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University of Hawaiʻi at Mānoa, Honolulu, Hawaii, USA



xi

Carbon in Earth’s fluid envelopes—the atmosphere 
and hydrosphere—plays a fundamental role in our plan-
et’s climate system. It is also essential for the origin and 
evolution of life, for a large fraction of the energy we use, 
and for the multitude of carbon‐based materials so 
essential to the modern world. Yet the source and original 
quantity of carbon in our planet is uncertain (Marty 
et al., 2013), as are the identities and relative importance 
of early chemical processes associated with planetary 
differentiation (e.g., the moon‐forming impact, core 
formation, the onset of plate tectonics). Numerous lines 
of evidence point to the early and continuing exchange of 
substantial carbon between Earth’s surface and its 
interior (Dasgupta, 2013), such as information carried by 
subducted carbon trapped in diamonds, mantle‐derived 
magmas rich in carbon, carbonate‐bearing rocks found in 
fossil subduction zones, and springs carrying deeply 
sourced carbon‐bearing gases (Burton et al., 2013; Jones 
et  al., 2013; Ni & Keppler, 2013; Shirey et  al., 2013). 
Although quantifying the input and output fluxes is chal-
lenging, there is little doubt that a substantial amount of 
carbon resides in our planet’s interior (Dasgupta and 
Hirschmann, 2010, Kelemen & Manning, 2015).

These uncertainties arise in part from continuing diffi-
culties in establishing the forms, transformations, and 
movements of carbon in Earth’s interior. The present 
volume provides a snapshot of recent work aimed at 
improving this picture. It presents research aimed at 
understanding the physical and chemical behavior of 
carbon‐bearing materials at conditions relevant to 
Earth’s  interior – behavior that ultimately dictates the 
availability of this element so important to processes near 
our planet’s surface.

The papers in this volume are a mix of reviews and 
reports of current research on the structure, stability, 
reactivity, and dynamics of carbon‐based materials 
 relevant to natural systems, as well as to allied substances 
that carry carbon, and the complex interactions between 
moving fluids, magmas, and rocks in Earth’s interior. 
Carbon materials of Earth and planetary interest are 
found in a wide range of structural states (Hazen et al., 
2013; Oganov et al., 2013). Of the many transformations 
between these states, one of the most profound is that 
induced by change from sp2 to sp3 bonding of carbon in a 
structure. This transformation occurs in native carbon 
(graphite to diamond), in CO2 ices, carbonate minerals, 

and hydrocarbons. In Chapter 1, Lobanov and Goncharov 
review this transformation in a subset of these materials. 
A key point is that the sp2‐sp3 change leads to higher 
coordination number and is promoted by high pressure, 
and is therefore encountered at the extreme pressures of 
planetary interiors. However, as shown by Tschauner 
(Chapter  2), diamond remains the only naturally sam-
pled material that preserves carbon in sp3‐bonded sites. 
Tschauner reviews carbonaceous inclusions found in 
terrestrial diamonds delivered to the surface from the 
mantle, in some cases at high residual pressures. The 
crystalline forms run the gamut of  carbon oxidation 
states: native carbon and carbides; oxidized carbon in 
CO2 ices and carbonate minerals; and, not discussed 
by Tschauner, rare hydrocarbon inclusions as well 
(e.g., Sobolev et al., 2019), though the origins of  such 
materials have in the past been ascribed to later, shal-
lower processes.

Carbon’s cosmochemical abundance and chemical 
behavior favor carbon as a potential light element in the 
core. If present, carbon would likely be strongly parti-
tioned into the inner core, as Fe‐carbide. While early work 
favored Fe3C (cementite) as the likely inner‐core carbide, 
recent studies advanced the idea that this phase is not 
stable at inner core conditions, and Fe7C3 is instead the 
more likely inner‐core carbide. Takahashi et al. (Chapter 3) 
performed new experiments that show that Fe3C is stable 
to inner core conditions. Both carbide phases may be pre-
sent in the inner core and could be consistent with seismo-
logical observations.

Chen and Wang (Chapter 4) review the structure and 
physical properties of carbon‐bearing Fe‐Ni liquids at 
conditions relevant to planetary cores. Where present, 
carbon may play an important role in controlling struc-
tural transformation in Fe‐Ni‐C liquids.

Comparatively little carbon can be incorporated into 
silicates, and the mechanism(s) for accommodating 
even  small amounts is poorly known. Navrotsky et  al. 
(Chapter 5) discuss silicate‐rich ceramics that incorporate 
carbon via substitution of C for O in the silica tetrahe-
dron, the fundamental building block of the rock‐form-
ing silicate minerals and the structural backbone of 
silicate melts. Geologic pathways for production of such 
materials may include large impact events, and these 
materials may be precursors for some puzzling natural 
occurrences of silicon carbide and carbonado.

PREFACE
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Oxidized carbon, as CO2, is important to a wide range 
of geologic processes from the surface to the interior of 
Earth, and potentially other solar system objects and 
exoplanets. It is therefore essential to understand the 
behavior of CO2 itself  at elevated pressure and tempera-
ture. The properties and transformations of CO2 gas, 
liquid, and supercritical fluid are relatively well under-
stood compared to CO2 ices. As with H2O, compression 
of CO2 at very low to very high temperature produces a 
wide range of ice structures, which display a remarkable 
variety of bonding environments that suggest surprising 
possibilities for the forms and transformations of CO2 in 
planetary interiors. Chapters 6 and 7, by Santoro et al. 
and Yoo, present overviews of the current state of 
knowledge of high‐pressure CO2 phases and their struc-
tures and properties. Despite years of aggressive investi-
gation, the equilibrium phase diagram remains elusive. 
Metastable states and surprising forms such as high‐
pressure amorphous phases persist, likely owing to a 
complex energy landscape with multiple local minima 
and challenging kinetics (e.g., Machon et  al., 2014), as 
has recently been illustrated by Tulk et al. (2019) for H2O 
ices. Nevertheless, it is clear that CO2 phase space con-
tains a rich variety of molecular ices that give way at high 
pressure to a polymerized, extended covalent structure, 
CO2‐V, in which sp3 carbon is tetrahedrally coordinated 
by oxygen in a silica‐like structure. This structure raises 
the possibility of solid solution with SiO2, but this has yet 
to be conclusively verified. The contrasting interpreta-
tions of some of the features and phases of the CO2 
system in the two chapters attests to the challenges of 
working on this important but kinetically sluggish and 
energetically complex chemical system.

Li et al. (Chapter 8) explore the role of  carbon sur-
faces on H2O ice and methane clathrate crystallization. 
Using classical molecular dynamics, they find that ice 
nucleation and growth depends strongly on the chem-
istry, crystallinity, and topography of  the nucleating 
surface. Gas hydrates initially nucleate as amorphous 
clusters, but crystallinity increases with the size of  the 
hydrate. The picture is highly complex on the molecular 
scale, and there appear to be numerous pathways for 
hydrate growth.

The primary solid storage site for oxidized carbon is in 
carbonate minerals. The carbonate minerals exhibit a 
wide range in structures and bonding environments for 
carbon, as seen in CO2. Merlini et al. (Chapter 9) review 
research over the last 10–15 years that reveals the com-
plex pressure and temperature dependence of the crystal 
chemistry of carbonate minerals. From Earth’s surface to 
the mid mantle, an essential building block of carbonate 
minerals is the trigonal CO3

−2 ion. In addition to pressure‐
induced transformations such as calcite to aragonite, and 
aragonite to post-aragonite, arrays of carbonate ions 

exhibit many subtle changes in geometry that give rise to 
a host of subtly different stable and metastable mineral 
polymorphs. At pressures of the mid-mantle and greater, 
trigonal coordination of C by O gives way to tetrahedral 
coordination, with attendant transformation to crystal 
structures featuring CO4

−4 rings and chains.
At Earth’s surface and in the crust, the most abundant 

carbonate mineral is CaCO3 calcite. As with other min-
erals, calcite can be a rich repository of information 
about its environment of formation, but it is relatively 
underexploited in this regard. Building on their previous 
work on how volatile elements can be retained in calcite 
to provide information on ancient gas and fluid chem-
istry, Cherniak et al. (Chapter 10) present new results on 
nitrogen diffusivity in calcite. The data demonstrate that 
N is readily retained in calcite that does not suffer meta-
morphism at >500°C, or deformation, or alteration. This 
raises the prospects that ancient calcites could be mined 
for information about atmospheric evolution and the 
geologic nitrogen cycle.

Fe‐Mg carbonates may be the most prevalent car-
bonate materials in the mid to lower mantle. Boulard 
et al. (Chapter 11) review the sp2‐sp3 structural transfor-
mation in (Mg,Fe)CO3. They highlight the potential 
importance of  Fe3+ carbonates: Fe disproportionation 
may be important to stabilizing carbonate minerals at 
these great depths. In addition to the change in 
coordination due to the sp2‐sp3 transition in carbon, Fe‐
Mg carbonates also exhibit an important transforma-
tion due to the spin transition of  iron. Liu et  al. 
(Chapter 12) review various experimental and theoret-
ical methodologies in the investigation of  this 
phenomenon and show that this transition in carbon-
ates likely occurs between 50 and 80 GPa along the rep-
resentative mantle geotherm. A substantial decrease in 
volume of  up to 10%, shear wave splitting anisotropy, 
and deformation textures raise the possibility of  seismic 
detectability. Na‐Ca carbonates may also be important 
in certain subducted lithologies. Chapter  13 by 
Rashchenko et  al. reviews the wide variety of  crystal 
structures of  high‐pressure Na‐Ca carbonates.

The daunting variety of carbonate crystal structures 
leads to an immensely challenging problem in working 
out the stable phase relations among carbonate minerals, 
and between carbonates and other oxides. Litasov et al. 
(Chapter 14) make a valiant effort to systematically eval-
uate the phase relations in unary, binary, and ternary 
 carbonate systems relevant to conditions of Earth’s 
mantle. However, phase relations in carbonate systems 
alone are insufficient to assess carbon phase equilibria in 
the mantle. Even for oxidizing conditions, the presence of 
additional minerals in mantle lithologies controls the dis-
tribution and nature of carbon hosts. Li et al (Chapter 15) 
show that at conditions of  the mantle transition zone 



PREFACE xiii

(15 GPa and 1200°C), aragonite will react with wadsley-
ite in model slab lithologies to produce magnesite, Ca 
perovskite, and periclase. Rates of reaction are enhanced 
by the presence of H2O. Because the solidus temperature 
of magnesite‐bearing lithologies is higher, transfer of 
carbon from aragonite to calcite by this reaction mecha-
nism has the effect of promoting transport of carbon 
deeper into the mantle.

The solubility of  carbon in terrestrial magmas is a 
complex function of  pressure, temperature, bulk com-
position, and oxygen fugacity. Moreover, carbon in 
magmas occurs in various forms. Solomatova et  al. 
(Chapter 16) review bulk carbon solubility and the spe-
ciation of  magmatic carbon based on recent insights 
from molecular dynamics calculations. Computational 
studies are especially important given the extreme chal-
lenges faced by experimentalists in inferring carbon spe-
ciation in quenched glasses, especially from very high 
pressure. Solomatova et  al. show that molecular 
dynamics studies return trends in solubility and specia-
tion that are similar to those derived experimentally, 
while revealing evidence for novel polymerization of 
carbon at very high pressures.

The solubility and speciation of carbon in high‐
pressure liquids is especially important for the deep 
carbon cycle, as melts produced from the slab afford one 
of the most effective ways of returning subducted carbon 
to the exosphere. Two chapters present new experimental 
results that drive home this point. Muth et al. (Chapter 17) 
investigated the solubility and speciation of carbon in 
hydrous rhyolitic melts that can be expected from sedi-
ment and slab melting along some slab‐top geotherms. 
They find an important variation with Na number, 
defined as Na/(Na+K). All else equal, carbon solubility 
and the fraction of CO3

−2 relative to molecular CO2 
increase with Na number. An empirical model suggests 
that such melts could readily deliver the carbon found in 
subduction zone volcanic systems at plausible fractional 
contributions of slab melts to mantle wedge–derived 
basalts.

The low melting temperature of Ca‐rich carbonated 
systems is highlighted by Schettino and Poli (Chapter 18). 
They find that model lithologies approximating pelagic 
limestones yield evidence for the presence of a hydrous 
carbonated liquid at temperatures as low as 850°C at 4.2 
and 6 GPa. Such liquids would represent exceptionally 
efficient transport agents in subduction zone settings.

The viscosities of nominally anhydrous carbonate‐rich 
melts at upper mantle pressures are very low, consistent 
with rapid ascent rates of even very small melt fractions. 
However, such melts are also extremely reactive and will 
therefore change composition upon ascent, in part by 
becoming more silica rich. Stagno et  al. (Chapter  19) 
determined the viscosity of carbonate‐silicate liquids at 

high pressure. Viscosities are about an order of magni-
tude higher than those of pure carbonate liquids at sim-
ilar conditions, which will lead to comparatively lower 
ascent rates and, by virtue of increasing melt fraction, 
shorter residence times.

Mixtures of  water and carbon dioxide are arguably 
the primary solvent components for fluids in the 
Earth’s crust and upper mantle. Abramson (Chapter 20) 
reviews models of  H2O–CO2 mixing behavior, informed 
by new data at high pressures. Though such fluids have 
historically been modeled as strictly molecular mix-
tures, phase relations and spectroscopic observations 
require that the topology of  the miscibility gap is 
locally significantly impacted by reaction of  CO2 and 
H2O to form bicarbonate in the fluid phase. Taking 
this into account poses major challenges for equations 
of  state for mixed fluids.

Some of the carbon in crustal and mantle fluids derives 
from dissolution of carbonate minerals during high‐
pressure metamorphism, and this dissolution will be 
impacted by other important solutes such as alkali halides. 
Eguchi et al. (Chapter 21) experimentally determined cal-
cite solubility in H2O with varying concentrations of a 
range of alkali halides (NaCl, KCl, LiCl, CsCl). Rising 
salt concentration enhances calcite solubilty no matter the 
identity of the salt, but the extent of enhancement 
increases with decreasing ionic radius of the alkali cation.

In the experiments of  Eguchi et al., the fO2 was suf-
ficiently high that calcite dissolution likely produced 
only oxidize carbonate species. However, it is increas-
ingly being recognized that organic solutes may be 
important in many deep‐fluid settings. Sverjensky et al. 
(Chapter  22) show that the chemistry of  aqueous 
organic solutes changes profoundly with depth in the 
Earth. In shallow geologic fluids such as oil field brines 
and geothermal systems, the chemistry of  aqueous 
organic solutes is dominated by kinetic inhibition of 
formation and interaction with methane. However, in 
deeper crustal and mantle settings, a closer approach 
to equilibrium predominates, which leads to aqueous 
species with a range of  oxidation states intermediate 
between CH4 and CO2. Given appropriate conditions, 
phase separation to form a coexisting hydrocarbon 
fluid may occur.

Of the shallower environments, oceanic hydrothermal 
systems are especially important to aqueous organic 
chemistry, as they afford favorable environments for 
 abiotic synthesis of  life‐essential amino acids (Ménez 
et  al., 2018). In such settings, polypeptide synthesis is 
key to the formation of  more complex biomolecules. 
Kroonblawd and Goldman (Chapter  23) performed 
molecular dynamics simulations to explore the path-
ways for aqueous glycine oligomerization at hydro-
thermal vent conditions. They find that relatively low 
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temperatures of  ~100°C provide optimal conditions for 
oligoglycine formation.

Moving deeper, one environment in which aqueous 
organic solutes may be much more important than previ-
ously thought is in subduction zones. Guild and Shock 
(Chapter  24) use thermodynamic modeling to evaluate 
the abundance and distribution of aqueous organic sol-
utes in subduction zone fluids relevant to equilibration 
with mantle mineral assemblages. They find that organic 
species are important even at fO2 of quartz‐fayalite‐mag-
netite, and become more so as fO2 decreases. Both C1 and 
C2 species are stable, and their abundances increase when 
potential kinetic limitations on methane formation are 
taken into account. Canovas and Shock (Chapter  25) 
further explore aqueous organic chemistry during sub-
duction, in this case with a view to evaluating the ener-
getics of the citric acid cycle. They show that energetics 
may be favorable for supporting a biosphere deeper in 
subduction zones than previously thought. Kutcherov 
et al. (Chapter 26) report on experiments interpreted to 
have produced hydrocarbons at mantle conditions. They 
hypothesize a deep hydrocarbon cycle that tracks the fate 
of these hydrocarbons in the mantle.

Bringing things full circle, Park et  al. (Chapter  27) 
examine the compression behavior of diamondoids, 
nanoclusters of sp3 bonded carbon terminated by 
hydrogen. These hydrocarbon  molecules, housed in a 
diamond‐like structure, are found in natural petroleum, 
have potentially important material properties, and could 
represent an unexpected pathway to diamond growth at 
high pressure from subducted kerogen (e.g., Plank & 
Manning, 2019).

The papers in this volume represent an outgrowth of a 
decade of research partly stimulated by the Deep Carbon 
Observatory. While the past decade has seen major 
advances in our understanding of carbon in planetary 
interiors, it is clear that much remains to be done to 
understand the forms, transformations, and movements 
of carbon at extreme conditions.
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