Algebra

* The principle of Counting

If an act could be performed by \underline{n} ways, another act could be performed by m ways, then the two acts can be performed together by $\underline{m} \times \underline{n}$ ways.

Example 1 :

A student could go to his school by 3 ways and go back to his home by 2 ways by How many ways could he go and back ?

Sol:
The n Number of ways $=3 \times 2=6$ ways.

Example 2 :

A school gives 3 prizes for the gifted pupils in Tennis ,Swimming and football. If the Number of Competitors are respectively 8, 7 and 12.
By how many ways the 3 prizes can be Distributed ?
Sol:
The n Number of ways $=8 \times 7 \times 12=672$

* Permutations

Def : if we have a set of elements, any arrangement by taking some or all of these elements in a definite order is called a permutation.
I.e. if the Number of elements is n, taken r of them in a definite order, this could be written as No of permutations $={ }^{n} P_{r}, n \geq r, n, r \in z^{+}$.

* Important Rules

1) ${ }^{n} P_{r}=n(n-1)(n-2) \ldots \ldots \ldots . . .(n-r+1)$
2) $n_{P_{n}}=n(n-1)(n-2) \ldots \ldots . . \ldots \times 3 \times 2 \times 1=\square n$, n is called Factorial \underline{n}
3) $\mathrm{n}=\mathrm{n}\lfloor\mathrm{n}-1=\mathrm{n}(\mathrm{n}-1) \downharpoonright \mathrm{n}-2=\ldots .$.
4) ${ }^{n} \mathrm{P}_{\mathrm{r}}=$

5) $\mathrm{n}_{\mathrm{P}_{0}}=1$
6) $1=1$
7) $\lcm{0}=1$

Example 3:

How many permutations can be Performod from 5 kinds of fruit, each of them consists of 2 kinds with out repetition

Sol:

$$
\text { Number of permutations }={ }^{5} P_{2}=5 \times 4=20
$$

Example 4 :

From the digits $1,2,3,4,5$ How many Numbers could be performed from it without repetition such that the unit digit is not 4 and the tenth digit is not 5 .

Sol :

No of ways for writing $=5 \times 4 \times 3 \times 2 \times 1=120$
No of ways to write the unit digit is 4 and the tenth digit is 5
$=1 \times 1 \times 3 \times 2 \times 1=6$
\because The No of required ways
$=120-6=114$.
Example 5:
if $\mathbf{n}=120$, find ${ }^{*}{ }^{n} \mathrm{P}_{\mathrm{t}}$

$$
\begin{aligned}
& \text { Sol: } \\
& \because \mathrm{n}=\frac{120}{} \quad \therefore \mathrm{n}=5 \\
& { }^{2 \mathrm{n}} \mathrm{P}_{4}={ }^{10} \mathrm{P}_{4}=10 \times 9 \times 8 \times 7=5040 .
\end{aligned}
$$

Example 6 :

$$
\text { Prove that } 2 \mathrm{n}=1 \times 3 \times 5 \times \ldots \times(2 n-1) \times 2^{n} \times \underline{n}
$$

Sol:

$$
\begin{aligned}
& \text { L.H.S }= \\
= & 2 n(2 n-1) \\
= & (2 n \\
= & (2 n)(2 n-2) \ldots \times 4 \times 2 \times(2 n-3) \ldots \ldots \times(2 n-1) \times(2 n-3) \times \ldots . \ldots \times 3 \times 1 \\
= & 2^{n} \times(n \times(n-1) \times \ldots \times 2 \times 1) \times(2 n-1) \times(2 n-3) \times \ldots . \times 3 \times 1 \\
= & 2^{n} \times n \square \times(2 n-1) \times(2 n-3) \times \ldots . . \times 3 \times 1=R . H . S .
\end{aligned}
$$

Example 7:

$$
\begin{aligned}
& \text { Find the value of } Y_{x} \text { if } \\
& x+\mathrm{YP}_{3}=210, \mid \mathrm{x}-\mathrm{y}
\end{aligned}
$$

sol :

$$
\begin{aligned}
& \therefore{ }^{\mathrm{x}+\mathrm{YP}_{3}=210 \quad \therefore \mathrm{x}+\mathrm{y}=7 \rightarrow-1} \\
& \because \quad\lfloor\mathrm{x}-\mathrm{y}=3 \times 2 \times 1 \quad \therefore \mathrm{x}-\mathrm{y}=3--\rightarrow \\
& 2 \\
& \therefore 2 \mathrm{x}=10 \Rightarrow 2
\end{aligned}
$$

Example 8:

$$
\begin{aligned}
& \text { if }{ }^{7} \mathrm{P}_{3}=2 \times{ }^{7} \mathrm{P}_{\mathrm{r}-1} \text {, find the value of } \\
& \frac{\bigsqcup r+1}{\lfloor r+2}+\frac{\bigsqcup r}{\lfloor r+1}+\frac{\bigsqcup r-2}{\lfloor r-1}
\end{aligned}
$$

sol:

$$
\therefore \quad \frac{L r+1}{L r+2}+\frac{L \frac{r}{L r+1}}{\angle \quad}+\frac{L r-2}{L r-1}
$$

$$
=\frac{1}{r+2}+\frac{1}{r+1}+\frac{1}{r-1}=
$$

$$
=\frac{1}{8}+\frac{1}{7}+\frac{1}{5}=\frac{131}{280}
$$

Example 9 :

Find the Number of the elements of the set A If:
$X=\{x: X \in Z,-2 \leq x \leq 6\}$
$A=\{(a, b, c), a, b, c \in X, a \neq b \neq c\{$
Sol :
$\mathrm{N}(\mathrm{X})=9$
No of element of $A={ }^{9} P_{3}=9 \times 8 \times 7=504$

Example 10 :
if $3 \times{ }^{n} P_{r-1}=5 \times{ }^{n-1} P_{r-1},{ }^{n+1} P_{r}=2 \times{ }^{n} P_{r}$. Find n, r

$$
\begin{aligned}
& { }^{7} P_{r} \quad=2 \times{ }^{7} \operatorname{Pr}-1 \\
& \frac{\therefore{ }^{7} \mathrm{Pr}_{\mathrm{r}}}{{ }^{7} \mathrm{Pr}_{\mathrm{r}}-1}=2 \\
& \frac{\square}{\square-r} \times \frac{\frac{8-r}{7}}{\square}=2 \\
& \therefore \underline{7} \times(8-r) \quad 7-r \quad=2 \\
& \underline{7-r} \times \underline{7} \\
& \therefore 8-r=2 \Rightarrow r=6
\end{aligned}
$$

sol:

$$
\begin{aligned}
& \frac{n_{P_{r-1}}}{n^{-1} P_{r-1}}=\frac{5}{3} \\
& \therefore \frac{\lfloor n}{\square n+1-r} \times \frac{\lfloor n-r}{\lfloor n-1}=\frac{5}{3} \\
& \therefore \frac{n}{n+1-r}=\frac{5}{3} \\
& 3 n=5 n+5-5 r \\
& 5 r=2 n+5-----\rightarrow \quad 1 \\
& \frac{{ }^{n+1} P_{r}}{{ }^{n} P_{r}}=2 \\
& \frac{\lfloor n+1}{n+1-r} \times \frac{\lfloor n-r}{\square n}=2 \\
& \frac{n+1}{n+1-r}=2 \\
& \therefore n+1=2 n+2-2 r \\
& \therefore 2 r=n+1-----> \\
& \text { eq } 1 \div \text { eq } 2 \\
& \frac{5}{2}=\frac{2 n+5}{n+1} \\
& \therefore 4 n+10=5 n+5 \\
& n=5 \Rightarrow r=3
\end{aligned}
$$

* Combination

Definition :

If we have a set of elements , any arrangement by taking all or some of these elements -without consideration of the order of these elements -is called a combination .
I.e. ...If the number of elements is n,taken r of them each time -without consideration of the order of its elements -then ,the number of combinations is symbolized by ${ }^{n} C_{r}, n \geq r, n, r \in z^{+}$

* Important rules

1) ${ }^{n} \mathrm{C}_{\mathrm{r}}=\frac{{ }^{n_{\mathrm{p}_{\mathrm{r}}}}}{\sqrt{\mathrm{r}}}$
2) $\mathrm{n}_{\mathrm{C}_{\mathrm{r}}}=\frac{\underline{\mathrm{n}}}{\underline{L r}} \frac{\mathrm{n}-\mathrm{r}}{}$
3) ${ }^{n} C_{r}=n_{C_{n-r}}$
4) $\mathrm{nC}_{\mathrm{n}}=1$
5) ${ }^{n} C_{z e r o}=1$
6) If ${ }^{n} C_{r}={ }^{n} C_{d}---\rightarrow r=d$ or $r+d=n$
7) $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}$

Example 1:

Find the value of n if ${ }^{n} \mathrm{C}_{2}=435$

Sol:

$$
n_{C_{2}}=\frac{n_{P_{2}}}{\frac{2}{2}}=435 \cdots \quad n_{P_{2}}=870-\cdots \rightarrow \quad n=30
$$

Example 2:

If : ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+2 \mathrm{r}}^{2}={ }^{\mathrm{n}} \mathrm{C}_{2 \mathrm{r}+5},{ }^{\mathrm{n}} \mathrm{C}_{3}=120$ find the value of ${ }^{n} \mathrm{C}_{7 \mathrm{r}+3}$

Sol :

$$
{ }^{10} \mathrm{C}_{\mathrm{r}}{ }^{2}+2 \mathrm{r}={ }^{10} \mathrm{C}_{2 \mathrm{r}+5}
$$

$$
\therefore r^{2}+2 r=2 r+5 \quad \text { or } \quad r^{2}+2 r+2 r+5=10
$$

$$
\therefore r^{2}=5 \quad \therefore r^{2}+4 r-5=0
$$

$$
r=\mp \sqrt{5}
$$

refused

$$
(r+5)(r-1)=0
$$

$$
r=-5 \text { refused or } r=1
$$

$$
{ }^{n} C_{7+3}={ }^{10} C_{10}=1
$$

Example 3:

Prove that ${ }^{n} C_{r}+{ }^{n} C_{r+1}={ }^{n+1} C_{r+1}$
Then find the value of
I) $\frac{{ }^{17} \mathrm{C}_{6}+{ }^{17} \mathrm{C}_{5}}{{ }^{18} \mathrm{C}_{5}}$
II)Prove that ${ }^{n} C_{r+1}+{ }^{n+1} C_{r}+{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r+1}$

Sol:

$$
\begin{aligned}
& \text { I) L.H.S. }={ }^{n} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}_{\mathrm{C}}}{ }_{\mathrm{r}+1}= \\
& \frac{\lfloor n}{\lfloor\boxed{n}-r}+\frac{\lfloor n}{\lfloor r+1}\lfloor n-r-1 \\
& =\frac{(r+1)\lfloor n+(n-r) \quad n}{\lfloor r+1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{{ }^{17} \mathrm{C}_{6}+{ }^{17} \mathrm{C}_{5}}{{ }^{18} \mathrm{C} 5}=\frac{{ }^{18} \mathrm{C}_{6}}{{ }^{18} \mathrm{C}_{5}}=\frac{=18-6+1}{6}=\frac{13}{6} \\
& \text { II) L.H.S }=\left(\mathrm{n}_{\mathrm{C}_{\mathrm{r}+1}}+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}\right)+\left(\mathrm{n}_{\mathrm{C}_{\mathrm{r}}}+\mathrm{n}_{\mathrm{C}_{\mathrm{r}-1}}\right) \\
& ={ }^{n+1} \mathrm{C}_{\mathrm{r}+1}+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}+2} \mathrm{C}_{\mathrm{r}+1}=\text { R. H. } \mathrm{S}
\end{aligned}
$$

Example 4:

By how many ways,you can choose 7 persons from a group of 9 girls ,5 boys such that the chosen group contains 3 boys

SOL:
No. of ways $={ }^{9} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{3}=126 \times 10=1260$

Example 5:
Find the expansion of ${ }^{{ }^{+n+} C_{n}}$, then prove that $\lfloor 17$ is divisible by $\lfloor 12 \quad 5$

Sol :

$$
\begin{aligned}
& { }^{m+n} C_{n}=\frac{\lfloor m+n}{\lfloor n}=a, a \in Z^{+} \\
& \therefore \quad\left\lfloor\frac{m+n}{m}=a\lfloor n \quad\lfloor m\right. \\
& \therefore\lfloor m+n \text { is Divisible by }\lfloor n \quad L m \\
& \text { Let } n=12, \quad m=5 \\
& \therefore \quad\lfloor 7=a\lfloor 12 \\
& \therefore \quad 17 \quad \text { is Divisible by }\lfloor 12 \quad\lfloor 5
\end{aligned}
$$

Example 6:

$$
\begin{aligned}
& \text { If } \mathrm{nP}_{4}=360, \mathrm{Lr}_{r}=24, \\
& \text { Find the value of }{ }^{2 n} \mathrm{C}_{\mathrm{r}}
\end{aligned}
$$

SOL:

$$
\begin{aligned}
& { }^{n} P_{4}=360--\rightarrow n=6, \quad L \quad=24---\rightarrow \quad r=4 \\
& { }^{2} C_{C_{r}}={ }^{12} C_{4}=495
\end{aligned}
$$

Example 7:

$$
\text { If }{ }^{m} P_{3}=210,{ }^{m+n} P_{3}=720
$$

Find the value of ${ }^{m} \mathrm{C}_{\mathrm{n}}$.
SOL :

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{mP}_{3}=210 \quad--\rightarrow \quad \mathrm{m}=7 \\
\mathrm{~m}_{3} \mathrm{n} \mathrm{P}_{3}=720 \rightarrow--\quad \mathrm{m}+\mathrm{n}=10 \rightarrow--\mathrm{n}=3 \\
{ }^{\mathrm{m}} \mathrm{C}_{\mathrm{n}}={ }^{7} \mathrm{C}_{3}=\frac{7 \times 6 \times 5}{3 \times 2 \times 1}=35
\end{array}
\end{aligned}
$$

Example 8:

$$
\begin{aligned}
& \left\lfloor\mathrm{n}=720,{ }^{n+1} C_{r}:{ }^{n+1} C_{r-1}=3 / 5\right. \\
& \text { Find the value of }{ }^{n+1} C_{r-2}
\end{aligned}
$$

SOL:

$$
\begin{aligned}
& \frac{\operatorname{nn}}{}=720---\rightarrow \quad n=6 \\
& \frac{{ }^{n+1} C_{r}}{{ }^{n+1} C_{r-1}}=\frac{(n+1)-r+1}{r}=\frac{3}{5} \\
& \frac{8-r}{r}=\frac{3}{5}----\rightarrow \quad r=5 \\
& { }^{n+1} C_{r-2}={ }^{7} C_{3}=35
\end{aligned}
$$

Example 9:

$$
\text { If }{ }^{5} \mathrm{Pr}_{\mathrm{r}}=60, \mathrm{~L}^{\mathrm{n}}=120 \text {, }
$$

Find ${ }^{n} \mathrm{C}_{\mathrm{r}}$
SOL:

$$
\begin{array}{rlr}
{ }^{5} \mathrm{P}_{\mathrm{r}}=60---\rightarrow & \mathrm{r}=3 \\
\therefore \quad \begin{array}{l}
\mathrm{n} \\
\\
\mathrm{n}_{\mathrm{C}} \\
\\
=120-{ }^{5} \mathrm{C}_{3}=10
\end{array} & \mathrm{n}=5
\end{array}
$$

Example 10:
If $5 \times{ }^{n} \mathrm{C}_{6}=12 \times{ }^{\mathrm{n}} \mathrm{C}_{4}$
Find the value of ${ }^{n-3} \mathrm{P}_{3}$
SOL:
$\frac{{ }^{n} C_{6}}{{ }^{n} C_{4}}=\frac{12}{5} \rightarrow \frac{{ }^{n} C_{6}}{{ }^{n} C_{5}} \times \frac{{ }^{n} C_{5}}{{ }^{n} C_{4}}=\frac{12}{5}$
$\frac{n-5}{6} \times \frac{n-4}{5}=\frac{12}{5}$
$(n-5)(n-4)=72=8 \times 9$
$\therefore \mathrm{n}-5=8---\rightarrow \quad \mathrm{n}=13$
${ }^{n-3} \mathrm{P}_{3}={ }^{10} \mathrm{P}_{3}=10 \times 9 \times 8=720$

Example 11 :

If ${ }^{\mathrm{X}_{2}}=6,{ }^{10} \mathrm{PY}=720$
Find the value of $\mathrm{y}-\mathrm{x}+5$
SOL:

$$
\begin{array}{lc}
\mathrm{x}_{\mathrm{C}_{2}}=6---\rightarrow & \mathrm{x}=4 \\
{ }^{10} \mathrm{PY}=720---7 & \mathrm{y}=3 \\
\mathrm{Y}-\mathrm{X}+5=\llcorner 3-4+5=\llcorner 4=24
\end{array}
$$

Example12:

$$
\text { If }{ }^{6} \mathrm{P}_{\mathrm{r}}=120,{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}:{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}-1}=2
$$

$$
\text { Find the value of }\lfloor n-r
$$

Sol :

$$
\begin{aligned}
& { }^{6} \mathrm{P}_{\mathrm{r}}=120 \quad--\rightarrow \rightarrow \quad \mathrm{r}=3 \\
& { }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}} \quad: \quad{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}-1}=\frac{(\mathrm{n}+1)-\mathrm{r}+1}{\mathrm{r}}=2 \\
& \frac{\mathrm{n}-1}{3}=2---\rightarrow \quad \mathrm{n}=7 \\
& \mathrm{n}-\mathrm{r}=\boxed{7-3}=\boxed{ }=24
\end{aligned}
$$

Example13:

$$
\begin{aligned}
& \text { Prove that } \frac{{ }^{n} C_{r}-{ }^{n-1} C_{r-1}}{{ }^{n} C_{r}}=\frac{n-r}{n} \\
& \text { Hence find the value of } \frac{{ }^{1000} C_{100}-{ }^{999} C_{g g}}{{ }^{1000} C_{100}}
\end{aligned}
$$

SOL:

$$
\begin{aligned}
& \text { L.H.S }=\frac{{ }^{n} C_{r}}{{ }^{n} C_{r}}-\frac{{ }^{n-1} C_{r-1}}{{ }^{{ }^{n} C_{r}}}
\end{aligned}
$$

$$
\begin{aligned}
& =1-\frac{r}{n}=\frac{n-r}{n}=\text { R.H.S. } \\
& \frac{{ }^{1000} \mathrm{C}_{100}-{ }^{999} \mathrm{C}_{99}}{{ }^{1000} \mathrm{C}_{100}}=\frac{1000-100}{1000}=\frac{900}{1000}=0.9
\end{aligned}
$$

The Binomial Theorem With a (+ve) integer power *

$(a+b)^{1}=a+b$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
Theorem:

$$
(a+b)^{n}={ }^{n} c_{0} a^{n}+{ }^{n} c_{1} a^{a-1} b+{ }^{n} c_{2} a^{n-2} b^{2}+\ldots \ldots .+{ }^{n} c_{n} b^{n} .
$$

Re sults: 1) $(1+x)^{n}=1+^{n} c_{1} x+^{n} c_{2} x^{2}+\ldots \ldots \ldots+x^{n}$.
2) $(1-x)^{n}=1-{ }^{n} c_{1} x+{ }^{n} c_{2} x^{2}-\ldots \ldots \ldots+(-x)^{n}$.

The general term in the expansion of $(x+a)^{n}$.
$\mathrm{T}_{\mathrm{x}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \times\left(2^{\mathrm{nd}}\right)^{\mathrm{r}} \times\left(1^{\mathrm{st}}\right)^{\mathrm{n}-\mathrm{r}} ., \mathrm{r}=0,1,2, \ldots \ldots, \mathrm{n}$

Example(1):

Find the expansion of $(a+b)^{4}$.
Sol :

$$
\begin{aligned}
& (a+b)^{4}=a^{4}+{ }^{4} c_{1} a^{3} b+{ }^{4} c_{2} a^{2} b^{2}+{ }^{4} c_{3} a b^{3}+b^{4} \\
& =a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

Example(2) :

Find the expansion of $(1-3 x)^{5}$
Sol :

$$
\begin{aligned}
& (1-3 x)^{5}=1-{ }^{5} C_{1} 3 x+{ }^{5} C_{2}(3 x)^{2}-{ }^{5} C_{3}(3 x)^{3}+{ }^{5} C_{4}(3 x)^{4}-{ }^{5} C_{5}(3 x)^{5} \\
& \therefore(1-3 x)^{5}=1-15 x+90 x^{2}-270 x^{3}+405 x^{4}-243 x^{5}
\end{aligned}
$$

Example(3) :
Find T_{4} in the expansion of

$$
\left(\frac{2}{\sqrt{x}}-\frac{\sqrt{\mathrm{x}}}{2}\right)^{u}
$$

sol :

$$
\begin{gathered}
\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{c}_{\mathrm{r}} \times\left(2^{\mathrm{nd}}\right)^{r} \times\left(1^{\mathrm{st}}\right)^{\mathrm{n}-\mathrm{r}} \\
\mathrm{~T}_{4}={ }^{11} \mathrm{c}_{3} \times\left(\frac{-\sqrt{x}}{2}\right)^{3} \times\left(\frac{2}{\sqrt{x}}\right)^{8}
\end{gathered}
$$

$$
\begin{aligned}
& =165 \times \frac{-\left(\sqrt{X)^{3}}\right.}{(2)^{3}} \times \frac{(2)^{8}}{\sqrt{(x)^{8}}} \\
& =\frac{-5280}{x^{2} \sqrt{x}}
\end{aligned}
$$

Example(4) :

Find the coefficient of T_{6} in the expansion of $(2 x-3)^{8}$
Sol:

$$
\begin{gathered}
\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{c}_{\mathrm{r}} \times\left(2^{\text {nd }}\right)^{r} \times\left(1^{\text {st }}\right)^{n-r} \\
\text { Coeff of } \mathrm{T}_{6}={ }^{8} \mathrm{C}_{5} \times(-3)^{5} \times(2 \times 1)^{3} \\
=56 \times(-243) \times 8=-108864
\end{gathered}
$$

Example(5) :

Find the coeff. of the $\mathrm{r}^{\text {th }}$ term in the expansion

$$
\text { of }\left(x+\frac{1}{x}\right)^{2 n}
$$

Sol :
Coeff . of T_{r}
$={ }^{2 n} \mathbf{c}_{r-1} \times\left(\frac{1}{1}\right)^{r-1} \times(1)^{2 n+1-r}$

Example(6):

Find the value of $(1+x)^{7}-(1-x)^{7}$
Sol :

$$
\begin{aligned}
& \text { Exp. }=2\left(\mathrm{~T}_{2}+\mathrm{T}_{4}+\mathrm{T}_{6}+\mathrm{T}_{8}\right) \\
& =2\left({ }^{7} \mathrm{C}_{1} \mathrm{x}+{ }^{7} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{7} \mathrm{C}_{5} x^{5}+{ }^{7} \mathrm{C}_{7} \mathrm{x}^{7}\right) \\
& =2\left(7 x+35 x^{3}+21 x^{5}+\mathrm{x}^{7}\right) \\
& =14 \mathrm{x}+70 \mathrm{x}^{3}+42 x^{5}+2 x^{7}
\end{aligned}
$$

Without using calculator, find the value of : $(1.01)^{5}+(0.99)^{5}$, approximate your result to 3 decimal places

Sol :

$$
\begin{aligned}
& (1.01)^{5}+(0.99)^{5}=(1+0.01)^{5}+(1-0.01)^{5} \\
& =2\left(T_{1}+\mathrm{T}_{3}+\mathrm{T}_{5}\right) \\
& =2\left[1+{ }^{5} \mathrm{C}_{2} \times(0.01)^{2}+{ }^{5} \mathrm{C}_{4} \times(0.01)^{4}\right] \\
& =2\left[1+10 \times(0.01)^{2}+5 \times(0.01)^{4}\right] \\
& =2+20 \times(0.01)^{2}+10 \times(0.01)^{4} \\
& =2.002
\end{aligned}
$$

* The middle term in the expansion of(x+a) ${ }^{n}$
(1) If \mathbf{n} is odd:

The No of terms $=\mathbf{n + 1}$ (even)
\therefore There are 2 middle terms of order $\frac{n+1}{2}, \frac{n+3}{2}$
(2) If n is even:

The No of terms $=\mathrm{n}+1$ (odd)
\therefore There is only one middle term of order $\frac{\mathrm{n}}{2}+1$
Example (8):
Find the middle term in the expansion of

$$
\left(2 x^{2}+\frac{1}{x}\right)^{10}
$$

Sol :

$$
\begin{aligned}
& \because N=10 \quad \text { the } \mathrm{No} \text { of terms }=11 \\
& \therefore \quad \text { which is } \mathrm{T}_{6} \\
& \quad \text { There only one middle term } \\
& \mathrm{T}_{6}={ }^{10} \mathrm{C}_{5} \times\left(\mathrm{x}^{-1}\right)^{5} \times\left(2 \mathrm{x}^{2}\right)^{5} \\
& ={ }^{10} \mathrm{C}_{5} \times \mathrm{x}^{-5} \times{ }^{5} \times \mathrm{x}^{10} \\
& =32 \times{ }^{10} \mathrm{C}_{5} \times \mathrm{x}^{5}
\end{aligned}
$$

Example (9) :
Find the middle terms in the expansion of $\left(\frac{x}{3}-\frac{2}{y}\right)^{7}$

Sol :
$\because \mathrm{N}=7 \quad$ the No of terms $=8$
\therefore There are 2 middle terms which are
$\mathrm{T}_{4}, \mathrm{~T}_{5}$
$\mathrm{T}_{4}={ }^{7} \mathrm{C}_{3} \times\left(\frac{-2}{\mathrm{y}}\right)^{3} \times\left(\frac{\mathrm{x}}{3}\right)^{4}$
$=-\frac{8}{81} \times{ }^{7} \mathbf{C}_{3} \times \frac{x^{4}}{y^{3}}$
$\mathrm{T}_{5}={ }^{7} \mathrm{C}_{4} \times\left(\frac{-2}{\mathrm{Y}}\right)^{4} \times\left(\frac{\mathrm{X}}{3}\right)^{3}$
$=\frac{16}{27} \times{ }^{7} \mathrm{C}_{3} \times \frac{\mathrm{X}^{8}}{\mathrm{Y}^{4}}$
Example (10) :
If a, b are the 2 middle terms in the expansion of
$\left(x-\frac{1}{x}\right)^{15}$ according to the descending power of X Prove that $a+b x^{2}=0$
Sol :

$$
\begin{aligned}
& \mathrm{T}_{8}=\mathrm{a} \quad, \quad \mathrm{~T}_{9=b} \\
& \text { L.H.S }=\mathrm{a}+\mathrm{bx}{ }^{2}=\mathrm{T}_{8}+\mathrm{X}^{2} . \mathrm{T}_{9} \\
& ={ }^{55} \mathrm{C}_{7} \times\left(\frac{-1}{\mathrm{X}}\right)^{7} \times \mathrm{X}^{8}+\mathrm{X}^{2} \times{ }^{15} \mathrm{C}_{8} \times \\
& \left(\frac{-1}{\mathrm{X}}\right)^{8} \times \mathrm{X}^{7} \\
& ={ }^{15} \mathrm{C}_{7} \times(-X)+{ }^{15} \mathrm{C}_{7} \times \mathrm{X}=0=\text { R.H.S }
\end{aligned}
$$

Example (11) :
Find the coeff. Of x^{9} in the expansion of ($\left.\mathrm{x}^{3}-\frac{1}{\mathrm{x}^{4}}\right)^{10}$
Sol:

$$
\begin{aligned}
& \mathrm{T}_{r+1}={ }^{10} \mathrm{C}_{r} \times\left(\frac{-1}{x^{4}}{ }^{r} \times\left(\mathrm{x}^{3}\right)^{10-r}\right. \\
& ={ }^{10} \mathrm{C}_{r} \times(-1)^{r} \times \mathrm{x}^{-4 r} \times \mathrm{x}^{30-3 r} \\
& ={ }^{10} \mathrm{C}_{r} \times(-1)^{r} \times \mathrm{x}^{30-7 r}
\end{aligned}
$$

$\therefore 30-7 r=9 \rightarrow \quad r=3$
\therefore The term which contains x^{9} is T_{4} Coeff. of $\mathrm{T}_{4}={ }^{10} \mathrm{C}_{3} \times(-1)^{3}=-120$

Example (12):
Find the term free of x in the expansion of

$$
\left(x-\frac{1}{2 x^{2}}\right)^{9}
$$

Sol:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left(\frac{-1}{2 \mathrm{x}^{2}}\right)^{\mathrm{r}} \times(\mathrm{x})^{9-\mathrm{r}} \\
& ={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left(\frac{-1}{2}\right)^{r} \times \mathrm{x}^{-2 \mathrm{r}} \times \mathrm{X}^{9-\mathrm{r}} \\
& ={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left(\frac{-1}{2}\right)^{r} \times \mathrm{X}^{9 .-3 r} \\
& \therefore 9-3 r=0---\rightarrow \quad r=3 \\
& \therefore \text { the term free of } \mathrm{x} \text { is } \mathrm{T}_{4} \\
& \mathrm{~T}_{4}={ }^{9} \mathrm{C}_{3} \times\left(\frac{-1}{2}\right)^{3}=\frac{-21}{2}
\end{aligned}
$$

Example (13):
Prove that there is no term free of x in the expansion of $\left(2 x^{3}-\frac{3}{x}\right)^{9}$
Sol:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left(\frac{-3}{\mathrm{x}}\right)^{r} \times\left(2 \mathrm{x}^{3}\right)^{9-r} \\
& \begin{array}{c}
{ }^{9} \mathrm{C}_{\mathrm{r}} \times(-3)^{r} \times \mathrm{X}^{-r} \times(2)^{9-r} \\
\times \mathrm{X}^{27-3 r} \\
={ }^{9} \mathrm{C}_{\mathrm{r}} \times(-3)^{r} \times(2)^{9-r} \times \mathrm{x}^{27-4 r} \\
\therefore 27-4 \mathrm{r}=0--- \\
\quad \mathrm{r}=\frac{27}{4} \notin Z^{+} \cup\{0\}
\end{array}
\end{aligned}
$$

\therefore There is no term free of x in this expansion

Example (14):
Prove that in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{n}$ there exists a term free of x if n. is a multiple of 3 ,and find this term when n. $=12$

Sol :

$$
\begin{aligned}
& T_{r+1}={ }^{n} C_{r} \times\left(x^{-1}\right)^{r} \times\left(x^{2}\right)^{n-r} \\
& \quad={ }^{n} C_{r} \times x^{2 n-3 r} \\
& \therefore 2 n-3 r=0 \quad---\rightarrow r=\frac{2 n}{3} \in Z^{+} \cup\{0\}
\end{aligned}
$$

if n is divisible by 3
(a multiple of 3)
at $\mathrm{n}=12$
$\therefore \quad r=\frac{2 \times 12}{3}=8$
$\mathrm{T}_{9}={ }^{12} \mathrm{C}_{8}={ }^{12} \mathrm{C}_{4}=495$

* The ratio between any term and its precedent in the expansion of($x+a)^{n}$

$$
\frac{T_{r+1}}{T_{r}}=\frac{n-r+1}{r} \times \frac{2^{n d}}{1^{\text {st }}}
$$

Example (15) :
If the middle terms in the expansion of $(2 x+3)^{17}$ are equal .find the value of X

Sol :
The middle terms are $\mathrm{T}_{9}, \mathrm{~T}_{10}$
$\because \mathrm{T}_{9}=\mathrm{T}_{10} \quad \therefore \frac{T_{10}}{T_{9}}=1$
$\therefore \frac{17-9+1}{9} \times \frac{3}{2 x}=1$
$\therefore 2 \mathrm{x}=3$
$\therefore \mathrm{x}=\frac{3}{2}$

Example (16):
$\mathrm{T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}$ in the expansion of $(\mathrm{x}+\mathrm{y})^{\mathrm{n}}$ are respectively 240, 720,1080
Find the values of x, y and n.
Sol :

Example 17:

The coefficients of 3 consecutive terms are respectively $20,190,1140$. Find the value of n, and the order of these terms in the exp. of $(1+x)^{n}$

Sol :
Let these terms are T_{r}, T_{r+1}, T_{r+2}
Coefficient of $\mathrm{T}_{\mathrm{r}+2}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}=1140 \rightarrow$
Coefficient of $\mathrm{T}_{\mathrm{r}+1}={ }^{n} \mathrm{C}_{\mathrm{r}}=190 \rightarrow$
Coefficient of $\mathrm{T}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}=20 \rightarrow$
Eq.(1) \div eq. (2)
$\frac{{ }^{n} C_{r+1}}{{ }^{n} C_{r}}=\frac{n-r}{r+1}=6$

$$
n-r=6 r+6
$$

$$
\begin{equation*}
\mathrm{n}=7 \mathrm{r}+6--\rightarrow \tag{4}
\end{equation*}
$$

eq.(2) \div eq.(3)

$$
\begin{align*}
& \frac{T_{4}}{T_{3}}=\frac{n-2}{3} \times \frac{y}{x}=\frac{1080}{720}=\frac{3}{2} \tag{1}\\
& \frac{\mathrm{~T}_{3}}{\mathrm{~T}_{2}}=\frac{n-1}{2} \times \frac{y}{x}=\frac{720}{240}=3 \tag{2}\\
& \text { (1) } \div(2) \\
& \therefore \frac{\mathrm{n}-2}{3} \times \frac{2}{n-1}=\frac{1}{2} \quad\left(\times \frac{3}{2}\right) \\
& \frac{n-2}{n-1}=\frac{3}{4} \\
& \therefore 4 n-8=3 n-3 \quad \therefore \mathrm{n}=5 \text { (3) } \\
& \text { from (3) in (2) } \\
& \therefore 1 \times\left(\frac{\mathrm{y}}{\mathrm{x}}\right)=\frac{3}{2} \\
& \therefore \frac{y}{x}=\frac{3}{2} \quad \therefore \mathrm{y}=\frac{3 \mathrm{x}}{2} \tag{4}\\
& \because \mathrm{~T}_{2}=240 \\
& \therefore{ }^{n} c_{1} \times y \times x^{n-1}=240 \\
& \therefore c_{1} \times \frac{3 x}{2} \times x^{4}=240 \\
& \therefore x^{5}=32=2^{5} \\
& \therefore x=2 \quad \mathrm{y}=3
\end{align*}
$$

$$
\begin{aligned}
& \frac{{ }^{n} c_{r}}{{ }^{n} c_{r-1}}=\frac{n-r+1}{r}=\frac{19}{2} \\
& \therefore \frac{7 r+6-r+1}{r}=\frac{19}{2} \\
& \frac{6 r+7}{r}=\frac{19}{2} \\
& \therefore 19 r=12 r+14 \rightarrow \\
& \therefore \mathrm{n}=7 \times 2+6 \rightarrow \quad \mathrm{r}=2 \quad \therefore \text { terms are } T_{2}, T_{3}, T_{4} \\
& \therefore \quad \mathrm{n}=20
\end{aligned}
$$

Example (18) :
In the expansion of $(1+x)^{n}$ according to the powers of x in ascending order, If $T_{4}=\frac{25}{3} T_{2}$ and if $T_{5}=T_{6}$, Find the values of n, x

Sol :

$\frac{T_{4}}{T_{2}}=\frac{25}{3}$
$\therefore \frac{T_{4}}{T_{3}} \times \frac{T_{3}}{T_{2}}=\frac{25}{3}$
$\therefore \frac{n-2}{3} \times \frac{n-1}{2} \times x^{2}=\frac{25}{3}$
$(n-2)(n-1) x^{2}=50$
$\frac{T_{6}}{T_{5}}=1$
$\frac{n-4}{5} \times x=1$
$(\mathrm{n}-4) \times \mathrm{x}=5 \quad$ by squaring

$$
\begin{aligned}
& (\mathrm{n}-4)^{2} \times x^{2}=25 \\
& \mathrm{eq}(1) \div \mathrm{eq}(2) \\
& \frac{\mathrm{n}^{2}-3 n+2}{n^{2}-8 n+16}=\frac{2}{1} \\
& \therefore 2 n^{2}-16 n+32=n^{2}-3 n+2 \quad \therefore n^{2}-13 n+30=0 \\
& (n-10)(n-3)=0 \\
& \therefore n=10 \quad \mathrm{n}=3
\end{aligned}
$$

(refused because number of terms \neq only 4 from (3) in (2)

$$
\therefore x^{2}=\frac{25}{36}
$$

$$
\therefore x=\frac{5}{6} \quad \text { or } x=\frac{-5}{6}
$$

(refused because T_{5}, T_{6} have the same)
Example 19 :
In the expansion of $\left(\mathrm{X}^{2}+\frac{1}{\mathrm{X}}\right)^{9}$ according to the powers of $X \ln$ descending order,
I) find the term free of X
II) If the ratio between the term free of x and the $6^{\text {th }}$ term is $2: 3$, find the value of X

Sol :

$$
\begin{aligned}
& \text { I) } T_{r+1}={ }^{9} \mathrm{C}_{r} \times\left(\mathrm{X}^{-1}\right)^{r} \times\left(\mathrm{X}^{2}\right)^{9-r} \\
& ={ }^{9} \mathrm{C}_{\mathrm{r}} \times \mathrm{X}^{-r} \times \mathrm{X}^{18-2 r} \\
& \quad={ }^{9} \mathrm{C}_{r} \times \mathrm{X}^{18-3 r} \\
& \therefore 18-3 \mathrm{r}=0 \rightarrow--\rightarrow \quad r=6
\end{aligned}
$$

\therefore The term free of X is $\mathrm{T}_{7}={ }^{9} \mathrm{C}_{6}={ }^{9} \mathrm{C}_{3}$

$$
=84
$$

$$
\begin{aligned}
& \text { ii) } \frac{T_{7}}{T_{6}}=\frac{2}{3} \\
& \frac{9-5}{6} \times \frac{1}{x^{3}}=\frac{2}{3} \\
& \therefore x^{3}=1
\end{aligned} \quad\left(x \frac{3}{2}\right)
$$

Example 20 :
In the expansion of $\left(x^{2}-\frac{1}{x^{2}}\right)^{12}$ according to the power of x in descending order, find the term contains x^{4}, and find the Ratio between the coefficient of this term and the middle term

Sol :

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{12} \mathrm{C}_{\mathrm{r}} \times\left({ }^{\frac{-1}{\mathrm{x}^{2}}}\right)^{\mathrm{r}} \times\left(\mathrm{x}^{2}\right)^{12-\mathrm{r}} \\
& ={ }^{12} \mathrm{C}_{\mathrm{r}} \times(-1)^{r} \times(\mathrm{x})^{-2 r} \times(\mathrm{x})^{24-2 \mathrm{r}} \\
& ={ }^{12} \mathrm{C}_{\mathrm{r}} \times(-1)^{r} \times(\mathrm{x})^{24-4 \mathrm{r}} \\
\therefore 24-4 \mathrm{r} & =4--\rightarrow \quad \mathrm{r}=5
\end{aligned}
$$

\therefore The term contains x^{4} is T_{6}

$$
\mathrm{T}_{6}={ }^{12} \mathrm{C}_{5} \mathrm{X} \quad \mathrm{~T}_{6}=-{ }^{12} \mathrm{C}_{5} \mathrm{X}^{4}
$$

$$
\mathrm{T}_{7} \text { is the middle term }
$$

$$
. \frac{\operatorname{Coff} \cdot T_{6}}{T_{7}}=\frac{6}{12-5} \times \frac{(1)}{(-1)}=\frac{-6}{7}
$$

Example 21 :

If the coefficient of x^{16} in the expansion of

$$
\left(x^{3}+\frac{a}{x}\right)^{8} \text { is }
$$

equal to the term free of x in this expansion, find the value of a.

Sol :

$$
\begin{aligned}
& \ln \left(x^{3}+\frac{a}{x}\right)^{8} \\
& \mathrm{~T}_{\mathrm{r}+1}={ }^{8} \mathrm{C}_{\mathrm{r}} \times\left(\frac{a}{x}\right)^{r} \times\left(\mathrm{x}^{3}\right)^{8-r} \\
&={ }^{8} \mathrm{C}_{r} \times \mathrm{a}^{r} \times \mathrm{x}^{-r} \times \times \times^{24-3 r} \\
&={ }^{8} \mathrm{C}_{r} \times \mathrm{a}^{r} \times \times \mathrm{x}^{24-4 r} \\
& \therefore \quad 24-4 r=16--\rightarrow \quad r=2
\end{aligned}
$$

\therefore Coeff .of $\mathrm{x}^{16}=$ Coeff. of T_{3}
$={ }^{8} \mathrm{C}_{2} \times \mathrm{a}^{2}=28 \mathrm{a}^{2}$

To find the term free of x
$\therefore 24-4 r=0--\rightarrow \quad r=6$
T_{7} is the term free of x
$\mathrm{T}_{7}={ }^{8} \mathrm{C}_{6} \times \mathrm{a}^{6}={ }^{8} \mathrm{C}_{2} \times \mathrm{a}^{6}=28 \mathrm{a}^{6}$
$\therefore 28 a^{6}=28 a^{2}(\div 28)$

$$
a^{2}\left(a^{4}-1\right)=0 \rightarrow-\therefore a= \pm 1
$$

Example 22:

Find the value of the term free of x in the expansion of
$\left(9 x^{2}+\frac{1}{3 x}\right)^{9}$. Then prove that the middle terms are equal when $x=\frac{1}{3}$
Sol :

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left(\frac{1}{3 \mathrm{x}}\right)^{r} \times\left(9 \mathrm{x}^{2}\right)^{9-r} \\
& \quad={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left(\frac{1}{3}\right)^{r} \times \mathrm{x}^{-r} \times 3^{18-2 r} \times \mathrm{x}^{18-2 r} \\
& \quad={ }^{9} \mathrm{C}_{\mathrm{r}} \times 3^{18-3 r} \times \mathrm{x}^{18-3 r}
\end{aligned}
$$

$\therefore 18-3 r=0 \rightarrow \quad r=6$
The term free of x is T_{7}
$\mathrm{T}_{7}={ }^{9} \mathrm{C}_{6}={ }^{9} \mathrm{C}_{3}=84$
The 2 middle terms are $\mathrm{T}_{5}, \mathrm{~T}_{6}$

$$
\begin{array}{ll}
\frac{\mathrm{T}_{6}}{\mathrm{~T}_{5}}=\frac{9-4}{5} \times \frac{\left(\frac{1}{3 \mathrm{x}}\right)}{9 \mathrm{x}^{2}}=1 & \\
\therefore \frac{1}{27 \mathrm{x}^{3}}=1 & \therefore \mathrm{x}=\frac{1}{3}
\end{array}
$$

Example 23 :

In the expansion of $\left(a x+\frac{1}{b x}\right)^{10}$ according to the powers of x in descending order, if the term free of x is equal to the coefficient of the $7^{\text {th }}$ term , prove that $6 a b=5$
Sol :

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{10} \mathrm{C}_{\mathrm{r}} \times\left(\frac{1}{\mathrm{bx}}\right)^{r} \times(\mathrm{ax})^{10-r} \\
& ={ }^{10} C_{r} \times\left(\frac{1}{b}\right)^{r} \times \times^{-r} \times(a)^{10-r} \times(x)^{10-r} \\
& ={ }^{10} C_{r} \times\left(\frac{1}{b}\right)^{r} \times(a)^{10-r} \times(x)^{10-2 r}
\end{aligned}
$$

$\therefore 10-2 r=0 \rightarrow \quad r=5$
\therefore The term free of x is T_{6}

$$
\mathrm{T}_{6}={ }^{10} \mathrm{C}_{5} \times\left(\frac{1}{\mathrm{~b}}\right)^{5} \times(\mathrm{a})^{5}
$$

$\therefore \mathrm{T}_{6}={ }^{10} \mathrm{C}_{5} \times \frac{\mathrm{a}^{0}}{\mathrm{~b}^{5}}$
Coeff. of $\mathrm{T}_{7}={ }^{10} \mathrm{C}_{6} \times\left(\frac{1}{b}\right)^{6} \times(a)^{4}$

$$
={ }^{10} \mathbf{C}_{6} \times \frac{a^{4}}{b^{4}}
$$

$\therefore{ }^{10} \mathrm{C}_{5} \times \frac{\mathrm{a}^{0}}{\mathrm{~b}^{5}}$

$$
={ }^{10} \mathbf{C}_{6} \times \frac{a^{4}}{b^{6}} \quad\left(\times \frac{b^{6}}{a^{4}}\right)
$$

$\therefore{ }^{10} \mathrm{C}_{5} \times \mathrm{ab}={ }^{10} \mathrm{C}_{6} \quad\left(\div{ }^{10} \mathrm{C}_{5}\right)$
$\therefore a b=\frac{10-6+1}{6}=\frac{5}{6}$
$\therefore 6 a b=5$

* Introduction

If the $S . S=R$
Solve the eq $x^{2}+1=0$
Sol :

$$
\begin{aligned}
& x^{2}=-1 \\
& x=\mp \sqrt{-1}
\end{aligned}
$$

If \quad S. S. is $R \quad \therefore$ the solution set is $\boldsymbol{\phi}$
and if we consider

$$
i=\sqrt{-1}
$$

\therefore S. S. $=\{\mathrm{i},-\mathrm{i}\}$
Where, $\mathrm{i}=\sqrt{-1}$

$$
\therefore \mathrm{i}^{2}=-1, \quad \mathrm{i}^{3}=-\mathrm{i}, \quad \mathrm{i}^{4}=1
$$

In general:

$$
i^{4 n}=1, i^{4 n+1}=i, i^{4 n+2}=i^{2}=-1, i^{4 n+3}=i^{3}=-i \quad, n \in z
$$

* The set of complex Numbers (C)
$C=\left\{x+y i, x, y \hat{I} R, i^{2}=-1\right\}$
The complex number is symbolized by $Z=x+y i$
x is called the real part, y is called the imaginary part.
And if $x=0, y \neq 0 \Rightarrow Z$ is a pure imaginary.
And if $y=0, x \neq 0 \Rightarrow Z$ is a pure rule.

* Operations on complex numbers

1- The 2 complex numbers

$$
\mathrm{z}_{1}=\mathrm{x}_{1}+\mathrm{y}_{1} \mathrm{i}, \quad \mathrm{z}_{2}=\mathrm{x}_{2}+\mathrm{y}_{2} \mathrm{i}
$$

Are equal iff $\quad x_{1}=x_{2}, y_{1}=y_{2}$

2- If $Z_{1}=x_{1}+y_{1} i, \quad Z_{2}=x_{2}+y_{2} i$,
Then $Z_{1}+Z_{2}=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) i$
$Z_{1} Z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y 2+x_{2} y_{1}\right)$

* Properties of addition and subtraction of complex

Numbers

1- Commutative: Verified in addition, multiplication.
2- Associative: verified in addition, multiplication.
3- Identity: a- In addition is zero. b- In multiplication is one.

4- Inverse: a- In addition: $-Z$ is the inverse of Z.
b- In multiplication: $\frac{1}{Z}$ is the inverse of Z.
ex. if $\quad Z=x+y i$

$$
\begin{aligned}
& -\mathrm{Z}=-\mathrm{x}-\mathrm{yi} \\
& \frac{1}{\mathrm{Z}}=\frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}}-\frac{\mathrm{yi}}{\mathrm{x}^{2}+\mathrm{y}^{2}}
\end{aligned}
$$

5- Distribution of multiplication over addition

$$
Z_{1}\left(Z_{2}+Z_{3}\right)=Z_{1} Z_{2}+Z_{1} Z_{3}
$$

* The conjugate of a complex number

If $Z=x+y i$, then $\bar{Z}=x-y i$ is the conjugate of the complex number Z.

Properties of the conjugate

1) $Z+\bar{Z}=2 x \quad$ (pure real)
2) $Z-\bar{Z}=2 y i \quad$ (pure imaginary).
3) $Z \cdot \bar{Z}=x^{2}+y^{2}$
4) $\overline{z_{1}}+\bar{z}_{2}=z_{1}+z_{2}$
5) $\overline{Z_{1} Z_{2}}=\bar{Z}_{1} \cdot \bar{Z}_{2}$
6) If $Z=x+y i \quad$ is a root of an eq., its coeff. $\in R$ then $Z=x-y i \quad$ is another root for the same eq.

Example 1

Write in the simplest form

$$
i^{83}, i^{-62}, i^{-15}, i^{12 n+7}
$$

Sol :

$$
\begin{array}{lll}
i^{83}=i^{3}=-i & , & i^{-62}=i^{2}=-1 \\
i^{-15}=i & , & i^{12 n+7}=i^{3}=-i
\end{array}
$$

Example 2
Find the value of $(3-2 \sqrt{-2})(5+\sqrt{-2})$

Sol:

$$
\begin{aligned}
& \operatorname{Exp}=(3-2 \sqrt{2} \text { i) }(5+\sqrt{2} i)=(15+4) \\
& \quad i(3 \sqrt{2}-10 \sqrt{2}) \\
& =19-7 \sqrt{2} i
\end{aligned}
$$

Example 3

Put in the form of $x+y i$ the number $\frac{(3+i)(3-i)}{3-4 i}$ by 2 methods
Sol :

$$
\frac{10}{3-4 i} \times \frac{3+4 i}{3+4 i}=\frac{(3+i)(3-i)}{3-4 i}=\frac{10(3+4 i)}{25}=\frac{6}{5}+\frac{8}{5} i
$$

Example 4

$$
\text { If } x=\frac{26}{5-i}, y=\frac{2(3+2 i)}{1+i}
$$

Prove that x, y are conjugate, also find the value of $x^{2}+x y$

$$
+y^{2}
$$

Sol :

$$
\begin{align*}
& x=\frac{26}{5-\mathrm{i}} \times \frac{5+\mathrm{i}}{5+\mathrm{i}}=\frac{26(5+\mathrm{i})}{26}=5+\mathrm{i} \tag{1}\\
& y=\frac{2(3+2 \mathrm{i})}{1+\mathrm{i}} \times \frac{1-\mathrm{i}}{1-\mathrm{i}}=\frac{2(3+2 \mathrm{i})(1-\mathrm{i})}{2} \\
& \therefore y=\frac{2(5-\mathrm{i})}{2}=5-\mathrm{i} \tag{2}
\end{align*}
$$

From (1), (2) $\therefore x, y$ are conjugate.

$$
x^{2}+x y+y^{2}=(5+i)^{2}+(5+i)(5-i)+(5
$$

$-i)^{2}$

$$
=(24+10 i)+26+(24-10 i)=74
$$

Example 5
Find the values of $x, y \in R$ if

$$
x+y i=(1-i \sqrt{2})^{5}
$$

Sol :

$$
\begin{aligned}
& x+y i=(1-i \sqrt{2})\left[(1-i \sqrt{2})^{2}\right]^{2} \\
& =(1-i \sqrt{2})[1-2-2 \sqrt{2} i]^{2} \\
& =(1-i \sqrt{2})(-1-2 \sqrt{2} i)^{2} \\
& =(1-i \sqrt{2})(1+4 \sqrt{2} i-8) \\
& =(1-i \sqrt{2})(-7+4 \sqrt{2} i) \\
& =-7+4 \sqrt{2} i+7 \sqrt{2} i+8 \\
& =1+11 \sqrt{2} i \quad \Rightarrow \quad x=1, y=11 \sqrt{2}
\end{aligned}
$$

Example 6

$$
\text { If }(a+b i)(1-i)=2+i
$$

Prove that $2\left(a^{3}+b^{3}\right)=7$

Sol :

$$
\begin{aligned}
& a+b i=\frac{2+i}{1-i} \times \frac{1+i}{1+i}=\frac{1+3 i}{2}=\frac{1}{2}+\frac{3}{2} \mathrm{i} \\
& \therefore a=2, \quad b=\frac{1}{2} \\
& \text { L.H.S }=2\left(a^{3}+b^{3}\right)=2\left(\frac{1}{8}+\frac{27}{8}\right)=\frac{2 \times 28}{8}=7=\text { R.H.S. }
\end{aligned}
$$

Find the S. S. of

$$
2 x-{ }^{2} x+3=0 \text { if } x \in C
$$

Sol :

$$
\begin{aligned}
& x=\frac{-b \mp \sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \quad a=2, b=-1, c=3 \\
& x=\frac{1 \mp \sqrt{1-(4 \times 2 \times 3)}}{4} \\
& \therefore x=\frac{1 \mp \sqrt{-23}}{4}=\frac{1 \mp \sqrt{23} i}{4} \\
& \text { S.S. }=\left\{\frac{1+\sqrt{23} i}{4}, \frac{1-\sqrt{23} i}{4}\right\}
\end{aligned}
$$

Example 8

$$
\begin{aligned}
& \text { If } Z \in C \text {, find the } S \text {. S. of } \\
& 4 Z+7 \bar{Z}=8
\end{aligned}
$$

Sol :

$$
\text { Let } Z=x+i y
$$

$$
\therefore 4(x+i y)+7(x-i y)=8
$$

$$
4 x+4 y i+7 x-7 y i=8
$$

$$
\therefore 11 x=8 \Rightarrow x=\frac{8}{11}, \quad y=0 \Rightarrow z=\frac{8}{11}
$$

Example 9
If (-1) is a root of the equation

$$
x^{3}-x^{2}+2=0,
$$

and Prove theis find the other 2 roots are conjugate

Sol :
$\because-1$ is a root of the given equation
$\therefore x+1$ is a factor for the expression
$x^{3}-x^{2}+2$
and to find the other factor, we use long division

$$
\begin{gathered}
\frac{x+1}{x^{2}-2 x+x^{3}+2} \\
\frac{x^{3}+x^{2}}{-2 x^{2}+2} \\
\frac{-2 x^{2}-2 x}{2 x+2} \\
\frac{2 x+2}{0}
\end{gathered}
$$

$\therefore x^{2}-2 x+2=0$, by the use of formula

$$
\begin{aligned}
& x=\frac{-b \mp \sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \\
& x=\frac{2 \mp \sqrt{4-(4 \times 1 \times 2)}}{2 \times 1} \\
& x=\frac{\frac{2 \mp \sqrt{-4}}{2}}{x=\frac{2 \mp 2 i}{2}=1 \mp \mathrm{i}}
\end{aligned}
$$

The other 2 roots are:
$1+i, 1$ - i which are conjugate

* Graphical representation of complex numbers

The complex number $Z=x+y i$ is represented by a point in the plane where:

x - axis represents the real part,
y - axis represents the imaginary part.
$r=|Z|=\sqrt{x^{2}+y^{2}}$ is called the modulus of the complex number.
$\theta=\tan ^{-1} \frac{y}{x}$ is called the amplitude (Argument) of the complex number.,
$0^{\circ} \leq \theta<360^{\circ}$
$\operatorname{Cos} \theta=\frac{\mathrm{x}}{\mathrm{r}} \quad, \quad \sin \theta=\frac{\mathrm{y}}{\mathrm{r}}$
$\therefore \quad Z=r(\cos \theta+i \sin \theta)$
Is called the trigonometric form a complex number.

Example 10

Find the modulus and the principle amplitude of each of the following complex numbers and represent each of them on Argand Diagrams.
a) -1
b) $1-\sqrt{3} i$
c) $-\sqrt{3}+i$

Sol :
a) $Z=-1$

$$
\begin{aligned}
& |Z|=1 \quad, \quad \theta=180^{\circ} \\
& \therefore Z=\cos 180^{\circ}+\mathrm{i} \sin 180^{\circ}
\end{aligned}
$$

b) $Z=1-\sqrt{3} i_{i}$
$r=|Z|=\sqrt{1+3}=2$
$\theta \in 4^{\text {th }}$ quad.

$$
\theta=360^{\circ}-60^{\circ}=300^{\circ}
$$

$$
\therefore \mathrm{Z}=2\left(\operatorname{Cos} 300^{\circ}+\mathrm{i} \sin 300^{\circ}\right)
$$

c) $Z=-\sqrt{3}+i$

$$
r=|Z|=\sqrt{1+3}=2
$$

$$
\theta \in 2^{\text {nd }} \text { quad. }
$$

$$
\theta=180^{\circ}-30^{\circ}=150^{\circ}
$$

$$
\therefore \mathrm{Z}=2\left(\operatorname{Cos} 150^{\circ}+\mathrm{i} \sin 150^{\circ}\right)
$$

Example 11

Write in the Alg form each of:
a) $Z=7\left(\operatorname{Cos} 60^{\circ}+i \sin 60^{\circ}\right)$
b) $Z=4\left[\operatorname{Cos}\left(-150^{\circ}\right)+i \sin \left(-150^{\circ}\right)\right]$

Sol :
a) $Z=7\left(\operatorname{Cos} 60^{\circ}+i \sin 60^{\circ}\right)$

$$
=7\left(\frac{1}{2}+\frac{\sqrt{3}}{2}_{i}\right)
$$

$=\frac{7}{2}+\frac{7 \sqrt{3}}{2}$ i
b) $Z=4\left[\operatorname{Cos}\left(-150^{\circ}\right)+i \sin \left(-150^{\circ}\right)\right]$
$=4\left[\operatorname{Cos} 210^{\circ}+i \sin 210^{\circ}\right]$
$=4\left[-\frac{\sqrt{3}}{2}-\frac{1}{2} i\right]=-2^{\sqrt{3}}-2 i$

Example 12

If $Z=r(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)$. Find each
of $-Z, \frac{1}{Z}$ in Trig. form.
Sol :

$$
\begin{aligned}
& -Z \quad=r(-\operatorname{Cos} \theta-i \operatorname{Sin} \theta) \\
& =r[\operatorname{Cos}(180+\theta)+i \operatorname{Sin}(180+\theta)] \\
& \frac{1}{Z}=\frac{1}{r(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)} \\
& =\frac{1}{r} \times \frac{1}{\operatorname{Cos} \theta+i \operatorname{Sin} \theta} \times \frac{\operatorname{Cos} \theta-i \operatorname{Sin} \theta}{\operatorname{Cos} \theta-i \operatorname{Sin} \theta} \\
& =\frac{1}{r}[\operatorname{Cos} \theta-i \operatorname{Sin} \theta]
\end{aligned}
$$

$$
=\frac{1}{\mathrm{r}}[\operatorname{Cos}(360-\theta)+\mathrm{i} \operatorname{Sin}(360-\theta)]
$$

Remember

1- $\operatorname{Sin}(A \mp B)=\operatorname{Sin} A \operatorname{Cos} B \mp \operatorname{Cos} A \operatorname{Sin} B$
2- $\operatorname{Cos}(A \mp B)=\operatorname{Cos} A \operatorname{Cos} B \pm \operatorname{Sin} A \operatorname{Sin} B$
$3-\operatorname{Sin} 2 A=2 \operatorname{Sin} A \operatorname{Cos} A$.
4- $\operatorname{Cos} 2 A=\operatorname{Cos}^{2} A-\operatorname{Sin}^{2} A$

$$
\begin{aligned}
& =2 \operatorname{Cos}^{2} A-1 \\
& =1-2 \operatorname{Sin}^{2} A .
\end{aligned}
$$

* The modulus and amplitude of product and quotient of 2 complex numbers

First: Multiplication

$$
\left|Z_{1} Z_{2}\right|=\left|Z_{1}\right|\left|Z_{2}\right|
$$

$\operatorname{Amp}\left(Z_{1} Z_{2}\right)=\operatorname{Amp}\left(Z_{1}\right)+\operatorname{Amp}\left(Z_{2}\right)$
Second: Division
$\left|\frac{Z_{1}}{Z_{2}}\right|=\frac{\left|Z_{1}\right|}{\left|Z_{2}\right|}$

$$
\operatorname{Amp}\left(\frac{Z_{1}}{Z_{2}}\right)=\operatorname{Amp}\left(Z_{1}\right)-\operatorname{Amp}\left(Z_{2}\right)
$$

Results: If $Z=r(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)$,
Then:i) $Z^{n}=r^{n}(\operatorname{Cos} n \theta+i \operatorname{Sin} n \theta)$

$$
\text { ii) } \frac{1}{Z}=Z^{-1}=\frac{1}{r}[\operatorname{Cos}(-\theta)+i \operatorname{Sin}(-\theta)]
$$

Example 13

Z_{1}
Find the trig form for each of $Z_{1} Z_{2}, Z_{2}$ where;

$$
\begin{aligned}
& \mathrm{Z}_{1}=6\left[\operatorname{Cos} \frac{3 \pi}{8}+\mathrm{i} \operatorname{Sin} \frac{3 \pi}{8}\right] \\
& \mathrm{Z}_{2}=2\left[\operatorname{Cos} \frac{\pi}{8}+\mathrm{i} \operatorname{Sin} \frac{\pi}{8}\right]
\end{aligned}
$$

Sol :

$$
\begin{aligned}
& Z_{1} Z_{2}=12\left[\operatorname{Cos} \frac{\pi}{2}+i \operatorname{Sin} \frac{\pi}{2}\right] \\
& \frac{Z_{1}}{Z_{2}}=3\left[\operatorname{Cos} \frac{\pi}{4}+i \operatorname{Sin} \frac{\pi}{4}\right]
\end{aligned}
$$

Example 14
Find the trig form for each of $Z_{2}, \frac{1}{Z}$
where $Z=4(\operatorname{Sin} a-i \operatorname{Cos} a)$.

Sol :

$$
\begin{aligned}
\because \quad & x \in R^{+} \quad, \quad y \in R^{-} \\
& \therefore Z \hat{l} 4^{\text {th }} \text { quad. } \\
\therefore & Z=4\left[\operatorname{Cos}\left(270^{\circ}+a\right)+i \operatorname{Sin}\left(270^{\circ}+a\right)\right] \\
Z^{2} & =16\left[\operatorname{Cos}\left(180^{\circ}+2 a\right)+i \operatorname{Sin}\left(180^{\circ}+2 a\right)\right] \\
\frac{1}{Z} & =\frac{1}{4}\left[\operatorname{Cos}\left(90^{\circ}-a\right)+i \operatorname{Sin}\left(90^{\circ}-a\right)\right]
\end{aligned}
$$

Example 15

Write down the trig form for each

$$
\begin{aligned}
& Z_{1}=\frac{1}{2}(-1+\sqrt{3} i), Z_{2}=\frac{-1}{2}-\frac{\sqrt{3}}{2} i, \text { also } \\
& \text { prove that } Z_{1}^{3}=Z_{2}^{3}=1
\end{aligned}
$$

Sol :

$$
\begin{aligned}
& Z_{1}=\frac{-1}{2}+\frac{\sqrt{3}}{2} i \\
& \mathrm{x}_{1}=\frac{-1}{2} \quad, \mathrm{y}_{1}=\frac{\frac{\sqrt{3}}{2}}{2} \\
& \left|Z_{1}\right|=r_{1}=\sqrt{x_{1}^{2}+y_{1}^{2}}=1 \\
& \mathrm{q}_{1} \in 2^{\text {nd }} \text { quad } \mathrm{q}_{1}=120^{\circ} \\
& Z_{1}=\operatorname{Cos} 120^{\circ}+i \operatorname{Sin} 120^{\circ} \\
& Z^{3}{ }_{1}=\operatorname{Cos} 0^{\circ}+i \operatorname{Sin} 0^{\circ}=1 \rightarrow(1) \\
& Z_{2}=\frac{-1}{2}-\frac{\sqrt{3}}{2} ; \quad X_{2}=\frac{-1}{2} \text {, } \\
& y 2=-\frac{\sqrt{3}}{2} \\
& \left|Z_{2}\right|_{r_{2}}=\sqrt{\mathrm{x}_{2}^{2}+\mathrm{y}_{2}^{2}}=1 \quad \operatorname{Cos} \theta_{2}=\frac{\frac{-1}{2}}{} \\
& \text {, } \operatorname{Sin} \theta_{2}=-\frac{\sqrt{3}}{2} \\
& \theta_{2} \in 3^{\text {rd }} \text { quad } \Rightarrow \theta_{2}=240^{\circ} \\
& \therefore Z_{2}=\operatorname{Cos} 240^{\circ}+\mathrm{i} \operatorname{Sin} 240^{\circ}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{Z}_{2}^{3}=\operatorname{Cos} 0^{\circ}+\mathrm{i} \operatorname{Sin} 0^{\circ}=1 \rightarrow \tag{2}
\end{equation*}
$$

From (1), (2)

$$
\therefore \quad \mathrm{Z}_{1}^{3}=\mathrm{Z}_{2}^{3}=1
$$

Example 16

$$
\text { If } \left.Z_{1}=13(\operatorname{Cos} \theta+i \operatorname{Sin} \theta), Z_{2}=\operatorname{Sin} 2 \theta+i \operatorname{Cos} 2 \theta\right)
$$

Where $\theta \in] 0, \frac{\pi}{2}\left[\operatorname{Tan} \theta=\frac{5}{12}\right.$
Find $Z_{1} Z_{2}$
Sol :

$$
\begin{aligned}
& Z_{1}=13(\operatorname{Cos} \theta+i \operatorname{Sin} \theta) \\
& Z_{2}=\operatorname{Cos}(90-2 \theta)+i \operatorname{Sin}(90-2 \theta) \\
& Z_{1} Z_{2}=13[\operatorname{Cos}(90-\theta)+i \operatorname{Sin}(90-\theta)] \\
& =13[\operatorname{Sin} \theta+i \operatorname{Cos} \theta] \\
& =13\left[\frac{5}{13}+\frac{12}{13} \mathrm{i}\right] \\
& =5+12 i
\end{aligned}
$$

* De Moiver's theorem

Example 17

Find the cubic roots of the complex number

$$
Z=8(\operatorname{Cos} \pi+i \operatorname{Sin} \pi)
$$

Sol :

$$
\begin{aligned}
& \mathrm{Z} \quad=8(\operatorname{Cos} \pi+\mathrm{i} \operatorname{Sin} \pi) \\
& \mathrm{Z}^{1 / 3}=8^{1 / 3}[\operatorname{Cos} \pi+\mathrm{i} \operatorname{Sin} \pi]^{1 / 3} \\
& =2^{\left[\operatorname{Cos} \frac{\pi+2 m \pi}{3}+i \operatorname{Sin} \frac{\pi+2 m \pi}{3}\right]}
\end{aligned}
$$

$$
m=0,1,2
$$

When: $\mathrm{m}=0$
$Z^{1 / 3}=2\left(\operatorname{Cos} \frac{\pi}{3}+i \operatorname{Sin} \frac{\pi}{3}\right)=1+\sqrt{3} i$
When: $\mathrm{m}=1$
$Z^{1 / 3}=2(\operatorname{Cos} \pi+i \operatorname{Sin} \pi)=-2$
When: $m=2$

$$
Z^{1 / 3}=2\left(\operatorname{Cos} \frac{5 \pi}{3}+i \operatorname{Sin} \frac{5 \pi}{3}\right)=1-\sqrt{3} i
$$

Example 18
Use De Moiver's theorem to find the square roots of the complex number

$$
Z=1+\sqrt{3} i
$$

Sol :

$$
\begin{aligned}
& x=1 \\
& y=\sqrt{3} \\
& \therefore r=2 \\
& \operatorname{Cos} \theta=\frac{\mathrm{x}}{\mathrm{r}}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Sin} \theta=\frac{\mathrm{y}}{\mathrm{r}}=\frac{\sqrt{3}}{2} \\
\therefore \quad \theta=60^{\circ} \\
\therefore Z=2\left(\operatorname{Cos} 60^{\circ}+\mathrm{i} \operatorname{Sin} 60^{\circ}\right) \\
Z^{\frac{1}{2}}=\sqrt{2}\left(\operatorname{Cos} \frac{60^{\circ}+2 \mathrm{~m} \pi}{2}+\mathrm{i} \operatorname{Sin} \frac{60^{\circ}+2 \mathrm{~m} \pi}{2}\right) \mathrm{m}=0,1 \\
\text { at } m=0 \\
\therefore Z^{\frac{1}{2}}=\sqrt{2}\left(\operatorname{Cos} 30^{\circ}+\mathrm{i} \operatorname{Sin} 30^{\circ}\right)=\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2} \mathrm{i} \quad \text { at } \mathrm{m}=1 \\
\mathrm{z}^{\frac{1}{2}}=\sqrt{2}\left(\cos 210^{\circ}+\mathrm{i} \sin 210^{\circ}\right)=\frac{-\sqrt{6}}{2}-\frac{\sqrt{2}}{2} \mathrm{i}
\end{gathered}
$$

Example 19
Find the square roots of the complex number $Z=3+4 i$. Without transforming it into trig form

Sol :
$2 x y=4$

$$
\begin{equation*}
\therefore y=\frac{\frac{2}{x}}{x}---\Rightarrow \tag{2}
\end{equation*}
$$

From (2) in (1)

$$
\therefore \mathrm{x}^{2}-\frac{4}{\mathrm{x}^{2}}=3
$$

$$
\left(x x^{2}\right)
$$

$$
\begin{align*}
& \text { Let } \quad Z^{2}=3+4 i \\
& \therefore(x+y i)^{2}=3+4 i \\
& \therefore\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)+2 \mathrm{xyi}=3+4 \mathrm{i} \\
& \therefore \mathrm{x}^{2}-\mathrm{y}^{2}=3 \quad----\Rightarrow \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \therefore x^{4}-3 x^{2}-4=0 \\
& \left(x^{2}-4\right)\left(x^{2}+1\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}=4 \Rightarrow x=\mp 2 \\
& \text { or } \quad x^{2}=-1 \quad \text { refused } \\
& \text { When } \quad x=2 \quad \Rightarrow \quad y=1 \\
& \text { When } \quad x=-2 \quad \Rightarrow \quad y=-1
\end{aligned}
$$

$$
\therefore Z=2+i \quad \text { or } \quad Z=-2-i
$$

\therefore The square roots are $2+i,-2-1$

Example 20
If $a=8-6 i$
Find $\mathrm{a}^{\frac{3}{2}}$
Sol :

$$
\text { Let } \begin{align*}
(\mathrm{x}+\mathrm{yi})^{2} & =8-6 \mathrm{i} \\
\therefore \mathrm{x}^{2}-\mathrm{y}^{2} & =8 \tag{1}\\
2 \mathrm{xy} & =-6 \\
\therefore \mathrm{y} & =-\frac{3}{\mathrm{x}} \tag{2}
\end{align*}
$$

From (2) in (1)

$$
\begin{aligned}
\therefore x^{2}-\frac{9}{x^{2}} & =8 \\
x^{4}-8 x^{2}-9 & =0 \\
\left(x^{2}-9\right)\left(x^{2}+1\right) & =0
\end{aligned}
$$

$$
\begin{array}{ll}
\therefore & x^{2}-9=0 \Rightarrow \\
& x^{2}+1=0 \\
& \text { when: }
\end{array}
$$

$$
x=3 \rightarrow y=-1 \rightarrow a^{\frac{1}{2}}=3-i
$$

Or when :

$$
x=-3-\rightarrow \quad y=1 \rightarrow \quad a^{\frac{1}{2}}=-3+i
$$

$$
\therefore \quad \mathrm{a}^{\frac{3}{2}}=(3-\mathrm{i})^{3}
$$

$$
=(8-6 i)(3-i)
$$

$$
=24-6-18 i-8 i
$$

$$
\therefore \mathrm{a}^{\frac{3}{2}}=18-26 i
$$

$$
\text { or } \quad a^{\frac{3}{2}}=(-3+i)^{3}=-(3-i)^{3}
$$

$$
\therefore \quad a^{\frac{3}{2}}=-18+261
$$

Example 21

Use De Moiver's Theorem in finding $\cos 2 \theta, \sin 2 \theta$ in terms of $\cos \theta, \sin \theta$

Sol :
$(\cos \theta+i \sin \theta)^{2}=\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+$
$2 \mathrm{i} \cos \theta \sin \theta$

$$
\begin{aligned}
& =(\cos 2 \theta)+(\sin 2 \theta) i \\
& \therefore \quad \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
& \sin 2 \theta=2 \sin \theta \cos \theta
\end{aligned}
$$

Example 22

Find the s.s. of
$(1+i) x^{2}-(1+3 i) x+2(2-3 i)=0$

Sol :

$$
\begin{gathered}
x^{2}-\left(\frac{1+3 i}{1+i}\right)_{x+\frac{2(2-3 i)}{1+i}=0}=0 \\
\therefore x^{2}-\left(\frac{1+3 i}{1+i} \times \frac{1-i}{1-i}\right)_{x+\frac{2(2-3 i)(1-i)}{(1+i)(1-i)}}= \\
\therefore x^{2}-\left(\frac{4+2 i}{2}\right)_{x}+(-1-5 i)=0 \\
\therefore x^{2}-(2+i) x+(-1-5 i)=0 \\
x \quad=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{(2+i) \pm \sqrt{3+4 i-4(1)(-1-5 i)}}{2} \\
x \quad=\frac{2+i \pm \sqrt{7+24 i}}{2} \\
\text { To find } \sqrt{7+24 i} \\
\text { Let }(a+b i)^{2}=7+24 i
\end{gathered}
$$

$$
\begin{align*}
& \left(a^{2}-b^{2}\right)+2 a b i=7+24 i \\
& a^{2}-b^{2}=7 \quad \ldots \ldots . \tag{1}\\
& 2 a b=24 \quad-\quad \quad \text { (1) } \tag{2}\\
& 2 \quad \ldots .
\end{align*}
$$

From (2) in (1)

$$
\begin{aligned}
& a^{2}-\frac{144}{a^{2}}=7 \quad\left(\times a^{2}\right) \\
& a^{4}-7 a^{2}-144 \quad=0 \\
& \left(a^{2}-16\right)\left(a^{2}+9\right)=0 \\
& a^{2}-16=0--\rightarrow \quad a^{2}=16--\rightarrow \\
& a= \pm 4 \quad-\rightarrow \quad b= \pm 3 \\
& a^{2}+9=0 \quad--\rightarrow \quad a^{2}=-9 \text { (refused) } \\
& \therefore \quad \sqrt{7+24 i}=4+3 i \\
& \therefore \quad x=\frac{2+i \pm(4+3 i)}{2} \\
& \therefore x \quad x \quad 3+2 i \quad \text { or } \quad x=-1-i
\end{aligned}
$$

* The exponential form of a complex number

If $\quad Z \in C$, its modulus $=r$, and its amplitude is θ

- $Z=r e^{\theta_{i}}$ is called the exponential form of a complex number.

Operations on complex numbers in exp. form
(1) $r_{1} e_{1}^{\theta_{1} i} \times r_{2} e_{2}^{\theta^{i}}=r_{1} r_{2} e^{\left(\theta_{1}+\theta_{2}\right) i}$
(2) $\frac{r_{1} e^{\theta_{1 i}}}{r_{2} e^{\theta_{2 i}}}=\frac{r_{1}}{r_{2}} e^{\left(\theta{ }_{1}-\theta_{2}(i)\right.}$
(3) $\quad\left(r e^{\theta i}\right)^{n}=r^{n} e^{n \theta i}$
(4) $\sqrt[n]{r e^{\theta_{i}}}=\sqrt[n]{r}, e^{\frac{\theta+2 m \pi}{n} i}$

$$
m=0,1,2, \ldots \ldots ., \quad m-1
$$

Example 23

$$
\text { Write down in the exp. form }\left(\frac{2(1+\mathrm{i})}{(1-\mathrm{i})}\right)^{7}
$$

Sol :

$$
\begin{aligned}
& \left(\frac{2(1+i)}{(1-i)}\right)^{7}=\left(\frac{2(1+i)(1+i)}{(1-i)(1+i)}\right)^{7} \\
& =\left(\frac{2(1+i)^{2}}{2}\right)^{7} \\
& =\left[(1+i)^{2}\right]^{7}=(1+2 \mathrm{i}-1)^{7}=(2 \mathrm{i})^{7} \\
& =\left(2 \times \mathrm{e}^{\frac{\pi}{2}}\right)^{7}=128 \mathrm{e}^{\frac{3 \pi}{2} \mathrm{i}}
\end{aligned}
$$

Example 24

$$
\begin{aligned}
& \text { If } z=2\left(\cos \frac{\pi}{3}+i \sin ^{\frac{\pi}{3}}\right) \\
& \text { Express each of } z, \frac{1}{z} \text { in the exp. Form }
\end{aligned}
$$

Sol :

$$
\begin{aligned}
r=2 & \quad \theta=\frac{\pi}{3} \\
z & =r \mathrm{e}^{\theta_{i}} \\
z & =2 \times \mathrm{e}^{\frac{\pi_{i}}{3}} \\
\frac{1}{\mathrm{z}} & =\frac{1}{2} \times \mathrm{e}^{-\frac{\pi}{3} \mathrm{i}} \\
\therefore \quad \frac{1}{\mathrm{z}} \quad & =\frac{1}{2} \times \mathrm{e}^{\frac{5 \pi}{3} \mathrm{i}}
\end{aligned}
$$

Example 25

$$
\text { If } z=1+i, \text { find } z^{6} \text { in the exp. form. }
$$

Sol :

$$
\begin{aligned}
& z=1+i \\
& r=\sqrt{2} \quad \theta=45^{\circ}=\frac{\pi}{4} \\
& z \quad=(\sqrt{2}) \times e^{\frac{\pi}{4}} \\
& z^{6} \quad=(\sqrt{2})^{6} \times e^{\frac{6 \pi}{4} i}=8 \times e^{\frac{3 \pi}{2} i}
\end{aligned}
$$

Example 26

$$
\begin{aligned}
\text { If } \mathrm{z}_{1} & =2 \times \mathrm{e}^{\frac{\pi_{\mathrm{i}}}{6}} \\
\mathrm{z}_{2} & =\sqrt{2} \times \mathrm{e}^{\frac{\pi_{\mathrm{i}}}{4}}
\end{aligned}
$$

Find each of $z_{1} z_{2}, \frac{z_{1}}{z_{2}}, z_{1}^{4}, \sqrt[3]{z_{1}}, \sqrt[4]{z_{2}}$
Sol :

$$
\begin{aligned}
& z_{1} z_{2}=2 \sqrt{2} \times \mathrm{e}^{\frac{5 \pi}{12} \mathrm{i}} \\
& \frac{z_{1}}{z_{2}}=\sqrt{2} \times \mathrm{e}^{\frac{23 \pi}{12} \mathrm{i}} \\
& \mathrm{z}_{1}^{4}=16 \times \mathrm{e}^{\frac{2 \pi}{3} \mathrm{i}} \\
& \sqrt[3]{\mathrm{z}_{1}}=\sqrt[3]{2} \times \mathrm{e}^{\frac{\frac{\pi}{6}+2 \mathrm{~m} \pi}{3} i}, \quad \mathrm{~m}=0,1,2 \\
& \sqrt[4]{z_{2}}=\sqrt[8]{2} \times \mathrm{e}^{\frac{\frac{\pi}{4}+2 m \pi}{4} i}, \mathrm{~m}=0,1,2,3
\end{aligned}
$$

Example 27

$$
\text { Put }\left(\frac{4}{\sqrt{3}+\mathrm{i}}\right)^{2} \text { on exp. form }
$$

Sol :

$$
\begin{aligned}
& z=\left(\frac{4}{\sqrt{3}+i}\right)^{2}=\left(\frac{4}{\sqrt{3}+i} \times \frac{\sqrt{3}-i}{\sqrt{3}-i}\right)^{2} \\
& \therefore \quad z=\left(\frac{4(\sqrt{3}-i)}{4}\right)^{2}=(\sqrt{3}-i)^{2} \\
& \therefore \quad=2-2 \sqrt{3} i \\
& r=4 \quad \theta=300^{\circ}=\frac{5 \pi}{3}
\end{aligned}
$$

$$
\therefore \quad z=4 \times \mathrm{e}^{\frac{5 \pi}{3} \mathrm{i}}
$$

Example 28
Put $1-\sqrt{3} i$ on trig. form, then find its roots on exp. form

Sol :

$$
\begin{aligned}
& z=1-\sqrt{3} i \\
& \therefore \quad z=2^{\prime} \mathrm{e}^{\frac{5 \pi}{3} \mathrm{i}} \\
& \theta=300^{\circ}={ }^{\frac{5 \pi}{3}} \\
& \therefore \quad \mathrm{z}=2\left(\cos \frac{5 \pi}{3}+\mathrm{i} \sin \frac{\frac{5 \pi}{3}}{}\right) \\
& \mathrm{z}^{\frac{1}{2}}=\sqrt{2} \times \mathrm{e}^{\frac{\frac{5 \pi}{3}+2 \mathrm{~m} \pi}{2} \mathrm{i}} \quad, \quad \mathrm{~m}=0,1 \\
& \text { when } \mathrm{m}=0: \quad \mathrm{z}^{\frac{1}{2}}=\sqrt{2} \times \mathrm{e}^{\frac{5 \pi_{\mathrm{i}}^{6}}{}} \\
& \text { when } \mathrm{m}=1: \quad \mathrm{z}^{\frac{1}{2}}=\sqrt{2} \times \mathrm{e}^{\frac{11 \pi}{6} \mathrm{i}}
\end{aligned}
$$

Example 29

$$
\begin{aligned}
& \text { Put } \frac{2(5-3 \sqrt{3} i)}{1+2 \sqrt{3} i} \text { in the exp. form, and find its square } \\
& \text { roots in exp. form. }
\end{aligned}
$$

Sol :

$$
\begin{aligned}
& z=\frac{2(5-3 \sqrt{3} i)}{1+2 \sqrt{3} i} \times \frac{1-2 \sqrt{3} i}{1-2 \sqrt{3} i} \\
& z=\frac{2(5-3 \sqrt{3} i)(1-2 \sqrt{3} i)}{13}=-2-2 \sqrt{3} i \\
& x=-2 \quad y=-2 \sqrt{3} \\
& r=4 \quad \theta=240^{\circ}=\frac{4 \pi}{3} \\
& z=4\left(\cos 240^{\circ}+i \sin 240^{\circ}\right) \\
& =4 \times e^{\frac{4 \pi}{3} i} \\
& z^{\frac{1}{2}}=2\left(\cos \frac{240^{\circ}+2 m \pi}{2}+i \sin \frac{240^{\circ}+2 m \pi}{2}\right), m=0,1 \\
& \text { at } m=0 \\
& z^{\frac{1}{2}}=2\left(\cos 120^{\circ}+i \sin 120^{\circ}\right) \\
& =2 \times e^{\frac{2 \pi}{3} i} \\
& \text { at } m=1 \\
& z^{\frac{1}{2}}=2\left(\cos 300^{\circ}+i \sin 300^{\circ}\right) \\
& =2 \times e^{\frac{5 \pi}{3}}
\end{aligned}
$$

$$
\text { Put }\left(\cos \frac{\pi}{6}-\sin \frac{\pi}{6} \mathrm{i}\right)\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right) \text { in the exp.form . }
$$

Sol :

$$
\begin{aligned}
& z_{1}=\cos 30^{\circ}-i \sin 30^{\circ} \\
& =\cos 330^{\circ}+i \sin 330^{\circ} \\
& z_{2}=\cos 45^{\circ}+i \sin 45^{\circ} \\
& z_{1} z_{2}=\cos 15+i \sin 15^{\circ} \\
& r=1 \\
& \therefore \quad z_{1} z_{2}=e^{\frac{\pi}{12}} \quad \theta=\frac{\pi}{12}
\end{aligned}
$$

Example 31

Put the complex number $z=\frac{\frac{\sqrt{3}}{}+\mathrm{i}}{\sqrt{3}-\mathrm{i}}$ on exp. form and find its cubic roots

Sol :

$$
\begin{aligned}
\mathrm{z} & =\frac{\sqrt{3}+\mathrm{i}}{\sqrt{3}-\mathrm{i}} \times \frac{\sqrt{3}+\mathrm{i}}{\sqrt{3}+\mathrm{i}}=\frac{2+2 \sqrt{3} i}{4} \\
\therefore \mathrm{z} & =\frac{\frac{1}{2}}{2}+\frac{\sqrt{3}}{2} \mathrm{i} \\
\mathrm{x} & =\frac{1}{2} \quad \mathrm{y}=\frac{\frac{\sqrt{3}}{2}}{} \quad \mathrm{r}=1 \theta=\frac{\pi}{3} \\
& \therefore \quad \mathrm{z}=\mathrm{e}^{\frac{\pi}{3}}, \quad \mathrm{z}^{\frac{1}{3}}=\mathrm{e}^{\frac{\frac{\pi}{3}+2 \mathrm{~m} \pi}{3} \mathrm{i}}, \\
& m=0,1,2
\end{aligned}
$$

$$
\begin{array}{lll}
\text { when } & m=0: & z^{\frac{1}{3}}=e^{\frac{\pi}{9} i} \\
\text { when } & m=1: & z^{\frac{1}{3}}=e^{\frac{7 \pi}{9} i} \\
\text { when } & m=2: & z^{\frac{1}{3}}=e^{\frac{13 \pi}{9} i}
\end{array}
$$

* The cubic roots of unity

$$
\text { If } \quad x^{3}=1, \quad \text { find the values of } x, x \in C
$$

Sol :

$$
\begin{gathered}
x=(1)^{\frac{1}{3}}=\left(\cos 0^{\circ}+i \sin 0^{\circ}\right)^{\frac{1}{3}} \\
x=\cos \frac{0+2 m \pi}{3}+i \sin \frac{0+2 m \pi}{3} \\
m=0,1,2 \\
\text { when } m=0: \\
\therefore x=\cos 0^{\circ}+i \sin 0^{\circ}=1 \\
\text { when } m=1: \\
x=\cos 120^{\circ}+i \sin 120^{\circ}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
\text { when } m=2: \quad \therefore x=\cos 240^{\circ}+ \\
i \sin 240^{\circ}=-\frac{1}{2} \quad-\frac{\sqrt{3}}{2} i
\end{gathered}
$$

\therefore The cubic roots of unity are

$$
1,-\frac{1}{2}+\frac{\sqrt{3}}{2} i,-\frac{1}{2}-\frac{\sqrt{3}}{2} i
$$

which called $1, \omega, \omega^{2}$

* The properties of cubic roots of unity
1)One of them is real and the others are complex.
2)The 2 complex numbers are conjugate.
3)The modulus of each of the roots is one.
4)The square of any of the 2 complex numbers equals the other.

5) $1+\omega+\omega^{2}=0$
6) $1 \times \omega \times \omega^{2}=\omega^{3}=1$
7) $\omega^{m}=\omega^{n}$ where $\underline{\mathbf{n}}$ is the rest of dividing m by 3 .
8) $\omega-\omega^{2}= \pm \sqrt{3} ;$

Example (1)
Prove that

$$
\left(1-\omega+\omega^{2}\right)\left(1+\omega-\omega^{2}\right)=4
$$

Sol :

$$
\begin{aligned}
& \text { L.H.S }=(-2 \omega)\left(-2 \omega^{2}\right)=4 \omega^{3}=4 \\
& =\text { R.H.S }
\end{aligned}
$$

Example (2)
Prove that

$$
\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{8}\right) \times \ldots . . \text { to } 2 n
$$ terms equals $2^{2 n}$

Sol :

$$
\begin{aligned}
& \text { L.H.S }=(-2 \omega)\left(-2 \omega^{2}\right)(-2 \omega) \ldots \ldots . . \text { to } 2 n \text { terms } \\
& =(-2 \omega)^{n}\left(-2 \omega^{2}\right)^{n} \\
& =\left(4 \omega^{3}\right)^{n}=4^{n}=\left(2^{2}\right)^{n}=2^{2 n}=\text { R.H.S }
\end{aligned}
$$

Example (3)

$$
\text { If } \mathrm{x}=\frac{-1+\sqrt{3} i}{2}
$$

Prove that $x^{8}+x^{4}+1=0$

Sol :

$$
\begin{aligned}
& x=-\frac{1}{2}+\frac{\sqrt{3}}{2} i \quad \text { Let } x=\omega \\
& \text { L.H.S } \quad=x^{8}+\omega^{4}+1=\omega^{8}+\omega^{4}+1 \\
& =\omega^{2}+\omega+1=0=\text { R.H.S }
\end{aligned}
$$

Example (4)

$$
\begin{aligned}
& \text { If } \quad x=a+b \\
& y=a \omega+b \omega^{2} \\
& z=a \omega^{2}+b \omega
\end{aligned}
$$

Prove that $1^{\text {st }} \quad x y z=a^{3}+b^{3}$
$2^{\text {nd }} \quad x^{2}+y^{2}+z^{2}=6 a b$

Sol :

$$
\begin{aligned}
& 1^{\text {st }} \quad: \quad x y z=(a+b)\left(a \omega+b \omega^{2}\right)\left(a \omega^{2}+b \omega\right) \\
& =(a+b)\left(a^{2}+a b \omega^{2}+a b \omega+b^{2}\right) \\
& =(a+b)\left(a^{2}-a b+b^{2}\right)=a^{3}+b^{3} \\
& 2^{\text {nd. }} \quad x^{2}+y^{2}+z^{2}=(a+b)^{2}+ \\
& \left(a \omega+b \omega^{2}\right)^{2}+\left(a \omega^{2}+b \omega\right)^{2} \\
& =a^{2}+2 a b+b^{2}+a^{2} \omega^{2}+2 a b+b^{2} \omega+a^{2} \omega+2 a b+ \\
& b^{2} \omega^{2} \\
& =6 a b+a^{2}\left(1+\omega^{2}+\omega\right)+b^{2}\left(1+\omega+\omega^{2}\right) \\
& =6 a b+0+0=6 a b
\end{aligned}
$$

Example (6)

$$
\text { Prove that } \frac{1}{4+3 \omega+2 \omega^{2}}+\frac{1}{5+3 \omega+4 \omega^{2}}=1
$$

Sol :

$$
\begin{aligned}
& \text { L.H.S }=\frac{1}{2 \omega^{2}+2 \omega+2+\omega+2} \\
& +\frac{1}{3 \omega+3 \omega^{2}+3+\omega^{2}+2} \\
& =\frac{1}{\omega+2}+\frac{1}{\omega^{2}+2} \\
& =\frac{\omega^{2}+2+\omega+2}{(\omega+2)\left(\omega^{2}+2\right)}=\frac{3}{\omega^{3}+2 \omega^{2}+2 \omega+4} \\
& =\frac{3}{1+4-2}=\frac{3}{3}=1=\text { R.H.S }
\end{aligned}
$$

Find the value of $\left(\frac{5-3 \omega^{2}}{5 \omega-3}-\frac{2-7 \omega}{2 \omega^{2}-7}\right)^{2}$
Sol :

$$
\begin{aligned}
& \operatorname{Exp}=\left(\frac{\omega^{2}(5 \omega-3)}{(5 \omega-3)}-\frac{\omega\left(2 \omega^{2}-7\right)}{\left(2 \omega^{2}-7\right)}\right)^{2} \\
& =\left(\omega^{2}-\omega\right)^{2}=(\pm \sqrt{3} \mathrm{i})^{2}=-3
\end{aligned}
$$

Example (8)
Find the eq. whose roots are

$$
(1+\omega-\omega 2)^{3} \quad, \quad(1-\omega+\omega 2)^{3}
$$

Sol :

$$
\begin{aligned}
& 1^{\text {st }} \text { root }=(1+\omega-\omega 2)^{3}=(-2 \omega 2)^{3}=-8 \\
& 2^{\text {nd }} \text { root }=(1-\omega+\omega 2)^{3}=(-2 \omega 2)^{3}=-8
\end{aligned}
$$

\therefore The eq. : x^{2}-(sum of roots) $\mathrm{x}+$ product of roots $=0$
$\therefore x^{2}+16 x+64=0$

Example (9)

Prove that:

$$
\left(1+\frac{1}{\omega}+i\right)\left(1+\frac{1}{\omega^{2}}+i\right)=i
$$

Sol :

$$
\begin{aligned}
& \text { L.H.S. }=\left(1+\omega^{2}+i\right)(1+\omega+i) \\
& =(-\omega+i)\left(-\omega^{2}+i\right) \\
& =1-\omega i-\omega^{2} i-1
\end{aligned}
$$

$$
=-i\left(\omega+\omega^{2}\right)=i=\text { R.H.S }
$$

Example (10)
Prove that:

$$
\left(2+7 \omega+2 \omega^{2}\right)\left(2+7 \omega^{2}+2 \omega^{4}\right)=25
$$

Sol :

$$
\begin{aligned}
& \text { L.H.S. }=\left(2+7 \omega+2 \omega^{2}\right)\left(2+7 \omega^{2}+2 \omega\right) \\
& =(7 \omega-2 \omega)\left(7 \omega^{2}-2 \omega^{2}\right) \\
& =(5 \omega)\left(5 \omega^{2}\right)=25 \omega^{3}=25
\end{aligned}
$$

Example (11)

$$
\begin{aligned}
& \text { If } x=\omega+\frac{1}{\omega} \\
& y=-1-\frac{1}{\omega^{2}} \\
& z=\frac{7+5 \omega}{5+7 \omega^{2}} \quad, \text { prove that } \quad x^{2}+y+z=0
\end{aligned}
$$

Sol :

$$
\begin{aligned}
& x^{2}+y+z=\left(\omega+\omega^{2}\right)^{2}+(-1-\omega) \\
&+ \frac{\omega\left(7 \omega^{2}+5\right)}{5+7 \omega^{2}} \\
&= 1+\omega^{2}+\omega=0=\text { R.H.S } \\
& \quad \text { Determinants }
\end{aligned}
$$

Definition *

A determinant of degree $\underline{\mathbf{n}}$ (consists of $\underline{\underline{n}}$ rows and n columns) arises from .eliminating ($\mathbf{n} \mathbf{- 1}$) variables from a system of n linear equations

Write the determinant arises from each of the following .systems of equations

$$
2 x=-6
$$

a)

$$
x+3=0
$$

:Sol

$$
2 x=-6
$$

$$
x=-3
$$

$$
\text { | }\left.\begin{gathered}
-6 \\
-3
\end{gathered}\right|_{\Delta=\therefore}
$$

$$
\begin{array}{r}
x+y=3 \\
x-y=1 \\
2 x+3 y=7
\end{array}
$$

b)
: Sol

$$
\left|\begin{array}{cc}
1 & 3 \\
-1 & 1 \\
3 & 7
\end{array}\right|_{\Delta=\therefore}
$$

Remark The value of a determinant of degree two is the product of the elements of .the main diagonal minus the product of the elements of the other diagonal

The co-factors of the elements of adeterminant *

Let a determinant of degree 3 , the element a_{ij} .(which lies in $\mathrm{i}^{\text {th }}$ row, $\mathrm{j}^{\text {th }}$ column)
If we cancel the $i^{\text {th }}$ row and $j^{\text {th }}$ column, and multiply the resulting determinant by $(-1)^{i+j}$, the resulting determinant is called the cofactor of a_{ij} . and denoted by A_{ij}

Example (2)
:Find the value of each of the following

$$
\left.\begin{array}{ll}
3 \\
1
\end{array} \right\rvert\,
$$

$$
\left|\begin{array}{ll}
2 & 3 \\
7 & 2 \\
3 & 4
\end{array}\right|
$$

$$
\Delta=2 \times 1-3 \times 5=-13
$$

By the use of the element of $1^{\text {st }}$ row

$$
\left.\begin{array}{ll}
7 & 7 \\
7 & 3
\end{array}\right|_{\Delta}=1 \times\left|\begin{array}{ll}
7 & 2 \\
3 & 4
\end{array}\right|-2 \times\left|\begin{array}{ll}
4 & 2 \\
5 & 4
\end{array}\right|+3 \times \therefore
$$

(69-) $+12-22=$
Example (3)
:Solve the equation

$$
\left|\begin{array}{ccc}
\mathrm{x} & 0 & 0 \\
1 & \mathrm{x} & \mathrm{x} \\
5 & 2 & \mathrm{x}
\end{array}\right|=3 \mathrm{x}
$$

: Sol
By using of the element of the $1^{\text {st }}$ row

$$
\begin{aligned}
x\left(x^{2}-2 x\right)=3 x & \therefore \\
=x\left(x^{2}-2 x-3\right) & \therefore \\
x(x-3)(x+1)=0 & \therefore \\
\& \quad x=-1 \& x=3 x=0 & \therefore
\end{aligned}
$$

Example (4)

Find the value of $\underline{\mathbf{k}}$ which makes ($x-1$) one of the
.factors of the following determinant

$$
\left|\begin{array}{ccc}
-3 & 1 & -1 \\
2 & 1 & 5 \\
2 & x+1 & x+1+k
\end{array}\right|
$$

$\mathrm{x}-1$ is a factor for the determinant $. \mathrm{x}=1$ is a root for the resulting eq

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\mathrm{x}-3 & 1 & -1 \\
2 & 1 & 5 \\
2 & \mathrm{x}+1 & \mathrm{x}+1+\mathrm{k}
\end{array}\right|=0 \\
& \left|\begin{array}{ccc}
-2 & 1 & -1 \\
2 & 1 & 5 \\
2 & 2 & \mathrm{k}+2
\end{array}\right|=0 \\
& \text { by the use of elements of } 1^{\text {st }} \text { row } \\
& 0=(4-2)-(2 k+4-10)-(k+2-10) 2-\quad \therefore \\
& 2=0-(2 k-6)-(k-8) 2-\quad \therefore \\
& 2 k+16-2 k+6-2=0-\quad \therefore \\
& \mathbf{k}=5 \quad 4 \mathrm{k}+20=0 \mathrm{p}-\quad \therefore
\end{aligned}
$$

The Binomial Theorem With a (+ve) integer * power

$$
\begin{aligned}
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

Theorem: $(a+b)^{n}={ }^{n} c_{0} a^{n}+{ }^{n} c_{1} a^{a-1} b+{ }^{n} c_{2} a^{n-2} b^{2}+\ldots \ldots .+{ }^{n} c_{n} b^{n}$. Re sults: 1) $(1+x)^{n}=1+^{n} c_{1} x{ }^{n} c_{2} x^{2}+\ldots \ldots \ldots+x^{n}$.

$$
\text { 2) }(1-x)^{n}=1-^{n} c_{1} x+^{n} c_{2} x^{2}-\ldots \ldots \ldots+(-x)^{n} \text {. }
$$

The general term in the expansion of $(x+a)^{n}$. $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \times\left(2^{\mathrm{nd}}\right)^{\mathrm{r}} \times\left(1^{\text {st }}\right)^{\mathrm{n}-\mathrm{r}}$.

Example(1)

Find the expansion of $(a+b)^{4}$.
Sol :

$$
\begin{aligned}
& (a+b)^{4}=a^{4}+^{4} c_{1} a^{3} b+^{4} c_{2} a^{2} b^{2}+^{4} c_{3} a b^{3}+b^{4} \\
& =a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

Example(2)
Find the expansion of $(1-3 x)^{5}$

Sol :

$$
\begin{aligned}
& (1-3 x)^{5}=1-{ }^{5} C_{1} 3 x+{ }^{5} C_{2}(3 x)^{2}-{ }^{5} C_{3}(3 x)^{3}+{ }^{5} C_{4}(3 x)^{4}-{ }^{5} C_{5}(3 x)^{5} \\
& \therefore(1-3 x)^{5}=1-15 x+90 x^{2}-270 x^{3}+405 x^{4}-243 x^{5}
\end{aligned}
$$

Example(3)

Find T_{4} in the expansion of

$$
\left(\frac{2}{\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^{11}
$$

sol :

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}-1} & ={ }^{\mathrm{n}} \mathrm{c}_{\mathrm{r}} \times\left(2^{\mathrm{nd}}\right)^{r} \times\left(1^{\text {st }}\right)^{n-\mathrm{r}} \\
\mathrm{~T}_{4} & ={ }^{11} \mathrm{C}_{3} \times\left(\frac{-\sqrt{\mathrm{x}}}{2}\right)^{3} \times\left(\frac{2}{\sqrt{\mathrm{x}}}\right)^{8} \\
& =165 \times \frac{-\left(\sqrt{X)^{3}}\right.}{(2)^{3}} \times \frac{(2)^{8}}{\sqrt{(x)^{8}}} \\
& =\frac{-5280}{\mathrm{x}^{2} \sqrt{\mathrm{x}}}
\end{aligned}
$$

Example(4)

Find the coefficient of T_{6} in the expansion of $(2 x-3)^{8}$
Sol :

$$
\begin{gathered}
T_{r+1}={ }^{n} c_{r} \times\left(2^{\text {nd }}\right)^{r} \times\left(1^{\text {st }}\right)^{n-r} \\
\text { Coeff of } T_{6}={ }^{8} C_{5} \times(-3)^{5} \times(2 \times 1)^{3} \\
=56 \times(-243) \times 8=-108864
\end{gathered}
$$

Example(5)

Find the coeff. of the $\mathrm{r}^{\text {th }}$ term in the expansion of $\left(\mathrm{x}+\frac{1}{x}\right)^{2 \mathrm{n}}$ Sol :

$$
\begin{aligned}
& \text { Coeff . of } T_{r} \\
& ={ }^{2 n} C_{r-1} \times\left(\frac{1}{1}\right)^{r-1} \times(1)^{2 n+1-r}
\end{aligned}
$$

$$
={ }^{2 n} C_{r-1}=\frac{\mid 2 n}{r-1} \frac{\mid 2 n+1-r}{\mid r}
$$

Example(6)
Find the value of $(1+x)^{7}-(1-x)^{7}$
Sol :

$$
\begin{aligned}
& \text { Exp. }=2\left(\mathrm{~T}_{2}+\mathrm{T}_{4}+\mathrm{T}_{6}+\mathrm{T}_{8}\right) \\
& =2\left({ }^{7} \mathrm{C}_{1} \times \mathrm{x}+{ }^{7} \mathrm{C}_{3} \times \mathrm{x}^{3}+{ }^{7} \mathrm{C}_{5} \times \mathrm{x}^{5}\right. \\
& \left.\quad \quad+{ }^{7} \mathrm{C}_{7} \times \mathrm{x}^{7}\right) \\
& =2\left(7 \mathrm{x}+35 \mathrm{x}^{3}+21 \mathrm{x}^{5}+\mathrm{x}^{7}\right) \\
& =14 \mathrm{x}+70 \mathrm{x}^{3}+42 \mathrm{x}^{5}+2 \mathrm{x}^{7}
\end{aligned}
$$

Example(7)

Without using calculator, find the value of : $(1.01)^{5}+(0.99)^{5}$, approximate your result to 3 decimal places

Sol :

$$
\begin{aligned}
& (1.01)^{5}+(0.99)^{5}=(1+0.01)^{5}+ \\
& (1-0.01)^{5} \\
& =2\left(\mathrm{~T}_{1}+\mathrm{T}_{3}+\mathrm{T}_{5}\right) \\
& =2\left[1+{ }^{5} \mathrm{C}_{2} \times(0.01)^{2}+{ }^{5} \mathrm{C}_{4} \times(0.01)^{4}\right] \\
& =2\left[1+10 \times(0.01)^{2}+5 \times(0.01)^{4}\right] \\
& =2+20 \times(0.01)^{2}+10 \times(0.01)^{4} \\
& =2.002
\end{aligned}
$$

Properties of determinants *

In any determinant if the rows replace the columns and -1 the columns replace the rows in the same order the value of .the determinant is unchanged

The value of a determinant is not changed by evaluating it -2 .in terms of the elements of any of its rows (columns)

In any determinant if the positions of 2 rows (columns) are -3 interchanged, the value of the resulting determinant is equal
.to the value of the original determinant multiplied by (-1)
If the corresponding elements in 2 rows (columns) of any -4 .determinant are equal, the value of the determinant is zero

If there is a common factor in all the elements of any row -5
(column) in a determinant, then this factor can be taken .outside the determinant

If all the elements of any row (column) in a determinant - 6 .are zero, then the value of the determinant is zero

In a determinant if all the elements of any row (column) -7 are written as the sum of 2 elements, the value of the .determinant can be written as the sum of 2 determinants

In a determinant, if we add to all the elements of any row -8 (column) a multiple of the elements of another row (column), .the value of the determinant is unchanged

If we multiply the elements of any row (column) of a -9 determinant by the cofactors of the corresponding elements in another row (column), the sum is zero

The value of the determinant-10

The determinant of this form is called triangular and a_{11}, a_{22}, a_{33} are called .the elements of the principal diagonal

Without evaluating the determinant, prove that the value of each of the following determinants is zero, and .mention the used property $=0 \quad$ because $\mathrm{r}_{1}=\mathrm{r}_{2}^{3} \begin{gathered}3-1 \\ 51\end{gathered}$
because the elements of r_{2} are zeros $\left.=0 \begin{array}{cc}7 & 7 \\ 0\end{array} \right\rvert\,$
a)
b)

$$
\text { because after taking } \underline{\mathbf{3}} \text { common }=0\left|\begin{array}{ll}
3 & 1 \\
3
\end{array}\right|
$$

c)

$$
\text { from } r_{2}
$$ then the 2 rows are equal

Example (6)
$\left.\Rightarrow \begin{array}{ll}a & a \\ x & a \\ a & x\end{array} \right\rvert\,$
Without evaluating the determinant prove that its value $=(x+2 a)(x-a)^{2}$

> :Sol

\[

\]

$$
\begin{aligned}
& \left|\begin{array}{cc}
a & a \\
x & a \\
a & x
\end{array}\right|(x+2 a)= \\
& \left\{\begin{array}{c}
\mathrm{a} \quad \mathrm{a} \\
\mathrm{x}-\mathrm{a} \\
0 \\
0
\end{array} \mathrm{x}_{\mathrm{x}-\mathrm{a}}^{\mathrm{r}_{2}-\mathrm{r}_{1} \quad, \quad \mathrm{r}_{3}-\mathrm{r}_{1}} \begin{array}{l}
=(\mathrm{x}+2 \alpha) \quad \Delta \therefore \\
\Delta
\end{array}\right.
\end{aligned}
$$

:By the use of the properties of determinants, prove that

$$
0=\left|\begin{array}{ccc}
0 & -a & b \\
a & 0 & c \\
b & -c & 0
\end{array}\right|
$$

: Sol
,Let $\left|\begin{array}{ccc}0 & -a & b \\ a & 0 & c \\ -b & -c & 0\end{array}\right|=x$
When replacing columns by rows and rows by columns by the same order, we get

$$
x=\begin{gathered}
\left|\begin{array}{ccc}
0 & -a & b \\
a & 0 & c \\
b & -c & 0
\end{array}\right|^{3}(1-) \\
x=x-\therefore \\
x=0 \therefore
\end{gathered}
$$

.The value of the determinant is zero \therefore

* The middle term in the expansion of($x+a)^{n}$
(1) If n is odd:

The No of terms = $\mathrm{n}+1$ (even)
\therefore There are 2 middle terms of order $\frac{n+1}{2}, \frac{n+3}{2}$
(2) If n is even:

The No of terms =n+1 (odd)
\therefore There is only one middle term of order $\frac{\mathrm{n}}{2}+1$

Example (8)

Find the middle term in the expansion of $\left(2 x^{2}+\frac{1}{x}\right)^{10}$ Sol :

$$
\begin{aligned}
& \because \mathrm{N}=10 \text { the } \mathrm{No} \text { of terms }=11 \\
& \therefore \quad \text { There is only one middle term } \\
& \text { which is } \mathrm{T}_{6}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{6}={ }^{10} \mathrm{C}_{5} \times\left(\mathrm{x}^{-1}\right)^{5} \times\left(2 \mathrm{x}^{2}\right)^{5} \\
& ={ }^{10} \mathrm{C}_{5} \times \mathrm{x}^{-5} \times 2^{5} \times \mathrm{x}^{10} \\
& =32 \times{ }^{10} \mathrm{C}_{5} \times \mathrm{x}^{5}
\end{aligned}
$$

Example (9)
Find the middle terms in the expansion of $\left(\frac{\mathrm{x}}{3}-\frac{2}{y}\right)^{7}$
Sol :

- $\mathrm{N}=7$ the No of terms =8
\therefore There are 2 middle terms which are $\mathrm{T}_{4}, \mathrm{~T}_{5}$

$$
\begin{aligned}
& \mathrm{T}_{4}={ }^{7} \mathrm{C}_{3} \times\left(\frac{-2}{\mathrm{y}}\right)^{3} \times\left(\frac{\mathrm{x}}{3}\right)^{4} \\
&=-\frac{8}{81} \times{ }^{7} \mathrm{C}_{3} \times \frac{\mathrm{x}^{4}}{\mathrm{y}^{3}} \\
& \mathrm{~T}_{5}={ }^{7} \mathrm{C}_{4} \times\left(\frac{-2}{\mathrm{Y}}\right)^{4} \times\left(\frac{\mathrm{X}}{3}\right)^{3} \\
&= \frac{16}{27} \times{ }^{7} \mathrm{C}_{3} \times \frac{\mathrm{X}^{3}}{\mathrm{Y}^{4}}
\end{aligned}
$$

Example (10)

If a, b are the 2 middle terms in the expansion of $\left(\mathrm{x}^{\frac{1}{x}}\right)^{15}$ according to the descending power of X Prove that $a+b x^{2}=0$
Sol :

$$
\begin{aligned}
& \mathrm{T}_{8}=\mathrm{a} \quad, \quad \mathrm{~T}_{9}=\mathrm{b} \\
& \text { L.H.S }=\mathrm{a}+\mathrm{bx} 2=\mathrm{T}_{8}+\mathrm{X}^{2} . \mathrm{T}_{9} \\
& ={ }^{15} \mathrm{C}_{7} \times\left(\frac{-1}{\mathrm{X}}\right)^{7} \times \mathrm{X}^{8}+\mathrm{X}^{2} \times{ }^{15} \mathrm{C}_{8} \times \\
& \left.\frac{-1}{\mathrm{X}}\right)^{8} \times \mathrm{X}^{7} \\
& ={ }^{15} \mathrm{C}_{7} \times(-X)+{ }^{15} \mathrm{C}_{7} \times \mathrm{X}=0=\text { R.H.S }
\end{aligned}
$$

Example (11)

Find the coeff. Of x^{9} in the expansion of $\left(x^{3}-\frac{1}{x^{4}}\right)^{10}$ Sol:

$$
\begin{aligned}
& \mathrm{T}_{r+1}={ }^{10} \mathrm{C}_{r} \times\left(\frac{-1}{\mathrm{x}^{4}}\right)^{r} \times\left(\mathrm{x}^{3}\right)^{10-r} \\
&={ }^{10} \mathrm{C}_{r} \times(-1)^{r} \times \mathrm{x}^{-4 r} \times \mathrm{x}^{30-3 r} \\
&={ }^{10} \mathrm{C}_{r} \times(-1)^{r} \times \mathrm{x}^{30-7 r} \\
& \therefore 30-7 r=9---\rightarrow \quad r=3
\end{aligned}
$$

\therefore The term which contains x^{9} is T_{4}
Coeff. of $\mathrm{T}_{4}={ }^{10} \mathrm{C}_{3} \times(-1)^{3}=-120$

Example (12)

Find the term free of x in the expansion of $\left(x-\frac{1}{2 x^{2}}\right)^{9}$
Sol:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left(2 \mathrm{x}^{\frac{-1}{2}}\right)^{\mathrm{r}} \times(\mathrm{x})^{9-\mathrm{r}} \\
& ={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left({ }^{\frac{-1}{2}}\right)^{r} \times \mathrm{x}^{-2 r} \times \mathrm{x}^{9-r} \\
& ={ }^{9} \mathrm{C}_{r} \times\left(\frac{-1}{2}\right)^{r} \times \mathrm{X}^{9-3 r} \\
& \therefore 9-3 r=0---\rightarrow \quad r=3 \\
& \therefore \text { the term free of } \mathrm{x} \text { is } \mathrm{T}_{4} \\
& \mathrm{~T}_{4}={ }^{9} \mathrm{C}_{3} \times\left(\frac{-1}{2}\right)^{3}=\frac{-21}{2}
\end{aligned}
$$

Example (13)
Prove that there is no term free of x in the

$$
\text { expansion of }\left(2 x^{3}-\frac{3}{x}\right)^{9}
$$

Sol:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left(\frac{-3}{\mathrm{x}}\right)^{r} \times\left(2 \mathrm{x}^{3}\right)^{9-r} \\
& ={ }^{9} \mathrm{C}_{\mathrm{r}} \times(-3)^{r} \times \mathrm{xr}^{-r} \times(2)^{9-r} \\
& \times \mathrm{x}^{27-3} \\
& ={ }^{9} \mathrm{C}_{r} \times(-3)^{r} \times(2)^{9-r} \times \mathrm{x}^{27-4 r} \\
& \therefore 27-4 \mathrm{r}=0 \rightarrow---\rightarrow \\
& \quad \mathrm{r}=\frac{27}{4} \notin \mathrm{Z}^{+} \cup\{0\}
\end{aligned}
$$

\therefore There is no term free of x in this expansion
Example (14)
Prove that in the expansion of
$\left(x^{2}+\frac{1}{x}\right)^{n}$ there exists a term free of x if n. is a multiple of 3 , and find this term when $n .=12$

Sol :

$$
\begin{aligned}
T_{r+1}= & { }^{n} C_{r} \times\left(x^{-1}\right)^{r} \times\left(x^{2}\right)^{n-r} \\
& ={ }^{n} C_{r} \times x^{2 n-3 r}
\end{aligned}
$$

$\therefore 2 n-3 r=0 \rightarrow r=\frac{2 n}{3} \in Z^{+} U\{0\}$
if n is divisible by 3
(a multiple of 3)
at $\mathrm{n}=12$

$$
\begin{aligned}
& \therefore \quad r=\frac{2 \times 12}{3}=8 \\
& \mathrm{~T}_{9}={ }^{12} \mathrm{C}_{8}={ }^{12} \mathrm{C}_{4}=495
\end{aligned}
$$

* The ratio between any term and its precedent in the expansion of($x+a)^{n}$

$$
\frac{T_{r+1}}{T_{r}}=\frac{n-r+1}{r} \times \frac{2^{n d}}{1^{s t}}
$$

Example (15)
If the middle terms in the expansion of $(2 x+3)^{17}$ are equal .find the value of X

Sol :
The middle terms are T_{9}, T_{10}

$$
\begin{aligned}
& \quad \therefore \frac{\mathrm{T}_{10}}{\mathrm{~T}_{9}}=1 \\
& \therefore \frac{\mathrm{~T}_{10}}{9}-9+1 \\
& \therefore 2 \mathrm{x}=3 \\
& \therefore \mathrm{x}=\frac{3}{2 \mathrm{x}}=1 \\
& \therefore
\end{aligned}
$$

Example (16)

$\mathrm{T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}$ in the expansion of $(\mathrm{x}+\mathrm{y})^{\mathrm{n}}$ are respectively 240, 720,1080
Find the values of x, y and n.
Sol :

$$
\begin{aligned}
& \frac{T_{4}}{T_{3}}=\frac{n-2}{3} \times \frac{y}{x}=\frac{1080}{720}=\frac{3}{2} \\
& \frac{\mathrm{~T}_{3}}{\mathrm{~T}_{2}}=\frac{n-1}{2} \times \frac{y}{x}=\frac{720}{240}=3 \\
& (1) \div(2) \\
& \therefore \frac{\mathrm{n}-2}{3} \times \frac{2}{n-1}=\frac{1}{2} \quad\left(\times \frac{3}{2}\right) \\
& \frac{n-2}{n-1}=\frac{3}{4} \\
& \therefore 4 n-8=3 n-3 \quad \therefore \mathrm{n}=5 \\
& \text { from }(3) \text { in }(2) \\
& \therefore 1 \times\left(\frac{\mathrm{y}}{\mathrm{x}}\right)=\frac{3}{2} \\
& \therefore \frac{y}{x}=\frac{3}{2} \\
& \because \mathrm{~T}_{2}=240 \\
& \therefore c_{1} \times y \times x^{n-1}=240 \\
& \therefore c_{1} \times \frac{3 x}{2} \times x^{4}=240 \\
& \therefore x^{5}=32=2^{5} \\
& \therefore x=2
\end{aligned}
$$

Example 17

The coefficients of 3 consecutive terms are respectively $20,190,1140$. Find the value of n, and the order of these terms in the exp. of $(1+x)^{n}$

Sol :
Let these terms are T_{r}, T_{r+1}, T_{r+2}
Coefficient of $\mathrm{T}_{\mathrm{r}+2}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}=1140 \rightarrow$
Coefficient of $\mathrm{T}_{\mathrm{r}+1}={ }^{n} \mathrm{C}_{\mathrm{r}}=190 \rightarrow$

Coefficient of $\mathrm{T}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}=20 \rightarrow$ (3)
Eq.(1) \div eq. (2)
$\frac{{ }^{n} C_{r+1}}{{ }^{n} C_{r}}=\frac{n-r}{r+1}=6$
$n-r=6 r+6$
$n=7 r+6--\rightarrow$
(4)
eq.(2) \div eq.(3)
$\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}=\frac{19}{2}$
$\therefore \frac{7 r+6-r+1}{r}=\frac{19}{2}$
$\frac{6 r+7}{r}=\frac{19}{2}$
$\therefore 19 r=12 r+14 \rightarrow$
r $=2$
$\therefore \mathrm{n}=7 \times 2+6 \rightarrow$
$\mathrm{n}=20$
Example (18)
In the expansion of $(1+x)^{n}$ according to the powers of x in ascending order, If $T_{4}=\frac{25}{3} T_{2}$ and if $T_{5}=T_{6}$, Find the values of n, x

Sol :
$\frac{T_{4}}{T_{2}}=\frac{25}{3}$
$\therefore \frac{T_{4}}{T_{3}} \times \frac{T_{3}}{T_{2}}=\frac{25}{3}$
$\therefore \frac{n-2}{3} \times \frac{n-1}{2} \times x^{2}=\frac{25}{3}$
$(n-2)(n-1) x^{2}=50$
$\frac{T_{6}}{T_{1}}=1$
$\frac{n-4}{5} \times x=1$
$(n-4) \times x=5 \quad$ by squaring
$(\mathrm{n}-4)^{2} \times x^{2}=25$
eq (1) \div eq (2)
$\frac{\mathrm{n}^{2}-3 n+2}{n^{2}-8 n+16}=\frac{2}{1}$
$\therefore 2 n^{2}-16 n+32=n^{2}-3 n+2 n^{2}-13 n+30=0$
$(n-10)(n-3)=0$
$\therefore n=10 \quad \mathrm{n}=3$
(refused because number of terms \neq only 4
from (3) in (2)
$\therefore \mathrm{x}^{2}=\frac{25}{36}$
$\therefore x=\frac{5}{6} \quad$ or $\mathrm{x}=\frac{-5}{6}$
(refused because $\mathrm{T}_{5,}, T_{6}$ of different signs)

Example 19

In the expansion of $\left(\mathrm{X}^{2}+\frac{1}{\mathrm{X}}\right)^{9}$
according to the powers of $X \ln$ descending order ,
I) find the term free of X
II)If the ratio between the term free of x and the $6^{\text {th }}$ term is $2: 3$, find the value of X

Sol:
l) $\mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left(\mathrm{X}^{-1}\right)^{r} \times\left(\mathrm{X}^{2}\right)^{9-r}$

$$
\begin{aligned}
& ={ }^{9} \mathrm{C}_{r} \times \mathrm{X}^{-r} \times \mathrm{X}^{18-2 r} \\
& ={ }^{9} C_{r} \times X^{18-3 r} \\
& \therefore 18-3 r=0 \quad--\rightarrow \quad r=6 \\
& \therefore \text { The term free of } \mathrm{X} \text { is } \mathrm{T}_{7}={ }^{9} \mathrm{C}_{6}={ }^{9} \mathrm{C}_{3} \\
& =84 \\
& \text { ii) } \frac{\mathrm{T}_{7}}{\mathrm{~T}_{6}}=\frac{2}{3} \\
& \frac{9-5}{6} \times \frac{1}{x^{3}}=\frac{2}{3} \\
& \left(\times \frac{3}{2}\right) \\
& \therefore x^{3}=1 \\
& \therefore x=1
\end{aligned}
$$

Example 20
In the expansion of $\left(x^{2}-\frac{1}{x^{2}}\right)^{12}$ according to the power of x in descending order, find the term contains x^{4}, and find the Ratio between the coefficient of this term and the middle term Sol :

$$
\begin{aligned}
\mathrm{T}_{r+1}= & { }^{12} \mathrm{C}_{r} \times\left(\frac{-1}{\mathrm{x}^{2}}\right)^{r} \times\left(\mathrm{x}^{2}\right)^{12-r} \\
& ={ }^{12} \mathrm{C}_{r} \times(-1)^{r} \times(\mathrm{x})^{-2 r} \times(\mathrm{x})^{24-2 r} \\
& ={ }^{12} \mathrm{C}_{\mathrm{r}} \times(-1)^{r} \times(\mathrm{x})^{24-4 \mathrm{r}}
\end{aligned}
$$

$$
\therefore 24-4 r=4--\rightarrow \quad r=5
$$

\therefore The term contains x^{4} is T_{6}

$$
\mathrm{T}_{6}={ }^{12} \mathrm{C}_{5} \mathrm{X}^{4}
$$

T_{7} is the middle term

$$
\cdot \frac{\operatorname{Coff} \cdot T_{6}}{T_{7}}=\frac{6}{12-5} \times \frac{(1)}{(-1)}=\frac{-6}{7}
$$

Example 21
If the coefficient of x^{16} in the expansion of $\left(x^{3}+\frac{a}{x}\right)^{8}$ is equal to the term free of x in this expansion, find the value of a.

Sol :

$$
\begin{aligned}
& \ln \left(x^{3}+\frac{a}{x}\right)^{8} \\
& T_{r+1}={ }^{8} C_{r} \times\left(\frac{a}{x}\right)^{r} \times\left(x^{3}\right)^{8-r} \\
& ={ }^{8} \mathrm{C}_{r} \times \mathrm{a}^{r} \times \mathrm{x}^{-r} \times \mathrm{x}^{24-3 r} \\
& ={ }^{8} C_{r} \times a^{r} \times x^{24-4 r} \\
& \therefore 24-4 r=16--\rightarrow \quad r=2 \\
& \therefore \text { Coeff .of } \mathrm{x}^{16}=\text { Coeff. of } \mathrm{T}_{3} \\
& ={ }^{8} \mathrm{C}_{2} \times \mathrm{a}^{2}=28 \mathrm{a}^{2} \\
& \text { To find the term free of } x \\
& \therefore 24-4 r=0--\rightarrow \quad r=6 \\
& \mathrm{~T}_{7} \text { is the term free of } x \\
& \mathrm{~T}_{7}={ }^{8} \mathrm{C}_{6} \times \mathrm{a}^{6}={ }^{8} \mathrm{C}_{2} \times \mathrm{a}^{6}=28 \mathrm{a}^{6} \\
& \therefore 28 a^{6}=28 a^{2} \quad(\div 28) \\
& a^{2}\left(a^{4}-1\right)=0 \rightarrow \quad \therefore a= \pm 1
\end{aligned}
$$

Example 22
Find the value of the term free of x in the expansion of
$\left(9 x^{2}+\frac{1}{3 x}\right)^{9}$. Then prove that the middle terms are
equal when $x=\frac{1}{3}$.
Sol :

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left(\frac{1}{3 \mathrm{x}}\right)^{r} \times\left(9 \mathrm{x}^{2}\right)^{9-r} \\
& \quad={ }^{9} \mathrm{C}_{r} \times\left(\frac{1}{3}\right)^{r} \times \mathrm{x}^{-r} \times 3^{18-2 r} \times \mathrm{x}^{18-2 r} \\
& \quad={ }^{9} \mathrm{C}_{r} \times 3^{18-3 r} \times \mathrm{x}^{18-3 r} \\
& \therefore 18-3 \mathrm{r}=0---\rightarrow \quad r=6
\end{aligned}
$$

The term free of x is T_{7}
$\mathrm{T}_{7}={ }^{9} \mathrm{C}_{6}={ }^{9} \mathrm{C}_{3}=84$
The 2 middle terms are T_{5}, T_{6}

$$
\begin{array}{ll}
\frac{\mathrm{T}_{6}}{\mathrm{~T}_{5}}=\frac{9-4}{5} \times \frac{\left(\frac{1}{3 x}\right)}{9 \mathrm{x}^{2}}=1 & \\
\therefore \frac{1}{27 \mathrm{x}^{3}}=1 & \therefore x=\frac{1}{3}
\end{array}
$$

Example 23

In the expansion of $\left(a x+\frac{1}{\mathrm{bx}}\right)^{10}$ according to the powers of x in descending order, if the term free of x is equal to the coefficient of the $7^{\text {th }}$ term, prove that $6 a b=5$

Sol :

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{10} \mathrm{C}_{\mathrm{r}} \times\left(\frac{1}{\mathrm{bx}}\right)^{r} \times(\mathrm{ax})^{10-r} \\
& \\
& ={ }^{10} \mathrm{C}_{\mathrm{r}} \times\left(\frac{1}{\mathrm{~b}}\right)^{r} \times \mathrm{x}^{-r} \times(\mathrm{a})^{10-r} \times(\mathrm{x})^{10-r} \\
& \quad{ }^{=10} \mathrm{C}_{r} \times\left(\frac{1}{b}\right)^{r} \times(\mathrm{a})^{10-r} \times(\mathrm{x})^{10-2 r} \\
& \therefore 10-2 \mathrm{r}=0-\rightarrow \quad \mathrm{r}=5
\end{aligned}
$$

\therefore The term free of x is T_{6}

$$
\begin{aligned}
& \mathrm{T}_{6}={ }^{10} \mathrm{C}_{5} \times\left(\frac{1}{b}\right)^{5} \times(\mathrm{a})^{5} \\
\therefore & \mathrm{~T}_{6}={ }^{10} \mathrm{C}_{5} \times \frac{\mathrm{a}^{5}}{\mathrm{~b}^{5}}
\end{aligned}
$$

Coeff. of $T_{7}={ }^{10} \mathrm{C}_{6} \times\left(\frac{1}{b}\right)^{6} \times(a)^{4}$

$$
={ }^{10} C_{6} \times{ }^{\frac{a^{4}}{b^{4}}}
$$

$$
\therefore{ }^{10} \mathrm{C}_{5} \mathrm{x}^{\frac{\mathrm{a}^{5}}{\mathrm{~b}^{5}}}
$$

$$
={ }^{10} C_{6} \times \frac{a^{4}}{b^{6}} \quad\left(\times \frac{b^{6}}{a^{4}}\right)
$$

$$
\therefore{ }^{10} \mathrm{C}_{5} \times \mathrm{ab}={ }^{10} \mathrm{C}_{6} \quad\left(\div{ }^{10} \mathrm{C}_{5}\right)
$$

$$
\therefore \mathrm{ab}=\frac{\frac{10-6+1}{6}}{6}=\frac{5}{6}
$$

$$
\therefore 6 \mathrm{ab}=5
$$

