵erent tech-
niques. The answers given by the book
are simpler.

52. (a) �1

7
sin2 x cos5 x� 2

35
cos5 x

= �1

7
(1� cos2 x) cos5 x� 2

35
cos5 x

=
1

7
cos7 x� 1

5
cos5 x

The conclusion is c = 0

(b) � 2

15
tanx� 1

15
sec2 x tanx

+
1

5
sec4 x tanx

= � 2

15
tanx� 1

15
(1 + tan2 x) tanx

+
1

5
(1 + tan2 x)2 tanx

=
1

3
tan3 x+

1

5
tan5 x

The conclusion is c = 0

53. The average power

=
1
2⇡
!

Z 2⇡/!

0
RI

2 cos2(!t) dt

=
!RI

2

2⇡

Z 2⇡/!

0

1

2
[1 + cos(2!t)] dt

=
!RI

2

4⇡


t+

1

2!
sin(2!t)

�����
2⇡/!

0

=
!RI

2

4⇡


2⇡

!

+
1

2!
sin

✓
4!⇡

!

◆
� 0

�
=

1

2
RI

2

6.4 Integration of

Rational Functions

Using Partial

Fractions

1.
x� 5

x

2 � 1
=

x� 5

(x+ 1)(x� 1)

=
A

x+ 1
+

B

x� 1

x� 5 = A(x� 1) +B(x+ 1)
x = �1 : �6 = �2A;A = 3
x = 1 : �4 = 2B;B = �2

x� 5

x

2 � 1
=

3

x+ 1
� 2

x� 1
Z

x� 5

x

2 � 1
dx =

Z ✓
3

x+ 1
� 2

x� 1

◆
dx

= 3 ln |x+ 1|� 2 ln |x� 1|+ c

2.
5x� 2

x

2 � 4
=

5x� 2

(x+ 2)(x� 2)

=
A

x+ 2
+

B

x� 2

5x� 2 = A(x� 2) +B(x+ 2)
x = �2 : �12 = �4A;A = 3
x = 2 : 8 = 4B;B = 2

5x� 2

x

2 � 4
=

3

x+ 2
+

2

x� 2
Z

5x� 2

x

2 � 4
dx =

Z ✓
3

x+ 2
+

2

x� 2

◆
dx

= 3 ln |x+ 2|+ 2 ln |x� 2|+ c

3.
6x

x

2 � x� 2
=

6x

(x� 2)(x+ 1)

=
A

x� 2
+

B

x+ 1

6x = A(x+ 1) +B(x� 2)
x = 2 : 12 = 3A;A = 4
x = �1 : �6 = �3B;B = 2

6x

x

2 � x� 2
=

4

x� 2
+

2

x+ 1Z
6x

x

2 � x� 2
dx

=

Z ✓
4

x� 2
+

2

x+ 1

◆
dx

= 4 ln |x� 2|+ 2 ln |x+ 1|+ c

4.
3x

x

2 � 3x� 4
=

3x

(x+ 1)(x� 4)

=
A

x+ 1
+

B

x� 4
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3x = A(x� 4) +B(x+ 1)

x = �1 : �3 = �5A;A =
3

5

x = 3 : 12 = 5B;B =
12

5

3x

x

2 � 3x� 4
=

3/5

x+ 1
+

12/5

x� 4Z
3x

x

2 � 3x� 4
dx

=

Z ✓
3/5

x+ 1
+

12/5

x� 4

◆
dx

=
3

5
ln |x+ 1|+ 12

5
ln |x� 4|+ c

5.
�x+ 5

x

3 � x

2 � 2x
=

�x+ 5

x(x� 2)(x+ 1)

=
A

x

+
B

x� 2
+

C

x+ 1

� x+ 5 = A(x� 2)(x+ 1) +Bx(x+ 1)
+ cx(x� 2)

x = 0 : 5 = �2A : A = �5

2

x = 2 : 3 = 6B : B =
1

2
x = �1 : 6 = 3C : C = 2

�x+ 5

x

3 � x

2 � 2x
= �5/2

x

+
1/2

x� 2
+

2

x+ 1Z �x+ 5

x

3 � x

2 � 2x
dx

=

Z ✓
�5/2

x

+
1/2

x� 2
+

2

x+ 1

◆
dx

= �5

2
ln |x|+ 1

2
ln |x� 2|

+ 2 ln |x+ 1|+ c

6.
3x+ 8

x

3 + 5x2 + 6x
=

3x+ 8

x(x+ 2)(x+ 3))

=
A

x

+
B

x+ 2
+

C

x+ 3

3x+ 8 = A(x+ 2)(x+ 3) +Bx(x+ 3)
+ cx(x+ 2)

x = 0 : 8 = 6A;A =
4

3
x = �2 : 2 = �2B;B = �1

x = �3 : �1 = 3C;C = �1

3

3x+ 8

x

3 + 5x2 + 6x
=

4/3

x

� 1

x+ 2
� 1/3

x+ 3Z
3x+ 8

x

3 + 5x2 + 6x
dx

=

Z ✓
4/3

x

� 1

x+ 2
� 1/3

x+ 3

◆
dx

=
4

3
ln |x|� ln |x+ 2|� 1

3
ln |x+ 3|+ c

7.
5x� 23

6x2 � 11x� 7
=

5x� 23

(2x+ 1)(3x� 7)

=
A

2x+ 1
+

B

3x� 7

5x� 23 = A(3x� 7) +B(2x+ 1)

x = �1

2
: �51

2
= �17

2
A;A = 3

x =
7

3
: �34

3
=

17

3
B;B = �2

5x� 23

6x2 � 11x� 7
=

3

2x+ 1
� 2

3x� 7Z
5x� 23

6x2 � 11x� 7
dx

=

Z ✓
3

2x+ 1
� 2

3x� 7

◆
dx

=
3

2
ln | 2x+ 1|� 2

3
ln | 3x� 7|+ c

8.
3x+ 5

5x2 � 4x� 1
=

3x+ 5

(5x+ 1)(x� 1)

=
A

5x+ 1
+

B

x� 1

3x+ 5 = A(x� 1) +B(5x+ 1)

x = �1

5
:
22

5
= �6

5
A;A = �11

3

x = 1 : 8 = 6B;B =
4

3

3x+ 5

5x2 � 4x� 1
= � 11/3

5x+ 1
+

4/3

x� 1Z
3x+ 5

5x2 � 4x� 1
dx

=

Z ✓
� 11/3

5x+ 1
+

4/3

x� 1

◆
dx

= �11

15
ln |5x+ 1|+ 4

3
ln |x� 1|+ c

9.
x� 1

x

3 + 4x2 + 4x
=

x� 1

x(x+ 2)2

=
A

x

+
B

x+ 2
+

C

(x+ 2)2

x� 1 = A(x+ 2)2 +Bx(x+ 2) + Cx

x = 0 : �1 = 4A;A = �1

4

x = �2 : �3 = �2C;C =
3

2

x = 1 : 0 = 9A+ 3B + C;B =
1

4
x� 1

x

3 + 4x2 + 4x

= �1/4

x

+
1/4

x+ 2
+

3/2

(x+ 2)2
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Z
x� 1

x

3 + 4x2 + 4x
dx

=

Z ✓
�1/4

x

+
1/4

x+ 2
+

3/2

(x+ 2)2

◆
dx

= �1

4
ln |x|+ 1

4
ln |x+ 2|� 3

2(x+ 2)
+ c

10.
4x� 5

x

3 � 3x2
=

4x� 5

x

2(x� 3)

=
A

x

+
B

x

2
+

C

x� 3

4x� 5 = Ax(x� 3) +B(x� 3) + Cx

2

= (A+ C)x2 + (�3A+B)x+ (�3B)

B =
5

3
;A = �7

9
;C =

7

9

4x� 5

x

3 � 3x2
= �7/9

x

+
5/3

x

2
+

7/9

x� 3Z
4x� 5

x

3 � 3x2
dx

=

Z ✓
�7/9

x

+
5/3

x

2
+

7/9

x� 3

◆
dx

= �7/9

ln
|x|� 5

3

1

x

+
7

9
ln |x� 3|+ c

11.
x+ 2

x

3 + x

=
x+ 2

x(x2 + 1)

=
A

x

+
Bx+ C

x

2 + 1

x+ 2 = A(x2 + 1) + (Bx+ C)x

= Ax

2 +A+Bx

2 + Cx

= (A+B)x2 + Cx+A

A = 2;C = 1;B = �2

x+ 2

x

3 + x

=
2

x

+
�2x+ 1

x

2 + 1
Z

x+ 2

x

3 + x

dx =

Z ✓
2

x

+
�2x+ 1

x

2 + 1

◆
dx

=

Z ✓
2

x

� 2x

x

2 + 1
+

1

x

2 + 1

◆
dx

= 2 ln |x|� ln(x2 + 1) + tan�1
x+ c

12.
1

x

3 + 4x
=

1

x(x2 + 4)

=
A

x

+
Bx+ C

x

2 + 4

1 = A(x2 + 1) + (Bx+ C)x
1 = (A+B)x2 + Cx+A

A = 1;B = �1;C = 0

1

x

3 + 4x
=

1

x

+
�x

x

2 + 4

Z
1

x

3 + 4x
dx

=

Z ✓
1

x

+
�x

x

2 + 4

◆
dx

= ln |x|� 1

2
ln(x2 + 4) + c

13.
4x2 � 7x� 17

6x2 � 11x� 10

=
2

3
+

1

3

x� 31

(2x� 5)(3x+ 2)

=
2

3
+

1

3


A

2x� 5
+

B

3x+ 2

�

x� 31 = A(3x+ 2) +B(2x� 5)

x =
5

2
: �57

2
=

19

2
A,A = �3;

x = �2

3
: �95

3
= �19

3
B,B = 5;

4x2 � 7x� 17

6x2 � 11x� 10

=
2

3
+

1

3


�3

2x� 5
+

5

3x+ 2

�

Z
4x2 � 7x� 17

6x2 � 11x� 10
dx

=

Z ✓
2

3
� 1

2x� 5
+

5/3

3x+ 2

◆
dx

=
2

3
x� 1

2
ln | 2x� 5|+ 5

9
ln | 3x+ 2|+ c

14.
x

3 + x

x

2 � 1
= x+

2x

(x+ 1)(x� 1)

= x+
A

x+ 1
+

B

x� 1

2x = A(x� 1) +B(x+ 1)
A = B = 1

x

3 + x

x

2 � 1
= x+

1

x+ 1
+

1

x� 1
Z

x

3 + x

x

2 � 1
dx

=

Z ✓
x+

1

x+ 1
+

1

x� 1

◆
dx

=
x

2

2
+ ln |x+ 1|+ ln |x� 1|+ c

15.
2x+ 3

x

2 + 2x+ 1
=

2x+ 3

(x+ 1)2

=
A

x+ 1
+

B

(x+ 1)2

2x+ 3 = A(x+ 1) +B

x = �1 : B = 1;A = 2
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2x+ 3

x

2 + 2x+ 1
=

2

x+ 1
+

1

(x+ 1)2Z
2x+ 3

x

2 + 2x+ 1
dx

=

Z ✓
2

x+ 1
+

1

(x+ 1)2

◆
dx

= 2 ln |x+ 1|� 1

x+ 1
+ c

16.
2x

x

2 � 6x+ 9
=

2x

(x� 3)2

=
A

x� 3
+

B

(x� 3)2

2x = A(x� 3) +B

A = 2;B = 6

2x

x

2 � 6x+ 9
=

2

x� 3
+

6

(x� 3)2Z
2x

x

2 � 6x+ 9
dx

=

Z ✓
2

x� 3
+

6

(x� 3)2

◆
dx

= 2 ln |x� 3|� 6

x� 3
+ c

17.
x

3 � 4

x

3 + 2x2 + 2x
= 1 +

�2x2 � 2x� 4

x(x2 + 2x+ 2)

= 1 +
A

x

+
Bx+ c

x

2 + 2x+ 2

� 2x2 � 2x� 4 = A(x2 + 2x+ 2) + (Bx+ c)x
= (A+B)x2 + (2A+ c)x+ 2A
A = �2;B = 0;C = 2

x

3 � 4

x

3 + 2x2 + 2x

= 1 +
�2

x

+
2

x

2 + 2x+ 2
Z

x

3 � 4

x

3 + 2x2 + 2x
dx

=

Z ✓
1 +

�2

x

+
2

(x+ 1)2 + 1

◆
dx

= x� 2 ln |x|+ 2 tan�1(x+ 1) + c

18.
4

x

3 � 2x2 + 4x
=

4

x(x2 � 2x+ 4)

=
A

x

+
Bx+ C

x

2 � 2x+ 4

4 = A(x2 � 2x+ 4) + (Bx+ C)x
= (A+B)x2 + (�2A+ C)x+ 4A
A = 1;B = �1;C = 2

4

x

3 � 2x2 + 4x
=

1

x

+
�x+ 2

x

2 � 2x+ 4Z
4

x

3 � 2x2 + 4x
dx

=

Z ✓
1

x

+
�x+ 2

x

2 � 2x+ 4

◆
dx

=

Z ✓
1

x

� 1

2

2x� 2

x

2 � 2x+ 4
+

1

(x� 1)2 + 3

◆
dx

= ln |x|� 1

2
ln(x2 � 2x+ 4)

+
1p
3
tan�1

✓
x� 1p

3

◆
+ c

19.
3x3 + 1

x

3 � x

2 + x� 1

= 3 +
3x2 � 3x+ 4

x

3 � x

2 + x� 1

= 3 +
3x2 � 3x+ 4

(x2 + 1)(x� 1)

= 3 +
Ax+B

x

2 + 1
+

C

x� 1

3x2 � 3x+ 4 = (Ax+B)(x� 1) + C(x2 + 1)
= Ax

2 �Ax+Bx�B + Cx

2 + C

x = 1 : 4 = 2C;C = 2
A+ c = 3 : A = 1
�A+B = �3 : B = �2

3x3 + 1

x

3 � x

2 + x� 1
= 3 +

x� 2

x

2 + 1
+

2

x� 1
Z

3x3 + 1

x

3 � x

2 + x� 1
dx

=

Z ✓
3 +

x� 2

x

2 + 1
+

2

x� 1

◆
dx

=

Z ✓
3 +

x

x

2 + 1
� 2

x

2 + 1
+

2

x� 1

◆
dx

= 3x+
1

2
ln(x2 + 1)� 2 tan�1

x

+ 2 ln |x� 1|+ c

20.
2x4 + 9x2 + x� 4

x

3 + 4x
= 2x+

x

2 + x� 4

x(x2 + 4)

= 2x+
A

x

+
Bx+ C

x

2 + 4

x

2 + x� 4 = A(x2 + 4) + (Bx+ C)x
= (A+B)x2 + Cx+ 4A
A = �1;B = 2;C = 1

2x4 + 9x2 + x� 4

x

3 + 4x
= 2x� 1

x

+
2x+ 1

x

2 + 4

= 2x� 1

x

+
2x

x

2 + 4
+

1

x

2 + 4
Z

2x4 + 9x2 + x� 4

x

3 + 4x
dx

=

Z ✓
2x� 1

x

+
2x

x

2 + 4
+

1

x

2 + 4

◆
dx

= x

2 � ln |x|+ ln(x2 + 4) +
1

2
tan�1 x

2
+ c



384 CHAPTER 6. INTEGRATION TECHNIQUES

21.
x

3 + x+ 2

x

2 + 2x� 8
= x� 2 +

11

x+ 4
+

2

x� 2
Z

x

3 + x+ 2

x

2 + 2x� 8
dx

=

Z ✓
x� 2 +

11

x+ 4
+

2

x� 2

◆
dx

=
x

2

2
� 2x+ 11 ln |x+ 4|

+ 2 ln |x� 2|+ c

22.
x

2 + 1

x

2 � 5x� 6
= � 2/7

x+ 1
+

37/7

x� 6
Z

x

2 + 1

x

2 � 5x� 6
dx

=

Z ✓
� 2/7

x+ 1
+

37/7

x� 6

◆
dx

= �2

7
ln |x+ 1|+ 37

7
ln |x� 6|+ c

23.
x+ 4

x

3 + 3x2 + 2x
=

2

x

+
1

x+ 2
� 3

x+ 1Z
x+ 4

x

3 + 3x2 + 2x
dx

=

Z ✓
2

x

+
1

x+ 2
� 3

x+ 1

◆
dx

= 2 ln |x|+ ln |x+ 2|� 3 ln |x+ 1|+ c

24.
1

x

3 � 1
=

1/3

(x� 1)
� (x+ 2)/3

(x2 + x+ 1)Z
1

x

3 � 1
dx

=
1

3

Z
1

(x� 1)
� x+ 2

(x2 + x+ 1)
dx

=
1

3

Z
1

(x� 1)
� 1

2

2x+ 4

(x2 + x+ 1)
dx

=
1

3

Z
1

(x� 1)
� 1

2

2x+ 1

(x2 + x+ 1)

� 1

2

3

(x2 + x+ 1)
dx

=
1

3

Z
1

(x� 1)
� 1

2

2x+ 1

(x2 + x+ 1)

� 1

2

3

(x+ 1/2)2 + 3/4
dx

=
1

3


ln |x� 1|� 1

2
ln
��
x

2 + x+ 1
��

�
p
3tan�1

✓
2x+ 1p

3

◆�
+ c

25. Let u = x

4 � x, du =
�
4x3 � 1

�
dx.Z �

4x3 � 1
�

x

4 � x

dx =

Z
du

u

= ln |u|+ c = ln
��
x

4 � x

��+ c.

26. Let u = x

2
, du = (2x) dx.Z

x

x

4 + 1
dx =

1

2

Z
2x

x

4 + 1
dx

=
1

2

Z
du

u

2 + 1
=

1

2
tan (u) + c

=
1

2
tan

�
x

2
�
+ c.

27.
4x� 2

16x4 � 1
=

�4x+ 1

4x2 + 1
+

1

2x+ 1Z
4x� 2

16x4 � 1
dx

=

Z ✓�4x+ 1

4x2 + 1
+

1

2x+ 1

◆
dx

=

Z ✓
�1

2

8x

4x2 + 1
+

1

4x2 + 1
+

1

2x+ 1

◆
dx

= �1

2
ln |4x2 + 1|+ 1

2
tan�1(2x)

+
1

2
ln |2x+ 1|+ c

28.
3x+ 7

x

4 � 16
=

13/32

x� 2
� 1/32

x+ 2
� 3x/8 + 7/8

x

2 + 4Z
3x+ 7

x

4 � 16
dx

=

Z ✓
13/32

x� 2
� 1/32

x+ 2
� 3x/8 + 7/8

x

2 + 4

◆
dx

=

Z ✓
13/32

x� 2
� 1/32

x+ 2
� 3

16

2x

x

2 + 4

�7

8

1

x

2 + 4

◆
dx

=
13

32
ln |x� 2|� 1

32
ln |x+ 2|

� 3

16
ln(x2 + 4)� 7

16
tan�1 x

2
+ c

29.
x

3 + x

3x2 + 2x+ 1

=
x

3
� 2

9
+

1

9

10x+ 2

3x2 + 2x+ 1
Z

x

3 + x

3x2 + 2x+ 1
dx

=

Z ✓
x

3
� 2

9
+

1

9

10x+ 2

3x2 + 2x+ 1

◆
dx

=

Z ✓
x

3
� 2

9
+

1

9

5

3

6x+ 2

3x2 + 2x+ 1

�1

9

4

3

1

3(x+ 1/3)2 + 2/3

◆
dx

=
x

2

6
� 2

9
x+

5

27
ln(3x2 + 2x+ 1)

� 2
p
2

27
tan�1

✓
3x+ 1p

2

◆
+ c
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30.
x

3 � 2x

2x2 � 3x+ 2

=
x

2
+

4

3
+

1

4

21x� 6

2x2 � 3x+ 2
Z

x

3 � 2x

2x2 � 3x+ 2
dx

=

Z ✓
x

2
+

4

3
+

1

4

21x� 6

2x2 � 3x+ 2

◆
dx

=

Z ✓
x

2
+

4

3
+

21

16

4x� 3

2x2 � 3x+ 2

+
39

32

1

(x� 3/4)2 + 7/16

◆
dx

=
x

2

4
+

4

3
x+

21

16
ln(2x2 � 3x+ 2)

� 39
p
7

56
tan�1

✓
4x� 3p

7

◆
+ c

31.
4x2 + 3

x

3 + x

2 + x

=
3

x

+
x� 3

x

2 + x+ 1
Z

4x2 + 3

x

3 + x

2 + x

dx

=

Z ✓
3

x

+
x� 3

x

2 + x+ 1

◆
dx

=

Z ✓
3

x

+
x+ 1/2

x

2 + x+ 1
� 7/2

x

2 + x+ 1

◆
dx

= 3 ln |x|+ 1

2
ln |x2 + x+ 1|

� 7p
3
tan�1

✓
2x+ 1p

3

◆
+ c

32.
4x+ 4

x

4 + x

3 + 2x2
=

1

x

+
2

x

2
+

�x� 3

x

2 + x+ 2Z
4x+ 4

x

4 + x

3 + 2x2
dx

=

Z ✓
1

x

+
2

x

2
+

�x� 3

x

2 + x+ 2

◆
dx

= ln |x|� 2

x

� 1

2
ln(x2 + x+ 2)

� 5p
7
tan�1

✓
2x+ 1p

7

◆
+ c

33. Let u = x

2
, dv = (sinx) dx

So that du = (2x) dx and v = � cosx.Z
x

2 sinxdx

= x

2 (� cosx)�
Z

(� cosx) (2x) dx

= �x

2 cosx+ 2

Z
x (cosx) dx

Let u = x, dv = cosxdx,
so that du = dx and v = sinx.Z

x

2 sinxdx

= �x

2 cosx+ 2

Z
x cosxdx

= �x

2 cosx+ 2 {x sinx+ cosx}+ c.

34. Let u = x, dv = e

2x
dx .

so that du = dx and v =
e

2x

2
.

Z
xe

2x
dx = x

e

2x

2
�
Z

e

2x

2
dx

= x

e

2x

2
� e

2x

4
+ c

35. Let u =
�
sin2x� 4

�
,

so that du = 2 sinx cosx dx.Z
sinx cosx

sin2x� 4
dx =

1

2

Z
du

u

=
1

2
ln |u|+ c =

1

2
ln
��sin2x� 4

��+ c

36. Let t = e

x

, dt = e

x

dx and e

3x = t

3Z
2ex

e

3x + e

x

dx =

Z
2

t

3 + t

dt.

=

Z
2

t

� 2t

t

2 + 1
dt = 2 ln |t|� ln

��
t

2 + 1
��+ c

= 2 ln |ex|� ln
��
e

2x + 1
��+ c

37.
4x2 + 2

(x2 + 1)2
=

Ax+B

x

2 + 1
+

Cx+D

(x2 + 1)2

4x2 + 2 = (Ax+B)(x2 + 1) + (Cx+D)
= Ax

3 +Bx

2 + (A+ C)x+ (B +D)
A = 0;B = 4;C = 0;D = �2

4x2 + 2

(x2 + 1)2
=

4

x

2 + 1
+

�2

(x2 + 1)2

38.
x

3 + 2

(x2 + 1)2
=

Ax+B

x

2 + 1
+

Cx+D

(x2 + 1)2

x

3 + 2 = (Ax+B)(x2 + 1) + cx+D

= Ax

3 +Bx

2 + (A+ c)x+ (B +D)
A = 1;B = 0;C = �1;D = 2

x

3 + 2

(x2 + 1)2
=

x

x

2 + 1
+

�x+ 2

(x2 + 1)2

39.
4x2 + 3

(x2 + x+ 1)2

=
Ax+B

x

2 + x+ 1
+

Cx+D

(x2 + x+ 1)2

4x2 + 3 = (Ax+B)(x2 + x+ 1) + cx+D

= Ax

3 +Ax

2 +Ax+Bx

2 +Bx+B + cx+D

A = 0
A+B = 4 : B = 4
A+B + c = 0 : C = �4
B +D = 3 : D = �1
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4x2 + 3

(x2 + x+ 1)2

=
4

x

2 + x+ 1
� 4x+ 1

(x2 + x+ 1)2

40.
x

4 + x

3

(x2 + 4)2
= 1 +

x

3 � 8x2 � 8

(x2 + 4)2

= 1 +
Ax+B

x

2 + 4
+

Cx+D

(x2 + 4)2

x

3 � 8x2 � 8 = (Ax+B)(x2 + 4) + cx+D

= Ax

3 +Bx

2 + (4A+ c)x+ (4B +D)
A = 1;B = �8;C = �4;D = 24

x

4 + x

3

(x2 + 4)2
= 1 +

x� 8

x

2 + 4
+

�4x+ 24

(x2 + 4)2

41. Let u = x

3 + 1, du = 3x2
dxZ

3

x

4 + x

dx =

Z
3x2

x

3(x3 + 1)
dx

=

Z
1

(u� 1)u
du

=

Z ✓
1

u� 1
� 1

u

◆
du

= ln |u� 1|� ln |u|+ c

= ln

����
u� 1

u

����+ c

= ln

����
x

3

x

3 + 1

����+ c

On the other hand, we can let

u =
1

x

, du = � 1

x

2
dx

Z
3

x

4 + x

dx = �
Z

3u2

1 + u

3
du

= � ln |1 + u

3|+ c = � ln |1 + 1/x3|+ c

To see that the two answers are equivalent,
note that

ln

����
x

3

x

3 + 1

���� = � ln

����
x

3 + 1

x

3

���� = � ln |1 + 1/x3|

42. Let u = x

2 + 1, du = 2xdx
Z

2

x

3 + x

dx =

Z
2x

x

2(x2 + 1)
dx

=

Z
du

u(u� 1)
= ln

����
u� 1

u

����+ c

= ln

����
x

2

x

2 + 1

����+ c

Let u =
1

x

, du = � 1

x

2
dx

Z
2

x

3 + x

dx = �
Z

2u

1 + u

2
du

= � ln |1 + u

2|+ c = � ln

����1 +
1

x

2

����+ c

To see that the two answers are equivalent,
note that

ln

����
x

2

x

2 + 1

���� = � ln

����
x

2 + 1

x

2

���� = � ln

����1 +
1

x

2

����

43. (a) Partial fractions

(b) Substitution method

(c) Substitution and Partial fractions.

(d) Substitution

44. (a) Partial fractions

(b) Substitution and Partial fractions.

(c) Partial fractions

(d) Partial fractions

45.

Z
sec3xdx =

Z
cosx

�
1� sin2x

�2 dx

Letu = sinx, so that du = cosxdx.Z
cosx dx

�
1� sin2x

�2 =

Z
du

(1� u

2)2

=

Z
1

(1� u)2(1 + u)2
du

By partial fractions,

1

(1� u)2(1 + u)2
=

1

4

 
1

(1� u)
+

1

(1� u)2

+
1

(1 + u)
+

1

(1 + u)2

!

Hence,

Z
sec3xdx

=
1

4


� ln |1� u|+ 1

(1� u)
+ ln |1 + u|

� 1

(1 + u)

�
+ c

=
1

4


� ln |1� sinx|+ 1

(1� sinx)

+ ln |1 + sinx|� 1

(1 + sinx)

�
+ c

6.5 Integration Table

and Computer

Algebra Systems

1.

Z
x

(2 + 4x)2
dx

=
2

16(2 + 4x)
+

1

16
ln | 2 + 4x|+ c

=
1

8(2 + 4x)
+

1

16
ln | 2 + 4x|+ c
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2.

Z
x

2

(2 + 4x)2
dx

=
1

64

✓
2 + 4x� 4

2 + 4x
� 4 ln |2 + 4x|

◆
+ c

3. Substitute u = 1 + e

xZ
e

2x
p
1 + e

x

dx =

Z
(u� 1)

p
u du

=

Z
(u3/2 � u

1/2) du

=
2

5
u

5/2 � 2

3
u

3/2 + c

=
2

5
(1 + e

x)5/2 � 2

3
(1 + e

x)3/2 + c

4. Substitute u = e

xZ
e

3x
p

1 + e

2x
dx =

Z
u

2
p
1 + u

2
du

=
1

8
u(1 + 2u2)

p
1 + u

2

� 1

8
ln |u+

p
1 + u

2|+ c

=
1

8
e

x(1 + 2e2x)
p
1 + e

2x

� 1

8
ln |ex +

p
1 + e

2x|+ c

5. Substitute u = 2x

Z
x

2

p
1 + 4x2

dx

=
1

8

Z
u

2

p
1 + u

2
du

=
1

8

h
u

2
�
p

1 + u

2

�1

2
ln(u+

p
1 + u

2)

�
+ c

=
1

8
x

p
1 + 4x2

� 1

16
ln(2x+

p
1 + 4x2) + c

6. Substitute u = sinxZ
cosx

sin2 x(3 + 2 sinx)
dx

=

Z
1

u

2(3 + 2u)
du

=
2

9
ln

����
3 + 2u

u

�����
1

2u
+ c

=
2

9

����
3 + 2 sinx

sinx

�����
1

3 sinx
+ c

7. Substitute u = t

3Z
t

8
p

4� t

6
dt

=
1

3

Z
u

2
⇣p

4� u

2
⌘
du

=
1

3


u

8

�
2u2 � 4

�p
4� u

2 +
16

8
sin�1u

2

�
+ c

=
1

24
t

3
�
2t6 � 4

�p
4� t

6 +
2

3
sin�1 t

3

2
+ c

Z 1

0
t

8
p

4� t

6
dt =

⇡

9
�

p
3

12

8. Substitute u = e

t

Z p
16� e

2t
dt =

Z p
16� u

2

u

du

=
p
16� u

2 � 4 ln

�����
4 +

p
16� u

2

u

�����+ c

=
p
16� e

2t � 4 ln

�����
4 +

p
16� e

2t

e

t

�����+ c

Z ln 4

0

p
16� e

2t
dt = �

p
15 + 4 ln

⇣p
15 + 4

⌘

9. Substitute u = e

xZ
e

x

p
e

2x + 4
dx =

Z
1p

u

2 + 4
du

= ln(u+
p

4 + u

2) + c

= ln(ex +
p
4 + e

2x) + c

Z ln 2

0

e

x

p
e

2x + 4
dx = ln

 
2
p
2 + 2

1 +
p
5

!

10. Substitute u = x

2
Z 2

p
3

x

p
x

4 � 9

x

2
dx =

1

2

Z 4

3

p
u

2 � 9

u

du

=
1

2

✓p
u

2 � 9� 3 sec�1 |u|
3

◆����
4

3

=

p
7

2
� 3

2
sec�1

✓
4

3

◆

11. Substitute u = x� 3Z p
6x� x

2

(x� 3)2
dx

=

Z p
(u+ 3)(6� (u+ 3))

u

2
du

=

Z p
9� u

2

u

2
du

= � 1

u

p
9� u

2 � sin�1 u

3
+ c

= � 1

x� 3

p
9� (x� 3)2

� sin�1

✓
x� 3

3

◆
+ c

12. Substitute u = tanxZ
sec2 x

tanx
p
8 tanx� tan2 x

dx

=

Z
1

u

p
8u� u

2
du

= �
p
8u� u

2

4u
+ c
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= �
p
8 tanx� tan2 x

4 tanx
+ c

13.

Z
tan6udu

=
1

5
tan5u�

Z
tan4udu

=
1

5
tan5u�


1

3
tan3u�

Z
tan2udu

�

=
1

5
tan5u� 1

3
tan3u+ tanu� u+ c.

14.

Z
csc4udu

= �1

3
csc2u cotu+

2

3

Z
csc2udu

= �1

3
csc2u cotu� 2

3
cotu+ c.

15. Substitute u = sinxZ
cosx

sinx
p
4 + sinx

dx =

Z
1

u

p
4 + u

du

=
1p
4
ln

����

p
4 + u� 2p
4 + u+ 2

����+ c

=
1

2
ln

����

p
4 + sinx� 2p
4 + sinx+ 2

����+ c

16. Substitute u = x

2Z
x

5

p
4 + x

2
dx =

1

2

Z
u

2

p
4 + u

2
du

=

✓
1

2

◆
2

15
(3u2 � 16u+ 128)

p
4 + u+ c

=
1

15
(3x4 � 16x2 + 128)

p
4 + x

2 + c

17. Substitute u = x

2Z
x

3 cosx2
dx =

1

2

Z
u cosu du

=
1

2
(cosu+ u sinu) + c

=
1

2
cosx2 +

1

2
x

2 sinx2 + c

18. Substitute u = x

2Z
x sin(3x2) cos(4x2) dx

=
1

2

Z
sin(3u) cos(4u) du

=
1

2

✓
cosu

2
� cos 7u

14

◆
+ c

=
cosx2

4
� cos 7x2

28
+ c

19. Substitute u = cosxZ
sin 2xp
1 + cosx

dx =

Z
2 sinx cosxp
1 + cosx

dx

= �2

Z
up
1 + u

du

= �2


2

3
(u� 2)

p
1 + u

�
+ c

= �4

3
(cosx� 2)

p
1 + cosx+ c

20. Substitute u = x

2
Z

x

p
1 + 4x2

x

4
dx =

1

2

Z p
1 + 4u

u

2
du

= �
p
1 + 4u

2u
+ ln

p
1 + 4u� 1p
1 + 4u+ 1

�
+ c

= �
p
1 + 4x2

2x2 + ln

"p
1 + 4x2 � 1p
1 + 4x2 + 1

#
+ c

21. Substitute u = sin tZ
sin2 t cos tp
sin2 t+ 4

dt

=

Z
u

2

p
u

2 + 4
du

=
u

2

p
4 + u

2 � 4

2
ln(u+

p
4 + u

2) + c

=
1

2
sin t

p
4 + sin2 t

� 2 ln
⇣
sin t+

p
4 + sin2 t

⌘
+ c

22. Substitute u =
p
tZ

ln
p
tp
t

dt = 2

Z
lnu du

= 2u lnu� 2u+ c = 2
p
t ln

p
t� 2

p
t+ c

23. Substitute u = � 2

x

2
Z

e

�2/x2

x

3
dx =

1

4

Z
e

u

du

=
1

4
e

u + c =
1

4
e

�2/x2

+ c

24. Substitute u = 2x2Z
x

3
e

2x2

dx =
1

8

Z
ue

u

du

=
1

8
(u� 1)eu + c =

1

8
(2x2 � 1)e2x

2

+ c

25.

Z
xp

4x� x

2
dx

= �
p
4x� x

2 + 2 cos�1

✓
2� x

2

◆
+ c

26.

Z
e

5x cos 3x dx

=
1

34
(5 cos 3x+ 3 sin 3x)e5x + c

27. Substitute u = e

xZ
e

x tan�1(ex)dx =

Z
tan�1

u du
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= u tan�1
u� 1

2
ln(1 + u

2) + c

= e

x tan�1
e

x � 1

2
ln(1 + e

2x) + c

28. Substitute u = 4xZ
(ln 4x)3 dx =

1

4

Z
(lnu)3 dx

=
1

4

✓
u(lnu)3 � 3

Z
(lnu)2 dx

◆

=
1

4
u(lnu)3

� 3

4

�
u(lnu)2 � 2u lnu+ 2u

�
+ c

= x(ln 4x)3 � 3x(lnu)2 + 6x ln 4x� 6x+ c

29. Answer depends on CAS used.

30. Answer depends on CAS used.

31. Any answer is wrong because the integrand is
undefined for all x 6= 1.

32. Answer depends on CAS used.

33. Answer depends on CAS used.

34. Answer depends on CAS used.

35. Answer depends on CAS used.

36. Maple gives the result:
b⇡r
1

a

2

37. If the CAS is unable to compute an antideriva-
tive,

R
f(x) dx is generally printed showing this

inability.

6.6 Improper Integrals

1. (a) improper, function not defined at x = 0

(b) not improper, function continuous on
entire interval

(c) not improper, function continuous on
on entire interval

2. (a) improper, interval is infinite

(b) improper, function not defined at x = 0

(c) improper, interval is infinite

3. (a)

Z 1

0
x

�1/3
dx = lim

R!0+

Z 1

R

x

�1/3
dx

= lim
R!0+

3

2
x

2/3

����
1

R

= lim
R!0+

3

2

⇣
1�R

2/3
⌘
=

3

2

(b)

Z 1

0
x

�4/3
dx = lim

R!0+

Z 1

R

x

�4/3
dx

= lim
R!0+

(�3x�1/3)
���
1

R

= lim
R!0+

(�3)(1�R

�1/3) = 1
So the original integral diverges.

4. (a)

Z 1

1
x

�4/5
dx = lim

R!1

Z
R

1
x

�4/5
dx

= lim
R!1

5x1/5
���
R

1

= lim
R!1

5R1/5 � 5 = 1
So the original integral diverges.

(b)

Z 1

1
x

�6/5
dx = lim

R!1

Z
R

1
dx

= lim
R!1

�5x�1/5
���
R

1

= lim
R!1

�5R�1/5 + 5 = 5

5. (a)

Z 1

0

1p
1� x

dx = lim
R!1�

Z
R

0

1p
1� x

dx

= lim
R!1�

� 2
p
1� x

��R
0

= lim
R!1�

�2(
p
1�R� 1) = 2

(b)

Z 5

1

2p
5� x

dx = lim
R!5�

Z
R

1

2p
5� x

dx

= lim
R!5�

� 4
p
5� x

��R
1

= lim
R!5�

�4(
p
5�R� 2) = �8

6. (a)

Z 1

0

2p
1� x

2
dx = lim

R!1�

Z
R

0

2p
1� x

2
dx

= lim
R!1�

2 sin�1
x

����
R

0

= lim
R!1�

2(sin�1
R� sin�1 0)

= 2
⇣
⇡

2
� 0
⌘
= ⇡

(b)

Z 1/2

0

2

x

p
1� x

2
dx

= lim
R!0+

Z 1/2

R

2

x

p
1� x

2
dx

= lim
R!0+

�2 ln

 
1 +

p
1� x

2

x

!�����

1/2

R

= 1

Therefore the original integral diverges.

7. (a)

Z 1

0
xe

x

dx = lim
R!1

Z
R

0
xe

x

dx

= lim
R!1

(xex � e

x)
���
R

0
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= lim
R!1

e

R(R� 1) + 1 = 1
So the original integral diverges.

(b) Substitute u = �2x

I =

Z 1

1
x

2
e

�2x
dx = �1

8

Z �1

�2
u

2
e

u

du

=
1

8

Z �2

�1
u

2
e

u

du

=
1

8
lim

R!�1

Z �2

R

u

2
e

u

du

=
1

8
lim

R!�1
(u2

e

u � 2ueu + 2eu)

����
�2

R

=
10

8
e

�2 +
1

8
lim

R!�1
e

R(�R

2 + 2R� 2)

But, lim
R!�1

e

R(�R

2 + 2R� 2)

= lim
R!1

e

�R(�R

2 � 2R� 2)

= lim
R!1

�R

2 � 2R� 2

e

R

= lim
R!1

�2R� 2

e

R

= lim
R!1

�2

e

R

= 0

Hence, I =
5

4
e

�2

8. (a) Substitute u = 3x

I = lim
�1!1

Z 1

�1
x

2
e

3x
dx

=
1

27

Z 3

�1
u

2
e

u

du

=
1

27
lim

R!�1
(u2

e

u � 2ueu + 2eu)

����
3

R

=
5

27
e

3 � 1

27
lim

R!�1
e

R(R2 � 2R+ 2)

But, lim
R!1

e

R(R2 � 2R+ 2)

= lim
R!1

e

�R(R2 + 2R+ 2)

= lim
R!1

R

2 + 2R+ 2

e

R

= 0

Hence, I =
5

27
e

3

(b) Substitute u = �4x

I =

Z 0

�1
xe

�4x
dx

=
1

16

Z 0

�1
ue

u

du

=
1

16
lim

R!�1

Z 0

R

ue

u

du

=
1

16
lim

R!�1
(ueu � e

u)

����
0

R

= � 1

16
+

1

16
lim

R!�1
e

R(R� 1)

But, lim
R!�1

e

R(R� 1)

= lim
R!1

e

�R(�R� 1) = 0

Hence, I = � 1

16

9. (a)

Z �1

�1

1

x

2
dx = lim

R!�1

Z �1

R

1

x

2
dx

= lim
R!�1

� 1

x

����
�1

R

= 1 + lim
R!�1

1

R

= 1
Z 0

�1

1

x

2
dx = lim

R!0+

Z
R

�1

1

x

2
dx

= lim
R!0+

� 1

x

����
R

�1

= �1� lim
R!0+

1

R

= 1
So the original integral diverges.

(b)

Z �1

�1

1
3
p
x

dx = lim
R!�1

Z �1

R

1
3
p
x

dx

= lim
R!�1

3

2
x

2/3

����
�1

R

=
3

2
+

3

2
lim

R!�1
R

2/3 = 1
So the original integral diverges.

10. (a)

Z 1

0
cosxdx = lim

R!1

Z
R

0
cosxdx

= lim
R!1

sinx
���
R

0
= lim

R!1
(sinR� sin 0)

So the original integral diverges.

(b)

Z 1

0
cosxe� sin x

dx

= lim
R!1

Z
R

0
cosxe� sin x

dx

= lim
R!1

�e

� sin x

���
R

0

= lim
R!1

�e

� sinR + 1

So the original integral diverges.

11. (a)

Z 1

0
lnxdx

= lim
R!0+

Z 1

R

lnxdx

= lim
R!0+

(x lnx� x)

����
1

R

= lim
R!0+

(�1�R lnR+R)

= �1� lim
R!0+

lnR

1/R

= �1� lim
R!0+

1/R

�1/R2

= �1 + lim
R!0+

R = �1
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(b)

Z
⇡/2

0
sec2 xdx

= lim
R!⇡/2�

Z
R

0
sec2 xdx

= lim
R!⇡/2�

tanx

����
R

0
= lim

R!⇡/2�
tanR� tan 0 = 1

Therefore the original integral diverges.

12. (a)

Z
⇡/2

0
cotxdx

= lim
R!0+

Z
⇡/2

R

cosx

sinx
dx

= lim
R!0+

ln | sinx|
����
⇡/2

R

= ln | sin(⇡/2)|� lim
R!0+

ln | sinR| = 1
So the original integral diverges.

(b)

Z
⇡/2

0
tanxdx

= lim
R!⇡/2

Z
R

0

sinx

cosx
dx

= lim
R!⇡/2

� ln | cosx|
����
R

0
= lim

R!⇡/2
(� ln | cosR|+ ln 1) = 1

So the original integral diverges.

13. (a)

Z 3

0

2

x

2 � 1
dx

=

Z 3

0

✓
� 1

x+ 1
+

1

x� 1

◆
dx

= lim
R!1�

Z
R

0

✓
� 1

x+ 1
+

1

x� 1

◆
dx

+ lim
R!1+

Z 3

R

✓
� 1

x+ 1
+

1

x� 1

◆
dx

Both of these integrals behave like

lim
R!0+

Z 1

R

1

x

dx

= lim
R!0+

(ln 1� lnR)

= lim
R!0+

ln

✓
1

R

◆
= 1

So the original integral diverges.

(b)

Z 4

1

2x

x

2 � 1
dx

= lim
R!1+

Z 4

R

2x

x

2 � 1
dx

= lim
R!1+

ln(x2 � 1)
��4
R

= lim
R!1+

ln 15� ln(R2 � 1) = 1
Z 1

�4

2x

x

2 � 1
dx

= lim
R!1�

Z
R

�4

2x

x

2 � 1
dx

= lim
R!1�

ln(x2 � 1)
��R
�4

= lim
R!1�

ln(R2 � 1)� ln 15 = 1
So the original integral diverges.

14. (a)

Z
⇡

0
xsec2xdx

=

Z
⇡/2

0
xsec2xdx+

Z
⇡

⇡/2
xsec2xdx

= lim
R!⇡/2�

(x tanx+ ln |cosx|)|R0
+ lim

R!⇡/2+
(x tanx+ ln |cosx|)|⇡

R

= 1
So the original integral diverges.

(b)

Z 2

0

2

x

3 � 1
dx

=

Z 1

0

2

x

3 � 1
dx+

Z 2

1

2

x

3 � 1
dx

= lim
R!1�

Z
R

0

2

x

3 � 1
dx

+ lim
R!1+

Z 2

R

2

x

3 � 1
dx

= lim
R!1�

2

 
�
ln
�
x

2 + x+ 1
�

6

�
tan�1

⇣
2x+1p

3

⌘

p
3

+
ln (x� 1)

3

1

A

R

0

+ lim
R!1+

2

 
�
ln
�
x

2 + x+ 1
�

6

�
tan�1

⇣
2x+1p

3

⌘

p
3

+
ln (x� 1)

3

1

A

R

0= 1

15. (a)

Z 1

�1

1

1 + x

2
dx

=

Z 0

�1

1

1 + x

2
dx+

Z 1

0
ds

1

1 + x

2
dx

= lim
R!�1

Z 0

R

1

1 + x

2
dx

+ lim
R!1

Z
R

0

1

1 + x

2
dx

= lim
R!1

tan�1
x|0

R

+ lim
R!1

tan�1
x|R0

= lim
R!�1

(tan�1 0� tan�1
R)

+ lim
R!1

(tan�1
R� tan�1 0)

= 0�
⇣
�⇡

2

⌘
+

⇡

2
� 0 = ⇡
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(b)

Z 2

1

1

x

2 � 1
dx

= lim
R!1+

Z 1

R

1

x

2 � 1
dx

= lim
R!1+

1

2
ln

✓
x� 1

x+ 1

◆����
2

R

= lim
R!1+

1

2
ln

✓
1

3

◆
� 1

2
ln

✓
R� 1

R+ 1

◆

= 1
Therefore the original integral diverges.

16. (a)

Z 2

0

x

x

2 � 1
dx

=

Z 1

0

x

x

2 � 1
dx+

Z 2

1

x

x

2 � 1
dx

= lim
R!1�

Z
R

0

x

x

2 � 1
dx

+ lim
R!1+

Z 2

R

x

x

2 � 1
dx

= lim
R!1�

1

2
ln |x2 � 1|

����
R

0

+ lim
R!1+

1

2
ln |x2 � 1|

����
2

R

= lim
R!1�

✓
1

2
ln |R2 � 1|� 1

2
ln |�1|

◆

= �1
So the original integral diverges.

(b)

Z 2

0

1

(x� 2)2
dx

= lim
R!2�

Z
R

0

1

(x� 2)2
dx

= lim
R!2�

1

2� x

����
R

0

= lim
R!2�

1

2�R

� 1

2
= 1

So the original integral diverges.

17. (a) Substitute u =
p
xZ

1
p
xe

p
x

dx =

Z
2e�u

du

Hence

Z 1

0

1
p
xe

p
x

dx

= lim
R!0+

Z 1

R

1
p
xe

p
x

dx

+ lim
R!1

Z
R

1

1
p
xe

p
x

dx

= lim
R!0+

✓
�2

e

p
x

◆����
1

R

+ lim
R!1

✓
�2

e

p
x

◆����
R

1

= lim
R!0+

✓
�2

e

+
2

e

R

◆

+ lim
R!1

✓
�2

e

+
2

e

R

◆

= 1 + 1 = 2

(b)

Z
⇡/2

0
tanxdx

= lim
R!⇡/2�

Z
R

0
tanxdx

= lim
R!⇡/2�

� ln cosx

����
R

0
= lim

R!⇡/2�
(� ln cosR) = 1

Therefore the original integral diverges.

18. (a) Substitute u = e

x

I =

Z 1

0

e

x

e

2x + 1
dx

=

Z 1

1

1

u

2 + 1
dx

= lim
R!1

Z
R

1

1

u

2 + 1
dx

= lim
R!1

tan�1
u

���
R

1

= lim
R!1

�
tan�1

R� tan�11
�

=
⇡

2
� ⇡

4
=

⇡

4

(b) Substitute u = tan�1
x

I =

Z 1

0

xp
x

2 + 1
dx

=

Z
⇡/2

0
tanu

⇣p
tan2u+ 1

⌘
du

= lim
R!⇡/2

Z
R

0
tanu (secu) du

= lim
R!⇡/2

secu

����
R

0

= lim
R!⇡/2�

secR� sec 0 = 1

Therefore the original integral diverges.

19. (a) I

p

=

Z 1

0
x

�p

dx = lim
R!0+

Z 1

R

x

�p

dx

= lim
R!0+

✓
x

�p+1

�p+ 1

◆����
1

R

= lim
R!0+

1�R

�p+1

�p+ 1
We need p < 1 for the above limit to con-
verge. If this is the case,

I

p

=
1

�p+ 1
.

(b) I

p

=

Z 1

1
x

�p

dx = lim
R!1

Z
R

1
x

�p

dx

= lim
R!1

x

�p+1

�p+ 1

����
R

1

= lim
R!1

R

�p+1 � 1

�p+ 1

We need p > 1 for the above limit to
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converge.

(c) There are three cases.
Case 1: p > �1Z 1

0
x

p

dx = lim
R!1

Z
R

0
x

p

dx

= lim
R!1

x

p+1

p+ 1

����
R

0

= lim
R!1

R

p+1

p+ 1
= 1

So

Z 1

�1
x

p

dx diverges.

Case 2: p = �1

We have already seen that

Z 1

�1

1

x

dx

diverges.
Case 3: p < �1Z 1

0
x

p

dx = lim
R!0+

Z 1

R

x

p

dx

= lim
R!0+

x

p+1

p+ 1

����
1

R

= lim
R!0+

1�R

p+1

p+ 1
= 1

So

Z 1

�1
x

p

dx diverges.

20. (a) Case1: If r � 0
Substitute u = rx.

I =

Z 1

0
xe

rx

dx

=
1

r

2
lim

R!1

Z
R

0
ue

u

du

=
1

r

2
lim

R!1
(ueu � e

u)|R0

=
1

r

2
lim

R!1
e

R (R� 1)� 1

r

2
= 1

So

Z 1

0
xe

rx

dx diverges for r � 0.

Case2: For r < 0,
Substitute u = �rx

I =

Z 1

0
xe

rx

dx

=
1

r

2
lim

R!1

Z �R

0
ue

u

du

= � 1

r

2
lim

R!1

Z 0

�R

ue

u

du

= � 1

r

2
lim

R!1
(ueu � e

u)|0�R

= � 1

r

2
lim

R!1
e

�R (�R� 1)� 1

r

2

= 0� 1

r

2
= � 1

r

2

Therefore, for all r < 0 the integralZ 1

0
xe

rx

dx converges.

(b) Case1: If r > 0
Substitute u = rx

I =

Z 0

�1
xe

rx

dx

=
1

r

2
lim

R!�1

Z 0

R

ue

u

du

=
1

r

2
lim

R!�1
(ueu � e

u)|0
R

=
1

r

2
� 1

r

2
lim

R!�1
e

R (R� 1)

=
1

r

2
� 0 =

1

r

2

So

Z 0

�1
xe

rx

dx converges for r > 0.

Case2: For r  0,

the integral

Z 0

�1
xe

rx

dx diverges.

Therefore, for all r < 0
the integral

R1
0 xe

rx

dx converges.

21. 0 <

x

1 + x

3
<

x

x

3
=

1

x

2

Z 1

1

1

x

2
dx = lim

R!1

Z
R

1

1

x

2
dx

= lim
R!1

✓
� 1

x

◆����
R

1

= lim
R!1

✓
� 1

R

+ 1

◆
= 1

So

Z 1

1

x

1 + x

3
dx converges.

22.
x

2 � 2

x

4 + 3
 3x2

x

4
= 3x�2

Z 1

1
3x�2

dx = lim
R!1

Z
R

1
3x�2

dx

= lim
R!1

�3

x

����
R

1

= lim
R!1

�3

R

+ 3 = 3

So

Z 1

1

x

2 � 2

x

4 + 3
dx converges.

23.
x

x

3/2 � 1
>

x

x

3/2
=

1

x

1/2
> 0

Z 1

2
x

�1/2
dx = lim

R!1

Z
R

2
x

�1/2
dx

= lim
R!1

2
p
x

���
R

2

= lim
R!1

(2
p
R� 2

p
2) = 1

So

Z 1

2

x

x

3/2 � 1
dx diverges.
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24.
2 + sec2 x

x

� 1

x

Z 1

1

1

x

dx = lim
R!1

Z
R

1

1

x

dx

= lim
R!1

ln |x||R1 = lim
R!1

ln |R| = 1

So

Z 1

1

2 + sec2 x

x

dx diverges.

25. 0 <

3

x+ e

x

<

3

e

x

Z 1

0

3

e

x

dx = lim
R!1

Z
R

0

3

e

x

dx

= lim
R!1

✓
� 3

e

x

◆����
R

0

= lim
R!1

✓
� 3

e

R

+ 3

◆
= 3

So

Z 1

0

3

x+ e

x

dx converges.

26. e

�x

3

< e

�x

Z 1

1
e

�x

dx = lim
R!1

Z
R

1
e

�x

dx

= lim
R!1

�e

�x

���
R

1
= lim

R!1
�e

�R + e

�1

= e

�1.

So

Z 1

1
e

�x

3

dx converges.

27.
sin2 x

1 + e

x

 1

1 + e

x

<

1

e

x

Z 1

0

1

e

x

dx = lim
R!1

Z
R

0

1

e

x

dx

= lim
R!1

(�e

�x)
���
R

0

= lim
R!1

(�e

�R + 1) = 1

So

Z 1

0

sin2 x

1 + e

x

dx converges.

28.
lnx

e

x + 1
<

x

e

x

Z 1

2

x

e

x

dx = lim
R!1

Z
R

2
xe

�x

dx

= lim
R!1

(�xe

�x � e

�x)
���
R

2

= lim
R!1

e

�R(�R� 1) + 3e�2

and lim
R!1

e

�R(�R� 1)

= lim
R!1

�R� 1

e

R

= lim
R!1

�1

e

R

= 0

So

Z 1

2

lnx

e

x + 1
dx converges.

29.
x

2
e

x

lnx
> e

x

Z 1

2
e

x

dx = lim
R!1

Z
R

2
e

x

dx

= lim
R!1

e

x

���
R

2

= lim
R!1

(eR � e

2) = 1

So

Z 1

2

x

2
e

x

lnx
dx diverges.

30. e

x

2+x+1
> e

x

Z 1

1
e

x

dx = lim
R!1

Z
R

1
e

x

dx

= lim
R!1

e

x

���
R

1
= lim

R!1
(eR � e) = 1

So

Z 1

1
e

x

2+x+1
dx diverges.

31. Let u = ln 4x, dv = xdx

du =
dx

x

, v =
x

2

2Z
x ln 4xdx =

1

2
x

2 ln 4x� 1

2

Z
xdx

=
1

2
x

2 ln 4x� x

2

4
+ c

I =

Z 1

0
x ln 4xdx = lim

R! 0+

Z 1

R

x ln 4xdx

= lim
R! 0+

✓
1

2
x

2 ln 4x� x

2

4

◆����
1

R

= �1

4
� lim

R! 0+

✓
1

2
R

2 ln 4R� R

2

4

◆

= �1

4
� 1

2
lim

R! 0+
R

2 ln 4R

lim
R! 0+

R

2 ln 4R = lim
R! 0+

ln 4R

R

�2

= lim
R! 0+

R

�1

�2R�3
= lim

R! 0+

R

2

�2
= 0

Hence I = �1

4

32. Let u = x, dv = e

�2x
dx

du = dx, v = �1

2
e

�2x

Z
xe

�2x
dx = �x

2
e

�2x +
1

2

Z
e

�2x
dx

= �x

2
e

�2x � e

�2x

Z 1

0
xe

�2x
dx = lim

R!1

Z
R

0
xe

�2x
dx

= lim
R!1

⇣
�x

2
e

�2x � e

�2x
⌘���

R

0

= lim
R!1

e

�2R(�R/2� 1) + 1

= lim
R!1

�R/2� 1

e

2R
+ 1
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= lim
R!1

�2

2e2R
+ 1 = 1

33. The volume is finite:

V = ⇡

Z 1

1

1

x

2
dx = ⇡ lim

R!1

Z
R

1

1

x

2
dx

= ⇡ lim
R!1

� 1

x

����
R

1

= ⇡ lim
R!1

✓
� 1

R

+ 1

◆
= ⇡

The surface area is infinite:

S = 2⇡

Z 1

1

1

x

r
1 +

1

x

4
dx

1

x

r
1 +

1

x

4
>

1

x

and

Z 1

1

1

x

dx = lim
R!1

Z
R

1

1

x

dx

= lim
R!1

ln |x|
���
R

1
= lim

R!1
lnR = 1

34. The integral

Z 1

�1
x

3
dx diverges:

Z 1

0
x

3
dx = lim

R!1

Z
R

0
x

3
dx

= lim
R!1

x

4

4

����
R

0

= lim
R!1

R

4

4
= 1

The limit lim
R!1

Z
R

�R

x

3
dx = 0:

lim
R!1

Z
R

�R

x

3
dx = lim

R!1

x

4

4

����
R

�R

= lim
R!1

✓
R

4

4
� R

4

4

◆
= lim

R!1
0 = 0

35. True, this statement can be proved using the
integration by parts:Z

f(x)dx = xf(x)�
Z

g(x)dx,

where g(x) is some function related to f(x).

36. False, consider f(x) =
1

x

37. False, consider f(x) = lnx

38. True, this statement is best understood graph-
ically.

39. (a) Substitute u =
p
kxZ 1

�1
e

�kx

2

dx =
1p
k

Z 1

�1
e

�u

2

du =

p
⇡p
k

(b) We use integration by parts

(u = e

�x

2

, v = x):Z
e

�x

2

dx = xe

�x

2

+ 2

Z
x

2
e

�x

2

dx

Since the graph of the function xe

�x

2

is
anti-symmetric across the y-axis,

lim
R!1

⇣
xe

�x

2
���
0

�R

+ xe

�x

2
���
R

0

◆
= 0

Then we haveZ 1

�1
e

�x

2

dx = 2

Z 1

�1
x

2
e

�x

2

dx

And the conclusion isZ 1

�1
x

2
e

�x

2

dx =

p
⇡

2

40. (a) Since k > 0, we haveZ 1

0

sin kx

x

dx =

Z 1

0

sin kx

kx

(k) dx

Let u = kx, du = kdx.

=

Z 1

0

sinu

u

du =
⇡

2
.

(b) Since k < 0 , assume k = �m , where
m > 0.Z 1

0

sin kx

x

dx =

Z 1

0

sin (�m)x

x

dx

= �
Z 1

0

sinmx

x

dx

= �
Z 1

0

sinmx

mx

(m) dx

Let u = mx, so that du = mdx.

= �
Z 1

0

sinu

u

du = �⇡

2
.

(c) Since k > 0 , we haveZ 1

0

sin2kx

x

2
dx =

Z 1

0

sin2kx

(kx)2
�
k

2
�
dx

Let u = kx, du = kdx.

=

Z 1

0

sinu

u

kdu = k

⇡

2
.

(d) Since k < 0, assume k = �m, where
m > 0.Z 1

0

sin2kx

x

2
dx =

Z 1

0

sin2 [(�m)x]

x

2
dx

=

Z 1

0

sin2mx

x

2
dx

=

Z 1

0

sin2mx

(mx)2
�
m

2
�
dx

Let u = mx, du = mdx.

=

Z 1

0
m

✓
sin2u

u

2

◆
du = m

⇡

2
= �k⇡

2
.

41. Since
x

x

5 + 1
⇡ 1

x

4
,

Z 1

1

x

x

5 + 1
dx ⇡

Z 1

1

1

x

4
dx.

we have

Z 1

1

1

x

4
dx converges to -

1

3
.
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Hence

Z 1

1

x

x

5 + 1
dx also converges.

Let f(x) =
x

x

5 + 1
and g(x) =

1

x

4
.

So that, we have, 0 < f(x) < g(x) .
By Comparison test,Z 1

1

x

x

5 + 1
dx <

Z 1

1

1

x

4
dx = �1

3
.

42. (a) Let f(x) =
1p
x

2
and g(x) =

xp
x

3 � 1
.

So that, we have, 0 < f(x) < g(x).
By Comparison test,Z 1

2

1p
x

2
dx <

Z 1

2

xp
x

3 � 1
dx, and

f(x) =
1p
x

2
diverges.

Hence g(x) =
xp

x

3 � 1
also diverges.

(b) Let f(x) =
xp

x

5 � 1
and g(x) =

1

x

5/4
.

So that, we have, 0 < f(x) < g(x) .
By Comparison test,Z 1

2

xp
x

5 � 1
dx <

Z 1

2

1

x

5/4
dx, and

g(x) =
1

x

5/4
converges.

Hence f(x) =
xp

x

5 � 1
also converges.

(c) Let f(x) =
xp

x

5 + x� 1
and

g(x) =
xp

x

5 � 1
.

So that, we have, 0 < f(x) < g(x) .
By Comparison test,Z 1

2

xp
x

5 + x� 1
dx <

Z 1

2

xp
x

5 � 1
dx ,

and g(x) =
xp

x

5 � 1
converges.

Hence f(x) =
xp

x

5 + x� 1
also con-

verges.

43. Substitute u =
⇡

2
� x

Z
⇡/2

0
ln(sinx)dx = �

Z 0

⇡/2
ln(sin(⇡/2� u))du

=

Z
⇡/2

0
ln(cosu)du =

Z
⇡/2

0
ln(cosx)dx

Moreover,

2

Z
⇡/2

0
ln(sinx)dx

=

Z
⇡/2

0
ln(cosx)dx+

Z
⇡/2

0
ln(sinx)dx

=

Z
⇡/2

0
[ln(cosx) + ln(sinx)] dx

=

Z
⇡/2

0
ln(sinx cosx)dx

=

Z
⇡/2

0
[ln(sin(2x))� ln 2]dx

=

Z
⇡/2

0
ln(sin(2x))dx� ⇡

2
ln 2

=
1

2

Z
⇡

0
ln(sinx)dx� ⇡

2
ln 2

Hence,

2

Z
⇡/2

0
ln(sinx)dx

=
1

2

Z
⇡

0
ln(sinx)dx� ⇡

2
ln 2

On the other hand, we notice that the graph of
sinx is symmetric over the interval [0,⇡] across
the line x = ⇡/2, henceZ

⇡

0
ln(sinx)dx = 2

Z
⇡/2

0
ln(sinx)dx

and then
1

2

Z
⇡

0
ln(sinx)dx =

Z
⇡/2

0
ln(sinx)dx

So we get

Z
⇡/2

0
ln(sinx)dx = �⇡

2
ln 2

44.

Z 1

0
(lnx)ndx = lim

t!0+

Z 1

t

(lnx)ndx

= lim
t!0+


x(lnx)n|1

t

� n

Z 1

t

(lnx)n�1
dx

�

Using#112 from the table.

= lim
t!0+

h⇣
0� t(ln t)2

⌘i

� lim
t!0+


n

Z 1

t

(lnx)n�1
dx

�

= 0� lim
t!0+


n

Z 1

t

(lnx)n�1
dx

�
.

Continuing in the same manner,Z 1

0
(lnx)ndx

= (�1)n�1
n!


lim
t!0+

Z 1

t

(lnx) dx

�

= (�1)n�1
n!


lim
t!0+

(x lnx� x)

�1

t

= (�1)n�1
n!


lim
t!0+

((0� t ln t)� (1� t))

�

= (�1)nn!.

45. Improper because tan(⇡/2) is not defined. The
two integralsZ

⇡/2

0

1

1 + tanx
dx =

Z
⇡/2

0
f(x)dx

because the two integrand only di↵er at one
value of x, and that except for this value, ev-
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erything is proper.

g(x) =

8
<

:

tanx

1 + tanx
if 0  x <

⇡

2
0 if x =

⇡

2

Substitute u = x� ⇡

2
followed by w = �u

Z
⇡/2

0

1

1 + tanx
dx =

Z 0

�⇡/2

1

1� cotu
du

= �
Z 0

⇡/2

1

1 + cotw
dw

=

Z
⇡/2

0

1

1 +
cosw

sinw

dw

=

Z
⇡/2

0

sinw

sinw + cosw
dw

=

Z
⇡/2

0

tanw

tanw + 1
dw

=

Z
⇡/2

0

tanx

tanx+ 1
dx

Moreover,Z
⇡/2

0

tanx

tanx+ 1
dx+

Z
⇡/2

0

1

1 + tanx
dx

=

Z
⇡/2

0

✓
tanx

1 + tanx
+

1

1 + tanx

◆
dx

=

Z
⇡/2

0
1 dx = x

���
⇡/2

0
=

⇡

2

Hence

Z
⇡/2

0

1

1 + tanx
dx =

1

2

⇣
⇡

2

⌘
=

⇡

4

46. As in exercise.45, We have
Z

⇡/2

0

1

1 + tankx
dx =

Z
⇡/2

0

tankx

1 + tankx
dx

hence,

2

Z
⇡/2

0

1

1 + tankx
dx

=

Z
⇡/2

0

1

1 + tankx
dx+

Z
⇡/2

0

tankx

1 + tankx
dx

=

Z
⇡/2

0
1dx =

⇡

2
therefore,Z

⇡/2

0

1

1 + tankx
dx =

⇡

4

47. Use integration by parts twice, first time

let u = �1

2
x

3
, dv = ds� 2xe�x

2

dx

second time

let u = �1

2
x, dv = �2xe�x

2

dx

Z
x

4
e

�x

2

dx

= �1

2
x

3
e

�x

2

+

Z
3

2
x

2
e

�x

2

dx

= �1

2
x

3
e

�x

2

+
3

2

✓
�1

2
xe

�x

2

+
1

2

Z
e

�x

2

dx

◆

= �1

2
x

3
e

�x

2

� 3

4
xe

�x

2

+
3

4

Z
e

�x

2

dx

Putting integration limits to all the above, and
realizing that when taking limits to ±1, all
multiples of e

�x

2

as shown in above will go
to 0 (we have seen this a lot of times before).
Then we getZ 1

�1
x

4
e

�x

2

dx =
3

4

Z 1

�1
e

�x

2

dx =
3

4

p
⇡

This means when n = 2, the statementZ 1

�1
x

2n
e

�x

2

dx =
(2n� 1) · · · 3 · 1

2n
p
⇡

is true. (We can also check that the case for
n = 1 is correct.) For general n, supposing
that the statement is true for all m < n, then
integration by parts givesZ

x

2n
e

�x

2

dx

= �1

2
x

2n�1
e

�x

2

+
2n� 1

2

Z
x

2n�2
e

�x

2

dx

and henceZ 1

�1
x

2n
e

�x

2

dx

=
2n� 1

2

Z 1

�1
x

2n�2
e

�x

2

dx

=
2n� 1

2
· (2n� 3) · · · 3 · 1

2n�1

p
⇡

=
(2n� 1) · · · 3 · 1

2n
p
⇡

48. Substitute u =
p
axZ

e

�ax

2

dx =
1p
a

Z
e

�u

2

du

and thenZ 1

�1
e

�ax

2

dx =
1p
a

Z 1

�1
e

�u

2

du =

r
⇡

a

Ignoring issues of convergence, the derivatives
can be taken from the integrand, we get the
following:
1st derivative
d

da

Z 1

�1
e

�ax

2

dx =
d

da

r
⇡

a

�
Z 1

�1
x

2
e

�ax

2

dx = �1

2

r
⇡

a

3

2nd derivative
d

2

da

2

Z 1

�1
e

�ax

2

dx =
d

2

da

2

r
⇡

aZ 1

�1
x

4
e

�ax

2

dx =
3

4

r
⇡

a

5

. . . nth derivative
d

n

da

n

Z 1

�1
e

�ax

2

dx =
d

n

da

n

r
⇡

a
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(�1)n
Z 1

�1
x

2n
e

�ax

2

dx

= (�1)n
(2n� 1) · · · 3 · 1

2n

r
⇡

a

2n+1

Setting a = 1, we get the result of Exercise 47.

49. (a)

Z 1

0
ke

�2x
dx = lim

R!1

Z
R

0
ke

�2x
dx

= �k

2
lim

R!1
e

�2x

����
R

0

= �k

2
lim

R!1
(e�2R � 1) =

k

2
= 1

So k = 2

(b)

Z 1

0
ke

�4x
dx = lim

R!1

Z
R

0
ke

�4x
dx

= �k

4
lim

R!1
e

�4x

����
R

0

= �k

4
lim

R!1
(e�4R � 1) =

k

4
= 1

So k = 4

(c) If r > 0:Z 1

0
ke

�rx

dx = lim
R!1

Z
R

0
ke

�rx

dx

= �k

r

lim
R!1

e

�rx

����
R

0

= � k

r2
lim

R!1
(e�rR � 1) =

k

r

= 1

So k = r

50. (a) Substitute u = 2xZ 1

0
kxe

�2x
dx = lim

R!1

Z
R

0
kxe

�2x
dx

=
k

4
lim

R!1

Z
R

0
ue

�u

dx

=
k

4
lim

R!1
(ue�u + e

�u)

����
R

0

=
k

4
lim

R!1

✓
R+ 1

e

R

� 1

◆
= �k

4
= 1

So k = �4

(b) Substitute u = 4xZ 1

0
kxe

�4x
dx = lim

R!1

Z
R

0
kxe

�4x
dx

=
k

16
lim

R!1

Z
R

0
ue

�u

dx

=
k

16
lim

R!1
(ue�u + e

�u)

����
R

0

=
k

16
lim

R!1

✓
R+ 1

e

R

� 1

◆
= � k

16
= 1

So k = �16

(c) If r > 0:
Substitute u = rxZ 1

0
kxe

�rx

dx = lim
R!1

Z
R

0
kxe

�rx

dx

=
k

r

2
lim

R!1

Z
R

0
ue

�u

dx

=
k

r

2
lim

R!1
(ue�u + e

�u)

����
R

0

=
k

r

2
lim

R!1

✓
R+ 1

e

R

� 1

◆
= � k

r

2
= 1

So k = �r

2

If r  0:

The integral

Z 1

0
kxe

�rx

dx diverges for

any value of k, so there is no value of k to
make the function f(x) = k a pdf.

51. From Exercise 49 (c) we know that this r has
to be positive.
Substitute u = rx

µ =

Z 1

0
xf(x)dx =

Z 1

0
rxe

�rx

dx

= lim
R!1

Z
R

0
rxe

�rx

dx

=
1

r

lim
R!1

Z
R

0
ue

�u

du

=
1

r

lim
R!1

e

�u(�u� 1)

����
R

0

= lim
R!1

�R� 1

e

R

+
1

r

= 0 +
1

r

=
1

r

52. From Exercise 50 (c) we know that this r has
to be positive.
Substitute u = rx

µ =

Z 1

0
xf(x)dx =

Z 1

0
r

2
x

2
e

�rx

dx

= lim
R!1

Z
R

0
r

2
x

2
e

�rx

dx

=
1

r

lim
R!1

Z
R

0
u

2
e

�u

du

=
1

r

lim
R!1

e

�u(�u

2 � 2u� 2)
���
R

0

= lim
R!1

�R

2 � 2R� 2

e

R

+
2

r

= 0 +
2

r

=
2

r

53.

Z 35

0

1

40
e

�x/40
dx = �e

�x/40
���
35

0
= 1� e

�35/40

P (x > 35) = 1� above = e

�35/40

Z 40

0

1

40
e

�x/40
dx = �e

�x/40
���
40

0
= 1� e

�40/40

P (x > 40) = 1� above = e

�40/40

Z 45

0

1

40
e

�x/40
dx = �e

�x/40
���
45

0
= 1� e

�45/40

P (x > 45) = 1� above = e

�45/40

Hence,



6.6. IMPROPER INTEGRALS 399

P (x > 40|x > 35) =
P (x > 40)

P (x > 35)

=
e

�40/40

e

�35/40
= e

�5/40 ⇡ 0.8825

P (x > 45|x > 40) =
P (x > 45)

P (x > 40)

=
e

�45/40

e

�40/40
= e

�5/40 ⇡ 0.8825

54. (a) Following Exercise 53, we get

P (x > m+ n|x > n) =
P (x > m+ n)

P (x > n)

=
1�

R
m+n

0
1
40e

�x/40
dx

1�
R
m

0
1
40e

�x/40
dx

=
e

�(m+n)/40

e

�n/40
= e

�m/40

(b)

Z
A

0
ce

�cx

dx = �e

�cx

��A
0

= 1 � e

�cA

P (x > m+ n|x > n) =
P (x > m+ n)

P (x > n)

=
1�

R
m+n

0 ce

�cx

dx

1�
R
m

0 ce

�cx

dxdx

=
e

�c(m+n)

e

�cn

= e

�cm

55. (a) For x � 0,

F1(x) =

Z
x

�1
f1(t)dt =

Z
x

0
f1(t)dt

=

Z
x

0
2e�2t

dt = �e

�2t

����
x

0

= 1� e

�2x

⌦1(r) =

R1
r

[1� F1(x)]dxR
r

�1 F1(x)dx

=

R1
r

e

�2x
dx

R
r

0 (1� e

�2x)dx

=
1
2e

�2r

r + 1
2e

�2r � 1
2

=
e

�2r

2r + e

�2r � 1

(b) For 0  x  1, F2(x) =

Z
x

�1
f2(t)dt

=

Z
x

0
f2(t)dt =

Z
x

0
1 dt = t

����
x

0

= x

⌦2(r) =

R1
r

[1� F2(x)]dxR
r

�1 F2(x)dx

=

R 1
r

(1� x)dx
R
r

0 xdx

=
1
2 � r + r

2

2
r

2

2

=
1� 2r + r

2

r

2

(c) µ1 =

Z 1

�1
xf1(x)dx

=

Z 1

0
2xe�2x

dx

= lim
R!1

Z
R

0
2xe�2x

dx

= lim
R!1

e

�2x(�x� 1/2)
���
R

0

= lim
R!1

e

�2R(R+ 1/2) +
1

2
=

1

2

µ2 =

Z 1

�1
xf2(x)dx

=

Z 1

0
xdx =

x

2

2

����
1

0

=
1

2
µ1 = µ2 and when r = 1/2

⌦1(1/2) =
e

�2·1/2

2 · 1/2 + e

�2·1/2 � 1
= 1

⌦2(1/2) =
1� 2 · 1/2 + (1/2)2

(1/2)2
= 1

(d) The graph of f2(x) is more stable than
that of f1(x).
f1(x) > f2(x) for 0 < x < 0.34
and f1(x) < f2(x) for x > 1.

(e) ⌦1(r) = 1� 2r � 1

e

�2r + 2r � 1

⌦2r = 1� 2r � 1

r

2

and
r

2 � (e�2r +2r� 1) = e

�2r +(r� 1)2 > 0
This means
when r < 1/2, ⌦1(r) < ⌦2(r)
when r > 1/2, ⌦1(r) > ⌦2(r)
In terms of this example, we see that the
riskier investment is only disadvantageous
when r small, and will be better when r

large.

56. Following Exercise 54(b),
R(t) = P (x � t) = P (x > t)

= 1�
Z

t

0
f(x)dx = 1�

Z
t

0
ce

�cx

dx

= 1� (1� e

�ct) = e

�ct

57. Graph of p1(x):

Z 1

0
p1 (x) dx =

Z 1

0
1dx = 1,

Graph of p2(x):

Similarly,Z 1

0
p2 (x) dx =

Z 1/2

0
4xdx+

Z 1

1/2
(4� 4x) dx

= 2x2
��1/2
0

+
�
4x� 2x2

�1
1/2

=

✓
1

2
� 0

◆
+

✓
(4� 2)�

✓
2� 1

2

◆◆
= 1.
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The Boltzmann integral

I(p1) =

Z 1

0
p1 (x) ln p1 (x) dx

=

Z 1

0
1 ln 1dx = 0.

Also, I(p2) =

Z 1

0
p2 (x) ln p2 (x) dx

=

Z 1/2

0
4x ln (4x) dx

+

Z 1

1/2
(4� 4x) ln (4� 4x) dx

Let u = 4x, du = 4dx
and t = 4� 4x, dt = �4dx

=
1

4

Z 2

0
u lnudu� 1

4

Z 0

2
t ln tdt

=
1

2

✓
1

2
u

2 lnu� 1

4
u

2

◆2

0

=
1

2
(2 ln 2� 1) = 0.193147.

For the pdf p2(x) , the probability at x =
1

2
is

maximum which is equal to
1

2
.The probability

decreases as x tends to 0 or 1.

p3(x) =

8
>>>>>>>><

>>>>>>>>:

2x 0  x <

1

4

10x� 2
1

4
 x <

1

2

8� 10x
1

2
 x <

3

4

2� 2x
1

4
< x  1

Graph of p3(x):Z 1

0
p3 (x) dx =

Z 1/4

0
2xdx+

Z 1/2

1/4
(10x� 2)dx

+

Z 3/4

1/2
(8� 10x)dx+

Z 1

3/4
(2� 2x) dx

= 1.

Also, The Boltzmann integral

I(p3) =

Z 1

0
p3 (x) ln p3 (x) dx

=

Z 1/4

0
2x ln (2x) dx

+

Z 1/2

1/4
(10x� 1) ln(10x� 1)dx

+

Z 3/4

1/2
(8� 10x) ln(8� 10x)dx

+

Z 1

3/4
(2� 2x) ln (2� 2x) dx

= 0.42.

Ch. 6 Review Exercises

1. Substitute u =
p
xZ

e

p
x

p
x

dx = 2

Z
e

u

du = 2eu + c = 2e
p
x + c

2. Substitute u =
1

xZ
sin(1/x)

x

2
dx = �

Z
sinu du

= cosu+ c = cos(1/x) + c

3. Use the table of integrals,Z
x

2

p
1� x

2
dx = �1

2
x

p
1� x

2 +
1

2
sin�1

x+ c

4. Use the table of integrals,Z
2p

9� x

2
dx = 2 sin�1 x

3
+ c

5. Use integration by parts, twice:Z
x

2
e

�3x
dx

= �1

3
x

2
e

�3x +
2

3

Z
xe

�3x
dx

= �1

3
x

2
e

�3x

+
2

3

✓
�1

3
xe

�3x +
1

3

Z
e

�3x
dx

◆

= �1

3
x

2
e

�3x � 2

9
xe

�3x � 2

27
e

�3x + c

6. Substitute u = x

3Z
x

2
e

�x

3

dx =
1

3

Z
e

�u

du =
1

3
e

�x

3

+ c

7. Substitute u = x

2Z
x

1 + x

4
dx =

1

2

Z
du

1 + u

2

=
1

2
tan�1

u+ c =
1

2
tan�1

x

2 + c

8.
x

3

1 + x

4
dx =

1

4
ln(1 + x

4) + c

9.
x

3

4 + x

4
dx =

1

4
ln(4 + x

4) + c

10. Substitute u = x

2Z
x

4 + x

4
dx =

1

2

Z
du

4 + u

2

=
1

4
tan�1 u

2
+ c =

1

4
tan�1 x

2

2
+ c

11.

Z
e

2 ln x

dx =

Z
x

2
dx =

x

3

3
+ c

12.

Z
cos 4x dx =

1

4
sin 4x+ c
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13. Integration by parts,Z 1

0
x sin 3x dx

= �1

3
x cos 3x

���
1

0
+

1

3

Z 1

0
cos 3x dx

= �1

3
cos 3 +

1

9
sin 3x

���
1

0

= �1

3
cos 3 +

1

9
sin 3

14. Substitute u = x

2Z 1

0
x sin 4x2

dx =

Z 1

0

1

2
sin 4u du

= �1

8
cos 4u

���
1

0
=

1

8
(1� cos 4)

15. Use the table of integralsZ
⇡/2

0
sin4 x dx

= �1

4
sin3 x cosx

���
⇡/2

0

+
3

4

✓
x

2
� 1

2
sinx cosx

◆ ���
⇡/2

0

=
3⇡

16

16. Use the table of integralsZ
⇡/2

0
cos3 x dx

=

✓
2

3
sinx+

1

3
sinx cos2 x

◆ ���
⇡/2

0
=

2

3

17. Use integration by parts,Z 1

�1
x sin⇡x dx

= � 1

⇡

x cos⇡x
���
1

�1
+

1

⇡

Z 1

�1
cos⇡x dx

=
2

⇡

+
1

⇡

2
sin⇡x

���
1

�1
=

2

⇡

18. Use integration by parts, twiceZ 1

0
x

2 cos⇡x dx

=
1

⇡

x

2 sin⇡x
���
1

0
� 2

⇡

Z 1

0
x sin⇡x dx

= � 2

⇡

✓
� 1

⇡

x cos⇡x
���
1

0
+

1

⇡

Z 1

0
cos⇡x dx

◆

= � 2

⇡

✓
1

⇡

+
1

⇡

2
sin⇡x

���
1

0

◆
= � 2

⇡

2

19. Use integration by partsZ 2

1
x

3 lnx dx =
x

4

4
lnx

���
2

1
� 1

4

Z 2

1
x

3
dx

= 4 ln 2� x

4

16

���
2

1
= 4 ln 2� 15

16

20.

Z
⇡/4

0
sinx cosx dx =

Z
⇡/4

0

1

2
sin 2x dx

= �1

4
cos 2x

���
⇡/4

0
=

1

4

21. Substitute u = sinxZ
cosx sin2 x dx =

Z
u

2
du

=
u

3

3
+ c =

sin3 x

3
+ c

22. Substitute u = sinxZ
cosx sin3 x dx =

Z
u

3
du

=
u

4

4
+ c =

sin4 x

4
+ c

23. Substitute u = sinxZ
cos3 x sin3 x dx =

Z
(1� u

2)u3
du

=
u

4

4
� u

6

6
+ c =

3 sin4 x� 2 sin6 x

12
+ c

24. Substitute u = cosxZ
cos4 x sin3 x dx = �

Z
u

4(1� u

2) du

= �u

5

5
+

u

7

7
+ c =

�7u5 + 5u7

35
+ c

25. Substitute u = tanxZ
tan2 x sec4 x dx =

Z
u

2(1 + u

2) du

=
u

3

3
+

u

5

5
+ c =

5 tan3 x+ 3 tan5 x

15
+ c

26. Substitute u = tanxZ
tan3 x sec2 x dx =

Z
u

3
du

=
u

4

4
+ c =

tan4 x

4
+ c

27. Substitute u = sinxZ p
sinx cos3 x dx

=

Z
u

1/2(1� u

2) du =
2

3
u

3/2 � 2

7
u

7/2 + c

=
2

3
sin3/2 x� 2

7
sin7/2 x+ c

28. Substitute u = secxZ
tan3 x sec3 x dx =

Z
(u2 � 1)u2

du

=
u

5

5
� u

3

3
+ c =

3 sec5 x� 5 sec3 x

15
+ c

29. Complete the square,Z
2

8 + 4x+ x

2
dx

=

Z
2

(x+ 2)2 + 22
dx = tan�1

✓
x+ 2

2

◆
+ c
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30. Complete the square,Z
3p

�2x� x

2
dx

=

Z
3p

1� (x� 1)2
dx = 3 sin�1(x� 1) + c

31. Use the table of integrals,Z
2

x

2
p
4� x

2
dx = �

p
4� x

2

2x
+ c

32. Substitute u = 9� x

2Z
xp

9� x

2
dx = �1

2

Z
du

u

1/2

= �1

3
u

3/2 + c = �1

3
(9� x

2)3/2 + c

33. Substitute u = 9� x

2Z
x

3

p
9� x

2
dx = �1

2

Z
(9� u)

u

1/2
du

= �9

2

Z
u

�1/2
du+

1

2

Z
u

1/2
du

= �9u1/2 +
1

3
u

3/2 + c

= �9(9� x

2)1/2 +
1

3
(9� x

2)3/2 + c

34. Substitute u = x

2 � 9
Z

x

3

p
x

2 � 9
dx =

1

2

Z
(u+ 9)u�1/2

du

=
1

3
u

3/2 + 9u1/2 + c

=
1

3
(9� x

2)3/2 + 9(9� x

2)1/2 + c

35. Substitute u = x

2 + 9
Z

x

3

p
x

2 + 9
dx =

1

2

Z
(u� 9)u�1/2

du

=
1

3
u

3/2 � 9u1/2 + c

=
1

3
(x2 + 9)3/2 � 9(x2 + 9)1/2 + c

36. Substitute u = x+ 9Z
4p
x+ 9

dx = 4

Z
dup
u

= 8u1/2 + c = 8
p
x+ 9 + c

37. Use the method of PFDZ
x+ 4

x

2 + 3x+ 2
dx

=

Z ✓
3

x+ 1
+

�2

x+ 2

◆
dx

= 3 ln |x+ 1|� 2 ln |x+ 2|+ c

38. Use the method of PFDZ
5x+ 6

x

2 + x� 12
dx

=

Z ✓
3

x� 3
+

3

x+ 4

◆
dx

= 3 ln |x� 3|+ 3 ln |x+ 4|+ c

39. Use the method of PFDZ
4x2 + 6x� 12

x

3 � 4x
dx

=

Z ✓
3

x

+
�1

x+ 2
+

2

x� 2

◆
dx

= 3 ln |x|� ln |x+ 2|+ 2 ln |x� 2|+ c

40. Use the method of PFDZ
5x2 + 2

x

3 + x

dx =

Z ✓
2

x

+
3x

x

2 + 1

◆
dx

= 2 ln |x|+ 3

2
ln(x2 + 1) + c

41. Use the table of integrals,Z
e

x cos 2x dx

=
(cos 2x+ 2 sin 2x)ex

5
+ c

42. Substitute u = x

2 followed by integration by
partsZ

x

3 sinx2
dx =

1

2

Z
u sinu du

= �1

2
u cosu+

1

2

Z
cosu du

= �1

2
u cosu+

1

2
sinu+ c

= �1

2
x

2 cosx2 +
1

2
sinx2 + c

43. Substitute u = x

2 + 1Z
x

p
x

2 + 1 dx =
1

2

Z
u

1/2
du

=
1

3
u

3/2 + c =
1

3
(x2 + 1)3/2 + c

44. Use the table of integralsZ p
1� x

2
dx

=
1

2

p
1� x

2 +
1

2
sin�1

x+ c

45.
4

x

2 � 3x� 4
=

A

x+ 1
+

B

x� 4
4 = A(x� 4) +B(x+ 1)
= (A+B)x+ (�4A+B)

A = �4

5
;B =

4

5
4

x

2 � 3x� 4
=

�4/5

x+ 1
+

4/5

x� 4

46.
2x

x

2 + x� 6
=

A

x� 2
+

B

x+ 3

2x = A(x+ 3) +B(x� 2)
= (A+B)x+ (3A� 2B)
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A =
4

5
;B =

6

5
2x

x

2 + x� 6
=

4/5

x� 2
+

6/5

x+ 3

47.
�6

x

3 + x

2 � 2x
=

A

x

+
B

x� 1
+

C

x+ 2
� 6 = A(x� 1)(x+2)+Bx(x+2)+ cx(x� 1)
A = �3;B = �2;C = �1

�6

x

3 + x

2 � 2x
=

�3

x

+
�2

x� 1
+

�1

x+ 2

48.
x

2 � 2x� 2

x

3 + x

=
A

x

+
Bx+ c

x

2 + 1

x

2 � 2x� 2 = A(x2 + 1) + (Bx+ c)x
= (A+B)x2 + cx+A

A = �2;B = 3;C = �2
x

2 � 2x� 2

x

3 + x

=
�2

x

+
3x� 2

x

2 + 1

49.
x� 2

x

2 + 4x+ 4
=

A

x+ 2
+

B

(x+ 2)2

x� 2 = A(x+ 2) +B

A = 1;B = �4
x� 2

x

2 + 4x+ 4
=

1

x+ 2
+

�4

(x+ 2)2

50.
x

2 � 2

(x2 + 1)2
=

Ax+B

x

2 + 1
+

Cx+D

(x2 + 1)2

x

2 � 2 = (Ax+B)(x2 + 1) + cx+D

A = 0;B = 1;C = 0;D = �3

x

2 � 2

(x2 + 1)2
=

1

x

2 + 1
+

�3

(x2 + 1)2

51. Substitute u = e

2xZ
e

3x
p

4 + e

2x
dx

=

Z
e

2x
p
4e2x + e

4x
dx =

1

2

Z p
4u+ u

2
du

=
1

2

Z p
(u+ 2)2 � 4 du

=
1

4
(u+ 2)

p
(u+ 2)2 � 4

� ln |(u+ 2) +
p
(u+ 2)2 � 4|+ c

=
(e2x + 2)

p
4e2x + e

4x

4
� ln

���(e2x + 2) +
p
4e2x + e

4x
���+ c

52. Substitute u = x

2Z
x

p
x

4 � 4 dx =
1

2

Z p
u

2 � 4 du

=
u

p
u

2 � 4

4
� ln |u+

p
u

2 � 4|+ c

=
x

2
p
x

4 � 4

4
� ln |x2 +

p
x

4 � 4|+ c

53.

Z
sec4 x dx

=
1

3
sec2 x tanx+

2

3

Z
sec2 x dx

=
1

3
sec2 x tanx+

2

3
tanx+ c

54.

Z
tan5 x dx

=
1

4
tan4 x�

Z
tan3 x dx

=
1

4
tan4 x� 1

2
tan2 x+

Z
tanx dx

=
1

4
tan4 x� 1

2
tan2 x� ln | cosx|+ c

55. Substitute u = 3� xZ
4

x(3� x)2
dx = �4

Z
1

(3� u)u2
du

=
4

9
ln

����
3� u

u

����+
4

3u
+ c

=
4

9
ln

����
x

3� x

����+
4

3(3� x)
+ c

56. Substitute u = sinxZ
cosx

sin2 x(3 + 4 sinx)
dx =

Z
du

u

2(3 + 4u)

=
4

9
ln

����
3 + 4u

u

�����
1

3u
+ c

=
4

9
ln

����
3 + 4 sinx

sinx

�����
1

3 sinx
+ c

57.

Z p
9 + 4x2

x

2
dx =

Z 2

r
9

4
+ x

2

x

2
dx

= 2

0

BB@
�
r

9

4
+ x

2

x

+ ln
���x+

p
9/4 + x

2
���

1

CCA+ c

= �
p
9 + 4x2

x

+ 2 ln

�����x+

r
9

4
+ x

2

�����+ c

58.

Z
x

2

p
4� 9x2

dx =
1

3

Z
x

2

p
4/9� x

2
dx

= �1

6
x

p
4/9� x

2 +
2

27
sin�1 3x

2
+ c

59.

Z p
4� x

2

x

dx

=
p
4� x

2 � 2 ln

�����
2 +

p
4� x

2

x

�����+ c

60.

Z
x

2

(x6 � 4)3/2
dx =

1

3

Z
1

(u2 � 4)3/2
dx
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=
1

3

Z
2 sec ✓ tan ✓

(4 sec2 ✓ � 4)3/2
dx

=
1

3

Z
sec ✓ tan ✓

tan3 ✓
dx

=
1

3

Z
csc ✓ cot ✓ dx = � x

3

3
p
x

6 � 4
+ c

61. Substitute u = x

2 � 1Z 1

0

x

x

2 � 1
dx =

Z 0

�1

du

2u

= lim
R!0�

Z
R

�1

du

2u
= lim

R!0�
ln |u|

���
0

�1

This limit does not exist, so the integral di-
verges.

62. Substitute u = x� 4Z 10

4

2 dxp
x� 4

=

Z 6

0

2 dup
u

= lim
R!0+

Z 6

R

2u�1/2
du = lim

R!0+
4u1/2

���
6

R

= lim
R!0+

(4
p
6� 4

p
R) = 4

p
6

63.

Z 1

1

3

x

2
dx = lim

R!1

Z
R

1

3

x

2
dx

= lim
R!1

� 3

x

����
R

1

= lim
R!1

� 3

R

+ 3 = 3

64. Use integration by parts,Z 1

1
xe

�3x
dx = lim

R!1

Z
R

1
xe

�3x
dx

= lim
R!1


e

�3x

✓
�x

3
� 1

9

◆�����
R

1

= lim
R!1

e

�3R

✓
�R

3
� 1

9

◆
+

4e�3

9

=
4e�3

9

65.

Z 1

0

4

4 + x

2
dx = lim

R!1

Z
R

0

4

4 + x

2
dx

= lim
R!1

2 tan�1 x

2

���
R

0
= lim

R!1
2 tan�1

R = ⇡

66.

Z 1

0
xe

�x

2

dx = lim
R!1

�e

�x

2

2

�����

R

0

=
1

2
Z 0

�1
xe

�x

2

dx = lim
R!1

�e

�x

2

2

�����

0

�R

= �1

2

So

Z 1

�1
xe

�x

2

dx =
1

2
� 1

2
= 0

67.

Z 2

0

3

x

2
dx = lim

R!0+

Z 2

R

3

x

2
dx

= lim
R!0+

� 3

x

����
2

R

= 1

So the original integral diverges.

68.

Z 2

1

x dx

1� x

2
= lim

R!1+

Z 2

R

x dx

1� x

2

= lim
R!1+

�1

2
ln |1� x

2|
����
2

R

= 1

So the original integral diverges.

69. If c(t) = R, then the total amount of dye is
Z

T

0
c(t) dt =

Z
T

0
Rdt = RT

If c(t) = 3te2Tt, then we can use integration by
parts to get
Z

T

0
3te2Tt

dt

=
3t

2T
e

2Tt

���
T

0
�
Z

T

0

3

2T
e

2Tt

dt

=
3

2
e

2T 2

� 3

4T 2
e

2Tt

����
T

0

=
3

2
e

2T 2

� 3

4T 2
e

2T 2

+
3

4T 2

Since R = c(T ) = 3Te2T
2

The cardiac output is
RT

R
T

0 c(t) dt
=

3T 2
e

2T 2

3
2e

2T 2 � 3
4T 2 e

2T 2 + 3
4T 2

=
RT

3

3T 2
e

2T 2
/2� 3e2T 2

/4 + 3/4

70. With u = ln(x+ 1) and v = xZ
lnx+ 1 dx

= x ln(x+ 1)�
Z

x

x+ 1
dx

= x ln(x+ 1)�
Z ✓

1� 1

x+ 1

◆
dx

= x ln(x+ 1)� x+ ln(x+ 1) + c

With u = ln(x+ 1) and v = x+ 1Z
lnx+ 1 dx

= (x+ 1) ln(x+ 1)�
Z

x+ 1

x+ 1
dx

= (x+ 1) ln(x+ 1)� x+ c

The two answers are the same.

71. f

n,ave =
1

e

n

Z
e

n

0
lnx dx

=
1

e

n

lim
R!0

Z
e

n

R

lnx dx

=
1

e

n

lim
R!0

(x lnx� x)
���
e

n

R

=
1

e

n

lim
R!0

(nen � e

n �R lnR+R) = n� 1



CHAPTER 6 REVIEW EXERCISES 405

72. First we notice that

lim
�t!0

P (t < x < t+�t)

�t

= lim
�t!0

1

�t

Z
t+�t

t

f(x) dx = f(t)

And then the failure rate function

lim
�t!0

P (x < t+�t|x > t)

�t

= lim
�t!0

1

�t

P (t < x < t+�t)

P (x > t)

= lim
�t!0

P (t < x < t+�t)

�t

· 1

R(t)
=

f(t)

R(t)

73. R(t) = P (x > t) = 1�
Z

t

0
ce

�cx

dx

= 1� (�e

�cx)
���
t

0
= 1� (1� e

�ct) = e

�ct

Hence
f(t)

R(t)
=

ce

�ct

e

�ct

= c

74. (a) P (x > s) = 1�
Z

s

0
xe

�x

dx

= 1� (�xe

�x � e

�x)
���
s

0

= 1� (1� se

�s � e

�s)
= (s+ 1)e�s

P (x > s+ t|x > s)

=
P (x > s+ t)

P (x > s)

=
(s+ t+ 1)e�s�t

(s+ 1)e�s

= e

�t +
t

1 + s

e

�t

(b) Take the derivative w.r.t s:
d

ds

✓
e

�t +
t

1 + s

e

�t

◆
= �e

�t

t

(1 + s)2

When t > 0, since e

�t

> 0 and
(1 + s)2 > 0, the above derivative is neg-
ative, so the function P (x > s + t|x > s)
is decreasing w.r.t. s.

75. We use a CAS to see thatZ 100

90

1p
450⇡

e

�(x�100)2/450
dx ⇡ 24.75%

We can use substitution to get
1p
450⇡

Z 1

a

e

�(x�100)2/450
dx

=
1p
⇡

Z 1

a� 90p
450

e

�u

2

du

Since

Z 1

�1
e

�x

2

dx =
p
⇡,

Z 1

0
e

�x

2

dx =

p
⇡

2

So we want to find the value of a so that
Z a� 90p

450
0

e

�u

2

du = 0.49
p
⇡

Using a CAS we find
a� 90p

450
⇡ 1.645, a ⇡ 125

Some body being called a genius need to have
a IQ score of at least 125.

76. I (1) =

Z 1

0

1

(1 + x

2)
dx = tan�1

x

��1
0

=
⇡

2

Now, I (n+ 1)

=

⇢
1

(1 + x

2)n

Z
1

(1 + x

2)
dx

�1

0

�
Z 1

0

0

@
d

⇣�
1 + x

2
��n

⌘

dx

Z
1

(1 + x

2)
dx

1

A
dx

9
=

;

=


tan�1

x

(1 + x

2)n

�1

0

+ 2n

Z 1

0

xtan�1
x

(1 + x

2)n
dx

) I (n+ 1) = 2n

Z 1

0

xtan�1
x

(1 + x

2)n
dx ... (1)

Also, I (n+ 1) =

Z 1

0

1 + x

2 � x

2

(1 + x

2)n+1 dx

= I (n)�
Z 1

0

x

2

(1 + x

2)n+1 dx

= I (n)�
⇢

1

(1 + x

2)n

Z
x

2

(1 + x

2)
dx

�1

0

�
Z 1

0

0

@
d

⇣�
1 + x

2
��n

⌘

dx

Z
x

2

(1 + x

2)
dx

1

A
dx

9
=

;

= I (n)�
("

x� tan�1
x

(1 + x

2)n+1

#1

0

+2n

Z 1

0

x

�
x� tan�1

x

�

(1 + x

2)n+1 dx

)

ds = I (n)� 2n

Z 1

0

�
x

2 � xtan�1
x

�

(1 + x

2)n+1 dx

= I (n)� 2n

Z 1

0

x

2

(1 + x

2)n+1 dx

+ 2n

Z 1

0

xtan�1
x

(1 + x

2)n+1 dx

Therefore,
I(n+ 1) = I (n)

�2n

Z 1

0

x

2

(1 + x

2)n+1 dx+I (n+ 1)

(using (1))
I (n+ 1)
= I (n)� 2n (I (n)� I (n+ 1)) + I (n+ 1)

Hence proved.
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As,I (n+ 1) =
2n� 1

2n
I (n)

I (n) =
2n� 3

2n� 2
I (n� 1)

I (n� 1) =
2n� 5

2n� 4
I (n� 2)

I (n� 2) =
2n� 7

2n� 6
I (n� 3)

and so on therefore,

I (2) =
3

4
I(1),

I (1) =
3

4
· ⇡
2
,

Thus, I (n) =
2n� 3

2n� 2
· 2n� 5

2n� 4
· 2n� 7

2n� 6
· · ·

I (1) I (n) =
1

2
· 3
4
· · · 2n� 3

2n� 2
· ⇡
2



Chapter 7

First-Order
Di↵erential
Equations

7.1 Modeling with
Di↵erential Equations

1. Exponential growth with k = 4 so we can use
Equation (1.4) to arrive at the general solution
of y = Ae

4t. The initial condition gives 2 = A

so the solution is y = 2e4t.

2. Exponential growth with k = 3 so we can use
Equation (1.4) to arrive at the general solu-
tion of y = Ae

3t. The initial condition gives
�2 = A so the solution is y = �2e3t.

3. Exponential growth with k = �3 so we can use
Equation (1.4) to arrive at the general solution
of y = Ae

�3t. The initial condition gives 5 = A

so the solution is y = 5e�3t.

4. Exponential growth with k = �2 so we can
use Equation (1.4) to arrive at the general so-
lution of y = Ae

�2t. The initial condition gives
�6 = A so the solution is y = �6e�2t.

5. Exponential growth with k = 2 so we can use
Equation (1.4) to arrive at the general solu-
tion of y = Ae

2t. The initial condition gives

2 = Ae

2
, A =

2

e

2
so the solution is y =

2

e

2
e

2t.

6. Exponential growth with k = �1 so we can
use Equation (1.4) to arrive at the general so-
lution of y = Ae

�t. The initial condition gives
2 = Ae

�1, or A = 2e and so the solution is
y = 2e�t+1.

7. Exponential growth with k = 1. We can use
equation 1.9, to arrive at the general solution
y(t) = Ae

t + 50. The initial condition gives
A = 20 so the solution is y(t) = 20et + 50.

8. Exponential growth with k = 0.1. We can use
equation 1.9, to arrive at the general solution
y(t) = Ae

0.1t+100. The initial condition gives
A = 20 so the solution is y(t) = 20e0.1t + 100.

9. (a) The doubling time of the bacterial culture
is 1hour. Hence, in 3 hours the population
of bacteria will be 3200.

(b) The equation for population must be
y(t) = 400ekt

We know that in 1 hour, the population
is 800, so
800 = y(1) = 400ek.
Solving for k gives k = ln 2.
y(t) = 400et ln 2

(c) After 3.5 hours, the population is
y(3.5) = 400e3.5 ln 2

= 400⇥ 23.5 ⇡ 4525cells.

10. (a) The bacterial culture is increased by 4
times in two hours. Hence in 6 hours the
population of bacteria will be 6400.

(b) The equation for population must be
y(t) = 100ekt

We know that in 2 hours, the population
is 400, so
400 = y(2) = 100e2k.
Solving for k gives k = ln 2.
y(t) = 100et ln 2

(c) After 7 hours, the population is
y(7) = 100e7 ln 2 = 100⇥ 128
= 12800 cells.

11. (a) The initial population of 100 bacteria will
increase to 200 in four hours. Hence the
population of bacteria will reach 400 in 8
hours.

(b) The equation for population must be
y(t) = 100ekt

We know that in 4 hours, the population
doubles, so
200 = y(4) = 100ek4

Solving for k give k = (ln 2)/4 and
y(t) = 100et(ln 2)/4

(c) To determine when the population
reaches 6, 000, we solve
y(t) = 6, 000 or 6000 = 100et(ln 2)/4

Solving gives

t =
4 ln 60

ln 2
⇡ 23.628 hours.

407
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12. (a) The initial population of 200 bacteria will
increase to 600 in five hours. Hence the
population of bacteria will reach 5400 in
15 hours.

(b) The equation for population must be
y(t) = 200ekt

We know that in 3 hours, the population
triples, so
600 = y(3) = 200e3k

Solving for k gives
k = (ln 3)/3 and y(t) = 200et(ln 3)/3

(c) To determine when the population
reaches 20, 000, we solve
y(t) = 20, 000 or 20000 = 200et(ln 3)/3

Solving gives

t =
3 ln 100

ln 3
⇡ 12.575 hours.

13. With t measured in minutes, and
y = Ae

(
kt) = 108ekt

on the time interval (0, T ) (during which no
treatment is given), the condition on T is that
10% of the population at time T (surviving af-
ter the treatment) will be the same as the ini-
tial population.

In other words, 108 = (.1)108ekT .
This gives
e

kT = 10 and T = ln(10)/k.

To get k we use the given doubling time

t

d

= 20. Since we always have t

d

= ln(2)/k,
this leads to k = ln(2)/20 and

T =
ln(10)

ln(2)/20
=

20 ln(10)

ln(2)
⇡ 66.44 minutes.

14. We will assume that the number of acres to
sustain the growing population grows at a con-
stant exponential rate. This means that the
number of acres requires is given by
N(t) = Ae

rt

where N(t) is given in billions of acres (this is
not necessary, but it simplifies the constants).
We will assume that t = 0 corresponds to the
year 1950.

In this case we know that N(0) = 1 and
N(30) = 2. This gives us A = 1 and we can
solve for r:
2 = e

30r

which gives us r =
ln 2

30
⇡ 0.0231.

We now want to find when N(t) = 3.2

so we solve the equation 3.2 = e

rt

Solving gives t =
ln 3.2

r

⇡ 50.34 which means

that this occurs in the year 2000.

15. Given y(t) = Ae

rt, the doubling time t

d

obeys

2A = Ae

rt

d

, 2 = e

rt

d

rt

d

= ln 2, t
d

=
ln 2

r

as desired.

16. The equation for amount of the substance is
y(t) = Ae

rt

To find the halving time, we solve
A

2
= Ae

rt for t.

Solving gives t =
ln(1/2)

r

= � ln 2

r

Notice that since r < 0, this value of t is pos-
itive. In fact, this formula is essentially the
same formula for doubling time (the di↵erence
being that the value for r is either positive or
negative depending on if we are in the growth
or decay situation).

17. Using the formula in exercise 16, we find the
decay constant is

r = � ln 2

28
Thus the formula for the amount of substance
is
y(t) = Ae

rt

(a) After 84 years,

y(84) = Ae

84r ⇡ 0.125A. Hence, this
is about 12.5% of original amount of
Strontium-90.

(b) After 100 years,
y(100) = Ae

100r ⇡ 0.084A.

Thus,this is about 8.4% of original
amount of Strontium-90.

18. Using the formula in Exercise 16, we find the
decay constant is

r = � ln 2

0.7⇥ 109

Thus the formula for the amount of substance
is
y(t) = 50ert

(a) After 100 years,
y(100) = 50e100r ⇡ 49.9999995 grams.
Hence, approximately 49.99995% of orig-
inal 235

U will remain after 100 years.

(b) After 1000 years,
y(1000) = 50e1000r ⇡ 49.9999995 grams.
Hence, approximately 49.99995% of orig-
inal 235

U will remain after 1000 years.
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19. Using the formula in Exercise 16, we have
3 = �(ln 2)/r and therefore r = �(ln 2)/3.
Thus the formula for amount of substance is
y(t) = Ae

�t(ln 2)/3

The initial condition gives A = 0.4 and so
y(t) = 0.4e�t(ln 2)/3

(a) For y(t) = 0.1,
We get, 0.1 = 0.4e�t(ln 2)/3.
Solving for t gives

t =
3 ln(4)

ln(2)
= 6 hours.

Thus the amount will drop below 0.1 mg
after 6 hours.

(b) For y(t) = 0.01,
We get, 0.01 = 0.4e�t(ln 2)/3.
Solve for t gives

t =
3 ln(40)

ln(2)
= 15.97 hours.

Thus the amount will drop below 0.01 mg
after 15.97 hours.

20. Using the formula in Exercise 16, we have
2.8 = �(ln 2)/r and therefore r = �(ln 2)/2.8.
Thus the formula for amount of substance is
y(t) = Ae

�t(ln 2)/2.8

The initial condition gives A = 0.4 and so
y(t) = 0.4e�t(ln 2)/2.8

(a) For y(t) = 0.1,
We get, 0.1 = 0.4e�t(ln 2)/2.8.
Solving for t gives

t =
2.8 ln(4)

ln(2)
= 5.6 hours.

Thus the amount will drop below 0.1 mg
after 5.6 hours.

(b) For y(t) = 0.01,
We get, 0.01 = 0.4e�t(ln 2)/2.8.
Solve for t gives

t =
2.8 ln(40)

ln(2)
= 14.9 hours.

Thus the amount will drop below 0.01 mg
after 14.9 hours.

21. The half-life is 5730 years, so r = � ln 2

5730
Solving for t in
y(t) = 0.20A = Ae

�rt gives

t =
5730 ln(5)

ln(2)
⇡ 13,305 years.

22. The half-life is 5730 years, so r = � ln 2

5730
The proportion of the carbon-14 left is there-
fore equal to e

r106 ⇡ 2.912⇥ 10�52.

23. Newton’s Law of Cooling gives
y(t) = Ae

kt + T

a

with T

a

= 70.
We have y(0) = 200 so
200 = A+ 70 and A = 130
We have y(1) = 180 so

180 = y(1) = 130ek + 70 and k = ln

✓
110

130

◆
.

The temperature will be 120 when
120 = y(t) = 130eln(110/130)t + 70 and

t =
ln (5/13)

ln (11/13)
⇡ 5.720 minutes.

24. Newton’s Law of Cooling gives
y(t) = Ae

kt + T

a

with T

a

= 70.
We have y(0) = 200 so
200 = y(0) = A+ 70 and A = 130.
After one minute we have y(1) = 160 and
160 = y(1) = 130ek + 70

Solving for k gives k = ln
9

13
.

The bowl in Exercise 23 reaches it temperature
in about 5.720 minutes. At this time, the tem-
perature of this bowl will be:
y(5.720) = 130ek(5.720) + 70 ⇡ 85.87 degrees.

25. (a) Using Newton’s Law of Cooling
y = Ae

kt + T

a

with T

a

= 70, y(0) = 50,
we get 50 = Ae

0 + 70, A = �20
so that y(t) = �20ekt + 70.
If, after two minutes, the temperature is
56 degrees, 56 = �20ek2 + 70

e

2k =
14

20
= 0.7

2k = ln 0.7, k =
1

2
ln 0.7

Therefore, y(t) = �20e(ln 0.7)t/2 + 70.

(b) From (a.), the equation for the tempera-
ture of the drink is
y(t) = �20e(ln 0.7)t/2 + 70
After 10 minutes, the temperature is
y(10) ⇡ 66.64 degrees
The drink warms to 66� when
66 = y(t) = �20e(ln 0.7)t/2 + 70
Solving for t gives t ⇡ 9.025 minutes

26. (a) The problem is that the rate of cooling is
not constant

(b) The co↵ee will cool quicker when it is hot-
ter. Therefore the serving temperature
was greater than 180 degrees.

(c) With t the time elapsed since serving,
with the ambient temperature 68 degrees
and if the temperature is 160 degrees
when t = 20, then
y(t) = Ae

kt + T

a

, 160 = Ae

k·20 + 68
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Ae

20k = 92 After 22 minutes the temper-
ature is 158 degrees,
158 = Ae

22k + 68, Ae

22k = 90

e

2k =
Ae

22k

Ae

20k
=

90

92
, k =

1

2
ln

90

92
Therefore, y(t) = Ae

1
2 (ln 90ff92)t + 68

Using the first set of numbers,
Ae

20· 12 ln 90
92 = 92

A =
92

e

10 ln 90
92

⇡ 114.615

y(t) = 114.615e
1
2 (ln 90

92 )t + 68

The serving temperature is
y(0) = 114.615e0+68 = 182.615 minutes.

27. Using Newton’s Law of Cooling with ambient
temperature 70 degrees, initial temperature 60
degrees, and with time t (in minutes) elapsed
since 10:07, we have
y(t) = Ae

kt + 70, 60 = Ae

0k + 70

= A+ 70, A = �10
and y(t) = �10ekt + 70 (for the martini).
Two minutes later, its temperature is 61 de-
grees. Hence,

61 = �10ek2 + 70, e2k =
9

10

2k = ln
9

10
, k =

1

2
ln

9

10
=

1

2
ln .9

Therefore, y(t) = �10e(
1
2 ln .9)t + 70

The temperature is 40 degrees at elapsed time
t only if

40 = �10e(
1
2 ln .9)t + 70

t =
2 ln 3

ln .9
⇡ �20.854 or about 21 minutes be-

fore 10:07 p.m. The time was 9:46p.m.

28. Here the unknown is the initial temperature,
T = y(0). The equation for temperature of the
co↵ee is y(t) = Ae

kt + 70
Using the initial temperature gives the equa-
tion T = A + 70, so A = T � 70 and the
equation for the temperature is now given by
y(t) = (T � 70)ekt + 70
The value for k will not change (k does not de-
pend on initial conditions) and therefore

k =
1

2
ln(95/110)

We want the temperature at 5 minutes to be
120, so this gives the equation
120 = y(5) = (T � 70)e5k + 70
Solving for T gives

T =
50

e

5k
+ 70 ⇡ 142.13 degrees.

29. Annual: A = 1000(1 + 0.08)1 ⇡ $1080.00

Monthly: A = 1000

✓
1 +

0.08

12

◆12

⇡ $1083.00

Daily: A = 1000

✓
1 +

0.08

365

◆365

⇡ $1083.28

Continuous: A = 1000e(0.8)1 ⇡ $1083.29

30. Annual:A = 1000(1 + 0.08)5 ⇡ $1469.33

Monthly:A = 1000

✓
1 +

0.08

12

◆60

⇡ $1489.85

Daily: A = 1000

✓
1 +

0.08

365

◆5·365
⇡ $1491.76

Continuous: A = 1000e(0.8)5 ⇡ $1491.83

31. (a) Person A:
A = 10,000e.12·20 = $110,231.76
Person B:
B = 20, 000e.12·10 = $66,402.34

(b) At 4% interest:
Person A:
A = 10, 000e(0.04)20 ⇡ $22, 255.41
Person B:
A = 20, 000e(0.04)10 ⇡ $29, 836.49

(c) To find the rate so that A and B are even,
we solve, 10, 000e10r = 20, 000
Solving gives r = ln 2/2 ⇡ 6.93%

32. (a) Let t be the number of years after 1985.
Then, assuming continuous compounding
at rate r,

9800 = 34er·10, e10r =
9800

34

r =
1

10
ln

✓
9800

34

◆
⇡ .566378

Therefore,

A = 34e
1
10 ln( 9800

34 )t = 34

✓
9800

34

◆
t/10

(b) In 2005, t = 20 and

A = 34

✓
9800

34

◆2

= $2,824,705.88

(c) The equation for the value of the cards is
y(t) = Pe

rt.
We take t = 0 to correspond to the year
1985 which means that P = 22.
To determine k we use
32 = y(10) = 22e10r

Solving for r gives , r =
1

10
ln(32/22)

The value in 2005 is then given by
y(20) = 22e20r ⇡ $46.55

33. With a constant depreciation rate of 10%, the
value of the $40, 000 item after ten years would
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be,
40,000(e�(0.1)10) = 40,000e�1 ⇡ $14,715.18
and after twenty years
40,000(e�(0.1)20) = 40,000e�2 ⇡ $5,413.41
By the straight line method, assuming a value
of zero after 20 years, the value would be
$20,000 after ten years.

34. The value of the asset is given by v(t) = Pe

rt

where P = 400, 00 and r = �0.4.
After 5 years, the value is v(5) ⇡ 54, 134.
After 10 years, the value is v(10) ⇡ 7326.
For the $ 40,000 asset with linear depreciation,
we have v(t) = 40000� 4000t
In this case, after 5 years, the value is
v(5) ⇡ $20, 000.
After 10 years, the value is v(10) = $0.

35. The problem with comparing tax rates for
the income bracket [16K, 20K] over a thirteen
year time interval, is that due to inflation, the
persons in this income bracket in 1988 have
less purchasing power than those in the same
bracket in 1975, and a lower tax rate may
or may not compensate. To quantify and il-
lustrate, assume a 5.5% annual inflation rate.
This would translate into a loss of purchasing
power amounting to
41/(1.055)13 = 1/(2.006) ⇡ 1/2,
which is essentially to say that in terms of com-
parable purchasing power, the income bracket
[16K, 20K] in 1988 corresponds to an income
bracket of [8K, 10K] in 1975. One should then
go back and look at the tax rate for the latter
bracket in 1975. Only if that tax rate exceeds
the 1988 rate (15%) for the bracket [16K, 20K]
should one consider that taxes have genuinely
gone down.

36. Adjusting for inflation, $16, 000 in 1975 was
worth 16, 000(1.055)13 ⇡ $32, 092
In 1975, the tax rate on $16, 000 was 28%. In
1988, the tax rate on $32, 092 was also 28%.
This means that the tax rates were roughly
equal.

37. T1 = 30, 000 · 0.15 + (40,000� 30,000) · 0.28
= $7300
T2 = 30,000 · 0.15 + (42,000� 30,000) · 0.28
= $7860
T1 + .05T1 = $7665

The tax T2 on the new salary is greater than
the adjusted tax (1.05T1) on the old salary.

38. What happened is that the amount taxed at
15% remains $30, 000. If this figure is also

adjusted for inflation then the amount of tax
owed remains the same. In other words, if the
first $30, 000(1.05) = $31500 is taxed at 15%
and the rest is taxed at 28%.

39. Fitting a line to the first two data points on the
plot of time vs. the natural log of the popula-
tion (y = ln(P (x))) produces the linear func-
tion y = 1.468x+ 0.182,
which is equivalent to fitting the original date
with the exponential function
P (x) = e

1.468x+0.182 or
P (x) = 1.200e1.468x

40. (a) As in Exercise 39, we let x denote time
and y = lnP . We pick the second and
fourth data point to fit a line to (any two
data points are fine to use and will give
slightly di↵erent answers). In this case,
the points are (1, ln 15) (3, ln 33)
The equation of the line connecting these
two points is
lnP = y = 0.394x+ 3.102
Exponentiating this equation gives
P = e

y = e

0.394x+3.102 = 22.242 e0.394x

(b) As in Exercise 39, we let x denote time
and y = lnP . We pick the second and
fourth data point to fit a line to (any two
data points are fine to use and will give
slightly di↵erent answers). In this case,
the points are (1, ln 16) (3, ln 11)
The equation of the line connecting these
two points is
lnP = y = �0.18735x+ 2.9599
Exponentiating this equation gives
P = e

y = e

�0.18735x+2.9599

= 19.297 e�0.18735x

41. As in Exercise 39, we let x denote time (with
x = 0 corresponding to the year 1960) and let
y = lnP . Looking at the graph of the modified
data, we decide to use the first and last data
points. In this case, the points are
(0, ln 7.5) (30, ln 1.6)
The equation of the line connecting these two
points is lnP = y = �0.0515x+ 2.0149
Exponentiating this equation gives
P = e

y = e

�0.0515x+2.0149 = 7.5 e�0.0515x

42. As in Exercise 39, we let x denote time (with
x = 0 corresponding to the year 1960) and
let y = lnP . Looking at the graph of the
modified data, we decide to use the first and
last data points. In this case, the points are
(0, ln 69.9) (30, ln 75.2)
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The equation of the line connecting these two
points is lnP = y = 0.013790x+ 4.2471
Exponentiating this equation gives
P = e

y = e

0.013790x+4.2471 = 69.9 e0.013790x

43. Consider the equation,

y = x� 1

2
+ ce

�2x

di↵erentiating both sides by x

y

0 = 1� 2ce�2x

substituting for ce�2x

= 1� 2


y � x+

1

2

�
= 2x� 2y

y

0 + 2y = 2x.

44. Consider the equation,
y =

p
(3x2 + c)

di↵erentiating both sides with respect to x

y

0 =
1

2
p
(3x2 + c)

⇥ 6x =
3xp

(3x2 + c)
=

3x

y

.

45. With known conclusion
y = Ae

�rt, A = 150, t = 24, and r = ln(2)/t
h

we find that with t

h

= 31 we get
y = 150(1/2)(24/31) = 87.7, and with t

h

= 46
we get y = 150(1/2)(24/46) = 104.5.
The di↵erence is about 17 days, at 19% not
a dramatically large percentage of the smaller
base of 88(105/88 = 1.19). If one had expected
the two numbers to be proportional to the half
lives, one would have expected the di↵erence
to come in at 48% (46/31 = 1.48) and would
definitely consider the 19% to be far less than
anticipated.

46. We use the formula of Exercise 16.

If the half-life is 2 days then r = � ln 2

2
and in two weeks the proportion remaining-
would be e

�14(ln 2)/2 ⇡ 0.007813 (so about
0.78%). If the half-life is 3 days then

r = � ln 2

3
and in two weeks the proportion re-

maining would be
e

�14(ln 2)/3 ⇡ 0.03917 = 3.9.%

47. In this case, with t

h

= 4, A = 1, y = Ae

�rt,
and r = ln(2)/4, one finds y = (1/2)(t/4).
The curve is a typical exponential, declining
from a value of 1 at t = 0 to
1/26 = 1/64 = .016 at t = 24.

1

0.5

x

24181260

48. If the half-life is 1 hour, the decay rate is

r = � ln 2

1
= � ln 2

We assume that the drug is taken every 6
hours. When the drug is initially taken, the
initial amount of 1 gm:
y1 = 1e�t ln 2 = 2�t

After 6 hours, the amount left is
y1(6) = 2�6 = 0.015625
When the 2nd dose is taken, the initial amount
will be 1 gm plus the amount left from the 1st
dose:
y2 = (1.015625)e�t ln 2 = (1.015625)2�t

After 6 hours, the amount left is
y2(6) = (1.015625)2�6 ⇡ 0.0158691
When the 3rd dose is taken, the initial amount
will be 1 gm plus the amount left from the 2nd
dose:
y3 = (1.0158691)e�t ln 2 = (1.0158691)2�t

After 6 hours, the amount left is
y3(6) = (1.0158691)2�6 ⇡ 0.015873
When the 4th dose is taken, the initial amount
will be 1 gm plus the amount left from the 3rd
dose:
y4 = (1.015873)e�t ln 2 = (1.015873)2�t

After 6 hours, the amount left is
y4(6) = (1.015873)2�6 ⇡ 0.015873

49. With r the rate of continuous compounding,
the value of an initial amount X after t years
is Xe

rt. If the goal is P , then the relation is
P = Xe

rt orX = Pe

�rt. With r = .08, t = 10,
P = 10,000, we find,
X = 10,000e�.8 = $4493.29.

50. The present value is

PV = $40, 000e2
p
t

e

�0.06t

= $40, 000e2
p
t�0.06t

The best time to sell is when this is at a
maximum (because this is when it is worth
the most). To maximize PV , we can maxi-
mize 2

p
t� 0.06t. This maximum occurs when

t ⇡ 278.
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51.

Z
T

0
e

�rt

dt =
1� e

�rT

rZ
T

0
te

�rt

dt =
�Te

�rT

r

+
1� e

�rT

r

2
,

With r = .05 and T = 3, we find
for (A): 60,000(20) (1� e

�.15) = $167,150

for (B): we get the above plus

(3000)�60e�.15 + 400(1� e

�.15)
= 12,223 for a total of $179,373

for (C), the exponentials cancel, and the an-
swer is simplyZ 3

0
60000dt = $180,000.

52. (a)

Z 3

0
60, 000e0.05(3�t)

dt ⇡ $194, 201.09

(b)

Z 3

0
(60, 000 + 3, 000t)e0.05(3�t)

dt

⇡ $208, 402.18

(c)

Z 3

0
60, 000e0.05te0.05(3�t)

dt

⇡ $209, 130.16

53. (a) The comparison is to be made be-
tween three years of accumulation of
$1,000,000 versus the accumulation of
four annual payments of $280,000 at
times 0, 1, 2, 3, then the respective figures
are 1,000,000(1.08)3 = 1,259,712 versus
280,000(1.083 + 1.082 + 1.08 + 1)
= 1,261,711.
One should take the annuity.

(b) If we got the $1 million lump sum,
then the amount received after 3 years
at the rate of interest of 6% is,
1000000⇥ (1.06)3 ⇡ 1000000⇥ 1.191016

= $1191016.
If the amount is received in install-
ments of $280000 at the starting of
every year, the amount received is,
280000(1 + 1.06 + 1.062 + 1.063)

= 280000⇥ 4.374616 ⇡ 1224892.
One should take the installments

(c) If we got the $1 million lump sum,
then the amount received after 3 years
at the rate of interest of 10% is,
1000000⇥ (1.1)3 ⇡ 1000000⇥ 1.331

= $1331000.
If the amount is received in install-
ments of $280000 at the starting of
every year, the amount received is,

280000(1 + 1.1 + 1.12 + 1.13)

= 280000⇥ 4.641 ⇡ $1299480.
One should take the annuity

54. The actual doubling time for money invested
at 8% is obtained by solving
2 = e

0.08t which gives 8.66 years.
In general, the doubling time is
ln 2

r

⇡ 0.69314

r

(hence the “Rule of 69”). 72 is used because
most interest is not compounded continuously.
For example, if 10% interest is compounded
once a year, it takes 7.27 years to double.

7.2 Separable Di↵erential
Equations

1. (a) Separable.
y

0

cos y
= 3x+ 1

(b) Not separable.

2. (a) Separable.
y

0

cos y � 1
= 2x

(b) Not separable.

3. (a) Separable.
y

0 = y(x2 + cosx)
y

0

y

= x

2 + cosx

(b) Not separable.

4. (a) Not separable.

(b) Separable.
y

0 � 1 = x

3 � 2x

5.

1

y

y

0 = x

2 + 1
Z

1

y

dy =

Z
(x2 + 1)dx

ln |y| = x

3

3
+ x+ c

y = e

x

3
/3+x+c = Ae

x

3
/3+x

6.

1

y � 1
y

0 = 2x
Z

1

y � 1
dy =

Z
2xdx

ln |y � 1| = x

2 + c

y � 1 = e

x

2+c

y = 1 +Ae

x

2
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7.

1

y

2
y

0 = 2x2

Z
1

y

2
dy =

Z
2x2

dx

� 1

y

=
2x3

3
+ c

y = � 1

2x3
/3 + c

8.

1

y

2 + 1
y

0 = 2
Z

1

y

2 + 1
dy =

Z
2dx

arctan y = 2x+ c

y = tan(2x+ c)

9. yy

0 =
6x2

1 + x

3Z
ydy =

Z
6x2

1 + x

3
dx

1

2
y

2 = 2 ln |1 + x

3|+ c

y = ±
p

4 ln |1 + x

3|+ c

10. (y + 1)y0 = 3xZ
(y + 1)dy =

Z
3xdx

y

2

2
+ y =

3

2
x

2 + c

11. y

0 =
2x

y

e

y�x, y

0 =
2x

y

⇥ e

y

e

x

y

0
ye

�y = 2xe�x

Z
y

0
ye

�y

dx =

Z
2xe�x

dx

Z
ye

�y (y0dx) =

Z
2xe�x

dx

or

Z
ye

�y

dy =

Z
2xe�x

dx

Z
ye

�y

dy = �ye

�y � e

�y + c

and

Z
xe

�x

dx = �xe

�x � e

�x + c

� ye

�y � e

�y = 2(�xe

�x � e

�x) + c

� ye

�y � e

�y = �2xe�x � 2e�x + c.

12.

y

0
p
1� y

2
=

1

x lnxZ
1p

1� y

2
dy =

Z
1

x lnx
dx

arcsin y = ln(lnx) + c

y = sin[ln(lnx) + c]

13. y

0 =
cosx

sin y
(sin y) y0 = cosxZ

(sin y) y0(x)dx =

Z
(cosx)dx

or

Z
(sin y) dy =

Z
(cosx)dx

cos y = � sinx+ c.

14. sec2 yy0 = xZ
sec2 ydy =

Z
xdx

tan y =
x

2

2
+ c

y = tan�1

✓
x

2

2
+ c

◆

15.

1

y

y

0 =
x

1 + x

2Z
1

y

dy =

Z
x

1 + x

2
dx

ln |y| = 1

2
ln |1 + x

2|+ c

y = e

1
2 ln |1+x

2|+c = k

p
1 + x

2

16. yy

0 =
2

x+ 1Z
ydy =

Z
2

x+ 1
dx

y

2

2
= 2 ln |x+ 1|+ c

17. y

0 = �xy,
y

0

y

= �x

Z
y

0

y

dx =

Z
�xdx

Z
1

y

(y0dx) = �
Z

xdx

ln |y| = �x

2

2
+ c

y = e

⇣
� x

2

2 +c

⌘

= Ae

� x

2

2

A=3

A=2

A=11.0

3.0

0.0

x

0.5

0−4 −2

2.0

1.5

2.5

2 4
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18. y

0 = �x

y

, y0y = �x

Z
y

0
ydx =

Z
�xdx

Z
y (y0dx) = �

Z
xdx

y

2

2
= �x

2

2
+ c

y

2 = �x

2 + 2c

y =
p

�x

2 + 2c

c=3

c=2

c=1

2.4

y

42

0.8

0.0

−4.0

−3.2

x
0

4.0

−0.8

−2.4

1.6

−2

3.2

−4

−1.6

19. y

0 =
1

y

, y

0
y = 1

R
y

0
ydx =

R
dxR

y (y0dx) =
R
dx

y

2

2
= x+ c

y

2 = 2x+ 2c
y =

p
2x+ 2c

c=3

c=2

c=1

x

2.0

0 2

3.6

0.0
−4

0.4

4

1.6

0.8

−2

1.2

2.4

3.2

2.8

20. y

0 = 1 + y

2

y

0

1 + y

2
= 1

Z
y

0

1 + y

2
dx =

Z
dx

Z
1

1 + y

2
(y0dx) =

Z
dx

Z
1

1 + y

2
dy =

Z
dx

arctan y = x+ c

y = tan(x+ c).

c=2 c=1

4

−4

x
−1

−2
y

4

1

3

0

−3

5

1

−5

2 3

2

−1 0

21.

y

0

y

= 3(x+ 1)2

ln y = (x+ 1)3 + c

y = ke

(x+1)3

Using the initial condition,

1 = ke, k =
1

e

y =
1

e

e

(x+1)3

22. y

2
y

0 = x� 1Z
y

2
dy =

Z
(x� 1)dx

y

3

3
=

x

2

2
� x+ c

Using the initial condition,
23

3
=

02

2
� 0 + c, c =

8

3

y

3

3
=

x

2

2
� x+

8

3

23. yy

0 = 4x2

y

2

2
=

4x3

3
+ c

Using the initial condition,
22

2
= c = 2

y

2

2
=

4x3

3
+ 2

24. yy

0 = x� 1Z
ydy =

Z
x� 1dx

y

2

2
=

x

2

2
� x+ c

Using the initial condition,
(�2)2

2
=

02

2
� 0 + c, c =

8

3

y

2

2
=

x

2

2
� x+

8

3

25.

y

0

4y
=

1

x+ 3
ln |y|
4

= ln |x+ 3|+ c
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ln |y| = 4 ln |x+ 3|+ c

|y| = k(|x+ 3|)4
Using the initial condition,
|1| = k(1)4, k = 1
|y| = (|x+ 3|)4

26. (4y + 1)y0 = 3xZ
(4y + 1)dy =

Z
3xdx

2y2 + y =
3x2

2
+ c

Using the initial condition,

2(4)2 + 4 =
3(1)2

2
+ c, c =

69

2

2y2 + y =
3x2

2
+

69

2

27. cos y y0 = 4x
sin y = 2x2 + c.
Using the initial condition,
0 = sin(0) = sin y(0) = 0 + c = c

sin y = 2x2

y = arcsin(2x2)
(�1/

p
2 < x < 1/

p
2)

28. (cot y)y0 =
1

xZ
cot ydy =

Z
1

x

dx

ln | sin y| = ln |x|+ c

sin y = Ax

Using the initial condition,

sin
⇡

2
= A,A = 1

sin y = x

29. For this problem we have M = 2 and k = 3.
Using these and the initial condition, we solve
for A.

1 =
2Ae3(2)(0)

1 +Ae

3(2)(0)
=

2A

1 +A

,

A = 1

y =
2e6t

1 + e

6t

30. For this problem we have M = 3 and k = 1.
Using these and the initial condition, we solve
for A.

2 =
3Ae3(0)

1 +Ae

3(0)
=

3A

1 +A

,

A = 2

y =
6e3t

1 + 3e3t

31. For this problem we have M = 5 and k = 2.
Using these and the initial condition, we solve
for A.

4 =
5Ae10(0)

1 +Ae

10(0)
=

5A

1 +A

,

A = 4

y =
20e10t

1 + 4e10t

32. For this problem we have M = 2 and k = 1.
Using these and the initial condition, we solve
for A.

1 =
2Ae

2(0)

1 +Ae

2(0)
=

2A

1 +A

,

A = 1

y =
2e2t

1 + e

2t

33. For this problem we have M = 1 and k = 1.
Using these and the initial condition, we solve
for A.
3

4
=

Ae

(0)

1 +Ae

(0)
=

A

1 +A

,

A = 3

y =
3et

1 + 3et

34. For this problem we have M = 3 and k = 1.
Using these and the initial condition, we solve
for A.

0 =
3Ae

3(0)

1 +Ae

3(0)
=

3A

1 +A

,

A = 0

y = 0

35. (a) Substituting r = Mk in

y

0 = ry

⇣
1� y

M

⌘
we get

y

0 = Mk

⇣
1� y

M

⌘
= ky(M � y)

1

y(M � y)
y

0 = k

Adapting the solution

y =
MAe

Mkt

1 +Ae

Mkt

in (2.7) with r = Mk,

we find y =
MAe

rt

1 +Ae

rt

In this case with r = .71, M = 8 ⇥ 107

and y(0) = 2⇥ 107, we find

2⇥ 107 = y(0) =
8⇥ 107A

1 +A

.

Therefore
A

1 +A

=
2

8
=

1

4
, A = 1/3,

and after routine simplification we find

y(t) =
(8⇥ 107)e.71t

3 + e

.71t

(b)



7.2. SEPARABLE DIFFERENTIAL EQUATIONS 417

0-2

5E7

-4
x

y

42

1E8

(c) The biomass of halibut is given by

y =
(8⇥ 107)e0.71t

3 + e

0.71t

The carrying capacity is 8 ⇥ 107 so we

solve: 0.9
�
8⇥ 107

�
=

(8⇥ 107)e0.71t

3 + e

0.71t

Solving gives t ⇡ 4.642 years

36. (a)

����
y

M � y

���� = Ae

Mkt with A > 0. Under the

circumstances y > M , the ratio is nega-
tive, and the resolution is

y

M � y

= �Ae

Mkt

.

This further resolves as
y = �MAe

Mkt + yAe

Mkt

,

which eventually becomes

y =
MAe

Mkt

Ae

Mkt � 1
=

MAe

rt

Ae

rt � 1
.

(b) From Part (a), y =
MAe

rt

Ae

rt � 1
Our initial condition is y(0) = 3 ⇥ 108

which gives

3⇥ 108 = y(0) =
(8⇥ 107)A

A� 1
15

4
(A� 1) = A,A =

15

11
After routine simplification this gives the

equation y =
(12⇥ 108)e0.71t

15e0.71t � 11
We now want to solve
y = 1.1M = (1.1)(8⇥ 107) or

(1.1)(8⇥ 107) =
(12⇥ 108)e0.71t

15e0.71t � 11
Solving gives t ⇡ 2.94 years

37. (a) Let A be the accumulated value at time t

and d be the amount of the deposits made
yearly, then A satisfies
A

0 = 0.06A+ d

This di↵erential equation separates to
A

0

0.06A+ d

= 1 and integrates to

ln(0.06A+ d)

0.06
= t+ c or

0.06A+ d = ke

0.06t

At time t = 0, A is the unknown initial
investment P ,
hence k = .06P + 2000, and so
.06A+ 2000 = (.06P + 2000)e.06t.
If we want A = 1,000,000 at t = 20, we
must have
62000 = (.06P + 2000)e1.2

P =
62000e�1.2 � 2000

.06
⇡ $277,901

(b) As in Part (a), if A is the accumulated
value at time t and d is the amount of the
deposits made yearly, then A satisfies
A

0 = 0.06A+ d

This di↵erential equation separates to
A

0

0.06A+ d

= 1 and integrates to

ln(0.06A+ d)

0.06
= t+ c or

0.06A+ d = ke

0.06t

We know that A(0) = 10, 000 which gives
0.06(10, 000) + d = k

and therefore k = d+ 600 and
0.06A+ d = (d+ 600)e0.06t

We want to find d when t = 20 and
A = 1, 000, 000:
0.06(1, 000, 000) + d = (d+ 600)e0.06(20)

60, 000 + d = (d+ 600)e1.2

Solving for d gives

d =
60, 000� 600e1.2

e

1.2 � 1
⇡ $25, 002.16

38. We start with A

0(t) = 0.08, A(t)� 12P
A(0) = 150, 000
where P is the payment made each month.
Solving this di↵erential equation:

A

0

0.08A� 12P
= 1

ln(0.08A� 12P )

0.08
= t+ c

0.08A� 12P = ke

0.08t

Using the initial condition gives
k = 12000� 12P We set A(30) = 0

(a) Solve for P :
�12P = (12000� 12P )e2.4

P =
12000e2.4

12(e2.4 � 1)
⇡ $1099.77

Total amount paid:
(30)(12)(1099.77) = $395, 917
Total interest:
395, 917� 150, 000 = $245, 917

(b) Reworking Exercise 38.(a):
A

0(t) = 0.075A(t)� 12P
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A(0) = 150, 000
where P is the payment made each
month. Solving this di↵erential equation:

A

0

0.075A� 12P
= 1

ln(0.075A� 12P )

0.075
= t+ c

0.075A� 12P = ke

0.075t (k = e

0.075c)
Using the initial condition gives
k = 11250� 12P

We set A(30) = 0 and solve for P :
�12P = (11250� 12P )e2.25

P =
11250e2.25

12(e2.25 � 1)
P ⇡ $1047.95

Total amount paid:
(30)(12)(1047.95) = $377, 262

Total interest:
377, 262� 150, 000 = $227, 262

The half-percent decrease in interest de-
creases the total interest by $18655.

(c) Reworking Exercise 38.(a):
A

0(t) = 0.08A(t)� 12P
A(0) = 150, 000
where P is the payment made each
month. Solving this di↵erential equation:

A

0

0.08A� 12P
= 1

0.08A� 12P = ke

0.08t

k = 12000� 12P

We set A(15) = 0 and solve for P :
�12P = (12000� 12P )e1.2

P =
12000e1.2

12(e1.2 � 1)
⇡ $1430.01

The monthly payments are increased by
about $330.
Total amount paid:
(15)(12)(1430.01) = $257, 582

The total amount is decreased by about
$138, 335.

Total interest:
257, 582� 150, 000 = $107, 582

(d) Reworking Exercise 38.(a):
A

0(t) = 0.08A(t)� 12P
A(0) = 125, 000
where P is the payment made each
month. Solving this di↵erential equation:

A

0

0.08A� 12P
= 1

0.08A� 12P = ke

0.08t

k = 10000 � 12P We set A(30) = 0 and
solve for P :
�12P = (10000� 12P )e2.4

P =
10000e2.4

12(e2.4 � 1)
⇡ $916.47

Total amount paid:
(30)(12)(916.47) = $329, 930
Total interest:
329, 930� 125, 000 = $204, 930
By adding an additional down payment of
$25000, the total interest is decreased by
about $41000.

39. (a) Starting with A

0 = .08A+10,000 with the
initial condition A(0) = 0.

Solving gives .08A+10,000 = 10,000e.08t.

At time t = 10 we have

A =
10,000(e.8 � 1)

.08
= $153,193

This would be the amount in his fund at
age 40, and it would accumulate in the
next 25 years to
153,193e(.08)25 = $1,131,949.

(b) We set up and solve the initial value prob-
lem:
dA

dt

= 0.08A+ 20000, A(0) = 0

1

0.08
ln |0.08A+ 20000| = t+ c

12.5 ln |0.08(0) + 20000| = 0 + c

c = 12.5 ln 20000

At age 65, t = 25 and we have the equa-
tion
12.5 ln |0.08A+ 20000|
= 20 + 12.5 ln 20000

Solving for A gives

A =
20000(e1.6 � 1)

.08
⇡ $998, 258

(c) Following the conditions of Part (a), re-
placing however the 8% by an unknown
force r, we come after ten years of pay-
ment and twenty-five additional years of
accumulation to

10,000
(e10r � 1)

r

e

25r
.

For contrast, if the payment rate 10, 000 is
replaced by 20, 000, and the payment in-
terval of ten years is replaced by twenty-
five years, we come to an accumulation
after the twenty-five years of

20,000
(e25r � 1)

r

.

This number is to be compared to the pre-
vious. Equating the two expressions leads
to
2(e25r � 1) = e

35r � e

25r or
3e25r � 2 = e

35r
.
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The equation can only be solved with the
help of some form of technology, but the
answer of r about .105(10.5%) can at least
be checked.

40.

dA

dt

= 0.1A� d, A(0) = 1, 000, 000

10 ln |0.1A� d| = t+ c

A = e

t/10+c/10 + 10d
A = Be

t/10 + 10d
1, 000, 000 = B + 10d
B = 1, 000, 000� 10d
A = (1, 000, 000� 10d)et/10 + 10d
We now want to determine d so that A(30) = 0
0 = (1, 000, 000� 10d)e3 + 10d

d =
1, 000, 000e3

10(e3 � 1)
⇡ $105, 240

41. (a) Starting from

y = 3

r
x

3 +
21

2
x

2 + 9x+ 3c

with y(0) = 0, we have c = 0. Therefore,

y = 3

r
x

3 +
21

2
x

2 + 9x

y

5

10

x

-10 5 10-5 0

(b) The solution given in Part (a) is

y = 3

r
x

3 +
21

2
x

2 + 9x,

Notice that

y

0 =
3x2 + 21x+ 9

3

✓
x

3 +
21

2
x

2 + 9x

◆2/3

and this solution has a vertical tangent
line at x = 0.

(c) Given y

0 =
x

2 + 7x+ 3

y

2
, that y

0(x) does

not exist for a given x if y(x) = 0.
We see that y(x) = 0 if

�3c = x

3 +

✓
21

2

◆
x

2 + 9x

The cubic polynomial on the right, call it
h(x), has its derivative given by
h

0(x) = 3x2 + 21x+ 9 = 3(x2 + 7x+ 3),
and the roots of h0(x) are

x1 =
�7�

p
37

2
⇡ �6.5414

x2 =
�7 +

p
37

2
⇡ �.4586

The e↵ect is that h(x) has a relative max-
imum at x1 and a relative minimum at x2,
and so the equation �3c = h(x) has three
solutions when �3c lies between the rela-
tive minimum and the relative maximum,
i.e., if h(x2) < �3c < h(x1), or when
�h(x1)

3
< c <

�h(x2)

3
Therefore,

c1 = �
 
217 + 37

p
37

12

!
⇡ �36.84

c2 =
�217 + 37

p
37

12
⇡ .67185.

42. (a)

y

5

10

10
x

-5-10 50

(b) When c = c2, h(x) = �3c2
In e↵ect, h(x) + 3c2

= (x� x2)
2

✓
x+

3c2
(x2)2

◆
.

Now, in the solution y(x) to the di↵eren-
tial equation, we have

3y2(x)y0(x) =
d

dx

(y3) =
d

dx

(h(x) + 3c2)

= h

0(x) = (x� x1)(x� x2),

, whiley2(x) = [y3(x)]2/3 = [h(x)+3c2]
2/3

= (x� x2)
4/3(x� x3)

2/3
.

Now we can see that

y

0(x) =
h

0(x)

3y2(x)

=
(x� x1)

3(x� x2)1/3(x� x3)2/3

and this will become unbounded if x ap-
proaches either x2 or x3. These are the
two points of vertical tangency.

(c) Looking at Exercise s 41.(a) and 41.(b),
the denominator of y0 is

3

✓
x

3 +
21

2
x

2 + 9x

◆2/3
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Setting this to 0 gives the equation

x

3 +
21

2
x

2 + 9x = 0

Solving gives x = 0 and

x =
�21± 3

p
33

4
⇡ �9.5584,�0.94158

43. When the given numbers are substituted for
the given symbols, the di↵erential equation be-
comes
x

0 = (.4� x)(.6� x)� .625x2

=
3

8
x

2 � x +
6

25
=

3

8

✓
x� 12

5

◆✓
x� 4

15

◆
.

When separated it takes the form
x

0

(x� b)(x� a)
= r

in which b = 12/5, a = 4/15 < b, and
r = 3/8.
By partial fractions we find

1

(x� b)(x� a)
=

1

(b� a)

⇢
1

(x� b)

1

(x� a)

�

and after integration we find
1

(b� a)
ln

����
x� b

x� a

���� = rt+ c1

or in this case with
b� a = (36/15)� (4/15) = 32/15,

ln

����
x� 12/5

x� 4/15

���� =
32

15

✓
3

8
t+ c1

◆

=
4

5
t+ c2

✓
c2 =

32

15
c1

◆
.

Using the given initial condition
x = .2 = 1/5 when t = 0, we find
c2 = ln |(11/5)/(1/15)| = ln(33),

ln

����
x� 12/5

33 (x� 4/15)

���� =
4

5
t and

x� 12/5

33 (x� 4/15)
= ±e

4t/5 = e

4t/5

(the choice of sign is + since the left side is 1
when x = 1/5).

Concluding the algebra we find
5x� 12

11(15x� 4)
= e

4t/5
,

5x� 12 = 11(15x� 4)e4/5,

x =
12� 44e4t/5

5� 11(15)e4t/5
=

4

5

✓
3� 11e4t/5

1� 33e4t/5

◆
, and

it is apparent that x ! 4

15
as t ! 1.

y

0.2

x

1050

44. The text should read (b) x(0) = 0.6.

In both cases, the general solution to the dif-
ferential equation is as in Exercise 43:

x =
4
�
ke

4t/5 � 3
�

5
�
3ke4t/5 � 1

�

Notice that regardless of initial condition,

lim
t!1

x(t) =
4

15

(a) Using the initial condition x(0) = 0.3
gives k = �21 and the solution is

x =
4
�
�21e4t/5 � 3

�

5
�
�63e4t/5 � 1

�

(b) Using the initial condition x(0) = 0.6
gives k = �1.8 and the solution is

x =
4
�
�1.8e4t/5 � 3

�

5
�
�5.4e4t/5 � 1

�

This situation is impossible because the
initial x(0) = c = 0.6. We are given that
b + c = 0.6 and c = d which means that
c < 0.6, contradicting the initial condi-
tion.

45. After beginning,
x

0 = .6(.5� x)(.6� x)� .4x(0 + x)
= .6(.3� 1.1x+ x

2)� .4x2

= .2x2 � .66x+ .18

=
1

5

✓
x

2 � 33

10
x+

9

10

◆

=
1

5
(x� 3)

✓
x� 3

10

◆
.

The parameters b, a, r are respectively
3, 3/10, 1/5.
We jump ahead to

ln

����
x� 3

x� 3/10

���� =
27

10

✓
t

5
+ c1

◆
=

27

50
t+ c2.

In this case with x = .2 = 1/5 when t = 0, we
find

c2 = ln

����
(1/5)� 3

(1/5)� (3/10)

���� = ln 28,

x� 3

28 (x� 3/10)
= ±e

27/50 = e

27t/50
,
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and the conclusion is

5(x� 3) = 14(10x� 3)e27t/50,

x =
15� 42e27t/50

5� 140e27t/50
=

42� 15e�27t/50

140� 5e�27t/50

=
3

5

✓
14� 5e�27t/50

28� e

�27t/50

◆
.

y

0.2

x

1050

46. x

0(t) = (0.6� x)(0.4� x)� 0.4x(0.1 + x)
x(0) = 0.2

x

0(t)

x

2 � 1.4x+ 0.2
= 1

Z
25

15x2 � 26x+ 6
dx = t+ c

25
p
79

158
ln

�����
15x�

p
79� 13

15x+
p
79� 13

����� = t+ c

15x�
p
79� 13

15x+
p
79� 13

= ce

rt

where r =
158

25
p
79

.

With t = 0 and x = 0.2, you can solve to get
C ⇡ 17.

x =

p
79 + 13 + (

p
79� 13)Ce

rt

15(1� Ce

rt)

47. (a) We find
y

0 = .025y(8�y)� .2 = �.025(y2�8y+8)

= � 1

40
(y � b)(y � a), in which

b = 4 +
p
8, a = 4�

p
8.

This leads to ln

����
y � b

y � a

���� = � 1

40

⇣
2
p
8
⌘
t+

c2

and with y(0) = 8 we have

ln

����
8� b

8� a

���� = c2,

ln

����
(y � b)(8� a)

(y � a)(8� b)

���� =
�t

p
8

20
,

y � b

y � a

=
8� b

8� a

e

�
t

p
8

20
.

We can see that as t ! 1 the right side
goes to zero, hence also the left side, and

hence
y ! b = 4 +

p
8 = 6.828427

This represents an eventual fish popula-
tion of about 682, 800.

(b) We set up the di↵erential equation. In
this case we have to complete the square:
y

0 = 0.025y(8� y)� 0.6
= �0.025(y2 � 8y + 24)

= �0.25[(y � 4)2 + 8]
y

0

(y � 4)2 + 8
= �0.025

Z
1

(y � 4)2 + 8
dy = �0.025t+ c

To integrate, we will use the substitution

u =
y � 4p

8
which gives us

�0.025t+ c =

Z
1

(y � 4)2 + 8
dy

=

Z p
8

8(u2 + 1)
du =

1

2
p
2
tan�1

u

=
1

2
p
2
tan�1

✓
y � 4p

8

◆

Manipulating gives

y = 4 + 2
p
2 tan

 
�t

p
2

20
+ k

!

The initial condition, y(0) = 8 gives us
k = tan�1

p
2 ⇡ 0.9553 and therefore

y = 4 + 2
p
2 tan

 
� t

p
2

20
+ 0.9553

!

And, if you graph y, it is easy to see that
y(27.02) = 0 and therefore the fish all die
o↵ in about 27 years.

48. The equilibrium solutions are the algebraic so-
lutions to the quadratic equation
.025P (8�P )�R = 0, or P 2 � 8P � 40R = 0.
In the process of studying Exercise 47.b
(R = .2) we found it convenient to factor the
left side (P was y at the time) and the roots
were b = 4 +

p
8 and a = 4 �

p
8. In Exer-

cise 47.b, the corresponding equation (R = .6)
would be
0 = P

2 � 8P + 40R = P

2 � 8P + 24.
But this equation has no real roots, hence no
equilibrium populations.

49. P

0 = .05P (8� P )� .6

= � 1

20
(P 2 � 8P + 12)

= � 1

20
(P � 6)(P � 2)

Following well-established procedures, we
come to
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ln

����
P � 6

P � 2

���� = �1

5
t+ c2,

P � 6

P � 2
= Ae

�
t

5
, (A = ±e

c2 or zero)

We learn from this relation that the ratio
(P � 6)/(P � 2) never changes sign, always
negative if the initial condition has P (0) in the
interval (2, 6). Clearly in this case the expo-
nential approaches zero as t ! 1 and P ap-
proaches 6. This last conclusion is true even if
P (0) > 6.

If on the other hand 0  P (0) < 2, the ra-
tio is forever positive, and we find eventually
P � 6

P � 2
=

P (0)� 6

P (0)� 2
e

�t/5
.

Here the right side is a positive decreasing func-
tion of t and so must be the left side. The e↵ect
is that P itself is decreasing (not obvious) and
reaches the value zero when

e

�t/5 = 3
P (0)� 2

P (0)� 6
or when

t = 5 ln
6� P (0)

3[2� P (0)]
= 5 ln

6� P (0)

6� 3P (0)

In the ratio inside the (second) ln, the nu-
merator is clearly more than the denominator,
which is itself positive. This is some moment
of positive time, after which the population is
zero and no further activity occurs.

50. Comparing Exercise’s 47.(b) and 49, we see
that the equations are the same except for the
natural growth rates (0.2 in Exercise 47.b, 0.4
in Exercise 49). The fish in Exercise 64 die
out whereas the fish population in Exercise 49
approaches a limiting population.

51. The di↵erential equation is
r

0(t) = k[r(t)� S]. This separates as
r

0

r � S

= k, and solves as

ln(r � S) = kt+ c.
In this case S = 1000, r(0) = 14,000,
and r(4) = 8,000.
Putting t = 0, we see that the constant c is
ln 13,000, we learn

ln
r � 1000

13,000
= kt,

and putting t = 4,

ln
7

13
= ln

7,000

13,000
= 4k.

Assembling the available information, we find

ln
r � 1000

13,000
= kt =

t

4
(4k) =

t

4
ln

7

13
, and

r = 1,000 + 13,000

✓
7

13

◆
t/4

,

or equivalently r = 1 + 13e�.15476t thousands.

52. The amount of grain is
A(t) = �1000t+ 6000

The di↵erential equation for S(t) is
S

0(t) = 0.02A(t) = �20t+ 120
S(0) = 0,

We solve this to get
S(t) = �10t2 + 120t
S(6) = 360

53. From the di↵erential equation, with z = y

0
/y,

we find z = k(M � y). This is a line in the
(y, z)-plane. The z-intercept is M and the
slope is �k.

We estimate the derivative, y0, at each point
by using the adjacent point and computing the
slope:

t 2 3 4 5
y 1197 1291 1380 1462
y

0 94 89 82
z = y

0
/y 0.073 0.064 0.056

We now plot the (y, z) data and find a slope
and intercept. By looking at the graph or by
picking two points you can see that slope is
about �9.4⇥10�5 and the z-intercept is about
2037. This gives us M ⇡ 2037

54. If y0 = ky(M � y), then by the product rule
y

00 = k[y0(M � y)� yy

0] = ky

0[M � 2y].

This will be zero when y = M/2. In what fol-
lows, we make exception of the two equilibrium
solutions y ⌘ 0 and y ⌘ M . With any other
solution, y 6= 0, y 6= M , and y

0 6= 0. Thus
whatever time t0 (if any) at which y becomes
M/2 is sure to be an inflection time. More-
over, there can be no circumstances of inflec-

tion other than y = M/2. Such a time t0 > 0 is
bound to occur if and only if 0 < y(0) < M/2,
in which case the time t0 is unique.

55. The given di↵erential equation is
dv

dt

= 9.8� 0.002v2

dv

dt

= � 2

1000

�
v

2 � 4900
�

k=� 2

1000
dv

dt

= k (v + 70) (v � 70)

As the value of k is a negative number, the pa-
rameters b and a (b > a) are b = 70 and
a = �70.
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Thus, the solution is

ln

����
v � 70

v + 70

���� = 140kt+ c

Given that v (0) = 0, we find c = 0and
70� v

70 + v

= e

140kt

Because k < 0, the right hand side goes to zero
as t goes to infinity. Therefore, v ! 70.This is
the terminal velocity.

56. The tangent line to y = f(x) at x = a passes
through the point (a, f(a)) with slope f

0(a),
and hence the equation is
y � f(a) = f

0(a)(x� a)

We find the x� and y� intersections of this
line
y = f(a)� af

0(a),

x =
�f(a) + af

0(a)

f

0(a)
and hence the area is

A(a) = [f(a)� af

0(a)] · �f(a) + af

0(a)

f

0(a)

= �1

2


a

2
f

0(a)� 2af(a) +
f(a)2

f

0(a)

�
and

dA

da

= �1

2
[2af 0(a)� 2f(a)]

Setting
dA

da

= 0 we get

2af 0(a) = 2f(a), f 0(a) = f(a)

This means that a curve such that A is the
same for any choice of a > 0 satisfies
y

0(x) = y(x) for all x.
Hence
dy

dx

= y,

dy

y

= dx, ln |y| = x+ c

y = ke

x

7.3 Direction Fields and
Euler’s Method
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1

2

0

1

0
-1

-1

-2

-2

-3

-3

3.

y(x)
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6.

y(x)

x

2

2

1

0
1

-1

-2

0-1-2

7. Field C

8. Field B

9. Field D

10. Field F

11. Field A

12. Field E

13. For h = 0.1:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.0 1 0
1 0.1 1 0.2
2 0.2 1.02 .408
3 0.3 1.0608 .63648

10 1.0 2.334633363 4.669266726
20 2.0 29.49864321 117.9945728

For h = 0.05:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.00 1 0
1 0.05 1 .10
2 0.10 1.0050 .201000
3 0.15 1.01505000 .3045150000

20 1.00 2.510662314 5.021324628
40 2.00 39.09299942 156.3719977

14. For h = 0.1:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.0 2 0
1 0.1 2 0.05
2 0.2 2.005 0.0997506
3 0.3 2.01498 0.148885

10 1.0 2.21504 0.45146
20 2.0 2.80022 0.714229

For h = 0.05:

n x

n

y(x
n

) f(x
n

, y

n

)

0 0.00 2 0
1 0.05 2 0.025
2 0.10 2.00125 0.0499688
3 0.15 2.00375 0.0748597
20 1.00 2.22563 0.449312
40 2.00 2.81443 0.710622

15. First for h = 0.1:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.0 1 3
1 0.1 1.3 3.51
2 0.2 1.651 3.878199
3 0.3 2.0388199 3.998493015
10 1.0 3.847783601 .58569576
20 2.0 3.999018724 0.00392415

For for h = 0.05:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.00 1 3
1 0.05 1.15 3.2775
2 0.10 1.313875 3.529232484
3 0.15 1.490336624 3.740243243
20 1.00 3.818763110 .69210075
40 2.00 3.997787406 0.00884548

16. For h = 0.1:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.0 2 0
1 0.1 2 0.025
2 0.2 2.0025 0.0498752
3 0.3 2.00749 0.0744416
10 1.0 2.10745 0.225158
20 2.0 2.39672 0.348172

For h = 0.05:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.00 2 0
1 0.05 2 0.0125
2 0.10 2.00062 0.0249844
3 0.15 2.00187 0.0374298
20 1.00 2.11272 0.224036
40 2.00 2.40349 0.346214

17. For h = 0.1:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.0 3 �3
1 0.1 2.7 �2.604837418
2 0.2 2.439516258 �2.258247011
3 0.3 2.213691557 �1.954509778
10 1.0 1.300430235 �.6683096762
20 2.0 .9587323942 �0.0940676774

For h = 0.05:
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n x

n

y(x
n

) f(x
n

, y

n

)

0 0.0 3 �3
1 0.05 2.85 �2.801229424
2 0.10 2.709938529 �2.614775947
3 0.15 2.579199732 �2.439907708

20 1.00 1.334942742 �.7028221832
40 2.00 .9795316061 �.1148668893

18. For h = 0.1:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.0 1 0.841471
1 0.1 1.08415 0.873905
2 0.2 1.17154 0.881349
3 0.3 1.25967 0.86199

10 1.0 1.67065 �0.00498132
20 2.0 0.418744 �3.59339

For h = 0.05:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.00 1 0.841471
1 0.05 1.04207 0.860952
2 0.10 1.08512 0.87436
3 0.15 1.12884 0.881416

20 1.00 1.6513 �0.003238
40 2.00 0.291667 �3.71245

19. For h = 0.1:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.0 1 1.0
1 0.1 1.10 1.095445115
2 0.2 1.209544512 1.187242398
3 0.3 1.328268752 1.276036344

10 1.0 2.395982932 1.842819289
20 2.0 4.568765342 2.562960269

For h = 0.05:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.00 1 1
1 0.05 1.05 1.048808848
2 0.10 1.102440442 1.096558454
3 0.15 1.157268365 1.143358371

20 1.00 2.420997836 1.849593965
40 2.00 4.620277218 2.572989937

20. For h = 0.1:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.0 4 4
1 0.1 4.4 4.40114
2 0.2 4.84011 4.84424
3 0.3 5.32454 5.33298

10 1.0 10.3981 10.4461
20 2.0 27.0677 27.1414

For h = 0.05:

n x

n

y(x
n

) f(x
n

, y

n

)

0 0.00 4 4
1 0.05 4.2 4.2003
2 0.10 4.41001 4.41115
3 0.15 4.63057 4.633
20 1.00 10.6384 10.6853
40 2.00 28.326 28.3965

21. (a) The exact solution to Exercise 13 is

y(x) = e

x

2

y(1) ⇡ 2.718281828
y(2) ⇡ 54.59815003

(b) The exact solution to Exercise 14 is

y(x) =
p
x

2 + 4
y(1) ⇡ 2.236067977
y(2) ⇡ 2.828427124

22. (a) The exact solution to Exercise 15 is

y(x) =
4

1 + 3e�4x

y(1) ⇡ 3.791659974
y(2) ⇡ 3.995978495

(b) The exact solution to Exercise 16 is

y(x) =
1

2
(12x2 + 64)1/3

y(1) ⇡ 2.117911792
y(2) ⇡ 2.410142264

23.
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25. Equilibrium solutions come from y

0 = 0, which
only occur when y = 0 or y = 2. From the
direction field, y = 0 is seen to be an unstable
equilibrium and y = 2 is seen to be a stable
equilibrium.

y(x)
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2

1

0

-1

x

32.521.510.50

26. Equilibrium solutions come from y

0 = 0, which
only occur when y = 1. From the direction
field, y = 1 is seen to be an unstable equilib-
rium.
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27. Equilibrium solutions come from y

0 = 0, which
only occur when y = 0 or y = ±1. From the
direction field, y = 0 and y = �1 are seen to
be an unstable equilibrium and y = 1 is seen
to be a stable equilibrium.
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28. Equilibrium solutions come from y

0 = 0, which
only occur when e

�y = 1 or when y = 0. From
the direction field, y = 0 is seen to be a stable
equilibrium.
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29. Equilibrium solutions come from y

0 = 0, which
only occur when y = 1. From the direction
field, y = 1 is seen to be a stable equilibrium.
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y(x)
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0
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32.521.510.50

30. Equilibrium solutions come from y

0 = 0, which
only occur when y

2 = 1 or when y = �1 and
y = 1. From the direction field, y = �1 is seen
to be an unstable equilibrium and y = 1 is seen
to be a stable equilibrium.
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31.

1

−3

y(x)
−2

2

x

3

3
−1

1−1−3
0

20−2

32.

1

−3

y(x)
−2

2

x

3

3

−1

1−1−3
0

20−2

33. Using Euler’s method:

For h = 0.1:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.00 3.0000 8.0000
1 0.10 3.8000 13.4400
2 0.20 5.1440 25.4607
3 0.30 7.6901 58.1372
4 0.40 13.5038 181.3525
5 0.50 31.6390 1000.0295

For h = 0.05:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.00 3.0000 8.0000
1 0.05 3.4000 10.5600
2 0.10 3.9280 14.4292
3 0.15 4.6495 20.6175
4 0.20 5.6803 31.2662
10 0.50 218.1215 47576.0009

For h = 0.01:
n x

n

y(x
n

) f(x
n

, y

n

)

0 0.00 3.0000 8.0000
1 0.01 3.0800 8.4864
9 0.09 3.9396 14.5203
10 0.10 4.0848 15.6855
20 0.20 6.5184 41.4900
21 0.21 6.9333 47.0711
30 0.30 15.8434 250.0139

x Exact

0.000 3.0000
0.100 4.1374
0.200 6.8713
0.300 21.4869
0.400 �18.7351
0.500 �6.5688

34. The first part is just a matter of checking:

f

0(x) = [f(x)]2 � 1 =
8e2x

(2� e

2x)2

For the second part,
f(0.1) ⇡ 4.1374
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f(0.2) ⇡ 6.8713
f(0.3) ⇡ 21.4869
f(0.4) ⇡ �18.7351
f(0.5) ⇡ �6.5688

35. The vertical asymptote in the solution occurs
when the denominator vanishes, which is to say
when e

2x = 1/k, or x = � ln(k)/2. In our case,
with y(0) = 3, we have k = 1/2 and the verti-
cal asymptote at x = ln(2)/2 = .3466.

The field diagram cannot give any fore-warning
of the vertical asymptote. Dependent as the
field equations are only on y, they can only hint
at things which likewise depend on y. The loca-
tion of the vertical asymptote, by its very na-
ture an x-measurement, is instead dependent
directly on the solution-parameter k and indi-
rectly on the initial condition.

In this case where the actual x-value does
not enter the calculations, the Euler process
merely generates the numbers in the recursive
sequence y

n

= hy

2
n�1 + y

n�1 � h subject to an
initial condition of y

o

= 3. The numbers in
such a sequence will increase to infinity, with
growth rate depending on h. The simultaneous
determination of x

n

through the law x

n

= hn

has nothing to do with the geometry of the so-
lution to the di↵erential equation. “Jumping
over the asymptote” is the pseudo-event which

happens when n passes from below
.3466

h

to

above, has no special relation to the Euler y-
numbers, and no relation whatever to the so-
lution of the di↵erential equation.

y(x)
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-1

-2

x
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36. When x moves across the vertical asymptote,
the values for y change from positive to nega-
tive.

This means that if y represents force on a robot
arm then it doesn’t make sense for the force
to approach infinity in a finite amount of time
(which is what the vertical asymptote repre-
sents). The Euler approximation with a small

step size probably gives a better idea of the
actual force that the robot arm will actually
encounter.

37. For h = 1
x Euler Exact Error

0 1 4 3
0.1 3.33333333 4.5301951 1.1968618
0.2 3.85185185 5.0420817 1.19022993
0.3 4.38445358 5.5197958 1.1353422
0.4 4.91286010 5.9516999 1.03883983
0.5 5.41841632 6.3311318 0.91271546
0.6 5.88468616 6.6561471 0.77146092
0.7 6.29961809 6.9285769 0.628959
0.8 6.65667665 7.152808 0.49613166
0.9 6.9547456 7.3346184 0.37987281
1 7.19706156 7.4802467 0.28318508

1.1 7.38968814 7.595759 0.20607056
1.2 7.54002195 7.6866742 0.14665227
1.3 7.65563011 7.7577945 0.10216436
1.4 7.74350906 7.8131639 0.06965481
1.5 7.80971372 7.8561103 0.0463966
1.6 7.85924977 7.8893249 0.03007510
1.7 7.89612281 7.9149552 0.01883258
1.8 7.9234637 7.9346994 0.01123572

For h = 0.1
x Euler Exact Error

0 1 4 3
0.1 1.23333333 4.53019515 3.2968618
0.2 1.51151852 5.04208178 3.53056327
0.3 1.83843385 5.51979585 3.681362
0.4 2.21602156 5.95169993 3.73567836
0.5 2.64326894 6.33113178 3.68786284
0.6 3.11524497 6.65614708 3.54090211
0.7 3.62248525 6.92857689 3.3060916
0.8 4.15106801 7.15280830 3.0017403
0.9 4.68364062 7.33461843 2.65097781
1 5.20139514 7.48024665 2.27885151

1.1 5.6866168 7.5957587 1.9091419
1.2 6.12512759 7.68667421 1.56154663
1.3 6.50792201 7.75779446 1.24987245
1.4 6.83159959 7.81316387 0.98156428
1.5 7.09766771 7.8561103 0.75844261
1.6 7.31114954 7.88932487 0.57817533
1.7 7.47902583 7.91495539 0.43592956
1.8 7.60890514 7.93469943 0.32579429

The smaller we make h (Time Step) the more
accurate approximation at a given point tends
to be. As well the smaller the value of h the
more steps it takes to reach a given value of x.

38. f (x) = x

2 � 2, f 0 (x) = 2x
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Use f (x) and f

0 (x) in x

0 (t) = � f (x (t))

f

0 (x (t))
.

x

0 (t) = �

h
(x (t))2 � 2

i

2x (t)
Let x (t) = z.

x

0 (t) =
dz

dt

dz

dt

= �
⇥
z

2 � 2
⇤

2z

Hence,
2z

2� z

2
dz = dt

Integrate both sides.
� ln

�
2� z

2
�
= t+ c1

2� z

2 = ce

�t where c = e

�c1

z =
p
2� ce

�t

x (t) =
p
2� ce

�t

x (0) = 1 ) 1 =
p
2� c (1)

c = 1
Therefore, x (t) =

p
2� e

�t

.

lim
x!1

x (t) = lim
x!1

p
2� e

�t

=
p
2� 0

�
As t ! 1, e

�t ! 0
�

=
p
2

Euler’s Method
y1 = y0 +

R
x1

x0
f (x, y) dx

is used to solve
dy

dx

= f (x, y)

x1 = x0 + h

y1 = y0 + hf (x0, y0)
Subsequently,
y

n+1 = y

n

+ hf (x
n

, y

n

)

y

n+1 = y

n

+ h

dy

dx

����
x=x

n

y

n+1 � y

n

dy

dx

���
x=x

n

= h

While solving for y=0 in Newton’s Method, we
make an assumption that y

n+1 = 0 Hence ,
�y

n

dy

dx

���
x=x

n

= h

x

n+1 = x

n

+ h = x

n

� y

n

dy

dx

���
x=x

n

This is Newton’s Method.

39. The general solution is

y =
x

3

3
� 2x2 + 2x+ c.

Using the initial condition y(3) = 0 gives
y(0) = c = 3 and therefore

y =
x

3

3
� 2x2 + 2x+ 3

−1

−2

x
2 3

1

4

0

51

3

y(x) 2

40

40. Integrating gives

y =
1

4
� 13

16
ln(4x+ 1) + c

Using the initial condition y(8) = 1 gives

c = �1 +
13

16
ln 33 and therefore

y =
1

4
� 13

16
ln(4x + 1) � 1 +

13

16
ln 33 y(0) ⇡

1.8409

x
21.510.50-0.5

y(x)

-1

6

4

2

0

-2

41. Using a CAS gives y(0) ⇡ �5.55.

y(x)

0

-1

-2

-3

-4

-5

-6

-7

x

6543210

42. Using a CAS gives y(0) ⇡ 9.6832.
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-10

y(x)

10

8

6

4

2

0

-2
x

1050-5

43. The equilibrium solutions are the constant so-
lutions to the DE. If indeed g is a certain con-
stant k, then
0 = g

0 = �k + 3k2/(1 + k

2) = �k(k2 � 3k +
1)/(k2 + 1). Thus k = 0 is clearly one solu-
tion, while the two roots of the quadratic in
the numerator are also solutions. These are
the numbers

a =
3�

p
5

2
⇡ .3820 and

b =
3 +

p
5

2
⇡ 2.6810.

Of the three, 0 and b are stable, while a is un-
stable. As a result of this stability feature,
lim
t!1

g(t) = 0 if 0  g(0) < a, while

lim
t!1

g(t) = b if a < g(0).

As the problem evolves, g depends not only on
time t, but on a certain real parameter x. We
could write g = g

x

(t), and the dependence on
x is through the initial condition:

g

x

(0) =
3

2
+

3 sin(x)

2
.

With x restricted to the interval [0, 4⇡] (4⇡ be-
ing about 12.5664), the first event (g

x

(0) < a,
equivalently lim

t!1
g

x

(t) = 0, equivalently even-

tual black - stripe zone) occurs when x lies
in one of the two intervals (3.9827, 5.4421) or
(10.2658, 11.7253). More precisely, these are
the intervals with endpoints

3⇡

2
± cos�1

 p
5

3

!
and

7⇡

2
± cos�1

 p
5

3

!
.

y(x)

5

4

3

2

1

0

-1
x

32.521.510.50

44. If k = 10 then the di↵erential equation be-
comes

x

0 =
�0.01x(x3 � 10x2 + 101x� 10)

1 + x

2

It is clear that x = 0 is a solution. The other
solution(s) come from solving
g(x) = x

3 � 10x2 + 101x� 10 = 0

Notice that g0(x) = 3x2 � 20x+ 101 and
g

0(x) = 0 has no real solutions (use the
quadratic formula). This means that g

0(x) is
always positive and g(x) is always increasing,
which means there is exactly one real solution
to g(x) = 0. By graphing (or using Newton’s
method, for example), one case see that an
equilibrium solution is x = 0.0999899 and this
must be the only solution.

If k = 50, then the di↵erential equation be-
comes

x

0 =
�0.002x(x3 � 50x2 + 501x� 50)

1 + x

2

Again, x = 0 is a solution, and the other solu-
tions come from solving
g(x) = x

3 � 50x2 + 501x� 50 = 0
If you graph g(x), you can see that there are
now three positive solutions x ⇡ 0.10081, x ⇡
13.7018, x ⇡ 36.1974. If we look at the direc-
tion field, notice that the middle equilibrium
solution (x = 36.2) is unstable—a small de-
crease in population will send the population to
the lower equilibrium solution whereas a small
increase in population will send the population
towards the higher equilibrium solution.
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x(t)

40

30

t

20

10

1
0

0.50-0.5-1

7.4 Systems of First-
Order Di↵erential
Equations

1. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = 0.2x� 0.2x2 � 0.4xy
0 = �0.1y + 0.2xy
0 = x(0.2� 0.2x� 0.4y)
0 = y(�0.1 + 0.2x)
x = 0 or 0.2� 0.2x� 0.4y = 0
y = 0 or x = 0.5
The equilibrium points are
(0, 0), corresponding to the case where there
are no predators or prey
(1, 0), corresponding to the case where there
are 200 prey but no predators
(0.5, 0.25), corresponding to the having both
populations constant, with two times as many
prey as predators.

2. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = 0.4x� 0.1x2 � 0.2xy
0 = �0.2y + 0.1xy
0 = x(0.4� 0.1x� 0.2y)
0 = y(�0.2 + 0.1x)
x = 0 or 0.4� 0.1x� 0.2y = 0
y = 0 or x = 2
The equilibrium points are
(0, 0), corresponding to the case where there
are no predators or prey
(4, 0), corresponding to the case where there
are 400 prey but no predators
(2, 1), corresponding to the having both popu-
lations constant, with two times as many prey
as predators.

3. Equilibrium points are those that satisfy

x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = 0.3x� 0.1x2 � 0.2xy
0 = �0.2y + 0.1xy
0 = x(0.3� 0.1x� 0.2y)
0 = y(�0.2 + 0.1x)
x = 0 or 0.3� 0.1x� 0.2y = 0
y = 0 or x = 2
The equilibrium points are
(0, 0), corresponding to the case where there
are no predators or prey
(3, 0), corresponding to the case where there
are 300 prey but no predators
(2, 0.5), corresponding to the having both pop-
ulations constant, with four times as many
prey as predators.

4. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = 0.1x� 0.21x2 � 0.4xy
0 = �0.1y + 0.2xy
0 = x(0.1� 0.1x� 0.4y)
0 = y(�0.1 + 0.2x)
x = 0 or 0.1� 0.1x� 0.4y = 0
y = 0 or x = 0.5
The equilibrium points are
(0, 0), corresponding to the case where there
are no predators or prey
(1, 0), corresponding to the case where there
are 100 prey but no predators
(0.5, 0.125), corresponding to the having both
populations constant, with four times as many
prey as predators.

5. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = 0.2x� 0.1x2 � 0.4xy
0 = �0.3y + 0.1xy
0 = x(0.2� 0.1x� 0.4y)
0 = y(�0.3 + 0.2x)
x = 0 or 0.2� 0.1x� 0.4y = 0
y = 0 or x = 1.5
The equilibrium points are
(0, 0), corresponding to the case where there
are no predators or prey
(2, 0), corresponding to the case where there
are 200 prey but no predators
(1.5, 0.125), corresponding to the having both
populations constant, with twelve times as
many prey as predators.

6. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
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equations, we have
0 = 0.2x� 0.1x2 � 0.4xy
0 = �0.2y + 0.1xy
0 = x(0.2� 0.1x� 0.4y)
0 = y(�0.2 + 0.1x)
x = 0 or 0.2� 0.1x� 0.4y = 0
y = 0 or x = 2
The equilibrium points are
(0, 0), corresponding to the case where there
are no predators or prey
(2, 0), corresponding to the case where there
are 200 prey but no predators.

7. In Exercise 1,
dy

dx

=
0.2x� 0.2x2 � 0.4xy

�0.1y + 0.2xy
From the following phase portrait, we observe
that
(0, 0) is an unstable equilibrium,
(1, 0) is a stable equilibrium,
(0.5, 0.25) is an unstable equilibrium.

y(x)

1

0.8

0.6

0.4

0.2

0

x

10.80.60.40.20

8. In Exercise 2,
dy

dx

=
0.4x� 0.1x2 � 0.2xy

�0.2y + 0.1xy
From the following phase portrait, we observe
that
(0, 0) is an unstable equilibrium,
(4, 0) is a stable equilibrium,
(2, 1) is an unstable equilibrium.

y(x)

2

1.5

1

0.5

0

x

43210

9. In Exercise 5,

dy

dx

=
0.2x� 0.1x2 � 0.4xy

�0.3y + 0.1xy
From the following phase portrait, we observe
that
(0, 0) is an unstable equilibrium,
(2, 0) is an unstable equilibrium,
(1.5, 0.125) is a stable equilibrium.

y(x)

1

0.8

0.6

0.4

0.2

0

x

21.510.50

10. In Exercise 6,
dy

dx

=
0.2x� 0.1x2 � 0.4xy

�0.2y + 0.1xy
From the following phase portrait, we observe
that
(0, 0) is an unstable equilibrium,
(2, 0) is a stable equilibrium.

y(x)

0.5

0.4

0.3

0.2

0.1

0

x

21.510.50

11. The point (0, 0) is an unstable equilibrium.

12. The point (0.5, 0.5) is a stable equilibrium.

13. The point (0.5, 0.5) is a stable equilibrium.

14. The point (1, 0) is a stable equilibrium.

15. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = 0.3x� 0.2x2 � 0.1xy
0 = 0.2y � 0.1y2 � 0.1xy

0 = x(0.3� 0.2x� 0.1y)
0 = y(0.2� 0.1y � 0.1x)

x = 0 or 0.3� 0.2x� 0.1y = 0
y = 0 or 0.2� 0.1y � 0.1x = 0
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x = 0 or 2x+ y = 3
y = 0 or x+ y = 2

The equilibrium points are
(0, 0), corresponding to the case where neither
species exists,
(0, 2), corresponding to the case where species
Y exists but species X does not,
(1.5, 0), corresponding to the case where
species X exists but species Y does not,
(1, 1), corresponding to the have both species
exist, with species Y as many as species X.

16. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = 0.4x� 0.1x2 � 0.2xy
0 = 0.5y � 0.4y2 � 0.1xy

0 = x(0.4� 0.1x� 0.2y)
0 = y(0.5� 0.4y � 0.1x)

x = 0 or 0.4� 0.1x� 0.2y = 0
y = 0 or 0.5� 0.4y � 0.1x = 0

x = 0 or x+ 2y = 4
y = 0 or x+ 4y = 5

The equilibrium points are
(0, 0), corresponding to the case where neither
species exists,
(0, 1.25), corresponding to the case where
species Y exists but species X does not,
(4, 0), corresponding to the case where species
X exists but species Y does not,
(3, 0.5), corresponding to the have both species
exist, with species X six times as many as
species Y .

17. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = 0.3x� 0.2x2 � 0.2xy
0 = 0.2y � 0.1y2 � 0.2xy

0 = x(0.3� 0.2x� 0.2y)
0 = y(0.2� 0.1y � 0.2x)

x = 0 or 0.3� 0.2x� 0.2y = 0
y = 0 or 0.2� 0.1y � 0.2x = 0

x = 0 or x+ y = 1.5
y = 0 or 2x+ y = 2

The equilibrium points are
(0, 0), corresponding to the case where neither
species exists,
(0, 2), corresponding to the case where species
Y exists but species X does not,
(1.5, 0), corresponding to the case where
species X exists but species Y does not,

(0.5, 1), corresponding to the have both species
exist, with species Y twice as many as species
X.

18. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = 0.4x� 0.3x2 � 0.1xy
0 = 0.3y � 0.2y2 � 0.1xy

0 = x(0.4� 0.3x� 0.1y)
0 = y(0.3� 0.2y � 0.1x)

x = 0 or 0.4� 0.3x� 0.1y = 0
y = 0 or 0.3� 0.2y � 0.1x = 0

x = 0 or 3x+ y = 4
y = 0 or x+ 2y = 3

The equilibrium points are
(0, 0), corresponding to the case where neither
species exists,
(0, 1.5), corresponding to the case where
species Y exists but species X does not,
(4/3, 0), corresponding to the case where
species X exists but species Y does not,
(1, 1), corresponding to the have both species
exist, with species Y as many as species X.

19. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = 0.2x� 0.2x2 � 0.1xy
0 = 0.1y � 0.1y2 � 0.2xy

0 = x(0.2� 0.2x� 0.1y)
0 = y(0.1� 0.1y � 0.2x)

x = 0 or 0.2� 0.2x� 0.1y = 0
y = 0 or 0.1� 0.1y � 0.2x = 0

x = 0 or 2x+ y = 2
y = 0 or 2x+ y = 1

The equilibrium points are
(0, 0), corresponding to the case where neither
species exists,
(0, 1), corresponding to the case where species
Y exists but species X does not,
(1, 0), corresponding to the case where species
X exists but species Y does not.

20. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = 0.1x� 0.2x2 � 0.1xy
0 = 0.3y � 0.2y2 � 0.1xy

0 = x(0.1� 0.2x� 0.1y)
0 = y(0.3� 0.2y � 0.1x)

x = 0 or 0.1� 0.2x� 0.1y = 0
y = 0 or 0.3� 0.2y � 0.1x = 0



434 CHAPTER 7. FIRST-ORDER DIFFERENTIAL EQUATIONS

x = 0 or 2x+ y = 1
y = 0 or x+ 2y = 3

The equilibrium points are
(0, 0), corresponding to the case where neither
species exists,
(0, 1.5), corresponding to the case where
species Y exists but species X does not,
(0.5, 0), corresponding to the case where
species X exists but species Y does not.

21. In Exercise 15,
dy

dx

=
0.3x� 0.2x2 � 0.1xy

0.2y � 0.1y2 � 0.1xy
From the following phase portrait, we observe
that
(0, 0) is an unstable equilibrium,
(0, 2) is an unstable equilibrium,
(1.5, 0) is an unstable equilibrium,
(1, 1) is a stable equilibrium.

y(x)

2

1.5

1

0.5

0

x

1.61.20.80.40

22. In Exercise 16,
dy

dx

=
0.4x� 0.1x2 � 0.2xy

0.5y � 0.4y2 � 0.1xy
From the following phase portrait, we observe
that
(0, 0) is an unstable equilibrium,
(0, 1.25) is an unstable equilibrium,
(4, 0) is a stable equilibrium,
(3, 0.5) is a stable equilibrium.

y(x)

2

1.5

1

0.5

0

x

43210

23. (a)

 

1

0.8

0.6

0.4

0.2

 
10.80.60.40.2

(b)

 

0.4

0.35

0.3

0.25

0.2

 
0.60.50.40.30.2

(c)

 

1

0.8

0.6

0.4

0.2

0

 
10.80.60.40.20

24. (a)

y

0.9

0.8

0.7

0.6

0.5

x

10.90.80.70.60.5

(b)
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y

1

0.9

0.8

0.7

0.6

0.5

0.4

x

10.80.60.40.2

(c)

y

2

1.6

1.2

0.8

x

4E-202E-200E0-2E-20-4E-20

25. Write u = y, v = y

0. We then have
u

0 = v

v

0 = �2xv � 4u+ 4x2

26. Write u = y, v = y

0. We then have
u

0 = v

v

0 = 3v � 3
p
xu+ 4

27. Write u = y, v = y

0. We then have
u

0 = v

v

0 = cosx v � xu

2 + 2x

28. Write u = y, v = y

0. We then have
u

0 = v

v

0 =
�3v2 + u+ 2x

x

29. Write u1 = y, u2 = y

0, and u3 = y

00,
u

0
1 = u2

u

0
2 = u3

u

0
3 = �2xu3 + 4u2 � 2u1 + x

2

30. Write u1 = y, u2 = y

0, and u3 = y

00,
u

0
1 = u2

u

0
2 = u3

u

0
3 = 2x2

u2 � u

2
1 + 2

31. Write u1 = y, u2 = y

0
, u3 = y

00
, u4 = y

000,
u

0
1 = u2

u

0
2 = u3

u

0
3 = u4

u

0
4 = 2u4 � xu2 + 2� e

x

32. Write u1 = y, u2 = y

0
, u3 = y

00
, u4 = y

000,
u

0
1 = u2

u

0
2 = u3

u

0
3 = u4

u

0
4 = 2u3u2 � (cosx)u2

1

33. An approximate solution is
x(1) ⇡ 0.253718, y(1) ⇡ 0.167173.
n x

n

y

n

0 0.2 0.2
1 0.2048 0.1964
2 0.2097201152 0.19287422728
3 0.2147629013 0.1894212388
5 0.2252268589 0.1827279868
10 0.2537179001 0.1671729953

34. An approximate solution is
x(1) ⇡ .252044, y(1) ⇡ .23354.
n x

n

y

n

0 0.2 0.2
1 .2048 .2032
2 .2096889856 .2064349440
3 .2146673944 .2097046177
5 .2248939443 .2163471744
10 .2520442475 .2335415381

35. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = (x2 � 4)(y2 � 9)
0 = x

2 � 2xy

0 = (x+ 2)(x� 2)(y + 3)(y � 3)
0 = x(x� 2y)

x = 2, x = �2, y = 3, y = �3
x = 0, x = 2y

The equilibrium points are
(2, 1), (�2,�1), (6, 3), (�6,�3), (0, 3), (0,�3).

36. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = (x� y)(1� x� y)
0 = 2x� xy = x(2� y)

x = y or x+ y = 1
x = 0 or y = 2

The equilibrium points are
(0, 0), (2, 2), (0, 1), (�1, 2).

37. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = (2 + x)(y � x)
0 = (4� x)(x+ y)
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x = �2 or x = y

x = 4 or x = �y

The equilibrium points are
(0, 0), (�2, 2), (4, 4).

38. Equilibrium points are those that satisfy
x

0(t) = 0 and y

0(t) = 0. Substituting into the
equations, we have
0 = �x+ y

0 = y + x

2

0 = 0� 0 = (y + x

2)� (�x+ y) = x

2 � x

x(x� 1) = 0, x = 0 or x = 1

When x = 0, y = 0

and when x = 1, y = �1

The equilibrium points are (0, 0), (1,�1).

39.

0.5

4

0.0

2

y(x)

0

−1.0 −0.5
x

1.0

−2

40.

x

y(x)

−1

0.5

0.0

−2

−1.0

1

−0.5

20

1.0

41. For equilibrium solutions, set x

0 = y

0 = 0 to
get
0 = 0.4x� 0.1x2 � 0.2xy
0 = �0.5y + 0.1xy

0 = 0.1x(4� x� 2y)
0 = 0.1y(�5 + x)

Equilibrium points are (0, 0), (4, 0).
Neither of these solutions has non-zero values
for both populations, so the species cannot co-
exist. Now suppose that the death rate of

species Y is D instead of 0.5, and let us search
for equilibrium solutions where both popula-
tion values are non-zero. The equations are
now
x

0 = 0.4x� 0.1x2 � 0.2xy
y

0 = �Dy + 0.1xy

where D > 0. 0 = 0.1x(4� x� 2y)
0 = 0.1y(x� 10D)

Since we are searching for non-zero solutions,
0 = 4� x� 2y
0 = x� 10D

Solving the second equation gives x = 10D,
and substituting this expression into the first
equation gives
0 = 4� 10D � 2y = 2� 5D � y

y = 2� 5D

The equilibrium solution for y will be positive
provided that 2 � 5D > 0, which means that
D < 0.4.

42. Continuing the computation in the solution to
Exercise 43. Suppose that the birth rate of
species X is B instead of 0.4, and let us search
for equilibrium solutions where both popula-
tion values are non-zero. The equations are
now
x

0 = Bx� 0.1x2 � 0.2xy
y

0 = �0.5y + 0.1xy

where B > 0. 0 = x(B � 0.1x� 0.2y)
0 = y(�0.5 + 0.1x)

Since we are searching for non-zero solutions,
0 = B � 0.1x� 0.2y
0 = �5 + x

Solving the second equation gives x = 5, and
substituting this expression into the first equa-
tion gives
0 = B � 0.5� 0.2y
y = 5B � 2.5

The equilibrium solution for y will be positive
provided that 5B � 2.5 > 0, which means that
B > 0.5.

43. Assume that all coe�cients are positive. The
equations that define equilibrium are
0 = x(b� cx� k1y)
0 = y(�d+ k2y)

For the species to coexist, both x and y must
be nonzero, and so the equations reduce to
0 = b� cx� k1y

0 = �d+ k2y

Solving the second equation, we get y =
d

k2
.

Substituting the result into the first equation,



CHAPTER 7 REVIEW EXERCISES 437

0 = b� cx� k1
d

k2

cx = b� dk1

k2
=

bk2 � dk1

k2

x =
bk2 � dk1

ck2

Thus, x > 0 if and only if bk2�dk1 > 0, which
is equivalent to bk2 > dk1.

44. Assume that c = 0, the model becomes
x

0 = bx� k1xy

y

0 = �dy + k2xy

For the species to coexist, we look for nonzero
equilibrium solutions to
0 = bx� k1xy = x(b� k1y)
0 = �dy + k2xy = y(�d+ k2x)

which gives
0 = b� k1y, 0 = �d+ k2x

y =
b

k1
, x =

d

k2
.

If the pesticide is used, b will be reduced and d

will be increased. This means that the equilib-
rium population for the pest will be increases,
while that for the predator will be decreases.
This is not a desired e↵ect of the pesticide.

Ch. 7 Review Exercises

1. We separate variables and integrate.
1

y

y

0 = 2
Z

1

y

dy =

Z
2 dx

ln |y| = 2x+ c

y = ke

2x

The initial condition gives 3 = k so the solution
is y = 3e2x

2. We separate variables and integrate.
1

y

y

0 = �3
Z

1

y

dy =

Z
�3 dx

ln |y| = �3x+ c

y = Ae

�3x

The initial condition gives us 2 = A so the so-
lution is y = 2e�3x

3. We separate variables and integrate.
yy

0 = 2xZ
y dy =

Z
2x dx

y

2

2
= x

2 + c

y =
p

2x2 + c

The initial condition gives us 2 =
p
c, c = 4 so

the solution is y =
p
2x2 + 4

4. We separate variables and integrate.

� 1

y

2
y

0 = 3x

�
Z

1

y

2
dy =

Z
3x dx

1

y

=
3x2

2
+ c

y =
2

3x2 + 2c

The initial condition gives us 4 =
2

2c

so the solution is y =
2

3x2 + 1/2

5. We separate variables and integrate.
1
p
y

y

0 =
p
x

Z
y

�1/2
dy =

Z
x

1/2
dx

2y1/2 =
2

3
x

3/2 + c

y =

✓
x

3/2

3
+ c

◆2

The initial condition gives us

4 =

✓
1

3
+ c

◆2

, c =
5

3

so the solution is y =

✓
x

3/2

3
+

5

3

◆2

6. We separate variables and integrate.
1

1 + y

2
y

0 = x

Z
1

1 + y

2
dy =

Z
x dx

tan�1
y =

x

2

2
+ c

y = tan

✓
x

2

2
+ c

◆

The initial condition gives us 1 = tan c

so the solution is y = tan

✓
x

2

2
+

⇡

4

◆

7. With t measured in hours, we have
y = Ae

kt, A = y(0) = 104.

If the doubling time is 2, then
2 = e

2k, k = ln(2)/2, and
y = 104et ln(2)/2 = 1042t/2.

To reach y = 106 at a certain unknown time t,
we need
2t/2 = 100,

t =
2 ln(100)

ln(2)
⇡ 13.3 hours.
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8. Assuming that the growth is exponential, we
have y(t) = Ae

kt.

Since the population at t = 0 is 100, we have
A = 100.

y(2) = 140 allows us to solve for k:

140 = 100e2k, or k =
1

2
ln(7/5).

Population at t = 6 is
y(6) = 100e6(1/2) ln(7/5) = 274.4

9. With t measured in hours, x in milligrams, we
get

x = 2

✓
1

2

◆
t/2

=
2

2t/2
.

To get to x = .1 at a certain unknown time t,
we need

2t/2 =
2

.1
= 20,

t =
2 ln(20)

ln(2)
⇡ 8.64 hours.

10. The relationship between half-life (⌧) and the
growth constant (r) is

⌧ = � ln 2

r

(see Exercise 18 of Section 6.1).

Therefore, our growth constant is

r = � ln 2

3
The proportion of material left after 9 hours is

e

9r =
1

8
(= 12.5%).

The proportion of material left after 11 hours
is e11r ⇡ 0.07874 (⇡ 7.874%).

11. The equation for the doubling time t

d

in this
case is
2 = e

.08t
d , hence

t

d

=
ln(2)

.08
⇡ 8.66 years.

12. With continuous compounding, this invest-
ment will be worth
$4000e(0.06)(10) ⇡ $7288.48

13. For temperature T at time t, and ambient tem-
perature T

a

, we have
T � T

a

T (0)� T

a

= e

kt

.

In this case with T

a

= 68, T (0) = 180 and
T (1) = 176, we have
108

112
=

176� 68

180� 68
= e

k

,

k = ln

✓
108

112

◆
= ln

✓
27

28

◆
,

T � 68

112
= e

tk = e

t ln(27/28) =

✓
27

28

◆
t

,

T = 68 + 112

✓
27

28

◆
t

.

To reach T = 120 at unknown time t, we need

t =
ln(52/112)

ln(27/28)
⇡ 21.1 minutes.

14. Let y(t) represent the temperature of the drink.
We start with the di↵erential equation
y

0(t) = k[y(t)� 70]
This has solution y(t) = Ae

kt + 70.
We now find constants A and k. The ini-
tial condition is y(0) = 46 and we also know
y(4) = 48.
46 = y(0) = A+ 70
48 = y(4) = Ae

4k + 70
This tells us that A = �24 and
k = [ln(11/12)]/4.
To determine when y(t) = 58 we solve
58 = �24ekt + 70
Solving gives

t = � ln 2

k

⇡ 127 minutes.

So, just over 2 hours.

15.

y

0

y

= 2x3

ln |y| = x

4

2
+ c

y = Ae

x

4
/2

16.

1

y

y

0 =
1p

1� x

2Z
1

y

dy =

Z
1p

1� x

2
dx

ln |y| = sin�1
x+ c

y = Ae

sin�1
x

17. (y2 + y)y0 =
4

1 + x

2Z
(y2 + y) dy =

Z
41 + x

2
dx

y

3

3
+

y

2

2
= 4 tan�1

x+ c

It is impossible (without using a CAS) to write
out the explicit formula of y in terms of x.

18. e

�y

y

0 = e

x

�
Z

e

�y

dy =

Z
�e

x

dx

e

�y = �e

x + c

y = ln(c� e

x)

19. Equilibrium solutions occur where y

0 = 0
which occurs when y = 0 and y = 2. y = 0
is unstable and y = 2 is stable which can be



CHAPTER 7 REVIEW EXERCISES 439

seen by drawing the direction field.

 

3

2

1

0

-1

 
321-1-2-3

20. Equilibrium solutions occur where y

0 = 0
which occurs when y = 0, y = 1 and y = �1.
y = 0 is unstable and y = �1 and y = 1 are
both stable which can be seen by drawing the
direction field.

 

1

0.5

0

-0.5

-1

 
321-1-2-3

21. Equilibrium solutions occur where y

0 = 0
which occurs when y = 0, and it is stable.

 

1

0.5

0

-0.5

-1

 
321-1-2-3

22. We have y

0 =
y(y � 3)

y � 1
.

Equilibrium solutions occur where y

0 = 0
which occurs when y = 0 and y = 3, both
unstable.

 

1

0.5

0

-0.5

-1

 
321-1-2-3

23.

 

1

0.5

0

-0.5

-1

 
321-1-2-3

24.

 

1

0.5

0

-0.5

-1

 
321-1-2-3

25.

 

3

2

1

0

-1

-2

-3

 
321-1-2-3

26.
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3

2

1

0

-1

-2

-3

 
321-1-2-3

27. The di↵erential equation is
x

0 = (.3� x)(.4� x)� .25x2

= .12� .7x+ .75x2

=
3

4
(x2 � 14

15
x+

4

25
)

=
3

4
(x� r)(x� s). in which

r =
7 +

p
13

15
, s =

7�
p
13

15
,

r � s =
2
p
13

15
.

When separated it takes the form
x

0

(x� r)(x� s)
= k

in which k = 3/4.

By partial fractions we find
1

(x� r)(x� s)

=
1

(r � s)

⇢
1

(x� r)

1

(x� s)

�

and after integration we find
1

(r � s)
ln

����
x� r

x� s

���� = kt+ c1 or in this case

ln

����
x� r

x� s

���� =
2
p
13

15

✓
3

4
t+ c1

◆
= wt+ c2

 
w =

p
13

10
⇡ .36056, c2 =

2
p
13

15
c1

!
.

Using the initial condition x(0) = c, we find
c2 = ln |(c� r)/(c� s)|,

ln

����
(c� s)(x� r)

(c� r)(x� s)

���� = wt and

x� r

x� s

= ±c� r

c� s

e

wt =
c� r

c� s

e

wt

,

x =
s(r � c)ewt + r(c� s)

(r � c)ewt + (c� s)

=

r

✓
c� s

r � c

◆
e

�wt + s

✓
c� s

r � c

◆
e

�wt + 1

The choice of sign is + since the left side of the

middle equation is (c � r)/(c � s) when t = 0
and x = c. The last expression is one of many
possible ways to normalize. It is apparent that
x ! s ⇡ .22630 as t ! 1 Numerically, when
c = 0.1, this comes to

x =
.22630� .14710e�.36056t

1� .20806e�.36056t
. and the graph

looks like

20151050

 

0.4

0.2

 

When c = 0.4, this comes to

x =
.22630 + .39999e�.36056t

1 + .56574e�.36056t
. and the graph

looks like

 
20151050

 

0.4

0.2

28. The equilibrium solutions are where x

0(t) = 0,
or when
0 = (0.3� x)(0.4� x)� 0.25x2

= 0.75x2 � 0.7x+ 0.12

We can solve this using the quadratic formula:

x =
0.7±

p
(�0.7)2 � 4(0.75)(0.12)

2(0.75)
⇡ 0.22630, 0.70704

These are our equilibrium solutions.
x = 0.22630 is a stable equilibrium.
x = 0.70703 is an unstable equilibrium.
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x(t)

t

1

3

0.8

0.6

2

0.4

0.2

1
0
0-1-2

29. The DE
x

0

(x� a)2
= r integrates to

�1

x� a

= rt+ c. and then

c =
1

a

,

x� a =
�1

c+ rt

=
�a

1 + art

,

x = a

✓
1� 1

1 + art

◆
=

a

2
rt

1 + art

.

One can see that all values of x lie between
0 and a, and that lim

t!1
x(t) = a All the ini-

tial amounts of the A,B substances (both a in
this case) will eventually be converted to the X
substance which ultimately will have the same
concentration as the original concentrations of
the other two substances.

30. Using partial fractions gives

rt+ c =

Z
dx

x(1� x)
=

Z ✓
1

x

+
1

1� x

◆
dx

= ln |x|� ln |1� x| = ln

����
x

1� x

����
Solving for x,
x

1� x

= ke

rt (k = e

c)

x(t) =
ke

rt

1 + ke

rt

We clearly have lim
t!1

x(t) = 1

-0.5

t
321

x(t)

0

1.5

-1

1

0.5

-2
0

31. With A the amount in the account at time t

the DE is
A

0(t) = .10A+ 20,000 with an IC of
A(0) = 100,000.

The DE separates and integrates easily, yield-
ing
10 ln |.10A+ 20,000| = t+ c

c = 10 ln(30,000),
.10A+ 20,000 = 30,000et/10.

If the fortune is to reach 1,000,000 at unknown
time t, we must have
120,000 = 30,000et/10

t

10
= ln

12

3
= ln(4),

t = 10 ln(4) ⇡ 13.86 years.

32. If the payments are made at the end of each
year instead of continuously, we will have a se-
quence of di↵erential equations with exponen-
tial growth solutions. For the first year, we will
have A1(t) = 100, 000e0.1t 0  t < 1
When t = 1, we have A1(1) ⇡ $110, 517. At
the beginning of the second year, we deposit
$20, 000 so we start with a total of $130, 517.
We can now use this for the second year and see
that for the second year A2(t) = $130, 517e0.1t.
At the end of the second year we have
A2(1) ⇡ $144, 244. If we continue this process,
one can see that at the end of the 14th year, or
when t = 14, (including the $20, 000 deposit),
there will be $986, 517 in the account. At the
end of the 15th year (including the $20, 000
deposit), there will be $1, 110, 270 in the ac-
count. There will be exactly $1, 000, 000 in the
account when t ⇡ 14.14

33. It is a predator-prey model. For equilibrium
solutions, set x0 = y

0 = 0 to get
0 = 0.1x� 0.1x2 � 0.2xy
0 = �0.1y + 0.1xy
which are equivalent to
0 = 0.1x(1� x� 2y)
0 = 0.1y(�1 + x) x = 0 or x = 1� 2y
y = 0 or x = 1.

The equilibrium solutions are (0, 0) (no prey or
predators) and (1, 0) (prey but no predators).

34. It is a competing species model. For equilib-
rium solutions, set x0 = y

0 = 0 to get
0 = 0.2x� 0.1x2 � 0.2xy
0 = 0.1y � 0.1y2 � 0.1xy
which are equivalent to
0 = x(0.2� 0.1x� 0.2y)
0 = y(0.1� 0.1y � 0.1x) x = 0 or x+ 2y = 2
y = 0 or x+ y = 1.
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The equilibrium solutions are (0, 0) (neither
species), (0, 1) (species Y but no species X)
and (2, 0) (species X but no species Y ).

35. It is a competing species model. For equilib-
rium solutions, set x0 = y

0 = 0 to get
0 = 0.5x� 0.1x2 � 0.2xy
0 = 0.4y � 0.1y2 � 0.2xy
which are equivalent to
0 = 0.1x(5� x� 2y)
0 = 0.1y(4� y � 2x) x = 0 or x+ 2y = 5
y = 0 or 2x+ y = 4.

The equilibrium solutions are (0, 0) (none of ei-
ther species), (0, 4) (none of first species, some
of second), (5, 0) (some of first species, none of
second), (1, 2) (twice as many of second species
as first species)

36. It is a predator-prey model. For equilibrium
solutions, set x0 = y

0 = 0 to get
0 = 0.4x� 0.1x2 � 0.2xy
0 = �0.2y + 0.1xy
which are equivalent to
0 = 0.1x(4� x� 2y)
0 = 0.1y(�2 + x) x = 0 or x = 4� 2y
y = 0 or x = 2.

The equilibrium solutions are (0, 0) (no prey or
predators) and (4, 0) (prey but no predators).

37. In Exercise 33,
dy

dx

=
0.1x� 0.1x2 � 0.2xy

�0.1y + 0.1xy
From the direction field, we see that (0, 0) is
unstable and (1, 0) is stable.

 

0.5

0.4
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0

 
10.80.60.40.2

38. In Exercise 33,
dy

dx

=
0.5x� 0.1x2 � 0.2xy

0.4y � 0.1y2 � 0.2xy
From the direction field, (0, 0), (0, 4) and (5, 0)
are unstable, (1, 2) is stable.

 

4

3

2

1

0

 
54321

39. Write u = y, v = y

0, then
u

0 = v

v

0 = 4x2
v � 2u+ 4xu� 1

40. (a)

 

0.1

0.08

0.06

0.04

0.02

 
0.80.60.4

(b)
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0.3

0.2

0.1
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Chapter 8

Infinite Series

8.1 Sequences of Real

Numbers

1. 1,
3

4
,

5

9
,

7

16
,

9

25
,

11

36

2.

3

5
,

1

2
,

3

7
,

3

8
,

1

3
,

3

10

3. 4, 2,
2

3
,

1

6
,

1

30
,

1

180

4. �1

2
,

2

3
,�3

4
,

4

5
,�5

6
,

6

7

5. (a) lim
n!1

1

n

3
= 0

(b) As n gets large, n3 gets large, so 1/n3 goes
to 0.

(c)

0.8

0.4

0

1

0.6

0.2

x

121086420

6. (a) lim
n!1

2p
n

= 0

(b) As n gets large,
p
n gets large, so

2p
n

goes

to 0.

(c)

2

1.8

1.6

1.4

1.2

0.8

1

x

121086420

7. (a) lim
n!1

n

n+ 1
= lim

n!1

1

1 + 1
n

= 1

(b) As n gets large, n/(n+ 1) gets close to 1.

(c)

0.8

0.6

0.9

0.7

0.5

x

12108420 6

8. (a) lim
n!1

2n+ 1

n

= lim
n!1

✓
2 +

1

n

◆
= 2

(b) As n gets large, (2n + 1)/n gets close to
2.

(c)

9. (a) In Q.(5), a
n

=
1

n

3

443
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1.0

0.5

4
0.0

108

0.75

6

0.25

2

As n gets larger and larger, the terms
of the sequence a

n

= 1
n

3 approach to 0.
Hence, a

n

converges to 0.

(b) In Q.(6), a
n

=
2p
n

0.8

0.4

0.6

0.7

40

0.3

20 503010

0.9

0.5

As n gets larger and larger, the terms
of the sequence a

n

= 2p
n

approach to 0.

Hence, the sequence a

n

= 2p
n

converges
to 0.

(c) In Q.(7), a
n

=
n

n+ 1

0.9

30

0.8

0.5

20

0.7

15 25105

0.6

As n gets larger and larger, the terms
of the sequence a

n

= n

n+1 approach 1.
Hence, the sequence a

n

= n

n+1 converges
to 1.

(d) In Q.(8), a
n

=
2n+ 1

n

105

2.0

1.0

0.0
15

3.0

2.5

1.5

0.5

20

As n gets larger and larger, the terms
of the sequence a

n

= 2n+1
n

approach 2.
Hence, the sequence a

n

= 2n+1
n

converges
to 2.

10.

1.0

40

−1.0

200

0.5

0.0

30

−0.5

10

As n gets larger, the terms of the sequence

a

n

=
n

n+ 1

⇣
sin

n⇡

2
+ cos

n⇡

2

⌘
approach to 1

or -1. When n is of the form 4m or 4m+1, the
terms of the sequence a

n

approach 1. When
n is of the form 4m + 2 or 4m + 3, the terms
of the sequence a

n

approach -1. Therefore, a
n

does not convergent.

11. lim
n!1

3n2 + 1

2n2 � 1
= lim

n!1

3 + 1
n

2

2� 1
n

2

=
3

2

12. lim
n!1

5n3 � 1

2n3 + 1
= lim

n!1

5� 1

n

3

2 +
1

n

3

=
5

2

13. lim
n!1

n

2 + 1

n+ 1
= lim

n!1

n+ 1
n

1 + 1
n

= 1

14. lim
n!1

n

2 + 1

n

3 + 1
= lim

n!1

1

n

+
1

n

3

1 +
1

n

3

= 0

15. lim
n!1

(�1)n
n+ 2

3n� 1
= lim

n!1
(�1)n

1 + 2
n

3� 1
n

= ±1

3
, the limit does not exist; diverges
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16. Diverges. Even terms converge to 1 and odd
terms converge to �1.

17. lim
n!1

����(�1)n
n+ 2

n

2 + 4

���� = lim
n!1

n+ 2

n

2 + 4

= lim
n!1

1
n

+ 2
n

2

1 + 4
n

2

= 0

Hence lim
n!1

(�1)2(n+ 2)

n

2 + 4
= 0

18. Diverges. Even terms are 1 and odd terms are
�1.

19. lim
x!1

x

e

x

= lim
x!1

1

e

x

by l’Hopital’s Rule

and lim
x!1

1

e

x

= 0, so by Theorem 1.2 lim
n!1

n

e

n

=

0

20. Note that � 1

e

n

 cosn

e

n

 1

e

n

and

lim
n!1

1

e

n

= 0, so lim
n!1

cosn

e

n

= 0

by the Squeeze Theorem.

21. lim
n!1

e

n + 2

e

2n � 1
= lim

n!1

1
e

n + 2
e

2n

1� 1
e

2n

= 0

22. For n � 1, en + 1 < 2en, so
3n

e

n + 1
>

1

2
· 3

n

e

n

=
1

2
·
✓
3

e

◆
n

.

Since
3

e

> 1, lim
n!1

1

2

✓
3

e

◆
n

= 1;

so lim
n!1

3n

e

n + 1
= 1

23. lim
x!1

x2x

3x
= lim

x!1

x

3x

2x

= lim
x!1

x✓
3

2

◆
x

= lim
x!1

1✓
3

2

◆
x

ln
3

2

= 0, by l’Hopital’s Rule,

since lim
x!1

✓
3

2

◆
x

= 1.

Hence lim
n!1

n2n

3n
= 0, by Theorem 1.2.

24. Since
n!

2n
=

1

2
· 2
2
· · · n

2
� 1

2
· n
2

=
n

4
and

lim
n!1

n

4
= 1, we have lim

n!1

n!

2n
= 1.

25. lim
n!1

n sin
1

n

= lim
n!1

sin 1
n

1
n

= 1

26. lim
n!1

⇣p
n

2 + n� n

⌘

= lim
n!1

�p
n

2 + n� n

� �p
n

2 + n+ n

�
�p

n

2 + n+ n

�

= lim
n!1

np
n

2 + n+ n

= lim
n!1

1p
1 + 1/n+ 1

=
1

2

27. lim
n!1

[ln (2n+ 1)� lnn]

= lim
n!1

ln
2n+ 1

n

= lim
n!1

ln

✓
2 +

1

n

◆
= ln 2

28. When n is even number,
���cos

n⇡

2

��� = 1 and

lim
n!1

���cos
n⇡

2

���
2n� 1

n+ 2
= lim

n!1

2n� 1

n+ 2
= 2.

When n is odd number,
���cos

n⇡

2

��� = 0 and

lim
n!1

���cos
n⇡

2

���
2n� 1

n+ 2
= 0.

Therefore, the limit does not exist.

29. By L’Hopital Rule,

lim
n!1

n

3 + 1

e

n

= lim
n!1

3n2

e

n

= lim
n!1

6n

e

n

= lim
n!1

6

e

n

= 0.

30. By L’Hopital Rule,

lim
n!1

lnnp
n+ 1

= lim
n!1

1
n⇣
1

2
p
n+1

⌘

= lim
n!1

2
p
n+ 1

n

= lim
n!1

2

r
1

n

+
1

n

2
= 0.

31. �1  cosn  1 ) �1

n

2
 cosn

n

2
 1

n

2

for all n, and lim
n!1

�1

n

2
= lim

n!1

1

n

2
= 0

so by the Squeeze Theorem,

lim
n!1

cosn

n

2
= 0

32. Note that � 1

n

2
 cos⇡n

n

2
 1

n

2
and lim

n!1

1

n

2
=

0, so lim
n!1

cos⇡n

n

2
= 0 by the Squeeze Theorem.

33. 0  |a
n

| = 1

ne

n

 1

n

and lim
n!1

1

n

= 0

so by the Squeeze Theorem & Corollary 1.1,

lim
n!1

(�1)n

ne

n

= 0

34. lim
x!1

lnx

x

2
= lim

x!1

1

x

2x
= lim

x!1

1

2x2
= 0,

by l’Hopital’s Rule.
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Since

����(�1)n
lnn

n

2

���� 
lnn

n

2
, we have lim

n!1

lnn

n

2
=

0, by the Squeeze Theorem and Corollary 1.1.

35.

a

n+1

a

n

=

✓
n+ 4

n+ 3

◆
·
✓
n+ 2

n+ 3

◆

=
n

2 + 6n+ 8

n

2 + 6n+ 9
< 1 for all n, so

a

n+1 < a

n

for all n, so the sequence is decreas-
ing.

36. Since a

n+1 � a

n

=
n

n+ 2
� n� 1

n+ 1

=
2

(n+ 1)(n+ 2)
> 0, the sequence is increas-

ing.

37.

a

n+1

a

n

=

✓
e

n+1

n+ 1

◆
·
⇣
n

e

n

⌘
=

e · n
n+ 1

> 1 for all n,

so a
n+1 > a

n

for all n, so {a
n

}1
n=1 is increasing.

38. Since
a

n+1

a

n

=

3n+1

(n+ 3)!
3n

(n+ 2)!

=
3

n+ 3
 1, the se-

quence is decreasing.

39. |a
n

| =
����
3n2 � 2

n

2 + 1

���� =
3n2 � 2

n

2 + 1

<

3n2

n

2 + 1
<

3n2

n

2
= 3

40. |a
n

| = 6n� 1

n+ 3
<

6n+ 18

n+ 3
= 6

41. |a
n

| =
����
sin(n2)

n+ 1

���� 
1

n+ 1
 1

2
for n > 1.

42. |a
n

| = e

1/n  e

1 = e

43. a

n

= �(�2)n�4

44. a

n

= 1
2n�1

45. a

n

= 2n�1
n

2

46. a

n

= (�1)n+1
n

(n+1)2

47. Suppose that {a
n

}1
n=1 is decreasing and

bounded sequence. Then for some M > 0,
|a

n

| < M for all n. Let S be the set con-
taining all of the terms of the sequence, S =
{a1, a2, a3, ...} . By Completeness Axiom, S

must have a greatest lower bound say G. That
is, G is the greatest number for which a

n

> G

, for all n . Therefore, for any number " >

0,G+" > G and so,G+" is not a lower bound,
since G is greatest lower bound. Since G + "

is not a lower bound for S, there exist some
a

N

, of for which a

N

< G + ". Since {a
n

}1
n=1

is decreasing sequence, G < a

n

< G + " for
all n � N . That is, G � "  a

n

 G + "

for all n � N. Hence {a
n

}1
n=1 converges to G.

Therefore bounded and decreasing sequence is
convergent.

48. First we note that a2 =
p
3 + 2

p
3 > a1. As-

sume that a
k

> a

k�1, then

a

k+1 =
q

3 + 2
p
a

k

>

q
3 + 2

p
a

k�1 = a

k

Then we note that a1 < 3 and if we assume
that a

k�1 < 3 then

a

k

=
q

3 + 2
p
a

k�1 <

p
3 + 2 · 3 = 3

We have shown that the sequence is increas-
ing with an upper bound, so it converges. The
limit of this sequence should be the solution to
the equation
x =

p
3 + 2x, x2 � 2x� 3 = 0

(x + 1)(x � 3) = 0, x = �1, x = 3 Since
the limit of the sequence can’t be negative, so
lim
n!1

a

n

= 3.

49. (a) a1000 ⇡ 7.374312390,
e

2 ⇡ 7.389056099
b1000 ⇡ .135064522,
e

�2 ⇡ .135335283.

(b) Let n =
m

r

, m = nr.

lim
n!1

⇣
1 +

r

n

⌘
n

= lim
m!1

✓
1 +

r

2

m

◆
m/r

= lim
m!1

 ✓
1 +

1

m/r

2

◆
m/r

2!r

= e

r

as m/r2 ! 1

50. (a) For the first 8 terms we get:
a1 = 1,
a2 = 2.5,
a3 = 2.05,
a4 = 2.000609756,
a5 = 2.000000093,
a6 = 2.000000000,
a7 = 2.000000000,
a8 = 2.000000000

The equation L =
1

2

✓
L+

4

L

◆
has two

solutions, L = 2 and L = �2. Since the
terms of the sequence are positive, we dis-
card the negative solution. Thus the limit
must be L = 2.

(b) Assuming the limit exists, and letting L =
lim

n!1
a

n+1 = lim
n!1

a

n

, we have
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L =
1

2

⇣
L+

c

L

⌘
) 2L2 = L

2 + c

) L

2 = c ) L =
p
c.

51. Use induction to show that a

n+1 > a

n

. First
note that a

2
1 = 2, and since a

2
2 = 2 +

p
2,

it follows that a

2
2 > a

2
1, so a2 > a1. Thus,

the statement is true for n = 1. Now assume
that the statement is true for n = k (that is,
a

k+1 > a

k

), and show that the statement is
true for n = k + 1. First note that

a

k+2 =
q

2 +
p
a

k+1

a

2
k+2 = 2 +

p
a

k+1

a

2
k+2 � 2 =

p
a

k+1�
a

2
k+2 � 2

�2
= a

k+1

The previous equation is also valid if we replace

k by k � 1:
�
a

2
k+1 � 2

�2
= a

k

Since a

k+1 > a

k

, it follows that

a

k+1 >

�
a

2
k+1 � 2

�2
and therefore

�
a

2
k+2 � 2

�2
>

�
a

2
k+1 � 2

�2

a

2
k+2 � 2 > a

2
k+1 � 2

a

2
k+2 > a

2
k+1, ak+2 > a

k+1

Thus, by induction, a
n

is increasing. Now we’ll
prove that a

n

< 2 by induction. First note
that a1 < 2, and assume that a

k

< 2. Then

a

k+1 =
q

2 +
p
a

k

a

2
k+1 � 2 =

p
a

k

,

�
a

2
k+1 � 2

�2
= a

k�
a

2
k+1 � 2

�2
< 2, a2

k+1 � 2 <

p
2

a

2
k+1 < 2 +

p
2, a2

k+1 < 4
a

k+1 < 2 Thus, by induction, a
n

< 2.
Since a

n

is increasing and bounded above by
2, a

n

converges. To estimate the limit, we’ll
approximate the solution of x =

p
2 +

p
x:

x

2 = 2 +
p
x, (x2 � 2)2 = x

x

4 � 4x2 + 4 = x, 0 = x

4 � 4x2 � x+ 4
0 = (x� 1)(x3 + x

2 � 3x� 4)
Since a

n

>

p
2, it follows that x 6= 1.

Therefore, 0 = x

3 + x

2 � 3x� 4. Using a CAS,
the solution is x ⇡ 1.8312.

52. (a) p > 1 ) lim
n!1

1

p

n

= 0

p = 1 ) lim
n!1

1

p

n

= 1

0 < p < 1 ) lim
n!1

1

p

n

does not exist

� 1 < p < 0 ) lim
n!1

1

p

n

does not exist

p = �1 ) lim
n!1

1

p

n

does not exist

p < �1 ) lim
n!1

1

p

n

= 0

Therefore, the sequence a

n

= 1/pn

converges for p < �1 and p � 1.

(b) p > 0 ) lim
n!1

1

n

p

= 0

p = 0 ) lim
n!1

1

n

p

= 1

p < 0 ) lim
n!1

1

n

p

does not exist

Therefore, the sequence a

n

= 1/np

converges for p � 0.

53. a

n

=
1

n

2
(1 + 2 + 3 + · · ·+ n)

=
1

n

2

✓
n(n+ 1)

2

◆
=

n+ 1

2n
=

1

2

✓
1 +

1

n

◆

lim
n!1

a

n

=
1

2
lim

n!1

✓
1 +

1

n

◆
=

1

2
Thus, the sequence a

n

converges to 1/2.
Note thatZ 1

0
xdx = lim

n!1

 
nX

k=1

1

n

k

n

!

Therefore the sequence a

n

converges toZ 1

0
xdx.

54. lim
n!1

a

n

= lim
n!1

nX

k=1

1

n+ k

= lim
n!1

nX

k=1

1

n

n

n+ k

= lim
n!1

nX

k=1

1

n

1

1 + k/n

=

Z 1

0

1

1 + x

dx = ln |1 + x||10

= ln 2� ln 1 = ln 2
Therefore the sequence converges.

55. (a) Begin by joining the centers of circles C1

and C2 with a line segment. The length
of this line segment is the sum of the radii
of the two circles, which is r1 + r2. Thus,
the squared of the length of the line seg-
ment is (r1+r2)2. Now, the coordinates of
the centers of the circles are (c1, r1) and
(c2, r2). Using the formula for the dis-
tance between two points, the square of
the length of the line segment joining the
two centers is (c2�c1)2+(r2�r1)2. Equat-
ing the two expressions, we get
(c2 � c1)

2 + (r2 � r1)
2 = (r1 + r2)

2

Expanding and simplifying this relation-
ship, we get
(c2 � c1)

2 = (r1 + r2)
2 � (r2 � r1)

2

= r

2
1 + 2r1r2 + r

2
2 � (r22 � 2r1r2 + r

2
1)
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= 4r1r2
|c2 � c1| = 2

p
r1r2

(b) The same reasoning applied to the other
two pairs of centers yields analogous re-
sults. Without going through the motions
again, you can simply take the results
above and first replace all subscripts “2”
by “3” to get the results for circles C1

and C3. Then take these new results and
replace all subscripts “1” by “2” to get
the results for circles C2 and C3. The
results are
(c3 � c1)

2 + (r3 � r1)
2 = (r1 + r3)

2

|c3 � c1| = 2
p
r1r3

(c3 � c2)
2 + (r3 � r2)

2 = (r2 + r3)
2

|c3 � c2| = 2
p
r2r3

(c) Finally,
|c1 � c2| = |c1 � c3|+ |c3 � c2|
2
p
r1r2 = 2

p
r1r3 + 2

p
r2r3p

r1r2 =
p
r3 (

p
r1 +

p
r2)

p
r3 =

p
r1r2p

r1 +
p
r2

(d) Given that r1 = r2 = 1, from Part(c), we
have
p
r3 =

p
r1r2p

r1 +
p
r2

=
1

2
p
r4 =

p
r2r3p

r2 +
p
r3

=
1/2

1 + 1/2
=

1

3
p
r5 =

p
r3r4p

r3 +
p
r4

=
1/6

1/2 + 1/3
=

1

5

The pattern is
1

p
r

n

=
1

p
r

n�1
+

1
p
r

n�2

Hence if F
n

is the n-th Fibonacci number,
then r

n

= 1/F 2
n

.

56. (a) The distance between the two points
(0, c) and (x0, y0), where y0 = x

2
0, is r,q

x

2
0 + (x2

0 � c)2 = r

x

2
0 + x

4
0 � 2cx2

0 + c

2 = r

2

y

2
0 + (1� 2c)y0 + (c2 � r

2) = 0
We want the solution y0 to the above
equation to be unique, so that
(1� 2c)2 � 4(c2 � r

2) = 0
1� 4c+ 4c2 � 4c2 + 4r2 = 0

1� 4c+ 4r2 = 0, c =
1

4
+ r

2

(b) Following Part(a), the pattern is

r

2
n

+
1

4
= r

n

+ r

n�1 +
1

4
+ r

2
n�1

r

2
n

� r

2
n�1 = r

n

+ r

n�1

r

n

� r

n�1 = 1
r1 = 1, r2 = 2, r3 = 3, . . . r

n

= n

57. Given that s2n =

q
2�

p
4� s

n

2 and
s6 = 1. Therefore,

S12 =

r

2�
q
4� S6

2

=

q
2�

p
4� 12 =

q
2�

p
3

S24 =

r

2�
q
4� S12

2

=

s

2�
r
4�

⇣
2�

p
3
⌘

=

r

2�
q
2 +

p
3

S48 =

r

2�
q
4� S24

2

=

vuut2�

s

4�
✓
2�

q
2 +

p
3

◆

=

s

2�

r

2 +

q
2 +

p
3 ⇡ 0.130806

As S6 = 1, the length of each side of the regu-
lar hexagon inscribed in the circle is 1 and the
corresponding angle subtended at the centre

of the circle is
⇡

3
, which implies the radius of

the circle is 1. As n increases the length of the
arc is approximately equal to the length of the

side of the regular n-gon. Therefore, S
n

⇡ 2⇡

n

. Thus, S48 ⇡ ⇡

24
.

58. 0 <

n!

n

n

=
1 · 2 · 3 · 4 · · · n
n · n · n · n · · · n

=

✓
1

n

◆
2 · 3 · 4 · · · n
n · n · n · · · n <

✓
1

n

◆
(1) =

1

n

Hence, 0 <

n!

n

n

<

1

n

.

Therefore,

lim
n!1

0 < lim
n!1

n!

n

n

< lim
n!1

1

n

0 < lim
n!1

n!

n

n

< 0

lim
n!1

n!

n

n

= 0
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2 0.5
3 0.5436
4 0.5731
5 0.5949
6 0.6119
7 0.6258
8 0.6374
9 0.6473
10 0.6559
20 0.7065
30 0.7316
40 0.7476
50 0.7590
60 0.7678
70 0.7748
80 0.7806
90 0.7855
100 0.7898
200 0.8146
300 0.8269
500 0.8403
1000 0.8589

From the table, lim
n!1

ln (n!)

ln (nn)
= 1.

When x ! 1, slope of the graph y = lnx ap-
proaches to 0. Due to this property, the given
limit approaches to 1.

59. If side s = 1200 and the diameter D =
12

n

then

the number of disks that fit along one side is
12�
12
n

� = n. Thus, the total number of disks is

12�
12
n

� · 12�
12
n

� = n · n = n

2

a

n

= wasted area inbox with n

2 disks

= 12 · 12� n

2

✓
6

n

◆2

⇡ = 144� 36⇡ ⇡ 30.9

60. The answer is a5 = 30 or a5 = 31, depending
on the position of the points.

61. In the 3rd month, only the adult rabbits have
newborns, so a3 = 2+1 = 3. In the 4th month,
only the 2 pairs of adult rabbits from a2 can
have newborns, so a4 = 3 + 2 = 5. In general,
a

n

= a

n�1 + a

n�2

62. Let a
n

and a

n+1 denote the sizes of the shorter
and longer sides of the n

th rectangle. For ex-
ample, a1 = 1 and a2 = 2 are the sides of the
first rectangle, a2 = 2 and a3 = 3 are the sides
of the second rectangle, and so on. When a new
rectangle a

n

⇥a

n+1 is formed, the longer side of
the previous one, a

n

, becomes the shorter side
of the new one, and the longer one of the new
one, a

n+1, is the sum of the shorter one and the
longer one of the previous one. If we express
that as a formula we get a

n+1 = a

n�1 + a

n

,
which is the property defining the Fibonacci
sequence.

8.2 Infinite Series

1.

1X

k=0

3

✓
1

5

◆
k

is a geometric series with

a = 3 and |r| =
1

5
< 1, so it converges to

3

1� 1/5
=

15

4

2.

1X

k=0

1

3
5k is a geometric series with

|r| = 5 > 1, so it diverges.

3.

1X

k=0

1

2

✓
�1

3

◆
k

is a geometric series with

a =
1

2
and |r| =

1

3
< 1, so it converges to

1/2

1� (�1/3)
=

3

8
.

4.

1X

k=0

4

✓
1

2

◆
k

is a geometric series with

a = 4 and |r| =
1

2
< 1, so it converges to

4

1� 1/2
= 8.

5.

1X

k=0

1

2
(3)k is a geometric series with

|r| = 3 > 1, so it diverges.

6.

1X

k=0

3

✓
�1

2

◆
k

is a geometric series with
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a = 3 and |r| =
1

2
< 1 so it converges to

3

1� (�1/2)
= 2.

7. Using partial fractions,

S

n

=
nX

k=1

4

k(k + 2)
=

nX

k=1

✓
2

k

� 2

k + 2

◆

=

✓
2� 2

3

◆
+

✓
1� 2

4

◆
+

✓
2

3
� 2

5

◆

+ · · ·+
✓
2

n

� 2

n+ 2

◆

= 2 + 1� 2

n+ 1
� 2

n+ 2

= 3� 4n+ 6

n

2 + 3n+ 2
and

lim
n!1

S

n

= lim
n!1

✓
3� 4n+ 6

n

2 + 3n+ 2

◆
= 3.

Thus, the series converges to 3.

8. lim
k!1

4k

k + 2
= 4 6= 0, so the series diverges by

the k

th-Term Test for Divergence.

9. lim
k!1

3k

k + 4
= 3 6= 0, so by the k

th-Term Test

for Divergence, the series diverges.

10. This is a telescoping sum:

S

n

=
nX

k=1

9

k(k + 3)
=

nX

k=1

✓
3

k

� 3

k + 3

◆

=
3

1
� 3

4
+

3

2
� 3

5
+ · · ·+ 3

n

� 3

n+ 3

= 3 +
3

2
+

3

3
� 3

n+ 1
� 3

n+ 2
� 3

n+ 3
.

Thus
1X

k=1

9

k(k + 3)

= lim
n!1

✓
3 +

3

2
+

3

3
� 3

n+ 1
� 3

n+ 2

� 3

n+ 3

◆

=

✓
3 +

3

2
+

3

3

◆
=

11

2
.

11.

1X

k=1

2

k

= 2
1X

k=1

1

k

and from Example 2.7,
1X

k=1

1

k

diverges, so 2
1X

k=1

1

k

diverges.

12.

1X

k=0

4

k + 1
= 4

1X

k=1

1

k

and the harmonic series

1X

k=1

1

k

diverges, so
1X

k=0

4

k + 1
diverges.

13. Using partial fractions

S

n

=
nX

k=1

2k + 1

k

2(k + 1)2

=
nX

k=1


1

k

2
� 1

(k + 1)2

�

=

✓
1� 1

4

◆
+

✓
1

4
� 1

9

◆
+

✓
1

9
� 1

16

◆

+ · · ·+
✓

1

(n� 1)2
� 1

n

2

◆

+

✓
1

n

2
� 1

(n+ 1)2

◆

= 1� 1

(n+ 1)2

and, lim
n!1

S

n

= lim
n!1

✓
1� 1

(n+ 1)2

◆
= 1

Thus the series converges to 1.

14.

1X

k=1

4

k(k + 1)(k + 3)(k + 4)

=
4

3

1X

k=1


1

k(k + 4)
� 1

(k + 1)(k + 3)

�

=
4

3

1X

k=1

1

k(k + 4)
� 4

3

1X

k=1

1

(k + 1)(k + 3)

=
4

3

1

4

1X

k=1

✓
1

k

� 1

k + 4

◆

� 4

3

1

2

1X

k=1

✓
1

k + 1
� 1

k + 3

◆

=
1

3

1X

k=1

✓
1

k

� 1

k + 4

◆

� 1

6

1X

k=1

✓
1

k + 1
� 1

k + 3

◆

=
1

3

✓
1 +

1

2
+

1

3
+

1

4

◆
� 1

6

✓
1

2
+

1

3

◆

=
5

9
.

15.

1X

k=2

2

e

k

is a geometric series with

a =
2

e

2
and |r| = 1

e

< 1,so it converges to

2

e

2
�
1�

�
1
e

�� =
2

e

2 � e

.

16. lim
k!1

|a
k

| = lim
k!1

31/k = 30 = 1 6= 0 , So by

the k

th Term Test for Divergence, the series
diverges.
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17.

1X

k=0

✓
1

2k
� 1

k + 1

◆
=

1X

k=0

1

2k
�

1X

k=0

1

k + 1
. The

first series is a convergent geometric series but
the second series is the divergent harmonic se-
ries, so the original series diverges.

18.

1X

k=0

✓
1

2k
� 1

3k

◆
=

1X

k=0

1

2k
�

1X

k=0

1

3k

=
1

1� 1/2
� 1

1� 1/3
=

1

2

19.

1X

k=0

✓
2

3k
+

1

2k

◆
=

1X

k=0

2

3k
+

1X

k=0

1

2k
.

The first series is a geometric series with

a = 2 and |r| =
1

3
< 1 so it converges to

2

1� 1/3
= 3.

The second series is a geometric series with

a = 1 and |r| =
1

2
< 1, so it converges to

1

1� 1/2
= 2.

Thus
1X

k=0

✓
2

3k
+

1

2k

◆
= 3 + 2 = 5.

20.

1X

k=0

✓
1

k

� 1

4k

◆
=

1X

k=0

1

k

�
1X

k=0

1

4k

The second series is a convergent geometric se-
ries, but the first series is a divergent harmonic
series, so the series diverges.

21. lim
k!1

|a
k

| = lim
k!1

3k

k + 1
= 3 6= 0

So by the k

th-Term Test for Divergence, the
series diverges.

22. The limit lim
k!1

(�1)k
k

3

k

2 + 1
does not exists, so

the series diverges by the kth-Term Test for Di-
vergence.

23. Since k is positive integer, k

5 is ration num-
ber and can’t be multiple of ⇡. Hence

lim
k!1

sin

✓
k

5

◆
6= 0. Therefore , the series di-

verges.

24. The limit lim
k!1

tan�1 (k) =
⇡

2
6= 0, so by the

k

th Term Test for Divergence, the series di-
verges.

25.

1X

k=0

3(2c+ 1)k is a geometric series with

a = 3 and |r| = |2c+ 1| . The series is conver-

gent if |r| = |2c+ 1| < 1 .
That is, if �1 < 2c+ 1 < 1 or �2 < 2c < 0
Therefore, the series converges for
�1 < c < 0.

26.

1X

k=0

2

(c� 3)k
is a geometric series with a = 2

and |r| =
1

(c� 3)
. The series converges, if

|r| =
����

1

c� 3

���� < 1, that is |c � 3| > 1, there-

fore c > 4, c < 2. Thus the series converges for
c < 2 and c > 4.

27.

1X

k=0

c

k + 1
is divergent for all values of c. Refer

Excercies 12

28. Two cases possible.
(i) c = 0: ) given series is
1X

k=0

2

(ck + 1)
=

1X

k=0

2 which is divergent

(ii) c 6= 0: ) given series is
1X

k=0

2

(ck + 1)
=

1X

k=0

2

c

�
k + 1

c

�

=
2

c

1X

k=0

1�
k + 1

c

�

Which is divergent as
1X

k=0

1�
k + 1

c

�

is divergent.

29. The series appears to converge.

n

nP
k=1

1p
k

2 1.250000000
4 1.423611111
8 1.527422052
16 1.584346533
32 1.614167263
64 1.629430501
128 1.637152005
256 1.641035436
512 1.642982848
1024 1.643957981
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1.6

1.4

1

1.5

1.3

1.1

1.2

100800 6020 40

30. The series appears to diverge.

n

nP
k=1

1p
k

2 1.707106781
4 2.784457050
8 4.371436800
16 6.663994609
32 9.941512173
64 14.60206410
128 21.21122790
256 30.57088534
512 43.81657304
1024 62.55526935

12

10

8

6

4

2

5040302010

31. The series appears to converge.

n

nP
k=1

1p
k

2 4.500000000
4 5.125000000
8 5.154836310
16 5.154845485
32 5.154845485

1024 5.154845485

5

4

4.5

20

3.5

3
1008060400

32. The series appears to converge.

n

nX

k=1

2k

k

1 2
2 4
3 5.333333333
4 6
5 6.266666667
6 6.355555556
7 6.380952381
8 6.387301587
9 6.388712522
10 6.388994709

5

3

6

4

2
5040302010

33. (a) Assume
1X

k=1

a

k

converges to L.

Then for any m,

L =
1X

k=1

a

k

=
m�1X

k=1

a

k

+
1X

k=m

a

k

= S

m�1 +
1X

k=m

a

k

.

So
1X

k=m

a

k

= L� S

m�1,

and thus converges.

(b) Since
1X

k=1

a

k

= (a1+ · · ·+a

m�1)+
1X

k=m

a

k
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and the finite sum a1+· · ·+a

m�1 does not
a↵ect convergence, both series converge or
both diverge.

34. By using partial fraction technique, we get:

1

k

�
k + 1

2

� = 2

 
1

k

� 1�
k + 1

2

�
!

It may be observed that unlike example 2.3

both
1

k

and
1�

k + 1
2

� do not form the same se-

ries. Consequently, the terms in the n

th par-
tial sum do not get canceled. Hence the said
method is not useful for this example.

35. Assume
1X

k=1

a

k

converges to A and
1X

k=1

b

k

con-

verges to B. Then the sequences of partial
sums converge, and letting

S

n

=
nX

k=1

a

k

and T

n

=
nX

k=1

b

k

,

we have lim
n

S

n

= A and lim
n

T

n

= B.

Let Q
n

=
nX

k=1

(a
k

+ b

k

), the sequence of partial

sums for
1X

k=1

(a
k

+ b

k

). Since S, T , and Q are

all finite sums,
Q

n

= S

n

+ T

n

.

Then by Theorem 1.1(i),
A+B = lim

n

S

n

+ lim
n

T

n

= lim
n

(S
n

+ T

n

)

= lim
n

Q

n

=
1X

k=1

(a
k

+ b

k

)

The proofs for
1X

k=1

(a
k

� b

k

) and
1X

k=1

ca

k

are

similar.

36. Assume that
1X

k=1

a

k

converges and
1X

k=1

b

k

di-

verges. Now suppose that
1X

k=1

(a
k

+ b

k

) con-

verges. But, since
1X

k=1

b

k

=
1X

k=1

(a
k

+ b

k

)�
1X

k=1

a

k

Theorem 2.3(i) implies convergence of
1X

k=1

b

k

.

This contradiction shows that
1X

k=1

(a
k

+b

k

) can-

not converge. The proof for
1X

k=1

(a
k

� b

k

) is

almost identical.

37. Let S
n

=
1P
k=1

1

k

. Then

S1 = 1 and S2 = 1+
1

2
=

3

2
. Since S8 >

5

2
, we

have

S16 = S8 +
1

9
+

1

10
+ · · ·+ 1

16

> S8 + 8

✓
1

16

◆
= S8 +

1

2
>

5

2
+

1

2
= 3.

So S16 > 3.

S32 = S16 +
1

17
+

1

18
+ · · ·+ 1

32

> S16 + 16

✓
1

32

◆
= S16 +

1

2
> 3 +

1

2
=

7

2

So S32 >

7

2
.

If n = 64, then S64 > 4. If n = 256, then
S256 > 5. If n = 4m�1, then S

n

> m.

38. The n

th partial sum of the series
P = 1� 1 + 1� 1 + 1 · ·· is given by

P

n

=
nX

k=0

(�1)k =
1

2
(1 + (�1)n).

Here S

n

= the n

th partial sum of the series
1� 1 + 1� 1 + 1 · ··
Which is =S

n

= 1+
1

2
(1 + (�1)n).

As
nX

k=0

(�1)k diverges, by theorem 2.3 the se-

ries 1 + 1� 1 + 1� 1 + 1 · ·· diverges.

For the series A = 1+ 1� 1+ 1� 1+ 1 · ··, nth

partial sum is given by, S
n

= 1 +
n�1X

k=0

(�1)k.

Now, for the series
P = 1 � 1 + 1 � 1 + 1 · ·· we can write:
P = 1� 1 + 1� 1 + 1 · · · · · ·
1� P = 1� (1� 1 + 1� 1 + 1 · · · · · ·) = P

) P =
1

2

For the 1 + 1 � 1 + 1 � 1 + 1 · · · · · · we have:
A = 1 + P = 1� 1 + 1� 1 + 1 · ··

= 1 +
1

2
=

3

2
The Cesaro sum

lim
n!1

 
1

n

nX

k=1

S

k

!

= lim
n!1

1

n

· lim
n!1

 
nX

k=1

S

k

!
= 0 · 3

2
= 0

39. (a) .9 + .09 + .009 + · · · =
1X

k=0

.9(.1)k

which is a geometric series with a = .9
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and |r| = .1 < 1 so it converges to
.9

1� .1
= 1.

(b) 0.199999 =
1

10
+

9

100
+

9

1000
+ . . .

=
1

10
+

1X

k=0

9

100

✓
1

10

◆
k

=
1

10
+

9

100
1� 1/10

=
2

10

40. (a) 0.181818 =
18

100
+

18

10000
+ . . .

= 18
1X

k=1

1

100k
.

This is a geometric series with

a =
18

100
and |r| =

1

100
, so the sum is

18/100

1� 1/100
=

2

11
.

(b) 2.134134 = 2 +
134

1000
+

134

1000000
+ . . .

= 2 + 134
1X

k=1

1

1000k
.

The second term is a geometric series with

a =
134

1000
and |r| = 1

1000
, so the sum is

2 +
134/1000

1� 1/1000
= 2

134

999
.

41.

1X

k=1

1

k

and
1X

k=1

�1

k

42. Yes.

43. The geometric series 1 + r+ r

2 + r

3 + · · · con-

verges to S =
1

1� r

provided that

�1 < r < 1. But �1 < r implies that �r < 1,

and so 1 � r < 2, and therefore
1

1� r

>

1

2
,

which means that S >

1

2
.

44. Since
X

a

k

converges, lim
k!1

a

k

= 0,

by Theorem 2.2. Therefore, lim
k!1

1

a

k

does not

exist. In particular, lim
k!1

1

a

k

6= 0.

Therefore,
X 1

a

k

diverges, by the converse of

Theorem 2.2.

45. Suppose p is a prime,

1 +
1

2
+

1

3
+ ·+ 1

p

=
p! + p!/2 + ·+ p!/p

p!

This can’t be an integer since all the terms on
the numerator are divisible by p except for the
last term.

46. Step 0: [0, 1]
Step 1: After removing middle third, set be-
come

⇥
0, 1

3

⇤
[
⇥
2
3 , 1

⇤

Step 2: After removing middle third from
each subinterval, set become

⇥
0, 1

9

⇤
[
⇥
2
9 ,

3
9

⇤
[⇥

6
9 ,

7
9

⇤
[
⇥
8
9 , 1

⇤

All the end points of the subintervals belong
to Cantor Set. Therefore other four points are
1
9 ,

2
9 ,

7
9 ,

8
9 . Third term of the series is 4

�
1
27

�
.

Sum of the series:

=

✓
1

3

◆
+ 2

✓
1

9

◆
+ 4

✓
1

27

◆
+ ...

=

✓
1

3

◆
+ 2

✓
1

32

◆
+ 22

✓
1

33

◆
+ ...

=

✓
1

3

◆✓
1 + 2

✓
1

3

◆
+ 22

✓
1

32

◆
+ ...

◆

=
1

3

✓
1

1� 2
3

◆

= 1

The length of the Cantor Set
= 1� (Sum of the lengths of remove intervals)

= 1� (Sum of the series)

= 1� 1

= 0

47. We have from the proof of the Theorem 2.1,

1+x+x

2+x

3+x

4+........+x

n =
1
�
1� x

n+1
�

1� x

.

Now consider
0 < x < 1 ) 0 < x

n

< 1

� 1 < �x

n

< 0 or 0 < 1� x

n

< 1

therefore 0 <

1� x

n

1� x

<

1

1� x

) 0 < 1 + x+ x

2 + ...+ x

n

<

1

1� x

Now, for the interval �1 < x < 0
0 < �x < 1
1 < 1� x < 2
If n is even, �1 < x

n+1
< 0. Then

0 < �x

n+1
< 1

) 1 < 1� x

n+1
< 2

) 1

1� x

<

1� x

n+1

1� x

<

2

1� x

Therefore, 1 + x+ x

2 + ...+ x

n =
1� x

n+1

1� x

>

1

1� x
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Thus, the inequality does not hold if n is even.

48. The series
1X

k=0

1

2k
is a geometric series with

a = 1 and r =
1

2
, its sum is 2.

Therefore,
1X

k=0

1

2k
= 2.

Now, the n

th partial sum of this series is given
by
nX

k=0

1

2k
= 2

✓
1�

✓
1

2

◆
n

◆
< 2

Therefore 1 +
1

2
+ ........+

1

2n
< 2 ...(i)

The series
1X

k=0

1

3k
is a geometric series with

a = 1 and r =
1

3
, its sum is

3

2
.

Therefore,
1X

k=0

1

3k
=

3

2

Now, the n

th partial sum of this series is given
by
nX

k=0

1

3k
=

3

2

✓
1�

✓
1

3

◆
n

◆
<

3

2

Therefore, 1 +
1

3
+ ........+

1

3n
<

3

2
...(ii)

The series
1X

k=0

1

5k
is a geometric series with

a = 1 and r =
1

5
, its sum is

5

4
.

Therefore,
1X

k=0

1

5k
=

5

4

Now the n

th partial sum of this series is given
by
nX

k=0

1

5k
=

4

5

✓
1�

✓
1

5

◆
n

◆
<

5

4

Therefore, 1 +
1

5
+ ........+

1

5n
<

5

4
...(iii)

In general we can write for a largest prime p,

1 +
1

p

+ ........+
1

p

n

<

p

p� 1
Now, multiplying the inequalities
(i),(ii),(iii).etc. We get,✓

1 +
1

2
+ · · · ·+ 1

2n

◆ ✓
1 +

1

3
+ · · · ·+ 1

3n

◆

✓
1 +

1

5
+ · · · ·+ 1

5n

◆
· · ·
✓
1 +

1

p

+ · · · ·+ 1

p

n

◆

< 2 · 3

2
· 5

4
· · · · · · · · · · p

p� 1
for any positive integer n. Consider the prod-

uct on the left side of the inequality. This
product will yield the sum of the terms of the

form
1

k

,where k is either a prime or a product

of the primes or the product of a prime and a
composite or it is the product of two compos-
ites, so that we can write the left side of the

inequality as 1 +
1

2
+

1

3
+

1

4
+ · · · · +1

n

,where

n is a positive integer greater than the largest
prime p.
Thus, we have

1+
1

2
+
1

3
+
1

4
+····+1

n

< 2· 3
2
· 5
4
·········· p

p� 1
It may be observed that, if there would have
been finite number of primes then there would
have been finite number of terms on either side
of the inequality, which is not the case hence
we conclude that there are infinite number of
primes.

49. The amount of overhang is
n�1X

k=0

L

2(n� k)
.

So if n = 8, then
7X

k=0

L

2(8� k)
= 1.3589L.

When n = 4,

L

n�1X

k=0

1

2(n� k)
= L

3X

k=0

1

2(4� k)

= 1.0417L > L

lim
n!1

n�1X

k=0

L

2(n� k)
= lim

n!1

nX

k=1

L

2k

=
L

2
lim

n!1

nX

k=1

1

k

= 1

50.

nX

k=2

1

k(k � 1)
=

nX

k=2

✓
1

k � 1
� 1

k

◆

=
1

1
� 1

2
+

1

2
� 1

3
+ · · ·+ 1

n� 1
� 1

n

= 1� 1

n

, we have
1X

k=2

1

k(k � 1)
= lim

n!1

✓
1� 1

n

◆
= 1.

On the other hand,
1X

k=2

k

1

k(k � 1)
=

1X

k=2

1

(k � 1)

=
1X

k=1

1

k

= 1.

51. p

2 + 2p(1� p)p2 + [2p(1� p)]2 p2 + · · ·

=
1X

k=0

p

2 [2p(1� p)]k is a geometric series with
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a = p

2 and |r| = 2p(1�p) < 1 because 2p(1�p)
is a probability and therefore must be between
0 and 1. So the series converges to

p

2

1� [2p(1� p)| =
p

2

1� 2p+ 2p2
.

If, p = .6,
.62

1� 2(.6) + 2(.6)2
= .692 > .6.

If p >

1

2
,

p

2

1� 2p(1� p)
> p.

52. Since 1 +
1

12
+

1

122
+ · · · =

1X

k=0

✓
1

12

◆
k

=
1

1� 1

12

=
12

11
, the minute hand and the hour

hand are in the same location approximately 5
minutes and 27 seconds after 1.

53. d+ de

�r + de

�2r + · · · =
1X

k=0

d(e�r)k

which is a geometric series with
a = d and

��
e

�r

�� = e

�r

< 1 if r > 0.

So
1X

k=0

d(e�r)k =
d

1� e

�r

.

If r = .1,
1X

k=0

d(e�.1)k =
d

1� e

�.1
= 2

so d = 2(1� .905) ⇡ .19

54. 30 + 15 +
15

2
+ · · · =

1X

k=0

30

✓
1

2

◆
k

=
30

1� 1/2
= 60 miles.

The bikes meet after 1 hour. In that time, a
fly flying 60 mph will have traveled 60 miles.

55.

1X

k=0

100,000

✓
3

4

◆
k

=
100,000

1� 3/4
= $400,000.

56. P = ce

�r + ce

�2r + ce

�3r + . . .

=
1X

k=1

ce

�kr =
1X

k=1

c

�
e

�r

�
k

=
ce

�r

1� e

�r

=
c

e

r � 1

57. Since 0 < p < 1, therefore �1 < �p < 0, and
0 < 1 � p < 1. Thus, the given series is geo-
metric with common ratio r = 1 � p, and so
converges:
1X

n=1

p(1� p)n�1 = p

1X

n=1

r

n�1

= p

1

1� r

=
p

1� (1� p)
=

p

p

= 1.

The sum represents the probability that you
eventually win a game.

58.

2v

g

1X

k=0

r

k =

2v

g

1� r

=
2v

g(1� r)

2v

g

1X

k=0

r

2k =

2v

g

1� r

2
=

2v

g(1� r

2)

59. (a) Take a number less than 1000 and try.

(b) The series

c +
c

106
+

c

1012
+

c

1018
+ .......... is an in-

finite geometric series with a = c and

r =
1

106
< 1 ,

it converges to
c�

1� 10�6
�

where
c�

1� 10�6
� =

✓
x

103 + 999�x

106

1� 10�6

◆

=
1000x+ 999� x

999999
=

999x+ 999

999999

=
x+ 1

1001

(c) Let x + 1 be a positive inte-
ger(assumed) less than 1000 such that✓✓✓

x+ 1

7

◆
/11

◆
/13

◆
=

=
x+ 1

1001

= c+
c

106
+

c

1012
+

c

1018
+ .....

=
x

103
+

999� x

106
+

x

109
+

999� x

1012

+
x

1015
+

999� x

1018
+ · · ·

First three digits are given by the term
x

103
only. Therefore the first three dig-

its of
x+ 1

103
are the digits of x. Thus

here the digits of the number on the left
side repeat after every 6 digits and first
three digits ( i.e x) is less by one than the
assumed number (x + 1) and last three
digits are 9’s complements of x.
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8.3 The Integral Test and

Comparison Tests

1. (a)
1X

k=1

4
3
p
k

is a divergent p-series, because

p =
1

3
< 1.

(b)
1X

k=1

k

�9/10 =
1X

k=1

1

k

9/10
is a divergent p-

series, p =
9

10
< 1.

2. (a)
1X

k=4

1

k

11/10
is a convergent p-series, since

p =
11

10
> 1.

(b)
1X

k=1

4p
k

=
1X

k=1

4

k

1/2
is a divergent p-series,

p =
1

2
< 1.

3. (a) Using the Limit Comparison Test, let

a

k

=
k + 1

k

2 + 2k + 3
and b

k

=
1

k

, so

lim
k!1

a

k

b

k

= lim
k!1

✓
k + 1

k

2 + 2k + 3

◆✓
k

1

◆

= lim
k!1

k

2 + k

k

2 + 2k + 3
= 1 > 0,

and since
1X

k=3

1

k

is the divergent harmonic

series,
1X

k=3

k + 1

k

2 + 2k + 3
diverges.

(b) Let a
k

=

p
k

k

2 + 1
and b

k

=
1

k

3/2
. Since

lim
k!1

a

k

b

k

= lim
k!1

p
k

k

2 + 1

k

3/2

1

= lim
k!1

k

2

k

2 + 1
= 1 > 0

and
1X

k=1

1

k

3/2
is a convergent p-series,

1X

k=1

p
k

k

2 + 1
converges, by the Limit Com-

parison Test.

4. (a) Using the Limit Comparison Test, let

a

k

=
4

2 + 4k
and b

k

=
1

k

, so

lim
k!1

a

k

b

k

= lim
k!1

✓
4

2 + 4k

◆✓
k

1

◆

= lim
k!1

4k

2 + 4k
= 1 > 0,

and since
1X

k=1

1

k

is the divergent harmonic

series,
1X

k=1

4

2 + 4k
diverges.

(b) Using the Limit Comparison Test, let

a

k

=
4

(2 + 4k)2
and b

k

=
1

k

2
. Since

lim
k!1

a

k

b

k

= lim
k!1

4

(2 + 4k)2
k

2

1

= lim
k!1

4k2

16k2 + 16k + 4
=

1

4
> 0

and
1X

k=1

1

k

2
is a convergent p-series,

1X

k=1

4

(2 + 4k)2
converges.

5. (a) Let f(x) =
2

x lnx
. Then f is continuous

and positive on [2,1) and

f

0(x) =
�2(1 + lnx)

x

2(lnx)2
< 0

for x 2 [2,1), so f is decreasing.

So we can use the Integral Test,Z 1

2

2

x lnx
dx

= lim
R!1

Z
R

2

2

x lnx
dx

= 2 lim
R!1

[ln(lnx)]R2

= 2 lim
R!1

[ln(lnR)� ln(ln 2)] = 1,

so
1X

k = 2

2

k ln k
diverges.

(b) Let f(x) =
3

x(lnx)2
.

Since f

0(x) =
�3(ln(x) + 2)

x

2(lnx)3
< 0 for

x 2 [2,1), f is a decreasing function and
we can use the Integral Test.
Z 1

2

3dx

x(lnx)2
= lim

R!1

Z
R

2

3dx

x(lnx)2

= lim
R!1


�3

lnx

����
R

2

= lim
R!1

✓
�3

lnR
+

3

ln 2

◆

=
3

ln 2
. Thus

1X

k=2

3

k(ln k)2
converges.

6. (a) Using the Limit Comparison Test, let
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a

k

=
2k

k

3 + 1
and b

k

=
1

k

2
. Then

lim
k!1

a

k

b

k

= lim
k!1

✓
2k

k

3 + 1

◆
·
✓
k

2

1

◆

= lim
k!1

2k3

k

3 + 1
= 2 > 0

and
1X

k=1

1

k

2
is a convergent p-series

(p = 2 > 1), so
1X

k=1

2k

k

3 + 1
converges.

(b) Using the Limit Comparison Test, let

a

k

=
k

2 + 1

k

3 + 3k + 2
and b

k

=
1

k

. Since

lim
k!1

a

k

b

k

= lim
k!1

k

2 + 1

k

3 + 3k + 2

k

1

= lim
k!1

k

3 + k

k

3 + 3k + 2
= 1 > 0

and the harmonic series
1X

k=1

1

k

diverges,

1X

k=1

k

2 + 1

k

3 + 3k + 2
diverges.

7. (a) Let f(x) =
e

1/x

x

2
. Then f is continuous

and positive on [1,1) and

f

0(x) =
�e

1/x(1 + 2x)

x

4
< 0

for all x 2 [1,1), so f is decreasing.

Therefore, we can use the Integral Test.Z 1

1

e

1/x

x

2
dx = lim

R!1

Z
R

1

e

1/x

x

2
dx

= lim
R!1

�e

1/x
���
R

1
= lim

R!1

⇣
e� e

1/R
⌘

= e� 1

So the series
1X

k=1

e

1/k

k

2
converges, and so

does
1X

k=3

e

1/k

k

2
.

(b) Since 0 
p
1 + 1/k

k

2


p
2

k

2
for all k � 1

and
1X

k=4

p
2

k

2
is a convergent p-series,

1X

k=4

p
1 + 1/k

k

2
converges, by the Compar-

ison Test.

8. (a) Let f(x) =
e

�
p
x

p
x

. Then f is continuous

and positive on [1,1) and

f

0(x) =
�(

p
x� 1)

2x3/2
e

p
x

< 0

for x 2 [1,1). So f is decreasing.
Therefore, we can use the Integral Test.Z 1

1

e

�
p
x

p
x

dx = lim
R!1

Z
R

1

e

�
p
x

p
x

dx

= lim
R!1

h
�2e�

p
x

i
R

1
= lim

R!1


2

e

� 2

e

p
R

�

=
2

e

. So
1X

k=1

e

p
k

p
k

converges.

(b) First note that

ke

�k

2

4 + e

�k

=
k

4ek2 + e

k

2�k

 k

4ek2 .

If we show convergence of
1X

k=1

k

4ek2 , then

convergence of
1X

k=1

ke

�k

2

4 + e

�k

will follow by

the Comparison Test.

Let f(x) =
x

4ex2 .

Since f

0(x) =
1� 2x2

4ex2  0 for x � 1,

we can use the Integral Test.Z 1

1

xdx

4ex2 = lim
R!1

Z
R

1

xdx

4ex2

= lim
R!1


� 1

8ex2

����
R

1

= lim
R!1

✓
� 1

8eR2 +
1

8e

◆
=

1

8e
.

Thus
1X

k=1

k

4ek2 converges.

9. (a) Using the Limit Comparison Test, let

a

k

=
2k2

k

5/2 + 2
and b

k

=
1p
k

. Since

lim
k!1

a

k

b

k

= lim
k!1

2k2

k

5/2 + 2

p
k

1

= lim
k!1

2k5/2

k

5/2 + 2
= 2 > 0

and
1X

k=1

1p
k

is a divergent p-series, so

1X

k=1

2k2

k

5/2 + 2
diverges.

(b) Using the Limit Comparison Test, let
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a

k

=
2p

k

2 + 4
and b

k

=
1

k

.

Then, lim
k!1

a

k

b

k

= lim
k!1

✓
2p

k

2 + 4

◆✓
k

1

◆

= lim
k!1

2kp
k

2 + 4
= 2 > 0

and
1X

k=1

1

k

is the divergent harmonic se-

ries, so
1X

k=0

2p
k

2 + 4
diverges.

10. (a) Let a
k

=
4p

k

3 + 1
and b

k

=
1

k

3/2
.

Since lim
k!1

a

k

b

k

[5pt] = lim
k!1

4p
k

3 + 1

k

3/2

1

= lim
k!1

4p
1 + k

�3
= 4 > 0

and
1X

k=1

1

k

3/2
is a convergent p-series,

1X

k=0

4p
k

3 + 1
converges, by the Limit

Comparison Test.

(b) Using the Limit Comparison Test, let

a

k

=
k

2 + 1p
k

5 + 1
and b

k

=
1

k

1/2
.Then,

lim
k!1

a

k

b

k

= lim
k!1

✓
k

2 + 1p
k

5 + 1

◆✓
k

1/2

1

◆

= lim
k!1

k

5/2 + k

1/2

p
k

5 + 1
= 1 > 0

and
1X

k=1

1

k

1/2
is a divergent p-series

✓
p =

1

2
< 1

◆
, so

1X

k=0

k

2 + 1p
k

5 + 1
diverges.

11. (a) Let f(x) =
tan�1

x

1 + x

2
which is continuous

and positive on [1,1) and

f

0(x) =
1� 2x tan�1

x

(1 + x

2)2
< 0

for x 2 [1,1), so f is decreasing.
So we can use the Integral Test.
Z 1

1

tan�1
x

1 + x

2
dx = lim

R!1

Z
R

1

tan�1
x

1 + x

2
dx

= lim
R!1

1

2
(tan�1

x)2
����
R

1

= lim
R!1


1

2
(tan�1

R)2 � 1

2
(tan�1 1)2

�

=
1

2

⇣
⇡

2

⌘2
� 1

2

⇣
⇡

4

⌘2
=

3⇡2

32
,

so
1X

k=1

tan�1
k

1 + k

2
converges.

(b) Since 0  sin�1(1/k)

k

2


⇡

2
k

2

for all k � 1 and
1X

k=1

⇡

2
k

2
is a convergent

p-series,
1X

k=1

sin�1(1/k)

k

2
is convergent, by

the Comparison Test.

12. (a) Since
��cos2 k

��  1,
1

cos2 k
> 1, so by

the k � th Term Test for Divergence,
1X

k=1

1

cos2 k
diverges.

(b) For all k � 1 we have

0  e

1/k + 1

k

3
 e+ 1

k

3
.

Since
1X

k=1

e+ 1

k

3
is a convergent p-series,

1X

k=1

e

1/k + 1

k

3
is convergent, by the Com-

parison Test.

13. (a) Let f(x) =
lnx

x

which is continuous and

positive on [2,1) and

f

0(x) =
1� lnx

x

2
< 0

for x 2 [2,1), so f is decreasing.
Therefore, we can use the Integral Test.

Z lnx

x

2
dx = lim

R!1

Z
R

2

lnx

x

dx

= lim
R!1

(lnx)2

2

����
R

2

= lim
R!1


(lnR)2

2
� (ln 2)2

2

�
= 1,

So
1X

k=2

ln k

k

diverges.

(b) Since 0  1

k

 2 + cos k

k

and
1X

k=1

1

k
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diverges,
1X

k=1

2 + cos k

k

diverges by the

Comparison Test.

14. (a) Using the Limit Comparison Test, let

a

k

=
k

4 + 2k � 1

k

5 + 3k2 + 1
and b

k

=
1

k

.Then,

lim
k!1

a

k

b

k

= lim
k!1

✓
k

4 + 2k � 1

k

5 + 3k2 + 1

◆✓
k

1

◆

= lim
k!1

k

5 + 2k2 � k

k

5 + 3k2 + 1
= 1 > 0.

Since
1X

k = 1

1

k

is the divergent harmonic

series,
1X

k=1

k

4 + 2k1

k

5 + 3k2 + 1
diverges, and so

does
1X

k=4

k

4 + 2k1

k

5 + 3k2 + 1
.

(b) Let a
k

=
k

3 + 2k + 3

k

4 + 2k2 + 4
and b

k

=
1

k

.

Since lim
k!1

a

k

b

k

= lim
k!1

k

3 + 2k + 3

k

4 + 2k2 + 4

k

1

= lim
k!1

k

4 + 2k2 + 3k

k

4 + 2k2 + 4
= 1 > 0

and
1X

k=1

1

k

diverges,
1X

k=6

k

3 + 2k + 3

k

4 + 2k2 + 4
di-

verges, by the Limit Comparison Test.

15. (a) Let a
k

=
k + 1

k

2 + 2
andb

k

=
1

k

.

Use the limit comparison test.

lim
k!1

a

k

b

k

= lim
k!1

k + 1

k

2 + 2
· 1✓

1

k

◆

= lim
k!1

k

2 + k

k

2 + 2
= 1 > 0

Therefore, both
1X

k=1

1

k

and
1X

k=1

k + 1

k

2 + 2
ei-

ther converge or diverge.

Since
1X

k=1

1

k

diverges (p-series

with p = 1),
1X

k=1

k + 1

k

2 + 2
diverges.

(b) Let a
k

=

p
k + 1

k

2 + 2
and b

k

=
1

k

3/2 .

Use the limit comparison test.

lim
k!1

a

k

b

k

= lim
k!1

p
k + 1

k

2 + 2
· 1⇣

1

k

3/2

⌘

= lim
k!1

k

3/2p
k + 1

k

2 + 2

= lim
k!1

k

2
q
1 + 1

k

k

2 + 2

= lim
k!1

q
1 + 1

k

1 + 1
k

2

= 1 > 0

Therefore, both
1X

k=1

1

k

3/2 and

1X

k=1

p
k + 1

k

2 + 2
either converge or diverge.

Since
1X

k=1

1

k

3/2 converges (p-series with

p > 1),
1X

k=1

p
k + 1

k

2 + 2
converges.

16. (a) Using the Limit Comparison Test, let

a

k

=
k + 1

k

3 + 2
and b

k

=
1

k

2
. Then

lim
k!1

a

k

b

k

= lim
k!1

✓
k + 1

k

3 + 2

◆✓
k

2

1

◆

= lim
k!1

k

3 + k

2

k

3 + 2
= 1 > 0

and
1X

k=1

1

k

2
is a convergent p-series

(p = 2 > 1), so
1X

k=8

k + 1

k

3 + 2
converges.

(b) Using the Limit Comparison Test. When
k � 5,
p
k + 1p
k

3 + 2
�
r

k

k

3 + k

=

r
1

k

2 + 1

�

s
1

(k + 1)2
=

1

k + 1
,

the series
1X

k=5

1

k + 1
diverges, so the orig-

inal series diverges.

17. (a) Let a
k

=
1

k

p
k + k

p
k + 1

and

b

k

=
1

k

p
k

=
1

k

3/2
.

Use the limit comparison test.
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lim
k!1

a

k

b

k

= lim
k!1

1

k

p
k + k

p
k + 1

· 1⇣
1

k

p
k

⌘

= lim
k!1

k

p
k

k

p
k + k

p
k + 1

= lim
k!1

1

1 +
q

k+1
k

= lim
k!1

1

1 +
q

1 + 1
k

=
1

2
> 0.

Therefore, both
1X

k=1

1

k

3/2 and

1X

k=1

1

k

p
k + k

p
k + 1

either converge or di-

verge. Since
1X

k=1

1

k

3/2 converges

(p-series with p > 1),
1X

k=1

1

k

p
k + k

p
k + 1

converges.

(b) Let a
k

=
2k + 1

k

p
k + k

2
p
k + 1

and

b

k

=
1

k

3/2 .

Use the limit comparison test.

lim
k!1

a

k

b

k

= lim
k!1

2k + 1

k

p
k + k

2
p
k + 1

.

1⇣
1

k

3/2

⌘

= lim
k!1

k

3/2

(2k + 1)

k

p
k + k

2
p
k + 1

= lim
k!1

k

5/2 �
2 + 1

k

�

k

5/2
⇣

1
k

+
q
1 + 1

k

⌘

= lim
k!1

2 + 1
k

1
k

+
q
1 + 1

k

= 2 > 0

Therefore, both
1X

k=1

1

k

3/2 and

1X

k=1

2k + 1

k

p
k + k

2
p
k + 1

either converge or

diverge. Since
1X

k=1

1

k

3/2 converges

(p-series with p > 1),
1X

k=1

2k + 1

k

p
k + k

2
p
k + 1

converges.

18. (a) Define f (x) = xe

�x =
x

e

x

.

Note that f is continuous and f (x) � 0
on [0,1).

f

0 (x) =
e

x � xe

x

e

2x
=

1� x

e

x

< 0,

for x > 1.

Hence f (x) is decreasing for x > 1. Now,
use the Integral Test.
1Z

1

x

e

x

dx = lim
R!1

RZ

1

x

e

x

dx

= lim
R!1

� (1 + x)

e

x

����
R

1

= lim
R!1

✓
� (1 +R)

e

R

◆
�
✓
�2

e

◆�
=

2

e

Since the integral converges,
1X

k=4

ke

�k also

converges.

(b) Define f (x) =
x

3

e

x

.

Note that f is continuous and f (x) � 0
on[0,1) .

f

0 (x) =
e

x · 3x2 � x

3 · ex

(ex)2

=
3x2 � x

3

e

x

< 0, forx > 3

Hence f (x) is decreasing for x > 3.
Now, use the Integral Test.
1Z

3

x

3

e

x

dx = lim
R!1

RZ

3

x

3

e

x

dx

= lim
R!1

✓
�x

3

e

x

� 3x2

e

x

� 6x

e

x

� 6

e

x

◆����
R

3

=
78

e

3

Since the integral converges,
1X

k=5

x

3

e

x

con-

verges.

19. (a) Let f (x) =
1

x lnx
f is continuous and positive on (1,1).

Sincef 0 (x) =
� (1 + lnx)

x

2(lnx)2
< 0,

for x 2 [2,1), f is decreasing.
Use the Integral Test,
1Z

2

1

x lnx
dx = lim

R!1

RZ

2

1

x lnx
dx

= lim
R!1

[ln (lnx)]|R2
= lim

R!1
[ln (lnR)� ln (ln 2)] = 1

Hence,
1X

k=2

1

k ln k
diverges.

Since
1X

k=2

1

k ln k


1X

k=2

1

ln k
, by Limit

Comparison Test
1X

k=2

1

ln k
also diverges.
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(b) In Part(a), it is proved that the series
1X

k=2

1

ln k
diverges.

Since
1X

k=2

1

ln k


1X

k=3

1

ln (ln k)
, by Limit

comparison Test
1X

k=3

1

ln (ln k)
also di-

verges.

(c) ln k  k for k > 1

) k ln k  k

2

) ln (k ln k)  ln
�
k

2
�

) ln (k ln k)  2 ln k

) 1

ln (k ln k)
� 1

2 ln k

)
1X

k=2

1

ln (k ln k)
�

1X

k=2

1

2 ln k
=

1

2

1X

k=2

1

ln k

By part (a),
1X

k=2

1

ln k
is divergent,

therefore by Limit Comparison Test,
1X

k=2

1

ln (k ln k)
is also divergent.

(d) ln (k!) = ln (1 · 2 · 3 · ..... · (k � 1) · k)
= ln 1 + ln 2 + ln 3 + ....

+ ln (k � 1) + ln k

ln (k!)  k ln k.

1

k ln k
<

1

ln (k!)

In

Part(a), it is proved that the series
1X

k=2

1

k ln k
diverges. Therefore, by Limit

Comparison Test,
1X

k=2

1

ln (k!)
also di-

verges.

20. (a) Let a
k

=
tan�1

k

k

and b

k

=
1

k

Then,

lim
k!1

a

k

b

k

= lim
k!1

tan�1
k

k

· 1�
1
k

�

= lim
k!1

tan�1
k =

⇡

2
> 0.

Since
1X

k=1

1

k

diverges,

by Limit Comparison Test,
1X

k=1

tan�1
k

k

diverges.

Now, 0  tan�1
k

k

 tan�1
k for k � 1

, by comparison test
1X

k=1

tan�1
k also di-

verges.

(b) In Part(a) it is proved that
1X

k=1

tan�1
k

k

diverges.

(c) Let a
k

=
tan�1

k

k

2
and b

k

=
1

k

2
.Then,

lim
k!1

a

k

b

k

= lim
k!1

tan�1
k

k

2
· 1�

1
k

2

�

= lim
k!1

tan�1
k =

⇡

2
> 0.

Since the series
1X

k=1

1

k

2
converges,

by Limit comparison test
1X

k=1

tan�1
k

k

2
also

converges.

(d) a

k

=
sec

�1
k

k

2
q�

1� 1
k

2

�

Let b
k

=
1

k

2
. Then

lim
k!1

a

k

b

k

= lim
k!1

sec

�1
kq

1� 1
k

2

=
⇡

2

Since the series
1P
k=1

b

k

is convergent, by

Limit Comparison Test
1X

k=2

sec

�1
k

k

2
q
1� 1

k

2

is

convergent.

21. If p  1, then the series diverges because

1

k(ln k)p
� 1

k ln k
(at least for k > 2) and

1X

k=2

1

k ln k
diverges (from Exercise 5(a)).

If p > 1, then let f(x) =
1

x(lnx)p
.

f is continuous and positive on [2,1), and

f

0(x) =
�(ln(x))�p�1(p+ lnx)

x

2
< 0

so f is decreasing.
Thus, we can use the Integral Test.Z 1

2

1

x(lnx)p
dx = lim

R!1

Z
R

2

1

x(lnx)p
dx

= lim
R!1

1

(1� p)(lnx)p�1

����
R

2

= lim
R!1


1

(1� p)(lnR)p�1

1

(1� p)(ln 2)p�1

�
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= � 1

(1� p)(ln 2)p�1
,

so
1X

k=2

1

k(ln k)p
converges when p > 1.

22. Let a
k

=
1

(a+ bk)p
and b

k

=
1

k

p

.

Since lim
k!1

a

k

b

k

= lim
k!1

1

(a+ bk)p
k

p

1

= lim
k!1

✓
k

a+ bk

◆
p

=
1

b

p

> 0, the series

1X

k=0

1

(a+ bk)p
converges if and only if

1X

k=1

1

k

p

converges, that is, if and only if p > 1, by the
Limit Comparison Test.

23. If p  1, then k

p  k for all k � 1, so
1

k

p

� 1

k

for all k � 1, and
ln k

k

p

� ln k

k

� 1

k

for all

k > 2, and
1X

k=2

1

k

diverges.

So by the Comparison Test,
1X

k=2

ln k

k

p

diverges.

If p > 1, then let f(x) =
lnx

x

p

. Then f is

continuous and positive on [2,1) and

f

0(x) =
x

p�1(1� p lnx)

x

2p
< 0

for k > 2, so f is decreasing.
Thus, we can use the Integral Test.Z 1

2

lnx

x

p

dx = lim
R!1

Z
R

2

lnx

x

p

dx

= lim
R!1

lnx

(1� p)xp�1
� 1

(1� p)2xp�1

����
R

2

= lim
R!1


lnR

(1� p)Rp�1
� 1

(1� p)2Rp�1

�

� ln 2

(1� p)2p�1
+

1

(1� p)22p�1

=
1

(1� p)22p�1
� ln 2

(1� p)2p�1
because

lim
R!1

lnR

(1� p)Rp�1
= lim

R!1

1
R

�(1� p)2Rp�2

= lim
R!1

�1

(1� p)2Rp�1
= 0

by l’Hopital’s Rule and

lim
R!1

1

(1� p)2Rp�1
= 0 because p > 1. Thus

by the Integral Test,
1X

k=R

ln k

k

p

converges when p > 1.

24. If p > 0, then lim
k!1

k

p�1
e

kp = 1 and thus
1X

k=1

k

p�1
e

kp diverges by the k

th-Term Test for

Divergence. If p = 0, then k

p�1
e

kp =
1

k

, so
1X

k=1

k

p�1
e

kp =
1X

k=1

1

k

diverges.

Now assume p < 0. Since 0 < k

p�1
e

kp  e

kp

for all k � 1 and
1X

k=1

e

kp =
1X

k=1

(ep)k is a con-

vergent geometric series,
1X

k=1

k

p�1
e

kp converges

by the Comparison Test.

25. R100  1

3 · 1003 = 3.33⇥ 10�7

26. R100 
Z 1

100

4dx

x

2
=

1

25
= 0.04

27. R100  6

7 · 507 = 1.097⇥ 10�12

28. R80 
Z 1

80

2 dx

x

2 + 1
= ⇡ � 2 tan�1(80) < 0.025

29. To estimate

✓
1

2
e

�402
◆
, take the logarithm:

log

✓
1

2
e

�402
◆

⇡ �695.2, so the error is less

than 10�695.

30. R200 
Z 1

200

tan�1
x

1 + x

2
dx

=
⇡

2

8
� 1

2
(tan�1(200))2 < 0.007842

31. R

n

 3

3n2
< 10�6, so n > 100 will do.

32. R

n


Z 1

n

2dx

x

2
=

2

n

, so R

n

 10�6 when

n � 2000000.

33. R

n

 1

2
e

�n

2

< 10�6.

Taking the natural logarithm, we need
n >

p
ln 500000 or n � 4.

34. R

n


Z 1

n

4dx

x

5
=

1

n

4
, so R

n

 10�6

when n � 32.
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35. (a) Can’t tell

(b) Converges

(c) Converges

(d) Can’t tell

36. (a) Diverges

(b) Can’t tell

(c) Can’t tell

(d) Diverges

37. (a) Since lim
k!1

a

k

b

k

= 0, there exists N , so that

for all k > N ,

����
a

k

b

k

� 0

���� < 1. Since a

k

and b

k

are positive,
a

k

b

k

< 1, so a

k

< b

k

.

Thus, since
1X

k=1

b

k

converges,
1X

k=1

a

k

con-

verges by the Comparison Test.

(b) lim
k!1

a

k

b

k

= 1 implies that there exists an

index k0 such that
a

k

b

k

> 1 for all k � k0.

Since a

k

, b

k

> 0, we get 0 < b

k

< a

k

for

all k � k0. Divergence of
1X

k=k0

b

k

implies

divergence of
1X

k=k0

a

k

, by the Comparison

Test. Divergence of
1X

k=1

a

k

follows.

38. If
1X

k=1

a

k

converges, then by Theorem 2.2,

lim
k!1

a

k

= 0. Thus, there exists an index k0

such that 0 < a

k

< 1 for all k � k0. But then

0 < a

2
k

< a

k

for all k � k0. Since
1X

k=k0

a

k

is

convergent,
1X

k=k0

a

2
k

is convergent, by the Com-

parison Test. Clearly, convergence of
1X

k=k0

a

2
k

implies convergence of
1X

k=1

a

2
k

.

39. Case 1: Suppose that lim
k!1

|a
k

|
|b

k

| = 0.

Then there exists a natural number N such
that, for all k � N , |a

k

| < |b
k

|. Thus, for all
k � N , |a

k

b

k

| < b

2
k

. Thus, by the Comparison

Test,
1X

k=1

|a
k

b

k

| converges.

Case 2: Suppose that lim
k!1

|b
k

|
|a

k

| = 0.

Using the same reasoning as in Case 1, there
exists a natural number N such that, for all
k � N , |b

k

| < |a
k

|. Thus, for all k � N ,
|a

k

b

k

| < a

2
k

. Thus, by the Comparison Test,
1X

k=1

|a
k

b

k

| converges. The only other possibil-

ity is that lim
k!1

|a
k

|
|b

k

| = L, where L > 0. Then

it follows that lim
k!1

a

2
k

|a
k

b

k

| = L. Thus, by the

Limit Comparison Test,
1X

k=1

|a
k

b

k

| converges.

40. Suppose that
1X

k=0

a

k

converges, then a

k

> 0

gives
a

k

1 + a

k

 a

k

, so that with Limit Com-

parison Test,
1X

k=0

a

k

1 + a

k

converges.

On the contrary, suppose that
1X

k=0

a

k

1 + a

k

con-

verges.

Let b

k

=
a

k

1 + a

k

, then a

k

=
b

k

1� b

k

.Then we

have
lim
k!1

b

k

= 0, so that for a big enough positive

integer N , we have b

k

<

1

2
for k � N . Then

for k � N, 1 � b

k

>

1

2
, and then a

k

< 2b
k

.

Thus using the Limit Comparison Test, the se-

ries
1X

k=N

a

k

converges, and so does
1X

k=0

a

k

.

41. 1 +
1

3
+

1

5
+

1

7
+ · · · =

1X

k=0

1

2k + 1
.

Using the Limit Comparison Test, let

a

k

=
1

2k + 1
and b

k

=
1

k

. Then

lim
k!1

a

k

b

k

= lim
k!1

✓
1

2k + 1

◆✓
k

1

◆

= lim
k!1

k

2k + 1
=

1

2
> 0

and since
1X

k=1

1

k

is the divergent harmonic se-

ries, then
1X

k=1

1

2k + 1
diverges.



8.3. THE INTEGRAL TEST AND COMPARISON TESTS 465

42. Let n be an arbitrary positive integer. If
we take every n-th term of the harmonic se-
ries, then the new series can be written as
1X

k=0

1

nk + 1
. Since

1

nk + 1
� 1

(n+ 1)k
for all

k � 1 and
1X

k=0

1

(n+ 1)k
=

1

n+ 1

1X

k=0

1

k

is di-

vergent,
1X

k=0

1

nk + 1
must be divergent, by the

Comparison Test.

43. First we’ll compare (ln k)ln k to k

2. Let

L = lim
k!1

(ln k)ln k

k

2
and calculate as follows:

L = lim
k!1

(ln k)ln k

k

2

lnL = lim
k!1

ln


(ln k)ln k

k

2

�

= lim
k!1

⇥
ln
⇥
(ln k)ln k

⇤
� ln(k2)

⇤

= lim
k!1

[(ln k) ln(ln k)� 2 ln k]

= lim
k!1

(ln k) [ln(ln k)� 2] = 1

Thus, lim
k!1

(ln k)ln k

k

2
= 1

This means that eventually (ln k)ln k

> k

2. In
other words, there exists a natural number N

such that for all

k � N ,
1

(ln k)ln k

<

1

k

2

Thus, by the Comparison test,
1X

k=2

1

(ln k)ln k

converges. Now we’ll use the Comparison test

to show that
1X

k=2

1

(ln k)k
converges.

We begin by noting that ln k < k

) (ln k)ln k

< (ln k)k

) 1

(ln k)k
<

1

(ln k)ln k

Therefore, by the Comparison test,
1X

k=2

1

(ln k)k

converges.

44. Using l’Hospital rule,

lim
k!1

(ln k)n

k

= lim
k!1

n(ln k)n�1 · 1
k

1

= lim
k!1

n(ln k)n�1

k

= lim
k!1

n(n� 1)(ln k)n�2

k

2
= · · ·

Since n is a positive integer, the above proce-
dure will continue until the power of ln k in the

numerator becomes 0, and then that limit will
equal to 0. This gives us that

lim
k!1

(ln k)n

k

= 0.

Hence for a certain big enough number N , we
have for k > N ,
(ln k)n

k

< 1 and (ln k)n < k,

1

(ln k)n
>

1

k

.

The harmonic series
1X

k=N

1

k

diverges, so us-

ing the Limit Comparison Test, the series
1X

k=N

1

(ln k)n
diverges, and so does the series

1X

k=2

1

(ln k)n
.

45.

1X

k=1

1

k

2
=

1

6
⇡

2

1X

k=1

1

k

4
=

1

90
⇡

4

1X

k=1

1

k

6
=

1

945
⇡

6

1X

k=1

1

k

8
=

1

9450
⇡

8

1X

k=1

1

k

10
=

1

93555
⇡

10

46. If x > 1, ⇣(x) =
1X

k=1

1

k

x

is a convergent p-series.

If x  1, ⇣(x) is a divergent p-series.

47. (a) In trapezoidal approximation, splits
the interval [0, n] into N uniform sub-
intervals and approximate the function
f(x) by a linear curve in each sub-
intervals. Since the graph of f(x) is con-
cave up. Therefore linear approximation
of f(x) in each sub-interval lies above the
graph of f(x). Hence the trapizoidal rule

approximation of

nZ

0

x

n

dx is larger than

the exact value of

nZ

0

x

n

dx

(b) By Trapezoidal Rule:
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nZ

0

x

n

dx

⇡ 1

2
[(0 + n

n)

+ 2 (1n + 2n + .....+ (n� 1)n)]

⇡ (1n + 2n + 3n + ....(n� 1)n) +
n

n

2
.

(c) The actual value of the integral is
n

n+1

n+ 1
.

Hence from (a) and (b),
n

n+1

n+ 1
 (1n + 2n + ..+ (n� 1)n) +

n

n

2

Adding
n

n

2
to both sides,

) n

n+1

n+ 1
+

n

n

2
 1n + 2n + ....+ n

n

) n

n+ 1
+

1

2
 1n + 2n + 3n + ...+ n

n

n

n

) 3n+ 1

2n+ 2
 1n + 2n + 3n + ...+ n

n

n

n

48. For p = 0.9

n

nP
k=1

1
k

0.9

100 8.134436430
200 9.996669332
300 11.21334766
1 1

For p = 1.1

n

nP
k=1

1
k

0.9

100 4.278024019
200 4.698878678
400 4.932274358
300 5.092332018
1 10.58444846

49.

Z 1

1

x

2x
dx = lim

R!1

Z
R

1

x

2x
dx

= lim
R!1

1

2x

✓
� 1

ln2 2
� x

ln 2

◆����
R

2
This integral converges since

lim
R!1

R

2R
= 0 by L’Hopital’s rule.

20X

k=1

k

✓
1

2

◆
k

⇡ 2.0

50. We can find the sum of
1X

k=1

k

2k
by first finding

the sums of the series
1X

k=1

1

2k
,

1X

k=2

1

2k
,

1X

k=3

1

2k
,

and so on. The sums will form a new series.
The sum of that series will give us the sum of
the original series. Note that
1X

k=n

1

2k
=

1/2n

1� 1/2
=

1

2n�1
for all n � 1. Hence

1X

k=1

k

2k
=

1X

k=1

1

2k
+

1X

k=2

1

2k
+ . . .

= 1 +
1

2
+

1

4
+ · · · = 2.

51.

1X

k=1

9k

10k
= 9

1X

k=1

k

1

10k
=

9

✓
1

10

+
1

102
+

1

102

+
1

103
+

1

103
+

1

103

+
1

104
+

1

104
+

1

104
+

1

104

+
1

105
+

1

105
+

1

105
+

1

105
+

1

105
· · ·
◆

= 9

✓
1

10
+

1

102
+

1

103
+

1

104
+

1

105
+ · · ·

+
1

102
+

1

103
+

1

104
+

1

105
+ · · ·

+
1

103
+

1

104
+

1

105
· · ·
◆

= 9

0

@
1X

k=1

1

10k
+

1X

k=2

1

10k
+

1/10kX

k=3

+ · · ·

1

A

Each of these sums is a geometric series with
r = 1/10, so we get

9

✓
1/10

1� 1
10

+
1/102

1� 1
10

+
1/103

1� 1
10

+ · · ·
◆

=
9

9/10

1X

k=1

1

10k
=

✓
9

9/10

◆✓
1/10

1� 1
10

◆

=

✓
9

9/10

◆✓
1/10

9/10

◆
=

10

9

52. The mean is 1· 8
10

+2· 2
10

· 8
10

+3· 2
10

· 2
10

· 8
10

+. . .

or
1X

k=1

k · 2k�1 · 8
10k

.

Following the method of Exercise 44 we find
1X

k=1

k · 2k�1 · 8
10k

= 4
1X

k=1

k

✓
2

10

◆
k

= 4

 1X

k=1

✓
2

10

◆
k

+
1X

k=2

✓
2

10

◆
k

+ . . .

!
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= 4

 
1

4
+

1

4

✓
2

10

◆
+

1

4

✓
2

10

◆2

+ . . .

!

=

 
1 +

✓
2

10

◆
+

✓
2

10

◆2

+ . . .

!

=
1

1� 2

10

=
10

8
, since, for all n � 1, we have

1X

k=n

✓
2

10

◆
k

=

✓
2

10

◆
n

1� 2

10

=
1

4

✓
2

10

◆
n�1

.

53. (a) 1 +
10

9
+

10

8
+ · · ·+ 10

1
⌘ 29.29

(b) It has been calculated in Part(a) that on
the average you need 30 cards to complete
the set of 10 di↵erent cards. That is, on
the average you need three times 10 cards
to complete the set.

54. (a) For n cards in the set, you will need an
average of
n

n� 1
+

n

n� 2
+ · · · n

1

attempts. The ratio is
n�1X

k=1

1

k

.

(b) As shown in Part(a), for n cards in the
set, you will need an average of
n

n� 1
+

n

n� 2
+ · · ·+ n

1
attempts, and thus, the ratio of the
cards obtained to the cards in the set is
n�1X

k=1

1

k

.Note that, since
1X

k=1

1

k

= 1, the

ratio increases to 1 as n increases.

8.4 Alternating Series

1. lim
k!1

a

k

= lim
k!1

3

k

= 0, and

0 < a

k+1 =
3

k + 1
 3

k

= a

k

for all k � 1, so by the Alternating Series Test,
the original series converges.

2. lim
k!1

a

k

= lim
k!1

2

k

2
= 0 and

a

k+1

a

k

=
2

(k + 1)2
k

2

2
=

2k2

2(k2 + 2k + 1)
< 1

so a

k+1  a

k

for all k � 1. Thus by the Al-
ternating Series Test, the original series con-
verges.

3. lim
k!1

a

k

= lim
k!1

4p
k

= 0 and

0 < a

k+1 =
4p
k + 1

<

4p
k

= a

k

for all k � 1. Thus by the Alternating Series
Test, the original series converges.

4. lim
k!1

a

k

= lim
k!1

k

2

k + 1
= 1

so by the k-th Term Test for Divergence, the
original series diverges.

5. lim
k!1

a

k

= lim
k!1

k

k

2 + 2
= 0

and
a

k+1

a

k

=
k + 1

(k + 1)2 + 2
· k

2 + 2

k

=
k

3 + k

2 + 2k + 2

k

3 + 2k2 + 3k
 1

for all k � 2, so a

k+1 < a

k

for all k � 2. Thus
by the Alternating Series Test, the original se-
ries converges.

6. 0 <

2k � 1

k

3
<

2k

k

3
=

2

k

2
and

1X

k=7

2

k

2
is a conver-

gent p-series, so by the Comparison Test, the
original series converges.

7. By l’Hospital’s Rule,

lim
k!1

a

k

= lim
k!1

k

2k
= lim

k!1

1

2k ln 2
= 0

and
a

k+1

a

k

=
k + 1

2k+1
· 2

k

k

=
k + 1

2k

for all k � 5, so a

k+1  a

k

for all k � 5. Thus
by the Alternating Series Test, the original se-
ries converges.

8. By l’Hopital’s Rule,

lim
k!1

a

k

= lim
k!1

3k

k

= 1
and so by the k-th Term Test for Divergence,
the original series diverges.

9. lim
k!1

a

k

= lim
k!1

4k

k

2
= lim

k!1

4k ln 4

2k

= lim
k!1

4k(ln 4)2

2
= 1 (by l’Hopital’s Rule)

So by the k-th Term Test for Divergence,
1X

k=1

(�1)k
4k

k

2
diverges.

10. First note that a
k

> 0 for all k � 1 and

lim
k!1

a

k

= lim
k!1

k + 2

4k
= 0

(by l’Hopital’s Rule). Then, since
a

k+1

a

k

=
k + 3

4k+1
· 4k

k + 2
=

k + 3

4(k + 2)
< 1
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for all k � 1, we have a

k+1 < a

k

.

Thus
1X

k=1

(�1)k
k + 2

4k
converges, by the Alter-

nating Series Test.

11. Let a
k

=
3

2 + k

and b

k

=
1

k

.

lim
k!1

3

2 + k

· 1�
1
k

� = lim
k!1

3�
2
k

+ 1
� = 3 > 0

Since
1X

k=1

1

k

is divergent (p = 1-series with

p = 1), by Limit Comparison Test, the series
1X

k=1

3

2 + k

is divergent.

12.

1X

k=2

3

2k
= 3

1X

k=2

1

2k
= 3

✓ 1
22

1� 1
2

◆
=

3

2

13. lim
k!1

a

k

= lim
k!1

2kp
k + 1

= 0

and
a

k+1

a

k

=
3p
k + 2

·
p
k + 1

3

=

p
k + 1p
k + 2

< 1

for all k � 3, so a

k+1 < a

k

for all k � 3.

Thus by the Alternating Series Test,
1X

k=3

(�1)k
3p
k + 1

converges.

14. First note that a

k

> 0 for all k � 4 and

lim
k!1

a

k

= lim
k!1

k + 1

k

3
= 0.Then, since

a

k+1

a

k

=
k + 2

(k + 1)3
· k

3

k + 1
=

k

4 + 2k3

(k + 1)4
< 1

for all k � 4, we have a

k+1 < a

k

.

Thus
1X

k=4

(�1)k
k + 1

k

3
converges, by the Alter-

nating Series Test.

15. lim
k!1

a

k

= lim
k!1

2p
k!

= 0

and
a

k+1

a

k

=
2p

k + 1!
· k!
2

=
1

k + 1
< 1

for all k � 1, so a

k+1 < a

k

for all k � 1.

Thus by the Alternating Series Test,
1X

k=1

(�1)k+1 2

k!
converges.

16. Note that, since
a

k+1

a

k

=
(k + 1)!

3k+1
· 3

k

k!
=

k + 1

3
> 1

for all k � 3, we have

0 < a3 < a4 < a5 < . . . ,

so lim
k!1

a

k

= lim
k!1

k!

3k
6= 0

Thus
1X

k=3

(�1)k+1 k!

3k
diverges, by the k-th Term

Test for Divergence.

17. For k � 2,
4k

k

2 + 2k + 2
� 4k

k

2 + 2k + k

=
4

k + 3
.

Let a
k

=
4

k + 3
and b

k

=
1

k

.

lim
k!1

4

k + 3
· 1�

1
k

� = lim
k!1

4�
1 + 3

k

� = 4 > 0

Since
1X

k=1

1

k

is divergent (p = 1-series

with p = 1), by Limit Comparison Test,

the series
1X

k=2

4

k + 3
is divergent and hence

1X

k=1

4k

k

2 + 2k + 2
is also divergent.

18.

4k2

k

4 + 2k + 2
 4

k

2

Since
1X

k=1

1

k

2
is convergent (p-series with p >

1), 4
1X

k=3

1

k

2
is convergent. By Comparison Test

1X

k=3

4k2

k

4 + 2k + 2
is convergent.

19. lim
k!1

a

k

= lim
k!1

2e�k = 0

and
a

k+1

a

k

=
2e�(k+1)

2e�k

=
1

e

< 1

for all k � 0,, so a

k+1 < a

k

for all k � 0.
Thus by the Alternating Series Test,
1X

k=5

(�1)k+12e�k converges.

20. Note that lim
k!1

a

k

= lim
k!1

3e1/k = 3.

Thus
1X

k=6

(�1)k+13e1/k diverges, by the k-th

Term Test for Divergence.

21. Note that lim
k!1

a

k

= lim
k!1

ln k = 1,

so by the k-th Term Test for Divergence,
1X

k=2

(�1)k ln k diverges.

22. Since lim
k!1

a

k

= lim
k!1

1

ln k
= 0
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and 0 < a

k+1 =
1

ln(k + 1)
<

1

ln k
= a

k

for all k � 2,
1X

k=2

(�1)k
1

ln k
converges, by the

Alternating Series Test.

23. lim
k!1

a

k

= lim
k!1

1

2k
= 0

and
a

k+1

a

k

=
1

2k+1
· 2

k

1
=

1

2
< 1

for all k � 0, so a

k+1 < a

k

for all k � 0.
Thus by the Alternating Series Test,
1X

k=0

(�1)k+1 1

2k
converges.

24. Note that lim
k!1

a

k

= lim
k!1

2k = 1.

Thus
1X

k=0

(�1)k+12k diverges, by the k-th Term

Test for Divergence.

25. |S � S

k

|  a

k+1 =
4

(k + 1)3
 .01

and a7 = 4/83 < 0.01, so

S ⇡ S7 ⇡ 3.61.

26. |S � S

k

|  a

k+1 =
2

(k + 1)3

Since a6 =
2

63
⇡ 0.009259 < 0.01,

S ⇡ S5 ⇡ 1.81.

27. |S � S

k

|  a

k+1 =
k + 1

2k+1
 .01

If k = 9, a10 =
10

210
⇡ .00977 < .01

So S ⇡ S9 ⇡ �.22.

28. |S � S

k

|  a

k+1 =
(k + 1)2

10k+1

Since a3 =
32

103
= 0.009 < 0.01,

S ⇡ 0.00.

29. |S � S

k

|  a

k+1 =
3

(k + 1)!
 .01

If k = 5, a6 =
3

6!
⇡ .0042 < .01

So S ⇡ S5 ⇡ 1.10.

30. |S � S

k

|  a

k+1 =
2

(k + 1)!

Since a6 =
2

6!
⇡ 0.002778 < 0.01,

A ⇡ S5 ⇡ �0.73.

31. |S � S

k

|  a

k+1 =
4

(k + 1)4
 .01,

so 400  (k + 1)4, then 3
p
400  k + 1,

so k � 3
p
400� 1 ⇡ 3.47 so k � 4.

Thus S ⇡ S4 ⇡ �0.21.

32. |S � S

k

|  a

k+1 =
3

(k + 1)5

Since a4 =
3

45
⇡ .0029297 < 0.01,

S ⇡ S3 ⇡ 0.01.

33. |S � S

k

|  a

k+1 =
2

k + 1
< .0001,

so k + 1 � 20,000 and then k � 19,999.
Thus k = 20,000.

34. |S � S

k

|  a

k+1 =
2k+1

(k + 1)!
 .0001

If k = 10, a11 =
211

11!
⇡ .00005 < .0001.

So k = 10, which is 11 terms.

35. |S � S

k

|  a

k+1 =
10k+1

(k + 1)!

Since a34 =
1034

34!
⇡ 0.00003387 is the first term

such that a
k

< 0.0001, 34 terms are needed.

36. |S � S

k

|  a

k+1 =
(k + 1)!

(k + 1)k+1
 .0001

and a12 =
12!

1212
⇡ .000054 < .0001.

So k = 11, which is 11 terms.

37. Comparing
1X

k=1

(�1)ke�k sin k with

1X

k=1

(�1)ka
k

, a
k

= e

�k sin k.

Since lim
k!1

e

�k = 0 and |sin k|  1 and there-

fore lim
k!1

e

�k sin k = 0.

But a
k

do not satisfy the following conditions
of Theorem 4.1:
i. a

k

� 0. for all k.
ii. a

k+1  a

k

for all k.
Therefore, Theorem 4.1 cannot be applied to

this series. Since,
���(�1)�k sin k

���  1,
1X

k=1

���(�1)ke�k sin k
��� 

1X

k=1

e

�k =
1

e� 1
.

Hence the series
1X

k=1

(�1)ke�k sin k is abso-

lutely convergent and hence convergent.
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38. Comparing
1X

k=2

(�1)k
��sin k⇡

2

��
k

with

1X

k=2

(�1)ka
k

, a
k

=

��sin k⇡

2

��
k

.

When k is even numbers, a
k

is 0. And when

k is odd number, a
k

is
1

k

. Therefore a

k

is nei-

ther decreasing nor increasing sequence. Hence
Theorem 4.1 cannot be applied to this series.
Since
1X

k=2

(�1)k
��sin k⇡

2

��
k

=
1X

k=1

�1

2k + 1
= �

1X

k=1

1

2k + 1
.

Let a
k

=
1

2k + 1
and b

k

=
1

k

. Then,

lim
k!1

1

2k + 1

1�
1
k

� = lim
k!1

1

2 + 1
k

=
1

2
> 0

Therefore, by Limit Comparison Test,

�
1X

k=1

1

2k + 1
is divergent and hence

1X

k=2

(�1)k
��sin k⇡

2

��
k

is divergent.

39. Comparing the given series with
1X

k=3

(�1)ka
k

,

we get a
k

=
1 + (�1)kp

k

When k is odd numbers, a
k

is 0. When k is

even number a

k

=
1p
k

. Therefore a

k

is nei-

ther decreasing nor increasing sequence. Hence
Theorem 4.1 cannot be applied to this series.
Now,
1X

k=3

(�1)k
1 + (�1)kp

k

=
1X

2

2p
2k

=
2p
2

1X

k=2

1p
k

Since
1X

k=2

1p
k

is divergent (p-series with p < 1),

1X

k=3

(�1)k
1 + (�1)kp

k

is divergent.

40. Comparing
1X

k=3

(�1)k
sin k

k

2
with

1X

k=3

(�1)ka
k

,

a

k

=
sin k

k

2
. But a

k

do not satisfy the following

conditions of Theorem 4.1:
1. a

k

� 0 8k

2. a
k+1  a

k

8k
Hence Theorem 4.1 cannot be applied to this
series. Now,
1X

k=4

����(�1)2k
sin k

k

2

���� 
1X

k=4

1

k

2
and the series

1X

k=4

1

k

2
is convergent (p-series with p > 1).

By Comparison Test
1X

k=4

����(�1)2k
sin k

k

2

���� is con-

vergent and hence
1X

k=4

(�1)2k
sin k

k

2
is conver-

gent.

41. If the derivative of a function f(k) = a

k

is neg-
ative, it means that the function is decreasing,
i.e., each successive term is smaller than the
one before. If

f(k) = a

k

=
k

k

2 + 2
, then

f

0(k) =
�k

2 + 2

(k2 + 2)2
< 0 for all k � 2 so a

k

is

decreasing.

42. Since the sequence a
k

=
1

2k + 1
is a decreasing

sequence and lim
k!1

1

2k + 1
= 0,

1X

k=0

(�1)k
1

2k + 1
converges by the Alternating

Series Test.

If
1X

k=0

(�1)k
1

2k + 1
=

⇡

4
, then

1X

k=0

(�1)k
4

2k + 1
= ⇡. Now, solving

a

k+1 =
4

2k + 3
< 0.00000001

for k we get k = 199, 999, 999. To use this se-
ries to calculate eight digits of ⇡ correctly, we
need to add almost 200 million terms.

43. The sum of the odd terms is

1+
1

3
+

1

5
+

1

7
+ · · · , which diverges to 1. The

sum of the even terms is

�
1X

k=1

1

(2k)2
, which is a convergent p-series. So

the series diverges to 1.

44. (a) An example is a
k

= b

k

=
(�1)kp

k

.

Then
1X

k=1

a

k

and
1X

k=1

b

k

converge by the

Alternating Series Test. However,
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1X

k=1

a

k

b

k

=
1X

k=1

(�1)2k

k

=
1X

k=1

1

k

which di-

verges.

(b) If we add the assumptions that
a

k

> 0, b
k

> 0 for all k,
the statement in Part(a) will be true.

45. S2n =
2nX

k=1

1

k

�
nX

k=1

1

n

=
2nX

k=n+1

1

k

Let k = r + n, so that k = n+ 1 , r = 1 and
k = 2n , r = n.

Thus,S2n =
nX

r=1

1

r + n

Now relabel r as k to get

S2n =
nX

k=1

1

k + n

=
1

n

nX

k=1

1

1 +
k

n

The previous line is a Riemann sum forZ 2

1

1

x

dx. Thus,

lim
n!1

S2n =

Z 2

1

1

x

dx = [lnx]21

= ln 2� ln 1 = ln 2

46. If p < 0, lim
k!1

1

k

p

= 1 so the series diverges. If

p = 0, the series becomes
�1 + 1� 1 + 1� · · · , and it diverges.

If p > 0, lim
k!1

1

k

p

= 0 and for all k,

0 <

1

(k + 1)p
<

1

k

p

, 0 < a

k+1 < a

k

,

so the series converges.

47.

3

4
� 3

4

✓
3

4

◆
� . . . =

1X

k=0

✓
3

4

◆✓
�3

4

◆
k

which is

a geometric series with a =
3

4
and

|r| = 3

4
< 1. So,

1X

k=0

✓
3

4

◆✓
�3

4

◆
k

=
3/4

1 + 3/4
=

3

7
.

The person ends up
3

7
of the distance from

home.

48. If x
n

=
1

4
x

n�1 when n is even, and

x

n

=
3

4
+

1

4
x

n�1 when n is odd, we have

x

n

=
3

16
+

1

16
x

n�2 when n is even and

x

n

=
3

4
+

1

16
x

n�2 when n is odd.

The sequence x2, x4, . . . is increasing and

bounded, thus convergent. The limit must sat-

isfy x =
3

16
+

1

16
x, which gives x =

1

5
.

The sequence x3, x5, . . . is decreasing and
bounded, thus convergent. The limit must sat-

isfy x =
3

4
+

1

16
x, which gives x =

4

5
.

Consequently, the person ends up walking be-

tween x =
1

5
and x =

4

5
.

8.5 Absolute

Convergence and

the Ratio Test

1. By the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

3

(k + 1)!
· k!
3

= lim
k!1

1

k + 1
= 0 < 1

so
1X

k=0

(�1)k
3

k!
converges absolutely.

2. Since lim
k!1

����
a

k+1

a

k

���� = lim
k!1

6

(k + 1)!
· k!
6

= lim
k!1

1

k + 1
= 0 < 1,

1X

k=1

(�1)k
6

k!
converges absolutely, by the Ratio

Test.

3. By the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

2k+1

2k

= lim
k!1

2 = 2 > 1,

so
1X

k=0

(�1)k2k diverges. (Or use k-th Term

Test.)

4. Since lim
k!1

����
a

k+1

a

k

���� = lim
k!1

2

3k+1
· 3

k

2

= lim
k!1

1

3
=

1

3
< 1,

1X

k=1

(�1)k
2

k

3
converges absolutely, by the Ratio

Test.

5. By the Alternating Series Test,

lim
k!1

a

k

= lim
k!1

k

k

2 + 1
= 0

and
a

k+1

a

k

=
k + 1

(k + 1)2 + 1
· k

2 + 1

k
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=
k

3 + k

2 + k + 1

k

3 + 2k2 + 2k
< 1

for all k � 1, so a

k+1 < a

k

for all k � 1, so the
series converges. But by the Limit Comparison

Test, letting a

k

=
k

k

2 + 1
and b

k

=
1

k

,

lim
k!1

a

k

b

k

= lim
k!1

k

2

k

2 + 1
= 1 > 0

and
1X

k=1

1

k

is the divergent harmonic series.

Therefore
1X

k=1

|a
k

| =
1X

k=1

k

k

2 + 1
diverges. Thus

1X

k=1

(�1)k+1 k

k

2 + 1
converges conditionally.

6. lim
k!1

a

k

= lim
k!1

k

2 + 1

k

= 1,

so
1X

k=0

(�1)k+1 k
2 + 1

k

diverges by the k-th

Term Test for Divergence.

7. By the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

3k+1

(k + 1)!
· k!
3k

= lim
k!1

3

k + 1
= 0 < 1,

so
1X

k=3

(�1)k
3k

k!
converges absolutely.

8. Since lim
k!1

����
a

k+1

a

k

���� = lim
k!1

10k+1

(k + 1)!
· k!

10k

= lim
k!1

10

k + 1
= 0 < 1,

1X

k=4

(�1)k
10k

k!
converges absolutely, by the Ra-

tio Test.

9. lim
k!1

a

k

= lim
k!1

k

2k + 1
=

1

2
so by the k-th Term Test for Divergence,
1X

k=2

(�1)k+1 k

2k + 1
diverges.

10. Since lim
k!1

a

k

= lim
k!1

4

2k + 1
= 0

and 0 < a

k+1 =
4

2(k + 1) + 1
=

4

2k + 3

<

4

2k + 1
= a

k

for all k � 1,
1X

k=3

(�1)k+1 4

2k + 1
converges,

by the Alternating Series Test. To test abso-
lute convergence, we use the Integral Test. Let

f(x) =
4

2x+ 1
.

Since f

0(x) = � 8

(2x+ 1)2
< 0

for x 2 [0,1), f is a decreasing function.
Moreover,Z 1

1

4 dx

2x+ 1
= lim

R!1

Z
R

1

4 dx

2x+ 1

= lim
R!1

2 ln(2x+ 1)
���
R

1
= lim

R!1
(2 ln(2R+ 1)� 2 ln 3) = 1,

so the series
1X

k=2

4

2k + 1
diverges.

Thus,
1X

k=3

(�1)k+1 4

2k + 1
is conditionally con-

vergent.

11. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

(k + 1)2k+1

3k+1
· 3k

k2k

= lim
k!1

2(k + 1)

3k
=

2

3
< 1,

so
1X

k=6

(�1)k
k2k

3k
converges absolutely.

12. Since lim
k!1

����
a

k+1

a

k

����

= lim
k!1

(k + 1)23k+1

2k+1
· 2k

k

23k

= lim
k!1

✓
k + 1

k

◆2

· 3
2
=

3

2
> 1,

1X

k=1

(�1)k
k

23k

2k
diverges, by the Ratio Test.

13. Using the Root Test,

lim
k!1

k
p

|a
k

| = lim
k!1

k

s✓
4k

5k + 1

◆
k

= lim
k!1

4k

5k + 1
=

4

5
< 1

so
1X

k=1

✓
4k

5k + 1

◆
k

converges absolutely.

14. Since lim
k!1

k
p
|a

k

| = lim
k!1

k

vuut
�����

✓
1� 3k

4k

◆
k

�����

= lim
k!1

����
1� 3k

4k

���� =
3

4
< 1,

1X

k=5

✓
1� 3k

4k

◆
k

converges, by the Root Test.
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15.

1X

k=1

1

k

is the divergent harmonic series; so

1X

k=1

�2

k

diverges.

16.

1X

k=1

4

k

= 4
1X

k=1

1

k

and
1X

k=1

1

k

is the divergent har-

monic series, so
1X

k=1

4

k

diverges.

17. Using the Alternating Series Test,

lim
k!1

a

k

= lim
k!1

p
k

k + 1
= 0 and

a

k+1

a

k

=

p
k + 1

k + 2
· k + 1p

k

=
(k + 1)3/2

k

3/2 + 2k1/2
< 1 for all k � 1,

so a

k+1 < a

k

for all k � 1 so the series con-
verges.

But by the Limit Comparison Test, letting

a

k

=

p
k

k + 1
and b

k

=
1

k

1/2
,

lim
k!1

a

k

b

k

= lim
k!1

p
k

k + 1
· k

1/2

1

= lim
k!1

k

k + 1
= 1 > 0,

and
1P
k=0

1

k

1/2
is a divergent p-series

✓
p =

1

2
< 1

◆
.

Therefore,
1X

k=0

|a
k

| =
1X

k=0

p
k

k + 1
diverges.

So
1X

k=0

(�1)k+1

p
k

k + 1
converges conditionally.

18. Let a

k

=
k

k

3 + 1
and b

k

=
1

k

2
. Since

lim
k!1

a

k

b

k

= lim
k!1

k

k

3 + 1

k

2

1

= lim
k!1

k

3

k

3 + 1
= 1 > 0

and
1X

k=2

1

k

2
is a convergent p-series,

1X

k=2

k

k

3 + 1

is convergent, by the Limit Comparison Test.

Thus,
1X

k=2

(�1)k+1 k

k

3 + 1
is absolutely conver-

gent.

19. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

(k + 1)2

e

k+1
· e

k

k

2

= lim
k!1

(k + 1)2

ek

2
=

1

e

< 1,

so
1P
k=7

k

2

e

k

converges absolutely.

20. Since lim
k!1

����
a

k+1

a

k

���� = lim
k!1

(k + 1)3 e�(k+1)

k

3
e

�k

= lim
k!1

✓
k + 1

k

◆3 1

e

=
1

e

< 1,

1X

k=1

k

3
e

�k converges absolutely, by the Ratio

Test.

21. Using the Root Test,

lim
k!1

k
p

|a
k

| = lim
k!1

k

s✓
e

3

k

3

◆
k

= lim
k!1

e

3

k

3
= 0 < 1,

so
1X

k=2

e

3k

k

3k
converges absolutely.

22. lim
k!1

a

k

= lim
k!1

✓
e

k

k

2

◆
k

= 1,

so
1X

k=4

✓
e

k

k

2

◆
k

diverges by the k-th Term Test

for Divergence.

23. Since |sin k|  1 for all k,����
sin k

k

2

���� =
|sin k|
k

2
 1

k

2
,

and
1X

k=1

1

k

2
is a convergent p-series (p = 2 > 1)

so by the Comparison Test,
1X

k=1

����
sin k

k

2

���� con-

verges, and by Theorem 5.1,
1X

k=1

sin k

k

2
con-

verges absolutely.

24. Since

����
cos k

k

3

���� 
1

k

3
for all k � 1 and

1X

k=1

1

k

3
is

a convergent p-series,
1X

k=1

cos k

k

3
converges ab-

solutely, by the Comparison Test.

25. Since cos k⇡ = (�1)k for all k,����
cos k⇡

k

���� =
����
(�1)k

k

���� =
1

k
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and
1X

k=1

1

k

is the divergent harmonic series,

so
1X

k=1

����
cos k⇡

k

���� diverges by the Comparison

Test.

But, using the Alternating Series Test,

lim
k!1

a

k

= lim
k!1

1

k

= 0 and
a

k+1

a

k

=
1

k + 1
· k
1
=

k

k + 1
< 1

for all k � 1, so a

k+1 < a

k

for all k � 1, so
1X

k=1

(�1)k

k

converges.

Thus
1X

k=1

(�1)k

k

=
1X

k=1

cos k⇡

k

converges condi-

tionally.

26. Let a
k

=
tan�1

k

k

and b

k

=
1

k

Then

lim
k!1

a

k

b

k

= lim
k!1

tan�1
k

k

· 1�
1
k

�

= lim
k!1

tan�1
k

=
⇡

2
> 0.

Since
1X

k=1

1

k

diverges, by Limit Comparison

Test,
1X

k=1

tan�1
k

k

diverges.

Now, 0  tan�1
k

k

 tan�1
k for k � 1, by com-

parison test
1X

k=1

tan�1
k also diverges

27. Using the Alternating Series Test,

lim
k!1

a

k

= lim
k!1

1

ln k
= 0

and
a

k+1

a

k

=
1

ln(k + 1)
· ln k

1
=

ln k

ln(k + 1)
< 1

for all k � 2,

so a

k+1 < a

k

for all k � 2. So
1X

k=2

(�1)k

ln k
con-

verges.

But by the Comparison Test, because ln k < k

for all k � 2,
1

ln k
>

1

k

for all k � 2 and
1P
k=2

1

k

is the divergent harmonic series. Therefore,
1X

k=2

|a
k

| =
1X

k=2

1

ln k
diverges.

Thus
1X

k=2

(�1)k

ln k
converges conditionally.

28. Since, for k � 2, a
k

=
1

k ln k
is a decreasing

sequence of positive terms and

lim
k!1

a

k

= lim
k!1

1

k ln k
= 0,

the series
1X

k=2

(�1)k

k ln k
is convergent, by the Al-

ternating Series Test.

On the other hand, since the function

f(x) =
1

x lnx
is positive, decreasing on [2,1),

andZ 1

2
f(x) dx =

Z 1

2

1

x lnx
dx = 1,

the series
1X

k=2

1

k ln k
is divergent, by the Inte-

gral Test.

Thus,
1X

k=2

(�1)k

k ln k
is conditionally convergent.

29.

1X

k=1

|a
k

| =
1X

k=1

1

k

3/2
which is a convergent

p-series

✓
p =

3

2
> 1

◆
, so by Theorem 5.1,

1X

k=1

(�1)k

k

p
k

converges absolutely.

30. Since a
k

=
1p
k

is a decreasing sequence of pos-

itive terms and

lim
k!1

a

k

= lim
k!1

1p
k

= 0,

the series
1X

k=1

(�1)k+1

p
k

is convergent, by the Al-

ternating Series Test. On the other hand, since

the function f(x) =
1p
x

is positive, decreasing

on [1,1), andZ 1

2
f(x) dx =

Z 1

2

1p
x

dx = 1,

the series
1X

k=2

1p
k

is divergent, by the Integral

Test.

Thus,
1X

k=1

(�1)k+1

p
k

is conditionally convergent.

31. Consider
1X

k=1

1

k

k

. Using the Root Test,



8.5. ABSOLUTE CONVERGENCE AND THE RATIO TEST 475

lim
k!1

k
p
|a

k

| = lim
k!1

k

s✓
1

k

◆
k

= lim
k!1

1

k

= 0 < 1,

so
1P
k=1

1

k

k

converges absolutely, thus 3
1X

k=3

1

k

k

=

1X

k=3

3

k

k

converges absolutely.

32. Since lim
k!1

a

k+1

a

k

= lim
k!1

2(k + 1)

3k+1
· 3

k

2k

= lim
k!1

k + 1

k

· 1
3
=

1

3
< 1,

1X

k=8

2k

k

3
converges absolutely, by the Ratio Test.

33. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

(k + 1)!

4k+1
· 4

k

k!

= lim
k!1

k + 1

4
= 1 > 1,

so
1X

k=6

(�1)k+1 k!

4k
diverges.

34. Since lim
k!1

����
a

k+1

a

k

����

= lim
k!1

(k + 1)24k+1

(k + 1)!
· k!

k

24k

= lim
k!1

4(k + 1)

k

2
= 0 < 1,

1X

k=4

(�1)k+1 k
24k

k!
converges absolutely, by the

Ratio Test.

35. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

(k + 1)10

(2k + 2)!
· 2k!
k

10

= lim
k!1

(k + 1)10

k

10(2k + 1)(2k + 2)

= lim
k!1

(k + 1)10

4k12 + 6k11 + 2k10
= 0 < 1

so
1X

k=1

(�1)k+1 k

10

(2k)!
converges absolutely.

36. Since lim
k!1

����
a

k+1

a

k

����

= lim
k!1

4k+1

(2k + 3)!
· (2k + 1)!

4k

= lim
k!1

4

(2k + 2)(2k + 3)
= 0 < 1,

1X

k=1

(�1)k
4k

(2k + 1)!
converges absolutely, by the

Ratio Test.

37. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

����

= lim
k!1

����
(�2)k+1(k + 2)

5k+1
· 5k

(�2)k(k + 1)

����

= lim
k!1

2(k + 2)

5(k + 1)
=

2

5
< 1

so
1X

k=0

(�2)k(k + 1)

5k
converges absolutely.

38. Since lim
k!1

����
a

k+1

a

k

����

= lim
k!1

3k+1

(k + 1)24k+1
· k

24k

3k

= lim
k!1

✓
k

k + 1

◆2

· 3
4
=

3

4
< 1,

1X

k=1

(�3)k

k

24k
converges absolutely, by the Ratio

Test.

39. Since

����
cos (k⇡/s)

k!

���� 
1

k!
and

1X

k=1

1

k!
is conver-

gent by the Ratio Test. Therefore, by the Com-

parison Test,
1X

k=1

cos (k⇡/s)

k!
is absolutely con-

vergent and hence convergent.

40. Use the Root Test.

Since lim
k!1

k
p

|a
k

| = lim
k!1

�
1 + 1

k

�
k

= e > 1,

the given series diverges.

41. Use the Ratio Test.

42. Use the Root Test.

43. Use the Alternating Series Test.

44. Use the Limit Comparison Test.

45. Use the p-series Test.

46. Use the Geometric Series Test.

47. Use the Ratio Test.

48. Use the Alternating Series Test.

49. Use the Integral test.

50. Use the integral Test.

51. Use the Root Test.
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52. Use the Alternating Series Test.

53. Use the Comparison Test.

54. Use the Limit Comparison Test.

55. Use the Comparison Test.

56. Use the Limit Comparison Test and Alternat-
ing Series Test.

57. Use the Integral Test.

58. Use the Alternating Series Test.

59. Use the Ratio Test.

60. Use the Ratio Test.

61. (a)

p
8

9801

0X

k=0

(4k)!(1103 + 26390k)

(k!)43964k

=

p
8

9801
(1103) ⇡ .318309878 ⇡ 1

⇡

so ⇡ ⇡ 3.14159273

p
8

9801

1X

k=0

(4k)!(1103 + 26390k)

(k!)43964k

=

p
8

9801
(1103) +

p
8

9801
· 4!(27, 493)

3964

⇡ .318309886183791 ⇡ 1

⇡

For comparison, the value of 1/⇡ to 15
places is 0.318309886183791, so two terms
of the series give this value correct to 15
places.

(b) Since
a

k+1

a

k

=
(4k + 4)!(1103 + 26, 390(k + 1))

((k + 1)!)43964(k+1)

· (k!)43964k

(4k)!(1103 + 26, 390k)

=
(4k + 4)(4k + 3)(4k + 2)(4k + 1)

(k + 1)43964

· 1103 + 26, 390(k + 1)

1103 + 26, 390k
,

we have

lim
k!1

a

k+1

a

k

=
44

3964
=

1

96059601
< 1,

proving convergence of the series
1X

k=1

(4k)!(1103 + 26, 390k)

(k!)43964k
,

by the Ratio Test.

62. Using the Ratio Test

lim
k!1

���
a

k+1

a

k

��� = lim
k!1

(k + 1)!

(k + 1)k+1
· k

k

k!

= lim
k!1

k

k

(k + 1)k
= lim

k!1

✓
k

1 + k

◆
k

=
1

e

< 1

so
1X

k=1

k!

k

k

converges absolutely.

63. (a) Use the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
p

k+1
/(k + 1)

p

k

/k

����

= lim
k!1

����p
k

k + 1

����

= |p| lim
k!1

����
k

k + 1

���� = |p|

Thus, the series converges if |p| < 1; that
is, if �1 < p < 1. If p = 1, we have
the harmonic series, which diverges. If
p = �1, we have the alternating harmonic
series, which converges conditionally by
the Alternating Series Test.

Thus, the series converges if
�1  p < 1.

(b) Use the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

�����
p

(k+1)2
/(k + 1)

p

k

/k

2

�����

= lim
k!1

����p
k

2

(k + 1)2

����

= |p| lim
k!1

����
k

2

(k + 1)2

���� = |p|

Thus, the series converges if |p| < 1; that
is, if �1 < p < 1.

If p = 1, we have the harmonic series,
which diverges.
If p = �1, we have the alternating har-
monic series, which converges condition-
ally by the Alternating Series Test. Thus,
the series converges if �1  p < 1.

64. Since
a

k+1

a

k

=
(k + 1)! · 1 · 3 · 5 · · · (2k � 1)

1 · 3 · 5 · · · (2k + 1) · k!

=
k + 1

2k + 1
,

lim
k!1

a

k+1

a

k

= lim
k!1

k + 1

2k + 1
< 1,

proving convergence of the series
1X

k=1

k!

1 · 3 · 5 · · · (2k � 1)
, by the Ratio Test.
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8.6 Power Series

1. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
2k+1

k!(x� 2)k+1

2k(k + 1)!(x� 2)k

����

= 2|x� 2| lim
k!1

1

k + 1
= 0 and 0 < 1 for all x,
so the series converges absolutely for x 2
(�1,1). The interval of convergence is
(�1,1) and r = 1.

2. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
3k+1

x

k+1

(k + 1)!
· k!

3kxk

����

= lim
k!1

����
3x

k + 1

���� = 0

so the series converges absolutely for all x 2
(�1,1). The interval of convergence is
(�1,1) and r = 1.

3. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
(k + 1)4kxk+1

k4k+1
x

k

����

=
|x|
4

lim
k!1

k + 1

k

=
|x|
4

and
|x|
4

< 1 when |x| < 4 or �4 < x < 4. So

the series converges absolutely for x 2 (�4, 4).

When x = 4,
1X

k=0

k

4k
4k =

1X

k=0

k and lim
k!1

k = 1,

so the series diverges by the k-th Term Test for
Divergence.

When x = �4,
1X

k=0

k

4k
(�4)k =

1X

k=0

(�1)kk,

which diverges by the k-th Term Test for Di-
vergence.

Thus the interval of convergence is
(�4, 4) and r = 4.

4. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
(k + 1)xk+1

2k+1
· 2k

kx

k

����

= lim
k!1

����
k + 1

k

· x
2

���� =
���
x

2

���

and
���
x

2

��� < 1 when |x| < 2, so the series con-

verges absolutely for x 2 (�2, 2).

When x = �2,
1X

k=0

k

2k
x

k =
1X

k=0

(�1)kk,

so the series diverges.

When x = 2,
1X

k=0

k

2k
x

k =
1X

k=0

k,

so the series diverges.

Thus, the interval of convergence is
(�2, 2) and r = 2.

5. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

����

= lim
k!1

����
(�1)k+1

k3k(x� 1)k+1

(�1)k(k + 1)3k+1(x� 1)k

����

=
|x� 1|

3
lim
k!1

k

k + 1

=
|x� 1|

3

and
|x� 1|

3
< 1 when �3 < x � 1 < 3 or

�2 < x < 4 so the series converges absolutely
for x 2 (�2, 4).

When x = �2,
1X

k=0

(�1)k

k3k
(�3)k =

1X

k=0

1

k

which is the divergent harmonic series.

When x = 4,
1X

k=0

(�1)k

k3k
3k =

1X

k=0

(�1)k

k

which converges by the Alternating Series Test.

So the interval of convergence is (�2, 4] and
r = 3.

6. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

����

= lim
k!1

����
(x+ 2)k+1

(k + 1)4k+1

k4k

(x+ 2)k

����

= lim
k!1

����
k

k + 1
· x+ 2

4

����

=

����
x+ 2

4

����

and

����
x+ 2

4

���� < 1 when |x+2| < 4, so the series

converges absolutely for x 2 (�6, 2).

When x = �6,
1X

k=1

(�1)k+1

k4k
(x+ 2)k =

1X

k=1

�1

k

,

so the series diverges.

When x = 2, then
1X

k=1

(�1)k+1

k4k
(x+ 2)k =

1X

k=1

(�1)k+1

k

,

so the series converges conditionally.
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Thus, the interval of convergence is
(�6, 2] and r = 4.

7. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
(k + 1)!(x+ 1)k+1

k!(x+ 1)k

����
= lim

k!1
(k + 1) |x+ 1|

=

⇢
0 if x = �1
1 if x 6= �1

so this series converges absolutely for x = �1
and r = 0.

8. Using the Ratio test

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

�����
(x� 1)2k+3

k

(x� 1)2k+1(k + 1)

�����

= (x� 1)2 lim
k!1

k

k + 1
= (x� 1)2

(x� 1)2 < 1
when
� 1 < x� 1 < 1
0 < x < 2
So, the series converges absolutely for x 2
(0, 2)

when x = 0,
1X

k=1

(�1)2k+1

k

= �
1X

k=1

1

k

is the divergent harmonic series

when x = 2,
1X

k=1

1

k

is the divergent harmonic

series. So, the interval of convergence is
(0, 2) and r = 1.

9. Using the Ratio test

lim
x!1

����
a

k+1

a

k

���� = lim
x!1

�����
(k + 4)2(2x� 3)k+1

(k + 3)2(2x� 3)k

�����

= |2x� 3| lim
x!1

✓
k + 4

k + 3

◆2

= |2x� 3| < 1
when � 1 < 2x� 3 < 1 or 1 < x < 2
so the series converges absolutely for
x 2 (1, 2)

Ifx = 1,
1X

k=2

(k + 3)2(�1)k

and lim
x!1

(k + 3)2 = ±1,

so the series diverges by the k-th test for divergence.

If x = 2,
1X

k=2

(k + 3)2(1)k

and lim
x!1

(k + 3)2 = 1,

so the series diverges by the k-th test for divergence.

Thus the interval of convergence is (1,2) and r=
1

2
.

10. Using the Ratio Test, we have

lim
k!1

����
a

k+1

a

k

����

= lim
k!1

����
k

2

(k + 1)2
(3x+ 2)

����

= lim
k!1

|3x+ 2| < 1 for � 1 < x < �1

3

So, the series converges for �1 < x < � 1
3 and

diverges for x < �1 or x > � 1
3 . Since the Ra-

tio Test gives no conclusion at x = �1 and x =
� 1

3 , we must test separately at x = �1,� 1
3 .

For x = �1,� 1
3 ,

1X

k=4

���(k + 3)2(2x+ 1)k
��� =

1X

k=4

1

k

2

The series
P1

k=4
1
k

2 converges and hence the
given series converges for x = �1, � 1

3 . Thus
the power series converges at all x in the in-
terval

⇥
�1,� 1

3

⇤
and diverges at all x outside

of this interval.
Thus the radius of convergence is r = 1

3 .

11. Using the Ratio Test, we have

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

�����
4
p
kp

k + 1
(2x+ 1)

�����

= lim
k!1

|4(2x+ 1)| < 1

for �1 < 4(2x+ 1) < 1

i.e. for �1

4
< 2x+ 1 <

1

4

i.e. for �1

4
� 1 < 2x < �1 +

1

4

i.e. for �5

4
< 2x < �3

4

i.e. for �5

8
< x < �3

8

So, the series converges for x 2
✓
�5

8
, �3

8

◆

and diverges for x < �5

8
or x > �3

8
. Since the

Ratio Test gives no conclusion at x = �5

8
and

x = �3

8
, we must test separately at x = �5

8

and x = �3

4
.

For x = �5

8
,
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1X

k=1

4k(2x+ 1)kp
k

=
1X

k=1

(�1)k
1p
k

This series
1X

k=1

(�1)k
1p
k

converges and hence

the given series converges for x = �5

8
.

For x = �3

8
,

1X

k=1

4k(2x+ 1)kp
k

=
1X

k=1

1p
k

This series
1X

k=1

1p
k

diverges and hence the

given series diverges for x = �3

8
.

Thus the power series converges at all x in

the interval


�5

8
,�3

8

◆
and diverges at all x

outside of this interval.

Thus the radius of convergent is r =
1

8
.

12. Using the Ratio Test, we have

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

�����
(3x� 1)

p
kp

k + 1

�����

= lim
k!1

|3x� 1| < 1

for �1 < 3x� 1 < 1
i.e. for 0 < 3x < 2
i.e. for 0 < x <

2
3

So, the series converges for 0 < x <

2

3
and

diverges for x < 0 or x >

2
3 .

Since the Ratio Test gives no conclusion at

x = 0 and x =
2

3
, we must test separately at

x = 0 and x = 2
3 .

For x = 0
1X

k=1

(�1)k(�1)kp
k

=
1X

k=1

1p
k

Hence the series diverges. Therefore, the given
series diverges for x = 0.

For x =
2

3
,

1X

k=1

(�1)kp
k

is alternative series and

lim
k!1

1p
k

= 0. Hence the series converges.

Therefore, the given series converges for x = 2
3 .

Thus the power series converges at all x in the

interval

✓
0,

2

3

�
and diverges at all x outside

of this interval and the radius of convernce is

r =
1

3

13. Using the Ratio Test, we have

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
(k + 1)2

2k2
(x+ 2)

����

= lim
k!1

����
x+ 2

2

���� < 1

for �4 < x < 0.
So, the series converges for �4 < x < 0 and
diverges for x < �4 or x > 0. Since the Ratio
Test gives no conclusion at x = �4 and x = 0,
we must test separately at x = �4 and x = 0.
For x = �4,
1X

k=1

k

2

2k
(x+ 2)k =

1X

k=1

(�1)kk2

This series
1X

k=1

(�1)kk2 diverges and hence the

given series diverges for x = �4. Similarly the
given series diverges at x = 0.
Thus the power series converges at all x in the
interval (�4, 0) and diverges at all x outside
of this interval.

14. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

����

= lim
k!1

����
(k + 1)2(x+ 1)k+1

(k + 1)!

k!

k

2(x+ 1)k

����

= lim
k!1

k + 1

k

2
|x+ 1| = 0

so the series converges absolutely for all x 2
(�1,1). The interval of convergence is
(�1,1) and r = 1.

15. Using the Ratio Test, we have

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
k + 1

(2k + 2)(2k + 1)
x

2

����

= 0 for all x
So, the series converges for all x.

16. Using the Ratio Test, we have

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
(k + 1)2

(2k2)(2k + 1)
x

2

����

= lim
k!1

����
1

4
x

2

���� < 1

for �2 < x < 2.
So, the series converges for �2 < x < 2 and
diverges for x < �2 or x > 2. Since the Ratio
Test gives no conclusion at x = �2 and x = 2,
we must test separately at x = �2 and x = 2.
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For x = 2,

a

k

=
(k!)2

(2k)!
x

2k+1

=
(k!)2

(2k)!
22k+1

=
(k!)

1.3.5.6....(2k � 1)
2k+1

=
(2.4.6.8....(2k))

1.3.5.6....(2k � 1)
.2 > 4

Since lim
k!1

a

k

6= 0, the given series diverges

for x = 2. Similarly the given series diverges
at x = �2.
Thus the power series converges at all x in the
interval (�2, 2) and diverges at all x outside
of this interval. The radius of convergence is
r = 2

17. As n increases, partial sums P6(x), P9(x) and
P12(x) approach closer and closer to the power
series(= 4x

(4�x)2 ) inside the radius of conver-

gence, i.e in (�4, 4). Partial sums don’t ap-
proach to the power series outside the radius
of convergence.

0

5.0

−1−2−5 −3−4

2.5

−5.0

0.0

−2.5

x
3 65−6 21 4

y

18. As n increases, partial sums P6(x), P9(x) and
P12(x) approach closer and closer to the power
series(= ln 3

2+x

) inside the radius of conver-
gence, i.e in (�2, 4]. Partial sums don’t ap-
proach to the power series outside the radius
of convergence.

y

x
70 643−1−2

2.5

−2.5

−3

5.0

−5.0

0.0

51 2

19. This is a geometric series
1X

k=0

(x+ 2)k =
1

1� (x+ 2)
=

�1

1 + x

which converges for |x+ 2| < 1 so �1 < x+2 <

1 or �3 < x < �1, thus the interval of conver-
gence is (�3,�1) and r = 1.

20. This is a geometric series
1X

k=0

(x� 3)k =
1

1� (x� 3)
=

1

4� x

which converges for |x� 3| < 1, so the interval
of convergence is (2, 4) and r = 1.

21. This is a geometric series
1X

k=0

(2x� 1)k =
1

1� (2x� 1)

=
1

2� 2x
which converges for |2x� 1| < 1 so �1 <

2x � 1 < 1 or 0 < x < 1, thus the interval

of convergence is (0, 1) and r =
1

2
.

22. This is a geometric series
1X

k=0

(3x+ 1)k =
1

1� (3x+ 1)
= � 1

3x

which converges for |3x+1| < 1, so the interval

of convergence is

✓
�2

3
, 0

◆
and r =

1

3
.

23. This is a geometric series
1X

k=0

(�1)k
⇣
x

2

⌘
k

=
1X

k=0

✓
�x

2

◆
k

=
1

1 + x/2
=

2

2 + x

which converges for

����
�x

2

���� < 1 so 1 <

�x

2
< 1

or 2 > x > �2, thus the interval of convergence
is (�2, 2) and r = 2.

24. This is a geometric series
1X

k=0

3
⇣
x

4

⌘
k

=
3

1� x

4

=
12

4� x



8.6. POWER SERIES 481

which converges for
���
x

4

��� < 1, so the interval of

convergence is (�4, 4) and r = 4.

25. f(x) =
2

1� x

= 2
1X

k=0

x

k =
1X

k=0

(2)xk.

This is a geometric series that converges when
|x| < 1, so the interval of convergence is (�1, 1)
and r = 1.

 

10

y =P_3(x)

y = f(x)

8

6

4

2

 

10-1

y =P_6(x)

26. f(x) =
3

x� 1
= �3

✓
1

1� x

◆

= �3
1X

k=0

x

k =
1X

k=0

(�3)xk.

This is a geometric series that converges when
|x| < 1, so the interval of convergence is (�1, 1)
and r = 1.

27. f(x) =
3

1 + x

2
= 3


1

1� (�x

2)

�

= 3
1X

k=0

(�x

2)k =
1X

k=0

3(�1)kx2k.

This is a geometric series that converges when
|x2| < 1, so the interval of convergence is
(�1, 1) and r = 1.

 

3

y =P_6(x)

y =P_3(x)

2

1

 

10-1

y = f(x)

28. f(x) =
2

1� x

2
= 2

✓
1

1� (x2)

◆

= 2
1X

k=0

(x2)k =
1X

k=0

2x2k

and this is a geometric series that converges
when |x2| < 1, so the interval of convergence is
(�1, 1) and r = 1.

29. f(x) =
2x

1� x

3
= 2x

1X

k=0

(x3)k

=
1X

k=0

2x3k+1.

This is a geometric series that converges when
|x3| < 1, so the interval of convergence is
(�1, 1) and r = 1.

y =P_6(x)

y = f(x)

 

6

4

2

 

y =P_3(x)

10-1

30. f(x) =
3x

1 + x

2
= 3x

✓
1

1� (�x

2)

◆
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= 3x
1X

k=0

(�x

2)k = 3x
1X

k=0

(�1)kx2k

=
1X

k=0

(�1)k3x2k+1

and this is a geometric series that converges
when |�x

2| < 1, so the interval of convergence
is (�1, 1) and r = 1.

31. f(x) =
2

4 + x

=
1

2


1

1� (�x/4)

�

=
1

2

1X

k=0

⇣
�x

4

⌘
k

.

This is a geometric series that converges when
|x/4| < 1, so the interval of convergence is
(�4, 4) and r = 4.

 

 

43210

y =P_6(x)

-1-2-3-4

y = f(x)

y =P_3(x)

32. f(x) =
3

6� x

=
1

2

✓
1

1� (x6 )

◆

=
1

2

1X

k=0

⇣
x

6

⌘
k

=
1X

k=0

1

2 · 6k x
k

and this is a geometric series that converges
when

��x
6

��
< 1, so the interval of convergence is

(�6, 6) and r = 6.

33. We have seen that
3

1 + x

2
=

1X

k=0

(�1)k3x2k with r = 1

Integrating both sides givesZ
3

1 + x

2
dx =

1X

k=0

3(�1)k
Z

x

2k
dx

3 tan�1
x =

1X

k=0

3(�1)kx2k+1

2k + 1
+ c

Taking x = 0

3 tan�1 0 =
1X

k=0

3(�1)k(0)2k+1

2k + 1
+ c = c

so that c = 3 tan�1(0) = 0.

Thus 3 tan�1
x =

1X

k=0

3(�1)kx2k+1

2k + 1
with r = 1.

34. We have seen that
2

1� x

=
1X

k=0

2xk

for x 2 (�1, 1). SinceZ
2 dx

1� x

=
1X

k=0

Z
2xk

dx

=
1X

k=0

2xk+1

k + 1
=

1X

k=1

2xk

k

, and

Z
2 dx

1� x

= �2 ln(1� x) + C,

we obtain 2 ln(1� x) = C �
1X

k=1

2

k

x

k

Substituting x = 0, we find C = 0,

so 2 ln(1� x) = �
1X

k=1

2

k

x

k for x 2 (�1, 1).

35. We have seen that
2

1� x

2
=

1X

k=0

2x2k with

r = 1. Taking the derivative of both sides gives
d

dx

✓
2

1� x

2

◆
=

1X

k=0

2
d

dx

x

2k
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4x

(1� x

2)2
=

1X

k=0

2 · 2kx2k�1

2x

(1� x

2)2
=

1X

k=0

2kx2k�1 with r = 1.

36. We have seen that
3

x� 1
= �3

1X

k=0

x

k for

x 2 (0, 2). Since
d

dx

✓
3

x� 1

◆
= �3

1X

k=0

d

dx

x

k

= �3
1X

k=1

kx

k�1 = �3
1X

k=0

(k + 1)xk

, and

d

dx

✓
3

x� 1

◆
= � 3

(x� 1)2
, we obtain

3

(x� 1)2
= 3

1X

k=0

(k + 1)xk for x 2 (0, 2).

37. We have seen that
3x

1 + x

2
=

1X

k=0

(�1)k3x2k+1

with r = 1. Integrating both sides givesZ
3x

1 + x

2
dx =

1X

k=0

(�1)k3

Z
x

2k+1
dx

3

2
ln(1 + x

2) =
1X

k=0

(�1)k3x2k+2

2k + 2
+ c

ln(1 + x

2) =
1X

k=0

(�1)kx2k+2

k + 1
+ c.

Taking x = 0,

ln(1) =
1X

k=0

(�1)k(0)2k+2

k + 1
+ c = c so that c =

ln(1) = 0.

Thus, ln(1 + x

2) =
1X

k=0

(�1)kx2k+2

k + 1

with r = 1.

38. We have seen that
2

4 + x

=
1X

k=0

(�1)kxk

22k+1
.

Integrating both sides givesZ
2

4 + x

dx =
1X

k=0

(�1)k

22k+1

Z
x

k

dx

2 ln(4 + x) =
1X

k=0

(�1)k

22k+1

x

k+1

k + 1
+ c

Taking x = 0, we get 2 ln 4 =
1X

k=0

(�1)k

22k+1

0k+1

k + 1
+ c = c.

Thus ln(4 + x) =
1

2

1X

k=0

(�1)k

22k+1

x

k+1

k + 1
+ ln 4.

39. Since
��cos(k3x)

��  1 for all x,����
cos(k3x)

k

2

���� 
1

k

2

for all x, and
1X

k=0

1

k

2
is a convergent p-series,

so by the Comparison Test,
1X

k=0

cos(k3x)

k

2
con-

verges absolutely for all x. So the interval of
convergence is (�1,1) and r = 1.

The series of derivatives is
1X

k=0

d

dx


cos(k3x)

k

2

�
=

1X

k=0

(�k) sin(k3x) and lim
k!1

(�k) sin(k3x) di-

verges if x 6= 0, while
1X

k=0

(�k) sin(k3(0)) =

1X

k=0

0 = 0, thus the series converges absolutely

if x = 0.

40. For every x 2 (�1,1), lim
k!1

cos
x

k

= 1, so

cos
x

k

>

1

2
for all but a finite number of terms.

Since
1

2k
<

cos
x

k

k

for all but a finite number of

terms and
1X

k=1

1

2k
diverges,

1X

k=1

cos
x

k

k

diverges

by the Comparison Test. This is true for every
x 2 (�1,1), so the “interval of convergence”
is empty.

41. Using the Ratio Test, lim
k!1

����
a

k+1

a

k

���� =

lim
k!1

����
e

(k+1)x

e

kx

���� = e

x and e

x

< 1 when x < 0,

so the series converges absolutely for all x 2
(�1, 0).

When x = 0,
1X

x=0

e

0 =
1X

x=0

1 which diverges

by the k-th Term Test for Divergence because
lim
k!1

1 = 1. So the interval of convergence is

(�1, 0).

The series of derivatives is
1X

x=0

d

dx

e

kx

�� =

1X

x=0

ke

kx

.

Using the Ratio Test,
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lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
(k + 1)e(k+1)x

ke

kx

����

= e

x lim
k!1

k + 1

k

= e

x

and e

x

< 1 when x < 0, so the series con-
verges absolutely for all x 2 (�1, 0).

When x = 0,
1X

k=0

ke

0 =
1X

k=0

k which diverges

by the k-th Term Test for Divergence because
lim
k!1

k = 1. So the interval of convergence is

(�1, 0).

42.

1X

k=0

e

�2kx =
1X

k=0

�
e

�2x
�
k

is a geometric series

with r = e

�2x, so it converges when e

�2x
< 1,

that is x > 0. The “interval of convergence” is
(0,1).

43. Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
(x� a)(k+1)

b

k

b

k+1(x� a)k

����

=
|x� a|

b

lim
k!1

1 =
|x� a|

b

and
|x� a|

b

< 1 when �b < x � a < b or

a � b < x < a + b. So the series converges
absolutely for x 2 (a� b, a+ b).

If x = a� b,
1X

k=0

(a� b� a)k

b

k

=
1X

k=0

(�1)kbk

b

k

=
1X

k=0

(�1)k

which diverges by the k-th Term Test for Di-
vergence because lim

k!1
1 = 1.

If x = a+ b,
1X

k=0

(a+ b� a)k

b

k

=
1X

k=0

b

k

b

k

=
1X

k=0

1

which diverges by the k-th Term Test for Di-
vergence because lim

k!1
1 = 1.

So the interval of convergence is
(a� b, a+ b) and r = b.

44. If the radius of convergence of
1X

k=0

a

k

x

k is r,

then
1X

k=0

a

k

x

k converges whenever |x| < r.

Consequently,
1X

k=0

a

k

x

2k =
1X

k=0

a

k

(x2)k con-

verges whenever |x2| < r, that is |x| <
p
r.

45. If the radius of convergence of
1P
k=0

a

k

x

k is r,

then �r < x < r. For any constant c,
�r � c < x� c < r � c.

Thus, the radius of convergence of
1X

k=0

a

k

(x �

c)k is
(r � c)� (�r � c)

2
= r.

46. If the radius of convergence of
1X

k=0

a

k

x

k is r,

then
1X

k=0

a

k

x

k converges whenever |x| < r.

Consequently,
1X

k=0

a

k

⇣
x

b

⌘
k

converges when-

ever
���
x

b

��� < r, that is |x| < |b|r.

47.

1

1� x

=
1X

k=0

x

k

d

dx

✓
1

1� x

◆
=

1

(1� x)2

=
1X

k=0

d

dx

x

k =
1X

k=0

kx

k�1

x+ 1

(1� x)2
=

x

(1� x)2
+

1

(1� x)2

=
1X

k=0

kx

k +
1X

k=0

kx

k�1

=
1X

k=0

(2k + 1)xk

= 1 + 3x+ 5x2 + 7x3 + · · ·

Since
1P
k=0

x

k converges for |x| < 1,

d

dx

 1X

k=0

x

k

!
and

d

dx

 1X

k=0

k

x

!
converge for

|x| < 1. Hence
x+ 1

(1� x)2
converges for |x| < 1,

so r = 1.

If x =
1

1000
, then

1,001,000

998,000

= 1 +
3

1000
+

5

(1000)2
+

7

(1000)3
+ · · ·

= 1.003005007 . . .

48. 1� x

k+1 = (1� x)(1 + x+ x

2 + · · ·+ x

k),

we have
1� x

k+1

1� x

= 1 + x+ x

2 + · · ·+ x

k

.
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If |x| < 1, then lim
k!1

1� x

k+1

1� x

=
1

1� x

.

Hence
1

1� x

= lim
k!1

(1 + x + x

2 + · · · + x

k) =
1X

k=0

x

k

.

49. Given that

f(x) =

Z
x

0

2t

1� t

3
dt

=

Z
x

0
2t(1� t

3)�1
dt

=

Z
x

0
2t(1 + t

3 + t

6 + t

9 + ....)dt

=

Z
x

0
(2t+ 2t4 + 2t7 + ...)dt

= x

2 +
2

5
x

5 +
2

7
x

7 + ....

=
1X

k=0

2x3k+2

3k + 2

Here a

k

= 2x3k+2

3k+2 .

Using the Ratio Test, we have

lim
k!1

����
a

k+1

a

k

����

= lim
k!1

����
3k + 2

3k + 2
x

3

����

= lim
k!1

��
x

3
��
< 1

for �1 < x < 1.
So, the series converges for �1 < x < 1 and
diverges for x < �1 or x > 1. Since the Ratio
Test gives no conclusion at x = �1 and x = 1,
we must test separately at x = �1 and x = 1.

For x = �1,
1X

k=0

2x3k+2

3k + 2
=

1X

k=0

(�1)k2

3k + 2

This series
P1

k=0
(�1)k2
3k+2 converges and hence

f(x) converges for x = �1 by Alternative se-
ries.

For x = 1,
1X

k=0

2x3k+2

3k + 2
=

1X

k=0

2

3k + 2

This series diverges and hence f(x) diverges at
x = 1.
Thus the power series converges at all x in the
interval [�1, 1) and diverges at all x outside of
this interval. Therefore, the radius of conver-
gence of f(x) is 1.

4

0.75

0

x

3

1.0

2

1

0.50.250.0

50. f(x) =

Z
x

0

2

1 + t

4
dt

=

Z
x

0
2(1 + t

4)�1
dt

=

Z
x

0
2(1� t

4 + t

8 � t

12 + ..)dt

= 2

✓
x� x

5

5
+

x

9

9
� x

13

13
+ ....

◆
dt

=
1X

k=0

(�1)k2x4k+1

4k + 1

To find the radius of convergence for the power
series of f(x), using Ratio Test, we have

lim
k!1

����
a

k+1

a

k

����

= lim
k!1

����
4k + 1

4k + 5
x

4

����

= lim
k!1

��
x

4
��
< 1 for � 1 < x < 1.

So, the series converges for �1 < x < 1 and
diverges for x < �1 or x > 1. Since the Ratio
Test gives no conclusion at x = �1 and x = 1,
we must test separately at x = �1 and x = 1.

For x = 1,
1X

k=0

(�1)k2x4k+1

4k + 1
=

1X

k=0

(�1)k2

4k + 1

This series
P1

k=0
(�1)k2
3k+2 converges and hence

f(x) converges for x = 1 by Alternative series.
Similarly, the series converges for x = �1 and
hence f(x) converges at x = �1.
Thus the power series converges at all x in the
interval [�1, 1] and diverges at all x outside of
this interval. Therefore, the radius of conver-
gence of f(x) is 1.



486 CHAPTER 8. INFINITE SERIES

1

1.5

0.5

x
1098765432

2.0

1.0

0

0.0

51. (a)

Z 1

0

1 + x

2

1 + x

4
dx

= lim
x!1�

Z
x

0

1 + x

2

1 + x

4
dx

= lim
x!1�

Z
x

0
(1 + x

2)(1 + x

4)�1
dx

= lim
x!1�

Z
x

0
(1 + x

2)(1� x

4 + x

8 � ...)dx

= lim
x!1�

Z
x

0
(1 + x

2 � x

4 � x

6 + x

8 + ...)dx

= lim
x!1�

(x+
1

3
x

3 � 1

5
x

5 � 1

7
x

7 + ...)

= 1 +
1

3
� 1

5
� 1

7
+

1

9
+ ..

(b)
1 + x

2

1 + x

4

=
1 + x

2

(1 + x

2)2 � 2x2

=
1 + x

2

(1 + x

2 �
p
2x)(1 + x

2 +
p
2x)

=
1

2(1 + x

2 �
p
2x)

+
1

2(1 + x

2 +
p
2x)

=
1

1 + (1�
p
2x)2

+
1

1 + (1 +
p
2x)2

Z 1

0

1 + x

2

1 + x

4
dx

=

Z 1

0


1

1 + (1�
p
2x)2

+
1

1 + (1 +
p
2x)2

�
dx

= � 1p
2
tan�1(1�

p
2)+

1p
2
tan�1(1+

p
2)

=
1p
2
tan�1 (1 +

p
2)� (1�

p
2)

1 + (1�
p
2)(1 +

p
2)

=
1p
2
tan�1 1

=
⇡

2
p
2

52. If x = 1, . . .+ 1 + 1 + 1 + 1 + 1 + · · · 6= 0.

1

1� 1
x

=
1X

k=0

✓
1

x

◆
k

is a geometric series which

converges for
1

|x| < 1 or |x| > 1.

x

1� x

=
1X

k=0

x

k+1 is a geometric series which

converges for |x| < 1. Euler’s mistake was that
there are no x’s for which both series converge.

53. For 0 < p < 1,
1X

k=2

k(k � 1)pk�2

=
1X

k=2

d

2

dp

2

�
p

k

�

=
d

2

dp

2

" 1X

k=2

�
p

k

�
#

=
d

2

dp

2


p

2

1� p

�

=
2

1� p

+
4p

(1� p)2
+

2p2

(1� p)3

1X

k=3

k(k � 1)(k � 2)pk�3

=
1X

k=3

d

3

dp

3

�
p

k

�

=
d

3

dp

3

" 1X

k=3

�
p

k

�
#

=
d

3

dp

3


p

2

1� p

�

=
6

(1� p)2
+

12p

(1� p)3
+

6p2

(1� p)4

1X

k=n

✓
k

n

◆
p

k�n

=
1X

k=n

k(k � 1)(k � 2)...(k � n+ 1)

n!
p

k�n

=
1

n!
.

1X

k=n

d

n

dp

n

�
p

k

�

=
1

n!
.

d

n

dp

n

" 1X

k=n

�
p

k

�
#

=
1

n!
.

d

n

dp

n


p

2

1� p

�

=
1

(1� p)n�1
+

2p

(1� p)n
+

p

2

(1� p)n+1
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54. (a) f(x) =
1X

k=0

(�1)kxk

= (1 + x)�1

Interval of convergence of f (x) is
�1 < x < 1 and the radius of convergence
is 1.Z

f (x) dx =
1X

k=0

(�1)k
Z

x

k

dx

=
1X

k=0

(�1)k
x

k+1

k + 1

= x� x

2

2
+

x

3

3
� ...

= ln (1 + x)
Interval of convergence of

R
f (x) dx is

�1  x < 1 and the radius of convergence
is 1.

(b) f(x) =
1X

k=0

p
kx

k

Interval of convergence of f (x) is
�1 < x < 1 and the radius of convergence
is 1.Z

f (x) dx =
1X

k=0

p
k

Z
x

k

dx

=
1X

k=0

p
k

x

k+1

k + 1

Interval of convergence of
R
f (x) dx is

�1 < x < 1 and the radius of convergence
is 1.

(c) f(x) =
1X

k=1

1

k

x

k

= � ln (1� x)
Interval of convergence of f (x) is
�1  x < 1 and the radius of convergence
is 1.Z

f (x) dx =
1X

k=1

1

k

Z
x

k

dx

=
1X

k=1

1

k

x

k+1

k + 1

=
x

2

1.2
+

x

3

2.3
+ ...

Interval of convergence of
R
f (x) dx is

�1  x  1 and the radius of convergence
is 1.

We can conclude that even though f (x) is not
convergent at the boundary points,

R
f (x) dx

may be convergent at the boundary points.

55. F (x) =
1X

k=1

p

k

x

k

Then, we have

F

0(x) =
d

dx

1X

k=1

p

k

x

k

=
1X

k=1

d

dx

�
p

k

x

k

�

=
1X

k=1

d

dx

�
p

k

x

k

�

=
1X

k=1

�
kp

k

x

k�1
�

Therefore, F 0(1) =
P1

k=1 (kpk) .

56. Note that for �1 < x < 1,
1

1 + x

=
1X

k=0

(�1)kxk

.

We can di↵erentiate both sides and get
�1

(1 + x)2
=

1X

k=0

(�1)kkxk�1
. Similarly, for

�1 < x < 1, we have
1

1� x

=
1X

k=0

x

k

. There-

fore,
1

(1� x)2
=

1X

k=0

kx

k�1
. Putting these to-

gether, we get

E(x) =
kq

(x� 1)2
� kq

(x+ 1)2

= kq

1X

k=0

kx

k�1 + kq

1X

k=0

(�1)kkxk�1

=
1X

k=0

[1 + (�1)k]k2qxk�1

=
X

k even

k

2
qx

k�1

for �1 < x < 1.

8.7 Taylor Series

1. f(x) = cosx, f 0(x) = � sinx
f

00(x) = � cosx, f 000(x) = sinx
f(0) = 1, f 0(0) = 0
f

00(0) = �1, f 000(0) = 0

Therefore,

cosx = 1� 1

2
x

2 + · · · =
1X

k=0

(�1)k

(2k)!
x

2k

From the Ratio Test,

lim
n!1

����
a

n+1

a

n

���� = lim
n!1

(2n)!x2n+2

(2n+ 2)!x2n

= x

2 lim
n!1

1

(2n+ 1)(2n+ 2)
= 0
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we see that the interval of convergence is
(�1,1).

2. f(x) = sinx, f 0(x) = cosx,
f

00(x) = � sinx, f 000(x) = � cosx
f(0) = 0, f 0(0) = 1
f

00(0) = 0, f 000(0) = �1.

Therefore,

sin x = x� x

3

3!
+ · · · =

1X

k=1

(�1)k+1

(2k � 1)!
x

2k�1

From the Ratio Test,

lim
n!1

����
a

n+1

a

n

���� = lim
n!1

(2n� 1)!x2n+1

(2n+ 1)!x2n�1

= x

2 lim
n!1

1

(2n)(2n+ 1)
= 0

we see that the interval of convergence is
(�1,1).

3. f(x) = e

2x
, f

0(x) = 2e2x,
f

00(x) = 4e2x, f 000(x) = 8e2x

f(0) = 1, f 0(0) = 2
f

00(0) = 4, f 000(0) = 8.

Therefore,

e

2x = 1 + 2x+ · · · =
1X

k=0

2k

k!
x

k

From the Ratio Test,

lim
n!1

����
a

n+1

a

n

���� = x lim
n!1

2

n+ 1
= 0

we see that the interval of convergence is
(�1,1).

4. f(x) = cos 2x, f 0(x) = �2 sin 2x
f

00(x) = �4 cos 2x, f 000(x) = 8 sin 2x,
f(0) = 1, f 0(0) = 0
f

00(0) = �4, f 000(0) = 0.

Therefore,

cos 2x = 1� 2x2 + · · · =
1P
k=0

(�1)k4k

(2k)!
x

2k

From the Ratio Test,

lim
n!1

����
a

n+1

a

n

����

= x

2 lim
n!1

4

(2n+ 1)(2n+ 2)
= 0

we see that the interval of convergence is
(�1,1).

5. f(x) = ln(1 + x), f 0(x) =
1

1 + x

,

f

00(x) =
�1

(1 + x)2
, f

000(x) =
2

(1 + x)3
,

f(0) = 0, f 0(0) = 1
f

00(0) = �1, f 000(0) = 2

Therefore,

ln(1 + x) = x� 1

2
x

2 + · · · =
1X

k=0

(�1)kxk+1

k + 1

From the Ratio Test,

lim
n!1

����
a

n+1

a

n

����

= lim
n!1

����
(�1)n+1(n+ 1)xn+2

(�1)n(n+ 2)xn+1

����
and |x| < 1 when �1 < x < 1. So the series
converges absolutely for all x 2 (�1, 1).

When x = 1,
1P
k=0

(�1)k(1)k+1

k + 1
=

1X

k=0

(�1)k

k + 1

and
1P
k=0

1

k + 1
= 0 and

a

k+1

a

k

=
k

k + 1
< 1

for all k � 0 so a

k+1 > a

k

, for all k � 0, so
the series converges by the Alternating Series
Test.

When x = �1,
1P
k=0

(�1)k(�1)k+1

k + 1
=

1X

k=0

�1

k + 1

which is the negative of the harmonic series, so
diverges.

Hence the interval of convergence is (�1, 1].

6. f

(k)(x) = (�1)ke�x.
Therefore,

e

�x = 1� x+
x

2

4
+ · · · =

1X

k=0

(�1)k

k!
x

k

From the Ratio Test,

lim
n!1

����
a

n+1

a

n

���� = x lim
n!1

1

n+ 1
= 0

we see that the interval of convergence is
(�1,1).

7. f

(k)(x) = (�1)k(k + 1)!(1 + x)�2�k.
Therefore,

1

(1 + x)2
=

1X

k=0

(�1)k(k + 1)xk

From the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = x lim
k!1

k + 2

k + 1
= |x|

and |x| < 1 when �1 < x < 1. So the series
converges absolutely for x 2 (�1, 1).

When x = �1,
1X

k=0

(k + 1) and lim
k!1

(k + 1) = 1, so the series

diverges by the k-th Term Test for Divergence.
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When x = 1,
1X

k=0

(�1)(k + 1)k and lim
k!1

k + 1 = 1, so the

series diverges by the k-th Term Test for Di-
vergence.

So the interval of convergence is (�1, 1).

8. f

(k)(x) = k!(1� x)�(k+1). Therefore,
1

1� x

= 1 + x+ x

2 + · · · =
1X

k=0

x

k

From the ratio test,

lim
k!1

����
a

k+1

a

k

���� = |x|

The series converges absolutely when |x| < 1.
When x = 1 or �1, the series diverge. So ra-
dius of convergence is 1 and the interval of con-
vergence is (�1, 1).

9. f

(k)(x) = e

x�1
, f

(k)(1) = 1

e

x�1 = 1 + (x� 1) + · · · =
1P
k=0

(x� 1)k

k!
.

Using the Ratio Test,

lim
k!1

����
a

k+1

a

k

���� = |x� 1| lim
k!1

1

k + 1
= 0

So the interval of convergence is (�1,1).

10. f(x) = cosx, f 0(x) = � sinx,
f

00(x) = � cosx, f 000(x) = sinx,
f(�⇡/2) = 0, f 0(�⇡/2) = 1,
f

00(�⇡/2) = 0, f 000(�⇡/2) = �1.

Therefore cos x

= (x+
⇡

2
)�

(x+
⇡

2
)3

6!
+ · · ·

=
1X

k=0

(�1)k

(2k + 1)!

⇣
x+

⇡

2

⌘2k+1
.

By the ratio test,

lim
k!1

����
a

k+1

a

k

����

= lim
n!1

⇣
x+

⇡

2

⌘2 (2k + 1)!

(2k + 3)!
= 0

the interval of convergence is (�1,1).

11. f(x) = lnx and for k > 1,

f

(k)(x) = (�1)k+1 1

x

k

f(e) = 1, f (k)(e) = (�1)k+1 1

e

k

lnx = 1 +
1P
k=1

(�1)k+1

e

k

k!
(x� e)k

By the ratio test,

lim
k!1

����
a

k+1

a

k

���� = |x� e| lim
n!1

1

e(k + 1)
= 0

the interval of convergence is (�1,1).

12. f

(k)(x) = e

x and f

(k)(2) = e

2. Therefore,

e

x = e

2 + e

2(x� 2) + · · · =
1P
k=1

e

2

k!
(x� 2)k

From the ratio test,

lim
k!1

����
a

k+1

a

k

���� = |x� 2| lim
n!1

1

k

= 0

we see that the interval of convergence is
(�1,1).

13. f

(k) (x) =
(�1)kk!

x

k+1
and

f

(k) (1) = (�1)kk!
Therefore,
1

x

=
1X

k=0

(�1)kk!(x� 1)k

k!

=
1X

k=0

(�1)k(x� 1)k

From Ratio test,

lim
k!1

����
a

k+1

a

k

���� = |x� 1|

The series converges absolutely when |x� 1| <
1, that is, when 0 < x < 2. So the radius of
convergence is 1 and interval of convergence is
(0, 2).

14. f

(k) (x) =
(�1)kk!

(x+ 5)k+1
and

f

(k) (0) =
(�1)kk!

5k+1

Therefore,
1

x+ 5
=

1X

k=0

(�1)kk!(x� 0)k

5k+1
k!

=
1X

k=0

(�1)k(x)k

5k+1

From Ratio test ,

lim
k!1

����
a

k+1

a

k

���� =
���
x

5

���

The series converges absolutely when
���
x

5

��� < 1,

that is, when �5 < x < 5. So the radius of
convergence is 5 and interval of convergence is
(�5, 5).

15.
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y =P_3(x)

y = f(x)

y =P_6(x)
 

1

−1

1

 

−1

16.

17.

 

10

5

 

3210-1-2-3

y =P_6(x)

y =P_3(x)y = f(x)

18.

-2

-3

-4

 

54

y =P_8(x)

y = f(x)

321-1-2-3-4-5

 

5

4

3

2

1

-1

y =P_4(x)

19.

y = f(x)

y =P_5(x)

y =P_3(x)

 

5

1 4

−5

1

2−3
−1

−4

−3

−1 5

3

−2

−2−4

4

3
 

−5

2

20. The graph of y = f (x) =
2

(x� 5)
; y = P4 (x)

and y = P8 (x) is as follows:

y=f(x)

y=P_6(x)

y=P_4(x)

8

−6

10

4

−8 0 6

2

x
8−2−10

0

−2

−8

−4

−10

4−4 2 10

6y

−6

21. For any fixed x there exists a z between 0 and
x such that

|R
n

(x)| =
����
f

(n+1)(z)xn+1

(n+ 1)!

����


����

x

n+1

(n+ 1)!

���� ! 0 as n ! 1, since
��
f

(n+1)(z)
��  1 for all n.

22. For any fixed x there exists a z between 0 and
x such that

|R
n

(x)| =
����
f

(n+1)(z)xn+1

(n+ 1)!

����


����

x

n+1

(n+ 1)!

���� ! 0 as n ! 1, since
��
f

(n+1)(z)
��  1 for all n.

23. For any fixed x there exists a z between x and
1 such that

|R
n

(x)| =
����
f

(n+1)(z)(x� 1)n+1

(n+ 1)!

����.

Observe that for all n,���f (n+1)(z)
��� =

n!

|z|n+1
, so

|R
n

(x)| =
����

(x� 1)n+1

|z|n+1(n+ 1)

����

=

����
x� 1

z

����
n+1 1

(n+ 1)
! 0

as n ! 1.
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24. For any fixed x there exists a z between 0 and
x such that

|R
n

(x)| =
����
e

�z

x

(n+1)

(n+ 1)!

����! 0

as n ! 1.

25. (a) Expand f(x) = lnx into a Taylor series
about c = 1. Recall

ln(x) =
1X

k=0

(�1)k+1

k

(x� 1)k

So P4(x) =
4X

k=0

f

(k)(1)

k!
(x� 1)k

= (x� 1)� 1

2
(x� 1)2 +

1

3
(x� 1)3

� 1

4
(x� 1)4.

Letting x = 1.05 gives
ln(1.05) ⇡ P4(1.05) = .04879

(b) |Error| = | ln(1.05)� P4(1.05)|
= |R

n

(1.05)|

=

����
f

4+1(x)

(4 + 1)!
(1.05� 1)4+1

����

=
4!|z|�5(0.05)5

5!
,

so because 1 < z < 1.05,
1

z

<

1

1
= 1. Thus we have

|Error| = (.05)5

5z5
<

(.05)5

5(1)5
=

(.05)5

5
.

(c) From part (b) we have for
1 < z < 1.05,
|R

n

(1.05)|

=

����
f

n+1(z)

(n+ 1)!
(1.05� 1)n+1

����

=
n!(.05)n+1

(n+ 1)!zn+1
=

(.05)n+1

(n+ 1)zn+1

<

(.05)n+1

n+ 1
< 10�10 if n = 7.

26. (a) Expand f(x) = lnx into a Taylor series
about c = 1. Recall

ln(x) =
1P
k=0

(�1)k+1

k

(x� 1)k

So P4(x) =
4X

k=0

f

(k)(1)

k!
(x� 1)k

= (x� 1)� 1

2
(x� 1)2 +

1

3
(x� 1)3

� 1

4
(x� 1)4.

Letting x = 0.9 gives
ln(0.9) ⇡ P4(0.9) = �0.1054

(b) |Error| = | ln(0.9)� P4(0.9)|
= |R

n

(0.9)|

=

����
f

4+1(x)

(4 + 1)!
(0.9� 1)4+1

����

=
4!|z|�5(0.1)5

5!
,

so because 0.9 < z < 1,

|Error| = (.1)5

5z5
<

1

5

✓
1

9

◆5

.

(c) From part (b) we have for
0.9 < z < 1,
|R

n

(0.9)|

=

����
f

n+1(z)

(n+ 1)!
(0.9� 1)n+1

����

=
n!(.1)n+1

(n+ 1)!zn+1
=

(.1)n+1

(n+ 1)zn+1

<

1

n+ 1

✓
1

9

◆
n+1

< 10�10 if n = 9.

27. (a) Expand f(x) =
p
x into a Taylor series

about c = 1.

P4(x) =
x

2
� (x� 1)2

8
+

(x� 1)3

16

� 5(x� 1)4

128
.

Letting x = 1.1 givesp
1.1 ⇡ P4(1.1) = 1.0488

(b) |Error| = |
p
1.1� P4(1.1)|

= |R
n

(1.1)|

=

����
f

4+1(x)

(4 + 1)!
(1.1� 1)4+1

����

=
4!|z|�5(0.1)5

5!
,

so because 1 < z < 1.1,

|Error| = (.1)5

5z5
<

(.1)5

5
.

(c) From part (b) we have for
1 < z < 1.1,
|R

n

(1.1)|

=

����
f

n+1(z)

(n+ 1)!
(1.1� 1)n+1

����

=
n!(.1)n+1

(n+ 1)!zn+1
=

(.1)n+1

(n+ 1)zn+1

<

(.1)n+1

(n+ 1)
< 10�10 if n = 9.

28. (a) Expand f(x) =
p
x into a Taylor series

about c = 1.

P4(x) =
x

2
� (x� 1)2

8
+

(x� 1)3

16

� 5(x� 1)4

128
.
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Letting x = 1.2 givesp
1.2 ⇡ P4(1.2) = 1.0954

(b) |Error| = |
p
1.2� P4(1.2)|

= |R
n

(1.2)|

=

����
f

4+1(x)

(4 + 1)!
(1.2� 1)4+1

����

=
4!|z|�5(0.2)5

5!
,

so because 1 < z < 1.2,

|Error| = (.2)5

5z5
<

(.2)5

5
.

(c) From part (b) we have for
1 < z < 1.2,
|R

n

(1.1)|

=

����
f

n+1(z)

(n+ 1)!
(1.2� 1)n+1

����

=
n!(.2)n+1

(n+ 1)!zn+1
=

(.2)n+1

(n+ 1)zn+1

<

(.2)n+1

(n+ 1)
< 10�10 if n = 12.

29. e

x =
1X

k=0

x

k

k!
with r = 1. Replacing x with

�3x, we have

e

�3x =
1X

k=0

(�1)k(3x)k

k!

with r = 1.

30. e

x =
1P
k=0

x

k

k!
with r = 1. We see that

e

x � 1

x

=

1P
k=0

x

k

/k!� 1

x

=
1X

k=1

x

k�1

k!
=

1X

k=0

x

k

(k + 1)!

with r = 1.

31. e

x =
1X

k=0

x

k

k!
with r = 1. By replacing x with

�x

2 and multiplying by x we have

xe

�x

2

=
1X

k=0

(�1)kx2k+1

k!

with r = 1.

32. sinx =
1X

k=0

(�1)k

(2k + 1)!
x

2k+1

with r = 1. Replacing x with x

2, we have

sinx2 =
1X

k=0

(�1)kx4k+2

(2k + 1)!

with r = 1.

33. sin x =
1X

k=0

(�1)kx2k+1

(2k + 1)!

with r = 1. Replacing x with 2x and multi-
plying by x, we have

x sin 2x = x

 1X

k=0

(�1)k(2x)2k+1

(2k + 1)!

!

=
1X

k=0

(�1)k22k+1
x

2k+2

(2k + 1)!

with r = 1.

34. cos x =
1X

k=0

(�1)kx2k

(2k!)

with r = 1. Replacing x with x

3, we have

cos x3 =
1X

k=0

(�1)k

(2k)!
(x3)2k

=
1X

k=0

(�1)k

(2k)!
x

6k

with r = 1.

35.

1X

k=0

1

k!
x

k = e

x

Replacing x with 2, we have
1P
k=0

2k

k!
= e

2

36.

1X

k=0

(�1)kx2k+1

(2k + 1)!
= sinx,

Replacing x with ⇡, we have
1X

k=0

(�1)k⇡2k+1

(2k + 1)!
= sin⇡ = 0.

37.

1X

k=0

(�1)k

2k + 1
x

2k+1 = tan�1
x,

Replacing x with 1, we have
1X

k=0

(�1)k

2k + 1
= tan�1(1) =

⇡

4

38.

1X

k=1

(�1)k+1

k

(x� 1)k = ln x

Replacing x with 2, we have
1X

k=1

(�1)k+1

k

= ln 2

39. (a) Di↵erentiation is the best method for
finding the power series.

(b) Geometric series is the best method for
finding the power series.

40. (a) Substitution is the best method for find-
ing the power series.
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(b) Taylor series is the best method for find-
ing the power series.

41. (a) Taylor series is the best method for find-
ing the power series.

(b) Antidi↵erentiation is the best method for
finding the power series.

42. (a) Substitution is the best method for find-
ing the power series.

(b) Taylor series is the best method for find-
ing the power series.

43. Let us calculate f

0(0) and f

00(0) using the def-
inition.

f

0(0) = lim
h!0

f(h)� f(0)

h

= lim
h!0

e

�1/h2 � 0

h

= 0

When x 6= 0, f 0(x) =
2

x

3
e

�1/x2

and then,

f

00(0) = lim
h!0

f

0(h)� f

0(0)

h

= lim
h!0

2/h3
e

�1/h2 � 0

h

= 2lim
h!0

e

�1/h2 � 0

h

4
= 0.

44. Call the error function F (x).

F (x) =
2p
⇡

Z
x

0
e

�u

2

du

F

0(x) =
2p
⇡

e

�x

2

F

00(x) = � 4p
⇡

xe

�x

2

F

000(x) = � 4p
⇡

e

�x

2

(1� 2x2)

F

(4)(x) = � 4p
⇡

e

�x

2

(4x3 � 6x)

F (0) = 0, F 0(0) =
2p
⇡

, F

00(0) = 0

F

000(0) = � 4p
⇡

, F

(4)(0) = 0

Therefore,

P4(x) =
1p
⇡

x� 2

3
p
⇡

x

3

45. To generate the series, di↵erentiate
(1 + x)r repeatedly. The series terminates if
r is a positive integer, since all derivatives af-
ter the rth derivative will be 0. Otherwise the
series is infinite.

46. When r = 2,
2(2� 1) · · · (2� k + 1) = 0 for all k � 3.
Therefore, (1 + x)2 = 1 + 2x+ x

2.

When r = 3,
3(3� 1) · · · (3� k + 1) = 0 for all k � 4.
Therefore, (1 + x)3 = 1 + 3x+ 3x2 + x

3.

In general, for a positive integer, r, we have
r(r � 1) · · · (r � k + 1) = 0 for all
k � (r + 1). Therefore,

(1 + x)r =
1X

k=0

✓
r

k

◆
x

k

47. This is the case when r =
1

2
, and then, the

Maclaurin series is

1 +
1P
k=1

(1/2) (�1/2) . . . (1/2� k + 1)

k!
x

k

.

48. This is the case when r =
3

2
, and then, the

Maclaurin series is

1 +
1X

k=1

3

2

1

2
· · · (5

2
� k)

k!
x

k

.

49. f(x) = |x|

f

0(x) =

⇢
1 if x > 0
�1 if x < 0

f(1) = 1, f 0(1) = 1,
f

(n)(1) = 0 for all n � 2

Thus, the Taylor series for f about c = 1 is
1+(x�1) = x. The Taylor series converges to
f for all x � 0.

50. Let’s find the Maclaurin series for g(z) =p
z + z�

p
c� z, and then replace c by a

2 and
z by x

2. In fact, let’s write g(z) = h(z)� k(z),
where h(z) =

p
c+ z and k(z) =

p
c� z. It is

easy to find the derivatives of h(z):

h

0(z) =
1

2
(c+ z)�1/2

h

00(z) =

✓
�1

2

◆✓
1

2

◆
(c+ z)�3/2

h

000(z) =

✓
3

2

◆✓
1

2

◆✓
1

2

◆
(c+ z)�5/2

h

(4)(z) =

✓
�5

2

◆✓
3

2

◆✓
1

2

◆✓
1

2

◆
(c + z)�7/2

and so on. Then

h(0) =
1

2
c

h

0(0) =
1

2
(c)�1/2

h

00(0) =

✓
�1

2

◆✓
1

2

◆
(c)�3/2

h

000(0) =

✓
3

2

◆✓
1

2

◆✓
1

2

◆
(c)�5/2

h

(4)(z) =

✓
�5

2

◆✓
3

2

◆✓
1

2

◆✓
1

2

◆
(c)�7/2 and

so on.
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Now what about the derivatives of k(z)? Then
will be similar to the derivatives computed
above, except that the expression (c+ z) is re-
placed by (c�z), and all the odd terms have an
additional minus sign, which comes from di↵er-
entiating (c � z) an odd number of times. So
when we evaluate these derivatives at z = 0,
the even ones will be the same as above and
the odd ones will contain a negative sign. So if
we calculate g

(n)(0) = h

(n)(0) � k

(n)(0), when
n is even we get 0 and when n is odd we get
twice h

(n)(0). That is,
g(0) = 0
g

0(0) = (c)�1/2

g

00(0) = 0

g

000(0) =

✓
3

2

◆✓
1

2

◆
(c)�5/2

g

(4)(0) = 0

g

(5)(0) =

✓
7

2

◆✓
5

2

◆✓
3

2

◆✓
1

2

◆
(c)�9/2

In general, for k > 0,
g

2k+1(0)

=

✓
4k � 1

2

◆✓
4k � 3

2

◆

. . .

✓
5

2

◆✓
3

2

◆✓
1

2

◆
(c)�(4k+1)/2

=
1

22k
(4k � 1)!

22k�1(2k � 1)!
c

�(4k+1)/2

=
1

24k�1

(4k � 1)!

(2k � 1)!
c

�(4k+1)/2

So the Maclaurin series for g(z) is

zc

�1/2 +
1X

k=1

1

24k�1

(4k � 1)!

(2k � 1)!
c

�(4k+1)/2

· z

2k+1

(2k + 1)!

Finally, we get the Maclaurin series for f(x) by
replacing c by a

2 and z by x

2:
x

2

a

+
1X

k=1

1

24k�1

(4k � 1)!

(2k � 1)!
a

�(4k+1) x

4k+1

(2k + 1)!

51. Since lim
x!a

f(x)� g(x)

(x� a)2
= 0

it follows that lim
x!a

[f(x)� g(x)] = 0

) f(a)� g(a) = 0
) f(a) = g(a)
Using L’Hospital’s rule on the given limit, we

get lim
x!a

f

0(x)� g

0(x)

2(x� a)
= 0

) lim
x!a

[f 0(x)� g

0(x)] = 0

) f

0(a)� g

0(a) = 0
) f

0(a) = g

0(a)

Similarly, lim
x!a

f

00(x)� g

00(x)

2
= 0

) lim
x!a

[f 00(x)� g

00(x)] = 0

) f

00(a)� g

00(a) = 0
) f

00(a) = g

00(a)

Thus, the first three terms of the Taylor series
for f and g are identical.

52. Use a similar proof as that in Exercise 51.

Since lim
x!a

f(x)� g(x)

(x� a)n
= 0

it follows that lim
x!a

[f(x)� g(x)] = 0

) f(a)� g(a) = 0
) f(a) = g(a)
Using L’Hospital’s rule on the given limit, we

get lim
x!a

f

0(x)� g

0(x)

n(x� a)n�1
= 0

) lim
x!a

[f 0(x)� g

0(x)] = 0

) f

0(a)� g

0(a) = 0
) f

0(a) = g

0(a)
and so on for all k  n.

The conclusion is that, the first n+ 1 terms of
the Taylor series for f and g are identical.

53. f(x) = e

x sinx, f(0) = 0
f

0(x) = e

x(sinx+ cosx), f 0(0) = 1
f

00(x) = 2ex cosx, f 00(0) = 2
f

000(x) = �2ex(sinx� cosx), f 000(0) = 2
f

(4)(x) = �4ex sinx, f (4)(0) = 0
f

(5)(x) = �4ex(sinx+ cosx),
f

(5)(0) = �4
f

(6)(x) = �8ex cosx, f (6)(0) = �8
Thus, ex sinx

= x+
2

2!
x

2 +
2

3!
x

3 � 4

5!
x

5 � 8

6!
x

6 + · · ·

= x+ x

2 +
1

3
x

3 � 1

30
x

5 � 1

90
x

6 + · · ·

Now, the Taylor series for ex and sinx are

e

x = 1 + x+
x

2

2
+

x

3

6
+

x

4

24
+

x

5

120
+ · · ·

sinx = x� x

3

3!
+

x

5

5!
� · · ·

Multiplying together the series for ex and sinx

and collecting like terms gives x � x

3

3!
+

x

5

5!
+

x

2 � x

4

3!
+

x

6

5!
+

x

3

2

� x

5

12
+

x

4

6
� x

6

36
+

x

5

4!
+

x

6

5!
+ · · ·

= x+ x

2 + x

3


� 1

3!
+

1

2

�

+ x

5


1

120
� 1

12
+

1

24

�

+ x

6


1

5!
+

1

5!
� 1

36

�
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= x+ x

2 +
x

3

3
� x

5

30
� x

6

90

The results are the same in each case.

54. f(x) = tanx, f(0) = 0,
f

0(x) = sec2 x, f 0(0) = 1,
f

00(x) = 2 tanx sec2 x, f 00(0) = 0,
f

000(x) = 2 sec4 x+ 4 tan2 x sec2 x,
f

000(0) = 2
f

(4)(x) = 8(sec4 x tanx
+ tanx sec4 x+ tan3 x sec2 x),

f

(4)(0) = 0

Thus, P5(x) = x+
x

3

3
.

On the other hand, the first several terms of
the Taylor expansion of sinx and cosx are

sinx = x� x

3

6
+

x

5

120
+ · · ·

cosx = 1� x

2

2
+

x

4

24
+ · · ·

and if we take the quotient of the above we get
sinx

cosx
= x+

x

3

3
+

2x5

15
+ · · · .

55. f(x) =

( sinx

x

if x 6= 0

1 if x = 0

First note that for x 6= 0,

f

0(x) =
x cosx� sinx

x

2

f

00(x) =
(2� x

2) sinx� 2x cosx

x

3

f

000(x)

=
(3x2 � 6) sinx+ (6x� x

3) cosx

x

4

f

(4)(x)

=
(x4 � 12x2 + 24) sinx+ (4x3 � 24x) cosx

x

5

f

(5)(x)

=
1

x

6

⇥
(�5x4 + 60x2 � 120) sinx

+ (x5 � 20x3 + 120x) cosx
⇤

as can be verified with detailed calculations or
with a CAS.

Using L’Hospital’s rule when needed, we can
determine the values of the derivatives of f

evaluated at x = 0:

f

0(0) = lim
x!0

f(x)� f(0)

x� 0

= lim
x!0

2

64

sinx

x

� 1

x

3

75 = lim
x!0

sinx� x

x

2

= lim
x!0

cosx� 1

2x
= lim

x!0

� sinx

2
f

0(0) = 0,

f

00(0) = lim
x!0

f

0(x)� f

0(0)

x� 0

= lim
x!0

x cosx� sinx

x

2
� 0

x

= lim
x!0

x cosx� sinx

x

3

= lim
x!0

�x sinx

3x2

= �1

3
lim
x!0

sinx

x

= �1

3

f

000(0) = lim
x!0

f

00(x)� f

00(0)

x� 0

= lim
x!0

(2� x

2) sinx� 2x cosx

x

3
�
✓
�1

3

◆

x

= lim
x!0

(2� x

2) sinx� 2x cosx+
1

3
x

3

x

4

= lim
x!0

1

4x3

⇥
(2� x

2) cosx� 2x sinx�
2(cosx� x sinx) + x

2
⇤

= lim
x!0

�x

2 cosx+ x

2

4x3

= lim
x!0

1� cosx

4x

= lim
x!0

sinx

4
f

000(0) = 0

f

(4)(0) = lim
x!0

f

000(x)� f

000(0)

x� 0

= lim
x!0

(3x2 � 6) sinx+ (6x� x

3) cosx

x

5

= lim
x!0

1

5x4

⇥
(3x2 � 6) cosx+ 6x sinx+

(6� 3x2) cosx� (6x� x

3) sinx
⇤

= lim
x!0

x

3 sinx

5x4

=
1

5
lim
x!0

sinx

x

f

(4)(0) =
1

5

f

(5)(0) = lim
x!0

f

(4)(x)� f

(4)(0)

x� 0

= lim
x!0

1

x

6

⇥
(x4 � 12x2 + 24) sinx+

(4x3 � 24x) cosx� 1

5
x

5

�

= lim
x!0

1

6x5

⇥
cosx(x4 � 12x2 + 24+

12x2 � 24) + sinx(4x3 � 24x�
4x3 + 24x)� x

4
⇤

=
1

6
lim
x!0

x

4 cosx� x

4

x

5
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=
1

6
lim
x!0

cosx� 1

x

=
1

6
lim
x!0

[� sinx]

f

(5)(0) = 0

f

(6)(0) = lim
x!0

f

(5)(x)� f

(5)(0)

x� 0

= lim
x!0

1

x

7

⇥
(�5x4 + 60x2 � 120) sinx+

(x5 � 20x3 + 120x) cosx
⇤

= lim
x!0

1

7x6

⇥
sinx(�20x3 + 120x� x

5+

20x3 � 120x) + cosx(�5x4 +
60x2 � 120 + 5x4 � 60x2 + 120)

⇤

=
1

7
lim
x!0

�x

5 sinx

x

6

= �1

7
lim
x!0

sinx

x

f

(6)(0) = �1

7
Thus, the first 4 non-zero terms of the Maclau-
rin series for f are

1� 1

3

x

2

2!
+

1

5

x

4

4!
� 1

7

x

6

6!
+ · · ·

= 1� x

2

3!
+

x

4

5!
� x

6

7!
+ · · ·

The Maclaurin series for sinx is

x� x

3

3!
+

x

5

5!
� x

7

7!
+ · · ·

which, when divided by x, is equal to the
Maclaurin series for f(x).

56. f(x) = x lnx, f 0(x) = lnx+ 1,

f

00(x) =
1

x

, f

000(x) = � 1

x

2
, . . .

When k � 2

f

(k)(x) = (�1)k
(k � 2)!

x

k�1

f(1) = 0, f 0(1) = 1,
f

00(1) = 1, f 000(1) = �1, . . .

When k � 2,
f

(k)(1) = (�1)k(k � 2)!
The Taylor series for f(x) is

x lnx = (x� 1) +
1P
k=2

(�1)k(x� 1)k

k(k � 1)
The similarity between the Taylor series for
x lnx and that for lnx is because of the fact
that the sequence of derivatives of x lnx is a
basically a shift of that of lnx.

57. coshx = 1 +
1

2
x

2 +
1

24
x

4 +
1

720
x

6 + · · ·

sinhx = x+
1

6
x

3 +
1

120
x

5 +
1

5040
x

7 + · · ·
These match the cosine and sine series except
that here all signs are positive.

58. tan x =
1X

k=1

22k(22k � 1)

(2k)!
|B2k|x2k�1

where B2k is the 2kth Bernoulli number, we
can conjecture that

tanh x =
1X

k=1

22k(22k � 1)

(2k)!
B2kx

2k�1

8.8 Applications of

Taylor Series

1. Using the first three terms of the sine series
around the center ⇡/2 we get
sin 1.61 ⇡ 0.999231634426433.

2. Using the first three terms of the sine series
around the center 2⇡, we get
sin(6.32) ⇡ 0.03680637606.

3. Using the first five terms of the cosine series
around the center 0 we get
cos 0.34 ⇡ 0.94275466553403.

4. Using the first four terms of the cosine series
around the center⇡, we get
cos(3.04) ⇡ �.9948439033.

5. Using the first nine terms of the exponential
series around the center 0 we get
e

�0.2 ⇡ 0.818730753079365.

6. Using the first 11 terms of the exponential se-
ries around the center 0 we get
e

0.4 ⇡ 1.491824698.

7. lim
k!1

cosx2 � 1

x

4

= lim
k!1

✓
1� x

4

2!
+

x

8

4!
� x

12

6!
. . .

◆
� 1

x

4

= �1

2

8. lim
x!0

sin x

2 � x

2

x

6

= lim
x!0

(x2 � x

6

6
+ · · · )� x

2

x

6
=

�1

6

9. Using lnx ⇡ (x� 1)� 1

2
(x� 1)2 +

1

3
(x� 1)3

we get

lim
k!1

lnx� (x� 1)

(x� 1)2
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= lim
k!1

�2(x� 1)� 1

2
(x� 1)2 +

1

3
(x� 1)3

(x� 1)2

= �1

2
.

10. lim
x!0

tan�1
x� x

x

3

= lim
x!0

(x� x

3

3
+ · · · )� x

x

3
=

�1

3
.

11. lim
k!1

x

x � 1

x

= lim
k!1

✓
1 + x+

x

2

2!
+

x

3

3!
x

3 + · · ·
◆
� 1

x

= 1

12. lim
x!0

e

�2x � 1

x

= lim
x!0

(1� 2x+ 2x2 � · · · )� 1

x

= �2

13.

Z 1

�1

sinx

x

dx

⇡
Z 1

�1

✓
1� x

2

6
+

x

4

120

◆
dx

= x� x

3

18
+

x

5

600

����
1

�1

=
1703

900
⇡ 1.8922

14.

Z p
⇡

�
p
⇡

cos x2
dx = 2

Z p
⇡

0
cos x2

dx

⇡ 2

Z
⇡

0
(1� x

4

2
+

x

8

24
� x

12

720
) dx

= 2(x� x

5

10
+

x

9

216
� x

13

9360
)

����
⇡

0
⇡ 1.28

15.

Z 1

�1
e

�x

2

dx

⇡
Z 1

�1

✓
1� x

2 +
x

4

2
� x

6

6
+

x

8

24

◆
dx

= x� x

3

3
+

x

5

10
� x

7

42
+

x

9

(24)(9)

����
1

�1

=
5651

3780
⇡ 1.495.

16.

Z 1

0
tan�1

x dx

⇡
Z 1

0
(x� x

3

3
+

x

5

5
� x

7

7
+

x

9

9
)dx

=
x

2

2
� x

4

12
+

x

6

30
� x

8

56
+

x

10

90
)

����
1

0

⇡ .44

17.

Z 2

1
lnxdx

⇡
Z 2

1
(x� 1)� 1

2
(x� 1)2

+
1

3
(x� 1)3 � 1

4
(x� 1)4 +

1

5
(x� 1)5dx

=

✓
(x� 1)2

2
� (x� 1)3

6
+

(x� 1)4

12
� (x� 1)5

20
+

(x� 1)6

30

◆����
2

1

=
2

5

18.

Z 1

0
e

p
x

dx

⇡
Z 1

0
(1 + x

1/2 +
x

2
+

x

3/2

6
) dx

= x+
2x3/2

3
+

x

2

4
+

✓
x

5/2

15

◆����
1

0

⇡ 1.98.

19.

����
a

n+1

a

n

���� 
x

2

22(n+ 1)(n+ 2)

Since this ratio tends to 0, the radius of con-
vergence for J1(x) is infinite.

20.

����
a

n+1

a

n

���� 
x

2

22(n+ 1)(n+ 3)
Since this ratio tends to 0, the radius of con-
vergence for J2(x) is infinite.

21. We need the first neglected term to be less than
0.04. The k-th term is bounded by

102k+1

22k+2
k (k + 2)!

,

which is equal to 0.0357 for k = 12. Thus we
will need the terms up through
k = 11, that is, the first 12 terms of the series.

22.
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23.

1p
1� x

= (1 + (�x))�1/2

= 1� 1

2
(�x) +

✓
�1

2

◆✓
�3

2

◆

2!
(�x)2

+

✓
�1

2

◆✓
�3

2

◆✓
�5

2

◆

3!
(�x)3

+

✓
�1

2

◆✓
�3

2

◆✓
�5

2

◆✓
�7

2

◆

4!
(�x)4

+ · · ·

= 1 +
1

2
x+

3

8
x

2 +
5

16
x

3 +
35

128
x

4 + · · ·

24.

3
p
1 + 2x = (1 + 2x)1/3

= 1 +
1

3
2x� 1

9
(2x)2 +

5

81
(2x)3

� 10

243
(2x)4 +

22

729
(2x)5 + · · ·

= 1 +
2

3
x� 4

9
x

2 +
40

81
x

3 � 160

243
x

4

+
704

729
x

5 + · · ·

25.

6
3
p
1 + 3x

= 6 (1 + (3x))�1/3

= 6

2

6641�
1

3
(3x) +

✓
�1

3

◆✓
�4

3

◆

2!
(3x)2+

✓
�1

3

◆✓
�4

3

◆✓
�7

3

◆

3!
(3x)3 +

✓
�1

3

◆✓
�4

3

◆✓
�7

3

◆✓
�10

3

◆

4!
(3x)4

+ · · · ]

= 6


1� x+ 2x2 � 14

3
x

3 +
35

3
x

4 � · · ·
�

= 6� 6x+ 12x2 � 28x3 + 70x4 � · · ·

26. (1 + x

2)4/5

= 1 +
4

5
x

2 � 2

25
x

4 +
4

125
x

6 � 11

625
x

8 + · · ·

27. (a)

p
26 =

s

25

✓
26

25

◆
= 5

r
1 +

1

25

Since
1

25
is in the interval of convergence

�1 < x < 1, the binomial series can be
used to get

r
1 +

1

25

= 1+
1

2

✓
1

25

◆
� 1

8

✓
1

25

◆2

+
1

16

✓
1

25

◆3

�

5

128

✓
1

28

◆4

+ · · ·

Using the first four terms of the series
implies that the error will be less than
5

128

✓
1

25

◆4

= 10�7.

Thus,
p
26

⇡ 5


1 +

1

2

✓
1

25

◆
� 1

8

✓
1

25

◆2

+
1

16

✓
1

25

◆3
#

⇡ 5.0990200

(b)
p
24

⇡ 5

"
1� 1

2

✓
1

25

◆
� 1

8

✓
1

25

◆2

� 1

16

✓
1

25

◆3
#

⇡ 4.8989800

28. (a)
2
3
p
9
=

✓
1� 1

9

◆1/3

⇡ 1� 1

3
· 1
9
� 1

9
· 1

92
� 5

81
· 1

93

� 10

243
· 1

94
� 22

729
· 1

95

= .9614997621

(b) 4
p
17 = 2 ·

✓
1 +

1

16

◆1/4

⇡ 2 ·
✓
1 +

1

4
· 1

16
� 3

32
· 1

162

+
7

128
· 1

163

◆

= 2⇥ 1.015272141
= 2.030544282

29. (4 + x)3 =
⇣
4
h
1 +

x

4

i⌘3

= 43
h
1 +

x

4

i3

= 43

1 + 3

⇣
x

4

⌘
+ 3

⇣
x

4

⌘2
+
⇣
x

4

⌘3�

= 43 + 3(42)x+ 3(4)x2 + x

3

= 64 + 48x+ 12x2 + x

3

(1� 2x)4 = [1 + (�2x)]4
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= 1 + 4(�2x) +
(4)(3)

2
(�2x)2

+
(4)(3)(2)

3!
(�2x)3 + (�2x)4

= 1� 8x+ 24x2 � 32x3 + 16x4

For a positive integer n, there are n + 1 non-
zero terms in the binomial expansion.

30. The (k + 1)-th term in the Taylor series of

(1 + x)n is

✓
n

k

◆
x

k,

while at the same time it is
n · (n� 1) · · · · · (n� k + 1)

k!
x

k

Therefore,✓
n

k

◆
=

n · (n� 1) · · · · · (n� k + 1)

k!

=
n · (n� 1) · · · · · 1

k!(n� k)!
=

n!

k!(n� k)!

31.

1p
1� x

= 1+
1

2
x+

3

8
x

2 +
5

16
x

3 +
35

128
x

4 + · · ·

Therefore,
1p

1� x

2
= 1+

1

2
x

2+
3

8
x

4+
5

16
x

6+

35

128
x

8 + · · ·

and so sin�1
x =

Z
1p

1� x

2
dx

= x+
1

6
x

3 +
3

40
x

5 +
5

112
x

7

+
35

1152
x

9 + · · ·+ const.

Since sin�1(0) = 0, it follows that the con-
stant in the previous equation is 0. Thus, the
Maclaurin series for the inverse sine function is

sin�1
x = x+

x

3

6
+

3x5

40
+

5x7

112
+

35x9

1152
+ · · ·

32. (1 + 2x)4/3

⇡ 1 +
4

3
2x+

2

9
(2x)2 � 4

81
(2x)3

+
5

243
(2x)4 � 8

729
(2x)5 + · · ·

= 1 +
8

3
x+

8

9
x

2 � 32

81
x

3 +
80

243
x

4

� 256

729
x

5 + · · ·

33. (a) Let f(x) =
1p
1� x

, then

f(x) ⇡ f(0) + f

0(0)x = 1 +
1

2
x

Now let x =
v

2

c

2
then

1r
1� v

2

c

2

⇡ 1 +
v

2

2c2
.

Thus
1r

1� v

2

c

2

⇡ 1 +
v

2

2c2
.

(b) To increase mass by 10%, we want

1 +
v

2

2c2
= 1.1.

Solving for v, we have
1

2c2
v

2 = .1 so

v

2 = .2c2, thus
v =

p
.2c ⇡ 83,000 miles per second.

(c) m(v) = m0(1�
v

2

c

2
)�1/2,

m

0(v) =
m0v

c

2
(1� v

2

c

2
)�3/2,

m

00(v) =
m0

c

2
(1� v

2

c

2
)�3/2

+
3m0v

2

c

4
(1� v

2

c

2
)�5/2,

m

000(v) =
9m0v

c

4
(1� v

2

c

2
)�5/2

+
15m0v

3

c

6
(1� v

2

c

2
)�7/2,

m

(4)(v) =
9m0

c

4
(1� v

2

c

2
)�5/2

+
90m0v

2

c

6
(1� v

2

c

2
)�7/2

+
105m0v

4

c

8
(1� v

2

c

2
)�9/2.

Therefore,

m(v) ⇡ m0 +
m0

2c2
v

2 +
9m0

24c4
v

4

34. lim
t!0

�����

mtp
m

2
c

2+t

2 � t

c

t

�����

= lim
t!0

����
mp

m

2
c

2 + t

2
� 1

c

���� = 0

Therefore, given any number " > 0, there ex-

ist a number � > 0 such that

����
mtp

m2c2+t2
� t

c

t

���� <

" where |t| < � i.e.
��� mtp

m

2
c

2+t

2 � t

c

��� <

" |t| where |t| < � Therefore, for small values
of t, mtp

m

2
c

2+t

2 ⇡ t

c

35. (a) w(x) =
mgR

2

(R+ x)2
, w(0) = mg

w

0(x) =
�2mg

(R+ x)3
, w

0(0) =
�2mg

R

3
, so

w(x) ⇡
1P
k=0

f

(k)(0)

k!
x

k = mg

✓
1� 2x

R

◆
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(b) To reduce weight by 10%, we want

1� 2x

R

= 9. Solving for x, we have

�2x

R

= �.1, so x =
R

20
⇡ 200 miles.

(c) w(x) =
mgR

2

(R+ x)2
, w0(x) =

�2mgR

2

(R+ x)3
,

and w

00(x) =
6mgR

2

(R+ x)4
. Therefore,

w(x) ⇡ mg(1� 2

R

x+
3

R

2
x

2)

Solving the equation,

mg(1� 2

R

x+
3

R

2
x

2) = 0.9mg

gives us that the rest weight is reduced by

10% when x ⇡ 1.63

R

.

36. (a) No, since x is much smaller than R for
high-altitude locations on Earth. You
have to go out to an altitude of more than
100 miles before you weigh significantly
less.

(b) The power of x in the numerator and R

in the denominator of each term in Ex-
ercise 35(c) is equal. Neither altitude nor
latitude has a larger e↵ect than the other.

37. The first neglected term is negative, so this es-
timate is too large.

38. Since lim
x!1

tanhx = 1, it is clear that v(t) ! v

c

as t ! 1. Using the approximation in Exer-

cise 37 we see it takes time
.4v

c

g

to reach 90

percent of terminal velocity.

39. Use the first two terms of the series for tanh:

tanhx ⇡ x� 1

3
x

3

Substitute

r
g

40m
t for x, multiply by

p
40mg

and simplify. The result is

gt� g

2

120m
t

3
.

40. tanh

✓
2⇡h

L

◆
⇡ 6B2

✓
2⇡h

L

◆
=

2⇡h

L

since B2 =
1

6
. Therefore

v

2 =
gL

2⇡
tanh

✓
2⇡h

L

◆
⇡ gh

and v ⇡
p
gh.

41. Using e

x =
1X

n=0

x

n

n!
and

hc

k

⇡ 0.014, we get

g(�) =
1X

n=1

�

5

n!

✓
hc

k�T

◆
n

⇡
1X

n=1

�

5 0.014n

(�T )nn!

Therefore,

dg

d�

(�) ⇡
5X

n=1

(5� n)
�

4 0.014n

(�T )nn!

and the above expression equals to 0 when

� = �0.002985852303

T

.

This doesn’t agree with Wien’s law, but the
value of � might be too large as the radius of
convergence for the Maclaurin series is infinite.

42. f(�) =
8⇡hc

�

5(ehc/�kT � 1)

=
8⇡hc

(1 + (hc/�kT ) + · · ·� 1)

=
8⇡hc

�

5(hc/�kT )
=

8⇡kT

�

4

43. Using the series for (1 + x)3/2 around the cen-
ter x = 0, we get
S(d)

⇡ 8⇡c2

3

✓
3

32
· d

2

c

2
+

3

2048
· d

4

c

4
� 1

65536
· d

6

c

6

◆

If we ignore the d4 and d

6 terms, this simplifies

to
⇡d

2

4
.

44. Noting that

V (r) = 2⇡�(
p

r

2 + a

2 � r)

= 2⇡�
a

2

p
r

2 + a

2 + r

and for su�ciently large r,p
r

2 + a

2 + r ⇡ 2r

we have V (r) ⇡ ⇡�a

2

r

.

8.9 Fourier Series

1. a0 =
1

⇡

Z
⇡

�⇡

f(x)dx =
1

⇡

Z
⇡

�⇡

xdx

=
1

⇡

x

2

2

����
⇡

�⇡

= 0

a

k

=
1

⇡

Z
⇡

�⇡

x cos(kx)dx

=
1

⇡

x

k

sin(kx) +
1

k

2
cos(kx)

����
⇡

�⇡

= 0

b

k

=
1

⇡

Z
⇡

�⇡

x sin(kx)dx

=
1

⇡

�x

k

cos kx+
1

k

2
sin kx

����
⇡

�⇡

=
�2

k

(�1)k
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Hence,

f(x) =
1X

k=1

(�1)k+1 2

k

sin(kx)

for �⇡ < x < ⇡.
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4

3

2
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2. a0 =
1

⇡

Z
⇡

�⇡

x

2
dx =

1

⇡

x

3

3

����
⇡

�⇡

=
2⇡2

3

a

k

=
1

⇡

Z
⇡

�⇡

x

2 cos(kx) dx

=
1

⇡

k

2
x

2 sin(kx)� 2 sin(kx) + 2kx cos(kx)

k

3

����
⇡

�⇡

= (�1)k
4

k

2

Since the function f(x) = x

2 is even, b
k

= 0
for all k. Hence

x

2 =
⇡

2

3
+

1X

k=1

(�1)k
4

k

2
cos(kx),

for �⇡ < x < ⇡.

3. a0 =
1

⇡

Z
⇡

�⇡

f(x)dx

=
1

⇡

Z 0

�⇡

(�2x)dx+
1

⇡

Z
⇡

0
2xdx

=
1

⇡

�x

2
��0
�⇡

+
1

⇡

x

2
��⇡
0
= 2⇡

a

k

=
1

⇡

Z
⇡

�⇡

f(x) cos(kx)dx

=
1

⇡

Z 0

�⇡

�2x cos(kx)dx

+
1

x

Z
⇡

0
3x cos(kx)dx

=
1

⇡

�2x

k

sin(kx)� 2

k

2
cos(kx)

����
0

�⇡

+
1

⇡

2x

k

sin(kx) +
2

k

2
cos(kx)

����
⇡

0

=
4

k

2
⇡

[(�1)k � 1]

So a2k = 0 and a2(k�2) =
�8

(2k � 1)2⇡
.

b

k

=
1

⇡

Z
⇡

�⇡

f(x) sin(kx)dx

=
1

⇡

Z 0

�⇡

�2x(kx)dx

+
1

⇡

Z
⇡

0
2x sin(kx)dx

=
1

⇡

2x

k

cos(kx)� 2

k

2
sin(kx)

����
0

�⇡

+
1

⇡

�2x

k

cos(kx) +
2

k

2
sin(kx)

����
⇡

0

=
2

k

cos(k⇡)� 2

k

cos k⇡

= 0
So

f(x) =
2⇡

2
+

1X

k=1

�8

(2k � 1)2⇡
cos(2k � 1)x

f(x) = ⇡ �
1X

k=1

8

(2k � 1)2⇡
cos(2k � 1)x

for �⇡ < x < ⇡.
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5

4

3

2

1

-1

y = f(x)

-2

 

54321-1-2-3-4-5

y =F_8(x)

4. a

k

= 0 for all k = 0, 1, 2, . . . , since f(x) = 3x
is odd.

Now b

k

=
1

⇡

Z
⇡

�⇡

3x sin(kx) dx

=
1

⇡

3(sin(kx)� kx cos(kx))

k

2

����
⇡

�⇡

= (�1)k+1 6

k

. Hence

3x =
1X

k=1

(�1)k+1 6

k

sin(kx),

for �⇡ < x < ⇡.

5. a0 =
1

⇡

Z 0

�⇡

1dx+
1

⇡

Z
⇡

0
(�1)dx = 0

a

k

=
1

⇡

Z 0

�⇡

cos(kx)dx

+
1

⇡

Z
⇡

0
[� cos(kx)]dx

=
1

⇡

1

k

sin kx

����
0

�⇡

� 1

⇡

1

k

sin kx

����
⇡

0
= 0

b

k

=
1

⇡

Z 0

⇡

[sin(kx)]dx

+
1

⇡

Z
⇡

0
[� cos(kx)]dx

=
1

⇡

�1

k

cos kx

����
0

�⇡

� 1

⇡

�1

k

cos kx

����
⇡

0

So b2k = 0 and b2k�1 =
�4

(2k � 1)⇡
. Thus

f(x) =
1X

k=1

�4

(2k � 1)⇡
sin(2k � 1)x,

for �⇡ < x < ⇡.

 

0.5

1

43

-1

2-3

-0.5

5-4
 

1-5 -2 -1

 

0.5

1

4

-1

-0.5

5
 

1-5 -1 32-3-4 -2

6. In this case, a0 =
1

⇡

Z 0

�⇡

dx = 1,

a

k

=
1

⇡

Z 0

�⇡

cos(kx) dx

=
1

⇡

sin(kx)

k⇡

����
0

�⇡

= 0, and

b

k

=
1

⇡

Z 0

�⇡

sin(kx) dx

=
1

⇡

�cos(kx)

k⇡

����
0

�⇡

=
(�1)k � 1

k⇡

. Hence

f(x) =
1

2
�

1X

k=1

2

(2k � 1)⇡
sin(2k � 1)x

for �⇡ < x < ⇡.

7. f(x) = 3 sin 2x is already periodic on
[�2⇡, 2⇡].
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2
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9. a0 =

Z 1

�1
(�x)dx =

�x

2

2

����
1

�1

= 0

a

k

=

Z 1

�1
(�x) cos(k⇡x)dx

=
�x

k⇡

sin k⇡x� 1

(k⇡)2
cos k⇡x

����
1

�1

=
�1

k⇡

sin k⇡ � 1

(k⇡)2
cos k⇡

�

1

k⇡

sin(�k⇡)� 1

(k⇡)2
cos(�k⇡)

�

= 0

b

k

=

Z 1

�1
(�x) sin(k⇡x)dx

=
x

k⇡

cos k⇡x� 1

(k⇡)2
sin k⇡x

����
1

�1

=
1

k⇡

cos k⇡ � 1

(k⇡)2
sin k⇡

�

�1

k⇡

cos(�k⇡)� 1

(k⇡)2
sin(�k⇡)

�

=
2

k⇡

cos k⇡ =
2

k⇡

(�1)k

So

f(x) =
1X

k=1

(�1)k
2

k⇡

sin k⇡x

10. a0 =

Z 1

�1
|x| dx = 1

a

k

=

Z 0

�1
|x| cos(k⇡x) dx

= �
Z 0

�1
x cos(k⇡x) dx

+

Z 1

0
x cos(k⇡x) dx

= � cos(k⇡x) + k⇡x sin(k⇡x)

k

2
⇡

2

����
0

�1

+
cos(k⇡x) + k⇡x sin(k⇡x)

k

2
⇡

2

����
1

0

= 2
(�1)k � 1

k

2
⇡

2
.

Since the function f(x) = |x| is even, b
k

= 0
for all k. Hence

|x| = 1

2
�

1X

k=1

4

(2k � 1)2⇡2
cos((2k � 1)⇡x),

for �1 < x < 1.

11. a0 =
1

1

Z 1

�1
x

2
dx =

x

3

3

����
1

�1

=
2

3

a

k

=
1

1

Z 1

�1
x

2 cos k⇡xdx

=
x

2

k⇡

sin k⇡x+
2x

(k⇡)2
cos k⇡x

� 2

(k⇡)3
sin k⇡x

����
1

�1

=
4

(k⇡)2
(�1)k

b

k

=
1

1

Z 1

�1
x

2 sin k⇡xdx

=
x

2

k⇡

cos k⇡x+
2x

(k⇡)2
sin k⇡x

= 0
Hence,

f(x) =
1

3
+

1X

k=1

(�1)k4

(k⇡)2
cos k⇡x.

for �1 < x < 1.

12. If f(x) = 3x, then a

k

= 0 for all k = 0, 1, 2, . . . ,
since f(x) = 3x is odd. Now

b

k

=
1

2

Z 2

�2
3x sin(k⇡x/2) dx

=
1

2

12 sin(k⇡x/2)� 6k⇡x cos(k⇡x/2)

k

2
⇡

2

����
2

�2

= (�1)k+1 12

k⇡

.

Hence

3x =
1X

k=1

(�1)k+1 12

k⇡

sin

✓
k⇡x

2

◆
,

for �2 < x < 2.
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13. a0 =

Z 1

�1
f(x)dx =

Z 0

�1
0dx+

Z 1

0
xdx

=
x

2

2

����
1

0

=
1

2

a

k

=

Z 0

�1
0dx+

Z 1

0
x cos(k⇡x)dx

=
x

k⇡

sin(k⇡x) +
1

(k⇡)2
cos(k⇡x)

����
1

0

So a2k = 0 and a2k�1 =
�2

2(k � 1)2⇡2
.

b

k

=

Z 0

�1
0dx+

Z 1

0
x cos(k⇡x)dx

=
�x

k⇡

cos(k⇡x) +
1

(k⇡)2
sin(k⇡x)

����
1

0

=
�1

k⇡

(�1)k

Hence,

f(x) =
1

4

+
1X

k=1


�2

(2k � 1)2⇡2
cos(2k � 1)⇡x

+
(�1)k+1

k⇡

sin k⇡x

�

for �1 < x < 1.

14. a0 =

Z 1

0
1� x dx =

1

2
,

a

k

=

Z 1

0
(1� x) cos(k⇡x) dx

=
1� (�1)n

k

2
⇡

2
, and

b

k

=

Z 1

0
(1� x) sin(k⇡x) dx

=
1

k⇡

Hence

f(x) =
1

4
+

1X

k=1

2 cos((2k � 1)⇡x)

(2k � 1)2⇡2

+
1X

k=1

sin(k⇡x)

k⇡

for �1 < x < 1.

15.

1.6

0.0

0.0

−0.8

−5.0

−1.6

x
7.5

2.0

1.2

2.5

0.8

0.4

−0.4
−2.5

−1.2

−2.0

−7.5 5.0

16.

17.

ooo

0.75

0.25

x
432

1.0

10−1−2

0.5

0.0

18.

19.
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oo

o

o

ooo o o
4

 

2 6−4

−1

 
−2

1

20.

21. f(x) = x

2 =
1

3
+

1X

k=1

(�1)k
4

k

2
⇡

2
cos k⇡x

f(1) = 1 =
1

3
+

1X

k=1

(�1)k
4

k

2
⇡

2
(�1)k

2

3
=

1X

k=1

4

k

2
⇡

2
so

2

3
=

4

⇡

2

1X

k=1

1

k

2
, so

⇡

2

6
=

1X

k=1

1

k

2

22. Taking x = 1, we obtain

1 =
1

2
+

1X

k=1

2 sin(2k � 1)

(2k � 1)⇡
.

Hence
⇡

4
=

1X

k=1

sin(2k � 1)

(2k � 1)
.

23. f(x) =
⇡

2
�

1X

k=1

4

(2k � 1)2⇡
cos(2k � 1)x

f(0) = 0 =
⇡

2
�

1X

k=1

4

(2k � 1)2⇡
cos 0

⇡

2
=

1X

k=1

4

(2k � 1)2⇡
=

4

⇡

1X

k=1

1

(2k � 1)2

⇡

2

8
=

1X

k=1

1

(2k � 1)2

24. We have
1X

k=1

1

(2k)2

=
1X

k=1

1

k

2
�

1X

k=1

1

(2k � 1)2

=
⇡

2

6
� ⇡

2

8
=

⇡

2

24
.

25. Note that f is continuous except at x = k⇡,
where k 2 Z. Also f

0(x) = 0 except at x = k⇡.
Thus, f 0 is continuous for �⇡ < x < ⇡, except
at x = 0. By the Fourier Convergence theorem
(Theorem 9.1), the Fourier series for f con-
verges to f for all x, except at x = k⇡, where

the Fourier series converges to
1

2
(�1 + 1) = 0.

26. Note that f and f

0(x) are continuous for all
x. By the Fourier Convergence theorem (The-
orem 9.1), the Fourier series for f converges to
f for all x.

27. Note that f is continuous for all x except at
x = 2k + 1, where k 2 Z. Also note that
f

0(x) = �1 except at x = 2k + 1, so that f

0

is continuous except at x = 2k + 1. By the
Fourier Convergence theorem (Theorem 9.1),
the Fourier series for f converges to f for all x
except at x = 2k + 1, where the Fourier series

converges to
1

2
(�1 + 1) = 0.

28. Note that f is continuous for all x except at
x = k, where k 2 Z. Also note that f 0 is con-
tinuous except at x = k. By the Fourier Con-
vergence theorem (Theorem 9.1), the Fourier
series for f converges to f for all x except at
x = k. When x = 2k, the Fourier series con-

verges to
0 + 0

2
= 0; when x = 2k + 1, the

Fourier series converges to
0 + 1

2
=

1

2
.

29. If f(x) = cosx, then
f(�x) = cos(�x) = cosx = f(x)
so cosx is even.

If f(x) = sinx, then
f(�x) = sin(�x) = � sinx = �f(x)
so sinx is odd.

If f(x) = cosx+ sinx, then
f(�x) = cos(�x) + sin(�x)
= cosx� sinx 6= f(x) and
cosx� sinx 6= �f(x)
so cosx+ sinx is neither even nor odd.

30. If f(x) is even, then
g(�x) = f(�x) cos(�x)
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= f(x) cos(x) = g(x),
so g(x) is even.
Since h(�x) = f(�x) sin(�x)
= �f(x) sin(x) = �h(x), h(x) is odd.

31. If f(x) is odd and g(x) = f(x) cosx then
g(�x) = f(�x) cos(�x)
= �f(x) cosx = �g(x) is odd.

Also if h(x) = f(x) sinx then
h(�x) = f(�x) sin(�x)
= �f(x)(� sinx)
= f(x) sinx = h(x)
so h(x) is even.

If f(x) and g(x) are even, then
f(�x)g(�x) = f(x)g(x),
so f(x)g(x) is even.

32. If f is even and g is odd, then
f(�x)g(�x) = f(x)[�g(x)]
= �f(x)g(x),
so fg is odd.

If f(x) and g(x) are odd, then
f(�x)g(�x) = (�f(x))(�g(x))
= f(x)g(x),
so f(x)g(x) is even.

33. We have the Fourier series expansion

f(x) =
a0

2

+
1X

k=1


a

k

cos

✓
k⇡x

l

◆
+ b

k

sin
⇣
n⇡x

l

⌘�
.

Multiply both sides of this equation by

cos
⇣
n⇡x

l

⌘
and integrate with respect to x on

the interval [�l, l] to getZ
l

�l

f(x) cos
⇣
n⇡x

l

⌘
dx

=

Z
`

�`

a0

2
cos
⇣
n⇡x

l

⌘
dx

+
1X

k=1

"
a

k

Z
l

�l

cos

✓
k⇡x

l

◆
cos
⇣
n⇡x

l

⌘
dx

+b

k

Z
l

�l

sin

✓
k⇡x

l

◆
cos
⇣
n⇡x

l

⌘
dx

#

Well

Z 1

�l

cos
⇣
n⇡x

l

⌘
dx = 0 for all n.

And,Z
l

�l

sin

✓
k⇡x

l

◆
cos
⇣
n⇡x

l

⌘
dx

=

⇢
0 if n 6= k

l if n = k.

So when n = k, we haveZ
l

�l

f(x) cos

✓
k⇡x

l

◆
dx = a

k

l, so

a

k

=
1

l

Z
l

�l

f(x) cos

✓
k⇡x

l

◆
dx.

Now multiply both sides of the original equa-

tion by sin
⇣
n⇡x

l

⌘
and integrate on [�l, l], we

haveZ
l

�l

f(x) sin
⇣
n⇡x

l

⌘
dx

=

Z
l

�l

a0

2
sin
⇣
n⇡x

l

⌘
dx

+
1X

k=1

"
a

k

Z
l

�l

cos

✓
k⇡x

l

◆
sin
⇣
n⇡x

l

⌘
dx

+b

k

Z
l

�l

sin

✓
k⇡x

l

◆
sin
⇣
n⇡x

l

⌘
dx

#

Well

Z
l

�l

sin
⇣
n⇡x

l

⌘
dx = 0. And

Z
l

�l

cos

✓
k⇡x

l

◆
sin
⇣
n⇡x

l

⌘
dx = 0.

Also

Z
l

�l

sin

✓
k⇡x

l

◆
sin

✓
k⇡x

l

◆
dx

=

⇢
0 if n 6= k

l if n = k

.

So when n = k we haveZ
l

�l

f(x) sin

✓
k⇡x

l

◆
dx = b

k

l. So

b

k

=
1

l

Z
l

�l

f(x) sin

✓
k⇡x

l

◆
dx.

34. If g(x) is an odd function, thenZ 0

�l

g(x) dx = �
Z

l

0
g(x) dx,

for any l > 0 (by a simple substitution u =
�x). Consequently,Z

l

�l

g(x)dx =

Z 0

�l

g(x)dx+

Z
l

0
g(x)dx

= �
Z

l

0
g(x) dx+

Z
l

0
g(x) dx = 0.

If f(x) is an even function, then

f(x) sin

✓
k⇡x

l

◆
is odd, so b

k

= 0 for all k and

the Fourier series of f(x) consists only of a con-
stant and cosine terms.

On the other hand, if f(x) is an odd function,

then f(x) cos

✓
k⇡x

l

◆
is odd, so a

k

= 0 for all

k and the Fourier series of f(x) consists only
of sine terms.
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35. Since f(x) = x

3 is odd, the Fourier Series will
contain only sine.

36. Since f(x) = x

4 is even, the Fourier series will
contain only cosine.

37. Since f(x) = e

x is neither even nor odd, the
Fourier Series will contain both.

38. Since f(x) = |x| is even, the Fourier series will
contain only cosine.

39. Because g(x) is an odd function, its series con-
tains only sine terms, so f(x) contains sine
terms and the constant 1.

40. Since x is odd and x

2 is even, we haveZ
l

�l

(x+ x

2) cos

✓
k⇡x

l

◆
dx

=

Z
l

�l

x cos

✓
k⇡x

l

◆
dx

+

Z
l

�l

x

2 cos

✓
k⇡x

l

◆
dx

= 0 +

Z
l

�l

x

2 cos

✓
k⇡x

l

◆
dx

andZ
l

�l

(x+ x

2) sin

✓
k⇡x

l

◆
dx

=

Z
l

�l

x sin

✓
k⇡x

l

◆
dx

+

Z
l

�l

x

2 sin

✓
k⇡x

l

◆
dx

=

Z
l

�l

x sin

✓
k⇡x

l

◆
dx+ 0.

41. The graph of the limiting function for the func-
tion in Exercise 9, with k = 1000:

0 4

−1.0

1.0

−2

0.5

−0.5

−4 2
x

0.0

The graph of a pulse wave of width 1/3:
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−0.8

x
2−2

−1.6

0.8

0.0
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−1.2

0 4

The graph of a pulse wave of width 1/4:
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−0.8

x
2−2
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0.8

0.0

−2.0
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−4

0.4

−1.2

0 4

42. The Fourier series of that function will have
the form

a0 + ↵[cos(⇡x) +
1

2
cos(2⇡x)

� 1

4
cos(4⇡x)� 1

5
cos(5⇡x)

+
1

7
cos(7⇡x) +

1

8
cos(8⇡x)� . . . ],

where ↵ is constant.

43. The amplitude varies slowly because the fre-
quency of 2 cos(0.2t) is small compared to the
frequency of sin(8.1t). The variation of the am-
plitude explains why the volume varies, since
the volume is proportional to the amplitude.

44. If A = �1 and B = 4⇡, then
� sin 4⇡t = f(t) so
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f(0) = 0, f

✓
1

3

◆
=

p
3

2
,

f

✓
2

3

◆
=

p
3

2
, f(1) = 0.

If A = 1 and B = 2⇡, then
sin 2⇡t = f(t), so

f(0) = 0, f

✓
1

3

◆
=

p
3

2
,

f

✓
2

3

◆
=

p
3

2
, f(1) = 0.

45. f(x) =
a0

2
+

1X

k=1

[a
k

cos kx+ b

k

sin kx]

[f(x)]2 =
a

2
0

4

+ a0

1X

k=1

[a
k

cos kx+ b

k

sin kx]

+

" 1X

k=1

(a
k

cos kx+ b

k

sin kx)

#2

Now, note that

1

⇡

Z
⇡

�⇡

a

2
0

4
dx =

a

2
0

4⇡
(2⇡) =

a

2
0

2
and

1

⇡

Z
⇡

�⇡

a0

1X

k=1

[a
k

cos kx+ b

k

sin kx]dx

=
a0

⇡

1X

k=1


a

k

Z
⇡

�⇡

cos kxdx

+b

k

Z
⇡

�⇡

sin kxdx

�

= 0

Now consider the last term, which can be ex-
panded as" 1X

k=1

(a
k

cos kx+ b

k

sin kx)

#2

=

" 1X

k=1

(a
k

cos kx+ b

k

sin kx)

#

·
" 1X

m=1

(a
m

cosmx+ b

m

sinmx)

#

=
1X

k=1

1X

m=1

[a
k

a

m

cos kx cosmx

+ a

k

b

m

cos kx sinmx

+ a

m

b

k

cosmx sin kx
+b

k

b

m

sin kx sinmx]

Since

Z
⇡

�⇡

cos kx sinmxdx = 0 and
Z

⇡

�⇡

cos kx cosmxdx

=

Z
⇡

�⇡

sin kx sinmxdx

=

⇢
1 if k = m

0 otherwise,
it follows that
1

⇡

Z
⇡

�⇡

1X

k=1

[f(x)]2dx

=
a

2
0

2

+
1

⇡

1X

k=1

1X

m=1


a

k

a

m

Z
⇡

�⇡

cos kx cosmxdx

+b

k

b

m

Z
⇡

�⇡

sin kx sinmxdx

�

=
a

2
0

2
+

1

⇡

1X

k=1

⇥
a

2
k

⇡ + b

2
k

⇡

⇤

=
a

2
0

2
+

1X

k=1

⇥
a

2
k

+ b

2
k

⇤

=
a

2
0

2
+

1X

k=1

A

2
k

46. From Example 9.1,

F

n

(x) =
1

2
+

nX

k=1

2 sin[(2k � 1)x]

(2k � 1)⇡

Then we have
F4

⇣
⇡

8

⌘
⇡ 1.092112567

F6

⇣
⇡

12

⌘
⇡ 1.090650922

F8

⇣
⇡

16

⌘
⇡ 1.090142064

For these n = 4, 6, 8, the sizes of the bump are���F
n

⇣
⇡

2n

⌘
� f

⇣
⇡

2n

⌘��� ⇡ 1.09� 1 = 0.09

47. The plots from a CAS indeed show that the
modified Fourier series

1

2
+

nX

k=1

2n

[(2k � 1)⇡]2
sin

(2k � 1)⇡

n

sin(2k� 1)x

reduce the Gibbs phenomenon in this case.

The case n = 4
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0.4
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The case n = 8
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Ch. 8 Review Exercises

1. lim
n!1

4

3 + n

= 0

2. lim
n!1

3n

1 + n

= 3

3. lim
n!1

n

n

2 + 4
= lim

n!1

1/n

1 + 4/n2
= 0

4. 0  n!

n

n

=
1

n

· 2
n

· · · n� 1

n

· n
n

 1

n

,

for all n, we have lim
n!1

n!

n

n

= 0

5. 0 <

4 · 4 · 4 · . . . 4
1 · 2 · 3 . . . n < 4 · 4

2
· 4
3
· 4
4
· 4
n

=
128

3n
and

lim
n!1

128

3n
= 0, so by the Squeeze Theorem, the

original series converges to 0.

6. Since 0  n!

n

n

=
1

n

· 2
n

· · · n� 1

n

· n
n

 1

n

,

for all n, we have lim
n!1

n!

n

n

= 0.

7. {cos⇡n}1
n=1 = {�1, 1,�1, . . .} diverges

8. Since 0 
����
cos(n⇡)

n

���� 
1

n

for all n,

lim
n!1

cos(n⇡)

n

= 0

9. diverges

10. can’t tell

11. can’t tell

12. converges

13. diverges

14. converges

15. converges

16. converges

17. converges

18. diverges unless a = 0.

19.

1X

k=0

4

✓
1

2

◆
k

is a geometric series with a = 4

and |r| =
1

2
< 1 so the series converges to

a

1� r

=
4

1� 1/2
= 8.

20. This is a telescoping sum:

S

n

=
nX

k=1

4

k(k + 2)

=
nX

k=1

✓
2

k

� 2

k + 2

◆

=
2

1
� 2

3
+

2

2
� 2

4
+ · · ·+ 2

n

� 2

n+ 2

= 3� 2

n+ 1
� 2

n+ 2
.

Thus
1X

k=1

4

k(k + 2)

= lim
n!1

✓
3� 2

n+ 1
� 2

n+ 2

◆
= 3.

21.

1P
k=0

✓
1

2

◆
k

is a geometric series with a = 1

and |r| =
1

4
< 1, so the series converges to

a

1� r

=
1

1� 1/4
=

4

3
.

22.

1X

k=0

(�1)k
3

4k
=

3

1 + 1/4
=

12

5
.

23. |S � S

k

|  a5  .01
so S ⇡ S4 ⇡ �0.41.

24. |S � S5|  a6 < 0.01, so
S ⇡ S4 ⇡ �2.399414.

25. lim
k!1

2k

k + 3
= lim

k!1

2

1 +
3

k

= 2 6= 0 so by the k-

th Term Test for Divergence, the original series
diverges.

26. Diverges, since lim
k!1

(�1)k
2k

k + 3
6= 0.
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27. lim
k!1

|a
k

| = lim
k!1

4

(k + 1)1/2
= 0 and

a

k+1

a

k

=
4

(k + 2)1/2
· (k + 1)1/2

4

=
(k + 1)1/2

(k + 2)1/2
< 1

for all k � 0 so a

k+1 < a

k

for all k � 0, so by
the Alternating Series Test, the original series
converges.

28. Diverges, by the Limit Comparison Test using
1X

k=1

1

k

1/2
.

29. Diverges, by the p-test: p =
7

8
< 1.

30. Converges, by the p-Test: p =
8

7
> 1.

31. Using the Limit Comparison Test, let

a

k

=

p
k

k

3 + 1
and b

k

=
1

k

5/2
. Then

lim
k!1

a

k

b

k

= lim
k!1

p
k

k

3 + 1
· k

5/2

1
= 1 > 0

so because
1X

k=1

1

k

5/2
is a convergent p-series

✓
p =

5

2
> 1

◆
, the original series converges.

32. Diverges, by the Limit Comparison Test using
1X

k=1

1

k

1/2
.

33. Using the Alternating Series Test,

lim
k!1

4k

k!
= 0 and

a

k+1

a

k

=
4k + 1

(k + 1)!
· k!
4

 1 for

k � 3, so a

k+1  a

k

for k � 3, thus the original
series converges.

34. Diverges, since lim
k!1

(�1)k
2k

k

6= 0.

35. Converges, using the Alternating Series Test,
since

lim
k!1

|a
k

| = lim
k!1

ln

✓
1 +

1

k

◆
= ln 1 = 0

and

a

k+1 = ln

✓
k + 2

k + 1

◆
< ln

✓
k + 1

k

◆
= a

k

36. Since
cos(k⇡)p

k

=
(�1)kp

k

, the series converges

by the Alternating Series Test.

37. Using the Limit Comparison Test, let

a

k

=
2

(k + 3)2
and b

k

=
1

k

2
, so

lim
k!1

a

k

b

k

= lim
k!1

2k2

(k + 3)2
= 2 > 0 so because

1X

k=1

1

k

2
is a convergent p-series (p = 2 > 1), the

original series converges.

38. Diverges, by the Integral Test.

39. Diverges, by the k-th Term Test.

40. Converges, by the Ratio Test.

41. Converges, by the Comparison Test,
( e1/k < e), and the p-series Test
(p = 2 > 1).

42. Diverges, by the Integral Test.

43. Converges, by the Ratio Test:

lim
k!1

����
a

k+1

a

k

���� = lim
k!1

����
4k+1

k!2

4k(k + 1)!2

����

= lim
k!1

4

(k + 1)2
= 0 < 1.

44. Diverges, by the Limit Comparison Test using
1X

k=1

1

k

.

45. Converges, by the Alternating Series Test.

46. Since
1X

k=1

3

k + 1
diverges and

1X

k=1

(�1)k
3

k + 1

converges (by the Alternating Series Test), the
series converges conditionally.

47.

����
sin k

k

3/2

���� =
sin k|
k

3/2
 1

k

3/2
because | sin k|  1 for

all k. And
1X

k=1

1

k

3/2
is a convergent p-series

✓
p =

3

2
> 1

◆
. So by the Comparison Test,

1X

k=1

����
sin k

k

3/2

���� converges, so the original series con-

verges absolutely.

48.

1X

k=1

3

ln k + 1
diverges, since

3

ln k + 1
� 3

k

for

k � 1), and
1X

k=1

(�1)k
3

ln k + 1
converges, by the

Alternating Series Test, the series converges
conditionally.
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49. Using the Limit Comparison Test,

a

k

=
2

(3 + k)p
and b

k

=
1

k

p

, so

lim
k!1

a

k

b

k

= lim
k!1

2kp

(3 + k)p
= 2 > 0

so the series
1X

k=1

2

(3 + k)p
converges if and only

if the p-series
1X

k=1

1

k

p

converges, which happens

when p > 1.

50.

1X

k=1

e

kp =
1X

k=1

(ep)k is a geometric series that

converges whenever ep < 1, that is p < 0.

51. |S � S

k

|  a

k+1 =
3

(k + 1)2
 10�6

, so

1732.05  k + 1, so 1731.05  k. Hence
k = 1732 terms.

52. Since |S�S

k

|  a

k+1 =
2k

k!
< 10�6 for k � 14,

it su�ces to use 13 terms.

53. f(x) =
1

4 + x

=
1X

k=0

(�1)kxk

4k+1

which is a geometric series that converges when����
x

4

��� < 1, or � 4 < x < 4. Thus, r = 4.

54. f(x) =
2

6� x

=
1X

k=0

1

3 · 6k x

k is a geometric se-

ries that converges for |x| < 6. The radius of
convergence is r = 6.

55. f(x) =
3

3 + x

2
=

1X

k=0

(�x

2)k

3k
is a geometric se-

ries that converges for

�����
x

2

3

���� < 1 so x

2
< 3 or

|x| <
p
3, so �

p
3 < x <

p
3. Thus, r =

p
3.

56.

2

1 + 4x2
=

1X

k=0

2(�4)kx2k for |x| <

1

2
. The

radius of convergence is r =
1

2
.

57.

1

4 + x

=
1X

k=0

(�1)kxk

4k+1
with r = 4. By integrat-

ing both sides, we getZ
1

4 + x

dx =
1X

k=0

(�1)k

4k+1

Z
x

k

dx

so

ln(4 + x) =
1X

k=0

(�1)kxk+1

(k + 1)4k+1
+ ln 4 with r = 4.

58. Integrating
2

6� x

=
1X

k=0

1

3 · 6k x

k yields

�2 ln(6 � x) = �2 ln 6 +
1X

k=0

x

k+1

3 · 6k(k + 1)
for

|x| < 6. Hence ln(6 � x) = ln 6 �
1X

k=1

1

k6k
x

k

for |x| < 6. The radius of convergence is r = 6.

59. The Ratio Test gives |x| < 1, so |r| = 1. Since
the series diverges for both x = �1 and x = 1,
the interval of convergence is (�1, 1).

60. The Ratio Test gives |2x| < 1, so the radius of

convergence is r =
1

2
. Since the series diverges

for both x =
1

2
and x = �1

2
, the interval of

convergence is

✓
�1

2
,

1

2

◆
.

61. The Ratio Test gives |x| < 1, so the radius of
convergence is |r| = 1. The series diverges for
x = �1 and converges for x = 1. Thus the
interval of convergence is (�1, 1].

62. The Ratio Test gives |x
2
| < 1, so the radius

of convergence is r = 2. Since the series di-
verges for x = 2 and converges for x = �2, the
interval of convergence is [�2, 2).

63. The Ratio Test gives that the series converges
absolutely for all x 2 (�1,1). Thus the in-
terval of convergence is (�1,1).

64. The Ratio Test gives |x + 3| < 1, so the ra-
dius of convergence is r = 1. Since the series
diverges for both x = �2 and x = �4, the
interval of convergence is (�4,�2).

65. The Ratio Test gives that 3|x�2| < 1, and this

is when �1

3
< x � 2 <

1

3
or

5

3
< x <

7

3
. The

series diverges for both x =
5

3
and x =

7

3
. So

the interval of convergence is

✓
5

3
,

7

3

◆
.

66. The Ratio Test gives

����
x+ 1

4

���� < 1, so the ra-

dius of convergence is r = 4. Since the series
converges for both x = �5 and converges for
x = 3, the interval of convergence is [�5, 3].

67. sinx =
1X

k=0

(�1)kx2k+2

(2k + 1)!
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68.

1

x

=
1

1� (1� x)
=

1X

k=0

(�1)k(x� 1)k

for |x� 1| < 1.

69. P4(x) = (x� 1)� 1

2
(x� 1)2 +

1

3
(x� 1)3

� 1

4
(x� 1)4

 

3

2

1

y=f(x)

-1

-2

-3

 

84-4-8

y=P_4(x)

70. P4(x) = 1� 1

2
(x� 1) +

3

8
(x� 1)2

� 5

16
(x� 1)3 +

35

128
(x� 1)4

y=P_4(x)

y=f(x)

y

−8

−4 10

4

6

10

2

8

0

2

−8

−6

−10

−2−6−10 8
−2

6

0

x
4

−4

71. |R
n

(1.2)| =
����
f

(n+1)(z)(1.2� 1)n+1

(n+ 1)!

���� for some

z 2 (1, 1.2).

Hence |R
n

(1.2)| < (n� 1)!

(n+ 1)!
(0.2)n+1

and R8(1.2) < 10�8. Consequently,
ln(1.2) ⇡ P8(1.2) ⇡ .1823215086

72. |R
n

(1.1)| =
����
f

(n+1)(z)(1.1� 1)n+1

(n+ 1)!

���� for some

z 2 (1, 1.1).

Hence |R
n

(1.1)| < 1 · 3 · · · (2n+ 1)

2n+1(n+ 1)!
(0.1)n+1

and R8(1.1) < 10�8. Consequently,
1p
1.1

⇡ P8(1.1) ⇡ 0.953462588

73. Since e

x =
1X

k=0

x

k

k!
for all x, we have e

�3x2

=

1X

k=0

(�3x2)k

k!
for all x, and so the radius of con-

vergence is 1.

74. Since sinx =
1X

k=0

(�1)k

(2k + 1)!
x

2k+1 for all x, we

have sin 4x =
1X

k=0

(�1)k42k+1

(2k + 1)!
x

2k+1 for all x,

and so the radius of convergence is 1.

75.

Z 1

0
tan�1

x dx

=

Z 1

0
x� 1

3
x

3 +
1

5
x

5 � 1

7
x

7 +
1

9
x

9
dx

=
x

2

2
� x

4

12
+

x

6

30
� x

8

56
+

x

10

90

����
1

0

=
1117

2520
⇡ .4432539683

Compare this estimation with the actual valueZ 1

0
tan�1

x dx ⇡ .4388245732.

76.

Z 2

0
e

�3x2

dx

⇡
Z 2

0
1� 3x2 +

9

2
x

4 � 9

2
x

6 +
27

8
x

8
dx

= x� x

3 +
9

10
x

5 � 9

14
x

7 +
3

8
x

9

����
2

0

=
4638

35
⇡ 132.5143.

Actually,

Z 2

0
e

�3x2

dx ⇡ 0.51166. The error is

so significant because the first five terms of the
Taylor series do not approximate the function
well on [0, 2].

77. a0 =
1

2

Z 2

�2
x dx =

1

2

x

2

x

����
2

�2

= 0

a

k

=
1

2

Z 2

�2
x cos

✓
k⇡x

2

◆
dx = 0

b

k

=
1

2

Z 2

�2
x sin

✓
k⇡x

2

◆
dx

= � 4

k⇡

(�1)k

So f(x) =
1X

k=1

(�1)k+14

k⇡

sin

✓
k⇡x

2

◆
. for �2 <

x < 2.

78. a0 =
1

⇡

Z
⇡

0
dx = 1,
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a

k

=
1

⇡

Z
⇡

0
cos(kx) dx

=
1

⇡

sin(kx)

k⇡

����
⇡

0

= 0, and

b

k

=
1

⇡

Z
⇡

0
sin(kx) dx

=
1

⇡

�cos(kx))

k⇡

����
⇡

0

=
1� (�1)k

k⇡

.

Hence

f(x) =
1

2
+

1X

k=1

2

(2k � 1)⇡
sin((2k � 1)x)

for �⇡ < x < ⇡.

79.

 0.5

1

-3 31
 

-2 2-1

80.

81.

 

0.5

1

-1

-3 2
 

-1-2

-0.5

1 3

82.

83.

1

2
+

1

8
+

1

32
= · · · =

1X

k=0

1

2

✓
1

4

◆4

is a geometric series with

a =
1

2
and |r| = 1

4
< 1, so it converges to

0

B@

1

2

1� 1

4

1

CA =

0

B@

1

2
3

4

1

CA =
2

3
.

84.

1X

n=0

52n

62n+1
=

1

6

1� 25

36

=
6

11

85. a

n+1 = a

n

+ a

n�1,

a

n+1

a

n

=
a

n

a

n

+
a

n�1

a

n

= 1 +
a

n�1

a

n

Let r = lim
n!1

a

n+1

a

n

, then take limit as

n ! 1 on both sides of the equation in above,
we get

lim
n!1

a

n+1

a

n

= lim
n!1

1 + lim
n!1

a

n�1

a

n

r = 1 +
1

r

, r

2 � r � 1 = 0

r =
1±

p
5

2
But r is the limit of the ratios of positive inte-
gers, so r cannot be negative, and this gives

r = lim
n!1

a

n+1

a

n

=
1 +

p
5

2
.

86. In Figure A, the ratio is 2 : 1 = 2;

In Figure B, the ratio is 3 : 2 =
3

2
;

In Figure C, the ratio is 5 : 3 =
5

3
.

In general, the n-th ratio is going to be
a

n�1 + a

n

a

n

, where a

n

is the n-th Fibonacci

number as described in Exercise 85.

Using the result about r from Exercise 85, the
limit of the ratio is
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lim
n!1

a

n�1 + a

n

a

n

= 1 + lim
n!1

a

n�1

a

n

= 1 +
1

r

= 1 +
2

1 +
p
5

=
3 +

p
5

1 +
p
5
⇡ 1.618033989

87. a1 = 1 +
1

1

a2 = 1 +
1

1 +
1

1

= 1 +
1

a1

a3 = 1 +
1

1 +
1

1 +
1

1

= 1 +
1

a2

· · ·
a

n+1 = 1 +
1

a

n

Let lim
n!1

a

n

= L. Then

lim
n!1

a

n+1 = lim
n!1

1 +
1

a

n

) L = 1 +
1

L

Now,

L = 1 +
1

L

) L

2 � L� 1 = 0

L =
1±

p
5

2
Since L > 1, L = 1+

p
5

2
which is golden ratio.

88. Start with
1

1� x� x

2
= c1 + c2x+ c3x

2 + · · ·

Multiplying by 1� x� x

2 on both sides,

1 = (c1 + c2x+ c3x
2 + · · · )(1� x� x

2)
= c1 � c1x� c1x

2 + c2x� c2x
2 � c2x

3

+ c3x
2 � c3x

3 � c3x
4 + · · ·

= (c1) + (c2 � c1)x+ (c3 � c1 � c2)x
2

+ (c4 � c2 � c3)x
3 + · · ·

Equating coe�cients on both sides,

1 = c1, c1 = 1
0 = c2 � c1, c2 = 1
0 = c3 � c1 � c2, c3 = 2
0 = c4 � c2 � c3, c4 = 3
. . .

0 = c

n

� c

n�1 � c

n�2, cn = c

n�1 + c

n�2

The conclusion is that the constants
c1, c2, c3, . . . are the Fibonacci numbers.

Substituting x =
1

1000
into

1

1� x� x

2
= c1 + c2x+ c3x

2 + · · · ,
we get

1

1� 1/1000� 1/1000000

=
1000000

998999
= c1 +

c2

1000
+

c3

1000000
+ · · ·

= 1 +
1

1000
+

2

1000000
+ · · ·

⇡ 1.001002 . . .

89. If 0 < 2r < 1 then

1 + 2r + (2r)2 + · · · =
1X

k=0

(2r)k

which is a geometric series with
a = 1 and |2r| = 2r < 1, so it converges to

1

1� 2r
.

If r =
1

1000
, then

1 + .002 + .000004 + · · ·
=

1

1� 2
�

1
1000

�

=
500

499
= 1.002004008 . . .



Chapter 9

Parametric

Equations and

Polar Coordinates

9.1 Plane Curves and

Parametric

Equations

1. Equation:
⇣x
2

⌘
2

+
⇣y
3

⌘
2

= 1

y

3

x

2

1

3
0

-1

2

-2

-3

10-1-2-3

2. (x� 1)2 + (y + 2)2 = 4(sin2 t+ cos2 t)
(x� 1)2 + (y + 2)2 = 4

This is a circle of radius 2, center (1,�2).

4

2

0

-2

-4

420-2-4

3. t =
y

3
x = �1 + 2

⇣y
3

⌘

2

3
y = x+ 1

y =
3

2
x+

3

2

This is a line, slope 3/2, y-intercept 3/2.

420-2-4

4

2

0

-2

-4

4. 4x+ 3y = 22

5

0

-5

-10

x
151050-5

10

5. t = x� 1
y = (x� 1)2 + 2
y = x2 � 2x+ 3

This is a parabola, with vertex (1, 2) opening
up.

1050-5-10

10

5

0

-5

-10

6. Equation: y = (2� x)2 + 1

515
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x
54

y

3

10

2

8

6

1

4

2

0
0

-1

7. t =
y

2

x =
⇣y
2

⌘
2

� 1 =
1

4
y2 � 1

This is a parabola, vertex (�1, 0) opening to
the right.

-10

10

5

0

-5

-10

1050-5

8. y � x = t2 + 1� (t2 � 1)
y = x+ 2, x � �1

This is a ray, vertex at (�1, 1), slope 1.

1050-5-10

10

5

0

-5

-10

9. Equation: y = sin(sin(x))

0.25

−0.25

1.0

−0.75

0.75

0.5

0.0
1.5

−0.5

0.50.0−0.5−1.0−1.5

10. Equation: y = 4
1p

tan (x) + 1

40

20

60

1.00.50.0−0.5

11. Equation: y =
1

ex2

1

0.75

0.25

−1
x

2

1.0

0.5

0
0.0

−2

12. Equation: y =
1

x2

2

3

1

−2
x

4

4

2

0
0

−4
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13. Graph is:

1050-5-10

4

2

0

-2

-4

14. Graph is:

y

20

15

10

5

0

x

-5

20100-10-20

15. Graph is:

1

0

0.5

0.5-0.5 10-1

-0.5

-1

16. Graph is:

1

0

0.5

0.50

-0.5

-1

-0.5 1-1

17. Graph is:

4

2

0

-4

320-4 1-1

-2

-3 -2

18. Graph is:

3

1

-3

2

0
-2 310 2-1-3

-2

-1

19. Graph is:

−0.4
−2 2

1.2

3

1.6

0.0

−1.6

−3

2.0

1

−0.8

−1.2

−2.0

−1

0.8

0.4

0

20. Graph is:

7.5

−7.5

5.0

5.0

0.0

0.0

2.5−5.0

−2.5

−7.5 −2.5

2.5

−5.0

21. Use the model x = a+ tb, y = c+ dt,
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(0  t  1), with t = 0 corresponding to (0, 1)
and t = 1 corresponding to (3, 4).
t = 0: 0 = x = a, 1 = y = c
t = 1: 3 = x = 0 + b, 4 = y = 1 + d
So b = 3, d = 3, and the equations are
x = 3t, y = 1 + 3t.

22. Use the model x = a+ tb, y = c+ dt,

(0  t  1), with t = 0 corresponding to (3, 1)
and t = 1 corresponding to (1, 3).
t = 0: 3 = x = a, 1 = y = c
t = 1: 1 = x = 3 + b, 3 = y = 1 + d
So b = �2, d = 2, and the equations are
x = 3� 2t, y = 1 + 2t.

23. Use the model x = a+ tb, y = c+ dt,

(0  t  1), with t = 0 corresponding to
(�2, 4) and t = 1 corresponding to (6, 1).
t = 0: �2 = x = a, 4 = y = c
t = 1: 6 = x = �2 + b, 1 = y = 4 + d
So b = 8, d = �3, and the equations are
x = �2 + 8t, y = 4� 3t.

24. Use the model x = a+ tb, y = c+ dt,

(0  t  1), with t = 0 corresponding to
(4,�2) and t = 1 corresponding to (2,�1).
t = 0: 4 = x = a, �2 = y = c
t = 1: 2 = x = 4 + b, �1 = y = �2 + d
So b = �2, d = 1, and the equations are
x = 4� 2t, y = �2 + t.

25. x = t and y = t2 + 1 from t = 1 to t = 2.

26. We set x = �t+2 from t = 0 to t = 2 so that x
travels from 2 to 0. So now we have t = 2� x.
Squaring this and taking the negative (to get
the �x2 in the formula for y) gives
�t2 = �(2� x)2 = �4 + 4x� x2.
There is no x term in the formula for y, so
we will have to eliminate the x term above by
adding 4t. We now have
�t2 + 4t = �(2� x)2 + 4(2� x)

= �4 + 4x� x2 + 8� 4x
= �x2 + 4

So now we see that we need to subtract 2 to
get y. Our final equations are:
x = �t+ 2, y = �t2 + 4t� 2
from t = 0 to t = 2.

27. Use the model
x = a+ b cos t, y = c+ b sin t
from t = 0 to t = 2⇡
The center is at (2, 1), therefore a = 2 and
c = 1. The radius is 3, therefore b = 3, and the
equations are
x = 2 + 3 cos t, y = 1 + 3 sin t.

28. Use the model
x = a+ b cos t, y = c+ b sin t
from t = 0 to t = 2⇡
The center is at (�1, 3), therefore a = �1 and
c = 3. The radius is 5, therefore b = 5, and the
equations are
x = �1 + 5 cos t, y = 3 + 5 sin t.

29. (a) If the initial Velocity is v
0

and ✓ is the
initial angle to the horizontal , then the
parametric equation for the horizontal
and vertical component of the position
vector are
x(t) = v

0

(cos ✓) t and
y(t) = v

0

(sin ✓) t� 1

2

gt2 .
At height h, the y component will be
y(t) = v

0

(sin ✓) t� 1

2

gt2 + h.
The parametric equations for the path of
the projectile launched, are
x(t) = 12t and y(t) = 16

�
1� t2

�
.

(b) The parametric equations for the path of
the projectile launched are
x(t) = 11.9t and y(t) = �16t2+1.25t+16.

30. (a) The parametric equations for the path of
the projectile launched are
x(t) = 24t and y(t) = 4

�
25� 4t2

�
.

(b) The parametric equations for the path of
the projectile launched are
x(t) = 23.94t and y(t) = �16t2 � 1.67t+
100.

31. (a) The parametric equations for the path of
the projectile launched are
x(t) = 2t and y(t) = �4.9t2 + 10.

(b) The parametric equations for the path of
the projectile launched are
x(t) = 1.98t and y(t) = �4.9t2 � 0.27t +
10.

32. (a) The parametric equations for the path of
the projectile launched are
x(t) = 8t and y(t) = �4.9t2 + 40.

(b) The parametric equations for the path of
the projectile launched are
x(t) = 7.956t and y(t) = �4.9t2+0.836t+
40.

33. The missile from example 1.9 follows the path(
x = 100t

y = 80t� 16t2

for 0  t  5. Set the x-values equal:
100t = 500� 500(t� 2) = 1500� 500t
600t = 1500
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t = 5/2
Now check the y-values at t = 5/2:

80( 5
2

)� 16( 5
2

)2 = 200� 100 = 100
208( 5

2

� 2)� 16( 5
2

� 2)2 = 104� 4 = 100

Therefore the interceptor missile will hit its
target at time t = 5/2.

34. Set the x-values equal:
100t = 500� 100t
t = 5/2
Since the formulas for the two y-values are the
same, we see that the interceptor missile will
hit its target at time t = 5/2.

35. The initial missile is launched at time t = 0
and the interceptor missile is launched 2 min-
utes later. Let T be the time variable for the
interceptor missile. Then when T = 0, t = 2
and from then on T = t� 2.

36. The y-equations are the same, so any value of
t that makes the x-equations equal will work.
This is unrealistic because it requires launch-
ing the interceptor missile at the exact same
time that the missile was launched.

37. Since (x + 1)2 = y, with x � �1, this is the
right half of an upward-opening parabola. It
has to be C.

38. Figure D: Equation is y = (x+ 1)3.

39. x is bounded below by �1. y is bounded below
by �1 and above by 1. From
y = sin(t) = sin(±

p
x+ 1)

= ± sin(
p
x+ 1),

it has some of the features of a double sine
curve, but the length of the cycles get longer
as x increases. On the basis of this alone, it
could be B or E, but the first y-intercept after
x = �1 will be whenp
x+ 1 = ⇡

x = ⇡2 � 1 ⇡ 8.9
and this is B.

40. Figure E: x � �1 and y = 0 when t = ⇡/2, so
graph has an x intercept at
x = (⇡/2)2 � 1 ⇡ 1.47.

41. x and y both oscillate between �1 and 1, but
with di↵erent periods. This has to be A.

42. Figure F: Curve is an ellipse.

43. We set the x-values equal to each other, and
the y-values equal to each other, giving us a
system of two equations with two unknowns:

t = 1 + s
t2 � 1 = 4� s
The first equation is already solved for t, so we
plug this expression for t into the second equa-
tion and then solve for s:
(1 + s)2 � 1 = 4� s
1 + 2s+ s2 � 1 = 4� s
s2 + 3s� 4 = 0
(s+ 4)(s� 1) = 0
So the two possible solutions for s are s = �4
and s = 1. Since t = 1 + s, the corresponding
t-values are t = �3 and t = 2, respectively.

44. We must solve the system of equations:
t2 = 2 + s
t+ 1 = 1� s
We plug s = t2 � 2 into the second equation
and solve for t:
t+ 1 = 1� (t2 � 2)
t2 + t� 2 = 0
(t+ 2)(t� 1) = 0
So the two possible solutions for t are t = �2
and t = �1. Since s = t2�2, the corresponding
s-values are s = 2 and s = �1, respectively.

45. We must solve the system of equations:
t+ 3 = 1 + s
t2 = 2� s
We plug s = 2� t2 into the first equation and
solve for t:
t+ 3 = 1 + 2� t2

t2 + t = 0
t(t+ 1) = 0
So t = 0 or t = �1. Since s = 2 � t2, the
corresponding s-values are s = 2 and s = 1,
respectively.

46. We must solve the system of equations:
t2 + 3 = 2 + s
t3 + t = 1� s
We plug s = t2 + 1 into the second equation
and solve for t:
t3 + t = 1� (t2 + 1)
t3 + t2 + t = 0
t(t2 + t+ 1) = 0
The only real solution to this is t = 0 with
corresponding s = 1.

47. Integer values for k lead to closed curves, but
irrational values for k do not. When k is an
even integer, the graph will have (k/2) num-
ber of closed loops. When k is an odd inte-
ger, the graph will have ((k � 1)/2) number of
closed loops and it will be an open curve with
its opening on the left side. When k is an ir-
rational number it will be an open curve with
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its opening on the right side with a number of
closed loops inside.

48. Graph for k = 1:

1

0

0.5

0.5 10-1 -0.5

-1

-0.5

Graph for k = 2:

1

0

0.5

0.5 10-1 -0.5

-1

-0.5

Graph for k = 3:

1

0

0.5

0.5 10-1 -0.5

-1

-0.5

Graph for k = 4:

1

0

0.5

0.5 10-1 -0.5

-1

-0.5

Graph for k = 5:

1

1

0
0.5

0.5

-0.5 0

-0.5

-1

-1

The integer k determines the complexity (num-
ber of “loops”) and the appearance of a hori-
zontal or vertical orientation.

49. Graph for k = 2:

1

0

0.5

-0.5

-1

0.50-0.5-1-1.5

Graph for k = 3:

1.5

0.5

-1.5

1

1
0

-1

-0.5

0.5-0.5 0-1

Graph for k = 4:

1

0

0.5

-0.5

-1

1-1 0.5-0.5-1.5 0
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Graph for k = 5:

1

0

0.5

-0.5

-1

10.50-0.5-1

The graph has k � 1 “inner loops”.

50. When r is constant, the graph is a circle of ra-
dius r. When we have the variable t instead,
we get a spiral:

8

0

4

-4

-8

1050-5

51.

(
x = cos 2t

y = sin t

We have the identity cos 2t = 1�2 sin2 t, so we
have the x-y equation x = 1� 2y2.

This shows that the graph is part of a parabola,
with vertex (1, 0) and opening to the left.
However the moving point never goes left of
x = �1, forever going back and forth on this
parabola, making an about-face every time x
reaches �1.(
x = cos t

y = sin 2t

We have the identity sin 2t = 2 cos t sin t so
sin2 2t = 4 cos2 t sin2 t

= 4 cos2 t(1� cos2 t)
Therefore y2 = 4x2(1� x2) or

y = ±2x
p
1� x2.

This is a considerably more complicated graph,
a figure-eight in which the moving point cycles
smoothly around, starting out (when t = 0) by
moving upward from (1, 0) and completing the

figure every time t passes an integral multiple
of 2⇡. The moving point passes the origin twice
during each cycle (first when t = ⇡/2 and later
when t = 3⇡/2).

52. For x2 + y2 = r2, we have the usual model:
(
x = r cos t

y = r sin t

So for x2n + y2n = r2n, we have:
(
x = r n

p
cos t

y = r n
p
sin t
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53. (a) At time t, the position of the sound wave,
as described by these parametric equa-
tions, is a circle of radius t centered at
the origin. This makes sense as the sound
wave would propagate equally in all direc-
tions.

(b) We want (x� a)2 + (y� b)2 = (t� c)2, so
we use the parametric equations(
x = a+ (t� c) cos ✓

y = b+ (t� c) sin ✓

for 0  ✓  2⇡.

(c) The graph will look as follows, where we
have marked the position of the jet with
a diamond:

 

4

-1

5

-1-5

-2

 
5

-4

-4 2-3

1

2

-3

1

3

-5

43-2

(d) The graph will look as follows, where we
have marked the position of the jet with
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a diamond:
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(e) The graph will look as follows, where we
have marked the position of the jet with
a diamond:
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(f) Since we know that the angle between the
x-axis and the shock wave satisfies

sin ✓ =
1

1.4
=

1
14

10

=
5

7
,

we can compute the slope of the line by
pretending the line goes through the ori-
gin, with the same slope. Then the line
will intersect the unit circle in the second
quadrant at the point with y coordinate
equal to sin ✓ = 5/7. The x coordinate of
this point will be cos ✓ = �

p
1� (5/7)2 =

�
p
24/7. We take the negative square

root, because this x coordinate belongs
to a point in the second quadrant. The
slope is then
y

x
=

5

7

�
p
24

7

=
�5p
24

= �
r

25

24
.

Requiring that the line pass through the
point (7, 0) (the location of the jet) gives
the equation for the line:

y = �
r

25

24
x+ 7

r
25

24
.

In order to obtain the parametric equa-
tions as given in the problem, one solves
for x to get

x = �
r

24

25
y + 7

= 7�
p
0.96.

To obtain the other set of parametric
equations, one just takes the point in
the third quadrant (when computing the
slope).

The graph from exercise 53 with the shock
waves superimposed:
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(g) The shock waves are the lines formed by
connecting the tops of the circles. In
three dimensions, these lines will radi-
ate out equally in all directions, i.e., will
have circular cross sections. The three-
dimensional figure formed by revolving
the shock wave lines about the x-axis is
a cone, which has circular cross sections,
as expected.

54. The boat moving through the water is like
dropping a pebble at each point in time along
the line of the boat’s journey. This creates the
same theoretical situation as the jet and its
sound waves, and so is modeled in the same
way.

The graph of the wake of a boat with speed
1.6v:
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55. (a) Since distance = rate · time, the distance
from the point (0, D) to the position of
the object at (x, y) is v · t. We then find:
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(
x = (v sin ✓)t

y = D � (v cos ✓)t

(b) s(t) =
p
x2 + y2

= ((v sin ✓t)2 + (D � v cos ✓t)2)1/2

= (v2t2(1) +D2 � 2Dvt cos ✓)1/2

So

L(t) =
1

c
· (v2t2 +D2 � 2Dvt cos ✓)1/2

L0(t) =
1

c
· 1
2
· 2v2t� 2Dv cos ✓

(v2t2 +D2 � 2Dvt cos ✓)1/2

=
1

c
· v

2t�Dv cos ✓

s(t)

(c) h(t) = lim
dt!0

x(t+ dt)� x(t)

�T

= lim
dt!0

v sin ✓(t+ dt)� v sin ✓t

�T

= lim
dt!0

v sin ✓dt

�T

= lim
dt!0

v sin ✓

�T/dt

=
v sin ✓

lim
dt!0

�T

dt

=
v sin ✓

T 0(t)
Since T = t+L(t), then T 0(t) = 1+L0(t).
Thus,

h(t) =
v sin ✓

1 + L0(t)
.

(d) Using the expression for h(t) from part (c)
and the expression for L0(t) from exercise
part (d), we have:

h(0) =
v sin ✓

1 + L0(0)
=

v sin ✓

1 + �vD cos ✓

c

p
D

2

=
cv sin ✓

c� v cos ✓

(e) From part(d),

h(0) =
cv sin ✓

c� v cos ✓
.

The maximum value of h(0) occurs when
(d/d✓)h(0) = 0:
1

cv

d

d✓
[h(0)] =

=
(c� v cos ✓) cos ✓ � sin ✓(v sin ✓)

(c� v cos ✓)2

=
c cos ✓ � v cos2 ✓ � v sin2 ✓

(c� v cos ✓)2

=
c cos ✓ � v(cos2 ✓ + sin2 ✓)

(c� v cos ✓)2

=
c cos ✓ � v

(c� v cos ✓)2

Thus,
d

d✓
[h(0)] = 0 , 0 = c cos ✓ � v

, cos ✓ =
v

c
Thus, the maximum value of h(0) occurs
when cos ✓ = v/c. When cos ✓ = v/c,
sin ✓ =

p
1� cos2 ✓

=
q

1� v

2

c

2

= ��1

The maximum value of h(0) is

h(0)
max

=
cv��1

c� v(v/c)

=
v��1

1� v

2

c

2

=
v��1

��2

= v�

(f) As v ! c, h(0) ! c2 sin ✓

c� c cos ✓
. If, for ex-

ample, ✓ = ⇡/4, then

h(0) !
c2(

p
2

2

)

c� c(
p
2

2

)

= c

p
2

2

1�
p
2

2

⇡ c(2.4142) > c

As v ! c, cos ✓ ! 1 so ✓ ! 0 (no
other value of ✓ would make sense from
the physical point of view of our prob-
lem). But if ✓ = 0, the object is com-
ing straight toward the observer, so there
isn’t any horizontal speed!

(g) From part (d),

h(0) =
cv sin ✓

c� v cos ✓

The maximum value of h(0) occurs, when
d (h (0))

d✓
= 0:

From part (e),
d (h(0))

d✓
= 0 , cos ✓ =

v

c
Thus the maximum value of h(0) occurs,
when cos ✓ = v/c.

As given
v

c
> 1 ) cos ✓ > 1 .

Which can not happen hence the max-
imum value of h(0) does not occur, for
v

c
> 1.

56.
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As per this model radius of the path of mars
is 1.5 and that of the path of earth is 1. The
orbital period is the time taken for a given ob-
ject to make one complete orbit about another
object. It is certainly proportional to the ra-
dius of orbit, especially when both are revolv-
ing around the same object (sun).

Orbital period of path the earth is k and that
of the mars is 1.5k, for some k > 0.That is
the orbital period of mars is 1.5 times that of
the earth. But, actually the orbital period of
the earth is 365.256366 days and that of the
mars is 686.971 days. That is the orbital pe-
riod of mars is 1.88 times that of the earth.
Now, the orbit of Mars relative to the earth is

r
M

� r
E

=
n
1.5 cos⇡t� cos 2⇡t
1.5 sin⇡t� sin 2⇡t The graph of

orbit of Mars relative to the earth is as follows.
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The ”knot” at (1, 0) indicates the retrograde
motion of Mars as seen from the Earth

9.2 Calculus and

Parametric

Equations

1. x0(t) = 2t
y0(t) = 3t2 � t

(a)
3(�1)2 � 1

2(�1)
= �1

(b)
3(1)2 � 1

2(1)
= 1

(c) We need to solve the system of equations:
t2 � 2 = �2
t3 � t = 0
The only solution to the first equation is
t = 0. As this is also a solution to the sec-
ond equation, this solution will work (and
is the only solution). The slope at (�2, 0)
(i.e., the slope at t = 0) is:
3(0)2 � 1

2(0)
=

�1

0
So we see that there is a vertical tangent
line at this point.

2. x0(t) = 3t2 � 1
y0(t) = 4t3 � 10t

(a)
4(�1)3 � 10(�1)

3(�1)2 � 1
=

6

2
= 3

(b)
4(1)3 � 10(1)

3(1)2 � 1
= �6

2
= �3

(c) We need to solve the system of equations:
t3 � t = 0
t4 � 5t2 + 4 = 4
The solutions to the first equation are
t = 0 and t = ±1. The solutions to the
second are t = 0 and t = ±

p
5, so t = 0 is

the only solution to both equations. The
slope at this point is:
4(0)3 � 10(0)

3(0)2 � 1
=

0

�1
= 0

3. x0(t) = �2 sin t
y0(t) = 3 cos t

(a)
3 cos(⇡/4)

�2 sin(⇡/4)
=

�3

2

(b)
3 cos(⇡/2)

�2 sin(⇡/2)
=

0

�2
= 0

(c) We need to solve the system of equations:
2 cos t = 0
3 sin t = 3
The solutions to the first equation are t =
⇡/2+ k⇡ for any integer k. The solutions
to the second equation are t = ⇡/2 + 2k⇡
for any integer k. So the values of t that
solve both are t = ⇡/2 + 2k⇡. From (b),
we see that these values all give slope 0.

4. x0(t) = �2 sin 2t
y0(t) = 4 cos 4t

(a)
4 cos(⇡)

�2 sin(⇡/2)
=

�4

�2
= 2
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(b)
4 cos(2⇡)

�2 sin(⇡)
=

4

0
Thus there is a vertical tangent line at
this point.

(c) We need to solve the system of equations:
cos 2t =

p
2/2

sin 4t = 1
The first equation requires that 2t =
±⇡/4 + 2⇡k or t = ±⇡/8 + ⇡k for any
integer k. The second equation requires
that 4t = ⇡/2+2⇡k or t = ⇡/8+⇡k/2 for
any integer k. Thus we have t = ⇡/8+⇡k.
At these values of t, we have slope:
4 cos(4(⇡/8 + ⇡k))

�2 sin(2(⇡/8 + ⇡k))

=
4 cos(⇡/2)

�2 sin(⇡/4)
=

0

�
p
2
= 0

5. x0(t) = �t sin t+ cos t,
y0(t) = t cos t+ sin t

(a)
0 · cos(0) + sin(0)

0 · sin(0) + cos(0)
= 0

(b)
(⇡/2 ) cos(⇡/2 ) + (⇡/2 ) sin(⇡/2 )

�(⇡/2 ) sin(⇡/2 ) + cos(⇡/2 )

= �1

(c) We need to solve the system of equations;
t cos t = ⇡ and t sin t = 0 which implies
t= -⇡, at this value of t we have
Slope:
(�⇡) cos(�⇡) + (�⇡) sin(�⇡)

�(�⇡) sin(�⇡) + cos(�⇡)
= �⇡

6. x0(t) =
tp

t2 + 1
y0(t) = cos t

(a)
cos(�⇡)�

�⇡/
p
⇡2 + 1

� =

p
⇡2 + 1

⇡

(b)
cos(⇡)�

⇡/
p
⇡2 + 1

� =
�
p
⇡2 + 1

⇡

(c) We need to solve the system of equations;p
t2 + 1 = 0 and sin t = 0 Which has no

solution, implies that the point(0,0) does
not lie on the curve.

7. x0(t) = 2t
y0(t) = 3t2 � 1

We must solve the system of equations:
t2 � 2 = �2
t3 � t = 0

The solutions to the first equation are t = ±1.
The solutions to the second are t = 0 and

t = ±1, so t = ±1 are the solutions to the
system of equations. These are the values at
which we must find slopes.

t = 1 :
3� 1

2(1)
= 1

t = �1 :
3� 1

2(�1)
= �1

4

2

0

-2

-4

3210-1-2-3

8. x0(t) = 3t2 � 1
y0(t) = 4t3 � 10t

We must solve the system of equations:
t3 � t = 0
t4 � 5t2 + 4 = 0

The solutions to the first equation are t = 0
and t = ±1. The solutions to the second are
t = ±2 and t = ±1, so t = ±1 are the solutions
to the system of equations. These are the val-
ues at which we must find slopes.

t = 1 :
4� 10

3� 1
= �3

t = �1 :
�4 + 10

3� 1
= 3

151050-5-10-15

10

5

0

-5

-10

9. x0(t) = �2 sin 2t
y0(t) = 4 cos 4t

(a) We need cos 4t = 0, so 4t = ⇡/2 + k⇡ or
t = ⇡/8+k⇡/4 for any integer k. We need
to check that the denominator is not 0 at
these values.
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sin(2(⇡/8 + k⇡/4))
= sin(⇡/4 + k⇡/2).
This is nonzero for all k, so all of these t
values give horizontal tangent lines. We
plug these t values into the expressions
for x and y to find the corresponding
points. Depending on the value of k,
we get the points (

p
2/2, 1), (�

p
2/2,�1),

(�
p
2/2, 1), and (

p
2/2,�1).

(b) We need sin 2t = 0, so 2t = k⇡ or t =
k⇡/2 for any integer k. We need to check
that the numerator is not 0 at these val-
ues.
cos(4(k⇡/2)) = cos(2k⇡) 6= 0
The corresponding points are (1, 0) and
(�1, 0).

10. x0(t) = �2 sin 2t
y0(t) = 7 cos 7t

(a) We need cos 7t = 0, so 7t = ⇡/2 + k⇡
or t = ⇡/14 + k⇡/7 for any integer k. We
need to check that the denominator is not
0 at these values.
sin(2(⇡/14 + k⇡/7))
= sin(⇡/7 + 2k⇡/7)
This is 0 only when 2k + 1 is divisible by
7. At such values, t = m⇡ for some inte-
ger m and we find the derivative to be 0
anyway, using L’Hôpital’s Rule as follows:

lim
t!m⇡

7 cos 7t

�2 sin 2t

= lim
t!m⇡

�49 sin 7t

�4 cos 2t
= 0

The y-values corresponding to these t-
values are 1 if k is even and �1 if k is odd.
If k is even, then the possible x-values we
get are approximately 0.901 and �0.6235.
If k is odd then the possible x-values we
get are approximately 0.2225 and �1.

(b) Here we want sin 2t = 0, so 2t = k⇡ or
t = k⇡/2 for any integer k. We need
cos(7(k⇡/2)) to be nonzero, which it is
if k is even. If k is odd, then we get some-
thing of the form 0

0

, but using the limit
definition one can check that in this case
the slope is defined. So we take only the
values t = k⇡ for integers k. Plugging
these t-values into the expressions for x
and y, we see that the only point with
vertical tangent line is (1, 0).

11. x0(t) = 2t
y0(t) = 4t3 � 4

(a) We want 4(t3�1) = 0 so the only solution
is t = 1, which works since the denomina-
tor (2t) is not zero for this t. This t-value
corresponds to the x-y point (0,�3).

(b) We want 2t = 0 so t = 0, which does
indeed give an undefined slope as the nu-
merator will be �4. The corresponding
point is (�1, 0).

12. x0(t) = 2t
y0(t) = 4t3 � 8t

(a) We want 4t(t2 � 2) = 0. The solutions
are t = 0 and t = ±

p
2. Since t = 0

would make the denominator 0, we have
to check the limit definition for this slope.
We can factor out t to find that the slope
at t = 0 is �4, which is nonzero, so we
elinate t = 0. The point corresponding to
t = ±

p
2 is (1,�4) (both t-values give the

same point).

(b) We want 2t = 0 so t = 0. We already
found that the derivative at t = 0 is �4
so that means that this curve has no ver-
tical tangent lines.

13. x0(t) = �2 sin t+ 2 cos 2t
y0(t) = 2 cos t� 2 sin 2t

(a) We are looking for values of t for which
y0(t) = 0, i.e., we want
cos t = sin 2t.
Since sin 2t = 2 sin t cos t, we need cos t =
2 sin t cos t. This happens when cos t = 0
(when t = ⇡/2 + k⇡ for any integer k)
or when sin t = 1/2. This occurs when
t = ⇡/5 + 2k⇡ or t = 5⇡/6 + 2k⇡ for any
integer k.

(b) We are looking for values of t for which
x0(t) = 0, i.e., we want
sin t = cos 2t.
Since cos 2t = 1�2 sin2 t, we need to solve
2 sin2 t+ sin t� 1 = 0.
Using the quadratic formula (with sin t re-
placing the usual x), we see that sin t =
1/2 or sin t = �1. The former gives t =
⇡/5+2k⇡ or t = 5⇡/6+2k⇡ for any inte-
ger k while the latter gives t = 3⇡/2+2k⇡
for any integer k.

14. x0(t) = �4 sin 2t+ cos t
y0(t) = 4 cos 2t� sin t
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(a) We are looking for values of t for which
y0(t) = 0, i.e., we want
4 cos 2t = sin t.
Since cos 2t = 1�2 sin2 t, we need to solve
�8 sin2 t� sin t+ 4 = 0.
Using the quadratic formula (with sin t re-
placing the usual x), we see that

sin t = �1±
p
129

16
so

t = sin�1

 
�1±

p
129

16

!
+ 2k⇡

for any integer k.

(b) We are looking for values of t for which
x0(t) = 0, i.e., we want
cos t = 4 sin 2t.
Since sin 2t = 2 sin t cos t, we need cos t =
8 sin t cos t. This happens when cos t = 0
(when t = ⇡/2 + k⇡ for any integer k) or
when sin t = 1/8, i.e., t = sin�1(1/8) +
2k⇡ for any integer k.

15. x0 = �2 sin t,
y0 = 3 cos t

(a) At t = 0, x0 = 0, y0 = 3
Speed =

p
02 + 32 = 3

The motion is vertically up wards.

(b) t = ⇡/2 , x0 = �2, y0 = 0

Speed =
q
(�2)2 + 02 = 2

The motion is horizontally leftwards.

16. x0 = 4 cos 2t, y0 = �6 sin 2t

(a) At t = 0, x0 = 4, y0 = 0
Speed =

p
42 + 02 = 4

The motion is horizontally rightwards.

(b) At t = ⇡/2 , x0 = �4, y0 = 0

Speed =
q
(�4)2 + 02 = 4

The motion is horizontally leftwards.

17. x0 = 20, y0 = �2� 32t

(a) At t = 0, x0 = 20, y0 = �2
Speed =

p
202 + (�2)2 = 2

p
101

Motion is to the right and slightly down.

(b) At t = 2, x0 = 20,
y0 = �2� 64 = �66
Speed =

p
202 + (�66)2

= 2
p
1189

Motion is to the right and down.

18. x0(t) = 40, y0(t) = 3� 32t

(a) At t = 0, y0 = 3 and x0 = 40
Speed =

p
402 + 32 ⇡ 40.11

The object is going fast to the right and
a little up.

(b) At t = 2, y0 = �61 and x0 = 40
Speed =

p
(�61)2 + 402 ⇡ 72.95

The object is going fast to the right, and
even faster down.

19. x0 = �4 sin 2t+ 5 cos 5t,
y0 = 4 cos 2t� 5 sin 5t

(a) At t = 0, x0 = �4 sin 0 + 5 cos 0 = 5,
y0 = 4 cos 0� 5 sin 0 = 4
Speed =

p
52 + 42 =

p
41

Motion is to the right and up.

(b) At t = ⇡/2,
x0 = �4 sin⇡ + 5 cos(5⇡/2) = 0,
y0 = 4 cos⇡ � 5 sin(5⇡/2) = �9
Speed =

p
02 + (�9)2 = 9

Motion is down.

20. x0(t) = �3 sin t+ 3 cos 3t,
y0(t) = 3 cos t� 3 sin 3t.

(a) At t = 0, y0 = 3 and x0 = 3
Speed =

p
32 + 32 = 3

p
2.

The object is going up and to the right.

(b) At t = ⇡/2, y0 = 3 and x0 = �3
Speed is again 3

p
2.

The object is going up and to the left.

21. x0(t) = �3 sin t and this curve is traced out
counterclockwise, so

A = �
Z

2⇡

0

2 sin t(�3 sin t) dt

= 6

Z
2⇡

0

sin2 t dt

= 6

✓
1

2
t� 1

2
sin t cos t

◆ ����
2⇡

0

= 6⇡

22. x0(t) = �6 sin t and this curve is traced out
counterclockwise, so

A = �
Z

2⇡

0

2 sin t(�6 sin t) dt

= 12

Z
2⇡

0

sin2 t dt

= 12

✓
1

2
t� 1

2
sin t cos t

◆ ����
2⇡

0

= 12⇡
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23. x0(t) = �1

2
sin t +

1

2
sin 2t and this curve is

traced out counterclockwise, so

A = �
Z

2⇡

0

y(t)x0(t) dt

⇡ 1.178

where y(t) = �1

2
sin t+

1

2
sin 2t.

24. x0(t) = �4 sin 2t � 4 sin 4t and this curve is
traced out counterclockwise, so

A = �
Z

⇡

0

y(t)x0(t) dt

= 6⇡
where y(t) = 2 sin 2t+ sin 4t.

25. x0(t) = � sin t and this curve is traced out
clockwise, so

A =

Z
3⇡/2

⇡/2

sin 2t(� sin t) dt

= �2

Z
2⇡

0

sin2 t cos t dt

= �2

3
sin3 t

����
3⇡/2

⇡/2

= �2

3
((�1)3 � 13) =

4

3

26. x0(t) = sin t + t cos t and this curve is traced
out clockwise, so

A =

Z
⇡/2

�⇡/2

(t cos t)(sin t+ t cos t) dt

=
⇡3

24

27. x0(t) = 3t2 � 4 and this curve is traced out
counterclockwise, so

A = �
Z

2

�2

(t2 � 3)(3t2 � 4) dt

= �
Z

2

�2

(3t4 � 13t2 + 12) dt

= �

3t5

5
� 13t3

3
+ 12t

� ����
2

�2

= �256

15

28. x0(t) = 3t2 � 4 and this curve is traced out
clockwise, so

A =

Z
2

�2

(t4 � 1)(3t2 � 4) dt

=

Z
2

�2

(3t6 � 3t2 � 4t4 + 4) dt

=


3t7

7
� t3 � 4t5

5
+ 4t

� ����
2

�2

⇡ 58.514

29. Crossing x-axis ) y = 0 ) t = n⇡ for any
integer n
As, x = cos 2t+ 2 cos t and
y = 2 sin t� sin 2t
x0 = �2 sin 2t� 2 sin t and
y0 = 2 cos t� 2 cos 2t
x00 = �4 cos 2t� 2 cos t and
y00 = �2 sin t+ 4 sin 2t

At t = n⇡, n even, (x, y) = (3, 0) and
x0 = 0, y0 = 0 speed = 0
x00 = �6, y00 = 0

Therefore, the acceleration = 6

At t = n⇡, n odd, (x, y) = (�1, 0) and
x0 = 0, y0 = �4, speed = 4,
x00 = �2 and y00 = 0

Therefore, the acceleration = 2.

30. Crossing x-axis ) y = 0 ) t = n⇡

2

for any
integer n
As x = 6 cos t+ 6cos3t and y = 6 sin t� 6sin3t
x0 = �6 sin t� 18cos2t sin t and
y0 = 6 cos t� 18sin2t cos t
x00 = �6 cos t� 18cos3t+ 36 cos tsin2t and
y00 = �6 sin t+ 18sin3t� 36 sin tcos2t

At t =
n⇡

2
, n even, (x, y) = (±12, 0) and

x0 = 0, y0 = ±6 speed = 6
x00 = ±24, y00 = 0

Therefore, the acceleration = 24

At t =
n⇡

2
, n odd, (x, y) = (0, 0) and

x0 = ±6, y0 = 0, speed = 6,
x00 = 0 and y00 = ±12

Therefore, the acceleration = 12.

31. x = 2 cos t and y = 2 sin t.

Therefore,
dx

dt
= �2 sin t and

dy

dt
= 2 cos t,

d2x

dt2
= �2 cos t and

d2y

dt2
= �2 sin t.

Thus,
d2x

dt2
(⇡/6 ) = �2 cos

⇡

6
= �

p
3 and

d2y

dt2
(⇡/6 ) = �2 sin

⇡

6
= �1

Now,
dy

dx
=

(dy/dt )

(dx/dt )
= � cot t,

d2y

dx2

=

⇣
d(dy/dt )

dt

⌘

(dx/dt )
=

⇣
d(� cot t)

dt

⌘

�2 sin t

= �1

2
cos ec3t cot t

Again, 2 cos t =
p
3 ) t =

⇡

6
,
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so
d2y

dx2

⇣p
3
⌘
= �1

2
cos ec3

⇡

6
cot

⇡

6

= �4
p
3.

Therefore,
d2y

dx2

⇣p
3
⌘
6=

⇣
d

2
y

dt

2 (⇡/6 )
⌘

�
d

2
x

dt

2 (⇡/6 )
�

32. For the left hand side, we have
y = bx2

dy

dx
= 2bx

d2y

dx2

= 2b

d2y

dx2

(x(t)) = 2b.

For the right hand side, we compute
x = at2
dx

dt
= 2at

d2x

dt2
= 2a

and
y = bx2

dy

dt
= 2bxx0(t)

d2y

dt2
= 2b(x0(t))2 + 2bxx00(t)

= 2b(2at)2 + 2b(at2)(2a)
= 8a2bt2.

So the right hand side is
d

2
y

dt

2 (t)
d

2
x

dt

2 (t)
=

8a2bt2

2a
= 4abt2.

Therefore the left hand side equals the right
hand side if and only if t = ±

p
1/2a.

33.
y(t)

x(t)
= tan ✓, where ✓ is the angle the object

makes with the observer at the origin and the
positive x axis. The derivative
y(t)

x(t)

�0
= sec2 ✓

d✓

dt

will be positive if
d✓

dt
is positive, and the object

will be moving counterclockwise. If the deriva-

tive is negative, then
d✓

dt
is negative, and the

object will be moving clockwise.

34. When we calculate


y(t)

x(t)

�0
, the denominator

will be [x(t)]2, which is never negative. Hence

the sign of


y(t)

x(t)

�0
is the same as the sign of

the numerator of this expression. A long but
routine calculation shows that the numerator

is
8⇡(4 + 5 cos 16⇡t cos 4⇡t)
+ 8(5 sin 16⇡t sin 4⇡t).

Using the trig identity
cos(x� y) = cosx cos y + sinx sin y,

the numerator can be converted to
8⇡(4 + 5 cos 12⇡t). This quantity will be posi-
tive, and the motion will be counter-clockwise,
when cos 12⇡t > �4/5. Now cos�1(�4/5) ⇡
2.4981, so cos ✓ > 0 on the intervals (2⇡n �
2.498, 2⇡n + 2.498), where n is any integer.
Hence cos 12⇡t is positive, and the motion is
counter-clockwise, on the intervals✓
2⇡n� 2.498

12⇡
,
2⇡n+ 2.498

12⇡

◆

=
⇣n
6
� .066,

n

6
+ .066

⌘
.

35. We decide for convenience that we will have the
circle rolling out on the positive x-axis with the
center starting at (0, r). The center moves out
in proportion to time, i.e., x

c

= vt, y
c

= r
(constant). Now, we have seen by example
that if the circle were simply rotating in place,
the motion of the given point relative to the
center could be described by x = r cos(�2⇡t),
y = r sin(�2⇡t). (The minus sign is there
to accommodate clockwise rotation induced by
the circle rolling forward, the factor of 2⇡ is
present to yield one revolution in the first unit
of time.). In summary, the path (x

p

, y
p

) of the
selected point on the rim satisfies8
>>><

>>>:

x
p

� x
c

= r cos(�2⇡t)

= r cos(2⇡t),

y
p

� y
c

= r sin(�2⇡t)

= �r sin(2⇡t)).

The final instructions are to add these num-
bers to the coordinates of the center. We can
see why. It produces8
>>><

>>>:

x
p

= x
c

+ (x
p

� x
c

)

= vt+ r cos(2⇡t),

y
p

= y
c

+ (y
p

� y
c

)

= r � r sin(2⇡t).

To find the speed, we’ll need
x0(t) = v � 2⇡r sin(2⇡t) and
y0(t) = �2⇡r cos(2⇡t).
Plugging these in and simplifying we find that
the speed is given by
s(t) =

p
(x0(t))2 + (y0(t))2

=
p

v2 � 4⇡rv sin(2⇡t) + 4⇡2r2.

To find the extrema, we take the derivative:
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s0(t) =
�4⇡2rv cos(2⇡t)p

v2 � 4⇡rv sin(2⇡t) + 4⇡2r2
.

This is equal to 0 when cos(2⇡t) = 0, i.e., when
2⇡t = ⇡/2 + k⇡ or t = 3k/4 for any integer k.

If k is even, s(t) =
p
v2 + 4⇡2r2. If k is odd,

s(t) =
p
v2 ± 4⇡rv + 4⇡2r2, with the sign am-

biguity depending on k.
The graph for v = 3 and r = 2:

 

5

4

3

2

1

-1
 

15105

36. From exercise 35, we have the path of the cen-
ter of the circle given by (vt, r). The motion of
the point relative to the center is(

x = d cos(2⇡t),

y = �d sin(2⇡t)).
Thus the path traced out by a point inside the
circle is described by(

x = vt+ d cos(2⇡t),

y = r � d sin(2⇡t).
To find the speed, we’ll need
x0(t) = v � 2⇡d sin(2⇡t) and
y0(t) = �2⇡d cos(2⇡t).
Plugging these in and simplifying we find that
the speed is given by
s(t) =

p
(x0(t))2 + (y0(t))2

=
p
v2 � 4⇡dv sin(2⇡t) + 4⇡2d2.

To find the extrema, we take the derivative:

s0(t) =
�4⇡2vd cos(2⇡t)p

v2 � 4⇡dv sin(2⇡t) + 4⇡2d2
.

This is equal to 0 when cos(2⇡t) = 0, i.e., when
2⇡t = ⇡/2 + k⇡ or t = 3k/4 for any integer k.
If k is even, s(t) =

p
v2 + 4⇡2d2. If k is odd,

s(t) =
p
v2 ± 4⇡vd+ 4⇡2d2, with the sign am-

biguity depending on k.
Note that this is a generalization of the previ-
ous problem, i.e., taking d = r gives exercise
35.
The graph for v = 3 and r = 2 and d = 1:

 

4

3

2

1

 
151050

37. There are an infinite number of solutions, de-
pending on the initial position of the small cir-
cle, and the direction of motion. Assume that
the center of the small circle begins at (a�b, 0)
and moves clockwise. Then the path of the
center is ((a � b) cos t, (a � b) sin t). The path
of a point about the center of the small circle
is (b cos ✓,�b sin ✓). To determine the relation-
ship between ✓ and t, observe that when the
small circle rotates through an angle ✓, the dis-
tance b✓ that its circumference moves matches
up with an arc of length at on the large circle.

Thus, b✓ = at, and so ✓ =
a

b
t.

Thus, the path traced out by a point on the
small circle is(

x = (a� b) cos t+ b cos
�
a

b

t
�

y = (a� b) sin t� b sin
�
a

b

t
�

If a = 2b, then the path of a point on the small
circle is
(b cos t+ b cos 2t, b sin t� b sin 2t)
The path now passes through the origin.
The graph for a = 5 and b = 3:

 

4

-1

5

5-5
 

-2-4 -1 4
1

3

3

1

-4

-5

-2

2-3

2

-3

The equation for the slope of the tangent line
at t is:
dy

dx

�����
t

=
dy

dt

(t)
dx

dt

(t)

=
(a� b) cos t� a cos(a

b

t)

�(a� b) sin t� a sin(a
b

t)
.
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One point at which the tangent line is vertical
is when t = 0, i.e. at the point (a, 0).

38. Assume that the center of the small circle be-
gins at (a+b, 0) and moves clockwise. Then the
path of the center is ((a+ b) cos t, (a+ b) sin t).
The path of a point about the center of the
small circle is (b cos ✓,�b sin ✓). As in exercise

41, we have ✓ =
a

b
t.

Thus, the path traced out by a point on the
small circle is(

x = (a+ b) cos t+ b cos
�
a

b

t
�

y = (a+ b) sin t� b sin
�
a

b

t
�

If a = 2b, then the path of a point on the small
circle is
(3b cos t+ b cos 2t, 3b sin t� b sin 2t)
The graph for a = 8 and b = 5:

 

10

-15

15
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-5

5

105-10 15-15 -5

The equation for the slope of the tangent line
at t is:
dy

dx

�����
t

=
dy

dt

(t)
dx

dt

(t)

=
(a+ b) cos t� a cos(a

b

t)

�(a+ b) sin t� a sin(a
b

t)
.

One point at which the tangent line is vertical
is when t = 0, i.e. at the point (a+ 2b, 0).

39. x0 = 4 cos 4t, y0 = 4 sin 4t

s(t) =
p
(4 cos 4t)2 + (4 sin 4t)2

=
q
16(sin2 4t+ cos2 4t)

= 4
The slope of the tangent line is y0/x0 = tan 4t,
and the slope of the origin-to-object line is
y/x = � cot 4t, and the product of the two
slopes is �1.

40. The position of riders is given by the equations
x = 50 cos ✓, y = 50 sin ✓.
If one revolution is made in 3 minutes, then
✓0(t) = 2⇡/3 radians per minute. The velocity
of the riders is given by

x0(t) = �50 sin ✓
d✓

dt
, x0(t)

= 50 cos ✓
d✓

dt
.

The speed is given byr
(
dx

dt
)2 + (

dy

dt
)2

=

s✓
100⇡

3
cos ✓

◆
2

+

✓
100⇡

3
sin ✓

◆
2

=
100⇡

3
feet per minute.

41. The 3t and 5t indicate a ratio of 5-to-3.

3

1

-3

2

0
3210-3 -2

-2

-1

-1

42. The speed is given by the square root of
(�6 sin 3t+ 5 cos 5t)2 + (6 cos 3t� 5 sin 5t)2

= 36(sin2 3t+ cos2 3t)
� 60(sin 3t cos 5t+ cos 3t sin 5t)
+ 25(cos2 5t+ sin2 5t)

= 61� 60 sin 8t.
To minimize the speed, we di↵erentiate to find

s0 =
�480 cos 8t

2
p
61� 60 sin 8t

s0 = 0 when cos 8t = 0, or when sin 8t = ±1.
The First Derivative Test shows that the min-
ima occur when sin 8t = 1. These occur at the
extreme points of the path.

43. Use x = 2 cos t+ sin 3t,
y = 2 sin t+ cos 3t.

2

1

0

-2

-1

20 1-1-2
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x0 = �2 sin t+ 3 cos 3t
y0 = 2 cos t� 3 sin 3t
s(t) =p
(x0(t))2 + (y0(t))2

=
p
4 + 9� 12(sin t cos 3t+ cos t sin 3t)

=
p
13� 12 sin 4t

Minimum speed =
p
13� 12 = 1;

maximum speed =
p
13 + 12 = 5.

44. If the inner arms are length 3, then we have
x(t) = 3 cos t+ sin 2t,
y(t) = 3 sin t+ cos 2t.

-4

0-2-4

y

x

4

4

2

0
2

-2

The speed is given by the square root of

(�3 sin t+ 2 cos 2t)2 + (3 cos t� 2 sin 2t)2

= 9(sin2 t+ cos2 t)
� 12(sin t cos 2t+ cos t sin 2t)
+ 4(cos2 2t+ sin2 2t)

= 13� 12 sin 3t.
The derivative of the speed is then

s0 =
�36 cos 3t

2
p
13� 12 sin 3t

.

The critical numbers occur when cos 3t = 0.
The First Derivative test shows that the min-
ima occur at t = ⇡/6, 5⇡/6, and 3⇡/2, while
the maxima occur at t = ⇡/2, 7⇡/6, and 11⇡/6
(and the extrema then repeat with period 2⇡).

The minimum speed is 1. The maximum speed
is 25.

9.3 Arc Length and Surface

Area in Parametric Equa-

tions

1. (a) x0(t) = �2 sin t, y0(t) = 4 cos t

s =

Z
2⇡

0

p
(�2 sin t)2 + (4 cos t)2dt

=

Z
2⇡

0

p
4 sin2 t+ 16 cos2 tdt

=
160

27

p
10-

16

27
⇡ 19.3769

(b) x0(t) = 2 sin t, y0(t) = 2 cos t

s =

Z
2⇡

0

p
(2 sin t)2 + (2 cos t)2dt

=

Z
2⇡

0

(4 sin2 t+ 4 cos2 t)1/2dt

= 4⇡ ⇡ 12.57

2. (a) x0(t) = 3t2, y0(t) = 2t

s =

Z
2

�2

p
(3t2)2 + (2t)2dt

=

Z
2

�2

p
(9t4) + (2t)2dt

⇡ 18.1477

(b) x0(t) = 3t2 � 4, y0(t) = 2t� 3

s =

Z
2

�2

p
(3t2 � 4)2 + (2t� 3)2dt

⇡ 19.0446

3. (a) x0(t) = �4 sin 4t, y0(t) = 4 cos 4t

s =

Z
⇡/2

0

q
(�4 sin 4t)2 + (4 cos 4t)2dt

=

Z
⇡/2

0

p
16sin24t+ 16cos24tdt = 2⇡

(b) x0(t) = �7 sin 7t, y0(t) = 11 cos 11t

s =

Z
2⇡

0

q
(�7 sin 7t)2 + (11 cos 11t)2dt

=

Z
2⇡

0

p
49sin27t+ 121cos211tdt

⇡ 55.087508

4. (a) x0(t) = cos t� t sin t,
y0(t) = sin t+ t cos t

s =

Z
1

�1

p
1 + t2dt = 2

1Z

0

p
1 + t2

=
p
2 + ln(1 +

p
2) = 2.29559

(b) x0(t) = 2t cos t� t2 sin t,
y0(t) = 2t sin t+ t2 cos t

s =

Z
1

�1

p
t4 + 4t2dt =

Z
1

�1

|t|
p

4 + t2dt

⇡ 2.120227

5. (a) x0(t) = cos 2t, y0(t) = sin2t

s =

Z
⇡/2

0

q
(cos 2t) 2 + (sin 2t)2dt =

⇡

2

(b) x0(t) = 4 cos 4t cos t� sin 4t sin t
y0(t) = 4 sin t cos 4t+ sin 4t cos t

s =

Z
⇡/2

0

p
1 + 15cos24tdt ⇡ 4.28921
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6. (a) x0(t) = cos t, y0(t) = ⇡ cos⇡t

s =

Z
⇡

0

q
(cos t)2 + (⇡ cos⇡t)2dt

=

Z
⇡

0

p
(cos2t) + (⇡2cos2⇡t)dt

⇡ 6.913945

(b) x0(t) = cos t, y0(t) = ⇡ cos t

s =

Z
⇡

0

q
(cos t)2 + (⇡ cos t)2dt

=

Z
⇡

0

p
cos2t+ ⇡2cos2tdt

= 2
p

1 + ⇡2 ⇡ 6.59381

7. (a) x0(t) = 2e2t � 2e�2t, y0(t) = 16

s =

Z
4

0

q
(2e2t � 2e�2t)2 + (16)2dt

= 2

Z
4

0

p
e4t + e�4t + 62 dt

⇡ 2994.7788

(b) x0(t) = 2e2t, y0(t) = 2t

s =

Z
4

0

q
(2e2t)2 + (2t)2dt

=

Z
4

0

2
p
e4t + t2dt ⇡ 2980.2037

8. (a) x0(t) = 4, y0(t) =
tp

t2 + 4

s =

Z
2

1

s

(4)2 +

✓
tp

t2 + 4

◆
2

dt

⇡ 4.0443

(b) x0(t) = 36, y0(t) = 3t2 � 3t�2

s =

Z
2

1

q
(36)2 + (3t2 � 3t�2)2dt

⇡ 36.5537

9. (a) x(0) = 0, y(0) = 0, x(1) = ⇡, y(1) = 2

(b) x0(t) = ⇡, y0(t) = t�1/2

T =

Z
1

0

k

s
⇡2 + 1/t

2
p
t

dt

=

Z
1

0

k

✓
⇡2

2t1/2
+

t�3/2

2

◆
1/2

dt

⇡ k · 4.486

(c) Slope is
t�1/2

⇡
; so at t = 0 the slope is

undefined.

s =

Z
1

0

✓
⇡2 +

1

t

◆
1/2

dt ⇡ 3.8897

10. (a) x(0) = 0, y(0) = 0, x(1) = ⇡, y(1) = 2

(b) x0(t) = ⇡, y0(t) =
1

2
t�3/4

T =

Z
1

0

k

s
⇡2 + 1

4

t�3/2

2t1/4
dt

=

Z
1

0

k

✓
⇡2

2t1/4
+

t�7/4

8

◆
1/2

dt

⇡ k · 4.547

(c) Slope is
t�3/4

2⇡
; so at t = 0 the slope is

undefined.

s =

Z
1

0

✓
⇡2 +

1

4
t�3/2

◆
1/2

dt ⇡ 4.202

11. (a) x(0) = �1

2
⇡(cos 0� 1) = 0,

y(0) = 0 +
7

10
sin 0 = 0,

x(1) = �1

2
⇡(cos⇡ � 1) = ⇡,

y(1) = 2 +
7

10
sin⇡ = 2

(b) x0(t) =
⇡2

2
sin⇡t

y0(t) = 2 +
7

10
⇡ cos⇡t

T =

Z
1

0

k

s
(x0(t))2 + (y0(t))2

y(t)
dt

Here,

(x0(t))2 + (y0(t))2

y(t)

=
⇡

4

4

sin2 ⇡t+ 4 + 14

5

⇡ cos⇡t

2t+ 7

10

sin⇡t

+
49

100

⇡2 cos2 ⇡t

2t+ 7

10

sin⇡t

so T ⇡ k · 4.457.

(c) Slope is
2 + 7

10

cos⇡t
1

2

⇡2 sin⇡t
;

at t = 0 the slope is undefined, so there is
a vertical tangent line. We have

s =

Z
1

0

p
f(t) dt

where

f(t) =
1

4
⇡4 sin2 ⇡t+

✓
2 +

7

10
cos⇡t

◆
2

so s ⇡ 3.87.

12. (a) x(0) = �0.6 sin 0 = 0,
y(0) = 0 + 0.4 sin 0 = 0,
x(1) = ⇡ � 0.6 sin⇡ = ⇡,
y(1) = 2 + 0.4 sin⇡ = 2

(b) x0(t) = ⇡ � 0.6⇡ cos⇡t
y0(t) = 2 + 0.4⇡ cos⇡t
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T =

Z
1

0

k

s
(x0(t))2 + (y0(t))2

y(t)
dt

Here,
(x0(t))2 + (y0(t))2

y(t)
=

⇡2 � 1.2⇡2 cos⇡t+ 0.36⇡2 cos2 ⇡t

2t+ 0.4 sin⇡t

+
4 + 1.6⇡ cos⇡t+ 0.16⇡2 cos2 ⇡t

2t+ 0.4 sin⇡t

so T ⇡ k · 4.477.

(c) Slope is
2 + 0.4⇡ cos⇡t

⇡ � 0.6⇡ cos⇡t
;

at t = 0 the slope is
2 + 0.4⇡

⇡ � 0.6⇡
.

s =

Z
1

0

p
f(t) dt

where
f(t) = (⇡�0.6⇡ cos⇡t)2+(2+0.4⇡ cos⇡t)2

so s ⇡ 4.007.

13. (a) x0(t) = 2t, y0(t) = 3t2 � 4

s =

Z
0

�2

2⇡
��t3 � 4t

��
q

(2t)2 + (3t2 � 4)2 dt

⇡ 85.8228

(b) x0(t) = 2t, y0(t) = 3t2 � 4

s =

Z
0

�2

2⇡
���t2

��
q

(2t)2 + (3t2 � 4)2dt

⇡ 83.9224

14. (a) x0(t) = 2t, y0(t) = 3t2 � 4

s =

Z
2

0

2⇡
��t3 � 4t

��
q
(2t)2 + (3t2 � 4)2 dt

⇡ 85.8228

(b) x0(t) = 2t, y0(t) = 3t2 � 4
About x = 3 , radius = 4� t2

s =

Z
2

0

2⇡
��4� t2

��
q
(2t)2 + (3t2 � 4)2dt

⇡ 113.2941

15. (a) x0(t) = 3t2 � 4, y0(t) = 2t

s =

Z
2

0

2⇡
��t3 � 4t

��
q
(3t2 � 4)2 + (2t2)2dt

=

Z
2

0

2⇡
��t3 � 4t

��
p
9t4 � 20t2 + 16dt

⇡ 85.8228

(b) x0(t) = 3t2 � 4, y0(t) = 2t

s =

Z
2

0

2⇡
��t2 � 5

��
q
(3t2 � 4)2 + (2t)2dt

⇡ 162.5982

16. (a) x0(t) = 4, y0(t) =
tp

t2 + 4
s =
Z

2

1

2⇡
⇣p

t2 + 4
⌘
s

16 +

✓
tp

t2 + 4

◆
2

dt

= 2⇡

Z
2

1

p
17t2 + 64dt ⇡ 63.8117

(b) x0(t) = 4, y0(t) =
tp

t2 + 4
About x = 4 radius = |4� 4t|

s =

Z
2

1

2⇡ |4� 4t|

s

16 +

✓
tp

t2 + 4

◆
2

dt

=

Z
2

1

2⇡ (4t� 4)

s

16 +

✓
t2

t2 + 4

◆
dt

⇡ 50.9006

17. (a) x0(t) = 2, y0(t) = �2 sin t

s =

Z
⇡/2

0

2⇡(2t)
q
(2)2 + (�2 sin t)2dt

= 8⇡

Z
⇡/2

0

t

q
1 + (sin t)2dt ⇡ 40.2979

(b) x0(t) = 2, y0(t) = �2 sin t
About y = 3, radius = |2 cos t� 3|

s =

Z
⇡/2

0

2⇡ |2 cos t� 3|
q

(2)2 + (�2 sin t)2dt

= 4⇡

Z
⇡/2

0

(3� 2 cos t)
q

1 + (sin t)2dt

⇡ 43.1618

18. (a) x0(t) =
1

t
, y0(t) = �e�t

s =

Z
2

1

2⇡(e�t)

s✓
1

t

◆
2

+ (�e�t)2dt

⇡ 1.13282

(b) x0(t) =
1

t
, y0(t) = �e�t

s =

Z
2

1

2⇡ ln t

s✓
1

t

◆
2

+ (�e�t)2dt

⇡ 1.5849

19. Parametric equations for the midpoint of the
ladder are given by:(
x = 4 sin ✓

y = 4 cos ✓
for 0  ✓  ⇡/2.
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The distance, given by the formula for arc
length is

s =

Z
⇡/2

0

p
16 sin2 ✓ + 16 cos2 ✓ d✓

=

Z
⇡/2

0

4 d✓ = 4✓
��⇡/2
0

= 2⇡.

20. This is not a coincidence: The midpoint of the
ladder traces out a quarter-circle of radius 4.
The arc length in Example 3.6 is again the
same; this is not a coincidence either as one
can show by converting to polar coordinates.

21. x0(t) = cos(⇡t2), y0(t) = sin(⇡t2)
Therefore, the arc length for a  t  b is
Z

b

a

s✓
dx

dt

◆
2

+

✓
dy

dt

◆
2

dt

=

Z
b

a

q
cos2(⇡t2) + sin2(⇡t2)dt

=

Z
b

a

dt = [t]b
a

= b� a

Thus, the arc length of the curve is equal to the
time interval; in other words, the parametriza-
tion being used is one for which the correspond-
ing speed of a particle is 1. This means that
as the size of the spiral decreases the spiralling
rate increases.

In the special case that a = �2⇡ and b = 2⇡,
the length of the curve is
b� a = 2⇡ � (�2⇡) = 4⇡.

22. One way to parameterize the cycloid is to mark
the radius from the center to our point of con-
cern (call it P ) in red, and as the circle rolls,
let t be the angle (in radians) from the red
radius to the vertical. At this value of t, the
length of circle which has been rolled out is 4t
(radius times radians), and this measures the
horizontal progress of the center of the circle.
More precisely, the position of the center at
this value of t is (4t, 4).
Hence the position of our point P is
(x, y) = (4t+ 4sint, 4 + 4cost).

Given this, we find
x0(t) = 4(1 + cos t), y0(t) = �4 sin t and

x02 + y02 = 16(1 + 2 cos t+ cos 2t+ sin 2t)

= 32(1 + cos t) = 64 cos 2(t/2).

One revolution of the circle occurs as t moves
from 0 to 2⇡, hence the arc length traveled by
our point P is

Z
2⇡

0

8| cos(t/2)|dt

= 16

Z
⇡

0

cos(t/2)dt

= 32 sin(t/2)

����
⇡

0

= 32.

9.4 Polar Coordinates

1. r = 2, ✓ = 0
x = 2 cos 0 = 2,
y = 2 sin 0 = 0
Rectangular representation: (2, 0)

2. r = 2, ✓ = ⇡
x = 2 cos⇡ = �2,
y = 2 sin⇡ = 0
Rectangular representation: (�2, 0)

3. r = �2, ✓ = ⇡
x = �2 cos⇡ = 2,
y = �2 sin⇡ = 0
Rectangular representation: (2, 0)

4. r = �3, ✓ = 3⇡/2
x = �3 cos(3⇡/2) = 0,
y = �3 sin(3⇡/2) = 3
Rectangular representation: (0, 3)

5. r = 3, ✓ = �⇡
x = 3 cos(�⇡) = �3,
y = 3 sin(�⇡) = 0
Rectangular representation: (�3, 0)

6. r = 5, ✓ = �⇡/2
x = 5 cos(�⇡/2) = 0,
y = 5 sin(�⇡/2) = �5
Rectangular representation: (0,�5)

7. r =
p
22 + (�2)2 = ±

p
8 = ±2

p
2

tan ✓ =
�2

2
= �1

The point (x, y) = (2,�2) is in Quadrant IV,
so ✓ could be �⇡/4.

All polar representations:⇣
2
p
2,�⇡

4
+ 2⇡n

⌘
or

✓
�2

p
2,

3⇡

4
+ 2⇡n

◆

where n is any integer.

8. r =
p
12 + (�1)2 = ±

p
2

tan ✓ =
1

�1
= �1

The point (x, y) = (�1, 1) is in Quadrant II, so
✓ could be 3⇡/4.
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All polar representations:✓p
2,

3⇡

4
+ 2⇡n

◆
or

✓
�
p
2,

�⇡

4
+ 2⇡n

◆

where n is any integer.

9. r =
p
02 + 32 = ±3

Since the point (0, 3) is on the positive
y-axis, we can take ✓ = ⇡/2.

All polar representations:⇣
3,

⇡

2
+ 2⇡n

⌘
or

✓
�3,

3⇡

2
+ 2⇡n

◆

where n is any integer.

10. r =
p
22 + (�1)2 = ±

p
5 , tan ✓ =

�1

2
The point (x, y) = (2,�1) is in Quadrant IV;

✓ = tan�1(
�1

2
) ⇡ �0.4637.

All polar representations:✓p
5, tan�1(

�1

2
) + 2⇡n

◆
or

✓
�
p
5, tan�1(

�1

2
) + ⇡ + 2⇡n

◆

where n is any integer.

11. r =
p
32 + 42 = ±5 , tan ✓ =

4

3
The point (x, y) = (3, 4) is in Quadrant I;

✓ = tan�1(
4

3
) ⇡ 0.9273.

All polar representations:✓
5, tan�1(

4

3
) + 2⇡n

◆
or

✓
�5, tan�1(

4

3
) + ⇡ + 2⇡n

◆

where n is any integer.

12. r =
q
(�2)2 + (�

p
5)2 = ±3 , tan ✓ =

p
5

2
The point (x, y) = (�2,�

p
5) is in Quadrant

III; tan�1(

p
5

2
) ⇡ 0.8412

so we take ✓ = tan�1(

p
5

2
) + ⇡ ⇡ 3.9827.

All polar representations: 
3, tan�1(

p
5

2
) + ⇡ + 2⇡n

!
or

 
�3, tan�1(

p
5

2
) + 2⇡n

!

where n is any integer.

13. r = 2, ✓ = �⇡/3

x = 2 cos
⇣
�⇡

3

⌘
= 1

y = 2 sin
⇣
�⇡

3

⌘
= �

p
3

Rectangular representation:
�
1,�

p
3
�

14. r = �1, ✓ = ⇡/3

x = �1 cos
⇣⇡
3

⌘
= �1/2

y = �1 sin
⇣⇡
3

⌘
= �

p
3/2

Rectangular representation:�
�1/2,�

p
3/2
�

15. r = 0, ✓ = 3
x = 0 cos (3) = 0
y = 0 sin (3) = 0
Rectangular representation: (0, 0)

16. r = 3, ✓ = ⇡/8

x = 3 cos
⇣⇡
8

⌘
⇡ 3(0.9239) = 2.7717

y = 3 sin
⇣⇡
8

⌘
⇡ 1.1481

Rectangular representation:
(2.77164, 1.14805)

17. r = 4, ✓ = ⇡/10

x = 4 cos
⇣ ⇡

10

⌘
⇡ 3.8042

y = 4 sin
⇣ ⇡

10

⌘
⇡ 1.2361

Rectangular representation:
(3.8042, 1.2361)

18. r = �3, ✓ = 1
x = �3 cos (1) ⇡ �1.6209
y = �3 sin (1) ⇡ �2.5244
Rectangular representation:
(�1.6209,�2.5244)

19.

6

4

2

0

-2

-4

-6

6420-2-4-6

This is a circle centered at the origin with ra-
dius 4. The equation is x2 + y2 = 42 = 16
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20.

1.5

1.5

1

1

0.5

0
0.5

-0.5

-1

0

-1.5

-0.5-1-1.5

This is a circle centered at the origin with ra-
dius

p
3 . The equation is

x2 + y2 = (
p
3)2 = 3

21.

6

4

2

0

-2

-4

-6

6420-2-4-6

This is a line through the origin making an an-
gle ⇡/6 to the x-axis.

We have
y

x
= tan ✓ = tan

⇡

6
=

1p
3
,

so y =
1p
3
x

22.

-4

0-2-4
x

4

4

2

0
2

-2

This is a line through the origin making an an-
gle 3⇡/4 to the x-axis.

We have
y

x
= tan ✓ = tan

3⇡

4
= �1,

so y = �x

23.

210-1-2

2

1

0

-1

-2

One knows from studying the examples that
the figure is a circle centered at (1/2, 0) with
radius 1/2. One could simply write down the
equation as✓
x� 1

2

◆
2

+ y2 =

✓
1

2

◆
2

.

Failing the recognition, write
r = cos ✓
r2 = r cos ✓
x2 + y2 = x

The two equations are the same.

24.

2

1

0.5

1.5
0

-0.5

1

-1

0.50

r = 2 cos ✓
r2 = 2r cos ✓
x2 + y2 = 2x

25.

420-2-4

4

2

0

-2

-4
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r = 3 sin ✓
r2 = 3r sin ✓
x2 + y2 = 3y

26.

1

2

1.5

0.5

1

0.5

0
0

-0.5-1

r = 2 sin ✓
r2 = 2r sin ✓
x2 + y2 = 2y

27.

2

1

0

-1

-2

210-1-2

r = cos 2✓ = 0 when 2✓ = ⇡/2 + k⇡ for any
integer k, i.e., when ✓ = ⇡/4 + k⇡/2 for any
integer k.

0  ✓  2⇡ produces one copy of the graph.

28. r = 0 when ✓ = ⇡/6 + k⇡/3 for any integer k.
0  ✓  ⇡ produces one copy of the graph.

0
0.80.4

-0.8

0.8

0.4

-0.4

-0.4

0

29. r = sin 3✓ = 0 when 3✓ = k⇡, i.e., ✓ = k⇡/3
for any integer k.

0  ✓  ⇡ produces one copy of the graph.

2

1

0

-1

-2

210-1-2

30. r = sin 2✓ = 0 when 2✓ = k⇡, i.e., ✓ = k⇡/2
for any integer k.

0  ✓  2⇡ produces one copy of the graph.

0-1-2

2

1

0

-1

-2

21

31. r = 0 when 3 + 2 sin ✓ = 0 or sin ✓ = �3/2.
This never happens so r is never 0.

0  ✓  2⇡ produces one copy of the graph.

3

-1

1

3210-2-3

5

4

2

0
-1

32. r = 0 when ✓ = 2k⇡ for integers k.

0  ✓  2⇡ produces one copy of the graph.
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-1

0
0

-2

-1

2

-2

1

-3-4

33. r = 0 when 2� 4 sin(✓) = 0, hence sin ✓ = 1/2,
so ✓ = ⇡/6+2k⇡ or ✓ = 5⇡/6+2k⇡ for integers
k.

0  ✓  2⇡ produces one copy of the graph.

3

-1

21

-3

-1-3
0

-2

-5

0

-4

-6

-2

34. r = 2 + 4 cos ✓ = 0 when cos ✓ = �1/2, i.e.,
when ✓ = 2⇡/3 + 2k⇡ or ✓ = 4⇡/3 + 2k⇡ for
integers k.

0  ✓  2⇡ produces one copy of the graph.

2

0

-2

654310

3

1

-1

-3

2

35. r = 0 when ✓ = 3⇡/2 + 2k⇡ for integers k.

0  ✓  2⇡ produces one copy of the graph.

1

-2

2

0

4

-1

3

210

36. r = 3 � 6 cos ✓ = 0 when cos ✓ = 1/2, i.e.,
✓ = ⇡/3 + 2k⇡ or ✓ = 5⇡/3 + 2k⇡ for integers
k.

0  ✓  2⇡ produces one copy of the graph.

4

0

2

-2

-4

0-2-4-6-8

37. r =
1

4
✓ = 0 only when ✓ = 0.

This graph does not repeat itself, i.e., for com-
pletion, one would have to graph for all real
numbers ✓.

2

0

1

-1

-2

321-1-2 0

38. r = e✓/4 6= 0 for any value of ✓.

This graph does not repeat itself, i.e., for com-
pletion, one would have to graph for all real
numbers ✓.
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5

0

-10

-15

20151050-5-10

-5

39. r = 2 cos(✓ � ⇡/4) = 0 when
✓ = ⇡/4 = ⇡/2 + k⇡, i.e., ✓ = 3⇡/4 + k⇡ for
integers k.

0  ✓  2⇡ produces one copy of the graph.

210-1-2

2

1

0

-1

-2

40. r = 2 sin(3✓ � ⇡) = 0 when
3✓ � ⇡ = k⇡ or ✓ = k⇡/3 for integers k.

0  ✓  ⇡ produces one copy of the graph.

3

2

1

0

-1

-2

-3

3210-1-2-3

41. r = cos ✓ + sin ✓ = 0 when
✓ = 3⇡/4+ 2k⇡ or ✓ = 7⇡/4+ 2k⇡ for integers
k.

3

2

1

0

-1

-2

-3

3210-1-2-3

42. r = cos ✓ + sin 2✓ = 0 when
cos ✓ = � sin 2✓ = �2 sin ✓ cos ✓
This occurs when cos ✓ = 0, i.e., at
✓ = ⇡/2+ k⇡ for any integer k or when sin ✓ =
�1/2, i.e., at ✓ = 7⇡/6 + 2k⇡ or 11⇡/6 + 2k⇡
for integers k.

2

1

0

-1

-2

210-1-2

43. r = tan�1 2✓ = 0 only when ✓ = 0.

210-1-2

2

1

0

-1

-2

44. r =
✓p

✓2 + 1
= 0 only when ✓ = 0.
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210-1-2

2

1

0

-1

-2

45. r = 2 + 4 cos 3✓ = 0 when cos 3✓ = �1/2, i.e.,
when ✓ = 2⇡/9 + 2k⇡/3 or ✓ = 4⇡/9 + 2k⇡/3
for any integer k.

4

0

2

-2

-4

6420-2

46. r = 2 � 4 sin 4✓ = 0 when sin 4✓ = 1/2, i.e.,
when ✓ = ⇡/24 + k⇡/2 or ✓ = 5⇡/24 + k⇡/2
for integers k.

4

0

2

-2

-4

42-2 0-4

47. r =
2

1 + sin ✓
6= 0 for any ✓. It is undefined

when sin ✓ = �1, i.e., at ✓ = �⇡/2 + 2k⇡ for
integers k.

0

-100000

-50000

-150000

-200000

8000 400-400-800

48. r =
3

1� sin ✓
6= 0 for any ✓. It is undefined

when sin ✓ = 1, i.e., at ✓ = ⇡/2 + 2k⇡ for inte-
gers k.

300000

200000

0

250000

150000

10005000-1000 -500

50000

100000

49. r =
2

1 + cos ✓
6= 0 for any ✓. It is undefined

when cos ✓ = �1, i.e., at ✓ = (2k + 1)⇡ for
integers k.

800

0

400

-400

-800

0-200000 -50000-150000 -100000

50. r =
3

1� cos ✓
6= 0 for any ✓. It is undefined

when cos ✓ = �1, i.e., at ✓ = 2k⇡ for integers
k.
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1000

0

500

-500

-1000

3000002500001500002000001000000 50000

51. y2 � x2 = 4,
r2 sin2 ✓ � r2 cos2 ✓ = 4,
r2(cos2 ✓ � sin2 ✓) = �4,

r2 =
�4

cos(2✓)
This is an acceptable answer. Before going
any farther, one should note that this will
require cos(2✓) < 0, which, as a subset of
[0, 2⇡), puts ✓ in one of the two open inter-

vals

✓
⇡

4
,
3⇡

4

◆
[
✓
5⇡

4
,
7⇡

4

◆
.

Subject to that quantification, one could go

r =
2p

� cos(2✓)
= 2
p
� sec(2✓),

eschewing the possible minus sign since the use
of the minus sign merely duplicates points al-
ready “present and accounted for.”
All this confirms what we might already know
about the curve: it is a hyperbola, opening up
and down, with asymptotes formed by the two
lines y = x and y = �x (which correspond to
the endpoints of the stated domain-intervals
for ✓).

52. r = 3

53. r = 4

54. r = cos ✓

55. r sin ✓ = 3, r =
3

sin ✓
= 3 csc ✓

56. r cos ✓ = 2, r =
2

cos ✓
= 2 sec ✓

57. For a = 1

0.0
1.0

0.25

0.5

0.0 0.750.50.25

−0.25

−0.5

For a = 2

0.0

2.0

0.5

1.0

0.0 1.51.00.5

−0.5

−1.0

For a = �1

0.0
0.0

0.25

0.5

−1.0 −0.25−0.5−0.75

−0.25

−0.5

r = a cos ✓
r2 = a (r cos ✓)
x2 + y2 = ax

x2 � ax+
a2

4
+ y2 =

a2

4⇣
x� a

2

⌘
2

+ y2 =
⇣a
2

⌘
2

This equation represents a circle with center⇣a
2
, 0
⌘
and radius

|a|
2

58. For a = 1
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0.5

0.5

0.75

1.0

−0.5 0.250.0−0.25

0.25

0.0

For a = 2

1.0

1.0

1.5

2.0

−1.0 0.50.0−0.5

0.5

0.0

For a = �1

−0.5

0.5

−0.25

0.0

−0.5 0.250.0−0.25

−0.75

−1.0

r = a sin ✓
r2 = a (r sin ✓)
x2 + y2 = ay

x2 + y2 � ay +
a2

4
=

a2

4

x2 +
⇣
y � a

2

⌘
2

=
⇣a
2

⌘
2

This equation represents a circle with center⇣
0,

a

2

⌘
and radius

|a|
2

59. For a = 1

0.0

1.0

0.25

0.5

0.0 0.750.50.25

−0.25

−0.5

For a = 2

0.5−1.0
0.0

1.0

0.6

−0.6

−1.0

−0.5

−0.8

0.2

0.4

1.0

0.0

−0.2

0.8

−0.4

For a = 3

0.5

0.0

0.25

1.0

0.5

−0.25

0.25

0.75

0.0−0.5 −0.25

−0.5

0.75

−0.75

For a = 4

0.5−1.0

0.0

1.0

0.6

−0.6

−1.0

−0.5

−0.8

0.2

0.4

1.0

0.0
−0.2

0.8

−0.4

For a = 5/2
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0.8

−0.6

0.0

−0.8

−1.0

0.4

1.0

0.0

−0.2

0.6

−0.4

0.2

0.5−0.5

For a = 5

1.00.75

−0.4

0.0 0.25
0.2

0.6

−0.8

−0.2

0.5

0.0

0.4

−0.75 −0.5

0.8

−0.6

−0.25

The graph is leaf-rose with range between -1
and 1. The value of a decides the number of
leaves.
For even value of a, the no.of leaves is 2a
(0  ✓  2n⇡)
For odd value of a, the no.of leaves is a
(0  ✓  (2n+ 1)⇡)

60. For a = 1

0.5

0.5

0.75

1.0

−0.5 0.250.0−0.25

0.25

0.0

For a = 2

−0.75

0.75

0.5−0.5 0.0

0.0

−0.25

0.25

0.25

−0.5

−0.75

−0.25 0.75

0.5

For a = 3

−0.25

−0.25 0.750.5

0.25

−0.5

−0.5 0.25

0.5

−1.0

−0.75

−0.75

0.0

0.0

For a = 4

0.6

−0.4

0.2 0.8−0.8

0.0

0.6

0.4−0.6 −0.4

0.8

0.0

0.4

−0.2
0.2

−0.2

−0.6

−0.8

For a = 5/2

0.8

−0.6

0.0

−0.8

−1.0

0.4

1.0

0.0

−0.2

0.6

−0.4

0.2
0.5−0.5

For a = 5
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−0.6 0.0

1.0

0.75

−0.75

0.4

0.0

−0.2

0.5

0.8

0.25

−0.4 0.2 0.6

−0.5

−0.25

−0.8

The graph is leaf-rose with range between -1
and 1. The value of a decides the number of
leaves.
For even value of a, the no.of leaves is 2a
(0  ✓  2n⇡)
For odd value of a, the no.of leaves is a
(0  ✓  (2n+ 1)⇡)

61. For a = 1

1.0

1.5

−1.0

1.00.50.0 2.0

−0.5

0.0

0.5

For a = 2

2.0

0.0

0.5

3.0

1.0

−0.5

1.5

1.5

1.00.0 0.5

−1.0

2.5

−1.5

For a = 3

0 1 3

2

1

0

−2

−1

42

For a = 4

52

1

40 1

−2

0

−1

2

3

For a = 5/2

3.53.01.0
−0.4

1.50.0 2.5

1.2

1.6

−1.6

0.4

2.0

−2.0

−1.2

−0.8

0.5

2.0

0.8

0.0

For a = 5

−3

1

40 6

−2

5

−1

0

3

1 3

2

2

For a = �1
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1.0

−0.5

−1.0

−1.0−1.5−2.0 0.0

−0.5

0.0

0.5

For a = �2

−1.0

0.0

0.5

0.0

1.0

−0.5
−1.5

1.5

−2.0−3.0 −2.5

−1.0

−0.5

−1.5

The graph is limacon. The value of a decides
the size and the direction of the loops. As a
becomes larger, the inner loop coincides with
the outer loop.

62. For a = 1

1.0

0.0

1.0

0.0−1.0 0.5

2.0

−0.5

0.5

1.5

For a = 2

1.5

−0.5 1.51.0

2.5

1.0

−1.0 0.5

3.0

0.0

0.5

−1.5

2.0

0.0

For a = 3

2−2

0

−1 1

3

2

4

1

0

For a = 4

1

2−1

4

1

2

−2

0

3

5

0

For a = 5/2

−1

2.5

1.5

3.5

−2

0.5

0

1.0

2.0

3.0

0.0

21

For a = 5
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0

4

−1−3 1 3

1

0

2

6

−2 2

5

3

For a = �1
1.0

−2.0

−1.0

0.0−1.0 0.5

0.0

−0.5

−1.5

−0.5

For a = �2

−1.5

−0.5 1.51.0

−0.5

−2.0

−1.0 0.5

0.0

−3.0

−2.5

−1.5

−1.0

0.0

The graph is limacon. The value of a decides
the size and the direction of the loops. As a
becomes larger, the inner loop coincides with
the outer loop.

63.

1

0.5

0

-1

-0.5

10.80.60.20 0.4

There is no graph to the left of the y-axis be-
cause the value of the x-coordinate of every
point is positive, which we see as follows:
x = r cos ✓

= 4 cos ✓ sin2 ✓ cos ✓

= 4 cos2 ✓ sin2 ✓

64. The “Garfield curve”:

2

0

1

-1

-2

6-2 40-4-6 2

65. Graph for 0  ✓  ⇡:

0.2

-0.2

0.4

0

-0.4

10.80.60.40.20

Graph for 0  ✓  2⇡:
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0

0.6

0.2

0.4

0

-0.4

-0.2

10.80.60.2 0.4

Graph for 0  ✓  3⇡:

0.8

0.4

-0.4

0.6

0.2

-0.2

0
10.20 0.80.4 0.6

Graph for 0  ✓  6⇡:

1

0.6

-0.2

0.8

0.4

-0.4

10.60.40.2-0.2
0

0.2

0.80-0.4

Graph for 0  ✓  12⇡:

1

0.6

-0.2

0.8

0.4

-0.4

10.50
0

0.2

-0.5-1

Graph for 0  ✓  23⇡:

1

0

0.5

0.50

-0.5

-1

-0.5 1-1

Graph for 0  ✓  24⇡:

1

0

0.5

0.50

-0.5

-1

-0.5 1-1

After 24⇡, the graph will repeat itself.

66. Graph for 0  ✓  1:

-0.2

-0.6

0

-0.4

-0.8

0.4 0.8-0.4 0

Graph for 0  ✓  2:

0.8

0

0.4

-0.4

-0.8

0.80.4-0.4 0

Graph for 0  ✓  3:
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0.8

0

0.4

0.8-0.4

-0.8

0 0.4

-0.4

Graph for 0  ✓  4:

0.8

0

0.4

-0.4

-0.8

0.80 0.4-0.4

Graph for 0  ✓  10:

0.8

0

0.4

-0.4

-0.8

0.8-0.8 0.40-0.4

Graph for 0  ✓  15:

0.8

0

0.4

-0.4

-0.8

0.80.40-0.4-0.8

Graph for 0  ✓  20:

0.8

0

0.4

-0.4

1-0.5 0 0.5-1

-0.8

Graph for 0  ✓  50:

1

0

0.5

0.5

-0.5

-1

-0.5 1-1 0

Graph for 0  ✓  100:

1

0

0.5

0.5

-0.5

-1

-0.5 1-1 0

Eventually the region will be blacked in en-
tirely.

67.

0

4.8

1

3.2 4.00.8

2

1.6

−2

6.40.0 5.6 7.22.4

−1
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x (t) = (t� ⇡/2) (t� 3⇡/2) cos t

y (t) = (t� ⇡/2) (t� 3⇡/2) sin t

68.
1.0

−0.4

−0.6

−0.8

x

y

0.0
0.5

0.2

0.6

−0.2

−1.0

1.00.0

0.8

0.4

0.750.25

69. (a) It is clear enough that there is a critical
angle formed by the two lines from the
ball, tangent to the hole. In one possi-
ble set-up, the ball is at the origin O, the
hole is centered at D = (d, 0) (on the x-
axis, at distance d), and the critical angle
A

0

is being measured from the tangent
line to the center line of the hole (the
x-axis). If the upper point of tangency
is denoted by T , one must recall that in
the triangle TOD, the right angle is at T
rather than at D. This makes OD the hy-

potenuse, sinA
0

=
opposite

hypotenuse
=

h

d
, and

A
0

= sin�1(h/d). Any acceptable angle
A has to satisfy �A

0

< A < A
0

.

(b) Substituting x = r cos ✓ and y = r sin ✓
into the equation
x = d�

p
h2 � y2 yields

r cos ✓ = d�
p
h2 � r2 sin2 ✓

Isolating the square root and squaring, we
get

h2 � r2 sin2 ✓ = (d� r cos ✓)2

0 = r2(cos2 ✓ + sin2 ✓)� 2d(cos ✓)r

+ (d2 � h2)

= r2 � 2d(cos ✓)r + (d2 � h2)

The quadratic formula then gives,

r =
2d cos ✓ ±

p
4d2 cos2 ✓ � 4(d2 � h2)

2

= d cos ✓ ±
p
d2 cos2 ✓ � (d2 � h2)

(c) There are no more calculations to be done
at this point. According to the conclu-
sions of part(a), it must be the case that
A

1

= �A
0

while A
2

= A
0

. From part(b)
one finds

r
1

(A) = d cos(A)�
p
d2 cos2 A� (d2 � h2)

and given in this problem is

r
2

(A) = d+ b

 
1�


A

sin�1(h/d)

�
2

!

= d+ b

 
1�


A

A
0

�
2

!
.

One can observe, if the ball is to just drop
into the side of the hole (A ⇡ A

0

), that
r
1

is just about
p
d2 � h2 and r

2

is just
about d. There is very little margin for
error on the speed.

(d) The ball will go in the hole if it is hit so
that it would end up in the region below

19181716
0

15

0.1

-0.1

-0.15

0.05

0.15

-0.05

The ball can go 4 feet past the hole if hit
dead center, but must be hit softer toward
the edges.

9.5 Calculus and Polar Coordi-

nates

1. (a) f(✓) = sin 3✓, f 0(✓) = 3 cos 3✓

dy

dx

����
✓=

⇡
3

=
3 cos⇡ sin ⇡

3

+ sin⇡ cos ⇡

3

3 cos⇡ cos ⇡

3

� sin⇡ sin ⇡

3

=
3(

p
3

2

)

3( 1
2

)
=

p
3

(b) f(✓) = sin 3✓, f 0(✓) = 3 cos 3✓

dy

dx

����
✓=

⇡
2

=
3 cos 3⇡

2

sin ⇡

2

+ sin 3⇡

2

cos ⇡

2

3 cos 3⇡

2

cos ⇡

2

� sin 3⇡

2

sin ⇡

2

=
0

1
= 0
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2. (a) f(✓) = cos 2✓, f 0(✓) = �2 sin 2✓

dy

dx

����
✓=0

=
�2 sin 0 sin 0 + cos 0 cos 0

�2 sin 0 cos 0� cos 0 sin 0

=
1

0
= undefined

(b) f(✓) = cos 2✓, f 0(✓) = �2 sin 2✓

dy

dx

����
✓=

⇡
4

=
�2 sin ⇡

2

sin ⇡

4

+ cos ⇡

2

cos ⇡

4

�2 sin ⇡

2

cos ⇡

4

� cos ⇡

2

sin ⇡

4

=
�2(

p
2

2

)

�2(
p
2

2

)
= 1

3. (a) f(✓) = 3 sin ✓, f 0(✓) = 3 cos ✓

dy

dx

����
✓=0

=
3 cos 0 sin 0 + 3 sin 0 cos 0

3 cos 0 cos 0� 3 sin 0 sin 0

=
0

3
= 0

(b) f(✓) = 3 sin ✓, f 0(✓) = 3 cos ✓

dy

dx

����
✓=

⇡
2

=
3 cos ⇡

2

sin ⇡

2

+ 3 sin ⇡

2

cos ⇡

2

3 cos ⇡

2

cos ⇡

2

� 3 sin ⇡

2

sin ⇡

2

=
0

�3
= 0

4. (a) f(✓) = sin 4✓, f 0(✓) = 4 cos 4✓

dy

dx

����
✓=

⇡
4

=
4 cos⇡ sin ⇡

4

+ sin⇡ cos ⇡

4

4 cos⇡ cos ⇡

4

� sin⇡ sin ⇡

4

=
�4(

p
2

2

)

�4(
p
2

2

)
= 1

(b) f(✓) = sin 4✓ , f 0(✓) = 4 cos 4✓

dy

dx

����
✓=

⇡
16

=
4 cos ⇡

4

sin ⇡

16

+ sin ⇡

4

cos ⇡

16

4 cos ⇡

4

cos ⇡

16

� sin ⇡

4

sin ⇡

16

=
4(

p
2

2

) sin ⇡

16

+ (
p
2

2

) cos ⇡

16

4(
p
2

2

) cos ⇡

16

� (
p
2

2

) sin ⇡

16

⇡ 0.473

5. (a) f(✓) = e2✓, f 0(✓) = 2e2✓

dy

dx

����
✓=0

=
2e0 sin 0 + e0 cos 0

2e0 cos 0� e0 sin 0
=

1

2

(b) f(✓) = e2✓, f 0(✓) = 2e2✓

dy

dx

����
✓=1

=
2e2 sin 1 + e2 cos 1

2e2 cos 1� e2 sin 1

=
2 sin 1 + cos 1

2 cos 1� sin 1
⇡ 9.297

6. (a) f(✓) = ln✓, f 0(✓) =
1

✓

dy

dx

����
✓=e

=
1

e

sin e+ (ln e) cos e
1

e

cos e� (ln e) sin e

=
sin e+ e cos e

cos e� e sin e
⇡ 1.0193

(b) f(✓) = ln✓, f 0(✓) =
1

✓
dy

dx

����
✓=4

=
1

4

sin 4 + (ln4)cos4
1

4

cos 4� (ln4) sin 4

=
sin 4 + 4(ln 4) cos 4

cos 4� 4(ln4) sin 4

⇡ �1.2366

7. (a) |r| is a maximum when sin 3✓ = ±1.
This occurs when 3✓ = ⇡/2 + k⇡ or
✓ = ⇡/6 + k⇡/3 for any integer k. We
have f(✓) = sin 3✓ so f 0(✓) = 3 cos 3✓.
Thus the slope of the tangent line is:
dy

dx

����
✓=

⇡
6 +

k⇡
3

=
0 + sin(⇡

2

+ k⇡) cos(⇡
6

+ k⇡

3

)

0� sin(⇡
2

+ k⇡) sin(⇡
6

+ k⇡

3

)

=
sin(⇡

2

+ k⇡) cos(⇡
6

+ k⇡

3

)

� sin(⇡
2

+ k⇡) sin(⇡
6

+ k⇡

3

)

= �
cos(⇡

6

+ k⇡

3

)

sin(⇡
6

+ k⇡

3

)

Here, the first terms of the numerator and
denominator are always 0 since both have
a factor of cos(⇡

2

+ k⇡).
At ✓ = ⇡

6

+ k⇡

3

, r = sin(⇡
2

+ k⇡)

so the point in question is either
✓
cos

✓
⇡

6
+

k⇡

3

◆
, sin

✓
⇡

6
+

k⇡

3

◆◆
or

✓
� cos

✓
⇡

6
+

k⇡

3

◆
,� sin

✓
⇡

6
+

k⇡

3

◆◆
.

In either case, the slope of the radius
connecting the point to the origin is
sin(⇡

6

+ k⇡

3

)

cos(⇡
6

+ k⇡

3

)
which is the negative recipri-

col of the slope of the tangent line found
above. Therefore the tangent line is per-
pendicular to the radius connecting the
point to the origin.

(b)
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−1

y

2

3−3

1

0

50 2−4−5 −2 1

−1
t

−2

4

f(✓) = 3 cos 3✓ sin ✓ + sin 3✓ cos ✓
r = sin 3✓
x = r cos ✓ ; y = r sin ✓
x = sin 3✓ cos ✓ ; y = sin 3✓ sin ✓
dy

d✓
= 3 cos 3✓ sin ✓ + sin 3✓ cos ✓ ... (1)

For horizontal tangents,
dy

d✓
= 0

) 3 cos 3✓ sin ✓ + sin 3✓ cos ✓ = 0
To find the locations of all horizontal tan-
gents, we have to find the roots of (1)

Clearly, ✓ = 0,
⇡

2
,⇡ are the solutions of

(1) from the graph
f(✓) = 3 cos 3✓ sin ✓ + sin 3✓ cos ✓
f 0(✓) = 6 cos 3✓ cos ✓ � 10 sin 3✓ sin ✓
We can find the other two solutions by
Newton Raphson’s Method

✓
1

= ✓
0

� f (✓
0

)

f 0 (✓
0

)
,

Where ✓
0

is the initial guess. ✓
0

=
⇡

4
=

3.14

4
= 0.785

f(0.785) = �0.99998,
f 0 (0.785) = �7.9998

✓
1

= 0.785� (�0.99998)

(�7.9998)
= 0.659

Repeating the above process for

✓
0

=
3⇡

4

✓
1

= ✓
0

� f (✓
0

)

f 0 (✓
0

)

✓
0

=
3⇡

4
= 2.3562

f (2.356) = 1, f 0(2.356) = �8

✓
1

= 2.356� 1

(�8)
✓
1

= 2.356 + 0.125 = 2.481
So the roots of this equation are
✓ = 0, 0.659, ⇡

2

, 2.481,⇡
The correspoding points are: for ✓ = 0,
(x, y) = (sin 3✓ cos ✓, sin 3✓ sin ✓)
for ✓ = ⇡ , (x, y) = (0, 0)

for ✓ = 0.659 , (x, y) = (0.73, 0.56)
for ✓ = ⇡

2

, (x, y) = (0,�1)
for ✓ = 2.481 , (�0.73, 0.56)
Therefore at four points (0, 0) , (0,�1)
and (0.73, 0.56), (�0.73, 0.56) there
are horizontal tangents.
Concavity of the polar curve:
r = sin 3✓

u =
1

r
=

1

sin 3✓
= cos ec3✓

Concavity occurs when

u+
d2u

d✓2
> 0

du

d✓
= �3 cos ec3✓ cot 3✓

d2u

d✓2
= 9 cos ec3✓(cos ec23✓ + cot23✓)

Therefore u+
d2u

d✓2
= cos ec3✓

+ 9 cos ec3✓(cos ec23✓ + cot23✓)
= cos ec3✓⇥

1 + 9(cos ec23✓ + cot23✓)
⇤
... (2)

Wehave to find the nature of the curve
at ✓ = 0.659.Substituting ✓ in (2)

u+
d2u

d✓2

= (1.0885)
⇥
1 + 9(cos ec23✓ + cot23✓)

⇤

The terms in the square bracket are pos-
itive because they are square terms

u+
d2u

d✓2
> 0

Therefore u+
d2u

d✓2
> 0, and so

the curve is concave at ✓ = 0.659
Substituting for ✓ = 0.2481 in (2)

we get u+
d2u

d✓2
> 0

Therefore at (0.73, 0.56) and
(�0.73, 0.56) the curve is concave

At ✓=0,
⇡

2
,⇡ concavity is not possible

0.8

−2.0

2−2 0

−0.8

−1.6

−0.4

0.0

2.0

−1

0.4

1.2

−1.2

1

1.6

8. (a) |r| is a maximum when cos 4✓ = ±1. This
occurs when 4✓ = k⇡ or ✓ = k⇡/4 for any
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integer k. We have
f(✓) = cos 4✓ so f 0(✓) = �4 sin 4✓.
Thus the slope of the tangent line is:
dy

dx

����
✓=

k⇡
4

=
�4 sin(k⇡) sin k⇡

4

+ cos(k⇡) cos k⇡

4

�4 sin(k⇡) cos k⇡

4

� cos(k⇡) sin k⇡

4

=
cos(k⇡) cos k⇡

4

� cos(k⇡) sin k⇡

4

= �
cos k⇡

4

sin k⇡

4

At ✓ = k⇡

4

, r = cos(k⇡) = ±1
so the point in question is either✓
cos

k⇡

4
, sin

k⇡

4

◆
or

✓
� cos

k⇡

4
,� sin

k⇡

4

◆
.

In either case, the slope of the radius con-

necting the point to the origin is
sin k⇡

4

cos k⇡

4

which is the negative recipricol of the
slope of the tangent line found above.
Therefore the tangent line is perpendic-
ular to the radius connecting the point to
the origin.

(b)

−1.5

0.5

0.0

0.0

1.5

−1.0

−1.0

−1.5 1.0−0.5 1.5

−0.5

0.5

1.0

r = cos 4✓;
x = cos 4✓ cos ✓; y = cos 4✓ sin ✓
is the equation of the polar curve

x = cos 4✓ cos ✓; y = cos 4✓ sin ✓
dy

d✓
= cos 4✓ cos ✓ � 4 sin ✓ sin 4✓ ... (1)

For horizontal tangents,
dy

d✓
= 0

cos 4✓ cos ✓ � 4 sin 4✓ sin ✓ = 0
To find the locations of all horizontal
tangents, r = cos 4✓ wehave to find
the solutions of (1).

. Clearly, ✓ =
⇡

2
is a

solution from the graph.
We can find all other four solutions using
NewtonRaphsonmethod.

f (✓) = cos 4✓ cos ✓ � 4 sin 4✓ sin ✓
f 0 (✓) = � cos 4✓ sin�4 sin 4✓ cos ✓
� 16 cos 4✓ cos ✓ � 4 sin 4✓ cos ✓

f 0 (✓) = �17 cos 4✓ · cos ✓ � 8 sin 4✓ · cos ✓

2

y

1

3.2

0.0

−2
t

6

4.0

5−4−5

2.4

0
−0.8
−1

−4.0

−6 3 4

0.8

−3

−3.2

−1.6

1.6

−2.4

Let ✓
1

, ✓
2

, ✓
3

, ✓
4

, ✓
5

, ✓
6

, ✓
7

, ✓
8

, ✓ be the
other solultions of the equation.
Let ✓

0

be the initial guess.
From the graph, ✓

0

= 0.25

Therefore ✓
1

= ✓
0

� f (✓
0

)

f 0 (✓
0

)

✓
1

= 0.25� f (0.25)

f 0 (0.25)
= 0.2148

Initial guess ✓
0

=0.75 from the graph.

✓
2

= 0.75� f (0.75)

f 0 (0.75)
= 0.8542

Initial guess ✓
0

= 2.25 fromgraph

✓
3

= 2.25� f (2.25)

f 0 (2.25)
= 2.3003

✓
3

= ✓
0

� f (✓
0

)

f 0 (✓
0

)
Initial guess ✓

0

= 2.75 fromgraph

✓
4

= 2.75� f (2.75)

f 0 (2.75)
= 2.9551

Initial guess ✓
0

= 3.25 fromgraph

✓
5

= 3.25� f (3.25)

f 0 (3.25)
= 3.3938

Initial guess ✓
0

= 4 fromgraph

✓
6

= 4� f (4)

f 0 (4)
= 3.9822

Initial guess ✓
0

= 4.75 fromgraph

✓
7

= 4.75� f (4.75)

f 0 (4.75)
= 4.7120

Initial guess ✓
0

= 5.5 fromgraph

✓
8

= 5.5� f (5.5)

f 0 (5.5)
= 5.4386

Initial guess ✓
0

= 6 fromgraph

✓
9

= 6� f (6)

f 0 (6)
= 6.06742

The corresponding points on the curve
r = cos 4✓(specified in rectangular
coordinates) are
(cos 4✓

1

· cos ✓
1

, cos 4✓
1

· sin ✓
1

),
(cos 4✓

2

· cos ✓
2

, cos 4✓
2

· sin ✓
2

),
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(cos 4✓
3

· cos ✓
3

, cos 4✓
3

· sin ✓
3

), and
(cos 4✓

4

· cos ✓
4

, cos 4✓
4

· sin ✓
4

),
(cos 4✓

5

· cos ✓
5

, cos 4✓
5

· sin ✓
5

),
(cos 4✓

6

· cos ✓
6

, cos 4✓
6

· sin ✓
6

),
(cos 4✓

7

· cos ✓
7

, cos 4✓
7

· sin ✓
7

),
(cos 4✓

8

· cos ✓
8

, cos 4✓
8

· sin ✓
8

),
(cos 4✓

9

· cos ✓
9

, cos 4✓
9

· sin ✓
9

)
Substituting the values of
✓
1

, ✓
2

, ✓
3

, ✓
4

, ✓
5

, ✓
6

, ✓
7

, ✓
8

and ✓
9

wehave (0.6380, 0.1392),
(�0.6321,�0.7257), (0.6499,�0.7269)
(�0.7217, 0.1361), (�0.5160,�0.1330),
(0.6508, 0.7270), (�3.8898,�0.9999),
(�0.6455, 0.7268) and (0.6350,-0.1392)

At ✓ =
⇡

2
= 1.57, the correspoding

points are (0, 1) and (0,�1). so it is clear
that there are horizontal tangents at
(0, 1) and (0,�1).

Concavity of the curve:
r = cos 4✓

u =
1

r
=

1

cos 4✓
= sec 4✓

du

d✓
= 4 sec 4✓ · tan 4✓

d2u

d✓2
= 4[4sec34✓ + 4tan24✓ · sec 4✓]

= 16 sec 4✓[sec24✓ + tan24✓].

Consideru+
d2u

d✓2

= sec 4✓ + 16 sec[sec24✓ + tan24✓].
= sec 4✓[1 + 16(sec24✓ + tan24✓)].
The above expression is > 0, because
the terms in the square bracket are square

terms and sec 4✓ > 0, for ✓ =
⇡

2
.

Therefore at ✓ =
⇡

2
, curve is concave.

At ✓ = 0.2148, u+
d2u

d✓2
> 0.

Therefore at ✓ = 0.2148, curve is concave.

At ✓ = 0.8542, u+
d2u

d✓2
< 0.

Therefore at ✓ = 0.8542, curve is not
concave.

At ✓ = 2.3003, u+
d2u

d✓2
< 0.

Therefore at ✓ = 2.3003, the curve is
not concave.

At ✓ = 2.9551 , u+
d2u

d✓2
> 0.

Therefore at ✓ = 2.9551, the curve is
concave.

At ✓=3.3938,u+
d2u

d✓2
> 0.

Therefore at ✓ = 3.3938, the curve is
concave.

At ✓=3.9822,u+
d2u

d✓2
< 0.

Therefore at ✓ = 3.9822, the curve is not
concave.

At ✓=4.7120,u+
d2u

d✓2
> 0.

Therefore at ✓ = 4.7120, the curve is
concave.

At ✓=5.4386, u+
d2u

d✓2
< 0.

Therefore at ✓ = 5.4386, the curve is not
concave.

At ✓=6.0674,u+
d2u

d✓2
> 0.

Therefore at ✓ = 6.0674, the curve is
concave.
The curve is concave at
✓ = 0.2148, 2.9551, 3.3938, 4.7120 and
6.0674 and for other values of ✓,
the curve is not concave.

2

y

1

3.2

0.0

−2
t

6

4.0

5−4−5

2.4

0
−0.8
−1

−4.0

−6 3 4

0.8

−3

−3.2

−1.6

1.6

−2.4

f(✓) = cos 4✓ · cos ✓ � 4 sin ✓. sin 4✓
is the equation of the above graph.

9. (a) |r| is a maximum when cos 2✓ = 0.
This occurs when 2✓ = ⇡/2 + k⇡ or
✓ = ⇡/4 + k⇡/2 for any integer k.

We have f(✓) = 2� 4 sin 2✓ so,
f 0(✓) = �8 cos 2✓.
Thus the slope of the tangent line is:
dy

dx

����
✓=

⇡
4 +

k⇡
2

=
0 + (2� 4 sin(⇡

2

+ k⇡)) cos(⇡
4

+ k⇡

2

)

0� (2� 4 sin(⇡
2

+ k⇡)) sin(⇡
4

+ k⇡

2

)

=
(2� 4 sin(⇡

2

+ k⇡)) cos(⇡
4

+ k⇡

2

)

�(2� 4 sin(⇡
2

+ k⇡)) sin(⇡
4

+ k⇡

2

)

= �
cos(⇡

4

+ k⇡

2

)

sin(⇡
4

+ k⇡

2

)

Here, the first terms of the numerator and
denominator are always 0 since both have
a factor of cos(⇡

2

+ k⇡).

At ✓ =
⇡

4
+

k⇡

2
, r = 2� 4 sin(⇡

2

+ k⇡)
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so the point in question is either
✓
�2 cos

✓
⇡

4
+

k⇡

2

◆
,�2 sin

✓
⇡

4
+

k⇡

2

◆◆

or,
✓
6 cos

✓
⇡

4
+

k⇡

2

◆
, 6 sin

✓
⇡

4
+

k⇡

2

◆◆
.

In either case, the slope of the radius con-
necting the point to the origin is
sin(⇡

4

+ k⇡

2

)

cos(⇡
4

+ k⇡

2

)
which is the negative recipri-

cal of the slope of the tangent line found
above. Therefore the tangent line is per-
pendicular to the radius connecting the
point to the origin.

(b)

−7.5

7.5

5.0−5.0 0.0

0.0

−2.5

2.5

2.5

−5.0

−7.5

−2.5 7.5

5.0

The above graph is the equation of the
Polar graph r = 2� 4 sin 2✓.

r = 2� 4 sin 2✓;
x = 2 cos ✓ � 4 sin 2✓ cos ✓
y = 2 sin ✓ � 4 sin 2✓ sin ✓
y = 2 sin ✓ � 2[cos ✓ � cos 3✓]
= 2 sin ✓ � 2 cos ✓ + 2 cos 3✓

For horizontal tangents,
dy

d✓
= 0;

dy

d✓
= 2 cos ✓ + 2 sin ✓ � 6 sin 3✓

cos ✓ + sin ✓ � 3 sin 3✓ = 0.
Tofind the locations of all horizontal
tangents, we need to find the roots of the
above equation. We can find the approx.
roots usingNewton-Raphsonmethod.

✓
1

= ✓
0

� f(✓
0

)

f 0(✓
0

)
, where ✓

0

is the initial

guess, and ✓
1

are the roots of the equation.
f (✓) = cos ✓ + sin ✓ � 3 sin 3✓
f 0 (✓) = � sin ✓ + cos ✓ � 9 cos 3✓

The below is the graph of f(✓)

5

1

y

3

2.5

−5

2

−4

−1
−2.5

−3

t

−2

0

4

5.00.0−5.0

From the above graph the initial value of
✓
0

= 0

✓
1

= ✓
0

� f(✓
0

)

f 0(✓
0

)
= 0� f(0)

f 0(0)
f(0) = 1, f 0(0) = �8

✓
1

= 0� 1

�8
= 0.125

So the corresponding point of x and y are
x = (2� 4 sin 2✓) · cos ✓
= (2� 4 sin 0.25) · cos(0.125) = 1.0025

y = (2� 4 sin 2✓) · sin ✓
= (2� 4 sin 0.25) · sin(0.125) = 0.1260

Now consider the initial guess as ⇡/3.

✓
0

=
⇡

3
;

✓
1

=
⇡

3
�

f
�
⇡

3

�

f 0
�
⇡

3

� =
⇡

3
� 1.3660

8.63
= 0.889

✓
0

=
2⇡

3

✓
1

=
2⇡

3
�

f
�
2⇡

3

�

f 0
�
2⇡

3

� = 2.1297

✓
0

= ⇡

✓
1

= ⇡ � f (⇡)

f 0 (⇡)
= 3.2416

✓
0

=
4⇡

3

✓
1

=
4⇡

3
�

f
�
4⇡

3

�

f 0
�
4⇡

3

� = 4.0306

✓
0

=
5⇡

3

✓
1

=
5⇡

3
�

f
�
5⇡

3

�

f 0
�
5⇡

3

� = 5.2713

Therefore the corresponding point of x
and y are (1.0025, 0.1260) ,
(�1.2065,�1.4865) , (�2.9676, 4.7445) ,
(�1.1992,�0.1203) , (1.2064, 1.4865)
and (2.9677,�4.7450)
So at these points we can get the hori-
zontal tangents. Now to find the con-
cavity of the curve at these two points:
r = 2� 4 sin 2✓;

u =
1

r
=

1

2� 4 sin 2✓
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du

d✓
=

�(�8 cos 2✓)

(2� 4 sin 2✓)2

=
8 cos 2✓

(2� 4 sin 2✓)2
= 8 cos 2✓ · u2

d2u

d✓2

= 8


u2 · (�2 sin 2✓) + 2u.

du

d✓
· cos 2✓

�

= 16
⇥
8u3 · cos22✓ � u2 · sin 2✓

⇤

= 16u2

⇥
8ucos22✓ � sin 2✓

⇤

Now consider,

u+
d2u

d✓2

= u+ 16u2

⇥
8u · cos22✓ � sin 2✓

⇤

At ✓ = 0.125, u = 0.9897 and

u+
d2u

d✓2
> 0.

Therefore at ✓ = 0.125, the curve is
concave.
At ✓=0.889, u = 0.9594 and

u+
d2u

d✓2
< 0.

Therefore at ✓ = 0.889, the curve is
not concave.
At ✓=2.1297, u = 0.1787 and

u+
d2u

d✓2
> 0.

Therefore at ✓ = 2.1297, the curve is
concave.
At ✓=3.2416, u = 0.5101 and

u+
d2u

d✓2
> 0.

Therefore at ✓ = 3.2416, the curve is
concave.
At ✓=4.0306, u = �0.5223 and

u+
d2u

d✓2
< 0.

Therefore at ✓ = 4.0306, the curve is
not concave.
At ✓=5.2713, u = 0.1787 and

u+
d2u

d✓2
> 0.

Therefore at ✓ = 5.2713, the curve is
concave.

Therefore, the curve is concave at
✓ = 0.125, 2.1297, 3.2416 and 5.2713
and it is not concave for the other values
of ✓.

10. (a) |r| is a maximum when cos 2✓ = 0. This
occurs when 2✓ = ⇡/2 + k⇡ or
✓ = ⇡/4 + k⇡/2 for any integer k.
We have f(✓) = 2 + 4 sin 2✓ so
f 0(✓) = 8 cos 2✓.
Thus the slope of the tangent line is:

dy

dx

����
✓=

⇡
4 +

k⇡
2

=
0 + (2 + 4 sin(⇡

2

+ k⇡)) cos(⇡
4

+ k⇡

2

)

0� (2 + 4 sin(⇡
2

+ k⇡)) sin(⇡
4

+ k⇡

2

)

=
(2 + 4 sin(⇡

2

+ k⇡)) cos(⇡
4

+ k⇡

2

)

�(2 + 4 sin(⇡
2

+ k⇡)) sin(⇡
4

+ k⇡

2

)

= �
cos(⇡

4

+ k⇡

2

)

sin(⇡
4

+ k⇡

2

)

Here, the first terms of the numerator and
denominator are always 0 since both have
a factor of cos(⇡

2

+ k⇡).

At ✓ =
⇡

4
+

k⇡

2
, r = 2 + 4 sin(⇡

2

+ k⇡)

so the point in question is either✓
�2 cos

✓
⇡

4
+

k⇡

2

◆
,�2 sin

✓
⇡

4
+

k⇡

2

◆◆

or✓
6 cos

✓
⇡

4
+

k⇡

2

◆
, 6 sin

✓
⇡

4
+

k⇡

2

◆◆
.

In either case, the slope of the radius
connecting the point to the origin is
sin(⇡

4

+ k⇡

2

)

cos(⇡
4

+ k⇡

2

)
which is the negative recipri-

col of the slope of the tangent line found
above. Therefore the tangent line is per-
pendicular to the radius connecting the
point to the origin.

(b)

−7.5

7.5

5.0−5.0 0.0

0.0

−2.5

2.5

2.5

−5.0

−7.5

−2.5 7.5

5.0

The above graph is the equation of the
polar curve r = 2 + 4 sin 2✓.
x = 2 · (1 + 2 sin 2✓) · cos ✓;
y = 2 · (1 + 2 sin 2✓) · sin ✓;
y = 2 sin ✓ + 2 · (2 sin ✓ · sin 2✓)
= 2 sin ✓ + 2 (cos ✓ � cos 3✓)
= 2 sin ✓ + 2 cos ✓ � 2 cos 3✓.

For horizontal tangents,
dy

d✓
= 0.

y = 2 sin ✓ + 2 cos ✓ � 2 cos 3✓.
dy

d✓
= 2 cos ✓ � 2 sin ✓ + 6 sin 3✓
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2 cos ✓ � 2 sin ✓ + 6 sin 3✓ = 0.
sin ✓ � cos ✓ = 3 sin 3✓.

The roots of the above equation give the
locations of the horizontal tangents.

−2.4

−0.8

−4.0

4.0

5

1.6

0.8
3

3.2

2.4

1

0.0

0

−3.2

4

−1.6

t
62

From the above graph, the initial value of,
✓
0

= 0;
Consider, f (✓) = sin ✓ � cos ✓ � 3 sin 3✓
f 0 (✓) = cos ✓ + sin ✓ � 9 cos 3✓

✓
0

=
⇡

3

✓
1

=
⇡

3
�

f(⇡
3

)

f 0(⇡
3

)
= 1.0113

✓
0

=
2⇡

3

✓
1

=
2⇡

3
�

f( 2⇡
3

)

f 0( 2⇡
3

)
= 2.2515

✓
0

= ⇡

✓
1

= ⇡ � f(⇡)

f 0(⇡)
= 3.01

✓
0

=
4⇡

3

✓
1

=
4⇡

3
�

f( 4⇡
3

)

f 0( 4⇡
3

)
= 4.1534

✓
0

=
5⇡

3

✓
1

=
5⇡

3
�

f( 5⇡
3

)

f 0( 5⇡
3

)
= 5.3915

✓
0

= 6

✓
1

= 6� f(6)

f 0(6)
= 6.1925

So the corresponding point of x and y are
(2.9715, 4.7450) , (1.2037,�1.4864) ,
(�0.9511, 0.1259) , (�2.9682,�4.7450) ,
(�1.1997, 1.4862) and (1.2732,�0.1158)
So at the above points we can get the hor-
izontal tangents. Now to find the con-
cavity of the curve at these two points:
r = 2 + 4 sin 2✓;

u =
1

r
=

1

2 + 4 sin 2✓
du

d✓
=

�(8 cos 2✓)

(2 + 4 sin 2✓)2
= �8 cos 2✓ · u2

d2u

d✓2

= �8


u2 · (�2 sin 2✓) + 2u.

du

d✓
· cos 2✓

�

= �16
⇥
�8u3 · cos22✓ � u2 · sin 2✓

⇤

= 16u2

⇥
8ucos22✓ + sin 2✓

⇤

Now, consider u+
d2u

d✓2

= u+ 16u2

⇥
8ucos22✓ + sin 2✓

⇤

At ✓ = 1.0113,u+
d2u

d✓2
> 0.

Therefore at ✓ = 1.0113, the curve is
concave.

At ✓ = 2.2515,u+
d2u

d✓2
< 0.

Therefore at ✓ = 2.2515, the curve is
not concave.

At ✓ = 3.01,u+
d2u

d✓2
> 0.

Therefore at ✓ = 3.01, the curve is
concave.

At ✓ = 4.1534, u+
d2u

d✓2
> 0.

Therefore at ✓ = 4.1534, the curve is
concave.

At ✓ = 5.3915, u+
d2u

d✓2
< 0.

Therefore at ✓ = 5.3915, the curve is
not concave.

At ✓ = 6.1925, u+
d2u

d✓2
> 0.

Therefore at ✓ = 6.1925, the curve is
concave.
So the curve is concave at
✓ = 1.0113, 3.01, 4.1534 and 6.1925
and it is not concave at other values
of ✓.
✓ = 1.012

u =
1

2 + 4 sin 2✓
= 0.1787

u+
d2u

d✓2

= u+ 16u2

⇥
8ucos22✓ + sin 2✓

⇤

u+
d2u

d✓2
= 0.1787 + 0.5109[0.2741 + 0.2474]

Clearly u+
d2u

d✓2
> 0.

So the curve is concave at ✓ = 1.012.

11. One leaf is traced out over the range
⇡/6  ✓  ⇡/2, so the area A is

A =
1

2

Z
⇡/2

⇡/6

cos2 3✓ d✓

=
1

6

✓
1

2
· 3✓ + 1

2
sin 3✓ cos 3✓

◆ ����
⇡/2

⇡/6
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=
1

6

✓
3⇡

4
� ⇡

4

◆
=

⇡

12

12. One leaf is traced out over the range
0  ✓  ⇡/4, so the area A is

A =
1

2

Z
⇡/4

0

sin2 4✓ d✓

=
1

4

Z
⇡/4

0

(1� cos 8✓) d✓

=
1

4

✓
✓ � 1

8
sin 8✓

◆ ����
⇡/4

0

=
⇡

16

13. The curve is traced out over the range
0  ✓  ⇡, so the area A is

A =
1

2

Z
⇡

0

4 cos2 ✓ d✓

= 2

Z
⇡

0

cos2 ✓ d✓

= 2

✓
1

2
✓ +

1

2
sin ✓ cos ✓

◆ ����
⇡

0

= 2
⇣⇡
2

⌘
= ⇡

14. The curve is traced out over the range
0  ✓  2⇡, so the area A is

A =
1

2

Z
2⇡

0

(2� 2 cos ✓)2 d✓

=
1

2

Z
2⇡

0

(4� 4 cos ✓ + 4 cos2 ✓) d✓

=
1

2
(6✓ � 4 sin ✓ + 2 sin ✓ cos ✓)

����
2⇡

0

=
1

2
(8⇡ + 4⇡) = 6⇡

15. A small loop is traced out over the range
7⇡/12  ✓  11⇡/12, so the area A is

A =
1

2

Z
11⇡/12

7⇡/12

(1 + 2 sin 2✓)2 d✓

=
1

2

Z
11⇡/12

7⇡/12

(1 + 4 sin 2✓ + 4 sin2 2✓) d✓

=
1

2

Z
11⇡/12

7⇡/12

(1 + 4 sin 2✓

+ 2(1� cos 4✓)) d✓

=
1

2

✓
3✓ � 2 cos 2✓ � 1

2
sin 4✓

◆ ����
11⇡/12

7⇡/12

=
⇡

2
� 3

p
3

4
⇡ 0.2718

16. A large loop is traced out over the range
�⇡/12  ✓  7⇡/12. Using our work from ex-

ercise 15, we see that the area A is

A =
1

2

✓
3✓ � 2 cos 2✓ � 1

2
sin 4✓

◆ ����
7⇡/12

�⇡/12

=
⇡

2
+

3
p
3

4
⇡ 4.4406

17. Endpoints for the inner loop are given by
✓ = sin�1(3/4) ⇡ 0.848 and
✓ = ⇡ � sin�1(3/4) ⇡ 2.294, so the area A is

A =
1

2

Z
2.294

0.848

(3� 4 sin ✓)2 d✓

=
1

2

Z
2.294

0.848

(9� 24 sin ✓ + 16 sin2 ✓) d✓

=
1

2

Z
2.294

0.848

(17� 24 sin ✓ � 8 cos 2✓) d✓

=
1

2
(17✓ + 24 cos ✓ � 4 sin 2✓)

����
2.294

0.848

⇡ 0.3806

18. Endpoints for the inner loop are given by
✓ = � cos�1(1/3) = �1.23096 and
✓ = cos�1(1/3) = 1.23096,
so the area A is

A =
1

2

Z
1.23096

�1.23096

(1� 3 cos ✓)2 d✓

=
1

2

Z
1.23096

�1.23096

(1� 6 cos ✓ + 9 cos2 ✓) d✓

=
1

2

✓
11✓

2
� 6 sin ✓ +

9

2
sin ✓ cos ✓

◆ ����
1.23096

�1.23096

⇡ 2.527638

19. Endpoints for the inner loop are given by

✓ =
� sin�1(�2/3)

3
⇡ 1.2904 and

✓ =
2⇡ + sin�1(�2/3)

3
⇡ 1.8512,

so the area A is

A =
1

2

Z
1.8512

1.2904

(2 + 3 sin 3✓)2 d✓

=
1

2

Z
1.8512

1.2904

(4 + 12 sin 3✓ + 9 sin2 3✓) d✓

⇡ 1

2
(�8.193) = �4.0965

20. Endpoints for the outer loop are given by

✓ =
2⇡ + sin�1(�2/3)

3
⇡ 1.8512 and

✓ =
3⇡ � sin�1(�2/3)

3
⇡ 3.3848,

so the area A is



9.5. CALCULUS AND POLAR COORDINATES 559

A =
1

2

Z
3.3848

1.8512

(2 + 3 sin 3✓)2 d✓

⇡ 1

2
(17.508) = 8.754

21. This region is traced out over
�⇡/6  ✓  7⇡/6,
so the area A is given by
A = A

1

�A
2

,

where A
1

=
1

2

Z
7⇡/6

�⇡/6

(3 + 2 sin ✓)2 d✓

and, A
2

=
1

2

Z
7⇡/6

�⇡/6

22 d✓.

This works out to A ⇡ 24.187

22. This region is traced out over 0  ✓  ⇡,
so the area A is given by
A = A

1

�A
2

,

where A
1

=
1

2

Z
⇡

0

22 d✓.

and, A
2

=
1

2

Z
⇡

0

(2� 2 sin ✓)2 d✓.

This works out to A = 16� ⇡

23. This region is traced out over
5⇡/6  ✓  13⇡/6,
so the area A is given by
A = A

1

�A
2

,

where A
1

=
1

2

Z
13⇡/6

5⇡/6

22 d✓.

and, A
2

=
1

2

Z
13⇡/6

5⇡/6

(1 + 2 sin ✓)2 d✓.

This works out to A =
2⇡

3
+

3
p
3

2
.

24. One fourth of this region is traced out over
⇡/12  ✓  5⇡/12, so the area A is given by
A = 4(A

1

�A
2

),

where A
1

=
1

2

Z
5⇡/12

⇡/12

(2 sin 2✓)2 d✓

and, A
2

=
1

2

Z
5⇡/12

⇡/12

12 d✓.

This works out to A = 4

✓p
3 +

2⇡

3

◆
.

25. Since the graph is symmetric through the x-
axis, we can take the portions of the area we
need above the x-axis and multiple these by 2.
We then need the area of r = 1 on the region
0  ✓  ⇡/2 (multiplied by 2)
plus the area of r = 1 + cos ✓ on the region
⇡/2  ✓  ⇡ (multiplied by 2).
We find that the area A is

A =
1

2
· 2
Z

⇡/2

0

12 d✓

+
1

2
· 2
Z

⇡

⇡/2

(1 + cos ✓)2 d✓

=

Z
⇡/2

0

1 d✓ +

Z
⇡

⇡/2

(1 + cos ✓)2 d✓

=
⇡

2
+

3⇡

4
� 2 =

5⇡

4
� 2

26. 1 = sin ✓ = 1 + cos ✓ when ✓ = ⇡/4 and
✓ = 5⇡/4. We find that the area A is

A =
1

2

Z
⇡/4

0

(1 + sin ✓)2 d✓

+
1

2

Z
5⇡/4

⇡/4

(1 + cos ✓)2 d✓

+
1

2

Z
2⇡

5⇡/4

(1 + sin ✓)2 d✓

=
1

2

Z
⇡/4

�3⇡/4

(1 + sin ✓)2 d✓

+
1

2

Z
5⇡/4

⇡/4

(1 + cos ✓)2 d✓

=
1

2

✓
3⇡

2
� 2

p
2

◆

+
1

2

✓
3⇡

2
� 2

p
2

◆

=
3⇡

2
� 2

p
2

27-30. r = 1, r = 2 cos ✓, r = 2 sin ✓
Tofind the area enclosed between the
curves r = 1and r = 2 sin ✓

The shaded area isA
1

+A
3.

r = 1.................(1)
r = 2 sin ✓........(2)
From eq.1 and 2,
1 = 2 sin ✓

sin ✓ =
1

2
, ✓ = sin�1

✓
1

2

◆
=

⇡

6
.

The point of intersection gives ✓ =
⇡

6
.

Therefore, the areaA
1

+A
3

=
1

2

"Z ⇡/6

0

(2 sin ✓)2d✓ +

Z ⇡/2

⇡/6

(1)2d✓

#

=

Z ⇡/6

0

(1� cos 2✓) d✓ +
1

2
✓

����

⇡/2

⇡/6

= (✓)|⇡/6
0

�
✓
sin 2✓

2

◆����

⇡/6

0

+
1

2
(✓)

����

⇡/2

⇡/6

=
⇡

6
�

p
3

4
+

1

2
· 2⇡
6

=
⇡

3
�

p
3

4
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A
1

+A
3

=
⇡

3
�

p
3

4
The shaded area isA

1

+A
4

.
r = 1...............(3)
r = 2 cos ✓......(4)
From eq.3 and 4

1 = 2 cos ✓, cos ✓ =
1

2

✓ = cos�1

✓
1

2

◆
=

⇡

3
.

The points of intersection gives

✓ =
⇡

3
.

A
1

+A
4

=
1

2

"Z ⇡/3

0

(1)2d✓ +

Z ⇡/2

⇡/3

(2 cos ✓)2d✓

#

=
1

2
(✓)|

⇡/3

0

+

Z ⇡/2

⇡/3

(1 + cos 2✓)d✓

=
⇡

6
+ (✓)|

⇡/2

⇡/3 +

✓
sin 2✓

2

◆����

⇡/2

⇡/3

=
⇡

6
+
⇣⇡
2
� ⇡

3

⌘
+

✓
� sin 2⇡/3

2

◆

=
⇡

6
+

⇡

6
+

 
�
p
3

4

!
=

⇡

3
�

p
3

4

A
1

+A
4

=
⇡

3
�

p
3

4
The area of the quadrantwith

unit radius is ⇡
r2

4
=

⇡

4
.

ThereforeA
1

+A
3

+A
4

=
⇡

4
.....eq.5

A
1

+A
3

=
⇡

3
�

p
3

4
.......eq.6

A
1

+A
4

=
⇡

3
�

p
3

4
.......eq.7

Substitute the value ofA
1

+A
3

from
eq.6 into eq.5,
⇡

3
�

p
3

4
+A

4

=
⇡

4
.

Therefore,

A
4

=
⇡

4
�
 
⇡

3
�

p
3

4

!

A
4

=

p
3

4
� ⇡

12
.........eq.8

Substitute the valueA
4

in eq.7,

A
1

+

 p
3

4
� ⇡

12

!
=

⇡

3
�

p
3

4
.

A
1

=

 
⇡

3
�

p
3

4

!
�
 p

3

4
� ⇡

12

!
.

A
1

=
5⇡

12
�

p
3

2
.........eq.11

Thereforewe found the area of the

shaded region,A
3

andA
4

.
To findA

1

+A
2

:

The above shaded region isA
1

+A
2

.
r = 2 sin ✓............eq.9.
r = 2 cos ✓...........eq.10.
Fromeq.9 and eq.10,
2 sin ✓ = 2 cos ✓
) ✓ =

⇡

4
.

The point of intersection gives

✓ =
⇡

4
.

ThereforeA
1

+A
2

=
1

2

"Z ⇡/4

0

(2 sin ✓)2d✓ +

Z ⇡/2

⇡
4

(2 cos ✓)2d✓

#

=

Z ⇡
4

0

2sin2✓d✓ +

Z ⇡/2

⇡/4

2cos2✓d✓

=

Z ⇡/4

0

(1� cos 2✓) d✓ +

Z ⇡/2

⇡/4

(1 + cos 2✓) d✓

= (✓)|
⇡/4

0

�
✓
sin 2✓

2

◆⇡/4

0

�����+ (✓)|
⇡/2

⇡/4 +

✓
sin 2✓

2

◆⇡/2

⇡/4

�����

=
⇡

4
� 1

2
+

⇡

4
� 1

2
=

⇡

2
� 1.

A
1

+A
2

=
⇡

2
� 1.......eq.12

The above region isA
1

.

But from eq.12, A
1

+A
2

=
⇡

2
� 1.

A
1

=
5⇡

12
�

p
3

2
from eq.11.

Therefore,

A
2

=
⇣⇡
2
� 1
⌘
�
 
5⇡

12
�

p
3

2

!

A
2

=
⇡

12
� 1 +

p
3

2

A
1

=
5⇡

12
�

p
3

2
; A

2

=
⇡

12
� 1 +

p
3

2

A
3

=

p
3

4
� ⇡

12
;A

4

=

p
3

4
� ⇡

12
.

31. To find the points of intersection, we graph the
function y = 1 � 2 sinx � 2 cosx and look for
the roots. We find x ⇡ 1.9948 and x ⇡ 5.8592.
Note that the point (0, 0) is not an intersec-
tion point since the two graphs pass through
the origin at di↵erent values of ✓.

32. To find the points of intersection, we graph
the function y = 1 + 3 cosx � (�2 + 5 sinx)
and look for the roots. We find x ⇡ 1.0808
and x = ⇡. Note that the other places where
the graphs overlap are not intersection points
since the two graphs pass through these points
at di↵erent values of ✓.
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33. To find the points of intersection in this case,
we just set the two expressions for r equal to
each other and solve for ✓:
1 + sin ✓ = 1 + cos ✓

sin ✓ = cos ✓
This occurs when ✓ = ⇡/4 or ✓ = 5⇡/4.

34. To find the points of intersection in this case,
we just set the two expressions for r equal to
each other and solve for ✓:
1 +

p
3 sin ✓ = 1 + cos ✓

p
3 sin ✓ = cos ✓

tan ✓ =
1p
3

This occurs when ✓ = ⇡/6 or ✓ = 7⇡/6.

35. f(✓) = 2� 2 sin ✓, f 0(✓) = �2 cos ✓
The arc length is:

s =

Z
2⇡

0

p
4 cos2 ✓ + (2� 2 sin ✓)2 d✓

=

Z
2⇡

0

p
4 cos2 ✓ + 4� 8 sin ✓ + 4 sin2 ✓ d✓

=

Z
2⇡

0

p
8(1� sin ✓) d✓ = 16

36. f(✓) = 3� 3 cos ✓ , f 0(✓) = 3 sin ✓
The arc length is:

s =

Z
2⇡

0

q
9 sin2 ✓ + (3� 3 cos ✓)2 d✓

=

Z
2⇡

0

p
9 + 9� 18 cos ✓ d✓

=

Z
2⇡

0

p
18(1� cos ✓) d✓ = 24

37. f(✓) = sin 3✓, f 0(✓) = 3 cos 3✓
The arc length is:

s =

Z
⇡

0

p
sin2 3✓ + 9 cos2 3✓ d✓ ⇡ 6.683

38. f(✓) = 2 cos 3✓, f 0(✓) = �6 sin 3✓
The arc length is:

s =

Z
⇡

0

p
36 sin2 3✓ + 4 cos2 3✓ d✓ ⇡ 13.365

39. f(✓) = 1 + 2 sin 2✓ , f 0(✓) = 4 cos 2✓
The arc length is:

s =

Z
2⇡

0

p
16 cos2 2✓ + (1 + 2 sin 2✓)2 d✓

⇡ 20.016

40. f(✓) = 2 + 3 sin 3✓, f 0(✓) = 9 cos 3✓
The arc length is:

s =

Z
2⇡

0

p
81 cos2 3✓ + (2 + 3 sin 3✓)2 d✓

⇡ 41.541

41. (a) We use the same setup as in example 5.7,
except here we use the line
y = �0.6 which corresponds to
r = �0.6 csc ✓. To find the limits of
integration, we must solve the equation
2 = �0.6 csc ✓.
We find ✓

1

⇡ 3.4463 and ✓
2

⇡ 5.9785.
With these limits of integration, we
find the area A of the filled region:

A =

Z
✓2

✓1

2 d✓ �
Z

✓2

✓1

1

2
(�0.6 csc ✓)2 d✓

= (2✓ + 0.18 cot ✓)

����
✓2

✓1

⇡ 3.9197

The fraction of oil remaining in the tank
is then approximately
3.9197/4⇡ ⇡ 0.31192 or about 31.19% of
the total capacity of the tank.

(b) We use the same setup as in example 5.7,
except here we use the line y = 0.4 which
corresponds to r = 0.4 csc ✓. To find the
limits of integration, we must solve the
equation 2 = 0.4 csc ✓.
We find ✓

1

⇡ 0.2014 and ✓
2

⇡ 2.9402.
With these limits of integration, we
find the area A of the filled region:

A =

Z
✓2

✓1

2 d✓ �
Z

✓2

✓1

1

2
(0.4 csc ✓)2 d✓

= (2✓ + 0.08 cot ✓)

����
✓2

✓1

⇡ 4.694
The fraction of oil remaining in the tank
is then approximately
4.694/4⇡ ⇡ 0.37353 or about 37.35% of
the total capacity of the tank.

42. (a) We use the same setup as in example 5.7,
except here we use the line y = �1 which
corresponds to r = � csc ✓. To find the
limits of integration, we must solve the
equation 2 = � csc ✓
or sin ✓ = �1/2.
We find ✓

1

= 7⇡/6 and ✓
2

= 11⇡/6.
With these limits of integration, we
find the area A of the filled region:
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A =

Z
✓2

✓1

2 d✓ �
Z

✓2

✓1

1

2
(� csc ✓)2 d✓

= (2✓ + 0.5 cot ✓)

����
✓2

✓1

=
4⇡

3
�
p
3 ⇡ 2.456739

The fraction of oil remaining in the tank
is then approximately
2.456739/4⇡ ⇡ 0.195501 or about 19.55%
of the total capacity of the tank.

(b) We use the same setup as in example 5.7,
except here we use the line y = 0.6 which
corresponds to r = 0.6 csc ✓. To find the
limits of integration, we must solve the
equation2 = 0.6 csc ✓.
We find ✓

1

⇡ 0.3047 and ✓
2

⇡ 2.8369.
With these limits of integration, we
find the area A of the filled region:

A =

Z
✓2

✓1

2 d✓ �
Z

✓2

✓1

1

2
(0.6 csc ✓)2 d✓

= (2✓ + 0.18 cot ✓)

����
✓2

✓1

⇡ 3.9197

The fraction of oil remaining in the tank
is then approximately
3.9197/4⇡ ⇡ 0.31191 or about 31.19% of
the total capacity of the tank.

43. (a) To show that the curve passes through the
origin at each of these three values of ✓,
we simply show that r = 0 for each.
✓ = 0: r = sin 0 = 0
✓ = ⇡/3: r = sin⇡ = 0
✓ = 2⇡/3: r = sin 2⇡ = 0
We now find the slope at each of the three
angles:

dy

dx

����
✓=0

=
3 sin 0 + 0

3� 0
= 0

dy

dx

����
✓=⇡/3

=
�3(

p
3

2

) + 0

�3( 1
2

)� 0
=

p
3

dy

dx

����
✓=⇡/3

=
3(

p
3

2

) + 0

3(� 1

2

)� 0
= �

p
3

As the graph passes through the origin at
each of these three angles, it does so at a
di↵erent slope.

(b) Graph of r = sin 3✓ near ✓ = 0:

0.16

0.12

0.08

0.04

0
0.60.40.20-0.2-0.6 -0.4

Graph of r = sin 3✓ near ✓ = ⇡/3:

0.2

-0.2

-0.6

0.50.40.30.20.1-0.1

0.4

0

-0.4

0

Graph of r = sin 3✓ near ✓ = 2⇡/3:

0.2

-0.2

-0.6

0.10-0.1-0.2-0.3-0.5

0.4

0

-0.4

-0.4

44. x = r cos ✓ = (2� 3 sin ✓) cos ✓
y = r sin ✓ = (2� 3 sin ✓) sin ✓

Slope is given by:
dy

dx
=

dy

d✓

dx

d✓

=
2 cos ✓ + 6 sin ✓ cos ✓

�2 sin ✓ � 3 + 6sin2✓

At origin, r = 0, sin ✓ =
2

3
, cos ✓ = ±

p
5

3

Hence,
dy

dx
(r=0)

= � 6p
5
or

6p
5

45. If r = cf(✓) then r0 = cf 0(✓).
The arc length is:
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s =

Z
b

a

p
(cf(✓))2 + (cf 0(✓))2 d✓

=

Z
b

a

p
c2((f(✓))2 + (f 0(✓))2) d✓

= |c|
Z

b

a

p
(f(✓))2 + (f 0(✓))2 d✓ = |c|L

46. The area enclosed by r = cf(✓) is:

Area =

Z
b

a

1

2
(cf(✓))2 d✓

= c2
Z

b

a

1

2
(f(✓))2 d✓ = c2A

47. Let s represent the arc length from
✓ = d to ✓ = c. Also note that since
f(✓) = aeb✓, it follows that f 0(✓) = abeb✓.

Then, s =

Z
c

d

p
[f 0(✓)]2 + [f(✓)]2d✓

=

Z
c

d

p
a2b2e2b✓ + a2e2b✓d✓

=

Z
c

d

aeb✓
p

b2 + 1d✓

= a
p
b2 + 1

Z
c

d

eb✓d✓

= a
p
b2 + 1

✓
1

b

◆⇥
eb✓
⇤
c

d

=
a
p
b2 + 1

b

⇥
ebc � ebd

⇤

Therefore, the total arc length is

lim
d!�1

s = lim
d!�1

a
p
b2 + 1

b

⇥
ebc � ebd

⇤

=
a
p
b2 + 1

b


ebc � lim

d!�1
ebd
�

=
a
p
b2 + 1

b
ebc =

p
b2 + 1

b
R

since the distance from the origin to the start-
ing point is R = aebc.

48. If the starting point P is on the x-axis, then
y = r sin ✓ = aeb✓ sin ✓ = 0 which only hap-
pens if sin ✓ = 0, i.e., ✓ = k⇡ for some integer
k. Then we have
P = (r cos(k⇡), r sin(k⇡)).
The slope of the tangent line to the curve at P
is
dy

dx

����
✓=k⇡

=
abebk⇡(0) + aebk⇡ cos(k⇡)

abebk⇡ cos(k⇡)� aebk⇡(0)
=

1

b
.

The line from the point P to the y-axis with
slope 1/b is

y � r sin(k⇡) =
1

b
(x� r cos(k⇡)).

So the distance from P to the y-axis along this

line is

d =

r
r2 cos2 k⇡ + (r sin k⇡ � r cos k⇡

b
)2

=

r
1� 2r2 sin k⇡ cos k⇡

b
+

r2 cos2 k⇡

b2

=

r
r2(1 +

cos2 k⇡

b2

= |r|
r

1 +
1

b2
= |r|

r
b2 + 1

b

9.6 Conic Sections

1. Since the focus is (0,�1) and the directrix is
y = 1, we see that the vertex must be (0, 0).

Thus, b = 0, c = 0 and a = �1

4
. The equation

for the parabola is:

y = �1

4
x2.

2. Since the focus is (1, 2) and the directrix is
y = �2, we see that the vertex must be (1, 0).

Thus, b = 1, c = 0 and a =
1

8
. The equation

for the parabola is:

y =
1

8
(x� 1)2.

3. Since the focus is (3, 0) and the directrix is
x = 1, we see that the vertex must be (2, 0).

Thus, b = 0, c = 2 and a =
1

4
. The equation

for the parabola is:

x =
1

4
y2 + 2.

4. Since the focus is (2, 0) and the directrix is
x = �2, we see that the vertex must be (0, 0).

Thus, b = 0, c = 0 and a =
1

8
.

The equation for the parabola is:

x =
1

8
y2.

5. From the given foci and vertices we find that
x
0

= 0, y
0

= 3, c = 2, a = 4 and b =
p
12.

The equation for the ellipse is:
x2

12
+

(y � 3)2

16
= 1.

6. From the given foci and vertices we find that
x
0

= 1, y
0

= 3, c = 1, a = 2 and b =
p
3.

The equation for the ellipse is:
(x� 1)2

3
+

(y � 3)2

4
= 1.

7. From the given foci and vertices we find that
y
0

= 1, x
0

= 4, c = 2, a = 4 and b =
p
12.
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The equation for the ellipse is:
(x� 4)2

16
+

(y � 1)2

12
= 1.

8. From the given foci and vertices we find that
y
0

= 2, x
0

= 4, c = 1, a = 2 and b =
p
3.

The equation for the ellipse is:
(x� 4)2

4
+

(y � 2)2

3
= 1.

9. From the given foci and vertices we find that
y
0

= 0, x
0

= 2, c = 2, a = 1 and b =
p
3.

The equation for the hyperbola is:
(x� 2)2

1
� y2

3
= 1.

10. From the given foci and vertices we find that
y
0

= 2, x
0

= 2, c = 4, a = 2 and b =
p
12.

The equation for the hyperbola is:
(x� 2)2

4
� (y � 2)2

12
= 1.

11. From the given foci and vertices we find that
x
0

= 2, y
0

= 4, c = 2, a = 1 and b =
p
3.

The equation for the hyperbola is:
(y � 4)2

1
� (x� 2)2

3
= 1.

12. From the given foci and vertices we find that
x
0

= 0, y
0

= 1, c = 3, a = 1 and b =
p
8.

The equation for the hyperbola is:
(y � 1)2

1
� x2

8
= 1.

13. This is a parabola with a = 2, b = �1 and
c = �1.
vertex: (�1,�1)

focus: (�1,�1 +
1

8
)

directrix: y = �1� 1

8

14. This is a parabola with a = �2, b = �2 and
c = �1.
vertex: (�2,�1)

focus: (�2,�1� 1

8
)

directrix: y = �1 +
1

8

15. This is an ellipse with x
0

= 1, y
0

= 2, a = 3,
b = 2 and c =

p
5.

foci: (1, 2�
p
5), (1, 2 +

p
5)

vertices: (1, 5), (1,�1)

16. This is an ellipse with x
0

= 2, y
0

= 0, a = 4,
b = 2 and c =

p
12.

foci: (2�
p
12, 0), (2 +

p
12, 0)

vertices: (6, 0), (�2, 0)

17. This is a hyperbola with x
0

= 1, y
0

= 0, a = 3,
b = 2 and c =

p
13.

foci: (1�
p
13, 0), (1 +

p
13, 0)

vertices: (4, 0), (�2, 0)

18. This is a hyperbola with x
0

= �1, y
0

= 3,
a = 2, b = 2 and c =

p
8.

foci: (�1 +
p
8, 3), (�1�

p
8, 3)

vertices: (1, 3), (�3, 3)

19. This is a hyperbola with y
0

= �1, x
0

= �2,
a = 4, b = 2 and c =

p
20.

foci: (�2,�1 +
p
20), (�2,�1�

p
20)

vertices: (�2, 3), (�2,�5)

20. This is a hyperbola with y
0

= 0, x
0

= �2,
a = 2, b = 3 and c =

p
13.

foci: (�2,
p
13), (�2,�

p
13)

vertices: (�2, 2), (�2,�2)

21. Dividing both sides by 9 gives:
(x� 2)2

9
+ y2 = 1

This is an ellipse with x
0

= 2, y
0

= 0, a = 3,
b = 1 and c =

p
8.

foci: (2�
p
8, 0), (2 +

p
8, 0)

vertices: (5, 0), (�1, 0)

22. Dividing both sides by 4 gives:
x2

4
+

(y + 1)2

16
= 1

This is an ellipse with x
0

= 0, y
0

= �1, a = 4,
b = 2 and c =

p
12.

foci: (0,�1 +
p
12), (0,�1�

p
12)

vertices: (0, 3), (0,�5)

23. Solving for y gives:

y =
1

4
(x+ 1)2 � 2

This is a parabola with a =
1

4
, b = �1 and

c = �2.
vertex: (�1,�2)
focus: (�1,�1)
directrix: y = �3

24. Solving for x gives:

x =
1

4
(y � 1)2 � 3

This is a parabola with a =
1

4
, b = 1 and

c = �3.
vertex: (�3, 1)
focus: (�2, 1)
directrix: x = �4
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25. This is a parabola with focus (2, 1) and direc-
trix y = �3. Thus the vertex is (2,�1) and

b = 2, c = �1 and a =
1

8
. The equation is

y =
1

8
(x� 2)2 � 1.

12

4

16

8

0

x

5 100-10 -5

26. This is a parabola with focus (�1, 0) and di-
rectrix y = 4. Thus the vertex is (�1, 2) and

b = �1, c = 2 and a = �1

8
. The equation is

y = �1

8
(x+ 1)2 + 2.

2

0

-2

-10

-4

-6

-8

-12

x

1050-5-10

27. This is an ellipse with foci (0, 2) and (4, 2) and
center (2, 2). Since the sum of the distances to
the foci must be 8, the vertices are (�2, 2) and
(6, 2). Thus y

0

= 2, x
0

= 2, c = 2, a = 4 and
b =

p
12. The equation is

(x� 2)2

16
+

(y � 2)2

12
= 1.

y

4

0

5

3

-1
x

6-2 4

1

2

0 2

28. This is an ellipse with foci (3, 1) and (�1, 1)
and center (1, 1). Since the sum of the dis-
tances to the foci must be 6, the vertices are
(4, 1) and (�2, 1). Thus y

0

= 1, x
0

= 1, c = 2,
a = 3 and b =

p
5. The equation is

(x� 1)2

9
+

(y � 1)2

5
= 1.

y

2

3

1

-1

0

x

42-2 1 3-1 0

29. This is a hyperbola with foci (0, 4) and (0,�2)
and center (0, 1). Since the di↵erence of the
distances to the foci must be 4, the vertices
are (0, 3) and (0,�1). Thus x

0

= 0, y
0

= 1,
c = 3, a = 2 and b =

p
5. The equation is

(y � 1)2

4
� x2

5
= 1.

y

4

8

0

-8

x

10-10

-4

-5 0 5

30. This is a hyperbola with foci (2, 2) and (6, 2)
and center (4, 2). Since the di↵erence of the
distances to the foci must be 2, the vertices
are (3, 2) and (5, 2). Thus x

0

= 4, y
0

= 2,
c = 2, a = 1 and b =

p
3. The equation is

(x� 4)2

1
� (y � 2)2

3
= 1.
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y

5

10

x

0
106-2

-10

0

-5

2 84

31. Since x = 4y2, we have a = 4, b = 0 and c = 0.
The lightbulb should be placed at the focus,

i.e., (
1

16
, 0).

32. Since x =
1

2
y2, we have a =

1

2
, b = 0 and

c = 0. The lightbulb should be placed at the

focus, i.e., (
1

2
, 0).

33. Since y = 2x2, we have a = 2, b = 0 and c = 0.
The microphone should be placed at the focus,

i.e., (0,
1

8
).

34. Since y = 4x2, we have a = 4, b = 0 and c = 0.
The microphone should be placed at the focus,

i.e., (0,
1

16
).

35. We have c =
p
a2 � b2 =

p
124� 24 = 10,

so that the foci are 20 inches apart. The trans-
ducer should be located 20 inches away from
the kidney stone and aligned so that the line
segment from the kidney stone to the trans-
ducer lies along the major axis of the elliptical
reflector.

36. We have c =
p
a2 � b2 =

p
125� 44 = 9,

so that the foci are 18 inches apart. The trans-
ducer should be located 18 inches away from
the kidney stone and aligned so that the line
segment from the kidney stone to the trans-
ducer lies along the major axis of the elliptical
reflector.

37. From the equation, we have y
0

= �4, x
0

= 0,
a = 1, b =

p
15 and c = 4. Thus the foci

are (0,�8) and (0, 0). Light rays following
the path y = cx would go through the focus
(0, 0), so they are reflected toward the focus at
(0,�8).

38. From the equation, we have y
0

= 3, x
0

= 0,
a = 1, b =

p
8 and c = 3. Thus the foci are

(0, 0) and (0, 6). Light rays following the path
y = cx would go through the focus (0, 0), so
they are reflected toward the focus at (0, 6).

39. From the equation, we have x
0

= 0, y
0

= 0,
a =

p
3, b = 1 and c = 2. Thus the foci

are (�2, 0) and (2, 0). Light rays following the
path y = c(x � 2) would go through the focus
(2, 0), so they are reflected toward the focus at
(�2, 0).

40. From the equation, we have x
0

= 0, y
0

= 0,
a =

p
8, b = 1 and c = 3. Thus the foci

are (�3, 0) and (3, 0). Light rays following the
path y = c(x + 3) would go through the focus
(�3, 0), so they are reflected toward the focus
at (3, 0).

41. We have x
0

= 0, y
0

= 0 and

c =
p
400� 100 = 10

p
3. The foci are

(±10
p
3, 0) so the desks should be placed along

the major axis of the ellipse 10
p
3 units from

the center (at (0, 0)).

42. We have x
0

= 0, y
0

= 0 and

c =
p
900� 100 = 20

p
2. The foci are

(±20
p
2, 0) so the desks should be placed along

the major axis of the ellipse 20
p
2 units from

the center (at (0, 0)).

43. Let f(t) be the object’s distance from the spec-
tator at time t. We know this is a quadratic
function, so it must be of the form

f(t) = at2 + bt+ c for some constants a, b and
c. At time t = 0, the spectator has the object,
so the distance from the spectator is 0. Thus
f(0) = a(0)2 + b(0) + c = c = 0. So now our
function is of the form f(t) = at2+bt. Plugging
in t = 2 and t = 4 (and their respective values
of f(t)) gives the following two equations:
4a+ 2b = 28

16a+ 4b = 48.
Multiplying the first equation by 2 and then
subtracting the result from the second equation
gives 8a = �8 or a = �1. Plugging a = �1
into either of the above equations gives b = 16.
Thus the equation for the distance of the ob-
ject from the spectator is f(t) = �t2 + 16t.
Graphing this function gives:
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15

60

Since this object returns to the spectator (at
time t = 16 seconds the object is again at 0
meters from the spectator) we guess that the
object is a boomerang.

44. Assume the center of the ellipse is at (0, 0).
Then the equation for the ellipse is

x2

(17.79)2
+

y2

(4.53)2
= 1.

This is described by the parametric equations
(
x = 17.79 cos t

y = 4.53 sin t.

The derivatives are:
x0(t) = �17.79 sin t
y0(t) = 4.53 sin t.

Thus, the arc length is given by

s =

Z
2⇡

0

p
(17.79 sin t)2 + (4.53 cos t)2 dt

⇡ 76.46 Au.
Therefore the average speed is about 1 Au per
year.

9.7 Conic Sections in

Polar Coordinates

1. From Theorem 7.2 part (i) we have

r =
0.6(2)

0.6 cos ✓ + 1
=

1.2

0.6 cos ✓ + 1
.

0.5

0

-1

-0.5

-1.5

0.5-1.5 0-0.5-2

1.5

1

-1-3 -2.5

2. From Theorem 7.2 part (i) we have

r =
2.4

1.2 cos ✓ + 1
.

10

5

0

-5

-10

2520151050-5-10

3. From Theorem 7.2 part (i) we have

r =
2

cos ✓ + 1
.

10

5

0

-5

-10

1050-5-10

4. From Theorem 7.2 part (i) we have

r =
4

2 cos ✓ + 1
.

1050-5-10

10

5

0

-5

-10

5. From Theorem 7.2 part (iii) we have

r =
1.2

0.6 sin ✓ + 1
.
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0.5

-0.5

-2.5

0

-1

-3

1.510.50-1-1.5

-2

-1.5

-0.5

6. From Theorem 7.2 part (iii) we have

r =
2.4

1.2 sin ✓ + 1
.

1050-5-10

30

20

10

0

-10

7. From Theorem 7.2 part (iii) we have

r =
2

sin ✓ + 1
.

10

5

0

-5

-10

1050-5-10

8. From Theorem 7.2 part (iii) we have

r =
4

2 sin ✓ + 1
.

10

5

0

-5

-10

1050-5-10

9. From Theorem 7.2 part (ii) we have

r =
�0.8

0.4 cos ✓ � 1
.

0.8

0

0.4

-0.4

-0.8

1.20.4 0.80-0.4

10. From Theorem 7.2 part (ii) we have

r =
�2

cos ✓ � 1
.

10

5

0

-5

-10

1050-5-10

11. From Theorem 7.2 part (ii) we have

r =
�4

2 cos ✓ � 1
.
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10

5

0

-5

-10

1050-5-10

12. From Theorem 7.2 part (ii) we have

r =
�8

4 cos ✓ � 1
.

10

5

0

-5

-10

420-2-4

13. From Theorem 7.2 part (iv) we have

r =
�0.8

0.4 sin ✓ � 1
.

1.2

0.4

0.8

0

-0.4

0.8-0.8 0.4-0.4 0

14. From Theorem 7.2 part (iv) we have

r =
�1.8

0.9 sin ✓ � 1
.

16

8

12

4

0
420-4 -2

15. From Theorem 7.2 part (iv) we have

r =
�2

sin ✓ � 1
.

10

5

0

-5

-10

1050-5-10

16. From Theorem 7.2 part (iv) we have

r =
�2.2

1.1 sin ✓ � 1
.

20

0

-20

-40

20100-10-20

17. This is a hyperbola:
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-5-10

10

5

0

-5

-10

1050

18. This is a hyperbola:

4

2

0

-2

-4

420-2-4

19. This is an ellipse:

10

5

0

-5

-10

1050-5-10

20. This is an ellipse:

2

1

0

-1

-2

210-1-2

21. This is a parabola:

10

5

0

-5

-10

1050-5-10

22. This is a parabola:

10

5

0

-5

-10

1050-5-10

23. This is an ellipse with center (�1, 1) and ma-
jor axis parallel to the x-axis. The parametric
equations (for 0  t  2⇡) are:
(

x = 3 cos t� 1

y = 2 sin t+ 1

24. The right half of this hyperbola is given by
(

x = 3 cosh t+ 2

y = 4 sinh t� 1

while the left half is given by
(

x = �3 cosh t+ 2

y = 4 sinh t� 1.

25. The right half of this hyperbola is given by
(

x = 4 cosh t� 1

y = 3 sinh t

while the left half is given by
(

x = �4 cosh t� 1

y = 3 sinh t

26. This is an ellipse with center (0, 0). The para-
metric equations (for 0  t  2⇡) are:
(

x = 2 cos t

y = sin t
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27. We solve for y to get:

y = �x2

4
+ 1.

The parametric equations are then given by:
(

x = t

y = �t2/4 + 1

28. We solve for x to get:

x =
y2

4
+ 1.

The parametric equations are then given by:
(

y = t

x = t2/4 + 1

29. We have

A
1

=
1

2

Z
⇡/2

0

✓
2

sin ✓ + 2

◆
2

d✓

=
1

2

✓
8

27

p
3� 2

3

◆

⇡ 0.473

A
2

=
1

2

Z
4.953

3⇡/2

✓
2

sin ✓ + 2

◆
2

d✓

⇡ 0.472

and s
1

=

Z
⇡/2

0

g(✓) d✓ ⇡ 1.266

s
2

=

Z
4.953

3⇡/2

g(✓) d✓ ⇡ 0.481

where g(✓) =

s
4 cos2 ✓

(sin ✓ + 2)4
+

4

(sin ✓ + 2)2
.

Therefore the two areas are approximately the
same, while the average speed on the portion
of the orbit from ✓ = 0 to ✓ = ⇡/2 is a lit-
tle more than two-and-a-half times the average
speed on the portion of the orbit from ✓ = 3⇡/2
to ✓ = 4.953.

30. We have

A
1

=
1

2

Z
⇡

⇡/2

✓
2

sin ✓ + 2

◆
2

d✓

=
1

2

✓
8

27

p
3� 2

3

◆

⇡ 0.473

A
2

=
1

2

Z
3⇡/2

4.471

✓
2

sin ✓ + 2

◆
2

d✓

⇡ 0.474
and

s
1

=

Z
⇡

⇡/2

g(✓) d✓ ⇡ 1.266

s
2

=

Z
3⇡/2

4.471

g(✓) d✓ ⇡ 0.483

where

g(✓) =

s
4 cos2 ✓

(sin ✓ + 2)4
+

4

(sin ✓ + 2)2
.

Therefore the two areas are approximately the
same, while the average speed on the portion of
the orbit from ✓ = ⇡/2 to ✓ = ⇡ is a little more
than two-and-a-half times the average speed
on the portion of the orbit from ✓ = 4.471 to
✓ = 3⇡/2.

31. For any point (x, y) on the curve, the distance
to the focus is

p
x2 + y2 and the distance to

the directrix is x� d. We then havep
x2 + y2 = e(x� d)

r = e(r cos ✓ � d)

r � er cos ✓ = �ed

r(1� e cos ✓) = �ed

r =
�ed

1� e cos ✓

r =
ed

e cos ✓ � 1
.

32. For any point (x, y) on the curve, the distance
to the focus is

p
x2 + y2 and the distance to

the directrix is d� y. We then havep
x2 + y2 = e(d� y)

r = e(d� r sin ✓)

r(1 + e sin ✓) = ed

r =
ed

e sin ✓ + 1
.

33. For any point (x, y) on the curve, the distance
to the focus is

p
x2 + y2 and the distance to

the directrix is y � d. We then havep
x2 + y2 = e(y � d)

r = e(r sin ✓ � d)

r(1� e sin ✓) = �ed

r =
ed

e sin ✓ � 1
.

Ch. 9 Review Exercises

1. The given parametric equations for x and y
satisfy the following x-y equation:✓
x+ 1

3

◆
2

+

✓
y � 2

9

◆
2

= 1
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5

3

-1

4

2

1 2-1-2-3-4
0

1

0

2. Solving the first equation for t gives t = 2� x.
We plug this into the second equation to get
y = 1 + 3(2� x) = 7� 3x.

1050-5-10

10

5

0

-5

-10

3. From the first equation we have t2 = x� 1.

We plug this into the second equation to get
y = (t2)2 = (x� 1)2

which is valid for x � 1.

80

60

40

20

0
1086420

4. Plugging the first equation into the second
gives y = x2 � 1 which is valid for
�1  x  1.

5.

1

0

0.5

0.5-0.5 10-1

-0.5

-1

6.

1

0.5

0

-0.5

-1

10.50-0.5-1

7.

1

0

0.5

-0.5

10 0.5-0.5-1

-1

8.

1

0

0.5

0.5 10-1 -0.5

-1

-0.5

9. Solving the first equation for t gives
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t =
p
x+ 1, so x � �1. Plugging into the

second equation gives y = (x + 1)3/2. This
matches Figure C.

10. This is the reflection across the line y = x of
the graph from exercise 9, so it must be Figure
A.

11. Sketching the graph, we find that this corre-
sponds to Figure B.

12. Sketching the graph, we find that this corre-
sponds to Figure D.

13. We want equations of the form
(
x = at+ b

y = ct+ d

on the interval 0  t  1. At t = 0, we need
x = b = 2 and y = d = 1. At t = 1, we then
have x = a+ 2 = 4 so a = 2 and y = c+ 1 = 7
so c = 6. Therefore our parametric equations
for 0  t  1 are:
(
x = 2t+ 2

y = 6t+ 1

14. We could simply take
(
x = t

y = t2 + 1

with 1  t  3. If we prefer to have the interval
0  t  1, we can take the linear equation

x = 2t + 1 for x and then plug this into the
equation for y to get y = (2t + 1)2 + 1 =
4t2 + 4t + 2. Our parametric equations would
then be(
x = 2t+ 1

y = 4t2 + 4t+ 2

for 0  t  1.

15. x0(t) = t3 � 3t
y0(t) = 2t� 1

(a)
dy

dx

����
t=0

=
y0(0)

x0(0)
=

�1

�3
=

1

3

(b)
dy

dx

����
t=1

=
y0(1)

x0(1)
=

1

0
undefined

(c) We need to find a value for t such that
x = t3 � 3t = 2 and y = t2 � t + 1 = 3.
The latter gives t2� t�2 = 0. Solving for
t gives t = 2 or t = �1. Both solve the
former equation, so we check the slope at
both values of t:

dy

dx

����
t=�1

=
y0(�1)

x0(�1)
=

�3

0
undefined

and
dy

dx

����
t=2

=
y0(2)

x0(2)
=

3

9
=

1

3

16. x0(t) = 2t
y0(t) = 1

(a)
dy

dx

����
t=0

=
y0(0)

x0(0)
=

1

0
undefined

(b)
dy

dx

����
t=1

=
y0(1)

x0(1)
=

1

2

(c) We need to find a value for t such that
x = t2 � 2 = 2 and y = t + 2 = 3. The
latter gives t = 1 but this is not a solution
to the first equation, so this point is not
on the curve.

17. x0(t) = 3t2 � 3
y0(t) = 2t+ 2
x0(0) = �3; y0(0) = 2, so the motion is up and
to the left.
speed =

p
(�3)2 + 22 =

p
13

18. x0(t) = 3t2 � 3
y0(t) = 2t
x0(0) = �3; y0(0) = 0, so the motion is to the
left.
speed =

p
(�3)2 + 02 = 3

19. x0(t) = 3 cos t
With 0  t  2⇡, the curve is traced out clock-
wise, so the area A is

A = �
Z

2⇡

0

2 cos t · 3 cos t dt

= �6

Z
2⇡

0

cos2 t dt

= �6

✓
1

2
t+

1

2
sin t cos t

◆ ����
2⇡

0

= �6⇡

20. x0(t) = 12 cos 3t
With 0  t  2⇡/3, the curve is traced out
clockwise, so the area A is

A = �
Z

2⇡/3

0

3 cos(3t) · 12 cos(3t) dt

= �36

Z
2⇡/3

0

cos2 3t dt

= �12

Z
2⇡

0

cos2 u du

= �12

✓
1

2
u+

1

2
sinu cosu

◆ ����
2⇡

0

= �12⇡
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21. x0(t) = �2 sin 2t

A =

Z
1

�1

sin(⇡t)(�2 sin(2t)) dt

= �2

Z
1

�1

sin(⇡t) sin(2t) dt

= �2

✓
2 sin(2)⇡

(⇡ � 2)(⇡ + 2)

◆

⇡ �1.947

22. x0(t) = 2t

A =

Z
1

�1

(t3 � t)(2t) dt

=

Z
1

�1

(2t4 � 2t2) dt

=
2

5
t5 � 2

3
t3
����
1

�1

=
4

5
� 4

3

23. x0(t) = �2 sin 2t
y0(t) = sin⇡t

s =

Z
1

�1

p
4 sin2 2t+ ⇡2 cos2 ⇡t dt

⇡ 5.2495

24. x0(t) = 2t
y0(t) = 3t2 � 4

s =

Z
1

�1

p
4t2 + (3t2 � 4)2 dt

=

Z
1

�1

p
4t2 + 9t4 � 24t2 + 16 dt

=

Z
1

�1

p
9t4 � 20t2 + 16 dt

⇡ 6.57

25. x0(t) = �4 sin 4t
y0(t) = 5 cos 5t

s =

Z
2⇡

0

p
16 sin2 4t+ 25 cos2 5t dt

⇡ 27.185

26. x0(t) = 10 cos 10t
y0(t) = 2t

s =

Z
⇡

�⇡

p
100 cos2 10t+ 4t2 dt

⇡ 46.969

27. x0(t) = 3t2 � 4
y0(t) = 4t3 � 4

Let f(t) = (3t2 � 4)2 + (4t2 � 4)2. Then

SA =

Z
1

�1

2⇡|t4 � 4t|
p

f(t) dt

⇡ 81.247

28. x0(t) = 3t2 � 4
y0(t) = 4t3 � 4
Let f(t) = (3t2 � 4)2 + (4t2 � 4)2. Then

SA =

Z
1

�1

2⇡|t4 � 4t� 2|
p
f(t) dt

⇡ 115.144

29. Multiplying both sides by r gives r2 = 3r cos ✓.
Substitution then gives
x2 + y2 = 3x.
We then complete the square (as follows) to
obtain an equation:

x2 � 3x+ y2 = 0
✓
x2 � 3x+

9

4

◆
+ y2 � 9

4
= 0

✓
x� 3

2

◆
2

+ y2 =

✓
3

2

◆
2

1.5

0.5

-1.5

1

0
321.50.50

-1

-0.5

2.51

30. Dividing both sides by r gives 1 =
2

r cos ✓
.

Substitution then gives

1 =
2

x
or x = 2.

10

5

0

-5

-10

1050-5-10

31. 2 sin ✓ = 0 when ✓ = k⇡ for any integer k. One
copy of the graph will be produced by the range
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0  ✓  2⇡.

2

1

1.5

0.5-0.5 10-1

0.5

0

32. 2� 2 sin ✓ = 0 when sin ✓ = 1, i.e., when

✓ = 2k⇡ for any integer k. One copy of the
graph will be produced by the range 0  ✓ 
2⇡.

0

-2

-1

-3

-4

20 1-1-2

33. 2� 3 sin ✓ = 0 when sin ✓ = 2/3 or

✓ = sin�1(2/3). One copy of the graph will be
produced by the range 0  ✓  2⇡.

0

-2

-1

-3

-5

10-3

-4

2-2 3-1

34. r = 0 when ✓ = ±⇡/2 and when

tan�1

 
�
p
5 + 1p

10 + 2
p
5

!
⇡ �0.314

� tan�1

 
�
p
5 + 1p

10 + 2
p
5

!
� ⇡ ⇡ �2.827

tan�1

 p
5 + 1p

10� 2
p
5

!
⇡ 0.943

� tan�1

 p
5 + 1p

10� 2
p
5

!
+ ⇡ ⇡ 2.199

One copy of the graph will be produced by the
range 0  ✓  2⇡.

1.5

1

0.5

0

-0.5

-1

-1.5

10.50-0.5-1

35. r = 0 when sin 2✓ = 0, i.e., when 2✓ = k⇡ or
✓ = k⇡/2 for any integer k. One copy of the
graph will be produced by the range 0  ✓  ⇡.

1.5

0.5

-1.5

1

0
1.510.50-1

-1

-0.5

-0.5-1.5

36. r = 0 at approximately 1.347, 1.868, 2.798,
3.485, 4.415 and 4.937. One copy of the graph
will be produced by the range 0  ✓  2⇡.
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3

1

-3

2

0
31

-2

-1

2-1 0

37.
2

1 + 2 sin ✓
is not equal to 0 for any value of ✓.

One copy of the graph will be produced by the
range 0  ✓  2⇡.

4

2

0

-2

-4

420-2-4

38.
2

1 + 2 cos ✓
is not equal to 0 for any value of ✓.

One copy of the graph will be produced by the
range 0  ✓  2⇡.

420-2-4

4

2

0

-2

-4

39. This is a circle of radius 3 centered at the ori-
gin, so a polar equation is r = 3 for 0  ✓  2⇡.

40. We have
(x� 3)2 + y2 = 9

x2 � 6x+ 9 + y2 = 9

x2 + y2 � 6x = 0

r2 � 6r cos ✓ = 0

r2 = 6r cos ✓

r = 6 cos ✓.

41. If f(✓) = cos 3✓ then f 0(✓) = �3 sin 3✓.

The slope of the tangent line is:
dy

dx

����
✓=

⇡
6

=
�3 sin ⇡

2

sin ⇡

6

+ cos ⇡

2

cos ⇡

6

�3 sin ⇡

2

cos ⇡

6

� cos ⇡

2

sin ⇡

6

=
�3 sin ⇡

2

sin ⇡

6

�3 sin ⇡

2

cos ⇡

6

=
sin ⇡

6

cos ⇡

6

=
1

2p
3

2

=
1p
3

42. If f(✓) = 1� sin ✓ then f 0(✓) = � cos ✓.

The slope of the tangent line is:
dy

dx

����
✓=0

=
� cos 0 sin 0 + (1� sin 0) cos 0

� cos 0 cos 0� (1� sin 0) sin 0

=
(1� sin 0) cos 0

� cos 0 cos 0

=
1

�1
= �1

43. One leaf of r = sin 5✓ is traced out by

0  ✓  ⇡/5 so the area A is:

A =

Z
⇡/5

0

1

2
(sin2 5✓) d✓

=
1

2

Z
⇡/5

0

(1� cos 10✓) d✓

=
1

2

✓
✓ � sin 10✓

10

◆ ����
⇡/5

0

=
1

2

⇣⇡
5
� 0
⌘
=

⇡

10

44. One leaf of r = cos 2✓ is traced out by

⇡/4  ✓  3⇡/4 so the area A is:

A =
1

2

Z
3⇡/4

⇡/4

cos2 2✓ d✓

=
1

2

✓
1

4
⇡

◆
=

⇡

8

45. Endpoints for the inner loop are given by

✓ = ⇡/6 and ✓ = 5⇡/6 so the area A is

A =
1

2

Z
5⇡/6

⇡/6

(1� 2 sin ✓)2 d✓

=
1

2

⇣
�3

p
3 + 2⇡

⌘

=
�3

p
3 + 2⇡

2

46. One copy of the graph is traced out over
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0  ✓  ⇡, so the area A is

A =
1

2

Z
⇡

0

9 sin2 ✓ d✓

=
1

2

✓
9⇡

2

◆

=
9⇡

4

47. 1 = sin ✓ = 1 + cos ✓ when ✓ = ⇡/4 and
✓ = 5⇡/4. Since we want the region from ⇡/4
to 5⇡/4, we find that the area A is

A =
1

2

Z
5⇡/4

⇡/4

(1 + sin ✓)2 d✓

� 1

2

Z
5⇡/4

⇡/4

(1 + cos ✓)2 d✓

=
1

2

✓
3⇡

2
+ 2

p
2

◆

� 1

2

✓
3⇡

2
� 2

p
2

◆

= 2
p
2

48. 1 = sin ✓ = 1 + cos ✓ when ✓ = ⇡/4 and
✓ = 5⇡/4 (or ✓ = �3⇡/4. Since we want the
region from �3⇡/4 to ⇡/4, we find that the
area A is

A =
1

2

Z
⇡/4

�3⇡/4

(1 + cos ✓)2 d✓

� 1

2

Z
⇡/4

�3⇡/4

(1 + sin ✓)2 d✓

=
1

2

✓
3⇡

2
+ 2

p
2

◆

� 1

2

✓
3⇡

2
� 2

p
2

◆

= 2
p
2

49. r = f(✓) = 3� 4 sin ✓
f 0(✓) = �4 cos ✓

s =

Z
2⇡

0

p
f 0(✓)2 + f(✓)2 d✓

=

Z
2⇡

0

p
16 + 9� 24 sin ✓ d✓

=

Z
2⇡

0

p
25� 24 sin ✓ d✓

⇡ 28.814

50. r = f(✓) = sin 4✓
f 0(✓) = 4 cos 4✓

s =

Z
⇡/2

0

p
f 0(✓)2 + f(✓)2 d✓

=

Z
⇡/2

0

p
16 cos2 4✓ + sin2 4✓ d✓

⇡ 4.289

51. Since the focus is (1, 2) and the directrix is
y = 0, the vertex must be (1, 1). Then b = 1,
c = 1 and a = 1/4. The equation is

y =
1

4
(x� 1)2 + 1.

52. Since the foci are (2, 1) and (2, 3) and the ver-
tices are (2, 0) and (2, 4), we see that the center
is (2, 2). We then have x

0

= 2, y
0

= 2, c = 1,
a = 2 and b =

p
3. The equation is

(x� 2)2

3
+

(y � 2)2

4
= 1.

53. Since the foci are (2, 0) and (2, 4) and the ver-
tices are (2, 1) and (2, 3), we see that the center
is (2, 2). We then have x

0

= 2, y
0

= 2, c = 2,
a = 1 and b =

p
3. The equation is

(y � 2)2

1
� (x� 2)2

3
= 1.

54. This is a parabola with a = 3, b = 2 and c = 1.
vertex: (2, 1)
focus: (2, 1 + 1

12

)
directrix: y = 1� 1

12

55. This is an ellipse with x
0

= �1, y
0

= 3, a = 5,
b = 3 and c = 4.
foci: (�1, 7) and (�1,�1)
vertices: (�1, 8) and (�1,�2)

56. This is a hyperbola with x
0

= 0, y
0

= �2,
a = 3, b = 2 and c =

p
13.

foci: (
p
13,�2) and (�

p
13,�2)

vertices: (3,�2) and (�3,�2)

57. Solving for y gives y = (x� 1)2 � 4.

This is a parabola with a = 1, b = 1 and
c = �4.
vertex: (1,�4)
focus: (1,�4 + 1

4

)
directrix: y = �4� 1

4

58. Dividing both sides by 4 gives
(x� 1)2

4
+ y2 = 1.

This is an ellipse with x
0

= 1, y
0

= 0, a = 2,
b = 1 and c =

p
3.

foci: (1 +
p
3, 0) and (1�

p
3, 0)

vertices: (3, 0) and (�1, 0)

59. The microphone should be placed at the focus,
i.e., at (0, 1

2

).
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60. The foci are (0, 0) and (0,�4). Since the light
rays would have passed through the focus at
(0, 0), they will instead be reflected toward the
focus at (0,�4).

61. Theorem 7.2 part (i) gives

r =
(0.8)(3)

0.8 cos ✓ + 1
=

2.4

0.8 cos ✓ + 1
.

62. Theorem 7.2 part (iii) gives

r =
3

sin ✓ + 1
.

63. Theorem 7.2 part (iii) gives

r =
2.8

1.4 sin ✓ + 1
.

64. Theorem 7.2 part (i) gives r =
2

2 cos ✓ + 1
.

65. This is an ellipse with center (�1, 3).

Parametric equations are
(
x = 3 cos t� 1

y = 5 sin t+ 3

with 0  t  2⇡.

66. This is a hyperbola with center (0,�2).

Parametric equations are
(
x = 3 cosh t

y = 2 sinh t� 2

for the right half and
(
x = �3 cosh t

y = 2 sinh t� 2

for the left half.

67. We provide here a few of the graphs.

From these, you can detect the patterns.

Graph of r = 1 + (�2) cos ✓:

1

0

-1

0-0.5-1-1.5-2-2.5

1.5

0.5

-0.5

-1.5

-3

Graph of r = 1 + (�0.5) cos ✓:

0

-1

1

0.5

-0.5

0.5-0.5 0-1-1.5

Graph of r = 1 + (1) cos ✓:

1

0

0.5

-0.5

-1

21.510.50

Graph of r = 1 + (�1) sin ✓:

0

-1

-0.5

-1.5

-2

10.50-0.5-1

Graph of r = 1 + (0.5) sin ✓:

0.5

-0.5

1.5

1

0
10.50-1 -0.5
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Graph of r = 1 + (2) sin ✓:

1.5

2.5

10.5

1.5

-0.5-1.5

3

2

0.5

0

1

0
-1



Chapter 10

Vectors and the

Geometry of

Space

10.1 Vectors in the Plane

1. Sketch of vectors:

a+b

a

b

2a−b

−b

2a

2. Sketch of vectors:

a

b

a+b

2a −b

2a−b

3. a+ b = h2 + 3, 4� 1i = h5, 3i

a� 2b = h2, 4i � 2 h3,�1i
= h2� 6, 4 + 2i
= h�4, 6i

3a = 3 h2, 4i = h6, 12i

5b� 2a = 5 h3,�1i � 2 h2, 4i
= h15� 4,�5� 8i = h11,�13i

k5b� 2ak =
p

112 + (�13)2 =
p
290

4. a+ b = h3 + 2,�2 + 0i = h5,�2i

a� 2b = h3,�2i � 2 h2, 0i
= h3� 4,�2� 0i = h�1,�2i

3a = 3 h3,�2i = h9,�6i

5b� 2a = 5 h2, 0i � 2 h3,�2i
= h10� 6, 0 + 4i = h4, 4i

k5b� 2ak =
p
42 + 42 =

p
32 = 4

p
2

5. a+ b = (i+ 2j) + (�3i+ j) = �2i+ 3j
a� 2b = (i+ 2j)� 2(�3i+ j) = 7i+ 0j
3a = 3i+ 6j
5b� 2a = 5(�3i+ j)� 2(i+ 2j) = �17i+ j

k5b� 2ak =
p

172 + (1)2 =
p
290

580
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6. a+ b = (�2i+ j) + (3i+ 0j) = i+ j

a� 2b = (�2i+ j)� 2(3i+ 0j) = �8i+ j

3a = �6i+ 3j
5b� 2a = 5(3i+ 0j)� 2(�2i+ j) = 19i� 2j
k5b� 2ak =

p
192 + (�2)2 =

p
365

7. a+ b = h 5, 3 i

4

4

0

2

52 31

3

1

0

a� b = h�1, 5 i

2

4

0

0

5

3

1

2

1

−1

8. a+ b = h 5, -2 i

4 5

−1

3210
0

−2

a� b = h 1, �2 i

3.0

−1.5

2.0 2.51.51.00.50.0

0.0

−0.5

−1.0

−2.0

9. b = �2a so these are parallel.

10. Suppose h1,�2i = c h2, 1i
x component: 1 = 2c =) c = 1

2

y component: c = �2
Not parallel

11. Suppose h�2, 3i = c h4, 6i
x component: �2 = 4c =) c = � 1

2

y component: 3 = 6c =) c = 1

2

Not parallel

12. b = �4a so these are parallel.

13. b = 3a so these are parallel.

14. Suppose �2i+ j = c(4i+ 2j)
x component: �2 = 4c =) c = � 1

2

y component: 1 = 2c =) c = 1

2

Not parallel

15. The vector b�a has initial point a and termi-
nal point b.
b� a = h5� 2, 4� 3i = h3, 1i

16. The vector b�a has initial point a and termi-
nal point b.
b� a = h1� 4, 0� 3i = h�3,�3i

17. The vector b�a has initial point a and termi-
nal point b.
b� a = h1� (�1),�1� 2i = h2,�3i

18. The vector b�a has initial point a and termi-
nal point b.
b� a = h�2� 1, 4� 1i = h�3, 3i

19. k h4,�3i k =
p
42 + (�3)2 = 5, so a unit vec-

tor in the same direction is
⌦
4

5

,� 3

5

↵
, and the

vector in polar form is 5
⌦
4

5

,� 3

5

↵
.

20. k h3, 6i k =
p
32 + 62 = 3

p
5, so a unit vector

in the same direction is
Dp

5

5

, 2

p
5

5

E
, and the

vector in polar form is 3
p
5
Dp

5

5

, 2

p
5

5

E
.
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21. k2i�4jk =
p
22 + (�4)2 = 2

p
5, so a unit vec-

tor in the same direction is 1p
5

i� 2p
5

j, and the

vector in polar form is 2
p
5
D

1p
5

,� 2p
5

E
.

22. k4ik =
p
42 + 02 = 4, so a unit vector in the

same direction is i, and the vector in polar form
is 4 h1, 0i.

23. k h5� 2, 2� 1i k =
p
32 + 12 =

p
10, so a unit

vector in the same direction is
D

3p
10

, 1p
10

E
, and

the vector in polar form is
p
10
D

3p
10

, 1p
10

E
.

24. k h2� 5, 3� (�1)i k =
p
(�3)2 + 42 = 5, so a

unit vector in the same direction is
⌦
� 3

5

, 4

5

↵
,

and the vector in polar form is 5
⌦
� 3

5

, 4

5

↵
.

25. A unit vector in the direction of v is
u = 1

kvk h3, 4i =
⌦
3

5

, 4

5

↵
.

Vector in this direction with magnitude 3 is
3
⌦
3

5

, 4

5

↵
=
⌦
9

5

, 12

5

↵
.

26. A unit vector in the direction of v is
u = 1

kvk h2,�1i =
D

2p
5

, �1p
5

E
.

Vector in this direction with magnitude 4 is

4
D

2p
5

, �1p
5

E
=
D

8p
5

, �4p
5

E
.

27. A unit vector in the direction of v is
u = 1

kvk h2, 5i =
D

2p
29

, 5p
29

E
.

Vector in this direction with magnitude 29 is

29
D

2p
29

, 5p
29

E
=
⌦
2
p
29, 5

p
29
↵
.

28. A unit vector in the direction of v is
u = 1

kvk h3, 1i =
D

3p
10

, 1p
10

E
.

Vector in this direction with magnitude 10 is

10
D

3p
10

, 1p
10

E
=
⌦
3
p
10,

p
10
↵
.

29. A unit vector in the direction of v is
u = 1

kvk h3, 0i = h1, 0i.
Vector in this direction with magnitude 4 is
4 h1, 0i = h4, 0i.

30. A unit vector in the direction of v is
u = 1

kvk h0,�2i = h0,�1i.
Vector in this direction with magnitude 5 is
5 h0,�1i = h0,�5i.

31. The desired vector isD
4 cos

⇡

4
, 4 sin

⇡

4

E
=

⌧
4p
2
,
4p
2

�

32. The desired vector isD
2 cos

⇡

3
, 2 sin

⇡

3

E

=

*
2 · 1

2
, 2 ·

p
3

2

+
=
D
1,
p
3
E

33. The desired vector is⌧p
2 cos

2⇡

3
,
p
2 sin

2⇡

3

�

=

*
p
2 ·
✓
�1

2

◆
,
p
2 ·
 p

3

2

!+

=

*
� 1p

2
,

r
3

2

+

34. The desired vector is⌧p
3 cos

5⇡

3
,
p
3 sin

5⇡

3

�

=

*
p
3 · 1

2
,
p
3 ·
 
�
p
3

2

!+
=

*p
3

2
,�3

2

+

35.

c

a

b

4 653

0.0

210

10.0

7.5

5.0

2.5

7

c

3b

2a

76
0.0

543210

10.0

7.5

5.0

2.5

From the graph, c = c
1

a+ c
2

b

) c
1

= 2 , c
2

= 3
) c = 2a+ 3b

36.
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c

ab

0.5

5.0

1.0

10.0

7.5

2.5

0.0
0.0

−0.5−1.0

c

2b 3a

−2

5.0

3210−1

10.0

7.5

2.5

0.0

From the graph, c = c
1

a+ c
2

b

) c
1

= 3 , c
2

= 2
) c = 3a+ 2b

37.

7.55.02.5

3.6

0.0

3.2

2.8

−2.5

2.4

2.0

−5.0

1.6

1.2

0.8

0.4

0.0

c
a

b

−2b

c

2a

2

2

−2

4

3

1

0

−1

8640

From the graph, c = c
1

a+ c
2

b

) c
1

= 2 , c
2

= �2
) c = 2a� 2b

38.

b a

c

−1

−1

−3

−3

−5

−5 1

2

0
1

0

−2

−2

−4

−6

−4

−7

−8

−6−7−8−9

−3a

2b

c

0

−4

−6

−8

0−2

−2

−4

−6

−8

From the graph, c = c
1

a+ c
2

b

) c
1

= �3 , c
2

= 2
) c = �3a+ 2b

39. The largest magnitude of a+b is 7 (if the vec-
tors point in the same direction). The smallest
magnitude is 1 (if the vectors point in opposite
directions). If the vectors are perpendicular,
then a+b can be viewed as the hypotenuse of
a right triangle with sides a and b, so it has
length

p
32 + 42 = 5.
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40. A = (1, 2), B = (3, 1), C = (4, 3), D = (2, 4)
AB = h2,�1i, BC = h1, 2i , CD = h�2, 1i,
DA = h�1,�2i
AB = �1CD =) AB k CD

BC = �1DA =) BC k DA

Opposite sides are parallel, so the figure forms
a parallelogram.

41. Let a = ha
1

, a
2

i, b = hb
1

, b
2

i, and c = hc
1

, c
2

i.
a+ (b+ c) = ha

1

, a
2

i+ (hb
1

, b
2

i+ hc
1

, c
2

i)
= ha

1

, a
2

i+ hb
1

+ c
1

, b
2

+ c
2

i
= ha

1

+ b
1

+ c
1

, a
2

+ b
2

+ c
2

i
= ha

1

+ b
1

, a
2

+ b
2

i+ hc
1

, c
2

i
= (ha

1

, a
2

i+ hb
1

, b
2

i) + hc
1

, c
2

i
= (a+ b) + c

42. Let a = ha
1

, a
2

i, b = hb
1

, b
2

i, and let d and e
be any scalars.
d(a+ b) = d(ha

1

, a
2

i+ hb
1

, b
2

i)
= d ha

1

+ b
1

, a
2

+ b
2

i
= hd(a

1

+ b
1

), d(a
2

+ b
2

)i
= hda

1

+ db
1

, da
2

+ db
2

i
= hda

1

, da
2

i+ hdb
1

, db
2

i
= d ha

1

, a
2

i+ d hb
1

, b
2

i = da+ db

(d+ e)a = (d+ e) ha
1

, a
2

i
= h(d+ e)a

1

, (d+ e)a
2

i
= hda

1

+ ea
1

, da
2

+ ea
2

i
= hda

1

, da
2

i+ hea
1

, ea
2

i
= d ha

1

, a
2

i+ e ha
1

, a
2

i = da+ ea

43. (a) kak =
p
22 + 32 =

p
13,

kbk =
p
12 + 42 =

p
17, and

ka+ bk =
p
32 + 72 =

p
58

kak+ kbk ⇡ 7.73
ka+ bk ⇡ 7.62
For every choice of vectors
ka+ bk  kak+ kbk.
In Figure 10.6 we see that a + b can be
viewed as one side of a triangle with a and
b as the other two sides. The third side of
a triangle cannot be longer than the sum
of the other two sides.

(b) We have that 0  (a
1

b
2

� a
2

b
1

)2

= a
1

2b
2

2 � 2a
1

a
2

b
1

b
2

+ a
2

2b
1

2

and this means that
a
1

2b
2

2 + a
2

2b
1

2 � 2a
1

a
2

b
1

b
2

Now add a
1

2b
1

2 + a
2

2b
2

2 to both sides
and factor to see that
a
1

2b
2

2 + a
2

2b
1

2 + a
1

2b
1

2 + a
2

2b
2

2

� 2a
1

a
2

b
1

b
2

+ a
1

2b
1

2 + a
2

2b
2

2, and
(a

1

2 + a
2

2)(b
1

2 + b
2

2) � (a
1

b
1

+ a
2

b
2

)2.
Taking square roots, we get

a
1

b
1

+ a
2

b
2


p
(a

1

2 + a
2

2)
q
(b

1

2 + b
2

2)
Now look at

ka+ bk2 � (kak+ kbk)2
= (a

1

+ b
1

)2 + (a
2

+ b
2

)2 �
⇥
a
1

2 + a
2

2

+2
p
a
1

2 + a
2

2

p
b
1

2 + b
2

2 + b
1

2 + b
2

2

i

= 2a
1

b
1

+2a
2

b
2

�2
p
a
1

2 + a
2

2

p
b
1

2 + b
2

2

The inequality above now allows us to
conclude that
2a

1

b
1

+ 2a
2

b
2

� 2
p
a
1

2 + a
2

2

p
b
1

2 + b
2

2

 0, and thus, ka+bk2�(kak+kbk)2  0.

Therefore, ka+ bk2  (kak+ kbk)2, and
ka+ bk  kak+ kbk

(c) ka+bk = kak+kbk if and only if a and b

are in the same direction. In other words,
we have equality if a = cb for some con-
stant c � 0.

44. If a and b are two vectors, then c = a + b

represents the resultant vector and it is the
third side of triangle, whose other two sides
are a and b. From the law of cosines we have,
c2 = a2 + b2 � 2abcos✓

If cos ✓ = 0 , c2 = a2 + b2, that is
ka+ bk2 = kak2+kbk2. Which happens if and
only if a and b are mutually perpendicular.

If cos ✓ > 0 ,
c2 = a2 + b2 � 2ab cos ✓ < a2 + b2, that is
ka+ bk2 < kak2+kbk2. Which happens if and
only if the angle subtended by a and b is an
acute angle.

If cos ✓ < 0 ,
c2 = a2 + b2 � 2ab cos ✓ > a2 + b2, that is
ka+ bk2 > kak2+kbk2. Which happens if and
only if the angle subtended by a and b is an
obtuse angle.

45. The force due to gravity is g = h0,�150i and
the force due to air resistance is w = h20, 140i,
so the net force is g +w = h20,�10i.

46. The force due to gravity is g = h0,�200iand
the force due to air resistance isw = h40, 220i
so the net force is g +w = h40, 20 i

47. The force due to gravity is g = h0,�200iand
the net force is g+w = h�30,�10 i. Therefore
the force due to air resistance is
w = (g +w)� g = h�30,�10i � h0,�200i

= h�30, 190 i

48. The force due to gravity is g = h0,�180i and
the net force is g + w = h�20,�20i, so the
force due to air resistance is
w = h�20,�20i � h0,�180i = h�20, 160i.



10.1. VECTORS IN THE PLANE 585

49. The force due to rope A is a = h�164, 115i,
the force due to rope B is b = h177, 177i, and
the force due to gravity is g = h0,�275i. The
net force is a+ b+ g = h13, 17i, and the crate
will move up and to the right.

50. The force due to rope A is a = h�131, 92i, the
force due to rope B is b = h92, 92i, and the
force due to gravity is g = h0,�275i. The net
force is a+ b+ g = h�39,�91i, and the crate
will move down and to the left.

51. Let v = hx, yi be the velocity of the plane.
The wind velocity isw = h30,�20 i. The e↵ec-
tive velocity of the plane is v + w = h c, 0i,
where c < 0 as the plane is traveling due
west. Therefore x+ 30 = candy + (�20) = 0.

Further||v|| = 300,
p
x2 + y2 = 300.

x2 + 400 = 90, 000
x2 = 89, 600
x = �

p
89, 600 = �80

p
14

as the plane moves due west. Thus, the plane
should head in the direction
v =

⌦
�80

p
14, 20

↵
,which points left up or

north west at an angle of

tan�1

⇣
20

80

p
14

⌘
⇡ 3.8226� above due west.

52. Let v = hx, yi be the velocity of the plane. The
wind velocity is w = h�30, 60 i. The e↵ective
velocity of the plane is
v + w = h 0, c i,where c > 0 as the plane is
traveling due north. Therefore x� 30 = 0 and
y + 60 = c. Further
||v|| = 600,

p
x2 + y2 = 600.

900 + y2 = 360, 000
y2 = 359, 100
y =

p
359, 100 = 10

p
3591

as the plane moves due north. Thus, the plane
should head in the direction.
v =

⌦
30, 10

p
3591

↵
,which points right up or

north east at an angle of

tan�1

⇣p
3591

3

⌘
⇡ 87.134� above due east.

53. Let v = hx, yi be the velocity of the plane.
The wind velocity is w = h�20, 30 i. The ef-
fective velocity of the plane is v + w = h 0, c i,
where c < 0 as the plane is traveling due
south. Therefore x � 20 = 0 and y + 30 = c.
Further||v|| = 400,

p
x2 + y2 = 400.

400 + y2 = 160, 000
y2 = 159, 600
y = �

p
159, 600 = �20

p
399

as the plane moves due south. Thus, the plane
should head in the direction

v =
⌦
20,� 20

p
399

↵
,which points right up or

north east at an angle of
tan�1

�p
399
�
⇡ 87.134�below due east

54. Let v = hx, yi be the velocity of the plane. The
wind velocity is w = h50, 0 i. The e↵ective ve-
locity of the plane is v + w = h c, 0i , where
c > 0 as the plane is traveling due east. There-
fore x+50 = c and y +0 = 0. that is x = c�50
and y = 0 Which implies that, the plane must
be headed at an angle 0� due east.

55. The paper will travel with velocity h�25, 10 i
feet per seconds. The paper will take 2 sec-
onds to travel 50 ft. to the left, during which
it will travel 20 feet up the road. He should
release the paper 20ft. along the street, before
approaching the porch.

57. (a) The velocity of the kayak in still water is
a = h4, 0i.The velocity of the current is
b = h1, 0i.The resultant velocity of the
kayak is c = h 1, 4i.Therefore, the actual
speed of the kayak is

p
17and the angle

between its direction and the far shore

and is tan�1

✓
4

1

◆
= 75.9638�.

(b) Let it be d = hx, yibe the actual veloc-
ity of the kayak such that it goes straight
across the river.
Hence d+ h 1, 0 i = h 0, c i where c > 0,

which implies x + 1 = 0 and y = c

so x = -1 and ||d|| = 4 ,
that is

p
x2 + y2 = 4 or y =

p
15.

Therefore d =
⌦
�1,

p
15
↵
.

Thus the desired angle is
⇡ � cos�1

�
1

4

�
= 180� � 75.5254�

= 104.4746�

these angles are supplementary angles.

58. (a) The weight of the hose is h0,�20i, and
the force of the water is h�200, 0i. The
force required to hold the hose horizon-
tal is h200, 20i, or

p
2002 + 202 = 20

p
101

pounds at angle tan�1

20

200

⇡ 5.7� above
horizontal.

(b) The weight of the hose is h0,�20i, and
the force of the water is
200

D
� 1p

2

,� 1p
2

E
=
⌦
�100

p
2,�100

p
2
↵
.

(That is, 200 pounds in the di-
rection h�1,�1i). The force re-
quired to hold the hose at a 45�

angle is
⌦
100

p
2, 100

p
2 + 20

↵
, orq

(100
p
2)2 + (100

p
2 + 20)2 ⇡ 214.6
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pounds at angle tan�1

100

p
2+20

100

p
2

⇡ 48.8�

above horizontal.

10.2 Vectors in Space

1. (a)

-4-4

-4

-2-2

-2

00
0

z

y

2

x

22

4

44

(b)

-3-3
-2-2

-3

-2

-1-1

-1
00
0

z
1

1

y

1

x

2

22

3

33

(c)

-4 -4
-2 -2

-4

-2

00
0

z2

x y

2

4

2
4 4

2. (a)

-2 -2

-2

-1 -1

-1

00
0

x y

z

1 1

1

2 2

2

(b)

-3 -3

-3

-2 -2

-2

-1 -1

-1

000
x y11

1
z

2 2

2

33

3

(c)

-3
-2-3

-3

-2 -1

-2

-1

-1
0

0
0

z
1

1

y

2

1 2

x

3

32
3

3. d =
p
(x

2

� x
1

)2 + (y
2

� y
1

)2 + (z
2

� z
1

)2

d =
p
(2� 5)2 + (1� 5)2 + (2� 2)2 = 5

4. d =
p
(x

2

� x
1

)2 + (y
2

� y
1

)2 + (z
2

� z
1

)2

d =
p
(7� 1)2 + (10� 2)2 + (0� 0)2 = 10

5. d =
p
(x

2

� x
1

)2 + (y
2

� y
1

)2 + (z
2

� z
1

)2

d =
p
(1� (�1))2 + (2� 0)2 + (3� 2)2 = 3

6. d =
p
(1� 3)2 + (3� 1)2 + (�4� 0)2

= 2
p
6
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7. a+ b = h2 + 1, 1 + 3,�2 + 0i = h3, 4,�2i
a� 3b = h2, 1,�2i � 3 h1, 3, 0i

= h�1,�8,�2i
k4a+ 2bk = k4 h2, 1,�2i+ 2 h1, 3, 0i k

= k h10, 10,�8i k =
p
264 = 2

p
66

8. a+ b = h�1 + 4, 0 + 3, 2 + 2i = h3, 3, 4i
a� 3b = h�1, 0, 2i � 3 h4, 3, 2i

= h�13,�9,�4i
k4a+ 2bk = k4 h�1, 0, 2i+ 2 h4, 3, 2i k

= k h4, 6, 12i k =
p
196 = 14

9. a+ b = (3i� j+ 4k) + (5i+ j)
= (3 + 5)i+ (�1 + 1)j+ (4 + 0)k
= 8i+ 4k

a� 3b = (3i� j+ 4k)� 3(5i+ j)
= �12i� 4j+ 4k

k4a+ 2bk = k22i� 2j+ 16kk
=
p

222 + (�2)2 + 162 = 2
p
186

10. a+ b = (i� 4j� 2k) + (i� 3j+ 4k)
= (1 + 1)i+ (�4� 3)j+ (�2 + 4)k
= 2i� 7j+ 2k

a� 3b = (i� 4j� 2k)� 3(i� 3j+ 4k)
= �2i+ 5j� 14k

k4a+ 2bk = k6i� 22j+ 0kk
=
p

62 + (�22)2 + 02 = 2
p
130

11. (a) k h3, 1, 2i k =
p
14, so the two unit vectors

are ±
D

3p
14

, 1p
14

, 2p
14

E

(b) h3, 1, 2i =
p
14
D

3p
14

, 1p
14

, 2p
14

E

12. (a) k h2,�4, 6i k = 2
p
14, so the two unit vec-

tors are ±
D

1p
14

, �2p
14

, 3p
14

E

(b) h2,�4, 6i = 2
p
14
D

1p
14

, �2p
14

, 3p
14

E

13. (a) k2i � j + 2kk = 3, so the two unit vectors
are ± 1

3

(2i� j+ 2k)

(b) 2i� j+ 2k = 3( 2
3

i� 1

3

j+ 2

3

k)

14. (a) k4i� 2j+ 4kk = 6, so two unit vectors are
± 1

6

(4i� 2j+ 4k)

(b) 4i� 2j+ 4k = 6( 2
3

i� 1

3

j+ 2

3

k)

15. (a) k h3� 1, 2� 2, 1� 3i k = 2
p
2, so the two

unit vectors are ±
D

1p
2

, 0,� 1p
2

E

(b) h2, 0,�2i = 2
p
2
D

1p
2

, 0,� 1p
2

E

16. (a) k h3� 1, 2� 4, 2� 1i k = 3, so the two unit
vectors are ±

⌦
2

3

,� 2

3

, 1

3

↵

(b) h2,�2, 1i = 3
⌦
2

3

,� 2

3

, 1

3

↵

17. kvk = 3, so a unit vector in the direction
of v is

⌦
2

3

, 2

3

,� 1

3

↵
, and the desired vector is

6
⌦
2

3

, 2

3

,� 1

3

↵
= h4, 4,�2i.

18. kvk = 5, so a unit vector in the direction
of v is

⌦
3

5

, 0,��4

5

↵
, and the desired vector is

10
⌦
3

5

, 0,��4

5

↵
= h6, 0,�8i.

19. kvk =
p
14, so a unit vector in the direction of

v is 1p
14

(2i� j+3k), and the desired vector is

4( 1p
14

)(2i� j+ 3k).

20. kvk =
p
19, so a unit vector in the direction of

v is 1p
19

(3i+3j� k), and the desired vector is

3( 1p
19

)(3i+ 3j� k).

21. (x� 3)2 + (y � 1)2 + (z � 4)2 = 4

22. (x� 2)2 + y2 + (z � 1)2 = 9

23. (x� ⇡)2 + (y � 1)2 + (z + 3)2 = 5

24. (x� 1)2 + (y � 3)2 + (z � 4)2 = 7

25. A sphere of radius 2 and center (1, 0,�2).

26. A sphere of radius
p
2 and center (0, 1, 4).

27. Complete the squares to get
(x2 � 2x+ 1) + y2 + (z2 � 4z + 4) = 1 + 4

(x� 1)2 + y2 + (z � 2)2 = 5
A sphere of radius

p
5 and center (1, 0, 2).

28. Complete the squares to get
(x2 + x+ 1

4

) + (y2 � y + 1

4

) + z2 = 7

2

+ 1

4

+ 1

4

(x+ 1

2

)2 + (y � 1

2

)2 + z2 = 4
A sphere of radius 2 and center (� 1

2

, 1

2

, 0).

29. Given equation represents the point (-1, 2, 0).

30. x2 � 2x+ y2 + z2 + 4z + 4 = 0
) (x� 1)2 + y2 + (z + 2)2 = 1,
A sphere of radius 1 and centre ( 1, 0,�2).

31. Sketch of z axis:

-2

-2

-1

-1

-2 -1 0
00

x
1

y

2

1

z 1

2

2
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32. Sketch of y axis:

2-2

-2

y
1-1

-1

00
0

x

z 1

1-1

2

2-2

33. Parallel to xz plane:

-4

-4

-4
-2

-2

-2
0

00

y
2

2

4

z

2x

4

4

34. Parallel to yz plane:

-4 -4

-4

-2 -2

-2

00
0

z
2

x

2

y

2

4

4 4

35. Parallel to xy plane:

-4-4 -2-2

-4

z

-2

0
00

2

4

22
x y

44

36. Parallel to xy plane:

-4-4 -2-2

-4

-2

z

0
00

2

4

22

yx
44

37. y = 0

38. z = 0

39. x = 0

40. y = z = 0

41. (a) Let a = ha
1

, a
2

, a
3

i, and b = hb
1

, b
2

, b
3

i.
Then a+ b = ha

1

, a
2

, a
3

i+ hb
1

, b
2

, b
3

i
= ha

1

+ b
1

, a
2

+ b
2

, a
3

+ b
3

i
= hb

1

+ a
1

, b
2

+ a
2

, b
3

+ a
3

i
= hb

1

, b
2

, b
3

i+ ha
1

, a
2

, a
3

i = b+ a

(b) Let a = ha
1

, a
2

, a
3

i, b = hb
1

, b
2

, b
3

i, and
c = hc

1

, c
2

, c
3

i.
Then a+ (b+ c)
= ha

1

, a
2

, a
3

i+ (hb
1

, b
2

, b
3

i+ hc
1

, c
2

, c
3

i)
= ha

1

, a
2

, a
3

i+ hb
1

+ c
1

, b
2

+ c
2

, b
3

+ c
3

i
= ha

1

+ b
1

+ c
1

, a
2

+ b
2

+ c
2

, a
3

+ b
3

+ c
3

i
= ha

1

+ b
1

, a
2

+ b
2

, a
3

+ b
3

i+ hc
1

, c
2

, c
3

i
= (a+ b) + c

42. (a) Let a = ha
1

, a
2

, a
3

i, b = hb
1

, b
2

, b
3

i, and
let d and e be constants. Then,
d(a+ b)
= d(ha

1

, a
2

, a
3

i+ hb
1

, b
2

, b
3

i)
= d ha

1

+ b
1

, a
2

+ b
2

, a
3

+ b
3

i
= hd(a

1

+ b
1

), d(a
2

+ b
2

), d(a
3

+ b
3

)i
= hda

1

+ db
1

, da
2

+ db
2

, da
3

+ db
3

i
= hda

1

, da
2

, da
3

i+ hdb
1

, db
2

, db
3

i
= d ha

1

, a
2

, a
3

i+ d hb
1

, b
2

, b
3

i = da+ db
(d+ e)a
= (d+ e) ha

1

, a
2

, a
3

i
= h(d+ e)a

1

, (d+ e)a
2

, (d+ e)a
3

i
= hda

1

+ ea
1

, da
2

+ ea
2

, da
3

+ ea
3

i
= hda

1

, da
2

, da
3

i+ hea
1

, ea
2

, ea
3

i
= d ha

1

, a
2

, a
3

i+ e ha
1

, a
2

, a
3

i = da+ ea

(b) 1a = 1 ha
1

, a
2

, a
3

i = ha
1

, a
2

, a
3

i = a

0a = 0 ha
1

, a
2

, a
3

i = h0, 0, 0i = 0

43. PQ = h4� 2, 2� 3, 2� 1i = h2,�1, 1i
QR = h8� 4, 0� 2, 4� 2i = h4,�2, 2i
QR = 2PQ
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so the vectors are parallel and the points are
colinear.

44. PQ = h0� 2, 4� 3, 2� 1i = h�2, 1, 1i
QR = h4� 0, 1� 4, 4� 2i = h4,�3, 2i
PQ 6= cQR

so the vectors are not parallel and the points
are not colinear.

45. P = (0, 1, 1), Q = (2, 4, 2), R = (3, 1, 4)
PQ = h2, 3, 1i, so kPQk =

p
14

QR = h1,�3, 2i, so kQRk =
p
14

RP = h3, 0, 3i, so kRPk =
p
18

No, the points do not form an equilateral tri-
angle.

46. P = (2, 1, 0), Q = (4, 1, 2), R = (4, 3, 0)
PQ = h2, 0, 2i, so kPQk =

p
8

QR = h0, 2,�2i, so kQRk =
p
8

RP = h�2,�2, 0i, so kRPk =
p
8

Yes, the points form an equilateral triangle.

47. P = (3, 1,�2), Q = (1, 0, 1), R = (4, 2,�1)
PQ = h�2,�1, 3i, so kPQk =

p
14

QR = h3, 2,�2i, so kQRk =
p
17

RP = h�1, 1, 1i, so kRPk =
p
3p

3
2

+
p
14

2

=
p
17

2

,
so yes, these points form a right triangle.

48. P = (1,�2, 1), Q = (4, 3, 2), R = (7, 1, 3)
PQ = h3, 5, 1i, so kPQk =

p
35

QR = h3,�2, 1i, so kQRk =
p
14

RP = h�6,�3,�2i, so kRPk =
p
49p

35
2

+
p
14

2

=
p
49

2

,
so yes, these points form a right triangle.

49. Let P = (2, 1, 0), Q = (5,�1, 2),
R = (0, 3, 3), and S = (3, 1, 5).
There are six pairs, four will correspond to
sides (side length s if square) and two will be
diagonals (length s

p
2 if square).

PQ = h3,�2, 2i, so kPQk =
p
17

QR = h�5, 4, 1i, so kQRk =
p
42

Since these are not equal, and do not di↵er
by a factor of

p
2, these points cannot form a

square.

50. Let P = (1,�2, 1), Q = (�2,�1, 2),
R = (2, 0, 2), and S = (�1, 1, 3).
There are six pairs, four that will correspond
to sides (side length s if square) and two will
be diagonals (length s

p
2 if square).

PQ = h�3, 1, 1i, so kPQk =
p
11

QR = h4, 1, 0i, so kQRk =
p
17

Since these are not equal, and do not di↵er
by a factor of

p
2, these points cannot form a

square.

51. h2, 3, 1, 5i+ 2 h1,�2, 3, 1i
= h2 + 2, 3� 4, 1 + 6, 5 + 2i
= h4,�1, 7, 7i

52. 2 h3,�2, 1, 0i � h2, 1,�2, 1i
= h6� 2,�4� 1, 2� (�2), 0� 1i
= h4,�5, 4,�1i

53. h3,�2, 4, 1, 0, 2i � 3 h1, 2,�2, 0, 3, 1i
= h3� 3,�2� 6, 4 + 6, 1� 0, 0� 9, 2� 3i
= h0,�8, 10, 1,�9,�1i

54. h2, 1, 3,�2, 4, 1, 0, 2i+ 2 h3, 1, 1, 2,�2, 0, 3, 1i
= h8, 3, 5, 2, 0, 1, 6, 4i

55. k h3, 1,�2, 4, 1i k
=
p
32 + 12 + (�2)2 + 42 + 12 =

p
31

56. k h1, 0,�3,�2, 4, 1i k
=
p

12 + 02 + (�3)2 + (�2)2 + 42 + 12

=
p
31

57. k h1,�2, 4, 1i+ h�1, 4, 2,�4i k
= k h0, 2, 6,�3i k
=
p

02 + 22 + 62 + (�3)2 = 7.

58. a� 2b = h2, 1,�2, 4, 1i � 2 h3,�1, 4, 2,�4i
= h�4, 3,�10, 0, 9i

ka� 2bk =
p
16 + 9 + 100 + 0 + 81 =

p
206

59. (a) Call the point of intersection between the
inscribed circle and the unit circle in the
first quadrant P . Symmetry forces P to
lie on the line y = x, which passes through
the center of the inscribed circle, (0, 0),
and the center of the unit circle in the
first quadrant, (1, 1). The distance from
(0, 0) to (1, 1) is

p
2 and the distance from

P to (1, 1) is 1 (since this is the radius of
a unit circle). Therefore, the radius of the
inscribed circle is the distance from (0, 0)
to P , or

p
2� 1.

(b) The radius of the inscribed sphere will
be the distance from the origin to P ,
the point of intersection of the inscribed
sphere and the unit sphere in the first oc-
tant. The point P lies on the line through
the origin and (1, 1, 1), the center of the
unit sphere in the first octant. The dis-
tance from the origin to (1, 1, 1) is

p
3 and

the distance from P to (1, 1, 1) is 1 (since
this is the radius of a unit sphere). There-
fore the radius of the inscribed sphere isp
3� 1.
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(c) Let P be the point of intersection of the
inscribed hypersphere (centered at the
origin) and the unit hypersphere centered
at h1, 1, 1, . . . , 1i. The distance from the
origin to h1, 1, 1, . . . , 1i is

p
n. The dis-

tance from P to h1, 1, 1, . . . , 1i is 1 be-
cause this is the radius of a unit hyper-
sphere. Therefore the radius of the in-
scribed hypersphere is

p
n� 1.

For n � 10 this radius will be larger than
2, so the inscribed hypersphere extends
outside of the box along the coordinate
axes.

60. Let r = hx, y, zi and r

0

= hx
0

, y
0

, z
0

i be such
that kr� r0k = 2. Now consider kr� r

0

k = 2

)
q
(x� x

0

)2 + (y � y
0

)2 + (z � z
0

)2 = 2

hence (x� x
0

)2 + (y � y
0

)2 + (z � z
0

)2 = 4
which is the equation of a sphere with centre
(x

0

, y
0

, z
0

) and radius 2.Therefore (x, y, z) is
the set of points on the surface of this sphere.

61. Let the force due to rope A be
a = h10,�130, 200i, the force due to rope B
be b = h�20, 180, 160i, and write the force
due to gravity as w = h0, 0,�500i. The net
force is a + b + w = h�10, 50,�140i. In or-
der to compensate, rope C must exert a force
of h10,�50, 140i, or 149 pounds in direction
h1,�5, 14i.
The force exerted by the rope A is
a = h10,�130, 200i, therefore the tension in
the rope is
kak =

p
100 + 16900 + 40000 = 238.74

pounds.
The force exerted by the rope B is b =
h�20, 180, 160i, therefore the tension in the
rope is 241.7 pounds, and the force exerted
by the gravity is w = h0, 0,�500i. The net
force is worth 148.99 pounds in the direction
of h�1, 5,�14i. If the third rope C is added to
balance the crate then the force exerted by the
rope C is worth 148.99 pounds and it should
be in the direction h1,�5, 14i.

62. Let the force due to rope A be
a = h10,�130, 200i, the force due to rope B be
b = h�20, 180, 160i and write the force due to
gravity as w = h0, 0,�300i. We want the net
force to be a + b + c +w = h0, 30, 20i. Rope
C must exert a force of h10,�20,�40i, or 45.8
pounds in direction h1,�2,�4i.
The force exerted by the rope A is
a = h10,�130, 200i, The force exerted by the

rope B is b = h�20, 180, 160i the force ex-
erted by the gravity is w = h0, 0,�300i If the
third rope C exerted the force c, such that
the net force a + b + c + w = h 0, 30, 20i,
then c = h 10,�20,�40i.Thus rope C must ex-
ert a force of 45.83 pounds in the direction
ofh1,�2,�4i. The tension in the rope A is
238.74 pounds, in the rope B is 241.7 pounds
and in the rope C is 45.83 pounds.

63. The velocity vector for the plane in still
air is 600

⌦
2

3

, 2

3

, 1

3

↵
= h400, 400, 200i. The

net velocity with wind speed h10,�20, 0i
will be h410, 380, 200i. The speed isp
4102 + 3802 + 2002 ⇡ 593.72 mph.

64. The velocity vector for the plane in still air is
v = 700

⌦
6

7

, �3

7

, 2

7

↵
= h600,�300, 200i. Let the

wind be w = hw
1

, w
2

, w
3

i. If the net velocity
is v +w = h580,�330, 160i, then the velocity
of the must be h�20,�30,�40i.

65.

OA+AB

OA+3/4*AB

OA+1/2*AB

OA+1/4*AB

OA

3

1

5

4

2

1

0
4320

Given: O = (0, 0) , A = (2, 1) and B = (4, 5)
!
OA = h2, 1i ,

!
AB = h4, 5i � h2, 1i = h2, 4i

Consider!
OA + 1

4

!
AB = h2, 1i+ 1

4

h2, 4i =
⌦
5

2

, 2
↵
=

!
OC

!
OA + 1

2

!
AB = h2, 1i+ 1

2

h2, 4i = h3, 3i =
!
OD

!
OA + 3

4

!
AB = h2, 1i+ 3

4

h2, 4i =
⌦
7

2

, 4
↵
=

!
OE

!
OA +

!
AB = h2, 1i+ h2, 4i = h4, 5i =

!
OB

Consider an object at the point A. The vec-

tor
!
OAdenotes the position of the object from

the origin. Now, if a vector 1

4

!
AB is added

to this vector, it means the object is moved
to the point C from the point A, such that

!
OC =

!
OA + 1

4

!
AB . If the vector 1

4

!
AB is added

to it, means the object is now moved to the

point D, such that
!

OD =
!
OA + 1

2

!
AB . Fur-

ther if, the vector 1

4

!
AB is added to it, means

the object is now moved to the point E, such
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that
!

OE =
!
OA + 3

4

!
AB and finally vector 1

4

!
AB

is added to it, means the object is now moved
to the point B from the point E.Every time

the vector 1

4

!
AB is added, the magnitude of

the resultant vector increases and the direction
changes as shown in the adjacent figure.

66. In the example 65, when we added 1

4

!
AB to

a vector, it resulted in rotation of the origi-
nal vector and increase in its magnitude, but
neither the increase in the magnitude nor the
rotation was constant on each addition Here
we need a constant change in the direction of
all the vectors that is each of them rotated
through 45� about the z-axis, thus we can not
apply the same procedure.

10.3 The Dot Product

1. h3, 1i · h2, 4i = 6 + 4 = 10

2. (3i+ j) · (�2i+ 3j) = �6 + 3 = �3

3. h 2,�1, 3 i · h 0, 2,�4 i = 0� 2� 12 = �14.

4. h3, 2, 0i · h�2, 4, 3i = �6 + 8 + 0 = 2

5. (2i� k) · (4j� k) = 0 + 0 + 1 = 1

6. (3i+ 3k) · (�2i+ j) = �6 + 0 + 0 = �6

7. cos ✓ =
a · b

kak kbk =
3� 2p
13
p
2
, so the angle be-

tween the vectors is cos�1

1p
26

⇡ 1.37.

8. cos ✓ =
a · b

kak kbk =
0 + 0� 8p

8
p
20

, so the angle be-

tween the vectors is cos�1 � 2p
10

⇡ 2.26.

9. cos ✓ =
a · b

kak kbk =
�6 + 2� 4p

26
p
9

, so the angle

between the vectors is cos�1

�8

3

p
26

⇡ 2.12

10. cos ✓ =
a · b

kak kbk =
2 + 0 + 6p
14
p
13

, so the angle be-

tween the vectors is cos�1

8p
182

⇡ 0.94

11. a · b = 4� 4 = 0. Orthogonal.

12. a · b = �6 + 6 = 0. Orthogonal.

13. a · b = 0. Orthogonal.

14. a · b = 8� 4 + 4 = 8 6= 0. Not Orthogonal.

15. (a) h 1, 2, 0 i or any scalar multiple of this
vector.

(b) h 1, 2,�3 i

16. (a) h 1, 4 , 0 i or any other vector, such that
their dot product is zero.

(b)
⌦

5

4

, 2,�3
↵

17. (a) i� 3j or any other vector, such that their
dot product is zero.

(b) � 7

6

i+ 2j� 3k

18. (a) �3 i � 2k or any other vector, such that
their dot product is zero.

(b) � 9

2

i+ 2 j� 3k

19. compba =
a · b
kbk =

6 + 4p
9 + 16

= 2

projba =
a · b
kbk

b

kbk =
6 + 4

5

h3, 4i
5

=

⌧
6

5
,
8

5

�

20. compba =
a · b
kbk =

12� 3p
16 + 9

=
9

5

projba =
a · b
kbk

b

kbk =
9

5

4i� 3j

5
=

36

25
i� 27

25
j

21. compba =
a · b
kbk =

2� 2 + 6p
1 + 4 + 4

=
6

3
= 2

projba =
a · b
kbk

b

kbk =
6

3

h1, 2, 2i
3

=

⌧
2

3
,
4

3
,
4

3

�

22. compba =
a · b
kbk =

�2 + 4 + 10p
4 + 1 + 4

=
12

3
= 4

projba =
a · b
kbk

b

kbk =
12

3

h�2, 1, 2i
3

=

⌧
�8

3
,
4

3
,
8

3

�

23. compba =
a · b
kbk =

0 + 0� 8p
0 + 9 + 16

=
�8

5

projba =
a · b
kbk

b

kbk =
�8

5

h0,�3, 4i
5

=

⌧
0,

24

25
,
�32

25

�

24. compba =
a · b
kbk =

�6 + 4 + 0p
4 + 4 + 1

=
�2

3

projba =
a · b
kbk

b

kbk =
�2

3

h�2, 2, 1i
3

=

⌧
4

9
,
�4

9
,
�2

9

�
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25. F = 40
⌦
cos ⇡

3

, sin ⇡

3

↵
= 40

D
1

2

,
p
3

2

E
. The hori-

zontal component of the force is 20, so the work
done is
W = Fd = 20 · 5280 = 105, 600 foot-pounds of
work.

26. F = 40
⌦
cos ⇡

6

, sin ⇡

6

↵
= 40

Dp
3

2

, 1

2

E
. The hori-

zontal component of the force is 20
p
3, so the

work done is
W = Fd = 20

p
3 ·5280 ⇡ 182, 905 foot-pounds

of work.

27. The force exerted in exercises 25 and 26 is the
same, but in exercise 26 the force is exerted in a
direction that is closer to the actual direction
of motion. This means that the contribution
the force makes to the motion is greater, and
more work is done.

28. If a constant force magnitude f is applied with
an angle of ⇡

3

(as in exercise 25), then the force
vector will be
F = f

⌦
cos ⇡

3

, sin ⇡

3

↵
= f

D
1

2

,
p
3

2

E
.

The horizontal component of the force is f

2

, so

the work done will be W = f

2

·5280. If we want
to do the same amount of work as in Example
3.6, we need
149, 341 = f

2

·5280, so f ⇡ 56.6 pounds of force.

29. Let F = h30, 20i, and d = h24, 10i.
The component of force in the direction of mo-
tion is

compdF =
F · d
kdk =

720 + 200p
242 + 102

=
920

26
.

The distance traveled is kdk = 26, and the
work done is W = 920

26

· 26 = 920 foot-pounds.

30. Let F = h60,�30i and d = h10,�10i.
The component of force in the direction of mo-
tion is

compdF =
F · d
kdk =

600 + 300p
102 + 102

The distance traveled is kdk =
p
200, and the

work done is
W = 900p

200

·
p
200 = 900 foot-pounds.

31. (a) False; counterexample a = h1, 0i,
b = h0, 1i, and c = h0, 2i

(b) True; if b = c then the computations will
be identical.

(c) True; kak2 =
p
a2
1

+ a2
2

+ a2
3

2

= a2
1

+ a2
2

+ a2
3

= a · a.
(d) False; counterexample a = h100, 1i,

b = h1, 2i, and c = h0, 1i.

(e) False; counterexample a = h1, 0i and
b =

Dp
2

2

,
p
2

2

E
.

32. Property (iii).

33. a · c < a · b < b · c

34. a · c < a · b < b · c

35. (a) b = h 0, x i , x > 0 or
b =

⌦
x, � 3x

4

↵
, x > 0 for any real x

(b) b =
⌦
x, �2x�

p
5
↵
for any real x

36. (a) b = h1, 0i or b = h�1, 0i
(b) b = hx, 2x� 10 i for any real x

37. LetA = (1, 0, 0) , B = (3, 0, �1) and
C = (1, 1, 1). Therefore, the sides AB, BC,
CA of the triangle ABC can vectorially be rep-
resented as��!
AB = h 3� 1, 0� 0, �1� 0i = h 2, 0,�1i
��!
BC = h 1� 3, 1� 0, 1 + 1i = h 2, 1, 2 i
��!
CA = h 1� 1, 1� 0, 1� 0i = h 0, 1, 1 i
From the figure,

cos (180� �A) =

��!
AB ·��!CA���

��!
AB

��� ·
���
��!
CA

���

=
h 2, 0,�1i · h 0, �1, �1 ip

5 ·
p
2

=
1p
10·

) A = 180� � cos�1

✓
1p
10·

◆
= 108.43�

Using cos (180� � B) =

��!
AB ·��!BC���
��!
AB
��� ·
���
��!
BC

���
and

cos (180� � C) =

��!
CA ·��!BC���

��!
CA

��� ·
���
��!
BC

���
, we get

B = 26.56� and C = 45�

38. A = (2, 0, 1) ; B = (2, 1, 4) ; C = (4,�2, 5) and
D = (4, 0, 2). Therefore the sides of the quadri-
laterals are vectorially given by��!
AB = h 2, 1, 4 i � h 2, 0, 1 i = h 0, 1, 3 i
��!
BC = h4,�2, 5 i � h 2, 1, 4 i = h 2,�3, 1 i
��!
CD = h 4, 0, 2 i � ( 4,�2, 5 ) = h 0, 2,�3 i
��!
DA = h 2, 0, 1 i � h 4, 0, 2 i = h�2, 0,�1 i

cos (180� �A) =

��!
DA .

��!
AB���

��!
DA

���
���
��!
AB

���

=
h�2, 0,�1 i . h 0, 1, 3 ip

5
p
10

=
�3p
50

) A=180� � cos�1

✓
�3p
50

◆
= 64.90�

Using cos (180� � B) =

��!
AB .

��!
BC���

��!
AB

���
���
��!
BC

���
,
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cos (180� � C) =

��!
BC .

��!
CD���

��!
BC

���
���
��!
CD

���
,

cos (180� �D) =

��!
CD .

��!
DA���

��!
CD

���
���
��!
DA

���
we get B = 90�,C = 48.15�,D = 156.95�

39. Let Q(x
2

, y
2

) be any point on line L and
r = ha, bi denote a vector normal to this line.
Therefore the desired distance is
���comp

r

��!
PQ

��� =

�����

��!
PQ . r

krk

�����

=

����
hx

2

� x
1

, y
2

� y
1

i . h a, bi
k h a, bi k

����

=

����
ax

2

� ax
1

+ by
2

� by
1p

a2 + b2

����

=

����
c� (ax

1

+ by
1

)p
a2 + b2

����

40. Let P (x
1

, y
1

) be a point on the line
L
1

⌘ ax+ by + c = 0; Q (x
2

, y
2

) be a point on
the line L

2

⌘ ax+ by+ d = 0. L and r = ha, bi
denote a vector normal to these lines. There-
fore the desired distance is
���comp

r

��!
PQ

��� =

�����

��!
PQ . r

krk

�����

=

����
hx

2

� x
1

, y
2

� y
1

i . h a, bi
k h a, bi k

����

=

����
ax

2

� ax
1

+ by
2

� by
1p

a2 + b2

���� =
����

c� dp
a2 + b2

����

41. (a) Let h1, 0i represent a side andh1, 1i repre-
sent the diagonal of a square as shown..
If ✓ is the angle between the adjacent side
and the diagonal, then

cos ✓ =
h1, 0i · h1, 1i

kh1, 0ik · kh1, 1ik =
1p
2

) ✓ = cos�1

⇣
1p
2

⌘
= 450

(b) Let h1, 0, 0i represent a side and h1, 1, 1i
represent the diagonal of a cube. If ✓ is
the angle between the adjacent side and
the diagonal, then

cos ✓ =
h1, 0, 0i · h1, 1, 1i

kh1, 0, 0ik · k1, 1, 1k =
1p
3

) ✓ = cos�1

✓
1p
3

◆
= 54.73�

(c) Let h1, 0, 0, 0irepresent a side and
h1, 1, 1, 1i represent the diagonal of a
of hypercube. If ✓ is the angle be-
tween the adjacent side and the diagonal,

then cos ✓ =
h1, 0, 0, 0i · h1, 1, 1, 1i
k1, 0, 0, 0k · k1, 1, 1, 1k =

1

2
or ✓ = cos�1

�
1

2

�
= 60�. So for an n-

dimensional cube ✓ = cos�1

⇣
1p
n

⌘
.

42. Adding ka+ b k2 = ka k2 + 2a.b+ kb k2 and
ka� b k2 = ka k2 � 2a.b + kb k2, we get the
desired result. In terms of property of a par-
allelogram, it states that in a parallelogram
formed by two vectors a and b, the sum of
squares of diagonals equals the sum of squares
of all its sides.

43. We have equality in the Cauchy-Schwartz In-
equality if the cosine of the angle between the
vectors is ±1. This happens exactly when the
vectors point in the same or opposite direc-
tions. In other words, when a = cb for some
constant c.

44. Vectors a and b must be parallel with the same
direction.

45. kak = k(a � b) + bk  ka � bk + kbk by the
Triangle Inequality, so kak � kbk  ka� bk.

46. (ii) a · (b+ c)
= ha

1

, a
2

, a
3

i · hb
1

+ c
1

, b
2

+ c
2

, b
3

+ c
3

i
= a

1

(b
1

+ c
1

) + a
2

(b
2

+ c
2

) + a
3

(b
3

+ c
3

)
= (a

1

b
1

+ a
2

b
2

+ a
3

b
3

) + (a
1

c
1

+ a
2

c
2

+ a
3

c
3

)
= a · b+ a · c
(iii) (da) · b
= (d ha

1

, a
2

, a
3

i) · b
= hda

1

, da
2

, da
3

i · hb
1

, b
2

, b
3

i
= da

1

b
1

+ da
2

b
2

+ da
3

b
3

= d(a
1

b
1

+ a
2

b
2

+ a
3

b
3

) = d(a · b)
= a

1

(db
1

) + a
2

(db
2

) + a
3

(db
3

)
= a · (db)

47. The maximum would occur when
a · b = |a · b| = kak kbk = 15.

48. We have that a · b = kak kbk cos ✓, and this
will be maximum when cos ✓ = 1. This hap-
pens when ✓ = 0 and the vectors are in the
same direction. In fact, we must have

a = kak b

kbk =
3

5
b.

49. In n dimensions, apply the Cauchy-Schwartz
Inequality to the vectors h|a

1

|, |a
2

|, . . . , |a
n

|i
and h|b

1

|, |b
2

|, . . . , |b
n

|i. We get

|a
1

b
1

|+ |a
2

b
2

|+ · · ·+ |a
n

b
n

|

p
a2
1

+ a2
2

+ · · ·+ a2
n

p
b2
1

+ b2
2

+ · · ·+ b2
n

Squaring both sides gives
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✓
nP

k=1

|a
k

b
k

|
◆

2


✓

nP
k=1

a2
k

◆✓
nP

k=1

b2
k

◆

If
1P
k=1

a2
k

and
1P
k=1

b2
k

both converge, then we

conclude that
1P
k=1

|a
k

b
k

| must also converge.

If a
k

= 1

k

and b
k

= 1

k

2 , then since we know
nP

k=1

1

k

2 =
⇡2

6
and

nP
k=1

1

k

4 =
⇡4

90
, we also know

nP
k=1

1

k3
 ⇡3

p
540

⇡ 1.3343.

50. In n dimensions, consider vectors
a = h|a

1

|, |a
2

|, . . . , |a
n

|i and
b = h|b

1

|, |b
2

|, . . . , |b
n

|i, and the inequality
0  ka� bk2, which gives

0 
nP

k=1

(|a
k

|� |b
k

|)2 =
nP

k=1

(a2
k

� 2|a
k

b
k

|+ b2
k

)

=
nP

k=1

a2
k

� 2
nP

k=1

|a
k

b
k

|+
nP

k=1

b2
k

.

Adding the middle term to both sides of the
inequality and dividing by 2 gives
nP

k=1

|a
k

b
k

|  1

2

nP
k=1

a2
k

+ 1

2

nP
k=1

b2
k

.

If
1P
k=1

a2
k

and
1P
k=1

b2
k

both converge, then we

conclude that
1P
k=1

|a
k

b
k

| must also converge.

If a
k

= 1

k

and b
k

= 1

k

2 , then since we know
nP

k=1

1

k

2 =
⇡2

6
and

nP
k=1

1

k

4 =
⇡4

90
, we also know

nP
k=1

1

k3
 ⇡2

12
+

⇡4

180
⇡ 1.3636.

This bound is slightly worse than the bound in
exercise 49.

51. (a) Apply the Cauchy-Schwartz Inequality to
the vectors
a

1

= h1, 1, . . . , 1i and
a

2

= h|a
1

|, |a
2

|, . . . , |a
n

|i.
We get a

1

· a
2

=
nP

k=1

|a
k

|  ka
1

k ka
2

k

=
p
n

✓
nP

k=1

a2
k

◆
1/2

(b) Use the above inequality,
nP

k=1

p
k


p
n

✓
nP

k=1

p2
k

◆
1/2

. Now since

nP
k=1

p
k

= 1, we have 1p
n


✓

nP
k=1

p2
k

◆
1/2

and squaring both sides gives
1

n


nP

k=1

p2
k

.

(c) If p
1

= p
2

= · · · = p
n

= 1

n

, then

nP
k=1

p2
k

=
nP

k=1

1

n

2 = n · 1

n

2 = 1

n

which is the

minimum possible value.

52. Apply the Cauchy-Schwartz Inequality to the
vectors
a

1

=
⌦
|a

1

|1/3, |a
2

|1/3, . . . , |a
n

|1/3
↵
and

a

2

=
⌦
|a

1

|2/3, |a
2

|2/3, . . . , |a
n

|2/3
↵
.

We get a
1

· a
2

=
nP

k=1

|a
k

|  ka
1

k ka
2

k

=

✓
nP

k=1

|a
k

|2/3
◆

1/2

✓
nP

k=1

|a
k

|4/3
◆

1/2

53. Consider the product

✓
nP

k=1

a2
k

◆✓
nP

k=1

b2
k

◆
.

This can be expanded as

a2
1

✓
nP

k=1

b2
k

◆
+a2

2

✓
nP

k=1

b2
k

◆
+ · · ·+a2

n

✓
nP

k=1

b2
k

◆
.

We can see that every term in
nP

k=1

a2
k

b2
k

= a2
1

b2
1

+a2
2

b2
2

+ · · ·+a2
n

b2
n

occurs once

in the expansion, but that there are many other
non-negative terms in the product.

Therefore
nP

k=1

a2
k

b2
k


✓

nP
k=1

a2
k

◆✓
nP

k=1

b2
k

◆
.

To see the second inequality, first apply the
Cauchy-Schwartz inequality the vectors
v

1

= ha
1

b
1

, a
2

b
2

, . . . , a
n

b
n

i and
v

2

= hc
1

, c
2

, . . . c
n

i to see that����
nP

k=1

(a
k

b
k

)c
k

����  kv
1

k kv
2

k.

Squaring both sides gives✓
nP

k=1

a
k

b
k

c
k

◆
2


✓

nP
k=1

a2
k

b2
k

◆✓
nP

k=1

c2
k

◆

Now apply the first inequality to

✓
nP

k=1

a2
k

b2
k

◆

to see that✓
nP

k=1

a
k

b
k

c
k

◆
2


✓

nP
k=1

a2
k

◆✓
nP

k=1

b2
k

◆✓
nP

k=1

c2
k

◆

54. Apply the result from exercise 51.(a) to the
vector

⌦p
x+ y,

p
y + z,

p
x+ z

↵
.

This givesp
x+ y +

p
y + z +

p
x+ z


p
3
p
(x+ y) + (y + z) + (x+ z)

=
p
6
p
x+ y + z

Thereforep
x+ yp

x+ y + z
+

p
y + zp

x+ y + z
+

p
x+ zp

x+ y + z
 6

55. compc(a+ b) =
(a+ b) · c

kck =
a · c+ b · c

kck
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=
a · c
kck +

b · c
kck = compca+ compcb

56. orthba is the component of a that is orthogo-
nal to b.

orth(a)

proj(a)

b

a

5

3

2.5

4

2

1.5

3

1

0.5

2
0

10-1

57. (a) Let r = h 3,�1, 2 i = x h 1, 2, 3 i+ b,
therefore
b = r� a = h 3,�1, 2 i � x h 1, 2, 3 i
= h 3� x, �1� 2x, 2� 3x i
now, use b. h 1, 2, 3 i = 0
h 3� x, �1� 2x, 2� 3x i . h1, 2, 3i = 0
Which gives x = 1

2

) b =
⌦
5

2

, �2, 3

2

↵
and a =

⌦
1

2

, 1, 3

2

↵

(b) Working as done in part (a), we get
x = 1,a = h 1, 2, 3 i and b = h�1, 2,�1i

58. (a) |x2 � c| � |x|2 � |c|,
so it is enough to show
|x|2 � |c| > |x|, or |x|2 � |x|� c > 0.
This will be true as long as |x| is not be-
tween the two roots of this quadratic. The
roots are given by the quadratic formula
to be
1±

p
1 + 4c

2
=

1

2
±
r

1

4
+ c.

If |x| is greater than the larger of these
two roots, namely
1

2
+

r
1

4
+ c,

we have |x|2 � |x|� c > 0 and
|x2 � c| � |x|2 � |c| > |x|.

(b) The same argument used in Part(a) works
for vectors.
kx2 � ck � kx2k � kck = kxk2 � kck,
so it is enough to show that
kxk2 � kck > kxk, or
kxk2 � kxk � kck > 0.

As long as kxk > 1

2

+
q

1

4

+ kck,
this quadratic is positive, and the desired
inequality holds.

59. The vectors from the carbon atom to the four
hydrogen atoms are
a =

⌦
0� 1

2

, 0� 1

2

, 0� 1

2

↵
=
⌦
� 1

2

,� 1

2

,� 1

2

↵
,

b =
⌦
1� 1

2

, 1� 1

2

, 0� 1

2

↵
=
⌦
1

2

, 1

2

,� 1

2

↵
,

c =
⌦
1� 1

2

, 0� 1

2

, 1� 1

2

↵
=
⌦
1

2

,� 1

2

, 1

2

↵
, and

d =
⌦
0� 1

2

, 1� 1

2

, 1� 1

2

↵
=
⌦
� 1

2

, 1

2

, 1

2

↵
.

kak = kbk = kck = kdk =
p
3

2

.
a ·b = a ·c = a ·d = b ·c = b ·d = c ·d = � 1

4

.

cos ✓ =
�1

4⇣p
3

2

⌘⇣p
3

2

⌘ = �1

3

✓ = cos�1

��1

3

�
⇡ 109.5�.

60. (a) The component of the given force along
the beam is compbF = b·F

kbk

=
0(10)� 200(1) + 0(5)p

126
⇡ �17.8N

(b) The component of the given force along

the beam is compbF =
b · F
kbk

=
13(10) +�190(1) + 5()� 61p

126
⇡ �32.5N

The angles between the force and beam
are di↵erent in each problem.

61. (a) v · n = hcos ✓, sin ✓i · h� sin ✓, cos ✓i
= � cos ✓ sin ✓ + sin ✓ cos ✓ = 0

The component of w along v is �w sin ✓.
The component of w along n is �w cos ✓.

(b) The crate will slide if w sin ✓ > µ
s

w cos ✓,
or if tan ✓ > µ

s

. Since the tangent func-
tion is increasing for angles between 0 and
90 degrees, this happens when
✓ > tan�1 µ

s

.

62. The angle is cos�1

⇣
a·b

kak kbk

⌘

= cos�1

⇣
50,000p

50,000

p
100,000

⌘

= cos�1

1p
2

= 45�.

63. (a) The vector b = hcos 10�, sin 10�i is a unit
vector that makes a 10� angle with hori-
zontal, so it is parallel to the road. The
weight of the car is w = h0,�2000i. The
component of the weight in the direction
of the bank is

compbw =
b ·w
kbk = sin 10�(�2000)

⇡ �347.3 lbs toward the inside of the
curve.

The direction vector of a road with a 10�

bank is b = hcos 10�, sin 10�i. The di-
rection vector orthogonal to the road is
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n = h� sin 10�, cos 10�i. A weight vector
will have the form w = h0,�2000i.
The component of weight along b is
�2000 sin 10�.
The component of weight along n is
�2000 cos 10�.

The ratio is
sin 10�

cos 10�
⇡ 0.176327. If this

ratio is small, then the road may be too
flat, and the car may slide o↵ the road.
If this ratio is large, then the road may be
too steep, and the car may tumble down.

(b) The vector b = hcos 15�, sin 15�i repre-
sents the direction of the banked road.
The weight of the car is w = h0,�2500i.
The component of the weight in the di-
rection of the bank is

compbw =
b ·w
kbk = sin 15�(�2500)

⇡ �647.0 lbs toward the inside of the
curve.
Proceeding like in part(a) we get the ratio

as
sin 15�

cos 15�
⇡ 0.267949.

64. If we assume the track is circular and the cir-
cumference of the track is 0.533 miles, then the
radius will be 0.533

2⇡

⇡ 0.085 miles. The gravi-
tational constant
g = 32 ft

sec

2 is equal to

32 ft

sec

2

⇣
3600

2
sec

2

hr

2

⌘ �
1mile

5280ft

�
= 78, 545 miles

hour

2 .

Now the force equation is
v

2

0.085

= 78, 545 sin 36�, which leads to a speed
of only v = 62.6 miles per hour.
The extra speed could be supported in part by
friction and by the aerodynamics of the car.

65. s · p
= (3000)($20) + (2000)($15) + (4000)($25)
= $190, 000. This is the monthly revenue.

66. s̄ =
�
3+5+12+40+60+100+120+160+110+50+10+2

12

�

= 56 thousand gallons.
m̄ = 2+0+1+6+4+8+10+13+8+2+0+6

12

= 5 murders.

a = h�53,�51,�44,�16, 4, 4,
4, 64, 104, 54,�6,�46,�54i

b = h�3,�5,�4, 1,�1, 3, 5, 8, 3,�3,�5, 1i
a · b = (�53)(�3) + (�51)(�5) + (�44)(�4)

+ (�16)(1) + (4)(�1) + (44)(3) + 64(5)
+104(8)+54(3)+(�6)(�3)+(�46)(�5)
+ (�54)1
= 2210

kak =
p
32450, kbk =

p
194.

⇢ =
a · b

kak kbk =
2210p
6295300

> 0

The conclusion would be invalid because there
are other factors which must be considered
such as the weather.

10.4 The Cross Product

1.

������

2 0 �1
1 1 0
�2 �1 1

������

= 2

����
1 0
�1 1

����� 0

����
1 0
�2 1

����+ (�1)

����
1 1
�2 �1

����

= 2(1� 0)� 0� 1(�1 + 2) = 1

2.

������

0 2 �1
1 �1 2
1 1 2

������

= 0

����
�1 2
1 2

����� 2

����
1 2
1 2

����+ (�1)

����
1 �1
1 1

����

= 0� 2(2� 2)� 1(1 + 1) = �2

3.

������

2 3 �1
0 1 0
�2 �1 3

������

= 2

����
1 0
�1 3

����� 3

����
0 0
�2 3

����+ (�1)

����
0 1
�2 �1

����

= 2(3� 0)� 3(0� 0)� 1(0 + 2) = 4

4.

������

�2 2 �1
0 3 �2
0 1 2

������

= �2

����
3 �2
1 2

����� 2

����
0 �2
0 2

����+ (�1)

����
0 3
0 1

����

= �2(6 + 2)� 2(0� 0)� 1(0� 0) = �16

5. a⇥ b =

������

i j k

1 2 �1
1 0 2

������

= i

����
2 �1
0 2

����� j

����
1 �1
1 2

����+ k

����
1 2
1 0

����

= (4� 0)i� (2 + 1)j+ (0� 2)k = h4,�3,�2i

6. a⇥ b =

������

i j k

3 0 �1
1 2 2

������

= i

����
0 �1
2 2

����� j

����
3 �1
1 2

����+ k

����
3 0
1 2

����

= (0 + 2)i� (6 + 1)j+ (6� 0)k = h2,�7, 6i
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7. a⇥ b =

������

i j k

0 1 4
�1 2 �1

������
= (�1� 8)i� (0+ 4)j+ (0+ 1)k = h�9,�4, 1i

8. a⇥ b =

������

i j k

2 �2 0
3 0 1

������
= (�2� 0)i� (2� 0)j+ (0+ 6)k = h�2,�2, 6i

9. a⇥ b =

������

i j k

2 0 �1
0 4 1

������
= (0 + 4)i� (2� 0)j+ (8 + 0)k = h4,�2, 8i

10. a⇥ b =

������

i j k

�2 1 �3
0 2 �1

������
= (�1 + 6)i� (2 + 0)j+ (�4� 0)k
= h5,�2,�4i

11. a⇥ b =

������

i j k

1 0 4
1 �4 2

������
= (0+16)i� (2� 4)j+(�4� 0)k = h16, 2,�4i
Two orthogonal unit vectors to a and b are
± a⇥b

ka⇥bk = ± h16,2,�4ip
276

= ± 1p
69

h8, 1,�2i

12. a⇥ b =

������

i j k

2 �2 1
0 0 �2

������
= (4� 0)i� (�4� 0)j+ (0 + 0)k = h4, 4, 0i
Two orthogonal unit vectors to a and b are
± a⇥b

ka⇥bk = ± h4,4,0ip
32

= ± 1p
2

h1, 1, 0i

13. a⇥ b =

������

i j k

2 �1 0
1 0 3

������
= (�3� 0)i� (6� 0)j+ (0+ 1)k = h�3,�6, 1i
Two orthogonal unit vectors to a and b are
± a⇥b

ka⇥bk = ± h�3,�6,1ip
46

14. a⇥ b =

������

i j k

0 2 1
1 0 �1

������
= (�2� 0)i� (0� 1)j+ (0� 2)k = h�2, 1,�2i
Two orthogonal unit vectors to a and b are
± a⇥b

ka⇥bk = ± h�2,1,�2ip
9

= ±
⌦�2

3

, 1

3

, �2

3

↵

15. a⇥ b =

������

i j k

3 �1 0
0 4 1

������
= (�1� 0)i� (3� 0)j+ (12� 0)k
= h�1,�3, 12i
Two orthogonal unit vectors to a and b are
± a⇥b

ka⇥bk = ± h�1,�3,12ip
154

16. a⇥ b =

������

i j k

�2 3 �3
2 0 �1

������
= (�3� 0)i� (2 + 6)j+ (0� 6)k
= h�3,�8,�6i
Two orthogonal unit vectors to a and b are
± a⇥b

ka⇥bk = ± h�3,�8,�6ip
109

17. The distance is kPQ⇥PRk
kPRk .

PQ = h1� 0, 2� 1, 0� 2i and
PR = h3� 0, 1� 1, 1� 2i

PQ⇥PR =

������

i j k

1 1 �2
3 0 �1

������
= (�1� 0)i� (�1 + 6)j+ (0� 3)k
= h�1,�5,�3i, so
kPQ⇥PRk =

p
35.

kPRk =
p
10.

The distance from Q to the line is
q

7

2

.

18. The distance is kPQ⇥PRk
kPRk .

PQ = h2� 1, 0 + 2, 1� 2i and
PR = h3� 1, 0 + 2, 2� 2i

PQ⇥PR =

������

i j k

1 2 �1
2 2 0

������
= (0 + 2)i� (0 + 2)j+ (2� 4)k
= h2,�2,�2i, so
kPQ⇥PRk =

p
12.

kPRk =
p
8.

The distance from Q to the line is
q

3

2

.

19. The distance is kPQ⇥PRk
kPRk .

PQ = h3� 2,�2� 1, 1 + 1i and
PR = h1� 2, 1� 1, 1 + 1i

PQ⇥PR =

������

i j k

1 �3 2
�1 0 2

������
= (�6� 0)i� (2 + 2)j+ (0� 3)k
= h�6,�4,�3i, so
kPQ⇥PRk =

p
61.

kPRk =
p
5.

The distance from Q to the line is
q

61

5

.

20. The distance is kPQ⇥PRk
kPRk .

PQ = h1� 1, 3� 3, 1 + 2i and
PR = h1� 1, 0� 3,�2 + 2i

PQ⇥PR =

������

i j k

0 0 3
0 �3 0

������
= (0 + 9)i� (0� 0)j+ (0� 0)k
= h9, 0, 0i, so
kPQ⇥PRk = 9.
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kPRk = 3.
The distance from Q to the line is 3.

21. a⇥ b =

������

i j k

2 3 0
1 4 0

������
= (0� 0)i� (0� 0)j+ (8� 3)k = 5k.
ka⇥ bk = 5.

22. a⇥ b =

������

i j k

�2 1 0
1 3 0

������
= (0� 0) i� (0� 0)k+ (�6� 1)k
= �7k ) ka⇥ bk = 7

23. a⇥ b =

������

i j k

2 3 �1
3 �1 4

������
= (12� 1)i� (8 + 3)j+ (�2� 9)k
= h11,�11,�11i.
Area of triangle is 1

2

ka⇥ bk = 11

p
3

2

.

24. a⇥ b =

������

i j k

�1 �3 1
0 �4 0

������
= (0 + 4) i� (0� 0) j+ (4� 0)k = 4i + 4k

Area of the triangle = 1

2

ka⇥ bk =
p
32

2

= 2
p
2

25.

������

2 1 0
�1 2 0
1 1 2

������
= 2(4� 0)� (�2� 0) + 0 = 10

26.

������

0 �1 0
0 2 �1
1 0 2

������
= 0 + (0 + 1) + 0 = 1

27. k⌧k = krk kFk sin ✓ = 8

12

(20) sin ⇡

4

= 40

3

(
p
2

2

) = 20

p
2

3

⇡ 9.43ft� lbs

28. k⌧k = krk kFk sin ✓ = 18

12

(40) sin ⇡

3

= 40( 3
2

)(
p
3

2

) = 30
p
3 ⇡ 51.96ft� lbs

29. Torque ⌧ = r⇥ F such that
k ⌧ k = k r k kF k sin ✓ depends on r,F and
sin ✓. Therefore, for a given ⌧ if r and sin ✓
are maximized, the force F required could be
minimized. Hence by placing the knob as far
as possible from the hinges, r is maximized and
by keeping it at the proper height that makes
it possible for most people to push or pull on
the door at right angles, sin ✓ is maximized..

30. As explained in the previous example, torque
on the sprocket = ⌧ = r⇥ F such that
k ⌧ k = k r k kF k sin ✓, which is maximized for
✓ = 90�. Most people rotate the sprocket, so

that the pedal sticks straight out to front, be-
cause in this situation the weight of the person
acts along the direction of the force applied,
hence helping a person to balance him or her
self while start riding.

31. (a) The direction of the spin vector s points
right, that of the Magnus Force s ⇥ v

points up.

(b) The direction of spin vector s points down
and left, that of the Magnus Force s ⇥ v

points up and right.

32. (a) The direction of spin vector s points up,
that of the Magnus Force s⇥v points left.

(b) The direction of spin vector s points down
and left, that of the Magnus Force s ⇥ v

points down and right.

33. (a) The direction of spin vector s points up
and left, that of the Magnus Force s ⇥ v

points down and left.

(b) The direction of spin vector s points up
and right, that of the Magnus Force s ⇥v

points up and left.

34. (a) The direction of spin vector s points down
and left, that of the Magnus Force s ⇥ v

points down.

(b) The direction of spin vector s points into
the page, the Magnus Force s ⇥ v = 0 as
the spin vector s is parallel to v.

35. False. Example: a = h1, 0, 0i, b = h1, 1, 1i,
c = h2, 1, 1i.

36. True. a⇥ b = (a
2

b
3

� a
3

b
2

)i� (a
q

b
3

� a
3

b
1

)j
+ (a

1

b
2

� a
2

b
1

)k = �(b⇥ a)

37. False. a⇥ a = h0, 0, 0i is a vector, not a num-
ber.

38. False. (a · b) ⇥ c is not possible because a · b
is a scalar. A cross product must involve two
vectors.

39. True. Torque is the cross product of direction
and force. r⇥ (2F) = 2(r⇥ F) = 2⌧ .

40. True. The Magnus force is a constant multiple
of the cross product of a spin vector and a ve-
locity. If the spin rate doubles, the magnitude
of the spin vector doubles, and the cross prod-
uct doubles. c((2s)⇥ v) = 2c(s⇥ v) = 2F

m

.
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41. kak =
p
17, kbk =

p
5

a⇥ b =

������

i j k

1 0 4
2 0 1

������
= (0� 0)i� (1� 8)j+ (0� 0)k = h0, 7, 0i
ka⇥ bk = 7

ka⇥ bk = kak kbk sin ✓, so
✓ = sin�1

7p
17

p
5

⇡ 0.862.

42. kak = 3, kbk = 2

a⇥ b =

������

i j k

2 2 1
0 0 2

������
= (4� 0)i� (4� 0)j+ (0� 0)k = h4,�4, 0i
ka⇥ bk =

p
32

ka⇥ bk = kak kbk sin ✓, so
✓ = sin�1

p
32

2·3 ⇡ 1.23.

43. kak =
p
10, kbk =

p
17

a⇥ b =

������

i j k

3 0 1
0 4 1

������
= (0� 4)i� (3� 0)j+(12� 0)k = h�4,�3, 12i
ka⇥ bk = 13

ka⇥ bk = kak kbk sin ✓, so
✓ = sin�1

13p
10

p
17

⇡ 1.49.

44. kak =
p
19, kbk =

p
5

a⇥ b =

������

i j k

1 3 3
2 1 0

������
= (0� 3)i� (0� 6)j+ (1� 6)k = h�3, 6,�5i
ka⇥ bk =

p
70

ka⇥ bk = kak kbk sin ✓, so
✓ = sin�1

p
70p

19

p
5

⇡ 1.03.

45. i⇥ (3k) = 3(i⇥ k) = �3j.

46. k⇥ (2i) = 2j

47. (j⇥ k) is i and i⇥ i is h0, 0, 0i.

48. j⇥ (j⇥ k) = j⇥ i = �k.

49. j⇥ (j⇥ i) = j⇥�k = �i.

50. (j⇥ i)⇥ k = �k⇥ k = 0.

51.

������

2 3 1
1 0 2
0 3 �3

������
= 2(0� 6)� 3(�3� 0) + 1(3� 0)
= �12 + 9 + 3 = 0.

Since the volume of the parallelepiped is 0, the
vectors are coplanar.

52.

������

1 �3 1
2 �1 0
0 �5 2

������
= 1(�2� 0) + 3(4� 0) + 1(�10� 0)
= �2 + 12� 10 = 0.
Since the volume of the parallelepiped is 0, the
vectors are coplanar.

53.

������

1 0 �2
3 0 1
2 1 0

������
= 1(0� 1)� 0� 2(3� 0)
= �1� 0� 6 = �7.
Since the volume of the parallelepiped is not 0,
the vectors are not coplanar.

54.

������

1 1 2
0 �1 0
3 2 4

������
= 1(�4� 0)� 1(0� 0) + 2(0 + 3)
= �4� 0 + 6 = 2
The vectors are not coplanar.

55. kak2kbk2 = kak2kbk2(sin2 ✓ + cos2 ✓)

= kak2kbk2 sin2 ✓ + kak2kbk2 cos2 ✓
= ka⇥ bk2 + (a · b)2, so

ka⇥ bk2 = kak2kbk2 � (a · b)2.

56. (a� b)⇥ (a+ b) = a⇥ (a+ b)� b⇥ (a+ b)
= a⇥a+a⇥b�b⇥a�b⇥b, but any vector
crossed with itself is 0 and �b⇥ a = a⇥b, so
(a� b)⇥ (a+ b) = 2(a⇥ b)

57.

����
a · c b · c
a · d b · d

���� = (a · c)(b · d)� (b · c)(a · d)

= (a
1

c
1

+ a
2

c
2

+ a
3

c
3

)(b
1

d
1

+ b
2

d
2

+ b
3

c
3

)
� (b

1

c
1

+ b
2

c
2

+ b
3

c
3

)(a
1

d
1

+ a
2

d
2

+ a
3

d
3

)

= (a
2

b
3

� a
3

b
2

)(c
2

d
3

� c
3

d
2

)
+ (a

3

b
1

� a
1

b
3

)(c
3

d
1

� c
1

d
3

)
+ (a

1

b
2

� a
2

b
1

)(c
1

d
2

� c
2

d
1

)

= [(a
2

b
3

� a
3

b
2

) i+ (a
3

b
1

� a
1

b
3

) j
+(a

1

b
2

� a
2

b
1

)k] · [(c
2

d
3

� c
3

d
2

) i

+(c
3

d
1

� c
1

d
3

) j+ (c
1

d
2

� c
2

d
1

)k]

= (a⇥ b) · (c⇥ d)

58. (ii.) (da)⇥ b = hda
1

, da
2

, da
3

i ⇥ hb
1

, b
2

, b
3

i

=

������

i j k

da
1

da
2

da
3

b
1

b
2

b
3

������
= (da

2

b
3

� da
3

b
2

)i

� (da
1

b
3

� da
1

b
3

)j+ (da
1

b
2

� da
2

b
2

)k
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= d [(a
2

b
3

� a
3

b
2

)i� (a
1

b
3

� a
3

b
1

)j
+(a

1

b
2

� a
2

b
2

)k] = d(a⇥ b).
Also,

(da)⇥ b = (da
2

b
3

� da
3

b
2

)i
� (da

1

b
3

� da
1

b
3

)j+ (da
1

b
2

� da
2

b
2

)k

= [a
2

(db
3

)� a
3

(db
2

)]i� [a
1

(db
3

)� a
3

(db
1

)]j
+ [a

1

(db
2

)� a
2

(db
1

)]k = a⇥ (db)

(iv.) (a+ b)⇥ c

= [c
3

(a
2

+ b
2

)� c
2

(a
3

+ b
3

)] i
� [c

3

(a
1

+ b
1

)� c
1

(a
3

+ b
3

)] j
+ [c

2

(a
1

+ b
1

)� c
1

(a
2

+ b
2

)]k

= [(a
2

c
3

+ b
2

c
3

)� (a
3

c
2

+ b
3

c
2

)] i
� [(a

1

c
3

+ b
1

c
3

)� (a
3

c
1

+ b
3

c
1

)] j
+ [(a

1

c
2

+ b
1

c
2

)� (a
2

c
1

+ b
2

c
1

)]k

= [(a
2

c
3

� a
3

c
2

) i� (a
1

c
3

� a
3

c
1

) j
+(a

1

c
2

� a
2

c
1

)k] + [(b
2

c
3

� b
3

c
2

) i
� (b

1

c
3

� b
3

c
1

) j+ (b
1

c
2

� b
2

c
1

)k]

= (a⇥ c) + (b⇥ c)

(v.) a · (b⇥ c) = ha
1

, a
2

, a
3

i ·
hb

2

c
3

� b
3

c
2

, b
3

c
1

� b
1

c
3

, b
1

c
2

� b
2

c
1

i
= (a

1

b
2

c
3

� a
1

b
3

c
2

) + (a
2

b
3

c
1

� a
2

b
1

c
3

)
+ (a

3

b
1

c
2

� a
3

b
2

c
1

)

= (a
2

b
3

c
1

� a
3

b
2

c
1

) + (a
3

b
1

c
2

� a
1

b
3

c
2

)
+ (a

1

b
2

c
3

� a
2

b
1

c
3

)

= ha
2

b
3

� a
3

b
2

, a
3

b
1

� a
1

b
3

, a
1

b
2

� a
2

b
2

i ·
hc

1

, c
2

, c
3

i
= (a⇥ b) · c

(vi.) (a · c)b� (a · b)c
= (a

1

c
1

+ a
2

c
2

+ a
3

c
3

) hb
1

, b
2

, b
3

i
� (a

1

b
1

+ a
2

b
2

+ a
3

b
3

) hc
1

, c
2

, c
3

i
= [(a

1

b
1

c
1

+ a
2

b
1

c
2

+ a
3

b
1

c
3

) i
+ (a

1

b
2

c
1

+ a
2

b
2

c
2

+ a
3

b
2

c
3

) j
+(a

1

b
3

c
1

+ a
2

b
3

c
2

+ a
3

b
3

c
3

)k]
� [(a

1

b
1

c
1

+ a
2

b
2

c
1

+ a
3

b
3

c
1

) i
+ (a

1

b
1

c
2

+ a
2

b
2

c
2

+ a
3

b
3

c
2

) j
+(a

1

b
1

c
3

+ a
2

b
2

c
3

+ a
3

b
3

c
3

)k]

= [(a
2

b
1

c
2

� a
2

b
2

c
1

)� (a
3

b
3

c
1

� a
3

b
1

c
3

)] i
� [(a

1

b
1

c
2

� a
1

b
2

c
1

)� (a
3

b
2

c
3

� a
3

b
3

c
2

)] j
+ [(a

1

b
3

c
1

� a
1

b
1

c
3

)� (a
2

b
2

c
3

� a
2

b
3

c
2

)]k

= ha
1

, a
2

, a
3

i⇥
hb

2

c
3

� b
3

c
2

, b
3

c
1

� b
1

c
3

, b
1

c
2

� b
2

c
1

i
= a⇥ (b⇥ c)

59. ka ⇥ bk is larger in Figure A. This follows
from the formula ka ⇥ bk = kak kbk sin ✓. As
the angle ✓ increases from 0 to ⇡

2

, the sine of ✓

increases from 0 to 1. The maximum possible
value for ka ⇥ bk is 12, and this occurs when
the vectors are perpendicular.

60. Given that kak = 3 and, for figure A, ✓ = 500

therefore ka⇥ bk = 12 sin 50� = 9.1925 and
a⇥ b points out of the page.
For figure A, ✓ = 200 therefore
ka⇥ bk = 12 sin 20� = 4.1042 and a⇥b points
out of the page.

61. (b) and (c)

62. (a) As (a⇥ b) is orthogonal to a,
a · (a⇥ b) = 0.

(b) As (a⇥ a) = 0, b · (a⇥ a) = 0

63. Rising fastball is hard to hit.

64. Ball curving down and left is hard to hit.

65. Topspin shot will dive.

66. Serve will dive right.

67. Spiral pass should fly true.

68. Kick will curl up and right, hopefully away
from the goalie.

69. Ball will rise.

70. Ball will rise and hook to the left.

10.5 Lines and Planes in Space

1. (a) x = 1 + 2t, y = 2� t, z = �3 + 4t

(b)
x� 1

2
=

y � 2

�1
=

z + 3

4

2. (a) x = 3 + 3t, y = �2 + 2t, z = 4� t

(b)
x� 3

3
=

y + 2

2
=

z � 4

�1

3. The direction is h4� 2, 0� 1, 4� 3i
(a) x = 2 + 2t, y = 1� t, z = 3 + t

(b)
x� 2

2
=

y � 1

�1
=

z � 3

1

4. The direction is h2� 0, 0� 2, 2� 1i
(a) x = 0 + 2t, y = 2� 2t, z = 1 + t

(b)
x� 0

2
=

y � 2

�2
=

z � 1

1

5. (a) x = 1� 3t, y = 2, z = 1 + t

(b)
x� 1

3
=

z � 1

1
, y = 2
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6. (a) x = �1� 2t, y = 0 + 3t, z = 0 + t

(b)
x+ 1

�2
=

y

3
=

z

1

7.

������

i j k

1 0 2
0 2 1

������
= h�4,�1, 2i is in the direction per-

pendicular to both vectors.

(a) x = 2� 4t, y = 0� t, z = 1 + 2t

(b)
x� 2

�4
=

y

�1
=

z � 1

2

8.

������

i j k

0 �3 1
4 2 �1

������
= h1, 4, 12i is in the direction

perpendicular to both vectors.

(a) x = �3 + t, y = 1 + 4t, z = 0 + 12t

(b)
x+ 3

1
=

y � 1

4
=

z

12

9. h2,�1, 3i is normal to the plane.

(a) x = 1 + 2t, y = 2� t, z = �1 + 3t

(b)
x� 1

2
=

y � 2

�1
=

z + 1

3

10. h0, 1, 3i is normal to the plane.

(a) x = 0, y = �2 + t, z = 1 + 3t

(b)
y + 2

1
=

z � 1

3
, x = 0

11. Parallel to line 1: v1 = h 1, 0, 2i
Parallel to line 2: v2 = h 2, 2, 4i
Since v1 6= cv2, the lines are not parallel.
x ) 4 + t = 2 + 2s ) t = �2 + 2s
y ) 2 = 2s ) s = 1 and t = 0
z ) 3 + 2t = �1 + 4s, which confirms s = 1
and t = 0. Therefore the lines intersect and
the point of intersection is (4, 2, 3 )

12. Parallel to line 1: v1 = h 1, 3, �1 i
Parallel to line 2: v2 = h�1,� 2, 2i
Sincev1 6= cv2, the lines are not parallel.
x ) 3 + t = 2� s ) t = �1� s
y ) 3 + 3t = 1� 2s ) 3t = �2� 2s
) t = 0 and s = �1
z ) 4� t = 6 + 2s, which confirms s = �1
and t = 0. Therefore the lines intersect and
the point of intersection is ( 3, 3, 4 )

13. Parallel to line 1: v1 = h 2, 0, �4i
Parallel to line 2: v2 = h�1, 0, 2 i
Asv1 = �2v2, the lines are parallel.

14. Parallel to line 1: v1 = h�2, �2, �1i
Parallel to line 2: v2 = h 2, �2, 2i
Sincev1 6= cv2, the lines are not parallel
x ) 1� 2t = 3 + 2s ) t = �1� s
y ) 2t = �2 ) t = �1 and s = 0
z ) 5� t = 3 + 2s ) 2s+ t = 2,
which is not satisfied by t = �1 and s = 0
) these lines are skew lines.

15. 2(x� 1)� 1(y � 3) + 5(z � 2) = 0

16. �3(x+ 2) + 2z = 0

17. P = (2, 0, 3), Q = (1, 1, 0), R = (3, 2,�1)
PQ = (�1, 1,�3), PR = (1, 2,�4)

PQ⇥PR =

������

i j k

�1 1 �3
1 2 �4

������
= h2,�7,�3i

is normal to the plane.
2(x� 2)� 7y � 3(z � 3) = 0

18. P = (1,�2, 1), Q = (2,�1, 0), R = (3,�2, 2)
PQ = (1, 1,�1), PR = (2, 0, 1)

PQ⇥PR =

������

i j k

1 1 �1
2 0 1

������
= h1,�3,�2i

is normal to the plane.
(x� 1)� 3(y + 2)� 2(z � 1) = 0

19. P = (a, 0, 0) , Q = (0, b, 0) , R = (0, 0, c) .
PQ = h�a, b, 0i; QR = h0,�b, ci

PQ⇥QR =

������

i j k

�a b 0
0 �b c

������
= hbc, ca, abi

is normal to the plane.
Therefore,
(x� a) · bc+ y · ca+ z · ab = 0.
) xbc+ yca+ zab = abc or x

a

+ y

b

+ z

c

= 1

20. P = (x
1

, y
1

, 0) , Q = (x
2

, 0, z
2

) , R = (0, y
3

, z
3

)
PQ = hx

2

� x
1

, �y
1

, z
2

i;
QR = h�x

2

, y
3

, z
3

� z
2

i

PQ⇥QR =

������

i j k

x
2

� x
1

�y
1

z
2

�x
2

y
3

z
3

� z
2

������
= [�y

1

(z
3

� z
2

)� y
3

z
2

] i
� [(x

2

� x
1

) (z
3

� z
2

) + x
2

z
2

] j
+ [(x

2

� x
1

) y
3

� x
2

y
1

] k
is normal to the plane.
Therefore,
(x� x

1

) [�y
1

(z
3

� z
2

)� y
3

z
2

]
� (y � y

1

) [(x
2

� x
1

) (z
3

� z
2

) + x
2

z
2

]
+ z [(x

2

� x
1

) y
3

� x
2

y
1

] = 0
is the required plane.

21. Normal vector is h�2, 4, 0i, so
�2x+ 4(y + 2) = 0.
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22. Normal vector is h�3,�3, 2i, so
�3(x� 3)� 3(y � 1) + 2z = 0.

23. Normal vector must be perpendicular to the
normal vectors of both planes.

n

1

⇥ n

2

=

������

i j k

1 1 0
2 1 �1

������
= h�1, 1,�1i, so

�1(x� 1) + 1(y � 2)� 1(z � 1) = 0.

24. Normal vector must be perpendicular to the
normal vectors of both planes.

n

1

⇥ n

2

=

������

i j k

1 2 �1
2 0 �1

������
= h�2,�1,�4i, so

�2(x� 3)� 1y � 4(z + 1) = 0.

25. The plane x+ y + z = 4 has
x-intercept = y-intercept = z-intercept = 4

12

y
8

4-4

-4

00
0

4

4-4

8

x

8

12

z

12

26. The plane 2x� y + 4z = 4 has
x-intercept = 2, y-intercept = �4,
z-intercept = 1

10
y 5

10

-10

z 5

-5
00
0

-5

5
x

-10

10
-5

-10

27. The plane 3x+ 6y � z = 6 has
x-intercept = 2, y-intercept = 1,
z-intercept = �6

-10

10
-5

-10

y
5

-5

0
00

-5

5z

-10

10

5x
10

28. The plane 2x+ y + 3z = 6 has
x-intercept = 3, y-intercept = 6,
z-intercept = 2

-10 10-5

10

5
y

5z

0
0
0

-5

-5

-10

5-10

x

10

29. The plane x = 4 has x-intercept = 4,
there are no y, z intercepts.

-10

-10

-5

-10

-5

-50
00

x
5

z

10

5

y5

10

10

30. The plane y = 3 has y-intercept = 3,
there are no x, z intercepts
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-10

-10

-5

-5

-10 -5

y
0

00
5 10

z 5

x 5

10

10

31. The plane z = 2 has z-intercept = 2,
there are no x, y intercepts

-10-10 -5-5

-10

z

-5

0
00

5

10

yx
55 1010

32. The plane x+ y = 1 has x-intercept = 1,
y-intercept = 1, there is no z-intercept.

-10 10

-10

y

-5 5

-5

000

x

-5 5

5z

-10

10

10

33. The plane 2x� z = 2 has x-intercept = 1,
z-intercept = �2, there is no y-intercept

-10

-10
-10

-5

-5 -5
0 00x

y5
5

z
5

10
10

10

34. The plane x� y = �2 has x-intercept = �2,
y-intercept = 2, there is no z-intercept

-10-10

-10

-5-5

-5

00
0

z 5

yx

55

10

1010

35. Solve the equations for z and equate:
2x� y � 4 = 2y � 3x =) y = 5x�4

3

Substitute this into the first equation and solve
for z:
2x� 5x�4

3

� z = 4 =) z = x�8

3

Using x = t as a parameter, we get the line:
x = t, y = 5t�4

3

, z = t�8

3

.

36. Solve the equations for z and equate:
3x+ y � 2 = �2x+ 3y � 1 =) x = 2

5

y + 1

5

Substitute this into the first equation and solve
for z:
3( 2

5

y + 1

5

) + y � z = 2 =) z = 11

5

y � 7

5

Using y = t as a parameter, we get the line:
x = 2

5

t+ 1

5

, y = t, z = 11

5

t� 7

5

.

37. Solve the equations for x and equate:
�4y+1

3

= �y + z + 3 =) y = �3z � 8
Substitute this into the first equation and solve
for x:
3x+ 4(�3z � 8) = 1 =) x = 4z + 11
Using z = t as a parameter, we get the line:
x = 4t+ 11, y = �3t� 8, z = t.

38. Solve the equations for x and equate:
2y � z + 2 = �3y + 2z =) y = 3z�2

5

Substitute this into the first equation and solve
for x:
x� 2( 3z�2

5

) + z = 2 =) x = z+6

5

Using z = t as a parameter, we get the line:
x = t+6

5

, y = 3t�2

5

, z = t.

39. d =
|2(2)� 0 + 2(1)� 4|p

4 + 1 + 4
=

2

3

40. d =
|3(1) + 1(3) + (�5)(0)� 2|p

9 + 1 + 25
=

4p
35

41. d =
|2� (�1) + (�1)� 4|p

1 + 1 + 1
=

2p
3

42. d =
|2(0)� 3(�1) + 0(1)� 2|p

4 + 9 + 0
=

1p
13
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43. (2, 0, 0) is a point on the plane 2x� y � z = 4

d =
|2(2)� 1(0)� 1(0)� 1|p

4 + 1 + 1
=

3p
6

44. (1, 0, 0) is a point on the plane x+3y� 2z = 1

d =
|1(1)� 3(0) +�2(0)� 3|p

1 + 9 + 4
=

2p
14

45. Parallel to line 1: v1 = h�3, 4, 1i
Parallel to line 2: v2 = h2,�2, 1i
cos ✓ = v1·v2

kv1k kv2k = �6�8+1p
26

p
9

= �13p
234

✓ = cos�1

�13p
234

⇡ 2.59 radians.

46. Parallel to line 1: v1 = h�2, 3, 2i
Parallel to line 2: v2 = h1,�2, 3i
cos ✓ = v1·v2

kv1k kv2k = �2�6+6p
17

p
14

= �2p
238

✓ = cos�1

�2p
238

⇡ 1.7 radians.

47. Parallel to line 1: v1 = h 2, 0, 1 i
Parallel to line 2: v2 = h�1, 5, 2 i
cos ✓ = v1.v2

kv1kkv2k = �2+0+2p
5

p
30

= 0

The vectors are perpendicular.

48. Parallel to line 1: v1 = h�2, 2,�1i
Parallel to line 2: v2 = h2,�2, 1i
Since v1 = �1v2, the lines are parallel.

49. Parallel to line 1: v1 = h 2, 4,�6 i
Parallel to line 2: v2 = h�1,�2, 3i
Since v1 = �2v2 the lines are parallel.

50. Parallel to line 1: v1 = h�1, 0, 2i
Parallel to line 2: v2 = h2,�3, 1i
cos ✓ = v1·v2

kv1k kv2k = �2+0+2p
5

p
14

= 0

These vectors are perpendicular.

51. If (x
0

, y
0

, z
0

) is a point on the plane
ax + by + cz = d

2

, then the formula for the
distance from this point to the plane
ax+ by + cz = d

1

is
|ax

0

+ by
0

+ cz
0

� d
1

|p
a2 + b2 + c2

=
|d

2

� d
1

|p
a2 + b2 + c2

52. Parallel to line 1: v1 = h1, 0, 2i
Parallel to line 2: v2 = h2, 2, 4i

v

1

⇥ v

2

=

������

i j k

1 0 2
2 2 4

������
= h�4, 0, 2i is normal

to the plane. Plane with this normal vector
through point (4, 2, 3) is
�4(x� 4) + 2(z � 3) = 0.

53. Substituting the values x = 2+ t, y = 3� t and
z = 2t in the equation of the plane
x � y + 2z = 3, we have t = 2

3

. Therefore the

intersection the given line and the given plane
is a point which is

�
8

3

, 7

3

, 4

3

�

54. Parallel to the given line: v1 = ha, b, ci
Perpendicular to the given plane:
v2 = h 2, 1,�3i.
Since v1 and v2 are parallel, therefore
a = 2k, b = 1k and c = �3k. Where k is a
non-zero real number.

55. True.

56. False. Correct statement: The set of points
common to two non parallel planes is a line.

57. False. Correct statement: The set of common
points to three planes can be an empty set or
a point or a line or a plane.

58. False. Correct statement: Non parallel lines
that lie in parallel planes are skew.

59. False. Correct Statement: The set of all
concurrent lines perpendicular to a given line
forms a plane.

60. False. Correct statement: There are infinitely
many lines perpendicular to a given plane; all
of them are parallel to each other.

61. True.

62. True.

63. Direction of line 1: v
1

= h�2, 3, 1i
Direction of line 2: v

2

= h4,�6,�2i
Since v

2

= �2v1, the lines are parallel. The
point (1, 3,�1) lies on the second line, using
t = 0. This point also lies on the first line,
using t = 1. The lines are the same.

64. Direction of line 1: v
1

= h4,�2, 6i
Direction of line 2: v

2

= h�2, 1,�3i
Since v

1

= �2v2, the lines are parallel. The
point (9,�2, 8) lies on the second line, using
t = 0. Solve for t in the x coordinate of the
first line to see that 1 + 4t = 9 =) t = 2.
Substitute t = 2 in the y and z coordinates to
see that this value gives the point (9,�2, 14).
These lines are not the same.

65. Simplify 2(x � 1) � (y + 2) + (z � 3) = 0
to get 2x � y + z = 7. Multiply by 2 to
get 4x � 2y + 2x = 14. This parallel to
4x� 2y + 2x = 2, but not the same plane.
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66. The normal vectors for the second plane is
twice the normal vector for the second plane, so
the planes are parallel. The point (�1, 2,�1)
lies on the first plane. Substitute this into
the equation for the second plane to see that
6(�1� 2)+ 4(2+ 1)� 6(�1) = 0, so this point
lies on the second plane as well. These planes
are the same.

67. (a) This is a family of planes passes through
the line of intersection of the planes
x+ y = 2 and z = 0.

(b) This is a family of parallel planes, parallel
to the plane x+ y + 2z = 0 at a distance
| c |p
6

from it.

(c) This is a family of parallel planes, parallel
to the plane 2x+ y � z = 4 at a distance
| 2c |p

6

from it.

(d) This is a family of parallel planes, parallel
to the plane x+2y� 3z = 1 at a distance
| 3c |p

6

from it.

68. The flight paths are lines. Set the x coordi-
nates equal to see that if the paths intersect,
s = 1. If s = 1 and the paths intersect, then
the y coordinates force 6� 2t = 3 + 1
=) t = 1. The z coordinates also agree when
s = t = 1. The airplanes collide at (3, 4, 4)
at time s = t = 1.

10.6 Surfaces in Space

1. Cylinder
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-4

-2
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z
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x
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y
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2. Cylinder
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3. Ellipsoid
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4. Ellipsoid
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5. Elliptic Paraboloid
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6. Elliptic Paraboloid
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7. Elliptic Cone
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8. Elliptic Cone
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9. Hyperbolic Paraboloid
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10. Hyperbolic Paraboloid
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11. Hyperboloid of One Sheet
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12. Hyperboloid of One Sheet
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13. Hyperboloid of Two Sheets
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14. Hyperboloid of Two Sheets
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16. Top Half of Elliptic Cone
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17. Elliptic Paraboloid
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18. Elliptic Paraboloid
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22. Cylinder
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23. Cylinder
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25. Elliptic Paraboloid
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26. Elliptic Paraboloid
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27. Ellipsoid
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28. Plane
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30. Hyperboloid of Two Sheets
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0
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z
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y
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x
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31. Hyperboloid of One Sheet
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0
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32. Hyperboloid of One Sheet
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y x

z
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0
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33. Hyperboloid of Two Sheets
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x
4

34. Hyperbolic Paraboloid
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0
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4

35. Plane
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2
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36. Ellipsoid
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z
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4

37. Circular Cylinder
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38. Cylinder

-4-4 -2-2

-4

-2

0
0
0

z
2

4

2

y

2

x
44

39. Elliptic Paraboloid

−10
y
−5

z

7.5

5.0

2.5

0.0

−2.5

−5.0

−7.5

0 5 10

40. Elliptic Paraboloid

-4

-4-4

-2

-2-2
0 00

yx 2 2

2
z

44

4

41. (a) The equation �x+ 2y2 + z2 = 0 matches
with the figure 41(a);

(b) The equation �x2+2y2+z2 = 1 matches
with the figure 41(b);

(c) The equation �x2+2y2�z2 = 1 matches
with the figure 41(c);

42. (a) The equation �x2+2y2+z2 = 0 matches
with the figure 42(a);

(b) None of the equations matches with the
figure 42(b).

(c) The equation �x2+2y2 = 1 matches with
the figure 42(c);

43. The given equation is x2 + cy2 + z2 = 1. As
the value of c changes the shape of plane also
changes.
For c = �1 the equation forms the hyperboloid
of one sheet.

For c = 0 the equation forms the cylinder.

For c = 1 it forms sphere.

44. The given equation is x2 + cy2 � z2 = 1 . As
the value of c changes the shape of plane also
changes.
For c = �1 the equation forms hyperboloid of
two sheets.
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For c = 0 the equation forms cylinder of two
sheet.

For c = 1 the equation forms the hyperboloid
of one sheet.

45. The given equation is x2 + cy2 � z = 0.
For c = �1 the equation forms the hyperbolic
paraboloid .

For c = 0 it forms the paraboloid.

For c = 1 it forms elliptical paraboloid.

46. The given equation is x2 � y2 + z2 = c.
For c = �1, it forms a Hyperboloid of two
sheets.

For c = 0, it forms a cone.

For c = 1, it forms a Hyperboloid of one sheet.
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47. x = a sin s cos t, y = b sin s sin t, z = c cos s
x2

a2
+

y2

b2
+

z2

c2

=
a2 sin2 s cos2 t

a2
+
b2 sin2 s sin2 t

b2
+
c2 cos2 s

c2

= sin2 s cos2 t+ sin2 s sin2 t+ cos2 s
= sin2 s(cos2 t+ sin2 t) + cos2 s
= sin2 s+ cos2 s = 1

So, (x, y, z) lies on
x2

a2
+

y2

b2
+

z2

c2
= 1.

48. x = as cos t, y = bs sin t, z = s2

x2

a2
+

y2

b2
=

(as cos t)2

a2
+

(bs sin t)2

b2
= (s cos t)2 + (s sin t)2

= s2(cos2 t+ sin2 t) = s2 = z

So, (x, y, z) lies on
x2

a2
+

y2

b2
= z.

49. x = as cos t, y = bs sin t, z = s
x2

a2
+

y2

b2
=

(as cos t)2

a2
+

(bs sin t)2

b2
= (s cos t)2 + (s sin t)2

= s2(cos2 t+ sin2 t) = s2 = z2

So, (x, y, z) lies on
x2

a2
+

y2

b2
= z2.

50. x = a cos s cosh t, y = b sin s cosh t,
z = c sinh t
x2

a2
+

y2

b2
� z2

c2

=
(a cos s cosh t)2

a2
+

(b sin s cosh t)2

b2

� (c sinh t)2

c2

= cos2 s cosh2 t+ sin2 s cosh2 t� sinh2 t
= cosh2 t(cos2 s+ sin2 s)� sinh2 t
= cosh2 t� sinh2 t = 1

So, (x, y, z) lies on
x2

a2
+

y2

b2
� z2

c2
= 1.

51. x = a cosh s, y = b sinh s cos t,
z = c sinh s sin t
x2

a2
� y2

b2
� z2

c2

=
a2 cosh2 s

a2
� b2 sinh2 s cos2 t

b2

� c2 sinh2 s sin2 t

c2

= cosh2 s� sinh2 s cos2 t� sinh2 s sin2 t
= cosh2 s� sinh2 s(cos2 t+ sin2 t)
= cosh2 s� sinh2 s = 1

So, (x, y, z) lies on
x2

a2
� y2

b2
� z2

c2
= 1. Since

a > 0, we have x = a cosh s > 0, and this point
is on the right half.

52. x = a cosh s, y = b sinh s cos t,
z = c sinh s sin t
x2

a2
� y2

b2
� z2

c2

=
a2 cosh2 s

a2
� b2 sinh2 s cos2 t

b2

� c2 sinh2 s sin2 t

c2

= cosh2 s� sinh2 s cos2 t� sinh2 s sin2 t
= cosh2 s� sinh2 s(cos2 t+ sin2 t)
= cosh2 s� sinh2 s = 1

So, (x, y, z) lies on
x2

a2
� y2

b2
� z2

c2
= 1. Since

a < 0, we have x = a cosh s < 0, and this point
is on the left half.

53. For the surface in exercise 3:
x = sin s cos t, y = 3 sin s sin t, z = 2 cos s.

For the surface in exercise 5:
x =

s

2
cos t, y =

s

2
sin t, z = s2.

For the surface in exercise 7:
x =

s

2
cos t, y = sin t, z = s.

54. For the surface in exercise 11:
x = cos s cosh t, y = sinh t, z = sin s cosh t.

For the surface in exercise 13:
x = cosh s, y = 3 sinh s cos t, z = sinh s sin t
and x = � cosh s, y = 3 sinh s cos t,
z = sinh s sin t.

55. For the surface in exercise 17:
x = s cos t. y = s sin t, z = �s2 + 4.

56. For the surface in exercise 33: x = sinh s cos t,
y = 2 cosh s, z = 2 sinh s sin t and
x = sinh s cos t, y = �2 cosh s,
z = 2 sinh s sin t.

57. For constant y = c, the equation is z = x2�c2.
z0 = 2x = 0 when x = 0. z00 = 2 at x = 0 so
this is a minimum.
Similarly, at x = 0 the equation is z = �y2,
which is a parabola with maximum at y = 0.
Water will run toward x = 0 in the y direction
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and away from y = 0 in the x direction. The
two primary run-o↵ points will be (0, 1,�1)
and (0,�1,�1).

58. The general formula for a hyperboloid of one
sheet with circular horizontal cross sections
and minimum radius at z = 600 is
a(x2 + y2)� c(z � 600)2 = 1.
The radius of the circular horizontal cross sec-

tion at height z is

r
1 + c(z � 600)2

a
If the radius is 200 at a height of z = 600, we

have 2002 =
1

a
, so a =

1

2002
.

If the maximum radius is 300 at height z = 0,

we have 3002 =
(1 + 6002c)

a

=) c =
3002 � 2002

2002 · 6002 . This gives equation

(x2 + y2)

2002
�
✓
3002 � 2002

2002 · 6002

◆
(z � 600)2 = 1.

59.

-4 -4-2 -2
0

z

00

5

10

15

20

2 2
x y

4 4

Limiting the z range does avoid the peaks and
make the graph appear as in Figure 10.57b.

10. Review Exercises

1. a+ b = h�2 + 1, 3 + 0i = h�1, 3i
4b = 4 h1, 0i = h4, 0i
2b� a = 2 h1, 0i � h�2, 3i = h4,�3i
k2b� ak =

p
16 + 9 = 5

2. a+ b = h�1 + 2,�2 + 3i = h1, 1i
4b = 4 h2, 3i = h8, 12i
2b� a = 2 h2, 3i � h�1,�2i = h5, 8i
k2b� ak =

p
25 + 64 =

p
89

3. a+b = (10i+2j�2k)+(�4i+3j+2k) = 6i+5j
4b = 4(�4i+ 3j+ 2k) = �16i+ 12j+ 8k
2b� a = 2(�4i+ 3j+ 2k)� (10i+ 2j� 2k)

= �18i+ 4j+ 6k
k2b� ak =

p
324 + 16 + 36 =

p
376

4. a+ b = (�i� j+ 2k) + (�i+ j� 2k) = �2i
4b = 4(�i+ j� 2k) = �4i+ 4j� 8k
2b� a = 2(�i+ j� 2k)� (�i� j+ 2k)

= �i+ 3j� 6k
k2b� ak =

p
1 + 9 + 36 =

p
46

5. a · b = 2(4) + 3(5) = 23 6= 0.
The vectors are not orthogonal.
a 6= cb. The vectors are not parallel.

6. a · b = 2(1) + (�2)(�1) = 4 6= 0.
The vectors are not orthogonal.
a 6= cb. The vectors are not parallel.

7. a · b = �2(4) + 3(�6) + 1(�2) = �28 6= 0.
The vectors are not orthogonal.
b = �2c. The vectors are parallel.

8. a · b = 2(4) + (�1)(�2) + 2(1) = 12 6= 0.
The vectors are not orthogonal.
a 6= cb. The vectors are not parallel.

9. PQ = h2� 3,�1� 1, 1 + 2i = h�1,�2, 3i

10. PQ = h1� 3, 4� 1i = h�2, 3i

11.

1

k h3, 6i k h3, 6i = 1p
9 + 36

h3, 6i

=

⌧
1p
5
,
2p
5

�

12.

1

k h�2, 3i k h�2, 3i = 1p
4 + 9

h�2, 3i

=

⌧
�2p
13

,
3p
13

�

13.

1

k10i+ 2j� 2kk (10i+ 2j� 2k)

=
1p

100 + 4 + 4
(10i+ 2j� 2k)

=
10p
108

i+
2p
108

j� 2p
108

k

14.

1

k � i� j+ 2kk (�i� j+ 2k)

=
1p

1 + 1 + 4
(�i� j+ 2k)

= � 1p
6
i� 1p

6
j+

2p
6
k

15. Displacement vector is h1� 4, 1� 1, 6� 2i.
Unit vector in this direction is

1

k h�3, 0, 4i k h�3, 0, 4i = 1p
9 + 16

h�3, 0, 4i

=

⌧
�3

5
, 0,

4

5

�

16. Displacement vector h0� 2, 3 + 1,�2� 0i.
Unit vector in this direction is

1

k h�2, 4,�2i k h�2, 4,�2i
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=
1p

4 + 16 + 4
h�2, 4,�2i

=

⌧
�1p
6
,
2p
6
,
�1p
6

�

17. d =
p
(3� 0)2 + (4 + 2)2 + (1� 2)2 =

p
46

18. d =
p
(3� 1)2 + (1� 4)2 + (0� 1)2 =

p
14

19. 2
v

kvk =
2p
12

(2i� 2j+ 2k)

=
2p
3
(i� j+ k)

20.

1

2

✓
v

kvk

◆
=

1

2
p
3
(�i� j+ k)

= � 1

2
p
3
i� 1

2
p
3
j+

1

2
p
3
k

21. Suppose that the velocity of the plane is
v = hx, yi, and the wind velocity is
w = h20,�80i. Then kvk = 500, and we want
v + w = hc, 0i for some positive constant c.
This forces y = 80, and then we solve for x
in 5002 = x2 + 802 to get x = 20

p
609. The

vector v =
⌦
20

p
609, 80

↵
and the direction is

sin�1

80

500

⇡ 9.2� north of east.

22. h�160 + 160 + 0, 120 + 160� 300i
= h0,�20i

23. x2 + (y + 2)2 + z2 = 36

24. (x+ 3)2 + (y � 1)2 + (z � 2)2 = 3

25. a · b = 2(2) + (�1)(4) = 0

26. a · b = 1(4) + (�2)(2) = 0

27. a · b = 3(�2) + 1(2) + (�4)(1) = �8

28. a · b = 1(2) + 3(0) + (�2)(�3) = 8

29. cos ✓ =
a · b

kak kbk =
�3 + 2 + 2p

14
p
6

=
1p
84

✓ = cos�1

✓
1p
84

◆
⇡ 1.46

30. cos ✓ =
a · b

kak kbk =
6� 4p
25
p
5
=

2

5
p
5

✓ = cos�1

✓
2

5
p
5

◆
⇡ 1.39

31. compba =
3(1) + 1(2) + (�4)(1)p

1 + 4 + 1
=

1p
6

projba =
1p
6

✓
i+ 2j+ kp
1 + 4 + 1

◆
=

1

6
i+

1

3
j+

1

6
k

32. compba =
1(2) + 3(0) +�2(3)p

4 + 9
=

8p
13

projba =
8p
13

✓
2i� 3kp
4 + 9

◆
=

16

13
i� 24

13
k

33. a⇥ b =

������

i j k

1 �2 1
2 0 1

������
= h�2� 0,�(1� 2), 0 + 4i = h�2, 1, 4i

34. a⇥ b =

������

i j k

1 �2 0
1 0 �2

������
= h4� 0,�(�2� 0), 0 + 2i = h4, 2, 2i

35. a⇥ b =

������

i j k

0 2 1
4 2 �1

������
= (�2� 2)i� (0� 4)j+ (0� 8)k
= �4i+ 4j� 8k.

36. a⇥ b =

������

i j k

1 �2 �3
2 �1 0

������
= (0� 3)i� (0 + 6)j+ (�1 + 4)k
= �3i� 6j+ 3k

37. The two vectors will be ± a⇥ b

ka⇥ bk .

a⇥ b =

������

i j k

2 0 1
�1 2 �1

������
= (0� 2)i� (�2 + 1)j+ (4� 0)k
= �2i+ j+ 4k

ka⇥ bk =
p
4 + 1 + 16 =

p
21

The unit vectors orthogonal to both given vec-
tors are ± 1p

21

(�2i+ j+ 4k).

38. The two vectors will be ± a⇥ b

ka⇥ bk .

a⇥ b =

������

i j k

3 1 �2
2 �1 0

������
= (0� 2)i� (0 + 4)j+ (�3� 2)k
= �2i� 4j� 5k

ka⇥ bk =
p
4 + 16 + 25 =

p
45

The unit vectors orthogonal to both given vec-
tors are ± 1

3

p
5

(�2i� 4j� 5k).

39. Displacement is d = h60� 1, 22� 0i
W = F · d = 40 · 59 + (�30) · 22

= 1700 foot-pounds.

40. P = (0, 0), Q = (3, 1), R = (1, 4)
PQ = h3, 1i, PR = h1, 4i, RP = h�1,�4i,
RQ = h2,�3i
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cos↵ =
PQ ·PR

kPQk kPRk =
7p
170

=) ↵ ⇡ 57.5�

cos� =
RP ·RQ

kRPk kRQk =
10p
221

=) � ⇡ 47.7�

cos � =
QR ·QP

kQRk kQPk =
3p
130

=) � ⇡ 74.7�

41. Two points on the line: t = 0 gives
P = (1,�1, 3) and t = 1 gives R = (2, 1, 3).
PQ = h0, 0,�3i, PR = h1, 2, 0i
projPRPQ =

PQ ·PR

kPRk2 PR = 0

The distance from point Q to the line through
P and R is
kPQ� projPRPQk = k h0, 0,�3i k = 3.

42. Two points on the line: t = 1 gives P = (1, 4, 5)
and t = 2 gives R = (3, 8, 8)
PQ = h�1,�3,�5i, PR = h2, 4, 3i
projPRPQ =

PQ ·PR

kPRk2 PR

=
�2� 12� 15

(
p
4 + 16 + 9)2

h2, 4, 3i

= �29

29
h2, 4, 3i = h�2,�4,�3i

kPQ� projPRPQk
= k h�1 + 2,�3 + 4,�5 + 3k
= k h1, 1,�2i k =

p
6.

43.

������

i j k

2 0 1
0 1 �3

������
= h0� 1,�(�6� 0), 2� 0i

k h�1, 6, 2i k =
p
41

44.

������

1 �1 2
0 0 4
3 0 1

������
= 1(0� 0) + 1(0� 12) + 2(0� 0) = �12

|� 12| = 12

45. k⌧k = krk kFk sin ✓ = 6

12

(50) sin ⇡

6

= 25( 1
2

) = 12.5 foot-pounds.

46. The direction of the Magnus force is up, caus-
ing the ball to loft more.

47. The direction is
h0� 2, 2� (�1),�3� (�3)i
(a) x = 2� 2t, y = �1 + 3t, z = �3

(b)
x� 2

�2
=

y + 1

3
, z = �3

48. The direction is h�2, 0,�4i
(a.) x = �1� 2t, y = 0, z = 2� 4t

(b.)
x+ 1

�2
=

z � 2

�4
, y = 0

49.

⌦
2, 1

2

,�3
↵
is parallel to the line.

(a) x = 2 + 2t, y = �1 + 1

2

t, z = 1� 3t.

(b)
x� 2

2
= 2(y + 1) =

z � 1

�3

50. v = h2,�3, 1i is parallel to the line.
(a) x = 2t, y = 2� 3t, z = 1 + t

(b)
x

2
=

y � 2

�3
=

z � 1

1

51. v1 = h1, 0, 2i is parallel to the first line.
v2 = h2, 2, 4i is parallel to the second line.

cos ✓ =
v1 · v2

kv1k kv2k
=

10p
5
p
24

✓ = cos�1

10p
120

⇡ 0.42

52. v1 = h1, 3,�1i is parallel to the first line.
v2 = h�1,�2, 2i is parallel to the second line.

cos ✓ =
v1 · v2

kv1k kv2k
= � 9

3
p
11

✓ = cos�1 � 9

3

p
11

⇡ 2.70

53. v1 = h2, 1, 4i is parallel to the first line.
v2 = h0, 1, 1i is parallel to the second line.
v

1

6= cv
2

, so the vectors are not parallel.
If they intersect, then equating x coordinates
shows that 2t = 4, so t = 2. This makes the
point on the first line (4, 5, 7). Now equating
y coordinates shows 5 = 4 + s, so s = 1. This
makes the point on the second line (4, 5, 4).
Since these points are not the same, the lines
are skew.

54. v1 = h�1, 2,�1i is parallel to the first line.
v2 = h3, 0,�3i is parallel to the second line.
v

1

6= cv
2

, so the vectors are not parallel.
If they intersect, then equating y coordinates
shows that 2t = 2, so t = 1. This makes the
point on the first line (0, 2, 4). Now equating x
coordinates shows 0 = 3+ 3s, so s = �1. This
makes the point on the second line (0, 2, 4).
The lines intersect at this point.

55. 4(x+ 5) + y � 2(z � 1) = 0

56. 3(x� 2)� (y + 1) = 0

57. P = (2, 1, 3), Q = (2,�1, 2), R = (3, 3, 2)
PQ = h0,�2,�1i, PR = h1, 2,�1i
PQ⇥PR = h4,�1, 2i is normal to the plane.
4(x� 2)� (y � 1) + 2(z � 3) = 0
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58. P = (2,�1, 2), Q = (1,�1, 4),
R = (3,�1, 2)
PQ = h�1, 0, 2i, PR = h1, 0, 0i
PQ⇥PR = 2j is normal to the plane.
2(y + 1) = 0 =) 2y = �2 =) y = �1

59. Elliptic Paraboloid
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60. Elliptic Paraboloid
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61. Cylinder
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62. Cylinder
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63. Sphere
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64. Sphere
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65. Plane
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66. Plane
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67. Plane
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68. Plane

-6
-4

-6 -6

-2

-4 -4
-2 -2

000
x y22

44
66

2
z 4
6

69. Hyperboloid of One Sheet
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-4
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00
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z

2x
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70. Hyperbolic Paraboloid
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-6

-2

-4

-6-4
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00

x
24

2
z

6

4

2

6

y4
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71. Hyperboloid of Two Sheets

-6

-6

-6
-4

-4

-4
-2 -2

-2

0 00x 2 y2

2
z

4 4

4

6 6

6

72. Elliptic Paraboloid

-6-6 -4-4

-6

-2

-4

-2

-2
00
0

z
2

22

y

4

x

6

44 66

73. Apply the Cauchy-Schwartz Inequality to the
vectors
a =

⌦p
a
1

,
p
a
2

, . . . ,
p
a
n

↵

b =

⌧
1

1p
,
1

2p
,
1

3p
, . . . ,

1

np

�

a · b =
nP

k=1

p
ak

k

p

kak =

s
nP

k=1

p
a
n

2 =

s
nP

k=1

a
n

kbk =

s
nP

k=1

�
1

k

p

�
2

=

s
nP

k=1

1

k

2p



618 CHAPTER 10. VECTORS AND THE GEOMETRY OF SPACE

The Cauchy-Schwartz Inequality says that
nP

k=1

p
ak

k

p 
s

nP
k=1

a
n

s
nP

k=1

1

k

2p .

74. Using the inequality from exercise 73, we see

that if
1P
k=1

a
n

and
1P
k=1

1

k

2p both converge, then

1P
k=1

p
ak

k

p must also converge.

We are given that
1P
k=1

a
n

converges. Since

p > 1

2

,
1P
k=1

1

k

2p converges (p-series test). There-

fore
1P
k=1

p
ak

k

p converges.



Chapter 11

Vector-Valued

Functions

11.1 Vector-Valued Functions

1.
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16.

-2x
-1.5

-2

-1-2
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z

2

2

17.

-2-1.5 -3-1 -2-0.5

-6

-1

-4

-2y

00
0

2

0.51

4

x

z

6

23

18.

-8
-4

-20

-4

-10
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0
0
0

y
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2

20

4
z

4

6

x

8
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19.

−1.0

−1.0

−0.5

−1.0

−0.5

−0.5
0.0

0.00.0

0.5

0.5

1.0
0.5

1.0
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This is a periodic function and the period is
2⇡.

20.

−3−2−1.0 −1−0.5
0.0

00.0

0.25

0.5

0.75

0.5

1.0

1 1.023

This is a periodic function and the period is
2⇡.

21.
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This is not a periodic function.

22.



622 CHAPTER 11. VECTOR-VALUED FUNCTIONS

200
150

−30

100

−20

−2,000
50

−10

00

0
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20

2,000

This is not a periodic function.

23.

-10-50

x

0
510

0.2

0.4

0.2

z
0.6

0.8

0.4

1

0.6
y 0.8

1

This is not a periodic function

24.

-20
-1-10

-20

-0.5

-10

00
0

x

z
10

0.5

y

10

20

1 20

This is a periodic function and the period is
2⇡.

25. (a)

-2

-2

-3

10

1

-1

0
-1 2

This function is periodic and the period
is 2⇡.

(b)

–3

–2

2

3

–3 –2 2 3

This function is periodic and the period
is 2⇡.

(c) The graph of
r (t) =
h2 cos(at) + sin(bt), 2 sin(at) + cos(bt)i,

(i) depicts a circle, when either of a, b = 0.
If a = 0, then the centre of the circle lies
on the x-axis and if b = 0, the centre of
the circle lies on the y-axis.
(ii) depicts an ellipse, when a = b.
(iii) depicts n-point star, which is a con-
cave curve for n = a+ b and 0 < a < b.
(iv) depicts n-leaves rose, which is a con-
vex curve for n = a+ b and a > b > 0.

26. (a)

4

8
0

-4

8

-8

0-4-8 4
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This function is periodic and the period
is 2⇡.

(b)

4−1 31

4.8

3.2

5

1.6

2
0.0

−3

−1.6

5.6

4.0

0

2.4

0.8

−2
−0.8

−2.4

−4−5−6 6

This function is periodic and the period
is 2⇡.

(c) The graph of
r (t) =
h4 cos(at) + b cos(t), 4 sin(at) + sin(t)i,

depicts a circle, when either of a, b = 0 or
a = 1. If a = 0, then the centre of the
circle lies on the x-axis and if a = 1 or
b = 0, the centre of the circle the origin.

27. (a) Graph 6. x is between �1 and 1, and
graph follows plane y = z.

(b) Graph 3. Only graph with all coordinates
between �1 and 1.

(c) Graph 5. x and y between �1 and 1.
Coils spread out as

p
t grows slower than

t.

(d) Graph 1. x and y between �1 and 1.
Coils get closer as t

2 grows faster than
t.

(e) Graph 2. Parabola in plane x = y.

(f) Graph 4. None of the coordinates are
bounded.

28. For (a) r (t) =
⌦
cos t2, t , t

↵
, the x-component

cos t2 is bounded.

For (b) r (t) =
⌦
cos t, sin t , sin t2

↵
all the

x, y, z components cos t, sin t and sin t2 re-
spectively are bounded.

For (c) r (t) =
⌦
sin 16

p
t, cos 16

p
t , t

↵
x

and y components sin 16
p
t and cos 16

p
t are

bounded.

For (d) r (t) =
⌦
sin t2, cos t2 , t

↵
x and y com-

ponents sin t2 and cos t2 are bounded.

For (e), (f) none of the x, y, z components are
bounded.

29. s =

bZ

a

q
[f 0 (t)]2 + [g0 (t)]2 + [h0 (t)]2dt

=

2⇡Z

0

q
(cos t� t sin t)2 + (sin t+ t cos t)2 + 2tdt

=

2⇡Z

0

q
(1 + t)2dt = 2⇡ (1 + ⇡)

30. s =

Z
3⇡

0

p
16 + 9sin2t+ 9cos2t dt

= 5

Z
3⇡

0

dt = 15⇡

31. s =

Z
3

1

r
16

t

2

+ 4t2 + 8 dt

= 11.0164

32. s =

Z
⇡/4

0

�
1 + 2t2

�

(1 + t

2)
dt

=

Z
⇡/4

0

2dt�
Z

⇡/4

0

1

1 + t

2

dt

=
⇡

2
� tan�1

⇣
⇡

4

⌘
= 0.9050

33.

-1

-1-1

-0.5

-0.5-0.5

000 yx 0.5

z

0.5

0.5

11

1

r0(t) = h� sin t, cos t,�2 sin 2ti
l =

R
2⇡

0

p
1 + 4 sin2 2t dt ⇡ 10.54

34.

-1

-1

-1 -0.5

-0.5

-0.5
0 y00

0.5
x 1

0.5

0.5

z 1

1
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r0(t) = h� sin t, cos t, cos t� sin ti
l =

R
2⇡

0

p
1 + (cos t� sin t)2 dt ⇡ 8.74

35.

-1
-1 -0.5-0.5

-1

-0.5

0

z

0
0

0.5

y

1

0.5

x

0.5 11

r0(t) = h�⇡ sin⇡t,⇡ cos⇡t,�16 sin 16ti
l =

R
2

0

p
⇡

2 + (�16 sin 16t)2 dt ⇡ 21.56

36.

-1
-1 -0.5-0.5

-1

-0.5

0

z

0
0

0.5

y

1

0.5

x

0.5 11

r0(t) = h�⇡ sin⇡t,⇡ cos⇡t,�16 sin 16ti
l =

R
4

0

p
⇡

2 + (�16 sin 16t)2 dt ⇡ 43.37

37.

-1 00
0

2

1

y

4

2
0.5

z 6

3

8

1
x 1.5
2

r0(t) =
⌦
1, 2t, 3t2

↵

l =
R
2

0

p
1 + 4t2 + 9t4 dt ⇡ 9.57

38.

-1

0
0
1

1

1

z 2

2 2

3

x
3

y
3

4 4
5

r0(t) = h2t, 2, 2ti
l =

R
2

0

p
4t2 + 4 + 4t2 dt ⇡ 7.25

39. (a) Possible parametric equations for the he-

lix are x = 3 cos t, y = 3 sin t, and z =
10t

4⇡
for 0  t  4⇡. The length is then

l =

Z
4⇡

0

r
9 sin2 t+ 9 cos2 t+

100

16⇡2

dt

⇡ 39.00 feet.

(b) If we unroll the staircase, then the length
of the handrail will be equal to the length
of the hypotenuse of a triangle whose
base is 12⇡ feet and whose height is 10
feet. Hence, the length of the handrail isp
(12⇡)2 + 102 ⇡ 39 feet.

40. s =

2⇡Z

0

p
sin2t+ cos2t+ k

2

dt

=
p
1 + k

2 (t)|2⇡
0

= 2⇡
p

1 + k

2

As in problem 39(b), if we unroll this section
of the helix, then the length of the section will
be equal to the length of the hypotenuse of
a triangle whose base is 2⇡ feet and height is
k(2⇡). Therefore, by Pythagorean Theorem,

hypotenuse =
q

(2⇡)2 + (2⇡k)2

= 2⇡
p

1 + k

2

41. Substitute z = 2 into z =
p

x

2 + y

2 to see that
the intersection is the circle x

2 + y

2 = 4 in the
plane z = 2. This curve can be parametrized
as
x = t, y = ±

p
4� t

2, z = 2.

s = 4

Z
2

0

r
1 +

t

2

4� t

2

dt

= 4

Z
2

0

r
4

4� t

2

dt

= 8

✓
sin�1

✓
t

2

◆◆����
2

0

= 4⇡.
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-4-4 -2-2

-4

-2

z

0
00

2

4

22

x y
44

-2 -2-1 -10
00

1

2

3

1

4

12 2

42. Solve y + 2z = 2 for z and substitute into
z =

p
x

2 + y

2 to see that
2� y

2
=
p

x

2 + y

2.

Solving this for x gives x = ±
r

4� 4y � 3y2

4
.

Setting y = t allows us to parametrize the
curve as

x = ±
r

4� 4t� 3t2

4
, y = t, z =

2� t

2

s = 2

Z
2/3

�2

s✓
(2 + 3t)

2
p
4� 4t� 3t2

◆
2

+ 1 +
1

4
dt

= 18

-3-3 -2-2 -1-1

z

3

2

1

0
00

-1

-2

-3

11
y

2
x

2 33

-1
-2 -1.5

-0.5
-1 -0.5 0

00
0.5

0.5

1

0.5

1.5

2

1

43. Solve for x and z in terms of y, and use y = t

as a parameter to get
x = ±

p
9� t

2, y = t, and z = 2� t.

s = 4

3Z

0

r
t

2

9� t

2

+ 1 + 1 dt

= 4
p
18

3Z

0

1p
9� t

2

dt

= 4
p
18

✓
sin�1

✓
t

3

◆◆����
3

0

= 26.6573

-4-2-4 -2

-4

-2

0

z

00

2

4

6

2
y

42

x
4

-3-2-1
-3 -2 -1

-1

00
0

1

1

2

2

3

3

4

1

5

23

44. Solve for z in terms of y and use y as a param-
eter to get
x = 2, y = t, and z = ±

p
9� t

2

s = 4

3Z

0

s

02 + 12 +

✓
�tp
9� t

2

◆
2

dt
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= 12

✓
sin�1

✓
t

3

◆◆����
3

0

= 18.8496

-4-2 -4-2

-4

-2

0
0
0

z2

4

x
24

y

2 4

-3 -2-1

-3

-2

-1
0
0
0

1

2

3

0.5 111.5 22 3

45. The curve

r(t) = ht, t2 � 1, t3i, 0  t  2,

can be parametrized as

r(s) = h2s, 4s2 � 1, 8s3i, 0  s  1,

by substituting s = t

2

. Since both equations
represent exactly the same curve, they will give
us the same arc length.

46. The curve

r(t) = ht2 + 1, 2t, t2 � 1i, 0  t  2,

can be parametrized as

r(s) = hs+ 1, 2
p
s, s� 1i, 0  s  4,

by substituting s = t

2. Since both equations
represent exactly the same curve, they will give
us the same arc length.

47. The curve g(t) =
⌦
cos t, cos2 t, cos2 t

↵
covers

the part of r(t) =
⌦
t, t

2

, t

2

↵
with coordinates

between �1 and 1. h(t) =
⌦p

t, t, t

↵
covers the

part of r(t) with positive x coordinate.

48. The curve g(t) = h2 sin t� 1, sin2 t, sin ti, with
0  t  2⇡, is the same as the curve
r(t) = h2t� 1, t2, ti with �1  t  1.
The curve h(t) = h2et � 1, e2t, eti,
�1 < t < 1, is the same as the curve r(t)
with 0 < t < 1.

49. Substituting r(t) into z = x

2 � y

2 gives the
trigonometric identity cos 2t = cos2 t� sin2 t.

-3

-3 -3

-2

-2 -2

-1

-1 -1
000

yx 11

1
z

2 2

2

33

3

50. The curve

r(t) = hcos t, sin t, sin t+ cos ti, 0  t  2⇡,

can be written parametrically as

x = cos t, y = sin t, z = sin t+ cos t,

0  t  2⇡. Clearly z = x+ y.

-3
-2
-1

-3

-2
-3

-2 -1
-1

y000 1
2

1 3x
2

3

1
z 2
3

51. (a)

-1
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-1
-0.5

-0.5

-0.5 0
0
0

y

z

0.5

0.5

x 0.5
1

1

1

The components all have period 2⇡, so
for larger ranges the graph retraces this.
As you use large and larger domains, the
graphing utility uses the same number
of subdivisions, and so it “connects-the-
dots” of points farther and farther apart.
This causes the graph to look like a tangle
of line segments.



11.2. THE CALCULUS OF VECTOR-VALUED FUNCTIONS 627

(b) The shadow of the graph of
r(t) = hcos t, cos t, sin ti, with 0  t  2⇡,
in the xz-plane is hcos t, 0, sin ti and in the
yz-plane is h0, cos t, sin ti. Clearly, these
are unit circles. Since the graph of
r(t) = hcos t, cos t, sin ti makes a 45� angle
with the xz-plane, the length of its long
axis is 2

p
2.

52. Consider
kr (t)k =

p
cos2t+ cos2t+ 2sin2t =

p
2.

For all t. All the points of the curve lie on the
sphere x2+y

2+z

2 = 2; further all these points
have the same x and y co-ordinates, means all
the points of this curve lie on the plane x = y .
Thus the curve r (t) is the intersection of the
sphere x

2 + y

2 + z

2 = 2 and the plane x = y ,
hence it is a circle.

11.2 The Calculus of Vector-

Valued Functions

1. The component functions are all continuous
near t = 0. Therefore,
lim
t!0

⌦
t

2 � 1, e2t, sin t
↵
= h�1, 1, 0i.

2. t

2, e

2t and
p
t

2 + 2t are all continuous near
t = 1. Therefore,
lim
t!1

⌦
t

2

, e

2t

,

p
t

2 + 2t
↵
=
⌦
1, e2,

p
3
↵
.

3. The limits of the component functions all ex-
ist. Therefore,

lim
t!0

⌧
sin t

t

, cos t,
t+ 1

t� 1

�
= h1, 1,�1i.

4. lim
t!1

t+1

t�1

does not exist. Therefore,

lim
t!1

⌧p
t� 1, t2 + 3,

t+ 1

t� 1

�
does not exist.

5. lim
t!0

ln t does not exist. Therefore,

lim
t!0

⌦
ln t,

p
t

2 + 1, t� 3
↵
does not exist.

6. lim
t!⇡

2

tan t does not exist. Therefore,

lim
t!⇡

2

⌦
cos t, t2 + 3, tan t

↵
does not exist.

7.
t+ 1

t� 2
is continuous everywhere, except at

t = 2;
p
t

2 � 1 is continuous everywhere, ex-
cept for t 2 (�1, 1 ) and 2t is of course, contin-
uous for all real values of t. Thus the compo-
nent functions are continuous for all
t /2 (�1, 1 )[{ 2 }. Therefore, r(t) is continuous
for all t 2 (�1,�1] [ [1 , 2 ) [ (2,1).

8. sin t, cos t, are continuous everywhere. How-
ever, 3

t

is continuous everywhere except t = 0.
Therefore,

⌦
sin t, cos t, 3

t

↵
is continuous for all

t 6= 0.

9. sin t2, cos t, are continuous everywhere. How-
ever, tan t is continuous everywhere except
t = n⇡

2

for all n odd. Therefore, r(t) is con-
tinuous for all t 6= n⇡

2

where n is odd.

10. cos 5t is continuous for all real t, tan t is con-
tinuous everywhere, except at t = (2n+ 1) ⇡

2

,
where n is an integer and ln t is continuous ev-
erywhere, except for t  0. Thus the compo-
nent functions are continuous for all t > 0 and
t 6= (2n+ 1) ⇡

2

. Therefore, r(t) is continuous
for all t > 0 and t 6= (2n+ 1) ⇡

2

, where n is an
integer.

11. e

2/t is continuous everywhere, except at
t = 0,

p
t

2 + t is continuous everywhere, except
for t 2 (�1, 0) and 2

t+3

is continuous every-
where, except for t = �3. Thus the component
functions are continuous for all
t /2 (�1, 0)[(�3). Therefore, r(t) is continuous
for all t 2 (�1, �3) [ (�3, �1] [ (0,1).

12. sin t is continuous everywhere. However,
� csc t and cot t are continuous everywhere ex-
cept t 6= n⇡ for any integer n. Therefore,
hsin t,� csc t, cot ti is continuous for all t 6= n⇡

for any integer n.

13.
p
t is continuous everywhere, except for t < 0,p
4� t is continuous everywhere, except for

t > 4 and tan t is continuous everywhere, ex-
cept at t = (2n+ 1) ⇡

2

,where n is an integer.
Thus the component functions are continuous
for all t 2 [0, ⇡

2

) [ (⇡
2

, 4]. Therefore, r(t)is
continuous for all t 2 [0, ⇡

2

) [ (⇡
2

, 4].

14. ln t is continuous for t > 0, sec t is continuous
everywhere, except at t = (2n+ 1) ⇡

2

,
where n is an integer.

p
�t is continuous for
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t  0. Thus the component functions here can
not remain continuous simultaneously for any
real t. Therefore r(t) is cannot be continuous
for any t.

15. r0(t) =
D
4t3, 1

2

p
t+1

,

�6

t

3

E

16. r0(t) =
D

4

(t+1)

2

, e

2t + 2te2t, 3t2
E

17. r0(t) =
⌦
cos t, 2t cos t2,� sin t

↵

18. r0(t) =
⌦
�5 sin 5t, sec2 t, 6 cos t

↵

19. r

0(t) =
D
2tet

2

, 2te2t (t+ 1) , 2 sec 2t tan 2t
E

20. r0(t) =
D

tp
t

2

+1

,� sin t,�3e�3t

E

21. Here r

0(t) =
⌦
4t3 � 4t, 2t� 2

↵
is continuous

everywhere and r

0(t) = 0 if and only if t = 1 .
This says that the curve is smooth everywhere
except for t = 1.

22. Here r0(t) =
⌦
2t+ 1 , 3t2

↵
is continuous every-

where and r

0(t) 6= 0 for all t. This says that
the curve is smooth everywhere.

23. Here r0(t) = hcos t , �2 sin 2ti is continuous ev-
erywhere and r

0(t) = 0 if and only if cos t = 0,
that is if and only if t = (2n+ 1) ⇡

2

where n is
an integer. This says that the curve is smooth
everywhere. As t = (2n+ 1) ⇡

2

, are the end
points of the curve.

24. Here r

0(t) = h2 cos t (� sin t) , 2 sin t cos ti
= h� sin 2t, sin 2ti is continuous everywhere
and r

0(t) = 0 if and only if sin 2t = 0, that
is if and only if t = n⇡

2

, where n is an integer.
This says that the curve is smooth everywhere.
As t = n⇡

2

, are the end points of the curve.

25. Here r

0(t) =
D

e

p
t

2

p
t

, 3t2 � 1
E
is continuous for

all t > 0 and r

0(t) 6= 0 for all
t > 0. This says that the curve is smooth for
all t > 0

26. Here r

0(t) =
D

4�t

2

(t

2

+4)

2

,

2(t�2)

t(t�4)

E
is continuous

everywhere it is defined, that is for all
t 2 (�1, 0)[(4, 1) and r

0(t) 6= 0 for all these
values of. This says that the curve is smooth
for all t 2 (�1, 0) [ (4, 1).

27.

t=Pi

t=Pi/2

t=0

0.5

0.50

-0.5

-0.5

-1

-1
0

1

1

28.

t=2

t=1

t=0

0
-1 0

6

-2

4

1

2

32

8

29.

-1

-1

-0.5

-0.5
0
00

x

0.5

0.5

2

z

1

1
4

t=0

1.5

y6

2

8

t=Pi/2

t=Pi

30.

-2
-1

-2-1
0

0
0

1
x

2

t=123

4

t=2

t=0

z6

1

8

y2
3

31.
⌦
3

2

t

2 � t,

2

3

t

3/2

↵
+c where c is an arbitrary con-

stant vector.
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32.
⌦�3

t

, 4 ln t
↵
+c where c is an arbitrary constant

vector.

33.
⌦
t

3

sin 3t+ 1

9

cos 3t, � 1

2

cos t2, e2t
↵
+ c, where c

is an arbitrary constant vector.

34.
⌦
�(2 + 2t+ t

2)e�t

,

1

3

sin3t, tan t
↵
+ c , where c

is an arbitrary constant vector.

35.
⌦
4 ln

�
t�1

t

�
, ln(t2 + 1), 4tan�1

t

↵
+ c, where c

is an arbitrary constant vector.

36.

⌧
2sin�1 (t) , G (t) ,

(t2�1)3/2

3

�
+ c, where

G (t) = t

p
t

2�1

2

� 1

2

ln
�
t+

p
t

2 � 1
�
and c is an

arbitrary constant vector.

37.
⌦�2

3

,

3

2

↵

38.
D

14

p
7

3

� 16

3

, 5 ln 5

2

E

39. Using integration by parts where u = t and
dv = e

t to integrate the third component of
the vector yields

⌦
4 ln 3, 1� e

�2

, e

2 + 1
↵

40.
⌦
1

8

+ 15

8

e

16

, 4 ln
�
9

7

�
, 2 ln 17

↵

41. r(t) = hcos t, sin ti and r0(t) = h� sin t, cos ti
are perpendicular for all t.

42. r(t) = h2 cos t, sin ti and
r0(t) = h�2 sin t, cos ti,
r(t) · r0(t) = �3 sin t cos t. Therefore, r(t) and
r0(t) are perpendicular when t = n⇡

2

for any
integer n.

43. r(t) =
⌦
t, t, t

2 � 1
↵
and r0(t) = h1, 1, 2ti.

r(t) · r0(t) = 2t3 = 0 only when t = 0. There-
fore r(t) and r0(t) are perpendicular only when
t = 0.

44. r(t) =
⌦
t

2

, t, t

2 � 5
↵
and r0(t) = h2t, 1, 2ti

r(t) · r0(t) = 4t3 � 9t. Therefore, r(t) and r0(t)
are perpendicular when t = 0,± 3

2

.

45. In exercise 41 the vectors are perpendicular for
all t so they cannot be parallel.

In exercise 42 if there existed a t

0

and k 6= 0
such that h2 cos t

0

, sin t
0

i = k h�2 sin t
0

, cos t
0

i,
then we would have sin t

0

= k cos t
0

and
cos t

0

= �k sin t
0

. This would mean that
sin t

0

= �k

2 sin t
0

, and this cannot happen for
real k unless sin t

0

= 0. But, if sin t
0

= 0, then
cos t

0

6= 0, so this cannot occur.

46. In exercise 43, if there existed a t

0

and k such
that

⌦
t

0

, t

0

, t

2

0

� 1
↵

= k h1, 1, 2t
0

i then com-
paring the first and second components of the
vectors gives k = t

0

; however, comparing the
third components of the vectors then gives
t

2

0

� 1 = 2t2
0

, which has no real solutions.

In exercise 44, if there existed a t

0

and k 6= 0
such that

⌦
t

2

0

, t

0

, t

2

0

� 5
↵
= k h2t

0

, 1, 2t
0

i then
comparing the second components of the vec-
tors gives k = t

0

and comparing the first com-
ponents of the vectors then gives t2

0

= 2t2
0

. This
forces us to conclude that t

0

= 0 and k = 0,
which contradicts k 6= 0.

47. (a) r0(t)is parallel to the xy-plane, if and only
if, the third component is 0. That is if,
d

dt

�
t

3 � 3
�
= 0 or t = 0.

(b) r0(t)is parallel to the yz-plane, if and only
if, the first component is 0. But, here the
first component = d

dt

(t) = 1. Therefore,
no such t exists.

(c) r0(t) is parallel to the x = y plane, if and
only if, the first and second component
are equal. . That is if, d

dt

(t) = d

dt

(t),
which is true for all real values of t.

48. (a) r0(t) is parallel to the xy-plane, if
and only if, the third component is 0.
That is if, d

dt

�
sin t2

�
= 0 when t =

0,±
r
(2n+ 1)

⇡

2
, where n is any non-

negative integer.

(b) r0(t) is parallel to the yz-plane, if and only
if, the first component is 0. That is if,
d

dt

�
t

2

�
= 0 or t=0.

(c) r0(t) is parallel to the x = y plane, if and
only if, the first and second components
are equal. Therefore,
d

dt

(t2) = d

dt

(t) ) t = 1

2

.

49. (a) r0(t) is parallel to the xy-plane when the
third component is 0. d

dt

(sin 2t) = 0
when t = (2n+ 1) ⇡

4

, where n is any inte-
ger.

(b) r0(t) is parallel to the yz-plane when the
first component is 0. d

dt

(cos t) = 0 when
t = n⇡, where n is any integer.

(c) r0(t) is parallel to the x = y plane, if and
only if ,the first and second components
are equal. That is if,
d

dt

(cos t) = d

dt

(sin t) ) t = (4n� 1) ⇡

4

,
where n is any integer.
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50. (a) r0(t) is parallel to the xy-plane, if and
only if, the third component is 0. That
is if, d

dt

�
t

4 � 8t2
�
= 4t3 � 16t = 0

)t = 0,±2.

(b) r0(t) is parallel to the yz-plane, if and
only if, the first component is 0. But
d

dt

�p
t+ 1

�
= 1

2

p
t+1

6= 0. Therefore, no

such t exist.

(c) r0(t) is parallel to the x = y plane, if and
only if, the first and second components
are equal. That is if,
d

dt

�p
t+ 1

�
= d

dt

(cos t) or
1

2

p
t+1

+ sin t = 0
) t = 3.3617, 6.0426, 9.4894, .......

51.

3
2

1
0−1.0

−3
−1

−2

−0.5

−1

0.0

0

0.5

−2
1

1.0

2 3
−3

52.

−5

0

−10

−5.0

−2.5

−5
5

0.0

2.5

0

5.0

53.

−2
−1

0

−2

−1.0

−0.5

−1
1

0.0

0

0.5

1

1.0

2
2

54.

−10

−5

0

−10

−7.5

−5.0

−5

−2.5

5
0

0.0

5

2.5

5.0

10
10

7.5

55. Let r(t) be periodic with period p. Thus,
sin (p+ t) = sin t, sin (a (p+ t)) = sin (at)
and sin (b (p+ t)) = sin (bt).
) sin (p+ t) = sin t,sin (ap+ at) = sin (at)
) ap = 2n⇡ or a = 2n⇡

p

and b = 2n⇡

p

, where
n is any integer. The smallest value of p is 2⇡.
So a, b are all the integers except 0.

56. Let r(t) be periodic with period p. Thus,
sin (⇡p+ ⇡t) = sin⇡t, sin (a (p+ t)) = sin (at)
and sin (b (p+ t)) = sin (bt).
) sin (⇡p+ ⇡t) = sin⇡t,sin (ap+ at)

= sin (at)
) ap = 2n⇡ or a = 2n⇡

p

and b = 2n⇡

p

, where n

is any integer. The smallest value of p is 2. So
a, b are all the integral multiples of ⇡, except
0.

57. False. For any function r(t), u(t) is a unit vec-
tor for all t, and ku(t)k = 1 is constant. So
by Theorem 2.4, u(t) · u0(t) is 0 for any func-
tion r(t), but there are clearly functions r(t)
with kr(t)k not constant, so for these functions
r(t) · r0(t) will not equal 0.

58. False. By Theorem 2.4 kr(t)k is constant if and
only if r(t) and r0(t) are perpendicular for all
t. It is not enough that they are perpendicular
for some particular value of t = t

0

.

59. False. This is not true for scalar functions, so it
is definitely not true for vector functions. For
example

R
1

0

x

2

dx = 1

3

, but

(
R
1

0

x dx)2 = ( 1
2

)2 = 1

4

.

60. False.
R
f(t)dt = F(t) + c, where c is an arbi-

trary constant vector.

61. We have
QQ

0 =
⌦
a(cos(t+ ⇡

2

)� cos(t� ⇡

2

)),
b(sin(t+ ⇡

2

)� sin(t� ⇡

2

))
↵

=
⌦
�2a sin t sin ⇡

2

, 2b cos t sin ⇡

2

↵

= 2 sin ⇡

2

h�a sin t, b cos ti
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The tangent vector at P is h�a sin t, b cos ti, so
we see that QQ

0 is a multiple of the tangent
vector at P .

Q

P

Q^

210-1-2

4

3

2

1

0

-1

-2

-3

62. We have
QQ

0 = ha(cos (t+ ✓)� cos (t� ✓)),
b(sin (t+ ✓)� sin (t� ✓))i

= h�2a sin t sin ✓, 2b cos t sin ✓i
= 2 sin ✓ h�a sin t, b cos ti
The tangent vector at P is h�a sin t, b cos ti,
so we see that QQ

0 is a multiple of the tangent
vector at P .

63. Using parts (iv) and (v) of Theorem 2.3 we see
that
d

dt

[f(t) · (g(t)⇥ h(t))]

= f 0(t)[g(t)⇥ h(t)] + f(t) d

dt

[g(t)⇥ h(t)]
= f 0(t)[g(t)⇥ h(t)]
+ f(t)[g0(t)⇥ h(t) + g(t)⇥ h0(t)]

64. Consider,
d

dt

[f(t)⇥ (g(t)⇥ h(t))] = d

dt

[f(t)⇥ F (t)],
where F (t) = g(t)⇥ h(t).
Now using theorem 2.3(v), we have
d

dt

[f(t)⇥ F (t)] = f 0(t)⇥ F (t) + f(t)⇥ F 0 (t)
Further, using theorem 2.3(v)on F (t),we get,
d

dt

[f(t)⇥ (g(t)⇥ h(t))]

= f(t)⇥ (g(t)⇥ h0(t))
+ f(t)⇥ (g0(t)⇥ h(t))
+ f 0(t)⇥ (g(t)⇥ h(t))

65. For r(t) = hf(t), g(t), h(t)i,
d

dt

hcf(t), cg(t), ch(t)i
=
⌦
c

d

dt

f(t), d

dt

g(t), d

dt

h(t)
↵
= cr0(t).

66. For c = hc
1

, c

2

, c

3

i and
r(t) = hf(t), g(t), h(t)i , we have
d

dt

[c · r(t)] = d

dt

hc
1

f(t), c
2

g(t), c
3

h(t)i
= hc

1

f

0(t), c
2

g

0(t), c
3

h

0(t)i = c · r0(t).

67. (iii) For scalar f(t) and
r(t) = hu(t), v(t), w(t)i, we have

d

dt

[f(t)r(t)]
= d

dt

hf(t)u(t), f(t)v(t), f(t)w(t)i
= hf 0(t)u(t) + f(t)u0(t), f 0(t)v(t)

+f(t)v0(t), f 0(t)w(t) + f(t)w0(t)i
= hf 0(t)u(t), f 0(t)v(t), f 0(t)w(t)i
+ hf(t)u0(t), f(t)v0(t), f(t)w0(t)i

= f

0(t)r(t) + f(t)r0(t)

(iv) For r(t) = hf
1

(t), g
1

(t), h
1

(t)i , and
s(t) = hf

2

(t), g
2

(t), h
2

(t)i , we have
d

dt

[r(t) · s(t)]
= d

dt

hf
1

(t)f
2

(t), g
1

(t)g
2

(t), h
1

(t)h
2

(t)i
= hf 0

1

(t)f
2

(t) + f

1

(t)f 0
2

(t), g0
1

(t)g
2

(t)
+g

1

(t)g0
2

(t), h0
1

(t)h
2

(t) + h

1

(t)h0
2

(t)i
= hf 0

1

(t)f
2

(t), g0
1

(t)g
2

(t), h0
1

(t)h
2

(t)i
+ hf

1

(t)f 0
2

(t), g
1

(t)g0
2

(t), h
1

(t)h0
2

(t)i
= r0(t)s(t) + r(t)s0(t)

68. For r(t) = hf
1

(t), g
1

(t), h
1

(t)i
and s(t) = hf

2

(t), g
2

(t), h
2

(t)i
we have

d

dt

[r(t)⇥ s(t)] = d

dt

������

i j k
f

1

(t) g

1

(t) h

1

(t)
f

2

(t) g

2

(t) h

2

(t)

������
= d

dt

[(g
1

(t)h
2

(t)� g

2

(t)h
1

(t))i
� (f

1

(t)h
2

(t)� f

2

(t)h
1

(t))j
+ (f

1

(t)g
2

(t)� f

2

(t)g
1

(t))k]
= (g0

1

(t)h
2

(t) + g

1

(t)h0
2

(t)
� g

0
2

(t)h
1

(t)� g

2

(t)h0
1

(t))i
� (f 0

1

(t)h
2

(t) + f

1

(t)h0
2

(t)
� f

0
2

(t)h
1

(t)� f

2

(t)h0
1

(t))j
+ (f 0

1

(t)g
2

(t) + f

1

(t)g0
2

(t)
� f

0
2

(t)g
1

(t)� f

2

(t)g0
1

(t))k
= {(g

1

0(t)h
2

(t)� h

1

0(t)g
2

(t))i
� (f

1

0(t)h
2

(t)� h

1

0(t)f
2

(t))j
+ (f

1

0(t)g
2

(t)� g

1

0(t)f
2

(t))k}
+ {(g

1

(t)h
2

0(t)� h

1

(t)g
2

0(t))i
� (f

1

(t)h
2

0(t)� h

1

(t)f
2

0(t))j
+ (f

1

(t)g
2

0(t)� g

1

(t)f
2

0(t))k}
= r0(t)⇥ s(t) + r(t)⇥ s0(t).

69. Recall from part (i) of Theorem 2.4 that r(t) ·
r(t) = kr(t)k2 and that
d

dt

[r(t) · r(t)] = 2r(t) · r0(t). If r(t) · r0(t) = 0
for all t, then kr(t)k2 is constant, so kr(t)k
must be constant.

70. The proof is immediate by Definition 2.6 and
the Fundamental Theorem of Calculus

71. Both the airplanes collide, if and only if
f(t) = g(s) for some t and s. For which

t

2 � 4t = sin⇡s,
p
t+ 5 = s

2

s+1

and
4t = 4 + 3s
Putting t = 4+3s

4

in
p
t+ 5 = s

2

s+1

, we getq�
4+3s

4

�
+ 5 = s

2

s+1

)
�
24+3s

4

�
= s

4

(s+1)

2
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) 4s4 � 3s3 � 30s2 � 51s� 24 = 0,
which on solving gives
s = �0.7553 ) t = 0.4335 or
s = 3.7597 ) t = 3.8198
t

2 � 4t = sin⇡s is not satisfied by
s = �0.7553 and t = 0.4335. On substituting
the values s = 3.7597 and t = 3.8198, the left
side of the equation is �0.688375 and the right
side of the equation is �0.685196, so the colli-
sion depends on the units of t.

100
75

50

40

50

30

20

25

10

0
00.0

2.5
5.0

7.5
10.0

11.3 Motion in Space

1. v(t) = r0(t) = h�10 sin 2t, 10 cos 2ti
a(t) = r00(t) = h�20 cos 2t,�20 sin 2ti

2. v(t) = r0(t)
= h�2 sin t+ 2 cos 2t, 2 cos t� 2 sin 2ti

a(t) = r00(t)
= h�2 cos t� 4 sin 2t,�2 sin t� 4 cos 2ti

3. v(t) = r0(t) = h25,�32t+ 15i
a(t) = r00(t) = h0,�32i

4. v(t) = r0(t) =
⌦
25e�2t � 50te�2t

,�32t+ 10
↵

a(t) = r00(t) =
⌦
�100e�2t + 100te�2t

,�32
↵

5. v (t) = r0 (t) =
D
4 (1� 2t) e�2t

,

tp
t

2

+1

,

1�t

2

(t

2

+1)

2

E

a (t) = r00 (t)

=
D
16 (t� 1) e�2t

,

1

(t

2

+1)

3/2

,

2t(t2�3)
(t

2

+1)

3

�

6. v (t) = r0 (t)

=
D
�18te�3t

2

, 2 cos 2t, e�t (cos t� sin t)
E

a (t) = r00 (t)

=
D
�18e�3t

2

�
1� 6t2

�
,�4 sin 2t,�2e�t cos t

E

7. r(t) =
R
v(t) dt =

⌦
10t+ c

1

,�16t2 + 4t+ c

2

↵

r(0) = h3, 8i =) c

1

= 3 and c

2

= 8.
r(t) =

⌦
10t+ 3,�16t2 + 4t+ 8

↵

8. r(t) =
R
v(t) dt =

D
2t2 + c

1

,

t

3

3

� t+ c

2

E

r(0) = h10,�2i =) c

1

= 10 and c

2

= �2.

r(t) =
D
2t2 + 10, t

3

3

� t� 2
E

9. v(t) =
R
a(t) dt = hb

1

,�32t+ b

2

i
v(0) = h5, 0i =) b

1

= 5 and b

2

= 0.
v(t) = h5,�32ti
r(t) =

R
v(t) dt =

⌦
5t+ c

1

,�16t2 + c

2

↵

r(0) = h0, 16i =) c

1

= 0 and c

2

= 16.
r(t) =

⌦
5t,�16t2 + 16

↵

10. v(t) =
R
a(t) dt =

⌦
1

2

t

2 + b

1

,� cos t+ b

2

↵

v(0) = h2,�6i =) b

1

= 2 and b

2

= �5.
v(t) =

⌦
1

2

t

2 + 2,� cos t� 5
↵

r(t) =
R
v(t) dt

=
⌦
1

6

t

3 + 2t+ c

1

,� sin t� 5t+ c

2

↵

r(0) = h10, 4i =) c

1

= 10 and c

2

= 4.

r(t) =
D

t

3

6

+ 2t+ 10,� sin t� 5t+ 4
E

11. r(t) =
R
v (t)dt

=
⌦
8t3/2 + c

1

,

1

2

ln
�
t

2 + 1
�
+ c

2

,

�e

�t (t+ 1) + c

3

i
r (0) = h 8, 2, 1 i ) c

1

= 8, c

2

= 2, c

3

= 2
r(t) =

⌦
8
�
t

3/2 + 1
�
,

1

2

ln
�
t

2 + 1
�
+ 2,

�e

�t (t+ 1) + 2i

12. r(t) =
R
v (t)dt

=
D
� e

t

2

2

+ c

1

, tan�1

t+ c

2

, 2 ln (t+ 1) + c

3

E

r (0) = h 4, 0, 3i ) c

1

= 9

2

, c

2

= 0, c
3

= �3

r(t) =
D
� e

t

2

2

+ 9

2

, tan�1

t, 2 ln (t+ 1)� 3
E

13. v(t) =
R
a(t) dt

=
⌦
1

2

t

2 + b

1

, b

2

,�16t+ b

3

↵

v(0) = h12,�4, 0i =)
b

1

= 12, b
2

= �4 and b

3

= 0.
v(t) =

⌦
1

2

t

2 + 12,�4,�16t
↵

r(t) =
R
v(t) dt

=
⌦
1

6

t

3 + 12t+ c

1

,�4t+ c

2

,�8t2 + c

3

↵

r(0) = h5, 0, 2i =)
c

1

= 5, c
2

= 0 and c

3

= 2.

r(t) =
D

t

3

6

+ 12t+ 5,�4t,�8t2 + 2
E

14. v(t) =
R
a(t) dt

=
⌦
� 1

3

e

�3t + b

1

,

1

2

t

2 + b

2

,� cos t+ b

3

↵

v(0) = h4,�2, 4i =)
b

1

= 13

3

, b
2

= �2 and b

3

= 5.
v(t) =

⌦
� 1

3

e

�3t + 13

3

,

1

2

t

2 � 2,� cos t+ 5
↵

r(t) =
R
v(t) dt

=
⌦
1

9

e

�3t + 13

3

t+ c

1

,

1

6

t

3 � 2t+ c

2

,

↵

h� sin t+ 5t+ c

3

i
r(0) = h0, 4,�2i =)

c

1

= � 1

9

, c
2

= 4 and c

3

= �2.
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r(t) =
D

1

9

e

�3t + 13t

3

� 1

9

,

t

3

6

� 2t+ 4,

� sin t+ 5t� 2i

15. Since F(t) = ma(t) = mr00(t),
F(t) = �160 hcos 2t, sin 2ti.
kFk = 160

16. Since F(t) = ma(t) = mr00(t),
F(t) = �750 hcos 5t, sin 5ti.
kFk = 750

17. Since F(t) = ma(t) = mr00(t),
F(t) = �960 hcos 4t, sin 4ti.
kFk = 960

18. Since F(t) = ma(t) = mr00(t),
F(t) = �180 hcos 3t, sin 3ti.
kFk = 180

19. Since F(t) = ma(t) = mr00(t),
F(t) = h�120 cos 2t,�200 sin 2ti.

20. Since F(t) = ma(t) = mr00(t),
F(t) = h�480 cos 4t,�500 sin 5ti.

21. Since F (t) = ma (t) = mr00 (t) ,
F (t) = h120, 0.i

22. Since F (t) = ma (t) = mr00 (t) ,
F (t) = h0,�640.i

23. a (t) = �9.8j,
v (0) = 98

⌦
cos ⇡

3

, sin ⇡

3

↵
=
⌦
49, 49

p
3
↵
,

v (t) = 49i+
�
49
p
3� 9.8t

�
j,

r (0) = h0, 0i,
r (t) = 49ti+

�
49
p
3t� 4.9t2

�
j.

Maximum altitude occurs when vertical com-
ponent of velocity is 0, which occurs at

t = 49

p
3

9.8

= 5
p
3.

Maximum altitude
=
�
49
p
3 t� 4.9t2

���
t=5

p
3

= 367.5m.
Impact occurs when the height is 0, which oc-

curs at t = 49

p
3

4.9

= 10
p
3s.

The Horizontal range is
49t|

t=10

p
3

= 848.7049m.

The speed at impact is
��v
�
10

p
3
��� = 98 m/s.

24. a (t) = �9.8j,
v (0) = 98

⌦
cos ⇡

6

, sin ⇡

6

↵
=
⌦
49
p
3, 49

↵
,

v (t) = 49
p
3i+ (49� 9.8t) j,

r (0) = h0, 0i,
r (t) = 49

p
3ti+

�
49t� 4.9t2

�
j

Maximum altitude occurs when vertical com-
ponent of velocity is 0, which occurs at t = 5s.
Maximum altitude
=
�
49 t� 4.9t2

���
t=5

= 122.5m.

Impact occurs when the height is 0, which oc-
curs at t = 49

4.9

= 10s.
The Horizontal range is
49
p
3t
��
t=10

= 848.7049m.
The speed at impact is kv (10)k = 98 m/s.

25. a (t) = �9.8j,

v (0) = 49
⌦
cos ⇡

4

, sin ⇡

4

↵
=
D

49p
2

,

49p
2

E
,

v (t) = 49p
2

i+
⇣

49p
2

� 9.8t
⌘
j,

r (0) = h0, 0i,
r (t) = 49p

2

ti+
⇣

49p
2

t� 4.9t2
⌘
j

Maximum altitude occurs when vertical com-
ponent of velocity is 0, which occurs at
t = 5p

2

s.

Maximum altitude
=
⇣

49p
2

t� 4.9t2
⌘���

t=

5p
2

= 73.75m.

Impact occurs when the height is 0, which oc-

curs at t =
(49/

p
2 )

4.9

= 10p
2

s.

The Horizontal range is 49p
2

t

���
t=

10p
2

= 245m.

The speed at impact is
���v
⇣

10p
2

⌘��� = 49 m/s.

26. a (t) = �9.8j,
v (0) = 98

⌦
cos ⇡

4

, sin ⇡

4

↵
=
⌦
49

p
2, 49

p
2
↵
,

v (t) = 49
p
2i+

�
49

p
2� 9.8t

�
j,

r (0) = h0, 0i,
r (t) = 49

p
2ti+

�
49
p
2t� 4.9t2

�
j

Maximum altitude occurs when vertical com-
ponent of velocity is 0, which occurs at
t = 5

p
2s.

Maximum altitude
=
�
49
p
2 t� 4.9t2

���
t=5

p
2

= 245m.
Impact occurs when the height is 0, which oc-

curs at t =
(49

p
2)

4.9

= 10
p
2s.

The Horizontal range is 49
p
2t
��
t=10

p
2

= 980m.

The speed at impact is
��v
�
10
p
2
��� = 98 m/s

27. a (t) = �9.8j,
v (0) = 60

⌦
cos ⇡

3

, sin ⇡

3

↵
=
⌦
30, 30

p
3
↵
,

v (t) = 30i+
�
30
p
3� 9.8t

�
j,

r (0) = h0, 10i,
r (t) = 30ti+

�
30

p
3t� 4.9t2 + 10

�
j

Maximum altitude occurs when vertical com-
ponent of velocity is 0, which occurs at

t = 30

p
3

9.8

= 5.3022s.
Maximum altitude
=
�
30
p
3t� 4.9t2 + 10

���
t=

30

p
3

9.8

= 147.7551m.

Impact occurs when the height is 0, which oc-
curs at t = 10.7935s.
The Horizontal range is
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30
p
3t
��
t=10.7935

= 560.8467m.
The speed at impact is
kv (10.7935)k = 61.6119 m/s

28. a (t) = �9.8j,
v (0) = 60

⌦
cos ⇡

3

, sin ⇡

3

↵
=
⌦
30, 30

p
3
↵
,

v (t) = 30i+
�
30
p
3� 9.8t

�
j,

r (0) = h0, 20i,
r (t) = 30ti+

�
30
p
3t� 4.9t2 + 20

�
j

Maximum altitude occurs when vertical com-
ponent of velocity is 0, which occurs at

t = 30

p
3

9.8

= 5.3022s.
Maximum altitude
=
�
30
p
3t� 4.9t2 + 20

���
t=

30

p
3

9.8

= 157.7551m.

Impact occurs when the height is 0, which oc-
curs at t = 10.9762s.
The Horizontal range is
30
p
3t
��
t=10.9762

= 570.34m.
The speed at impact is
kv (10.9762)k = 63.1818 m/s

29. Doubling the initial speed approximately
quadruples the horizontal range.

30. The horizontal ranges are equal.

31. a(t) = �gj
v(0) = v

0

hcos ✓, sin ✓i
v(t) = v

0

cos ✓ i+ (v
0

sin ✓ � gt) j
r(0) = h0, hi
r(t) = v

0

cos ✓ i+ (v
0

sin ✓ t� g

2

t

2 + h) j

32. a(t) = �gj
v(0) = v

0

hcos ✓, sin ✓i
v(t) = v

0

cos ✓ i+ (v
0

sin ✓ � gt) j
r(0) = h0, 0i
r(t) = v

0

cos ✓ t i+ (v
0

sin ✓ t� g

2

t

2) j

(a) The horizontal range is the i component
of position when the j component is zero.
v

0

sin ✓ t� g

2

t

2 = 0 when t = 2v

0

sin ✓

g

.

v

0

cos ✓ t| 2v
0

sin ✓

g

= v

2

0

sin 2✓

g

is the horizon-

tal range.

(b) The maximum horizontal range occurs
where sin 2✓ is maximized. This occurs
at ✓ = ⇡

4

.

33. Torque has magnitude
⌧ = (20)(5) = 100 foot� pounds.
Since ⌧ = I↵, we get that ↵ = 10
for 0  t  0.5. The change in angular velocity
is given by

R
0.5

0

↵ dt = 5 rad

sec

.

34. For a merry-go-round moving with angular ve-
locity, ! = 4 rad

s

, a constant acceleration of
↵ = �2 rad

s

2

is needed to make the merry-go-
round stop in 2 seconds. Since I↵ = Fr, we
have (10)(�2) = F (5) to require a force of
�4 foot-pounds to stop the merry-go-round.

35. Since ✓(t) = ↵t

2

2

, we know that ✓ = 0 and ✓ = ⇡

correspond to t = 0 and t =
q

2⇡

↵

. The change

in angular velocity is then
Rp 2⇡

↵

0

↵ dt = 15, and

↵

q
2⇡

↵

= 15, so that ↵ = 225

2⇡

.

36. Note that it was determined in exercise 51 that
↵ = 225

2⇡

rad

s

2

. Since ✓(t) = ↵t

2

2

= 225t

2

4⇡

, we

see t =
p
6⇡

15

when ✓(t) = 3⇡

2

. Finally, noting
v(t) = ↵t = 225t

2⇡

we have

v(
p
6⇡

15

) = 15

p
6

2

= 18.4 rad

s

. The increase in
angular velocity was 3.4 rad

s

as the increase in
swing went from ⇡ to 3⇡

2

.

37. ✓(t) = ↵t

2

2

= ⇡ gives t =
q

2⇡

↵

✓(t) = 3⇡ gives t =
q

6⇡

↵

.

The angular speed for ⇡ rotation is then
Rp 2⇡

↵

0

↵ dt = ↵

q
2⇡

↵

.

The angular speed for 3⇡ rotation is then
Rp 6⇡

↵

0

↵ dt = ↵

q
6⇡

↵

, a factor of
p
3 more.

38. The more the pitcher extends their arm, the
greater the radius of rotation for the pitch is.
Since linear velocity increases with the radius,
fully extending the arm is a good technique for
throwing a fast pitch.

39. Since the derivative of angular momentum,
L0(t) = ⌧ , if the net torque ⌧ = 0, the the
angular momentum, L(t) must be a constant.

40. If F = 0, then a = 0 and v is constant. There-
fore, P = mv is also constant.

41. Torque is defined to be ⌧ = r⇥F. Recall that
the cross product of parallel vectors is 0, and
that force is parallel to acceleration. If accel-
eration is parallel to position, the so is force,
and the torque is 0.

If acceleration is parallel to the position, then
this will change the linear velocity, not the an-
gular velocity. Since the angular velocity does
not change, there will be no change in angular
momentum.
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42. L000 = (a0 ⇥mv) + 3(a⇥ma) + 3(v ⇥ma0)
+ (r⇥ma00).

Since a is constant, a0 = a00 = 0 and clearly
(a⇥ma) = 0.

43. Since the projectile has mass 1 slug and the
force of the wind is 8 pounds north, the accel-
eration is a(t) = h0, 8,�32i.
The velocity and position then become
v(t) =

⌦
50, 8t, 50

p
3� 32t

↵
and

r(t) =
⌦
50t, 4t2, 50

p
3 t� 16t2

↵
.

The object lands when t = 50

p
3

16

at

r( 50
p
3

16

) ⇡ h270.6, 117.2, 0i.

44. Since the projectile has mass 1 slug and the
force of the wind is 4 pounds south, the accel-
eration is a(t) = h0,�4,�32i.
The velocity and position then become
v(t) =

⌦
50
p
3,�4t, 50� 32t

↵
and

r(t) =
⌦
50
p
3 t,�2t2, 50t� 16t2

↵
. The object

lands when t = 50

16

at r( 50
16

) = h271,�19.5, 0i.

45. We have a = g + w + c = h2t, 1,�8i for
0  t  1, so that
v(t) =

R
a(t) dt =

⌦
t

2 + c

1

, t+ c

2

,�8t+ c

3

↵
.

Since v(0) = h100, 0, 10i, we have that
v(t) =

⌦
t

2 + 100, t,�8t+ 10
↵
for 0  t  1.

For t > 1, we have a = h2t, 2,�8i, so that
v(t) =

R
a(t) dt =

⌦
t

2 + a, 2t+ b,�8t+ c

↵
.

The velocity must be continuous, so that
lim
t!1

+

v(t) = v(1) = h101, 1, 2i.

This gives v(t) =
⌦
t

2 + 100, 2t� 1,�8t+ 10
↵
.

The velocity function is not di↵erentiable at
t = 1, since the acceleration (and force) func-
tion is discontinuous at that point.

46. Using the velocity vector in exercise 45 and
keeping in mind that r is continuous we get

r(t) =
D

t

3

3

+ 100t, t

2

2

, 10t� 4t2
E
for 0  t  1.

r(t) =
D

t

3

3

+ 100t, t2 � t+ 1

2

, 10t� 4t2
E

for t > 1.

47. Vertical component: z (t) =
�
49
p
3t� 4.9t2

�
k.

Horizontal component:
p (t) = 49

�
cos ⇡

4

�
t i+ 49

�
sin ⇡

4

�
t j.

The vector equation of position:

r (t) =
D

49tp
2

,

49tp
2

, 49
p
3 t� 4.9t2

E

The impact occurs when the height is 0 which
occurs at t = 10

p
3.

The vector equation at the point of impact:

r (t
impact

) =
D

490

p
3p

2

,

490

p
3p

2

, 0
E

48. Vertical component:
z (t) =

�
30

p
3t� 4.9t2 + 10

�
k.

Horizontal component:
p (t) = 30 cos

�
tan�1 (2)

�
t i+30 sin

�
tan�1 (2)

�
t j.

= 30p
5

t i+ 60p
5

t j

The vector equation of position:

r (t) =
D

30tp
5

,

60tp
5

, 30
p
3t� 4.9t2 + 10

E

The impact occurs when the height is 0 which
occurs at t = 10.7935
The vector equation at the point of impact:
r (t

impact

) = h 148.81, 289.62, 0 i

49. v (0) =
⌦
v

0

cos ⇡

3

, v

0

sin ⇡

3

↵
=
D

v

0

2

,

v

0

p
3

2

E
,

v (t) = v

0

2

i+
⇣

v

0

p
3

2

� 9.8t
⌘
j

r (t) = v

0

2

t i+
⇣

v

0

p
3 t

2

� 9.8t2
⌘
j.

Now, the horizontal range is v

0

2

t = 100
for which
t = v

0

p
3

19.6

) v

0

= 47.5732m/s

50. v (0) =
⌦
v

0

cos ⇡

6

, v

0

sin ⇡

6

↵
=
D

v

0

p
3

2

,

v

0

2

E
,

v (t) = v

0

p
3

2

i+
�
v

0

2

� 32t
�
j

r (t) = v

0

p
3

2

t i+
�
v

0

t

2

� 16t2
�
j

Now, the horizontal range is v

0

p
3 t

2

= 240
for which
t = v

0

64

) v

0

= 133.1773ft/s

51. (a) a(t) = �32j
v(0) = 120 hcos(30�), sin(30�)i
v(t) = 60

p
3 i+ (60� 32t)j

r(0) = h0, 3i
r(t) = 60

p
3 t i+ (3 + 60t� 16t2)j

3 + 60t� 16t2 = 6 when t = 0.051, 3.699.

(b) Since 60
p
3 t|

3.699

⇡ 384.4ft, we see that
this is barely short of a home run.

(c) a(t) = �32j
v(0) = 120 hcos(31�), sin(31�)i
v(t) = 120 cos(31�)i+(120 sin(31�)�32t)j
r(0) = h0, 3i
r(t) = 120 cos(31�)ti

+ (3 + 120 sin(31�)t� 16t2)j
3 + 120 sin(31�) t� 16t2 = 6
when t = 0.0492, 3.81.
Since 120 cos(31�)t|

3.81

= 392 ft we see if
the ball is launched at a 31� angle that it
will be a home run.

52. (a) v(0) = h130, 0i and a(t) = �32j
v(t) = h130,�32ti and r(0) = h0, 6i
r(t) =

⌦
130t, 6� 16t2

↵
.
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(b) The ball reaches the plate when
130t = 60, so that t = 6

13

.

The height of the ball then is
6� 16( 6

13

)2 ⇡ 2.59ft.

(c) Solving the equation 130t = 60 gives us
that the ball crosses the plate when
t = 6

13

. Assuming another ball is dropped
the moment the pitch is made from a
height of 6 feet, the height of the ball is
given by the equation h(t) = �16t2 + 6.
The ball we be h( 6

13

) = 2.59 ft high when
the pitched ball crosses the plate.

53. (a) a(t) = �32j and v(0) = h120, 0i
v(t) = h120,�32ti and r(0) = h0, 8i
r(t) =

⌦
120t, 8� 16t2

↵

The ball reaches the net when 120t = 39,
so that t = 39

120

. The ball is at height
8 � 16( 39

120

)2 ⇡ 6.31 ft at this time, so it
easily clears the net. The ball lands when
8 � 16t2 = 0 or when t = 1p

2

and goes a

horizontal distance of 120 1p
2

⇡ 84.9 ft.

(b) The serve is long.

(c) a(t) = �32j and v(0) = h80, 0i
v(t) = h80,�32ti and r(0) = h0, 8i
r(t) =

⌦
80t, 8� 16t2

↵

The ball reaches the net when 80t = 39,
so that t = 39

80

. The ball is at height
8� 16( 39

80

)2 ⇡ 4.20 ft at this time, so that
it clears the net. The ball lands when
8 � 16t2 = 0 or when t = 1p

2

and goes a

horizontal distance of 80t|
t=

1p
2

= 56.6 ft.

The serve was in.

(d) a(t) = �32j and v(0) = h65, 0i
v(t) = h65,�32ti and r(0) = h0, 8i
r(t) =

⌦
65t, 8� 16t2

↵

The ball reaches the net when 65t = 39,
so that t = 39

65

. The ball is at height
8� 16( 39

65

)2 ⇡ 2.24 ft at this time, so that
it hits the net.

54. (a) Since 55mph = 242

3

ft

s

, we have that
r(t) =

⌦
242

3

cos(50�)t, 242

3

sin(50�)t� 16t2
↵
.

The punt hits the ground when
242

3

sin(50�)t � 16t2 = 0, so the hang

time is t = 242 sin(50

�
)

48

⇡ 3.86 sec.

(b) Since 60mph = 88 ft

s

, we have that
r(t) =

⌦
88 cos(50�)t, 88 sin(50�)t� 16t2

↵
.

Therefore, the hang time is
88 sin(50

�
)

16

⇡ 4.21 sec which is 0.35 sec

more hang time than the punt made at
55mph.

55. Given r(t) = h100 cos!t, 100 sin!ti, we need
to find the value of ! that produces
ka(t)k = 32 ft

sec

, and then find
kv(t)k. ka(t)k = 100!2 = 32

=) ! =
q

32

100

, then kv(t)k = 100! ⇡ 56.57ft.

56. Write F (t) = m!

2(t)r(t) as
F (t) = m!(t)r(t)!(t), and treat (!(t)r(t)) as
a constant to get F 0(t) = m!(t)r(t)!0(t).

Since c = !(t)r(t), if r(t) is decreasing, then
!(t) must be increasing and !

0(t) > 0. This
shows that F 0(t) > 0 and the centripetal force
increases, as well.

57. For circular motion kak = r!

2 and kvk = r!.
Solving the equations
r!

2 = 5g = 5(9.8 m

sec

2

) = 5(127008 km

hr

2

) and

r! = 900km

hr

gives r = 1275.5m.

58. Note that it was determined in exercise 57 that
the radius of the turn was 1275.5m.
If r(t) = a hcos k✓, sin k✓i, then
||v|| = ak = (1275.5m)k = 1800 km

hr

= 500 m

s

.
Therefore, k = .392 and
||a|| = ak

2 = (1275.5)(.392)2 = 196 = 20g
where g = 9.8m

s

2

.

59. For geosynchronous orbit,
! = 2⇡ rad

side real day

= 2⇡ rad

86164 sec

.
Solving for b now gives

b = 3

r
39.87187⇥10

13

( 2⇡

86164

)2
= 42, 168.3 km

60. If r(t) = a hcos k✓, sin k✓i, then
||v|| = ak = 1000 km

hr

= 278 m

s

and
||a|| = ak

2 = 7g = 68.6.
Therefore, a = 1125m.

61. A satellite 15000mi above the earth’s surface
travels at a velocity of 2.24mi

s

. A satellite
20000mi above the earth’s surface travels at a
velocity of 2.00mi

s

. The velocity must decrease
by 0.24mi

s

for the height of the orbit to increase
from 15000mi to 20000mi.

11.4 Curvature

1. A circle of radius 2 centered at the origin is
parameterized by the equations
x = 2 cos t, y = 2 sin t for 0  t  2⇡.
s =

R
t

0

p
(�2 sinu)2 + (2 cosu)2) du = 2t.
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Therefore, t = s

2

so that the curve is parame-
terized by
x = 2 cos ( s

2

), y = 2 sin ( s
2

), for 0  s  4⇡.
The corresponding vector equation of curve is
r (t) = h2 cos t, 2 sin ti.

2. A circle of radius 5 centered at the origin is
parameterized by the equations
x = 5 cos t, y = 5 sin t for 0  t  2⇡.
s =

R
t

0

p
(�5 sinu)2 + (5 cosu)2) du = 5t.

Therefore, t = s

5

so that the curve is parame-
terized by
x = 5 cos( s

5

), y = 5 sin( s
5

) for 0  s  10⇡.
0  s  10⇡.
The corresponding vector equation of curve is
r (t) = h5 cos t, 5 sin ti.

3. The line segment from (0, 0) to (3, 4) can be
parameterized by
x = 3t, y = 4t for 0  t  1.
s =

R
t

0

p
32 + 42) du = 5t.

Therefore, t = s

5

so that the curve is parame-
terized by
x = 3

5

s, y = 4

5

s for 0  s  5.
The corresponding vector equation of line is
r (t) = h3t, 4ti.

4. The line segment from (1, 2) to (5,�2) can be
parameterized by
x = t, y = �t+ 3 for 1  t  5.
s =

R
t

1

p
12 + (�1)2du =

p
2(t� 1).

Therefore, t = sp
2

+ 1, so that the curve is pa-

rameterized by
x = sp

2

+ 1, y = � sp
2

+ 2 for 0  s  4
p
2.

The corresponding vector equation of line is
r (t) = h t, �t+ 1 i.

5. Consider x = t

2 and y = t

3.

Therefore, s =

Z
t

0

q
(2u)2 + (3u2)2 du

=

Z
t

0

p
4u2 + 9u4

du= 1

27

h�
4 + 9t2

�
3/2 � 8

i

) t =

q
[(27s+8)

2/3 �4]
3

,
so that the curve is parameterized by

x =

h
(27s+ 8)2/3 � 4

i

9

and y =

0

BB@

rh
(27s+ 8)2/3 � 4

i

3

1

CCA

3

fors � 0.

The corresponding vector equation of curve
isr (t) =

⌦
t

2

, t

3

↵
.

6. Considerx = t and y = cosh t.

Thus, s =

Z
t

0

q
(1)2 + (sinhu)2 du

=

Z
t

0

coshu du = sinh t

) t = sinh�1

s,
so that the curve is parameterized by
x = sinh�1

s and
y = cosh

�
sinh�1

s

�
=

p
1 + s

2 for s � 0

The corresponding vector equation of curve is
r (t) = h t, cosh t i.

7. r0(t) = h3, 2ti and ||r0(t)|| =
p
9 + 4t2, so that

T(t) =
D

3p
9+4t

2

,

2tp
9+4t

2

E
.

T(0) = h1, 0i, T(�1) =
D

3p
13

,

�2p
13

E
, and

T(1) =
D

3p
13

,

2p
13

E
.

8. r0(t) =
D
6t2, 1

2

p
t

E
and

||r0(t)|| =
q
36t4 + 1

4t

so that

T(t) =

⌧
6t

2p
36t

4

+

1

4t

,

1

2

p
36t

5

+

1

4

�
.

T(1) =
D

12p
145

,

1p
145

E
,

T(2) =
D

48

p
2p

4609

,

1

2

p
4609

E
, and

T(3) =
D

108

p
3p

34993

,

1p
34993

E
.

9. r0(t) = h�3 sin t, 2 cos ti and
||r0(t)|| =

p
9 sin2 t+ 4 cos2 t, so that

T(t) =

⌧
�3 sin tp

9 sin

2

t+4 cos

2

t

,

2 cos tp
9 sin

2

t+4 cos

2

t

�
.

T(0) = h0, 1i, T(�⇡

2

) = h1, 0i, and
T(⇡

2

) = h�1, 0i.

10. r0(t) = h4 cos t,�2 sin ti and
||r0(t)|| =

p
16 cos2 t+ 4 sin2 t so that

T(t) =

⌧
4 cos tp

16 cos

2

t+4 sin

2

t

,

�2 sin tp
16 cos

2

t+4 sin

2

t

�
.

T(�⇡) h�1, 0i, T(0) = h1, 0i, and
T(⇡) = h�1, 0i.

11. r0(t) = h3,�2 sin 2t, 2 cos 2ti and
||r0(t)|| =

p
9 + 4 sin2 2t+ 4 cos2 2t =

p
13

so that T(t) =
D

3p
13

,

�2 sin 2tp
13

,

2 cos 2tp
13

E
.

T(0) = T(�⇡) = T(⇡) = 1p
13

h3, 0, 2i.

12. r0 (t) = hcos t� t sin t, t cos t+ sin t, 4i and
kr0 (t)k =

p
t

2 + 17 so that

T (t) =
D

cos t�t sin tp
t

2

+17

,

t cos t+sin tp
t

2

+17

,

4p
t

2

+17

E
,

T
�
�⇡

4

�
=
D

0.1517p
17.6169

,

�1.2624p
17.6169

,

4p
17.6169

E
,
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T (0) =
D

1p
17

, 0, 4p
17

E
and

T
�
⇡

4

�
=
D

0.1517p
17.6169

,

1.2624p
17.6169

,

4p
17.6169

E
.

13. r0 (t) =
⌦
2e2t cos t� e

2t sin t,
2e2t sin t+ e

2t cos t
↵
and

kr0 (t)k = e

2t

p
5, so that

T (t) =
D

2 cos t�sin tp
5

,

2 sin t+cos tp
5

E
,

T (0) =
D

2p
5

,

1p
5

E
,

T (1) =
D

2 cos 1�sin 1p
5

,

2 sin 1+cos 1p
5

E
and

T (k) =
D

2 cos k�sin kp
5

,

2 sin k+cos kp
5

E
.

14. r0 (t) = h1� cos t, sin ti
=
⌦
2sin2

�
t

2

�
, 2 sin

�
t

2

�
cos
�
t

2

�↵
and

kr0 (t)k = 2
��sin

�
t

2

���, so that

T (t) =

⌧
sin

2( t

2

)
|sin( t

2

)| ,
sin( t

2

) cos( t

2

)
|sin( t

2

)|

�

T (0) indeterminate

T
�
⇡

2

�
=
D

1p
2

,

1p
2

E
and

T (k) =

⌧
sin

2( k

2

)
|sin( k

2

)| ,
sin( k

2

) cos( k

2

)
|sin( k

2

)|

�
.

15.

r(0)

T(Pi/2)

T(0)
r(Pi/2)

4

4

2

2
0

-2

0

-4

-2-4

16.

r(Pi/2)

-2

0

-4

-2
0

T(0)

-4

4

4T(Pi/2)

2

2

r(0)

17.

-3 -2-2

-3

-1

-2

-1
0

0
0

z
1

2

1
y

3

22 3468

x
1012

18.

-4
-2

-4

-1

-20
0
0

x
24

1

2 y

z2

4

3

19. r0(t) =
⌦
�2e�2t

, 2, 0
↵
and

r00(t) =
⌦
4e�2t

, 0, 0
↵
, so r0(0) = h�2, 2, 0i and

r00(0) = h4, 0, 0i.

r0 ⇥ r00|
t=0

=

������

i j k
�2 2 0
4 0 0

������
= h0, 0,�8i

 = ||r0⇥r00||
||r0||3 = 8

8

3/2

= 2�3/2 ⇡ 0.3536.

20. r0(t) =
⌦
0,⇡ cos⇡t, 1

t

↵
and

r00(t) =
⌦
0,�⇡

2 sin⇡t,� 1

t

2

↵
, so

r0(1) = h0,�⇡, 1i and r00(1) = h0, 0,�1i.

r0 ⇥ r00|
t=1

=

������

i j k
0 �⇡ 1
0 0 �1

������
= h⇡, 0, 0i

 = ||r0⇥r00||
||r0||3 = ⇡

(⇡

2

+1)

3/2

.

21. r0(t) = h1, 2 cos 2t, 3i and
r00(t) = h0,�4 sin 2t, 0i, so
r0(0) = h1, 2, 3i and r00(0) = h0, 0, 0i.

r0 ⇥ r00|
t=0

=

������

i j k
1 2 3
0 0 0

������
= h0, 0, 0i

 = ||r0⇥r00||
||r0||3 = 0.

22. r0(t) = h1, 2t+ 1, 1i and r00(t) = h0, 2, 0i, so
r0(0) = h1, 1, 1i and r00(0) = h0, 2, 0i.

r0 ⇥ r00|
t=0

=

������

i j k
1 1 1
0 2 0

������
= h�2, 0, 2i
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 = ||r0⇥r00||
||r0||3 =

p
8p
3

3

=
p
8

3

p
3

.

23. f

0(x) = 6x and f

00(x) = 6.

 = |f 00
(1)|

(1+(f

0
(1))

2

)

3/2

= 6

37

3/2

.

24. f

0(x) = 3x2 + 2 and f

00(x) = 6x

 = |f 00
(2)|

(1+(f

0
(2))

2

)

3/2

= 12

197

3/2

.

25. f

0(x) = cosx and f

00(x) = � sinx

 =
|f 00

(

⇡

2

)|
(1+(f

0
(

⇡

2

))

2

)

3/2

= 1.

26. f

0(x) = �3e�3x and f

00(x) = 9e�3x

 = |f 00
(0)|

(1+(f

0
(0))

2

)

3/2

= 9

10

3/2

⇡ 0.285.

27. Referring to exercise 25, we see the curvature

at x = 3⇡

2

is  =
|�sin

3⇡

2

|
(1+cos

2

3⇡

2

)

3/2

= 1. This makes

sense due to the symmetry of the graph. The
graph of sinx is almost straight at x = ⇡, so
we predict the curvature will be less there.

28. Referring to exercise 22, we see the curvature
at x = 2 is  = 9e

�6

(1+9e

�12

)

3/2

⇡ 0.022 which is

less than the curvature at x = 0. The graph
of f(x) = e

�3x is almost straight at x = 4, so
it can be predicted that the curvature will be
even less there.

29.

-2
-2 -1-1

-5
0

0
0

5

z
10

y
1

x

15

1 22

r0(t) = h�4 sin 2t, 4 cos 2t, 3i and
r00(t) = h�8 cos 2t,�8 sin 2t, 0i.

r0 ⇥ r00 =

������

i j k
�4 sin 2t 4 cos 2t 3
�8 cos 2t �8 sin 2t 0

������
= h24 sin 2t,�24 cos 2t, 32i.

kr0 ⇥ r00k =
p
242 + 322 = 40 and

kr0(t)k =
p
42 + 32 = 5, so

 = 40

5

3

= 8

25

for all t.

30.

−1.0
−0.5

210
00.0

−1

5

−2

10

15

20

0.5

25

1.0

r0 (t) = h�2 sin 2t, 4 cos 2t, 4i and
r00 (t) = h�4 cos 2t,�8 sin 2t, 0i

r0 ⇥ r00=

������

i j k
�2 sin 2t 4 cos 2t 4
�4 cos 2t �8 sin 2t 0

������
= h32 sin 2t,�16 cos 2t, 16i

kr0 ⇥ r00k = 16
p
2 + 3sin22t and

kr0 (t)k = 2
p
5 + 3cos22t , therefore

 =
16

p
2+3sin

2

2t

(2
p
5+3cos

2

2t)3
= 2

p
17

23

p
23

at t = ⇡

6

and

t = ⇡

3

.

31.

-2-1
-2 -1

0
0
0

1

5

2

y

10

3
1

4

15

z

5

20

23x 45

r0(t) = h1, 1, 2ti and r00(t) = h0, 0, 2i.

r0 ⇥ r00 =

������

i j k
1 1 2t
0 0 2

������
= h2,�2, 0i.

kr0 ⇥ r00k =
p
8 and

kr0(t)k =
p
2 + 4t2, so

(t) =
p
8

(

p
2+4t

2

)

3

. (0) = 1 and (2) = 1

27

.

32. r0(t) = h2, 1, 1i and r00(t) = h0, 0, 0i, so we have

 = ||r0⇥r00||
||r0||3 = 0 to give us curvature 0 at all t.
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-4

-5

-4

-3

-2

-2

-1

z
0
00
1

1

2

22 3 44 5
y

66 7

x

8

33.

3

3

2

2

1

0
1

-1

-2

0

-3

-1-2-3

r0(t) = h�2 sin t, 3 cos ti and
||r0(t)|| =

p
4 + 5 cos2 t, so that

T(t) =
D

�2 sin tp
4+5 cos

2

t

,

3 cos tp
4+5 cos

2

t

E
and

T0(t) =
D

�18 cos t

(4+5 cos

2

t)

3/2

,

�12 sin t

(4+5 cos

2

t)

3/2

E
.

Therefore kT0(t)k = 6

4+5 cos

2

t

and

 = kT0
(t)k

kr0k = 6

(4+5 cos

2

t)

3/2

. We see that

 is maximized/minimized when (4 + 5 cos2 t)
is minimized/maximized, so  is maximized
when t is an odd multiple of ⇡

2

and  is min-
imized when t is an even multiple of ⇡

2

. That
is, the curvature is maximum at (0,±3) and
minimum at (±2, 0).

34. r0(t) = h�4 sin t, 3 cos ti and
||r0(t)|| =

p
9 + 7 sin2 t so we have

T(t) =

⌧
�4 sin tp
9+7 sin

2

t

,

3 cos tp
9+7 sin

2

t

�
and

T0(t) =
D

�36 cos t

(9+7 sin

2

t)

3/2

,

�48 sin t

(9+7 sin

2

t)

3/2

E
.

Therefore, ||T0(t)|| = 12

9+7 sin

2

t

.

Since  = ||T0
(t)||

||r0(t)|| = 12

(9+7 sin

2

t)

3/2

is minimized/maximized when (9 + 7 sin2 t) is
maximized/minimized, we see that  is mini-
mized when t is an odd multiple of ⇡

2

and 

is maximized when t is an even multiple of ⇡

2

.
That is, the curvature is maximum at (±4, 0)
and minimum at (0,±3).

4

4

2

2
0

-2

0

-4

-2-4

35. f

0 (x) = 3x2 and f

00 (x) = 6x , so we have

 (x) =
|f 00

(x)|
(1+ f

0
(x)

2)3/2
= 6|x|

(1+9x

4

)

3/2

,

) 

0 (x) =
6(1�45x

4)
(1+9x

4

)

5/2

for x � 0 and



0 (x) = � 6(1�45x

4)
(1+9x

4

)

5/2

for x  0

Thus, 0 (x) = 0 for x = ±
�

1

45

�
1/4

;



00 (x) < 0, if x =
�

1

45

�
1/4

and 

00 (x) > 0,

if x = �
�

1

45

�
1/4

so the curvature is maxi-

mum for x =
�

1

45

�
1/4

and it is minimum for

x = �
�

1

45

�
1/4

−1

0

−4

8

x
10

−8

−2

y

4

10

2

−6

2

6

−10

36. f

0(x) = cosx and f

00(x) = � sinx, so we have

 = |f 00
(x)|

(1+(f

0
(x))

2

)

3/2

= | sin x|
(1+cos

2

x)

3/2

.  is mini-

mized when t is an even multiple of ⇡

2

and  is
maximized when t is an odd multiple of ⇡

2

.

x
64-2 0-4-6

0.5

0
2

-0.5

1

-1
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37. f

0(x) = 2e2x and f

00(x) = 4e2x, so we have

 = |f 00
(x)|

(1+(f

0
(x))

2

)

3/2

= 4e

2x

(1+4e

4x

)

3/2

.

As x ! 1, the curvature tends to 0.

x

0.2

1 2

0.4

0.6

0
-1 0-2

38. f

0(x) = �2e�2x and f

00(x) = 4e�2x, so we have

 = |f 00
(x)|

(1+(f

0
(x))

2

)

3/2

= 4e

�2x

(1+4e

�4x

)

3/2

.

As x ! 1, the curvature tends to 0.

x
543210-1-2

0.6

0.4

0.2

0

39. f

0 (x) = 3x2 � 3 and f

00 (x) = 6x , thus we

have  (x) =
|f 00

(x)|
(1+f

0
(x)

2)3/2
= 6|x|

(1+(3x

2�3)

2)3/2
.

As x ! 1 the curvature tends to 0.

−1

−10

x

−4

−2

0

10

−2

2

−6

4

y

6

2

−8

8

10

40. f

0(x) = 1

2

p
x

and f

00(x) = �1

4x

3/2

, so we have

 = |f 00
(x)|

(1+(f

0
(x))

2

)

3/2

= 1

4x

3/2

(1+

1

4x

)

3/2

.

As x ! 1, the curvature tends to 0.

3

1.5

2

1

0.5

1
0
0

x
54

41. The graphs of the functions in all the examples
go straighter as x ! 1, hence the curvature
goes to 0.

42. r0(t) = h�a sin t, a cos t, bi and
r00(t) = h�a cos t,�a sin t, 0i,
so we have curvature

 = ||r0⇥r00||
||r0||3 =

��������

��������

i j k
�a sin t a cos t b

�a cos t �a sin t 0

��������

��������

(a

2

+b

2

)

3/2

= |a|(a2

+b

2

)

1/2

(a

2

+b

2

)

3/2

= |a|
a

2

+b

2

.

43. False. If the function has a maximum or a
minimum at a point, we cannot be sure that
the curve is turning more sharply there than
at points nearby.

44. True. The curvature of f(x) at any inflec-
tion point, say x

0

, is zero since f

00(x
0

) = 0
and the curvature at x

0

can be expressed as
|f 00

(x

0

)|
(1+(f

0
(x

0

))

2

)

3/2

= 0.

45. True. kr0(t)⇥ r00(t)k = |f 00(t)| and
kr0(t)k =

p
1 + f

0(x)2, so the curvature of r(t)

is |f 00
(t)|

(1+(f

0
(t))

2

)

3/2

, the same as the curvature of

f(x).

46. False. kr0(t) ⇥ r00(t)k =
p
2|f 00(t)| and

kr0(t)k =
p

2 + f

0(x)2. The curvature of r(t)

is
p
2|f 00

(t)|
(2+f

0
(x)

2

)

3/2

, which is not the same as the

curvature of f(x).

47. The increasing order of curvature at point
A,B,C is 

C

< 

B

< 

A

.

48. The increasing order of curvature at point
A,B,C is B < 

A

< 

C

.

49. We can write the polar curve r = f(✓) para-
metrically as x = f(✓) cos ✓, y = f(✓) sin ✓.

Then
dy

dx

=
f

0(✓) sin ✓ + f(✓) cos ✓

f

0(✓) cos ✓ � f(✓) sin ✓
.
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The second derivative then simplifies to
d

2

y

dx

2

=
d

d✓

dy

dx

dx

d✓

=
2f 0(✓)2 � f(✓)f 00(✓)� f(✓)2

(f 0(✓) cos ✓ � f(✓) sin ✓)2
.

We simplify  =
| d

2

y

dx

2

|
(1+(

dy

dx

)

2

)

3/2

, and arrive at

 = |2f 0
(✓)

2�f(✓)f

00
(✓)�f(✓)

2|
(f

0
(✓)

2

+f(✓)

2

)

3/2

, as desired.

50. By exercise 49,  =
[2f 0

(✓)]2�f(✓)f

00
(✓)+[f(✓)]

2

{[f 0
(✓)]

2

+[f(✓)]

2}3/2

,

thus on substituting ✓ = ✓

0

, f (✓
0

) = 0 ,we get
the curvature for the polar curve at ✓ = ✓

0

as
 = 2

|f 0
(✓

0

)| , where f 0 (✓
0

) 6= 0

51. By exercise 49, with f(✓) = sin 3✓,
f

0(✓) = 3 cos 3✓, and f

00(✓) = �9 sin 3✓, we get

(✓) =
|18 cos2 3✓ + 10 sin2 3✓|
(9 cos2 3✓ + sin2 3✓)3/2

.

(0) = 18

9

3/2

= 2

3

, and (⇡
6

) = 10

1

3/2

= 10.

52. By exercise 49, with f(✓) = 3 + 2 cos ✓,
f

0(✓) = �2 sin ✓, and f

00(✓) = �2 cos ✓, we have

(✓) = |17+18 cos ✓|
(13+12 cos ✓)

3/2

.

(0) = 7

25

, and (⇡
2

) = 17

31

3/2

.

53. By exercise 49, with f(✓) = 3e2✓,
f

0(✓) = 6e2✓, and f

00(✓) = 12e2✓, we have

(✓) = 45e

4✓

(45e

4✓

)

3/2

= 1p
45

e

�2✓.

(0) = 1p
45

, and (1) = e

�2

p
45

.

54. By exercise 49, with f(✓) = 1� 2 sin ✓,
f

0(✓) = �2 cos ✓, and f

00(✓) = 2 sin ✓, we have
(✓) = 9�6 sin ✓

(5�4 sin ✓)

3/2

.

(0) = 9

5

3/2

, and
(⇡

2

) = 3.

55. r0(t) =
⌦
2 cos t,�2 sin t, 2

5

↵
and

r00(t) = h�2 sin t,�2 cos t, 0i.

r0(t)⇥ r00(t) =

������

i j k
2 cos t �2 sin t 2

5

�2 sin t �2 cos t 0

������
=
⌦
4

5

cos t,� 4

5

sin t,�4
↵
.

kr0(t)⇥ r00(t)k =
q

416

25

, and

kr0(t)k =
q

104

25

. So,  =
p

416

25p
104

25

3

= 25

52

⇡ 0.48.

This is larger than the curvature of the helix in
example 4.5, which is stretched out more and
therefore has less of a curve.

56. r0(t) = h2 cos t,�2 sin t, ni and
r00(t) = h�2 sin t,�2 cos t, 0i.

r0(t)⇥ r(t)00 =

������

i k j
2 cos t �2 sin t n

�2 sin t �2 cos t 0

������
= h2n cos t,�2n sin t,�4i.

kr0(t)⇥ r(t)00k =
p
16 + 4n2 = 2

p
4 + n

2

kr0(t)k =
p
4 + n

2, so  = 2

p
4+n

2

(4+n

2

)

3/2

= 2

4+n

2

.

Clearly,  ! 1

2

as n ! 0. As n decreases, the
helix gets tighter and tighter, and the coils of
the helix get closer and closer to circles of ra-
dius 2 which have curvature 1

2

.
Also note that  ! 0 as n ! 1. Increasing n

corresponds to stretching of the graph in the z
direction. Stretching results in a straightening
of the curve.

57. (a) Given x = t � sin t and y = 1 � cos t, we

have
dy

dx

=
sin t

1� cos t
, and

d

2

y

dx

2

=
d

dt

dy

dx

dx

dt

=
cos t� cos2 t� sin2 t

(1� cos t)3
.

Simplifying  =

��� d

2

y

dx

2

���

(1+(

dy

dx

)

2

)

3/2

yields

 =

��� �1

(1�cos t)

2

���
⇣
1+( sin t

1�cos t

)2
⌘
3/2

= 1�cos t

(2(1�cos t))

3/2

= 1p
8(1�cos t)

= 1p
8y

(b) Consider x = t� sin t, y = 1� cos t
therefore dy

dx

= sin t

1�cos t

= cot
�
t

2

�
,

d

2

y

dx

2

=

d

dt

✓
dy

dx

◆

dx

dt

=
� 1

2

csc

2( t

2

)
2sin

2( t

2

)
= � 1

4

csc4
�
t

2

�
.

Therefore, we get

 (t) =

����
d

2

y

dx

2

����
✓
1+

✓
dy

dx

◆
2

◆
3/2

= 1

4 sin( t

2

)
.

58. r0(t) = hsinh t, cosh t, 0i and
r00(t) = hcosh t, sinh t, 0i so we have a curva-

ture of  = ||r0⇥r00||
||r0||3 =

⇣
2

e

2t

+e

�2t

⌘ 3

2

. We see

that the curvature tends to 0 as t ! 1. As
t ! 1 a hyperbola approaches a line asymp-
totically, so the curvature should approach 0.

59. By exercise 49, with f(✓) = ae

b✓,
f

0(✓) = abe

b✓, and f

00(✓) = ab

2

e

b✓, we have

(✓) =
|2a2b2e2b✓ � a

2

b

2

e

2b✓ + a

2

e

2b✓|
(a2b2e2b✓ + a

2

e

2b✓)3/2

=
a

2

e

2b✓(1 + b

2)

a

3

e

3b✓(1 + b

2)3/2
=

e

�b✓

a

p
1 + b

2

.

As b ! 0,  approaches the constant 1

a

, so the
spiral approaches a circle of radius a.
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11.5 Tangent and Normal

Vectors

1. r0(t) = h1, 2ti and ||r0(t)|| =
p
1 + 4t2,

so we have T(t) =
D

1p
1+4t

2

,

2tp
1+4t

2

E
.

This yields,

T(0) = h1, 0i and T(1) =
D

1p
5

,

2p
5

E
.

Also, since T0(t) =
D

�4t

(1+4t

2

)

3/2

,

2

(1+4t

2

)

3/2

E

and ||T0(t)|| = 2

1+4t

2

,

we have N(t) =
D

�2tp
1+4t

2

,

1p
1+4t

2

E
.

This yields,

N(0) = h0, 1i and N(1) =
D

�2p
5

,

1p
5

E
.

2. r0 (t) =
⌦
1, 3t2

↵
and kr’ (t)k =

p
1 + 9t4,

so we have T (t) =
D

1p
1+9t

4

,

3t

2

p
1+9t

4

E
.

This yields, T (�1) =
D

1p
10

,

3p
10

E
and

T (1) =
D

1p
10

,

3p
10

E
.

Also, since T0 (t) =
D

�18t

3

(1+9t

4

)

3/2

,

6t

(1+9t

4

)

3/2

E

and kT0 (t)k = 6t

1+9t

4

,

we have N (t) =
D

�3t

2

p
1+9t

4

,

1p
1+9t

4

E
.

This yields, N (�1) =
D

�3p
10

,

1p
10

E

and N (1) =
D

�3p
10

,

1p
10

E
.

3. r0(t) = h�2 sin 2t, 2 cos 2ti and ||r0(t)|| = 2,
so we have T(t) = h� sin 2t, cos 2ti.
This yields, T(0) = h0, 1i and T(⇡

4

) = h�1, 0i.
Also, since T0(t) = h�2 cos 2t,�2 sin 2ti
and ||T0(t)|| = 2,
we have N(t) = h� cos 2t,� sin 2ti.
This yields,
N(0) = h�1, 0i and N(⇡

4

) = h0,�1i.

4. r0(t) = h�2 sin t, 3 cos ti and
||r0(t)|| =

p
4 + 5 cos2 t,

so we have
T(t) =

D
�2 sin tp
4+5 cos

2

t

,

3 cos tp
4+5 cos

2

t

E
.

This yields,

T(0) = h0, 1i and T(⇡
4

) =
D

�2p
13

,

3p
13

E
.

Also, since

T0(t) =
D

�18 cos t

(4+5 cos

2

t)

3/2

,

�12 sin t

(4+5 cos

2

t)

3/2

E

and ||T0(t)|| = 6

4+5 cos

2

t

,

we have N(t) =
D

�3 cos tp
4+5 cos

2

t

,

�2 sin tp
4+5 cos

2

t

E
.

This yields, N(0) = h�1, 0i and
N(⇡

4

) =
D

�3p
13

,

�2p
13

E
.

5. r0(t) = h�2 sin 2t, 1, 2 cos 2ti and
||r0(t)|| =

p
5,

so we have
T(t) =

D
�2 sin 2tp

5

,

1p
5

,

2 cos 2tp
5

E
.

This yields, T(0) = 1p
5

h0, 1, 2i and
T(⇡

2

) = 1p
5

h0, 1,�2i.

Also, since T0(t) =
D

�4 cos 2tp
5

, 0, �4 sin 2tp
5

E

and ||T0(t)|| = 4p
5

,

we have N(t) = h� cos 2t, 0,� sin 2ti.
This yields, N(0) = h�1, 0, 0i
and N(⇡

2

) = h1, 0, 0i.

6. r0(t) = h� sin t, cos t, cos ti and
||r0(t)|| =

p
1 + cos2 t,

so we have
T(t) =

D
� sin tp
1+cos

2

t

,

cos tp
1+cos

2

t

,

cos tp
1+cos

2

t

E
.

This yields, T(0) =
D
0, 1p

2

,

1p
2

E

and T(⇡
2

) = h�1, 0, 0i.
Also, since

T0(t) =
D

�2 cos t

(1+cos

2

t)

3/2

,

� sin t

(1+cos

2

t)

3/2

,

� sin t

(1+cos

2

t)

3/2

E

and ||T0(t)|| =
q

2+2 cos

2

t

(1+cos

2

t)

3

,

we have
N(t) =

D
�2 cos tp
2+2 cos

2

t

,

� sin tp
2+2 cos

2

t

,

� sin tp
2+2 cos

2

t

E
.

This yields, N(0) = h�1, 0, 0i
and N(⇡

2

) =
D
0, �1p

2

,

�1p
2

E
.

7. r0(t) = h1, 2t, 1i and ||r0(t)|| =
p
2 + 4t2,

so we have T(t) =
D

1p
2+4t

2

,

2tp
2+4t

2

,

1p
2+4t

2

E
.

This yields, T(0) =
D

1p
2

, 0, 1p
2

E

and T(1) = 1p
6

h1, 2, 1i.
Also, since

T0(t) =
D

�4t

(2+4t

2

)

3/2

,

4

(2+4t

2

)

3/2

,

�4t

(2+4t

2

)

3/2

E

and ||T0(t)|| = 4

p
1+2t

2

(2+4t

2

)

3/2

,

we have N(t) =
D

�tp
1+2t

2

,

1p
1+2t

2

,

�tp
1+2t

2

E
.

This yields, N(0) = h0, 1, 0i
and N(1) = 1p

3

h�1, 1,�1i.

8. r0(t) = h1, 1, 6 cos 2ti and
||r0(t)|| =

p
2 + 36 cos2 2t,

so we have
T(t) =

D
1p

2+36 cos

2

2t

,

1p
2+36 cos

2

2t

,

6 cos 2tp
2+36 cos

2

2t

E
.

This gives T(0) = T(�⇡) = 1p
38

h1, 1, 6i.
Also, since

T0(t) =
D

72 sin 2t cos 2t

(2+36 cos

2

2t)

3/2

,

72 sin 2t cos 2t

(2+36 cos

2

2t)

3/2

,

�24 sin 2t

(2+36 sin

2

2t)

3/2

E
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and ||T0(t)|| = 24| sin 2t|
p
1+18 cos

2

2t

(2+36 cos

2

2t)

3/2

,

we have
N(t) =

D
3 sin 2t cos 2t

| sin 2t|
p
1+18 cos

2

2t

,

3 sin 2t cos 2t

| sin 2t|
p
1+18 cos

2

2t

,

� sin 2t

| sin 2t|
p
1+18 cos

2

2t

E
.

This yields, N(0) = N(�⇡) = 1p
19

h3, 3,�1i.

9. From exercise 1, we have ||T0(t)|| = 2

1+4t

2

and

||r0(t)|| =
p
1 + 4t2, so that

(t) = 2

(1+4t

2

)

3/2

and (0) = 2. The osculating

circle is a circle with radius
⇢ = 1



= 1

2

. The center is distance 1

2

from
the point r(0) = h0, 0i in the direction of
N(0) = h0, 1i (from exercise 1). The center
is at (0, 1

2

), and the equation for the circle is
x

2 + (y � 1

2

)2 = 1

4

.

10. From exercise 2, we see kT0 (t)k = 6t

1+9t

4

and

kr0 (t)k =
p
1 + 9t4, so

(t) = 6t

(1+9t

4

)

3/2

(1) = 6

(10)

3/2

,

so that radius is ⇢ = 1



= 10

3/2

6

.

The center is at the distance 10

3/2

6

from point
r (1) = h 1, 1 i in the direction of

N (1) =
D

�3p
10

,

1p
10

E
(from exercise 2). The

centre is at
�
�4, 8

3

�
, and the equation of the

circle is (x+ 4)2 +
�
y � 8

3

�
2

= 1000

36

.

11. From exercise 4, we see kT0 (t)k = 6

4+5cos

2

t

and

kr0 (t)k =
p
4 + 5cos2t, so

(t) = 6

(4+5cos

2

t)

3/2

. (0) = 2

9

,

so that radius is ⇢ = 1



= 9

2

.
The center is at the distance 9

2

from the point
r (0) = h2, 0i in the direction of
N (0) = h�1, 0i (from exercise 4). The cen-
ter is at

�
� 5

2

, 0
�
and equation of the circle is

�
x+ 5

2

�
2

+ y

2 = 81

4

.

12. From exercise 4, we see kT0 (t)k = 6

4+5cos

2

t

and

kr0 (t)k =
p
4 + 5cos2t, so

(t) = 6

(4+5cos

2

t)

3/2

. 
�
⇡

2

�
= 6

8

= 3

4

,

so that radius is ⇢ = 1



= 4

3

.
The center is at the distance 4

3

from the point
r
�
⇡

2

�
= h0, 3i in the direction of

N
�
⇡

2

�
= h0,�1i. The center is at

�
0, 5

3

�
and

equation of the circle is x2 +
�
y � 5

3

�
2

= 16

9

.

13. v(t) = h8, 16� 32ti and a(t) = h0,�32i.
kv(t)k = 8

p
5� 16t+ 16t2,

so the tangential component is
a

T

= d

dt

kv(t)k = 64(2t�1)p
5�16t+16t

2

.

The normal component is
a

N

=
p
ka(t)k2 � a

2

T

= 32p
5�16t+16t

2

.

At t = 0, a
T

= �64p
5

and a

N

= 32p
5

.

At t = 1, a
T

= 64p
5

and a

N

= 32p
5

.

14. Note that v(t) = h�2 sin 2t, 2 cos 2ti so that

||v(t)|| = ds

dt

= 2. Therefore, a
T

= d

2

s

dt

2

= 0 for
all t. Also, T(t) = h� sin 2t, cos 2ti which gives
us T0(t) = h�2 cos 2t,�2 sin 2ti and
||T0(t)|| = 2. Therefore,  = ||T0

(t)||
||r0(t)|| = 1

for all t and a

N

= (ds
dt

)2 = 4 for all t.

15. v(t) = h�2 sin 2t, 2t, 2 cos 2ti and
a(t) = h�4 cos 2t, 2,�4 sin 2ti.
kv(t)k = 2

p
1 + t

2,
so the tangential component is
a

T

= d

dt

kv(t)k = 2tp
1+t

2

.

The normal component is

a

N

=
p
ka(t)k2 � a

2

T

= 2
q

5+4t

2

1+t

2

.

At t = 0, a
T

= 0 and a

N

= 2
p
5.

At t = ⇡

4

, a
T

= 2⇡p
16+⇡

2

and a

N

= 4
q

20+⇡

2

16+⇡

2

.

16. v(t) = h�2 sin t, 3 cos t, 2ti and
a(t) = h�2 cos t,�3 sin t, 2i.
||v(t)|| = ds

dt

=
p
4 + 5 cos2 t+ 4t2,

so the tangential component is
a

T

= d

dt

kv(t)k = �5 sin t cos t+4tp
4+5 cos

2

t+4t

2

The normal component is
a

N

=
p
||a||2 � a

2

T

=
q

8 + 5 sin2 t� (�5 sin t cos t+4t)

2

4+5 cos

2

t+4t

2

At t = 0, a
T

= 0 and a

N

=
p
8.

At t = ⇡

4

, a
T

=
�5

2

+⇡

2

q
4+

5

2

+

⇡

2

4

= �5+

p
2⇡p

26+⇡

2

, and

a

N

=

r
8 + 5

2

� (� 5

2

+⇡)

2

4+

5

2

+

⇡

2

4

17. Since speed is simply ||v(t)|| = ds

dt

and

a

T

= d

2

s

dt

2

we may look at a
T

to see if the speed
is increasing or decreasing. When t = 0, the
speed is neither increasing or decreasing since
a

T

= 0. When t = ⇡

4

, the speed is increasing
since a

T

> 0.

18. Since speed is simply ||v(t)|| = ds

dt

and

a

T

= d

2

s

dt

2

we may look at a
T

to see if the speed
is increasing or decreasing. When t = 0, the
speed is neither increasing or decreasing since
a

T

= 0. When t = ⇡

4

, the speed is decreasing
since a

T

< 0.

19. v(t) = h�a sin t, a cos t, bi and
a(t) = h�a cos t,�a sin t, 0i.
||v(t)|| = ds

dt

=
p
a

2 + b

2,
so the tangential component is
a

T

= d

dt

kv(t)k = 0
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The normal component is
a

N

=
p
||a||2 � a

2

T

=
p
a

2 � 02 = a

20. v (t) = h0, 1� cos t, sin ti
a (t) = h0, sin t, cos ti
kv (t)k = 2 sin t

2

,
so the tangential component is
a

T

= d

dt

kv (t)k = cos
�
t

2

�

The normal component is

a

N

=
q
kak2 � a

2

T

= sin
�
t

2

�
.

21. r0(t) = h1, 2, 2ti and kr0(t)k =
p
5 + 4t2.

T(t) =
D

1p
5+4t

2

,

2p
5+4t

2

,

2tp
5+4t

2

E
.

T(0) =
D

1p
5

,

2p
5

, 0
E
, and T(1) =

⌦
1

3

,

2

3

,

2

3

↵
.

T0(t) =
D

�4t

(5+4t

2

)

3/2

,

�8t

(5+4t

2

)

3/2

,

10

(5+4t

2

)

3/2

E

kT0(t)k = 2

p
5

5+4t

2

, so

N(t) =
D

�2tp
5

p
5+4t

2

,

�4tp
5

p
5+4t

2

,

p
5p

5+4t

2

E

N(0) = h0, 0, 1i and N(1) =
D

�2

3

p
5

,

�4

3

p
5

,

p
5

3

E
.

B(0) = T(0)⇥N(0) =

������

i j k
1p
5

2p
5

0

0 0 1

������

=
D

2p
5

,

�1p
5

, 0
E

B(1) = T(1)⇥N(1) =

������

i j k
1

3

2

3

2

3

�2

3

p
5

�4

3

p
5

p
5

3

������

=
D

2p
5

,

�1p
5

, 0
E

-4
-2-4

-4

-2

-2

00
0

2

2

4

42
4

22. r0(t) =
⌦
1, 2, 3t2

↵
and kr0(t)k =

p
5 + 9t4.

T(t) =
D

1p
5+9t

4

,

2p
5+9t

4

,

3t

2

p
5+9t

4

E
,so

T(0) =
D

1p
5

,

2p
5

, 0
E
, and

T(1) =
D

1p
14

,

2p
14

,

3p
14

E
.

T0(t) =

⌧
�18t

3

(5+9t

4

)

3

2

,

�36t

3

(5+9t

4

)

3

2

,

30t

(5+9t

4

)

3

2

�
and

||T0(t)|| = 6|t|
p
5

9t

4

+5

, so

N(t) =

⌧
�3t

2p
5(5+9t

4

)

,

�6t

2p
5(5+9t

4

)

,

5p
5(5+9t

4

)

�
,

N(0) = h0, 0, 1i, and
N(1) =

D
�3p
70

,

�6p
70

,

5p
70

E
.

B(0) = T(0)⇥N(0) =

������

i j k
1p
5

2p
5

0

0 0 1

������

=
D

2p
5

,

�1p
5

, 0
E
.

B(1) = T(1)⇥N(1) =

������

i j k
1p
14

2p
14

3p
14

�3p
70

�6p
70

5p
70

������

=
D

2p
5

,

�1p
5

, 0
E
.

-4
-2

-4

-4

-2

-2
0
0
0

2

2

4

4

2
4

23. r0(t) = h�4⇡ sin⇡t, 4⇡ cos⇡t, 1iand
kr0(t)k =

p
16⇡2 + 1.

T(t) =
D

�4⇡ sin⇡tp
16⇡

2

+1

,

4⇡ cos⇡tp
16⇡

2

+1

,

1p
16⇡

2

+1

E
, so

T(0) =
D
0, 4⇡p

16⇡

2

+1

,

1p
16⇡

2

+1

E
, and

T(1) =
D
0, �4⇡p

16⇡

2

+1

,

1p
16⇡

2

+1

E
.

T0(t) =
D

�4⇡

2

cos⇡tp
16⇡

2

+1

,

�4⇡

2

sin⇡tp
16⇡

2

+1

, 0
E
and

||T0(t)|| = 4⇡

2

p
16⇡

2

+1

, so

N(t) = h� cos⇡t,� sin⇡t, 0i,
N(0) = h�1, 0, 0i, and
N(1) = h1, 0, 0i.

B(0) = T(0)⇥N(0)

=

������

i j k
0 4⇡p

16⇡

2

+1

1p
16⇡

2

+1

�1 0 0

������

=
D
0, �1p

16⇡

2

+1

,

4⇡p
16⇡

2

+1

E
.

B(1) = T(1)⇥N(1)

=

������

i j k
0 �4⇡p

16⇡

2

+1

1p
16⇡

2

+1

1 0 0

������

=
D
0, 1p

16⇡

2

+1

,

4⇡p
16⇡

2

+1

E
.
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-4
-4 -2

-4

-2

-2

0
0
0

2

2

4

2 44

24. r0(t) = h�6⇡ sin 2⇡t, 1, 2⇡ cos 2⇡ti and
||r0(t)|| =

p
1 + 4⇡2 + 32⇡2 sin2 2⇡t.

T(0) = T(1) =
D
0, 1p

1+4⇡

2

,

2⇡p
1+4⇡

2

E
.

Furthermore, a(0) = a(1) =
⌦
�12⇡2

, 0, 0
↵
and

a

T

= d

dt

||v(t)|| = 128⇡

3

sin 2⇡t cos 2⇡tp
1+4⇡

2

+32⇡

2

sin

2

2⇡t

which is

equal to 0 for t = 0, 1. Therefore
a

N

=
p
||a||� a

2

T

= 12⇡2. Finally, because
a(t) = a

T

T(t) + a

N

N(t) we know⌦
�12⇡2

, 0, 0
↵
= 12⇡2N(0) = 12⇡2N(1) so that

N(0) = N(1) = h�1, 0, 0i and

B(0) = B(1) =

������

i j k
0 1p

1+4⇡

2

2⇡p
1+4⇡

2

�1 0 0

������

=
D
0, �2⇡p

1+4⇡

2

,

1p
1+4⇡

2

E
.

-3
-2-3 -2

-3

-1

-2

-1

-1

0
0
0

1

1

2

1

3

2 32
3

25. True. We know that 0 = T · T0 = T · dT
ds

ds

dt

,

but
ds

dt

> 0. This means T · dT
ds

= 0.

26. True. T ·B = T · (T⇥N) = (T⇥T) ·N
= 0 ·N = 0.

27. True. Since T ·T = kTk2 and T has constant

length 1,
d

dt

(T ·T) = 0.

But
d

dt

(T ·T) =
d

ds

(T ·T)
ds

dt

, and
ds

dt

> 0.

Therefore, d

ds

(T ·T) = 0.

28. True. T · (N⇥B) = T · (N⇥ (T⇥N))
= T · ((N ·N)T� (N ·T)N)
= T · (T� 0)
= T ·T = 1.

29. (a) Since ||v(t)|| = 100⇡, ||a(t)|| = 100⇡2,
and a

T

= d

dt

||v(t)|| = 0, we know

a

N

=
p
||a(t)||2 � a

2

T

= 100⇡2. Thus,
F

s

(t) = ma

N

N(t)
= 10, 000⇡2 h� cos⇡t,� sin⇡ti.

(b) Since ||v(t)|| = 200⇡, ||a(t)|| = 200⇡2,
and a

T

= d

dt

||v(t)|| = 0, we know

a

N

=
p
||a(t)||2 � a

2

T

= 200⇡2. Thus,
F

s

(t) = ma

N

N(t)
= 20, 000⇡2 h� cos⇡t,� sin⇡ti.

(c) Since ||v(t)|| = 200⇡, ||a(t)|| = 400⇡2,
and a

T

= d

dt

||v(t)|| = 0, we know

a

N

=
p
||a(t)||2 � a

2

T

= 400⇡2. Thus,
F

s

(t) = ma

N

N(t)
= 40, 000⇡2 h� cos 2⇡t,� sin 2⇡ti.

30. (a) The required friction force doubles when
the radius doubles.

(b) The required friction force quadruples
when the speed doubles.

31. (x) = |f 00
(x)|

(1+(f

0
(x))

2

)

3/2

= | cos x|
(1+sin

2

x)

3/2

. (0) = 1,

but (⇡
4

) = 2

3

p
3

⇡ 0.384. The radius of the os-

culation circle, ⇢ = 1



is larger at x = ⇡

4

where
the curve is straighter. The magnitude of the
concavity |f 00(x)| = | � cosx| is 1 when x = 0
and 1p

2

when x = ⇡

4

. The radius of the oscu-

lating circle is larger where the magnitude of
the concavity is smaller.

32.  = |f 00
(x)|

(1+(f

0
(x))

2

)

3/2

= | cos x|
(1+sin

2

x)

3/2

. Therefore,

the radii of the osculating circles is ⇢ = 1



= 1
at x = 0 and x = ⇡. Since the magnitude of
the concavity of f(x) has period ⇡ it is clear
why the osculating circles have the same radii
for x = 0 and x = ⇡.

33. The curve y = x

2 can be parameterized by⌦
t, t

2

↵
. The unit tangent is then

T(t) =
D

1p
1+4t

2

,

2tp
1+4t

2

E
and the unit normal

is N(t) =
D

�2tp
1+4t

2

,

1p
1+4t

2

E
.

kT0(t)k = 2

(1+4t

2

)

and kr0(t)k =
p
1 + 4t2, so

(t) = 2

(1+4t

2

)

3/2

and the radius of the osculat-

ing circle is (1+4t

2

)

3/2

2

.
The center of the osculating circle is at

< t, t

2

> + (1+4t

2

)

3/2

2

D
�2tp
1+4t

2

,

1p
1+4t

2

E
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=
⌦
�4t3, 1

2

+ 3t2
↵
.

−2

2.5

0.5

3.5

3.0

2.0

1.5

1.0

420−4

The circle of curvature at x = 1 is a
tangent to y = x

2.

2 6

y
−4

4
−2

100−4
x

10

8

2

−8

0

−10

−6

−2−8 −6−10 8

4

6

34. The curve y = x

3 can be parameterized by⌦
t, t

3

↵
.

The unit Tangent is then

T (t) =
D

1p
1+9t

4

,

3t

2

p
1+9t

4

E
and the unit normal

is N (t) =
D

�3t

2

p
1+9t

4

,

1p
1+9t

4

E
.

���T
0
(t)
��� =

6t

(1 + 9t4)
and

���r
0
(t)
��� =

p
1 + 9t4,

so  (t) =
6t

(1 + 9t4)3/2
and the radius of the

osculating circle is

�
1 + 9t4

�
3/2

6t
.

The centre of the osculating circle is

⌦
t, t

3

↵
+

�
1 + 9t4

�
3/2

6t

⌧
�3t2p
1 + 9t4

,

1p
1 + 9t4

�

=
D

t

2

� 9t

5

2

,

1

6t

+ 5t

3

2

E
.

This is equivalent to

⌧
x

2
� 9x5

2
,

1

6x
+

5x3

2

�
.

−5

−3
1016

−1−2 2

109

30 1

0

5

The circle curvature at x = 1 is not a
tangent to y = x

3.

−10

y

10

x

5

105−5

0

−5

0−10

35. r (✓) =
⌦
e

a✓ cos ✓, ea✓ sin ✓
↵

r0 (✓) = e

a✓ ha cos ✓ � sin ✓, a sin ✓ + cos ✓i
kr0 (✓)k = e

a✓

p
a

2 + 1

T (✓) =

⌧
a cos ✓ � sin ✓p

a

2 + 1
,

a sin ✓ + cos ✓p
a

2 + 1

�

T0 (✓) =

⌧
�a sin ✓ � cos ✓p

a

2 + 1
,

a cos ✓ � sin ✓p
a

2 + 1

�

kT0 (✓)k = 1

N (✓) =

⌧
�a sin ✓ � cos ✓p

a

2 + 1
,

a cos ✓ � sin ✓p
a

2 + 1

�

36. r(✓) =
⌦
e

a✓ cos ✓, ea✓ sin ✓
↵
,

r0(✓) = e

a✓ ha cos ✓ � sin ✓, a sin ✓ + cos ✓i,
||r0(✓)|| = e

a✓

p
a

2 + 1. Therefore,
T(✓) = 1p

a

2

+1

ha cos ✓ � sin ✓, a sin ✓ + cos ✓i,
T0(✓)

= 1p
a

2

+1

h�a sin ✓ � cos ✓, a cos ✓ � sin ✓i,
and ||T0(✓)|| = 1. This gives us

 = ||T0||
||r0|| = 1

e

a✓

p
a

2

+1

so that the radius of cur-

vature is ⇢ = 1



= e

a✓

p
a

2 + 1.
The unit normal vector is N(t) = T0(t).
The center of curvature is
r(✓) + ⇢N(t) = ae

a✓ h� sin ✓, cos ✓i.
With a = 1, the graph looks like:
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0-1-2-3-4-5-6

1

0

-1

-2

-3

37. If r = hr cos ✓, r sin ✓, 0i,
then v =

⌦
�r sin ✓ d✓

dt

, r cos ✓ d✓

dt

, 0
↵
, so

r⇥ v =

������

i j k
r cos ✓ r sin ✓ 0

�r sin ✓ d✓

dt

r cos ✓ d✓

dt

0

������

=
⌦
0, 0, r2 d✓

dt

↵
= r

2

d✓

dt

k.

Therefore, kr⇥ vk = r

2

d✓

dt

.
dA

dt

= dA

d✓

d✓

dt

= 1

2

r

2

d✓

dt

, by the Fundamental
Theorem of Calculus. Since dA

dt

= 1

2

kr ⇥ vk is
a constant, equal areas are swept out in equal
times.

38. Since dA

dt

= 1

2

||r ⇥ v|| is a constant andR
T

0

dA

dt

dt = ⇡ab when T is the period of the
orbit, it is clear that 1

2

T ||r ⇥ v|| = ⇡ab or in

other words, T = ⇡ab

1

2

||r⇥v|| and T

2 = 4⇡

2

a

2

b

2

||r⇥v||2 .

Taking the derivative of (5.17) which states

r = ed

1+e cos ✓

we get r

0(✓) = e

2

d sin ✓

(1+e cos ✓)

2

. Then
r attains a minimum when ✓ = n⇡ where n is
even and a maximum when ✓ = n⇡ where n is
odd. Therefore, r

min

= ed

1+e

and r

max

= ed

1�e

.
Since r

min

and r

max

represent the distances be-
tween one of the foci and the closer and fur-
ther points of intersection between the ma-
jor axis and the ellipse it makes sense that
r

min

+ r

max

= 2a. In fact,
2a = r

min

+ r

max

= ed

1+e

+ ed

1�e

= 2ed

1�e

2

gives us

a = ed

1�e

2

(or more conveniently,

a(1�e

2) = ed). Combining the aforementioned

fact with 1� e

2 = b

2

a

2

gives us b

2

a

= ed.

From e = b

GM

and d = c

2

b

, we see

ed = c

2

GM

= ||c||2
GM

= ||r⇥v||2
GM

.

Letting k = 4⇡

2

GM

,

T

2 = 4⇡

2

a

2

b

2

||r⇥v||2 = ka

2

GMb

2

||r⇥v||2 = ka

3.

39. (a) We have dB
ds

= d

ds

(T⇥N)
= dT

ds

⇥N+T⇥ dN
ds

.

Now, dT
ds

= T0
ds

dt

is parallel to N, so that

dT
ds

⇥N = 0. This means that
T · dB

ds

= T · (T⇥ dN
ds

) = (T⇥T) · dN
ds

= 0
and dB

ds

is orthogonal to T.

(b) We have dB
ds

= dB
dt

dt

ds

= B0
ds

dt

. Since B

is a vector of constant length, Theorem
2.4 tells us B is orthogonal to B0, and is
therefore orthogonal to dB

ds

.

40. Since dB
ds

is orthogonal to both T and B, it
follows that dB

ds

must be some scalar multi-
ple of N. Since N is a unit vector, the scalar
�⌧ = dB

ds

·N.

41. If r(t) = hf(t), g(t), ki, then
r0(t) = hf 0(t), g0(t), 0i. This forces the third
component of T and N to be zero, and then
the first two coordinates of B and dB

ds

will also
be zero. Since the first two coordinates of dB

ds

are zero and the third coordinate of N is zero,
⌧ = �dB

ds

·N = 0

42. dN
ds

= d(B⇥T)

ds

= (dB
ds

⇥T) + (B⇥ dT
ds

)
= (�⌧N⇥T) + (B⇥ N)
= ⌧B+ ((T⇥N)⇥N)
= ⌧B� (N⇥ (T⇥N))
= ⌧B� ((N ·N)T� (N ·T)N)
= ⌧B� T.

43. (a) r0(t) = Ts

0(t), so
r00(t) = T0

s

0(t) +Ts

00(t).
Using the Frenet-Serret formula (a) from
exercise 42, we get
r00(t) = Ts

00(t) + [s0(t)]2N.

(b) Combining r0(t) = Ts

0(t) with part (a)
r0(t)⇥ r00(t)

= s

0(t)T⇥ (s00(t)T+ [s0(t)]2N)
= s

0(t)s00(t)(T⇥T)+[s0(t)]3(T⇥N)
= [s0(t)]3B.

(c) r00(t) = s

00(t)T+ (t)[s0(t)]2N, so
r000(t) = s

000(t)T+ s

00(t)T0+

0(t)[s0(t)]2N
+ 2(t)s0(t)s00(t)N+ (t)[s0(t)]2N0.

We use the Frenet-Serret formulas from
exercise 42 to write T0 = (t)s0(t)N and
N0 = �(t)s0(t)T + ⌧s

0(t)B and substi-
tute to get
r000(t) = s

000(t)T+ (t)s0(t)s00(t)N
+ 

0(t)[s0(t)]2N+ 2(t)s0(t)s00(t)N
� (t)2[s0(t)]3T+ (t)⌧ [s0(t)]3B

r000(t) = {s000(t)� 

2[s0(t)]2}T
+ {3s0(t)s00(t) + 

0(t)[s0(t)]2}N
+ ⌧ [s0(t)]3B.

(d)
(r0(t)⇥ r00(t)) · r000(t)

kr0(t)⇥ r00(t)k =


2

⌧ [s0(t)]6



2[s0(t)]6
= ⌧ .
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44. Using part d in exercise 43,

⌧ =
(r0(t)⇥ r00(t)) · r000(t)

||r0(t)⇥ r00(t)||2 =
a

2

b

a

2(a2 + b

2)
=

b

a

2 + b

2

.

45. If we consider ”500 people” to denote area cov-
ered in 1 sec then Kepler’s second law would be
satisfied. Let ✓

1

= a and ✓

2

= b be the angles
traced by the ”wave” in 1 sec at two instances.
Angular Velocity, ! = d✓

dt

ba

As seen above, the angles ✓

1

= a and ✓

2

= b

di↵er which implies angular velocity is not con-
stant

46. By Kepler’s third law, we have
T

2 = kr

3

For a constant k, where T := period,
r:= radius of the orbit.
Given stadium B is 50% larger than A
Hence, A(stadium B)= 3

2

A(stadium A)

⇡r

B

2 =
3

2
⇡r

A

2

r

B

r

A

=

r
3

2

Hence,
T

A

2

T

B

2

=
r

A

3

r

B

3

T

A

T

B

=

✓
r

A

r

B

◆
3/2

=

 r
2

3

!
3/2

=

✓
2

3

◆
3/4

Given that, average separation of earth from
sun = 1 astronomical unit (A.U.)
And average separation of mars from sun =
1.52 A.U.
We get,

T

E

T

M

=

✓
1

1.52

◆
3/2

T

M

= 1.88 ⇤ T
E

Where T
M

and T

E

represent the periods of the
orbits of mars and earth respectively.

11.6 Parametric Surfaces

1. Paraboloid
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-2 -1
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y
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8

2

2. Paraboloid

-2-2 -1-1

z

-4

-2

0

2

00

4

1
y

1
x

22

3. Paraboloid

-2
-1

-2 -1 00
0

1

y
1

2

x

z

1
2

3

4

2

4. Cone

-3-3 -2-2 -1-1

-3

-2

-1

z

0
00

1

2

3

1

y
1 2

x
2 33

5. Sphere.
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-2
-2-1
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z1

x
1

2

y

12
2

6. Half a hyperbolic paraboloid (y � 0).
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-30
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-20
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7. One sheet of a hyperboloid of two sheets.
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2
00

3

z

4
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x y

7
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8. Hyperboloid of one sheet.
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9.
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10.
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11.
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12. Cylinder
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5

−5 0

−2

−5
00

2

5

14.

5.0

−5.0 2.5

−4

−2.5

−2

0.0
00.0−2.5

2

2.5−5.0

4

5.0

15.

−5.0

−2.5

−2

2

−1

1

0
1

2

00.0

−1

−2

2.5

5.0

16.

−5.0 −5.0

−2

−2.5 −2.5

−1

0.00.00

1

2.5 2.5

2

5.05.0

17. One possible parametric representation:
x = u, y = v, z = 3u+ 2v.

18. The equation describes a sphere centered at
(0, 0, 0) with radius 3. One parametric repre-
sentation is:
x = 3 cosu cos v, y = 3 sinu cos v, z = 3 sin v
for 0  u  2⇡ and 0  v  ⇡.

19. One possible parametric representation of this
hyperboloid is:
x = cosu cosh v, y = sinu cosh v,
and z = sinh v
for 0  u  2⇡ and �1 < v < 1.

20. One parametric representation is to let
x = r cosu, y = r sinu,and z = r

where r � 0 and 0  u  2⇡.

21. Circular cylinder from z = 0 to z = 2:
x = 2 cos ✓, y = 2 sin ✓, z = t

for 0  ✓  2⇡ and 0  t  2.

22. Circular cylinder from x = �1 to x = 1:
x = t, y = 3 cosu, and z = 3 sinu
where 0  u  2⇡ and �1  t  1.

23. Downward opening paraboloid with positive z

coordinate:
x = r cos ✓, y = r sin ✓, and z = 4� r

2

for 0  ✓  2⇡ and 0  r  2.

24. Upward opening paraboloid below z = 4:
x = r cosu, y = r sinu, z = r

2

where 0  u  2⇡ and 0  r  2.

25. Hyperboloid of two sheets:
x = ± coshu, y = sinhu cos v,
and z = sinhu sin v
where �1  u  1 and 0  v  2⇡.

26. Hyperbolic paraboloid:
x = 4r2, y = r coshu, and z = 2r sinhu
where �1 < u < 1 and �1 < r < 1.

27. (a) It is Surface A, the only one unbounded
in the z direction.

(b) It is Surface C, since the position along
the x-axis determines the direction of a
line in the yz cross section.

(c) It is Surface B, since the position along
the x axis determines the radius of a cir-
cle in the yz cross section.

28. x

2 + y

2 + z

2

= 4 sin2 u cos2 v + 4 cos2 u cos2 v + 4 sin2 v
= 4 cos2 v(sin2 u+ cos2 u) + 4 sin2 v
= 4 cos2 v + 4 sin2 v
= 4(cos2 v + sin2 v) = 4.
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29. The trace of the sphere x

2 + y

2 + z

2 = 4 at
height z = k is a circle of radius

p
4� k

2.
If 2 cos v = k, then 4 cos2 v = k

2 and
4(1� sin2 v) = k

2, so that 2 sin v = ±
p
4� k

2.
If we restrict v to the range [0,⇡], z = 2 cos v
still takes on all values between �2 and 2, and
we can take the positive square root. Then
x =

p
4� k

2 cosu and y =
p
4� k

2 sinu de-
scribes a circle of radius

p
4� k

2. Since the
traces are the same, the surfaces must be the
same.

30. x

2 + y

2 + z

2

= 4 sin2 u cos2 v + 4 cos2 u cos2 v + 4 sin2 u
= 4(sin2 u+ cos2 u) cos2 v + 4 sin2 u
= 4(cos2 v + sin2 u) 6= 4 in general.

-22

x

-11

-2

-1

00
0

1 z

y

2

-11
-22

31. u = v = 0 gives (2,�1, 3).
u = 1 and v = 0 gives (3, 1, 0).
u = 0 and v = 1 gives (4,�2, 5). The displace-
ment vectors start at the first point and end at
the other two points.

-4 -4

-4

-2 -2
0 00

2 2
4

4

4
6

8

32. We need a vector a = ha
1

, a

2

, a

3

i where a ·
h1, 2,�3i = 0 and a · h2,�1, 2i = 0. In
fact, a = h1,�8,�5i will su�ce. Therefore,
x � 8y � 5z = �5 describes the parametric
equation for the plane in exercise 31.

33. See the graph in exercise 31. v
1

and v
2

are the
displacement vectors. r

0

is the base of these

vectors. A vector normal to the plane is given
by v

1

⇥ v
2

.

34. v
1

⇥ v
2

= h�4, 0, 8i, so h�1, 0, 2i is normal
to the plane. We choose the constant so that
r
0

satisfies the equation and end up with the
plane �x+ 2z = �5.

35. r
0

= h3, 1, 1i,
v
1

= h2,�1, 3i � h3, 1, 1i = h�1,�2, 2i.
v
2

= h4, 2, 1i � h3, 1, 1i = h1, 1, 0i.
An equation for the plane is
r = h3, 1, 1i+ u h�1,�2, 2i+ v h1, 1, 0i.

36. r
0

= h0,�1, 2i,
v
1

= h�2, 4, 0i � h0,�1, 2i = h�2, 5,�2i.
v
2

= h3,�2, 5i � h0,�1, 2i = h3,�1, 3i.
An equation for the plane is
r = h0,�1, 2i+ u h�2, 5,�2i+ v h3,�1, 3i.

37.
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−8,000

−10,000
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4,000
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6,000

8,000

10,000

−10,000

38.
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−2 −2
−1−1
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2 2
3 3

2.5

5.0

39.
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40.

−2

−2

−1 −1

−1

0

00

1

1

2

1
2

41.

−5.0
−4

−3

−2.5−2

−2

−1

00.0 0

1

2

2

2.5
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4
5.0

42.

5.0

−5.0

2.5

−2.5

−5.0 0.0
−2.5

0.0
0.0

2.5

2.5

5.0−2.5

5.0

−5.0

43. r = cos 2✓

1

1

0.5

0.5
0

-0.5

0

-1

-0.5-1

x = r cos ✓, y = r sin ✓, z = z

-1
-1 -0.5

-0.5 0
0
0

0.2

0.5
0.5

0.4

0.6

1
1

0.8

1

Substituting r = cos 2✓ and z = v gives the
desired parameterization. This is a cylinder of
height 1 over the curve in the plane.

44.

-4
-3

-2
-2

-1
-1

000
1

0.2

2

0.4

0.6

0.8

1

45. x = r cos ✓, y = r sin ✓, z = z gives the de-
sired region with 0  ✓  ⇡

4

, 0  r  2 and
0  z  1.

46. To the left of y = 5 means, 0  y  5. Let
x = r cos ✓, z = r sin ✓ for 0  ✓  2⇡ and
0  r  5, such that y =

p
x

2 + z

2 = r.
Therefore, x = r cos ✓, z = r sin ✓, y = r for
0  ✓  2⇡ and 0  r  5 is the desired para-
metric equation.

47. f(t) = e

�t

2

for t � 0.
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1

0.8

0.6

0.4

0.2

0

t
21.510.50

z = e
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2�y

2

-2

-2
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-1 00
0

0.2

y
1

0.4

x

0.6

1
2

0.8

1

2

This is the graph of f(t) revolved around the
z-axis. A parameterization of this surface is
x = r cos ✓, y = r cos ✓, and z = e

�r

2

for
0  ✓  2⇡ and r � 0.

48. This is the graph of f(t) = te

�t

2

revolved
around the z-axis.

-3 -3
-2 -2

-1 -1
0 00

0.1

1 1

0.2

2 2

0.3

3 3

0.4

49. If we let x = r cos ✓ and y = r sin ✓, then
z = sin

p
x

2 + y

2 = sin r where r � 0 and
0  ✓  2⇡.

50. If we let x = r cos ✓ and y = r sin ✓, then
z = cos(x2 + y

2) = cos r2 where r � 0 and
0  ✓  2⇡.

51. (a) The surface determined by ⇢ = 3 is a
sphere centered at (0, 0, 0) with radius 3.

(b) The surface determined by ⇢ = k is a
sphere centered at (0, 0, 0) with radius k.

52. (a) This is the half of a circular cone with axis
along the z-axis and z � 0.

(b) For x = ⇢ cos ✓

2

, y = ⇢ sin ✓

2

, and z =
p
3⇢

2

a
circular cone is defined whose axis is the
z-axis.

(c) The surface is the top half of a circular
cone if 0  � <

⇡

2

, the xy-plane if � = ⇡

2

,
and the bottom half of a circular cone if
⇡

2

< �  ⇡.

53. (a) This is the half-plane x = y with the z-
axis as the boundary (x � 0 and y � 0
since 0  �  ⇡).

(b) For x = �⇢ sin�p
2

, y = ⇢ sin�p
2

, and

z = ⇢ cos�, a half-plane is defined where
the z-axis is the boundary (x  0 and
y � 0 since 0  �  ⇡).

(c) For x = ⇢ cos k sin �, y = ⇢ sin k sin �,
and z = ⇢ cos �, a half-plane is defined
where the z-axis is the boundary.
We have
x, y � 0 if 0  k  ⇡

2

,
x  0 and y � 0 if ⇡

2

 k  ⇡,
x, y  0 if ⇡  k  3⇡

2

, and
x � 0 and y  0 if 3⇡

2

 k  2⇡.

54. (a) x = 3 cos ✓ sin�, y = 3 sin ✓ sin�,
and z = 3 cos ✓ defines the top half sphere
when 0  ✓  2⇡ and 0  �  ⇡

2

.

(b) x = 3 cos ✓ sin�, y = 3 sin ✓ sin�,
and z = 3 cos ✓ defines the right half
sphere when 0  ✓  ⇡ and 0  �  ⇡.

55. (a) x = ⇢ cos ✓ sin ⇡

4

, y = ⇢ sin ✓ sin ⇡

4

,
and z = ⇢ sin ⇡

4

defines the desired cone
when 0  ✓  2⇡ and ⇢ � 0 .

(b) x = ⇢ cos ✓ sin 3⇡

4

, y = ⇢ sin ✓ sin 3⇡

4

,
and z = ⇢ sin 3⇡

4

defines the desired cone
when 0  ✓  2⇡ and ⇢ � 0 .

(c) The given cone z =
p

2 (x2 + y

2) .
Consider x = ⇢ cos ✓ sin�,
y = ⇢ sin ✓ sin�, z = ⇢ cos�

) ⇢ cos� =
q
2⇢2sin2�

�
cos2✓ + sin2✓

�

or cos� = 2 | sin� |,
therefore cos� = 2 sin� ,

as 0  �  ⇡ ) tan� = 1

2

, which gives
sin� = 1p

5

and cos� = 2p
5

.

Thus x = ⇢p
5

cos✓, y = 2⇢p
5

sin✓

and z = 2⇢p
5

is the desired parametric
equation.
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56. (a) The part of the cone inside the sphere of
radius 2 is given by
x = ⇢ cos ✓ sin ⇡

4

, y = ⇢ sin ✓ sin ⇡

4

,
and z = ⇢ sin ⇡

4

for values
0  ✓  2⇡ and 0  ⇢  2.
The part of the sphere cut out by the cone
is given by
x = 2 cos ✓ sin�, y = 2 sin ✓ sin�,
and z = 2 cos ✓ for values
0  ✓  2⇡ and 0  �  ⇡

4

.

(b) x = cos ✓ cos�, y = sin ✓ cos�,
and z = sin� + 1 defines the desired
sphere for 0  ✓  2⇡ and 0  �  ⇡.

11. Review Exercises
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13. (a) Graph B: linear along y-axis, not circular.
(b) Graph C: linear along x-axis.
(c) Graph A: circular along y-axis.
(d) Graph F: coordinates bounded, not in one
plane.
(e) Graph D: in plane x = z.
(f) Graph E: in plane y = x+ 1.

14. Let r(t) = hf(t), g(t), h(t)i.
The arc length is equal toR
2

0

p
(f 0(t))2 + (g0(t))2 + (h0(t))2 dt

= ⇡

R
2

0

p
1 + 16 sin2 4⇡t dt ⇡ 8.65.
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15. Let r(t) = hf(t), g(t), h(t)i.
The arc length is equal toR
2

0

p
(f 0(t))2 + (g0(t))2 + (h0(t))2 dt

= ⇡

R
2⇡

0

p
1 + 36 dt = 2⇡

p
37.
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16.
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53dt = 2
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53.
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17. lim
t!1

⌦
t

2 � 1, e2t, cos⇡t
↵
=
⌦
0, e2,�1

↵
.

18. The limit does not exist since lim
t!1

csc⇡t does

not exist.

19. r(t) fails to be continuous where ln t2 fails to
be continuous. r(t) is continuous for all t 6= 0.

20. r(t) fails to be continuous whenever tan 2t and
3

t

2�1

fail to be continuous. In other words, r(t)
is continuous for all t 6= n⇡

4

when n is odd and
t 6= ±1.

21. r0(t) =
D

tp
t

2

+1

, 4 cos 4t, 1

t

E
.

22. r0(t) =
⌦
e

�2t � 2te�2t

, 3t2, 0
↵
.

23.
R ⌦

e

�4t

,

2

t

3

, 4t� 1
↵
dt

=
⌦�1

4

e

�4t

,

�1

t

2

, 2t2 � t

↵
+ c.

24.
R D

2t

2

t

3

+2

,

p
t+ 1

E
dt

=
⌦
2

3

(ln(t3 + 2), 2

3

(t+ 1)3/2
↵
+ c.

25.
R
1

0

hcos⇡t, 4t, 2i
=
⌦
1

⇡

sin⇡t, 2t2, 2t
↵��1

0

= h0, 2, 2i.

26.
R
2

0

⌦
e

�3t

, 6t2
↵
dt

=
⌦�1

3

e

�3t

, 2t3
↵��2

0

=
⌦�1

3

e

�6 + 1

3

, 16
↵
.

27. v(t) = h�8 sin 2t, 8 cos 2t, 4i and
a(t) = h�16 cos 2t,�16 sin 2t, 0i.

28. v(t) =
⌦
2t, 0, 3t2

↵
and a(t) = h2, 0, 6ti.

29. r(t) =
⌦
t

2 + 4t+ c

1

,�16t2 + c

2

↵
.To make

r(0) = h2, 1i, we must have
r(t) =

⌦
t

2 + 4t+ 2,�16t2 + 1
↵
.

30. r(t) =
D
4t+ c

1

,

t

3

3

� t+ c

2

E
. To make

r(0) = h�4, 2i, we must have

r(t) =
D
4t� 4, t

3

3

� t+ 2
E
.

31. v(t) = hc
1

,�32t+ c

2

i and v(0) = h4, 3i, so
v(t) = h4,�32t+ 3i.
Then r(t) =

⌦
4t+ b

1

,�16t2 + 3t+ b

2

↵

and r(0) = h2, 6i, so
r(t) =

⌦
4t+ 2,�16t2 + 3t+ 6

↵
.

32. v(t) =
D

t

2

2

+ c

1

,

e

2t

2

+ c

2

E
and v(0) = h2, 0i,

so v(t) =
D

t

2

2

+ 2, e

2t

2

� 1

2

E
.

r(t) =
D

t

3

6

+ 2t+ b

1

,

e

2t

4

� t

2

+ b

2

E

and r(0) = h4, 0i, so
r(t) =

D
t

3

6

+ 2t+ 4, e

2t

4

� t

2

� 1

4

E
.

33. F(t) = ma(t) = 4 h0,�32i = �128 h0, 1i.

34. F(t) = ma(t) = 4 h�12 cos 2t,�8 sin 2ti
= �16 h3 cos 2t, 2 sin 2ti.

35. a(t) = �32j
v(0) = 80

⌦
cos ⇡

12

, sin ⇡

12

↵

v(t) = 80 cos ⇡

12

i+ (80 sin ⇡

12

� 32t)j
r(0) = h0, 0i
r(t) = 80 cos( ⇡

12

)t i+ (80 sin( ⇡

12

)t� 16t2)j
Maximum altitude occurs when vertical com-
ponent of velocity is 0, which occurs at

t =
80 sin

⇡

12

32

.

(80 sin( ⇡

12

)t� 16t2|
t=

80 sin

⇡

12

32

= 25(2�
p
3)

⇡ 6.7 feet is the maximum altitude.
Impact occurs when the height is 0, which oc-

curs at t =
80 sin

⇡

12

16

.
The horizontal range is
80 cos( ⇡

12

)t|
t=

80 sin

⇡

12

16

= 100 feet.

The speed at impact is
���v
⇣

80 sin

⇡

12

16

⌘��� = 80 ft

s

.

36. a(t) = �32j
v(0) = 80

⌦
cos ⇡

4

, sin ⇡

4

↵

v(t) =
⌦
40
p
2, 40

p
2� 32t

↵
and

r(0) = h0, 6i, so
r(t) =

⌦
40
p
2 t, 6 + 40

p
2 t� 16t2

↵
. The maxi-

mum altitude is attained when t = 5

p
2

4

. When
substituting that value of t into the vertical
component of r we see the maximum altitude
is equal to 56 feet. The horizontal range and

speed at impact is met when t = 5

p
2+2

p
14

4

.
When substituting that value of t into the hor-
izontal component of r we see the horizontal
range is equal to 100 + 40

p
7 feet. Also, when

substituting that same value of t into ||v|| we
see that the speed at impact is equal to 82 ft

sec

.

37. r0(t) =
⌦
�2e�2t

, 2, 0
↵
and

kr0(t)k =
p
4e�4t + 4, so T(0) =

D
�2p
8

,

2p
8

, 0
E

and T(1) = 1

2

p
e

�4

+1

⌦
�2e�2

, 2, 0
↵
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38. Since r0(t) =
⌦
0, 2⇡t cos⇡t2, 1

t

↵
and

||r0(t)|| =
p
4⇡

2

t

4

cos

2

⇡t

2

+1

|t| we have

T(1) =
D
0, �2⇡p

4⇡

2

+1

,

1p
4⇡

2

+1

E
and

T(2) =
D
0, 8⇡p

64⇡

2

+1

,

1p
64⇡

2

+1

E
.

39. Since r0(t) = h� sin t, cos t, cos ti, we have
kr0(t)k =

p
1 + cos2 t.

T(t) =
D

� sin tp
1+cos

2

t

,

cos tp
1+cos

2

t

,

cos tp
1+cos

2

t

E
,

T0(t) =
D

�2 cos t

(1+cos

2

t)

3/2

,

� sin t

(1+cos

2

t)

3/2

,

� sin t

(1+cos

2

t)

3/2

E
,

and kT0(t)k =
p
2

1+cos

2

t

.

 = kT0
(t)k

kr0(t)k , so (0) = 1

2

and (⇡
4

) = 4

3

p
3

.

40. Since r0(t) = h�8 sin 2t, 6 cos 2ti, we see that

||r0(t)|| = 2
p
9 + 7 sin2 2t.

T(t) =

⌧
�4 sin 2tp
9+7 sin

2

2t

,

3 cos 2tp
9+7 sin

2

2t

�
,

T0(t) =
D

�72 cos 2t

(9+7 sin

2

2t)

3/2

,

�96 sin

2

2t

(9+7 sin

2

2t)

3/2

E
, and

||T0(t)|| = 24

9+7 sin

2

2t

.

 = kT0
(t)k

kr0(t)k , so (0) = 4

9

and (⇡
4

) = 3

4

.

41. r0(t) = h0, 3i and kr0(t)k = 3. T(t) = h0, 1i
and T0(t) = h0, 0i, so kT0(t)k = 0 for all t.
This means that  = 0 for all t.

42. r0(t) =
⌦
2t, 3t2, 4t3

↵
, r00(t) =

⌦
2, 6t, 12t2

↵
, and

note that  = ||r0⇥r00||
||r0||3 .

Since ||r0(t)⇥ r00(t)|| = 2t2
p
36t4 + 64t2 + 9

and ||r0(t)||3 = |t|3(4 + 9t2 + 16t4)
3

2 , we see
that the curvature tends to 1 as t ! 0 and
 = 29

592

p
74

when t = 2.

43. From exercise 39, we have

T(t) =
D

� sin tp
1+cos

2

t

,

cos tp
1+cos

2

t

,

cos tp
1+cos

2

t

E
,

T0(t) =
D

�2 cos t

(1+cos

2

t)

3/2

,

� sin t

(1+cos

2

t)

3/2

,

� sin t

(1+cos

2

t)

3/2

E
,

and kT0(t)k =
p
2

1+cos

2

t

.

Recall that N(t) = T0
(t)

kT0
(t)k .

T(0) =
D
0, 1p

2

,

1p
2

E
and N(0) = h�1, 0, 0i

44. See exercise 43.
T(⇡

2

) = h�1, 0, 0i and N(⇡
2

) =
D
0, �1p

2

,

�1p
2

E

45. Since v(t) = h2, 2t, 0i, we have
||v(t)|| = 2

p
t

2 + 1. Also since ds

dt

= ||v(t)||,
we have a

T

= d

2

s

dt

2

= 2tp
t

2

+1

.

Furthermore, since a(t) = h0, 2, 0i and
a

N

=
p
||a||2 � a

2

T

=
q
4� 4t

2

t

2

+1

= 2p
t

2

+1

.

At t = 0, a
T

= 0 and a

N

= 2.
At t = 1, a

T

=
p
2 and a

N

=
p
2.

46. Since v(t) = h2t, 0, 2i, we have
||v(t)|| = 2

p
t

2 + 1. Also since ds

dt

= ||v(t)||,
we have a

T

= d

2

s

dt

2

= 2tp
t

2

+1

.

Furthermore, since a(t) = h2, 0, 0i and
a

N

=
p
||a||2 � a

2

T

=
q
4� 4t

2

t

2

+1

= 2p
t

2

+1

.

At t = 0, a
T

= 0 and a

N

= 2.
At t = 2, a

T

= 4p
5

and a

N

= 2p
5

.

47. Since r(t) describes a circle we can see quickly
that N(t) = h� cos 6t,� sin 6ti, ||v(t)|| = 480,
and ||a(t)|| = 2880. Since ||v(t)|| = ds

dt

we see that a
T

= d

2

s

dt

2

= 0 and

a

N

=
p
||a||2 � a

2

T

= 2880. Therefore,
F

s

(t) = ma

N

N = �345600 hcos 6t, sin 6ti.

48. Since r(t) describes a circle we can see quickly
that N(t) = h� cos 4t,� sin 4ti, ||v(t)|| = 320,
and ||a(t)|| = 1280. Since ||v(t)|| = ds

dt

we see that a
T

= d

2

s

dt

2

= 0 and

a

N

=
p
||a||2 � a

2

T

= 1280. Therefore,
F

s

(t) = ma

N

N = �153600 hcos 4t, sin 4ti.

49.

-2-1

3

2

1

0

-1

-2

-3

001 12 2 3 4

50.

-1
-0.5-1

-1

-0.5

-0.5

0
0
0

0.5

0.5

1

10.5
1

51.
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0
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52.

-4-4

-2

-2-2

-1

00
0

1

22

2

44

53. (a) Surface B: quadratic in x and z.

(b) Surface C: quadratic in the x direction.

(c) Surface A: quadratic in the z direction.

54. x

2+ y

2+ z

2 = 9 describes a sphere centered at
the origin with a radius of 3.
x = 3 cos ✓ cos �, y = 3 sin ✓ cos �,
and z = 3 sin � where 0  ✓  2⇡ and
0  �  ⇡ is a parameterization of this sphere.

55. Combining the acceleration due to gravity and
the Magnus force yields

a(t) = h0.1, 0,�32i, and
v(0) =

⌦
0, 100 cos ⇡

6

, 100 sin ⇡

6

↵

=
⌦
0, 50

p
3, 50

↵
, so

v(t) =
⌦
0.1t, 50

p
3, 50� 32t

↵
.

Since r(0) = h0, 0, 0i, we have
r(t) =

⌦
0.05t2, 50

p
3 t, 50t� 16t2

↵
.

The object hits the ground when t = 50

16

at po-

sition
D

125

256

,

625

p
3

4

, 0
E
⇡ h0.488, 270.633, 0i.

The impact velocity is

kv( 50
16

)k = 5

p
102401

16

⇡ 100.0005.
The maximum speed occurs when the object
hits the ground, since this gives the Magnus
force the most time to act.
To compute the curvature, note that
kr0 ⇥ r00k = 10

p
76801 and that

kr0k =
q

t

2

100

+ 7500 + (50� 32t)2, so that

 = kr0⇥r00k
kr0k3

will be maximized when
t

2

100

+ 7500 + (50� 32t)2 is minimized.
This occurs at t = 160000

102401

⇡ 1.56 sec.



Chapter 12

Functions of
Several Variables
and Partial
Di↵erentiation

12.1 Functions of Several
Variables

1. Domain = {(x, y)|y 6= �x}

2. Domain = {(x, y)|y 6= x2}

3. Domain =
�

(x, y)|x2 + y2 � 1
 

4. Domain =
�

(x, y) | 1 < x2 + y2  4
 

5. Domain = {(x, y, z)|x2 + y2 + z2 < 4}

6. Domain = {(x, y, z)|x2 + y2 6= z}

7. (a) Range = {z|z � 0}
(b) Range = { z | 0  z  2 }

8. (a) Range = {z|� 1  z  1}
(b) Range = { z | � 1  z  1 }

9. (a) Range = {z|z � �1}

(b) Range =
n

z | � ⇡

4
 z <

⇡

2

o

10. (a) Range = {z|z > 0}
(b) Range =

�

z | 0 < z  e2
 

11. (a) R(150, 1000) = 312

(b) R(150, 2000) = 333

(c) R(150, 3000) = 350

(d) The distance gained varies from 17 feet to
21 feet.

12. (a) R(150, 2000) = 333

(b) R(160, 2000) = 354

(c) R(170, 2000) = 375

(d) The extra distance gained appears to be
a constant 21 feet.

13. H(80, 20) = 77.4, H(80, 40) = 80.4, and
H(80, 60) = 82.8. It appears that at 80�,
increasing the humidity by 20% increases the
heat index by about 3.

14. H(90, 20) = 86.5, H(90, 40) = 92.3, and
H(90, 60) = 100.5. At 90�, each extra 20%
humidity adds about 7 to the heat index (but
this is also not constant).

15. x2 + y2 = 1 or 2 or 3

z=3

z=2

z=1

y

1.5

1.5

−0.5x
−0.5−1.5 1.00.0−1.0

0.5

−1.0

0.5

1.0

0.0

−1.5

z = y2

0.5−1.0 −0.5

0.5

1.0

2.0

0.0

z

0.0

1.5

y

1.0

z = x2 + y2

−2

y
−12 1 00

0

2

4

x
−1

6

8

−212

660
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16. For x = 0, z = �y2

0.5−1.0 −0.5

−1.5

1.0

0.0

−2.0

z

0.0

−0.5

y

−1.0

For y = 0, z = x2

0.5−1.0 −0.5

0.5

1.0

2.0

0.0

z

0.0

1.5

x

1.0

z = x2 � y2

−5.0

y
−5.0−2.5

x

−10

−8

−2.5

−6

−4

−2

0

0.00.0

2

4

6

2.5

8

10

2.55.0 5.0

x2 � y2 = 1 or � 1. For z = �1; z = 1.

y

10

2

−2

−4

4

−8

−10

10

−6−10

0

0 4−8 −2

6

−6

x
−4 6 8

8

2

17.

p

x2 + y2 = 1 or 2 or 3

z=3

z=2
z=1

1

−3

2

3

−1

y

−2
x

3

0

2

−1

−3 0

−2

1

x = 0 ) z = |y|

z

0

−2.5

5

5.0

1

0.0−5.0

2

y
2.5

3

4

z =
p

x2 + y2

4
−4 2

x
−2

0
00

1

2

3

4

2

5

y

−2 4−4

18. 2x2 � y = 0 or 1 or 2

2.7

1.7

.7
2

2−2

−2

−1

3

1

−1

8

4

5

7

0

x
1

6

0
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−4

5

3

1
y

2

0−2

5

−4

1

2

−3

−1−3

z

4

−5

0

43

−2

−5

−1

z = 2x2 � y

4

−4

2

x
−2

−2.5

00.0

0

2.5

2

5.0

y

7.5

−2

4

10.0

−4

19. z =
p

4� y2
5

3

1

−3

−5

z

4

54

2

0
3

−1

−2

−4

10−1−2−3−4−5 2
y

z =
p
4� x2

z

−4

2.5

x
543210−1−2−3

5.0

0.0
−5

−2.5

−5.0

p

4� x2 � y2 = 0 or 1

−1.6

y

1.6

x
1−1

2.0

0.8

1.2

−1.2

−0.4

−0.8

−2.0

20

0.4

0.0
−2

z =
p

4� x2 � y2

4
−4

2

x
−2

00

0.0

0.5

2

y

1.0

−2

1.5

4

2.0

−4

20. z = 0 or y2 � x2 = 4

8 10

6

4

−8

y

10

2

4

−4

−10

−6

x
−2−6 2−10
−2

−4 6

8

−8

0

0

z =
p

5� y2. For x =1 or -1

1 2

z
1

−2 0
y

0

−1

2

z =
p

4� y2
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1

10−2 2−1
y

2

z

0

z =
p

4 + x2 � y2

1.01.0 0.50.5 0.00.0

1.8

1.9

2.0

y

2.1

−0.5

x
−0.5

2.2
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21. (a)
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x
1 −2 −323
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x
3
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−1 2
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1
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00
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y
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1

1.6
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3

(b)

4 3

y
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2 3y
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22. (a)
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−28

−24

−20

−16

−3
3

−12

−2 x 2
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−1 1
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0 00
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4

1
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3

2

1
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3

8

21
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0

x

00
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−20
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23. (a)
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x

−0.8

−1

−0.6

−0.4

−0.2

0.0
00
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1
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3
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25. (a)
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−3 3−2

x
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−1 1

y
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2

2,000

−3

2,500

3

3,000

3
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2
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y

1
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−1 x
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−3

2,500
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27. Function a ! Surface 1
Function b ! Surface 4
Function c ! Surface 2
Function d ! Surface 3

28. Function a ! Surface 1
Function b ! Surface 4
Function c ! Surface 2
Function d ! Surface 3
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38.
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39. Surface a �! Contour Plot A
Surface b �! Contour Plot D
Surface c �! Contour Plot C
Surface d �! Contour Plot B

40. Density Plot a �! Contour Plot A
Density Plot b �! Contour Plot D
Density Plot c �! Contour Plot C
Density Plot d �! Contour Plot B

41.
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f(x,y,z)=2
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f(x,y,z)=-2

42.
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43.
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44. For f (x, y, z) = 1
f (x, y, z) = 0

−2

−2 −2

z

xy

−1

−1 −1

000

11

1

22

2

f (x, y, z) = �1

45. Viewed from positive x-axis: View B
Viewed from positive y-axis: View A

46. Viewed from positive x-axis: View A
Viewed from positive y-axis: View B

47. Plot of z = x2 + y2:

-3-3 -2-2 -1-1 0
0
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4

11

y

6

x

8

22 33

Plot of x = r cos t, y = r sin t, z = r2:

-3-3 -2-2 -1-1 0
0
0

2

1

4

1

6

2

8

2 33

The graphs are the same surface. The grid is
di↵erent.

48. The graphs are the same surface.
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49. Parametric equations are:
x = r cos t, y = r sin t, z = cos r2

The graphs are the same surface, but the para-
metric equations make the graph look much
cleaner:
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0 00
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50. The graphs are the same surface.
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-0.5 1
-1

0.5
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51. Let the function be f(x, y) and whose contour
plot includes several level curves f(x, y) = c

i

for i = 1, 2, 3...... Now, any two of these con-
tours intersect at a point P (x1, y1), if and only
if f(x1, y1) = c

m

= c
n

for c
m

6= c
n

, which is
not possible, as f can not be a function in that
case. Hence di↵erent contours can not inter-
sect.

52. (1) When the level curves are very close to each
other they appear to be intersecting at a point
that is the point P, especially when they are

plotted on a very large scale.
(2) When the level curves just get very close to
each other and appear to intersect at a point
P, then it means that the function has a limit
at the point P though can not be continuous
at P.
For the discontinuity at P, there are two pos-
sibilities for an existing limit at that point.

(i) The limit along with value of the function
at that point P exists but there aren’t
equal to each other. This demonstrates
the case (1).

(ii) The limit exists but the value of the func-
tion doesn’t exist at that point. This
demonstrates the case (2).

53. Point A is at height 480 and “straight up” is
to the northeast. Point B is at height 470 and
“straight up” is to the south. Point c is at
height between 470 and 480 and “straight up”
is to the northwest.

54. The two peaks are located inside the inner cir-
cles. The peak on the left has elevation be-
tween 500 and 510. The peak on the right has
elevation between 490 and 500.

55. The curves at the top of the figure seem to
have more e↵ect on the temperature, so those
are likely from the heat vent and the curves to
the left are likely from the window. The cir-
cular curves could be from a cold air return or
something as simple as a cup of co↵ee.

56. The point of maximum power will be inside all
the contours, slightly toward the handle from
the center. This is maximum because power
increases away from the rim of the racket.

57. It is not possible to have a PGA of 4.0. If
a student earned a 4.0 grade point average in
high school, and 1600 on the SAT’s, their PGA
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would be 3.942. It is possible to have a neg-
ative PGA, if the high school grade point av-
erage is close to 0, and the SAT score is the
lowest possible. It seems the high school grade
point average is the most important. The max-
imum possible contribution from it is 2.832.
The maximum possible contribution from SAT
verbal is 1.44, and from SAT math is 0.80.

58. p(2, 10, 40) ⇡ 0.8653
p(3, 10, 40) ⇡ 0.9350
p(3, 10, 80) ⇡ 0.9148
p(3, 20, 40) ⇡ 0.9231
Thus we see that being ahead by 3 rather than
by 2 increase the probability of winning. We
also see that having the 80 yards to the goal
instead of 40 yards decreases the probability of
winning. Less time remaining in the game also
increases the probability of winning.

59. If you drive d miles at x mph, it will take you
d

x
hours. Similarly, driving d miles at y miles

per hour takes
d

y
hours. The total distance

traveled is 2d, and the time taken is
d

x
+

d

y
=

d(x+ y)

xy
. The average speed is total distance

divided by total time, so S(x, y) =
2xy

x+ y
.

If x = 30, then S(30, y) =
60y

30 + y
= 40.

We solve to get 60y = 1200 + 40y
20y = 1200 and y = 60 mph. If we replace 40
with 60 in the above solution, we see that there
is no solution. It is not possible to average 60
mph in this situation.

60. We have P = RE. Substituting gives

Y =
d

P
=

d

RE

12.2 Limits and Continuity

1. We have lim
(x,y)!(a,b)

x = a and lim
(x,y)!(a,b)

y = b

Therefore, by the definition 2.1, there exist
"1, "2 > 0, such that
|x� a| < "1 and |y � b| < "2,

whenever
q

(x� a)2 + (y � b)2 < �.
Now consider
|(x+ y)� (a+ b)| = |(x� a) + (y � b)|

 |x� a|+ |y � b|
< "1 + "2 = " (say)

Thus, we have |(x+ y)� (a+ b)| < ",

whenever
q

(x� a)2 + (y � b)2 < �.

Hence lim
(x,y)!(a,b)

(x+ y) = a+ b is verified.

2. We have lim
(x,y)!(1,2)

x = 1 and lim
(x,y)!(1,2)

y = 2

Therefore, by the definition 2.1, there exist
"1, "2 > 0, such that
|x� 1 | < "1 and | y � 2 | < "2,

whenever
q

(x� 1)2 + (y � 2)2 < �.
Now consider
| (2x+ 3y)� 8 | = |(2x� 2) + (3y � 6)|

= | 2 (x� 1) + 3 (y � 2)|
 2 |x� 1 |+ 3 | y � 2 |
< 2"1 + 3"2 = " (say)

Thus, we have | (2x+ 3y)� 8 | < ",

whenever
q

(x� 1)2 + (y � 2)2 < �.

Hence lim
(x,y)!(1,2)

(2x+ 3y) = 8 is verified.

3. We have lim
(x,y)!(a,b)

f (x, y) = L and

lim
(x,y)!(a,b)

g (x, y) = M

Therefore, by the definition 2.1, there exist
"1, "2 > 0, such that
| f (x, y)� L | < "1 and | g (x, y)�M | < "2,

whenever
q

(x� a)2 + (y � b)2 < �.
Now consider
| (f (x, y) + g (x, y))� (L+M) |

= |(f (x, y)� L) + (g (x, y)�M)|
 | f (x, y)� L |+ | g (x, y)�M |
< "1 + "2 = " (say)

Thus, we have
| (f (x, y) + g (x, y))� (L+M) | < ",

whenever
q

(x� a)2 + (y � b)2 < �.

Hence lim
(x,y)!(a,b)

(f (x, y) + g (x, y)) = L + M

is verified.

4. We have lim
(x,y)!(a,b)

f (x, y) = L.

Therefore, by the definition 2.1, there exist
"1 > 0, such that
| f (x, y)� L | < "1,

whenever
q

(x� a)2 + (y � b)2 < �.

Now consider
| (cf (x, y))� cL | = |c| |(f (x, y)� L)|

< |c| "1 = " (say)
Thus, we have | (cf (x, y))� cL | < ",

whenever
q

(x� a)2 + (y � b)2 < �.

Hence lim
(x,y)!(a,b)

cf (x, y) = cL is verified.

5. lim
(x,y)!(1,3)

x2y

4x2 � y
= 3
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6. lim
(x,y)!(2,�1)

x+ y

x2 � 2xy
=

1

8

7. lim
(x,y)!(⇡,1)

cosxy

y2 + 1
=

�1

2

8. lim
(x,y)!(�3,0)

exy

x2 + y2
=

1

9

9. Along the path x = 0

lim
(0,y)!(0,0)

0

y2
= 0

Along the path y = 0

lim
(x,0)!(0,0)

3x2

x2
= 3

Since the limits along these two paths do not
agree, the limit does not exist.

10. Along the path x = 0

lim
(0,y)!(0,0)

2y2

�y2
= �2

Along the path y = 0

lim
(x,0)!(0,0)

0

2x2
= 0

Since the limits along these two paths do not
agree, the limit does not exist.

11. Along the path x = 0

lim
(0,y)!(0,0)

0

3y2
= 0

Along the path y = x

lim
(x,x)!(0,0)

4x2

2x2
= 2

Since the limits along these two paths do not
agree, the limit does not exist.

12. Along the path x = 0

lim
(0,y)!(0,0)

0

2y2
= 0

Along the path x = y

lim
(x,x)!(0,0)

2x2

x2 + 2x2
=

2

3
Since the limits along these two paths do not
agree, the limit does not exist.

13. Along the path x = 0

lim
(0,y)!(0,0)

0

y2
= 0

Along the path y = x3/2

lim
(x,x3/2)!(0,0)

2x4

x4 + x3
= 2.

Since the limits along these two paths do not
agree, the limit does not exist.

14. Along the path x = 0

lim
(0,y)!(0,0)

0

y2
= 0

Along the path y = x2

lim
(x,x2)!(0,0)

3x3
p
x2

x4 + x4
=

3

2
Since the limits along these two paths do not
agree, the limit does not exist.

15. Along the path x = 0

lim
(0,y)!(0,0)

0

y3
= 0

Along the path x = y3

lim
(y3

,y)!(0,0)

y3

2y3
=

1

2
Since the limits along these two paths do not
agree, the limit does not exist.

16. Along the path x = 0

lim
(x,y)!(0,0)

0

8y6
= 0

Along the path x = y3

lim
(y3

,y)!(0,0)

2y6

y6 + 8y6
=

2

9
Since the limits along these two paths do not
agree, the limit does not exist.

17. Along the path x = 0

lim
(x,y)!(0,0)

0

y2
= 0

Along the path y = x

lim
(x,x)!(0,0)

x sinx

2x2
=

1

2
Since the limits along these two paths do not
agree, the limit does not exist.

18. Along the path x = 0

lim
(0,y)!(0,0)

0

x3 + y3
= 0

Along the path y = x

lim
(x,x)!(0,0)

x(cosx� 1)

2x3

= lim
x!0

(cosx� 1)

2x2
= lim

x!0

� sinx

4x

= lim
x!0

� cosx

4
= �1

4

where the last equalities are by L’Hopital’s
rule. Since the limits along these two paths
do not agree, the limit does not exist.

19. Along the path x = 1

lim
(1,y)!(1,2)

0

y2 � 4y + 4
= 0

Along the path y = x+ 1

lim
(x,x+1)!(1,2)

x2 � 2x+ 1

2x2 � 4x+ 2
=

1

2
Since the limits along these two paths do not
agree, the limit does not exist.
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20. Along the path y = 0

lim
(x,0)!(2,0)

0

(x� 2)2
= 0

Along the path x = 2

lim
(2,y)!(2,0)

2y2

y2
= 2

Since the limits along these two paths do not
agree, the limit does not exist.

21. Along the path x = 0, y = 0

lim
(0,0,z)!(0,0,0)

0

z2
= 0

Along the path x2 = y2 + z2

lim
(y2+z

2
,y,z)!(0,0,0)

3(y2 + z2)

2(y2 + z2)
=

3

2
Since the limits along these two paths do not
agree, the limit does not exist.

22. Along the path x = 0, y = 0

lim
(0,0,z)!(0,0,0)

z2

z2
= 1

Along the path x = 0, z = 0

lim
(0,y,0)!(0,0,0)

y2

�y2
= �1

Since the limits along these two paths do not
agree, the limit does not exist.

23. Along the path x = 0, y = 0

lim
(0,0,z)!(0,0,0)

0

z3
= 0

Along the path x = y = z

lim
(x,x,x)!(0,0,0)

x4

3x4
=

1

3
Since the limits along these two paths do not
agree, the limit does not exist.

24. Along the path x = 0, y = 0

lim
(0,0,z)!(0,0,0)

0

z4
= 0

Along the path x = y = z

lim
(x,x,x)!(0,0,0)

x4

3x4
=

1

3
Since the limits along these two paths do not
agree, the limit does not exist.

25. If the limit exists, it must be equal to 0 (to see
this use the path x = 0). To show that L = 0,

|f(x, y)� L| =
�

�

�

�

xy2

x2 + y2

�

�

�

�


�

�

�

�

xy2

y2

�

�

�

�

= |x|

Since lim
(x,y)!(0,0)

|x| = 0,

Theorem 2.1 gives us that

lim
(x,y)!(0,0)

xy2

x2 + y2
= 0

26. If the limit exists, it must be equal to 0 (to see
this use the path x = 0). To show that L = 0,

|f(x, y)� L| =
�

�

�

�

x2y

x2 + y2

�

�

�

�


�

�

�

�

x2y

x2

�

�

�

�

= |y|

Since lim
(x,y)!(0,0)

|y| = 0,

Theorem 2.1 gives us that

lim
(x,y)!(0,0)

x2y

x2 + y2
= 0

27. If the limit exists, it must be equal to 0 (to see
this use the path x = 0). To show that L = 0,

|f(x, y)� L| =
�

�

�

�

2x2 sin y

2x2 + y2

�

�

�

�


�

�

�

�

2x2 sin y

2x2

�

�

�

�

= | sin y|
Since lim

(x,y)!(0,0)
| sin y| = 0,

Theorem 2.1 gives us that

lim
(x,y)!(0,0)

2x2 sin y

2x2 + y2
= 0

28. If the limit exists, it must be equal to 0 (to see
this use the path x = 0). To show that L = 0,

|f(x, y)� L| =
�

�

�

�

x3y + x2y3

x2 + y2

�

�

�

�


�

�

�

�

x3y + x2y3

x2

�

�

�

�

=
�

�xy + y3
�

�

Since lim
(x,y)!(0,0)

|xy + y3| = 0,

Theorem 2.1 gives us that

lim
(x,y)!(0,0)

x3y + x2y3

x2 + y2
= 0

29. If the limit exists, it must be equal to 2 (to see
this use the path x = 0). To show that L = 2,

|f(x, y)� L| =
�

�

�

�

x3 + 4x2 + 2y2

2x2 + y2
� 2

�

�

�

�

=

�

�

�

�

x3

2x2 + y2

�

�

�

�


�

�

�

�

x3

2x2

�

�

�

�

=
�

�

�

x

2

�

�

�

Since lim
(x,y)!(0,0)

�

�

�

x

2

�

�

�

= 0,

Theorem 2.1 gives us that

lim
(x,y)!(0,0)

x3 + 4x2 + 2y2

2x2 + y2
= 0

30. If the limit exists, it must be equal to �1 (to
see this use the path x = 0). To show that
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L = �1,

|f(x, y)� L| =
�

�

�

�

x2y � x2 � y2

x2 + y2
+ 1

�

�

�

�

=

�

�

�

�

x2y

x2 + y2

�

�

�

�


�

�

�

�

x2y

x2

�

�

�

�

= |y|

Since lim
(x,y)!(0,0)

|y| = 0,

Theorem 2.1 gives us that

lim
(x,y)!(0,0)

x2y � x2 � y2

x2 + y2
= �1

31. If the limit exists, it must be equal to 0 (To see
this use the path x = 0 or y = 1).
To show that L = 0 ,

| f (x, y)� L | =
�

�

�

�

x2y � x2

x2 + y2 � 2y + 1

�

�

�

�

=

�

�

�

�

�

x2 (y � 1)

x2 + (y � 1)2

�

�

�

�

�


�

�

�

�

x2 (y � 1)

x2

�

�

�

�

 |y � 1| .

Since lim
(x,y)!(0,1)

|y � 1| = 0 ,

Theorem 2.1 gives us that

lim
(x,y)!(0,1)

x2y � x2

x2 + y2 � 2y + 1
= 0.

32. If the limit exists, it must be equal to 0 (To see
this use the path x = �1 or y = 2).
To show that L = 0,

|f (x, y)� L| =

�

�

�

�

�

xy2 � 4xy + 4x+ (y � 2)2

2x2 + 4x+ y2 � 4y + 6

�

�

�

�

�

=

�

�

�

�

�

x(y � 2)2 + (y � 2)2

2x2 + 4x+ 2 + y2 � 4y + 4

�

�

�

�

�

=

�

�

�

�

�

(x+ 1) (y � 2)2

2(x+ 1)2 + (y � 2)2

�

�

�

�

�



�

�

�

�

�

(x+ 1) (y � 2)2

(y � 2)2

�

�

�

�

�

= |x+ 1| .

Since lim
(x,y)! (�1,2)

|x+ 1| = 0 ,

Theorem 2.1 gives us that

lim
(x,y)!(�1,2)

xy2 � 4xy + 4x+ (y � 2)2

2x2 + 4x+ y2 � 4y + 6
= 0.

33. If the limit exists, it must be equal to 0 (to see
this use the path x = 0, y = 0). To show that

L = 0,

|f(x, y)� L| =
�

�

�

�

3x3

x2 + y2 + z2

�

�

�

�


�

�

�

�

3x3

x2

�

�

�

�

= |3x|

Since lim
(x,y,z)!(0,0,0)

|3x| = 0,

Theorem 2.1 gives us that

lim
(x,y,z)!(0,0,0)

3x3

x2 + y2 + z2
= 0

34. If the limit exists, it must be equal to 0 (to see
this use the path x = 0, y = 0). To show that
L = 0,

|f(x, y)� L| =
�

�

�

�

x2y2z2

x2 + y2 + z2

�

�

�

�


�

�

�

�

x2y2z2

x2

�

�

�

�

=
�

�y2z2
�

�

Since lim
(x,y,z)!(0,0,0)

|y2z2| = 0,

Theorem 2.1 gives us that

lim
(x,y,z)!(0,0,z)

x2y2z2

x2 + y2 + z2
= 0

35. Since
p
t is continuous for all t � 0 and because

9 � x2 � y2 is a polynomial, f is continuous
where x2 + y2  9.

36. Since e3x�4y, x2 and �y are continuous for all
x and y, the sum is continuous for all x and y.

37. Since ln t is continuous for all t > 0, and
3�x2+y is a polynomial, f is continuous where
x2 � y < 3.

38. Since tan t is continuous for all

t 6= (2n+ 1)⇡

2
and x + y is a polynomial, f is

continuous o↵ the collection of lines

x+ y =
(2n+ 1)⇡

2

39. Since
p
t is continuous for all t � 0 and because

x2+y2+z2�4 is a polynomial, f is continuous
where x2 + y2 + z2 � 4.

40. Since
p
t is continuous for all t � 0 and because

z � x2 � y2 is a polynomial, f is continuous
where z � x2 � y � 0.

41. Along any line y = y0, for y0 6= 2, the limit

lim
(x,y0)!(0,y0)

(y0 � 2) cos
1

x2
does not exist.

If y0 = 2, then
lim

(x,2)!(0,2)
f(x, y) = 0 = f(0, 2).

f is continuous for x 6= 0 and at the point
(0, 2).
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42. As a composition of continuous functions f is
continuous for x2 + y2 < 1. If (x0, y0) satisfies
x2
0 + y20 = 1, the limit

lim
(x,y)!(x0,y0)

f(x) = 1 = f(x0, y0)

so the function is continuous for all (x, y) with
x2 + y2  1.

43. Since the limit

lim
(x,y)!(x0,x0)

x2 � y2

x� y

= lim
(x,y)!(x0,x0)

(x� y)(x+ y)

x� y
= lim

(x,y)!(x0,x0)
x+ y = 2x0 = f(x0, x0)

for any x0, the function f(x, y) is continuous
for all (x, y).

44. Since lim
(x,y)!(0,0)

cos

✓

1

x2 + y2

◆

does not exist

along any path, the function is not continu-
ous at (0, 0). The function is continuous for all
(x, y) 6= (0, 0).

45. Along the path x = 0,

lim
(0,y)!(0,0)

y
p

y2 + 4� 2
, which is indetermi-

nate.
Therefore the limit does not exist.

46. Along the path y = x,

lim
(x,x)!(0,0)

x2 � x2

3
p
x� 3

p
x
, which is indeterminate.

Therefore the limit does not exist.

47. Along the path y = �x,

lim
(x,�x)!(0,0)

x
�

e�1 � 1
�

x� x
, which does not exist.

Therefore the limit does not exist.

48. Along the path x = 0,

lim
(0,y)!(0,0)

0

0
, which is indeterminate.

Therefore the limit does not exist.

49.

x y f(x,y)
0.1 0.1 0.4545

�0.1 �0.1 0.5555
0.01 0.01 0.4950

�0.01 �0.01 0.5050
0.001 0.001 0.4995

�0.001 �0.001 .5005
Thus, we estimate that the limit is 0.5.

lim
(x,y)!(0,0)

1� cosxy

x2y2 + x2y3

= lim
(x,y)!(0,0)

1�
✓

1� 1

2
(xy)2 +

1

4!
(xy)4...

◆

x2y2 (1 + y)

= lim
(x,y)!(0,0)

1

2
(xy)2 � 1

4!
(xy)4 +

1

6!
(xy)6 � ...

x2y2 (1 + y)

= lim
(x,y)!(0,0)

1

2
� 1

4!
(xy)2 +

1

6!
(xy)4 � ...

1 + y

=
1

2
= 0.5

50.

x y f(x,y)
0.1 0.1 2.7273

�0.1 �0.1 3.3333
0.01 0.01 2.9703

�0.01 �0.01 3.0303
0.001 0.001 2.9970

�0.001 �0.001 3.0030

Thus, we estimate that the limit is 3.

lim
(x,y)!(0,0)

3 sinxy2

x2y2 + xy2

= lim
(x,y)!(0,0)

3

✓

xy2 � 1

3!

�

xy2
�3

+
1

5!

�

xy2
�5
...

◆

xy2 (x+ 1)

= lim
(x,y)!(0,0)

3

✓

1� 1

3!

�

xy2
�2

+
1

5!

�

xy2
�4
...

◆

x+ 1

= 3

51. True. The limit is L, then the limit computed
along the line y = b must also be L.

52. False. The limit along a particular path be-
ing L does not imply that the limit is L (see
Example 2.3).

53. False. The limit along two paths being L does
not imply that the limit is L. The limit must
be the same along any path.

54. True. As (x, y) ! (0, 0), (cx, y) ! (0, 0). Re-
placing x by cx does not change the limit.

55. The density plot shows sharp color changes
near the origin.
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56. The density plot shows sharp color changes
near the origin.
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57. The density plot shows sharp color changes
near the origin.
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58. The density plot shows sharp color changes
near the origin.
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y

0.1 0.2
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59. (a) The limit along the line y = kx:

lim
(x,kx)!(0,0)

xy2

x2 + y4
= lim

x!0

k2x3

x2 + k4x4

= lim
x!0

k2x

1 + k4x2
= 0.

(b) The limit along the line y = kx:

lim
(x,kx)!(0,0)

2xy3

x2 + 8y6

= lim
x!0

2k3x4

x2 + 8k6x6

= lim
x!0

2k3x2

1 + 8k6x4
= 0

.

60. (a) As shown in example 2.5, the limit as
(x, y) ! (0, 0) does not exist, therefore
the function cannot be continuous there.

(b) The limit along the line y = kx

lim
(x,kx)!(0,0)

xy2

x2 + y4
= lim

x!0

k2x3

x2 (1 + k4x2)

= lim
x!0

k2x

1 + k4x2
= 0.

Therefore, along any straight line y = kx,
the function ”acts” continuous.

61. As the several level curves of the function f
meet at (a, b). With the reference to the exer-
cise 52 of the section12.1, the lim

(x,y)!(a,b)
f (x, y)

exists, but f is not continuous at (a, b).

62. Given that f and g are continuous at (a, b) then
by the definition of continuity we have

lim
(x,y)!(a,b)

f (x, y) = f (a, b) and

lim
(x,y)!(a,b)

g (x, y) = g (a, b).

To prove f + g is continuous.
lim

(x,y)!(a,b)
(f + g) (x, y)

= lim
(x,y)!(a,b)

(f (x, y) + g (x, y))

= lim
(x,y)!(a,b)

f (x, y) + lim
(x,y)!(a,b)

g (x, y)

= f (a, b) + g (a, b)

= (f + g) (a, b)
Thus f + g is continuous.
Similarly we can prove f � g is continuous.

lim
(x,y)!(a,b)

(f � g) (x, y)

= lim
(x,y)!(a,b)

(f (x, y)� g (x, y))

= lim
(x,y)!(a,b)

f (x, y)� lim
(x,y)!(a,b)

g (x, y)

= f (a, b)� g (a, b)

= (f � g) (a, b)
Thus f � g is continuous.
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63. Converting to polar coordinates,

lim
(x,y)!(0,0)

p

x2 + y2

sin
p

x2 + y2
= lim

r!0

r

sin r
= 1

by L’Hopital’s Rule.

64. Converting to polar coordinates,

lim
(x,y)!(0,0)

ex
2+y

2 � 1

x2 + y2
= lim

r!0

er
2 � 1

r2
= 1

by L’Hopital’s Rule.

65. Converting to polar coordinates,

lim
(x,y)!(0,0)

xy2

x2 + y2
= lim

r!0

r3 cos ✓ sin2 ✓

r2

= lim
r!0

r cos ✓ sin2 ✓ = 0

66. Converting to polar coordinates,

lim
(x,y)!(0,0)

x2y

x2 + y2
= lim

r!0

r3 cos2 ✓ sin ✓

r2

= lim
r!0

r cos2 ✓ sin ✓ = 0

12.3 Partial Derivatives

1. f
x

= 3x2 � 4y2, f
y

= �8xy + 4y3

2. f
x

= 2xy3 � 3, f
y

= 3x2y2

3. f
x

= 2x sinxy + x2y cosxy,
f
y

= x3 cosxy � 9y2

4. f
x

= 6xyex
2
y � 1

2
p
x� 1

, f
y

= 3x2ex
2
y

5. f
x

=
4e

x

y

y
� y

x2 + y2

f
y

= �4xe

x

y

y2
+

x

x2 + y2

6. f
x

=
cos(x� y)

y
+ 2x tan y,

f
y

= �cos(x� y)

y
� sin(x� y)

y2
+ x2sec2y.

7. f(x, y) =
y

R

x

sin t2dt =
y

R

0
sin t2dt�

x

R

0
sin t2dt

f
x

= � sinx2, f
y

= sin y2.

8. f(x y) =

x+y

Z

x

ey
2�t

2

dt

=

x+y

Z

0

ey
2�t

2

dt�
x

Z

0

ey
2�t

2

dt

f
x

= ey
2�(x+y)2 � ey

2�x

2

,

f
y

= ey
2�(x+y)2 + 2yf(x, y).

9. f
x

= 3 ln(x2yz) + 6 +
y

z
x

y

z
� 1

,

f
y

=
3x

y
+

lnx

z
x

y

z ,

f
z

=
3x

z
� y lnx

z2
x

y

z .

10. f
x

=
�2x

(x2 + y2 + z2)

3

2

� 2xe

xy

z � x2y

z
e

xy

z ,

f
y

=
�2y

(x2 + y2 + z2)

3

2

� x3

z
e

xy

z ,

f
z

=
�2z

(x2 + y2 + z2)

3

2

+
x3y

z2
e

xy

z .

11.

@2f

@x2
= 6x,

@2f

@y2
= �8x,

@2f

@y@x
= �8y

12.

@2f

@x2
= 2y,

@2f

@y2
= �3 sin y,

@2f

@y@x
= 2x

13. f
xx

= � 4

x2
� 6y3,

f
xy

= �18xy2 +
5

1 + y2
,

f
xyy

= �36xy � 10y

(1 + y2)2
.

14. f
xx

= 16e4x + sin(x+ y2) +

p
y

4x3/2
,

f
xy

= 2y sin
�

x+ y2
�

� 1

4
p
xy

,

f
yyx

= 2 sin
�

x+ y2
�

+ 4y2 cos
�

x+ y2
�

+
1

8y
p
xy

.

15. f
xx

=
xy3

(1� x2y2)3/2
,

f
yz

= yz sin(yz)� cos(yz),
f
xyz

= 0.

16. f
xx

= 4y (xy + 1) e2xy � 2z2

(x+ y)3
,

f
yy

= 4x3e2xy � 2z2

(x+ y)3
� xz sin(y + z),

f
yyzz

= � 4

(x+ y)3
�2x cos(y+z)+xz sin(y+z).
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17. f
ww

= 2tan�1 (xy)� z2ewz,

f
wxy

=
2w
�

1� x2y2
�

(1 + x2y2)2
,

f
wwxyz

= 0.

18. f
xx

= � y1/2

4(x+ z)3/2
� 6x sin

⇣

p

w2 + z2
⌘

,

f
yy

= � (x+ z)1/2

4y3/2
,

f
wxyz

= 0.

19. Taking partial derivative implicitly:
✓

P +
n2a

V 2

◆

@ (V (P, T ))

@T

+

✓

�2n2a

V 3
.
@ (V (P, T ))

@T

◆

(V � nb)

= nR.

Multiply through by V 3 and

solve for
@V

@T
to get:

(PV 3 � n2aV + 2n3ab)
@V

@T
= nRV 3

) @ (V (P, T ))

@T
=

nRV 3

PV 3 � n2aV + 2n3ab
.

20. We have (from Example 3.3)

P =
nRT

V � nb
� n2a

V 2

)
✓

P +
n2a

V 2

◆

(V � nb) = nRT .

Therefore, on taking partial derivative implic-
itly:
✓

@P (T, V )

@V
� 2n2a

V 3

◆

(V � nb)

+

✓

P +
n2a

V 2

◆

(1) = 0 or

@P (T, V )

@V
=

2n2a

V 3
�
�

PV 2 + n2a
�

V 2 (V � nb)
@P (T, V )

@V
=

2n2aV � 2n3ab� PV 3 � n2aV

V 3 (V � nb)
@P (T, V )

@V
=

�
�

PV 3 � n2aV + 2n3ab
�

V 3 (V � nb)
... (i)

Also,
@ (T (P, V ))

@P
=

V � nb

nR
... (ii)

and from exercise 19, we have
@ (V (P, T ))

@T
=

nRV 3

PV 3 � n2aV + 2n3ab
.... (iii)

Therefore, from (i) , (ii) and (iii)

@ (T (P, V ))

@P

@ (P (V, T ))

@V

@ (V (P, T ))

@T

= �
 

�

PV 3 � n2aV + 2n3ab
�

V 3 (V � nb)

!

·
✓

V � nb

nR

◆

·
✓

nRV 3

PV 3 � n2aV + 2n3ab

◆

= �1.
If we misunderstand the chain rule and con-
sider each of @P, @V and @T as separate quan-
tities and not the operators then, we get
@ (T (P, V ))

@P

@ (P (V, T ))

@V

@ (V (P, T ))

@T

=
@T

@P
· @P
@V

· @V
@T

= 1

21. Find
@P (V, T )

@T
implicitly in

✓

P +
14

V 2

◆

(V � 0.004) = 12T

@P (V, T )

@T
(V � 0.004) = 12 and

@P (V, T )

@T
=

12

V � 0.004
.

The increase in pressure due to an increase in

one degree will be
12

V
(assuming V is much

larger than 0.004).

22. In this case, we have
@T

@V
= � 7

6V 2
+

7

750V 3
+

125P

12
Thus, the increase in T due to an increase in
V depends on V and P .

23. S =
cL4

wh3

@S

@w
= � cL4

w2h3
= � 1

w

cL4

wh3
= � 1

w
S

24. S =
cL4

wh3

@S

@h
= �3

cL4

wh4
= � 3

h

✓

cL4

wh3

◆

= � 3

h
S

25. The variable with the largest exponent has the
largest proportional e↵ect. In this case h has
the greatest proportional e↵ect.

26. The variable with the largest exponent (in ab-
solute value) has the greatest proportional ef-
fect.

27.

@C

@t
(10, 10) ⇡ 1.4,

@C

@s
(10, 10) ⇡ �2.4

When the temperature is 10� and the wind
speed is 10mph, an increase in temperature of
1� will increase the wind chill by approximately
1.4 degrees, whereas an increase in wind speed
of 1mph will decrease the wind chill by 2.4 de-
grees.

If
@C

@t
(10, 10) = 1, then a 1� increase in tem-

perature would correspond to a 1� increase in
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the wind chill temperature. It is perhaps sur-
prising that a 1� increase in temperature leads
to a greater increase in the “felt” temperature
(when the wind speed is 10mph).

28.

@C

@t
(10, 20) ⇡ 1.5,

@C

@s
(10, 20) ⇡ �1.1

For a fixed temperature of 10�, the wind chill
is decreasing faster at a wind speed of 10mph
than at a wind speed of 20mph.

29.

@f

@v
(170, 3000) ⇡ 2.2 feet per ft/sec.

An increase of 1 foot per second of velocity
increases the range by approximately 2.2 feet.
@f

@w
(170, 3000) ⇡ 0.0195 feet per rpm.

An increase in 1 rpm increases the range by
0.0195 feet.

30. We need an additional 5ft of flight. Since
@f

@w
(170, 3000) ⇡ 0.02, there is an additional

5

0.02
= 250 rpm of backspin needed.

31. (a) We consider the y = 1 trace.
@f

@x
(1, 1) = �2 is the slope of this trace

at (1, 1, 2).

-2

-1-4-2
0-1 x

-2

0 1y 1

0

22

2

4

(b) We consider the x = 2 trace.
@f

@y
(2, 0) = 0 is the slope of this trace

at (2, 0, 0).

3
2

1
0 y

−3
−1

−2

−12.5

x

−1

−10.0

0
−2

1

−7.5

2 3

−5.0

−3

−2.5

0.0

2.5

32. (a) We consider the y = 0 trace.
@f

@x
(1, 0) = 1 is the slope of this trace

at (1, 0, 1).

-2

-1

0 x-2
0

-1

0.5

1
0

1

y

1.5

1 2

2

2

2.5

(b) We consider the x = 0 trace.
@f

@y
(0, 2) = 1 is the slope of this trace

at (0, 2, 2).

3210 y−10
−3 −2

1

−1

2

x

−2
0

3

1

4

2 3
−3

33.

@f

@x
= 2x,

@f

@y
= 2y

@f

@x
= 0 at x = 0.

@f

@y
= 0 at y = 0.

This means there are horizontal tangent lines
to the trace in the y = 0 plane and the x = 0
plane at (0, 0). This corresponds to the mini-
mum value of the function.

34.

@f

@x
= 2x� 4x3,

@f

@y
= 2y

@f

@x
= 0 at x = 0,± 1p

2
.

@f

@y
= 0 at y = 0.

This means there are horizontal tangent lines
to the trace in the y = 0 plane and the x = 0
plane at (0, 0) and in the plane perpendic-

ular to the x- and y-axes at

✓

1p
2
, 0

◆

and
✓

� 1p
2
, 0

◆

.



12.3. PARTIAL DERIVATIVES 679

35.

@f

@x
= cosx sin y,

@f

@y
= sinx cos y

@f

@x
= 0 when either x =

⇡

2
+ n⇡, or y = m⇡.

@f

@y
= 0 when either x = n⇡, or y =

⇡

2
+m⇡.

When x =
⇡

2
+ n⇡ and y =

⇡

2
+m⇡,

f(x, y) = 1 if m and n are both even and if m
and n are both odd, and f(x, y) = �1 if one is
odd and the other is even. These are maximum
and minimum points. If x = n⇡ and y = m⇡,
f(x, y) = 0 and these points are neither min-
ima nor maxima.

36.

@f

@x
= �2xe�x

2�y

2

,
@f

@y
= �2ye�x

2�y

2

.

@f

@x
= 0 at x = 0.

@f

@y
= 0 at y = 0.

This means that there are horizontal tangent
lines to the trace in the x = 0 plane and the
y = 0 plane at (0, 0).

37. f
x

=
c

y � b
� cos (x+ y) ,

f
y

=
�cx

(y � b)2
� cos (x+ y) ,

f
yx

= � c

(y � b)2
+ sin (x+ y) ,

f
xy

= � c

(y � b)2
+ sin (x+ y)

Thus, f
yx

= f
xy

.

38. f
x

= cy xcy�1 � b e(b/(x�y) )

(x� y)2
,

f
xy

= cxcy�1 + c2yxcy�1 lnx� 2b e(b/(x�y) )

(x� y)3

+
b2 e(b/(x�y) )

(x� y)4
,

f
y

= cxcy lnx� b e(b/(x�y) )

(x� y)2
,

f
yx

= cxcy�1 + c2yxcy�1 lnx� 2b e(b/(x�y) )

(x� y)3

+
b2 e(b/(x�y) )

(x� y)4

Thus, f
yx

= f
xy

.

39. (a) f (0, 0) = 6, f (0.5, 0) = 8,
f (�0.5, 0) = 4,

) @f

@x
(0, 0) ⇡ f (±0.5, 0)� f (0, 0)

±0.5

=
±2

±0.5
= 4.

f (0, 0) = 6, f (0, 1) = 8, f (0,�1) = 4

) @f

@y
(0, 0) ⇡ f (0,±1)� f (0, 0)

±1
= 2.

(b)
@f

@x
(0, 1) ⇡ f (�1, 1)� f (0, 1)

�1

=
6� 8

�1
= 2.

@f

@y
(0, 1) ⇡ f (0, 1)� f (0, 0)

1

=
8� 6

1
= 2.

(c)
@f

@x
(2, 0) ⇡ f(2 + 0.5, 0)� f(2, 0)

0.5
... (1)

@f

@x
(2, 0) ⇡ f(2� 1.5, 0)� f(2, 0)

�1.5
... (2)

(1) - (2) )

4
@f

@x
(2, 0) ⇡ f(2.5, 0)� (0.5, 0)

0.5
@f

@x
(2, 0) ⇡ f(2.5, 0)� f(0.5, 0)

2

=
10� 8

2
= 1

Now using (1),
f(2, 0) ⇡ f(2.5, 0)� 0.5

) @f

@x
(2, 0) = 9.5

) @f

@y
(2, 0) ⇡ f(2, 0.5)� f(2, 0)

0.5
= 1.

40. (a)
@f

@x
(0, 0) ⇡ f(�1, 0)� f(0, 0)

�1
= �2.

@f

@y
(0, 0) ⇡ f (0, 1)� f(0, 0)

1
= �2.

(b)
@f

@x
(0, 1) ⇡ f (�1, 1)� f(0, 1)

�1
= �2

@f

@y
(0, 1) ⇡ f(0, 0)� f(0, 1)

�1
= �2

(c) f (2.5, 0) = 4, f (0, 0) = 6
@f

@x
(2, 0) ⇡ f (2.5, 0)� f (2, 0)

0.5

) (0.5) · @f
@x

(2, 0) ⇡ 4� f (2, 0) ... (1)

@f

@x
(2, 0) ⇡ f (0, 0)� f (2, 0)

�2

) 2 · @f
@x

(2, 0) ⇡ f (2, 0)� 6... (2)

( 1 ) + ( 2) ) (2.5) · @f
@x

(2, 0) ⇡ �2 or

@f

@x
(2, 0) ⇡ �0.8.

Therefore, from (2) we get f (2, 0) = 4.4.
Hence,
@f

@y
(2, 0) ⇡ f (2,�1)� f (2, 0)

�1
= �1.6
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41.

@f

@x
(x, y, z) = lim

h!0

f(x+ h, y, z)� f(x, y, z)

h
@f

@y
(x, y, z) = lim

h!0

f(x, y + h, z)� f(x, y, z)

h
@f

@z
(x, y, z) = lim

h!0

f(x, y, z + h)� f(x, y, z)

h

42. There are 9 second order partial derivatives of
f(x, y, z). Assuming the equality of mixed par-
tial derivatives f

xy

= f
yx

, f
xz

= f
zx

,
f
yz

= f
zy

, there are 6 di↵erent second order
partial derivatives.

43. f
x

(x, y) =
y(x4 + 4x2y2 � y4)

(x2 + y2)2
, and

f
y

(x, y) =
x(x4 � 4x2y2 � y4)

(x2 + y2)2

for (x, y) 6= (0, 0).
For (x, y) = (0, 0), the limit definition gives
f
x

= f
y

= 0. We compute

f
xy

(0, 0) = lim
h!0

f
x

(0, 0 + h)� f
x

(0, 0)

h

lim
h!0

�h5

h5
= �1.

f
yx

(0, 0) = lim
h!0

f
y

(0 + h, 0)� f
y

(0, 0)

h

lim
h!0

h5

h5
= 1.

The mixed partial derivatives are not continu-
ous on an open set containing (0, 0).

44. For x = 0 the function f is the constant func-
tion 0. Similarly if y = 0. Therefore the two
first order partial derivatives are 0 at the point
(0, 0).

45.

@f

@x
=

�1

x2
sinxy2 +

y2

x
cosxy2

@2f

@x@y
=

�2xy

x2
cosxy2 +

2y

x
cosxy2

+
y2

x
(�2xy) sinxy2

= �2y3 sinxy2.

@f

@y
=

2yx

x
cosxy2 = 2y cosxy2

@2f

@y@x
= �2y3 sinxy2.

@2f

@x@y
=

@2f

@y@x
, but di↵erentiating with respect

to y first was much easier!

46. The perimeter, length and width are related by

P = 2L+ 2W , so that W =
P � 2L

2
.

Substitute into the area formula to get

A = LW = L
P � 2L

2
=

1

2
LP � L2.

Then
@A

@L
=

1

2
P � 2L.

Using the formula A = LW ,

we get
@A

@L
= W =

1

2
P � L.

The di↵erence between the two derivatives can
be explained by noting that in the first case,
the perimeter is being held constant while the
length is changing, and therefore the width
is changing as well. In the second case, the
width is being held constant while the length
is changing, and therefore the perimeter must
be changing too. We should not expect these
to be the same!

47.

@f

@x
(x0, y0) is equal to the slope at x0 of the

curve obtained by intersecting the surface

z = f(x, y) with the plane y = y0.
@2f

@x2
(x0, y0)

is the concavity of this curve at the point
x = x0.

48.

@2f

@y2
(x0, y0) is the concavity of the curve

formed by intersecting z = f(x, y) with the
plane x = x0 ,at the point y = y0.

49. (a) f
x

(1, 1) ⇡ f (0, 1)� f (1, 1)

�1
=

0� 1

�1
= 1

(b) f
x

(0, 1) ⇡ f (�1, 1)� f (0, 1)

�1
=

1� 0

�1
=

�1

(c) f
y

(1, 0) ⇡ f (1, 2)� f (1, 0)

2
=

0� 2

2
=

�1

(d) f
y

(1, 1) ⇡ f (1, 2)� f (1, 1)

1
=

0� 1

1
=

�1

50. f
x

(0, 0) ⇡ f(h, 0)� f(0, 0)

h
⇡ 0.

f
y

(0, 0) ⇡ f(0, h)� f(0, 0)

h
⇡ 1.

51. Consider f
x

= 2x sin y + 3x2y2, therefore

f =

Z

f
x

dx =x2 sin y + x3y2 + g (y)

) f
y

= x2 cos y + 2x3y + g0 (y),
but f

y

= x2 cos y + 2x3y +
p
y.

Therefore, g0(y) =
p
y or g(y) =

2

3
y
p
y + c,

) f(x, y) = x2 sin y + x3y2 +
2

3
y
p
y + c.

52. Consider f
x

= yexy +
x

x2 + 1
, therefore

f =

Z

f
x

dx = exy +
1

2
ln
�

x2 + 1
�

+ g (y)

) f
y

= xexy + g0 (y),
but f

y

= xexy + y cos y



12.3. PARTIAL DERIVATIVES 681

Therefore, g0 (y) = y cos y or
g (y) = y sin y + cos y + c. Thus

f(x, y) = exy+ln
�

x2 + 1
�1/2

+y sin y+cos y+c

53. Consider f
x

=
2x

x2 + y2
+

2

x2 � 1

f =

Z

f
x

dx

= ln
�

x2 + y2
�

+ ln

✓

x� 1

x+ 1

◆

+ g (y)

) f
y

=
2y

x2 + y2
+ ln

✓

x� 1

x+ 1

◆

+ g0 (y),

but f
y

=
3

y2 + 1
+

2y

x2 + y2
.

Therefore, g0 (y) =
3

y2 + 1
or

g (y) = 3tan�1y + c

) f = ln
�

x2 + y2
�

+ ln

✓

x� 1

x+ 1

◆

+ 3tan�1y + c

54. Consider f
x

=

r

y

x
+ 2 cos (2x+ y)

f = 2
p
xy + sin(2x+ y) + g(y)

f
y

=

r

x

y
+ cos (2x+ y) + g0(y),

but f
y

=

r

x

y
+ cos (2x+ y) .

Therefore, g0(y) = 0 or g(y) = c
) f (x, y) = 2

p
xy + sin (2x+ y) + c

55. (a)
@f

n

@x
= n⇡ cosn⇡x cosn⇡ct

@2f
n

@x2
= �n2⇡2 sinn⇡x cosn⇡ct

@f
n

@t
= �n⇡c sinn⇡x sinn⇡ct

@2f
n

@t2
= �n2⇡2c2 sinn⇡x cosn⇡ct

So c2
@2f

n

@x2
=

@2f
n

@t2
.

(b)
@2f

@x2
(x� ct) = f 00(x� ct) = c2f 00(x� ct)

= c2
@2f

@x2
(x� ct)

dx

dt
=

df/dt

df/dx
=

f 0(x� ct)(�c)

f 0(x� ct)
= �c

so c gives the velocity.

56. (a)
@V

@I
= �5000



(1 + 0.1(1� T ))5

(1 + I)6

�

=
�5

1 + I
V .

@V

@T
= (5)(�0.1)1000



(1 + 0.1(1� T ))4

(1 + I)5

�

=
�0.5

1 + 0.1(1� T )
V .

The inflation rate has a greater influence
on V .

(b)
@V

@I
= � 5

1 + I
V

@V

@r
=

3.6

1 + 0.72r
V

The inflation rate has the greater influ-
ence on V .

57.

@p

@x
= cosx cos t. This describes the change in

the position of the string at a fixed time as the
distance along the string changes.
@p

@t
= � sinx sin t. This describes the change in

position of the string at a fixed distance from
the end as time changes.

58.

@p

@t
= p0(x� ct)

�

�µe�µt

�

� cp0e
�µt

= �µp� cp0e
µt

@p

@x
= p0e

�µt

Therefore
@p

@t
= �c

@p

@x
� µp

@p

@t
gives the rate of change of the concentra-

tion of pollutant at fixed position.
@p

@x
gives the rate of change of the concentra-

tion of pollutant at a particular time as the
location in the stream varies.
@p

@t
= �c

@p

@x
� µp says that the time rate of

change of concentration at a particular loca-
tion is related to the rate of change with dis-
tance along the stream and also to the current
concentration and the decay rate.

59. (a) G/T =
H

T
� S, so

@(G/T )

@T
=

�H

T 2
.

(b) Let U =
1

T
.

G

T
= UH � S

@(G/T )

@(1/T )
=

@(G/T )

@U
= H

60.

@R

@R1
=

(R1R2 +R1R3 +R2R3)(R2R3)

(R1R2 +R1R3 +R2R3)2

� (R1R2R3)(R2 +R3)

(R1R2 +R1R3 +R2R3)2

=
R2

2R
2
3

(R1R2 +R1R3 +R2R3)2
=

✓

R

R1

◆2

.



682 CHAPTER 12. FUNCTIONS OF SEVERAL VARS. AND PARTIAL DIFF.

Due to the symmetry we can easily write:
@R

@R2
=

✓

R

R2

◆2

, and
@R

@R3
=

✓

R

R3

◆2

61. P (100, 60, 15) =
(100)(60)

15
= 400.

Since 100 animals were tagged, we estimate

that we tagged
1

4
of the population.

@P

@t
= �TS

t2
, so

@P

@t
(100, 60, 15) ⇡ �27.

If one more recaptured animal were tagged, our
estimate of the total population would decrease
by 27 animals.

62. Temperature is colder to the north (greater lat-
itude and therefore greater y). Therefore we

expect
@T

@y
< 0.

If a cold front is moving from east to west,
then we expect the temperature to be colder
in the east (which has smaller longitude, x)

and therefore
@T

@x
> 0.

63. (a)
@P

@L
= 0.75L�0.25K0.25

@P

@K
= 0.25L0.75K�0.75

(b) From Part (a),
@P

@L
= 0.75L�0.25K0.25

@P

@K
= 0.25L0.75K�0.75 and therefore,

@2P

@L2
= �0.1875L�1.25K0.25 < 0

@2P

@K2
= �0.1875L0.75K�1.75 < 0

(c)
@2P

@L@K
= 0.1875L�0.25K�.75 > 0

64.

@D1

@p2
= �5, and

@D2

@p1
= �6. They are com-

plementary because an increase in the price of
one decreases the demand for the other.

65. They are called substitute commodities because
they behave similarly.

12.4 Tangent Planes and Lin-
ear Approximations

1. f
x

= 2x, f
y

= 2y

(a) f
x

(2, 1) = 4, f
y

(2, 1) = 2.
The tangent plane at (2, 1, 4) is
4(x� 2) + 2(y � 1)� (z � 4) = 0
The normal line is
x = 2 + 4t, y = 1 + 2t, z = 4� t

(b) f
x

(0, 2) = 0, f
y

(0, 2) = 4.
The tangent plane at (0, 2, 3) is
0(x� 0) + 4(y � 2)� (z � 3) = 0
The normal line is
x = 0, y = 2 + 4t, z = 3� t

2. f
x

= �2xe�x

2�y

2

, f
y

= �2ye�x

2�y

2

(a) f
x

(0, 0) = 0, f
y

(0, 0) = 0.
The tangent plane at (0, 0, 1) is
0(x� 0) + 0(y � 0)� (z � 1) = 0
The normal line is
x = 0, y = 0, z = 1� t

(b) f
x

(1, 1) = �2e�2, f
y

(1, 1) = �2e�2.
The tangent plane at (1, 1, e�2) is
�2e�2(x�1)�2e�2(y�1)�(z�e�2) = 0
�2e�2(x+ y)� 5e�2 � z = 0
The normal line is
x = 1� 2e�2t, y = 1� 2e�2t, z = e�2 � t

3. f
x

= cosx cos y, f
y

= � sinx sin y

(a) f
x

(0,⇡) = �1, f
y

(0,⇡) = 0.
The tangent plane at (0,⇡, 0) is
�1(x� 0) + 0(y � ⇡)� (z � 0) = 0
The normal line is
x = �t, y = ⇡, z = �t

(b) f
x

(
⇡

2
,⇡) = 0, f

y

(
⇡

2
,⇡) = 0.

The tangent plane at (
⇡

2
,⇡,�1) is

0(x� ⇡

2
) + 0(y � ⇡)� (z + 1) = 0

The normal line is
x =

⇡

2
, y = ⇡, z = �1� t

4. f
x

= 3x2 � 2y, f
y

= �2x

(a) f
x

(�2, 3) = 6, f
y

(�2, 3) = 4.
The tangent plane at (�2, 3, 4) is
6(x+ 2) + 4(y � 3)� (z � 4) = 0
The normal line is
x = �2 + 6t, y = 3 + 4t, z = 4� t

(b) f
x

(1,�1) = 5, f
y

(1,�1) = �2.
The tangent plane at (1,�1, 3) is
5(x� 1)� 2(y + 1)� (z � 3) = 0
The normal line is
x = 1 + 5t, y = �1� 2t, z = 3� t

5. f
x

=
x

p

x2 + y2
, f

y

=
y

p

x2 + y2
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(a) f
x

(�3, 4) =
�3

5
, f

y

(�3, 4) =
4

5
.

The tangent plane at (�3, 4, 5) is
�3

5
(x+ 3) +

4

5
(y � 4)� (z � 5) = 0

The normal line is

x = �3� 3

5
t, y = 4 +

4

5
t, z = 5� t

(b) f
x

(8,�6) =
4

5
, f

y

(8,�6) = �3

5
.

The tangent plane at (8,�6, 10) is
4

5
(x� 8)� 3

5
(y + 6)� (z � 10) = 0

The normal line is

x = 8 +
4

5
t, y = �6� 3

5
t, z = 10� t

6. f
x

=
4

y
, f

y

= �4x

y2

(a) f
x

(1, 2) = 2, f
y

(1, 2) = �1.
The tangent plane at (1, 2, 2) is
2(x� 1)� 1(y � 2)� (z � 2) = 0
The normal line is
x = 1 + 2t, y = 2� t, z = 2� t

(b) f
x

(�1, 4) = 1, f
y

(�1, 4) =
1

4
.

The tangent plane at (�1, 4,�1) is

(x+ 1) +
1

4
(y � 4)� (z + 1) = 0

The normal line is

x = �1 + t, y = 4 +
1

4
t, z = �1� t

7. f
x

=
x

p

x2 + y2
, f

y

=
y

p

x2 + y2

(a) f
x

(3, 0) = 1, f
y

(3, 0) = 0
L(x, y) = 3 + 1(x� 3) + 0(y � 0) = x

(b) f
x

(0,�3) = 0, f
y

(0,�3) = �1
L(x, y) = 3 + 0(x� 0)� 1(y + 3) = �y

8. f
x

= cosx cos y, f
y

= � sinx sin y

(a) f
x

⇣⇡

4
,
⇡

4

⌘

=
1

2
, f

y

⇣⇡

4
,
⇡

4

⌘

=
�1

2

L (x, y) =
1

2
+

1

2

⇣

x� ⇡

4

⌘

� 1

2

⇣

y � ⇡

4

⌘

=
x

2
� y

2
+

1

2

(b) f
x

⇣⇡

3
,
⇡

6

⌘

=

p
3

4
, f

y

⇣⇡

3
,
⇡

6

⌘

= �
p
3

4

L (x, y) =
3

4
+

p
3

4

⇣

x� ⇡

3

⌘

�
p
3

4

⇣

y � ⇡

6

⌘

=

p
3

4
x�

p
3

4
y +

3

4
� ⇡

8
p
3

9. f
x

=
1p

1� x2
, f

y

= zsec2 (yz) ,

f
z

= ysec2 (yz)

(a) f
x

✓

0,⇡,
1

4

◆

= 1, f
y

✓

0,⇡,
1

4

◆

=
1

2
,

f
z

✓

0,⇡,
1

4

◆

= 2⇡

L

✓

0,⇡,
1

4

◆

= 1 + (x� 0) +
1

2
(y � ⇡)

+ 2⇡

✓

z � 1

4

◆

= x+
y

2
+ 2⇡z + 1� ⇡

(b) f
x

✓

1p
2
, 2, 0

◆

=
p
2, f

y

✓

1p
2
, 2, 0

◆

= 0,

f
z

✓

1p
2
, 2, 0

◆

= 2

L (x, y, z) =
⇡

4
+
p
2

✓

x� 1p
2

◆

+ 0 (y � 2) + 2 (z � 0)

=
p
2x+ 2z +

⇡

4
� 1

10. f
x

= eyz � 1

2
p

x� y2
,

f
y

= xzeyz +
y

p

x� y2
,

f
z

= xyeyz

(a) f
x

(4, 1, 0) = 1� 1

2
p
3
,

f
y

(4, 1, 0) =
1p
3
,

f
z

(4, 1, 0) = 4

L(x, y, z) = 3�
p
3

+

✓

1� 1

2
p
3

◆

(x� 4)

+

✓

1p
3

◆

(y � 1) + 4(z � 0)

=

✓

1� 1

2
p
3

◆

x+
1p
3
y + 4z � 1� 2p

3

(b) f
x

(1, 0, 2) =
1

2
,

f
y

(1, 0, 2) = 2,
f
z

(1, 0, 2) = 0 L(x, y, z)

= 0 +
1

2
(x� 1) + 2(y � 0) + 0(z � 2)

=
1

2
x+ 2y � 1

2

11. f
w

= 2wxy � yzewyz,
f
x

= w2y,
f
y

= w2x� wzewyz,
f
z

= �wyewyz
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(a) f
x

(�2, 3, 1, 0) = �12
f
y

(�2, 3, 1, 0) = 4
f
z

(�2, 3, 1, 0) = 12
f
w

(�2, 3, 1, 0) = 2
L(x, y, z, w) = �11� 12(w + 2)

+ 4(x� 3) + 12(y � 1) + 2(z � 0)
= �12w + 4x+ 12y + 2z � 37

(b) f
w

(0, 1,�1, 2) = 2
f
x

(0, 1,�1, 2) = 0
f
y

(0, 1,�1, 2) = 0
f
z

(0, 1,�1, 2) = 0
L(w, x, y, z) = �1 + 2(w � 0) = 2w � 1

12. f
x

= �yz sin(xyz)� 2w3x,
f
y

= �zx sin(xyz),
f
z

= �xy sin(xyz),
f
w

= �3w2x2

(a) f
x

(2,�1, 4, 0) = 16
f
y

(2,�1, 4, 0) = 0
f
z

(2,�1, 4, 0) = 0
f
w

(2,�1, 4, 0) = �12
L(w, x, y, z) = �7� 12(w� 2)+16(x+1)

= �12w + 16x+ 33

(b) f
x

(2, 1, 0, 1) = �16
f
y

(2, 1, 0, 1) = 0
f
z

(2, 1, 0, 1) = 0
f
w

(2, 1, 0, 1) = �12
L(w, x, y, z) = �7� 12(w� 2)� 16(x� 1)

= �12w � 16x+ 33

13. L(x, y) = x
x y L(x,y) f(x,y)
3 �0.1 3 3.00167

3.1 0 3.1 3.1
3.1 �0.1 3.1 3.10161

14. L(x, y) = �y
x y L(x,y) f(x,y)

0.1 �3 3 3.00167
0 �3.1 3.1 3.1

0.1 �3.1 3.1 3.10161

15. L (x, y, z) = x+
y

2
+ 2⇡z + 1� ⇡

x y z L(x,y, z) f(x,y, z)
0 3 0.25 0.929204 0.931596

0.1 ⇡ 0.25 1.1 1.100167
0.1 ⇡ 0.2 0.685841 0.726543

16. L (x, y, z) =
p
2x+ 2z +

⇡

4
� 1

x y z L(x,y, z) f(x,y, z)
0.7 2 0 0.775348 0.775397
0.7 1.9 0 0.775348 0.775397
0.7 2 0.1 0.975347 0.978108

17. As in example 4.5,
@S

@L
(36, 2, 6) = 0.1728

@S

@h
(36, 2, 6) = �0.7776

@S

@w
(36, 2, 6) = �0.7776

S(36, 2, 6) = 1.5552
The maximum sag occurs if (L � 36) = 0.5,
(w� 2) = �0.2 and (h� 6) = �0.5. The linear
approximation predicts the change in sag will
be
0.5(0.1728) + 0.2(0.7776) + 0.5(0.7776)

= 0.6307.
The range of sags will be 1.5552± 0.6307.

18.

@S

@L
(32, 2, 8) = 0.0512

@S

@h
(32, 2, 8) = �0.1536

@S

@w
(32, 2, 8) = �0.2048

S(32, 2, 8) = 0.4096
The maximum sag occurs if (L � 32) = 0.4,
(w� 2) = �0.3 and (h� 8) = �0.4. The linear
approximation predicts the change in sag will
be
0.4(0.0512) + 0.3(0.2048) + 0.4(0.1536)

= 0.1434.
The range of sags will be 0.4096± 0.1434.

19. g(9.9, 930) ⇡ 4 + 0.3(�0.1)� 0.004(30)
= 3.85

20. g(10.2, 910) ⇡ 4 + 0.3(0.2)� 0.004(10)
= 4.02

21. The linear approximation will be
g(s, t) ⇡ 4 + 0.1(s� 10)� 0.001(t� 900)
g(10.2, 890) ⇡ 4.03

22.

@g

@G
⇡ �0.04

�0.05
= 0.8

g(10.15, 905, 3.98)
⇡ 4 + 0.3(0.15)� 0.004(5) + 0.8(�0.02)
= 4.009

23. f
x

= 2y, f
y

= 2x+ 2y
�z = f(x+�x, y +�y)� f(x, y)

= 2(x+�x)(y +�y) + (y +�y)2

� (2xy + y2)
= (2y)�x+ (2x+ 2y)�y
+ (2�y)�x+ (�y)�y

Here

�z = f
x

(a, b)�x+f
y

(a, b)�y+"1�x+"2�y,
where "1 = 2�y and "2 = �y.
Therefore, f is di↵erentiable, if f

x

and f
y
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are continuous on some open region contain-
ing (a, b) of the domain of f , as "1 ! 0 and
"2 ! 0 for (�x,�y) ! (0, 0)

24. f
x

= 2(x+ y), f
y

= 2(x+ y)
�z = f(x+�x, y +�y)� f(x, y)

= [(x+�x) + (y +�y)]2 � (x+ y)2

= (2x+ 2y)�x+ (2x+ 2y)�y
+ (�x+ 2�y)�x+ (�y)�y

Here

�z = f
x

(a, b)�x+f
y

(a, b)�y+"1�x+"2�y,
where "1 = �x+ 2�y and "2 = �y.
Therefore, f is di↵erentiable, if f

x

and f
y

are continuous on some open region contain-
ing (a, b) of the domain of f , as "1 ! 0 and
"2 ! 0 for (�x,�y) ! (0, 0).

25. f
x

= 2x, f
y

= 2y
�z = f(x+�x, y +�y)� f(x, y)

= (x+�x)2 + (y +�y)2 � (x2 + y2)
= (2x)�x+ (2y)�y + (�x)�x+ (�y)�y

Here

�z = f
x

(a, b)�x+f
y

(a, b)�y+"1�x+"2�y,
where "1 = �x and "2 = �y.
Therefore, f is di↵erentiable, if f

x

and f
y

are continuous on some open region contain-
ing (a, b) of the domain of f , as "1 ! 0 and
"2 ! 0 for (�x,�y) ! (0, 0)

26. f
x

= 3x2 � 3y, f
y

= �3x
�z = f(x+�x, y +�y)� f(x, y)

= (x+�x)3 � 3(x+�x)(y +�y)
� (x3 � 3xy)

= (3x2 � 3y)�x� 3x�y
+ [3x�x+ (�x)2]�x� 3�x�y

Here

�z = f
x

(a, b)�x+f
y

(a, b)�y+"1�x+"2�y,

where "1 = 3x�x+ (�x)2 and "2 = �3�x.

Therefore, f is di↵erentiable, if f
x

and f
y

are continuous on some open region contain-
ing (a, b) of the domain of f , as "1 ! 0 and
"2 ! 0 for (�x,�y) ! (0, 0)

27. f
x

= ex+2yand f
y

= 2ex+2y

�z = f (x+�x, y +�y)� f (x, y)
= ex · e�x · e2y · e2�y � ex · e2y
= ex+2y

�

e�x+2�y � 1
�

= ex+2y (1 + (�x+ 2�y)

+
(�x+ 2�y)2

2!
+ ...� 1

!

= ex+2y (�x) + 2ex+2y (�y)

+ ex+2y

 

(�x+ 2�y)2

2!
+

(�x+ 2�y)3

3!

+.... )
= ex+2y (�x) + 2ex+2y (�y)

+ex+2y

"

(�x)2 + 2 (�x) (2�y) + (2�y)2

2!

+
(�x)3 + 3(...)2 (...) + 3 (..) (...)2 + (...)3

3!
+...]

= ex+2y (�x) + 2ex+2y (�y)

+



ex+2y

✓

(�x) + (2�y)

2!

+
(�x)2 + 3 (�x) (2�y)

3!
+ ...

!#

(�x)

+



ex+2y

✓

(�x) + (2�y)

2!

+
3 (�x) (2�y) + (2�y)2

3!
+ ...

!#

(2�y)

Here

�z = f
x

(a, b)�x+f
y

(a, b)�y+"1�x+"2�y,

where

"1 = ex+2y
✓

(�x) + (2�y)

2!

+
(�x)2 + 3 (�x) (2�y)

3!
+ ...

!

and
"2 = ex+2y

✓

(�x) + (2�y)

2!

+
3 (�x) (2�y.) + (2�y)2

3!
+ ...

!

Therefore, f is di↵erentiable, if f
x

and f
y

are continuous on some open region contain-
ing (a, b) of the domain of f , as "1 ! 0 and
"2 ! 0 for (�x,�y) ! (0, 0)

28. f
x

= 2x sin y and f
y

= x2 cos y

�z = f (x+�x, y +�y)� f (x, y)

�z = (x+�x)2 sin (y +�y)� x2 sin y
= x2 sin (y +�y)� x2 sin y

+ 2x (�x) sin (y +�y)
+ (�x)2 sin (y +�y)

=
�

x2 cos y
�

(sin�y ��y +�y)
+
�

x2 sin y
�

(cos�y � 1)
+ (2x sin y) (cos�y � 1 + 1)�x
+ (2x cos y sin�y)�x

+ (�x)2 sin (y +�y)
=
�

x2 cos y
�

�y + (2x sin y)�x
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+ [2x sin y (cos�y � 1)
+2x cos y sin�y
+�x sin (y +�y)] (�x)

+
�

x2
�



cos y

✓

sin�y

�y
� 1

◆

+sin y
(cos�y � 1)

(�y)

�

(�y)

Here

�z = f
x

(a, b)�x+f
y

(a, b)�y+"1�x+"2�y,

Where

"1 = [2x sin y (cos�y � 1) + 2x cos y sin�y
+�x sin (y +�y)]

and

"2 =
�

x2
�



cos y

✓

sin�y

�y
� 1

◆

+sin y
(cos�y � 1)

(�y)

�

Therefore, f is di↵erentiable, if f
x

and f
y

are continuous on some open region contain-
ing (a, b) of the domain of f , as

"1 ! 0 and "2 ! 0 for (�x,�y) ! (0, 0)

29. f
x

=
2x

y
and f

y

= �x2

y2

�z = f (x+�x, y +�y)� f (x, y)

=
(x+�x)2

(y +�y)
� x2

y

=
x2

y +�y
+

2x�x

y +�y
+

(�x)2

y +�y
� x2

y

= � x2�y

y (y +�y)
+

2x�x

y +�y
+

(�x)2

y +�y

= �x2

y2

✓

y

y +�y
+ 1� 1

◆

�y

+
2x

y

✓

y

y +�y
� 1 + 1

◆

�x

+
(�x)2

y +�y

=
2x

y
�x� x2

y2
�y +

(�x)2

y +�y

+
x2(�y)2

y2 (y +�y)
� 2x (�x) (�y)

y (y +�y)

Here

�z = f
x

(a, b)�x+f
y

(a, b)�y+"1�x+"2�y,

Where

"1 =
�x

(y +�y)
and "2 =

x2�y � 2xy�x

y2 (y +�y)
.

Therefore, f is di↵erentiable, if f
x

and f
y

are continuous on some open region contain-
ing (a, b) of the domain of f , as "1 ! 0 and
"2 ! 0 for (�x,�y) ! (0, 0)

30. f
x

= � 2

(x+ y)2
and f

y

= � 2

(x+ y)2

�z = f (x+�x, y +�y)� f (x, y)

=
2

(x+�x) + (y +�y)
� 2

x+ y

=
�2�x� 2�y

(x+ y +�x+�y) (x+ y)
,

Writing �2�x� 2�y = �2�x (1)� 2�y (1)

and replacing 1 by


(x+ y +�x+�y)

(x+ y)

� (x+ y +�x+�y)

(x+ y)
+ 1

�

,

we get

�z = � 2

(x+ y)2
�x� 2

(x+ y)2
�y

+
2 (�x+�y)

(x+ y +�x+�y) (x+ y)
�x

+
2 (�x+�y)

(x+ y +�x+�y) (x+ y)
�y

Here

�z = f
x

(a, b)�x+f
y

(a, b)�y+"1�x+"2�y,

Where

"1 =
2 (�x+�y)

(x+ y +�x+�y) (x+ y)
and

"2 =
2 (�x+�y)

(x+ y +�x+�y) (x+ y)

Therefore, f is di↵erentiable, if f
x

and f
y

are continuous on some open region contain-
ing (a, b) of the domain of f , as "1 ! 0 and
"2 ! 0 for (�x,�y) ! (0, 0)

31. f
x

= yex + cosx, f
y

= ex

dz = (yex + cosx)dx+ eydy

32. f
x

=
1

2
p
x+ y

, f
y

=
1

2
p
x+ y

dz =
1

2
p
x+ y

dx+
1

2
p
x+ y

dy

33. f
x

=
1

x
� 1

1 + (x� y � z)2

f
y

=
1

y
+

1

1 + (x� y � z)2

f
z

=
1

z
+

1

1 + (x� y � z)2

dw =

 

1

x
� 1

1 + (x� y � z)2

!

dx

+

 

1

y
+

1

1 + (x� y � z)2

!

dy
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+

 

1

z
+

1

1 + (x� y � z)2

!

dz

34. f
x

=

✓

1 +
2x2y

z

◆

e

x2y

z � z

2 (x+ y)
p

ln (x+ y)

f
y

=
x3

z
e

x2y

z � z

2 (x+ y)
p

ln (x+ y)

f
z

= �x3y

z2
e

x2y

z �
p

ln (x+ y)

dw =

0

B

@

e

x2y

z

✓

z + 2x2y

z

◆

� z

2 (x+ y)
p

ln (x+ y)

!

dx

+

0

B

@

x3

z
e

x2y

z � z

2 (x+ y)
p

ln (x+ y)

1

C

A

dy

+

0

B

@

�x3y

z
e

x2y

z �
p

ln (x+ y)

1

C

A

dz

35. f
x

(0, 0) = lim
h!0

f(0 + h, 0)� f(0, 0)

h
= 0

f
y

(0, 0) = lim
h!0

f(0, 0 + h)� f(0, 0)

h
= 0

Using Definition 4.1, at the origin we have

�z =
2(0 +�x)(0 +�y)

(0 +�x)2 + (0 +�y)2

=
2�x�y

�x2 +�y2
.

The function is di↵erentiable if
�z = f

x

�x+ f
y

�y + "1�x+ "2�y
where "1 and "2 both go to zero as
(�x,�y) ! (0, 0). If the function is di↵eren-
tiable we must be able to write
2�x�y

�x2 +�y2
= "1�x+ "2�y,

but the function on the left does not have a
limit as (�x,�y) ! (0, 0). (The limit is dif-
ferent along the lines �y = �x and along
�y = ��x.)

36. f
x

(0, 0) = lim
h!0

f(0 + h, 0)� f(0, 0)

h
= 0

f
y

(0, 0) = lim
h!0

f(0, 0 + h)� f(0, 0)

h
= 0

Using Definition 4.1, at the origin we have

�z =
(0 +�x)(0 +�y)2

(0 +�x)2 + (0 +�y)2

=
�x�y2

�x2 +�y2
.

The function is di↵erentiable if
�z = f

x

�x+ f
y

�y + "1�x+ "2�y
where "1 and "2 both go to zero as
(�x,�y) ! (0, 0). If the function is di↵eren-
tiable we must be able to write
�x�y2

�x2 +�y2
= "1�x+ "2�y.

To see that this is impossible, assume that we
have such an expression, solve for "1, and ex-
amine the limit:

lim
(�x,�y)!(0,0)

"1 =
�y2

�x2 +�y2
� "2

�y

�x

Along the line �y = �x, this gives 0 =
1

2
+ 0.

Therefore the function f is not di↵erentiable.

37. (a) f(0, 0) = 6. We can get from the z = 6
level curve to the z = 8 level curve by
moving 1 in the y direction, or by moving
0.5 in the x direction.
@z

@x
⇡ 2

0.5
= 4

@z

@y
⇡ 2

1
= 2

L(x, y) = 6 + 4x+ 2y

(b) f (1, 0) ⇡ 8

We can get from z = 8 level curve to the
z = 10 level curve by moving 1.75 in the
x-direction, 2.25 in y-direction
@z

@x
⇡ 2

1.75
=

8

7
,

@z

@y
⇡ 2

2.25
=

8

9

L (x, y) ⇡ 8 +
8

7
(x� 1) +

8

9
y

(c) f (0, 2) ⇡ 8.9 using
f (0, 2)� f (0, 2� h1)

h1
⇡ f (0, 2 + h2)� f (0, 2)

h2

We can get the z = 10 level curve by mov-
ing 1 in the x-direction, 1.25 in y-direction
@z

@x
⇡ 1.1,

@z

@y
⇡ 1.1

1.25
= 0.88

L (x, y) ⇡ 8.9 + 1.1x+ 0.88 (y � 2)

38. (a) f(0, 0) = 0
@z

@x
(0, 0) ⇡ 2

�1
= �2

@z

@y
(0, 0) ⇡ �2

�2
= 1

L(x, y) = �2x+ y

(b) f (1, 0) ⇡ �1.5 using
f (1 + h1, 0)� f (1, 0)

h1

⇡ f (1, 0)� f (1� h2, 0)

h2

We can get the z = 0 level curve by mov-
ing -1 in the x-direction, 0.5 in y-direction
@z

@x
⇡ �1.5

�1
= 1.5,

@z

@y
⇡ �1.5

0.5
= �3

L (x, y) ⇡ �1.5 + 1.5 (x� 1)� 3y
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(c) f (0, 2) ⇡ 3 using
f (0, 2)� f (0, 2� h1)

h1

⇡ f (0, 2 + h2)� f (0, 2)

h2

We can get the z = 4 level curve by
moving -1 in the x-direction, 0.75 in y-
direction
@z

@x
⇡ �1

�1
= 1,

@z

@y
=

�1

(3/4 )
= �4

3

L (x, y) ⇡ 3 + x� 4

3
(y � 2)

39. (See exercise 27 from Section 12.3)
@w

@t
⇡ 1.4,

@w

@x
⇡ �2.4

L(t, s) = �9 + 1.4(t� 10)� 2.4(s� 10)
L(12, 13) = �13.4

40.

@w

@t
⇡ 1.35,

@w

@x
⇡ �1.6

L(t, s) = �18 + 1.35(t� 10)� 1.6(s� 15)
L(12, 13) = �12.1
The di↵erence is due to the fact that the change
in wind chill is not as rapid at (10, 15) as it is
at (10, 10).

41. Use level curves for z-values between 0.9 and
1.1 with a graphing window of
�0.1  x  0.1 and �0.1  y  0.1.
To move from the z = 1.00 level curve to the
z = 1.05 level curve you move 0.025 to the

right, so
@f

@x
⇡ 0.05

0.025
= 2.

To move from the z = 1.00 level curve to the
z = 1.05 level curve you move 0.05 down, so
@f

@y
⇡ 0.05

�0.05
⇡ �1.

We also have f(0, 0) = 1. Therefore
L(x, y) ⇡ 1 + 2(x� 0)� 1(y � 0)

x

y

0.1
0
0

0.1

-0.05

-0.1

0.05

-0.05

-0.1 0.05

42. With window �1  x  1 and �1  y  1,
the contour plot is:

x

0.5

0

y

10.50

1

-0.5

-0.5

-1

-1

Moving from the z = 1 contour to the z = 2
contour moves 0.7 in the x direction or �0.7 in
the y direction. This makes our approximation

of
@z

@x
⇡ 1.43 and

@z

@y
⇡ �1.43.

The exact values are
@z

@x
= 1 and

@z

@y
= �1.

Zoomed in so the level curves are equally
spaced , we get
(with �0.1  x  0.1 and �0.1  y  0.1):

x

y

0.1

0.1

0.05

0
0.05

-0.05

-0.1

0-0.05-0.1

Moving from the z = 1 contour to the z = 1.05
contour moves 0.05 in the x direction or �0.05
in the y direction. This makes our approxima-

tion of
@z

@x
⇡ 1.0 and

@z

@y
⇡ �1.0. In the first

estimate, the function values were changing
much more rapidly away from (0, 0) than they
were at (0, 0). In the second estimate, the spac-
ing between contours was even, so the function
values were changing roughly the same amount
throughout the window.

43.

⌧

0, 1,
@f

@y
(a, b)

�

⇥
⌧

1, 0,
@f

@x
(a, b)

�

=

�

�

�

�

�

�

�

�

�

i j k

0 1
@f

@y
(a, b)

1 0
@f

@x
(a, b)

�

�

�

�

�

�

�

�

�
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= i

�

�

�

�

�

�

�

1
@f

@y
(a, b)

0
@f

@x
(a, b)

�

�

�

�

�

�

�

� j

�

�

�

�

�

�

�

0
@f

@y
(a, b)

1
@f

@x
(a, b)

�

�

�

�

�

�

�

+ k

�

�

�

�

0 1
1 0

�

�

�

�

=
@f

@x
(a, b)i+

@f

@y
(a, b)j� k

=

⌧

@f

@x
(a, b),

@f

@y
(a, b),�1

�

44. The main point here is that if we fix v, then the
equation r(u, v) defines a curve on the para-
metric surface (if v is fixed then there is only
one parameter—u). The tangent vector to this
curve is r

u

and this tangent vector lies in the
tangent plane. Similarly for r

v

.
Therefore, r

u

⇥ r

v

must be normal to the vec-
tors r

u

and r

v

and therefore r

u

⇥ r

v

is normal
to the tangent plane.

45. r = h2u, v, 4uvi and
r(1, 2) = h2, 2, 8i and
r

u

= h2, 0, 4vi
r

u

(1, 2) = h2, 0, 8i
r

v

= h0, 1, 4ui
r

v

(1, 2) = h0, 1, 4i
r

u

(1, 2)⇥ r

v

(1, 2) = h�8,�8, 2i
Therefore the tangent plane is
�8(x� 2)� 8(y � 2) + 2(z � 8) = 0

46. r = h2u2, uv, 4uv2i and
r(�1, 1) = h2,�1,�4i and
r

u

= h4u, v, 4v2i
r

u

(�1, 1) = h�4, 1, 4i
r

v

= h0, u, 8uvi
r

v

(�1, 1) = h0,�1,�8i
r

u

(�1, 1)⇥ r

v

(�1, 1) = h�4,�32, 4i
Therefore the tangent plane is
�4(x� 2)� 32(y + 1) + 4(z + 4) = 0

47. r = hcosu, sinu, vi for 0  u  2⇡ and
0  v  2.
The point (1,0,1) corresponds to (u, v) = (0, 1).
r(0, 1) = h1, 0, 1i and
r

u

= h� sinu, cosu, 0i
r

u

(0, 1) = h0, 1, 0i
r

v

= h0, 0, 1i
r

v

(0, 1) = h0, 0, 1i
r

u

(0, 1)⇥ r

v

(0, 1) = h1, 0, 0i
Therefore the tangent plane is
(x� 1) = 0

48. r =

⌧

u2

2
, u, v

�

and

r(2, 1) = h2, 2, 1i and

r

u

= hu, 1, 0i
r

u

(2, 1) = h2, 1, 0i
r

v

= h0, 0, 1i
r

v

(2, 1) = h0, 0, 1i
r

u

(2, 1)⇥ r

v

(2, 1) = h1,�2, 0i
Therefore the tangent plane is
(x� 2)� 2(y � 2) + 0(z � 1) = 0

49. As f (x) is a di↵erentiable at x = a,

f 0 (a) = lim
�x!0

f (a+�x)� f (a)

�x
. Therefore

f 0 (a) + " =
f (a+�x)� f (a)

�x
, where " ! 0

or f (a+�x)� f (a) = f 0 (a)�x+ "�x,

�y = f 0 (a)�x+ "�x, where

lim
�x!0

"�x = 0, since " ! 0 and �x ! 0

Now, if y = f (x, z) di↵erentiable at (a, b) then
we can write:

�y = f
x

(a, b)�x+f
z

(a, b)�z+"1�x+"2�z,

where "1 ! 0 and "2 ! 0 for

(�x,�z) ! (0, 0).

Consider z to be a constant, so �z = 0 and

f
x

=
@f

@x
= f 0 (a) and " = "1 gives

�y = f 0 (a)�x + "�x, where lim
�x!0

"�x = 0,

since " ! 0 and �x ! 0

50. Consider the Taylor series about x = a, which
converges to f (x).

Therefore

f (x) =
1
X

k=0

f (k) (a)

k!
(x� a)k ... (1),

) f 0 (x) =
1
X

k=0

f (k) (a)

k!
k(x� a)k�1

... (2)

Therefore from (1) and (2)f(a),f 0 (a) = 0

Also, we have " =
�y � dy

�x
,) "�x = �y�dy

"�x = f (a+�x)� f (a)� f 0 (a)�x ... (3)

Therefore, from (1) , (2) and (3)

"�x = f (a+�x) =
1
X

k=0

f (k) (a)

k!
(�x)k

12.5 The Chain Rule

1. g(t) = (t2 � 1)2esin t

g0(t) = 2(t2 � 1)(2t)esin t + (t2 � 1)2 cos tesin t
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2. g(u, v) = e(3u sin v)(4v2
u) = e12u

2
v

2 sin v

@g

@u
= 24uv2 sin v e12u

2
v

2 sin v

@g

@v
= 12u2(v2 cos v + 2v sin v)e12u

2
v

2 sin v

3. g0(t) =
@f

@x

dx

dt
+

@f

@y

dy

dt
@f

@x
= 2xy,

@f

@y
= x2 � cos y

dx

dt
=

tp
t2 + 1

,
dy

dt
= et

g0(t) = 2xy
tp

t2 + 1
+ (x2 � cos y)et

= 2
p

t2 + 1et
tp

t2 + 1
+[(t2+1)�cos et]et

= (2t+ t2 + 1� cos et)et

4. g0(t) =
@f

@x

dx

dt
+

@f

@y

dy

dt
@f

@x
=

x
p

x2 + y2
,

@f

@y
=

y
p

x2 + y2

dx

dt
= cos t

dy

dt
= 2t

g0(t) =
x

p

x2 + y2
cos t+

y
p

x2 + y2
2t

=
sin t cos t

p

sin t2 + (t2 + 2)2

+
(t2 + 2)2t

p

sin t2 + (t2 + 2)2

=
sin t cos t+ 2t(t2 + 2)
p

sin t2 + (t2 + 2)2

5.

@g

@u
=

@f

@x

@x

@u
+

@f

@y

@y

@u
= 8xy3(3u2 � v cosu) + 12x2y2(8u)
= 8(u3 � v sinu)(4u2)3(3u2 � v cosu)

+ 12(u3 � v sinu)2(4u2)2(8u)
@g

@v
=

@f

@x

@x

@v
+

@f

@y

@y

@v
= 8xy3(� sinu) + 12x2y2(0)
= 8(u3 � v sinu)(4u2)3(� sinu)

6.

@g

@u
=

@f

@x

@x

@u
+

@f

@y

@y

@u

= (y3 � 8x)(2ueu
2

) + 3xy2(
p
v2 + 1 cosu)

= [(v2 + 1)3/2 � 8eu
2

](2ueu
2

)

+ 3eu
2

(v2 + 1)(
p
v2 + 1 cosu)

= eu
2 ⇥�16u+ (v2 + 1)3/2(2u+ 3 cosu)

⇤

@g

@v
=

@f

@x

@x

@v
+

@f

@y

@y

@v

= (y3 � 8x)(0) + 3xy2
✓

v sinup
v2 + 1

◆

= 3eu
2

(v2 + 1)

✓

v sinup
v2 + 1

◆

= 3eu
2

v sinu
p
v2 + 1

7. g0(t) =
@f

@x

dx

dt
+

@f

@y

dy

dt
+

@f

@z

dz

dt

8.

@g

@u
=

@f

@x

@x

@u
+

@f

@y

@y

@u
+

@f

@z

@z

@u
@g

@v
=

@f

@x

@x

@v
+

@f

@y

@y

@v
+

@f

@z

@z

@v

9.

@g

@u
=

@f

@x

@x

@u
+

@f

@y

@y

@u
@g

@v
=

@f

@x

@x

@v
+

@f

@y

@y

@v
@g

@w
=

@f

@x

@x

@w
+

@f

@y

@y

@w

10.

@g

@u
=

@f

@x

@x

@u
+

@f

@y

@y

@u
+

@f

@z

@z

@u
@g

@v
=

@f

@x

@x

@v
+

@f

@y

@y

@v
+

@f

@z

@z

@v
@g

@w
=

@f

@x

@x

@w
+

@f

@y

@y

@w
+

@f

@z

@z

@w

11. Use the fact involved in the exercise 8, here

x (u, v) = u+ v
y (u, v) = u� v
z (u, v) = u2 + v2.
Therefore,

@x

@u
= 1;

@x

@v
= 1

@y

@u
= 1;

@y

@v
= �1

@z

@u
= 2u;

@z

@v
= 2v

Thus
@g

@u
=

@g

@x
+

@g

@y
+ 2u

@g

@z
and

@g

@v
=

@g

@x
� @g

@y
+ 2v

@g

@z

12. Use the fact involved in the exercise 8, here

x (u, v) = u2v
y (u, v) = v
z (u, v) = v cosu

Therefore,
@x

@u
= 2uv,

@x

@v
= u2

@y

@u
= 0,

@y

@v
= 1

@z

@u
= �v sinu,

@z

@v
= cosu

Thus
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@g

@u
= 2uv

@g

@x
� v sinu

@g

@z
and

@g

@v
= u2 @g

@x
+

@g

@y
+ cosu

@g

@z

13. Use the fact involved in the exercise 10, here

x (u, v, w) = uv,

y (u, v, w) =
u

v
z (u, v, w) = w2

Therefore,

@x

@u
= v

@x

@v
= u

@x

@w
= 0

@y

@u
=

1

v

@y

@v
= � u

v2
@y

@w
= 0

@z

@u
= 0

@z

@v
= 0

@z

@w
= 2w

Thus,

@g

@u
= v

@g

@x
+

1

v

@g

@y
,

@g

@v
= u

@g

@x
� u

v2
@g

@y
and

@g

@w
= 2w

@g

@z

14. Use the fact involved in the exercise 10, here

x (u, v, w) = u2 + w2

y (u, v, w) = u+ v + w
z (u, v, w) = u cos v.

Therefore,

@x

@u
= 2u

@x

@v
= 0

@x

@w
= 2w

@y

@u
= 1

@y

@v
= 1

@y

@w
= 1

@z

@u
= cos v

@z

@v
= �u sin v

@z

@w
= 0

Thus
@g

@u
= 2u

@g

@x
+

@g

@y
+ cos v

@g

@z
,

@g

@v
=

@g

@y
� u sin v

@g

@z
and

@g

@w
= 2w

@g

@x
+

@g

@y

15.

@P

@k
(4, 6) ⇡ 3.6889

@P

@l
(4, 6) ⇡ 16.6002

k0(t) = 0.1, l0(t) = �0.06

g0(t) =
@P

@k
k0(t) +

@P

@l
l0(t)

⇡ (3.6889)(0.1) + (16.6002)(�0.06)

= �0.6271

16.

@P

@k
(4, 3) ⇡ 4.0296

@P

@l
(4, 3) ⇡ 16.1185

k0(t) = �0.2, l0(t) = 0.08

g0(t) =
@P

@k
k0(t) +

@P

@l
l0(t)

⇡ (4.0296)(�0.2) + (16.1185)(0.08)

= 0.4835

17.

@P

@k
=

16

3
k�2/3l2/3,

@P

@l
=

32

3
k1/3l�1/3

@P

@k
(4, 3) ⇡ 4.4026,

@P

@l
(4, 3) ⇡ 11.7402

k0(t) = �0.2, l0(t) = 0.08

g0(t) =
@P

@k
k0(t) +

@P

@l
l0(t)

= (4.4026)(�0.2) + (11.7402)(0.08)

= 0.0587

18.

@P

@k
=

16

3
k�2/3l2/3,

@P

@l
=

32

3
k1/3l�1/3

@P

@k
(5, 2) ⇡ 2.8953,

@P

@l
(5, 2) ⇡ 14.4768

k0(t) = �0.1, l0(t) = 0.04

g0(t) =
@P

@k
k0(t) +

@P

@l
l0(t)

= (2.8953)(�0.1) + (14.4768)(0.04)

= 0.2895

19. I(t) = q(t)p(t)
dq

dt
= 0.05q(t),

dp

dt
= 0.03p(t)

dI

dt
=

@I

@q

dq

dt
+

@I

@p

dp

dt

= p(t)
dq

dt
+ q(t)

dp

dt
= p(t)[0.05q(t)] + q(t)[0.03p(t)]

= 0.08p(t)q(t)

= 0.08I(t)

Income increases at a rate of 8% as claimed.

20. I(t) = q(t)p(t)
dq

dt
= �0.03q(t),

dp

dt
= 0.05p(t)

dI

dt
=

@I

@q

dq

dt
+

@I

@p

dp

dt

= p(t)
dq

dt
+ q(t)

dp

dt
= p(t)[�0.03q(t)] + q(t)[0.05p(t)]

= 0.02p(t)q(t) = 0.02I(t)
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Income increases at a rate of 2% in this situa-
tion.

21. F (x, y, z) = 3x2z + 2z3 � 3yz

F
x

= 6xz

F
y

= �3z

F
z

= 3x2 + 6z2 � 3y

@z

@x
= �F

x

F
z

=
�6xz

3x2 + 6z2 � 3y
@z

@y
= �F

y

F
z

=
3z

3x2 + 6z2 � 3y

22. F (x, y, z) = xyz � 4y2z2 + cosxy

F
x

= yz � y sinxy

F
y

= zx� 8yz2 � x sinxy

F
z

= xy � 8y2z

@z

@x
= �F

x

F
z

=
�yz + y sinxy

xy � 8y2z

@z

@y
= �F

y

F
z

=
�zx+ 8yz2 + x sinxy

xy � 8y2z

23. F (x, y, z) = 3exyz � 4xz2 + x cos y

F
x

= 3yzexyz � 4z2 + cos y

F
y

= 3xzexyz � x sin y

F
z

= 3xyexyz � 8xz

@z

@x
= �F

x

F
z

=
�3yzexyz + 4z2 � cos y

3xyexyz � 8xz
@z

@y
= �F

y

F
z

=
�3xzexyz + x sin y

3xyexyz � 8xz

24. F (x, y, z) = 3yz2 � e4x cos 4z � 3y2

F
x

= �4e4x cos 4z

F
y

= 3z2 � 6y

F
z

= 6yz + 4e4x sin 4z

@z

@x
= �F

x

F
z

=
4e4x cos 4z

6yz + 4e4x sin 4z

@z

@y
= �F

y

F
z

=
�3z2 + 6y

6yz + 4e4x sin 4z

25. F (x, y, z) = xyz � cos(x+ y + z)

F
x

= yz + sin(x+ y + z),

F
y

= xz + sin(x+ y + z) and

F
z

= xy + sin(x+ y + z)

@z

@x
= �F

x

F
z

= � yz + sin(x+ y + z)

xy + sin(x+ y + z)
,

@z

@y
= �F

y

F
z

= �xz + sin(x+ y + z)

xy + sin(x+ y + z)

26. F (x, y, z) = ln(x2 + y2)� z � tan�1(x+ z)

F
x

=
2x

x2 + y2
� 1

1 + (x+ z)2

=
2x
⇣

1 + (x+ z)2
⌘

�
�

x2 + y2
�

(x2 + y2)
⇣

1 + (x+ z)2
⌘ ,

F
y

=
2y

x2 + y2

F
z

= �1� 1

1 + (x+ z)2
= �2 + (x+ z)2

1 + (x+ z)2

@z

@x
= �F

x

F
z

=
2x
⇣

1 + (x+ z)2
⌘

�
�

x2 + y2
�

(x2 + y2)
⇣

2 + (x+ z)2
⌘

@z

@y
= �F

y

F
z

==
2y
⇣

1 + (x+ z)2
⌘

(x2 + y2)
⇣

2 + (x+ z)2
⌘

27. The chain rule gives

f
✓

= f
x

@x

@✓
+ f

y

@y

@✓
@x

@✓
= �r sin ✓ and

@y

@✓
= r cos ✓

So, f
✓

= �f
x

r sin ✓ + f
y

r cos ✓.

28. From Exercise 27,
f
✓

= �f
x

r sin ✓ + f
y

r cos ✓

f
✓✓

=(�f
xx

r sin ✓ + f
xy

r cos ✓)(�r sin ✓)

+ f
x

(�r cos ✓)

+ (�f
yx

r sin ✓ + f
yy

r cos ✓)(r cos ✓)

+ f
y

(�r sin ✓)

=f
xx

r2 sin2 ✓ � 2f
xy

r2 sin ✓ cos ✓

+ f
yy

r2 cos2 ✓ � f
x

r cos ✓ � f
y

r sin ✓

29. From exercises 27 and 28, and example 5.4, we
have:
f
r

= f
x

cos ✓ + f
y

sin ✓
f
rr

= f
xx

cos2 ✓ + 2f
xy

cos ✓ sin ✓ + f
yy

sin2 ✓
f
✓

= �f
x

r sin ✓ + f
y

r cos ✓
f
✓✓

= f
xx

r2 sin2 ✓ � 2f
xy

r2 sin ✓ cos ✓
+ f

yy

r2 cos2 ✓ � f
x

r cos ✓

� f
y

r sin ✓f
rr

+
1

r
f
r

+
1

r2
f
✓✓

= (f
xx

cos2 ✓ + 2f
xy

cos ✓ sin ✓ + f
yy

sin2 ✓)

+
1

r
(f

x

cos ✓ + f
y

sin ✓)

+
1

r2
(f

xx

r2 sin2 ✓ � 2f
xy

r2 sin ✓ cos ✓

+ f
yy

r2 cos2 ✓ � f
x

r cos ✓ � r
y

sin ✓)
= f

xx

+ f
yy
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30. The mistake is treating ✓ as a constant and not
applying the chain rule.
Taking the derivative of x = r cos ✓, with re-
spect to x and using the chain rule, gives,

1 = cos ✓
@r

@x
� r sin ✓

@✓

@x
@r

@x
=

1

cos ✓
+ r

sin ✓

cos ✓

@✓

@x

Of course, if ✓ is constant then
@✓

@x
= 0 and

@r

@x
=

1

cos ✓
, but ✓ is not constant.

31. Make the change of variables X =
x

L
and

T =
↵2

L2
t. Then, u

t

= u
X

@X

@t
+ u

T

@T

@t

=
↵2

L2
u
T

u
x

= u
X

@X

@x
+ u

T

@T

@x

=
1

L
u
X

u
xx

=
1

L

✓

u
XX

@X

@x
+ u

XT

@T

@x

◆

=
1

L2
u
XX

The heat equation then becomes

↵2 1

L2
u
XX

=
↵2

L2
u
T

, or simply u
XX

= u
T

.

The dimensions of X are
ft

ft
= 1, and the di-

mensions of T are
ft2/sec

ft2
sec = 1.

Both X and T are dimensionless.

32. Making this change of variables,

u
x

= u
X

@X

@x
+ u

T

@T

@x
=

1

L
u
X

u
xx

=
1

L

✓

u
XX

@X

@x
+ u

XT

@T

@x

◆

=
1

L2
u
XX

Similarly, u
tt

=
a2

L2
u
TT

.

Putting these into the wave equation:

a2
✓

1

L2
u
XX

◆

=
a2

L2
u
TT

or u
XX

= u
TT

33. Let the variables V and T be such that V = pv

and T = qt. Therefore
dV

dt
= p

dv

dt

) V 0 (t) = pv0 (t)

) �cv2 = p
dv

dt
or � cdt = p

dv

v2

) �c

t

Z

0

dt = p

v

Z

v0

dv

v2

) v (t) =
pv0

(p+ v0ct)
or

V (t) =
p2v0

p+ v0ct
.

But V (0) = 1

) pv0 = 1 ) V =
v

v0

) v (t) =
v0

(1 + v20ct)

) V (t) =
1

(1 + v20ct)

Here the units of v =
ft

sec
, those of v0 =

ft

sec
) Units of V = 1. It may also be observed

that units of c =
sec

(ft)2
.

) V is dimensionless.

Now, T = qt ) t =
T

q
) dt

dT
=

1

q
.

Also,) dV

dT
= �V is the simplified initial value

problem.

) dV

dt
· dt

dT
= �V or q =

V 0 (t)

�V (t)
= cv0v (t).

Therefore units of q =
1

sec
, thus the units of

T =
1

sec
· sec = 1 ) T is dimensionless.

34. Let the variables V and T be such that
V = pv and T = qt.
Therefore,
dV

dt
= p

dv

dt
) V 0 (t) = pv0 (t)

) �g + cv2 = p
dv

dt

using
dv

dt
= �g we get, �dv

dt
+ cv2 = p

dv

dt

) cv2 = (p+ 1)
dv

dt

) dv

dt
=

cv2

(p+ 1)

c

(p+ 1)
dt =

dv

v2

) c

(p+ 1)

t

Z

0

dt =

v

Z

v0

dv

v2

) ct

(p+ 1)
=

✓

1

v0
� 1

v

◆

) 1

v
=

(p+ 1)� v0ct

(p+ 1) v0

) v =
(p+ 1) v0

(p+ 1� v0ct)

) V =
p (p+ 1) v0

(p+ 1� v0ct)

) v (t) =
(p+ 1) v0

(p+ 1� v0ct)
and
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V (t) =
p (p+ 1) v0

(p+ 1� v0ct)

But V (0) = 1 ) pv0 = 1 ) V =
v

v0

Here the units of v =
ft

sec
, and those of v0 =

ft

sec
) Units of V = 1 ) V is dimensionless.

Now, T = qt ) t =
T

q
) dt

dT
=

1

q
.

dV

dT
= �a + V 2 is the simplified initial value

problem.
dV

dt
· dt

dT
= �a+ V 2 ) dV

dt
= q

�

�a+ V 2
�

.

Now as V is dimensionless,
�

�a+ V 2
�

has to be dimensionless,

also the unit of
dV

dt
=

1

sec
,

Therefore the units of q =

dV

dt
(�a+ V 2)

=
1

sec
.

Thus the units of T =
1

sec
· sec = 1

) T is dimensionless.

35. g0(t) = f
x

x0(t) + f
y

y0(t)
g00(t) = f

x

x00(t) + (f
xx

x0(t) + f
xy

y0(t))x0(t)
+ f

y

y00(t) + (f
yx

x0(t) + f
yy

y0(t))y0(t)
= f

xx

(x0(t))2 + 2f
xy

x0(t)y0(t)
+ f

yy

(y0(t))2 + f
x

x00(t) + f
y

y00(t)

36. g0(t) = f
x

x0(t) + f
y

y0(t) + f
z

z0(t)
g00(t) = f

x

x00(t)
+ x0(t) [f

xx

x0(t) + f
xy

y0(t) + f
xz

z0(t)]
+ f

y

y00(t)
+ y0(t) [f

yx

x0(t) + f
yy

y0(t) + f
yz

z0(t)]
+ f

z

z00(t)
+ z0(t) [f

zx

x0(t) + f
zy

y0(t) + f
zz

z0(t)]
= f

x

x00(t) + f
y

y00(t) + f
z

z00(t)
+(x0(t))2f

xx

+(y0(t))2f
yy

+(z0(t))2f
zz

+ 2x0(t)y0(t)f
xy

+ 2x0(t)z0(t)f
xz

+ 2y0(t)z0(t)f
yz

37.

@g

@u
=

@f

@x

@x

@u
+

@f

@y

@y

@u
@2g

@u2
=

@f

@x

@2x

@u2
+

✓

@2f

@x2

@x

@u
+

@2f

@x@y

@y

@u

◆

@x

@u

+
@f

@y

@2y

@u2
+

✓

@2f

@y@x

@x

@u
+

@2f

@y2
@y

@u

◆

@y

@u

=
@2f

@x2

✓

@x

@u

◆2

+ 2
@2f

@x@y

@x

@u

@y

@u

+
@2f

@y2

✓

@y

@u

◆2

+
@f

@x

@2x

@u2
+

@f

@y

@2y

@u2

38.

@g

@u
=

@f

@x

@x

@u
+

@f

@y

@y

@u
@2g

@u@v
=

@f

@x

@2x

@u@v
+

✓

@2f

@x2

@x

@v
+

@2f

@x@y

@y

@v

◆

@x

@u

+
@f

@y

@2y

@u@v
+

✓

@2f

@y@x

@x

@v
+

@2f

@y2
@y

@v

◆

@y

@u

39. For g (u, v) = f (x , y, z),

where x = u+ v; y = u� v and z = u� v

@g

@u
=

@f

@x
· @x
@u

+
@f

@y
· @y
@u

+
@f

@z
· @z
@u

@2g

@u@v
=

@f

@x

@2x

@u@v

+

✓

@2f

@x2

@x

@v
+

@2f

@x@y

@y

@v
+

@2f

@x@z

@z

@v

◆

@x

@u

+
@f

@y

@2y

@u@v

+

✓

@2f

@y@x

@x

@v
+

@2f

@y2
@y

@v
+

@2f

@y@z

@z

@v

◆

@y

@u

+
@f

@z

@2z

@u@v

+

✓

@2f

@z@x

@x

@v
+

@2f

@z@y

@y

@v
+

@2f

@z2
@z

@v

◆

@z

@u

x (u, v) = u+ v

) @x

@u
= 1 ;

@x

@v
= 1 ;

@2x

@u@v
= 0

y (u, v) = u� v

) @y

@u
= 1 ;

@y

@v
= �1 ;

@2y

@u@v
= 0

z (u, v) = u2 + v2

) @z

@u
= 2u ;

@z

@v
= 2v ;

@2z

@u@v
= 0

@2g

@u@v
=

✓

@2f

@x2
� @2f

@x@y
+ 2v

@2f

@x@z

◆

+

✓

@2f

@y@x
� @2f

@y2
+ 2v

@2f

@y@z

◆

+

✓

@2f

@z@x
� @2f

@z@y
+ 2v

@2f

@z2

◆

2u

=
@2f

@x2
� @2f

@y2
+ 4uv

@2f

@z2
� @2f

@x@y
+ 2v

@2f

@x@z

+
@2f

@y@x
+ 2v

@2f

@y@z
+ 2u

@2f

@z@x
� 2u

@2f

@z@y

40. For g (u, v) = f (x , y, z),

where x = u2v; y = v and z = v cosu

@g

@v
=

@f

@x

@x

@v
+

@f

@y

@y

@v
+

@f

@z

@z

@v
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@2g

@v2
=

@f

@x

@2x

@v2

+

✓

@2f

@x2

@x

@v
+

@2f

@x@y

@y

@v
+

@2f

@x@z

@z

@v

◆

@x

@v

+
@f

@y

@2y

@v2

+

✓

@2f

@y@x

@x

@v
+

@2f

@y2
@y

@v
+

@2f

@y@z

@z

@v

◆

@y

@v

+
@f

@z

@2z

@v2

+

✓

@2f

@z@x

@x

@v
+

@2f

@z@y

@y

@v
+

@2f

@z2
@z

@v

◆

@z

@v

x (u, v) = u2v ) @x

@v
= u2;

@2x

@v2
= 0

y (u, v) = v ) @y

@v
= 1 ;

@2y

@v2
= 0

z (u, v) = v cosu ) @z

@v
= cosu ;

@2z

@v2
= 0

@2g

@v2
=

✓

@2f

@x2
u2 +

@2f

@x@y
+

@2f

@x@z
cosu

◆

u2

+

✓

@2f

@y@x
u2 +

@2f

@y2
+

@2f

@y@z
cosu

◆

+

✓

@2f

@z@x
u2 +

@2f

@z@y
+

@2f

@z2
cosu

◆

cosu

=
@2f

@x2

2

u4 +
@2f

@y2
+

@2f

@z2
cos2u+ u2 @2f

@x@y

+u2 cosu
@2f

@x@z
+ u2 @2f

@y@x
+ cosu

@2f

@y@z

+u2 cosu
@2f

@z@x
+ cosu

@2f

@z@y

41. Apply the natural log to write:
ln g(t) = v(t) lnu(t) and di↵erentiate to get
1

g(t)
g0(t) = v0(t) lnu(t) + v(t)

1

u(t)
u0(t)

Now solve for g0(t) (using g(t) = u(t)v(t)).

g0 = uv(v0 lnu+
v

u
u0)

Applying this to g(t) = (2t+ 1)3t
2

yields

g0(t) = (2t+ 1)3t
2

(6t2 ln(2t+ 1) +
3t2

2t+ 1
(2))

= (2t+ 1)3t
2

(6t2 ln(2t+ 1) +
6t2

2t+ 1
)

42. g (t) = u(t)v(t)
w(t)

.

Let g (t) = (u (t))h(t),

where h (t) = (v (t))w(t).

Now using the exercise 41, we have

g0 = uh

✓

h0 lnu+
h

u
u0
◆

and

h0 = vw
⇣

w0 ln v +
w

v
v0
⌘

. Therefore

g0 = uv

w

✓

vw
⇣

w0 ln v +
w

v
v0
⌘

lnu+
vw

u
u0
◆

Here g (t) = (sin t)(t
2+2)(3�t3)

;

where u (t) = (sin t); v (t) =
�

t2 + 2
�

and

w (t) =
�

3� t3
�

. Therefore

u (t) = sin t

) u0 (t) = cos t;

v (t) =
�

t2 + 2
�

) v0 (t) = 2t and

w (t) =
�

3� t3
�

) w0 (t) = �3t2 thus,

g0 (t) = (sin t)(t
2+2)(3�t3)

·
✓

�

t2 + 2
�(3�t

3)
(ln sin t)

·
 

�3t2 ln
�

t2 + 2
�

+
2t
�

3� t3
�

(t2 + 2)

!

+
�

t2 + 2
�(3�t

3)
cot t

◆

43. Since g(h) = f(x + hu1, y + hu2), it is clear
that g(0) = f(x, y).

g0(h) = f
x

@(x+ hu1)

@h
+ f

y

@(y + hu2)

@h
= f

x

(x+ hu1, y + hu2)u1

+ f
y

(x+ hu1, y + hu2)u2

g0(0) = f
x

(x, y)u1 + f
y

(x, y)u2.
g00(h) = f

xx

u2
1 + f

xy

u1u2 + f
yx

u2u1 + f
yy

u2
2

= f
xx

u2
1 + 2f

xy

u1u2 + f
yy

u2
2

where each second partial of f is evaluated at
(x+ hu1, y + hu2). Therefore,
g00(0) = f

xx

u2
1 + 2f

xy

u1u2 + f
yy

u2
2

where each second partial of f is evaluated at
(x, y). Continuing in this vein, we see that
g000(0) = f

xxx

u3
1 + 3f

xxy

u2
1u2

+ 3f
xyy

u1u
2
2 + f

yyy

u3
2

g(4)(0) = f
xxxx

u4
1 + 4f

xxxy

u3
1u2 + 6f

xxyy

u2
1u

2
2

+ 4f
xyyy

u1u
3
2 + f

yyyy

u4
2

The coe�cients are from the binomial expan-
sion (Pascal’s triangle), the number of partial
derivatives with respect to x match the pow-
ers of u1, and the number of partial derivatives
with respect to y match the powers of u2

44. Using exercise 43, and computing the Taylor
Series: f(x+�x, y +�y)
= f(x+ hu1, y + hu2) = g(h)

= g(0) + g0(0)h+
g00(0)

2!
h2

+
g000(0)

3!
h3 + · · ·

= f(x, y) + [f
x

u1 + f
y

u2]h
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+
1

2!

⇥

f
xx

u2
1 + 2f

xy

u1u2 + f
yy

u2
2

⇤

h2

+
1

3!

⇥

f
xxx

u3
1 + 3f

xxy

u2
1u2

+3f
xyy

u1u
2
2 + f

yyy

u2
2

⇤

h3 + · · ·

= f(x, y) +



f
x

✓

�x

h

◆

+ f
y

✓

�y

h

◆�

h

+
1

2!

"

f
xx

✓

�x

h

◆2

+2f
xy

✓

�x

h

◆✓

�y

h

◆

+f
yy

✓

�y

h

◆2
#

h2

+
1

3!

"

f
xxx

✓

�x

h

◆3

+3f
xxy

✓

�x

h

◆2✓�y

h

◆

+3f
xyy

✓

�x

h

◆✓

�y

h

◆2

+f
yyy

✓

�y

h

◆3
#

h3 + · · ·

= f(x, y) + [f
x

�x+ f
y

�y]

+
1

2!

⇥

f
xx

�x2 + 2f
xy

�x�y + f
yy

�y2
⇤

+
1

3!

⇥

f
xxx

�x3 + 3f
xxy

�x2�y

+3f
xyy

�x�y2 + f
yyy

�y3
⇤

+ · · ·

45. (a) f(x, y) = sinx cos y f(0, 0) = 0
f
x

(x, y) = cosx cos y f
x

(0, 0) = 1
f
y

(x, y) = � sinx sin y f
y

(0, 0) = 0
f
xx

(x, y) = � sinx cos y f
xx

(0, 0) = 0
f
xy

(x, y) = � cosx sin y f
xy

(0, 0) = 0
f
yy

(x, y) = � sinx cos y f
yy

(0, 0) = 0
f
xxx

(x, y) = � cosx cos y f
xxx

(0, 0) = �1
f
xxy

(x, y) = sinx sin y f
xxy

(0, 0) = 0
f
xyy

(x, y) = � cosx cos y f
xyy

(0, 0) = �1
f
yyy

(x, y) = sinx sin y f
yyy

(0, 0) = 0
f(�x,�y) ⇡ 1�x

+
1

3!
[1(�1)�x3 + 3(�1)�x�y2]

= �x� 1

6
�x3 � 1

2
�x�y2

(b) (sinx)(cos y)

=

✓

x� x3

3!
+

x5

5!
+ · · ·

◆

·
✓

1� y2

2!
+

y4

4!
+ · · ·

◆

= x�x3

6
�xy2

2
+

x5

120
+
x3y2

12
+
xy4

24
+· · ·

46. (a) f(x, y) = sinxy f(0, 0) = 0
f
x

(x, y) = y cosxy f
x

(0, 0) = 0

f
y

(x, y) = x cosxy f
y

(0, 0) = 0
f
xx

(x, y) = �y2 sinxy f
xx

(0, 0) = 0
f
xy

(x, y) = cosxy � xy sinxy
f
xy

(0, 0) = 1
f
yy

(x, y) = �x2 sinxy f
yy

(0, 0) = 0
f
xxx

(0, 0) = f
xxy

(0, 0) = f
xyy

(0, 0)
= f

yyy

(0, 0) = 0

f(�x,�y) ⇡ 1

2!
2(1)�x�y = �x�y

(b) Substituting u = xy, sinu = sin(xy)

= (xy)� (xy)3

3!
+

(xy)5

5!
+ · · ·

= xy � x3y3

3!
+

x5y5

5!
+ · · ·

47. f(x, y) = e2x+y f(0, 0) = 1
f
x

(x, y) = 2e2x+y f
x

(0, 0) = 2
f
y

(x, y) = e2x+y f
y

(0, 0) = 1
f
xx

(x, y) = 4e2x+y f
xx

(0, 0) = 4
f
xy

(x, y) = 2e2x+y f
xy

(0, 0) = 2
f
yy

(x, y) = e2x+y f
yy

(0, 0) = 1
f
xxx

(x, y) = 8e2x+y f
xxx

(0, 0) = 8
f
xxy

(x, y) = 4e2x+y f
xxy

(0, 0) = 4
f
xyy

(x, y) = 2e2x+y f
xyy

(0, 0) = 2
f
yyy

(x, y) = e2x+y f
yyy

(0, 0) = 1
f(�x,�y) ⇡ 1 + 2�x+�y

+
1

2!
[4�x2 + 2(2)�x�y +�y2]

+
1

3!
[8�x3 + 3(4)�x2�y

+ 3(2)�x�y2 +�y3]
= 1 + 2�x+�y + 2�x2 + 2�x�y

+
1

2
�y2 +

4

3
�x3 + 2�x2�y

+�x�y2 +
1

6
�y3

48. Substituting u = 2x+ y,
eu = e2x+y

= 1 + (2x+ y) +
(2x+ y)2

2!

+
(2x+ y)3

3!
+

(2x+ y)4

4!
+ · · ·

= 1 + 2x+ y + 2x2 + 2xy +
y2

2

+
4x3

3
+ 2x2y + xy2 +

y3

6

+
2x4

3
+

4x3y

3
+ x2y2

+
xy3

3
+

y4

24
+ · · ·

49. f (x, y, z) =
x

y
+ yez,

where x = t2; y = t+ 4 and z = ln
�

t2 + 1
�

.

Therefore,
dx

dt
= 2t;

dy

dt
= 1 and

dz

dt
=

2t

t2 + 1
.
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Now, using

dg

dt
=

@f

@x

dx

dt
+

@f

@y

dy

dt
+

@f

@z

dz

dt

we get,

dg

dt
=

2t

y
+

✓

� x

y2
+ ez

◆

+
2tyez

t2 + 1

50. f (x, y, z) = tan�1
⇣y

x

⌘

+ tan�1

✓

z

y

◆

,

where x = 2 cos t; y = 2 sin t and z =
t

8
.

Therefore,

dx

dt
= �2 sin t;

dy

dt
= 2 cos t and

dz

dt
=

1

8
.

Now, using
dg

dt
=

@f

@x

dx

dt
+
@f

@y

dy

dt
+

@f

@z

dz

dt

we get

dg

dt
=

2y sin t

x2 + y2
+

✓

2x cos t

x2 + y2
� 2z cos t

y2 + z2

◆

+

✓

y

y2 + z2

◆✓

1

8

◆

51. V = ⇡r2h,
dr

dt
= 0.2 and

dh

dt
= �0.2

Therefore

dV

dt
=

@V

@r

dr

dt
+

@V

@h

dh

dt

) dV

dt
= 0.2 (2⇡rh)� 0.2

�

⇡r2
�

) dV

dt
= (0.2) (⇡r) (2h� r).

Now the volume increases if
dV

dt
> 0, for which

(0.2) (⇡r) (2h� r) > 0 or h >
r

2
.

52. Here,
dr

dt
= 0.02r0 ;

dh

dt
= �0.02h0 where

r0, h0 are the initial radius and height of the
cylinder respectively. From the exercise 51,

dV

dt
= 0.02r0 (2⇡rh)� 0.02h0

�

⇡r2
�

or

dV

dt
= (0.02)⇡r (2hr0 � h0r)

Now the volume increases if
dV

dt
> 0, for which

(2hr0 � h0r) > 0

That is
h

h0
>

1

2

✓

r

r0

◆

.

53. (a) R(c, h) =
1

0.55

c
+

0.45

h

R(1, 1) = 1

R
c

(1, 1) = 0.55 R
h

(1, 1) = 0.45
R(c, h) ⇡ 1 + 0.55�c+ 0.45�h

(b) The graph of R and the first degree Taylor
polynomial with h = 40 is plotted below.

30

30

20

10

20
0

100
c

50

R

40

40

h=40

If h = c, then R is equal to the first de-
gree Taylor polynomial.
If c = 5 and h = 40, then one would ex-
pect the rating to be low, especially con-
sidering that most driving is done in the
city.

54. If E = f(P, T ) and P = g(T, V ),
then substituting we get
E = f(g(T, V ), T ) = h(T, V ).
Using the chain rule
✓

@E

@T

◆

V

=
@f

@T

@T

@T
+

@f

@P

@g

@T

=

✓

@E

@T

◆

P

+

✓

@E

@P

◆

T

✓

@P

@T

◆

V

55. (a) a0 = 55racbh0 � hb0b2 =
b� h

b2

(b) At h = 50 and b = 200, a = 0.250, and
a0 = 0.00375 ⇡ 4 points.
If h = 100 and b = 400, a = 0.250 still,
and a0 = 0.01875 ⇡ 2 points.
In general if the number of hits and at
bats are doubled, then the rate of change
of the average is halved.

(c) At h = 50 and b = 200, an out results in

a =
50

201
⇡ 0.249, a decrease in one point.

At h = 100 and b = 400, an out results in

a =
100

401
⇡ 0.249, a decrease of one point.

So, the rounded values each change by a
point.

56. This is the chain rule of Theorem 5.1.

Clearly
d

dk
(kp(x, y)) = p(x, y).
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For the other side of the equation,
d

dk
[p(kx, ky)]

= p
x

(kx, ky)
d

dk
(kx) + p

y

(kx, ky)
d

dk
(ky)

= xp
x

(kx, ky) + yp
y

(kx, ky)
Which gives us the equations
p(x, y) = xp

x

(kx, ky) + yp
y

(kx, ky)
This must be true for all values of k, in partic-
ular for k = 1 and therefore,
p(x, y) = xp

x

(x, y) + yp
y

(x, y)
The total production is the term p(x, y). The
cost of capital at its level of marginal product
is the term xp

x

(x, y). The cost of labor at its
level of marginal product is the term yp

y

(x, y).

12.6 The Gradient and
Directional Derivatives

1. rf =
⌦

2x+ 4y2, 8xy � 5y4
↵

2. rf =
⌦

3x2e3y, 3x3e3y � 4y3
↵

3. rf =
D

exy
2

+ xy2exy
2

, 2x2yexy
2

� 2y sin y2
E

4. rf =

⌧

�3y

x2
e3y/x � 2xy3,

3

x
e3y/x � 3x2y2

�

5. rf =

⌧

8

y
e4x/y � 2,

�8x

y2
e4x/y

�

rf(2,�1) =
⌦

�8e�8 � 2,�16e�8
↵

6. rf = h3y cos 3xy, 3x cos 3xy + 2yi
rf(⇡, 1) = h�3,�3⇡ + 2i

7. rf =
⌦

6xy + z sinx, 3x2,� cosx
↵

rf(0, 2,�1) = h0, 0,�1i

8. rf =
⌦

2z2e2x�y � 4z2,
�z2e2x�y, 2ze2x�y � 8xz

↵

rf(1, 2, 2) = h�8,�4,�12i

9. rf =
⌦

2w cosx,�w2sinx+ 3zexz ln y,

(3exz/y ) , 3xexz ln yi
rf (2,⇡, 1, 4) =

⌦

�4, 0, 3e4⇡, 0
↵

10. f
x1 =

1

x2
cos

✓

x1

x2

◆

� x3p
x1x3

f
x2 = �x1

x2
2

cos

✓

x1

x2

◆

f
x3 = �6x3x4x5 �

x1p
x1x3

f
x4 = �3x2

3x5

f
x5 = �3x2

3x4

rf(2, 1, 2,�1, 4)
= hcos 2� 1,�2 cos 2, 47,�48, 12i

11. rf =
⌦

2xy, x2 + 8y
↵

rf(2, 1) = h4, 12i

Duf(2, 1) = h4, 12i ·
*

1

2
,

p
3

2

+

= 2 + 6
p
3

12. rf =
⌦

3x2y, x3 � 8y
↵

rf(2,�1) = h�12, 16i

Duf(2,�1) = h�12, 16i ·
⌧

1p
2
,
1p
2

�

= 2
p
2

13. rf =

*

x
p

x2 + y2
,

y
p

x2 + y2

+

,

rf (3,�4) =

⌧

3

5
,�4

5

�

D
u

f (3,�4) =

⌧

3

5
,�4

5

�

·
⌧

3p
13

,� 2p
13

�

=
17

5
p
13

14. rf =
D

8xe4x
2�y,�e4x

2�y

E

rf (1, 4) = h8,�1i

D
u

f (3,�4) = h8,�1i ·
⌧

� 2p
5
,� 1p

5

�

= �3
p
5

15. rf = h�2 sin(2x� y), sin(2x� y)i
rf(⇡, 0) = h0, 0i

u =

⌧

1p
2
,
1p
2

�

Duf(⇡, 0) = h0, 0i ·
⌧

1p
2
,
1p
2

�

= 0

16. rf =

⌧

2 sin 4y

x
,
sin 4y

y
+ 4 cos 4y · ln

�

x2y
�

�

rf
⇣

�2,
⇡

8

⌘

=

⌧

�1,
8

⇡

�

,

u =

⌧

16p
256 + ⇡2

,
�⇡p

256 + ⇡2

�

D
u

f
⇣

�2,
⇡

8

⌘

=

⌧

�1,
8

⇡

�

·
⌧

16p
256 + ⇡2

,� ⇡p
256 + ⇡2

�

= � 16p
256 + ⇡2

� 8p
256 + ⇡2

= � 24p
256 + ⇡2

17. rf =

⌧

3x2yz2 � y

x2 + y2
, x3z2

+
x

x2 + y2
, 2x3yz

�

rf (1,�1, 2) =

⌧

�23

2
,
9

2
,�4

�

,

u =

⌧

2p
5
, 0,� 1p

5

�
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D
u

f (1,�1, 2)

=

⌧

�23

2
,
9

2
,�4

�

·
⌧

2p
5
, 0,� 1p

5

�

= � 23p
5
+

4p
5
= � 19p

5

18. rf =

*

x
p

x2 + y2 + z2
,

y
p

x2 + y2 + z2
,

z
p

x2 + y2 + z2

+

rf(1,�4, 8) =

⌧

1

9
,�4

9
,
8

9

�

u =

⌧

1p
6
,
1p
6
,
�2p
6

�

Duf(1,�4, 8)

=

⌧

1

9
,�4

9
,
8

9

�

·
⌧

1p
6
,
1p
6
,
�2p
6

�

= � 19

9
p
6

19. rf =
⌦

yexy+z, xexy+z, exy+z

↵

rf (1,�1, 1)= h�1, 1, 1 i,

u =

⌧

4p
29

,
�2p
29

,
3p
29

�

D
u

f (1,�1, 1)

= h�1, 1, 1i ·
⌧

4p
29

,
�2p
29

,
3p
29

�

=
�3p
29

20. rf = h�y sinxy,�x sinxy, 1i
rf (0,�2, 4) = h0, 0, 1i

u =

⌧

0,
3

5
,�4

5

�

D
u

f (0,�2, 4)

= h0, 0, 1i ·
⌧

0,
3

5
,�4

5

�

= �4

5

21. rf =

⌧

2w
p

x2 + 1,
w2xp
x2 + 1

+ 3z2exz,

0, 3exz + 3xzexzi
rf(2, 0, 1, 0) = h4, 0, 0, 3i

u =

⌧

1p
30

,
3p
30

,
4p
30

,
�2p
30

�

Duf(2, 0, 1, 0)

= h4, 0, 0, 3i ·
⌧

1p
30

,
3p
30

,
4p
30

,
�2p
30

�

=
�2p
30

22. rf =
⌦

�2wxy sin(w2xy),�w2y sin(w2xy),
�w2x sin(w2xy), 3� 2 sec2 2z

↵

rf(2,�1, 1, 0)

= h�4 sin 4, 4 sin 4,�4 sin 4, 1i

u =

⌧

� 2p
21

, 0,
1p
21

,
4p
21

�

Duf(2,�1, 1, 0)
= h�4 sin 4, 4 sin 4,�4 sin 4, 1i
·
⌧

� 2p
21

, 0,
1p
21

,
4p
21

�

=
4 sin 4 + 4p

21

23. rf =

*

2x1

x2
,
�x2

1

x2
2

,
�2

p

1� 4x2
3

,
3

2

p
x5p
x4

,
3

2

p
x4p
x5

+

rf(2, 1, 0, 1, 4) =

⌧

4,�4,�2, 3,
3

4

�

u =

⌧

1

5
, 0,

�2

5
,
4

5
,
�2

5

�

Duf(2, 1, 0, 1, 4)

=

⌧

4,�4,�2, 3,
3

4

�⌧

1

5
, 0,

�2

5
,
4

5
,
�2

5

�

=
37

10

24. rf =
⌦

3x3
2x3, 9x1x

2
2x3, 3x1x

3
2 � 4e4x3 ,

1

2x4
,

1

2x5

�

rf(�1, 2, 0, 4, 1) =

⌧

0, 0,�28,
1

8
,
1

2

�

u =

⌧

2p
10

,� 1p
10

, 0,
1p
10

,� 2p
10

�

Duf(�1, 2, 0, 4, 1)

=

⌧

0, 0,�28,
1

8
,
1

2

�

·
⌧

2p
10

,� 1p
10

, 0,
1p
10

,� 2p
10

�

=
�7

8
p
10

25.

@z

@x
=

4x� 4xy � z2

3yz2 � 2xz
and

@z

@y
=

2x2 � z3

3yz2 � 2xz

rf =

⌧

4x� 4xy � z2

3yz2 � 2xz
,

2x2 � z3

3yz2 � 2xz

�

.

Further (x, y) = (1, 1) ,) 2� z3 + z2 � 2 = 0
) z = 1, as z > 0.

rf (1, 1) = h 1, 1i;

u =

⌧

3p
10

,� 1p
10

�

Therefore,

D
u

f (1, 1) = h 1, 1i ·
⌧

3p
10

,� 1p
10

�

=
2p
10

26.

@z

@x
=

�ez

xez � y2 + 2y
and
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@z

@y
=

2 (y � 1) z

xez � y2 + 2y

rf =

⌧

�ez

xez � y2 + 2y
,

2 (y � 1) z

xez � y2 + 2y

�

.

Further (x, y) = (1, 0) ) 1 · ez � 0 + 0 = 2

) ez = 2 or z = ln2.

rf (1, 0) = h�1,� ln 2i;

u =

⌧

� 1p
5
,
2p
5

�

D
u

f (1, 0) = h�1,� ln 2i ·
⌧

� 1p
5
,
2p
5

�

=

✓

1� ln 4p
5

◆

27. (a) rf =
⌦

2x,�3y2
↵

rf(2, 1) = h4,�3i
krf(2, 1)k = 5
The maximum change is 5;
in the direction h4,�3i
The minimum change is �5;
in the direction h�4, 3i

(b) From part (a),

rf (�1,�2) = h�2,�12i and
krf (�1,� 2)k =

p
148 = 2

p
37.

Thus the maximum change is 2
p
37;

in the direction h�2,�12i
And the minimum change is �2

p
37;

in the direction h2, 12i.

28. (a) rf =
⌦

4y2e4x, 2ye4x
↵

rf(0,�2) = h16,�4i
krf(0,�2)k =

p
272

The maximum change is
p
272;

in the direction h16,�4i
The minimum change is �

p
272;

in the direction h�16, 4i
(b) From part (a),

rf (3,�1) =
⌦

4e12,�2e12
↵

and

krf (2, 1)k = 2e12
p
5.

Thus, the maximum change is 2e12
p
5;

in the direction
⌦

4e12,�2e12
↵

and

the minimum change is �2e12
p
5;

in the direction
⌦

�4e12, 2e12
↵

.

29. (a) rf =
⌦

2x cos (3xy)� 3x2y sin (3xy) ,

�3x3 sin (3xy)
↵

Therefore, rf (2, 0) = h4, 0i and
krf (2, 0)k = 4.

Thus, the maximum change is 4;

in the direction h4, 0i
and the minimum change is �4;

in the direction h�4, 0i.
(b) From part (a),

rf (�2,⇡) = h�4, 0i and
krf (�2,⇡)k = 4.

Thus, the maximum change is 4;

in the direction h�4, 0i
and the minimum change is �4;

in the direction h4, 0i.

30. (a) rf =

*

2x
p

2x2 � y
,

�1

2
p

2x2 � y

+

rf(3, 2) =

⌧

3

2
,�1

8

�

krf(3, 2)k =

p
145

8

The maximum change is

p
145

8
;

in the direction

⌧

3

2
,�1

8

�

The minimum change is �
p
145

8
;

in the direction

⌧

�3

2
,
1

8

�

(b) From part (a),

rf (2,�1) =

⌧

4

3
,�1

6

�

and

krf (2,�1)k =

p
65

6
.

Thus, the maximum change is

p
65

6
;

in the direction

⌧

4

3
,�1

6

�

and the minimum change is �
p
65

6
;

in the direction

⌧

�4

3
,
1

6

�

.

31. (a) rf =

*

x
p

x2 + y2
,

y
p

x2 + y2

+

rf(3,�4) =

⌧

3

5
,�4

5

�

krf(3,�4)k = 1
The maximum change is 1;

in the direction

⌧

3

5
,�4

5

�

The minimum change is �1;

in the direction

⌧

�3

5
,
4

5

�
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(b) From part (a),

rf (�4, 5) =

⌧

� 4p
41

,
5p
41

�

and

krf (�4, 5)k = 1.

Thus, the maximum change is 1;

in the direction

⌧

� 4p
41

,
5p
41

�

and the minimum change is �1;

in the direction

⌧

4p
41

,� 5p
41

�

.

32. (a) f (x, y) = xtan�1
⇣

x

y

⌘

) rf =

⌧

tan�1

✓

x

y

◆

+
xy

x2 + y2
,

�x2

x2 + y2

�

.

Therefore, rf (1, 1) =

⌧

⇡

4
+

1

2
,�1

2

�

and

krf (1, 1)k =

r

⇡2

16
+

⇡

4
+

1

2
.

Thus, maximum change is

r

⇡2

16
+

⇡

4
+

1

2
;

in the direction

⌧

⇡

4
+

1

2
,�1

2

�

and the minimum change is

�
r

⇡2

16
+

⇡

4
+

1

2
;

in the direction

⌧

�
✓

⇡

4
+

1

2

◆

,
1

2

�

.

(b) From part (a),

rf
⇣

1,
p
2
⌘

=

*

tan�1

✓

1p
2

◆

+

p
2

3
,�1

3

+

and
�

�

�

rf
⇣

1,
p
2
⌘

�

�

�

=

v

u

u

t

 

tan�1

✓

1p
2

◆

+

p
2

3

!2

+
1

9
.

Thus, the maximum change is
v

u

u

t

 

tan�1

✓

1p
2

◆

+

p
2

3

!2

+
1

9
;

in the direction

=

*

tan�1

✓

1p
2

◆

+

p
2

3
,�1

3

+

and the minimum change is

�

v

u

u

t

 

tan�1

✓

1p
2

◆

+

p
2

3

!2

+
1

9
;

in the direction
*

�
 

tan�1

✓

1p
2

◆

+

p
2

3

!

,
1

3

+

.

33. (a) rf =
⌦

8xyz3, 4x2z3, 12x2yz2
↵

rf(1, 2, 1) = h16, 4, 24i
krf(1, 2,�2)k =

p
848

The maximum change is
p
848;

in the direction h16, 4, 24i
The minimum change is �

p
848;

in the direction h�16,�4,�24i
(b) From part (a), rf (2, 0, 1) = h0, 16, 0i and

krf (2, 0, 1)k = 16.
Thus, the maximum change is 16;
in the direction h0, 16, 0i
and the minimum change is �16;
in the direction h0,�16, 0i.

34. (a) rf =

*

x
p

x2 + y2 + z2
,

y
p

x2 + y2 + z2
,

z
p

x2 + y2 + z2

+

rf(1, 2,�2) =

⌧

1

3
,
2

3
,�2

3

�

krf(1, 2,�2)k = 1
The maximum change is 1;

in the direction

⌧

1

3
,
2

3
,�2

3

�

The minimum change is �1;

in the direction

⌧

�1

3
,�2

3
,
2

3

�

(b) From part (a),

rf (3, 1,�1) =

⌧

3p
11

,
1p
11

,� 1p
11

�

and krf (3, 1,�1)k = 1.
Thus, the maximum change is 1;

in the direction

⌧

3p
11

,
1p
11

,� 1p
11

�

and the minimum change is �1;

in the direction

⌧

� 3p
11

,� 1p
11

,
1p
11

�

.

35. (a) The direction u = h1, 0i is sketched in
with its initial point located the point
(1, 0). The level curves to be considered
are z = 1 and z = 2. From the graph we
can approximate the directional deriva-

tive by estimating
�z

�u
, where �u = the

distance along the unit vector u, which
is

p
2 � 1, as z = 2 cuts the x-axis at

x =
p
2. Thus, �u =

p
2 � 1. Fur-

ther, the vector appears to extend from
the z = 1 level curve to the z = 2
level curve. Therefore, �z = 1 and our
estimate of the directional derivative is
�z

�u
=

1p
2� 1

= 2.4142.
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(b) The direction u = h0, 1i is sketched in
with its initial point located the point
(1, 0). The level curves to be considered
are z = 1 and z = 0. Proceeding as
done in part (a), we have �u = 1 and

�z = 0� 1 = �1, therefore
�z

�u
= �1

36. (a) The direction u = h1, 0i is sketched in
with its initial point located the point
(0, 1). The level curves to be considered
are z = �1 and z = 0. Proceeding as
done in Exercise 35 (a), we have �u = 1

and �z = 0�(�1) = 1, therefore
�z

�u
= 1

(b) The direction u = h0,�1i is sketched in
with its initial point located the point
(0, 1). The level curves to be considered
are z = �1 and z = 0. Proceeding as
done in Part (a), we have �u = 1 and

�z = 0� (�1) = 1, therefore
�z

�u
= 1

37. The level curves (surfaces) are circles (spheres)
centered at the origin. The gradients will be
orthogonal to these, and therefore be parallel
to the position vectors.

38. rf(a, b) =
⌦

2ag0(a2 + b2), 2bg0(a2 + b2)
↵

= 2g0(a2 + b2) ha, bi
Notice that the level curves are all concentric
circles, centered at the origin.

39. The sketch of z = sin (x+ y)

−3 5.0−2

x
2.5−1

−1.0

−0.5

0.00
0.0

1

0.5

y

−2.5

1.0

2−5.0 3

Here r sin(x+ y) = hcos(x+ y), cos(x+ y)i
= cos(x+ y) h 1, 1 i

Consider the level curves in the xy plane. They
are f (x, y) = c or sin (x+ y) = c. For z = 0,
sin (x+ y) = 0 that is x + y = n⇡ for any in-
teger n or y = �x+ n⇡. Therefore, the crests
are in the directions parallel to u = h 1,�1, 0i,
which is perpendicular to the gradient that is

cos(x+y) h 1, 1 i. Further, it is stated that each
crest extends parallel to the shore line, hence
the gradient is perpendicular to the shore line.
The sketch of z = sin (2x� y)
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y
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−1 −1
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0.0

00

0.5

1
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12 23 3

r sin(2x� y) = h2 cos(2x� y),� cos(2x� y)i
= cos(2x� y) h2,�1i

As the gradient cos(2x � y) h2,�1i is perpen-
dicular to the shore line, as derived earlier the
vector perpendicular to the shore line (parallel
to the gradient) is h2a,�ai a 6= 0

40. r sin(x+ y) = hcos(x+ y), cos(x+ y)i
= cos(x+ y)h1, 1i

h1, 1i · h100,�100i = 0
and therefore these vectors are perpendicular.
The directional derivative
in the direction of h100,�100i must be zero
because this is the direction of a level curve–a
curve where the function in constant.
sin(x+ y) viewed from (100,�100, 0)

-4 4
y

-2 200

0.5

-1

1

0

-0.5

2-2
x

4-4

sin(2x� y) viewed from (100, 200, 0)
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41. f(x, y, z) = x2 + y3 � z
rf =

⌦

2x, 3y2,�1
↵

rf(1,�1, 0) = h2, 3,�1i
The tangent plane is:
2(x� 1) + 3(y + 1)� z = 0
The normal line has parametric equations
x = 1 + 2t, y = �1 + t, z = �t

42. f(x, y, z) =
p

x2 + y2 � z

rf =

*

x
p

x2 + y2
,

y
p

x2 + y2
,�1

+

rf(3,�4, 5) =

⌧

3

5
,�4

5
,�1

�

The tangent plane is:
3

5
(x� 3)� 4

5
(y + 4)� (z � 5) = 0

The normal line has parametric equations

x = 3 +
3

5
t

y = �4� 4

5
t

z = 5� t

43. f(x, y, z) = x2 + y2 + z2 � 6
rf = h2x, 2y, 2zi
rf(�1, 2, 1) = h�2, 4, 2i
The tangent plane is:
�2(x+ 1) + 4(y � 2) + 2(z � 1) = 0
The normal line has parametric equations
x = �1� 2t
y = 2 + 4t
z = 1 + 2t

44. f(x, y, z) = x2 � y2 � z2

rf = h2x,�2y,�2zi
rf(5,�3,�4) = h10, 6, 8i
10(x� 5) + 6(y + 3) + 8(z + 4) = 0
The normal line has parametric equations
x = 5 + 10t
y = �3 + 6t
z = �4 + 8t

45. rf = h4x� 4y,�4x+ 4y3i

rf = h0, 0i when x = y and �x+ x3 = 0.
x3 � x factors as x(x� 1)(x+ 1).
So the places where the tangent plane is par-
allel to the xy-plane are at (0, 0), (1, 1), and
(�1,�1). These are possible local extrema.

46. rf = hcosx cos y,� sinx sin yi
rf = h0, 0i when (x, y) =

⇣m⇡

2
, n⇡

⌘

or when (x, y) =
⇣

n⇡,
m⇡

2

⌘

where n,m are integers. These are possible lo-
cal extrema.

47. f (x, y) = x2y � 2y2

) rf =
⌦

2xy, x2 � 4y
↵

,

Therefore

rf (a, b) =
⌦

2ab, a2 � 4b
↵

= h4, 0i
gives 2ab = 4 and a2 � 4b = 0 ) a = 2; b = 1

48. f (x, y) = x2y2 � 2xy

) rf =
⌦

2xy2 � 2y, 2x2y � 2x
↵

,

Therefore

rf (a, b) =
⌦

2ab2 � 2b, 2a2b� 2a
↵

= h4, 12i
gives 2ab2 � 2b = 4 and 2a2b� 2a = 12

) a = 3; b = 1

49.

50.
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51. f
x

(0, 0) ⇡ 2.2� 1.8

0.1� (�0.1)
= 2

f
y

(0, 0) ⇡ 1.6� 2.4

0.2� (�0.2)
= �2

rf(0, 0) ⇡ h2,�2i

52. f
x

(0, 0) ⇡ 1.6� 2.4

0.2� (�0.2)
= �2

f
y

(0, 0) ⇡ 2.1� 1.9

0.3� (�0.3)
=

1

3

rf(0, 0) ⇡
⌧

�2,
1

3

�

53. (a) True.

r(f + g) =

⌧

@f

@x
+

@g

@x
,
@f

@y
+

@g

@y

�

=

⌧

@f

@x
,
@f

@y

�

+

⌧

@g

@x
,
@g

@y

�

= rf +rg

(b) True.

r(fg) =

⌧

@f

@x
g +

@g

@x
f,

@f

@y
g +

@g

@y
f

�

=

⌧

@f

@x
,
@f

@y

�

g +

⌧

@g

@x
,
@g

@y

�

f

= (rf)g + f(rg)

54. r2f(x, y) = f
xx

(x, y) + f
yy

(x, y) = 6x+ 2.

55. The function is not continuous because the
limit along any line is 0, but the limit along

the curve y = x2 is
1

2
. Therefore the limit as

(x, y) ! (0, 0) does not exist and the function
is not continuous.

Duf(0, 0) = lim
h!0

f(hu1, hu2)� f(0, 0)

h

=
h3u2

1u2

h6u6
1 + 2h2u2

2

= 0

for any vector u. All directional derivatives
may exist, even if the function is not continu-
ous.

56. f (x, y) =
2xy

(x2 + y2)
, for (x, y) 6= (0, 0)

) rf (x, y) =

*

2y
�

y2 � x2
�

(x2 + y2)2
,
2x
�

x2 � y2
�

(x2 + y2)2

+

Consider a vector u = hu1, u2i, therefore by
the definition of directional derivative

D
u

f (x, y)

= lim
h!0

f (hu1, hu2)� f (0, 0)

h

= lim
h!0

2 (hu1) (hu2)

(hu1)
2 + (hu2)

2

=
2u1u2

u1
2 + u2

2
, which exists.

But, lim
(x,y)!(0,0)

f (x, y)

= lim
(0,y)!(0,0)

2 (0) (y)

(0)2 + y2
= 0

(along the path x = 0)

= lim
(x,0)!(0,0)

2 (x) (0)

x2 + (0)2
= 0

(along the path y = 0)

= lim
(x,x)!(0,0)

2x2

2x2
= 1 (along the path y = x)

Thus, lim
(x,y)!(0,0)

f (x, y) does not exist

) f is not continuous at (0, 0)

57. The gradient is
rf = h� tan 10�, tan 6�i ⇡ h�0.176, 0.105i,
and this gives the direction of maximum as-
cent. The rate of change in this direction is
the magnitude of the gradient, krfk ⇡ 0.205,
and the rise in degrees is tan�1 0.205 ⇡ 11.6�.

58. If the point on the mountain is (x0, y0, z0) with
the positive x-direction as east, then the direc-
tion of steepest ascent will be
rf = h� tan 4�, tan 3�i ⇡ h�0.06993, 0.05241i
krfk ⇡ 0.08739
The rise in the direction of rf would be
tan�1(0.08739) ⇡ 4.99�

59. (a) rf = h�8x,�2yi
rf(1, 2) = h�8,�4i
The rain will run in direction h8, 4i.

(b) The level curve is
100 = 200� y2 � 4x2

or y2 + 4x2 = 100, which is an ellipse.

60. This means that
2 units of stock 1 should be bought,
1 unit of stock 2 should be sold,
6 units of stock 3 should be bought,
nothing should be done with stock 4, and
2 units of stock 5 should be sold.

61. We have the function g(w, s, t), with
g(4, 10, 900) = 4. Then
@g

@w
(4, 10, 900) =

0.04

0.05
= 0.8,

@g

@s
(4, 10, 900) =

0.06

0.2
= 0.3, and

@g

@t
(4, 10, 900) =

�0.04

10
= �0.004. Then

rg(4, 10, 900) = h0.8, 0.3,�0.004i
and this gives the direction of maximum in-
crease of gauge.
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62. rT =

⌧

�10e�z

x3
,
�5e�z

y2
,�5e�z

✓

1

x2
+

1

y

◆�

rT (1, 4, 8) =

⌧

�10e�8,
�5e�8

16
,
�25

4
e�8

�

Heat decreases most rapidly in the opposite di-

rection: h10, 5

16
,
25

4
i.

Heat increases most rapidly in the same direc-

tion as rT : h�10,
�5

16
,
�25

4
i.

63. If the shark moves toward a higher electrical
charge, it should move in direction h12,�20, 5i.

64. An increase in v will greatly increase S,
An increase in t will decrease S,
An increase in e will increase S, and
An increase in ✓ will decrease S.

12.7 Extrema of Functions of
Several Variables

1. f
x

= �2xe�x

2

(y2 + 1)

f
y

= 2ye�x

2

f
xx

= (4x2 � 2)e�x

2

(y2 + 1)

f
yy

= 2e�x

2

f
xy

= �4xye�x

2

Solving rf = h0, 0i gives critical point
(x, y) = (0, 0).
D(0, 0) = (�2)2 � 02 = �4, so f has a saddle
point at (0, 0).

2. f
x

= �2 cosx sinx = � sin 2x
f
y

= 2y
f
xx

= �2 cos 2x
f
yy

= 2
f
xy

= 0
D = �4 cos 2x
Solving rf = h0, 0i gives critical points at
(x, y) =

⇣n⇡

2
, 0
⌘

.

If x is an odd multiple of
⇡

2
, then D > 0

and f
xx

> 0 and these critical points are local
minima. The other critical points are saddle
points.

3. f
x

= 3x2 � 3y
f
y

= �3x+ 3y2

f
xx

= 6x
f
yy

= 6y
f
xy

= �3
D = 36xy � 9
Solving rf = h0, 0i gives equations
y = x2 and x = y2.
Substituting gives

x = (x2)2 = x4

x4 � x = 0
x(x3 � 1) = 0
so x = 0 or x = 1, and the critical points are
(0, 0) and (1,1).
D(0, 0) < 0 so (0, 0) is a saddle point.
D(1, 1) > 0 and f

xx

> 0, so (1, 1) is a local
minimum.

4. f
x

= 4y � 4x3

f
y

= 4x� 4y3

f
xx

= �12x2

f
yy

= �12y2

f
xy

= 4
D = 144x2y2 � 16
Solving rf = h0, 0i gives equations
y = x3 and x = y3.
Substituting gives
x = (x3)3 = x9

x9 � x = 0
x(x8 � 1) = 0
so x = 0 or x = ±1
This gives critical points at
(0, 0), (1, 1), (�1,�1).
D(0, 0) = �16 < 0, so saddle point at (0, 0).
D(1, 1) = 128 > 0
f
xx

(1, 1) = �12 < 0 and so there is a local
maximum at (1, 1).
D(�1,�1) = 128 > 0
f
xx

(�1,�1) = �12 < 0 and so there is a local
maximum at (1, 1).

5. f
x

= 2xy + 2x
f
y

= 2y + x2 � 2
f
xx

= 2y + 2
f
yy

= 2
f
xy

= 2x
D = 2y + 4� 4x2

Solving rf = h0, 0i gives equations
2x(y + 1)=0 and x2 + 2y � 2 = 0.
Either x = 0 or y = �1.
This gives critical points at
(0, 1) and (±2,�1).
D(0, 1) = 6 > 0 and f

xx

= 4 > 0, so (0, 1) is a
local minimum.
D(±2,�1) = �14 < 0, so (±2,�1) are both
saddle points.

6. f
x

= 4x� 2xy
f
y

= 3y2 � x2 � 3
f
xx

= 4� 2y
f
yy

= 6y
f
xy

= �2x
D = (4� 2y)(6y)� 4x2 = 24y � 12y2 � 4x2

Solving rf = h0, 0i gives equations
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2x(2� y) = 0 and 3y2 � x2 � 3 = 0.
Solving gives critical points at
(0, 1), (0,�1), (3, 2), (�3, 2).
D(0, 1) = 12, f

xx

(0, 1) = 2
and so there is a local minimum at (0, 1).
D(0,�1) = �26
and so there is a saddle at (0,�1).
D(3, 2) = �36
and so there is a saddle at (3, 2).
D(�3, 2) = �36
and so there is a saddle at (�3, 2).

7. f
x

= �2xe�x

2�y

2

f
y

= �2ye�x

2�y

2

f
xx

= (4x2 � 2)e�x

2�y

2

f
yy

= (4y2 � 2)e�x

2�y

2

f
xy

= 4xye�x

2�y

2

D = (4x2 � 2)(4y2 � 2)e�2x2�2y2

� 16x2y2e�2x2�2y2

Solving rf = h0, 0i gives critical point (0, 0)
D(0, 0) = 4, f

xx

(0, 0) = �2
and so there is a local maximum at (0, 0).

8. f
x

= sin y
f
y

= x cos y
f
xx

= 0
f
yy

= �x sin y
f
xy

= cos y
D = � cos2 y
Solving rf = h0, 0i gives equations
sin y = 0 and x cos y = 0.
This gives critical points at
(0, n⇡) D(0, n⇡) = �1 < 0
and so there are saddles at (0, n⇡).

9. Domain = {(x, y) | x 6= 0, y 6= 0 }

f
x

= y � 1

x2
, f

y

= x� 1

y2

f
xx

=
2

x3
, f

yy

=
2

y3

f
xy

= 1

D =
4

x3y3
� 1

Solving rf = h0, 0i gives critical point (1, 1)
D (1, 1) = 3,f

xx

= 2

and so there is local minimum at (1, 1).

10. f
x

= 2xey, f
y

= ey
�

x2 � y2 � 2y
�

f
xx

= 2ey, f
yy

= ey
�

x2 � y2 � 4y � 2
�

f
xy

= 2xey

D = 2e2y
�

x2 � y2 � 4y � 2
�

� (2xey)2

Solving rf = h0, 0i gives equation

2xey = 0,
�

x2 � y2 � 2y
�

= 0
ey 6= 0 gives x=0 , y=0 or y= � 2
So critical point are (0, 0) and (0,-2)

D (0, 0) = �4 < 0
so f has saddle point at (0, 0).
D (0,�2) = 4e�4 > 0 and f

xx

> 0
so there is local minimum at (0,-2).

11. f
x

=
�

1� 2x2
�

e�x

2�y

2

f
y

= �2xye�x

2�y

2

f
xx

= 2xe�x

2�y

2

(2x2 � 3)

f
yy

= 2xe�x

2�y

2

(2y2 � 1)

f
xy

= �2xye�x

2�y

2

D = e�2x2�2y2

(12x2 � 30x2y2 � 8x4 � 4y2)

Solving rf = h0, 0i gives equation gives

x = ± 1p
2
. So critical points are

✓

± 1p
2
, 0

◆

.

D

✓

1p
2
, 0

◆

> 0 and f
xx

✓

1p
2
, 0

◆

< 0

so the point

✓

1p
2
, 0

◆

is a local maximum.

D

✓

� 1p
2
, 0

◆

> 0 and f
xx

✓

� 1p
2
, 0

◆

> 0

so the point

✓

� 1p
2
, 0

◆

is a local minimum.

12. f
x

= 2
�

x� x3
�

e�x

2�y

2

f
y

= �2x2ye�x

2�y

2

f
xx

= e�x

2�y

2

(4x4 � 10x2 + 2)

f
yy

= e�x

2�y

2

(4x2y2 � 2x2)

f
xy

= e�x

2�y

2

(4x3y � 4xy)

D = e�2x2�2y2

(�8x6 � 8x4y2 � 8x2y2

+ 20x4 � 4x2)

Solving rf = h0, 0i gives equation gives x = 0
and x = ±1. So the critical points are (±1, 0)
and (0,y) for any y.

D (0, y) = 0, giving us no information.

But f (0, y) = 0  f (x, y) for all (x, y)

Therefore f has local minima at (0,y)

D (±1, 0) > 0 and f
xx

(±1, 0) < 0 so the points
(±1, 0) are both local maxima.

13. f
x

= 2x� 4y

y2 + 1

f
y

= �4x
y2 � 1

(y2 + 1)2

Solving f
y

= 0 gives x = 0 or y = ±1. Now
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f
x

= 0 gives critical points (0, 0), (1, 1), and
(�1,�1).
Using a CAS, we find that:
D(0, 0) < 0 so (0, 0) is a saddle point.
D(1, 1) > 0 and f

xx

(1, 1) > 0, so (1, 1) is a lo-
cal minimum.
D(�1,�1) > 0 and f

xx

(�1,�1) > 0, so
(�1,�1) is a local minimum.

14. f
x

=
(x2 + y2 + 1)� (x+ y)(2x)

x2 + y2 + 1

f
y

=
(x2 + y2 + 1)� (x+ y)(2y)

x2 + y2 + 1
Solving rf = h0, 0i gives equations
x2 + y2 + 1� 2x2 � 2xy = 0
x2 + y2 + 1� 2y2 � 2xy = 0
Subtracting these equations gives
�2x2 + 2y2 = 0
x2 = y2

x = ±y
Substituting this result into our first equation
gives
(±y)2 + y2 + 1� 2(±y)2 � 2(±x)y = 0
± 2y2 = 1
Notice that the equation �2y2 = 1 does not
give any solutions, which means x = y
(x = �y can not hold).

Therefore, y = ± 1p
2

This gives critical points at
✓

1p
2
,
1p
2

◆

and

✓

� 1p
2
,� 1p

2

◆

Using a CAS,

D

✓

1p
2
,
1p
2

◆

=
1

2
> 0

f
xx

✓

1p
2
,
1p
2

◆

= � 1p
2
< 0

and so there is a local maximum at
✓

1p
2
,
1p
2

◆

.

D

✓

� 1p
2
,� 1p

2

◆

=
1

2
> 0

f
xx

✓

� 1p
2
,� 1p

2

◆

=
1p
2
> 0

and so there is a local minimum at
✓

� 1p
2
,� 1p

2

◆

.

15. f
x

= y(1� 2x2)e�x

2�y

2

f
y

= x(1� 2y2)e�x

2�y

2

Solving f
x

= 0 gives y = 0 or x = ± 1p
2
.

Then f
y

= 0 gives critical points (0, 0) and

(± 1p
2
,± 1p

2
).

D(0, 0) < 0, so (0, 0) is a saddle point.

D(± 1p
2
,± 1p

2
) > 0, so all four of these

points are extrema. Using f
xx

we see

that ±(
1p
2
,
1p
2
) are both local maxima, and

±(
1p
2
,� 1p

2
) are both local minima.

16. f
x

= y(1� 2x2)e�x

2�y

4

f
y

= x(1� 4y4)e�x

2�y

4

Solving rf = h0, 0i gives equations
y(1� 2x2) = 0
x(1� 4y4) = 0
Solving gives critical points

(0, 0),

✓

1p
2
,
1p
2

◆

,

✓

� 1p
2
,
1p
2

◆

,
✓

1p
2
,� 1p

2

◆

, and

✓

� 1p
2
,� 1p

2

◆

.

Using a CAS,
D(0, 0) = �1 and so there is a saddle at (0, 0)

D

✓

1p
2
,
1p
2

◆

= 8e�3/2 > 0

f
xx

✓

1p
2
,
1p
2

◆

= �2e�3/4 < 0

and so there is a local maximum at
✓

1p
2
,
1p
2

◆

D

✓

� 1p
2
,
1p
2

◆

= 8e�3/2 > 0

f
xx

✓

� 1p
2
,
1p
2

◆

= 2e�3/4 > 0

and so there is a local minimum at
✓

� 1p
2
,
1p
2

◆

D

✓

1p
2
,� 1p

2

◆

= 8e�3/2

f
xx

✓

1p
2
,� 1p

2

◆

= 2e�3/4 > 0

and so there is a local minimum at
✓

1p
2
,� 1p

2

◆

D

✓

� 1p
2
,� 1p

2

◆

= 8e�3/2

f
xx

✓

� 1p
2
,� 1p

2

◆

= �2e�3/4

and so there is a local maximum at
✓

� 1p
2
,� 1p

2

◆

17. f
x

= y2 � 2x+
1

4
x3

f
y

= 2xy � 1

Equation f
y

= 0 gives y =
1

2x
.

Substituting this into f
x

= 0 and clearing de-
nominators yields x5 � 8x3 + 1 = 0.
Numerically, this gives solutions at approxi-
mately (0.5054, 0.9892), (2.8205, 0.1773), and
(�2.8362,�0.1763).
D(0.5054, 0.9892) ⇡ �5.7420, so this is a sad-
dle point.
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D(2.8205, 0.1773) ⇡ 22.2488 and
f
xx

(2.8205, 0.1773) ⇡ 3.966 so this is a relative
minimum.
D(�2.8362,�0.1763) ⇡ �23.0012, so this is a
saddle point.

18. f
x

= 2y � 2x
f
y

= 2x+ 4 + 4y3 � 18y
Solving rf = h0, 0i gives equations
2y � 2x = 0
2x+ 4 + 4y3 � 18y = 0

The first equation gives y = x, substituting
gives the equation
2x+ 4 + 4x3 � 18x = 0
� 16x+ 4 + 4x3 = 0

We can solve this last equation using a CAS
or graphing calculator to find that x ⇡
�2.1149, 0.2541, 1.8608

This gives critical points
(�2.1149,�2.1149), (0.2541, 0.2541),
(1.8608, 1.8608)
D(�2.1149,�2.1149) ⇡ �75.348 < 0
and so there is a saddle at (�2.1149,�2.1149)
D(0.2541, 0.2541) ⇡ 30.4504 > 0
f
xx

(0.2541, 0.2541) = �2 < 0

and so there is a local maximum at
(0.2541, 0.2541)
D(1.8608, 1.8608) ⇡ �51.1024 < 0

and so there is a saddle at (1.8608, 1.8608)

19. f
x

= 2x(1� x2 + y3)e�x

2�y

2

f
y

= y(2y3 � 2x2 � 3y)e�x

2�y

2

Using a CAS to find and analyze the critical
points, we get:
(0, 0) is a saddle point.
(±1, 0) are local maxima.

(0,

r

3

2
) is a local minimum.

(0,�
r

3

2
) is a local maximum.

(±
p
57

9
,
�2

3
) are both saddle points.

20. f
x

= (�2x+ 3 + 2x3 � 6x2)e�x

2�y

2

f
y

= �2xy(x� 3)e�x

2�y

2

Solving rf = h0, 0i gives critical points
(�0.7764, 0), (0.6102, 0),
(3.1662, 0)
D(�0.7764, 0) ⇡ 19.20 > 0
f
xx

(�0.7764, 0) ⇡ �5.984 < 0
and so there is a local maximum at
(�0.7764, 0)
D(0.6102, 0) ⇡ 9.817 > 0

f
xx

(0.6102, 0) ⇡ 4.885 > 0
and so there is a local minimum at
(0.6102, 0)
D(3.1662, 0) ⇡ 4.16⇥ 10�8 > 0
f
xx

(3.1662, 0) ⇡ �9⇥ 10�4 < 0
and so there is a local maximum at
(3.1662, 0)

21. (a) The sum of the squares of the residuals is
given by

f(a, b) =
n

X

k=1

(ax
k

+ b� y
k

)2

The partial with respect to a is

f
b

=
n

X

k=1

2(ax
k

+ b� y
k

)

and the partial with respect to b is

f
a

=
n

X

k=1

2x
k

(ax
k

+ b� y
k

)

Setting these equal to 0, dividing by 2,
and distributing sums, we get equations

a

 

n

X

k=1

x
k

!

+ b

 

n

X

k=1

1

!

�
 

n

X

k=1

y
k

!

= 0

and

a

 

n

X

k=1

x2
k

!

+ b

 

n

X

k=1

x
k

!

�
 

n

X

k=1

x
k

y
k

!

= 0

as desired.

(b) Note that
n

P

k=1
1 = n. Multiply the second

equation by n, multiply the first equation

by

✓

n

P

k=1
x
k

◆

, and subtract to get

a

"

n
n

P

k=1
x2
k

�
✓

n

P

k=1
x
k

◆2
#

= n
n

P

k=1
x
k

y
k

�
✓

n

P

k=1
x
k

◆✓

n

P

k=1
y
k

◆

a =

n
n

P

k=1
x
k

y
k

�
✓

n

P

k=1
x
k

◆✓

n

P

k=1
y
k

◆

n
n

P

k=1
x2
k

�
✓

n

P

k=1
x
k

◆2

Using this to solve for b, we find that

b =
1

n

" 

n

X

k=1

y
k

!

� a

 

n

X

k=1

x
k

!#

= y � ax
where x and y are the means of the x and
y values of the data.

22. Let x be the number of years since 1970. Then
the sum of the squares of the residuals is given
by
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f(a, b) = (b� 0.34)2 + (5a+ b� 0.59)2

+ (10a+ b� 1.23)2

+ (15a+ b� 1.11)2

f
a

= 700a+ 60b� 63.8
f
b

= 60a+ 8b� 6.54
Solving f

a

= f
b

= 0 gives us
a ⇡ 0.059, b ⇡ 0.375,
so the linear model is y = 0.059x+ 0.375

This model predicts the gas prices in 1990 and
1995 as
y(20) = $1.56
y(25) = $1.85

The forecasts are not accurate because they as-
sume that the prices will increase indefinitely.

23. (a) The sum of the squares of the residuals is
given by
f(a, b) = (68a+b�160)2+(70a+b�172)2

+ (70a+ b� 184)2

+ (71a+ b� 180)2

f
a

= 38930a+ 558b� 97160
f
b

= 558a+ 8b� 1392

Solving f
a

= f
b

= 0 gives us
a ⇡ 7.16, b ⇡ �325.26,

so the linear model is y = 7.16x� 325.26

This model predicts the weight of a 608”
person will be y(80) = 248 pounds,
and the weight of a 500” person will be
y(60) = 104 pounds.
There are many other factors besides
height that influence a persons weight.

(b) The sum of the squares of the residuals is
given by

f (a, b) = (68a+ b� 160)2

+ (70a+ b� 172)2

+ (70a+ b� 184)2

+ (70a+ b� 221)2

+ (71a+ b� 180)2

f
a

= 48730a+ 698b� 128100
f
b

= 698a+ 10b� 1834

Solving f
a

= f
b

= 0 gives us

a ⇡ 9.0417, b ⇡ �447.71.

So linear model is y = 9.0417x� 447.71.

This model predict the weight of 6’8” per-
son will be y (80) = 275.626 pounds, and
the weight of 5’0” person will be

y (60) = 94.792.

The additional point dramatically
changed the linear model!

24. The sum of the squares of the residuals is given
by

f(a, b) = (15a+ b� 4.57)2 + (35a+ b� 3.17)2

+ (55a+ b� 1.54)2

+ (75a+ b� 0.24)2

+ (95a+ b+ 1.25)2

Solving f
a

= f
b

= 0 gives us
a ⇡ �0.07285, b ⇡ 5.66,
so the linear model is y = �0.07285x+ 5.66
This model predicts the average number of
points scored starting from the 60 yard line
will be y(60) = 1.29, and the average number
of points scored starting from the 40 yard line
will be y(40) = 2.75.

25. (x0, y0) = (0,�1)
rf =

⌦

2y � 4x, 2x+ 3y2
↵

rf(0,�1) = h�2, 3i
g(h) = f(0� 2h,�1 + 3h)
g0(h) = �2f

x

(�2h,�1 + 3h)
+ 3f

y

(�2h,�1 + 3h)
= �2 [2(�1 + 3h))� 4(�2h)]

+ 3[2(�2h) + 3(�1 + 3h)2]
= 13� 94h+ 81h2

The smallest positive solution to g0(h) = 0 is
h ⇡ 0.16049. This leads us to
(x1, y1) = (0,�1) + 0.16049(�2, 3)

= (�0.32098,�0.51853)
rf(�0.32098,�0.51853) = h0.24686, 0.16466i
g(h) = f(�0.32098 + 0.24686h,

� 0.51853 + 0.16466h)
g0(h) = 0.24686 · f

x

(�0.32098 + 0.24686h,
� 0.51853 + 0.16466h)

+ 0.16466 · f
y

(�0.32098 + 0.24686h,
� 0.51853 + 0.16466h)

= 0.08805� 0.16552h+ 0.01339h2

Solving g0(h) = 0 gives
h ⇡ 11.80144, 0.55709.
Using the first positive value means we arrive
at
(x2, y2) = (�0.32098,�0.51853)

+ 0.55709 h0.24686, 0.16466i
⇡ (�0.18346,�0.42680).

26. rf =
⌦

3y � 3x2, 3x� 2y
↵

rf(1, 1) = h0, 1i
g(h) = f(1 + 0 · h, 1 + 1 · h) = f(1, 1 + h)
g0(h) = 0 · f

x

(1, 1 + h) + 1 · f
y

(1, 1 + h)
= 1� 2h

Solving g0(h) = 0 gives h =
1

2
and we arrive at

(x1, y1) = (1, 1) +
1

2
h0, 1i =

✓

1,
3

2

◆

rf

✓

1,
3

2

◆

=

⌧

3

2
, 0

�

g(h) = f

✓

1 +
3

2
· h, 3

2
+ 0 · h

◆
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= f

✓

1 +
3

2
h,

3

2

◆

g0(h) =
3

2
·f

x

✓

1 +
3

2
h,

3

2

◆

+0·f
y

✓

1 +
3

2
h,

3

2

◆

= �81

8
h2 � 27

2
h+

9

4
Solving g0(h) = 0 gives h ⇡ �1.4832, 0.1498.
Using the first positive value means we arrive
at

(x2, y2) =

✓

1,
3

2

◆

+ (0.1498)

⌧

3

2
, 0

�

⇡ (1.2247, 1.5)

27. rf =
⌦

1� 2xy4,�4x2y3 + 2y
↵

rf(1, 1) = h�1,�2i
g(h) = f(1� h, 1� 2h)
g0(h) = �1 · f

x

(1� h, 1� 2h)
� 2 · f

y

(1� h, 1� 2h)
= 5� 74h+ 264h2 � 416h3 + 320h4 � 96h5

The smallest positive solution to g0(h) = 0 is
approximately h = 0.09563, and we arrive at
(x1, y1) = (1, 1) + 0.09563 h�1,�2i

= (0.90437, 0.80874)
rf(0.90437, 0.80874)

= h0.22623,�0.11305i
g(h) = f(0.90437 + 0.22623h,

0.80874� 0.11305h)
g0(h) = 0.22623 · f

x

(0.90437 + 0.22623h,
0.80874� 0.11305h)

� 0.11305 · f
y

(0.90437 + 0.22623h,
0.80874� 0.11305h)

= 0.06396 + 0.09549h� 0.01337h
� 0.00315h3 + 0.00086h4

� 0.00005h5

The smallest positive solution to g0(h) = 0 is
approximately h = 10.56164, and we arrive at
(x2, y2) = (0.90437, 0.80874)

+ 10.56164 h0.22623,�0.11305i
⇡ (3.29373,�0.38525)

28. rf =
⌦

y2 � 2x, 2xy � 1
↵

rf(1, 0) = h�2,�1i
g(h) = f(1� 2 · h, 0� 1 · h) = f(1� 2h,�h)
g0(h) = �2 · f

x

(1� 2h,�h)� 1 · f
y

(1� 2h,�h)
= �6h2 � 6h+ 5

Solving g0(h) = 0 gives h ⇡ 0.5408 and we ar-
rive at
(x1, y1) = (1, 0) + (0.5408) h�2,�1i

= (�0.0817,�0.5408)
rf (�0.0817,�0.5408) = h0.4559,�0.9117i
g(h) = f(�0.0817� 0.4559h,

� 0.5408� 0.9117h)
g0(h) = 0.03889 + 0.3476h+ 1.1366h2

Solving g0(h) = 0 has no real solutions.

29. Refer to exercise 25:
rf(0, 0) = (0, 0) g(h) = f(0 + 0h, 0 + 0h) = 0,
g0(h) = 0, and there is no smallest positive so-
lution to g0(h) = 0. Graphically, we started at
a point where the tangent plane was horizon-
tal (a saddle point in this case), so the gradient
didn’t tell us which direction to move!

30. Instead of using rf , use �rf which gives the
direction of steepest descent. Then, apply the
steepest ascent algorithm for finding local max-
ima.

31. In the interior:
f
x

= 2x� 3y f
y

= 3� 3x
Solving f

y

= 0 gives x = 1. Then f
x

= 0 gives

y =
2

3
, and we have one critical point

✓

1,
2

3

◆

.

Along y = x:
f(x, x) = g(x) = x2 + 3x� 3x2 = 3x� 2x2

g0(x) = 3� 4x = 0 at x =
4

3
.

This gives a local maximum at

✓

4

3
,
4

3

◆

Along y = 0:
f(x, 0) = x2, which has a minimum at (0, 0).
Along x = 2:
f(2, y) = h(y) = 4 + 3y � 6y = 4� 3y.
This will give a minimum and maximum value
at the intersection points along the boundary.
The intersection points of the boundaries are
(0, 0), (2, 2), and (2, 0). The function values at
the points of interest are:
f(0, 0) = 0
f(2, 0) = 4
f(2, 2) = �2

f

✓

1,
2

3

◆

= 1

f

✓

4

3
,
4

3

◆

=
4

9
The absolute maximum is 4 and the absolute
minimum is �2.

32. In the interior:
f
x

= 2x� 4y f
y

= 2y � 4x
Solving f

x

= 0, f
y

= 0 gives equations
2x = 4y and 2y = 4x
Solving these equations gives critical point
(0, 0).
Along y = x:
f(x, x) = g(x) = 2x2 � 4x2 = �2x2

which has a maximum at (0, 0).
Along x = 3:
f(3, y) = h(y) = 9 + y2 � 12y
h0(y) = 2y � 12
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Solving h0(y) = 0 gives (3, 6), which is not in
the region.
Along y = �3:
f(x,�3) = k(x) = x2 + 9 + 12x
k0(x) = 2x+ 12.
Solving k0(x) = 0 gives (�6,�3), which is not
in the region. The intersection points of the
boundaries are
(�3,�3), (3,�3), (3, 3).
Finding functional values at all these points:
f(0, 0) = 0
f(�3,�3) = �18
f(3,�3) = 54
f(3, 3) = �18
Therefore the absolute maximum is 54 and the
absolute minimum is �18.

33. In the interior:
f
x

= 2x f
y

= 2y
Solving f

x

= 0, f
y

= 0 gives critical point
(0, 0).
On the circle (x � 1)2 + y2 = 4, we substitute
y2 = 4� (x� 1)2 to get
f(x, y) = g(x) = x2 + 4� (x� 1)2 = 3 + 2x.
This has no critical points, but is maximized
for the largest value of x and minimized for the
smallest value of x. The point with the largest
value of x on the circle is (3, 0). The point with
the smallest value of x on the circle is (�1, 0).
Finding functional values at all these points:
f(0, 0) = 0
f(3, 0) = 9
f(�1, 0) = 1
Therefore the absolute maximum is 9 and the
absolute minimum is 0.

34. In the interior:
f
x

= 2x� 2 f
y

= 2y � 4
Solving f

x

= 0, f
y

= 0 gives gives critical point
(1, 2).
Along y = x:
f(x, x) = g(x) = 2x2 � 6x
g0(x) = 4x� 6

which gives us critical point

✓

3

2
,
3

2

◆

.

Along y = 3:
f(x, 3) = h(x) = x2 + 9� 2x� 12
h0(x) = 2x� 2
Solving k0(x) = 0 gives the point (1, 3).
Along x = 0:
f(0, y) = k(y) = y2 � 4y
k0(y) = 2y � 4
Solving k0(y) = 0 gives the point (0, 2).
The intersection points of the boundaries are
(0, 0), (0, 3), (3, 3)

Finding functional values at all these points:
f(0, 0) = 0
f(0, 3) = �3
f(3, 3) = 0
f(1, 2) = �5

f

✓

3

2
,
3

2

◆

= �9

2
f(1, 3) = �4
f(0, 2) = �4
Therefore the absolute maximum is 0 and the
absolute minimum is �5.

35. In the interior :

f
x

= ye
�
x2

2
� y2

2
⇥

1� x2
⇤

f
y

= xe
�
x2

2
� y2

2
⇥

1� y2
⇤

Solving f
x

= 0 and f
y

= 0 gives critical points
(0,0), (1,-1),(-1,1),(-1,-1)and (1,1).

Along y = 0: f(x, 0) = 0

This has no critical point.

Along y = 2 :

f (x, 2) = h (x) = 2xe
�
x2

2
� 2

h0 (x) = 2e
�
x2

2
� 2 �

1� x2
�

Solving for h0 (x) =0 give points (1,2) and

(-1,2) but (-1,2) is not in the region.

Along x = 0 : f(0, y) = 0 This has no critical
point.

Along x = 2 :

f (2, y) = k (y) = 2ye
� 2�

y2

2

k0 (y) = 2e
� 2�

y2

2
⇥

1� y2
⇤

Solving for k0 (y)=0 give points (2,1) and (2,-1)
but (2,-1) is not in the region.

The intersection points at the boundaries are
(0,0), (0,2), (2,2) and (2,0). Finding functional
values at all these points:

f (0, 0) = 0
f (1,�1) = �0.3679
f (�1, 1) = �0.3679
f (�1,�1) = 0.3679
f (1, 1) = 0.3679
f (1, 2) = 0.1642
f (2, 1) = 0.1642
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f (2, 2) = 0.0733
f (0, 2) = 0
f (2, 0) = 0

Therefore the absolute maximum is 0.3679 and
the absolute minimum is -0.3679.

36. In the interior:

f
x

=
2x

(x2 + y2 + 1)

f
y

=
2y

(x2 + y2 + 1)
� y

Solving f
x

= 0 and f
y

= 0 gives critical points
(0,0), (0,1) and (0,-1).

Along x2 + y2 = 4:

We substitute y2 = 4� x2 gives

h (x) = ln (5)�
�

4� x2
�

2
h0 (x) = x.

Solving for h0 (x) =0 give points (0,2) and

(0,-2)

We substitute x2 = 4� y2 gives

k (y) = ln (5)� y2

2
k0 (y) = �y.

Solving for k0 (y)=0 give points (2,0) and (-2,0)

So the critical points are (0,2) (0,-2), (2,0) and
(-2,0).

Finding functional values at all these points:

f (0, 0) = 0
f (0, 1) = 0.1931
f (0,�1) = 0.193
f (0, 2) = �0.3906
f (0,�2) = �0.3906
f (2, 0) = 1.6094
f (�2, 0) = 1.6094

Therefore the absolute maximum is 1.6094 and
the absolute minimum is �0.3906

37. We first simplify the calculations by noting
that we may maximize B = A2 instead of A
(since x2 is an increasing function for positive
x).

We solve s =
1

2
(a+ b+ c) for c, and substitute

into B to find:
c = 2s� a� b, and

B = s(s� a)(s� b)(a+ b� s)
Treating s as a constant, we see that
B

a

= �s(s� b)(a+ b� s) + s(s� a)(s� b)
B

b

= �s(s� a)(a+ b� s) + s(s� a)(s� b)
Subtracting B

b

= 0 from B
a

= 0, we get
s(s � a)(a + b � s) � s(s � b)(a + b � s) = 0.
Note that the semi-perimeter s 6= 0, and that
if a+ b� s = 0 then c = 0, giving the triangle
0 area. Therefore s� a = s� b, so a = b.
Substituting b = a into B

a

yields
�s(s�a)(2a�s)+s(s�a)2 and this is 0 when

a = s or a =
2

3
s.

If a = b = s, then c = 0 and the area is 0.

If a = b =
2

3
s, then c =

2

3
s, as well, and we

see that an equilateral triangle gives the max-
imum area for a fixed perimeter. (That this is
indeed a maximum can be verified using The-
orem 7.2.)

38. The maximum of x2 + y2 occurs at the points
of maximum distance from the origin. For the
square, this occurs at (1, 1), (�1, 1), (�1,�1),
and (1,�1). A computer graph over the square
shows peaks at these corner points instead of
a circular level curve.

39. For the function f(x, y) = x2y2

f
x

= 2xy2 f
y

= 2x2y
f
x

= f
y

= 0 whenever x = 0 or y = 0, so we
have critical points at (x, 0) and (0, y) for all x
and y.
f
xx

= 2y2

f
xy

= 4xy
f
yy

= 2x2

D(x, y) = 4x2y2 � 16x2y2

D(0, y) = D(x, 0) = 0 for all critical points, so
Theorem 7.2 fails to identify them.
f(x, 0) = f(0, y) = 0 for all x and y.
If x and y are both not zero, then f(x, y) > 0.

This means that all the critical points are min-
ima.
For the function
f(x, y) = x2/3y2

f
x

=
2

3
x�1/3y2 f

y

= 2x2/3y

f
x

= f
y

= 0 whenever y = 0,
so we have critical points at (x, 0) for all x.

When x = 0, f
x

is undefined and f
y

= 0, so we
have critical points at (0, y) for all y.

f
xx

=
�2

9
x�4/3y2

f
xy

=
4

3
x�1/3y

f
yy

= 2x2/3
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D(x, y) =
�4

9
x�2/3y2 � 16

9
x�2/3y2

D(x, 0) = 0 for all critical points (x, 0) with
x 6= 0, so Theorem 7.2 fails to identify them.
Theorem 7.2 also fails to identify critical points
(0, y), since the second partial derivatives are
not continuous there.
f(x, 0) = f(0, y) = 0 for all x and y.

If x and y are both not zero, then f(x, y) > 0.

This means that all the critical points are min-
ima.

40. (a) f(x, y) = (x+ 1)2 + (y � 2)2 � 4
f has a global (and local) minimum of �4
at (�1, 2).

(b) f(x, y) = (x2 � 3)2 + (y2 + 1)2 � 11
f has global (and local) minimum of �10
at (

p
3, 0) and (�

p
3, 0).

41. We substitute y = kx into z = x3 � 3xy + y3

and get z = x3 � 3x(kx) + (kx)3

= (1 + k3)x3 � 3kx2.
If we set f(x) = (1 + k3)x3 � 3kx2, we find
f 0(x) = 3(1 + k3)x2 � 6kx = 0 when x = 0, so
this is a critical point. Then
f 00(x) = 6(1 + k3)x� 6k, so f 00(0) = �6k.
The Second Derivative Test then shows f(x)
has a local maximum if k > 0 and a local min-
imum if k < 0.

42. We substitute y = kx into
z = 4xy � x4 � y4 + 4 and get
f(x) = 4x(kx)� x4 � (kx)4 + 4

= 4kx2 � (1 + k4)x4 + 4.
Then, f 0(x) = 8kx� 4(1 + k4)x3,
so f(x) has a critical point at x = 0.
f 00(x) = 8k � 12(1 + k4)x2,
so f 00(0) = 8k.
The Second Derivative Test tells us that f(x)
has a minimum when k > 0 and a maximum
when k < 0.

43. (a) We substitute y = kx into
z = x3 � 2y2 � 2y4 + 3x2y to get
f(x) = x3 � 2(kx)2 � 2(kx)4 + 3x2(kx)

= (1 + 3k)x3 � 2k2x2 � 2k4x4

f 0(x) = 3(1 + 3k)x2 � 4k2x � 8k4x3, so
f(x) has a critical point at x = 0.
f 00(x) = 6(1 + 3k)x � 4k2 � 24k4x2, so
f 00(0) = �4k2.
The Second Derivative Test shows that
f(x) has a local maximum for all k 6= 0.
When k = 0 the graph looks like x3, which
has an inflection point at x = 0.

(b) Substituting y = kx gives
g(x) = f(x, kx) = x2 � 3k2x3 + 4kx4

g0(x) = 2x� 9k2x2 + 16kx3

g00(x) = 2� 18k2x+ 48kx2

Since g00(0) = 2 > 0, all traces have a
local minimum at the origin.

44. (a) f
x

= z � 1, f
y

= 3y2 � 3, f
z

= x
These all equal zero at (0, 1, 1), so this is
a critical point.
f(�x, 1 +�y, 1 +�z)

= �x(1 +�z)��x
+ (1 +�y)3 � 3(1 +�y)

= �x�z + 3�y2 +�y3 � 2
= �x�z + 3�y2 +�y3 + f(0, 1, 1)

So with �y = 0, as we move away from
the critical point with �x�z > 0, f in-
creases, while with �x�z < 0, f de-
creases. The critical point is therefore nei-
ther a local maximum or local minimum.

(b) f
x

= z � 1, f
y

= 3y2 � 3, f
z

= x
These all equal zero at (0,�1, 1), so this
is a critical point.
f(�x,�1 +�y, 1 +�z)

= �x�z � 3�y2 +�y3 + 2
= �x�z � 3�y2 +�y3 + f(0,�1, 1).

So with �y = 0, as we move away from
the critical point with �x�z > 0, f in-
creases, while with �x�z < 0, f de-
creases. The critical point is therefore nei-
ther a local maximum or local minimum.

45. False. The partial derivatives could be 0 or
undefined.

46. False, we don’t know the type of extremum or
if the point is a saddle point.

47. False. There do not have to be any local min-
ima.

48. False, the number of extrema does not a↵ect
the possible types of extrema.

49. The extrema occur in the centers of the four
circles. The saddle points occur in the nine
crosses between the circles.

50. Extrema at approximately (-1,-1) and (1, 1).
Saddle at approximately (0,0).

51. f
x

= 5ey � 5x4, f
y

= 5xey � 5e5y

f
xx

= �20x3, f
yy

= 5xey � 25e5y

f
xy

= 0
Solving f

x

= 0 gives ey = x4. Substitute this
into f

y

= 0 to see that 5x5 � 5x20 = 0. The
solution x = 0 is extraneous, leaving us with
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solution x = 1 and y = 0.
D(1, 0) = 400 > 0
f
xx

(1, 0) = �20 < 0
Therefore f(1, 0) = 3 is a local maximum.
Since f(�5, 0) = 3099, (for example) it is clear
that (1, 0) is not a global maximum.

52. f
x

= 8x3 � 8xey, f
y

= 4e4y � 4x2ey

f
xx

= 24x2 � 8ey, f
yy

= 16e4y � 4x2ey

f
xy

= �8xey

Solving f
x

= f
y

= 0 gives the points (1, 0) and
(�1, 0).
D(1, 0) = 128 > 0
f
xx

(1, 0) = 16 > 0
D(�1, 0) = 128 > 0
f
xx

(�1, 0) = 16 > 0
Therefore, both these points are local minima.

53. (a) The distance from a point
(x, y, 4 � x2 � y2) to the point (3,�2, 1)
is
d(x, y)

=
p

(x� 3)2 + (y + 2)2 + (3� x2 � y2)2

To minimize this it is useful to note that
we can minimize g(x, y) = d(x, y)2 in-
stead.
g
x

= 2(x� 3)� 4x(3� x2 � y2)
g
y

= 2(y + 2)� 4y(3� x2 � y2)
g
xx

= �10 + 12x2 + 4y2

g
yy

= �10 + 12y2 + 4x2

g
xy

= 8xy
Solving g

x

= g
y

= 0 numerically yields
(1.55,�1.03).
D(1.55,�1.03) ⇡ 297.5 and
g
xx

(1.55,�1.03) ⇡ 23.1, therefore this
point is a minimum. The closest point on
the paraboloid to the point (3,�2, 1) is
approximately (1.55,�1.03, 0.54).

(b) d(x, y) =
p

(x� 2)2 + (y + 3)2 + x2 + y2

Minimize:
g(x, y) = (x� 2)2 + (y + 3)2 + x2 + y2

g
x

= 2(x� 2) + 2x
g
y

= 2(y + 3) + 2y
g
xx

= 4, g
yy

= 4, g
xy

= 0
Solving g

x

= g
y

= 0 gives the point
✓

1,�3

2

◆

.

D

✓

1,�3

2

◆

= 16 > 0

f
xx

✓

1,�3

2

◆

= 4 > 0

Therefore, the closest point is
 

1,�3

2
,

p
13

2

!

.

54. (a) The closest point on the sphere will be
below the xy plane. The distance from a
point (x, y,�

p

9� x2 � y2) to the point
(2, 1,�3) squared is
g(x, y) = (x� 2)2 + (y � 1)2

+ (�
p

9� x2 � y2 + 3)2

= �4x� 2y � 6
p

9� x2 � y2 + 23

g
x

= �4 +
6x

p

9� x2 � y2

g
y

= �2 +
6y

p

9� x2 � y2

g
xx

=
54� 6y2

(9� x2 � y2)3/2

g
yy

=
54� 6x2

(9� x2 � y2)3/2

g
xy

=
6xy

(9� x2 � y2)3/2

Solving g
x

= g
y

= 0 numerically yields
(1.6, 0.8).

D(1.6, 0.8) ⇡ 9.4 and

g
xx

(1.6, 0.8) ⇡ 3.6, therefore this point
is a minimum. The closest point on the
sphere to the point (2, 1,�3) is approxi-
mately (1.6, 0.8,�2.4).

(b) d(x, y) =

r

x2 + y2 +
1

9
(12� 3x+ 4y)2

g(x, y) = x2 + y2 +
1

9
(12� 3x+ 4y)2

g
x

= 2x+
2

9
(�3)(12� 3x+ 4y)

g
y

= 2y +
2

9
(4)(12� 3x+ 4y)

g
xx

= 4, g
yy

=
50

9
, g

xy

= �8

3
Solving g

x

= g
y

= 0 gives the point
✓

18

17
,�24

17

◆

D

✓

18

17
,�24

17

◆

=
136

9
> 0

f
xx

✓

18

17
,�24

17

◆

= 4 > 0

Therefore, the closest point is
✓

18

17
,�24

17
,
72

17

◆

.

55. Let x, y, z be the dimensions. In this case, the
amount of material used would be
2(xy + xz + yz) = 96
Solving for z we get

z =
48� xy

x+ y
This gives volume
V (x, y) = xyz

=
(48� xy)xy

x+ y
=

48xy � x2y2

x+ y
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V
x

=
(48y � 2xy2)(x+ y)� (48xy � x2y2)]

(x+ y)2

=
y2(48� 2xy � x2)

(x+ y)2

V
y

=
(48x� 2x2y)(x+ y)� (48xy � x2y2)

(x+ y)2

=
x2(48� 2xy � y2)

(x+ y)2

Solving V
x

= 0 and V
y

= 0 gives equations
y2(48� 2xy � x2) = 0
x2(48� 2xy � y2) = 0
Since maximum volume can not occur when
x or y is 0, we assume both x and y are
nonzero. Solving 48� 2xy� x2 = 0 for y gives

y =
48� x2

2x
. Substituting this into

48� y2 � 2xy = 0 gives

0 = 48�
✓

48� x2

2x

◆2

� 2x

✓

48� x2

2x

◆

=
3x4 + 96x2 � 2304

4x2

The only positive solution to this equation is
x = 4

Thus, our critical point is (4, 4, 4)

A quick check of the discriminant assures that
this gives the maximum volume of V (4, 4, 4) =
64

56. Let x, y, z be the dimensions. In this case, the
amount of material used would be
2(xy + xz + yz) + xy = 96
Solving for z we get

z =
3(32� xy)

2(x+ y)
This gives volume as

V (x, y) = xyz =
3(32� xy)xy

2(x+ y)

=
3(32xy � x2y2)

2(x+ y)

V
x

=
3[(32y � 2xy2)(x+ y)� (32xy � x2y2)]

2(x+ y)2

=
3y2(32� x2 � 2xy)

2(x+ y)2

V
y

=
3[(32x� 2yx2)(x+ y)� (32xy � x2y2)]

2(x+ y)2

=
3x2(32� y2 � 2xy)

2(x+ y)2

Solving V
x

= 0 and V
y

= 0 gives equations
3y2(32� x2 � 2xy) = 0
3x2(32� y2 � 2xy) = 0
Since maximum volume can not occur when
x = y = 0, we assume both x and y are
nonzero.

Solving 32� x2 � 2xy for y gives y =
32� x2

2x
.

Substituting this into 32 � y2 � 2xy = 0 gives

0 = 32�
✓

32� x2

2x

◆2

� 2x

✓

32� x2

2x

◆

=
3x4 + 64x2 � 1024

4x2

The only positive solution to this equation is

x =
4

3

p
6

Thus, our critical point is
✓

4

3

p
6,

4

3

p
6, 2

p
6

◆

A quick check of the discriminant assures that
this gives the maximum volume of

V

✓

4

3

p
6,

4

3

p
6, 2

p
6

◆

=
64

3

p
6

57. If P is the total population we must have
pP + qP + rP = P or
p+ q + r = 1
g(p, q) = f(p, q, 1� p� q)

= 2p� 2p2 + 2q � 2q2 � 2pq
g
p

= 2� 4p� 2q, g
q

= 2� 4q � 2p

Solving g
p

= g
q

= 0 gives p =
1

3
and q =

1

3

and therefore r =
1

3
. Note that g(p, q) defines

a downward opening elliptic paraboloid, so this
is an absolute maximum.

f

✓

1

3
,
1

3
,
1

3

◆

=
2

3
.

58. As in example 7.4, we take the equation to be
y = ax2 + bx + c ,with constants a, b, c to be
determined. For the given data residuals are
shown in the following table.

x ax2 + bx+ c y Residual
0 c 179 c-179
1 a+ b+ c 203 a+ b+ c-203
2 4a+ 2b+ c 227 4a+ 2b+ c� 227
3 9a+ 3b+ c 249 9a+ 3b+ c� 249

The sum of the squares of the residuals is then
given by

f(a, b, c) = (c� 179)2 + (a+ b+ c� 203)2

+ (4a+ 2b+ c� 227)2

+ (9a+ 3b+ c� 249)2

df

da
= 196a+ 72b+ 28c� 6704

df

db
= 72a+ 28b+ 12c� 2808

df

dc
= 28a+ 12b+ 8c� 1716

Solving for
df

da
=

df

db
=

df

dc
= 0
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We get a = �0.5, b = 24.9, c� 178.9

The curve is given by

y = �0.5x2 + 24.9x+ 178.9

For the above values of a, b and c we get the
minimum function value. f(a, b, c)=0.2 and

From 7.4, f(a, b)=1.2 . Therefore, the sum of
squares of the residuals for quadratic model is
less than that for the linear model.

353020

450

10

250

25

500

400

15

350

300

200

50
x

From the graph, it can be seen that the curve
deviates faster for larger values of x and hence,
the linear model is more preferable than the
quadratic model. This can also be observed
from the following table. For 100 years, x=10

Let us find Population in millions

Future Past
Using Quadratic model 377.4 58.9
Using Linear model 413.4 124.6

12.8 Constrained Optimiza-
tion and Lagrange Mul-
tipliers

1. f(x, y) = x2 + y2

g(x, y) = 3x� 4� y
rf = h2x, 2yi
rg = h3,�1i rf = �rg
2x = 3�, 2y = ��
Eliminating � we get y = �x

3

Substituting this into the constraint
y = 3x� 4
� x

3 = 3x� 4
x = 6

5 , y = � 2
5

2. f(x, y) = x2 + y2

g(x, y) = 2x+ 1� y
rf = h2x, 2yi
rg = h2,�1i rf = �rg
2x = 2�, 2y = ��
Eliminating � we get y = �x

2

Substituting this into the constraint
y = 2x+ 1
� x

2 = 2x+ 1
x = � 2

5 , y = 1
5

3. f(x, y) = (x� 4)2 + y2

g(x, y) = 2x+ y � 3
rf = h2(x� 4), 2yi
rg = h2, 1i rf = �rg
2(x� 4) = 2�, 2y = �
Eliminating � we get y = x

2 � 2

Substituting this into the constraint
y = 3� 2x
x

2 � 2 = 3� 2x
x = 2, y = �1

4. f(x, y) = x2 + (y � 2)2

g(x, y) = x� 2� y
rf = h2x, 2(y � 2)i
rg = h1,�1i rf = �rg
2x = �, 2(y � 2) = ��
Eliminating � we get y = 2� x

Substituting this into the constraint
y = x� 2
2� x = x� 2
x = 2, y = 0

5. f(x, y) = (x� 3)2 + y2

g(x, y) = x2 � y
rf = h2(x� 3), 2yi
rg = h2x,�1i rf = �rg
2(x� 3) = 2x�, 2y = ��
Eliminating � gives x� 3 = �2xy

Applying the constraint
y = x2

2x3 + x� 3 = 0
x = 1, y = 1

6. f(x, y) = x2 + (y � 2)2

g(x, y) = x2 � y
rf = h2x, 2(y � 2)i
rg = h2x,�1i rf = �rg
2x = 2x�, 2(y � 2) = ��
Therefore � = 1 and y = 3

2 .

Substituting this into the constraint
y = x2

x2 =
3

2

x = ±
r

3

2
, y =

3

2

7. f(x, y) = (x� 2)2 + (y � 1
2 )

2

g(x, y) = x2 � y
rf = h2(x� 2), 2(y � 1

2 )i
rg = h2x,�1i rf = �rg



12.8. CONSTRAINED OPTIMIZATION AND LAGRANGE MULTIPLIERS 717

2(x� 2) = 2x�, 2(y � 1
2 ) = ��

Eliminating � we get y = 1
x

.

Substituting this into the constraint
y = x2

1

x
= x2

x3 = 1

x = 1, y = 1

8. f(x, y) = (x� 1)2 + (y � 2)2

g(x, y) = x2 � 1� y
rf = h2(x� 1), 2(y � 2)i
rg = h2x,�1i rf = �rg
2(x� 1) = 2x�, 2(y � 2) = ��
Eliminating � we get y = 3x+1

2x .

Substituting this into the constraint
y = x2 � 1
3x+1
2x = x2 � 1

2x3 � 5x� 1 = 0

Solving this numerically we get
x ⇡ �1.469,�0.203, 1.67.
Since the point is to be closest to (1, 2),
x ⇡ �1.67, y ⇡ 1.80

9. g(x, y) = x2 + y2 � 8 = 0
rf = h4y, 4xi
rg = h2x, 2yi
rf = �rg
4y = 2x�
4x = 2y�
Eliminating � we get y = ±x.

Substituting this into the constraint,
x2 + y2 � 8 = 0
x2 + x2 � 8 = 0
x2 = 4
x = ±2

This gives the points
(2, 2), (2,�2), (�2, 2), (�2,�2).

f(2, 2) = 16, maximum
f(�2,�2) = 16, maximum
f(2,�2) = �16, minimum
f(�2, 2) = �16, minimum

10. g(x, y) = 4x2 + y2 � 8 = 0
rf = h4y, 4xi
rg = h8x, 2yi
rf = �rg
4y = 8x�
4x = 2y�
Eliminating � we get y = ±2x.

Substituting this into the constraint,
4x2 + y2 � 8 = 0

4x2 + 4x2 � 8 = 0
x2 = 1
x = ±1

This gives the points
(1, 2), (1,�2), (�1, 2), (�1,�2).

f(1, 2) = 8, maximum
f(�1,�2) = 8, maximum
f(1,�2) = �8, minimum
f(�1, 2) = �8, minimum

11. Vertices of the triangle are

(0, 0, ) , (2, 0) and (0, 4).

Equation of the sides are given by

x = 0, y = 0 and2x+ y = 4

Consider the side 2x+ y = 4, then

g (x, y) = 2x+ y � 4 = 0
rf =

⌦

8xy, 4x2
↵

rg = h2, 1i
rf = �rg
8xy = 2�, 4x2 = �

Eliminating � we have x = 0 or x =
4

3
Substituting this value of x in the constraint

we have y = 4 or y =
4

3

This gives points (0, 4) ,

✓

4

3
,
4

3

◆

Consider the side x = 0, then g (x, y) = x = 0
rf =

⌦

8xy, 4x2
↵

rg = h1, 0i
rf = �rg
8xy = �, 4x2 = 0
The above equations have no solution.

Consider the side y = 0, then

g (x, y) = y = 0
rf =

⌦

8xy, 4x2
↵

rg = h0, 1i
rf = �rg
8xy = 0, 4x2 = �
This gives points (x, 0) for 0  x  2

f

✓

4

3
,
4

3

◆

=
256

27
,maxima

f (x, 0) = 0, minima

f (0, 4) = 0 , minima

12. Vertices of the Rectangle are

(�2, 1) , (1, 1) , (1, 3) and (�2, 3).

Equation of the sides are given by

x = �2 , y = 1 , x = 1 and y = 3

Equations of the sides are of the form:

y � k = 0, x� p = 0
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where k = �2, 1 and p = 1, 3

First consider g(x, y) = y � k

�f = (6x2y, 2x3)

�g = (0, 1)

Now �f = ��g gives
�

6x2y, 2x3
�

= � (0, 1)

) x = 0
) � = 0, y = k
The points are (0, 1), (0, 3).

Consider g(x, y) = x� p

�g = (1, 0)

Now �f = ��g gives

(6x2y, 2x3) = �(1, 0) ) x = 0

But x = 0 is not in g(x, y) = x� p = 0.

Therefore there is no maximum or minimum at
the sides (open line segment) x = �2, x = 1.
Hence function can be maxima or minima at
(0, 1) or (0, 3), or corner points. Since ,

f (0, 1) = f (0, 3) = 0

f (�2, 1) = �16

f(�2, 3) = �48

f(1, 1) = 2

f(1, 3) = 6

Therefore Maximum value is 6 at (1, 3) and
minimum value is �48 at (�2, 3).

13. g (x, y) = 4x2 + y2 � 4 = 0
rf = hey, xeyi
rg = h8x, 2yi
rf = �rg
ey = �8x; xey = �2y
Eliminating � we have,

y = 4x2 or x = ±
p
y

2
Substituting this value of y in the constraint
we have, y2 + y � 4 = 0 gives

y = 1.5615 , x = ±0.6248

This gives points

(0.6248, 1.5615),(�0.6248, 1.5615)

f (0.3124, 1.5615) = 2.97798 , maxima

f (�0.3124, 1.5615) = �2.97798 , minima

14. g(x, y) = x2 + y2 � 5 = 0
rf = h2e2x+y, e2x+yi
rg = h2x, 2yi
rf = �rg
2e2x+y = 2x�

e2x+y = 2y�

Eliminating � we get y =
1

2
x.

Substituting this into the constraint,
x2 + y2 � 5 = 0

x2 +
x2

4
� 5 = 0

x = ±2

This gives the points (2, 1), (�2,�1)

f(2, 1) = e5, maximum
f(�2,�1) = e�5, minimum

15. g(x, y) = x2 + y2 � 3 = 0
rf = h2xey, x2eyi
rg = h2x, 2yi
rf = �rg
2xey = 2x�
x2ey = 2y�
Eliminating � we get either

x = 0 or y =
1

2
x2.

If x = 0 the constraint gives y = ±
p
3.

If y =
1

2
x2, the constraint gives:

x2 + y2 � 3 = 0
x2 + x

4

4 � 3 = 0
(x2 + 6)(x2 � 2) = 0
x = ±

p
2

This gives the points
(±

p
2, 1), (±

p
2,�1), and (0,±

p
3).

f(±
p
2, 1) = 2e, maximum

f(±
p
2,�1) =

2

e
, neither

f(0,±
p
3) = 0, minimum.

16. g(x, y) = x2 + 4y2 � 24 = 0
rf = h2xy2, 2x2yi
rg = h2x, 8yi
rf = �rg
2xy2 = 2x�
2x2y = 8y�

Eliminating � we get y = ±1

2
x.

Substituting this into the constraint,
x2 + 4y2 � 24 = 0
x2 + x2 � 24 = 0
x = ±2

p
3

This gives the points
(2
p
3,
p
3), (�2

p
3,
p
3), (2

p
3,�

p
3),

(�2
p
3,�

p
3)

Another set of solutions is when � = 0.
This gives the points
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(0,
p
6), (0,�

p
6)

(2
p
6, 0), (�2

p
6, 0)

f(±2
p
3,±

p
3) = 36, maxima

f(0,±
p
6) = 0, minima

f(±2
p
6, 0) = 0, minima

17. g (x, y, z) = x4 + y4 + z4 � 1 = 0

rf = h8x, 2y, 2zi
rg =

⌦

4x3, 4y3, 4z3
↵

rf = �rg
8x = �4x3; 2y = �4y3; 2z = �4z3 .....(eq.1)
For x, y, z 6= 0

Eliminating � we get

x2 = 4z2 , y2 = z2 gives
x=± 2z , y = ±z
Substituting the values of x and y in the con-

straint, we have z = ±
✓

1

18

◆

1
4

This gives points
 

± 2

(18)
1
4

,± 1

(18)
1
4

,± 1

(18)
1
4

!

For x = 0, we have from (1) y = 0 or y = ±z

Substituting this value of y in the constraint
we have,

z = ±1 or z=± 1

2
1
4

This gives points

(0, 0,±1),

✓

0,± 1

2
1
4

,± 1

2
1
4

◆

For x = 0, we have from (1) z = 0 or z = ±y

Substituting this value of y in the constraint
we have,

y = ±1 or y = ± 1

2
1
4

This gives points

(0,±1, 0),

✓

0,± 1

2
1
4

,± 1

2
1
4

◆

Similar case for y = 0 gives points

(±1, 0, 0) ,

 

± 2

(17)
1
4

, 0,± 1

(17)
1
4

!

And for z = 0 gives points

(0,±1, 0) ,

 

± 2

(17)
1
4

,± 1

(17)
1
4

, 0

!

f

 

± 2

(18)
1
4

,± 1

(18)
1
4

,± 1

(18)
1
4

!

=
p
18,

maxima

f (0, 0,±1) = 1, minima
f (0,±1, 0) = 1, minima

f

✓

0,± 1

2
1
4

,± 1

2
1
4

◆

=
p
2

f (±1, 0, 0) = 1, minima

f

 

± 2

(17)
1
4

, 0,± 1

(17)
1
4

!

=
p
17

f

 

± 2

(17)
1
4

,± 1

(17)
1
4

, 0

!

=
p
17

18. g (x, y, z) = x2 � y2 + z2 � 1 = 0

rf = h1,�1,�1i
rg = h2x,�2y, 2zi
rf = �rg
1 = �2x; �1 = � (�2y) ; �1 = � (2z)
Eliminating� gives
x = y = �z
Substituting the values of x and y in the con-
straint, we have z2 = 1 and y = �z, x = y

This gives points (1,1,-1), (-1,-1,1)

f (1, 1,�1) = 1 , maximum

f (�1,�1, 1) = �1 , minimum

19. g (x, y, z) = x+ 2y + z � 1 = 0
rf = h3z, 2y + 2z, 3x+ 2yi
rg = h1, 2, 1i
rf = �rg
3z = �; 2y + 2z = 2�; 3x+ 2y = �

Eliminating � gives y = 2z; x = �z

3
Substituting these values in the constraint,

we have

z =
3

14
, x = � 1

14
, y =

3

7

f

✓

� 1

14
,
3

7
,
3

14

◆

=
9

28
, minima

20. g (x, y, z) =
x2

4
+

y2

9
+ z2 = 1

rf = h1, 1, 1i

rg =

⌧

x

2
,
2y

9
, 2z

�

rf = �rg

1 =
x

2
� , 1 =

2y

9
� , 1 = 2z�

Eliminating � we get x = 4z; y = 9z

Substituting the values of x and y in the con-
straint we have,

z = ± 1p
14

, x = ± 4p
14

, y = ± 9p
14

This gives points
✓

� 4p
14

,� 9p
14

,� 1p
14

◆

,

✓

4p
14

,
9p
14

,
1p
14

◆
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f

✓

4p
14

,
9p
14

,
1p
14

◆

=
p
14, maximum

f

✓

� 4p
14

,� 9p
14

,� 1p
14

◆

= �
p
14,minimum

21. g (x, y) =
x2

a2
+ y2 � 1 = 0.......(a > 0)

rf = h1, 1i

rg =

⌧

2x

a2
, 2y

�

rf = �rg

h1, 1i = �

⌧

2x

a2
, 2y

�

1 =
2�

a2
x ; 1 = 2�y

x = a2y
Substituting the value of x in the constraint

we have

y = ± 1p
1 + a2

This gives points
✓

a2p
1 + a2

,
1p

1 + a2

◆

,

✓

� a2p
1 + a2

,� 1p
1 + a2

◆

f

✓

a2p
1 + a2

,
1p

1 + a2

◆

=
p

a2 + 1 ,

maximum

f

✓

� a2p
1 + a2

,� 1p
1 + a2

◆

= �
p

a2 + 1 ,

minimum

22. g (x, y) =
x2

b2
+ y2 � 1 = 0...... (a, b > 0)

rf = ha cos (ax+ y) , cos (ax+ y)i

rg =

⌧

2x

b2
, 2y

�

rf = �rg

ha cos (ax+ y) , cos (ax+ y)i = �

⌧

2x

b2
, 2y

�

a cos (ax+ y) =
2�

b2
x; cos (ax+ y) = 2�y

Eliminating � we get x = ab2y

Substituting the value of x in the constraint,
we have

y = ± 1
p

(1 + a2b2)

This gives points
✓

ab2p
1 + a2b2

,
1p

1 + a2b2

◆

,

✓

� ab2p
1 + a2b2

,� 1p
1 + a2b2

◆

f

✓

ab2p
1 + a2b2

,
1p

1 + a2b2

◆

= sin
⇣

p

1 + a2b2
⌘

, maximum

f

✓

� ab2p
1 + a2b2

,� 1p
1 + a2b2

◆

= � sin
⇣

p

1 + a2b2
⌘

, minimum

23. g (x, y) = x2 + y2 � 1 = 0
rf =

⌦

axa�1yb, bxayb�1
↵

rg = h2x, 2yi
rf = �rg
⌦

axa�1yb, bxayb�1
↵

= � h2x, 2yi
axa�1yb = 2�x; bxayb�1 = 2�y

Eliminating � we get y = ±
r

b

a
x

Substituting this value of y in the constraint

we have, x = ±
r

a

a+ b

This gives points
 

r

a

a+ b
,

r

b

a+ b

!

,

 

�
r

a

a+ b
,�
r

b

a+ b

!

,

 

r

a

a+ b
,�
r

b

a+ b

!

,

 

�
r

a

a+ b
,

r

b

a+ b

!

Another solutions is when x = 0 or y = 0, this
gives points (0,±1) or (±1, 0)

If a and b both are even then for all points

f =

✓

r

a

a+ b

◆

a

 

r

b

a+ b

!

b

, maxima

f (0,±1) = f (±1, 0) = 0 ,minima

If a and b both are odd then

f

 

±
r

a

a+ b
,±
r

b

a+ b

!

=

✓

r

a

a+ b

◆

a

 

r

b

a+ b

!

b

,

maxima

f

 

±
r

a

a+ b
,⌥
r

b

a+ b

!

= �
✓

r

a

a+ b

◆

a

 

r

b

a+ b

!

b

,

minima

If a is odd and b is even then
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f

 

r

a

a+ b
,�
r

b

a+ b

!

=

✓

r

a

a+ b

◆

a

 

r

b

a+ b

!

b

,

maxima

f

 

�
r

a

a+ b
,

r

b

a+ b

!

= (�1)a
✓

r

a

a+ b

◆

a

 

r

b

a+ b

!

b

,

minima

If a is even and b is odd then

f

 

�
r

a

a+ b
,

r

b

a+ b

!

=

✓

r

a

a+ b

◆

a

 

r

b

a+ b

!

b

maxima

f

 

r

a

a+ b
,�
r

b

a+ b

!

= (�1)b
✓

r

a

a+ b

◆

a

 

r

b

a+ b

!

b

,

minima

24. g (x, y) = xn + yn � 1 = 0 (n � 2)
rf = h1, 1i
rg =

⌦

nxn�1, nyn�1
↵

rf = �rg
h1, 1i = �

⌦

nxn�1, nyn�1
↵

1 = n�xn�1 ; 1 = n�yn�1

Eliminating � we get

xn�1 = yn�1 ....(1)

If n is odd then (1) gives x = �y or x = y

But x = �y does not satisfy the constraint
Hence x = y

Also, if n is even then (1) gives x = y, which

gives y =

✓

1

2

◆

1
n

This gives points

 

✓

1

2

◆

1
n

,

✓

1

2

◆

1
n

!

f

 

✓

1

2

◆

1
n

,

✓

1

2

◆

1
n

!

=

✓

1

2

◆

1
n

+

✓

1

2

◆

1
n

= 21�
1
n , maxima

25. On the boundary, x2 + y2 = 3
g(x, y) = x2 + y2 � 3 = 0
rf = h8xy, 4x2i
rg = h2x, 2yi
rf = �rg
8xy = 2x�
4x2 = 2y�

Eliminating � we get y = ± 1p
2
x.

Substituting this into the constraint,
x2 + y2 � 3 = 0

x2 +
1

2
x2 � 3 = 0

x = ±
p
2

This gives the points (±
p
2, 1), (±

p
2,�1)

In the interior, solving rf = h0, 0i
gives the critical points (0, y).

f(±
p
2, 1) = 8, maxima

f(±
p
2,�1) = �8, minima

f(0, y) = 0

26. On the boundary, x2 + y2 = 4
g(x, y) = x2 + y2 � 4 = 0
rf = h6x2y, 2x3i
rg = h2x, 2yi
rf = �rg
6x2y = 2x�
2x3 = 2y�

Eliminating � we get y = ± 1p
3
x.

Substituting this into the constraint,
x2 + y2 � 4 = 0

x2 +
1

3
x2 = 4

x = ±
p
3

This gives the points
(
p
3, 1), (�

p
3, 1), (

p
3,�1), (�

p
3,�1)

In the interior, solving rf = h0, 0i
gives the critical points (0, y).

f(
p
3, 1) = f(�

p
3,�1) = 6

p
3, maxima

f(�
p
3, 1) = f(

p
3,�1) = �6

p
3, minima

f(0, y) = 0

27. g (x, y) = x4 + y4 � 1 = 0
rf =

⌦

3x2, 3y2
↵

rg =
⌦

4x3, 4y3
↵

rf = �rg
⌦

3x2, 3y2
↵

= �
⌦

4x3, 4y3
↵

3x2 = 4�x3; 3y2 = 4�y3

For x, y 6= 0

Eliminating � we get x = y
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Substituting this value of x in the constraint,
we get

y = ±
✓

1

2

◆

1
4

This gives points
 

✓

1

2

◆

1
4

,

✓

1

2

◆

1
4

!

,

⇣

�
�

1
2

�

1
4 ,�

�

1
2

�

1
4

⌘

When y = 0, we get x = ±1 this gives points
(1, 0), (-1, 0)

When x = 0, we get y = ±1 this gives points
(0,1), (0, -1)

In the interior, solving rf = h0, 0i gives the
critical point (0, 0)

f (1, 0) = 1

f (�1, 0) = �1

f (0, 0) = 0

f

 

✓

1

2

◆

1
4

,

✓

1

2

◆

1
4

!

=

✓

1

2

◆

3
4

+

✓

1

2

◆

3
4

= 2
1
4 ⇡ 1.1892,

maximum

f

 

�
✓

1

2

◆

1
4

,�
✓

1

2

◆

1
4

!

= �
✓

1

2

◆

3
4

�
✓

1

2

◆

3
4

= �2
1
4 ⇡ �1.189,

minimum

28. On the boundary, 4x2 + y2 = 8
g(x, y) = 4x2 + y2 � 8 = 0
rf = h4y, 4xi
rg = h8x, 2yi
rf = �rg
4y = 8x�
4x = 2y�
Eliminating � we get y = ±2x.

Substituting this into the constraint,
4x2 + y2 � 8 = 0
4x2 + 4x2 � 8 = 0
x = ±1

This gives the points
(1, 2), (1,�2), (�1, 2), (�1,�2)

In the interior, solving rf = h0, 0i
gives the critical point (0, 0).

f(1, 2) = f(�1,�2) = 8, maxima
f(�1, 2) = f(1,�2) = �8, minima
f(0, 0) = 0

29. The triangle is bounded by the lines

x = 1, y = 0, x+ y = 5

Let R: region inside the triangle

To find the critical points:

f (x, y) = 3� x+ xy � 2y
rf (x, y) = (0, 0)
) (y � 1, x� 2) = (0, 0)
) (x, y) = (2, 1)
Solving, we get

(2, 1) is a critical point.

On the boundary x = 1, The function is

g (y) = f (1, y) = 2� y, 0  y  4

Hence the function has no critical points on
x = 1.

On the boundary y = 0, The function is

g (x) = f (x, 0) = 3� x, 1  x  5

Hence the function has no critical points on
y = 0

On the boundary x+ y = 5, The function is

h (x) = f (x, 5� x) = 6x� x2 � 7, 1  x  5
h0 (x) = 6� 2x
) h0 (x) = 0,when x = 3
Hence, we get (3, 2) is a critical point.

Now evaluate f at all critical point and the
boundary points.

f (1, 0) = 2
f (5, 0) = �2
f (1, 4) = �2
f (3, 2) = 2
f (2, 1) = 1
The points of maxima are (1, 0) and (3, 2)

The points of minima are (5, 0) and (1, 4)

30. g (x, y) = x2 + y2 � 3 = 0
rf =

⌦

y2, 2xy
↵

rg = h2x, 2yi
rf = �rg
⌦

y2, 2xy
↵

= � h2x, 2yi
y2 = �2x; 2xy = �2y
If y = 0, substituting in the constraints we get
x = ±

p
3

Since x � 0 this gives point
�

p
3, 0
�

Eliminating � we get

2x2 = y2

y = ±x
p
2

Substituting the values of y in the constraint,
we have x = ±1 but x, y � 0 gives the point
�

1,
p
2
�
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In the interior, solving rf = h0, 0i gives the
critical point (x, 0)

f
⇣

1,
p
2
⌘

= 2 , maximum

f
⇣p

3, 0
⌘

= 0 , minimum

f (x, 0) = 0 , minimum

31. g (x, y, z) = x4 + y4 + z4 � 1 = 0
rf = h2x, 2y, 2zi
rg =

⌦

4x3, 4y3, 4z3
↵

rf = �rg
h2x, 2y, 2zi = �

⌦

4x3, 4y3, 4z3
↵

2x = 4�x3; 2y = 4�y3; 2z = 4�z3

For x, y, z 6= 0

Eliminating � we get z2 = x2, z2 = y2

Or z = ±x , z = ±y

Substituting value of z in the constraint,

we get

z = ±
✓

1

3

◆

1
4

,which gives

x = ±
✓

1

3

◆

1
4

; y = ±
✓

1

3

◆

1
4

This gives points
 

±
✓

1

3

◆

1
4

,±
✓

1

3

◆

1
4

,±
✓

1

3

◆

1
4

!

For x = 0, we have from (1) y = 0 or y = ±z

Substituting this value of y in the constraint
we have,

z = ±1 or z = ± 1

2
1
4

This gives points

(0, 0,±1),

✓

0,± 1

2
1
4

,± 1

2
1
4

◆

For x = 0, we have from (1)

z = 0 or z = ±y

Substituting this value of y in the constraint
we have,

y = ±1 or y = ± 1

2
1
4

This gives points

(0,±1, 0),

✓

0,± 1

2
1
4

,± 1

2
1
4

◆

Similar case for y = 0 gives points

(±1, 0, 0) ,

✓

± 1

2
1
4

, 0,± 1

2
1
4

◆

And for z = 0 gives points

(0,±1, 0) ,

✓

± 1

2
1
4

,± 1

2
1
4

, 0

◆

In the interior, solving rf = h0, 0, 0i gives the
critical point (0, 0, 0)

f

 

±
✓

1

3

◆

1
4

,±
✓

1

3

◆

1
4

,±
✓

1

3

◆

1
4

!

=
p
3

, maxima
f (0, 0,±1) = 1
f (0,±1, 0) = 1

f

✓

0,± 1

2
1
4

,± 1

2
1
4

◆

=
p
2

f (±1, 0, 0) = 1,

f

✓

± 1

2
1
4

, 0,± 1

2
1
4

◆

=
p
2

f

✓

± 1

2
1
4

,± 1

2
1
4

, 0

◆

=
p
2

f (0, 0, 0) = 0, minima

32. g (x, y, z) = x2 + y2 + z2 � 1 = 0
rf =

⌦

2xy2, 2x2y, 2z
↵

rg = h2x, 2y, 2zi
rf = �rg
2xy2 = �2x , 2x2y = �2y , 2z = �2z
) z = 0 or � = 1
For z = 0:

If x 6= 0, y 6= 0

Eliminating � we get y2 = x2 or y = ±x

Substituting value of y in the constraint,

we get

x = ±
✓

1

2

◆

1
2

This gives points

✓

± 1p
2
,± 1p

2
, 0

◆

If x = 0 or y = 0

We get points (0, 0, 0) , (0± 1, 0) and (±1, 0, 0)

The point (0, 0, 0), does not satisfy the con-
straint.

For � = 1, We get points ((0, 0,±1)

In the interior, solving rf = h0, 0, 0i gives the
critical points (0, y, 0) and (x, 0, 0)

f

✓

± 1p
2
,± 1p

2
, 0

◆

=
1

4
f (0, 0, 0) = 0, minima
f (0, 0,±1) = 1 , maxima
f (0,±1, 0) = 0, minima
f (±1, 0, 0) = 0, minima
f (0, y, 0) = 0, minima
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f (x, 0, 0) = 0, minima

33. We use constraint
g(t, u) = u2t� 11, 000 = 0, so
rg = hu2, 2uti remains the same as in Exam-
ple 8.2.

As in the example, u =
128

3
.

Applying the constraint gives

t =
11, 000

(128/3)2
= 6.04.

34. Using the equation from exercise 21,

� =
(u� 32)t

u2

=
(42.67� 32)(6.04)

(42.67)2
⇡ 0.035

�z

�g
=

195� 161

1000
= 0.034

35. Substituting t =
10, 000

u2
into f(t, u) gives

f(u) =
1

2
(u� 32)

✓

10, 000

u2

◆2

= 50, 000, 000

✓

1

u3
� 32

u4

◆

f 0(u) = 50, 000, 000

✓

�3

u4
+

128

u5

◆

f 00(u) = 50, 000, 000

✓

12

u5
� 640

u6

◆

f 0(u) is undefined when u = 0, but this clearly
does not lead to a maximum.

f 0(u) = 0 when u =
128

3
.

This is a maximum because

f 00(
128

3
) = �1.06 < 0

36. Using the constraint u2t = k we can write

t =
k

u2
. The results of Example 8.2 show

� =
(u� 32)t

u2
=

(u� 32)

u2

✓

k

u2

◆

and

h(k) =
1

2
(u� 32)t2 =

1

2
(u� 32)

✓

k

u2

◆2

Di↵erentiating with respect to k yields

h0(k) =
(u� 32)k

u4
= �

37. rP = h3, 6, 6i, so there are no critical points
in the interior.

On the boundary, 2x2 + y2 + 4z2 = 8800
g(x, y) = 2x2 + y2 + 4z2 � 8800 = 0
rg = h4x, 2y, 8zi
rP = �rg
3 = 4x�
6 = 2y�
6 = 8z�
Solving these three equations gives

x =
3

4�
, y =

6

2�
, z =

6

8�
Substituting into the constraint gives,
2x2 + y2 + 4z2 � 8800 = 0

2

✓

3

4�

◆2

+

✓

6

2�

◆2

+ 4

✓

6

8�

◆2

= 8800

�2 =
9

6400

Using � =
3

80
, we get (20, 80, 20).

Using � = � 3

80
, we get (�20,�80,�20).

Of course, the production levels cannot be
negative (this would give a minimum of the
profit function), so the maximum profit is
P (20, 80, 20) = 660

38. rP = h3z, 6, 3xi, so there are no critical points
in the interior.

On the boundary, x2 + 2y2 + z2 = 6
g(x, y) = x2 + 2y2 + z2 � 6 = 0
rg = h2x, 4y, 2zi
rP = �rg
3z = 2x�
6 = 4y�
3x = 2z�
So from the first and third equations we get

x =
3z

2�
=

2z�

3

Solving for � gives us �2 =
9

4
.

For � =
3

2
, z = x and y = 1.

Substituting into the constraint gives,

x2 + 2y2 + z2 � 6 = 0
x2 + 2 + x2 = 6
x2 = ±

p
2

This gives us points
(
p
2, 1,

p
2), (�

p
2, 1,�

p
2)

For � = �3

2
, z = �x and y = �1.

Substituting into the constraint gives,

x2 + 2y2 + z2 � 6 = 0
x2 + 2 + x2 = 6
x2 = ±

p
2
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This gives us points
(
p
2,�1,�

p
2), (�

p
2,�1,

p
2)

We are only interested when x, y, z � 0, which
leaves us with f(

p
2, 1,

p
2) = 12

39. In exercise 37, the value of � is � =
3

80
.

Following the work in exercise 37, we see that
the constraint equation gives us

�2 =
792

64k
, and � =

r

792

64k
.

We use the positive square root so that x, y,
and z are all positive, and write the profit func-
tion as a function of k.

P (x, y, z) = P

✓

3

4�
,
6

2�
,
6

8�

◆

=
198

p
kp

792

Di↵erentiating this function of k yields

P 0(k) =
99p
792k

,

and P 0(8800) =
3

80
= �.

40. From exercise 38, � =
3

2
, so a change of 1 in the

production constraint results in a change of
3

2

in the profit. The new profit is 12 +
3

2
= 13.5.

41. A rectangle with sides x and y has perimeter
P (x, y) = 2x+2y and area xy. If we are given
area c, we get constraint g(x, y) = xy � c = 0

rP = h2, 2i
rg = hy, xi

rP = �rg gives equations
2 = y�
2 = x�
Eliminating � gives y = x.

This gives the minimum perimeter.

For a given area, the rectangle with the small-
est perimeter is a square.

42. Place the box with one face in the xy-plane
and opposite vertices of
(0, 0, 0) and (x, y, z) with x, y, z > 0.

Minimize f(x, y, z) = 2xy + 2xz + 2yz subject
to xyz = c.

g(x, y, z) = xyz � c = 0
rf = h2y + 2z, 2x+ 2z, 2x+ 2yi

rg = hyz, xz, xyi

rf =�rg

2y + 2z =yz�

� =
2y + 2z

yz

2x+ 2z =xz�

� =
2x+ 2z

xz
2x+ 2y =xy�

� =
2x+ 2y

xy

Equating the first two expressions for � we get
2

z
+

2

y
=

2

z
+

2

x
and therefore x = y. Similarly z = x and there-
fore x = y = z and the minimum surface area
is a cube.

43. Minimize the function f(x, y) = y � x
subject to the constraint
g(x, y) = x2 + y2 � 1 = 0.

rf = h�1, 1i
rg = h2x, 2yi
rf = �rg gives equations
�1 = 2x�
1 = 2y�

Eliminating � yields y = �x.
Substituting this into the constraint gives

x2 + (�x)2 = 1, so that x = ±
p
2

2
.

f(

p
2

2
,�

p
2

2
) = �

p
2 is a minimum.

f(�
p
2

2
,

p
2

2
) =

p
2 is a maximum.

44. g(x, y) = x2 + y2 � 2 = 0
rf = hex+y, ex+yi
rg = h2x, 2yi
rf = �rg
ex+y = 2x�
ex+y = 2y�
Eliminating � we get y = x.

Substituting this into the constraint,
x2 + y2 � 2 = 0
x2 = 1
x = ±1

This gives the points
(1, 1), (�1,�1)

f(1, 1) = e2, maximum
f(�1,�1) = e�2, minimum
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45. Find the extreme values of f(x, y) = xy2 sub-
ject to the constraint g(x, y) = x+ y = 0.

rf = hy2, 2xyi
rg = h1, 1i
rf = �rg gives equations
y2 = �
2xy = �

Eliminating � yields y(y � 2x) = 0. Substitut-
ing either y = 0 or y = 2x into the constraint
yields x = y = 0, so (0, 0) is identified as a
critical point.

Graphically, this is seen to be a saddle point.

46. When y = �x, f(x,�x) = g(x) = x3.
g0(x) = 3x2

g0(x) = 0 at x = 0, so x = 0 is a critical point.

Since g0(x) � 0 for all x and g00(0) = 0, x = 0
is an inflection point. The Lagrange multiplier
method fails because the constraint curve goes
through the saddle point of the function.

47. f(x, y, z) = x2 + y2 + z2

g(x, y, z) = x+ 2y + 3z � 6 = 0
h(x, y, z) = y + z = 0

Setting rf = �rg + µrh gives the equations:
2x = �
2y = 2�+ µ
2z = 3�+ µ
The first and second equations give � = 2x and
µ = 2y � 4x. Then the third equation yields
z = x+ y.

Substituting this into h(x, y, z) gives x = �2y,
and using these relations in g(x, y, z) then
shows y = �2, z = 2, and x = 4.
The minimum value of f(x, y, z) = 24.

48. Our two planes are not parallel, so they inter-
sect in a line, and minimizing the distance from
the origin to the two planes simultaneously is
equivalent to minimizing the distance to the
line which is their intersection.

49. f(x, y, z) = xyz
g(x, y, z) = x+ y + z � 4 = 0
h(x, y, z) = x+ y � z = 0

Setting rf = �rg + µrh gives the equations:
yz = �+ µ
xz = �+ µ
xy = �� µ

Subtracting h from g shows that z = 2 and
y = 2� x. The above equations become
4� 2x = �+ µ

2x = �+ µ
2x� x2 = �� µ

Equating the two expressions for � + µ gives
critical point x = 1, y = 1 and z = 2.

The maximum value of f(x, y, z) = 2.

50. f(x, y, z) = 3x+ y + 2z
g(x, y, z) = y2 + z2 � 1 = 0
h(x, y, z) = x+ y � z � 1 = 0

Setting rf = �rg + µrh gives the equations:
3 = µ
1 = 2�y + µ
2 = 2�z � µ
y2 + z2 � 1 = 0
x+ y � z � 1 = 0

The second equation gives us � = � 1
y

.

The third equation then gives us z = � 5
2y

Substituting these into the fourth equation
gives us y2 = 4

29
Finally, using the last equation gives the points
✓

7p
29

+ 1,� 2p
29

,
5p
29

◆

✓

� 7p
29

+ 1,
2p
29

,� 5p
29

◆

Maximum:

f

✓

7p
29

+ 1,� 2p
29

,
5p
29

◆

=
p
29 + 3

Minimum:

f

✓

� 7p
29

+ 1,
2p
29

,� 5p
29

◆

= �
p
29 + 3

51. We find the extreme values of
f(x, y, z) = x2 + y2 + z2

subject to the constraints
g(x, y, z) = x2 + y2 � 1 = 0 and
h(x, y, z) = x2 + z2 � 1 = 0.

rf = �rg + µrh gives the equations:
2x = 2x�+ 2xµ
2y = 2y�
2z = 2zµ

If y and z are not equal to zero we are led to
solution � = µ = 1 and x = 0. The constraints
then show that y = ±1 and z = ±1.

We also have a solution when y = 0. The con-
straints then give x = ±1 and z = 0. (We get
the same solutions if we start with z = 0.)

f(±1, 0, 0) = 1 are minima.

f(0,±1,±1) = 2 are maxima.

52. f(x, y, z) = x2 + y2 + z2

g(x, y, z) = x+ 2y + z � 2 = 0
h(x, y, z) = x� y = 0
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Setting rf = �rg + µrh gives the equations:
2x = �+ µ
2y = 2�� µ
2z = �
x+ 2y + z � 2 = 0
x� y = 0

Solving this system of equations gives the point
closest to the origin:
✓

6

11
,
6

11
,
4

11

◆

53. We minimize the square of the distance from
(x, y) to (0, 1), f(x, y) = x2 + (y� 1)2, subject
to the constraint g(x, y) = xn � y = 0.

rf = �rg leads to equations:
2x = �nxn�1

2y � 2 = ��
Eliminating � yields:
2x+ 2nx2n�1 � 2nxn�1 = 0
We always have solution (0, 0).

In order to tell whether this is a minimum or
a maximum, we notice that by substituting
y = xn into f(x, y), we get
f(x, xn) = x2 + (xn � 1)2, and
f 0(x) = 2x+ 2nx2n�1 � 2nxn�1

(Not surprisingly, f 0(x) = 0 is the relation we
were led to by the method of Lagrange multi-
pliers.)
f 00(x) = 2 + 2n(2n� 1)x2n�2 � 2n(n� 1)xn�2

f 00(0) = 2 if n > 2 and this is a local minimum.
f 00(0) = �2 if n = 2 and this is a local maxi-
mum.

The last part of this question is best explored
with a CAS. The function f(x) has absolute
minimum at its largest critical value. As n in-
creases, this critical value approaches x = 1.
At x = 1 the distance to the point (0, 1) is one,
the same as the distance at x = 0. Therefore
the di↵erence between the absolute minimum
value and the local minimum at x = 0 goes to
0.

54. As in Example 8.4, there are no critical points
in the interior, so the maximum must occur on
the boundary, and on the boundary
x2 + 4y2 + 2z2 = 800, we get maximum
P (16, 8, 12) = 200.

On the boundary x = 0, we maximize
f(y, z) = 8y + 6z subject to
4y2 + 2z2  800.
Again there are no critical points, so the max-
imum must occur on the boundary
4y2 + 2z2 = 800.

rf = �rg gives equations:
8 = 8y�
6 = 4z�

Eliminating � yields y =
2

3
z, and the con-

straint becomes

4

✓

2

3
z

◆2

+ 2z2 = 800

Therefore z =
60p
17

, y =
40p
17

, x = 0.

This gives production P ⇡ 164.9.

On the boundary y = 0, we maximize
f(x, z) = 4x+ 6z subject to
x2 + 2z2  800.
Again there are no critical points, so the max-
imum must occur on the boundary
x2 + 2z2 = 800.

rf = �rg gives equations:
4 = 2x�
6 = 4z�

Eliminating � yields x =
4

3
z, and the con-

straint becomes
✓

4

3
z

◆2

+ 2z2 = 800

Therefore z =
60p
17

, x =
80p
17

, y = 0.

This also gives production P ⇡ 164.9.

On the boundary z = 0, we maximize
f(x, y) = 4x+ 8y subject to
x2 + 4y2  800.
Again there are no critical points, so the max-
imum must occur on the boundary
x2 + 4y2 = 800.

rf = �rg gives equations:
4 = 2x�
8 = 8y�

Eliminating � yields y =
1

2
x, and the con-

straint becomes

x2 + 4

✓

1

2
x

◆2

= 800

Therefore x = 20, y = 10, z = 0.
This also gives production P = 160.

As expected, the global maximum occurs at
P (16, 8, 12) = 200.

55. We minimize the square of the distance,
f(x, y) = (x� 1)2 + y2 + z2

subject to the constraint
g(x, y, z) = x2 + y2 � z = 0

rf = �rg leads to equations:
2x� 2 = 2x�
2y = 2y�
2z = ��
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If y 6= 0 then � = 1 and the first equation is
inconsistent.

If y = 0, the constraint gives z = x2, and com-
bining the first and third equation above yields
4x3 + 2x� 2 = 0
which we numerically solve to find
x = 0.5898, y = 0, z = 0.3478.

56. We minimize the square of the distance,
f(x, y) = x2 + (y � 2)2 + z2

subject to the constraint
g(x, y, z) = x2 + y2 � z2 � 1 = 0

rf = �rg leads to equations:
2x = 2x�
2y � 4 = 2y�
2z = �2z�

If x 6= 0 then � = 1 and the second equation is
inconsistent. Therefore x = 0.

If z 6= 0, then � = �1 and the second equation
gives y = 1. However, if x = 0 and y = 1,
then the constraint gives z = 0, a contradic-
tion. Therefore z = 0.
Thus x = z = 0 and the constraint forces
y = ±1. The closest point is therefore (0, 1, 0).

57. The angles ↵, �, and ✓ sum to the angle be-
tween due east and due north, so

↵+ � + ✓ =
⇡

2
.

We maximize f(↵,�, ✓) = sin↵ sin� sin ✓
subject to the constraint

g(↵,�, ✓) = ↵+ � + ✓ � ⇡

2
.

rf = hcos↵ sin� sin ✓, sin↵ cos� sin ✓,
sin↵ sin� cos ✓i

rg = h1, 1, 1i
rf = �rg gives equations
cos↵ sin� sin ✓ = �
sin↵ cos� sin ✓ = �
sin↵ sin� cos ✓ = �

Using these equations in pairs, we get
tan↵ = tan� = tan ✓

Since these are angles between 0 and
⇡

2
, they

must all be equal.

↵ = � = ✓ =
⇡

6
and the maximum northward component of
force is

f(
⇡

6
,
⇡

6
,
⇡

6
) =

1

8
.

58. rf =
⌦

3x2 � 5y, 3y2 � 5x
↵

Maximize f subject to the constraint
g(x, y) = x+ y � k = 0 where k > 5.

rg = h1, 1i

rf = �rg
3x2 � 5y = �
3y2 � 5x = �
This gives us 3y2 + 5y � 3x2 � 5x = 0
(y � x)(3y + 3x+ 5) = 0

Therefore y = x or y = �x� 5

3
.

Substituting y = x into the constraint,
x+ y � k = 0
x+ x� k = 0

x =
k

2
.

This gives the point

✓

k

2
,
k

2

◆

Substituting y = �x� 5

3
into the constraint,

x+ y � k = 0

x� x� 5

3
� k = 0

k = �5

3
This gives us no additional points.

f

✓

k

2
,
k

2

◆

=

✓

k

2

◆3

+

✓

k

2

◆3

� 5

✓

k

2

◆✓

k

2

◆

=
2k3

8
� 5k2

4

=
k2(k � 5)

4
df

dk
=

1

4
(3k2 � 10k)

� = 3x2 � 5y = 3

✓

k

2

◆2

� 5

✓

k

2

◆

=
3k2 � 10k

4
=

df

dk

59. rC = h25, 100i
On the interior, there are no critical points.

On the boundary,
g(L,K) = 60L2/3K1/3 � 1920 = 0

rg =

⌧

40K1/3

L1/3
,
20L1/3

K2/3

�

rC = �rg gives equations

25 =
40K1/3

L1/3
�

100 =
20L2/3

K2/3
�

Eliminating � yields L = 8K.
Substituting this into the constraint gives
60(8K)2/3K1/3 = 1920, so K = 8 and L = 64
gives minimum cost.

The minimum cost is C(64, 8) = 2400.
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60.

@C

@L
= �

@P

@L
,

@C

@K
= �

@P

@K

Dividing these equations gives
@C/@L

@C/@K
=

@P/@L

@P/@K
which is what we were to show.

61. f(c, d) = 10c0.4d0.6

g(c, d) = 10c+ 15d� 300 = 0

rf =

⌧

4d0.6

c0.6
,
6c0.4

d0.4

�

rg = h10, 15i
rf = �rg gives the equations:
4d0.6

c0.6
= 10�

6c0.4

d0.4
= 15�

Eliminating � gives c = d.
Using the constraint, we find that
10c+15c = 300, so that c = d = 12 maximizes
the utility function.

62. f(x, y) = xpy1�p

g(x, y) = ax+ by � k = 0

rf = hpxp�1y1�p, (1� p)xpy�pi
rg = ha, bi
Setting rf = �rg gives the equations:
pxp�1y1�p = a�
(1� p)xpy�p = b�
ax+ by � k = 0

Solving for � in the first and second equations
gives
bpxp�1y1�p = a(1� p)xpy�p

Dividing through by y�pxp�1 and collecting
gives

y =
a(1� p)

bp
x =

aq

bp
x

Substituting this into the last equation gives
us

ax+ b

✓

aq

bp

◆

x = k

ax

✓

1 +
q

p

◆

= k

ax

✓

1 +
1� p

p

◆

= k

x = k
p

a
y = k

q

b

63. rP =

⌧

400K1/3

3L1/3
,
200L2/3

3K2/3

�

On the interior, the critical points occur where

K or L is zero, but this gives production zero
(not a maximum).

On the boundary,
g(L,K) = 2L+ 5K � 150 = 0
rg = h2, 5i

rP = �rg gives equations
400K1/3

3L1/3
= 2�

200L2/3

3K2/3
= 5�

Eliminating � yields L = 5K.
Substituting this into the constraint gives
2(5K) + 5K = 150, so K = 10 and L = 50.

Production is maximized when K = 10 and
L = 50.

64. Since the profit function P is linear and the
constraint region is convex, the maximum of P
is on the boundary of the constraint region.

g(x, y) = 2x2 + 5y2 � 32500 = 0
rf = h4, 5i
rg = h4x, 10yi

rf = �rg
4 = 4x�
5 = 10y�

Eliminating � gives us y =
1

2
x.

Substituting this into the constraint,
2x2 + 5y2 � 32500 = 0

2x2 +
5

4
x2 � 32500 = 0

x = ±100
This gives us the points (100, 50), (�100,�50)
P (100, 50) = 650, maximum
P (�100, 50) = �650, minimum

12. Review Exercises

1.
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2.

-3-2
-3

-1
-2 -1

00
0

1

1
y

2

1
2

3

x

4

3
23

3.

-3-3 -2-2 -1

-16

-1

-12

-8

-4

0
00 11

yx
22 33

4.

-2 -1 -2

-2

-1

-1

0
0
0

1

2

12 1 2

5.

−5.0

10

−2.5

5

x

0
0.00.0

y−5

2.5

−10

2.5
5.0

z

5.07.5
10.0

6.

5.0

5.0

2.5

2.5

0.0
0.0

y

0

−2.5

1

−5.0

−2.52

x
z

3 −5.04

7.
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y
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00
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0.5

1

1

x
2

8.
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0

x
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1
3

y

1

2
3

9.
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0
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5
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0.5
y
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-1 -2

-50

-0.5

-40

-1

-30

-20

-10

0
001

x

0.5

y

2 1

11. a. Surface D

b. Surface B

c. Surface C

d. Surface A

e. Surface F

f. Surface E

12. a. Contour D

b. Contour A

c. Contour B

d. Contour C

13. a. Contour C

b. Contour A

c. Contour D

d. Contour B

14. a. lim
(x,y)!(0,2)

3x

y2 + 1
=

0

5
= 0

b. lim
(x,y)!(1,⇡)

xy � 1

cosxy
=

⇡ � 1

�1
= �⇡ + 1

15. Along the line x = 0, we have

lim
(0,y)!(0,0)

0

0 + y2
= 0

Along the curve y = x2, we have

lim
(x,x2)!(0,0)

3x4

x4 + x4
=

3

2

Since these limits are di↵erent,the limit does
not exist.

16. Along the line x = 0, we have

lim
(0,y)!(0,0)

0

0 + y3
= 0

Along the curve y = x2/3, we have

lim
(x,x2/3)!(0,0)

2x
�

x2/3
�3/2

x2 + x2
= 1

Since these limits are di↵erent,the limit does
not exist.

17. Along the line x = 0, we have

lim
(0,y)!(0,0)

y2

y2
= 1

Along the curve y = x, we have

lim
(x,x)!(0,0)

x2 + x2

x2 + x2 + x2
=

2

3

Since these limits are di↵erent,the limit does
not exist.

18. Along the line x = 0, we have

lim
(0,y)!(0,0)

0

y2
= 0

Along the curve y = x, we have

lim
(x,x)!(0,0)

x2

x2 + x2 + x2
=

1

3

Since these limits are di↵erent,the limit does
not exist.

19. We use Theorem 2.1.
�

�

�

�

x3 + xy2

x2 + y2

�

�

�

�


�

�

�

�

x3

x2 + y2

�

�

�

�

+

�

�

�

�

xy2

x2 + y2

�

�

�

�

by the triangle inequality. We make the de-
nominators smaller in both terms to get,


�

�

�

�

x3

x2

�

�

�

�

+

�

�

�

�

xy2

y2

�

�

�

�

= |x|+ |x| = 2|x|
lim

(x,y)!(0,0)
2|x| = 0, therefore

lim
(x,y)!(0,0)

x3 + xy2

x2 + y2
= 0.

20. We use Theorem 2.1.

3y2 x2 + 3y2

3y2| ln(x+ 1)| (x2 + 3y2)| ln(x+ 1)|
3y2| ln(x+ 1)|

x2 + 3y2
| ln(x+ 1)|

Since lim
(x,y)!(0,0)

| ln(x+ 1)| = 0,

lim
(x,y)!(0,0)

3y2| ln(x+ 1)|
x2 + 3y2

= 0

21. f(x, y) is continuous unless x = 0.

22. 4�4x2�y2 is continuous for all x, y. Therefore
we only need the radicand to be positive, so f
is continuous inside the ellipse:
4� 4x2 � y2 � 0

x2 +
y2

4
 1

23. f
x

=
4

y
+ xyexy + exy

f
y

=
�4x

y2
+ x2exy
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24. f
x

= exy + xyexy

f
y

= x2exy + 6y

25. f
x

= 6xy cos y � 1

2
p
x

f
y

= 3x2 cos y � 3x2y sin y

26. f
x

=
3

2

p
xy + 3

f
y

=

p
x3

2
p
y

27. f
x

= f
xx

= ex sin y
f
y

= ex cos y f
yy

= �ex sin y

Therefore,
f
xx

+ f
yy

= ex sin y � ex sin y = 0

28. f
xx

= ex cos y
f
yy

= �ex cos y

Therefore f
xx

+ f
yy

= 0.

29.

@f

@x
(0, 0) ⇡ 1.6� 2.4

10� (�10)
= �0.04

@f

@y
(0, 0) ⇡ 2.6� 1.4

10� (�10)
= 0.06

30.

@f

@x
(10, 0) ⇡ 1.2� 2.0

20� 0
= �0.04

@f

@y
(10, 0) ⇡ 2.2� 1.0

10� (�10)
= 0.06

31. f
x

=
3xyp
x2 + 5

, f
y

= 3
p

x2 + 5

f(�2, 5) = 45
f
x

(�2, 5) = �10, f
y

(�2, 5) = 9

L(x, y) = 45� 10(x+ 2) + 9(y � 5)

32. f
x

=
1

4y � 2
, f

y

= � 4(x+ 2)

(4y � 2)2

f(2, 3) =
2

5

f
x

(2, 3) =
1

10
, f

y

(2, 3) = � 4

25

L(x, y) =
2

5
+

1

10
(x� 2)� 4

25
(y � 3)

33. f
x

= sec2(x+ 2y), f
y

= 2 sec2(x+ 2y)

f
⇣

⇡,
⇡

2

⌘

= 0

f
x

⇣

⇡,
⇡

2

⌘

= 1, f
y

⇣

⇡,
⇡

2

⌘

= 2

L(x, y) = (x� ⇡) + 2
⇣

y � ⇡

2

⌘

34. f
x

=
2x

x2 + 3y
f
y

=
3

x2 + 3y
f(4, 2) = ln 22

f
x

(4, 2) =
4

11
f
y

(4, 2) =
3

22

L(x, y) = ln 22 +
4

11
(x� 4) +

3

22
(x� 4)

35. f
x

= 8x3y + 6xy2

f
y

= 2x4 + 6x2y
f
xx

= 24x2y + 6y2

f
yy

= 6x2

f
xy

= 8x3 + 12xy

36. f
x

= 2xe3y

f
y

= 3x2e3y � cos y
f
xx

= 2e3y

f
yy

= 9x2e3y + sin y
f
yyx

= 18xe3y

37. f
x

= 2xy + 2, f
y

= x2 � 2y

f(1,�1) = 0
f
x

(1,�1) = 0, f
y

(1,�1) = 3

3(y + 1)� z = 0

38. f
x

=
x

p

x2 + y2
, f

y

=
y

p

x2 + y2

f(3,�4) = 5

f
x

(3,�4) =
3

5
, f

y

(3,�4) = �4

5

3

5
(x� 3)� 4

5
(y + 4)� (z � 5) = 0

39. f(x, y, z) = x2 + 2xy + y2 + z2 = 5
rf = h2x+ 2y, 2x+ 2y, 2zi
rf(0, 2, 1) = h4, 4, 2i

4(x� 0) + 4(y � 2) + 2(z � 1) = 0

40. f(x, y, z) = x2z � y2x+ 3y � z = �4
rf =

⌦

2xz � y2,�2xy + 3, x2 � 1
↵

rf(1,�1, 2) = h3, 5, 0i

3(x� 1) + 5(y + 1) + 0(z � 2) = 0

41. g0(t) = f
x

(x(t), y(t))x0(t)
+ f

y

(x(t), y(t))y0(t)

f
x

= 2xy f
y

= x2 + 2y

x0(t) = 4e4t y0(t) = cos t

g0(t) = 2e4t sin t(4e4t) + (e8t + 2 sin t) cos t
= 8e8t sin t+ (e8t + 2 sin t) cos t

42.

@f

@x
= 8x,

@f

@y
= �1

@x

@u
= 3u2v + cosu,

@x

@v
= u3
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@y

@u
= 0,

@y

@v
= 8v

@g

@u
=
@f

@x

@x

@u
+

@f

@y

@y

@u

=8x(3u2v + cosu) + (�1)0

=8(u3v + sinu)(3u2v + cosu)

@g

@v
=
@f

@x

@x

@v
+

@f

@y

@y

@v

=8xu3 � 8v

=8(u3v + sinu)u3 � 8v

43. g0(t) = f
x

(x(t), y(t), z(t), w(t))x0(t)
+ f

y

(x(t), y(t), z(t), w(t))y0(t)
+ f

z

(x(t), y(t), z(t), w(t))z0(t)
+ f

w

(x(t), y(t), z(t), w(t))w0(t)

44.

@g

@u
=

@f

@x

@x

@u
+

@f

@y

@y

@u
@g

@v
=

@f

@x

@x

@v
+

@f

@y

@y

@v

45. F (x, y, z) = x2 + 2xy + y2 + z2

F
x

= 2x+ 2y F
y

= 2x+ 2y
F
z

= 2z

@z

@x
= �F

x

F
z

= �x+ y

z

@z

@y
= �F

y

F
z

= �x+ y

z

46. F (x, y, z) = x2z � y2x+ 3y � z
F
x

= 2xz � y2, F
y

= �2xy + 3,
F
z

= x2 � 1

@z

@x
= �F

x

F
z

=
�2xy + y2

x2 + 1

@z

@y
= �F

x

F
z

=
2xy � 3

x2 + 1

47. rf = h3 sin 4y �
p
y

2
p
x
, 12x cos 4y �

p
x

2
p
y
i

rf(⇡,⇡) = h�1

2
, 12⇡ � 1

2
i

48. rf = h4z2 + 3 sinx, 8y, 8xzi
rf(0, 1,�1) = h4, 8, 0i

49. rf =
⌦

3x2y, x3 � 8y
↵

rf(�2, 3) = h36,�32i

Duf(�2, 3) = h36,�32i ·
⌧

3

5
,
4

5

�

=
�20

5
= �4

50. rf =
⌦

2x+ y2, 2xy
↵

rf(2, 1) = h5, 4i

u =

⌧

3p
13

,� 2p
13

�

Duf(2, 1) = h5, 4i ·
⌧

3p
13

,� 2p
13

�

=
7p
13

51. rf =
⌦

3ye3xy, 3xe3xy � 2y
↵

rf(0,�1) = h�3, 2i

u = h 1p
5
,
�2p
5
i

Duf(0,�1) = h�3, 2i ·
⌧

1p
5
,
�2p
5

�

Duf(0,�1) =
�7p
5

52. rf =

*

2x+ y2

2
p

x2 + xy2
,

xy
p

x2 + xy2

+

rf(2, 1) =

⌧

5

2
p
6
,
2p
6

�

u =

⌧

1p
5
,� 2p

5

�

Duf(2, 1) =

⌧

5

2
p
6
,
2p
6

�

·
⌧

1p
5
,� 2p

5

�

= � 3

2
p
30

53. rf =
⌦

3x2y, x3 � 8y
↵

rf(�2, 3) = h36,�32i
krf(�2, 3)k = 4

p
145

The direction of maximum change is
h36,�32i.
The maximum rate of change is 4

p
145.

The direction of minimum change is
h�36, 32i.
The minimum rate of change is �4

p
145.

54. rf =
⌦

2x+ y2, 2xy
↵

rf(2, 1) = h5, 4i
krf(2, 1)k =

p
41

The direction of maximum change is h5, 4i.
The maximum rate of change is

p
41.

The direction of minimum change is
h�5,�4i.
The minimum rate of change is �

p
41.

55. rf =

*

2x3

p

x4 + y4
,

2y3
p

x4 + y4

+

rf(2, 0) = h4, 0i
krf(2, 0)k = 4
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The direction of maximum change is h4, 0i.
The maximum rate of change is 4.

The direction of minimum change is h�4, 0i.
The minimum rate of change is �4.

56. rf =
⌦

2x+ y2, 2xy
↵

rf(1, 2) = h6, 4i
krf(1, 2)k = 2

p
13

The direction of maximum change is h6, 4i.
The maximum rate of change is 2

p
13.

The direction of minimum change is
h�6,�4i.
The minimum rate of change is �2

p
13.

57. rf = h�8x,�2i
rf(2, 1) = h�16,�2i
The rain will run in the direction h16, 2i.

58. rT =
D

20e�z

2

,�15y�2e�z

2

,

�10z(4x+ 3y�1)e�z

2
E

rT (1, 2, 1) =

⌧

20e�1,�15

4
e�1,�55e�1

�

⇡ h7.358,�1.380, 20.233i
The direction of most rapid temperature de-
crease will be

�rT (1, 2, 1) =

⌧

�20e�1,
15

4
e�1, 55e�1

�

59. rf = h8x3 � y2,�2xy + 4yi
f
xx

= 24x2, f
yy

= �2x+ 4, f
xy

= �2y

Solving rf = h0, 0i gives equations
8x3 = y2

2y(2� x) = 0

The second equation gives us y = 0 or x = 2.

If y = 0 then the first equation gives us x = 0
and we have the critical point (0, 0).

If x = 2 and 8x3 = y2, then y = ±8 and we
get the critical points (2,±8)

D(0, 0) = 0, so Theorem 7.2 provides no infor-
mation. But, along every trace y = cx,
f(x, cx) = 2x4 � c2x3 + 2c2x2, and the second
derivative test shows this to be a minimum.

D(2± 8) = �256 < 0 so these are both saddle
points.

60. rf = h8x3 � 2xy, 3y2 � x2i
f
xx

= 24x2 � 2y, f
yy

= 6y, f
xy

= �2x

Solving rf = h0, 0i gives equations
2x(4x2 � y) = 0
x2 = 3y2

The first equation gives us x = 0 or 4x2 = y.

If x = 0 then the second equation gives us
y = 0 and we have the critical point (0, 0).

If 4x2 = y and x2 = 3y2, substitution gives us

y = 0 or y =
1

12
and we get the critical points

✓

1

4
p
3
,
1

12

◆

,

✓

� 1

4
p
3
,
1

12

◆

.

D(0, 0) = 0, no information. But, along the
trace x = 0, f(0, y) = y3, which shows that
this point must be a saddle point.

D

✓

1

4
p
3
,
1

12

◆

=
1

12
> 0

f
xx

✓

1

4
p
3
,
1

12

◆

=
1

3
> 0

f

✓

1

4
p
3
,
1

12

◆

= � 1

3456
, local minimum

D

✓

� 1

4
p
3
,
1

12

◆

=
1

12
> 0

f
xx

✓

� 1

4
p
3
,
1

12

◆

=
1

3
> 0

f

✓

� 1

4
p
3
,
1

12

◆

= � 1

3456
, local minimum

61. rf = h4y � 3x2, 4x� 4yi
f
xx

= �6x, f
yy

= �4, f
xy

= 4

Solving rf = h0, 0i gives equations
4y � 3x2 = 0
4x = 4y

The second equation gives us x = y.

The first equation then becomes

x(4� 3x) = 0, so that x = 0 or x =
4

3
.

We get the critical points

✓

4

3
,
4

3

◆

, (0, 0).

D(0, 0) = �16 < 0, so this is a saddle point.

D

✓

4

3
,
4

3

◆

= 16 > 0

f
xx

✓

4

3
,
4

3

◆

= �8 < 0,

so f

✓

4

3
,
4

3

◆

=
32

27
is a local maximum.

62. rf = h3y � 3x2y, 3x� x3 + 2y � 1i
f
xx

= �6xy, f
yy

= 2, f
xy

= 3� 3x2

Solving rf = h0, 0i gives equations
3y � 3x2y = 0
3x� x3 + 2y � 1 = 0

The first equation gives us 3y(1� x2) = 0 and
so y = 0 or x = ±1.
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If y = 0 then the second equation gives us
3x�x3� 1 = 0 which we solve using a CAS to
get the critical points
(1.532, 0), (�1.879, 0), (0.347, 0)

If x = 1 then the second equation gives us

y = �1

2
and we get the critical point

✓

1,�1

2

◆

If x = �1 then the second equation gives us

y =
2

3
and we get the critical point

✓

�1,
2

3

◆

D (1.532, 0) ⇡ �16 < 0, saddle.

D (�1.879, 0) ⇡ �56 < 0, saddle.

D (0.347, 0) ⇡ �7 < 0, saddle.

D

✓

1,�1

2

◆

= 6 > 0

f
xx

✓

1,�1

2

◆

= 3 > 0

f

✓

1,�1

2

◆

= �1

4
, local minimum

D

✓

�1,
2

3

◆

= 18 > 0

f
xx

✓

�1,
2

3

◆

= 9 > 0

f

✓

�1,
2

3

◆

= �9

4
, local minimum

63. The residuals are,
64a+ b� 140, 66a+ b� 156
70a+ b� 184, 71a+ b� 190

g(a, b) = (64a+ b� 140)2 + (66a+ b� 156)2

+ (70a+ b� 184)2 + (71a+ b� 190)2

@g

@a
= 36786a+ 542b� 91252

@g

@b
= 542a+ 8b� 1340

Solving
@g

@a
=

@g

@b
= 0 we get

a =
934

131
⇡ 7.130

b = �41336

131
⇡ �315.542

y = 7.130x� 315.542
y(74) ⇡ 212
y(60) ⇡ 112

64. The residuals are, (income in thousands of dol-
lars)
28a+ b� 36, 32a+ b� 34
40a+ b� 88, 56a+ b� 104

g(a, b) = (28a+ b� 36)2 + (32a+ b� 34)2

+ (40a+ b� 88)2 + (56a+ b� 104)2

@g

@a
= 13, 088a+ 312b� 22, 880

@g

@b
= 312a+ 8b� 524

Solving
@g

@a
=

@g

@b
= 0 we get

a =
611

230
⇡ 2.657

b = �4382

115
⇡ �38.104

y = 2.657x� 38.104
y(20) ⇡ $15, 026
y(60) ⇡ $121, 287

65. rf = h8x3 � y2,�2xy + 4yi
f
xx

= 24x2, f
yy

= �2x+ 4, f
xy

= �2y

Solving rf = h0, 0i gives equations
y2 = 8x3

2y(2� x) = 0

The second equation gives us x = 2 or y = 0.

If y = 0 then the first equation gives us x = 0
and we have the critical point (0, 0).

If x = 2 and y2 = 8x2, then y = ±8 and we
get the critical points
(2,±8), neither of which are in the region.

Along y = 0, f(x, 0) = 2x4 which has a critical
point at x = 0 which gives us the critical point
(0, 0) (we already had this point).

Along y = 2, f(x, 2) = 2x4� 4x+8, which has

a critical point at x =
1
3
p
2
and the only critical

point in the region is

✓

1
3
p
2
, 2

◆

.

Along x = 0, f(0, y) = 2y2 which has a critical
point at y = 0 and we get the same critical
point of (0, 0).

Along x = 4, f(4, y) = 512 � 2y2, which has
a critical point at y = 0 and we get the same
critical point of (0, 0).

In addition, the intersection points of our
boundaries are (0, 0), (4, 0), (0, 2), (4, 2).

f (0, 0) = 0, minimum

f

✓

1
3
p
2
, 2

◆

⇡ 5.619,

f (0, 2) = 8
f (4, 0) = 512, maximum
f (4, 2) = 504.

66. rf = h8x3 � 2xy, 3y2 � x2i
f
xx

= 24x2 � 2y, f
yy

= 6y, f
xy

= �2x

Solving rf = h0, 0i gives equations
2x(4x2 � y) = 0
x2 = 3y2
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The first equation gives us x = 0 or 4x2 = y.

If x = 0 then the second equation gives us
y = 0 and we have the critical point (0, 0).

If 4x2 = y and x2 = 3y2, substitution gives us

y = 0 or y =
1

12
and we get the critical points

✓

1

4
p
3
,
1

12

◆

, in our region.
✓

� 1

4
p
3
,
1

12

◆

, not in the region.

Along y = 0, f(x, 0) = 2x4 which has a critical
point at x = 0 which gives us the critical point
(0, 0) (we already had this point).

Along x = 2, f(2, y) = 32 + y3 � 4y, which

has a critical point at y = ± 2p
3
and the only

critical point in the region is

✓

2,
2p
3

◆

.

Along y = x, f(x, x) = 2x4 which has a criti-
cal point at x = 0 and we get the same critical
point of (0, 0).

In addition, the intersection points of our
boundaries are (0, 0), (2, 0), (2, 2).

f (0, 0) = 0

f

✓

1

4
p
3
,
1

12

◆

⇡ �0.00029, minimum

f

✓

2,
2p
3

◆

⇡ 28.9

f (2, 0) = 32, maximum
f (2, 2) = 32, maximum

67. g(x, y) = x2 + y2 � 5 = 0
rf = h1, 2i
rg = h2x, 2yi
rf = �rg
1 = 2x�
2 = 2y�
Eliminating � gives y = 2x.

Substituting this into the constraint,
x2 + y2 � 5 = 0
x2 + 4x2 � 5 = 0
x = ±1

This gives the points
(1, 2) , (1,�2)
(�1,�2) , (�1, 2)

Maximum: f (1, 2) = 5

Minimum: f(�1,�2) = �5

68. g(x, y) = x2 + y2 � 4 = 0
rf = h4xy, 2x2i
rg = h2x, 2yi

rf = �rg
4xy = 2x�
2x2 = 2y�

The second equation gives y = ± xp
2
.

Substituting this into the constraint,
x2 + y2 � 4 = 0

x2 +
x2

2
� 4 = 0

x = ±2
p
2p
3

This gives the points
 

2
p
2p
3
,
2p
3

!

,

 

2
p
2p
3
,� 2p

3

!

 

�2
p
2p
3
,� 2p

3

!

,

 

�2
p
2p
3
,
2p
3

!

Maxima:

f

 

2
p
2p
3
,
2p
3

!

= f

 

�2
p
2p
3
,
2p
3

!

=
32

3
p
3

Minima:

f

 

2
p
2p
3
,� 2p

3

!

= f

 

�2
p
2p
3
,� 2p

3

!

= � 32

3
p
3

69. g(x, y) = x2 + y2 � 1 = 0
rf = hy, xi
rg = h2x, 2yi
rf = �rg
y = 2x�
x = 2y�
Eliminating � we see that y = ±x.
Substituting this into the constraint yields

x2 + x2 = 1, so that x = ± 1p
2

Therefore our critical points are

(
1p
2
,
1p
2
), (� 1p

2
,
1p
2
),

(
1p
2
,� 1p

2
), (� 1p

2
,� 1p

2
).

f(
1p
2
,
1p
2
) = f(� 1p

2
,� 1p

2
) =

1

2
, maximum.

f(
1p
2
,� 1p

2
) = f(� 1p

2
,
1p
2
) =

�1

2
,

minimum.

70. g(x, y) = x2 + y2 � 1 = 0
rf = h2x� 2, 4yi
rg = h2x, 2yi
rf = �rg
2x� 2 = 2x�
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4y = 2y�

The first equation gives us � =
x� 1

x
.

The second equation is y(2��) = 0 which gives
us

y

✓

2� x� 1

x

◆

= 0

y

✓

x+ 1

x

◆

= 0

so y = 0 or x = �1.

If y = 0, our constraint gives us x = ±1.
If x = �1, our constraint gives us y = 0.

Therefore our critical points are
(1, 0), (�1, 0).

f(1, 0) = �1, minimum
f(�1, 0) = 3, maximum

71. We want to minimize
f(x, y) = (x� 4)2 + y2

subject to the constraint y = x3.

g(x, y) = x3 � y = 0
rf = h2(x� 4), 2yi
rg = h3x2,�1i
rf = �rg
2(x� 4) = 3x2�
2y = ��
Eliminating � gives

y =
4� x

3x2

Substituting this into our constraint gives
4� x

3x2
= x3 or

3x5 + x� 4 = 0

With the aid of a CAS, we find x = 1 is the only
real solution. This gives closest point (1, 1).

72. We want to minimize
f(x, y) = (x� 2)2 + (y � 1)2

subject to the constraint y = x3.

g(x, y) = x3 � y = 0
rf = h2(x� 2), 2(y � 1)i
rg = h3x2,�1i

rf = �rg
2(x� 2) = 3x2�
2(y � 1) = ��
Eliminating � gives

y =
�x+ 2 + 3x2

3x2

Substituting this into our constraint gives
�x+ 2 + 3x2

3x2
= x3 or

3x5 � 3x2 + x� 2 = 0

We solve this using a CAS and get the closest
point (there is only one real solution to this
equation):
(1.081, 1.262)



Chapter 13

Multiple Integrals

13.1 Double Integrals

1. (a) f(x, y) = x+ 2y2, n = 4
0  x  2, �1  y  1

The centers of the four rectangles are
✓

1

2
,�1

2

◆

,

✓

1

2
,

1

2

◆

,

✓

3

2
,�1

2

◆

,

✓

3

2
,

1

2

◆

Since the rectangles are the same size,
�A

i

= 1.

V ⇡
4

X

i=1

f(u
i

, v

i

)�A

i

= f

✓

1

2
,�1

2

◆

(1) + f

✓

1

2
,

1

2

◆

(1)

+ f

✓

3

2
,�1

2

◆

(1) + f

✓

3

2
,

1

2

◆

= 1 + 1 + 2 + 2 = 6

(b) f (x, y) = x+ 2y2, n = 8,

0  x  2,�1  y  1.

After dividing at x = 1, y = �0.5, y = 0,
y = 0.5 then the centers of the eight rect-
angles are
✓

1

2
,�3

4

◆

,

✓

3

2
,�3

4

◆

,

✓

1

2
,�1

4

◆

,

✓

3

2
,�1

4

◆

,

✓

1

2
,

1

4

◆

,

✓

3

2
,

1

4

◆

,

✓

1

2
,

3

4

◆

,

✓

3

2
,

3

4

◆

Since the rectangles are of same size

�A

i

=
1

2

V ⇡
8

X

i=1

f (u
i

, v

i

) ·�A

i

=

⇢

f

✓

1

2
,�3

4

◆

+ f

✓

3

2
,�3

4

◆

+f

✓

1

2
,�1

4

◆

+ f

✓

3

2
,�1

4

◆

+f

✓

1

2
,

1

4

◆

+ f

✓

3

2
,

1

4

◆

+f

✓

1

2
,

3

4

◆

+ f

✓

3

2
,

3

4

◆�

·
✓

1

2

◆

= {1.625 + 2.625 + 0.625
+1.625 + 0.625 + 1.625

+1.625 + 2.625} ·
✓

1

2

◆

= 6.5

2. (a) f (x, y) = 4x2 + y, n = 4,

1  x  5, 0  y  2.

After dividing at x = 3 and y = 1 then
the centers of the four rectangles are
✓

2,
1

2

◆

,

✓

2,
3

2

◆

,

✓

4,
1

2

◆

,

✓

4,
3

2

◆

Since the rectangles are of same size.

�A

i

= 2

V ⇡
4

X

i=1

f (u
i

, v

i

) ·�A

i

=

⇢

f

✓

2,
1

2

◆

+ f

✓

2,
3

2

◆

+f

✓

4,
1

2

◆

+ f

✓

4,
3

2

◆�

· (2)

= {16.5 + 17.5 + 64.5 + 65.5} · (2)
= 328

(b) f (x, y) = 4x2 + y

n = 8
1  x  5, 0  y  2
After dividing at x = 2, x = 3, x = 4,
y = 1. Then the centers of the eight rect-
angles are
✓

3

2
,

1

2

◆

,

✓

3

2
,

3

2

◆

,

✓

5

2
,

1

2

◆

,

✓

5

2
,

3

2

◆

,

✓

7

2
,

1

2

◆

,

✓

7

2
,

3

2

◆

,

✓

9

2
,

1

2

◆

,

✓

9

2
,

3

2

◆

Since the rectangles are of same size.

�A

i

= 1

V ⇡
4

X

i=1

f (u
i

, v

i

) ·�A

i

=

⇢

f

✓

3

2
,

1

2

◆

+ f

✓

3

2
,

3

2

◆

+f

✓

5

2
,

1

2

◆

+ f

✓

5

2
,

3

2

◆

+f

✓

7

2
,

1

2

◆

+ f

✓

7

2
,

3

2

◆

+f

✓

9

2
,

1

2

◆

+ f

✓

9

2
,

3

2

◆�

· (1)

= {9.5 + 10.5 + 25.5 + 26.5
+49.5 + 50.5 + 81.5 + 82.5} · (1)

= 336

3. (a) f (x, y) = x+ 2y2

n = 4

738
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0  x  2,�1  y  1
After dividing at x = 1 and y = 0 then
the lower rights of the four rectangles are

(1, 0) , (1,�1) , (2, 0) , (2,�1)

Since the rectangles are of same size.

�A

i

= 1

V ⇡
4

X

i=1

f (u
i

, v

i

) ·�A

i

= {f (1, 0) + f (1,�1) + f (2, 0)
+f (2,�1)} · (1)

= {1 + 3 + 2 + 4} · (1) = 10

(b) f (x, y) = x+ 2y2

n = 8
0  x  2,�1  y  1
After dividing at x = 0.5, x = 1,
x = 1.5, y = 0 the lower rights of the
Eight rectangles are
✓

1

2
, 0

◆

, (1, 0) ,

✓

3

2
, 0

◆

, (2, 0) ,
✓

1

2
,�1

◆

, (1,�1) ,

✓

3

2
,�1

◆

, (2,�1)

Since the rectangle are of same size.

�A

i

=
1

2

V ⇡
4

X

i=1

f (u
i

, v

i

) ·�A

i

=

⇢

f

✓

1

2
, 0

◆

+ f (1, 0) + f

✓

3

2
, 0

◆

+f (2, 0) + f

✓

1

2
,�1

◆

+ f (1,�1)

+f

✓

3

2
,�1

◆

+ f (2,�1)

�

·
✓

1

2

◆

=

⇢

1

2
+ 1 +

3

2
+ 2 +

5

2
+ 3

+
7

2
+ 4

�

·
✓

1

2

◆

= 9

4. (a) f (x, y) = 4x2 + y

n = 4,
1  x  5, 0  y  2
After dividing at x = 3 and y = 1 then
the upper lefts of the four rectangles are

(1, 1) , (3, 1) , (1, 2) , (3, 2)

Since the rectangles are of same size.

�A

i

= 2

V ⇡
4

X

i=1

f (u
i

, v

i

) ·�A

i

= {f (1, 1) + f (3, 1) + f (1, 2)
+f (3, 2)} · (2)

= {5 + 37 + 6 + 38} · (2)
= 172

(b) f (x, y) = 4x2 + y

n = 8
1  x  3, 0  y  2
After dividing at x = 3, y = 0.5,
y = 1, y = 1.5 and then the upper lefts of
the Eight rectangles are
✓

1,
1

2

◆

,

✓

1,
3

2

◆

,

✓

3,
1

2

◆✓

3,
3

2

◆

,

(1, 1) , (3, 1) , (1, 2) , (3, 2)

Since the rectangle are of same size.

�A

i

= 1

V ⇡
4

X

i=1

f (u
i

, v

i

) ·�A

i

=

⇢

f

✓

1,
1

2

◆

+ f

✓

1,
3

2

◆

+ f (1, 1)

+f (3, 1) + f

✓

3,
1

2

◆

+ f

✓

3,
3

2

◆

+f (1, 2) + f (3, 2)} · (1)
= {4.5 + 5.5 + 5 + 37 + 36.5 + 37.5

+6 + 38} · (1) = 170

5. The region of integration is a rectangle in the
xy-plane.

V =

Z

4

1

Z

3

0

(x2 + y

2) dx dy

=

Z

4

1



x

3

3
+ xy

2

�

x=3

x=0

dy

=

Z

4

1

�

9 + 3y2
�

dy

=
⇥

9y + y

3

⇤

4

1

= 90

6. V =

Z

1

0

Z

3

1

(3x2 + 2y) dx dy

=

Z

1

0

⇥

x

3 + 2xy
⇤

x=3

x=1

dy

=

Z

1

0

(26 + 4y) dy

=
⇥

26y + 2y2
⇤

1

0

= 28

7. f (x, y) = 6 + xe

x + 2y sin y � 0
R = {(x, y) |0  x  2, 1  y  4}
V =

ZZ

R

(6 + xe

x + 2y sin y) dA

=

Z

4

1

Z

2

0

(6 + xe

x + 2y sin y) dxdy

=

Z

4

1

[6x+ xe

x � e

x + 2xy sin y]x=2

x=0

dy
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=

Z

4

1

�

12 + 2e2 � e

2 + 4y sin y + 1
�

dy

=

Z

4

1

�

13 + e

2 + 4y sin y
�

dy

=
⇥

13y + e

2

y � 4y cos y + 4 sin y
⇤

4

1

= 39+3e2+4 sin 4+4 cos 1�16 cos 4�4 sin 1

8. f (x, y) = 4� x

2

y + y

p

1 + y

2 � 0
R = {(x, y) |�1  x  1, 0  y  3}
V =

ZZ

R

⇣

4� x

2

y + y

p

1 + y

2

⌘

dA

=

Z

3

0

Z

1

�1

⇣

4� x

2

y + y

p

1 + y

2

⌘

dxdy

=

Z

3

0



4x� yx

3

3
+ xy

p

1 + y

2

�

x=1

x=�1

dy

=

Z

3

0

✓

8� 2

3
y + 2y

p

1 + y

2

◆

dy

=



8y � 1

3
y

2 +
2

3

�

1 + y

2

�

3

2

�

3

0

=
61

3
+

20
p
10

3

9.

ZZ

R

(1� ye

xy) dA

=

Z

3

0

Z

2

0

(1� ye

xy) dx dy

=

Z

3

0

[x� e

xy]x=2

x=0

dy

=

Z

3

0

�

3� e

2y

�

dy

=



3y � e

2y

2

�

3

0

=
19� e

6

2

10.

ZZ

R

(3x� 4x3/2

y

1/2) dA

=

Z

9

0

Z

4

0

(3x� 4x3/2

y

1/2) dx dy

=

Z

9

0



3x2

2
� 8x5/2

y

1/2

5

�

x=4

x=0

dy

=

Z

9

0

✓

24� 256y1/2

5

◆

dy

=



24y � 512y3/2

15

�

9

0

= �3528

5

11.

Z

1

0

Z

2x

0

(x+ 2y) dy dx

=

Z

1

0

⇥

xy + y

2

⇤

y=2x

y=0

dx

=

Z

1

0

6x2

dx =
⇥

2x3

⇤

1

0

= 2

12.

Z

2

0

Z

x

2

0

(x+ 3) dy dx

=

Z

2

0

[(x+ 3)y]y=x

2

y=0

dx

=

Z

2

0

�

x

3 + 3x2

�

dx

=



x

4

4
+ x

3

�

2

0

= 12

13.

Z

1

0

Z

2t

0

⇣

4u
p
t+ t

⌘

dudt

=

Z

1

0

h

2u2

p
t+ ut

i

x=2t

x=0

dt

=

Z

1

0

h

8t5/2 + 2t2
i

dt

=



16

7
t

7/2 +
2

3
t

3

�

1

0

=
62

21

14.

Z

⇡

0

Z

2

0

✓ sin f✓dfd✓

=

Z

⇡

0

[� cos f✓]f=2

f=0

d✓

=

Z

⇡

0

(� cos 2✓ + 1) d✓

=



�1

2
sin 2✓ + ✓

�

⇡

0

= ⇡

15.

Z

2

0

Z

2y

0

e

y

2

dx dy

=

Z

2

0

h

xe

y

2

i

x=2y

x=0

dy

=

Z

2

0

⇣

2yey
2

⌘

dy

=
h

e

y

2

i

2

0

= e

4 � 1

16.

Z

2

1

Z

2/x

0

e

xy

dy dx

=

Z

2

1



e

xy

x

�

y=2/x

y=0

dx

=

Z

2

1

✓

e

2 � 1

x

◆

dx

=
⇥

(e2 � 1) lnx
⇤

2

1

= (e2 � 1) ln 2

17.

Z

4

1

Z

1/u

0

(cosuy) dydu

=

Z

4

1



sinuy

u

�

y=1/u

y=0

du

=

Z

4

1

✓

sin 1

u

◆

du

= [(sin 1) (lnu)]4
1
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= 2 (ln 2) (sin 1)

18.

Z

1

0

Z

b

2

0

3

4 + b

3

dadb

=

Z

1

0



3a

4 + b

3

�

a=b

2

a=0

=

Z

1

0

✓

3b2

4 + b

3

◆

db

=
⇥

ln
�

4 + b

3

�⇤

1

0

= ln 5� ln 4

19.

Z

2

0

Z

x

0

ye

3x

dydx

=

Z

2

0

e

3x



y

2

2

�

x

0

dx

=
1

2

Z

2

0

e

3x · x2

dx

=
13e6 � 1

27

20.

Z

1

0

Z

x

2

0

x+ 1

(y + 1)2
dydx

=

Z

1

0

(x+ 1)



�1

(y + 1)

�

x

2

0

dx

=

Z

1

0

(x+ 1)

✓

�1

(x2 + 1)
+ 1

◆

dx

=

Z

1

0

✓

(x+ 1)� (x+ 1)

(x2 + 1)

◆

dx

=

Z

1

0

(x+ 1) dx�
Z

1

0

x

(x2 + 1)
dx

�
Z

1

0

1

(x2 + 1)
dx

=



x

2

2
+ x

�

1

0

� 1

2

Z

2

1

1

u

du�
⇥

tan�1

x

⇤

1

0

(Put u = x

2+1)

=
3

2
� ln (2)

2
� ⇡

4

=
6� 2 ln 2� ⇡

4

21.

Z

1

0

Z

t

0

u

2 + 1

t

2 + 1
dudt

=

Z

1

0

1

t

2 + 1

Z

t

0

u

2 + 1dudt

=

Z

1

0

1

t

2 + 1



u

3

3
+ u

�

u=t

u=0

dt

=

Z

1

0

t

3 + 3t

3 (t2 + 1)
dt

=
1

3

Z

1

0

t dt +
2

3

Z

1

0

t

1 + t

2

=
1

6
+

1

3
ln (2)

22.

Z

1

0

Z

v

1

p
u+ vdudv

=

Z

1

0

"

2(u+ v)3/2

3

#

v

1

dv

=
2

3

Z

1

0

h

(2v)
3

2 � (1 + v)
3

2

i

dv

=
4

15

⇣

1� 2
p
2
⌘

23.

Z

1

0

Z

x

0

(x� 2y) e(x�2y)

dydx

=

Z

1

0

✓

�1

2

◆

h

(x� 2y � 1) e(x�2y)

i

x

0

dx

=
1

2

✓

Z

1

0

�

(x+ 1) e�x + (x� 1) ex
�

dx

◆

= 2� e

2
� 3

2e

24.

Z

1

0

Z

x

0

x

2

e

xy

dydx

=

Z

1

0

[xexy]x
0

dx

=

Z

1

0

⇣

xe

x

2

� x

⌘

dx

=

"

e

x

2

2
� x

2

2

#

1

0

=
e

2
� 1

2
� 1

2
=

e

2
� 1

25. The solid lies under the surface z = x

2 + y

2

and over the region R in the xy-plane pictured
below.

0-0.5-1

y

1

0.6

0.2

-0.2

1.2

0.8

0.4

0

x
10.5

Region ´ of ´ Integration

V =

Z

1

�1

Z

1

x

2

(x2 + y

2) dy dx
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=

Z

1

�1



x

2

y +
y

3

3

�

y=1

y=x

2

dx

=

Z

1

�1

✓

1

3
+ x

2 � x

4 � x

6

3

◆

dy

= 2

Z

1

0

✓

1

3
+ x

2 � x

4 � x

6

3

◆

dy

= 2



x

3
+

x

3

3
� x

5

5
� x

7

21

�

1

0

=
88

105
Where the fourth line is by symmetry.

26. One the xy-plane, the region lies between the
parabola and the x-axis. Thus,
�1  x  1, 0  y  1� x

2

0-0.5-1

y

1

0.6

0.2

-0.2 x

1.2

0.8

0.4

0
10.5

Region of Integration

V =

Z

1

�1

Z

1�x

2

0

(3x2 + 2y) dy dx

=

Z

1

�1

⇥

3x2

y + y

2

⇤

y=1�x

2

y=0

dx

=

Z

1

�1

�

x

2 � 2x4 + 1
�

dx

=



x

3

3
� 2x5

5
+ x

�

1

�1

=
28

15

27. The solid in question lies under the plane

z = 6 � x � y and over the region in xy-plane
pictured below.

x
43

2

210

y 1

0

-1

-2

Region ´ of ´ Integration

V =

Z

2

�2

Z

4�y

2

0

(6� x� y) dx dy

=

Z

2

�2



6x� x

2

2
� xy

�

x=4�y

2

x=0

dy

=

Z

2

�2

✓

16� 4y � 2y2 � y

4

2
+ y

3

◆

dy

Using symmetry we disregard the odd powers.

V = 2

Z

2

0

✓

16� 2y2 � y

4

2

◆

dy

= 2



16y � 2y3

3
� y

5

10

�

2

0

=
704

15

28. On the xy-plane, the region lies between the
curve x = y

4 and the line x = 1. Thus,
y

4  x  1, �1  y  1

0.6

y

x
1

0.5

0.8

-0.5

0.4

1

0.2
0

0

-1

Region of Integration

V =

Z

1

�1

Z

1

y

4

(4� 2y) dx dy

=

Z

1

�1

[(4� 2y)x]x=1

x=y

4

dy

=

Z

1

�1

�

4� 4y4 � 2y + 2y5
�

dy

=



4y � 4y5

5
� y

2 � y

6

3

�

1

�1

=
32

5

29. The solid lies under the surface z = y

2 and
over the region in the xy-plane pictured below.
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0

y

1.5

1.5

0.5

0.5
x

1

1 2
0

2

Region ´ of ´ Integration

V =

Z

2

0

Z

x

0

y

2

dy dx =

Z

2

0



y

3

3

�

y=x

y=0

dx

=

Z

2

0

✓

x

3

3

◆

dx =



x

4

12

�

2

0

=
4

3

30. On the xy-plane, the region lies between the
lines y = x and y = 4. Thus,
0  x  4, x  y  4

2

4

10

y
3

2

1

0

x
43

Region of Integration

V =

Z

4

0

Z

4

x

x

2

dy dx

=

Z

4

0

⇥

x

2

y

⇤

y=4

y=x

dx

=

Z

4

0

�

�x

2(x� 4)
�

dx

=



�x

4

4
+

4x3

3

�

4

0

=
64

3

31. The solid lies above z = x

2 + y

2 � 4and bel-
low z=0 the region in the xy-plane is as shown
bellow:

2.0

1.2

0.4

−1.2

−2.0

1.6

0.8

0.0

−0.4

−0.8

−1.6

210−1−2

V =

Z

1

�1

Z

1

�1

�

�x

2 � y

2 + 4
�

dxdy

=

Z

1

�1

✓

�x

3

3
� y

2

x+ 4x

◆

1

�1

dy

=

Z

1

�1

✓

22

3
� 2y2

◆

dy =
40

3

32. The solid lies above z = 1�x�y and below z=0
the region in the xy-plane is as shown bellow:

2

3.02.52.01.51.00.50.0

4

3

1

0

V =

Z

4

3

Z

3

2

(x+ y � 1) dxdy

=

Z

4

3



x

2

2
+ yx� x

�

3

2

dy

=

Z

4

3

✓

3

2
+ y

◆

dy

=



3y

2
+

y

2

2

�

4

3

= 5

33. From the graph, y ranges from sinx to 1� x

2.
For the outer limits of integration, we solve the
equation (one method is to use a graphing cal-
culator)
sinx = 1� x

2

and we obtain
x ⇡ �1.4096, 0.6367
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-1.5

0.5

x
0.50

y
1.5

1

-2 -0.5
0

1

2

-1

Region ´ of ´ Integration

Z

0.6367

�1.4096

Z

1�x

2

sin x

(2x� y) dy dx

=

Z

0.6367

�1.4096



2xy � y

2

2

�

y=1�x

2

y=sin x

dx

=

Z

0.6367

�1.4096



�1

2
+ 2x+ x

2 � 2x3

�x

4

2
� 2x sinx+

sin2 x

2

�

dx

⇡ �1.59454

The integral can be evaluated using techniques
in Chapter 6 or by using a table of integrals.

34. From the graph, y ranges from e

x to 2 � x

2.
For the outer limits of integration, we solve the
equation e

x = 2� x

2 and obtain
x ⇡ �1.3160, 0.5373.

y

2.5

1.5

x

0.5

-0.5

0.5-0.5-1.5

3

1

0-2

2

0
1-1

Region of Integration

Z

0.5373

�1.316

Z

2�x

2

e

x

(2x� y) dy dx

=

Z

0.5373

�1.316



2xy � y

2

2

�

y=2�x

2

y=e

x

dx

=

Z

0.5373

�1.316

✓

�x

4

2
� 2x3 + 2x2 + 4x

�2� 2xex +
e

2x

4

◆

dx

=



�x

5

10
� x

4

2
+

2x3

3
+ 2x2 � 2x

�2(1� x)ex +
e

2x

8

�

0.5273

�1.316

⇡ �2.8557

35. The limits of integration can be found from the
graph of the region of integration.

0-0.5-1

y

1

0.6

0.2

-0.2

1.2

0.8

0.4

0

x
10.5

Region ´ of ´ Integration

Z

1

�1

Z

1

x

2

e

x

2

dy dx

=

Z

1

�1

e

x

2



Z

1

x

2

dy

�

dx

=

Z

1

�1

e

x

2

[y]y=1

y=x

2

dx

=

Z

1

�1

e

x

2

(1� x

2) dx

⇡ 1.6697

The final integral must be computed using a
numerical method. We used Simpson’s rule
with n = 40 to arrive at the approximation.

36. From the graph, x ranges from 0 to 4�y

2 while
�2  y  2.

40 2

-2

-1

3

2

x

y

0

1

1

Region of Integration

Using numerical methods for the last step
(Simpson’s Rule will work nicely), we have,
Z

2

�2

Z

4�y

2

0

p

y

2 + 1 dx dy

=

Z

2

�2

h

x

p

y

2 + 1
i

x=4�y

2

x=0

dy

=

Z

2

�2

(4� y

2)
p

y

2 + 1 dy

⇡ 13.9617
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37.

0.5

x

0
1.20.80.40-0.4

2

1

1.5

y

Region ´ of ´ Integration

Z

1

0

Z

2x

0

f(x, y) dy dx =

Z

2

0

Z

1

y/2

f(x, y) dx dy

38.

1

2.5

1.5

0.50

0.5

2

0
-0.5

x

1

y

1.5

-0.5

Region of Integration

Z

1

0

Z

2

2x

f(x, y) dy dx =

Z

2

0

Z

y/2

0

f(x, y) dx dy

39.

0
432

y

1.5

x

0.5

10

1

2

Region ´ of ´ Integration

Z

2

0

Z

4

2y

f(x, y) dx dy =

Z

4

0

Z

x/2

0

f(x, y) dy dx

40.

2

1.5

2.51-0.5
x

0.5

y

1.5

1

0
0

-0.5

0.5

Region of Integration

Z

1

0

Z

2y

0

f(x, y) dx dy =

Z

2

0

Z

1

x/2

f(x, y) dy dx

41.

y

x

4

3

1.5

2

1

10.50

Region ´ of ´ Integration

Z

ln 4

0

Z

4

e

x

f(x, y) dy dx =

Z

4

1

Z

ln y

0

f(x, y) dx dy

42.

y

0.5

1.5

0-0.5

2

2.5

1
0.5

x
1.5

1

Region of Integration

Z

2

1

Z

ln y

0

f(x, y) dx dy =

Z

ln 2

0

Z

2

e

x

f(x, y) dy dx

43.
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0

y

1.5

1.5

0.5

0.5
x

1

1

2

2
0

Region ´ of ´ Integration

Z

2

0

Z

2

x

2ey
2

dy dx

=

Z

2

0

Z

y

0

2ey
2

dx dy

=

Z

2

0

h

2xey
2

i

x=y

x=0

dy

=

Z

2

0

2yey
2

dy

=
h

e

y

2

i

2

0

= e

4 � 1

44.

0.4

0.2

y

1.2

0.8

x

-0.4

-0.2 0.80.6 1.20.4
0

0 1

Region of Integration

Z

1

0

Z

1

p
x

3

4 + y

3

dy dx

=

Z

1

0

Z

y

2

0

3

4 + y

3

dx dy

=

Z

1

0



3x

4 + y

3

�

x=y

2

x=0

dy

=

Z

1

0

✓

3y2

4 + y

3

◆

dy

=
⇥

ln(4 + y

3)
⇤

1

0

= ln 5� ln 4

45.

-0.2
x

y

1.2

1.2

1

0.8

1

0.6

0.4

0.8

0.2

0
0.6

-0.2

0.40.20

Region ´ of ´ Integration

Z

1

0

Z

1

y

3xex
3

dx dy

=

Z

1

0

Z

x

0

3xex
3

dy dx

=

Z

1

0

h

3xyex
3

i

y=x

y=0

dx

=

Z

1

0

3x2

e

x

3

dx

=
h

e

x

3

i

1

0

= e� 1

46.

0.8

0.8

0.2

0.4 1.2

-0.2

1.2

0-0.4

y

0

0.4

1

x

0.6

Region of Integration

Z

1

0

Z

1

p
y

cosx3

dx dy

=

Z

1

0

Z

x

2

0

cosx3

dy dx

=

Z

1

0

⇥

y cosx3

⇤

y=x

2

y=0

dx

=

Z

1

0

�

x

2 cosx3

�

dx

=



sinx3

3

�

1

0

=
sin 1

3

47. (a)

Z

1

0

Z

2x

0

x

2

dy dx

=

Z

1

0

⇥

x

2

y

⇤

y=2x

y=0

dx

=

Z

1

0

�

2x3

�

dx
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=



x

4

2

�

1

0

=
1

2

Z

2

0

Z

y/2

0

x

2

dx dy

=

Z

2

0



x

3

3

�

x=y/2

x=0

dy

=

Z

2

0

✓

y

3

24

◆

dy

=



y

4

96

�

2

0

=
1

6

(b) The two di↵erent solids can be seen be-
low, viewed from the same viewpoint.

2
1.5

1
0.5

y 010.80.6

x
0.40.20

0

0.2

0.4

0.6

0.8

1

1 0.8
0.6

y
0.4

0.2 021.5

x
10.50

0

1

2

3

4

48. (a) The CAS we are using (Maple) will not
evaluate these integrals. Of course, we
can change the order of integration in the
second integral as in Exercise 43.

(b) The first integral requires finding the an-

tiderivative of ey
2

with respect to y, and
this antiderivative is not an elementary
function.

49. (a)

-10

1

6

2

3

0

4

5

6

4

7

1 y
x 2 2

3 0
4

(b)

6
5

4
3

1
2

0
00.0

0.25

0.5

2

0.75

1.0

4

6

50. (a)

-1 0 1

x
2 3 4 5543

y
210-1

0

1

2

3

4

5

(b)

43210
00.0

1

2

0.5

3

4

1.0
1.5
2.0

51. (a)
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-3
-2

-1
0-3 0-2

1

-1 10

2

1 2

3

2
33

4

5

(b)

4
3

y
2

1
0

00

1

2

1

3

4

2x

5

3

4

52. (a)

1
0.5

0 x0
1

0.2

0.4

-0.5
0.5

0.6

y
0

0.8

1

-0.5

1.2

-1
-1

(b)

0.75

0.0

0.0 0.5

0.1

0.25

0.2

0.5

x

0.3

0.75

0.25
0.4 0.5

1.0

0.6

1.25

0.7
0.0

1.5

53.

Z

1

�1

Z

p
1�x

2

�
p
1�x

2

p

1� x

2 � y

2

dy dx

= Volume of hemisphere

=
1

2
· 4
3
⇡(1)3 =

2

3
⇡

54. The figure is hemisphere of radius 2.

Therefore
Z

2

0

Z

p
4�y

2

�
p

4�y

2

p

4� x

2 � y

2

dxdy

= Volume of hemisphere

=
1

2
· 4
3
⇡(2)3 =

16⇡

3

55. (a)

Z

b

a

Z

d

c

f(x)g(y) dy dx

=

Z

b

a

 

Z

d

c

f(x)g(y) dy

!

dx

=

Z

b

a

 

f(x)

Z

d

c

g(y) dy

!

dx

=

Z

b

a

f(x)

 

Z

d

c

g(y) dy

!

dx

=

 

Z

d

c

g(y) dy

! 

Z

b

a

f(x) dx

!

(b)

Z

2⇡

0

Z

38

15

e

�4y

2

sinx dy dx

=

✓

Z

2⇡

0

sinx dx

◆✓

Z

38

15

e

�4y

2

dy

◆

= (0)

✓

Z

38

15

e

�4y

2

dy

◆

= 0

56. We use Definition 1.3 for these proofs. The
main point in each case is that the desired
equality holds for Riemann sums and then we
can pass to the limit to arrive at the integral.

(i)

ZZ

R

cf(x, y) dA

= lim
kPk!0

n

X

i=1

cf(u
i

, v

i

)�A

i

= lim
kPk!0

c

n

X

i=1

f(u
i

, v

i

)�A

i

= c lim
kPk!0

n

X

i=1

f(u
i

, v

i

)�A

i

= c

ZZ

R

f(x, y) dA

(ii)

ZZ

R

[f(x, y) + g(x, y)] dA

= lim
kPk!0

n

X

i=1

[f(u
i

, v

i

) + g(u
i

, v

i

)]�A

i

= lim
kPk!0

"

n

X

i=1

f(u
i

, v

i

)�A

i

+
n

X

i=1

g(u
i

, v

i

)�A

i

#
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= lim
kPk!0

n

X

i=1

f(u
i

, v

i

)�A

i

+ lim
kPk!0

n

X

i=1

g(u
i

, v

i

)�A

i

=

ZZ

R

f(x, y) dA+

ZZ

R

g(x, y) dA

(iii) Below is probably the most straightfor-
ward approach to this—perhaps the easiest to
understand and the easiest for a student to
come up with. Unfortunately, there are a cou-
ple technical points that make this proof messy.
We have chosen to mostly ignore these techni-
cal points in favor of understanding.

A partition, P , of R gives partitions, P
1

and
P

2

, of R
1

and R

2

. (P
1

are the rectangles of P
that intersect R

1

. Similarly for P
2

.) For nota-
tion, let us say that the first m rectangles are
in P

1

(this will make it easier to write down).
ZZ

R

f(x, y) dA

= lim
kPk!0

n

X

i=1

f(u
i

, v

i

)�A

i

= lim
kPk!0

"

m

X

i=1

f(u
i

, v

i

)�A

i

+
n

X

i=m+1

f(u
i

, v

i

)�A

i

#

= lim
kP

1

k!0

m

X

i=1

f(u
i

, v

i

)�A

i

+ lim
kP

2

k!0

n

X

i=m+1

f(u
i

, v

i

)�A

i

=

ZZ

R

1

f(x, y) dA+

ZZ

R

2

f(x, y) dA

57. (a) The upper-left corners are
(0.0, 0.25), (0.25, 0.25), (0.5, 0.25),
(0.75, 0.25), (0.0, 0.5), (0.25, 0.5),
(0.5, 0.5), (0.75, 0.5), (0.0, 0.75),
(0.25, 0.75), (0.5, 0.75), (0.75, 0.75),
(0.0, 1.0), (0.25, 1.0), (0.5, 1.0),
(0.75, 1.0)

Since the rectangles are the same size,
�A

i

= 0.0625.
Z

1

0

Z

1

0

f(x, y) dy dx ⇡
16

X

i=1

f(u
i

, v

i

)�A

i

= f(0, 0.25)(0.0625)+f(0.25, 0.25)(0.0625)
+ · · ·+ f(0.75, 1)(0.0625)

= (0.0625)(2.3 + 2.1 + 1.8 + 1.6
+ 2.5 + 2.3 + 2.0 + 1.8
+ 2.8 + 2.6 + 2.3 + 2.2

+ 3.2 + 3.0 + 2.8 + 2.7)
= 2.375

(b) The lower-right corners are
(0.25, 0), (0.5, 0), (0.75, 0), (1.0, 0),
(0.25, 0.25), (0.5, 0.25), (0.75, 0.25),
(1.0, 0.25), (0.25, 0.5), (0.5, 0.5),
(0.75, 0.5), (1.0, 0.5), (0.25, 0.75),
(0.5, 0.75), (0.75, 0.75), (1.0, 0.75)

Since the rectangles are the same size,
�A

i

= 0.0625.
Z

1

0

Z

1

0

f(x, y) dy dx ⇡
16

X

i=1

f(u
i

, v

i

)�A

i

= f(0.25, 0)(0.0625) + f(0.5, 0)(0.0625)
+ · · ·+ f(1.0, 0.75)(0.0625)

= (0.0625)(2.0 + 1.7 + 1.4 + 1.0 + 2.1
+1.8+1.6+1.1+2.3+2.0+1.8
+ 1.4 + 2.6 + 2.3 + 2.2 + 1.8)

= 1.181875

58. (a) The upper-left corners are
(0.0, 0.25), (0.25, 0.25), (0.5, 0.25),
(0.75, 0.25), (0.0, 0.5), (0.25, 0.5),
(0.5, 0.5), (0.75, 0.5),

Since the rectangles are the same size,
�A

i

= 0.0625.
Z

1

0

Z

0.5

0

f(x, y) dy dx

⇡
8

X

i=1

f(u
i

, v

i

)�A

i

= f(0, 0.25)(0.0625)
+ f(0.25, 0.25)(0.0625)
+ · · ·+ f(0.75, 0.5)(0.0625)

= (0.0625)(2.3 + 2.1 + 1.8 + 1.6
+ 2.5 + 2.3 + 2.0 + 1.8)

= 1.025

(b) The lower-right corners are
(0.25, 0), (0.5, 0), (0.75, 0),
(1.0, 0), (0.25, 0.25), (0.5, 0.25),
(0.75, 0.25), (1.0, 0.25)

Since the rectangles are the same size,
�A

i

= 0.0625.
Z

1

0

Z

0.5

0

f(x, y) dy dx ⇡
8

X

i=1

f(u
i

, v

i

)�A

i

= f(0.25, 0)(0.0625) + f(0.5, 0)(0.0625)
+ · · ·+ f(1.0, 0.25)(0.0625)

= (0.0625)(2.0 + 1.7 + 1.4 + 1.0
+ 2.1 + 1.8 + 1.6 + 1.1)

= 0.79375

59. The lower-right corners we are interested in are
(0.25, 0.0), (0.5, 0.0), (0.75, 0.0),
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(0.25, 0.25), (0.5, 0.25), (0.75, 0.25),
(0.25, 0.5), (0.5, 0.5)

Since the rectangles are the same size,
�A

i

= 0.0625.
Z

1

0

Z

1�y

0

f(x, y) dx dy ⇡
8

X

i=1

f(u
i

, v

i

)�A

i

= f(0.25, 0.0)(0.0625)
+ f(0.5, 0.0)(0.0625)
+ · · ·+ f(0.5, 0.5)(0.0625)

= (0.0625)(2.0 + 1.7 + 1.4 + 2.1
+ 1.8 + 1.6 + 2.3 + 2.0)

= 0.93125

60. The upper-right corners we are interested in
are
(0.25, 0.25), (0.5, 0.25), (0.75, 0.25),
(0.25, 0.5), (0.5, 0.5), (0.75, 0.5),
(0.25, 0.75), (0.5, 0.75)

Since the rectangles are the same size,
�A

i

= 0.0625.
Z

1

0

Z

1�y

0

f(x, y) dx dy ⇡
8

X

i=1

f(u
i

, v

i

)�A

i

= f(0.25, 0.25)(0.0625)
+ f(0.5, 0.25)(0.0625)
+ · · ·+ f(0.5, 0.75)(0.0625)

= (0.0625)(2.1 + 1.8 + 1.6 + 2.3
+ 2.0 + 1.8 + 2.6 + 2.3 + 2.2)

= 1.16875

61. (a) We can take advantage of the symmetry
in the problem:
Z

1

�1

Z

1

0

f(x, y) dy dx

= 2

Z

1

0

Z

1

0

f(x, y) dy dx

The contour lines divide the right half into
five pieces. We estimate the area of these.
The first (which is roughly half an ellipse)
is approximately 0.1. The next three
pieces are roughly vertical strips with ar-
eas approximately equal to 0.2, 0.3, 0.2
and 0.2.

Using the contours for the value of the
function (just using a mid-point) and
summing:
Z

1

�1

Z

1

0

f(x, y) dy dx

= 2

Z

1

0

Z

1

0

f(x, y) dy dx

⇡ 2
5

X

i=1

value · area

= 2 [4.5(0.1) + 3.5(0.2) + 2.5(0.3)
+1.5(0.2) + 0.5(0.2)]

= 4.6

This gives the best estimate as (c), 4.

(b) The contours roughly divide this region
into five pieces:
4  z � 5 : Area ⇡ 0.13
3  z  4 : Area ⇡ 0.21
2  z  3 : Area ⇡ 0.1
1  z  2 : Area ⇡ 0.05
0  z  1 : Area ⇡ 0.01
Using values midway between the con-
tours gives
Z

1�x

0

f(x, y) dy dx ⇡
X

(value)(area)

= (4.5)(0.13) + (3.5)(0.21) + (2.5)(0.1)
+ (1.5)(0.05) + (0.5)(0.01)

= 1.65

This gives the best estimate as (b), 2.

62.

Z

d

c

Z

b

a

f

xy

(x, y) dx dy

=

Z

d

c

Z

b

a

@

@x

f

y

(x, y) dx dy

=

Z

d

c

[f
y

(x, y)]x=b

x=a

dy

=

Z

d

c

[f
y

(b, y)� f

y

(a, y)] dy

=

Z

d

c

@

@y

[f(b, y)� f(a, y)] dy

= [f(b, y)� f(a, y)]d
c

= [f(b, d)� f(a, d)]� [f(b, c)� f(a, c)]
= f(a, c)� f(a, d)� f(b, c) + f(b, d)

For the integral given, we have a = 0, b = 1,
c = 0 and d = 0 and we just use the formula:
Z

1

0

Z

1

0

24xy2 dx dy

= f(0, 0)� f(0, 1)� f(1, 0) + f(1, 1)
= 0� 1� 3 + 8 = 4

63. The rule we found in Exercise 62 can not ap-
ply since that would necessarily mean that the
result would have an “x” in it but the result
should actually be a number.

In any case, we can compute this integral.
Z

1

0

Z

x

0

24xy2 dy dx =

Z

1

0

8x4

dx =
8

5

64. For a = 0, b = 1, c = 0, d = 1
Z

1

0

Z

1

0

24xy2dxdy

= f (0, 0)� f (0, 1)� f (1, 0) + f (1, 1)
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= 0� sin 1� 4 + 8 + sin 1
= 4
If we di↵erentiate f(x, y) partially with respect
to x and then with y we get the same function
which has been integrated in exercise 62, hence
we get the same value.

There is no significant di↵erence in using any
of the two functions.

65. (a)

Z

2

0

⇥

tan�1(4� x)� tan�1

x

⇤

dx

=

Z

2

0

Z

4�x

x

1

y

2 + 1
dy dx

=

Z

2

0

Z

y

0

1

y

2 + 1
dx dy

+

Z

4

2

Z

4�y

0

1

y

2 + 1
dx dy

=

Z

2

0

y

y

2 + 1
dy

+

Z

4

2

4

y

2 + 1
� 4� y

y

2 + 1
dy

=



1

2
ln(y2 + 1)

�

2

0

+



4 tan�1

y � 1

2
ln(y2 + 1)

�

4

2

=
1

2
ln 5 + 4 tan�1 4� 4 tan�1 2

� 1

2
ln 17 +

1

2
ln 5

= ln 5� 1

2
ln 17 + 4 tan�1 4� 4 tan�1 2

(b)

Z

1/2

0

⇥

sin�1(1� x)� sin�1

x

⇤

dx

=

Z

1/2

0

Z

1�x

x

1
p

1� y

2

dy dx

=

Z

1/2

0

Z

y

0

1
p

1� y

2

dx dy

+

Z

1

1/2

Z

1�y

0

1
p

1� y

2

dx dy

=

Z

1/2

0

y

p

1� y

2

dy

+

Z

1

1/2

1
p

1� y

2

� y

p

1� y

2

dx dy

=
h

�
p

1� y

2

i

1/2

0

+
h

sin�1

y +
p

1� y

2

i

1

1/2

= �
p
3

2
+ 1 + sin�1 1� sin�1

1

2
�

p
3

2

= �
p
3 + 1 +

⇡

2
� ⇡

6
= �

p
3 + 1 +

⇡

3

66. (a) We split the region of integration into two
regions:

R

1

= {(x, y) 2 R : y � 2x}
R

2

= {(x, y) 2 R : y < 2x}

0
0

-0.4

1.5

1.2

0.5

0.4

x

0.8

21

Region ´ of ´ Integration

R

1

is the region to the left of the line
y = 2x and R

2

is the region to the right
of this line. In the region R

1

we have
f(x, y) = 2x and in the region R

2

we have
f(x, y) = y.
ZZ

R

f(x, y) dA

=

ZZ

R

1

f(x, y) dA+

ZZ

R

2

f(x, y) dA

=

ZZ

R

1

2x dA+

ZZ

R

2

y dA

=

Z

2

0

Z

y/2

0

2x dx dy +

Z

2

0

Z

2y

y/2

y dx dy

=

Z

2

0

y

2

4
dy +

Z

2

0

3y2

2
dy

=
2

3
+ 4 =

14

3
(b) We split the region of integration into two

regions: R
1

= {(x, y) 2 R : y2 < x}
R

2

= {(x, y) 2 R : x < y

2}

y

3.0

2.5

2.0

1.5

1.0

0.5

0.0

x
543210

x=y^2

f(x,y)=y^2

f(x,y)=x

R

1

is the region below the parabola

x = y

2 and R

2

is the region above. In the
region R

1

we have f(x, y) = x and in the
region R

2

we have f(x, y) = y

2.
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ZZ

R

f(x, y) dA

=

ZZ

R

1

f(x, y) dA+

ZZ

R

2

f(x, y) dA

=

ZZ

R

1

x dA+

ZZ

R

2

y

2

dA

=

Z

2

0

Z

y

2

0

x dx dy +

Z

2

0

Z

2y

y

2

y

2

dx dy

=

Z

2

0

y

4

2
dy +

Z

2

0

�

2y3 � y

4

�

dy

=
16

5
+ 8� 32

5

=
16 + 40� 32

5
=

24

5

13.2 Area, Volume and

Center of Mass

1. To find the limits of integration:

x

2 = 8� x

2

x

2 = 4
x = ±2

20-1

y 6

2

8

1

4

0
-2

x

Region ´ of ´ Integration

A =

ZZ

R

dA

=

Z

2

�2

Z

8�x

2

x

2

dy dx

=

Z

2

�2

[y]y=8�x

2

y=x

2

dx

=

Z

2

�2

(8� 2x2) dx

=



8x� 2x3

3

�

2

�2

=
64

3

2. To find the limits of integration:

x

2 = x+ 2
x

2 � x� 2 = 0
(x� 2)(x+ 1) = 0
x = 2,�1

1
0

2

3
y

x

1

4

-1 0 2

Region of Integration

A =

Z

2

�1

Z

x+2

x

2

dy dx

=

Z

2

�1

[y]y=x+2

y=x

2

dx

=

Z

2

�1

(x+ 2� x

2) dx

=



�x

3

3
+

x

2

2
+ 2x

�

2

�1

=
9

2

3. The region is a triangle, as pictured below.

0.5

1.50.5
x

y

3

3

2.5

2

2.5

1.5

1

2
0

10

Region ´ of ´ Integration

A =

ZZ

R

dA

=

Z

2

0

Z

3�y

y/2

dx dy

=

Z

2

0

[x]x=3�y

x=y/2

dy

=

Z

2

0

✓

3� 3y

2

◆

dy

=



3y � 3y2

4

�

2

0

= 3

4. To find the limits of integration:

y

3
=

5� y

2
y = 3
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2.5

y

-0.5 3

2

2
x

1.5
0

0.50

1

1

3

Region of Integration

A =

Z

3

0

Z

(5�y)/2

y/3

dx dy

=

Z

3

0

[x]x=(5�y)/2

x=y/3

dy

=

Z

3

0

✓

�5

6
y +

5

2

◆

dy

=



� 5

12
y

2 +
5

2
y

�

3

0

=
15

4

5. The region is a triangle, as pictured below.

x

y

1.2

1.2

0.8

0.4

0.8
0

-0.4

0.4-0.4 0

Region ´ of ´ Integration

A =

ZZ

R

dA

=

Z

1

0

Z

p
x

x

2

dy dx

=

Z

1

0

[y]y=
p
x

y=x

2

dx

=

Z

1

0

�p
x� x

2

�

dx

=



2

3
x

3/2 � x

3

3

�

1

0

=
1

3

6.

0.6

-0.2

0.4

0.2 1.21-0.2

0.2

x

y
0.8

0

0.6

0.4

1.2

0.8
0

1

Region of Integration

A =

Z

1

0

Z

x

2

x

3

dy dx

=

Z

1

0

[y]y=x

2

y=x

3

dx

=

Z

1

0

�

x

2 � x

3

�

dx

=



x

3

3
� x

4

4

�

1

0

=
1

12

7. The plane 2x + 3y + z = 6 intersects the
three coordinate axes at (3, 0, 0), (0, 2, 0) and
(0, 0, 6). Thus, we are to integrate the function
z = 6� 2x� 3y over the region below.

1.5

0.5

x
2.51.51

y

1

320.5

2

0
0

Region ´ of ´ Integration

V =

ZZ

R

f(x, y) dA

=

Z

3

0

Z

(6�2x)/3

0

(6� 2x� 3y) dy dx

=

Z

3

0



6y � 2xy � 3y2

2

�

y=(6�2x)/3

y=0

dx

=

Z

3

0

✓

6� 4x+
2x2

3

◆

dx

=



6x� 2x2 +
2x3

9

�

3

0

= 6

8. The limits of integration will be the trace of

z = �2 +
1

3
x+

2

3
y, or y = 2� 2

3
x.

The solid also lies below the the xy-plane, so
we multiply the integral by �1 to get the vol-
ume.
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V = �
Z

6

0

Z

3�x/2

0

✓

�2 +
1

3
x+

2

3
y

◆

dy dx

= �
Z

6

0



�2y +
xy

3
+

y

2

3

�

y=3�x/2

y=0

dx

= �
Z

6

0

✓

�x

2

12
+ x� 3

◆

dx

= �


�x

3

36
+

x

2

2
� 3x

�

6

0

= 6

9. V =

ZZ

R

f(x, y) dA

=

Z

1

�1

Z

1

�1

(4� x

�
y

2) dy dx

=

Z

1

�1



4y � x

2

y � y

3

3

�

y=1

y=�1

dx

=

Z

1

�1

✓

22

3
� 2x2

◆

dx

=



22x

3
� 2x3

3

�

1

�1

=
40

3

10. V =

Z

1

0

Z

1

0

�

x

2 + y

2

�

dx dy

=

Z

1

0



x

3

3
+ xy

2

�

x=1

x=0

dy

=

Z

1

0

✓

1

3
+ y

2

◆

dy

=



y

3
+

y

3

3

�

1

0

=
2

3

11. Region of integration is as below.
y

x

y = x y=2−x

−1

1

−1

3210

2

0

−2

−2

The solid lies above the plane z = �1 and sur-
face z = sin y. Note that the point of inter-
section of the planes y = x and y = 2 � x is
(1, 1). Integrand is (sin y)� (�1) = sin y + 1.

V =

ZZ

R

f(x, y) dA

=

Z

1

0

Z

x

0

(sin y+1) dy dx

+

Z

2

1

Z

2�x

0

(sin y + 1) dy dx

=

Z

1

0

[� cos y + y]y=x

y=0

dx

+

Z

2

1

[� cos y + y]y=2�x

y=0

dx

=

Z

1

0

(x� cosx+ 1) dx

+

Z

2

1

[� cos(2� x) + 3� x] dx

=



x

2

2
+ x� sinx

�

1

0

+



3x� x

2

2
+ sin(2� x)

�

2

1

=



1

2
+ 1� sin 1

�

+



(6� 2)�
✓

3� 1

2
+ sin 1

◆�

=
3

2
+ 4� 3 +

1

2
� 2 sin 1

= 3� 2 sin 1

12. V =

Z

⇡

4

0

Z

⇡

4

0

cos(x+ y) dy dx

=

Z

⇡

4

0

[sin(x+ y)]
⇡

4

0

dx

=

Z

⇡

4

0

h

sin
⇣

⇡

4
+ x

⌘

� sinx
i

dx

=
h

� cos
⇣

⇡

4
+ x

⌘

+ cosx
i

⇡

4

0

=
p
2 � 1

13. The solid is bounded above by z = 1� y

2 and
lies above the triangle in the xy-plane:

x

y

1.2

1.2

0.8

0.4

0.8
0

-0.4

0.40-0.4

Region ´ of ´ Integration

V =

ZZ

R

f(x, y) dA

=

Z

1

0

Z

1�x

0

(1� y

2) dy dx

=

Z

1

0



y � y

3

3

�

y=1�x

y=0

dx
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=

Z

1

0

✓

2

3
� x

2 +
x

3

3

◆

dx

=



2x

3
� x

3

3
+

x

4

12

�

1

0

=
5

12

14. V =

Z

1

0

Z

1�x

0

�

1� x

2 � y

2

�

dy dx

=

Z

1

0



y � x

2

y � y

3

3

�

y=1�x

y=0

dx

=

Z

1

0

✓

4x3

3
� 2x2 +

2

3

◆

dx

=



x

4

3
� 2x3

3
+

2x

3

�

1

0

=
1

3

15. The solid lies above the region in the xy-plane
pictured below. This is our region of integra-
tion.

x
1

y

4

2-1

3

0

1

-2

2

0

Region ´ of ´ Integration

The solid lies above the plane z = 1 and be-
low the surface z = x

2 + y

2 + 3. Therefore our
integrand is (x2 + y

2 + 3)� 1.

V =

ZZ

R

(x2 + y

2 + 2) dA

=

Z

2

�2

Z

4

x

2

dy dx

=

Z

2

�2



yx

2 +
y

3

3
+ 2y

�

y=4

y=x

2

dx

=

Z

2

�2

✓

88

3
+ 2x2 � x

4 � x

6

3

◆

dx

=



88x

3
� 2x3

3
� x

5

5
� x

7

21

�

2

�2

=
10816

105

16. The solid lies above the region in the xy-plane
pictured below. This is our region of integra-
tion.

-1
x

y
8

2

4

0
0 4

6

1

10

3

2

Region ´ of ´ Integration

To find the limits of integration,
x

2 = 2x+ 3
x

2 � 2x� 3 = 0
(x� 3)(x+ 1) = 0
x = 3,�1

The solid lies above the plane z = �1 and be-
low the surface z = x

2 + y

2 + 1. Therefore our
integrand is (x2 + y

2 + 1)� (�1).

V =

Z

3

�1

Z

2x+3

x

2

�

x

2 + y

2 + 2
�

dy dx

=

Z

3

�1



x

2

y +
y

3

3
+ 2y

�

y=2x+3

y=x

2

dx

=

Z

3

�1

✓

�x

6

3
� x

4 + 13x2 + 22x

+15 +
14x3

3

◆

dx

=



�x

7

21
� x

5

5
+

13x3

3
+ 11x2

+15x+
7x4

6

�

3

�1

=
22016

105

17. The solid lies above z = y � 2 and below
z = x + 2. Our region of integration is the
region in the xy-plane bounded by y = x and
x = y

2 � 2 pictured below.

x
20

2

0
-2

-2

3

y

-1

-1

1

1

Region ´ of ´ Integration

V =

ZZ

R

dA
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=

Z

2

�1

Z

y

y

2�2

[(x+ 2)� (y � 2)] dx dy

=

Z

2

�1



�yx+ 4x+
x

2

2

�

x=y

x=y

2�2

dy

=

Z

2

�1

✓

�1

2
y

4 + y

3 � 5

2
y

2 + 2y + 6

◆

dy

=



� 1

10
y

5 +
1

4
y

4 � 5

6
y

3 + y

2 + 6y

�

2

�1

=
279

20

18. This problem actually defines two solids, pic-
tured below. We will compute the total the
volume of this solid.

1

0.5
-2-0.2 00 y0.2

-1

0.4 -0.5
0.6

0

x 0.8 -11
1.2

1

2

The solid described is bounded above and be-
low by z = �2x
and z = 2x+ y � 1.
The region of integration is the region in the
xy-plane pictured below.

Note that the planes z = �2x and

z = 2x+ y � 1 intersect when

y = �4x+1, this is the line in the figure below.

On the left region, the top of the solid is
z = �2x and the bottom is z = 2x + y � 1.
In this case, we will integrate the function
�2x� (2x+ y � 1) = �4x� y + 1

On the right region, the top of the solid is
z = 2x + y � 1 and the bottom is z = �2x.
In this case, we will integrate the function
(2x+ y � 1)� (�2x) = 4x+ y � 1

-1

x
1.20.8

y

0.5

-0.5

0.40-0.4
0

1

Region ´ of ´ Integration

Note that the intersection points of

y = �4x+ 1 and x = y

2 are

y

1

= �1

8
�

p
17

8
and

y

2

= �1

8
+

p
17

8

V =

Z

y

2

y

1

Z

(�y+1)/4

y

2

(�4x� y + 1) dx dy

+

Z

y

1

�1

Z

1

y

2

(4x+ y � 1) dx dy

+

Z

y

2

y

1

Z

1

(�y+1)/4

(4x+ y � 1) dx dy

+

Z

1

y

2

Z

1

y

2

(4x+ y � 1) dx dy

=
289

p
17

15360
+

 

20303

30720
� 3721

p
17

30720

!

+
401

p
17

1536
+

 

12347

10240
� 3721

p
17

30720

!

=
28

15
+

289
p
17

7680
⇡ 2.02182

19. Integrand is x� y

2

Limit of integration:

z � 0, x  4
) x� y

2 � 0
) x � y

2 � 0
) 0  x  4, �

p
x  y 

p
x

V =

Z

4

0

Z

p
x

�
p
x

�

x� y

2

�

dy dx

=

Z

4

0



xy � y

3

3

�

p
x

�
p
x

dx

=

Z

4

0

✓

4

3
x

3

2

◆

dx

=



8

15
x

5

2

�

4

0

=
256

15

20. The solid lies below the plane z = 0 and above
the surface z = x

2 � y.
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Therefore integrand is (0� (x2� y)) = y�x

2.

Limit of integration:

z  0, y  2
) x

2 � y  0, y  2
) x

2  y, y  2
) 0  y  2, �p

y  x  p
y

V =

Z

2

0

Z

p
y

�p
y

�

y � x

2

�

dx dy

=

Z

2

0



xy � x

3

3

�

p
y

�p
y

dy

=

Z

2

0

✓

4

3
y

3

2

◆

dy

=



8

15
x

5

2

�

2

0

=
32
p
2

15

21. The solid lies above surface z = |x| and below
surface z = 2� y.

Integrand = 2� y � |x|
Limit of integration:

0  y  1, |x|  2� y

(1.) 0  y  1, 0  x  2� y ,

Integrand = 2� y � x

(2.) 0  y  1, y � 2  x  0,

Integrand = 2� y + x

V =

Z

1

0

Z

0

y�2

(2� y + x) dx dy

+

Z

1

0

Z

2�y

0

(2� y � x) dx dy

=

Z

1

0



2x� xy +
x

2

2

�

0

y�2

dy

+

Z

1

0



2x� xy � x

2

2

�

2�y

0

dy

= �
Z

1

0

 

�y

2 + 4y � 4 +
(y � 2)2

2

!

dy

+

Z

1

0

 

4� 4y + y

2 � (2� y)2

2

!

dy

= �
"

�y

3

3
+ 2y2 � 4y +

(y � 2)3

6

#

1

0

+

"

4y � 2y2 +
y

3

3
+

(2� y)3

6

#

1

0

=

"

y

3

3
� 2y2 + 4y � (y � 2)3

6

#

1

0

+

"

4y � 2y2 +
y

3

3
+

(2� y)3

6

#

1

0

= 2

"

y

3

3
� 2y2 + 4y +

(2� y)3

6

#

1

0

= 2

✓

1

3
� 2 + 4 +

1

6
� 8

6

◆

=
7

3

22. The solid lies below surface z = 3�x and above
surface z = y

2 + 1.

Limit of integration:

�1  x

) �x  1
) z = 3� x  4
) 1 + y

2  z  4
) �

p
3  y 

p
3

1 + y

2 = 3� x

) x = 2� y

2

) �1  x  2� y

2

V =

Z

p
3

�
p
3

Z

2�y

2

�1

�

2� x� y

2

�

dx dy

=

Z

p
3

�
p
3



2x� x

2

2
� xy

2

�

2�y

2

�1

dy

=

Z

p
3

�
p
3

 "

2(2� y

2)� (2� y

2)
2

2

� (2� y

2)y2
⇤

�


�2� 1

2
+ y

2

�◆

dy

=

Z

p
3

�
p
3

✓

9

2
� 4y2 +

y

4

2

◆

dy

=



9

2
y � 4

3
y

3 +
y

5

10

�

p
3

�
p
3

=
14

p
3

5

23. This solid lies below the cone

z =
p

x

2 + y

2 and above the region in the xy-
plane pictured below:

0
0

x
2

y
3

0.5

1

1.51

2

4

Region ´ of ´ Integration
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The first integral can be computed using a
trigonometric substitution or using the tables
in the text. The di�culty in actually comput-
ing the volume is the second integral.

V =

ZZ

R

p

x

2 + y

2

dA

=

Z

2

0

Z

4�x

2

0

p

x

2 + y

2

dy dx

=

Z

2

0

1

2

h

x

2 ln
⇣

y +
p

x

2 + y

2

⌘

+y

p

x

2 + y

2

i

y=4�x

2

y=0

dx

=
1

2

Z

2

0

"

x

2 ln

 

4� x

2 +
p

x

2 + (4� x

2)2

x

!

+(4� x

2)
p

x

2 + (4� x

2)2
i

dx

To approximate this integral, we can use Simp-
son’s Rule. One problem is that that integrand
is not defined at x = 0, but we can ignore this
as the limit of the integrand at x ! 0 is 8,
which is the functional value we will use. Us-
ing this and Simpson’s rule for n = 10 gives us
an approximation of V ⇡ 10.275.

24. This integral can be simplified using techniques
of Section 13.3. Using a CAS we obtain:

V =

Z

1

0

Z

p
1�x

2

0

p

4� x

2 � y

2

dy dx

=

Z

1

0

"

✓

2� x

2

2

◆

tan�1

 

y

p

4� x

2 � y

2

!

+
y

p

4� x

2 � y

2

2

#

y=

p
1�x

2

y=0

dx

=

Z

1

0

"

✓

2� x

2

2

◆

tan�1

 p
1� x

2

p
3

!

+

p

3(1� x

2)

2

#

dx

=
4⇡

3
�

p
3

2
⇡ 1.4681

25. The solid is bounded above by z = e

xy and
below by the triangle in the xy-plane shown
below:

0
432

y

1.5

x

0.5

10

1

2

Region ´ of ´ Integration

V =

ZZ

R

e

xy

dA

=

Z

2

0

Z

4�2y

0

e

xy

dx dy

=

Z

2

0



e

xy

y

�

x=4�2y

x=0

dy

=

Z

2

0

✓

e

y(4�2y)

y

◆

dy

This integral we estimate using Simpson’s
Rule. There is a problem because the inte-
grand is not defined for y = 0, but the limit of
the integrand as y ! 0 is 4, which we can use
as the value of the integrand at y = 0.

With n = 10 Simpson’s Rule gives

V ⇡ 9.003.

26. V =

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

e

x

2

+y

2

dy dx

⇡ 168.3836

27. m =

Z

1

0

Z

x

2

x

3

4 dy dx

=

Z

1

0

[4y]y=x

2

y=x

3

dx

=

Z

1

0

�

4x2 � 4x3

�

dx

=



4x3

3
� x

4

�

1

0

=
1

3

M

y

=

Z

1

0

Z

x

2

x

3

4x dy dx

=

Z

1

0

[4xy]y=x

2

y=x

3

dx

=

Z

1

0

�

4x3 ��4x4

�

dx

=



x

4 � 4x5

5

�

1

0

=
1

5

x =
M

y

m

=
3

5
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M

x

=

Z

1

0

Z

x

2

x

3

4y dy dx

=

Z

1

0

⇥

2y2
⇤

y=x

2

y=x

3

dx

=

Z

1

0

�

2x4 � 2x6

�

dx

=



2x5

5
� 2x7

7

�

1

0

=
4

35

y =
M

x

m

=
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35

28. m =

Z

1

0

Z

x

2

x

4

4 dy dx

=

Z

1

0

[4y]y=x

2

y=x

4

dx

=
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1
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�

4x2 � 4x4

�
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3
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5
x
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�
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0

=
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M

y

=

Z

1

0
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x

4

4x dy dx

=
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1

0
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4
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=

Z

1

0

�
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�

dx
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x

4 � 2

3
x

6

�

1

0

=
1

3
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M

y

m

=
5

8

M

x

=

Z

1

0

Z

x

2

x

4
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=

Z

1

0

⇥
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⇤
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2

y=x

4

dx

=

Z

1

0

�

2x4 � 2x8

�

dx

=



2

5
x

5 � 2

9
x

9

�

1

0

=
8

45

y =
M

x

m

=
1

3

29. m =

Z

1

�1

Z

1

y

2

(y2 + x+ 1) dx dy

=

Z

1

�1



y

2

x+
x

2

2
+ x

�

x=1

x=y

2

dy

=

Z

1

�1

✓
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2
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4 +
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2
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�
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5

M
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=

Z

1
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Z

1

y

2

x(y2 + x+ 1) dx dy

=
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3
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2

2
(y2 + 1)

�

x=1

x=y

2

dy

=

Z

1

�1

✓

�5y6

6
� y

4

2
+

y

2

2
+

5

6

◆
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=



�5y7

42
� y

5

10
+

y

3

6
+
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�

1

�1

=
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x =
M

y

m

=
41

63

M

x

=

Z

1

�1

Z

1

y

2

y(y2 + x+ 1) dx dy

=

Z

1

�1



y

3

x+
x

2

2
+ x

�

x=1
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2
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=

Z

1

�1

✓
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2
� 3y5

2

◆
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=



3y2

4
� y

6

4

�

1

�1

= 0

y =
M

x

m

= 0

We could have seen the fact that y = 0 by the
symmetry of the problem. The lamina and the
density function are symmetric with respect to
the y-axis. (They must both be symmetric to
use symmetric in these problems!)

30. m =

Z

2

�2

Z

4

y

2

(y + 3) dx dy

=

Z

2

�2

[yx+ 3x]x=4

x=y

2

dy

=

Z

2

�2

�

�y

3 � 3y2 + 4y + 12
�
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=



�y

4

4
� y

3 + 2y + 12y

�

2
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M

y

=
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Z

4

y

2

x(y + 3) dx dy

=

Z

2

�2



x

2

2
(y + 3)

�

x=4
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2
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=

Z

2

�2

✓
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5

2
� 3y4

2
+ 8y + 24
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6
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+ 4y2 + 24y

�

2
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=
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5
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M

y
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=
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5

M

x

=

Z

2

�2

Z

4

y

2

y(y + 3) dx dy
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=

Z

2

�2

⇥

xy

2 + 3xy
⇤

x=4

x=y

2

dy

=

Z

2

�2

�

�y

4 � 3y3 + 4y2 + 12y
�
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�y

5

5
� 4y4

4
+

4y3

3
+ 6y2

�

2

�2

=
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y =
M

x

m

=
4

15

31. In this case we have ⇢ = x.

m =

Z

2

0

Z

4

x

2

x dy dx

=

Z

2

0

[xy]y=4

y=x

2

dx

=

Z

2

0

�

4x� x

3

�

dx

=



2x2 � x

4

4

�

2

0

= 4

M

y

=

Z

2

0

Z

4

x

2

x

2

dy dx

=

Z

2

0

⇥

x

2

y

⇤
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2

dx

=

Z

2

0

�
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4

�
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4x3

3
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5

�

2
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=
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=
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M

x

=

Z

2

0

Z

4

x
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xy dy dx

=
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2
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xy

2

2

�

y=4
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2
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=

Z

2

0

✓

8x� x

5

2

◆

dx

=



4x2 � x

6

12

�

2

0

=
32

3

y =
M

x

m

=
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3

32. To find the limits of the integration:
x

2 � 4 = 5
x

2 = 9
x = ±3

m =

Z

3

�3

Z

5

x

2�4

x

2

dy dx

=

Z

3

�3

⇥

x

2

y

⇤

y=5

y=x

2�4

dx

=

Z

3

�3

�

9x2 � x

4

�

dx

=



3x3 � x

5

5

�

3

�3

=
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M

y

=

Z

3

�3

Z

5

x

2�4

x

3

dy dx

=

Z

3

�3

⇥

x

3

y

⇤

y=5

y=x

2�4

dx

=

Z

3

�3

�

9x3 � x

5

�

dx

=



9

4
x

4 � x

6

6

�

3

�3

= 0

x =
M

y

m

= 0

M

x

=

Z

3

�3

Z

5

x

2�4

x

2

y dy dx

=

Z

3

�3



1

2
x

2

y

�

y=5

y=x

2�4

dx

=

Z

3

�3

✓

�1

2
x

6 + 4x4 +
9

2
x

2

◆

dx

=



� 1

14
x

7 +
4

5
x

5 +
3

2
x

3

�

3

�3

=
5508

35

y =
M

x

m

=
17

7

33. (a) In Exercise 29, both the lamina and the
density function are symmetric. In Exer-
cise 30, the density function is not sym-
metric across the x-axis—the lamina is
lighter per unit area in the lower half
(where y < 0).

(b) If ⇢(x,�y) = ⇢(x, y), then the center of
mass is located on the x axis.

34. If the density function is symmetric across the
y-axis (⇢(x, y) = ⇢(�x, y)), and the lamina, L,
is symmetric in x

( (x, y) 2 L () (�x, y) 2 L), then the center
of mass will be on the y-axis.

35. P =

Z

1

0

Z

y+1

1

15, 000xe�x

2�y

2

dx dy

= 15, 000
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0
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Z

y+1

1

xe

�x

2

dx

�

dy

= 15, 000

Z

1

0

e

�y

2

"

�e

�x

2

2

#

y+1

1

dy

= 15, 000

Z

1

0

e

�y

2

 

�e

(y+1)

2

+ e

�1

2

!

dy



13.2. AREA, VOLUME AND CENTER OF MASS 761

=
15, 000

2e

Z

1

0

⇣

�e

�2y

2�2y + e

�y

2

⌘

dy

This final integral can be approximated with
Simpson’s Rule. With n = 10, Simpson’s Rule
gives P ⇡ 1164.

36. The population is estimated as the integral of
population density.

P =

Z

1

0

Z

x

2

0

15000xe�x

2�y

2

dy dx

=

Z

1

0

Z

1

p
y

15000xe�x

2�y

2

dx dy

=

Z

1

0

h

�7500e�x

2�y

2

i

x=1

p
x=y

dy

= �7500

Z

1

0

⇣

e

�1�y

2

� e

�y�y

2

⌘

dy

⇡ 1742

37. (a) The area of the triangle is a =
c

2
.

The equation of the hypotenuse is

y = �1

c

x+ 1.

The y-coordinate of the center of mass is

y =
1

a

ZZ

R

y dA

=
2

c

Z

c

0

Z �x/c+1

0

y dy dx

=
2

c

Z

c

0



y

2

2

�

y=�x/c+1

y=0

dx

=
2

c

Z

c

0

(x� c)2

2c2
dx

=
2

c



(x� c)3

6c2

�

c

0

=
2

c

⇣

c

6

⌘

=
1

3

(b) The area of the triangle is a =
c

2
.

M

y

=

Z

c

0

Z

1�x/c

0

x dy dx

=

Z

c

0

[xy]y=1�x/c

y=0

dx

=

Z

c

0

✓

�x

2

c

+ x

◆

dx

=



�x

3

3c
+

x

2

2

�

c

0

=
c

2

6

x =
M

y

a

=
c

3

38. Given ⇢ (x, y) = K (constant)

g

⇣

x

c

⌘

= a

n

⇣

x

c

⌘

n

+ ........+ a

1

x

c

as f (0) = g (0) = 0

m =

Z

c

0

Z

f(x)

0

K dy dx

= K

Z

c

0

[y]y=f(x)

y=0

dx

= K

Z

c

0

⇣

a

n

⇣

x

c

⌘

n

+ ........+ a

1

x

c

⌘

dx

= K



a

n

(n+ 1)

✓

x

n+1

c

n

◆

+ ........

+
a

1

2

✓

x

2

c

◆�

x=c

x=0

= K



a

n

(n+ 1)
(c) + ........+

a

1

2
(c)

�

= Kc



a

n

(n+ 1)
+ ........+

a

1

2

�

= KcA

where A=



a

n

(n+ 1)
+ ........+

a

1

2

�

M

y

=

Z

c

0

Z

f(x)

0

yK dy dx

=
K

2

Z

c

0

⇥

y

2

⇤

y=f(x)

y=0

dx

=
K

2

Z

c

0

[f (x)]2dx

=
K

2

Z

c

0

h

a

n

⇣

x

c

⌘

n

+ ........+ a

1

x

c

i

2

dx

=
K

2

Z

c

0



b

2n

⇣

x

c

⌘

2n

+ ........+ b

2

⇣

x

c

⌘

2

�

dx

=
K

2

✓

b

2n

(2n+ 1)

✓

x

(2n+1)

c

2n

◆

+ ........

+
b

2

2

✓

x

3

c

2

◆◆

c

0

=
K

2

✓

b

2n

(2n+ 1)
(c) + ........+

b

2

2
(c)

◆

=
K

2
c

✓

b

2n

(2n+ 1)
+ ........+

b

2

2

◆

=
K

2
cB

where B=

✓

b

2n

(2n+ 1)
+ ........+

b

2

2

◆

y =
M

y

m

=
c

K

2

B

cK A

=
B

2A
,which is independent of c

39. (a) The volume of B is just abc, therefore we
are to show that the volume of T is abc/6.
T is bounded above by the plane
x

a

+
y

b

+
z

c

= 1 or z = c

⇣

1� x

a

� y

b

⌘

The tetrahedron lies above the triangle
in the xy-plane with vertices at (0, 0, 0),
(a, 0, 0) and (0, b, 0).
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The equation of the hypotenuse of this tri-

angle is y = b

⇣

1� x

a

⌘

.

V (T )

=

Z

a

0

Z

b(1�x/a)

0

c

⇣

1� x

a

� y

b

⌘

dy dx

= c

Z

a

0



y � xy

a

� y

2

2b

�

y=b(1�x/a)

y=0

dx

= c

Z

a

0

b(a� x)2

2a2
dx

= bc



� (a� x)3

6a2

�

a

0

=
abc

6

(b) Here is one approach. The figures show
the case when a = 1, b = 2,
c = 3.

Start with the box B, with volume abc.
We will make 4 slices. The first slice is in
the plane
bx+ ay = ab

which slices o↵
1

2
the volume and leaves

us with volume
abc

2
.

The second slice is in the plane
cx+ az = ac

which slices o↵
1

3
the remaining volume

and leaves us with volume
abc

3
.

The third slice is in the plane
cy + bz = bc

which slices o↵
1

4
the remaining volume

and leaves us with volume
abc

4
.

The fourth and final slice is in the plane
bcx+ acy + abz = abc

which slices o↵
1

3
the remaining volume

and leaves us with volume
abc

6
.

0

0.2

0.4 x
0.6

0.8

1
21.510.5 y0

0

0.5

1

1.5

2

2.5

3

After ´ 1st ´ slice

0

0.2

0.4 x
0.6

0.8

1
21.510.5 y0

0

0.5

1

1.5

2

2.5

3

After ´ 2nd ´ slice

0

0.2

0.4 x
0.6

0.8

1
21.510.5 y0

0

0.5

1

1.5

2

2.5

3

After ´ 3rd ´ slice

40. In both cases, the region of integration is the
disk centered at the origin of the xy-plane, with
radius 2.

V

1

is a solid bounded above by z = 4�x

2 � y

2

and below by z = 0.

V

2

is a solid bounded above by z = 4 and below
by z = x

2 + y

2. Therefore,

V

1

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

(4� x

2 � y

2) dy dx

V

2

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

(4� x

2 � y

2) dy dx

and V

1

= V

2

. Also, as can be seen from the
graphs, the volumes are the same.

3
-3-1 2

0

1

-2

2

1

3

-1

4

5

0
0 -1

1 -22 3 -3

Volume ´ 2
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3
-3-1 2

0

1

-2

2

1

3

-1

4

5

0
0 -1

1 -22 3 -3

Volume ´ 1

41. (a) a =

Z

2

�2

Z

4

x

2

dy dx

=

Z

2

�2

[y]y=4

y=x

2

dx

=

Z

2

�2

�

4� x

2

�

dx

=



4x� x

3

3

�

2

�2

=
32

3
ZZ

R

f(x, y) dA

=

Z

2

�2

Z

4

x

2

y dy dx

=

Z

2

�2



y

2

2

�

y=4

y=x

2

dx

=

Z

2

�2

✓

8� x

4

2

◆

dx

=



8x� x

5

10

�

2

�2

=
128

5

Ave Value =
1

a

ZZ

R

f(x, y) =
12

5

(b) The average value and the y-coordinate of
the center of mass are the same.

If the lamina had constant density, ⇢, the
the total mass would be

m = ⇢a =
32⇢

3
The moment would be

M

x

=

ZZ

R

y⇢ dA = ⇢

ZZ

R

y dA

=
128⇢

5
In the center of mass, the factor of ⇢ will
cancel:

y =
M

x

m

=
12

5

42. (a) a =

Z

2

�2

Z

4

x

2

dy dx

=

Z

2

�2

[y]y=4

y=x

2

dx

=

Z

2

�2

�

4� x

2

�

dx

=



4x� 1

3
x

3

�

2

�2

=
32

3
ZZ

R

f(x, y) dA

=

Z

2

�2

Z

4

x

2

y

2

dy dx

=

Z

2

�2



y

3

3

�

y=4

y=x

2

dx

=

Z

2

�2

✓

64

3
� 1

3
x

6

◆

dx

=



64

3
x� 1

21
x

7

�

2

�2

=
512

7

Ave Value =
1

a

ZZ

R

f(x, y) =
48

7

(b) The area for 2  y  4 is greater than the
area for 0  y  2; it is “heavier” above
y = 2 than below.

43. (a) To find the limits of integration, we
graph the region and determine where the
curves cross.

42

y

0

8

0
3

12

-1

-4

x
1

4

Region ´ of ´ Integration

x

2 � 4 = 3x
x

2 � 3x� 4 = 0
(x� 4)(x+ 1) = 0

So x = �1, 4 are the solutions.

a =

Z

4

�1

Z

3x

x

2�4

dy dx

=

Z

4

�1

[y]y=3x

y=x

2�4

dx

=

Z

4

�1

�

�x

2 + 3x+ 4
�

dx

=



�x

3

3
+

3x2

2
+ 4x

�

4

�1

=
125

6
ZZ

R

f(x, y) dA

=

Z

4

�1

Z

3x

x

2�4

p

x

2 + y

2

dy dx
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=

Z

4

�1

1

2

h

y

p

x

2 + y

2

+x

2 ln
⇣

y +
p

x

2 + y

2

⌘i

y=3x

y=x

2�4

dx

⇡ 78.9937

Using a table of integrals gives the first in-
tegral above but then it gets messy. Pos-
sibilities include using Simpson’s Rule or
using a CAS to compute. In any case, one
should arrive at something close to what
we found above.

Ave Value =
1

a

ZZ

R

f(x, y)

⇡ 1

125/6
(78.9937) = 3.7917

(b)
p

x

2 + y

2 represents distance from the
origin to the point (x, y). Therefore, as
found in Part(a), the average distance of
the points in the region from the origin is
about 3.792

44. To find the limits of integration, we graph the
region and determine where the curves cross.

x
3210-1-3

y

8

4

2

0
-2

6

Region ´ of ´ Integration

x

2 = 8� x

2

2x2 � 8 = 0
2(x� 2)(x+ 2) = 0

So x = �2, 2.

a =

Z

2

�2

Z

8�x

2

x

2

dy dx

=

Z

2

�2

[y]y=8�x

2

y=x

2

dx

=

Z

2

�2

�

8� 2x2

�

dx

=



8x� 2x3

3

�

2

�2

=
64

3
ZZ

R

f(x, y) dA

=

Z

2

�2

Z

8�x

2

x

2

[50 + cos(2x+ y)] dy dx

=

Z

2

�2

[50y + sin(2x+ y)]y=8�x

2

y=x

2

dx

=

Z

2

�2

⇥

400� 100x2 + sin(16� 2x2 + y)

� sin(2x+ x

2)
⇤

dx

⇡ 1069.084

This last integral can be approximated using
Simpson’s Rule or using a computer.

Ave Value =
1

a

ZZ

R

f(x, y)

⇡ 1069.084

64/3
⇡ 50.113

45. The improper integrals can be computer indi-
vidually or else we can do this and save a little
bit of work:
ZZ

f(x, y) dA

=

Z 1

0

Z 1

0

e

�x

e

�y

dx dy

=

Z 1

0

e

�y

✓

Z 1

0

e

�x

dx

◆

dy

=

✓

Z 1

0

e

�x

dx

◆✓

Z 1

0

e

�y

dy

◆

=

✓

Z 1

0

e

�x

dx

◆

2

=

✓

lim
t!1

Z

t

0

e

�x

dx

◆

2

=
⇣

lim
t!1

⇥

1� e

�t

⇤

⌘

2

= (1)2 = 1

46. It should be clear that f(x, y) � 0 for all (x, y)
in the region. And,
ZZ

S

f(x, y) dA

=

Z

2

0

Z

1

0

(0.3x+ 0.4y) dy dx

=

Z

2

0

(0.4x+ 0.2) dx = 1

47. We need to solve for c:

1 =

Z

2

0

Z

3x

0

c(x+ 2y) dy dx

= c

Z

2

0

⇥

xy + y

2

⇤

3x

0

dx

= c

Z

2

0

12x2

dx

= c

⇥

4x3

⇤

2

0

= 32c

and therefore c =
1

32
.

48. We want to find c so that



13.2. AREA, VOLUME AND CENTER OF MASS 765

1 =

ZZ

S

f(x, y) dA

=

Z

2

�2

Z

4

x

2

c(x2 + y) dy dx

=

Z

2

�2

c

✓

8� 3x4

2
+ 4x2

◆

dx

=
512

15
c

So, we must have c =
15

512
.

49. The region in question is shown below:

0
0

x
2

y
3

0.5

1

1.51

2

4

Region ´ of ´ Integration

The probability we are interested in is the re-
gion below the line y = x. To integrate this
region, we must break the integral into two in-
tegrals. One from x = 0 to x = 1 and then
from x = 1 to x = 2.

P (y < x) =

Z

1

0

Z

x

2

0

f(x, y) dy dx

+

Z

2

1

Z

x

0

f(x, y) dy dx

Another approach is to use the fact that the
integral over the entire region is 1. Therefore
we can integrate over the other region and sub-
tract from 1:

P (y < x) = 1� P (y � x)

= 1�
Z

2

1

Z

x

2

x

f(x, y) dy dx

50.

Z

2

0

Z

2

p
y

f(x, y) dx dy or

Z

p
2

0

Z

x

2

0

f(x, y) dy dx

+

Z

2

p
2

Z

2

0

f(x, y) dy dx

51. To find c we solve

1 =

ZZ

R

c dA

=

Z

2

0

Z

4�x

2

0

c dy dx

=
16c

3
and therefore c =

3

16
.

To find P (y > x) we must find the intersection
point of

y = x and y = 4� x

2.
x = 4� x

2

x

2 + x� 4 = 0

x =
�1±

p
17

2
Rather than writing this repeatedly, let

b =
�1 +

p
17

2
, and we will make the numeri-

cal substitution at the end. Then,

P (y > x) =

Z

b

0

Z

4�x

2

x

3

16
dy dx

=

Z

b

0



3y

16

�

y=4�x

2

y=x

dx

=

Z

b

0



3

4
� 3x

16
� 3x2

16

�

dx

=



3x

4
� 3x2

32
� x

3

16

�

b

0

=
3b

4
� 3b2

32
� b

3

16

=
�25 + 17

p
17

64
⇡ 0.704575

52. First, we find c:

1 =

Z

2

0

Z

4�x

2

0

c dy dx

=
16

3
c

and therefore c =
3

16
.

P (y > 2) =

Z

2

p
2

Z

4�x

2

2

3

16
dy dx

=
1

2
p
2
⇡ 0.3536

53. (a)

Z

10

0

Z

4

0

20e�t/6

dt dx

=

Z

10

0

120
⇣

1� e

�2/3

⌘

dx

= 1200
⇣

1� e

�2/3

⌘

⇡ 583.90

The units in the integrand are dollars per
barrel per year. After the t-integration,
we are left with dollars per barrel. After
the x-integration we are left with dollars,
or the total revenue (in billions of dollars
since x is in billions) over the time inter-
val, generated by the the first ten billion
barrels sold in each of the years.
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(b)

Z

10

0

Z

4

0

f(x, t) dt dx

=

Z

4

0

Z

4

0

20e�t/6

dt dx

+

Z

10

4

Z

4

0

14e�t/6

dt dx

= 480
⇣

1� e

�2/3

⌘

+ 504
⇣

1� e

�2/3

⌘

⇡ 478.80

54. (a) To save a bit of work, we compute the
moments of the ellipse E defined by
x

2 + 4y2  a

2 (and we are interested in
a = 4 and a = 6).

I

y

(E) =

ZZ

E

x

2

⇢ dA

=

Z

a

�a

Z

p
a

2�x

2

/2

�
p
a

2�x

2

/2

x

2

dy dx

=

Z

a

�a

x

2

p

a

2 � x

2

dy dx

=
⇡a

4

8
The last integral can be done either by
using a trigonometric substitution or can
be compute using a table of integral (or
even a CAS).
With a = 4 (the smaller ellipse), the mo-
ment is 32⇡. With a = 6 (the larger el-
lipse), the moment is 162⇡. The ratio of

these moments is
81

16
⇡ 5.

(b) The larger tennis racket has a moment of
inertia about the y-axis which is about 5
times larger than the smaller racket, and
is thus much more resistant to twisting.

55. For the skater with extended arms, we add to-
gether the moments contributed by the central
rectangle and the two rectangles representing
the arms:

I

y

(extended)

=

Z

1

�1

Z

8

0

1 · x2

dy dx

+ 2

Z

3

1

Z

7

6

x

2

dy dx

=
16

3
+

52

3
=

68

3
I

y

(extended)

=

Z

1/2

�1/2

Z

10

0

2 · x2

dy dx =
5

3

Therefore the ratio of spin rates is
68/3

5/3
= 13.6, the skater with the raised arms

spins 13.6 times faster.

56. IA

x

=

Z

1

�1

Z

5

�5

1 · y2 dy dx =
500

3

IB

x

=

Z

1

�1

Z

2

�2

2.5 · y2 dy dx =
80

3

The tuck position allows faster spins.

57. (a)

ZZ

R

f(x, y) dA represents the total rain-

fall in the region R.

(b)

RR

R

f(x, y) dA
RR

R

1 dA
represents the average

rainfall per unit area in the region R.

58. (a)

ZZ

R

p(x, y) dA gives the total population

in the region R.

(b)

RR

R

p(x, y) dA
RR

R

1 dA

gives the average popula-

tion density in the region R.

13.3 Double Integrals in Polar

Coordinates

1. A =

Z

2⇡

0

Z

3+2 sin ✓

0

r dr d✓

=

Z

2⇡

0



r

2

2

�

r=3+sin ✓

r=0

d✓

=

Z

2⇡

0

✓

13

2
+ 6 sin ✓ � 2 cos2 ✓

◆

d✓

=
13

2
(2⇡) + 0� 2⇡ = 11⇡

2. A =

Z

2⇡

0

Z

2�2 cos ✓

0

r dr d✓

=

Z

2⇡

0



r

2

2

�

r=2�2 cos ✓

r=0

d✓

=

Z

2⇡

0

�

2� 4 cos ✓ + 2 cos2 ✓
�

d✓

=



2✓ � 4 sin ✓ + ✓ +
1

2
sin 2✓

�

2⇡

0

= 6⇡

3. One leaf is while ✓ is between 0 and
⇡

3
(when

r first returns to 0).

A =

Z

⇡/3

0

Z

sin 3✓

0

r dr d✓

=

Z

⇡/3

0



r

2

2

�

r=sin 3✓

r=0

d✓

=
1

2

Z

⇡/3

0

sin2 3✓ d✓

=
1

2

⇣

⇡

6

⌘

=
⇡

12
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4. A =

Z

⇡

0

Z

3 cos ✓

0

r dr d✓

=

Z

⇡

0



r

2

2

�

r=3 cos ✓

r=0

d✓

=
1

2

Z

⇡

0

9 cos2 ✓ d✓

=
9

4



✓ +
1

2
sin 2✓

�

⇡

0

=
9⇡

4

5. We will consider the first leaf, ✓ 2 [0,⇡/3].
Then r = 2 sin 3✓ and r = 1 meet when

2 sin 3✓ = 1

sin 3✓ =
1

2

3✓ =
⇡

6
,

5⇡

6
, . . .

✓ =
⇡

18
,

5⇡

18
, . . .

A =

Z

5⇡/18

⇡/18

Z

2 sin 3✓

1

r dr d✓

=

Z

5⇡/18

⇡/18



r

2

2

�

r=2 sin 3✓

r=1

d✓

=

Z

5⇡/18

⇡/18

✓

3

2
� 2 cos2 3✓

◆

d✓

=
⇣

⇡

3

⌘

�
 

2⇡

9
�

p
3

6

!

=
⇡

9
+

p
3

6

6. The limits of integration:
2� 2 cos ✓ = 1
cos ✓ = 1
✓ = �⇡

3
,

⇡

3

A =

Z

⇡/3

�⇡/3

Z

1

2�2 cos ✓

r dr d✓

=

Z

⇡/3

�⇡/3



r

2

2

�

r=1

r=2�2 cos ✓

d✓

=
1

2

Z

⇡/3

�⇡/3

�

�3 + 8 cos ✓ � 4 cos2 ✓
�

d✓

=
1

2



�3✓ + 8 sin ✓ � 2

✓

✓ +
1

2
sin 2✓

◆�

⇡/3

�⇡/3

=
7
p
3

2
� 5⇡

3

7.

ZZ

R

p

x

2 + y

2

dA =

ZZ

R

r dA

=

Z

2⇡

0

Z

3

0

r · r dr d✓

=

Z

2⇡

0

Z

3

0

r

2

dr d✓

=

Z

2⇡

0

9 d✓ = 18⇡

8.

ZZ

R

p

x

2 + y

2 + 1 dA

=

Z

2⇡

0

Z

4

0

r

p

r

2 + 1 dr d✓

=

Z

2⇡

0



(r2 + 1)3/2

2

�

r=4

r=0

d✓

=
1

3

Z

2⇡

0

⇣

173/2 � 1
⌘

d✓

=
2⇡

3
(173/2 � 1)

9.

ZZ

R

e

�x

2�y

2

dA =

ZZ

R

e

�r

2

dA

=

Z

2⇡

0

Z

2

0

e

�r

2

r dr d✓

=

Z

2⇡

0

"

�e

�r

2

2

#

2

0

d✓

=

Z

2⇡

0

✓

1� e

�4

2

◆

d✓

= 2⇡

✓

1� e

�4

2

◆

= ⇡(1� e

�4)

10.

ZZ

R

e

�
p

x

2

+y

2

dA

=

Z

2⇡

0

Z

1

0

e

�r

r dr d✓

=

Z

2⇡

0

⇥

�(1 + r)e�r

⇤

r=1

r=0

d✓

=

Z

2⇡

0

�

1� 2e�1

�

d✓

= 2⇡ � 4⇡e�1

11.

ZZ

R

y dA =

Z

2⇡

0

Z

2�cos ✓

0

r

2 sin ✓ dr d✓

=

Z

2⇡

0

1

3
(2� cos ✓)3 sin ✓ d✓

=



1

12
(2� cos ✓)4

�

2⇡

0

= 0

This can also be seen from the symmetry of
the problem without actually computing the
integral.

12.

ZZ

R

x dA

=

Z

2⇡

0

Z

1�sin ✓

0

r

2 cos ✓ dr d✓

=
1

3

Z

2⇡

0

⇥

r

3 cos ✓
⇤

r=1�sin ✓

r=0

d✓

=
1

3

Z

2⇡

0

(1� sin ✓)3 cos ✓ d✓
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= � 1

12

⇥

(1� sin ✓)4
⇤

2⇡

0

= 0

13.

ZZ

R

(x2 + y

2) dA =

ZZ

R

r

2

dA

=

Z

2⇡

0

Z

3

0

r

3

dr d✓

=

Z

2⇡

0

81

4
d✓

= (2⇡)
81

4
=

81⇡

2

14.

ZZ

R

2xy dA

=

Z

2

�2

Z

4�x

2

0

2xy dy dx

=

Z

2

�2

⇥

xy

2

⇤

x=4�x

2

y=0

dx

=

Z

2

�2

⇥

x(4� x

2)2
⇤

dx

=

Z

2

�2

�

x

5 � 8x3 + 16x
�

dx

=



x

6

6
� 2x4 + 8x2

�

2

�2

= 0

15. Either polar coordinates or Cartesian coordi-
nates work in this problem (although, the in-
tegrals are a bit easier using Cartesian coordi-
nates).

In polar coordinates, x = 2 converts to
r cos ✓ = 2 or r = 2 sec ✓, ✓ 2 [0,⇡/4]. We
use the table of integrals to evaluate the final
integral.
ZZ

R

(x2 + y

2) dA =

ZZ

R

r

2

dA

=

Z

⇡/4

0

Z

2 sec ✓

0

r

3

dr d✓

=

Z

⇡/4

0

4 sec4 ✓ d✓ = 4

Z

⇡/4

0

sec4 ✓ d✓

= 4

 

sec2 ✓ tan ✓

3

�

�

�

�

⇡/4

0

+
2

3

Z

⇡/4

0

sec2 ✓ d✓

!

= 4

 



sec2 ✓ tan ✓

3

�

⇡/4

0

+



2

3
tan ✓

�

⇡/4

0

!

= 4

✓

2

3
+

2

3

◆

=
16

3

Using Cartesian coordinates.
ZZ

R

(x2 + y

2) dA =

Z

2

0

Z

x

0

(x2 + y

2) dy dx

=

Z

2

0

4x3

3
dx =

16

3

16.

ZZ

R

cos
p

x

2 + y

2

dA

=

Z

2⇡

0

Z

3

0

r cos r dr d✓

=

Z

2⇡

0

[r sin r + cos r]r=3

r=0

d✓

=

Z

2⇡

0

(3 sin 3 + cos 3� 1) d✓

= 2⇡ (3 sin 3 + cos 3� 1)

17. This is the same integral as Exercise 13.

V =

ZZ

R

(x2 + y

2) dA =

ZZ

R

r

2

dA

=

Z

2⇡

0

Z

3

0

r

3

dr d✓

=

Z

2⇡

0

81

4
d✓

= (2⇡)
81

4
=

81⇡

2

18. V =

ZZ

R

(x2 + y

2 � 4) dA

=

Z

2⇡

0

Z

3

2

r(r2 � 4) dr d✓

=

Z

2⇡

0



r

4

4
� 2r2

�

r=3

r=2

d✓

=

Z

2⇡

0

25

4
d✓ =

25⇡

2

19. The top of the solid is the cone and the bottom
is the disk in the xy-plane. We integrate over
the disk of radius 2:

V =

ZZ

R

p

x

2 + y

2

dA =

ZZ

R

r dA

=

Z

2⇡

0

Z

2

0

r

2

dr d✓

=

Z

2⇡

0

8

3
d✓ =

16⇡

3

20. To find the limits of integration we convert to
polar coordinates:
x

2 + (y � 1)2 = 1
x

2 + y

2 � 2y + 1 = 1
r

2 � 2r sin ✓ = 0
r(r � 2 sin ✓) = 0
r = 0 or r = 2 sin ✓

V =

ZZ

R

p

x

2 + y

2

dA

=

Z

⇡

0

Z

2 sin ✓

0

r

2

dr d✓

=

Z

⇡

0



r

3

3

�

r=2 sin ✓

r=0

d✓

=

Z

⇡

0

✓

8 sin3 ✓

3

◆

d✓
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= �8

9

⇥

sin2 ✓ cos ✓ + 2 cos ✓
⇤

⇡

0

=
32

9

21. The solid is bounded on the top by

z =
p

4� x

2 � y

2 and the bottom by z = 1.

The region of integration is the disk of radius
1

2
in the xy-plane.

V =

ZZ

R

⇣

p

4� x

2 � x

2 � 1
⌘

dA

=

Z

2⇡

0

Z

1/2

0

⇣

p

4� r

2 � 1
⌘

r dr d✓

=

Z

2⇡

0



�1

3
(4� r

2)3/2 � r

2

2

�

r=1/2

r=0

d✓

=

Z

2⇡

0

 

61

24
� 5

p
15

8

!

d✓

= 2⇡

 

61

24
� 5

p
15

8

!

= ⇡

 

61

12
� 5

p
15

4

!

22. To find the region of integration, we solve
8� x

2 � y

2 = x

2 + y

2

x

2 + y

2 = 2
So, the region of integration is the disk

x

2 + y

2  2. We convert to polar coordinates.

V =

ZZ

R

⇥

(8� x

2 � y

2)� (3x2 + 3y2)
⇤

dA

=

ZZ

R

�

8� r

2 � 3r2
�

dA

=

Z

2⇡

0

Z

p
2

0

(8� 4r2)r dr d✓

=

Z

2⇡

0

4 d✓ = 8⇡

23. This is easiest done in rectangular coordinates.
The region of integration is the triangle in the
xy-plane with vertices (0, 0), (0, 6), (6, 0).

V =

ZZ

R

(6� x� y) dA

=

Z

6

0

Z

6�x

0

(6� x� y) dy dx

=

Z

6

0

✓

18� 6x+
x

2

2

◆

dx

= 36

24. V =

ZZ

R

(4� x

2 � y

2) dA

=

Z

1

0

Z

x

0

(4� x

2 � y

2) dy dx

=
5

3

25. Our region of integration will be the sector be-
tween y = 0 and y = x which tells us that ✓

will range from 0 to
⇡

4
.

To determine the range for r, we solve
4� x

2 � y

2 = x

2 + y

2

x

2 + y

2 = 2

V =

ZZ

R

⇥

(4� x

2 � y

2)� (x2 � y

2)
⇤

dA

=

Z

⇡/4

0

Z

p
2

0

(4� 2r2)r dr d✓

=

Z

⇡/4

0

2 d✓ =
⇡

2

26. V =

ZZ

R

p

x

2 + y

2

dA

=

Z

tan

�1

2

⇡/4

Z

4

0

r

2

dr d✓

=

Z

tan

�1

2

⇡/4



r

3

3

�

r=4

r=0

d✓

=

Z

tan

�1

2

⇡/4

64

3
d✓

=
64

3

⇣

tan�1 2� ⇡

4

⌘

⇡ 6.8640

27. V =

ZZ

R

2 +
p

x

2 + y

2

dA

=

Z

2⇡

0

Z

1

0

(2 + r) rdrd✓

=
4

3

Z

2⇡

0

d✓ =
8⇡

3

28. V =

ZZ

R

�

x

2 + y

2 + 4� 1
�

dA

=

Z

2⇡

0

Z

p
2

0

�

r

2 + 3
�

rdrd✓

= 4

Z

2⇡

0

d✓ = 8⇡

29. V = 2

ZZ

R

p

4� x

2 � y

2

dA

= 2

Z

2⇡

0

Z

1

0

p

4� r

2

rdrd✓

= �
Z

2⇡

0



2

3

�

4� r

2

�

3/2

�

1

0

d✓

=
2

3

⇣

8� 3
p
3
⌘

Z

2⇡

0

d✓

=
4⇡

3

⇣

8� 3
p
3
⌘
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30. V = 2

ZZ

R

p

4� x

2 � y

2

dA

= 2

Z

2⇡

0

Z

1�sin ✓

0

p

4� r

2

rdrd✓

= �2

Z

⇡

0



2

3

�

4� r

2

�

3/2

�

1�sin ✓

0

d✓

= �4

3

Z

⇡

0

nh

4� (1� sin ✓)2
i

3/2

� [4]3/2
o

d✓

=
4

3

⇣

8⇡ � 8
p
3 + 7 ln

⇣

2�
p
3
⌘⌘

31.

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

p

x

2 + y

2

dy dx

=

Z

2⇡

0

Z

2

0

r

2

dr d✓

=

Z

2⇡

0

8

3
d✓ =

16⇡

3

32.

Z

2

�2

Z

p
4�x

2

0

sin(x2 + y

2) dy dx

=

Z

⇡

0

Z

2

0

r sin r2 dr d✓

=

Z

⇡

0



�1

2
cos r2

�

r=2

r=0

d✓

=
1

2

Z

⇡

0

(1� cos 4) d✓

=
⇡

2
(1� cos 4)

33.

Z

2

0

Z

p
4�x

2

�
p
4�x

2

e

�x

2�y

2

dy dx

=

Z

⇡/2

�⇡/2

Z

2

0

re

�r

2

dr d✓

=

Z

⇡/2

�⇡/2

✓

1� e

�4

2

◆

d✓

=
⇡(1� e

�4)

2

34.

Z

2

0

Z

0

�
p
4�x

2

y dy dx

=

Z

0

�⇡/2

Z

2

0

r

2 sin ✓ dr d✓

=
1

3

Z

0

�⇡/2

⇥

r

3 sin ✓
⇤

r=2

r=0

d✓

=
8

3

Z

0

�⇡/2

sin ✓ d✓

=
8

3
[� cos ✓]0�⇡/2

= �8

3

35.

0

y 2.5

1.5

0.5

x
1.50.5

2

0
1

3

1

2

Region ´ of ´ Integration

Z

2

0

Z

p
8�x

2

x

⇣

y

x

⌘

2

dydx

=

ZZ

R

tan2✓dA

=

Z

⇡/2

⇡/4

Z

p
8

0

rtan2✓drd✓

= 4

Z

⇡/2

⇡/4

sec2✓ � 1d✓ = 1

36. We need to convert x =
p

2y � y

2 to polar co-
ordinates. Notice that this is the equation of a
circle centered at (0,1) with radius 1 (actually
only half of the circle with x � 0):

x =
p

2y � y

2

x

2 + y

2 � 2y = 0
r

2 � 2r sin ✓ = 0
r (r � 2 sin ✓) = 0
r = 2 sin ✓
The region of integration is shown below:

y

2

1.5

1

0.5

0

x
1.50.5 10

Region ´ of ´ Integration

Z

1

0

Z

p
2y�y

2

y

xydydx

=

ZZ

R

(r cos ✓) (r sin ✓) rdrd✓

=

Z

⇡/4

0

Z

2 sin ✓

0

sin ✓ cos ✓r3drd✓

= 4

Z

⇡/4

0

sin5✓ cos ✓d✓ =
1

12
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37.

Z

1

0

Z

p
1�x

2

0

e

p
x

2

+y

2

dydx

=

Z

⇡/2

0

Z

1

0

re

r

drd✓

=

Z

⇡/2

0

[er (r � 1)]1
0

d✓

=

Z

⇡/2

0

d✓ =
⇡

2

38.

Z

2

0

Z

0

�
p
4�x

2

2

1 + x

2 + y

2

dydx

=

Z

0

�⇡/2

Z

2

0

✓

1

1 + r

2

◆

rdrd✓

=
1

2

Z

0

�⇡/2

⇥

ln
�

1 + r

2

�⇤

2

0

d✓

=
⇡ ln (5)

4

39. In polar coordinates, the equation
x

2 + (y � 1)2 = 1
transforms to r = 2 sin ✓

(see Exercise 36).

Notice as well that the ✓ limits are from
✓ = 0 to ✓ = ⇡.

m =

ZZ

R

⇢ dA =

ZZ

R

1

r

dA

=

Z

⇡

0

Z

2 sin ✓

0

✓

1

r

◆

r dr d✓

=

Z

⇡

0

Z

2 sin ✓

0

dr d✓

=

Z

⇡

0

2 sin ✓ d✓ = 4

M

y

=

ZZ

R

x⇢ dA

=

Z

⇡

0

Z

2 sin ✓

0

✓

r cos ✓

r

◆

r dr d✓

=

Z

⇡

0

Z

2 sin ✓

0

r cos ✓ dr d✓

=

Z

⇡

0

2 cos ✓ sin2 ✓ d✓ = 0

x =
M

y

m

= 0

M

x

=

ZZ

R

y⇢ dA

=

Z

⇡

0

Z

2 sin ✓

0

✓

r sin ✓

r

◆

r dr d✓

=

Z

⇡

0

Z

2 sin ✓

0

r sin ✓ dr d✓

=

Z

⇡

0

2 sin3 ✓ d✓

= 2

Z

⇡

0

(1� cos2 ✓) sin ✓ d✓

= 2



� cos ✓ +
cos3 ✓

3

�

⇡

0

=
8

3

y =
M

x

m

=
2

3

40. m =

ZZ

R

⇢ dA

=

Z

2⇡

0

Z

2�2 cos ✓

0

r

3

dr d✓

=

Z

2⇡

0



r

4

4

�

r=2�2 cos ✓

r=0

d✓

=

Z

2⇡

0

(4� 16 cos ✓ + 24 cos2 ✓

� 16 cos3 ✓ + 4 cos4 ✓) d✓

=
1

6

⇥

6 sin ✓ cos3 ✓ � 32 sin ✓ cos2 ✓

+81 sin ✓ cos ✓ � 160 sin ✓ + 105✓]2⇡
0

= 35⇡

M

y

=

ZZ

R

x⇢ dA

=

Z

2⇡

0

Z

2�2 cos ✓

0

r

4 cos ✓ dr d✓

= �84⇡

x =
M

y

m

= �12/5

M

x

=

ZZ

R

y⇢ dA

=

Z

2⇡

0

Z

2�2 cos ✓

0

r

4 sin ✓ dr d✓

= 0

y =
M

x

m

= 0

41. Because we are accustomed to using “r” as the
variable in polar coordinates, we would prefer
using something else as the constant radius.
Therefore, we will use “a” as the radius of the
disk:
x

2 + y

2  a

2

I

y

=

ZZ

R

x

2

⇢ dA =

ZZ

R

r

2 cos2 ✓ dA

=

Z

2⇡

0

Z

a

0

r

3 cos2 ✓ dr d✓

=

✓

Z

2⇡

0

cos2 ✓ d✓

◆✓

Z

a

0

r

3

dr

◆

= ⇡

✓

a

4

4

◆

=
⇡a

4

4

Therefore if the radius, a, is doubled then the
moment of inertia is multiplied by 16.

42. Since r already has meaning, we use s as our
polar coordinate for radius.
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I

y

=

Z

2⇡

0

Z

r

0

s

4 cos2 ✓ ds d✓

=

Z

2⇡

0



s

5 cos2 ✓

5

�

s=r

s=0

d✓

=

Z

2⇡

0

r

5 cos2 ✓

5
d✓

=
r

5

20
[sin 2✓ + 2✓]2⇡

0

=
r

5

⇡

5
Since the moment of inertia is proportional to
the fifth power of the radius, doubling the ra-
dius increases the moment by a factor of 32.

43. We will compute the volume in the first octant.
In this case, the solid is bounded on the top by
z =

p

a

2 � x

2 � y

2 =
p
a

2 � r

2

We integrate over the quarter disk in the xy-
plane.

V = 8

ZZ

R

p

a

2 � r

2

dA

= 8

Z

⇡/2

0

Z

a

0

r

p

a

2 � r

2

dr d✓

= 8

Z

⇡/2

0



�1

3
(a2 � r

2)3/2
�

r=a

r=0

d✓

= 8

Z

⇡/2

0

1

3
a

3

d✓ =
4⇡a3

3

44. z = c

p

x

2 + y

2+d, with d = h and c = �h

a

de-

fines a cone with radius 0 at z = h and radius
a at z = 0.

V =

ZZ

R

c

p

x

2 + y

2 + d dA

=

ZZ

R

�h

a

p

x

2 + y

2 + h dA

=

Z

2⇡

0

Z

a

0

✓

�h

a

r + h

◆

r dr d✓

=
1

3
⇡a

2

h

45. The cone z = k � r lies above the disk r  k,
this is our region of integration.

V (Cone) =

Z

2⇡

0

Z

k

0

(k � r)r dr d✓

=

Z

2⇡

0

1

6
k

3

d✓ =
1

3
⇡k

3

The paraboloid z = k � r

2 lies above the disk
r 

p
k, this is our region of integration.

V (Paraboloid) =

Z

2⇡

0

Z

p
k

0

(k � r

2)r dr d✓

=

Z

2⇡

0

1

4
k

2

d✓ =
1

2
⇡k

2

Notice that although the cone and the
paraboloid have the same height, the area at
the base are not the same. The area of the
base of the cone is ⇡k2 whereas the area of the
base of the paraboloid is ⇡k. This explains the
powers of k in the volumes.

46. This is a generalization of Exercise 45.

The surface z = k � r

n lies above the disk
r  n

p
k, this is our region of integration.

V =

Z

2⇡

0

Z

n

p
k

0

(k � r

n)r dr d✓

=

Z

2⇡

0



n� 1

2(n+ 1)

�

k

1+2/n

d✓

=

✓

n� 1

n+ 1

◆

⇡k

1+2/n

As n ! 1,
n� 1

n+ 1
! 1 and 1 +

2

n

! 1 which

means the volume goes to ⇡k, a linear function.

As in Exercise 45, although these solids all have
the same height, the area at the bases are not
the same. In fact, in the limit, the area at the
base is ⇡k2/n, which goes to ⇡ as n ! 1.

47. The cylinder, in polar coordinates, is
r = 2 cos ✓ with ✓ 2 [�⇡/2,⇡/2].

The top of the solid is given by
z =

p

9� x

2 � y

2 =
p
9� r

2

Using symmetry we integrate only over z � 0
and we will multiply by two to get the volume
(since the bottom of the cylinder is

z = �
p

9� x

2 � y

2).

V = 2

ZZ

R

p

9� r

2

dA

= 2

Z

⇡/2

�⇡/2

Z

2 cos ✓

0

r

p

9� r

2

dr d✓

= 2

Z

⇡/2

�⇡/2



�1

3
(9� r

2)3/2
�

2 cos ✓

0

d✓

=
4

3

Z

⇡/2

�⇡/2

h

27� (9� 4 cos2 ✓)3/2
i

d✓

⇡ 17.1639

The last integral was computing using a CAS.
It could have also been approximated using
a Simpson’s Rule (for example, with n = 4,
Simpson’s Rule gives 17.3621).

48. V =

ZZ

R

p

4� x

2 � y

2

dA

=

Z

tan

�1

2

⇡/4

Z

2

0

r

p

4� r

2

dr d✓
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=

Z

tan

�1

2

⇡/4



�1

3
(4� r

2)3/2
�

r=2

r=0

d✓

=

Z

tan

�1

2

⇡/4

8

3
d✓

=
8

3

⇣

tan�1 2� ⇡

4

⌘

⇡ 0.8580

49. The top of the solid is given by
z =

p

4� x

2 � y

2 =
p
4� r

2

The bottom of the solid is given by
z = 2� y = 2� r sin ✓

What is not so clear is the region of integration,
R—the projection of the solid to the xy-plane.
To find R, we eliminate z from the system
x

2 + y

2 + z

2 = 4 and z = 2� y.
This gives
x

2 + y

2 + (2� y)2 = 4
x

2 + 2y2 = 4y (an ellipse)
r

2 cos2 ✓ + 2r2 sin2 ✓ = 4r sin ✓
r

�

cos2 ✓ + 2 sin2 ✓
�

= 4 sin ✓

r =
4 sin ✓

cos2 ✓ + 2 sin2 ✓
✓ 2 [0,⇡]

V =

Z

⇡

0

Z

4 sin ✓

cos

2

✓+2 sin

2

✓

0

h

p

4� r

2 � (2� r sin ✓)
i

r dr d✓

50. Finding the limits of Integration:

x

2 + 4y2 = 4
r

2 cos2 ✓ + 4r2 sin2 ✓ = 4
r

2 + 3r2 sin2 ✓ = 4

r

2 = ± 2
p

1 + 3 sin2 ✓

Notice that within the cylinder, the given plane
lies above the xy-plane. We find the volume
between the xy-plane and the plane

x+ 2y + 3z = 6, within the cylinder

x

2 + 4y2 = 4.

V =

ZZ

R

✓

6� x� 2y

3

◆

dA

=

Z

2

�2

Z

p
4�x

2

/2

�
p
4�x

2

/2

✓

6� x� 2y

3

◆

dy dx

=

Z

2⇡

0

Z

2/

p
1+3 sin

2

✓

0

r dr d✓

51. The region described is pictured below.

2

1

0

-1

10-1

y

0.5

x
-0.5

1.5

-0.5

0.5

Region ´ of ´ Integration

We must find where the two circles intersect.
In rectangular coordinates, these circles are
x

2 + y

2 = 1 and x

2 + (y � 1)2 = 1
(see Exercise 36).

If we subtract these equations we get 2y�1 = 0

or y =
1

2
. Thus the circles intersect at

 

�
p
3

2
,

1

2

! p
3

2
,

1

2

!

or when ✓ =
⇡

6
,

5⇡

6
.

ZZ

R

2

1 + x

2 + y

2

dA

=

Z

5⇡/6

⇡/6

Z

2 sin ✓

1

2r

1 + r

2

dr d✓

=

Z

5⇡/6

⇡/6

⇥

ln(1 + r

2)
⇤

2 sin ✓

1

d✓

=

Z

5⇡/6

⇡/6

⇥

ln(1 + 4 sin2 ✓)� ln 2
⇤

d✓

=

Z

5⇡/6

⇡/6

ln

✓

1 + 4 sin2 ✓

2

◆

d✓

⇡ 1.2860

Where the last integral was approximated us-
ing Simpson’s Rule with n = 10.

52.

ZZ

R

ln(x2 + y

2)

x

2 + y

2

dA

=

Z

2⇡

0

Z

2

1

✓

ln r2

r

2

◆

r dr d✓

=

Z

2⇡

0

Z

2

1

2 ln r

r

dr d✓

=

Z

2⇡

0

h

(ln r)2
i

2

1

d✓

=

Z

2⇡

0

(ln 2)2 d✓

= 2⇡ (ln 2)2

53. The population is found by integrating the den-
sity function over the region. We convert to
polar coordinates.

P =

ZZ

R

f(x, y) dA =

ZZ

R

20, 000e�r

2

dA



774 CHAPTER 13. MULTIPLE INTEGRALS

= 20, 000

Z

2⇡

0

Z

1

0

e

�r

2

r dr d✓

= 10, 000

Z

2⇡

0

h

�e

�r

2

i

1

0

d✓

= 10, 000

Z

2⇡

0

�

1� e

�1

�

d✓

= 20, 000⇡
�

1� e

�1

�

⇡ 39, 717

54.

ZZ

R

15, 000e�x

2�y

2

dA

=

Z

⇡

0

Z

2 cos ✓

0

15, 000re�r

2

dr d✓

=

Z

⇡

0

h

�7500e�r

2

i

r=2 cos ✓

r=0

d✓

= 7500

Z

⇡

0

⇣

1� e

�4 cos

2

✓

⌘

d✓

⇡ 16, 293

55. P =
1

⇡

ZZ

R

e

�x

2�y

2

dA

=
1

⇡

Z

2⇡

0

Z

1/4

0

re

�r

2

dr d✓

=
1

2⇡

Z

2⇡

0

h

�e

�r

2

i

r=1/4

r=0

d✓

=
1

2⇡

Z

2⇡

0

⇣

1� e

�1/16

⌘

d✓

= 1� e

�1/16 ⇡ 0.06059

56. P =
1

⇡

ZZ

R

e

�x

2�y

2

dy dx

=
1

⇡

Z

2⇡

0

Z

1/2

1/4

re

�r

2

dr d✓

=
1

2⇡

Z

2⇡

0

h

�e

�r

2

i

r=1/2

r=1/4

d✓

=
1

2⇡

Z

2⇡

0

⇣

e

�1/16 � e

�1/4

⌘

d✓

= e

�1/16 � e

�1/4 ⇡ 0.1606

57. P =
1

⇡

ZZ

R

e

�x

2�y

2

dA

=
1

⇡

Z

11⇡/20

9⇡/20

Z

4

15/4

re

�r

2

dr d✓

=
1

2⇡

Z

11⇡/20

9⇡/20

h

�e

�r

2

i

r=4

r=15/4

d✓

=
1

2⇡

Z

11⇡/20

9⇡/20

⇣

e

�225/16 � e

�16

⌘

d✓

=
e

�225/16 � e

�16

20
⇡ 3.34⇥ 10�8

58. P =
1

⇡

ZZ

R

e

�x

2�y

2

dy dx

=
1

⇡

Z

11⇡/20

9⇡/20

Z

13/2

25/4

re

�r

2

dr d✓

=
1

2⇡

Z

11⇡/20

9⇡/20

h

�e

�r

2

i

r=13/2

r=25/4

d✓

=
1

2⇡

Z

11⇡/20

2⇡/20

⇣

e

�625/16 � e

�169/4

⌘

d✓

=
1

20

⇣

e

�625/16 � e

�169/4

⌘

⇡ 5.20⇥ 10�19

59. A =

ZZ

R

dA

=

Z

11⇡/20

9⇡/20

Z

4

15/4

r dr d✓

=

Z

11⇡/20

9⇡/20

31

32
d✓ =

31⇡

320

60. A =

ZZ

R

dy dx

=

Z

11⇡/20

9⇡/20

Z

13/2

25/4

r dr d✓

=

Z

11⇡/20

9⇡/20



r

2

2

�

r=13/2

r=25/4

d✓

=

Z

11⇡/20

2⇡/20

51

32
d✓

=
51⇡

320
⇡ 0.5007

13.4 Surface Area

1. S =

Z

4

0

Z

x

0

p

(2x)2 + (2)2 dy dx

=

Z

4

0

Z

x

0

p

5 + 4x2

dy dx

=

Z

4

0

x

p

5 + 4x2

dx

=



1

12

�

5 + 4x2

�

3/2

�

4

0

=
1

12

⇣

693/2 � 53/2
⌘

⇡ 46.8314

2. S =

Z

2

0

Z

2x

0

p

(6x)2 + (4)2 + 1 dy dx

=

Z

2

0

Z

2x

0

p

36x2 + 17 dy dx

=

Z

2

0

h

y

p

36x2 + 17
i

y=2x

y=0

dx

=

Z

2

0

2x
p

36x2 + 17 dx

=



1

54
(36x2 + 17)3/2

�

2

0

=
1

54

⇣

1613/2 � 173/2
⌘

⇡ 36.533

3. We change to polar coordinates.
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S =

ZZ

R

p

(�2x)2 + (�2y)2 + 1 dy dx

=

Z

2⇡

0

Z

2

0

r

p

4r2 + 1 dr d✓

=

Z

2⇡

0



1

12
(4r2 + 1)3/2

�

r=2

r=0

d✓

=

Z

2⇡

0

1

12

⇣

173/2 � 1
⌘

d✓

=
⇡

6

⇣

173/2 � 1
⌘

⇡ 36.177

4. We change to polar coordinates.

S =

ZZ

R

p

(2x)2 + (2y)2 + 1 dy dx

=

Z

2⇡

0

Z

2

0

r

p

4r2 + 1 dr d✓

=

Z

2⇡

0



1

12
(4r2 + 1)3/2

�

r=2

r=0

d✓

=

Z

2⇡

0

1

12

⇣

173/2 � 1
⌘

d✓

=
⇡

6

⇣

173/2 � 1
⌘

⇡ 36.177

5. We will change to polar coordinates.

Notice that since z = r, we have
z

2 = r

2 = x

2 + y

2

2z
@z

@x

= 2x

@z

@x

=
x

z

=
r cos ✓

r

= cos ✓

Similarly,
@z

@x

= sin ✓.

The region of integration is a disk of radius 2
in the xy-plane.

S =

ZZ

R

p

(cos ✓)2 + (sin ✓)2 + 1 dA

=

ZZ

R

p
2 dA

=
p
2 (Area of R)

=
p
2(4⇡) ⇡ 17.7715

6. First, simplifying the integrand:

f

2

x

+ f

2

y

+ 1

=

 

x

p

x

2 + y

2

!

2

+

 

y

p

x

2 + y

2

!

2

+ 1

= 2

S =

Z

2

�2

Z

4

x

2

p
2 dy dx

=

Z

2

�2

h

y

p
2
i

y=4

y=x

2

dx

=

Z

2

�2

⇣p
2(4� x

2)
⌘

dx

=
p
2



4x� x

3

3

�

2

�2

=
32

p
2

3
⇡ 15.085

7. The surface is z = 6 � x � 3y and lies above
the triangle in the xy-plane with vertices (0, 0),
(6, 0, 0) and (0, 2, 0). Notice that this triangle
has area 6.

S =

ZZ

R

p

(�1)2 + (�3)2 + 1 dA

=

ZZ

R

p
11 dA

=
p
11 (Area of Triangle) = 6

p
11

8. S =

Z

4

0

Z

8�2x

0

p

(�2)2 + (�1)2 + 1 dy dx

=

Z

4

0

Z

8�2x

0

p
6 dy dx

=
p
6

Z

4

0

[y]y=8�2x

y=0

dx

=
p
6

Z

4

0

(8� 2x) dx

=
p
6
⇥

8x� x

2

⇤

4

0

= 16
p
6 ⇡ 39.1918

9. The surface is z =
x� y � 4

2
and lies above the

triangle in the xy-plane with vertices (0, 0, 0),
(4, 0, 0) and (0,�4, 0).

Notice that this triangle has area 8.

S =

ZZ

R

p

(1/2)2 + (�1/2)2 + 1 dA

=

ZZ

R

r

3

2
dA

=
p

3/2 (Area of Triangle)

= 8
p

3/2 = 4
p
6

10. S =

Z

2

0

Z

4�2x

0

s

✓

1

2

◆

2

+

✓

1

4

◆

2

+ 1 dy dx

=

Z

2

0

Z

4�2x

0

p
21

4
dy dx

=

p
21

4

Z

2

0

[y]y=4�2x

y=0

dx

=

p
21

4

Z

2

0

(4� 2x) dx

=

p
21

4

⇥

4x� x

2

⇤

2

0

=
p
21

11. We convert to polar coordinates. The region
of integration is the disk in the xy-plane r  2.
The equation of the surface is
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z =
p

4� x

2 � y

2

z

2 = 4� x

2 � y

2 = 4� r

2

2z
@z

@x

= �2x

@z

@x

= �x

z

@z

@x

= � r cos ✓p
4� r

2

Similarly,
@z

@y

= � r sin ✓p
4� r

2

The integrand of the integral will be:
q

(f
x

)2 + (f
y

)2 + 1

=

s

✓

� r cos ✓p
4� r

2

◆

2

+

✓

� r sin ✓p
4� r

2

◆

2

+ 1

=

r

4

4� r

2

�

cos2 ✓ + sin2 ✓
�

+ 1

=
2p

4� r

2

The region of integration is the disk r  2:

S =

ZZ

R

2p
4� r

2

dA

=

Z

2⇡

0

Z

2

0

2rp
4� r

2

dr d✓

=

Z

2⇡

0

h

�2(4� r

2)1/2
i

2

0

d✓

=

Z

2⇡

0

4 d✓ = 8⇡

12. The region of integration is the square in the
xy-plane, with area 4⇡2.

S =

ZZ

R

p

(cosx)2 + (� sinx)2 + 1 dA

=

ZZ

R

p
2 dA

=
p
2(Area R) = 4⇡

p
2

13. We will convert to polar coordinates. First,
@z

@x

= 2xex
2

+y

2

= 2rer
2

cos ✓

@z

@y

= 2rer
2

sin ✓

The integrand will be
q

(f
x

)2 + (f
y

)2 + 1

=
q

�

2rer2 cos ✓
�

2

+
�

2rer2 sin ✓
�

2

+ 1

=
p

4r2e2r2 + 1

S =

ZZ

R

p

4r2e2r2 + 1 dA

=

Z

2

0

Z

2⇡

0

r

p

4r2e2r2 + 1 d✓ dr

= 2⇡

Z

2

0

r

p

4r2e2r2 + 1 dr

⇡ 583.7692

Using Simpson’s Rule with n = 10 gives this
approximately as 586.8553.

14. We will convert to polar coordinates. First,
@z

@x

= �2xe�x

2�y

2

= �2re�r

2

cos ✓

@z

@y

= �2re�r

2

sin ✓

The integrand will be
q

(f
x

)2 + (f
y

)2 + 1

=



⇣

�2re�r

2

cos ✓
⌘

2

+
⇣

�2re�r

2

sin ✓
⌘

2

+ 1

�

1/2

=
p

4r2e�2r

2 + 1

S =

ZZ

R

p

4r2e�2r

2 + 1 dA

=

Z

1

0

Z

2⇡

0

r

p

4r2e�2r

2 + 1 d✓ dr

= 2⇡

Z

1

0

r

p

4r2e�2r

2 + 1 dr

⇡ 3.96025

Using Simpson’s Rule with n = 10 gives this
approximately as 3.9585.

15. We will convert to polar coordinates.

The integrand will be
q

(f
x

)2 + (f
y

)2 + 1

=
q

(2x)2 + (2y)2 + 1

=
p

4r2 + 1

S =

ZZ

R

p

4r2 + 1 dA

=

Z

p
7

p
5

Z

2⇡

0

r

p

4r2 + 1 d✓ dr

= 2⇡

Z

p
7

p
5

r

p

4r2 + 1 dr

= 2⇡



1

6
(1 + 4r2)3/2

�

p
7

p
5

= 6⇡
⇣

29
p
29� 21

p
21
⌘

⇡ 31.3823

16. We will convert to polar coordinates.

The integrand will be
q

(f
x

)2 + (f
y

)2 + 1

=
q

(2x)2 + (2y)2 + 1
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=
p

4r2 + 1

S =

ZZ

R

p

4r2 + 1 dA

=

Z

2⇡

0

Z

2�2 cos ✓

0

r

p

4r2 + 1 dr d✓

=

Z

2⇡

0



1

12

�

1 + 4r2
�

3/2

�

2�2 cos ✓

0

d✓

=
1

12

Z

2⇡

0

n

⇥

1 + 4(2� 2 cos ✓)2
⇤

3/2 � 1
o

d✓

⇡ 86.5169

Simpson’s Rule with n = 10 gives the approx-
imation of S ⇡ 85.5108.

17. S =

ZZ

R

p

(0)2 + (2y)2 + 1 dA

=

Z �2

�2

Z �2

�2

p

4y2 + 1 dx dy

= 4

Z �2

�2

p

4y2 + 1 dy

= 8
p
17� 2 ln(

p
17� 4)

⇡ 37.1743

The last integral can be computed using
trigonometric substitution or using tables. Of
course, one could just use Simpson’s Rule to
approximate the integral as well.

18. S =

ZZ

R

p

(�2x)2 + (0)2 + 1 dA

=

Z �2

�2

Z

4

0

p

4x2 + 1 dy dx

= 4

Z �2

�2

p

4x2 + 1 dy

= 8
p
17� 2 ln(

p
17� 4)

⇡ 37.1743

The last integral can be computed using
trigonometric substitution or using tables. Of
course, one could just use Simpson’s Rule to
approximate the integral as well.

19. S =

ZZ

R

⇥

(cosx cos y)2

+(� sinx sin y)2 + 1
⇤

1/2

dA

=

ZZ

R

⇥

cos2 x cos2 y

+sin2 x sin2 y + 1
⇤

1/2

dA

To numerically approximate this integral, we
do a Riemann sum—we divide the rectangle
into a grid of n

2 subrectangles (n horizontal
and n vertical subdivisions) and we use the up-
per right corner for the value of the function.

In this case, the area of these subrectangles is
⇡

2

n

2

. In general, the surface area will then be:

S ⇡
n

X

i=1

n

X

j=1

f

✓

⇡i

n

,

⇡j

n

◆

⇡

2

n

2

=
⇡

2

n

2

n

X

i=1

n

X

j=1



cos2
✓

⇡i

n

◆

cos2
✓

⇡j

n

◆

+sin2
✓

⇡i

n

◆

sin2
✓

⇡j

n

◆

+ 1

�

1/2

Using only n = 2 or n = 3 gives a good approx-
imation (and, in fact, can be done fine without
even writing out the sum in full generality as
above). Here are the value of the approxima-
tions for various values of n:

n Approx S

1 13.95772840
2 11.91366640
3 12.04680518
4 12.04422713
5 12.04492766

20. We convert to polar coordinates. Notice the
region of integration will be the annulus
2  r 

p
5

z

2 = x

2 � y

2 � 4

2z
@z

@x

= 2x

@z

@x

=
x

z

=
r cos ✓

r

2 � 4

Similarly,
@z

@y

=
r sin ✓

r

2 � 4

The integrand will be:
q

(f
x

)2 + (f
y

)2 + 1

=

s

✓

r cos ✓

r

2 � 4

◆

2

+

✓

r sin ✓

r

2 � 4

◆

2

+ 1

=

r

2(r2 � 2)

4� r

2

S =

ZZ

R

r

r

2(r2 � 2)

4� r

2

dr

=

Z

p
5

2

Z

2⇡

0

r

r

2(r2 � 2)

4� r

2

d✓ dr

= 2⇡

Z

p
5

2

r

r

2(r2 � 2)

4� r

2

dr

⇡ 13.5464

Where the last integral can be approximated
using Simpson’s Rule.
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It is a bit messy, but this can also be computed
to be exactly
⇡

p
2
⇥

p
3 + ln(2 +

p
3)
⇤

21. (a) In Exercises 5 and 6, it is shown that the
surface area is equal top
2(Area R).

This computation is valid for any region
R in the xy-plane.

(b) The area of the base is A = 2 · 3 = 6.
The surface area S is proportional to A:
S =

p
2A = 6

p
2

22. (a) If we have a plane ax + by + cz = d, the
surface area integrand is a constant and
equal to
q

(f
x

)2 + (f
y

)2 + 1

=

s

⇣

�a

c

⌘

2

+

✓

�b

c

◆

2

+ 1

=

p
a

2 + b

2 + c

2

|c|
The angle, ✓, between the given plane and
the xy-plane is really the angle between
the normals of the planes. The normals
are n = (a, b, c) and k = (0, 0, 1). Thus,

cos ✓ =
n · k

knkkkk =
cp

a

2 + b

2 + c

2

Therefore

S =

ZZ

R

p
a

2 + b

2 + c

2

|c| dA

=

ZZ

R

sec ✓ dA = sec ✓(Area of R)

(b) The angle between z = 1 + y and the xy-

plane is
⇡

4
. The area of the rectangle is

A = 4 · 2 = 9, so

S =
A

| cos ✓| =
8

| cos(⇡/4)| = 8
p
2

23. Given a set B in the xz-plane and an interval
[c, d] in the y-line, the cylinder is the region:
C = {(x, y, z) : (x, z) 2 B, y 2 [c, d]}
If B is a curve, the C is a surface.

Suppose we have such a cylindrical surface,
given by a curve z = f(x), x 2 [a, b]. Then
@z

@x

= f

0(x)

@z

@y

= 0

and the surface area integrand is
q

(f
x

)2 + (f
y

)2 + 1

=
q

(f 0(x))2 + (0)2 + 1

=
q

1 + (f 0(x))2

which is also the integrand for arc length. In
any case, the surface area of the cylindrical sur-
face is:

S =

ZZ

R

q

1 + (f 0(x))2 dA

=

Z

b

a

Z

d

c

q

1 + (f 0(x))2 dy dx

= (d� c)

Z

b

a

q

1 + (f 0(x))2 dx

= (d� c) ( Length of of curve )
= (d� c)L

So, for Exercises 17 and 18, the surface area is
4L.

24. The base has arc length
L = 1 + 1 +

p
2 = 2 +

p
2

So, A = 4L = 8 + 4
p
2

25. k = 3 will not work because there is more sur-
face area between z = 3 to z = 5 than there is
between z = 1 and z = 3 (this should be clear
by looking at the pictures in the text).

To compute the surface area of the surface be-
tween z = 1 and z = k we integrate. Notice
that when we convert to polar coordinates the
surface between z = 1 and z = k corresponds
to the region of integration r 

p
k � 1.

S

k

=

Z

2⇡

0

Z

p
k�1

0

r

p

4r2 + 1 dr d✓

= 2⇡

Z

p
k�1

0

r

p

4r2 + 1 dr

= 2⇡



1

12
(4r2 + 1)3/2

�

p
k�1

0

=
⇡

6

h

(4k � 3)3/2 � 1
i

We want this to be half the total surface area,
or

S

k

=
S

2
=

⇡

12

⇣

173/2 � 1
⌘

which gives the equation
⇡

6

h

(4k � 3)3/2 � 1
i

=
⇡

12

⇣

173/2 � 1
⌘

(4k � 3)3/2 =
1

2

⇣

173/2 + 1
⌘

k =

⇣

17

3/2

+1

2

⌘

2/3

+ 3

4
⇡ 3.4527

26. Converting to polar coordinates,

f

2

x

+ f

2

y

+ 1 = 4x2 + 4y2 + 1

= 4r2 + 1

Then, the surface area of the surface is
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S =

Z

2⇡

0

Z

p
k

0

r

p

4r2 + 1 dr d✓

=
1

12

Z

2⇡

0

h

(4r2 + 1)3/2
i

r=

p
k

r=0

d✓

=
1

12

Z

2⇡

0

h

(4k + 1)3/2 � 1
i

d✓

=
⇡

6

h

(4k + 1)3/2 � 1
i

We want this to be equal to
⇡

6

⇣

173/2 � 1
⌘

Setting these equal to each other gives k = 4.

We could have quickly seen this by realizing
that the paraboloid in this Exercise is the
paraboloid of Example 4.2 shifted down by 1.

27. To condense the notation, we define a, b, c as

(a, b, c) = r

u

⇥ r

v

= (x
u

, y

u

, z

u

)⇥ (x
v

, y

v

, z

v

)
= (y

u

z

v

� y

v

z

u

, x

v

z

u

� x

u

z

v

, y

u

x

v

� y

v

x

u

)

According to the chain rule we have

z

u

=
@z

@x

x

u

+
@z

@y

y

u

z

v

=
@z

@x

x

v

+
@z

@y

y

v

This is a system of equations that we can solve

for
@z

@x

and
@z

@y

. (Cramer’s rule, substitution,

etc., will all work to solve.) This gives
@z

@x

=
y

v

z

u

� y

u

z

v

y

v

x

u

� y

u

x

v

=
�a

�c

=
a

c

@z

@y

=
x

v

z

u

� x

u

z

v

x

v

y

u

� x

u

y

v

=
b

c

Suppose V is a region in the uv-plane, S is
the area of the surface image r(V ), and R is
the corresponding region in the xy-plane that
is “under” the surface. Then,

S =

ZZ

R

s

✓

@z

@x

◆

2

+

✓

@z

@y

◆

2

+ 1 dA

xy

=

ZZ

R

s

⇣

a

c

⌘

2

+

✓

b

c

◆

2

+ 1 dA

xy

where dA
xy

means dA, but in the xy-plane (we
will use dA

uv

to signify when we move to the
uv-plane).

Now, if a, b, c are constants, then S will be
equal to

S =

p
a

2 + b

2 + c

2

|c| (Area of R)

This is important since we will approximate
the surface integral by this constant approxi-
mation.

Next, if we assume that r is linear, i.e., that
r(u, v) = Au + Bv where A and B are vec-

tors. If we take V to be the unit square
V = {(u, v) : 0  u  1, 0  v  1}, then
r(V ) is the parallelogram spanned by the vec-
tors A and B. The area will then be

Area(r(V )) = kA⇥Bk
= kA⇥Bk(Area of V )

But, by looking at proportionalities, this rela-
tion will hold for any V and in the case where
a, b are constant we arrive at

S =

p
a

2 + b

2 + c

2

|c| (Area of R)

S = kr
u

⇥ r

v

k (Area of V )

Of course in general a, b, and c are not con-
stants, but if we look at a very small piece of
V , then a, b, and c are approximately constant.
Thus, if we subdivide V into su�ciently small
subrectangles:
V = V

1

[ V

2

[ · · · [ V

n

We will also let S

i

be the surface area r(V
i

)
and we let R

i

be the portion of the xy-plane
corresponding to V

i

. Then we will have

S

i

⇡
p
a

2 + b

2 + c

2

|c| (Area of R
i

)

S

i

⇡ kr
u

⇥ r

v

k (Area of V
i

)

Summing these gives
P

S

i

= S on the left and
a Riemann sum for an integral on the right,
from which we conclude that

S =

ZZ

R

s

✓

@z

@x

◆

2

+

✓

@z

@y

◆

2

+ 1 dA

xy

=

ZZ

V

kr
u

⇥ r

v

k dA

uv

Of course, there is no need to assume that V

is a rectangle.

28. r

u

= 2 h� sinu cos v, cosu cosh v, 0i
r

v

= 2 hcosu sinh v, sinu sinh v, cosh vi

kr
u

⇥ r

v

k2 = (cosu cosh2 v)2

+ (sinu cosh2 v)2

+ (�4 sin2 u cosh v sinh v
� 4 cos2 u cosh v sinh v)2

= 16 cosh2 v(2 cosh2 v � 1)

S =

Z

1

�1

Z

2⇡

0

4 cosh v
p

2 cosh2 v � 1 du dv

= 8⇡

Z

1

�1

cosh v
p

2 cosh2 v � 1 dv

⇡ 80.0614

29. r = (u, v cosu, v sinu)
r

u

= (1,�v sinu, v cosu)
r

v

= (0, cosu, sinu)
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r

u

⇥ r

v

= (�v,� sinu, cosu)

kr
u

⇥ r

v

k =
p

v

2 + 1

S =

Z

1

0

Z

2⇡

0

p

1 + v

2

du dv

= 2⇡

Z

2⇡

0

p

1 + v

2

dv

= 2⇡



1

2
v

p

1 + v

2

+
1

2
ln
⇣

v +
p

1 + v

2

⌘

�

1

0

= ⇡

hp
2 + ln

⇣

1 +
p
2
⌘i

⇡ 7.2118

30. r

u

= h1, 0, 2vi
r

v

= h0, 1, 2ui
kr

u

⇥ r

v

k2 = (�2v)2 + (�2u)2 + (1)2

= 4u2 + 4v2 + 1

S =

Z

2

0

Z

1

0

p

4u2 + 4v2 + 1 dv du

=
1

4

Z

2

0

h

2v
p

4u2 + 4v2 + 1

+ (4u2 + 1) ·
ln
⇣

2v +
p

4u2 + 4v2 + 1
⌘i

v=1

v=0

du

=
1

4

Z

2

0

h

2
p

4u2 + 5

+(4u2 + 1) ln
⇣

2 +
p

4u2 + 5
⌘

�(4u2 + 1) ln
⇣

p

4u2 + 1
⌘i

du

⇡ 5.2335

31. Given r = (x, y, f (x, y))

Then by the formula,

S =

ZZ

R

|| @r
@x

⇥ @r

@y

||dA

@r

@x

=

✓

@x

@x

,

@y

@x

,

@f

@x

◆

= (1, 0, f
x

)

@r

@y

=

✓

@x

@y

,

@y

@y

,

@f

@y

◆

= (0, 1, f
y

)

@r

@x

⇥ @r

@y

=

0

@

i j k

1 0 f

x

0 1 f

y

1

A = (�f

x

,�f

y

, 1)

|| @r
@x

⇥ @r

@y

|| =
q

(�f

x

)2 + (�f

y

)2 + 1

S =

ZZ

q

[f
x

(x, y)]2 + [f
y

(x, y)]2 + 1 dA

32. x = cos v cosu
y = cos v sinu
z = 2 sin v
r (u, v) = (cos v cosu, cos v sinu, 2 sin v)

@r

@u

= (� cos v sinu, cos v cosu, 0)

@r

@v

= (� sin v cosu,� sin v sinu, 2 cos v)

@r

@u

⇥ @r

@v

=
�

2cos2v cosu, 2cos2v sinu, sin v cos v
�

|| @r
@u

⇥ @r

@v

|| = cos v
p

4� 3sin2

v

S =

ZZ

R

|| @r
@x

⇥ @r

@y

||dA

=

ZZ

R

cos v
p

4� 3sin2

v dudv

R is a Prolate Spheroid with

�⇡  u  ⇡, �⇡

2
 v  ⇡

2

S =

Z

⇡

2

�⇡

2

Z

⇡

�⇡

cos v
p

4� 3sin2v dudv

=

Z

⇡

2

�⇡

2

cos v
p

4� 3sin2v [u]⇡�⇡

dv

= 2⇡

Z

⇡

2

�⇡

2

cos v
p

4� 3sin2v dv

= 2⇡

Z

1

�1

p

4� 3t2 dt

= 2⇡



1 +
4p
3

⇡

3

�

=
6
p
3⇡ + 8⇡2

3
p
3

33. x = (c+ a cos v) cosu
y = (c+ a cos v) sinu
z = a sin v
r (u, v) = ((c+ a cos v) cosu,

(c+ a cos v) sinu, a sin v)
@r

@u

= (� (c+ a cos v) sinu, (c+ a cos v) cosu, 0)

@r

@v

= (�a sin v cosu,�a sin v sinu, a cos v)

@r

@u

⇥ @r

@v

= (a cos v cosu (c+ a cos v) ,
a cos v sinu (c+ a cos v) ,
a sin v (c+ a cos v))

|| @r
@u

⇥ @r

@v

|| = a (c+ a cos v)

S =

ZZ

R

|| @r
@x

⇥ @r

@y

||dA

=

ZZ

R

a (c+ a cos v) dudv

R is a Torus with
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0  u < 2⇡, 0  v < 2⇡

S =

Z

2⇡

0

Z

2⇡

0

a (c+ a cos v) dudv

= a

Z

2⇡

0

(c+ a cos v) [u]2⇡
0

dv

= 2a⇡

Z

2⇡

0

(c+ a cos v) dv

= 2a⇡ [cv + a sin v]2⇡
0

= 4ac⇡2

13.5 Triple Integrals

1.

ZZZ

Q

(2x+ y � z) dV

=

Z

2

0

Z

2

�2

Z

2

0

(2x+ y � z) dz dy dx

=

Z

2

0

Z

2

�2



2xz + yz � z

2

2

�

2

0

dy dx

=

Z

2

0

Z

2

�2

(4x+ 2y � 2) dy dx

=

Z

2

0

⇥

4xy + y

2 � 2y
⇤

2

�2

dx

=

Z

2

0

(16x� 8) dx

=
⇥

8x2 � 8x
⇤

2

0

= 16

2.

Z

3

0

Z

1

�2

Z

2

1

(2x2 + y

3) dz dy dx

=

Z

3

0

Z

1

�2

⇥

(2x2 + y

2)z
⇤

z=2

z=1

dy dx

=

Z

3

0

Z

1

�2

�

2x2 + y

3

�

dy dx

=

Z

3

0



2x2

y +
y

4

4

�

y=1

y=�2

dx

=

Z

3

0

✓

6x2 � 15

4

◆

dx

=



2x3 � 15x

4

�

3

0

=
171

4

3.

ZZZ

Q

�p
y � 3z2

�

dV

=

Z

3

2

Z

1

0

Z

1

�1

(
p
y � 3z2) dz dy dx

=

Z

3

2

Z

1

0

(2
p
y � 2) dy dx

=

Z

3

2

✓

�2

3

◆

dx = �2

3

4.

Z

2

0

Z

1

�1

Z

2

0

2xy � 3xz2 dz dy dx

=

Z

2

0

Z

1

�1

(4xy � 8x) dy dx

=

Z

2

0

(�16x) dx = �32

5. In this case, because the integrand is indepen-
dent of x, we integrate in the x-direction first.
ZZZ

Q

4yz dV

=

Z

1

0

Z

2�2y

0

Z

2�2y�z

0

4yz dx dz dy

=

Z

1

0

Z

2�2y

0

4yz(2� 2y � z) dz dy

=

Z

1

0

16

3

�

y � 3y2 + 3y3 � y

4

�

dy

=
4

15

6.

Z

3

0

Z

12�4x

0

Z

4�4x/3�y/3

0

(3x� 2y) dz dy dx

=

Z

3

0

Z

12�4x

0

✓

12x� 4x2 +
5

3
xy

�8y +
2

3
y

2

◆

dy dx

=

Z

3

0

✓

�192 + 264x� 112x2 +
136

9
x

3

◆

dx

= �90

7. In this case, notice that the region lies in below
the xy-plane. Because the integrand is inde-
pendent of x, we integrate x first.
ZZZ

Q

(3y2 � 2z) dV

=

Z

3

0

Z

0

�6+2y

Z

(6�2y+z)/3

0

(3y2 � 2z) dx dz dy

=

Z

3

0

Z

0

�6+2y

(3y2 � 2z)
(6� 2y + z)

3
dz dy

=

Z

3

0

Z

0

�6+2y

✓

�2y36y2 + y

2

z +
4

3
yz

�2

3
z

2 � 4z

◆

dz dy

=

Z

3

0

✓

24� 24y + 26y2 � 116

9
y

3 + 2y4
◆

dy

=
171

5

8.

Z

0

�2

Z

2x+4

0

Z

4+2x�y

0

6xz2 dz dy dx

=

Z

0

�2

Z

2x+4

0

2x(4 + 2x� y)3 dy dx
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=

Z

0

�2

�

8x5 + 64x4 + 192x3

+256x2 + 128x
�

dx

= �256

15

9. For this problem, we first integrate in the z di-
rection and then use polar coordinates in the
xy-plane.
ZZZ

Q

2xy dV

=

ZZ

R

(

Z

1�x

2�y

2

0

2xy dz

)

dA

=

ZZ

R

(2xy)(1� x

2 � y

2) dA

=

Z

1

0

Z

2⇡

0

2r2(1� r

2) cos ✓ sin ✓ d✓ dr

=

Z

1

0



2r2(1� r

2)
sin2 ✓

2

�

2⇡

0

dr

=

Z

1

0

0 dr = 0

10.

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

Z

4

x

2

+y

2

(x� y) dz dy dx

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

(x� y)(4� x

2 + y

2) dy dx

=

Z

2

�2

4

3
x(4� x

2)3/2 dx = 0

11. It is important to draw the region of integra-
tion. In this case the top of the region is
bounded by the two planes x + z = 2 and
z � x = 2. The bottom of the region is the
plane z = 1.
ZZZ

Q

2yz dV

=

Z

2

1

Z

2�z

z�2

Z

2

�2

2yz dy dx dz

=

Z

2

1

Z

2�z

z�2

⇥

y

2

z

⇤

2

�2

dx dz

=

Z

2

1

Z

2�z

z�2

0 dx dz = 0

12.

ZZZ

Q

x

3

y dV

=

Z

1

�1

Z

1�y

2

0

Z

1

�1

x

3

y dx dz dy

=

Z

1

�1

Z

1�y

2

0



x

4

y

4

�

1

�1

dz dy

=

Z

1

�1

Z

1�y

2

0

0 dz dy = 0

13.

ZZZ

Q

15 dV

= 15

Z

1

�1

Z

1�y

2

0

Z

4�2x�y

0

dz dx dy

= 15

Z

1

�1

Z

1�y

2

0

(4� 2x� y) dx dy

= 15

Z

1

�1

�

3� y � 2y2 + y

3 � y

4

�

dy

= 15

✓

64

15

◆

= 64

14.

ZZZ

Q

(2x+ y) dV

=

Z

2

0

Z

2�x

0

Z

6�x�y

0

(2x+ y) dz dy dx

=

Z

2

0

Z

2�x

0

(2x+ y)(6� x� y) dy dx

=

Z

2

0

Z

2�x

0

(12� 2x2

� 3xy + 6y � y

2) dy dx

=

Z

2

0

✓

28

3
+ 10x� 9x2 +

5

6
x

3

◆

dx

= 18

15.

Z

2

�2

Z

4

y

2

Z

6�z

0

2x dx dz dy

=

Z

2

�2

Z

4

y

2

⇥

x

2

⇤

6�z

0

dz dy

=

Z

2

�2

Z

4

y

2

(6� z)2dz dy

= �1

3

Z

2

�2

h

(6� z)3
i

4

y

2

dy

= �1

3

Z

2

�2

⇥

y

6 � 18y4 + 108y2 � 208
⇤

dy

=
5248

35

16.

Z

1

�
p
2

Z

1�x

x�1

Z

0

x

2�2

2y dz dy dx

=

Z

1

�
p
2

Z

x�1

1�x

2y
�

2� x

2

�

dydx

=

Z

1

�
p
2

�

2� x

2

�



y

2

2

�

1�x

x�1

dx

= 0

17.

Z

3

0

Z

1

0

Z

p
1�z

2

0

ze

y

dx dz dy

=

Z

3

0

Z

1

0

z

⇣

p

1� z

2

⌘

e

y

dz dy
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= �1

2

Z

3

0

"

�

1� z

2

�

3/2

3

2

#

1

0

e

y

dy

=
1

3

Z

3

0

e

y

dy =
1

3

�

e

3 � 1
�

18.

Z

2

1

Z

e

z

0

Z

4

2

yz

x

2 � 1
dx dy dz

=

Z

2

1

Z

e

z

0

yz



1

2
ln

✓

x� 1

x+ 1

◆�

4

2

dy dz

=
1

2
ln

✓

9

5

◆

Z

2

1

Z

e

z

0

yz dy dz

=
1

2
ln

✓

9

5

◆

Z

2

1

z



y

2

2

�

e

z

0

dz

=
1

4
ln

✓

9

5

◆

Z

2

1

e

2z

dz

=
1

8
ln

✓

9

5

◆

⇥

e

2z

⇤

2

1

=
1

8
ln

✓

9

5

◆

�

e

4 � e

2

�

19.

1

Z

0

u

Z

0

w

Z

0

ue

�w

2

dv dw du

=

1

Z

0

u

Z

0

ue

�w

2

[v]w
0

dw du

=

1

Z

0

u

Z

0

ue

�w

2

w dw du

= �1

2

1

Z

0

⇥

e

�t

⇤

u

2

0

udu

�

putw2 = t

�

= �1

2

1

Z

0

h

ue

�u

2

� u

i

du

= �1

2

 



�1

2
e

�u

2

� u

2

2

�

1

0

!

= �1

2

✓

� 1

2e
� 1

2
+

1

2

◆

=
1

4e

20.

Z

1

0

Z

v

0

Z

w

0

ue

�w

du dw dv

=

Z

1

0

Z

v

0

e

�w



u

2

2

�

w

0

dw dv

=
1

2

Z

1

0

Z

v

0

w

2

e

�w

dw dv

=
1

2

Z

1

0

⇥

�w

2

e

�w � 2we�w � 2e�w

⇤

v

0

=
1

2

Z

1

0

⇥

�v

2

e

�v � 2ve�v � 2e�v + 2
⇤

dv

=
1

2

⇥

11e�1 � 4
⇤

21.

-1
-0.50

0.2

0-1

0.4

0.6

-0.5

0.8

0.5
0

1

1.2

0.5

1.4

1
1

The integral in Exercise 9 was zero because of
the symmetry: the positive and negative parts
of the integrand 2xy canceled each other. Note
that for this to occur the region had the sym-
metric as well.

If the integrand had been 2x2

y then the in-
tegral would still have been zero due to the
symmetry in y.

If the integral had been 2x2

y

2 then we lose the
symmetry that caused the integral to be zero.
In this case, you can work out the integral to
be
ZZZ

Q

2x2

y

2

dV =
⇡

48

22.

Z

6

0

Z

6�x

0

Z

6�x�y

0

(z � x) dz dy dx

=

Z

6

0

Z

6�x

0

✓

18� 12x� 6y +
3

2
x

2

+2xy +
1

2
y

2

◆

dy dx

=

Z

6

0

✓

36� 36x+ 9x2 � 2

3
x

3

◆

dx

= 0

The solid is symmetric with respect to x

and z, so the positive and negative parts of
f(x, y, z) = z � x cancel each other out.

23. This is a cylinder in the y-direction.

The base can be described as
{(x, z) : x2  z  1,�1  x  1}
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V =

ZZZ

Q

dV

=

Z

1

�1

Z

1

x

2

Z

2

0

dy dz dx

=

Z

1

�1

Z

1

x

2

2 dz dx

=

Z

1

�1

2(1� x

2) dz dx =
8

3

24.

Z

4

2

Z

1

�1

Z

1�y

2

0

dz dy dx

=

Z

4

2

Z

1

�1

�

1� y

2

�

dy dx

=

Z

4

2

4

3
dx =

8

3

25. In this case the description actually describes
two solids. What we have is a “tunnel” in the
x-direction (z = 1 � y

2). This “tunnel” is but
by two planes: x = 4 and 2x + z = 4 (which
meet at z = �4). These two planes cut a wedge
from the tunnel. Finally, the plane z = 0 cuts
this wedge in two. We will find both these vol-
umes.

1

0.5
-0.2 1 0

0

1.5 y
2

0.2

-0.52.5

0.4

3x

0.6

3.5 -1
4

0.8

1

1.2

Volume ´ 1

2

1
-4

1 0 y1.5

-3

2 -12.5

-2

3x 3.5

-1

-2
4

0

1

Volume ´ 2

First the lower solid (z  0):

V

1

=

ZZZ

Q

dV

=

Z

0

�4

Z

p
1�z

�
p
1�z

Z

4

(4�z)/2

dx dy dz

=

Z

0

�4

Z

p
1�z

�
p
1�z

z + 4

2
dy dz

=

Z

0

�4

(4 + z)
p
1� z dz

=



� (3z + 22)

15
(1� z)3/2

�

0

�4

=
20
p
5

3
� 44

15
Now the upper solid (z � 0). Note that the
integral is the same except for the z-limits.

V

2

=

ZZZ

Q

dV

=

Z

1

0

Z

p
1�z

�
p
1�z

Z

4

(4�z)/2

dx dy dz

=



� (3z + 22)

15
(1� z)3/2

�

1

0

=
44

15

26. This solid can be a bit di�cult to visualize. No-
tice that line segments in the y-direction will
enter the solid at y = �1 and will leave the
solid in the plane y + z = 5 (the other bound-
aries are are “parallel” to the y-direction).
This means that we will integrate y first with
these limits.

Once the y-integral is done, we integrate x and
z where the region is bounded by z = x

2 and
z = x + 2. Note that these curves intersect
when x = �1, 2.

V =

ZZZ

Q

dV

=

Z

2

�1

Z

x+2

x

2

Z

5�z

�1

dy dz dx

=

Z

2

�1

Z

x+2

x

2

(6� z) dz dx

=

Z

2

�1

✓

10 + 4x� 13

2
x

2 +
1

2
x

4

◆

dx

=
99

5

-1
-1

0

-0.5
0 0

1

1 0.52 x

2

13y 1.54

3

25

4
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27. V =

ZZZ

Q

dV

=

Z

p
10

�
p
10

Z

4�x

2

�6

Z

y+6

0

dz dy dx

=

Z

p
10

�
p
10

Z

4�x

2

�6

(y + 6) dy dx

=

Z

p
10

�
p
10

✓

x

4

2
� 10x2 + 50

◆

dx

=
160

p
10

3

28.

Z

2

�2

Z

4

y

2

Z

8�x

6�x

dz dx dy

=

Z

2

�2

Z

4

y

2

2 dx dy

=

Z

2

�2

�

8� 2y2
�

dy =
64

3

29. The equations z = y

2 and z = 1 give a cylindri-
cal boundary (in the y direction), with a base
{(x, z) : x2  z  1,�1  x  1}
y goes from 0 to 3� x.

V =

ZZZ

Q

dV

=

Z

1

�1

Z

1

x

2

Z

3�x

0

dy dz dx

=

Z

1

�1

Z

1

x

2

(3� x) dz dx

=

Z

1

�1

(3� x)(1� x

2) dx

=

Z

1

�1

(3� x� 3x2 + x

3) dx = 4

30.

Z

2

�2

Z

4

y

2

Z

2+x

0

dz dx dy

=

Z

2

�2

Z

4

y

2

(2 + x) dx dy

=

Z

2

�2

✓

16� 2y2 � y

4

2

◆

dy

=
704

15

31. V =

ZZZ

Q

dV

=

Z

1

0

Z

1�z

z�1

Z

1�z

z�1

dy dx dz

=

Z

1

0

Z

1�z

z�1

2(1� z) dx dz

=

Z

1

0

4(1� z)2 dz =
4

3

32. V =

ZZZ

Q

dV

=

Z

2

�2

Z

5�y

2

1

Z

6�z

z�6

dx dz dy

=

Z

2

�2

Z

5�y

2

1

2(6� z) dz dy

=

Z

2

�2

(24� 2y2 � y

4) dy =
1088

15

33. This is a good problem for polar coordinates
in the xy-plane.

V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

2

0

Z

4�r

2

0

r dz dr d✓

=

Z

2⇡

0

Z

2

0

r(4� r

2) dr d✓

=

Z

2⇡

0

4 d✓ = 8⇡

34. This is a good problem for polar coordinates
in the xy-plane.

V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

1

0

Z

6�r cos ✓�r sin ✓

0

r dz dr d✓

=

Z

2⇡

0

Z

1

0

(6� r cos ✓ � r sin ✓)r dr d✓

=

Z

2⇡

0

✓

3� 1

3
cos ✓ � 1

3
sin ✓

◆

d✓

= 6⇡

35. We convert to polar coordinates in the xy-
plane.

m =

ZZZ

Q

⇢(x, y, z) dV

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

Z

4

x

2

+y

2

4 dz dy dx

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

4(4� x

2 � y

2) dz dy dx

=

Z

2⇡

0

Z

2

0

4r(4� r

2) dr d✓

=

Z

2⇡

0

16 d✓ = 32⇡

M

yz

=

ZZZ

Q

x⇢(x, y, z) dV

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

Z

4

x

2

+y

2

4x dz dy dx

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

4x(4� x

2 � y

2) dz dy dx
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=

Z

2⇡

0

Z

2

0

4r2(4� r

2) cos ✓ dr d✓

=

Z

2⇡

0

256

15
cos ✓ d✓ = 0

x =
M

yz

m

= 0

M

xz

=

ZZZ

Q

y⇢(x, y, z) dV

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

Z

4

x

2

+y

2

4x dz dy dx

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

4x(4� x

2 � y

2) dz dy dx

=

Z

2⇡

0

Z

2

0

4r2(4� r

2) sin ✓ dr d✓

=

Z

2⇡

0

16 d✓ = 32⇡

y =
M

xz

m

= 0

M

xy

=

ZZZ

Q

z⇢(x, y, z) dV

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

Z

4

x

2

+y

2

4z dz dy dx

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

2
⇥

16� (x2 + y

2)2
⇤

dz dy dx

=

Z

2⇡

0

Z

2

0

2r(16� r

4) dr d✓

=

Z

2⇡

0

128

3
d✓ =

256⇡

3

z =
M

xy

m

=
8

3

36. We convert to polar coordinates in the xy-
plane.

m =

ZZZ

Q

⇢(x, y, z) dV

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

Z

4

x

2

+y

2

(2 + x) dz dy dx

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

(2 + x)(4� x

2 � y

2) dy dx

=

Z

2⇡

0

Z

2

0

r(4� r

2)(2 + r cos ✓) dr d✓

=

Z

2⇡

0

✓

64

15
cos ✓ + 8

◆

d✓

= 16⇡

M

yz

=

ZZZ

Q

x⇢(x, y, z) dV

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

Z

4

x

2

+y

2

x(2 + x) dz dy dx

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

x(2+x)(4�x

2�y

2) dy dx

=

Z

2⇡

0

Z

2

0

r

2(4�r

2)(2+r cos ✓) cos ✓ dr d✓

=

Z

2⇡

0

✓

16

3
cos2 ✓ +

128

15
cos ✓

◆

d✓

=
16⇡

3

x =
M

yz

m

=
1

3

M

xz

=

ZZZ

Q

y⇢(x, y, z) dV

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

Z

4

x

2

+y

2

y(2 + x) dz dy dx

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

y(2+x)(4�x

2�y

2) dy dx

=

Z

2⇡

0

Z

2

0

r

2(4�r

2)(2+r cos ✓) sin ✓ dr d✓

=

Z

2⇡

0

✓

8

3
sin 2✓ +

128

15
sin ✓

◆

d✓

= 0

y =
M

xz

m

= 0

M

xy

=

ZZZ

Q

z⇢(x, y, z) dV

=

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

Z

4

x

2

+y

2

z(2 + x) dz dy dx

=
1

2

Z

2

�2

Z

p
4�x

2

�
p
4�x

2

(2+x)
⇥

16� (x2 + y

2)2
⇤

dy dx

= �1

2

Z

2⇡

0

Z

2

0

r(2 + r cos ✓)(16� r

4) dr d✓

=

Z

2⇡

0

✓

256

21
cos ✓ +

64

3

◆

d✓

z =
M

xy

m

=
8

3

37. m =

ZZZ

Q

⇢(x, y, z) dV

=

Z

6

0

Z �x/3+2

0

Z

6�x�3y

0

(10 + x) dz dy dx

=

Z

6

0

Z �x/3+2

0

(6� x� 3y)(10 + x) dy dx

=

Z

6

0

✓

60� 14x� 1

3
x

2 +
1

6
x

3

◆

dx

= 138

M

yz

=

ZZZ

Q

x⇢(x, y, z) dV

=

Z

6

0

Z �x/3+2

0

Z

6�x�3y

0

x(10 + x) dz dy dx

=

Z

6

0

Z �x/3+2

0

(6� x� 3y)x(10 + x) dy dx

=

Z

6

0

✓

60x� 14x2 � 1

3
x

3 +
1

6
x

4

◆

dx
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=
1116

5

x =
M

yz

m

=
186

115

M

xz

=

ZZZ

Q

y⇢(x, y, z) dV

=

Z

6

0

Z �x/3+2

0

Z

6�x�3y

0

y(10 + x) dz dy dx

=

Z

6

0

Z �x/3+2

0

(6� x� 3y)y(10 + x) dy dx

=

Z

6

0

✓

40� 16x+
4

3
x

2 +
4

27
x

3 � 1

54
x

4

◆

dx

=
336

5

y =
M

xz

m

=
56

115

M

xy

=

ZZZ

Q

z⇢(x, y, z) dV

=

Z

6

0

Z �x/3+2

0

Z

6�x�3y

0

z(10 + x) dz dy dx

=

Z

6

0

Z �x/3+2

0

1

2
(6� x� 3y)2(10 + x) dy dx

=

Z

6

0

✓

120� 48x+ 4x2 +
4

9
x

3 � 1

18
x

4

◆

dy dx

=
1008

5

z =
M

xy

m

=
168

115

38. m =

ZZZ

Q

⇢(x, y, z) dV

=

Z

2

0

Z

4�2x

0

Z

1�x/2�y/4

0

(1 + x) dz dy dx

=
1

4

Z

2

0

Z

4�2x

0

(1 + x)(4� 2x� y) dy dx

=

Z

2

0

✓

2� 3x2

2
+

x

3

2

◆

dx

= 2

M

yz

=

ZZZ

Q

x⇢(x, y, z) dV

=

Z

2

0

Z

4�2x

0

Z

1�x/2�y/4

0

x(1 + x) dz dy dx

=
1

4

Z

2

0

Z

4�2x

0

x(1 + x)(4� 2x� y) dy dx

=

Z

2

0

✓

2x� 3x3

2
+

x

4

2

◆

dx

=
6

5

x =
M

yz

m

=
3

5

M

xz

=

ZZZ

Q

y⇢(x, y, z) dV

=

Z

2

0

Z

4�2x

0

Z

1�x/2�y/4

0

y(1 + x) dz dy dx

=
1

4

Z

2

0

Z

4�2x

0

y(1 + x)(4� 2x� y) dy dx

=

Z

2

0



1

3
(1 + x)(2� x)3

�

dx

=
28

15

y =
M

xz

m

=
14

15

M

xy

=

ZZZ

Q

z⇢(x, y, z) dV

=

Z

2

0

Z

4�2x

0

Z

1�x/2�y/4

0

z(1 + x) dz dy dx

=
1

32

Z

2

0

Z

4�2x

0

(1 + x)(4� 2x� y)2 dy dx

=
1

12

Z

2

0

(1 + x)(2� x)3 dx

=
7

15

z =
M

xy

m

=
7

30

39. In Exercise 35, the figure is completely sym-
metrical about the yz-plane. In addition, den-
sity is also symmetrical about the yz-plane (the
density is constant).

In Exercise 36, the figure is symmetrical but
the density function is not. The figure is heav-
ier on the positive x side of the figure, which
pulls the center of gravity towards the positive
x axis.

40. Yes, because the solid and its density function
are both symmetric about the yz-plane.

41.

ZZZ

Q

4yz dV

=

Z

1

0

Z

2�2y

0

Z

2�2y�z

0

4yz dx dz dy

=

Z

2

0

Z

1�x/2

0

Z

2�x�2y

0

4yz dz dy dx

=

Z

2

0

Z

2�x

0

Z

1�x/2�z/2

0

4yz dy dz dx

=
4

15

42.

Z

3

0

Z

12�4x

0

Z

4�4x/3�y/3

0

(3x� 2y) dz dy dx

=

Z

4

0

Z

12�3z

0

Z

3�y/4�3z/4

0

(3x� 2y) dx dy dz

=

Z

12

0

Z

3�y/4

0

Z

4�4x/3�y/3

0

(3x� 2y) dz dx dy
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=

Z

3

0

Z

4�4x/3

0

Z

12�4x�3z

0

(3x� 2y) dy dz dx

= �90

43.

Z

2

0

Z

4�2y

0

Z

4�2y�z

0

dx dz dy

=

Z

2

0

Z

4�2y

0

Z

4�x�2y

0

dz dx dy

0
1
2
3
4

2.521.510.500
-0.5

1

2

3

4

5

44.

Z

1

0

Z

2�2y

0

Z

2�x�2y

0

dz dx dy

=

Z

2

0

Z

1�z/2

0

Z

2�2y�z

0

dx dy dz

-0.50 0.5 x1 1.5
2 2.5

1.20.8

y
0.40-0.4

0

0.5

1

1.5

2

2.5

3

45.

Z

1

0

Z

p
1�x

2

0

Z

p
1�x

2�y

2

0

dz dy dx

=

Z

1

0

Z

p
1�x

2

0

Z

p
1�x

2�z

2

0

dy dz dx

-0.2
0
0.2
0.4
0.6
0.8
1

1.2
1.2

10.80.60.40.20-0.2
0

0.2

0.4

0.6

0.8

1

1.2

46.

Z

1

0

Z

1�x

2

0

Z

2�x

0

dy dz dx

=

Z

1

0

Z

2�x

0

Z

1�x

2

0

dz dy dx

-0.50 x0.51
1.5

2.521.5
y
10.50-0.5

0

0.5

1

1.5

2

47.

Z

2

0

Z

p
4�z

2

0

Z

4

x

2

+z

2

dy dx dz

=

Z

2

0

Z

4

z

2

Z

p
y�z

2

0

dx dy dz

0
0

0
1 2

0.5

1

0.5
3

1.5

2

41
1.5
2

48.

Z

2

0

Z

p
4�z

2

0

Z

2

p
y

2

+z

2

dx dy dz

=

Z

2

0

Z

2

z

Z

p
x

2�z

2

0

dy dx dz

-0.5 -0.5

-0.5
00
0

0.5 0.5

0.5

1
1.5

1

1

x y

1.5

1.5

22

2

2.52.5

2.5

49. The volume of the tetrahedron is
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V =

Z

a

0

Z

b(1�x/a)

0

Z

c(1�x/a�y/b)

0

dz dy dx

=

Z

a

0

Z

b(1�x/a)

0

c

⇣

1� x

a

� y

b

⌘

dy dx

=

Z

a

0

bc

2

⇣

1� x

a

⌘

2

dx =
abc

6

which is
1

6
the volume of the parallelepiped,

abc.

50.

Z

b

a

Z

d

c

Z

f

e

f(x)g(y)h(z) dz dy dx

=

Z

b

a

Z

d

c

f(x)g(y)

"

Z

f

e

h(z) dz

#

dy dx

=

"

Z

f

e

h(z) dz

#(

Z

b

a

f(x)

"

Z

d

c

g(y) dy

#

dx

)

=

"

Z

f

e

h(z) dz

#"

Z

d

c

g(y) dy

#"

Z

b

a

f(x) dx

#

In general this does not work—this can only be
done if the limits of integration are constants.

51. The key here is to split up the tetrahedron, T .
The planes x = y, x = z and y = z split

3-space into regions where
max{x, y, z} = x,
max{x, y, z} = y, or
max{x, y, z} = z.

In fact, these planes split up the tetrahedron
into something like this:

654321

-0.5

0
00

0.5

1

1.5

1

2

2.5

2

3

The´ tetrehedron ´ T

It turns out that we will not need to worry
about all these divisions. Lets work with this
a bit more so that it is easier to see and com-
pute.

If we start with the tetrahedron, the plane
y = x cuts it into two pieces. One where y < x

and the other where y > x. Let A be the part
where y > x and let B be the part where y < x.
Notice that on all of A, because y > x, we have
max{x, y, z} = max{y, z}

Similarly, on B we have
max{x, y, z} = max{x, z}

We will analyze the integral for A extensively
and leave much of the work for the B case to
the reader. A is pictured below:

654321

-0.5

0
00

0.5

1

1.5

1

2

2.5

2

3

The´ Solid ´ A

ZZZ

T

max{x, y, z} dV

=

ZZZ

A

max{x, y, z} dV

+

ZZZ

B

max{x, y, z} dV

Next, the plane y = z divides A into two solids.
On the “upper” part of A, call it A

u

, we have
max{x, y, z} = z

On the “lower” part of A, call it A
l

, we have
max{x, y, z} = y

Now, we have straightened out the functions,
but the integrals are still not done. The inte-
gral over A

u

is relatively straightforward. The
most di�cult part is determining the region in
the xy-plane for the outer limits.

ZZZ

A

u

z dV

=

Z

1

0

Z �x/2+3/2

x

Z

(6�2x�y)/3

y

z dz dy dx

=
9

16

Now for the integral over A
l

. We will integrate
z first. A

l

lies above the region in the xy-plane
shown below. Notice that line segments en-
tering A

l

will enter through the plane z = 0,
but they could leave through one of two planes
(y = z and 2x + y + 3z = 6). If the line seg-
ments are in the lower triangle in the picture
below, then these segments will leave through
the plane y = z.
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x
3

y
5

1.5

3

1

0.5 2.52

4

0
0

6

2

1

Region ´ of ´ Integration ´ for ´ A_l

Therefore
ZZZ

A

l

y dV

=

Z

1

0

Z

(3�x)/2

x

Z

y

0

y dz dy dx

+

Z

1

0

Z

6�2x

(3�x)/2

Z

(6�2x�y)/3

0

y dz dy dx

+

Z

2

1

Z

6�2x

x

Z

(6�2x�y)/3

0

y dz dy dx

=
19

32
+

195

32
+ 1 =

123

16

Analyzing B in the same manner gives
ZZZ

B

u

z dV

=

Z

1

0

Z

(6�y)/5

y

Z

(6�2x�y)/3

x

z dz dx dy

=
21

50
and

ZZZ

B

l

y dV

=

Z

1

0

Z

(6�y)/5

y

Z

x

0

x dz dx dy

+

Z

1

0

Z

(6�y)/2

(6�y)/5

Z

(6�2x�y)/3

0

x dz dx dy

+

Z

2

1

Z

(6�y)/2

y

Z

(6�2x�y)/3

0

x dz dx dy

=
91

250
+

6039

4000
+

13

23
=

44877

18400

Putting everything together gives
ZZZ

T

max{x, y, z} dV

=
9

16
+

123

16
+

21

50
+

44877

18400

=
40881

3680
⇡ 11.10897

52. The key is to split up the tetrahedron T . The
planes x = y, x = z and y = z split T into

3-space regions where min {x, y, z} = x

min {x, y, z} = y

min {x, y, z} = y

6
5

4
3

2
1

0
00

1

1

2

2

3

4

3

4

5

(a) In the region say A bounded by z = x, z =
y, z = 0, 2x + y + 3z = 6, the function is
f (x, y, z) = z

(b) In the region sayB bounded by y = x, y =
z, y = 0, 2x + y + 3z = 6, the function is
f (x, y, z) = y

(c) In the region say C bounded by x = z, x =
y, x = 0, 2x + y + 3z = 6, the function is
f (x, y, z) = x

ZZZ

T

f (x, y, z) dV

=

ZZZ

T

min {x, y, z} dV

=

ZZZ

A

min {x, y, z} dV

+

ZZZ

B

min {x, y, z} dV

+

ZZZ

C

min {x, y, z} dV

=

ZZZ

A

zdV +

ZZZ

B

ydV +

ZZZ

C

xdV

=

Z

1

0

Z

6�5z

z

Z

6�2x�y

3

z

zdxdydz

+

Z

1

0

Z

3�2y

y

Z

6�2x�y

3

y

ydzdxdy

+

Z

1

0

Z

6�5x

x

Z

6�2x�y

3

x

xdzdydx

=
3

4
+

1

4
+

1

2

=
3

2
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53. The total pollutant in the room is given by
ZZZ

Q

f(x, y, z) dV

=

Z

12

0

Z

12

0

Z

8

0

f(x, y, z) dz dy dx

=

Z

12

0

Z

12

0

Z

8

0

xyze

�x

2�2y

2�4z

2

dz dy dx

=

Z

12

0

Z

12

0

Z

8

0

·
⇣

xe

�x

2

⌘⇣

ye

�2y

2

⌘⇣

ze

�4z

2

⌘

dz dy dx

=



Z

12

0

xe

�x

2

dx

�

·


Z

12

0

ye

�2y

2

dy

�

·


Z

8

0

ze

�4z

2

dz

�

=



1� e

�144

2

� 

1� e

�288

4

� 

1� e

�256

8

�

=
(1� e

�144)(1� e

�288)(1� e

�256)

64
⇡ 0.015625

The average density of pollutant in the room
is the total divided by the volume of the room,
which is V = (12)(12)(8) = 1152.

Ave =
Total Pollutant

Volume

=

h

(1�e

�144

)(1�e

�288

)(1�e

�256

)

64

i

1152
⇡ 1.356�5 grams per cubic foot

54. As shown in Exercise 53, the pollutant level for
the entire room is
1.3563⇥ 10�5grams per cubic foot

To find a portion of the room, we look for re-
gion in the room where f is large. Accordingly,
consider the region, R

1

of the room given by:
0.6  x  0.8
0.4  y  0.6
0.3  z  0.4

The pollutant in this region is
ZZZ

R

1

f(x, y, z) dV

=

Z

0.8

0.6

Z

0.6

0.4

Z

0.4

0.3

f(x, y, z) dz dy dx

=



Z

0.8

0.6

xe

�x

2

dx

�

·


Z

0.6

0.4

ye

�2y

2

dy

�

·


Z

0.4

0.3

ze

�4z

2

dz

�

⇡ (0.08519)(0.05985)(0.02130)
⇡ 0.0001086

The volume of this region is 0.004 cubic feet.
Therefore the average density in this region is
approximately

0.0001086

0.004
⇡ 0.0275 grams per cubic foot

which is clearly above the danger level.

55. We need to solve for c:

1 =

ZZZ

Q

c dV

= c

Z

2

0

Z

1�x/2

0

Z

2�x�2y

0

dz dy dx

= c

Z

2

0

Z

1�x/2

0

(2� x� 2y) dy dx

= c

Z

2

0

Z

1�x/2

0

✓

1� x� 1

4
x

2

◆

dx

=
2c

3

Therefore c =
3

2
.

56. From Exercise 55, f(x, y, z) =
3

2
.

P (z < 1)

=

Z

1

0

Z

1�z/2

0

Z

2�2y�z

0

3

2
dx dy dz

=

Z

1

0

Z

1�z/2

0

✓

3� 3y � 3

2
z

◆

dy dz

=

Z

1

0

✓

3

2
� 3

2
z +

3

8
z

2

◆

dz =
7

8

57. To make this as easy as possible, we will set up
the integral so that z is the outer variable. We
want to solve the following for k:

1

2
= P (z < k)

=

Z

k

0

Z

1�z/2

0

Z

2�2y�z

0

3

2
dx dy dz

=

Z

k

0

Z

1�z/2

0

✓

3� 3y � 3

2
z

◆

dy dz

=

Z

k

0

✓

3

2
� 3

2
z +

3

8
z

2

◆

dz

=
3

2
k � 3

4
k

2 +
1

8
k

3

This gives us the equation to solve:
3

2
k � 3

4
k

2 +
1

8
k

3 =
1

2
k

3 � 6k2 + 12k � 4 = 0

A numerical solution of this polynomial can be
found by graphing or using a polynomial root
finder.

A simpler solution is to use the fact that if
you cut the top o↵ the tetrahedron at z = k,
then the removed piece is proportional to the
original, and the factor or proportionality is
(2�k)/2 (as it is in the z-direction). Therefore,
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if we want to remove exactly half the volume
then we must have
✓

2� k

2

◆

3

=
1

2

Solving for k gives
k = 2� 22/3 ⇡ 0.41256

58. From Exercise 57, k ⇡ 0.4126 and

P (z < k) =
1

2

To find the center of mass of the tetrahedron,
we assume that the mass density is 1.

m =

ZZZ

Q

1 dV =
2

3

z =
1

m

ZZZ

Q

z dV

=
3

2

Z

2

0

Z

1�z/2

0

Z

2�2y�z

0

z dx dy dz

=
3

2

Z

2

0

Z

1�z/2

0

z(2� 2y � z) dy dz

=
3

2

Z

2

0

✓

z � z

2 +
z

3

4

◆

dz

=
1

2
> k

13.6 Cylindrical Coordinates

1. x

2 + y

2 = 16
r

2 = 16
r = 4

2. x

2 + y

2 = 1
r

2 = 1
r = 1

3. (x� 2)2 + y

2 = 4
x

2 � 4x+ 4 + y

2 = 4
x

2 � 4x+ y

2 = 0
x

2 + y

2 � 4x = 0
r

2 � 4r cos ✓ = 0
r(r � 4 cos ✓) = 0
r = 4 cos ✓

4. x

2 + (y � 3)2 = 9
x

2 + y

2 � 6y + 9 = 9
r

2 cos2 ✓ + r

2 sin2 ✓ � 6r sin ✓ = 0
r

2 � 6r sin ✓ = 0
r(r � 6 sin ✓) = 0
r = 6 sin ✓

5. z = x

2 + y

2

z = r

2

6. z =
p

x

2 + y

2

z =
p
r

2

z = |r|

7. y = 2x
r sin ✓ = 2r cos ✓
sin ✓

cos ✓
= 2

tan ✓ = 2

8. z = e

�x

2�y

2

z = e

�r

2

9. The lower boundary surface is
z =

p

x

2 + y

2 = r

The upper boundary surface is
z =

p

8� x

2 � y

2 =
p
8� r

2

These meet with r = 2. Therefore
ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

p
8�r

2

r

f(r cos ✓, r sin ✓, z)

· r dz dr d✓

10.

ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

0

�r

f(r cos ✓, r sin ✓, z)

· r dz dr d✓

11. The upper boundary surface is 9� r

2.
The lower boundary surface is z = 0.

These meet when r = 3.
ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

3

0

Z

9�r

2

0

f(r cos ✓, r sin ✓, z)

· r dz dr d✓

12.

ZZZ

Q

f(x, y, z) dV

=

Z

⇡/2

0

Z

2

0

Z

4�r

2

0

f(r cos ✓, r sin ✓, z)

· r dz dr d✓

13.

ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

p
8

p
3

Z

8

r

2�1

f(r cos ✓, r sin ✓, z)

· r dz dr d✓

14.

ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

p
2

0

Z �r

2

r

2�4

f(r cos ✓, r sin ✓, z)

· r dz dr d✓
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15. Here, we use polar coordinates in the xz-plane.
This means that we will have x = r cos ✓, y = y

and z = r sin ✓. In this case the integral will
be
ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

4�r

2

0

f(r cos ✓, y, r sin ✓)

· r dy dr d✓

16.

ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

9

0

Z

9

r

f(r cos ✓, y, r sin ✓)

· r dy dr d✓

17. We use polar coordinates in the yz-plane.
ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

1

0

Z

2�r

2

r

2

f(x, r cos ✓, r sin ✓)

· r dx dr d✓

18.

ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

4

0

Z

4

r

f(x, r cos ✓, r sin ✓)

· r dx dr d✓

19. We split the integral up:
ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

3

2

f(r cos ✓, r sin ✓, z)

· r dz dr d✓

+

Z

2⇡

0

Z

3

2

Z

3

r

f(r cos ✓, r sin ✓, z)

· r dz dr d✓

Of course, splitting the integral can be avoided
like this:
ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

3

2

Z

z

0

f(r cos ✓, r sin ✓, z)

· r dr dz d✓

20. We split the integral up:
ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

1

0

Z

3

1

f(r cos ✓, r sin ✓, z)

· r dz dr d✓

+

Z

2⇡

0

Z

p
3

1

Z

4�r

2

1

f(r cos ✓, r sin ✓, z)

· r dz dr d✓

Of course, splitting the integral can be avoided
like this:
ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

3

1

Z

p
4�z

0

f(r cos ✓, r sin ✓, z)

· r dr dz d✓

21.

RRR

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

p
15

0

Z

4

p
1+r

2

f(x, r sin ✓, r cos ✓)

· r dx dr d✓

22.

ZZZ

Q

f(x, y, z)dV

=

Z

2⇡

0

Z

2

�2

Z

p
1+z

2

0

f(x, r sin ✓, r cos ✓)

· r dx dr d✓

23.

ZZZ

Q

f(x, y, z)dV

=

Z

2⇡

0

Z

ln 2

0

Z

2

e

r

f(x, r sin ✓, r cos ✓)

· r dx dr d✓

24.

ZZZ

Q

f(x, y, z)dV

=

Z

2⇡

0

Z

p
2

0

Z

e

4�r

2

e

r

2

f(x, r sin ✓, r cos ✓)

· r dx dr d✓

25.

ZZZ

Q

e

x

2

+y

2

dV

=

Z

2⇡

0

Z

2

0

Z

2

1

re

r

2

dz dr d✓

=

Z

2⇡

0

Z

2

0

re

r

2

dr d✓

=

Z

2⇡

0

✓

e

4 � 1

2

◆

d✓

= ⇡(e4 � 1)

26.

ZZZ

Q

ze

p
x

2

+y

2

dV

=

Z

2⇡

0

Z

2

1

Z

3

0

rze

r

dz dr d✓

=

Z

2⇡

0

Z

2

1

9

2
re

r

dr d✓

=

Z

2⇡

0

9

2
e

2

d✓ = 9⇡e2
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27.

ZZZ

Q

(x+ z) dV

=

Z

6

0

Z

(6�x)/2

0

Z

(6�x�2y)/3

0

(x+ z) dz dy dx

=

Z

6

0

Z

(6�x)/2

0

✓

4

3
x� 5

18
x

2 � 4

9
xy

+2� 4

3
y +

2

9
y

2

◆

dy dx

=

Z

6

0

✓

2 + 2x� 5

6
x

2 +
2

27
x

3

◆

dy dx

= 12

28.

ZZZ

Q

(y + 2) dV

=

Z

4

0

Z

4�x

0

Z

2

1

(y + 2) dy dz dx

=

Z

4

0

Z

4�x

0

7

2
dz dx

=

Z

4

0

✓

14� 7

2
x

◆

dx = 28

29.

ZZZ

Q

z dV

=

Z

2⇡

0

Z

p
2

0

Z

p
4�r

2

r

zr dz dr d✓

= 2⇡

Z

p
2

0

Z

p
4�r

2

r

zr dz dr

= ⇡

Z

p
2

0

(4� 2r2)r dr = 2⇡

30.

ZZZ

Q

p

x

2 + y

2

dV

=

Z

2⇡

0

Z

2

0

Z

r

0

r

2

dz dr d✓

=

Z

2⇡

0

Z

2

0

r

3

dr d✓

=

Z

2⇡

0

4 d✓ = 8⇡

31.

ZZZ

Q

(x+ y) dV

=

Z

2

0

Z

4�2y

0

Z

4�x�2y

0

(x+ y) dz dx dy

=

Z

2

0

Z

4�2y

0

(x+ y)(4� x� 2y) dx dy

=

Z

2

0

✓

32

3
� 8y +

2

3
y

3

◆

dy = 8

32.

ZZZ

Q

(2x� y) dV

=

Z

2

0

Z

6�3x

0

Z

3�3x/2�y/2

0

(2x� y) dz dy dx

=
1

2

Z

2

0

Z

6�3x

0

(2x� y)(6� 3x� y) dy dx

=
1

4

Z

2

0

(27x3 � 126x2 + 180x� 72) dx

= �3

33.

ZZZ

Q

e

z

dV

=

Z

2⇡

0

Z

2

p
3

Z

0

�
p
4�r

2

re

z

dz dr d✓

= 2⇡

Z

2

p
3

Z

0

�
p
4�r

2

re

z

dz dr

= 2⇡

Z

2

p
3

r

⇣

1� e

�
p
4�r

2

⌘

dr

This integral can be handled using substitu-
tion and then integration by parts. Another
approach that gives a slightly easier integral is
to change the order of integration from dz dr

to dr dz:

2⇡

Z

2

p
3

Z

0

�
p
4�r

2

re

z

dz dr

= 2⇡

Z

0

�1

Z

p
4�z

2

p
3

re

z

dr dz

= ⇡

Z

0

�1

(1� z

2)ez dz

= ⇡

⇥

�(1� 2x+ z

2)ez
⇤

0

�1

= ⇡(4e�1 � 1)

34.

ZZZ

Q

e

z

p

x

2 + y

2

dV

=

Z

2⇡

0

Z

1

0

Z

r

3

0

r

2

e

z

dz dr d✓

=

Z

2⇡

0

Z

1

0

r

2

⇣

e

r

3

� 1
⌘

dr d✓

=

Z

2⇡

0

1

3
(e� 2) d✓ =

2⇡

3
(e� 2)

35. In polar coordinates the circle
x

2 + (y � 1)2 = 1 is given by
r = 2 sin ✓, 0  ✓  ⇡.
ZZZ

Q

2x dV

=

Z

⇡

0

Z

2 sin ✓

0

Z

r

0

2r2 cos ✓ dz dr d✓

= 2

Z

⇡

0

Z

2 sin ✓

0

r

3 cos ✓ dr d✓

= 2

Z

⇡

0

8 sin4 ✓r3 cos ✓ dr d✓

= 0

36. The circle x

2 + (y � 1)2 = 4 is given in polar
form by r = 4 cos ✓, 0  ✓  ⇡.
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ZZZ

Q

y

x

dV

=

Z

⇡

0

Z

4 cos ✓

0

Z

r

2

0

r tan ✓ dz dr d✓

=

Z

⇡

0

Z

4 cos ✓

0

r

3 tan ✓ dr d✓

=

Z

⇡

0

64 cos3 ✓ sin ✓ d✓ = 0

37. I =

Z

2⇡

0

Z

4

0

Z

4

r

r sin r dx dr d✓

=

Z

2⇡

0

Z

4

0

r sin r (4� r) dr d✓

=

Z

2⇡

0

Z

4

0

(4r � r

2) sin r dr d✓

=

Z

2⇡

0

⇥

�
�

4r � r

2

�

cos r + (4� 2r) sin r

�2 cos r]4
0

d✓

=

Z

2⇡

0

(�4 sin 4� 2 cos 4 + 2) d✓

= �4 (2 sin 4 + cos 4� 1)⇡

38. I =

Z

2⇡

0

Z

p
2

1

Z

1

r

2

0

r

3

e

r

dy dr d✓

=

Z

2⇡

0

Z

p
2

1

r

3

e

r

1

r

2

dr d✓

=

Z

2⇡

0

Z

p
2

1

r e

r

dr d✓

=

Z

2⇡

0

[er(r � 1)]
p
2

1

d✓

= 2⇡e
p
2

⇣p
2� 1

⌘

39. I =

Z

0

�1

Z

1+x

0

Z

e

xy

1

1

z

dz dy dx

=

Z

0

�1

Z

1+x

0

[ln z]e
xy

1

dy dx

=

Z

0

�1

Z

1+x

0

xy dy dx

=

Z

0

�1



x

y

2

2

�

1+x

0

dx

=
1

2

Z

0

�1

x(1 + x)2dx

= � 1

24

40. I =

Z

⇡

0

Z

⇡�x

0

Z

sin(x+y)

0

2x dz dy dx

= 2

Z

⇡

0

Z

⇡�x

0

x sin (x+ y) dy dx

= 2

Z

⇡

0

x [� cos (x+ y)]⇡�x

0

dx

= 2

Z

⇡

0

x (1 + cosx) dx

= 2



x

2

2
+ x sinx+ cosx

�

⇡

0

= ⇡

2 � 4

41.

ZZZ

Q

3z2 dV

=

Z

2⇡

0

Z

1

0

Z

r

0

z

2

r dz dr d✓

= 2⇡

Z

1

0

Z

r

0

z

2

r dz dr

= 2⇡

Z

1

0

r

4

3
dr =

2⇡

5

42.

Z

1

0

Z

p
1�x

2

�
p
1�x

2

Z

2�x

2�y

2

0

p

x

2 + y

2

dz dy dx

=

Z

⇡/2

�⇡/2

Z

1

0

Z

2�r

2

0

r

2

dz dr d✓

=

Z

⇡/2

�⇡/2

Z

1

0

(2r2 � r

4) dr d✓

=

Z

⇡/2

�⇡/2

7

15
d✓ =

7⇡

15

43.

ZZZ

Q

2 dV

= 2

Z

⇡

0

Z

2

0

Z

p
8�r

2

r

r dz dr d✓

= 2⇡

Z

2

0

Z

p
8�r

2

r

r dz dr

= 2⇡

Z

2

0

⇣

p

8� r

2 � r

⌘

r dr

= 2⇡



� (8� r

2)3/2

3
� r

3

3

�

2

0

=
32⇡

3
(
p
2� 1)

44.

Z

1

0

Z

p
1�x

2

0

Z

4

1�x

2�y

2

p

x

2 + y

2

dz dy dx

=

Z

⇡/2

0

Z

1

0

Z

4

1�r

2

r

2

dz dr d✓

=

Z

⇡/2

0

Z

1

0

r

2(3 + r

2) dr d✓

=

Z

⇡/2

0

6

5
d✓ =

3⇡

5

45. We use cylindrical coordinates in the xz-plane.
ZZZ

Q

(x2 + z

2) dV
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=

Z

2⇡

⇡

Z

3

0

Z

r

2

0

r

3

dy dr d✓

=

Z

2⇡

⇡

Z

3

0

r

5

dr d✓

= ⇡

Z

3

0

r

5

dr =
243⇡

2

46.

Z

0

�2

Z

p
4�z

2

�
p
4�z

2

Z

4

y

2

+z

2

(y2 + z

2)3/2 dx dy dz

=

Z

2⇡

⇡

Z

2

0

Z

4

r

2

r

4

dx dr d✓

=

Z

2⇡

⇡

Z

2

0

�

4r4 � r

6

�

dr d✓

=

Z

2⇡

⇡

256

35
d✓ =

256⇡

35

47.

-1

-0.5-1-1

-0.5

-0.5 0

0

0

0.5

0.50.5

1

11

48.

-1
-0.50-1

0.2

0-0.5

0.4

x

0.6

0 0.5

0.8

y 0.5

1

11

49.

-1

-0.53-1

3.2

-0.5 0

3.4

3.6

0 0.5

3.8

0.5

4

11

50.

-1

-0.5-1
1.75

0-0.5

1.8

x0

1.85

0.5y

1.9

0.5
1

1.95

1

2

51. This is the plane x = 2.

-4
-2

0
2

4 0
0.5

1
1.5

2
2.5

3

-4

-2

0

2

4

52.

-1

-0.5-10
00.5

-0.5

x
1

0

0.5y 1.5

0.5

12

1

53. This is the plane y = z.
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-2

-1

0
-2
-2

-1

-1 1
0

0

1

1

22

2

54.

-4

-2-1-4

-0.5

0-2 x

0

0

0.5

2y 2

1

4

1.5

4

2

55.

b

r =
hr cos ✓, r sin ✓, 0i

r

= hcos ✓, sin ✓, 0i

56. First, note that

b

r =
hr cos ✓, r sin ✓, 0i

r

= hcos ✓, sin ✓, 0i

b

r · b✓ = hcos ✓, sin ✓, 0i · h� sin ✓, cos ✓, 0i
= � cos ✓ sin ✓ + sin ✓ cos ✓ = 0
b

r · k = hcos ✓, sin ✓, 0i · h0, 0, 1i = 0

k · b✓ = h0, 0, 1i · h� sin ✓, cos ✓, 0i = 0

57. By the chain rule we have

d

b

r

dt

=
d

dt

hcos ✓, sin ✓, 0i

=

⌧

(� sin ✓)
d✓

dt

, (cos ✓)
d✓

dt

, 0

�

=
d✓

dt

b

✓

d

b

✓

dt

=
d

dt

h� sin ✓, cos ✓, 0i

=

⌧

(� cos ✓)
d✓

dt

, (� sin ✓)
d✓

dt

, 0

�

= �d✓

dt

b

r

58. In this case we have r = 2
p
2 and ✓ =

⇡

4
.

v = h2, 2, 0i
= h2

p
2 cos

⇡

4
, 2
p
2 cos

⇡

4
, 0i = rr

59. If v = (3, 3, 0)� (1, 1, 0) = h2, 2, 0i, then

b

r(v) =
v

kvk =
vp
8
=

⌧

1p
2
,

1p
2
, 0

�

and we have v =
p
8 r.

60. In this case we have ✓ =
�3⇡

4
and

b

r =

⌧

� 1p
2
,� 1p

2
, 0

�

v = h2, 2, 0i = �2
p
2r

61. If v = (1, 1, 0)� (0, 2, 0) = h0, 2, 0i, then

b

r(v) =
v

kvk =
v

2
= h0, 1, 0i

Z

⇡/4

�⇡/4

b

✓ d✓

=

*

Z

⇡/4

�⇡/4

� sin ✓ d✓ ,

Z

⇡/4

�⇡/4

cos ✓ d✓ , 0

+

=
D

0,
p
2, 0
E

=
p
2 br

62. Let c =
p
2, a = � 3⇡

4

and b = ⇡

4

.

v = h2, 2, 0i =
p
2

Z

⇡/4

�3⇡/4

b

✓ d✓

63. Any vector v with third component zero has

b

r =
v

kvk so that v = kvkbr

b

r is a unit vector in the same direction as v. In
addition, corresponding to v we have the unit
vector b✓, which is rotated by ⇡/4 counterclock-
wise from v.
b

✓ does not normally appear in a representation
of v. But, in this case we can write

(0, 1, 0)� (�1,�1, 0)

= h2, 2, 0i =
p
2 br =

p
2

Z

⇡/4

�3⇡/4

b

✓ d✓

If v is a function of time, then b✓ will appear in
the vector derivative dv/dt. Using the product
rule on v = r

b

r and Exercise 57:
dv

dt

=
dr

dt

b

r+ r

d

b

r

dt

=
dr

dt

b

r+ r

d✓

dt

b

✓

dv = brdr + r

b

✓d✓

64. As in Exercise 60,

b

r =

⌧

� 1p
2
,� 1p

2
, 0

�

Let a = 2�
p
2, b = 2,

✓

1

= � 3⇡

4

, ✓
2

= ⇡

3

and c = 1. Then,

v = h2, 1 +
p
3, 1i

a

b

r = (2�
p
2)

⌧

� 1p
2
,� 1p

2
, 0

�
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=
D

1�
p
2, 1�

p
2, 0
E

b

Z

⇡/3

�3⇡/4

b

✓ d✓ =
D

1 +
p
2,
p
2 +

p
3, 0
E

which gives

v = (2�
p
2)br+ 2

Z

⇡/3

�3⇡/4

b

✓ d✓ + k

65. m =

ZZZ

Q

⇢(x, y, z) dV

=

Z

2⇡

0

Z

4

0

Z

4

r

r

2

dz dr d✓

= 2⇡

Z

4

0

Z

4

r

r

2

dz dr

= 2⇡

Z

4

0

r

2(4� r) dr =
128⇡

3

Because of the radial symmetry, we must have
x = y = 0.

M

xy

=

ZZZ

Q

z⇢(x, y, z) dV

=

Z

2⇡

0

Z

4

0

Z

4

r

zr

2

dz dr d✓

= 2⇡

Z

4

0

Z

4

r

zr

2

dz dr

= ⇡

Z

4

0

r

2(16� r

2) dr

=
2048⇡

15

z =
M

xy

m

=
16

5

66. m =

ZZZ

Q

⇢ (x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

4�r

2

0

r e

�r

2

dz dr d✓

=

Z

2⇡

0

Z

2

0

r e

�r

2

�

4� r

2

�

dr d✓

=

�

e

�4 + 3
�

2

Z

2⇡

0

d✓

=
�

e

�4 + 3
�

⇡ ⇡ 9.4823

Let (x, y, z) be the center of mass. Then

M

yz

=

ZZZ

Q

x⇢ (x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

4�r

2

0

r

2

e

�r

2

cos ✓ dz dr d✓

=

Z

2⇡

0

Z

2

0

r

2

e

�r

2

�

4� r

2

�

cos ✓ dr d✓

= 0

x =
M

yz

m

= 0

M

xz

=

ZZZ

Q

y⇢ (x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

4�r

2

0

r

2

e

�r

2

sin ✓ dz dr d✓

=

Z

2⇡

0

Z

2

0

r

2

e

�r

2

�

4� r

2

�

sin ✓ dr d✓

= 0

y =
M

zx

m

= 0

M

xy

=

ZZZ

Q

z⇢ (x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

4�r

2

0

r e

�r

2

z dz dr d✓

=
1

2

Z

2⇡

0

Z

2

0

r e

�r

2

�

4� r

2

�

2

dr d✓

=
1

2

Z

2⇡

0

�

�e

� 4 + 5
�

d✓

=
�

�e

� 4 + 5
�

⇡

⇡ 15.6504

z =
M

xy

m

= 1.6505

67. This is similar to Exercise 35.

m =

ZZZ

Q

⇢(x, y, z) dV

=

Z

⇡

0

Z

2 sin ✓

0

Z

4

r

2

4r dz dr d✓

=

Z

⇡

0

Z

2 sin ✓

0

4r(4� r

2) dr d✓

=

Z

⇡

0

�

32 sin2 ✓ � 16 sin4 ✓
�

d✓

= 10⇡

It should be clear from symmetry that
x = 0.

M

xz

=

ZZZ

Q

y⇢(x, y, z) dV

=

Z

⇡

0

Z

2 sin ✓

0

Z

4

r

2

4r2 sin ✓ dz dr d✓

=

Z

⇡

0

Z

2 sin ✓

0

(4� r

2)4r2 sin ✓ dr d✓

=

Z

⇡

0

✓

32

3
sin3 ✓ � 32

5
sin5 ✓

◆

4 sin ✓ d✓

= 8⇡

y =
M

xz

m

=
4

5

M

xy

=

ZZZ

Q

z⇢(x, y, z) dV

=

Z

⇡

0

Z

2 sin ✓

0

Z

4

r

2

4rz dz dr d✓

=

Z

⇡

0

Z

2 sin ✓

0

2r(16� r

4) dr d✓
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=

Z

⇡

0

Z

2 sin ✓

0

✓

64 sin2 ✓ � 64

3
sin6 ✓

◆

dr d✓

=
76⇡

3

z =
M

xy

m

=
38

15

68. m =

ZZZ

Q

⇢ (x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

p
8�r

2

r

r

3

dy dr d✓

=

Z

2⇡

0

Z

2

0

r

3

⇣

p

8� r

2 � r

⌘

dr d✓

= 2⇡

"

�
r

2

�

8� r

2

�

3/2

5

�
16
�

8� r

2

�

3/2

15
� r

5

5

#

2

0

= 2⇡

 

256
p
2

15
� 64

3

!

⇡ 17.6091177
Let (x, y, z) be the center of mass. Then

M

yz

=

ZZZ

Q

x⇢ (x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

p
8�r

2

r

r

4 cos ✓ dy dr d✓

=

Z

2⇡

0

Z

2

0

r

4

⇣

p

8� r

2 � r

⌘

cos ✓ dr d✓

= 0

x =
M

yz

m

= 0

M

xz

=

ZZZ

Q

y⇢ (x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

p
8�r

2

r

r

3

y dy dr d✓

=

Z

2⇡

0

Z

2

0

r

3

�

4� r

2

�

dr d✓

=

Z

2⇡

0

16

3
d✓

=
32⇡

3
= 33.5103

y =
M

xz

m

= 1.90302

M

xy

=

ZZZ

Q

z⇢ (x, y, z) dV

=

Z

2⇡

0

Z

2

0

Z

p
8�r

2

r

r

4 sin ✓ dy dr d✓

=
1

2

Z

2⇡

0

Z

2

0

r

4

⇣

p

8� r

2 � r

⌘

sin ✓ dr d✓

= 0

z =
M

xy

m

= 0

13.7 Spherical Coordinates

1. x = 4 sin 0 cos⇡ = 0
y = 4 sin 0 sin⇡ = 0
z = 4 cos 0 = 4
(x, y, z) = (0, 0, 4)

2. x = 4 sin
⇡

2
cos⇡ = �4

y = 4 sin
⇡

2
sin⇡ = 0

z = 4 cos
⇡

2
= 0

(x, y, z) = (�4, 0, 0)

3. x = 2 sin
⇡

4
cos 0 =

p
2

y = 2 sin
⇡

4
sin 0 = 0

z = 2 cos
⇡

4
=

p
2

(x, y, z) = (
p
2, 0,

p
2)

4. x = 2 sin
⇡

4
cos

2⇡

3
= � 1p

2

y = 2 sin
⇡

4
sin

2⇡

3
=

p
6

2
z = 2 cos

⇡

4
=

p
2

(x, y, z) =

 

� 1p
2
,

p
6

2
,

p
2

!

5. x =
p
2 sin

⇡

6
cos

⇡

3
=

p
2

4

y =
p
2 sin

⇡

6
sin

⇡

3
=

p
6

4

z =
p
2 cos

⇡

6
=

p
6

2

(x, y, z) =

 p
2

4
,

p
6

4
,

p
6

2

!

6. x =
p
2 sin

⇡

6
cos

2⇡

3
= �

p
2

4

y =
p
2 sin

⇡

6
sin

2⇡

3
=

p
6

4

z =
p
2 cos

⇡

6
=

p
6

2

(x, y, z) =

 

�
p
2

4
,

p
6

4
,

p
6

2

!

7. x

2 + y

2 + z

2 = 9
⇢

2 = 9
⇢ = 3
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8. x

2 + y

2 + z

2 = 6
⇢

2 = 6
⇢ =

p
6

9. y = x

⇢ sin� sin ✓ = ⇢ sin� cos ✓
⇢ sin� sin ✓ � ⇢ sin� cos ✓ = 0
⇢ sin� (sin ✓ � cos ✓) = 0
This means either ⇢ = 0 (the origin),
sin� = 0 (the z-axis) or sin ✓ = cos ✓. If

sin ✓ = cos ✓ then tan ✓ = 1 or ✓ =
⇡

4
,

5⇡

4
.

The case ✓ =
⇡

4
,

5⇡

4
includes ⇢ = 0 and

sin� = 0, so these su�ce for an answer.

10. z = 0
⇢ cos� = 0
cos� = 0

� =
⇡

2

11. z = 2
⇢ cos� = 2
⇢ = 2 sec�

12. x

2 + y

2 + (z � 1)2 = 1
x

2 + y

2 + z

2 � 2z = 0
⇢

2 � 2⇢ cos� = 0
⇢(⇢� 2 cos�) = 0
⇢ = 2 cos�

13. z =
p

3(x2 + y

2)
z

2 = 3(x2 + y

2) = 3r2

(⇢ cos�)2 = 3(⇢ sin�)2

tan2 � =
1

3

� =
⇡

6
or � =

5⇡

6

14. z = �
p

x

2 + y

2

z

2 = x

2 + y

2

⇢

2 cos2 � = ⇢

2 sin2 � cos2 ✓ + ⇢

2 sin2 � sin2 ✓
⇢

2 cos2 � = ⇢

2 sin2 �
tan2 � = 1

� =
⇡

4
,

3⇡

4

Since z = �
p

x

2 + y

2 is below the xy-plane,

the equation is � =
3⇡

4

15. x

2 + y

2 + z

2 = 4

-2

-1-2-2
-1 0

-1

x
0

0

1y 1

1

22

2

16. x

2 + y

2 + z

2 = 4

-4

-2-4-4
0-2

-2

x0

0

2y 2

2

44

4

17. z

2 = x

2 + y

2

In practice, ⇢ is often allowed to be negative,
which just means that the point is the oppo-
site direction from the origin. In this problem,
if you restrict to ⇢ � 0 then the graph would
only be the upper cone.

-2
-1

-2

-2

0-1 x

-1

0 1

0

y 1 2

1

2

2

18. This is the xy-plane, z = 0.
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-2

-1-2-2
-1 0

-1

x
0

0

1y
1

1

22

2

19. This is the xz-plane, y = 0. If ⇢ is restricted
to ⇢ � 0 then this would put the restriction on
the plane that x � 0.

-2
-10 x1-2

-2

-1

-1

0

y
0

1

2

1 2
2

20. This is the plane y = x.

-1

-1
-0.5

-0.5
0
0
0

0.2

0.5

0.4

y

x 0.5

0.6

1

0.8

1

1

1.2

1.4

21.

-3
-2

-1
0 x

0
0

0.5 1
1

1

1.5 2
2

2

y 2.5 3
3 3.5

3

4

22.

-4

-20-4
0-2

1

x
0 2y

2

2
44

3

4

23.

4.0
3.2

2.4
−3.2

−3

1.6
−2.4

−2

−1.6
0.8

−1

−0.8

0.00
0.0

1

−0.8
0.8

2

−1.6
1.6

−2.4
2.4

3.2

−3.2 4.0

24.

4
−4

−3 2
−2

−3

−1

−2

−1

00
0

1

1

2

2

3

4

−2 3
4

−4

25.

−4

−3

−2

−2
−1

−1

0
00

1

1

2

2

3

4

26.



802 CHAPTER 13. MULTIPLE INTEGRALS

−4 4
−2 2

−2

−1

0 00

1

2

−2 2
−4 4

27.

ZZZ

Q

e

(x

2

+y

2

+z

2

)

3/2

dV

=

Z

2⇡

0

Z

⇡/2

0

Z

2

0

e

⇢

3

⇢

2 sin� d⇢ d� d✓

= 2⇡

Z

⇡/2

0

Z

2

0

e

⇢

3

⇢

2 sin� d⇢ d�

= 2⇡

Z

⇡/2

0

1

3
(e8 � 1) sin� d⇢ d�

= (2⇡)
1

3
(e8 � 1) =

2⇡

3
(e8 � 1)

28.

ZZZ

Q

p

x

2 + y

2 + z

2

dV

=

Z

2⇡

0

Z

⇡

⇡/2

Z

3

0

⇢

3 sin� d⇢ d� d✓

=

Z

2⇡

0

Z

⇡

⇡/2

81

4
sin� d� d✓

=

Z

2⇡

0

81

4
d✓ =

81⇡

2

29. As Q is inside x

2 + y

2 + z

2 = 2 and outside
x

2 + y

2 = 1 that implies the region is the ex-
terior of the cylinder x

2 + y

2 = 1 and the in-
terior of the sphere x

2 + y

2 + z

2 = 2, here
1  ⇢ sin� ) csc�  ⇢ and ⇢ 

p
2. Further

the cylinder intersects the sphere at � =
⇡

4
,

3⇡

4
.

)
ZZZ

Q

z

2

dV

=

Z

2⇡

0

Z

3⇡

4

⇡

4

Z

p
2

csc�

⇢

4cos2� sin� d⇢ d� d✓

= 2

Z

2⇡

0

Z

⇡

2

⇡

4

Z

p
2

csc�

⇢

4cos2� sin� d⇢ d� d✓

= 2

Z

2⇡

0

Z

⇡

2

⇡

4

⇢

5

5

�

�

�

�

p
2

csc�

cos2� sin�d� d✓

= 2

Z

2⇡

0

Z

⇡

2

⇡

4

 

4
p
2

5
� csc5�

5

!

· cos2� sin� d�d✓

=
2

5

Z

2⇡

0

Z

⇡

2

⇡

4

✓

4
p
2cos2� sin�� cos2�

sin4�

◆

d�d✓

=
2

15

Z

2⇡

0

⇣

�4
p
2cos3�+ cot3�

⌘

�

�

�

⇡

2

⇡

4

d✓

=
2

15

Z

2⇡

0

d✓ =
4⇡

15

30.

ZZZ

Q

e

p
x

2

+y

2

+z

2

dV

=

Z

2⇡

0

Z

⇡/2

0

Z

2

0

e

⇢

⇢

2 sin� d⇢ d� d✓

=

Z

2⇡

0

Z

⇡/2

0

2 sin ⇢(e2 � 1) d� d✓

=

Z

2⇡

0

2(e2 � 1) d✓

= 4⇡(e2 � 1)

31. This is a rectangular problem.
ZZZ

Q

dV

=

Z

1

0

Z

2

1

Z

4

3

(x2 + y

2 + z

2) dz dy dx

=

Z

1

0

Z

2

1

✓

x

2 + y

2 +
37

3

◆

dy dx

=

Z

1

0

✓

x

2 +
44

3

◆

dx = 15

32.

ZZZ

Q

(x+ y + z) dV

=

Z

4

0

Z

2�x/2

0

Z

4�x�2y

0

(x+ y + z) dz dy dx

=
1

2

Z

4

0

Z

2�x/2

0

(�x

2 � 2xy � 8y + 16) dy dx

=
1

8

Z

4

0

(x3 � 4x2 � 16x+ 64) dx =
40

3

33. Here we use cylindrical coordinates.
ZZZ

Q

(x2 + y

2) dV

=

Z

2⇡

0

Z

2

0

Z

4�r

2

0

r

3

dz dr d✓

= 2⇡

Z

2

0

Z

4�r

2

0

r

3

dz dr

= 2⇡

Z

2

0

(4� r

2)r3 dr =
32⇡

3

34.

ZZZ

Q

e

x

2

+y

2

dV

=

Z

2⇡

0

Z

2

0

Z

2

0

re

r

2

dz dr d✓
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=

Z

2⇡

0

Z

2

0

ere

r

2

dr d✓

=

Z

2⇡

0

�

e

4 � 1
�

d✓

= 2⇡(e4 � 1)

35. The solid is the portion of the ball with
0  �  ⇡/4.
ZZZ

Q

p

x

2 + y

2 + z

2

dV

=

Z

2⇡

0

Z

⇡/4

0

Z

p
2

0

⇢

3 sin� d⇢ d� d✓

= 2⇡

Z

⇡/4

0

Z

p
2

0

⇢

3 sin� d⇢ d�

= 2⇡

Z

⇡/4

0

sin� d�

= 2⇡

✓

1� 1p
2

◆

= (2�
p
2)⇡

36.

ZZZ

Q

(x2 + y

2 + z

2)3/2 dV

=

Z

2⇡

0

Z

⇡

3⇡/4

Z

2

0

⇢

5 sin� d⇢ d� d✓

=

Z

2⇡

0

Z

⇡

3⇡/4

32

3
sin� d� d✓

=

Z

2⇡

0

16

3

⇣

2�
p
2
⌘

d✓

=
32⇡

3

⇣

2�
p
2
⌘

37. Note that the equation x

2+y

2+z

2 = 4z trans-
forms to ⇢

2 = 4⇢ cos� or ⇢ = 4 cos�.

V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

⇡/4

0

Z

4 cos�

0

⇢

2 sin� d⇢ d� d✓

= 2⇡

Z

⇡/4

0

Z

4 cos�

0

⇢

2 sin� d⇢ d�

= 2⇡

Z

⇡/4

0

64 cos3 � sin�

3
d⇢ d�

= 8⇡

38. V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

⇡/4

0

Z

2

0

⇢

2 sin� d⇢ d� d✓

=

Z

2⇡

0

Z

⇡/4

0

8

3
sin� d� d✓

=

Z

2⇡

0

4

3

⇣

2�
p
2
⌘

d✓

=
8⇡

3
(2�

p
2)

39. We use cylindrical coordinates. To avoid split-
ting the integral up, we integrate r first instead
of z:

V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

4

2

Z

z/

p
2

0

r dr dz d✓

= 2⇡

Z

4

2

Z

z/

p
2

0

r dr dz

= 2⇡

Z

4

2

z

2

4
dz =

28⇡

3

40. V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

p
2

1

Z

4r

2

0

r dz dr d✓

=

Z

2⇡

0

Z

p
2

1

4r3 dr d✓

=

Z

2⇡

0

4 d✓ = 8⇡

41. Due to the symmetry in the problem, we will
compute the following integral and then con-
vert to cylindrical coordinates. Notice that
y = 1 converts to r = csc ✓.

V = 8

ZZZ

Q

dV

= 8

Z

1

0

Z

1

x

Z

p
x

2

+y

2

0

dz dy dx

= 8

Z

⇡/2

⇡/4

Z

csc ✓

0

Z

r

0

r dz dr d✓

= 8

Z

⇡/2

⇡/4

Z

csc ✓

0

r

2

dr d✓

=
8

3

Z

⇡/2

⇡/4

csc3 ✓ d✓

This integral can be computed using the in-
tegral tables. This integral was computed in
Exercise 35 of this section.

V =
8

3

Z

⇡/2

⇡/4

csc3 ✓ d✓

=
8

3

 p
2

2
+

1

2
ln(

p
2 + 1)

!

=
4
p
2 + 4 ln(

p
2 + 1)

3
⇡ 3.0608

42. V =

ZZZ

Q

dV

=

Z

4

0

Z

2�x/2

0

Z

4�2y�x

0

dz dy dx
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=

Z

4

0

Z

2�x/2

0

(4� 2y � x) dy dx

=

Z

4

0

✓

4� 2x+
x

2

4

◆

dx =
16

3

43. We use spherical coordinates.

V =

ZZZ

Q

dV

=

Z

⇡/2

0

Z

⇡/4

0

Z

2

0

⇢

2 sin� d⇢ d� d✓

=
⇡

2

Z

⇡/4

0

Z

2

0

⇢

2 sin� d⇢ d�

=
⇡

2

Z

⇡/4

0

8

3
sin� d�

=
4⇡

3

✓

1� 1p
2

◆

=
2⇡

3

⇣

2�
p
2
⌘

44. V =

ZZZ

Q

dV

=

Z

⇡/2

⇡/4

Z

⇡/4

0

Z

2

0

⇢

2 sin� d⇢ d� d✓

=

Z

⇡/2

⇡/4

Z

⇡/4

0

8

3
sin� d� d✓

=

Z

⇡/2

⇡/4

4

3
(2�

p
2) d✓

=
⇡

3
(2�

p
2)

45. We use cylindrical coordinates.

V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

2

0

Z

r

0

r dz dr d✓

=

Z

2⇡

0

Z

2

0

r

2

dr d✓

=

Z

2⇡

0

8

3
d✓ =

16⇡

3

46. V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

2

0

Z

4�r

2

0

r dz dr d✓

=

Z

2⇡

0

Z

2

0

r(4� r

2) dr d✓

=

Z

2⇡

0

4 d✓ = 8⇡

47. Here we use cylindrical co-ordinates,

V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

1

0

Z

1+

p
1�r

2

r

r dz dr d✓

=

Z

2⇡

0

Z

1

0

⇣

1 +
p

1� r

2 � r

⌘

r dr d✓

=

Z

2⇡

0

Z

1

0

(1� r) r dr d✓

+

Z

2⇡

0

Z

1

0

r

p

1� r

2

dr d✓

=

Z

2⇡

0

✓

r

2

2
� r

3

3

◆

�

�

�

�

1

0

d✓

+

Z

2⇡

0

Z

1

0

r

p

1� r

2

dr d✓

=

Z

2⇡

0

1

6
d✓ +

Z

2⇡

0

Z

1

0

r

p

1� r

2

dr d✓

=
1

6
(2⇡) +

Z

2⇡

0

Z

1

0

r

p

1� r

2

dr d✓

�

put 1� r

2 = t

�

=
⇡

3
+

Z

2⇡

0

Z

0

1

 

� t

1

2

2

!

dt d✓

=
⇡

3
+

Z

2⇡

0

"

t

3

2

3

#

1

0

d✓

=
⇡

3
+

Z

2⇡

0

1

3
d✓ =

⇡

3
+

2⇡

3
= ⇡

48. The desired volume is =
4⇡(2)3

3
�Q, whereQ is

the volume of the solid inside z =
p

3x2 + 3y2

and x2 + y2 + z

2 = 4.

From the example 7.4,

Q =

Z

2⇡

0

Z

⇡

6

0

Z

2

0

⇢

2 sin� d⇢d�d✓

=

Z

2⇡

0

Z

⇡

6

0

✓

⇢

3

3

◆

�

�

�

�

2

0

sin�d�d✓

=
8

3

Z

2⇡

0

Z

⇡

6

0

sin�d�d✓

=
16⇡

3

Z

2⇡

0

(� cos�)|
⇡

6

0

d✓

=
8⇡

3

⇣

2�
p
3
⌘

Thus, the desired volume is

=
32⇡

3
� 8⇡

3

⇣

2�
p
3
⌘

=
16⇡

3
+

8
p
3⇡

3

49. The region in this case is the interior of the
unit ball, but only for x � 0. We naturally
convert to spherical coordinates.
Z

1

0

Z

p
1�x

2

�
p
1�x

2

Z

p
1�x

2�y

2

�
p

1�x

2�y

2

p

x

2 + y

2 + z

2

dz dy dx
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=

Z

⇡/2

�⇡/2

Z

⇡

0

Z

1

0

⇢

3 sin� d⇢ d� d✓

=

Z

⇡/2

�⇡/2

Z

⇡

0

1

4
sin� d� d✓

=

Z

⇡/2

�⇡/2

1

2
d✓ =

⇡

2

50.

Z

1

�1

Z

p
1�x

2

�
p
1�x

2

Z

1+

p
1�x

2�y

2

1�
p

1�x

2�y

2

(x2 + y

2 + z

2)3/2 dz dy dx

=

Z

2⇡

0

Z

⇡/2

0

Z

2 cos�

0

⇢

5 sin� d⇢ d� d✓

=

Z

2⇡

0

Z

⇡/2

0

32

3
sin� cos6 � d� d✓

=

Z

2⇡

0

32

21
d✓ =

64⇡

21

51. The region of integration is inside the vertical
cylinder r = 4, with upper boundary surface
⇢ =

p
8 and lower boundary z = r. Cylindrical

coordinate will work but spherical coordinates
are easier.
Z

2

�2

Z

p
4�x

2

0

Z

p
8�x

2�y

2

p
x

2

+y

2

(x2 + y

2 + z

2)3/2 dz dy dx

=

Z

⇡

0

Z

⇡/4

0

Z

p
8

0

⇢

5 sin� d⇢ d� d✓

=

Z

⇡

0

Z

⇡/4

0

256

3
⇢

5 sin� d� d✓

=

Z

⇡

0

256

3

✓

1� 1p
2

◆

d✓

=
256⇡

3

✓

1� 1p
2

◆

=
128⇡

3

⇣

2�
p
2
⌘

52.

Z

4

0

Z

p
16�x

2

0

Z

4

p
x

2

+y

2

p

x

2 + y

2 + z

2

dz dy dx

=

Z

⇡/2

0

Z

⇡/4

0

Z

4/ cos�

0

⇢

3 sin� d⇢ d� d✓

=

Z

⇡/2

0

Z

⇡/4

0

64 sin�

cos4 �
d� d✓

=

Z

⇡/2

0

64

3

⇣

2
p
2� 1

⌘

d✓

=
32⇡

3

⇣

2
p
2� 1

⌘

53. I =

Z

2

�2

Z

p
4�x

2

0

Z

0

�
p

4�x

2�y

2

e

p
x

2

+y

2

+z

2

dz dy dx

=

Z

⇡

0

Z

⇡

⇡

2

Z

2

0

e

⇢

⇢

2 sin� d⇢d� d✓

=

Z

⇡

0

Z

⇡

⇡

2

⇥

⇢

2

e

⇢ � 2⇢e⇢ + 2e⇢
⇤

2

0

sin�d� d✓

=

Z

⇡

0

Z

⇡

⇡

2

2
�

e

2 � 1
�

sin� d� d✓

= 2
�

e

2 � 1
�

Z

⇡

0

[� cos�]⇡
⇡

2

d✓

= 2
�

e

2 � 1
�

Z

⇡

0

d✓

= 2
�

e

2 � 1
�

⇡

54. I =

Z

3

�3

Z

0

�
p
9�x

2

Z

p
9�x

2�y

2

0

sin
p

x

2 + y

2 + z

2

dx dz dy

=

Z

⇡

2

�⇡

2

Z

⇡

⇡

2

Z

3

0

(sin ⇢) ⇢2 sin� d⇢ d� d✓

=

Z

⇡

2

�⇡

2

Z

⇡

⇡

2

⇥

�⇢

2 cos ⇢+ 2⇢sin⇢+ 2 cos ⇢
⇤

3

0

· sin� d� d✓

= (6 sin 3� 7 cos 3� 2)

Z

⇡

2

�⇡

2

Z

⇡

⇡

2

sin� d� d✓

= (6 sin 3� 7 cos 3� 2)

Z

⇡

2

�⇡

2

[� cos�]⇡
⇡

2

d✓

= (6 sin 3� 7 cos 3� 2)

Z

⇡

2

�⇡

2

d✓

= (6 sin 3� 7 cos 3� 2)⇡

55. I =

Z

⇡

0

Z

2

0

Z

p
4�r

2

0

p

r

2 + x

2

dx dr d✓

=

Z

⇡

0

Z

⇡

2

0

Z

2

0

⇢

3 sin�d⇢ d� d✓

=

Z

⇡

0

Z

⇡

2

0



⇢

4

4

�

2

0

sin�d� d✓

= 4

Z

⇡

0

[� cos�]
⇡

2

0

d✓

= 4

Z

⇡

0

d✓ = 4⇡

56. I =

Z

⇡

4

0

Z

p
3

2

0

Z

p
1�r

2

rp
3

r

2 cos ✓ dz dr d✓

=

Z

⇡

4

0

Z

⇡

3

0

Z

1

0

�

⇢

2sin2� cos ✓
�

⇢

2 sin� d⇢ d� d✓

=

Z

⇡

4

0

Z

⇡

3

0

Z

1

0

⇢

4sin3� cos ✓d⇢ d� d✓

=
1

5

Z

⇡

4

0

Z

⇡

3

0

sin3� cos ✓d�d✓

=
1

5

Z

⇡

4

0

Z

⇡

3

0

cos ✓
�

1� cos2�
�

sin�d�d✓
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=
1

5
p
2

Z

1

1

2

�

1� t

2

�

dt, where t = cos�

=
1

24
p
2

57. There is enough rotational symmetry to know
that x = y = 0. Given that the density is
constant, we can assume that the density is
actually equal to 1.

m =

ZZ

Q

⇢(x, y, z) dV

=

Z

2⇡

0

Z

⇡/4

0

Z

2

0

⇢

2 sin� d⇢ d� d✓

=

Z

2⇡

0

Z

⇡/4

0

8

3
sin� d� d✓

=

Z

2⇡

0

8

3

✓

1� 1p
2

◆

d✓

=
16⇡

3

✓

1� 1p
2

◆

=
8⇡

3

⇣

2�
p
2
⌘

M

xy

=

ZZ

Q

z⇢(x, y, z) dV

=

Z

2⇡

0

Z

⇡/4

0

Z

2

0

⇢

3 sin� cos� d⇢ d� d✓

=

Z

2⇡

0

Z

⇡/4

0

4 sin� cos� d� d✓

=

Z

2⇡

0

1 d✓

= 2⇡

z =
M

xy

m

=
3

4(2�
p
2)

58. m =

ZZ

Q

⇢(x, y, z) dV

=

Z

⇡/2

0

Z

⇡/4

0

Z

2

0

⇢

2 sin� d⇢ d� d✓

=

Z

⇡/2

0

Z

⇡/4

0

8

3
sin� d� d✓

=

Z

⇡/2

0

4

3
(2�

p
2) d✓

=
2⇡

3
(2�

p
2)

M

yz

=

ZZ

Q

x⇢(x, y, z) dV

=

Z

⇡/2

0

Z

⇡/4

0

Z

2

0

⇢

3 sin2 � cos ✓ d⇢ d� d✓

=

Z

⇡/2

0

Z

⇡/4

0

4 sin2 � cos ✓ d� d✓

=

Z

⇡/2

0

1

2
(⇡ � 2) cos ✓ d✓

=
⇡ � 2

2

x =
M

yz

m

=
3(⇡ � 2)

4⇡(2�
p
2)

M

xz

=

ZZ

Q

y⇢(x, y, z) dV

=

Z

⇡/2

0

Z

⇡/4

0

Z

2

0

⇢

3 sin2 � sin ✓ d⇢ d� d✓

=

Z

⇡/2

0

Z

⇡/4

0

4 sin2 � sin ✓ d� d✓

=

Z

⇡/2

0

1

2
(⇡ � 2) sin ✓ d✓

=
⇡ � 2

2

y =
M

xz

m

=
3(⇡ � 2)

4⇡(2�
p
2)

M

xy

=

ZZ

Q

z⇢(x, y, z) dV

=

Z

⇡/2

0

Z

⇡/4

0

Z

2

0

⇢

3 sin� cos� d⇢ d� d✓

=

Z

⇡/2

0

Z

⇡/4

0

4 sin� cos� d� d✓

=

Z

⇡/2

0

d✓

=
⇡

2

z =
M

xy

m

=
3

4(2�
p
2)

59. In this case kr} = ⇢, so

b⇢ =
r

krk = hcos ✓ sin�, sin ✓ sin�, cos�i

60. b⇢ · b✓ = hcos ✓ sin�, sin ✓ sin�, cos�i
· h� sin ✓, cos ✓, 0i

= � sin ✓ cos ✓ sin�+ cos ✓ sin ✓ sin� = 0
b⇢ · b� = hcos ✓ sin�, sin ✓ sin�, cos�i

· hcos ✓ cos�, sin ✓ cos�,� sin�i
= cos2 ✓ sin� cos�+ sin2 ✓ sin� cos�

� sin� cos�
= sin� cos�� sin� cos� = 0

b

� · b✓ = hcos ✓ cos�, sin ✓ cos�,� sin�i
· h� sin ✓, cos ✓, 0i

= � cos ✓ sin ✓ cos�+ cos ✓ sin ✓ cos� = 0

61. It is always true that v = kvkb⇢.
Therefore in this case,
v = h1, 1,

p
2i, and

kvk =
p
1 + 1 + 2 = 2

and therefore c = 2.

62. We have v = h�2, 0, 0i,
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Z

3⇡/4

⇡/4

b

✓ d✓

=

Z

3⇡/4

⇡/4

h� sin ✓, cos ✓, 0i d✓

=
D

�
p
2, 0, 0

E

and therefore c =
p
2

63. v = h
p
2� 1,

p
2� 1,�

p
2i.

Then we have ✓ =
⇡

4
and

Z

⇡/2

⇡/4

b

� d�

=

Z

⇡/2

⇡/4

hcos ✓ cos�, sin ✓ cos�,� sin ✓i d�

=

Z

⇡/2

⇡/4

⌧

cos�p
2

,

cos�p
2

,� sin ✓

�

d�

=

*

Z

⇡/2

⇡/4

cos�p
2

d� ,

Z

⇡/2

⇡/4

cos�p
2

d� ,

Z

⇡/2

⇡/4

� sin ✓ d�

+

=

*p
2� 1

2
,

p
2� 1

2
,

�
p
2

2

+

=
v

2

and therefore c = 2.

64. From the point (1, 1,
p
2), we have

✓ =
⇡

4
and � =

⇡

4
.

b

✓ =

⌧

� 1p
2
,

1p
2
, 0

�

b⇢ =

⌧

1

2
,

1

2
,

1p
2

�

b

� =

⌧

1p
2
,� 1p

2
, 0

�

-0.4

0
0

-0.5

0.2

0

0.5

x
0.4

1

y

0.4

1.5

0.6 0.8
0.8

1

65. Here is the cardioid in the xy-plane:

-3

-2

-2

-4

0
-1

-1

210

Cardioid ´ r=2-2*sin(theta)

In the yz-plane, it is clear that � and ✓̃ are

complementary angle—their sum is
⇡

2
.

This directly implies that

✓̃ =
⇡

2
� � and

cos� = sin ✓̃

Then, 2� 2 cos� = 2� 2 sin ✓̃

Because � only ranges from 0 to ⇡, the picture
in the yz-plane will be the graph we drew in
the xy-plane but with ✓ restricted to be be-
tween �⇡/2 and ⇡/2. To get the entire graph
in three-space, we rotate about the z-axis:

-3
-2

-1
0

-3-5 x
-2

-4

1
-1

-3

0 2
1y

-2

2

-1

3
3

0

1

66. Here is the graph of r = sin2(3✓) in the xy-
plane:

0.8

1

0.4

-1

0

-0.5

0

0.5

-0.8 -0.4

r=[sin(3*theta)]^2

Using Exercise 65,

cos2(3�) = cos2 3
⇣

⇡

2
� ✓̃

⌘
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= cos2
✓

3⇡

2
� 3✓̃

◆

=
⇣

� sin 3✓̃
⌘

2

= sin2 3✓̃

Because � only ranges from 0 to ⇡, the picture
in the yz-plane will be the graph we drew in
the xy-plane but with ✓ restricted to be be-
tween �⇡/2 and ⇡/2. To get the entire graph
in three-space, we rotate about the z-axis:

-1.5
-1

-0.5
0

-1.5
-1.5 x

-1

-1

-0.5
0.5

-0.5

y
0

0

0.5

0.5
1

1

1

1.5

1.5
1.5

67. Here is the graph of r = cos2(✓) in the xy-
plane:

1

0.4

0.2

0.5
0

-0.2

0

-0.4

-0.5-1

r=[cos(theta)]^2

Using Exercise 65, sin2(�) = cos2(✓̃)

Because � only ranges from 0 to ⇡, the picture
in the yz-plane will be the graph we drew in
the xy-plane but with ✓ restricted to be be-
tween �⇡/2 and ⇡/2. To get the entire graph
in three-space, we rotate about the z-axis:

-1
-0.5

0-0.6
-0.4

-1

-0.2

x

0
0.2

-0.5

0.4

0.5

0.6

0 0.5 1
y 1

68. Here is the graph of r = 1� cos(3✓) in the xy-
plane:

1.5

1

-1

0.5

-0.5

10.5

-1.5

-0.5-1.5
0

0-1-2

r=[cos(theta)]^2

Using Exercise 65,

1 + sin(3�) = 1 + sin 3
⇣

⇡

2
� ✓̃

⌘

= 1 + sin

✓

3⇡

2
� 3✓̃

◆

= 1 +
⇣

� cos 3✓̃
⌘

= 1� cos 3✓̃

Because � only ranges from 0 to ⇡, the picture
in the yz-plane will be the graph we drew in
the xy-plane but with ✓ restricted to be be-
tween �⇡/2 and ⇡/2. To get the entire graph
in three-space, we rotate about the z-axis:

-2
-1

0-2 x
-2

-1

-1

0

1
0

1

y 1

2

2
2

13.8 Change of Variables in

Multiple Integrals

1.

y = 4x+ 2 ! y � 4x = 2
y = 4x+ 5 ! y � 4x = 5
| {z }

u = y � 4x

(13.1)
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y = 3� 2x ! y + 2x = 3
y = 1� 2x ! y + 2x = 1
| {z }

v = y + 2x

(13.2)

u = y � 4x
v = y + 2x

�

!
⇢

x = �u+v

6

y = u+2v

3

(13.3)

2  u  5
1  v  3

2.

y = 2x� 1 ! y � 2x = �1
y = 2x+ 5 ! y � 2x = 5
| {z }

u = y � 2x

y = 1� 3x ! y + 3x = 1
y = �1� 3x ! y + 3x = �1
| {z }

v = y + 3x

u = y � 2x
v = y + 3x

�

!
⇢

x = 1

5

(v � u)
y = 1

5

(3u+ 2v)

�1  u  5
� 1  v  1

3.

y = 1� 3x ! y + 3x = 1
y = 3� 3x ! y + 3x = 3
| {z }

u = y + 3x

y = x� 1 ! x� y = 1
y = x� 3 ! x� y = 3
| {z }

v = x� y

u = y + 3x
v = x� y

�

!
⇢

x = u+v

4

y = u�3v

4

1  u  3
1  v  3

4.

y = 2x� 1 ! y � 2x = �1
y = 2x+ 1 ! y � 2x = 1
| {z }

u = y � 2x

y = 3
y = 1

�

v = y

u = y � 2x
v = y

�

!
⇢

x = 1

2

(v � u)
y = v

�1  u  1
1  v  3

5. This is perfect for polar coordinates.
x = r cos ✓, y = r sin ✓

1  r  2

0  ✓  ⇡

2

6. Use polar coordinates:

x = r cos ✓, y = r sin ✓

1  r  2
⇡

4
 ✓  ⇡

2

7. Use polar coordinates:

x = r cos ✓, y = r sin ✓

2  r  3
⇡

4
 ✓  3⇡

4

8. Use polar coordinates:

x = r cos ✓, y = r sin ✓

0  r  3

� ⇡

2
 ✓  ⇡

2

9.

y = x

2 ! y � x

2 = 0
y = x

2 + 2 ! y � x

2 = 2
| {z }

u = y � x

2

y = 4� x

2 ! y + x

2 = 4
y = 2� x

2 ! y + x

2 = 2
| {z }

v = y + x

2

u = y � x

2

v = y + x

2

�

!
(

x =
q

v�u

2

y = u+v

2

0  u  2
2  v  4
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10.

y = x

2 ! y � x

2 = 0
y = x

2 + 2 ! y � x

2 = 2
| {z }

u = y � x

2

y = 3� x

2 ! y + x

2 = 3
y = 2� x

2 ! y + x

2 = 2
| {z }

v = y + x

2

u = y � x

2

v = y + x

2

�

!
(

x = �
q

1

2

(v � u)

y = 1

2

(u+ v)

0  u  2
2  v  3

11.

y = e

x ! y � e

x = 0
y = e

x + 1 ! y � e

x = 1
| {z }

u = y � e

x

y = 3� e

x ! y + e

x = 3
y = 5� e

x ! y + e

x = 5
| {z }

v = y + e

x

u = y � e

x

v = y + e

x

�

!
⇢

x = ln
�

v�u

2

�

y = v+u

2

0  u  1
3  v  5

12.

y = 2x2 + 1 ! y � 2x2 = 1
y = 2x2 + 3 ! y � 2x2 = 3
| {z }

u = y � 2x2

y = 2� x

2 ! y + x

2 = 2
y = 4� x

2 ! y + x

2 = 4
| {z }

v = y + x

2

u = y � 2x2

v = y + x

2

�

!
(

x =
q

1

3

(v � u)

y = 1

3

(u+ 2v)

1  u  32  v  4

13.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

� 1

6

1

6

1

3

2

3

�

�

�

�

= �1

6
ZZ

R

(y � 4x) dA

=

Z

3

1

Z

5

2



1

3
(u+ 2v)� 4

✓

1

6

◆

(v � u)

�

·
�

�

�

�

�1

6

�

�

�

�

du dv

=
1

6

Z

3

1

Z

5

2

u du dv

=
1

6

Z

3

1

21

2
dv =

7

2

14.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

� 1

5

1

5

3

5

2

5

�

�

�

�

= �1

5
ZZ

R

(y + 3x) dA

=

Z

1

�1

Z

5

�1



1

5
(3u+ 2v) +

3

5
(v � u)

�

·
�

�

�

�

�1

5

�

�

�

�

du dv

=

Z

1

�1

Z

5

�1

v

5
du dv

=

Z

1

�1

6v

5
dv = 0

15.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

1

4

� 1

4

1

4

3

4

�

�

�

�

=
1

4
ZZ

R

(y + 3x)2) dA

=

Z

3

1

Z

3

1



1

4
(u� 3v) + 3

✓

1

4

◆

(u+ v)

�

2

·
�

�

�

�

1

4

�

�

�

�

du dv

=
1

4

Z

3

1

Z

3

1

u

2

du dv

=
1

4

Z

3

1

26

3
dv =

13

3

16.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

� 1

2

1

2

0 1

�

�

�

�

= �1

2
ZZ

R

e

y�x

dA

=

Z

3

1

Z

1

�1

e

(u+v)/2

�

�

�

�

�1

2

�

�

�

�

du dv

=
1

2

Z

3

1

Z

1

�1

e

(u+v)/2

du dv

=

Z

3

1

⇣

e

(v+1)/2 � e

(v�1)/2

⌘

dv
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= 2e2 � 4e+ 2 = 2(e� 1)2

17.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

cos ✓ �r sin ✓
sin ✓ r cos ✓

�

�

�

�

= r

ZZ

R

x dA

=

Z

⇡/2

0

Z

2

1

[r cos ✓] |r| dr d✓

=

Z

⇡/2

0

Z

2

1

r

2 cos ✓ dr d✓

=

Z

⇡/2

0

7

3
cos ✓ d✓ =

7

3

18. x = r cos ✓, y = r sin ✓

@ (x, y)

@ (r, ✓)

=

�

�

�

�

@x

@r

@x

@✓

@y

@r

@y

@✓

�

�

�

�

=

�

�

�

�

cos ✓ �r sin ✓
sin ✓ r cos ✓

�

�

�

�

= r

I =

ZZ

R

e

p
x

2

+y

2

dA

=

Z

⇡

2

⇡

4

Z

2

1

e

r |r| dr d✓

=

Z

⇡

2

⇡

4

Z

2

1

e

r

r dr d✓

=

Z

⇡

2

⇡

4

[er (r � 1)]2
1

d✓

= e

2

Z

⇡

2

⇡

4

d✓ =
⇡e

2

4

19. From Exercise 13, the Jacobian is equal to �1

6
.

ZZ

R

e

y�4x

y + 2x
dA

=

Z

3

1

Z

5

2



e

(u+2v)/3�4(v�u)/6)

(u+ 2v)/3 + 2(v � u)/6

�

·
�

�

�

�

�1

6

�

�

�

�

du dv

=
1

6

Z

3

1

Z

5

2

e

u

v

du dv

=
1

6

Z

3

1

e

5 � e

2

v

dv =
(e5 � e

2) ln(3)

6

20. The integral does not exist because the line,
y = 2x on which the denominator of the inte-
grand is equal to zero, is in the region defined
in Exercise 2.

21. The Jacobian is computed in Exercise 14 and
is equal to � 1

5

.

ZZ

R

(x+ 2y) dA

=

Z

1

�1

Z

5

�1



1

5
(v � u) +

2

5
(3u+ 2v)

�

�

�

�

�

�1

5

�

�

�

�

du dv

=
1

5

Z

1

�1

Z

5

�1

(u+ v) du dv

=
6

5

Z

1

�1

(v + 2) dv =
24

5

22. From Exercise 13, the Jacobian is equal to �1

6
.

ZZ

R

(x+ y) dA

=

Z

3

1

Z

5

2



u+ 2v

3
+

v � u

6

�

�

�

�

�

�1

6

�

�

�

�

du dv

=
1

6

Z

3

1

Z

5

2

✓

u

6
+

5v

6

◆

du dv

=
1

6

Z

3

1

✓

7

4
+

5

2
v

◆

dv =
9

4

23.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

e

v

ue

v

e

�v �ue

�v

�

�

�

�

= �2u

24.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

2v 2u
3 �1

�

�

�

�

= �6u� 2v

25.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

1

v

� u

v

2

0 2v

�

�

�

�

= 2

26.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

4 2v
2v 2u

�

�

�

�

= 8u� 4v2

27.

x+ y + z = 1
x+ y + z = 2

�

u = x+ y + z

x+ 2y = 0
x+ 2y = 1

�

v = x+ 2y

y + z = 2
y + z = 4

�

w = y + z

u = x+ y + z

v = x+ 2y
w = y + z

9

=

;

!

8

<

:

x = u� w

y = �u+v+w

2

z = u�v+w

2

1  u  2
0  v  1
2  w  4
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28.

x+ z = 1
x+ z = 2

�

u = x+ z

2y + 3z = 0
2y + 3z = 1

�

v = 2y + 3z

y + 2z = 2
y + 2z = 4

�

w = y + 2z

u = x+ z

v = 2y + 3z
w = y + 2z

9

=

;

!

8

<

:

x = u+ v � 2w
y = 2v � 3w
z = �v + 2w

1  u  2
0  v  1
2  w  4

29.

@(x, y, z)

@(u, v, w)
=

�

�

�

�

�

�

@x

@u

@x

@v

@x

@w

@y

@u

@y

@v

@y

@w

@z

@u

@z

@v

@z

@w

�

�

�

�

�

�

=

�

�

�

�

�

�

1 0 �1
� 1

2

1

2

1

2

1

2

� 1

2

1

2

�

�

�

�

�

�

=
1

2

ZZZ

Q

dV

=

Z

4

2

Z

1

0

Z

2

1

1

2
du dv dw

=
1

2
(2)(1)(2) = 1

30.

@(x, y, z)

@(u, v, w)
=

�

�

�

�

�

�

@x

@u

@x

@v

@x

@w

@y

@u

@y

@v

@y

@w

@z

@u

@z

@v

@z

@w

�

�

�

�

�

�

=

�

�

�

�

�

�

1 1 �2
0 2 �3
0 �1 2

�

�

�

�

�

�

= 1

ZZZ

Q

dV

=

Z

4

2

Z

1

0

Z

2

1

|1| du dv dw

=

Z

4

2

Z

1

0

1 dv dw

=

Z

4

2

1 dw = 2

31.

p
x =

1

2
(v � u) , y =

1

2
(u+ v)

�

�

�

�

d(x, y)

d(u, v)

�

�

�

�

=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

u�v

2

v�u

2

1

2

1

2

�

�

�

�

=
u� v

2

I =

ZZ

R

e

y�
p
x

2
p
x

dA

=

Z

6

4

Z

2

0

e

u

2
�

v�u

2

�

�

�

�

�

d(x, y)

d(u, v)

�

�

�

�

du dv

=

Z

6

4

Z

2

0

e

u

(v � u)

�

�

�

�

u� v

2

�

�

�

�

du dv

=

Z

6

4

Z

2

0

e

u

(v � u)

✓

v � u

2

◆

du dv

=
1

2

Z

6

4

[eu]2
0

dv

=
e

2 � 1

2

Z

6

4

dv = e

2 � 1

32. x

2 = v � u, y = 2v � u

For x (> 0) to be real , v > u

�

�

�

�

d(x, y)

d(u, v)

�

�

�

�

=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

� 1

2

p
v�u

1

2

p
v�u

�1 2

�

�

�

�

= � 1

2
p
v � u

I =

ZZ

R

x

2

dA

=

Z

5

4

Z

2

0

(v � u)

�

�

�

�

d(x, y)

d(u, v)

�

�

�

�

du dv

=

Z

5

4

Z

2

0

(v � u)

�

�

�

�

� 1

2
p
v � u

�

�

�

�

du dv

=

Z

5

4

Z

2

0

(v � u)
1

2
p
v � u

du dv

=
1

2

Z

5

4

Z

2

0

p
v � u du dv

=
1

2

Z

5

4

"

� (v � u)
3

2

3

2

#

2

0

dv

= �1

3

Z

5

4

h

(v � 2)
3

2 � (v)
3

2

i

dv

= �1

3

"

(v � 2)
5

2

�

5

2

� � (v)
5

2

�

5

2

�

#

5

4

= � 2

15

h

(v � 2)
5

2 � (v)
5

2

i

5

4

=
2

15

⇣

5
5

2 + 2
5

2 � 4
5

2 � 3
5

2

⌘

33. x =
1

2
(v � u) , y =

1

3
(2u+ v)

�

�

�

�

d(x, y)

d(u, v)

�

�

�

�

=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

� 1

6

1

6

2

3

1

3

�

�

�

�

= �1

6

I =

ZZ

R

2 (y � 2x) ey+4x

dA

=

Z

3

1

Z

1

0

2



2u+ v

3
� 2

✓

v � u

6

◆�

e

[ 2u+v

3

+4( v�u

6

)]
�

�

�

�

d(x, y)

d(u, v)

�

�

�

�

du dv

=

Z

3

1

Z

1

0

2uev
�

�

�

�

�1

6

�

�

�

�

du dv
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=
1

3

Z

3

1

e

v



u

2

2

�

1

0

dv

=
1

6

Z

3

1

e

v

dv =
e

3 � e

6

34. x = u�
p

u

2 � v (x > 0) , y

2 = u

2 � v

�

�

�

�

d(x, y)

d(u, v)

�

�

�

�

=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

�

1� up
u

2�v

1

2

p
u

2�v

up
u

2�v

� 1

2

p
u

2�v

�

�

�

�

�

= � 1

2
p
u

2 � v

I =

ZZ

R

y

2

dA

=

Z �1

�2

Z

2

1

�

u

2 � v

�

�

�

�

�

d(x, y)

d(u, v)

�

�

�

�

du dv

=

Z �1

�2

Z

2

1

�

u

2 � v

�

�

�

�

�

� 1

2
p
u

2 � v

�

�

�

�

du dv

=
1

2

Z

2

1

Z �1

�2

p

u

2 � v dv du

=
1

2

Z

2

1

2

4�
�

u

2 � v

�

3

2

3

2

3

5

�1

�2

du

= �1

3

Z

2

1

h

�

u

2 + 1
�

3

2 �
�

u

2 + 2
�

3

2

i

du

= �1

3

nh

u

8

�

2u2 + 5
�

p

u

2 + 1

+
3

8
ln
⇣

u+
p

u

2 + 1
⌘

�

2

1

�
h

u

4

�

u

2 + 5
�

p

u

2 + 2

+
3

2
ln

 

up
2
+

r

u

2

2

+ 1

!#

2

1

9

=

;

= �1

3

"

26
p
5� 7

p
2

8
� 18

p
6� 6

p
3

4

+
3

8
ln

 

2 +
p
5

1 +
p
2

!

� 3

2
ln

 

2 +
p
6

1 +
p
3

!#

=
18
p
6� 6

p
3

12
� 26

p
5� 7

p
2

24

+
1

2
ln

 

2 +
p
6

1 +
p
3

!

� 1

8
ln

 

2 +
p
5

1 +
p
2

!

35.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

1 �1
�2 2

�

�

�

�

= 0

The equations both amount to y = �2x and
the transformation maps the entire uv-plane
to the a line in the xy-plane.

36.

@(x, y, z)

@(⇢,�, ✓)
=

�

�

�

�

�

�

�

@x

@⇢

@x

@�

@x

@✓

@y

@⇢

@y

@�

@y

@✓

@z

@⇢

@z

@�

@z

@✓

�

�

�

�

�

�

�

=

�

�

�

�

�

�

sin� ⇢ cos� 0
cos� cos ✓ �⇢ sin� cos ✓ �⇢ cos� sin ✓
cos� sin ✓ �⇢ sin� sin ✓ ⇢ cos� cos ✓

�

�

�

�

�

�

= �⇢

2 cos�

37.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

�

�

�

cosu

cos v

sinu sin v

cos2 v
sin v sinu

cos2 u

cos v

cosu

�

�

�

�

�

�

�

= 1� tan2 u tan2 v = 1� x

2

y

2

Lets accept for the moment that the given
transformation maps the triangle
T = {(u, v) : u � 0, v � 0, u+ v < ⇡/2}
onto the square
S = {(x, y) : 0  x < 1, 0  y < 1}
(this is Exercise 38). Lets also accept for the
moment that the Jacobian is positive in T .
Then,
ZZ

S

1

1� x

2

y

2

dA

xy

=

ZZ

T

✓

1

1� x

2

y

2

◆

�

�1� tan2 u tan2 v
�

�

dA

uv

=

ZZ

T

dA

uv

= Area(T ) =
⇡

2

8

The easiest way to see that the Jacobian is pos-
itive is to notice that the Jacobian is equal to
1 � x

2

y

2 on the square, which is always posi-
tive (and the square does not include the point
(1, 1)).

38. To see this consider the preliminary transfor-
mation
u = sin�1

s, v = sin�1

t

which maps the quarter-disk:
Q = {(s, t) : s � 0, t � 0, s2 + t

2

< 1}
onto the triangle
T = {(u, v) : u � 0, v � 0, u+ v  ⇡/2}
To see that Q 7! T , consider the image of the
boundary of T under the inverse transforma-
tion. It is clear that {(u, v) : u = 0} maps to
{(s, t) : s = 0} and {(u, v) : v = 0} maps to
{(s, t) : t = 0}.
Now, consider the line {(u, v) : u + v = ⇡/2}.
u+ v =

⇡

2
sin(u+ v) = sin

⇡

2
= 1

sinu cos v + cosu sin v = 1
s

p

1� t

2 + t

p

1� s

2 = 1
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⇣

s

p

1� t

2

⌘

2

=
⇣

1� t

p

1� s

2

⌘

2

s

2(1� t

2) = 1� 2t
p

1� s

2 + t

2(1� s

2)

2t
p

1� s

2 = t

2 � s

2 + 1
⇣

2t
p

1� s

2

⌘

2

=
�

t

2 � s

2 + 1
�

2

4t2(1� s

2) = t

4 + s

4 + 1� 2t2s2 + 2t2 � 2s2

(t2 + s

2 � 1)2 = 0
t

2 + s

2 = 1

Which shows that the hypotenuse of the trian-
gle maps to the edge of the quarter disk.

Next, if we consider the composition transfor-
mation from Q to T then to the xy-plane, we
have

x =
sinu

cos v
=

sp
1� t

2

y =
sin v

cosu
=

tp
1� s

2

If we consider the curve in the (s, t) domain
that maps to the vertical line x = c, c a con-
stant, this curve has the equation:

c =
sp

1� t

2

c

2(1� t

2) = s

2

1 = t

2 +
s

2

c

2

which is an ellipse centered at th origin and
major axis 1 in the t direction. Thus, if one
wants to move vertically in square
S = {(x, y) : 0  x < 1, 0  y < 1},
starting from a point (c, 0), one should start at
the same point on the s-axis and move up the
ellipse toward (0, 1). Similar remarks apply to
horizontal movements in S.

The composed transformation compresses the
entire outer border of Q onto the single point
(x, y) = (1, 1), and it is not continuous at
the two “corner points” (s, t) = (1, 0) and
(s, t) = (0, 1), but these points and the entire
outer border have been excluded from Q.

13. Review Exercises

1. f(x, y) = 5x� 2y, n = 4
1  x  3, 0  y  1

The centers of the four rectangles are
✓

3

2
,

1

4

◆

,

✓

5

2
,

1

4

◆

,

✓

3

2
,

3

4

◆

,

✓

5

2
,

3

4

◆

Since the rectangles are the same size,

�A

i

=
1

2
.

4

X

i=1

f(u
i

, v

i

)�A

i

= f

✓

3

2
,

1

4

◆✓

1

2

◆

+ f

✓

5

2
,

1

4

◆✓

1

2

◆

+ f

✓

3

2
,

3

4

◆✓

1

2

◆

+ f

✓

5

2
,

3

4

◆✓

1

2

◆

=
1

2
(7 + 12 + 6 + 11) = 18

2. f(x, y) = 4x2 + y, n = 4
0  x  1, 1  y  3

The centers of the four rectangles are
✓

1

4
,

1

2

◆

,

✓

3

4
,

1

2

◆

,

✓

1

4
,

3

2

◆

,

✓

3

4
,

3

2

◆

Since the rectangles are the same size,

�A

i

=
1

2
.

V ⇡
4

X

i=1

f(u
i

, v

i

)�A

i

= f

✓

1

4
,

1

2

◆✓

1

2

◆

+ f

✓

3

4
,

1

2

◆✓

1

2

◆

+ f

✓

1

4
,

3

2

◆✓

1

2

◆

+ f

✓

3

4
,

3

2

◆✓

1

2

◆

=
1

2

✓

7

4
+

15

4
+

11

4
+

19

4

◆

=
13

2

3.

ZZ

R

(4x+ 9x2

y

2) dA

=

Z

3

0

Z

2

1

(4x+ 9x2

y

2) dy dx

=

Z

3

0

(4x+ 21x2) dx = 207

4.

ZZ

R

2e4x+2y

dA

=

Z

1

0

Z

1

0

2e4x+2y

dy dx

=

Z

1

0

(e2 � 1)e4x dx

=
1

4
(e2 � 1)(e4 � 1)

5. We convert to polar coordinates.
ZZ

R

e

�x

2�y

2

dA

=

Z

2⇡

0

Z

2

1

re

�r

2

dr d✓

=

Z

2⇡

0

(e�1 � e

�4)

2
d✓

= ⇡(e�1 � e

�4)

6.

ZZ

R

2xy dA
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=

Z

1

0

Z

2�y

y

2xy dx dy

=

Z

1

0

(4y � 4y2) dy =
2

3

7.

Z

1

�1

Z

2x

x

2

(2xy � 1) dy dx

=

Z

1

�1

�

4x3 � x

5 � 2x+ x

2

�

dx =
2

3

8.

ZZ

R

(3y2x+ 4) dA

=

Z

1

0

Z

2

2x

(3y2x+ 4) dy dx

=

Z

1

0

(8� 8x3) dx =
32

5

9. Notice that the curve r = 2 cos ✓ lies entirely
on the right half plane (x � 0).
ZZ

R

xy dA

=

Z

⇡/2

�⇡/2

Z

2 cos ✓

0

r

3 cos ✓ sin ✓ dr d✓

=

Z

⇡/2

�⇡/2

4 cos5 ✓ sin ✓ d✓

=



�4 cos6 ✓

6

�

⇡/2

�⇡/2

= 0

10.

ZZ

R

sin(x2 + y

2) dA

=

Z

2⇡

0

Z

2

0

r sin r2 dr d✓

=

Z

2⇡

0

1

2
(1� cos 4) d✓ = ⇡(1� cos 4)

11. To find the limits of integration we solve
x

2 � 4 = lnx
Using a CAS we obtain
x ⇡ 0.0183218, 2.18689
ZZ

R

4xy dA

⇡ 4

Z

2.187

0.183

Z

ln x

x

2�4

xy dy dx

= 2

Z

2.187

0.183

x

⇥

(lnx)2 � (x2 � 4)2
⇤

dx

⇡ �19.9173

Where the last integral was computed using a
CAS. It is possible to find an antiderivative or
to use Simpson’s Rule.

12. To find the limits of integration we solve
x

2 � 1 = cosx

Using a CAS we obtain
x ⇡ �1.1765, 1.1765.
ZZ

R

6x2

y dA =

Z

1.1765

�1.1765

Z

cos x

x

2�1

6x2

y dy dx

=

Z

1.1765

�1.1765

3x2(cos2 x� x

3 + 2x2 � 1) dx

⇡ 0.8039

13. V =

ZZZ

Q

dV

=

Z

1

0

Z

1

�1

Z

1�x

2

0

dz dx dy

=

Z

1

0

Z

1

�1

(1� x

2) dx dy

=

Z

1

0

4

3
dy =

4

3

14.

ZZZ

Q

dV

=

Z

1

0

Z

1�x

0

Z

4�x

2�y

2

0

dz dy dx

=

Z

1

0

Z

1�x

0

(4� x

2 � y

2) dy dx

=
1

3

Z

1

0

(11� 9x� 6x2 + 4x3) dx

=
11

6

15. We convert to cylindrical coordinates. The two
surfaces (z = r

2 and z = 8�r

2) meet at r = 2.

V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

2

0

Z

8�r

2

r

2

r dz dr d✓

=

Z

2⇡

0

Z

2

0

r(8� 2r2) dr d✓

=

Z

2⇡

0

8 d✓ = 16⇡

16.

ZZZ

Q

dV

=

Z

2⇡

0

Z

2

0

Z

e

r

0

r dz dr d✓

=

Z

2⇡

0

Z

2

0

re

r

dr d✓

=

Z

2⇡

0

(e2 + 1) d✓

= 2⇡(e2 + 1)

17. V =

ZZZ

Q

dV

=

Z

4

0

Z

8�2y

0

Z

8�x�2y

0

dz dx dy
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=

Z

4

0

Z

8�2y

0

(8� x� 2y) dx dy

=

Z

4

0

�

32� 16y + 2y2
�

dy =
128

3

18.

ZZZ

Q

dV

=

Z

1

0

Z

(1�x)/5

0

Z

(1�x�5y)/7

0

dz dy dx

=
1

7

Z

1

0

Z

(1�x)/5

0

(1� x� 5y) dy dx

=
1

70

Z

1

0

(1� 2x+ x

2) dx =
1

210

19. We use cylindrical coordinates.

V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

4

0

Z

4

r

r dz dr d✓

=

Z

2⇡

0

Z

4

0

r(4� r) dr d✓

=

Z

2⇡

0

32

3
d✓ =

64⇡

3

20.

ZZZ

Q

dV

=

Z

2⇡

0

Z

2

0

Z

2

r

r dx dr d✓

=

Z

2⇡

0

Z

2

0

(2r � r

2) dr d✓

=

Z

2⇡

0

4

3
d✓ =

8⇡

3

21. We use cylindrical coordinates (although
spherical would probably be even easier).

V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

p
2

0

Z

p
4�r

2

r

r dz dr d✓

=

Z

2⇡

0

Z

p
2

0

⇣

p

4� r

2 � r

⌘

r dr d✓

= 2⇡

Z

p
2

0

⇣

r

p

4� r

2 � r

2

⌘

dr

= 2⇡



�(4� r

2)3/2

3
� r

3

3

�

p
2

0

=
8⇡

3
(2�

p
2)

22.

ZZZ

Q

dV

=

Z

2⇡

0

Z

p
3

0

Z

1

2�
p
4�r

2

r dz dr d✓

=

Z

2⇡

0

Z

p
3

0

r

⇣

p

4� r

2 � 1
⌘

dr d✓

=

Z

2⇡

0

5

6
d✓ =

5⇡

3

23. V =

ZZZ

Q

dV

=

Z

2⇡

0

Z

1

0

Z

6�r

2

0

r dz dr d✓

=

Z

2⇡

0

Z

1

0

(6� r

2)r dr d✓

=

Z

2⇡

0

11

4
d✓ =

11⇡

2

24.

ZZZ

Q

dV

=

Z

⇡

0

Z

cos ✓

0

Z

r cos ✓

0

r dz dr d✓

=

Z

⇡

0

Z

cos ✓

0

r

2 cos ✓ dr d✓

=

Z

⇡

0

1

3
cos4 ✓ d✓ =

⇡

8

25.

Z

2

0

Z

x

2

0

f(x, y) dy dx =

Z

4

0

Z

2

p
y

f(x, y) dx dy

26.

Z

2

0

Z

4

x

2

f(x, y) dy dx =

Z

y

0

Z

p
y

0

f(x, y) dx dy

27.

Z

2

0

Z

p
4�x

2

�
p
4�x

2

2x dy dx

=

Z

⇡/2

�⇡/2

Z

2

0

2r2 cos ✓ dr d✓

=

Z

⇡/2

�⇡/2

16

3
cos ✓ d✓ =

32

3

28.

Z

2

0

Z

p
4�x

2

0

2
p

x

2 + y

2

dy dx

=

Z

⇡/2

0

Z

2

0

2r2 dr d✓

=

Z

⇡/2

0

16

3
d✓ =

8⇡

3

29. m =

ZZ

R

⇢(x, y) dA

=

Z

2

0

Z

2x

x

2x dy dx

=

Z

2

0

2x2

dx =
16

3

M

y

=

ZZ

R

x⇢(x, y) dA

=

Z

2

0

Z

2x

x

2x2

dy dx
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=

Z

2

0

2x3

dx = 8

x =
M

y

m

=
3

2

M

x

=

ZZ

R

y⇢(x, y) dA

=

Z

2

0

Z

2x

x

2xy dy dx

=

Z

2

0

3x3

dx = 12

y =
M

x

m

=
9

4

30. m =

ZZ

R

⇢(x, y) dA

=

Z

2

0

Z

4�y

y

2y dx dy

=

Z

2

0

(8y � 4y2) dy =
16

3

M

y

=

ZZ

R

x⇢(x, y) dA

=

Z

2

0

Z

4�y

y

2yx dx dy

=

Z

2

0

(16y � 8y2) dy =
32

3

x =
M

y

m

= 2

M

x

=

ZZ

R

y⇢(x, y) dA

=

Z

2

0

Z

4�y

y

2y2 dx dy

=

Z

2

0

(8y2 � 4y3) dy =
16

3

y =
M

x

m

= 1

31. m =

ZZZ

Q

⇢(x, y, v) dV

=

Z

1

�1

Z

1�x

2

0

Z

2�z

0

2 dy dz dx

=

Z

1

�1

Z

1�x

2

0

2(2� z) dz dx

= 2

Z

1

�1

⇥

4� (1 + x

2)
⇤

2

dx

= 2

Z

1

�1

�

3� 2x2 � x

4

�

dx =
64

15

M

yz

=

ZZZ

Q

x⇢(x, y, v) dV

=

Z

1

�1

Z

1�x

2

0

Z

2�z

0

2x dy dz dx

=

Z

1

�1

Z

1�x

2

0

2x(2� z) dx

= 2

Z

1

�1

�

3x� 2x3 � x

5

�

dx = 0

x =
M

yz

m

= 0

M

xz

=

ZZZ

Q

y⇢(x, y, v) dV

=

Z

1

�1

Z

1�x

2

0

Z

2�z

0

2y dy dz dx

=

Z

1

�1

Z

1�x

2

0

(2� z)2 dz dx

=
1

3

Z

1

�1

⇥

8� (1 + x

2)3
⇤

dx

=
1

3

Z

1

�1

�

7� x

6 � 3x4 � 3x2

�

dx =
368

105

y =
M

xz

m

=
23

28

M

xy

=

ZZZ

Q

z⇢(x, y, v) dV

=

Z

1

�1

Z

1�x

2

0

Z

2�z

0

2z dy dz dx

=

Z

1

�1

Z

1�x

2

0

2z(2� z) dz dx

= 2

Z

1

�1

✓

2

3
� x

2 +
1

3
x

6

◆

dx =
32

21

z =
M

zy

m

=
5

14

32. m =

ZZZ

Q

⇢(x, y, v) dV

=

Z

2⇡

0

Z

2

0

Z

2

r

3xr dx dr d✓

=

Z

2⇡

0

Z

2

0

3

2
(4r � r

2) dr d✓

=

Z

2⇡

0

6 d✓ = 12⇡

M

yz

=

ZZZ

Q

x⇢(x, y, v) dV

=

Z

2⇡

0

Z

2

0

Z

2

r

3x2

r dx dr d✓

=

Z

2⇡

0

Z

2

0

(8r � r

4) dr d✓

=

Z

2⇡

0

48

5
d✓ =

96⇡

5

x =
M

yz

m

=
8

5

M

xz

=

ZZZ

Q

y⇢(x, y, v) dV
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=

Z

2⇡

0

Z

2

0

Z

2

r

3xr2 cos ✓ dx dr d✓

=
3

2

Z

2⇡

0

Z

2

0

r

2(4� r

2) cos ✓ dr d✓

=
32

5

Z

2⇡

0

cos ✓ d✓ = 0

y =
M

xz

m

= 0

M

xy

=

ZZZ

Q

z⇢(x, y, v) dV

=

Z

2⇡

0

Z

2

0

Z

2

r

3xr2 sin ✓ dx dr d✓

=
3

2

Z

2⇡

0

Z

2

0

r

2(4� r

2) sin ✓ dr d✓

=
32

5

Z

2⇡

0

sin ✓ d✓ = 0

z =
M

zy

m

= 0

33. The region of integration is shown below.

0

y

1.5

1.5

0.5

0.5
x

1

1

2

2
0

Region ´ of ´ Integration

A =

ZZ

R

dA

=

Z

1

0

Z

2�y

p
y

dx dy

=

Z

1

0

(2� y �p
y) dy =

5

6

It would work equally well to integrate with
respect to y first. This would require splitting
up the integral into two separate regions.

34.

ZZ

R

dA =

Z

⇡/4

0

Z

sin 4✓

0

r dr d✓

=

Z

⇡/4

0

sin2 4✓

2
d✓ =

⇡

16

35. a =

ZZ

R

dA =

Z

1

0

Z

2x

x

dy dx

=

Z

1

0

x dx =
1

2
ZZ

R

x

2

dA =

Z

1

0

Z

2x

x

x

2

dy dx

=

Z

1

0

x

3

dy dx =
1

4

Ave Val =
1

a

ZZ

R

f(x, y) dA =
1

2

36. a =

ZZ

R

dA

=

Z

⇡/2

0

Z

1

0

r dr d✓

=

Z

⇡/2

0

1

2
d✓ =

⇡

4
ZZ

R

p

x

2 + y

2

dA

=

Z

⇡/2

0

Z

1

0

r

2

dr d✓

=

Z

⇡/2

0

1

3
d✓ =

⇡

6

Ave Val =
1

a

ZZ

R

f(x, y) dA =
2

3

37. This is a plane over a triangle, T , in the xy-
plane. The triangle T in the xy-plane has ver-
tices (0, 0), (0, 2) and (2, 2) and therefore has
area of 2.

The area of the plane is

S =

ZZ

T

p

(2)2 + (4)2 + 1 dA

=

ZZ

T

p
21 dA

=
p
21(Area of T ) = 2

p
21

38. S =

Z

2

�2

Z

4

x

2

p

(2x)2 + (6)2 + 1 dy dx

=

Z

2

�2

Z

4

x

2

p

4x2 + 37 dy dx

=

Z

2

�2

(4� x

2)
p

4x2 + 37 dx

⇡ 67.5719

39. S =

ZZ

R

p

y

2 + x

2 + 1 dA

=

Z

⇡/4

0

Z

p
8

0

r

p

r

2 + 1 dr d✓

=

Z

⇡/4

0

26

3
d✓ =

13⇡

6

40. S =

ZZ

R

⇥

(2x cos(x2 + y

2))2

+ (2y cos(x2 + y

2))2 + 1
⇤

dy dx

=

Z

p
⇡

0

Z

2⇡

0

r

p

4r2 cos2 r2 + 1 d✓ dr
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= 2⇡

Z

p
⇡

0

r

p

4r2 cos2 r2 + 1 dr

⇡ 18.3840

41. We will change to polar coordinates.

Notice that since z = r, we have
z

2 = r

2 = x

2 + y

2

2z
@z

@x

= 2x

@z

@x

=
x

z

=
r cos ✓

r

= cos ✓

Similarly,
@z

@x

= sin ✓.

The region of integration is a disk of radius 4
in the xy-plane.

S =

ZZ

R

p

(cos ✓)2 + (sin ✓)2 + 1 dA

=

ZZ

R

p
2 dA

=
p
2 (Area of R) =

p
2(16⇡)

42. S =

Z

6

0

Z

3�x/2

0

·

s

✓

�1

3

◆

2

+

✓

�2

3

◆

2

+ 1 dy dx

=

Z

6

0

Z

3�x/2

0

p
14

3
dy dx

=

Z

6

0

14

3

⇣

3� x

2

⌘

dx = 3
p
14

43.

ZZZ

Q

z(x+ y) dV

=

Z

2

0

Z

1

�1

Z

1

�1

z(x+ y) dz dy dx

=

Z

2

0

Z

1

�1



z

2

2
(x+ y)

�

1

�1

dy dx

= 0

44.

ZZZ

Q

2xyeyz dV

=

Z

2

0

Z

1

0

Z

1

0

2xyeyz dz dy dx

=

Z

2

0

Z

1

0

2x(ey � 1) dy dx

=

Z

2

0

2x(e� 2) dx = 4(e� 2)

45. We use spherical coordinates.
ZZZ

Q

p

x

2 + y

2 + z

2

dV

=

Z

2⇡

0

Z

⇡/4

0

Z

2

0

⇢

3 sin� d⇢ d� d✓

=

Z

2⇡

0

Z

⇡/4

0

4 sin� d� d✓

=

Z

2⇡

0

4

✓

1� 1p
2

◆

d✓

= 8⇡

✓

1� 1p
2

◆

= 4⇡(2�
p
2)

46.

ZZZ

Q

3x dV

=

Z

2⇡

0

Z

2

0

Z

r

0

3r2 cos ✓ dz dr d✓

=

Z

2⇡

0

Z

2

0

3r3 cos ✓ dr d✓

=

Z

2⇡

0

12 cos ✓ d✓ = 0

47.

ZZZ

Q

f(x, y, z) dV

=

Z

2

0

Z

2

x

Z

6�x�y

0

f(x, y, z) dz dy dz

48.

ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

1

0

Z

4�r

2

0

rf(r cos ✓, r sin ✓, z) dz dr d✓

49.

ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

⇡/2

0

Z

2

0

⇢

2 sin�

· f(⇢ sin� cos ✓, ⇢ sin� sin ✓, ⇢ cos�)
d⇢ d� d✓

50.

ZZZ

Q

f(x, y, z) dV

=

Z

2⇡

0

Z

p
8

0

Z

6�r cos ✓�r sin ✓

0

rf(r cos ✓, r sin ✓, z) dz dr d✓

51.

Z

1

0

Z

p
2�x

2

x

Z

p
x

2

+y

2

0

e

z

dz dx dy

=

Z

⇡/2

⇡/4

Z

p
2

0

Z

r

0

re

z

dz dr d✓

=

Z

⇡/2

⇡/4

Z

p
2

0

r(er � 1) dr d✓

=

Z

⇡/2

⇡/4

e

p
2(
p
2� 1) d✓

=
⇡

4
e

p
2(
p
2� 1)

52.

Z

p
2

0

Z

p
4�y

2

y

Z

2

0

4z dz dx dy

=

Z

⇡/4

0

Z

2

0

Z

2

0

4zr dz dr d✓
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=

Z

⇡/4

0

Z

2

0

8r dr d✓

=

Z

⇡/4

0

16 d✓ = 4⇡

53.

Z

1

�1

Z

p
1�x

2

0

Z

p
2�x

2�y

2

p
x

2

+y

2

p

x

2 + y

2 + z

2

dz dy dx

=

Z

⇡

0

Z

⇡/4

0

Z

p
2

0

⇢

3 sin� d⇢ d� d✓

=

Z

⇡

0

Z

⇡/4

0

⇢

3 sin� d� d✓

=

Z

⇡

0

✓

1� 1

2

◆

d✓

= ⇡

✓

1� 1

2

◆

=
⇡

2
(2�

p
2)

54.

Z

2

�2

Z

p
4�y

2

0

Z

p
4�x

2�y

2

0

dz dx dy

=

Z

⇡/2

�⇡/2

Z

2

0

Z

p
4�r

2

0

r dz dr d✓

=

Z

⇡/2

�⇡/2

Z

2

0

r

p

4� r

2

dr d✓

=

Z

⇡/2

�⇡/2

8

3
d✓ =

8⇡

3

55. (a) y = 3
r sin ✓ = 3
r = 3 csc ✓

(b) y = 3
⇢ sin ✓ sin� = 3
⇢ = 3 csc ✓ csc�

56. (a) x

2 + y

2 = 9
r

2 = 9
r = 3

(b) x

2 + y

2 = 9
(⇢ sin� cos ✓)2 + (⇢ sin� sin ✓)2 = 9
⇢

2 sin2 � = 9
⇢ sin� = 3

57. (a) x

2 + y

2 + z

2 = 4
r

2 + z

2 = 4

(b) x

2 + y

2 + z

2 = 4
⇢

2 = 4
⇢ = 2

58. (a) y = x

r sin ✓ = r cos ✓
tan ✓ = 1

✓ =
⇡

4
,

3⇡

4

(b) y = x

⇢ sin� sin ✓ = ⇢ sin� cos ✓
tan ✓ = 1

✓ =
⇡

4
,

3⇡

4

59. (a) z =
p

x

2 + y

2

z = r r � 0

(b) z =
p

x

2 + y

2

⇢ cos� = r = ⇢ sin�
tan� = 1

� =
⇡

4

60. (a) z = 4

(b) z = 4
⇢ cos� = 4

61.

-4
-2

0-4 x
-4

-2

-2 2

0

0

2

2

4

y 4
4

62.

-4

-2

0
-4 x-4

-2

-2

2
0

0

y 2 4
4

2

4

63.
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-4
-2

0 x
2-4

-4

-2

-2

0

0 4
2

2

y 4

4

64.

-2
-1

-2 -1 0
0
0

y

0.5

1
x

1

2
1

1.5

2

65.

-1
0

1
-2

-2 x
-1

-1

y
0

0

2

1

1

2

2
3

66. This equation transforms to ⇢ cos� = 2, and is
therefore the z = 2 plane.

67.

y = 2x� 1 ! y � 2x = �1
y = 2x+ 1 ! y � 2x = 1
| {z }

u = y � 2x

y = 2� 2x ! y + 2x = 2
y = 4� 2x ! y + 2x = 4

�

v = y + 2x

u = y � 2x
v = y + 2x

�

!
⇢

x = �u+v

4

y = u+v

2

�1  u  1
2  v  4

68. Use polar coordinates: x = r cos ✓
y = r sin ✓
2  r  3
⇡

2
 ✓  ⇡

69.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

� 1

4

1

4

1

2

1

2

�

�

�

�

= �1

4
ZZ

R

e

y�2x

dA =

Z

4

2

Z

1

�1

e

u

�

�

�

�

�1

4

�

�

�

�

du dv

=
1

4

Z

4

2

(e� e

�1) dv

=
1

2
(e� e

�1) = sinh(1)

70. The transformation from Exercise 67 is

x =
1

4
(v � u),

y =
1

2
(u+ v), �1  u  1, 2  v  4

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

� 1

4

1

4

1

2

1

2

�

�

�

�

= �1

4
ZZ

R

(y + 2x)3 dV

=

Z

4

2

Z

1

�1



1

2
(u+ v) +

2

4
(v � u)

�

3

·
�

�

�

�

�1

4

�

�

�

�

du dv

=
1

4

Z

4

2

Z

1

�1

v

3

du dv

=
1

2

Z

4

2

v

3

dv

= 30

71.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

2uv u

2

4 2v

�

�

�

�

= 4uv2 � 4u2

72.

@(x, y)

@(u, v)
=

�

�

�

�

@x

@u

@x

@v

@y

@u

@y

@v

�

�

�

�

=

�

�

�

�

4 �5
2 3

�

�

�

�

= 22



Chapter 14

Vector Calculus

14.1 Vector Fields

1.

x

y

1

-0.5

0

0.5

0

1

0.5

-1

-0.5-1

2.

x

y

1

-0.5

0

0.5

0

1

0.5

-1

-0.5-1

3.

x

y

1

-0.5

0

0.5

0

1

0.5

-1

-0.5-1

4.

x

y

2

-1

0

1

0

2

1

-2

-1-2

5.

x

y

−1

−2

−2 0

−1

2

1 2
0

1

6.

x

y

−1

−2

−2 0

−1

2

1 2
0

1

7.

822
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-1
-0.5

-1

-1

-0.5

-0.5 0

0

x

0.5

z

0

1

0.5y 0.5
1 1

8.

-1-1 -0.5
-1

-0.5

-0.5 0

0

x

0.5

z

0 0.5

1

y 0.5 1
1

9.

-1
-1 -0.5

-1

-0.5

-0.5

00
0

z
0.5

y

0.50.5

x

1

11

10.

-1
-1 -0.5

-1

-0.5

-0.5

00
0

z
0.5

y

0.5

x

1

0.5
11

11. F
1

$ Graph D:

Because all vectors point away from the origin
and have the same length.

F
2

$ Graph B:

Because all vectors point away from the origin
and the lengths are proportional to the dis-
tances from the origin.

F
3

$ Graph A:

Because the vectors point upward when x > 0
and downward for x < 0.

F
4

$ Graph C:

Because the vectors depend only on y.

12. The vector fields,

F3 and F4 are both rotations in one of the co-
ordinate axes. Since F3 has 0 in its third com-
ponent, and F4 has 0 in its second component,
we must have:

F3  ! Graph D
F4  ! Graph B

The di↵erence between F1 and F2 is that F2

has a constant second component. Therefore,

F1  ! Graph C
F2  ! Graph A

13.
dy

dx
=

cosx

2
2dy = cosxdx

2

Z
dy =

Z
cosx dx

2y = sinx+ c

y

−2.0

1.2

0 21

2.0

−1

0.8

−0.8

−0.4

0.0

1.6

−1.6

−1.2

x
−2

0.4

14.
dy

dx
=

2

x2

dy =
2

x2

dx
Z

dy = 2

Z
1

x2

dx

y = � 2

x
+ c
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2.0

1.6

−1.6

y

−0.8

2−2 −1

0.8

1
x

−2.0

1.2

0

−1.2

0.4

−0.4

0.0

15.
dy

dx
=

x

y
ydy = xdxZ

ydy =

Z
xdx

y2

2
=

x2

2
+ k

x2

2
� y2

2
= �k

x2 � y2 = c (c = �2k)

0.4

y

−1.6

2.0

0.0

1.2

−0.4

−2.0

1.6

x
2

−0.8

0.8

−1

−1.2

−2 10

16.
dy

dx
=

x

ey

eydy = xdxZ
eydy =

Z
xdx

ey =
x2

2
+ k

2ey = x2 + c (c = 2k)

−1.6

0.0

x
−1

0.4

0.8

2.0

−2.0

1.2

0

y

−0.8

1
−0.4

2

−1.2

1.6

−2

17.

4−1
x

−4 50 1

−5.0

−3−5

−2.5

2

y

0.0

2.5

3−2

5.0

At (0, 1), flows are stable.
Around the point (0, 1):

(a) On the right side of y-axis, flows are con-
vergent and away from the y-axis.

(b) On the left side of y-axis, flows are paral-
lel and away from the y-axis.

18.

2

−2.5

3 51

5.0

2.5

−4 4

0.0

0
x

−2−5

y

−1

−5.0

−3

At (0, 1), flows are stable.
Around the point (0, 1):

(a) On the right side of y-axis, flows are con-
vergent and away from the y-axis.

(b) On the left side of y-axis, flows are con-
vergent and away from the y-axis.

19. rf = h2x, 2yi

20. �f =

⌧
2x

x2 + y2
,

2y

x2 + y2

�

21. rf =

*
xp

x2 + y2
,

yp
x2 + y2

+

22. rf =
⌦
2x cos(x2 + y2), 2y cos(x2 + y2)

↵

23. �f =
⌦
e�xy � xye�xy,�x2e�xy

↵

24. �f =

✓
x+ yp
1� x2

+ sin�1x, sin�1x

◆
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25. rf =

*
xp

x2 + y2 + z2
,

yp
x2 + y2 + z2

,

zp
x2 + y2 + z2

+

26. rf =
⌦
2xy, x2 + z, y

↵

27. �f =

 
2xyz2

(x2 + z2)2
,

x2

x2 + z2
,� 2x2yz

(x2 + z2)2

!

28. �f =

 
2
�
y2 + z2

�

(x2 + y2 + z2)
3
2

,� 4xy

x2 + y2 + z2
,

� 4xz

x2 + y2 + z2

◆

29. If rf(x, y) = hy, xi, then
@f

@x
= y and

@f

@y
= x

f(x, y) =

Z
y dx = xy + g(y)

@f

@y
= x+ g0(y) = x

g0(y) = 0
g(y) = c
f(x, y) = xy + c

The vector field is conservative.

30. If rf(x, y) = h2, yi, then
@f

@x
= 2 and

@f

@y
= y

f(x, y) =

Z
2 dx = 2x+ g(y)

@f

@y
= g0(y) = y

g(y) =
y2

2
+ c

f(x, y) = 2x+
y2

2
+ c

The vector field is conservative.

31. If rf(x, y) = hy,�xi, then
@f

@x
= y and

@f

@y
= �x

f(x, y) =

Z
y dx = xy + g(y)

@f

@y
= x+ g0(y) = �x

g0(y) = �2x
Since this is not possible, the vector field is not
conservative.

32. If rf(x, y) = hy, 1i, then
@f

@x
= y and

@f

@y
= 1

f(x, y) =

Z
y dx = yx+ g(y)

@f

@y
= x+ g0(y) = 1

g0(y) = 1� x

Since this is not possible, the vector field is not
conservative.

33. If rf(x, y) =
⌦
x� 2xy, y2 � x2

↵
, then

@f

@x
= x� 2xy and

@f

@y
= y2 � x2

f(x, y) =

Z
(x� 2xy) dx =

x2

2
� x2y + g(y)

@f

@y
= �x2 + g0(y) = y2 � x2

g0(y) = y2

g(y) =
y3

3
+ c

f(x, y) =
x2

2
� x2y +

y3

3
+ c

The vector field is conservative.

34. If rf(x, y) =
⌦
x2 � y, x� y

↵
, then

@f

@x
= x2 � y and

@f

@y
= x� y

f(x, y) =

Z
(x2 � y) dx =

x3

3
� xy + g(y)

@f

@y
= �x+ g0(y) = x� y

g0(y) = 2x� y

Since this is not possible, the vector field is not
conservative.

35. If rf(x, y) = hy sinxy, x sinxyi, then
@f

@x
= y sinxy and

@f

@y
= x sinxy

f(x, y) =

Z
y sinxy dx = � cosxy + g(y)

@f

@y
= x sinxy + g0(y) = x sinxy

g(y) = c
f(x, y) = � cosxy + c

The vector field is conservative.

36. If rf(x, y) = hy cosx, sinx� yi, then
@f

@x
= y cosx and

@f

@y
= sinx� y

f(x, y) =

Z
y cosx dx = y sinx+ g(y)

@f

@y
= sinx+ g0(y) = sinx� y
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g0(y) = �y

g(y) = �y2

2
+ c

f(x, y) = y sinx� y2

2
+ c

The vector field is conservative.

37. If rf(x, y, z) = h4x� z, 3y + z, y � xi
then
@f

@x
= 4x� z,

@f

@y
= 3y + z,

@f

@z
= y � z

f(x, y, z) =

Z
(4x� z) dx = 2x2 � xz + g(y, z)

@f

@y
=

@g

@y
= 3y + z

@g

@y
= 3y + z

g(y, z) =

Z
(3y + z) dy =

3

2
y2 + yz + h(z)

f(x, y, z) = 2x2 � xz +
3

2
y2 + yz + h(z)

@f

@z
= �x+ y + h0(z) = y � x

h0(z) = 0
h(z) = c

f(x, y, z) = 2x2 � xz +
3

2
y2 + yz + c

The vector field is conservative.

38. If rf(x, y, z) =
⌦
z2 + 2xy, x2 � z, 2xz � 1

↵

then
@f

@x
= z2 + 2xy,

@f

@y
= x2 � z,

@f

@z
= 2xz � 1

f(x, y, z) =

Z
(z2 + 2xy) dx

= xz2 + x2y + g(y, z)
@f

@y
= x2 +

@g

@y
= x2 � z

@g

@y
= �z

g(y, z) =

Z
�z dy = �zy + h(z)

f(x, y, z) = xz2 + x2y � zy + h(z)
@f

@z
= 2xz � y + h0(z) = 2xz � 1

h0(z) = y � 1

Since this is not possible, the vector field is not
conservative.

39. If rf(x, y, z) =
⌦
y2z2 � 1, 2xyz2, 4z3

↵
then

@f

@x
= y2z2 � 1,

@f

@y
= 2xyz2,

@f

@z
= 4z3

f(x, y, z) =

Z
4z3 dz = z4 + h(x, y)

@f

@y
=

@h

@y
= 2xyz2

Since h is supposed to be independent of z,
this is impossible and the vector field is not
conservative.

40. If rf(x, y, z) =
⌦
z2 + 2xy, x2 + 1, 2xz � 3

↵

then
@f

@x
= z2 + 2xy,

@f

@y
= x2 + 1,

@f

@z
= 2xz � 3

f(x, y, z) =

Z
(z2 + 2xy) dx

= xz2 + x2y + g(y, z)
@f

@y
= x2 +

@g

@y
= x2 + 1

@g

@y
= 1

g(y, z) =

Z
1 dy = y + h(z)

f(x, y, z) = xz2 + x2y + y + h(z)
@f

@z
= 2xz + h0(z) = 2xz � 3

h0(z) = �3
h(z) = �3z + c
f(x, y, z) = xz2 + x2y + y � 3z + c

The vector field is conservative.

41.
dy

dx
=

3x2

2yZ
2y dy =

Z
3x2 dx

y2 = x3 + c

42.
dy

dx
= 2xy

Z
1

y
dy =

Z
2x dx

ln |y| = x2 + c

y = Aex
2

43.
dy

dx
=

xey

yZ
ye�y dy =

Z
x dx

� ye�y � e�y =
x2

2
+ c

(y + 1)e�y = �x2

2
+ k (k = �c)

44.
dy

dx
=

2x

e�xZ
dy =

Z
2xex dx

y = 2ex(x� 1) + c

45.
dy

dx
=

y2 + 1

yZ
y

y2 + 1
dy =

Z
dx

1

2
ln(y2 + 1) = x+ c
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ln(y2 + 1) = 2x+ 2c
y2 + 1 = e2x+2c

y2 = Ae2x � 1 (A = e2x)

46.
dy

dx
=

y2 + 1

2Z
1

y2 + 1
dy =

Z
1

2
dx

tan�1 y =
1

2
x+ c

y = tan

✓
1

2
x+ c

◆

47. This is essentially Exercise 21.

rr =
hx, yip
x2 + y2

=
r

r

48. r(r2) = r(x2 + y2) = h2x, 2yi = 2hx, yi = 2r

49. Here we use the chain rule for the functions
f(u) = u3 and

g(x, y, z) = (x2 + y2 + z2)1/2 = r.

The chain rule give us, using Exercise 47:

r(r3) = r(f � g) = f 0(g(x, y, z))rg
= 3(g(x, y, z))2

⇣r
r

⌘

= 3(r)2
⇣r
r

⌘
= 3rr

50. Conjecture: r(rn) = nrn�2r

Proof:
Let f(x, y) = rn = (x2 + y2)n/2.

@f

@x
=

n

2
(x2 + y2)n/2�1(2x)

= nx(x2 + y2)(n�2)/2

= nxrn�2

@f

@y
=

n

2
(x2 + y2)n/2�1(2y)

= ny(x2 + y2)(n�2)/2

= nyrn�2

r(rn) = rf = hnxrn�2, nyrn�2i
= nrn�2hx, yi
= nrn�2r

51. Suppose this field is conservative, then there is
a function f(x, y) such that

fx =
1

r
=

1p
x2 + y2

and

fy =
1

r
=

1p
x2 + y2

Integrating these functions is a bit nasty, but
the tables can be used.

f(x, y) =

Z
1p

x2 + y2
dx

= ln
⇣
x+

p
x2 + y2

⌘
+ g(y)

@f

@y
=

 
1

x+
p
x2 + y2

! 
yp

x2 + y2

!

+ g0(y)

=
1p

x2 + y2

g0(y) =
1p

x2 + y2

� y⇣
x+

p
x2 + y2

⌘p
x2 + y2

=

 
1p

x2 + y2

! 
1� y

x+
p

x2 + y2

!

But, g is supposed to depend only on y and be
independent of x. The vector field is therefore
not conservative.

52. If rf(x, y) = 1

r2
h�y, xi, then

@f

@x
= � y

x2 + y2
and

@f

@y
=

x

x2 + y2

f(x, y) =

Z
x

x2 + y2
dy = tan�1

y

x
+ g(x)

@f

@x
= � y

x2 + y2
+ g0(x) = � y

x2 + y2

g0(y) = 0
g(y) = c

f(x, y) = tan�1

y

x
+ c

If c = 0, then f(x, y) is the polar angle ✓, where

�⇡

2
< ✓ <

⇡

2
.

53. This is the picture in the xy-plane. The wire
is represented by the z-axis, at the origin of
graph below.

x

y

0
-1 1 2

2

-2

1

-2

-1

0

54. If rf(x, y) = 1

rn hx, yi, then
@f

@x
=

x

(x2 + y2)n/2
and
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@f

@y
=

y

(x2 + y2)n/2

First, we handle the case when n 6= 2:

f(x, y) =

Z
x

(x2 + y2)n/2
dy

= � 1

(n� 2)(x2 + y2)(n�2)/2
+ g(y)

@f

@y
=

y

(x2 + y2)n/2
+ g0(y) =

y

(x2 + y2)n/2

g0(y) = 0
g(y) = c

f(x, y) = � 1

(n� 2)(x2 + y2)(n�2)/2
+ c

= � 1

(n� 2)rn�2

+ c

If n = 2, then:

f(x, y) =

Z
x

(x2 + y2)
dy

=
1

2
ln(x2 + y2) + g(y)

@f

@y
=

y

x2 + y2
+ g0(y) =

y

x2 + y2

g0(y) = 0
g(y) = c

f(x, y) =
1

2
ln(x2 + y2) + c

=
1

2
ln r2 + c = ln r + c

55. If we let �
1

(x) =

Z x

0

f(u) du then

�0
1

(x) = f(x).

Similarly, if we define �
2

(y) =

Z y

0

g(u) du

�
3

(z) =

Z z

0

h(u) du then �0
2

(y) = f(y) and

�0
3

(z) = f(z).

So we can define
�(x, y, z) = �

1

(x) + �
2

(y) + �
3

(z)
and which gives us

r� = h�0
1

(x),�0
2

(y),�0
3

(z)i
= hf(x), g(y), h(z)i

56. If rf(x, y) = hk
1

, k
2

i, then
@f

@x
= k

1

and
@f

@y
= k

2

f(x, y) =

Z
k
1

dx = k
1

x+ g(y)

@f

@y
= g0(y) = k

2

g0(y) = k
2

g(y) = k
2

y + c
f(x, y) = k

1

x+ k
2

y + c

The vector field is conservative.

57. Since the field acts radially away from the ori-
gin, we have
F = chx, yi for some c.

We are also told that kFk = 3.

This means that

3 = c
p
x2 + y2 and c =

3p
x2 + y2

.

F =
3hx, yip
x2 + y2

58. Since the field acts radially toward the origin,
we have
F = ch�x,�yi for some c.

We are also told that kFk = x2 + y2.

This means that c = 1 and
F = h�x,�yi

59. Since the field acts radially toward the origin,
we have
F = ch�x,�y,�zi for some c.

We are also told that kFk = x2 + y2 + z2.

This means that
c
p
x2 + y2 + z2 = x2 + y2 + z2 and

c =
p
x2 + y2 + z2.

F =
p
x2 + y2 + z2h�x,�y,�zi

60. Since the field acts radially away from the z-
axis, and parallel to the xy-plane, we have
F = chx, y, 0i for some c.

We are also told that the magnitude of F is
equal to the cube of distance from the z axis,
which means that,
kFk = (x2 + y2)3/2

This gives us the equations

kFk = c(x2 + y2)1/2 = (x2 + y2)3/2

c = x2 + y2

F =

⌧
x

x2 + y2
,

y

x2 + y2
, 0

�

61. This is very similar to Example 1.10. The dif-
ference is the magnitude of the charges and the
charge at the origin.

E = q
hx� 1, yi

[(x� 1)2 + y2]3/2

+ q
hx+ 1, yi

[(x+ 1)2 + y2]3/2

� q
hx, yi

[x2 + y2]3/2

62. The magnetic field of the Earth and the mag-
netic field of a dipole are all of the same form.
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63. In a contour map of the isotherms (the level-
surfaces for T ), the gradient is both orthogonal
to the isotherms and points in the direction of
higher temperatures (the direction of greatest
increase for T ). The di↵erential equation (with
respect to time) for the flow lines are
⌧
dx

dt
,
dy

dt
,
dz

dt

�
= F(x, y, z)

= �krT (x, y, z)

With k > 0, �krT is in the direction from hot
to cold and therefore heat must flow from hot
to cold.

64. An isotherm is a level curve, T (x, y, z) = c. We
know that level curves are orthogonal to gra-
dient fields (see Theorem 6.3 in Section 12.6).
okay Therefore, F and the isotherms are or-
thogonal.

14.2 Line Integrals

1. x = 1 + 2t, y = 2 + 3t, 0  t  1

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
22 + 32 dt =

p
13 dt

Z

C

2x ds =

Z
1

0

2(1 + 2t)
p
13 dt = 4

p
13

2. x = 1� 2t, y = 2� 2t, 0  t  1

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
(�2)2 + (�2)2 dt = 2

p
2 dt

Z

C

2xy ds =

Z
1

0

2(1� 2t)(2� 2t)2
p
2 dt

= 8
p
2

Z
1

0

(2t2 � 3t+ 1) dt =
4
p
2

3

3. x = 1 + t, y = �2t, z = 1 + t
0  t  1

ds =
q
[x0(t)]2 + [y0(t)]2 + [z0(t)]2 dt

=
p
(1)2 + (�2)2 + (1)2 dt =

p
6 dt

Z

C

4z ds =

Z
1

0

4(1 + t)
p
6 dt = 6

p
6

4. x = 2, y = 1� t, z = 2t
0  t  1

ds =
q
[x0(t)]2 + [y0(t)]2 + [z0(t)]2 dt

=
p
(0)2 + (�1)2 + (2)2 dt =

p
5 dt

Z

C

xz ds =

Z
1

0

2(2t)
p
5 dt

= 4
p
5

Z
1

0

t dt = 2
p
5

5. x = 2 cos t, y = 2 sin t, 0  t  ⇡

2

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
(�2 sin t)2 + (2 cos t)2 dt = 2 dt

Z

C

3x ds =

Z ⇡/2

0

3(2 cos t)(2) dt

= 12

Z ⇡/2

0

cos t dt = 12

6. x = 3 sin t, y = 3 cos t, 0  t  ⇡

2

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
(3 cos t)2 + (�3 sin t)2 dt = 3 dt

Z

C

(3x� y) ds

=

Z ⇡/2

0

[9 sin t� 3 cos t](3) dt

= 9

Z ⇡/2

0

(3 sin t� cos t) dt = 18

7. x = t, y = t2, 0  t  2

ds =
q
(x0 (t))2 + (y0 (t))2dt

=
p
1 + 4t2dtZ

C

fds =

Z

C

(3xy) ds

=

Z
2

0

�
3 (t) t2

�p
1 + 4t2dt

= 3

Z
2

0

t3
p
1 + 4t2dt

= 3

Z
17

1

✓
u� 1

4

◆p
u

✓
du

8

◆

�
put u = 1 + 4t2

�

=
3

16

 
17

5
2

5
� 17

3
2

3
+

2

15

!

=
3

240

⇣
384
p
17 + 2

⌘

8. x = t, y = t2, �2  t  �2

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
(1)2 + (2t)2 dt

=
p
1 + 4t2 dt

Z

C

2xds =

Z
2

�2

2t
p

1 + 4t2 dt
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= 0 (by symmetry)

9. C
1

: x = t, y = 0, 0  t  1

ds = dt
Z

C1

3x ds =

Z
1

0

3t dt =
3

2

C
2

: x = cos t, y = sin t, 0  t  ⇡

2
ds = dt
Z

C2

3x ds =

Z ⇡/2

0

3 cos t dt = 3

Z

C

3x ds =

Z

C1

3x ds+

Z

C2

3x ds

=
3

2
+ 3 =

9

2

10. C
1

: x = t, y = t2, 0  t  2

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
(1)2 + (2t)2 dt =

p
1 + 4t2 dt

Z

C1

2y ds =

Z
2

0

2t2
p
1 + 4t2 dt ⇡ 16.9424

C
2

: x = 2 + t, y = 4� 4t, 0  t  1

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
(1)2 + (�4)2 dt =

p
17 dt

Z

C2

2yds =

Z
1

0

2(4� 4t)
p
17 dt

= 8
p
17

Z
1

0

(1� t) dt = 4
p
17

Z

C

2yds =

Z

C1

2y ds+

Z

C2

2y ds

⇡ 16.9424 + 4
p
17 ⇡ 33.4348

11. x = t, y = t2, z = 2, 1  t  2

ds =
q
(x0 (t))2 + (y0 (t))2 + (z0 (t))2dt

=
q
12 + (2t)2 + 0dt

=
p
1 + 4t2dtZ

C

fds =

Z

C

xzds =

Z
2

1

2t
p
1 + 4t2dt

=

Z
17

5

2(u)
1
2
du

8

�
put u = 1 + 4t2

�

=
1

6

⇣
17

3
2 � 5

3
2

⌘

12. Since C lies in the xy-plane, z = 0 and
Z

C

z ds =

Z

C

0 ds = 0

13. x = 2 sin t, y = 2 cos t, z = 4� 2 sin t,
0  t  2⇡

ds =
q
(x0 (t))2 + (y0 (t))2 + (z0 (t))2dt

=
q
(2 cos t)2 + (�2 sin t)2 + (�2 cos t)2dt

= 2
p

1 + cos2tdtZ

C

fds =

Z

C

xyds

=

Z
2⇡

0

4 sin t. cos t
p

1 + cos2tdt

= �2
Z

2

2

p
udu

�
put u = 1 + cos2t

�

= 0

14. C is intersection of x2 + y2 + z2 = 4 with
z = y + 2
x2 + y2 + (y + 2)2 = 4
x2 + 2y2 + 4y + 4 = 4
x2 + 2(y + 1)2 = 2✓

xp
2

◆
2

+ (y + 1)2 = 1

xp
2
= sin t, y + 1 = cos t, z = 1 + cos t,

0  t  2⇡

ds =
q

(x0 (t))2 + (y0 (t))2 + (z0 (t))2dt

=

r⇣p
2 cos t

⌘
2

+ (� sin t)2 + (� sin t)2dt

=
p
2dtZ

C

fds =

Z

C

xz2ds

=

Z
2⇡

0

⇣p
2 sin t

⌘
(1 + cos t)2

p
2dt

= �
Z

2

2

2(u)2du

(put u = 1 + cos t)

= 0

15. x = t, y = 2 + 2t, 0  t  2
dx = dtZ

C

2xexdx =

Z
2

0

2 t etdt = 2
�
e2 + 1

�

16. x = 2� t, y = 3t, 0  t  1
dy = 3dtZ

C

4y
p

1 + y2dy

=

Z
1

0

4 (3t)
q
1 + (3t)2 (3dt)
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= 2

Z
10

1

u
1
2 du

�
put u = 1 + 9t2

�

=
4

3

⇣
10

3
2 � 1

⌘

17. x = 2 cos t, y = 2 sin t, 0  t  ⇡

2
dx = � sin tdtZ

C

2ydx =

Z ⇡/2

0

2 (2 sin t) (�2 sin t) dt

= �8
Z ⇡/2

0

sin2tdt = 2⇡

18. x = 2 cos t, y = 2 sin t,
⇡

2
 t  ⇡

dy = 2 cos tdtZ

C

3xydy

=

Z ⇡

⇡/2

3 (2 cos t) (2 sin t) (2 cos t) dt

= 24

Z ⇡

⇡/2

sin tcos2tdt = 8

19. x = 2 sin t, y = 2 cos t, 0  t  ⇡
dx = 2 cos tdtZ

C

3y2dx

=

Z ⇡

0

3(2 cos t)22 cos tdt = 0

20. x = cos t, y = 2 sin t, 0  t  2⇡
dy = 2 cos tdtZ

C

�
4x2 + y2

�
dy

=

Z
2⇡

0

4 (2 cos t) dt = 0

21. C : y = x2 from (2, 4) to (0, 0)
using x as parameter
x = t, y = t2

dx = dt
t from 2 to 0Z

C

p
4x2 + ydx =

Z
0

2

p
4t2 + t2 dt

=
p
5

Z
0

2

t dt = �2
p
5

22. C : y = x2 from (2, 4) to (0, 0)
using x as parameter
x = t, y = t2, t from 2 to 0
dy = 2tdtZ

C

p
4x2 + ydy =

Z
0

2

p
4t2 + t2 2tdt

= 2
p
5

Z
0

2

t2dt

= 2
p
5


t3

3

�
0

2

= �16
p
5

3

23. Consider C :
�
t2, t

�
for 0  t  1.

Then dt = dy.
1Z

0

�
et�2t

�
dt =

1Z

0

e�tdt = 1� 1

e

24. C : x = y2 from (1, 1) to (1,�1)
using y as a parameter
y = t, x = t2

dx = 2tdt
t from 1 to � 1Z

C

(3y + sin (x+ 2)) dx

=

Z �1

1

�
3t+ sin

�
t2 + 2

��
2tdt = �4

25. y = x2, z = 2, 1  x  2
using x as a parameter
1  t  2
dy = 2xdxZ

C

sin
�
x2 + z

�
dy

=

Z
2

1

sin
�
x2 + 2

�
(2x) dx

=

Z
6

3

sinudu
�
put u = 2 + x2

�

= cos 3� cos 6

26. x = 2 sin t, y = 2 cos t, z = 0, 0  t  2⇡
dx = 2 cos tdtZ

C

⇣
zy2 + ex

2
+y2
⌘
dx

=

Z
2⇡

0

�
0 + e4

�
2 cos tdt = 0

27. C
1

: y = ex from (0, 1) to
�
2, e2

�

using x as a parameter
0  x  2
dy = exdxZ

C

�
x2 + y4

�
dy

=

Z
2

0

�
x2 + e4x

�
(ex) dx

=

Z
2

0

�
x2ex

�
dx+

Z
2

0

e5xdx

=
⇥
x2ex � 2xex + 2ex

⇤
2

0

+
e10 � 1

5

=
�
2e2 � 2

�
+

e10 � 1

5
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28. using x as a parameter
y = tan�1x, 0  x  1

dy =
1

1 + x2

dx
Z

C

�
x2 + 1

�
dy

=

Z
1

0

�
x2 + 1

�✓ 1

x2 + 1

◆
dx = 1

29. x = 3 + 2t, y = 1 + 3t, 0  t  1
Z

C

F · dr

=

Z

C

2xdx+ 2ydy

=

Z
1

0

[2(3 + 2t)(2) + 2(1 + 3t)(3)] dt

=

Z
1

0

(26t+ 18) dt = 31

30. x = 4� 4t, y = 2 + 2t, 0  t  1
Z

C

F · dr

=

Z

C

2y dx� 2x dy

=

Z
1

0

[2(2 + 2t)(�4)� 2(4� 4t)(2)] dt

=

Z
1

0

�32 dt = �32

31. x = 4 cos t, y = 4 sin t , 0  t  ⇡

2Z

C

F · dr

=

Z

C

�
y2 + x

�
dx+

�
y2 + 2

�
dy

=

Z ⇡2

0

⇥
�
�
16sin2t+ 4 cos t

�
4 sin t

+
�
16sin2t+ 2

�
4 cos t

⇤
dt

= �64

3

32. x = �3 cos t, y = 3 sin t
0  t  ⇡Z

C

F · dr

=

Z

C

�
2y + x2

�
dx+

�
x2 � 2x

�
dy

=

Z ⇡

0

⇥�
2 (3 sin t) + 9cos2t

�
3 sin t

+
�
9cos2t+ 6 cos t

�
3 cos t

⇤
dt

=

Z ⇡

0

⇥
18 + 27 (sin t+ cos t) cos2t

⇤
dt

= 18 + 18⇡

33. x = t, y = t2

dx = dt, dy = 2tdt
0  t  1Z

C

F · dr

=

Z

C

xeydx+
�
ex + y2

�
dy

=

Z
1

0

tet
2

dt+
�
et + t4

�
2tdt

=
11

6
+

e

2

34. x = t, y = t3

0  t  1Z

C

F

=

Z

C

x2eydx+ yexdy

=

Z
1

0

⇣
t2et

3

+
�
t3et

�
3t2
⌘
dt

=

Z
1

0

t2et
3

dt+ 3

Z
1

0

t5etdt

=
1079

3
� 395

3
e

35. C
1

: (0, 0, 0) to (2, 1, 2)
x = 2t y = t z = 2t
0  t  1
Z

C1

F · dr =

Z

C1

y dx+ 0 dy + z dz

=

Z
1

0

[(t)(2) + 0 + 2t(2)] dt

=

Z
1

0

6t dt = 3

C
2

: (2, 1, 2) to (2, 1, 0)
x = 2 y = 1 z = 2� 2t
0  t  1
Z

C2

F · dr =

Z

C2

y dx+ 0 dy + z dz

=

Z
1

0

[1(0) + 0(0) + (2� 2t)(�2)] dt

=

Z
1

0

4(t� 1) dt = �2

C
3

: (2, 1, 0) to (0, 0, 0)
x = 2� 2t y = 1� t z = 0
0  t  1
Z

C3

F · dr =

Z

C3

y dx+ 0 dy + z dz

=

Z
1

0

[(1� t)(�2) + (0)(�1)0(0)] dt

=

Z
1

0

�2(1� t) dt = �1
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Z

C

F · dr =

Z

C1

F · dr+

Z

C2

F · dr

+

Z

C3

F · dr

= 3� 2� 1 = 0

36. x = cos t y = sin t z = 2t
0  t  ⇡/2
Z

C

F · dr =

Z

C

xy dx+ 3z dy + 1 dz

=

Z ⇡/2

0

[(cos t sin t)(� sin t)

+3(2t)(cos t) + 1(2)] dt

=

Z ⇡/2

0

⇥
� cos t sin2 t+ 6t cos t+ 2

⇤
dt

= �1

3
+ (3⇡ � 6) + ⇡ = 4⇡ � 19

3

37. The motion is in the same direction as the force
field, so the work done by the force field is pos-
itive.

38. The motion is against the force field, so the
work done by the force field must be negative.

39. The motion is perpendicular to the force field,
so the work done by the force field must be
zero.

40. Most of the motion is in roughly the same di-
rection as the force field, so the work done by
the force field is positive.

41. Most of the motion is against the force field,
so the work done by the force field must be
negative.

42. There appears to be more motion in the di-
rection of the force field than against the force
field, so the work done by the force field is pos-
itive (but relatively small).

43. This surface area does not require an integral,
but here is one that works.

x = 2 cos t, y = 2 sin t, 0  t  ⇡/2

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
(�2 sin t)2 + (2 cos t)2 dt = dt

S =

Z

C

(height) ds

=

Z

C

(x2 + y2) ds

=

Z ⇡/2

0

(4 cos2 t+ 4 sin2 t)(2) dt

= 8
⇣⇡
2

⌘
= 4⇡

44. x = t, y = t2, 0  t  2

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
(1)2 + (2t)2 dt =

p
1 + 4t2 dt

S =

Z

C

(height) ds

=

Z

C

(x2 + y2) ds

=

Z
2

0

(t2 + t4)
p
1 + 4t2 dt

⇡ 30.7765

45. x = 2� 4t, y = 0, 0  t  1

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
(�4)2 + (0)2 dt = 4 dt

S =

Z

C

(height) ds

=

Z

C

(4� x2 � y2) ds

=

Z
1

0

[4� (2� 4t)2]4 dt

= 64

Z
1

0

(t� t2) dt

= 64

✓
1

6

◆
=

32

3

46. x = 1� 2t, y = 1, 0  t  1

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
(�2)2 + (0)2 dt = 2 dt

S =

Z

C

(height) ds

=

Z

C

p
x2 + y2 ds

=

Z
1

0

p
(1� 2t)2 + 1(2) dt

=

Z
1

0

2
p
4t2 � 4t+ 2 dt

=
p
2� ln(

p
2� 1) ⇡ 2.2956

47. We follow the proof for Theorem 2.1, but “up-
grade” it to curves in three space.

We start with a curve in three dimensions.
From Definition 2.1, we have
Z

C

f(x, y, z) = lim
kPk!0

nX

i=1

f(x⇤
i , y

⇤
i )�si where

�si represents the arc length of the section
of the curve C between (xi�1

, yi�1

, zi�1

) and
(xi, yi, zi).

Choose t
0

, t
1

, . . . , tn so that

x(ti) = xi, y(ti) = yi, and z(ti) = zi, for
i = 0, 1, . . . , n. We approximate the arc length
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of a section of the curve by the straight-line
distance:

�si ⇡p
(xi � xi�1

)2 + (yi � yi�1

)2 + (zi � zi�1

)2

Since x(t), y(t) and z(t) have continuous first
derivatives, we have by the Mean Value Theo-
rem:

�si ⇡p
(xi � xi�1

)2 + (yi � yi�1

)2 + (zi � zi�1

)2

⇡
q
[x0(t⇤i )]

2 + [y0(t⇤i )]
2 + [z0(t⇤i )]

2 �ti

for some t⇤i 2 (ti�1

, ti).

Putting this together with Definition 2.1 gives
Z

C

f(x, y, z) = lim
kPk!0

nX

i=1

f(x⇤
i , y

⇤
i )�si

= lim
kPk!0

nX

i=1

f(x⇤
i , y

⇤
i )

q
[x0(t⇤i )]

2 + [y0(t⇤i )]
2 + [z0(t⇤i )]

2 �ti

=

Z b

a

f(x, y)
p
[x0(t)]2 + [y0(t)]2 + [z0(t)]2 dt

where the last equality is because we recognize
the sum as a Riemann Sum.

48. For (i), fix a partition, P , of the curve:
(x

0

, y
0

, z
0

), (x
1

, y
1

, z
1

), · · · (xn, yn, zn)
This partition is a partition for both C and
�C. Notice that regardless of the direction
that the curve is traversed, �si is the length
of the section of the curve and is the same.
Next, for each section, Ci, of the curve, we pick
a point (x⇤

i , y
⇤
i , z

⇤
i ). Then, the Riemann sums

for the line integrals are:
Z

C

f ds ⇡
nX

i=1

f(x⇤
i , y

⇤
i , z

⇤
i )�si

Z

�C

f ds ⇡
1X

i=n

f(x⇤
i , y

⇤
i , z

⇤
i )�si

The Riemann sums are equal and therefore the
limits will also be equal when we pass to the
integral.

For (ii), since the integrals on the right side
exist, we can combine the Riemann sums over
C

1

, . . . , Cn into a single sum which will be a
Riemann sum approximating the integral on
the left. The limit of this combined sum will
be the sum of the individual limits on the
right, which is the sum of the integrals over
the smooth pieces of C.

49. This is similar to the proof of the Fundamental
Theorem of Calculus.

By definition,

Z b

a

f(x(t), y(t), z(t))x0(t) dt

is the limit of sums of the form
nX

i=1

f (x(t⇤i ), y(t
⇤
i ), z(t

⇤
i ))x

0(t⇤i )�ti

Since x(t) is di↵erentiable, the mean value the-
orem tells us that in each subinterval of a parti-
tion, we can choose an evaluation point t⇤i such
that
x(ti)� x(ti�1

) = �xi = x(t⇤i )�ti
Using these evaluation points, and writing x⇤

i

for x(t⇤i ), the sum above becomes,
nX

i=1

f (x⇤
i , y

⇤
i , z

⇤
i )�xi

Since x(t) is continuous, �ti and �xi will both
go to 0 together, which means that the norm
of both the x and t partitions go to 0 together.

Therefore

Z b

a

f(x(t), y(t), z(t))x0(t) dt

= lim
kPk!0

nX

i=1

f (x(t⇤i ), y(t
⇤
i ), z(t

⇤
i ))x

0(t⇤i )�ti

= lim
kPk!0

nX

i=1

f (x⇤
i , y

⇤
i , z

⇤
i )�xi

=

Z

C

f(x, y, z) dx

50. For (i), note that the definition of the line in-
tegral is
Z

C

f(x, y, z) dx

= lim
kPk!0

nX

i=1

p
[x0(ti)]2 + [y0(ti)]2 �ti

Of course, a partition for C gives a partition
for �C. The only di↵erence will be the sign
of the �ti, which will be positive for C and
negative for the curve �C, giving the result.

For (ii), note that if we are given a partition
of C, we can add the endpoints of each Ci to
a finer partition of C. Then, this partition for
C will give partitions for each of the curves Ci.
Thus, when written as a Riemann sum, we will

have

Z

C

f(x, y, z) dx

= lim
kPk!0

mX

i=1

p
[x0(ti)]2 + [y0(ti)]2 �ti

= lim
kP1k!0

m1X

i=1

p
[x0(ti)]2 + [y0(ti)]2 �ti
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+ lim
kP2k!0

m2X

i=1

p
[x0(ti)]2 + [y0(ti)]2 �ti

+ · · ·+

+ lim
kP

n

k!0

m
nX

i=1

p
[x0(ti)]2 + [y0(ti)]2 �ti

=

Z

C1

f(x, y, z) dx+

Z

C2

f(x, y, z) dx

+ · · ·+
Z

C
n

f(x, y, z) dx

51. Recall that T is the unit tangent vector.

If we let
r(t) = hx(t), y(t), z(t)i then
dr = hx0(t), y0(t), z0(t)i dt and

T(t) =
r0(t)

|r0(t)|
Also, notice that
ds =

p
(x0)2 + (y0)2 + (z0)2 dt = |r0(t)| dt

Z

C

F ·T ds

=

Z

C

F · r0(t)

|r0(t)| |r
0(t)| dt

=

Z

C

F · r0(t) dt =
Z

C

F · dr

52. 14.2 Recall that n is a unit vector.

There is a small issue here. The direction of
the unit tangent vector is determined by the
direction the curve is traversed.

T(t) =
hx0(t), y0(t)ip
x0(t)2 + y0(t)2

Given a unit tangent vector in two dimensional
space, there are two choices for the unit normal
vector. We will choose to obtain n by rotating

the unit tangent vector by �⇡

2
(so the vector

rotates clockwise).

T(t) =
hy0(t),�x0(t)ip
x0(t)2 + y0(t)2

Then, ds =
p
x0(t)2 + y0(t)2 dt and

Z

C

F ·T ds =

Z

C

F
1

dx+ F
2

dy
Z

C

F · n ds =

Z

C

F
1

dy � F
2

dx

53. x = t, y = t2, 0  t  3

ds =
q
[x0(t)]2 + [y0(t)]2 dt

=
p
(1)2 + (2t)2 dt =

p
1 + 4t2 dt

m =

Z

C

⇢ ds =

Z

C

x ds

=

Z
3

0

t
p

1 + 4t2 dt

=
37
p
37� 1

12
⇡ 18.672

54. x = t, y = 4� t2, 0  t  2

ds =
q
(x0 (t))2 + (y0 (t))2dt

=
p
1 + 4t2dt

m =

Z

C

⇢ds =

Z

C

xyds

=

Z
2

0

t
�
4� t2

�p
1 + 4t2dt

=
1

4

Z
17

1

(17� u) (u)
1
2
du

8

�
put u = 1 + 4t2

�

=
1

32

Z
17

1

⇣
17(u)

1
2 � (u)

3
2

⌘
du

=
1

120

⇣
(17)

5
2 � 41

⌘

55. The set up is as in Exercise 53. The integrals
here can be done using the table of integrals
a CAS or by approximating using Simpson’s
Rule.

mx =

Z

C

x⇢ ds

=

Z
3

0

t2
p
1 + 4t2 dt

=
1

64

h
438
p
37� ln(6 +

p
37)
i

⇡ 41.590
x ⇡ 2.227

my =

Z

C

y⇢ ds

=

Z
3

0

t3(
p

1 + 4t2 dt

=
1

120

⇣
1961

p
37 + 1

⌘
⇡ 99.411

y ⇡ 5.324

(x, y) = (2.227, 5.324)
Shape is y = x2.
x2 = (2.227)2 = 4.959 6= y

Therefore centre of mass is not located at a
point on the wire.

56. The set up is the same as in Exercise 54.

x =
1

m

Z

C

x⇢ ds

=
1

m

Z
2

0

t(4� t2)
p

1 + 4t2 dt

⇡ 1

10.1160
(9.5881) ⇡ 0.9478
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y =
1

m

Z

C

y⇢ ds

=
1

m

Z
2

0

(4� t2)(4� t2)
p
1 + 4t2 dt

⇡ 1

10.1160
(28.8845) ⇡ 2.8553

(x, y) = (0.9478, 2.8553)
Shape is y = 4� x2

4� x2 = 4� (0.9478)2 = 3.101 6= y
Therefore centre of mass is not located at a
point on the wire.

57. The set up is as in Exercise 53. The integral
here can be done using the table of integrals,
a CAS or by approximating using Simpson’s
Rule.

Ixx =

Z

C

x2⇢ ds

=

Z
3

0

t3(
p
1 + 4t2 dt

=
1

120

⇣
1961

p
37 + 1

⌘
⇡ 99.411

58. The set up is the same as in Exercise 54.

I =

Z

C

w2⇢ ds =

Z

C

y2 · y ds

=

Z
2

0

(4� t2)2(4� y2)
p
1 + 4t2 dt

⇡ 91.8346

59. The set up is as in Exercise 53. The integral
here can be done using the table of integrals,
a CAS or by approximating using Simpson’s
Rule.

I =

Z

C

w2⇢ ds

=

Z

C

(9� y)2x ds

=

Z
3

0

(9� t2)2t(
p
1 + 4t2 dt

=
50653

p
37� 5797

840
⇡ 359.897

60. The set up is the same as in Exercise 54.

I =

Z

C

w2⇢ ds =

Z

C

(x� 2)2 · y ds

=

Z
2

0

(t� 2)2(4� y2)
p
1 + 4t2 dt

⇡ 13.6906

61. x = cos 2t, y = sin 2t, z = t
0  t  ⇡

ds =
q
[x0(t)]2 + [y0(t)]2 + [z0(t)]2 dt

=
p
(�2 sin 2t)2 + (2 cos 2t)2 + (1)2 dt

=
p
5 dt

m =

Z

C

⇢ ds =

Z

C

z2 ds

=

Z ⇡

0

t2
p
5 dt =

⇡3

p
5

3

62. x = cos 2t, y = sin 2t, z = t, 0  t  ⇡

ds =
q
(x0 (t))2 + (y0 (t))2 + (z0 (t))2dt

=
q
(�2 sin 2t)2 + (2 cos 2t)2 + 12dt

=
p
5dt

m =

Z

C

⇢ds =

Z

C

x2ds

=
p
5

Z ⇡

0

cos2 (2t) dt

=
p
5

Z ⇡

0

(1 + cos (4t))

2
dt

=
⇡
p
5

2

63. The absolute rate of heat loss can not be com-
puted here because k is not given.

rT =

⌧
0,

6

5
ey/50

�

Along the bottom:
C

1

: y = �5, x = t,�20  t  20,
n = h0,�1i
Z

C1

(�krT ) · n ds =

Z
20

�20

6k

5
e�1/10 dt

= 48ke�1/10

Along the right:
C

2

: x = 20, y = t,�5  t  5
n = h1, 0i
Z

C2

(�krT ) · n ds =

Z
5

�5

0 dy = 0

Along the bottom:
C

3

: y = 5, x = �t,�20  t  20
n = h0, 1i
Z

C3

(�krT ) · n ds =

Z �20

20

�6k

5
e1/10 dx

= �48ke1/10

Along the left:
C

4

: x = �20, y = �t �5  t  5

n = h�1, 0i
Z

C2

(�krT ) · n ds

=

Z �5

5

0 dt = 0

Z

C

(�krT ) · n ds

=

Z

C1

(�krT ) · n ds+

Z

C2

(�krT ) · n ds
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+

Z

C3

(�krT ) · n ds+

Z

C4

(�krT ) · n ds

= 48ke�1/10 + 0� 48ke1/10 + 0

= 48k
⇣
e�1/10 � e1/10

⌘
⇡ �9.616k

It is clear no heat is flowing along the left
and right because the temperature is constant
along horizontal lines, which explains why the
integrals along those sides are 0.

14.3 Independence of Path

and Conservative Vector

Fields

1. My = 2x
Nx = 2x
SinceMy = Nx, the vector field is conservative.

If rf(x, y) = F, then
@f

@x
= 2xy � 1 and

@f

@y
= x2

f(x, y) =

Z
(2xy � 1) dx = x2y � x+ g(y)

@f

@y
= x2 + g0(y) = x2

g0(y) = 0
g(y) = c
f(x, y) = x2y � x+ c

2. My = 6x2y
Nx = 6x2y
SinceMy = Nx, the vector field is conservative.

If rf(x, y) = F, then
@f

@x
= 3x2y2 and

@f

@y
= 2x3y � y

f(x, y) =

Z
3x2y2 dx = x3y2 + g(y)

@f

@y
= 2x3y + g0(y) = 2x3y � y

g0(y) = �y
g(y) = �1

2
y2 + c

f(x, y) = 2x3y � y2

2
+ c

3. My = � 1

y2

Nx = � 1

y2

SinceMy = Nx, the vector field is conservative.

If rf(x, y) = F, then
@f

@x
=

1

y
� 2x and

@f

@y
= y � x

y2

f(x, y) =

Z ✓
1

y
� 2x

◆
dx =

x

y
� x2 + g(y)

@f

@y
= � x

y2
+ g0(y) = y � x

y2

g0(y) = y

g(y) =
y2

2
+ c

f(x, y) =
x

y
� x2 +

y2

2
+ c

4. My = cos y
Nx = cos y
SinceMy = Nx, the vector field is conservative.

If rf(x, y) = F, then
@f

@x
= sin y � x and

@f

@y
= x cos y

f(x, y) =

Z
sin y � x dx

= x sin y � x2

2
+ g(y)

@f

@y
= x cos y + g0(y) = x cos y

g0(y) = 0
g(y) = c

f(x, y) = x sin y � x2

2
+ c

5. My = xexy

Nx = xyexy � exy

Since My 6= Nx, the vector field is not conser-
vative.

6. My = ey

Nx = ey � 2xy
Since My 6= Nx, the vector field is not conser-
vative.

7. My = xyexy + exy

Nx = xyexy + exy

SinceMy = Nx, the vector field is conservative.

If rf(x, y) = F, then
@f

@x
= yexy and

@f

@y
= xexy + cos y

f(x, y) =

Z
yexy dx = exy + g(y)

@f

@y
= xexy + g0(y) = xexy + cos y

g0(y) = cos y
g(y) = sin y + c
f(x, y) = exy + sin y + c

8. My = cosxy � xy sinxy � 2x
Nx = cosxy � xy sinxy � 2x
SinceMy = Nx, the vector field is conservative.
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If rf(x, y) = F, then
@f

@x
= y cosxy � 2xy and

@f

@y
= x cosxy � x2

f(x, y) =

Z
(y cosxy � 2xy) dx

= sinxy � x2y + g(y)
@f

@y
= x cosxy � x2 + g0(y) = x cosxy � x2

g0(y) = 0
g(y) = c
f(x, y) = sinxy � x2y + c

9. If rf(x, y) = F, then
@f

@x
= z2 + 2xy,

@f

@y
= x2 + 1,

@f

@z
= 2xz � 3

f(x, y, z) =

Z
(z2 � 2xy) dx

= xz2 + x2y + g(y, z)
@f

@y
= x2 +

@g

@y
= x2 + 1

@g

@y
= 1

g(y, z) =

Z
1 dy = y + h(z)

f(x, y, z) = xz2 + x2y + y + h(z)
@f

@z
= 2xz + h0(z) = 2xz � 3

h0(z) = �3
h(z) = �3z + c
f(x, y, z) = xz2 + x2y + y � 3z + c

10. If rf(x, y) = F, then
@f

@x
= y2 � x,

@f

@y
= 2xy + sin z,

@f

@z
= y cos z

f(x, y, z) =

Z
(y2� x) dx = xy2� x2

2
+ g(y, z)

@f

@y
= 2xy +

@g

@y
= 2xy + sin z

@g

@y
= sin z

g(y, z) =

Z
sin z dy = y sin z + h(z)

f(x, y, z) = xy2 � x2

2
+ y sin z + h(z)

@f

@z
= y cos z + h0(z) = y cos z

h0(z) = 0
h(z) = c

f(x, y, z) = xy2 � x2

2
+ y sin z + c

11. If rf (x, y) = F, then

@f

@x
= y2z2 + xe�2x,

@f

@y
= y
p
y2 + 1 + 2xyz2

@f

@z
= 2xy2z

f(x, y, z) =

Z �
y2z2 + xe�2x

�
dx

= y2z2x� e�2x

2

✓
x+

1

2

◆
+ g (y, z)

@f

@y
= 2xyz2 +

@g

@y
= y
p

y2 + 1 + 2xyz2

@g

@y
= y
p
y2 + 1

g (y, z) =

Z
y
p
y2 + 1dy

g (y, z) =

�
y2 + 1

�
3/2

3
+ h (z)

f (x, y, z) = y2z2x� e�2x

2

✓
x+

1

2

◆

+

�
y2 + 1

�
3/2

3
+ h (z)

@f

@z
= 2xy2z2 + h0 (z) = 2xy2z

h0 (z) = 0
h (c) = c

f (x, y, z) = y2z2x� e�2x

2

✓
x+

1

2

◆

+

�
y2 + 1

�
3/2

3
+ c

12. If rf (x, y) = F, then

@f

@x
= 2xeyz � tan�1 (x) ,

@f

@y
= x2 + eyz

@f

@z
= x2yeyz

f (x, y, z)

= x2eyz � xtan�1x+
1

2
ln
�
1 + x2

�
+ g (y, z)

@f

@y
= zx2eyz +

@f

@y
= x2 + eyz

@f

@y
= eyz

�
1� x2z

�
+ x2

But g (y, z) is supposed to be independent of
x therefore, it is impossible to find Potential
function and f is not conservative.

13. My = 2x
Nx = 2x
Since My = Nx, the vector field is conservative
and the integral is independent of path.

The integral is

Z

C

F · dr where

F =
⌦
2xy, x2 � 1

↵

A potential function is
f(x, y) = x2y � y,
so the line integral is independent of path.Z

C

F · dr =
⇥
x2y � y

⇤
(3,1)

(1,0)
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= (8)� (0) = 8

14. My = 6x2y
Nx = 6x2y
Since My = Nx, the vector field is conservative
and the integral is independent of path.

The integral is

Z

C

F · dr where

F =
⌦
3x2y2, 2x3y � 4

↵

A potential function is
f(x, y) = x3y2 � 4y,
so the line integral is independent of path.Z

C

F · dr =
⇥
x3y2 � 4y

⇤
(�1,1)

(1,2)

= (�5)� (�4) = �1

15. My = (x+ y)exy

Nx = (x+ y)exy

Since My = Nx, the vector field is conservative
and the integral is independent of path.

The integral is

Z

C

F · dr where

F = hyexy, xexy � 2yi
A potential function is
f(x, y) = exy � y2,
so the line integral is independent of path.Z

C

F · dr =
⇥
exy � y2

⇤
(0,4)

(1,0)

= (�15)� (1) = �16

16. My = �2
Nx = �2
Since My = Nx, the vector field is conservative
and the integral is independent of path.

The integral is

Z

C

F · dr where

F =
D
2xex

2

� 2y, 2y � 2y
E

A potential function is
f(x, y) = ex

2 � 2xy + y2,
so the line integral is independent of path.Z

C

F · dr =
h
ex

2

� 2xy + y2
i
(�1,1)

(1,2)

= (e+ 3)� (e) = 3

17. The integral is

Z

C

F · dr where

F =
⌦
z2 + 2xy, x2, 2xz

↵

This vector field is very similar to the field in
Exercise 9.

A potential function is
f(x, y) = xz2 + x2y,
so the line integral is independent of path.Z

C

F · dr =
⇥
xz2 + x2y

⇤
(4,�1,0)

(2,1,3)

= (�16)� (22) = �38

18. The integral is

Z

C

F · dr where

F =
⌦
2x cos�x2, z � 2y, y � x2 sin z

↵

A potential function is

f(x, y) = x2 cos z � x3

3
+ yz � y2,

so the line integral is independent of path.
Z

C

F · dr =


x2 cos z � x3

3
+ yz � y2

�
(1,0,⇡)

(3,�2,0)

=

✓
�4

3

◆
� (�4) = 8

3

19. A potential function is

f (x, y) =
x3

3
+ x+

y5

5
� 2

3
y3 + y

So the line integral is independent of path
Z

C

F.dr =


x3

3
+ x+

y5

5
� 2

3
y3 + y

�
(4,0)

(�4,0)

=
152

3

20. A potential function is

f (x, y) = ex
�
x2 � 2x+ 2

�
� ex

2 � 1

3
cos3y

So the line integral is independent of pathZ

C

F.dr

=


ex
�
x2 � 2x+ 2

�
� ex

2

� 1

3
cos3y

�
(2,4)

(�2,4)

= 2e2 � 10

e2

21. A potential function is
f(x, y) = r =

p
x2 + y2 + z2,

so the line integral is independent of path.Z

C

F · dr =
hp

x2 + y2 + z2
i
(2,1,5)

(1,3,2)

=
p
30�

p
14

22. A potential function is

f(x, y) =
1

2
ln(x2 + y2 + z2),

so the line integral is independent of path.Z

C

F · dr =


1

2
ln(x2 + y2 + z2)

�
(0,1,�1)

(2,0,0)
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=

✓
1

2
ln 2

◆
�
✓
1

2
ln 4

◆

= �1

2
ln 2

23. My = 3x2 and Nx = 3y2, so the vector field
is not conservative and the line integral is not
independent of path.

C : x = cos t, y = � sin t, 0  t  ⇡
Z

C

F · dr =

Z

C

(3x2y + 1) dx+ 3xy2 dy

=

Z ⇡

0

⇥
3(cos2 t)(� sin t)(� sin t)

+3(cos t)(sin2 t)(� cos t)
⇤
dt

=

Z ⇡

0

� sin t dt = �2

24. My = 4x
Nx = 4x� 1
Since My 6= Nx, the vector field is not conser-
vative and the line integral is not independent
of path.

x = t, y = t2,�2  t  2
Z

C

F · dr

=

Z

C

(4xy � 2x) dx+ (2x2 � x) dy

=

Z
2

�2

[4(t)(t2)� 2t+ (2t2 � t)(2t)] dt

=

Z
2

�2

(8t3 � 2t2 � 2t) dt = �32

3

25. A potential function is
f(x, y) = exy

2 � xy � y,
so the line integral is independent of path.Z

C

F · dr =
h
exy

2

� xy � y
i
(3,0)

(2,3)

= 1� (e18 � 9) = 10� e18

26. A potential function is
f(x, y) = ye2x + xy3,
so the line integral is independent of path.Z

C

F · dr =
⇥
ye2x + xy3

⇤
(1,�3)

(4,3)

=
�
�3e2 � 27

�
�
�
3e8 + 108

�

= �3e8 � 3e2 � 135

27. A potential function is

f (x, y, z)

= tan�1 (xy) +
2

3
z

3

2 � exz � log (1 + y)

So the line integral is independent of pathZ

C

F.dr

=


tan�1 (xy) +

2

3
z

3
2 � exz � log (1 + y)

�
(1,1,4)

(0,1,2)

=
⇡

4
+ 1� e4 +

4

3

⇣
4�
p
2
⌘

28. A potential function is

f (x, y, z) = 2
p
xyz + 2 ln y � sin (x� z)

So the line integral is independent of pathZ

C

F.dr = [2
p
xyz + 2 ln y � sin (x� z)](2,1,2)

(1,1,1)

= 2

29. F (x, y) =

⌧
1

y
� e2x, 2x� x

y2

�

My = � 1

y2
, Nx = 2� 1

y2

My 6= Nx

The vector field is not conservative and the line
integral is not independent of path

C : (x� 5)2 + (y + 6)2 = 16
x� 5 = 4 cos t, y + 6 = 4 sin t
x = 5 + 4 cos t > 0, y = �6 + 4 sin t < 0
0  t  2⇡Z

C

F.dr =

Z

C

✓
1

y
� e2x

◆
dx+

✓
2x� x

y2

◆
dy

=

Z

C

✓
1

y
dx� x

y2
dy

◆

�
Z

C

e2xdx+

Z

C

2xdy

=

Z

C

d

✓
x

y

◆
�
Z

C

e2xdx+

Z

C

2xdy

=

Z

C

2xdy

Since C is a closed curve,

Z

C

d

✓
x

y

◆
= 0,

Z

C

e2xdx = 0

Now,Z

C

F.dr =

Z

C

2xdy

=

Z
2⇡

0

2(4 cos t+ 5)4 cos tdt

=

Z
2⇡

0

32cos2tdt+

Z
2⇡

0

40 cos tdt

=

Z
2⇡

0

16 (1 + cos 2t)dt

+

Z
2⇡

0

40 cos tdt
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= 32⇡

30. F (x, y) =
D
2y �

p
y/x , 3x�

p
x/y

E

My = 2� 1

2
p
xy

,Nx = 3� 1

2
p
xy

My 6= Nx

The vector field is not conservative and the line
integral is not independent of path

C is the ellipse 4(x� 4)2 + 9(y � 4)2 = 36
Major axis = 3, Minor axis = 2
x� 4 = 3 cos t, y � 4 = 2 sin t
x = 4 + 3 cos t > 0, y = 4 + 2 sin t > 0
0  t  2⇡Z

C

F.dr =

Z

C

✓
2y �

r
y

x

◆
dx+

✓
3x�

r
x

y

◆
dy

= 2

Z

C

(ydx+ xdy) +

Z

C

xdy

�
Z

C

✓r
y

x
dx+

r
x

y
dy

◆

= 2

Z

C

d (xy)+

Z

C

xdy�
Z

C

ydx+ xdy
p
xy

= 2

Z

C

d (xy) +

Z

C

xdy �
Z

C

d (xy)
p
xy

=

Z

C

xdy

Since C is a closed curve,

Z

C

d (xy) = 0,
Z

C

d(xy)
p
xy

= 0

Now,
Z

C

F.dr =

Z

C

xdy

=

Z

C

(3 cos t+ 4)2 cos tdt

=

Z
2⇡

0

6cos2tdt+

Z
2⇡

0

8 cos tdt

=

Z
2⇡

0

3 (1 + cos 2t)dt+ 8 (� sin t)|2⇡
0

= 6⇡

31. Since F is constant, My = Nx = 0.

The vector field is conservative.

32. Since F is constant, My = Nx = 0.

The vector field is conservative.

33. Consider

Z

C

F · dr = 0 where C is a circle cen-

tered at the origin. This is a closed curve but

the line integral is clearly not zero. The vector
field is not conservative.

34. Consider

Z

C

F · dr = 0 where C is a circle cen-

tered at the origin. This is a closed curve but
the line integral is clearly not zero. The vector
field is not conservative.

35. Taking a rectangular path counterclockwise
around the entire visible part of the picture,
it looks as though the top and bottom halves
will cancel. But, the left edge (downward) and
the right edge (upward) will support each other
rather than cancel each other. Therefore, the
field is not conservative.

36. 14.3 The vector field appears to have no ro-
tation, which means that My = Nx and the
vector field is conservative.

(The vector field appears to be hx, yi, which is
certainly conservative.)

37. C
1

: x = t, y = 0,�2  t  2
Z

C1

y dx� x dy =

Z
2

�2

[0(1)� t(0)] dt

=

Z
2

�2

(0) dt = 0

C
2

: 2 cos t, y = 2 sin t,⇡  t  2⇡
Z

C2

y dx� x dy

=

Z
2⇡

⇡

[2 sin t(�2 sin t)� (2 cos t)(2 cos t)] dt

=

Z
2⇡

⇡

�4 dt = �4⇡

The two paths from (�2, 0) to (2, 0) give dif-
ferent values, so the line integral is not inde-
pendent of path.

38. C
1

: x = 1 + t, y = 4� 6t, 0  t  1
Z

C1

2 dx+ x dy

=

Z
1

0

[2 + (1 + t)(�6)] dt

=

Z
1

0

(�6t� 4) dt = �7

C
2a : x = 1, y = 4� 6t, 0  t  1

C
2b : x = t, y = �2, 1  t  2
Z

C2

2 dx+ x dy

=

 Z

C2
a

2 dx+ x dy

!
+

 Z

C2
b

2 dx+ x dy

!
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=

 Z

C2
a

x dy

!
+

 Z

C2
b

2 dx

!

=

Z
1

0

(1)(�6) dt+
Z

2

1

2(1) dt

= �6 + 2 = �4
The two paths from (1, 4) to (2,�2) give dif-
ferent values, so the line integral is not inde-
pendent of path.

39. C
1

: x = �2 + 2t, y = 2� 2t, 0  t  1
Z

C1

y dx� 3 dy

=

Z
1

0

[(2� 2t)(2)� 3(�2)] dt

=

Z
1

0

(10� 4t) dt = 8

C
2a : x = t, y = 2,�2  t  0

C
2b : x = 0, y = 2� t, 0  t  2
Z

C2

y dx� 3 dy

=

 Z

C2
a

y dx� 3 dy

!
+

 Z

C2
b

y dx� 3 dy

!

=

 Z

C2
a

[(2)(1)� 3(0)] dt

!

+

 Z

C2
b

[(2� t)(0)� 3(�1)] dt
!

=

Z
0

�2

2 dt+

Z
2

0

3 dt

= 4 + 6 = 10

The two paths from (�2, 2) to (0, 0) give dif-
ferent values, so the line integral is not inde-
pendent of path.

40. C
1

: x = t, y = t, 0  t  1
Z

C1

y2 dx+ x2 dy

=

Z
1

0

(t2 + t2) dt

=

Z
1

0

2t2 dt =
2

3

C
2

: x = t, y = t2, 0  t  1
Z

C1

y2 dx+ x2 dy

=

Z
1

0

[t4 + t2(2t)] dt

=

Z
1

0

(t4 + 2t3) dt =
7

10

41. False. This is only true if C is a closed curve.

42. True. See the boxed list titled “Conservative
Vector Fields.”

43. True. See the boxed list titled “Conservative
Vector Fields.”

44. True. See the boxed list titled “Conservative
Vector Fields.”

45. If rf(x, y) = F, then
@f

@x
= � y

x2 + y2
,
@f

@y
=

x

x2 + y2

f(x, y) =

Z
x

x2 + y2
dy = tan�1

y

x
+ g(x)

@f

@x
= � y

x2 + y2
+

@g

@x
= � y

x2 + y2

@g

@x
= 0

f(x, y) = tan�1

y

x
+ c

This potential function is valid for x > 0.

f(x, y) = tan�1

y

x
is often called the polar an-

gle, ✓. To the extent that the polar angle ✓
is ambiguously defined, f = ✓. The matter of
identifying domains in which ✓ can be unam-
biguously and continuously defined is a deli-
cate matter. Such a domain much be simply

connected and must exclude the origin.

For the integral along the unit circle, let

x = cos t, y = sin t, 0  t  2⇡ then
F(x(t), y(t)) = h� sin t, cos ti and
Z

C

M dx+N dy

=

Z
2⇡

0

[(� sin t)(� sin t) + (cos t)(cos t)] dt

=

Z
2⇡

0

dt = 2⇡

The Fundamental Theorem for Line Integrals
fails because the vector field is not continuous
inside the circle.

Regarding the circle K:

(x� 2)2 + (y � 3)2 = 1,

which does lie entirely in the right half plane,
the potential function is valid and
R
K
M dx+N dy = 0

46. Since f is conservative, we may let f(x, y) de-
note a potential function for F. Since C is a
closed curve, its initial and terminal points are
the same, say (x

1

, y
1

). By Theorem 3.2,
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Z

C

F(x, y) · dr = [f(x, y)](x1,y1)

(x1,y1)

= f(x
1

, y
1

)� f(x
1

, y
1

) = 0

47. (a) An disk, simply connected.

(b) A ring (annulus), not simply connected.

48. (a) An infinite strip, simply connected.

(b) Two infinite strips, not simply connected
(the region is not connected and therefore
is not simply connected).

49. The problem in the text has the Coulomb force
stated incorrectly. It should read

F =
kq

r3
br

Notice that the chain rule gives us

r
✓
1

r

◆
= � 1

r2
rr = � 1

r3
br

(See, for example, Exercise 48 of Section 14.1).
This means that a potential function for F is

f(x, y, z) = �kq

r
and

Z P2

P1

F · dr =


�kq

r

�P2

P1

=
kq

r
1

� kq

r
2

50. (a) If P
1

is closer to the origin than P
2

, then

r
1

< r
2

and
1

r
1

>
1

r
2

.

Therefore, the work done is positive.

(b) If P
2

is closer to the origin than P
1

, then

r
2

< r
1

and
1

r
2

>
1

r
1

.

Therefore, the work done is negative.

(c) If P
1

is the same distance to the origin as

P
2

, then r
1

= r
2

and
1

r
1

=
1

r
2

.

Therefore, the work done is zero.

51.

Z

C1

RT

P
dP �R dT

=

Z T2

T1

�R dT +

Z P2

P1

RT
2

P
dP

= R(T
1

� T
2

) +RT
2

ln

✓
P
2

P
2

◆

Z

C2

RT

P
dP �R dT

=

Z P2

P1

RT
1

P
dP +

Z T2

T1

�R dT

= R(T
1

� T
2

) +RT
1

ln

✓
P
2

P
2

◆

These are not generally equal unless T
1

= T
2

which means that the field

⌧
RT

P
,�1

�
is not

conservative.

52. The force field can not be conservative because
the work done along the two paths are not
equal.

53. All the integrals in question are in fact zero. In
fact, as shown in Theorem 3.1,
Z

C1

F · dr = 2

can not occur (it must be equal to 0).

This exercise can be compared to the polar an-
gle (see Exercise 45 this section and Exercise 38
of Section 14.4). The di↵erence is that the po-
lar angle can not be continuously and unam-
biguously defined in the entire region.

54. Note that if
v = hv

1

(x, y, z, t), v
2

(x, y, z, t), v
3

(x, y, z, t)i
then
dv = hdv

1

, dv
2

, dv
3

i where
dvi = vix dx+ viy dy + viz dz + vit dt
Therefore,

dv = hv
1x dx+ v

1y dy + v
1z dz + v

1t dt,
v
2x dx+ v

2y dy + v
2z dz + v

2t dt,
v
3x dx+ v

3y dy + v
3z dz + v

3t dti
v · dv = hv

1

v
1x, v1v1y, v1v1zi · dr

+ hv
2

v
2x, v2v2y, v2v2zi · dr

+ hv
3

v
3x, v3v3y, v3v3zi · dr

+ (v
1

v
1t, v2v2t, v3v3t) dt

Now, looking at the integral, noticing that
dt = 0,
Z

C

v · dv

=

Z

C

hv
1

v
1x, v1v1y, v1v1zi · dr

+

Z

C

hv
2

v
2x, v2v2y, v2v2zi · dr

+

Z

C

hv
3

v
3x, v3v3y, v3v3zi · dr

But, each of these integrals are 0, because the
integrals are over a closed curve and the vector
field hvivix, viviy, vivizi
has a potential function f =

1

2
v2i
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14.4 Green’s Theorem

1. (a) x = cos t, y = sin t, 0  t  2⇡I

C

(x2 � y) dx+ y2 dy

=

Z
2⇡

0

[(cos2 t� sin t)(� sin t)

+ (� sin2 t)(cos t)] dt

=

Z
2⇡

0

(� cos2 t sin t+ sin2 t

� cos t sin2 t) dt = ⇡

(b) M = x2 � y, N = y2I

C

M dx+N y

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

ZZ

R

[0� (�1)] dA

=

ZZ

R

dA

= (Area of circle) = ⇡

2. (a) x = 2 cos t, y = 2 sin t, 0  t  2⇡I

C

(y2 + x) dx+ (3x+ 2xy) dy

=

Z
2⇡

0

[(4 sin2 t+ 2 cos t)(�2 sin t)

+ (6 cos t+ 8 cos t sin t)(2 cos t)] dt

=

Z
2⇡

0

(�8 sin3 t� 4 cos t sin t

+ 12 cos2 t+ 16 cos2 t sin t) dt

= 12⇡

(b) M = y2 + x,N = 3x+ 2xyI

C

M dx+N y

= �
ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

ZZ

R

[(3 + 2y)� (2y)] dA

=

ZZ

R

3 dA

= 3(Area of circle) = 12⇡

3. Note that the curve is negatively oriented.

(a) Bottom: (0, 0) to (0, 2).
x = 0, y = t, 0  t  2I

C

x2 dx� x3 dy =

Z
2

0

0 dt = 0

Right: (0, 2) to (2, 2).
x = t, y = 2, 0  t  2I

C

x2 dx� x3 dy =

Z
2

0

t2 dt =
8

3

Top: (2, 2) to (2, 0).
x = 2, y = 2� t, 0  t  2I

C

x2 dx� x3 dy

=

Z
2

0

�8(�1) dt = 16

Left: (2, 0) to (0, 0).
x = 2� t, y = 0, 0  t  2I

C

x2 dx� x3 dy

=

Z
2

0

(2� t)2(�1) dt = �8

3
Summing up the integrals over the four
sub-paths, the line integral is 16.

(b) M = x2, N = �x3

Note that the curve is oriented negatively.I

C

M dx+N y

= �
ZZ

R

✓
@N

@x
� @M

@y

◆
dA

= �
ZZ

R

[�3x2 � 0] dA

=

Z
2

0

Z
2

0

3x2 dy dx

=

Z
2

0

6x2 dx = 16

4. (a) Bottom: (0, 0) to (1, 0).
x = t, y = 0, 0  t  1
I

C

(y2�2x) dx+x2 dy =

Z
1

0

�2t dt = �1

Right: (1, 0) to (1, 1).
x = 1, y = t, 0  t  1
I

C

(y2 � 2x) dx+ x2 dy =

Z
1

0

1 dt = 1

Top: (1, 1) to (0, 1).
x = 1� t, y = 1, 0  t  1
I

C

(y2�2x) dx+x2 dy =

Z
1

0

(1�2t) dt = 0

Left: (0, 1) to (0, 0).
x = 0, y = 1� t, 0  t  1
I

C

(y2 � 2x) dx+ x2 dy =

Z
1

0

0 dt = 0

Summing up the integrals over the four
sub-paths, the line integral is 0.

(b) M = y2 � 2x,N = x2

I

C

M dx+N y

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

ZZ

R

[2x� 2y] dA
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=

Z
1

0

Z
1

0

(2x� 2y) dy dx

=

Z
1

0

(2x� 1) dx = 0

5. M = xe2x, N = �3x2y
Note that the curve has positive orientation.I

C

M dx+N y

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

Z
2

0

Z
3

0

(�6xy � 0) dx dy

=

Z
2

0

�27y dy = �54

6. M = ye2x, N = x2y2

Note that the curve has positive orientation.I

C

M dx+N y

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

Z
3

�2

Z
2

0

(2xy2 � e2x) dy dx

=

Z
3

�2

✓
16

3
x� 2e2x

◆
dx

=
40

3
� e6 + e�4

7. M =
x

x2 + 1
� y,N = 3x� 4 tan

y

2
Note that the curve has positive orientation.I

C

M dx+N y

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

Z
1

�1

Z
2�x2

x2

(3� (�1)) dy dx

=

Z
1

�1

4(2� 2x2) dx =
32

3

8. M = xy � e2x, N = 2x2 � 4y2

Note that the curve has negative orientation.I

C

M dx+N y

= �
ZZ

R

✓
@N

@x
� @M

@y

◆
dA

= �
Z

2

�2

Z
8�x2

x2

(4x� x) dy dx

= �
Z

2

�2

(24x� 6x3) dx = 0

9. M = tanx� y3, N = x3 � sin y
We will assume that the curve has positive

orientation.I

C

M dx+N y

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

ZZ

R

(3x2 + 3y2) dA

=

Z
2⇡

0

Z p
2

0

3r3 dr d✓

=

Z
2⇡

0

3 d✓ = 6⇡

10. M =
p
x2 + 1� x2y,N = xy2 � y5/3

Note that the curve has negative orientation.I

C

M dx+N y

= �
ZZ

R

✓
@N

@x
� @M

@y

◆
dA

= �
ZZ

R

(y2 + x2) dA

= �
Z

2⇡

0

Z
2

0

r3 dr d✓

= �
Z

2⇡

0

4 d✓ = �8⇡

11. M = x3 � y,N = x+ y3

We will assume that the curve has positive
orientation.I

C

M dx+N y

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

Z
1

0

Z x

x2

(1� (�1)) dy dx

=

Z
1

0

2(x� x2) dx =
1

3

12. M = y2 + 3x2y,N = xy + x3

We will assume that the curve has positive
orientation.I

C

M dx+N y

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

Z
2

0

Z
2x

x2

[(y � 3x2)� (2y + 3x2)] dy dx

=

Z
2

0

Z
2x

x2

�y dy dx

=

Z
2

0

✓
�2x2 +

1

2
x4

◆
dx

= �32

15



846 CHAPTER 14. VECTOR CALCULUS

13. M = ex
2 � y,N = e2x + y

We will assume that the curve has positive
orientation.I

C

M dx+N y

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

Z
1

�1

Z
1�x2

0

(2e2x � (�1)) dy dx

=

Z
1

�1

(1� x2)(2e2x + 1) dx

=

Z
1

�1

(2e2x � 2x2e2x + 1� x2) dx

=
1

2
e2 +

3

2
e�2 +

4

3

14. M = x2exy + y; N = x2 + ey

@M

@y
= x3exy + 1;

@N

@x
= 2x

I

C

F · dr =

ZZ

R

✓
@N

@x
� @M

@y

◆
dydx

=

Z
2

�2

Z
4

x2

�
2x� x3exy � 1

�
dy dx

=

Z
2

�2

⇣
x2ex

3

+ x2 + 8x� x2e4x � 2x3 � 4
⌘
dx

=
91

96
e�8 � 32

3
� 43

96
e8

15. Since the curve is in the plane z = 2 and there-
fore dz = 0

This means that our integral becomes
I

C

x2dx+2xdy+ (z � 2) dz =

I

C

x2dx+2xdy

and the integral is actually independent of z
and we can proceed as if the curve was in the
xy plane.

M = x2; N = 2x
@M

@y
= 0;

@N

@x
= 2

I

C

x2dx+ 2xdy =

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

ZZ

R

(2)dA = 2 (Area of triangle) = 2 (4) = 8

16. M = y3 � ln (x+ 1) ; N =
p
x� y2 + 3x

@M

@y
= 3y2;

@N

@x
=

1

2
p
x� y2

+ 3

I

C

F · dr =

Z
1

�1

Z
1

y2

✓
@N

@x
� @M

@y

◆
dx dy

=

Z
1

�1

Z
1

y2

 
1

2
p
x� y2

+ 3� 3y2
!
dx dy

=

Z
1

�1

h⇣p
1� y2

⌘
+ 3

�
1� y2

�

�3
�
y2 � y4

�⇤
dy

=
⇡

2
+

16

5

17. M = ysec2x� 2ey; N = tanx� 4y2

@M

@y
= sec2x� 2ey;

@N

@x
= sec2x

I

C

�
ysec2x� 2ey

�
dx+

�
tanx� 4y2

�
dy

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dxdy

=

Z
2

�2

Z
0

4�y2

�
sec2x� sec2x+ 2ey

�
dx dy

=

Z
2

�2

⇥
2ey(�4 + y2)

⇤
dy

= �12e�2 � 4e2

18. M =
�
zx� 2y3

�
; N = x3z, z = 2

@M

@y
= �6y2; @N

@x
= 3x2z = 6x2

Notice that the curve is in the plane z = 2 and
therefore dz = 0I

C

�
zx� 2y3

�
dx+ x3z dy

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dx dy

=

Z
2

�2

Z p
4�y2

�
p

4�y2

⇥
6x2 �

�
�6y2

�⇤
dx dy

=

Z
2

�2

h
4(4� y2)

32 + 12y2
p
4� y2

i
dy

= 48⇡

19. Since the curve is in the plane y = 0

We can use F =
D
�ez, ez2

, ex
E

Since dy = 0, the integral reduces to an inte-
gral in two dimensions (x and z)I

C

(�ez) dx+ ex dz

M = �ez; N = ex
@M

@z
= �e; @N

@x
= e

I

C

⇣
�zex

2
+z2
⌘
dx+ ey

2
+z2

dy + xex
2
+z2

dz

=

ZZ

R

✓
@N

@x
� @M

@z

◆
dx dz

=

ZZ

R

(e� (�e)) dzdx

= 2e

ZZ

R

dzdx
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= 2e (Area of circle) = 2⇡e

20. Since the curve is in the plane y = 2,

we can use

F =
D
�xez + 4z,

p
x2 + z2, 8x� z4

E

Since dy = 0, the integral reduces to an inte-
gral in two dimensions(x and z):

M = �x2ez + 4z, N = 8x� z4

@M

@z
= �xez + 4 ;

@N

@x
= 8

The curve has positive orientation.I

C

F.dr

=

I

C

(�xez + 4z) dx+
�
8x� z4

�
dz

=

ZZ

R

✓
@N

@x
� @M

@z

◆
dA

=

1Z

�1

1�x2Z

0

(
@N

@x
� @M

@z
)dA

=

1Z

�1

1�x2Z

0

(8� (�xez + 4)) dz dx

=

1Z

�1

1�x2Z

0

(4 + xez) dz dx

=

1Z

�1

⇣
4(1� x2) + x(e1�x2

� 1)
⌘
dx

= 8

1Z

0

(1� x2)dx

=
16

3

21. C : x = 2 cos t, y = 4 sin t, 0  t  2⇡

A =
1

2

I

C

x dy � ydx

=
1

2

Z
2⇡

0

(8 cos2 t+ 8 sin2 t) dt

= 4

Z
2⇡

0

1 dt = 8⇡

22. C : x = cos t, y = 2 sin t, 0  t  2⇡

A =
1

2

I

C

x dy � ydx

=
1

2

Z
2⇡

0

(2 cos2 t+ 2 sin2 t) dt

=

Z
2⇡

0

1 dt = 2⇡

23. C
1

: x = t, y = t2,�2  t  2
C

2

: x = �t, y = 4,�2  t  2

A =
1

2

I

C1

x dy � ydx+
1

2

I

C2

x dy � ydx

=
1

2

Z
2

�2

[t(2t)� t2(1)] dt

+
1

2

Z
2

�2

[(�t)(0)� (4)(�1)] dt

=
1

2

Z
2

�2

t2 dt+
1

2

Z
2

�2

4 dt

=
8

3
+ 8 =

32

3

24. C
1

: x = t, y = t2, 0  t  2
C

2

: x = 2� 2t, y = 4� 4t, 0  t  1

A =
1

2

I

C1

x dy � ydx+
1

2

I

C2

x dy � ydx

=
1

2

Z
2

0

[(t)(2t)� (t2)(1)] dt

+
1

2

Z
1

0

[(2� 2t)(�4)� (4� 4t)(�2)] dt

=
1

2

Z
2

0

t2 dt+
1

2

Z
1

0

0 dt

=
4

3
+ 0 =

4

3

25. C : x = cos3 t, y = sin3 t, 0  t  2⇡

A =
1

2

I

C

x dy � ydx

=
1

2

Z
2⇡

0

[(cos3 t)(3 sin2 t cos t)

+ (sin3 t)(3 cos2 t sin t)] dt

=
3

2

Z
2⇡

0

sin2 t cos2 t(cos2 t+ sin2 t) dt

=
3

2

Z
2⇡

0

sin2 t cos2 t dt =
3

2

⇣⇡
4

⌘
=

3⇡

8

26. C : x = cos5 t, y = sin5 t, 0  t  2⇡

A =
1

2

I

C

x dy � ydx

=
1

2

Z
2⇡

0

(5 cos6 t sin4 t+ 5 sin6 t cos4 t) dt

=
5

2

Z
2⇡

0

cos4 t sin4 t dt =
15

128
⇡

27. We apply Green’s Theorem to the integrals in
the problem:

1

2A

I

C

x2 dy =
1

2A

ZZ

R

(2x� 0) dA

=
1

A

ZZ

R

x dA = x
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1

2A

I

C

�y2 dy =
1

2A

ZZ

R

[0� (�2y)] dA

=
1

A

ZZ

R

y dA = y

28. From Exercise 24, A =
4

3
.

C
1

: x = t, y = t2, 0  t  2
C

2

: x = 2� 2t, y = 4� 4t, 0  t  1

x =
1

2A

I

C

x2 dy

=
3

8

I

C1

x2 dy +
3

8

I

C2

x2 dy

=
3

8

Z
2

0

t2(2t) dt

+
3

8

Z
1

0

(2� 2t)2(�4) dt

=
3

8

Z
2

0

3t3 dt

+
3

8

Z
1

0

�16(t� 1)2 dt

= 3� 2 = 1

y = � 1

2A

I

C

y2 dx

= �3

8

I

C1

y2 dx� 3

8

I

C2

y2 dx

= �3

8

Z
2

0

t4 dt

� 3

8

Z
1

0

(4� 4t)(�2) dt

= �12

5
+ 4 =

8

5

29. Although the text gave the curve and the
bounds for t, we don’t know if the curve is
negatively or positively oriented. You can
check that there is symmetry ( x(t) = x(�t),
y(t) = y(�t) ) and no other self intersections
other than t = �1 and t = 1.

This means that the integral below is either
A or �A, depending on the orientation of the
curve.

±A =
1

2

I

C

x dy � ydx

=
1

2

Z
1

0

[(t3 � t)(�2t)� (1� t2)(3t2 � 1)] dt

=
1

2

Z
1

�1

(t4 � 2t2 + 1) dt =
8

15

Therefore the curve is positively oriented and

A =
8

15
.

x =
1

2A

I

C

x2 dy =
15

16

I

C1

x2 dy

=
15

16

Z
1

�1

(t3 � t)2(�2t) dt

=
15

16

Z
1

�1

(�2t7 + 4t5 � 2t3) dt = 0

y = � 1

2A

I

C

y2 dx = �15

16

I

C1

y2 dx

= �15

16

Z
1

�1

(1� t2)2(3t2 � 1) dt

= �15

16

✓
� 64

105

◆
=

4

7

30. C : x = t2 � 1, y = t3 � t, 0  t  1

A =
1

2

I

C

x dy � ydx

=
1

2

Z
2

0

[(t2 � 1)(3t2 � 1)� (t3 � t)(2t)] dt

=
1

2

Z
2

0

(t4 � 2t3 + t2) dt =
1

60

x =
1

2A

I

C

x2 dy

= 30

Z
1

0

(t2 � 1)2(3t2 � 1) dt

= 30

Z
1

0

(3t6 � 6t5 + 2t4 + 2t3 � t2) dt

= �1

7

x = � 1

2A

I

C

y2 dx

= �30
Z

1

0

(t3 � t)2(2t) dt

= �30
Z

1

0

(2t7 � t6 � 4t5 + 2t4 + 2t3 � t2) dt

= � 3

14

31. We apply Green’s Theorem twice: first in the
xy-plane and later in the uv-plane.

There will be a sign ambiguity because even
if the curve C is positively oriented in the xy-
plane the corresponding curve C⇤ in the uv-
plane could be either positively or negatively
oriented. Let R be the region in the xy-plane
enclosed by C and let S be the region enclosed
by C⇤ in the uv-plane.

Area(R) =

ZZ

R

dAxy =

I

C

x dy

=

I

C⇤
x

✓
@y

@u
du+

@y

@v
dv

◆

= ±
ZZ

S


@

@v

✓
x
@y

@u

◆
� @

@u

✓
x
@y

@v

◆�
dAuv

= ±
ZZ

S

✓
@x

@v

@y

@u
+ x

@2y

@u@v

◆
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�
✓
@x

@u

@y

@v
+ x

@2y

@v@u

◆�
dAuv

= ±
ZZ

S


@x

@v

@y

@u
� @x

@u

@y

@v

�
dAuv

=

ZZ

S


±@(x, y)

@(u, v)

�
dAuv

Since the starting sign is positive (it is an area),
the choice of sign which works is the one which
makes the final integrand positive. In any case,
the final integrand will be the absolute value:
ZZ

R

dAxy =

ZZ

S

����
@(x, y)

@(u, v)

���� dAuv

But, note that we have actually proved more.
If the Jacobian is negative then orientation of
the curve must have also changed—the trans-
formation is orientation reversing if and only if
the Jacobian is negative.

32. A potential function for F is:

f(x, y) = tan�1

⇣y
x

⌘

As discussed in the solution to Exercise 45 of
Section 14.3, f can be defined as the polar an-
gle and can be defined continuously on any sim-
ply connected region which excludes the origin.

Therefore, for any closed curve, not containing
the origin, we haveI

C

F · dr = 0.

33. Let M =
x

x2 + y2
and N =

y

x2 + y2

@N

@x
= � 2xy

(x2 + y2)2

@M

@y
= � 2xy

(x2 + y2)2
=

@N

@x
Define C, C

1

and R as in Example 4.5 Then,I

C

F · dr�
I

C1

F · dr

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

ZZ

R

0 da = 0

Therefore, the line integral has the same value
on all positively oriented simple closed curves
containing the origin. So, we may assume that
C is
x = cos t, y = sin t, 0  t  2⇡I

C

F · dr

=

I

C

x

x2 + y2
dx+

y

x2 + y2
dy

=

Z
2⇡

0

[(cos t)(� sin t) + (sin t)(cos t) dt

=

Z
2⇡

0

0 dt = 0

But, there is another reason that this integral
is zero: this field has a potential function:

� =
1

2
ln(x2 + y2)

Note that this is well defined for all

(x, y) 6= (0, 0).

This is related to Exercise 53 of Section 14.3.

34. Let M =
y2 � x2

(x2 + y2)2
and N =

�2xy
(x2 + y2)2

@N

@x
=
�2y(x2 + y2)2 + 2xy2(x2 + y2)(2x)

(x2 + y2)4

=
�2y(x2 + y2) + 2xy2(2x)

(x2 + y2)3

=
�2x2y � 2y3 + 8x2y

(x2 + y2)3

=
2y(3x2 � y2)

(x2 + y2)3

@M

@y
=

2y(x2 + y2)2 � (y2 � x2)2(x2 + y2)(2y)

(x2 + y2)4

=
2y(x2 + y2)� (y2 � x2)2(2y)

(x2 + y2)3

=
2x2y + 2y3 � 4y3 + 4x2y

(x2 + y2)3

=
2y(3x2 � y2)

(x2 + y2)3
=

@N

@x
Define C, C

1

and R as in Example 4.5 Then,I

C

F · dr�
I

C1

F · dr

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

ZZ

R

0 da = 0

Therefore, the line integral has the same value
on all positively oriented simple closed curves
containing the origin. So, we may assume that
C is
x = cos t, y = sin t, 0  t  2⇡I

C

F · dr

=

I

C

y2 � x2

(x2 + y2)2
dx� 2xy

(x2 + y2)2
dy

=

Z
2⇡

0

[(sin2 t� cos2 t)(� sin t)

� 2 cos t sin t cos t] dt

= �
Z

2⇡

0

sin t(sin2 t+ cos2 t) dt

= �
Z

2⇡

0

sin t dt = 0

35. Let M =
x3

x4 + y4
and N =

y3

x4 + y4
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@N

@x
= � 4x3y3

(x4 + y4)2

@M

@y
= � 4x3y3

(x4 + y4)2
=

@N

@x
Define C, C

1

and R as in Example 4.5 Then,I

C

F · dr�
I

C1

F · dr

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

ZZ

R

0 da = 0

Therefore, the line integral has the same value
on all positively oriented simple closed curves
containing the origin. So, we may assume that
C is
x = cos t, y = sin t, 0  t  2⇡I

C

F · dr

=

I

C

x3

x4 + y4
dx+

y3

x4 + y4
dy

=

Z
2⇡

0

(cos3 t)(� sin t) + (sin3 t)(cos t)

cos4 t+ sin4 t
dt

=

Z
2⇡

0

(sin2 t� cos2 t)(cos t sin t)

1� 2 cos2 t sin2 t
dt

=

Z
2⇡

0

� cos 2t sin 2t

2
�
1� sin 2t

2

� dt

= �1

2

Z
4⇡

0

cosu sinu

2� sinu
du (u = 2t)

= �1

2

Z
0

0

v

2� v
dv = 0 (v = sinu)

36. Let M =
y2x

x4 + y4
and N =

�x2y

x4 + y4

@N

@x
=
�2xy(x4 + y4) + x2y(4x3)

(x4 + y4)2

=
�2x5y � 2xy5 + 4x5y

(x4 + y4)2

=
2xy(x4 � y4)

(x4 + y4)2

@M

@y
=

2xy(x4 + y4)� xy2(4y3)

(x4 + y4)2

=
2x5y + 2xy5 � 4xy5

(x4 + y4)2

=
2xy(x4 � y4)

(x4 + y4)2
=

@N

@x
Define C, C

1

and R as in Example 4.5 Then,I

C

F · dr�
I

C1

F · dr

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

ZZ

R

0 dA = 0

Therefore, the line integral has the same value

on all positively oriented simple closed curve
containing the origin. So, we may assume that
C is
x = cos t, y = sin t,�⇡  t  ⇡I

C

F · dr

=

I

C

y2x

x4 + y4
dx� x2y

x4 + y4
dy

=

Z ⇡

�⇡


sin2 t cosx(� sin t)

cos4 t+ sin4 t

�cos2 t sin t(cos t)

cos4 t+ sin4 t

�
dt

=

Z ⇡

�⇡


� sin t cos t(sin2 t+ cos2 t)

cos4 t+ sin4 t

�
dt

= �
Z ⇡

�⇡

sin t cos t

cos4 t+ sin4 t
dt

= 0 by symmetry

37. M =
�y + 1

4x2 + (y � 1)2
; N =

x

4x2 + (y � 1)2

@M

@y

=

⇣
4x2 + (y � 1)2

⌘
(�1)� (2 (�y + 1) (y � 1))

⇣
4x2 + (y � 1)2

⌘
2

=
�4x2 � (y � 1)2 + 2(y � 1)2

⇣
4x2 + (y � 1)2

⌘
2

=
�4x2 + (y � 1)2
⇣
4x2 + (y � 1)2

⌘
2

@N

@x

=
4x2 + (y � 1)2 � 8x2

⇣
4x2 + (y � 1)2

⌘
2

=
�4x2 + (y � 1)2
⇣
4x2 + (y � 1)2

⌘
2

=
@M

@y

Let C be the closed curve enclosing (0,1) and
C

1

be the ellipse centered at (0, 1) and a and
b are major and minor axes respectively. The
curve is positively oriented, and a and b are
taken to be su�ciently small so that C

1

is
completely enclosed by C. Let R be the region
bounded between the curves C and C

1

.

Applying the extended version of Green’s The-
orem in R, we have,
I

C

F (x, y) · dr�
I

C1

F (x, y) · dr

=

Z

@R

F (x, y) · dr
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=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

ZZ

R

0

B@
�4x2 + (y � 1)2
⇣
4x2 + (y � 1)2

⌘
2

� �4x
2 + (y � 1)2

⇣
4x2 + (y � 1)2

⌘
2

1

CA dA

=

ZZ

R

(0) dA = 0

Now C
1

is the ellipse with centre at (0, 1) and
its equation is

x2

a2

4

+
(y � 1)2

a2
= 1.

It can be parametrically represented by

x =
a

2
cos t; y = 1 + a sin t, for 0  t  2⇡.

ThereforeI

C

F (x, y) · dr�
I

C1

F (x, y) · dr =0

)
I

C

F (x, y) · dr =

I

C1

F (x, y) · dr

=
1

a2

I

C1

h�y + 1, xi dr

=
1

a2

Z
2⇡

0

{(�a sin t� 1 + 1)
⇣
�a

2
sin t

⌘

+
⇣a
2
cos t

⌘
a cos t}dt

=
1

a2

Z
2⇡

0

✓
a2

2
sin2t+

a2

2
cos2t

◆
dt

=
1

2

Z
2⇡

0

dt = ⇡

38. The vector field in question is defined and dif-
ferentiable everywhere except at the origin.
Green’s Theorem says nothing about the in-

tegral

I

C

F · dr where C encloses the origin.

But, this vector field is double the vector field
in Exercise 33 and Exercise 33 shows what we
can say.

39. Consider the case where C is a positively ori-
ented simple closed curve about the origin (the
general case is similar).

Let point P
1

be the point of C on the positive
x-axis closest to the origin. Let point P

2

be
the point of C on the negative x-axis closest to
the origin.

Let C = C
1

[ C
2

where C
1

is the curve from
P
1

to P
2

and C
2

is the curve from P
2

to P
1

.

Next, as in Example 4.5, consider a positively
oriented circle, L, of radius a completely con-
tained inside C. Let Q

1

= (a, 0) and Q
2

=
(�a, 0) be points of of this circle. Let L =
L
1

[ L
2

where L
1

is the curve from Q
1

to Q
2

and L
2

is the curve from Q
2

to Q
1

.

Finally, let A
1

be the line segment from Q
1

to
P
1

and A
2

be the line segment from Q
2

to P
2

.

Now, using this set up:I

C

F · dr�
I

L

F · dr

=

Z

C1

F · dr+
Z

C2

F · dr

�
Z

L1

F · dr�
Z

L2

F · dr

=

Z

C1

F · dr�
Z

A2

F · dr

�
Z

L1

F · dr+
Z

A1

F · dr

�
Z

A1

F · dr�
Z

L2

F · dr

+

Z

A2

F · dr+
Z

C2

F · dr

=

Z

C1

F · dr+
Z

�A2

F · dr

+

Z

�L1

F · dr+
Z

A1

F · dr

+

Z

�A1

F · dr+
Z

�L2

F · dr

+

Z

A2

F · dr+
Z

C2

F · dr

=

I

C1[(�A2)[(�L1)[A1

F · dr
I

(�A1)[(�L2)[A2[C2

F · dr

=0 + 0 = 0
Where the last equality is because the two
curves:
C

1

[ (�A
2

) [ (�L
1

) [A
1

(�A
1

) [ (�L
2

) [A
2

[ C
2

are close curves and do not enclose the origin
and therefore have integral equal to 0.
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Q1

P1
Q2

P2

C1

C2

L1

L2

A2 A1

40. Yes, Green’s Theorem will apply here and the
integral will be equal to zero.

41. Since C is the closed curve
I

C

F · dr =

ZZ

R

✓
@N

@x
� @M

@y

◆
dydx

M = 2xex
3

; N = 4x� tan y
@M

@y
= 0 ;

@N

@x
= 4

I

C

F · dr =

ZZ

R

4dydx = 4

ZZ

R

dA = 2

C
1

is the line x = 0, therefore dx = 0 hence,
Z

C1

F · dr =

Z
0

1

(4x� tan y) dy

Z
0

1

(� tan y) dy = � ln (cos 1)

C
2

is the bent joining x = y and y = 1

Therefore
Z

C2

F · dr

=

Z
1

0

⇣
2xex

3

+ 4x� tanx
⌘
dx+

Z
0

1

2xex
3

dx

= 2 + ln (cos 1)

42.

I

C

F · dr =

Z

C

F · dr+
Z

2

0

4xdx

By Greens Theorem,I

C

F · dr =

ZZ

R

✓
@N

@x
� @M

@y

◆
dydx

M = 4x� y; N = e3y � x2y
@N

@x
= �2xy; @M

@y
= �1

I

C

F · dr =

Z
2

0

Z
2

0

(�2xy + 1) dx dy = �4
Therefore,Z

C

F · dr =

I

C

F · dr�
Z

2

0

4xdx

= �4� 8 = �12

14.5 Curl and Divergence

1. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

x2 �3xy 0

������
= (0� 0) i� (0� 0) j+ (0� 3y)k
= h0, 0,�3yi
divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
x2,�3xy, 0

↵

= 2x� 3x = �x

2. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

y2 4x2y 0

������
= (0� 0) i� (0� 0) j+ (8xy � 2y)k
= h0, 0, 8xy � 2yi
divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
y2, 4x2y, 0

↵

= 0 + 4x2 + 0 = 4x2

3. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

2xz 0 �3y

������
= (�3� 0) i� (0� 2x) j+ (0� 0)k
= h�3, 2x, 0i
divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
· h2xz, 0,�3yi

= 2z + 0 + 0 = 2z

4. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

x2 �3xy x

������
= (0� 0) i� (1� 0) j+ (�3y � 0)k
= h0,�1,�3yi
divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
x2,�3xy, x

↵

= 2x� 3x+ 0 = �x

5. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

xy yz x2

������
= (0� y) i� (2x� 0) j+ (0� x)k
= h�y,�2x,�xi
divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
xy, yz, x2

↵

= y + z + 0 = y + z
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6. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

xez yz2 x+ y

������
= (1� 2yz) i� (1� xez) j+ (0� 0)k
= h1� 2yz, xez � 1, 0i
divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
xez, yz2, x+ y

↵

= ez + z2 + 0 = ez + z2

7. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

x2 y � z xexy

������
=
�
x2exy + 1

�
i� (exy + xyexy) j+ (0� 0)k

=
⌦
x2exy + 1,�exy � xyexy, 0

↵

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
x2, y � z, xexy

↵

= 2x+ 1 + 0 = 2x+ 1

8. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

y sin
�
x2y
�

3z + y

������
= (1� 0) i� (0� 0) j+

�
2xy cos

�
x2y
�
� 1
�
k

=
⌦
1, 0, 2xy cos

�
x2y
�
� 1
↵

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
y, sin

�
x2y
�
, 3z + y

↵

= 0 + x2 cos
�
x2y
�
+ 3 = 3 + x2 cos

�
x2y
�

9. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

3y
z

p
xz x cos y

������

=

✓
�x sin y �

p
x

2
p
z

◆
i�
✓
cos y +

3y

z2

◆
j

+

✓ p
z

2
p
x
� 3

z

◆
k

=

⌧
�x sin y �

p
x

2
p
z
,�3y

z2
� cos y,

p
z

2
p
x
� 3

z

�

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌧
3y

z
,
p
xz, x cos y

�

= 0 + 0 + 0 = 0

10. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

y2 x2ez cosxy

������

=
�
�x sinxy � x2ez

�
i� (�y sinxy � 0) j

+ (2xez � 2y)k
= h�x sinxy � x2ez,�y sinxy, 2xez � 2yi
divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
y2, x2ez, cosxy

↵

= 0 + 0 + 0 = 0

11. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

2xz y + z2 ez/y
2

������

=

 
�2zez/y

2

y3
� 2z

!
i� (0� 2x) j+ (0� 0)k

=

*
�2zez/y

2

y3
� 2z, 2x, 0

+

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
D
2xz, y + z2, ez/y

2
E

= 2z + 1 +
ez/y

2

y2

12. curlF = r⇥ F

=

�������

i j k
@
@x

@
@y

@
@z

xy2 3y2

z2
+x 2x� zy3

�������

=

 
�3y2z + 6y2z

(z2 + x)2

!
i� (2� 0) j

+

 
� 3y2

(z2 + x)2
� 2xy

!
k

=

*
�3y2z + 6y2z

(z2 + x)2
,�2,� 3y2

(z2 + x)2
� 2xy

+

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌧
xy2,

3y2

z2 + x
, 2x� zy3

�

= y2 +
6y

z2 + x
� y3

13. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

2x 2yz2 2y2z

������
= (4yz � 4yz) i� (0) j+ (0)k
= h0, 0, 0i
Since the components of F have continuous
partial derivatives throughout R3 and
curlF = 0, F is conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
2x, 2yz2, 2y2z

↵

= 2 + 2z2 + 2y2



854 CHAPTER 14. VECTOR CALCULUS

Since divF 6= 0, F is not incompressible.

14. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

2xy x2 � 3y2z2 1� zy3

������
=
⇥
�6y2z � (�6y2z)

⇤
i�(0� 0) j+(2x� 2x)k

= h0, 0, 0i
Since the components of F have continuous
partial derivatives throughout R3 and
curlF = 0, F is conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
2xy, x2 � 3y2z2, 1� zy3

↵

= 2y � 6yz2 � 2y3

Since divF 6= 0, F is not incompressible.

15. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

3yz x2 x cos y

������
= (�x sin y � 0) i� (cos y � 3y) j

+ (2x� 3z)k
= h�x sin y, 3y � cos y, 2x� 3zi
Since curlF 6= 0, F is not conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
3yz, x2, x cos y

↵

= 0 + 0 + 0

Since divF = 0, F is incompressible.

16. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

y2 x2ez cosxy

������
=
�
�x sinxy � x2ez

�
i� (�y sinxy � 0) j

+ (2xez � 2y)k
= h�x sinxy � x2ez,�y sinxy, 2xez � 2yi
Since curlF 6= 0, F is not conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
y2, x2ez, cosxy

↵

= 0 + 0 + 0 = 0

Since divF = 0, F is incompressible.

17. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

sin z eyz
2

z2 2eyz
2

yz + x cos z

������

=
⇣
2zeyz

2

+ 2yz3eyz
2

� 2zeyz
2

� 2yz3eyz
2
⌘
i

� (cos z � cos z) j+ (0� 0)k
= h0, 0, 0i

Since the components of F have continuous
partial derivatives throughout R3 and
curlF = 0, F is conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·

D
sin z, eyz

2

z2, 2eyz
2

yz + x cos z
E

= 0 + z4eyz
2

+ 2(yeyz
2

+ 2y2z2eyz
2

)� x sin z

= z4eyz
2

+ 2yeyz
2

+ 4y2z2eyz
2

� x sin z

Since divF 6= 0, F is not incompressible.

18. curlF = r⇥ F
=
⇥
�x2 sin z � 3y2 � (x2 sin z � 3y2)

⇤
i

� [�2xy sin z � (�2xy sin z)] j
+ (2x cos z � 2x cos z)k

= h0, 0, 0i
Since the components of F have continuous
partial derivatives throughout R3 and
curlF = 0, F is conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�

·
⌦
2xy cos z, x2 cos z � 3y2z,

�x2y sin z � y3
↵

= 2y cos z � 6yz � x2y cos z

Since divF 6= 0, F is not incompressible.

19. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

z2 � 3e3xy z2 � e3x 2z
p
xy

������

=

✓
xz
p
xy
� 2z

◆
i�
✓

yz
p
xy
� 2z

◆
j

+
�
�3e3x + 3e3x

�
k

=

⌧
�2z + xz

p
xy

, 2z � yz
p
xy

, 0

�

Since curlF 6= 0, F is not conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·

⌦
z2 � 3e3xy, z2 � e3x, 2z

p
xy
↵

= �9ye3x + 0 + 2
p
xy

= �9ye3x + 2
p
xy

Since divF 6= 0, F is not incompressible.

20. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

2xz 3y x2 � y

������
= (�1� 0) i� (2x� 2x) j+ (0� 0)k
= h�1, 0, 0i
Since curlF 6= 0, F is not conservative.
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divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
2xz, 3y, x2 � y

↵

= 2z + 3 + 0 = 2z + 3

Since divF 6= 0, F is not incompressible.

21. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

xy2 3xz 4� y2z

������
= (�2yz � 3x) i� (0) j+ (3z � 2xy)k
= h�3x� 2yz, 0, 3z � 2xyi
Since curlF 6= 0, F is not conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
xy2, 3xz, 4� y2z

↵

= y2 + 0� y2 = 0

Since divF = 0, F is incompressible.

22. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

x y 1� 3z

������
= (0� 0) i� (0� 0) j+ (0� 0)k
= h0, 0, 0i
Since the components of F have continuous
partial derivatives throughout R3 and
curlF = 0, F is conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
· hx, y, 1� 3zi

= 1 + 1� 3 = �1
Since divF 6= 0, F is not incompressible.

23. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

4x 3y3 ez

������
= (0� 0) i� (0� 0) j+ (0� 0)k
= h0, 0, 0i
Since the components of F have continuous
partial derivatives throughout R3 and
curlF = 0, F is conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
4x, 3y3, ez

↵

= 4 + 9y2 + ez

Since divF 6= 0, F is not incompressible.

24. curl F = r⇥ F =

������

i j k
@
@x

@
@y

@
@z

sinx 2y2 3
p
z

������
= (0� 0) i� (0� 0) j+ (0� 0)k

= h0, 0, 0i

Since the components of F have continuous
partial derivatives throughout R3 and

curlF = 0, F is conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
sinx, 2y2, 3

p
z
↵

= cosx+ 4y +
1

3z2/3
6= 0

Since divF 6= 0, F is not incompressible.

25. curlF = r⇥ F

=

��������

i j k
@
@x

@
@y

@
@z

�2xy �x2 2yz cos yz2

+z2 cos yz2

��������
=
�
2z cos yz2 � 2yz3 sin yz2

�2z cos yz2 + 2yz3 sin yz2
�
i

� (0� 0) j+ (�2x+ 2x)k
= h0, 0, 0i
Since the components of F have continuous
partial derivatives throughout R3 and
curlF = 0, F is conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·

⌦
�2xy,�x2 + z2 cos yz2, 2yz cos yz2

↵

= �2y � z4 sin yz2 + 2y cos yz2 � 4y2z2 sin yz2

Since divF 6= 0, F is not incompressible.

26. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

ey xey + z2 2yz � 1

������
= (2z � 2z) i� (0� 0) j+ (ey � ey)k
= h0, 0, 0i
Since the components of F have continuous
partial derivatives throughout R3 and
curlF = 0, F is conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
ey, xey + z2, 2yz � 1

↵

= 0 + xey + 2y = xey + 2y

Since divF 6= 0, F is not incompressible.

27. (a) r · (rf) = r · (rscalar)
= r · vector
= scalar

(b) r⇥ (r · F) = r⇥ (r · vector)
= r⇥ scalar
= undefined
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(c) r(r⇥ F) = r(r⇥ vector)
= rvector
= undefined

(d) r(r · F) = r(r · vector)
= rscalar
= vector

(e) r⇥ (rf) = r⇥ (rscalar)
= r⇥ vector
= vector

28. (a) r(rf) = r(rscalar)
= rvector
= undefined

(b) r · (r · F) = r · (r · vector)
= r · scalar
= undefined

(c) r · (r⇥ F) = r · (r⇥ vector)
= r · vector
= scalar

(d) r⇥ (rF) = r⇥ (rvector)
= r⇥ undefined
= undefined

(e) r⇥ [r⇥ (r⇥ F)]
= r⇥ [r⇥ (r⇥ vector)]
= r⇥ (r⇥ vector)
= r⇥ vector
= vector

29. Let F = hF
1

, F
2

, F
3

i

r ⇥ F =

������

i j k
@
@x

@
@y

@
@z

F
1

F
2

F
3

������

=

✓
@F

3

@y
� @F

2

@z

◆
i�
✓
@F

3

@x
� @F

1

@z

◆
j

+

✓
@F

2

@x
� @F

1

@y

◆
k

r · (r⇥ F)

=

⌧
@

@x
,
@

@y
,
@

@z

�

·
⌧✓

@F
3

@y
� @F

2

@z

◆
i�
✓
@F

3

@x
� @F

1

@z

◆
j

+

✓
@F

2

@x
� @F

1

@y

◆
k

�

=
@2F

3

@x@y
� @2F

2

@x@z
� @2F

3

@y@x
+

@2F
1

@y@z

+
@2F

2

@z@x
� @2F

1

@z@y

Since the components have continuous second
partial derivatives, we have,

@2F
3

@x@y
=

@2F
3

@y@x
,

@2F
2

@x@z
=

@2F
2

@z@x
and

@2F
1

@y@z
=

@2F
1

@z@y
Therefore r · (r⇥ F) = 0

30. rf = hfx, fy, fzi

r ⇥ (rf) =

������

i j k
@
@x

@
@y

@
@z

fx fy fz

������
= (fyz � fzy) i� (fxz � fzx) j+ (fxy � fyx)k
Since f has continuous second order
partial derivative,
fxy = fyx, fyz = fzy, fzx = fxz
Thereforer⇥ (rf) = h0, 0, 0i

31. r = hx, y, zi
curl r = r⇥ r

=

������

i j k
@
@x

@
@y

@
@z

x y z

������
= (0� 0) i� (0� 0) j+ (0� 0)k
= h0, 0, 0i
div r = r · r
=

⌧
@

@x
,
@

@y
,
@

@z

�
· hx, y, zi

= 1 + 1 + 1 = 3

32. Let F(x,y, z) = rr

=
D
x
p
x2 + y2 + z2,

y
p
x2 + y2 + z2,

z
p

x2 + y2 + z2
E

r · F

=

 
x2

p
x2 + y2 + z2

+
p

x2 + y2 + z2

!

+

 
y2p

x2 + y2 + z2
+
p

x2 + y2 + z2

!

+

 
z2p

x2 + y2 + z2
+
p

x2 + y2 + z2

!

=
x2 + y2 + z2p
x2 + y2 + z2

+ 3
p
x2 + y2 + z2

= 4
p
x2 + y2 + z2 = 4r

33. rf(r) = rf
⇣p

x2 + y2
⌘

=

⌧
@

@x

h
f
⇣p

x2 + y2
⌘i

,

@

@y

h
f
⇣p

x2 + y2
⌘i�

=

*
xp

x2 + y2
f 0
⇣p

x2 + y2
⌘
,
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yp
x2 + y2

f 0
⇣p

x2 + y2
⌘+

=
Dx
r
f 0(r),

y

r
f 0(r)

E
= f 0(r)

r

r

34. r2f(r) = r2f
⇣p

x2 + y2
⌘

=
@2

@x2

h
f
⇣p

x2 + y2
⌘i

+
@2

@y2

h
f
⇣p

x2 + y2
⌘i

=
@

@x

"
xp

x2 + y2
f 0
⇣p

x2 + y2
⌘#

+
@

@y

"
yp

x2 + y2
f 0
⇣p

x2 + y2
⌘#

=
y2

(x2 + y2)3/2
f 0
⇣p

x2 + y2
⌘

+
x2

x2 + y2
f 00
⇣p

x2 + y2
⌘

+
x2

(x2 + y2)3/2
f 0
⇣p

x2 + y2
⌘

+
y2

x2 + y2
f 00
⇣p

x2 + y2
⌘

= f 00(r) +
1

r
f 0(r)

35. r · (f (r) r)

=

⌧
@

@x
,
@

@y
,
@

@z

�

· hf (r)x i, f (r) y j, f (r) z ki

=
@

@x
(f (r)x) +

@

@y
(f (r) y)

+
@

@z
(f (r) z)

= xf 0 (r)
@r

@x
+ f (r) + yf 0 (r)

@r

@y

+ f (r) + zf 0 (r)
@r

@z
+ f (r)

r = krk
) r2 = x2 + y2 + z2

2r
@r

@x
= 2x) @r

@x
=

x

r

2r
@r

@y
= 2y ) @r

@y
=

y

r

2r
@r

@z
= 2z ) @r

@x
=

z

r
r · (f (r) r)

=
x2

r
f 0 (r) +

y2

r
f 0 (r) +

z2

r
f 0 (r) + 3f (r)

= f 0 (r)

✓
r2

r

◆
+ 3f (r)

= rf 0 (r) + 3f (r)

36. r⇥ (f (r) r) =

������

i j k
@
@x

@
@y

@
@z

f (r)x f (r) y f (r) z

������

=


@

@y
(f (r) z)� @

@z
(f (r) y)

�
i

�

@

@x
(f (r) z)� @

@z
(f (r)x)

�
j

+


@

@x
(f (r) y)� @

@y
(f (r)x)

�
k

=


zf 0 (r)

@r

@y
+ f (r)

@z

@y
� yf 0 (r)

@r

@z

�f (r)
@y

@z

�
i

�

zf 0 (r)

@r

@x
+ f (r)

@z

@x
� xf 0 (r)

@r

@z

�f (r)
@x

@z

�
j

+


yf 0 (r)

@r

@x
+ f (r)

@y

@x
� xf 0 (r)

@r

@y

�f (r)
@x

@y

�
k

=


zf 0 (r)

@r

@y
� yf 0 (r)

@r

@z

�
i

�

zf 0 (r)

@r

@x
� xf 0 (r)

@r

@z

�
j

+


yf 0 (r)

@r

@x
� xf 0 (r)

@r

@y

�
k

Since r = krk ) r2 = x2 + y2 + z2

Therefore
@r

@x
=

x

r
;
@r

@y
=

y

r
;
@r

@z
=

z

r
r⇥ (f (r) r)

=
h
f 0 (r)

zy

r
� f 0 (r)

yz

r

i
i

�
h
f 0 (r)

zx

r
� f 0 (r)

xz

r

i
j

+
h
f 0 (r)

yx

r
� f 0 (r)

xy

r

i
k

= h0, 0, 0i

37. The divergence is positive because if we draw
a box around P , the outflow (top and right
sides) is greater than the inflow (bottom and
left sides).

38. The divergence is negative because if we draw
a box around P , the outflow (bottom and right
sides) is less than the inflow (top and left sides).

39. The divergence is negative because if we draw
a box around P , the outflow (top and right
sides) is less than the inflow (bottom and left
sides).

40. The divergence is positive because if we draw a
box around P , the outflow (mostly on the top
side) is greater than the inflow (mostly on the
bottom side).
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41. The graphs of Exercises 33 and 35 appear to
be the same.

The divergence is negative because if we draw
a box around P , the outflow (mostly on the
right side) is less than the inflow (mostly on
the left side).

42. The divergence is small but positive because if
we draw a box around P , the outflow on the
top side is greater than the inflow on the bot-
tom side. (Note that the outflow on the right
side cancels the inflow on the left side.)

43. The vector field is perhaps easiest to visualize
if it is graphed in the xy-plane:

y

2

x

1

2
0

-1 0 1-2

-1

-2

F´ in ´ the ´ xy-plane

As can be seen from the graph of the vector
field, if a paddle wheel is placed near the ori-
gin (but x 6= 0), then one side of the wheel will
be pushed harder than the other side causing
the wheel to turn. This is verified with the curl
of F:

curlF = r⇥ F = r⇥
⌧
0,

1

1 + x2

, 0

�

=

������

i j k
@
@x

@
@y

@
@z

0 1

1+x2 0

������

=

⌧
0, 0,� 2x

(1 + x2)2

�

44. As can be seen from the graph of the vector
field, this vector field would not turn a paddle
wheel.

r⇥ F = h0, 0, 0i

-1
x

y

2

2

1

0
1

-1

-2

0-2

45. curlF = r⇥ F =

������

i j k
@
@x

@
@y

@
@z

y
x2

+y2
�x

x2
+y2 0

������
= (0� 0) i� (0� 0) j

+

✓
@

@x

✓
�x

x2 + y2

◆◆

�
✓

@

@y

✓
y

x2 + y2

◆◆�
k

= 0i� 0j+

"
x2 � y2

(x2 + y2)2
� x2 � y2

(x2 + y2)2

#
k

= h0, 0, 0i

Since r⇥F = 0, the vector field is irrotational,
that is the fluid does not tend to rotate near
the origin.

1.0

y

0.8

0.2

0.0

−0.8

x

0.6

0.5

0.4

−0.2
−0.5

−0.4

−1.0

1.00.0−1.0

−0.6

46. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

y 0 0

������
= 0i� 0j+ (�1)k

= h0, 0,�1i

From the graph it is clear that the flow is very
slow near y = 0 plane and it is opposite in
directions.
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y

−0.5

0.5

−1.0 0.5−0.5

1.0

1.0
x
0.0

0.0

−1.0

47. r =
p
x2 + y2 + z2

divF = r ·
 

r

krk3

!

=

⌧
@

@x
,
@

@y
,
@

@z

�

·
 

x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

!

=
@

@x

 
x

(x2 + y2 + z2)3/2

!

+
@

@y

 
y

(x2 + y2 + z2)3/2

!

+
@

@z

 
z

(x2 + y2 + z2)3/2

!

=

"�
y2 + z2 � 2x2

�p
x2 + y2 + z2

(x2 + y2 + z2)3

#

+

"�
z2 + x2 � 2y2

�p
x2 + y2 + z2

(x2 + y2 + z2)3

#

+

"�
x2 + y2 � 2z2

�p
x2 + y2 + z2

(x2 + y2 + z2)3

#

= 0

Since the divergence is zero, we can say that
the vector field is incompressible.

x
−0.50.5 0.0 −1.01.0

1.0

0.5

y 0.0

−0.5

−1.0

48. F =

*
x

(x2 + y2 + z2)n/2
,

y

(x2 + y2 + z2)n/2
,

z

(x2 + y2 + z2)n/2

+

divF = r · F

=
@

@x

 
x

(x2 + y2 + z2)n/2

!

+
@

@y

 
y

(x2 + y2 + z2)n/2

!

+
@

@z

 
z

(x2 + y2 + z2)n/2

!

=
(3� n)

(x2 + y2 + z2)n/2

49. Take a circle C in the xy-plane. Give C a pos-
itive orientation in that plane. On C, z is con-
stant (z = 0) and therefore dz = 0. ThereforeI

C

F · dr

=

I

C

F
1

(x, y, 0) dx+ F
2

(x, y, 0) dz

=

ZZ

R

✓
@F

2

@x
� @F

1

@y

◆
dAxy > 0

50. Take a circle C in the xz-plane. Give C a pos-
itive orientation in that plane. On C, y is con-
stant (y = 0) and therefore dy = 0. ThereforeI

C

F · dr

=

I

C

F
1

(x, 0, z) dx+ F
3

(x, 0, z) dz

=

ZZ

R

✓
@F

3

@x
� @F

1

@z

◆
dAxz < 0

51. This is the vector form of Green’s Theorem (di-
rectly above Theorem 5.2) and Exercise 52 in
Section 14.2.

52. We apply Green’s first identity using f = �k
(a constant function) and g = T . In this case,
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rf = 0 and the identity becomes:ZZ

R

(�kr2T ) dA =

I

C

(�krT ) ds = 0

Since this is zero for all closed curves C,

we haveZZ

R

(�kr2T ) dA = 0

for all rectangles R which implies that
r2T = 0.

53. If r2f = 0, then this means

r ·rf = 0, or that rf is incompressible.

Example 5.5 shows that r⇥rf = 0,

so rf is irrotational.

54. Since F and G are irrotational,
r⇥ F = r⇥G = 0
Using this and Exercise 63:
r · (F⇥G) = G · (r⇥ F)� F · (r⇥G)
= G · 0� F · 0 = 0

and therefore F⇥G is incompressible.

55. (a) From r2 = x2 + y2 + z2 we obtain

2r
@r

@x
= 2x or r

@r

@x
= x.

Taking the second derivative of this gives
@

@x

✓
@r

@x

◆
=

✓
@r

@x

◆
2

+ r
@2r

@x2

=
@

@x
(x) = 1

Therefore
@2r

@x2

=
1�

�
@r
@x

�
2

r
=

1�
�
x
r

�
2

r

=
r2 � x2

r3

Similarly,
@2r

@y2
=

r2 � y2

r3

@2r

@z2
=

r2 � z2

r3
Therefore

r2f = r2r =
@2r

@x2

+
@2r

@y2
+

@2r

@z2

=
r2 � x2

r3
+

r2 � y2

r3
+

r2 � z2

r3

=
2

r
=

2p
x2 + y2 + z2

(b) �f = r2f =
@2f

@x2

+
@2f

@y2
+

@2f

@z2

f =
1

r
, r2 = x2 + y2 + z2

r2f =
@

@x

✓
�1
r2

◆
· x
r

�
+

@

@y

✓
�1
r2

◆
· y
r

�

+
@

@z

✓
�1
r2

◆
· z
r

�

=
@

@x

✓
�x
r3

◆
+

@

@y

✓
�y
r3

◆
+

@

@z

✓
�z
r3

◆

= �
⇥
�3r�5x2 + r�3

⇤
�
⇥
�3r�5y2 + r�3

⇤

�
⇥
�3r�5z2 + r�3

⇤

= 3r�5

�
x2 + y2 + z2

�
� 3r�3

= 3r�3 � 3r�3 = 0

56. �rn = r2rn = 0
@2

@x2

(rn) +
@2

@y2
(rn) +

@2

@z2
(rn) = 0

@

@x

⇣
nrn�1

x

r

⌘
+

@

@y

⇣
nrn�1

y

r

⌘
+

@

@z

⇣
nrn�1

z

r

⌘

= 0
@

@x

�
nrn�2x

�
+

@

@y

�
nrn�2y

�
+

@

@z

�
nrn�2z

�

= 0

n (n� 2) rn�4

⇥
x2 + y2 + z2

⇤
+ 3nrn�2 = 0

n (n� 2) rn�2 + 3nrn�2 = 0
n (n+ 1) rn�2 = 0
) n = 0or n = �1

�
Since rn�2 6= 0

�

There are no positive integer values of n.

57. curlF = r⇥ F =

�������

i j k
@
@x

@
@y

@
@z

e�x

2
/y

x
1�e�x

2
/y

2y 0

�������
= (0� 0) i� (0� 0) j

+

 
@

@x

 
1� e�x2/y

2y

!
� @

@y

 
e�x2/y

x

!!
k

= 0i� 0j+

✓
x

y2
e�x2/y � x

y2
e�x2/y

◆
k

= h0, 0, 0i
So the vector field is conservative.

f (x, y, z) =

Z
e�x2/y

x
dx

f (x, y, z) =

Z
1� e�x2/y

2y
dy

f (x, y, z) =

Z
(0) dz = g (x, y)

Hence the potential function f is independent
of z

58. (a) Anything of the form
F = hxh(y), g(y), zk(y)i will have
r · F = h(y) + g0(y) + k(y), which is a
function of y. Now just choose h, g and k
so that their sum is positive.

Here is one simple possibility:
F = hxy2, y, 0i

(b) If F = h0, x2, 0i then r⇥ F = h0, 0, 2xi.

59. If
⇢

✏
0

= r ·E and E = �r� then
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r2� = r ·r� = r · (�E)

= �r ·E = � ⇢

✏
0

60. If v has a stream function, then

r · v =
@

@x
vx +

@

@y
vy

=
@

@x

✓
@g

@y

◆
+

@

@y

✓
�@g

@x

◆

=
@2g

@x@y
� @2g

@y@x
= 0

where the last equality is because of the equal-
ity of the mixed partials.

61. The stream function for a two-dimensional vec-
tor field v = hv

1

, v
2

i, if there is one, is a po-
tential for the orthogonal field
v? = h�v

2

, v
2

i (in general)
= hy2 � x, 2xyi (this case)

A routine check shows that this field is conser-
vative.

If rg(x, y) = v?, then
@g

@x
= y2 � x and

@g

@y
= 2xy

g(x, y) =

Z
(y2 � x) dx

= y2x� 1

2
x2 + h(y)

@g

@y
= 2xy + h0(y) = 2xy

h0(y) = 0
h(y) = c

g(x, y) = y2x� 1

2
x2 + c

62. r · v = (1 + xy)exy � (1 + xy)exy = 0

To find the stream function, we want to find
g(x, y) so that
@g

@x
= �2 + yexy

@g

@y
= xexy � 1

g(x, y) =

Z
(�2 + yexy) dx

= �2x+ exy + h(y)
@g

@y
= xexy + h0(y) = xexy � 1

h0(y) = �1
h(y) = �y + c
g(x, y) = �2x+ exy � y + c

63. Let F = hF
1

, F
2

, F
3

i and
G = hG

1

, G
2

, G
3

i.
Then

r · (F⇥G)

=

⌧
@

@x
,
@

@y
,
@

@z

�
·

hF
2

G
3

� F
3

G
2

, F
3

G
1

� F
1

G
3

,
F
1

G
2

� F
2

G
1

i

=
@F

2

@x
G

3

+ F
2

@G
3

@x
� @F

3

@x
G

2

+ F
3

@G
2

@x

+
@F

3

@y
G

1

+ F
3

@G
1

@y
� @F

1

@y
G

3

+ F
1

@G
3

@y

+
@F

1

@z
G

2

+ F
1

@G
2

@z
� @F

2

@z
G

1

+ F
2

@G
1

@z
And,

G · (r⇥ F)
= hG

1

, G
2

, G
3

i

·
⌧
@F

3

@y
� @F

2

@z
,
@F

1

@z
� @F

3

@x
,
@F

2

@x
� @F

1

@y

�

= G
1

@F
3

@y
�G

1

@F
2

@z
+G

2

@F
1

@z
�G

2

@F
3

@x

+G
3

@F
2

@x
�G

3

@F
1

@y

Similarly, we can find F · (r⇥G).
Putting everything together gives the result.

64. Let F = hF
1

, F
2

, F
3

i. Then
r · (r⇥ F)

=

⌧
@

@x
,
@

@y
,
@

@z

�

·
⌧
@F

3

@y
� @F

2

@z
,
@F

1

@z
� @F

3

@x
,
@F

2

@x
� @F

1

@y

�

=

✓
@2F

3

@x@y
� @2F

2

@x@z

◆
+

✓
@2F

1

@y@z
� @2F

3

@y@x

◆

+

✓
@2F

2

@z@x
� @2F

1

@z@y

◆

=

✓
@2F

3

@x@y
� @2F

3

@y@z

◆
+

✓
@2F

1

@y@z
� @2F

1

@z@y

◆

+

✓
@2F

2

@z@x
� @2F

2

@x@z

◆

= 0 + 0 + 0 = 0

(By the equality of the mixed partials.)

65. There is clearly a typo in the problem in the
text. It should read:
r⇥ (r⇥ F) = r(r · F)�r2F

Let F = hA,B,Ci. Then, r⇥ (r⇥ F)

=

⌧
@

@x
,
@

@y
,
@

@z

�
⇥

hCy �Bz, Az � Cx, Bx �Ayi
= h(Bx �Ay)y � (Az � Cx)z,

(Cy �Bz)z � (Bx �Ay)x,
(Az � Cx)x � (Cy �Bz)yi

= hBxy �Ayy �Azz + Cxz,
Cyz �Bzz �Bxx +Ayx,
Azx � Cxx � Cyy +Bzyi



862 CHAPTER 14. VECTOR CALCULUS

= hAxx +Bxy + Cxz,
Ayx +Byy + Cyz,
Azx +Bzy + Czzi

� hAxx +Ayy +Azz,
Bxx +Byy +Bzz,
Cxx + Cyy + Czzi

= r(r · F)�r2F

66. Let A = hA
1

, A
2

, A
3

i, be a constant vector.

Then

r⇥ (A⇥ r)
= r⇥ hA

2

z �A
3

y,A
3

x�A
1

z,A
1

y �A
2

xi

=

������

i j k
@
@x

@
@y

@
@z

A
2

z �A
3

y A
3

x�A
1

z A
1

y �A
2

x

������
= (A

1

+A
1

) i� (�A
2

�A
2

) j+ (A
3

+A
3

)k
= h2A

1

, 2A
2

, 2A
3

i = 2A

67. Because n = hdy,�dxi,I

C

f(rg) · n ds

=

I
f

✓
@g

@x
dy � @g

@y
dx

◆

=

I
M dx+N dy

where M = �@g

@y
dx and N =

@g

@x

Therefore
@M

@y
= �@f

@y

@g

@y
� f

@2g

@y2

@N

@x
=

@f

@x

@g

@x
+ f

@2g

@x2

@N

@x
� @M

@y
= rf ·rg + fr2g

Therefore, by Green’s Theorem:I

C

f(rg) · n ds

=

ZZ

R

�
rf ·rg + fr2g

�
dA

68. We apply Green’s first identity twice, exchang-
ing the roles of the functions f and g:ZZ

R

fr2g dA =

Z

C

f(rg) · n ds

�
ZZ

R

(rf ·rg) dA
ZZ

R

gr2f dA =

Z

C

g(rf) · n ds

�
ZZ

R

(rg ·rf) dA

Now, if we subtract these equations, we obtain:ZZ

R

�
fr2g � gr2f

�
dA

=

Z

C

f(rg) · n ds�
ZZ

R

(rf ·rg) dA

�
Z

C

g(rf) · n ds+

ZZ

R

(rg ·rf) dA

=

Z

C

(frg � grf)) · n ds

+

ZZ

R

(rg ·rf �rf ·rg) dA

=

Z

C

(frg � grf) · n ds

69. Let F = hA,B,Ci. Then
r · (fF)
= r · hfA, fB, fCi
= (fA)x + (fB)y + (fC)z
= (fxA+ fAx) + (fyB + fBy) + (fzC + fCz)
= (fxA+ fyB + fzC) + f(Ax +By + Cz)
= rf · F+ fr · F

70. Let F = hF
1

, F
2

, F
3

i. Then
r⇥ (fF)

=

������

i j k
@
@x

@
@y

@
@z

fF
1

fF
2

fF
3

������

=

✓
@

@y
(fF

3

)� @

@z
(fF

2

)

◆
i

+

✓
@

@z
(fF

1

)� @

@x
(fF

3

)

◆
j

+

✓
@

@x
(fF

2

)� @

@y
(fF

1

)

◆
k

=

✓
F
3

@f

@y
+ f

@F
3

@y
� F

2

@f

@z
� f

@F
2

@z

◆
i

+

✓
F
1

@f

@z
+ f

@F
1

@z
� F

3

@f

@x
� f

@F
3

@x

◆
j

+

✓
F
2

@f

@x
+ f

@F
2

@x
� F

1

@f

@y
� f

@F
1

@y

◆
k

= hF
3

fy � F
2

fz, F1

fz � F
3

fx, F2

fx � F
1

fyi

+ f

⌧
@F

3

@y
� @F

2

@z
,
@F

1

@z
� @F

3

@x
,

@F
2

@x
� @F

1

@y

�

= rf ⇥ F+ f(r⇥ F)

71. In the special case that

H = hh
1

(x, y, z), 0, 0i, then
curlH = r⇥H = r⇥ hh

1

, 0, 0i

=

������

i j k
@
@x

@
@y

@
@z

h
1

0 0

������

=

⌧
0,

@h
1

@z
,�@h

1

@y

�
and

div curlH = r ·r⇥H

= r⇥
⌧
0,

@h
1

@z
,�@h

1

@y

�
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=
@2h

1

@y@z
� @2h

1

@z@y
= 0

Similarly, this holds for vector fields of the form
h0, h

2

(x, y, z), 0i and h0, 0, h
3

(x, y, z)i.

So,
div curl (h

1

i+ h
2

j+ h
3

k)
= div curl (h

1

i)+div curl (h
2

j)+div curl (h
3

k)
= 0 + 0 + 0 = 0

72. Instead of using H as in the text, use:

H =

⌧
0,

Z x

0

G
3

(u, y, z) du,

�
Z x

0

G
2

(u, y, z) du

�

Then,

@H
3

@y
= � @

@y

Z x

0

G
2

(u, y, z) du

@H
2

@z
=

@

@z

Z x

0

G
3

(u, y, z) du

@H
1

@z
= 0

@H
3

@x
= �G

2

(x, y, z)

@H
2

@x
= G

3

(x, y, z)

@H
1

@y
= 0

r⇥H

=

⌧
@H

3

@y
� @H

2

@z
,
@H

1

@z
� @H

3

@x
,
@H

2

@x
� @H

1

@y

�

=

⌧
@H

3

@y
� @H

2

@z
,�@H

3

@x
,
@H

2

@x

�

=

✓
� @

@y

Z x

0

G
2

(u, y, z) du

� @

@z

Z x

0

G
3

(u, y, z) du

◆
i

+G
2

(x, y, z)j+G
3

(x, y, z)k

Notice that the assumption is that r ·G = 0.
This means that
@

@x
G

1

(x, y, z) +
@

@y
G

2

(x, y, z)

+
@

@z
G

3

(x, y, z) = 0

@

@x
G

1

(x, y, z) = � @

@y
G

2

(x, y, z)

� @

@z
G

3

(x, y, z)

@

@x

Z x

0

G
1

(u, y, z) du

= � @

@y

Z x

0

G
2

(u, y, z) du

� @

@z

Z x

0

G
3

(u, y, z) du

G
1

(x, y, z) = � @

@y

Z x

0

G
2

(u, y, z) du

� @

@z

Z x

0

G
3

(u, y, z) du

Putting all these together gives

r⇥H = hG
1

(x, y, z), G
2

(x, y, z), G
3

(x, y, z)i
= G

73. curlF = r⇥ F =

������

i j k
@
@x

@
@y

@
@z

1

y2
+1

6y 2

������

= (0� 0) i� (0� 0) j+

✓
0� @

@y

✓
1

y2 + 1

◆◆
k

=

*
0, 0,

2y

(y2 + 1)2

+

For curl of maximum magnitude,

Let g (y) =
2y

(y2 + 1)2

g0 (y) =
2� 6y2

(y2 + 1)3

g0 (y) = 0) 2� 6y2 = 0

y2 =
1

3

y = ± 1p
3

(Since � 5  y  5)

g

✓
1p
3

◆
= 0.6495; g

✓
�1p
3

◆
= �0.6495

Therefore the maximum magnitude of the curl
is 0.6495

74. divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�

·
⌦
2x� 2xy2, 6y2 � x2y, x2 + cos y

↵

= 2� 2y2 + 12y � x2 + 0
= 2 + 12y � x2 � 2y2

For divergence of maximum absolute value,

Let g (x, y) = 2 + 12y � x2 � 2y2

gx = �2x
gy = 12� 4y
gxx = �2
gyy = �4
gxy = 0

D = (�2) (�4)� (0)2 = 8
Solving rg = h0, 0i gives equation
�2x = 0, 12� 4y = 0

Gives x = 0, y = 3. So critical point is (0, 3)

D (0, 3) = 8 > 0 and gxx < 0 so there is ab-
solute maximum at (0,3). Therefore the maxi-
mum absolute value of divergence is

g (0, 3) = 2 + 12 (3)� (0)2 � 2(3)2 = 20
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14.6 Surface Integrals

1. x = x
y = y
x = 3x+ 4y
�1 < x <1, �1 < y <1

2. x = 2 sin� cos ✓
y = 2 sin� sin ✓
x = 2 cos�
0  ✓  2⇡, 0  �  ⇡

3. x = cosu cosh v
y = sinu cosh v
z = sinh v
0  u  2⇡, �1 < v <1

4. x = cosu cosh v
y = sinh v
z = sinu cosh v
0  u  2⇡, �1 < v <1

5. x = 2 cos ✓
y = 2 sin ✓
x = z
0  ✓  2⇡, 0  z  2

6. x = x
y = 3 cos ✓
z = 3 sin ✓
� 1  x  1, 0  ✓  2⇡

7. x = r cos ✓
y = r sin ✓
x = 4� r2

0  ✓  2⇡, 0  r  2

8. x = r cos ✓
y = r sin ✓
z = r2

0  2  r, 0  ✓  2⇡

9.

-3
-2

-1
0 x

1
-2

0

-1
2

1

y
0

2

1
3

2

3

4

10.

-2
-1

0
-2

x-1

-1

0

y

1

1
0

2

1

3

4

2
2

11.

-2
-1

0 x

-2
1

0

-1

1

y
0

2

1
2

2

3

4

12.

-2
-1

0
-2

x
-2

-1

-1

y

1
0

0

1

1

2

2
2

13.

-2
-1

0 x

-2
1

-2

-1

-1

y
0

0

1
2

2

1

2
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14.

-2
-1

0
-2

x
-2

-1

-1

y

1
0

0

1

1

2

2
2

15.

-1
-0.5

y

0
0.5

1 -4
-2

0 x2
4

-1

-0.5

0

0.5

1

16.

-1
-0.5

0 x
0.5

-3

-1

-2 -1

y

-0.5

0 1

0

1
2 3

0.5

1

17.

5

0−2

0

−5

2

0 −5
5

18.

−2
−1

0
1

−2

−3

−1

−2

0

−1

1

0

2
2

1

2

3

19. In a., (u, v) are polar coordinates in the xy-
plane (v is the angle), and with z = v2.

This must be surface 1.

In b., (u, v) are polar coordinates in the yz-
plane (v is the angle), and with x = v.

This must be surface 3.

In c., (u, v) are polar coordinates in the yz-
plane (v is the angle), and with x = u.

This means that x2 = y2 + z2,

which must be surface 2.

20. r✓ ⇥ r�

=

������

i j k
�2 sin� sin ✓ 2 sin� cos ✓ 0
2 cos� cos ✓ 2 cos� sin ✓ �2 sin�

������
= [(2 sin� cos ✓)(�2 sin�)

� (2 cos� sin ✓)(0)]i
� [(�2 sin� sin ✓)(�2 sin�)

� (2 cos� cos ✓)(0)]j
+ [(�2 sin� sin ✓)(2 cos� sin ✓)
� (2 cos� cos ✓)(2 sin� cos ✓)]k

= (�4 sin2 � cos ✓)i+ (�4 sin2 � sin ✓)j
+ (�4 sin� cos�)(sin2 ✓ + cos2 ✓)k

=
⌦
�4 sin2 � cos ✓,�4 sin2 � sin ✓,�4 sin� cos�

↵

21. There are other possible ways to solve this, but
we can parametrize this surface by polar coor-
dinates in the xy-plane:
(x, y, z) = r = (r cos ✓, r sin ✓, r)
0  ✓  2⇡, 0  r  4
r✓ = h�r sin ✓, r cos ✓, 0i
rr = hcos ✓, sin ✓, 1i
r✓ ⇥ rr = hr cos ✓, r sin ✓,�ri
kr✓ ⇥ rrk = r

p
2

Area =

ZZ

R

kr✓ ⇥ rrk dA✓r

=

ZZ

R

r
p
2 dA✓r

=

Z
2⇡

0

Z
4

0

r
p
2 dr d✓
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=

Z
2⇡

0

r8
p
2 d✓ = 16⇡

p
2

22. z = f(x, y) = x2 + y2

n = hfx, fy,�1i = h2x, 2y,�1i
knk =

p
4x2 + 4y2 + 1

ZZ

S

dS =

ZZ

R

knk dA

=

ZZ

R

p
4x2 + 4y2 + 1 dA

=

Z
2⇡

0

Z
2

0

r
p
4r2 + 1 dr d✓

=
1

12

Z
2⇡

0

⇣
173/2 � 1

⌘
d✓

=
⇡

6

⇣
173/2 � 1

⌘

23. z = f(x, y) =
6� 3x� y

2

n = hfx, fy,�1i =
⌧
�3

2
,�1

2
,�1

�

knk =
p
14

2ZZ

S

dS =

ZZ

R

knk dA

=

ZZ

R

p
14

2
dA =

p
14

2
(Area of circle)

=

p
14

2
(4⇡) = 2⇡

p
14

24. z = f(x, y) = 4� x� 2y
n = hfx, fy,�1i = h�1,�2,�1i
knk =

p
6

ZZ

S

dS =

ZZ

R

knk dA

=

ZZ

R

p
6 dA =

Z
1

�1

Z
1

x2

p
6 dx dy

=

Z
1

�1

p
6(1� x2) dx dy =

4
p
6

3

25. z = f(x, y) =
p
x2 + y2 = r

n = hfx, fy,�1i

=

*
xp

x2 + y2
,

yp
x2 + y2

,�1
+

knk =
p
2

ZZ

S

dS =

ZZ

R

knk dA =

ZZ

R

p
2 dA

=
p
2(Area of Triangle) =

p
2

2

26. This is the same surface found in Exercise 22,
which has surface area:
⇡

6

⇣
173/2 � 1

⌘

27. z = f(x, y) =
p
4� x2 � y2

n = hfx, fy,�1i

=

*
� xp

4� x2 � y2
,

� yp
4� x2 � y2

,�1
+

knk = 2p
4� x2 � y2

=
2p

4� r2
ZZ

S

dS =

ZZ

R

knk dA

=

ZZ

R

2p
4� x2 � y2

dA

=

Z
2⇡

0

Z p
3

0

2rp
4� r2

dr d✓

=

Z
2⇡

0

2 d✓ = 4⇡

28. r =
D⇣
�2 +

p
16� v2

⌘
cosu,

⇣
�2 +

p
16� v2

⌘
sinu, v

E

ru =
D
�
⇣
�2 +

p
16� v2

⌘
sinu,

⇣
�2 +

p
16� v2

⌘
cosu, 0

E

rv =

⌧
�v cosup
16� v2

,
�v sinup
16� v2

, 1

�

n = ru ⇥ rv

=
D⇣
�2 +

p
16� v2

⌘
cosu,

⇣
�2 +

p
16� v2

⌘
sinu,

v
�
�2 +

p
16� v2

�
p
16� v2

+

knk =
4
�
�2 +

p
16� v2

�
p
16� v2ZZ

S

f (x, y, z) dS =

ZZ

R

k ru ⇥ rvk dA

=

Z
2⇡

0

Z p
12

�
p
12

"
4
�
�2 +

p
16� v2

�
p
16� v2

#
dv du

= 32⇡

 
3
p
3� ⇡

3

!

29. r = h(c+ a cos v) cosu,
(c+ a cos v) sinu, a sin vi

ru = h� (c+ a cos v) sinu, (c+ a cos v) cosu, 0i
rv = h�a sin v cosu,�a sin v sinu, a cos vi
ru ⇥ rv = ha cosu cos v (c+ a cos v) ,

a sinu cos v (c+ a cos v) ,
a sin v (c+ a cos v)i

kru ⇥ rvk = a (c+ a cos v)ZZ

S

f (x, y, z) dS =

ZZ

R

k ru ⇥ rvk dA
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=

Z
2⇡

0

Z
2⇡

0

a (c+ a cos v) dv du = 4⇡2ac

30. r = h(�a+ b cos v) cosu,
(�a+ b cos v) sinu, b sin vi

ru = h� (�a+ b cos v) sinu,
(�a+ b cos v) cosu, 0i

rv = h�b sin v cosu,�b sin v sinu, b cos vi
ru ⇥ rv = hb cosu cos v (�a+ b cos v) ,

b sinu cos v (�a+ b cos v) ,
b sin v (�a+ b cos v)i

kru ⇥ rvk = |b (�a+ b cos v) |

When 0  v  cos�1

a
b ,

|b (�a+ b cos v) | = b (�a+ b cos v)
When cos�1

a
b  v  ⇡,

|b (�a+ b cos v) | = �b (�a+ b cos v)

RR
S
f (x, y, z) dS =

RR
R
k ru ⇥ rvk dA

=
R
2⇡

0

R
2⇡

0

|b (�a+ b cos v) |dv du
= 2

R
2⇡

0

R ⇡

0

|b (�a+ b cos v) |dv du

= 2
R
2⇡

0

R cos�1( a

b

)
0

b (�a+ b cos v) dv du

+ 2
R
2⇡

0

R ⇡

cos�1( a

b

)�b (�a+ b cos v) dv du

= 4⇡b
R cos�1( a

b

)
0

(�a+ b cos v) dv
+ 4⇡b

R ⇡

cos�1( a

b

) (a� b cos v) dv

= 4⇡b [�av + b sin v]
cos

�1
a

b

0

+ 4⇡b [av � b sin v]⇡
cos

�1 a

b

= 4ab⇡2 � 8⇡ab cos�1

a
b + 8⇡b

p
b2 � a2

31. Parametric equation of the given surface can
be taken as

x = cosu cosh v; y = sinu cosh v; z = sinh v
0  u  2⇡; 0  v  sinh�1 (1) (⇡ 0.88)
r = hcosu cosh v, sinu cosh v, sinh vi
ru = h� sinu cosh v, cosu cosh v, 0i
rv = hcosu sinh v, sinu sinh v, cosh vi
ru ⇥ rv =

⌦
cosucosh2v, sinucosh2v,
� cosh v sinh vi

kru ⇥ rvk = cosh v
p
cosh2v + sinh2vZZ

S

1 dS =

ZZ

R

cosh v
p
cosh2v + sinh2v dA

=

Z
0.88

0

Z
2⇡

0

cosh v
p
cosh2v + sinh2v du dv

⇡ 7.9665

32. y = f(x, z) = 4� x2

n = hfx,�1, fzi = h�2x,�1, 0i
knk =

p
4x2 + 1

ZZ

S

dS =

ZZ

R

knk dA

=

ZZ

R

p
4x2 + 1 dA

=

Z
2

�2

Z
2

0

p
4x2 + 1 dz dx

=

Z
2

�2

2
p

4x2 + 1 dx

= 4
p
17� ln(

p
17� 4)

⇡ 18.5871

33. z = f(x, y) = 2x+ 3y
n = hfx, fy,�1i = h2, 3,�1i
knk =

p
14

ZZ

S

xzdS =

ZZ

R

x(2x+ 3y)knk dA

=

ZZ

R

x(2x+ 3y)
p
14 dA

=

Z
2

1

Z
3

1

(2x2 + 3xy)
p
14 dy dx

=
p
14

Z
2

1

�
12x+ 4x2

�
dx

=
82
p
14

3

34. z = f(x, y) = x2 + y2

n = hfx, fy,�1i = h2x, 2y,�1i
knk =

p
4x2 + 4y2 + 1

ZZ

S

(z � y2) dS

=

ZZ

R

x2knk dA

=

ZZ

R

x2

p
4x2 + 4y2 + 1 dA

=

Z
2

0

Z
2⇡

0

r3 cos2 ✓
p
4r2 + 1 d✓ dr

= ⇡

Z
2

0

r3✓
p
4r2 + 1 dr

= ⇡


1

120
(6r2 � 1)(4r2 + 1)3/2

�
2

0

=
⇡

120
(1 + 391

p
17)

35. z = f(x, y) = �
p
9� x2 � y2

n = hfx, fy,�1i

=

*
xp

9� x2 � y2
,

yp
9� x2 � y2

,�1
+

knk = 3p
9� x2 � y2

=
3p

9� r2



868 CHAPTER 14. VECTOR CALCULUS

ZZ

S

(x2 + y2 + z2)3/2 dS

=

ZZ

R

27knk dA

= 27

ZZ

R

3p
9� x2 � y2

dA

= 81

Z
2⇡

0

Z
3

0

rp
9� r2

dr d✓

= 81

Z
2⇡

0

3 d✓ = 486⇡

36. Use spherical coordinates.

x = 3 sin� cos ✓
y = 3 sin� sin ✓
z = 3 cos�
dS = 9 sin� d� d✓
ZZ

S

p
x2 + y2 + z2 dS

=

Z
2⇡

0

Z ⇡

0

(3)9 sin� d� d✓

=

Z
2⇡

0

54 d✓ = 108⇡

37. z = f(x, y) = 4� x2 � y2

n = hfx, fy,�1i = h�2x,�2y,�1i
knk =

p
4x2 + 4y2 + 1

ZZ

S

(x2 + y2 � z) dS

=

ZZ

R

(2x2 + 2y2 � 4)knk dA

=

ZZ

R

(2x2 + 2y2 � 4)
p
4x2 + 4y2 + 1 dA

=

Z p
3

p
2

Z
2⇡

0

(2r2 � 4)r
p
4r2 + 1 d✓ dr

= 4⇡

Z p
3

p
2

(r2 � 2)r
p
4r2 + 1 dr

= 4⇡


2r2 � 7

40

�
4r2 + 1

�
3/2
�p

3

p
2

=
⇡(81� 13

p
13)

10
⇡ 10.7216

38. Use spherical coordinates.

x = 3 sin� cos ✓
y = 3 sin� sin ✓
z = 3 cos�
dS = 9 sin� d� d✓

0  ✓  2⇡,
⇡

2
 �  ⇡

ZZ

S

z dS

=

Z
2⇡

0

Z ⇡

⇡/2

(3 cos�)9 sin� d� d✓

=

Z
2⇡

0


�27

2
cos2 �

�⇡

⇡/2

d✓

=

Z
2⇡

0

�27

2
d✓ = 27⇡

39. z = f(x, y) =
p
x2 + y2 = r

n = hfx, fy,�1i

=

*
xp

x2 + y2
,

yp
x2 + y2

,�1
+

knk =
p
2

Note that due to symmetry the integral over
the lower half is equal to that of the upper
half. So, we integrate over the upper half of
the cone and multiply by 2.
ZZ

S

z2dS = 2

ZZ

R

z2knk dA

= 2

ZZ

R

r2
p
2 dA

= 2
p
2

Z
4

0

Z
2⇡

0

r3 d✓ dr

= 4⇡
p
2

Z
4

0

r3 dr

= 256⇡
p
2

40. Parametric equation of the sphere is

x = 2 sin� cos ✓; y = 2 sin� sin ✓; z = 2 cos�;
0  ✓  2⇡; 0  �  ⇡;
To find point of intersection solving

z =
p
4� x2 � y2 and z =

p
x2 + y2

We get

z = ±
p
2

z = 2 cos�

� = cos�1

✓
1p
2

◆
=

⇡

4

Now, we have 0  ✓  2⇡; 0  �  ⇡

4
;

The portion of the hemisphere is above the
cone

r = hx, y, zi
r (✓,�) = h2 sin� cos ✓, 2 sin� sin ✓, 2 cos�i
r✓ = h�2 sin� sin ✓, 2 sin� cos ✓, 0i
r� = h2 cos� cos ✓, 2 cos� sin ✓,�2 sin�i
r✓ ⇥ r� =

⌦
�4sin2� cos ✓,�4sin2� sin ✓,

�4 sin� cos�i
kr✓ ⇥ r�k = 4 sin�ZZ

S

e
p

x2
+y2

+z2
dS

=

Z
2⇡

0

Z ⇡/4

0

e24 sin� d� d✓
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= 8⇡e2
✓
1� 1p

2

◆

41. z = f(x, y) =
p
x2 + y2 � 1

n = hfx, fy,�1i

=

*
xp

x2 + y2 � 1
,

yp
x2 + y2 � 1

,�1
+

knk =

s
2x2 + 2y2 � 1

x2 + y2 � 1
=

r
2r2 � 1

r2 � 1
ZZ

S

x dS =

ZZ

R

xknk dA

=

ZZ

R

x

r
2r2 � 1

r2 � 1
dA

=

Z
1

0

Z
2⇡

0

r2 cos ✓

r
2r2 � 1

r2 � 1
d✓ dr

=

Z
1

0

(0)r2
r

2r2 � 1

r2 � 1
dr = 0

42. Use spherical coordinates.

x = 2 sin� cos ✓
y = 2 sin� sin ✓
z = 2 cos�
dS = 4 sin� d� d✓
ZZ

S

p
x2 + y2 + z2 dS

=

Z ⇡/2

�⇡/2

Z ⇡

0

(2)4 sin� d� d✓

=

Z ⇡/2

�⇡/2

16 d✓ = 16⇡

43. n =
h2x, 2y, 1ip
4x2 + 4y2 + 1

dS =
p

4x2 + 4y2 + 1 dA
F · n dS
=
�
2x2 + 2y2 + z

�
dA

=
�
x2 + y2 + 4

�
dA

ZZ

S

F · n dS

=

ZZ

R

�
x2 + y2 + 4

�
dA

=

Z
2

0

Z
2⇡

0

�
r2 + 4

�
r d✓ dr

= 2⇡

Z
2

0

�
r2 + 4

�
r dr = 24⇡

44. n =
h2x, 2y,�1ip
4x2 + 4y2 + 1

dS =
p

4x2 + y2 + 1 dA

F · n dS =

 
�1p

4x2 + 4y2 + 1

!

·
p
4x2 + y2 + 1 dA

= �1 dAZZ

S

F · n dS =

ZZ

R

�1 dA

= �(Area of circle of radius 2) = �4⇡

45. n =
1p
2

*
xp

x2 + y2
,

yp
x2 + y2

,�1
+

dS =
p
2 dA

F · n dS =

✓
� zp

2

◆p
2 dA = �z dA

ZZ

S

F · n dS

=

ZZ

R

�z dA

=

Z
3

0

Z
2⇡

0

�r2 d✓ dr

= �2⇡
Z

3

0

r2 dr = �18⇡

46. n =

*
xp

2(x2 + y2)
,

yp
2(x2 + y2)

,
1p
2

+

dS =
p
2 dA

F · n dS

=

 
yp

2(x2 + y2)
+

yp
2

!
p
2 dA

=

 
yp

x2 + y2
+ y

!
dA

ZZ

S

F · n dS

=

ZZ

R

 
1p

x2 + y2
+ 1

!
y dA

=

Z
2

0

Z
2⇡

0

✓
1

r
+ 1

◆
r2 sin ✓ d✓ dr

=

Z
2

0

✓
1

r
+ 1

◆
r2(0) dr = 0

47. Back of the box (x = 0):

n = h�1, 0, 0i
F · n = �xy = 0

Left of the box (y = 0):

n = h0,�1, 0i
F · n = �y2 = 0

Bottom of the box (z = 0):

n = h0, 0,�1i
F · n = �z = 0

Front of the box, F (x = 1):
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n = h1, 0, 0i
F · n = y

ZZ

F

F · n dS =

Z
1

0

Z
1

0

y dy dz =
1

2

Right of the box, R (y = 1):

n = h0, 1, 0i
F · n = y2 = 1

ZZ

R

F · n dS =

Z

R

1 dA = Area(R) = 1

Top of the box, T (z = 1):

n = h0, 0, 1i
F · n = z = 1

ZZ

T

F · n dS =

Z

T

1 dA = Area(T ) = 1

ThereforeZZ

S

F · n dS =
1

2
+ 1 + 1 =

5

2

48. Back of the box, B (x = 0):

n = h�1, 0, 0i
F · n = �y

ZZ

B

F · n dS =

Z
1

0

Z
3

0

�y dy dz = �9

2

Left of the box, L (y = 0):

n = h0,�1, 0i
F · n = �z

ZZ

L

F · n dS =

Z
1

0

Z
2

0

�z dx dz = �1

Bottom of the box (z = 0):

n = h0, 0,�1i
F · n = 0

Front of the box, F (x = 2): n = h1, 0, 0i
F · n = y

ZZ

B

F · n dS =

Z
1

0

Z
3

0

y dy dz =
9

2

Right of the box, R (y = 3):

n = h0, 1, 0i
F · n = z

ZZ

R

F · n dS =

Z
1

0

Z
2

0

z dx dz = 1

Top of the box (z = 1):

n = h0, 0, 1i
F · n = 0

ThereforeZZ

S

F · n dS

= �9

2
� 1 + 0 +

9

2
+ 1 + 0 = 0

49. For the bottom, B (z = 1):

n = h0, 0,�1i
F · n = �z = �1
ZZ

B

F · n dS =

Z

B

�z dA

= �Area(B) = �3⇡
For the top, T (z = 4� x2 � y2)

n =
h2x, 2y, 1ip
4x2 + 4y2 + 1

dS =
p
4x2 + 4y2 + 1 dA

F · n dS
= (2x+ z) dA
=
�
2x+ 4� x2 � y2

�
dA

ZZ

T

F · n dS

=

ZZ

R

�
2x+ 4� x2 � y2

�
dA

=

Z p
3

0

Z
2⇡

0

�
2r cos ✓ + 4� r2

�
r d✓ dr

= 2⇡

Z p
3

0

�
4� r2

�
r dr =

15⇡

2

ThereforeZZ

S

F · n dS = �3⇡ +
15⇡

2
=

9⇡

2
= 0

50. We assume that n is taken to be outward point-
ing.

Top (z = 0):

n = h0, 0, 1i
dS = dA
F · n dS = z dA = 0 dA

Bottom (z = �
p

4� x2 � y2).

n =
hx, y, zip

x2 + y2 + z2
=
hx, y, zi

2

dS =
2p

4� x2 � y2
dA

F · n dS

=

✓
x2 + y2 + z2

2

◆
2p

4� x2 � y2
dA

=
4p

4� x2 � y2
dA
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ZZ

S

F · n dS =

ZZ

R

4p
4� x2 � y2

dA

=

Z
2⇡

0

Z
2

0

4r

4� r2
dr d✓

=

Z
2⇡

0

8 d✓ = 16⇡

ThereforeZZ

S

F · n dS = 16⇡

51. r = h(4 + 2 cos v) cosu,
(4 + 2 cos v) sinu, 2 sin vi

ru = h� (4 + 2 cos v) sinu, (4 + 2 cos v) cosu, 0i
rv = h�2 sin v cosu,�2 sin v sinu, 2 cos vi
n = ru ⇥ rv
= h2 (4 + 2 cos v) cos v cosu,

2 (4 + 2 cos v) cos v sinu,
2 (4 + 2 cos v) sin vi

knk = 2 (4 + 2 cos v)
dS = 2 (4 + 2 cos v) dA
F = h(4 + 2 cos v) cosu,

(4 + 2 cos v) sinu, 2 sin vi
F · n dS

=

✓
8 (2 + cos v) (1 + 2 cos v)

2 (4 + 2 cos v)

◆

· 2 (4 + 2 cos v) dAZZ

S

F · n dS

=

Z
2⇡

0

Z
2⇡

0

8 (2 + cos v) (1 + 2 cos v) dvdu

= 96⇡2

52. n =
h2x, 2y,�1ip
4x2 + 4y2 + 1

dS =
p

4x2 + 4y2 + 1 dA
F · n dS

=

 
4xyp

4x2 + 4y2 + 1

!
p
4x2 + 4y2 + 1 dA

= 4xy dAZZ

S

F · n dS =

Z
1

0

Z
1

x

4xy dy dx =
1

2

53. This is part of a sphere (call it U) sitting on
top of a cone (call it C).

For the sphere, U :

n =
1p
8

D
x, y,

p
8� x2 � y2

E

=
1p
8

D
x, y,

p
8� r2

E

dS =

r
8

8� x2 � y2
dA =

p
8p

8� r2
dA

F · n dS =

✓
xyp
8� r2

+ 2

◆
dA

ZZ

U

F · n dS

=

ZZ

R

✓
xyp
8� r2

+ 2

◆
dA

=

Z
2

0

Z
2⇡

0

✓
r2 cos ✓ sin ✓p

8� r2
+ 2

◆
r d✓ dr

=

Z
2

0


r3 sin2 ✓p
8� r2

+ 2r✓

�✓=2⇡

✓=0

dr

=

Z
2

0

4⇡r dr = 8⇡

For the cone, C:

n =
1p
2

*
xp

x2 + y2
,

yp
x2 + y2

,�1
+

=
1p
2

Dx
r
,
y

r
,�1

E

dS =
p
2 dA

F · n dS =
⇣xy

r
+ 2
⌘

dA

ZZ

C

F · n dS

=

ZZ

R

⇣xy
r

+ 2
⌘

dA

=

Z
2

0

Z
2⇡

0

✓
r2 cos ✓ sin ✓

r
+ 2

◆
r d✓ dr

=

Z
2

0

Z
2⇡

0

�
r2 cos ✓ sin ✓ + 2r

�
d✓ dr

=

Z
2

0

4⇡r dr = 8⇡

Therefore,
ZZ

S

F · n dS = �8⇡ + 8⇡ = 0

54. Note, S = S
1

[ S
2

[ S
3

.

Upper surface, S
1

:

z = 8� 2x� y, x2 + y2  1

n =
h2, 1, 1ip

6
dS =

p
6 dA

F · n dS =

✓
6 + z + yp

6

◆p
6 dA

= (6 + z + y) dA
= (14� 2x) dA
ZZ

S1

F · n dS =

ZZ

R

(14� 2x) dA

=

Z
2⇡

0

Z
1

0

(14� 2r cos ✓)r dr d✓

=

Z
2⇡

0

✓
2 cos ✓

3
+ 7

◆
d✓ = 14⇡

Lower surface, S
2

:
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z =
p
x2 + y2, x2 + y2  1

n =

*
xp

2(x2 + y2)
,

yp
2(x2 + y2)

,� 1p
2

+

dS =
p
2 dA

F · n dS

=

 
3x+ yzp
2(x2 + y2)

� yp
2

!
p
2 dA

=
3xp

x2 + y2
dA

ZZ

S2

F · n dS =

ZZ

R

3xp
x2 + y2

dA

=

Z
1

0

Z
2⇡

0

3r cos ✓

r
d✓ dr

=

Z
1

0

Z
2⇡

0

3 cos ✓ d✓ dr

=

Z
1

0

(0) dr = 0

Cylindrical surface, S
3

:

x = cos ✓
y = sin ✓
z = z

n =
hx, y, 0ip
x2 + y2

= hcos ✓, sin ✓i

dS = dz d✓
F · n dS = (3 cos ✓ + z sin ✓) dA
ZZ

S3

F · n dS

=

Z
2⇡

0

Z
8�2 cos ✓�sin ✓

1

(3 cos ✓ + z sin ✓) dr ✓

=
1

2

Z
2⇡

0

(�28 cos ✓ sin ✓ + 3 sin ✓ cos2 ✓

+ 64 sin ✓ + 46 sin ✓ + 46 cos ✓
� 16� 4 cos3 ✓ + 4 cos2 ✓) d✓

= �14⇡

(Most of the terms in this integral can be seen
to be equal to 0 by symmetry.)

Therefore,ZZ

S

F · n dS = 14⇡ + 1� 14⇡ = 0

55. This is a segment of a half of a vertical circular
cylinder.

x = f(y, z) =
p
1� y2

knk =
q

(fy)2 + (fz)2 + 1

=

vuut
 

�yp
1� y2

!
2

+ (0)2 + 1

=
1p

1� y2

ZZ

S

z dS =

ZZ

R

z

 
1p

1� y2

!
dA

=

Z
1

�1

Z
2

1

zp
1� y2

dz dy

=
3

2

Z
1

�1

1p
1� y2

dy

=
3

2

⇥
sin�1 y

⇤
1

�1

=
3

2
⇡

56. x = f(y, z) =
p
1� y2

knk =
q
(fy)2 + (fz)2 + 1

=

vuut
 

�yp
1� y2

!
2

+ (0)2 + 1

=
1p

1� y2

ZZ

S

yz dS =

ZZ

R

(yz)

 
1p

1� y2

!
dA

=

Z
1

�1

Z
4�y

1

yzp
1� y2

dz dy

=

Z
1

�1

y3 � 8y2 + 15y

2
p

1� y2
dy

=

Z
1

�1

8y2

2
p

1� y2
dy (by symmetry)

= �2⇡

57. x = f(y, z) = 9� y2 � z2

knk =
q
(fy)2 + (fz)2 + 1

=
p
(�2y)2 + (�2z)2 + 1

=
p
4y2 + 4z2 + 1

ZZ

S

(y2 + z2) dS

=

ZZ

R

(y2 + z2)
p

4y2 + 4z2 + 1 dA

=

Z
2⇡

0

Z
3

0

r3
p
4r2 + 1 dr d✓

= 2⇡

Z
3

0

r3
p
4r2 + 1 dr

= 2⇡

Z
37

1

✓
u� 1

4

◆ p
u

8
du (u = 1 + 4r2)

=
⇡

60

⇣
1961
p
37 + 1

⌘

58. x = f(y, z) =
p
4� y2 � z2

knk =
q
(fy)2 + (fz)2 + 1

=

2

4
 

�yp
4� y2 � z2

!
2
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+

 
�zp

4� y2 � z2

!
2

+ 1

3

5
1/2

=
2p

4� y2 � z2

ZZ

S

(y2 + z2) dS =

ZZ

R

2(y2 + z2)p
4� y2 � z2

dA

=

Z
2

0

Z
2⇡

0

2r3p
4� r2

d✓ dr

= 4⇡

Z
2

0

r3p
4� r2

dr =
64⇡

3

59. y = f(x, z) = x2 + z2

knk =
p

(fx)2 + (fz)2 + 1

=
q

(2x)2 + (2z)2 + 1

=
p

4x2 + 4z2 + 1
ZZ

S

x2 dS =

ZZ

R

x2

p
4x2 + 4z2 + 1 dA

=

Z
1

0

Z
2⇡

0

r3 cos2 ✓
p
4r2 + 1 d✓ dr

= ⇡

Z
1

0

r3
p

4r2 + 1 dr

= ⇡

Z
5

1

✓
u� 1

4

◆ p
u

8
du (u = 1 + 4r2)

=
⇡

120

⇣
25
p
5 + 1

⌘

60. y = f(x, z) =
p
4� x2 � z2

knk =
p

(fx)2 + (fz)2 + 1

=

"✓
�xp

4� x2 � z2

◆
2

+

✓
�zp

4� x2 � z2

◆
2

+ 1

#
1/2

=
2p

4� x2 � z2

ZZ

S

(x2 + z2) dS =

ZZ

R

2(x2 + z2)p
4� x2 � z2

dA

=

Z
2

0

Z
2⇡

0

2r3p
4� r2

d✓ dr

= 4⇡

Z
2

0

r3p
4� r2

dr =
64⇡

3

61. y = f (x, z) = 1� x2

knk =
q

(fx)
2 + (fz)

2 + 1 =
p
4x2 + 1ZZ

S

4xdS =

ZZ

R

4x
p
4x2 + 1dA

=

Z
1

�1

Z
2

0

4x
p
4x2 + 1dzdx = 0

62. y = f(x, z) =
p
4� x2

knk =
p
(fx)2 + (fz)2 + 1

=

s✓
�xp
4� x2

◆
2

+ (0)2 + 1

=
2p

4� x2

ZZ

S

(x2 + z2) dS =

ZZ

R

2(x2 + z2)p
4� x2

dA

=

Z
2

�2

Z
4

1

2(x2 + z2)p
4� x2

dz dx

=

Z
2

�2

6x2 + 42p
4� x2

dx

= 54⇡

63. (a) The flux integral over any portion of the
cone is zero because F is always perpen-
dicular to the normal vector to the cone.

As in Exercise 45,

m =
Dx
z
,
y

z
,�1

E

F ·m = hx, y, zi ·
Dx
z
,
y

z
,�1

E

=
x2 + y2

z
� z = 0

(b) Both F and n point radially outward from
the origin. In fact, F = n on the surface
(and both are unit vectors). ThereforeRR

S
F · n dS is equal to the surface area

of the surface.

64. Torus is given by,

x = (c+ a cos v) cosu;
y = (c+ a cos v) sinu; z = a sin v;

When

v = 0, x = (c+ a) cosu; y = (c+ a) sinu

Therefore the radius of the outer circle is c+a.

When v = ⇡, x = (c� a) cosu;
y = (c� a) sinu

Therefore the radius of the inner circle is c� a

When v =
⇡

2
, x = c cosu ; y = c sinu

Therefore the radius of the mid circle is c

The circumference of the mid circle is the
length (height of the cylinder) of the rectan-
gle. Therefore 2⇡cis the length of the rectan-
gle. l = 2⇡c

Radius of the cylinder is

r =
(c+ a)� (c� a)

2
= a.

The circumference of the circle with radius a
is 2⇡a. The circumference of the edge of the
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cylinder is the breadth (width) of the rectan-
gle. Therefore, b = 2⇡a.

Area of the rectangle,

A = l · b = 2⇡c · 2⇡a = 4⇡2ac

65. (a) In cylindrical coordinates, the equation is
z = cr. Converting to spherical coordi-
nates gives
c⇢ sin� = cr = z = ⇢ cos�

or tan� =
1

c
.

Look at a right triangle with � as one of
its acute angles and with the length of the

opposite side 1. tan� =
1

c
means that the

length of the adjacent side is c and length
of the hypotenuse is

p
1 + c2. Therefore

sin� =
1p

1 + c2
and sin� =

cp
1 + c2

This immediately give the equations in
the problem where u = ⇢ and v = ✓ in
spherical coordinates.

(b) x =
u cos vp
1 + c2

y =
u sin vp
1 + c2

z =
cup
1 + c2

0  v  2⇡ 0  u 
p
c2 + 1

c

rv =

⌧
� u sin vp

1 + c2
,
u cos vp
1 + c2

, 0

�

ru =

⌧
cos vp
1 + c2

,
sin vp
1 + c2

,
cp

1 + c2

�

rv ⇥ ru =

⌧
cu cos v

1 + c2
,
cu sin v

1 + c2
,� u

1 + c2

�

krv ⇥ ruk =
up

c2 + 1
We are now ready to compute the surface
area:ZZ

S

dS

=

Z
2⇡

0

Z p
c2+1/c

0

up
c2 + 1

du dv

= 2⇡

Z p
c2+1/c

0

up
c2 + 1

du

=
2⇡p
c2 + 1

Z p
c2+1/c

0

u du

=
⇡
p
c2 + 1

c2

66. (a) This is similar to Exercise 63(a). The flux
integral over any portion of the cone is
zero because F is always perpendicular to
the normal vector to the cone.

m =

⌧
c2x

z
,
c2y

z
,�1

�

F ·m = hx, y, zi ·
⌧
c2x

z
,
c2y

z
,�1

�

=
c2(x2 + y2)

z
� z = 0

(b) The vector normal to the surface is

m =

*
cxp

x2 + y2
,

cyp
x2 + y2

,�1
+

F ·m

= hx, y, zi ·
*

cxp
x2 + y2

,
cyp

x2 + y2
,�1

+

=
cx2

p
x2 + y2

+
cy2p
x2 + y2

+�z

=
c(x2 + y2)p

x2 + y2
� c
p
x2 + y2 = 0

Therefore the flux is 0.

(This can be seen geometrically: the vec-
tor field is always parallel to the surface.)

67. (a) x =
u cos vp
1 + c2

y =
u sin vp
1 + c2

z =
cup
1 + c2

0  v  2⇡ 0  u 
p
c2 + 1

c

rv =

⌧
� u sin vp

1 + c2
,
u cos vp
1 + c2

, 0

�

ru =

⌧
cos vp
1 + c2

,
sin vp
1 + c2

,
cp

1 + c2

�

rv ⇥ ru =

⌧
cu cos v

1 + c2
,
cu sin v

1 + c2
,� u

1 + c2

�

krv ⇥ ruk =
up

c2 + 1
F · (rv ⇥ ru)

= hx, y, 0i ·
⌧
cu cos v

1 + c2
,
cu sin v

1 + c2
,� u

1 + c2

�

=
cu2

(c2 + 1)3/2

We are now ready to compute the flux:ZZ

S

F · n dS

=

Z
2⇡

0

Z p
c2+1/c

0

cu2

(c2 + 1)3/2
du dv

=
2c⇡

(c2 + 1)3/2

Z p
c2+1/c

0

u2 du =
2⇡

3c2

(b) The flux in Part(a) isZZ

S

F · n dS =
2⇡

3c2
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As c ! 0, the flux increases without
bound. This make sense, because as

c ! 0, the radius cone approaches infin-
ity and the cone becomes a much larger
surface.

68. (a) n =

*
xp

c2 � x2 � y2
,

yp
c2 � x2 � y2

, 1

+

knk = cp
c2 � x2 � y2

dS = knk dA =
cp

c2 � x2 � y2
dA

F · ndS

=

 
x2 + y2 + z2p
c2 � x2 � y2

!
dA

=
c2p

c2 � x2 � y2
dA

ZZ

S

F · ndS =

ZZ

S

c2p
c2 � x2 � y2

dxdy

=

Z
2⇡

0

Z c

0

c2p
c2 � r2

rdrd✓ = 2⇡c3

(b) Both F and n point radially outward from
the origin. In fact, F = c · n on the sur-
face (and n is a unit vector). ThereforeZZ

S

F · ndS is equal to the c times the

surface area of the surface.

Hence, Limit of flux as c approaches 0 is
0

69. Parametric equations of the sphere ⇢ = c are

x = c sin� cos ✓, y = c sin� sin ✓, z = c cos�;
0  ✓  2⇡; 0  �  ⇡;

r (✓,�) = hc sin� cos ✓, c sin� sin ✓, c cos�i
r✓ = h�c sin� sin ✓, c sin� cos ✓, 0i
r� = hc cos� cos ✓, c cos� sin ✓,�2 sin�i
n = r✓ ⇥ r�

=

������

i j k
�c sin� sin ✓ c sin� cos ✓ 0
c cos� cos ✓ c cos� sin ✓ �c sin�

������
=
⌦
�c2sin2� cos ✓,�c2sin2� sin ✓,

�c2 sin� cos�
↵

knk = kr✓ ⇥ r�k = c2 sin�
dS = knk dA
dS = c2 sin�dA

70. Parametric equations of the cone � = c are

x = ⇢ sin c cos ✓; y = ⇢ sin c sin ✓; z = ⇢ cos c;
0  ✓  2⇡; 0  ⇢  1;

r (⇢, ✓) = h⇢ sin c cos ✓, ⇢ sin c sin ✓, ⇢ cos ci
r⇢ = hsin c cos ✓, sin c sin ✓, cos ci
r✓ = h�⇢ sin c sin ✓, ⇢ sin c cos ✓, 0i

n = r⇢ ⇥ r✓

=

������

i j k
sin c cos ✓ sin c sin ✓ cos c
�⇢ sin c sin ✓ ⇢ sin c cos ✓ 0

������
= h�⇢ sin c · cos c · cos ✓,

�⇢ sin c · cos c · sin ✓, ⇢sin2c
↵

knk = kr⇢ ⇥ r✓k = ⇢ sin c
dS = knk dA
dS = ⇢ sin cdA

71. z = 6� 3x� 2y
n = h�3,�2,�1i
dS =

p
14 dA

m =

ZZ

S

⇢ dS =

ZZ

R

(x2 + 1)
p
14 dA

=
p
14

Z
2⇡

0

Z
2

0

(r2 cos2 ✓ + 1)r dr d✓

=
p
14

Z
2⇡

0

�
4 cos2 ✓ + 2

�
d✓ = 8⇡

p
14

x =
1

m

ZZ

S

x⇢ dS

=
1

8⇡
p
14

ZZ

R

x(x2 + 1)
p
14 dA

=
1

8⇡

Z
2

0

Z
2⇡

0

(r2 cos2 ✓ + 1)r2 cos ✓ d✓ dr

=
1

8⇡

Z
2

0

(0) dr = 0

y =
1

m

ZZ

S

y⇢ dS

=
1

8⇡
p
14

ZZ

R

y(x2 + 1)
p
14 dA

=
1

8⇡

Z
2

0

Z
2⇡

0

(r2 cos2 ✓ + 1)r2 sin d✓ dr

=
1

8⇡

Z
2

0

(0) dr = 0

z =
1

m

ZZ

S

z⇢ dS

=
1

8⇡
p
14

ZZ

R

z(x2 + 1)
p
14 dA

=
1

8⇡

ZZ

R

(6� 3x� 2y)(x2 + 1) dA

=
1

8⇡

Z
2

0

Z
2⇡

0

(6� 3r cos ✓ � 2r sin ✓)

(r2 cos2 ✓ + 1)r d✓ dr

=
1

8

Z
2

0

�
6r3 + 12r

�
dr = 6

72. z = 4� x� 2y
n = h�1,�2,�1i
dS =

p
6 dA
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m =

ZZ

S

⇢ dS =

ZZ

R

y
p
6 dA

=
p
6

Z
1

�1

Z
1

x2

y dy dx

=
p
6

Z
1

�1

1� x4

2
dx =

4
p
6

5

x =
1

m

ZZ

S

x⇢ dS =
5

4
p
6

ZZ

R

xy
p
6 dA

=
5

4

Z
1

�1

Z
1

x2

xy dy dx

=
5

8

Z
1

�1

x(1� x4) dx = 0

y =
1

m

ZZ

S

y⇢ dS =
5

4
p
6

ZZ

R

y2
p
6 dA

=
5

4

Z
1

�1

Z
1

x2

y2 dy dx

=
5

12

Z
1

�1

(1� x6) dx =
5

7

z =
1

m

ZZ

S

z⇢ dS

=
5

4
p
6

ZZ

R

(4� x� 2y)y
p
6 dA

=
5

4

Z
1

�1

Z
1

x2

(4y � xy � 2y2) dy dx

=
5

24

Z
1

�1

(8 + 4x6 � 3x+ 3x5 � 12x4) dx

=
18

7

73. This is a good problem for spherical coordi-
nates: Use spherical coordinates.

x = sin� cos ✓
y = sin� sin ✓
z = cos�
dS = sin� d� d✓

m =

ZZ

S

⇢ dS =

ZZ

S

(1 + x) dS

=

Z
2⇡

0

Z ⇡/2

0

sin�(1 + sin� cos ✓) d� d✓

=

Z
2⇡

0

✓
⇡
1

4
cos ✓ + 1

◆
d✓ = 0 + 2⇡ = 2⇡

x =
1

m

ZZ

S

x⇢ dS =
1

2⇡

ZZ

S

(1 + x)x dS

=
1

2⇡

Z ⇡/2

0

Z
2⇡

0

sin�(1 + sin� cos ✓)

(sin� cos ✓) d✓ d�

=
1

2

Z ⇡/2

0

sin3 � d� =
1

3

y =
1

m

ZZ

S

y⇢ dS =
1

2⇡

ZZ

S

(1 + x)y dS

=
1

2⇡

Z ⇡/2

0

Z
2⇡

0

sin�(1 + sin� cos ✓)

(sin� sin ✓) d✓ d�

=
1

2⇡

Z ⇡/2

0

(0) d� = 0

z =
1

m

ZZ

S

z⇢ dS =
1

2⇡

ZZ

S

(1 + x)z dS

=
1

2⇡

Z ⇡/2

0

Z
2⇡

0

sin�(1 + sin� cos ✓)

(cos�) d✓ d�

=

Z ⇡/2

0

sin� cos� d� =
1

2

74. z = x2 + y2

n = h2x, 2y,�1i
dS =

p
4x2 + 4y2 + 1 dA

m =

ZZ

S

⇢ dS

=

ZZ

R

z
p

4x2 + 4y2 + 1 dA

=

ZZ

R

(x2 + y2)
p
4x2 + 4y2 + 1 dA

=

Z
2

0

Z
2⇡

0

r3
p

4r2 + 1 d✓ dr

= 2⇡

Z
2

0

r3
p

4r2 + 1 dr

=
⇡

60

⇣
391
p
17 + 1

⌘

x =
1

m

ZZ

S

x⇢ dS

=
1

m

Z
2

0

Z
2⇡

0

r4
p
4r2 + 1 cos ✓ d✓ dr

=
1

m

Z
2

0

(0) d✓ dr = 0

y =
1

m

ZZ

S

y⇢ dS

=
1

m

Z
2

0

Z
2⇡

0

r4
p
4r2 + 1 sin ✓ d✓ dr

=
1

m

Z
2

0

(0) d✓ dr = 0

z =
1

m

ZZ

S

z⇢ dS

=
1

m

Z
2

0

Z
2⇡

0

r5
p
4r2 + 1 d✓ dr

=
2⇡

m

Z
2

0

r5
p
4r2 + 1 dr

=
2⇡

m

Z
2

0

r5
p
4r2 + 1 dr

=
2⇡

m

 
⇡2(7769

p
17� 1)

840

!
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=
7769

p
17� 1

7(391
p
17 + 1)

⇡ 2.8367

14.7 The Divergence Theorem

1. Back of cube (x = 0):

F · n =
⌦
2xz, y2,�xz

↵
· h�1, 0, 0i

= �2xz = 0

Left of cube (y = 0):

F · n =
⌦
2xz, y2,�xz

↵
· h0,�1, 0i

= �y2 = 0

Bottom of cube (z = 0):

F · n =
⌦
2xz, y2,�xz

↵
· h0, 0,�1i

= xz = 0

Front of cube, F , (x = 1):

F · n =
⌦
2xz, y2,�xz

↵
· h1, 0, 0i

= 2xz = 2zZZ

F

F · n dA =

ZZ

F

2zdA

=

Z
1

0

Z
1

0

2z dy dz = 1

Right of cube, R, (y = 1):

F · n =
⌦
2xz, y2,�xz

↵
· h0, 1, 0i

= y2 = 1
ZZ

R

F · n dA =

ZZ

R

1dA

=

Z
1

0

Z
1

0

1 dz dx = 1

Top of cube, T , (z = 1):

F · n =
⌦
2xz, y2,�xz

↵
· h0, 0, 1i

= �xz = �xZZ

T

F · n dA =

ZZ

T

�xdA

=

Z
1

0

Z
1

0

�x dx dy = �1

2

Summing the above gives
ZZ

@Q

F · n dA = 1 + 1� 1

2
=

3

2

On the other hand, divF = 2z + 2y � x.
ZZZ

Q

div(F) dV

=

ZZZ

Q

(2x+ 2y � x) dV

=

Z
1

0

Z
1

0

Z
1

0

(2x+ 2y � x) dz dy dz

=
3

2

2. F · n = hx, y, zi · hx, y, zi
= x2 + y2 + z2 = 1ZZ

@Q

F · n dS =

ZZ

@Q

1 dS

= (surface area of sphere of radius 1)
= 4⇡

r · F = 1 + 1 + 1 = 3ZZZ

Q

r · F dV =

ZZZ

Q

3 dV

= 3 (volume of sphere of radius 1)

= 3

✓
4

3
⇡

◆
= 4⇡

3. The bottom of the surface (z = 0):

F · n =
⌦
xz, xy, 2z2

↵
· h0, 0,�1i

= �2z2 = 0

Therefore we only need to consider the top sur-
face.

Top surface (z = 1�x2�y2 = 1�r2). Remem-
ber our unit normal must be unit and outward
pointing.

m = h�2x,�2y,�1i
n = � 1

kmkm

F · n dS = �F ·m dA
= (2x2z + 2y2z + 2z2) dA
= 2z(r2 + z) dA = 2(1� r2) dA
ZZ

@Q

F · n dS =

ZZ

@Q

2(1� r2) dS

=

Z
2⇡

0

Z
1

0

2(1� r2) dr d✓

= 2⇡

Z
1

0

2(1� r2) dr = ⇡

On the other div(F) = z + z + 4z = 6z.
ZZZ

Q

r · F dV =

ZZZ

Q

6z dV

= 6

Z
2⇡

0

Z
1

0

Z
1�r2

0

zr dz dr d✓

= 3

Z
2⇡

0

Z
1

0

r(1� r2)2 dr d✓

= 6⇡

Z
1

0

r(1� r2)2 dr = ⇡

4. Back of tetrahedron (S
1

: x = 0):

F · n = hx2, 2y,�x2i · h�1, 0, 0i
= �x2 = 0

Left of tetrahedron (S
2

: y = 0):

F · n = hx2, 2y,�x2i · h0,�1, 0i
= �2y = 0

Bottom of tetrahedron (S
3

: z = 0):
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F · n = hx2, 2y,�x2i · h0, 0,�1i = x2

dS = dAZZ

S3

F · n dS =

ZZ

S3

�x2 dS

=

Z
4

0

Z
2�x/2

0

�x2 dy dx

=

Z
4

0

x2

⇣
2� x

2

⌘
dx =

32

3

Top of tetrahedron (S
4

: z = 4� x� 2y):

F · n = hx2, 2y,�x2i · h1, 2, 1ip
6

=
4yp
6

dS =
p
6 dA

ZZ

S4

F · n dS =

ZZ

S4

4yp
6
dS

=

Z
4

0

Z
2�x/2

0

4y dy dx

=

Z
4

0

✓
x2

2
� 4x+ 8

◆
dx =

32

3

Adding these four integrals together gives
ZZ

@Q

F · n dS = 0 + 0 +
32

3
+

32

3
=

64

3

r · F = 2x+ 2
ZZZ

Q

r · F dV =

ZZZ

Q

2x+ 2 dV

=

Z
4

0

Z
2�x/2

0

Z
4�x�2y

0

(2x+ 2) dz dy dz

=

Z
4

0

Z
2�x/2

0

(6x+ 8� 4y � 2x2 � 4xy) dy dz

=
1

2

Z
4

0

Z
2�x/2

0

(�7x2 + 8x+ 16 + x3) dy dz

=
64

3

5. r · F = 2� 2 + 0 = 0
ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV = 0

6. r · F = 2x+ 0 + 0 = 2x
ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

Z
1

0

Z
2�2x

0

Z
4x+2y�4

0

2x dz dy dz

=

Z
1

0

Z
2�2x

0

2x(4x+ 2y � 4) dy dz

=

Z
1

0

(�8x3 + 16x2 � 8x) dz

= �2

3

7. r · F = �2 + 0 + 4 = 2

ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

2 dV

=

Z
2

0

Z
2

1

Z
2

�1

2 dV

= 2(volume of box)
= 2(2)(1)(3) = 12

8. r · F = 0 + 0 + 1 = 1ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

1 dV

= (volume of cone, radius 4, height 4)

=
1

3
⇡(4)2(4) =

64⇡

3

9. r · F = 3x2 + 3y2 + 0
= 3x2 + 3y2 = 3r2ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

3r2 dV

=

Z
2⇡

0

Z
2

0

Z
4

r2
3r3 dz dr d✓

=

Z
2⇡

0

Z
2

0

3r3(4� r2) dr d✓

= 6⇡

Z
2

0

r3(4� r2) dr = 32⇡

10. r · F = 3x2 + 0 + 3y2 = 3(x2 + y2)
ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

3(x2 + y2) dV

=

Z
2⇡

0

Z
1

0

Z
2

1

3r3 dz dr d✓

+

Z
2⇡

0

Z
2

1

Z
2

r

3r3 dz dr d✓

=

Z
2⇡

0

Z
1

0

3r3 dr d✓

+

Z
2⇡

0

Z
2

1

3r3(2� r) dr d✓

=

Z
2⇡

0

3

4
d✓ +

Z
2⇡

0

39

10
d✓

=
3⇡

2
+

39⇡

5
=

93⇡

10

11. r · F = 0 + 2 + 0 = 2ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

Z
2⇡

0

Z
2

0

Z
8�r sin ✓

1

2r dz dr d✓
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=

Z
2⇡

0

Z
2

0

2r(7� r sin ✓) dr d✓

=

Z
2⇡

0

✓
28� 16

3
sin ✓

◆
d✓ = 56⇡

12. r · F = 3x2 + 3y2 + 3z2ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

3(x2 + y2 + z2) dV

=

Z
2⇡

0

Z ⇡

⇡/2

Z
2

0

(3⇢2)⇢2 sin� d⇢ d� d✓

=

Z
2⇡

0

Z ⇡

⇡/2

96

5
sin� d� d✓

=

Z
2⇡

0

96

5
d✓ =

192⇡

5

13. (a) r · F = 0 + 0 + 3z2 = 3z2ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

Z
1

�1

Z
1

�1

Z
1

�1

3z2 dz dy dz

=

Z
1

�1

Z
1

�1

2 dy dz = 8

(b) r ·F = e
p

x2
+y2

(2x)+

�
x3 � x

�
e
p

x2
+y2

p
x2 + y2

+ 4yz + 4x3

ZZ

@Q

F · ndS =

ZZZ

Q

r · FdV

=

Z
1

�1

Z
1

�1

Z
1

�1

⇣
e
p

x2
+y2

(2x)

+

�
x3 � x

�
e
p

x2
+y2

p
x2 + y2

+4yz + 4x3

�
dxdydz

= 8

Z
1

�1

Z
1

�1

zydydz = 0

14. (a) r · F = 0 + x2 + y2 = r2ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

r2 dV

=

Z
2⇡

0

Z p
3

0

Z
1

0

r3 dz dr d✓

+

Z
2⇡

0

Z
2

p
3

Z
4�r2

0

r3 dz dr d✓

=

Z
2⇡

0

Z p
3

0

r3 dr d✓

+

Z
2⇡

0

Z
2

p
3

r3(4� r2) dr d✓

=

Z
2⇡

0

9

4
d✓ +

Z
2⇡

0

5

6
d✓

=
9⇡

2
+

5⇡

3
=

37⇡

6

(b)

ZZ

@Q

F · ndS

=

ZZ

S1

F · ndS +

ZZ

S2

F · ndS

+

ZZ

S3

F · ndS

where
S
1

= {(x, y, 4� x2 � y2)|0  z  1}
S
2

= {(x, y, 1)|x2 + y2 < 3}
S
3

= {(x, y, 0)|x2 + y2 < 4}
Normal vectors of S

1

, S
2

and S
3

are
n
1

= (2x, 2y, 1)
n
2

= (0, 0, 1)
n
3

= (0, 0, �1)

F · n
1

= 2xze
p

x2
+y2

+z2
+ 0

� 2xze
p

x2
+y2

+z2
= 0

F · n
2

= �2xze
p

x2
+y2

+z2

F · n
3

= 2xze
p

x2
+y2

+z2

RR
S1

F · n1dS = 0
RR

S2
F · n2dS =

RR
S2
�2xe

p
x2

+y2
+1dA

=
R
2⇡

0

cos ✓d✓ ·
Rp

3

0

⇣
�2r2e

p
r2+1

⌘
dr

= 0RR
S3

F · n3dS =
RR

S3
2xze

p
x2

+y2
+z2

dA
= 0

Therefore

ZZ

@Q

F · ndS = 0

15. (a) r · F = 1 + 0 + 3 = 4
ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

4 dV

= 4 (Volume Cylinder) = 4⇡

(b) r · F = 2 +

�
z2 + 3z � 2

�
ez + (4z � 2)

2
p
ez + 1ZZ

@Q

F · ndS =

ZZZ

Q

r · FdV

=

Z
2⇡

0

Z
1

0

Z
1

0

[2

+

�
z2 + 3z � 2

�
ez + (4z � 2)

2
p
ez + 1

#
rdzdrd✓

= 2⇡ +

Z
2⇡

0

Z
1

0

Z
1

0
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"�
z2 + 3z � 2

�
ez + (4z � 2)

2
p
ez + 1

#
rdzdrd✓

= 2⇡ + (2⇡)

✓
1

2

◆

Z
1

0

"�
z2 + 3z � 2

�
ez + (4z � 2)

2
p
ez + 1

#
dz

= 2⇡ + (2⇡)

✓
1

2

◆
(0)

= 2⇡

16. (a) r · F = 3x2 + 3y2 + 3z2 = 3⇢2ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

3⇢2 dV

=

Z
2⇡

0

Z ⇡/2

0

Z
1

0

3⇢4 sin� d⇢ d� d✓

=

Z
2⇡

0

Z ⇡/2

0

3

5
sin� d� d✓

=
6⇡

5

Z ⇡/2

0

sin� d� =
6⇡

5

(b)

ZZ

@Q

F · ndS =

ZZ

S1

F · ndS

+

ZZ

S2

F · ndS

where
S
1

= {(x, y,�
p
4� x2 � y2}

S
2

= {(x, y, 0)|x2 + y2 < 4}
Outward Normals on S

1

and S
2

are
n
1

= (2x, 2y,�2z), n
2

= (0, 0, 1)
dS = ||n

1

||dA, dS = ||n
2

||dA
F · n

1

= �2z2, F · n
2

= zZZ

S1

F · ndS

=

ZZ

S1

�1

2
z2dS

=

Z
2⇡

0

Z ⇡

⇡/2

�2.(2 cos�)2 · 22 sin�d�d✓

= 2⇡

Z ⇡

⇡/2

�32 cos2 � sin�d�

= �64⇡

3ZZ

S2

F · ndS = 0

Hence,

ZZ

@Q

F · ndS = �64⇡

3

17. r · F = 2x+ 0 + 0 = 2x
ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

2x dV

=

Z
2⇡

0

Z
1

0

Z p
2�r2

r

2⇢3 sin2 � cos ✓ dz dr d✓

=

✓Z
2⇡

0

cos ✓ d✓

◆

·
 Z

1

0

Z p
2�r2

r

2⇢3 sin2 � dz dr

!

= (0)

 Z
1

0

Z p
2�r2

r

2⇢3 sin2 � dz dr

!

= 0

18. r · F = 3z2 + 3y2 + 3x2

ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

3(x2 + y2 + z2) dV

=

Z
2⇡

0

Z ⇡/4

0

Z p
8

0

(3⇢2)⇢2 sin� d⇢ d� d✓

=

Z
2⇡

0

Z ⇡/4

0

384
p
2

5
sin� d� d✓

=

Z
2⇡

0

384

5
(
p
2� 1) d✓

=
768⇡

5
(
p
2� 1) d✓

19. r · F = 0 + 0 + 2z = 2z
ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

2z dV

=

Z
2⇡

0

Z
1

0

Z r

0

2zr dz dr d✓

=

Z
2⇡

0

Z
1

0

r3 dr d✓

=

Z
2⇡

0

1

4
d✓ =

⇡

2

20. r · F = 0 + 0 + 2 = 2
ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

2 dV

=

Z
2⇡

0

Z
2

0

Z
8�r2

r2
2r dz dr d✓

=

Z
2⇡

0

Z
2

0

2r(8� 2r2) dr d✓

=

Z
2⇡

0

15 d✓ = 32⇡
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21. r · F = z4 + ex
2
+z2

+ 2x2z2 + x4

=
�
x2 + z2

�
2

+ ex
2
+z2

= 1 + eZZ

@Q

F · ndS =

ZZZ

Q

r · FdV

=

ZZZ

Q

(1 + e)dV

= (1 + e)

ZZZ

Q

dV

= (1 + e) ( Volume of the cylinder )
= (1 + e)⇡

22. r · F = x+ yZZ

@Q

F · ndS =

ZZZ

Q

r · FdV

=

ZZZ

Q

(x+ y) dV

=

Z
2⇡

0

Z
2

0

Z
8�r cos ✓

1

(x+ r cos ✓) rdxdrd✓

=

Z
2⇡

0

Z
2

0

{
r
h
(8� r cos ✓)2 � 1

i

2
+ r2 cos ✓ (7� r cos ✓)}drd✓

=

Z
2⇡

0

Z
2

0

✓
63

2
r � r2 cos ✓ � 1

2
r3cos2✓

◆
drd✓

=

Z
2⇡

0

✓
63� 8

3
cos ✓ � 2cos2✓

◆
d✓

= 124⇡

23. r · F = (x� 4) cos
�
x� y2 � z2

�

+ sin
�
x� y2 � z2

�
+ 1 + 1

= (x� 4) cos
�
x� r2

�

+ sin
�
x� r2

�
+ 2ZZ

@Q

F · ndS =

ZZZ

Q

r · FdV

=

ZZZ

Q

⇥
(x� 4) cos

�
x� r2

�

+sin
�
x� r2

�
+ 2
⇤
dV

=

Z
2⇡

0

Z
2

0

Z
4

r2

⇥
(x� 4) cos

�
x� r2

�

+sin
�
x� r2

�
+ 2
⇤
rdxdrd✓

=

Z
2⇡

0

Z
2

0

⇥
�2r3 + 8r

⇤
drd✓

=

Z
2⇡

0

8d✓ = 16⇡

24. r · F = z2 + sin
⇣p

x2 + z2
⌘
+ x2

ZZ

@Q

F · ndS =

ZZZ

Q

r · FdV

=

ZZZ

Q

⇣
z2 + sin

⇣p
x2 + z2

⌘
+ x2

⌘
dV

=

Z
2⇡

0

Z
2

0

Z
4�r2

0

�
r2 + sin r

�
rdydrd✓

=

Z
2⇡

0

Z
2

0

�
r3 + r sin r

� �
4� r2

�
drd✓

=

Z
2⇡

0

Z
2

0

⇥
4r3 � r5 + 4r sin r � r3 sin r

⇤
drd✓

= 2⇡

✓
16

3
� 2 sin(2)� 12 cos(2)

◆

= 8.5085

Z
2⇡

0

d✓ = 17.0171⇡

25. r · F = y2 + 0 + 0 = y2ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

Z
2

0

Z
6�3x

0

Z
(6�3x�z)/2

0

y2 dy dz dx

=
1

24

Z
2

0

Z
6�3x

0

(6� 3x� z)3 dz dx

=
1

96

Z
2

0

(6� 3x)4 dx =
27

5

26.

ZZ

S

F · ndS

=

ZZ

S1

F · ndS +

ZZ

S2

F · ndS

+

ZZ

S3

F · ndS +

ZZ

S4

F · ndS

S
1

: Y Z plane
S
2

: XZ plane
S
3

: XY plane
S
4

: x+ 2y + 3z = 12ZZ

S1

F · ndS =

ZZ

S1

h0, 0, zi · h�1, 0, 0i dS = 0
ZZ

S2

F · ndS =

ZZ

S2

h0, 0, zi · h0,�1, 0i dS = 0
ZZ

S3

F · ndS

=

ZZ

S3

D
�2xyex

2
+y2

, xyex
2
+y2

, 0
E

· h0, 0,�1i dS = 0

ZZ

S4

F · ndS

=

ZZ

S4

D
�2xyex

2
+y2

, xyex
2
+y2

, z
E

·
⌧

1p
14

,
2p
14

,
3p
14

�
dS

=

ZZ

S4

3zp
14

dS
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=

Z
4

0

Z
6� x

2

0

(12� x� 2y)dydx

=
304

3ZZ

S

F · ndS = 0 + 0 + 0 +
304

3
=

304

3

27. r · F = ex + 3y2 + 0 = ex + 3y2ZZ

@Q

F · ndS =

ZZZ

Q

r · FdV

=

Z
2

�2

Z
2

�2

Z
1�x2

�3

�
ex + 3y2

�
dzdxdy

=

Z
2

�2

Z
2

�2

⇥�
ex + 3y2

� �
4� x2

�⇤
dxdy

=

Z
2

�2

dy

Z
2

�2

ex
�
4� x2

�
dx

+

Z
2

�2

3y2dy

Z
2

�2

�
4� x2

�
dx

= 4

✓
6e2 +

2

e2

◆
+ (16) ·

✓
32

3

◆

= 8

✓
3e2 +

1

e2

◆
+

512

3

28. r · F = 0 + 0 + 2z = 2zZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

Z
1

�1

Z
4�x

0

Z
1�x2

0

2z dz dy dx

=

Z
1

�1

Z
4�x

0

(1� x2)2 dy dx

=

Z
1

�1

(1� x2)2(4� x) dx =
64

15

29. (a) r = h(c+ a cos v) cosu,
(c+ a cos v) sinu, a sin vi

ru ⇥ rv = ha cosu cos v (c+ a cos v) ,
a sinu cos v (c+ a cos v) ,
a sin v (c+ a cos v)i

kru ⇥ rvk = a (c+ a cos v)

n =
ru ⇥ rv
kru ⇥ rvk

= hcosu cos v, sinu cos v, sin viZZ

@Q

F · ndS

=

ZZ

@Q

a(c+ a cos v)2cos2u cos vdudv

=

Z
2⇡

0

Z
2⇡

0

2a2ccos2vcos2ududv

+

Z
2⇡

0

Z
2⇡

0

a2cos3vcos2ududv

= 2⇡2a2c+ ⇡a2
Z

2⇡

0

cos3vdv

= 2⇡2a2c+ 0 = 2⇡2a2c

(b) Also,

r · F = 1ZZ

@Q

F · ndS

=

ZZZ

Q

r · FdV =

ZZZ

Q

dV

Therefore,ZZ

@Q

F · ndS =. Volume of the torus

Hence, the volume of the torus is 2⇡2a2c

30. (a) r =
D
r cos ✓, r sin ✓,

p
r2 � 4

E

rr ⇥ r✓ =

⌧
� r2 cos ✓p

r2 � 4
,� r2 sin ✓p

r2 � 4
, r

�

ZZ

@Q

F · ndS =

Z
2⇡

0

Z p
8

2

r
p

r2 � 4drd✓

=
8

3

Z
2⇡

0

d✓ =
8

3
· (2⇡)

ZZ

@Q

F · ndS =
16⇡

3

(b) Also,

r · F = 1ZZ

@Q

F · ndS

=

ZZZ

Q

r · FdV =

ZZZ

Q

dV

Therefore,ZZ

@Q

F · ndS = Volume of the solid

Hence, the volume of the solid is
16⇡

3

31. There isn’t much di↵erence between this case
and the two dimensional case. The key is to
this is the fact that
div(frg) = f(r2g) +rf ·rg,
which we prove here:

div(frg) = divhfgx, fgy, fgzi

=
@

@x
(fgx) +

@

@y
(fgy) +

@

@z
(fgz)

= (fxgx + fgxx) + (fygy + fgyy)
+ (fzgz + fgzz)

= f(r2g) +rf ·rg
Now that we have this, the Divergence Theo-
rem gives us
ZZ

@Q

frg · n dS =

ZZZ

Q

div(frg) dV
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=

ZZZ

Q

�
fr2g +rf ·rg

�
dV

=

ZZZ

Q

f(r2g) dV +

ZZZ

Q

rf ·rg dV

and the result is now immediate (subtract one
of the integrals to the other side of the equa-
tion.

32. We apply Green’s first identity twice, exchang-
ing the roles of the functions f and g:
ZZZ

Q

fr2g dV =

ZZ

@Q

f(rg) · n dS

�
ZZZ

Q

(rf ·rg) dV
ZZZ

Q

gr2f dV =

ZZ

@Q

g(rf) · n dS

�
ZZZ

Q

(rg ·rf) dV

Now, if we subtract these equations, we obtain:
ZZZ

Q

�
fr2g � gr2f

�
dV

=

ZZ

@Q

f(rg) · n dS �
ZZZ

Q

(rf ·rg) dV

�
ZZ

@Q

g(rf) · n dS +

ZZZ

Q

(rg ·rf) dV

=

ZZ

@Q

(frg � grf)) · n dS

+

ZZZ

Q

(rg ·rf �rf ·rg) dV

=

ZZ

@Q

(frg � grf) · n dS

33. With a little bit of work, one can show that

div
⇣ r

r3

⌘
= 0

But, this does not mean that the flux of E out
of the sphere of radius a is zero! This is because
the field is not defined at the origin. But, this
does tell us that the flux is the same out of
any sphere containing the origin (so the flux is
independent of a).

This can also be seen by computing the flux.

In this case, the unit normal is n =
1

r
r.

flux =

ZZ

@Q

E · n dS =

ZZ

S

qr

r3
· 1
r
r dS

= q

ZZ

S

r · r
r4

dS = q

ZZ

S

r2

r4
dS

= q

ZZ

S

1

r2
dS = q

ZZ

S

1

a2
dS

=
q

a2
(Area of Sphere) =

q

a2
(4⇡a2) = 4⇡q

34. F (x, y, z) =
c

k rk3
r =

c hx, y, zi
(x2 + y2 + z2)3/2

where c is a constant.

F is not continuous in Q, hence F is undefined
at the center.

F
1

(x, y, z) =
cx

(x2 + y2 + z2)3/2

F
2

(x, y, z) =
cy

(x2 + y2 + z2)3/2

F
3

(x, y, z) =
cz

(x2 + y2 + z2)3/2

@F
1

@x
=

c
�
�2x2 + y2 + z2

�

(x2 + y2 + z2)5/2

@F
2

@y
=

c
�
x2 � 2y2 + z2

�

(x2 + y2 + z2)5/2

@F
3

@z
=

c
�
x2 + y2 � 2z2

�

(x2 + y2 + z2)5/2

r · F =
@F

1

@x
+

@F
2

@y
+

@F
3

@z

=
c
�
�2x2 + y2 + z2

�

(x2 + y2 + z2)5/2

+
c
�
x2 � 2y2 + z2

�

(x2 + y2 + z2)5/2

+
c
�
x2 + y2 � 2z2

�

(x2 + y2 + z2)5/2

= 0

35. Note, Gauss’ Law is r · E =
⇢

✏
0

and not

� · E =
⇢

✏
0

, as stated before this set of prob-

lems.

Assuming that the electric field E is suitable
for the Divergence Theorem and the function
⇢ is a charge-density with respect to volume,
one could say that the total charge in a region
Q is given by

q =

ZZZ

Q

⇢ dV =

ZZZ

Q

✏
0

r ·E dV

= ✏
0

ZZZ

Q

div(E) dV = ✏
0

ZZ

@Q

E · n dS

36. In this problem, the vector field E should be
corrected as:

E = c

⌧
x

x2 + y2
,

y

x2 + y2
, 0

�

In fact, for the cylinder given in the text, this
change will not change the end result, but if a
cylinder of radius a is used, the problem with
the field in the text will be apparent.
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If the charge is concentrated on the z-axis, with
density ⇢, then the total charge contained in
the cylinder of height h is q = ⇢h.

First, notice that E is parallel to the xy-plane
and therefore there is no flux through the top
and bottom of the cylinder S. Therefore, we
don’t have to worry about the integral on the
top and bottom of S.

Also, along this portion of S, we have

x2 + y2 = 1.

The area of this portion of S is 2⇡h.

⇢h = q = ✏
0

ZZ

S

E · n dS

= ✏
0

ZZ

S

chx, y, 0i
x2 + y2

· hx, y, 0i dS

= ✏
0

ZZ

S

c dS

= ✏
0

c(Area) = 2⇡h✏
0

c

Solving for c gives

c =
⇢

2⇡✏
0

37. In this problem we assume that “infinite plane
of constant charge density ⇢” means that ⇢ is a
constant with respect to area in the xy-plane.
In this case, the given E is not correct.

It should be:

E =

⌧
0, 0,

cz

|z|

�

=

(
ck if z > 0

�ck if z < 0

To continue, let S = S(h, a) be the cylinder:
0  x2 + y2  a, �h  z  h
Then the total charge in S is the area-density
(⇢) times the horizontal cross sectional area
(⇡a2): q = ⇡⇢a2

The electric field, being only vertical has only
flux through the top (T ) and the bottom (B)
of the cylinder. Therefore

flux =

ZZ

@S

E · n dS

=

ZZ

T

E · n dS +

ZZ

B

E · n dS

=

ZZ

T

ck · k dS +

ZZ

T

�ck · (�k) dS

= c(Area of T ) + c(Area of B) = 2c⇡a2

Finally, putting everything together gives

q = ⇡⇢a2 = ✏
0

· flux = ✏
0

2c⇡a2

c =
⇢

2✏
0

38. Let Sa denote the sphere of radius a centered
at P

0

. Let qa denote the amount of charge in
Sa. Let ⇢a denote the charge density in Sa.
Then, by definition the charge density, a func-
tion, is defined as
⇢ = ⇢(P

0

) = lim
a!0

⇢a.

Using equation 7.1,

r ·E(P
0

) = lim
a!0

1

Va

ZZ

S
a

E · n dS

= lim
a!0

1

Va

✓
qa
✏
0

◆

=

✓
1

✏
0

◆
lim
a!0

qa
Va

=

✓
1

✏
0

◆
lim
a!0

⇢a =
⇢(P

0

)

✏
0

=
⇢

✏
0

14.8 Stokes’ Theorem

1. @S is a circle in the plane z = 0 and therefore
dz = 0.
x = 2 cos t, y = 2 sin t, z = 0
0  t  2⇡
Z

@S

F · dr

=

Z

@S

xz dx+ 2y dy + z3 dz

=

Z

@S

0 dx+ 2y dy + z3(0)

=

Z

@S

2y dy

=

Z
2⇡

0

2(2 sin t)(2 cos t) dt = 0

r⇥ F = h0, x, 0i

n =
h2x, 2y, 1ip
4x2 + 4y2 + 1

dS =
p
4x2 + 4y2 + 1 dA

ZZ

S

(r⇥ F) · n dS

=

ZZ

S

2xy dA

=

Z
2⇡

0

Z
2

0

2(r cos ✓)(r sin ✓)r dr d✓

=

Z
2⇡

0

Z
2

0

2r3 cos ✓ sin ✓ dr d✓

=

Z
2⇡

0

8 cos ✓ sin ✓ d✓ = 0

2. For @S:
x = cos ✓, y = sin ✓, z = 0
0  ✓  2⇡
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Z

@S

F · dr

=

Z

@S

x2z dx+ xy dy + xz2 dz

=

Z
2⇡

0

[0 + (cos ✓ sin ✓)(cos ✓) + 0] dt

=

Z
2⇡

0

sin ✓ cos2 ✓ dt = 0

r⇥ F = h0, x2 � z2, yi

n =
h2x, 2y, 1ip
4x2 + 4y2 + 1

dS =
p

4x2 + 4y2 + 1 dA

ZZ

S

(r⇥ F) · n dS

=

ZZ

S

y(2x2 � 2z2 + 1) dA

=

ZZ

S

[(x2 � z2)(2y) + y] dA

=

ZZ

S

[(x2 � (1� x2 � y2))(2y) + y] dA

=

Z
2⇡

0

Z
1

0

(2r2 cos2 ✓ � 1 + 4r2 � 2r4)

· r2 sin ✓ dr d✓

=

Z
2⇡

0

1

105
sin ✓(19 + 42 cos2 ✓) d✓ = 0

3. For @S:
x = 2 cos ✓, y = 2 sin ✓, z = 0
0  ✓  2⇡
Z

@S

F · dr

=

Z

@S

(2x� y) dx+ yz2 dy + y2z dz

=

Z

@S

(2x� y) dx

=

Z
2⇡

0

[2(2 cos t)� 2 sin t](�2 sin t) dt

=

Z
2⇡

0

[�8 cos t sin t+ 4 sin2 t] dt

= 0 + 4⇡ = 4⇡

r⇥ F = h0, 0, 1i
n =

1

2
hx, y, zi

Use spherical coordinates:
x = 2 sin� cos ✓, y = 2 sin� sin ✓,
z = 2 cos�, dS = 4 sin� d� d✓.
ZZ

S

(r⇥ F) · n dS

=

ZZ

S

z

2
dS

=

Z
2⇡

0

Z ⇡/2

0

2 cos�

2
4 sin� d� d✓

= 4

Z
2⇡

0

Z ⇡/2

0

cos� sin� d� d✓

= 8⇡

Z ⇡/2

0

cos� sin� d� = 4⇡

4. For @S:
x = cos t, y = sin t, z = 0
0  t  2⇡Z

@S

F · dr

=

Z

@S

2x dx+ (z2 � x) dy + xz2 dz

=

Z
2⇡

0

[2 cos t(� sin t)

+ (0� cos t)(cos t) + 0] dt

=

Z
2⇡

0

� cos t(2 sin t+ cos t) dt = �⇡

r⇥ F = h�2z,�z2,�1i
n = hx, y, zi
Use spherical coordinates:

x = sin� cos ✓, y = sin� sin ✓,
z = cos�, dS = sin� d� d✓.
ZZ

S

(r⇥ F) · n dS

=

ZZ

S

(�2xz � yz2 � z) dS

=

Z
2⇡

0

Z ⇡/2

0

(�2 sin� cos ✓ cos�

� sin� sin ✓ cos�� cos�) sin� d� d✓

= �1

6

Z
2⇡

0

(4 cos ✓ + 2 sin ✓ + 3) d✓ = �⇡

5. @S is the triangle with vertices at (0, 0, 0),
(2.0, 0), and (0, 2, 0) and is therefore made up
of three line segments.

C
1

: from (0, 0, 0) to (2, 0, 0).
x = t, y = 0, z = 0, 0  t  2.
Z

C1

F · dr

=

Z

C1

(zy4 � y2) dx+ (y � x3) dy + z2 dz

=

Z
2

0

[0 + 0 + 0]; dt = 0

C
2

: from (2, 0, 0) to (0, 2, 0).
x = 2� t, y = t, z = 0, 0  t  2.
Z

C2

F · dr

=

Z

C2

(zy4 � y2) dx+ (y � x3) dy + z2 dz
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=

Z
2

0

[�t2(�1) + (t� (2� t)3)(1) + 0]dt

=

Z
2

0

(t3 � 5t2 + 13t� 8) dt =
2

3

C
3

: from (0, 2, 0) to (0, 0, 0).
x = 0, y = 2� t, z = 0, 0  t  2.
Z

C3

F · dr

=

Z

C3

(zy4 � y2) dx+ (y � x3) dy + z2 dz

=

Z
2

0

[0 + (2� t)(�1) + 0] dt

=

Z
2

0

(t� 2) dt = �2

Summing these up:
ZZ

S

(r⇥ F) · n dS =
2

3
� 2 = �4

3

6. @S is the triangle with vertices at (0, 0, 0),
(8.0, 0), and (0, 8, 0) and is therefore made up
of three line segments.

C
1

: from (0, 0, 0) to (8.0, 0).
x = t, y = 0, z = 0, 0  t  8.
Z

C1

F · dr

=

Z

C1

y2 dx+ (y + 2x) dy + z2 dz

=

Z
8

0

[(0)(1) + (0 + 2t)(0) + (0)(0)]dt = 0

C
2

: from (8, 0, 0) to (0.8, 0).
x = 8� t, y = t, z = 0, 0  t  8.
Z

C2

F · dr

=

Z

C1

y2 dx+ (y + 2x) dy + z2 dz

=

Z
8

0

[(t2)(�1) + (t+ 16� 2t)(1) + 0]dt

=

Z
8

0

(�t2 � t+ 16)dt = �224

3

C
3

: from (0, 8, 0) to (0.0, 0).
x = 0, y = 8� t, z = 0, 0  t  8.
Z

C3

F · dr =

Z

C1

y2 dx+ (y + 2x) dy + z2 dz

=

Z
8

0

[(8� t)2(0) + (8� t+ 0)(�1) + 0]dt

=

Z
8

0

(t� 8); dt = �32
ZZ

S

(r⇥ F) · n dS

=

Z

C1

F · dr+
Z

C2

F · dr+
Z

C3

F · dr

= 0� 224

3
� 32 = �320

3

7. @S is the circle:
x = cos t, y = sin t, z = 0, 0  t  2⇡.
ZZ

S

(r⇥ F) · n dS

=

Z

@S

F · dr

=

Z

@S

xz2 dx+ (zexy
2

� x) dy + x ln y2 dz

=

Z
2⇡

0

[0 +�(cos t)(cos t) + 0] dt

=

Z
2⇡

0

� cos2 t dt = �⇡

8. @S is the circle:
x = 2 cos t, y = 2 sin t, z = 0, 0  t  2⇡.
ZZ

S

(r⇥ F) · n dS

=

Z

@S

F · dr

=

Z

@S

xz2 dx+ (zexy
2

� x) dy + x ln y2 dz

=

Z
2⇡

0

[0 + (�2 cos t)(2 cos t) + 0] dt

=

Z
2⇡

0

�4 cos2 t dt

= �
Z

2⇡

0

(2 + 2 cos t) dt = �4⇡

9. @S is the triangle with vertices at (0, 0, 0),
(0.0, 1), and (2, 0, 0) and is therefore made up
of three line segments.

C
1

: from (0, 0, 0) to (0.0, 1).
x = 0, y = 0, z = t, 0  t  1.
Z

C1

F · dr

=

Z

C1

(zy4 � y2) dx+ (y � x3) dy + z2 dz

=

Z
1

0

[0 + 0 + t2(1)]dt =
1

3

C
2

: from (0, 0, 1) to (2, 0, 0).
x = 2t, y = 0, z = 1� t, 0  t  1.
Z

C2

F · dr

=

Z

C2

(zy4 � y2) dx+ (y � x3) dy + z2 dz

=

Z
2

0

[0 + 0 + (1� t)2(�1)]dt
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= �
Z

2

0

(1� t)2 dt = �1

3

C
3

: from (2, 0, 0) to (0.0, 0).
x = 2� t, y = 0, z = 0, 0  t  2.
Z

C3

F · dr

=

Z

C3

(zy4 � y2) dx+ (y � x3) dy + z2 dz

=

Z
2

0

[0 + 0 + 0] dt = 0

Summing these up:
ZZ

S

(r⇥ F) · n dS =
1

3
� 1

3
= 0

10. @S is the circle x2 + z2 = 2:
x =
p
2 cos t, y = 2, z =

p
2 sin t,

0  t  2⇡.ZZ

S

(r⇥ F) · n dS

=

Z

@S

F · dr

=

Z

@S

xy dx+ 4xez
2

dy + (yz + 2) dz

=

Z
2⇡

0

[(2
p
2 cos t)(�

p
2 sin t) + 0

+ (2
p
2 sin t+ 2)(

p
2 cos t)] dt

=

Z
2⇡

0

2
p
2 cos t dt = 0

11. @S is the circle (note the orientation):
x = cos t, y = � sin t, z = 1,
0  t  2⇡.ZZ

S

(r⇥ F) · n dS

=

Z

@S

F · dr

=

Z

@S

(x2 + y2) dx+ zex
2
+y2

dy + ex
2
+y2

dz

=

Z
2⇡

0

[(1)(� sin t) + e1(� cos t) + 0] dt

= 0

12. @S is the unit square with vertices at
(0, 0, 1), (0, 1, 1), (1, 1, 1), (1, 0, 1).
If n is upward, then this means that we must
traverse the unit square in counterclockwise di-
rection.

C
1

: (0, 0, 1) to (1, 0, 1).
x = t, y = 0, z = 1, 0  t  1.
Z

C1

F · dr

=

Z

C1

xyz dx+ (4x2y3 � z) dy + 8 cos(xz2) dz

=

Z
1

0

(0 + 0 + 0) dt = 0

C
2

: (1, 0, 1) to (1, 1, 1).
x = 1, y = t, z = 1, 0  t  1.
Z

C2

F · dr

=

Z

C2

xyz dx+ (4x2y3 � z) dy + 8 cos(xz2) dz

=

Z
1

0

[0 + (4(1)(t)3 � 1) + 0] dt

=

Z
1

0

[�4(t)3 + 1] dt = 0

C
3

: (1, 1, 1) to (0, 1, 1).
x = 1� t, y = 1, z = 1, 0  t  1.
Z

C2

F · dr

=

Z

C2

xyz dx+ (4x2y3 � z) dy + 8 cos(xz2) dz

=

Z
1

0

[(1� t)(�1) + 0 + 0] dt

=

Z
1

0

(t� 1) dt = �1

2

C
4

: (0, 1, 1) to (0, 0, 1).
x = 0, y = 1� t, z = 1, 0  t  1.
Z

C1

F · dr

=

Z

C1

xyz dx+ (4x2y3 � z) dy + 8 cos(xz2) dz

=

Z
1

0

[0 + (�1)(�1) + 0] dt

=

Z
1

0

1 dt = 1

ZZ

S

(r⇥ F) · n dS

=

Z

C1

F · dr+
Z

C2

F · dr

+

Z

C3

F · dr+
Z

C4

F · dr

= 0 + 0� 1

2
+ 1 =

1

2

13. C is the circle x2 + z2 = 4 in the xz-plane. It
is easier to just let S be the disk x2 + z2  4
in the plane y = 0 (we can do this because the
disk has the same boundary as the portion of
the paraboloid and therefore the integrals will
be equal).

r⇥ F = h0, x2y � 1, 2x cos y � x2zi
n = h0, 1, 0i
dS = dA
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Z

C

F · dr

=

ZZ

S

(r⇥ F) · n dS

=

ZZ

S

(x2y � 1) dA

=

Z
2⇡

0

Z
2

0

(r3 cos2 ✓ sin ✓ � 1)r dr d✓

=

Z
2⇡

0

✓
32

5
cos2 ✓ sin ✓ � 2

◆
d✓

= 0� 4⇡ = �4⇡

14. C is the circle y2 + z2 = 4 in the plane x = 4.
It is easier to just let S be the disk y2+ z2  4
in the plane x = 4 (we can do this because the
disk has the same boundary as the portion of
the paraboloid and therefore the integrals will
be equal).

r⇥ F = h1, y2, 1� 2yzi
n = h0, 0, 1i
dS = dA
Z

C

F · dr

=

ZZ

S

(r⇥ F) · n dS

=

ZZ

S

(1� 2yz) dA

=

Z
2⇡

0

Z
2

0

[1� 2(r cos ✓)(r sin ✓)]r dr d✓

=

Z
2⇡

0

(2� 8 cos ✓ sin ✓) d✓

= 4⇡ + 0 = 4⇡

15. C is the circle x2 + y2 = 4 in the plane z = 0.
It is easier to just let S be the disk x2+y2  4
in the plane z = 0 (we can do this because the
disk has the same boundary as the portion of
the paraboloid and therefore the integrals will
be equal).

r⇥ F = h0, 0, 1i
n = h0, 0, 1i
dS = dA
Z

C

F · dr

=

ZZ

S

(r⇥ F) · n dS

=

ZZ

S

dA

= Area of S = 4⇡

16. r⇥ F = h0, 0, 0iZ

C

F · dr

=

ZZ

S

(r⇥ F) · n dS

=

ZZ

S

0 dA = 0

17. r⇥ F = h0, 0, 0i Therefore,
Z

C

F · dr

=

ZZ

S

(r⇥ F) · n dS

=

ZZ

S

(0) dA = 0

18. r⇥ F = h0, 0, 0iZ

C

F · dr

=

ZZ

S

(r⇥ F) · n dS

=

ZZ

S

0 dA = 0

19. This problem is a bit di�cult and requires nu-
merical methods. In fact, it is probably easier
to leave it as a line integral.

If we let S be the portion of the paraboloid

z = 4�x2� y2 inside the cylinder x2+ z2 = 1,
with n pointing to the left, then the surface is
described by the function

f(x, z) = (4� x2 � z)1/2.

r⇥ F = h0, y � 1,�zi

n =
hfx,�1, fzip
1 + f2

x + f2

z
dS = dAZ

C

F · dr

=

ZZ

S

(r⇥ F) · n dS

=

ZZ

R

h0, y � 1,�zi · hfx,�1, fzi dA

=

ZZ

R

(1� y � zfz) dA

=

ZZ

R

2x2 � 8 + 3z + 2
p
4� x2 � z

2
p
4� x2 � z

dA

⇡ 97.2017

20. C is the intersection of a parabola and a plane.
To find this intersection we solve the system
z = x2 + y2 � 4 and z = y � 1:
x2 + y2 � 4 = y � 1

x2 +

✓
y � 1

2

◆
2

=
13

4
Thus, C lies above this cylinder and we take as
S the intersection of the plane with this cylin-
der.
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r⇥ F = h0, 0,�1i
n =

1p
2
h0, 1,�1i

dS =
p
2 dAZ

C

F · dr

=

ZZ

S

(r⇥ F) · n dS

=

ZZ

R

1 dA

= (area of circle) =
13⇡

4

21. (a) @S is the circle:
x = �

p
2 cos t, y =

p
2 sin t, z =

p
2,

0  t  2⇡.ZZ

S

(r⇥ F) · n dS

=

Z

@S

F · dr

=

Z

@S

xz dx+ (x2 + y2) dy + (z2 � y2) dz

=

Z
2⇡

0

[(�
p
2 cos t)(

p
2)(
p
2 sin t)

+ 2(
p
2 cos t) + 0] dt

= 2
p
2

Z
2⇡

0

(� cos t sin t+ cos t) dt

= 0

(b) @S is the circle:

x = �
p
2 cos t, y =

p
2 sin t,

z =
p
2,0  t  2⇡

By Stoke’s Theorem,ZZ

S

(r⇥ F) · ndS

=

Z

@S

F · dr

=

Z

@S

(xex � xy) dx+ 3y2dy

+ (sin z � xy) dz

=

Z
2⇡

0

⇣
�
p
2 cos t · e�

p
2 cos t

+2 cos t sin t)
·
p
2 sin t+

�
6sin2t

�p
2 cos tdt

= 0

22. (a) F =
⌦
x2, y3 + x, 3y2 cos z

↵
Z

C

F · dr =

Z

C1

F · dr +
Z

C2

F · dr

+

Z

C3

F · dr +
Z

C4

F · dr

C
1

: (0, 2, 0) to (0, 2, 2)
x = 0, y = 2, z = t;

Z

C1

F · dr

=

Z

C1

x2dx+
�
y3 + x

�
dy + 3y2 cos zdz

=

Z
2

0

12 cos tdt = 12 sin t|2
0

= 12 sin 2

C
2

: (0, 2, 2) to (2, 2, 2)
x = t, y = 2, z = 2;Z

C2

F · dr =

Z
2

0

t2dt =
8

3
C

3

: (2, 2, 2) to (2, 2, 0)
x = 2, y = 2, z = 2� t;Z

C3

F · dr

=

Z
2

0

12 cos (2� t) (�dt) = �12 sin 2

C
4

: (2, 2, 0) to (0, 2, 0)
x = 2� t, y = 2, z = 0;Z

C4

F · dr =

Z
2

0

(2� t)2 (�dt) = �8
3Z

C

F · dr = 12 sin 2+
8

3
� 12 sin 2� 8

3
= 0

(b) F =
D
z2ey�2, e

p
x2

+y2
, z (y � 2)

E

Z

C

F · dr =

Z

C1

F · dr +
Z

C2

F · dr

+

Z

C3

F · dr +
Z

C4

F · dr

C
1

: (0, 2, 0) to (0, 2, 2)
x = 0, y = 2, z = t;Z

C1

F · dr

=

Z

C1

z2ey�2dx+ e
p

x2
+y2

dy

+ z (y � 2) dz

=

Z
2

0

(0 + 0 + 0) = 0

C
2

: (0, 2, 2) to (2, 2, 2)
x = t, y = 2, z = 2;Z

C2

F · dr =

Z
2

0

4e0dt = 8

C
3

: (2, 2, 2) to (2, 2, 0)
x = 2, y = 2, z = 2� t;Z

C3

F · dr =

Z
2

0

(0 + 0 + 0) dt = 0

C
4

: (2, 2, 0) to (0, 2, 0)
x = 2� t, y = 2, z = 0;Z

C4

F · dr =

Z
2

0

(0 + 0 + 0) dt = 0
Z

C

F · dr = 0 + 8 + 0 + 0 = 8

23. (a) F =
D
2y � x cosx,

p
y2 + 1, e�z2

E
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r⇥ F =

������

i j k
@
@x

@
@y

@
@z

2y � x cosx
p
y2 + 1 e�z2

������

r⇥ F = h0, 0,�2iZZ

S

(r⇥ F) · ndS

=

ZZ

S1

(r⇥ F) · ndS

+

ZZ

S2

(r⇥ F) · ndS

S
1

is the portion of the hyperboloid

x2 + y2 � z2 = 4, z = 0 and
z = 2, with z < 2

n = hfx, fy,�1i
(r⇥ F) · n = 2
ZZ

S1

(r⇥ F) · ndS =

Z
2

p
2

2

Z
2⇡

0

2rdrd✓

S
2

is the circle with radius 2

n = h0, 0,�1i
r ⇥ F = h0, 0,�2i
(r⇥ F) · n = 2ZZ

S2

(r⇥ F) · ndS =

Z
2

0

Z
2⇡

0

2rdrd✓
ZZ

S

(r⇥ F) · ndS

=

Z
2

0

Z
2⇡

0

2rdrd✓ +

Z
2

p
2

2

Z
2⇡

0

2rdrd✓

=

Z
2

p
2

0

Z
2⇡

0

2rdrd✓ = 16⇡

(b) F =
D
z2y, x� z,

p
x2 + y2

E

x = 2
p
2 cos t; y = 2

p
2 sin t; z = 2

dr =
D
�2
p
2 sin t, 2

p
2 cos t, 0

E
dt

Z
2⇡

0

F·dr

=

Z
2⇡

0

D
8
p
2 sin t, 2

p
2 cos t� 2,

p
8
E

·
D
�2
p
2 sin t, 2

p
2 cos t, 0

E
dt

=

Z
2⇡

0

h
�32sin2t+ 8cos2t� 4

p
2 cos t

i
dt

= �24⇡

24. (a) r⇥ F =

�������

i j k
@
@x

@
@y

@
@z

ex
2 � y 4y3 3z2 + 5

�������
= h0, 0, 1iZZ

S

(r⇥ F) · ndS

=

ZZ

S1

(r⇥ F) · ndS

+

ZZ

S2

(r⇥ F) · ndS

S
1

:
r (z, ✓) = hcos ✓, sin ✓, zi
0  ✓  2⇡; 0  z  4� cos ✓ � 2 sin ✓;
rz = h0, 0, 1i
r✓ = h� sin ✓, cos ✓, 0i

n = rz ⇥ r✓ =

������

i j k
0 0 1

� sin ✓ cos ✓ 0

������
= h� cos ✓,� sin ✓, 0i

(r⇥ F) · n = 0 + 0 + 0 = 0ZZ

S1

(r⇥ F) · ndS =

ZZ

S1

0 = 0

S
2

:
n = h0, 0,�1i
(r⇥ F) · n = �1ZZ

S2

(r⇥ F) · ndS

=

Z
2⇡

0

Z
1

0

(�1) rdrd✓ = �⇡
ZZ

S

(r⇥ F) · ndS =0 + (�⇡) = �⇡

(b) F =
⌦
x2y, y2x, xy � x

↵

r⇥ F =

������

i j k
@
@x

@
@y

@
@z

x2y y2x xy � x

������
=
⌦
x,�y + 1, y2 � x2

↵

S
1

:
n = h� cos ✓,� sin ✓, 0i
(r⇥ F) · n = �x cos ✓ + y sin ✓ � sin ✓

= sin2✓ � cos2✓ � sin ✓ZZ

S1

(r⇥ F) · ndS

=

Z
2⇡

0

Z
1

0

�
sin2✓ � cos2✓ � sin ✓

�
rdrd✓

=
1

2

Z
2⇡

0

(� cos 2✓ � sin ✓)d✓ = 0

S
2

:
n = h0, 0,�1i
(r⇥ F) · n = x2 � y2 = cos2✓ � sin2✓

= cos 2✓ZZ

S2

(r⇥ F) · ndS

=

Z
2⇡

0

cos 2✓d✓

Z
1

0

rdr = 0
ZZ

S

(r⇥ F) · ndS

=

ZZ

S1

(r⇥ F) · ndS
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+

ZZ

S2

(r⇥ F) · ndS

= 0 + 0 = 0

25. The chain rule tells us that
r(f2) = 2frf
Therefore, the vector field frf has a poten-

tial function
1

2
f2. Therefore the curl of frf

is zero and Stoke’s Theorem tells us thatZ

C

F · dr =

ZZ

S

(r⇥ F) · n dS = 0

26. We apply Stokes Theorem to this situation.
We first compute the curl. We will apply Ex-
ercise 48 of Section 14.5:

r⇥ (frg + grf)
= r⇥ (frg) +r⇥ (grf)
= rf ⇥rg + f(r⇥rg)

+rg ⇥rf + g(r⇥rf)
= (rf ⇥rg) + (rg ⇥rf)

+ f(r⇥rg) + g(r⇥rf)
= (rf ⇥rg)� (rf ⇥rg)

+ f(r⇥rg) + g(r⇥rf)
= f(r⇥rg) + g(r⇥rf)
r⇥rf

=

������

i j k
@
@x

@
@y

@
@z

fx fy fz

������
= i(fzy � fyz)� j(fzx � fxz)

+ k(fyx � fxy)
= h0, 0, 0i
Similarly, r⇥rg = h0, 0, 0i, and therefore,

r⇥ (frg + grf) = h0, 0, 0i
Therefore, if S is any surface bounded by C,
thenI

C

(frg + grf) · dr

=

ZZ

S

r⇥ (frg + grf) · n dS

=

ZZ
0 · n dS = 0

27. The vector form of Green’s Theorem isZ

@D

F · n ds =

ZZ

D

r · F dA

Using this, it is easy to see that if r · F = 0
thenZ

@D

F · n ds =

ZZ

D

r · F dA = 0

For the converse, the issue is whether a con-
tinuous integrand f (in our case, divF) which
integrates to zero over every set D must be

identically zero. Suppose there is a single point
P such that f(P ) > 0. Then, there is a small
disc D containing P such that

f(x, y) >
1

2
f(P ) (such a disc exists because f

is assumed to be continuous). Then,ZZ

D

f dA � 1

2
f(P ) ·Area(D) > 0

which is a contradiction.

If there were a point f(P ) < 0, then the ar-
gument would still work but the resulting inte-
gral would be negative (but the contradiction
is that the integral is not zero).

28. First, suppose

I

C

F · n ds = 0 for all closed

curves and C
1

and C
2

are two paths from
(x

0

, y
0

, z
0

) to (x
1

, y
1

, z
1

).

Then, C = C
1

[ (�C
2

) is a close curve and

0 =

Z

C

F · n ds

=

Z

C1[(�C2)

F · n ds

=

Z

C1

F · n ds+

Z

(�C2)

F · n ds

=

Z

C1

F · n ds�
Z

C2

F · n ds

and thereforeZ

C1

F · n ds =

Z

C2

F · n ds

Similarly, if we start with

Z

C

F · n ds is path

independent and C is a closed curve. Then, let
(x

0

, y
0

, z
0

) and (x
1

, y
1

, z
1

) be two points on C
such that C

1

, C
2

are paths from (x
0

, y
0

, z
0

) to
(x

1

, y
1

, z
1

) so that C = C
1

[ (�C
2

). Then

0 =

Z

C1

F · n ds�
Z

C2

F · n ds

=

Z

C1[(�C2)

F · n ds

=

Z

C

F · n ds

and therefore
R
C
F · n ds = 0.

29. Given a vector field F = hM,Ni, with
divF = 0, consider the perpendicular field

F? = hP,Qi = h�N,Mi. Then,
0 = divF = Mx +Ny = Qx � Py

which is the condition for independence of
path, which means that F? has a potential
function, rg = F?. Therefore gx = P = �N
and gy = Q = M which means that g is also a
stream function for F.
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30. Suppose that F = hM(x, y), N(x, y)i is a vec-
tor field whose componentsM andN have con-
tinuous first partial derivatives in R2. Let n
denote the unit normal vector

n =
hy0(t),�x0(t)ip
[x0(t)]2 + [y0(t)]2

Then, the following are equivalent:

(i) r · F = 0 in R2

(ii)

I
F · n ds = 0 for all closed curves C in

R2.

(iii)
R
F · n ds is independent of path in R2.

(iv) F has a stream function g(x, y) such that
M(x, y) = gy(x, y) and

N(x, y) = gx(x, y).

31. The only assumption is that the selection for
normals for S

1

and S
2

induce the same orienta-
tion on the common boundary. Therefore the
absolute value of integrals will be equal.

32. We can accomplish this if F is not continuous.

For example, define F =

⌧
�y|z|

z
, x, 0

�

Then,

r⇥ F =

⌧
0, 0, 1 +

|z|
z

�

=

(
h0, 0, 2i if z > 0

h0, 0, 0i if z < 0

Let S be the portion of the sphere

x2+ y2+ z2 = 1 above the xy-plane and let S
2

be the portion below the xy-plane. Then,

n
1

= hx, y, zi
n
2

= �hx, y, zi
Converting to spherical coordinates,
ZZ

S1

(r⇥ F) · n
1

dS

=

ZZ

S1

h0, 0, 2i · hx, y, zi dS

=

ZZ

S1

2z dS

=

Z
2⇡

0

Z ⇡/2

0

2(cos�) sin� d� d✓ = 2⇡

ZZ

S2

(r⇥ F) · n
2

dS

=

ZZ

S1

h0, 0, 0i · hx, y, zi dS = 0

33. Exercise 48 of Section 14.5 gives the identity
r⇥ (fF) = rf ⇥ F+ f(r⇥ F)

We apply this to the case F = rg which gives

r⇥ (frg)
= rf ⇥rg + f(r⇥rg)
= rf ⇥rg + f0
= rf ⇥rg
Thus, using Stoke’s Theorem,Z

C

(frg) · dr =

ZZ

S

[r⇥ (frg)] · n dS

=

ZZ

S

[rf ⇥rg] · n dS

34. This is the same question as Exercise 26, see
Exercise 26.

14.9 Applications of Vector

Calculus

1. The surface S in Example 9.2 shares its bound-
ary with the unit square, S

0

in the xy-plane
(z = 0), and if we equip S

0

with the upward
unit normal, h0, 0, 1i, then the orientation of
C = @S

0

will be counterclockwise, and the
same as that induced by an “outer” normal to
S. ThereforeZZ

S

r⇥ F · n dS =

I

@S

F · dr

=

I

@S0

F · dr

=

I

@S0

(ex
2

� 2xy) dx+ sin2 y dy

+ (3yz � 2x) dz

=

I

@S0

(ex
2

� 2xy) dx+ sin2 y dy

We split this integral into the four parts of the
@S.

C
1

: from (0, 0) to (1, 0).
y = 0 and
I

@C1

(ex
2

� 2xy) dx+ sin2 y dy =

Z
1

0

ex
2

dx

C
2

: from (1, 0) to (1, 1).
x = 1 andI

@C2

(ex
2

� 2xy) dx+ sin2 y dy

=

Z
1

0

sin2 y dy =
1� sin 1 cos 1

2

C
3

: from (1, 1) to (0, 1).
y = 1 andI

@C3

(ex
2

� 2xy) dx+ sin2 y dy

=

Z
0

1

(ex
2

� 2x) dx
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=

✓
�
Z

1

0

ex
2

dx

◆
+ 1

C
4

: from (0, 1) to (0, 0).
x = 0 andI

@C4

(ex
2

� 2xy) dx+ sin2 y dy

=

Z
0

1

sin2 y dy =
sin 1 cos 1� 1

2

Adding these all up gives
I

@S

F · dr

=

Z
1

0

ex
2

dx+
1� sin 1 cos 1

2

+�
Z

1

0

ex
2

dx+ 1 +
sin 1 cos 1� 1

2
= 1

2. From Example 9.2, r⇥ F = h3z, 2, 2xi.
S
1

: Left
0  x  1, y = 0, 0  z  1
n = h0,�1, 0i, dS = dx dz.
ZZ

S1

(r⇥ F) · n dS =

Z
1

0

Z
1

0

�2 dx dz = �2

S
2

: Back
x = 0, 0  y  1, 0  z  1
n = h�1, 0, 0i, dS = dy dz.
ZZ

S2

(r⇥F) · n dS =

Z
1

0

Z
1

0

�3z dy dz = �3

2

S
3

: Right
0  x  1, y = 1, 0  z  1
n = h0, 1, 0i, dS = dx dz.
ZZ

S3

(r⇥ F) · n dS =

Z
1

0

Z
1

0

2 dx dz = 2

S
4

: Front
x = 1, 0  y  1, 0  z  1
n = h1, 0, 0i, dS = dy dz.
ZZ

S1

(r⇥ F) · n dS =

Z
1

0

Z
1

0

3z dy dz =
3

2

S
5

: Top
0  x  1, 0  y  1, z = 1
n = h0, 0, 1i, dS = dx dy dz.
ZZ

S1

(r⇥ F) · n dS =

Z
1

0

Z
1

0

2x dx dy = 1

ZZ

S

(r⇥ F) · n dS

= �2� 3

2
+ 2 +

3

2
+ 1 = 1

3. Since divE = 0, there is no charge on the
sphere.

4. r ·E = 4y

We convert to spherical coordinates.

q =

ZZZ
✏
0

r ·E dV

= ✏
0

ZZZ
4y dV

= ✏
0

Z R

0

Z ⇡/2

0

Z
2⇡

0

4 sin ✓ cos�⇢2 sin� d✓ d� d⇢

= ✏
0

Z R

0

Z ⇡/2

0

0 d� d⇢ = 0

5. r ·E = 6 and therefore

q =

ZZZ

H

✏
0

r ·E dV =

ZZZ

H

6✏
0

dV

= 6✏
0

(Volume of H)

= 6✏
0

✓
2

3
⇡R3

◆
= 4✏

0

⇡R3

6. r ·E = 2z2 + 2x2 + 2y2

We convert to spherical coordinates.

q =

ZZZ
✏
0

r ·E dV

= ✏
0

ZZZ
(2z2 + 2x2 + 2y2) dV

= ✏
0

Z R

0

Z ⇡/2

0

Z
2⇡

0

(2⇢2)⇢2 sin� d✓ d� d⇢

= ✏
0

Z R

0

Z ⇡/2

0

4⇡⇢4 sin� d� d⇢

= ✏
0

Z R

0

4⇡⇢4 d⇢ = ✏
0

4

5
⇡⇢5

7. The solid is unbounded and the divergence in
nonzero, r ·E = 4y, therefore the charge must
be infinite.

8. r ·E = 6

q =

ZZZ
✏
0

r ·E dV

= ✏
0

ZZZ
6 dV

= 6✏
0

(Volume)

= 6✏
0

✓
1

3
⇡R2

◆
= 2✏

0

⇡R2

9. r⇥ F =

������

i j k
@
@x

@
@y

@
@zp

x2 + 4 e�y2

+ zy2 tan z � x3y

������

r⇥ F =
⌦
�x3 � y2, 3x2y, 0

↵

As done in example 9.2,
ZZ

S

(r⇥ F) · ndS = �
ZZ

S1

(r⇥ F) · ndS

Where
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S
1

: x = 0
n = h�1, 0, 0iZZ

S1

(r⇥ F) · ndS

=

Z
2

0

Z
2

0

�
y2
�
dydz =

Z
2

0

✓
8

3

◆
dz =

16

3

Hence,
ZZ

S

(r⇥ F) · ndS = �16

3

10. dr = hdx, dy, dzi
z = 0; dz = 0
F · dr =

�
y3 � 4x sin y

�
dy

x =
p
4� y2Z

C

F · dr =

Z
2

�2

h
y3 � 4

p
4� y2 sin y

i
dy

Since the above function
h
y3 � 4

p
4� y2 sin y

i

is an odd function,

Z
2

�2

h
y3 � 4

p
4� y2 sin y

i
dy

is zero. Therefore flux of r⇥ F is zero.

11. r⇥ F =

������

i j k
@
@x

@
@y

@
@z

x2e3x y2 xy2 �
p
z + 4

������
=
⌦
2xy,�y2, 0

↵

As done in example 9.2,
ZZ

S

(r⇥ F) · ndS = �
ZZ

S1

(r⇥ F) · ndS

Where

S
1

:= y = 4
n = h0, 1, 0iZZ

S1

(r⇥ F) · ndS =

ZZ

S1

�16dS

= �16(area of S
1

) = �64⇡ZZ

S

(r⇥ F) · ndS = 64⇡

12. dr = hdx, dy, dziZ

C

F·dr =

Z

C

�
4y � yx2

�
dx+

�
xy2 + yz3

�
dy

x = 2
p
2 cos t; y = 2

p
2 sin t; z = 2

p
2Z

C

F·dr

=

Z
2⇡

0

⇣
�
⇣
8
p
2 sin t� 16

p
2 sin tcos2t

⌘

· 2
p
2 sin t

+
⇣
16
p
2sin2t cos t+ 64 sin t

⌘

· 2
p
2 cos t

⌘
dt

= 0

13. Note that B is a time-dependent field.

If we let

�S(t) =

ZZ

S

B · n dA then

ZZ

S

r⇥E · n dS =

I

C

E · dr

= ��0
S(t) = �

ZZ

S

dB

dt
· n dS

Since this is true for all t and for all S, we must

have r⇥E = �dB

dt

Su�cient conditions would be that B and
dB

dt
be continuous in all variable (both time and
space) and that E have continuous derivatives
in all variables.

14. In this situation, having a potential function
means that r� = �E.

From Exercises 35-38 of Section 14.7, we have

r ·E =
⇢

✏
0

Since �E = r�, we have

r · (�r�) = ⇢

✏
0

or r2� = � ⇢

✏
0

15. From Ampere’s Law we have

J = ✏
0

c2r⇥B� ✏
0

dE

dt
Therefore

r · J = ✏
0

c2r · (r⇥B)� ✏
0

r · dE
dt

= ✏
0

c2(0)� ✏
0

d

dt

✓
r · dE

dt

◆

= �✏
0

d

dt

✓
⇢

✏
0

◆
= �d⇢

dt

The argument depends on the equality of
mixed partial derivative (in two places). We
also need to require that E and B have contin-
uous second derivatives.

16. We apply Stoke’s Theorem:

Flux =

ZZ

S

B · n dS =

ZZ

S

(r⇥A) · n dS

=

I

@S

A · dr = Circulation

17. We are given
ZZ

S

J · n dS = I =

I
B · dr

Applying Stoke’s Theorem to this last integral
gives the equality
ZZ

S

J · n dS =

ZZ

S

r⇥B · n dS
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Since this is true for all S, we must have equal
integrands, J = r⇥B.

18. We apply Stoke’s Theorem:

I =

ZZ

S

J · n dS

=

ZZ

S

(r⇥B) · n dS

=

I

C

B · dr

19. With a little bit of work, one can show that
r ·E = 0 and therefore the integral is zero.

Here’s the work to show this.

We need to show that r ·
⇣ r

r3

⌘
= 0

r2 = x2 + y2 + z2

2r
@r

@x
= 2x

@r

@x
=

x

r
@

@x

�
xr�3

�
= r�3 + x(�3)r�4

@r

@x
=

r2 � 3x2

r5

Similarly, we can compute

@

@x

�
yr�3

�
=

r2 � 3y2

r5
@

@x

�
zr�3

�
=

r2 � 3z2

r5

Therefore,

r ·
⇣ r

r3

⌘
=

r2 � 3x2

r5
+

r2 � 3y2

r5
+

r2 � 3z2

r5

=
3r2 � 3(x2 + y2 + z2)

r5
= 0

20. Suppose Sa be the sphere of radius a, centered
at the origin. Then in this case, we have

n = r = hx, y, zi and therefore E · n =
q

4⇡✏
0

r
.

Note that on the surface of the sphere, r = 1.ZZ

S

E · n dS =

ZZ

S

q

4⇡✏
0

r
dS

=

ZZ

S

q

4⇡✏
0

dS

=
q

4⇡✏
0

(Area of S)

=
q

4⇡✏
0

(4⇡)

=
q

✏
0

Now, if S is any surface enclosing the ori-
gin, then let a be su�ciently small so that Sa

is contained entirely inside S. Let Q denote
the region between Sa and S. Then, because
r ·E = 0, we have by the Divergence Theorem

0 =

ZZZ
r ·E dV

=

ZZ

S
a

[S

E · n dS

=

ZZ

S

E · n dS �
ZZ

S
a

E · n dS

which gives us
ZZ

S

E · n dS =

ZZ

S
a

E · n dS =
q

✏
0

21. This problem is nearly identical to Exercise 33
of Section 14.7.

In this case, the unit normal is n =
1

r
r. Also

notice that for all points on the sphere, r = R.

flux =

ZZ

@Q

E · n dS

=

ZZ

S

✓
q

4⇡✏
0

r3
r

◆
·
✓
1

r
r

◆
dS

=
q

4⇡✏
0

ZZ

S

r · r
r4

dS =
q

4⇡✏
0

ZZ

S

r2

r4
dS

=
q

4⇡✏
0

ZZ

S

1

r2
dS =

q

4⇡✏
0

R2

ZZ

S

dS

=
q

4⇡✏
0

R2

(Area of Sphere)

=
q

4⇡✏
0

R2

(4⇡R2) =
q

✏
0

22. E =
q

4⇡✏
0

(x2 + y2 + z2)3/2
(x, y, z)

At origin,

(a) Each component of E does not continous.

(b) First order partial derivatives does not ex-
ist.

Therefore, Divergence Theorem can’t apply toZZ

@Q

E · ndS.

By Exercise 21,

ZZ

@Q

E · n dS =
q

✏
0

where

R > 0. Hence if the radius of sphere changes,
flux does not change.

23. Gauss’ Law is introduced in Section 14.7 (Exer-
cises 35-38) (where ⇢ is used for charge density
instead of Q as in this problem). Gauss’ Law
says that

Q = ✏
0

r ·E = r · (✏
0

E) = r ·D

24. r⇥ F =

������

i j k
@
@x

@
@y

@
@z

ex
2

+ z2 xz3 3z2

������

r⇥ F =
⌦
3xz2, 2z, z3

↵

As done in example 9.2
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ZZ

S

(r⇥ F) · ndS

= �
ZZ

S1

(r⇥ F) · ndS

Where

S
1

: z = 0
n = h0, 0,�1iZZ

S1

(r⇥ F) · ndS =

Z
1

0

Z
1

0

�
�z3

�
dxdy = 0

Hence,

ZZ

S

(r⇥ F) · ndS = 0

By divergence theorem,
ZZ

S

F · ndS

=

ZZZ

Q

(r · F) dV

=

Z
1

0

Z
1

0

Z
1

0

⇣
2xex

2

+ 6z
⌘
dxdydy

= e+ 2

25. We apply the Divergence Theorem:
ZZ

S

@u

@n
dS

=

ZZ

S

ru · n dS

=

ZZZ

Q

r · (ru) dV

=

ZZZ

Q

r2u dV

26. This is an application of Exercise 25.
ZZ

S

@u

@n
dS

=

ZZZ

Q

r2u dV

=

ZZZ

Q

0 dV

= 0

27. We can pick up from Example 9.2 at the point:
ZZZ

Q

r · (�KrT ) dV =

ZZZ

Q

⇢�
@T

@t
dV

From Exercise 47 of Section 14.5, with
f = K and F = rT ,
r · (KrT ) = rK ·rT +Kr2T

Therefore,
ZZZ

Q

✓
Kr2T +rK ·rT � ⇢�

@T

@t

◆
dV

is zero for all Q. Therefore we conclude that
the integrand is identically zero, so the heat
equation takes the form:

⇢�
@T

@t
= Kr2T +rK ·rT

28. From Exercise 69 from Section 14.5,
r(hrh) = rh ·rh+ h(r2h)
We then use the Divergence Theorem:
ZZ

S

(hrh) · n dS

=

ZZZ

Q

r · (hrh) dV

=

ZZZ

Q

⇥
rh ·rh+ h(r2h)

⇤
dV

29. We apply Exercise 28 (where we let the

h = f � g).

Remember that h = 0 on the surface S = @Q.

0 =

ZZ

@Q

(0rh) · n dS

=

ZZ

@Q

(hrh) · n dS

=

ZZZ

Q

�
hr2h+rh ·rh

�
dS

=

ZZZ

Q

⇥
h (0� 0) + krhk2

⇤
dS

=

ZZZ

Q

krhk2 dS

But, the last integrand (krhk2) is nonnegative.
Therefore, since the integral is zero we con-
clude that krhk = 0 and therefore h = f � g
is a constant. Since we know that f � g = 0
on the boundary, the constant must always be
equal to zero. Thus, we have f = g.

14. Review Exercises

1.

x

y

1

-0.5

0

0.5

0

1

0.5

-1

-0.5-1
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2.

x

y

2

-1

0

1

0

2

1

-2

-1-2

3. F
4

= h3, x3i: This is Graph A because all vec-
tors have the same (positive) horizontal com-
ponent.

F
1

and F
2

have the symmetry

F
1

(�x,�y) = �F
1

(x, y) and

F
2

(�x,�y) = �F
2

(x, y) which is visible in
Graphs C and D. To sort these out, one telling
feature of Graph C is that fourth quadrant vec-
tors (x > 0, y < 0) point toward the origin
whereas in Graph D they point away.

Therefore, F
1

= hsinx, yi is Graph D. and,
F

2

= hsin y, xi is Graph C.

Finally, F
3

= hy2, 2xi is Graph B—all hori-
zontal components are positive and all vertical
components are positive for x > 0.

4. (a) f(x, y) =
1

2
ln(x2 + y2)

rf =

⌧
x

x2 + y2
,

y

x2 + y2

�

1

-1

0-1
x

y 1

2

2
0

-2

-2

(b) rf =
D
�2xe�x2�y2

,�2ye�x2�y2
E

1

-1

0-1
x

y 1

2

2
0

-2

-2

5. If
rf(x, y) =

⌦
y � 2xy2, x� 2yx2 + 1

↵
, then

@f

@x
= y � 2xy2 and

@f

@y
= x� 2yx2 + 1

f(x, y) =

Z
(y � 2xy2) dx = xy � x2y2 + g(y)

@f

@y
= x� 2yx2 + g0(y) = x� 2yx2 + 1

g0(y) = 1
g(y) = y + c
f(x, y) = xy � x2y2 + y + c

The vector field is conservative.

6. If rf = hy2 + 2e2y, 2xy + 4xe2yi, then,

f(x, y) =

Z
(y2 + 2e2y) dx

= xy2 + 2xe2y + g(y)
@f

@y
= 2yx+ 4xe2y + g0(y) = 2xy + 4xe2y

g0(y) = 0
g(y) = c
f(x, y) = xy2 + 2xe2y + c

Therefore the field is conservative.

7. If rf = h2xy � 1, x2 + 2xyi, then,

f(x, y) =

Z
(2xy � 1) dx

= x2y � x+ g(y)
@f

@y
= x2 + g0(y) = x2 + 2xy

g0(y) = 2xy

But this is impossible since g(y) is to be a func-
tion of y. Therefore the field is not conserva-
tive.

8. If rf = hy cosxy � y, x cosxy � xi, then,

f(x, y) =

Z
(y cosxy � y) dx

= cosxy � xy + g(y)
@f

@y
= x cosxy � x+ g0(y) = x cosxy � x
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g0(y) = 0
g(y) = c
f(x, y) = cosxy � xy + c

Therefore the field is conservative.

9.
dy

dx
=

2x/y

y
=

2x

y2Z
y2 dy =

Z
2x dx

y3

3
= x2 + c

y3 = 3x2 + k (k = 3c)

10.
dy

dx
=

y

3/x
=

xy

3Z
1

y
dy =

Z
x

3
dx

ln |y| = x2

6
+ c

y = ±ex
2/6+c

y = Aex
2/6

11. From r2 = x2 + y2 we get
@r

@x
=

x

r
.

Therefore
@

@x
ln r =

1

r

@r

@x
=

x

r2

Similarly,
@

@y
ln r =

y

r2
.

Therefore,

r ln r =
D x

r2
,
y

r2

E
=

1

r2
hx, yi = r

r2

12. If we let f(x, y) = 1

r = (x2 + y2)�1/2, then

fx(x, y) = �
1

2
(x2 + y2)�3/2(2x)

= � x

(x2 + y2)3/2
= � x

r3

fy(x, y) = �
y

r3

r
✓
1

r

◆
= rf =

D
� x

r3
,� y

r3

E
=

r

r3

13. Parametrize the segment by x, running from 2
to 4 (y = 3):
Z

C

3y dx =

Z
4

2

3(3) dx = 18

14. x = 4 cos t, y = 4 sin t, 0  t  ⇡.

ds =
p
[x0(t)]2 + [y0(t)]2 dt

=
p
16 cos2 t+ 16 sin2 t dt = 4 dtZ

C

(x2 + y2) ds

=

Z ⇡

0

(16 cos2 t+ 16 sin2 t)4 dt

=

Z ⇡

0

16(4) dt = 64⇡

15. In this case, the integrand is constant on the
curve:
Z

C

p
x2 + y2 ds =

Z

C

3 ds

= 3(Length of C)
= 3(6⇡) = 18⇡

16. x = �t, y = �t3, �1  t  1.

ds =
p
[x0(t)]2 + [y0(t)]2 dt

=
p
1 + 9t4 dt

Z

C

(x� y) ds

=

Z
1

�1

(�t+ t3)
p

1 + 9t4 dt

= 0 (odd function)

17. C is a closed curve and the integral is of the

form

Z

C

f(x) dx. All integrals of this form are

equal to zero, basically being equal to a definiteZ a

a

f(x) dx.

18. C
1

: x = t, y = t2, �1  t  1.
Z

C1

3y2 dy =

Z
1

�1

3t4(2t) dt = 0

C
2

: x = 1� 2t, y = 1, 0  t  1.
Z

C2

3y2 dy =

Z
1

0

3(0) dt = 0

Therefore,
R
C
3y2 dy = 0.

19. x = 2 cos t, y = 2 sin t, 0  t  2⇡.
I

C

F · dr =

I

C

x dx� y dy

=

Z
2⇡

0

[(2 cos t)(�2 sin t)� (2 sin t)(2 cos t)] dt

=

Z
2⇡

0

�8(sin t cos t) dt = 0

20. x = 2 cos t, y = 2 sin t, 0  t  2⇡.
I

C

F · dr =

I

C

y dx� x dy

=

Z
2⇡

0

[(2 sin t)(�2 sin t)� (2 cos t)(2 cos t)] dt

=

Z
2⇡

0

�4(sin2 t+ cos2 t) dt

=

Z
2⇡

0

�4 dt = �8⇡
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21. We first parametrize the quarter-circle, C
1

, by

x = 2 cos t, y = 2 sin t, 0  t  ⇡

2
.

Z

C1

F · dr =

Z

C1

2 dx+ 3x dy

=

Z ⇡/2

0

[2(�2 sin t) + 3(2 cos t)(2 cos t)] dt

=

Z ⇡/2

0

[�4 sin 5 + 12 cos2 t] dt

= �4 + 3⇡

22. C
1

: (�2, 0) to (2, 0):
x = t, y = 0, �2  t  2.Z

C1

F · dr =

Z

C1

y dx� x dy

=

Z
2

�2

[0� (t)(0)] dt = 0

C
2

: (2, 0) to (2, 4):
x = 2, y = t, 0  t  4.Z

C2

F · dr =

Z

C2

y dx� x dy

=

Z
2

�2

[(t)(0)� 2(1)] dt

=

Z
2

�2

�2 dt = �8

C
3

: (2, 4) to (�2, 4):
x = �t, y = 4, �2  t  2.Z

C3

F · dr =

Z

C3

y dx� x dy

=

Z
2

�2

[4(�1)� (�t)(0)] dt

=

Z
2

�2

�4 dt = �16

C
4

: (�2, 4) to (�2, 0):
x = �2, y = �t, �2  t  2.Z

C4

F · dr =

Z

C4

y dx� x dy

=

Z
2

�2

[(�t)(0)� (�2)(�1)] dt

=

Z
2

�2

�2 dt = �8
I

C

F · dr

=

Z

C1

F · dr+
Z

C2

F · dr

+

Z

C3

F · dr+
Z

C4

F · dr

= 0� 8� 16� 8 = �32

23. This one is a bit di�cult to say. The motion is
somewhat against the force in the early part of

the trajectory and with the force in the later
part of the trajectory. It appears that the later
part will dominate the work will be small but
positive.

24. The motion is in roughly the same direction as
the force field, so the work is positive.

25. x = cos 3t, y = sin 3t, z = 4t, 0  t  2⇡

ds =
p
[x0(t)]2 + [y0(t)]2 + [z0(t)]2+ dt

=
p
(�3 sin 3t)2 + (3 cos 3t)2 + 42 dt

=
p

32 + 42 dt = 5 dt

m =

Z

C

⇢ ds =

Z
2⇡

0

5(4) dt = 40⇡

26. z = x2 + y2

n = h2x, 2y,�1i
dS =

p
4x2 + 4y2 + 1 dA

m =

ZZ

S

⇢ dS

=

ZZ

R

(12)
p
4x2 + 4y2 + 1 dA

=

Z
2⇡

0

Z
2

0

12r
p
4r2 + 1 dr d✓

=

Z
2⇡

0

(173/2 � 1) d✓

= 2⇡(173/2 � 1)

27. For F = h3x2y � x, x3i, a potential function is

f(x, y) = x3y � 1

2
x2. Therefore,

Z

C

(3x2y) dx� x3 dy

=


x3y � 1

2
x2

�
(4,1)

(2,�1)

= 56� (�10) = 66

28. For F = hy2�x2, 2xy+1i, a potential function

is f(x, y) = xy2 � 1

3
x3 + y. Therefore,

Z

C

(y2 � x2) dx+ (2x+ 1) dy

=


xy2 � 1

3
x3 + y

�
(1,3)

(3,2)

= �35

3
+ 5 =

20

3

29. A quick check shows that
@N

@x
=

@M

@y
and

therefore the field has a potential function.

A potential function for F is
f(x, y) = x2y � y cosx+ ex+y. Therefore,
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Z

C

F · dr = [f(x, y)](3,0)
(0,3)

= f(3, 0)� f(0, 3)
= e3 � (�3 + e3) = 3

30. x = 2� cos t, y = 3 + sin t, 0  t  ⇡.

In this case, let

G =

⌧
y3 +

1

2

r
y

x
, 3xy2 +

1

2

r
x

y

�

H = h2y, 0i
Then, F = G+H. But, G is conservative with
potential function g(x, y) = xy3 +

p
xy.

Z

C

G · dr =
⇥
xy3 +

p
xy
⇤
(3,3)

(1,3)

= 84� (27 +
p
3) = 57�

p
3Z

C

H · dr =

Z

C

2y dx+ 0 dy

=

Z ⇡

0

[2(3 + sin t)(sin t) + 0] dt

= 2

Z ⇡

0

(3 sin t+ sin2 t) dt

= ⇡ + 12Z

C

F · dr =

Z

C

G · dr+
Z

C

H · dr

= 57�
p
3 + ⇡ + 12

= 69�
p
3 + ⇡

31. A bit of works shows that curl(F) = 0 and
therefore the integral is independent of path.
A potential function is

f(x, y, z) = x2y � 1

2
y2 + z2. Therefore,

Z

C

F · dr =


x2y � 1

2
y2 + z2

�
(2,1,�3)

(1,3,2)

=
25

2
� 5

2
= 10

32. A potential function for F is

f(x, y, z) = xyz � x2

2
� y2

2
� z2

2
Z

C

F · dr =


xyz � x2

2
� y2

2
� z2

2

�
(0,1,�1)

(2,0,0)

= �1� (�2) = 1

33. In inspecting the graph, we are looking for a
closed path over which there is non-zero work.
No such path is obvious.

Note also that the field appears to be indepen-
dent of y and the vertical component is inde-
pendent of x. This means that My = 0 = Ny

and that Nx = 0 from which we conclude that
the field is conservative (Nx = My).

34. If F = hM,Ni, then from the picture we can
see that Nx = 0, but My 6= 0. Therefore, the
vector field is not conservative.

35. M = x3 � y and N = x+ y3.

By Green’s Theorem:
I

M dx+N dy =

ZZ

R

(Nx �My) dA

=

ZZ

R

[1� (�1)] dA =

ZZ

R

2 dA

= 2

Z
1

0

Z x

x2

dy dx

= 2

Z
1

0

(x� x2) dx =
1

3

36. M = y2 + 3x2y and N = xy + x3.
I

C

F · dr

=

I
M dx+N dy

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

Z
2

0

Z
2x

x2

[(y + 3x2)� (2y + 3x2)] dy dx

=

Z
2

0

Z
2x

x2

(�y) dy dx

=

Z
2

0

✓
�2x2 +

x4

2

◆
dx = �32

15

37. Note that this curve is oriented negatively.
M = tan(x2) and N = x2

By Green’s Theorem:
I

M dx+N dy = �
ZZ

R

(Nx �My) dA

= �
ZZ

R

(2x� 0) dA = �2
ZZ

R

x dA

= �2
Z

1

0

Z
2�y

y

x dx dy

= �
Z

1

0

[(2� y)2 � y2] dy

= �
Z

1

0

(4� 4y) dy = �2

38. M = x2y and N =
1

2
ln(1 + y2).

I

C

F · dr

=

I
M dx+N dy

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA



14. REVIEW EXERCISES 901

=

Z
2

0

Z
2

x

(�x2) dy dx

=

Z
2

0

(x2 � 2x2) dx = �4

3

39. In this case, we have x = 0 and the integral
becomes:I

C

F · dr

=

I

C

3x2 dx+ (4y3 � z) dy + z2 dz

=

I

C

(4y3 � z) dy + z2 dz

=

I

C

M dy +N dz

=

ZZ

R

✓
@N

@y
� @M

@z

◆
dA

=

Z
2

�2

Z
4

y2

[0� (�1)] dz dy

=

Z
2

�2

(4� y2) dy =
32

3

40. Since the curve lies in the plane z = 3, we use
F = h4y2, 3x2, 24i.
I

C

F · dr =

I
4y2 dx+ 3x2 dy + 24 dz

Since dz = 0, can reduce the the problem to
two dimensions with M = 4y2 and N = 3x2.
R is the region inside x2 + y2 = 4.

We use polar coordinates.
I

C

F · dr

=

I
M dx+N dy

=

ZZ

R

✓
@N

@x
� @M

@y

◆
dA

=

ZZ

R

(6x� 8y) dA

=

Z
2⇡

0

Z
2

0

(6r cos ✓ � 8r sin ✓)r dr d✓

=

Z
2⇡

0

✓
16 cos ✓ � 64

3
sin ✓

◆
d✓ = 0

41. Parametrize the ellipse:
x = 3 cos t, y = 2 sin t, 0  t  2⇡

A =
1

2

I

C

x dy � y dx

=
1

2

Z
2⇡

0

[(3 cos t)(2 cos t)

� (2 sin t)(�3 sin t)] dt

= 3

Z
2⇡

0

(cos2 t+ sin2 t) dt = 6⇡

42. C
1

: x = t, y = 0, 0  t  ⇡.
C

2

: x = �t, y = � sin t, �⇡  t  0

A =
1

2

I

C

x dy � y dx

=
1

2

✓Z

C1

x dy � y dx

◆

+
1

2

✓Z

C2

x dy � y dx

◆

=
1

2

Z ⇡

0

[t(0) + (0)(1)] dt

+
1

2

Z
0

�⇡

[(�t)(� cos t)� (� sin t)(�1)] dt

= 0 +
1

2

Z
0

�⇡

[t cos t� sin t] dt

=
1

2
(4) = 2

43. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

x3 �y3 0

������
= (0) i� (0) j+ (0)k
= h0, 0, 0i
divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
x3,�y3, 0

↵

= 3x2 � 3y2 + 0 = 3x2 � 3y2

44. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

y3 �x3 0

������
= (0) i� (0) j+

�
�3x2 � 3y2

�
k

=
⌦
0, 0,�3x2 � 3y2

↵

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
y3,�x3, 0

↵

= 0 + 0 + 0 = 0

45. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

2x 2yz2 2y2z

������
= (4yz � 4yz) i� (0� 0) j+ (0� 0)k
= h0, 0, 0i
divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
2x, 2yz2, 2y2z

↵

= 2 + 2z2 + 2y2

46. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

2xy x2 � 3y2z2 1� 2zy3

������
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=
�
�6y2z + 6y2z

�
i� (0� 0) j

+ (2x� 2x)k
= h0, 0, 0i
divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�

·
⌦
2xy, x2 � 3y2z2, 1� 2zy3

↵

= 2y + 6yz2 � 2y3

47. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

2x� y2 z2 � 2xy xy2

������
= (2xy � 2z) i�

�
z2 � 2xy

�
j+
�
xy2
�
k

=
⌦
2xy � 2z, z2 � 2xy, xy2

↵
6= 0

This vector field is not conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
2x� y2, z2 � 2xy, xy2

↵

= 2� 2x+ 0 = 2� 2x

This vector field is not incompressible.

48. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

y2z x2 � 3z2y z3 � y

������
= (�1 + 6yz) i�

�
0� y2

�
j+ (2x� 2yz)k

=
⌦
6yz � 1, y2, 2x� 2yz

↵
6= 0

This vector field is not conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
y2z, x2 � 3z2y, z3 � y

↵

= 0� 3z2 + 3z2 = 0

This vector field is incompressible.

49. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

4x� y 3� x 2� 4z

������
= (0� 0) i� (0� 0) j+ (�1 + 1)k
= h0, 0, 0i
This vector field is conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
· h4x� y, 3� x, 2� 4zi

= 4 + 0� 4 = 0

This vector field is incompressible.

50. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

4 2xy3 z4 � x

������

= (0� 0) i� (�1� 0) j+
�
2y3 � 0

�
k

=
⌦
0, 1, 2y3

↵
6= 0

This vector field is not conservative.

divF = r · F
=

⌧
@

@x
,
@

@y
,
@

@z

�
·
⌦
4, 2xy3, z4 � x

↵

= 0 + 6xy2 + 4z3 6= 0

This vector field is not incompressible.

51. The divergence at P is positive because if we
draw a small box around P , the flow in on the
left exactly matches the flow our on the right
whereas the flow out through the top is much
greater than the flow in at the bottom.

52. The divergence at P is negative because if we
draw a small box around P , the outflow (at the
top of the box) is less than the inflow (at the
bottom of the box).

53. This is a bit di�cult to visualize. Remember
to draw level curves and traces. Also notice
that x � 0 and y � 0.

0

0.5
y

1

1.5

2
0

1
2

3 x
4

5
-3

-2

-1

0

1

2

3

54.

-4
-2

0
4

y
-2

2

-1

x

2
0

0

-2

1

4
-4

2

55. Surfaces B and C appear to have x � 0, which
is true of a. and b. By elimination c. must
be surface A, and this fits because A also has
z � 0. Surface B also has z � 0, and there-
fore must correspond to a.. This leaves b. for
surface C, which also looks reasonable.



14. REVIEW EXERCISES 903

a. B

b. C

c. A

56. x = 3 sin� cos ✓
y = 3 sin� sin ✓
z = 3 cos�
0  �  ⇡ 0  ✓  2⇡

57. f(x, y) = x2 + y2

n = h2x, 2y,�1i
knk =

p
4x2 + 4y2 + 1

S =

ZZ

S

dS

=

ZZ

R

knk dA

=

ZZ

R

p
4x2 + 4y2 + 1 dA

=

Z
2⇡

0

Z
2

1

r
p
4r2 + 1 dr d✓

=

Z
2⇡

0

Z
2

1

r
p
4r2 + 1 dr d✓

=
1

12

Z
2⇡

0

⇣
173/2 � 53/2

⌘
d✓

=
⇡

6

⇣
173/2 � 53/2

⌘

58. f(x, y) = 9� x2 � y2

n = h�2x,�2y,�1i
knk =

p
4x2 + 4y2 + 1

S =

ZZ

S

dS

=

ZZ

R

knk dA

=

ZZ

R

p
4x2 + 4y2 + 1 dA

=

Z
2⇡

0

Z
2

1

r
p
4r2 + 1 dr d✓

=

Z
2⇡

0

Z
2

1

r
p
4r2 + 1 dr d✓

=
1

12

Z
2⇡

0

⇣
173/2 � 53/2

⌘
d✓

=
⇡

6

⇣
173/2 � 53/2

⌘

59. y = f(x, z) = 12� 3x� 2y
n = h�3,�2,�1i
knk =

p
9 + 4 + 1 =

p
14

The surface projects onto a triangle T in the
xy-plane with vertices
(0, 0), (4, 0) and (0, 6).
ZZ

S

(x� y) dS

=

ZZ

T

(x� y)
p
14 dA

=
p
14

Z
4

0

Z
6�3x/2

0

(x� y) dy dx

=
p
14

Z
4

0

✓
�21

8
x2 + 15x� 18

◆
dx

= �8
p
14

60. y = f(x, z) = 4� x2

n = h�2x,�1, 0i
knk =

p
4x2 + 1

ZZ

S

(x2 + y2) dS

=

ZZ

R

[x2 + (4� x2)2]
p
4x2 + 1 dA

=

Z
2

�2

Z
2

0

[x2 + (4� x2)2]
p

4x2 + 1 dz dx

=

Z
2

�2

2(x4 � 7x2 + 16)
p
4x2 + 1 dx

=
2677

p
17

96
� 2105

128
ln(
p
17� 4)

⇡ 149.4227

61. z = f(x, y) = 4� 4

3
x� 1

3
y

n =

⌧
�4

3
,�1

3
,�1

�

knk =
r

16

9
+

1

9
+ 1 =

p
26

3

The surface projects onto the unit disk D.
ZZ

S

(4x+ y + 3z) dS

=

ZZ

D

(12)

p
26

3
dA = 4

p
26

ZZ

D

dA

= 4
p
26(Area of D) = 4⇡

p
26

62. z = f(x, y) =
p
1� x2

n =

⌧
�xp
1� x2

, 0,�1
�

knk = 1p
1� x2

ZZ

S

(x� z) dS

=

ZZ

R

⇣
x�

p
1� x2

⌘✓ 1p
1� x2

◆
dA

=

Z
1

�1

Z
2

1

✓
xp

1� x2

� 1

◆
dy dx

=

Z
1

�1

✓
xp

1� x2

� 1

◆
dx = �2

63. y = f(x, z) =
p
x2 + z2

n =

⌧
xp

x2 + z2
,�1, zp

x2 + z2

�

knk =
p
2



904 CHAPTER 14. VECTOR CALCULUS

We integrate over a disk and convert to polar
coordinates.
ZZ

S

yz dS

=

ZZ

R

z
p
x2 + z2

p
2 dA

=
p
2

Z
2

0

Z
2⇡

0

(r sin ✓)(r)r d✓ dr

=
p
2

Z
2

0

r3(0) dr = 0

64. x = f(y, z) = y2 + z2

n = h�1, 2y, 2zi
knk =

p
1 + 4y2 + 4z2

ZZ

S

(x2 + z2) dS

=

ZZ

R

⇥
(y2 + z2)2 + z2

⇤p
1 + 4y2 + 4z2 dA

=

Z
2

0

Z
2⇡

0

r(r4 + r2 sin2 ✓)
p
1 + 4r2 d✓ dr

= ⇡

Z
2

0

(2r5 + r3)
p

1 + 4r2 dr

=
⇡

168
(1 +

p
17)

65. f(x, y) = x2 + y2

n = h2x, 2y,�1i
knk =

p
4x2 + 4y2 + 1 =

p
4r2 + 1

dS =
p

4r2 + 1 dA

m =

ZZ

S

⇢ dS

=

ZZ

R

2
p
4r2 + 1 dA

=

Z
2⇡

0

Z
2

0

2r
p
4r2 + 1 dr d✓

= 4⇡

Z
2

0

r
p
4r2 + 1 dr

= 4⇡


1

12
(1 + 4r2)3/2

�
2

0

=
⇡(173/2 � 1)

3

Note that by symmetry, we must have
x = y = 0.

z =
1

m

ZZ

S

⇢z dS

=
1

m

ZZ

R

2r2
p
4r2 + 1 dA

=
2

m

Z
2⇡

0

Z
2

0

r3
p
4r2 + 1 dr d✓

=
4⇡

m

Z
2

0

r3
p
4r2 + 1 dr

=
⇡

30m
(391
p
17 + 1)

=
391
p
17 + 1

10(173/2 � 1)

66. ⇢ = z =
p
x2 + y2

n =

*
xp

x2 + y2
,

yp
x2 + y2

,�1
+

knk =
p
2

m =

ZZ

S

⇢ dS

=

ZZ

R

p
x2 + y2(

p
2) dA

=

Z
2⇡

0

Z
4

0

r2
p
2 dr d✓

=

Z
2⇡

0

64
p
2

3
d✓ =

128⇡
p
2

3

x =
1

m

ZZ

S

x⇢ dS

=
1

m

ZZ

R

x
p
x2 + y2(

p
2) dA

=
1

m

Z
4

0

Z
2⇡

0

r3 cos ✓(
p
2) d✓ dr

=
1

m

Z
4

0

0 dr = 0

y =
1

m

ZZ

S

y⇢ dS

=
1

m

ZZ

R

y
p

x2 + y2(
p
2) dA

=
1

m

Z
4

0

Z
2⇡

0

r3 sin ✓(
p
2) d✓ dr

=
1

m

Z
4

0

0 dr = 0

z =
1

m

ZZ

S

z⇢ dS

=
1

m

ZZ

R

(x2 + y2)(
p
2) dA

=
1

m

Z
2⇡

0

Z
4

0

r3(
p
2) dr d✓

=
1

m

Z
2⇡

0

64
p
2 d✓

=
1

m
(128⇡

p
2)

=
3

128⇡
p
2
(128⇡

p
2) = 3

67. The integrals in Exercises 67-70 are integrated
over @Q and not Q, as stated in the text.
r · F = 0 + 2y + 0 = 2yZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

2y dV
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=

Z
2

0

Z
4�2y

0

Z
4�2y�x

0

2y dz dx dy

=

Z
2

0

Z
4�2y

0

(4� 2y � x)2y dx dy

=

Z
2

0

�
4y3 � 16y2 + 16y

�
dy =

16

3

68. The integrals in Exercises 67-70 are integrated
over @Q and not Q, as stated in the text.

r · F = 4 + 0 + 0ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV =

ZZZ

Q

4 dV

= 4(volume of cube) = 4(8) = 32

69. The integrals in Exercises 67-70 are integrated
over @Q and not Q, as stated in the text.

r · F = 2y + 7x+ 0 = 2y + 7x

The region Q is part of a cylinder set in the x-
direction, whose cross section in the yz-plane
is {(y, z) : 0  z  1� y2,�1  y  1}
ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

(2y + 7x) dV

=

Z
1

�1

Z
1�y2

0

Z
4�z

0

(2y + 7x) dx dz dy

=

Z
1

�1

Z
1�y2

0

(8y � 2yz + 56

�28z + 7

2
z2
◆

dz dy

=

Z
1

�1

✓
259

6
+ 7y � 63

2
y2 � 6y3

� 21

2
y4 � y5 � 7

6
y6
◆

dy

=

Z
1

�1

✓
259

6
� 63

2
y2 � 21

2
y4 � 7

6
y6
◆

dy

=
304

5

70. The integrals in Exercises 67-70 are integrated
over @Q and not Q, as stated in the text.

r · F = 0 + 4z + 0 = 4z

We use cylindrical coordinates:
x = r cos ✓, y = y, z = r sin ✓.
ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

4z dV

=

Z ⇡

0

Z
2

0

Z
6�4 sin ✓

0

4r2 sin ✓ dy dr d✓

=

Z ⇡

0

Z
2

0

(6� r sin ✓)4r2 sin ✓ dr d✓

=

Z ⇡

0

16 sin ✓(4� sin ✓) d✓ = 128� 8⇡

71. We will use cylindrical coordinates:
Q = {(r, ✓, z) : 0  z  r, 0  r  2}
r · F = z + z � 1 = 2z � 1ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

(2z � 1) dV

=

Z
2⇡

0

Z
2

0

Z r

0

(2z � 1)r dz dr d✓

=

Z
2⇡

0

Z
2

0

(r3 � r2) dr d✓

= 2⇡

Z
2

0

(r3 � r2) dr =
8⇡

3

72. r · F = 4� 2 + 3 = 5

We use cylindrical coordinates.ZZ

@Q

F · n dS =

ZZZ

Q

r · F dV

=

ZZZ

Q

5 dV

=

Z
2⇡

0

Z
1

0

Z
2�r2

r2
5r dz dr d✓

=

Z
2⇡

0

Z
1

0

10r(1� r2) dr d✓

=

Z
2⇡

0

5

2
d✓ = 5⇡

73. @S is the triangle T in the yz-plane with ver-
tices at (0, 0, 0), (0, 2, 0) and (0, 0, 1).ZZ

S

(r⇥ F) · n dS =

Z

@S

F · dr

=

Z

@S

(zy4 � y2) dx+ (y � x3) dy + z2 dz

We will assume that n is pointed in the direc-
tion of the positive x-axis.

For the segment C
1

from (0, 0, 0) to (0, 2, 0):
x = 0, y = t, z = 0, 0  t  2.
Z

C1

F · dr =

Z
2

0

t dt = 2

For the segment C
2

from (0, 2, 0) to (0, 0, 1):
x = 0, y = 2� 2t, z = t, 0  t  1.
Z

C2

F · dr =

Z
1

0

[(2� 2t)(�2) + t2] dt

=

Z
1

0

(t2 + 4t� 4) dt = �5

3

For the segment C
3

from (0, 0, 1) to (0, 0, 0):
x = 0, y = 0, z = �t, �1  t  0.
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Z

C1

F · dr =

Z
0

�1

(�t)2(�1) dt = �1

3

Therefore,ZZ

S

(r⇥ F) · n dS =

Z

@S

F · dr

= 2� 5

3
� 1

2
= 0

74. @S is the circle x2 + y2 = 4 in the plane z = 4.
We parametrize this circle:
x = 2 cos t, y = 2 sin t, z = 4, 0  t  2⇡.ZZ

S

(r⇥ F) · n dS =

Z

@S

F · dr

=

Z

@S

(z2 � x) dx+ 2y dy + z3xy dz

=

Z
2⇡

0

[(16� 2 cos t)(�2 sin t)

+ 2(2 sin t)(2 cos t) + 0] dt

=

Z
2⇡

0

(�32 sin t+ 12 cos t sin t) dt = 0

75. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

4x2 2yey
p
z2 + 1

������
= (0) i� (0) j+ (0)k
= h0, 0, 0iZZ

S

(r⇥ F) · n dS

ZZ

S

(0) · n dS = 0

76. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

xe3x 4y2/3 z2 + 2

������
= (0) i� (0) j+ (0)k
= h0, 0, 0iZZ

S

(r⇥ F) · n dS

ZZ

S

(0) · n dS = 0

77. This field has zero curl, r⇥ F = 0. This can
be seen by direct calculation (which is quite a
bit of work) or by finding a potential function
(which is also some work). A potential func-
tion for F is

� =
y3

3
+

z2

2
+ yx2 cos z.

ZZ

S

(r⇥ F) · n dS

ZZ

S

(0) · n dS = 0

78. curlF = r⇥ F

=

������

i j k
@
@x

@
@y

@
@z

x3 + yz y2 z2

������

= (0� 0) i� (0� y) j+ (0� z)k
= h0, y,�zi

S is the square in the plane z = 2.

n = h0, 0, 1i
dS = dA = dy dx
(r⇥ F) · n = �z = �2
Z

C

F · dr =

ZZ

S

(r⇥ F) · n dS

=

ZZ

R

(�2) dA

= �2(area of square)
= �2(1) = �2



Chapter 15

Second Order
Di↵erential
Equations

15.1 Second-Order Equations
with Constant Coe�-
cients

1. The characteristic equation is
r2 � 2r � 8 = 0
which has solutions
r = 4 and r = �2
Thus, we are in “Case 1” and the general solu-
tion is
y = c

1

e4t + c
2

e�2t.

2. The characteristic equation is
r2 + r � 6 = 0
which has solutions
r = 2 and r = �3
Thus, we are in “Case 1” and the general solu-
tion is
y = c

1

e2t + c
2

e�3t.

3. The characteristic equation is
r2 � 4r + 4 = 0
which has solutions
r = 2 and r = 2
Thus, we are in “Case 2” and the general solu-
tion is
y = c

1

e2t + c
2

te2t.

4. The characteristic equation is
r2 + 2r + 6 = 0
which has solutions
r = �1 +

p
5i and r = �1�

p
5i

Thus, we are in “Case 3” and the general solu-
tion is

y = c
1

e�t cos(
p
5t) + c

2

e�t sin(
p
5t).

5. The characteristic equation is
r2 � 2r + 5 = 0
which has solutions
r = 1 + 2i and r = 1� 2i
Thus, we are in “Case 3” and the general solu-
tion is
y = c

1

et cos(2t) + c
2

et sin(2t).

6. The characteristic equation is
r2 + 6r + 9 = 0
which has solutions
r = �3 and r = �3 (a repeated root)
Thus, we are in “Case 2” and the general solu-
tion is
y = c

1

e�3t + c
2

te�3t

7. The characteristic equation is
r2 � 2r = 0
which has solutions
r = 0 and r = 2
Thus, we are in “Case 1” and the general solu-
tion is
y = c

1

+ c
2

e2t.

8. The characteristic equation is
r2 � 6 = 0
which has solutions
r =

p
6 and r = �

p
6

Thus, we are in “Case 1” and the general solu-
tion is
y = c

1

e
p
6t + c

2

e�
p
6t

9. The characteristic equation is
r2 � 2r � 6 = 0
which has solutions
r = 1 +

p
7 and r = 1�

p
7

Thus, we are in “Case 1” and the general solu-
tion is
y = c

1

e(1+
p
7)t + c

2

e(1�
p
7)t.

10. The characteristic equation is
r2 + r + 3 = 0
which has solutions
r = � 1

2

+ 1

2

p
11i and r = � 1

2

� 1

2

p
11i

Thus, we are in “Case 3” and the general solu-
tion is
y = c

1

e�t/2 cos(
p
11t) + c

2

e�t/2 sin(
p
11t)

11. The characteristic equation is
r2 �

p
5 r + 1 = 0

which has solutions
r =

p
5+1

2

and r =
p
5�1

2

Thus, we are in “Case 1” and the general solu-
tion is
y = c

1

e(
p
5+1)t/2 + c

2

e(
p
5�1)t/2.

907
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12. The characteristic equation is
r2 +

p
3r + 1 = 0

which has solutions
r = �

p
3

2

+ 1

2

i and r = �
p
3

2

� 1

2

i
Thus, we are in “Case ” and the general solu-
tion is
y = c

1

e�t

p
3/2 cos(t/2) + c

2

e�t

p
3/2 sin(t/2)

13. The characteristic equation is
r2 + 4 = 0
which has solutions
r = 2i and r = �2i
Thus, we are in “Case 3” and the general solu-
tion is
y = c

1

cos(2t) + c
2

sin(2t).
To solve the initial value problem, we use the
initial conditions.
2 = y(0) = c

1

� 3 = y0(0) = 2c
2

Solving gives c
1

= 2 and c
2

= � 3

2

and therefore the solution is

y = 2 cos(2t)� 3

2
sin(2t).

14. The characteristic equation is
r2 + 2r + 10 = 0
which has solutions
r = �1 + 3i and r = �1� 3i
Thus, we are in “Case 3” and the general solu-
tion is
y = c

1

e�t cos(3t) + c
2

e�t sin(3t).
To solve the initial value problem, we use the
initial conditions.
1 = y(0) = c

1

0 = y0(0) = �c
1

+ 3c
2

Solving gives c
1

= 1 and c
2

= 1

3

and therefore the solution is

y = e�t cos(3t) +
1

3
e�t sin(3t)

15. The characteristic equation is
r2 � 3r + 2 = 0
which has solutions
r = 1 and r = 2
Thus, we are in “Case 1” and the general solu-
tion is
y = c

1

et + c
2

e2t.
To solve the initial value problem, we use the
initial conditions.
0 = y(0) = c

1

+ c
2

1 = y0(0) = c
1

+ 2c
2

Solving gives c
1

= �1 and c
2

= 1
and therefore the solution is
y = �et + e2t.

16. The characteristic equation is
r2 + r � 2 = 0

which has solutions
r = 1 and r = �2
Thus, we are in “Case 1” and the general solu-
tion is
y = c

1

et + c
2

e�2t

To solve the initial value problem, we use the
initial conditions.
3 = y(0) = c

1

+ c
2

0 = y0(0) = c
1

� 2c
2

Solving gives c
1

= 2 and c
2

= 1
and therefore the solution is
y = 2et + e�2t

17. The characteristic equation is
r2 � 2r + 5 = 0
which has solutions
r = 1 + 2i and r = 1� 2i
Thus, we are in “Case 3” and the general solu-
tion is
y = c

1

et cos(2t) + c
2

et sin(2t).
To solve the initial value problem, we use the
initial conditions.
2 = y(0) = c

1

0 = y0(0) = c
1

+ 2c
2

Solving gives c
1

= 2 and c
2

= �1
and therefore the solution is
y = 2et cos(2t)� et sin(2t).

18. The characteristic equation is
r2 � 4r + 4 = 0
which has solutions
r = 2 and r = 2 (a repeated root)
Thus, we are in “Case 2” and the general solu-
tion is
y = c

1

e2t + c
2

te2t

To solve the initial value problem, we use the
initial conditions.
2 = y(0) = c

1

1 = y0(0) = 2c
1

+ c
2

Solving gives c
1

= 2 and c
2

= �3
and therefore the solution is
y = 2e2t � 3te2t

19. The characteristic equation is
r2 � 2r + 1 = 0
which has solutions
r = 1 and r = 1 (repeated)
Thus, we are in “Case 2” and the general solu-
tion is
y = c

1

et + c
2

tet.
To solve the initial value problem, we use the
initial conditions.
�1 = y(0) = c

1

2 = y0(0) = c
1

+ c
2

Solving gives c
1

= �1 and c
2

= 3
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and therefore the solution is
y = �et + 3tet.

20. The characteristic equation is
r2 + 3r = 0
which has solutions
r = 0 and r = �3
Thus, we are in “Case ” and the general solu-
tion is
y = c

1

+ c
2

e�3t

To solve the initial value problem, we use the
initial conditions.
4 = y(0) = c

1

+ c
2

0 = y0(0) = �3c
2

Solving gives c
1

= 16

3

and c
2

= � 4

3

and therefore the solution is

y =
16

3
� 4

3
e�3t

21. Trigonometric identities give:
A sin(kt+ �) = A (sin kt cos � + cos kt sin �)
Therefore A sin(kt + �) = c

1

cos kt + c
2

sin kt
where c

1

= A sin � and c
2

= A cos �. Then,
c2
1

+ c2
2

= A2 sin2 k� +A2 cos2 � = A2 and

tan � =
sin �

cos �
=

A sin �

A cos �
=

c
1

c
2

Note, it is important to look at the signs of c
1

and c
2

to determine the correct quadrant for �.
For the di↵erential equation y00 + 9y = 0, the
characteristic equation is
r2 + 9 = 0
which has solutions
r = 3i and r = �3i
The general solution is
y = c

1

cos(3t) + c
2

sin(3t)
To solve the initial value problem, we use the
initial conditions.
3 = y(0) = c

1

� 6 = y0(0) = 3c
2

Solving gives c
1

= 3 and c
2

= �2
and therefore the solution is
y = 3 cos(3t)� 2 sin(3t) =

p
13 sin(2t+ �)

where � = ⇡ + tan�1(�3/2) ⇡ 2.16(rad) (sec-
ond quadrant).
So, the amplitude is

p
13 and the phase shift

is ⇡ + tan�1(�3/2).

22. The characteristic equation is
r2 + 4 = 0
which has solutions
r = 2i and r = �2i
The general solution is
y = c

1

cos(2t) + c
2

sin(2t)
To solve the initial value problem, we use the
initial conditions.
1 = y(0) = c

1

� 2 = y0(0) = 2c
2

Solving gives c
1

= 1 and c
2

= �1
and therefore the solution is
y = cos(2t)� sin(2t) =

p
2 sin(2t+ �)

where tan � = �1. So, the amplitude is
p
2 and

the phase shift is 3⇡/4 (second quadrant).

23. The characteristic equation is
r2 + 20 = 0
which has solutions
r = 2

p
5i and r = �2

p
5i

The general solution is
y = c

1

cos(2
p
5t) + c

2

sin(2
p
5t)

To solve the initial value problem, we use the
initial conditions.
�2 = y(0) = c

1

2 = y0(0) = 2
p
5c

2

Solving gives c
1

= �2 and c
2

= 1p
5

and therefore the solution is

y =� 2 cos(2
p
5t) +

1p
5
sin(2

p
5t)

=

r
21

5
sin(2

p
5t+ �)

where tan � = 2
p
5

So, the amplitude is
q

21

5

and the phase shift

is tan�1(�2
p
5) (fourth quadrant).

24. The characteristic equation is
r2 + 12 = 0
which has solutions
r = 2

p
3i and r = �2

p
3i

The general solution is
y = c

1

cos(2
p
3t) + c

2

sin(2
p
3t)

To solve the initial value problem, we use the
initial conditions.
�1 = y(0) = c

1

� 2 = y0(0) = 2
p
3c

2

Solving gives c
1

= �1 and c
2

= � 1p
3

and therefore the solution is

y =� cos(2
p
3t)� 1p

3
sin(2

p
3t)

=
2p
3
sin(2

p
3t+ 4⇡/3)

So, the amplitude is 2p
3

and the phase shift is

4⇡/3 (third quadrant).

25. We first find k using F = kx:
12 = k(1/2), so k = 24.
This leads to the di↵erential equation
3

8
u00 + 24u = 0, u(0) =

2

3
, u0(0) = 0

The characteristic equation is 3

8

r2 + 24 = 0
which has solutions r = ±8i.
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This gives the general solution
u = c

1

cos(8t) + c
2

sin(8t)
To solve the initial value problem, we use the
initial conditions.
2

3

= u(0) = c
1

0 = u0(0) = 8c
2

Solving gives c
1

= 2

3

and c
2

= 0 and therefore
the solution is

u =
2

3
cos(8t)

t

u

4

1

3

0.5

0
2

-0.5

-1

10

26. We first find k using F = kx:
4(9.8) = k(0.2), so k = 196.
This leads to the di↵erential equation
4u00 + 196u = 0, u(0) = 0, u0(0) = �2
The characteristic equation is 4r2 + 196 = 0
which has solutions r = ±7i. This gives the
general solution
u = c

1

cos(7t) + c
2

sin(7t)
To solve the initial value problem, we use the
initial conditions.
0 = u(0) = c

1

� 2 = u0(0) = 7c
2

Solving gives c
1

= 0 and c
2

= � 2

7

and therefore the solution is

u = �2

7
sin(7t)

0.4

0.2

0

t

-0.2

-0.4

43210

u

27. We first find k using F = kx:
4(9.8) = k(0.1), so k = 392.
This leads to the di↵erential equation
4u00 + 392u = 0, u(0) = .2, u0(0) = �4

The characteristic equation is 4r2 + 392 = 0
which has solutions r = ±7

p
2 i.

This gives the general solution
u = c

1

cos(7
p
2 t) + c

2

sin(7
p
2 t) To solve the

initial value problem, we use the initial condi-
tions.
0.2 = u(0) = c

1

� 4 = u0(0) = 7
p
2 c

2

Solving gives c
1

= 1

5

and c
2

= � 2

p
2

7

and therefore the solution is

u =
1

5
cos(7

p
2 t)� 2

p
2

7
sin(7

p
2 t)

The amplitude is

A =

r
1

25
+

8

49
=

p
249

35
⇡ 45cm

The phase shift is

� = ⇡ + tan�1

✓
1/5

�2
p
2/7

◆

= ⇡ + tan�1

 
�7

p
2

20

!
(second quadrant)

0.4

0.2

0

t

-0.2

-0.4

43210

u

28. We first find k using F = kx:
6 = k(1/6) so k = 36.
This leads to the di↵erential equation
3

16
u00 + 36u = 0, u(0) =

1

3
, u0(0) = �4

The characteristic equation is 3

16

r2 + 36 = 0

which has solutions r = ±8
p
3i.

This gives the general solution
u = c

1

cos(8
p
3t) + c

2

sin(8
p
3t).

To solve the initial value problem, we use the
initial conditions.
1

3
= u(0) = c

1

� 4 = u0(0) = 8
p
3c

2

Solving gives c
1

= 1

3

and c
2

= � 1

2

p
3

and there-

fore the solution is

u =
1

3
cos(8

p
3t)� 1

2
p
3
sin(8

p
3t)

=

p
7

6
sin(8

p
3 t+ �)
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where � = ⇡ + tan�1

⇣
� 2p

3

⌘

(second quadrant).

0.4

0.2

0

t

-0.2

-0.4

43210

u

29. We first find k using F = kx:
16 = k(1/3), so k = 48.
This leads to the di↵erential equation
1

2

u00 + 10u+ 48u = 0,
u(0) = � 1

2

, u0(0) = 0
The characteristic equation is
1

2

r2 + 10r + 48 = 0
which has solutions
r = �12,�8
This gives the general solution
u = c

1

e�12t + c
2

e�8t

To solve the initial value problem, we use the
initial conditions.

�1

2
= u(0) = c

1

+ c
2

0 = u0(0) = �12c
2

� 8c
2

Solving gives c
1

= 1 and c
2

= � 3

2

and there-
fore the solution is

u = e�12t � 3

2
e�8t

t

u

0.8

2

1.5

0.6

1

0.5

0.4
0

-0.5

0.2

-1

0-0.2

30. We first find k using F = kx:
32 = k(2/3) so k = 48.
This leads to the di↵erential equation
u00 + 0.4u+ 48u = 0,
u(0) = 0, u0(0) = �3
The characteristic equation is
r2 + 0.4r + 48 = 0
which has solutions

r = �1

5
± 1

5

p
1199i

This gives the general solution

u = c
1

e�t/5 cos

 
t
p
1199

5

!

+ c
2

e�t/5 sin

 
t
p
1199

5

!

To solve the initial value problem, we use the
initial conditions.
0 = u(0) = c

1

� 3 = u0(0) = �c
1

5
+

c
2

5

p
1199

Solving gives c
1

= 0 and c
2

= � 15p
1199

and

therefore the solution is

u = � 15p
1199

e�t/5 sin

 
t
p
1199

5

!

0.6

0.4

t

0.2

0
10

-0.2

-0.4

8

-0.6

6420-2

31. We first find k using F = kx:
4(9.8) = k(.25), so k = 156.8.
This leads to the di↵erential equation
4u00 + 2u+ 156.8u = 0,
u(0) = � 1

2

, u0(0) = 0
The characteristic equation is
4r2 + 2r + 156.8 = 0
which has solutions

r = �1

4
± i

20

p
15655

This gives the general solution

u = c
1

e�t/4 cos

 
t
p
15655

20

!

+ c
2

e�t/4 sin

 
t
p
15655

20

!

To solve the initial value problem, we use the
initial conditions.

�1

2
= u(0) = c

1

0 = u0(0) =

p
15655

20
c
2

� c
1

4
Solving gives

c
1

= � 1

2

and c
2

= �
p
15655

6252

and therefore the solution is
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u = �1

2
e�t/4 cos

 
t
p
15655

20

!

�
p
15655

6252
e�t/4 sin

 
t
p
15655

20

!

-1

t
108642

u

0

1

-2

0.5

0

-0.5

32. We first find k using F = kx:
5(9.8) = k(0.1) so k = 490.
This leads to the di↵erential equation
5u00 + 5u+ 490u = 0,
u(0) = 0, u0(0) = �2
The characteristic equation is
5r2 + 5r + 490 = 0
which has solutions
r = � 1

2

± 1

2

p
391i

This gives the general solution

u = c
1

e�t/2 cos

 
t
p
391

2

!

+ c
2

e�t/2 sin

 
t
p
391

2

!

To solve the initial value problem, we use the
initial conditions.
0 = u(0) = c

1

� 2 = u0(0) = �c
1

2
+

c
2

p
391

2
Solving gives c

1

= 0 and c
2

= � 4p
391

and

therefore the solution is

u = � 4p
391

e�t/2 sin

 
t
p
391

2

!

t
654

0.3

3

0.2

2

0.1

0
1

-0.1

-0.2

0-1

33. If the di↵erential equation is ay00+by0+cy = 0,
and if r

1

is a repeated root to the characteristic
polynomial, P (r), then
P (r) = ar2 + br + c = a(r � r

1

)2

and therefore
0 = P (r

1

) = ar2
1

+ br
1

+ c and
0 = P 0(r

1

) = 2ar
1

+ b We know that y
1

= er1t

is a solution. We now test y
2

= ter1t in the
di↵erential equation.
y
2

= r
1

ter1t

y0
2

= r
1

ter1t + er1t

y00
2

= r2
1

ter1t + 2r
1

er1t and

ay00
2

+ by0
2

+ cy
2

=a
�
r2
1

ter1t + 2r
1

er1t
�

+ b
�
r
1

ter1t + er1t
�
+ c

�
r
1

ter1t
�

=
�
ar2

1

+ br
1

+ c
�
ter1t + (2ar

1

+ b) er1t

=0ter1t + 0er1t = 0

34. First, the fact that u+iv is a roots to the char-
acteristic equation means that
0 = a(u+ iv)2 + b(u+ iv) + c
= (au2 � av2 + bu+ c) + i(2auv + bv)

This means that
au2 � av2 + bu+ c = 0 and 2au+ b = 0.
For y = eut cos vt, we have
y0 = eut(u cos vt� v sin vt)
y00 = eut[(u2 � v2) cos vt� 2uv sin vt]
Putting these into ay00 + by0 + cy gives

ay00 + by0 + cy

=aeut[(u2 � v2) cos vt� 2uv sin vt]

+ beut(u cos vt� v sin vt)

+ ceut cos vt

=eut[(au2 � av2 + bu+ c) cos vt

� (2auv + bv) sin vt]

=eut[(0) cos vt� (0) sin vt] = 0

35. The di↵erential equation u00+cu0+16u = 0 had
characteristic equation r2 + cr + 16 = 0 which

has solutions r = �c±
p
c

2�64

2

. If 0 < c < 8
the roots are complex and negative real part.
In this case, the solution will show oscillatory
behavior (similar to the c = 0 case) but the os-
cillations will slowly die o↵. “Underdamped”
suggests that the damping is insu�cient to
completely eliminate oscillations. If c > 8 then
the roots are real, distinct and both negative.
In this case there will be no oscillatory behav-
ior. “Overdamped” suggests that the damping
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overrides the tendency to oscillate, causing the
solution to quickly go to zero. If c = 8 then
there is a repeated root (r = �4). This case
separates the underdamped and overdamped
case, but in reality it is very similar to the over-
damped case–the solution goes to zero with no
tendency to oscillate.

36. The critical damping occurs when the root of
the characteristic equation is a double root.
This occurs when c2 � 4mk = 0 or when
c = 2

p
mk. If c > 2

p
mk then the roots are

both real and there are no oscillations in the
spring system (the solution does not involve
any sin or cos. If c < 2

p
mk then the roots

are both complex and the solution involves sin
and cos terms. This means that the system
oscillates.

37. Critical damping occurs when c = 2
p
mk. In

this case, we have
m = 16

32

= 1

2

and k = 16

1/4

= 64.
So, critical damping is when

c = 2
q

1

2

(64) = 8
p
2

38. In the critically damped situation, the solution
will be of the form
u = c

1

er1t + c
2

ter1t

We solve u = 0,
0 = c

1

er1t + c
2

ter1t = er1t(c
1

+ c
2

t)

t =
c
1

c
2

Therefore, there is only one solution and the
mass can only pass through the equilibrium
position at most once. In the overdamped
damped situation, the solution will be of the
form
u = c

1

er1t + c
2

er2t

We solve u = 0,

0 =c
1

er1t + c
2

er2t

er1t

er2t
=� c

2

c1

e(r1�r2)t =� c
2

c1

t =
ln
�
� c2

c1

�

r
1

� r
2

Therefore, there is at most one solution and
the mass can only pass through the equilib-
rium position at most once. Of course, this
computation is only valid if � c2

c1
> 0, other-

wise there are no solutions and the mass will
not pass through the equilibrium position.

39. Underdamping would mean that the system
would oscillate, probably not good. Over-
damping would mean that the door would take
a long time to shut, probably not so terrible.

40. It is an easy matter to check that et and e�t

are solutions to y00 � y = 0. If we start with
the solution y = c

1

et + c
2

e�t and if we have
initial conditions y(0) = y

0

and y0(0) = y
1

,
then solving for c

1

and c
2

amounts to solving
the equations
c
1

+ c
2

= y
0

c
1

� c
2

= y
1

which has solutions c
1

= y0+y1

2

and c
2

= y0�y1

2

.
Therefore, any solution is of the form
y = c

1

et + c
2

e�t and this is therefore a general
solution. Similarly, it is routine to check that
sinh t and cosh t are solutions to the di↵eren-
tial equation. If we start with the solution
y = c

1

sinh t + c
2

cosh t and if we have initial
conditions y(0) = y

0

and y0(0) = y
1

, then
solving for c

1

and c
2

amounts to solving the
equations
c
2

= y
0

c
1

= y
1

(which are trivially solved!). Therefore, any
solution is of the form
y = c

1

sinh t + c
2

cosh t and this is therefore
a general solution. These are equivalent solu-
tions. To see this, note that
c
1

sinh t+ c
2

cosh t

= c
1

✓
et � e�t

2

◆
+ c

2

✓
et + e�t

2

◆

=

✓
c
1

+ c
2

2

◆
et +

✓
�c

1

+ c
2

2

◆
e�t

and therefore any solution of the form
c
1

sinh t + c
2

cosh t can be written in the form
c
1

et + c
2

e�t (where c
1

and c
2

are di↵erent).
Similarly, any solution of the form c

1

et+ c
2

e�t

can be written in the form c
1

sinh t + c
2

cosh t
(where c

1

and c
2

are di↵erent):
c
1

et + c
2

e�t

= (c
1

� c
2

)

✓
et � e�t

2

◆
+(c

1

+ c
2

)

✓
et + e�t

2

◆

= (c
1

� c
2

) sinh t+ (c
1

+ c
2

) cosh t

41. It is routine to check that sinh at and cosh at
are solutions to the di↵erential equation. If we
start with the solution
y = c

1

sinh at + c
2

cosh at and if we have ini-
tial conditions y(0) = y

0

and y0(0) = y
1

, then
solving for c

1

and c
2

amounts to solving the
equations
c
2

= y
0

ac
1

= y
1

=) c
1

=
y
1

a
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Therefore, any solution is of the form
y = c

1

sinh at + c
2

cosh at and this is there-
fore a general solution. The general solution
of y00 + a2y = 0 is
y = c

1

sin at+ c
2

cos at.

42. The roots of the characteristic polynomial are
�b±

p
b

2�4ac

2a

If these roots are complex, then b2 � 4ac < 0
and the roots can be written as
� b

2a

± i

p
4ac�b

2

2a

and the general solution is

y = e�bt/(2a)

"
c
1

cos

 
t
p
4ac� b2

2a

!

+c
2

sin

 
t
p
4ac� b2

2a

!#

The bracketed part (with the cos and sin
terms) is bounded by |c

1

| + |c
2

|. Therefore,
since b < 0 and a > 0, we have � b

2a

< 0 and
the product will go to 0 as t ! 1.

43. The roots of the characteristic equation are

r
1

=
�b�

p
b2 � 4ac

2a

r
2

=
�b+

p
b2 � 4ac

2a
If a > 0, we have r

1

< r
2

(if a < 0 then
we have r

2

< r
1

and the rest of the analysis
still holds with only slight modification). Since
r
1

< r
2

, we only have to show that r
2

< 0.
Since ac > 0, we have b2 � 4ac < b2 and there-
fore

p
b2 � 4ac < b (remember b > 0). This

means that �b +
p
b2 � 4ac < 0 and therefore

r
2

< 0 (since we assumed a > 0). Therefore
the general solution is
y = c

1

er1t + c
2

er2t

Since r
1

< r
2

< 0 we have y ! 0 as t ! 1.

44. With r
1

< 0, to evaluate the limit, we apply
L’Hopital’s Rule:

lim
t!1

ter1t = lim
t!1

t

e�r1t

= lim
t!1

1

�r
1

e�r1t
(by L’Hopital)

= lim
t!1

�er1t

r
1

= 0

Therefore the general solution:
lim
t!1

c
1

er1 + c
2

ter1t

= lim
t!1

c
1

er1 + lim
t!1

c
2

ter1t = 0 + 0 = 0

45. If there are complex roots, then we are in the
situation of Exercise 43. If there are real roots,
then we are in the situation of Exercise 44. If
there is a repeated root, then we are in the sit-
uation of Exercise 45. In any case, we always

have y ! 0 as t ! 1. (Notice that each of
these cases needed the fact that a, b and c are
positive.)

46. In the situation of the spring with non-zero
damping, then we are in the case of Exercise 45
which. Therefore, the mass will eventually
tend back to its equilibrium position.

15.2 Nonhomogeneous Equa-
tions: Undetermined
Coe�cients

1. The characteristic equation is
r2 + 2r + 5 = 0
which has solutions r = �1±2i. Therefore, the
general solution to the homogeneous equation
is
u = e�tc

1

cos 2t+ e�tc
2

sin 2t
Therefore the general solution to the given
equation is
u = e�tc

1

cos 2t+ e�tc
2

sin 2t+ 3e�2t

2. The characteristic equation is
r2 + 2r � 8 = 0
which has solutions r = 2,�4. Therefore, the
general solution to the homogeneous equation
is
u = c

1

e2t + c
2

e�4t

Therefore the general solution to the given
equation is
u = c

1

e2t + c
2

e�4t + 2e3t

3. The characteristic equation is
r2 + 4r + 4 = 0
which has solutions r = �2 (repeated root).
Therefore, the general solution to the homoge-
neous equation is
u = c

1

e�2t + c
2

te�2t

Therefore the general solution to the given
equation is
u = c

1

e�2t + c
2

te�2t + t2 � 2t+ 3

2

4. The characteristic equation is
r2 + 4 = 0
which has solutions r = ±4i. Therefore, the
general solution to the homogeneous equation
is
u = c

1

cos 4t+ c
2

sin 4t
Therefore the general solution to the given
equation is
u = c

1

cos 4t+ c
2

sin 4t+ 2 sin t

5. The characteristic equation is
r2 + 2r + 10 = 0
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which has solutions r = �1±3i. Therefore, the
general solution to the homogeneous equation
is
u = c

1

e�t cos 3t+ c
2

e�t sin 3t
To find a particular solution, we try the guess
u
p

= Ae�3t

26e�3t = u00
p

+ 2u0
p

+ 10u
p

= 9Ae�3t � 6Ae�3t + 10Ae�3t

= 13Ae�3t

Solving gives A = 2. Therefore the general so-
lution to the given equation is
u = c

1

e�t cos 3t+ c
2

e�t sin 3t+ 2e�3t

6. The characteristic equation is
r2 � 2r + 5 = 0
which has solutions r = 1± 2i. Therefore, the
general solution to the homogeneous equation
is
u = c

1

et cos 2t+ c
2

et sin 2t
To find a particular solution, we try the guess
u
p

= Ae2t

10e2t = u00
p

� 2u0
p

+ 5

= 4Ae2t � 4Ae2t + 5Ae2t

= 5Ae2t

Solving gives A = 2. Therefore the general so-
lution to the given equation is
u = c

1

et cos 2t+ c
2

et sin 2t+ 2e2t

7. The characteristic equation is
r2 + 2r + 1 = 0
which has solutions r = �1 (repeated root).
Therefore, the general solution to the homoge-
neous equation is
u = c

1

e�t + c
2

te�t

To find a particular solution, we try the guess
u
p

= A cos t+B sin t
25 sin t = u00

p

+ 2u0
p

+ u
p

= (�A cos t�B sin t)
+ 2(�A sin t+B cos t)
+ (A cos t+B sin t)

= 2B cos t� 2A sin t
Solving gives A = � 25

2

and B = 0. Therefore
the general solution to the given equation is

u = c
1

e�t + c
2

te�t � 25

2
cos t

8. The characteristic equation is
r2 + 4 = 0
which has solutions r = ±2i. Therefore, the
general solution to the homogeneous equation
is
u = c

1

cos 2t+ c
2

sin 2t
To find a particular solution, we try the guess
u
p

= A cos 4t+B sin 4t
24 cos 4t = u00

p

+ 4u
p

= �16A cos 4t� 16B sin 4t
+ 4A cos 4t+ 4B sin 4t

= �12A cos 4t� 12B sin 4t
Solving gives A = �2 and B = 0. Therefore
the general solution to the given equation is
u = c

1

cos 2t+ c
2

sin 2t� 2 cos 4t

9. The characteristic equation is
r2 � 4 = 0
which has solutions r = ±2. Therefore, the
general solution to the homogeneous equation
is
u = c

1

e�2t + c
2

e2t

To find a particular solution, we try the guess
u
p

= At3 +Bt2 + Ct+D
2t3 = u00

p

� 4u
p

= (6At+ 2B)� 4(At3 +Bt2 + Ct+D)
= �4At3 � 4Bt2 + (6A� 4C)t+ 2B � 4D

Therefore we must have �4A = 2, �4B = 0,
6A � 4C = 0 and 2B � 4D = 0. Solving gives
A = � 1

2

, B = 0, C = � 3

4

and D = 0. There-
fore the general solution to the given equation
is

u = c
1

e�2t + c
2

e2t � 1

2
t3 � 3

4
t

10. The characteristic equation is
r2 + r � 6 = 0
which has solutions r = 2,�3. Therefore, the
general solution to the homogeneous equation
is
u = c

1

e2t + c
2

e�3t

To find a particular solution, we try the guess
u
p

= At2 +Bt+ C
18t2 = u00

p

+ u0
p

� 6u
p

= 2A+ 2At+B � 6At2 � 6Bt� 6C
= �6At2 + (2A� 6B)t+ (2A� 6C)

Solving gives A = �3, B = �1 and C = �1.
Therefore the general solution to the given
equation is
u = c

1

e2t + c
2

e�3t +�3t2 � 3t� 1

11. The characteristic equation is
r2 + 2r + 10 = 0
which has solutions r = �1⇡3i. Therefore, the
general solution to the homogeneous equation
is
u = c

1

e�t cos 3t+ c
2

e�t sin 3t
The initial guess for the particular solution is
u
p

= Ae�t + e�t(B cos 3t+ C sin 3t)
+D cos 3t+ E sin 3t

Unfortunately part of this solution is a solution
to the homogeneous equation, so our modified
guess is
u
p

= Ae�t + te�t(B cos 3t+ C sin 3t)
+D cos 3t+ E sin 3t



916 CHAPTER 15. SECOND ORDER DIFFERENTIAL EQUATIONS

12. The characteristic equation is
r2 � 2r + 5 = 0
which has solutions r = 1± 2i. Therefore, the
general solution to the homogeneous equation
is
u = c

1

et cos 2t+ c
2

et sin 2t

The initial guess for the particular solution is

u
p

=et(A cos 2t+B sin 2t)

+ (C
2

t2 + C
1

t+ C
0

)et

Unfortunately part of this solution is a solution
to the homogeneous equation, so our modified
guess is

u
p

=tet(A cos 2t+B sin 2t)

+ (C
2

t2 + C
1

t+ C
0

)et

13. The characteristic equation is
r2 + 2r = 0
which has solutions r = 0,�2. Therefore, the
general solution to the homogeneous equation
is
u = c

1

+ c
2

e�2t

The initial guess for the particular solution is

u
p

=At3 +Bt2 + Ct+D + Ee2t

Unfortunately part of this solution is a solution
to the homogeneous equation, so our modified
guess is

u
p

=t(At3 +Bt2 + Ct+D) + Ee2t

14. The characteristic equation is
r2 + 4 = 0
which has solutions r = ±2i. Therefore, the
general solution to the homogeneous equation
is
u = c

1

cos 2t+ c
2

sin 2t
The initial guess for the particular solution is

u
p

=(A
1

t+A
0

)(A cos 2t+B sin 2t)

+ (C
2

t2 + C
1

t+ C
0

)(D cos t+ E sin t)

Unfortunately part of this solution is a solution
to the homogeneous equation, so our modified
guess is

u
p

=t(A
1

t+A
0

)(A cos 2t+B sin 2t)

+ (C
2

t2 + C
1

t+ C
0

)(D cos t+ E sin t)

15. The characteristic equation is
r2 + 9 = 0

which has solutions r = ±3i. Therefore, the
general solution to the homogeneous equation
is
u = c

1

cos 3t+ c
2

sin 3t
The initial guess for the particular solution is

u
p

=et(A cos 3t+B sin 3t)

+ (Ct+D) cos 3t+ (Et+ F ) sin 3t

Unfortunately part of this solution is a solution
to the homogeneous equation, so our modified
guess is

u
p

=et(A cos 3t+B sin 3t)

+ t(Ct+D) cos 3t

+ t(Et+ F ) sin 3t

16. The characteristic equation is
r2 � 4 = 0
which has solutions r = ±2. Therefore, the
general solution to the homogeneous equation
is
u = c

1

e2t + c
2

e�2t

The initial guess for the particular solution is

u
p

=(A
3

t3 +A
2

t2 +A
1

t+A
0

)e2t

+ (B
2

t2 +B
1

t+B
0

)e�2t

Unfortunately part of this solution is a solution
to the homogeneous equation, so our modified
guess is

u
p

=t(A
3

t3 +A
2

t2 +A
1

t+A
0

)e2t

+ t(B
2

t2 +B
1

t+B
0

)e�2t

17. The characteristic equation is
r2 + 4r + 4 = 0
which has solutions r = �2 (repeated root).
Therefore, the general solution to the homoge-
neous equation is
u = c

1

e�2t + c
2

te�2t

The initial guess for the particular solution is

u
p

=(At2 +Bt+ C)e�2t

+ (Dt+ E)e�2t cos t

+ (Ft+G)e�2t sin t

Unfortunately part of this solution is a solution
to the homogeneous equation, so our modified
guess is

u
p

=t2(At2 +Bt+ C)e�2t

+ (Dt+ E)e�2t cos t

+ (Ft+G)e�2t sin t
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18. The characteristic equation is
r2 + 2r + 1 = 0
which has solutions r = �1 (repeated root).
Therefore, the general solution to the homoge-
neous equation is
u = c

1

e�t + c
2

te�t.
The initial guess for the particular solution is
u
p

= (A
2

t2 +A
1

t+A
0

) +Be�t

Unfortunately part of this solution is a solution
to the homogeneous equation, so our modified
guess is
u
p

= t(A
2

t2 +A
1

t+A
0

) + tBe�t

19. We find k:
0.1(9.8) = k(0.002) gives k = 490.
The di↵erential equation is given by
0.1u00 + 0.2u0 + 490u = 0.1 cos 4t,
u00 + 2u0 + 4900u = cos 4t
u0(0) = 0, u(0) = 0
The characteristic equation is
r2 + 2r + 4900 = 0
which has complex solutions
r = �1± i

p
4899

Therefore the general solution is

u =c
1

e�t cos(t
p
4899) + c

2

e�t sin(t
p
4899)

+A cos 4t+B sin 4t

After some work, one finds that

A =
1221

5963380
B =

1

2981690
Using the initial conditions we find that

c
1

=
�1221

5963380

c
2

= � 1229

5963380
p
4899

20. We find k:
0.4(9.8) = k(0.002) gives k = 1960.
The di↵erential equation is given by
0.4u00 + 0.4u0 + 1960u = 0.8 sin 3t,
u00 + u0 + 4900u = 2 sin 3t
u0(0) = 0, u(0) = 0
The characteristic equation is
r2 + 4r + 4900 = 0
which has complex solutions
r = �2± 12

p
34 i

Therefore the general solution is

u =c
1

e�2t cos(12t
p
34) + c

2

e�2t sin(12t
p
34)

+A cos 3t+B sin 3t

After some work, one finds that

A = � 24

23922025
, B =

9782

23922025
Using the initial conditions we find that

c
1

=
24

23922025

c
2

= � 4883

1626697700

21. We find k:
0.4 = k(1/4) gives k = 1.6.
The di↵erential equation is given by
0.4

32

u00 + 0.4u0 + 1.6u = 0.2e�t/2

u00 + 32u0 + 128u = 16e�t/2

u(0) = 0, u0(0) = 1
The characteristic equation is
r2 + 32r + 128 = 0
which has complex solutions
r = �16± 8

p
2

Therefore the general solution is

u =c
1

e(�16+8

p
2)t + c

2

e(�16�8

p
2)t +Ae�t/2

After some work, one finds that A =
64

449
Using the initial conditions we find that

c
1

= � 32

449
� 543

p
2

14368

c
2

= � 32

449
+

543
p
2

14368

22. We find k:
0.1 = k 1

6

gives k = .6
The di↵erential equation is given by
.1

32
u00 + 0.2u0 + 0.6u = 0.2e�t/4

u00 + 64u0 + 192u = 64e�t/4

u(0) = 4 u00(0) = 0
The characteristic equation is
r2 + 64r + 192 = 0
which has solutions
r = �32± 8

p
13

Therefore the general solution is

u =c
1

e(�32+8

p
13)t + c

2

e(�32�8

p
13)t

+Ae�t/4

After some work one finds that A = 1024

2817

Using the initial conditions one finds that

c
1

=
5122

2817
� 20504

p
13

36621

c
2

=
5122

2817
+

20504
p
13

36621

23. The characteristic equation is
r2 + 2r + 6 = 0
and has solutions r = �1± i

p
5. Therefore the

homogeneous equation has general solution
u = c

1

e�t cos(t
p
5) + c

2

e�t sin(t
p
5)

which goes to 0 as t ! 1.
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The particular solution is of the form
u
p

= A cos 3t+B sin 3t

15 cos 3t = u00
p

+ 2u0
p

+ 6u
p

=(�9A cos 3t� 9B sin 3t)

+ 2(�3A sin 3t+ 3B cos 3t)

+ 6(A cos 3t+B sin 3t)

=(�3A+ 6B) cos t+ (�6A� 3B) sin t

So we must solve �3A+ 6B = 15 and
�6A� 3B = 0. Solving gives A = �1 and
B = 2.
Therefore the steady state solution to the given
equation is

u
p

=� cos 3t+ 2 sin 3t

=
p
5 sin (t+ �)

where � = tan�1

�
� 1

2

�
⇡ �0.4636 radians

(fourth quadrant).

24. The characteristic equation is
r2 + 3r + 1 = 0
and has solutions r = � 3

2

±
p
5

2

. Therefore the
homogeneous equation has general solution

u = c
1

et(�3+

p
5)/2 + c

2

et(�3�
p
5)/2

which goes to 0 as t ! 1.
The particular solution is of the form
u
p

= A cos 2t+B sin 2t

5 sin 2t =u00
p

+ 3u0
p

+ u
p

=(�3A+ 6B) cos 2t

+ (�3B � 6A) sin 2t

Solving gives A = � 2

3

and B = � 1

3

. Therefore
the steady state solution to the given equation
is

u
p

=� 2

3
cos 2t� 1

3
sin 2t

=

p
5

3
sin(2t+ �)

where � = ⇡ + tan�1 (2) ⇡ 4.2487 radians
(third quadrant).

25. The characteristic equation is
r2 + 4r + 8 = 0
and has solutions r = �2 ± 2i. Therefore the
homogeneous equation has general solution
u = c

1

e�2t cos 2t+ c
2

e�2t sin 2t
which goes to 0 as t ! 1.
The particular solution is of the form

u
p

= A cos t+B sin t

15 cos t+ 10 sin t = u00
p

+ 4u0
p

+ 8u
p

=(�A cos t�B sin t)

+ 4(�A sin t+B cos t)

+ 8(A cos t+B sin t)

=(7A+ 4B) cos t+ (�4A+ 7B) sin t

and therefore
7A+ 4B = 15 and �4A+ 7B = 10.
Solving gives A = 1 and B = 2. Therefore the
steady state solution to the given equation is

u
p

=cos t+ 2 sin t =
p
5 sin (t+ �)

where � = tan�1(1/2) radians (first quadrant).

26. The characteristic equation is
r2 + r + 6
and has solutions
r = � 1

2

± i

p
23

2

.
This tells us that the solution to the homoge-
neous equation will go to 0 as t ! 1.
The particular solution is of the form
u
p

= A cos t+B sin t
(the solutions to the characteristic equation tell
us that this is the correct form).

12 cos t+10 sin t = u00
p

+ u0
p

+ 6u
p

=(5A+B) cos 2t+ (5B �A) sin 2t

Solving gives A = 25

13

and B = 31

13

. Therefore
the steady state solution to the given equation
is

u
p

=
25

13
cos t+

31

13
sin t

=

p
1586

13
sin(t+ �)

where � = tan�1

�
25

31

�

27. We first find k: k = 2

1/2

= 4.
Therefore the di↵erential equation is
2

32

u00 + 0.4u0 + 4u = 2 sin 2t
u00 + 6.4u0 + 64u = 32 sin 2t
The characteristic equation is
r2 + 6.4r + 64 = 0
and has solutions r = � 8

25

± 32i

p
39

25

. Therefore
the solution to the homogeneous equation goes
to 0 as t ! 1.
The particular solution is of the form
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u
p

= A cos 2t+B sin 2t

32 sin 2t = u00
p

+ 6.4u0
p

+ 64u
p

=(�4A cos 2t� 4B sin 2t)

+ 6.4(�2A sin 2t+ 2B cos 2t)

+ 64(A cos 2t+B sin 2t)

=(�4A+ 12.8B + 64A) cos 2t

+ (�4B � 12.8A+ 64B) sin 2t

So we must solve the equations
60A+ 12.8B = 0
� 12.8A+ 60B = 32
Solving gives A = � 640

5881

and B = 3000

3881

.
Therefore the steady state solution to the given
equation is

u
p

=� 640

5881
cos 2t+

3000

3881
sin 2t

=
40p
5881

sin (t+ �)

where � = tan�1

�
� 64

300

�
(fourth quadrant).

28. Finding k:
(0.5)(9.8) = k(.2) and k = 24.5.
The di↵erential equation is
0.5u00 + u0 + 24.5u = 3 cos 2t
u00 + 2u0 + 49u = 6 cos 2t
The characteristic equation is
r2 + 2r + 49r = 0
and has solutions
r = �1± 4

p
3

Therefore the solutions is of the form

u =c
1

e�t cos(4t
p
3) + c

2

e�t sin(4t
p
3)

+A cos 2t+B sin 2t

Solving for A and B gives
A = 270

2041

, B = 24

2041

Therefore the steady state solution is

u
p

=
270

2041
cos 2t+

24

2041
sin 2t

29. For u00+3u = 4 sin!t, the natural frequency of
the system is

p
3. Resonance occurs if ! =

p
3.

Beats will occur if ! is close to
p
3, for example

! = 1.8 will produce beats.

30. The solution to the characteristic equation is
r = ±i

p
10 and therefore the solution to the

homogeneous equation is
u = c

1

cos
p
10t+ c

2

sin
p
10t

Therefore, the natural frequency is ! =
p
10

Values of close to
p
10, such as 3 will produce

resonance.

31. In this spring problem we have m = 0.4

32

and
k = 0.4

1/4

= 1.6.
Therefore the di↵erential equation is
0.4

32

u00 + 1.6u = 2 sin!t
u00 + 128u = 160 sin!t

The natural frequency is ! =
q

k

m

=
p
128.

Therefore resonance occurs if ! =
p
128 and

beats occur if ! is near
p
128. So, beats will

occur, for example, if ! = 11.

32. First we find k:
(0.4)(9.8) = k(0.03) gives k = 392

3

The di↵erential equation is
0.4u00 + 392

3

u = 2 sin!t
3u00 + 980u = 15 sin!t
The characteristic equation is
3r2 + 980 = 0
which has solutions

r = ±14
p
15

3
i

Therefore the natural frequency of the system
is

! =
14

p
15

3
⇡ 18.074

A frequency close to the natural frequency will
produce beats, such as
! = 18.5

33. The general solution to the di↵erential equa-
tion
y00 + 9y = 12 cos 3t is
y
1

= c
1

cos 3t+ c
2

sin 3t+ 2

3

cos 3t+ 2t sin 3t
Using our initial conditions and solving for c

1

and c
2

gives c
1

= 1

3

and c
2

= 0.
Therefore, our solution is
y
1

= cos 3t+ 2t sin 3t
In the case of damping, the general solution to
the di↵erential equation
y00 + 0.1y + 9y = 12 cos 3t is

y
2

=c
1

e�t/20 cos

 
t
p
3599

20

!

+ c
2

e�t/20 sin

 
t
p
3599

20

!

+ 40 sin 3t

Using our initial conditions and solving for c
1

and c
2

gives c
1

= 1 and c
2

= � 2399p
3599

.

Therefore, our solution is

y
2

=e�t/20 cos

 
t
p
3599

20

!

� 2399p
3599

e�t/20 sin

 
t
p
3599

20

!
+ 40 sin 3t
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If these two curves are plotted on the same
axes, the remain very close for a long time,
but the undamped solution eventually becomes
unbounded. In the plot, the darker curve rep-
resents the damped solution.

t
3020

40

20

-40

0
25

60

-20

100 155

34. As in Exercise 33,
y00 + 9y = 12 cos 3t
y(0) = 1, y0(0) = 0 has solution
y = cos 3t+ 2t sin 3t
Solving the di↵erential equation
y00 + 0.01y0 + 9y = 12 cos 3t
y(0) = 1, y0(0) = 0
gives the solution

y =e�0.005t cos

 p
359999

200
t

!

� 239999p
359999

e�0.005t sin

 p
359999

200
t

!

+ 400 sin 3t

If these two curves are plotted on the same
axes, the remain very close for a long time,
but the undamped solution eventually becomes
unbounded. In the plot, the darker curve rep-
resents the damped solution.

0
106

-100

100

-200

104102
t

110

100

108

200

35. The form of the trial solution is
u
p

= A cos!t+B sin!t.

Finding A and B:

sin!t =u00
p

+ 4u
p

=(�A!2 cos!t�B!2 sin!t)

+ 4(A cos!t+B sin!t)

=(�A!2 + 4A) cos!t

+ (�B!2 + 4B) sin!t

which requires A(4� !2) = 0, so
A = 0 (unless ! = ±2).
Of course, this happens only because there is
no u0 term–no damping. If there is damping,
this will fail.

36. Since F (t) = 2t3 and since there is no u0 term
in the di↵erential equation, we can get away
with using u

p

= At3 +Bt.

37. (a) As explained in Exercise 35, the form of
the particular solution is y

p

= A sin(2.1t).
Solving for A gives the particular solution
y
p

= � 200

41

sin(2.1t)
The general solution is
y = c

1

cos 2t+ c
2

sin 2t� 200

41

sin(2.1t)
The initial conditions give equations:

0 =c
1

0 =2c
2

� 200(2.1)

41

So, c
2

= 210

41

and the solution is
y = 210

41

sin 2t� 200

41

sin(2.1t)

(b) The general solution to this equation is
u = c

1

cos 2t+ c
2

sin 2t� t

2

cos 2t
Using the initial conditions gives the so-
lutions u = 1

4

sin 2t� t

2

cos 2t

(c) This solutions has resonance, as can be
seen from the solution.

38. (a) If ! = 2 then there is resonance. If ! 6= 2
then the general solution is

u = c
1

cos 2t+ c
2

sin 2t+
sin!t

4� !2

Using the initial condition
u(0) = u0(0) = 0 gives
0 = c

1

0 = 2c
2

+ !

4�!

2 and therefore
c
2

= � !

2(4�!

2
)

.

u = � ! sin 2t

2(4� !2)
+

sin!t

4� !2
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t

−0.2

0.2

0.0
5.0 12.510.0

0.4

−0.4

7.50.0 2.5

(b) If ! = 2 then there is resonance. If ! 6= 2
then the general solution is

u = c
1

cos 2t+ c
2

sin 2t+
sin!t

4� !2

Using the initial condition
u(0) = u0(0) = 1 gives equations
1 = c

1

1 = 2c
2

+ !

4�!

2 and therefore

c
2

= (4�!

2�!)

2(4�!

2
)

u =cos 2t+
(4� !2 � !)

2(4� !2)
sin 2t+

sin!t

4� !2

(c)

t
7.5

−0.5

1.0

5.0

−1.0

12.5

0.0

2.50.0

0.5

10.0

(d) In (a), periodicity of amplitudes depends
on the values of !. For small changes of
!, amplitudes changes lot.
In (b), periodicity of amplitudes does not
a↵ect so much for small changes of !.

39. The characteristic equation is
r2 + 1

10

r + 4 = 0

and has solutions r = � 1

20

± i

p
1599

20

. Therefore
the homogeneous equation goes to 0 as t ! 1.
The particular solution is of the form

u
p

= A cos!t+B sin!t

sin!t = u00
p

+
1

10
u0
p

+ 4u
p

=

✓
�A!2 +

B!

10
+ 4A

◆
cos t

+

✓
�B!2 � A!

10
+ 4B

◆
sin t

So we must solve

(4� !2)A+
B!

10
=0

�A!

10
+ (4� !2)B =1

Solving gives

A =� 10!

1600� 799!2 + 100!4

B =
100(!2 � 4)

1600� 799!2 + 100!4

The amplitude is therefore

Amp =

"✓
� 10!

1600� 799!2 + 100!4

◆
2

+

✓
100(!2 � 4)

1600� 799!2 + 100!4

◆
2

#
1/2

=
1p

!4 � 7.99!2 + 16

40. We find in Exercise 39 that the amplitude of
the steady state solution is

A =
1p

!4 � 7.99!2 + 16
As ! ! 0 we have A ! 1

4

.
This makes sense because 1

4

is the distance that
a force of magnitude 1 will move the spring.

41. The equation of motion is �mg � ky0 = my00

m = 5kg; k = 0.5; g = 9.8m/s2

Therefore the equation of motion becomes

5y00 + 0.5y0 + 5 (9.8) = 0
) y00 + 0.1y0 + 9.8 = 0

The characteristic equation becomes

r2 + 0.1r + 9.8 = 0 which has solutions

r = �0.05± i3.13

Therefore the general solution is

y (t) = c
1

e�0.05t cos (3.13t)
+ c

2

e�0.05t sin (3.13t)
y0 (0) = 1; y (0) = 60
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y (0) = c
1

cos (0) + c
2

sin (0)
60 = c

1

y (t) = 60e�0.05t cos (3.13t)
+ c

2

e�0.05t sin (3.13t)
y0 (t) = (�0.05) 60e�0.05t cos (3.13t)

� 60e�0.05t sin (3.13t) · (3.13)
� (0.05) c

2

e�0.05t sin (3.13t)
+ c

2

e�0.05t cos (3.13t) (3.13)
y0 (0) = �3 + 3.13c

2

1 = �3 + 3.13c
2

4 = 3.13c
2

) c
2

=
4

3.13
= 1.2780

Therefore the equation of the motion of the
object at any time t is

y (t) = 60e�0.05t cos (3.13t)
+ 1.2780e�0.05t sin (3.13t)

42. From the above exercise, we have the equation
of the motion of the object at any time t is

y (t) = 60e�0.05t cos (3.13t)
+ 1.2780e�0.05t sin (3.13t)

When the object hits the ground the height
becomes 0.

Therefore, we have

0 = 60e�0.05t cos (3.13t)
+ 1.2780e�0.05t sin (3.13t)

�60

1.2780
= tan (3.13t)

� 46.95 = tan (3.13t)
3.13t = tan�1 (�46.95) = �1.5495
3.13t = �1.5495 + ⇡ = 1.5921
) t = 0.5087
y0 (t)
= (�0.05) 60e�0.05t cos (3.13t)

� 60e�0.05t sin (3.13t) · (3.13)
�(0.05) (1.2780) e�0.05t sin (3.13t)
+(1.2780) e�0.05t cos (3.13t) (3.13)

= �3e�0.05t cos (3.13t)
� 187.8e�0.05t sin (3.13t)
� 0.064e�0.05t sin (3.13t)
+ 4e�0.05t cos (3.13t)

= e�0.05t cos (3.13t) (�3 + 4)
�e�0.05t sin (3.13t) (187.8 + 0.064)

= e�0.05t cos (3.13t)
� 187.864e�0.05t sin (3.13t)

y0 (0.5087) = �183.125m/s

Therefore its impact velocity is �183.125m/s

15.3 Applications of Second
Order Equations

1. We have
R = 200, C = 10�4 and L = 0.4
which gives the di↵erential equation
0.4Q00(t) + 200Q(t) + 104Q(t) = 0,
Q(0) = 10�5, Q0(0) = 0
The characteristic equation is
0.4r2 + 200r + 104 = 0
which has solutions
r = �250± 50

p
15.

This gives the general solution

Q(t) =c
1

e�t(250�50

p
15) + c

2

e�t(250+50

p
15)

Using the initial conditions

10�5 =Q(0) = c
1

+ c
2

0 =Q0(0) = c
1

⇣
�250 + 50

p
15
⌘

+ c
2

⇣
�250� 50

p
15
⌘

Solving gives c
1

=
⇣

3+

p
15

6

⌘
10�6

and c
2

=
⇣

3�
p
15

6

⌘
10�6

and therefore the solution is

Q(t) =

 
3 +

p
15

6

!
10�6e�t(250�50

p
15)

+

 
3�

p
15

6

!
10�6e�t(250+50

p
15)

⇡10�5

�
1.1455e�56.35t � 0.1455e�443.65t

�

I(t) =Q0(t)

⇡10�5(0.64547)
�
e�56.35t + e�443.65t

�

2. We have
R = 0, C = 10�4 and L = 0.4
which gives the di↵erential equation
0.4Q00(t) + 104Q(t) = 0,
Q(0) = 10�5, Q0(0) = 0
The characteristic equation is
0.4r2 + 104 = 0
which has solutions r = ±50i

p
10.

This gives the general solution
Q(t) = c

1

cos(50t
p
10) + c

2

sin(50t
p
10)

Using the initial conditions
10�5 = Q(0) = c

1

0 = Q0(0) = 50c
2

p
10

Solving gives c
1

= 10�5 and c
2

= 0
and therefore the solution is

Q(t) =10�5 cos(50t
p
10)

=10�5 sin(50t
p
10 + ⇡/2)
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So the amplitude is 10�5 and the phase shift is
⇡/2.

3. We have
R = 0, C = 10�5 and L = 0.2
which gives the di↵erential equation
0.2Q00(t) + 105Q(t) = 0,
Q(0) = 10�6, Q0(0) = 0
The characteristic equation is
0.2r2 + 105 = 0
which has solutions r = ±500i

p
2.

This gives the general solution
Q(t) = c

1

cos(500t
p
2) + c

2

sin(500t
p
2)

Using the initial conditions
10�6 = Q(0) = c

1

0 = Q0(0) = 500c
2

p
2

Solving gives c
1

= 10�6 and c
2

= 0
and therefore the solution is

Q(t) =10�6 cos(500t
p
2)

=10�6 sin(500t
p
2 + ⇡/2)

So the amplitude is 10�6 and the phase shift is
⇡/2.

4. We have
R = 400, C = 2⇥ 10�4 and L = 0.6
which gives the di↵erential equation
0.6Q00(t) + 400Q(t) + 5000Q(t) = 0,
Q(0) = 10�6, Q0(0) = 0
The characteristic equation is
0.6r2 + 400r + 5000 = 0
which has solutions

r = �1000

3
± 50

p
370

3
.

This gives the general solution

Q(t) =c
1

e�t(1000+50

p
370)/3

+ c
2

e�t(1000�50

p
370)/3

Using the initial conditions

10�6 =Q(0) = c
1

+ c
2

0 =Q0(0) = c
1

 
�1000

3
+

50
p
370

3

!

+ c
2

 
�1000

3
� 50

p
370

3

!

Solving gives c
1

= 10

�5
p
370

+ 10

�6

2

and c
2

= � 10

�5
p
370

+ 10

�6

2

and therefore the solution is

Q(t) =

✓
10�5

p
370

+
10�6

2

◆
e�t(1000+50

p
370)/3

+

✓
� 10�5

p
370

+
10�6

2

◆
e�t(1000�50

p
370)/3

5. We set up the di↵erential equation
0.5Q00 + 20Q0 + 20Q = 3 cos 2t
Q00 + 40Q0 + 40Q = 6 cos 2t
Q(0) = 0 Q0(0) = 1
The characteristic equation is given by
r2 + 40r + 40 = 0
which has solutions
r = �20± 6

p
10

Therefore the general solution is

Q =c
1

e(�20+6

p
10)t + c

2

e(�20�6

p
10)t

+A cos 2t+B sin 2t

After some work, one finds that

A =
27

962
, B =

30

481
Using the initial conditions, one finds that

c
1

=
151

p
10

57720
� 27

1924

c
2

=
�151

p
10

57720
� 27

1924

6. We set up the di↵erential equation
0.2Q00 + 20Q0 + 10Q = 0.4 cos 4t
Q00 + 100Q0 + 50Q = 2 cos 4t
Q(0) = 0 Q0(0) = 0
The characteristic equation is given by
r2 + 100r + 50 = 0
which has solutions
r = �50± 35

p
2

Therefore the general solution is

Q =c
1

e(�50+35

p
2)t + c

2

e(�50�35

p
2)t

+A cos 4t+B sin 4t

After some work, one finds that

A =
17

40289
, B =

200

40289
Using the initial conditions, one finds that

c
1

= � 165

564046

p
2� 17

80578

c
2

=
165

564046

p
2� 17

80578

7. We set up the di↵erential equation
Q00 + 10Q0 + 2Q = 0.1 cos 2t
The characteristic equation is given by
r2 + 10r + 2 = 0
which has solutions
r = �5±

p
23

Both of these are real and negative, therefore
the solution to the homogeneous solution goes
to 0 as t ! 1. The form of the particular
solution (and the stead-state solution) is

Q
p

=A cos 2t+B sin 2t
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After some work, one finds that

A = � 1

2020
, B =

1

202
Therefore, the steady state solution is

Q
p

=� 1

2020
cos 2t+

1

202
sin 2t

=

p
101

2020
sin(2t+ �)

where � = tan�1(�0.1) (fourth quadrant)

8. We set up the di↵erential equation
0.2Q00 + 40Q0 + 20Q = 0.2 sin 4t
Q00 + 200Q0 + 100Q = sin 4t
The characteristic equation is given by
r2 + 200r + 100 = 0
which has solutions
r = �100± 30

p
11

Both of these are real and negative, therefore
the solution to the homogeneous solution goes
to 0 as t ! 1. The form of the particular
solution (and the stead-state solution) is

Q
p

=A cos 4t+B sin 4t

After some work, one finds that

A = � 50

40441
, B =

21

161764
Therefore, the steady state solution is

Q
p

=� 50

40441
cos 4t+

21

161764
sin 4t

=

p
40441

161764
sin(4t+ �)

where � = tan�1(�200/21) (fourth quadrant)

9. The characteristic equation is
r2 + 2r + 5 = 0
and has solutions
r = �1± 2i.
Therefore the steady-state solution has form
x = A cos!t+B sin!t Finding A and B:

A
1

sin!t = x00 + 2x0 + 5x

=(�A cos!2!t�B!2 sin!t)

+ 2(�A! sin!t+B! cos!t)

+ 5(A cos!t+B sin!t)

Therefore we must have
�A!2 + 2B! + 5A = 0
�B!2 � 2A! + 5B = A

1

Solving gives

B =
A

1

(5� !2)

(5� !2)2 + 4!2

A =
2B!

!2 � 5
=

2!A
1

(5� !2)2 + 4!2

If we choose to write the solution in the form
x
p

= A
2

sin(!t+ �) then we must have

A2

2

=A2 +B2

=
A2

1

⇥
(2!)2 + (5� !2)2

⇤

[(5� !2)2 + 4!2]2

=
A2

1

(5� !2)2 + 4!2

A
2

=
A

1p
(5� !2)2 + 4!2

A
2

A
1

=
1p

(5� !2)2 + 4!2

and

tan � =
A

B
=

2!

(5� !2)

10. To maximize g(!) we minimize
f(!) = (5� !2)2 + 4!2

f 0(!) = �4!(5� !2) + 8!
= 4!(!2 � 3)

Therefore the maximum gain occurs when
! =

p
3

-4

0.25

0.2

0.15

0.05

omega
6420-2-6

0.1

Gain

0.40.3

decibels

-12
0.2

-13

-14

0.1

-15

-16

0

-17

-18

-0.1-0.2

Bode´ Plot

11. Looking back to Exercise 9, the role of the 5
and the 2 can (and should) be generalized.
If the di↵erential equation is
x00 + �x0 + �x = A

1

sin!t
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and the steady-state solution is in the form
x
p

= A
2

sin(!t+ �)
then the gain is the ratio A2

A1
and can be calcu-

lated as

g =
A

2

A
1

=
1p

(� � !2)2 + �2!2

To maximize the gain, we need to minimize the
radicand, which is equal to

(� � !2)2 + �2!2 = !4 + (�2 � 2�)!2 + �2

This is a quadratic in !2 and has a minimum
(the resonant frequency)

!2

r

=
2� � �2

2

!
r

=

r
� � �2

2
for which

g
max

=
2

�
p
4� � �2

For the problem at hand, we have � = 4 and
� = 0.4. This gives us

!
r

=
p
4� 0.8 =

p
3.92

g
max

=
2

0.4
p
16� 0.16

⇡ 1.2563

0.4

0.2

0.6

omega

0.8

1

420-2-4

1.2

Gain

decibels

0

-5

-10

-15

-20

0.60.40.20-0.2

Bode´ Plot

12. As in Exercise 11, the di↵erential equation
x00 + bx0 + cx = A

1

sin!t
had gain function

g(!) =
1p

(c� !2)2 + b2!2

If we let
f(!) = (c� !2)2 + b2!2 then
f 0(!) = �4!(c� !2) + 2b2!

= 4!
⇣
!2 + b

2

2

� c
⌘

Therefore gain is maximized when

! =

r
c� b2

2
In this case we have b = 0.4 and

c = 5. So, in this case, gain is maximized when

! =

p
123

5
⇡ 2.128

1

0.8

0.6

0.4

0.2

omega
420-2-4

Gain

decibels

0
0.6

-5

-10

-15

-20

0.40.20-0.2

Bode´ Plot

13. We use the principle described in the solution
to Exercise 11, with � = 4 and � = 0.2.
This gives

!2

r

= 4� 0.2 = 3.98

g
max

=
2

0.2
p
16� 0.04

⇡ 2.503
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0.60.40.20-0.2

decibels

2

0

-2

-4

-6

-8

-10

-12

Bode´ Plot

14. As described in the solution to Exercise 12, the
maximum of the gain function occurs at

! =

r
c� b2

2
The constant A plays no role in the gain.

15. The computation of the gain function is the
same whether the forcing function is a sine or
a cosine. The presence of the !2 is also irrel-
evant, as it plays the role of A

1

. Therefore,
following the formulas of Exercise 11, we have
� = 1 and � =. This gives

!
r

=

r
4� 1

2
⇡ 1.8708

g
max

=
2p

16� 1
⇡ 0.5164

From a seismological perspective, however, one
must be more interested in the actual ampli-
tude of the steady-state solution, which would
be

A =!2g =
!2

(!2 � c)2 + b2!2

In this case, we will have

A =
1q

1� 7

!

2 + 16

!

2

which will have a maximum of
A

max

= 8

5

p
39

⇡ 0.2562

when ! = 4
q

2

7

⇡ 2.138

16. In Exercise 15, it is shown that

A = !2 · (gain) = !2

p
(c� !2)2 + b2!2

It is clear from this equation that A depends
on the frequency of the horizontal motion (!).
If M is constant, then we see from the equation
M = log

10

A + 2.56 log
10

D � 1.67 that A also
depends on D.

17. Both the functions sin�1 and tan�1 produce, as
a matter of definition, numerical values in the
interval

⇥
�⇡

2

, ⇡

2

⇤
. Geometrically, this is Quad-

rant I or IV. Thus no angle � in Quadrant III
can obey
� = sin�1(sin(�)) or
� = tan�1(tan(�))
The function cos�1, on the other hand, pro-
duces values in the interval [0,⇡], and for an-
gles � in that interval, it is true that
� = cos�1(cos(�)). Thus, if indeed an angle
✓ is in Quadrant III or IV (recognized by the
condition sin(✓) < 0 ), we may assume that,
numerically, �⇡  ✓  0. Under those circum-
stances, �✓ lies in [0,⇡] and because the cosine
is an even function,

�✓ = cos�1(cos(�✓)) = cos�1(cos(✓))

which is another way of saying that

✓ = � cos�1(cos(✓)) if � ⇡  ✓  0

Without the proviso, this formula is correct
up to added integral multiples of 2⇡ whenever
sin ✓ < 0. In the case at hand, we have

✓ = � cos�1

 
5� !2

p
(5� !2)2 + (2!)2

!

omega
3210

-0.5

-1-2

-1.5

0
-3

-1

-2

-2.5

Phase´ Shift

18. Starting with the di↵erential equation from
Exercise 11,
x00 + 0.4x0 + 4x = A sin!t
The steady state solution is
a sin!t+ b cos!t = B sin(!t+ ✓) where

a =
(4� !2)A

(4� !2)2 + 4

25

!2

b =
� 2

5

!A

(5� !2)2 + 4

25

!2

This gives us

B =
p
a2 + b2 =

Aq
(4� !2)2 + 4

25

!2
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From Exercise 17, the phase shift in Exercise 11
is

✓ =� cos�1

⇣ a

B

⌘

= � cos�1

0

@ (4� !2)q
(4� !2)2 + 4

25

!2

1

A

omega
321

0
0

-0.5

-1

-1

-1.5

-2

-2.5

-2

-3

-3

Phase´ Shift

19. This is Exercise 45 of Section 15.1.

20. If there is nonzero resistance, then eventu-
ally the charge (and current) will be zero—as
shown in Exercise 19 (and Exercise 45 of Sec-
tion 15.1). If the resistance is zero then the
current and charge will oscillate forever.

21. The gain in the circuit described by
ax00 + bx0 + cx = A sin!t
will be the ratio A1

A

where the steady-state so-
lution is A

1

sin(!t+�). We use the normalized
equation:
x00 + b

a

x0 + c

a

x = A

a

sin!t
and the results of Exercise 11, with � = b

a

and
� = c

a

, which give the gain as of the normalized
equation as

A
1

A/a
=

1p
(� � !2)2 + �2!2

=
1q�

c

a

� !2

�
2

+ b

2

a

2!2

=
ap

(c� a!2)2 + b2!2

Therefore, canceling the a terms gives

g =
A

1

A
=

ap
(c� a!2)2 + b2!2

22. This question is asking us to find ! that max-
imizes the gain. Since the gain is maximized
when

f(!) = (c� a!2)2 + b2!2

is minimized, we find the minimum of f(!).

f 0(!) =� 4a!(c� a!2) + 2b2!2

=4a2!

✓
!2 � 2ac� b2

2a2

◆

Solving f 0(!) = 0 and taking the positive so-
lution gives

! =

r
2ac� b2

2a2
It is straightforward to check that this maxi-
mizes g(!).

23. Substituting into Equation (3.7):

✓00 +
9.8

0.10
✓ = 0 ✓(0) = 0.2, ✓0(0) = 0

The characteristic equation is r2 + 98 = 0
and has solutions r = ±7i

p
2.

Therefore the general solution is
✓ = c

1

cos(7t
p
2) + c

2

sin(7t
p
2)

Using the initial conditions to find c
1

and c
2

:

0.2 =✓(0) = c
1

0 =✓0(0) = c
2

7
p
2 =) c

2

= 0

So the solution is
✓ = 0.2 cos(7t

p
2) The amplitude of the mo-

tion is 0.2 and the period of the motion is 2⇡

7

p
2

.

The length of the pendulum a↵ects the period
of the motion.

24. This change will only change the initial condi-
tion and the solution will be
✓ = 0.4 cos(7t

p
2). The amplitude of the mo-

tion is now doubled to 0.4 and the period of
the motion remains 2⇡

7

p
2

.

25. See the solution to Exercise 23. This change
will change the initial conditions to ✓(0) = 0
and ✓0(0) = 0.1. The general solution remains
as in Exercise 23:
✓ = c

1

cos(7t
p
2) + c

2

sin(7t
p
2)

Using the initial conditions to find c
1

and c
2

:

0 =✓(0) = c
1

0.1 =✓0(0) = c
2

7
p
2 =) c

2

=
1

70
p
2

So the solution is
✓ = 1

70

p
2

sin(7t
p
2)

The amplitude of the motion is 1

70

p
2

⇡ 0.01

and the period of the motion remains as in Ex-
ercise 23, 2⇡

7

p
2

.
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26. See the solution to Exercise 25. This change
will change the initial conditions to ✓(0) = 0
and ✓0(0) = 0.2. This changes the final solu-
tion to ✓ = 1

35

p
2

sin(7t
p
2).

The amplitude of the motion is 1

35

p
2

⇡ 0.02

(double the period in Exercise 25). The period
of the motion remains as in Exercise 25, 2⇡

7

p
2

.

27. Substituting into Equation (3.8):

✓00 + 0.2✓0 +
32

2/3
✓ =

32

6
cos 3t

The characteristic equation is
r2 + 0.2r + 48 = 0
and has solutions
r = � 1

10

± i

10

p
4799.

Therefore the steady state solution is the par-
ticular solution:
✓ = A cos 3t+B sin 3t Finding A and B:

16

3
cos 3t = ✓00 +

1

5
✓0 + 48✓

=(�9A cos 3t� 9B sin 3t)

+
1

5
(�3A sin 3t+ 3B cos 3t)

+ 48(A cos 3t+B sin 3t)

=

✓
39A+

3

5
B

◆
cos 3t+

✓
39B � 3

5
A

◆
sin 3t

Solving the equations
39A+ 3

5

B = 16

3

39B � 3

5

A = 0
gives A = 2600

19017

and B = � 40

19017

Therefore the steady state solution is
✓ = 2600

19017

cos 3t+ 40

19017

sin 3t
The amplitude of the motion isp
A2 +B2 = 40

p
4226

19017

⇡ 0.1367
and the period of the motion is 2⇡

3

.

28. Substituting into Equation (3.8):

✓00 + 0.2✓0 +
32

2/3
✓ =

32

6
cos 6t

As in Exercise 27, the steady state solution is
the particular solution:
✓ = A cos 6t+B sin 6t Finding A and B:

16

3
cos 6t = ✓00 +

1

5
✓0 + 48✓

=(�36A cos 6t� 36B sin 6t)

+
1

5
(�6A sin 6t+ 6B cos 6t)

+ 48(A cos 6t+B sin 6t)

=

✓
12A+

6

5
B

◆
cos 6t+

✓
12B � 6

5
A

◆
sin 6t

Solving the equations
12A+ 6

5

B = 16

3

12B � 6

5

A = 0
gives A = 400

891

and B = � 40

891

Therefore the steady state solution is
✓ = 400

891

cos 6t� 40

891

sin 6t
The amplitude of the motion isp
A2 +B2 = 40

p
101

891

⇡ 0.451
and the period of the motion is 2⇡

7

.
The period of the forcing motion does influence
the amplitude of the steady-state motion.

29. The di↵erential equation in Example 3.3 is
u00 + 8u0 + 2532u = sin!t
The characteristic equation is
r2 + 8r + 2532 = 0
and has solutions
r = �4± 2i

p
629.

Therefore the homogeneous solution is

u =c
1

e�4t cos(2t
p
629) + c

2

e�4t sin(2t
p
629)

which clearly goes to 0 at t ! 1.

30. The di↵erential equation in Example 3.5 is
✓00 + 1

10

✓0 + 64✓ = 8 sin 4t
The characteristic equation is
r2 + 1

10

r + 64 = 0
and has solutions
r = � 1

20

± i

p
25599

20

.
Therefore the homogeneous solution is

✓ =c
1

e�t/20 cos

 
t
p
25599

20

!

+ c
2

e�t/20 sin

 
t
p
25599

20

!

which clearly goes to 0 at t ! 1.

31. We know that the Taylor Series for sin ✓ is

sin ✓ = ✓ � ✓3

3!
� ✓5

5!
+ · · ·

Taylor’s Theorem says that remainder satisfies

|R
n

(✓)| =
����
f (n+1)(z)

(n+ 1)!
✓n+1

����

where z is some point in the interval [�✓, ✓].
We are interested in R

2

since the Taylor poly-
nomial of degree 2 is P

2

= ✓. Note that in
all cases, |f (n+1)(z)|  1 since f(✓) = sin ✓.
Therefore

|R
2

(✓)| 
����
f (3)(z)

(3)!
✓3
���� =

|✓|3

6
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32. Using Exercise 31, we need to solve
|✓|3
6

 0.01 Solving gives |✓|  0.3915

33. ✓00 + g

L

✓ = 0
has characteristic equation is
r2 + g

L

= 0
and has solutions
r = ±i

p
g

L

.
Therefore the general solution is
✓ = c

1

cos
�
t
p

g

L

�
+ c

2

sin
�
t
p

g

L

�

which has period

T = 2⇡
q

L

g

.

This equation is equivalent to T 2 = 4⇡

2

g

L
which says that the square of the period varies
directly with the length.

34. For this model, as shown in Exercise 33, the
period is independent of the mass of the bob.

35. In this model, Galileo was correct, the ampli-
tude does not a↵ect the period. This is demon-
strated in Exercise 24 but can also be seen in
Exercise 33—the amplitude is determined by
the initial conditions which do not a↵ect the
period of the solution.

36. We will use Equation (3.8) from the text. Note
that the relation between c and k is cm = k.
Therefore, ✓00 + k✓0 + g

L

✓ = 0 or
✓00 + cm✓0 + g

L

✓ = 0
has characteristic equation is
r2 + cmr + g

L

= 0
and has solutions

r =� cm

2
± 1

2L

p
k2L2 � 4Lg

Therefore the general solution is

✓ =e�cm/2

"
c
1

cos

 
t
p
k2L2 � 4Lg

2L

!

+c
2

sin

 
t
p
k2L2 � 4Lg

2L

!#

Therefore, if the mass, m, is increased, the so-
lution will tend to 0 quicker, as described by
Galileo.

37. y00 + 2↵y0 + ↵2y = 0
has characteristic equation is
r2 + 2↵r + ↵2 = 0
and has solution r = �↵ (repeated root).
Therefore the general solution is
y = c

1

e�↵t + c
2

te�↵t

Using the initial condition to find c
1

and c
2

:

0 =y(0) = c
1

100 =y0(0) = �↵c
1

+ c
2

So, c
1

= 0 and c
2

= 100 and the solu-
tion is y = 100te�↵t Therefore, y2 + (y0)2 =
10000e�2↵t[(↵2 + 1)t2 � 2↵t+ 1] Evaluated at
t = 1, this is equal to
10000e�2↵[(↵2 + 1)� 2↵+ 1]
Graphing, as seen below, shows that if
↵ > 9 then this quantity if less than 0.01.

9.49.298.8

0.014

0.012

0.01

0.008

0.006

alpha

0.004

9.89.6

38. If ↵ = 1, then the di↵erential equation is
g00 + 2g0 + !2g = 0
has characteristic equation is
r2+2r+!2 = 0 For the healthy patient, ! = 2,
the general solution to the di↵erential equation
is:

g
2

(t) =c
1

e�t cos(t
p
3) + c

2

e�t sin(t
p
3)

Using the initial condition to find c
1

and c
2

gives the solution

g
2

(t) =10e�t cos(t
p
3) +

10p
3
e�t sin(t

p
3)

For the diabetic patient, ! = 1, the character-
istic polynomial has a repeated root and the
general solution to the di↵erential equation is:

g
1

(t) =c
1

e�t + c
2

te�t

Using the initial condition to find c
1

and c
2

gives the solution

g
1

(t) =10e�t + 10te�t

In the graphs below, g
2

is drawn in bold.
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321

10

0

8

t

4

2

0
4

6

5

39. If 0 < ↵ < !, then the di↵erential equation is
g00 + 2↵g0 + !2g = 0
has characteristic equation is
r2 + 2↵r + !2 = 0 which has solutions

r =� ↵± i
p
!2 � ↵2

Therefore the general solution to the di↵eren-
tial equation will be

g(t) =e�↵t

h
c
1

cos
⇣
t
p
!2 � ↵2

⌘

+c
2

sin
⇣
t
p
!2 � ↵2

⌘i

We can convert this solution to

g(t) =Ae�↵t sin
⇣
t
p
!2 � ↵2 + �

⌘

where A =
p
c2
1

+ c2
2

and tan � = c1
c2
.

Therefore there will be zeros only where
sin
�
t
p
!2 � ↵2 + �

�
= 0

and the distance between zeros is will be
⇡p

!

2�↵

2 > ⇡

!

The data given can be put in a

table:

t G(t) g(t) = G(t)�G0

1 0.9 0.15
2 0.7 �0.15
3 0.78 0.03

Therefore there are at least two zeros, less than
2 hours apart. It appears that the data is a
damped exponential. Putting this all together
gives

⇡

!
< (distance between zeros) < 2

⇡

!
< 2 =) 2⇡

!
< 4

and the diagnosis is not diabetic.

40. The data given can be put in a table, as can
be seen in the solution to Exercise 39. Notice
that in the case 0 < ! < ↵, there is at most one
zero, but the shows at least two zeros. There-
fore, the data is inconsistent with this case.

41. Q00 + R

L

Q0 + 1

LC

Q = 0
has characteristic equation is
r2 + R

L

r + 1

LC

= 0 which has solutions

r =� R

2L
±

q
R2 � 4L

C

2L

If R2 > 4L

C

then the solutions are real and the
general solution to the di↵erential equation will
be

Q(t) =e�Rt/(2L)

"
c
1

cos

 
t
p

R2 � 4L/C

2L

!

+c
2

sin

 
t
p
R2 � 4L/C

2L

!#

=e�Rt/(2L) [Q
0

cos (!t) + c
2

sin (!t)]

It is clear that c
1

= Q
0

= Q(0), as stated in the
textbook. Now, to find the inductance quality
factor.

u(t) =
Q(t)2

2C

u(0) =
Q(0)2

2C
=

Q2

0

2C

u(2⇡/!) =
[Q(2⇡/!)]2

2C

=
Q2

0

e�2R⇡/(L!)

2C

IQF =
2⇡

U
loss

=
2⇡u(0)

u(2⇡/!)� u(0)

=
2⇡u(0)

u(2⇡/!)� u(0)

=
2⇡Q

2
0

2C

Q

2
0e

�2R⇡/(L!)

2C

� Q

2
0

2C

=
2⇡

e�2R⇡/(L!) � 1

=
2⇡

� 2R⇡

L!

+ 1

2!

�
� 2R⇡

L!

�
2

+ · · ·

⇡ 2⇡

� 2R⇡

L!

= �L!

2R

This is negative because energy is lost—u(t) is
decreasing and therefore U

loss

is negative.
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15.4 Power Series Solutions of
Di↵erential Equations

1. 0 = y00 + 2xy0 + 4y

=
1X

n=2

n(n� 1)a
n

xn�2

+ 2x
1X

n=1

na
n

xn�1 + 4
1X

n=0

a
n

xn

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

xn

+ 2
1X

n=0

na
n

xn + 4
1X

n=0

a
n

xn

=
1X

n=0

[(n+ 2)(n+ 1)a
n+2

+ 2na
n

+ 4a
n

]xn

So,
(n+ 2)(n+ 1)a

n+2

+ 2(n+ 2)a
n

= 0, or

a
n+2

= � 2(n+ 2)

(n+ 2)(n+ 1)
= � 2

n+ 1
a
n

so

a
2n

=
(�1)n22n�1

(2n� 1)!
a
0

a
2n+1

=
(�1)n

n!
a
1

The general solution is
y = a

0

y
1

+ a
1

y
2

where

y
1

(x) =
1X

n=1

(�1)n22n�1

(2n� 1)!
x2n

y
2

(x) =
1X

n=0

(�1)n

n!
x2n+1

2. y00 + 4xy0 + 8y

=
1X

n=2

n(n� 1)a
n

xn�2

+ 4x
1X

n=1

na
n

xn�1 + 8
1X

n=0

a
n

xn

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

xn

+
1X

n=1

4na
n

xn +
1X

n=0

8a
n

xn

= 2a
2

+ 8a
0

+
1X

n=1

[(n+2)(n+1)a
n+2

+(4n+8)a
n

]xn

From 2a
2

+ 8a
0

= 0 and
(n+2)(n+1)a

n+2

+(4n+8)a
n

= 0, for n � 1,
we find the recurrence formula

a
n+2

= � 4

n+ 1
a
n

and the general solution y = a
0

y
1

+a
1

y
2

where

y
1

(x) = 1 +
1X

n=1

(�1)n4n

1 · 3 · · · (2n� 1)
x2n

y
2

(x) =
1X

n=0

(�1)n2n

n!
x2n+1

3. 0 = y00 � xy0 � y

=
1X

n=2

n(n� 1)a
n

xn�2

� x

1X

n=1

na
n

xn�1 � sum1
n=0

a
n

xn

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

xn

�
1X

n=0

na
n

xn �
1X

n=0

a
n

xn

=
1X

n=0

[(n+ 2)(n+ 1)a
n+2

� (n+ 1)a
n

]xn

So, (n + 2)(n + 1)a
n+2

� (n + 1)a
n

= 0, or

a
n+2

=
n+ 1

(n+ 2)(n+ 1)
a
n

=
1

n+ 2
a
n

so a
2n

=
1

2nn!
a
0

a
2n+1

=
2nn!

(2n+ 1)!
a
1

The general solution is
y = a

0

y
1

+ a
1

y
2

where

y
1

(x) =
1X

n=0

1

2nn!
x2n

y
2

(x) =
1X

n=0

2nn!

(2n+ 1)!
x2n+1

4. y00 � xy0 � 2y

=
1X

n=2

n(n� 1)a
n

xn�2 � x

1X

n=1

na
n

xn�1

� 2
1X

n=0

a
n

xn

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

xn �
1X

n=1

na
n

xn

�
1X

n=0

2a
n

xn

= 2a
2

� 2a
0

+
1X

n=1

[(n+2)(n+1)a
n+2

�(n+2)a
n

]xn

From 2a
2

� 2a
0

= 0 and
(n+ 2)(n+ 1)a

n+2

� (n+ 2)a
n

= 0, for n � 1,

we find the recurrence formula a
n+2

=
1

n+ 1
a
n

and the general solution y = a
0

y
1

+a
1

y
2

where
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y
1

(x) = 1 +
1X

n=1

1

1 · 3 · · · (2n� 1)
x2n

y
2

(x) =
1X

n=0

1

n!2n
x2n+1

5. y00 � xy0

=
1X

n=2

n(n� 1)a
n

xn�2 � x

1X

n=1

na
n

xn�1

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

xn �
1X

n=0

na
n

xn

=
1X

n=0

[(n+ 2)(n+ 1)a
n+2

� na
n

]xn

So, (n+ 2)(n+ 1)a
n+2

� na
n

= 0, or

a
n+2

=
n

(n+ 2)(n+ 1)
a
n

so a
2n

= 0 for n > 0

a
2n+1

=
1

(2n+ 1)!n!2n
a
1

The general solution is y = a
0

y
1

+ a
1

y
2

where
y
1

(x) = 1

y
2

(x) =
1X

n=0

1

(2n+ 1)!n!2n
x2n+1

6. y00 + 2xy

=
1X

n=2

n(n� 1)a
n

xn�2 + 2x
1X

n=0

a
n

xn

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

xn +
1X

n=1

2a
n�1

xn

= 2a
2

+
1X

n=1

[(n+ 2)(n+ 1)a
n+2

+ 2a
n�1

]xn

From 2a
2

= 0 and (n+2)(n+1)a
n+2

+2a
n�1

,
for n � 1, we find the recurrence formula

a
n+3

= � 2

(n+ 2)(n+ 3)
a
n

and the general solution y = a
0

y
1

+a
1

y
2

where

y
1

(x) = 1 +
1X

n=1

(�2)n1 · 4 · · · (3n� 2)

(3n)!
x3n

y
2

(x) =
1X

n=0

(�2)n1 · 4 · · · (3n� 1)

(3n+ 1)!
x3n+1

7. 0 = y00 � x2y0

=
1X

n=2

n(n� 1)a
n

xn�2 � x2

1X

n=1

na
n

xn�1

=
1X

n=2

n(n� 1)a
n

xn�2 �
1X

n=1

na
n

xn+1

= 2a
2

+
1X

n=3

n(n� 1)a
n

xn�2 �
1X

n=1

na
n

xn+1

= 2a
2

+
1X

n=0

(n+ 3)(n+ 2))a
n+3

xn+1

�
1X

n=0

na
n

xn+1

= 2a
2

+
1X

n=0

[(n+ 3)(n+ 2)a
n+3

� na
n

]xn+1

So, (n+ 3)(n+ 2)a
n+3

� na
n

= 0, or

a
n+3

=
n

(n+ 3)(n+ 2)
a
n

So, a
2

= 0 and 0 = a
2

= a
5

= a
8

= · · ·
0 = a

3

= a
6

= a
9

= · · ·
a
3n+1

=
1

(3n+ 1)n!3n
a
1

The general solution is y = a
0

y
1

+ a
1

y
2

where
y
1

(x) = 1

y
2

(x) =
1X

n=0

1

(3n+ 1)n!3n
x3n+1

8. y00 + xy0 � 2y

=
1X

n=2

n(n� 1)a
n

xn�2 + x

1X

n=1

na
n

xn�1

� 2
1X

n=0

a
n

xn

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

xn +
1X

n=1

na
n

xn

�
1X

n=0

2a
n

xn

= 2a
2

� 2a
0

+
1X

n=1

[(n+2)(n+1)a
n+2

+(n�2)a
n

]xn

From 2a
2

� 2a
0

= 0 and
(n+ 2)(n+ 1)a

n+2

+ (n� 2)a
n

= 0, for n � 1,
we find the recurrence formula

a
n+2

= � n� 2

(n+ 1)(n+ 2)
a
n

and the general solution y = a
0

y
1

+a
1

y
2

where
y
1

(x) = 1 + x2

y
2

(x) = x+
1

6
x3

+
1X

n=2

(�1)n1 · 3 · · · (2n� 3)

(2n+ 1)!
x2n+1

9. 0 = y00 � (x� 1)y0 � y

=
1X

n=2

n(n� 1)a
n

(x� 1)n�2

� (x� 1)
1X

n=1

na
n

(x� 1)n�1
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�
1X

n=0

a
n

(x� 1)n

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

(x� 1)n

�
1X

n=0

na
n

(x� 1)n �
1X

n=0

a
n

(x� 1)n

=
1X

n=0

[(n+ 2)(n+ 1)a
n+2

� (n+ 1)a
n

](x� 1)n

So, (n+ 2)(n+ 1)a
n+2

� (n+ 1)a
n

= 0, or

a
n+2

=
n+ 1

(n+ 2)(n+ 1)
a
n

=
1

n+ 2
a
n

so a
2n

=
1

2nn!
a
0

a
2n+1

=
2nn!

(2n+ 1)!
a
1

The general solution is y = a
0

y
1

+ a
1

y
2

where

y
1

(x) =
1X

n=1

1

2nn!
(x� 1)2n

y
2

(x) =
1X

n=0

2nn!

(2n+ 1)!
(x� 1)2n+1

10. y00 + y0 + (x� 2)y

=
1X

n=2

n(n� 1)a
n

(x� 2)n�2

+
1X

n=1

na
n

(x� 2)n�1

+ (x� 2)
1X

n=0

a
n

(x� 2)n

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

(x� 2)n

+
1X

n=0

(n+ 1)a
n+1

(x� 2)n

+
1X

n=1

a
n�1

(x� 2)n

= 2a
2

+ a
1

+
1X

n=1

[(n+2)(n+1)a
n+2

+(n+1)a
n+1

+ a
n�1

](x� 2)n

So a
0

and a
1

are arbitrary, a
2

= � 1

2

a
1

, and

a
n+2

= � 1

n+ 2
a
n+1

� 1

(n+ 1)(n+ 2)
a
n�1

for n � 1. This is the recursion formula which
gives the solution.

y = a
0

✓
1� 1

6
(x� 2)3 +

1

24
(x� 2)4

� 1

120
(x� 2)5 +

1

144
(x� 2)6 + · · ·

◆

+ a
1

✓
(x� 2)� 1

2
(x� 2)2 +

1

6
(x� 2)3

�1

8
(x� 2)4 +

1

20
(x� 2)5

� 1

72
(x� 2)6 + · · ·

◆

11. 0 = y00 � (x� 1)y � y

=
1X

n=2

n(n� 1)a
n

(x� 1)n�2

� (x� 1)
1X

n=1

a
n

(x� 1)n

�
1X

n=0

a
n

(x� 1)n

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

(x� 1)n

�
1X

n=0

a
n

(x� 1)n+1

�
1X

n=0

a
n

(x� 1)n

= 2a
2

� a
0

+
1X

n=1

(n+ 2)(n+ 1)a
n+2

(x� 1)n

�
1X

n=1

a
n�1

(x� 1)n

�
1X

n=0

a
n

(x� 1)n

= 2a
2

� a
0

+
1X

n=0

[(n+ 2)(n+ 1)a
n+2

� a
n�1

� a
n

](x� 1)n

So, a
0

and a
1

are arbitrary, a
2

= 1

2

a
0

and
(n + 2)(n + 1)a

n+2

� a
n�1

� a
n

= 0 or

a
n+2

=
a
n

+ a
n�1

(n+ 2)(n+ 1)
This is the recursion formula which gives the
solution.

y = a
0

✓
1 +

1

2
(x� 1)2 +

1

6
(x� 1)3

+
1

24
(x� 1)4 +

1

30
(x� 1)5 ++ · · ·

◆

+ a
1

✓
(x� 1) +

1

6
(x� 1)3 +

1

24
(x� 1)4

+
1

120
(x� 1)5 +

1

120
(x� 1)6 + · · ·

◆

12. y00 � xy

=
1X

n=2

n(n� 1)a
n

(x� 2)n�2
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� x

1X

n=0

a
n

(x� 2)n

=
1X

n=2

n(n� 1)a
n

(x� 2)n�2

� (x� 2)
1X

n=0

a
n

(x� 2)n

� 2
1X

n=0

a
n

(x� 2)n

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

(x� 2)n

�
1X

n=1

a
n�1

(x� 2)n

�
1X

n=0

2a
n

(x� 2)n

= 2a
2

� 2a
0

+
1X

n=1

[(n+ 2)(n+ 1)a
n+2

� 2a
n

� a
n�1

](x� 2)n

So a
0

and a
1

are arbitrary, a
2

= a
0

, and

a
n+2

=
2a

n

+ a
n+1

(n+ 1)(n+ 2)
for n � 1.

This is the recursion formula which gives the
solution.

y = a
0

✓
1 + (x� 1)2 +

1

6
(x� 1)3

+
13

72
(x� 1)4 +

37

1440
(x� 1)5 + · · ·

◆

+ a
1

✓
(x� 1) +

1

3
(x� 1)3 +

1

36
(x� 1)4

+
5

144
(x� 1)5 +

13

4320
(x� 1)6 + · · ·

◆

13. We use the solution found in Exercise 1 and
substitute
y(0) = a

0

= 5 and y0(0) = a
1

= �7:

y(x) = 5
1X

n=1

(�1)n22n�1

(2n� 1)!
x2n

� 7
1X

n=0

(�1)n

n!
x2n+1

14. Substituting a
0

= 2 and a
1

= ⇡ in the gen-
eral solution obtained in Exercise 2 yields

y(x) = 2 +
1X

n=1

2(�1)n4n

1 · 3 · · · (2n� 1)
x2n

+
1X

n=0

⇡(�1)n2n

n!
x2n+1.

15. We use the solution found in Exercise 9 and
substitute

y(1) = a
0

= �3 and y0(1) = a
1

= 12:

y(x) = �3
1X

n=1

1

2nn!
(x� 1)2n

+ 12
1X

n=0

2nn!

(2n+ 1)!
(x� 1)2n+1

16. a
0

= 1, a
1

= �1, a
2

= 1

2

, and

a
n+2

= � 1

n+ 2
a
n+1

� 1

(n+ 1)(n+ 2)
a
n�1

for n � 1. Hence

y(x) = 1� (x� 2) +
1

2
(x� 2)2 � 1

3
(x� 2)3

+
1

6
(x� 2)4 � 7

120
(x� 2)5

+
1

48
(x� 2)6 � 1

144
(x� 2)7 + . . .

17. Using the ratio test, we can look separately
at the two series in the solution of Exercise 3:
1X

n=1

1

2nn!
x2nand

1X

n=0

2nn!

(2n+ 1)!
x2n+1

Letting a
n

= x

2n

2

n
n!

, then

lim
n!1

����
a
n+1

a
n

���� = lim
n!1

����
x2n+22nn!

2n+1(n+ 1)!x2n

����

= lim
n!1

����
x2

2(n+ 1)

���� = 0

So this series converges for all x.

Now letting a
n

= 2

n
n!x

2n+1

(2n+1)!

, then lim
n!1

����
a
n+1

a
n

����

= lim
n!1

����
2n+1(n+ 1)!x2n+3(2n+ 1)!

(2n+ 3)!2nn!x2n+1

����

= lim
n!1

����
x2

2n+ 3

���� = 0

So this series converges for all x.

Hence the sum of these two series converges
for all x and the radius of convergence of the
power series is r = 1.

18. In Exercise 4, we found that the general solu-
tion is y = a

0

y
1

+ a
1

y
2

where

y
1

(x) = 1 +
1X

n=1

1

1 · 3 · · · (2n� 1)
x2n

y
2

(x) =
1X

n=0

1

n!2n
x2n+1

Both series converge absolutely for all x, by the
Ratio Test, so the radius of convergence is 1.

19. Using the ratio test, we can look separately
at the two series in the solution of Exercise 9:
1X

n=1

1

2nn!
(x� 1)2n
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1X

n=0

2nn!

(2n+ 1)!
(x� 1)2n+1

These are the exact same series in Exercise 17
except that x is replaced by x � 1. Therefore
the radius of convergence of the power series is
r = 1.

20. Solving y00 � xy = 0 about x = 0 we ob-
tain: a

0

and a
1

are arbitrary, a
2

= 0, and

a
n+2

=
a
n�1

(n+ 1)(n+ 2)
for n � 1. This gives

the general solution:
y(x) = a

0

+ a
0

1X

n=1

1

2 · 3 · 5 · 6 · · · (3n� 1) · 3n x3n

+ a
1

x

+a
1

1X

n=1

1

3 · 4 · 6 · 7 · · · 3n · (3n+ 1)
x3n+1

Both series converge absolutely for all x, by the
Ratio Test, so the radius of convergence is 1.
Since the radius of convergence about x = 0 is
1, the radius of convergence about any other
point is 1.

21. 0 = x2y00 + xy0 + x2y

= x2

1X

n=2

n(n� 1)a
n

xn�2

+ x

1X

n=1

na
n

xn�1 + x2

1X

n=0

a
n

xn

=
1X

n=2

n(n� 1)a
n

xn

+
1X

n=1

na
n

xn +
1X

n=0

a
n

xn+2

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

xn+2

+
1X

n=�1

(n+ 2)a
n+2

xn+2 +
1X

n=0

a
n

xn+2

= a
1

x+
1X

n=0

[(n+ 2)(n+ 1)a
n+2

+ (n+ 2)a
n+2

+ a
n

]xn+2

So, a
1

= 0 and
0 = (n+ 2)(n+ 1)a

n+2

+ (n+ 2)a
n+2

+ a
n

or a
n+2

= � a
n

(n+ 2)2
so 0 = a

1

= a
3

= a
5

= · · ·
a
2n

=
(�1)n

22n(n!)2
a
0

So a solution is y =
1X

n=0

(�1)n

22n(n!)2
x2n

22. x2y00 + xy0 + (x2 � 1)y

=
1X

n=2

n(n� 1)a
n

xn +
1X

n=1

na
n

xn

+
1X

n=0

a
n

xn+2 �
1X

n=0

a
n

xn

=
1X

n=2

n(n� 1)a
n

xn +
1X

n=1

na
n

xn

+
1X

n=2

a
n�2

xn �
1X

n=0

a
n

xn

= �a
0

+
1X

n=2

[(n2 � 1)a
n

+ a
n�2

]xn

So a
0

= 0, a
1

is arbitrary, and a
n

= 1

1�n

2 an�2

for n � 2. This gives
y(x) = a

1

x

+ a
1

1X

n=1

(�1)nx2n+1

2 · 4 · 4 · 6 · · · 2n · 2(n+ 1)

= a
1

1X

n=1

(�1)nx2n+1

22nn!(n+ 1)!

23. Let y
1

and y
2

be the two solutions described
in Example 4.3. Then y

1

is of the formP1
n=0

b
3n

x3n, where the coe�cients satisfy the
recurrence relation b

n+3

= bn
(n+3)(n+2)

.
We now apply the ratio test to this series.

lim
n!1

����
b
3n+3

x3n+3

b
3n

x3n

����

= lim
n!1

����
x3

(3n+ 3)(3n+ 2)

���� = 0

So this series converges for all x. The same
argument applies to the series for y

2

, so the
radius of convergence of the series solution is
r = 1.

24. This is the same as Exercise 20.

25. We are given
y00 + 2xy0 � xy = 0
y(0) = 2, y0(0) = �5
Substituting x = 0 we get
y00(0) + 2(0)y0(0)� 0y(0) = 0
so y00(0) = 0
We now di↵erentiate the di↵erential equation:
y00 = �2xy0 + xy
y000 = �2y0 � 2xy00 + y + xy0

= �2xy00 + (x� 2)y0 + y
Substituting x = 0,
y000(0) = �2(0)y00(0) + (0� 2)y0(0) + y(0)

= 0� 2(�5) + 2 = 12
Di↵erentiating again:
y000 = �2xy00 + (x� 2)y0 + y
y(4) = �2y00 � 2xy000 + y0 + (x� 2)y00 + y0

= �2xy000 + (x� 4)y00 + 2y0
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Substituting x = 0,
y(4)(0) = �2(0)y000(0) + (0� 4)y00(0) + 2y0(0)

= 0� 4(0) + 2(�5) = �10
Di↵erentiating again:
y(4) = �2xy000 + (x� 4)y00 + 2y0

y(5) = �2y000 � 2xy(4) + y00 + (x� 4)y000 + 2y00

= �2xy(4) + (x� 6)y000 + 3y00

Substituting x = 0,
y(5)(0) = �2(0)y(4)(0) + (0� 6)y000(0) + 3y00(0)

= 0� 6(12) + 3(0) = �72
Therefore,

P
5

(x) = y(0) + y0(0)x+ y00(0)
x2

2
+ y000(0)

x3

3!

+ y(4)(0)
x3

4!
+ y(5)

x4

5!

= 2� 5x� 2x3 � 5x4

12
� 3x5

5

26. Using the technique of Exercise 25 we find
y00(0) = 3, y000(0) = 2, y(4)(0) = �4, and
y(5)(0) = �22. Hence

y(x) ⇡ 3 + 2x+
3

2
x2 +

1

3
x3 � 1

6
x4 � 11

60
x5

27. Following the technique of Exercise 25, we first
substitute:
y00 = �exy0 + (sinx)y
y00(0) = �e0y0(0) + (sin 0)y(0)

= �1(1) + 0 = �1
Di↵erentiating and substituting,
y000 = �exy0 � exy00 + (cosx)y + (sinx)y0

= �exy00 + (sinx� ex)y0 + (cosx)y
y000(0) = �e0y00(0) + (sin 0� e0)y0(0)

+ (cos 0)y(0)
= �1(�1) + (�1)(1) + (1)(�2) = �2

Di↵erentiating and substituting,
y(4) = �exy00 � exy000 + (cosx� ex)y0

+ (sinx� ex)y00 + (� sinx)y
+ (cosx)y0

= �exy000 + (sinx� 2ex)y00

+ (2 cosx� ex)y0 � (sinx)y
y(4)(0) = �e0y000(0) + (sin 0� 2e0)y00(0)

+ (2 cos 0� e0)y0(0)� (sin 0)y(0)
= (�1)(�2) + (�2)(�1) + (1)(1)� 0

y(4)(0) = 5
Di↵erentiating and substituting,
y(5) = �exy000 � exy(4) + (cosx� 2ex)y00

+ (sinx� 2ex)y000

+(�2 sinx�ex)y0+(2 cosx�ex)y00

� (cosx)y � (sinx)y0

= �exy(4) + (sinx� 3ex)y000

+ (3 cosx� 3ex)y00

+ (�3 sinx� ex)y0 � (cosx)y
y(5)(0) = �e0y(4)(0) + (sin 0� 3e0)y000(0)

+ (3 cos 0� 3e0)y00(0)
+ (�3 sin 0� e0)y0(0)� (cos 0)y

= (�1)(5) + (�3)(�2) + (0)(�1)
+ (�1)(1)� (1)(�2)

= 2
Therefore,

P
5

(x) = �2 + x� x2

2
� x3

3
+

5x4

24
+

x5

60

28. Using the technique of Exercise 25 we find
y00(0) = 2, y000(0) = 0, y(4)(0) = 4, and

y(5)(0) = 4. Hence y(x) ⇡ 2+x2+
1

6
x4+

1

30
x5

29. Following the technique of Exercise 25, we first
substitute:
y00 = �xy0 � (sinx)y
y00(⇡) = �⇡y0(⇡)� (sin⇡)y(⇡) = �4⇡
Di↵erentiating and substituting,
y000 = �y0 � xy00 � (cosx)y � (sinx)y0

= �xy00 + (�1 + sinx)y0 � (cosx)y
y000(⇡) = �⇡y00(⇡) + (�1 + sin⇡)y0(⇡)

� (cos⇡)y(⇡)
= 4⇡2 � 4

Di↵erentiating and substituting,
y(4) = �y00 � xy000 + (� cosx)y0

+ (�1� sinx)y00 + (sinx)y
� (cosx)y0

= �xy000 + (�2� sinx)y00

+ (�2 cosx)y0 + (sinx)y
y(4)(⇡) = �⇡y000(⇡) + (�2� sin⇡)y00(⇡)

+ (�2 cos⇡)y0(⇡) + (sin⇡)y(⇡)
= �⇡(4⇡2 � 4) + (�2)(�4⇡) + 2(4) + 0
= �4⇡3 + 12⇡ + 8

Di↵erentiating and substituting,
y(5) = �y000 � xy(4) + (� cosx)y00

+ (�2� sinx)y000 + (2 sinx)y0

+ (�2 sinx)y00 + (cosx)y
+ (sinx)y0

= �xy(4) + (�3� sinx)y000

+ (�3 cosx)y00 + (3 sinx)y0

+ (cosx)y
y(5)(⇡) = �⇡y(4)(⇡) + (�3� sin⇡)y000(⇡)

+ (�3 cos⇡)y00(⇡) + (3 sin⇡)y0(⇡)
+ (cos⇡)y(⇡)

= (�⇡)(�4⇡3 + 12⇡ + 8)
+ (�3)(4⇡2 � 4) + (3)(�4⇡) + 0 + 0

= 4⇡4 � 23⇡2 � 20⇡ + 12
Therefore,

P
5

(x) = 0 + 4(x� ⇡) + (�4⇡)
(x� ⇡)2

2

+ (4⇡2 � 4)
(x� ⇡)3

3!

+ (�4⇡3 + 12⇡ + 8)
(x� ⇡)4

4!
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+(4⇡4�24⇡2�20⇡+12)
(x� ⇡)5

5!

30. Using the technique of Exercise 25 we find
y00(⇡

2

) = � 3⇡

2

, y000(⇡
2

) = �3,

y(4)(⇡
2

) = 3

4

⇡2 � 3⇡, and y(5)(⇡
2

) = 6⇡ � 9.
Hence

y(x) ⇡ 3� 3⇡

4

⇣
x� ⇡

2

⌘
2

� 1

2

⇣
x� ⇡

2

⌘
3

+

✓
1

32
⇡2 � 1

8
⇡

◆⇣
x� ⇡

2

⌘
4

+

✓
1

20
⇡ � 3

40

◆⇣
x� ⇡

2

⌘
5

15. Review Exercises

1. The characteristic equation is
r2 + r � 12 = 0
which has solutions r = �4, 3.
Thus the general solution is
y = c

1

e�4t + c
2

e3t.

2. The characteristic equation is
r2 + 4r + 4 = 0
which has solution r = �2 (a repeated root).
Thus the general solution is
y = c

1

e�2t + c
2

te�2t.

3. The characteristic equation is
r2 + r + 3 = 0
which has solutions r = �1±i

p
11

2

.
Thus the general solution is

y =c
1

e�t/2 cos

 
t
p
11

2

!
+ c

2

e�t/2 sin

 
t
p
11

2

!

4. The characteristic equation is
r2 + 3r � 8 = 0
which has solutions r = � 3

2

±
p
41

2

Thus the general solution is

y = c
1

e�t(3+

p
41)/2 + c

1

e�t(3�
p
41)/2.

5. The characteristic equation is
r2 � r � 6 = 0
which has solutions r = �2, 3. Thus the gen-
eral solution to the homogeneous equation is
y = c

1

e�2t + c
2

e3t.
The guess for a particular solution is
y
p

= Ate3t +Bt2 + Ct+D
(note that we had to add a t to the e3t term
since that is a solution to the homogeneous

equation). We solve for the constants.

e3t + t2 + 1 = y00
p

� y0
p

� 6y
p

=A(9t+ 6)e3t + 2B

�
⇥
A(3t+ 1)e3t + 2Bt+ C

⇤

� 6
⇥
Ate3t +Bt2 + Ct+D

⇤

=5Ae3t � 6Bt2 + (�2B � 6C)t

+ 2B � C � 6D

For this to work we require
5A = 1 =) A = 1

5

�6B = 1 =) B = � 1

6

�2B � 6C = 0 =) C = �B

3

= 1

18

2B � C � 6D = 1
=) D = 2B�C�1

6

= � 50

216

Thus, the general solution is

y =c
1

e�2t + c
2

e3t

+
1

5
te3t � 1

6
t2 +

1

18
t� 50

216

6. The characteristic equation is
r2 � 4 = 0
which has solutions r = ±2. Thus the general
solution to the homogeneous equation is
y = c

1

e2t + c
2

e�2t

The guess for a particular solution is
y
p

= Ate2t +B cos 2t+ C sin 2t
(note that we had to add a t to the e2t term
since that is a solution to the homogeneous
equation). We solve for the constants.

2e2t+16 cos 2t = y00
p

� 4y
p

=4Ae2t � 8B cos 2t� 8C sin 2t

Solving gives A = 1

2

, B = �2 and C = 0.
Thus, the general solution is

y = c
1

e2t + c
2

e�2t +
1

2
te2t � 2 cos 2t

7. The characteristic equation is
r2 + 2r � 8 = 0
which has solutions r = �4, 2.
Thus the general solution is
y = c

1

e�4t + c
2

e2t.
We use the initial conditions to find c

1

and c
2

:
5 = y(0) = c

1

+ c
2

� 2 = y0(0) = �4c
1

+ 2c
2

Solving gives c
1

= 2 and c
2

= 3.
Thus the solution is
y = 2e�4t + 3e2t.

8. The characteristic equation is
r2 + 2r + 5 = 0
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which has solutions r = �1± 2i.
Thus the general solution is
y = c

1

e�t cos 2t+ c
2

e�t sin 2t.
We use the initial conditions to find c

1

and c
2

:
2 = y(0) = c

1

0 = y0(0) = �c
1

+ 2c
2

Solving gives c
1

= 2 and c
2

= 1.
Thus the solution is
y = 2e�t cos 2t+ e�t sin 2t

9. The characteristic equation is
r2 + 4 = 0
which has solutions r = ±2i.
Thus the general solution to the homogeneous
equation is
y = c

1

cos 2t+ c
2

sin 2t.
The guess for a particular solution is
y
p

= A cos t+B sin t
We solve for the constants.

3 cos t =y00
p

+ 4y
p

=(�A cos t�B sin t)

+ 4(A cos t+B sin t)

=3A cos t+ 3B sin t

For this to work, we require 3A = 3 and
3B = 0. Therefore, A = 1 and B = 0.
Thus, the general solution is
y = c

1

cos 2t+ c
2

sin 2t+ cos t
We use the initial conditions to find c

1

and c
2

:
1 = y(0) = c

1

+ 1
2 = y0(0) = 2c

2

Solving gives c
1

= 0 and c
2

= 1.
Thus the solution is
y = sin 2t+ cos t

10. Solving for the constants c
1

and c
2

gives the
equations

0 =y(0) = c
1

+ c
2

� 2

1

2
=y0(0) = 2c

1

� 2c
2

+
1

2

Solving gives c
1

= 1 and c
2

= 1 and the solu-
tion to the di↵erential equation is

y = e2t + e�2t +
1

2
te2t � 2 cos 2t

11. Solving for k gives
k = 4

1/3

= 12.
Thus we get the di↵erential equation

4

32
u00 + 12u = 0

u00 + 96u = 0

The characteristic equation is
r2 + 96 = 0
which has solutions r = ±4i

p
6.

Thus the general solution is

y = c
1

cos
⇣
4t
p
6
⌘
+ c

2

sin
⇣
4t
p
6
⌘

We use the initial conditions to find c
1

and c
2

:
2

12
= u(0) = c

1

0 = u0(0) = 4c
2

p
6

Therefore. c
1

= 1

6

and c
2

= 0.
Thus the solution is

u =
1

6
cos
⇣
4t
p
6
⌘

12. The di↵erential equation is
u00 + 96u = 32 cos!t
u(0) = 1

6

, u0(0) = 0
Resonance occurs when

! =

r
k

m
=

s
12

1/8
= 4

p
6 ⇡ 9.80 If ! = 10,

then the general solution is of the form

u =c
1

cos(4
p
6 t) + c

1

cos(4
p
6 t)

+A cos 10t+B sin 10t

Solving for A and B gives
A = �8, B = 0
Using the initial condition gives
c
1

= 49

6

, c
2

= 0 Because the frequency is so
close to the resonant frequency, we have beats.

10

5

0

-10

-15

t
20

15

-5

30100

13. The model
LQ00 +RQ0 + 1

C

Q = 0
becomes, after substitutions, the di↵erential
equation
0.2Q00 + 160Q0 + 100Q = 0, or
Q00 + 800Q0 + 500Q = 0
The characteristic equation is
r2 + 800r + 500 = 0
which has solutions r = �400± 10

p
1595.

Thus the general solution is

Q = c
1

e(�400+10

p
1595)t + c

2

e(�400�10

p
1595)t
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We use the initial conditions to find c
1

and c
2

:

10�4 =Q(0) = c
1

+ c
2

0 =Q0(0) = (�400 + 10
p
1595)c

1

+ (�400� 10
p
1595)c

2

=10
p
1595(c

1

� c
2

)� 400(c
1

+ c
2

)

Solving (which is a bit messy) gives

c
1

=
1

20000
+

p
1595

797500
⇡ 0.000100

c
2

=
1

20000
�

p
1595

797500
⇡ �7.8⇥ 10�8 ⇡ 0

This gives Q(t). The current is

I(t) =Q0(t)

=c
1

(�400 + 10
p
1595)e(�400+10

p
1595)t

+ c
2

(�400� 10
p
1595)e(�400�10

p
1595)t

=�
p
1595

63800

h
e(�400+10

p
1595)t

�e(�400�10

p
1595)t

i

14. If the resistor is removed and a voltage of
2 sin!t is applied then the di↵erential equa-
tion becomes
Q00 + 500Q = 10 sin!t
In this case, resonance occurs when
! = 10

p
5 ⇡ 22.36

15. The characteristic equation is
r2 + 2r + 5 = 0
which has solutions r = �1± 2i.
The homogeneous equation has solution
u = c

1

e�t cos 2t+ c
2

e�t sin 2t
Our initial guess for a particular solution is

u
p

=A cos 2t+B sin 2t

+ e�t(C cos 2t+D sin 2t)

+ Et3 + Ft2 +Gt+H

But, we have to modify this to

u
p

=A cos 2t+B sin 2t

+ te�t(C cos 2t+D sin 2t)

+ Et3 + Ft2 +Gt+H

16. The characteristic equation is
r2 + 2r � 3 = 0
which has solutions r = 1 and r = �3.
The homogeneous equation has solution

u = c
1

et + c
2

e�3t.
Our initial guess for a particular solution is

u
p

=(A
2

t2 +A
1

t+A
0

)et

+ e�3t(B cos 2t+ C sin 2t)

But, we have to modify this to

u
p

=t(A
2

t2 +A
1

t+A
0

)et

+ e�3t(B cos 2t+ C sin 2t)

17. We first find k:
4 = 1

3

k which gives k = 12.
The initial value problem is then
4

32
u00 + 0.4u0 + 12u = 2 sin 2t

u00 + 3.2u0 + 96u = 16 sin 2t

u(0) =
1

6
, u0(0) = 2

The characteristic equation is
r2 + 3.2r + 96 = 0
which has solutions
r = �1.6± i

p
93.44

Thus the general solution to the homogeneous
equation is

u =c
1

e�1.6t cos
⇣
t
p
93.44

⌘

+ c
2

e�1.6t sin
⇣
t
p
93.44

⌘

The particular solution is of the form
u
p

= A cos 2t+B sin 2t
Substituting this into the di↵erential equation
to solve to A and B gives

16 sin 2t =u00
p

+ 3.2u0
p

+ 96u
p

=(�4A cos 2t� 4B sin 2t)

+ 3.2(�2A sin 2t+ 2B cos 2t)

+ 96(A cos 2t+B sin 2t)

=(92A+ 6.4B) cos 2t

+ (92B � 6.4A) sin 2t

This gives us the equations
92A+ 6.4B = 0
� 6.4A+ 92B = 16
Solving gives

A = � 160

13289
B =

2300

13289
Thus, our general solution is:

u =c
1

e�1.6t cos
⇣
t
p
93.44

⌘

+ c
2

e�1.6t sin
⇣
t
p
93.44

⌘

� 160

13289
cos 2t+

2300

13289
sin 2t
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The state-state solution is

� 160

13289
cos 2t+

2300

13289
sin 2t

18. We first find k:
8 = 1

6

k which gives k = 48.
The initial value problem is then
0.5u00 + 0.2u0 + 48u = 2 cos 3t

u00 +
2

5
u0 + 96u = 4 cos 3t

u(0) =
1

4
, u0(0) = �1

The characteristic equation is
r2 + 2

5

r + 96 = 0
which has solutions

r =
�1

5
±

p
2399

5
i

Thus the general solution to the homogeneous
equation is

u =c
1

e�t/5 cos

 p
2399

5
t

!

+ c
2

e�t/5 sin

 p
2399

5
t

!

The particular solution is of the form
u
p

= A cos 3t+B sin 3t
Substituting this into the di↵erential equation
to solve to A and B gives

4 cos 3t =

✓
87A+

6

5
B

◆
cos 3t

+

✓
87B � 6

5
A

◆
sin 3t

This gives us the equations

87A+
6

5
B = 4

87B � 6

5
A = 0 Solving gives

A =
2900

63087
, B =

40

63087
Thus, our general solution is:

u =c
1

e�t/5 cos

 p
2399

5
t

!

+ c
2

e�t/5 sin

 p
2399

5
t

!

+
2900

63087
cos 3t+

40

63087
sin 3t

We now use the initial conditions to find
c
1

and c
2

:
1

4
= u(0) = c

1

+
2900

63087
which gives

c
1

=
51487

252348
� 1 = u0(0)

=

p
2399

5
c
2

� 1

5
c
1

+
40

21029

which gives c
2

= 1212653

p
2399

605382852

⇡ �0.098112
Substitution give the final result.

19. y00 � 2xy0 � 4y

=
1X

n=2

n(n� 1)a
n

xn�2

� 2x
1X

n=1

na
n

xn�1

� 4
1X

n=0

a
n

xn

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

xn

� 2
1X

n=1

na
n

xn

� 4
1X

n=0

a
n

xn

=
1X

n=0

[(n+ 2)(n+ 1)a
n+2

� 2(n+ 2)a
n

]xn

So, (n+ 2)(n+ 1)a
n+2

� 2(n+ 2)a
n

= 0, or

a
n+2

= 2(n+2)

(n+2)(n+1)

a
n

= 2

n+1

a
n

This gives us a
2n

=
22nn!

(2n)!
a
0

a
2n+1

=
1

n!
a
1

Hence a
0

and a
1

are arbitrary, and the general
solution is
y = a

0

y
1

+ a
1

y
2

where

y
1

(x) =
1X

n=0

22nn!

(2n)!
x2n

y
2

(x) =
1X

n=0

1

n!
x2n+1

20. y00 + (x� 1)y0 = y00 + xy0 � y0

=
1X

n=2

n(n� 1)a
n

xn�2

+ x

1X

n=1

na
n

xn�1 �
1X

n=1

na
n

xn�1

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

xn

+
1X

n=1

na
n

xn �
1X

n=0

(n+ 1)a
n+1

xn

= 2a
2

� a
1

+
1X

n=1

[(n+ 2)(n+ 1)a
n+2
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� (n+ 1)a
n+1

+ na
n

]xn

So, a
2

= 1

2

a
1

and
(n+2)(n+1)a

n+2

� (n+1)a
n+1

+ na
n

= 0 or
a
n+2

= 1

n+2

a
n+1

� n

(n+1)(n+2)

a
n

Hence a
0

and a
1

are arbitrary and the general
solution is

y = a
0

+ a
1

1X

n=1

a
n

xn

= a
0

+ a
1

✓
x+

1

2
x2 + 0x3 � 1

12
x4

� 1

60
x5 +

1

120
x6 +

1

315
x7

� 1

2016
x8 � 11

30240
x9 + · · ·

◆

21. y00 � 2xy0 � 4y = y00 � 2(x� 1)y0 � 2y0 � 4y

=
1X

n=2

n(n� 1)a
n

(x� 1)n�2

� 2(x� 1)
1X

n=0

na
n

(x� 1)n�1

� 2
1X

n=0

na
n

(x� 1)n�1

� 4
1X

n=0

a
n

(x� 1)n

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

(x� 1)n

� 2
1X

n=0

na
n

(x� 1)n

� 2
1X

n=0

(n+ 1)a
n+1

(x� 1)n

� 4
1X

n=0

a
n

(x� 1)n

=
1X

n=0

[(n+ 2)(n+ 1)a
n+2

� 2na
n

�2(n+ 1)a
n+1

� 4a
n

] (x� 1)n

So, 0 = (n+ 2)(n+ 1)a
n+2

� 2(n+ 1)a
n+1

� 2(n+ 2)a
n

or

a
n+2

=
2a

n

n+ 1
+

2a
n+1

n+ 2
which gives the general solution.

y(x) =
1X

n=0

a
n

(x� 1)n

= a
0


1 + 2(x� 1)2 +

4

3
(x� 1)3

+2(x� 1)4 +
22

15
(x� 1)5

+
58

445
(x� 1)6 + · · ·

�

+ a
1

⇥
(x� 1) + (x� 1)2

+
5

3
(x� 1)3 +

3

2
(x� 1)4

+
43

30
(x� 1)5 +

97

90
(x� 1)6 · · ·

�

22. y00 + (x� 1)y0

=
1X

n=2

n(n� 1)a
n

(x� 1)n�2

+ (x� 1)
1X

n=0

na
n

(x� 1)n�1

=
1X

n=0

(n+ 1)(n+ 2)a
n+2

(x� 1)n

+
1X

n=1

na
n

(x� 1)n

= 2a
2

+
1X

n=1

[(n+2)(n+1)a
n+2

+ na
n

](x� 1)n

So a
0

and a
1

are arbitrary, a
2

= 0, and
a
n+2

= � n

(n+1)(n+2)

a
n

for n � 1.
This gives us 0 = a

2

= a
4

= a
6

= · · ·

a
2n+1

=
(�1)n

2n(2n+ 1)n!
The general solution is

y(x) = a
0

+ a
1

1X

n=1

(�1)n

2n(2n+ 1)n!
(x� 1)2n+1

23. We use the solution found in Exercise 19 and
substitute
y(0) = a

0

= 4 and y0(0) = a
1

= 2:

y = 4
1X

n=0

22nn!

(2n)!
x2n + 2

1X

n=0

1

n!
x2n+1

24. We use the solution found in Exercise 21 and
substitute
y(1) = a

0

= 2 and y0(1) = a
1

= 4:

y(x) =
1X

n=0

a
n

(x� 1)n

= 2


1 + 2(x� 1)2 +

4

3
(x� 1)3

+2(x� 1)4 +
22

15
(x� 1)5

+
58

445
(x� 1)6 + · · ·

�

+ 4
⇥
(x� 1) + (x� 1)2

+
5

3
(x� 1)3 +

3

2
(x� 1)4

+
43

30
(x� 1)5 +

97

90
(x� 1)6 · · ·

�

= 2 + 4(x� 1) + 8(x� 1)2 +
28

3
(x� 1)3

+ 10(x� 1)4 +
26

3
(x� 1)5

+
3662

801
(x� 1)6 + · · ·
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