Lines and Planes

The Plane : is the surface where the line joining any two points (The wall surface , the faces of a cube ,)

Notice:

The plane has no limit and it has no thickness
It divides the space in two parts

Determining a plane in the space :

The plane is determining by one of the following

- 1) Three distinct non collinear points
- 2) line and a point does not belong to it
- 3) Two intersecting Lines
- 4) Any two parallel lines

Relative positions of a line w.r.t a plane

Let L be a line and P be a plane

- 1) L // plane P $L \cap P = \phi$
- 2) L intersects the plane in one point
- 3) L lies completely in the plane $L \subset P$

The angle between two Skew Lines

 $E\!\in X\cap Y$, similarly $M\in X\cap Y$. : $X\!\cap Y=ME$ B D

Exercise

Which of the following statements are true and which are false?

1) There is one and only one plane through three points in space

- 2) There is an infinite number of planes passing through two distinct points
- 3) There is one and only one plane passing through a point
- 4) There is an infinite number of planes passing through two intersecting lines
- 5) There is an infinite number of planes passing through two skew lines
- 6) There is one and only one plane passing through two parallel lines
- 7) There is one and only one plane passing through three non-collinear points
- 8) If a line $L \subset$ plane X, a point $A \in L$. So $A \in X$
- 9) Any two lines form a plane
- 10) Any two skew lines form a plane
- 11) Any two planes can intersected in 3 non collinear points
- 12) Any two lines each of which is // to the third are //
- 13) Any two lines of which is \perp to the third are //
- 14) If L_1 , L_2 and L_3 are three lines in space , $L_1 // L_2$, $L_1 \perp L_3$ Then L_1 , L_2 and L_3 are coplanar
- 15) All vertical lines in space are //
- 16) All horizontal planes are //
- 17) All vertical planes are //

- 18) If two lines do not intersected so they are //
- 19) If two planes have a line and a point outside it in common . then these two planes are intersecting
- 20) The planes containing two skew lines can be //
- 21) The planes containing two skew lines must be intersected
- 22) The sides of any quadrilateral are coplanar
- 23) If $\overrightarrow{AB} \cap$ plane X $\neq \phi$ so A and B are in opposite sides of the plane X
- 24) if A and B are in the same side of plane X , then AB \cap plane X = ϕ

The Pyramid

Μ

In The figure ABCDE is a polygon \subset plane X and M \notin plane X The union of all segments \overline{MA} , \overline{MB} , Is called the pyramid

The type of pyramid according to the type of its base

The right pyramid. Whose its base is a regular polygon And its lateral edges are equal

The regular pyramid (triangular)

All faces are equilateral triangles

Parallelism of a lines and a plane

Theorem (1)

If a line is parallel to a plane, then it is parallel to a line of intersection of this plane with the plane containing the given line.

Given : \overrightarrow{AB} // plane Y and $\overrightarrow{AB} \subset X$, plane X \cap plane Y = \overrightarrow{CD} R.T.P : \overrightarrow{CD} // \overrightarrow{AB} Proof: \overrightarrow{AB} // Y so $\overrightarrow{AB} \cap$ plane Y = ϕ , $\overrightarrow{AB} \cap \overrightarrow{CD} = \phi$... (1) $\overrightarrow{AB} \subset$ plane X , $\overrightarrow{DC} \subset$ plane Y A B Then \overrightarrow{AB} and \overrightarrow{CD} are coplanar....(2) Then \overrightarrow{AB} // \overrightarrow{CD} D C

2) If a line is // to a plane , then any line passing through a point of this plane and // to the given line lies in the plane

3) If a plane intersects two parallel plane , then the lines of intersection are //

- 4) If two intersecting planes pass through two // lines Then their line of intersection is // to those two lines
- 5) If a line is // to each of intersecting planes so it // to It // to their line of intersection

