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A b s t r a c t 

We have developed a simple model of re-
duction cell instabilities which highlights 
the critical role played by the single group-
ing J0Bz/hH, where J0 is the current 
density in the cell, Bz is the vertical com-
ponent of the background magnetic field 
and h and H are the depths of electrolyte 
and aluminium. We discuss the implica-
tions of this model for the stability of real 
cells and suggest means of increasing the 
stability threshold of cells without redu-
cing their performance. 

I n t r o d u c t i o n 

Aluminium is produced by the electro-
lysis of aluminium oxide in reduction cells. 
These consist of large carbon blocks (elec-
trodes), between which lie a shallow layer 

of liquid aluminium together with a 
second (lighter) layer of electrolyte. Dis-
turbances are readily triggered at the 
electrolyte-aluminium interface. These 
are long wavelength, interfacial gravity 
waves, modified by the intense magnetic 
and electric fields which pervade the cell. 
Under certain conditions these disturb-
ances are observed to grow, disrupting the 
operation of the cell. (See Figure 1). To 
some extent the mechanism of this in-
stability is clear. A displacement of the 
interface inevitably leads to a redistribu-
tion of current, J , within the cell. This is 
illustrated in Figure 2 where the perturb-
ation in current, j , is shown. 

Excess current is drawn from the an-
ode into the electrolyte at those points 
where the thickness of the highly resist-
ive electrolyte (cryolite) is reduced, and 
less current is drawn at points where the 
cryolite depth is increased. The resulting 
perturbation in cryolite current is vertical, 
as 
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Figure 1: The cell geometry. 

Figure 2: The perturbation in 
current and magnetic field due to 
the passage of an interfacial wave. 

shown. Since the carbon cathode is much 
more resistive than the aluminium, these 
perturbations in vertical current feed into 
the aluminium but do not penetrate the 
cathode. Associated with j there is a per-
turbation in the magnetic field, b, which is 
directed parallel to the wave crests. If Jo 
and Bo are the unperturbed current dens-
ity and magnetic fields, then movement of 
the interface produces a perturbation in 
the Lorentz force given by 

6F = J 0 x b + j x B 0 (1) 

The question is now whether or not 
this perturbation in force acts to rein-
force the initial disturbance. This ques-
tion was clarified, for cases where the lat-
eral boundaries of the cell are ignored, 
by Sneyd[9], Moreau and Ziegler[5], and 
Davidson[2]. These authors considered 
the (infinite) interface to be perturbed 
by travelling waves. But these travelling-
wave models leave open the question of 
the influence of the lateral boundaries of 
the cell. This is particularly important 
as the waves observed in practice have 
wavelengths comparable with the lateral 
dimensions of the cell. It seems probable, 
therefore, that the observed motions con-
sist of standing waves, modified in some 
way by the electromagnetic forces. 

This rather different problem has been 
tackled by Sele[7], Urata[ll], Sneyd and 
Wang[10], Bojarevics and Romeriofl], and 
Segatz and Droste[6]. They conclude that 
the stability characteristics of standing 
waves are very different to those of the 
travelling waves investigated earlier. Spe-
cifically, the criteria for instability are dif-
ferent in the two cases. 

In this paper, we further develop the 
work of Davidson and Lindsay[3, 4] who 
derived a new model of the interfacial in-
stability. This not only encompasses the 
predictions of Sneyd and Wang[10] and 
Bojarevics and Romeriofl] but also pre-
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diets unstable travelling waves. We also 
discuss the implications of the model for 
real cells. 

A Simplified Model of a Cell 

Our simplified model is shown in Figure 
1. The undisturbed depths of cryolite and 
aluminium are h and H, and the unper-
turbed current flow is purely vertical and 
has magnitude Jo. We use a Cartesian co-
ordinate system, (x,y,z), where z is ver-
tical and directed upward. The origin for 
z lies at the undisturbed interface. 

The magnetic Reynolds number is 
small in reduction cells and so Ohm's law 
simplifies to 

J = (TE = - σ ν Φ , 
(2) 

V2 Φ = 0 . 
We are concerned only with linear sta-

bility, so we consider infinitesimal per-
turbations of the interface of the form 
zs = η(χ,υ,ί) . The corresponding dis-
tributions of J and B are 

J = J o + j ^ -Joez- aV<f> , 

B = Bo + b . ( 3 ) 

The boundary conditions on J arise from 
the ranking of the electrical conductivit-
ies: 

σ<* > °carbon » σ= · (4) 
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Here the subscripts 'a' and 'c' refer to the 
aluminium and cryolite. It is not difficult 
to show that (4) requires φ0 — 0 on z = h 
and δφα/dz = 0 on z = —H. Here φ is the 
perturbation in the electrostatic potential. 
The first of the boundary conditions states 
that the anode potential is fixed, while the 
second ensures that j does not penetrate 
into the cathode blocks. 

We shall also assume that the fluid is 
inviscid, that surface tension can be ig-
nored, and that there is no background 
motion in the unperturbed state. The last 
of the three assumptions above is not par-
ticularly realistic, but is essential to the 
stability analysis. That is, it is by no 
means clear how the analysis could be gen-
eralised to include background motion and 
no modeller has yet achieved this. Unfor-
tunately, this simplification does severely 
limit the allowable distributions of Bo-
That is, to ensure that we are perturb-
ing about an equilibrium configuration, we 
must satisfy V X (J0 X B0) = 0. This, in 
turn, requires that Bo is of the form 

B 0 = (Bx (x, y), By (x, y), Bz), 
Bz = constant, i§\ 

Our final assumption relates to the as-
pect ratio of the liquid layers. We shall 
use the shallow water approximation that 
kh <C 1, where k is a typical wavenumber. 
This leads directly to a number of sim-
plifying features, all of which are justified 
in [3]. To leading order in kh, it may be 
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shown that: (a) j is vertical in the cryolite; 
(b) j is horizontal in the aluminium and 
is uniformly distributed across that layer; 
(c) the perturbed Lorentz force acting on 
the cryolite may be neglected; (d) the 
velocity in each layer is uniform in z and 
horizontal; (e) the dominant contribution 
to the perturbed Lorentz force in the alu-
minium is j X (Bzez). These are illustrated 
in Figure 3. 

'////////////////// 
/////////////////////////////, 

(c) >7. 

Figure 3: A long wavelength dis-
turbance of the interface results in 
a perturbed current flow j , which is 
largely vertical in the cryolite and 
horizontal in the aluminium. It also 
results in a 'sloshing' motion in the 
two liquids which is largely hori-
zontal. 

<4 
1 

R 

Figure 4: Variations of ω2 with wg . 

The Shallow-Water Equation 

of Davidson L· Lindsay 

We now summarize the new, shallow-
water equation for interfacial waves de-
veloped by Davidson & Lindsay [3]. We 
start with conventional shallow-water the-
ory. This is a two-dimensional, horizontal 
equation of motion: 

d\XH 

dt 
+ ρβνη = -VPQ + F . (6) 

Here u# is a two-dimensional velocity 
field. Next, we replace ua and uc by the 
volume fluxes qa = Hua and qc = — huc. 

Also, by virtue of condition (c) in the 
second section, we may take F c = 0 (to 
leading order in kH ) . Our governing 
equations now become 

h dt 
pc9Vv = VPo , (7) 
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Pa *£- + Ρα9νη = -VPo + F a , 
dt (8) h 

V - q c = V q a 
δη 
ΊΗ (9) 

Equation (9) is a statement of conserva-
tion of volume. We now perform a Helm-
holtz decomposition on q: 

q = qß + qp . 

That is, we divide q into a solenoidal, rota-
tional part and an irrotational component 
of finite divergence. Evidently, qp is zero 
in the electrolyte, while qp is the same 
in both layers. We now rewrite (7) and 
(8) in terms of qp and qp, eliminate P0 

by adding the equations, and express η in 
terms of qp. The resulting equation of 
motion is 

p- dt2 - ApgV2qp 
9F a pa d2qR 

dt H dt2 

(10) 

where p = pc/h + pa/H and Ap = pa — pc. 

Note that, when the Lorentz force is zero, 
we recover the conventional equation for 
interfacial waves in the shallow-water lim-
its in which waves travel with phase speed: 

Apg/p . 

We now evaluate j a , and hence F a , us-
ing the long-wavelength approximation of 
the second section. It is show in [3] that 

dt 
A 
hH 

qp (12) 

Substituting for F a we obtain 

<92qp 2n2 2 r- i 
-jftT- c 2 V 2 q P = u2

B[BzXqp}j 
(13) 

where ω\ = JoBz/phH. The subscript P 

on the bracket implies that we take only 
the irrotational component of ez x qp. 
This is the new wave equation of David-
son & Lindsay. It differs from previous 
shallow-water descriptions of the interfa-
cial waves in that the Lorentz force is ex-
pressed explicitly in terms of the motion. 

The shallow-water equation (13) sup-
ports both travelling waves and standing 
waves. It is shown [3] that the travelling-
wave solutions of (13) are unstable and 
that the instability mechanism is different 
to (and simpler than) that of the travel-
ling waves previously studied. A simpler 
version of (13) may be obtained if we intro-
duce potentials for qp and Fp = F a — Fp: 

qP = \7φ , νφ ■ n = 0 

2JLE1 = ρ ν Φ , V ^ - n = ( V ^ x n ) , 

Then (13) becomes 

(11) 
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0 - c2V2<f> = ω2
ΒΦ = c2k%* , 

V2§ = 0 ( 1 4 ) 

where kß is defined as U>B/C. 

Unstable Standing Waves 

In standing-wave models, the alu-
minium reduction cell is assumed to be a 
finite rectangular tank. The disturbed in-
terface, as formulated by Sneyd and Wang 
[10] and others, is expressed as a combin-
ation of gravity-wave modes: 

fjmn{t) cos ( πιπχ 
c°s te 

(15) 

Lx and Ly representing the horizontal di-
mensions of the box. Carrying out the 
appropriate expansion and truncating the 
system at a suitably small wavenumber, 
we may express the wave equation (14) in 
matrix form: 

x + Ω3χ = ω Β Κχ , (16) 

where Ωρ is a diagonal matrix of the 
squares of the gravitational frequencies, 
<*#, and 

The interaction matrix, K, is sparse and 
skew-symmetric (see [3] for a description 
ofK). 

Let us consider the eigenvalue problem 
represented by (16): 

(üg - ωΒΚ) χ = λχ ; λ = ω1 

(17) 

Of course, instability corresponds to com-
plex values of A. Suppose that x is trun-
cated after N modes and that the diagonal 
elements of Ω5 are arranged in order of in-
creasing frequency, fromu^ tou2

N. Then 
we may show that the eigenvalues, A;, have 
the following general properties: 

(a) ω2
9ΐ<$(λ)<ω2

Ν ; 

(b) Σλ,- = Σ ^ 5 

(c) Xi are zero or purely complex if 
JgN ■ "B > ^ 

ίύ\ - J0Bz/pH . 

These properties are sufficient to define 
the general behaviour of A. The first fol-
lows from the skew-symmetry of K. That 
is, if Xi is the complex conjugate of a;,·, then 

Σ {ugi " X) xl = ωΒ Σ Σ Κϋχ& ■ 
i i 1 

If we normalise the eigenvectors to have 
unit magnitude and take the complex con-
jugate of the transpose of this equation, we 
obtain 

»(λ) = 5>j,·*?. 
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Condition (a) then follows. Condition (b), 
on the other hand, arises from the fact that 
the sum of the eigenvalues equals the trace 
of üg— ω ^ Κ , while condition (c) is a stand-
ard result for skew-symmetric matrices. 

The situation is therefore clear. As wg 
is increased, the eigenvalues move along 
the real axis but remain within the limits: 
ωοΐ < λ < UgN. At some critical value of 
LJB, two or more eigenvalues become com-
plex (an inevitable consequence of condi-
tion (c)) and do so in the form of complex 
conjugate pairs (condition (b)). However, 
the real part of the complex eigenvalues re-
main bounded by the smallest and largest 
gravitational frequency of the truncated 
set of modes (condition (a)) . Condition 
(c) is enough to guarantee that the cell 
becomes stable at sufficiently high values 
of UB (see Figure 4). This is discussed in 
more detail in [3] and [4]. 

A c t i v e Control of the Instabil i ty 

Our dynamic equation (16) is poten-
tially important in developing a means of 
controlling the instability. It allows us to 
predict where the moving interface will be 
before it gets there. That is, if we know 
the instantaneous position of the interface 
η(ί), as well as its time derivative, then we 

predict the position of the interface at 
some future time by solving (16). But we 
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can estimate η and ή by monitoring the 
anode voltage and so, within some margin 
error, we can continuously predict the fu-
ture location of the interface. Now to sup-
press the instability we must counter the 
horizontal correct perturbations induced 
by the wave in the aluminium (see Fig-
ure 3). In principle this may be done by 
redistributing the current feed into the dif-
ferent anode blocks (by varying external 
resistances placed in line with each block) 
or by tilting the anode assembly. In either 
case we must ensure that the externally 
induced horizontal current fluctuations (in 
the aluminium) are such as to eliminate, 
rather than accentuate, the current per-
turbations induced by the interfacial wave. 
Knowing where the interface will be ahead 
of time is important here, as it means that 
the cell control system can keep abreast of 
the wave, rather than continuously trying 
to keep up with it. In a formal sense we 
may replace our matrix equation of mo-
tion by 

χ + Ω 5 χ = ω | Κ ( χ + ν ) 

where y is our control parameter (say the 
tilting of the anode). We can relate y at a 
time t to measurements of x at a previous 
time t — T. 

y(<) = / ( x ( i - r ) ) 
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The problem now becomes one of choos-
ing / so that the wave is stabilized. This 
is the focus of our current research. 

Conclusions 

A new wave equation for the inter-
face in aluminium reduction cells has been 
developed from shallow-water theory by 
Davidson Sz Lindsay [3]. This equation is 
valid regardless of the existence or form 
of boundaries. In the case of rectangular 
lateral boundaries, the model leads to the 
(potentially unstable) standing waves of 
Sneyd and Wang [10]. When an infinitely 
long channel is considered, we discover a 
new set of unstable travelling waves. This 
new model offers one way of developing an 
active control system for cells. 
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