

McGraw-Hill Education

الـرياضيات المتقّدّدمـة

نسـخـة الإمـارات الـعربية المتححدة

> الوقود للحفاظ على مركبة سِوهو الفضائية في موقَعها الصحيح.
 تختلف كتلها بشَكل كبير. مئال على ذلك الشَ الشمس والأرض وأي مرِكبة فضائية بينهـما. ولكن هـناك

 L

 لتقريب الحلول. في هذَه الوحدة، سنؤكـد على التمتئل البياني للدوال المُركبة وتحليلها وحلّ المعادلات التي تتضمـن هذه الدوال.

موجات داخل الشُمس

مدار

التقريبات الـخطية وطريقة نيوتن

يوجد نوعان مـن المهام بختلهنان اختلافًا واضحُا وتستخدم معهها آلة حاسبة علهية. الأولي، رغمه أنـا جهيًُا نعرف كيفية ضرب 1024 في 1673، إ8 أن الآلة الحاسبة ستعطينا النتيجة بشُكل أسرع. أو نحن

 في هذا الدرس، سنـطور طريقة تقريب بسيطة. بالرغهم من أنها بسيطة إلى حدٍ ما. إلْ أنها تهّلّ السبيل لطرق التقريب الأكتُر تعمَيدُا لاتباعها لاحقًا في هذا الهحتوى.

التقريبات الخططية

على فُرض أننا نريد إيجاد تقريب للدالة $f\left(x_{1}\right)$ حيث إن $f\left(x_{1}\right)$ غير معروفة، ولكن $f\left(x_{0}\right)$ معروفة

 بيكنـنا أن نفـل ما هـ هو أفضل. بالإشارة إلى الشكّل 6.1، لاحظ أنه إذا كانت إلى النقطة المقابلة لــ

الشككل 6.1

التقريب الخطي للدالة
بها أن ميل المهـاس على منحنى $y=f(x)$ عند $x=x_{0}$ هو $f^{\prime}\left(x_{0}\right.$ • يككن إيجاد مـادلة المهـاس على

$$
\text { منحـنى } y=f(x) \text { عنـد } x=x_{0} \text { من }
$$

$$
m_{\mathrm{tan}}=f^{\prime}\left(x_{0}\right)=\frac{y-f\left(x_{0}\right)}{x-x_{0}}
$$

$$
\begin{equation*}
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \tag{1.1}
\end{equation*}
$$

نعطي الدالة الخطبة المُعرَّفَة بالهـعادلة (1.1) اسمّا، كهـا يلي.

$$
L(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

$$
\text { بالتـويض عن قيمـة } x=x_{1} \text { في المعـادلة (1.1) . وبالتالي }
$$

$$
\begin{gather*}
y_{1}=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right) \tag{1.2}\\
\\
\Delta x=x_{1}-x_{0}
\end{gather*}
$$

$$
\Delta y=f\left(x_{1}\right)-f\left(x_{0}\right)
$$

باستخدام هـا الرمز، تعطـينا المعادلة (1.2) التقريب

$$
\begin{equation*}
f\left(x_{1}\right) \approx y_{1}=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \Delta x \tag{1.3}
\end{equation*}
$$

نوضّح ذلك في الشَكل 6.2 . وفي بعض الأحيان، نُحيد كتابة الـــادلة (1.3) بطرح $f\left(x_{0}\right)$ من كلا الطرفين، ليعطينا النتيجة

$$
\begin{equation*}
\Delta y=f\left(x_{1}\right)-f\left(x_{0}\right) \approx f^{\prime}\left(x_{0}\right) \Delta x=d y \tag{1.4}
\end{equation*}
$$

حيت إن $d x$ يُطلقَ عليها تمناضلة $d y=f^{\prime}\left(x_{0}\right) \Delta x$ وعنـد استخدام هذا الرمز، نُرِّف أيضًا تقاضلة x بالهعـادلة 1 اله $d x=\Delta x$ وبالتالي وفق الهـادلة (1.4) . $d y=f^{\prime}\left(x_{0}\right) d x$

6.2 الشـكل

الزيادات والتفاضـلات

يهكنتا استخدام التقريبات الخطية لإيجاد قيم تقريبية للدوال المتسامبة، كمـا في الهـئال 1.1

مـتال 1.1 إيجاد تقريب خـطي

$L(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ الـحل من التعريف 1.1 . يُعرَّف التقريب الخطي بالمحـادو
 $L(x)=\cos \left(\frac{\pi}{3}\right)-\sin \left(\frac{\pi}{3}\right)\left(x-\frac{\pi}{3}\right)=\frac{1}{2}-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)$
 تكون ${ }^{\text {ت }}$. $x_{0}=\pi / 3$ ولاحظ أن التقريب الخطي (أي، الهماس عـند $x_{0}=\pi / 3$ يبقى قريبًا من
 الـ $x<0$
 لاحظ أننا اخترنا cos(1) بدقَه. وإذًا يكون تقدير cosine $\cos (1) \approx L(1)=\frac{1}{2}-\frac{\sqrt{3}}{2}\left(1-\frac{\pi}{3}\right) \approx 0.5409$
نُوضِّح هذا في الشَكل 6.3b ، حيث قَمنا فتط بتكبير التمتِبل البياني من الشككل 6.3a. تعطيك الآلة الحاسبة نتيجة $\cos (1) \approx 0.5403$ وهكذا. وجدنا تقريبًا للقيهة المطلوبة جيدًا إلى حبٍ

في الهثال 1.2 . نشـتق تقر يبًا مفيدًا لــ \sin. يصلح عنـدما تقترب x مـن 0. غالبًا ما يُستخدم هذا التقريب في تطبيَات الفيزياء والهندسة لتبسيط المعادلات التي تتضهن

مـثال 1.2 تقريب خطي لدالة 1.2

 أوجد التقريب الخطي للدالة $f(x)=\sin$. عـندما تقترب x من 0 .الـحل هـنا، $f^{\prime}(x)=\cos$ وبالتالي من التعريف 1.1 . نحصل على الـعـادلة $\sin x \approx L(x)=f(0)+f^{\prime}(0)(x-0)=\sin 0+\cos 0(x)=x$
يِني ذلك أنه عندما تقترب x من 0. 0 يكون $\sin x \approx x$ ونُوضِّح هذا في الـُكّل 6.4.
 $y=\sin x$ x من 0. لاحظ أيضًا أنه كلمـا بعدت x عن 0، كان التقربب أسوأ. يُصبح هذا السـلوك أكـتر

$$
\text { وضوخُا في المـئال } 1.3 \text {. حيث نُوضِّح أيضًا استخـدام الزيادات } \Delta x \text { و } \Delta y
$$

مثتال 1.3 التقريب الخطي لبعض الجـذور التكعيبية

 $\sqrt[3]{25.2}, \sqrt[3]{8.15} \cdot \sqrt[3]{8.07} \cdot \sqrt[3]{8.02}$ استخدم تقريئًا خطـيًا لتقريب لأي من الأعداد 8.02، أو 8.07 أو 8.15 ونعرف جذره التكعيبي بدقَه هو العدد 8. وبالتالي.

$$
\begin{equation*}
=f(8)+\Delta y \tag{1.5}
\end{equation*}
$$

من الهعادلة (1.4)، نحصل على الهعادلة

$$
\Delta y \approx d y=f^{\prime}(8) \Delta x
$$

$$
\begin{equation*}
=\left(\frac{1}{3}\right) 8^{-2 / 3}(8.02-8)=\frac{1}{600} \tag{1.6}
\end{equation*}
$$

6.3a الشكل
$y=\cos x$ الخطي عـند

6.3b الشكـل
$L(1) \approx \cos (1)$

$y=\sin x \quad, \quad y=x$

$$
\Delta x=8.02-8-8
$$

باستخـدام المعادلة (1.5) والمعادلة (1.6) . نحصل عـلي النتيجة $f(8.02) \approx f(8)+d y=2+\frac{1}{600} \approx 2.0016667$

$$
\begin{gathered}
f(8.07) \approx f(8)+\frac{1}{3} 8^{-2 / 3}(8.07-8) \approx 2.0058333 \\
f(8.15) \approx f(8)+\frac{1}{3} 8^{-2 / 3}(8.15-8) \approx 2.0125
\end{gathered}
$$

بينما تعطيك الآلة الحاسبة النتيجة $\sqrt{\text { الحـ }}$
 الخطأ كلما بعدت x عن 8 عـا

$$
\text { أن } 25.2 \text { أقرب إلى } 27 \text { من 8، نكتب الــعادلة }
$$

$$
f(25.2)=f(27)+\Delta y \approx f(27)+d y=3+d y
$$

$$
\begin{array}{r}
d y=f^{\prime}(27) \Delta x=\frac{1}{3} 27^{-2 / 3}(25.2-27)=\frac{1}{3}\left(\frac{1}{9}\right)(-1.8)=-\frac{1}{15} \\
f(25.2) \approx 3+d y=3-\frac{1}{15} \approx 2.9333333
\end{array}
$$

متارنة بقيمة 2.931794 التي تعطيها الَلة الحاسبة. في الشكل 6.5، بمكنك أن ترى بوضوح

كانت الأمثلة الثلاثة الأولى تهدف إلى تعريفك بالطريقة ومنحك فكرة عن كيفية اتجاه
التقريبات الخطية إلى التقريب الجِيد (أو السيء). في الهئال 1.4 . لا توجد إجابة دقيثة

هـثـال 1.4 اسـتخدام تقريب خطي لإجراء اسـتكمال داخلـي خطـي
على فـرض أنه بناءً عـلى بحت في الأسـواقَ ، قَّرت شـركة مـا أنه يمكن بيع (x) f ألف آلة تصوير صنيرة بسـر \$x . كما هو مُعطى في الجدول الهرافقَ. قَّر عدد الكاميرات التي يهكن بيعها بسـر \$7 \$

الحل أقرب قيهة -x إلى $x=7$ في الجدول هي $x=6$ [بعبارة أخرى، هذه هي أقرب قيهـة

$$
L(x)=f(6)+f^{\prime}(6)(x-6)
$$

 المشتقة بالمعادلة

$$
\begin{aligned}
& f^{\prime}(6) \approx \frac{f(10)-f(6)}{10-6}=\frac{60-84}{4}=-6 \\
& L(x) \approx 84-6(x-6) \quad \text { إن التقريب الخطي يكون }
\end{aligned}
$$

x	ألح 1 ال10\|
8.02	1.4×10^{-6}
8.07	1.7×10^{-5}
8.15	7.7×10^{-5}

خطأ في التفريب الخطي

الشكل 6.5
$y=\sqrt[3]{x}$
الخطي عند 8 ال

x	6	10	14
$f(x)$	84	60	32

تقدير عدد الكاميرات المبيعة عند $x=7$ سيكون عندئن $78=84-6(7) \approx 84$ ألفًا. ونُوضِّح تفسـيرْ ا بِيانيًا لهذا في الشكل 6.6. حبث يهـُل الهسـتقيم التقريب الخطي (في

طريقة نيوتن

نعود الآن إلى مسألة إيجاد أصفار الدالة. قَد شُرحنا سـابًٍا طريقَة التنصيف كخطوة واحدة لإيجاد أصفار الدالة المتصلة. سنشرح هنا طريقَةً عـادة ها تكون أكثـر كفاءة
 المـادلة $f(x)=0$ أو أصفـار الدالة f . وفي حين أنه من السهل إيجاد أصفار

$$
f(x)=a x^{2}+b x+c
$$

كـِف دِكـنك إبجاد أصفار الدالة:

$$
f(x)=\tan x-x ?
$$

بها أن هنه الدالة لِست جبرية. لا نتوفر صيغ لإيجاد الأصفار. حتى مـع ذلك، يهكننا
رؤية الأصفار بوضوح في الشكل 6.7 . (في الواقع، هناك عدد لانهائي منها). السؤال هو. كيف لنا أن نجدهـ؟

$$
\begin{equation*}
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \tag{1.7}
\end{equation*}
$$

بتكرار هـنه العملية، باستخدام x_{1} كتخمين جديد. سـوف نحصـل عـلى تقريب مُـحسَّن

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

ملاحـات تار يخية
السـيد إسـحاق نيوتن (1642-1727) عالم رياضيات
 المـئـارك في وضّع أسس حساب التفاضل والنكامل. وخلال عامين متذ 1665 إلى 1667. توصل نيوتن إلى اكتشئـافات مهـة في العديد من جوانب حساب التفاضل والنكامل، إلى جانب البصريات وتانون الجاذية. إلا أنه لم يتم نشـر نتائج الرياضيات التي توصل إليها نيوتن في الوقتْ الهناسبـ. عـوضُا عـن ذلك، ثهـة طرائق مـثل طريقة نيوتن تم طرحها رويدًا رويدا كأدوات مفيدة في هـهـ الأوراف
العلمية. يعتبر كتابِ الأصول الرياضية للفلسفة الطبيـية الطية الذي وضعه نيوتن من أهم إنجازات العقل البشري.

$$
\begin{aligned}
& 0=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right) \\
& \text { وبحل هذه الهعادلة لإيجاد قيهـة } x_{1} \text {. نتوصل إلى النتيجة } \\
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

وهكذا. (انظر الشكل 6.8). بهذه الطريقة. نُسشئ منتالية من تقريبات متتابعة تُـرَّف بالهـادلة

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad \text { for } n=0,1,2,3, \ldots
$$

بِطلق على هذا الإجراء طريقة نيوتن رافسـون، أو فَتط طـريقة نيوتن. إذا كانت هناك أي

$$
\text { إنــارة في الشككل } 6.8 \text { ، ينبغي أن تقترب } x_{n} \text { أكثر وأكتُر إلى الصفر كلها زادت n . }
$$

مـثال 1.5 اسـتخـدام طريقة نيوتن لتقريب صفر

$$
f(x)=x^{5}-x+1 \text { أوجد الصفر التقريبي للدالة }
$$

الححل أن
 ($x=-1$ $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$

$$
=x_{n}-\frac{x_{n}^{5}-x_{n}+1}{5 x_{n}^{4}-1}, \quad n=0,1,2, \ldots .
$$

باستخدام التخمين الأولي $x_{0}=-1$. نحصل على النتيجة

$$
x_{1}=-1-\frac{(-1)^{5}-(-1)+1}{5(-1)^{4}-1}=-1-\frac{1}{4}=-\frac{5}{4}
$$

$$
\text { على نحوٍٍ مداثل، من } x_{1}=-\frac{5}{4} \text { نحصل على تقريب هُحسَّن }
$$

$$
x_{2}=-\frac{5}{4}-\frac{\left(-\frac{5}{4}\right)^{5}-\left(-\frac{5}{4}\right)+1}{5\left(-\frac{5}{4}\right)^{4}-1} \approx-1.178459394
$$

$$
\begin{aligned}
x_{3} & \approx-1.167537389, \\
x_{4} & \approx-1.167304083 \\
x_{5} & \approx-1.167303978 \approx x_{6}
\end{aligned}
$$

بها أن

$$
f\left(x_{6}\right) \approx 1 \times 10^{-13} \quad \text { التفريب، نحسب }
$$

ويما أن هذا قَريب جدُا من الصفر، نقول إن

يهكنـك اسـتخـام طريةة نيوتن لحل مجهوعـة متنوعـة من مسائل التقريب. كمـا نبيّن في المـال 1.6، قد تحتاج أولْ إلى إعادة صياغة المسألة كهسألة لإيجاد الجنر.

الحل بها أن طريقة نيوتن تُستخدم لحل الهـادلات من الشُكل بإعادة صياغة الهسألة، كما يلي. على فرض أن

كتابتها بالسُكل

$$
f(x)=x^{3}-7=0
$$

$$
\begin{aligned}
x_{1}=2-\frac{2^{3}-7}{3\left(2^{2}\right)}=\frac{23}{12} \approx 1.916666667 \\
\text { بالاستمرار في هذه العملية، نحصل على }
\end{aligned}
$$

$$
x_{2} \approx 1.912938458
$$

$$
x_{3} \approx 1.912931183 \approx x_{4}
$$

$$
f\left(x_{4}\right) \approx 1 \times 10^{-13}
$$

أيضًا،

بالتالي، تكون x_{4} صفر تتريبي للدالة f . يعني هذا أبضًا أن $\sqrt[3]{7} \approx 1.912931183$

$$
\text { التي تساوي إلى حب كبير قيمة } \sqrt{7} \text { الناتجة من الآلة الحاسبة. }
$$

ملحوظة 1.1

على الرغم من فـالية طريقة نيوتن الكبيرة في المئالين 1.5 و 1.6، إلا أنها لا تنجـ دائّا.

 عند الصفر التقريبي مـحل التخمين؛ وإذا لم تكن هذه القيهة قريبة من الصنر، فلا تقبل القيمة كصفر تتريبي.

كها نبيّن في الهثال 1.7، نحتاج طريقة نيوتن إلى تخهين أولي جيد لإبجاد تقريب دقيق.

مثال 1.7 تأثير التخهين السيء على طريقة نيوتن . $f(x)=x^{3}-3 x^{2}+x-1$ استخدم طريقة نيوتن لإبجاد صفر تقريبي للدالي 1 الـي
 نخمين أولي (لا سيما غبر جيد)

 أن هذا وحده لن بضهن التقارب السريع (ما يعني أن هذا لا يستغرق سوى بیض التكرارارات

الشكل 6.11
$y=x^{3}-3 x^{2}+x-1$
للوصول إلى التفريب الدقيق).

الشكل 6.10

$$
y=x^{3}-7
$$

مـثال 1.8 التقارب البطيء عـلى غـير الــادة مـع طـريقـة نيوتن
 . $f(x)=\frac{(x-1)^{2}}{x^{2}+1}$
 يحدث عنـدما نستخدم طريقة نيوتن مــ التخمينات الهـحددة.
 الواضح أن التكرارات المتتالية تنزايد بشكَل كبـا

 صحيح]، تأخذك كل خطوة لا حقفة بعيدًا عن الصفر.
(b) باستخدام التخهين الأولي المُحسَّنـن

الحالة. (الْ $y=f(x)$ الإحداثئي x مطلمًا. (c) مـع التخمين الأولي الأفضل 0 نحصل على تقريبات متتالية في الجدول التالي

n	x_{n}			
7	0.9881719			
8	0.9940512			
9	0.9970168			
10	0.9985062			
11	0.9992525			
12	0.9996261	\quad	n	x_{n}
:---	:---			
1	0.5			
2	0.70833			
3	0.83653			
4	0.912179			
5	0.95425			
6	0.976614			

$x_{0}=0$ تكرارات طريقة نيوتن عندما تكون
المتتالية تقترب هن 1 بيطء أكثر منها في الأمثلة السابقَّ. وبالمقارنة. كلاحظ أهـة أنه في الهـتال 1.5، تتوقف التكرارات عـن التفيّر عنـ
 قَريبة من الصفر بهثـل قَرب ${ }_{5}$ في المـئال 1.5. سـنتـناول هـا النوع مـن السـلوك بتفصيل أكتر في التمارين.
على الرغم مـن المعضـلات البسبطة التي وجدناهـا في الـي الـيثالين 1.7 و 1.8. ينبغي
 الأصفار تقريبئا. كل الهطلوب منك القلبل من الانتباه والحس السليمه. إذا كانت التقريبات المتتالبة تقترب من قيهة معينة لا تبدو متسقَة مـع التمئِيل البياني، ستحتاج إلى إلى تدقيق النتائج بعناية أكبر وربها تجربة نخهينات أولية أخرى.

ما وراه الصييغ

التقريبات هي في قَلب حساب التفاضل والتكامل. لإبجاد ميل مهاس. عـلى سبيل الهـيال. نبدأ بتقريب الهماس مع الخطوط القاطعة. ووجود العديد من الصيغ الهستـقة البسـيطة

 مـرفة الوقت من اليوم. كم مرة ستـحتاج إلى معرفة الوقت الدفَيق؟

n	x_{n}
1	-9.5
2	-65.9
3	-2302
4	$-2,654,301$
5	-3.5×10^{12}
6	-6.2×10^{24}

تكرارات طريقَ نيوتن عندما تكون 2

الشكـل 6.12
. $y=\frac{(x-1)^{2}}{x^{2}+1}$
$x=-2$ عنـد

الشكل 6.13
. $y=\frac{(x-1)^{2}}{x^{2}+1}$
$x=-1$ عنـد

وَّر عدد العلب التي يهكن بيعها عند 72° (a) 94° (a) (a) 11. هخرج رسوم متحركة بدخل الموفتع f(t) لرأس شخصصية مـا بعد إطار من الفبله كهـا هـو موضح في الجدول.

t	200	220	240
$f(t)$	128	142	136

إذا كان برنامج الحاسوب يستخدم الاستكـهال الداخلي لتحديد المواقع الهتوسطة. فحدد موقع الرأس عند عدد الإطـارات 208 (a) وانـ (b) 232 12. يفيس هستشُر الموفقع (f(t) لجسـيم بعد t ميكرووثانية من تصـادم كها هو مُعطى في الجدول.

t	5	10	15
$f(t)$	8	14	18

 الومُططاة لــ (a) حسـاب

الأقل.
13. $x^{3}+3 x^{2}-1=0, x_{0}=1$
14. $x^{3}+4 x^{2}-x-1=0, x_{0}=-1$
15. $x^{4}-3 x^{2}+1=0, x_{0}=1$
16. $x^{4}-3 x^{2}+1=0, x_{0}=-1$

في التمارين 24-17، اسـتخدم طـريتة نيوتن لإيجاد جـذر
 واشـرح كيفية توصّلك إلى تخمينك الأولي.
17. $x^{3}+4 x^{2}-3 x+1=0$
18. $x^{4}-4 x^{3}+x^{2}-1=0$
19. $x^{5}+3 x^{3}+x-1=0$
20. $\cos x-x=0$
21. $\sin x=x^{2}-1$
22. $\cos x^{2}=x$
23. $e^{x}=-x$
24. $e^{-x}=\sqrt{x}$

في التمارين 30-25، اسـتخدم طريقة نيوتن [اذكر الدالة

25. $\sqrt{11}$
26. $\sqrt{23}$
27. $\sqrt[3]{11}$
28. $\sqrt[3]{23}$
29. $\sqrt[4]{24}$
30. $\sqrt[4.6]{24}$

1. اشرح بإيجاز، فيهـا بتحلق بالهمـاسـات، لهـاذا يسوء التقريب في المثئال 1.3 كلما بعدت x عن 8.
2. وضعنا مجهوعة هن التقريبات الخطبة في هـا الـيا الدرس. إنّ بیض التقريبات أكتير فائدة من الأخرى. بالنظر إلى التمئيلات البيانية،
اشُرح لماذا قَد بكون التقريب $\operatorname{lin} x \approx x$ أكتُر فائدةً من التقريب
$\cos x \approx 1$
3. في المثال 1.6، ذكرنا أنك تستطيعِ أن تفكر في استخدام تقريب

 كعضلة $f^{\prime}\left(x_{0}\right)=0$

4. $f(x)=\sqrt{x}, x_{0}=1, \sqrt{1.2}$
5. $f(x)=(x+1)^{1 / 3}, x_{0}=0, \sqrt[3]{1.2}$
6. $f(x)=\sqrt{2 x+9}, x_{0}=0, \sqrt{8.8}$
7. $f(x)=2 / x, x_{0}=1,2 / 0.99$
8. $f(x)=\sin 3 x, x_{0}=0, \sin (0.3)$
9. $f(x)=\sin x, x_{0}=\pi, \sin (3.0)$

في التمرينين 7 و 8 ، استتخدم التقريبات الخطية لتقدير
7. (a) $\sqrt[4]{16.04}$
(b) $\sqrt[4]{16.08}$
(c) $\sqrt[4]{16.16}$
8. (a) $\sin (0.1)$
(b) $\sin (1.0)$
(c) $\sin \left(\frac{9}{4}\right)$

في التهـارين 12-9، الستـخدم الاستكهـال الداخلي الخطي لتقدير الكمية المطـلوبة.

9. فدّرت شـركة مـا أنه يهكن بيع (f(x) ألف لـبة برهجية بالسـر \$x كما هـو مُعطي في الجدول.

x	20	30	40
$f(x)$	18	14	12

فـّر عدد اللعبات التي يمكن بيعهـا بسـر \$24 (a) و \$36 (b)
 يوم إذا كانت درجة الحرارة xº كما هـو مُحطى في الجدول.

x	60	80	100
$f(x)$	84	120	168

31. $4 x^{3}-7 x^{2}+1=0, x_{0}=0$
32. $4 x^{3}-7 x^{2}+1=0, x_{0}=1$

49．مــ التمـئيل البياني المُعطى للمعادلة $y=f(x)$ ، ارسم المهـاسـات الهستخـدمة في طريقة نيوتن لتحديد
البدء عند ．$x_{0}=0.4$ ور مــ

50．ماذا سيحدث لطريقة نيوتن في التهرين 49 إذا كان لديك قيمهة بداية لــ هـ

سيصلح بشُكل أفضل في طريقة نيوتن؟ اشـُرح ذلك．

（حيت程1 $=\frac{1}{2}\left(x_{n}+c / x_{n}\right)$

منذ أكتُر من 2000 سنة．ولفـهـ سـبـ تخمينك الأولي الهقارنة بين سيعطي تقريبيا أفضضل لــ
52．أنبت أن طريقة نيوتن الهستخدمة مـ و c c ثوابت موجبة）تتوصل إلى المـخط ．$\sqrt[n]{c}$ للتقريب $x_{n+1}=\frac{1}{n}\left[(n-1) x_{n}+c x_{n}^{1-n}\right]$

53．بتطبيق طريقة نيوتن على 0 （ $x^{2}-x-1=0$ أبت أنه

$$
F_{4}=3
$$

عندما تكون $F_{n}=F_{n-1}+F_{n-2} 9$ الأجزاء（c）－（a）كنسبة من أعداد فيبوناتشي．ضح قيمة مكان الرمزين الستلبين ！

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}} \text { دد家 } \cdot x_{0}=\frac{3}{2}
$$

54．حدد سـوك طريفة نيوتن المستخدمـة مـع الهعادلات

$$
\text { (b) } f_{2}(x)=\frac{1}{5}(16 x-3): \text { (a) } f_{1}(x)=\frac{1}{5}(8 x-3)
$$

（d）$f(x) g$（c）$f_{3}(x)=\frac{1}{5}(32 x-3)$ $f(x)=f_{3}(x)$ و $\quad \frac{1}{4}<x \leq \frac{1}{2}$ إذا $f(x)=f_{2}(x), \frac{1}{2}<x<1$ إذا كان طريقة نيوتن من صفر الدالة f ؟

33．$x^{2}+1=0, x_{0}=0$
34．$x^{2}+1=0, x_{0}=1$
35．$\frac{4 x^{2}-8 x+1}{4 x^{2}-3 x-7}=0, x_{0}=-1$
36．$\left(\frac{x+1}{x-2}\right)^{1 / 3}=0, x_{0}=0.5$
 صفر للدالة 4 ص $f(x)=x^{3}-5 x^{2}+8 x-$ ．ناقش الفرق في معدلات التمّارب في كل حالة．
 صفر للدالة $f(x)=x \sin$ ．ناقش الفرق في معدلات التقارب في كل حالة．

39．استخدم طريقة نيوتن هـ（a）（a）و $x_{0}=-1.1$（b）لإيجاد
صفر للدالة التقارب في كل حالة．

40．حلل كتيرات الحدود إلى عوامل في التهرينين 37 و 39 ．

في التمرين الاستكسَافي 1）．

x＂الصنغيرة＂．وقَارن التقريب والقيم الدقيقـة عـندمـا تكون
．$x=1$ و $x=0.1$ ، $x=0.01$
41． $\tan x \approx x$
42．$\sqrt{1+x} \approx 1+\frac{1}{2} x$
43．$\sqrt{4+x} \approx 2+\frac{1}{4} x$
44．$e^{x} \approx 1+x$

45．（a）أوجد التقريب الخطي عند $x=0$ لكلٍ من الدوال珹 $h(x)=e^{2 x} g(x)=1+\sin (2 x) و(x)=(x+1)^{2}$

التي تتوصل إليها．

 تقريبها الخطي؟

$h(x)=\sinh x=\frac{e^{x}-e^{-x}}{2} و g(x)=\tan ^{-1} x, f(x)=\sin x$

 （حيث إن هذه القيم الثـلاثة．خمّن الـَابت c حيث

 أي، أوجد x حيث الئ 0.01 ＞

على دسافة d أقدام من الشُبكة. يتمه حساب زاوية

 كا $\phi=\frac{3-w / 2}{D}$ كانت هناك زبادة في w (i) (i) 1 (i)

تهرين 61
اللاعبب المسدد في الجزء (a) مغترض أنه في مركز

 مسافـة d أقدَام مـن الشَبكة حيث $d=D(1-w / 6 \cos \theta)$ $d \approx D(1-w / 6)$ اتبَت أنه مـح الزوايا الصنيرة
62. في نظرية النسبية التي وضعهـا أِينشانتايِن. يِتهد طول

عـند السكون. وكانت
 . $L=L_{0} \sqrt{1-v^{2} / c^{2}}$

$$
\text { التقريب الخطي لــ L عند } 0=0 \text {. }
$$

تمارين استكاشـافية

هناك سؤال همهم بتـلق بطريفة نيوتن وهو مدى سرع مة تقاربها . 1 من صفر مُعطي. وبالحدس، يمكنتا التمييز بين معدل التقارب للدالة (
 هذا؟ إحدى الطرائن هي أن نأخذ التقريبين المتتاليبن ونحسب النارق استخدم طريقة نيوتن مـع : $F_{1}(x)=(x-1)(x+2)^{3}=x^{4}+5 x^{3}+6 x^{2}-4 x-8$,
$F_{2}(x)=(x-1)^{2}(x+2)^{2}=x^{4}+2 x^{3}-3 x^{2}-4 x+4$,
$F_{3}(x)=(x-1)^{3}(x+2)=x^{4}-x^{3}-3 x^{2}+5 x-2$
$F_{4}(x)=(x-1)^{4}=x^{4}-4 x^{3}+6 x^{2}-4 x+1$.
في كل حالة. خحّن قيمة للنهابية

 - $f(x)=(x-1)^{4}$ سرعة تتارب الطريتة؟ عندما نتول إن الصفر $x=1$ له التكرار 4 ع عندما تكون部 $x=1$, $f(x)=(x-1)^{3}(x+2)$

بين r وتكرار الصفر؟ واستا
55. موجة مياه طـولها L أمتار في مياه عمقها d أمتار وسـرعتها v وتحقق الهعـادلة

$$
v^{2}=\frac{4.9 L}{\pi} \frac{e^{2 \pi d / L}-e^{-2 \pi d / L}}{e^{2 \pi d / L}+e^{-2 \pi d / L}}
$$

 أي أنه مـح الأْعماف الصنيرة. تكون سرعة الموجة تقريبًا .
56. يوضح قانون بالك أنه يِكن حساب كثـافة طاقة إشــاع جسم أسود طول موجته x بالمـعادلة $f(x)=\frac{8 \pi h c x^{-5}}{e^{h n /(/ X T)}-1}$
استخدم التقريب الخطي في التهرين 44 لإبثات أن . $f(x) \approx 8 \pi k T / x^{4}$ 57. تتول نظرية الجاذبية التي وضعها نيوتن إن وزن الشُخص على ارتناع x x قدم فوق متستوى سطح البحر يكون . حيث P هو وزن الشَخص عنـ مستوى سطح البحر و R نصف قطر الكرة الأرضبة (تقريبًا 20,900,000 قَمم). أوجد التتربب الخطي للدالة (x) W(عند和 $x=0$ لتخفيض وزن شـخص وزنه 120 رطـلا بنسبة 1\% ألـا
58. أحد الجوانب المهمة في نظرية النسببة الني وضعها
 $m=m_{0} / \sqrt{1-v^{2} / c^{2}}$ ي عند m_{0}
 للسرعة v . فأوجد التقريب الخطبي لـ . اسستخدم التفريب الخطبي لإثبات أن الكتلة تكون ثابتة بشَكل أساسبي هــ السرعات الصغيرة
59. دودة براعم شجرة الراتينج الصنوبرية أحد أعداء شجرة البلسمه: وفي أحد نماذج التفاعل بين هذه الكائنات الحبة. تُمتِّلَ الأعداد المحتملة على الهدى الطوِل من دودة البراعمر

$r=0.5$ أوبي
 تنيّر صغير في الثابت البيئي k (من 7 إلى 7.5)، كيف كان
 الراتينج الصنوبرية.

الاحتمال كائن حي له نتاج واحد؛ هـ الاحتمال نتاجان وهكذا. واحتمال أن ينفرض النوع يُعُطى بأصغ حل غير سالب للمعادلة $0.1+0.2 x+0.3 x^{2}+0.4 x^{3}=x$ الحلول الموجبة للمـادلتي و و $0.4+0.3 x+0.2 x^{2}+0.1 x^{3}=x$ - في ما يتعلق بالنوع الآخذ في الانقراض، اشـرح بدلالة النوع لمآّا حل المعادلة الأولى أصنَر من حل الــادادلة الثانية.
 عن الشبكة على المحور الهركزي لحلّلبة التزلج. يحجب حارس الهرمى قطعة مستفيمة غرضهـا

$$
(1+k) x^{5}-(3 k+2) x^{4}+(3 k+1) x^{3}-x^{2}+2 x-1=0
$$

وتكون L_{2} عـند النقطـة $)$ ($x_{2}, 0$. حيث x_{2} هي حل الــعـادلة $(1+k) x^{5}-(3 k+2) x^{4}+(3 k+1) x^{3}-(2 k+1) x^{2}+2 x-1=0$
 $(1+k) x^{5}+(3 k+2) x^{4}+(3 k+1) x^{3}-x^{2}-2 x-1=0$ حيـت

أوجد النمَطة
و $k=0000002$. وهـذه النقطـة ترى الشـمس بدون انقطـاع وهي مـوقَع الهـرصد الشـمسي "سـوهـو"

أوجـد النقطـة L_{2} لنظـام الأرض والشـمس مـع k=0.000002 تباين خـواص الهوجات الدقَيفَة ألتابع لوكالة ناسـا.

 موقـع الكوكب X في العـديد مـن حكايات الـخـيال العـلـئي. أوجد النقطة
 للمسـاعدة في استعهمار القهر.
تشَكّل النقطتان ${ }^{\text {G }}$ و L_{5} مـثلثين متسـاويـي الأضلاع مـع الجسـهين A و B . اسشرح لهـاذا يعـني هـذا أن الإحداثيات الفطـبية للنـقطـة
 المشـترى والشـمس، تكَون هـذه النماطـ هي مـواقَع العديد هـن كويكـبات طـروادة.

تتهارب طـريقة نيوتن للدالة 1 أسـرع مـهـا للدالة (أخـرًا، استخـدم طريقةَ نيوتن لحسـاب الهعـل $g(x)=x^{2}-2 x+1$
 . $g(x)=x \sin x^{2}$
2. يتناول هـال التمرين حالة خـاصة لمسألة الأجسسـام الثثلا ثـة. يكون فـيها جسـم كبير A كتلته كـتلته

 لاغـرانج

لاشْتَقَاق معادلات لنقاطِ لاغرانج، ارسمم نظامُا إحدانيُّا يكون فيه

الصنيغ غيبر الهـعرّفة وقاعدة لوبيبتال

في هذا الدرس. نعيد التفكير في مسألة حساب النهايات. لقد رأيت كثُيرُرا نهايات بالصِينة

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

حيث
 كانت النهاية موجودة، من دون خطوات إضافية. على سبيل الهـئال. لاحظ أن

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1}=\lim _{x \rightarrow 1} \frac{x+1}{1}=\frac{2}{1}=2, \\
& \lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{2}
\end{aligned}
$$

$$
\text { غ } \lim _{x \rightarrow 1} \frac{x-1}{x^{2}-2 x+1}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)^{2}}=\lim _{x \rightarrow 1} \frac{1}{x-1}
$$

وعلى الرغمَ من ذلك فإن النهايات الثـلاث لها مبدئِّا الصيفة
رياضيًا. فهِو بشتير فقَط إلى أن كلًا من البسط والهقام بقتربان من الصفر وأننا سنحتاج إلى عـل خطوات إضافية لإيجاد فيمهة النهاية أو للتحقق ألأِ متى مها إذا كانت التهاية موجودة.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{2}+1}{x^{3}+5}=\lim _{x \rightarrow \infty} \frac{\left(x^{2}+1\right)\left(\frac{1}{x^{3}}\right)}{\left(x^{3}+5\right)\left(\frac{1}{x^{3}}\right)}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{1}{x^{3}}}{1+\frac{5}{x^{3}}}=\frac{0}{1}=0, \\
& \lim _{x \rightarrow \infty} \frac{x^{3}+5}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{\left(x^{3}+5\right)\left(\frac{1}{x^{2}}\right)}{\left(x^{2}+1\right)\left(\frac{1}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{x+\frac{5}{x^{2}}}{1+\frac{1}{x^{2}}}=\infty
\end{aligned}
$$

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}+3 x-5}{x^{2}+4 x-11}=\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}+3 x-5\right)\left(\frac{1}{x^{2}}\right)}{\left(x^{2}+4 x-11\right)\left(\frac{1}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{2+\frac{3}{x}-\frac{5}{x^{2}}}{1+\frac{4}{x}-\frac{11}{x^{2}}}=\frac{2}{1}=2 .
$$

بالتالي، كها هو الحال هـع النهايات ذات الصيغة يجب علينا عمل خطوات إضافية لتحديد فيهتها. لسوء الحظ، النهايات ذات الصيـ غير المعرّفة كثيرِرا ما تكون أكثر صعوبة من تلك المعطاة مباشـرة. لقد واجهتـنا صعوبة مـع النهابة $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ (التي لها الصيغة $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ ح حيت، $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$.
 وبالتالي

$$
\begin{aligned}
& f(x) \approx f(c)+f^{\prime}(c)(x-c)=f^{\prime}(c)(x-c) \\
& g(x) \approx g(c)+g^{\prime}(c)(x-c)=g^{\prime}(c)(x-c)
\end{aligned}
$$

بها أن

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(c)(x-c)}{g^{\prime}(c)(x-c)}=\lim _{x \rightarrow c} \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

على فرض أن

النظير ية 2.1 (قاعدة لوبيتال)
和 $c \in(a, b)$

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

سنَكرر كتابة التعبير، على سبـل المـــالـ

$$
\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1} \quad\left(\frac{0}{0}\right)
$$ تستخـدم هذه الكتابة المختصرة للإسـارة إلى أن النهابة لها الصيغة غبر الهـرّقفَ المشار إليها. وهذا

 وينبغي لك الحرص على تجنب كتابة التعابير لا معنى لها.
\qquad

ملا حـثات

تار يخخية

غييوم دي لوبيتال (1704-1661) عالمٍ الرياضيات الفرنسي الذي نسُر لُّول مرة النتيجة التي تُعرفِ
 لوبيتال، الذي وُلِد لحائلة من النبالاء، حساب التفاضل والتكامل على بد عالم الرياضيات اللامـي الـا يوهان

القاعدة التي نحهل اسمم راعيه. بشـتهر عالم الرباضيات المختص لوبيتال بأنه هؤلفـ أول كتاب علهـي عن حسـاب التفاضل والتكاملـ. كان لوبيتال صديِيًا وراعبئا للدديد من كبار علماء الرياضيات في القرن السابع عشُر.

هنا، نبرهن فتط الحالة

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

لو عكسنا الخطوات، نتوصل من خلال الاتصال إلى أن

- وهو الهطلوب.

$$
\text { تركنا برهان الحالة } \frac{\infty}{\infty} \text { لدروس أكتثُر تقدمًا. }
$$

مـلحوظة 2.1

 على الفرضيات)

 تحـدِد تلك الفترة؟) من التمـئيل البياني للدالة $f(x)=\frac{1-\cos x}{\sin x}$ في الشكل 6.14، يظـهر أن f (أن . $f(x) \rightarrow 0$

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(1-\cos x)}{\frac{d}{d x}(\sin x)}=\lim _{x \rightarrow 0} \frac{\sin x}{\cos x}=\frac{0}{1}=0
$$

$$
\text { قَاعدة لوبيتال سـهلة التطبيق عـلي حدٍ سـواء مـع النهايات ذات الصيغـة } \times .
$$

الشـكل 6.14
$y=\frac{1-\cos x}{\sin x}$

$$
\begin{aligned}
& \text { هـتُال } 2.1 \text { الصـينـة غنير الهـعرّـنة } \\
& \text {. } \lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}}{\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}}=\lim _{x \rightarrow c} \frac{\frac{f(x)-f(c)}{x-c}}{\frac{g(x)-g(c)}{x-c}}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{g(x)-g(c)} . \\
& \text { أيضًا، بها أن f و g متصلتان عند x=c، } \\
& f(c)=\lim _{x \rightarrow c} f(x)=0 \quad \text { and } \quad g(c)=\lim _{x \rightarrow c} g(x)=0 . \\
& \lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{g(x)-g(c)}=\lim _{x \rightarrow c} \frac{f(x)}{g(x)} \text { والآن يتبع ذلك أن }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مثال } 2.2 \text { الصـينـة غـير الهعـرّفـة } \\
& \lim _{x \rightarrow \infty} \frac{e^{x}}{x} \text { أوجد قـيـمـة }
\end{aligned}
$$

20 الححل هذه النهاية لها الصيغة أكتر وأكثر، بدون حدود، كما

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(e^{x}\right)}{\frac{d}{d x}(x)}=\lim _{x \rightarrow \infty} \frac{e^{x}}{1}=\infty
$$

مـ بعض النهايات. قَد تحتاج إلى نطبيق قَاعدة لوبيتال بشُكل متكرر . فتَط احرص على التبّبّت مـن صحة الفرضيات في كل خطوة.

مثثال 2.3 نهاية تتطلب تطبيق قاعـدة لوبيتال مـرتين

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}} \text { أوجد فَيهـ }
$$

 أن الدالة تقترب مـن 0 كلما

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}} & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(x^{2}\right)}{\frac{d}{d x}\left(e^{x}\right)}=\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}} \quad\left(\frac{\infty}{\infty}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(2 x)}{\frac{d}{d x}\left(e^{x}\right)}=\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0
\end{aligned}
$$

الشككل 6.16
$y=\frac{x^{2}}{e^{x}}$

كــا توفعـنا.

مـلحو ظلـة 2.2

من الأخطاء الشائمة جـدا تطبيق قاعدة لوبيتال مـن دون أن نتحقَّ أونُ من أن النهاية لها الصينة غير الهعرّفةَ من ناتج قسـمة الهسُتقات. انتبه لهذا جيدا.

$$
\begin{aligned}
& \text { مثال } 2.4 \text { الاستخـدام الخاطئ لقاعـدة لوبيتال } \\
& \text { أوجـد الخطأ في سـلسـلة الهعادلات }
\end{aligned}
$$

الحل من التمثيل البياني في الشككل 6.17، يـكنتا أن نرى أن النهاية تقريبًا 0، وبالتالي فإن النهاية 2 تبدو خطأُ النهاية الأولى،
 (لكن. لاحظ أن $\lim _{x \rightarrow 0} \frac{2 x}{\lim _{x \rightarrow 0}} \frac{2 x}{e^{x}}=\frac{x^{2}}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{2 x}{e^{x}}$

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{2 x}{e^{x}}=\frac{0}{1}=0
$$

الشكل 6.17

$$
y=\frac{x^{2}}{e^{x}-1}
$$

في بعض الأحيان يجب أن يكون تطبيق قاعدة لوبيتال متبوعًا بتبسيط. كما نرى في المـئال 2.5. متال 2.5 تبسيط الصيــة غـير المعرّفـة

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc x} \text { أوجد قيهـة }
$$

 يظهر أن الدالة تقترب من 0 عتدما 0 + 0^{+}. وبتطبيق قَاعدة لوبيتال، نحصل على

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln x)}{\frac{d}{d x}(\csc x)}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc x \cot x} \quad\left(\frac{\infty}{\infty}\right) .
$$

$$
\begin{aligned}
& \text { مرة ثانية، لاحظ أُنتا يمكنـنا إعادة كتابة التعبير. لدينا } \\
& \lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc x \cot x}=\lim _{x \rightarrow 0^{+}}\left(-\frac{\sin x}{x} \tan x\right)=(-1)(0)=0 \text {, } \\
& \text { كهـا توقَعنا. حيث استخدمنا حقيقة أن } \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1
\end{aligned}
$$

(يهكنك أِيضًا إنبات هذا باستخدام قَاعدة لوبيتال). لاحظ أننا لو كنا ببساطة واصلنا تطبيق
 الصـين غـير الهـعرّفـة الأخرى
تُهـة خهس صيغ غير مـرّفة أخرى علينا دراستها:

 التي يهكنتا عندهـا تطبيق قاعدة لوبيتال.

مـثال 2.6 تبسيط الصينـة غيير الهـرّفـة م

$$
\lim _{x \rightarrow 0}\left[\frac{1}{\ln (x+1)}-\frac{1}{x}\right][\text { أوجد قيمـة }
$$

 يظهر أن النهاية في مكان ما حول النقطة 0.5. إذا جمـنـا الكسور، نحصل على صيغة يمكننا

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left[\frac{1}{\ln (x+1)}-\frac{1}{x}\right] & =\lim _{x \rightarrow 0} \frac{x-\ln (x+1)}{\ln (x+1) x} \quad\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}[x-\ln (x+1)]}{\frac{d}{d x}[\ln (x+1) x]} \quad\left(\frac{1}{4}\right) \\
& =\lim _{x \rightarrow 0} \frac{1-\frac{1}{x+1}}{\left(\frac{1}{x+1}\right) x+\ln (x+1)(1)}
\end{aligned}
$$

الشكل 6.18
$y=\frac{\ln x}{\csc x}$教

بدُّلا من تُطبيق قاعدة لوبيتال على هذا التعبير الأخير، نقوم أونُلا بتبسبط التعبير، بضرب البسط والمتَام في (1 + 1). لدبنا الآن

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left[\frac{1}{\ln (x+1)}-\frac{1}{x}\right] & =\lim _{x \rightarrow 0} \frac{1-\frac{1}{x+1}}{\left(\frac{1}{x+1}\right) x+\ln (x+1)(1)}\left(\frac{x+1}{x+1}\right) \\
& =\lim _{x \rightarrow 0} \frac{(x+1)-1}{x+(x+1) \ln (x+1)} \quad\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(x)}{\frac{d}{d x}[x+(x+1) \ln (x+1)]} \\
& =\lim _{x \rightarrow 0} \frac{1}{1+(1) \ln (x+1)+(x+1) \frac{1}{(x+1)}}=\frac{1}{2}
\end{aligned}
$$

التي تتوافقَ هـع الشُكل 6.19.

مـتال 2.7 الصيـة غير المــرّفـة م• 0

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x} \ln x\right) \text { أوجد قيمـة }
$$

الححل هذه النهاية لها الصيغة غير المعرّفة (م • 0). من التمثيل البياني في الشكل 6.20، يظهر أن الدالة نتناقص ببطء شتديد باتجاه 0 عندما م \rightarrow x x. ومن السهـل إعـادة كتابة هـه

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\frac{1}{x} \ln x\right) & =\lim _{x \rightarrow \infty} \frac{\ln x}{x} \quad\left(\frac{\infty}{\infty}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \ln x}{\frac{d}{d x} x}
\end{aligned}
$$

$$
y=\frac{1}{x} \ln x
$$

$$
=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=\frac{0}{1}=0
$$

مـلاحظة: إذا كانت

$$
\ln y=\ln [f(x)]^{g(x)}=g(x) \ln [f(x)]
$$

وبالتالي معهـا كهـا في الهـئال 2.7

مثال 2.8 الصيغـة غير الهعرّفـة 10

$$
\lim _{x \rightarrow 1^{+}} x^{\frac{1}{x-1}} \text { أوجد قيهـة }
$$

الححل أولُا، لاحظ أن هذه النهاية لها الصيفة (1). ومن التمثيل البياني في الشكل 6.21. يظهر أن النهاية في مكان ما حول النتطة 3. نُحرّف $y=x^{\frac{1}{x-1}}$ وبالتالي $\ln y=\ln x^{\frac{1}{x-1}}=\frac{1}{x-1} \ln x$

$$
\text { انتبه، لقد وجدنا أن } 1 \text { lim } \lim _{x \rightarrow 1^{+}} \ln y=1 \text { هذه ليست النهاية الأصلية. نريد إتُبات أن }
$$

$$
\lim _{x \rightarrow 1^{+}} y=\lim _{x \rightarrow 1^{+}} e^{\ln y}=e^{1}
$$

والتي تتوافقَ هع الشكّل 6.21.

غالبٌا مـا يحتاج حسـاب النهايات إلى تطبيق فَاعدة لوبيتال عدة مرات. فقّط انتبه (على وجه الخصوص. تثبّت من صحة الفرضيات في كل خطوة) ولا تففل عن الهسـألة الأصلية.

الشكّل 6.22
$y=(\sin x)^{x}$
$\lim _{x \rightarrow 0^{+}}(\sin x)^{x}$ أوجد قيمـة
الحل هذه النهاية لها الصيغة غير الهعرّفة (00)، وفي الشَكل 6.22، يظهر أن النهاية في
$x^{2} \sin x$ كــا رأينا في السابق. ينبغي أن نُحِيد كتابة التعبير قبل المتابعة. هنا، نضرب البسط والهظام في

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \ln y & =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{\sin x} \cos x}{-x^{-2}}\left(\frac{x^{2} \sin x}{x^{2} \sin x}\right) \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2} \cos x}{\sin x}\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}\left(-x^{2} \cos x\right)}{\frac{d}{d x}(\sin x)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-2 x \cos x+x^{2} \sin x}{\cos x}=\frac{0}{1}=0
\end{aligned}
$$

فوكاز جونز (1952)
عالم رياضيات نيوزيلندي ارنبط عمله على ما يبدو بالمناطق المنفصلة في الرياضيات. وقَد حصل على جائزة وسام فيلدز

عام 1990 في الرياضيات؛ حيث وصفه نَظراواؤه "بالهذهل". أحد إنجازاته الرئبسة اكتشافه في نظرية العقدة والذي منح الـح علماء الأحياء الفرصة لفهم نكرار الحمض النووي بشُكل أُعهو. وجونز، الذي يُحْد أحد الداعـهين الأقووياء للـلـوم والرياضيات في نيوزيلندا، له أسـلوب عمل غيل غير رسمي، فهو يُشُجـع على تبادل الأفكار بشكل حر ومنمتح... وانفتاحه وسـخاؤه بهذا السأن كان بأفضل تقاليد عـم الرياضيات وروحها". لقد مـَّلت أْفكاره "مصدرُا غنـيّا بالأفكار لعمل الآخرين".

$$
\begin{aligned}
& \text { مكان ما حول النقطة 1. وعلى فرض أن } 1 \text {. } 1 \text { فـ فإن } \\
& \ln y=\ln (\sin x)^{x}=x \ln (\sin x) \\
& \text { فكّر الآن في النهاية } \\
& \lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \ln (\sin x)^{x}=\lim _{x \rightarrow 0^{+}}[x \ln (\sin x)] \quad(0 \cdot \infty) \\
& =\lim _{x \rightarrow 0^{+}} \frac{\ln (\sin x)}{\left(\frac{1}{x}\right)} \quad\left(\frac{\infty}{\infty}\right) \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}[\ln (\sin x)]}{\frac{d}{d x}\left(x^{-1}\right)} \text { بإستخدام قاعدة لوبيتال } \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{\sin x} \cos x}{-x^{-2}} \quad\left(\frac{\infty}{\infty}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ننكر الآن في النهاية } \\
& \lim _{x \rightarrow 1^{+}} \ln y=\lim _{x \rightarrow 1^{+}} \frac{1}{x-1} \ln x \quad(\infty \cdot 0) \\
& =\lim _{x \rightarrow 1^{+}} \frac{\ln x}{x-1} \quad\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow 1^{+}} \frac{\frac{d}{d x}(\ln x)}{\frac{d}{d x}(x-1)}=\lim _{x \rightarrow 1^{+}} \frac{x^{-1}}{1}=1
\end{aligned}
$$

توهارين 6.2

سـرعة المتسـابق الَّخر. إذا كانت $f(t)$ و $f(t)$ تمثلان مواقـع

(اشُرح. بدلالة كواقـع الهتسابقين، $\lim _{t \rightarrow 0^{+}} \frac{f^{\prime}(t)}{g^{\prime}(t)}=2$ و $f(0)=g(0)=0$

في التهـارين 40-1، أوجد النهايات الهـطـاة.

1. $\lim _{x \rightarrow-2} \frac{x+2}{x^{2}-4}$
2. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-3 x+2}$
3. $\lim _{x \rightarrow \infty} \frac{3 x^{2}+2}{x^{2}-4}$
4. $\lim _{x \rightarrow-\infty} \frac{x+1}{x^{2}+4 x+3}$
5. $\lim _{t \rightarrow 0} \frac{e^{2 t}-1}{t}$
6. $\lim _{t \rightarrow 0} \frac{\sin t}{e^{3 t}-1}$
7. $\lim _{t \rightarrow 0} \frac{\tan ^{-1} t}{\sin t}$
8. $\lim _{t \rightarrow 0} \frac{\sin t}{\sin ^{-1} t}$
9. $\lim _{x \rightarrow \pi} \frac{\sin 2 x}{\sin x}$
10. $\lim _{x \rightarrow-1} \frac{\cos ^{-1} x}{x^{2}-1}$
11. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
12. $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}$
13. $\lim _{t \rightarrow 1} \frac{\sqrt{t}-1}{t-1}$
14. $\lim _{t \rightarrow 1} \frac{\ln t}{t-1}$

تمارين كتابية
1.

 كلا من
 $\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
2. فيكِّر في النهاية 0 على أنها تعني بالفعل "صغيرة جـئا"

 $.0^{0}, \infty-\infty, \frac{1}{0}, 0 \cdot \infty, \infty \cdot \infty, \infty^{0}, 0^{\infty}$
صديق لك يواجه صعوبة في تطبيق قاعـدة لوبيتال. وعنـدما

 لأخذ المشتقة. ثمّ سأعيد استخدام x". اشُرح لصدِقك مـا الخطأ وكبفية تصحيحه.
4. عـلى فرض أن اثنين من الهتسابقين يبدؤون سباقُا مـن خط

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x} \text { بأوجد فيمة (a) (a) } 50
$$

$$
\begin{equation*}
\text { أوجد قيمة } \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \text { ج } \lim _{x \rightarrow 0} \frac{1-\cos x^{2}}{x^{4}} \text { نتيجتك } \tag{b}
\end{equation*}
$$

 (
 حيث ل توجد النهاية (a): و(b) تساوي 0؛ و(c) تساوي 3 و(d) تساووي

$$
\text { ولكن حيث لا توجد النهاية (a)؛ و(b) تسـاوي } 0 \text { و(c) تسـاوي } 2 .
$$

في التمرينين 53 و 54. حدد الدالة التي "تهيمن" عندما نقول إن الدالة

$$
\lim _{x \rightarrow \infty} \frac{g(x)}{f(x)}=0 \text { و } \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty,
$$

53. $n=$ (أي عدد صحبح موجب)

$$
\text { 54. } p>0 \text {) }
$$

 56. أوجد قيهة .
$\lim _{x \rightarrow \infty} \frac{\ln (p(x))}{\ln (q(x))}$ أوجد فيهـة لكتيرات الحدود
$\lim _{x \rightarrow \infty} \frac{\ln \left(e^{k x}+p(x)\right)}{\ln \left(e^{c x}+q(x)\right)}$ 58. أوجد قيَهة
لكتيرات الحدود p و q والعددين الهوجبين k و c.
59. إذا كانت 5 لماذا هعرفة أن

$$
\lim _{x \rightarrow a} \frac{f\left(x^{2}\right)}{g\left(x^{2}\right)}
$$

$$
\text { توجد } \lim _{x \rightarrow 0} \frac{f(x)}{g(x)} \text { لهما النهاية }
$$

15. $\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x}}$
16. $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{4}}$
17. $\lim _{x \rightarrow 0} \frac{x \cos x-\sin x}{x \sin ^{2} x}$
18. $\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right)$
19. $\lim _{x \rightarrow 0}\left(\frac{x+1}{x}-\frac{2}{\sin 2 x}\right)$
20. $\lim _{x \rightarrow \pi / 2}\left(\tan x+\frac{1}{x-\pi / 2}\right)$
21. $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{2}}$
22. $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$
23. $\lim _{t \rightarrow \infty} t e^{-t}$
24. $\lim _{t \rightarrow \infty} t \sin (1 / t)$
25. $\lim _{t \rightarrow 1} \frac{\ln (\ln t)}{\ln t}$
26. $\lim _{t \rightarrow 0} \frac{\sin (\sin t)}{\sin t}$
27. $\lim _{x \rightarrow 0} \frac{\sin (\sinh x)}{\sinh (\sin x)}$
28. $\lim _{x \rightarrow 0}\left(\frac{\sin x-\sinh x}{\cos x-\cosh x}\right)$
29. $\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\cot x}$
30. $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\ln x}$
31. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)$
32. $\lim _{x \rightarrow \infty}(\ln x-x)$
33. $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
34. $\lim _{x \rightarrow \infty}\left|\frac{x+1}{x-2}\right|^{\sqrt{x^{2}-4}}$
35. $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\sqrt{x}}-\sqrt{\frac{x}{x+1}}\right)$
36. $\lim _{x \rightarrow 1} \frac{\sqrt{5-x}-2}{\sqrt{10-x}-3}$
37. $\lim _{x \rightarrow 0^{+}}(1 / x)^{x}$
38. $\lim _{x \rightarrow 0^{+}}(\cos x)^{1 / x}$
39. $\lim _{t \rightarrow \infty}\left(\frac{t-3}{t+2}\right)^{t}$
40. $\lim _{t \rightarrow \infty}\left(\frac{t-3}{2 t+1}\right)^{t}$

وي التمـارين 44-41، أوجد كل الأخطاء.
41. $\lim _{x \rightarrow 0} \frac{\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{-\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{-\cos x}{2}=-\frac{1}{2}$
42. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}}{2 x}=\lim _{x \rightarrow 0} \frac{e^{x}}{2}=\frac{1}{2}$
43. $\lim _{x \rightarrow 0} \frac{x^{2}}{\ln x^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}}{2 \ln x}=\lim _{x \rightarrow 0} \frac{2 x}{2 / x}=\lim _{x \rightarrow 0} \frac{2}{-2 / x^{2}}$

$$
=\lim _{x \rightarrow 0}\left(-x^{2}\right)=0
$$

44. $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\cos x}{2 x}=\lim _{x \rightarrow 0} \frac{-\sin x}{2}=0$.

في التمارين 48-45، عيِّن الطريقتة بتحـديد مـا إذا كان
45. $\lim _{x \rightarrow 0^{+}} \frac{\csc x}{\sqrt{x}}$
46. $\lim _{x \rightarrow 0^{+}} \frac{x^{-3 / 2}}{\ln x}$
47. $\lim _{x \rightarrow \infty} \frac{x^{2}-3 x+1}{\tan ^{-1} x}$
48. $\lim _{x \rightarrow \infty} \frac{\ln \left(x^{2}\right)}{e^{x / 3}}$
$\lim _{x \rightarrow 0} \frac{3 x}{2 x}$ (a) 49
.
هل أي خطوة من الخطوات المستخدمة صـالحـة؟ استخدم
التقريبات الخطية لهحاولة البرهنة على أن الخطـوة الأولى ستعطي إجابة صحبحة على الأرجح.
أوجد قيهة (b)

الهتاحة. على فترض أن $f(x)=\frac{160 x^{-0.4}+90}{8 x^{-0.4}+10}$ حجم بؤبؤ العين بوحدة القياس mm عندما تكون شـدة الإضاءة x أوجـد俍 $\lim _{x \rightarrow \infty} f(x) \lim _{x \rightarrow 0^{+}} f(x)$ وأصغر حجهين ممكنين لبؤبؤ العين، عـلى التوالي.
65. سرعة هبوط لاعبب قفز حر كتلته m تؤتر عـليه الجاذبية وسـحب الهواء هي t (أوجد (c) واذكر مـا الذي تهثله كل $\lim _{m \rightarrow \infty} v$ و (b) $\lim _{m \rightarrow 0^{+}} v$ و (a) $\lim _{t \rightarrow \infty} v$ نهاية في ما يتحلق بلاعب القفز الحر. 66. تتناسب قَوة تلسكوب عاكس هـع مسـاحةَ السطح S لعاكس d و c ch c . C .

تهرينات اسـتمكشاضيـة

 من أنه إذا كانت x x قَريبة من 0. إذن $\sin x-x \approx-\frac{1}{6} x^{3}$ أو sin $x \approx x-\frac{1}{6} x^{3}$
竼 $\lim _{x} \frac{\sin x-f(x)}{x^{5}}$ النقطة، انظر إلى نهط الهصطلحات لديك (إرشاد: ! 3 =6
 حدود من الدرجة 11 ومـِّل الدالتين بيانيًّا.

 صفر الدالة $f(x)=x-1 ،$ ولكن بطـرق معينة، يِنبغي حساب كصفرين للدالة $f(x)=(x-1)^{2}$ $f(x)=(x-1)^{2}$ هذا، نقول إن $x=1$ صفر له التكرار 2 للدالة . كانت 0 ك $f(c)$ وكانت النهاية $\lim _{x \rightarrow c} \frac{f(x)}{(x-c)^{n}}$
 لأن التالية : $x^{2} \sin x, x \sin x^{2}, x^{4} \sin x^{3},(x-1) \ln x, \ln (x-1)^{2}, e^{x}-1$

القيّم العظهى والصغرى

يجب على إحدى الشـركات، كي تبقى قَادرة على الهـافسـة، أن تقوم بانتظام بتقييم كـيفية

 كيفية تطبيق هذه الرموز على المسائل ذات الطابع التطبيقي. وسنبدأ بتقديم تعريغات رياضية متأنية لبعض الهصطلحات المألوفة.
$c \in S$ بالنسبة إلى الدالة f المُحرَّفة في مجهوعة S من الأعداد الحقَيقية والعدر
 $x \in S$ (f f(c) $f(c) \quad$ (ii)

 مطلقة. والإجابة هي لا. كها يمكننا أن نرى من الشكلين 6.24a و6.24b.

مـثال 3.1 المَيم العظمى والصفرى الهطلقة
(b) حدد مكان أي قَمْ فَصوى مطلمَةَ للدالة 9 (a)

$$
\text { فصوى مططلقة للدالة } 9 \text { - } 9 \text { في } f(x) \text { في الفترة [3, }]
$$

 ليس لها قَيمة عظهى هطلقة.

 أي
6.26b الشكل

$$
y=x^{2}-9 \text { on }[-3,3]
$$

الفْترة (3, 3 (-)

6.26a الشكل

$$
y=x^{2}-9 \text { on }[-3,3]
$$

(c) في هذه الحالة. تكون نقطتا النهاية 3 و 3- في الفترة [3, (3-] . هنا، تفترض الدالة f

لقد رأينا أن الدالة قَد يكون لها قَيم قَصوى مطلقَة وقَد لا يِكون. وفي المـتال 3.1، أخفقت

الهـيال 3.2 قَطــة أخرى من الأحجية.
مثال 3.2 الدالة التي ليس لها قِيهـة عـظهـى أو صغرى مطلقة

 عندما تقترب x من 0، الاستنتاج نفسه.

x	$1 / x$
-1	-1
-0.1	-10
-0.01	-100
-0.001	-1000
-0.0001	$-10,000$
-0.00001	$-100,000$
-0.000001	$-1,000,000$

x	$1 / x$
1	1
0.1	10
0.01	100
0.001	1000
0.0001	10,000
0.00001	100,000
0.000001	$1,000,000$

 في الفترة [3,3-]. ونحن نقدم النظرية التالية بدون برهان.

ورغم أنتا لسنا بحاجة للحصول على دالة متصلة أو فترة مغلمَة لتحقيق فيمهة فصوى مطلقَة، تقول النظرية 3.1 إن الدوال الهتصلة تضمـن تحقيق القيه العظهى الهـطلقة والقيم الصغرى المطلقة في الفترات الهغلمة.
وفي المثال 3.3، سنعيد النظر مـرة أخرى في الدالة مـن الهئال 3.2، ولكنها تبدو في فترة مـختلفة.

مـثال 3.3 إيجاد قيمة قصوى مطلقة لـدالة متصلة

أوجد القيمة القَصوى الـطلقَة للدالة $f(x)=1$ في الفترة [1,3] الحل لاحظ أنه في المترة [1, 3$]$ الدالة f متصلة. بالتالي. تؤكد نظرية القَبم القصوى على

$$
\text { وقيهتها الصغرى 1/3 عند } 3 \text { = } 3 .
$$

هـدفنا هو تحديد كيف نعيّن مكان القَيم القَصوى الهطلقَة لدالة معينة. قَبل القَيام بهذا. نحتاج إلى التفكير في نوع آخر من القيهة القصوى.

التعر يض 3.2
$f(c)$
مفتوحة تحتوي على c
(ii) منتوحة نحتوي على c في كلتا الحالتين نطلقَ على $f(c)$ فَيمة قَصوى محلية للدالة

الشكل 6.27

$$
y=1 / x
$$

 لهنحنى
 هذا السلوك بوضوح تام في المثالين 3.4 و3.5.

[$f^{\prime \prime}(c)$ غير مُعِرَّفـة
الشكل 6.29
القيم القصوى الـحلية

مثال 3.4 دالة مشـتقتها صفرًا عـند قيهـة عظمىى مـحلية حدد مكان أي قيم قصوى محلية للدالة $f(x)=9-x^{2}$ وصِف سلوك المشتـفة عند القيمة القصوى المحلية.
 ע

مـيال 3.5 داللة مشـتقتتها غير مـعرّ فـة عـنـد قيهـة صـغرى مـحلية
 القصوى المحلـية.
الححل يمكنتا أن نرى من الشكل 6.31 أن هناك فيمة صغرى مـحلية عند

التصريض 3.3

ملـحو ظـة 3.1
في بـض الأحيان يُشـار إلى الفـيم الحـظمى والصغرى المـحلية (صيغ
 على التوالي) بالقيم العظهى الـيـى والصنـرى النسبية، على التوالي.

الشكل 6.30

الشكل 6.31

$$
y=|x|
$$

ملاحظات تاريخية
بيير دو فيرمـات (1665-1601) هو عـالِم رياضيات فرنسي

اكتشـف العديد من نتانـر يوران، بما في ذلك النظرية التي سـهيت عِلى اسمهـ. كان فيرمّات محامينا وعضوّا في

محكهـة تولوز العلبا، وكان
 "أمير الهواة" إريًُا غير عادي عن طريق الكتابة في مسودة كتاب معين وفيـه يوضِّح أْنه

قد اكتشف إئباتًا لنتيجة رائعة. ولكن هذه المسودة من الكتاب كانت صفيرة للفاية لكي تحافظ على الإنبات. حِيَرِت نظربة فيرماتِ الأخيرة

العديد من أفضضل عـلماء الرياضيات في العالم لها يزيد عـن 300 عامِّ قَبل أن يُبتهـا أندور ويليس فيّي عام 1995.

لقد إنضح لنا أن ملاحظتنا السابقة عن موفـع القَبِم القصوى صحيحة. وهكَا تحـدث القيم القصوى المحلية فقطط عند النقاط حيث تكون المشتقة صفرٌا أو غير معرّفة. نحن نؤكد هذا

بـُكل رسمي في النظرية 3.2

النظر ية 3.2 (نظرية فيرمات)
 أن يكون c عـددُا حرجّا لـــا

البـوهـان

 أذهينا عملنا) (افترض ما هـو أكثر بأن إذا كانت 0 > 0 . $f^{\prime}(c)$ فإن لدينا باستخدام تعريف الهـُتَة أن

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}>0
$$

لذا. فإن لكل h صغيرة بهـا يِكفي،

$$
\begin{align*}
& \frac{f(c+h)-f(c)}{h}>0 \tag{3.1}\\
& f(c+h)-f(c)>0
\end{align*}
$$

وهكذا.

$$
f(c+h)>f(c)
$$

بالتالي، فإن (c) ليست قيمهة عظهى هحلية. بالهـّل. لكل 0 > h. باستختدام (3.1) يمكنتا القول أن
$f(c+h)-f(c)<0$
وهكذا،
$f(c+h)<f(c)$
بالتالي، فإن $f(c)$ ليست قيهة عظمى محلية أيضُا.
وبها أنُنا قَد افترضنا أن (f) هي قَيمة قَصوى مححلية، فهذا يهثل تناقَضًا. بستبعد هذا الأمر امكانية أن 0 أ 0 أ
 المتبقية هي الحصول على 0 (f^{\prime} وهذا يثبت النظرية

يهكنـا استخـدام نظرية فيرمات وتمثيلات بيانية عن طريق الحاسبة أو الحاسـوب لإيجاد القيم القصوى الهحلية كهـا في الهـيال 3.6 و 3.7

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}-6 x-12=6\left(x^{2}-x-2\right) \\
& =6(x-2)(x+1)
\end{aligned}
$$

هو عالِم رياضيات نشُر في عام
1995 إبابًا للنظرية الأخيرِة لفيرمات. وهي أشُهر مسألة لم تكن محلولة في القرن العشرين. تنص نظرية فيرمات
الأخيرة على أنه

اللأعداد الصحبحة $x^{n}+y^{n}=z^{n}$
n>2
النظرية منذ أن قَرأ عنها
عندما كان عمـره 10 سنوات وبعد أكتئر من عشـر سـر سـنوات كــالم رياضي وباحث ناجـر
عزل ويليس نفسـه عن أقرانـ لهدة 7 سنوات بينما كان يطور
الرياضـات الضرورية للبرهـان
الخاص به. "لقد أدركت أن
الحنديث مـع الناس مصاد أدرفة
عن فيرمات كان مستحيلا لأن
ذلك كان يستحقَ الكثير جـُا من الاهتمام. لا يمكنك التركـيز

بنفسك لسنوات لو لم بكن
لديك هذا النوع من التركيز
الموحد الذي قَد يدمره الكثير من المشَاهدين". قَد توصـل إلى الخطوة الأخيرة من برهانه بعد عـامٍ من العمل المكئف عـف على هذه الخطوة تحت شــار "هـا اكتشاف غير مـقول" ثم أصبح هـا الشـانـار "جهـيل جـدا، لقد

الشكل 6.32

$$
y=2 x^{3}-3 x^{2}-12 x+5
$$

 الشككل 6.32 أن تلك تتوافقَ مـع مواقـع القَيم الـظمى الهحلية والقَمْ الصنرى الهـحِلية. على التوالي.

مثال 3.7 القيم القصوى عـند نقطة حيث تكون الهشتقتة غير معرّفة
 الحل يوجد لدينا

$$
f^{\prime}(x)=\frac{2}{3}(3 x+1)^{-1 / 3}(3)=\frac{2}{(3 x+1)^{1 / 3}}
$$

 ال1

 قو $y=f(x)$

 هذا الحيب السيئ صـوبات عارضة فقَطط، فنحن نذكر هذا هنا فقِط حتى تُدرك أن هذه التكنولوجيا لها حدود.

مثال 3.8 مـماس أفقي عنـد نقطة ليست قيهـة قصوى مـحلية

هــال 3.9 ممـاس رأسي عـند نقطـة ليسـت قيمـة قصـوى مـحلية

$$
f(x)=x^{1 / 3} \text { أوجد الأعـداد الحرجة والقيم القصوى المحلية لـــــيم }
$$

 عدددًا حرجُا، كما في المـئال 3.10.

$y=(3 x+1)^{2 / 3}$

ملـحوظـة 3.2
تنص نظرية فـيرمات على أن هذه القثيم القصوى الـحـلية يِكن أن تحدث فتَط عـند ألأعداد الحرجة. وهنا ونا لا يـني أنه يوجد قيم فصوى مـحلية

 الأمتلة 3.8 و 3.9.

الشكل 6.34 $y=x^{3}$

مثال 3.10 إيجاد أعـداد حرجـة لدالة نسبيـة

الححل يجب أن تلاحظ أن مـجال f يتكون من كل الأعداد الحقَيقية غير 2 $x=-2$. لدينا هـنا

$$
\begin{aligned}
f^{\prime}(x) & =\frac{4 x(x+2)-2 x^{2}(1)}{(x+2)^{2}} \\
& =\frac{2 x(x+4)}{(x+2)^{2}}
\end{aligned}
$$

لاحظ أن
 لـد لاحظنا أن القَبم الفصوى المحلية تحدث فقَط عند الأعداد الحرجة وأن الد الدوال
 تعطينا النظرية 3.3 طريقة لإيجاد قيِم قَصوى مطلقة.

النظـرية 3.3
 f ان تكون موجودة عنـد نقّطة نهاية (a أو b) أو عند عـد

البر هـان

وفعًا لنظرية القَيمة القَصوى ، f سـوف يكون لها القيمة العظهى والصنـرى عند

 تحدت عند الأعـداد الحرجـة فتطـ

ملـحوظة 3.4

تعطينا النظرية 3.3 إجراءً بسيطُا إبجاد قيهـة قَصوى مطلقَة لدالة متصلة في فترة مغلقة: 1. أوجد كل الأعداد الحرجة في الفترة واحسب قَيم الدالة عند تلك النقاط 2. احسب فَيم الدالة عند نقاط النهاية.
3. أكبر فيمة لهذه الدوال هي فيمة عظهى مطلقة وأصغر قيهة لهذه الدوال هب قيمة صنرى مطلقة.

نحن نوضح النظرية 3.3 لحالة الدالة كثيرة الحدود في الهئال 3.11.

مـثال 3.11 إيجاد قيمة قصوى مطلقتة في فترة مغـلقة
أوجد القيهة القصوى الهطلقَة لـــ

 الأعداد موجودة في الفترة [2, 4-]

$$
f(-2)=1 \quad, \quad f(4)=37
$$

\qquad

الشكل 6.35

$$
y=x^{1 / 3}
$$

مـلحوظـة 3.3
عندما نستخدم القيم القصوى أو الصغرى أو العظمى بدون الو تحديد هل هي مطلقَة أو مـحلية. فإنتا سـنشير دائئًا إلى |القيم القصوى الـططلقَة.

[^0] $=$ 3

$$
y=2 x^{3}-3 x^{2}-12 x+5
$$
$$
f(-1)=12, \quad f(2)=-15
$$

وبها أن f متصلة في [2,4-4] . فإن النظرية 3.3 تنص على أن القيم القصوى المطلقة يجب $f(2)=-15$ أن تكون من بين هذه القيم الأربعة. وهكذا. 37 = 37 هي

 الصحيحة. ضع في حسبانك أن المثال التالي صعب إلى حد مأ على المستخدم.

$$
\text { أوجد القيمة الفصوى لـ 8x/4 - } f(x)=4 x^{5 / 4} \text { في الفترة [0,4] . }
$$

 x=4

$$
f^{\prime}(x)=5 x^{1 / 4}-2 x^{-3 / 4}=\frac{5 x-2}{x^{3 / 4}}
$$

وهكذا، فإن الأعداد الحرجة هي محرّفة والعدد 0 موجود في مجال f f). والآن لا نحتاج إلا إلى المقارنة بين

$$
f(0)=0, \quad f(4) \approx 11.3137 \quad f\left(\frac{2}{5}\right) \approx-5.0897
$$

 - 6.37 $f\left(\frac{2}{5}\right) \approx-5.0897$

عند التطبيق، لا تكون الأعداد الحرجة سـهلة دائمًا لكي يتم الحتُور عليهـا كمـا كانت في المتالين 3.11 و 3.12. في المتل 3.13 على فرض انه غير معروف لدينا الأعداد الحرجة الموجو الهودة فيَهما. هـع ذلك، يهكنتا تقدير العدد ومواقـح تلك الأعـداد من خلال تحليل دقيق للتمثيلات البيانية التي ينشئها الحاسب الآلي.

هـثال 3.13 إيجـاد قيهـة قصوى مـطلقة تقريبيًا

$$
\text { أوجد القيمة إقصوى الهطلقة لـ } f(x)=x^{3}-5 x+3 \sin x^{2} \text { في الفترة [2,2.5-]. }
$$

$$
f^{\prime}(x)=3 x^{2}-5+6 x \cos x^{2}
$$

وعلى العكس من الهثالين 3.11 و 3.12. 8 بوجد عملبة جبرية يِكننا استخـدامهـا لإيجاد أصفار

 الآن طريقةَ نيوتن لحـل يؤدي إلى أُربعة أعداد حرجة تقريبية لــ f فـي الفترة [2.5 2.5-

$$
a \approx-1.26410884789, \quad b \approx 0.674471354085
$$

$c \approx 1.2266828947$
$d \approx 2.01830371473$

$$
y=4 x^{5 / 4}-8 x^{1 / 4}
$$

6.38 الشكل

$$
y=f(x)=x^{3}-5 x+3 \sin x^{2}
$$

الشكل 6.39

$y=f^{\prime}(x)=3 x^{2}-5+6 x \cos x^{2}$

والآن سـنحتاج فَقط إلى مقَارنة قَبْم f عنـد نقاطـ النهاية وتقدير الأعداد الحرجة تقريبئًا:

$$
f(a) \approx 7.3, \quad f(b) \approx-1.7, \quad f(c) \approx-1.3
$$

$$
f(d) \approx-4.3, \quad f(-2) \approx-0.3 \quad \text { and } \quad f(2.5) \approx 3.0
$$

 الصغرى الهطلمَة تقريبًا

 . وبها أن هذا يتفق بشكل جيد، توجد لدينا ثقة في دقة ذلك الـ
لقد رأينا الآن كيفية تحديد مكان القيم القصوى الهطلقة لدالة متصلة في فترة دغلقة. لقد رأينا في الدرس 6.4، نحن نرى كيفية إيجاد القيمر القصوى الهـحلية.

مـا وراء القوانين

نظرية القيهة القصوى مهمهة ولكنها نتيجة متقنة. فكر في الأمر بتلك الطريقة. إذا تمت تلبية فرضية النظرية. فلن تضيع وقَك أبئا في البحث عن ألقيم العظهى لدالة معينة لا تحتوي

(a) $(-\infty, 1) \cup(1, \infty)$ ف $f(x)=\frac{x^{2}}{(x-1)^{2}} \quad .2$ (d) $[-2,-1]$, (c) $(0,1)$, (b) $(-1,1)$

1. باستخدام أحد التمثيلات البيانية أو أكثر. اشرح لهاذا تكون نظرية القيمة التصوى صححيحة. هل بكـون الاسـتنتاج صـحيحُا إذا أغفلنا ألنا الفرضية التي تنص
 تنص على أن الفترة مغلمة؟

باستخـدام أحد التهيُـيلات البيانية أو أكتثر، عبرّ عن أن نظرية فير مات صحيحـة. ناقَ كيفية استخدام نظرية فِيرمات. أعـد صياغة النظرية بكلهات من عندك لجعل استخدامهـا أكثر وضوحُا.

 قيمة عظمى مححلية أو قيمة صغرى محلية أو لن تكّون عند أي منهما. ومن وجهة نظر الرياضيات، تكون العبارة إذا كان / فإنّ في اتجاه واحد عادة عندما نقول "إذا كان A ، فإنّ B" فهذا لا يشَبه حالة قَولنا "إذا كان B فإنّ A A"

 إذا أصابك البلل، إذًا أنت تقف في الهـطر." طبّق هـا هـا الهنطق على كل من نظرية القَيم القصوى ونظرية فيرمأت: اذكر العكس وقَرد هـل استنتاجه يكون صحبحُا أم دائئًا.

في التمرينين 1 و 2، اسـتخدم التمثيل البيـياني لتحـديد مكان القيمر القصـوى المُطلقة (إذا كانت موجـودة) للدالة في الفتْرة الهـطـى

1. $f(x)=\frac{1}{x^{2}-1}$ (a) $(0,1) \cup(1, \infty)$,
(b) $(-1,1)$, (c) $(0,1)$, (d) $\left[-\frac{1}{2}, \frac{1}{2}\right]$

في التمـارين 38--35، قَدّر القيم القصـوى الهـطــقـة رقمَيًا لدالّة معطـاة في كل فترة مُشار إليها.
[-3,2](b) \quad g $f(-1,1](\mathrm{a})$ في $f(x)=x^{4}-3 x^{2}+2 x+1.35$
 في الفترتين $0,2 \pi](b)$ (b) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right](a)$ (a)
$f(x)=x \sin x+3.37$ $[-2,2]($ b) \quad,

في الفترتين (a) [0,1]
$f(x)=x^{2}+e^{x} .38$

.39 الصغرى الهطلقَة غِبر موجودة.

 الصنرى المطلقَة 2.
 المططلقَ لـ الصغرى الهطلقة 2.
 لـ
43. في هذا التمرين. سوف نستكشف عائلة الدوال
. $f(x)=x+c x+1$
 على فـرض أن هذه الحائلة تشـير إلى الدوال المكعبة، فاكتب جهيع أنواع الدوال الهكعبة.
44. أثبت أن أي كتيرة حدود مـن الدرجة الرابعة دِجب أن تتضهن

 تهثيلات بيانية لكثيرات الحدود من الدرجـة الرابعة.
45. اثببت ان: $f(x)=x^{3}+b x^{2}+c x+d$ تتضهن كلُّا من حد أقْصى مـحلي وحد أدنى محلي إذا كان 0 . c. 46. في التمرين 45. وضّح أن مجموع الأعداد الحرجة يساوي
 القصوى الهحلية (ستحتمد إجابتك علي قيمهة الثابت c)
48. لكل عائلة الدوال

 نظرية القبمة القصوى ونظرية فيرمت). 50 $f(x)-g(x)$ لـ
 $y=g(x)$ المهاسـان متوازيـنـ.

في التهارين 6-3، أوجد كل الأعداد الحـر جـة يدويًا.

 عظـمى مـحلية أو فَيهـة صغفرى مـحلية أو لا يمثل أيَاً منهـهـا.
3. (a) $f(x)=x^{2}+5 x-1$
(b) $f(x)=-x^{2}+4 x+2$
4. (a) $f(x)=x^{3}-3 x+1$
(b) $f(x)=-x^{3}+6 x^{2}+2$
5. (a) $f(x)=x^{3}-3 x^{2}+6 x$
(b) $f(x)=-x^{3}+3 x^{2}-3 x$
6. (a) $f(x)=x^{4}-2 x^{2}+1$
(b) $f(x)=x^{4}-3 x^{3}+2$

 مـحلية أو لا يهـثل أيًَا منههـا.
7. $f(x)=x^{4}-3 x^{3}+2$
8. $f(x)=x^{4}+6 x^{2}-2$
9. $f(x)=x^{3 / 4}-4 x^{1 / 4}$
10. $f(x)=\left(x^{2 / 5}-3 x^{1 / 5}\right)^{2}$
11. $f(x)=\sin x \cos x,[0,2 \pi]$
12. $f(x)=\sqrt{3} \sin x+\cos x$
13. $f(x)=\frac{x^{2}-2}{x+2}$
14. $f(x)=\frac{x^{2}-x+4}{x-1}$
15. $f(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
16. $f(x)=x e^{-2 x}$
17. $f(x)=x^{4 / 3}+4 x^{1 / 3}+4 x^{-2 / 3}$
18. $f(x)=x^{7 / 3}-28 x^{1 / 3}$
19. $f(x)=2 x \sqrt{x+1}$
20. $f(x)=x / \sqrt{x^{2}+1}$
21. $f(x)=\left|x^{2}-1\right|$
22. $f(x)=\sqrt[3]{x^{3}-3 x^{2}}$
23. $f(x)= \begin{cases}x^{2}+2 x-1 & \text { if } x<0 \\ x^{2}-4 x+3 & \text { if } x \geq 0\end{cases}$
24. $f(x)= \begin{cases}\sin x & \text { if }-\pi<x<\pi \\ -\tan x & \text { if }|x| \geq \pi\end{cases}$

في التهارين 34-25، أوجـد القيم القصوى الهـطلقة لدالة

$[-3,2]$ (b) $\quad[0,2]$ (a) $\quad f(x)=x^{3}-3 x+1 \quad .25$ [-1,3] (b) و $f(x)=x^{4}-8 x^{2}+2$. 26 [-1,3] (b) و في الفترتين (a) $\quad f(x)=x^{2 / 3} .27$
$[\pi / 2, \pi]$ (b) \quad و $\quad[0,2 \pi]$ (a) $f(x)=\sin x+\cos x \quad 28$
$[-3,2]$ (b) \quad g $\quad[0,2](a)$

في الفترتين
$f(x)=e^{-x^{2}} .29$

[2,8](b) و في الفترتين $\quad[-2,2]$ (a) $\quad f(x)=\frac{3 x^{2}}{x-3} \cdot 31$

$[-3,4]$ (b)	9	[0,1] (a)	في الفترتين	$f(x)=\tan ^{-1}\left(x^{2}\right)$. 32
[-3,3] (b)		[0,2] (a)	في الفترتين	$f(x)=\frac{x}{x^{2}+1}$. 33
[0,6] (b)	9	[0,2] (a)	في الفترتين	$f(x)=\frac{3 x}{x^{2}+16}$. 34

هذا الشخص إلى أعلى الإطـار، والشُّاع الصـادر من عـين الشُخص إلى أسـفل نقطة في الإطار. أوجد قيمة x التي

ماذا سيتغير إذا كان ارتفاع عـبن هذا الشَخص 6 أقدَام عن الأرض؟
60. على فرض أن لاعب هوكي يصوب على شبكة عرضها 6
 خط المنتصف. (a) أوجد الهسـافة d d التي تزيد من زاوية التصويب. (b) كرر الجزء (a) عند التصويب بمسافة فدمين
 لهذه الدرجة. (c) كرر الجزء (a) مـع فرض نجاح حـارس المرمى فَي منع التسـديد. ولكن على بُعد قَدمين مـن الهرمى.

تهارين استكشاهـاهِة

1. استكشف التمتيلات البيانية للدالة 1 الـة x $x^{3} e^{-x}$
 التفكير في التمثيل البياني $x^{\prime \prime} e^{\prime \prime} e^{-x}$ بصفته يوضـح نتانٌ

شَد الحبل:
 الحبل هذه.

يشتهر يوهانس كيبلر (1630-1571) بصفته عـالم فلك. . 2 وخصوصُا بضضل قَوانينه الثُلاثة حول حركة الكواكب. لكنه

a الشكل

b الشكل
52. ارسـم تـتيلا بيانيّا لـــا
 لنظرية الاحتمالات).

التطبيقات
53. إذا كان هـناك فريقا كرة قَدم، ويسـجل كل فريق أهدافـا بهـدل r هدف في الدقيقة، فإن احتهال تسجـيل r هدف في t دقَيقَ هو
 لهـاذا يُعد هـا منطفيًا. أوجد t التي تزيد مـن احـو هدف واحد بالضبط. وضّح بإيجاز لمـاذا يُعد هذا منطهـِيًا.
54. إذا فزت في ثلات مباريات من أصل أربع مباريات أمام
 التالِية هي في كل مباراة، فإن احتمـال الفوز في m من أصل المباريات هو
 للاحتــال. وضّح بإيجاز لمـاذا يُعد هذا منطمِئًا.

 واشرح الأجزاء التي تمثلها من الأفحوانية. حدد أين الجزء الأكتثر انحدارًا من الأفـوانية.

الإنترنت. إذا كان احتمال وصوله إلى وجهته بدون أخطاء

 . $H=-x \ln x-(1-x) \ln (1-x)$ x التي تزيد من الكمية. وضّح لماذا قَد بزيد هـا
 x=1
57. تستخدم الأبحاث في عدد من المجالات (بها في ذلك ولك علم الأحياء السكانية، وعلم الاقتصـاد، ودراسـات الات الأورام في الحيوانات) منحنى جومبرتز للنهو.
 معدل للنمو.
58. يُهكن إيجاد الهعدل R للتفاعل الأنزيهي بصفته دالة لتركيز

 أقصى مناسبًا لأن محدل التفاعل

علي فـرض ان تعليق لوحـ على جدار كـها هـو موضح .59 في الشكل. يهتد الإطـار بطـول 6 أقَدام إلى 8 أَقدام فوق
 أقدام على بُعد x قدم من الحائُلـ. وينظر إلى اللوحة بزاوية رؤية A التي تشكَلت من السُعاع الصادر من عين

بمعلومية z فقَط. وكانت ملاحظة كيبلر الأساسية هي أن البراميل النمسـاوية كان لها النسبة نفسـهـا بين الارتفاع الاع والقطر (أي x / y). واقترض أن لنا أن في قانون الحجم. ثـم عوّض عـن

أن
للشخخص النمساوي حساب z ، ثم تقدير الحججم بسرعة. لم نخبرك بعد بها تساويه t . افترض كيبلر أن الشـخص النمساوي قَ اتخذ خيارًا ذكيًا لهذه النسبة. أوجد التي تزيد من حجم z معطاة. هذه النسبة هي الُستخدمة في الواقَع بصناعة البرامـيل النمسـاوية!

كان أيضًا بارعُا في الرياضيات. خـلال فترة خدمته في
 بعض النمسـاويين على حسـاب ســات مـجهوعـة متنوعـة مـن

 النمساوي عودًا في الثقب حتى يصل إلى الركن البعيد، ذـم يعلن حجهه. قام كيبلر أولُا بتحليل الهسألة الـة بالنسبة لبرميل
 في الشكل $x^{2}+(2 y)^{2}=z^{2}$ عود الفياس z . باستخدام نظرية فيثاغورس V يكمن اللفز الذي واجهه كيبلر في كيفية حساب .

 الأعداد الحرجة التي تتوافق مـع القيم القصوى الهحلية. وفي الوقت نفسه، سـنتعرف أكثر على الارتباط بين الاشتْقأق والتمثيل البياني.
 أن راتبك سـيزداد بشكل ثابت طوال مدة توظيفك، فسيجول بخاطرك ك أنه بهمور الوقت سـيزيد
 القرض، ستقل مديونياتك بمرور الزمن. إذا وضعت مخططـُ للدين بالنسبة للزمن، فإن التمئيل البياني قَ يِأخذ صورة الشكل 6.41.
والآن، عرّف هاتين الفكرتين بعنابة. لاحظ أن التعريف 4.1 هو مـجرد بيان رسمبي لشيء تفهمه بالفحل.

التعريف 4.1

 [بمـنى، تصبح $f\left(x_{1}\right)<f\left(x_{2}\right)$

تكون f دالة متناقصة في الفترة 1 إذا كانت لكل ($x_{1}<x_{2}$

بينما ينظر أي شـخص إلى تمثيل بياني لدالة يستطيع معرفة اين هي متزايدة واين هي متنافصة، إلا أن التحدي يكمن في تحديد أين تصبح متزايدة وأين تصبح متناقَصة من خلال الصينـي
 متزايدة، وأين تصبح متناقصة، بدون التظر إلى التهشيل البياني؟ انظر بعناية إلى الشكل 6.42 (في الصفحة التالية) لمحرفة ما إذا كان يُهكتك مـلاحظة ما يحدث عند كل نتطـ تكون الداله عـندها مـزايدة أو متناقصة.

الشكل 6.40
راتب تزايدي

الشكل 6.41
دين تناقصي

لاحظ أنه في الفترات التي تكون فيها ميول المماسـات موجبة موجبة، فإنْ f متزايدة، بينما في الفترات التي تكون فيها ميول الـمـاسـات سـالبة، فإنّ f f متناقصة. بالطبع، فإن هيل الهمـاس عند
 فترة ما، فإنه من الواضح أنه يتم تحديد ذلك من اشارة مشتَقتها في هذه الفترة. والآن. سنضع نظرية لهذه العـلاقَة تجعلها دقَبقة.
النظرية 4.1
على فرض أن f قابلة للتفاضل في الفترة I I
إذا كانت

الشكل 6.42
الـالـة الهـتزايدة والدالة الهتناقَصـة

الـبـ هـان

 في الدرس 10-5) على f في الفترة (10)، وسنحصل عـلى

$$
\begin{equation*}
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}(c) \tag{4.1}
\end{equation*}
$$

لبیض القَمْم

$$
\begin{gathered}
0<f\left(x_{2}\right)-f\left(x_{1}\right) \\
f\left(x_{1}\right)<f\left(x_{2}\right)
\end{gathered}
$$

$$
\begin{align*}
& f\left(x_{1}\right)<f\left(x_{2}\right) \\
& \text { بها أن (4.2) صحيحة لكل } \tag{4.2}
\end{align*}
$$

مـا تراه قد لا يكون الحقتيقة

 التي نراهـا في تافذة ما. سنحتاج إلى إجراء بعض حسـابات التفاضل والتكامل.

$$
\text { مـتال } 4.1 \text { رسم تمثيل بياني }
$$

ارسم تمثيلًا بيانيًا للدالة 10 - $f(x)=2 x^{3}+9 x^{2}-24 x$ مـع إيضاح جميع التيم القصوى المحلية. الـحل تستخدم عديد مـن حاسبات التمثيل البياني التافذة الافنراضية التي يتم تعريفها من خلال 10 $y=f(x)$ ($10 \leq x \leq 10$ هيئة التهثيل البياني الهعروض في الشكل 6.43. رغم أن القطـح المستقيهة الثـلاث الموضحة تكشف الأمر بالتحديد. بدلُّ من التحامل مـع النافذة بدون دراية عـلى أمل زائف بأن يظهر التمثيل

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}+18 x-24=6\left(x^{2}+3 x-4\right) \\
& =6(x-1)(x+4) .
\end{aligned}
$$

الشُكل 6.43
$y=2 x^{3}+9 x^{2}-24 x-10$

لاحظ أن العددين الحرجين (1 و 4-) يِمثلان الموقَين الهـحتهلين للقَيم القصوى الهـحلِية.

$$
\begin{aligned}
(1, \infty)
\end{aligned}
$$

 بين التمئيلين البيانيين. عندما تكون
 هذا قـريبًا بتفصيل أكبر).

 حساب التفاضل والتكامل على الهـميزات التي ينباني لك توفّع رؤيتها في التهثيل البياني. وبدونها. بكون ما تفعله وكأنه عملية تصويب في الظالام.

مـثال 4.2 كشف سـلوك مـخني في تهثيل بياني

ارسمم بيانيًا $f(x)=3 x^{4}+40 x^{3}-0.06 x^{2}-1.2 x$ هـع إيضاح جهـيع القَيم القصوى المحالية. الحلل يبيّن الشئكل 6.45a التمتيل البياني الافنراضي الذي تم إنشاؤه بواسـطـة نظام الجبر في

 الهمـيزات الهـخفية في التمتيلين البيانيين.

$$
\begin{aligned}
f^{\prime}(x) & =12 x^{3}+120 x^{2}-0.12 x-1.2 \\
& =12\left(x^{2}-0.01\right)(x+10) \\
& =12(x-0.1)(x+0.1)(x+10)
\end{aligned}
$$

6.45b الشكل

تهتُيل بياني افتراضي على حاسبة للدالة

$$
y=3 x^{4}+40 x^{3}-0.06 x^{2}-1.2 x
$$

6.45a الشكل

تهتيل بياني افتراضبي على CAS للدالة $y=3 x^{4}+40 x^{3}-0.06 x^{2}-1.2 x$

6.44a الشكل

6.44b الشكل

$y=f^{\prime}(x), y=f(x)$

أوضحنا خطوط الأعداد للعوامل الثلاثة في الهامش (في الصفحة السابقة). لاحظ أن

بها أن التمـيلين البيانيين في الشكلين 6.45a و 6.45 a يقترحان أن f متزايدة لكل قيم x ، فإن
 سـلوكبات الدالة. من خلال زيادة هدى فيمر x إلى الفنترة [15,5-1

الموضح في الشككل 6.46a. يوضح ذلك ما نطلق عليه السلوك الحام للدالة. يهكنك هـن هنا رؤية
القبهة الصفرى المحلية عند $x=-10$ التي كانت مفقودة في تمشّبلاتنا البيانية السابقة، لكن

 العظمى الـحلية عند $x=-0.1$ والقيهة الصنـرى المـحلية عند $x=0.1$ بكل وضوح
 6.47a الأزرف)، والدالة (x)

6.47b الشكل

السـوك الهحلي
$y=f(x), \quad y=f^{\prime}(x)$

6.47a الشكل

السـلوك الحام
$y=f(x), \quad y=f^{\prime}(x)$

6.46a الشكل

السلوك العام للدالة
$f(x)=3 x^{4}+40 x^{3}-0.06 x^{2}-1.2 x$

6.46b الشكـل

السـلوك الــحـي للدالة
$f(x)=3 x^{4}+40 x^{3}-0.06 x^{2}-1.2 x$

قَد نكون لاحظت وجود عـلاقة بين القيم القصوى الهحلية والفترات التي تكون عندها الدالة متزايدة ومتناقصة. سنتناول ذلك في النظرية 4.2.
 التناقص عند c)، فإن ($f(c)$ هي قيهة عظهى محلبة.

 (iii) إذا كانت (ii)

من الأسهل التفكير في هذه النتيجة بيانيّا. إذا كانت f متزايدة إلى يسار عدد حرع، ومتناقصة إلى

 التفاصيل في شكل تهرين.

قَيــة صفـرى مـحلية

6.48a الشكل

قَيمـة كبرى مـحلية

مـتال 4.3 إيجاد القيهم القصـوى الهحلية باستخدام اختبار المشـتـة الأولي أوجد القَبم القصوى المـحلية للدالة هـن الهــال 4.1، 10 - $f(x)=2 x^{3}+9 x^{2}-24 x-10$

$$
\begin{aligned}
& \text { الدحل توصلـنا في الــُال } 4.1 \text { إلى أن }
\end{aligned}
$$

وبناء: عـلى اختبار المسـتقة الأولى، نجـد أن $f=-4$ لـيهها قَيهـة عظـهى مـحلية عـند وَيِمةَ صنـرى مـحلية عند 1

$$
\begin{aligned}
& \text { مـتُال } 4.4 \text { إيجاد القيم القصـوى الهـحلية لدالة مـع أسسس كسـرية } \\
& f(x)=x^{5 / 3}-3 x^{2 / 3} \text { أوجد القيم القصوى الهحلية للدالة } \\
& f^{\prime}(x)=\frac{5}{3} x^{2 / 3}-3\left(\frac{2}{3}\right) x^{-1 / 3} \\
& =\frac{5 x-6}{3 x^{1 / 3}},
\end{aligned}
$$

إذا العددان الحرجان هـهـا [

 هـ $=0$
 بوضوح هانان القيهتان الــحليتان في التمـيل البياني بالسكل 6.49.

مـثال 4.5 إيجاد التيم القصوى المححلية التقريبية

الشـكل 6.49
$y=x^{5 / 3}-3 x^{2 / 3}$

$$
f^{\prime}(x)=4 x^{3}+12 x^{2}-10 x-31 .
$$

$$
\begin{aligned}
& f^{\prime}(x)<0 \text { o }(-\infty, a) \quad(b, c) . \quad \text { o } f
\end{aligned}
$$

مـن اختبار المشتفة الأولى. نوجد فيهة صغرى مـحلية عند $a \approx-96008$. a. وقيمة عظمى مـحلية عند 1.63816

 القيهـة الصغرى الهحلية عند

الشكل 6.51

$$
f^{\prime}(x)=4 x^{3}+12 x^{2}-10 x-31
$$

الشكل 6.52

$$
f(x)=x^{4}+4 x^{3}-5 x^{2}-31 x+29
$$

الشكل 6.50
$f(x)=x^{4}+4 x^{3}-5 x^{2}-31 x+29$

تهـارين كتابية

 لكن هل ستحرك قلم الرصاص لأعلى أم لأسغل؟ كيف يلائم هذا تعريف التزايد؟ 2. على فرض أنك تسافر شـرفا على الطريق الذي يربط شـرق البلاد بغريها. وعنـ وصولك إلى وجهتك. انتظرت فترة ثم رجـت إلى موطنك. وضّح اختبار الهشتّتة الأولى من وجهة نظر سرعاتك المتجهة (موجبة وسالبة) في هذه الرحلة.
3. على فرض أن لديك دالة قابلة للتفاضل f وبها عددان حرجان مهيزان. أظهر الحاسـوب الخاص بك تصتئلا بيانيًا لها بأخذ شـكل التمتيل البياني الوارد في الشكّل.
. 30

$$
. x>1, f^{\prime}(1)=0
$$

و $0<x<2$ و $x<-1$ لكل $f(-1)=f(2)=0, f^{\prime}(x)<0$. 31
($x>2, f^{\prime}(x)>0$

$$
. f^{\prime}(2)=0
$$

لكل $x>3$, $\left.f^{\prime}(x)>0\right)=0, f(3)=-1, f^{\prime}(x)<0.32$

$$
. f^{\prime}(3)=0
$$

 والتقيم القصـوى، وارسـم تمثيلًا بيانيًا.
33. $y=\frac{x}{x^{2}-1}$
34. $y=\frac{x^{2}}{x^{2}-1}$
35. $y=\frac{x^{2}}{x^{2}-4 x+3}$
36. $y=\frac{x}{1-x^{4}}$
37. $y=\frac{x}{\sqrt{x^{2}+1}}$
38. $y=\frac{x^{2}+2}{(x+1)^{2}}$

39. $y=\frac{x-30}{x^{4}-1}$
40. $y=\frac{x^{2}-8}{x^{4}-1}$
41. $y=\frac{x+60}{x^{2}+1}$
42. $y=\frac{x-60}{x^{2}-1}$
43. اكتب مثـالُا بيانيًا يوضّح أن الجهلة الآتية خطأ: إذا كانت据 $f(x)=0$ و $f(0)=4$ حل واحد بالضبُط.

 $\cdot g(1), g(4), g(f(1)), g(f(4))$

$$
f(x)=\left\{\begin{array}{ccl}
x+2 x^{2} \sin (1 / x) & x \neq 0 & \text { إذا كا كانت } \\
0 & x=0 & \text { إنا }
\end{array}\right.
$$

$$
f^{\prime}(0)>0, \text { اثبت }
$$

51. أببت النظرية 4.2 (اختبار الهشتـفة الأولى).

4. عـلى فرض أن الدالة في التمرين 3 يوجد بها ثِلاثة أعداد

1. $y=x^{3}-3 x+2$
2. $y=x^{3}+2 x^{2}+1$
3. $y=x^{4}-8 x^{2}+1$
4. $y=x^{3}-3 x^{2}-9 x+1$
5. $y=(x+1)^{2 / 3}$
6. $y=(x-1)^{1 / 3}$
7. $y=\sin x+\cos x$
8. $y=\sin ^{2} x$
9. $y=e^{x^{2}-1}$
10. $y=\ln \left(x^{2}-1\right)$

في التهـارين 20-11، أوجد (حدويًا) جهييع الأعـداد الحرجـئ

11. $y=x^{4}+4 x^{3}-2$
12. $y=x^{5}-5 x^{2}+1$
13. $y=x e^{-2 x}$
14. $y=x^{2} e^{-x}$
15. $y=\tan ^{-1}\left(x^{2}\right)$
16. $y=\sin ^{-1}\left(1-\frac{1}{x^{2}}\right)$
17. $y=\frac{x}{1+x^{3}}$
18. $y=\frac{x}{1+x^{4}}$
19. $y=\sqrt{x^{3}+3 x^{2}}$
20. $y=x^{4 / 3}+4 x^{1 / 3}$

في التتـارينٍ 26-21، قرّب إِّا

21. $y=x^{4}-15 x^{3}-2 x^{2}+40 x-2$
22. $y=x^{4}-16 x^{3}-0.1 x^{2}+0.5 x-1$
23. $y=x^{5}-200 x^{3}+605 x-2$
24. $y=x^{4}-0.5 x^{3}-0.02 x^{2}+0.02 x+1$
25. $y=\left(x^{2}+x+0.45\right) e^{-2 x}$
26. $y=x^{5} \ln 8 x^{2}$

في التـلية.
$f^{\prime}(x)>0 . x>2, ~ x<0$ لكل $f^{\prime}(x)<0 . f(2)=5, f(0)=1.27$ $0<x<2$ لكل
$f^{\prime}(x)>0 . x>2, x<-1$ لك $f^{\prime}(x)<0 . f(2)=5 . f(-1)=1.28$
لكل
لكل $f^{\prime}(x)>0 . x>3$ و $x<0$ لكل ${ }^{\prime}$. $f^{\prime}(x)<0$. $f(3)=0.29$
部 (0) و $f(0) . f^{\prime}(3)=0.0<x<3$

على مسـافة (أفقية) قَدرها x قدم من قَائم الهرمى باستخدام俍 $f(t)=\frac{t}{a^{2}+t^{2}}$
 يقول الهعلقون على المباريات عـن مـحاولة تَسـديد الهـدف

في هذا التهرين، ندرس فَدرة اليراعات عـلى إحـدات تزامن
 فإن اليراع يومض كلهـا كان
 بالنسبة للعدد الصحيح n، كلها أصدر اليراع العـاع الهـجاور وميضًا $f^{\prime}(t)=\omega+A \sin [e(t)-f(t)]$ أحد نهاذج التفاعل بين اليراع
 .
 إذا كانت
 اليراع الهجاور له. بالمثل، ناقَش ماذا سـيحدث إذا كانت . $f(t)>e(t)$

في رياضـات هـُل كرة القدم أو الهوكي التي ِيهكن حدوت

 نقطة، يكون احتمال إحراز الفريق A الهدف التالي الـي هو
 1-1 نتبجة إحراز الفريق A الهدف الأول (الاحتمال)، ثـم أحرز الفريق B هدف التمادل (الاحتمـال p - 1)، أُو العكس. وبذلك بكون احتمال التعادل بهدفين هو (وبيساطة، يكون احتهـال الهباراة التي بها 4 أهـداف بتـا 2-2 2

 الأهداف (المتساوية بين الفريقين) فـي في المباراة التيا التي بها هدف واحد، يكون احتمال فوز الفريق A هو p مـ وفي الهباراة

 هو (

伍 وقوز الفريق A A كلما زاد عدد الأهداف
. 52 أعـطِ حجـة بيانية بحيث إذا كانت $f(a)=g(a)$

نظرية القيهة الهتوسطة لإثبات ذلك.
في التهارين 56-53، اسـتخدم نتيجة التهرين 52 للتحقق من المتباينة.
$x>0$ لكل $x>\sin x .54$
$x>1$ 1 $x-1>\ln x .56$
$x>1$ 2 $2 \sqrt{x}>3-\frac{1}{x} .53$
$x>0$ لكل ${ }^{\text {ex }}>x+1.55$
57. وضّح أن $f(x)=x^{3}+b x^{2}+c x+d$ هي دالة متزايدة. إذا كان هي دالة هتزايدة. $f(x)=x^{5}+b x^{3}+c x+d$
58. على فرض أن f و و دالتين فَابلتين للتفاضل، و حرج للدالتين. أنبت أن تركيب الدالة fog عدد حرج عـند $x=c$ (إن كان ذلك صحيخـا

ذلك (بمثال مضاد).
التطبيقات
59. على فرض أنه يِكنتنا إيجاد إجمالي مبيعات منته ها بعد

مرور t شُهر باستخدام
وفسر (s's.
60. في التمرين 59. وضّحح أن 50 باستخخدام المصطلحات التجارية أنه $ل$ ِيهكن أن يكون لديتا

$$
. s^{\prime}(t)<0
$$

61. يوضّح الجدول معامل الاحتكاك μ للثلج في صورة دالة

 كان التزلج يزيد من درجة حرارة الث صـوبة التزلج أم يزيد من سهولته؟ اشـرح بإيجاز.

${ }^{\circ} \mathrm{C}$	-12	-10	-8	-6	-4	-2
μ	0.0048	0.0045	0.0043	0.0045	0.0048	0.0055

62. في ملعب كرة قدم بإحدى الكليات وبالأبعاد الموضحة. كِمكَنْنا إيجاد الزاوية θ الخاصة بتسـديد هـدف خارجي

في الدرس السـابق، تعرفنا على كيفية تحديد أِين تكون إلدالة متزايدة وأين تكون

6.53b الشكل

دالة مثزابدة

6 53a الشكل
دالة متزابدة

لاحظ أْن معدل النمو في الشكل 6.53a تزايدي، بِينما معدل النهو الموضح في الشكل

6.54b السُكل

تقّقر إلى الأسفل، تزايدي

6.54a الشُكلئ

تقّعر إلى الأععلى، تزايدي

 ويُعد هذا الموقَف مشابهُا للدوال المتناقصة. في الشُكلين 6.55a و6.55b،

6.55b الشكل

تَّعر إلى الأسـفل، تناقَصي

6.55a الشكل

تقّصر إلى الأعلى، تناقصي

التعـريف 5.1

لكل داله f فَابلة للاشتَقاق في الفترة I يكِون التمئيل البياني للدالة
 تقّعرًا إلى الأسـفل في I إذا كانت 'f متناقَصة في I الوا

لاحظط أنه يُمكنك معرفةَ متى تكون
 هباشرًا على النظرية 4.1 الخاصة بالتعريف 5.1.

مـثال 5.1 تحديد التقعر

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}+18 x-24 \quad \text { الحل في ما يلي، يوجد لدينا } \\
& \text { ومن عملنا في الهيثال 4.3، لدبنا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ولدينا كذلك }
\end{aligned}
$$

باستخدام جميع هذه المعلومات، نستطيع رسم التمثيل البياني الموضح في الشكل 6.56 لاحظ أنه في النتطة (-2)

التعريف 5.2

على فرض أن f متصلة في الفترة (a,b) وأن التمتيل البياني يغبر التقعر عنـد النقطة

متثال 5.2 تحديد التقعر وموقّع نقاط الانعطاف

السَكل 6.56
$y=2 x^{3}+9 x^{2}-24 x-10$

إذا كانت (c, $)$ انعطاف. فإنه إما (${ }^{\prime \prime \prime}(c)$ إيجاد جهبي النثاط حبث نسـاوي صضرا أو غبر معرفة يتبح أمامك جهبع الحالات المهكنة النتاط الانعطاف. لكن كُن حذرًا أنه ليست جميع النقاط حيث تساوي صفزرا أو غير معرفة $f^{\prime \prime}(x)$

تتوافق مــ نقّاط الانْطافـ

الـحل في ما يِلي، يوجد لدينا

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-12 x=4 x\left(x^{2}-3\right) \\
& =4 x(x-\sqrt{3})(x+\sqrt{3})
\end{aligned}
$$

لقد رسمنا خطوط أعداد لعوامل f^{\prime} في الهامش. وباستخدام خطوط أعداد، نجد أن $f^{\prime}(x)\left\{\begin{array}{llll}>0, & (-\sqrt{3}, 0), & (\sqrt{3}, \infty) \\ <0, & (-\infty,-\sqrt{3}), & (0, \sqrt{3}) & \text { متزا } f \text { on } f\end{array}\right.$

$$
f^{\prime \prime}(x)=12 x^{2}-12=12(x-1)(x+1) \quad \text { تم. يصبح لدينا }
$$

لد رسمنا خطّي أعداد لصاملمِن في الهامش. باستخدام خطّي الأعـداد. نجد أن

$$
f^{\prime \prime}(x) \begin{cases}>0, & (-\infty,-1) \quad \text { و } \\ <0, & (-1,1)\end{cases}
$$

مـنال 5.3 تهثيل بياني بدون نقطـة انعطاف حدد تقعر $f(x)=x^{4}$ وموقَع أي نقطة انعطاف.
الـحل لا توجد صعوبة في هذه الدالة. لدينا هنا居 $f^{\prime}(x)>0$ لكل

$$
\text { الأعلى لكل } x \neq 0 \text {. وكذلك، رغم أن } 0 \text { = } 0 \text {. } f^{\prime \prime}(0) \text { إنه }
$$

保 $f^{\prime}(c)=0$ تتضهن c . فإنه بالقرب من وْبهة عظمى مححلبة وبالهثلل. إذا كانت
 الشَّكل في 6.59b، وبالتالي تكون (c) فَيمهة صغرى مسحلية.

6.59b الشكلبل

قَيمة صغرى محلية

6 59a الشُكل
فيهة عظمهى محلية

الشكل 6.57
$y=x^{4}-6 x^{2}+1$

النظرية 5.2 (اختبار الهستقة الثانية)
على فرض أن 'f هتصلة في الفترة (إذا (i)

مثال 5.4 استخدام اختبار المشتقة الثانية في لإيجاد القيم التصوى
 الـحل لدينا:

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-16 x=4 x\left(x^{2}-4\right) \\
& =4 x(x-2)(x+2)
\end{aligned}
$$

إذًا الأعداد الحرجة هي

$$
f^{\prime \prime}(x)=12 x^{2}-16
$$

$$
\begin{aligned}
f^{\prime \prime}(0) & =-16
\end{aligned}
$$

$$
f^{\prime \prime}(-2)=32>0
$$

$$
f^{\prime \prime}(2)=32>0
$$

ملحـوظـة 5.1

إذا كانت =0=0
 الحالة. يجب أن نتمد على طرائق أخرى (مثل اختبار المشتفة الأولى) في نحديد ما إذا كانت f(c) فيهة فصوى محلية. نوضّح هذا في المئال 5.5.

مثال 5.5 الدوال الحصرية على اختبار المشتقة الثانية استخدم اختبار المشتقة الثانية في محاولة

$$
\text { (c) } h(x)=-x^{4} g \text { (b) } g(x)=(x+1)^{4} g(\text { a }) f(x)=x^{3}
$$

الحل (a) لاحظ أن (a) و محلية. (انظر الشُكل (6.61a)

6.60 الشكل
$y=x^{4}-8 x^{2}+10$

6.61a الشُكل
$y=x^{3}$

الشُكل (6.61b)

6.61c الشكل
$y=-x^{4}$

6.61b الشكل
$y=(x+1)^{4}$
(لدينا $\cdot h^{\prime \prime}(x)=-12 x^{2} و h^{\prime}(x)=-4 x^{3}$ (c)
($h^{\prime \prime}(0)=0$ وسنضع ذلك في شُكل تهرين لتوضيح أن (0) 0) هي فَيمهَ عظهى محلية
لأجل h . (انظر السكل (0.61c).
نستخدم معلومات حول المشتفتين الأولي والثانية لمساعدتنا في إنشاء تمـئيل بياني معبر للدالة. كما هو الحال في الهــال 5.6.

مـثال 5.6 رسـم تهـيل بياني لدالة نسبية

$f^{\prime}(x)=1-\frac{25}{x^{2}}=\frac{x^{2}-25}{x^{2}}$

$$
=\frac{(x-5)(x+5)}{x^{2}}
$$

اجهع الكسور
 بالنظر إلى العوامل الئلانة في (f) ${ }^{\prime}$ ، نحصل على خطوط الأعـداد الهوضحة في الهامش.

 أُّبتخدام اختبار المشتَقة الأولى أو اختبار المسُتقة الثأنِية في نحدِد القِيم القصوى المحلية. بها

$$
\begin{gathered}
f^{\prime \prime}(5)=\frac{50}{125}>0 \\
f^{\prime \prime}(-5)=-\frac{50}{125}<0
\end{gathered}
$$

للتمثيل البياني بالقرب من $x=0$ حيث إن العدد 0 ليس في هـجال f. لـدينا هـا

$$
\begin{aligned}
& \text { كذلك. }
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(x+\frac{25}{x}\right)=\infty \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(x+\frac{25}{x}\right)=-\infty
\end{aligned}
$$

البياني الهوضح في الـُكل 6.62. ــ
 x=0號 $x=-2$ $x=-2$ 2

الشكل 6.62

$$
y=x+\frac{25}{x}
$$

مثال 5.7 دالة لها مهاس عهودي عند نقطة انعطاف

الحل لاحظ أولُّا أن هجال f هو الخط الحقيفي بأكهله. لدينا أبضًا

$$
x \neq-2 \text { لكل } f^{\prime}(x)=\frac{1}{5}(x+2)^{-4 / 5}>0
$$

$f^{\prime}(2)$ إذأا، f متزادية في مجالها، عدا عنـ

(x=-2
$\lim _{x \rightarrow-2^{-}} f^{\prime}(x)=\lim _{x \rightarrow-2^{-}} \frac{1}{5}(x+2)^{-4 / 5}=\infty$
$\lim _{x \rightarrow-2^{+}} f^{\prime}(x)=\lim _{x \rightarrow-2^{+}} \frac{1}{5}(x+2)^{-4 / 5}=\infty$

الشَكل 6.63
$y=(x+2)^{1 / 5}+4$

المعلومات، نتوصل إلى التمتيل البياني الهوضح في الشُكل 6.63.

الـتهارين 6.5

هـا يــني أن منحنى السكان قَريب مـن نقطـة تجـعله ليس
 أننا بصدد نتطهة انـطـاف؟

يكـــن السبب في اسـتكشاف البورصـة في الشـراء بســر منخفض والبيع بسـعر مـرتفع. لكـن. كـيف تعرف مـا إذا كان
 ملاحظـة أنه كان عـن الذروة، لكـن آلآن قَد فـات الأوان! قَد
 ويتقعر هنحنى الســـر إلى أععلى. لماذا تعتقد أنه سـيستهر فـي

 كان المـنحنى متقعرُا لأعـلى، فهـل ينبغي لك الك الشـراء أم البيع؟

مـاذا سـيكون الوضع إن كان الهـنحنى متقعر إلى الأسفل؟ الفطـ، المكافئ $y=x^{2}$. لكن هل بُعد صحبحُا بالنسبة لبعض

التمثيلات البيانية الأخرى مثل المغيد أن نضع منهومُا ضمن سباق لغة الحياة اليومية. لكن

هناك خطر بكمن في التبسيط المبالغ فيه. هل تظن أن تعبير "بحمل الماء" مْنيدُا؟ اكتب الوصف الخاص بك للتقعـر

إلى أعلى "باستخدام لغة الحباة اليومبة. (إرشـاد: تتضهن
الصور الأكتُر شُيوعُا شُكَليّ الابتسام والامتعاض)
2. راجـع التعداد السكاني في الولايات الهتحدة منذ عام
 أن هذا يِنِي أن منحخنى السكان متقعرُّا إلى أعلى. ومن 1960 إلى 1990، تزّداد الأعداد مع الثبات التقريبي للعقود. أثبت أن
 لك $f^{\prime}(x)>0, f(0)=0.37$ $f^{\prime \prime}(x)<0 . x>190<x<1, x<-1$, $f^{\prime \prime}(x)>0 . x>1$

$$
\text { لكل } 1<x \text { - }
$$

$x<0$ لكل $f^{\prime \prime}(x)>0, ~ f^{\prime}(0)=1$, x لكل $f^{\prime}(x)>0$, $f(0)=2$. 38

$$
x>0 \text { لكل } f^{\prime \prime}(x)<0
$$

$x<-1$ لك $f^{\prime}(x)>0 . f(1)=1 . f(-1)=-1 . f(0)=0.39$ $f^{\prime \prime}(x)<0, ~ x>1$ g $-1<x<0$ لكل $f^{\prime}(x)<0,0<x<1$ g

$$
\text { لكل } x>0 \text {, } x
$$

. $x>1$ لكل $f^{\prime}(x)>0, x<1$ لكل $f^{\prime}(x)<0$. $f(1)=0.40$

$$
x>1, x<1 \text { و } \quad \text { لكل } f^{\prime \prime}(x)<0
$$

41. وضّح أن أي $f(x)=a x^{3}+b x^{2}+c x+d$ مكعبة لديها نقطـة إنعطاف. أوجد السُروط التي تتوفر في معـاملات أن $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$ من ألدرجة الرابعة لديها

نقطتا انهطاف.
42. إذا كان لدى الدالتين f و g مششتقتان لكل وَيم . $g^{\prime \prime}(0)<0 g f^{\prime \prime}(0)>0 g f(0)=g(0)=f^{\prime}(0)=g^{\prime}(0)=0$ بالتفصيل قَدر الإمكان مـا يُهكن قَوله حول ما إذا كا

$$
f(x)<g(x) \text { و } f(x)>g(x)
$$

 التمثيل البياني للدالة $y=f(x)$ متقحرًا إلى آلسِفل لكل x

المعادلة $f(x)=0$ يوجد لها حل واحد على الأقلـ.

موجودة لككل $f^{\prime \prime}(x) \cdot f(0)=1$㢄 $f(x)=0=f(x)$

لها حل واحد على الأقل.
في التتمرينين 45 و46، قدّر الفتـرات الهتزايدة والهتـنـاقصة.

4. على فُرض أن (f) هـي كمية المـال المتوفُر في حسابك

 الأسـفل: أو متزايدة ومتقعرة إلى الأعـلى: أو متناقصة ومتفـرة إلى الأعلى.

في التمارين 8-1، حدد الفترات التي يكون فيها التهثيل البياني لدالة معطاة متقعـرًا إلى الأعلتى والفترات التيا التي

1. $f(x)=x^{3}-3 x^{2}+4 x-1$
2. $f(x)=x^{4}-6 x^{2}+2 x+3$
3. $f(x)=x+1 / x$
4. $f(x)=x+3(1-x)^{1 / 3}$
5. $f(x)=\sin x-\cos x$
6. $f(x)=\tan ^{-1}\left(x^{2}\right)$
7. $f(x)=x^{4 / 3}+4 x^{1 / 3}$
8. $f(x)=x e^{-4 x}$

في التمارين 14-9، أوجـد جهميع الأعـداد الـحرجـة والــــتخدم

9. $f(x)=x^{4}+4 x^{3}-1$
10. $f(x)=x^{4}+4 x^{2}+1$
11. $f(x)=x e^{-x}$
12. $f(x)=e^{-x^{2}}$
13. $f(x)=\frac{x^{2}-5 x+4}{x}$
14. $f(x)=\frac{x^{2}-1}{x}$

15. $f(x)=\left(x^{2}+1\right)^{2 / 3}$
16. $f(x)=x \ln x$
17. $f(x)=\frac{x^{2}}{x^{2}-9}$
18. $f(x)=\frac{x}{x+2}$
19. $f(x)=\sin x+\cos x$
20. $f(x)=e^{-x} \sin x$
21. $f(x)=x^{3 / 4}-4 x^{1 / 4}$
22. $f(x)=x^{2 / 3}-4 x^{1 / 3}$
23. $f(x)=x|x|$
24. $f(x)=x^{2}|x|$
25. $f(x)=x^{1 / 5}(x+1)$
26. $f(x)=\frac{\sqrt{x}}{1+\sqrt{x}}$

27. $f(x)=x^{4}-26 x^{3}+x$
28. $f(x)=2 x^{4}-11 x^{3}+17 x^{2}$
29. $f(x)=\sqrt[3]{2 x^{2}-1}$
30. $f(x)=\sqrt{x^{3}+1}$
31. $f(x)=x^{4}-16 x^{3}+42 x^{2}-39.6 x+14$
32. $f(x)=x^{4}+32 x^{3}-0.02 x^{2}-0.8 x$
33. $f(x)=x \sqrt{x^{2}-4}$
34. $f(x)=\frac{2 x}{\sqrt{x^{2}+4}}$
35. $f(x)=\tan ^{-1}\left(\frac{1}{x^{2}-1}\right)$
36. $f(x)=e^{-2 x} \cos x$

المهر الذي يتبعه الضوء هو شُكل متقعر إلى الأسفل. اشـُرح
 انخغاضًا مْمَا تبدو عليه.

1. التقريب الخطي الذي عرّفتاه في القسـم 6.1 هو خطـ في
 نفسـه. بها أن النقطتين تحددان الخطـ، فإن هـناك متاك متطلبين أسـاسيـين (النقطة والهيل) فقَط لاستيفاء شـروط الدالـن الخطبة. وقد يتم استيفاء شـروط الدالة التربيحية بتطبيق
 مكافئ (وهناك ثلاث ثواك ($a x^{2}+b x+c$
 الصيغة العامـة هي

يتم تحديد الثابت c. بهذه الطريقة. وضّةح أن (الهتطلب التَالث في أن يكون لدى ولم號 $x=a$
 الدوال الدالة الأصلية. والتقريب الخطيب، والتقريب التربيعي، وصِف مدى التصاق التقريبات بالدالة الأسـاسية.

 و
 لكل i $F(x)=p_{0}+p_{1} x+p_{2} x^{2}+\cdots+p_{n} x^{n}$ نعرف الدالة باستخـدام يمئل أصغر حل غير سـالب للمعـادلة

 إذًا، هناك احتمال موجب لنجاة الفصيلة. إذا كان

 الأعلى). اكتب وصمًا كامـلا للتهئيل البياني للدالة $f(x)=\frac{x+c}{x^{2}-1}$ قدر الإمكان. وبالتحديد. أوجد فَيهة c c التي توجد عند

 .c وعدم وجودها يعتّهد على قيـيهة
47. كرر التهرينين 45 و 46 إذا كان التمثيل البياني الهعطي هو

 مـا يمكن قوله عن تحريف (5 (
49. وضّح أن الدالة في الهـئال 5.4 بُّكُن كتابتها في شُكل لَ

$$
g(x)=x^{4}-6 x^{2}+1
$$

50. لأجل نقطتيّ انعطاف سـوى إذا كان إحدائَيأت -x لنقطتيّ الانعطاف هو

التطـبيقات

 أم أَيها أفضل؟

تحتاج إلى معرفة قَيْهَة

من البضائع، حيت أوجد قَيهـة x التي ترفـع من معدل تنـير الهبيعات إلى القيمة
 واششرح لمـاذا، باستخـدام مصطلحات الـا الدعاية، تُعد هذه النتطـة هي "نقطة تناقَص المرتجـاتِات"
54. يرتبط عدد الوحدات Q التي أنتجها عامل في يو يوم

 على نقطة الانعطـاف "نفطة نتاقص الهرتجـاتِ".
C 55 على فرض أن شُركة تتكلف ألم
 متوسط دالة التكلفة

 56. يتححل الليدوكابين الخاص بالأدوبة المضاد لاضطراب النـئر النظم ببطء بعد دخول مجرى الدم. يُمكن تهـئيل تركيز البلازما خلال t دقَيقة بعد تناول الدواء باستخـدام $c(t)=92.8\left(-0.129 e^{-t / 6.55}+0.218 e^{-1 / 65.7}-0.089 e^{-t / 13.3}\right)$ استخدم برنامـج CAS لتقدير الزمن للقبهـة العظمى للتركيز

 ونقطة القيهة العظهى نفسـهـا كهـا هو الحال في التمثيل

 أقَل تأثيرًا منه؟ اشرح بإيجاز.
57. هناك مبدأ أساسي في الفيزياء يفيد بأن الضوء يتبع مسـار
 في النلاف الجوي للأرض كلما انخفض الارتفاع، أْبت أن

نظرة عامة على رسّم الهنحنيات

حاسبة التمئِل البـياني وأنظمة الجبر على الحاسوب أدوات مساعـد

 بإجراء بعض حسـابات التفاضل وألتكامـل.
نبدأ بتلخيص الخطوات التي يجب عليك اتخاذها عند مـحاولة رسمم التمثيل البياني للدالة

$$
y=f(x)
$$

- الهـجال: حدد دائمُا مـجال f أولُا

قَزة أو انفصال غير منتهِ عند هذه النقطة.

- معـلومـات حـول الهشـتقة الأولى: حدد أين تكون f متزايدة وأين تكون متتاقَصة. وأوجد

أي قِيم قَصوى محالية.

 - مـعـلومـات حول الهشـتقة الثانيـة: حدد ما إذا كان التمتِيل البياني متقعرًا إلى الأعلى أم

- التتـاطعـات مـع الهـحورين: حدد موقَع التماطـع مـع الهـحور x x والمحور y • إن وجد. إذا

تَذر تحديد موقَع التقاطعـع بالضبط، فـحدده بالتقريب (كأن تستخدم طريقة نيوتن). وسـنبدأ بهـتال مبأشر للفابة.

مـثال 6.1 رسـم تمثيل بياني لكثيرة حدود
ارسمَ تهثِيلًا بيانِيًا للدالة $f(x)=x^{4}+6 x^{3}+12 x^{2}+8 x+1$ يوضح جهيع الهمـيزات المهـهة.

تستخـدم معظـم حاسبـات التمثيـل البياني ألنافذَ الافتراضية التي يتم تحديدها باستخـدام

$$
-10 \leq x \leq 10 \quad, \quad-10 \leq y \leq 10
$$

وباستخدام هذه النافذة، نحصل على التمئيل البياني الموضح في الشكّل 6.64bـ وبالطبع.

 بعد ذلك أن

$$
f^{\prime}(x)=4 x^{3}+18 x^{2}+24 x+8=2(2 x+1)(x+2)^{2}
$$

برسم خطوط أعـداد للعوامل الاففرادية الخاصة بالدالة (f) ، نحصل عـلى

ثـمر، نوجد المشَتقة من الرتبة الثانية:

6.64a الشكـل

$y=x^{4}+6 x^{3}+12 x^{2}+8 x+1$ (عرض واحد)

$y=x^{4}+6 x^{3}+12 x^{2}+8 x+1$

$$
f^{\prime \prime}(x)=12 x^{2}+36 x+24=12(x+2)(x+1)
$$

$$
f^{\prime \prime}(x)\left\{\begin{array}{lll}
>0, & (-\infty,-2) \\
<0, ~ & (-1, \infty) & (-2,-1)
\end{array}\right.
$$

من خلال هذا، نجد أن هناك نقاط انْطـاف عند $x=-2$ وعند $x=-1$ وأخيرًا، لإيجاد تقاطعات الهحور x x علينا إيجاد حل $f(x)=0$ تقريبيًا. وبفعل ذلك (على سبيل الهثال باستخدام طريقة نيوتن على أُداة الحل بالحاسبة)، نجد أن هنـاك تقاطــان مـع الهـور x (بالضبط) و $x=-1$:盾 $x=-0.5$ و $x=-2, x=-1$ آتية: والمشتَقة الثانبة في خطوط الأعداد بالهامشُ. في الشككل 6.65، ضتمّمنا التقاط المهمة بضبط مـجال x ليصبح 1 |

في المئال 6.2. نفحص دالة تَحتوي على قيْم فَصوى مـحلية، ونقاط انْطاف، وخطوط تقاربِ افْمية وخطوط تقارب رأسية.

مثـال 6.2 رسـم تمثيل بياني لدالة نسـبية

 ارسم تمتيلًا بيانيًا للدالة $f(x)=\frac{x^{2}-3}{x^{3}}$ يوضـح جهيع الهميزات الهـهة.الحل يوضح السُكل 6.66a التمتيل البياني الافتراضي التي تمر إنـّـاؤه بواسطـة نظام الجبر على الحاسوب، بينما يوضحح الشكل 6.66b التهيُيل البياني الذي تم إنشاؤه بواسطـة الناقذة الافتراضية الأكثُر شِيوعُا في حاسبة التمثيل البياني. يُهكن القول بأن هذا يُعد تُطورًا للشكل

 منعزلة وليست في مـجال f. فإنـنا نعتبر

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x^{2}-3}{x^{3}}=-\infty \tag{6.1}
\end{equation*}
$$

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x^{2}-3}{x^{3}}=\infty
$$

من (6.1) و (6.2) ، نجد أنه يوجـد بالتهتيل البـاني خط تقارب رأسي عند 0 . 0 . تُم نبحث عن أية معلومات نحصل عليهـا من المشتَقة الأولى. لدينا

الشكـل 65
$y=x^{4}+6 x^{3}+12 x^{2}+8 x+1$

الشكل 66a 6
$y=\frac{x^{2}-3}{x^{3}}$

الشكل 66b
$y=\frac{x^{2}-3}{x^{3}}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2 x\left(x^{3}\right)-\left(x^{2}-3\right)\left(3 x^{2}\right)}{\left(x^{3}\right)^{2}} \quad \text { قاعدة ناتح التسمهة } \\
& =\frac{x^{2}\left[2 x^{2}-3\left(x^{2}-3\right)\right]}{x^{6}} \quad x^{2} \quad x^{2} \\
& =\frac{9-x^{2}}{x^{4}} \\
& =\frac{(3-x)(3+x)}{x^{4}}, \quad \text { تحلـل إلى العوامل الهرق بين الهربعين }
\end{aligned}
$$

بالنظر إلى العوامل الإفرادية في (x) ${ }^{\prime}$ نحصل على خطوط الأعداد الهوضحـة في

$$
f^{\prime}(x)\left\{\begin{array}{lll}
>0 \text { Q } & (-3,0) & (0,3) \tag{6.3}\\
<\boldsymbol{Q} & (-\infty,-3) & (3, \infty)
\end{array}\right.
$$

 ثمُ نوجد الهسَتَة من الرتبة الثانية

$$
f^{\prime \prime}(x)=\frac{-2 x\left(x^{4}\right)-\left(9-x^{2}\right)\left(4 x^{3}\right)}{\left(x^{4}\right)^{2}}
$$

$$
=\frac{-2 x^{3}\left[x^{2}+\left(9-x^{2}\right)(2)\right]}{x^{8}}
$$

$$
=\frac{-2\left(18-x^{2}\right)}{x^{5}}
$$

$$
=\frac{2(x-\sqrt{18})(x+\sqrt{18})}{x^{5}} .
$$

$$
f^{\prime \prime}(x)\left\{\begin{array}{lll}
>Q_{0} & (-\sqrt{18}, 0) \text { g } & (\sqrt{18}, \infty) \tag{6.4}\\
<Q_{0} & (-\infty,-\sqrt{18}), & (0, \sqrt{18}) .
\end{array}\right.
$$

تنـر إلى الغّعلى

لتحديد سـلوك النهايات عندما $x \rightarrow \pm \infty$

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x^{2}-3}{x^{3}}
$$

$$
\begin{equation*}
=\lim _{x \rightarrow \infty}\left(\frac{1}{x}-\frac{3}{x^{3}}\right)=0 . \quad \text { بالمـدل، يكون لدينا } \tag{6.5}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} f(x)=0 . \tag{6.6}
\end{equation*}
$$

إذًا، الخطط $y=0$ هـو عبارة عن خطط تقارب أفقِي حيث $x \rightarrow \infty$ و و $x \rightarrow-\infty$ و x وأخيرُا، تقع التقاطعـات مـع الهـحور x ، حيث بكون

$$
x \rightarrow-\infty
$$

وذلك عند $x= \pm \sqrt{3}$. $x= \pm$ حظ أنه في مجال الدالة. لدينا الآن جهيع المعـومات التي نحتاج إليها لرسـم تهئيل بياني
 عرض مـحظم النقاط المهمهة للتمئيل البياني (أي خطوطـ التقارب الرأسية والأفقبة.

 غير واضـح إلى حد ما في التهيُبل البياني. ومـع ذلك تظهر خطوط التقارب الأفقَية
 أو الشكل 6.66b

الشكل 67
$y=\frac{x^{2}-3}{x^{3}}$

هـثال 6.3 رسـم تهثيل بياني بخطيَ تقارب رأسـيين ارسمم تهثيلألا بيانِّا للدالة $f(x)=\frac{x^{2}}{x^{2}-4}$ يوضـح جهيع الهمبزات المهـهة. الـحل يوضح السُكل 6.68a التمهيل البياني الافتراضي الذي تم رسهه بواسطة نظام الجبر على الحاسـوب الخاص بنا، بينما يوضح الشكل 6.68b التمثيل البياني الذي يتم رسمهـ بواسطة معظم حاسبات التمثيّل البباني. لاحظ أن مـجال f f يتضمن جميع x عدا

$$
\begin{aligned}
& \text { (} x= \pm 2 \\
& \lim _{x \rightarrow 2^{+}} \frac{x^{2}}{x^{2}-4}=\lim _{x \rightarrow 2^{+}} \frac{x^{2}}{(x-2)(x+2)}=\infty
\end{aligned}
$$

بالمئل، نحصل على النتيجة
$\lim _{x \rightarrow 2^{-}} \frac{x^{2}}{x^{2}-4}=-\infty, \quad \lim _{x \rightarrow-2^{+}} \frac{x^{2}}{x^{2}-4}=-\infty$

$$
\lim _{x \rightarrow-2^{-}} \frac{x^{2}}{x^{2}-4}=\infty
$$

إذا، هناك خطوط تقارب رأسبـة عند x= x. ثم يكون لدينا $f^{\prime}(x)=\frac{2 x\left(x^{2}-4\right)-x^{2}(2 x)}{\left(x^{2}-4\right)^{2}}=\frac{-8 x}{\left(x^{2}-4\right)^{2}}$

بها ان المقام موجب لكل $x \neq \pm 2$ فهن السهل رؤية أن

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{-8\left(x^{2}-4\right)^{2}+(8 x) 2\left(x^{2}-4\right)^{1}(2 x)}{\left(x^{2}-4\right)^{4}} \\
& =\frac{8\left(x^{2}-4\right)\left[-\left(x^{2}-4\right)+4 x^{2}\right]}{\left(x^{2}-4\right)^{4}} \\
& =\frac{8\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{3}} \\
& =\frac{8\left(3 x^{2}+4\right)}{(x-2)^{3}(x+2)^{3}} .
\end{aligned}
$$

قاعدذ نانج القسبة

8(8 ($x^{2}-4$)

نجميي الحدود

 لإثبات أن

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}-4}=1 \tag{6.12}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \frac{x^{2}}{x^{2}-4}=1 \tag{6.13}
\end{equation*}
$$

 وأخبيرًا، تلاحظ أن التقاطـع الوحيد مـع المححور x عند

الشكل 6.69

$$
y=\frac{x^{2}}{x^{2}-4}
$$

مثال 6.4 التمثيل البياني لدالة يجب فيها تقريب الهـجال والقيمة القصوى
ارسم تمثيلًا بيانيًا للدالة $f(x)=\frac{1}{x^{3}+3 x^{2}+3 x+3}$ يوضح جهيع الهميزات المهـة.
الحل يوضح الشكل 6.70. التمتيل البياني الافتراضي الذي تم رسمهـ بواسطـة معظم حاسبات التمثيل البياني وأنظهة الجبر على الحاسـوب. ونقوم ببعض حسـابات التفاضل والتكامل لتنقيح هذا الرسم. بها أن f دالة نسبية. فإنها معرفة لكل x، عدا عندما يِـاوي المقام صفرًا، ويحدث هـا عندما يكون

$$
g(x)=x^{3}+3 x^{2}+3 x+3=0
$$

في التمثيل البياني للدالة $y=g(x)$ بالشكل 6.71، نجد أن g تتضهـن صفرُا واحـئا حول x=-2

$$
g^{\prime}(x)=\frac{d}{d x}\left(x^{3}+3 x^{2}+3 x+3\right)=3 x^{2}+6 x+3=3(x+1)^{2} \geq 0
$$

يُهكتك الحصول على الصفر التقريبي عند $x=a \approx-2.25992$ باستخدام طريقة نيوتن أو
أداة الحل بالحاسبة. يُهكننا استخدام الشكل 3.71 لمساعدتنا في حساب النهايتين

$$
\begin{equation*}
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} \frac{1}{x^{3}+3 x^{2}+3 x+3}=\infty \tag{6.14}
\end{equation*}
$$

$$
\begin{align*}
& \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}} \frac{+}{x^{3}+3 x^{2}+3 x+3}=-\infty . \tag{6.15}\\
& \text { من (6.14) و6.15)، نجد أن f } f \text { لها خط تقارب رأسي عند } x=a \text { بالتحول إلى المشتـةة. } \\
& \text { نجد أن }
\end{align*}
$$

الشكل 6.70
$y=\frac{1}{x^{3}+3 x^{2}+3 x+3}$

الشكل 6.71
$y=x^{3}+3 x^{2}+3 x+3$

$$
\begin{aligned}
f^{\prime}(x) & =-\left(x^{3}+3 x^{2}+3 x+3\right)^{-2}\left(3 x^{2}+6 x+3\right) \\
& =-3\left[\frac{(x+1)^{2}}{\left(x^{3}+3 x^{2}+3 x+3\right)^{2}}\right] \\
& =-3\left(\frac{x+1}{x^{3}+3 x^{2}+3 x+3}\right)^{2} \\
& <0, \text { لكل } x \neq a \quad \text { و } \quad-1
\end{aligned}
$$

و x=-1 $x=$ لكن بها أن f متناقصة في مـجالها عدا عـند $x=a$ فإنه $ل$ توجد حدود فصوى محلية. بالتحول إلى معلومات المشتقة مـن الرتبة الثانية، نجد أن

$$
\begin{aligned}
f^{\prime \prime}(x) & =-6\left(\frac{x+1}{x^{3}+3 x^{2}+3 x+3}\right) \frac{1\left(x^{3}+3 x^{2}+3 x+3\right)-(x+1)\left(3 x^{2}+6 x+3\right)}{\left(x^{3}+3 x^{2}+3 x+3\right)^{2}} \\
& =\frac{-6(x+1)}{\left(x^{3}+3 x^{2}+3 x+3\right)^{3}}\left(-2 x^{3}-6 x^{2}-6 x\right) \\
& =\frac{12 x(x+1)\left(x^{2}+3 x+3\right)}{\left(x^{3}+3 x^{2}+3 x+3\right)^{3}} .
\end{aligned}
$$

 دراسـة الحوامل الهتبقية. نحصل على خـطوطـ الأعداد الهوضحة أدناه.

$\xrightarrow[-1]{-\quad+}(x+1)$
$\xrightarrow[a=-2.2599 \ldots]{-}+\longrightarrow\left(x^{3}+3 x^{2}+3 x+3\right)$

إذًا، نحصل عـلى

 وأخيرَا نوجد التهاتِتين

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x^{3}+3 x^{2}+3 x+3}=0 \tag{6.18}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \frac{1}{x^{3}+3 x^{2}+3 x+3}=0 . \tag{6.19}
\end{equation*}
$$

 الشُكل 6.72. إذًا، يُهكننا بكل وضوح رؤية خطوط التقَارب الأفتَية والرأسيةَ، ونقاط الانعطاف، وحقَيقةَ أن الدالة متناقصة في مـجالها بأكهله.

في المثال 6.5. تدرس شكل الدالة المتسـامبة التي تتضهن خط تقارب رأسيي.

مثال 6.5 التمثيل البياني لدالة يصعب فيها رؤية بعض الهميزات ارسم تمثيلًا بيانِّا للدالة $f(x)=e^{1 / x}$ يوضـح جهيع المهـيزات الهـهـة.

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} e^{1 / x}=\infty \tag{6.20}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow 0^{-}} e^{1 / x}=0 \tag{6.21}
\end{equation*}
$$

$$
\text { إذًا، y=1 هو خط تقارب أفقي حيث } 1 \text { هـ } x \rightarrow-\infty \text { و } x \rightarrow-\text { وأخيرًا، بهـا أن }
$$

$$
e^{1 / x}>0
$$

 هاتين الميزنين في التمثيل البياني نفسه (بدون رسم تمثيل بياني عني أنى ورقة كبيرة). لنحل هـار الأمر في التمئيل البياني الوارد في الشكيل 3.74 الذي يوضح جميع المهيزات عـي نتطة الانعطاف والتقعر في اللترة (-1, $-\left(\frac{1}{2}\right)$ لرؤية سلوك الدالة بوضوح بالقرب من نتطة
 بينها كنا نتوم هنا بحل مسألة التقـر بالقرب من $x=0$ ونتطة الانعطاف، فقدنا تناصيل "الفكرة العـامة". في مثالنا الأخير، سننوم بدراسة التمثيل البياني للدالة التي هي عبارة عن مجهوع دالة

6.73b الشكل

الشكل 6.74

 هثلثية وكثيرة الحدود.

مثـال 6.6 التمثيل البياني لهـجموع كثيرة الـحدود ودالة مـثلثية
ارسم تهثيلُا بيانيًا للدالة $f(x)=\cos x-x$ يوضح جهيم الهميزات المهـة.

6.76a
$y=\cos x-x$

6.76b
$y=\cos x-x$

الححل يوضح الشكل 6.76a التهئيل البياني الافتراضي الذي يرسمه نظام الجبر على الحاسـوب. التهثيل البياني الذي ترسهه معظم حاسبات التهئيل البياني يشبه كثيرًا التمئيل البياني الوارد بالسُكل 6.76b. بها أن مجال f يمثل الخط الحقيفي بأكهله، ولا نوجد خطوط تقارب رأسبة. ثـم، يصبح لدينا

$$
\begin{gathered}
f^{\prime}(x)=-\sin x-1 \leq 0 \\
x=\frac{3 \pi}{2}+2 n \pi
\end{gathered}
$$

كذلك, يكون
 توجد حدود قَصوى مححلية. وحتى إن كان الوضـع كذلك، لا زالنا نهتم بإيجاد مواضع خـا لا الـمـاس الأفقَي. تذكر أن

خارج [[0, $]$]
 لتحديد السـلوك حيث

$$
\begin{align*}
& \lim _{x \rightarrow \infty}(\cos x-x)=-\infty \tag{6.24}\\
& \lim _{x \rightarrow-\infty}(\cos x-x)=\infty,
\end{align*}
$$

$$
\begin{aligned}
& x=\frac{3 \pi}{2} \text { لكل } \sin x=-1 \\
& \text { لّأي عدد صحيح n. نُم، نجد أن } \\
& f^{\prime \prime}(x)=-\cos x \\
& \text { وفي الفنرة [0,2 0]، لدينا } \\
& \cos x\left\{\begin{array}{l}
>0, \quad\left[0, \frac{\pi}{2}\right) \quad\left(\frac{3 \pi}{2}, 2 \pi\right] \\
<0, \quad\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)
\end{array}\right.
\end{aligned}
$$

$$
f(x)=\cos x-x=0 \text { وأخيرًا. لتحديد التقاطـع مع الـحـور x ع علينا إيجاد حل }
$$

 طريِّة نيوتن أو أداة الحل بالحاسبة). فـنحصل عـلى

 أي مـما سبق يُعد أكـتر "توضيخـا"

مـا وراء القوانين

الشكل 6.77
$y=\cos x-x$

الصفة الأساسـية للأمئلة الواردة في الدروس 6.6-6.6 هي التفاعل بين الرسم البياني وحل

 الصلة. وقَد يقودك حل المعـادلة إلى كشف الهمـيزات الهـخفية للتهئيل البياني.

الـتهارين 6.5

في تمـارين 22-1، ارسـم بيانيًا الدالة التي تنـاقش بشكـل تام التتثـيل البياني كـما في المـثـال 6.2.

1. $f(x)=x^{3}-3 x^{2}+3 x$
2. $f(x)=x^{4}-3 x^{2}+2$
3. $f(x)=x^{5}-2 x^{3}+1$
4. $f(x)=x^{4}+4 x^{3}-1$
5. $f(x)=x+\frac{4}{x}$
6. $f(x)=\frac{x^{2}-1}{x}$
7. $f(x)=\frac{x^{2}+4}{x^{3}}$
8. $f(x)=\frac{x-4}{x^{3}}$
9. $f(x)=\frac{2 x}{x^{2}-1}$
10. $f(x)=\frac{3 x^{2}}{x^{2}+1}$
11. $f(x)=x+\sin x$
12. $f(x)=\sin x-\cos x$
13. $f(x)=x \ln x$
14. $f(x)=x \ln x^{2}$
15. $f(x)=\sqrt{x^{2}+1}$
16. $f(x)=\sqrt{2 x-1}$
17. $f(x)=\sqrt[3]{x^{3}-3 x^{2}+2 x}$
18. $f(x)=\sqrt{x^{3}-3 x^{2}+2 x}$
19. $f(x)=x^{5 / 3}-5 x^{2 / 3}$
20. $f(x)=x^{3}-\frac{3}{400} x$
21. $f(x)=e^{-2 / x}$
22. $f(x)=e^{1 / x^{2}}$

23. $f(x)=\frac{1}{x^{3}-3 x^{2}-9 x+1}$
24. $f(x)=\frac{1}{x^{3}+3 x^{2}+4 x+1}$
25. $f(x)=\left(x^{3}-3 x^{2}+2 x\right)^{2 / 3}$
26. $f(x)=x^{6}-10 x^{5}-7 x^{4}+80 x^{3}+12 x^{2}-192 x$
27. $f(x)=\frac{x^{2}+1}{3 x^{2}-1} \quad$ 28. $f(x)=\frac{5 x}{x^{3}-x+1}$

تناولنا مـن قَبل رسـم التـثـيلات البيانية التوضيحية. لكن
. 1

 على سبيل الهـيال. حاول إنـّاء تهتيل بباني على الحاسبا
 الـ لـ القيم القصوى تِقاطـع مـي الهـحور y عـند 60- 50 و 50 تقريبًا،
 يوجد بهِ $y=-40,000$ وإذا كا
 رسم بدوي كالهوضـح أدناه.

$f(x)=\cos x-x$ وضّـح كيفية ارنباط التمتيل البياني للدالـي
 الِ $y=-x$ البياني للدالة $y=x+\sin x$

2

55. أوجد جهيع الفيم القصوى ونقّاطـ الانعطاف، وارسـم

التمئـيالات البيانية للدالة $y=\sinh x=\frac{e^{x}-e^{-x}}{2}$ والدالة

$$
y=\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

56. على المحاور نفسهـا وبطريقة التهثيلات البـانـانية نفسهـا في

y= $\frac{1}{2} e^{-x}$
التمثيلات البيانية في التهرين 55. (إرشاد : حيث
ماذا يِحدث إلى

التـطبـيقات
57. في عدد متنوع من التطبيقات، يصنع الباحثون نهوذجُا

للدالة $y=0$

 قَيد الحياةٍ بعد التقاط عدوى مـرض قـاتل. وضّح أن مـجهوعة الدوال $x e^{-b x ~ ي و ج ـ د ~ ب ه ـ ا ~ ه ـ ذ ه ~ ا ل خ ـ ص ا ي ٔ ص ~ ل ك ل ~ ا ل ث و ا ب ت ~ ا ل م و ج ب ة ~}$
 حالة الفترة التي تبدأ من الحصل. ما الذي تهـئله b؟ في حـالة فترة البقاء على فِيد الحياة، ما الذي تـئلْه ط؟
برمز الاختصـار "FM" في موجة الراديو FM إلى تضهين

 $f(x)=\cos (10 x+2 \cos x)$ لهذه الهوج . استخدم الرسـومات البيانية (
 المححلية
59. زاوية هدف خارجي تم تسـديده من علامة التجزئة على بدد x x تجعل الزاوية A أكبر ما يُمكن. وزادت قيِمة x من 60 إلى 75 بسبب احتساب ضربة جزاء على بُعد 5 ياردات. كـيف يغير ذلك من A؟
60. تم تسديد كرة بهعدل دوران ω (في (in rad/s) ووضعها الجانبي يساوي $x(t)=\frac{2.5}{\omega} t-\frac{2.5}{4 \omega^{2}} \sin 4 \omega t$ عند الزمن لكل t. بالنسبة لـ $0.68 \leq t \leq 0 \leq 0$ 0 استكشَف تأثير التمثيل اللتغير في 0 . ω.

تهارين اسـتكشـافية

1. دودة البراعم الراتبنجية هي أحد الأعداء الطبيعيين لشـجرة
 عرّف N(t) باعتباره عدد الديدان في شـجرة ما خـلال الزمـن t

 في شكل
2. $f(x)=x^{2} \sqrt{x^{2}-9}$
3. $f(x)=\sqrt[3]{2 x^{2}-1}$
4. $f(x)=e^{-2 x} \sin x$
5. $f(x)=\sin x-\frac{1}{2} \sin 2 x$
6. $f(x)=x^{4}-16 x^{3}+42 x^{2}-39.6 x+14$
7. $f(x)=x^{4}+32 x^{3}-0.02 x^{2}-0.8 x$
8. $f(x)=\frac{25-50 \sqrt{x^{2}+0.25}}{x}$ 36. $f(x)=\tan ^{-1}\left(\frac{1}{x^{2}-1}\right)$

9. $f(x)=x^{4}+c x^{2}$
10. $f(x)=x^{4}+c x^{2}+x$
11. $f(x)=\frac{x^{2}}{x^{2}+c^{2}}$
12. $f(x)=e^{-x^{2} / c}$
13. $f(x)=\sin (c x)$
14. $f(x)=x^{2} \sqrt{c^{2}-x^{2}}$

لدى الدالة f خطط التَارب المائل $f=m x+b(m \neq 0)$ إذا كانت $y=m$ إن ف. $\lim _{x \rightarrow \infty}[f(x)-(m x+b)]=0$ و/g $\lim _{x \rightarrow \infty}[f(x)-(m x+b)]=0$

 الخاص بها على المحاور نفسـهـا
43. $f(x)=\frac{3 x^{2}-1}{x}$
44. $f(x)=\frac{3 x^{2}-1}{x-1}$
45. $f(x)=\frac{x^{3}-2 x^{2}+1}{x^{2}}$
46. $f(x)=\frac{x^{3}-1}{x^{2}-1}$
47. $f(x)=\frac{x^{4}}{x^{3}+1}$
48. $f(x)=\frac{x^{4}-1}{x^{3}+x}$

في التمارين 52-49. أوجد دالة يوجد بتمثيلها البياني خطوط التْقارب الـعـطاة.
49. $x=1, x=2$ and $y=3$
50. $x=-1, x=1$ and $y=0$
51. $x=-1, x=1, y=-2$ and $y=2$
52. $x=1, y=2$ and $x=3$
53. قَد بكون من الهفيد تحديد خطوط تـارب غير الرأسية $y=x^{2}$ والأفقفية. على سبيل المثال، الَطـع المكارني منحنى تنارب للدالة
 (ملر
 تأثير التصنير عبارة عن التأكيد على قيمر x الكبيرة)
$\lim _{x \rightarrow \infty}[f(x)-p(x)]=0$. 54 لكّل دالة، أوجـ كتيرة الحدود 1 حيث
(a) $\frac{x^{4}}{x+1}$
(b) $\frac{x^{5}-1}{x+1}$
(c) $\frac{x^{6}-2}{x+1}$

وضّح من خلال التصغير أن تكبير

يوجد فيها 3 حلول ويتحول فيها مجتمـع الأحياء لديدان البراعم من مجتمع احياء صفيرة إلى مجتمـع احياء كبيرة. 2 ، لكن للعدد 1 ل عند $f(x)$ (لا يوجد لها قَيهة قَصوى مححلبة عند
 لكن
 استخدم هذه النتيجة في تحديد ما إذا كانت $f(x)=x \sin x^{2}$ أو

ارسم بيانيًا الدوال
x>0
نموذجّا معقوُّ لمعدل الوفاة بفعل الحيوانات $\frac{B[N(t)]^{2}}{A^{2}+[N(t)]^{2}}$
المفنرسـة. ما الدور الذي يلعبه الثابتان A و B؟ يتم تحديد مستويات مجتمـع الأحياء لديدان البراعـم الراتينجية مـن خلال التقاطحات في التـئيل البياني $y=\frac{x}{1+x^{2}}, y=r(1-x / k)$

 y عند r، ويتقاطـع مـع المـحور x ع عتد k.
 وهناك نظرية حالية تنص على أن التفشي يحدث في موافض

القيهة الهثلى

نرى الأشخاص في كل قَطاعـات التجارة والصناعة يناضلون لتصنغير الهـخلفات وتصاظم الانتاج.

 العـامة.

- إذا كانت هناك صورة لرسبها، فارسهها! لا تحاول تصوير كيف تبدو الأشُياء في رأسك. ضع الصورة على ورقة والصقها بها
- حدد ماهية المتفيرات وكيفية ترابطها.
- قرر الكمـية التي يجـب تعاظـهـهـا او تصنـيرهـا
 قَ تحتاج إلى الحل لإيـجاد أي متغيرات أخرى بدلالة هـال الهتـغير الواحـد.

 نبدأ بمـئل بسـيط حيث يتمـئل الهدف في إنجاز مـا تواجهه الشـركات كل يوم: الاستـفادة بأكبر قدر مدكن مـن الموارد المـحدودة.

مـثال 7.1 إنشـاء حـديقة مسـتطـيلة بأكبـر مسـاحـة مهـكنة لديك سـياع طـوله 40 قَدمُـا لتحـيط بهه حـديقة مستطـيلة الشـكل. أوجـد أكبر مسـاحـة يمكـن إحاطـتها بهـذه الســياج وأبعـاد الحـديقة الـناظـرة لها.

 الطـول والعرض x و 1 ، على التوالي. (انظر السُكل 6.79).
نريد ايـجاد القِيمة العظـمى للمسـاحة،

$$
A=x y
$$

مـع ذلك، تحتوي هـذه اللاله عـلى متغيرين وبالتالي، لا يمكن التعامل معهـا بواسـطـة الطـرق
 السـياج. وهـال معـاه أن هـحيط السـياج الناتج يِيـب أن يكون 40 وبالتالي،

$$
\begin{equation*}
40=\text { الaـحـطـ }=2 x+2 y \tag{7.1}
\end{equation*}
$$

لاحظ أنه يمكـنا استـخـدام (7.1) للحـل وايجاد أحد الهتنـيرات (أيت منهمـا) بدلالة آخخر.

الشكل 6.78
الهـخططـات الهـحتملة

الشكل 6.79
مـخطـط المسـتطـيل

$$
2 y=40-2 x \text { or } y=20-x
$$

بتـويض y ، نحصل على

$$
\begin{aligned}
A=x y= & x(20-x) \\
& \text { لذال، تتمثل مهمتنا في إيجاد قيمهة عظمى للدالة }
\end{aligned}
$$

 الـسألة بدقَة. لدينا

$$
\begin{aligned}
A^{\prime}(x) & =1(20-x)+x(-1) \\
& =20-2 x \\
& =2(10-x)
\end{aligned}
$$

الشـكل 6.80
$y=x(20-x)$

إذن، العدد الحرج الوحيد هـو 10 وهذه هي القيهة في الفترة فيد البحـ. تذكر أن القيم الحظهى والصغرى الهتصلة في الفترة الهغلقة يجب أن تحدث إما عند النقاط الطرفية أو العدد الحرج. إذن. نحن بحاجة إلى الهتارنة فتط

$$
A(10)=100 \quad, \quad A(20)=0 \quad . A(0)=0
$$

بالتالي، المساحة العظهى التي يِكن احاطتها بـ 40 من السياج هي $100 \mathrm{ft}^{2}$ ــ أبعاد الحديقَ هي: مبطـاة بواسطة $x=10$ و

$$
y=20-x=10
$$

أي أن الهستطيل الذي يبلغ محيطه '40 بهساحة عظهى هـو مربع طول ضلعه '10 . بشكال عام، همكنك إيضاح أن (بفرض وجود قيهـة ثابتة للمحـيط) المستطيل له مسـاحة عظمهى اذا كان مربئا. وهـا مطـابق من الناحية العملبة للمتال 7.1 ويُترك كتمرين. بجب على شُركات التصنيع تحديد كيفية تعبئة الهنتجات للشـحن بأكتر الطرف اقتصادية. ويوفر هــال 7.2 إيضاحَا بسـيطـا لذلك.

مثال 7.2 إنثـاء صنـدوق مـع قيـهة عظـمى للـحجم

لوح مربع من الورق الهقوى طول ضلحه . 18 in صنع منه صندوق مفتوح (أي. لا يوجد غطاء). بقطـع مربعات متساوية من كل زاوية (انظر الشكل 6.81a) وطي الجوانب على طول الخطوط الهنقطة. (انظر الشكل 6.81b) أوجد أبعاد الصندوق الذي له قيهة عظهى للحـجم. الـحل تذكر أن حجمم متوازي المستطـيلات (صندوق) يُنطى بالصيغة:

$$
V=l \times w \times h
$$

من الشكل 6.81b. يهكنـنا القول بأن الارتفاع h=x $1=w=18-2 x$ بينها الطول والعرض

$$
\text { بناءً عليه. يمكنتا كتابة الحـجم بدلالة متغير واحد x } 5
$$

$$
V=V(x)=(18-2 x)^{2}(x)=4 x(9-x)^{2}
$$

6.81a الشُكل

لوح مـن الورق الـقوى

6.81b الشـكل

صندوق مستطيل

مـن الجانب 9 من كل زاوية ستقطع لوح الورق المقوى بالكامل. بالتالي. يجب ايجاد القيمـي العظهى الهطلقة للدالة الهتصلة

 الهسـألة بدقَة. لدينا

$$
\begin{aligned}
& V^{\prime}(x)=4(9-x)^{2}+4 x(2)(9-x)(-1) \\
& =4(9-x)[(9-x)-2 x] \\
& =4(9-x)(9-3 x) \\
& \text { قاعدة ناتج الضر ب والسلسلة } \\
& \text { ضع الحامل المستـرك (9-x) }
\end{aligned}
$$

وبالتالي. يكون لـ V عددين حرجين. 3 و9. وكالاههـا في الفترة فيد البحت. كل مـا نحتاج إليه الآن هو مقارنة قيمة الدالة عند النقاطـ الطرفبة والأعداد الحرجة. لدينا

$$
V(3)=432, \quad V(9)=0 \quad . V(0)=0
$$

 التمثيل البياني لـ $y=V(x=12$ في السَكل 6.82. أخـيرًا، لاحظ أن أبعاد الصندوق الهـثالي هي "12 طول في "12 عرض في "3 عمقَ.
عند إنشاء بناء جديد. يجب ربطه بخطوط التليفون والطاقَة والمـاء والصرف الصحي. وإذا كانت هذه الخطوط ملتوية، فقد لا يِضح كِيفية إجراء أُصر وصلة مهكنة (أي الأقل تكلفة)
 هنحنى.

مثال 7.3 إيجاد أقرب نقطـة عـلى قَطـع مكافئ

$$
d=\sqrt{(x-3)^{2}+(y-9)^{2}}
$$

 وبالتالي، يهكننا كتابة المسافة بدلالة الهتفير الوحيد x على النحو التالي

$$
\begin{aligned}
d(x) & =\sqrt{(x-3)^{2}+\left[\left(9-x^{2}\right)-9\right]^{2}} \\
& =\sqrt{(x-3)^{2}+x^{4}} .
\end{aligned}
$$

 للدالة $d(x)$ بشكل مباشر، نجد القيمة الصغرى لهربع $d(x):$

$$
f(x)=[d(x)]^{2}=(x-3)^{2}+x^{4}
$$

$$
\text { باســخـدأم } 3 \leq x \leq 0 \leq 0 .
$$

$$
y=4 x(9-x)^{2}
$$

الشككل 6.83
$y=9-x^{2}$

انظر الشكل 6.84 هن أجل التهثيل البياني لـ $y=f(x)$ عند هذـه الفترة. لاحظ أهن أنه يبدو أن

$$
f^{\prime}(x)=2(x-3)^{1}+4 x^{3}=4 x^{3}+2 x-6
$$

 بجــل (1-1 $)$ عاملاًّ." لدينا

$$
f^{\prime}(x)=2(x-1)\left(2 x^{2}+2 x+3\right)
$$

إذن، x=1 عددُا حرجأ. في الحقيقة، إنه الحدد الحرج الوحيد، حيث إن $\left(2 x+3 x^{2}+2 x\right)$ ليس له أصفار. (لم لا؟) كل مـا نحتاج إليه الآن هو مـَارنة قيمة f عند النقاطـ الطرفية والأعـداد الحرجة. لدينا

$$
f(1)=5, \quad f(3)=81 \quad, f(0)=9
$$

وبالتالي. تكون القيهة الصغرى للدالة $f(x)$ هي 5. هـا يعني أن أصنر مسـافة من النقطة (3,9)且 $y=f(x)$ مع ما نتوفَحه من التمثيل البياني

مثال 7.4 يشبه كثيرِرا مثّال 7.3. باستثناء أننا نحتاج إلى استخخدام طرق التقريب بإيجاد العدد الحرج.

مـال 7.4 إيجاد أقصر مسـافة تقريبية

 أوجد النقطة على القطع المكافئ $y=9-x^{2}$ الأقرب للنقطة (5 11) . (انظر السككل 6.85). الـحل كـها في مئال 7.3، نريد إيجاد أقصر مسـافة من نقطـة ــابتة [في هذه الـحالة، النقطةإلى النقطـة (l (x, y على القطع الهكافئ. باستخدام صيغة المسافة، تكون المسافة من أي

$$
\begin{aligned}
d & =\sqrt{(x-5)^{2}+(y-11)^{2}} \\
& =\sqrt{(x-5)^{2}+\left[\left(9-x^{2}\right)-11\right]^{2}} \\
& =\sqrt{(x-5)^{2}+\left(x^{2}+2\right)^{2}}
\end{aligned}
$$

مرةً أخرى، هذه الطريقة تكافئ (وأبسط من) ايجاد القيمة الصنرى تحت الجذر التربيـي:

$$
f(x)=[d(x)]^{2}=(x-5)^{2}+\left(x^{2}+2\right)^{2}
$$

كما في المـئال 7.3، يِكتنا هن الشكل 6.85 ملاحظة أن أي نقطـة على القطـع المكافئ يسـار

 في الشكل 6.86 يبدو أن القيمة الصغرى للدالة f نحدت حول x=1 1 . بعد ذلك، لاحظ أنه

$$
\begin{aligned}
f^{\prime}(x) & =2(x-5)+2\left(x^{2}+2\right)(2 x) \\
& =4 x^{3}+10 x-10
\end{aligned}
$$

 اختيارنا الوحيد هو إيجاد أصضار

$$
y=(x-3)^{2}+x^{4}
$$

\square

السُككل 6.87، يبدو أن الصفر الوحيد أصغر فَليلُلا من 1. باستخدام $x_{0}=1$ كتخمين أولي في طريقة نيوتن (الهطبقة على

$$
f\left(x_{c}\right) \approx 24.6, \quad f(5)=729 \quad \cdot f(0)=29
$$

 نتطة على التطع الهكافئ عند (0.79728, 8.364$)$ تقريبُا.

 هذه الملاحظـة مبدأ هندسيئا هـامُـا بنطبق عـلى أي مسـألة من هـا النوعـا

الشَكل 6.87
$y=f^{\prime}(x)$

ملحـوظـة 7.1

 عنها. لسوء الحظ، لا يكون هذا هو الحال على الدوام. في 1945، قَام اثنان من مهندسي

 الجناحين) واستنتجا أن ذلك يِطي أْصى مجال. كانت النتيجة طـائرة "الجناح الطائر" الشـيرة. بعد بضع سنوات، قيل بأن العدد الحرج الذي وجدوده يوافق الحـد الأدنى

(حتى بهوجب أنه يوجد عدد حرج واحد فقط) أن العدد الحرج المعطى يناظر القيهة
القصوى التي تبحث عنها.

بعد ذلك، ندرس مســألة التوصل إلى القيهة الهثلى التي لا يمكن أن تقتصر على الفترة الهنـلقة.

مـثال 7.5 تصمهيم عـلبة صودا باستخـدام القيهة الصغرى مـن كهية الهواد تتسع علبة الصودا لـ 12 أوقية من السائل. أوجدابعاد الحلبة التي سـوفر القيمة الصغرى لكمية
 أي مكان بالعبوة).
 أن العبوة هي أسطوانة دائرية صحبحة بارتقاع h ونصف فـطر r. عـلى فرض وحدة الو (7.2)

الشككل 6.88
عـلبة صودا

مكننا حذف أحد الهتغيرات باستخدام حقيقة أن الحجم (باسـتخدام l بوصة سائلة (fl oz) (1.80469 in. ${ }^{3}$ يجب أن يِكون $12 \mathrm{fl} \mathrm{oz} \approx 12 \mathrm{fl} \mathrm{oz} \times 1.80469 \frac{\mathrm{in} .^{3}}{\mathrm{fl} \mathrm{oz}}=21.65628 \mathrm{in}^{3}{ }^{3}$
كــا أن حجـم الأسطوانة الدائرية الصحـيحة هـو

$$
\text { الحجم = } \pi r^{2} h
$$

 المحلية (أصغر من 50 بتليل) واقعًا بين r=1 و r $r=2$ و بعد ذلك. نوجد

$$
\begin{aligned}
A^{\prime}(r) & =\frac{d}{d r}\left[2 \pi\left(r^{2}+\frac{21.65628}{\pi r}\right)\right] \\
& =2 \pi\left(2 r-\frac{21.65628}{\pi r^{2}}\right) \\
& =2 \pi\left(\frac{2 \pi r^{3}-21.65628}{\pi r^{2}}\right)
\end{aligned}
$$

الشُكل 6.89
$y=A(r)$

لاحظط أن الأعداد الحرجة الوحيدة هي تلك الأعداد التي يكون بسط الكسر لها هو صفر:

$$
\begin{aligned}
& 0=2 \pi r^{3}-21.65628 \\
& r^{3}=\frac{21.65628}{2 \pi} \quad \text { يحدث ذلك اذا وفقَط اذا }
\end{aligned}
$$

وبالتالي، يكون العدد الحرج الوحيد

$$
r=r_{c}=\sqrt[3]{\frac{21.65628}{2 \pi}} \approx 1.510548
$$

لاحظ ذلك أَيضًا لـ في الفترة فقَط. وإنما قيمة صنـرى هحلية مطلقَة أيضًا عتد ما توقَعناه من التهتيل البياني للدالة y في 1 في الشكل 6.89. هذا يوضـح أن العبوة التي

$$
h=\frac{21.65628}{\pi r_{c}^{2}} \approx 3.0211
$$

$$
\begin{align*}
& h=\frac{}{\pi r^{2}} \approx \frac{21.65628}{\pi r^{2}} \tag{7.3}\\
& \text { وكذلك. } \\
& \text { بالتالي. ومن (7.2) و(7.3) ، تكون مساحة السطـح تقريبًا } \\
& A(r)=2 \pi r^{2}+2 \pi r \frac{21.65628}{\pi r^{2}}=2 \pi\left(r^{2}+\frac{21.65628}{\pi r}\right)
\end{align*}
$$

قهنا بافتراضها. ندرس مسألة تصهيم علبة صودا أخرى في التمارين.
 متُال 7.6 ايجاد القيهة الصغرى لتكلفة إنشاء طريق سريع

 مجاورة للجسر يجب عبورها. (اذظر الشكل 6.90) على فرض أن الطـن الطريق السريع يكلف 10
 هي الهسافة بين الطريق السريع و شـرق الجسر عندما بعبر الـستنتـات؟

الححل فد تخهن عبور الطريق السريع للمستنتعات مباشرةُ، لتقصير المسافة فوق المستنقـات، إلا أن هذا غير صحيح. على فرض أن x تهئل الهسافة محل الاستفوهام. (انظر
 المستنعحات. بالتالي. يكون إجمالي التكلفة (بملابين الدولارات)

باستخدام نظرية فبئاغورس على المـُلثين الصحيحين الظاهرين في الشُكل 6.90. نحصل على دالة التكلفة

$$
C(x)=10 \sqrt{x^{2}+25}+7 \sqrt{(8-x)^{2}+9}
$$

 في الشكل 6.91، يبدو أن القيمة الصنرى أصنر من 100 ويحدث حول x=4

$$
\begin{aligned}
C^{\prime}(x) & =\frac{d}{d x}\left[10 \sqrt{x^{2}+25}+7 \sqrt{(8-x)^{2}+9}\right] \\
& =5\left(x^{2}+25\right)^{-1 / 2}(2 x)+\frac{7}{2}\left[(8-x)^{2}+9\right]^{-1 / 2}(2)(8-x)^{1}(-1) \\
& =\frac{10 x}{\sqrt{x^{2}+25}}-\frac{7(8-x)}{\sqrt{(8-x)^{2}+9}} .
\end{aligned}
$$

أولُأل لاحظ أن الأعداد الحرجة فتط هي حيك

$y=C(x)$

الشككل 6.92
$y=C^{\prime}(x)$

سبيل المئال. باستخدام التنصيف أو برنامـج الحل في الآلة الحاسببة)، للحصول على العدد الحـرج التقريبي

$$
x_{c} \approx 3.560052
$$

كل مـا نحتاج إليه الآن هـو متارنة قَيمة C(x) عند النقَاط الطرفية والعدد الحرح:

$$
\begin{aligned}
& C(0) \approx \$ 109.8 \text { million } \\
& C(8) \approx \$ 115.3 \text { million } \\
& C\left(x_{c}\right) \approx \$ 98.9 \text { million }
\end{aligned}
$$

g

بالتالي، وباستخدام حسـاب التقاضل والتكامل. يـكنـنا التوفير لدافـي الضرائب أكتر هن 10
 فُطري (ليست مكافأة سـيئة بالنسبة لبعض دقائق عمل). هـ

ينبغي أن تمنحك الأمئلة التي قدمناهـا في هذا القسـم بالإضافة إلى التدريبات أسـاسُـا لحل

 من التحليل للوقوف على ما فاتك. تأكد كذلك من منطقية الحل مـاديُا، عند الاقتضـاء. من شــن أن عمليات التحقق المتحددة هـه أن تقلل من ترجيح الخطأ.

التهارين 6.7

 النهر. الذي يشكل الجانب الرابع لمنطمتة مستطيلة. الهسـاحـة
 وأبعاد السياج الّْناظر لهذه الهسـاحـة.
يجب بناء سـياج من ثلاثة جوانب بجوار الـتسم الهستقيم مـن
النهر. الذي يشكل الجانب الرابع لهنطقة مستطيلة. يتوفر
 بالسياج وأبعاد السـياج الهناظـر لهذه الهسـاحة.
يجب بناء إسطبل مكون هن حظـريرتين. يشَكل مخطـط
 120 ft
 يجب أن تكون صـالة عرض بمتجر متعدد الأقسام مستطـيلة بثلاثة جدران في ثلاثة جوانب وفتَحات باب 6 أقدام في

 الأبعاد التي ستكون أصغر طول للجدار المستخدم؟ 5. بيّن أن الـستطـيل ذي الـساحـة العظهى مـحبطه قيمة ثابتة P مربع دائئـا. 6. بيّن أن الهستطـيل ذي الهحيط الأصغر ومسـاحته قيهـة ثابتة A
7. بجب بناء صندوق مفتوح من الأعلى بأخذ لوح من الورق
 من كل زاوية وطي الجـوانب. أوجد قيمة x التي تحققَ القَيهة العظهى لحـجم الصّدوقو.

تهـارين كتابيّة

1. عـلى فرض أن بعض الأصدقاء يشتكون من عدم تمكنـهم

 الدرس، أكدنا على رسم صورة وتحـديد المتَفِيرات. ويتهـِّل جزء من فائدة ذلك في مساعـد ألك عـي على البدء في تدوين
 ما ألجانب ألذي تراه أكـثر صحوبة في هذه المسائل؟ امـنح أصدقَاءك أفضـل نصبحة مهكنـة.
تجاهلنا جانبًا واححدًا هامًا في مسـائل التوصيل إلى القيهـة

 الرياضي هو بناء سـياج مربع بطـول $10 \sqrt{5}$ قـد
جانب. فُي هقابلتك مـع النجار الذي سـيبني السـباج، مـا هـو طـول ألسـياج الذي طلبته؟ مـا سبب احتـــال عدم كـون
 عالـي $10 \sqrt{5} \approx 22.36$

据 $d(x)=\sqrt{f(x)}$ للدالة (f(x) . اشـرح سبب عدم ضرورة تقلـلـل بنفس فَيم -x x. هـل يصح مـع
على فرض أن $f(x)$ دالة متصلة تحتوب على عدي وأن للدالة $f(x)$ قيمة صنرى محلية عنـ اششرح سبب كون لـ $f(x)$ حد أدنى مطلق كذلك عند العدد الحرج

خط مستقيم من الـنصة إلى النقطة المحددة على الخط الساحلي. شم في خط مستقيم إلى الخزان. ما النقطة التي ينبغي اختَبارها على الخط الساحلي لتحقق القيمة الصنرى لتكلفة خط الأنابيب؟

تريد الولاية بناء قسم جديد من طريـ
 شُرق و10 أميال جنوب الجسر. أول 4 أميال جنوب الجسر عبارة عن مستنقحات. على فرض أن الطـريق السريـ بكلف 5 ملايبن \$ للميل فوق المستنقعات و2 مليون \$ للميل فوق الأرض الجافة. سبتم إنئاء الطريق السريع في خط مستقيم من الجسر إلى
حافة الهستنقعات، ثُم في خط مستقيم إلى تقاطـِ الطريق السريع. (a) ما النقطة التي ينبغي أن يبرز الطريق السريع عندها من المستنقـات لينحفق فيمة صفرى لتكلفة الطريق السريع الجديد؟ (b) ما متَدار ما يمكَن توفيره عند بناء الطريق السريع الجديد في خط مستقيم هن الجسر إلى التقاطع؟

$$
\text { بِد البدء في إنثياء الطريق السريع في التهرين } 21 .
$$ أعبد تقيبم تكَلفة الميل فوق المستنتعأت بـ 6 ملايبين \$. أوجد النقطة على المستنقحات/حد الأرض الجافة التي من شأنها ان تحقق قيمة صنرى لتكلفة الطريق السريع باستخدام دالة التكلفة الجديدة. إذا كان الإنشتاء بعيدًا جئا بحيث لا يهكن تنيير المساراتر، فــا معدار التكلفة الإضافية لاستخدام المسار من التهرين 21؟

(b) بد البدء في إبنثاء الطريق السريع في التهرين 21. أعبد تقيبيم تكَلفة الهيل فوق الأرض الجّافة بـ3 ملايبن دوولار. أوجد النتطة على المستنقـات/حد الأرض الجافة التب من شـأنها ان تحقق القيمة الصغرى لتكلفة الطريف الطا السريع باستخدام دالة التكلفة الجديدة. إذا كان الإنشاء
 التكلفة الإضافية لاستخدام الدسار من التهرين 21؟

التطبيقات
23. بقف حامد على الخط الساحلي بينما ألفيت كرة على بعد مكر $x=4$
 عنده (y) الهاء ليحقق القيمة الصغرى من الزمن كي يصل إلى

24. في مسألة التهرين 23، بيّن أنه بالنسبة لأي x تكون نتطة

25. على فرض أن الضوء ينتقل من النتططة A إلى النقطة B كمـا هو موضح في الشُكل. على فرض أن السرع السة المتجهة للضؤ فوق خط الحّ هي الحد هي إلى الْقَطة B A التربيعية باستخدام جيوب الزوايا في الشكل وأوجد مشتقة

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}}
$$

بجب بناء صندوق مفتوح من الأعلى بأخذ لوح من الورق
المقوى مساحته "12 -في- "16 ، وقص مربعات بحجم
 التبهةالعظهى لحجم الصندوق.
9. (a) تم بناء صندوق منتوح من الأعلى بأخذ قطعة من الورق
 كل زاوبة وطب الجوانب. تُم تمه لصف الهربـات الأربعة بهساحة
 أوجد قيهة x تحقف القيهة العظهى لأحجام الصناديق. (b) كرر المسألة بدءً بثطعة من الورق المقوى مساحتها

$$
\text { "4-في-" }{ }^{\prime \prime} .
$$

10. أوجد فَّبم d بحيث عندي
 القصوى للحجم من هذين الصندوقين.

11. 13. أوجد النقطة على المنحنى $12=\cos x$ الأقرب للنتطة (0,0)
1. أوجد النقطة على المنحنى 11 النى $y=\cos x$ الأقرب للنتطة (1,1).
2. في التمرينين 11 و 12. أوجد ميل المستقيم الذي يسّرّ من النقطة الهعطاة وأقرب نقطة على الهنحنى الـُحطى. بيّن أن في كل حالة. يكون هذا الخط عموديٌّا على الهمطاس للمنحنى عنـ النقطة الهحددة.
3. كرر التمرين 15 للأمثلة 7.3 و7.49.
4. نتسـع علبة الصودا 12 أوقية من السـائل. على فرض أن سمك القمة والقاع ضعض سمك الجوانب. أوجد أبعاد الـلبة التي تحقق القيهة الصغرى للمادة الهستخدمة. (إرشاد: بدلْا من ايجاد القيمة الصغرى لهساحة السطح أوجد القيهة الصنـرى للتكلفة مسـاحة السطح، قلل التكلفة، التي تتناسب مع ناتج السمك والهسـاحة).
5. عقب الهـثال 7.5، ذكرنا أن علبة الصودا الفحلية لها نصف

تُطر يبلغ "1.156 تقريبُا. بيّن أن نصف القط التطر هذا يحقف القيهة الصفرى للتكلفة إذا كان سمك القمة والقاع أكبر من

سهك الجوانب ب2.23 مرة.
19. يهتد خط الماء بين الشُـرق والغرب. وتريد مدبنة نوصيل مشروعي تطوير سكنية بالخط من خلال مد خط من نتطة واحدة على الخط الهوجود إلى مشّروعب التطوير. يتع أحد مشاريع التطوير على بعد 3 أمبال جنوب الخط الهوجود؛
وبفع الآخر على بعد 4 أميال جنوب الخط الهوجود و 5 أميال شـرق مشُروع التطوير الأول. أوجد المكان على الخط الموجود لعمل الوصلة وايجاد الفيهة الصنرى لطول الخط
20. تحتاج شُركة إلى مد خط أنابيب نفط من منصة نفط على إلى بعد 25 ميلُا في البحر إلى الخزان الذي يبعد 5 أميال من البر. يهتد الخط الساحلي بين الشُرق والغرب ويتع الخزان 50 على بعد 8 أمبال شرق المُّصة. على فـرض أن ذلك بكِلف 50 ألف \$ لكل مبل لإشناء خط الأنابِب تحّ الهـاء و20 ألّ \$ للهـل لإنشاء خط الأنابيب على البر. سينم إنشّاء خط الأنابيب في

30. في دائرة تيار متردد AC بجهل (V ، V ، يبين

الفولتميتر بالفعل متوسط الجهد (مربع متوسـط الجذر)

فولت، أوجد القيمة العظهى للجهـ الذي يمكن الوصول إليهـ

النافذة. أوجِد أبعاد الهستطـيل (وبالتالي. نصـف الدائرة) التي
ستحقق القيهة الـظهى لمسـاحة النافذة.

32. على فـرض أن هناك سلكًا بطول 2 ft 2 يجب فَصه إلى

هـوامش 1-in على الجانبين و2-2 2 في الأعلى والأسفل. فإذا
 أبعاد الهنطقَة المطبوعة وإجمالي الإعـلان التي تحقق الفيّهة الصغرى للهسـاحة.
34. إعلان يتكون من منطمَة مستطيلة مطبوعة بالإضافة إلى

 هي الأبعاد التي بنبغي أن بكون عليها الإعلان لتحقق القيهة

(إرشاد: عبر عن طول السلم كدالة للزاوية θ في الشكل).

(b) بيّن أن القَيهـة العظهـة لطول السـلم بدلّلة لـ a و b بشكل

 السلم عند الزاوية. (d) فَم بحل الجزء (c) للحصول على a

بشكل عام وطول السلم L L
-• أرباح شـركة مـا عن بيع x (ألفـ) سلعة تُعطى بالدالة

تهرين 25
26. على فرض أن الضوء ينكسر عن مرآة للوصول من النقطـة

 الأنحَناء تساوي زاوية الانعكاس).

27. الغرض مـن السـالـال البشـري هو زيادة تدفقَ الهواء إلى
 نصف فَطر القصبَة. على فرض أن فَطر القصبة الهوائية في عدم وجود ضنط هو $V(r)=c r^{2}\left(r_{0}-r\right)$ القصبة الهوائية عند نصف قَطر r هي

 الهوائية. هـل هذا يعني أن القصبة الهوائية تتهدد أم تنكمـش؟
28. لتزويد جهيع أجزاء الجسـم بالدم، يجب تكرار تفرع النظام

المفقودة بسبب الاحتكاك تقرِيًُا هي

$$
E(\theta)=\frac{\csc \theta}{r^{4}}+\frac{1-\cot \theta}{R^{4}}
$$

أوجد قيِهة θ التي تحققَ القَيمة الصفرى لفقَدان الطاقَة.

 طرِيق القيمة الصغرى للطاقَة بدئُ مـن تضخيمها. فتكَون الطاقة المتصتصة من الدائرة

$$
p(x)=\frac{V^{2} x}{(R+x)^{2}}
$$

بالنسبة لجهد V V ومقاومة R . أوجد فـِهـة x التي تحققف القيهة العظهى للطاقَة المهتصة.

1 أن نسـبة الارتفاع إلى المَطر (x/y)
 البر/اميل الفقلية. قـام كبلر بتقريب البـرمـيل باستـخـدام (أرميل مسـتقيه الجوانب في الشـكـل b. ويهكن توضيح (أخبر ناك أن كبلر كان جـيدًا!) أن حـج z $\quad w=\frac{2}{3} \pi\left[y^{2}+(w-y)^{2}+y(w-y)\right] \sqrt{z^{2}-v^{2}}$ كثوابت، بيّن أن

 بالقدر الكافي، أن هذه النقطـة الحررجـة غـير المـرطــة لهـا مـيزةَ مؤكدة لدى النمساويبن. فقد كان هـدفـهـم تحـويل العـياس z إلى تقدبر للـحجـم. اششرح لمـاذا تـعـني الاختالافات الصنـيرة فيلy سـتتحول إلى أخططاء صنيرة في

a الشكـل

b الـشكل
 vo ع على فرض أن مقاومة الهواء تتناسب مـع السرعة. فإن الزهن الذي تستتـرفـه الكرة للوصول إلى $s=a$ هـو

$$
T=-\frac{1}{c} \ln \left(1-c \frac{b-a}{v_{0}}\right)
$$

حـيت c هـو ثابت التنـاسـب. يِبعد لاعـب البيسبول 300 ft عـن

 الـرئيسـية بسـرعـة ابتدائيـة الصنـرى لزمن وصول الكرة إلى اللوحة الرئيسـيـة. هـل الإلقـاء الـمستقيمه أسـرع أم الترحـريل؟ مـا الذي يتنـير، إن وجـد، إذا الذا كان

(a) $\cdot R(x)=\frac{35 x-x^{2}}{x^{2}+35}$ للعـائدات وأوجد القَيهة العظـهى للحائدات. (b) لأي ثابت موجب c ، أوجد x التي تحقَق القيهة العظمى للدالة

$$
R(x)=\frac{c x-x^{2}}{x^{2}+c}
$$

 عـلى فرض أن التهتيل البياني لـ
 العامـل تَزداد عند نقطـة تـاقَص العـائدات. 48. 46) على فـرض أن ســر مـجهوعـة تذاكر إلى حفل مـحدد عـند \$40 للتذكرة. فضإذا تم طلب 20 تذكرهَ. إل أن تكلفة التذكرة

 يكون حل الجـزء (a) هـو 50. فكم يبلـغ خصم السـر للتذاكر الإضافية المـطلوبة؟
39. في النشـاطـات الرِياضـية حيـت تُلَقى الكـرة أو تُضـرب، تَنتهي

 المخططط، تنطلق الكرة بزاوية θ وتنتهي بزاوية β فوق الخط

 $R=\frac{2 v^{2} \cos ^{2} \theta}{g}(\tan \theta-\tan \beta)$
إذا كانت السـرعـة الابَدائيةَ هي
 و (b) $\beta=0^{\circ}$ (a) $\beta=10^{\circ}$ (a (تأكد مـن أن $\theta=45^{\circ}+\beta^{\circ} / 2$ تَّيد الهـى. $\beta=-10^{\circ}$

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. 40 تسـاوي $\pi a b$. أوجد القيمهَ العظهمى لهسـاحـة الهنطمَّة المـحاطـة بالقَطع النافَص (أي. مسـتطـيل بجوانب موازية الإحداثي
 الهسـاحةالعظهى للهستطـيل إلى هسـاحة المَطـع النافص وإلى
 41. بيّن أن القِيهـة العظهمى لحجم |سـطوانة دائرية مـحاطة بكرة

$$
\text { تســاوي } \frac{1}{\sqrt{3}} \text { مـرة. }
$$

42. أوجدالقيمهَ العظمى لمسـاحة مـلـث متسـاوي السـاقَبن مـحيطـه

للجـوانب

$$
s=\frac{1}{2}(a+b+c)
$$

الهعدّلات الهـرتبطـة

 حالة. سـنستَخدم فاعدة السلسـلة إِبجاد مشتَتات كل الحدود الموجودة بالمعادلة. تتيح المطاذّلة التفاضلية لنا تحديد كيفية ترابط المُشَتِتَات (الهعدلات) الهختلفة.

هـثال 8.1 مسـألة مــدلات مرتبطـة

تعرضت ناقلة نفط لحادث وتسرب النفط بمعدل 150 غالونأ في الدقيقة. على فـي فرض أن
 7.5 غالونات، حدد مـدل تزابد نصف قطر التسرب عند وصول نصف التطر إلى 500 قدم.

الحل بها أن مساحة الدائرة التب نصف فُطرهـا r هي $7.5 r^{2}$ ، فإن حجم النفط يُّطى بـ

$$
V=(ا ل ه س م ا ح ة)=\frac{1}{120} \pi r^{2}
$$

وبما أن العمق هو .

$$
\begin{aligned}
& V(t)=\frac{\pi}{120}[r(t)]^{2} \\
& \text { بإشتّقاق كلا جانبي الـعادلة للمتفير بـ t ، نحصل على } \\
& V^{\prime}(t)=\frac{\pi}{120} 2 r(t) r^{\prime}(t)
\end{aligned}
$$

$$
20=\frac{\pi}{120} 2(500) r^{\prime}(t) \text { لـينا } \quad \text {. } r=500 \text { و } V^{\prime}(t)=20
$$

- أخئرٔ، بالحل لإيجاد (t)

بالرغم من أن التفاصيل تنفير من مسألة إلى أخرى. إلا أن النهط العام للحل واحد لجميع
مسائل المعدلات الهرتبطة. ومهـا سبقى ينبغي أن تكون قادرًا على تحديد كل خطوة من
الخطوات التالية في الهئال 8.1.

1. اصنع مخططا بسـيطُا إذا كان ذلك مناسبُا.
2. أنشئ معادلة مرتبطة بكل الكهيات ذات الصلة.

مثال 8.2 سـلم ينزلق

يرتكز سله بطول 10 أقدام على جانب المبنى. إذا كان الجزء العلوي من السلمه يبدأ في

 والمسافة من الجدار إلى الجزء السغلي من السلم x . بهما أن السلم ينـولِ

الشكل 6.93 سـمـ بنزلق

من x و y هي دوال بالمتغير، t . باستخدام نظرية فيئاغورس، يكون لدينا

$$
[x(t)]^{2}+[y(t)]^{2}=100
$$

باشتماق طـرفي الصعادلة بالنسبة للزمن ينتـج :

$$
0=\frac{d}{d t}(100)=\frac{d}{d t}\left\{[x(t)]^{2}+[y(t)]^{2}\right\}
$$

$$
=2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)
$$

$$
x^{\prime}(t)=-\frac{y(t)}{x(t)} y^{\prime}(t) \quad \text { وبالحل لإيجاد } x^{\prime}(t) \text { نحصل على }
$$

بها أن ارتفاع الجزء العـلوي من السلم فووق الأرض عنـد النتطـة في الهسـألة هـو 8 أقدام، يكون

$$
100=x^{2}+8^{2}
$$

إذن x=6 عند النقطة في الهسألة،،.
$x^{\prime}(t)=-\frac{y(t)}{x(t)} y^{\prime}(t)=-\frac{8}{6}(-2)=\frac{8}{3}$
$\frac{8}{3} \mathrm{ft} / \mathrm{sec}$ بالتالي، ينزلق الجزء السفلي من السـلم مبتعـُا عـن الهبنى بهعدل

هـثال 8.3 مسـألة أخرى للمعـدّلات الهرتبطـة

تسير سيارة بسرععة 50 mph تجاه الجنوب من نقطـة تبعـد

 جهاز الرادادار؟

$\frac{x}{40}$

 المسألة (لنسـميها $\frac{d x}{d t}=-40 . ~\left(t=t_{0}\right)$ بما أن سيارة الشَرطة تسير في اتجاه الإحدائي x السالب و 50

$$
d(t)=\sqrt{[x(t)]^{2}+[y(t)]^{2}}=\left\{[x(t)]^{2}+[y(t)]^{2}\right\}^{1 / 2}
$$

باشُتقاق الطرفين بالزمن t ، يكون لدينا باستخدام قَاعدة السلسلة

$$
\begin{aligned}
d^{\prime}(t) & =\frac{1}{2}\left[[x(t)]^{2}+[y(t)]^{2}\right\}^{-1 / 2} 2\left[x(t) x^{\prime}(t)+y(t) y^{\prime}(t)\right] \\
& =\frac{x(t) x^{\prime}(t)+y(t) y^{\prime}(t)}{\sqrt{[x(t)]^{2}+[y(t)]^{2}}}
\end{aligned}
$$

بالتـويض في $y^{\prime}\left(t_{0}\right)=-50, ~ x\left(t_{0}\right)=\frac{1}{4}, x^{\prime}\left(t_{0}\right)=-40, y\left(t_{0}\right)=\frac{1}{2}$ ، لدون لــنا

$$
d^{\prime}\left(t_{0}\right)=\frac{\frac{1}{4}(-40)+\frac{1}{2}(-50)}{\sqrt{\frac{1}{4}+\frac{1}{16}}}=\frac{-140}{\sqrt{5}} \approx-62.6
$$

مـــال 8.4 تقدير مــدل التغير فـي الاقتصـاد

 أربحة إجمـاليات للإعـلانات السنوية.

1	2	3	4	السنة
14,500	16,000	18,000	20,000	ألاعهانانات(بالدولّر)

 إذن، يكون التقدير الجيد 2 چ 2 (4) بدءًا من معادلة المبيعـات

$$
s(t)=60-40 e^{-0.05 x(t)}
$$

نستخدم قَاعدة السلسلة لايجاد المشَتَة

$$
s^{\prime}(t)=-40 e^{-0.05 x(t)}\left[-0.05 x^{\prime}(t)\right]=2 x^{\prime}(t) e^{-0.05 x(t)}
$$

 - من تُم، تزداد المبيدات بهـدل 1472 \$ في السنة تقريبًا.

مـثال 8.5 تتبع طـائرة نفاثة

 على بعد 600 قَم. أوجد معدل تفير الزاووةَ بين خطط نظر المراقب والخطط العمودي على مسـار الطـِيران، عنـد مرور الطـائرة النفائة به. الحـل ضـع الهراقب عنـد نفطة الأصل (0,0) ومسـار الطائرة النفاثة مـن اليسار إلى اليمين

 بتحويل سـرعة الطائرة ألنفاثة إلى فدم في الثانية. لدينا

$$
540 \frac{\mathrm{mi}}{\mathrm{~h}}=\left(540 \frac{\mathrm{mi}}{\mathrm{~h}}\right)\left(5280 \frac{\mathrm{ft}}{\mathrm{mi}}\right)\left(\frac{1}{3600} \frac{\mathrm{~h}}{\mathrm{~s}}\right)=792 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

 هذه الهعادلة مـا تتوقُهـه بها أن كل الكميات تتغير بتفير الزمن، فإن لدينا $\tan \theta(t)=\frac{x(t)}{y(t)}$
باشتقاق طرفي المعادلة بالزمن، بكون لدينا
$\left[\sec ^{2} \theta(t)\right] \theta^{\prime}(t)=\frac{x^{\prime}(t) y(t)-x(t) y^{\prime}(t)}{[y(t)]^{2}}$

$$
\begin{aligned}
& {\left[\sec ^{2} \theta(t)\right] \theta^{\prime}(t)=\frac{792(600)}{600^{2}}=1.32} \\
& \theta^{\prime}(t)=\frac{1.32}{\sec ^{2} \theta(t)}=1.32 \cos ^{2} \theta(t)
\end{aligned}
$$

الشكل 6.96
مسـار الطـائرةَ النفاثة
en

لاحظ أن معدل التغير يكون عند القيهة العظهى عندمـا تكون $\cos ^{2} \theta(t)$ عند قيـيتها العظهى. بها أن

 عندما تكون $\theta=0$. أي. عندما تصل الطائرة النفاثة إلى أقرَب نقطة لها من الهراقب. (فكر في ذلك:

ينبغي أن يوافق ذلك حدسك؛! بها أنه يهكن للإنسان تتبع أجسام تسِير بسرعـة تصـل إلى 3 رادبانٍ/

تمارين كتابية

8.2. فإذا تم سـحب الجزء السفلي من السـم بعـيدًا عـن الجدار بمعدل 3.1 ft/s وبتي السلم مـلامسًا للجدار. (a) أوجد الهعدل
 السـلِي بعيدًا بمقدار 6 أقدام عن الجدار. (b). أوجد هـدل الون
تنير الزاوية بين السـلم والخطـ الأفقي عندما يبعد أسفل السـلم 6 أقدام من الجـدار.

 نقطة دعينة بين الهبنيين تتناسبـ طـرديا مـع الزاواوية θ في

الشككل (a). إذا تحرك شـخص ما من اليمين إلى اليسار
 منتصف المسـافة بين الهبنيين بالضبط ؟ ؟ (b) أوجد الموقَع الذي يكون قَياس الزاوية θ أكبر ما يهكن.

تفَ طائرة على بعد $x=40$ ميل (أفَفَيًا). عن الهطـار وارتفاع h ميل . يوجد رادار في الهطـار $s(t)$ يكشَف المسـافة بين

 للطائرة؟

 الرادار المذكور في المـتال 8.3 بحدد السرعـة الصـاد الصحيحة إذا كانت سبارة الشُرطة تقع في نقطة الأصل. 11. بيّن أن الرادار الهذكور في المثال 8.3 يحدد السرعـة الصحبحة $x=\frac{1}{2}$ إذا كانت سـيارة الشرطة تتحرك بسرعة

$$
\cdot(\sqrt{2}-1) 50 \mathrm{mph}
$$

12. أوجد موפّع وسرعـة الرادار المذكور في المـثال 8.3 عنـدمـا تكون قَراءته أبطأ من السرعـة الفـلية.

號 $s=60-40 e^{-0.05 x}$ سنوات الأخيرة في الجدول التالي.

يتسرب النفط من ناقلة النفط بمعدل 8 غـالون في الدفـيقة.

القطر 100 قَم. فحدد قيمهة 9 . (b). إذا تضـاعف سمك
النفط، فكيف يِغفِر معدل تزايد نصف القطر؟

 ما 1 mm/hr معدل تزايد المنطفة المصابة عند وصول نصف القطر إلى 6mm معدل الجزء (a).
على فرض أن قُطرة مطـر تتبخر بطريقَة تحافـط معـها
 وأن مسـاحـة سطـحه هي $V=\frac{4}{3} \pi r^{3}$ نصف القَطر مـع الزمن، واصبح الـحـجم
 القطر يتغـير بـدـدل ثابت.
على فرض أن حريق غـابات يِنتشـر في دائرة بنصف

 الهنطقَة الهـحترَقَ؟

 (b) $P^{\prime}(t) / V^{\prime}(t)=-c / V^{2}$ أوجد
 بين (b) بِرتفع حوض مائي 6 أقدام عن منسوب المَياه. علِى فرض
 بمعدل ثابت 2 ft/s وان الهركب $ل$ تزال تزال عـلى مستوى الهباه.

 الهستغرب أن تكون سـرعة الهركب ثابتَ؟
 .22
 تزايد ارتفاع الكومة عـندمـا يكون الارتفاع مترين؟ يرتبط تردد اهـتزاز أوتار الجيتار (الذي يحدد طبقَة صوت
 للوتر والطـوْل الفعال م عـازف الجيتار إصبـه على الوتر، للـر L من خلال تفيير المسـافة بين مشـط الجيتار وإصبعه على فرض أن هي الهرتز (دورة في الثانية). إذا انزلّلفت يد عـازف الـنـيتار حتى أصبحت هو الزمن الهستخرق لرفَع طبقة الصوت أوكتاف واحدُ|(وهو، ضص

على فرض أنك تهـلأ بالونًا بالهواء بمعدل
البالون في شـكل كروي. فيرتبط حـجـه ونصف فـطـر

 ارتباط ذلك بُخبرة الشَخص الذي يهلأ البالون. ضُختَ مـياه إلى خْزان كروي نصف فَطره 60 قَدِمًا بـعـدل .25
 مستوى للمياه في الخزان عند الـندما يهتلئ الـخزان إلى النصف. (أوجد الزرتفاع" الذي تتفير فيه المياه في الخزان بنفس هعدل نصف قَطره
 .26
 الذي يتزايد به نصف القطر عـندما يصل الارتفاع إلى 6 أقدام
 45 في المسـتوى الأفقَي.

0	1	2	1
16,000	18,000	20,000	السّان

قَّر قِيهة (2) ${ }^{\prime}$ ومعدل تغير المبيعات في العام الحالي (عـامين).
14. عـلى فرض أن متوسط التكلفة السـنوبة لكل عـنصر لإنتاج إلعناصرx من المنتجات التجارية هـو
 الجدول التالي.

0	1	2	السنتجات
8.2	8.8	9.4	(x)

15. على فرض أن متوسط التكلفة السنوية لكل عنصر لإنتاج

العناصر x من الــنتجات التجارية هـو
كان الإنتأج الحالي $x=10$ وازداد الإنتاج ${ }^{x}$ الهمدل عنصرين سـنوئا. فأوجد معـِّل تفبر متوسط التكلفة.

فرض أن مبيـاتها السنوية $\$ x$ بآلاف من ألدويا الاورات تساوي

 تنير المبيـات.
17. يبعد لاعب البيسبول حوالي قَمين من القاعـدة الرئيسية
 الكرة إلى القاعدةٍ الرئيسية و θ هي الزاويِّة التي تحدد انجاه

لمشاهـدة رمبية الكرَ بنحـو

18. تتابع آلة تصوبر إطلاق مركبة فضائئة تصعد عـوديًا. تقع آلة التصوبر علي مستوىى سـطـح الأرض بنحو مبلين من منيّة الاطلاق. (a) إذا كانت الهركبة النضائبّة تبعد بنحو 3 أميال وتصعد بيدل 0.2 ميل في الـانبة. فبـا معدل تنير زاوبة آلة التصوير (التي تقاس أفَقّْا؟؟ (b) كرر الحملبة إذا كانت الهركبة

 السليم لماذا هو أكبْر.

التطبيقات

12 ft 19. عـلى فرض أن شـخصًا مـا يبلغ طوله 6 اقدام يبدا من عمود إنارة ارتفاعهـ 18 قـدمًا (انظر السُكل). (a) إذا كان
 الهعدل الذي يتنَير به طول ظل الشخص؟ (إرشـاد: انظر إلى (b). ($\frac{x+s}{18}=\frac{s}{6}$ $3 \mathrm{ft} / \mathrm{s}$ عمود الإنارة و يمشي نحو العهود بمعدل

1. أبثت أن الرؤية أكبر تحبِ لتصهيمر الروبوتات الوظبفية. يهكن تصميم الربوتات القادرة على الرؤية لمحاكان رؤية الإنسان أو اتباع تصهيم مختلف. تم تحليل احتمالين هنا. في الرسمم البياني أدناه، تتبع الكاميرا جسمُا ما بئكل مباشُر من اليسار إلى اليهين. إذا كانت آلة التصوير في نتطة الأصل، وتحرك الجسم بسر عة 1 m/s وكان خط الحـركة في $y=c$ فأوجد تعبيرًا لــ '的 كدالة على موقع الجسم. في الرسم البـانياني ناحية البسار، تنظر آلة التصوير في الأسفل إلى مرآة على شُكل فُطع مكافئ وترى الجسم بشكَل غير مباشـر. إذا كان للهرّآة إحداثي قطبي (في هذه الحالة تقاس الزاوية θ أفتيًّا) الaعادلة

 هو أفضل نظام لُألة التصوبر؟ هل المسافة $y=c$ تؤئر على

تفضيلاتك؟

 فرض أن الطاقة

$$
\frac{1}{2} m v^{2}+m g y=m g y_{0}
$$

(a)

$$
\text { | }\left|v^{\prime}(t)\right| \leq g \text { بيّن أن (b) }
$$

(c) يساوي الجزء (b)؟ اششرح باختصار من الناحية المادية لمـاذا و هي قيمه عظهى لــ
27. إذا كان شيء ما يدور حول دائرة تتمركز في نتطة الأصل. فبّن أن
 (b) أن

$$
\begin{aligned}
& \text { 28. بتع ضوء على النقطة (0) (0, 0)، وستط جسم صغير من } \\
& \text { النتطة (10,64). على فرض أن x } x \text { هو هوقع الظل لهذا }
\end{aligned}
$$

 على فرض أن
 القبمة العظهى.
29. بتف الكلب عند النتطة m m (0, (0) وبدأ في مططاردة كرة

في الماء عند النفطة m (8, $)$ m. إنه يركض على امتداد الإجداثي الـوجب x بسرعة
d(t) هي المسافة بين الكلب والكرة في وفت t t. (a) أوجد الزمن والهوقع الذي يكون فبه الين الذي بسبح به الكلب. (b) بيّن أن الهوفقـ هو نقطة الدين الاختيارية نفسها الهذكورة في التـرين 23 من الدرس 3.7.

نحريك ساقك مؤثّزا فب الجلب بقوة دفـع تبعد عن
جسهك. استمد العالم الفيزيائي ألبن هاتشَي في هِيزياء لعبة الهوكي العالاقة بين زاوية التزلـه θ ، وبعد موقع القدم عن الطرق الجانبية s s وفترة التوقف T وسرعة التقدم
 والسرعة 1 m/s 1 . أوجد معدل تفير الزاوية θ عندما بصل
 حبث وسيلة التزلج على الجليد.

معدلات التنُير في الاقتصـاد والعلوم

غالبُا مـا يـال إن الرياضيات هي لغة الطبيعة. وفي الزمن الراهنن، يجري تطبيق مفاهِيم حساب التفاضل
 صغيرة من بعض ألاسنتخدامات الأولية للمُشَتْفَة.

 النوع.

في الاقْصـاد، يستخدم الهصطلح حدّية للإشـارة إلى المعدل. وبالتالي، فإن التكلنـة الـحدية مشـتَة من دالة التكلفة، والربح الحدي مشتّةَ دالة الربح وغير ذلك..
على فُرض أنك تصنّع منتجاً معينًا، حيث بلغت تكلفة البدء 4000 \$ وتكاليف الإنتاج 2 \$ لكل منتج.
ستكون تكلفة إنتاج x منتج بعد ذلك $2 x+2 x$ + 4000 وبطبيعة الحال. فإن على فرض أن تكلفة كل منتج

 9.1، تستخدم دالة التكلفة التربيعية لوضع بعض هذه النـوامل الإضافية في الاعتبار.
على فرض أن

$$
C(x)=0.02 x^{2}+2 x+4000
$$

هو إجمالي التكلفة (بالدولار) هعينة تنتج x وحدة من منتجات معينة. اوجد قِيمة التكلفة الحدية عند 100 = 100 وفارنها بالتكلفة الفعلية لإنتاج 100 وحدة.

الحل دالة التكلفة الحدية هي مسَققة دالة التكلفة:

$$
C^{\prime}(x)=0.04 x+2
$$

 أخرى، فإن التكلفة الفعلية للمنتج عدد 100 ستكون (C(100) - C(99. (لماذا؟) لدينا

$$
\begin{aligned}
C(100)-C(99) & =200+200+4000-(196.02+198+4000) \\
& =4400-4394.02=5.98 \$
\end{aligned}
$$

لاحظ أن هذا قَريب جـُا من التكلفةَ الحدية البالغة 6 \$. لاحظ أيضًا أن التكلفة الحدية
سـهلة في حسابها.

الكمية الاخرى التي تستخدمها الشركات لتحليل الإنتاج هو متوسط التكلفـة. يهكنك تذكر
 منتجُاُ 120 \$. فيكون متوسط التكلفة فأن (\$ $\$$ (120 لكل منتجُا. وبشكل عام، يحدد إجمالي التكلفة من خلال C(x) و عدد العناصر من خلال، x وبالتالي يحدد منوسط التكلفة من خـلال

$$
\bar{C}(x)=\frac{C(x)}{x}
$$

يرغب مديرو الشركات في معرفة مستوي الإنتاج الذي بخفض متوسط التكلفة.

مثال 9.2 القيمـة الصفرى لهتوسط التكلنـة لهنتجات تجارية

> على فرض أن

$$
C(x)=0.02 x^{2}+2 x+4000
$$

هو إجمالي التكلفة (بالدولار) لشـركة معينة تنتج x وحدة من منتجات معينة. فأوجد مستوى الإنتاج x الذي يحقق القيهة الصغرى لمتوسط التكلفة. الحلـ تحدد دالة متوسط التكلفة مـن خلال

$$
\bar{C}(x)=\frac{0.02 x^{2}+2 x+4000}{x}=0.02 x+2+4000 x^{-1}
$$

لايجاد القيهـة الصغرى ل ل $\bar{C}(x)$ فإننا نبدأ بإيجاد أعـداد حرجة في الهـجال $x>0$.

$$
\begin{aligned}
\bar{C}^{\prime}(x) & =0.02-4000 x^{-2}=0 \quad \text { اذا } \\
4000 x^{-2} & =0.02 \\
\frac{4000}{0.02} & =x^{2} .
\end{aligned}
$$

فان هو تقريبًا

نستمد مثالنا الثالت من الاقتصاد. في هذا المثال، ستكتشف العـلاقة بين السعر والطلب. في

سـيقدم لنـا تحـلـيل مرونة الطـلب مـعلومـات هـامـة عـن الإيرادات.

 الطلب بسعر Δx ليكون التفير النسبي في الطلب مقسـومًا على التغير النسبي في السحر بالنسبة للتغيرات الصـيرة في السعر . بصفتكم طـلاب تدرسـون حساب التفاضل والتكامل فيمكنكم تحديد مرونة الطلب E كحد:

$$
E=\lim _{\Delta p \rightarrow 0} \frac{\frac{\Delta x}{x}}{\frac{\Delta p}{p}}
$$

 وعندئذٍ

$$
E=\lim _{h \rightarrow 0} \frac{\frac{f(p+h)-f(p)}{f(p)}}{\frac{h}{p}}=\frac{p}{f(p)} \lim _{h \rightarrow 0} \frac{f(p+h)-f(p)}{h}=\frac{p}{f(p)} f^{\prime}(p)
$$

على فرض أن f f قابلة للاشتَقاق. في الهثال 9.3. حلل مرونة الطلب والإبرادات. تذكر أنه إذا كان (p=f(p) منتجات مباعة بسـر p، فـإن الإبرادات تسـاوي (9)

مـتال 9.3 ايجاد قيهـة مـرونة الطلب والتغير في الإيرادات على فرض أن

$$
f(p)=400(20-p)
$$

 الأسعـار التي تجـل E<-1. قـارن مدى الأسعـار هذا الذي تكون فيه الإيرادات دالة متـناقصة . 」 الـحل تحدد دالة مرونة الطلب من خلال

$$
E=\frac{p}{f(p)} f^{\prime}(p)=\frac{p}{400(20-p)}(-400)=\frac{p}{p-20}
$$

$$
E=\frac{p}{p-20}
$$

$$
\frac{p}{p-20}<-1
$$

$$
p>10
$$

أو
$R=p f(p)=p(8000-400 p)=8000 p-400 p^{2}$ لتحليل الإيرادات، فإننا نوجد قيمه تتناقص الإيرادات إذا كانت 0 < كان 10 -تتاقص إذا تجاوز السـر 10 . 10 .

$$
A+B \longrightarrow C
$$

 (الهنتج). لتكن [بين الأوقات 1 و t_{1} هـ

$$
\frac{[C]\left(t_{2}\right)-[C]\left(t_{1}\right)}{t_{2}-t_{1}}
$$

ومـن يُم تحدد سـرعة التفاعل اللحظي في أي وقت 't t_{1} من خلال

$$
\lim _{t \rightarrow t_{1}} \frac{[C](t)-[C]\left(t_{1}\right)}{t-t_{1}}=\frac{d[C]}{d t}\left(t_{1}\right)
$$

استنادًا إلى تفاصيل التفاعل الكيهيائي، فيهكنتا في أغلب الأحـيان تكوين معـادلة تربط بين سرعة التفاعل $\frac{d[C]}{d t}$ وتركيز المواد الهتفاعلة. [[1] و[$]$].

مــال 9.4 نهـذجة سـرعـة التفاعل الكيهيائي

$$
x^{\prime}(t)=r x(t)[1-x(t)]
$$

$$
\text { حبث إن } 0 \text { r> ـابت. }
$$

 الحل لتوضيح المسألة، نكتب معادلة سـرعة التفاعـل كهـا يلي

$$
f(x)=r x(1-x)
$$

 البياني لـ $y=f(x)$ الموضح في الشكل 6.99، تقع القيمة الحظمى عندمـا تكون $x=\frac{1}{2}$ الدينا

$$
\begin{aligned}
f^{\prime}(x) & =r(1)(1-x)+r x(-1) \\
& =r(1-2 x)
\end{aligned}
$$

$$
\begin{aligned}
& p>-(p-20) \\
& \text { بها إنّ } 0 \text { با } \\
& 2 p>20 \text { فينتج من حلها }
\end{aligned}
$$

الشكل 6.99

$$
y=r x(1-x)
$$

 الدقيقة. ححينما تصل سـرعة التفاعل إلى القيهة الحظهى، يكون تركيز المادة الكيهـيائية مسـاوئا

نستمد مــالنا الثاني من الكيمياء التي تشَهل مـايرة الحمض الضـيف والتَاعـدة القوية. في

ويبين المحور الرأسي الرقم الهيدروجيني للخليط. لاحظ الارتفاع الرأسـي في التمثيل البياني عند نتطة التكافؤ.

 إن c ثـابت وترتبط ارتباطًا وتيمًا بالتفكك الحـضي الثابت.

مـتال 9.5 تحليل معايرة المنـحني
أوجد قيمة x التي يكون فيها معدل تغير الرقم الهيدروجيني صغير جدا. حدد النقطة المقابلة على منحنى المـايرة في الشكل 6.100.

الحل تخيير الرقَم الهيدروجيني بالهستـقة (x) . $p(x)=c+\ln x-\ln (1-x)$

$$
p^{\prime}(x)=\frac{1}{x}-\frac{1}{1-x}(-1)=\frac{1}{x(1-x)}=\frac{1}{x-x^{2}}
$$

$$
\text { والهسألة هي ايجاد القيمة الصغرى للدالة } g(x)=\frac{1}{x-x^{2}}=\left(x-x^{2}\right)^{-1} \text { باستخدام }
$$任 $0<1$

$$
g^{\prime}(x)=-\left(x-x^{2}\right)^{-2}(1-2 x)=\frac{2 x-1}{\left(x-x^{2}\right)^{2}}
$$

لاحظ أن $x-x^{2}=0$ والتي تـن
 يكون في المـجال. عليك التحقَق من أن 0 < 0 ألـي الـ1 المـحور الأفقي في الشكل 6.100 غير مـحدد. فلاحظ أنه يمكننا تحديد موفَع هذه النقطـ

部 $p^{\prime \prime}(x)>0$ و $0<x<\frac{1}{2}$
أنعطاف في التهثيل البياني الأسـاسي.

يرتبط حسـاب التفاضل والتكامل بالفيزياء الابتدائية ارتباطُا وتِيعًا من الناحية التاريخية. فلا

كثـافة الكتلة = الحججم

وتكون تلك الكمية ثابتة في الجسمم بأكمله. ومـع ذلك. إذا كانت كتلة حـجم معين تختلف في أجزاء متختلفة من الـجسم, فُتحسب هذه الصيغة متوسط الكثافة للجسـم فقطـ . نجـد في المـثال 9.6 طرق حساب كثافة الكتلة من نتطبة محدده من من جسم غير متجانس. على فُرض أن الدالة $f(x)$ تعطينا الكتلة (بالكيلوجرام) لأول x متر من قَضيب رقيق. (انظر السُكل 6.101).

وَضـيب رقَيت

$$
\frac{f(x)-f\left(x_{1}\right)}{x-x_{1}}
$$

وأخيرًا، تعرّف الكثافـة الخطية عند $x=x_{1}$ بأنها

$$
\begin{equation*}
\rho\left(x_{1}\right)=\lim _{x \rightarrow x_{1}} \frac{f(x)-f\left(x_{1}\right)}{x-x_{1}}=f^{\prime}\left(x_{1}\right) \tag{9.1}
\end{equation*}
$$

حيث إننا أدركنا تعريفًا بديلُا للمشتَقَة التي ناقشَناهـا سـابمًا.

$$
\text { مثـال } 9.6 \text { كـثافـة القضيب الرقيق }
$$

على فرض أن كثافة الأول x منر هن القضيب الرقَيق تعطي بالدالة $f(x)=\sqrt{2 x}$ فاحسب الكتافة الخطية عند x=2 $x=8$ وعند $x=2$ وقتارن الكتافتين عند النقطتين.

$$
\begin{array}{r}
\text { الحل مـن (9.1). لدينا } \\
\rho(x)=f^{\prime}(x)=\frac{1}{2 \sqrt{2 x}}(2)=\frac{1}{\sqrt{2 x}}
\end{array}
$$

لذا،
 - كتافة عند $x=8$ من $x=2$ منـد

نستهد الهئال التالي من الفيِياء أيضًا. وتحديئا من الدراسة الكهرومغنـناطيسـية.

 (شَحـنة لكل وحدة زمن) عـلى فترة من الزمن كما يأتي:

$$
\frac{Q\left(t_{2}\right)-Q\left(t_{1}\right)}{t_{2}-t_{1}}
$$

يهكن ايجاد النيار اللحظي I(t) في أي زمن 1 باحتساب النهابة:

هـثال 9.7 نهـذجة التيار الكهربائي في السـلك
تتضمن الدارة الكهربائية الهبينة في الشّكل 6.103 مقاوم 14 أوم وأداة ومـايق 2 هنرئريّ
 232 sin $2 t$ الحل يهكن إثبات أن الشـحنة في هذه الدارة تعطى بالدالة (باسـتخدام القوانين

الكهربائية الأساسـية)

$$
Q(t)=10 e^{-5 t}+2 t e^{-2 t}+3 \sin 2 t-7 \cos 2 t
$$

فالتـيار إذن

$$
Q^{\prime}(t)=-50 e^{-5 t}+2 e^{-2 t}-4 t e^{-2 t}+6 \cos 2 t+14 \sin 2 t
$$

استكشفتا سابعًا باختصار مـدل النهو السكاني. الديناميات السكانية أحد مجالات علم الأحياء التي توفر الاستخدام الواسـع لحساب التفاضل والتكامل. الآن، فإننا نستكشف أحد جوانب
 يهئل التعداد السكاني (الذي يقاس على كسر من القيهة العظهى للتعـداد السكاني المستدام). إذن فْدعل تفير التعداد السكاني يحقق الهعادلة

$$
p^{\prime}(t)=r(t)[1-p(t)]
$$

 الرغم من أنتا لا نعلم كيفية ايجاد قيمة الحل ولكن يهكننا نحديد بعض خواص الرياضيات تطرح جهيع الحلول

مثال 9.8 إيجاد القيهـة العظهى لهعدل النـهو السكاني

على فرض أن النـو السكاني يِطى بالمعـادلة [باستخدام r=2). أوجد التعداد السكاني الذي بكون فيه معدل النمو هو القيمة العظمى. فسّر هذه النقطـة بيانيُّا.

$$
\begin{gathered}
\text { الحل لتوضيح الهسـألة، نكتب معدل التعداد السكاني على أنه } f(p)=2 p(1-p)
\end{gathered}
$$

ويكون هـدفنا عـندنْ هو إيجاد التعداد السكاني $p \geq 0$ الذي يحققَ القيهة العظهى

$$
\begin{aligned}
f^{\prime}(p) & =2(1)(1-p)+2 p(-1) \\
& =2(1-2 p)
\end{aligned}
$$

ـ لدينا
 قَطع مكافئ مفنوح لأسفل وبالتالي، يجب أن بناظر العدد الحرج القيهة العظهى الهطلقَة.
 القيهة العظهى. كذلك. لاحظ أن هـه التَططة يناظر الجزء من التمتيل البياني حيث الهيل

 تتبعوا التعداد السكاني الذي يصل إلى نقطة انْططاف، عندئٍِ (على فرض أن المعـادلة اللوجستـية

$$
\begin{aligned}
& I\left(t_{1}\right)=\lim _{t \rightarrow t_{1}} \frac{Q(t)-Q\left(t_{1}\right)}{t-t_{1}}=Q^{\prime}\left(t_{1}\right), \\
& \text { بها أن (9.2) هو سـابقًا التعريف البدبل للإشتَفاق }
\end{aligned}
$$

دارة كهربائية بســطـة

الشكل 6.104
النهو اللوجستي

لاحظ أوجه السَبه بين الهـئالين 9.4 و 9.8. من أحد الأسباب التي تجعـل الرياضيات لها

 الرياضيات في مجالات واسـعة من المساعي الْبشرية.

التمارين 6.9

6. ذكر قَائد فريق البيسبول أْه إذا حددت أسعـار التذاكر بَبيهة
\$10. فسيكون متوسط الحضور في الهباراة 27,000 وإذا حددت بقيهة \$8. فسيكون متوسطـ الحضور 33,000. باستخدام النموذج الخطي يمكنـنا تقدير أن التذاكـر المسـرة بقيمة \$9 بنتج عنهـا متوسـط حضور بنحو 30,000. ناقش ما ما إذا كنت تعتقد أن استخخدام النموذج الخطبي هنا أمر معقول. كُمه استخدم النموذج الخطي. وحـدد السـر بالذي يحقو القيهة الـظمى للايرادات

في التتمارين 10-7، أوجد مسـتوى الإنتاج الذي يحقَق القيمة الصنـرى لمتوسـط التكلفة.

7. $C(x)=0.1 x^{2}+3 x+2000$
8. $C(x)=0.2 x^{3}+4 x+4000$
9. $C(x)=10 e^{0.02 x}$
10. $C(x)=\sqrt{x^{3}+800}$
11. (a) (a) هتكن $\bar{C}(x)$ هي دالة الة التكلفة هتوسط

التكلفة. افترض ان

وبيّن أن التزايد في الإنتاج (x) بنسبة 1 سـيتزايد متوسط التكلفة. (c) أثبت أن متوسط التكلفةَ يحقّ قيمة صغرى عند القيهـة x حيث إن
12. لتكن $R(x)$ هي الإيرادات و $C(x)$ هي تكلفة تصنيع xمنتج. تُعـرف الأرباح بأنها x التي تحقق القيهة العظهى للأرباح، فان الإيرادات الحـدا تساوي التكلفة الحدية. (b) أوجد القيمة العظمى للأرباح إذا كانت $R(x)=10 x-0.001 x^{2}$ دولار و $C(x)=2 x+5000$ دولار.

13. $f(p)=200(30-p)$
14. $f(p)=200(20-p)$
15. $f(p)=100 p(20-p)$
16. $f(p)=60 p(10-p)$

تستخدم الهـعادلة اللوجسـتية [
العدِيد من الظواهر الـهـهـة (انظر الهـثالين 9.4 و 9.8)
 في حد ذاته يعني أنه أكبر (x(t) وأسرع نهو سـكاني. يتوازن

 للنـوذج خاصبة أن الأصنر

حدث عـجز بالشـركة وتداولت الديون في الأخبار كثْتِرًا، ولكن

 المالي بديون بلغت \$5000\$. وهـــه هي ديونـا سـبكون لدى الشركة في الحام التالي إيرادات قَدرها ونفقات فَدرهـا 109,000\$. وكان عجزَ الشركة في الحام

العجز مشتـقة الدين.
 أوجد دالة التكلفة الحدية وقارن بِين التكلفة الحدية بهعدل x=50 والتكلفة الفعلبة لـ 50 منتجاً

إذا كانت تكلفة تصنيع x منتج هي C هي أوجد دالة التكلفة الحدية وقَارن بين التكلفة الحدية عـند x=50 والتكلفة الفـجلية لـَ 50 منتجاًّأِ

إذا كانت تكلفة تصنيع x منتج هي أوجد دالة التكلفة الحدية وقارن $\mathrm{C}(x)=x^{3}+21 x^{2}+110 x+20$ بين التكلفة الحدية عند 100 x= 100 والتكلفة الفحلية لـ 100

منتجُبا
$C(x)=x^{3}+11 x^{2}+40 x+10$ إذا كانت تكلفة تصنيع x منتج هي أوجد دالة التكلفة الحدبِّة وقارْن بِين التكلفة الحدية عند x=100 والنكلفة الفعلية لـ 100 منتجُا. علي فرض أن نكلفة تصنيع x منتج هي بالدولار. أوجد نقطة الانعطاف $C(x)=x^{3}-30 x^{2}+300 x+100$ وناقَش أهمية هذه الفيمة بدلالة تكلفة تصنيع.

الهيدروجيني من خلال
 الرقَم الهيدروجبني x إذا اقترب هن 1؟

مـع الأنزيم．حدد مـا إذا كان هـناك قِيهة عظـمى للتهاعل الكيهيائي．

لذا يِرتبط الضiطط والححجم بالهعادلة PV الموجب c．أوجد وفسّر

في التمـارين 32－29، تُحـدد كتلتة الأول x مـتر مـن القضـيـب
 الكتلية ألخـطية للقضيبتِ اسـتنادًا إلى مـا اسـتنتجته، صِف بإيجاز تركِيب دوال القضيبـ．
29．$m(x)=4 x-\sin x$ جرام $0 \leq x \leq 6$
30．$m(x)=(x-1)^{3}+6 x$ جرام $0 \leq x \leq 2$
31．$m(x)=4 x$ جرام $0 \leq x \leq 2$
32．$m(x)=4 x^{2}$ لكر $0 \leq x \leq 2$

33．على فرض أن الشحنة في الدارة الكهربائية ．كولوم．أوجد التيار．$Q(t)=e^{-2 t}(\cos 3 t-2 \sin 3 t)$

34．على فرض أن الشـحنة في الدارة الكهربائية
كولوم．أوجد التيار $Q(t)=e^{t}(3 \cos 2 t+\sin 2 t)$
35．على فرض أن الشحنة في مكان مـحدد في الدارة الكهر بائية كولوم．مـاذا يحـدث لهذه الدالة إذا $Q(t)=e^{-3 l} \cos 2 t+4 \sin 3 t$ كان عابر و $4 \sin 3 t$ يعرف بأنه حالة ثابتة أو قيهـة خـط التقارب لدالة الشحنـة．أوجد قَيم الحالة الـُابتة والعابرة لدالة التـار ．

> 36. كمـا في التهرين 35. أوجد قـيـم الحالة الثـابتة والعابرة إذا حُددت دالة الشحـنة من خـلال $Q(t)=e^{-2 t}(\cos t-2 \sin t)+t e^{-3 t}+2 \cos 4 t$

37．على فرض أن النهو السكاني وفمًا للمعـادلة اللوجستية هو
 معدل النهو إلى القيمة العظهى．

38．على فرض أن النهو السكاني وفمًا للمعادلة اللوجسستية هو鲑 ألتعداد السكاني الذي يصل فيه معدل النهو إلى القيهـة العظهى．

17．إذا كانت دالة الطلب f دالة قـابلة للانـتـقاق．فاثبت أن
林 $[p f(p)]^{\prime}<0$
الإِرادات تتناقص إذا كان الطلب هرنًا فقَط ）．
18．يُعِرف الدخل من هرونة الطلب بأنه النسبة الهـئوية للتفير
 الدخل الحقيقي．إذا كان I يمثّل الدخل و و $Q(I)$ يمثّل الطلب كدالة للدخل، أُوجد صيفة لدخل هرونة الطلب．

19．إذا كان تركيز التغير الكيهيائي وفقًا للمعادلة
（a）$x^{\prime}(t)=2 x(t)[4-x(t)]$ سرعـة التفاعل إلى القَيمة العظمىي،（b）أوجد حدود التركـيزيز．

（a）$x^{\prime}(t)=0.5 x(t)[5-x(t)]$ سرعـة التفاعـل إلى القيمهة العظهىى．（b）أو أوجد حـدود التركيز ．

21．يدرس علماء الرياضيات في كثبر من الأحيان معادلات بالشكل التي تبرر التبسيطِ وبيان أن الـعـادلة الثانية＂تتقلص إلى

الهعادلة الأولى．بدءًا بـ［أن الـي
عن $y(t)=K x(t)$ يتبين أن الهعادادلة تَقلص إلى الشككل
كيف يرتبط الثابت $x(t)=r x(t)[1-x(t)]$
22. عـلى فرض أن التفاعـل الكيهيائي يتبـع المعـادلة

和 $(t)=c x(t)[K-x(t)]$

و K لهذا التفاعل الكيهيائي．

الكِيائية C（المنتج）．إذا كانت التركيزات الأولية للهـواد
 $x(t)$ تفيِر الهنتج عندما الهنتج أم يتناقص أم يبقي كـها هـو؟ عـلى فـرض أن بظهر أي منتج عنـدما بدأ التفاعلـ الكيميائي، اشـرح لهـاذا تكون القيمة التـظهى لتركيز المنتج هي
$x^{\prime}(t)=[a-x(t)][b-x(t)]$ 24．
مـن خـلال $x(t)=\frac{a\left[1-e^{-(b-a) t}\right]}{1-(a / b) e^{-(b-a) t}}$ أوجد $x(0)$ التركـيز الأولي
 ）．مـتِّل بيانئًا（t x في الفترة（ ）
تركـيز التفـير الكـيميائي بهـرور الزمن.

25．في الهثال 9．5، وجدنا نقطة انـطـاف واحدة فير في منحـنى
 x＝1

 إلى كمية القاعـدة الهضافة إلى الخلـيط．وهـذا تناسب طـردي
 26．في معايِرة الحهض الضعـِف والقَاعدة القوية، يحدد الرقَمر
48. على فرض أن إجمـالي تكلفة تحرك زوروف على بعد مسافة P بسرعـة

 أوجد $C(v)=a p \frac{v^{2}}{v-c}+b \frac{p}{v-v_{c}}$

تهارين استکاشافـافة

l. نموذج بسيط لانتشار الأهراض الفتاكَة مثل الإيدز يِقسمر

 لتناسب الأشَخاص في كل فئةَ في الزمـن t بـ على الترتيب. الـحادلات العـامة لهذا النموذج هي

$$
\begin{aligned}
S^{\prime}(t) & =m I I(t)-b S(t) I(t), \\
E^{\prime}(t) & =b S(t) I(t)-a E(t), \\
I^{\prime}(t) & =a E(t)-m I I(t),
\end{aligned}
$$

 تعطي مبدل التغير في إحدى الفئات. لكل معدل تغير حد موجب وحد سـالب. اشـرح لهاذا يمثل الحد الموجب الأشـخاص الذي دخلوا الفئة والحد السالب الأشـخاص

 هذا الحد مصطنتع قلـلًا: على فرض أن التعداد السكاني

معرض أو هصاب بالهـرض. وتتهثـل دينامـيات المـرض في إصابة الأشـخاص من الفئة سـريعة التأثر (السليمهة) عن طـر طـريق
 الاتصال بين الأشَخاص من الفئة سريعة التأثر بالأشأشخاص
 الأشتخاص من الفئة سـريحة التأثنر والدعـرضين للإلصابة عـن طريق الاتصال بالأشتخاص من الفئة الهصابة. اشترح لهـاذاذ

 بفيروس نتص الهناعة البشَرية للتطوير الفـلي لمرض الإيدز)

بدون معرفة كيفية حل الهـادلات التماضلية، يمكننا أن
 أُطلع على معادلة التفاعل الكيميائي ذاتي التحفيزن.
. $x^{\prime}(t)=x(t)[1-x(t)]$ بيّن أن (0) [$x(0)[1-x(0)]$ من (0)

39. يمكن إثبات أن حلول المعادلة اللوجستية تكون بالشكل针 السكاني والنهابة . ${ }^{\text {الس }}$
40. في التهرين 39. على فرض أنك تدرس النهو السكاني وتشـير بياناتك إلى نقطة انعطـاف في

لتحدِد الـُابت B. في دراسـتك. التعداد السكاني الأولي هو
وبا $p(0)=40$
فَياسـك الحالي هو 160 = $16(12)$ فاستخدم هذه القيمهة لتحديد الثابت k.

الـتطبيـقات

للتعداد السكاني التي اسـتـعت للشَائحـات بعد سـاعـتين. احسب f $f^{\prime}(2)$
42. بعد الحقَن. يِعطى تركـيز الدواء في العضـاتات بالـععادلة. ($f(t)$

الزمن الذي يصل فيه التركيز إلى القيسـة العظهى
43. على فُرض أن حجم حدقة عين حيوان محين يحدد مـن خلال

$$
f(x)=\frac{160 x^{-0.4}+90}{4 x^{-0.4}+15}
$$

بيّن أن $f(x)$ دالة متناقصصة. فسّر هذه النتيجة من حيث استجابة الدقَة للضوء.
44. عـلى فرض ان درجة حرارة الجسمم بعد تلقَي الدواء بساعة
$T(x)=102-\frac{1}{6} x^{2}(1-x / 9)$ واحدة تعطى بالمتغير x ملـئ
 حساسية الجسهم من الجرعـة. أوجد الجرعة التي تحـقق القيمة العظهى للحسـاسية
45. تسبح سـككة بالسرعة المتجهة v ضد التــار من الـقطـة A إلى النقطة B. ضد تبار سرعته ه. اششرح لهـاذا ينبني أن يكون لدينا $E=\frac{k v^{2}}{v-c}$ ت \quad. $v>c$ للثابت k>1. بئن أن E له عـدد حرج واحد. هـل يهمثل المَيمة الصغرى أم القيمـة العظمى؟
 . $P=\frac{1}{v . ~}+c v^{3}$ للطاقَة.
47. خرج شخص متنهل من الهنطمَة التي يقطن فيها وقاد حوالي y ميل بمعدل

 زمن فيادة متساويًا بمـدل التصمـمـ الأسـاسـي للمناطق السكنية والهـطارات.

بمعدل ثابت فَدره 2. أوجد قَيهة

المشــة في التجربة.

 مرة أخرى بأن和 ${ }^{\prime}(t)=-0.05 x(t)+2$ خلاله تتحلل الهـادة المشـعة بهعدل 5\% ولكن تتجدد المـادة

تهارين مـراجمعة

تهارين كتابية

1. $f(x)=e^{3 x}, x_{0}=0$
2. $f(x)=\sqrt{x^{2}+3}, x_{0}=1$

في التتهوينين 3 و 4، اسـتخـدم التققريب الـخطي لتتقدير
4. $\sin 3$

في التمبرينين 5 و 6، الستتخدم طريقتة نيوتن لإيجاد الجذر التّقريبي
5. $x^{3}+5 x-1=0$
6. $x^{3}=e^{-x}$
7. اسُرح السبب، بوجه عام، إذا كانت $y=f(x)$ لهـا نقطة انمطاف
 الخططي لـ $f(x)$ عـند $x=a$ سِيكون أكتر دقَة لمـجموعة أكبر من

$$
\text { x التقرِيب الخططي } f(x) \text { عند b=x. }
$$

8. بين أن التقريب $\frac{1}{(1-x)} \approx 1+x$ صالح لقيهة x الصـيرة.
في التهـارين 16-9، أوجد النهاية.
9. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$
10. $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}+3 x}$
11. $\lim _{x \rightarrow \infty} \frac{e^{2 x}}{x^{4}+2}$
12. $\lim _{x \rightarrow \infty}\left(x^{2} e^{-3 x}\right)$
13. $\lim _{x \rightarrow 2^{+}}\left|\frac{x+1}{x-2}\right|^{\sqrt{x^{2}-4}}$
14. $\lim _{x \rightarrow \infty} x \ln (1+1 / x)$
15. $\lim _{x \rightarrow 0^{+}}(\tan x \ln x)$
16. $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{\sin ^{-1} x}$

في التمارين 26-17، نْذ مـا ياتي يدويًا. (a) أوجد الأعداد
 إذا كان العدد المحرج يهثّل القيهة العظهى الهحلية، التيهـة الهـة الصغرى الهحلية أم لا. (d) حدد كافة فترات التقعر، (e) أوجـد كافْة نتأط الانــطـاف.
17. $f(x)=x^{3}+3 x^{2}-9 x$
18. $f(x)=x^{4}-4 x+1$

صواب أم خطأ
اذكر إذا مـا كانت كل عبارة صحبحة أم خاطئة وبيّن السبب
 تعديل العبارة الهوضّحة إلى العبارة الجـديدة الصحيحة. 1. يعطي التقريب الخطي تقديرات تقريبية جيدة لقيم الدالة لـ x القريبة من نقَطة التهـاس.
2. أقرب تخمين مبدئي هـو الحل، وأسـرع تتارب هو طريقة نيوتن.
3. تنص فَاعدة لوبيتال على أن نهاية المشَتقة يساوي نهاية الدالة.
4. 5. تحدث القيهة القصوى الـططلقة إما عند عدد حرج أو عند نقَطه نهابة.
6. إذا كانت 6 هي فيهـة عظهى محليـة.

$x=a$
8. إذا كان هناك خط تقارب $x=a$ فأن إمـا $x=0$ أو $\lim _{x \rightarrow a^{+}} f(x)=\infty$

$$
\cdot \lim _{x \rightarrow a^{+}} f(x)=-\infty
$$

في مسألة تحقفيق الفيمة العظهى إذا واحد فِتط، فُإنه يهـئل القيهة العظهى
10. إذا كان التعداد السكاني $p(t)$ لها معدل بالقيمهة العظهى عـد

$$
\text { . } p^{\prime \prime}(a)=0 \text { فأن } t=a
$$

11. إذا كانت تبلغ ضـف f.
12. إذا انقبضت عضلة بسرعـة v، تتناسبب القوة الناتجة عن

عن انقباض العضلة مـح القيهة العظهى للقوة.
13. تحتوي علبة مشُروب غازي أسطـوانية الشكّل على 16 أونصة سـائلة. أوجد أبعاد العلبة التي تحقق القيهة الصنرى للمساحة السطحية للحلبة.

 أن عملية تصنيع ليست على درجة عـالية من الكفاءة.
14. يوضح المخطط ملعبًا لكرة القدم بعلامـات H تجزئة تبعد
 البعض x قدم. إذا سـجل هـدف خارجي من مسافة تبعد
 الخطـأ لهذا الانجاه. أوجد x التي تحقَ القيهة العظهى لـ θ

15. في حالة التمرين 53، غالبٌا مـا يِقول المعلمَون الرياضيون في
 يهكنه الرجوع 5 ياردات بركلة الجزاء. حدد ما إذا كان هـا هـا صحيحا لطـلاب الهدارس الثانوية (5 ($P=23 \frac{1}{3}$) الجامعات الهحترفين ($P=18 \frac{1}{2}$ و $H=18 \frac{1}{2}$).
16. إجمالي الشـحنة في دارة كهربية في الزمن t t بحدده كولوم. $Q(t)=e^{-3 t} \sin 2 t$
17. إذا كان التركيز $x(t)$ للمادة الكيميائية في تنيرات الميرات التماعلـ الكيمبائي تعطى بالمعادلة [الـئركي التركيز الذي تصل فيه سـرعة التفاعل إلى القيهة العظهى.
 بالمعادلة وصِف بإبجاز تركيب الدوال للقضيب.
18. درجات شـخص (5 ($f(t)=90 /\left(1+4 e^{-0.4 t)}\right.$ نقطة في الاختبار بعد t على الإطلاق؟ احسب (0) سـاعات الدراسة ستضاف إلى الدرجات.
19. $f(x)=x^{4}-4 x^{3}+2$
20. $f(x)=x^{3}-3 x^{2}-24 x$
21. $f(x)=x e^{-4 x}$
22. $f(x)=x^{2} \ln x$
23. $f(x)=\frac{x-90}{x^{2}}$
24. $f(x)=\left(x^{2}-1\right)^{2 / 3}$
25. $f(x)=\frac{x}{x^{2}+4}$
26. $f(x)=\frac{x}{\sqrt{x^{2}+2}}$

في التهـارين 30-27، أوجد القيهـة القصـوى الهـطلقة من الدّالة المعطـاة في المترة الهعـطاة.

27. $f(x)=x^{3}+3 x^{2}-9 x$ on $[0,4]$
28. $f(x)=\sqrt{x^{3}-3 x^{2}+2 x}$ on $[-1,3]$
29. $f(x)=x^{4 / 5}$ on $[-2,3]$
30. $f(x)=x^{2} e^{-x}$ on $[-1,4]$

الـي التهـارين 34-31، أوجد x - إحداثيات القيم القصوى
31. $f(x)=x^{3}+4 x^{2}+2 x$
32. $f(x)=x^{4}-3 x^{2}+2 x$
33. $f(x)=x^{5}-2 x^{2}+x$
34. $f(x)=x^{5}+4 x^{2}-4 x$
$f^{\prime}(x)<0 . f(1)=-2 . f(-1)=2$. 35 $. x>2, x<-2$ 」 $f^{\prime}(x)>0,-2<x<2 」$
36. ارسم الدالة ببانبًا باستخدام معرّفة، $x>0$ ل $f^{\prime \prime}(x)<0$ و $x<0$ ل $f^{\prime \prime}(x)>0$

في التمارين 46-37، ارسـم بيانيّا الدوال الهبينة ونقاط

التَتاطـع وخطوط التقارب.

37. $f(x)=x^{4}+4 x^{3}$
38. $f(x)=x^{4}+4 x^{2}$
39. $f(x)=x^{4}+4 x$
40. $f(x)=x^{4}-4 x^{2}$
41. $f(x)=\frac{x}{x^{2}+1}$
42. $f(x)=\frac{x}{x^{2}-1}$
43. $f(x)=\frac{x^{2}}{x^{2}+1}$
44. $f(x)=\frac{x^{2}}{x^{2}-1}$
45. $f(x)=\frac{x^{3}}{x^{2}-1}$
46. $f(x)=\frac{4}{x^{2}-1}$
47. أوجد النقطة على التمثيل البياني $y=2 x^{2}$ الأفرب إلى $(2,1)$
48. بيّن أن المستقيم الهـار من خلال النقطتين في التمرين 47 متحامد على الهمـاس $y=2 x^{2}$ عند (2) 1 (2).
49. مدينة ما تبني طريمًا سريِيا من النقطة A إلى النقطـة

بناء الطريق السريع حوالي 6 مليون \$ لكل ميل. وبلفت التكلفة على الأرض اليابسـة 2 مليون \$. أوجد التـطـطة على

حدود المستنفعات والأراضي اليابسـة التي سيبنى عليها الطريق السريع التي تحقفق ألّفيمة الصنرى للتكلفة الإجهالية.
$\left.f^{\prime}(a) \approx \frac{f(b)-f(a)}{b-a} . ا ل-a\right)$

 معقدة. نوصي باستخحدام CAS إن وجدت. أوجد دالة بالشكـل $g\left(x_{3}\right)=y_{3} g\left(x_{2}\right)=y_{2}, g\left(x_{1}\right)=y_{1}, ~$ م $g(x)=a x^{2}+b x+c$.

والثلاث نقاط $f(x)=\sqrt{x+4}$ أوج $x_{3}=x+\Delta x\left[y_{3}=f\left(x_{3}\right)\right]$
 القيمة الدقيقة للمستَقة من الرتبة الثانية.
 . مشَتقة الدالة المعكوسـة.

قَيهة تصنيع x x من منته تعطى بالهـادلة
鲑 $C(x)=0.02 x^{2}+20 x+1800$
التكلمة الحدية عندما $x=20$ بالتكلفة الفعلية لإنتاج 20 هنتج
 $\bar{C}(x)=C(x) / x$ تحقَق القيّهة الصفرى لمتوسطِ التكلفة

تهاربن الــتكاشـافية

1. عـلى فرض أن 1 هو هو رقم الفوتونات في مجال الليزر. أحد نماذج الحمل بالليزر هو b ثوابت موجبة. إذا كانت b كول إلى هذا الحسـاب هل $n(t)$ تتزايد أم تَتناقص أم تبقَى كهـا هي؟ إذا كانت هذا الحسـاب هل كانت هذا الحسـاب هل n هـ $n(t)$ تتزايد أم تتناقص أم
 هذه الحملِية مع على فرض أن 0 > a ال إحدى طـرائق التَربب العددي لمشتقَة هي بايجاد فَيهة . 2

التوة = الكثلة × النسارع أو

$$
F_{4}=k v^{2}
$$

$$
\text { لعدد ثابت } 0 \text { > } 0 \text {. }
$$

 يساوي نتريبا ذلك هعا. فَسيُطينا تانون نيونن الثاني للحركة

$$
F=m a=-m g+k v^{2}
$$

$$
\text { علدا أن (t) } a=v^{\prime} \text {. بكون لدينا }
$$

$$
\begin{equation*}
m v^{\prime}(t)=-m g+k v^{2}(t) \tag{1.1}
\end{equation*}
$$

 خي (1.1)، نسصل على

$$
m v^{\prime}(t)=-m g \quad, \quad v^{\prime}(t)=-g
$$

 ! عادة الدخول للغلاف اللجوبي بـا الن

$$
y^{\prime \prime}(t)=-9.8
$$

 , تستي مذه الداله F الدالة الأصلية لـ f.

$$
\begin{aligned}
& \text { الهـثال } 1.2 \text { التكامل غير المهدرد } \\
& \text { أ, البد لبـة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \int 3 x^{2} d x=x^{3}+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { الهـنال } 1.3 \overline{\text { !ايجاد قبهة تكامل غير مسدود }} \\
& \int t^{\prime} d t \text { الوجد } \\
& \text { الحل تحن تعلم أن } \\
& \text { - } \int t^{3} d t=\frac{1}{6} t^{6}+c
\end{aligned}
$$

$$
\frac{d}{d x} x^{\prime+1}=(r+1) x^{\prime}
$$

وعذا يثبت التتبجة التالية.

ملحوظة 1.1

ط

هنا. إذا كان 1

$$
\int x^{r} d x=\frac{x^{r+1}}{r+1}+c
$$

النظرية 1.2 (قاعدة التوة)

الهثّال 1.4 استخدام قَاعدة النوة

 $\int x^{17} d x$,الحل بن ثاعدة التؤ، بكون لدينا
$=\int x^{17} d x=\frac{x^{17+1}}{17+1}+c=\frac{x^{18}}{18}+c$.

هـال 1.5 تاعدة الثوة مـي أس سـالب

$$
\int \frac{1}{x^{3}} d x \quad \text { i }
$$

 - $\int \frac{1}{x^{3}} d x=\int x^{-3} d x=\frac{x^{-3+1}}{-3+1}+c=-\frac{1}{2} x^{-2}+c$
(b) $\int \frac{1}{\sqrt[3]{x}} d x$, (a) $\int \sqrt{x} d x$,

$$
\int \sqrt{x} d x=\int x^{4} d x=\frac{x^{\frac{1}{4}}}{\frac{1}{2}+1}+c=\frac{x^{4}}{\frac{3}{2}}+c=\frac{2}{3} x^{4}+c
$$

$$
\begin{aligned}
\int \frac{1}{\sqrt[2]{x}} d x & =\int x^{-t} d x=\frac{x^{-t+1}}{-\frac{1}{3}+1}+c \\
0 & =\frac{x^{\frac{3}{3}}}{\frac{2}{3}}+c=\frac{3}{2} x^{\frac{3}{3}}+c
\end{aligned}
$$

yحظر أنه بـا أن

$$
\int \cos x d x=\sin x+c
$$

 ليس لدينا بعد ميغ تكامل للعديد من الدوال البألوفة مثل .

$$
\begin{array}{ll}
\left.\int x^{\prime} d x=\frac{x^{r+1}}{r+1}+c, ~ ل \int \operatorname{din}\right) & \int \sec x \tan x d x=\sec x+c \\
\int \sin x d x=-\cos x+c & \int \csc x \cot x d x=-\csc x+c \\
\int \cos x d x=\sin x+c & \int e^{x} d x=e^{x}+c \\
\int \sec ^{2} x d x=\tan x+c & \int e^{-x} d x=-e^{-x}+c \\
\int \csc ^{2} x d x=-\cot x+c & \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+c \\
\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c & \int \frac{1}{|x| \sqrt{x^{2}-1}} d x=\sec ^{-1} x+c
\end{array}
$$

$$
\begin{aligned}
& \text { الـطـر بة } 1.3 \\
& \text { على فرص أن (أله } \\
& \int[a f(x)+\log (x)] d x=a \int f(x) d x+b \int g(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { لدبـا } \left.ل \text { لك } \frac{d}{d x} \int g(x) d x=g(x), \frac{d}{d x} \int f(x) d x=f(x) d x\right]=a f(x)+\lg (x)
\end{aligned}
$$

كها مو معطلوبع

 ضرب (ثانع فسعة) النكاملات

$$
\text { الهـثال } 1.8 \text { التكامل غير الهعـدود لضرت }
$$

$$
\int\left(3 e^{x}-\frac{2}{1+x^{2}}\right) d x
$$

$$
\text { - } \int\left(3 e^{x}-\frac{2}{1+x^{2}}\right) d x=3 \int e^{x} d x-2 \int \frac{1}{1+x^{2}} d x=3 e^{x}-2 \tan ^{-1} x+c
$$

$$
\frac{d}{d x} \ln x=\frac{1}{x}
$$

الأن.

$$
\begin{aligned}
& \frac{d}{d x} \ln |x|= \\
& \qquad \begin{aligned}
& \frac{d}{d x} \ln x=\frac{1}{x} \\
& \frac{d}{d x} \ln |x|=\frac{d}{d x} \ln (-x) \\
&=\frac{1}{-x} \frac{d}{d x}(-x)=\ln (-x) . x<0 \\
&=\frac{1}{-x}(-1)=\frac{1}{x}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \int\left(3 \cos x+4 x^{8}\right) d x \text { أو }
\end{aligned}
$$

$$
\begin{aligned}
& =3 \sin x+4 \frac{x^{9}}{9}+c \\
& \text { - }=3 \sin x+\frac{4}{9} x^{9}+c
\end{aligned}
$$

النظـر ية 1.4
$\frac{d}{d x} \ln |x|=\frac{1}{x}, x \neq 0$ لكل

ومت خلال قاعدة الاشنـةاق الجديدة في النظرية 1.4. نحصل على قاعدة تكامل جديدة.

$$
\begin{aligned}
& \text { النتبـجة } 1.1
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{1}{x} d x=\ln |x|+c
\end{aligned}
$$

$$
\frac{d}{d x} \ln |f(x)|=\frac{1}{f(x)} f^{\prime}(x)=\frac{f^{\prime}(x)}{f(x)}
$$

روهذا ينبت قاعدذ النكامل الثاليه.

$$
\int \frac{\sec ^{2} x}{\tan x} d x=\ln |\tan x|+c
$$

 (d) $\int \frac{x^{3}+1}{x} d x$,
(c) $\int \frac{2 x}{x^{2}+1} d x$,
(b) $\int \sec x d x$, (a) $\int \frac{1}{\sqrt[3]{x^{2}}} d x$
(0) $\int x \sin 2 x d x$, (e) $\int(x+1)(x-1) d x$,
 النعرد على الدوال الأصلبي. كـا بلي. لأجل (a) $\int \frac{1}{\sqrt[3]{x^{2}}} d x=\int x^{-\frac{2}{3}} d x=\frac{x^{-\frac{2}{3}+1}}{-\frac{2}{3}+1}+c=3 x^{\frac{1}{3}}+c$
 $\int \frac{2 x}{x^{2}+1} d x=\ln \left|x^{2}+1\right|+c=\ln \left(x^{2}+1\right)+c$
 في الجز. (d) . إذا قَسـنا الهكاهل. سنجد $\int \frac{x^{3}+1}{x} d x=\int\left(x^{2}+x^{-1}\right) d x=\frac{1}{3} x^{3}+\ln |x|+c$
 $\int(x+1)(x-1) d x=\int\left(x^{2}-1\right) d x=\frac{1}{3} x^{3}-x+c$
بتطلب الجـتأَن (b) و (f) أن نج تحن
 عتد الوبوطـ التي افتتحنا بلا هـذا الدوس.

المثال 1.12 إيجاد موتّع جسم عند الهبوط بعطمى تسار عـ
تــارع حسـ عتد الهبومل مبو
 الحل

$$
y^{\prime}(t)=\int y^{\prime \prime}(t) d t=\int(-9.8) d t=-9.8 t+c
$$

$$
\begin{aligned}
& v(t)=y^{\prime}(t)=-9.8 t+c \\
& -30=v(0)=-9.8(0)+c=c
\end{aligned}
$$

للـل

$$
y(t)=\int y^{\prime}(t) d t=\int(-9.8 t-30) d t=-4.9 t^{2}-30 t+c
$$

$$
\begin{aligned}
& 30,000=y(0)=-4.9(0)-30(0)+c=c \\
&\left.y(t)=-4.9 t^{2}-30 t+30,000, c=30,000\right) \leq
\end{aligned}
$$

7.1 التهادون

في التهارين 28-5. أوجد الدالة الأهـلية

5. $\int\left(3 x^{4}-3 x\right) d x$
6. $\int\left(x^{3}-2\right) d x$
7. $\int\left(\begin{array}{c}3 \sqrt{x}-\frac{1}{x^{4}}\end{array}\right) d x$
8. $\int\left(2 x^{-2}+\frac{1}{\sqrt{x}}\right) d x$
9. $\int \frac{x^{\frac{1}{3}}-3}{x^{\frac{2}{3}}} d x$
10. $\int \frac{x+2 x^{\frac{3}{4}}}{x^{\frac{5}{4}}} d x$
11. $\int(2 \sin x+\cos x) d x$
12. $\int(3 \cos x-\sin x) d x$
13. $\int 2 \sec x \tan x d x$
14. $\int \frac{4}{\sqrt{1-x^{2}}} d x$
15. $\int 5 \sec ^{2} x d x$
16. $\int 4 \frac{\cos x}{\sin ^{2} x} d x$
17. $\int\left(3 e^{x}-2\right) d x$
18. $\int\left(4 x-2 e^{\prime}\right) d x$
19. $\int(3 \cos x-1 / x) d x$
20. $\int\left(2 x^{-1}+\sin x\right) d x$
21. $\int \frac{4 x}{x^{2}+4} d x$
22. $\int \frac{3}{4 x^{2}+4} d x$
23. $\int \frac{\cos x}{\sin x} d x$
24. $\int\left(2 \cos x-\sqrt{r^{2}}\right) d x$
25. $\int \frac{e^{2}}{e^{2}+3} d x$
26. $\int \frac{e^{2}+3}{e^{3}} d x$
27. $\int x^{\frac{1}{4}}\left(x^{\frac{5}{4}}-4\right) d x$
28. $\int x^{\frac{2}{3}}\left(x^{-\frac{4}{3}}-3\right) d x$

اكدنا في هذا الدرس على أن الـكامل غبر الـشـدود بـئل كل
.1

جسط با بموجبب فانوت مبوتن الثاني, F=ma . لأجل
$u(t)=v^{\prime}(t)=F(t) / m$ السرعـة الـئجرة
ولحساب (f()/
F(t)/m

 الحسسبان انحناء الخرض.
$\int x c^{x} d x=x e^{x}-e^{x}+c, \int x c^{x^{2}} d x=\frac{1}{2} e^{2}+c$ نحن

 عامثة (للدربال الغصـلبة)
 للعديد فم الدوبال الأولية. بها في ذلك
 . $\int f(x) d x \mathrm{f}$ ل e $\int \sec x d x \iint \operatorname{lec} x \sec x \tan x d x$
30. $\frac{d}{d x} \ln |\sin x-2|$
29. $\frac{d}{d x} \ln |\sec x+\tan x|$

ڤي التهرينين 29 , 30. أ, جد الهشتتة.

في التهارين 34-31. يهكن تصديد إحدى الدالتين الاهصليتين

 وتسهية التعبير الأخر "N/A".
31. (a) $\int \sqrt{x^{3}+4} d x$
(b) $\int\left(\sqrt{x^{3}}+4\right) d x$
32. (a) $\int \frac{3 x^{2}-4}{x^{2}} d x$
(b) $\int \frac{x^{2}}{3 x^{2}-4} d x$

في الثبارين 4-1. الرسمه عددا مـن الدوال ضهـن عالثة الدوال

1. $\int x^{3} d x$
2. $\int\left(r^{3}-x\right) d r$
3. $\int r^{1} d r$
4. $\int \cos x d x$
(b)

50 . كـرر التـربن 49 إذا كان النـئيل الببابي الـعطى بخص

$$
f^{\prime \prime}(x)=x-1
$$

$$
f^{\prime \prime}(x)=6 x+4
$$

53. $\int 2 x \cos x^{2} d x$
54. $\int x^{2} \sqrt{x^{3}+2} d x$
55. $\int\left(x \sin 2 x+x^{2} \cos 2 x\right) d x$
56. $\int \frac{2 x e^{3}-3 x^{2} e^{3 x}}{e^{6 x}} d x$
57. $\int \frac{x \cos x^{2}}{\sqrt{\sin x^{2}}} d x$
58. $\int\left(2 \sqrt{x} \cos x+\frac{1}{\sqrt{x}} \sin x\right) d x$
59. غبي الـئال 1.11. اسـنخدم حالسـبة أ, CAS الخاصة بك لجيجاد
 بحساب المشتخات 60. استخدم حاسبة أو CAS الخاصة بك قوحاول أن تجِد دالة أصلية

33. (a) $\int 2 \sec x d x$
(b) $\int \sec ^{2} x d x$
34. (a) $\int\left(\frac{1}{x^{2}}-1\right) d x$
(b) $\int \frac{1}{x^{2}-1} d x$

35. $f^{\prime}(x)=3 c^{\prime}+x, f(0)=4$
36. $f^{\prime}(x)=4 \cos x f(0)=3$
37. $f^{\prime \prime}(x)=12 x^{2}+2 e^{x}, f^{\prime}(0)=2 . f(0)=3$
38. $f^{\prime \prime}(x)=20 x^{3}+2 x^{2 x}, f^{\prime}(0)=-3, f(0)=2$
39. $f^{\prime \prime}(t)=2+2 t \cdot f(0)=2 f(3)=2$
40. $f^{\prime \prime}(t)=4+6 l, f(1)=3, f(-1)=-2$

41. $f^{\prime \prime}(x)=3 \sin x+4 x^{2}$
42. $f^{\prime \prime}(x)=\sqrt{x}-2 \cos x$
43. $f^{\prime \prime \prime}(x)=4-2 / x^{3}$
44. $f^{\prime \prime \prime}(x)=\sin x-e^{x}$
45. حدد الدالة الـكانبغ إذا كانت دالة السرعة الـينجهة هي

- $s(0)=3 t$

46. حدد الداله الـكانبغ إذا كانت دالغ السر عـة الـنجبة هي

$$
\text { - } s(0)=0 \text { - } 0 \text { هو }
$$

47 حدد الداله المكانية إذا كانت دالة التسارع عي 47 الوا
, السر عة الهتمهة الابتدانية هي 0 = (0) (0) والهوقي الابتداني هو
. $s(0)=4$

$. s(0)=0$

(a)

ا الدوس 1-7 ا الدوال יأهـلـن

 ($\int x \mathrm{e}^{c^{2}} d x=\frac{1}{2} \int 2 x e^{2} d x$ بعد ذلكت. أو جد فبـة على نحو مبانل. أ, إحد لبية

$$
\int f^{\prime}(x) e^{(\omega)} d x
$$

بعد ذلك. أوحد خبهي

$$
\int f^{\prime}(x) \cos (f(x)) d x
$$

 التغاضلية (t)

 0.0003 هضروبة في هربع الدالة. هت الصعب إيجاد دالة تكون مئتغتها مكتوبة بدلالة 0 |

仿 $t=0$. $v(0)=-100 \mathrm{~m} / \mathrm{s}$ مبل الحل هو

 بتعديدها بهذا الذدر (ولكن الجعل النطعة الـيتغيبة لديك أنصر بكئبر) عند
 فحبرة لها مبل 6- بدءا من النشطة (106.8-1, 10) . نشير هذه النملعة العستنبية إلي (112.8 , 2) . عتد هـده النـنطة.竍 ${ }^{\prime}=-9.8+0.0003(-112.8)^{2} \approx-6$ قَصيره لها ميل 6- عند (112.8-9 2) - مل نرّى هـلا بلا بيانيا يبدأ

66. 65. 6 .
 لي الصـور بين الدالنين الأهلانين (a) , (b) ,'نـرح له بعنـر كلنامـا هـبيتنين.

> التطبـبـات
67. على لـرض ان سـيارة بمكن أن تتسـارع من 50 km/h 30 إلى

 بالسبارء خلال 4 نوالت.

 بالسبارد خلال 3 ثوان (أيـ بـساخة النوفغ)

$t(\mathrm{~s})$	0	0.5	1.0	1.5	2.0
$v(l)(\mathrm{m} / \mathrm{s})$	-4.0	-19.8	-31.9	-37.7	-39.5

70. بيين الجدول أدثاه المـرعة اليتجهة لجسـم, يهبط في أزمنة

$t(\mathrm{~s})$	0	1.0	2.0	3.0	4.0
$r(f)(\mathrm{m} / \mathrm{s})$	0.0	-9.8	-18.6	-24.9	-28.5

$f(\mathrm{~s})$	0	0.5	1.0	1.5	2.0
$a(f)\left(\mathrm{m} / \mathrm{s}^{2}\right)$	-1.3	0.7	0.2	-1.2	0.5

72.

$t(\mathrm{~s})$	0	0.5	1.0	1.5	2.0
$a(f)\left(\mathrm{m} / \mathrm{s}^{2}\right)$	0.6	-2.2	-4.5	-1.2	-0.3

$[0,2 \mid$ | 2 العت, $y=v(t)$

 $y=v(l)$

$$
d=r \times t=1=\text { الزهن } \times \text { السـر عة العتجهـ }
$$

$$
A \approx 60+45+50+55+50=2601 \text { كيلوبي }
$$

 لا

$$
1+4+9+\cdots+400=1^{2}+2^{2}+3^{2}+\cdots+20^{2}
$$

$$
\sum_{i=1}^{20} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+20^{2}
$$

 -

بــاحة تحث بـتحنى

7.4 الشكرل

بساحـ
الحلل (a) لدبنا

$$
\begin{align*}
& \sum_{r=1}^{8}(2 i+1)=3+5+7+9+11+13+15+17=80 \\
& \sum_{i=2}^{6} \sin (2 \pi i)=\sin 4 \pi+\sin 6 \pi+\sin 8 \pi+\sin 10 \pi+\sin 12 \pi=0 \tag{b}
\end{align*}
$$

(Y حظ ان الهبمبوع بدا عند i=2), الحبرا. بكون لدبنا

$$
\begin{equation*}
\sum_{i=4}^{10} 5=5+5+5+5+5+5+5=35 \tag{c}
\end{equation*}
$$

$$
\begin{aligned}
& \text { الحل أوها لاهحظ أن (2i) هو مدد زوجب لكل } \\
& \text { هو عدد فردي، إذا. لدينا } \\
& 1+3+5+\cdots+399=\sum_{i=1}^{200}(2 i-1) \\
& \text { تكافنيا) . } \\
& \text { الهثال } 2.3 \text { حساب هجهوع غي هـورة رهـو المبجهوع }
\end{aligned}
$$

باعتباره عدادا لتتبي الحدود. ور
الحر ف الذي تربدت باعنبارد
هؤشرا. وفتأ للعادة. تحت كنيرا

$$
\begin{aligned}
& \text { مؤُـُر يـبظل صالها. على عـيـلِ } \\
& \sum_{i=1} a_{i}=\sum_{i=1}^{+} a_{i}=\sum_{i=1}^{+} a_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{1}+\sqrt{2}+\sqrt{3}+\cdots+\sqrt{10}=\sum_{i=1}^{10} \sqrt{i}
\end{aligned}
$$

$$
\begin{aligned}
& =3^{3}+4^{3}+5^{3}+\cdots+45^{3}=\sum_{i=3}^{45} i^{3} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بصنة عاعة, يالنسـة لأي أعداد حغبغبة } \\
& \sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}
\end{aligned}
$$

$$
\begin{align*}
& \text { النظربة } 2.1 \\
& \text { إذا كان " عـددا صححبحا مو جببا و C عـددا ثاينا. شُان } \\
& \text { (} \tag{i}\\
& \text {, (} \mathrm{A} \text {) } \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \tag{ii}
\end{align*}
$$

(الهي

$$
\begin{equation*}
\sum_{r=1}^{n} i=\underbrace{1+2+3+\cdots+(n-2)+(n-1)+n} \tag{2.1}
\end{equation*}
$$

$$
\sum_{t=1}^{n} i=\frac{n(n+1)}{2}
$$

$$
\begin{aligned}
& \text { النظر ية } 2.2 \\
& \text { لأل } \\
& \sum_{i=1}^{n}\left(c a_{i}+d b_{1}\right)=c \sum_{i=1}^{n} a_{1}+d \sum_{i=1}^{n} b_{i}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \sum_{r=1}^{n} i=(1+n)+(2+n-1)+(3+n-2)+\cdots+(n-1+2)+(n+1) \\
& =\underbrace{(n+1)+(n+1)+(n+1)+\cdots+(n+1)+(n+1)+(n+1)}
\end{aligned}
$$

$$
\begin{align*}
& \text { للسیـول على } \tag{2.2}
\end{align*}
$$

بلا وـثات

كارل خـر بدربك جاوس (1777-1855)
 الرياضيات على الإطلالئ كان أن

 تابغة في كل جوانب الرياضيات
 لحساب الثفاضضل والنكاملـ وعددا
 والغيزياء الرياضية. إضـافة إلى ذلث. كان لـجاوس دوور خعال فـ بـ بـ حتول بحت نعليل الهتفيرات الهركبة وحسـاب تناضل وتكاهل الحتـيجبات
 حعا ..أمير الرياضيات...

الهنال 2.5 حساب البخهبوع باستخدام النظريتين 2.1 , 2.2

$$
\text { (b) } \sum_{i=1}^{20}\left(\frac{i}{20}\right)^{2}, \text { (a) } \sum_{i=1}^{20} i^{2}
$$

$$
\text { الحلل (a) من النظر بئبن } 2.1 \text {, 2.2. بكرن لدينا }
$$

$$
\sum_{i=1}^{20} i^{2}=\frac{20(21)(41)}{6}=2870
$$

$$
\begin{equation*}
\sum_{r=1}^{20}\left(\frac{i}{20}\right)^{2}=\frac{1}{20^{2}} \sum_{i=1}^{20} i^{2}=\frac{1}{400} \frac{20(21)(41)}{6}=\frac{1}{400} 2870=7.175 \tag{b}
\end{equation*}
$$

المـنال 2.6 حسـاب مـجمبوع قيم دالة

$$
\text { أوجد مجهوع فيم } f(x)=x^{2}+3 \text { للميم عند: } x=0.2 \text {. } x=0.1
$$

 $i=1.2 \ldots, 10$ لكل,,$a_{i}=f(0.1 i)=(0.1 i)^{2}+3$

$$
\text { من النظر ينّين } 2.1 \text { (iii) () لدينا }
$$

$$
\sum_{i=1}^{10} a_{i}=\sum_{i=1}^{10} f(0.1 i)=\sum_{i=1}^{10}\left[(0.1 i)^{2}+3\right]=0.1^{2} \sum_{i=1}^{10} i^{2}+\sum_{i=1}^{10} 3
$$

$$
=0.01 \frac{10(11)(21)}{6}+(3)(10)=3.85+30=33.85
$$

$$
\begin{align*}
& \text { الهثال } 2.4 \text { حساب الهعبیوع باستخدام النظر يتهن } 2.1 \text {, } 2.2 \\
& \text { (b) } \sum_{i=1}^{800}(2 i+1) ;\left(\text { a) } \sum_{i=1}^{8}(2 i+1) \quad 1\right. \\
& \text { الحل (a) من النظطر ينين } 2.1 \text {, } 2.2 \text { بكون لدبنا } \\
& \sum_{i=1}^{8}(2 i+1)=2 \sum_{i=1}^{8} i+\sum_{i=1}^{8} 1=2 \frac{8(9)}{2}+(1)(8)=72+8=80 \\
& \sum_{i=1}^{800}(2 i+1)=2 \sum_{i=1}^{800} i+\sum_{i=1}^{800} 1=2 \frac{800(801)}{2}+(1)(800) \quad \text {,لدئل} \text {, (b) } \tag{b}\\
& =640,800+800=641,600
\end{align*}
$$

$$
\begin{aligned}
& \sum_{i=1}^{20} f(0.95+0.1 i)=\sum_{i=1}^{20}\left[3(0.95+0.1 i)^{2}-4(0.95+0.1 i)+2\right] \\
& =\sum_{i=1}^{20}\left(0.03 i^{2}+0.17 i+0.9075\right) \quad \text { istive } \\
& =0.03 \sum_{i=1}^{20} i^{2}+0.17 \sum_{i=1}^{20} i+\sum_{r=1}^{20} 0.9075 \quad 2.2 \text { i } 40 \text {, الن } \\
& =0.03 \frac{20(21)(41)}{6}+0.17 \frac{20(21)}{2}+0.9075(20) \quad \begin{array}{c}
21 \\
\text { (iii) }, ~(\text { (iit }, ~(i) \\
\text { (i) }
\end{array} \\
& \mathrm{m}=139.95
\end{aligned}
$$

 باللغ الأهبية. ونتهي هذا الدرس بالنظر إلى مبدا رياضي فوي.
ببدأ الاستثبراء الرياضـي

[^1]
$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \cdot n ب د \text { صـيع موجب }
$$
\[

$$
\begin{align*}
& \text { (iii) } 2.1 \text { برهان النظرية } \\
& \text { צ'جل } 1 \text { ، } 1 \text { بكون لدينا } \\
& 1=\sum_{i=1}^{1} i^{2}=\frac{1(2)(3)}{6} \\
& \text { كـا هو بطلوب. إذا, العبارة صحبحة حيث n=1. بعد ذلك. على فُرض أن } \\
& \sum_{k=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6} \quad, \quad \text {, } \tag{2.3}\\
& \text { لخي }
\end{align*}
$$
\]

$$
\begin{aligned}
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \quad 2.3 \mathrm{~m}
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} & \\
=\frac{(k+1)[k(2 k+1)+6(k+1)]}{6} & \\
=\frac{(k+1)\left[2 k^{2}+7 k+6\right]}{6} \\
=\frac{(k+1)(k+2)(2 k+3)}{6} & \\
=\frac{(k+1)[(k+1)+1][2(k+1)+1]}{6} \\
=\frac{n(n+1)(2 n+1)}{6}, &
\end{array}
$$

7.2 التـاربن

7. $\sum_{i=0}^{10}(4 i+2)$
8. $\sum_{m=0}^{5}\left(r^{2}+2\right)$

9. $\sum^{2}(3 i-1)$
10. $\sum_{i=1}^{45}(3 i-4)$
11. $\sum_{i=1}^{40}\left(4-i^{2}\right)$
12. $\sum_{i=1}^{\infty}(8-1)$
13. $\sum_{n=1}^{100}\left(n^{2}-3 n+2\right)$
14. $\sum^{140}\left(n^{2}+2 n-4\right)$
15. $\sum_{i=1}^{\infty}\left|(i-3)^{2}+i-3\right|$
16. $\sum_{i=1}^{20}(i-3)(i+3)$
17. $\sum_{i=j}^{n}\left(k^{2}-3\right)$
18. $\sum_{i=0}^{n}\left(k^{2}+5\right)$

19. $f(x)=x^{2}+4 x ; x=0.20406 .08,1.0 . \Delta x=0.2 ; n=5$
20. $f(x)=3 x+5, x=0,4,0 \times .1216,20 ; \Delta x=04 ; n=5$
21. $f(x)=4 x^{2}-2 ; x=2.1 .22 .23 .2 .4 \ldots .30$;
$\Delta r=0.1 ; n=10$
22. $f(x)=x^{3}+4 ; x=2.05,2.15,2.25,2.35, \ldots, 2.95$;
$\Delta x=0.1 ; n=10$

تهارين كتابية

1. ذكرنا في هذا الدرس أن إحدى مزاليا امتحدام رمز الهجبوع
 بالكلـعات م $\sum_{i=1}^{\infty}\left(2 i^{2}-4 i+11\right)$ (2

2. $2(1)^{2}+2(2)^{2}+2(3)^{2}+\cdots+2(14)^{2}$
3. $\sqrt{2-1}+\sqrt{3-1}+\sqrt{4-1}+\cdots+\sqrt{15-1}$

$$
\begin{aligned}
& \text { (b) } \\
& \text { 4. } 4
\end{aligned}
$$

> 5. $\sum_{i=1}^{\infty} 3 i^{2}$
> 6. $\sum_{m=3}^{7}\left(x^{2}+i\right)$

4.0	3.5	3.0	2.5	2.0	1.5	1.	0.	0	
45	4	39.4	34	29	24.7	19	14.9	10	s)

 ($0 \leq t \leq 4$)
 غي الز من الهنجهـة في الر'من $t=1$

 صتحبيا. بـا أن
 باسنخـنام

 15.525 get $t(0.5) \approx 321 \mathrm{~km} / \mathrm{h}, t(0)=30 \mathrm{~km} / \mathrm{h}$

 تتجه !!لى الصغر.
 الـتسلسلة اللانهانيّة. على فرض أن كري نرند لها معاملـ

病 $60 \mathrm{~m} / \mathrm{s}$ (0. $60 / 16+(0.6)(60) / 16+(0.6)(0.6)(60) / 16+\cdots$?

 الارتداد هـلالها.

 حيث k= اn أي أعداد

 . $n \rightarrow \infty$ عتلهـ
23. $\sum_{n=1}^{n} \frac{1}{n}\left[\left(\frac{i}{n}\right)^{2}+2\left(\frac{i}{n}\right)\right]$
24. $\sum_{i=1}^{n} \frac{1}{n}\left[\left(\frac{i}{n}\right)^{2}-5\left(\frac{i}{n}\right)\right]$
25. $\sum_{n=1}^{n} \frac{1}{n}\left[4\left(\frac{2 i}{n}\right)^{2}-\left(\frac{2 i}{n}\right)\right]$
26. $\sum_{n=1}^{*} \frac{1}{n}\left[\left(\frac{2 i}{n}\right)^{2}+4\left(\frac{1}{n}\right)\right]$
 الزعداد الصحبــة 1 الص

 لحقسـاب الهيقهوع
29. $\sum_{i=1}^{10}\left(i^{3}-3 i+1\right)$
30. $\sum_{i=1}^{20}\left(r^{3}+2 i\right)$
31. $\sum_{r=1}^{1000}\left(r^{5}-2 r^{2}\right)$
32. $\sum_{i=1}^{100}(2 \hat{r}+2 i+1)$
.أبتـت النظلر
.33
 .34
$\begin{aligned} a & \\ a+a r+a r^{2}+\cdots+a r^{n}= & \frac{a-a r^{n+1}}{1-r} \\ & r=1,\end{aligned}$

35. $\sum_{i=1}^{n} e^{(\sin) / n} \frac{6}{n}$
36. $\sum_{i=1}^{n} e^{2 i / n} \frac{2}{n}$

التحطبـتات
37 . 30 على 50 km/h لهد

 لهـة 3 سـاعات أوبـ الهـــانة الهــتازذ

 الهــاكة الهـبـازلـ

2.0	1.75	1.5	1.25	10	0.75	0.5	0.25	0	(v)
28	29	30	31	32	33	34	35	36	(الز

 الهسور

 كل فترة جـرُثية في هـذه التجزية

الشكل 7.5
$y=f(x)$ الهساحة نحت منحتى

$$
x_{1}=x_{0}+i \Delta x, \quad i=1,2, \ldots, n \quad \text { لكل }
$$

$A \approx f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x=A_{4}$

(3.1)

$$
\begin{aligned}
A & \approx f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x \\
& =\sum_{i=1}^{n} f\left(x_{1}\right) \Delta x=A_{n} .
\end{aligned}
$$

الهـتال 3.1 تمّريب بساعة باستّغدام الهستطيلات

 كل فترة جزنية

$$
\begin{aligned}
A & \approx A_{10}=\sum_{r=1}^{10} f\left(x_{i}\right) \Delta x \\
& =[f(0.1)+f(0.2)+\cdots+f(1.0)](0.1) \\
& =(0.18+0.32+0.42+0.48+0.5+0.48+0.42+0.32+0.18+0)(0.1) \\
& =0.33
\end{aligned}
$$

(b) نجزى، النترة[0, 1 (b) إلى 20 לترة هتساوبة. بكون طول كل مينا: $\Delta x=\frac{1-0}{20}=\frac{1}{20}=0.05$
$x_{i}=(0.05) i$ لدبنا !ذا حبث 20 . $i=0,1,2, \ldots, 2.1$. 3.1 . تكون الـساحة نغربيا

$$
\begin{aligned}
A & \approx A_{20}=\sum_{i=1}^{20} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{20}\left(2 x_{i}-2 x_{i}^{2}\right) \Delta x \\
& =\sum_{i=1}^{20} 2\left[0.05 i-(0.05 i)^{2}\right](0.05)=0.3325
\end{aligned}
$$

الشكل 7.7

7.9 الشكل 7 $A \approx A_{20}$

7.10 السُكل
$A \approx A_{t 1}$

n	A_{μ}
10	0.33
20	0.3325
30	0.332963
40	0.333125
50	0.3332
60	0.333241
70	0.333265
80	0.3332×1
90	0.333292
100	0.3333

 رلن الجساحة A تحت منحنى

$$
A=\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{1}\right) \Delta x
$$

الهثال 3.2 إيجاد تيهة الهسا-2

الحل باستثخدام n فترة حزليه متساربة الطول. بكون لدبنا $\Delta x=\frac{1-0}{n}=\frac{1}{n}$
 (3.1). تساوبي الـبـاحة تغربيا

$$
\begin{aligned}
& A_{200}=\frac{(201)(199)}{3(40,000)}=0.333325 \\
& A_{500}=\frac{(501)(499)}{3(250,000)}=0.333332
\end{aligned}
$$

أخبرا, يكعنتا إيجاد النواية لـ A A. لدينا

$$
\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}-1}{3 n^{2}}=\lim _{n \rightarrow \infty} \frac{1-1 / n^{2}}{3}=\frac{1}{3}
$$

الهثال 3.3 إبحاد قيهة الهساحة تحت منحنس

$$
\begin{aligned}
& A \approx A_{n}=\sum_{i=1}^{n} f\left(\frac{i}{n}\right)\left(\frac{1}{n}\right)=\sum_{i=1}^{n}\left[2 \frac{i}{n}-2\left(\frac{i}{n}\right)^{2}\right]\left(\frac{1}{n}\right) \\
& =\sum_{i=1}^{n}\left[2\left(\frac{i}{n}\right)\left(\frac{1}{n}\right)\right]-\sum_{i=1}^{n}\left[2\left(\frac{i^{2}}{n^{2}}\right)\left(\frac{1}{n}\right)\right] \\
& =\frac{2}{n^{2}} \sum_{i=1}^{n} i-\frac{2}{n^{3}} \sum_{t=1}^{n} i^{2} \\
& =\frac{2}{n^{2}} \frac{n(n+1)}{2}-\frac{2}{n^{3}} \frac{n(n+1)(2 n+1)}{6} \quad \text { (iii), (ii) } 2.1 \text { i } 4, \text { ن in } \\
& =\frac{n+1}{n}-\frac{(n+1)(2 n+1)}{3 n^{2}} \\
& =\frac{(n+1)(n-1)}{3 n^{2}} \\
& \text { بها انه لدينا صينة لـ }
\end{aligned}
$$

$$
\begin{aligned}
& A \approx A_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n} \sqrt{x_{i}+1} \Delta x \\
& =\sum_{i=1}^{n} \sqrt{\left(1+\frac{2 i}{n}\right)+1}\left(\frac{2}{n}\right) \\
& =\frac{2}{n} \sum_{i=1}^{n} \sqrt{2+\frac{2 i}{n}}
\end{aligned}
$$

> تساوب 3.4478 تْريبا.
> نتوفض الآن لتعريغ بعض الـواضبيع ثي الرياضيات التي تعلهناها.
 هجامبي ربهان:

$$
\begin{equation*}
A=\lim _{n \rightarrow \infty} \sum_{r=1}^{m} f\left(c_{i}\right) \Delta x \tag{3.3}
\end{equation*}
$$

حـت,

 عامة أدو تغر بـ لغبية مسطلاء من

n	A_{-}
10	3.50595
50	3.45942
100	3.45357
500	3.44889
1000	3.44830
5000	3.44783

ملاحـطات تاريخية بيرنارد ريهان (1866-1826) هو عالم رياضيات ألماني نوصل !الى هعاهـبر عامة مروبة لتغربت التكامل. توثي ربـان
 كله العديد من الدراسات، كل دراساسة منها كانت بالفة الأثر. وكان عمله على النكاهل هجرد جز، صنبر هن درامـانـا حول متسالسلة فوربيه. وألع
 عـن الهـدســة. طوضـي ريهان الهيندسة الحاصة به التب وفرت
 , ؤمبر الإقلبدية. وكانت نتـكل أعهال ريهان. غي الفالب. رواليط نالبة وغير متوانَة مين التحلبل والـغدسـ.

484 | الدرس 7-7 | الدـاحة

 ونيطة الهنتصف عـلي النوالي.

 تعطبي المستطيلات الـناظرة لعيم نثطة النهابة البسرى (الشـكل 17.11b) مساحة صغيرة، ونترك

 $n=10,50,100,500,1000$ إيجاد
 باعتبار عا نناط الغيب.

 ستة إرقام،

stral	迷	200.ل\|	n
3.38579	3.44789	3.50593	10
3.43599	3.44772	3.45942	50
3.44185	3,44772	3.45357	10)
3.44654	3.44772	3.44889	500
3.44713	3.44772	3.44830	1000)
3.44760	3,44772	3.44783	5000

 هو عالم رياضيات فرنسبي أنْبت تختـين بير الا في عام 1985.
 البالغة من العهر 70 عاعا. أنبت

; لكِ أتوى بكئبر - قي 2004.

 جائر 3 فدر ها ملـيون دونا لأول برهان على فرضبة ريار ربان.

 باعنباري من النُراء السانبيّن لن الرغب לي إنهاه هذه الحاله مغابل هـيون درـمهـ...

 3.4 بغنر بان من النهابة ,لكن من انجاهبين هنابلين وبالععدل تغسه نغر بيا.

با بعد الصيـغ

هوضوعة لنبسبط الحسـابات؟

7.3 توارين

ضي التّارين 14-11. استخخدم مجهوع ريمان وتهاية لايجباد
11. $y=x^{2}+1$ on (a) $[0,1]$ (b) $[0,2]$; (c) $[1,3]$
12. $y=x^{2}+3 x$ on (a) $[0,1]$; (b) $[0,2]$; (c) $[1,3]$
13. $y=2 \mathrm{r}^{2}+1$ טn (a) $[0,1]$; (b) $\left.\mid-1,1\right]$; (c) $[1,3]$
14. $y=4 \mathrm{r}^{2}-x$ on (a) $\lceil 0.1\rceil$ (b) $\lceil-1,1]$; (c) $[1,3\rceil$

شي التهارين 18-15. أنشئ بجدولا لهبحهوع ريهان كـا فيا

 كلها من التيهة ذاتها عندها
15. $f(x)=4-x^{2},[-2,2]$
16. $f(x)=\sin x,[0, \pi / 2]$
17. $f(x)=x^{2}-1 .[1.3]$
18. $\left.f(x)=x^{3}-1 . \mid-1,1\right]$

في التهارين 22-19. حدد بيانيا با إذا كان محهوع ريهان

20
21. 21 $f(x)$ تتناتص والنتعر إلى الأعلى على

23. للدالة
 بساوي الـسـاحـ الدخبغة 1/3.
24، للداله
 بـاوبي البــاحة الدانبغة 2/3.

للعديد من الدرال. تكرن نهاية هبامبي ربهان هسنتلة عـن .1

 لـاذا بتعبن أن بكرن الـنرق بين قبم الدالة عـند أي نتطـنين في فنرة جززنية هعينة. أصغر.

ليست الـستـطيلات صب الأَـكال الوندسبة الأساسـية

 التتريب ,أو جد قيهة بیهوع ويهان.

1. $f(x)=x^{2}+1$,
(a) $[0,1!n=4$:
(b) $[0.2] n=4$
2. $f(x)=x^{3}-1$.
(a) $[1,21 n=4$;
(b) $[1,3] n=4$
3. $f(x)=\sin x$,
(a) $[0, z \mid n=4$;
(b) $|0, \pi| n=8$
4. $f(x)=4-x^{2}$.
(a) $[-1,1] n=4$;
(b) $|-3,-1| n=4$

في التهارين 10-5. قرب الهسـاحة تعت الهنـعنى على النَّترة الهعطلاة باستخغدام نتسطة النهاية اليسرى (b) نُنطة الهنتصغ (c) نتصطة النهاية
5. $y=x^{2}+1$ on $\{0,1 \mid, n=16$
6. $y=x^{2}+1$ on $|0,2|, n=16$
7. $y=\sqrt{x+2}$ on $\{1,4 \mid, n=16$
8. $y=e^{-2 t}$ on $[-1,1 \mid n=16$
9. $y=\cos x$ on $\{0, \kappa / 2 \downarrow n=50$
10. $y=x^{3}-1$ on $\mid-1$. $1 \mid n=100$
35.

x	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
$f(x)$	2.0	2.4	2.6	2.7	2.6	2.4	2.0	1.4	0.6

36.

x	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
$f(x)$	2.0	2.2	1.6	1.4	1.6	2.0	2.2	2.4	2.0

37.

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8
$f(x)$	1.8	1.4	1.1	0.7	1.2	1.4	1.8	2.4	2.6

38.

x	1.0	12	1.4	1.6	1.8	2.0	2.2	2.4	2.6
$f(x)$	0.0	0.4	0.6	0.8	1.2	1.4	1.2	1.4	1.0

التطبيــات
39. بستخدم الافْصاديون تهئيلا بيانيا يسبى منتحنى لور نز لوصف مدى المساواء لتوزبث كـبة معبنة في محنـبي إحصاني

الواردة عن إدارة معلوهات الطاقن. النسب الــتُوبة لأعلى

 73.6\% من إجهالي GDP. 0 ما النـبة الـئوية التي نتتجها

الدولغ رُم 100 (ألولايات المتحدة الأمريكية) الْ إن منحنى

x	0.1	0.2	0.3	0.4	0.5	0.6	0.7
y	0.002	0.004	0.008	0.014	0.026	0.048	0.085

x	0.8	0.9	0.95	0.98	0.99	1.0
y	0.144	0.265	0.398	0.568	0.736	1.0

40. بهكن الستشدام منـنـي لورنز "انظر التبرين 39) لحساب
 A

. A_{2} إن
الشـر لهاذا
للبيانات الهنولرة قي التتربن 39

 $x_{1}=0.2, x_{0}=0,0$ ملى نجرز
 البنابل سـيكون $f\left(c_{1}\right)(0.2)+f\left(c_{2}\right)(0.4)+f\left(c_{3}\right)(0.3)+f\left(c_{4}\right)(0.1)$ لنغامط الغني

كل فتر (b) $i=1,2, \ldots, n+c_{i}=a+i \Delta x$ التّه بالنسبة لتبه تتطة الــتـعغ.

كل فتر $t=1.2 \ldots n \rightarrow c_{t}=a+(t-1) \Delta x$
 النهاية البــرى إلى تنقل الـهابة البـنـي.
$\lim _{n \rightarrow \infty} \sum_{n=1}^{n} \sqrt{2} \sqrt{1+i / n} \frac{2}{n} \frac{2}{n}$

$$
\text { ¢ } \lim _{n \rightarrow \infty} \sum_{n=0}^{\infty-1} \sqrt{\frac{1}{n}} \sqrt{1+2} \frac{2}{n} \text { 28. أي هساحة نسا }
$$

خي التهارين 32-29. استخدم التعريفات التالية. الهبیهوE

道

 [-2,2]
据 $\left.f(x)=x^{2}\right]$

$$
\text { العدد تغسـه عندما م } n \text {. . }
$$

33. تنسبب النتيجة التالية !الى أرشميدس. (راجي الهلامحـة
 حبث

هب

ڤي التهاربن 38-35. اسـتخدم ڤیمه الدالة الهعـطاة لتَدير
 اليسرى ونتـطة النهاية اليهنى.

 النـكل 17.12.

$$
\begin{equation*}
A=\lim _{n \rightarrow \infty} \sum_{t=1}^{n} f\left(c_{i}\right) \Delta x \tag{4.1}
\end{equation*}
$$

التعر بض 4.1

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

 (Δx

ملحووظة 4.1

بناسـب النتريت 4.1 بعظم الدوال الثل التي نكون هنصالة باستناء عدد صحدود صن الاء الانحمالات علي الأكثر). الأكثر
 نجزيات الغترات الغرعية ذات الأطوال الـنتلدة. بـكتث بيجاد
 الوحدة 13.

خابلة لل:كامل.

مـتال 4.1 تتريب قاعدة نتطة المنتصغ لتكامل معدود السنخدم ثاعدة نتطة المتنصف لنتدير

 $\int_{0}^{15} 30\left(1-e^{-x / 3}\right) d x \approx \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x=30 \sum_{i=1}^{n}\left(1-e^{-c_{i} / 3}\right)\left(\frac{15-0}{n}\right)$
حبث النتريبات الموجودة قبي الجدول المبين.
 أَّ 361 مترا بـتبر غخربيا منطثبا.

 $f(c ;) \Delta x=-$.

لرزية أثر ذلك على الهجبـوع، نأخذ المثال 4.2.
الهـال 4.2 مجهبوع ريهان لدالة لها قيم موجبة وسالبة $\left.\lim _{x \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x\right\rfloor$ y

الحل俍 $1=1,2, \ldots, n$ $y=f(x)$

7.15a الشكل

عــرة مسـتطبلات

R	n
361.5	10
3608	20
36116	50
3606	190

الشكل 7.14
$f(c)<0$

 ذانتا. من ذلك, للاحــ ان

والنب ثبين أنها شـاوي صغرا. فب هـه الحاله.

7.15c الـنـكل
أربعوت مـتطيلا

وعموما. لدبا رمز المساحة البشار اليها. والتي تعرفها الآن.

$$
\begin{aligned}
& \text { التعريف } 4.2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 和 }
\end{aligned}
$$

7.16 الشككل

الـساحة الـبـار البها

احسب النكاملين

$$
R_{n}=\sum_{i=1}^{n}\left[\left(\frac{3 i}{n}\right)^{2}-2\left(\frac{3 i}{n}\right)\right]\left(\frac{3}{n}\right)=\sum_{i=1}^{n}\left(\frac{9 i^{2}}{n^{2}}-\frac{6 i}{n}\right)\left(\frac{3}{n}\right)
$$

$$
=\frac{27}{n^{3}} \sum_{r=1}^{n} i^{2}-\frac{18}{n^{2}} \sum_{r=1}^{n} i
$$

$$
=\frac{9(n+1)(2 n+1)}{2 n^{2}}-\frac{9(n+1)}{n} .
$$

! إن إيجاد النهاية عندها $n \rightarrow \infty$ بعطبينا

$$
\int_{0}^{3}\left(x^{2}-2 x\right) d x=\lim _{n \rightarrow \infty}\left[\frac{9(n+1)(2 n+1)}{2 n^{2}}-\frac{9(n+1)}{n}\right]=\frac{18}{2}-9=0
$$

$$
\begin{aligned}
& \Delta x=\frac{2-0}{n}=\frac{2}{n} \\
& x_{1}=x_{0}+\Delta x=\frac{2}{n}, x_{0}=0 \text { لدبنا إ } \\
& x_{2}=x_{1}+\Delta x=\frac{2}{n}+\frac{2}{n}=\frac{2(2)}{n} \\
& \text {, } \\
& R_{i}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{N}\left(x_{i}^{2}-2 x_{i}\right) \Delta x \\
& =\sum_{i=1}^{n}\left[\left(\frac{2 i}{n}\right)^{2}-2\left(\frac{2 i}{n}\right)\right]\left(\frac{2}{n}\right)=\sum_{i=1}^{n}\left(\frac{4 i^{2}}{n^{2}}-\frac{4 i}{n}\right)\left(\frac{2}{n}\right) \\
& =\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2}-\frac{8}{n^{2}} \sum_{i=1}^{n} i \\
& =\left(\frac{8}{n^{3}}\right) \frac{n(n+1)(2 n+1)}{6}-\left(\frac{8}{n^{2}}\right) \frac{n(n+1)}{2} \text { (tii) , of } 2.1 \text { ن نطربة } \\
& =\frac{4(n+1)(2 n+1)}{3 n^{2}}-\frac{4(n+1)}{n}=\frac{8 n^{2}+12 n+4}{3 n^{2}}-\frac{4 n+4}{n} \\
& \text { إيجاد نباية } R_{n} \text { عندها } n \rightarrow \text { يعطينا القيهة الدفيغة للتكامل: } \\
& \int_{0}^{2}\left(r^{2}-2 x\right) d x=\lim _{n \rightarrow \infty}\left(\frac{8 n^{2}+12 n+4}{3 n^{2}}-\frac{4 n+4}{n}\right)=\frac{8}{3}-4=-\frac{4}{3}
\end{aligned}
$$

المسـاحة الوأثعة بين ميور -x والهنحنى،

$$
\begin{aligned}
& x_{2}=x_{1}+\Delta x=\frac{3}{n}+\frac{3}{n}=\frac{3(2)}{n}
\end{aligned}
$$

$[0,2] \quad y=x^{2}-2 x$
الشكل7.17 على

$\{0,3\} \quad y=x^{2}-2 x$
7.18 الشكل

 على الینر
السالب) 'ثعطى +

$$
\text { مثال } 4.4 \text { تقدير التغير الكلب في الــوتِع }
$$

至 $t \leq 0$ قي الـككل 7.19. ونعطي بواسطة

$$
A=\int_{0}^{x} \sin t d t-\int_{x}^{3 \pi / 2} \sin t d t
$$

n	$R_{n} \approx \int_{r}^{3 / 2} \sin t d t$
10	-1.0010
20	-1.0003
50	-1.0000
100	-1.0000

n	$R_{n} \approx f_{0}$ dintaf
10	2.0082
20	2.0020
50	2.0003
100	2.0001

$$
\int_{0}^{x} \sin t d t-\int_{x}^{3 x / 2} \sin t d t=2+1=3
$$

 $\int_{0}^{3 \pi / 2} \sin t d t=\int_{0}^{x} \sin t d t+\int_{x}^{3 \pi / 2} \sin t d t=2+(-1)=1$

لاحعا. ستغدم بیض التواعد العامة الخاصة بالتكاملات.

$$
\text { النظر بة } 4.2
$$

 - $\int_{a}^{b}|f(x)+d g(x)| d x=c \int_{a}^{b} f(x) d x+d \int_{a}^{k} g(x) d x \cdot d, c$ (c (i)

الشكل 7.19
$\left[0 . \frac{2 r}{2}\right] \quad y=\sin t$

$$
\begin{aligned}
& \text { البر هان } \\
& \text { من النعربش, ,لأي عددهن ثابتين } \\
& \int_{a}^{b}[f f(x)+d g(x)] d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[c f\left(c_{i}\right)+d g\left(c_{i}\right)\right] \Delta x \\
& =\lim _{n \rightarrow \infty}\left[c \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x+d \sum_{i=1}^{n} g\left(c_{i}\right) \Delta x\right] \quad 2.24,1 . \omega_{n} \\
& =c \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x+d \lim _{n \rightarrow \infty} \sum_{i=1}^{n} g\left(c_{i}\right) \Delta x \\
& =c \int_{a}^{b} f(x) d x+d \int_{a}^{b} g(x) d x
\end{aligned}
$$

$$
\begin{equation*}
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x \tag{4.2}
\end{equation*}
$$

بجب أن يبدو هذا منطغيا לي أنه إذا أجربنا الثكامل .!إلى الوراء." علي طورل العنرة. سيبدو

$$
\int_{a}^{x} f(x) d x=0
$$

7.20 الشكل داله منصلة منعددة الثعريغ

7.21a الشـكل
$y=f(x)$

7.21b الشكل

$$
\int_{0}^{3} f(x) d x=\int_{0}^{2} f(x) d x+\int_{2}^{3} f(x) d x=4+1=5
$$

نوجد هاصبي بسبطد الخرى للنكاملات الهحدودة. وهي كـا بلي.

$$
\text { النظر بة } 4.3
$$

على فرض أن

$$
\int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) d x
$$ $\int_{a}^{h}|f(x)-g(x)| d x$ بها أن

$$
0 \leq \int_{a}^{b}\left[f(x)-g(x) \mid d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x\right.
$$

البرهان

التيبـة الهتوسطة لدالة

7.22 الش. 7
!إن الدوال الіٔكبِبر لدبيا تكاملات

. 7.23 ور $f\left(x_{4}\right)$
 وعهوها, غالبا ما نريد حسـاب العيهة الهتوسطة لدالة f على فترة ها $,|a, b|\}$

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b
$$

$$
\begin{aligned}
& f_{\mathrm{nv}} \approx \frac{1}{n}\left|f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right| \\
& =\frac{1}{n} \sum_{i=1}^{n} f\left(x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{b-a} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x . \quad \Delta x=\frac{b-a}{n} \text { if Let }
\end{aligned}
$$

(4.3)

$$
f_{\mathrm{av}}=\lim _{n \rightarrow \infty}\left[\frac{1}{b-a} \sum_{r=1}^{n} f\left(x_{i}\right) \Delta x\right]=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

الهثال 4.6 حساب الحيهة الهتوسطة لدالة
الحعب الغبهة الهتوسطة لـ $f(x)=\sin x$ على الغنرة | 0 | 0 .

بهكنا تغريب قَبهة هذا التكامل عن طريق حمـاب بعض من مجهوع وبهان. للحصول على

الـساحة ذانیا $y=\sin x$,

$$
\begin{aligned}
& \int_{a}^{b} c d x=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} c \Delta x=c \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \Delta x=c(b-a) \\
& \text { بها أن }
\end{aligned}
$$

$$
x \in[a, b] \int 5 \int m \leq f(x) \leq M
$$

بناء على النظرية 4.3.

$$
\int_{a}^{b} m d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} M d x
$$

بـا أن M, M مي ثِم ثابتة. خسـنحصل على

$$
\begin{align*}
& m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) \tag{4.4}\\
& \\
& m \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq M
\end{align*}
$$

ويذلل.
 الدرس 1.4) انه

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

النظرية 4.4 (انظر بة التيبة الهتر سطة في التكامل)
! إذا كانت f دالة بنهـلة على
$f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

$$
\begin{aligned}
& \text { الهثال } 4.7 \text { تثدير قيهة التكامل }
\end{aligned}
$$

الحلل أو،

$$
\begin{aligned}
& x \in\left[0,1 \mid 1 \leq \sqrt{x^{2}+1} \leq \sqrt{2}\right. \\
& 1 \leq \int_{0}^{1} \sqrt{x^{2}+1} d x \leq \sqrt{2} \approx 1.414214
\end{aligned}
$$

$$
\text { II } \sqrt{2} \approx 1.414214,1 \text { بين }
$$

3
 . $f(b)(b-a)=\int_{0}^{t} f(x) d x$

 نتسها. فـا الذي بنغبي أن نـاربه

تـارين كتابية

 على الغترة كـكرن لدبـا 0 كا $\cdot \int_{0}^{\prime} f(x) d x<0 \quad \int_{0}^{1} f(x) d x>0$

فرض أن لور
 - انـرح لهادا بنبع ذلث $\int_{0}^{0} f(x) d x \geq \int_{0}^{b} g(x) d x$
24. $f(x)= \begin{cases}2 & x \leq 2 \quad 1! \\ 3 x & x>2\end{cases}$

25. $f(x)=2 x+1 .[0,4]$
26. $f(x)=x^{2}+2 x,[0,1]$
27. $f(x)=x^{2}-1,[1,3]$
28. $f(x)=2 x-2 x^{2},|0,1|$

29. $\int_{t / 3}^{x / 2} 3 \cos ^{2} d x$
30. $\int_{0}^{1 / 2} e^{-r^{2}} d x$
31. $\int_{0}^{2} \sqrt{2 x^{2}+1} d x$
32. $\int_{-1}^{1} \frac{3}{x^{2}+2} d x$

33. $\int_{0}^{2} 3 r^{2} d x(=8)$
34. $\int_{-1}^{1}\left(x^{2}-2 x\right) d x\left(=\frac{2}{3}\right)$

في التهرينين 36,36، استتخدم النظرية 4.2 لكتابة تعبير في هـورة تكامل بنغرد.
35. (a) $\int_{0}^{2} f(x) d x+\int_{2}^{3} f(x) d x$ (b) $\int_{0}^{3} f(x) d x-\int_{2}^{3} f(x) d x$
36. (a) $\int_{0}^{2} f(x) d x+\int_{2}^{1} f(x) d x$
(b) $\int_{-1}^{2} f(x) d x+\int_{2}^{3} f(x) d x$

37. (a) $\left.\int_{1}^{j} f(x)+g(x)\right] d x$
(b) $\int_{1}^{3}[2 f(x)-g(x)] d x$
33. (a) $\int_{1}^{3}|f(x)-g(x)| d x$
(b) $\int_{1}^{3}|4 g(x)-3 f(x)| d x$

خي التهرينين 40, 40، ارسم البسـاحة الهناظرة للتكامل.
39. (a) $\int_{1}^{2}\left(x^{2}-x\right) d x$
(b) $\int_{2}^{4}\left(r^{2}-x\right) d x$
40. (a) $\int_{0}^{\pi / 2} \cos x d x$
(b) $\int_{-2}^{2} e^{-x} d x$

1. $\int_{0}^{1}\left(x^{3}+x\right) d x$
2. $\int_{0}^{1} \sqrt{x^{2}+1} d x$
3. $\int_{0}^{\pi} \sin x^{2} d x$
4. $\int_{-2}^{2} e^{-r^{2}} d x$

ضي التمارين 8-5. أعط تنسير مساحة للتكامل.
5. $\int_{1}^{1} x^{2} d x$
6. $\int_{0}^{1} e^{2} d x$
7. $\int_{0}^{2}\left(r^{2}-2\right) d x$
8. $\int_{0}^{2}\left(x^{3}-3 x^{2}+2 x\right) d x$

9. $\int_{0}^{1} 2 x d x$
10. $\int_{1}^{2} 2 x d x$
11. $\int_{0}^{2} x^{2} d x$
12. $\int_{0}^{3}\left(r^{2}+1\right) d r$
13. $\int_{1}^{3}\left(x^{2}-3\right) d x$
14. $\int_{-2}^{2}\left(x^{2}-1\right) d x$

$$
\begin{aligned}
& y=4 x-x^{2} \text { 2 } 16
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq x \leq \pi \leq x \text { - } 19 \\
& -\frac{\pi}{2} \leq x \leq \frac{\pi}{4} J x \text { - } 20
\end{aligned}
$$

 والّهو فئع الابتداني لتقدير الهوتيع التهاني
21. $v(f)=40\left(1-e^{-2}\right), s(0)=0, b=4$
22. $v(f)=30 e^{-1 / 4}, s(0)=-1, b=4$

$$
\text { לي التهريتين } 23, \int(x) d x \text {. } 24 \text {. } 1
$$

23. $f(x)= \begin{cases}2 x & x<1 \quad 1! \\ 4 & x \geq 1 \quad!\end{cases}$

498 | الدرس 7-4 | النكامل الهحدد?
53. عبر عن كل نهابة في صـردَ تكابل
(a) $\lim _{n \rightarrow \infty} \frac{1}{n}\left[\sin \frac{\pi}{n}+\sin \frac{2 \pi}{n}+\cdots+\sin \frac{n \pi}{n}\right]$
(b) $\lim _{n \rightarrow \infty}\left(\frac{n+1}{n^{2}}+\frac{n+2}{n^{2}}+\cdots+\frac{2 n}{n^{2}}\right)$
(c) $\lim _{n \rightarrow \infty} \frac{f(1 / n)+f(2 / n)+\cdots+f(n / n)}{n}$
 نساوبي

النمطبيغات
55. على فرض أن. لهجنـبي معبن من الكاناتات الحبة. بكوت معدل الموالبد مسددا بعندار tأن معدل الوشيات محيدد بعشدار الشور. اسـرح سبب نثبيل الشيل

 المواليد محدد بغغدار وأن معدل الوغيات ميدده הي 1 + الشـر
 بعبث
 ذروته

 الـطلوب هو زبادة الحیِم من $V=2$ إلى $V=4$ ميحدد بِالتكامل . قدر تَبهة عـذا النكابل

 الكـرارة على مدار عام كامل. الـُرح مبب وضوّ الإبابة من النـئيل اليباني

تتضهن التهارين 62-59 الحعردة وي الزهـن الهناسب الذئي

 يصل نسليه العاصر Q بعد شـحن العنصر الأهير مباشثرة. على
 !
 لـ

بسا, يا عدد مرات السنحن
C C, $f(Q)=C_{0} \frac{1}{v}+C \frac{4}{2} \frac{1}{2}$

Co $0 \frac{0}{0}$

48.

غي التهارين 52-49. استخدم التدانين الهندسية لعساب التكامل.
49. $\int_{0}^{2} 3 x d x$
50. $\int_{1}^{4} 2 x d x$
51. $\int_{0}^{2} \sqrt{4-x^{2}} d x$
52. $\int_{-1}^{0} \sqrt{9-x^{2}} d x$

 F(t) بشير

 وعلى فرض أي 50% مبن أصيبو' بالعدوى أصـيوا با'زبدز بعد

(l - $g(1) F(3)+g(2) F(2)+g(3) F(1)$ $g(2)=30 g(1.5)=26, g(1)=20, g(0.5)=16$ خر .ل $ل$ ل $F(1.5)=0.2, F(1)=0.1, F(0.5)=0.1$, $F(3.5)=0.1, F(3)=0.1, F(2.5)=0.1, F(2)=0.3$,
鲑 ${ }^{F(t)} Q^{(t)}$

 U
 | \mid | ا اسنخدم هذا الشرط

$$
\begin{aligned}
& \text { ! ! } \\
& \text { النترة 10.101 } 10
\end{aligned}
$$

! إحدى الكرات سـاوي غيريـا
 الكر,5؟ باسـنخدام

السرعة الوتجزة

$0.4,0$, 0 مبوتّ. حبي تخراو $F(t)=1000-25,000(t-0.2)^{2}$
 63 6 63 لتندير التفير خي السرعة التتحهية الرأسية للأعب.

 الهشزون بساوي

الغبية الصطرى بن النكلعة الإجهـالبة
 الأنتصادية في التبرينبن 61, 60 وهو أن تثع نحغيضات على

 طلب من 1 إلى 99 عنصرا. يكون العـر 100 AED 2800 للعنصر.

 AED 1800 . . $C \frac{\rho}{8}+C_{c} \frac{O}{2}+P D$ الطلببي Q الذي بحتق اللبعة الصغري من اللككلغة الإجـالبه.
63.
 البتجهة据 $\Delta v=\Gamma(b)-r(a)$
\qquad

النـطرية الأساساسـية لكسـاب

 مثرابط

 بين النضاضل , النكاملـ.

النظر ية 5.1 (النظرية الأساسية لحساب التناضل والتكامل. الجزز • الأول)

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=F(b)-F(a) \tag{5.1}
\end{equation*}
$$

> البرهان
> |

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b
$$

كيب إن
كل عبليات الحذف. فابنه بِكنا كتابة

$$
\begin{align*}
F(b)-F(a) & =F\left(x_{n}\right)-F\left(x_{0}\right) \\
& =\left\{F\left(x_{1}\right)-F\left(x_{0}\right)\right]+\left[F\left(x_{2}\right)-F\left(x_{1}\right)\right]+\cdots+\left[F\left(x_{n}\right)-F\left(x_{n-1}\right)\right] \\
& \left.=\sum_{i=1}^{n} \mid F\left(x_{1}\right)-F\left(x_{i-1}\right)\right] \tag{5.2}
\end{align*}
$$

 تظرية الغيبة المتوسطة. يكون لابيا لكل

$$
\begin{align*}
& F\left(x_{i}\right)-\Gamma\left(x_{i-1}\right)=F^{\prime}\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)=f\left(c_{i}\right) \Delta x \tag{5.3}\\
& \text { لبصض } \\
& \left.F(b)-F(a)=\sum_{i=1}^{n} \mid F\left(x_{i}\right)-F\left(x_{i-1}\right)\right]=\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x \tag{5.4}
\end{align*}
$$

$$
\begin{aligned}
\int_{s}^{b} f(x) d x & =\lim _{a \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x=\lim _{s \rightarrow \infty}|F(b)-F(a)| \\
& =F(b)-F(a)
\end{aligned}
$$

-

ملحوظة 5.1

ســـتـنـم غالبا الرمز

$$
\left.F(x)\right|_{0} ^{b_{0}}=F(b)-F(a)
$$

وبذلك تتككن من كتابة الدالג الأصلبة خبل إيباد فبينها عـد النيطتين الطرثبتين.
الهـثال 5.1 استخدام النظربة الأساسية $\int_{0}^{2}\left(x^{2}-2 x\right) d x+{ }^{\prime}$

مـلاحظات
بنص الجزء الأول من النظربة
 البحدرد. ذابنا لا نحنـاح إY إلى
!إباد الداله الأصلية نه إبهاد

حي بعض الـسائل البسبطة.

ملاحظات تاريخية
النظرية الأساسبة لیساب
التغاضـل والتكامل تحدد
بداية حسـاب التناضل والتكامل علي أه منـي
كل من إسحاتو نيونت وغيوغريد
لايبنز، وضي نيوتن جـساب
النـاضلـ والنكامل الناص
فبي أواخر سـنينبات الترن الــابع

حتى عام 1687. اكتنـثـ لايبتر

أواسط سبعبأت الترن الـّابع
عئر ولكنه أعلن عتها فبل
نيوتن ذب عامب 1686, 1684 . تتنوق الرهوز والّصطلحات التياتي
استشدمها لايبنز، التّي بستشدم
الكني منها اليهم علي الثي

الثدلئ ,الانـسبا) , لكت نيوتن
 وبناء على خطابات من نيونى إلى لايبنز لي سبعبنات الثرن السـابي
 النناضل والتكامل. ونطورت تلت

 بالر بالضبات. تونغت الانتصالات
 100 عام 100 الرباضبات نائبرا كبيرا الثي الغرن السابي عنـر.

الحىل

$$
\int_{0}^{2}\left(x^{2}-2 x\right) d x=\left.\left(\frac{1}{3} x^{3}-x^{2}\right)\right|_{0} ^{2}=\left(\frac{8}{3}-4\right)-(0)=-\frac{4}{3}
$$

$$
\begin{aligned}
& \text { الهـال } 5.2 \text { حسـاب التكامل الهحدود بدگة } \\
& \int_{1}^{4}\left(\sqrt{x}-\frac{1}{x^{2}}\right) d x+\text { احسبا }
\end{aligned}
$$

 الأسـاسية. يها أن الدالة الأصلية للدالة $F(x)=\frac{2}{3} x^{3 / 2}+x^{-1}$. $F(x)$ يكور لديا

$$
\int_{1}^{4}\left(\sqrt{x}-\frac{1}{x^{2}}\right) d \mathrm{r}=\left.\left(\frac{2}{3} x^{3 / 2}+x^{-1}\right)\right|_{1} ^{4}=\left[\frac{2}{3}(4)^{3 / 2}+4^{-1}\right]-\left(\frac{2}{3}+1\right)=\frac{47}{12}
$$

 أوجد المساحة الواقَة نحت المـتحنى
 $=\int_{0}^{x} \sin x d x$
 على

- $\int_{0}^{\pi} \sin x d x=F(x)-F(0)=(-\cos \pi)-(-\cos 0)=-(-1)-(-1)=2$

الهـنال 5.4 تكامل مسدود يتضهـن دالة أسيـة

$$
\int_{0}^{4} e^{-2 x} d x+\text { احسب }
$$

 الأصلبة للدالة

- $\int_{0}^{4} e^{-2 x} d x=-\left.\frac{1}{2} e^{-2 x}\right|_{0} ^{4}=-\frac{1}{2} e^{-8}-\left(-\frac{1}{2} e^{0}\right) \approx 0.49983$

الهنال 5.5 تكامل بحدرد يتضهن لوغـاربتم

$$
\int_{-3}^{-1} \frac{2}{x} d x d x
$$

国

بينوا ماندلبروت (هو عالم رياضيات گَرتهبي احترع الهتدسـة الكسرية وطورما (انظطر
 الدرمس 9.1). وكان ماذدلبروت
 النوية. ويّتر بعض عمبليات التكامل الععتدة.
وجد ربطتها على النور بشكال
 مت الأنكال التب اطلعت عليدا مرة في أحد الكتّب ونذكرنـا على الدوام. بالإضـافة إلى

الهئسة الكسرية التي طورها ماندلبروت غدرتنا بدربية كـبرية لوصغ خصائص لضلرامتر مئل تركبب الرتين والعالب أو الجبال والسحبب. بالإضانة إلى سـوف
 صحبح

الحالة. بكون الخطأ كببر! اطلم بعنابة على ما يلي لهعرفة السبب).

$$
\begin{aligned}
\int_{-3}^{-1} \frac{2}{x} d x & =\left.2 \ln |x|\right|_{-3} ^{-1}=2(\ln |-1|-\ln |-3|) \\
& =2(\ln 1-\ln 3)=-2 \ln 3
\end{aligned}
$$

الهـثال 5.6 تكامل میدرد بـي متغير ضي الهد الأعلى
أ,

$$
=\int_{1}^{5} 12 t^{5} d t=\left.12 \frac{t^{6}}{6}\right|_{1} ^{x}=2\left(x^{6}-1\right)
$$

$$
\frac{d}{d x}\left[2\left(x^{6}-1\right)\right]=12 x^{5}
$$

$$
F(2)=\int_{1}^{2} 12 t^{5} d t
$$

وهذا بناظلر المباحة الواقعة نحت الـنحني وبالهثل. ثإن فَبَة الداله في $x=3$ نـاوي

$$
F(3)=\int_{1}^{3} 12 t^{5} d t
$$

, قي الوساهة الواو.

7.25c الـْكل

المــاحة من $1=1$ t $t=1$

7.25b الــكل
$t=3$ الهــاحة

7.25a الشكل
$t=2$ الهــاحة من 1 الـ

النظر بية (النظر بية الأساسية لیسـاب التناضل والتكامل. العز، الثاني)

البر هان

$$
\begin{align*}
F^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left[\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\int_{a}^{x+h} f(t) d t+\int_{1}^{a} f(t) d t\right]=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t \tag{5.5}
\end{align*}
$$

 على الفترة
4.4، نحصل على

$$
\begin{equation*}
\frac{1}{h} \int_{x}^{x+h} f(t) d t=f(c) \tag{5.6}
\end{equation*}
$$

ملحوظة 5.2

بينول اللبزء الـاني من التنـربة
 لها بديل. وبالنحديد. $\int_{\text {با }}$

$$
F^{\prime}(x) \text { 1-1 } F(x)=\int_{1}^{x}\left(t^{2}-2 t+3\right) d t
$$

الحل

$$
F^{\prime}(x)=f(x)=x^{2}-2 x+3
$$

 النظربة الاساسية لالجباد
$F(x)=\int_{1}^{x}\left(t^{2}-2 t+3\right) d t=\frac{1}{3} t^{3}-t^{2}+\left.3 t\right|_{1} ^{x}=\left(\frac{1}{3} x^{3}-x^{2}+3 x\right)-\left(\frac{1}{3}-1+3\right)$
هـن المهل انـتناف ذلك هباشـرة. وذلك للحصول على
$\Gamma^{\prime}(x)=\frac{1}{3} \cdot 3 x^{2}-2 x+3-0=x^{2}-2 x+3$

الهثال 5.8 استخخدام تَاعدة السلسلة والنظرية الأسـاسية. الجزء التاني

$$
\begin{aligned}
& \text { إذا كان } \\
& \text { الحلـ لنكن } u(x)=x^{2}, \\
& F(x)=\int_{2}^{u(x)} \cos l d t
\end{aligned}
$$

من ثاعـدة السلسـلـ.

- $\Gamma^{\prime}(x)=\cos u(x) \frac{d u}{d x}=\cos u(x)(2 x)=2 x \cos x^{2}$

الهثال 5.9 تكامل بیعدود بـع بتفير لي الحدين الأدنى والأعلى $F^{\prime}(x)$ إذا كانت
 ولذلك سـعبد أولا كتاية التكامل وفئ النظرية (ii) 4.2 كبا بانئ

$$
F(x)=\int_{2 x}^{0} \sqrt{t^{2}+1} d t+\int_{0}^{x^{2}} \sqrt{t^{2}+1} d t=-\int_{0}^{2 t} \sqrt{t^{2}+1} d t+\int_{0}^{x^{2}} \sqrt{t^{2}+1} d t
$$

ملحوظة 5.3

إن الــكل العام لعاعدة الــلـــلة المستخدمة فُي الهـال 5.8 مو: $\cdot g(x)=\int_{0}^{m(t)} f(t) d t$ t $g^{1} \xi^{\prime}(x)=f(u(x)) u^{\prime}(x) \quad{ }^{\prime}$ $\frac{d}{d x} \int_{a}^{\alpha u t} f(t) d t=f(u(x)) a^{\prime}(x)$

حهث بننا أبدلنا حدود النكامل في النكامل الأولـ. باسئخدام ثاعدة الصـلــلة كــا الـئال 5.8. سنحصل على

$$
\begin{aligned}
F^{\prime}(x) & =-\sqrt{(2 x)^{2}+1} \frac{d}{d x}(2 x)+\sqrt{\left(x^{2}\right)^{2}+1} \frac{d}{d x}\left(x^{2}\right) \\
& =-2 \sqrt{4 x^{2}+1}+2 x \sqrt{x^{4}+1}
\end{aligned}
$$

 حساب النكاملات والانـنتاقات أَور.

الهـثال 5.10 حسـاب مسافة الهيبر ط لجسسم بستط على ڤُرض أن السرعة الهنجوة (إلى الأسشل) لأحد لاعببي التغز الحر هعطى بالدالة
 الحل

$$
\begin{aligned}
d & =\int_{0}^{5}\left(9-9 c^{-7}\right) d t=\left.\left(9 t+9 c^{-7}\right)\right|_{0} ^{5} \\
& \left.=\left(45+9 e^{-5}\right)-\left(0+9 c^{\beta}\right)=36+9 e^{-5} \approx 36\right)
\end{aligned}
$$

الحل لِ لتكن (t) كان

$$
0 \leq t<1 \text { كان } 1 \text { ! } f(t)=20\left(t^{2}-1\right)<0
$$

$$
1<t \leq 3 \text { كا } 1
$$

$$
\text { بـا أن } 200 \text { = } t(0) \text {. سنحصل على }
$$

$$
w(3)-200=20(9-3)=120
$$

$$
w(3)=200+120=320
$$

ولذلك سيكون في الخزان 320 لترا في غخضون 3 دتانظ.

 النظرية الأماسبة للصصولل على بعض الهعلومات الـوهة عن الدالة

الهثال 5.12 !يجاد الههاس للدالة المعرفة على أنها تكامل $x=2$ للدالة

$$
r^{\prime}(x)=\ln \left[\left(x^{2}\right)^{3}+4\right] \frac{d}{d x}\left(x^{2}\right)=\ln \left[\left(x^{2}\right)^{3}+4\right](2 x)=2 x \ln \left(x^{6}+4\right)
$$

 (حيت ! $y=f(2)=\int_{4}^{4} \ln \left(t^{3}+4\right) d t=0$,

$$
y=(4 \ln 68)(x-2)
$$

ما بعد التوانين

$$
\int_{a}^{b} \Gamma^{\prime}(x) d x=F(b)-F(a) \text { and } \frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

$$
\begin{aligned}
& \int_{0}^{3} w^{\prime}(t) d t=\int_{0}^{3} 20\left(t^{2}-1\right) d t \\
& \text { بابِحاد لبهة النكاملات غبي كلا الطـرفين، بكون النانچ } \\
& w(3)-w(0)=\left.20\left(\frac{t^{3}}{3}-t\right)\right|_{t=0} ^{t=3}
\end{aligned}
$$

غيّ التهارين 24-19. أوجد الهساحة الهعطاة.
 $y=x^{2}-4 x$ 20. 20

24. الدساحه بين الداله

غي التهارين 32-25، أوجد الخشتثان (x)
25. $f(x)=\int_{0}^{\pi}\left(t^{2}-3 t+2\right) d t$
26. $f(x)=\int_{2}^{\pi}\left(z^{2}-3 t-4\right) d t$
27. $f(x)=\int_{0}^{r^{3}}\left(x^{-r^{2}}+1\right) d t$
28. $f(x)=\int_{x}^{2} \sec t d t$
29. $f(x)=\int_{0}^{2-x} \sin r^{2} d t$
30. $f(x)=\int_{2-1}^{t^{2}} e^{2} d t$
31. $f(x)=\int_{x^{2}}^{x^{3}} \sin (3 t) d t$
32. $f(x)=\int_{3,}^{\sin x}\left(t^{2}+4\right) d t$

 أن الوحدات مي الأمتار والنوانيِ.
33. $v(t)=12-\sin t, s(0)=2$
34. $v(t)=3 e^{-1}, s(0)=2$
35. $a(t)=1.2-t, v(0)=8, s(0)=0$
36. $a(t)=4.8-\digamma^{2}, D(0)=0, s(0)=30$
 لترا في الدتِيتة. (a) لكل الهاء ومخَى يتنافص. (b) إذا كان السزرأن بسـي 100 لترا من الهاء في

لـد
39. $y=\int_{0}^{x} \sin \sqrt{t^{2}+\pi^{2}} d t, x=0$

 التـرح لباذا كلبا نزابات هـر عغ الثـرح لـادا إذا كانت $F(x)$ منـانصغ. سـكـون كلا التعبرين سـالبين.

بتملف بـوضي

لالاستكهنال الهـزء الناتي من النظرية الأسـاسية بيانيا. فكر غي الدالة
اشرح لهاذا
 سـالبة. خإن

 ع عند تغبيم النكامل الـدرف. النـر لماذا لا نحـاع إلى إدراع - C

1. $\int_{0}^{2}(2 x-3) d x$
2. $\int_{0}^{3}\left(r^{2}-2\right) d x$
3. $\int_{-1}^{1}\left(x^{3}+2 x\right) d x$
4. $\int_{0}^{2}\left(x^{3}+3 x-1\right) d x$
5. $\int_{1}^{4}\left(x \sqrt{x}+\frac{3}{x}\right) d x$
6. $\int_{1}^{2}\left(4 x-\frac{2}{x^{2}}\right) d x$
7. $\int_{0}^{1}\left(6 e^{-x}+4\right) d x$
8. $\int_{0}^{2}\left(\frac{\rho^{2}-2 \mu^{x}}{\rho^{2}}\right) d x$
9. $\int_{x / 2}^{0}(2 \sin x-\cos x) d x$
10. $\int_{x / 4}^{x / 2} 3 \csc x \cot x d x$
11. $\int_{0}^{1 / 4} \sec t \tan t d t$
12. $\int_{0}^{\pi / 4} \sec ^{2} t d t$
13. $\int_{0}^{1 / 2} \frac{3}{\sqrt{1-x^{2}}} d x$
14. $\int_{-1}^{1} \frac{4}{1+x^{2}} d x$
15. $\int_{1}^{4} \frac{t-3}{t} d t$
16. $\int_{0}^{4} t(t-2) d t$
17. $\int_{0}^{1}\left(r^{3 / 2}\right)^{2} d x$
18. $\int_{0}^{1}\left(\sin ^{2} x+\cos ^{2} x\right) d x$
19. $\int_{0}^{\pi} \sec ^{2} x d x=\left.\tan x\right|_{r=0} ^{\tan }=\tan x-\tan 0=0$

حي التهرينين 53, 54. حدد التكاملات التي تنطبـي عليها النُّلر ية الأساسية لحساب النـناضل

53. (a) $\int_{0}^{4} \frac{1}{x-4} d x$
(b) $\int_{0}^{1} \sqrt{x} d x$
(c) $\int_{0}^{1} \ln x d x$
54. (a) $\int_{0}^{1} \frac{1}{\sqrt{x+2}} d x$
(b) $\int_{0}^{4} \frac{1}{(x-3)^{2}} d x$
(c) $\int_{0}^{2} \sec x d x$

لحي التهاربن 58-55. أوجـد التيهة الهتوسـلة للدالة على
55. $f(x)=x^{2}-1,[1,3]$
56. $f(x)=2 x-2 x^{2},[0,1]$
57. $f(x)=\cos x[0, \pi / 2]$
58. $f(x)=r^{\prime},[0,2]$
 .59

$$
\text { . } 60
$$

$$
e x>0 \text { لك } g^{\prime}(x)=f(x) \text {. } x>0
$$

$$
\text { 6. حدد كل القبم التصوى البحاية لـ } f(x)=\int_{0}^{\prime}\left(t^{2}-3 t+2\right) \text {. }
$$

62. أوجد المشتتات هن الرثبتبي الخّولى 3النانية لـ位 $\quad g(x)=\int_{0}^{2}\left(\int_{0}^{*} f(t) d t\right) d u$

الحاصبي البيانيه للدالة $y=g(x)$ الثب تنانظر المغر . $f(x) \mathrm{J}$

 $\lim _{x \rightarrow \infty} \int_{0}^{1} g_{0}(x) d x$ نـ. أوجد

التطبيبـات
 السـيارة بسر ععة

 العنصر. لنكن عنصر به. إن التكامل $\int_{0}^{Q} D(q) d$ مـنل في صورة عدد

$$
\begin{aligned}
& . \Gamma(x)=\int_{a}^{x} f(t) d t \text {. } 63 \\
& \text { انْيت أن } F(x) \text { عي دالة متصلة ولكن ليس صسبیا أن } \\
& \text { F } F^{\prime}(x)=f(x) \text { لكل } \\
& \text { النظربة الأساسبة لحساب التناضل والتكامل. }
\end{aligned}
$$

40. $y=\int_{-1}^{r} \ln \left(t^{2}+2 t+2\right) d t, x=-1$
41. $y=\int_{2}^{x} \cos \left(\pi t^{3}\right) d t, x=2$
42. $y=\int_{0}^{r} e^{-r^{2}+1} d t, x=0$

الأصلية الني تعلهناها سـابعأ.
43. $\int_{0}^{2} \sqrt{x^{2}+1} d x$
44. $\int_{0}^{2}(\sqrt{x}+1)^{2} d x$
45. $\int_{1}^{4} \frac{x^{2}}{x^{2}+4} d x$
46. $\int_{1}^{4} \frac{x^{2}+4}{x^{2}} d x$
47. $\int_{0}^{x / 4} \frac{\sin x}{\cos ^{2} x} d x$
45. $\int_{0}^{5 / 4} \frac{\tan x}{\sec ^{2} x} d x$据 الأكبر. في ما يـخص تتزايد خيبا g وحدد النعاط لالحر جئ أْجل g .
49.

50.

51. $\int_{-1}^{1} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{\operatorname{se-1}} ^{\infty-1}=-1-(1)=-2$

بیعتهلة الداله الد

 الشرح كل خطرط في العـلبة الحساسي

$$
\frac{d V}{d t}=\frac{d V}{d y} \frac{d y}{d t}=-f(y) f(y) \leq 0
$$

بـا ان 0 اN

 $y^{\prime}=2-2 y$ لنون

$$
f_{z}(x)=\left\{\begin{array}{cl}
2 n+4 n^{2} x & -\frac{1}{2 x} \leq x \leq 0 \\
2 n-4 n^{2} x & 0 \leq x \leq \frac{1}{2 n} \\
0 & 4 ل^{2}
\end{array}\right. \text { لتك }
$$

$$
\begin{aligned}
& \text {. } \lim _{n \rightarrow \infty} \int_{-1}^{1} f_{n}(x) d x \text { أنبت }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 隹 } \lim _{n \rightarrow \infty} f_{n}(x) \\
& \text { ¢ } \lim _{n \rightarrow \infty} \int_{-1}^{1} f_{v}(x) d x=\int_{-1}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x
\end{aligned}
$$

عنصرا إذا كان السپ Q
 (a) CS = $\int_{0}^{0} \dot{D}(q) d q-P Q$
 (b)

 T T $T(t)=Q-r \sqrt{t}$

الـوجودة في النبرين 67 لتسدبد الكبية الـنالية Q للطلبية

الدالג

)

naturame

$\frac{\pi}{4}=f(y)$ (1

التكامل بالتصويِضِ

 ،النكامل بالنيوبض.

الهـال 6.1 !يجاد الدالة الأصلية بعلريغة التجربة والهططا

$$
\text { أوجد فيبة } \int 2 x c^{r^{2}} d x
$$

الحل

$$
\begin{aligned}
& F(x)=x^{2} e^{x^{2}} \\
& \text { هي دالذ اهـلية للدالة 2xtrer } \\
& \frac{d}{d x}\left(x^{2} e^{r^{2}}\right)=2 x e^{x^{2}}+x^{2} e^{x^{2}}(2 x) \neq 2 x e^{1^{2}}
\end{aligned}
$$

$$
F^{\prime}(x)=e^{r^{2}} \frac{d}{d x}\left(x^{2}\right)=2 x e^{r^{2}}
$$

$\int 2 x e^{x^{2}} d x=e^{x^{2}}+c$
 النظر الى مـــنـنة فاعدة السـلسلة.

$$
\frac{d}{d x}|F(u)|=f^{\prime}(u) \frac{d u}{d x}=f(u) \frac{d u}{d x}
$$

بينا. على ذلت, نسـينتح أن
(6.1)

$$
\left.\left.\int f(u) \frac{d u}{d x} d x=\int \frac{d}{d x} \right\rvert\, F(u)\right] d x=F(u)+c=\int f(u) d u
$$

$$
d u \approx \frac{d u}{d x} d x
$$

$$
\int h(x) d x=\int f(u(x)) \frac{d u}{d x} d x=\int f(u) d u
$$

حبت إن النكاهل الناني بن السهولة إيجاد قبهنه أكتر بن الأولـ.

استبدال الحدود الصعبةا.

مـثال 6.2 السـتخـدام التعويض لإيجاد قيهة التكامل

$$
\int\left(x^{3}+5\right)^{100}\left(3 x^{2}\right) d x \text { أوجد قيبة }
$$

$$
\frac{d}{d x}\left(x^{3}+5\right)=3 x^{2}
$$

据 $d u=\frac{d}{d x}\left(x^{3}+5\right) d x=3 x^{2} d x$ $\int \underbrace{\left(x^{3}+5\right)^{100}} \underbrace{\left(3 r^{2}\right) d x}_{d}=\int u^{100} d u=\frac{u^{101}}{101}+c$
 الأصـلي x. للحصول على

$$
\int\left(x^{3}+5\right)^{100}\left(3 x^{2}\right) d x=\frac{u^{101}}{101}+c=\frac{\left(x^{3}+5\right)^{101}}{101}+c
$$

من الـغبد دانها إجر اه نحقز سربي على الدالة الأصلبة. (نذكر أن التكامل قالتناضل عدلبتان عكسبتان!! هـنا نحسب

$$
\frac{d}{d x}\left[\frac{\left(x^{3}+5\right)^{101}}{101}\right]=\frac{101\left(x^{3}+5\right)^{100}\left(3 x^{2}\right)}{101}=\left(x^{3}+5\right)^{300}\left(3 x^{2}\right)
$$

E الذذي هو العكامل الأهلي. هذا بؤكد أنيا بالعل وجدنا الدالة الأصلية.

التكامل بالتعويض

$$
d u=\frac{d u}{d x} d x \text { احسبـ }
$$

A

 $\int x \cos x^{2} d x$ أ, أرجد قبهـة الحـل غحظ أن

$$
\frac{d}{d x} x^{2}=2 x
$$

 النكامل وبعده وإعادة كنابة النكامل بصيغـة

$$
\int x \cos x^{2} d x=\frac{1}{2} \int 2 x \cos x^{2} d x
$$

$$
\text { سـنتوم بالنعويض الأن } u=x^{2} .
$$

$$
\int x \cos x^{2} d x=\frac{1}{2} \int \underbrace{\cos x^{2}}_{\operatorname{con} x} \underbrace{(2 x) d x}_{\Delta}
$$

$$
=\frac{1}{2} \int \cos u d u=\frac{1}{2} \sin u+c=\frac{1}{2} \sin x^{2}+c .
$$

עحظ برد أخرى. كتؤ بن النحـقى

$$
\frac{d}{d x}\left(\frac{1}{2} \sin x^{2}\right)=\frac{1}{2} \cos x^{2}(2 x)=x \cos x^{2}
$$

|l| الذي هو المكامل الأهلب.

هـثال 6.4 الستّخدام التـويضد دالة بـليةي اساس توة

$$
\int(3 \tan x+4)^{5} \sec ^{2} x d x \text { اوجد فبـة }
$$

$$
\begin{aligned}
\int(3 \tan x+4)^{5} \sec ^{2} x d x & =\frac{1}{3} \int \underbrace{(3 \tan x+4)^{5}} \underbrace{\left(3 \sec ^{2} x\right) d x} \\
& =\frac{1}{3} \int u^{5} d u=\left(\frac{1}{3}\right) \frac{u^{6}}{6}+c \\
& =\frac{1}{18}(3 \tan x+4)^{6}+c
\end{aligned}
$$

Sine 6.5 استغـدام التعويض: دالة جذربة داخل

$$
\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x \text { أوجد فيسة }
$$

 كنت مخطرا لتعوبض سبئ. فباذا نختار؟ ربها
 لـ

$$
\begin{aligned}
\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x & =2 \int \underbrace{\sin \sqrt{x}}_{\sin \Delta} \underbrace{\left(\frac{1}{2 \sqrt{x}}\right) d x}_{d x} \\
& =2 \int \sin u d u=-2 \cos u+c=-2 \cos \sqrt{x}+c
\end{aligned}
$$

 $\int \frac{x^{2}}{x^{3}+5} d x$ أوجد قيبـ) الحل

$$
\begin{aligned}
\int \frac{x^{2}}{x^{3}+5} d x & =\frac{1}{3} \int \underbrace{\frac{1}{x^{3}+5}}_{u} \underbrace{\left(3 x^{2}\right) d x}_{\Delta}=\frac{1}{3} \int \frac{1}{u} d u \\
& =\frac{1}{3} \ln |u|+c=\frac{1}{3} \ln \left|x^{3}+5\right|+c
\end{aligned}
$$

 الناني في النظربة 6.1.

$$
\begin{aligned}
& \text { النظـر بة } 6.1 \\
& \int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c \quad f \cdot \frac{1}{f}
\end{aligned}
$$

$$
\text { لنكن } d u=f^{\prime}(x) d x \text {, } u=f(x) \text { فبك, }
$$

$$
\begin{aligned}
\int \frac{f^{\prime}(x)}{f(x)} d x & =\int \underbrace{\frac{1}{f(x)}} \underbrace{f^{\prime}(x) d x}_{u} \\
& =\int \frac{1}{u} d u=\ln |u|+c=\ln |f(x)|+c
\end{aligned}
$$

كـا هوامل بطلوب. وكبديل لهذا الازبات. بهكنك بيساطة حساب|

نذكر أننا ذكرنا مذه النتيجة بالیل لي الدرس 1-7 (التنيجة 1.2). من المهـ جدا النكرار منا في سباف النعوبض.

مــال 6.7 الدالة الأهسلية لدالة الطل
$\int \tan x d x$ أوجبد
الحل

$$
\begin{aligned}
\int \tan x d x & =\int \frac{\sin x}{\cos x} d x=-\int \underbrace{\frac{1}{\cos x}}_{u} \underbrace{(-\sin x) d x}_{u} \\
& =-\int \frac{1}{u} d u=-\ln |u|+c=-\ln |\cos x|+c
\end{aligned}
$$

$\frac{d}{d x}(\cos x)=-\sin x$ حيد اسنخدمنا حفيغة أن

مــال 6.8 تعويض معكوس دالة الظل $\int \frac{\left(\tan ^{-1} x\right)^{2}}{1+x^{2}} d x$ أوجد
الحلـ مرة أخرى. بكهن الحل في البحث عن نعويض. بـا أن

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}
$$

$$
\text { لثكن } u=\tan ^{-1} x \text { بحبث يكون } d u=\frac{1}{1+x^{2}} d x \text { ولدينا الڭ̀ }
$$

$$
\int \frac{\left(\tan ^{-1} x\right)^{2}}{1+x^{2}} d x=\int \underbrace{\left(\tan ^{-1} x\right)^{2}}_{x} \underbrace{\frac{1}{1+x^{2}} d x}_{A}
$$

$$
=\int u^{2} d u=\frac{1}{3} u^{3}+c=\frac{1}{3}\left(\tan ^{-1} x\right)^{3}+c
$$

 صـب بئكل خاص خي ألبكامل.

مثال 6.9 تعويض يساعد على توسـي المكامل

$$
\int x \sqrt{2-x} d x \text { أوجد فيبة }
$$

 هذه النـويضات في النكامل. نحصل على

$$
\begin{aligned}
\int x \sqrt{2-x} d x & =(-1) \int \underbrace{x}_{2-n} \underbrace{\sqrt{2-x}}_{\sqrt{n}} \underbrace{(-1) d x}_{d u} \\
& =-\int(2-u) \sqrt{u} d u
\end{aligned}
$$

بينـا Y بيكتنا إيجاد فيهد مذا النكامل مباشرة. خإذا ضـربنا الحدود. سـتحصل على

$$
\begin{aligned}
\int x \sqrt{2-x} d x & =-\int(2-u) \sqrt{u} d u \\
& =-\int\left(2 u^{1 / 2}-u^{3 / 2}\right) d u \\
& =-2 \frac{u^{3 / 2}}{\left(\frac{3}{2}\right)}+\frac{u^{5 / 2}}{\left(\frac{5}{2}\right)}+c \\
& =-\frac{4}{3} u^{3 / 2}+\frac{2}{5} u^{5 / 2}+c \\
& =-\frac{4}{3}(2-x)^{3 / 2}+\frac{2}{5}(2-x)^{5 / 2}+c
\end{aligned}
$$

التحويض فُي التكاملات المـحدودة

 الهعابلة لـ

$$
\int_{a}^{b} f(u(x)) u^{\prime}(x) d x=\int_{u(u)}^{v(1)} f(u) d u
$$

مثال 6.10 استخدام التعويض في التكامل الهحدود

$$
\int_{1}^{2} x^{3} \sqrt{x^{4}+5} d x \text { أ, }
$$

$\frac{4}{4}\left(x^{4}+5\right)=4 r^{3}$ الحلِ بالطبع فـ . سنتوم بالتوبض $x=1$

$$
\begin{aligned}
u & =x^{4}+5=1^{4}+5=6 \\
u & =x^{4}+5=2^{4}+5=21
\end{aligned} \quad x=2 \text { L. } 2,
$$

$$
\begin{aligned}
\int_{1}^{2} x^{3} \sqrt{x^{4}+5} d x & =\frac{1}{4} \int_{1}^{2} \underbrace{\sqrt{x^{4}+5}}_{\sqrt{4}} \underbrace{\left(4 x^{3}\right) d x}_{d}=\frac{1}{4} \int_{6}^{21} \sqrt{u} d u \\
& =\left.\frac{1}{4} \frac{u^{3 / 2}}{\left(\frac{3}{2}\right)}\right|_{6} ^{21}=\left(\frac{1}{4}\right)\left(\frac{2}{3}\right)\left(21^{3 / 2}-6^{3 / 2}\right)
\end{aligned}
$$

تنـبـ4

蓡 بهـر

 الأصلبة خبل إبجاد القبية!)

 نوصب بيتجنبها. لعدة أسباب. أولا نغبير حدود النكامل لبس بالأمر الـنـاق وبينت太 عنه تعابير رباضبات

مـثال 6.11 التعويض فمب تكامل بسدود يتضنمن أسـا

$$
\int_{0}^{15} t e^{-t^{2} / 2} d t
$$

الححل كالعادة نبحث عن حدود هشتغة من حدود اخرى. هنا Y بد أن الاحظ أن
 $u=0$. $t=0$ ثناظط $t=0=-\frac{(15)^{2}}{2}=-\frac{225}{2} t=15$ ذلك يعطينا

$$
\begin{aligned}
\int_{0}^{15} t e^{-r^{2} / 2} d t & =-\int_{0}^{15} \underbrace{e^{-t^{2} / 2}}_{r} \underbrace{(-t) d t}_{\Delta} \\
& =-\int_{0}^{-225 / 2} e^{14} d u=-\left.c^{x}\right|_{0} ^{-1125}=-e^{-1125}+1
\end{aligned}
$$

7.6

الـعادلات وأوجد كل الأخطلا. باسننخدام
تهارين كتابية

$$
\begin{aligned}
\int_{0}^{2} x \sin x^{2} d x & =\int_{0}^{2}(\sin u) x d x=\int_{0}^{2}(\sin u) \frac{1}{2} d u \\
& =-\left.\frac{1}{2} \cos u\right|_{0} ^{2}=-\left.\frac{1}{2} \cos x^{2}\right|_{0} ^{2} \\
& =-\frac{1}{2} \cos 4+\frac{1}{2}
\end{aligned}
$$

3

1. لبس من الخططأ أبدا أن نتوم بالنعوبض في نكاهل معبن. , التعويض $\int x^{3} \sqrt{x^{2}+1} d x=\int \frac{1}{2} u \sqrt{u+1} d u$
tلكّن الـكامل الحديد لبس أسـهل من النكامل الأصلي. أوجد
 الزمـن الذي بـب النحلب لـه عن النعويض.
2. لبه مسنبعدا على الطلابه الدارسين للنعويض السـنحدام
 غغد يونر على درجاتا! احتبر التالب بعابة من سـلسـلة
3. $\int_{-1}^{1} \frac{t}{\left(t^{2}+1\right)^{2}} d t$
4. $\int_{0}^{2} r^{2} e^{\prime} d t$
5. $\int_{0}^{2} \frac{e^{2}}{1+e^{2 x}} d x$
6. $\int_{0}^{2} \frac{e^{\prime}}{1+e^{\prime}} d x$
7. $\int_{t / 4}^{x / 2} \cot x d x$
8. $\int_{1}^{r} \frac{\ln x}{x} d x$
9. $\int_{1}^{4} \frac{x-1}{\sqrt{x}} d x$
10. $\int_{0}^{1} \frac{x}{\sqrt{x^{2}+1}} d x$

11. (a) $\int_{0}^{x} \sin x^{2} d x$
(b) $\int_{0}^{\pi} x \sin x^{2} d x$
12. (a) $\int_{-1}^{1} x e^{-r^{2}} d x$
(b) $\int_{-1}^{1} e^{-x^{2}} d x$
13. (a) $\int_{0}^{2} \frac{4 x^{2}}{\left(x^{2}+1\right)^{2}} d x$
(b) $\int_{0}^{2} \frac{4 x^{3}}{\left(x^{2}+1\right)^{2}} d x$
14. (a) $\int_{0}^{\pi / 4} \sec x d x$
(b) $\int_{0}^{\pi / 4} \sec ^{2} x d x$

15. $u=x^{2}$ for $\int_{0}^{2} x f\left(x^{2}\right) d x$
16. $u=x^{3}$ for $\int_{1}^{2} x^{2} f\left(x^{3}\right) d x$
17. $u=\sin x$ for $\int_{0}^{s / 2}(\cos x) f(\sin x) d x$
18. $u=\sqrt{x}$ for $\int_{0}^{4} \frac{f(\sqrt{x})}{\sqrt{x}} d x$
 غو دية إذا كان
انبيت إذا كانت

$$
\text { كانت f كردية. أنبـ ان. . } \int_{--} f(x) d x=0
$$

50 $5(x+T)=f(x)$ (50

$$
I=\int_{0}^{10} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} d x
$$

Yابحاد לبهة I.

$$
\int_{a}^{+/ 2} \frac{\sin x}{\sin x+\cos x} d x \operatorname{dec}
$$

1. $\int x^{2} \sqrt{x^{3}+2} d x, u=x^{3}+2$
2. $\int x^{\prime}\left(x^{4}+1\right)^{-2 / 3} d x, u=x^{4}+1$
3. $\int \frac{(\sqrt{x}+2)^{3}}{\sqrt{x}} d x \cdot u=\sqrt{x}+2$
4. $\int \sin x \cos x d x, u=\sin x$

قي التهارين من 5 إلى 30. أوجد قَيهة التكامل غير البحدود.
5. $\int x^{3} \sqrt{x^{4}+3} d x$
6. $\int \sqrt{1+10 x} d x$
7. $\int \frac{\sin x}{\sqrt{\cos x}} d x$
8. $\int \sin ^{3} x \cos x d x$
9. $\int t^{2} \cos t^{3} d t$
10. $\int \sin t(\cos t+3)^{1 / 4} d t$
11. $\int x r^{r^{2}+1} d x$
12. $\int e^{\prime} \sqrt{e^{4}+4} d x$
13. $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$
14. $\int \frac{\cos (1 / x)}{x^{2}} d x$
15. $\int \frac{\sqrt{\ln x}}{x} d x$
16. $\int \sec ^{2} x \sqrt{\tan x} d x$
17. $\int \frac{1}{\sqrt{u}(\sqrt{u}+1)} d u$
18. $\int \frac{v}{v^{2}+4} d v$
19. $\int \frac{4}{x(\ln x+1)^{2}} d x$
20. $\int \tan 2 x d x$
21. $\int \frac{\left(\sin ^{-1} x\right)^{3}}{\sqrt{1-x^{2}}} d x$
22. $\int \mathrm{r}^{2} \sec ^{2} x^{3} d x$
23. (a) $\int \frac{x}{\sqrt{1-x^{4}}} d x$
(b) $\int \frac{x^{3}}{\sqrt{1-x^{4}}} d x$
24. (a) $\int \frac{x^{2}}{1+x^{6}} d x$
(b) $\int \frac{x^{5}}{1+x^{6}} d x$
25. (a) $\int \frac{1+x}{1+x^{2}} d x$
(b) $\int \frac{1+x}{1-x^{2}} d x$
26. (a) $\int \frac{3 \sqrt{x}}{1+x^{3}} d x$
(b) $\int \frac{x \sqrt{x}}{1+x^{5}} d x$
27. $\int \frac{2 t+3}{t+7} d t$
25. $\int \frac{t^{2}}{\sqrt[3]{t+3}} d t$
29. $\int \frac{1}{\sqrt{1+\sqrt{x}}} d x$
30. $\int \frac{1}{x \sqrt{x^{4}-1}} d x$

ثي التهاربن من 31 إلى 40. أو هـد قيهة الـكامل الهـيدود.
31. $\int_{0}^{2} x \sqrt{x^{2}+1} d x$
32. $\int_{1}^{1} x \sin \left(x x^{2}\right) d x$
． $\bar{y}=\frac{\left.\int_{d}^{\prime} U(x)\right|^{2} d x}{2 f^{\prime} f(x) d x}, f=\frac{\int_{1}^{b} x f(x) d x}{\int_{a}^{t} f(x) d x}, 52$
$\bar{x}=0$ 任

$$
y \quad y=\frac{1}{2 \pi} \int_{0}^{2}\left(4-x^{2}\right) d x
$$

 ，وصـها
 باخنمار مكان احتبال ثواجد هذه الحيوانات．أوجد الكنانة الكلية لهجتثب الحبوانات

54．جهد النبار الیثردد（نبار منناوبا لدارة كهر بانية بعطى بالدالة

 الجذر النربيعي للنيبة الـتوسـطة لـربي اللجهد خلال دوروة

$$
\text { الهيلبية } \mathrm{rms}=V_{r} / \sqrt{2} .
$$

$$
f(t)= \begin{cases}-1 & \text { if }-2 \leq t<-1 \\ t & \text { if }-1 \leq t \leq 1 \\ 1 & \text { if } 1<t \leq 2\end{cases}
$$

$$
\mathrm{rms}=\sqrt{\frac{1}{4} \int_{-2}^{2} f^{2}(t) d t}
$$

1－إن نظلم الهغترس－الغريسة عبارة عن مسبوعة من مبادلات

$$
\left\{\begin{array}{l}
\left.r^{\prime}(t)=r(t) \mid a-h y(t)\right] \\
y^{\prime}(t)=y(f)[d r(t)-c]
\end{array}\right.
$$

 بالصبغة الا
 （t） للغربسة و y \＆x ，$x(t)=y(t)=0$ هتزايدان أم متنافصان أو بظلان كايتين？الشرح لهاذا بعد ذلك هنطعبا على الهستوى الهادي
据

 ［ فنر女 $]$

在 $l=\int_{2}^{4} \frac{\sin ^{2}(9-x)}{\sin ^{2}(9-x)+\sin ^{2}(x+3)} d x d \rightarrow 4$ $I=\int_{2}^{4} \frac{\sin ^{2}(x+3)}{\sin ^{2}(9-x)+\sin ^{2}(x+3)} d x$ النعوريض $u=6-x=6$
 f على｜2｜2｜， $f \int_{0}^{2} \frac{f(x+4)}{f(x+4)+f(6-x)} d x$ 持

على

 ． 9.

55．توجد غالبا طرانق عده لحساب الدالة الأصلية．للتكامل

 التعوبض $2 \ln |\ln x|+c$ وضح أن هانين الإجايتين متساويتين．

 برهن أن الـبـاحنين هنــاوينان．

 النتريض
$\int_{-2}^{1} x\left(4 x^{3}\right) d x=\int_{10}^{1} u^{1 / 4} d u=\left.\frac{4}{5} w^{5 / 4}\right|_{-10} ^{-1}=\frac{4}{5}-\frac{32}{5}=-\frac{18}{5}$
 بتنـكل صتحبح．الدأ السنخدم النعوبضو

$$
\int_{0}^{e} \cos x(\cos x) d x=\int_{0}^{e} \sqrt{1-u^{2}} d u=0
$$

 60．أوجد نبية $\int \frac{1}{|x| \sqrt{x^{2}-1}} d x$隹 $u=1 / x$ استشدم إجابتك

التقلبيتات
 بين $y=f(x)>0, a \leq x \leq h$ وال＋حور $y=0$ بعطى بالدالغ

（c） $\int_{-1}^{1} \delta(2 x) d x$ ，（b） $\int_{0}^{1} \delta(2 x-1) d x$ ，（a） $\int_{0}^{1} \delta(x-2) d x$
 النناضل والنكامل لبر هـتة أن （أر
 الأساس＂
$\int_{0}^{1} \quad x$ ． 3
$\int_{0}^{1} f(x) d x$ ，$f(2 x)=3 f(x)$ and $f\left(x+\frac{1}{2}\right)=\frac{1}{3}+f(x)$ ，

在 $1 \cdot \int_{0}^{T} \frac{x^{\prime}(t)}{x(t)} d t=\int_{0}^{T} a d t-\int_{0}^{T} b y(t) d t$ $x(t)$ لتئث أن

 النوازن

据

التكامل (العددو

 دالג أصلبة أولى. أوالدالג الأصلية الخألى نعنى بيا الدالة الأصلبة الني بعكن النعبير عنتها
 سبـيل المثال.

$$
\int_{0}^{2} \cos \left(x^{2}\right) d x
$$

(تستفرق وقنا كبيرا في ذلك.

 كتغربب للنكامل.

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{m} f\left(c_{i}\right) \Delta x
$$

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x, \\
& \text { هبت } \\
& i=1,2 \ldots, n \quad \text { 」 } c_{i}=\frac{1}{2}\left(x_{t-1}+x_{t}\right)
\end{aligned}
$$

7.26 الشكل

خاعده نیطة العنتصغ
نكرن محامبي ربـان

$$
\left[f\left(\frac{1}{8}\right)+f\left(\frac{3}{8}\right)+f\left(\frac{5}{8}\right)+f\left(\frac{7}{8}\right)\right]\left(\frac{1}{4}\right)=\left(\frac{3}{64}+\frac{27}{64}+\frac{75}{64}+\frac{147}{64}\right)\left(\frac{1}{4}\right)
$$

$$
=\frac{252}{256}=0.984375
$$

$$
\int_{0}^{1} 3 x^{2} d x=\left.\frac{3 x^{3}}{3}\right|_{0} ^{1}=1
$$

 ذلك لوحة عامة مغترحـة لهتا البر امامح.

تاعدة نتطة الهنتصف

5. كرر الخططوة 4 حتى
6. الخرب المبجـوع في xu.

الححل Y بد من التأكيد على الغيم خي الجدول أدناه. أدرجـا عـوودا يعرض أخطاء التعريب لكل n (بعغنى آخر. الغرف بين الغيمة الحقيغبة للـدد 1 والغبم النغريبية).

Ler		\#
0.015625	0.984375	4
0.00390625	0.99609375	8
0.00097656	0.99902344	16
000024414	0.99975586	32
0.00006104	0.99993896	64
000001526	0.99998474	128

$$
\begin{aligned}
& \text {. } n \text {, } f(x), a, b \text {, } 1 \\
& \Delta x=\frac{b-a}{n} \text { 1. } 2 \\
& \text {. } 3 \\
& \text { 4. } 4 \text { احسب التالب }
\end{aligned}
$$

 الأهلبي للمكاهـ.

الهـال 7.3 !يجاد تثر بب بدتة بعطلة
استخدم هاعده تنطة العنتصغ لنغر بـب

$$
\int_{0}^{2} \sqrt{x^{2}+1} d x \approx 2.958
$$

 النصوص الخاصة بالتحلبل العددي.

بوجد سبب مهم آخر بجعلنا نسعي خلغ الطـرانت العددية وهو فبي حالة عدم بعرفتّنا للدالة

 المأحوذة هن عدد هحدود هئ النعاطـ.

$$
\text { الهـيال } 7.4 \text { تتدير الثكامل بن جـدول هِيه الدوال }
$$

ثدر الظاهر خي الهامس،

 أضلاعم
 عمد الطـرد الأهن.

	n
2.95639	10
2.95751	20
2.95772	30
2.95779	40

العساحة الكلبه لأشباه الـتححرو الأربعة هيء

$$
\frac{f(0)+f(0.25)}{2} 0.25+\frac{f(0.25)+f(0.5)}{2} 0.25+\frac{f(0.5)+f(0.75)}{2} 0.25
$$

$$
+\frac{f(0.75)+f(1)}{2} 0.25
$$

$$
=[f(0)+2 f(0.25)+2 f(0.5)+2 f(0.75)+f(1)] \frac{0.25}{2}=1.125
$$

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b
$$

بحيت نكوي نتاطل التجئنة متباعـدة المـسافات وهتسـاوية. أي:
في كل فنرة حزنئة |
 نحت الـنحني غب العترة

$$
A_{i} \approx \frac{1}{2}\left|f\left(x_{i-1}\right)+f\left(x_{i}\right)\right| \Delta x
$$

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx\left[\frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}+\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}+\cdots+\frac{f\left(x_{n-1}\right)+f\left(x_{n}\right)}{2}\right] \Delta x \\
& \left.=\frac{b-a}{2 n} v\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

نوضع ذلك غي السككل 7.29. لامط أن كل الحدود الوسطبة مضروبة خي 2. بها أن كل
 الحلر الـ الأبين

$\int_{a}^{b} f(x) d x \approx I_{n}(f)=\frac{b-a}{2 n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$

 علي 2.

بيانات بن داله غبر بدرون

7.28 الشـكل

قاعدة شبه الهنـحرةٍ

7.29 الشكل
(

الهثال 7.5 استتخدام قاعدة شبه الهنحرف

للاعدة نسبه الـنـحر فـ بـ
$T_{4}(f)=\frac{1-0}{(2)(4)}\left[f(0)+2 f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{2}\right)+2 f\left(\frac{3}{4}\right)+f(1)\right]$
$=\frac{1}{8}\left(0+\frac{3}{8}+\frac{12}{8}+\frac{27}{8}+3\right)=\frac{66}{64}=1.03125$.
وباسنخدام برنامـج

Lh	$T_{2}(\rho$	n
0.03125	1.03125	4
0.0078125	1.0078125	8
0.00195313	1.00195313	16
0.00048828	1.00048828	32
0.00012207	1.06012207	64
0.00003052	1.00003052	128

أدرجنا ععودا يبين الحطأ (الغيهة الهطلغة للغرئ بين الفيبة الحنبغية للعدد 1 والغيبة
 الـخطوات. يصغر الـخطا يها بغرب من عامل 4. تاعـدة سـيمببسونى

$$
\begin{gather*}
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b, \\
x_{i}-x_{i-1}=\frac{b-a}{n}=\Delta x \tag{4}
\end{gather*}
$$

 الشكل 7.30). وهكذا. تبحت عن الدالة التر بيعبة (x) الت التي بهر ندثبلوا البباني بالنعاط البلاث بحيت

$$
p\left(x_{i}\right)=f\left(x_{i}\right), \quad p\left(x_{i-1}\right)=f\left(x_{i-1}\right), p\left(x_{i-2}\right)=f\left(x_{i-2}\right)
$$

نستخدم مـذد لنغربـ تِبهة نكامل f علي الفنرة

$$
\int_{x_{i-2}}^{L_{1}} f(x) d x \approx \int_{x_{1-2}}^{x_{1}} p(x) d x .
$$

$$
\begin{aligned}
\int_{x_{i-2}}^{x_{1}} f(x) d x & \left.\approx \int_{x_{i, 2}}^{x_{1}} p(x) d x=\frac{x_{i}-x_{i-2}}{6} f\left(x_{i-2}\right)+4 f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \\
& \left.=\frac{b-a}{3 n} f f\left(x_{i-2}\right)+4 f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]
\end{aligned}
$$

7.30 الشـكل

تاعـدة بسـبعبـوت

 الطربية العددبة النب نـرُف الآن

 وكـؤلع للكتب, Ladies' Diary الدراسبية وغي كثناب الدراسي لحساب التناضِل والتكامل
 الندنئ. مسنـنـدما مصطلحات

نيونن بعلم حسـاب النهاضـلـ

للعديد من علهاه الرباهـبات.

$$
\int_{a}^{b} f(x) d x
$$

$$
\left.\approx \frac{b-a}{3 n} f f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{b-a}{3 n}\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+\cdots
$$

$$
+\frac{b-a}{3 n}\left[f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

$$
\left.=\frac{b-a}{3 n} f f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\cdots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) .
$$

نأكد هن هلا
$S_{n}(f)$.
سبـبـسون

$$
\int_{a}^{b} f(x) d x \approx S_{n}(f)=\frac{b-a}{3 n} f f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right) .
$$

سـنوضي لاحقا استنخدام تاعدذ سبـبسون لتكاهل بسبـد

الهـثال 7.6 استخخدام ثاعدة سـيهبسـون
قرب فيبة $n=4$ فر الحل

$$
S_{4}(f)=\frac{1-0}{(3)(4)}\left[f(0)+4 f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{2}\right)+4 f\left(\frac{3}{4}\right)+f(1)\right]=1
$$

 3 آٔو الصنارْر.

في الهثال 7.7. ثوضح خاعده سيهبسون لتكامل هعين لا نعرف كبغية إيجاد فيته الدفبغة.
الهتال 7.7 استتخدام برناهـح لمتاعدة سيهبسـون

 الحلِ

$$
\begin{aligned}
S_{4}(f) & =\frac{2-0}{(3)(4)}\left[f(0)+4 f\left(\frac{1}{2}\right)+2 f(1)+4 f\left(\frac{3}{2}\right)+f(2)\right] \\
& =\left(\frac{1}{6}\right)\left[1+4 \sqrt{\frac{5}{4}}+2 \sqrt{2}+4 \sqrt{\frac{13}{4}}+\sqrt{5}\right] \approx 2.95795560 .
\end{aligned}
$$

n	$S_{n}(f)$
4	2.9579556
8	2.9578835
16	2.95788557
32	2.95788571
64	2.95788571
128	2.95788572

بها أن هعظم النـنبلات الببانبة نتحني بشكل ها. فتد نتوفِ أن نُتوم التطوع الدكافنة
 بوضع الــنال 7.8, يهكن أن نكون فاعده سيهبسون أكثر دثة بكثبر من فاعدة نخطة الونتصف او
ثاعد3 شـبه الهنحرد.
 ع $\int_{0}^{1} \frac{4}{x^{2}+1} d x$ الم

9,	- 0		N
3.141592614	3.139925989	3.142425985	10
3.141592653	3.141175987	3.141800987	20
3.141592654	3.141525987	3.141625987	50
3.141592654	3.141575987	3.141600987	100)

 - $n=10$ قر

ملـحو ظلـة 7.2

 قي الـدنال 7.4.

الهـثال 7.9 استخغدام تاعددة سيهبسون بـي بياتات
 معــاذ ثي الجدول للقبم الـببنة في الهامشن.

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & \left.\left.\approx \frac{1-0}{(3)(4)} \right\rvert\, f(0)+4 f(0.25)+2 f(0.5)+4 f(0.75)+f(1)\right] \\
& =\left(\frac{1}{12}\right)[1+4(0.8)+2(1.3)+4(1.1)+1.6] \approx 1.066667
\end{aligned}
$$

 نتوفي أن يكون هذا النغر بـب أكنر دفة بكنير من نغر بـ 1.125 الموحود بالـئال 7.4 من حلال

 منافشتها هنا. كها رأهئا في الأنتلة 7.4 , 7.9 سـنوكد علي هذه الغكر؛ أكنر في النهارين.

حدود الحـطأ للتكامل العددي

$$
E T_{n}=\int_{a}^{b} f(x) d x-T_{n}(f)
$$

 الترتيب، ولدينا الآن

التظرية 7.1

على ثرض أن "f دالة منصلة على $f^{\prime \prime}$

$$
\begin{aligned}
& \left|E T_{n}\right| \leq K \frac{(b-a)^{3}}{12 n^{2}} \\
& \left|E M_{n}\right| \leq K \frac{(b-a)^{3}}{24 n^{2}}
\end{aligned}
$$

 |l| | | كلبا زاد | | \mid | \mid |

لداعدة سبهبسـون.

$$
\text { النظرية } 7.2
$$

على فرض أن

$$
\left|E S_{n}\right| \leq L \frac{(b-a)^{5}}{180 n^{4}}
$$

 فاعدة سبهببـون بحتوب على عاهل

 $7.10 \quad$ إيجاد حـ الـخـطا في التكامل العددي

 الححل قد نكون أول رغبة لك مي ملاحظة أنل تعرف بالضعل قبـة مذا النكامل بالصبطـ.

باستشدام النظرية الأساسية لحصـاب التناضل بالتكامل.

$$
\int_{1}^{3} \frac{1}{x} d x=\left.\ln |x|\right|_{1} ^{3}=\ln 3-\ln 1=\ln 3
$$

 J لـدا بعـني أنه بالنسبة $f^{\prime} f^{(4)}(x)=24 x^{-5}, f^{\prime}(x)=-x^{-2}, f^{\prime \prime}(x)=2 x^{-3}, f^{\prime \prime \prime}(x)=-6 x^{-4}$

$$
\begin{aligned}
& \left|f^{\prime \prime}(x)\right|=\left|2 x^{-3}\right|=\frac{2}{x^{3}} \leq 2 \text {. } \\
& \text { هـن النظربة 7.1، بوجد لدبيا } \\
& \left|E M_{10}\right| \leq K \frac{(b-a)^{3}}{24 n^{2}}=2 \frac{(3-1)^{3}}{24\left(10^{2}\right)} \approx 0.006667 \\
& \text { وET } \left\lvert\,<K \frac{(b-a)^{3}}{12 r^{2}}=2 \frac{(3-1)^{3}}{\left.12(0)^{2}\right)} \approx 0.013333\right. \text { يوجد لدينا هنا } \\
& \left|E T_{10}\right| \leq K \frac{(b-a)^{3}}{12 n^{2}}=2 \frac{(3-1)^{3}}{12\left(10^{2}\right)} \approx 0.013333
\end{aligned}
$$

$$
\begin{aligned}
& \left|f^{(4)}(x)\right|=\left|24 x^{-5}\right|=\frac{24}{x^{5}} \leq 24
\end{aligned}
$$

$$
x \in[1,3]
$$

لذلك نتطبنا النظر بة 7.2 ا\$ن

$$
\left|E S_{10}\right| \leq L \frac{(b-a)^{5}}{180 n^{4}}=24 \frac{(3-1)^{5}}{180\left(10^{4}\right)} \approx 0.000427
$$

 دלة معطاة. نستكشت ذلك خي الهئال 7.11.

الهـُل 7.11 تحديد عدد الـنطوات التي تفـهن دقة بعطلة

 النظطر 7.17. بوجد لدبنا ال8ان

$$
\left|E T_{n}\right| \leq K \frac{(b-a)^{3}}{12 n^{2}}=2 \frac{(3-1)^{3}}{12 n^{2}}=\frac{4}{3 n^{2}}
$$

$$
\left|E T_{n}\right| \leq \frac{4}{3 n^{2}} \leq 10^{-7}
$$

$$
\begin{aligned}
& \frac{4}{3} 10^{7} \leq n^{2} \\
& \text { وباخـذ الهـذر النربغي لكا الحلر فـن بنتي عنـ } \\
& n \geq \sqrt{\frac{4}{3} 10^{7} \approx 3651.48}
\end{aligned}
$$

لذا. بإن 'أي فيبة $n \geq 362$ ستعطي الدثة الـططلوبة. وبالدئل. بالنسية !لى فاعدة سيعبسون.

$$
\left|E S_{n}\right| \leq L \frac{(b-a)^{5}}{180 n^{4}}=24 \frac{(3-1)^{5}}{180 n^{4}}
$$

$$
\begin{aligned}
& \text { ومرة أخرىي. فإذا أردتا ألا بكون حد الخطة أكبر هن 7-10 بعطبنا } \\
& \left|E S_{n}\right| \leq 24 \frac{(3-1)^{5}}{180 n^{4}} \leq 10^{-7} \\
& n^{4} \geq 24 \frac{(3-1)^{5}}{180} 10^{7} \quad \text { وبالحل لإيجاد } \\
& n \geq \sqrt[4]{24 \frac{(3-1)^{5}}{180} 10^{7}} \approx 80.8
\end{aligned}
$$

 قاعدة سهبسوت تنطلب أن بكرن n عددا زوجبا).

 على الدقَة نفسها. فيَ النهاية. وهن الــنال 7.11. لاحظـ أننا على علم بأن

$$
\ln 3=\int_{1}^{3} \frac{1}{x} d x \approx S_{s 2} \approx 1.0986123
$$

 لى

7.7 us, (anl

 إنـا بسـبطة.
3. احنبر حاسبتك أو الحاسوب الحاص بل خي

 سبب صصوبي ملر بغة النكامل العددي مـ هذا النكامل.
4. المئرل 7.4.7.

تهارين كتابية

السـنخدامها!
2، على לرض الث بـنغوم بانتا. ثاعدتك الحاصن للنكامل
 الحصول على طرانظ جـديدة عـبر احتبار نغاط الغبه

x	1.25	1.5	1.75	2.0
$f(x)$	4.6	4.4	3.8	4.0

x	0.0	0.25	0.5	0.75	1.0
$f(x)$	1.0	0.6	0.2	-0.2	-0.4
x 1.25 1.5 1.75 2.0 $f(x)$ 0.4 0.8 1.2					

 كل طريغة. (b) أوجد عدد الحطوات اللازمة لضبان دلة
24. للنـرين 7. (a) أ, أجد حدود لأخطال الناتجة عن استخدام

في التهارين 28-25. حدد عدد الخطوات لضمان دقة
 الهنتصغ! (c) قاعدة سـبسون.
25. $\int_{1}^{2} \ln x d x$
26. $\int_{1}^{+} x \ln x d x$
27. $\int_{0}^{1} e^{-x^{2}} d x$
28. $\int_{1}^{2} x x^{d} d x$
29. لكل قاعدة ڤي النبرين 15. احسـب حد الخطأ وحار ته بالخطان النعلي.
30. لكل فاعدة خي التـرين 17. احــب حد الخطأ وفارنه بالخطأ النعلي.
 مجبهوع ريهان باستخدام قيهة نتطة الهنتصغ اليسرير.

.32
.31 .
 إجابتك في شـكل كــرا لـ

1. $\int_{0}^{1}\left(x^{2}+1\right) d x$
2. $\int_{0}^{2}\left(x^{2}+1\right) d x$
3. $\int_{1}^{1} \frac{1}{x} d x$
4. $\int_{-1}^{1}\left(2 x-x^{2}\right) d x$

ضي التهارين 8-5. قرب النبةة الهعطاة باستخدام (a) تاعدة
 إمبّسون می

ام كبير للغابة.
5. $\ln 4=\int_{1}^{4} \frac{1}{x} d x$
6. $\ln 8=\int_{1}^{8} \frac{1}{x} d x$
7. $\sin 1=\int_{a}^{1} \cos x d x$
8. $c^{2}=\int_{0}^{1}\left(2 c^{2 x}+1\right) d x$

 اللعطى باستخدام حاسبتك أو الحاسوب الخاص بك.
9. $\int_{0}^{x} \cos x^{2} d x$
10. $\int_{0}^{1 / 4} \sin \pi x^{2} d x$
11. $\int_{0}^{2} e^{-t^{2}} d x$
12. $\int_{0}^{3} r^{-r^{2}} d x$
13. $\int_{0}^{\pi} e^{n x} d x$
14. $\int_{0}^{1} \sqrt[3]{x^{2}+1} d x$

في التارين 18-15. اححسب التيهة الدقيتة واحسب الـنطأ
 قاعدة نتطة المنتصن وشبه المنحر فض وسهبسون باستخدام $n=80, n=10, n=20, n=40$,
15. $\int_{0}^{1} 5 x^{4} d x$
16. $\int_{1}^{2} \frac{1}{x} d x$
17. $\int_{0}^{x} \cos x d x$
18. $\int_{0}^{t / 4} \cos x d x$

 إذا ضاعنت n. فإن \qquad شبه المنـحرف بغـــه على

 .
. \qquad

\qquad

$$
\begin{array}{|l|l|l|l|l|l|}
\hline x & 0.0 & 0.25 & 0.5 & 0.75 & 1.0 \\
\hline f(x) & 4.0 & 4.6 & 5.2 & 4.8 & 5.0 \\
\hline
\end{array}
$$

$f(x)+f(1-x)=1$ بين أن $f(x)=\frac{x^{2}}{2 x^{2}-2 x+1} \mathrm{~J}$

 الر باضسات.)

التـبـيتات

$t(\mathrm{~s})$	0	1	2	3	4	5	6
$r(f)(\mathrm{m} / \mathrm{s})$	40	42	40	44	48	50	46

.51

$t(\mathrm{~s})$	7	8	9	10	11	12
$\tau(f)(\mathrm{m} / \mathrm{s})$	46	42	44	40	42	42

$t(\mathrm{~s})$	0	2	4	6	8	10	12
$v(t)(\mathrm{m} / \mathrm{s})$	26	30	28	30	28	32	30

.52

$l(\mathrm{~s})$	14	16	18	20	22	24
$\tau(t)(\mathrm{m} / \mathrm{s})$	33	31	28	30	32	32

قـدر شـذه الـحـبر|.

$t(\mathrm{~s})$	0	0.2	0.4	0.6	0.8	1.0	1.2
$f(t)(\mathrm{l} / \mathrm{s})$	0	0.2	0.4	1.0	1.6	2.0	2.2
$t(\mathrm{~s})$	1.4	1.6	1.8	2.0	2.2	2.4	
$f(t)(\mathrm{l} / \mathrm{s})$	2.0	1.6	1.2	0.6	0.2	0	

$t(\mathrm{~s})$	0	0.2	0.4	0.6	0.8	1.0	1.2
$f(f)(1 / \mathrm{s})$	0	0.1	0.4	0.8	1.4	1.8	2.0

$f(\mathrm{~s})$	14	16	1.8	2.0	2.2	2.4
$f(t)(1 / \mathrm{s})$	20	16	1.0	0.6	0.2	0

203LAKCunl 3y

 و $l=1$ ($ا=1$ النكامل الدنـين, أنبت أن $l=T_{5}+\frac{T_{s} T_{4}}{3}$

 ;
33. $f^{\prime \prime}(x)>0 . f^{\prime}(x)>0$
34. $f^{\prime \prime \prime}(x)>0 . f^{\prime}(x)<0$
35. $f^{\prime \prime \prime}(x)<0, f^{\prime}(x)>0$
36. $f^{\prime \prime}(x)<0$. $f^{\prime}(x)<0$
37. $f^{\prime \prime}(x)=4 . f^{\prime}(x)>0$
38. $f^{\prime \prime}(x)=0$. $f^{\prime}(x)>0$

39 ($\int_{a}^{b} f(x) d x$

الئهنى على النـي الحنــرف ف الـر

 ثتربي ناعـدة سـيـيسوت أصغر.
$\int_{0}^{1} \frac{1}{1+x^{2}} d x, \int_{0}^{1} \sqrt{1-x^{2}} d x$ i. 41
تساوئي
n=8

42.برهن الصيفة التالية. وهي أهـاس فاع $\int_{-b}^{h} f(x) d x=\frac{t}{3}[f(-h)+4 f(0)+f(h)]$ 定 $\quad f(x)=A x^{2}+B x+C$
43.يطللي علي نؤ

 $t=\lim _{x \rightarrow 0} \frac{\sin x}{x} \mathrm{t}_{0}^{\mathrm{t}} \int_{0}^{x} \frac{\sin x}{x} d x$
 $\int_{0}^{x} \frac{\sin x}{x} d x \approx 1.18\left(\frac{\pi}{2}\right)$
.45 25 45

$$
\int_{-\pi / 2}^{x / 2} \frac{\sin x}{x} d x \text {. } 4
$$

 الهنیرف

 با سـنسدا الجـناطلـر 1 .

532 ا الدرس 7-7 ا الكامل العددي

 $0=0+0+c \cdot \frac{1}{2}=\frac{a}{4}+\frac{b}{2}+c$ نكـل部

 لهاذا نحسسب تاعدة سـبيسون النكامل بدفة؟
. $I=T_{66}+\frac{T_{16}-T_{*}}{3}$

艮 $=I_{2 n}+\frac{T_{2 n}-T_{n}}{3}$

ستعسب النكاملات بئل الها
احسـب فاعدذ سعبــون الأن باسنتخدام
 مذا النـربت. نـرد الصيب לي أنه بعكن حسـاب تكاملات

$$
\ln x=\log _{8} x
$$

 أ, الا، نذكر ثاعدذ الثوة للتكاملات.

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+c, \text { for } n \neq-1
$$

$$
\int \frac{1}{x} d x ?
$$

 (الْ $f(x)=\frac{1}{x}$ منصلة لُكل

الجزء II من التظرية الأنـاسية لحساب التناضل والتكامل.

$$
\int_{1}^{x} \frac{1}{t} d t
$$

التعريت 8.1

لكل

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t
$$

منسنى $y=\frac{1}{1}$ هن 1 إلى x على النـو الهئـار إلبه לي السُكل 7.31a. أي إن. $\ln x=\int_{1}^{x} \frac{1}{t} d t=A>0$

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t=-\int_{x}^{1} \frac{1}{t} d t=-A<0
$$

$$
\begin{align*}
& \frac{d}{d x} \ln x=\frac{d}{d x} \int_{1}^{x} \frac{1}{t} d t=\frac{1}{x}, \text { لك } x>0 \tag{8.1}\\
& \text { وهي صبغة الدنـنغة تنسها الني حصلنا علبها في الدرس 2.7. }
\end{align*}
$$

$\ln x(x>1)$

$$
\int \frac{1}{x} d x=\ln |x|+c
$$

الهـثال 8.1 نتريب تِيم متعددة للوغاريتم المطبيعي

الحل معنى

$$
\begin{aligned}
& \ln 2=\int_{1}^{2} \frac{1}{t} d t \approx 0.693147 \\
& \ln 3=\int_{1}^{3} \frac{1}{t} d t \approx 1.09861
\end{aligned}
$$

 (0)

$$
\ln x\left\{\begin{array}{l}
<0 \text { لكل1} \\
=0 \\
=0 \\
>0 \\
>0
\end{array}\right.
$$

أبتَنا كذلك أن

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{x}>0 \quad x>0 \\
f^{\prime \prime}(x)=-\frac{1}{x^{2}}<0 \quad \text { لكـث } x>0
\end{gathered}
$$

$$
\begin{align*}
& \lim _{x \rightarrow \infty} \ln x=\infty \\
& \lim _{x \rightarrow 0^{+}} \ln x=-\infty \tag{8.3}
\end{align*}
$$

البر هان

$$
\begin{equation*}
\text { هن التعربغ } 8.1 . \tag{i}
\end{equation*}
$$

$$
\ln 1=\int_{1}^{1} \frac{1}{t} d t=0
$$

من التعربض كذلك. لدينا

$$
\ln (a b)=\int_{1}^{a t} \frac{1}{t} d t=\int_{1}^{a} \frac{1}{t} d t+\int_{a}^{a h} \frac{1}{t} d t
$$

 (أختدما تكون $t=a=\frac{1}{4} d t$ لدبدا
Y (iv)

$$
\frac{d}{d x}|r \ln x|=r \frac{d}{d x}(\ln x)=\frac{r}{x}
$$

وبالـــلـ.
 لكل

$$
\ln \left(x^{r}\right)=r \ln x+k
$$

$$
\begin{aligned}
& \frac{d}{d x} \ln \left(x^{r}\right)=\frac{1}{x^{\prime}} \frac{d}{d x} x^{x} \quad \text {.act.at } \\
& =\frac{1}{x^{r}} r^{r-1}=\frac{r}{x} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \ln (a b)=\int_{1}^{a} \frac{1}{t} d t+\int_{a}^{u b} \underbrace{\frac{a}{t}}_{\vdots} \underbrace{\left(\frac{1}{a}\right) d t}_{\Delta} \\
& =\int_{1}^{a} \frac{1}{t} d t+\int_{1}^{b} \frac{1}{u} d u=\ln a+\ln b . \quad .1
\end{aligned}
$$

 في الـنال 8.2.
 $\ln \sqrt{\frac{(x-2)^{3}}{x^{2}+5}}$

 $\frac{d}{d x} \ln \sqrt{\frac{(x-2)^{3}}{x^{2}+5}}=\frac{d}{d x} \ln \left[\frac{(x-2)^{3}}{x^{2}+5}\right]^{1 / 2}$
$=\frac{1}{2} \frac{d}{d x} \ln \left[\frac{(x-2)^{3}}{x^{2}+5}\right]$
sistavil in

$=\frac{1}{2} \frac{d}{d x}\left[3 \ln (x-2)-\ln \left(x^{2}+5\right)\right]$ sitetidis
$=\frac{1}{2}\left[3\left(\frac{1}{x-2}\right) \frac{d}{d x}(x-2)-\left(\frac{1}{x^{2}+5}\right) \frac{d}{d x}\left(x^{2}+5\right)\right] \quad \begin{gathered}\text { (8.1) } \\ \text { (18) }\end{gathered}$
$=\frac{1}{2}\left(\frac{3}{x-2}-\frac{2 x}{x^{2}+5}\right)$.
 قَواعـد اللوغاربينـات على نبـبـيـا

الهـثال 8.3 دراسـة سـلوك النهاية للدالة $\ln x$
استخدم خصانص اللوغاريندات فب النظلربة 8.1 لنبر شن أن

$$
\lim _{x \rightarrow \infty} \ln x=\infty
$$

$$
\ln 3^{n}=n \ln 3
$$

$$
\lim _{x \rightarrow \infty} \ln x=\lim _{n \rightarrow \infty} \ln 3^{n}=\lim _{n \rightarrow \infty}(n \ln 3)=+\infty
$$

$$
\text { حيث نـنـد المساواذ الأولى على حغيغة أن ln } \ln \text { دالة منزابدة بنـكل تام. ■ }
$$

$$
\begin{aligned}
& \text { لثابت ها. k. باهذ. x=1 نحدبدا, نجد أن } \\
& \ln \left(1^{r}\right)=r \ln 1+k \\
& \text { حبت أن } \\
& 0=r(0)+k \\
& \text {, } x>0 \text { ! }
\end{aligned}
$$

الدالة الأسـية كدالة عكسية للوغاريتم الطبيعي

 (مسنغلا عن نعربی el l ($\ln x$

 7.33، بععنى أخر.

$$
\ln x-1=0
$$

$$
c \approx 2.71828182846
$$

 عٌ

$$
e^{2}=e \cdot e
$$

$$
e^{3}=e \cdot e \cdot e
$$

$$
e^{1 / 2}=\sqrt{e}
$$

$$
e^{3 / 7}=\sqrt[7]{c^{3}}
$$

وهكذا دواليك. في الحتيقة. لأي قوذ نسبية,

$$
e^{x}=c^{p / q}=\sqrt[7]{c^{p}}
$$

 أ, أخ. لاحظ أنه لأجل

7.33 الشكّل

تعربغ e

$$
\begin{aligned}
& \ln \left(e^{x}\right)=x \ln e=x
\end{aligned}
$$

$$
\begin{aligned}
& \text { 片 } f^{-1}(x)=e^{r} \\
& \text { أي أن. الدالג العكسبة (لمير الـعرووقة) ((x) }
\end{aligned}
$$

$$
\text { للعدد x غَبر النسبي. فإننا نـرف y= } y=e^{x} \text { علي انها هذا العدد الذي فبه }
$$

$$
\ln y=\ln \left(e^{x}\right)=x
$$

بعـي ذلت أه لأي اس نسبي على مذا النعر بن. لاحظط أنه لأي
(8.4)

$$
\ln \left(e^{\ln x}\right)=\ln x
$$

$$
\text { بـا أن } \ln \text { داله واحد لواحد (ثقابلية)، طإن (8.4) بعني أن }
$$

(8.5)

$$
e^{\ln \mathrm{x}}=x, \quad \text { لكل } x>0
$$

لاحظ أن (8.5) بعني أن

$$
\ln x=\log _{e} x
$$

أي أن النعربي النكاملي ل بهيذا النتربف للدالة الأسِية، بكون لدينا

$$
\ln \left(e^{2}\right)=x, \quad \text { لكل } x \in(-\infty, \infty)
$$

بالزضافة إلى (8.5) فَإن هددا بعني أن

$$
\overline{\text { البو هان }}
$$

هذه النوانين معروغة بالیعل عندما تكون الأسس نسبية. وإذا كان الخّ غير نسببي. فإنتا نعرف
 البوضعة לبي النعريغ B.3.
(Y (i)
$\ln \left(e^{\prime} e^{s}\right)=\ln \left(e^{\prime}\right)+\ln \left(e^{\prime}\right)=r+s=\ln \left(e^{\prime+s}\right)$
وبها ان
$c^{\prime} c^{s}=e^{r+1}$

$$
\begin{aligned}
& \text { النظرية } 8.2 \\
& \text { لأجل } \\
& \text { (i) } e^{r} e^{s}=e^{r+s} \\
& \text { (ii) } \frac{e^{v}}{e^{s}}=e^{-s} \\
& \text { (iii) }\left(e^{\prime}\right)^{t}=e^{t t} \text {, }
\end{aligned}
$$

 كانملا. باسـثنـاء با بتعلق بفيبة النهاية

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}
$$

$$
y=c^{x} \quad \text { b! ! }!\text {, }!\text { ln } y=x
$$

وبانسنتان مذه الـعادلة الأخيرة بععلومبة x نحصل على

$$
\frac{d}{d x} \ln y=\frac{d}{d x} x=1
$$

من اعـدة السلسله هذه، بكون لدينا الأن $1=\frac{d}{d x} \ln y=\frac{1}{y} \frac{d y}{d x}$

$$
\begin{align*}
& \frac{d y}{d x}=y=e^{x} \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x}
\end{align*}
$$

(8.7)
(8.6)
 يؤكد ذلك أيضا فاعَدة التكامل الهناظرة

$$
\int c^{x} d x=e^{x}+c
$$

لديتا الآن الأدوات لمراجبعة التهثيل اليباني لـ

$$
\lim _{x \rightarrow \infty} e^{x}=\infty \quad, \quad \lim _{x \rightarrow-\infty} e^{x}=0
$$

$$
f^{\prime}(x)=e^{x}>0
$$

$$
f^{\prime \prime}(x)=e^{x}>0
$$

بحبت f مـتزايدة لكل x

وبالــئل. بالحل لإبجاد

$$
\lim _{x \rightarrow \infty} e^{-x}=0 \quad, \quad \lim _{x \rightarrow-\infty} e^{-x}=\infty
$$

هن ثاعدة السلسلة ايخا.

$$
\begin{aligned}
& f^{\prime}(x)=-e^{-x}<0 \\
& f^{\prime \prime}(x)=e^{-x}>0
\end{aligned}
$$

$$
b^{x}=c^{\ln \left(b^{x}\right)}=c^{2 \ln b}
$$

بنضـح الآن الن

7.35 الشـكل
$y=e^{-4}$

$$
\begin{aligned}
\frac{d}{d x} b^{x} & =\frac{d}{d x} e^{x \ln t}=e^{x \ln t} \frac{d}{d x}(x \ln b) \\
& =e^{x \ln t}(\ln b)=b^{x}(\ln b)
\end{aligned}
$$

بطريغة مبانلة. يمكنا الستخدام معرفتا باللوغاريتم الطبيعي لمتافشة اللوغاريتبات الأكتر

اللوغارينم الطبيعب لكَلا"طرفب هذه المـادلة. يكَون لدينا

$$
\ln x=\ln \left(a^{v}\right)=y \ln a
$$

بالحل الجبجاد y نحصل على

$$
y=\frac{\ln x}{\ln a}
$$

الذي يبر هن التظر ية 8.3.

عادة ها تحتوي الحاسبات على برامهِ مدمبجة لْيجاد خَيهة
 سبـل الهئال. لدينا

$$
\log _{7} 3=\frac{\ln 3}{\ln 7} \approx 0.564575
$$

$$
\begin{aligned}
\frac{d}{d x} \log , x & =\frac{d}{d x}\left(\frac{\ln x}{\ln a}\right)=\frac{1}{\ln a} \frac{d}{d x}(\ln x) \\
& =\frac{1}{\ln a}\left(\frac{1}{x}\right)=\frac{1}{x \ln a}
\end{aligned}
$$

$$
\exp \left(x^{3}-5 x^{2}+2 x+7\right)
$$

$$
=e^{3^{2}-3 r^{2}+2 a+7}
$$

مـيث الأختر. السابق المـرل في ال2راءة

$$
\begin{aligned}
& \int b^{x} d x=\int e^{\ln ^{\ln t} d x=\frac{1}{\ln b} \int e^{\underbrace{x \ln b}} \underbrace{(\ln b) d x}_{d}, ~} \\
& =\frac{1}{\ln b} c^{x \ln b}+c=\frac{1}{\ln b} b^{x}+c
\end{aligned}
$$

ما وراء الصيغ

فد نتساهل عن سبب عودنا إلى اللوغارينم الطبيعب والدوال الأسبة لتعربنها بدة. جـز

تمرينات 7.8

 Уعـادة كتابة التعبير كحع واحد.
9. $\ln \sqrt{2}+3 \ln 2$
10. $\ln 8-2 \ln 2$
11. $2 \ln 3-\ln 9+\ln \sqrt{3}$
12. $2 \ln \left(\frac{1}{3}\right)-\ln 3+\ln \left(\frac{1}{9}\right)$
 اللّوغاريتهات عنتد الحاجنة.
13. $\frac{d}{d x}\left(\ln \sqrt{x^{2}+1}\right)$
14. $\frac{d}{d x}\left\{\ln \left(x^{5} \sin x \cos x\right)\right]$
15. $\frac{d}{d x}\left(\ln \frac{x^{4}}{x^{5}+1}\right)$
16. $\frac{d}{d x}\left(\ln \sqrt{\frac{x^{3}}{x^{3}+1}}\right)$
17. $\frac{d}{d x} \log _{7} \sqrt{x^{2}+1}$
18. $\frac{d}{d r} \log _{13}\left(2^{2}\right)$
19. $\frac{d}{d x}\left(3^{\infty x}\right)$
20. $\frac{d}{d x}\left(4^{\sqrt{2}}\right)$
في التهارين 30-21. أوجد قِيبـة التكامل
21. $\int \frac{1}{x \ln x} d x$
22. $\int \frac{1}{\sqrt{1-x^{2}} \sin ^{-1} x} d x$
23. $\int x 3^{r^{2}} d x$
24. $\int 2^{\prime} \sin \left(2^{\prime}\right) d x$
25. $\int \frac{r^{2 / x}}{x^{2}} d x$
26. $\int \frac{\sin \left(\ln x^{3}\right)}{x} d x$
27. $\int_{0}^{1} \frac{r^{2}}{x^{3}-4} d x$
25. $\int_{0}^{1} \frac{e^{2}-c^{-4}}{c^{2}+r^{-x}} d x$
29. $\int_{0}^{1} \tan x d x$
30. $\int_{1}^{2} \frac{\ln x}{x} d x$

تهارين كتابية

.طببعية.. وأيسر للعوهـ

 التكامل أكثر من لوغاريتم الأنـاس ex.

فُي التهارين 4-1. عـبر عن العدد بصنته تكاملا :ارسسم
المّساحة الهناظرة.

1. $\ln 4$
2. $\ln 5$
3. $\ln 8.2$
4. $\ln 24$

 B. اسنخدم فاعدة سعبسون مي (b) $n=64$, (b) لنغدير 5 (a) $n=32$.

$$
\begin{aligned}
& \text { السـهولة حعـاب فبم الدالג لـ }
\end{aligned}
$$

التطبيقات
43．على خُرض أنه لدبك خرصة 1 في الـ 10 للنوز بحـائزة

 لعـرقة هاذا بحدت للأعداد الغردبة الأكبر والأكبر．احسبب

$$
\lim _{\rightarrow \infty}\left[1-((n-1) / n)^{\prime \prime}\right]
$$

44．تستُندم الدالة السينية

 إجهالب الهدخلات لحد بعبنـ بـل $y=f(x)$ بيانبا وأوجـد住 إلى أُقرب عدد صحتبع．ما قبعة حد x الهذه الدالة لبتنحول من

الدالג لععل الحد إلى $4=4$ بد

$$
\begin{aligned}
& \text { 45. بصنع كابل التلفراف من لغبغة خاريجية حول فلب داخلبي. }
\end{aligned}
$$

 هتزايد؛؟ هتناقصة؟ نتعدر ！الى الأعلى؟ بیض تبم الدالة لأجل x الكبيردَ خـن اليباني لـ（
2

 الצسـتواء إلى مكان على خـل العر ض

 هسافة نامبا وبوسكو，على خربطة مركانور؟

$$
\ln \left(\frac{a}{b}\right)=\ln a-\ln b
$$

32．السـنخدم خصـانص اللوغار بنــات في النظلرية 8.1 لنبر هن ان $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$
33 33 الـبرح بيانبا أن．
la $(n)<1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}$ $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)=\infty$
 $\ln (n)>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}$

有 $h=\ln C^{\dagger}=\int_{1}^{h} \frac{1}{x} d x$
التكامل لكتابة بعطبث ذلك

38．غي هـا النترين．تنوم بثوجبيك خـلال برهان آخر

باستخدام التعرئ البديل للاشتعاقَ．نكتب ذلك في شكل
（اشـر

 $\lim _{x \rightarrow \infty}\left[\pi\left(x_{e}^{1 / n}-1\right)\right]=\lim _{n \rightarrow \infty}\left[n\left(x^{1 / n}-1\right)\right]$
40 غي هذا النדرين．تئثـ أنه إذا كانت

自 $\ln e=\operatorname{la}\left[\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{+}\right]=\lim _{n \rightarrow \infty}^{n}\left[\operatorname{la}\left(1+\frac{1}{n}\right)^{n}\right]$
النهابة．

 42．أنبث أن x x ）

$1+x, 1$
 (a) $N=20 \mathrm{~J} \pi(\mathrm{~N}), \frac{N}{\ln N}$ (b) $N=40$, $\pi(\mathrm{N})=5,761,455$. (c) $\mathrm{N}=100,000,000$,

. $L i(x)=\int_{0}^{t} \frac{1}{\ln t} d t$ عرف دالة التكامل للو غاريتم $x>1$ لكل لأجل
 $L(4)=\int_{14}^{4} \frac{1}{\ln t} d t$ بتضـ

تهارين برالحية

5. $\int 2 \sin 4 x d x$
6. $\int 3 \sec ^{2} x d x$
7. $\int\left(x-r^{41}\right) d x$
8. $\int 3 \sqrt{x} d x$
9. $\int \frac{x^{2}+4}{x} d x$
10. $\int \frac{x}{x^{2}+4} d x$
11. $\int e^{x}\left(1-e^{-x}\right) d x$
12. $\int e^{s}\left(1+e^{t}\right)^{2} d x$
13. $\int x \sqrt{x^{2}+4} d x$
14. $\int x\left(x^{2}+4\right) d x$
15. $\int 6 x^{2} \cos x^{3} d x$
16. $\int 4 x \sec x^{2} \tan x^{2} d x$
17. $\int \frac{e^{1 / x}}{x^{2}} d x$
18. $\int \frac{\ln x}{x} d x$
19. $\int \tan x d x$
20. $\int \sqrt{3 x+1} d x$

$$
\text { 21. أوجد دالة } f(0)=2, f(x)=3 x^{2}+1 \text { نحقفّ } f(x)
$$

$f(0)=3, f^{\prime}(x)=e^{-2 x}$ 22 22

24.

$$
\text { 25. اكنب كل الحدود } \text { ا'احسب }\left(\sum _ { i = 1 } ^ { + } \left(r^{2}+3 i\right.\right.
$$

27. $\sum_{i=1}^{103}\left(r^{2}-1\right)$
28. $\sum_{i=1}^{3 n 0}\left(r^{2}+2 i\right)$
29. 29

 أنواع المسانلل التب نغترن بذللت.

الذكر ما إذا كانت كل عباردَ صرواب أم خحلأ وانسرح السبـب بإبجاز.
 الـعططاذ لزشنـا. عبارذ جديدذ ثككرن صانبة.
 العبعة في التقطلة الطلرفبة البهرى
2. كلها كانت " أكبر. كلها كان تغريب هجـوعة ويهان أفضـل 3. إن الدوال الـثـصلة منـددة الثعريغات تابلة للنكامل.
 5. توجد بعض الدوال الأولبة لبهى لها دالة أصلبة.

 "ا

في التهارين 20-1، أر جـد الدالة الأهلية.

1. $\int\left(4 x^{2}-3\right) d x$
2. $\int\left(x-3 x^{5}\right) d x$
3. $\int \frac{4}{x} d x$
4. $\int \frac{4}{x^{2}} d x$

5. $f(x)=e^{2},[0,2]$
6. $f(x)=4 x-x^{2},[0,4]$

قي التهارين 58-47. أوجد فيهة التكاهل
47. $\int_{0}^{2}\left(x^{2}-2\right) d x$
43. $\int_{-1}^{1}\left(x^{3}-2 x\right) d x$
49. $\int_{0}^{* / 2} \sin 2 x d r$
50. $\int_{0}^{+/ 4} \operatorname{sc}^{2} x d x$
51. $\int_{0}^{111}\left(1-t^{-t / 4}\right) d t$
52. $\int_{0}^{1} t c^{-t^{2}} d t$
53. $\int_{0}^{2} \frac{x}{x^{2}+1} d x$
54. $\int_{1}^{2} \frac{\ln x}{x} d x$
55. $\int_{0}^{2} x \sqrt{x^{2}+4} d x$
56. $\int_{0}^{2} x\left(x^{2}+1\right) d x$
57. $\int_{0}^{1}\left(e^{x}-2\right)^{2} d x$
58. $\int_{-\pi}^{*} \cos (x / 2) d x$

بي التهرينين 59 و60. أوجد الهشتتة.
59. $f(x)=\int_{2}^{1}\left(\sin t^{2}-2\right) d t$
60. $f(x)=\int_{0}^{r^{2}} \sqrt{t^{2}+1} d t$

 باستخخدام $4=4$ يِدويا.
61. $\int_{0}^{1} \sqrt{x^{2}+4} d x$
62. $\int_{0}^{2} e^{-x^{2} / 4} d x$
63. كرر التـرين 61 بامتخـدام الحاسـوب أو الحامبة $n=20 ; n=40$,
64. كرر التدربن 62 باسـنخدام الحاســوب أو الحاسببة . $n=20 ; n=40 \mathrm{~g}$
cosht $=\frac{1+w^{2}}{1-w^{2}}$. 65 بين أنه إذا كانت . $\sinh t=\frac{2 u}{1-u^{2}}$,
(b) $\int \frac{\sinh t+\cosh t}{1+\cosh t} d f$, (a) $\int \frac{1}{\sinh t+\cosh t} d t$

 R

 التغريب واوجد ڤبم هجهوع ريهان.

居
32. 32
(0,3|n=8 $y=\sqrt{x+1} .33$
 البسرى

 35.

x	0.0	0.2	0.4	0.6	0.8	1.0	12	1.4	1.6
$f(x)$	1.0	1.4	1.6	20	2.2	2.4	2.0	1.6	1.4

36.

x	1.0	1.4	1.8	2.2	2.6	3.0	3.4	3.8	4.2
$f(x)$	4.0	3.4	3.6	3.0	2.6	2.4	3.0	3.6	3.4

39. $\int_{0}^{1} 2 r^{2} d x$
40. $\int_{0}^{2}\left(r^{2}+1\right) d x$

$y=x^{3}-3 x^{2}+2 x, 0 \leq x \leq 2, x$, . 42 . الـساحة بين

43. $\mathrm{r}(t)=40-10 t,[1,2]$
44. $\tau(t)=20 c^{-1 / 2},[0,2]$

بالرغم مئ أن المتوسـطات المتوسـط الغبم| واحد. !Y أذ
الاسـنـنـارات ذات النوزبعات (
الستحدم التبثـيلات البيانيغ צَجل (x)
بين انن

$$
0 \text { 0 } 0 \text {. بيتكل عام. كلها كانت (r) } \mathbf{~ ا ٔ ك ي ب ر . ~ ك ا ن ~ ا ل ا س س ت ث ا ر ~}
$$

$$
\begin{aligned}
& \text { الحسب } \\
& r \geq 1 \text { بحر } \\
& \text { الحسب }
\end{aligned}
$$

（a）2 النه．إذا كانت $f(t)$ نابنا．فإن در جعة النزامن نكون 0. $f_{1}(t)= \begin{cases}(R T)\left(t-\frac{t}{2}\right)+R T & \text { if } \frac{t}{2}-1 \leq t \leq \frac{t}{2} \\ (-R T)\left(t-\frac{t}{2}\right)+R T & \text { if } \frac{t}{2} \leq t \leq \frac{t}{2}+1 \\ 0 & -4 \text { لt }\end{cases}$

ما هو نخصينك عندما تكورن نهاية درحات تزامن（t）隹

$$
f_{1}(t)=\left\{\begin{array}{lc}
(R n)\left(t-\frac{1}{2}\right)+R T & \text { if } \frac{t}{2}-1 \leq t \leq \frac{t}{2} \\
(-R T)\left(t-\frac{t}{2}\right)+R T & \text { if } \frac{1}{2} \leq t \leq \frac{t}{2}+1 \\
0 & \text { دلt }
\end{array}\right.
$$

$$
\text { 在 } \int_{A}^{\prime} f(x) d x
$$

AFDt, AEDa التراكثي للعائدات．

（c）
（e）
（b）
）

$$
f_{3}(t)= \begin{cases}\left(9 R D\left(t-\frac{T}{2}\right)+3 R T\right. & \text { if } \frac{T}{2}-\frac{1}{3} \leq t \leq \frac{T}{2} \\ (-9 R T)\left(t-\frac{\tau}{2}\right)+3 R T & \text { if } \frac{T}{2} \leq t \leq \frac{T}{2}+\frac{1}{1} \\ 0 & \text { لل }\end{cases}
$$

3. تستشدم دالة أوميبجا لتحليل هحاطر/مكافآت الاستثبارات

\qquad
\square

[^2] －
عرف در دجات التزامتن لتكون
عرف درجات التزامـن لتكون
\[

$$
\begin{aligned}
& \text { 隹 } \\
& \text { 辑 }
\end{aligned}
$$
\]

[^0]:

[^1]: لأي عبارة تابعة لعدد صصحيt موجب، 11. غنتر ض أن النتبجة صحيحة لغيبة غير هحددذ

 وهكذا).

[^2]: \qquad

