## Impedance

The impedance $\mathbf{Z}$ of a resistance $\mathbf{R}$ in series with a reactance $\mathbf{X}$ is:
$\mathbf{Z}=\mathbf{R}+\mathbf{j} \mathbf{X}$
Rectangular and polar forms of impedance $\mathbf{Z}$ :
$\mathbf{Z}=\mathbf{R}+\mathbf{j} \mathbf{X}=\left(\mathbf{R}^{2}+\mathbf{X}^{2}\right)^{1 / 2} \angle \tan ^{-1}(\mathbf{X} / \mathbf{R})=|\mathbf{Z}| \angle \phi=|\mathbf{Z}| \cos \phi+\mathbf{j}|\mathbf{Z}| \sin \phi$
Addition of impedances $\mathbf{Z}_{1}$ and $\mathbf{Z}_{2}$ :
$\mathbf{Z}_{1}+\mathbf{Z}_{\mathbf{2}}=\left(\mathbf{R}_{\mathbf{1}}+\mathbf{j} \mathbf{X}_{\mathbf{1}}\right)+\left(\mathbf{R}_{\mathbf{2}}+\mathbf{j} \mathbf{X}_{\mathbf{2}}\right)=\left(\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}\right)+\mathbf{j}\left(\mathbf{X}_{\mathbf{1}}+\mathbf{X}_{\mathbf{2}}\right)$
Subtraction of impedances $\mathbf{Z}_{1}$ and $\mathbf{Z}_{2}$ :
$\mathbf{Z}_{1}-\mathbf{Z}_{2}=\left(\mathbf{R}_{1}+j \mathbf{X}_{1}\right)-\left(\mathbf{R}_{\mathbf{2}}+\mathrm{j} \mathbf{X}_{2}\right)=\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}\right)+\mathrm{j}\left(\mathbf{X}_{\mathbf{1}}-\mathbf{X}_{\mathbf{2}}\right)$
Multiplication of impedances $\mathbf{Z}_{1}$ and $\mathbf{Z}_{2}$ :
$\mathbf{Z}_{1} * \mathbf{Z}_{2}=\left|\mathbf{Z}_{1}\right| \angle \phi_{1} *\left|\mathbf{Z}_{2}\right| \angle \phi_{2}=\left(\left|\mathbf{Z}_{1}\right| *\left|\mathbf{Z}_{2}\right|\right) \angle\left(\phi_{1}+\phi_{2}\right)$
Division of impedances $\mathbf{Z}_{\mathbf{1}}$ and $\mathbf{Z}_{\mathbf{2}}$ :
$\mathbf{Z}_{1} / \mathbf{Z}_{2}=\left|\mathbf{Z}_{1}\right| \angle \phi_{1} /\left|\mathbf{Z}_{2}\right| \angle \phi_{2}=\left(\left|\mathbf{Z}_{1}\right| /\left|\mathbf{Z}_{2}\right|\right) \angle\left(\phi_{1}-\phi_{2}\right)$
In summary:

- use the rectangular form for addition and subtraction,
- use the polar form for multiplication and division.


## Admittance

An impedance $\mathbf{Z}$ comprising a resistance $\mathbf{R}$ in series with a reactance $\mathbf{X}$ can be converted to an admittance $\mathbf{Y}$ comprising a conductance $\mathbf{G}$ in parallel with a susceptance $\mathbf{B}$ :
$\mathbf{Y}=\mathbf{Z}^{-1}=\mathbf{1} /(\mathbf{R}+\mathbf{j} \mathbf{X})=(\mathbf{R}-\mathbf{j} \mathbf{X}) /\left(\mathbf{R}^{2}+\mathbf{X}^{2}\right)=\mathbf{R} /\left(\mathbf{R}^{2}+\mathbf{X}^{2}\right)-\mathbf{j X} /\left(\mathbf{R}^{2}+\mathbf{X}^{2}\right)=\mathbf{G}-\mathbf{j B}$
$\mathbf{G}=\mathbf{R} /\left(\mathbf{R}^{2}+\mathbf{X}^{2}\right)=\mathbf{R} /|\mathbf{Z}|^{2}$
$\mathbf{B}=\mathbf{X} /\left(\mathbf{R}^{2}+\mathbf{X}^{2}\right)=\mathbf{X} /|\mathbf{Z}|^{2}$
Using the polar form of impedance $\mathbf{Z}$ :
$\mathbf{Y}=\mathbf{1} /|\mathbf{Z}| \angle \phi=|\mathbf{Z}|^{-1} \angle-\phi=|\mathbf{Y}| \angle-\phi=|\mathbf{Y}| \mathbf{\operatorname { c o s }} \phi-\mathbf{j}|\mathbf{Y}| \sin \phi$
Conversely, an admittance $\mathbf{Y}$ comprising a conductance $\mathbf{G}$ in parallel with a susceptance $\mathbf{B}$ can be converted to an impedance $\mathbf{Z}$ comprising a resistance $\mathbf{R}$ in series with a reactance $\mathbf{X}$ :
$\mathbf{Z}=\mathbf{Y}^{-1}=\mathbf{1} /(\mathbf{G}-\mathbf{j B})=(\mathbf{G}+\mathrm{jB}) /\left(\mathbf{G}^{2}+\mathbf{B}^{2}\right)=\mathbf{G} /\left(\mathbf{G}^{2}+\mathbf{B}^{2}\right)+\mathrm{jB} /\left(\mathbf{G}^{2}+\mathbf{B}^{2}\right)=\mathbf{R}+\mathrm{j} \mathbf{X}$
$\mathbf{R}=\mathbf{G} /\left(\mathbf{G}^{2}+\mathbf{B}^{2}\right)=\mathbf{G} /|\mathbf{Y}|^{2}$
$\mathbf{X}=\mathbf{B} /\left(\mathbf{G}^{2}+\mathbf{B}^{2}\right)=\mathbf{B} /|\mathbf{Y}|^{2}$
Using the polar form of admittance $\mathbf{Y}$ :
$\mathbf{Z}=\mathbf{1} /|\mathbf{Y}| \angle-\phi=|\mathbf{Y}|^{-1} \angle \phi=|\mathbf{Z}| \angle \phi=|\mathbf{Z}| \cos \phi+\mathbf{j}|\mathbf{Z}| \sin \phi$
The total impedance $\mathbf{Z}_{\mathbf{S}}$ of impedances $\mathbf{Z}_{\mathbf{1}}, \mathbf{Z}_{2}, \mathbf{Z}_{3}, \ldots$ connected in series is:
$\mathbf{Z}_{\mathrm{S}}=\mathbf{Z}_{1}+\mathbf{Z}_{1}+\mathbf{Z}_{1}+\ldots$
The total admittance $\mathbf{Y}_{\mathbf{P}}$ of admittances $\mathbf{Y}_{\mathbf{1}}, \mathbf{Y}_{\mathbf{2}}, \mathbf{Y}_{\mathbf{3}}, \ldots$ connected in parallel is:
$\mathbf{Y}_{\mathrm{P}}=\mathbf{Y}_{1}+\mathbf{Y}_{1}+\mathbf{Y}_{1}+\ldots$
In summary:

- use impedances when operating on series circuits,
- use admittances when operating on parallel circuits.


## Reactance

## Inductive Reactance

The inductive reactance $\mathbf{X}_{\mathbf{L}}$ of an inductance $\mathbf{L}$ at angular frequency $\boldsymbol{\omega}$ and frequency $\mathbf{f}$ is:
$\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=\mathbf{2 \pi} \mathrm{fL}$
For a sinusoidal current $\mathbf{i}$ of amplitude $\mathbf{I}$ and angular frequency $\boldsymbol{\omega}$ :

## $\mathbf{i}=\mathbf{I} \boldsymbol{\operatorname { s i n }} \omega \mathbf{t}$

If sinusoidal current $\mathbf{i}$ is passed through an inductance $\mathbf{L}$, the voltage $\mathbf{e}$ across the inductance is:

## $e=L d i / d t=\omega L I \cos \omega t=X_{L} I \cos \omega t$

The current through an inductance lags the voltage across it by $90^{\circ}$.

## Capacitive Reactance

The capacitive reactance $\mathbf{X}_{\mathbf{C}}$ of a capacitance $\mathbf{C}$ at angular frequency $\boldsymbol{\omega}$ and frequency $\mathbf{f}$ is:
$\mathrm{X}_{\mathrm{C}}=\mathbf{1} / \omega \mathrm{C}=\mathbf{1} / \mathbf{2} \boldsymbol{\pi f C}$
For a sinusoidal voltage $\mathbf{v}$ of amplitude $\mathbf{V}$ and angular frequency $\boldsymbol{\omega}$ :

## $\mathbf{v}=\mathrm{V} \boldsymbol{\operatorname { s i n }} \omega \mathrm{t}$

If sinusoidal voltage $\mathbf{v}$ is applied across a capacitance $\mathbf{C}$, the current $\mathbf{i}$ through the capacitance is:
$\mathbf{i}=\mathbf{C d v} / \mathrm{dt}=\omega \mathbf{C V} \cos \omega t=V \cos \omega t / X_{C}$
The current through a capacitance leads the voltage across it by $90^{\circ}$.

## Resonance

## Series Resonance

A series circuit comprising an inductance $\mathbf{L}$, a resistance $\mathbf{R}$ and a capacitance $\mathbf{C}$ has an impedance $\mathbf{Z}_{\mathbf{S}}$ of:
$\mathbf{Z}_{\mathrm{S}}=\mathbf{R}+\mathbf{j}\left(\mathbf{X}_{\mathrm{L}}-\mathbf{X}_{\mathrm{C}}\right)$
where $\mathbf{X}_{\mathbf{L}}=\omega \mathbf{L}$ and $\mathbf{X}_{\mathbf{C}}=\mathbf{1} / \omega \mathbf{C}$
At resonance, the imaginary part of $\mathbf{Z}_{\mathbf{S}}$ is zero:
$\mathbf{X}_{\mathrm{C}}=\mathbf{X}_{\mathrm{L}}$
$\mathbf{Z}_{\mathrm{Sr}}=\mathbf{R}$
$\omega_{\mathrm{r}}=(\mathbf{1} / \mathbf{L C})^{1 / 2}=2 \pi \mathrm{f}_{\mathrm{r}}$
Parallel resonance
A parallel circuit comprising an inductance $\mathbf{L}$ with a series resistance $\mathbf{R}$, connected in parallel with a capacitance $\mathbf{C}$, has an admittance $\mathbf{Y}_{\mathbf{P}}$ of:
$\mathbf{Y}_{\mathrm{P}}=\mathbf{1} /\left(\mathbf{R}+\mathbf{j} \mathbf{X}_{\mathrm{L}}\right)+\mathbf{1} /\left(-j \mathbf{X}_{\mathrm{C}}\right)=\left(\mathbf{R} /\left(\mathbf{R}^{2}+\mathbf{X}_{\mathrm{L}}{ }^{2}\right)\right)-\mathrm{j}\left(\mathbf{X}_{\mathrm{L}} /\left(\mathbf{R}^{2}+\mathbf{X}_{\mathrm{L}}{ }^{2}\right)-\mathbf{1} / \mathbf{X}_{\mathrm{C}}\right)$
where $\mathbf{X}_{\mathbf{L}}=\omega \mathbf{L}$ and $\mathbf{X}_{\mathbf{C}}=\mathbf{1} / \omega \mathbf{C}$
At resonance, the imaginary part of $\mathbf{Y}_{\mathbf{P}}$ is zero:
$\mathbf{X}_{\mathrm{C}}=\left(\mathbf{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}\right) / \mathbf{X}_{\mathrm{L}}=\mathbf{X}_{\mathrm{L}}+\mathbf{R}^{2} / \mathbf{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}}\left(\mathbf{1}+\mathbf{R}^{2} / \mathbf{X}_{\mathrm{L}}{ }^{2}\right)$
$\mathbf{Z}_{\mathrm{Pr}}=\mathbf{Y}_{\mathbf{P r}^{-1}}=\left(\mathbf{R}^{2}+\mathbf{X}_{\mathbf{L}}{ }^{2}\right) / \mathbf{R}=\mathbf{X}_{\mathbf{L}} \mathbf{X}_{\mathrm{C}} / \mathbf{R}=\mathbf{L} / \mathbf{C R}$
$\omega_{\mathrm{r}}=\left(1 / L C-R^{2} / L^{2}\right)^{1 / 2}=2 \pi f_{r}$
Note that for the same values of $\mathbf{L}, \mathbf{R}$ and $\mathbf{C}$, the parallel resonance frequency is lower than the series resonance frequency, but if the ratio $\mathbf{R} / \mathbf{L}$ is small then the parallel resonance frequency is close to the series resonance frequency.

## Reactive Loads and Power Factor

## Resistance and Series Reactance

The impedance $\mathbf{Z}$ of a reactive load comprising resistance $\mathbf{R}$ and series reactance $\mathbf{X}$ is:
$\mathbf{Z}=\mathbf{R}+\mathbf{j} \mathbf{X}=|\mathbf{Z}| \angle \phi$
Converting to the equivalent admittance $\mathbf{Y}$ :
$\mathbf{Y}=\mathbf{1} / \mathbf{Z}=\mathbf{1} /(\mathbf{R}+\mathbf{j X})=(\mathbf{R}-\mathbf{j} \mathbf{X}) /\left(\mathbf{R}^{2}+\mathbf{X}^{\mathbf{2}}\right)=\mathbf{R} /|\mathbf{Z}|^{2}-\mathbf{j} \mathbf{X} /|\mathbf{Z}|^{2}$
When a voltage $\mathbf{V}$ (taken as reference) is applied across the reactive load $\mathbf{Z}$, the current $\mathbf{I}$ is:
$\mathbf{I}=\mathbf{V Y}=\mathbf{V}\left(\mathbf{R} /|\mathbf{Z}|^{2}-\mathbf{j} \mathbf{X} /|\mathbf{Z}|^{2}\right)=\mathbf{V R} /|\mathbf{Z}|^{2}-\mathbf{j} \mathbf{V X} /|\mathbf{Z}|^{2}=\mathbf{I}_{\mathbf{P}}-\mathbf{j} \mathbf{I}_{\mathbf{Q}}$
The active current $\mathbf{I}_{\mathbf{P}}$ and the reactive current $\mathbf{I}_{\mathbf{Q}}$ are:
$\mathbf{I}_{\mathbf{P}}=\mathbf{V R} /|\mathbf{Z}|^{2}=|\mathbf{I}| \cos \phi$
$\mathbf{I}_{\mathbf{Q}}=\mathbf{V X} /|\mathbf{Z}|^{2}=|\mathbf{I}| \sin \phi$
The apparent power $\mathbf{S}$, active power $\mathbf{P}$ and reactive power $\mathbf{Q}$ are:
$\mathbf{S}=\mathbf{V}|\mathbf{I}|=\mathbf{V}^{2} /|\mathbf{Z}|=|\mathbf{I}|^{2}|\mathbf{Z}|$
$\mathbf{P}=\mathbf{V} \mathbf{I}_{\mathbf{P}}=\mathbf{I}_{\mathbf{P}}{ }^{2}|\mathbf{Z}|^{2} / \mathbf{R}=\mathbf{V}^{2} \mathbf{R} /|\mathbf{Z}|^{2}=|\mathbf{I}|^{2} \mathbf{R}$
$\mathbf{Q}=\mathbf{V} \mathbf{I}_{\mathbf{Q}}=\mathbf{I}_{\mathbf{Q}}{ }^{2}|\mathbf{Z}|^{2} / \mathbf{X}=\mathbf{V}^{2} \mathbf{X} /|\mathbf{Z}|^{2}=|\mathbf{I}|^{2} \mathbf{X}$
The power factor $\cos \phi$ and reactive factor $\sin \phi$ are:
$\boldsymbol{\operatorname { c o s } \phi}=\mathbf{I}_{\mathbf{P}} /|\mathbf{I}|=\mathbf{P} / \mathbf{S}=\mathbf{R} /|\mathbf{Z}|$
$\sin \phi=\mathbf{I}_{\mathbf{Q}} /|\mathbf{I}|=\mathbf{Q} / \mathbf{S}=\mathbf{X} /|\mathbf{Z}|$
Resistance and Shunt Reactance
The impedance $\mathbf{Z}$ of a reactive load comprising resistance $\mathbf{R}$ and shunt reactance $\mathbf{X}$ is found from:
$\mathbf{1} / \mathrm{Z}=\mathbf{1} / \mathrm{R}+\mathbf{1} / \mathrm{j} \mathbf{X}$
Converting to the equivalent admittance $\mathbf{Y}$ comprising conductance $\mathbf{G}$ and shunt susceptance $\mathbf{B}$ :
$\mathbf{Y}=\mathbf{1} / \mathbf{Z}=\mathbf{1} / \mathbf{R}-\mathbf{j} / \mathbf{X}=\mathbf{G}-\mathbf{j B}=|\mathbf{Y}| \angle-\phi$
When a voltage $\mathbf{V}$ (taken as reference) is applied across the reactive load $\mathbf{Y}$, the current $\mathbf{I}$ is:
$\mathbf{I}=\mathbf{V Y}=\mathbf{V}(\mathbf{G}-\mathbf{j B})=\mathbf{V G}-\mathbf{j V B}=\mathbf{I}_{\mathbf{P}}-\mathbf{j I}_{\mathbf{Q}}$
The active current $\mathbf{I}_{\mathbf{P}}$ and the reactive current $\mathbf{I}_{\mathbf{Q}}$ are:
$\mathbf{I}_{\mathbf{P}}=\mathbf{V G}=\mathbf{V} / \mathbf{R}=|\mathbf{I}| \boldsymbol{\operatorname { c o s } \phi}$
$\mathbf{I}_{\mathbf{Q}}=\mathbf{V B}=\mathbf{V} / \mathbf{X}=|\mathbf{I}| \sin \phi$
The apparent power $\mathbf{S}$, active power $\mathbf{P}$ and reactive power $\mathbf{Q}$ are:
$\mathbf{S}=\mathbf{V}|\mathbf{I}|=|\mathbf{I}|^{2} /|\mathbf{Y}|=\mathbf{V}^{2}|\mathbf{Y}|$
$\mathbf{P}=\mathbf{V} \mathbf{I}_{\mathbf{P}}=\mathbf{I}_{\mathbf{P}}{ }^{2} / \mathbf{G}=|\mathbf{I}|^{2} \mathbf{G} /|\mathbf{Y}|^{2}=\mathbf{V}^{2} \mathbf{G}$
$\mathbf{Q}=\mathbf{V} \mathbf{I}_{\mathbf{Q}}=\mathbf{I}_{\mathbf{Q}}{ }^{2} / \mathbf{B}=|\mathbf{I}|^{2} \mathbf{B} /|\mathbf{Y}|^{2}=\mathbf{V}^{2} \mathbf{B}$
The power factor $\cos \phi$ and reactive factor $\boldsymbol{\operatorname { s i n }} \phi$ are:
$\cos \phi=\mathbf{I}_{\mathbf{P}} /|\mathbf{I}|=\mathbf{P} / \mathbf{S}=\mathbf{G} /|\mathbf{Y}|$
$\sin \phi=\mathbf{I}_{\mathbf{Q}} /|\mathbf{I}|=\mathbf{Q} / \mathbf{S}=\mathbf{B} /|\mathbf{Y}|$

## Complex Power

When a voltage $\mathbf{V}$ causes a current $\mathbf{I}$ to flow through a reactive load $\mathbf{Z}$, the complex power $\mathbf{S}$ is:
$\mathbf{S}=\mathbf{V I *}$ where $\mathbf{I}^{*}$ is the conjugate of the complex current $\mathbf{I}$.
Inductive Load
$\mathbf{Z}=\mathbf{R}+\mathbf{j} \mathbf{X}_{\mathbf{L}}$
$\mathbf{I}=\mathbf{I}_{\mathbf{P}}-\mathbf{j I}_{\mathbf{Q}}$
$\boldsymbol{\operatorname { c o s }} \boldsymbol{\phi}=\mathbf{R} /|\mathbf{Z}|$ (lagging)
$\mathbf{I}^{*}=\mathbf{I}_{\mathbf{P}}+\mathbf{j} \mathbf{I}_{\mathbf{Q}}$
$\mathbf{S}=\mathbf{P}+\mathrm{j} \mathbf{Q}$
An inductive load is a sink of lagging VArs (a source of leading VArs).
Capacitive Load
$\mathbf{Z}=\mathbf{R}-\mathbf{j} \mathbf{X}_{\mathbf{C}}$
$\mathbf{I}=\mathbf{I}_{\mathbf{P}}+\mathbf{j} \mathbf{I}_{\mathbf{Q}}$
$\boldsymbol{\operatorname { c o s }} \boldsymbol{\phi}=\mathbf{R} /|\mathbf{Z}|$ (leading)
$\mathbf{I}^{*}=\mathbf{I}_{\mathbf{P}}-\mathbf{j} \mathbf{I}_{\mathbf{Q}}$
$\mathbf{S}=\mathbf{P}-\mathbf{j} \mathbf{Q}$
A capacitive load is a source of lagging VArs (a sink of leading VArs).

## Three Phase Power

For a balanced star connected load with line voltage $\mathbf{V}_{\text {line }}$ and line current $\mathbf{I}_{\text {line }}$ :
$\mathbf{V}_{\text {star }}=\mathbf{V}_{\text {line }} / \sqrt{3}$
$\mathbf{I}_{\text {star }}=\mathbf{I}_{\text {line }}$
$\mathbf{Z}_{\text {star }}=\mathbf{V}_{\text {star }} / \mathbf{I}_{\text {star }}=\mathbf{V}_{\text {line }} / \sqrt{ } \mathbf{3} \mathbf{I}_{\text {line }}$
$\mathbf{S}_{\text {star }}=\mathbf{3} \mathbf{V}_{\text {star }} I_{\text {star }}=\sqrt{3} \mathbf{V}_{\text {line }} I_{\text {line }}=\mathbf{V}_{\text {line }}{ }^{2} / \mathbf{Z}_{\text {star }}=\mathbf{3} \mathbf{I}_{\text {line }}{ }^{2} \mathbf{Z}_{\text {star }}$
For a balanced delta connected load with line voltage $\mathbf{V}_{\text {line }}$ and line current $\mathbf{I}_{\text {line }}$ :
$\mathbf{V}_{\text {delta }}=\mathbf{V}_{\text {line }}$
$\mathbf{I}_{\text {delta }}=\mathbf{I}_{\text {line }} / \sqrt{3}$
$\mathbf{Z}_{\text {delta }}=\mathbf{V}_{\text {delta }} / \mathbf{I}_{\text {delta }}=\sqrt{3} \mathbf{V}_{\text {line }} / \mathbf{I}_{\text {line }}$
$\mathbf{S}_{\text {delta }}=\mathbf{3} \mathbf{V}_{\text {delta }} \mathbf{I}_{\text {delta }}=\sqrt{\mathbf{3}} \mathbf{V}_{\text {line }} \mathbf{I}_{\text {line }}=\mathbf{3} \mathbf{V}_{\text {line }}{ }^{2} / \mathbf{Z}_{\text {delta }}=\mathbf{I}_{\text {line }}{ }^{2} \mathbf{Z}_{\text {delta }}$
The apparent power $\mathbf{S}$, active power $\mathbf{P}$ and reactive power $\mathbf{Q}$ are related by:
$\mathbf{S}^{2}=\mathbf{P}^{2}+\mathbf{Q}^{2}$
$\mathbf{P}=\mathbf{S} \boldsymbol{\operatorname { c o s }} \boldsymbol{\phi}$
$\mathbf{Q}=\mathbf{S} \sin \phi$
where $\boldsymbol{\operatorname { c o s } \phi} \phi$ is the power factor and $\boldsymbol{\operatorname { s i n }} \phi$ is the reactive factor
Note that for equivalence between balanced star and delta connected loads:
$\mathbf{Z}_{\text {delta }}=\mathbf{3} \mathbf{Z}_{\text {star }}$

## Per-unit System

For each system parameter, per-unit value is equal to the actual value divided by a base value:
$\mathbf{E}_{\mathrm{pu}}=\mathbf{E} / \mathbf{E}_{\text {base }}$
$\mathbf{I}_{\text {pu }}=\mathbf{I} / \mathbf{I}_{\text {base }}$
$\mathbf{Z}_{\mathrm{pu}}=\mathbf{Z} / \mathbf{Z}_{\text {base }}$
Select rated values as base values, usually rated power in MVA and rated phase voltage in kV :
$\mathbf{S}_{\text {base }}=\mathbf{S}_{\text {rated }}=\sqrt{\mathbf{3}} \mathbf{E}_{\text {line }} \mathbf{I}_{\text {line }}$
$\mathbf{E}_{\text {base }}=\mathbf{E}_{\text {phase }}=\mathbf{E}_{\text {line }} / \sqrt{ } \mathbf{3}$
The base values for line current in kA and per-phase star impedance in Ohms/phase are:
$\mathbf{I}_{\text {base }}=\mathbf{S}_{\text {base }} / \mathbf{3} \mathbf{E}_{\text {base }}\left(=\mathbf{S}_{\text {base }} / \sqrt{3 E_{\text {line }}}\right)$
$\mathbf{Z}_{\text {base }}=\mathbf{E}_{\text {base }} / \mathbf{I}_{\text {base }}=\mathbf{3 E} \mathbf{E}_{\text {base }}{ }^{2} / \mathbf{S}_{\text {base }}\left(=\mathbf{E}_{\text {line }}{ }^{2} / \mathbf{S}_{\text {base }}\right)$
Note that selecting the base values for any two of $\mathbf{S}_{\text {base }}, \mathbf{E}_{\text {base }}, \mathbf{I}_{\text {base }}$ or $\mathbf{Z}_{\text {base }}$ fixes the base values of all four. Note also that Ohm's Law is satisfied by each of the sets of actual, base and per-unit values for voltage, current and impedance.

## Transformers

The primary and secondary MVA ratings of a transformer are equal, but the voltages and currents in the primary (subscript ${ }_{1}$ ) and the secondary (subscript ${ }_{2}$ ) are usually different:
$\sqrt{3} E_{\text {1line }} I_{\text {1line }}=S=\sqrt{3} \mathbf{E}_{2 \text { line }} \mathbf{I}_{2 \text { line }}$
Converting to base (per-phase star) values:
$\mathbf{3} \mathbf{E}_{1 \text { base }} \mathbf{I}_{1 \text { base }}=\mathbf{S}_{\text {base }}=\mathbf{3} \mathbf{E}_{2 \text { base }} \mathbf{I}_{\mathbf{2} \text { base }}$
$\mathbf{E}_{1 \text { base }} / \mathbf{E}_{2 \text { base }}=\mathbf{I}_{2 \text { base }} / \mathbf{I}_{1 \text { base }}$
$\mathbf{Z}_{1 \text { base }} / \mathbf{Z}_{2 \text { base }}=\left(\mathbf{E}_{1 \text { base }} / \mathbf{E}_{2 \text { base }}\right)^{2}$
The impedance $\mathbf{Z}_{21 \text { pu }}$ referred to the primary side, equivalent to an impedance $\mathbf{Z}_{2 \text { pu }}$ on the secondary side, is:
$\mathbf{Z}_{21 \text { pu }}=\mathbf{Z}_{2 \text { pu }}\left(\mathbf{E}_{1 \text { base }} / \mathbf{E}_{2 \text { base }}\right)^{\mathbf{2}}$
The impedance $\mathbf{Z}_{12 \text { pu }}$ referred to the secondary side, equivalent to an impedance $\mathbf{Z}_{1 \mathrm{pu}}$ on the primary side, is:
$\mathbf{Z}_{12 \mathrm{pu}}=\mathbf{Z}_{1 \mathrm{pu}}\left(\mathbf{E}_{2 \text { base }} / \mathbf{E}_{1 \text { base }}\right)^{\mathbf{2}}$
Note that per-unit and percentage values are related by:
$\mathbf{Z}_{\mathrm{pu}}=\mathbf{Z}_{\%} / \mathbf{1 0 0}$

## Symmetrical Components

In any three phase system, the line currents $\mathbf{I}_{\mathbf{a}}, \mathbf{I}_{\mathbf{b}}$ and $\mathbf{I}_{\mathbf{c}}$ may be expressed as the phasor sum of:

- a set of balanced positive phase sequence currents $\mathbf{I}_{\mathbf{a} 1}, \mathbf{I}_{\mathbf{b} 1}$ and $\mathbf{I}_{\mathbf{c} 1}$ (phase sequence a-b-c),
- a set of balanced negative phase sequence currents $\mathbf{I}_{\mathrm{a} 2}, \mathbf{I}_{\mathrm{b} 2}$ and $\mathbf{I}_{\mathbf{c} 2}$ (phase sequence a-c-b),
- a set of identical zero phase sequence currents $\mathbf{I}_{\mathbf{a} 0}, \mathbf{I}_{\mathbf{b} 0}$ and $\mathbf{I}_{\mathbf{c} 0}$ (cophasal, no phase sequence).

The positive, negative and zero sequence currents are calculated from the line currents using:
$\mathbf{I}_{\mathbf{a} 1}=\left(\mathbf{I}_{\mathrm{a}}+\mathbf{h I}_{\mathrm{b}}+\mathbf{h}^{2} \mathbf{I}_{\mathrm{c}}\right) / \mathbf{3}$
$\mathbf{I}_{\mathrm{a} 2}=\left(\mathbf{I}_{\mathrm{a}}+\mathrm{h}^{2} \mathbf{I}_{\mathrm{b}}+h \mathrm{I}_{\mathrm{c}}\right) / 3$
$\mathbf{I}_{\mathrm{a} 0}=\left(\mathbf{I}_{\mathrm{a}}+\mathbf{I}_{\mathrm{b}}+\mathbf{I}_{\mathrm{c}}\right) / \mathbf{3}$
The positive, negative and zero sequence currents are combined to give the line currents using:
$I_{a}=I_{a 1}+I_{a 2}+I_{a 0}$
$\mathbf{I}_{\mathrm{b}}=\mathbf{I}_{\mathrm{b} 1}+\mathbf{I}_{\mathrm{b} 2}+\mathbf{I}_{\mathrm{b} 0}=\mathbf{h}^{\mathbf{2}} \mathbf{I}_{\mathbf{a} 1}+\mathbf{h} \mathbf{I}_{\mathrm{a} 2}+\mathbf{I}_{\mathrm{a} 0}$
$\mathbf{I}_{\mathbf{c}}=\mathbf{I}_{\mathbf{c} 1}+\mathbf{I}_{\mathbf{c} 2}+\mathbf{I}_{\mathbf{c} 0}=\mathbf{h} \mathbf{I}_{\mathbf{a} 1}+\mathbf{h}^{2} \mathbf{I}_{\mathbf{a} 2}+\mathbf{I}_{\mathbf{a} 0}$
The residual current $\mathbf{I}_{\mathbf{r}}$ is equal to the total zero sequence current:
$\mathbf{I}_{\mathrm{r}}=\mathbf{I}_{\mathrm{a} 0}+\mathbf{I}_{\mathrm{b} 0}+\mathbf{I}_{\mathrm{c} 0}=\mathbf{3} \mathbf{I}_{\mathrm{a} 0}=\mathbf{I}_{\mathrm{a}}+\mathbf{I}_{\mathrm{b}}+\mathbf{I}_{\mathrm{c}}=\mathbf{I}_{\mathrm{e}}$
which is measured using three current transformers with parallel connected secondaries.
$\mathbf{I}_{e}$ is the earth fault current of the system.
Similarly, for phase-to-earth voltages $\mathbf{V}_{\mathbf{a e}}, \mathbf{V}_{\mathbf{b e}}$ and $\mathbf{V}_{\mathbf{c e}}$, the residual voltage $\mathbf{V}_{\mathbf{r}}$ is equal to the total zero sequence voltage:
$V_{r}=V_{a 0}+V_{b 0}+V_{c 0}=3 V_{a 0}=V_{a e}+V_{b e}+V_{\text {ce }}=\mathbf{3} V_{\text {ne }}$
which is measured using an earthed-star / open-delta connected voltage transformer.
$\mathbf{V}_{\mathrm{ne}}$ is the neutral displacement voltage of the system.
The h-operator
The $\mathbf{h}$-operator $\left(1 \angle 120^{\circ}\right)$ is the complex cube root of unity:
$h=-1 / 2+j \sqrt{3} / 2=1 \angle 120^{\circ}=1 \angle-240^{\circ}$
$h^{2}=-1 / 2-j \sqrt{ } 3 / 2=1 \angle 240^{\circ}=1 \angle-120^{\circ}$
Some useful properties of $\mathbf{h}$ are:
$\mathbf{1}+\mathrm{h}+\mathrm{h}^{2}=\mathbf{0}$
$h+h^{2}=-1=1 \angle 180^{\circ}$
$h-h^{2}=j \sqrt{3}=\sqrt{3} \angle 90^{\circ}$
$h^{2}-h=-j \sqrt{ } 3=\sqrt{3} \angle-90^{\circ}$

## Fault Calculations

The different types of short-circuit fault which occur on a power system are:

- single phase to earth,
- double phase,
- double phase to earth,
- three phase,
- three phase to earth.

For each type of short-circuit fault occurring on an unloaded system:

- the first column states the phase voltage and line current conditions at the fault,
- the second column states the phase 'a' sequence current and voltage conditions at the fault,
- the third column provides formulae for the phase 'a' sequence currents at the fault,
- the fourth column provides formulae for the fault current and the resulting line currents.

By convention, the faulted phases are selected for fault symmetry with respect to reference phase ' $a$ '.
$\mathbf{I}_{\mathrm{f}}=$ fault current
$\mathbf{I}_{\mathbf{e}}=$ earth fault current
$\mathbf{E}_{\mathbf{a}}=$ normal phase voltage at the fault location
$\mathbf{Z}_{\mathbf{1}}=$ positive phase sequence network impedance to the fault
$\mathbf{Z}_{\mathbf{2}}=$ negative phase sequence network impedance to the fault
$\mathbf{Z}_{\mathbf{0}}=$ zero phase sequence network impedance to the fault
Single phase to earth - fault from phase 'a' to earth:

| $V_{a}=0$ <br> $I_{b}=I_{c}=0$ <br> $I_{f}=I_{a}=I_{e}$ | $I_{a 1}=I_{a 2}=I_{a 0}=I_{a} / 3$ <br> $V_{a 1}+V_{a 2}+V_{a 0}=0$ | $I_{a 1}=E_{a} /\left(Z_{1}+Z_{2}+Z_{0}\right)$ <br> $I_{a 2}=I_{a 1}$ <br> $I_{a 0}=I_{a 1}$ | $I_{f}=3 I_{a 0}=3 E_{a} /\left(Z_{1}+Z_{2}+Z_{0}\right)=I_{e}$ <br> $I_{a}=I_{f}=3 E_{a} /\left(Z_{1}+Z_{2}+Z_{0}\right)$ |
| :--- | :--- | :--- | :--- |

Double phase - fault from phase 'b' to phase 'c':

| $V_{b}=V_{c}$ | $I_{a 1}+I_{a 2}=0$ | $I_{a} /\left(Z_{1}+Z_{2}\right)$ | $I_{f}=-j \sqrt{ } 3 I_{a 1}=-j \sqrt{ } 3 E_{a} /\left(Z_{1}+Z_{2}\right)$ |
| :--- | :--- | :--- | :--- |
| $I_{a}=0$ | $I_{a 0}=0$ | $I_{b}=I_{f}=-j \sqrt{3} E_{a} /\left(Z_{1}+Z_{2}\right)$ |  |
| $I_{f}=I_{b}=-I_{c}$ | $V_{a 1}=V_{a 2}$ | $I_{a 0}=0$ | $I_{c}=-I_{f}=j \sqrt{ } 3 E_{a} /\left(Z_{1}+Z_{2}\right)$ |

Double phase to earth - fault from phase 'b' to phase 'c' to earth:

| $V_{b}=V_{c}=0$ <br> $I_{a}=0$ <br> $I_{f}=I_{b}+I_{c}=I_{e}$ | $I_{a 1}+I_{a 2}+I_{a 0}=0$ <br> $V_{a 1}=V_{a 2}=V_{a 0}$ | $I_{a 1}=E_{a} / Z_{n e t}$ <br> $I_{a 2}=-I_{a} Z_{0} /\left(Z_{2}+Z_{0}\right)$ <br> $I_{a 0}=-I_{a} Z_{2} /\left(Z_{2}+Z_{0}\right)$ | $I_{f}=3 I_{a 0}=-3 E_{a} Z_{2} / \Sigma_{z z}=I_{e}$ <br> $I_{b}=I_{f} / 2-j \sqrt{2} E_{a}\left(Z_{2} / 2+Z_{0}\right) / \Sigma_{z z}$ <br> $I_{c}=I_{f} / 2+j \sqrt{2} E_{a}\left(Z_{2} / 2+Z_{0}\right) / \Sigma_{z z}$ |
| :--- | :--- | :--- | :--- |

$\mathbf{Z}_{\text {net }}=\mathbf{Z}_{1}+\mathbf{Z}_{2} \mathbf{Z}_{0} /\left(\mathbf{Z}_{2}+\mathbf{Z}_{0}\right)$ and $\Sigma_{z z}=\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{2} \mathbf{Z}_{0}+\mathbf{Z}_{0} \mathbf{Z}_{1}=\left(\mathbf{Z}_{2}+\mathbf{Z}_{0}\right) \mathbf{Z}_{\text {net }}$
Three phase (and three phase to earth) - fault from phase 'a' to phase ' b ' to phase 'c' (to earth):

| $V_{a}=V_{b}=V_{c}(=0)$ <br> $I_{a}+I_{b}+I_{c}=0\left(=I_{e}\right)$ <br> $I_{f}=I_{a}=h I_{b}=h^{2} I_{c}$ | $V_{a 0}=V_{a}(=0)$ <br> $V_{a 1}=V_{a 2}=0$ | $I_{a}=E_{a} / Z_{1}$ <br> $I_{a}=0$ <br> $I_{a 0}=0$ | $I_{b}=E_{b} / Z_{a} / Z_{1}=I_{a}$ <br> $I_{c}=E_{c} / Z_{1}$ |
| :--- | :--- | :--- | :--- |

Note that the single phase fault current is greater than the three phase fault current if $\mathbf{Z}_{0}$ is less than $\left(\mathbf{2} \mathbf{Z}_{\mathbf{1}}-\mathbf{Z}_{\mathbf{2}}\right)$. The values of $\mathbf{Z}_{\mathbf{1}}, \mathbf{Z}_{\mathbf{2}}$ and $\mathbf{Z}_{0}$ are each determined from the respective positive, negative and zero sequence impedance networks by network reduction to a single impedance.
Note that if the system is earthed through an impedance $\mathbf{Z}_{\mathbf{n}}$ (carrying current $\mathbf{3} \mathbf{I}_{\mathbf{0}}$ ) then an impedance $\mathbf{3} \mathbf{Z}_{\mathbf{n}}$ (carrying current $\mathbf{I}_{\mathbf{0}}$ ) must be included in the zero sequence impedance network.

## Three Phase Fault Level

The symmetrical three phase short-circuit current $\mathbf{I}_{\mathbf{s c}}$ of a power system with no-load line and phase voltages $\mathbf{E}_{\text {line }}$ and $\mathbf{E}_{\text {phase }}$ and source impedance $\mathbf{Z}_{\mathbf{S}}$ per-phase star is:
$\mathbf{I}_{\text {sc }}=\mathbf{E}_{\text {phase }} /\left|\mathbf{Z}_{\mathrm{S}}\right|=\mathbf{E}_{\text {line }} / \sqrt{3}\left|\mathbf{Z}_{\mathrm{S}}\right|$
The three phase fault level $\mathbf{S}_{\mathbf{s c}}$ of the power system is:
$\mathbf{S}_{\text {sc }}=\mathbf{3} \mathbf{I}_{\text {sc }}{ }^{2}\left|\mathbf{Z}_{\mathrm{S}}\right|=\mathbf{3} \mathbf{E}_{\text {phase }} \mathbf{I}_{\mathrm{sc}}=\mathbf{3} \mathbf{E}_{\text {phase }}{ }^{2} /\left|\mathbf{Z}_{\mathrm{S}}\right|=\mathbf{E}_{\text {line }}{ }^{2} /\left|\mathbf{Z}_{\mathrm{S}}\right|$
Note that if the $\mathbf{X} / \mathbf{R}$ ratio of the source impedance $\mathbf{Z}_{\mathbf{S}}$ (comprising resistance $\mathbf{R}_{\mathbf{S}}$ and reactance $\mathbf{X}_{\mathbf{S}}$ ) is sufficiently large, $\left|\mathbf{Z}_{\mathbf{S}}\right| \approx \mathbf{X}_{\mathbf{s}}$.

## Power Factor Correction

If an inductive load with an active power demand $\mathbf{P}$ has an uncorrected power factor of $\boldsymbol{\operatorname { c o s }} \boldsymbol{\phi}_{1}$ lagging, and is required to have a corrected power factor of $\cos \phi_{2}$ lagging, the uncorrected and corrected reactive power demands, $\mathbf{Q}_{1}$ and $\mathbf{Q}_{2}$, are:
$\mathbf{Q}_{1}=\mathbf{P} \boldsymbol{\operatorname { t a n }} \boldsymbol{\phi}_{1}$
$\mathbf{Q}_{2}=\mathbf{P} \boldsymbol{\operatorname { t a n }} \boldsymbol{\phi}_{2}$
where $\tan \phi_{\mathrm{n}}=\left(1 / \cos ^{2} \phi_{\mathrm{n}}-1\right)^{1 / 2}$
The leading (capacitive) reactive power demand $\mathbf{Q}_{\mathbf{C}}$ which must be connected across the load is:
$\mathbf{Q}_{\mathrm{C}}=\mathbf{Q}_{\mathbf{1}}-\mathbf{Q}_{\mathbf{2}}=\mathbf{P}\left(\boldsymbol{\operatorname { t a n } \phi _ { 1 }}-\boldsymbol{\operatorname { t a n }} \boldsymbol{\phi}_{2}\right)$
The uncorrected and corrected apparent power demands, $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$, are related by:
$\mathbf{S}_{1} \boldsymbol{\operatorname { c o s }} \boldsymbol{\phi}_{1}=\mathbf{P}=\mathbf{S}_{\mathbf{2}} \boldsymbol{\operatorname { c o s }} \boldsymbol{\phi}_{\mathbf{2}}$
Comparing corrected and uncorrected load currents and apparent power demands:
$\mathbf{I}_{2} / \mathbf{I}_{1}=\mathbf{S}_{2} / \mathbf{S}_{1}=\boldsymbol{\operatorname { c o s }} \phi_{1} / \cos \phi_{2}$
If the load is required to have a corrected power factor of unity, $\mathbf{Q}_{2}$ is zero and:
$\mathbf{Q}_{\mathrm{C}}=\mathbf{Q}_{1}=\mathbf{P} \boldsymbol{\operatorname { t a n }} \phi_{1}$
$\mathbf{I}_{2} / \mathrm{I}_{1}=\mathrm{S}_{2} / \mathrm{S}_{1}=\cos \phi_{1}=\mathbf{P} / \mathrm{S}_{1}$
Shunt Capacitors
For star-connected shunt capacitors each of capacitance $\mathbf{C}_{\text {star }}$ on a three phase system of line voltage $\mathbf{V}_{\text {line }}$ and frequency $\mathbf{f}$, the leading reactive power demand $\mathbf{Q}_{\mathbf{C s t a r}}$ and the leading reactive line current $\mathbf{I}_{\text {line }}$ are:
$\mathbf{Q}_{\text {Cstar }}=\mathbf{V}_{\text {line }}{ }^{2} / X_{\text {Cstar }}=2 \pi \mathrm{fC}_{\text {star }} \mathbf{V}_{\text {line }}{ }^{2}$
$\mathbf{I}_{\text {line }}=\mathbf{Q}_{\text {Cstar }} / \sqrt{3} \mathbf{V}_{\text {line }}=\mathbf{V}_{\text {line }} / \sqrt{ } \mathbf{3} \mathbf{X}_{\text {Cstar }}$
$\mathrm{C}_{\text {star }}=\mathrm{Q}_{\text {Cstar }} / 2 \boldsymbol{\pi f \mathrm { V } _ { \text { line } }}{ }^{2}$
For delta-connected shunt capacitors each of capacitance $\mathbf{C}_{\text {delta }}$ on a three phase system of line voltage $\mathbf{V}_{\text {line }}$ and frequency $\mathbf{f}$, the leading reactive power demand $\mathbf{Q}_{\text {Cdelta }}$ and the leading reactive line current $\mathbf{I}_{\text {line }}$ are:
$\mathbf{Q}_{\text {Cdelta }}=3 \mathbf{V}_{\text {line }}{ }^{2} / X_{\text {Cdelta }}=6 \pi \mathrm{fC}_{\text {delta }} V_{\text {line }}{ }^{2}$
$\mathbf{I}_{\text {line }}=\mathbf{Q}_{\text {Cdelta }} / \sqrt{3} \mathbf{V}_{\text {line }}=\sqrt{ } \mathbf{3} \mathbf{V}_{\text {line }} / \mathbf{X}_{\text {Cdelta }}$
$\mathbf{C}_{\text {delta }}=\mathbf{Q}_{\text {Cdelta }} / 6 \pi \mathrm{f}_{\text {line }}{ }^{2}$
Note that for the same leading reactive power $\mathbf{Q}_{\mathbf{C}}$ :
$\mathbf{X}_{\text {Cdelta }}=\mathbf{3} \mathbf{X}_{\text {Cstar }}$
$\mathbf{C}_{\text {delta }}=\mathbf{C}_{\text {star }} / 3$

## Reactors

Shunt Reactors
For star-connected shunt reactors each of inductance $\mathbf{L}_{\text {star }}$ on a three phase system of line voltage $\mathbf{V}_{\text {line }}$ and frequency $\mathbf{f}$, the lagging reactive power demand $\mathbf{Q}_{\mathbf{L s t a r}}$ and the lagging reactive line current $\mathbf{I}_{\text {line }}$ are:
$Q_{\text {Lstar }}=V_{\text {line }}{ }^{2} / X_{\text {Lstar }}=V_{\text {line }}{ }^{2} / 2 \pi \mathrm{f}_{\text {star }}$
$\mathbf{I}_{\text {line }}=\mathbf{Q}_{\text {Lstar }} / \sqrt{\mathbf{3}} \mathbf{V}_{\text {line }}=\mathbf{V}_{\text {line }} / \sqrt{\mathbf{3}} \mathbf{X}_{\text {Lstar }}$
$L_{\text {star }}=V_{\text {line }}{ }^{2} / 2 \pi f Q_{\text {Lstar }}$
For delta-connected shunt reactors each of inductance $\mathbf{L}_{\text {delta }}$ on a three phase system of line voltage $\mathbf{V}_{\text {line }}$ and frequency $\mathbf{f}$, the lagging reactive power demand $\mathbf{Q}_{\text {Ldelta }}$ and the lagging reactive line current $\mathbf{I}_{\text {line }}$ are:
$\mathbf{Q}_{\text {Ldelta }}=3 \mathbf{V}_{\text {line }}^{2} / X_{\text {Ldelta }}=3 \mathbf{V}_{\text {line }}^{2} / 2 \pi \mathrm{fL}_{\text {delta }}$
$\mathbf{I}_{\text {line }}=\mathbf{Q}_{\text {Ldelta }} / \sqrt{3} \mathbf{V}_{\text {line }}=\sqrt{3} \mathbf{V}_{\text {line }} / \mathbf{X}_{\text {Ldelta }}$
$\mathbf{L}_{\text {delta }}=3 \mathbf{V}_{\text {line }}{ }^{2} / 2 \pi \mathbf{f Q}_{\text {Ldelta }}$
Note that for the same lagging reactive power $\mathbf{Q}_{\mathbf{L}}$ :
$\mathbf{X}_{\text {Ldelta }}=\mathbf{3} \mathbf{X}_{\text {Lstar }}$
$\mathbf{L}_{\text {delta }}=\mathbf{3} \mathbf{L}_{\text {star }}$
Series Reactors
For series line reactors each of inductance $\mathbf{L}_{\text {series }}$ carrying line current $\mathbf{I}_{\text {line }}$ on a three phase system of frequency $\mathbf{f}$, the voltage drop $\mathbf{V}_{\text {drop }}$ across each line reactor and the total lagging reactive power demand $\mathbf{Q}_{\mathbf{L s e r i e s}}$ of the set of three line reactors are:
$V_{\text {drop }}=I_{\text {line }} X_{\text {Lseries }}=2 \pi \mathrm{fL}_{\text {series }} I_{\text {line }}$
$Q_{\text {Lseries }}=3 V_{\text {drop }}{ }^{2} / X_{\text {Lseries }}=3 V_{\text {drop }} I_{\text {line }}=3 I_{\text {line }}{ }^{2} X_{\text {Lseries }}=6 \pi \mathrm{fL}_{\text {series }} I_{\text {line }}{ }^{2}$
$\mathbf{L}_{\text {series }}=\mathbf{Q}_{\text {Lseries }} / 6 \pi \mathrm{fI}_{\text {line }}{ }^{2}$
Note that the apparent power rating $\mathbf{S}_{\text {rating }}$ of the set of three line reactors is based on the line voltage $\mathbf{V}_{\text {line }}$ and not the voltage drop $\mathbf{V}_{\text {drop }}$ :
$\mathbf{S}_{\text {rating }}=\sqrt{ } \mathbf{3} \mathbf{V}_{\text {line }} \mathbf{I}_{\text {line }}$

## Harmonic Resonance

If a node in a power system operating at frequency $\mathbf{f}$ has a inductive source reactance $\mathbf{X}_{\mathbf{L}}$ per phase and has power factor correction with a capacitive reactance $\mathbf{X}_{\mathbf{C}}$ per phase, the source inductance $\mathbf{L}$ and the correction capacitance $\mathbf{C}$ are:
$\mathbf{L}=\mathbf{X}_{\mathbf{L}} / \omega$
$\mathbf{C}=1 / \omega \mathbf{X}_{\mathbf{C}}$
where $\omega=2 \pi \mathrm{f}$
The series resonance angular frequency $\omega_{r}$ of an inductance $\mathbf{L}$ with a capacitance $\mathbf{C}$ is:
$\omega_{\mathrm{r}}=(\mathbf{1} / \mathbf{L C})^{1 / 2}=\omega\left(\mathbf{X}_{\mathrm{C}} / \mathbf{X}_{\mathrm{L}}\right)^{1 / 2}$
The three phase fault level $\mathbf{S}_{\mathbf{s c}}$ at the node for no-load phase voltage $\mathbf{E}$ and source impedance $\mathbf{Z}$ per-phase star is:

If the ratio $\mathbf{X}_{\mathbf{L}} / \mathbf{R}$ of the source impedance $\mathbf{Z}$ is sufficiently large, $|\mathbf{Z}| \approx \mathbf{X}_{\mathbf{L}}$ so that:
$S_{s c} \approx 3 E^{2} / X_{L}$
The reactive power rating $\mathbf{Q}_{\mathbf{C}}$ of the power factor correction capacitors for a capacitive reactance $\mathbf{X}_{\mathbf{C}}$ per phase at phase voltage $\mathbf{E}$ is:
$\mathbf{Q}_{\mathrm{C}}=\mathbf{3 E} \mathbf{E}^{2} / \mathbf{X}_{\mathrm{C}}$
The harmonic number $\mathbf{f}_{\mathbf{r}} / \mathbf{f}$ of the series resonance of $\mathbf{X}_{\mathbf{L}}$ with $\mathbf{X}_{\mathbf{C}}$ is:
$\mathbf{f}_{\mathrm{r}} / \mathbf{f}=\omega_{\mathrm{r}} / \omega=\left(\mathbf{X}_{\mathrm{C}} / \mathbf{X}_{\mathrm{L}}\right)^{1 / 2} \approx\left(\mathbf{S}_{\mathrm{sc}} / \mathbf{Q}_{\mathrm{C}}\right)^{1 / 2}$
Note that the ratio $\mathbf{X}_{\mathbf{L}} / \mathbf{X}_{\mathbf{C}}$ which results in a harmonic number $\mathbf{f}_{\mathrm{r}} / \mathbf{f}$ is:
$\mathbf{X}_{\mathrm{L}} / \mathbf{X}_{\mathrm{C}}=\mathbf{1} /\left(\mathrm{f}_{\mathrm{r}} / \mathrm{f}\right)^{2}$
so for $\mathbf{f}_{\mathbf{r}} / \mathbf{f}$ to be equal to the geometric mean of the third and fifth harmonics:
$\mathrm{f}_{\mathrm{r}} / \mathrm{f}=\sqrt{15}=\mathbf{3 . 8 7 3}$
$X_{L} / X_{C}=1 / 15=0.067$

## Dielectric Dissipation Factor

If an alternating voltage $\mathbf{V}$ of frequency $\mathbf{f}$ is applied across an insulation system comprising capacitance $\mathbf{C}$ and equivalent series loss resistance $\mathbf{R}_{\mathbf{S}}$, then the voltage $\mathbf{V}_{\mathbf{R}}$ across $\mathbf{R}_{\mathbf{S}}$ and the voltage $\mathbf{V}_{\mathbf{C}}$ across $\mathbf{C}$ due to the resulting current $\mathbf{I}$ are:
$\mathbf{V}_{\mathrm{R}}=\mathbf{I} \mathrm{R}_{\mathrm{S}}$
$\mathbf{V}_{\mathrm{C}}=\mathbf{I} \mathbf{X}_{\mathrm{C}}$
$\mathbf{V}=\left(\mathbf{V}_{\mathbf{R}}{ }^{2}+\mathbf{V}_{\mathbf{C}}{ }^{2}\right)^{1 / 2}$
The dielectric dissipation factor of the insulation system is the tangent of the dielectric loss angle $\boldsymbol{\delta}$ between $\mathbf{V}_{\mathbf{C}}$ and V:
$\tan \delta=\mathrm{V}_{\mathrm{R}} / \mathrm{V}_{\mathrm{C}}=\mathrm{R}_{\mathrm{S}} / \mathrm{X}_{\mathrm{C}}=\mathbf{2 \pi f C R}$
$\mathbf{R}_{\mathrm{S}}=\mathrm{X}_{\mathrm{C}} \boldsymbol{\operatorname { t a n }} \delta=\boldsymbol{\operatorname { t a n }} \delta / \mathbf{2 \pi f}$
Note that an increase in the dielectric losses of a insulation system (from an increase in the series loss resistance $\mathbf{R}_{\mathbf{s}}$ ) results in an increase in $\boldsymbol{\operatorname { t a n }} \boldsymbol{\delta}$. Note also that $\boldsymbol{\operatorname { t a n }} \boldsymbol{\delta}$ increases with frequency.
The dielectric power loss $\mathbf{P}$ is related to the capacitive reactive power $\mathbf{Q}_{C}$ by:
$\mathbf{P}=\mathbf{I}^{\mathbf{2}} \mathbf{R}_{\mathbf{S}}=\mathbf{I}^{\mathbf{2}} \mathbf{X}_{\mathbf{C}} \tan \delta=\mathbf{Q}_{\mathrm{C}} \tan \delta$
The power factor of the insulation system is the cosine of the phase angle $\phi$ between $\mathbf{V}_{\mathbf{R}}$ and $\mathbf{V}$ :
$\cos \phi=\mathbf{V}_{\mathbf{R}} / \mathbf{V}$
so that $\delta$ and $\phi$ are related by:
$\delta+\phi=90^{\circ}$
$\boldsymbol{\operatorname { t a n }} \boldsymbol{\delta}$ and $\boldsymbol{\operatorname { c o s }} \phi$ are related by:
$\tan \delta=1 / \tan \phi=\cos \phi / \sin \phi=\cos \phi /\left(1-\cos ^{2} \phi\right)^{1 / 2}$
so that when $\boldsymbol{\operatorname { c o s }} \phi$ is close to zero, $\boldsymbol{\operatorname { t a n }} \delta \approx \boldsymbol{\operatorname { c o s } \phi}$
Note that the series loss resistance $\mathbf{R}_{\mathbf{S}}$ is not related to the shunt leakage resistance of the insulation system (which is measured using direct current).

## Notation

The library uses the symbol font for some of the notation and formulae. If the symbols for the letters 'alpha beta delta' do not appear here $[\alpha \beta \delta]$ then the symbol font needs to be installed before all notation and formulae will be displayed correctly.

| C | capacitance | [farads, F] | Q | charge | [coulombs, C] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| E | voltage source | [volts, V] | q | instantaneous Q | [coulombs, C] |
| e | instantaneous E | [volts, V] | R | resistance | [ohms, $\Omega$ ] |
| G | conductance | [siemens, S] | T | time constant | [seconds, s] |
| I | current | [amps, A] | t | instantaneous time | [seconds, s] |
| i | instantaneous I | [amps, A] | V | voltage drop | [volts, V] |
| k | coefficient | [number] | v | instantaneous V | [volts, V] |
| L | inductance | [henrys, H] | W | energy | [joules, J] |
| M | mutual inductance | [henrys, H] | $\Phi$ | magnetic flux | [webers, Wb] |
| N | number of turns | [number] | $\Psi$ | magnetic linkage | [webers, Wb] |
| P | power | [watts, W] | $\psi$ | instantaneous $\Psi$ | [webers, Wb] |

## Resistance

The resistance $\mathbf{R}$ of a circuit is equal to the applied direct voltage $\mathbf{E}$ divided by the resulting steady current $\mathbf{I}$ : $\mathbf{R}=\mathbf{E} / \mathbf{I}$

## Resistances in Series

When resistances $\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{3}}, \ldots$ are connected in series, the total resistance $\mathbf{R}_{\mathrm{S}}$ is:

$$
\mathbf{R}_{\mathrm{S}}=\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{3}+\ldots
$$

## Voltage Division by Series Resistances

When a total voltage $\mathbf{E}_{\mathbf{S}}$ is applied across series connected resistances $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$, the current $\mathbf{I}_{\mathbf{S}}$ which flows through the series circuit is:

$$
\mathbf{I}_{\mathbf{S}}=\mathbf{E}_{\mathbf{S}} / \mathbf{R}_{\mathrm{S}}=\mathbf{E}_{\mathrm{S}} /\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)
$$

The voltages $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$ which appear across the respective resistances $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ are:
$\mathbf{V}_{1}=\mathbf{I}_{\mathbf{S}} \mathbf{R}_{1}=\mathbf{E}_{\mathrm{S}} \mathbf{R}_{1} / \mathbf{R}_{\mathrm{S}}=\mathbf{E}_{\mathrm{S}} \mathbf{R}_{1} /\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)$
$\mathbf{V}_{\mathbf{2}}=\mathbf{I}_{\mathbf{S}} \mathbf{R}_{\mathbf{2}}=\mathbf{E}_{\mathrm{S}} \mathbf{R}_{\mathbf{2}} / \mathbf{R}_{\mathrm{S}}=\mathbf{E}_{\mathrm{S}} \mathbf{R}_{\mathbf{2}} /\left(\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}\right)$
In general terms, for resistances $\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}, \ldots$ connected in series:
$I_{S}=E_{S} / R_{S}=E_{S} /\left(\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{3}+\ldots\right)$
$\mathbf{V}_{\mathrm{n}}=\mathbf{I}_{\mathbf{S}} \mathbf{R}_{\mathrm{n}}=\mathbf{E}_{\mathrm{S}} \mathbf{R}_{\mathrm{n}} / \mathbf{R}_{\mathrm{S}}=\mathbf{E}_{\mathrm{S}} \mathbf{R}_{\mathrm{n}} /\left(\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{3}+\ldots\right)$
Note that the highest voltage drop appears across the highest resistance.

## Resistances in Parallel

When resistances $\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}, \ldots$ are connected in parallel, the total resistance $\mathbf{R}_{\mathbf{P}}$ is:
$\mathbf{1} / \mathbf{R}_{\mathbf{P}}=\mathbf{1} / \mathbf{R}_{\mathbf{1}}+\mathbf{1} / \mathbf{R}_{\mathbf{2}}+\mathbf{1} / \mathbf{R}_{\mathbf{3}}+\ldots$
Alternatively, when conductances $\mathbf{G}_{\mathbf{1}}, \mathbf{G}_{\mathbf{2}}, \mathbf{G}_{\mathbf{3}}, \ldots$ are connected in parallel, the total conductance $\mathbf{G}_{\mathbf{P}}$ is:
$\mathbf{G}_{\mathbf{P}}=\mathbf{G}_{1}+\mathbf{G}_{\mathbf{2}}+\mathrm{G}_{3}+\ldots$
where $\mathbf{G}_{\mathbf{n}}=\mathbf{1} / \mathbf{R}_{\mathrm{n}}$
For two resistances $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ connected in parallel, the total resistance $\mathbf{R}_{\mathbf{P}}$ is:
$\mathbf{R}_{\mathbf{P}}=\mathbf{R}_{\mathbf{1}} \mathbf{R}_{\mathbf{2}} /\left(\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}\right)$
$\mathbf{R}_{\mathbf{P}}=$ product / sum
The resistance $\mathbf{R}_{\mathbf{2}}$ to be connected in parallel with resistance $\mathbf{R}_{\mathbf{1}}$ to give a total resistance $\mathbf{R}_{\mathbf{P}}$ is:
$\mathbf{R}_{\mathbf{2}}=\mathbf{R}_{\mathbf{1}} \mathbf{R}_{\mathbf{P}} /\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{P}}\right)$
$\mathbf{R}_{\mathbf{2}}=$ product / difference

## Current Division by Parallel Resistances

When a total current $\mathbf{I}_{\mathbf{P}}$ is passed through parallel connected resistances $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$, the voltage $\mathbf{V}_{\mathbf{P}}$ which appears across the parallel circuit is:

$$
\mathbf{V}_{\mathrm{P}}=\mathbf{I}_{\mathbf{P}} \mathbf{R}_{\mathrm{P}}=\mathbf{I}_{\mathbf{P}} \mathbf{R}_{1} \mathbf{R}_{2} /\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)
$$

The currents $\mathbf{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$ which pass through the respective resistances $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ are:
$\mathbf{I}_{1}=\mathbf{V}_{\mathbf{P}} / \mathbf{R}_{1}=\mathbf{I}_{\mathbf{P}} \mathbf{R}_{\mathbf{P}} / \mathbf{R}_{\mathbf{1}}=\mathbf{I}_{\mathbf{P}} \mathbf{R}_{2} /\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)$
$\mathbf{I}_{\mathbf{2}}=\mathbf{V}_{\mathrm{P}} / \mathbf{R}_{\mathbf{2}}=\mathbf{I}_{\mathrm{P}} \mathbf{R}_{\mathrm{P}} / \mathbf{R}_{\mathbf{2}}=\mathbf{I}_{\mathrm{P}} \mathbf{R}_{\mathbf{1}} /\left(\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}\right)$
In general terms, for resistances $\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}, \ldots$ (with conductances $\mathbf{G}_{\mathbf{1}}, \mathbf{G}_{\mathbf{2}}, \mathbf{G}_{3}, \ldots$ ) connected in parallel:
$\mathbf{V}_{\mathbf{P}}=\mathbf{I}_{\mathbf{P}} \mathrm{R}_{\mathrm{P}}=\mathrm{I}_{\mathrm{P}} / \mathrm{G}_{\mathrm{P}}=\mathrm{I}_{\mathbf{P}} /\left(\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3}+\ldots\right)$
$\mathbf{I}_{\mathrm{n}}=\mathrm{V}_{\mathbf{P}} / \mathbf{R}_{\mathrm{n}}=\mathrm{V}_{\mathbf{P}} \mathbf{G}_{\mathrm{n}}=\mathbf{I}_{\mathrm{P}} \mathbf{G}_{\mathrm{n}} / \mathbf{G}_{\mathrm{P}}=\mathbf{I}_{\mathbf{P}} \mathbf{G}_{\mathrm{n}} /\left(\mathbf{G}_{\mathbf{1}}+\mathbf{G}_{\mathbf{2}}+\mathbf{G}_{3}+\ldots\right)$
where $\mathbf{G}_{\mathrm{n}}=\mathbf{1} / \mathbf{R}_{\mathrm{n}}$
Note that the highest current passes through the highest conductance (with the lowest resistance).

## Capacitance

When a voltage is applied to a circuit containing capacitance, current flows to accumulate charge in the capacitance:
$\mathbf{Q}=\int_{\mathbf{i d t}}=\mathbf{C V}$
Alternatively, by differentiation with respect to time:
$\mathbf{d q} / \mathbf{d t}=\mathbf{i}=\mathbf{C} \mathbf{d v} / \mathbf{d t}$
Note that the rate of change of voltage has a polarity which opposes the flow of current.
The capacitance $\mathbf{C}$ of a circuit is equal to the charge divided by the voltage:
$\mathbf{C}=\mathbf{Q} / \mathbf{V}=\int_{\text {idt }} / \mathbf{V}$
Alternatively, the capacitance $\mathbf{C}$ of a circuit is equal to the charging current divided by the rate of change of voltage: $\mathbf{C}=\mathbf{i} / \mathbf{d v} / \mathbf{d t}=\mathbf{d q} / \mathbf{d t} / \mathbf{d v} / \mathbf{d t}=\mathbf{d q} / \mathbf{d v}$

## Capacitances in Series

When capacitances $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}, \mathbf{C}_{\mathbf{3}}, \ldots$ are connected in series, the total capacitance $\mathbf{C}_{\mathbf{s}}$ is:
$1 / C_{S}=1 / C_{1}+1 / C_{2}+1 / C_{3}+\ldots$
For two capacitances $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ connected in series, the total capacitance $\mathbf{C}_{\mathbf{S}}$ is:
$\mathrm{C}_{\mathrm{S}}=\mathrm{C}_{1} \mathrm{C}_{2} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
$\mathbf{C}_{\mathbf{S}}=$ product $/$ sum

## Voltage Division by Series Capacitances

When a total voltage $\mathbf{E}_{S}$ is applied to series connected capacitances $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$, the charge $\mathbf{Q}$ which accumulates in the series circuit is:
$\mathbf{Q}_{\mathrm{S}}=\int_{\mathbf{i}_{\mathrm{S}} \mathbf{d t}}=\mathbf{E}_{\mathrm{S}} \mathbf{C}_{\mathrm{S}}=\mathbf{E}_{\mathrm{S}} \mathbf{C}_{\mathbf{1}} \mathrm{C}_{\mathbf{2}} /\left(\mathbf{C}_{\mathbf{1}}+\mathrm{C}_{\mathbf{2}}\right)$
The voltages $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$ which appear across the respective capacitances $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ are:
$\mathbf{V}_{1}=\int_{\mathbf{i}_{\mathrm{S}} d t / C_{1}=E_{S} C_{S} / C_{1}=E_{S} C_{2} /\left(C_{1}+C_{2}\right), ~(1)}$
$\mathbf{V}_{\mathbf{2}}=\int_{\mathrm{i}_{\mathrm{S}} \mathrm{dt}} / \mathbf{C}_{\mathbf{2}}=\mathrm{E}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}} / \mathrm{C}_{\mathbf{2}}=\mathrm{E}_{\mathrm{S}} \mathrm{C}_{\mathbf{1}} /\left(\mathrm{C}_{\mathbf{1}}+\mathrm{C}_{2}\right)$
In general terms, for capacitances $\mathbf{C}_{1}, \mathbf{C}_{\mathbf{2}}, \mathbf{C}_{3}, \ldots$ connected in series:
$\mathbf{Q}_{\mathrm{S}}=\int_{\mathbf{i}_{\mathrm{S}} \mathrm{dt}}=\mathbf{E}_{\mathrm{S}} \mathbf{C}_{\mathrm{S}}=\mathbf{E}_{\mathrm{S}} /\left(\mathbf{1} / \mathbf{C}_{\mathrm{S}}\right)=\mathbf{E}_{\mathrm{S}} /\left(\mathbf{1} / \mathbf{C}_{1}+\mathbf{1} / \mathbf{C}_{\mathbf{2}}+\mathbf{1} / \mathbf{C}_{\mathbf{3}}+\ldots\right)$
$\mathbf{V}_{\mathrm{n}}=\int_{\mathrm{i}_{S} d t / C_{n}}=E_{S} C_{S} / C_{n}=E_{S} / C_{n}\left(1 / C_{S}\right)=E_{S} / C_{n}\left(1 / C_{1}+1 / C_{2}+1 / C_{3}+\ldots\right)$
Note that the highest voltage appears across the lowest capacitance.

## Capacitances in Parallel

When capacitances $\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{2}, \mathbf{C}_{3}, \ldots$ are connected in parallel, the total capacitance $\mathbf{C}_{\mathbf{P}}$ is: $\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots$

## Charge Division by Parallel Capacitances

When a voltage $\mathbf{E}_{\mathbf{P}}$ is applied to parallel connected capacitances $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$, the charge $\mathbf{Q}_{\mathbf{P}}$ which accumulates in the parallel circuit is:

The charges $\mathbf{Q}_{\mathbf{1}}$ and $\mathbf{Q}_{\mathbf{2}}$ which accumulate in the respective capacitances $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ are:
$\mathbf{Q}_{1}=\int_{\mathrm{i}_{1} \mathrm{dt}}=\mathbf{E}_{\mathrm{P}} \mathbf{C}_{1}=\mathbf{Q}_{\mathrm{P}} \mathrm{C}_{1} / \mathbf{C}_{\mathrm{P}}=\mathbf{Q}_{\mathrm{P}} \mathrm{C}_{1} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
$\mathbf{Q}_{2}=\int_{\mathbf{i}_{2} \mathbf{d t}}=\mathbf{E}_{\mathrm{P}} \mathbf{C}_{2}=\mathbf{Q}_{\mathrm{P}} \mathbf{C}_{2} / \mathbf{C}_{\mathbf{P}}=\mathbf{Q}_{\mathrm{P}} \mathrm{C}_{2} /\left(\mathbf{C}_{1}+\mathbf{C}_{2}\right)$
In general terms, for capacitances $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{C}_{\mathbf{3}}, \ldots$ connected in parallel:
$\mathbf{Q}_{\mathrm{P}}=\int_{\mathrm{i}_{\mathrm{P}} \mathbf{d t}}=\mathbf{E}_{\mathrm{P}} \mathbf{C}_{\mathbf{P}}=\mathbf{E}_{\mathbf{P}}\left(\mathbf{C}_{1}+\mathbf{C}_{2}+\mathbf{C}_{3}+\ldots\right)$
$\mathbf{Q}_{\mathrm{n}}=\int_{\mathbf{i}_{\mathrm{n}} \mathbf{d t}}=\mathbf{E}_{\mathrm{P}} \mathbf{C}_{\mathrm{n}}=\mathbf{Q}_{\mathrm{P}} \mathbf{C}_{\mathrm{n}} / \mathbf{C}_{\mathrm{P}}=\mathbf{Q}_{\mathrm{P}} \mathbf{C}_{\mathrm{n}} /\left(\mathbf{C}_{1}+\mathbf{C}_{2}+\mathbf{C}_{3}+\ldots\right)$
Note that the highest charge accumulates in the highest capacitance.

## Inductance

When the current changes in a circuit containing inductance, the magnetic linkage changes and induces a voltage in the inductance:

## $\mathbf{d} \psi / \mathbf{d t}=\mathbf{e}=\mathbf{L} \mathbf{d i} / \mathbf{d t}$

Note that the induced voltage has a polarity which opposes the rate of change of current.
Alternatively, by integration with respect to time:
$\Psi=\int \mathbf{e d t}=\mathbf{L I}$
The inductance $\mathbf{L}$ of a circuit is equal to the induced voltage divided by the rate of change of current:
$L=e / d i / d t=d \psi / d t / d i / d t=d \psi / d i$
Alternatively, the inductance $\mathbf{L}$ of a circuit is equal to the magnetic linkage divided by the current:
$\mathbf{L}=\Psi / \mathbf{I}$
Note that the magnetic linkage $\Psi$ is equal to the product of the number of turns $\mathbf{N}$ and the magnetic flux $\boldsymbol{\Phi}$ : $\Psi=\mathbf{N} \boldsymbol{\Phi}=\mathbf{L I}$

## Mutual Inductance

The mutual inductance $\mathbf{M}$ of two coupled inductances $\mathbf{L}_{\mathbf{1}}$ and $\mathbf{L}_{\mathbf{2}}$ is equal to the mutually induced voltage in one inductance divided by the rate of change of current in the other inductance:
$\mathbf{M}=\mathbf{E}_{\mathbf{2 m}} /\left(\mathbf{d i}_{1} / \mathbf{d t}\right)$
$\mathbf{M}=\mathbf{E}_{\mathbf{1 m}} /(\mathbf{d i} / \mathbf{d t})$
If the self induced voltages of the inductances $\mathbf{L}_{1}$ and $\mathbf{L}_{2}$ are respectively $\mathbf{E}_{1 s}$ and $\mathbf{E}_{2 s}$ for the same rates of change of the current that produced the mutually induced voltages $\mathbf{E}_{1 \mathrm{~m}}$ and $\mathbf{E}_{2 \mathrm{~m}}$, then:
$\mathbf{M}=\left(\mathbf{E}_{2 \mathrm{~m}} / \mathbf{E}_{1 \mathrm{~s}}\right) \mathbf{L}_{\mathbf{1}}$
$\mathbf{M}=\left(\mathbf{E}_{1 \mathrm{~m}} / \mathbf{E}_{2 \mathrm{~s}}\right) \mathbf{L}_{\mathbf{2}}$
Combining these two equations:
$M=\left(\mathbf{E}_{1 \mathrm{~m}} \mathbf{E}_{2 \mathrm{~m}} / \mathbf{E}_{1 \mathrm{~s}} \mathbf{E}_{2 \mathrm{~s}}\right)^{1 / 2}\left(\mathbf{L}_{1} \mathbf{L}_{2}\right)^{1 / 2}=\mathbf{k}_{\mathrm{M}}\left(\mathbf{L}_{1} \mathbf{L}_{2}\right)^{1 / 2}$
where $\mathbf{k}_{\mathbf{M}}$ is the mutual coupling coefficient of the two inductances $\mathbf{L}_{1}$ and $\mathbf{L}_{\mathbf{2}}$.
If the coupling between the two inductances $\mathbf{L}_{1}$ and $\mathbf{L}_{\mathbf{2}}$ is perfect, then the mutual inductance $\mathbf{M}$ is:
$M=\left(L_{1} \mathbf{L}_{2}\right)^{1 / 2}$

## Inductances in Series

When uncoupled inductances $\mathbf{L}_{\mathbf{1}}, \mathbf{L}_{\mathbf{2}}, \mathbf{L}_{\mathbf{3}}, \ldots$ are connected in series, the total inductance $\mathbf{L}_{\mathbf{S}}$ is:
$\mathbf{L}_{\mathbf{S}}=\mathbf{L}_{1}+\mathbf{L}_{\mathbf{2}}+\mathbf{L}_{3}+\ldots$
When two coupled inductances $\mathbf{L}_{1}$ and $\mathbf{L}_{2}$ with mutual inductance $\mathbf{M}$ are connected in series, the total inductance $\mathbf{L}_{\mathbf{s}}$ is:
$\mathrm{L}_{\mathrm{S}}=\mathrm{L}_{1}+\mathrm{L}_{2} \pm \mathbf{2 M}$
The plus or minus sign indicates that the coupling is either additive or subtractive, depending on the connection polarity.

## Inductances in Parallel

When uncoupled inductances $\mathbf{L}_{\mathbf{1}}, \mathbf{L}_{\mathbf{2}}, \mathbf{L}_{\mathbf{3}}, \ldots$ are connected in parallel, the total inductance $\mathbf{L}_{\mathbf{P}}$ is: $1 / L_{P}=1 / L_{1}+1 / L_{2}+1 / L_{3}+\ldots$

## Time Constants

## Capacitance and resistance

The time constant of a capacitance $\mathbf{C}$ and a resistance $\mathbf{R}$ is equal to $\mathbf{C R}$, and represents the time to change the voltage on the capacitance from zero to $\mathbf{E}$ at a constant charging current $\mathbf{E} / \mathbf{R}$ (which produces a rate of change of voltage $\mathbf{E} / \mathbf{C R}$ across the capacitance).
Similarly, the time constant $\mathbf{C R}$ represents the time to change the charge on the capacitance from zero to $\mathbf{C E}$ at a constant charging current $\mathbf{E} / \mathbf{R}$ (which produces a rate of change of voltage $\mathbf{E} / \mathbf{C R}$ across the capacitance).
If a voltage $\mathbf{E}$ is applied to a series circuit comprising a discharged capacitance $\mathbf{C}$ and a resistance $\mathbf{R}$, then after time $\boldsymbol{t}$ the current $\mathbf{i}$, the voltage $\mathbf{v}_{\mathbf{R}}$ across the resistance, the voltage $\mathbf{v}_{\mathbf{C}}$ across the capacitance and the charge $\mathbf{q}_{\mathbf{C}}$ on the capacitance are:
$\mathbf{i}=(\mathbf{E} / \mathbf{R}) \mathrm{e}^{-\mathbf{t} / \mathrm{CR}}$
$\mathbf{v}_{\mathrm{R}}=\mathbf{i R}=\mathbf{E e}^{-\mathrm{t} / \mathrm{CR}}$
$v_{C}=E-v_{R}=E\left(1-e^{-t / C R}\right)$
$\mathbf{q}_{\mathrm{C}}=\mathbf{C} \mathbf{v}_{\mathrm{C}}=\mathbf{C E}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{CR}}\right)$
If a capacitance $\mathbf{C}$ charged to voltage $\mathbf{V}$ is discharged through a resistance $\mathbf{R}$, then after time $\mathbf{t}$ the current $\mathbf{i}$, the voltage $\mathbf{v}_{\mathbf{R}}$ across the resistance, the voltage $\mathbf{v}_{\mathbf{C}}$ across the capacitance and the charge $\mathbf{q}_{\mathbf{C}}$ on the capacitance are:
$\mathbf{i}=(\mathbf{V} / \mathbf{R}) \mathrm{e}^{-\mathbf{t} / \mathbf{C R}}$
$\mathbf{V}_{\mathbf{R}}=\mathbf{i} \mathbf{R}=\mathbf{V e}^{-t / C R}$
$\mathbf{v}_{\mathrm{C}}=\mathbf{v}_{\mathbf{R}}=\mathrm{Ve}^{-\mathrm{t} / \mathrm{CR}}$
$\mathbf{q}_{\mathrm{C}}=\mathbf{C v}_{\mathbf{C}}=\mathbf{C V e}^{-\mathbf{t} / \mathbf{C R}}$

## Inductance and resistance

The time constant of an inductance $\mathbf{L}$ and a resistance $\mathbf{R}$ is equal to $\mathbf{L} / \mathbf{R}$, and represents the time to change the current in the inductance from zero to $\mathbf{E} / \mathbf{R}$ at a constant rate of change of current $\mathbf{E} / \mathbf{L}$ (which produces an induced voltage $\mathbf{E}$ across the inductance).
If a voltage $\mathbf{E}$ is applied to a series circuit comprising an inductance $\mathbf{L}$ and a resistance $\mathbf{R}$, then after time $\mathbf{t}$ the current $\mathbf{i}$, the voltage $\mathbf{v}_{\mathbf{R}}$ across the resistance, the voltage $\mathbf{v}_{\mathbf{L}}$ across the inductance and the magnetic linkage $\psi_{\mathbf{L}}$ in the inductance are:
$\mathbf{i}=(\mathbf{E} / \mathbf{R})\left(\mathbf{1}-\mathrm{e}^{-\mathrm{tR} / \mathrm{L}}\right)$
$v_{R}=i R=E\left(1-e^{-t R / L}\right)$
$\mathbf{v}_{\mathbf{L}}=\mathbf{E}-\mathbf{v}_{\mathbf{R}}=\mathbf{E e}^{-\mathbf{t R} / \mathbf{L}}$
$\psi_{L}=\mathbf{L i}=(\mathbf{L E} / \mathbf{R})\left(\mathbf{1}-\mathrm{e}^{-\mathrm{tR} / \mathbf{L}}\right)$
If an inductance $\mathbf{L}$ carrying a current $\mathbf{I}$ is discharged through a resistance $\mathbf{R}$, then after time $\mathbf{t}$ the current $\mathbf{i}$, the voltage $\mathbf{v}_{\mathbf{R}}$ across the resistance, the voltage $\mathbf{v}_{\mathbf{L}}$ across the inductance and the magnetic linkage $\psi_{\mathbf{L}}$ in the inductance are:
$\mathbf{i}=\mathbf{I} e^{-t R / L}$
$v_{R}=\mathbf{i R}=\mathbf{I R e} e^{-t R / L}$
$\mathbf{v}_{\mathbf{L}}=\mathbf{v}_{\mathbf{R}}=\mathbf{I R e ^ { - t R } / \mathrm { L }}$
$\psi_{\mathbf{L}}=\mathbf{L i}=\mathbf{L I} e^{-\mathrm{tR} / \mathbf{L}}$

## Rise Time and Fall Time

The rise time (or fall time) of a change is defined as the transition time between the $10 \%$ and $90 \%$ levels of the total change, so for an exponential rise (or fall) of time constant $\mathbf{T}$, the rise time (or fall time) $\mathbf{t}_{10-90}$ is:
$\mathbf{t}_{10-90}=(\ln 0.9-\ln 0.1) \mathbf{T} \approx 2.2 \mathbf{T}$
The half time of a change is defined as the transition time between the initial and $50 \%$ levels of the total change, so for an exponential change of time constant $\mathbf{T}$, the half time $\mathbf{t}_{50}$ is :
$\mathbf{t}_{\mathbf{5 0}}=(\ln 1.0-\ln 0.5) \mathbf{T} \approx 0.69 \mathbf{T}$
Note that for an exponential change of time constant $\mathbf{T}$ :

- over time interval $\mathbf{T}$, a rise changes by a factor $\mathbf{1 - e ^ { - 1 }}(\approx 0.63)$ of the remaining change,
- over time interval $\mathbf{T}$, a fall changes by a factor $\mathbf{e}^{-1}(\approx 0.37)$ of the remaining change,
- after time interval 3T, less than $5 \%$ of the total change remains,
- after time interval 5T, less than $1 \%$ of the total change remains.


## Power

The power $\mathbf{P}$ dissipated by a resistance $\mathbf{R}$ carrying a current $\mathbf{I}$ with a voltage drop $\mathbf{V}$ is: $\mathbf{P}=\mathbf{V}^{\mathbf{2}} / \mathbf{R}=\mathbf{V I}=\mathbf{I}^{\mathbf{2}} \mathbf{R}$
Similarly, the power $\mathbf{P}$ dissipated by a conductance $\mathbf{G}$ carrying a current $\mathbf{I}$ with a voltage drop $\mathbf{V}$ is: $\mathbf{P}=\mathbf{V}^{\mathbf{2}} \mathbf{G}=\mathbf{V I}=\mathbf{I}^{\mathbf{2}} / \mathbf{G}$
The power $\mathbf{P}$ transferred by a capacitance $\mathbf{C}$ holding a changing voltage $\mathbf{V}$ with charge $\mathbf{Q}$ is:
$\mathbf{P}=\mathbf{V I}=\mathbf{C V}(\mathbf{d v} / \mathbf{d t})=\mathbf{Q}(\mathbf{d v} / \mathbf{d t})=\mathbf{Q}(\mathbf{d q} / \mathbf{d t}) / \mathbf{C}$
The power $\mathbf{P}$ transferred by an inductance $\mathbf{L}$ carrying a changing current $\mathbf{I}$ with magnetic linkage $\Psi$ is:
$\mathbf{P}=\mathbf{V I}=\mathbf{L I}(\mathbf{d i} / \mathbf{d t})=\Psi(\mathbf{d i} / \mathbf{d t})=\Psi(\mathbf{d} \psi / \mathbf{d t}) / \mathbf{L}$

## Energy

The energy $\mathbf{W}$ consumed over time $\mathbf{t}$ due to power $\mathbf{P}$ dissipated in a resistance $\mathbf{R}$ carrying a current $\mathbf{I}$ with a voltage drop $\mathbf{V}$ is:

## $\mathbf{W}=\mathbf{P t}=\mathbf{V}^{\mathbf{2}} \mathbf{t} / \mathbf{R}=\mathbf{V I t}=\mathbf{I}^{\mathbf{2}} \mathbf{t} \mathbf{R}$

Similarly, the energy $\mathbf{W}$ consumed over time $\mathbf{t}$ due to power $\mathbf{P}$ dissipated in a conductance $\mathbf{G}$ carrying a current $\mathbf{I}$ with a voltage drop $\mathbf{V}$ is:
$\mathbf{W}=\mathbf{P t}=\mathbf{V}^{2} \mathbf{t G}=\mathbf{V I t}=\mathbf{I}^{\mathbf{2}} \mathbf{t} / \mathbf{G}$
The energy $\mathbf{W}$ stored in a capacitance $\mathbf{C}$ holding voltage $\mathbf{V}$ with charge $\mathbf{Q}$ is:
$\mathbf{W}=\mathbf{C V}^{2} / 2=\mathbf{Q V} / 2=\mathbf{Q}^{2} / 2 \mathrm{C}$
The energy $\mathbf{W}$ stored in an inductance $\mathbf{L}$ carrying current $\mathbf{I}$ with magnetic linkage $\Psi$ is:
$\mathbf{W}=\mathbf{L I}^{\mathbf{2}} / \mathbf{2}=\Psi \mathbf{I} / \mathbf{2}=\Psi^{\mathbf{2}} / \mathbf{2 L}$

## Batteries

If a battery of open-circuit voltage $\mathbf{E}_{\mathbf{B}}$ has a loaded voltage $\mathbf{V}_{\mathbf{L}}$ when supplying load current $\mathbf{I}_{\mathbf{L}}$, the battery internal resistance $\mathbf{R}_{\mathbf{B}}$ is:
$R_{B}=\left(E_{B}-V_{L}\right) / I_{L}$
The load voltage $\mathbf{V}_{\mathbf{L}}$ and load current $\mathbf{I}_{\mathbf{L}}$ for a load resistance $\mathbf{R}_{\mathbf{L}}$ are:
$V_{L}=I_{L} R_{L}=E_{B}-I_{L} R_{B}=E_{B} R_{L} /\left(R_{B}+R_{L}\right)$
$\mathbf{I}_{\mathrm{L}}=\mathbf{V}_{\mathrm{L}} / \mathbf{R}_{\mathrm{L}}=\left(\mathbf{E}_{\mathrm{B}}-\mathbf{V}_{\mathrm{L}}\right) / \mathbf{R}_{\mathrm{B}}=\mathbf{E}_{\mathrm{B}} /\left(\mathbf{R}_{\mathrm{B}}+\mathbf{R}_{\mathrm{L}}\right)$
The battery short-circuit current $\mathbf{I}_{\text {sc }}$ is:
$\mathbf{I}_{\mathrm{sc}}=\mathbf{E}_{\mathrm{B}} / \mathbf{R}_{\mathrm{B}}=\mathbf{E}_{\mathrm{B}} \mathbf{I}_{\mathrm{L}} /\left(\mathbf{E}_{\mathbf{B}}-\mathbf{V}_{\mathrm{L}}\right)$

## Voltmeter Multiplier

The resistance $\mathbf{R}_{\mathbf{S}}$ to be connected in series with a voltmeter of full scale voltage $\mathbf{V}_{\mathbf{V}}$ and full scale current drain $\mathbf{I}_{\mathbf{V}}$ to increase the full scale voltage to $\mathbf{V}$ is:
$\mathbf{R}_{\mathbf{S}}=\left(\mathbf{V}-\mathbf{V}_{\mathbf{V}}\right) / \mathbf{I}_{\mathbf{V}}$
The power $\mathbf{P}$ dissipated by the resistance $\mathbf{R}_{\mathbf{S}}$ with voltage drop ( $\mathbf{V}-\mathbf{V}_{\mathbf{V}}$ ) carrying current $\mathbf{I}_{\mathbf{V}}$ is: $\mathbf{P}=\left(\mathbf{V}-\mathbf{V}_{\mathrm{V}}\right)^{2} / \mathbf{R}_{\mathrm{S}}=\left(\mathbf{V}-\mathbf{V}_{\mathrm{V}}\right) \mathbf{I}_{\mathrm{V}}=\mathbf{I}_{\mathrm{V}}{ }^{2} \mathbf{R}_{\mathrm{S}}$

## Ammeter Shunt

The resistance $\mathbf{R}_{\mathbf{P}}$ to be connected in parallel with an ammeter of full scale current $\mathbf{I}_{\mathbf{A}}$ and full scale voltage drop $\mathbf{V}_{\mathbf{A}}$ to increase the full scale current to $\mathbf{I}$ is:
$\mathbf{R}_{\mathbf{P}}=\mathbf{V}_{\mathbf{A}} /\left(\mathbf{I}-\mathbf{I}_{\mathbf{A}}\right)$
The power $\mathbf{P}$ dissipated by the resistance $\mathbf{R}_{\mathbf{P}}$ with voltage drop $\mathbf{V}_{\mathbf{A}}$ carrying current $\left(\mathbf{I}-\mathbf{I}_{\mathbf{A}}\right)$ is: $\mathbf{P}=\mathbf{V}_{\mathbf{A}}{ }^{2} / \mathbf{R}_{\mathbf{P}}=\mathbf{V}_{\mathbf{A}}\left(\mathbf{I}-\mathbf{I}_{\mathrm{A}}\right)=\left(\mathbf{I}-\mathbf{I}_{\mathrm{A}}\right)^{2} \mathbf{R}_{\mathbf{P}}$

