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Impedance 
The impedance Z of a resistance R in series with a reactance X is: 
Z = R + jX  
Rectangular and polar forms of impedance Z: 
Z = R + jX = (R2 + X2)½Ðtan-1(X / R) = |Z|Ðf = |Z|cosf + j|Z|sinf  
Addition of impedances Z1 and Z2: 
Z1 + Z2 = (R1 + jX1) + (R2 + jX2) = (R1 + R2) + j(X1 + X2)  
Subtraction of impedances Z1 and Z2: 
Z1 - Z2 = (R1 + jX1) - (R2 + jX2) = (R1 - R2) + j(X1 - X2)  
Multiplication of impedances Z1 and Z2: 
Z1 * Z2 = |Z1|Ðf1 * |Z2|Ðf2 = ( |Z1| * |Z2| )Ð(f1 + f2)  
Division of impedances Z1 and Z2: 
Z1 / Z2 = |Z1|Ðf1 / |Z2|Ðf2 = ( |Z1| / |Z2| )Ð(f1 - f2)  
In summary: 
- use the rectangular form for addition and subtraction, 
- use the polar form for multiplication and division.  
 

Admittance 
An impedance Z comprising a resistance R in series with a reactance X can be converted to an admittance Y 
comprising a conductance G in parallel with a susceptance B: 
Y = Z -1 = 1 / (R + jX) = (R - jX) / (R2 + X2) = R / (R2 + X2) - jX / (R2 + X2) = G - jB 
G = R / (R2 + X2) = R / |Z|2 
B = X / (R2 + X2) = X / |Z|2 
Using the polar form of impedance Z: 
Y = 1 / |Z|Ðf = |Z| -1Ð-f = |Y|Ð-f = |Y|cosf - j|Y|sinf  
Conversely, an admittance Y comprising a conductance G in parallel with a susceptance B can be converted to an 
impedance Z comprising a resistance R in series with a reactance X: 
Z = Y -1 = 1 / (G - jB) = (G + jB) / (G2 + B2) = G / (G2 + B2) + jB / (G2 + B2) = R + jX 
R = G / (G2 + B2) = G / |Y|2 
X = B / (G2 + B2) = B / |Y|2 
Using the polar form of admittance Y: 
Z = 1 / |Y|Ð-f = |Y| -1Ðf = |Z|Ðf = |Z|cosf + j|Z|sinf  
The total impedance ZS of impedances Z1, Z2, Z3,... connected in series is: 
ZS = Z1 + Z1 + Z1 +... 
The total admittance YP of admittances Y1, Y2, Y3,... connected in parallel is: 
YP = Y1 + Y1 + Y1 +...  
In summary: 
- use impedances when operating on series circuits, 
- use admittances when operating on parallel circuits.  
 

Reactance 
Inductive Reactance 
The inductive reactance XL of an inductance L at angular frequency w and frequency f is: 
XL = wL = 2pfL  
For a sinusoidal current i of amplitude I and angular frequency w: 
i = I sinwt 
If sinusoidal current i is passed through an inductance L, the voltage e across the inductance is: 
e = L di/dt = wLI coswt = XLI coswt  
The current through an inductance lags the voltage across it by 90°.  
Capacitive Reactance 
The capacitive reactance XC of a capacitance C at angular frequency w and frequency f is: 
XC = 1 / wC = 1 / 2pfC  
For a sinusoidal voltage v of amplitude V and angular frequency w: 
v = V sinwt 
If sinusoidal voltage v is applied across a capacitance C, the current i through the capacitance is: 
i = C dv/dt = wCV coswt = V coswt / XC  
The current through a capacitance leads the voltage across it by 90°.  
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Resonance 
Series Resonance 
A series circuit comprising an inductance L, a resistance R and a capacitance C has an impedance ZS of: 
ZS = R + j(XL - XC) 
where XL = wL and XC = 1 / wC  
At resonance, the imaginary part of ZS is zero: 
XC = XL 
ZSr = R 
wr = (1 / LC)½ = 2pfr  
Parallel resonance 
A parallel circuit comprising an inductance L with a series resistance R, connected in parallel with a capacitance C, 
has an admittance YP of: 
YP = 1 / (R + jXL) + 1 / (- jXC) = (R / (R2 + XL

2)) - j(XL / (R2 + XL
2) - 1 / XC) 

where XL = wL and XC = 1 / wC  
At resonance, the imaginary part of YP is zero: 
XC = (R2 + XL

2) / XL = XL + R2 / XL = XL(1 + R2 / XL
2) 

ZPr = YPr
-1 = (R2 + XL

2) / R = XLXC / R = L / CR 
wr = (1 / LC - R2 / L2)½ = 2pfr  
Note that for the same values of L, R and C, the parallel resonance frequency is lower than the series resonance 
frequency, but if the ratio R / L is small then the parallel resonance frequency is close to the series resonance 
frequency.  
 

Reactive Loads and Power Factor 
Resistance and Series Reactance 
The impedance Z of a reactive load comprising resistance R and series reactance X is: 
Z = R + jX = |Z|Ðf 
Converting to the equivalent admittance Y: 
Y = 1 / Z = 1 / (R + jX) = (R - jX) / (R2 + X2) = R / |Z|2 - jX / |Z|2  
When a voltage V (taken as reference) is applied across the reactive load Z, the current I is: 
I = VY = V(R / |Z|2 - jX / |Z|2) = VR / |Z|2 - jVX / |Z|2 = IP - jIQ 
The active current IP and the reactive current IQ are: 
IP = VR / |Z|2 = |I|cosf 
IQ = VX / |Z|2 = |I|sinf  
The apparent power S, active power P and reactive power Q are: 
S = V|I| = V2 / |Z| = |I|2|Z| 
P = VIP = IP

2|Z|2 / R = V2R / |Z|2 = |I|2R 
Q = VIQ = IQ

2|Z|2 / X = V2X / |Z|2 = |I|2X  
The power factor cosf and reactive factor sinf are: 
cosf = IP / |I| = P / S = R / |Z| 
sinf = IQ / |I| = Q / S = X / |Z|  
Resistance and Shunt Reactance 
The impedance Z of a reactive load comprising resistance R and shunt reactance X is found from: 
1 / Z = 1 / R + 1 / jX 
Converting to the equivalent admittance Y comprising conductance G and shunt susceptance B: 
Y = 1 / Z = 1 / R - j / X = G - jB = |Y|Ð-f 
When a voltage V (taken as reference) is applied across the reactive load Y, the current I is: 
I = VY = V(G - jB) = VG - jVB = IP - jIQ 
The active current IP and the reactive current IQ are: 
IP = VG = V / R = |I|cosf 
IQ = VB = V / X = |I|sinf  
The apparent power S, active power P and reactive power Q are: 
S = V|I| = |I|2 / |Y| = V2|Y| 
P = VIP = IP

2 / G = |I|2G / |Y|2 = V2G 
Q = VIQ = IQ

2 / B = |I|2B / |Y|2 = V2B  
The power factor cosf and reactive factor sinf are: 
cosf = IP / |I| = P / S = G / |Y| 
sinf = IQ / |I| = Q / S = B / |Y|  
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Complex Power 
When a voltage V causes a current I to flow through a reactive load Z, the complex power S is: 
S = VI* where I* is the conjugate of the complex current I.  
Inductive Load 
Z = R + jXL 
I = IP - jIQ 
cosf = R / |Z| (lagging) 
I* = IP + jIQ 
S = P + jQ 
An inductive load is a sink of lagging VArs (a source of leading VArs).  
Capacitive Load 
Z = R - jXC 
I = IP + jIQ 
cosf = R / |Z| (leading) 
I* = IP - jIQ 
S = P - jQ 
A capacitive load is a source of lagging VArs (a sink of leading VArs).  
 

Three Phase Power 
For a balanced star connected load with line voltage Vline and line current Iline: 
Vstar = Vline / Ö3 
Istar = Iline 
Zstar = Vstar / Istar = Vline / Ö3Iline 
Sstar = 3VstarIstar = Ö3VlineIline = Vline

2 / Zstar = 3Iline
2Zstar  

For a balanced delta connected load with line voltage Vline and line current Iline: 
Vdelta = Vline 
Idelta = Iline / Ö3 
Zdelta = Vdelta / Idelta = Ö3Vline / Iline 
Sdelta = 3VdeltaIdelta = Ö3VlineIline = 3Vline

2 / Zdelta = Iline
2Zdelta  

The apparent power S, active power P and reactive power Q are related by: 
S2 = P2 + Q2 
P = Scosf 
Q = Ssinf 
where cosf is the power factor and sinf is the reactive factor  
Note that for equivalence between balanced star and delta connected loads: 
Zdelta = 3Zstar  
 

Per-unit System 
For each system parameter, per-unit value is equal to the actual value divided by a base value: 
Epu = E / Ebase 
Ipu = I / Ibase 
Zpu = Z / Zbase  
Select rated values as base values, usually rated power in MVA and rated phase voltage in kV: 
Sbase = Srated = Ö3ElineIline 
Ebase = Ephase = Eline/ Ö3  
The base values for line current in kA and per-phase star impedance in Ohms/phase are: 
Ibase = Sbase / 3Ebase ( = Sbase / Ö3Eline) 
Zbase = Ebase / Ibase = 3Ebase

2 / Sbase ( = Eline
2 / Sbase)  

Note that selecting the base values for any two of Sbase, Ebase, Ibase or Zbase fixes the base values of all four. Note also 
that Ohm's Law is satisfied by each of the sets of actual, base and per-unit values for voltage, current and 
impedance.  
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Transformers 
The primary and secondary MVA ratings of a transformer are equal, but the voltages and currents in the primary 
(subscript 1) and the secondary (subscript 2) are usually different: 
Ö3E1lineI1line = S = Ö3E2lineI2line  
Converting to base (per-phase star) values: 
3E1baseI1base = Sbase = 3E2baseI2base 
E1base / E2base = I2base / I1base 
Z1base / Z2base = (E1base / E2base)2  
The impedance Z21pu referred to the primary side, equivalent to an impedance Z2pu on the secondary side, is: 
Z21pu = Z2pu(E1base / E2base)2  
The impedance Z12pu referred to the secondary side, equivalent to an impedance Z1pu on the primary side, is: 
Z12pu = Z1pu(E2base / E1base)2  
Note that per-unit and percentage values are related by: 
Zpu = Z% / 100  
 

Symmetrical Components 
In any three phase system, the line currents Ia, Ib and Ic may be expressed as the phasor sum of: 
- a set of balanced positive phase sequence currents Ia1, Ib1 and Ic1 (phase sequence a-b-c), 
- a set of balanced negative phase sequence currents Ia2, Ib2 and Ic2 (phase sequence a-c-b), 
- a set of identical zero phase sequence currents Ia0, Ib0 and Ic0 (cophasal, no phase sequence).  
The positive, negative and zero sequence currents are calculated from the line currents using: 
Ia1 = (Ia + hIb + h2Ic) / 3 
Ia2 = (Ia + h2Ib + hIc) / 3 
Ia0 = (Ia + Ib + Ic) / 3  
The positive, negative and zero sequence currents are combined to give the line currents using: 
Ia = Ia1 + Ia2 + Ia0 
Ib = Ib1 + Ib2 + Ib0 = h2Ia1 + hIa2 + Ia0 
Ic = Ic1 + Ic2 + Ic0 = hIa1 + h2Ia2 + Ia0  
The residual current Ir is equal to the total zero sequence current: 
Ir = Ia0 + Ib0 + Ic0 = 3Ia0 = Ia + Ib + Ic = Ie 
which is measured using three current transformers with parallel connected secondaries. 
Ie is the earth fault current of the system.  
Similarly, for phase-to-earth voltages Vae, Vbe and Vce, the residual voltage Vr is equal to the total zero sequence 
voltage: 
Vr = Va0 + Vb0 + Vc0 = 3Va0 = Vae + Vbe + Vce = 3Vne 
which is measured using an earthed-star / open-delta connected voltage transformer. 
Vne is the neutral displacement voltage of the system.  
The h-operator 
The h-operator (1Ð120°) is the complex cube root of unity: 
h = - 1 / 2 + jÖ3 / 2 = 1Ð120° = 1Ð-240° 
h2 = - 1 / 2 - jÖ3 / 2 = 1Ð240° = 1Ð-120° 
Some useful properties of h are: 
1 + h + h2 = 0 
h + h2 = - 1 = 1Ð180° 
h - h2 = jÖ3 = Ö3Ð90° 
h2 - h = - jÖ3 = Ö3Ð-90°  
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Fault Calculations 
The different types of short-circuit fault which occur on a power system are: 
- single phase to earth, 
- double phase, 
- double phase to earth, 
- three phase, 
- three phase to earth.  
For each type of short-circuit fault occurring on an unloaded system: 
- the first column states the phase voltage and line current conditions at the fault, 
- the second column states the phase 'a' sequence current and voltage conditions at the fault, 
- the third column provides formulae for the phase 'a' sequence currents at the fault, 
- the fourth column provides formulae for the fault current and the resulting line currents. 
By convention, the faulted phases are selected for fault symmetry with respect to reference phase 'a'.  
I f = fault current 
Ie = earth fault current 
Ea = normal phase voltage at the fault location 
Z1 = positive phase sequence network impedance to the fault 
Z2 = negative phase sequence network impedance to the fault 
Z0 = zero phase sequence network impedance to the fault  
Single phase to earth - fault from phase 'a' to earth: 
Va = 0 
Ib = Ic = 0 
I f = Ia = Ie  

Ia1 = Ia2 = Ia0 = Ia / 3 
Va1 + Va2 + Va0 = 0 
 

Ia1 = Ea / (Z1 + Z2 + Z0) 
Ia2 = Ia1 
Ia0 = Ia1  

I f = 3Ia0 = 3Ea / (Z1 + Z2 + Z0) = Ie 
Ia = I f = 3Ea / (Z1 + Z2 + Z0) 
 

Double phase - fault from phase 'b' to phase 'c': 
Vb = Vc 
Ia = 0 
I f = Ib = - Ic  

Ia1 + Ia2 = 0 
Ia0 = 0 
Va1 = Va2  

Ia1 = Ea / (Z1 + Z2) 
Ia2 = - Ia1 
Ia0 = 0  

I f = - jÖ3Ia1 = - jÖ3Ea / (Z1 + Z2) 
Ib = I f = - jÖ3Ea / (Z1 + Z2) 
Ic = - I f = jÖ3Ea / (Z1 + Z2)  

Double phase to earth - fault from phase 'b' to phase 'c' to earth: 
Vb = Vc = 0 
Ia = 0 
I f = Ib + Ic = Ie  

Ia1 + Ia2 + Ia0 = 0 
Va1 = Va2 = Va0 
 

Ia1 = Ea / Znet 
Ia2 = - Ia1Z0 / (Z2 + Z0) 
Ia0 = - Ia1Z2 / (Z2 + Z0)  

I f = 3Ia0 = - 3EaZ2 / Szz = Ie 
Ib = I f / 2 - jÖ3Ea(Z2 / 2 + Z0) / Szz 
Ic = I f / 2 + jÖ3Ea(Z2 / 2 + Z0) / Szz  

Znet = Z1 + Z2Z0 / (Z2 + Z0) and Szz = Z1Z2 + Z2Z0 + Z0Z1 = (Z2 + Z0)Znet  
Three phase (and three phase to earth) - fault from phase 'a' to phase 'b' to phase 'c' (to earth): 
Va = Vb = Vc (= 0) 
Ia + Ib + Ic = 0 (= Ie) 
I f = Ia = hIb = h2Ic  

Va0 = Va (= 0) 
Va1 = Va2 = 0 
 

Ia1 = Ea / Z1 
Ia2 = 0 
Ia0 = 0  

I f = Ia1 = Ea / Z1 = Ia 
Ib = Eb / Z1 
Ic = Ec / Z1  

Note that the single phase fault current is greater than the three phase fault current if Z0 is less than (2Z1 - Z2).  
The values of Z1, Z2 and Z0 are each determined from the respective positive, negative and zero sequence 
impedance networks by network reduction to a single impedance.  
Note that if the system is earthed through an impedance Zn (carrying current 3I0) then an impedance 3Zn (carrying 
current I0) must be included in the zero sequence impedance network.  
 

Three Phase Fault Level 
The symmetrical three phase short-circuit current Isc of a power system with no-load line and phase voltages Eline 
and Ephase and source impedance ZS per-phase star is: 
Isc = Ephase / |ZS| = Eline / Ö3|ZS|  
The three phase fault level Ssc of the power system is: 
Ssc = 3Isc

2|ZS| = 3EphaseIsc = 3Ephase
2 / |ZS| = Eline

2 / |ZS|  
Note that if the X / R ratio of the source impedance ZS (comprising resistance RS and reactance XS) is sufficiently 
large, |ZS| » XS.  
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Power Factor Correction 
If an inductive load with an active power demand P has an uncorrected power factor of cosf1 lagging, and is 
required to have a corrected power factor of cosf2 lagging, the uncorrected and corrected reactive power demands, 
Q1 and Q2, are: 
Q1 = P tanf1 
Q2 = P tanf2 
where tanfn = (1 / cos2fn - 1)½  
The leading (capacitive) reactive power demand QC which must be connected across the load is: 
QC = Q1 - Q2 = P (tanf1 - tanf2) 
The uncorrected and corrected apparent power demands, S1 and S2, are related by: 
S1cosf1 = P = S2cosf2 
Comparing corrected and uncorrected load currents and apparent power demands: 
I2 / I1 = S2 / S1 = cosf1 / cosf2  
If the load is required to have a corrected power factor of unity, Q2 is zero and: 
QC = Q1 = P tanf1 
I2 / I1 = S2 / S1 = cosf1 = P / S1  
Shunt Capacitors 
For star-connected shunt capacitors each of capacitance Cstar on a three phase system of line voltage Vline and 
frequency f, the leading reactive power demand QCstar and the leading reactive line current Iline are: 
QCstar = Vline

2 / XCstar = 2pfCstarVline
2 

Iline = QCstar / Ö3Vline = Vline / Ö3XCstar 
Cstar = QCstar / 2pfVline

2  
For delta-connected shunt capacitors each of capacitance Cdelta on a three phase system of line voltage Vline and 
frequency f, the leading reactive power demand QCdelta and the leading reactive line current Iline are: 
QCdelta = 3Vline

2 / XCdelta = 6pfCdeltaVline
2 

Iline = QCdelta / Ö3Vline = Ö3Vline / XCdelta 
Cdelta = QCdelta / 6pfVline

2  
Note that for the same leading reactive power QC: 
XCdelta = 3XCstar 
Cdelta = Cstar / 3  
 

Reactors 
Shunt Reactors 
For star-connected shunt reactors each of inductance Lstar on a three phase system of line voltage Vline and frequency 
f, the lagging reactive power demand QLstar and the lagging reactive line current Iline are: 
QLstar = Vline

2 / XLstar = Vline
2 / 2pfLstar 

Iline = QLstar / Ö3Vline = Vline / Ö3XLstar 
Lstar = Vline

2 / 2pfQLstar  
For delta-connected shunt reactors each of inductance Ldelta on a three phase system of line voltage Vline and 
frequency f, the lagging reactive power demand QLdelta and the lagging reactive line current Iline are: 
QLdelta = 3Vline

2 / XLdelta = 3Vline
2 / 2pfLdelta 

Iline = QLdelta / Ö3Vline = Ö3Vline / XLdelta 
Ldelta = 3Vline

2 / 2pfQLdelta  
Note that for the same lagging reactive power QL: 
XLdelta = 3XLstar 
Ldelta = 3Lstar  
Series Reactors 
For series line reactors each of inductance Lseries carrying line current Iline on a three phase system of frequency f, the 
voltage drop Vdrop across each line reactor and the total lagging reactive power demand QLseries of the set of three 
line reactors are: 
Vdrop = IlineXLseries = 2pfLseriesIline 
QLseries = 3Vdrop

2 / XLseries = 3VdropIline = 3Iline
2XLseries = 6pfLseriesIline

2 
Lseries = QLseries / 6pfIline

2  
Note that the apparent power rating Srating of the set of three line reactors is based on the line voltage Vline and not 
the voltage drop Vdrop: 
Srating = Ö3VlineIline  
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Harmonic Resonance 
If a node in a power system operating at frequency f has a inductive source reactance XL per phase and has power 
factor correction with a capacitive reactance XC per phase, the source inductance L and the correction capacitance C 
are: 
L = XL / w 
C = 1 / wXC 
where w = 2pf  
The series resonance angular frequency wr of an inductance L with a capacitance C is: 
wr = (1 / LC)½ = w(XC / XL)½  
The three phase fault level Ssc at the node for no-load phase voltage E and source impedance Z per-phase star is: 
Ssc = 3E2 / |Z| = 3E2 / |R + jXL| 
If the ratio XL / R of the source impedance Z is sufficiently large, |Z| » XL so that: 
Ssc » 3E2 / XL  
The reactive power rating QC of the power factor correction capacitors for a capacitive reactance XC per phase at 
phase voltage E is: 
QC = 3E2 / XC  
The harmonic number fr / f of the series resonance of XL with XC is: 
fr / f = wr / w = (XC / XL)½ » (Ssc / QC)½  
Note that the ratio XL / XC which results in a harmonic number fr / f is: 
XL / XC = 1 / ( fr / f )2 
so for fr / f to be equal to the geometric mean of the third and fifth harmonics: 
fr / f = Ö15 = 3.873 
XL / XC = 1 / 15 = 0.067  
 

Dielectric Dissipation Factor 
If an alternating voltage V of frequency f is applied across an insulation system comprising capacitance C and 
equivalent series loss resistance RS, then the voltage VR across RS and the voltage VC across C due to the resulting 
current I are: 
VR = IRS 
VC = IXC 
V = (VR

2 + VC
2)½  

The dielectric dissipation factor of the insulation system is the tangent of the dielectric loss angle d between VC and 
V: 
tand = VR / VC = RS / XC = 2pfCRS 
RS = XCtand = tand / 2pfC 
Note that an increase in the dielectric losses of a insulation system (from an increase in the series loss resistance RS) 
results in an increase in tand. Note also that tand increases with frequency.  
The dielectric power loss P is related to the capacitive reactive power QC by: 
P = I2RS = I2XCtand = QCtand  
The power factor of the insulation system is the cosine of the phase angle f between VR and V: 
cosf = VR / V 
so that d and f are related by: 
d + f = 90°  
tand and cosf are related by: 
tand = 1 / tanf = cosf / sinf = cosf / (1 - cos2f)½ 
so that when cosf is close to zero, tand » cosf  
Note that the series loss resistance RS is not related to the shunt leakage resistance of the insulation system (which is 
measured using direct current).  
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Notation 
The library uses the symbol font for some of the notation and formulae. If the symbols for the letters 'alpha beta 
delta' do not appear here [a b d] then the symbol font needs to be installed before all notation and formulae will be 
displayed correctly.  
C 
E 
e 
G 
I 
i 
k 
L 
M 
N 
P  

 

capacitance 
voltage source 
instantaneous E 
conductance 
current 
instantaneous I 
coefficient 
inductance 
mutual inductance 
number of turns 
power  

 

[farads, F] 
[volts, V] 
[volts, V] 
[siemens, S] 
[amps, A] 
[amps, A] 
[number] 
[henrys, H] 
[henrys, H] 
[number] 
[watts, W]  

 

Q 
q 
R 
T 
t 
V 
v 
W 
F 
Y 
y  

 

charge 
instantaneous Q 
resistance 
time constant 
instantaneous time 
voltage drop 
instantaneous V 
energy 
magnetic flux 
magnetic linkage 
instantaneous Y  

 

[coulombs, C] 
[coulombs, C] 
[ohms, W] 
[seconds, s] 
[seconds, s] 
[volts, V] 
[volts, V] 
[joules, J] 
[webers, Wb] 
[webers, Wb] 
[webers, Wb]  

 

Resistance 
The resistance R of a circuit is equal to the applied direct voltage E divided by the resulting steady current I: 
R = E / I  
 

Resistances in Series 
When resistances R1, R2, R3, ... are connected in series, the total resistance RS is: 
RS = R1 + R2 + R3 + ...  
 

Voltage Division by Series Resistances 
When a total voltage ES is applied across series connected resistances R1 and R2, the current IS which flows through 
the series circuit is: 
IS = ES / RS = ES / (R1 + R2)  
The voltages V1 and V2 which appear across the respective resistances R1 and R2 are: 
V1 = ISR1 = ESR1 / RS = ESR1 / (R1 + R2) 
V2 = ISR2 = ESR2 / RS = ESR2 / (R1 + R2)  
In general terms, for resistances R1, R2, R3, ... connected in series: 
IS = ES / RS = ES / (R1 + R2 + R3 + ...) 
Vn = ISRn = ESRn / RS = ESRn / (R1 + R2 + R3 + ...) 
Note that the highest voltage drop appears across the highest resistance.  
 

Resistances in Parallel 
When resistances R1, R2, R3, ... are connected in parallel, the total resistance RP is: 
1 / RP = 1 / R1 + 1 / R2 + 1 / R3 + ...  
Alternatively, when conductances G1, G2, G3, ... are connected in parallel, the total conductance GP is: 
GP = G1 + G2 + G3 + ... 
where Gn = 1 / Rn  
For two resistances R1 and R2 connected in parallel, the total resistance RP is: 
RP = R1R2 / (R1 + R2) 
RP = product / sum  
The resistance R2 to be connected in parallel with resistance R1 to give a total resistance RP is: 
R2 = R1RP / (R1 - RP) 
R2 = product / difference  
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Current Division by Parallel Resistances 
When a total current IP is passed through parallel connected resistances R1 and R2, the voltage VP which appears 
across the parallel circuit is: 
VP = IPRP = IPR1R2 / (R1 + R2)  
The currents I1 and I2 which pass through the respective resistances R1 and R2 are: 
I1 = VP / R1 = IPRP / R1 = IPR2 / (R1 + R2) 
I2 = VP / R2 = IPRP / R2 = IPR1 / (R1 + R2)  
In general terms, for resistances R1, R2, R3, ... (with conductances G1, G2, G3, ...) connected in parallel: 
VP = IPRP = IP / GP = IP / (G1 + G2 + G3 + ...) 
In = VP / Rn = VPGn = IPGn / GP = IPGn / (G1 + G2 + G3 + ...) 
where Gn = 1 / Rn 
Note that the highest current passes through the highest conductance (with the lowest resistance).  
 

Capacitance 
When a voltage is applied to a circuit containing capacitance, current flows to accumulate charge in the capacitance: 

Q = òidt = CV 
Alternatively, by differentiation with respect to time: 
dq/dt = i = C dv/dt 
Note that the rate of change of voltage has a polarity which opposes the flow of current.  
The capacitance C of a circuit is equal to the charge divided by the voltage: 

C = Q / V = òidt / V 
Alternatively, the capacitance C of a circuit is equal to the charging current divided by the rate of change of voltage: 
C = i / dv/dt = dq/dt / dv/dt = dq/dv  
 

Capacitances in Series 
When capacitances C1, C2, C3, ... are connected in series, the total capacitance CS is: 
1 / CS = 1 / C1 + 1 / C2 + 1 / C3 + ...  
For two capacitances C1 and C2 connected in series, the total capacitance CS is: 
CS = C1C2 / (C1 + C2) 
CS = product / sum  
 

Voltage Division by Series Capacitances 
When a total voltage ES is applied to series connected capacitances C1 and C2, the charge QS which accumulates in 
the series circuit is: 

QS = òiSdt = ESCS = ESC1C2 / (C1 + C2)  
The voltages V1 and V2 which appear across the respective capacitances C1 and C2 are: 

V1 = òiSdt / C1 = ESCS / C1 = ESC2 / (C1 + C2) 

V2 = òiSdt / C2 = ESCS / C2 = ESC1 / (C1 + C2)  
In general terms, for capacitances C1, C2, C3, ... connected in series: 

QS = òiSdt = ESCS = ES / (1 / CS) = ES / (1 / C1 + 1 / C2 + 1 / C3 + ...) 

Vn = òiSdt / Cn = ESCS / Cn = ES / Cn(1 / CS) = ES / Cn(1 / C1 + 1 / C2 + 1 / C3 + ...) 
Note that the highest voltage appears across the lowest capacitance.  
 

Capacitances in Parallel 
When capacitances C1, C2, C3, ... are connected in parallel, the total capacitance CP is: 
CP = C1 + C2 + C3 + ...  
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Charge Division by Parallel Capacitances 
When a voltage EP is applied to parallel connected capacitances C1 and C2, the charge QP which accumulates in the 
parallel circuit is: 

QP = òiPdt = EPCP = EP(C1 + C2)  
The charges Q1 and Q2 which accumulate in the respective capacitances C1 and C2 are: 

Q1 = òi1dt = EPC1 = QPC1 / CP = QPC1 / (C1 + C2) 

Q2 = òi2dt = EPC2 = QPC2 / CP = QPC2 / (C1 + C2)  
In general terms, for capacitances C1, C2, C3, ... connected in parallel: 

QP = òiPdt = EPCP = EP(C1 + C2 + C3 + ...) 

Qn = òindt = EPCn = QPCn / CP = QPCn / (C1 + C2 + C3 + ...) 
Note that the highest charge accumulates in the highest capacitance.  
 

Inductance 
When the current changes in a circuit containing inductance, the magnetic linkage changes and induces a voltage in 
the inductance: 
dy/dt = e = L di/dt 
Note that the induced voltage has a polarity which opposes the rate of change of current.  
Alternatively, by integration with respect to time: 

Y = òedt = LI  
The inductance L of a circuit is equal to the induced voltage divided by the rate of change of current: 
L = e / di/dt = dy/dt / di/dt = dy/di  
Alternatively, the inductance L of a circuit is equal to the magnetic linkage divided by the current: 
L = Y / I  
Note that the magnetic linkage Y is equal to the product of the number of turns N and the magnetic flux F: 
Y = NF = LI  
 

Mutual Inductance 
The mutual inductance M of two coupled inductances L1 and L2 is equal to the mutually induced voltage in one 
inductance divided by the rate of change of current in the other inductance: 
M = E2m / (di1/dt) 
M = E1m / (di2/dt)  
If the self induced voltages of the inductances L1 and L2 are respectively E1s and E2s for the same rates of change of 
the current that produced the mutually induced voltages E1m and E2m, then: 
M = (E2m / E1s)L1 
M = (E1m / E2s)L2 
Combining these two equations: 
M = (E1mE2m / E1sE2s)½ (L1L2)½ = kM(L1L2)½ 
where kM is the mutual coupling coefficient of the two inductances L1 and L2.  
If the coupling between the two inductances L1 and L2 is perfect, then the mutual inductance M is: 
M = (L1L2)½  
 

Inductances in Series 
When uncoupled inductances L1, L2, L3, ... are connected in series, the total inductance LS is: 
LS = L1 + L2 + L3 + ...  
When two coupled inductances L1 and L2 with mutual inductance M are connected in series, the total inductance LS 
is: 
LS = L1 + L2 ± 2M 
The plus or minus sign indicates that the coupling is either additive or subtractive, depending on the connection 
polarity.  
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Inductances in Parallel 
When uncoupled inductances L1, L2, L3, ... are connected in parallel, the total inductance LP is: 
1 / LP = 1 / L1 + 1 / L2 + 1 / L3 + ...  
 

Time Constants 
Capacitance and resistance 
The time constant of a capacitance C and a resistance R is equal to CR, and represents the time to change the 
voltage on the capacitance from zero to E at a constant charging current E / R (which produces a rate of change of 
voltage E / CR across the capacitance).  
Similarly, the time constant CR represents the time to change the charge on the capacitance from zero to CE at a 
constant charging current E / R (which produces a rate of change of voltage E / CR across the capacitance).  
If a voltage E is applied to a series circuit comprising a discharged capacitance C and a resistance R, then after time 
t the current i, the voltage vR across the resistance, the voltage vC across the capacitance and the charge qC on the 
capacitance are: 
i = (E / R)e - t / CR 
vR = iR = Ee - t / CR 
vC = E - vR = E(1 - e - t / CR) 
qC = CvC = CE(1 - e - t / CR)  
If a capacitance C charged to voltage V is discharged through a resistance R, then after time t the current i, the 
voltage vR across the resistance, the voltage vC across the capacitance and the charge qC on the capacitance are: 
i = (V / R)e - t / CR 
vR = iR = Ve - t / CR 
vC = vR = Ve - t / CR 
qC = CvC = CVe - t / CR  
Inductance and resistance 
The time constant of an inductance L and a resistance R is equal to L / R, and represents the time to change the 
current in the inductance from zero to E / R at a constant rate of change of current E / L (which produces an induced 
voltage E across the inductance).  
If a voltage E is applied to a series circuit comprising an inductance L and a resistance R, then after time t the 
current i, the voltage vR across the resistance, the voltage vL across the inductance and the magnetic linkage yL in 
the inductance are: 
i = (E / R)(1 - e - tR / L) 
vR = iR = E(1 - e - tR / L) 
vL = E - vR = Ee - tR / L 
yL = Li = (LE / R)(1 - e - tR / L)  
If an inductance L carrying a current I is discharged through a resistance R, then after time t the current i, the 
voltage vR across the resistance, the voltage vL across the inductance and the magnetic linkage yL in the inductance 
are: 
i = Ie - tR / L 
vR = iR = IRe - tR / L 
vL = vR = IRe - tR / L 
yL = Li = LIe - tR / L  
Rise Time and Fall Time 
The rise time (or fall time) of a change is defined as the transition time between the 10% and 90% levels of the total 
change, so for an exponential rise (or fall) of time constant T, the rise time (or fall time) t10-90 is: 
t10-90 = (ln0.9 - ln0.1)T » 2.2T  
The half time of a change is defined as the transition time between the initial and 50% levels of the total change, so 
for an exponential change of time constant T, the half time t50 is : 
t50 = (ln1.0 - ln0.5)T » 0.69T  
Note that for an exponential change of time constant T: 
- over time interval T, a rise changes by a factor 1 - e -1 (» 0.63) of the remaining change, 
- over time interval T, a fall changes by a factor e -1 (» 0.37) of the remaining change, 
- after time interval 3T, less than 5% of the total change remains, 
- after time interval 5T, less than 1% of the total change remains.  
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Power 
The power P dissipated by a resistance R carrying a current I with a voltage drop V is: 
P = V2 / R = VI = I2R  
Similarly, the power P dissipated by a conductance G carrying a current I with a voltage drop V is: 
P = V2G = VI = I2 / G  
The power P transferred by a capacitance C holding a changing voltage V with charge Q is: 
P = VI = CV(dv/dt) = Q(dv/dt) = Q(dq/dt) / C  
The power P transferred by an inductance L carrying a changing current I with magnetic linkage Y is: 
P = VI = LI(di/dt) = Y(di/dt) = Y(dy/dt) / L  
 

Energy 
The energy W consumed over time t due to power P dissipated in a resistance R carrying a current I with a voltage 
drop V is: 
W = Pt = V2t / R = VIt = I2tR  
Similarly, the energy W consumed over time t due to power P dissipated in a conductance G carrying a current I 
with a voltage drop V is: 
W = Pt = V2tG = VIt = I2t / G  
The energy W stored in a capacitance C holding voltage V with charge Q is: 
W = CV2 / 2 = QV / 2 = Q2 / 2C  
The energy W stored in an inductance L carrying current I with magnetic linkage Y is: 
W = LI2 / 2 = YI / 2 = Y2 / 2L  
 

Batteries 
If a battery of open-circuit voltage EB has a loaded voltage VL when supplying load current IL, the battery internal 
resistance RB is: 
RB = (EB - VL) / IL  
The load voltage VL and load current IL for a load resistance RL are: 
VL = ILRL = EB - ILRB = EBRL / (RB + RL) 
IL = VL / RL = (EB - VL) / RB = EB / (RB + RL)  
The battery short-circuit current Isc is: 
Isc = EB / RB = EBIL / (EB - VL)  
 

Voltmeter Multiplier 
The resistance RS to be connected in series with a voltmeter of full scale voltage VV and full scale current drain IV to 
increase the full scale voltage to V is: 
RS = (V - VV) / IV  
The power P dissipated by the resistance RS with voltage drop (V - VV) carrying current IV is: 
P = (V - VV)2 / RS = (V - VV)IV = IV

2RS  
 

Ammeter Shunt 
The resistance RP to be connected in parallel with an ammeter of full scale current IA and full scale voltage drop VA 
to increase the full scale current to I is: 
RP = VA / (I - IA)  
The power P dissipated by the resistance RP with voltage drop VA carrying current (I - IA) is: 
P = VA

2 / RP = VA(I - IA) = (I - IA)2RP  
 


