

The Plane : is the surface where the line joining any two points (The wall surface , the faces of a cube ,)

Notice:

1) The plane has no limit and it has no thickness
2) It divides the space in two parts

Determining a plane in the space:

The plane is determining by one of the following

1) Three distinct non - collinear points
2) line and a point does not belong to it
3) Two intersecting Lines
4) Any two parallel lines

Relative positions of a line w.r.t a plane

Let L be a line and P be a plane

1) L // plane P
$\mathrm{L} \cap \mathrm{P}=\phi$
2) L intersects the plane in one point
3) L lies completely in the plane $\mathrm{L} \subset \mathrm{P}$

Relative position of two planes

1) the two planes intersect

2) The two plane coincide :

3) The two plane are parallel
$\mathrm{X} \cap \mathrm{Y}=\phi$

The relation between two lines in space

1) The two lines intersect

2) The two are SKEW (non-coplanar)

The angle between two Skew Lines

$\mathrm{L}_{1} \subset \mathrm{X}, \mathrm{L}_{2} \subset \mathrm{X}, \quad \mathrm{L}_{2} \cap \mathrm{X}=\{\mathrm{H}\}$. to determine the angle between them Draw $\overleftrightarrow{A B}$ passing through H such that $\overleftrightarrow{\mathrm{AB}} / / \mathrm{L}_{2}$
The angle included
between L_{2} and $\overleftrightarrow{A B}$ is
that included between L_{1} and L_{2}
$* * * * * * * * * * * * *$

Through two given Skew lines, can pass two parallel planes
$\widehat{A B}$ and $\widehat{C D}$ are skew lines
Draw BN// Cf \& CM // dB
Plane ABN // plane MCD
**** ****

1) In the figure . Complete
a) plane $\mathrm{ABC} \cap \mathrm{X}=$
b) plane $\mathrm{ABC} \cap \mathrm{Y}=$
c) plane $\mathrm{ABC} \cap \mathrm{L}=$
d) plane $\mathrm{ABC} \cap \mathrm{X} \cap \mathrm{Y}=$
i) L_{1} and L_{2} are lying in one plane
ii) $\mathrm{L}_{1} \cap \mathrm{~L}_{2}=\phi$

**** ****

2) If A, B, C and D are four coplanar points, such that $\overleftrightarrow{A B} \cap \overleftrightarrow{C D}=\{E\}$
M is a point not belonging to their plane then find the line of intersection of the two planes MAB and MDC
$\mathrm{E} \in$ plane $\mathrm{X}, \mathrm{E} \in$ plane Y
$\mathrm{E} \in \mathrm{X} \cap \mathrm{Y}$, similarly $\mathrm{M} \in \mathrm{X} \cap \mathrm{Y}$ $\therefore \mathrm{X} \cap \mathrm{Y}=\mathbb{M}$

3) A,B and C are three non-collinear points lying in one plane
D, E and F are three non-collinear points lying in another plane
If $\overleftrightarrow{\mathrm{AC}} \cap \overleftrightarrow{\mathrm{DF}}=\{\mathrm{x}\}, \overleftrightarrow{\mathrm{AB}} \cap \overleftrightarrow{\mathrm{DE}}=\{\mathrm{y}\}$ and $\overrightarrow{\mathrm{BC}} \cap \overleftrightarrow{\mathrm{EF}}=\{\mathrm{z}\}$. Prove that $\mathrm{z} \in \overleftrightarrow{\mathrm{XY}}$
$\mathrm{X} \in \stackrel{\mathrm{FD}}{\mathrm{B}} \quad \mathrm{X} \in$ plane FED
$X \in \widehat{A C} \quad X \in$ plane $A B C$
$\therefore \mathrm{X} \in$ plane $\mathrm{ABC} \cap \mathrm{EFD} \ldots .$. (1)
Similarly $Y \in$ plane EFD $\cap A B C \ldots(2)$
From (1) \& (2) plane ABC \cap plane FED $=\widehat{X Y}$
$Z \in \widehat{E F} \quad Z \in$ plane $E F D \& Z \in$ plane $A B C$

$$
\therefore \mathrm{Z} \in \mathbb{X Y}
$$

$* * * * * * * * * * * * * * * * * *$
Geometrical fact :
If each of two lines is parallel to the third then they are themselves parallel .
***** **** **** $* * * * *$
EX: $\stackrel{\leftrightarrow}{A B} \cap$ plane $X=\{C\} . \overline{\mathrm{AD}}$ is drawn such that $\overline{\mathrm{AD}} \cap$ plane $\mathrm{X}=\{\mathrm{D}\}$ $\mathrm{E} \in \overline{\mathrm{AD}}$ and $\overline{\mathrm{EB}}$ intersect the plane X in O .
prove that C, O and D are collinear
A,B and D non collinear then A, B and D form a plane Y $\mathrm{C} \in \mathrm{AB}, \mathrm{AB} \subset$ plane Y
$\mathrm{C} \in$ plane $\mathrm{Y}, \mathrm{D} \in \mathrm{X}, \mathrm{D} \in \mathrm{Y}$
Plane $X \cap$ plane $Y=\widehat{C D}$
$\mathrm{O} \in \overleftrightarrow{\mathrm{EB}}, \overleftrightarrow{\mathrm{EB}} \subset$ plane Y

$\mathrm{O} \in$ plane $\mathrm{Y}, \mathrm{O} \in$ plane X
O lies on the line of intersection of plane X and plane Y
$\mathrm{O} \in \stackrel{C}{C D}$
O, C and D collinear

Exercise

Which of the following statements are true and which are false?

1) There is one and only one plane through three points in space
2) There is an infinite number of planes passing through two distinct points
3) There is one and only one plane passing through a point
4) There is an infinite number of planes passing through two intersecting lines
5) There is an infinite number of planes passing through two skew lines
6) There is one and only one plane passing through two parallel lines
7) There is one and only one plane passing through three non-collinear points
8) If a line $L \subset$ plane X, a point $A \in L$. So $A \in X$
9) Any two lines form a plane
10) Any two skew lines form a plane
11) Any two planes can intersected in 3 non - collinear points
12) Any two lines each of which is // to the third are //
13) Any two lines of which is \perp to the third are //
14) If L_{1}, L_{2} and L_{3} are three lines in space, $L_{1} / / L_{2}, L_{1} \perp L_{3}$

Then L_{1}, L_{2} and L_{3} are coplanar
15) All vertical lines in space are //
16) All horizontal planes are //
17) All vertical planes are //
18) If two lines do not intersected so they are //
19) If two planes have a line and a point outside it in common . then these two planes are intersecting
20) The planes containing two skew lines can be //
21) The planes containing two skew lines must be intersected
22) The sides of any quadrilateral are coplanar
23) If $\widehat{A B} \cap$ plane $X \neq \phi$ so A and B are in opposite sides of the plane X
24) if A and B are in the same side of plane X, then $A B \cap$ plane $X=\phi$

In The figure
ABCDE is a polygon \subset plane X and $M \notin$ plane X
The union of all segments $\overline{\mathrm{MA}}, \overline{\mathrm{MB}}, \ldots$. Is called the pyramid

The type of pyramid according to the type of its base
The right pyramid. Whose its base is a regular polygon And its lateral edges are equal

The regular pyramid (triangular)
All faces are equilateral triangles

Parallelism of a lines and a plane
Theorem (1)
If a line is parallel to a plane, then it is parallel to a line of intersection of this plane with the plane containing the given line .

Given : $\overleftrightarrow{A B B} / /$ plane Y and $\overleftrightarrow{A B} \subset X$, plane $X \cap$ plane $Y=\overleftrightarrow{C D}$
R.T.P : $\overleftrightarrow{C D} / / \stackrel{\rightharpoonup}{A B}$

Proof: $\overleftrightarrow{A B} / /$ Y so $\overleftrightarrow{A B} \cap$ plane $Y=\phi, \overleftrightarrow{A B} \cap \overleftrightarrow{C D}=\phi \ldots$ (1)
$\widehat{\mathrm{AB}} \subset$ plane $\mathrm{X}, \stackrel{\rightharpoonup}{\mathrm{DC}} \subset$ plane Y Then $\triangle \widehat{A B}$ and $\triangle D$ are coplanar.
Then $\stackrel{\leftrightarrow}{\mathrm{B}} / / \stackrel{\leftrightarrow}{\mathrm{CD}}$

Fact

If a line outside a plane is parallel to a line in the plane , then it is parallel to the plane

Corollaries

1) If a line intersects one of two parallel planes then it intersects the other

2) If a line is // to a plane , then any line passing through a point of this plane and // to the given line lies in the plane
3) If a plane intersects two parallel plane , then the lines of intersection are //
4) If two intersecting planes pass through two // lines Then their line of intersection is // to those two lines
5) If a line is // to each of intersecting planes so it // to
 It // to their line of intersection
