Algebra

* The principle of Counting

If an act could be performed by <u>n</u> ways, another act could be performed by <u>m</u> ways, then the two acts can be performed together by <u>m</u> \times <u>n</u> ways.

Example 1 :

A student could go to his school by 3 ways and go back to his home by 2 ways by How many ways could he go and back ?

Sol:

The n Number of ways $= 3 \times 2 = 6$ ways.

Example 2 :

A school gives 3 prizes for the gifted pupils in Tennis ,Swimming and football. If the Number of Competitors are respectively 8, 7 and 12.

By how many ways the 3 prizes can be Distributed ?

Sol:

The n Number of ways = $8 \times 7 \times 12 = 672$

* Permutations

Def : if we have a set of elements, any arrangement by taking some or all of these elements in a definite order is called a permutation.

I.e. if the Number of elements is n , taken r of them in a definite order, this could be written as No of permutations

= ⁿ P_r , $n \ge r$, n, $r \in z^+$.

* Important Rules

$$1)^{n}P_{r} = n (n - 1) (n - 2) \dots (n - r + 1)$$

$$2)^{n}P_{n} = n (n - 1) (n - 2) \dots (n - 3 \times 2 \times 1) = [n], ,$$

$$(n - 1) [n - 2] = \dots (n - 1) [n - 2] [n - 1] [n - 1] [n - 2] [n - 1] [n - 1] [n - 2] [n - 1] [n - 1]$$

Example 3 :

How many permutations can be Performed from 5 kinds of fruit, each of them consists of 2 kinds with out repetition

Sol:

Number of permutations $= {}^{5}P_{2} = 5 \times 4 = 20$

Example 4 :

From the digits 1,2,3,4,5 How many Numbers could be performed from it without repetition such that the unit digit is not 4 and the tenth digit is not 5.

Sol:

No of ways for writing = $5 \times 4 \times 3 \times 2 \times 1 = 120$ No of ways to write the unit digit is 4 and the tenth digit is 5 = $1 \times 1 \times 3 \times 2 \times 1 = 6$ \therefore The No of required ways = 120 - 6 = 114.

Example 5 :

if n = 120, find^{*} $^{n}P_{\epsilon}$

Sol:

 $\therefore n = 120 \therefore n = 5$

 ${}^{2n}P_4 = {}^{10}P_4 = 10 \times 9 \times 8 \times 7 = 5040.$

Example 6 :

Prove that $|2n = 1 \times 3 \times 5 \times ... \times (2n - 1) \times 2^n \times |n|$

Sol:

L.H.S = 2n= 2n (2n -1) (2n-2) (2n-3)....× 4× 3× 2× 1 = (2n) (2n-2)...×4×2× (2n-1)× (2n-3)×....×3×1 = 2ⁿ× (n×(n-1)×...× 2× 1)×(2n-1)×(2n-3)×....×3×1 = 2ⁿ× n × (2n-1) × (2n-3) ×....×3×1= R .H.S.

Example 7:

Find the value of ΨP_x if $x+\Psi P_3 = 210$, $x-\Psi = 6$

sol:

 $\therefore^{x+y}P_3 = 210 \qquad \therefore x + y = 7 - \rightarrow 1$ $\therefore x - y = 3 - \rightarrow 2$

Add 1, 2
$$\therefore 2x = 10 \implies x = 5 \implies y = 2.$$

Example 8:

if
$7P_3$
 = $2{\times}{}^7P_{r-1}$, find the value of

$$\frac{r+1}{r+2} + \frac{r}{r+1} + \frac{r-2}{r-1}$$

sol:

$$7P_{r} = 2 \times 7P_{r-1}$$

$$\frac{1}{7}P_{r-1} = 2$$

$$\frac{1}{7}P_{r-1} \times \frac{1}{7} = 2$$

$$\frac{1}{7}P_{r-1} \times \frac{1}{7} = 2$$

$$\frac{1}{7} \times (8 - r) \quad \frac{7 - r}{7} = 2$$

$$\frac{1}{7} \times (8 - r) \quad \frac{7 - r}{7} = 2$$

$$\frac{1}{7} \times (8 - r) = 2 \implies r = 6$$

$$\therefore \quad \frac{1}{7} + \frac{1}{1} + \frac{1}{$$

$$= \frac{1}{8} + \frac{1}{7} + \frac{1}{5} = \frac{131}{280}$$

Example 9 :

Find the Number of the elements of the set A If: X = { x : X \in Z, -2 \leq x \leq 6 } A = { (a,b,c) , a,b,c \in X , a \neq b \neq c{

Sol:

N (X) = 9 No of element of A = ${}^{9}P_{3} = 9 \times 8 \times 7 = 504$

Example 10 :

if $3 \times {}^{n}P_{r-1} = 5 \times {}^{n-1}P_{r-1}$, ${}^{n+1}P_{r} = 2 \times {}^{n}P_{r}$. Find n, r

sol:

$$\frac{nP_{r-1}}{n-1P_{r-1}} = \frac{5}{3}$$

$$\therefore \underline{ln}_{n+1-r} \times \frac{\underline{ln-r}}{\underline{ln-1}} = \frac{5}{3}$$

$$\therefore \underline{n}_{n+1-r} = \frac{5}{3}$$

$$3n = 5n + 5 - 5r$$

$$5r = 2n + 5 - 5r$$

$$5r = 2n + 5 - --- \rightarrow 1$$

$$\frac{n+1P_r}{\underline{nP_r}} = 2$$

$$\frac{\underline{ln+1}_{n+1-r}}{\underline{nP_r}} \times \underline{\underline{ln-r}} = 2$$

$$\frac{n+1}{\underline{n+1-r}} = 2$$

$$\frac{n+1}{\underline{n+1-r}} = 2n + 2 - 2r$$

$$\therefore 2r = n + 1 - --- \rightarrow 2$$

$$eq 1 \div eq 2$$

$$\frac{5}{2} = \frac{2n + 5}{n + 1}$$

$$\therefore 4n + 10 = 5n + 5$$

$$n = 5 \Rightarrow r = 3$$

* Combination

Definition:

If we have a set of elements ,any arrangement by taking all or some of these elements -without consideration of the order of these elements -is called a combination .

I.e. ...If the number of elements is n ,taken r of them each time -without consideration of the order of its elements -then ,the number of combinations is symbolized by ${}^{n}C_{r}$, $n \ge r$, ${}^{n,r \in z^{+}}$

* Important rules

Example 1:

Find the value of n if ${}^{n}C_{2}$ = 435

Sol: ${}^{nC_2} = \frac{{}^{nP_2}}{2} = 435 - - - \rightarrow {}^{nP_2} = 870 - - \rightarrow n = 30$

Example 2:

If : ${}^{n}C_{r}^{2}{}_{+2r}$ = ${}^{n}C_{2r+5}$, ${}^{n}C_{3}$ =120 find the value of ${}^{n}C_{7r+3}$

Sol:

$${}^{n}C_{3} = \frac{\frac{nP_{3}}{3}}{=} = 120 \therefore {}^{n}P_{3} = 120 \times 3 \times 2 \times 1 = 720$$
$$= 10 \times 9 \times 8 \qquad n = 10$$

$${}^{10}C_{r}^{2}{}_{+2r} = {}^{10}C_{2r+5}$$

 $\therefore r^{2}+2r = 2r+5$ or $r^{2}+2r+2r+5=10$
 $\therefore r^{2}=5$ $\therefore r^{2}+4r-5=0$

$$r = \pm \sqrt{5}$$
 (r+5)(r-1)=0

r=-5 refused or r=1

$${}^{n}C_{7r+3} = {}^{10}C_{10} = 1$$

Example 3:

Prove that ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$ Then find the value of I) $\frac{1^{7}C_{6} + {}^{17}C_{5}}{{}^{18}C_{5}}$ II) Prove that ${}^{n}C_{r+1} + {}^{n+1}C_{r} + {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r+1}$ Sol: I) L.H.S. $={}^{n}C_{r} + {}^{n}C_{r+1} =$ $\frac{\ln}{\ln} + {}^{n} + {}^{n}\ln}{\ln} + {}^{n}\ln + {}^{n}\ln + {}^{n}\ln}$ $= {}^{(r+1)} {}^{n}\ln + {}^{n}\ln - {}^{r}}$ $= {}^{(r+1)} {}^{(r+1)} {}^{(n-r)} + {}^{(n-r)} {}^{(n-r)}$ $= {}^{(n+1)} {}^{(r+1)} {}^{(n-r)} = {}^{(n+1)} {}^{(n-r)} {}^{r}$ $= {}^{(n+1)}C_{r+1} = {}^{n}R \cdot {}^{H} \cdot {}^{S}$ $\frac{1^{7}C_{6} + {}^{17}C_{5}}{{}^{18}C_{5}} = {}^{18}C_{6} {}^{(n)} {}^{(n)}C_{r} + {}^{n}C_{r-1})$ $= {}^{n+1}C_{r+1} + {}^{n+1}C_{r} = {}^{n+2}C_{r+1} = {}^{R} \cdot {}^{H} \cdot {}^{S}$

Example 4:

By how many ways ,you can choose 7 persons from a group of 9 girls ,5 boys such that the chosen group contains 3 boys

SOL:

No. of ways $={}^{9}C_{4} \times {}^{5}C_{3} = 126 \times 10 = 1260$

Example 5 :

```
Find the expansion of {}^{\mathtt{m}+\mathtt{n}}\mathtt{C}_{\mathtt{n}} ,then prove
that <u>17</u> is divisible by <u>12</u> | 5
```

Sol:

 $\mathbf{m} + \mathbf{n} \mathbf{C}_{\mathbf{n}} = \underline{|\mathbf{m} + \mathbf{n}|} = \mathbf{a} , \mathbf{a} \in \mathbf{Z}^{+}$ n m \therefore |m+n| = a |n| |m|∴|m +n is Divisible by [n_ [m_ Let n = 12 , m = 5 $\therefore 17 = a 12 5$

∴ |17 is Divisible by|12 <u>|5</u>

Example 6:

If nP4 =360, Lr =24, Find the value of $^{2n}C_r$

SOL :

 $^{n}P_{4} = 360 - \rightarrow n = 6$, $\underline{r} = 24 - - \rightarrow r = 4$ $2nC_r = 12C_4 = 495$

Example 7:

If ^mP₃ =210 ,^{m+n}P₃ =720 Find the value of ^mC_n.

SOL:

$${}^{m}P_{3} = 210 - \rightarrow m = 7$$

 ${}^{m+n}P_{3} = 720 - - \rightarrow m+n = 10 - - - \rightarrow n = 3$
 ${}^{m}C_{n} = {}^{7}C_{3} = \underline{7 \times 6 \times 5}_{3 \times 2 \times 1} = 35$

Example 8:

$$\underline{ln} = 720, \quad {}^{n+l}C_r : {}^{n-l}C_{r-1} = 3/5$$
Find the value of ${}^{n+l}C_{r-2}$

SOL:

Example 9:

If 5P_r =60, $_n$ =120 , Find nC_r

SOL:

$${}^{5}P_{r} = 60 \quad --- \rightarrow \qquad r = 3 \\ \underline{|n|} = 120 \quad --- \rightarrow \qquad n = 5 \\ \therefore n_{C_{r}} = {}^{5}C_{3} = 10$$

Example 10:

If $5 \times {}^{n}C_{6} = 12 \times {}^{n}C_{4}$ Find the value of ${}^{n-3}P_{3}$ SOL: $\frac{{}^{n}C_{6}}{{}^{n}C_{4}} = \frac{12}{5} \rightarrow \frac{{}^{n}C_{6}}{{}^{n}C_{5}} \times \frac{{}^{n}C_{5}}{{}^{n}C_{4}} = \frac{12}{5}$ $\frac{{}^{n}-5}{6} \times \frac{{}^{n}-4}{5} = \frac{12}{5}$ (×30) (n-5)(n-4) =72 =8 ×9 \therefore n-5 =8 ---- \rightarrow n=13 ${}^{n-3}P_{3} = {}^{10}P_{3} = 10 \times 9 \times 8 = 720$

Example 11 :

If ${}^{x}C_{2}=$ 6 , ${}^{10}P_{Y}=720$ Find the value of <u>y-x+5</u>

SOL:

$$x_{C_2} = 6 - - - \rightarrow x = 4$$

 ${}^{10}P_Y = 720 - - - \rightarrow y = 3$
 $\underline{y - x + 5} = \underline{13 - 4 + 5} = \underline{14} = 24$

Example12:

If $^{6}P_{r}{=}120$, $^{n+1}C_{r}$: $^{n+1}C_{r-1}$ =2 Find the value of $\lfloor n{-}r \rfloor$

Sol:

$$^{6}P_{r}$$
 =120 ---- \rightarrow r=3

$$\begin{array}{rcl} {}^{n+1}C_{r} & : & {}^{n+1}C_{r-1} = & \frac{(n+1) - r + 1}{r} = 2\\ \underline{n-1} = & 2 & ---- \end{array} & n = & 7\\ \underline{n-r} = & 1 & 7-3 & = & 4 & = 24 \end{array}$$

Example13:

Prove that
$$\frac{nC_{r} - n - 1C_{r-1}}{nC_{r}} = \frac{n-r}{n}$$

Hence find the value of
$$\frac{\frac{1000}{C_{100}} - \frac{999}{C_{99}}C_{99}}{\frac{1000}{C_{100}}}$$

SOL:

$$L.H.S = \frac{n_{C_r}}{n_{C_r}} - \frac{n_{C_{r-1}}}{n_{C_r}}$$
$$= 1 - \frac{\lfloor n - 1 \rfloor}{\lfloor r - 1 \rfloor} \times \frac{\lfloor r \lfloor n - r \rfloor}{\lfloor n \rfloor}$$

$$= \frac{1 - r}{n} = \frac{n - r}{n} = R.H.S.$$
$$\frac{\frac{1000}{C_{100}} - \frac{999}{C_{gg}}}{\frac{1000}{C_{100}} - \frac{999}{C_{gg}}} = \frac{1000 - 100}{1000} = \frac{900}{1000} = 0.9$$

The Binomial Theorem With a (+ve) integer power *

 $(a+b)^1=a+b$ $(a+b)^2=a^2+2ab+b^2$ $(a+b)^3=a^3+3a^2b+3ab^2+b^3$

Theorem:

 $(a+b)^{n} = {}^{n}C_{0}a^{n} + {}^{n}C_{1}a^{a-1}b + {}^{n}C_{2}a^{n-2}b^{2} + \dots + {}^{n}C_{n}b^{n}.$ Results: 1) $(1 + x)^{n} = 1 + {}^{n}c_{1}x + {}^{n}c_{2}x^{2} + \dots + x^{n}.$ 2) $(1 - x)^{n} = 1 - {}^{n}c_{1}x + {}^{n}c_{2}x^{2} - \dots + (-x)^{n}.$

The general term in the expansion of (x+a)ⁿ.

 $T_{r+1} = {}^{n}C_{r} \times (2^{nd})^{r} \times (1^{st})^{n-r}$, r = 0, 1, 2,, n

Example(1):

Find the expansion of $(a+b)^4$.

Sol:

 $(a + b)^{4} = a^{4} + {}^{4}c_{1}a^{3}b + {}^{4}c_{2}a^{2}b^{2} + {}^{4}c_{3}ab^{3} + b^{4}$ $= a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$

Example(2) :

Find the expansion of (1-3x)⁵

Sol:

$$(1 - 3x)^5 = 1 - {}^5c_1 3x + {}^5c_2 (3x)^2 - {}^5c_3 (3x)^3 + {}^5c_4 (3x)^4 - {}^5c_5 (3x)^5$$

$$\therefore (1 - 3x)^5 = 1 - 15x + 90x^2 - 270x^3 + 405x^4 - 243x^5$$

Example(3) :

```
Find T<sub>4</sub> in the expansion of \left(\frac{2}{\sqrt{x}}, \frac{\sqrt{x}}{2}\right)^{\mathbb{N}}
```

sol:

$$T_{r+1} = {}^{n}C_{r} \times (2^{nd})^{r} \times (1^{st})^{n-r}$$
$$T_{4} = {}^{11}C_{3} \times (\frac{-\sqrt{x}}{2})^{3} \times (\frac{2}{\sqrt{x}})^{8}$$

= 165 ×
$$\frac{-(\sqrt{X})^3}{(2)^3}$$
 × $\frac{(2)^8}{\sqrt{(x)^8}}$
= $\frac{-5280}{x^2\sqrt{x}}$

Example(4) :

Find the coefficient of T_6 in the expansion of $(2x-3)^8$

Sol: $T_{r+1} = {}^{n}C_{r} \times (2^{nd}) {}^{r} \times (1^{st})^{n-r}$ Coeff of $T_{6} = {}^{8}C_{5} \times (-3)^{5} \times (2 \times 1)^{3}$ $= 56 \times (-243) \times 8 = -108864$

Example(5) :

Find the coeff. of the rth term in the expansion

of
$$(x + \frac{1}{x})^{2n}$$

Sol:

Coeff . of T_r
=
$${}^{2n}\mathbf{c}_{r-1} \times (\frac{1}{1})^{r-1} \times (1)^{2n + 1-r}$$

$$={}^{2n}\mathbf{C}_{r-1} = \underbrace{\frac{2n}{2n}}_{r-1} \underbrace{\frac{2n+1-r}{2n+1-r}}$$

Example(6):

Find the value of $(1+x)^7 - (1-x)^7$

Sol:

Exp. =2(
$$T_2 + T_4 + T_6 + T_8$$
)
=2($^7C_1 x + ^7C_3 x^3 + ^7C_5 x^5 + ^7C_7 x^7$)
=2($7x + 35x^3 + 21x^5 + x^7$)
=14x + 70x³ + 42x⁵ + 2x⁷

Example(7) :

Without using calculator ,find the value of : $(1.01)^5 + (0.99)^5$, approximate your result to 3 decimal places

 $(1.01)^{5} + (0.99)^{5} = (1+0.01)^{5} + (1-0.01)^{5}$ =2 (T₁ + T₃ + T₅) =2 [1+ ⁵C₂ × (0.01)² + ⁵C₄ × (0.01)⁴] =2 [1+10 × (0.01)² + 5 × (0.01)⁴] =2+ 20 × (0.01)² + 10 × (0.01)⁴ =2.002

* The middle term in the expansion of(x+a)ⁿ

(1) If n is odd: The No of terms = n+1 (a

The No of terms = n+1 (even)

: There are 2 middle terms of order $\frac{n+1}{2}$, $\frac{n+3}{2}$

(2) If n is even: The No of terms =n+1 (odd)

: There is only one middle term of order $\frac{n}{2}$ + 1

Example (8):

Find the middle term in the expansion of $(2x^2 + \frac{1}{x})^{10}$ Sol: \therefore N = 10 the No of terms = 11 \therefore There is only one middle term which is T₆ T₆ = ¹⁰C₅ × (x⁻¹)⁵ × (2x²)⁵ = ¹⁰C₅ × x⁻⁵ × 2⁵ × x¹⁰ = 32 × ¹⁰C₅ × x⁵

Example (9) :

Find the middle terms in the expansion of $(\frac{x}{3}, -\frac{2}{y},)^7$

Sol:

$$\therefore \text{ N=7} \qquad \text{the No of terms =8} \\ \therefore \text{ There are 2 middle terms which are} \\ T_4, T_5 \\ T_4 = {^7C_3} \times (\frac{-2}{y})^3 \times (\frac{x}{3})^4 \\ = -\frac{8}{81} \times {^7C_3} \times \frac{x^4}{y^3} \\ T_5 = {^7C_4} \times (\frac{-2}{y})^4 \times (\frac{x}{3})^3 \\ = \frac{16}{27} \times {^7C_3} \times \frac{x^3}{y^4} \\ \end{bmatrix}$$

Example (10) :

If a ,b are the2 middle terms in the expansion of $(x-\frac{1}{r})^{15}$ according to the descending

power of X Prove that a+bx² =0

Sol :

$$T_{8} = a , T_{9=b}$$
L.H.S = a+bx² = T₈ + X².T₉
= ${}^{15}C_7 \times (\frac{-1}{x})^7 \times X^8 + X^2 \times {}^{15}C_8 \times (\frac{-1}{x})^8 \times X^7$
= ${}^{15}C_7 \times (-X) + {}^{15}C_7 \times X = 0 = R.H.S$

Example (11) :

Find the coeff. Of $x^9\,$ in the expansion of (x^3 - $\frac{1}{x^4}\,)^{10}$

Sol:

$$\begin{aligned} \mathsf{T}_{r+1} &= {}^{10}\mathsf{C}_r \times (\frac{-1}{x^4})^r \times (-x^3)^{10\text{-}r} \\ &= {}^{10}\mathsf{C}_r \times (-1)^r \times x^{-4r} \times x^{-30\text{-}3r} \\ &= {}^{10}\mathsf{C}_r \times (-1)^r \times x^{30\text{-}7r} \\ &\cdot 30\text{-}7r = 9 & -- \rightarrow r=3 \\ &\therefore \text{ The term which contains } x^9 \text{ is } \mathsf{T}_4 \\ &\quad \mathsf{Coeff} \cdot \mathsf{of } \mathsf{T}_4 = {}^{10}\mathsf{C}_3 \times (-1)^3 = -120 \end{aligned}$$

Example (12):

Find the term free of x in the expansion of (x - $\frac{1}{2x^2}$)⁹

Sol:

$$T_{r+1} = {}^{9}C_{r} \times \left(\frac{-1}{2x^{2}}\right)^{r} \times (x) {}^{9 \cdot r}$$

$$= {}^{9}C_{r} \times \left(\frac{-1}{2}\right)^{r} \times x^{2r} \times x^{9 \cdot r}$$

$$= {}^{9}C_{r} \times \left(\frac{-1}{2}\right)^{r} \times x^{9 \cdot 3r}$$

$$\therefore 9 \cdot 3r = 0 - - - \rightarrow r = 3$$

$$\therefore \text{ the term free of } x \text{ is } T_{4}$$

$$T_{4} = {}^{9}C_{3} \times \left(\frac{-1}{2}\right)^{3} = \frac{-21}{2}$$

Example (13):

Prove that there is no term free of x in the expansion of $(2x^3 - \frac{3}{x})^9$

Sol:

$$T_{r+1} = {}^{9}C_{r} \times \left(\frac{-3}{x}\right)^{r} \times (2x^{3})^{9-r}$$

$$= {}^{9}C_{r} \times (-3)^{r} \times x^{-r} \times (2)^{9-r}$$

$$\times x^{27-3r}$$

$$= {}^{9}C_{r} \times (-3)^{r} \times (2)^{9-r} \times x^{27-4r}$$

$$\therefore 27-4r = 0 \quad --- \rightarrow$$

$$r = \frac{27}{4} \notin Z^{+} \cup \{0\}$$

... There is no term free of x in this expansion

Example (14):

Prove that in the expansion of $(x^2 + \frac{1}{x})^n$

there exists a term free of x if n. is a multiple of 3 ,and find this term when n. =12

Sol:

$$T_{r+1} = {}^{n}C_{r} \times (x^{-1})^{r} \times (x^{2})^{n-r}$$

= {}^{n}C_{r} \times x^{2n-3r}
$$\therefore 2n-3r = 0 \longrightarrow r = \frac{2n}{3} \in Z^{+} \cup \{0\}$$

if n is divisible by 3
(a multiple of 3)
at n=12
$$\therefore r = \frac{2 \times 12}{3} = 8$$

$$T_{9} = {}^{12}C_{8} = {}^{12}C_{4} = 495$$

* The ratio between any term and its precedent in the expansion of(x+a)ⁿ

$$\frac{T_{r+1}}{T_{r}} = \frac{n - r + 1}{r} \times \frac{2^{nd}}{1^{st}}$$

Example (15) :

If the middle terms in the expansion of $(2x+3)^{17}$ are equal .find the value of X

Sol:

The middle terms are T_9 , T_{10}

$$\therefore \mathbf{T}_{9} = \mathbf{T}_{10} \qquad \therefore \quad \frac{T_{10}}{T_{9}} = 1$$

$$\therefore \quad \frac{17 - 9 + 1}{9} \times \frac{3}{2x} = 1$$

$$\therefore \quad 2x = 3$$

$$\therefore \quad x = \frac{3}{2}$$

Example (16):

 T_2 , T_3 , T_4 in the expansion of $(x+y)^n$ are respectively 240, 720,1080 Find the values of x,y and n.

Sol:

$$\frac{T_4}{T_3} = \frac{n-2}{3} \times \frac{y}{x} = \frac{1080}{720} = \frac{3}{2}$$
(1)

$$\frac{T_3}{T_2} = \frac{n-1}{2} \times \frac{y}{x} = \frac{720}{240} = 3$$
(2)
(1)÷(2)

$$\therefore \frac{n-2}{3} \times \frac{2}{n-1} = \frac{1}{2}$$
(× $\frac{3}{2}$)

$$\frac{n-2}{n-1} = \frac{3}{4}$$

$$\therefore 4n-8 = 3n-3$$
∴ n = 5 (3)
from (3) in (2)

$$\therefore 1 \times (\frac{y}{x}) = \frac{3}{2}$$

$$\therefore \frac{y}{x} = \frac{3}{2}$$
∴ $y = \frac{3x}{2}$ (4)

$$\therefore T_2 = 240$$

$$\therefore^n c_1 \times y \times x^{n-1} = 240$$

$$\therefore^5 c_1 \times \frac{3x}{2} \times x^4 = 240$$

$$\therefore x^5 = 32 = 2^5$$

$$\therefore x = 2$$
 y = 3

Example 17:

The coefficients of 3 consecutive terms are respectively 20,190,1140. Find the value of n, and the order of these terms in the exp. of $(1+x)^n$

Sol:

Let these terms are T_r , T_{r+1} , T_{r+2} Coefficient of $T_{r+2} = {}^nC_{r+1} = 1140 \rightarrow (1)$ Coefficient of $T_{r+1} = {}^nC_r = 190 \rightarrow (2)$ Coefficient of $T_r = {}^nC_{r-1} = 20 \rightarrow (3)$ Eq.(1) \div eq. (2) $\frac{{}^nC_{r+1}}{{}^nC_r} = \frac{n-r}{r+1} = 6$ n-r=6r+6 n = 7r+6 -- \rightarrow (4) eq.(2) \div eq.(3)

$$\frac{{}^{n}c_{r}}{{}^{n}c_{r-1}} = \frac{n-r+1}{r} = \frac{19}{2}$$

$$\therefore \frac{7r+6-r+1}{r} = \frac{19}{2}$$

$$\frac{6r+7}{r} = \frac{19}{2}$$

$$\therefore 19r = 12r+14 \rightarrow r = 2 \therefore terms \ are \ T_{2}, T_{3}, T_{4}$$

$$\therefore n = 7 \times 2 + 6 \rightarrow n = 20$$

Example (18) :

In the expansion of $(1 + x)^n$ according to the powers of x in ascending order, If $T_4 = \frac{25}{3} T_2$ and if $T_5=T_6$, Find the values of n , x

Sol:

$$\frac{T_4}{T_2} = \frac{25}{3}$$

$$\therefore \frac{T_4}{T_3} \times \frac{T_3}{T_2} = \frac{25}{3}$$

$$\therefore \frac{n-2}{3} \times \frac{n-1}{2} \times x^2 = \frac{25}{3} \quad (\times 6) \quad (\times 6)$$

$$(n-2)(n-1)x^2 = 50 \quad (1)$$

$$\frac{T_6}{T_5} = 1$$

$$\frac{n-4}{5} \times x = 1 \quad (\times 5)$$

$$(n - 4) \times x = 5 \quad \text{by squaring}$$

$$(n - 4)^{2} \times x^{2} = 25 \qquad (2)$$
eq (1) \div eq (2)

$$\frac{n^{2} - 3n + 2}{n^{2} - 8n + 16} = \frac{2}{1}$$

$$\therefore 2n^{2} - 16n + 32 = n^{2} - 3n + 2 \qquad \therefore n^{2} - 13n + 30 = 0$$

$$(n - 10)(n - 3) = 0$$

$$\therefore n = 10 \qquad n = 3$$
(refused because number of terms \neq only 4
from (3) in (2)

$$\therefore x^{2} = \frac{25}{36}$$

$$\therefore x = \frac{5}{6} \quad \text{or } x = \frac{-5}{6}$$
(refused because T₅, T₆ have the same)

Example 19 :

In the expansion of $(X^2 + \frac{1}{X})^9$ according to the

powers of X In descending order ,

I) find the term free of X

II)If the ratio between the term free of x and the 6^{th} term is 2:3 , find the value of X

Sol:

ii)
$$\frac{T_7}{T_6} = \frac{2}{3}$$

 $\frac{9-5}{6} \times \frac{1}{x^3} = \frac{2}{3}$ (X $\frac{3}{2}$)
 $\therefore x^3 = 1$ $\therefore x = 1$

Example 20 :

In the expansion of $(x^2 - \frac{1}{x^2})^{12}$ according to the power of x in descending order, find the term contains x^4 , and find the Ratio between the coefficient of this term and the middle term

Sol:

$$T_{r+1} = {}^{12}C_r \times (\frac{-1}{x^2})^r \times (x^2) {}^{12-r} \\ = {}^{12}C_r \times (-1)^r \times (x)^{-2r} \times (x)^{24-2r} \\ = {}^{12}C_r \times (-1)^r \times (x)^{24-4r} \\ \therefore 24-4r = 4 - \rightarrow r = 5 \\ \therefore \text{ The term contains } x^4 \text{ is } T_6 \\ T_6 = {}^{12}C_5 \times {}^4 \quad T_6 = -{}^{12}C_5 \times {}^4 \\ T_7 \text{ is the middle term} \\ \cdot \frac{Coff \cdot T_6}{T_7} = \frac{6}{12-5} \times \frac{(1)}{(-1)} = \frac{-6}{7} \\ \end{cases}$$

Example 21 :

If the coefficient of x^{16} in the expansion of

$$(x^{3} + \frac{a}{x})^{8}$$
 is

equal to the term free of \boldsymbol{x} in this expansion , find the value of a .

Sol:

$$\ln (x^{3} + \frac{a}{x})^{8}$$

$$T_{r+1} = {}^{8}C_{r} \times (\frac{a}{x})^{r} \times (x^{3})^{8-r}$$

$$= {}^{8}C_{r} \times a^{r} \times x^{-r} \times x^{24-3r}$$

$$= {}^{8}C_{r} \times a^{r} \times x^{24-4r}$$

$$\therefore 24 - 4r = 16 - \rightarrow r=2$$

$$\begin{array}{l} \therefore \text{ Coeff .of } x^{16} = \text{Coeff. of } T_3 \\ = {}^8\text{C}_2 \times a^2 = 28 \ a^2 \\ \text{ To find the term free of } x \\ \therefore 24\text{-}4r = 0 \text{---} \rightarrow r = 6 \\ \text{T}_7 \text{ is the term free of } x \\ \text{T}_7 = {}^8\text{C}_6 \times a^6 = {}^8\text{C}_2 \times a^6 = 28 \ a^6 \\ \therefore 28a^6 = 28 \ a^2 \quad (\div 28) \\ a^2(a^4 - 1) = 0 \text{---} \rightarrow a = \pm 1 \end{array}$$

Example 22:

Find the value of the term free of \boldsymbol{x} in the expansion of

 $(9x^2 + \frac{1}{3x})^9$. Then prove that the middle

terms are equal when $x=\frac{1}{3}$.

Sol:

$$T_{r+1} = {}^{9}C_{r} \times (\frac{1}{3x})^{r} \times (9 x^{2})^{9 \cdot r}$$

= ${}^{9}C_{r} \times (\frac{1}{3})^{r} \times x^{\cdot r} \times 3^{18 \cdot 2r} \times x^{18 \cdot 2r}$
= ${}^{9}C_{r} \times 3^{18 \cdot 3r} \times x^{18 \cdot 3r}$
 $\therefore 18 \cdot 3r = 0 - \rightarrow r = 6$
The term free of x is T_{7}
 $T_{7} = {}^{9}C_{6} = {}^{9}C_{3} = 84$
The 2 middle terms are T_{5} , T_{6}
 $\frac{T_{6}}{T_{5}} = \frac{9 - 4}{5} \times \frac{(\frac{1}{3x})}{9x^{2}} = 1$
 $\therefore \frac{1}{27x^{3}} = 1 \qquad \therefore x = \frac{1}{3}$

Example 23 :

In the expansion of $(a \ x + \frac{1}{bx})^{10}$ according to the powers of x in descending order , if the term free of x is equal to the coefficient of the 7th term , prove that 6 a b = 5

Sol:

$$T_{r+1} = {}^{10}C_r \times (\frac{1}{bx})^r \times (a \ x)^{10-r}$$

$$= {}^{10}C_r \times (\frac{1}{b})^r \times x^r \times (a)^{10-r} \times (x)^{10-r}$$

$$= {}^{10}C_r \times (\frac{1}{b})^r \times (a)^{10-r} \times (x)^{10-2r}$$

$$\therefore 10 - 2r = 0 \rightarrow r=5$$

$$\therefore The term free of x is T_6$$

$$T_6 = {}^{10}C_5 \times (\frac{1}{b})^5 \times (a)^5$$

$$\therefore T_6 = {}^{10}C_5 \times (\frac{a^2}{b^5})^5$$

$$Coeff. of T_7 = {}^{10}C_6 \times (\frac{1}{b})^6 \times (a)^4$$

$$= {}^{10}C_6 \times (\frac{a^4}{b^4})^5$$

$$\therefore {}^{10}C_5 \times (\frac{a^4}{b^6})^6 \times (\frac{a^4}{a^4})^6$$

$$\therefore {}^{10}C_5 \times ab = {}^{10}C_6 \times (\frac{b^6}{a^4})^6$$

$$\therefore {}^{10}C_5 \times ab = {}^{10}C_6 \times (\frac{a^5}{b^6})^6$$

COMPLEX NUMBERS

* Introduction

If the S. S = R Solve the eq $x^2 + 1=0$

Sol:

$$\begin{array}{lll} x^2 = -1 & & \\ x = \mp \sqrt{-1} & & \\ \text{If} & \text{S. S. is R} & & \ddots & \text{the solution set is } \Phi \\ \text{and if we consider} & & i = \sqrt{-1} \\ & & \text{S. S. } = \{i, -i\} & \\ &$$

In general:

 $i^{4n} = 1, i^{4n+1} = i, i^{4n+2} = i^2 = -1, i^{4n+3} = i^3 = -i, n \in \mathbb{Z}$

* The set of complex Numbers (C)

C = {x + yi, x, y \hat{I} R, $i^2 = -1$ } The complex number is symbolized by Z = x + yi x is called the real part, y is called the imaginary part.

And if x = 0, y \neq 0 \Rightarrow Z is a pure imaginary.

And if y = 0, $x \neq 0 \Rightarrow Z$ is a pure rule.

* Operations on complex numbers 1- The 2 complex numbers

 $Z_1 = x_1 + y_1 i$, $Z_2 = x_2 + y_2 i$

Are equal iff $x_1 = x_2, y_1 = y_2$

2- If Z_1 = x_1 + y_1 i, Z_2 = x_2 + y_2 i, Then $Z_1 + Z_2 = (x_1 + x_2) + (y_1 + y_2)i$ $Z_1 Z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$

* Properties of addition and subtraction of complex

Numbers

1- Commutative: Verified in addition, multiplication.

- 2- Associative: verified in addition, multiplication.
- **3- Identity:** a- In addition is zero.

b- In multiplication is one.

4- Inverse: a- In addition: -Z is the inverse of Z.

b- In multiplication: $\frac{1}{Z}$ is the inverse of Z.

ex. if Z = x + yi -Z = -x - yi $\frac{1}{Z} = \frac{x}{x^2 + y^2} - \frac{yi}{x^2 + y^2}$

5- Distribution of multiplication over addition $Z_1 (Z_2 + Z_3) = Z_1Z_2 + Z_1Z_3$

* The conjugate of a complex number

If Z = x + yi, then $\overline{Z} = x - yi$ is the conjugate of the complex number Z.

Properties of the conjugate

1) $Z + \overline{Z} = 2x$ (pure real) 2) $Z - \overline{Z} = 2yi$ (pure imaginary). 3) $Z \cdot \overline{Z} = x^2 + y^2$ 4) $\overline{z_1} + \overline{z_2} = z_1 + z_2$ 5) $\overline{z_1 \overline{z_2}} = \overline{z_1} \cdot \overline{z_2}$ 6) If Z = x + yi is a root of an eq., its coeff. $\in \mathbb{R}$ then Z = x - yi is another root for the same eq.

Example 1

Write in the simplest form i^{83} , i^{-62} , i^{-15} , $i^{12 n + 7}$

Sol:

$i^{83} = i^3 = -i$,	$i^{-62} = i^2 = -1$
i ⁻¹⁵ = i	,	$i^{12n+7} = i^3 = -i$

Example 2

Find the value of
$$(3 - 2 \sqrt{-2}) (5 + \sqrt{-2})$$

Sol:

Exp =
$$\begin{pmatrix} 3 & -2 & \sqrt{2} & i \end{pmatrix} \begin{pmatrix} 5 & + & \sqrt{2} & i \end{pmatrix}$$
 = (15 + 4)
i $\begin{pmatrix} 3 & \sqrt{2} & -10 & \sqrt{2} \end{pmatrix}$
= 19 - 7 $\sqrt{2}$ i

Example 3

$$(3+i)(3-i)$$

Put in the form of x + yi the number 3-4i by 2 methods

Sol:

$$\frac{10}{3 - 4i} \times \frac{3 + 4i}{3 + 4i} = \frac{(3 + i)(3 - i)}{3 - 4i} = \frac{10(3 + 4i)}{25} = \frac{6}{5} + \frac{8}{5}i$$

Example 4

If
$$x = \frac{26}{5-i}$$
, $y = \frac{2(3+2i)}{1+i}$.

Prove that x, y are conjugate, also find the value of $x^2 + xy + y^2$

Sol:

$$x = \frac{26}{5 - i} \times \frac{5 + i}{5 + i} = \frac{26(5 + i)}{26} = 5 + i$$
(1)
$$y = \frac{2(3 + 2i)}{1 + i} \times \frac{1 - i}{1 - i} = \frac{2(3 + 2i)(1 - i)}{2}$$
$$\therefore y = \frac{2(5 - i)}{2} = 5 - i$$
(2)

From (1), (2) \therefore x, y are conjugate.

$$x^{2} + xy + y^{2} = (5 + i)^{2} + (5 + i)(5 - i) + (5$$

- i)²

= (24 + 10 i) + 26 + (24 - 10 i) = 74

Example 5

Find the values of x, $y \in R$ if

$$\mathbf{x} + \mathbf{y}\mathbf{i} = (1 - \mathbf{i}\sqrt{2})^5$$

Sol :

$$\begin{aligned} \mathbf{x} + \mathbf{y}\mathbf{i} &= (1 - i\sqrt{2}) \left[(1 - i\sqrt{2})^2 \right]^2 \\ &= (1 - i\sqrt{2}) \left[1 - 2 - 2\sqrt{2} \mathbf{i} \right]^2 \\ &= (1 - i\sqrt{2}) (-1 - 2\sqrt{2} \mathbf{i})^2 \\ &= (1 - i\sqrt{2}) (1 + 4\sqrt{2} \mathbf{i} - 8) \\ &= (1 - i\sqrt{2}) (-7 + 4\sqrt{2} \mathbf{i} - 8) \\ &= -7 + 4\sqrt{2} \mathbf{i} + 7\sqrt{2} \mathbf{i} + 8 \\ &= 1 + 11\sqrt{2} \mathbf{i} \qquad \Rightarrow \qquad \mathbf{x} = 1, \ \mathbf{y} = 11\sqrt{2} \end{aligned}$$

Example 6

Sol:

$$a + bi = \frac{2+i}{1-i} \times \frac{1+i}{1+i} = \frac{1+3i}{2} = \frac{1}{2} + \frac{3}{2}i$$

∴ $a = \frac{1}{2}$, $b = \frac{3}{2}$
L.H.S = 2 (a^{3} + b^{3}) = 2 $\left(\frac{1}{8} + \frac{27}{8}\right) = \frac{2 \times 28}{8} = 7 = R.H.S.$

Example 7

Find the S. S. of

$2x - {}^{2}x + 3 = 0$ if $x \in C$

Sol:

$$x = \frac{-b \pm \sqrt{b^2 - 4 \operatorname{ac}}}{2 \operatorname{a}} \qquad a = 2, b = -1, c = 3$$
$$x = \frac{1 \pm \sqrt{1 - (4 \times 2 \times 3)}}{4}$$
$$\therefore x = \frac{1 \pm \sqrt{-23}}{4} = \frac{1 \pm \sqrt{23} \operatorname{i}}{4}$$
$$\therefore x = \frac{1 \pm \sqrt{-23}}{4} = \frac{1 \pm \sqrt{23} \operatorname{i}}{4}$$
$$S. S. = \left\{\frac{1 \pm \sqrt{23} \operatorname{i}}{4}, \frac{1 - \sqrt{23} \operatorname{i}}{4}\right\}$$

Example 8

If $Z \in C$, find the S. S. of

$$4Z + 7Z = 8$$

Sol:

Let Z = x + iy

$$\therefore 4 (x + iy) + 7 (x - iy) = 8$$

 $4x + 4yi + 7x - 7yi = 8$
 $\therefore 11x = 8 \Rightarrow x = \frac{8}{11}$, $y = 0 \Rightarrow Z = \frac{8}{11}$

Example 9

If (-1) is a root of the equation $x^3 - x^2 + 2 = 0$, and Prove theis find the other 2 roots are conjugate

Sol:

- \cdot -1 is a root of the given equation
 - \therefore x + 1 is a factor for the expression
 - $x^3 x^2 + 2$

and to find the other factor, we use long division

 \therefore x² - 2x + 2 = 0, by the use of formula

$$\mathbf{x} = \frac{\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4 \operatorname{ac}}}{2 \operatorname{a}}$$
$$\mathbf{x} = \frac{2 \pm \sqrt{4 - (4 \times 1 \times 2)}}{2 \times 1}$$
$$\mathbf{x} = \frac{2 \pm \sqrt{-4}}{2}$$
$$\mathbf{x} = \frac{2 \pm \sqrt{-4}}{2}$$
$$\mathbf{x} = \frac{2 \pm 2 \operatorname{i}}{2} = \mathbf{1} \pm \mathbf{i}$$

The other 2 roots are:

1 + i, 1 - i which are conjugate

* Graphical representation of complex numbers

The complex number Z = x + yi is represented by a point in the plane where:

x - axis represents the real part,

y - axis represents the imaginary part.

 $r = |Z| = \sqrt{x^2 + y^2}$ is called the modulus of the complex number.

 $\theta = \tan^{-1} \frac{y}{x}$ is called the amplitude (Argument) of the complex number.,

$$0^{\circ} \le \theta < 360^{\circ}$$

$$\cos \theta = \frac{x}{r} , \quad \sin \theta = \frac{y}{r}$$

$$\therefore Z = r (\cos \theta + i \sin \theta)$$

Is called the trigonometric form a complex number.

Example 10

Find the modulus and the principle amplitude of each of the following complex numbers and represent each of them on Argand Diagrams.

a) -1 b) 1 -
$$\sqrt{3}$$
 i c) - $\sqrt{3}$ +i

Sol:

a) Z = -1 |Z| = 1, $\theta = 180^{\circ}$ $\therefore Z = \cos 180^{\circ} + i \sin 180^{\circ}$ $\int \mathbf{Y}$ $\int \mathbf{y}$ \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} (Cos 300° + i sin 300°)

Example 11

Write in the Alg form each of:

- a) Z = 7 ($\cos 60^\circ + i \sin 60^\circ$)
- b) Z = 4 [Cos (- 150°) + i sin (- 150°)]

Sol : a) Z = 7 (Cos 60° + i sin 60°) $= 7 \left(\frac{1}{2} + \frac{\sqrt{3}}{2} \right)$ $= 7 \left(\frac{7}{2} + \frac{7\sqrt{3}}{2} \right)$ $= \frac{7}{2} + \frac{7\sqrt{3}}{2} \right)$ b) Z = 4 [Cos (- 150°) + i sin (- 150°)] = 4 [Cos 210° + i sin 210°] $= 4 \left[-\frac{\sqrt{3}}{2} - \frac{1}{2} \right] = -2\sqrt{3} - 2i$ Example 12

> If Z = r (Cos θ + i Sin θ). Find each of -Z, $\frac{1}{Z}$ in Trig. form.

Sol:

$$-Z = r (-\cos \theta - i\sin \theta)$$

= $r [\cos (180 + \theta) + i\sin (180 + \theta)]$
$$\frac{1}{Z} = \frac{1}{r (\cos \theta + i\sin \theta)}$$

= $\frac{1}{r} \times \frac{1}{\cos \theta + i\sin \theta} \times \frac{\cos \theta - i\sin \theta}{\cos \theta - i\sin \theta}$
= $\frac{1}{r} [\cos \theta - i\sin \theta]$

$$= \frac{1}{r} \left[\cos (360 - \theta) + i \sin (360 - \theta) \right]$$

Remember

- 1- Sin (A \mp B) = Sin A Cos B \mp Cos A Sin B
- 2- Cos (A \mp B) = Cos A Cos B \pm Sin A Sin B

4-
$$\cos 2A = \cos^2 A - \sin^2 A$$

= 2 $\cos^2 A - 1$
= 1 - 2 $\sin^2 A$.

* The modulus and amplitude of product and quotient of 2 complex numbers

First: Multiplication $|Z_1Z_2| = |Z_1||Z_2|$

Amp (Z_1Z_2) = Amp (Z_1) + Amp (Z_2)

Second: Division

$$\left|\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{2}}\right| = \frac{|\mathbf{Z}_{1}|}{|\mathbf{Z}_{2}|}$$

$$\operatorname{Amp}\left(\frac{Z_{1}}{Z_{2}}\right) = \operatorname{Amp}\left(Z_{1}\right) - \operatorname{Amp}\left(Z_{2}\right)$$

Results: If $Z = r (\cos \theta + i \sin \theta)$,

Then:i) $Z^n = r^n (\cos n \theta + i \sin n \theta)$

ii)
$$\frac{1}{Z} = Z^{-1} = \frac{1}{r} [\cos(-\theta) + i \sin(-\theta)]$$

Example 13

Find the trig form for each of Z1Z2, $\frac{Z_1}{Z_2}$ where;

$$Z_{1} = 6 \left[\cos \frac{3\pi}{8} + i \sin \frac{3\pi}{8} \right]$$
$$Z_{2} = 2 \left[\cos \frac{\pi}{8} + i \sin \frac{\pi}{8} \right]$$

Sol:

$$Z_{1}Z_{2} = 12 \left[\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right]$$
$$\frac{Z_{1}}{Z_{2}} = 3 \left[\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right]$$

Example 14

Find the trig form for each of
$$Z_2$$
, $\frac{1}{Z}$
where Z = 4 (Sin a - i Cos a).

Sol:

Example 15
Write down the trig form for each

$$Z_{1} = \frac{1}{2} (-1 + \sqrt{3} i), Z_{2} = \frac{-1}{2} - \frac{\sqrt{3}}{2} i, \text{also}$$

prove that $Z_{1}^{3} = Z_{2}^{3} = 1$

Sol :

$$Z_{1} = \frac{-1}{2} + \frac{\sqrt{3}}{2} i$$

$$x_{1} = \frac{-1}{2} , y_{1} = \frac{\sqrt{3}}{2}$$

$$|Z_{1}| = r_{1} = \sqrt{x_{1}^{2} + y_{1}^{2}} = 1$$

$$q_{1} \in 2^{nd} \text{ quad } q_{1} = 120^{\circ}$$

$$Z_{1} = \cos 120^{\circ} + i \sin 120^{\circ}$$

$$Z_{3}^{3} = \cos 0^{\circ} + i \sin 0^{\circ} = 1 \rightarrow (1)$$

$$Z_{2} = \frac{-1}{2} - \frac{\sqrt{3}}{2} i \quad x_{2} = \frac{-1}{2} ,$$

$$y_{2} = -\frac{\sqrt{3}}{2}$$

$$|Z_{2}|_{r_{2}} = \sqrt{x_{2}^{2} + y_{2}^{2}} = 1$$

$$\cos \theta_{2} = \frac{-1}{2}$$

$$\theta_{2} \in 3^{rd} \text{ quad } \Rightarrow \theta_{2} = 240^{\circ}$$

$$\therefore Z_{2} = \cos 240^{\circ} + i \sin 240^{\circ}$$

$$Z_2^3 = \cos 0^\circ + i \sin 0^\circ = 1 \rightarrow$$
 (2)
From (1), (2)
∴ $Z_1^3 = Z_2^3 = 1$

If $Z_1 = 13$ (Cos θ + i Sin θ), $Z_2 = Sin 2\theta + i Cos 2\theta$)

Where
$$\theta \in \left[0, \frac{\pi}{2}\right]$$
 Tan $\theta = \frac{5}{12}$
Find Z₁Z₂

Sol:

 $Z_{1} = 13 (\cos \theta + i \sin \theta)$ $Z_{2} = \cos(90^{\circ} - 2 \theta) + i \sin (90^{\circ} - 2 \theta)$ $Z_{1}Z_{2} = 13[\cos(90^{\circ} - \theta) + i \sin (90^{\circ} - \theta)]$ $= 13 [\sin \theta + i\cos \theta]$ $= 13 \left[\frac{5}{13} + \frac{12}{13}i\right]$ = 5 + 12i

* De Moiver's theorem

Example 17

Find the cubic roots of the complex number

 $Z = 8 (\cos \pi + i \sin \pi)$

Z = 8 (Cos
$$\pi$$
 + i Sin π)
Z^{1/3} = 8^{1/3} [Cos π + i Sin π]^{1/3}
= 2 $\left[\cos \frac{\pi + 2 \text{ m } \pi}{3} + i \sin \frac{\pi + 2 \text{ m } \pi}{3} \right]$

m = 0, 1, 2

When: m = 0

$$Z^{1/3} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 1 + \sqrt{3}i$$

When: m = 1

$$Z^{1/3} = 2$$
 (Cos π + i Sin π) = -2

When: m = 2

$$Z^{1/3} = 2\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right) = 1 - \sqrt{3}i$$

Example 18

Use De Moiver's theorem to find the square roots of the complex number

$$Z = 1 + \sqrt{3} i$$

Sol:

x = 1

$$y = \sqrt{3}$$

 $\therefore r = 2$

$$\cos \theta = \frac{x}{r} = \frac{1}{2}$$

$$\frac{y}{r} = \frac{\sqrt{3}}{2}$$

Sin $\theta = r = \frac{\sqrt{3}}{2}$
 $\therefore \theta = 60^{\circ}$
 $\therefore Z = 2 (\cos 60^{\circ} + i \sin 60^{\circ})$
 $Z^{\frac{1}{2}} = \frac{\sqrt{2} \left(\cos \frac{60^{\circ} + 2 \text{ m } \pi}{2} + i \sin \frac{60^{\circ} + 2 \text{ m } \pi}{2} \right)}{\text{m} = 0, 1}$
at m = 0
 $\therefore Z^{\frac{1}{2}} = \frac{\sqrt{2} \left(\cos 30^{\circ} + i \sin 30^{\circ} \right) = \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}}{1} \text{ at m} = 1}$
 $z^{\frac{1}{2}} = \sqrt{2} (\cos 210^{\circ} + i \sin 210^{\circ}) = \frac{-\sqrt{6}}{2} - \frac{\sqrt{2}}{2}i$

Find the square roots of the complex number Z = 3 + 4i. Without transforming it into trig form

Sol :

Let
$$Z^2 = 3 + 4i$$

 $\therefore (x + yi)^2 = 3 + 4i$
 $\therefore (x^2 - y^2) + 2xyi = 3 + 4i$
 $\therefore x^2 - y^2 = 3 \quad \dots \Rightarrow \quad (1)$
 $2xy = 4$
 $\therefore y = \frac{2}{x} \dots \Rightarrow \quad (2)$
From (2) in (1)
 $\therefore x^2 - \frac{4}{x^2} = 3 \quad (x x^2)$

$$\therefore x^4 - 3 x^2 - 4 = 0$$
$$(x^2 - 4) (x^2 + 1) = 0$$

$$x^{2} = 4 \Rightarrow x = \pm 2$$

or $x^{2} = -1$ refused
When $x = 2 \Rightarrow y = 1$
When $x = -2 \Rightarrow y = -1$

- \therefore Z = 2 + i or Z = -2 i
- $\therefore~$ The square roots are 2+i , -2-I

If a = 8-6i
Find
$$a^{\frac{3}{2}}$$

Sol:
Let $(x + yi)^2 = 8 - 6i$
 $\therefore x^2 - y^2 = 8$ (1)
 $2 xy = -6$
 $\therefore y = -\frac{3}{x}$ (2)
From (2) in (1)
 $\therefore x^2 - \frac{9}{x^2} = 8$ ('x²)
 $x^4 - 8 x^2 - 9 = 0$
 $(x^2 - 9) (x^2 + 1) = 0$

 $\therefore x^2 - 9 = 0 \Rightarrow x^2 = 9 \Rightarrow x = \pm 3$ $x^2 + 1 = 0 \qquad -- \Rightarrow x^2 = -1 \text{ refused}$ when:

x = 3 ---→ y = -1 ---→ $a^{\frac{1}{2}}$ = 3-i Or when : x = -3--→ y = 1 ---→ $a^{\frac{1}{2}}$ = -3+i ∴ $a^{\frac{3}{2}}$ = (3 - i)³ = (8 - 6i) (3-i) = 24 - 6 - 18i - 8i ∴ $a^{\frac{3}{2}}$ = 18 - 26i or $a^{\frac{3}{2}}$ = (-3 + i)³ = - (3 - i)³ ∴ $a^{\frac{3}{2}}$ = -18 + 26i

Example 21

Use De Moiver's Theorem in finding cos 2 θ , sin 2 θ in terms of cos θ , sin θ

Sol:

 $(\cos \theta + i \sin \theta)^2 = (\cos^2 \theta - \sin^2 \theta) +$

 $2i\cos\theta\sin\theta$

=
$$(\cos 2\theta)$$
 + $(\sin 2\theta)$ i
 $\therefore \cos 2\theta = \cos^2 \theta - \sin^2 \theta$
 $\sin 2\theta = 2 \sin \theta \cos \theta$

Find the s.s. of
(1+i)
$$x^2$$
 - (1+3i) x + 2 (2-3i) = 0

Sol :

Sol.

$$x^{2} - \left(\frac{1+3i}{1+i}\right)_{x} + \frac{2(2-3i)}{1+i} = 0$$

$$\therefore x^{2} - \left(\frac{1+3i}{1+i} \times \frac{1-i}{1-i}\right)_{x} + \frac{2(2-3i)(1-i)}{(1+i)(1-i)} =$$

$$\therefore x^{2} - \left(\frac{4+2i}{2}\right)_{x} + (-1-5i) = 0$$

$$\therefore x^{2} - (2+i) \times + (-1-5i) = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{(2+i) \pm \sqrt{3 + 4i - 4(1)(-1 - 5i)}}{2}$$

$$x = \frac{2+i \pm \sqrt{7 + 24i}}{2}$$

$$x = \frac{2+i \pm \sqrt{7 + 24i}}{2}$$
To find $\sqrt{7 + 24i}$
Let $(a + bi)^2 = 7 + 24i$

$$(a^{2} - b^{2}) + 2a \text{ bi } = 7 + 24i$$

$$a^{2} - b^{2} = 7 \qquad (1)$$

$$2 ab = 24 \quad - \rightarrow \quad b = \frac{12}{a} \qquad (2)$$
From (2) in (1)
$$a^{2} - \frac{144}{a^{2}} = 7 \qquad (\times a^{2})$$

$$a^{4} - 7a^{2} - 144 = 0$$

$$(a^{2} - 16) (a^{2} + 9) = 0$$

$$a^{2} - 16 = 0 - - \rightarrow \quad a^{2} = 16 - - \rightarrow$$

$$a = \pm 4 \qquad - \rightarrow \quad b = \pm 3$$

$$a^{2} + 9 = 0 \qquad - - \rightarrow \quad a^{2} = -9 \text{ (refused)}$$

$$\therefore \quad \sqrt{7 + 24i} = 4 + 3i$$

$$\therefore \quad x = \frac{2 + i \pm (4 + 3i)}{2}$$

$$\therefore \quad x = 3 + 2i \quad \text{or} \qquad x = -1 - i$$

* The exponential form of a complex number

If $Z \in C$, its modulus = r, and its amplitude is θ

• $Z = re^{\theta i}$ is called the exponential form of a complex number.

Operations on complex numbers in exp. form

(1)
$$r_1 e_1^{\theta_1} \times r_2 e_2^{\theta_1} = r_1 r_2 e_1^{(\theta_1 + \theta_2)}$$

(2)
$$\frac{r_1 e^{\theta_1 i}}{r_2 e^{\theta_2 i}} = \frac{r_1}{r_2} e^{(\theta_1 - \theta_2) i}$$

$$(3) (r e^{\theta i})^n = r^n e^{n\theta i}$$

(4)
$$\sqrt[n]{r e^{\theta_i}} = \sqrt[n]{r}, e^{\frac{\theta + 2m\pi}{n}i}$$

Write down in the exp. form
$$\left(\frac{2(1+i)}{(1-i)}\right)^7$$

Sol:

$$\left(\frac{2(1+i)}{(1-i)}\right)^{7} = \left(\frac{2(1+i)(1+i)}{(1-i)(1+i)}\right)^{7}$$
$$= \left(\frac{2(1+i)^{2}}{2}\right)^{7}$$
$$= [(1+i)^{2}]^{7} = (1+2i-1)^{7} = (2i)^{7}$$
$$= (2 \times e^{\frac{\pi}{2}i})^{7} = 128 e^{\frac{3\pi}{2}i}$$

Example 24

If z = 2 (cos
$$\frac{\pi}{3}$$
 + i sin $\frac{\pi}{3}$)

Express each of z, $\frac{1}{z}$ in the exp. Form

$$r = 2 \qquad \theta = \frac{\pi}{3}$$

$$z = r e^{\theta i}$$

$$z = 2 \times e^{\frac{\pi}{3}i}$$

$$\frac{1}{z} = \frac{1}{2} \times e^{-\frac{\pi}{3}i}$$

$$\frac{1}{z} = \frac{1}{2} \times e^{\frac{5\pi}{3}i}$$

Example 25

....

If z = 1+i, find z^6 in the exp. form.

Sol: z = 1 + i $r = \sqrt{2}$ $\theta = 45^{\circ} = \frac{\pi}{4}$ $z = (\sqrt{2}) \times e^{\frac{\pi}{4}i}$ $z^{6} = (\sqrt{2})^{6} \times e^{\frac{6\pi}{4}i} = 8 \times e^{\frac{3\pi}{2}i}$

Example 26

If
$$z_1 = 2 \times e^{\frac{\pi}{6}i}$$
,
 $z_2 = \sqrt{2} \times e^{\frac{\pi}{4}i}$

Find each of z_1z_2 , $\frac{z_1}{z_2}$, z_1^4 , $\sqrt[3]{z_1}$, $\sqrt[4]{z_2}$

Sol:

$$z_{1}z_{2} = 2 \sqrt{2} \times e^{\frac{5\pi}{12}i}$$

$$\frac{z_{1}}{z_{2}} = \sqrt{2} \times e^{\frac{23\pi}{12}i}$$

$$z_{1}^{4} = 16 \times e^{\frac{2\pi}{3}i}$$

$$\sqrt[3]{z_{1}} = \sqrt[3]{2} \times e^{\frac{\pi}{6}+2m\pi}i, \quad m = 0, 1, 2$$

$$\sqrt[4]{z_{2}} = \sqrt[8]{2} \times e^{\frac{\pi}{4}+2m\pi}i, \quad m = 0, 1, 2, 3$$

Example 27

Put
$$\left(\frac{4}{\sqrt{3}+i}\right)^2$$
 on exp. form

Sol:

$$z = \left(\frac{4}{\sqrt{3}+i}\right)^2 = \left(\frac{4}{\sqrt{3}+i} \times \frac{\sqrt{3}-i}{\sqrt{3}-i}\right)^2$$

$$\therefore \quad z = \left(\frac{4(\sqrt{3}-i)}{4}\right)^2 = (\sqrt{3}-i)^2$$

$$\therefore \quad = 2 - 2\sqrt{3} i$$

 $r = 4 \qquad \theta = 300^{\circ} = \frac{5\pi}{3}$

$$\therefore \quad z = 4 \times e^{\frac{5\pi}{3}i}$$

Put $1-\sqrt{3}$ i on trig. form, then find its roots on exp. form

Sol:

 $z = 1 - \sqrt{3}i \qquad r = 2$ $\therefore \qquad z = 2 \quad e^{\frac{5\pi}{3}i}$ $\theta = 300^{\circ} = \frac{5\pi}{3}$

 $\therefore \quad z = 2 \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right)$ $z^{\frac{1}{2}} = \sqrt{2} \times e^{\frac{5\pi}{3} + 2m\pi}{2}i}, \quad m = 0, 1$ when m = 0: $z^{\frac{1}{2}} = \sqrt{2} \times e^{\frac{5\pi}{6}i}$ when m = 1: $z^{\frac{1}{2}} = \sqrt{2} \times e^{\frac{11\pi}{6}i}$

Example 29

Put $\frac{2(5-3\sqrt{3}i)}{1+2\sqrt{3}i}$ in the exp. form, and find its square roots in exp. form.

 $z = \frac{2(5 - 3\sqrt{3}i)}{1 + 2\sqrt{3}i} \times \frac{1 - 2\sqrt{3}i}{1 - 2\sqrt{3}i}$ $z = \frac{2(5 - 3\sqrt{3} i)(1 - 2\sqrt{3} i)}{13} = -2 - 2\sqrt{3}i$ x = -2 y = -2 $\sqrt{3}$ $r = 4 \qquad \theta = 240^\circ = \frac{4\pi}{3}$ $z = 4 (\cos 240^\circ + i \sin 240^\circ)$ $= 4 \times e^{\frac{4\pi}{3}i}$ $z^{\frac{1}{2}} = 2 \left(\cos \frac{240^{\circ} + 2m\pi}{2} + i \sin \frac{240^{\circ} + 2m\pi}{2} \right), m = 0, 1$ at m = 0 $z^{\frac{1}{2}} = 2 (\cos 120^{\circ} + i \sin 120^{\circ})$ $= 2 \times e^{\frac{2\pi}{3}i}$ at m = 1 $z^{\frac{1}{2}} = 2 (\cos 300^{\circ} + i \sin 300^{\circ})$ $= 2 \times e^{\frac{5\pi}{3}i}$

Example 30

Put
$$\left(\cos\frac{\pi}{6} - \sin\frac{\pi}{6}i\right) \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
 in the exp.form.

$$z_1 = \cos 30^\circ - i \sin 30^\circ$$

= $\cos 330^\circ + i \sin 330^\circ$
 $z_2 = \cos 45^\circ + i \sin 45^\circ$
 $z_1 z_2 = \cos 15^\circ + i \sin 15^\circ$
 $r = 1$

$$\therefore \qquad \mathsf{z}_1\mathsf{z}_2 = \mathsf{e}^{\frac{\pi}{12}} \qquad \qquad \mathsf{\theta} = \frac{\pi}{12}$$

Example 31

Put the complex number $z = \frac{\sqrt{3} + i}{\sqrt{3} - i}$ on exp. form and find its cubic roots

Sol:

$$z = \frac{\sqrt{3} + i}{\sqrt{3} - i} \times \frac{\sqrt{3} + i}{\sqrt{3} + i} = \frac{2 + 2\sqrt{3}i}{4}$$

$$\therefore z = \frac{1}{2} + \frac{\sqrt{3}}{2} i$$

$$x = \frac{1}{2} \qquad y = \frac{\sqrt{3}}{2} \qquad r = 1 \quad \theta = \frac{\pi}{3}$$

$$\therefore z = e^{\frac{\pi}{3}i}, \qquad z^{\frac{1}{3}} = e^{\frac{\frac{\pi}{3} + 2m\pi}{3}i},$$

$$m = 0, 1, 2$$

whenm = 0: $z^{\frac{1}{3}} = e^{\frac{\pi}{9}i}$ whenm = 1: $z^{\frac{1}{3}} = e^{\frac{7\pi}{9}i}$ whenm = 2: $z^{\frac{1}{3}} = e^{\frac{13\pi}{9}i}$

* The cubic roots of unity

If $x^3 = 1$, find the values of x , $x \in C$

Sol:

 $x = (1)^{\frac{1}{3}} = (\cos 0^{\circ} + i \sin 0^{\circ})^{\frac{1}{3}}$ $x = \cos \frac{0 + 2m\pi}{3} + i \sin \frac{0 + 2m\pi}{3}$ m = 0, 1, 2 when m = 0: $\therefore x = \cos 0^{\circ} + i \sin 0^{\circ} = 1$ when m = 1: $x = \cos 120^{\circ} + i \sin 120^{\circ} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i$ $when m = 2: \qquad \therefore x = \cos 240^{\circ} + i \sin 240^{\circ} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i$ $\therefore \text{ The cubic roots of unity are}$

1 ,
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}$$
 i , $-\frac{1}{2} - \frac{\sqrt{3}}{2}$ i
which called 1, ω , ω^2

* The properties of cubic roots of unity

1)One of them is real and the others are complex.

2)The 2 complex numbers are conjugate.

3)The modulus of each of the roots is one.

4)The square of any of the 2 complex numbers equals the other.

$$5)1 + \omega + \omega^2 = 0$$

$$6)1 \times \omega \times \omega^2 = \omega^3 = 1$$

7) $\omega^{m} = \omega^{n}$ where **<u>n</u>** is the rest of dividing m by 3.

8)
$$\omega$$
 - ω^2 = ± $\sqrt{3}$ i

Example (1)

Prove that

 $(1 - \omega + \omega^2) (1 + \omega - \omega^2) = 4$

Sol:

L.H.S =
$$(-2\omega)(-2\omega^2) = 4\omega^3 = 4$$

= R.H.S

Example (2)

Prove that

$$(1 - \omega + \omega^2) (1 - \omega^2 + \omega^4) (1 - \omega^4 + \omega^8) \times \dots \text{ to } 2n$$

terms equals 2^{2n}

L.H.S=
$$(-2\omega) (-2\omega^2) (-2\omega)$$
 to 2n terms
= $(-2\omega)^n (-2\omega^2)^n$
= $(4\omega^3)^n = 4^n = (2^2)^n = 2^{2n} = R.H.S$

Example (3)

If
$$x = \frac{-1 + \sqrt{3}i}{2}$$

Prove that $x^8 + x^4 + 1 = 0$

Sol:

$$x = -\frac{1}{2} + \frac{\sqrt{3}}{2} i$$
Let $x = \omega$
L.H.S = $x^8 + \omega^4 + 1 = \omega^8 + \omega^4 + 1$
= $\omega^2 + \omega + 1 = 0 = R.H.S$

Example (4)

If
$$x = a + b$$

 $y = a\omega + b\omega^2$
 $z = a\omega^2 + b\omega$
Prove that 1^{st} $xyz = a^3 + b^3$
 2^{nd} $x^2 + y^2 + z^2 = 6ab$

$$1^{st} : xyz = (a+b) (a\omega + b\omega^{2}) (a\omega^{2} + b\omega)$$

= (a+b) (a² + abw² + abw + b²)
= (a+b) (a² - ab + b²) = a³ + b³
$$2^{nd}: x^{2} + y^{2} + z^{2} = (a+b)^{2} + (a\omega + b\omega^{2})^{2} + (a\omega^{2} + b\omega)^{2}$$

= a² + 2ab + b² + a²w² + 2ab + b²w + a²w + 2ab + b²w²
= 6ab + a² (1 + w² + w) + b²(1 + w + w²)
= 6ab + 0 + 0 = 6ab

Example (6)

Prove that
$$\frac{1}{4+3\omega+2\omega^2}$$
 + $\frac{1}{5+3\omega+4\omega^2}$ = 1

Sol:

$$L.H.S = \frac{1}{2\omega^{2} + 2\omega + 2 + \omega + 2}$$

$$+ \frac{1}{3\omega + 3\omega^{2} + 3 + \omega^{2} + 2}$$

$$= \frac{1}{\omega + 2} + \frac{1}{\omega^{2} + 2}$$

$$= \frac{\omega^{2} + 2 + \omega + 2}{(\omega + 2)(\omega^{2} + 2)} = \frac{3}{\omega^{3} + 2\omega^{2} + 2\omega + 4}$$

$$= \frac{3}{1 + 4 - 2} = \frac{3}{3} = 1 = R.H.S$$

Example (7)

Find the value of
$$\left(\frac{5-3\omega^2}{5\omega-3}-\frac{2-7\omega}{2\omega^2-7}\right)^2$$

Exp =
$$\left(\frac{\omega^2 (5\omega - 3)}{(5\omega - 3)} - \frac{\omega (2\omega^2 - 7)}{(2\omega^2 - 7)}\right)^2$$

= $(\omega^2 - \omega)^2 = (\pm \sqrt{3} i)^2 = -3$

Example (8)

Find the eq. whose roots are

$$(1 + \omega - \omega 2)^3$$
, $(1 - \omega + \omega 2)^3$

Sol:

$$1^{\text{st}} \operatorname{root} = (1 + \omega - \omega 2)^3 = (-2 \omega 2)^3 = -8$$

$$2^{\text{nd}} \operatorname{root} = (1 - \omega + \omega 2)^3 = (-2 \omega 2)^3 = -8$$

$$\therefore \text{ The eq. : } x^2 \text{ -(sum of roots)}x + \text{ product of roots} = 0$$

$$\therefore x^2 + 16 x + 64 = 0$$

Example (9)

Prove that:

$$(1 + \frac{1}{\omega} + i) (1 + \frac{1}{\omega^2} + i) = i$$

Sol:

L.H.S.=
$$(1 + \omega^2 + i) (1 + \omega + i)$$

= $(-\omega + i) (-\omega^2 + i)$
= $1 - \omega i - \omega^2 i - 1$

$$= -i(\omega + \omega^2) = i = R.H.S$$

Example (10)

Prove that:

$$(2+7 \omega + 2 \omega^2) (2+7 \omega^2 + 2 \omega^4) = 25$$

Sol:

L.H.S.=
$$(2 + 7 \omega + 2 \omega^2) (2+7 \omega^2 + 2 \omega)$$

= $(7 \omega - 2 \omega) (7 \omega^2 - 2 \omega^2)$
= $(5 \omega) (5 \omega^2) = 25 \omega^3 = 25$

Example (11)

If
$$\mathbf{x} = \boldsymbol{\omega} + \frac{1}{\boldsymbol{\omega}}$$
,
 $\mathbf{y} = -1 - \frac{1}{\boldsymbol{\omega}^2}$
 $\mathbf{z} = \frac{7 + 5\boldsymbol{\omega}}{5 + 7\boldsymbol{\omega}^2}$, prove that $\mathbf{x}^2 + \mathbf{y} + \mathbf{z} = 0$

Sol:

 $x^{2} + y + z = (\omega + \omega^{2})^{2} + (-1 - \omega)$

$$+ \frac{\omega (7\omega^{2} + 5)}{5 + 7\omega^{2}}$$

= 1 + \omega^{2} + \omega = 0 = R.H.S
Determinants

Definition *

A determinant of degree <u>n</u> (consists of <u>n</u> rows and n columns) arises from .eliminating <u>(n-1)</u> variables from a system of n linear equations

Example (1)

Write the determinant arises from each of the following

systems of equations

$$2x = -6 \quad a)$$

$$x + 3 = 0$$

$$2x = -6$$

$$x = -3$$

$$\begin{vmatrix} 2x = -6 \\ x = -3 \end{vmatrix}$$

$$\begin{vmatrix} 2x = -6 \\ x = -3 \end{vmatrix}$$

$$\begin{vmatrix} 2x = -6 \\ -3 \end{vmatrix}$$

$$\Delta = \therefore$$

$$x + y = 3 \quad b)$$

$$x - y = 1$$

$$\Delta = \therefore$$

$$x + y = 3 \quad b)$$

$$x - y = 1$$

$$2x + 3y = 7$$

$$\vdots$$
Sol
$$\begin{vmatrix} 1 & 3 \\ -1 & 1 \\ 3 & 7 \end{vmatrix}$$

$$\Delta = \therefore$$

Remark

The value of a determinant of degree two is the product of the elements of .the main diagonal minus the product of the elements of the other diagonal

The co-factors of the elements of adeterminant *

Let a determinant of degree 3, the element a_{ij}

.(which lies in ith row, jth column)

If we cancel the i^{th} row and j^{th} column, and multiply the resulting determinant by $(-1)^{i+j}$, the resulting determinant is called the cofactor of a_{ij} . and denoted by A_{ij}

Example (2)

:Find the value of each of the following $\begin{vmatrix} 2 & 3 \\ 5 & 1 \end{vmatrix}$ (a

:Sol

$$\Delta = 2 \times 1 - 3 \times 5 = -13 \quad a)$$

By the use of the element of 1st row b)
$$\begin{vmatrix} 7 \\ 5 \\ 3 \end{vmatrix} \quad \Delta = 1 \times \begin{vmatrix} 7 & 2 \\ 3 & 4 \end{vmatrix} - 2 \times \begin{vmatrix} 4 & 2 \\ 5 & 4 \end{vmatrix} + 3 \times \therefore$$

(69-) + 12 - 22 =

Example (3)

:Solve the equation

$$\begin{vmatrix} x & 0 & 0 \\ 1 & x & x \\ 5 & 2 & x \end{vmatrix} = 3x$$

: Sol

By using of the element of the 1st row

$$\begin{array}{rcl} x \ (x^2 - 2x) &= 3x & \therefore \\ &= x \ (x^2 - 2x - 3) & \therefore \\ &x \ (x - 3) \ (x + 1) &= 0 & \therefore \\ &\& & x &= -1 \ \& & x &= 3 \ x &= 0 & \ddots \end{array}$$

Example (4)

Find the value of $\underline{\mathbf{k}}$ which makes (x-1) one of the .factors of the following determinant

Ş	-3	1	-1	
	2	1	5	
	2	x + 1	x + 1 + k	

: Sol

x-1 is a factor for the determinant .x = 1 is a root for the resulting eq

$$\begin{vmatrix} x \cdot 3 & 1 & -1 \\ 2 & 1 & 5 \\ 2 & x + 1 & x + 1 + k \end{vmatrix} = 0$$
$$\begin{vmatrix} -2 & 1 & -1 \\ 2 & 1 & 5 \\ 2 & 2 & k + 2 \end{vmatrix} = 0$$

by the use of elements of
$$1^{st}$$
 row
 $0 = (4 - 2) - (2k + 4 - 10) - (k + 2 - 10) 2 - \therefore$
 $2 = 0 - (2k - 6) - (k - 8) 2 - \therefore$
 $2k + 16 - 2k + 6 - 2 = 0 - \therefore$
 $k = 5$ $4k + 20 = 0 - 2$

The Binomial Theorem With a (+ve) integer * power

 $(a+b)^1=a+b$ $(a+b)^2=a^2+2ab+b^2$ $(a+b)^3=a^3+3a^2b+3ab^2+b^3$

Theorem: $(a+b)^n = {}^nc_0a^n + {}^nc_1a^{a-1}b + {}^nc_2a^{n-2}b^2 + \dots + {}^nc_nb^n$. Results: 1) $(1 + x)^n = 1 + {}^nc_1x + {}^nc_2x^2 + \dots + x^n$. 2) $(1 - x)^n = 1 - {}^nc_1x + {}^nc_2x^2 - \dots + (-x)^n$.

The general term in the expansion of $(x+a)^n$. $T_{r+1} = {}^n C_r \times (2^{nd})^r \times (1^{st})^{n-r}$.

Example(1)

Find the expansion of $(a+b)^4$.

Sol:

$$(a + b)^{4} = a^{4} + {}^{4}c_{1}a^{3}b + {}^{4}c_{2}a^{2}b^{2} + {}^{4}c_{3}ab^{3} + b^{4}$$
$$= a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

Example(2)

Find the expansion of $(1-3x)^5$

Sol:

$$(1 - 3x)^5 = 1 - {}^5c_1 3x + {}^5c_2 (3x)^2 - {}^5c_3 (3x)^3 + {}^5c_4 (3x)^4 - {}^5c_5 (3x)^5$$

$$\therefore (1 - 3x)^5 = 1 - 15x + 90x^2 - 270x^3 + 405x^4 - 243x^5$$

Example(3)

Find T₄ in the expansion of

$$\left(\frac{2}{\sqrt{x}}, \frac{\sqrt{x}}{2}\right)^{11}$$
sol:
T_{r-1} = ⁿc_r × $(2^{nd})^r \times (1^{st})^{n-r}$
T₄ = ¹¹c₃ × $(\frac{-\sqrt{x}}{2})^3 \times (\frac{2}{\sqrt{x}})^8$
 $= \frac{-(\sqrt{X})^3}{(2)^3} \times \frac{(2)^8}{\sqrt{(x)^8}}$
 $= \frac{-5280}{x^2\sqrt{x}}$

Example(4)

Find the coefficient of T_6 in the expansion of $(2x-3)^8$

Sol: $T_{r+1} = {}^{n}C_{r} \times (2^{nd}) {}^{r} \times (1^{st})^{n-r}$ Coeff of $T_{6} = {}^{8}C_{5} \times (-3)^{5} \times (2 \times 1)^{3}$ = 56 × (-243) ×8 = -108864

Example(5)

Find the coeff. of the rth term in the expansion of $(x + \frac{1}{x})^{2n}$

Sol:

Coeff . of
$$T_r$$

= ${}^{2n}c_{r-1} \times (\frac{1}{1})^{r-1} \times (1)^{2n+1-r}$

$$= {}^{2n}\mathbf{C}_{r-1} = \underbrace{\frac{2n}{r-1}}_{r-1} \underbrace{\frac{2n+1-r}{r-1}}_{r-1}$$

Example(6)

Find the value of $(1+x)^7 - (1-x)^7$

Sol:

Exp. =2(
$$T_2 + T_4 + T_6 + T_8$$
)
=2($^7C_1 \times x + ^7C_3 \times x^3 + ^7C_5 \times x^5$
+ $^7C_7 \times x^7$)
=2($7x + 35x^3 + 21x^5 + x^7$)
=14x + 70x³ + 42x⁵ + 2x⁷

Example(7)

Without using calculator ,find the value of : $(1.01)^5 + (0.99)^5$, approximate your result to 3 decimal places

Sol:

$$(1.01)^{5} + (0.99)^{5} = (1+0.01)^{5} + (1-0.01)^{5} + (1-0.01)^{5} = 2 (T_{1} + T_{3} + T_{5}) = 2 [1+{}^{5}C_{2} \times (0.01)^{2} + {}^{5}C_{4} \times (0.01)^{4}] = 2 [1+10 \times (0.01)^{2} + 5 \times (0.01)^{4}] = 2+20 \times (0.01)^{2} + 10 \times (0.01)^{4} = 2.002$$

Properties of determinants *

In any determinant if the rows replace the columns and -1 the columns replace the rows in the same order the value of .the determinant is unchanged

The value of a determinant is not changed by evaluating it -2 .in terms of the elements of any of its rows (columns)

In any determinant if the positions of 2 rows (columns) are -3 interchanged, the value of the resulting determinant is equal .to the value of the original determinant multiplied by (-1)

If the corresponding elements in 2 rows (columns) of any -4 .determinant are equal, the value of the determinant is zero

If there is a common factor in all the elements of any row -5 (column) in a determinant, then this factor can be taken .outside the determinant

If all the elements of any row (column) in a determinant -6 .are zero, then the value of the determinant is zero

In a determinant if all the elements of any row (column) -7 are written as the sum of 2 elements, the value of the .determinant can be written as the sum of 2 determinants

In a determinant, if we add to all the elements of any row -8 (column) a multiple of the elements of another row (column), .the value of the determinant is unchanged

If we multiply the elements of any row (column) of a -9 determinant by the cofactors of the corresponding elements .in another row (column), the sum is zero

The value of the determinant-10

	A ₁₁	a_{21}	a_{31}	a ₁₁	0	0
	0	a ₂₂	a ₃₂	1 ₁₂	a ₂₂	0
is	$a_{11} a_{22} a_{33} 0$	0	a ₃₃	or \mathbf{I}_{13}	a ₂₃	a ₃₃

The determinant of this form is called triangular and a_{11} , a_{22} , a_{33} are called .the elements of the principal diagonal

Example (5)

Without evaluating the determinant, prove that the value of each of the following determinants is zero, and .mention the used property

$$= 0 \quad \text{because } r_1 = r_2 \begin{vmatrix} 51 \\ 51 \\ 51 \end{vmatrix} = 0$$

because the elements of r_2 are zeros $= 0 \begin{vmatrix} 7 \\ 0 \\ 0 \end{vmatrix} = 0$
because after taking 3 common $= 0 \begin{vmatrix} 3 \\ 3 \\ 1 \\ 3 \end{vmatrix}$
then the 2 rows are equal

4

4

Example (6)

а	a		
Х	а		
a	X	Without evaluating the determinant prove that its value = $(x+2a) (x-a)^2$	
		$c_1 + (c_3 + c_2)$	
		ta2 a a	
		ta2 x a	
		$a + a2 a x \mid \Delta = :$	
		$\begin{vmatrix} a & a \\ x & a \\ a & x \end{vmatrix} (x + 2a) =$	
		$r_2 - r_1$, $r_3 - r_1$	
		a a	
) $\mathbf{x} - \mathbf{a} = 0$	
		$0 x-a \mid_{=(x+2\alpha)} \Delta$	
		$\Delta = (\mathbf{x} + 2\mathbf{a}) \ (\mathbf{x} - \mathbf{a})^2 \therefore$	

Example (7)

:By the use of the properties of determinants, prove that

$$0 - a b = \begin{vmatrix} 0 & -a & b \\ a & 0 & c \\ b & -c & 0 \end{vmatrix}$$

: Sol
$$\begin{vmatrix} 0 & -a & b \\ a & 0 & c \\ -b & -c & 0 \end{vmatrix} = x$$

When replacing columns by rows and rows by columns
by the same order, we get
$$\begin{vmatrix} 0 & -a & b \\ -b & -c & 0 \end{vmatrix} = x$$

$$x = \begin{cases} 0 & -a & 0 \\ a & 0 & c \\ b & -c & 0 \\ x = x - \therefore \\ x = 0 \therefore \end{cases}$$

.The value of the determinant is zero \therefore

* The middle term in the expansion of(x+a)ⁿ

(1) If n is odd:

The No of terms = n+1 (even) \therefore There are 2 middle terms of order $\frac{n+1}{2}$, $\frac{n+3}{2}$

(2) If n is even:

The No of terms =n+1 (odd)

: There is only one middle term of order $\frac{n}{2} + 1$

Example (8)

Find the middle term in the expansion of $(2x^2 + \frac{1}{x})^{10}$ Sol : \therefore N = 10 the No of terms = 11 \therefore There is only one middle term which is T₆

$$T_{6} = {}^{10}C_{5} \times (x^{-1})^{5} \times (2x^{2})^{5}$$

= {}^{10}C_{5} \times x^{-5} \times 2^{5} \times x^{10}
= $32 \times {}^{10}C_{5} \times x^{5}$

Example (9)

Find the middle terms in the expansion of $(\frac{x}{3}, \frac{2}{y})^7$

■ N=7 the No of terms =8 $\therefore \text{ There are 2 middle terms which are } T_4, T_5$ $T_4 = {}^7C_3 \times \left(\begin{array}{c} \frac{-2}{Y} \\ y \end{array}\right)^3 \times \left(\begin{array}{c} \frac{x}{3} \\ y \end{array}\right)^4$ $= {}^{-\frac{8}{81}} \times {}^7C_3 \times \frac{x^4}{y^3}$ $T_5 = {}^7C_4 \times \left(\begin{array}{c} \frac{-2}{Y} \\ y \end{array}\right)^4 \times \left(\begin{array}{c} \frac{x}{3} \\ y \end{array}\right)^3$ $= {}^{\frac{16}{27}} \times {}^7C_3 \times \frac{x^3}{y^4}$

Example (10)

If a ,b are the2 middle terms in the expansion of $\frac{1}{(x - x)^{15}}$ according to the descending power of X

 $(x-x^{-})^{15}$ according to the descending power of X Prove that $a+bx^2 = 0$

Sol:

$$T_{8} = a , T_{9=b}$$
L.H.S = a+bx² = T₈ + X².T₉

$$= {}^{15}C_{7} \times (\frac{-1}{X})^{7} \times X^{8} + X^{2} \times {}^{15}C_{8} \times \frac{-1}{(X)^{8} \times X^{7}}$$

$$= {}^{15}C_{7} \times (-X) + {}^{15}C_{7} \times X = 0 = R.H.S$$

Example (11)

Find the coeff. Of x^9 in the expansion of $(x^3 - \frac{1}{x^4})^{10}$ Sol:

$$T_{r+1} = {}^{10}C_r \times (\frac{-1}{x^4})^r \times (x^3)^{10-r}$$

= ${}^{10}C_r \times (-1)^r \times x^{-4r} \times x^{30-3r}$
= ${}^{10}C_r \times (-1)^r \times x^{30-7r}$
∴ 30-7r =9 ---→ r=3
∴ The term which contains x⁹ is T₄
Coeff . of T₄ = ${}^{10}C_3 \times (-1)^3 = -120$

Example (12)

Find the term free of x in the expansion of (x - $\frac{1}{2x^2}$)⁹

Sol:

$$T_{r+1} = {}^{9}C_{r} \times \left(\frac{-1}{2x^{2}}\right)^{r} \times (x)^{9-r}$$

$$= {}^{9}C_{r} \times \left(\frac{-1}{2}\right)^{r} \times x^{-2r} \times x^{9-r}$$

$$= {}^{9}C_{r} \times \left(\frac{-1}{2}\right)^{r} \times x^{9-3r}$$

$$\therefore 9-3r = 0 - - - \rightarrow r = 3$$

$$\therefore \text{ the term free of x is } T_{4}$$

$$T_{4} = {}^{9}C_{3} \times \left(\frac{-1}{2}\right)^{3} = \frac{-21}{2}$$

Example (13)

Prove that there is no term free of x in the expansion of $(2x^3 - \frac{3}{x})^9$

Sol:

$$T_{r+1} = {}^{9}C_{r} \times (\overset{-3}{x})^{r} \times (2x^{3})^{9-r}$$

= {}^{9}C_{r} \times (-3)^{r} \times x^{-r} \times (2)^{9-r} \times x^{27-3r}
= {}^{9}C_{r} \times (-3)^{r} \times (2)^{9-r} \times x^{27-4r}
 $\therefore 27-4r = 0 ---- \rightarrow$
 $r = \frac{27}{4} \notin Z^{+} \cup \{0\}$

 \therefore There is no term free of x in this expansion

Example (14)

Prove that in the expansion of $(x^2 + x)^n$ there exists a term free of x if n. is a multiple of 3 ,and find this term when n. =12

Sol:

$$T_{r+1} = {}^{n}C_{r} \times (x^{-1})^{r} \times (x^{2})^{n-r}$$

= {}^{n}C_{r} \times x^{2n-3r}
$$\therefore 2n-3r = 0 \quad \dots \rightarrow r = \frac{2n}{3} \in Z^{+} \cup \{0\}$$

if n is divisible by 3
(a multiple of 3)
at n=12
$$\therefore r = \frac{2 \times 12}{3} = 8$$

$$T_{9} = {}^{12}C_{8} = {}^{12}C_{4} = 495$$

* The ratio between any term and its precedent in the expansion of(x+a)ⁿ

$$\frac{T_{r+1}}{T_r} = \frac{n - r + 1}{r} \times \frac{2^{nd}}{1^{st}}$$

Example (15)

If the middle terms in the expansion of $(2x+3)^{17}$ are equal .find the value of X

Sol:

The middle terms are $T_{\scriptscriptstyle 9}$, $T_{\scriptscriptstyle 10}$

$$\therefore \frac{T_{10}}{T_9} = 1$$

$$T_9 = T_{10}$$

$$\therefore \frac{17 - 9 + 1}{9} \times \frac{3}{2x} = 1$$

$$\therefore 2x = 3$$

$$\therefore x = \frac{3}{2}$$

Example (16)

 T_2 , T_3 , T_4 in the expansion of $(x+y)^n$ are respectively 240, 720,1080 Find the values of x,y and n.

Sol:

$$\frac{T_4}{T_3} = \frac{n-2}{3} \times \frac{y}{x} = \frac{1080}{720} = \frac{3}{2}$$
(1)

$$\frac{T_3}{T_2} = \frac{n-1}{2} \times \frac{y}{x} = \frac{720}{240} = 3$$
(2)
(1)÷(2)

$$\therefore \frac{n-2}{3} \times \frac{2}{n-1} = \frac{1}{2}$$
(× $\frac{3}{2}$)

$$\frac{n-2}{n-1} = \frac{3}{4}$$
(2)

$$\frac{n-2}{n-1} = \frac{3}{4}$$
(3)

$$\frac{n-2}{n-1} = \frac{3}{4}$$
(4)

$$\therefore 4n-8 = 3n-3$$
$$\therefore n = 5 (3)$$
from (3) in (2)

$$\therefore 1 \times (\frac{y}{x}) = \frac{3}{2}$$
(4)

$$\therefore T_2 = 240$$
$$\therefore y = \frac{3x}{2}$$
(4)

$$\therefore T_2 = 240$$
$$\therefore s^5 = 32 = 2^5$$
$$\therefore x = 2$$
(5)

Example 17

The coefficients of 3 consecutive terms are respectively 20,190,1140. Find the value of n, and the order of these terms in the exp. of $(1+x)^n$

Sol:

Let these terms are T_r , T_{r+1} , T_{r+2} Coefficient of $T_{r+2} = {}^nC_{r+1} = 1140 \rightarrow (1)$ Coefficient of $T_{r+1} = {}^nC_r = 190 \rightarrow (2)$

Coefficient of
$$T_r = {}^n C_{r-1} = 20 \rightarrow (3)$$

 $Eq.(1) \div eq.(2)$
 $\frac{{}^n C_{r+1}}{{}^n C_r} = \frac{n-r}{r+1} = 6$
 $n-r=6r+6$
 $n = 7r+6 \rightarrow (4)$
 $eq.(2) \div eq.(3)$
 $\frac{{}^n C_r}{{}^n C_{r-1}} = \frac{n-r+1}{r} = \frac{19}{2}$
 $\therefore \frac{7r+6-r+1}{r} = \frac{19}{2}$
 $\frac{6r+7}{r} = \frac{19}{2}$
 $\therefore 19r = 12r+14 \rightarrow r = 20$

Example (18)

In the expansion of $(1 + x)^n$ according to the powers of x in ascending order, If $T_4 = \frac{25}{3} T_2$ and if $T_5 = T_6$, Find the values of n , x

Sol:

$$\frac{T_4}{T_2} = \frac{25}{3}$$

$$\therefore \frac{T_4}{T_3} \times \frac{T_3}{T_2} = \frac{25}{3}$$

$$\therefore \frac{n-2}{3} \times \frac{n-1}{2} \times x^2 = \frac{25}{3} \quad (\times 6) \quad (\times 6)$$

$$(n-2)(n-1)x^2 = 50 \quad (1)$$

$$\frac{T_6}{T_1} = 1$$

$$\frac{n-4}{5} \times x = 1 \quad (\times 5)$$

$$(n-4) \times x = 5 \quad \text{by squaring}$$

$$(n-4)^2 \times x^2 = 25 \quad (2)$$

$$eq(1) \div eq(2)$$

$$\frac{n^2 - 3n + 2}{n^2 - 8n + 16} = \frac{2}{1}$$

$$\therefore 2n^2 - 16n + 32 = n^2 - 3n + 2n^2 - 13n + 30 = 0$$

$$(n-10)(n-3) = 0$$

$$\therefore n = 10 \quad n = 3$$

(refused because number of terms \neq only 4
from (3) in (2)

$$\therefore x^2 = \frac{25}{36}$$

$$\therefore x = \frac{5}{6} \text{ or } x = \frac{-5}{6}$$

(refused because T₅, T₆ of different signs)

)

Example 19

In the expansion of $\frac{(X^2 + \frac{1}{X})^9}{according to the powers of X In descending order , I) find the term free of X II)If the ratio between the term free of x and the 6th term is 2:3 , find the value of X$

Sol:

 $I)T_{r+1} = {}^{9}C_{r} \times (X^{-1})^{r} \times (X^{2}) {}^{9-r}$

$$= {}^{9}C_{r} \times X^{-r} \times X^{18-2r}$$

$$= {}^{9}C_{r} \times X^{18-3r}$$

$$\therefore 18-3r = 0 \quad \dots \rightarrow \quad r=6$$

$$\therefore \text{ The term free of } X \text{ is } T_{7} = {}^{9}C_{6} = {}^{9}C_{3}$$

$$= 84$$

$$\text{ii}) \frac{T_{7}}{T_{6}} = \frac{2}{3}$$

$$\frac{9 - 5}{6} \times \frac{1}{x^{3}} = \frac{2}{3} \qquad (\times \frac{3}{2})$$

$$\therefore x^{3} = 1 \qquad \therefore x = 1$$

In the expansion of $(x^{2-} \frac{1}{x^{2}})^{12}$ according to the power of x in descending order, find the term contains x^{4} , and find the Ratio between the coefficient of this term and the middle term

Sol:

$$T_{r+1} = {}^{12}C_r \times (\frac{-1}{x^2})^r \times (x^2)^{12-r} \\ = {}^{12}C_r \times (-1)^r \times (x)^{-2r} \times (x)^{24-2r} \\ = {}^{12}C_r \times (-1)^r \times (x)^{24-4r} \end{cases}$$

$$F \cdot 24 - 4r = 4 - - \Rightarrow r = 5$$

$$F \cdot The term contains x^4 is T_6 \\ T_6 = {}^{12}C_5 x^4 \\ T_7 is the middle term \\ \cdot \frac{Coff \cdot T_6}{T_7} = \frac{6}{12 - 5} \times \frac{(1)}{(-1)} = \frac{-6}{7}$$

Example 21

If the coefficient of x^{16} in the expansion of $(x^3 + \frac{a}{x})^8$ is equal to the term free of x in this expansion , find the value of a .

Sol:

$$\ln (x^{3} + x)^{8}$$

$$T_{r+1} = {}^{8}C_{r} \times (x)^{r} \times (x^{3})^{8-r}$$

$$= {}^{8}C_{r} \times a^{r} \times x^{r} \times x^{24-3r}$$

$$= {}^{8}C_{r} \times a^{r} \times x^{24-4r}$$

$$\therefore 24 - 4r = 16 - \rightarrow r=2$$

$$\therefore Coeff . of x^{16} = Coeff. of T_{3}$$

$$= {}^{8}C_{2} \times a^{2} = 28 a^{2}$$

$$To find the term free of x$$

$$\therefore 24 - 4r = 0 - - \rightarrow r=6$$

$$T_{7} is the term free of x$$

$$T_{7} = {}^{8}C_{6} \times a^{6} = {}^{8}C_{2} \times a^{6} = 28 a^{6}$$

$$\therefore 28a^{6} = 28 a^{2} (\div 28)$$

$$a^{2}(a^{4} - 1) = 0 - - \rightarrow \therefore a = \pm 1$$

Find the value of the term free of $\boldsymbol{x}\;$ in the expansion of

 $(9x^2 + \frac{1}{3x})^9$. Then prove that the middle terms are equal when $x=\frac{1}{3}$.

Sol:

$$T_{r+1} = {}^{9}C_{r} \times (\frac{1}{3x})^{r} \times (9 x^{2})^{9 \cdot r}$$

$$= {}^{9}C_{r} \times (\frac{1}{3})^{r} \times x^{-r} \times 3^{18 \cdot 2r} \times x^{18 \cdot 2r}$$

$$= {}^{9}C_{r} \times 3^{18 \cdot 3r} \times x^{18 \cdot 3r}$$

$$\therefore 18 \cdot 3r = 0 \dots \rightarrow r = 6$$
The term free of x is T₇
T₇ = {}^{9}C_{6} = {}^{9}C_{3} = 84
The 2 middle terms are T₅, T₆

$$\frac{T_{6}}{T_{5}} = \frac{9 - 4}{5} \times \frac{(\frac{1}{3x})}{9x^{2}} = 1$$

$$\therefore \frac{1}{27x^{3}} = 1 \qquad \therefore x = \frac{1}{3}$$
Example 23

In the expansion of $(a x + \frac{1}{bx})^{10}$ according to the powers of x in descending order , if the term free of x is equal to the coefficient of the 7th term , prove that 6 a b = 5

Sol:

$$T_{r+1} = {}^{10}C_r \times (\frac{1}{bx})^r \times (a x) {}^{10 \cdot r}$$

$$= {}^{10}C_r \times (\frac{1}{b})^r \times x^{r} \times (a) {}^{10 \cdot r} \times (x) {}^{10 - r}$$

$$= {}^{10}C_r \times (\frac{1}{b})^r \times (a) {}^{10 \cdot r} \times (x) {}^{10 - 2r}$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$

$$\therefore 10 - 2r = 0 \rightarrow r = 5$$