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Abstract 

In aluminum reduction cells, the interfacial surface wave causes 
uneven anode-cathode distance over the electrolytic zone and 
reduces the efficiency of electrolysis. In the past, the coupled 
partial differential equations, describing the electromagnetic 
perturbation in the cell, were formulated and solved with various 
mathematical methods. In this article, a Fourier expansion method 
is used for understanding the interaction of the various non-
perturbed gravity waves. A proper mathematical treatment of the 
boundary condition, a critical factor for solving the equations, is 
presented. The result is summarized as the mode interactions, 
governed by the symmetry of the vertical magnetic field and the 
symmetry of the wave modes. The dominant mechanism of the 
instability is explained and the various practical methods for 
magnetic field compensation are reviewed. 

1. Introduction 

In the aluminum cell, both molten electrolyte and liquid 
aluminum form two liquid layers in a rectangular container 
(Figure 1). 

hn =0.04^H).05m 

> X 
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Figure 1 Container for electrolyte and liquid metal and the 
coordinate systems (Positive y is the direction of line current) 

One coordinate system is x-y-z where the domains of x and y are 
[0 a] and [0 b], respectively, and the origin is located at the 
upstream left corner on the bath/metal surface. Another is X-Y-Z 
which is non-dimensional with respect to X and Y, where the 
domains of X and Y are both [-11] and the origin is in the center 
of the cell. The densities of the electrolyte and aluminum are 
around 2.1 x 103 and 2.3 x 103 kg/m3. Thus, the electrolyte settles 
on the top of liquid aluminum. It has been well known that 
various waves occur on the interface of the layers. Such waves 
have been studied in many fields in science. The wave in the 
aluminum cell is unique because of a presence of the 
electromagnetic force, acting as a perturbing force to the gravity 
wave. 

An effort to study the perturbation was intensified in 1970s and 
the governing equations, called "the MHD Equations" here, were 
presented [1] and were applied to a side-by-side arrangement as 
well as an end-to-end arrangement cells, having produced a good 
agreement with the measured waves [2]. A criteria for instability 
was presented [3]. A decade later, the same MHD Equations were 
applied to a multiple-riser cell for the metal pad stabilization [4]. 
Efforts in studying the waves have been carried out by many 
researchers and knowledge about the instability has been extended 
concerning traveling waves [5], widened through an inclusion of 
the back ground flow [6] and inclusion of the magnetic field 
perturbation, while mathematical understanding has been 
deepened ([7] and [8]). 3D modeling was also carried out ([10] 
and [11]). In recent years, the studies have been continued 
([12],[13],[14],[26]). This article tries to study the electromagnetic 
perturbation from a viewpoint of mode coupling. For this 
purpose, first, the background assumptions are discussed, second, 
the analytical expression of the MHD term is derived and, third, 
the solutions to the equations are derived for simple yet practical 
cases The mechanism of the perturbation (MHD term) and the 
resultant instability is understood as a mode coupling between the 
non-perturbed gravity waves expressed by cosine functions with 
respect to the x-y space. The treatment of the boundary condition, 
which is one of the central subjects in this article, is presented. 

2. MHD Equations and Assumptions 

The MHD Equations consist of two coupled partial differential 
equations, one for electrical potential (EP Equation) and another 
for wave motion (WM Equation) perturbed by the electromagnetic 
force. The electrical resistances of the materials (Table 2.1) lead 
to the assumptions for the EP Equation. 

Anode bus 
Anode carbon 
Electrolyte 
Liquid aluminum 
Cathode carbon 

2.7xl0"s 

5.0x10^ 
0.5 x 10"2 

25.0xl0"s 

4.0x10^ 

Table 2.1 Electrical Resistance (Ohm-m) 

In calculating the electrical potentials for both 
electrolyte and cathode carbon, the liquid metal is 
assumed to be equi-potential. 
Either the anode carbon or the anode bus is assumed to 
be equi-potential when the electrical current in the 
electrolyte is calculated. 
The electrical current in the electrolyte is calculated by 
the resistance of the anode-to-cathode distance at each 
location of (x, y). 
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The assumptions for the WM equation are: 

♦ Shallow water assumption in which the wave length λ is 
much larger than the depths, h-\ and h2 of the two layers 
as shown below (see [15] for theory of shallow water). 

(2.1) λ >> h-ι, h2 

Based on these assumptions, the EP equation and its boundary 
conditions are 

(2.2) ( δ χ χ +δ^)φ= - Ja ς / ( h n h2) 

(2.3) dn φ = 0 at x=0 and a, also at y=0 and b. 

where dn is the gradient normal to the boundary. 

The electrical currents are 

(2.4) j x = -θχφ j y = -dy<p 

where the parameters are: 

φ : electrical potential (volts times σ2 ) in the metal. 

σ2 : electrical conductivity of the metal (Ohm-m), 

Ja : anode current density (ampere/m ), 
ζ : displacement of the bath/metal interface (upward 

positive) (m). 
h-\ : depth of the electrolyte layer (m), 
h2 : depth of the metal layer (m), 

j x and j y : perturbed horizontal current in the metal. 

Note that 5/5x and dldy are expressed as 5X and 5y, respectively. 
The WM Equation consists of terms for internal gravity waves and 
for the perturbation due to the electromagnetic force. 

(2.5) M 5 t t C = a ( 5 x x + 5 w K - d i v 2 f 

Where fx = j y Bz fy = - j x Bz , 

div2 f = 5xfx + 5yfy = j y 5 x Bz - j x dy Bz. 

Note that 5 x j y - dyjx = 0. 

The variables are: 

pi : density of electrolyte (kg/m ) 

p2 : density of metal (kg/m ) 

δρ = p2 - pi : difference in densities 

a = 5 p g 

M = pi / hi + p2 / h2 

g : gravity acceleration (m/sec ) 
Bz : z component of the unperturbed magnetic field 

(Gauss or Tesla, T=10" G) 
f : perturbation force 

Note that the force f in (2.5) is defined as a difference of the 
horizontal forces in the metal and in the electrolyte at the 
electrolyte/metal boundary. Because of the continuity, or 
lack continuity of j and B at the boundary, only the terms 

involving j x and j y , tangential components of j , remain in the 
equation. 
The boundary condition is derived from the force balance at the 
boundary, x=0 and a, y=0 and b. 

(2.6) α δ η ζ = (n,Jy - n y j x )B z 

When the magnetic field perturbation, a secondary effect in the 
perturbation, is included into the calculation, j is replaced with 
unperturbed J, and B is replaced with perturbed field b, and the 
new term is added to Equations (2.5), (2.6). 

3. Solution 

The solution of the EP and WM Equations are obtained by using 
the Fourier series expansion for even function. 

(3.1) <j>mi„ = sm sncos( rrrnx/a) cos( mty/b) 

where εο= 1/V2 , ε ι = 1 , ε2 = 1 , E3=1, .... 

Thus, φ and ζ are expanded as 

(3.2) <?>=£ 
ψ m,n <^m,n 

m,n 

(3-3) ζ = X ζ"1'" ^m,n 
m,n 

where φ m,n ar |d ζη,η designate the (m,n) component of φ and ζ. 

The solution of the EP Equation (2.2) is, because <^mn satisfies 
the boundary condition (2.3), obtained in the following. 

(3.3) 
ψ m,n — m,n 

where Am n = ji2((m/a) 2 + (n/b) 2) and β = Ja / ( hi h2). 

Therefore, the solution for φ is written, if ζη,η is known, 

(3.4) < P = ß X (1/Δ™) ζ,„,„ φ^ 

ΛΰΑ 

,ιωί 

,ιωί 

The solution for ζ can be obtained with Galerkin method by taking 
into account that the Fourier component $ „ η (m=0, co and n=0, co) 
does not satisfy the boundary condition. Using 0mn as a trial 
function, Equation (2.5) is integrated over the domain. 

(3.5) (^m,n ,Μ 5„ζ) = (φ^ ,α(δχχ + θ„) ζ) 

" ( i *m,n.( jy5xBz- j x5y Bz)) 

where the inner product (f,g)\s defined as (f, g) = i f dx dy / * g. 

Using Gauss-Green's Theorem, the first term on the right hand 
side of Equation (3.5) is 

α ( ( δ ■ ζ) + Ct 'JJ^55 (Φ™,η ^ηζ _ ζ <3η<Αη,η) 

where 5Ω is the boundary of the domain Ω of the equation. 
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The second term is 

- 4o [i*m,n(ndy - nyjx)Bz ]ds + (5x^m,n ,B j y ) - (5y^m,n ,B j x ) . 

Combining two terms on the right hand side of (3.5), the final 
Equation becomes: 

(3.6) (̂ m,n ,M duζ) = α(( δχχ + d„)<^„ ,ζ) 

+ 4 [^η,η (δηζ - (nxjy - n y j x )B z ) ] ds 

+ (5x^m,n.Bjy) " (5 y ^ m , n ,B j x ) 

Using the boundary condition (2.6), Equation (3.6) becomes a 
matrix equation for eigen-values. 

(3.7) (Μω 2 -αΔ„ , η ) ζ η ι η 

■ Ρ Σ S(".n),(mV) (1/4η·,η·)ζ„.,„.= 0 
rnri 

for each m > 0 and n > 0 excluding the case of m=0 and n=0, 

where S (m,n),(m'n') ' 

(3.8) S(m,n: (m,n),(m'n') (δχ i*m,n .Bz 5y^m.,n.)-(5y φ^η, Bz5x^m.,n.; 
(m',n') , (m n) 

The expression of the S matrix shows: 

• Constant Bz perturbs the gravity wave. 
• S matrix is anti-symmetric. Thus, when two modes of 

ωι and CO2 are coupled, new oar ar |d <s>r fall between the 
original cai and <s>2-

• When the coupling of two modes is strong, two eigen-
values become complex numbers and the wave has an 
exponential growth and becomes unstable. 

• No coupling occurs between two longitudinal wave 
modes such as (m,0) and (m',0) nor between two 
transversal modes such as (0,n) and (Ο,η'). 

When we use 5 modes (1,0), (0,1), (2,0), (1,1), (0,2) for the 
Fourier expansion, non-zero elements of the S matrix are only 
eight in the upper triangle of the matrix. 

(1.0) 
(0,1) 
(2,0) 

(1.1) 
(0,2) 

(1.0) 
0 

(0,1) 
exists 

0 

(2.0) 
0 

exists 
0 

(1.1) 
exists 
exists 
exists 

0 

(0,2) 
exists 

0 
exists 
exists 

0 

4. Magnetic Field and Perturbation Matrix 

By using the non-dimensional coordinate system X-Y-Z, shown in 
Figure 1, the vertical magnetic field Bz is approximated. Two 
types of the distributions, that are popular among the side-by-side 
cells with end risers and the end-to-end cells of the conventional 
types, can be approximated with a simple equation. 

(4.1) Bz = Co + C x X + CyY + CxyXY 

where the domains of X and Y are [-1 1] and [-1 1]. The C 
coefficients are dependent on the currents in the specific 
conductors. 

Co : field due to the current in the adjacent line. 
Cx : field due to the current in the cell-end cathode bus, 

side risers and underhung buses (bus under the cell) 
in side-by-side cell. 

Cy : field due to the current in the eel I-side cathode bus 
in the end-to-end cell or the anode-risers in the side 
by side cell. 

Cxy: field due to the horizontal current in the metal, 
collector bar current, side cathode-ring-bus current 
and the current in the anode movable bus. 

When the symmetry is considered for magnetic fields, the base 

function <j)m n and its derivatives with respect to x and y, S matrix 

becomes quite simple, as follows. 

^(m,n) , (m'n ' ) = 

2/(ab) 

0,0) 

(0,1) 

(2,0) 

(1,1) 

(0,2) 

0,0) 

0 

(0,1) (2.0) 

4 Co 0 

0 4Cx 

0 

0,1) 

-V2CX 

^ C y 

16 /3-^Co 

0 

(0,2) 

-4Cy 

0 

4 Cxy 

16 /3-^Co 

0 

Each element in the S matrix is closely related to the metal pad 
wave (cell instability) we encounter in day to day operation. 

• Co, which is relatively large in the uncompensated end-to-end 
cells, couples the modes (1,0) and (0,1). This coupling 
mechanism offers an explanation to a relationship presented by 
Sele, who described the rotating wave crest. The superposition 
of (1,0) and (0,1) modes with some phase shift creates an 
appearance of the crest moving from one corner to another. The 
mechanism of coupling is shown in Figure 4.1. First, the (1,0) 
wave generates the horizontal current j , which, interacting with 
B, generates the force F in the cell width direction. This F 
induces the (0,1) mode as shown in the second figure. Further, 
the induced (0,1) mode generates the force in the length 
direction and enhances back the (1,0) mode to complete the 
interaction. 

The popular and cost-effective method of magnetic 
compensation has been the alteration of the current splits among 
4 anode risers - see [19] for example - that reduces Co. The 
addition of the central risers [20] [21] tries to reduce the entire 
Bz. 

• Cx in the coupling of (2,0) and (0,1) is related to the single most 
significant destabilization mechanism concerning the side-by-
side cells. The mechanism of coupling is shown in Figure 4.2. 
(2,0) mode generates the electrical current in the length 
direction and, interacting with Cx component of the field, 
generates the (0,1) mode wave and thus generates the current in 
the width direction. This current, interacting with Cx, excites 
back the (2,0) mode. 
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(1,0) mode -wave 
B 

B 

F 
(0,1) mode wave 

'Λ Λ Β 

^ j X - ^ \ψ^> 
Coupling due to Co 

uniform Bz 

Figure 4.1 

(2,0) mode wave 
B 

(0,1) mode wave 
Λ 

Ψ & Ψ 
B 

Coupling due to Cx 

Figure 4.2 

If the average Bz at each quadrant of X-Y coordinate alternates 
its sign when we rotate around the coordinate origin [22], Cx 
becomes zero. Note that the stability criteria of Cx = 0 is not 
same as the claims in the patent [22]. 

The publications that claimed or demonstrated either the 
reduced or zero Cx are [23].[24].[25] [26] for the side-by-side 
cells. Note that there are numerous patents, for new bus design 
of the side-by-side cells, that claimed achieving a reduced Bz, 
not just Cx. 

• Cxy is torsional field where the sign of the field changes 
alternately while we rotate from one quadrant to another. Cxy 
is, in many cell arrangements, quite large and its effect is 
complex when the other C coefficients are large enough. It is 
noted that Cxy couples (2,0) and (0,2) modes. Because of the 
mode (0,2) which has a relatively short wave length, the 
frequency of the oscillation is high, receiving larger damping 
effect caused by fluid viscosity (refer to [15]). 

The bus modifications and designs referred to in this section are 
the ones installed in a group of cells, lines or plants and limited to 
the ones known to the author through independent analysis or 
direct involvement. 

5. Application to Actual Cells 

Side-by-Side Arrangement Cells 

The uniqueness of the magnetic field distribution depends on 
the anode and cathode bus positions and the current distribution in 

the bus. One of the examples is listed in Table 5.1. The C 
coefficients are for a generic end riser cell of side by side 
arrangement at 140 kA. 

C coefficients 
Values(Gauss) 

Co 
10 

Cx 
45 

Cy 
0 

Cxy 
-87 

Table 5.1 C coefficients for generic end rider cell with side 
by side arrangement (Gauss = 10" Tesla) 

Because Cy = 0, the S matrix becomes a simple sparse matrix. In 
the computation, the higher modes up to m + n = 8 are used and 
compared to the solution by finite difference method. The mesh 
for the finite difference approximation is 10 x 5 nodes, pi and P2 
are 2,100 and 2,280 kg/m3 , respectively, hi and I12 are 0.05 and 
0.3 m. a and b are 7.5 and 3.0 m. The calculated result reveals 
that some of the eigen-values have non-zero complex part and 
hence these waves are unstable. 

Eigen Value 

Eigen Vector 

(1.0) 

(0,1) 

(2,0) 

(1.1) 
(0,2) 

(3,0) 

(2,1) 

cor 

0.1895 

Real part 

-0.045 

-0.669 

0.085 

0.180 

-0.008 

0.219 

-0.105 

CO, 

-0.036 
Imaginary 

Part 

-0.066 

-0.187 

0.551 

0.234 

-0.108 

0.054 

-0.079 

T (period) 

33.160 

Contribution 

0.6% 

48.2% 

31.1% 

8.7% 

1.2% 

5.1% 

1.7% 
Table 5.2 Unstable wave of the lowest frequency (side by side 

arrangement cell) 

In Table 5.2, cor and co, are real and imaginary parts of the angular 
velocity. The contribution of each mode is shown in the fourth 
column. The (0,1) mode is the largest and the (2,0) mode is next 
largest, showing that mechanism of mutual excitation between 
(0,1) and (2,0) modes. The complex number of the eigen vector 
shows that (0,1) is advanced to (2,0) roughly by 90 degrees 

Figure 5.1 Wave Amplitude 

Finite Difference vs. 

Fourier Expansion 

■ ■A--- FD Upstream — ± FT Upstream 

■ - 0 — FD Downstream — · FT Downstream 

1 2 3 4 5 6 7 

Ductend Anode Locations (cell length direction) Work end 

Due to phase shift between two modes, the surface contour is 
complicated. To compare the calculated wave to the observed 
wave, the displacement ζ is averaged under each anode and is 
plotted against the anode positions as shown in Figure 5.1 
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The amplitude plot agrees well with the measured anode rod 
currents plot. Figure 5.1 compares Fourier expansion method and 
Finite Difference method applied to the original equation (2.2) and 
(2.5). The results of both methods are close together and are 
expected to converge to the true solution. 

A plot of the phase shift at each anode location is shown in Figure 
5.2. Note that a phase shift of 1.0 is equivalent to 360 degrees. 

Figure 5.2 Phase Shift 

Finite Difference vs. 

Fourier Expansion 

- ± FT Downstream -FT Upstream 

■A--- FD Downstream - - - O — FD Upstream 

2 3 4 5 6 7 

Anode Locations (cell length direction) 

The phase shifts of non-perturbed (2,0) and (0,1) modes are shown 
in Figure 5.3, explaining the actual phase shift in Figure 5.2 as a 
mixture of the two modes. In Figure 5.3, the solid line shows the 
phase shift on the upstream side and dotted line, on the 
downstream. 

0.75 -

0.5 -

0.25 -

Phase shift of genuine 
(2,0) mode 

/ \ -/ V 
2 3 4 5 6 7 8 S 

0.75 -

0.5 -

0.25 -

Phase shift of genuine 
(0,1) mode 

2 3 4 5 6 7 8 S 

Figure 5.3 Phase shifts of gravity wave modes of (2.0) and (0,1) 

Even though the (2,0) and (0,1) coupling has a clear mechanism of 
excitation and has been frequently observed, the mode coupling in 
the side-by-cell is elusive and when the interaction is intensified, 
other couplings, particularly the one involving the (3,0) mode is 
excited [27]. This mode evolution would be an interesting subject. 

End-to-End Arrangement Cell 

In the typical magnetically-uncompensated cells of end-to-end 
arrangement, Co and Cxy are dominant, as shown in Table (5.3). 
The values, calculated from the measured Bz [31], are slightly 
modified for simplicity. 

C coefficients 
Values(Gauss) 

Co 
25 

Cx 
0 

Cy 
0 

Cxy 
-62 

Table 5.3 C coefficients for generic end-to-end arrangement 
cell (Gauss = 10 Tesla) 

The amperage is 110 kA, pi and p2 are 2,200 and 2,280 kg/m , 

respectively. h-| and I12 are 0.05 and 0.3 m. a and b are 7.0 and 

2.5 m. The wave is stable at pi = 2,100 kg/m . 

The eigen vector in Table 5.4 shows that the dominant mode is (0, 
1), interacting with (1,0) and a small fraction of (3,0). 

Eigen Value 

Eigen Vector 

(1.0) 

(0,1) 

(2,0) 

(1.1) 
(0,2) 

(3,0) 

(2,D 

cor 

0.1309 

Real part 

-0.232 

0.020 

0.000 

0.000 

0.000 

-0.123 

0.050 

CO; 

-0.047 

Imaginary part 

0.210 

0.898 

0.000 

0.000 

0.000 

-0.143 

-0.145 

I (period) 
48.0 

contribution 

9.8% 

80.7% 

0.0% 

0.0% 

0.0% 

3.6% 

2.4% 
Table 5.4 Unstable wave of the lowest frequency (end to end 

arrangement cell) 

For the end to end cells, a stability criteria, which is equivalent to 
zero imaginary part in the eigen value, can be obtained from eigen 
matrix being approximated with the two dominant eigen modes. 
The result is 

(5.1) α (π/2)4 (1/b2-1/a2) > Ja Co/(h·, h2). 

Wi th the same values of a, b, h-ι, h2 and p2, the stability 
condition becomes pi < 2,155 kg/m3. A lighter electrolyte, 
possibly with high temperature and/or low excess aluminium 
fluoride, makes the metal more stable. Equation (5.1) is a 
derivation of the stability criteria by Sele (see also [6] and [9]). In 
the same way, a stability criteria for the side by side cell will be 
expressed mainly by Cx instead of by Co. 

The analysis of the magnetically compensated and/or large 
amperage cells needs to involve the higher modes such as m=4 to 
7 modes [27][28]. Even in such cells, Cx = 0 is still crucial [29]. 
A 300 kA cell with a large Cx was reported to be very unstable 
(Figure 4 in [28]). A wave in a 200 kA cell reported in [30] 
appears containing (2,0) and (0,1) modes, similar to those reported 
in [4]. 

6. Solution Methods 

A publication[12] questioned the validity of the Fourier expansion 
method for solving the MHD equation. The reason of the 
questioning was that the derivative of cosine is zero at the 
boundary and hence the solution consisting of cosine series cannot 
satisfy the boundary condition. Figure 5.1 demonstrates, however, 
that the solutions obtained by two methods agree each other, 
showing that Fourier method is valid. Regarding the question 
about the derivative at the boundary, the Jordan-Lebesques 
Theorem about uniform convergence of Fourier series assures the 
convergence of the series to the solution at (0,a), excluding at 
point 0 and a, whose measures(areas) are zero. Regarding the 
convergence to the true solution, it should be noted that the 
derivation process, leading to Equation (3.7), employed a weak 
form of the partial differential equation. The convergence was 
proven in the works in Functional Analysis such as developed in 
[16] and [17]. However, this validity question points out an 
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importance of handling the boundary condition. When the 
boundary condition is neglected and the perturbation matrix is 
calculated, the solution leads to an entirely wrong stability criteria, 
possibly nullifying the bus design effort. Note also that solving 
the partial differential equations, by using trial functions that do 
not satisfy the boundary condition, has been well studied in the 
area of finite element method. Instead of the intuitive derivation 
shown here, one can refer to [18], that gives the same result 
derived here. 

7. Conclusion 

1. Three decades ago, a MHD equation was presented and solved 
for the motion of the metal pad in both the side-by-side and the 
end-to-end cells and later re-applied to the 190 kA cell. The 
wave study was enriched and broadened by many researchers. 
This article discussed the interaction in terms of mode coupling. 

2. The correct solution was obtained by using a Fourier expansion 
together with a Galerkin method, which can produce the correct 
solution in cases where the trial function does not satisfy the 
boundary condition. 

3. Fourier expansion method clarified the electromagnetic 
interaction of the genuine gravity waves. The obtained 
perturbation matrix has an anti-symmetric nature and is sparse 
due to symmetry of Bz, j x and j y , and therefore offered a clear 
view of the perturbation. The analytical expression of the 
perturbation matrix was calculated up to the 5th mode. 

4. The metal pad in the side-by-side arrangement cell tends to 
destabilize due to Cx, gradient of Bz in the cell length direction, 
and generates a mode coupling of (2,0) and (0,1). The metal 
pad in the end-to-end arrangement cell tends to destabilize due 
to Co, constant Bz, and generates a mode coupling of (1,0) and 
(0,1). 

5. The criteria for stability presented by Sele was derived from the 
MHD equation. The rotating crest reported in his paper was 
explained from the mode coupling of (1,0) and (0,1). 
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