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Association Studies

Jennifer H. Barrett

1. Introduction
A classical case-control study design is frequently used in genetic epidemiol-

ogy to investigate the association between genotype and the presence or absence
of disease. Association studies can also be useful in the investigation of quantita-
tive traits. The aim of such studies is to test for association at the population
level between the quantitative trait and genotype at a particular locus. Whether
investigating qualitative or quantitative traits, such studies depend on the prior
identification of a candidate gene or genes. The genotyped locus could either
be a polymorphism within a potentially trait-affecting gene or a marker in
linkage disequilibrium with such a gene. Currently, screening of the whole
genome is only feasible using linkage analysis, which is discussed elsewhere,
because linkage extends over much greater distances than does linkage disequi-
librium.

Quantitative trait association studies are based on a sample of unrelated
subjects from the population. Various sampling designs are possible, including
random sampling and sampling on the basis of an extreme phenotype. The
advantages and disadvantages of these alternative designs are discussed.

The basic method of analysis is called analysis of variance (see Subheading
2.1.) a standard statistical technique for testing for differences in mean between
two or more groups, on the basis of the comparison of between- and within-
group variances. An alternative if subjects are sampled on the basis of extreme
phenotype is to compare genotypes between groups with high and low trait
values (see Subheading 2.2.).

From: Methods in Molecular Biology: vol. 195: Quantitative Trait Loci: Methods and Protocols.
Edited by: N. J. Camp and A. Cox  Humana Press, Inc., Totowa, NJ

3



4 Barrett

2. Methods

2.1. Analysis of Variance and Linear Regression

The standard approach to the analysis of quantitative trait association studies
assumes the following model. The phenotype yij of individual i with genotype
j at the locus of interest is given by

yjj = µj + ei (1)

where µj is the mean for the jth genotype and ei represents residual environmental
and possibly polygenic effects for individual i, assumed to be Normally distrib-
uted with mean 0 and variance σe

2. The data required consist of measured
phenotypes and genotypes on a sample of unrelated individuals. The parameters
µj are estimated in the obvious way by the mean values of individuals with
genotype j. The F-statistic from analysis of variance (ANOVA), the ratio of
between- and within-genotype variances, is used to test for the association
between genotype and phenotype, because under the null hypothesis that all
genotypes have the same mean and variance, this ratio should be 1. This
approach has been called the measured-genotype test (1), in contrast to earlier
biometrical methods that use information on the distribution of the phenotype
only (i.e., with unmeasured genotype) discussed briefly in Note 1.

Equivalently, a linear regression analysis of phenotype on genotype can be
carried out, possibly including as covariates other factors that may be related
to phenotype. Where the genotype is determined by one biallelic polymorphism
(with possible genotypes AA, AB, and BB), a test for trend is provided by
regressing the phenotype on the number of copies of the A allele.

There are many examples of this type of approach in the literature. For
example, O’Donnell et al. (2) used multiple linear regression to investigate the
relationship between diastolic blood pressure and different genotypes of the
angiotensin-converting enzyme (ACE) gene. Hegele et al. (3) use analysis of
variance to demonstrate association between serum concentrations of creatinine
and urea and the gene encoding angiotensinogen (AGT).

2.2 Analysis of Extreme Groups

An alternative approach is to use a sampling scheme that selects individuals
on the basis of extreme phenotypes (4,5). There is considerable literature on
the use of such sampling schemes for sibling pair linkage studies (e.g., ref. 6).
Extreme sampling is advocated to increase power and efficiency, as extremes
are more informative. The approach is particularly useful when the phenotype
is relatively easy to measure, so that large numbers of individuals can easily
be screened to select extremes for genotyping.
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In association studies adopting this method, individuals are randomly selected
conditional on their phenotype being below a specified lower threshold or
exceeding a specified upper threshold. Alternatively, the upper and lower n
percentiles of a random sample from the population may be included. A cross-
tabulation is then formed by classifying subjects by genotype and by high/low
phenotype. The genotype frequencies are then compared between subjects with
high and low trait values using a chi-squared test. For example, Hegele et al.
(3) compared allele and genotype frequencies at the AGT locus in subjects
with the lowest and highest quartiles of serum creatinine and urea levels.

3. Interpretation
In common with association studies for qualitative traits, a significant associa-

tion does not demonstrate an effect of the polymorphism considered, because
it may also arise through linkage disequilibrium with another locus. A further
similarity is that population admixture can lead to spurious associations. For
this reason, family-based approaches, such as the transmission-disequilibrium
test for quantitative traits (7), have been developed (see Chapter 5).

3.1. Heterogeneity

Published results of associations with quantitative as with qualitative traits
are not always in agreement. Because for most complex traits the effect of any
one locus is likely to be small, individual studies are often not sufficiently
powerful to detect association. To address this issue, Juo et al. (8) carried out
a meta-analysis of studies investigating association between apolipoprotein A-
I levels and variants of the apolipoprotein gene, which had produced conflicting
results. This is a potentially useful approach, but may be flawed by publication
bias, which is likely to be more of an issue in epidemiological studies than in
clinical trials. There is also an assumption that patients are genetically and
clinically homogeneous, with similar environmental exposures.

3.2. Using Extremes

An important consideration when using extreme sampling strategies (as in
outlined in Subheading 2.2.) is that extremes may be untypical of the quantita-
tive trait as a whole in that they may be under the influence of other genes.
A clear example of this, cited in ref. 4, is that studying individuals with
achondroplastic dwarfism would be inappropriate if the primary interest were
in identifying genes controlling height.

3.3. Power of Association Studies

An attractive feature of association studies is that they may require smaller
sample sizes than methods based on linkage (9).
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Schork et al. (5) investigated the power of the extreme sampling method
analytically (Subheading 2.2.) to detect association between the trait and a
single biallelic marker in linkage disequilibrium with a trait-affecting locus.
Power depends on many factors, including locus-specific heritability, degree
of linkage disequilibrium, allele frequencies, mode of inheritance, and choice
of threshold. In some settings, overall sample sizes of less than 500 provided
adequate power to detect association with a locus accounting for 10% of the
trait variance.

The power of several methods of analysis, variants of those described here,
has been compared in a simulation study (10). Under the models considered,
ANOVA/linear regression (see Subheading 2.1.) generally performed better
than a variant of the extremes method (see Subheading 2.2.), based on the
same number of genotyped individuals, as most of the information on phenotype
is lost by categorizing into “high” and “low” values. As with any method based
on selective sampling, another drawback is that it is also necessary to phenotype
a larger number of subjects to achieve the same sample size for analysis. The
same authors suggested a variation on ANOVA/linear regression, the truncated
measured genotype (TMG) test, where only extremes are included in the analysis
(see Note 4). This TMG test was found to be more powerful than ANOVA/
linear regression for the same sample size of genotyped individuals, although,
again, a larger number of subjects must be phenotyped to achieve this. These
results are, however, dependent on the underlying genetic model. Allison et
al. (4) showed that extreme sampling can actually lead to a decrease in power
in the presence of another gene influencing the trait.

Page and Amos (10) also found that variants of ANOVA/linear regression
and of the TMG test, which are based on alleles, were more powerful than the
genotype-based methods discussed earlier. In these approaches, the phenotype
of each individual contributes to two groups, one for each allele or, in the case
of homozygotes, contributes twice to one group. Allele-based methods, which
“double the sample size,” are generally only valid under the assumption of
Hardy–Weinberg equilibrium (11). Furthermore, the greater power of this
approach is to be expected for the models used in these simulations, all of which
assumed an additive effect of the trait allele, and may not apply more generally.

Long and Langley (12) investigated the power to detect association using
a number of single nucleotide polymorphisms in the region of a quantitative
trait locus, but excluding the functional locus itself. Their test statistic was
based on ANOVA (see Subheading 2.1); the significance of the largest F-
statistic obtained from any marker was estimated from its empirical distribution
based on 1000 random permutations of the phenotype/marker data. From their
simulations, they concluded that, using about 500 individuals, there was gener-
ally sufficient power to detect association if 5–10% of the phenotypic variation
was attributable to the locus. Furthermore, tests using single markers had greater
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Table 1
Summary Data on ACE Levels According to Genotype

ace geno Mean Std. dev. Freq.

II 74.496732 31.729764 153
ID 90.233871 39.484505 124
DD 103.73913 46.564928 23
Total 83.243333 37.475487 300

power than haplotype-based tests. The latter were based on comparing mean
trait values across all distinct haplotypes, and the authors concede that other
haplotype-based tests making use of additional information may perform better.

4. Software
The basic methods described in this chapter can be carried out in standard

statistical software packages such as Stata (13), which is used here, SAS, or
SPSS. The data would generally be expected to consist of one record for each
subject, recording their measured trait value, their genotype, and any covariates
of interest.

5. Worked Example

5.1. Analysis of Variance

An insertion/deletion (I/D) polymorphism of the ACE gene is associated
with plasma ACE levels in some populations. Plasma ACE levels were measured
and I/D genotype obtained for 300 Pima Indians to investigate the relationship
in this population (14). The data consist of 300 records, including ACE levels
(ranging from 7 to 238 units) and genotype (II, ID, or DD).

In Stata, ANOVA can be carried out by the command

oneway ace leve ace geno, tabulate

where ace leve and ace geno are the variables for ACE levels and genotype,
respectively. This produces Tables 1 and 2. Table 1 is produced by specifying
the tabulate option after the oneway command (for one-way analysis of variance)
and provides useful summary information. In addition to the mean ACE levels
within each genotype group (i.e., estimates of µ1, µ2, and µ3), the standard
deviation and the number of subjects with each genotype are displayed. It can
be seen that individuals with the DD genotype have much higher levels on
average than those with the II genotype, with intermediate levels found in
heterozygotes.

Table 2 is the basic ANOVA table. The total variability of the data is
measured by the total sum of squares (419,919) (i.e. the sum of squares of the
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Table 2
Analysis of Variance Results for the Data in Table 1

Source SS df MS F Prob > F

Between groups 27426.3358 2 13713.1679 10.38 0.0000
Within groups 392492.901 297 1321.52492
Total 419919.237 299 1404.41216

differences between each of the observations and the overall mean). This figure
can be separated into the between-genotype sum of squares (the sum of squares
of the difference between the group mean and the overall mean) and the within-
genotype sum of squares (the sum of squares of the differences between each
observation and the mean for the corresponding genotype). These are used to
estimate the corresponding variance, shown in the mean square (MS) column,
by dividing by the number of degrees of freedom. [The number of degrees of
freedom is one less than the number of groups or observations within groups
(i.e., 3−1 for between genotypes and 152+123+22 within genotypes).] The
F-statistic (10.38) is the ratio of these estimated variances. Under the null
hypothesis of no difference between groups, its expected value is 1 and it
should follow an F-distribution with (2, 297) degrees of freedom. In this case,
there is overwhelming evidence for a difference in level according to genotype.
The differences in the initial table are not the result of random variation.

The analysis of variance table (Table 2) can also be obtained by using the
Stata command

anova ace leve ace geno

This gives the additional information

R-squared = 0.0653

indicating that the I/D genotype explains 6.5% of the variance in plasma ACE
levels in this population.

Slightly different output, but exactly the same F-test and estimate of R-
squared can alternatively be obtained by carrying out a regression analysis:

xi: regress ace leve i.ace geno

The i in front of the ACE genotype variable shows that this is to be treated
as a categorical variable in the analysis. If, instead, interest was in testing for
a trend in ACE levels with the number of D alleles, then genotype could be
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Table 3
Genotype Frequencies in Two Extreme Groups Defined by the Top and
Bottom Quintiles of ACE Levelsa

ace geno
Five quantiles of
ace leve II ID DD Total

1 39 20 3 62
62.90 32.26 4.84 100.00

5 17 33 10 122
28.33 55.00 16.67 100.00

Total 56 53 13 122
45.90 43.44 10.66 100.00

a Pearson chi2(2) = 15.5722, Pr = 0.000.

coded as 0, 1, or 2 to indicate the number of D alleles, and the following
regression carried out:

regress ace leve ace geno

This produces an F-statistic of 20.77 on (1, 298) degrees of freedom.

5.2. Analysis of Extremes

Using the same dataset, a new variable is created, recording the appropriate
quantile for each subject’s ACE level. In this example, quintiles are used,
creating 5 groups of approximately 60 subjects. This is easily done in Stata
as follows:

xtile acegp5=ace leve, nq(5)

A chi-squared test is then carried out comparing the top and bottom quintiles:

tab acegp5 ace geno if acegp5==1 | acegp5==5, chi row

producing Table 3.
The chi-squared statistic of 15.57 on 2 degrees of freedom again indicates

very strong evidence of association between ACE levels and genotype, even
though only 40% of the original subjects are used in the analysis. Nearly 63%
of those with low ACE levels had II genotype compared with only 28% of
those with high levels, and the DD genotype was over three times as common
in those with high levels compared with those with low levels.

6. Notes

1. Commingling analysis. The model underlying ANOVA (see Subheading 2.1.)
assumes that the data consist of a mixture of Normal distributions, one corresponding
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to each genotype, each with the same variance. Even in the absence of genotype
data, statistical methods can be used to test for evidence of a mixture of more than
one Normal distribution. This “unmeasured genotype” approach is sometimes known
as commingling analysis. Evidence for a mixture of two or three distributions is
supportive of the hypothesis that a major gene underlies the trait, although, of
course, environmental factors could also give rise to distinct distributions. Model
fitting allows estimates to be made of parameters of interest such as µj and σe

2 and
the proportion of subjects in each class.

In the presence of genotype data in a candidate gene, the method of commingling
analysis can be extended to condition on the measured polymorphism(s). In addition
to testing for evidence of a mixture of distributions, this method also provides
evidence of whether the measured genotype itself gives rise to the mixture or whether
another polymorphism in the gene is a more likely explanation (15,16).

2. Distributional assumptions. In view of the underlying model for ANOVA, a Nor-
malizing transformation may be applied to the data. It is important to note that the
model assumes a Normal distribution within each genotype rather than overall. (In
commingling analysis, Normalizing the data leads to a conservative test for mixture,
as this may remove skewness in the overall distribution of the data arising from
the mixing of distributions.) The further assumption of a common within-genotype
variance can be tested, and homogeneity of variance may sometimes be achieved
by transformation. In the worked example in this chapter, there is some evidence
for heterogeneity in the variances. One advantage of the extremes method outlined
in Subheading 2.2. is that it does not rely on these distributional assumptions.

3. Nonparametric alternatives. Another nonparametric alternative to ANOVA is the
Kruskal–Wallis test. In this approach, the complete set of N trait values is ranked
from 1 to N, and the average rank in each genotype group is calculated. The test
statistic is based on comparing the genotype-specific average ranks with the overall
average rank of (N+1)/2. Under the null hypothesis of no genotype–phenotype
association, the test statistic follows a chi-squared distribution with two degrees of
freedom (assuming three genotypes), and a significantly higher value indicates that
the distributions differ. Applying this method to the example in Subheading 5., the
test statistic takes the value 18.2 (p=0.0001). This method is only slightly less
powerful than ANOVA when the data are Normally distributed and has the advantage
that distributional assumptions are not made. However, the test alone is not very
informative, and, in general, the estimates provided by ANOVA are also useful.

4. Analysis of extremes. An alternative suggestion for the analysis of extreme samples,
the TMG method mentioned earlier, is to use analysis of variance, ignoring the
sampling scheme. The analysis of variance assumption of random sampling from
a Normal distribution is violated, but it has been argued that, for large enough
sample sizes, the significance level of the test is still correct (10). The analogs of
this test and of those outlined in Subheadings 2.1. and 2.2. based on alleles rather
than genotypes, where each individual’s phenotype contributes twice to the analysis,
violate the further assumption of independence of observations.

Slatkin (17) suggested selecting individuals on the basis of unusually high (or
low) trait values and testing (1) for a difference in genotype frequency between the
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selected sample and a random sample and (2) for differences in phenotype distribu-
tion according to genotype within the selected sample. These two tests are approxi-
mately independent and so can be combined into one overall test. This approach is
particularly powerful when a rare allele has a substantial effect on phenotype, even
though the overall proportion of phenotypic variance attributable to the locus is small.

5. Family-based samples. Although association studies as described in this chapter are
applicable to unrelated sets of cases and controls, extensions have been suggested
to allow for relatedness between subjects. Tregouet et al. (18) suggested using
estimating equations, a statistical method for estimating regression parameters based
on correlated data. They found that, for nuclear families of equal size, the power
of this approach was comparable to maximum likelihood and was similar to the
power expected in a sample of the same number of unrelated individuals. However,
the type 1 error rate could be substantially inflated in the presence of strong clustering
if the number of families is relatively small (<50).
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Parametric Linkage Analysis

Lyle J. Palmer, Audrey H. Schnell, John S. Witte,
and Robert C. Elston

1. Introduction
“Linkage” describes the situation in which two syntenic loci are inherited

together. More specifically, two loci are said to be linked if they are close
enough to each other on a chromosome that recombination during meiosis is
uncommon enough for their cosegregation to be detectable within families.
Thus, linkage is a property of loci. All linkage techniques are essentially
designed to test for a statistical association between a marker (genetic or
biochemical) and a phenotypic trait. Classical model-based (parametric) linkage
analysis was developed to investigate the cosegregation of a genetic marker
and a binary trait (generally, disease affection status) within pedigrees. Model-
based linkage analysis of quantitative traits is also possible and forms the basis
of this chapter. Methods based on the exact likelihood calculation are described
in this chapter; Markov chain Monte Carlo methods are described in Chapter 6.

Classically, model-based linkage is tested by the calculation of the maximum
likelihood log-odds (LOD) score for each marker over a range of recombination
fractions (θ). Linkage of a marker to a trait phenotype relies on the detection
within families of low levels of recombination between the marker and trait
loci. This analysis assumes that a locus having both a major effect on phenotype
and a defined Mendelian pattern of inheritance is segregating within families.
The detailed model specification required makes model-based LOD score link-
age a stringent but nonrobust method for gene discovery. Although linkage
analysis can be repeated using many possible models, this constitutes multiple
testing; statistical power to detect linkage is reduced once appropriate correc-
tions are made (1).

From: Methods in Molecular Biology: vol. 195: Quantitative Trait Loci: Methods and Protocols.
Edited by: N. J. Camp and A. Cox  Humana Press, Inc., Totowa, NJ
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Model-based linkage analysis may be used for the following: (1) to assess
the genetic distance between marker and disease-associated loci by estimating
the number of recombination events between them; (2) to order genes in a
genetic map if the recombination fractions (θ) are known; and (3) to identify
genetic forms of common diseases. The statistical level of significance generally
used for evidence of linkage is about 10−4, which corresponds to a LOD score
of 3.0, translating to a false-positive rate (i.e., the probability of making an
error when inferring the presence of linkage) of around 5% (2). Parametric linkage
analysis can be performed on nuclear or extended families. Multipoint linkage
analysis using more than one marker locus can be performed, which increases
statistical power to detect linkage. Similarly, linkage of more than one trait locus
is possible (3). However, the interpretation of LOD scores is then difficult and
somewhat controversial (4). It is unclear what level of significance is meaningful
for a linkage to a trait determined by multiple genes; there is no clear prior hypoth-
esis to which one may attribute a Bayesian prior probability and genetic studies
of complex traits often involve large-scale multiple testing. Lander and Kruglyak
(5) have suggested that standard linkage analysis of complex traits should use a
LOD of 3.3 (p≈0.00005) as the threshold for statistical significance, in order to
give a genomewide false-positive rate of 5%. This assumes linkage analysis with
one free parameter (θ), a dense genetic map of markers applied to a large number
of informative meioses, and a genome size of 3300 cM.

1.1. Genetic Models

Simple genetic models are derived from Mendelian laws of inheritance. For
an individual, the pair of alleles (maternal and paternal) at a locus (the genotype)
is homozygous if the two alleles are the same allelic variant and heterozygous
if they are different allelic variants. If more than one locus is involved, the
patterns of alleles for a single chromosome is called a haplotype; together, the
two haplotypes for an individual is called a (multilocus) genotype. Each off-
spring receives at each locus only one of the two alleles from a given parent;
alleles are transmitted randomly (i.e., each with probability 0.5), and offspring
genotypes are independent conditional on the parental genotypes. The probabil-
ity that a parent transmits a particular allele or haplotype to an offspring is
called the transmission probability and is the first component of a genetic model.

The second component of a genetic model concerns the relationship between
the (unobserved) genotypes and the observed characteristics, or phenotype, of
an individual. A phenotype may be discrete or, the focus of this volume,
continuous. Penetrance is defined as the probability (in the case of a continuous
phenotype, a probability density) of a phenotype given a genotype; a complete
genetic model requires specification of the penetrances of all possible genotypes.
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The third component of a genetic model is the (distribution of) relative
frequencies of the alleles in the population. These allele frequencies are used
primarily to determine prior probabilities of genotypes when inferring genotype
from phenotype.

These three components, taken together, fully describe the genetic model
of a trait. Given a set of phenotypic data on pedigrees, one can estimate the
genetic model using statistical techniques collectively known as segregation
analysis (6–8). Whereas segregation analysis is beyond the scope of this chapter,
it is helpful to realize that in a segregation analysis, genotypes are latent
variables inferred from trait phenotypes. For simple Mendelian traits, in which
only one genetic locus is segregating, estimation of the genetic model is usually
straightforward, as only one set of latent variables (genotypes) is involved. For
complex quantitative traits, which are the emphasis of many genetic studies
today and which are probably the result of the effects of more than one locus,
estimation of the genetic model is more difficult, because each locus represents
a different set of (possibly interacting) latent variables.

1.2. Single Versus Multipoint Analysis

Assuming that a quantitative trait demonstrates an inheritance pattern consis-
tent with a major gene segregating within families and, further, that the putative
major locus can be accurately characterized in terms of its model parameters,
then model-based methods of either pairwise linkage analysis (9), often referred
to as two-point analysis, or multipoint linkage analysis (10,11) can be used.
In general, multipoint linkage analysis will increase the information available
for a linkage analysis and, hence, offers more statistical power to detect linkage.

1.3. Model Specification

In a model-based linkage analysis, it is necessary to completely specify the
mode of inheritance of the trait being studied: the number of loci involved,
the number of alleles at each locus and their frequencies; and the penetrances
of each genotype (which may further depend on age or other covariates).
Typically, for computational reasons, we assume that the trait is caused by the
segregation of just two alleles at a single locus and that there is no other
cause of familial aggregation of the trait. Thus, one allele frequency and three
penetrances need to be specified. The marker allele frequencies are also speci-
fied, but these have no effect on the evidence for linkage if the marker genotypes
of all the pedigree founders (those pedigree members from whom all other
pedigree members are descended) are known or can be inferred with certainty.
Typically, we assume that the trait and marker genotypes are independently
distributed in the pedigree founders.
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With this model specification, we can calculate the likelihood for a set
of pedigrees, in which we assume that the only unknown parameter is the
recombination fraction θ on which the transmission probability depends (we
shall assume that θ is scalar [although more generally, it may be a vector if,
for example, multiple marker loci are involved] or θ is made sex dependent).
Letting L denote likelihood, we base inferences about θ on the likelihood ratio

Λ=
L(θ)
L(1⁄2)

(1)

or, equivalently, its logarithm. In human genetics, it is usual to take logarithms
to base 10 and we define the LOD score at θ to be

Z(θ)=log10(L(θ)
L(1⁄2)) (2)

with a maximum Z(θ̂) at the maximum likelihood estimate θ̂. Thus, the LOD
as used in genetics is the logarithm of the likelihood for the data if there is
linkage divided by the likelihood if there is no linkage. Note that if L(1⁄2)>L(θ)
for some value of θ, then the corresponding LOD score is negative. Invariably,
it is the maximum LOD (sometimes referred to as the maxLOD) that is calculated
in linkage analyses, usually with θ̂ bounded at one-half.

When three-generational data are available, more power can be obtained by
estimating sex-specific recombination fractions θf and θm if they are different,
using the maximum log likelihood

Z(θ̂f, θ̂m) = log10(L(θ̂f, θ̂m)
L(θ̃f, θ̃m)) (3)

where θ̃f and θ̃m are maximum likelihood estimates constrained so that θ̃f +
θ̃m = 1 (12).

2. Methods
We will discuss methods of exact likelihood calculations of the LOD score

statistics for linkage analysis. Sampling methods will be discussed in Chapter 6.
There are two approaches for model-based linkage analysis of a quantitative

trait based on direct maximization of the likelihood that are widely available,
have been previously published, and have software available: LODLINK and
LINKAGE. In each case, a single gene with two alleles is assumed to contribute
to the distribution of the trait.

2.1. The LINKAGE Software Package

In the LINKAGE package version 5.1 (10), the quantitative trait is described
by the mean for each genotype, the common homozygote variance, and a
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multiplier for the heterozygote variance (see Note 1). Commingling analysis
is first applied to a quantitative trait using pedigree data in order to estimate
mixture parameters—means, standard deviation(s), and admixture propor-
tion(s)—under the assumption of a mixture of two Normal component distribu-
tions (13). Admixture resulting from two components is often the case of interest
in human linkage analysis; the “abnormal” components of the quantitative trait
distribution may correspond to one genotype (the recessive case) or to two
genotypes (the dominant case). The results of the commingling analysis is used
to recode individuals into liability classes, which are then treated as qualitative
outcomes in standard LOD-score-based linkage analysis using LINKAGE (11)
(see Note 2). The relative frequency of alleles in the two component distributions
are also estimated by the commingling analysis and are used to determine
genotype probabilities of founder individuals in a pedigree (14). The ordinates
of the two component Normal distributions for chosen intervals are scaled and
are then used as the penetrance probabilities for the respective liability classes.

However, this pseudoquantitative algorithm employed in the LINKAGE
package is awkward, has the restriction that it assumes monogenic inheritance
of the trait being analyzed (15), and, in practice, has proven to result in less
statistical power than expected (16,17).

2.2. LODLINK Program from the S.A.G.E. Software Package

The S.A.G.E. v3.1 program LODLINK uses genotype/phase elimination
algorithms proposed by Lange and Boehnke (18) and Lange and Goradia (19),
together with other enhancements, to perform fast linkage calculations. It checks
that markers are consistent with Mendelian inheritance and then performs LOD
score calculations for two-point linkage between a main trait and each of a set
of markers. The quantitative trait may follow any of the Mendelian regressive
models allowed by S.A.G.E. Parameter estimates defining the genetic model
from any of the S.A.G.E. REG programs, or some other segregation program,
are then required as input (see Subheading 5.). Additionally, any appropriate
penetrance functions can be read in. In our worked example, for simplicity,
we will illustrate the option of reading in genotypic means and variances from
which the program calculates the penetrances on the assumption of Normality.

3. Interpretation

3.1. Assumptions Implicit in the Genetic Model

Model-based linkage analysis is often used with guessed values of the disease
allele frequencies and penetrances, and this will not inflate the significance of
a result (i.e., probability statements about the data on the assumption θ=1⁄2),
provided that the quantitative trait being modeled is, in fact, under the control
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of a major locus in the families being studied and there are no errors in the
probability model assumed for the marker [it is not necessary for the marker
to be error-free—only that the allele frequencies and marker penetrances are
correct (20,21)]. Furthermore, given the assumptions underlying the likelihood,
we can maximize the LOD score over both θ and the parameters that describe
the mode of inheritance of the trait, and, provided the pedigrees are randomly
sampled or ascertained on the basis of the trait only, we obtain consistent
parameter estimates (22,23).

3.2. Statistical Inference

Model-based linkage analysis was originally derived for monogenic diseases
and was used exclusively for dichotomous disease affection status. Traditionally,
Z(θ̂)>3 has been taken as significant evidence for linkage (24). From general
likelihood theory, under the null hypothesis θ=1⁄2, the statistic 2[logc10]Z(θ̂) is
asymptotically distributed as a 1⁄2 : 1⁄2 mixture of χ2

1 and a point mass at zero,
so that Z(θ̂)>3 corresponds asymptotically to a statistic value greater than 13.8,
which translates to p<10−4 if we allow for the mixture of distributions, which
is equivalent to performing a one-sided χ2

1 test. Use of such an extremely small
p-value was chosen in an attempt to limit to 0.05 the probability of making
an error when concluding that linkage is present, using the fact that the prior
probability of linkage between two random autosomal loci in the human genome
is about 0.054. On the assumption that there is no appropriate prior probability
of linkage in the case of complex traits, Lander and Kruglyak (5) proposed
that the appropriate p-value should be based on the multiple testing performed
when the whole genome is scanned for linkage, whether or not such a scan
has been performed (25).

Many linkage programs assume 0≤θ̂≤0.5. LODLINK obtains the maximum
likelihood estimate over the whole interval between 0 and 1 because when
most of the data are only two generational, there are usually two maxima, one
less than 0.5 and one greater than 0.5. Should the larger maximum occur for
θ̂ > 0.5, this is evidence against linkage. If the maximum occurs for θ̂ < 0.5
and the LOD score for 1 − θ̂ is smaller, the result is in favor of linkage.

3.3. Power and Efficient Study Design

Linkage studies depend on the availability of families in which at least one
parent is a double heterozygote for the two loci being investigated (i.e., the
marker and putative disease locus). Families may thus be informative or nonin-
formative with respect to either the genetic marker or trait. Highly polymorphic
markers with many, equally frequent alleles are generally most informative for
linkage analysis. As is the case with all genetic analysis, model-based linkage
analysis is dependent on consistent and accurate phenotypic assessment. Assum-
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ing a correctly specified model, model-based linkage analysis is the most
powerful test for linkage and provides precise estimates of the putative major
gene’s location along a genetic map (26–30). However, misspecification of the
genetic model will lead to loss of statistical power.

Historically, complex genetic disease research has been characterized by
failure to replicate linkage findings, particularly those generated using model-
based methods. This could be the result, in part, of interpopulation genetic
variability or of differences in environmental exposures resulting in expression
of a genetic influence in only a proportion of the population studied. However,
there are also known statistical difficulties inherent in using LOD-score-based
techniques with complex diseases (31).

Model-based LOD score statistics critically depend on assumptions about
mode of inheritance, gene frequency, and penetrance. One or more of these
parameters are likely to be unknown or difficult to define with much certainty
in a model-based linkage analysis of a complex phenotype. Such techniques
also usually assume a genetic model with one major locus that accounts for
all of the genetic variance in the phenotype; if the genetic model is unlikely
in a given population, then a previously reported linkage might not be replicated
(4). There are also limitations inherent in segregation analyses of complex
phenotypes. False parameter estimates generated by a segregation analysis of
traits under the control of multiple major loci may lead to an incorrect estimate
of the recombination fraction in LOD score linkage methods and consequent
reduced power to detect linkage (32). Both genetic homogeneity and a definable
mode of transmission within families are also assumed. Not surprisingly, a
clear model for the inheritance of many quantitative traits has not been defined.

4. Software

4.1. The LINKAGE Software Package

The LINKAGE software package is available from fttp://linkage.rockefeller.
edu/software/linkage/ and is compiled for the DOS, OS2, Windows, UNIX,
and VMS operating systems.

4.2. LODLINK Program from the S.A.G.E. Software Package

LODLINK is available for purchase as part of the S.A.G.E. v3.1 software
package (http://darwin.cwru.edu/pub/sage.html) and is compiled for the DOS,
Windows, Linux, and UNIX operating systems. S.A.G.E. is a comprehensive
software package for statistical analysis in genetic epidemiology currently
licensed by the Department of Epidemiology and Biostatistics, Case Western
Reserve University, Cleveland, OH. Specific details of the LODLINK package
are discussed as part of the worked example (Subheading 5.).
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5. Worked Example
In this worked example we use dopamine-β-hydroxylase activity as the

quantitative trait of interest. Dopamine-β-hydroxylase (DBH) is an enzyme
that catalyzes the conversion of dopamine to norephinephrine (33). Several
studies found evidence that plasma and serum DBH levels are under control
of a major locus linked to the ABO blood group locus (34–36). In a model-
based linkage study of four large Caucasian families (37), Wilson and colleagues
found strong evidence (LOD=5.88 at θ=0.00) that a gene influencing DBH
activity is linked to the ABO blood group locus on chromosome 9q. This
analysis of square-root transformed DBH activity (37) forms the basis of our
worked example.

All of the files used in this example are available on the S.A.G.E. website
(http://darwin.cwru.edu/pub/sage.html). Although only a single Caucasian fam-
ily (HGAR Family 9) is used here because of space constraints, all four families
described by Wilson et al. (37) are available on our website. The LODLINK
program and the Family Structure Program (FSP), both part of the S.A.G.E.
v3.1 package of computer programs, will be used to perform the model-based
linkage analysis.

5.1. Overview of Programs

The first requirement is a text file for the family data that contains the
following information: a study ID (the same for all individuals in the data file),
a numeric family ID that is unique to each family, an individual ID, an ID for
each of the mother and father, and a code for sex (typically m and f or 1 and
2). In addition, trait and marker information are included. It is the combination
of family ID and individual ID that uniquely identifies each individual. Each
program also requires a parameter file that is used to select options to configure
the program.

In Fig. 1, a portion of the data file for this example is listed (see Note 3).
The ruler at the top is given to illustrate the column numbers where the data
are located. The study ID is in columns 1–4. The family ID is in column 8.
The individual ID is in columns 10–13, the father ID is in columns 15–18, the
mother ID is in column 20–23, and the sex code is in column 25. The trait
(square root of DBH) is located in columns 31–38 and the marker data are in
column 43. Missing values for DBH are coded −1.00000, missing marker data
are coded 0, and individuals whose parents are not in the data (founders) have
blanks for the parent IDs.

There is a graphic user interface (GUI) that helps to create the parameter
files that are used by FSP and LODLINK. This is available from the S.A.G.E.
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Fig. 1. Example DBH data file.

website at http://darwin.cwru.edu/sagegui/main-menu.html. After selecting to
create a new parameter file, the first screen asks for the program for which a
parameter file is to be constructed (see Fig. 2). The circle next to the program
is clicked to select the program to be used. Then click “continue”.

5.2. Family Structure Program

Before executing LODLINK, it is necessary to run the Family Structure
Program (FSP) to create the segregation analysis data file (.seg file) required
as input for LODLINK (see Note 4). FSP requires as input the family data file
and a parameter file (see Note 5).

For each screen that can be created with the GUI, the appropriate options
are selected using pull-down menus, checking boxes, or typing in a response.
After completing each screen, the “next” box is checked to move to the next
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Fig. 2. S.A.G.E. GUI Screen 1.

screen. For FSP screen 1 (Fig. 3), the user types in a name for the title of the
run. For this example, the box is checked to create the segregation analysis
data file. There is one record per individual in the family data file, the symbol
for male is 1 and the symbol for female is 2; these numbers are typed into the
respective boxes.

For screen 2 (Fig. 4), it is necessary to fill in a FORTRAN format statement
that tells the program where the data are located and the required format (see
Note 6), The family ID must be numeric. The other parameters are alphanumeric
and the maximum length of each (i.e., the maximum number of columns) is
listed. Figure 5 shows the last FSP screen, which outputs the parameter file.
When the output parameter file box is clicked, a file download screen appears.
The option to save this file to disk should be chosen and the user should note
the location where the file is saved. The next step is to run FSP using the
parameter file just created and the original family data file to produce the .seg
file. How S.A.G.E. is run depends on the computer platform on which S.A.G.E.
is installed.
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Fig. 3. S.A.G.E. GUI: FSP screen 1.

5.3. Running LODLINK
5.3.1. Input Files for LODLINK v3.1

The following set of records is used to specify the data and analysis to be
performed (see Note 3):

1. Parameter File—used to configure the program execution through parameter
records.

2. Marker Locus Description File—contains required information on the various
marker loci associated with the data.

3. Segregation Analysis Data File (.seg)—produced by the FSP and containing the
pedigree structure information and individual data.

5.3.2. Performing the Linkage Analysis

The locus description file lists the code for missing alleles and other necessary
marker information. This includes the marker name, the alleles, and the associ-
ated allele frequencies followed by a semicolon (set 1); then the set of all
genotypes that give rise to each phenotype, followed by a semicolon. The
marker locus description file for the ABO blood group used in this example
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Fig. 4. S.A.G.E. GUI: FSP screen 2.

is shown in Table 1. For a completely codominant marker with no errors, only
the first set of information is required, followed by the second semicolon (two
semicolons total).

Figure 6 shows the first screen used to create the LODLINK parameter file:
the title for the run is filled in. For LODLINK screen 2 (Fig. 7), Model 7 is
selected (see Note 7). We have chosen to estimate a single recombination
fraction for males and females because we know that they are both close to
zero. The number 1 is entered for the number of markers and 1 for the number
of pedigrees. The number of pairs of recombination fractions at which to
compute LODs has been set to the default (i.e., the five values 0.0, 0.01, 0.1,
0.2, 0.3, and 0.4). All other boxes are unselected—no homogeneity tests will
be performed and no genotype probabilities will be output.

For screen 3 (Fig. 8), the trait name, frequency of allele T1 at the trait locus
and the missing value code for the trait are filled in. In screen 4 (Fig. 9), no
sex effects are chosen (i.e., the boxes are not checked). The estimates of the
allele frequency, means, and variances (screens 3, 5, and 6; Figs. 8, 10, and
11) were obtained from prior segregation analysis of these data (37). In screen
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Fig. 5. S.A.G.E. GUI: FSP screen 3.

Table 1
Marker Locus Description File for ABO Blood Group

Explanation

MISSING=0 } ABO is the locus name
ABO

A1 = 0.190400
A2 = 0.061200 } The alleles and their frequencies
B = 0.072800
O = 0.675600
;
1 = {A1/A1,A1/A2,A1/O} 1 is the phenotype code for blood group A1

2 = {A1/B} 2 is the phenotype code for blood group A1B
3 = {A2/A2,A2/O} 3 is the phenotype code for blood group A2}4 = {A2/B} 4 is the phenotype code for blood group A2B
5 = {B/B,B/O} 5 is the phenotype code for blood group B
6 = {O/O} 6 is the phenotype code for blood group O
;



26 Palmer et al.

Fig. 6. S.A.G.E. GUI: LODLINK screen 1.

7 (Fig. 12), the FORTRAN format statement is filled in. The first five parameters
are the family structure information created by FSP. The family ID, trait, and
marker phenotype symbols are in exactly the same format (i.e., in the same
columns) as the original family data (see Note 8). Figure 13 shows the screen
to output the LODLINK parameter file again, and the user should save the file
and note the location. LODLINK can now be run.

5.3.3. Output from LODLINK

LODLINK produces two output files (see Note 9). The .out file contains a
summary of the options selected, the allele frequencies, and LOD scores family
by family for different values of the recombination fraction. The main results
are in the .sum file (Fig. 14). The first part of the .sum file lists the LOD scores
for the values of the recombination fraction selected in the LODLINK parameter
file (in this case, the default values were chosen) for each family and the total
over all families. (Note: There is only one family in this analysis.) The table
also lists the number of individuals in each family. The maximum LOD score
[Z(θ̂)] occurs at a recombination fraction of 0. The first line of the second part
of the output table (Fig. 14) gives the equivalent number of fully informative
meioses. In this example, the amount of information in the data is equivalent
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Fig. 7. S.A.G.E. GUI: LODLINK screen 2.

Fig. 8. S.A.G.E. GUI: LODLINK screen 3.
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Fig. 9. S.A.G.E. GUI: LODLINK screen 4.

Fig. 10. S.A.G.E. GUI: LODLINK screen 5.
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Fig. 11. S.A.G.E. GUI: LODLINK screen 6.

to 7.235 fully informative meioses. The second line of the second part (Fig.
14) gives the maximum LOD score for 0≤θ̂≤1. An upper bound for the corres-
ponding p-value is given and also the p-value that corresponds to the LOD
score when the equivalent number of informative meioses is large (e.g., ≥50).
Provided the estimate θ̂ is neither 0 nor 1, its variance is also calculated. Finally,
the LOD score corresponding to 1−θ̂ is given.

5.4. Interpretation of Worked Example

The maximum LOD of 2.178 found in our worked example (Fig. 14) is
suggestive of linkage between ABO blood group genotype and square-root
transformed DBH activity in HGAR family 9. For a detailed discussion of this
result in HGAR family 9 and in an additional three Caucasian families, see
ref. 37. In the overall sample of four large Caucasian families (37), Wilson
and colleagues concluded that there was strong evidence that a gene influencing
DBH activity is linked to the ABO blood group locus on chromosome 9q. This
was later confirmed by Zabetian et al. (38).
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Fig. 12. S.A.G.E. GUI: LODLINK screen 7.

Notes

6.1. Limitations of LODLINK v3.1

This program is limited to the analysis of a single (univariate) main trait,
but this may be a linear function that includes covariates. Only pedigree struc-
tures that can be generated by FSP are permissible.

At the default settings, LODLINK requires dynamic storage of approximately
2.5 megabytes, which allows for an unlimited number of pedigrees at the default
maxima for the modifiable parameters in this program. The dimensions of these
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Fig. 13. S.A.G.E. GUI: LODLINK screen 8.

Fig. 14. LODLINK .sum file.

modifiable parameters can be increased to handle larger datasets. The parameters
and their default maximum values are shown in Table 2.

6.2. Distributional Assumptions

The distribution of the quantitative outcome among relatives with the same
trait genotype is usually assumed, after transformation if necessary, to be
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Table 2
Default Parameter Values for LODLINK

Description Default value

No. of individuals per pedigree 500
No. of nuclear families in the analysis 100
No. of alleles at the trait locus 6
No. of alleles at any marker locus 10
Maximum number of marker inconsistencies to find 100

multivariate Normal in a segregation or parametric linkage model. If the distribu-
tions are skewed and/or kurtotic, this can have a substantial influence on the
parameter estimates from a segregation or a linkage model. For instance, the
genotype-specific distribution of untransformed DBH activity in the families
used in our example is highly skewed, and the transformation used in pedigree
analysis has a large effect on the estimate of the gene frequency in our LODLINK
analyses (37). Overall means and standard errors for the estimated gene frequen-
cies for untransformed DBH activity, square-root transformed DBH activity,
and logc transformed DBH activity were 0.81±0.11, 0.37±0.07, and 0.22±0.14,
respectively (37).

7. Notes

1. Although it is the mean of a quantitative trait that is generally assumed to depend
on Mendelian genotypes, there are cases in which the means are invariant and the
relevant genetic information derives from other aspects of the distribution such as
the variance (39).

2. GENEHUNTER (40) may also be used for this analysis once the quantitative trait
has been recoded into liability classes. This has the advantage that multipoint analysis
may be performed.

3. All integer-valued data must be right-justified in their fields, with no decimal point.
All real-valued data should have a decimal point. The decimal point may be anywhere
within the field and will override the given format. Variables read in A format may
contain any valid alphanumeric characters. Any numeric fields left blank will be
read as zeros.

4. We recommend running PEDCHK (http://darwin.cwru.edu/pub/sage.html) on the
Segregation Analysis Data File prior to any analyses in order to detect invalid
pedigree structure pointers (see Section 2 of PEDCHK in the TOOLKIT manual).

5. The family data file contains the study ID, individual ID, mother’s ID, father’s ID,
sex code, and other data (e.g., traits, markers). However, FSP only requires the IDs
and sex code to be read in. In the next release of S.A.G.E. (S.A.G.E. 4.0), FSP will
not be required and parameter files will be constructed differently. At the time of
writing, LODLINK is not yet available in S.A.G.E. 4.0.
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6. For help with FORTRAN format statements, there is a tutorial on the S.A.G.E.
website at http://darwin.cwru.edu/sagegui/help/tutorials.html. FORTRAN. format
statements are not required for S.A.G.E. 4.0.

7. In the example used here, the values of the parameters in the model were obtained
from a previous segregation analysis (37). It is possible to perform segregation
analyses within S.A.G.E. 3.1 and use the output from this directly as input into
LODLINK. In that case, the allele frequencies, means, and variances would not be
specified in the LODLINK parameter file. Thus, the other options are to use direct
output from the S.A.G.E. REG segregation programs or to read in the penetrances.

8. In the .seg file, the first record for each individual contains the family structure
information. The subsequent record(s) contain(s) the individual data from the original
family data file. In other words, FSP creates a record with the family structure
information and then appends the data taken from the original family data file. The
individual ID, sex, specific spouses sequence number, mothers sequence number,
and fathers sequence number are read in with the following FORTRAN format
statement: T11, A4, T20, A1, 3I5. A slash is then used to read in data from the
next record.

9. When running S.A.G.E. 3.1 under Windows 95 or 98, the program automatically
uses the name of the parameter file and adds the appropriate extensions for the
output files.
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Nonparametric Linkage Analysis

I. Haseman–Elston

Chad P. Garner

1. Introduction
The original nonparametric (or model-free) method of linkage analysis that

was described by Haseman and Elston in 1972 (1) was designed for analysis
of quantitative traits using the sib-pair study design. In the following subheading,
a brief introduction to linear regression precedes a description of the traditional
and new Haseman–Elston theory. The Methods, Interpretation, and Worked
Example sections of the chapter are all based on the programs GENIBD and
SIBPAL2 from the S.A.G.E. Version 4.0 Beta 5 software package. SIBPAL2
is currently the only software publicly available for carrying out the new
Haseman–Elston method.

1.1. Linear Regression

Regression is used to explore the dependence of one or more variables on
another. The term linear implies that the relationship between the variables is
linear and the adjectives simple and multiple describe a regression model with
one or more than one predictor variable, respectively. In simple linear regression,
the relationship is of the form

Y = α + βx + e (1)

where Y (referred to as the response or dependent variable) and x (referred to
as the predictor or independent variable) are observable random variables. The
quantities α and β, are the y-intercept and slope (also referred to as the regression
coefficient or parameter) of the regression line, respectively, and e is the residual
error. β and α are fixed and unknown parameters and e is a random variable

From: Methods in Molecular Biology: vol. 195: Quantitative Trait Loci: Methods and Protocols.
Edited by: N. J. Camp and A. Cox  Humana Press, Inc., Totowa, NJ
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with expectation e = 0 and assumed to follow a Normal distribution. The
objective of linear regression is to estimate the values of α and β that gives
the best fit for the joint distribution of the dependent and independent variables.
The population parameters, α and β, are approximated by the parameters a
and b that are estimated from the sample. Finding the values of a and b that
best fit the data requires a mathematical method for minimizing the error in
the model; one method that is commonly used for simple linear regression
models is called least squares.

Least squares regression makes no statistical assumptions about the observa-
tions x and y. For any line y = a + bx, the residual sum of squares (RSS) is
defined to be

RSS = ∑
n

i=1

(yi − (a + bxi))2 (2)

The least squares estimates of α and β are defined as those values of a and b
such that the line a + bx minimizes the RSS. By writing

∑
n

i=1

(yi − (a + bx))2 = ∑
n

i=1

((yi − bxi) − a)2 (3)

the value of a that gives the minimum RSS can be found for any fixed value
of b. The minimized value of a is

a =
1
n ∑

n

i=1

(yi − bxi) = y − bx (4)

where y and x are the sample means of y and x, respectively. For any given
value of b, the minimum value of the RSS is

∑
n

i=1

((yi − bxi) − (y − bx))2 = ∑
n

i=1

((yi − y) − b(xi − x))2 (5)

= Var(y) − 2b Cov(x, y) + b2 Var(x)

The value of b that gives the minimal value of RSS is obtained by setting the
derivative of the quadratic function of b equal to zero and solving. The least
squares estimators of a and b are thus

a = y − bx (6)

b =
Cov(x, y)

Var(x)

The least squares estimators of the y-intercept and slope of a simple linear
regression are functions of the observed means, variances, and covariance.
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The multiple regression model is of the form

Y = α + β1x1 + β2x2 + ... + βnxn + e (7)

where Y is a function of n predictor variables and the terms β1,..., βn are the
partial regression coefficients. Like simple linear regression, the task in multiple
regression is to find the values for the parameters (a and the bi) that give the
best fit of the conditional expectation of Y given x1,..., xn using the least squares
approach. The partial regression coefficients are functions of the observed
variances and covariance; however, unlike simple linear regression, each partial
regression coefficient is a function of the variances and covariances of all the
measured variables in the model. Multiple regression models are most often
expressed as matrices and vectors.

For statistical simplicity, it is desirable to work with Normally distributed
data. Tests for Normality include the small-sample W-test of Shapiro and Wilk
and the large-sample D-test of D’Agostino. In situations where the raw data
do not fit the Normal distribution, the data may be transformed by changing
scale. Commonly used transformations include the log transformation and the
Box–Cox transformation.

1.2. The Traditional Haseman–Elston Method

The Haseman–Elston method for linkage analysis is based on the hypothesis
that sib pairs having similar trait values will also have greater than average
genetic similarity in a region that is linked to a locus that is affecting the
observed trait values. It is assumed that the trait is influenced by a locus
(quantitative trait loci [QTL]) that has two alleles, B and b, having frequencies
p and q. Each genotype has a genotypic value that represents the effect on the
trait that can be attributed to the genotype, in the absence of any additional
sources of variation. For a biallelic locus with alleles B and b, convention
defines the genetic values for BB, Bb and bb be a, d, and −a, respectively.
Letting x1j and x2j be the trait values of the first and second sibs, respectively,
of the jth sib pair,

x1j = µ + g1j + e1j (8)
x2j = µ + g2j + e2j

where µ is the overall mean of the trait and g1j and e1j are the genetic and
environmental effects, respectively. Assuming that only one locus determines
g1j and that there is random mating, the genetic effects are the genotypic values
described above. Letting ej = e1j − e2j and E(e2

j) = σ2
e, σ2

e is a function of
environmental variance, the environmental covariance between sibs and any
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Table 1
Conditional Probabilities of Yj and �j

Sib 1 Sib 2 Yj πj = 0 πj = 0.5 πj = 1

BB BB ej
2 p4 p3 p2

bb bb ej
2 q4 q3 q2

Bb Bb ej
2 4p2q2 pq 2pq

BB Bb (a − d + ej)2 2p3q p2q 0
Bb BB (−a + d + ej)2 2p3q p2q 0
Bb bb (a + d + ej)2 2pq3 pq2 0
bb Bb (−a − d + ej)2 2pq3 pq2 0
BB bb (2a + ej)2 p2q2 0 0
bb BB (−2a + ej)2 p2q2 0 0

order effect. The similarity in trait values for sib pair j is measured by their
squared mean-corrected trait difference, expressed as

Yj = [(x1j − µ) − (x2j − µ)]2 = (x1j − x2j)2 (9)

which is equivalent to the squared trait difference.
The mean number of alleles shared identical by descent (IBD) by a sib pair

is more commonly expressed in terms of the proportion of alleles shared IBD,
π; the expected value of π for sib pairs is 0.50. Haseman and Elston (1) proposed
a Bayesian estimator for π given by

π̂j = fj2 + 1⁄2fj1 (10)

where fj2 and fj1 are the probabilities that the jth sib pair share two and one alleles
IBD, respectively. More recently, multipoint methods have been proposed that
use information from linked markers to estimate the IBD at any point on
a chromosome.

Assuming a fixed ej, the conditional distribution of Yj and the conditional
probabilities of πj = 0, 0.5, and 1 are given for the nine possible sib-pair
genotype configurations in Table 1. The table can be used to calculate the
expected value of Yj conditional on πj. Omitting much algebra that can be
found in ref. 1,

E (Yj|πj = 1) = E{e2
j [p2 + q2 + 2pq]} = E(e2

j ) = σ2
e

E(Yj|πj = (1⁄2)= E{e2
j [p3 + q3 + pq] + [(a − d + ej)2 + (−a + d + ej)2]p2q

+ [(a + d + ej)2 + (−a − d + ej)2]pq2}
= σ2

e + σ2
a + 2σ2

d
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E(Yj|πj = 0) = E({e2
j [p4 + q4 + 4p2q2] + [(a − d + ej)2 + (−a + d+ ej)] 2p3q

+ [(a + d + ej)2 + (−a − d + ej)2] (2pq3) (11)
+ [(2a + ej)2 + (−2a + ej)2] p2q2}
= σ2

e + 2σ2
a + 2σ2

d

where σ2
e, σ2

a, and σ2
d are the environmental, additive genetic, and dominance

genetic variances, respectively. From these equations, one can see that the
expected value of Yj increases as πj decreases; the degree to which the sibs
differ in trait value is expected to increase as the IBD sharing at the QTL
decreases. If there is no dominance variance, the expected value of Yj can be
written in the general form

E(Yj|πj) = (σ2
e + 2σ2

g) − 2σ2
gπj, πj = 0, 1⁄2, 1 (12)

This can be written in the form of a simple regression model

E(Yj|πj) = α + βπj (13)

where α = σ2
e + 2σ2

g, β = −2σ2
g, and σ2

g is the total genetic variance, σ2
g = σ2

a +
σ2

d. The least squares estimate −β/2 is an unbiased estimator of σ2
g. The null

hypothesis represents a slope β = 0, and a statistically significant negative slope
is evidence for linkage. The theory presented so far has related πj to Yj. Haseman
and Elston (1) derived the expectation of β̂ when π̂j is estimated from a single
linked marker and found that β̂ is a function of the genetic variance and the
recombination fraction between the QTL and the marker. With multipoint
methods, the IBD status at the QTL can be estimated so that the regression is
no longer a function of the genetic distance. For families with three or more
siblings, each of the sib pairs in the sibship are not independent and treating
them as such increases the type I error rate of the linkage test. Single and
Finch (2) proposed a generalized least squares approach that accounted for the
correlation between multiple relationships in a family without the type I error
rate exceeding the nominal value.

1.3. The New Haseman–Elston Method

Drigalenko (3) proposed an extension of the Haseman–Elston method that
uses the squared mean-corrected sib-pair sum as well as the difference and he
showed that this value is linearly related to the proportion of alleles shared
IBD. He also showed that the model gives equivalent information to the sib-
pair covariance modeled by the variance component methods (see Chapter 4).
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The squared mean-corrected sum is expressed in an analogous way to the
difference shown earlier, such that

Yj[(x1j − µ) + (x2j − µ)]2 (14)

Drigalenko (3) and Elston et al. (4) showed that the combined information
from the sums and differences can be expressed as the mean-corrected cross
product, giving

Yj = (x1j − µ)(x2j − µ). (15)

The expectation of the cross-product is the sib covariance and the regression
coefficient is half as large in magnitude than and opposite sign to the model
where Yj is the traditional squared-trait difference. The model for the new
Haseman–Elston was defined by Elston et al. (4) to be the multiple regression

E(Yj|π̂j}, f̂2j
) = α + β1π̂j + β2f̂2j + e (16)

where π̂j is the proportion of alleles shared IBD and f̂2j is the probability that
a relative pair shares two alleles IBD. Elston et al. (4) showed that β1 and β2

in Eq. (16) are estimates of σ2
a and σ2

d, respectively, where σ2
a = σ2

g − σ2
d is the

additive genetic variance. Additional regression terms can be added to the
model to include covariate effects.

2. Methods
This section describes the steps for carrying out a linkage analysis with the

new Haseman–Elston method using S.A.G.E. Ver. 4.0 Beta 5 software package.
Three programs will be used in the analysis: PEDINFO generates a summary
of the pedigree data, GENIBD computes the IBD allele-sharing probabilities,
and SIBPAL2 does the regression-based linkage analysis. Instructions for down-
loading and setting up the programs for the UNIX and Linux operating systems
is given in Subheading 4. It is recommended that one reads Subheading 4.
if unfamiliar with the S.A.G.E. software package.

2.1. Preparing the Raw Data for Linkage Analysis

The trait data should be looked at before linkage analysis is performed. The
distribution of the raw trait values can be plotted as a histogram using most
general statistical analysis software packages. A plot of the data will identify
two potentially confounding factors: (1) a large deviation from the Normal
distribution and (2) the existence of extreme outliers. Specific tests are available
within most statistical software packages to assess the fit of the data to the
Normal distribution (see Subheading 1.1.). The data should be rescaled (or
transformed) when significant deviations from the Normal distribution are
observed (see Subheading 1.1. for suggested transformations of scale). The
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effects of covariates on the data can be estimated and accounted for in this
initial stage of the analysis. Extreme outliers (data points that are much more
than three standard deviations from the mean) often occur in the raw data either
because of a transcription error or for a real biological reason. Extreme data
points can have a large effect on the results of the analysis and it is recommended
that they are changed to missing values if it cannot be determined that they
are transcription problems and can be corrected. The extreme cases may be
biologically significant, but their existence will only make the statistical interpre-
tation of the results more difficult.

Prior to a linkage analysis, the marker data should be analyzed for misspeci-
fied relationships and genotyping errors. Publicly available programs are
described in Subheading 6. that can be used to carry out both of these types
of analysis.

In the absence of fully informative marker data, the IBD sharing estimates
will be dependent on the marker allele frequencies; therefore, it is very important
that the allele frequencies used in the analysis be as accurate as possible.

2.2. Preparing the Input Files

Detailed descriptions of the input files needed for PEDINFO, GENIBD, and
SIBPAL2 are given in Subheading 4. Briefly, the programs require the parame-
ter file, the pedigree data file, the marker locus description file, and the genome
map file (if one is estimating multipoint IBD sharing probabilities). The input
files do not have to be given specific names, but it is recommended that the
user call them something relating to the analysis that is being performed. The
parameter file describes the format and contents of the pedigree file and the
types of analysis that are to be performed. The pedigree file includes all of
the family, trait, and marker data. The locus and map files define the marker
allele frequencies and the genetic map, respectively. All three programs can
use the same set of input files. GENIBD will generate an output file that will
then be used to run SIBPAL2. Individuals may wish to use other programs to
estimate the IBD sharing probabilities and convert the output from these pro-
grams into the IBD files required by SIBPAL2. A description of the IBD files
is given in Subheading 4. and other methods and programs for estimating the
IBD sharing are discussed in Subheading 6.

2.3. Running PEDINFO

The PEDINFO program reports the numbers of each relationship type in
the data and calculates some simple summary statistics describing the input
data. If the report given by the program is not consistent with what the investiga-
tor knows about the data, then this is an indication that there may be problems
with the pedigree data file.
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To run the program, type the program name followed by the names of the
parameter and pedigree files at the command line:

% pedinfo parameter file pedigree file

The program will print “Analysis complete!” to the screen when the program
is finished. The output of the program will be in a file called pedinfo.out.

2.4. Estimating the IBD Sharing with GENIBD

GENIBD can do single-point and multipoint IBD estimation. Multipoint
IBD methods capture more information than single-point methods; however,
one must be certain of the map order and have good estimates of the genetic
distances between the markers in order to get reliable IBD sharing estimates.
GENIBD can calculate single-point or multipoint IBD probability estimates
using an exact-likelihood-based algorithm for small pedigrees or a Markov
chain Monte Carlo (MCMC)-based algorithm of larger pedigrees. The exact
approach is recommended for nuclear family data. The type of IBD analysis
to be carried out is specified in the analysis definition section of the parameter
file (see Subheading 4.1.3. for a description of the file format). It is possible
to specify both single-point and multipoint analyses in the parameter file and
the program will execute both. GENIBD requires a parameter, pedigree, marker
locus description, and genome map file (if one is carrying out a multipoint
analysis). Descriptions of these files and some of the program options are
described in Subheading 4.

To run the program, type the program name followed by the names of the
parameter, pedigree, locus and map files at the command line:

% genibd parameter file pedigree file locus file map file(optional)

The program will print an error message to the screen if it is unable to run.
The error message will give a general idea of the problem that the program
has encountered. A description of common problems is given in Subheading
6. Program execution information is written to a file called genibd.inf. Errors
that cause the program to terminate are described in this file. The program also
writes a file called genome.inf, which has marker genotype and map information.

As the program is running, it will print its progress to the screen. The results
of the IBD analysis are in a file with the naming scheme output.region.ibd.
The output is specified in the parameter file. The region is the name of the
region defined by the user in the genome map and parameter files. It is helpful
to use the chromosome name as the region name if one is carrying out a
genomewide multipoint analysis. The format of the IBD file is described in
Subheading 4. No modification to this file is necessary prior to linkage analysis.
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2.5. Testing for Linkage with SIBPAL2

Once the IBD file is generated, running SIBPAL2 is straightforward. If
GENIBD ran successfully, the only reason why SIBPAL2 would be terminate
as a result of an error would be if the analysis were not specified correctly in
the analysis definition section of the parameter file or if an IBD file that was
not created by GENIBD were being used and it had not been formatted correctly.

To run the program, type the program name followed by the names of the
parameter, pedigree, and IBD files at the command line:

% sibpal2 parameter file pedigree file ibd file

The program will print its progress to the screen and announce a successful
completion. A log file called sibpal2.inf will be generated with each run of the
program. The results of the linkage analysis are written to a file called traits.out.
An interpretation of the results is given in Subheading 3. and a description
of the output file is given in Subheading 4.

3. Interpretation
When evaluating the results of a Haseman–Elston linkage analysis, there

are two important considerations. The first is the statistical significance, or p-
value, of the estimated regression coefficients; this is equivalent to the amount
of evidence for linkage. The p-value associated with the estimate is derived
from a Student’s t-distribution and represents the probability of the null hypothe-
sis, β = 0. The threshold one wishes to use for declaring their results significant
will depend on the number of markers tested as multiple testing should be
accounted for in the interpretation of the results. Guidelines for interpreting
and reporting linkage results have been given by Lander and Kruglyak (5) and
by Sawcer et al. (6). The second consideration is the size of the estimated
regression coefficient. The regression coefficients indicate the extent to which
a linked QTL is affecting the trait; the simple regression parameter is a function
of the genetic variance and the multiple-regression parameters are functions
of the additive and dominance variances. With a large sample, it is possible
to get a small regression coefficient with a significant p-value. This would be
evidence for linkage to a QTL of small effect. Alternatively, with small sample
sizes, it is possible to have a nominally significant p-value associated with a
large regression coefficient. The standard error of the parameter estimate is an
indication of the quality of the parameter estimate. The standard errors of the
estimates should always be considered, especially if one has a small sample.
In statistical inference, it is important to consider the value of the estimated
parameter and its significance.

The outcome of a linkage analysis will be dependent on power. The amount
of power a study has depends on the genetics of the trait and the sample being



46 Garner

used to search for QTL affecting the trait. Sample size (including both the size
and number of families) and the number of genotyping errors, relationship
specification errors, phenotyping errors, and the accuracy of the marker allele
frequency estimates are characteristics of the sample that will affect power.
The number of QTLs affecting the trait, the size of their effects, interactions
both between QTLs and between QTLs and the environment, and genetic and
allelic heterogeneity are characteristics of the genetics of the trait that will
affect power.

4. Software

4.1. Getting the S.A.G.E. Software

The S.A.G.E. Ver. 4.0 Beta 5 programs are currently available free of charge
and can be downloaded from the following URL: http://darwin.cwru.edu/beta.
Versions of the programs are available for Digital UNIX, Sun Solaris, and
Linux operating systems. The files are downloaded in a tarred and compressed
form. To create the files, type the following at the command line:

% uncompress filename.tar.Z

where filename.tar.Z is the name of compressed S.A.G.E. file. Then, type

% tar xvf filename.tar

and a directory will be created that has the same name as the filename. Inside
this directory is a subdirectory called bin/ that will contain the program files.
The documentation for the programs are in a PDF file that is called beta5.pdf.

4.2. The Input File Formats
4.2.1. The Pedigree File

The pedigree file will be described first, as it is usually the first file created
before a linkage analysis is performed. The programs are very flexible as to
the format of the pedigree file as long as it correctly described in the parameter
file. The programs can either read character delimited files or column delimited
files. The difference between the two files types is simple; character-delimited
files have a character (examples include a space, comma, or tab) separating
fields, and in a column-specified file, the fields are in specific columns described
by a formatting statement. It is recommended that the character-delimited file
in which the fields are delimited by spaces is used because this type of file is
easily created with Microsoft Excel and because similar formats are used by
the more popular genetic analysis programs like LINKAGE (7) and GENE-
HUNTER (8). Also, the formatting statement required by the column-delimited
file could be difficult for individuals who are not familiar with the FORTRAN
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programming language. Character-delimited files have the following require-
ments: Each record must be exactly one line (a record being an individual);
there must be at least one delimited character between fields; and there can be
no empty fields.

The file includes three types of information: the pedigree data, the trait data,
and the marker data. The pedigree information includes a unique pedigree
identification number, an individual’s identification code that is unique within
the pedigree, the individual’s parents’ identification codes, and a code for the
individual’s sex. For each relative pair included in the pedigree file, there must
be records for the relatives that connect them. An individual that does not have
a genetic relative in the family (excluding parent–offspring relationships) is
called a founder and everyone else is a nonfounder. Nonfounders need to have
their parents specified in the pedigree file and founders do not. An example
of the pedigree data section of a space-delimited pedigree file for a pair of
sisters follows:

PID ID P1 P2 SEX
1 1 0 0 1
1 2 0 0 2
1 3 1 2 2
1 4 1 2 2

The first line of the pedigree file defines what is in each field. The order of
the fields is given in the following order: the unique pedigree number (PID),
the individual’s identification number (ID), the father’s identification number
(P1), the mother’s identification number (P2), and the sex code (SEX). The
pedigree number is 1. The sex code is 1 for male and 2 for female, so that
individual 1 is the father of the two sisters (individuals 3 and 4), and individual
2 is the mother. The sex code is defined in the parameter file. The mother and
father are founders; therefore, they do not have parent records and have zeros
in the mother and father columns to represent missing values. The missing
value code is defined in the parameter file. The sisters each have their father’s
identification number followed by their mother’s in fields 3 and 4.

The trait and marker data follow the pedigree data as shown:

PID ID P1 P2 SEX TRAIT1 MARKER1 MARKER2
1 1 0 0 1 5.324 1/3 1/2
1 2 0 0 2 −3.876 4/5 3/4
1 3 1 2 2 −0.287 3/4 1/4
1 4 1 2 2 4.678 1/4 2/3

The trait (TRAIT1) and markers (MARKER1 and MARKER2) follow the sex
field. Multiple traits and markers can be included in one pedigree file. The
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order of the traits and markers is given in the parameter file. Each marker has
two alleles that are separated by an allele delimiter (a forward slash in the
example). The field and allele delimiters cannot be the same. The allele delimiter
is defined in the parameter file. The above format is only a recommendation;
examples and explanations of other formats are given in the program documen-
tation.

4.2.2. The Parameter File

The parameter file tells the program what the data are and what analyses to
perform. The file has two main sections: the configuration information and the
analysis definition. The configuration information tells the programs what the
format and content of the pedigree file is and defines parameters.

The general syntax for the parameter file is

parameter[=value][,attribute[=value]]
[{

[statement]
}]

where syntax enclosed in brackets represents optional information.
An example of the configuration information section of a parameter file that

corresponds to the above pedigree file example is given by

pedigree, character
{

individual missing value=“0”
sex code, male=“1”, female=“2”
delimiters=“ ”
delimiter mode=multiple

pedigree id=PID
individual id=ID
parent id=P1
parent id=P2
sex field=SEX
trait=TRAIT1,missing=“−99”
marker=MARKER1,missing=“0”
marker=MARKER2,missing=“0”

}

The first line of the example specifies the pedigree parameter with an attribute
defined as character to indicate that the pedigree file is character delimited.
This is followed by several statements; the first four are setting options that
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describe how the pedigree file should be read. The individual missing value
statement defines the code for missing individuals; missing individuals would
be the parents of founders in the pedigree file. Statements or attributes that
sets a value to be read from the pedigree file should indicate the value in
quotation marks. In the next line, sex code is defined to be 1 for males and 2
for females. The third statement defines the delimiter to be a space. The value
of the delimiter mode parameter can either be single or multiple. This parameter
tells the program how many consecutive delimiters it can read. Setting the
value to multiple allows one to leave multiple spaces between fields.

The next eight statements define the contents of the pedigree file. The
parameters correspond to the different data types and these are set equal to the
names that they have been assigned in the first line of the pedigree file. The
parameters pedigree id, individual id, parent id, and sex field are associated
with the pedigree data part of the pedigree file. The parameters trait and marker
indicate fields as such. Missing values for the traits and markers are defined
as attributes of the trait and marker parameters as shown in the example.

The analysis definition section of the parameter file appears after the configu-
ration information. The following is an example of a parameter file with the
parameters for running GENIBD and SIBPAL2:

scantype=interval
Distance=2
ibd analysis
{

mode=multipoint
title=“multipoint analysis of chr5”
output=“MP”
region=chr5

}
trait regression,simple

The scantype parameter instructs the program to compute IBD probabilities at
intervals and not just at the marker, and Distance defines the size of the intervals
in cM. The ibd analysis parameter gives directions to the GENIBD program.
The parameter mode tells the program if multipoint or singlepoint analysis is
to be conducted. The title and output will appear in the output file and in the
name of the output file, respectively. The region parameter corresponds to a
parameter in the genome map indicating to which chromosome or chromosome
region the analysis corresponds. The last line of the file instructs SIBPAL2 to
carry out a simple-regression analysis. Recall from the Subheading 1. that the
simple-regression analysis estimates the total genetic variance as a result of
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the locus and the multiple-regression estimates the additive and dominance
variance separately. Replacing the word “multiple” by “simple” in the above
command would result in a multiple-regression analysis being conducted. How-
ever, it is strongly recommended that multiple regression not be carried out
with multipoint IBD estimates. This is because a problem may occur that is
the result of the fact that linked markers can be extremely linearly correlated,
resulting in a singular design matrix during the regression. Many other options
are available that have not been included in the sample parameter file given
earlier. One should refer to the program documentation if they are interested
in experimenting with the full range of options offered by the program. The
parameter file given earlier will carry out the type of linkage analysis described
in Subheading 1.3. It is possible to put comments in the parameter file that
the program will not read. Comments are helpful reminders of what the file is
instructing the program to do. Each line that the user does not want the program
to read should begin with the # symbol.

4.2.3. The Locus File

The locus file includes the marker allele frequency data. Each marker to be
analyzed must be represented in the locus file in order for the program to run.
The locus file has a very specific format; the following is an example for
two markers.

MARKER1
1 = 0.17
2 = 0.31
3 = 0.22
4 = 0.05
5 = 0.25 ;
;
MARKER2
1 = 0.61
2 = 0.23
3 = 0.08
4 = 0.08 ;
;

The marker names are given first followed by the frequency data. The marker
names must be the same as the names defined in the pedigree and parameter
files, and the allele names must be the same as they are in the pedigree file.
Two semicolons must come after each marker in the file. All of the alleles
that appear in the pedigree file must be specified in the marker locus file and
the sum of the frequencies for each marker should be 1. The alleles can be
numbers or characters as long as they correspond to what is in the pedigree file.
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4.2.4. The Genome Map File

The genome map file is required for multipoint IBD analysis. The file defines
the order of the markers and the genetic distances between them. The syntax
of the genome file is very similar to the parameter file. An example of a genome
map file for two markers separated by 10 cM is as follows:

genome
{
region=chr5

{
marker=”MARKER1”
distance=10.0
marker=”MARKER2”
}

}

In the example, the region parameter corresponds to the region parameter
defined in the parameter file. The region parameter tells the program what
group of markers to use in the multipoint analysis. The map of markers is then
given by each marker followed by the distance to the next marker and so on
for the region. The order of the markers in the pedigree file does not have to
correspond to the map order, only the names. One could also define the map
in terms of recombination fraction by substituting the distance for theta. The
program is told to use a Kosambi or Haldane mapping function by adding an
attribute to the region parameter. It is very important that the marker order be
correct and the best estimates of the distances between markers be used for a
multipoint analysis. An example of a genome map file that is specified in terms
of recombination fraction is as follows:

genome
{
region=chr5,map=Haldane

{
marker=”MARKER1”
theta=0.10
marker=”MARKER2”
}

}

4.3. The Output Files
4.3.1. The Output File from GENIBD

The following file was generated by GENIBD. This file does not correspond
to the earlier example files and is for a single-point analysis; this is because
the GENIBD output file from a multipoint analysis is too large to show.
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BD File 1.0: This File is automatically generated. Do NOT edit!

#===============================================================

#

MARKERS

#------

MARKER1

MARKER2

#=========================================

# Pedigree Ind 1 Ind 2 MARKER1 f0, MARKER 1 f2, MARKER 2 f0, MARKER 2

f2.

#--------- ------ ----- ----------- ------------ ------------ ------------

1, 3, 4, 0.000000000 0.000000000 1.000000000 0.000000000

A list of the locations where the IBD was estimated is given in the header of
the file. The results for the one pedigree analyzed appear on the last line. The
probabilities of the pair sharing 0 or 2 alleles IBD (f0 and f2) are shown at
each location where the IBD is estimated, with each line representing the
sharing between a pair of relatives in a family.

4.3.2. The Output File from SIBPAL2

A file generated by SIBPAL2 for a multipoint analysis follows. The data
used in the analysis that generated the results shown below were from 100
families similar to the one in the example pedigree file shown in Subheading
4.3.1. The parameter file used is the same as the one shown in Subheading 4.3.1.

S.A.G.E. RELEASE 4.0 Beta 5 -- Sibpal2 JUNE 2000
COPYRIGHT (C) 1999 CASE WESTERN RESERVE UNIVERSITY.

ANALYSIS OF FULL SIB COVARIANCE: Single regression
Using all markers since none were specified.
Using all traits since none were specified.
Regression for continuous trait ‘Trait’.
----------------------------------------
Traits Phenotypes: Trait
Dependent variable: Mean-corrected trait cross-product

Marker, Covariate Genetic

or Interaction Pairs Variance Estimate Std Error P-value

----------------- ----- -------- -------- --------- -------------

MARKER1 100 Total 2.2355 0.7662 0.00218250430 **

chrl 2.0 100 Total 2.2375 0.8224 0.00384826069 **

chrl 4.0 100 Total 2.1125 0.8639 0.00811925136 **

chrl 6.0 100 Total 1.8525 0.8824 0.01916059378 **

chrl 8.0 100 Total 1.4937 0.8736 0.04521613161 **

MARKER2 100 Total 1.1022 0.8397 0.09616221260
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The header of the file provides information about the analysis that was carried
out, followed by the table of results. Two markers were used in the analysis,
MARKER1 and MARKER2, and the IBD sharing was estimated at the markers
and every 2 cM across the interval between the markers. The table shows the
number of pairs used in the analysis and indicates that the “Total” genetic
variance is being estimated in the analysis. The column under the heading
“Estimate” is the estimate of the b parameter in the regression with the standard
error of the estimate given in the next column. The “P-value” is the probability
of the t-statistic and describes the significance of the regression parameter.

5. Worked Example

5.1. The Data

Data were simulated for the following example. The data consisted of 200
nuclear families having a single sibling pair. Three markers, each having four
equally frequent alleles, were simulated at 20-cM intervals. A QTL was simu-
lated to lie between two of the markers. Instructions for the preparation of real
data are given in Subheading 2.1.

5.2. The Input Files

The pedigree, parameter, locus and, genome map files were called chr1.ped,
chr1.par, chr1.loc, and chr1.gen, respectively. Only the first two pedigrees in
the pedigree file are shown in the following followed by the full parameter,
locus, and map files.

chr1.ped

PID ID P1 P2 SEX TRAIT MARKER1 MARKER2 MARKER3
1 1 0 0 1 0.146 1/4 4/1 4/1
1 2 0 0 2 1.466 1/2 2/4 4/2
1 3 1 2 1 2.447 1/2 4/4 1/2
1 4 1 2 2 −1.636 1/4 2/1 4/1
2 1 0 0 1 0.861 2/4 2/3 1/3
2 2 0 0 2 −0.323 2/2 1/2 3/4
2 3 1 2 1 −1.475 2/2 1/2 4/1
2 4 1 2 2 −1.541 2/2 2/2 3/3

chrl.par

pedigree,character

individual missing value=“0”
sex code, male=“1”, female=“2”
delimiters=“ ”



54 Garner

delimiter mode=multiple
pedigree id=PID
individual id=ID
parent id=P1
parent id=P2
sex field=SEX
trait=Trait,missing=“−99”
marker=MARKER1,missing=“0”
marker=MARKER2,missing=“0”
marker=MARKER3,missing=“0”

}
scan type=interval
Distance=2
ibd analysis
{

Title=“Multi-point”
output = “MP”
mode = multipoint
region = chr1

}
trait regression,simple

chrl.loc

MARKER1
1 = 0.25
2 = 0.25
3 = 0.25
4 = 0.25 ;
;

MARKER2
1 = 0.25
2 = 0.25
3 = 0.25
4 = 0.25 ;
;

MARKER3
1 = 0.25
2 = 0.25
3 = 0.25
4 = 0.25 ;
;
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chrl.gen

genome
{
region=chr1

{
marker = “MARKER1”
distance = 20.0
marker = “MARKER2”
distance = 20.0
marker = “MARKER3”

}
}

5.3. Checking the Pedigree Data with PEDINFO

The following command was typed to start the PEDINFO program:

% pedinfo chr1.par chr1.ped

The program wrote a message to the screen saying that the program run was
successful and it created the files pedinfo.inf and pedinfo.out. The pedinfo.inf
file shows what the program read for the first 10 individuals, which confirmed
that it had read the data correctly. The pedinfo.out file provides a table of
counts and simple statistics that were calculated from the pedigree data. Running
PEDINFO is not required for the analysis and is only recommended as a means
of checking the data.

5.4. Estimating the IBD Allele Sharing

The parameter file has instructed the program to compute multipoint IBD
estimates at 2-cM intervals across the 60-cM region defined in the map file.
The program GENIBD requires all of the input files and was run by typing

% genibd chr1.par chr1.ped chr1.loc chr1.gen

For each unique pedigree in the pedigree file, the program printed the following
message to the screen:

Multi-point: Pedigree 1

Generating Marker Likelihoods ....................Done.

Generating Multipoint Information ....................Done.

Generating Multipoint Combined Info....................Done.

Generating Multipoint IBDs ....................Done.

The program created the files genibd.inf and genome inf. The genibd.inf file
is similar to the pedinfo.inf file. The genome.inf file reports the frequencies of
each genotype it has found in the sample. The genome.inf file is as follows:
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S.A.G.E. RELEASE 4.0 Beta 5—GENIBD JUNE 2000
COPYRIGHT (C) 1999 CASE WESTERN RESERVE UNIVERSITY.

LOCUS DESCRIPTION:
--------------
Locus MARKER1
1 = 0.25, 2 = 0.25, 3 = 0.25, 4 = 0.25
No. Genotype Genotypic Frequency
0 1/1 0.062500
1 1/2 0.125000
2 1/3 0.125000
3 1/4 0.125000
4 2/2 0.062500
5 2/3 0.125000
6 2/4 0.125000
7 3/3 0.062500
8 3/4 0.125000
9 4/4 0.062500

Locus MARKER2
1 = 0.25, 2 = 0.25, 3 = 0.25, 4 = 0.25
No. Genotype Genotypic Frequency
0 1/1 0.062500
1 1/2 0.125000
2 1/3 0.125000
3 1/4 0.125000
4 2/2 0.062500
5 2/3 0.125000
6 2/4 0.125000
7 3/3 0.062500
8 3/4 0.125000
9 4/4 0.062500

Locus MARKER3
1 = 0.25, 2 = 0.25, 3 = 0.25, 4 = 0.25
No. Genotype Genotypic Frequency
0 1/1 0.062500
1 1/2 0.125000
2 1/3 0.125000
3 1/4 0.125000
4 2/2 0.062500
5 2/3 0.125000
6 2/4 0.125000
7 3/3 0.062500
8 3/4 0.125000
9 4/4 0.062500
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The IBD sharing information is contained in a file called MP.CHR1.ibd; the
naming scheme is described in Subheading 2.4. All of the estimates for a
sibling pair are reported on a single line of the IBD sharing file; therefore, the
file is too large to show, but it is of similar format to the file shown in
Subheading 4.1.3. The IBD file was used as input for SIBPAL2 program.

5.5. The Linkage Analysis

In the parameter file, the SIBPAL2 program was instructed to run the simple-
regression linkage analysis. Recall that it is not recommended that multiple-
regression analysis be carried out with multipoint IBD estimates. The program
used the IBD file created by GENIBD along with the parameter and pedigree
files. Typing the following command ran the program:

% sibpal2 chr1.par chr1.ped MP.CHR1.ibd

The program printed its progress to the screen and announced its completion.
The program created a file called sibpal2.inf that is identical to the pedinfo.inf
file created by the PEDINFO file. The results of the linkage analysis were
written to a file called traits.out as follows:

S.A.G.E. RELEASE 4.0 Beta 5 -- Sibpal2 JUNE 2000
COPYRIGHT (C) 1999 CASE WESTERN RESERVE UNIVERSITY.

ANALYSIS OF FULL SIB COVARIANCE: Single regression

Using all markers since none were specified.
Using all traits since none were specified.
Regression for continuous trait ‘Trait’.
--------------------------------------------------
Traits Phenotypes: Trait
Dependant variable: Mean-corrected trait cross-product

Marker, Covariate Genetic

or Interaction Pairs Variance Estimate Std Error P-value

----------------- ----- -------- -------- --------- -------------

MARKER1 200 Total 1.6929 0.6028 0.00273672906 **

chrl 2.0 200 Total 1.8651 0.6482 0.00222480331 **

chrl 4.0 200 Total 2.0240 0.6906 0.00188787881 **

chrl 6.0 200 Total 2.1483 0.7263 0.00173532931 **

chrl 8.0 200 Total 2.2145 0.7513 0.00179236653 **

chrl 10.0 200 Total 2.2042 0.7622 0.00212629696 **

chrl 12.0 200 Total 2.1139 0.7573 0.00288087929 **

chrl 14.0 200 Total 1.9566 0.7375 0.00430805247 **

chrl 16.0 200 Total 1.7577 0.7054 0.00676637575 **

chrl 18.0 200 Total 1.5439 0.6652 0.01064846876 *
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Marker, Covariate Genetic

or Interaction Pairs Variance Estimate Std Error P-value

----------------- ----- -------- -------- --------- -------------

MARKER2 200 Total 1.3362 0.6205 0.01624267046 *

chrl 22.0 200 Total 1.3758 0.6702 0.02070150866 *

chrl 24.0 200 Total 1.3729 0.7164 0.02837257574 *

chrl 26.0 200 Total 1.3124 0.7545 0.04176330209 *

chrl 28.0 200 Total 1.1861 0.7796 0.06486583045

chrl 30.0 200 Total 1.0004 0.7875 0.10272396376

chrl 32.0 200 Total 0.7773 0.7770 0.15914608937

chrl 34.0 200 Total 0.5470 0.7497 0.23322994088

chrl 36.0 200 Total 0.3363 0.7101 0.31813616303

chrl 38.0 200 Total 0.1611 0.6632 0.40417365652

MARKER3 200 Total 0.0257 0.6133 0.48329721794

The most significant evidence for linkage to the QTL (p=0.0017) is at the
position 6 cM from marker 1; the locus was simulated to be at 10 cM from this
marker. The asterisks next to the p-value symbolize the degree of significance of
the results; one for p-values <0.05 and two for p-values <0.01. For the simple-
regression model used in this analysis, the estimate of the regression coefficient
is an estimate of the genetic variance resulting from the QTL. The total pheno-
typic variance of the simulated trait was approximately 3.0; therefore, with a
regression parameter estimate of 2.1483, this QTL would account for 72% of
the total variance in the trait. This would be considered a QTL of large effect.
Given the standard error of 0.7263 on the estimate of the regression parameter,
the QTL could account for as much as 96% or as little as 47% of the total
phenotypic variance in the trait (mean estimate ± standard error).

6. Notes

1. Premature termination of S.A.G.E. S.A.G.E. generally gives a good indication
of why it terminated early in the error messages printed in the .inf files. Should
one of the programs fail to run, the first step should be to read these error messages.
The most common reason for the failure of any analysis program to run is errors
in the format or syntax of the input files. A description of the input files was given
in Subheading 4.2. and it is important that the directions be followed closely. It
is also recommended that the documentation for the program always be referenced
when generating the input files, as formats may change. When data files have been
manually typed into a computer, there may be typographical errors in the files;
for example, a character in a field that requires numbers would cause most programs
to terminate. When declaring the markers and traits in the parameter file, ensure
that the definition that is given for the missing values are not a variable that might
occur as a true value in the data. If you define 0 to be the missing value for the
trait and there are individuals that have a trait value equal to 0, then these individuals
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will be treated as having missing trait values and you will lose power. If files are
created in a word processing or spreadsheet program like MS Word and Excel,
the files must be saved as text in order to be read by the analysis programs. It is
very common to have problems in trying to run a program the first time, so do
not get discouraged if it happens to you.

2. Error reduction. It is very important that the data be as free from errors as possible
before one undertakes a linkage analysis.
a. Pedigree structure errors. Programs exist for checking that the relationships

that one has designated in the pedigrees are consistent with the genotype data.
The most common relationship problems associated with sib-pair analysis are
half-sibs and monozygotic twins being defined as siblings. The program
RELCHECK (9) is recommended for relationship checking.

b. Genotyping errors. The power of linkage analysis is greatly affected by geno-
type errors. The first analysis of the genotype data should always be a search
for genotype errors. Genotype errors become easier to detect as more pedigree
members are typed, with single-marker genotypes in a single sib pair without
parents giving no error detection information. The program PEDCHECK (10)
is recommended for genotype error analysis.

3. Other software. This chapter has used the GENIBD and SIBPAL2 programs for
the linkage analysis. There are alternative ways of carrying out the new Haseman–
Elston method. Other programs exist for conducting the IBD analysis, the most
popular being the GENEHUNTER program (8). GENEHUNTER can print a file
with the IBD sharing probabilities and this file would then have to be formatted
for SIBPAL2. This would not be recommended for individuals who are not familiar
with the file formats. If one is dedicated to using an alternative program for
computing the IBD probabilities, they should run GENIBD as well and compare
the results of the two programs and to get an example of the file format needed
by SIBPAL2. SIBPAL2 is currently the only program that will do the new
Haseman–Elston linkage analysis; however, individuals with good computer and
statistical skills may wish to carry out the regression analysis using a statistical
software package or write their own program to do the analysis. It is recommended
that one check the results of their program to the results given by SIBPAL2 if
they wish to use their own program.
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Nonparametric Linkage Analysis

II. Variance Components

Angela J. Marlow

1. Introduction

1.1. Background

R. A. Fisher combined Galtonian biometrics with Mendelian inheritance to
establish what is known today as biometrical genetics. In his article “The
Correlation Between Relatives on the Supposition of Mendelian Inheritance”
(1), Fisher demonstrated that the normal distribution observed for many biologi-
cal and behavioral traits could result from the inheritance of many individual
loci. This formed the polygenic biometrical model, however, it should be
noted that none of the biometrical expectations depend on the number of
genes involved.

In general, the Fisher model specifies that any continuous phenotype, P, can
be considered as a function of the effects of genes, G, and the environment, E:

P = G + E (1)

Fisher extended this simple trait model into the context of analysis of variance,
which provides a mechanism to partition observed variance into component
parts. In the biometrical framework, this variance partitioning involves

VP = VG + VE (2)

where VP represents the total phenotypic variance, VG the genetic variance, and
VE the environmental variance.

With the appropriate data types (i.e., families), it is possible to estimate the
genetic variance, VG , and environmental variance, VE, even though the pheno-

From: Methods in Molecular Biology: vol. 195: Quantitative Trait Loci: Methods and Protocols.
Edited by: N. J. Camp and A. Cox  Humana Press, Inc., Totowa, NJ
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typic variance is the only observed quantity. This unobserved estimation is the
essence of “variance components analysis” (VC) and is the main focus of this
chapter. In order to appreciate the VC method and applications, however, it is
useful to briefly review the principles of the biometric model that underlie
variance components modeling.

1.2. The Biometrical Model

The biometrical model defines a quantitative trait in terms of the allele
frequencies and genotypic values of a causative locus or loci. The simplest
form of the model is one with a single locus and two alleles (A1 and A2). Two
parameters define the measurable effects of the three possible genotypes, a and
d. The parameter a, known as the “additive genetic value,” is half the measured
difference between the homozygotes’ trait values, with the midpoint between
−a and +a being the mean effect of the homozygous genotypes. The parameter
d, the dominance deviation, represents the deviation of the heterozygous geno-
type from the midpoint. The allele frequencies of A1 and A2 are given by q
and p, respectively. Loci that result from such effects are often referred to as
quantitative trait loci (QTL).

The relationship between genotypes, effect parameters a and d, and their
allele frequencies are shown in Fig. 1 and Table 1.
The mean effect of the locus (here represented by g) is given by

µg = ∑
2

i = 0

fixi = a(p - q)+2dpq (3)

The variance of the genetic effects is given by

σ2
g = ∑ fi(xi − µg)2

= ∑ fix2
i − µ2

g (4)
σ2

g = 2pq[a+(q − p)d]2+4p2q2d 2

σ2
g = Vga + Vgd

The genotypic variance at a locus can be partitioned further into additive and
dominance components, as shown in Eq. (4), where 2pq[a+(q − p)d]2 and

Fig. 1. Assignment of genotypic values
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Table 1
Parameters of the Biometrical Model

No. of A2 alleles (i) 0 1 2

Genotypes A1A1 A1A2 A2A2

Frequency (fi) q2 2pq p2

Genotypic effect (xi) −a d +a

4p2q2d2 are termed the additive and dominance variance components, respec-
tively. Under the assumption that many such loci contribute to a trait, the
genetic variance in Eq. (2) can be partitioned into the cumulative additive
genetic and dominance variance at many loci:

VG = VA + VD (5)

Similarly, the environmental variance, VE, can be partitioned into unique,
individual specific, environmental variance, VS, and environmental variance
that derives from common family effects, VC:

VE = VS + VC (6)

When Eqs. (5) and (6) are inserted into Eq. (2), the full biometrical model
(excluding interactions) becomes:

VP = VA + VD + VC + VS (7)

1.2.1. Covariance for Sib Pairs

The covariance between any pair of relatives can also be expressed in terms
of the biometrical model. For example, the expected genetic covariance between
sibling pairs can be expressed in terms of the values and frequencies of the
nine possible sibling pair genotype combinations (2). The expected frequencies
for the genotypes of the sibling pair (fij) are calculated taking into consideration
the fact that sibs may share zero, one, or two alleles identical by descent (IBD)
with probability 0.25, 0.5, and 0.25, respectively (see Table 2).

Given a locus with two alleles, the covariance for sibs reduces to

Cov(sibs) = ∑
2

i = 0
∑

2

j =0

fij (x1i − µg)(x2j − µg) (8)

= pq[a+(q − p)d]2 + p2q2d 2

When the sum of many such loci are considered, this covariance becomes

Cov(sibs) = 1⁄2VA + 1⁄4VD (9)
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Table 2
Expected Genetic Covariance for Sibling Pairs

P(observing sibs’ genotypes | k alleles IBD)

Sib 1 Sib2 x1i x2j k=0 k=1 k=2 fij

A1A1 A1A1 −a −a q4 q3 q2 1⁄4q2(q+1)2

A1A1 A1A2 −a d 2pq3 pq2 0 1⁄2pq2(q+1)
A1A1 A2A2 −a a p2q2 0 0 1⁄4p2q2

A1A2 A1A1 d −a 2pq3 pq2 0 1⁄2pq2(q+1)
A1A2 A1A2 d d 4p2q2 pq 2pq 1⁄4pq(pq+2)
A1A2 A2A2 d a 2p3q p2q 0 1⁄2p2q(p+1)
A2A2 A1A1 a −a p2q2 0 0 1⁄4p2q2

A2A2 A1A2 a d 2p3q p2q 0 1⁄2p2q(p+1)
A2A2 A2A2 a a p4 p3 p2 1⁄4p2(p+1)2

1.3. Heritability

Heritability is simply the proportion of observed variance attributed to genetic

variance. In the “broad sense,” it is
(VA + VD)

VP
. In the more commonly used

“narrow sense,” it is simply
VA

VP
. The VC method can be used to estimate the

heritability of a quantitative trait and this can and should be carried out before
any marker data are obtained. Prior evidence for heritable effects is valuable,
as it can be costly to initiate a large collection of pedigrees for linkage analysis
only to discover that the trait of interest does not reveal any familial resemblance.
Heritability is strictly relative and population-specific.

1.4. Linkage Analysis

The biometrical model underlies the analyses using the VC approach. Con-
sider a phenotypic trait with a continuous distribution and known mean and
variance in a population. Following the basic Fisher model, it is supposed that
a number of loci are involved in the determination of an individual’s trait value,
along with a number of environmental factors. In order to estimate the variance
parameters, family data are required. It is the known genetic structure of
family data that provides the experimental design required to tease genetic and
environmental effects apart.

The VC method can be extended in order to search for evidence of linkage
to a particular locus. In this case, the estimate for overall heritability can be
partitioned into a linked major gene effect and an unlinked remaining genetic



Nonparametric Linkage Analysis II 65

effect. The latter may be the result of many genes (polygenic effect). At this
point, the number of alleles shared at the locus by a pair of relatives determines
the extent to which their trait value covaries. If the loci under investigation
affects the trait, then it is expected that as the number of alleles shared increases,
the covariance of the trait increases.

The linkage model is simply the full biometric model shown in Eq. (7), but
incorporating direct observed effects from a putative QTL g as in Eq. (4):

VP=VA+VD+VC+VS+Vga+ Vgd (10)

or as parameters to be estimated:

σ2
p = σ2

A + σ2
D + σ2

C + σ2
S + σ2

ga + σ2
gd (11)

Often, the environmental and polygenic effects are not partitioned, so the
model becomes

Cov(xi, xj) = σ2
ga + σ2

gd + σ2
G + σ2

E if i=j (12)
Cov(xi, xj) = πijσ2

ga + ∆ijσ2
gd + Φijσ2

G if i≠j

where xi or j is the trait value for pedigree members i or j, σ2
ga is the major gene

additive effect, 2pq[a-d(p-q)]2, σ2
gd is the major gene dominance effect, 4p2q2d2,

σ2
G is the polygenic component, σ2

E is the residual environmental component,
πij is the the proportion of genes shared IBD, ∆ij is the probability that the pair
shares both alleles IBD, and Φij is the coefficient of relationship between the
pairs of individuals, the mean probability that they share alleles IBD based on
their relationship.

Simultaneously, the model can include the estimation of the trait mean and
covariate effects, which are referred to as “fixed effects” in mixed-model
terminology. The variance estimates are the “random effects” of the model;
they are assumed to have zero correlation.

Assuming multivariate normality, the likelihood for the variances and covari-
ances can be written. Using numerical methods, maximum likelihood estimates
can be obtained for the major gene (σ2

g) for each locus under investigation, as
well as the polygenic (σ2

G) and environmental (σ2
E) variance components. The

variance components are all constrained to have values greater than or equal
to 0 to avoid meaningless estimates (3). Two likelihoods are compared: (1)
allowing free estimation of the major gene effect and (2) assessing that there
is no major gene effect (i.e., when σ2

g is constrained to be 0). When only the
additive genetic component is estimated, minus twice the loge likelihood ratio
has an asymptotic distribution that is a 50:50 mixture of a χ2 variable, with
one degree of freedom and a point mass at 0 (4).

As well as identifying the location of any QTL, the relative size of the
estimated variance component provides a measure of the magnitude of the
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effect of a detected locus. Generally these estimates show a small downward
bias (5–7). This appears to be the result of the incorrect attribution of some
variance to polygenic factors.

1.5. Advantages and Disadvantages of the Variance
Components Method.

One of the advantages of the VC method is that it treats each family as a
unit, explicitly allowing for statistical non-independence among sibs, and is
less liable to type 1 error than are statistics based on pairs of relatives (8).

However, the assumption of multivariate normality can be a major constraint.
Several factors can lead to markedly non-normal phenotypic distributions,
including the presence of a major gene, some gene–environment interactions,
and methods of selective sampling. It has been shown that the likelihood ratio
test of the VC method is relatively robust to some types of non-normality but
not to others (9). For example, the presence of a major gene induces platykurto-
sis, but simulations have shown that the VC method is robust to moderate
platykurtosis. However, non-normality resulting from leptokurtosis does
increase the type 1 error rates in excess of the nominal levels; the degree of
inflation appears to be directly related to the residual sibling correlation (9).
Also, in the presence of sibling correlation, marked kurtosis or skewness leads
to a significant increase in the type 1 error rate. Therefore, when VC analysis
is used, care should be taken that the distribution of the trait will not adversely
affect the method. Transformation of the trait data to a normal distribution
before the VC analysis can be performed. Otherwise, procedures that do not
rely on specific distribution assumptions can be used such as quasi-likelihood
methods (5) or simulation (9). When ascertainment has induced non-normality
this can sometimes be corrected for if the ascertainment criteria are known
(10). However, a failure to correct for ascertainment tends to lead to a loss of
power rather than to inflation of the rate of type 1 error (ref. 11; C. Amos,
personal communication).

1.6. Type of Data

Family data are required for VC analysis. The smallest family unit could
be nuclear families with either twin or sib-pair data. Genotypic and phenotypic
information is required for the offspring; the parents are coded in the file to
link the children. The presence of genotypic information for the parents is not
essential but can help with both the accuracy and speed of the analysis; pheno-
typic information for the parents is also not essential.

The method generalizes to pedigrees of any size, however, the limiting factor
is computing power. Estimating the identity by descent (IBD) probabilities and
handling matrices for the variance components can prove computationally
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intensive. When extended families are used, both phenotypic and genotypic
data are required for as many individuals in the family as possible; some
individuals with missing data may need to be included in the pedigree to
maintain the structure.

2. Methods

2.1. Explore Trait Data

Before beginning the analysis, it is very important to understand the trait
under investigation. For the method to be unbiased, the trait must be a continuous
variable and normally distributed.

It is important to carry out some exploratory statistics on the trait data. The
simplest thing to do is to plot a histogram of the data and assess whether it
appears to be normally distributed. Other diagnostic plots are available, such
as the boxplot, the density plot, and the normal qq-plot, these provide an
indication of the distribution and possible outliers. Higher order of moments
such as skewness and kurtosis also help with assessing the distribution, as well
as formal tests of normality, such as the Kolmogrov–Smirnov test. An example
of the exploration of trait data is given in Subheading 5.1.

Summary statistics, such as the mean and variance, are also important,
knowing these allows verification that the parameters estimated in the variance
component model are reasonable.

Transformation of the trait data may be necessary in order to make its
distribution normal, useful transformations include the log and square root.
Statistical procedures are also available to determine the most appropriate
transformation (e.g., Box–Cox).

2.2. Covariates

As mentioned, an individual’s trait value may be influenced by a number
of covariates. Typically, these include age, sex, smoking, and so forth. Scatter
plots of the trait value against the covariate value for each individual allows
visual inspection of any relationship between them. Regression analysis can
determine the exact relationship and whether it is significant. It is often useful
to adjust the trait for any known covariates, which can either be carried out
by performing a regression analysis and then using the residuals in the VC
analysis, or by including the covariates in the main analysis.

Alternatively, one may standardize the sample trait using a standard popula-
tion (e.g., with family data for developmental dyslexia, one may adjust the
reading ability by age using the relationship between reading ability and age
in a matched normative population). This can be done if the relationship between
reading ability and age is known in an equivalent standard population (regression
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equation) (11). In this case, the residuals for each family member can then be
calculated and used in the VC analysis.

2.3. Ascertainment

The distribution of a number of traits is normal in human populations if the
sample is randomly ascertained from the population. However, in many of the
QTL mapping experiments of today, the ascertainment criteria are seldom
random.

Either because of a desire to increase power or because we are interested
in the genes that cause disease where, over some threshold value, a continuous
trait indicates a clinical disorder, alternative experimental designs are often
implemented, such as the extreme discordant design (12). Alternatively, single
ascertainment may be used (i.e., based on families containing at least one
individual with a trait value at or above a threshold with their relatives showing
variation in their trait value).

Ascertainment often results in the departure of the trait data from normality.
Adjustment for ascertainment where the criteria are known can be made and
this can circumvent this problem. For example, if families are ascertained on
the trait value of a single individual exceeding some threshold, then this can
be adjusted for in the maximum likelihood estimation of the model. However,
different schemes of ascertainment are often difficult to deal with in practice.
By correcting for ascertainment, the parameters estimated in the sample (e.g.,
heritability) can be applied to the general population from which the sample
was drawn. If no correction can be made, then the parameters estimated are
appropriate only to the sample. In fact, some derived quantitative measures
may have little meaning outside of a clinical sample (e.g., diagnostic question-
naires of some behavioral traits).

Non-normal trait data can also be dealt with using a simulation procedure
to determine the significance of the test statistic empirically (9). This
procedure can be automated, but it may prove computationally infeasible.
Alternatively, quasi-likelihood methods that relax the assumptions of multivar-
iate normality can be used (5). This approach should provide more efficient
estimates of the parameters, but it does depend on large samples for correct
hypothesis testing.

2.4. Overview of Standard Variance Components Analysis
2.4.1. Estimating Identity-by-Descent Probabilities

Before the models are constructed, the probabilities that relatives share alleles
identical by descent (IBD) are calculated from the marker data. This information
as well as the trait values are used to estimate the required variance components.
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2.4.2. Estimating the Variance Components and Assessing
Linkage Evidence

The basic analyses involves the fitting of two models (as described in Sub-
heading 1.4.). The first is the null model, where the major gene effect is
constrained to be 0. The polygenic additive effect and an environmental effect
are included in this model. Second, the alternative model is fitted, in which
the size of the major gene effect is estimated. This model includes a QTL
additive genetic effect (major gene effect), a residual polygenic additive effect
(unlinked genetic effect), and an environmental effect. These two models are
fitted at regular intervals along a chromosome, and minus twice the loge likeli-
hood ratio between the two models is calculated at each point. The degree of
significance of the corresponding χ2 value (or, equivalently, the log odds [LOD]
score) can be used to determine the most likely position of the QTL affecting
the trait.

2.4.3. Estimating Heritability

With regard to heritability, the most interesting values are the overall herita-
bility of the trait and the heritability of a trait that can be attributed to the
major gene at the location of interest. The first of these, the overall heritability
of the trait, is estimated by the polygenic additive variance as calculated under
the null hypothesis. The heritability attributable to a specific locus is estimated
by the additive major gene effect variance (also called the additive QTL effect)
under the alternative hypothesis, with the additive polygenic effect under the
alternative hypothesis estimating the heritability not accounted for by the QTL.

These estimates are important because they indicate the effect size of the
QTL located by the analysis (i.e., the proportion of the genetic variance [or
total variance] that is accounted for by the identified locus).

2.4.4. Notes on the Variance Components Software Programs

The standard genetic VC analyses can be carried out using three widely
available software packages: GENEHUNTER (7, 13), SOLAR (14) and ACT
(5). Subheadings 2.5., 2.6., and 2.7. will demonstrate the use of these three
software packages. The ease of use of these three programs relates to the
complexity of the analysis that each can perform. However, when familiarizing
oneself with the method and the program, it can become frustrating if all that
is required is a basic analysis.

Although better documentation and the use of a standard format for input
files and clearer output can be a criticism, it should be noted that these programs,
along with most other genetic analysis packages, are freely available from
research groups whose sole interest is not the development of software.
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2.5. GENEHUNTER
2.5.1. Introduction to GENEHUNTER

GENEHUNTER (GH) is probably the simplest of the three programs to use
in terms of the file format, the steps involved in the analysis, and the output.

The file format is of a standard form that has long been used in linkage
programs (15). As the extent of the options for the VC analysis is limited, this
helps with the ease of getting to grips with the basic analysis. The documentation
is clear with regard to the commands available and there is on-line help available,
but there is limited description of the output files.

The IBD sharing estimates use an exact multipoint approach to extract the
full probability distribution of allele sharing at every point (16); however,
because of this exact calculation the size of the families is limited. No
single-point option (two-point analysis; one marker locus, one trait locus)
is available for the quantitative analysis in GH 2.0 (beta) as it is for the
qualitative analysis.

Covariates can be included in the analysis, although there is no option to
incorporate ascertainment correction. Estimates of the mean can be switched
between a single mean for both sexes or sex specific means. Estimates of the
variance components for both the polygenic and major gene can include the
effect of dominance variance. This can be important when estimating the effect
of a putative QTL, as a trait with dominance variance analyzed under a model
lacking this component can result in an inflated estimate of the additive effect.
This is the result of the dominance variance being incorrectly specified. There
is an option to input start values for the VC analysis, but the default is to use
a constant fraction of the total phenotypic variance.

2.5.2. File Formats

Two files are required to run GH: the locus (datain) file and a pedigree file.

2.5.2.1. THE LOCUS FILE

The locus file describes the marker data, the affection locus, the traits, and
the covariates. The affection locus needs to be present, although it is not used
in the QTL analysis. The order and layout of the locus or datain file is important,
as is the corresponding order of the loci between the locus file and the pedi-
gree file.

The following is an example of the file format that was used to analyze the
simulated Q4 trait data (see Subheading 5. for details on the trait Q4). The
format is standard linkage (15) except that the third line contains only listings
for the disease locus (numbered 1) and the 50 genotypic markers (numbered
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2 to 51). The traits and covariates are not included in this list. Briefly, the first
number on line 1 contains the total number of disease loci, marker loci, traits,
and covariates. In the example, this is 52: 1 disease locus, 50 genotypic markers,
and 1 trait (Q4). The third line, as noted earlier, numbers only the disease and
marker loci. The disease locus lines start with “1 2” and below the allele,
frequencies are given, followed by the number of liability classes and the
penetrances. These are ignored for the VC analysis. Each marker locus lines
starts with a number 3, followed by the number of alleles for that marker, the
frequencies of the alleles follow on the line below. Each phenotype trait requires
a line starting with “0 2 #” followed by five lines containing either the standard
linkage information for a trait or five empty lines, as GH does not use this
information. In the example locus file in Fig. 2, the five lines beneath “0 2 #”
are consistent for the linkage file format. The penultimate line contains the
intermarker distances. In Fig. 2, these are given in Haldane cM.

2.5.1.2. THE PEDIGREE FILE

The pedigree data file is a standard linkage premakeped format. It contains
the necessary information to construct each pedigree. Parents must be defined
in order to structure the pedigree even if no information is known about them.
A single row is required for each individual in a family containing the following
information: Pedigree, IndividualID, FatherID, MotherID, Sex, Affection,
Alleles of Marker1,..., Alleles of Markern, Trait1,..., Traitk,, Covariate1,...,
Covariatem. The order of the fields is important, as the pedigree structure is
established first, then the gender (1 male, 2 female), then the affection status
(2 affected, 1 unaffected, 0 is unknown). The affection status will not be used
in a quantitative analysis, so a dummy value can be used, but it must be
included. The marker information follows and, finally, the traits and covariates.
As already mentioned, it is essential that the order of the loci correspond to
the order in the locus file. The code for missing variables is 0, except for the
quantitative variables (traits, covariates) when the code is a dash (-).

The following is an example of a pedigree file with two nuclear families,
five markers, one trait, and no covariates:

1 1 0 0 1 2 2 3 4 5 1 3 3 4 1 2 -
1 2 0 0 2 2 2 4 2 6 1 3 4 4 3 5 -
1 3 1 2 2 2 2 3 2 5 1 1 3 4 1 3 11.047
1 4 1 2 1 2 2 4 4 6 3 3 4 4 1 5 12.1438
2 1 0 0 1 2 2 3 3 5 2 3 3 7 3 3 10.28
2 2 0 0 2 2 2 5 4 6 2 4 4 5 1 3 10.7452
2 3 1 2 2 2 2 5 4 5 2 2 3 5 3 3 11.0479
2 4 1 2 2 2 2 2 5 6 2 2 3 5 1 3 10.6258
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Total number of markers, traits, covariates and affection status.

52 0 0 5

0 0.000 0.000 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

1 2 # Aff

0.500000 0.500000 “these numbers should not include the traits or covariates”

1

1.0000 1.0000 1.0000

3 5 # D8G1

0.093800 0.406200 0.250000 0.156200 0.093800

~

~

3 6 # D8G50

0.233300 0.300000 0.300000 0.133300 0.033300 0.000100

0 2 # Q4 Only this line is required to define a trait

0.500000 0.500000 the following five lines may be left blank

1

0.250000 0.500000 0.250000 << GENOTYPE MEANS

0.500000

1.000000

0 -1

0.50000 0.02200 0.03200 0.00901 0.02199 0.02300 0.03000 0.02499 0.01001 0.00800

0.01300 0.02200 0.01500 0.01800 0.02400 0.01800 0.02200 0.02500 0.01199 0.01300

0.02500 0.02400 0.02199 0.02300 0.01800 0.02801 0.01500 0.01300 0.02200 0.02100

0.02100 0.01700 0.01200 0.01100 0.02299 0.02801 0.02500 0.02199 0.02300 0.01300

0.01700 0.02200 0.02200 0.02499 0.02101 0.02199 0.03300 0.03200 0.00801 0.01800

0.50000 Haldane

1 0.10000 0.45000

Fig. 2. Locus file format for GH

2.5.3. Running GENEHUNTER.

This section illustrates how to run an analysis using GENEHUNTER. The
program may be run interactively, and the following example illustrates such
an interactive run. The trait data that are being analyzed is trait Q4 from the
GAW10 data analysis workshop (17). See Subheading 5. for more details.
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********************************************************************
* *

* GENEHUNTER - Complete Linkage Analysis *

* (version 2.0 beta (r2)) *
* *

********************************************************************

Type ‘help’ or ‘?’ for help.

npl:1> load gh dat.08

Parsing Linkage marker data file...

50 markers read (last one = D8G50)

npl:2> use

Current map (50 markers):

D8G1 2.2 D8G2 3.3 D8G3 0.9 D8G4 2.2 D8G5 2.4 D8G6 3.1 D8G7 2.6 D8G8 1.0 D8G9

0.8 D8G10 1.3 D8G11 2.2 D8G12 1.5 D8G13 1.8 D8G14 2.5 D8G15 1.8 D8G16 2.2

D8G17 2.6 D8G18 1.2 D8G19 1.3 D8G20 2.6 D8G21 2.5 D8G22 2.2 D8G23 2.4 D8G24

1.8 D8G25 2.9 D8G26 1.5 D8G27 1.3 D8G28 2.2 D8G29 2.1 D8G30 2.1 D8G31 1.7

D8G32 1.2 D8G33 1.1 D8G34 2.4 D8G35 2.9 D8G36 2.6 D8G37 2.2 D8G38 2.4 D8G39

1.3 D8G40 1.7 D8G41 2.2 D8G42 2.2 D8G43 2.6 D8G44 2.1 D8G45 2.2 D8G46 3.4

D8G47 3.3 D8G48 0.8 D8G49 1.8 D8G50

npl:3> incre dist 1.0

Scanning will now be done in constant increments of 1.0 cM

npl:4> disp off

Screen display of NPL scores, LOD scores, and haplotypes is now ‘off’

npl:5> scan gh ped.08

analyzing pedigree 1...

using non-originals: 3 4

~

~

~

~

analyzing pedigree 239...

using non-originals: 3 4

npl:6> means by sex

Genehunter currently estimates male and female means separately.

1. Estimate a single mean

2. Estimate male and female means separately

Enter the index of the option you want to use [2]: 1

npl:7> variance components

include polygenic dominance variance component? y/n [y]: n

include QTL dominance variance component? y/n [y]: n

file to store variance components [vc.out]:vc.out

file to store parameter correlations [corr.out]:corr.out

Manually enter starting values for means and variances? y/n [y]: n



74 Marlow

Analysis complete

text output file successfully written

npl:8> quit

...goodbye...

2.5.4. GENEHUNTER Output

GENEHUNTER outputs a file with the default name vc.out unless the user
specifies an alternative name. Chromosomal position is indicated in the first
column. The second column indicates the LOD-score evidence for a QTL gene
at each specific chromosomal position. The third and fourth columns indicate
the trait mean (and standard deviation), followed by the fifth and sixth columns,
which indicate the additive polygenic variance estimate (and standard deviation)
under the alternative hypothesis. The seventh and eighth columns show the
environmental variance estimate, with its standard deviation, and the ninth
and tenth column indicates the additive QTL variance estimate (and standard
deviation) under the alternative hypothesis. The final column indicates whether
the run converged or not.

Beneath the estimates under the alternative hypothesis (free model), the
estimates for mean trait value, additive polygenic variance, and environmental
variance are given under the null hypothesis (additive QTL variance constrained
to zero).

vc.out

pos LOD Mean Additive (P) Environmental Additive (QTL) C

0 0.16617 11.54885(0.04132) 0.44351(0.10502) 0.40871(0.04990) 0.07321(0.07865) Y

1 0.19447 11.54891(0.04133) 0.43835(0.10545) 0.40818(0.04988) 0.07906(0.07934) Y

2 0.21962 11.54893(0.04134) 0.43527(0.10482) 0.40765(0.04986) 0.08281(0.07861) Y

~

52 1.0899 11.54703(0.04123) 0.31476(0.11142) 0.41046(0.04995) 0.20022(0.08718) Y

53 1.2705 11.54668(0.04122) 0.29573(0.11099) 0.41113(0.04999) 0.21896(0.08655) Y

54 1.3906 11.54687(0.04121) 0.28047(0.11224) 0.41258(0.05008) 0.23270(0.08788) Y

55 1.3893 11.54736(0.04123) 0.27731(0.11351) 0.41181(0.05005) 0.23688(0.08953) Y

56 1.2579 11.54797(0.04125) 0.29364(0.11305) 0.41035(0.04998) 0.22202(0.08907) Y

~

100 0 11.54796(0.04129) 0.51452(0.10638) 0.41019(0.04993) 0.00000(0.07979) Y

101 0 11.54796(0.04129) 0.51452(0.10668) 0.41019(0.04993) 0.00000(0.08024) Y

Parameter estimates under null hypothesis:

Mean trait value = 11.547963 (0.041291)

Polygenic additive variance = 0.514516 (0.069893)

Environmental variance = 0.410193 (0.049926)
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2.6. Solar
2.6.1. Introduction to SOLAR

Like GH, the user can run SOLAR interactively. The file format is not
standard linkage format, but it is easily formatted and is described in the
documentation and on-line help. There are extensive options available in
SOLAR, although some require considerable understanding of the program and
are not well documented. However, the documentation that is available includes
clear descriptions of the basic commands, together with example runs. GAW10
test data are also provided.

Standard options available include the ability to estimate the heritability
before doing any linkage analysis and the inclusion and significance testing of
covariates. SOLAR automatically corrects for any significant covariates in the
analysis, unless specified otherwise. The trait values in SOLAR appear to be
adjusted by covariates using regression outside of the VC analysis, unlike GH
and ACT. This procedure has implications when there are extensive missing
data. Ascertainment correction for single selection is available. Two-point and
multipoint analyses are available. For two-point analyses, the IBD estimate at
the marker loci uses the method of Curtis and Sham (18) as the default or a
Monte Carlo procedure (19), depending on the pedigree structure. For multipoint
analyses, SOLAR uses an approximation to a multipoint method to estimate
the IBD sharing at positions along the chromosome by means of regression
on the IBD values at marker loci (20).

Estimating the dominance variance at the QTL or polygenes is possible from
the extension of the model, however, this is not a straightforward option. Other
options available include the estimation of any household effects, bivariate trait
analysis, and a Bayesian approach to oligogenic modeling.

2.6.2. File Formats

SOLAR requires at least four files and an optional fifth file if you provide
the allele frequencies rather than allowing the program to estimate them from
the data. The five files are the pedigree file, phenotype file, marker file, map
file, and the frequencies file. It is very important that the pedigree structure
remains consistent across files. Marker names and order must also be consistent
between files, although they do not have to be in map order, as this is taken
from the map file.

2.6.2.1. PEDIGREE FILE

This file contains the pedigree structure defined by pedigreeID, individualID,
fatherID, motherID, and gender. Founders of pedigrees have their parents coded
as 0, the fields are comma delimited, and the header is required.
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FAMID,ID,FA,MO,SEX
1,1,0,0,M
1,2,0,0,F
1,3,1,2,F
1,4,1,2,M
2,1,0,0,M
2,2,0,0,F
2,3,1,2,F
2,4,1,2,F

2.6.2.2. PHENOTYPE FILE

This file contains the pedigreeID and individualID, which must match those
of the pedigree file, followed by any trait values. It also contains any covariates
and proband status if required; the file is comma delimited with missing values
as blanks and the header is required.

FAMID,ID,Q4
1,1,
1,2,
1,3, 11.04700
1,4, 12.14380
2,1, 10.28000
2,2, 10.74520
2,3, 11.04790
2,4, 10.62580

2.6.2.3. MARKER FILE

This file contains the marker information for each individual, and again, the
IDs must correspond to the pedigree file. The missing code is 0 and the fields
are comma delimited, alleles are separated by a back slash, and the header
is required.

FAMID,ID,D8G1,D8G2,D8G3, ........... D8G49,D8G50
1,1,2/ 3,4/ 5,1/ 3, .......... 2/ 4,1/ 2
1,2,2/ 4,2/ 6,1/ 3, .......... 6/ 6,3/ 5
1,3,2/ 3,2/ 5,1/ 1, .......... 2/ 6,1/ 3
1,4,2/ 4,4/ 6,3/ 3, .......... 2/ 6,1/ 5
2,1,2/ 3,3/ 5,2/ 3, .......... 5/ 5,3/ 3
2,2,2/ 5,4/ 6,2/ 4, .......... 6/ 7,1/ 3
2,3,2/ 5,4/ 5,2/ 2, .......... 5/ 6,3/ 3
2,4,2/ 2,5/ 6,2/ 2, .......... 5/ 7,1/ 3

2.6.2.4. MAP FILE

The file contains the chromosome number (e.g., chromosome 8) and then
the markers are listed in map order, followed by their cumulative position in
Kosambi cM. The names must correspond to the names given in the marker file.
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8
D8G1 0.000000
D8G2 2.201548
D8G3 5.405937
~
~
D8G50 98.969506

2.6.2.5. FREQUENCY FILE

This file contains the name of each of the markers, followed by the name
of each allele and its frequencies. The order of the markers must match the
order of the markers in the marker file. The fields are spaced delimited and
no header is required.

D8G1 1 0.093800 2 0.406200 3 0.250000 4 0.156200 5 0.093800

D8G2 1 0.035700 2 0.107100 3 0.107100 4 0.107100 5 0.464300 6 0.178600 7

0.000100

D8G3 1 0.250000 2 0.250000 3 0.343800 4 0.093800 5 0.062500

~

~

D8G50 1 0.233300 2 0.300000 3 0.300000 4 0.133300 5 0.033300 6 0.000100

2.6.3. Running SOLAR

This section illustrates how to run an analysis using SOLAR. The program
may be run interactively, and the following example illustrates such an interact-
ive run. The trait data that are analyzed here are for trait Q4 from the GAW10
data analysis workshop, as earlier (17). See Subheading 5. for more details.

SOLAR version 1.5.7, compiled on Mar 8 2000 at 15:21:46.

Copyright (c) 1995-2000 Southwest Foundation for Biomedical Research

Enter help for help, exit to exit.

solar> load ped solar ped.08

solar> load freq solar freq.08

solar> load marker solar marker.08

solar> load map solar map.08

solar> load phen solar phen.08

solar phen.08: FAMID ID Q4

solar> automodel solar phen.08 Q4

solar> polygenic -s

******************************************************************

* (Screening) Get starting beta values using sporadic type model *

* with diagonal covariance matrices (default for sporadic) *

******************************************************************

******************************************************************

* (Screening) Maximize polygenic model with all covariates *

******************************************************************
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******************************************************************

* (Screening) Maximize polygenic models *

* one with each covariate deactivated *

******************************************************************

*** Testing covariate sex by suspending it ***

*** Loglikelihood w/o covar sex is -410.041622

*** chi = 0.8640, deg = 1

*** p = 0.3526089 (Not Significant)

*****************************************************************

* Covariate screening completed *

* Now using models with only significant or fixed covariates *

* Maximize sporadic model *

*****************************************************************

*** Loglikelihood of sporadic model is -460.857697

**********************************************************

* Maximize polygenic model *

**********************************************************

*** Loglikelihood of polygenic model is -410.041622

*** H2r in polygenic model is 0.5564083

*** Determining significance of H2r

*** Comparing polygenic and sporadic models

*** chi = 101.6321, deg = 1, p < 0.0000001

**********************************************************

* Summary of Results *

**********************************************************

Pedigree: solar ped.08

Phenotypes: solar phen.08

Trait: Q4 Individuals: 1000

H2r is 0.5564083 p < 0.0000001 (Significant)

H2r Std. Error: 0.0586150

sex p = 0.3526089 (Not Significant)

The following covariates were removed from final models:

sex

No covariates were included in the final model

Output files and models are in directory Q4/

Summary results are in Q4/polygenic.out

Best model is named Q4/poly or null0 (currently loaded)

Final models are named poly, spor

Constrained covariate models are named no<covariate name>
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solar> mkdir ibds

solar> ibddir ibds

solar> ibd

Computing IBDs for D8G1 ... pedigree 239

Computing IBDs for D8G2 ... pedigree 239

Computing IBDs for D8G49 ... pedigree 239

Computing IBDs for D8G50 ... pedigree 239

solar> twopoint

Model LOD Loglike H2r H2q1

--------------- --------- ----------- -------- --------

D8G1 0.0041 -410.032 0.541479 0.014943

D8G2 0.0084 -410.022 0.537041 0.020323

~

~

D8G49 0.0020 -410.037 0.547319 0.008985

D8G50 0.0000 -410.042 0.556408 0.000000

Highest New Result

D8G27 2.0828 -405.246 0.211719 0.344942

*** Results have been written to Q4/twopoint.out

solar> mkdir mibd

solar> mibddir mibd

solar> mibd 1

Creating relative-class file ...

Merging marker IBDs ...

Computing mean IBD by relative-class ...

Computing multi-point IBDs:

solar> chromosome 8

solar> interval 1

solar> multipoint 3

Model LOD Loglike H2r H2q1

--------------- --------- ----------- -------- --------

polygenic -410.042 0.556408 0.000000

Model LOD Loglike H2r H2q1

--------------- --------- ----------- -------- --------

chrom 8 loc 0 0.0239 -409.987 0.522277 0.034762

chrom 8 loc 1 0.0326 -409.967 0.517250 0.040094

~

~

chrom 8 loc 98 0.0000 -410.042 0.556408 0.000000

chrom 8 loc 99 0.0000 -410.042 0.556408 0.000000

*** Highest LOD in pass 1 was 1.4988 at Chrom 8 Loc 52

*** Additional information is in files named Q4/multipoint*.out

solar> quit
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2.6.4. SOLAR Output

Numerous files are output from SOLAR and it also creates a number of
directories for each marker and trait analyzed. The files required are in the
directory under the trait name (Q4). The polygenic.out and poly.mod file,
contain the results for the analysis before fitting marker data, including parame-
ter estimates and their standard errors. The files twopoint.out, multipoint.out,
and the last model.out contain the results when fitting a QTL. The file null1.out
has the parameters estimates and standard errors under the alternative hypothesis
containing one QTL (the file null0.out contains the results for no linkage
components, null2.out would be for two QTLs and so forth).

2.6.4.1. POLYGENIC.OUT

Pedigree: solar ped.08
Phenotypes: solar phen.08
Trait: Q4 Individuals: 1000

H2r is 0.5564083 p < 0.0000001 (Significant)
H2r Std. Error: 0.0586150

sex p = 0.3526089 (Not Significant)

The following covariates were removed from final models:

sex
No covariates were included in the final model
Loglikelihoods and chi values are in Q4/polygenic.logs.out
Final models are named poly, spor
Initial sporadic and polygenic models are s0 and p0
Constrained covariate models are named no<covariate name>

2.6.4.2. POLY.MOD.

solarmodel 1.5.7

trait Q4

parameter mean = 11.54796336 Lower 8.4764 Upper 14.4849

parameter mean se 0.04129878331 score -7.73110338e-08

parameter sd = 0.9616178908 Lower 0 Upper 4.808069294

parameter sd se 0.02371642557 score -5.671905994e-07

parameter e2 = 0.4435916656 Lower 0.01 Upper 1

parameter e2 se 0.05861500703 score -3.720608479e-07

parameter h2r = 0.5564083344 Lower 0 Upper 1

parameter h2r se 0.05861500703 score -1.935039784e-07

parameter h2q1 = 0 Lower -0.01 Upper 1

constraint h2q1 = 0

constraint e2 + h2r = 1

omega = pvar*(phi2*h2r + I*e2)

# Mu is determined by covariates only

loglike set -410.041622
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2.6.4.3. TWOPOINT.OUT.

Model LOD Loglike H2r H2q1
--------------- --------- ----------- -------- --------

D8G1 0.0041 -410.032 0.541479 0.014943
D8G2 0.0084 -410.022 0.537041 0.020323
~
D8G26 1.0788 -407.558 0.310498 0.244510
D8G27 2.0828 -405.246 0.211719 0.344942
~
D8G49 0.0020 -410.037 0.547319 0.008985
D8G50 0.0000 -410.042 0.556408 0.000000

2.6.4.4. MULTIPOINT1.OUT.

--------------- --------- ----------- -------- --------
Model LOD Loglike H2r H2q1

chrom 8 loc 0 0.0239 -409.987 0.522277 0.034762
chrom 8 loc 1 0.0326 -409.967 0.517250 0.040094
chrom 8 loc 2 0.0440 -409.940 0.511962 0.045720
~
chrom 8 loc 46 0.9279 -407.905 0.340474 0.215403
chrom 8 loc 47 1.0722 -407.573 0.323335 0.232023
chrom 8 loc 48 1.2131 -407.248 0.308344 0.246829
chrom 8 loc 49 1.3365 -406.964 0.297270 0.258105
chrom 8 loc 50 1.4181 -406.776 0.290665 0.264718
chrom 8 loc 51 1.4790 -406.636 0.283202 0.272212
chrom 8 loc 52 1.4988 -406.590 0.275729 0.279684
chrom 8 loc 53 1 .3353 -406.967 0.284180 0.270827
chrom 8 loc 54 1.2004 -407.278 0.296141 0.259599
chrom 8 loc 55 1.0350 -407.658 0.316016 0.240630
chrom 8 loc 56 0.9520 -407.849 0.327536 0.229269
~
~
chrom 8 loc 98 0.0000 -410.042 0.556408 0.000000
chrom 8 loc 99 0.0000 -410.042 0.556408 0.000000
*** Highest LOD in pass 1 was 1.4988 at Chrom 8 Loc 52

2.6.4.5. LAST.MOD

This file contains the final model estimated in SOLAR.

solarmodel 1.5.7

trait Q4
parameter mean = 11.54739378 Lower 8.4764 Upper 14.4849
parameter sd = 0.9620326041 Lower 0 Upper 4.808069294
parameter e2 = 0.444586964 Lower 0.3445862523 Upper 0.5407575693
parameter h2r = 0.275728541 Lower 0 Upper 0.6120491678
parameter h2q1 = 0.279684495 Lower 0 Upper 0.3722121489
constraint e2 + h2q1 + h2r = 1
omega = pvar*(phi2*h2r + I*e2 + mibd1*h2q1)
# Mu is determined by covariates only
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2.6.4.6. NULL1.MOD

This file contains the parameters for the alternative hypothesis assuming
one QTL. It contains the upper and lower value of these estimates and their
standard errors.

solarmodel 1.5.7
matrix load /tmp/angela/mibd/mibd.8.52.gz mibd1
trait Q4
parameter mean = 11.54739378 Lower 8.4764 Upper 14.4849
parameter mean se 0.04120648496 score −7.496902402e−05
parameter sd = 0.96203261 Lower 0 Upper 4.808069294
parameter sd se 0.02385084992 score -0.01785785247
parameter e2 = 0.4445869498 Lower 0.3445862523 Upper 0.5407575693
parameter e2 se 0.05879505211 score -0.008254964227
parameter h2r = 0.2757285431 Lower 0 Upper 0.6120491678
parameter h2r se 0.1302041715 score -0.008312984156
parameter h2q1 = 0.2796845071 Lower 0 Upper 0.3722121489
parameter h2q1 se 0.1081721848 score -0.009394667769
constraint e2 + h2q1 + h2r = 1
omega = pvar*(phi2*h2r + I*e2 + mibd1*h2q1)
# Mu is determined by covariates only
loglike set -406.590401

2.7. ACT
2.7.1. Introduction to ACT

The ACT package comes as a series of programs. The function and how
they interact with each other need to be established before any analysis can
be embarked upon. The sheer amount of files can be daunting, and although
documentation is provided in each directory for that specific program, a docu-
ment giving the overall structure of the package would be useful. The documen-
tation for the Multic program comes closest to this. Example data are also
provided with the ACT package.

Multic is the program that carries out the VC analysis. It does this one
position at a time so it needs to be put in a script to loop through the analysis
if analyzing more than one marker or multipoint analysis; this means that two-
point analysis can be performed.

The file format depends on the program used, for the following example,
the input data to calculate the IBD probabilities are in a GH format. The files
for Multic have default names fort.12 (pedigree information) and multic.par
(the control file). The format for these files is not standard, but the availability
of utility programs makes the process easier.

Covariates can be included in the analysis, as can proband status for ascertain-
ment correction. Additional features offered by the ACT package include quasi-
likelihood, double ascertainment, bivariate/multivariate trait analysis, and longi-
tudinal data analysis.
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2.7.2. File Formats

In our example, the IBD sharing estimates have been generated by a modified
GH program supplied in the ACT distribution, these are then fed to Multic to
perform the VC analysis. To do this, the following files are required: a pedigree
file and locus file as used for GH (see Subheading 2.5.2.), a specific Multic
file called fort.12, an analysis parameter file called multic.par, and an instruction
file multic.in. As GH is only being used to calculate the IBD sharing estimates,
information about the trait or covariates is not required in the pedigree and
locus GH files, however, if these are present, they can be left. The purpose of
the fort.12 file is to check that the pedigree ordering is consistent in the modified
GH run, and for the Multic runs, it provides the phenotypic data.

2.7.2.1. FORT.12

The format of the fort.12 file is pedigreeID, personID, fatherID, motherID,
sex, affection status, dummy marker information, and trait values. The GH
pedigree file can be used as the fort.12 file, provided it contains the trait. Here,
we have reformatted the file to contain a single dummy marker, rather then
the 50 markers typed, for ease of reading. The pedigree structures must be
consistent between the GH pedigree file and the fort.12 file. In our example,
the important information contained in fort.12 is the trait value, although it
may also contain covariate and proband information if this is pertinent. The
user specifies the missing code, and in this example, it is −999.

fort.12
1 1 0 0 1 2 3 5 -999
1 2 0 0 2 2 2 3 -999
1 3 1 2 2 2 2 5 11.047
1 4 1 2 1 2 3 3 12.1438
2 1 0 0 1 2 2 2 10.28
2 2 0 0 2 2 3 6 10.7452
2 3 1 2 2 2 2 6 11.0479
2 4 1 2 2 2 2 3 10.6258

2.7.2.2. MULTIC.PAR AND MULTIC.IN

A control file for Multic is also required and this can be built using the
interactive program Premultic provided with the ACT package. Premultic que-
ries the user with a series of questions and the responses build the multic.par
file. The first record in multic.par is the title of the run. The second record has
the analysis choices; in this example, these are n = no ascertainment, 3 = run
both the null and alternative hypothesis using the starting values in the file,
1 = break value for convergence (10E-5), y = program fixes the boundary, 2 =
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multic. The third record contains the number of traits, markers, covariates, and
repeat measurements. In this example, there is one trait and only one dummy
marker, because the IBD estimates are obtained separately. The fourth line has
the trait description; this is repeated for each trait with the name, then the
missing value code. Record 5 is the same as the above but for the markers.
Record 6 would be used for any covariates if used, again using the same format.
Record 7 is the fixed format statement for the family data file, t(number) tells
you what column the values begin in, then the F(number) gives the length of
any real number (e.g., for traits and covariates), whereas a4 refers to a genotype
of length 4. Records 8–11 give the initial values for the parameters to be
estimated (E), the others are fixed (F). The final value is the number of iterations.
This file needs to be renamed multic par when using the shell script, which
subsequently renames it multic.par. Multic.par is the control file fed to the
program Multic for each position of IBD estimates.

(9-8-0) ← Name of the file, the date is used otherwise.
n31y2
1 1 0 1

Q4 -999.000000
dummy 0
(t39,F9,t50,a4)

x mu(E) = 8
x poly(E) = 2
x mg1(E) = 2
x mg2(F) = 0
x env(E) = 2
x sib(F) = 0
x pp (F) = 0
x po (F) = 0
N1 = 500

The file multic.in is also provided, it is an instruction file for Multic replacing
the interactive response of a user. It contains just the value “1,” indicating
multivariate data.

2.7.3. Running ACT

In the previous sections, the analyses for GH and SOLAR were run using
interactive commands. For ACT, the analysis does not involve interactive
commands and, instead, the procedure to perform the analysis is explained.

To run the ACT analysis, the shell script go.csh provided in the directory
~/Act/Gh/Demo1/ of the package can be used. Before running the shell script,
it is important to check that all of the programs called from within the script
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are in the correct path. Check that all of the required input files are present
within the directory from which the script will be run and that the script is
executable. Typing go.csh at the prompt runs the script.

The first thing the script does is run the modified version of GH. The file
called gh in is used to instruct GH in performing the IBD calculations. The
commands are the same as if running GH interactively and can be edited, as
in this example, to provide IBD estimates at 1 cM intervals.

GH instruction file gh in:

load gh dat.08
use
incre dist 1.0
scan gh ped.08
dump ibd

y
quit

This produces the three required files; share.out, mloci.out and npoints.out
shown next. The first column of share.out provides the degree of relatedness
between the pair of relatives:

0.000 0 1 0
0.500 0 0 1
0.500 0 0 1
0.500 0 0 1
0.500 0 0 1
0.500 1 0 0

The file, mloci.out, contains the IBD sharing probabilities based on the marker
data for all the relative pairs within a pedigree for each of the positions scanned.
The number of positions scanned is stored in the file npoints.out.

When the shell script continues, it calls a program cutloci, which cuts
mloci.out into a file the same length as share.out, called loci.out. The order in
these files corresponds to one another, so that for each relative pair, we have
the coefficient of relationship and the IBDs. The following is the layout of the
file mloci.out / loci.out containing the probability of sharing 0, 1, and 2 alleles
identical by descent:

0.000 0.000 0.000
1.000 0.000 0.500
1.000 0.000 0.500
1.000 0.000 0.500
1.000 0.000 0.500
1.000 0.000 0.500
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The file fort.12 is modified by a program called getheader, which adds a header
to the file that includes the total number of pedigrees followed by the number
of individuals in each family.

The files share.out, loci.out, and fort.12 file are finally fed to Multic along
with the Multic control and instruction file, multic par and multic in, respec-
tively, one scan position at a time. This is repeated depending on the number
of positions scanned.

2.7.4. ACT Output

Numerous files are output from Multic and some contain the value of only
one parameter at each position; unfortunately, the position is not given in these
files. However, the majority of the output is contained within the file multic.log.
The following is the output for the position giving the maximum likelihood:

Multic.log

Fri Sep 15 10:55:43 2000

Analyze Multivariate Traits with Covariance Program (MULTIC)

ACT: Analysis for Complex Traits Package

Revision 5.0 (30-12-99)

Copyright(C) 1997

Department of Epidemiology

UT M.D. Anderson Cancer Center

All rights reserved.

The program used cpu time: 4.780000 seconds

=====================

| SUMMARY OF ANALYSIS |
=====================

( multivariate data )

----------------

INPUT FILES

----------------

(1). Parameter file: ‘multic.par’

------------------

(9-8-100)

n31y2

1 1 0 1

...

------------------

(2). Family data file: ‘fort.12’

(Total number of families : 239

Total number of individuals: 1164)
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------------------

PARAMETERS FOR THE ANALYSIS

------------------

(1). 1 Trait(s): q4.

(2). 1 Marker(s): dummy.

(3). 0 Covariate(s): .

(4). Ascertainment: NO.

------------------

RESULTS FOR THE ANALYSIS (H 0)

------------------

(1). Covariate coefficients:

Estimate S.E.

Trait 1 (q4):

mean(0)1 = 11.547963 0.041291

(2). Variance components:

Estimate S.E.

Polygenic:

s(0)11 = 0.514516 0.069893

First Major gene:

m1(0)11 = 0.000000 (FIXED EXTERNALLY)

Second Major gene:

m2(0)11 = 0.000000 (FIXED EXTERNALLY)

Environment:

t(0)11 = 0.410193 0.049926

(3). Shared common environmental variance components:

Estimate S.E.

Shared Sibship:

sib(0)11 = 0.000000 (FIXED EXTERNALLY)

Shared Spouse:

p(0)11 = 0.000000 (FIXED EXTERNALLY)

Shared Parent-Offspring:

q(0)11 = 0.000000 (FIXED EXTERNALLY)

(3). Log Likelihood after convergence:

L(0) = -410.041622

---------------------------------

RESULTS FOR THE ANALYSIS (H A)

---------------------------------

(1). Covariate coefficients:

Estimate S.E.

Trait 1 (q4):

mean(A)1 = 11.546876 0.041209
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(2). Variance components:

Estimate S.E.

Polygenic:

s(A)11 = 0.280370 0.112238

First Major gene:

m1(A)11 = 0.232794 0.087869

Second Major gene:

m2(A)11 = 0.000000 (FIXED EXTERNALLY)

Environment:

t(A)11 = 0.412577 0.050078

(3). Shared common environmental variance components:

Estimate S.E.

Shared Sibship:

sib(A)11 = 0.000000 (FIXED EXTERNALLY)

Shared Spouse:

p(A)11 = 0.000000 (FIXED EXTERNALLY)

Shared Parent-Offspring:

q(A)11 = 0.000000 (FIXED EXTERNALLY)

(3). Log Likelihood under the hypothesis of

with major gene component(s):

L(A) = -406.836219

LRT = -2*(L(0)-L(A)) = 6.410807

3. Interpretation

3.1. GENEHUNTER

The output file vc.out (see Subheading 2.5.4.) shows, for each scan position,
the LOD score, estimates of the means, variance components, and covariate
regression coefficients for any covariates, if included in the analysis. Standard
errors are also given for each of the parameter estimates. The final column of
the file indicates if the program converged or not. The corresponding estimates
for the null model are also shown at the end of this file.

From this output, it can be seen that the maximum LOD score of 1.3906
occurs at scan position 54 (54 cM Haldane, close to marker D8G27). At this
position, the maximum likelihood estimates give an overall trait mean (11.547
± 0.041), an additive polygenic effect (0.280 ± 0.112), an environmental effect
(0.413 ± 0.050), and an additive QTL effect (0.233 ± 0.088). The parameters
of the null model give a similar estimate of the mean (11.548 ± 0.041), as
expected, and this is almost identical to the mean trait value in the summary
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statistics, so this is a good indication that the VC analysis was carried out
correctly. The successful convergence at each scan position is also reassuring.
The polygenic additive variance component (0.515 ± 0.070) under the null
gives an estimate of the trait’s heritabilty and the environmental variance (0.410
± 0.050).

3.2. SOLAR

The file polygenic.out (see Subheading 2.6.4.1.) contains the estimate of
the overall additive heritability, H2r (0.556 ± 0.059). SOLAR is the only
program of the three that tests the significance of this heritability estimate. In this
example, the heritability is significant. The program also tests the significance of
any covariates; sex is the only covariate in this file and it is not significant.
The file poly.mod (see Subheading 2.6.4.2.) contains the parameter values
and standard errors under the polygenic model (null hypothesis model with the
QTL variance constrained to zero). The parameters estimates for the overall
mean for Q4 (11.548±0.04), the heritability (additive) h2r (0.556±0.059), and
the environmental component e2 (0.444±0.059) are given. The results for the
alternative hypothesis for two-point analyses and multipoint analyses are found
in twopoint.out (see Subheading 2.6.4.3.) and multipoint1.out (see Subheading
2.6.4.4.), respectively. For the multipoint analyses, IBD estimates are used at
regular intervening intervals across the chromosome. For the two-point analysis,
the maximum LOD score of 2.0828 occurs at the marker D8G27. The estimated
linked QTL effect H2q1 (0.345) with a residual genetic effect H2r (0.212).
The multipoint results localizes the QTL to 52 cM (Kosambi cM) close to
D8G27, with a maximum LOD score (1.4988). The file null1.out give the
estimates for the maximum LOD score, with their standard errors, H2q1 (0.280±
0.108) and H2r (0.276±0.130) and e2 (0.445±0.059), respectively.

3.3. ACT

The file multic.log produces output at each scan position. The largest maxi-
mum likelihood ratio indicates the most likely position of the putative QTL
54cM (Haldane cM) near D8G27. For each position, the output echoes the
options specified in the multic.par file; it also gives the number of families
and individuals in the file. Then, the results for the null hypothesis are output, the
mean (11.548±0.0413), the polygenic effect (0.515±0.070), the environmental
effect (0.410±0.0499), and the log likelihood. The output for the alternative
hypothesis follows: the major-gene (QTL) effect (0.280±0.112), the unlinked
polygenic effect (0.233±0.088), and the environmental effect (0.413±0.050),
with the log likelihood for this model. Finally, the likelihood ratio test (LRT)
is given, which compares the two models, this is χ2 distributed. It can be
converted to a LOD score [χ2/2(loge10) ~ LOD] to compare with the results
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from the other programs (e.g., 6.410807/4.6=1.3937). If a p-value is required,
the χ2 value with one degree of freedom gives the p-value for a two-sided test.
This is divided by 2 because the test is one-sided (variance components must
be greater than 0).

3.4. Summary of Results

All three programs correctly localized the position (close to D8G27, approx
52 cM Kosambi, approx 54 cM Haldane) of the QTL (MG4) affecting the trait
Q4. The LOD scores obtained were modest (1.3906–1.3937) and would not
be significant at a genomewide level. The analysis also provided estimates of
effect size. These can be biased and their standard error needs to be considered
when assessing their significance. For the true generating model, the total
heritability accounted for 55% of the variance of Q4, and the QTL on chromo-
some 8 accounted for 28% of that variance, therefore, the unlinked polygenes
accounted for the remaining 27%.

The estimates from GH, SOLAR, and ACT for the total heritability (additive)
were 51.5%, 55.6%, and 51.5% respectively. Estimates for the linked QTL
(additive effect) were 23.3%, 34.5%, 28.0%, and 23.3% for GH, SOLAR
(two-point), SOLAR (multipoint), and ACT, respectively. For the unlinked
polygenes, the respective estimates were 28.0%, 21.2%, 27.6%, and 28.0%,
respectively. SOLAR’s multipoint estimates were the most accurate, although
all of the estimates were close.

The difference in the results between the three programs should only be the
result of the IBD estimates. For both GH and ACT, these are identical because
they are both using the same exact-multipoint algorithm from GH; therefore,
the VC analysis should be very similar, indeed, the estimates are identical
(Table 3). SOLAR uses an approximate multipoint IBD estimating method,
which has been shown to compare favorably to the exact method (21) and has
the advantage of not being limited by pedigree size. The complete marker
information present in this stimulated dataset would also prove favorable to
SOLAR. However a dataset with missing information should benefit from exact
IBD estimates.

The LOD scores for the length of chromosome for the three programs are
shown in Fig. 3. For GH and ACT, the LOD scores are almost identical (as
expected) and cannot be distinguished from one another in the figure. The
maximum LOD score for SOLAR is slightly higher than the other two, but
not significantly so.

All three programs localized the Q4 trait to the correct position, the slight
difference is the result of the different mapping functions used between GH and
SOLAR when estimating the IBD probabilities. Table 4 lists the corresponding
Kosambi and Haldane map positions for the region where the MG4 is located.



Table 3
Comparison of Results from GENEHUNTER, SOLAR (Multipoint), and ACT

Alternative hypothesis Null hypothesis

Additive Additive Additive
LOD Mean QTL polygenic Environmental polygenic Environmental

GH 1.3906 11.547±0.041 0.233±0.088 0.280±0.112 0.413±0.050 0.515±0.070 0.410±0.050
SOLAR 1.4988 11.547±0.962 0.280±0.108 0.276±0.130 0.445±0.059 0.556±0.059 0.444±0.059

(multipoint)
ACT 1.3937a 11.547±0.041 0.233±0.088 0.280±0.112 0.413±0.050 0.515±0.070 0.410±0.050

a Converted to a LOD score from the likelihood ratio statistic (6.411).
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Fig. 3. LOD scores from GH, Solar, and Act multic.

Table 4
Map Positions for Corresponding Mapping Functions

Theta Kosambi cM Haldane cM

0.028 50.335 51.450
0.015 51.836 52.973
0.013 53.136 54.290
0.022 55.337 56.540
0.021 57.439 58.686
0.021 59.539 60.831

The Kosambi mapping function incorporates the effect of interference, which
is why the map is shorter compared to the Haldane map.

4. Software
The software used in this chapter included GH, SOLAR, and ACT. These

can all be downloaded via Jurg Ott’s linkage software site at Rockefeller: http://
linkage.rockefeller.edu/soft/list.html. Much of the software listed there can also
be downloaded from the “Linkage and Mapping Software Repository of the EBI”
whose web address is ftp://ftp.ebi.ac.uk/pub/software/linkage and mapping/

The summaries from the linkage sites of the three programs as presented next.

4.1. GENEHUNTER

Full name: Genehunter
Version: 2.0 beta (Nov. 1998)
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Descriptions: multipoint analysis of pedigree data, including nonparametric
linkage analysis, LOD-score computation, information-content mapping, haplo-
type reconstruction
Authors: Leonid Kruglyak (leonid@genome.wi.mit.edu), Mark Daly (mjdaly@
genome.wi.mit.edu), Mary Pat Reeve-Daly (mpreeve@genome.wi.mit.edu),
and Eric Lander ( lander@genome.wi.mit.edu ) (Whitehead Institute)
Web: ftp: http://waldo.wi.mit.edu/ftp/distribution/software/genehunter/gh2/;
see also, Falling Rain Genomics, Inc.
Source code language: C
Operating systems: UNIX
Executables: gh
On-line documentation (2.0 beta)
Documentation (in PDF ) (2.0 beta).
On-line instruction (1.1, from Falling Rain Genomics, Inc.)

4.2. SOLAR

Full name: Sequential Oligogenic Linkage Analysis Routines
Version: 1.4.0 (June 1999)
Descriptions: SOLAR is a flexible and extensive software package for genetic
variance components analysis, including linkage, analysis, quantitative genetic
analysis, and covariate screening. Operations are included for calculation of
marker-specific or multipoint identity-by-descent (IBD) matrices in pedigrees
of arbitrary size and complexity, and for linkage analysis of quantitative traits
which may involve multiple loci (oligogenic analysis), dominance effects,
and epistasis
Authors: John Blangero (john@darwin.sfbr.org), Kenneth Lange, Laura Almasy
(almasy@darwin.sfbr.org), Tom Dyer (tdyer@darwin.sfbr.org), and Charles
Peterson (charlesp@darwin.sfbr.org).
Web: http://www.sfbr.org/sfbr/public/software/solar/index.html
Source code language: FORTRAN, C, C++, TCL
Operating systems: UNIX (Solaris)
Executables: solar, ibdprep, ibdmat, relate, multipnt

4.3. ACT

Full name: Analysis of Complex Traits
Version: 1.1 (Mar 17, 2000)
Descriptions: It contains the following modules: ibd, calculates the proportion
of gene shared identical by decent for a nuclear family; ibdn (modified program
of ERPA), which implements a method for assessing increased allele sharing
between all pairs of affected relatives within a pedigree; multic, multivariate
analysis for complex traits; ml, estimation of variance components using
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maximum likelihood; ql, estimation of variance components using quasi
likelihood; relcov, generates first-degree relationship coefficients for extended
families, sim2s, the simulation program that was used to test ACT; cage, Cohort
Analysis for Genetic Epidemiology; gh: GeneHunter, heavily modified to assist
multipoint calculation using Multic
TDT: TDT programs written in SAS
Authors: Christopher I. Amos (camos@request.mdacc.tmc.edu ), Mariza de
Andrade (mandrade@request.mdacc.tmc.edu), and Jianfang Chen (cjf@
request.mdacc.tmc.edu)
Web: http://www.epigenetic.org/Linkage/act.html; http download: http://
www.epigenetic.org/Linkage/act.tar.gz. gcc and f77 compilers are necessary.
Executable programs are included for compatible operating system (i.e.,
Solaris2.6).
Source code language: Fortran77, C++
Operating systems: UNIX (Solaris 2.4/..)
Executables: ibd, ml, ql, he, ibdn, multic

4.4. Additional Comments

The complete source code is provided for both GENEHUNTER and ACT;
no code is provided with SOLAR, just an executable version.

The approximate run time for the three programs to perform the VC analysis
using the Q4 example run on a Dual Sun SPARC Workstation II, CPU (400Mhz)
with 2GB RAM was of the order of GH, 10 min; ACT, 15 min; SOLAR, 1
h, 45 min (reflects the time taken to obtain the IBDs).

5. Worked Example
The pedigree data analyzed in the previous sections was taken from a simu-

lated dataset (problem 2A) produced for the Tenth Genetic Analysis Workshop
(GAW10). A limited description of the model is given here, for those interested
in the complete model, they are referred to the original article (17).

A common disease was simulated using an underlying model thought to
reflect the situation underlying many of the complex disorders attempting to
be mapped today. Affection status was assigned using a threshold model based
on an individuals value for the quantitative trait Q1 exceeding a value T = 40.
Four other intervening quantitative traits were involved in the model (Q2, Q3,
Q4, Q5); some of these traits were influenced by age, sex, and an environmental
factor (EF). Pedigrees were randomly ascertained, subject to the constraint that
there were at least two living offspring, with individuals younger than 16 years
old excluded from the study. Phenotypic data were provided for all living
individuals; of these, 7% were affected.
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Genotypic data were also simulated for all individuals (both dead and alive)
for 367 highly polymorphic markers (average heterozygosity of 0.77), averagely
spaced (2.03 cM) across 10 chromosomes, totaling 726 cM in length. Two
hundred replicates were simulated and each of these replicates comprised 239
nuclear families, with 1164 individuals (1000 living). One of the intervening
traits, Q4, genetically uncorrelated with the other intervening traits (Q2–Q5),
but environmentally correlated (0.4) with Q5, it was influenced by three major
genes (MG4, MG5, and MG6). Fifty-five percent of the variance was attributed
to these genes (MG4 28%, MG5 16% and MG6 11%); the remaining variance
(45%) was the result of random variation. MG4 thus accounted for the largest
genetic variance of the trait Q4 and it was not affected by any covariates or
by the EF. It is located on chromosome 8, 0.9 cM from D8G26 and 0.6 cM
from D8G27.

To demonstrate the variance components method, the phenotypic data of
trait Q4 and the genotypic data from chromosome 8 of the first replicate were
analyzed. Each of the three VC methods correctly localized MG4 to the correct
position on chromosome 8, as well as providing good estimates of the genetic
effect and remaining variance components.

5.1. Exploring Trait Data

All analyses in this chapter were demonstrated with a trait called Q4, which
is part of a simulated dataset from GAW10 (17). The distribution, summary
statistics, and normality test are shown for Q4 in the following.

5.1.1. A Histogram for Trait Q4

A histogram and density plot of Q4 is presented in Fig. 4.

5.1.2. Summary Statistics for Q4

Q4
Min: 8.47640000

1st Qu.: 10.85060000
Mean: 11.55671120

Median: 11.57270000
3rd Qu.: 12.18237500

Max: 14.48490000
Total N: 1000.00000000

NA’s: 0.00000000
Variance: 0.92562684
Std Dev.: 0.96209503
Skewness: 0.06055284
Kurtosis: -0.11824515
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Fig. 4. A histogram and density plot of Q4.

5.1.3. The Kolmogorov–Smirnov Test for normality

One sample Kolmogorov-Smirnov Test of Composite normality

data: Q4

ks = 0.0213, p-value = 0.5

alternative hypothesis:

True cdf is not the normal distn. with estimated parameters

sample estimates:

mean of x standard deviation of x

11.55671 0.962095

The Kolmogorov–Smirnov test is not significant for Q4. We, therefore, accept
the null hypothesis that the distribution is normal.

6. Notes

1. File format. Mega2 is a data-handling program for facilitating genetic linkage and
association analyses written by N. Mukhopadhyay, L. Almasy, M. Schroeder, W.P.
Mulvihill, and D.E. Weeks (University of Pittsburgh). It is available via the web
at http://watson.hgen.pitt.edu/register/soft doc.html; ftp: registration page at http://
watson.hgen.pitt.edu/register [Reference: Am. J. Hum. Genet. 65(Suppl.) (1999)
(abstract).]

Mega2 can presently provide the correct formatted files for 19 different analysis
programs, including GH and SOLAR. It is a menu-driven program that requires a
minimum of three files. Two of these files are standard linkage format: a pedigree
file (pedin.dat) that has been run through makeped and a locus file (datain.dat). The
third file, the map file, is mega2-specific and is of the following format:
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Map file
chr pos name
08 0 D8G1
08 2.25 D8G2
08 5.557 D8G3
~
~
08 98.52 D8G48
08 99.327 D8G49
08 101.16 D8G50

The cumulative positions of the markers are given in cM (Haldane) and the name
of the markers must correspond exactly to the name used in the locus file.

If the three files are given, the default names pedin.xx, datain.xx, and map.xx,
where the xx refers to the chromosome number (e.g., pedin.08, etc). The first menu
of mega2 option 1 allows the user to enter the chromosome number (in this case,
“8”), mega2 then automatically finds these default named files. The rest of the
menus are fairly self-explanatory.

Makeped is a utility program that is part of the linkage package; it takes a standard
linkage pedigree file and adds three pointer fields and a proband field to each
individual; these fields are used for reconstructing pedigrees.

2. Hints on the Programs
a. GENEHUNTER. GENEHUNTER uses an exact multipoint algorithm to calculate
the full probability distribution of allele sharing at every point. The time and memory
required to do this means that the size of the families that can be used is limited.
The requirements are directly proportional to the number of meioses being examined.
This number is 2N − F, where F is the number of founders in the pedigree and N
is the number of nonfounders. GH can rapidly analyze general pedigrees of moderate
size (i.e., up to 16 nonfounding members, on current workstations).

The default mapping function in GH is Haldane. The Kosambi mapping function
is still available; however, this has been shown to give errors (22).

Covariates are coded in the same way as trait data in the pedigree file, within
the locus description file covariates are coded up with just a single line with no
proceeding blank lines, e.g. 4 0 # AGE

Covariates should be listed immediately after the phenotypes. The maximum
number of traits and covariates that can be included are given by the constants
max phenotypes and max covariates in the file npl.h; the default is 10.

If convergence is a problem for which different starting values should be tried;
also, it is possible to increase the number of iterations (MAXITS in the file varcom.c).
Different start values can also be tried to confirm that the true maximum likelihood
estimates were found.

b. SOLAR. The limit on the size of pedigree depends on whether or not the class
of relative required by the data has been coded up. For this dataset of nuclear
families, the IBD estimates were relatively slow compared to GH. However, as the
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data were simulated and no data were missing, the analysis could have been sped
up by not loading the allele frequency files and by using the Monte Carlo method.

The map function for SOLAR should be specified in Kosambi cM.
Covariates are coded up in the solar phen file in the same way as trait values.

When carrying out an analysis, all of the variables in the phen file will be used as
covariates, if you use the automodel and polygenic –s option. Therefore, you need
to make sure you define the trait and only include the covariates you want, the
exclude command can be used to remove those not required.

solar > load phen solar phen.08

solar tells you what was loaded.

ped, per, sex, var1, var2, var3, var4 etc

solar > exclude var2 var3 etc

solar > automodel solar phen.08 var1

solar > polygenic -s (-s option means screen).

solar > model

The command “model” will show you what the current model is.
Ascertainment correction can be carried out for single ascertainment if the proband

status is known. It is coded up in the phen file under the header “proband, probnd,
or prband” in uppercase or lowercase. In this proband field, a blank or 0 signifies
non-proband and anything else indicates a proband. If SOLAR detects such a field,
then it will use this in the analysis, unless the following command is issued or the
field is renamed:

solar> field probnd −none

Probands must have all of the required quantitative variables; probands missing any
quantitative variables are not included in the proband count and, except for defining
the pedigree structure, do not enter into the calculations.

c. ACT. The limit on pedigree size depends on the method used to obtain the IBD
sharing estimates. Multic also has a limit of 20 family members for extended
families. Programs available to obtain IBD sharing estimates include a modified
ERPA (18) and modified GH. The maximum number of traits at present is five for
multivariate data and one for longitudinal data. If any trait value is missing, this
current version of Multic eliminates that individual’s data record.

Covariates can be included in the analysis, as can the proband status for ascertain-
ment correction. Covariates are coded up in the same way as the trait phenotypes
are in the fort.12 file; the user assigns the missing code and this should be something
obvious like −999. In the multic.par control file, the number of covariates and the
column position is specified. The maximum number of covariates is 10.

For ascertainment correction, the proband must have trait information; if this is
missing, the program will exit with an error message. Individual proband status is
coded up in the last eight columns of each family record in the file fort.12 file, 1 =
proband and 0 = non-proband. For ascertainment to be used, the second record of
the multic.par file needs to be coded “y”.
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Linkage and Association

The Transmission/Disequilibrium Test for QTLs

Mark M. Iles

1. Introduction

1.1. Genetic Association

Usually, the probability of observing a particular allele at one locus is
independent of the alleles observed at another locus. However, this is not the
case when two alleles are ‘associated.’ For instance, let the frequency of allele
1 at locus 1 by p1 and the frequency of allele 2 at locus 2 be p2. If the two
alleles are not associated, then the frequency with which they appear together
is p1p2. If their joint frequency is greater than p1p2 the two alleles are said to
be positively associated. If their joint frequency is less than p1p2, the two alleles
are said to be negatively associated. Association is the nonindependence of
allele frequencies at different loci.

Association between two alleles can arise by a number of mechanisms.
However, in a randomly mating population, association between noninteracting
alleles will only persist if they are linked. This type of association is termed
linkage disequilibrium. Association between linked loci will dissipate at a rate
determined by the characteristics of the population. In a randomly mating,
outbred population linkage disequilibrium may only span a few thousand bp,
whereas in a population isolate, it may exist at distances up to 5 cM. Thus, if
a marker allele is found to be associated with disease susceptibility, a disease
susceptibility locus is likely to be nearby. It is for this reason that genetic
association is of interest to investigators mapping disease genes.

However, if mating in the population is nonrandom, then association may
persist between unlinked alleles. Imagine a population that is stratified into

From: Methods in Molecular Biology: vol. 195: Quantitative Trait Loci: Methods and Protocols.
Edited by: N. J. Camp and A. Cox  Humana Press, Inc., Totowa, NJ

101



102 Iles

two groups. Mating only occurs between individuals who come from the same
group and has done so for a number of generations. As a result, some alleles
will be more frequent in one group than in the other. If a disease is more
frequent in one of the groups, then any allele that is also more frequent in that
group will be associated to some degree with disease status. However, such
an allele is not necessarily linked to any disease-predisposing loci and will not
be of help in mapping such loci. The extent of such stratification is difficult
to quantify, and so it is important for tests of association to protect against
such effects.

1.2. The Transmission/Disequilibrium Test

Methods for detecting association between marker alleles and disease status
were first applied to dichotomous traits for which people could be described
as either ‘affected’ or ‘unaffected.’ Two groups of individuals are collected:
one consisting of those with the disease in question (cases) and the other
consisting of those without the disease (controls). The individuals are then
genotyped at a number of genetic markers and the allelic (or genotypic) frequen-
cies in the case and control groups are compared. Any allele (or genotype) that
has a significantly higher frequency in the case group compared with the control
group is said to be associated with disease status (see Chapter 1).

However, the choice of appropriate controls is problematic. Unobservable
ethnic differences between cases and controls, as described, can lead to ‘spuri-
ous’ association. Researchers are interested in association that is the result of
proximity between a marker and a disease-susceptibility locus so that they are
able to locate the causative mutation. Association between linked loci is known
as ‘linkage disequilibrium.’

One solution is to use parental data to provide a ‘pseudocontrol,’ as proposed
by Rubinstein et al. (1). The principal behind the method is to genotype an
affected individual together with his/her parents. The affected individual pro-
vides the case genotype, whereas the two untransmitted alleles from the parents
provide the control genotype. Various methods have been based on this idea,
but the most popular of these is the transmission/disequilibrium test (TDT).

The TDT analyzes the frequency with which alleles are transmitted from
heterozygous parents to affected offspring. If the alleles being studied are
unassociated with disease, then they will have an equal probability of transmis-
sion (0.5 from a heterozygous parent). The test was first proposed by Terwilliger
and Ott (2), but was named the TDT by Spielman et al. (3), who recognized
that only by conditioning on parental genotypes could you ensure that you
would detect association resulting from linkage but not stratification. The TDT
is a simultaneous test of both linkage and association and is, therefore, unaffected
by alleles that are associated with but not linked to the disease-susceptibility
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locus. The TDT is simple to apply. The number of times an allele is transmitted
from a heterozygous parent to an affected offspring is counted. The number
of times the allele is transmitted is denoted by b and the number of times it
is not transmitted is denoted by c.

The TDT statistic is
(b − c)2

(b + c)
. This should follow a χ2

1 distribution under the

null hypothesis of no linkage and/or association. A significant deviation from
this is evidence that the allele is associated with the disease. Data on transmis-
sions from homozygous parents are discarded.

The original test as outlined by Spielman et al. (3) has a number of limitations:
(1) It can only be applied to a single locus at a time. (2) That locus must be
diallelic. Both of these problems can be overcome by testing every allele at
every locus separately and accounting for multiple testing by a Bonferroni
correction, although this is suboptimal. (3) Only one affected child from each
nuclear family can be used in the analysis. If more than two offspring are
included, the test is no longer valid for association, although it remains valid
for linkage (4). (4) Only nuclear families in which both parents have been
typed can be used. If either of the parents is missing, the results may be biased
(5). Most of these problems have since been tackled and the TDT has been
extended to include families with missing parents (6,7) and multiplex families
(8) and to deal with multiple alleles (9,10) and multiple loci (11,12) more effec-
tively.

The limitation of most interest to us here is that the TDT was originally
designed for use with dichotomous traits. Various methods have been developed
for applying TDT-style analyses to quantitative traits and the most significant
of these are covered in the following section. It should be borne in mind that
the aforementioned limitations of the original TDT persist for several of the
methods described. In particular, no one has, as yet, described a quantitative
TDT that is suitable for multilocus data. This is not such a problem when the
loci are unlinked, but when markers are close enough to be in disequilibrium
with each other, correction by the Bonferroni method, which assumes indepen-
dence of the data, may be suboptimal.

2. Methods

2.1. Allison

The first adaptations of the TDT designed specifically for the analysis of
quantitative traits were made by Allison (13). Allison introduced five different
tests, named TDTQ1–TDTQ5, designed specifically to deal with nuclear families
(trios) consisting of two parents and an offspring, as in the TDT. However,
here, the offspring is affected not by a binary trait but by a trait that is measured
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quantitatively. All five tests assume that the locus being studied is diallelic so
that if the locus has more than two alleles, each should be tested in turn against
the remaining alleles. In calculating power, it is assumed that there is random
mating, that Hardy–Weinberg equilibrium holds, and that the marker locus is
the quantitative trait locus (QTL) itself. The standard assumption of no genotyp-
ing or phenotyping errors is also made.

The first four tests (TDTQ1–TDTQ4) require that one of the parents is heterozy-
gous for the putative disease allele and the other homozygous. If this is not
the case, then the validity of the tests will be compromised by the nonindepen-
dence of the observations. If data are missing on either of the parents, bias can
result, as is found in the classical TDT (5).

2.1.1. TDTQ1

When applying TDTQ1, the families are divided into two groups according
to which of the two alleles is transmitted from the heterozygous parent. The
mean trait value in the two groups is compared using a t-test. It is assumed
that the trait value (or, rather, the residuals) is Normally distributed (by invoking
the Central Limit Theorem).

2.1.2. TDTQ2

For TDTQ2, the sample is again dichotomized according to which of the two
alleles is transmitted from the heterozygous parent. Upper and lower threshold
values (ZU and ZL) are chosen, such that ZU ≥ ZL. Those individuals with a trait
value above ZU are placed in one category and those with a trait value below
ZL are placed in another category. The remainder are discarded. The data are
summarized in a 2×2 table of counts, with the rows indicating whether the trait
value is above ZU or below ZL and the columns indicating which allele has
been transmitted from the heterozygous parent. Pearson’s chi-squared test of
independence is then performed to detect an association between trait value and
allele transmitted. This is not strictly a test of whether transmission probabilities
deviate from 0.5. It assumes that the residual distribution is Normal within
each genotype.

2.1.3. TDTQ3

TDTQ3 is a combination of TDTQ1 and TDTQ2. It is assumed that the sample
is large enough that the Central Limit Theorem holds. Only families in which
the offspring has a trait value either above ZU or below ZL are selected. The
test is then performed as for TDTQ1.

TDTQ1 and TDTQ3 are t-tests and, as such, are identical to testing the signifi-
cance of regressing the trait value on the transmission status from the heterozy-
gous parent.
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2.1.4. TDTQ4

TDTQ4 selects only those offspring whose trait value is either lower than ZL

or higher than ZU and tests whether the probability of transmission from the
heterozygous parent is equal to 0.5 in both quadrants.

2.1.5. TDTQ5

The last of the five tests presented by Allison (13), and the only one that
maintains consistently good power under all modes of inheritance, is TDTQ5.
TDTQ5, as with the previous four tests, uses information from nuclear families
(trios) consisting of two parents and one offspring with a quantitatively measured
trait. However, TDTQ5 uses data from all heterozygous parents rather than using
only families with a single heterozygous parent. Only those families where the
offspring has a trait value either greater than ZU or less than ZL are used. The
allele of interest is denoted by ‘a’ and the other allele (or alleles) is denoted
by ‘A.’ Thus, parental mating types can be categorized as either (1) Aa × AA,
(2) Aa × Aa, or (3) Aa × aa. The number of ‘a’ alleles (0, 1, or 2) in the
offspring is denoted by X. The trait value is then regressed on the mating type
(1, 2, or 3) and the R2 for the regression is found. R2 is the proportion of the
total variance of the trait value that is explained by the model and is denoted
by R1

2. Then X and X2 are added to the model, and the R2 calculated for this
regression and is denoted by R2

2. The joint additive and dominant effects of
the locus under investigation can be tested by comparing R1

2 and R2
2 using

the statistic

(R2
2 − R2

1)/2
(1 − R2

2)/(n − 5)
(1)

where n is the number of nuclear family trios used. Under the null hypothesis,
this should follow an F2,n−5-distribution.

TDTQ5 has the obvious advantage over the earlier tests in that families
with two heterozygous parents, as well as those with only one, can be used.
Furthermore, by using a regression method incorporating parental genotypes,
the alleles transmitted from homozygous parents are taken into account. As
an extension to this, Allison suggested including covariates such as ethnic
background, age, and the trait values of the parents, or including interactions
such as gene × gene, gene × environment, or transmission status × sex of parent
(i.e., imprinting). The inclusion of covariates, when they are known and believed
to interact with the trait value, will almost always increase power.

2.1.6. Power

Allison (13) shows that these methods have greater efficiency than the
Haseman–Elston (14) and Extreme-Discordant-Sib-Pairs (15) methods, both
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of which are sib-pair linkage tests. However, the same problems as with Risch
and Merikangas’ work (16) regarding power calculations arise, because power
is calculated under the assumption that the marker is the trait locus and that
the mode of inheritance is additive. The former assumption is ideal for the
TDT, which can lose much power when the marker is not in complete linkage
disequilibrium with the trait locus (17). The ideal model of inheritance for the
TDT is multiplicative and the additive model is very close to this. Under
alternative modes of inheritance, Allison’s tests may not compare so well to
the sib-pair linkage methods, as was shown by Camp for the TDT (18,19).

Page and Amos (20) demonstrate that when there is no admixture, it is more
powerful to compare trait values between those with and without a particular
genotype/allele, ignoring the parents. However, when there is enough admixture
to cause a reasonable amount of non-linkage-based disequilibrium, the false-
positive rate of such tests is inflated and Allison’s TDTQ1–TDTQ4 will be more
powerful. Of Allison’s first four tests, Page and Amos (20) found that TDTQ3

was the most powerful [as did Allison (13)]. Unfortunately, Page and Amos
(20) did not compare TDTQ5, which Allison (13) found to be consistently the
most powerful, because of difficulties in implementing the method.

2.1.7. Limitations

No advice is given regarding the threshold values of ZU and ZL to be used,
although Allison selected them so that the top and bottom 10% of the trait
distribution were included. It should be noted that the selection of extreme
values is inadvisable when there are a number of genes that influence the trait
value. Allison’s tests (13) are straightforward in both concept and application.
However, four are limited by using only families with one heterozygous parent.
The fifth test offers a far more flexible approach to analyzing the data, although
it still has limitations, such as only using diallelic loci. TDTQ1 has been extended
by Xiong et al. (21) [clarified by Wang and Cohen (22)] to utilize multiallelic
markers and families with more than one heterozygous parent. The extension
has greater power than the original TDTQ1 (as it uses more of the data), but
remains less flexible than TDTQ5, as it cannot incorporate covariates and may
even be less powerful.

2.2. Rabinowitz

The method presented by Rabinowitz (23) is similar to Allison’s TDTQ5

(13). However, it requires no parametric assumptions about the distribution of
the trait value and is applicable to multiallelic loci. Rabinowitz describes his
method as being a test of association between marker alleles and trait values,
which is modified by taking parental information into account, thereby avoiding
spurious association caused by the population structure. Furthermore, the
method allows the incorporation of covariates such as environmental factors.



Transmission-Disequilibrium Test for QLTs 107

Let the trait value of the jth child in the ith family be Qij. Initially, a single
allele is considered with indicator variable YijM equal to 1 if the allele is
transmitted maternally to the jth child in the ith family and 0 if it is not
transmitted. YijP is equivalent to YijM for paternally transmitted alleles. Q.. repre-
sents the average trait value taken over all children in all families. Y *

iM takes
the value 1 if the mother of the ith family is heterozygous for the allele under
investigation. Y *

iP takes the value 1 if the father of the ith family is heterozygous
for the allele under investigation. Then, the statistic

T = ∑
n

i=1
∑

m1

j=1

(Qij − Q..) [Y *
iM (YijM − 1

2) + Y *
iP (YijP − 1

2)] (2)

is a measure of the association between the trait and the allele under investiga-
tion. If there is no association, the expected value of this is zero, and if there
is association, the expected value will deviate from zero. The statistic will not
be influenced by association arising from population admixture or stratification
because it uses only transmissions from heterozygous parents, as in the TDT.

The variance of the statistic is

σ2 =
1
4 ∑

n

i=1
∑

mi

j=i

(Qij − Q..)2

(Y *
iM + Y *

iP) (3)

If the marker has only two alleles, the test is simple. T 2/σ2 will have a χ2
1

distribution under the null hypothesis. Under the alternative hypothesis, that
there is both linkage and association between the trait and the marker, the test
statistic will deviate significantly from this distribution.

When the locus has multiple alleles, there are two possibilities for extending
the test. The first is to test each allele in turn and use the value of the one with
the highest score. Multiple testing is accounted for either by calculating the
exact p-value through simulation or by applying the Bonferroni correction.
Although the Bonferroni correction is simpler, it will lead to a more conserva-
tive test.

The second method for analyzing multiple alleles is to amalgamate the tests
for each allele into a single test of all the alleles by taking into account the
covariance between the tests. Let there be k alleles at the locus. Then, let
Z*

iabM equal 1 if the mother of family i has alleles a and b and let Z*
iabF equal 1

if the father of family i has alleles a and b (a, b=1, . . . , k). Then, the covariance
between the test statistics for alleles a and b will be

Cov(a, b) =
1
4 ∑

n

i=1
∑

mi

j=i

(Qij − Q..)2 (−Z *
iabM − Z *

iabF) (4)
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and let

S = ∑
k−1

b=1
∑

k−1

a=1

TaTb

Cov(a, b)
(5)

where Ta is test statistic T applied to allele a and Tb is test statistic T applied
to allele b. In large samples, S will have a χ2

k−1-distribution under the null
hypothesis of no linkage and no association. Deviations of S from 0, suggestive
of both linkage and association, can be tested for significance in the usual way.

Covariates, such as environmental factors, can be accounted for by regressing
the quantitative trait on the covariates. The fitted value for the jth child in the
ith family, Q̂ij, then replaces Qij in the equations. This removes the component
of variability in the traits that is explained by the covariates.

It should be noted that, as with previous tests, the transmissions to several
individuals in the same sibship are not independent. Thus, the test will be valid
for linkage, but not for association, when multiplex families are included in
the analysis.

The test has been extended by Monks et al. (24) to be a valid test for
association as well as linkage when analyzing nuclear families with multiple
offspring. This is achieved by averaging the Rabinowitz statistic within each
family so that each contributes a single score.

2.3. Allison et al. (25)—Sib QTDT

The SibTDT (26) is a variant of the TDT that deals with the situation in
which parental data are unavailable. Allison et al. (25) have developed a similar
sibling-based version of the quantitative TDT. An association between genotype
and trait value is still valid regardless of population structure if sibship effects
are controlled for, as this is equivalent to controlling for parental genotype.
The data required for this test are sibships, each with a minimum of two
individuals. Sibships in which all siblings have either the same trait value
(which is not possible for truly continuous values) or the same genotype cannot
be used, as these effects cannot be separated from the sibship effect and such
families will add no information to the study.

Two methods are proposed by Allison et al. (25). The first is to fit a mixed-
effects model and the second to use a permutation test.

2.3.1. The Mixed-Effect Model

Using the first method, we denote the phenotype of the kth sibling with the
ith genotype in the jth sibship by Yijk. The marker locus is assumed to have m
alleles and, therefore, m(m + 1)/2 possible genotypes. The genotype is modeled
as a fixed factor A with m(m + 1)/2 levels and the sibship is modeled as a
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random factor with J levels (where J is the number of sibships). Therefore,
the following two-factor mixed-effects model is fitted:

Yijk = µ + αi + βj + (αβ)ij + eijk (6)

where i=1, . . ., m(m + 1)/2, j=1, . . . , J, and k=1, . . . , nij (number of siblings
in the jth sibship with the ith genotype). The effect sizes for αi are for the
fixed-genotype factor A, βj are for the random sibship factor B, and the interac-
tion effects αβij are also random. Therefore, genotypic effects are tested condi-
tionally on sibship, because this is random. The model is tested using an
ANOVA-based F-test.

2.3.2. The Permutation Test

The second method is a permutation test. The theory underlying this test is
that if the trait value is independent of the genotype, then the mean trait value
for each of the alleles should be the same. Thus, if the trait values are randomly
reassigned to different individuals, the average trait value for each allele should
not be significantly different. Here, because there may be a sibship effect due
to population structure, trait values are only permuted within sibships. The mean
of the ith allele observed in the jth sibship, µij, averaged over all permutations is
then

µij =
1
Kj ∑

Kj

k=1

Yjk ∑
Kj

k=1

Nijk (7)

There are Kj siblings in the jth sibship (and, therefore, Kj possible permutations)
and Nijk copies of the ith allele in the kth child of the jth sibship, Yjk is the trait
value of the kth sibling in the jth sibship. The variance of the trait value for
the ith allele in the jth sibship, Vij, is

Vij =
1
Kj ∑

Kj

k=1

Y2
jk ∑

Kj

k=1

N2
ijk

+
1

Kj(Kj − 1) [(∑
Kj

k=1

Yjk)
2

− ∑
Kj

k=1

Y2
jk][(∑

Kj

k=1

Nijk)
2

(8)

− ∑
Kj

k=1

N2
ijk] − µ2

ij
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Thus, the statistic

S =
m−1

m ∑
m

i=1

[∑J

j=1
(∑

Kj

k=1

YjkNijk − µij)]2

∑
J

j=1

Vij

(9)

can be approximated by a χ2
m−1-distribution under the null hypothesis of no

linkage and no association. Deviation from this is suggestive of both linkage
and association.

2.3.3. Power

Allison et al.’s (25) power calculations showed both methods to have adequate
power for reasonable sample sizes, even when the gene explains only 10% of
the variance. They found that the larger the sibship size, the greater the power,
but that this increase in power is mainly in going from sib pairs to sib trios;
beyond sib trios, the power to be gained is marginal. The authors also investi-
gated sampling only those sibships that were phenotypically either highly con-
cordant or discordant; siblings had either very similar trait values or very
dissimilar trait values. Analyzing this subset of the full dataset was found to
increase power substantially. The similarity of the trait values was measured
using the Mahalanobis distance (27, p. 234).

The sibling-based quantitative TDT was compared with one of Allison’s
(13) quantitative TDTs (which one is not specified). Simulations showed the
sibling-based quantitative TDT to be the more powerful test. This may be
because although the same number of individuals is genotyped for each test,
fewer of the observations will be informative when parents are used. Alterna-
tively, a family trio provides one known phenotype (from the offspring) and
one unknown (from the untransmitted parental alleles), whereas three siblings
provide three phenotypes, and so provide more information.

The permutation method was found in simulations to have relatively higher
power when the effect of the trait locus was purely additive. When the trait
included a dominance component (e.g., a dominant or recessive mode of inheri-
tance), then the mixed-effects method had relatively higher power.

Both methods lose power as the number of alleles at the locus being tested
increases. However, the permutation method is less affected by this, probably
because it is concerned with allelic effects, whereas the mixed-effects method
concentrates on genotypic effects.

2.4. Abecasis et al. (28)

Fulker et al. (29) developed a method for analyzing sib-pair data by partition-
ing the association into orthogonal within- and between-family components.
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This has been extended by Abecasis et al. (28) to a test for analyzing quantitative
traits in nuclear families of any size, with or without parental information. The
basic model is designed with a diallelic marker locus in mind.

As in ref. 29, the trait is assumed to have a multivariate Normal distribution
and effects are tested by use of a likelihood ratio test. The mean of the multivari-
ate Normal distribution is modeled linearly and can be thought of as representing
association. The variance is modeled using variance components methods (as
described in Chapter 4) and can be thought of as representing linkage (see ref.
29 for more about this concept).

2.4.1. The Association Aspect

First, we present the mean/linear/association part of the model. µ is the
phenotypic mean over all individuals, yij is the trait value of the jth offspring
in the ith family, mij is the number of copies of the allele being studied, and
gij = mij−1. n−i is the number of siblings in the ith subship:

bi =
∑j gij

ni
(10)

If parental genotypes are unknown,

bi =
giF + giM

2
(11)

If parental genotypes are known, where giF is the genotype score analogous to
gij in the father and giM in the mother, and wij = gij−bi

The fitted model is of the following form:

ŷij = µ + βbbi + βwwij (12)

bi represents the between-family component and wij represents the within-family
component. Positive values of wij indicate that a child inherits more copies of
the allele than would be expected given their family, whereas negative values
indicate the inheritance of fewer copies than expected.

Abecasis et al. (28) showed that, as suggested by Fulker et al. (29), the βw

coefficient is an unbiased estimator of the additive genetic component a. Any
‘spurious’ association arising from population admixture is accounted for by
βb. βb is equal to a when there is either no stratification or the phenotypic mean
in every stratum is zero.

When the family units are larger than simple nuclear family trios (e.g., when
there are extra siblings), then the variance must also be modeled, otherwise
the model is invalid. This is because the transmissions, in this case, will no
longer be independent.
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2.4.2. The Linkage Aspect

The variance–covariance matrix is modeled in the usual way (see Chapter
4) and is decomposed into factors such as residual environmental variance,
additive genetic variance, and so forth. When modeling association with the
variance components fitted (as is required for extended families), residual
variance, additive genetic variance, and polygenic variance should always be
modeled, because the assumption in modeling association is that there is a
polygenic effect and that this may be the result of a locus linked to the marker
being tested.

2.4.3. Significance and Power

This method was demonstrated by the authors to have type 1 error rates
close to their nominal values. These were unaffected by population structure,
linked major loci, or additional sibling resemblance. Unsurprisingly, the error
rates were most accurate for larger sample sizes.

Power is dependent on the level of disequilibrium and, when parents are
unavailable, on the number of siblings in each family. The total number of
genotypes required is smaller when parents are not used.

2.4.4. Testing for an Additive Genetic Component

The test of the within-family-association parameter βw is equivalent to the
test proposed by Rabinowitz (23). If βw is not significant in the model, then
this implies that there is no additive genetic component to the disease.

2.4.5. Extensions

The model can be extended to multiallelic loci by including separate between-
and within-family components for every allele but one (because the presence
or absence of the final allele is accounted for by the other alleles). As with all
linear models, the incorporation of covariates such as environmental effects
is possible.

Abecasis et al. (28) also presented a permutation test that is of use if multivari-
ate Normality assumptions are violated; for instance, if the sample size is small
or the trait value skewed. Otherwise, the permutation method has no advantage
over the variance–components method. Dominance can also be included.

The method has the advantage of using all data on nuclear families, including
those with missing parents. The linear model used is intuitively appealing,
because it separates the association into the orthogonal components of between-
family and within-family effects. The model is the most flexible of those
presented here, as it can incorporate factors such as covariates and dominance
easily. It allows the use of multiplex families, and, because it is a likelihood-
based method, estimation of the additive genetic component is possible.



Transmission-Disequilibrium Test for QLTs 113

3. Interpretation
All of the tests described, when applied to the appropriate data, should be

valid as tests of association that are robust to population stratification.

3.1. Allison (13)

Most of the tests suggested by Allison require only a simple comparison of
a statistic against a standard distribution from a book of statistical tables. A
p-value for the observed value of the statistic can then be found.

TDTQ5 is more complicated and requires analysis-of-variance (ANOVA)
techniques. The test can be performed using the QTDT package described in
Subheading 4.

It should be noted that all of Allison’s tests (13) are valid only for simple
nuclear family data, as is the case with the classical TDT. TDTQ1–Q4 can only
use nuclear families in which one parent is heterozygous and one homozygous.
TDTQ5 can use nuclear families in which one or both parents are heterozygous.
Allison’s model includes two regression coefficients (X and X2), which should
fit any genetic model. However, because the transmissions from parents are
treated as independent events, the tests assume implicitly that the trait follows
a multiplicative mode of inheritance. This will not affect the validity of the
test, but will mean that it is most powerful when the trait being studied is,
indeed, multiplicative.

3.2. Rabinowitz

Rabinowitz’s test (23) can, like most of Allison’s tests (13), be calculated
by hand, but it is quite onerous. It can, instead, be implemented using the
QTDT package described in Subheading 4.

The test models the mode of inheritance as additive, which is a fairly standard
technique in modeling quantitative traits. No allowance is made for including
dominance effects in the model. The test is designed to handle multiallelic
loci; however, the test is not valid for multiplex families unless the extension
of Monks et al. (24) is used.

3.3. Allison et al.—Sib-QTDT

This model is designed to be applied to data on sibships and assumes that
sibships are independent (i.e., unrelated). Only full siblings can be used; half-
sibs and monozygous twins are inappropriate.

The first test presented by Allison et al. (25) is an ANOVA-based F-test,
which can be carried out using a standard statistical package such as SAS,
SPSS, or Stata. The second test involves the calculation of a statistic that can
be done by hand (although this is arduous for large datasets) and compared
against a χ2-distribution.
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If the number of individuals in each sibship is unbalanced, then statistical
inferences can be complex.

3.4. Abecasis et al. (28)

The model is a multivariate Normal distribution that can be fitted using the
QTDT package. The model is compared under the null and alternative (full)
hypotheses. If the latter model provides a significantly better fit, then the
alternative hypothesis is accepted. Otherwise, the alternative hypothesis is
rejected.

Thus, the best-fit model can be built up, as in a stepwise regression, by testing
parameters one-by-one and adding them if they significantly improve the model.

The multivariate Normal distribution is expressed in terms of a mean and
a variance–covariance matrix. When used by either Abecasis et al. (28) or
Fulker et al. (27), the mean term can be thought of as representing association
and the variance term as representing linkage.

Thus, if you want to test only for linkage, you would model only variance
components. If you wanted to test only for association, you would fit only the
means part of the model. If the family data consist of simple TDT trios (for
Abecasis et al.’s method; ref. 28), just the linear (means) part of the model
need be fitted. In this case, testing the within-family component of variance
for significance is equivalent to a test of association that is robust to stratification.

If the families are larger than this, then transmissions are not independent
of one another. In this case, the variance of the multivariate Normal distribution
must also be modeled for the test to be valid. Again, the test for association
is of the within-family component, but with the variance component already
in the model. Residual environmental variance, polygenic variance, and an
additive component of variance are included, because the test of association
assumes both a polygenic effect and that one of the markers tested may be in
the vicinity of an additive major locus.

Further parameters such as covariates, imprinting, dominance, and so forth
may be tested for by adding them one by one, again as in a stepwise regression.

4. Software
A single program will be described in detail here (QTDT). Note that, in

this section, program or file names are highlighted in bold and commands are
shown in italics. QTDT is a package developed by Gonçalo Abecasis and is
available free of charge. Details of how to download the package as well as
on-line instructions for its use can be found at http://www.well.ox.ac.uk/asthma/
QTDT/. Executable versions of QTDT are offered for Linux (x86), SunOS,
DecAlpha, and Silicon Graphics. The C++ source code is also available.

QTDT is a user-friendly package that implements several of the methods
mentioned in this chapter as well as a few that are not covered. The methods
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implemented by QTDT are those of Abecasis et al. (28), Allison TDTQ5; ref.
13), and Rabinowitz (23) (all described earlier) as well as Fulker et al. (29)
and Monks et al. (24) (neither of which have been described in detail here).
The package also includes a test for stratification. As a result, QTDT can
analyze sib-pair, nuclear family, or extended family data, depending on which
method is implemented.

QTDT requires several files containing data and an instruction typed in the
command line. Results are then outputted to the screen, and parameter estimates
are outputted to a file, regress.tbl.

4.1. Files
4.1.1. Pedigree File

Each line in the pedigree file contains information on a single individual.
The file contains genotype data, trait values, and potential covariates as well
as information on the parentage of every individual, a personal ID, a family
ID, and their sex. Entries are separated by spaces or tabs. Each column contains
a different piece of information. The types of information that can be included
in a column are summarized in Table 1. For each type of data, ‘Coding’
indicates what form the data has to take. ‘Missing value indicator’ indicates
how missing values should be represented (some data must be included and
are marked ‘values are required’). The first five columns must always contain
family ID, personal ID, father ID, mother ID, sex in that order.

Figure 1 is an example of a pedigree file. Here, the columns are family ID,
personal ID, father ID, mother ID, sex, trait value, marker genotype (with
alleles delimited with a forward slash, /), and covariate. Note that the file
finishes with the line ‘end’. This is not a requirement, but is good practice.
See Note 1 for hints on entering data in the pedigree file.

If there are any pairs of twins in the study, this must be entered in the
‘zygosity’ column. Monozygous twins are entered in the zygosity column of
the pedigree file as MZ and dizygous twins as DZ. All nontwins are entered
as 0. If there is more than one set of twins with the same parents, the pairs
are coded using integers in the zygosity column. To differentiate between
monozygous and dizygous twins when they are numbered, monozygotes are
always coded using odd numbers and dizygotes using even numbers.

Figure 2 is an example of twin coding. Here, there is a pair of dizygous
twins in family 1. In family 2, individuals 4 and 5 are monozygous twins and
individuals 6 and 7 are dizygous twins.

4.1.2. Data File

The data file is a companion to the pedigree file and indicates the type of
data represented in each of the columns in the pedigree file. Each line of the
data file relates to a column of the pedigree file and contains two items. The
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Table 1
Types of Data That Can Be Included in the Pedigree File

Missing value
Column type Information Coding indicator

Family ID Each family has a Alphanumeric Values are required.
unique identifier. characters only No missing

values accepted.

Personal ID Each individual within Alphanumeric Values are required.
a family has a characters only No missing
unique identifier. values accepted.

Father/mother ID One column will The personal ID of 0 or x
contain the mother the father/mother
ID and one the must exist.
father ID. Either
both or neither
parents should be
included.

Sex The sex of the Male=1 or M 0 or x
individual Female=2 or F

Marker genotype Marker genotype Integer values only 0 or x
should be entered as
two numbers
separated by a tab,
space, or foreward
slash

Trait value One or more trait Real numbers only x or user specified
values may be in command line
entered.

Covariate One or more covariate Real numbers only x or user-specified
values may be in command line
entered.

Zygosity This indicates twin Monozygotes=MZ; Required if twins
status if there are dizygotes=DZ; are present
twins in the study. Non-twins=0

(see later for
more info on
this)

Affection status This denotes a binary Integer only Ignored by QTDT,
phenotype that will so unimportant
be ignored by
QTDT.
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1 1 0 0 1 3.4 1/1 15
1 2 0 0 2 2.7 1/2 12
1 3 1 2 1 5.8 1/2 9
2 1 0 0 1 4.3 1/1 3
2 2 0 0 2 5.4 1/2 12
2 3 1 2 2 4.4 1/1 9
2 4 1 2 1 6.5 1/1 8

end

Fig. 1. Example pedigree file, without twin data.

1 1 x x 1 0 1/2 160
1 2 x x 2 0 1/2 130
1 3 1 2 1 DZ 1/2 145
1 4 1 2 1 DZ 1/2 112
2 1 x x 1 0 1/2 134
2 2 x x 2 0 1/2 178
2 3 1 2 1 0 1/2 123
2 4 1 2 2 1 1/2 189
2 5 1 2 2 1 1/2 106
2 6 1 2 1 2 1/2 163
2 7 1 2 1 2 1/2 120

end

Fig. 2. Pedigree file with twin coding.

T trait1

M marker1

C covariate1

Fig. 3. Data file used in conjunction with pedigree file from Fig. 1.
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first is a code specifying what data type is in the column and the second is a
column name. The first five columns are always family ID, personal ID, father
ID, mother ID, and sex, in that order, and are, therefore, not mentioned in the
data file. The codes used for the remaining columns are as follows:

M = marker genotype

T = trait value

C = covariate

Z = zygosity

A = affection status

S[n] = skip column

The ‘skip column’ entry is used if a column is to be ignored in the analysis.
If more than one consecutive column is to be ignored, the subscript n is used.
For example, to skip two columns, use S2.

The pedigree file from Fig. 1 would have the data file illustrated in Fig. 3.
The names can be anything you want. See Note 2 Section 6.2 for hints on
labeling the columns in the data file.

4.1.3. IBD File

The third file used by QTDT is the IBD file. For every pair of individuals
in a family, this file contains an estimate of the probability that their markers
are identical by descent (IBD).

QTDT has a basic facility that can calculate IBD probabilities when both
parents have been genotyped, in which case, the IBD file is not needed. If
there is any missing data, the IBD file is required.

The IBD probabilities are calculated using either GENEHUNTER 2 or
Simwalk2. Both of these programs can be downloaded free of charge. The
QTDT package includes the programs prelude and finale. prelude prepares the
data in a form that can be read by GENEHUNTER 2 or Simwalk2 and finale
takes the output from either Simwalk2 or GENEHUNTER 2 and converts it
to an IBD file named qtdt.ibd that can be used by QTDT. It is recommended
that the name of the IBD file be changed in order to avoid confusion with
other IBD files you may have created. The commands for running prelude,
finale, GENEHUNTER 2, and Simwalk2 are given in Subheading 4.2.

The IBD file will have the format:

〈family1〉 〈person1〉 〈person2〉 〈marker1〉 〈z0〉 〈z1〉 〈z2〉

where z0, z1, and z2 are the probabilities that zero, one, and two alleles,
respectively, are shared between person1 and person2 of family1 at marker1.



Transmission-Disequilibrium Test for QLTs 119

If other markers are used, the IBD probabilities for each are recorded on separate
lines. See Note 3 for hints on naming files.

4.2. Command Line

There are three uses of the command line in the QTDT package. One is to
run the QTDT analysis, one is to provide summary statistics on the data, and
the other (previously mentioned) is to prepare the IBD file. Each follows the
same format. The name of the program to be run is entered first, followed by
the names of the files to be used, and, finally, which options are required in
the analysis (such as covariates and variance components). All are entered in
a single line.

4.2.1. Summary Statistics

The summary statistics are produced using the command pedstats. The names
of the data and the pedigree files to be analyzed must also be included in the
command line. The IBD file may also be included. Assuming the data, pedigree,
and IBD files are named file.dat, file.ped and file.ibd, respectively, the command
would be

pedstats −d file.dat −p file.ped −i file.ibd

−d indicates the data file used, −p the pedigree file used, and −i the IBD file
used. The code used for missing values can be indicated by −x (e.g., −x −99.999
if this is the code used in the pedigree file for missing trait values or covariates).

The output from this is written to the screen and summarizes the number
of families, the total number of individuals in the pedigree file, the range of
family sizes, and the range of number of generations in the families. It shows
the number of people typed for whom information exists at each marker locus
and for the trait values. The mean and variance of the trait values are also given.
The number of individuals for whom IBD probabilities have been calculated
is listed and will equal zero if the IBD file has not been included in the
pedstats command.

4.2.2. Preparing the IBD File

When the data include missing or untyped parents, QTDT is unable to
calculate IBD probabilities. Instead, they must be calculated using either
GENEHUNTER2 or Simwalk2.

The input files are prepared using prelude, the IBD probabilities are calculated
using either GENEHUNTER2 or Simwalk2, and then the output from these
is converted using finale into a form compatible with QTDT.

prelude uses the data and pedigree files and requires the recombination
fraction between the marker loci as well as an indicator of which individuals
will be included when estimating allelic frequencies. This is written as
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prelude −d file.dat −p file.ped −t 0.0001 −aa

where file.dat is the data file, file.ped is the pedigree file, and 0.0001 is the
recombination fraction between the markers. The −a option indicates which
individuals should be used to estimate allelic frequencies:

−aa = use all individuals;
−ae = assume alleles are equally frequent;
−af = use only founder alleles.

If there are more than two markers and these are not evenly spaced, then the
recombination fraction will not be the same for all of them. For Simwalk2,
you must edit section 000015 of BATCH2.DAT. For GENEHUNTER2 you
must edit the USE command in the file genehunter.in

Once prelude has prepared the files, you run either Simwalk2 or
GENEHUNTER 2. To create the IBD file using Simwalk2 type:

simwalk

followed by

finale IBD-01.*

To create the IBD file using GENEHUNTER 2 type:

gh < genehunter.in

followed by

finale genehunter.in

Here, gh and simwalk are the executable commands for GENEHUNTER 2
and Simwalk2, respectively. These may vary. If you use a different command
to run GENEHUNTER 2, such as gh.sol, that should be used instead.

Regardless of whether GENEHUNTER 2 or Simwalk2 is used, finale writes
the IBD file to qtdt.ibd.

Simwalk2 is recommended if the families in the pedigree file are large. For
small families, as are likely to be used in TDT-type analyses, GENEHUNTER
2 is recommended because it runs more quickly.

4.2.3. Running QTDT

The most basic command for running QTDT is

qtdt −d file.dat −p file.ped

where file.dat is the data file and file.ped is the pedigree file. If this command
is run using the same file.dat and file.ped files described earlier, the output to
the screen from QTDT looks like the following:
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QTDT - Quantitative TDT 2.1.11

(c) 1998–2000 Goncalo Abecasis (goncalo@well.ox.ac.uk)

This program implements tests described by

Abecasis et al, Am J Hum Genet 66:279-292 (2000)

Allison, in Am J Hum Genet 60:676-690 (1997) [TDTQ5]

Fulker et al, in Am J Hum Genet 64:259–267 (1999)

Monks et al, ASHG meeting (1998)

Rabinowitz, in Hum Hered 47:342–350 (1997)

The following parameters are in effect:

QTDT Data File: file.dat (−dname)
QTDT Pedigree File: file.ped (−pname)

QTDT IBD Status File: qtdt.ibd (−iname)
Missing Value Code: -99.999 (−xname)

Covariates: USER SPECIFIED (−c{p|s|u|−})
Association Model: ORTHOGONAL (−a[a|f|m|o|p|r|t|w|−])

Full Model Variances: NOT MODELLED (−v{e|c|n|t|g|a|d|−})
Null Model Variances: NOT MODELLED (−w{e|c|n|t|g|a|d|−})

Genetic Dominance Parameter: OFF (−g[+|−])
Parent of Origin Effects: NONE (−o[f|t|m|p|−])
Monte-Carlo Permutations: 0 (−m9999)

Numeric Minimizer: NELDER AND MEAD (−n[n|p])
First Allele Only: OFF (−1[+|−])

Online documentation http://www.well.ox.ac.uk/asthma/QTDT

Comments, bugs: goncalo@well.ox.ac.uk

The following models will be evaluated. . .

NULL MODEL

Means = Mu + covariate + B

FULL MODEL

Means = Mu + covariate + B + W

Testing trait: trait1

=============================================

Testing marker: marker1

---------------------------------------------

Allele df(0) Rsq(0) df(T) Rsq(T) F p

1 : *** not tested*** (3 probands)

2 : *** not tested*** (3 probands)

As you can see, a number of options not specified in the command line are
used here, because they are set as defaults. For instance, it is assumed that the
IBD file, if it exists, is called qtdt.ibd, that the model used is ‘Orthogonal’
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(28), and that the numeric minimizer used is that of ‘Nelder and Mead’ (see
later for more information about this).

To avoid mistakes, it is always best to specify exactly what you want your
model to contain, without relying on default values.

Table 2 illustrates the summary of options if a description of the model is
fitted. The null model fits a mean term, followed by the covariate in the pedigree
file, then the between-family component of association. The alternative model
is the same but adds a within-family component of association.

If the within-family component is significant, this suggests that there is an
association between the trait value and the marker allele being analyzed, over
and above any simple familial effect, caused by common environment or
stratification, for instance. The effect of the marker on the trait value (if there
is one) is assumed to be additive. A dominant component can be added using
the −g option.

After the model description, the results of the analysis are shown. In the
example, the dataset is too small to test for any effects (only three probands;
see Fig. 1), so no results are given.

4.2.3.1. OVERVIEW OF QTDT OPTIONS

The various options that can be specified in the QTDT command line are
given in Table 2. Default values are indicated in bold. The Command column
indicates what should be entered in the command line. The Description column
gives a brief description of the parameter. The Coding options column gives
all the possible options that can be used in the command line, with a brief
description of each. For instance,

qtdt −d file.dat −p file.ped −x −99.999 −af −cs −we −veg

will use the Fulker method (29), with missing covariate and trait values repre-
sented by –99.999. The data file used will be file.dat and the pedigree file
used will be file.ped. Sex will be included as a covariate in the model of
association. A variance components model with environmental and polygenic
components will be tested against one that includes only environmental compo-
nents. Thus, the significance of the polygenic components is tested for. By
default, the IBD file used will be qtdt.ibd (if it exists) and no dominance
parameter or parent of origin effect will be included. All alleles will be tested
and p-values will be calculated assuming Normality (as opposed to using Monte
Carlo methods). The variance components model will be minimized using
Nelder and Mead’s method.

The different options that can be included in the command line are now
described more fully.
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Table 2
QTDT Options

Command Description Coding options

-d data file The name of the data file used Any name

-p pedigree file The name of the pedigree file Any name
used

-i IBD file The name of the IBD file used Any name

-x missing data The code used for missing trait Any real number
or covariate values

-a[model] The model used -aa (Allison TDTQ5; ref. 13)
-af (Fulker, ref. 29)
-am (Monks, ref. 24)
-ao (Abecasis, ref. 28)
-ap (test for stratification)
-ar (Rabinowitz, ref. 23)
-at (test ignoring stratification)
-aw (use within-family component only)
-a (no association modelled)

-c[covariate] The covariates included in the -cp (parental phenotypes)
model -cs (sex)

-cu (user-specified)
-c- (no covariates)

-w[components] The variance components -we (environmental)
included in the null model -wc (common family environment)

-wn (nuclear family environment)
-wt (shared twin environment)
-wg (polygenic)
-wa (major gene additive effect)
-wd (major gene dominance effect)
-w- (none)

-v[components] The variance components -ve, -vc, -vn, -vt, -vg, -va, -vd, -v- (all as
included in the alternative specified for -w)
model

-n[minimizer] The numeric minimisation -nn (Nelder and Mead)
strategy used for solving -np (Powell)
variance components

-m[permutations] Number of Monte-Carlo Any positive integer (default is 0)
permutations used to get an
empirical p-value

-g[+/−] Include a dominance parameter -g+ (include dominance parameter)
-g− (do not include dominance parameter)

-o[option] Parent-of-origin effects -of (models maternal/paternal separately)
-ot (tests for maternal/paternal difference)
-om (test only maternally inherited alleles)
-op (test only paternally inherited alleles)
-o− (none)

-l[+/−] Test only first allele at loci −l+ (include only first allele)
−l− (include all alleles)
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4.2.3.2. VARIANCE COMPONENTS (−w/v).

Linear models such as those of Allison (13) are not valid when there are
multiple offspring in a family. This is because the linear model requires that
all of the data are independent. In order to model the nonindependence between
members of the same family, variance components are used. Variance compo-
nents are specified using the −w command followed by the command appropriate
to the type of variance component being modeled.

The components of variance that can be included in the model using QTDT,
together with their codes, are as follows:

-we represents the environmental effect unique to each individual. This fulfills the
same role as a residual error term and is fitted using the identity matrix.
-wg represents a polygenic effect caused by loci other than those that have been
typed. It is modeled as a function of the degree of relatedness between family
members and is fitted using the kinship matrix.
-wa represents the additive effect of linkage to a major gene. It is fitted using the
π̂ measure from the IBD matrix.
-wd represents the dominance effect of linkage to a major gene. It is fitted using
the probability that two individuals share two alleles.
-wt represents the environment shared by twins but not other relatives.
-wc represents the common environmental effects shared by all members of a family.
-wn represents the environmental effect shared by all members of a nuclear family.

When the significances of individual components of variance are of interest,
two separate models are compared. One includes the component of interest
and one does not. This can be done in a single command line by specifying
the null hypothesis in the -w command and the alternative hypothesis in the
-v command. The options for -v are the same as those for -w.

To compare variance components it is best to exclude the components of
the linear model. For example, to compare a model with just the environmental
variance component with one that also includes the polygenic component, the
following command can be used to test for heritability:

qtdt −d file.dat −p file.ped −a −c −we −veg

The results compare a model with only the environmental variance component
fitted to one with the polygenic variance component added. The association
is not modeled. Testing for stratification is done in a similar manner with
the command:

qtdt −d file.dat −p file.ped −ap −wega

4.2.3.3. MODELING ASSOCIATION (−a).

The model used is specified using the -a command. Care must be taken to
ensure that the remaining options, in particular the variance components, are
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set in accordance with the description of the test in the original article. For
instance, Allison’s TDTQ5 (13) does not include variance components, whereas
Abecasis et al.’s Orthogonal test (28) and Fulker et al.’s test (29) both require
variance components.

The tests indicated by −aa, −af, −am, −ao, and −ar are as described in the
relevant articles. The others are as follows:

-ap implements a test for stratification based on the Orthogonal model (28), compar-
ing the within- and between-family components of association. This requires vari-
ance components.
-aw indicates that only the within family component is to be included in the model.
-at is a test for association that evaluates the total information available. It should
only be used when you can be certain that there is no stratification. It is not a TDT.
Variance components are required for this.
-a- instructs QTDT not to model association. This is used when only components
of variance are of interest (e.g., in estimating heritability).

4.2.3.4. COVARIATES (−c).

The covariates to be included in the model are specified using the -c com-
mand. If sex is to be included as a covariate, then -cs is used. If parental
phenotypes are included as a covariate, then -cp is used. Any covariates listed
in the pedigree file are included by default, if the -c command is not used, but
the instruction to do this is -cu. If you do not want the covariants in the pedigree
file included, then you must specify this with the command -c-, which means
that no covariates are used. Multiple covariates can be included by, for instance,
using -csp to indicate that both sex and parental phenotypes should be used as
covariates. In this case, the covariates in the pedigree file would not be used.

If the significance of a covariate in the model is of interest, then the model
can be fitted twice—once with the covariate and once without. The likelihoods
of the two models are then compared to test the significance of the covariate.
Twice the log likelihood difference should have a χ2

1-distribution if the covariate
has no influence on the trait. Significant deviation from this indicates that the
covariate is important.

4.2.3.5. DOMINANCE PARAMETER (−g).

This adds a dominant component to the model of association. The command
is -g or -g+.

4.2.3.6. MONTE CARLO METHOD (−m).

The method used by QTDT for calculating p-values depends on the data
having a multivariate normal distribution. If this assumption is violated (for
instance, if the samples are small or the data have been selected for extreme
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trait values), Normality assumptions may be violated. In this case, it is wise
to calculate p-values using Monte Carlo permutations because these make no
distributional assumptions. The permutations condition on the trait distribution,
linkage, and familiality. Bear in mind that the Monte Carlo permutations may
take some time to run.

-m1000 instructs QTDT to run 1000 permutations to calculate p-values.
Any number of permutations can be implemented.

If a significant result is found using QTDT, it is always worth recalculating
the p-values using Monte Carlo permutations to be sure that the results have
not been biased by non-Normality of the data.

4.2.3.7. MINIMIZATION STRATEGY (-n).

-n specifies the numerical minimization strategy employed in fitting models
that include variance components. The choice is either to use Nelder and Mead’s
method (-nn) or Powell’s (-np). The default is to use Nelder and Mead’s method.
Although the two methods are different, there is little to choose between them.
The interested reader may find out more about them in ref. 30.

4.2.3.8. PARENT-OF-ORIGIN EFFECT (-o).

The -o option allows for testing of parent-of-origin effects (imprinting). If
these are shown to be significant, maternally and paternally inherited alleles
can be fitted as separate components in the model, also using the -o option.

-ot tests whether there is a difference between maternally and paternally
derived alleles; for example,

qtdt −d file.dat −p file.ped −ao −ot

If a difference is found, you can include either -of, which models maternally
and paternally inherited alleles separately, or -om/-op, which includes only data
from maternally/paternally inherited alleles

4.2.3.9. DIALLELIC MARKERS (-1 ).

If the markers used are all diallelic (e.g., SNPs), then the results from the
two alleles at a locus will be identical. If this is this case, you can specify that
only one marker at each locus be analyzed by implementing the option −1 or
−1+. This will reduce the output from QTDT as well as possibly speeding up
the program.

4.3. Hints on Model Fitting

If the data consist solely of simple nuclear family trios, then either the
method of Allison (13) or Abecasis et al. (28) is recommended. If any of the
families are larger than this (either multiplex sibships or multigenerational
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families) then variance components must be modeled to take account of this.
This can be done using the method of Abecasis et al. (31) [or Fulker et al.
(29) if only siblings are present].

The command lines and model description in the output for the various
methods are given below. The data files used here are the example files provided
with QTDT. The trios files contain information on nuclear family trios and
the sibs files contain data on sib pairs with unknown parents. Note that when
using the sibs data, variance components must always be used because the
sibling data will be correlated.

4.3.1. Allison (13)

> qtdt -d trios.dat -p trios.ped -aa

NULL MODEL
Means = Aa*AA + Aa*Aa + Aa*aa

FULL MODEL
Means = Aa*AA + Aa*Aa + Aa*aa + X

4.3.2. Fulker (29)

> qtdt -d sibs.dat -p sibs.ped -i sibs.ibd -af -wega

NULL MODEL
Means = Mu + Covariate + B

Variances = Ve + Vg + Va
FULL MODEL

Means = Mu + Covariate + B + W
Variances = Ve + Vg + Va

4.3.3. Monks (24)

> qtdt -d trios.dat -p trios.ped -am

Genotype = Conditional on Parental Alleles
Phenotype = Mu
Rab = (observed − Expected Genotype) * (Observed −
Expected Phenotype)

4.3.4. Abecasis (28)

> qtdt -d trios.dat -p trios.ped -i trios.ibd -ao -wega

NULL MODEL
Means = Mu + B

Variances = Ve + Vg + Va
FULL MODEL

Means = Mu + B + W
Variances = Ve + Vg + Va
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4.3.5. Rabinowitz (23)

> qtdt -d trios.dat -p trios.ped -ar

Genotype = Conditional on Parental Alleles
Phenotype = Mu
Rab = (Observed − Expected Genotype) * (Observed −
Expected Phenotype)

4.3.6. Stratification

> qtdt -d trios.dat -p trios.ped -i trios.ibd -ap -wega

NULL MODEL
Means = Mu + X

Variances = Ve + Vg + Va
FULL MODEL

Means = Mu + X + W
Variances = Ve + Vg + Va

5. Worked Example
The worked example given here uses the data of Keavney et al. (31). The

data concern the level of circulating angiotensin-I converting enzyme (ACE)
and the influence on this of 10-diallelic-marker loci spanning 26 kb of the
ACE gene. The markers used are T-5991C, A-5466C, T-3892C, A-240T, T-
93C, T1237C, G2215A, I/D G2350A, and 4656(CT)3/2. The data have previously
been analyzed using the QTDT package by Abecasis et al. (31).

The dataset consists of 666 individuals plus some ungenotyped parents (who
are included so that sibships will be recognized; see Note 1). Some of the
families contain data on multiple siblings and are multigenerational, so variance
components must be used in the analysis to account for the nonindependence
of the transmissions. The best method to use is that of Abecasis et al. (31).

5.1. Files
5.1.1. Pedigree File

The pedigree file consists of the usual first five columns followed by 10
marker genotypes and the trait value (ACE). The first few lines of the pedigree
file, ace.ped, are as follows:

1 1 0 0 1 0 0 0 0 2 2 2 2 2 2 0 0 1 2 1 2 1 2 1 2 −0.395
1 2 0 0 2 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 −1.788
1 3 1 2 1 0 0 1 2 1 2 1 2 1 2 0 0 2 2 1 1 1 1 1 1 −0.873
1 4 0 0 1 1 1 1 1 1 2 1 1 1 1 1 2 1 2 1 2 1 2 1 2 −0.477
1 5 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 −0.897
1 6 1 2 2 1 2 0 0 1 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 −0.486
1 7 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 −0.520
1 8 1 2 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 −0.863
1 9 4 5 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0.337
1 10 4 5 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 −1.308
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5.1.2. Data File

The data file, ace.dat, is as follows:
M T-5491C
M A-5466C
M T-3892C
M A-240T
M T-93C
M T1237C
M G2215A
M ID
M G2350A
M 4656CT
T ACE

Note that this lists 10 markers and a trait value. No covariates are included.

5.2. Command Line
5.2.1. Preliminary Analysis

The data are summarized using the command

pedstats −d ace.dat −p ace.ped

The output printed to the screen starts with the copyright details followed
by a summary of the model used. Next the data are described:
PEDIGREE STRUCTURE
==================
Families: 83
Individuals: 666 (221 founders, 445 nonfounders)
Family Size: 4 to 18
Generations: 2 to 4

QUANTITATIVE TRAIT STATISTICS
=============================

[Count] [Founder] Mean Var
ACE 405 60.8% 87 39.4% 0.000 0.998

Total 405 60.8% 87 39.4%

MARKER GENOTYPE STATISTICS
==========================

[Count] [Founder] Hetero IBD
T-5491C 541 81.2% 112 50.7% 44.2% 0/83 families
A-5466C 536 80.5% 108 48.9% 45.5% 0/83 families
T-3892C 538 80.8% 110 49.8% 52.6% 0/83 families
A-240T 550 82.6% 113 51.1% 44.4% 0/83 families
T-93C 540 81.1% 111 50.2% 44.1% 0/83 families
T1237C 526 79.0% 108 48.9% 52.1% 0/83 families
G2215A 518 77.8% 103 46.6% 54.1% 0/83 families

ID 551 82.7% 112 50.7% 54.1% 0/83 families
G2350A 509 76.4% 105 47.5% 53.4% 0/83 families
4656CT 540 81.1% 112 50.7% 55.9% 0/83 families
Total 5349 80.3% 1094 49.5% 50.0%
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This tells us that the data consist of 83 families of between 2 and 4 generations.
There are a total of 666 individuals, of whom 405 have known trait values.
The average trait value among these is 0.000 and the sample variance is 0.998.
Following this is information about the markers. Listed for each marker are
the number of people who have been genotyped (the total number and the
number who are founders), the percentage who are heterozygous, and the
percentage for whom IBD probabilities have been calculated. Because we have
not included an IBD file in the pedstats command, the IBD column records
0/83 for every marker.

5.2.2. Preparing the IBD File

Next, we must produce the IBD file to be used in the analysis. The recombina-
tion fraction across the region is 0.00026. The probability of a recombination
occurring in this region is so small that we can assume the markers are equidis-
tant. Therefore, θ is approximated to 0.00003. We prepare the data using
prelude and then calculate IBD probabilities using GENEHUNTER 2:

prelude −d ace.dat −p ace.ped −t0.00003
gh < genehunter.in

This returns the problem

analyzing pedigree 22...

WARNING: due to computation time and memory constraints, individual

9 has been dropped from the analysis.

using non-originals: 10 7 12 13 14 15 16 17 3 4 5 6

FAILED: 1048577x8 bytes total bytes alloced=−
574024788

Can’t get enough memory for this scan

*** error *** possible memory fault/out of memory/software problem ***

because GENEHUNTER 2 cannot deal with large pedigrees. Instead, we must
use Simwalk2, which is slower, but can cope with larger families. On a Sun
Ultra 10 Workstation, this takes 8 h, 20 min.

The IBD file, qtdt.ibd is then prepared using the command

finale IBD-01.*

The resulting IBD file, which we rename ace.ibd, is 28161 lines long. The
first few lines of this are as follows:

1 2 1 T-5491C 1.000 0.000 0.000
1 2 1 A-5466C 1.000 0.000 0.000
1 2 1 T-3892C 1.000 0.000 0.000
1 2 1 A-240T 1.000 0.000 0.000
1 2 1 T-93C 1.000 0.000 0.000
1 2 1 T1237C 1.000 0.000 0.000
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5.2.3. Running QTDT
5.2.3.1. HERITABILITY.

Next, we test for the heritability of the trait, although it is unlikely that the
dataset would have been collected without already having evidence of heritabil-
ity. The test for heritability does not require marker data; it simply tests for
a polygenic component of the trait variance and does not model association
(-a-):

>qtdt −d ace.dat −p ace.ped −i ace.ibd −a− −we −veg

The model is described in the output

The following models will be evaluated . . .
NULL MODEL

Means = Mu
Variances = Ve

FULL MODEL
Means = Mu

Variances = Ve + Vg

followed by the test for the polygenic component of variance:

Testing trait: ACE

===========================================

Allele df(0) LnLk(0) df(V) LnLk(V) ChiSq P

1 : 403 573.67 402 544.77 57.80 0.0000 (405 probands)

The parameter estimates are given in regress.tbl. The estimate of ‘residual’
nonshared environmental variance is 0.333 and the estimate of the polygenic
component of variance is 0.669. Thus, the polygenic heritability of the trait is
estimated as 0.669/(0.333+0.669) = 0.667. In other words, about two-thirds of
the total variance can be explained by a polygenic component, suggesting that
the trait is highly heritable.

5.2.3.2. VARIANCE COMPONENTS (-w/v).

Next, we test for the significance of a QTL additive component of variance
(i.e., evidence for a major gene), again without modeling association:

qtdt −d ace.dat −p ace.ped −i ace.ibd −a− −weg −vega

This is equivalent to testing each marker locus for linkage to an additive major
gene influencing the trait. The results for the first two loci are as follows:
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Testing trait: ACE

===========================================

Testing marker: T-5491C

-------------------------------------------

Allele df(0) LnLk(0) df(V) LnLk(V) ChiSq p

1 : 402 544.77 401 528.22 33.09 0.0000 (405 probands)

Testing marker: A-5466C

-------------------------------------------

Allele df(0) LnLk(0) df(V) LnLk(V) ChiSq P

1 : 402 544.77 401 528.22 33.09 0.0000 (405 probands)

The results for the remaining eight loci are just as significant (all p-values
< 0.0001), suggesting that all are strongly linked to a major additive trait
susceptibility locus. These likelihoods can be converted to a LOD score using
the formula LOD=(lnLk0-LnLk1)/(loge10), where LnLk0 is the log likelihood
under the null hypothesis and LnLk1 is the log likelihood under the alternative
hypothesis. So, the LOD score for marker T-5491C is (544.77–528.22)/
(ln 10) = 7.19.

With the QTL additive component of variance included, we can also estimate
the (narrow) heritability as a result of a single locus. This is calculated for
every locus. In this case, because the loci are all very close, the estimated
coefficients of variance are the same at each one. The estimates, given in
regress.tbl, are 0.384 for the residual environmental variance, 0.001 for the
polygenic component, and 0.559 for the additive component. Thus, the heritabil-
ity resulting from a single locus is 0.559/(0.384 + 0.001 + 0.559) = 0.592,
indicating that about three-fifths of the total variance is accounted for by a
single locus. Note that when the additive genetic component of variance is
fitted, the polygenic component virtually disappears, suggesting that a single
trait locus may be responsible.

We may also test for the significance of components of variance resulting
from a dominant linked locus, a shared nuclear-family effect, and a shared
complete-family effect. The commands for these are respectively as follows:

qtdt -d ace.dat -p ace.ped -i ace.ibd -a- -wega -vegad
qtdt -d ace.dat -p ace.ped -i ace.ibd -a- -wega -vegan
qtdt -d ace.dat -p ace.ped -i ace.ibd -a- -wega -vegac

However, none are found to be significant.

5.2.3.3. MODELING ASSOCIATION (-a).

Next, we model the association. Note that because our data consist of more
than simple nuclear families, we must include variance components even if
these effects are not found to be significant in the previous tests. If we are
testing for association, we believe that there is a polygenic effect and that this
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may map to the locus where our markers are located; hence, our model must
include the variance components −wega in the null model. Note that the tests
of variance are less powerful than the tests of association, so it is possible for
an effect to be a significant component of the mean but not a significant
component of variance.

We use the orthogonal test of Abecasis et al. (28) and include the −1 term
because all of the markers are diallelic:

>qtdt -d ace.dat -p ace.ped -i ace.ibd -ao -wega -1

The following models will be evaluated . . .
NULL MODEL

Means = Mu + B
Variances = Ve + Vg + Va

FULL MODEL
Means = Mu + B + W

Variances = Ve + Vg + Va

This confirms that the between-family component of association is automatically
fitted and it is the within-family component that is being tested for significance,
because it is robust to stratification.

Testing trait: ACE

================================================

Testing marker: T-5491C

------------------------------------------------

Allele df(0) LnLk(0) df(T) LnLk(T) ChiSq P

1 : 304 390.29 303 367.57 45.42 0.0000 (189/309 probands)

Testing marker: A-5466C

------------------------------------------------

Allele df(0) LnLk(0) df(T) LnLk(T) ChiSq P

1 : 305 393.68 304 372.86 41.64 0.0000 (193/310 probands)

The first two markers are highly significant, as are the other eight (all p-values
< 0.0001), suggesting strong association with the trait allele. If we were to
model the association and then test for linkage (qtdt -d ace.dat -p ace.ped -i
ace.ibd -ao -weg -vega -1), we would find that there was now little evidence
for linkage. This is because when fitted in this order, only linkage that has not
been explained by association can be detected. In an extreme case, if the marker
allele were the trait allele or in complete disequilibrium with it, there would
be no evidence at all of linkage once association had been fitted. See ref. 29
for a fuller explanation of this.

If we fit association and then test for linkage, the χ2 values for the consecutive
markers are 5.16, 3.73, 4.13, 1.59, 1.75, 1.77, 0.20, 0.01, 0.02, and 1.17. The
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two markers with the lowest χ2 values here (I/D and G2350A) had the highest
χ2-values when testing for association after fitting the means, suggesting that
it is these two that are in the greatest linkage disequilibrium with the trait allele.

5.2.3.4. COVARIATES (-c).

We return to the model with association fitted after linkage. In order to test
for covariates, we fit the current model both with and without the covariate
and look at the difference in log likelihoods, which are given in the output.
Here, there are no covariates declared in the pedigree file, so we can test only
for sex and parental phenotype as covariates using respectively

qtdt -d ace.dat -p ace.ped -i ace.ibd -ao -wega -cs −1

and

qtdt -d ace.dat -p ace.ped -i ace.ibd -ao -wega -cp −1

compared to

qtdt -d ace.dat-p ace.ped -i ace.ibd -ao -wega −1

The log likelihoods for each marker under the null and alternative hypotheses
are given in the output from QTDT. Hence, from our current model, without
any covariates fitted, the log likelihood under the alternative (full) model, which
includes the within-family component, is 367.57 (on 303 degrees of freedom
[d.f.]) for marker T-5491C and 372.86 (on 304 d.f.) for marker A-5466C. These
values can be seen in the above output. If we include sex as a covariate, these
log likelihoods become 367.57 (on 302 d.f.) and 372.86 (on 303 d.f.). Twice
the log likelihood difference between the models with and without the covariate
included is 0.00 for both markers. This is, of course, not significant compared
to a χ2

1-distribution. The degrees of freedom of the χ2
1-distribution are equal to

the difference in degrees of freedom between the two models.
However, when parental phenotype is included as a covariate, the likelihoods

for the same two markers under the alternative hypothesis are 95.08 (on 81
d.f.) and 94.06 (on 80 d.f.). The log likelihood difference between each of
these and the model without any covariates is 272.49 (222 d.f.) for marker T-
5491C and 278.8 (224 d.f.) for marker A-5466C. These are tested against a
χ2

222- and a χ2
224-distribution, respectively, giving p-values of 0.012 and 0.007.

Similar p-values are found for the other eight loci, providing strong evidence
that parental phenotype is an important covariate. This may be caused by a
further genetic effect that is unexplained by the model.

5.2.3.5. DOMINANCE PARAMETER (-g).

Before a dominance component of association is tested, it must be included
in the variance components model. Therefore, we compare the two models
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qtdt -d ace.dat -p ace.ped -i ace.ibd -ao -wegad −1

and

qtdt -d ace.dat -p ace.ped -i ace.ibd -ao -wegad −g −1

and compare the alternative (full) likelihoods of the two models. Once again,
twice the log likelihood difference is compared against a χ2-distribution. Here,
the χ2-distribution has two degrees of freedom because both within- and
between-family dominance components are added.

We tested for a dominance effect, but this was not significant at the 5%
level at any of the 10 loci. Thus, we include parental phenotype as a covariate
but do not model dominance in our model.

Therefore our complete model to test for association is

qtdt -d ace.dat -p ace.ped -i ace.ibd -ao -wega -cp −1

which gives p-values of less than 0.0001 for every marker.

5.2.3.6. MONTE CARLO METHOD (-m).

Just to be sure that this is not caused by non-Normality of the data, we ran
the test again, calculating p-values using 10,000 Monte Carlo simulations:

qtdt -d ace.dat -p ace.ped -i ace.ibd -ao -wega -cp −m10000 -1

This takes 11.5 h on a Sun Ultra 10 Workstation (1000 simulations takes 75
min). The empirical p-values produced are 0.0001, 0.0004, 0.0001, 0.0003,
0.0004, <0.0001, <0.0001, <0.0001, <0.0001, and <0.0001. This agrees well
with the analytical p-values (which are all less than 0.0001) and supports the
earlier evidence that it is the eighth and ninth markers (I/D and G2350A) that
are likely to be closest to the trait locus.

We can find parameter estimates in the file regress.tbl. Under the alternative
(full) hypothesis (which includes the within-family component of association),
the data for the first marker (T-5991C) look as follows:

FULL HYPOTHESIS
---------------
Family #1 var-covar matrix terms [3]...[[Ve]][[Vg]][[Va]]
Family #1 regression matrix...

[linear] =
[6 × 5] Mu father y mother y B W

1.10 1.000 −0.477 −0.897 0.500 0.500
1.5 1.000 −0.395 −1.788 0.000 0.000
1.6 1.000 −0.395 −1.788 0.000 0.000
1.7 1.000 −0.395 −1.788 0.000 0.000
1.8 1.000 −0.395 −1.788 0.000 0.000
1.9 1.000 −0.477 −0.897 0.500 −0.500
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Some useful information...
df : 81

log(likelihood) : 95.08
variances : 0.315 0.200 0.000

means : 0.105 0.267 0.226 −0.387 −0.916

Thus, the estimate of the between-family association parameter is −0.387 and
the within-family parameter is −0.916 at marker T-5991C. If there was no
stratification, these should be equal. However, because they are not, we estimate
the additive effect of this allele to be −0.916. Note that if QTDT analyzed both
alleles, the estimate of the additive effect of the other allele would be 0.916. This
is true for all diallelic loci. Instead, we just take the modulus of these to give us
the estimated additive genetic effect of each of the alleles: 0.916, 0.853, 0.833,
0.895, 0.897, 0.903, 1.110, 1.029, 1.115, and 0.992. The greatest effect is seen at
theeighth, ninth, and tenth loci, suggesting,once again, that the trait-susceptibility
locus is in this region. The decrease in additive genetic effect away from this is
indicative of a decay in linkage disequilibrium between the marker loci and the
trait locus as the distance between them increases.

Despite finding a difference between the within- and between-family associa-
tion parameters, if we test for stratification, (qtdt -d trios.dat -p trios.ped -i
trios.ibd -ap −wega), we find no significant evidence at any of the loci. This
may be because, as has been previously mentioned, tests for significance of
variance components are less powerful than tests of the components of associa-
tion. Thus, even when we find no significant evidence of stratification, it may
still be an effect that we should protect against.

6. Notes

1. Hints on creating the pedigree file. Two individuals are indicated to be siblings by
having the same mother and father IDs. These IDs must correspond to two individuals
in the pedigree. Therefore, mothers and fathers of siblings should always be given
a line each, with their personal ID, family ID and sex, even if no other information
about them (genotype, trait, etc.) exists; otherwise, the data on the siblings will
be lost.

Data entry must be performed carefully as mistakes such as assigning the wrong
sex to the parents or both parents being entered with same personal ID will not be
picked up on by QTDT. Similarly, entering the wrong family ID for an individual
will go unnoticed.

2. Hints on creating the data file. The data types in the data file are assigned sequentially
to the columns in the pedigree file. Therefore, if a column is not listed in the data
file, the last column in the pedigree file will be ignored. However, if there are too
many columns listed in the data file, QTDT will give an error message when run.

3. Suggestions for naming files. QTDT uses default file names for the pedigree, data,
and IBD files. These are qtdt.ped, qtdt.dat, and qtdt.ibd, respectively. If file names
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are not specified, these are the ones that are used. It is sensible not to use the default
file names in order to avoid confusion. This is particularly important if you are
running several analyses, so that the correct data, pedigree and IBD files are used
in each analysis.
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Joint Linkage and Segregation Analysis
Using Markov Chain Monte Carlo Methods

Ellen M. Wijsman

1. Introduction
Complex genetic traits are some of the most challenging in human studies.

Such traits, which are characterized by genetic and etiologic heterogeneity,
typically show evidence of familial influences, but do not follow simple Mendel-
ian patterns of inheritance. Of interest in this chapter are complex traits that
are measured on a scale that permits analysis as quantitative traits. A few
examples are Alzheimer’s disease (where age at onset is the continuous trait),
various lipid levels, learning disabilities, and hypertension. The goal is to map
quantitative trait loci (QTLs) that contribute to such traits.

Although there are a number of widely used approaches to QTL mapping,
all have limitations. Model-free methods may be restricted to specific pedigree
structures. They are also inefficient in comparison to methods that both accu-
rately specify the trait mode of inheritance and can be applied to pedigrees of
arbitrary structure (1). On the other hand, because of the need for computational
tractability, traditional model-based log odds (LOD) score methods are based
on overly simplistic mode-of-inheritance models. There may be loss of power
in application to multilocus traits because of the inherent misfit between the
assumed monogenic model and the underlying true mode of inheritance (2).
In considering analytic approaches, there is also a trade-off between the size
of pedigrees and the number of markers that can be handled in analysis. There
are no exact methods that are computationally tractable for analysis with large
numbers of markers on large pedigrees. However, studies of simulated complex
traits have clearly shown the advantages, in some situations, of use of both
multipoint analyses and large pedigrees (1). Finally, none of these methods are

From: Methods in Molecular Biology: vol. 195: Quantitative Trait Loci: Methods and Protocols.
Edited by: N. J. Camp and A. Cox  Humana Press, Inc., Totowa, NJ

139



140 Wijsman

computationally tractable for simultaneous analysis of the multiple genomic
regions that may be typical of QTLs.

Markov chain Monte Carlo (MCMC) provides an approach to achieving a
number of analytic goals that are otherwise difficult to achieve. With newly
developed MCMC approaches, it is possible to perform linkage analysis with
any number of marker loci, multiple-trait loci, and multiple genomic segments.
At the same time, these approaches allow the use of pedigrees of arbitrary size
and complexity. In addition to mapping the loci, Bayesian reversible-jump
MCMC approaches (3) allow one to estimate the number of loci and associated
individual-locus model parameters as well as covariate effects in a joint linkage
and oligogenic segregation analysis. This is particularly useful when the possi-
bility of multiple contributing loci is a possibility, but the number is unknown,
as is usually the case in QTL analyses, so that it is advantageous to be able
to estimate the number of contributing loci, rather than to have to fix this
number a priori. The compromise made in order to achieve these goals lies in
the overall approach, which is based on statistical sampling rather than exact
enumeration of all possible underlying but unobserved genotypes.

The basic principles of MCMC in QTL mapping are based on several
interrelated ideas. First, there are situations for which exact computation is
infeasible or impractical because of issues such as combinatorial problems.
Second, it is, in principle, possible to use statistical sampling methods to obtain
realizations of possible unobserved genotypes, haplotypes, and other unobserved
traits (latent variables) from the underlying sample space instead of enumerating
all possibilities. These realizations can then be used to obtain desired parameter
estimates. Finally, an efficient way to obtain realizations of the latent variables
is to generate a series of correlated samples, each compatible with the observed
data and derived from the previous sample. This is an efficient way to confine
the realizations to those with positive probability, which may be a tiny subset
of all that could be enumerated in the absence of data on the pedigrees.

Several caveats must be noted. First, these methods are under active develop-
ment. Efficiency is being improved and capabilities for handling different types
of data are being added to existing analytic approaches. Details about current
implementations will quickly become outdated and incorrect, including details
about computer programs and related file formats. Therefore, in what follows,
technical details describing the algorithms used in the implementations are
purposely kept to a minimum. Similarly, all details associated with program
use should be checked against current program documentation. Second, unlike
methods that have a long history of use and evaluation, MCMC methods have
not yet been thoroughly evaluated to determine situations in which they give
erroneous or misleading conclusions, although they have worked well in a
number of simulated (4,5) and real data situations (6,7). Finally, for approaches
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based on a Bayesian framework, the interpretation of the results is not yet well
understood relative to more traditional mapping methods in human genetics.
A small amount of guidance will be given here, but, again, this is unlikely to
provide the final word in using these methods for analysis of real data.

2. Methods

2.1. Genetic Models

We will focus heavily here on the Bayesian MCMC approach implemented
initially by Heath (4) in the program Loki. Loki has also been extended to
certain types of censored trait (6). The basic linear model used in MCMC
analysis of oligogenic models has a number of components. The user must
specify which components to consider in an analysis and which variables in a
dataset fulfill the roles for the components included in the model. We can
schematically describe the trait model as follows:

yj = µ + ∑
n

i =1

Qji + ∑
s

i = 1

βiCji + ∑
k

i = 1

Gji + ej (1)

In this linear model yj is the observed phenotype for individual j, µ is the
overall baseline, or mean, quantitative trait level against which all other effects
are measured, and ej is an error term assumed to be distributed as N(0, Ve)
where Ve is the environmental, or residual, variance. There are k diallelic QTLs
which contribute to the phenotype, where k is a parameter that varies over
iterations in the MCMC analysis and Gij is the value of the genotypic effect
of the ith locus in individual j. The ith QTL is characterized by an allele
frequency, pi, along with three genotype means expressed as deviations from
µ. Following the nomenclature in Falconer (8), if we refer to alleles 1 and 2
at QTL locus i, for individual j these genotypic deviations are −ai if j’s genotype
is the 1/1 homozygote, di for the 1/2 heterozygote, and ai for the 2/2 homozygote.
We will refer to these deviations as the genotypic effects for QTL i. If markers
are included in the model, for the ith QTL, there is also a location, λi, on the
genetic map. This location may be either an unlinked location or may be on
the specified part of the genetic map.

The model, shown in Eq. (1), also includes a fixed number of covariates,
which may exist in two forms. The first is the usual type of continuous or
discrete measured covariate, Cji, such as age, sex, stratum, or other such factor.
There may be any fixed number, s, of such covariates. The second type of
covariate, Q, is one (or more) “major-gene covariate”—a locus with a proven
or hypothesized role on the phenotype of interest. Unlike the diallelic QTLs,
which are modeled as described above, a major-gene covariate can have any
prespecified number of genotypes. However, unlike the trait loci, the number,
n, of such major gene covariates in the model is fixed.
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Finally, in addition to the components of the model that describe the trait
phenotype, one must consider the marker model. This model consists of the
same components as are in all multipoint linkage analyses: marker allele fre-
quencies, map locations, and a map function. The codominant markers needed
for such analyses may have allele frequencies specified by the user, or estimated
from the data as part of the analysis. Markers must have locations on a user-
specified map with “known” intermarker distances, which may be either a sex-
averaged or sex-specific map. Finally, for analyses with multiple linked loci,
a map function is necessary. The Haldane map function (9) is almost always
used for such analyses. The map/marker component of the model is combined
with the trait component in the usual sort of computation, which can be
described as

P(trait phenotypes | trait model, marker model, covariate data, marker data, pedigree
relationships).

2.2. Assumptions

In using the model specified in Eq. (1) for data analysis, there are several
assumptions.

2.2.1. Distributional Assumptions

The residual variance is distributed as N(0, Ve) and is the same for all
multilocus QTL genotypes.

2.2.2. Genetic Effect Assumptions

All effects are additive; for example, there is no epistasis or gene–
environment interaction.

2.2.3. Population Assumptions

There is random mating among founders and the population is in Hardy–
Weinberg equilibrium

2.2.4. Locus Assumptions

There is linkage equilibrium among loci.

2.3. Basics of the MCMC Approach in Human QTL Mapping

An MCMC analysis requires specifying prior, or proposal, distributions. For
example, in human pedigrees, founder genotypes are often unobserved for
marker loci, and the trait loci are never directly observed. For both types of
loci, a proposal distribution for founder genotypes must be specified. In each
MCMC iteration, a possible genotype for each locus in each individual with
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missing genotype data is proposed, using prior distributions combined with
genotypes on other pedigree members to determine proposal probabilities. For
the markers, external information about marker allele frequencies, coupled with
the assumptions of Hardy–Weinberg equilibrium within each locus, linkage
equilibrium between loci, and Mendelian transmission probabilities, can be
used to construct such a proposal distribution. In the absence of external allele
frequency estimates, a uniform prior distribution on 0 to 1 for trait or marker
allele frequencies may be assumed. Examples of other prior distributions that
must be specified are (1) QTL locations, (2) the number of QTLs in the model,
and (3) variance in the genotypic effects. It is important to note that although
a proposal distribution is necessary, it need not perfectly reflect the true distribu-
tion. However, as for any MCMC approach, it is useful for this distribution to
approximate the true distribution reasonably well because if the approximation
is good, proposed states from the prior distribution will have relatively high
probability in the true, but unknown, distribution, and thus will be frequently
accepted during the acceptance/rejection step.

Clearly, for a given analysis, there is likely to be more knowledge about
some prior distributions than others. In the absence of any information on QTL
map location, it is not unreasonable to use a uniform prior distribution on gene
location. Two examples of possible prior distributions on number of QTLs in
the model are (1) a uniform distribution on 0 to K loci, where K is a maximum
number of QTLs that must be specified by the user, or (2) a Poisson distribution
with mean number, κ, per genome specified by the user [e.g., Poisson(κ)]. The
Poisson distribution with a low κ will favor models with relatively few QTLs;
the uniform distribution will give equal prior weight to all models having
between 0 and K QTLs. When using the program Loki, the distribution of
genotypic effects (both those of the homozygotes and heterozygote) is assumed
to be distributed as N(0, τ), where τ, in turn, is determined by one of several
functions of the user-specified variable, τβ combined with Ve. Generally, firm
information about the number of QTLs and τ is unavailable, so some care to
evaluate assumptions about the magnitude of these parameters is well advised
during data analysis (see Subheading 5.).

Markov Chain Monte Carlo analysis involves many iterations. An iteration
is one cycle through the whole process of potentially sampling a new value
for the latent variables on each individual in the dataset. In Bayesian QTL
mapping, an iteration therefore refers to one cycle in which all missing or
unobserved genotypes at all loci in the model are sampled, gene frequencies,
and genotypic effects are estimated for each QTL in the model, QTL gene
locations are possibly changed, the number of QTLs in the model may be
changed, and all covariate effects and the overall baseline mean are recomputed.
The values of the latent variables in each of these iterations may be used for
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parameter estimation. Each iteration involves two basic steps, which are repeated
for each variable or set of variables in the model. First, a new value for the
missing value of the variable is proposed from its prior distribution. Second,
this value is either accepted or not, using an acceptance/rejection step. If the
proposal is rejected, the value for the variable remains unchanged over its value
in the previous iteration. The two steps may be carried out separately with a
Metropolis–Hastings acceptance/rejection step (10) following the proposal step.
Alternatively, the special case of the Gibbs sampler (11) may be used, where
the two steps are combined. If the proposal distribution approximates the true
distribution reasonably well, the proposal states will frequently be accepted. If
the sampler mixes well (see below), this process will guarantee that the samples
obtained eventually will be drawn from the correct equilibrium distribution
(12) and will give rise to good estimates of parameters of interest.

In order for the MCMC process to provide useful estimates, it is necessary
for the sampler to successfully move around the sample space. In other words,
it must propose and accept possible genotypes (and other latent variables) from
the entire possible sample space. This process is often referred to as “mixing.”
A sampler that mixes well moves frequently from one part of the sample space
to another. However, it may be desirable that it remains in a part of the
sample space for long enough that convergence to a local maximum is possible.
Samplers that can efficiently produce realizations of data on pedigrees are
difficult to design. This is an area that has seen steady improvement, and current
implementations are likely to continue to be replaced as better approaches are
discovered. Samplers that have been implemented include the following: (1)
those that resample a single genotype at a single locus in a single individual
at one time (single site samplers); (2) those that resample data for all loci at
one time for a single individual (meiosis samplers); (3) those that resample
data on all individuals, but at only one locus at one time (locus samplers); and
(4) combinations of these (hybrid samplers).

Finally, depending on the starting configuration, it may take some time for
the sampler to begin to propose values for the latent variables that have the
highest probability. Burn-in refers to initial iterations of the MCMC process
that are used to get the sampler into this part of the sample space. Parameter
values from these initial iterations may be quite different than those obtained
once the process has settled into the equilibrium distribution. Therefore, some
investigators prefer to ignore the results of the early iterations.

2.4. Covariates and Missing Data

There are currently two types of covariate that can be incorporated into the
model: major-gene covariates and all other types. A major-gene covariate is a
measured locus for which genotype data are available on some individuals and
for which there is some reason to believe that different genotypes may have
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differential effects on the quantitative trait level. One reason for treating a gene
as a covariate is that unlike the QTLs with unmeasured genotypes in the model,
for a major-gene covariate there is no assumption that the locus is diallelic.
For example, APOE, with three alleles, is well known to have an effect on
Alzheimer’s disease age at onset (13), with effects that are genotype-specific
and which differ among genotypes. In the context of a major-gene covariate,
the effect of each APOE genotype on age at onset can be estimated (14), but
in the context of a QTL in the model, the locus would have to be modeled as
a diallelic locus. The reason that a distinction needs to be made between major-
gene covariates and other covariates relates to the issue of missing covariate data.
Missing genotypes for a gene can be sampled from the genotype distribution,
conditional on the observed genotypic data on the sampled individuals, the
pedigree relationships, and the known (or estimated) allele frequencies. Thus,
missing data on a major-gene covariate is easy to handle. For other covariates,
it is not always obvious what distribution to use to sample values for missing
covariate data. Thus, for major-gene covariates, missing data are allowed in
analysis with the program Loki, whereas for other covariates, missing data are
not currently allowed on anyone with observed quantitative trait data.

2.5. Use of MCMC Samples

A MCMC linkage analysis produces a sequence of realizations for all of
the latent variables in the model. It is up to the analyst to use these realizations
to derive estimates for parameters of interest. For most parameters, this will
involve using an ancillary program to extract part of the output file and to
reformat it for use in a standard statistical and/or graphical analysis package.
It is generally well advised to examine results graphically as well as through
computation of standard summary statistics: Some distributions are routinely
multimodal (e.g., QTL allele frequencies) so that simple summaries, such as
the mean over all iterations, can be quite misleading. Analysis of the MCMC
realizations can be used both as diagnostic indicators of whether or not the
MCMC process has “mixed well,” as well as for obtaining estimates of parame-
ters of interest.

Although many graphs are useful for displaying certain results of an MCMC
linkage analysis, the following are particularly useful. In the context of a linkage
analysis, a scatter plot of QTL “size” as a function of location on a chromosome
is highly informative for conveying a picture of both the QTL location, as well
its size. Here, size is the square root of the additive genetic variance of the
QTL, and each point in the graph represents size versus location in one MCMC
iteration. A surface plot can be used as an alternative and gives a nice representa-
tion of the relative number of QTL placements in a particular region. If a
simpler plot is desired, the number (or proportion) of iterations in which a
QTL is placed into a particular small map interval can be displayed with a
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histogram. Similarly, a histogram gives a picture of the posterior distribution
of number of QTLs.

2.6. Diagnostics

A major issue when using MCMC methods is determining when the parame-
ter estimates have converged and when the sampler has appropriately visited
various parts of the sample space. Various diagnostics are therefore important.
Similar to the ongoing work toward developing better samplers, there is ongoing
work toward identifying useful diagnostics. Again, a number of types of graph
have proved useful for evaluating the quality of an analysis run. Although it
is difficult to demonstrate that mixing has been good, in some cases it is easy
to determine if mixing was poor and the run should be discarded. Several
features need to be demonstrated, and failure of any of these is indicative of
problems in the analysis. First, parameter estimates should stabilize: µ and Ve

should stabilize, as should the number of QTLs in the model. The value for
each of these variables graphed against iteration number should always be
examined. For µ and Ve, a scatter plot is effective. For the number of QTLs,
it is more effective to use lines to connect the points in successive iterations.
All plots should show variability from iteration to iteration, but there should
be no overall drift in the parameter values, and estimates of Ve should not fall
below the measurement error. Second, there should be evidence of successful
mixing. Variation in the number of QTLs in the model over iterations, without
the number hitting a high upper bound, is some evidence of good mixing.
Evidence that estimates for λi for the ith QTL are confined to a small genomic
region over many iterations, but also move far away from this region and return
multiple times, is also indicative of good mixing. A scatter plot of QTL location
(on a particular chromosome) against MCMC iteration is useful for evaluating
this latter issue. It is important to note that lack of movement between possible
models indicates that the sampler is not mixing, so that although stable parameter
values are desired, there should also be evidence that the parameter values
change between iterations. Finally, results from separate runs with different
random seeds should give similar results and parameter estimates.

2.7. Bayesian Aspects

There are both advantages and disadvantages to the Bayesian approach for
QTL mapping. A major advantage is that it allows variation in the number of
QTLs in the model without the investigator needing to prespecify this number.
With a Bayesian approach, this number is a variable, which can be estimated,
rather than a fixed parameter based on an assumption about the unknown
number of contributing QTLs. There are also some disadvantages to the Bayes-
ian approach. First, it is necessary to provide a prior distribution on the number
of QTLs and on other unknown parameters of the model. Both of these require
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specifications of unknown parameter values. Second, the genetic model for a
particular QTL may “flip” from one iteration to the next, just as in traditional
segregation analyses, so that the first allele, allele “1,” in one iteration refers
to the rarer of the two alleles, and in another iteration, it refers to the more
common allele. In addition, the stochastic nature of the process means that
parameter estimates will vary from iteration to iteration, unlike in traditional
linkage and segregation analysis. This makes it difficult to identify the models
that are identical because of symmetry. Finally, because the increase and
decrease in number of QTLs in the model is achieved by splitting and combining
QTLs, individuals QTLs are not identifiable from one iteration to the next. It
can, therefore, be difficult to extract meaningful distributions of model parame-
ters such as gene frequency and genotype effects for any specific QTL.

Another issue is that the outcome of the analysis is not given in terms of
more familiar LOD scores or p-values. A Bayesian analysis produces estimates
of posterior distributions of parameter values. For example, the observed fre-
quency with which a QTL is placed into a particular map interval provides an
estimate of the posterior probability that there is a QTL linked within that
interval. Similarly, the observed fraction of iterations with i QTLs, i = 1 ... κ,
provides an estimate of the posterior probability distribution of the number of
QTLs contributing to the phenotype. These posterior distributions need not
be unimodal.

3. Interpretation
Analysis and interpretation of results is different from more traditional analy-

ses for three reasons. First, it requires a different framework for interpretation
than for more traditional analyses. Second, there are many questions that may
be addressed by using results of such an analysis; it is up to the user to decide
exactly what to do with the resulting output, and there is no single way to use
the results. Third, it requires considerable use of ancillary programs to process
the output files and to produce summary statistics and graphical displays to
analyze the very large output files. Choice of analysis and graphing programs
for this purpose is up to the user, as long as they can handle very large files.
All graphs and summary analyses performed in the example in Subheading
5. were done with the freely available program gnuplot, which works very well
for this purpose. At this point, there are also relatively few accompanying
ancillary programs to preprocess the output files from MCMC analyses. Users
of MCMC programs can expect to produce some of their own such programs
in order to extract desired results from the output files.

3.1. Posterior Distributions

The results of a Bayesian analysis are in the form of posterior distributions
of parameter values, which then may be further interpreted. For linkage analysis,
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an estimate of the posterior distribution of trait gene locations, or the posterior
probability of linkage, is generally the parameter of greatest interest. The
fraction of all iterations in which a QTL is placed in a particular interval, or
the fraction of iterations in which at least one QTL is placed in an interval,
provides an estimate of the posterior probability of linkage in that interval.
However, unlike interpretation of a traditional LOD score (15), or a p-value
from a model-free test, there is no easy comparison of results with those
expected under the null hypothesis of the absence of linkage. Currently there
is also no good calibration of results obtained with more familiar statistical
measures such as LOD scores or p-values. Interpretation of linkage signals
may be facilitated by considering the risk ratio, q1/q0, of the posterior probability,
q1, to prior probability, q0, of linkage within a particular interval, or the odds
ratio, [q1/(1−q1)]/[q0/(1−q0)]. Both of these ratios have, at various times, been
called Bayes’ factors. Such ratios can be computed for each interval between
two markers on a map, or as a moving average of such a ratio over a series
of fixed-width intervals, plotted at the center of the interval under consideration.
Either the prior probability of QTL placements in an interval that is based on
the expected mean number, κ, of QTLs can be used, or one that is based on
the observed mean number of QTLs estimated per iteration can be used (the
empirical Bayes’ estimate of κ). The prior probability of at least one QTL
placement per interval of length υ can be computed as 1−exp(−υκ/L) for a
total genome length of L cM. Limited experience suggests that a ratio of 100 : 1
or greater (or a log10 ratio of 2 or more) for posterior to prior probabilities is
very strong evidence of linkage and may be comparable in some situations to
a LOD score of 3–4. Similarly, a ratio that is considerably below 1 provides
exclusionary evidence. However, the two statistics are not strictly comparable.
Most importantly, a LOD score can increase without bound as the size of a
dataset increases, whereas the ratio of posterior to prior probability is bounded
by 1/q0.

It is also possible to obtain posterior distributions of parameters other than
linkage locations. For example, the fraction of iterations in which there is at
least one QTL in the model provides an estimate of the probability that there
is at least one gene of sizable effect. Similarly, the posterior distribution of the
QTL size can be computed from the results of the MCMC iterations, as can
the posterior distribution of covariate effects. Individual QTLs may not always
be identifiable in all MCMC implementations. This creates some complications
in analyzing and summarizing the parameter values of individual QTLs. Because
allele frequencies may “flip” between the rare and common allele, it is incorrect
to simply summarize the allele frequency by averaging over all iterations of
the QTL with the largest size. To examine the models for the individual QTLs,
it is necessary to display the distribution of results rather than to simply compute
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summary statistics. The graphical results will expose multimodality, which
might otherwise be missed. For example, a plot of allele frequency estimates
for the QTL with the largest size will generally be at least bimodal, and it may
be multimodal if the rank of QTL size varies over iterations.

3.2. Diagnostics

Diagnostic graphs are also helpful for the interpretation of the mixing charac-
teristics of a MCMC analysis. Scatter plots effectively show µ, Ve, and QTL
location as a function of MCMC iteration. A location by iteration scatter plot
is useful for determining whether or not there is evidence that QTLs are both
attracted to a particular location, but also sometimes leave this location. It is
also important to look at the number of QTLs in the model as a function of
iteration. An effective plot for this purpose is to use lines rather than dots
because then each vertical line indicates a change in the model dimensionality,
whereas horizontal lines represent a series of iterations with a fixed number
of QTLs. If desired, a similar plot can be made for the number of QTLs placed
on a particular chromosome. The size of QTLs as a function of location on a
chromosome can provide additional evidence about the mapped QTL: A signal
representing a real gene will generally show a tight cluster of points of moderate
or large size on a scatter plot rather than the ubiquitous, essentially uniformly
placed QTLs with small size, which are characteristic of the normal background
noise of such an analysis.

4. Software
Very few MCMC software packages are currently available for distribution

for use in human QTL mapping. Again, as are the underlying methods, the
software implementing the methods is under constant development, so it is
likely that additional programs and program modifications will become available
in the future. Similarly, currently available programs are rapidly evolving.

Loki (4) is academically produced and freely available at website http://
www.stat.washington.edu/thompson/Genepi/Loki.shtml. Loki currently runs
under Digital UNIX, Linux, and Sun/Solaris operating systems. Input file for-
mats are flexible and are based on a key-word syntax. An ancillary program,
prep, first prepares files for analysis, using information supplied in a user-
defined input file. A second user-defined input file, together with the output
files from prep, then provides input to Loki. A final ancillary program, loki ext,
is available for extraction of results for QTLs placed on specific chromosomes
from the single output file from Loki, loki.out. Data can be in a single file or
distributed in any number of different files. The alphanumeric IDs of individuals
need to be unique in the entire dataset, but otherwise have no restrictions. The
program deduces the pedigree structures of possibly multiple and/or complex
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pedigrees from the information supplied in this file. Pedigrees may be arbitrarily
large or small, simple, or complex. The maximum pedigree size and complexity
is largely defined by the patience of the analyst rather than any intrinsic limita-
tion. Because of the flexibility of the input format (program documentation is
over 20 pages long), an exhaustive description of file formats is not possible
here. Instead, examples of the necessary files are given in the worked example.

GAP is a commercial package; the website for information on ordering
the package is at website http://icarus2.hsc.usc.edu/epicenter/gap.html. It is
available for UNIX (Solaris), PC Windows 3.1, Windows 95, and Windows
NT. Pedigrees may be large or small. A useful plotting program for processing
MCMC output files is Gnuplot. Gnuplot is available for all platforms under
which MCMC linkage analysis programs will run and is freely available from
http://www.gnuplot.org. All graphs presented in the demonstration analysis in
Subheading 5. were made with Gnuplot.

5. Example

5.1. The Data

The example here is a simulated dataset consisting of three simple-structure
pedigrees, of size 100, 50, and 50 individuals, respectively. In each pedigree,
the number of siblings per sibship was two in generations 2 and 3 and four in
generations 4 and later. All children in generations 2 and 3 married and had
children. In generation 4 and later, only two siblings in each sibship married
and reproduced. In the pedigree of size 100, there were 5 generations in which
all eligible marriages yielded offspring, plus a sixth generation with 6 additional
sibships of size 4. The two pedigrees of size 50 consisted of 4 generations in
which all marriages yielded offspring, plus a fifth generation in which there
were 4 additional sibships of size 4. In all three pedigrees, all individuals in
the oldest three generations were assumed to be missing all phenotypic and
marker data (e.g., deceased). In the largest pedigree, three additional individuals
were assumed to be unavailable in generation 4—all of whom were members
of sibships in generation 4 and who themselves had offspring. With the exception
of the deceased individuals, all other individuals were assumed to have complete
marker and trait data.

A two-locus model, with loci on different chromosomes, was simulated on
these pedigrees with salient features of these two loci given in Table 1. Locus
1 was large, locus 2 was more modest in size, and, together, the two loci
accounted for 74% of the total trait variance. In addition, in this simulation
µ=500 and Ve=80. Ten markers with four equally frequent alleles were uniformly
spaced at 10-cM intervals on each 110-cM chromosome, starting at 10 cM on
each chromosome map.
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Table 1
Characteristics of Loci Used for Simulated Dataset

Genotypic effects
Position

Locus Chromosome (cM) p 1 / 1 1 / 2 2 / 2 Vg Vg /Vt

1 1 55 0.4 −13.2 −8.2 16.8 161.76 0.53
2 2 73 0.3 −11.9 −6.9 8.1 64.89 0.21

Note: Vg = contribution of single locus to variance; Vt = total phenotypic variance.

5.2. Sample Analysis with Loki

The first analysis runs established useful parameter values for prior distribu-
tions. Using these values for the prior distributions, the second analysis runs
were single-chromosome analyses. These were followed with longer multiple-
chromosome linkage analyses. User-specified input files for prep and Loki are
summarized in Tables 2 and 3. The examples in Tables 2 and 3 are for runs
involving marker data on both chromosomes 1 and 2; for runs involving only
one of the two chromosomes and for those involving no marker data, the
corresponding lines that specify map positions and linkage groups in the analysis
were removed by adding a comment symbol (#) to the beginning of the line.

Initial segregation analysis runs first established values for κ, the value of
the parameter in the assumed Poisson distribution on number of QTLs, and
for the prior variance of genotype effects, parameterized here simply as τβ.
The segregation analysis (which included no markers in the analyses) specified
κ=1, but varied the value for τβ, starting with τβ = 2 and successively doubling
the value, using runs of length 50,000 iterations. The average number of QTLs
per iteration increased and then decreased with increasing τβ (Fig. 1), indicating
that a value for τβ of about 64 maximizes the acceptance rate of QTLs. This
indicates good fit of the model to the data through a high acceptance rate of
proposed QTLs. The mean number of QTLs per iteration in all of the runs
other than those with low τβ was also about 2 (2.4 in the run for τβ = 64),
suggesting use of κ=2 may provide a better fit to the model than κ=1 as used
in the initial analyses.

Initial linkage analyses were performed for each chromosome in turn, using
all 10 markers on that chromosome, τβ =64, a Poisson prior distribution with
κ=2, and 100,000 MCMC iterations. Follow-up analyses were done using all
10 markers on each of both chromosomes 1 and 2 in a simultaneous analysis,
with 200,000 MCMC iterations. In order to illustrate what happens when prior
distributions are less than ideal, a few analyses with different values of κ and
τβ were also performed. For the purpose of plotting and summarizing the results,
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Table 2
Example of Two-Chromosome Input File for the Program prep

Commanda Explanation

FILE “ped.dat”, id, father, mother, sx, Input file, variables names
. . . , exqtl

PEDIGREE id, father, mother Variable names describing pedigree
triplets

SEX sx 1,2 Codes for sex
FILE “ch1.dat”, id, a1a, a1b, a2a, a2b, File name for chromosome 1 markers,

...., a10a, a10b ID, marker allele variable names
FILE “ch2.dat”, id, b1a, b1b, b2a, b2b, File name for chromosome 2 markers,

...., b10a, b10b etc.
MISSING “0” General missing data code in this

dataset
MISSING “-999” exqtl Missing data code for quantitative trait

exqtl
MARKER LOCUS d1mrk1 [a1a,a1b] Name of marker d1mrk1, with marker

allele variable names
(etc. for each marker on both

chromosomes)
MARKER LOCUS d2mrk10 [b10a, Last marker

b10b]
LINK “Chromosome 1”, d1mrk1, List of markers on chromosome 1

d1mrk2, ..., d1mrk10
LINK “Chromosome 2”, d2mrk1, List of markers on chromosome 2

d2mrk2, ..., d2mrk10
TRAIT LOCUS QTL Type of trait locus to consider in

analysis
MODEL exqtl=QTL Model to use in analysis
LOG “example.log” Output log file

aCapitalized words are reserved key words. Variable names must not use these reserved words.

the ancillary program loki ext was used to extract information relevant to each
chromosome using the syntax

loki ext loki.out 1 > on1.out

to extract into the file “on1.out” information about QTLs placed on the 1st

linkage group, as defined at the beginning of the file loki.out. For the single-
chromosome analyses, Fig. 2 shows clear evidence for QTLs on both chromo-
somes. These plots also give some idea of both the map location and the size
of each QTL, showing the somewhat smaller size of QTL 2 compared to QTL
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Table 3
Example of Two-Chromosome Input File for Program Loki

Command Explanation

ITERATIONS 200000 Number of iterations in a run
START OUTPUT 1 Iteration to start recording results
OUTPUT FREQUENCY 1 Output results every iteration
TRAIT LOCI 0, 10 Range of allowable number of trait loci
SET TAU BETA 64.0 Prior on function of variance of

genotype effects
SET TAU MODE 1 Variance on trait loci effects is τβ

TRAIT LOCI MEAN 2 Use Poisson prior with mean 2
POSITION d1mrk1 10.0 Map location (cM) of d1mrk1 on

chromosome 1
(etc. for each marker)
POSITION d2mrk10 100.0 Map location (cM) of d2mrk10 on

chromosome 2
MAP “Chromosome 1” 0.0, 110.0 Total range of map on chromosome 1 to

consider
MAP “Chromosome 2” 0.0, 110.0 Total range of map on chromosome 2 to

consider
TOTAL MAP 3000 Total size of genome (cM) in analysis

Fig. 1. Average number of QTLs per iteration as a function of the value of τβ in
segregation analysis runs of 50,000 iterations, assuming that the number of QTLs is
distributed as Poisson(1).
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Fig. 2. QTL size versus map location. Size is the square root of the genetic variance
of the linked QTL. Each dot represents the size and location of a QTL in a single MCMC
iteration in single chromosome analyses on (a) chromosome 1 and (b) chromosome 2.

Fig. 3. Bayes factor risk ratios for single chromosome runs for (a) chromosome 1
and (b) chromosome 2, computed with the empirical Bayes estimate for the number
of QTLs from the associated run.

1. Alternative histograms (Fig. 3) give a clearer picture of gene location and
make comparison of strength of signals on different chromosomes easier than
comparison of scatter plots. Similar results were obtained for the joint two-
chromosome analysis, but results are not shown. Fig. 4 gives a picture of the
posterior distribution of number of QTLs identified in two different runs: a
single-chromosome analysis of chromosome 1 and a joint analysis of chromo-
somes 1 and 2. The corresponding mean (and standard deviation) of the number
of QTLs was 2.2 (0.9), 1.9 (1.1), and 2.4 (0.9) from the single-chromosome
analyses of chromosomes 1 and 2 and the joint chromosome analysis, respec-
tively. Finally, Fig. 5 shows the posterior distribution for allele frequencies of
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Fig. 4. Distribution of number of QTLs obtained from (a) single-chromosome
analysis with chromosome 1 and (b) two-chromosome analysis using both chromosomes
1 and 2.

Fig. 5. Distribution of QTL allele frequencies among iterations from single-
chromosome analyses for QTLs mapping to (a) chromosome 1 and (b) chromosome 2.

all QTLs mapping to chromosomes 1 and 2 in the single-chromosome analyses.
This figure illustrates two things: the typical bimodality of the allele frequency
distribution that is observed for the QTL on chromosome 2 in Fig. 5b, and a
more unimodal distribution in Fig. 5a, which is discussed more later in this
section. Similar plots could be generated for other parameters in the model
(e.g., for Ve, the overall mean, variance contribution of the linked QTL, etc.).

Diagnostic plots were also routinely generated. The results in Fig. 6 show
map location as a function of MCMC iteration for the single-chromosome
analyses. The strong signal on chromosome 1 is apparent, as is the weaker
signal on chromosome 2. The signal on chromosome 2, in particular, illustrates
a desirable property of the analysis: The evidence for a QTL near 80 cM
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Fig. 6. Single-chromosome runs for map location as a function of iteration for (a)
chromosome 1 and (b) chromosome 2. Each dot represents the location of one QTL
in a particular iteration.

remains steady for a period of iterations, then disappears and reappears several
times, indicating that there is attraction to this location, yet at the same time
that the sampler is mixing. The signal on chromosome 1 (Fig. 6a) is actually
too steady, indicating difficulty in moving around the parameter space. Two
graphs provide evidence for this. First, the contrast in the unimodal versus
bimodal distributions of allele frequencies in Fig. 5 is evidence that in this
single-chromosome run the sampler is not moving around the trait-model space
(other runs showed more evidence of mixing). Second, the very low number
of iterations in which there were fewer than two QTLs (Fig. 4a vs Fig. 4b)
suggests that the single chromosome-1 run is somewhat aberrant compared to
other runs. Failure to mix between the two phases of the QTL model is not
particularly problematic here because the two parts of the parameter space are
equivalent, but possible implications for interpretation should be kept in mind,
particularly concerning trait model parameter estimates.

Use of other values of τβ and κ illustrates the importance of using a fairly
long run even for exploratory analyses. For example, for κ=1 and τβ =64, the
evidence for a gene on chromosome 1 did not start to appear until approx
30,000 iterations. For τβ = 100 and κ=1, 50,000 iterations passed before QTLs
began to be placed near the chromosome-1 QTL location. Both of these signals
would have been missed if a very short initial run length had been used. The
effect of this initial failure to place QTLs on chromosome 1 can also be seen
for the run in Fig. 7, which shows number of QTLs as a function of iteration
for a less ideal run in which κ=1 and τβ =64: The plot of number of QTLs as
a function of iteration shows a distinct increase in number of QTLs once the
localization to chromosome 1 became apparent. Both the initial approx 30,000
and the later iterations appeared to have reached a steady state, but at two
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Fig. 7. Number of QTLs in the model as a function of iteration, for a run in which
κ=1 and τβ=64. Vertical lines represent shifts in the dimensionality of the model (i.e.,
changes in the number of QTLs in the model).

different mean number of QTLs. This illustrates the danger of depending on only
one measure to conclude that the equilibrium distribution has been achieved.
However, despite the fact that the burn-in stage lasted longer for these runs
with less ideal prior distributions, resulting parameter distributions for the QTLs
mapping to these chromosomes were unchanged over those found with the
more ideal parameter values. Diagnostic scatter plots of the overall mean and
Ve as a function of MCMC iteration for the runs with τβ =64 and κ=2 showed
stable values, similar to results in Fig. 6, and are not shown.

6. Notes

1. Choosing initial parameters. It is important to determine that there is a peak in the
number of QTLs when exploring possible values for prior distributions. If the
number of QTLs simply increases with increasing or decreasing the value of τβ,
this indicates a problem with the data and/or model. It is also important to plot Ve

as well as the number of QTLs: if Ve approaches 0, this is also indicative of problems
with the model and/or data since Ve should be at least as large as the variance
associated with measurement error of the trait phenotype.

2. Bounding parameter values. A reasonably large but not excessive upper bound
(10–15) on the number of QTLs should normally be adequate. If the number of
QTLs in the model consistently reaches the upper bound even when this is set
increasingly higher, this is indicative of problems with the data and/or model. Ve

can also be bounded so that it is not allowed to go to zero. This is often necessary
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when analyzing censored data, such as age-of-onset data. Possible solutions include
further exploration of prior distributions to find more suitable distributions, as well
as careful investigation of analysis files to make sure that phenotype codes are
appropriately assigned.

3. Number of alleles for a major-gene covariate. Although a major gene covariate can
have more than three genotypes, it is important to avoid specifying models with
very large numbers of genotypes because most datasets will then have insufficient
data to estimate the genotype-specific effects. Because the number of genotypes
increases quickly with the number of alleles, this means that for practical purposes,
depending on the size of the dataset, major-gene effects can be estimated for loci
with perhaps up to five to six alleles, but not usually many more, unless some sort
of allele pooling can be justified. When a plot of the posterior distribution of
genotype effect is very flat, this indicates that there is insufficient data to estimate
the genotype effect.

4. Length and number of runs. The number of iterations (run length) needs to increase
with the total number of loci in the model, including both trait and marker loci.
Parameter estimates from analyses that are based on only a few marker intervals
generally stabilize within fewer iterations than do estimates in analyses with many
marker intervals. The amount of CPU time per MCMC iteration will also be lower
for models with fewer rather than many loci. The number of iterations needed and
the time needed for an analysis are both approximately linear in the number of
genes in the analysis.

In addition to the complexity of the model, the run length depends on the type
of phenotypic data and on the purpose of the run. Quantitative traits that are not
subject to censoring, such as cholesterol levels, tend to be more informative than
are traits subjected to censoring, such as age at onset of a disease. More informative,
uncensored traits are less sensitive than are censored traits to poor choices of prior
distributions on the parameter values, which reduces the length of the runs needed,
both because the burn-in period is shorter and because there is less problem with
poor mixing. The purpose of the run also affects the choice of run length. For an
initial analysis—either to evaluate choice of prior distributions or to obtain initial
evidence in a genome screen for which there is some evidence for linkage—the runs
may be considerably shorter than for later analyses that focus on areas showing evi-
dence of linkage. For example, exploratory runs with an uncensored quantitative trait
and analyses one chromosome at a time on a 10-cM map can usually be done reliably
with 50,000 iterations, whereas 100,000 may be needed for initial analyses with a
censored trait. For final analyses, the uncensored trait may require 100,000–200,000
iterations, whereas the censored trait may require 200,000–500,000 iterations.

A small number of long runs is better than many short runs. The early part of
the run that involves burn-in produces relatively poor parameter estimates. Use of
many short runs involves a much larger fraction of iterations involved in the burn-
in phase than does use of a smaller number of long runs with the same total number
of iterations. Averaging over several short runs involves averaging these poor
estimates, which generally will not give a good overall estimate. In principle, a
single very long run provides the best parameter estimates. However, because there
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is always the possibility that a particular run is aberrant, experience suggests that
three to five long runs is the best pragmatic choice for allocating total number of
MCMC iterations.

5. Many vs. single chromosomes. It is most efficient to initially perform a series of
analyses with individual chromosomes and to follow up on these analyses with a
multichromosome analysis of the subset of chromosomes with some evidence of
linkage. In principle, it is possible to perform simultaneous analyses with any number
of chromosomes, including the whole genome. However, this is impractical because
of the large number of iterations needed to explore all genomic regions adequately.
A more practical approach is to analyze each chromosome in turn and to follow up
with a longer joint analysis of the small number of chromosomes with the strongest
linkage signals in a final analysis.

6. Maps. Some comments are needed on ideal characteristics of maps used for analysis.
Generally, equally spaced multiallelic markers with approximately equivalent hetero-
zygosity work best. A 10-cM marker spacing seems to be ideal for a first-pass
screen. If markers are unevenly spaced, sometimes weak but false signals may be
observed in the larger intermarker intervals. Weak but false signals also often occur
at the ends of the chromosomes, where there is less total meiotic information. One
solution is to add markers to the larger intervals midway between the flanking
markers or to the end of the chromosome, when such markers are available. False
signals generally disappear upon inclusion of additional markers in such intervals,
although care needs to be taken to ensure a good quality map, both in distance and
marker order, when additional markers are added to such analyses. A 20-cM map
is a bit too loose; many weak positive signals may result because the looser map
results in fewer rejections of proposed gene placements, requiring considerable work
in follow-up. Very closely spaced markers (e.g., 1 cM) can produce problems with
mixing; whether this is because the map is inaccurately estimated or because of
intrinsic problems with the samplers is unknown. One trick that can be tried in this
context is to inflate the map around those markers. Also, for regions with a very
tight marker spacing, male and female maps often differ considerably from each
other; this also can affect the mixing properties in an analysis based on a sex-
averaged map. The solution is to reanalyze the data with sex-specific maps.

7. Missing data. Missing data is not generally a problem for markers or for the
quantitative trait under analysis. However, it is important to avoid the situation
when there are multiple pedigrees in the analysis and that there is no overlap among
groups of pedigrees for the markers typed. Not all markers need to be typed on
all pedigrees.

Missing covariate data can be a problem, except for missing data on major-gene
covariates. If there is a small amount of missing covariate data on individuals who
otherwise provide phenotypic information, there are two choices: either delete the
trait data on individuals with missing covariates or use an external data imputation
method to “fill-in” the missing covariate data.

8. Problems—detection and fixing. One problem that sometimes occurs, particularly
in the analysis of censored traits, is that the number of QTLs consistently hits a
high upper boundary or generally continues to increase while the residual variance
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goes to 0. This is symptomatic of problems with the data and/or choice of prior
distribution for some of the parameters in the model. A problem with the data that
could produce this effect would be in a study where age at onset was the response
variable and only males get the disease, but females were coded as unaffected with
observed age as censoring age (e.g., prostate cancer). In this situation, a model with
a few genes of large variance contributions will fit the data poorly, favoring models
with genes contributing small amounts to the variance, thus driving up the estimated
number of QTLs. The solution is to make sure that individuals who cannot have
the disease are coded as unknown for disease status. If the data coding is not the
source of the problem, then it is possible that the prior distribution on one or more
model parameters such as τβ is poorly chosen. If the problem exists only when there
are markers in the analysis, but disappears when markers are removed from the
analysis, there could be problems with either marker genotypes or the marker map,
or again, the proposal distributions. Finally, if none of these solutions fixes the
problem, it is possible to bound the residual variance so that it cannot go to zero,
in which case, generally, the number of QTLs is also prevented from increasing
without bound.

9. Program bugs. Problems with the data need to be fixed before an analysis can be
performed. Loki will list genotype incompatibilities for individuals with accompany-
ing parents. In version 2.2, there is a bug in this procedure such that the parents
are reversed in this listing (i.e., the father is listed as the mother, and vise versa).

There is also a bug in use of sex as a covariate. If sex is to be used as a covariate,
sex must be coded as a 1,0 (male, female) numeric indicator. The results will be
incorrect if a character notation is used for sex.

Acknowledgment
This work was supported by grant GM 46255 from the National Institutes

of Health.

References

1. Wijsman, E.M. and Amos, C. (1997) Genetic analysis of simulated oligogenic
traits in nuclear and extended pedigrees: summary of GAW10 contributions. Genet.
Epidemiol. 14, 719–735.

2. Schork, N.J., Boehnke, M., Terwilliger, J.D., and Ott, J. (1993) Two-trait-locus
linkage analysis: a powerful strategy for mapping complex genetic traits. Am. J.
Hum. Genet. 53, 1127–1136.

3. Green, P.J. (1995) Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika 82, 711–732.

4. Heath, S.C. (1997) Markov chain Monte Carlo segregation and linkage analysis
for oligogenic models. Am. J. Hum. Genet. 61, 748–760.

5. Heath, S.C., Snow, G.L., Thompson, E.A., Tseng, C., and Wijsman, E.M. (1997)
MCMC segregation and linkage analysis. Genet. Epidemiol. 14, 1011–1016.

6. Daw, E.W., Heath, S.C., and Wijsman, E.M. (1999) Multipoint oligogenic analysis



Markov Chain Monte Carlo Methods 161

of age-at-onset data with applications to Alzheimer’s disease pedigrees. Am. J.
Hum. Genet. 64, 839–851.

7. Yuan, B., Neuman, R., Duan, S., Weber, J., Kwok, P., Saccone, N., et al. (2000)
Linkage of a gene for familial hypobetalipoproteinemia to chromosome 3p21.1–22.
Am. J. Hum. Genet. 66, 1699–1704.

8. Falconer, D.S. (1995) Introduction to Quantitative Genetics. Longman, Scientific
and Technical, Harlow, UK.

9. Haldane, J.B.S. (1919) The combination of linkage values, and the calculation of
distance between the loci of linked factors. J. Genet. 8, 299–309.

10. Hastings, W.K. (1970) Monte Carlo sampling methods using Markov chains and
their applications. Biometrika 57, 97–109.

11. Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741.

12. Gilks, W.R. (1996) Markov Chain Monte Carlo in Practice. Chapman & Hall,
New York.

13. Corder, E.H., Lannfelt, L., Bogdanovic, N., Fratiglioni, L., and Mori, H. (1998)
The role of APOE polymorphisms in late-onset dementias. Cell. Mol. Life Sci.
54, 928–934.

14. Daw, E.W., Payami, H., Nemens, E.J., Nochlin, D., Bird, T.D., Schellengerg, G.D.,
et al. (2000) The number of trait loci in late-onset Alzheimer disease. Am. J. Hum.
Genet. 66, 196–204.

15. Morton, N.E. (1955) Sequential tests for the detection of linkage. Am. J. Hum.
Genet. 7, 277–318.





7

Approaches to the Analysis of QTL Data in Mice,
Using the Nonobese Diabetic Mouse as an Example

Heather J. Cordell

1. Introduction
One route to the identification of genes involved in human complex disease

is to exploit an animal model such as the rodent model of human type 1 diabetes,
the nonobese diabetic (NOD) mouse. Although the genes predisposing to disease
in an animal model may not be identical to those in the human, the underlying
genetic basis in terms of number of genes involved, interactions, and physiologi-
cal disease processes may be similar between the species. In addition, major
disease-susceptibility loci may lie in homologous regions of the human and
animal genomes, so that identification of a locus in the animal model may
point directly to a region of interest on the human genome. For instance,
in type 1 diabetes, the major susceptibility locus, IDDM1, lies in the major
histocompatibility complex (MHC) on human chromosome 6 in a region
syntenic with the primary determinant of murine diabetes, Idd1 on mouse
chromosome 17 (1).

Historically, a number of statistical methods have been developed for the
analysis of experimental cross-data in the context of plant or animal breeding.
A variety of software packages exists for the implementation of these methods.
Many of the statistical methods developed originally in an agricultural context
can be applied to the problem of disease gene mapping in rodents. However,
the focus of the approaches may be somewhat different as the aim of rodent
studies is usually to identify loci in order to help focus human studies and/or
gain understanding of disease mechanisms, rather than to improve fitness for
agricultural applications. The nature of the phenotype of interest may also differ
with rodent studies, often focusing on dichotomous or categorical traits (e.g.,

From: Methods in Molecular Biology: vol. 195: Quantitative Trait Loci: Methods and Protocols.
Edited by: N. J. Camp and A. Cox  Humana Press, Inc., Totowa, NJ
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presence/absence of disease, different levels of severity, etc.) rather than on
genuinely quantitative phenotypes.

There are a number of different breeding designs that are used for identifying
quantitative trait loci (QTLs) using inbred lines. Many of the standard software
packages allow analysis of a bewildering variety of different breeding schemes.
For the purposes of this chapter, we will confine ourselves to the most popular
designs that have been used in NOD mouse studies, namely the backcross (BC)
design, the intercross (F2) design, and the congenic strain design. All of these
designs start with two divergent inbred lines, P1 and P2 say, where P1 and P2
have been generated by selective breeding to be homozygous for different
alleles at loci assumed to influence values of a particular quantitative trait.
Animals from P1 may be assumed to have genotype BB and animals from P2
to have genotype NN, for instance, where N denotes a disease-susceptibility
allele and B a resistance allele. A cross between these lines generates heterozy-
gous filial (F1) offspring. In the BC design, the F1 is (back-)crossed to one of
the parents, female F1 to male P2 say, generating offspring whose genotype
is either NN or NB at each locus. In the F2 designs, two F1 individuals are
crossed in order to generate offspring with genotype NN, NB, or BB. For the
development of congenic strains, specific chromosome intervals from one inbred
strain (e.g., P1) are introgressed onto the background of the recipient strain
(e.g., P2) by repeated backcrossing. Allelically variable markers are used to
guide the strain construction and to make sure that after several generations
of backcrossing only the desired chromosome segment is of P1 origin. As an
extension of this strategy, double congenic strains have also been developed,
where a single strain possesses two well-defined congenic regions derived from
two separate single congenic strains.

1.1. Summary of QTL Mapping Methods

Quantitative trait loci mapping can be considered at varying levels of com-
plexity. At the simplest end is a simple test of association between trait values
and the genotypes of individual marker loci. Examples of tests of this type
include t-tests for equality of the means between the different genotype classes,
analysis of variance, Wilcoxon rank-sum test (Mann–Whitney test), Kruskal–
Wallis test, Kolmogorov–Smirnov test and various single-marker regression
approaches (all of which may be found in standard statistical texts). Because
the marker loci are tested individually, it is not generally required that they be
mapped relative to one another. As an extension of these approaches, multiple-
regression methods may be used (2,3), in which the genotypes at several markers
are simultaneously used to predict the trait outcome.

A more sophisticated approach to QTL mapping is to use a method known
as interval mapping (4,5). This method requires prior construction of a genetic



Analysis of QTL Data in Mice 167

marker map (although note that this map can usually be estimated from the
data). Interval mapping evaluates the association between the trait values and
a hypothetical QTL that may be positioned at multiple-analysis points between
each pair of adjacent loci. The expected QTL genotype is estimated from the
known genotypes of the flanking marker loci, taking into account their distance
from the QTL.

A more complex approach is to use a method called either composite interval
mapping (CIM) (6–8) or multiple QTL mapping (MQM) (9). Like simple
interval mapping, CIM/MQM evaluates a QTL effect at multiple analysis points
between each pair of adjacent marker loci. However, the method also includes
effects at one or more (background) markers assumed to be linked to alternative
QTLs in the region, which may increase the power for detection of the QTL
of interest by reducing the overall residual genetic variation. Furthermore,
inclusion of background markers which are linked to the interval containing
the QTL being tested may help separate the effects of this QTL from the effects
of other linked QTLs on the opposite sides of the background markers.

A further degree of complexity is achieved with the use of Bayesian methods
for the evaluation of models with multiple QTLs (10–13). These methods are
highly computationally intensive and may be prohibitively time-consuming.
However, they do provide a way to model the effects of multiple QTLs with
varying strengths at varying positions.

A final approach of interest, most suited to the situation where two or more
QTLs have already been detected, is analysis of epistatic interactions between
QTLs. Theoretically, analysis of epistasis can also be used to search for QTLs
that have an epistatic effect but no detectable main effects. This topic is an
area of current active research.

2. Methods

2.1. Single-Locus Associations
2.1.1. t-Tests

Suppose we have BC data where every marker locus has genotype NN or
NB. One way of detecting QTLs is to perform, for each marker, a t-test for
the equality of means in the two genotype groups:

t =
y1−y2

√(s2(1/n1 + 1/n2)
(1)

where y1 is the mean trait value among the n1 animals with genotype NN, y2

is the mean trait value among the n2 animals with genotype NB, s2 is the
pooled variance,
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s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
(2)

where s1
2 and s2

2 are the sample variances of the two groups. This test depends
on the assumption that the population variances are the same in two groups;
under the assumption of unequal variances, the approximate t-statistic is com-
puted as

t ′ =
y1 − y2

√w1 + w2

(3)

where w1=s1
2/n1 and w2=s2

2/n2. This test can be performed in a variety of standard
statistical software and spreadsheet programs.

2.1.2. Analysis of Variance

An extension of the t-test for the situation where there are more than two
genotype groups (e.g., an F2 design with groups NN, NB, and BB), assuming
equal variances in each group, is to carry out a one-way analysis of variance
(ANOVA). Let yij denote the phenotype value of the jth animal in group i.
Suppose there are m groups and ni animals in group i. The procedure partitions
the total sum of squares

SStotal = ∑
i

∑
j

(yij − y)2 (4)

into the between-group and within-group sums of squares (SSb and SSw, respec-
tively):

SSb = ∑
i

(yi − y)2

and

SSw = ∑
i

∑
j

(yij − yi)2 (5)

where yi is the mean phenotype value in group i and y is the overall mean. To
test the null hypothesis of no QTL effect, we use the F-statistic

F =
SSb / (m−1)

SSw / ∑i (ni−1)
(6)

with m−1 and ∑i (ni − 1) degrees of freedom. This test is also available in
most standard statistical software and spreadsheet programs.
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2.1.3. Nonparametric Statistics

An alternative to ANOVA is to use a nonparametric approach such as a
Wilcoxon rank-sum test (two groups) or Kruskal–Wallis test (more than two
groups) that performs the analysis on the rank scores of the trait phenotypes
rather than on the phenotypes themselves. Another possibility is the Kolmogorov
statistic, which compares the overall empirical distribution of phenotypes within
each of the groups to that in the pooled data (all groups combined). All of
these procedures are available in most standard statistical packages and may
be available in some QTL mapping software packages.

2.1.4. Regression Techniques

The linear model underlying the ANOVA analysis can be written as follows:

y=b0+b1x1+b2x2+···+e (7)

where for each animal, y is the trait value, the xi correspond to coded genotype
values (one for each genotype or marker contrast), the bi are unknown fixed
parameters to be estimated, and e is a random environmental effect assumed
to be drawn from a Normal distribution. For instance, for BC data, we might
have y=b0+b1x1+e, where x1 takes the value 1 is an animal has genotype NN
at the marker locus being tested, and 0 otherwise.

The advantage of this formulation is that the problem is set up in the form
of a regression equation, with the quantitative phenotype y being regressed on
the predictor variable x1. Standard statistical software packages for least squares
regression can be used to estimate the b0 and b1: The QTL test corresponds to
a test of whether b1=0, with significance evaluated using a t-statistic. This
procedure is also implemented in several QTL mapping software packages.
An alternative to least squares regression is to use maximum likelihood (ML)
estimation via the expectation–maximization (EM) algorithm, which is also
implemented in several QTL mapping software packages. The ML method is
generally slower than least squares regression but is easier to extend to more
complicated situations such as the presence of missing or ambiguous marker
data or non-Normally distributed environmental contributions. The regression
approach is easy to generalize to multiple linear regression, in which more
than one marker locus is included in the regression equation. For instance, for
BC data, we might fit the model in terms of four separate marker loci:

y=b0+b1x1+b2x2+b3x3+b4x4+e (8)

If the loci are unlinked, this models four separate QTL effects linked to the
four markers. For linked loci, we may fit a series of models with two adjacent
loci included in the regression equation each time (2,3). The resulting parameter
estimates and their significance can be used to estimate the location of QTLs
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in a way that approximates some of the more complicated interval mapping
approaches outlined next.

2.2. Interval Mapping

A problem with single-locus association methods is that the QTL itself may
lie some distance away from the marker being tested. By testing a single marker,
it is not possible to differentiate, for instance, between a QTL of small effect,
which is tightly linked to the marker, and a QTL of large effect, which is only
loosely linked. This problem can be overcome by using multilocus marker
genotypes to estimate the genotype at a hypothetical QTL that is positioned at
a series of analysis points on the known marker map. For a given analysis
point, the likelihood of the data, L(x), can be calculated and maximized with
respect to the underlying genetic parameters at the QTL (4). Suppose we wish
to analyze BC data. As in the regression method, we assume a linear model:

y=b0+b1x*
1+e (9)

where e is assumed to be Normally distributed with mean 0 and x*1 takes the
value 1 if an animal has genotype NN at the QTL, and 0 otherwise. Because
the genotype at the QTL is not observed, the true value of x*1 is unknown, but
it can be inferred probabilistically from the genotypes at the flanking markers.
The likelihood of the data depends on the probabilities that x*1 takes the values
1 and 0 and on the unknown parameters b0 and b1. The likelihood can be
maximized using the EM algorithm (14). The test statistic at each point is
based on the likelihood ratio statistic:

LR = 2 ln
max L(x)
maxH0L(x)

(10)

where maxH0L(x) is the maximum of the likelihood function under the null
hypothesis of no segregating QTL or, equivalently, on the log odds (LOD) score:

LOD = log10
maxL(x)

maxH0 L(x)
=

LR
4.61

(11)

This analysis can be carried out using a number of QTL software packages
(e.g., Mapmaker/QTL, QTL Cartographer, MapQTL). The analysis point with
the highest LOD score is taken to be the estimated location of the putative QTL.

A problem with ML estimation is that it can be computationally demanding,
particularly if the analysis is to be repeated thousands of times in order to
generate simulation-based p-values or confidence intervals. Fortunately, a sim-
ple least squares regression approach, which is much quicker, has been shown
to give an excellent approximation to the ML map for interval mapping (15,16).
In this method, at every analysis point (assumed QTL position), the quantitative
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phenotype is regressed on variables that are functions of the conditional QTL
genotype probabilities given the flanking marker genotypes, rather than explic-
itly maximizing the likelihood. This analysis can be carried out using standard
statistical software or using a QTL software package such as Map Manager
QT. The ML and regression approaches to interval mapping both assume that
the quantitative trait follows a mixture (over different QTL genotypes) of
Normal distributions. A nonparametric interval mapping approach that does
not assume underlying Normality has also been developed (17). Alternatively,
the regression and interval mapping approaches, together with the composite
interval mapping procedures described next, are theoretically easy to extend
to other exponential family distributions via the usual generalized linear model
approach (18), although, to our knowledge, this has not been implemented in
any program packages other than in the standard statistical packages.

2.3. Composite Interval Mapping

When a trait is caused by multiple QTLs, the strength of evidence for a
QTL at a given position may be affected by the presence of other QTLs linked
to this position. In fact, the positions of the likelihood peaks on a given
chromosome may not necessarily correspond to the correct QTL positions. For
instance, Martinez and Curnow (16) present a situation in which the effects of
two linked QTLs combine to suggest evidence for a false QTL (a “ghost QTL”)
in between the two true QTLs. In order to address this problem, two methods
that are virtually identical, composite interval mapping (CIM) (6–8) and multiple
QTL mapping (MQM) (9) have been developed. The feature of these methods
is to include genotypes at one or more background markers as cofactors or
predictor variables in an otherwise standard interval mapping procedure using
the model:

y=b0+b1x*
1+b2x2+b3x3+···+e (12)

Here, x*1 corresponds to the unobserved QTL genotype at the position being
tested, whereas x2, x3, ···, correspond to observed marker genotypes at other
positions. Inclusion of markers linked to the interval of interest can condition
out effects resulting from other linked QTLs. Inclusion of unlinked markers
can account for the residual variance resulting from unlinked QTLs, increasing
the power to detect the QTL in the interval under consideration. A number
of software packages are available for CIM/MQM analysis, including QTL
Cartographer, MapQTL, and Map Manager QT.

2.4. Bayesian Methods

Another method for modeling the effects of multiple QTLs is to employ a
Bayesian approach via MCMC techniques. In this type of analysis, the posterior
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probability of the number of QTLs and their positions and effects is evaluated
conditional on the observed data using simulation and sampling from an ergodic
Markov chain rather than by directly maximizing the (usually intractible) likeli-
hood surface. Several different algorithms have been proposed (10–13). How-
ever, they are all highly computer intensive and may suffer from problems of
convergence if not run for a sufficiently long period of time (it may also be
difficult to tell whether or not the procedure has reached convergence).

2.5. Analysis of Epistasis

For a quantitative trait, epistasis or interaction between two loci occurs when
the combined effect of the loci does not equal the sum of the individual effects.
For instance, for a BC population, epistasis between two loci can be represented
by the linear model.

yij = b0+b1x*
1+b2x*

2+b3x*
1x*

2 (13)

where x*1 takes the value of 1 if an animal has genotype NN at the first QTL,
and 0 otherwise, and x*2 takes the value 1 if an animal has genotype NN at the
second QTL, and 0 otherwise. QTL genotypes may need to be inferred from
flanking marker genotypes or, alternatively, double congenic data can be used
in which the genotypes at two specific QTL locations have already been fixed.
The model is easy to fit using any standard statistical software. There is also a
program Epistat (19) designed specifically for detection and analysis of epistasis.

3. Interpretation

3.1. Estimation of Significance Levels

Pointwise significance values (p-values) can be assigned to LR or LOD
values using standard asymptotic statistical theory that predicts that the LR has
a χ2-distribution with degrees of freedom (df) equal to the additional number
of estimated parameters under the alternative hypothesis. In a QTL analysis,
a large number of tests for marker–trait associations are typically performed.
Even if the significance level (p-value) for each test is set at a very low level,
there is a high probability that the entire experiment (i.e., the whole collection
of tests) will show a number of false positives. To correct for multiple indepen-
dent tests, as would occur if every marker tested were on a different chromo-
some, we can use a Bonferroni correction, which multiples the p-value by the
total number of tests performed. However, this procedure is very conservative
if applied to multiple nonindependent tests.

In refs. 4 and 20, the authors investigate the relationship between the point-
wise (i.e., at a single marker or location) significance level and the overall
genomewide significance level. They propose stringent pointwise significance
criteria to keep the overall genomewide type 1 error at a reasonable level.
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Specifically, a LOD threshold of between 3 and 4 is proposed to correspond
to an overall false-positive rate of 5% for experimental organisms such as the
mouse. Another approach to correct for multiple testing in the dataset actually
analyzed is to use a permutation procedure (21). In this procedure, the original
analysis is repeated many times on datasets generated by randomly shuffling
the original trait values of the individuals. Comparison of the original test
statistic to those test statistics generated from the shuffled replicates allows an
empirical p-value to be calculated. The only disadvantage with this approach
is that many reshufflings and reanalyses may be required (e.g., 10,000 or more
may be necessary to generate stable critical values for a p-value of 0.01). As
an alternative to this rather computationally demanding procedure, tables of
precalculated values have been generated by simulation (22) that can be used
together with a simple formula to get the genomewide significance level for
different types of experimental populations with any size of genome.

The above-mentioned procedures implicitly test the null hypothesis that there
is no QTL linked to any of the regions being studied rather than any other null
hypothesis such as the presence of one QTL but no additional QTLs. However,
a modification of the permutation approach (23) can be used to construct tests
for the presence of minor QTL effects while accounting for effects of known
major QTLs. The choice of an appropriate null hypothesis for QTL mapping
is not always clear; it has been argued (24) that single QTL models should be
compared with an infinitesimal model rather than a no-QTL model, as we
usually know that the heritability is nonzero.

3.2. Confidence Intervals

Often, the main point of a QTL analysis is simply to gain an idea of the
pattern of significance across a chromosomal region. The analysis point with
the highest LOD score is taken to be the location of the putative QTL, with
an approximate 95% confidence interval or “one-LOD support interval” corres-
ponding to locations where the LOD score is within one unit of its maximum
value. It has been proposed (25) that support intervals should, in fact, be based
on two-LOD differences in order to have a high probability of containing the
QTL. A more robust procedure would be to use a resampling or bootstrap
approach (26), in which confidence intervals are constructed by repeating the
analysis a large number of times on datasets obtained by sampling observations
with replacement from the original dataset.

3.3. Sample Size Requirements

The sample sizes required for detection of QTLs with specific effects may
be calculated (4,27). The basic conclusion from previous studies is that relatively
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modest numbers of individuals (in the region of 100–200) and markers (around
20–100) are generally sufficient to detect QTLs in rodents (27).

3.4. Epistasis

The main problem when analyzing epistatic interactions is in the interpreta-
tion of the results. Lack of epistasis (e.g., when the coefficient b3, in Subheading
2.5., is found to equal 0) is often assumed to correspond to independence of
effects at the two loci, implying that they may act on two separate causal
pathways with regard to the trait. However, results are very dependent on scale
(e.g., an epistatic interaction may exist when the phenotype is measured on
the original scale but not when measured on some transformed scale such as
the logarithm). Statistically, it is of interest to accurately describe the joint
action of two QTLs. Epistasis may, therefore, be of more interest from a
statistical modeling point of view than for its biological implications, which
remain a topic of active research (28). There are situations in which QTLs may
have an epistatic effect but no detectable main effects. In this case, analysis
taking account of epistasis may allow identification of QTLs that would other-
wise remain undetected.

4. Software
As previously mentioned, there is a bewildering variety of software available

for analysis of experimental cross-data. A useful summary of the major program
packages is given in ref. 29, together with a more detailed account of the
package Map Manager QT. It is likely that for most people, the choice of
software will be made on the basis of platform availability (Mac OS, Dos,
UNIX, etc.) or convenience. For the worked example (Subheading 5.) we
concentrated on programs that are available under UNIX, because these tend
to be the simplest to describe in terms of input and output files and analysis
steps required. Note that all of the programs come with between 13 and 180
pages of instruction in the form of a user manual; the reader is strongly advised
to consult this document when using any of the programs, as it will give far
more detailed instructions and hints on running the programs and interpreting
the output than is possible in this short chapter.

For many, a crucial step will be the actual downloading of the programs.
For most packages, this may be done through the World Wide Web or by
anonymous ftp. Packages that are commercial rather than freely available may
have different arrangements for obtaining the programs and organizing payment.
As a guide, most of the packages have information or at least a contact address
posted on their website (see Table 1). If a user is unfamiliar with the process
of downloading and uncompressing and compiling programs, it is recommended
that they consult their system administrator for help. Alternatively, they may
be able to obtain an account on a system where the programs have already
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been set up (e.g., for academic users in the United Kingdom, the Human
Genome Mapping Project [HGMP] Resource Centre offers access to many
useful packages [see http://www.hgmp.mrc.ac.uk/ for details]).

Table 1 provides a list of programs that can be used for QTL analysis in
inbred strains. Four of the programs are described in more detail in the worked
example in the Subheading 5.; For details of the input/output files and so forth
required by these programs, see Subheading 5.

5. Worked Example
For this example, we will use data derived from a backcross between the

NOD mouse and C57BL/10-NOD.H2g7 (B10.H2g7), a diabetes-resistant strain.
These data represent a modified and updated version of the data analyzed in
ref. 3. The data consist of genotypes (heterozygous or homozygous) at 10
marker loci on each of two chromosomes for 305 mice. Each mouse also has
a dichotomous phenotype according to whether it is affected or unaffected with
diabetes and an ordinal categorical phenotype corresponding to the histology
of the pancreas in terms of eight increasing levels (on a scale of 0–7) of severity
of insulitis (an intermediate phenotype) in the pancreas. For the purposes of
this analysis, we assume that the marker loci have already been mapped; if
the relative positions of the markers are, in fact, not known, they may be
estimated from the data using computer programs such as JoinMap described
in Chapter 9.

5.1. Single-Locus Associations Using SAS

As mentioned earlier, many tests for single-locus association can be carried
out using standard statistical packages or spreadsheet programs (e.g., Excel).
To carry out some of these analyses using the statistical package SAS, we
prepare an input command file which we will arbitrarily name npar.sas contain-
ing the following SAS commands:

DATA genetic;

INFILE “bc.dat”;

INPUT ID J1 I1 H1 G1 F1 E1 D1 C1 B1 A1 A3 B3 C3 D3 E3 F3 G3 H3 I3 J3 DIAB

HIST;

PROC NPAR1WAY DATA=genetic ANOVA EDF WILCOXON;

CLASS F1;

VAR HIST;

TITLE ‘Grouped by F1’;

RUN;

ENDSAS;

This is not the place for a detailed tutorial on using the SAS statistical package,
but for those unfamiliar with SAS, the first and second lines of this command



Table 1.
List of QTL Software and Availability

Worked
Name Platform Cost URL Design example

Standard statistical or UNIX, Dos, Mac Yes – – Yes
spreadsheet packages
(e.g., SAS, Splus,
Excel)

MAPMAKER/QTL UNIX, Dos No http://www.genome.wi.mit.edu/ BC, F2, F3 Yes
ftp/distribution/software/
mapmaker3

QTL Cartographer UNIX, Dos, Mac No http://statgen.ncsu.edu/qtlcart BC, RI, others Yes
Map Manager QT or QTX Dos, Mac No http://mcbio.med.buffalo.edu/ BC, F2, RI, others No

mapmgr.html
QGene Mac Yes qgene@clarityconnect.com BC, F2, F3, DH, others No
MapQTL SunOS, Dos, Mac, Yes http://www.cpro.dlo.nl/cbw/ BC, F2, RI, DH, others Yes

VMS
PLABQTL Dos, AIX No http://www.unihohenheim.de/ BC, F2, others No

~ipspwww/soft.html
MQTL SunOS, Dos No ftp://gnome.agrenv.mcgill.ca/pub/ BC, DH, RI No

genetics/software/MQTL/
Multimapper SunOS, Linux No http://www.RNI.Helsinki.FI/~mjs/ BC, F2 No
The QTL Cafe Java-enabled browser No http://sun1.bham.ac.uk/g.g.seaton BC, F2, DH, RI No
Epistat Dos No http://www.larklab.4biz.net/ BC, RI No

epistat.htm

Note: Platform indicates the operating systems under which the program will run. URL indicates the Internet address for information about
the software and, for those programs which are freely available, from where the software may be downloaded. Design indicates the type of
population a program will analyze: BC=backcross; F2=intercross; F3=F3 intercross (by self-mating); RI=recombinant inbred; DH=doubled haploids
derived from the gametes of an F1.

176
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file tell the program to read data from an input file named bc.dat and store it
as an object that we have arbitrarily named “genetic.” The third line indicates
that the data will be read in in the form of 23 columns, which we will name
ID, J1, ..., DIAB, HIST. We will have previously prepared the input file bc.dat
to consist of 305 lines of data, 1 line for each mouse, with columns corresponding
to an ID, genotype (homozygous or heterozygous) for 10 loci on chromosome
1 (which we name J1–A1), genotype for 10 loci on chromosome 3 (which we
name A3–J3), the disease status (DIAB), and quantitative trait value (HIST)
corresponding to the histology of the pancreas. Having read in the data, lines
4–9 tell the program to perform a nonparametric analysis (hence, the choice
of name of the command file) relating the quantitative trait value (HIST) to
the genotype at locus F1.

The first and last few lines of the input data file bc.dat are shown as follows:

1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 M 1 5
2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 M 1 1
3 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 M 1 1
.
.
303 1 1 1 M 1 1 2 2 2 2 M 1 1 M 1 1 1 1 1 1 2 7
304 2 2 2 M 2 2 1 1 1 1 2 2 2 M 2 1 1 1 1 1 2 7
305 1 1 1 M 1 1 1 1 2 2 M M M M M M M M M M 2 7

The ID number for each animal goes from 1 to 305 for convenience. The
genotype data (columns 2–21) takes the value 1 if an animal is homozygous
and 2 if an animal is heterozygous at that marker locus. The penultimate
column corresponds to disease status, with 1 corresponding to unaffected and
2 corresponding to affected. The final column corresponds to the “quantita-
tive” trait, which, in this case, is actually an ordinal categorical variable
taking values between 0 and 7. For all columns, we have used M to
represent missing data.

The program can be run by typing “sas npar” at the UNIX prompt, assuming
one is in the subdirectory containing the input files npar.sas and bc.dat. The
program will write output to the files npar.log and npar.lst. The file npar.log
gives information about the smooth running (or otherwise) of the program
together with warning and error messages; note that, in this case, it will give
an error message for every value of M that was read in, although the program
will still run correctly and perform the analysis with missing values excluded.

The results of the analysis are in the output file npar.lst. The Wilcoxon
command in the SAS code actually tells the program to perform a variety of
nonparametric tests, including Wilcoxon and Kruskal–Wallis tests, as well as
a standard analysis of variance. An example of part of the output is as follows:
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N P A R 1 W A Y P R O C E D U R E

Analysis of Variance for Variable HIST

Classified by Variable F1

F1 N Mean Among MS Within MS

50.1993342 6.51604152

2 142 3.83802817

1 154 4.66233766 F Value Prob > F

7.704 0.0059

Kruskal-Wallis Test (Chi-Square Approximation)

CHISQ = 5.9693 DF = 1 Prob > CHISQ = 0.0146

We see that there are 142 animals with genotype 2 and 154 with genotype 1
at locus F1. The mean histology scores are 3.83 and 4.66 in the two genotype
groups, suggesting that homozygotes have generally higher histology values
than heterozygotes. The ANOVA suggests that this effect is significant, with
a p-value of 0.0059, although note that this analysis may not be completely
valid owing to the ordinal rather than strictly quantitative Normally distributed
nature of the trait. The Kruskal–Wallis test, however, confirms the presence
of a difference between the trait values in the two genotype groups at a p-
value of 0.0146.

The analysis can be repeated for a different marker locus simply by replacing
the variable F1 on lines 5 and 7 of the command file by the name of the
required marker locus (e.g., A3). The results as output by SAS for the different
loci are shown in Table 2. We see that the pattern of the results is quite similar
for both the ANOVA and the Kruskal–Wallis analyses: Chromosome 1 shows
significant evidence of linkage to a QTL across loci A1-F1 with the peak at
locus C1, with some weaker evidence at loci I1 and J1; chromosome 3 shows
broad evidence of linkage to a QTL across the whole region studied, with the
peak at locus E3. Note that SAS does not provide accurate p-values below
0.0001 (e.g., the true p-value at A1 for a χ2 of 16.892 on 1df is 3.96 × 10−5.

SAS may be used for many other analyses of these data; in particular, the
SAS procedures for simple linear and multiple regression and for logistic and
ordinal logistic regression may be of interest. Such analyses may also be
undertaken using other statistical or spreadsheet packages. It is recommended
that these analyses only be undertaken by persons who are familiar with the
relevant statistical package.

5.2. MapQTL
5.2.1. Single-Locus Associations

We will now confirm some of the results we found using SAS by analysing
the same data using the QTL analysis package MapQTL. This package will
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Table 2.
Kruskal–Wallis and ANOVA F-Statistics Output by SAS for Different
Marker Loci

Marker Kruskal– SAS ANOVA SAS
locus Wallis χ2 p-value F-statistic p-value

A1 16.892 0.0001 19.464 0.0001
B1 17.253 0.0001 20.226 0.0001
C1 17.849 0.0001 21.148 0.0001
D1 14.037 0.0002 16.727 0.0001
E1 10.146 0.0014 12.819 0.0004
F1 5.969 0.0146 7.704 0.0059
G1 1.656 0.1981 2.289 0.1319
H1 1.014 0.3141 1.369 0.2429
I1 4.370 0.0366 4.399 0.0368
J1 4.144 0.0418 4.295 0.0391
A3 23.270 0.0001 26.916 0.0001
B3 37.185 0.0001 44.358 0.0001
C3 39.088 0.0001 48.291 0.0001
D3 49.008 0.0001 61.720 0.0001
E3 54.684 0.0001 65.251 0.0001
F3 44.080 0.0001 52.696 0.0001
G3 43.296 0.0001 53.674 0.0001
H3 44.720 0.0001 54.121 0.0001
I3 27.200 0.0001 29.848 0.0001
J3 5.161 0.0231 5.536 0.0197

also calculate Kruskal–Wallis statistics across a region, but it has the advantage
that it can also be used to undertake more complicated analyses such as simple
interval mapping and MQM. To undertake an analysis using the UNIX version
of MapQTL, three input files must be prepared: a locus genotype file with the
file extension .loc, a map file with the file extension .map, and a quantitative
data file with the extension .qua. (These files are described next and in more
detail in the program manual.)

5.2.1.1. LOCUS GENOTYPE FILE

The first and last few lines of the locus genotype file are shown below. For
convenience, because this is a backcross dataset, we name this file bc.loc. The
file consists of a four-line header that tells the program to (arbitrarily) name
this population NOD, that the data comes from a backcross (BC1) population,
and that there are 305 individuals (mice) and genotype data on 20 loci. These
values can be changed by altering the values on the right of the equal signs
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in the header. The header is followed by data consisting of the name of each
marker locus followed by the genotypes of the 305 mice at that marker locus.
The codes a, h, and u refer to homozygotes, heterozygotes, and missing data,
respectively. Note that the order of the individuals must be identical over all
loci in the file.

name = NOD

popt = BC1

nind = 305

nloc = 20

J1

h h a a a h a h h h h a h a h a a a h a a h h h a h a a h a a h a a a

a a a h h a a h a h a a h h h a a a a h a h a h a a a h a h h a h a h

h h a h h h h a a h a a h h a a h h h h a a h h h a a u u u u u u h u

h h a h a a a a a a a a h h h h h a h a a a a a a h a a h h h a h h a

a a a a h a h a a a a h a a a a h h h a h a h h a a h h a h a h a a h

a a h a a a a u h a h h a a a h a h h h h a h h h a a h a h a a a h a

h a h h a h h h h h h h a a a h h a h a h a h a a h a a a h a h h h h

h h a h h h a h a h a a a h a h h a a h a a a h h h a h h h h a h h a

a a h a h h h h h h a a h h h a h a h a h a a h a

I1

h h a a a h a h h h h a h a h a a a h a a h h h a h a a h a a h a a a

a a a h h a a h a h a a h h h a a a a h a h a a a a a h a h h a h a h

h h a h h h h a a h

.

.

J3

u u u u u u u u u u u u u u u u u u u u u u u u u h a a h a a h h a h

a h a h a a a h h h h h a h h a a h a a a h h a h a a h h a a a a h a

h u u h h a h h a a a h a h h a a a a a h a a h h h a a h h a h a h u

h a h a h a u a a a a a u h u h a a h u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u u u u u u u u u u u u a a a h a a a a a h h

a a h a h h a a a h h a a h h h h h h a a a a h a a h a a a a a h a a

a a a h a a h a h a h a a h h a a a a a a a h a a a a h a a h h a h a

a h a h a a a a u u u a a a u u u u u u u u a a u

5.2.1.2. THE MAP FILE

The map file for these data, which we name bc.map, is as follows:

chrom 1
A1 0.0
B1 1.3
C1 19.1
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D1 23.3
E1 29.7
F1 35.0
G1 35.5
H1 41.9
I1 65.8
J1 67.1

chrom 3
A3 0.0
B3 12.4
C3 26.1
D3 31.4
E3 38.9
F3 52.6
G3 56.8
H3 57.8
I3 81.7
J3 102.5

This file separates the marker loci into two linkage groups on separate chromo-
somes and gives their locations in cM (measured from some arbitrary starting
location). Such information can be obtained using (for example) the JoinMap
programs as described in Chapter 9.

5.2.1.3. THE PHENOTYPE FILE

The first and last few lines of the quantitative data file bc.qua are given
below. This file consists of a three-line header, followed by the IDs and
quantitative trait values for the 305 mice. None that the order of the individuals
must correspond to the order used in the locus genotype file. The header defines
two traits, which are then (line 4) given the names nr and hist. The first trait
is, therefore, not a real trait, but a dummy trait corresponding to the ID numbers.
Line 2 and 3 tell the program that there are 305 individuals and that the code
for missing trait values in this file is M.

ntrt = 2
nind = 305
miss = M

nr hist
1 5
2 1
3 1
.
.
304 7
305 7
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To run MapQTL, it is first necessary to tell the program the name of the
directory in which the license file is stored. Suppose the license file is in the
subdirectory /home/MAPQTL. Then, before running the program, you will
need to type “setenv MQDIR /home/MAPQTL/” at the UNIX prompt. It may
be convenient to set up things so that this command is executed automatically
at login (see your system administrator for details).

The program itself can be started in the usual way, by typing the name of
the executable program (usually mq) at the UNIX prompt. The program itself
then asks you to type in the name of the relevant input files. The program asks
you which trait number you wish to analyze, to which you should respond 2,
and which analysis you wish to run, to which (for the time being) you should
respond K for Kruskal–Wallis analysis. The program asks you which linkage
groups you wish to analyse (respond ALL) and asks you for the name of an
output file, to which hist.KW might be a good suggested response. If preferred,
these preferences may be input at the start by typing mq l=bc.loc m=bc.map
q=bc.qua t=2 k (type mq h to see a complete list of options for the command line).

5.2.1.4. OUTPUT FROM MAPQTL

A portion of the output file is shown below. In addition to some general
information concerning the genotype and trait data, we see that the results from
the Kruskal–Wallis analysis are identical to those obtained using SAS.

locus genotype file: bc.loc

population name: NOD

population type: BC1

nr. of loci: 20

nr. of genotyped individuals: 305 (9 without quant. data)

map file: bc.map

nr. of linkage groups: 2

analysing linkage groups: all

quantitative data file: bc.qua

nr. of not-genotyped individuals: 0 (0 without quant. data)

nr. of traits: 2

analysing trait nr. 2: hist

population mean: 4.26689

variance: 6.64161 (unbiased: 6.66412)

skewness: −0.293834
kurtosis: −1.48918

performing Kruskal-Wallis analysis

(?) means: genotype data found outside genotype classes

significance levels: *:0.1 **:0.05 ***:0.01 ****:0.005 *****:0.001

******:0.0005 *******:0.0001
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linkage group nr. 1 (1):

map locus nr inf K* (df)

--------------------------------

0.0 A1 296 16.892 (1) *******

1.3 B1 296 17.253 (1) *******

19.1 C1 294 17.849 (1) *******

23.3 D1 296 14.037 (1) ******

29.7 E1 296 10.146 (1) ****

35.0 F1 296 5.969 (1) **

35.5 G1 197 1.656 (1)

41.9 H1 296 1.014 (1)

65.8 I1 296 4.370 (1) **

67.1 J1 296 4.144 (1) **

linkage group nr. 2 (3):

map locus nr inf K* (df)

--------------------------------

0.0 A3 285 23.270 (1) *******

12.4 B3 291 37.185 (1) *******

26.1 C3 295 39.088 (1) *******

31.4 D3 278 49.008 (1) *******

38.9 E3 295 54.684 (1) *******

52.6 F3 292 44.080 (1) *******

56.8 G3 294 43.296 (1) *******

57.8 H3 295 44.720 (1) *******

81.7 I3 295 27.200 (1) *******

102.5 J3 181 5.161 (1) **

5.2.2. Simple Interval Mapping
5.2.2.1. SIMPLE INTERVAL MAPPING WITH MAPQTL

The same input files may be used for simple interval mapping with MapQTL.
Exactly the same procedure is used, except that when asked which analysis
you wish to use, you should reply i for interval mapping, for the name of the
output file you might reply hist.IM, when asked to print either LOD score or
deviance we suggest you reply L for LOD score, and when asked for the
mapping step size we suggest you could reply 5 to calculate a LOD score every
5 cM, or 1 to generate a finer map at every cM.

5.2.2.2. OUTPUT FROM SIMPLE INTERVAL MAPPING

Selected portions of the output for a 5-cM screen are shown below. The
different columns correspond to the map position and then, for each position,
the LOD score, the number of iterations needed to reach convergence, the mean
trait value among homozygotes, the mean trait value among heterozygotes, the
residual variance after fitting a QTL at this position, the percentage variance
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Fig. 1.

explained by the QTL, the estimated additive effect, and the position of the
marker loci. The peak LODs occur at 11.3 cM on chromosome 1 and 36.4 cM
on chromosome 3. Nevertheless, the overall significance remains quite high
(LOD > 3) across broad regions of both chromosomes. A graphical representa-
tion of these results, this time for a 1-cM screen, is shown in Fig. 1 (panels a
and b).

linkage group nr. 1 (1):

map lod iter mu A mu H var %expl add locus

----------------------------------------------------------------------

0.0 4.12 4 4.91783 3.63333 6.22921 6.2 1.28447 A1

1.3 4.28 4 4.92517 3.61745 6.21409 6.4 1.30772 B1

6.3 4.98 7 5.03394 3.50603 6.05799 8.8 1.52791

11.3 5.19 7 5.06427 3.47746 6.01213 9.5 1.58681

16.3 4.81 6 5.00494 3.54354 6.10774 8.0 1.46140

.

65.8 0.95 4 3.96026 4.58621 6.54370 1.5 −0.625942 I1

67.1 0.93 4 3.95973 4.57823 6.54598 1.4 −0.618500 J1
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linkage group nr. 2 (3):

map lod iter mu A mu H var %expl add locus

----------------------------------------------------------------------

0.0 6.39 5 4.99142 3.38340 6.00149 9.6 1.60802 A3

5.0 7.84 6 5.11187 3.28492 5.81186 12.5 1.82695

.

.

31.4 12.76 5 5.27966 3.06021 5.41952 18.4 2.21944 D3

36.4 15.47 8 5.40069 2.78421 4.96056 25.3 2.61647

38.9 12.89 5 5.21571 2.99001 5.43008 18.2 2.22570 E3

.

.

102.5 4.06 7 4.91276 3.46732 6.12519 7.8 1.44544 J3

5.2.3. MQM and Restricted MQM Mapping
5.2.3.1. MQM USING MAPQTL

To undertake MQM mapping in MapQTL, an additional file must be prepared
to tell MapQTL the names of the loci to be used as cofactors in the MQM
analysis. The selection of cofactors is not trivial. Because in our initial analyses
we found strongest evidence of linkage in the B1–C1 region on chromosome
1 and broad significance in the A3–I3 region on chromosome 3, we select the
six markers B1, C1 (from chromosome 1) and A3, D3, E3, and I3 (from
chromosome 3) as cofactors. We chose these markers to cover the regions of
initial significance while limiting the total number of cofactors considered;
markers B3 and C3 were not included because they are not in the region of
highest significance, but A3 was included to account for any possible effects
in this region of the chromosome. We, therefore, prepare an input file bc.cof:

ncof = 6

B1
C1

A3
D3
E3
I3

The program may be run as previously, with analysis option M for MQM
mapping. This option includes all cofactors except when a cofactor is one of
the flanking markers of the interval on which the QTL is fitted. An alternative
analysis option is r for restricted MQM mapping, which uses only those cofactors
not on the linkage group on which the QTL is being fitted. Because the broad
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spread of significance on chromosome 3 suggests there may be more than one
QTL on this chromosome, we prefer the M option in order to condition out
effects of additional QTLs on the same chromosome. The program will prompt
you for the name of the cofactors file and whether you wish to generate a
cofactor monitor output file (to which we suggest you reply none).

5.2.3.2. OUTPUT FOR MQM

Selected output from MQM mapping is shown below. A graphical representa-
tion of these results is shown in Fig. 1 (panels c and d). Those loci that are
cofactors are shown with an exclamation mark. We find that MQM mapping
has again identified a QTL with a peak of linkage at 11.3 cM on chromosome
1, with the effect on chromosome 3 being separated out into two potential
QTLs, one at around 36.4 cm and one in the 60- to 100-cM region.

linkage group nr. 1 (1):

map lod iter mu A mu H var %expl add locus

----------------------------------------------------------------------

0.0 0.36 4 4.30495 3.86622 4.71718 0.4 0.438727 A1

1.1 3.51 4 4.60304 3.55646 4.80072 4.1 1.04657 B1!

6.3 4.31 6 4.71014 3.45418 4.68309 5.9 1.25596

11.3 4.70 6 4.74314 3.42184 4.64253 6.5 1.32130

16.3 4.58 5 4.70608 3.45882 4.68994 5.8 1.24726

.

.

65.8 1.37 3 3.76907 4.43054 4.61438 1.5 −0.661470 I1

67.1 1.18 4 3.78936 4.40236 4.62755 1.3 −0.613003 J1

linkage group nr. 2 (3):

map lod iter mu A mu H var %expl add locus

----------------------------------------------------------------------

0.0 0.13 3 4.22266 3.94541 4.71317 0.1 0.277256 A3!

5.0 0.30 5 4.32250 3.84550 4.69860 0.3 0.476998

.

.

31.4 4.24 4 4.94470 3.26711 4.75937 5.0 1.67758 D3!

36.4 5.26 8 5.02883 3.10413 4.55218 8.1 1.92470

38.9 0.70 3 4.46320 3.70487 4.71317 0.7 0.758336 E3!

.

.

102.5 2.49 6 4.58291 3.59636 4.67658 3.5 0.986548 J3

Note that the results described here were obtained using MapQTL version
3.0. A later version, MapQTL version 4.0, has been developed that allows
considerably more functionality (e.g., automatic selection of cofactors for MQM
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mapping and a permutation test for interval mapping). MapQTL version 4.0
is not available under the UNIX operating system, and for this reason, as well
as in the interests of space, we do not include here results from analysis using
MapQTL version 4.0.

5.3. MAPMAKER/QTL
5.3.1. Simple Interval Mapping

The simple interval mapping analysis performed earlier with MapQTL can
also be undertaken with the program package MAPMAKER/QTL. This is a
companion program to the package MAPMAKER/EXP and uses MAPMAKER/
EXP to preprocess the data and, if required, to estimate positions of the
marker loci before performing an interval mapping analysis. Note that both
MAPMAKER programs, but MAPMAKER/EXP in particular, include options
for more sophisticated analysis than can be described in this brief example.
See the program manual for details.

5.3.1.1. INPUT FILES

To perform the analysis, two input files are required: a file of raw genotype
and quantitative phenotype data with the file extension .raw, and a file of
MAPMAKER/EXP commands with the extension .prep. In the following, we
show the first and last few lines from our input file bc.raw. The file consists
of a two-line header with the first line defining the type of cross and the second
line indicating the number of animals (305), the number of marker loci (20),
and the number of quantitative traits (1). After this comes each of the locus
names preceded by an asterisk and the genotype data for that locus with codes
a, h, and - for homozygotes, heterozygotes, and missing data, respectively. At
the end of the marker data comes the quantitative phenotype data (hist) in the
same format. Note that the order of the individuals must be identical over all
loci and traits in the file.

data type f2 backcross

305 20 1

*J1

h h a a a h a h h h h a h a h a a a h a a h h h a h a a h a a h a a a

a a a .

.

*I1

h h a a a h a h h h h a h a h a a a h a a h h h a h a a h a a h a a a

a a a

.

.
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*hist

5 1 1 4 6 1 6 5 4 2 1 1 4 5 4 6 5 2 0 1 1 6 6 2 2 4 1 2 0 0 1 2 4 2 0

4 1 1 2 3 2 1 6 1 3 0 5 3 2 5 5 6 5 1 5 3 1 5 4 2 3 0 0 0 5 0 1 4 5 1

1 2 5 3 1 4 .

.

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

The other input file is used for the preprocessing with MAPMAKER/EXP.
The format of this file varies slightly depending on whether the user wishes
to calculate a genetic map for the markers from the data themselves or to use
a predefined map. An example of the required file bc.prep using the predefined
map is as follows:

units cm

make chromosome chroml chrom3

seq A1 =1.3 B1 = 17.8 Cl =4.2 D1 =6.4 E1 =5.3 F1 =0.6 G1 =6.4 H1 =23.9 I1 =

1.3 J1

anchor chrom1

frame chrom1

seq A3 =12.4 B3 =13.7 C3 =5.3 D3 =7.5 E3 =13.7 F3 =4.2 G3 =1.0 H3 =23.9 I3 =

20.8 J3

anchor chrom3

frame chrom3

save

Line 1 defines the units of map distance to be in cM. Line 2 defines two
chromosomes, which we name chrom1 and chrom3. Lines 3–5 and 6–8 define
the positions of the loci on the two chromosomes. Note that intermarker dis-
tances are given rather than absolute distances from a fixed position. Note also
that the distance between markers F1 and G1 has been set to equal 0.6 cM, as
opposed to the true value, which should be 0.5 cM. This is because
MAPMAKER/EXP automatically assumes distances less than or equal to 0.5
must be recombination fractions rather than map distances. Alternatively one
could convert this interval (and/or any other of the intervals) to recombina-
tion fractions.

5.3.1.2. RUNNING MAPMAKER/EXP AND MAPMAKER/QTL

To process the files through MAPMAKER/EXP, type “mapmaker” at the
UNIX prompt. This allows you to enter the program. Then type “photo photo
exp.out” at the MAPMAKER/EXP prompt to save a record of your session to
the file photoexp.out. Next, type “prepare data bc.raw” to process the raw data,
and “q” and “yes” to exit and save.
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MAPMAKER/EXP should now have generated a number of other files that
will be used by the program MAPMAKER/QTL. To run this program, type
“qtl” at the UNIX prompt and then “photo photoqtl.out” to save a record of
the session. Now, type “load data bc” to read in the preprocessed data. Next,
type the commands “seq [chrom1],” “scan,” and “draw scan” to perform a
simple interval mapping analysis on chromosome 1, and “seq [chrom3],” “scan,”
“draw scan,” “q,” and “yes” to do the same for chromosome 3 and exit the
program.

5.3.1.3. OUTPUT FROM MAPMAKER/QTL

In your file directory, you should now find postscript (.ps) files, which
provide a graphical representation of the results, and a record of your results
in the file photoqtl.out. Some of this output is shown as follows (and a further
example can be found in Chapter 10.

Sequence: [chrom1]

POS WEIGHT %VAR LOG-LIKE

------------------------------- 10-9 1.3 cM

0.0 −1.285 6.2% 4.121 *********

------------------------------- 9-8 17.8 cM

0.0 −1.308 6.4% 4.277 **********

2.0 −1.410 7.5% 4.596 ***********

4.0 −1.494 8.4% 4.869 ************

6.0 −1.553 9.1% 5.071 *************

8.0 −1.583 9.4% 5.183 *************

10.0 −1.584 9.4% 5.195 *************

12.0 −1.556 9.1% 5.107 *************

14.0 −1.500 8.5% 4.926 ************

16.0 −1.416 7.5% 4.670 ***********

------------------------------- 8-7 4.2 cM

0.0 −1.326 6.6% 4.396 **********

2.0 −1.382 7.2% 4.375 **********

4.0 −1.227 5.7% 3.661 *******

------------------------------- 7-6 6.4 cM

0.0 −1.198 5.4% 3.557 *******

2.0 −1.230 5.7% 3.515 *******

4.0 −1.193 5.3% 3.269 ******

6.0 −1.085 4.4% 2.845 ****

------------------------------- 6-5 5.3 cM

0.0 −1.054 4.2% 2.743 ***

2.0 −1.001 3.8% 2.381 **

4.0 −0.907 3.1% 1.956
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Sequence: [chrom3]

------------------------------- 11-12 12.4 cM

0.0 −1.607 9.6% 6.382 ******************

2.0 −1.717 11.0% 7.019 *********************

4.0 −1.796 12.1% 7.581 ***********************

6.0 −1.847 12.8% 8.054 *************************

8.0 −1.875 13.2% 8.439 **************************

10.0 −1.885 13.3% 8.739 ***************************

12.0 −1.876 13.2% 8.956 ****************************

------------------------------- 12-13 13.7 cM

0.0 −1.872 13.2% 8.990 ****************************

2.0 −1.929 14.0% 9.291 ******************************

4.0 −1.970 14.5% 9.536 *******************************

6.0 −1.996 14.9% 9.721 *******************************

8.0 −2.009 15.1% 9.842 ********************************

10.0 −2.006 15.0% 9.894 ********************************

12.0 −1.986 14.7% 9.864 ********************************

------------------------------- 13-14 5.3 cM

0.0 −1.949 14.2% 9.763 ********************************

2.0 −2.202 18.1% 11.700 ***************************************

4.0 −2.254 19.0% 12.624 ******************************************

------------------------------- 14-15 7.5 cM

0.0 −2.219 18.4% 12.751 ******************************************

2.0 −2.574 24.6% 15.039 ******************************************

4.0 −2.647 25.9% 15.715 ******************************************

6.0 −2.523 23.5% 14.726 ******************************************

------------------------------- 15-16 13.7 cM

0.0 −2.224 18.2% 12.857 ******************************************

2.0 −2.413 21.5% 13.802 ******************************************

4.0 −2.500 23.1% 14.260 ******************************************

6.0 −2.525 23.5% 14.274 ******************************************

8.0 −2.503 23.1% 13.882 ******************************************

10.0 −2.420 21.5% 13.096 ******************************************

12.0 −2.265 18.8% 11.934 **************************************

------------------------------ 16-17 4.2 cM

0.0 −2.063 15.6% 10.725 **************************************

2.0 −2.146 16.8% 11.197 ****************************************

4.0 −2.084 15.8% 10.844 ***************************************
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We find that the results for the LODs (column 4) are very similar to those
obtained using MapQTL. Note that the results are divided into intervals flanked
by the marker loci, which are identified on the far right of the output according
to their position in the original raw data file (i.e., marker 10 corresponds to
A1, marker 1 to J1, etc.).

5.4. QTL Cartographer
5.4.1. Single-Locus Associations

Many of the analyses performed using MapQTL and MAPMAKER/QTL
can also be done using the program package QTL Cartographer. We start with
some tests for single-locus association using a simple linear regression model.
QTL Cartographer can accept input files either in the form of MAPMAKER/
EXP files or in an alternative format specific to QTL Cartographer. Note that
if MAPMAKER/EXP files are used, the genotype and phenotype data are input
into QTL Cartographer as the input raw data file for MAPMAKER/EXP,
whereas the locus map data is input as the output map file from MAPMAKER/
EXP (i.e., MAPMAKER/EXP must first be used to generate this file).

5.4.1.1. INPUT FILES

In this example, we use the QTL Cartographer format input files. An example
of part of the genotype and phenotype data file, which we shall call bccross.inp,
is shown later in this section. The first line consists of a # followed by a large
integer number chosen by the user to uniquely identify the file. We then have
the command -filetype cross.inp, which helps the program identify the type of
file it is reading. We then have lines starting with the commands -SampleSize, -
Cross, -traits, and -otraits, which are followed by information as to the number
of individuals, the type of cross (here, B1 stands for backcross), the number
of quantitative traits to be analyzed and number of any other traits. The com-
mand -case should be followed by yes or no depending on whether the names
of the marker systems are case sensitive. Note that any extraneous text after
that required by a command is ignored. (See the program manual for more
details.) Next, we have a translation table that allows the user to define the
symbols used for marker values. The first two columns of the table should be
identical to that given here; the third column can take any values specified by
the user. Here, we have chosen to use the symbols a, h, - (for homozygous,
heterozygous, and missing, respectively). We must also fill in values for the
other possible genotypes, although in our data, these codes will never appear.
Finally, we define the missing trait code to also be -.

Now, we come to the marker data, which is in a very similar format to that
used by MapQTL and MAPMAKER/QTL. This is followed by the trait data.
Note that the marker data must appear in between the two commands -start
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markers and -stop markers, whereas the trait data must appear in between the
commands -start traits and -stop traits.

# 123456789 -filetype cross.inp

-SampleSize 305 is the sample size

-Cross B1 is the type of cross

-traits 1 is the number of traits

-otraits 0 is the number of other traits

-case yes

-TranslationTable

AA 2 a

Aa 1 h

aa 0 x

A− 12 y

a− 10 z

-- −1 -

-missingtrait -

-start markers

J1

h h a a a h a h h h h a h a h a a a h a a h h h a h a a h a a h a a a

a a a h h a a h a h a a h h h a a a a h a h a h a a a h a h h a h a h

h h a h h h

.

.

I1

h h a a a h a h h h h a h a h a a a h a a h h h a h a a h a a h a a a

a a a h h a a h a h a a h h h a a a a h a h a a a a a h a h h a h a h

h h a h h h

.

.

-stop markers

-start traits

hist

5 1 1 4 6 1 6 5 4 2 1 1 4 5 4 6 5 2 0 1 1 6 6 2 2 4 1 2 0 0 1 2 4 2 0

4 1 1 2 3 2 1 6 1 3 0 5 3 2 5 5 6 5 1 5 3 1 5 4 2 3 0 0 0 5 0 1 4 5 1

1 2 5 3 1 4 .

.

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

-stop traits

The second input file required by QTL Cartographer is a map data file, which
we will call bcmap.inp. An example of this is given next. Again, we start with a
line with # followed by a large file identifier, and the command bychromosome -
filetype map.inp, which indicates how the map should be read in and the file
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type. We then have the command -type, which should be followed by the words
“positions” or “intervals,” depending on how the map distances are to be read
in. The commands -function, -Units, -chromosomes, and -maximum define the
mapping function, units of distance, number of chromosomes, and maximum
number of markers per chromosome, respectively, whereas -named should be
followed by yes or no depending on whether the markers have names. After
this comes the actual map information, which should be fairly self-explanatory.

# 12345678 bychromosome -filetype map.inp
-type positions
-function 1 (1=haldane, 2=kosambi, 3=fixed)
-Units cM where cM means centiMorgans
-chromosomes 2 the haploid number of chromosomes
-maximum 10 markers on any chromosome.
-named yes markers will have names.

-start
-Chromosome chrl
A1 0.0
B1 1.3
C1 19.1
D1 23.3
E1 29.7
F1 35.0
G1 35.5
H1 41.9
I1 65.8
J1 67.1
-Chromosome chr3
A3 0.0
B3 12.4
C3 26.1
D3 31.4
E3 38.9
F3 52.6
G3 56.8
H3 57.8
I3 81.7
J3 102.5
-stop

-end
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5.4.1.2. RUNNING QTL CARTOGRAPHER

The input files bcmap.inp and bccross.inp must be processed by QTL cartog-
rapher to produce its own .map and .cross output files. To do, this type “Rmap”
at the UNIX prompt.

A list of different numbered menu options will be presented. Type “16”
followed by “bc” to tell the program to change the file name stem to name all
the files it creates from now on bc.ext, where ext stands for a file extension.
Type “1” followed by “bcmap.inp” to tell the program to read the input file
bcmap.inp, and then “0” to continue with these parameters, finish, and exit.
There should now be a new file bc.map in your directory. To process the other
input file, type “Rcross” at the UNIX prompt, followed by “1” and “bccross.inp”
and then “0” to finish and exit. There should now be a new file bc.cro in
your directory.

To perform the simple linear regression analysis, including a permutation
test of significance, type “LRmapqtl” at the UNIX prompt, followed by “6”
to choose the option to change the number of permutations, and then “10000”
and “0” (this instructs the program to do 10,000 permutations, so this number
should be lowered if it turns out to be too time-consuming). Results will be
output to the file bc.1r. Selected results are shown in the following. As with our
previous analyses, we find broad regions of significance on both chromosomes.
Chrom. Marker b0 b1 LR F(1,n−2) Pr(F)

-----------------------------------------------------------

1 1 3.652 1.284 18.989 19.464 0.000 ****

1 2 3.637 1.308 19.709 20.226 0.000 ****

..

2 9 3.371 1.598 29.172 30.412 0.000 ****

2 10 4.107 0.236 0.387 0.385 0.535

-----------------------------------------------------------

# Performed 10000 permutations of the phenotypes and genotypes

# Here are the comparisonwise counts of permuted test statistics

#Chrom Mark MarkerName Cnts Pval

1 1 A1 1 0.00

1 2 B1 0 0.00

.

.

1 8 H1 2440 0.24

1 9 I1 363 0.04

1 10 J1 388 0.04

2 1 A3 0 0.00

2 2 B3 0 0.00

.

.

2 10 J3 5410 0.54



Analysis of QTL Data in Mice 195

Fig. 2.

A stepwise regression analysis can be carried out using the commands
SRmapqtl and 0 (results output to bc.sr) to identify the most influential markers.
This analysis must be carried out if composite interval mapping with model 6
(see Subheading 5.4.2.) is to be performed later. In our data, this identified
six important markers, with marker 5 on chromosome 2 (i.e., E3) and marker
3 on chromosome 1 (i.e., H1) as the most important.

5.4.2. Simple and Composite Interval Mapping

QTL Cartographer may be used to perform simple and composite interval
mapping. For simple interval mapping, type “Zmapqtl,” “2,” (to choose the
option to change the output file name), “bc.model3,” and “0”; the results will
be output to the file bc.model3, where model 3 corresponds to the interval
mapping procedure of Lander and Botstein (4). The output is described in more
detail in the program manual; the most important results are columns 3 and 4,
which give the position and LR test statistics. A graphical representation of
these results is shown in Fig. 2 (panels a and b). The shape of the plot is found
to be identical to that from MapQTL (see Fig. 1) or MAPMAKER/QTL,
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although the scale is different because MapQTL and MAPMAKER/QTL output
LOD scores rather than LR statistics.

Composite interval mapping may be performed in QTL Cartographer using
a variety of different models. Here, we use the recommended model 6. A prior
analysis with SRmapqtl must have been performed in order to select the markers
to control for the genetic background. To run the analysis, type “Zmapqtl,”
“2” (to choose the option to change the output file name), “bc.model6,” “8”
(to choose the option to change the model), “6” (to select model 6), and “0”
to finish. The results are output to bc.model6. A graphical representation of
these results is shown in Fig. 2 (panels c and d). We find, again, that the peak
of linkage on chromosome 1 remains, with the effect on chromosome 3 being
separated out into two or possibly three potential QTLs. These results are
similar to those from MapQTL, although there are some differences caused by
the different ways of choosing markers as cofactors in the analysis.

6. Notes

1. User manuals. We have attempted in the course of the worked example to draw
attention to some of the possible pitfalls one may encounter when using computer
software for QTL analysis. However, it is important to carefully read the user
manual for the program being used and pay attention, in particular, to required file
formats, coding schemes, and whether or not the program is case sensitive. Beware
of programs that overwrite files with the same name and always keep a copy of
your raw data in a different directory. Many programs come with example or tutorial
files and it is well worth working through an analysis with these before proceeding
to analyze your own data.

2. Choosing the most relevant software package. A final recommendation may be
given as to which software might be preferable to use in which circumstances. If
only one QTL exists, the results from simple single-locus association and simple
interval mapping analyses are likely to be very similar, with interval mapping having
the advantage of giving a convenient graphical output for localizing the QTL. If
more than one QTL exists, it makes sense to take account of this using a CIM/
MQM approach. Because in practice we may not know how many QTLs there are,
we would almost invariably recommend use of a package such as MapQTL or
QTL Cartographer that allows implementation of both CIM/MQM methods and
simpler approaches.
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Experimental Designs for QTL Fine Mapping
in Rodents

Anne Shalom and Ariel Darvasi

1. Introduction

1.1. Definition of Complex Traits and QTL

For a simple genetic trait, determined by a single gene, the Mendelian
segregation of two or three phenotypes may be observed for the three possible
genotypes at a specific locus.

For a complex trait, such a one-to-one relationship cannot be drawn between
genotype and phenotype. Complex traits, such as neurobiological and behavioral
phenotypes, are likely to be influenced by a large number of biochemical,
physiological, and morphological processes, with nongenetic environmental
factors also playing a major role. In humans, traits such as anxiety or depression
may represent extremes of a continuum of Normally distributed phenotypical
traits and are most aptly considered under a complex or polygenic model.
Complex traits are often quantitative in nature or can be measured in a quantita-
tive manner. In many instances, their genetic architecture is conveniently dis-
sected under a quantitative model, in which the genetic factors analyzed are
termed quantitative trait loci (QTL) (1).

1.2. Purpose of QTL Detection

Quantitative trait loci detection and mapping aims to uncover the genetic
blueprint underlying a given complex trait, by identifying specific chromosomal
segments, and ultimately specific genes, or regulatory elements, which influence
the phenotypic expression of the trait. This represents one of the major chal-
lenges of genetics today and is being made possible only recently through the
development of novel molecular and analytical technologies.

From: Methods in Molecular Biology: vol. 195: Quantitative Trait Loci: Methods and Protocols.
Edited by: N. J. Camp and A. Cox  Humana Press, Inc., Totowa, NJ
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In the past few years, researchers have begun to be successful in detecting
and locating QTLs that affect complex traits in humans, model organisms, and
agricultural species (2–21). However, there has been less success in reducing
the broad chromosomal regions thus identified down to regions narrow enough
to allow positional cloning (22–24). Yet, as the number of genes identified
through genome initiatives increases, the candidate gene approach is expected
to become more useful as a parallel approach to the positional cloning strategy.
In this scheme, functional gene mapping within a reduced chromosomal interval
surrounding a QTL may be tested for association with the complex trait under
study (25–29).

The existence of a large variety of inbred stocks in mouse, the abundance
of genetic markers, the well-documented phenotypic variation between strains
and its relatively easy manipulation make the mouse model most valuable for
the analysis of complex traits (30,31). The importance and utility of the mouse
for QTL analysis (32,33) as well as its physiological resemblance to other
mammals (including humans) make it worthwhile to investigate mouse models
of human behavior.

1.3. The Various Stages of QTL Analysis

It is important to note that QTL analysis is a multistage procedure and that
different approaches are required at different stages of the process. Each of
these stages presents its distinct refinements. In this chapter, we shall only
briefly review the first two stages of QTL detection and mapping (analytical
methods for these are covered in detail in Chapter 7). We will give particular
attention in this chapter to the third stage: fine mapping.

1.3.1. Stage I: QTL Detection

The first stage, QTL detection, tests the hypothesis that a marker or a set
of markers is linked to the QTL. A genomewide scan utilizing anonymous
markers is the common strategy. Genetic analysis is carried out on a large
experimental population segregating for both DNA markers and alleles of the
QTL, so that marker(s) associated with the trait will indicate the existence of
a QTL by detecting it on a specific chromosome.

1.3.2. Stage II: QTL Mapping

The second stage, commonly done with the same data, estimates the position
of the QTL on the chromosome where the QTL was detected (estimation of
map location). This procedure is conceptually different, involving parameter
estimation (as opposed to hypothesis testing for the first stage). Unless the
number of animals in the cross is very large or unless special efforts have been
made to increase recombination frequency in the study population, the second
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stage usually provides only limited information as to the position of the gene
(34).

1.3.3. Stage III: Fine Mapping

A third stage, fine mapping, is thus required in order to precisely position
the gene to a limited chromosomal interval. At this stage of fine mapping,
single QTLs are considered, rather than the genomewide analysis carried out
for the first two stages. Various strategies and specialized segregating popula-
tions have been developed for efficient fine mapping (35) and are presented next.

1.3.4. Stage IV: Gene Cloning

The fourth stage in QTL mapping is the actual cloning of the genes. This
stage involves the identification of the polymorphism(s) that determine the
phenotypic variation. When the region containing the QTL is significantly
reduced so that it includes few genes, those can be examined for polymorphisms.
Knockout mice may provide additional evidence for the functionality of the
gene, and, eventually, transgenic mice, in which the alternative phenotype is
rescued, can provide ultimate proof that the gene responsible for the quantitative
phenotype has indeed been identified. The details of this stage are beyond the
scope of this chapter.

2. Methods

2.1. Evidence of Genetic Variation

When considering a genetic study, one must first inspect whether there is a
significant genetic contribution to the relevant phenotype. A principal source
of evidence that genes contribute to variation in a trait is found in studies
showing, for example, significant behavioral variation, or distinct phenotypes,
between genetically distinct inbred strains. The description of existing data on
behavior genetics of rodents can be found elsewhere (e.g., refs. 36 and 37).

A comparison of several strains can be undertaken if no evidence is available
regarding the phenotype of interest. Sampling strains with different genetic
origins optimizes the chances of uncovering the genetic contribution to variation
in a phenotype. Genetic comparisons of stocks of the laboratory mouse and
rat show that there is ample diversity among existing laboratory stocks. Conse-
quently, one may reasonably expect to find evidence of a genetic component
if it exists (see Note 1).

2.2. QTL Mapping (Stages I and II)

Initial detection of a QTL involves genetic mapping in a two-generation
cross (an intercross [F2] or a backcross [BC]. The process includes phenotyping



202 Shalom and Darvasi

Fig. 1. QTL and marker segregation in a backcross design. Parents P1 and P2 differ
at both QTL and marker alleles. Only the segregant chromosome is shown in the
backcross generation.

the progeny of the cross of interest, followed by genotyping them for the
markers and the use of linkage analysis to detect and map the QTL. This
process is outlined briefly here and described in more detail in Chapter 7.

For simplicity we shall describe the general rationale for QTL detection in
a BC population, where only two genotypes are present for each locus (see
Fig. 1). It is assumed that parents from two inbred lines are crossed to produce
an F1: parent 1 having MM and QQ genotypes at a marker and a linked QTL,
respectively, and parent 2 having an mm and qq genotype at the same loci.
All of the F1 offspring will have Mm and Qq genotypes. The segregating BC
population is obtained by crossing the F1 to the recessive parental strain. The
BC will always carry an m and q allele on one chromosome. Four possible
haplotypes (M-Q, m-q, m-Q, and M-q) will segregate on the other chromosome,
with expected frequencies of respectively (1−r)/2, (1−r)/2, r/2 and r/2, where
r is the recombination fraction between the marker and the QTL. The simplest
analysis takes the form of a t-test to determine whether the group of individuals
with the M allele differ significantly in their trait value from the group of
individuals with the m allele (see Chapter 7, Subheading 2.1.1.). Equivalently,
if a particular marker allele is found to occur at a statistically higher frequency
in high- (or low-) scoring individuals, it can be inferred that a nearby gene
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affects the trait. The above theoretical aspects of QTL detection have been
presented by Soller et al. (38). This approach has subsequently been improved
and refined, and the more complex likelihood methods allowing QTL localiza-
tion are now routinely used (see Chapter 7, Subheading 2.). Interval mapping,
based on the examination of a pair of markers and application of maximum
likelihood techniques to test for significance, was introduced by Lander and
Botstein (39,40), with subsequent variations (41–45). Attempts to improve the
cost-effectiveness of the procedure led to the development of additional strate-
gies (see Note 2). When looking at multiple correlated traits, power can be
increased by controlling the residual variance (46,47). The sample size can be
reduced by selective genotyping of the phenotypic extremes, which carry most
of the statistical power for QTL detection (40,48,49). Consistent savings may
be achieved by selective DNA pooling (50) of the phenotypic extremes, followed
by allele frequency estimation in the pools. In addition, an alternative way to
increase efficiency has been suggested through sequential sampling (51) and
recurrent testing, until significance is reached. Finally, optimum marker spacing
(52) improves the cost-effectiveness of an initial screen by appropriately choos-
ing markers, usually two markers per chromosome.

2.3. Strategies for QTL Fine Mapping (Stage III)

Standard QTL mapping will usually locate genes to a relatively large chromo-
somal interval (10–50 cM). Fine mapping involves examination of individual
QTLs, rather than the genomewide paradigm used for QTL detection. Typically,
a QTL that has been previously detected and preferably confirmed is selected
for further analysis. In order to define a restricted location for a QTL, greater
accuracy and greater confidence are required. Chromosome partition, via recom-
bination, was first introduced by Drosophila geneticists (53–55). With the
advent of DNA-level polymorphisms, these methods were pioneered with great
success by researchers using the tomato as the model organism (22,24,56). A
number of adaptations to rodents have also been suggested (57–59). Various
fine-mapping strategies are presented next, based on the recombination-defined-
interval methodology and involving the thorough genetic analysis of a
restricted interval.

2.3.1. Selective Phenotyping

This strategy may be especially attractive to neuroscientists who are involved
in measurements of phenotypes such as electrophysiological recordings, which
are arduous and time-consuming. A large F2 or BC population is produced
and only individuals recombinant at an interval previously defined to contain
a QTL are selected for phenotyping. This strategy is based on the rationale
that once a gene is mapped to a given interval, only recombinant individuals
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within that interval contribute to further mapping accuracy. Genotyping is made
possible by extracting DNA from tissues such as tail tips, thus allowing an
early detection of the recombinants to be phenotyped.

2.3.2. Recombinant Progeny Testing

Individuals from BC or F2 populations carrying a distinguishable recombi-
nant chromosome at the region of interest are crossed to one of the parental
strains to determine the location of the QTL relative to the recombination point.
A sample NS of F2 animals is subsequently screened, according to the desired
chromosomal interval reduction, for example from y to x cM (this is discussed
in Subheading 3.3.2.).

2.3.3. Generation of Interval-Specific Congenic Strains (ISCS)

Similar to recombinant progeny testing, a sample NS of BC or F2 individuals
are genotyped to detect y/x recombinant individuals (where y is the original
interval and x is the desired interval), with recombination equally distributed
within the y-cM interval. These animals, however, are now backcrossed a
number of times to one parental strain (the background strain) to eliminate
alleles from the other (donor) parental strain at all other QTLs affecting the
trait. Then, animals are intercrossed and homozygotes for the recombinant
haplotype are selected to establish one interval-specific congenic strain (ISCS).

Selection at the DNA level is done with the aid of markers, reducing signifi-
cantly the number of generations required with little additional genotyping
(57). The resulting ISCSs are pure lines, each retaining a short (approx 1 cM)
chromosomal fragment from the donor strain. Because all of the residual genetic
variance has been eliminated through the intensive backcrossing process, they
result in the approximation of the QTL to a monogenic trait. Phenotyping y/x
selected ISCS will assign the QTL to the relevant fragment. As many individuals
as required may be phenotyped from the same ISCS, thus allowing control of
the environmental variance (see Note 3).

2.3.4. Recombinant Inbred Segregation Test

The recombinant inbred segregation test (RIST) takes advantage of the
theoretical high mapping resolution present in recombinant inbred (RI) strains
(see Subheading 2.4.1. and Fig. 2), applied to QTL mapping (35). To reduce
the QTL-containing interval from y cM to x cM, y/x RI strains are selected
with recombinations equally distributed within the y-cM interval. The RIST
population (Fig. 2) is constructed by crossing the chosen RI, separately to each
of the parent strains, P1 and P2, to produce either two distinct F2 (RIST-
F2) or, if preferred, two distinct BC (RIST-BC) populations. The F2 or BC
populations are phenotyped and genotyped with few markers. The F21 or BC1

population is genotyped with markers located in the region where P2 alleles
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Fig. 2. Producing RIST populations. P1 and P2 are two inbred strains and were
crossed to generate the RI strains. A selected RI strain with a recombinant haplotype
in the region of interest is crossed with both parental strains to produce two separate
F1 populations, F11 and F12. Subsequently, RIST-F2 and RIST-BC populations are
obtained through intercross and backcross, respectively.

are present in the selected RI strain, and the F22 or BC2 is genotyped with
markers located in the region where P1 alleles are present in the selected RI
strain. Because the QTL has been previously mapped in this region, it will
necessarily segregate in one of the F2 or BC populations but not in the other.
This will define whether the QTL is to one side or the other, relative to a
recombination point in one RI strain. By overlapping regions by the use of
several RI strains, the QTL can be accurately located.

2.4. Existing Mapping Resources

Although QTL detection is often effectively achieved on BC or F2 popula-
tions, this genetic scheme requires generating the appropriate population, a
time-consuming process. An alternative to the BC or F2 scheme resides in
using existing mapping populations. Although they may not be the theoretically
optimum populations, they definitely have the advantage of being ready to use
and may not require the lengthy generation procedure. In the following, we
discuss the major types of resources available.

2.4.1. Recombinant inbred strains

The RI strains are one of the oldest resources available. They are established
pure lines, originally proposed by Bailey (60) and developed as a major mapping
resource by Taylor (61). Each strain was derived from an intercross of two
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genetically distinct strains, followed by inbreeding of the F2 progeny, to obtain
a new pure line, with an approximately 1 : 1 ratio of the original breeds genetic
material, and defined recombination points. RI strains have usually been typed
on a large number of markers, such that in most events, no further genotyping
will be required. Although there is no limitation to the trait being tested on
existing strains, in most instances the size of the QTL effects will be unknown
and, therefore, the efficiency of RI strains for this purpose will be difficult to
estimate a priori. (see note 4). For a comprehensive list of existing mouse RI
strains and the status to which they have been genotyped, refer to www.jax.org.
The use of this resource is further discussed in Subheading 3.4.1.

2.4.2. Chromosome Substitution Strains

Chromosome substitution strains (CSS or consomics) result from introgress-
ing individual chromosomes from a donor to a host strain, by recurrent back-
crossing. They have been broadly used to examine the role of the Y chromosome
in biobehavioral processes (62,63). More recently, in an attempt to develop a
set of CSS to encompass the entire genome, Nadeau (64) has backcrossed
individual A/J chromosomes to the C57BL/6J background by selection for
appropriate microsatellite markers. Consomics can only locate the QTL to a
specific chromosome. Therefore, they are excellent for QTL detection, but
without additional crosses they have no use for fine mapping of QTLs.

2.4.3. Advanced intercross lines

Advanced intercross (AI) lines were proposed as a means of systematically
increasing the density of recombination events to facilitate mapping (65). AI
lines (Fig. 3) are produced by intercrossing two parental strains to produce
a standard F2 generation. Starting with the F2, animals are semirandomly
intercrossed to produce successive generations while systematically avoiding
matings between relatives. A parental population of 50 males and 50 females
is maintained in each generation to minimize inbreeding. Each generation
accumulates recombination at a rate of rt=[1−(1−r)t−2(1−2r)]/2, where rt is the
proportion of recombinants at the tth generation and r is the initial proportion
of recombination. When employed for the estimation of map location, AI lines
improve accuracy by reducing the confidence interval (see Subheading 3.2.2.).
More importantly, however, they constitute a highly effective tool for fine
mapping.

2.4.4. Heterogeneous Stocks

In addition to bilineally derived AI stocks, stocks of mice and rats were
derived by systematic crossing of many inbred strains and are being maintained
on a semirandom basis for many generations. McClearn et al. (66) systematically
intercrossed 8 inbred mouse strains to produce a heterogeneous stock (HS) that
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Fig. 3. Production of an advanced intercross line (AIL). Two parental strains (P1
and P2) are crossed to produce an F1, then intercrossed to produce a standard F2.
Subsequently, each generation is semirandomly intercrossed within itself, from F3 to
Fn (see text).

has now accumulated approximately 60 generations of intercrossing and a dense
pattern of recombinations. A similar stock of rats has been developed by Dr.
Carl Hansen at the National Institutes of Health. Like the mouse HS stock, it
has been systematically intercrossed for many generations and can be expected
to greatly facilitate fine mapping.

2.4.5. Recombinant congenic strains

Recombinant congenic strains (RCS) are derived by inbreeding strains after
performing several independent backcrosses from a donor to a host strain
(67,68). Existing RCS each carry from between 6.25% and 12.5% of donor
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genome alleles at random and sets of RCS strains are designed to sample 95%
of the donor-strain genome. Following identification of phenotypic differences
in the relevant trait between the two progenitor strains, RCS studies usually
continue with a comparison of an RCS set with the host strain. Discovery of
a significant difference between host and individual RCS indicate the existence
of a QTL(s) residing on one or more of the donor chromosomal regions that
have been fixed within that particular RCS strain. Because RCS are based on
short chromosomal fragments from the donor strain, they may also provide
some degree of usefulness for fine mapping.

2.4.6. Congenics

Congenic strains have been developed by repeated backcrossing from a
donor to a host strain accompanied by selection for histocompatibility variants
(69,70). Each congenic strain retains a single chromosomal segment from the
donor strain. The length of the transferred segment varies with the number of
backcross generations. At 10 generations, the segment is expected to be, on
average, 20 cM in length (71). Some existing congenic strains have been
partially defined by microsatellite polymorphism typing (72).

Bailey (73,74) calculated that the chromosomal inserts carried along with
the selected variants in the C57BL/6By/Balbc/By bilineal congenic series would
sweep approximately one-third of the genome and suggested that they had
general applicability for mapping of a variety of traits, including behavior, and
illustrated their use in a study of the mandible morphology (75).

3. Interpretation

3.1. Genetic Variation

Choosing strains for study on the basis of their polymorphism rate has the
practical advantage of providing access to ample numbers of polymorphic
markers. This can be particularly important at the fine-mapping stage, when
the number of markers within a particular chromosomal region may be restricted.
The polymorphic rates between Mus castaneus, Mus spretus, and the other
mouse inbred strains are in excess of 90%, according to microsatellite typing
by Dietrich et al. (76). This degree of diversity can also be exploited during
the fine-mapping stage.

In the rat, typing of more than 5000 microsatellite polymorphisms in 48
inbred rat strains has been initiated by Jacob et al. (77) and further refined by
Brown et al. (78). Polymorphism rates between pairs of strains can be accessed
at http://waldo.wi.mit.edu/rat/public/. As shown there, polymorphism between
strains is high, usually above 50%, reaching 82% in a few cases (e.g., SHRSP
× BN/SSN. A few strains, however, show a poor polymorphism rate, as seen
for BB(DP) × BB(DR), with only 18% polymorphism between the strains.
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Although one cannot assume a one-to-one relationship between microsatellite
polymorphism rates and variation in genes, judicious selection of strains of
rats or mice using the interstrain polymorphism rate as criterion would likely
provide a sample with an excellent degree of heterogeneity.

3.2. QTL Mapping (Stages I and II)
3.2.1. Power

Larger sample sizes and larger QTL effect increase power for detection as
well as mapping accuracy. When considering F2 versus BC for QTL detection,
it is important to define the precise purposes of the research. F2 will generally
be more efficient for a primary estimation of the number of QTL segregating
in the population, as well as their additive or dominance effects. A BC will
be preferred, however, for an efficient detection of the major QTLs. The advan-
tage of BC resides in the relatively higher gene effect than for an F2, as a
result of the reduction in residual genetic variance (79,80). Genetic variance
caused by gene interactions is also expected to be reduced, making the BC
design even more powerful (81). The power variation between the alternative
schemes is best summarized by the size of the mapping population in each
case. For additive effects, an F2 requires about 30% less progeny than BC.
For dominance effects, however, a BC requires about half of an F2 population.

For most practical cases, RI strains will be less powerful than BC or F2. If,
however, a QTL explains a significant proportion of the genetic variation and
the genetic variation itself is small compared to trait variation, RI strains can
be considerably more efficient than BC or F2 (82).

3.2.2. Confidence Intervals

Following QTL detection, estimation of map location is carried out, usually
on the same population, applying specific software for the interval mapping
procedure or one of its variations. Interval mapping assigns a LOD score to
the presence of the QTL at specific points across the genome. The point estimate
for the QTL is the location with the highest LOD score value.

The most important parameter for evaluating QTL strategies in this stage is
mapping accuracy. A number of methods have been suggested to estimate QTL
mapping accuracy (34,40,83,84). In statistics, the concept of a 95% confidence
interval (CI) for parameter estimates is used to describe the range of values,
which has a 95% probability of containing the true value for that parameter.
Lander and Botstein (40) suggested an equivalent approximation to the confi-
dence interval in QTL mapping, defined by the points on either side of the
QTL peak where the LOD score was one LOD score lower than at the peak
(usually called the 1-LOD support interval). A 2-LOD score support interval
was later found to be more appropriate in representing a 95% CI (85). The
confidence interval of QTL map location can also be estimated using an empiri-
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cal formula (83). The general expression for CI has the form k/(Nd 2), where
k is a constant that depends on the design and level of confidence, N is sample
size, and d is the standardized gene effect. This equation was developed under
an assumption of a dense genetic map, but it is also a close approximation to
situations where marker spacing is up to half the CI itself. For QTL with
additive effect, F2 will allow an increased mapping accuracy, whereas BC is
preferred for dominance effects. Recombination is the main variable that affects
stages I and II differently. For QTL detection, less recombination is desired
to reduce the total amount of markers required for the genome scan, because
markers will still be linked to the QTL even when they are at a considerable
distance away. Conversely, for mapping accuracy, a greater density of recombi-
nation events improves mapping resolution by reducing the confidence interval;
only markers that are closely linked to a QTL will detect an effect, and,
therefore, a smaller interval will be defined. RI strains are produced by a large
number of intercrosses, thus increasing the number of recombination events,
leading to a reduction in the CI of up to fourfold.

3.3. Issues Regarding QTL Fine Mapping (Stage III)

In this process, the mapping interval is reduced to a minimum, in order to
facilitate physical/molecular access to the chromosomal region to which the
QTL is mapped. Reducing the mapping interval is essential for positional
cloning of the gene of interest (stage IV) and is usually achieved through
recombinant analysis. N individuals are analyzed for each recombinant haplo-
type, to determine the QTL allelic state (i.e., whether a specific recombinant
haplotype retained an increasing/decreasing allele affecting the quantitative
trait in question). Throughout this process, the smallest common region will
eventually be determined by two recombinant haplotypes only. The QTL will
be located between two recombination points, defined by the recombinant
haplotypes. With an estimate of gene effect, two symmetrical hypotheses are
tested, representing the two alternative states of the QTL alleles. The number
of progeny that needs to be tested varies according to the chosen strategy, the
QTL effect size, and its dominant state (35). These parameters, as well as the
required target accuracy, availability of RI strains, time, and money constraints,
will determine which fine-mapping strategy to use. In the following, we discuss
several aspects of the various strategies.

3.3.1. Selective Phenotyping

Any number of recombinants phenotyped will reduce the width of the QTL-
containing interval, and, subsequently, a smaller interval can be considered to
search for new recombinants. For practical reasons, however, probably not
more than two steps will be applied. At each stage of selective phenotyping,
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the total number of animals phenotyped is reduced by a factor of 1/2r(1−r) for
an F2 population and by 1/r for a BC population (r being the proportion of
recombination between the markers bracketing the interval in question). With
selective phenotyping, savings are in phenotyping only, total number of animals
produced being equal to that necessary with an F2 or a BC. This number
increases rapidly as the CI decreases. Therefore, selective phenotyping is fast,
but not very efficient. It will be most appropriate for mapping QTL with large
effects, although the target resolution is rather low, not below approx 5 cM.

3.3.2. Recombinant Progeny Testing

Reducing the confidence interval from y cM to x cM will require y/x recombi-
nant individuals, each with a recombination at one of the y/x intervals covering
the initial y-cM interval. The number of F2 animals that need to be screened
to detect these recombinants increases for shorter target intervals. Recombinant
progeny testing requires only one additional generation compared to selective
phenotyping (which usually requires two). It is also more efficient, especially
for QTLs with a dominant effect, for a target interval as short as 1 cM.

3.3.3. Interval-Specific Congenic Strains

In this design, a series of strains, each containing a short fragment from the
donor strain, is used; thus, the tested population is nonsegregating, as opposed
to other types of mapping population. In such nonsegregating population, the
QTL effect may be confused, through fixation of residual genetic loci or interac-
tion effects (such as maternal effects), which are extraneous to the tested QTL.
To avoid this risk, one can detect linkage on a small segregating population
produced by crossing the ISCS to the background parental strains. Alternatively,
ISCS can be applied on a single congenic strain, produced for the relevant
region. ISCS require a significant number of generations to produce. Because
of their genetic design, they cannot take advantage of dominant effects. They
are, however, particularly suited for the analysis of QTLs with moderate or
small effect, and they require a limited number of progeny, and very few
genotyped samples, to achieve a short target interval of 1 cM.

3.3.4. Recombinant Inbred Segregation Test

The analysis of the two populations will locate the QTL above or below the
recombination point in the segregating population (Fig. 2). The overlapping
results of all selected RI strains will locate the QTL to the desired interval.
For additive effects RIST-F2 is preferred, in which case, homozygotes at the
marker locus will contribute most of the information. Thus, only homozygous
individuals will be selected for phenotyping. When a dominant effect is consid-
ered, RIST-BC will be more efficient. Using the RIST strategy is both cost-
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effective and fast: The phenotyping is drastically reduced and only two genera-
tions are required. Its application is limited only by the availability of appropriate
RI strains. It is expected, however, that for a target interval of 1 cM, appropriate
RI strains will be found for 50% of chromosomal regions, when a set of 25
RI strains is available.

3.4. Existing Mapping Resources in the Context of QTL Analysis
3.4.1. RI Strains

Recombinant inbred strains can be used for QTL detection, mapping, and
fine mapping through the RIST design. The greatest advantage of RI strains
is, indeed, for fine mapping. During their generation, a large amount of recombi-
nation has been established in a segregating population based on two original
genomes. Because recombination is the source of mapping accuracy, this ready-
made population is an efficient mapping tool. Although not optimal for QTL
detection, it should not be overlooked. When QTLs under study explain a
significant portion of the genetic variation and particularly when the entire
genetic variation is relatively low, RI strains present an excellent resource for
QTL detection. In such an instance, environmental variations can be controlled
by phenotyping several individuals from each RI strain.

3.4.2. Chromosome Substitution Strains

A CSS differs from its parental strain by one entire chromosome. Therefore,
a set of CSS, each with a different introgressed chromosome, represents an
excellent tool for QTL detection. Simply phenotyping few individuals from
each CSS will detect QTL(s) to specific chromosomes whenever a significant
phenotypic difference appears between the CSS and its parental strain. The
CSS itself does not provide any information as to the location of the gene; it
only detects its presence in a specific chromosome. Nevertheless, CSS are an
excellent starting point to further fine-map the gene to a small region through
the generation of specific congenics.

3.4.3. Advanced Intercross

The AI approach may be especially appropriate in the presence of a genetic
architecture characterized by many genes, each with a small effect size. The
presence of a QTL with large effect size may interfere with precise localization
of small-effect QTL(s) on other chromosomes, unless the position of the former
is defined with enough precision to permit appropriate statistical adjustment.
Use of a single generation in the AI approach also has the practical advantage
of saving time compared to the multiple-generation breeding required for the
various recombination-defined-interval approaches.
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3.4.4. Heterogeneous Stock

The use of HS allows the simultaneous mapping of many QTLs at a high
level of resolution (1 cM and less), for QTL with small effect sizes. Because
mouse HS strains include alleles from commonly used inbred strains, they can
be used to refine the localization of many QTLs involved in behavioral traits.
The HS is similar to the AI with the difference that eight parental strains
originated the cross and that it has been kept heterogeneous for a very large
number of generations, and, therefore, it may allow increased mapping accuracy.

3.4.5. Recombinant Congenic Strains

The RCS present a reduction of variation as compared to the parental strain.
A series of RCS will include the entire range of variation but scattered over
a number of strains. In many instances, this is not an efficient mapping tool.
When available, it can, however, be exploited for a phenotype study, where
this scheme may uncover potential interaction between genes.

3.4.6. Congenics

Congenics are time-consuming to produce. However, once existent, they
provide an important resource. An observed phenotypical difference between
congenics and their parental background genome permits the localization of a
QTL to a well-defined small interval. Additionally, because as many animals
as required can be obtained from the same congenic strain, they allow for a
thorough examination of the QTL-dependent phenotype.

3.5. Application to Human QTL Mapping

The main contribution of mouse QTL mapping results to human genetics is
expected to be achieved through comparative genomics. Model organisms have
long been recognized as an outstanding useful tool for the study of human
complex traits and diseases. Their strength in genetic studies resides in the
short generation time, the wealth of well-defined inbred lines, and the genetic
schemes applicable for genetic dissection, as described in the present chapter.
The crosses between inbred lines, along with powerful genetic analysis, allow
the detection of much subtler effects for minor QTLs than is possible in outbred
human populations.

With the parallel development of the Human Genome Project and model
organism genetic mapping, we are reaching a stage where homologous chromo-
somal intervals can be precisely assigned, from species to species (86). This
is particularly true for the mouse, where a very dense marker map is already
available, including a YAC-based map with an average marker spacing of
224 kb on chromosome X (87). Comparative genomics allows the precise
localization, on the human genome, of genes initially mapped in the mouse.
This, in turn, may lead to mutational analysis of the gene in human populations.
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Table 1
Software for QTL Analysis

Name URL

Mapmaker/QTL 3.0 ftp://genome.wi.mit.edu/pub/mapmaker3
QTL Cartographer 1.12 http://statgen.ncsu.edu/qtlcart/cartographer.html
Map Manager QT b28 http://mcbio.med.buffalo.edu/mapmgr.html
QGeneTM 2.30 qgene@clarityconnect.com
MapQTLTM 3.0 http://www.cpro.dlo.nl/cbw/
PLABQTL 1.0 http://www.unhohenheim.de/~ipspwww/soft.html
MQTL 0.98 ftp://gnome.agrenv.mcgill.ca/pub/genetics/software/MQTL/
Multimapper http://www.RNI.Helsinki.FI/~mjs/
MultiQTL http://www.multiqtl.com/
The QTL Café http://web.bham.ac.uk/g.g.seaton/
Epistat http://www.larklab.4biz.net/epistat.htm

Following positional cloning, assessment of the role of a particular gene in
the studied complex trait may be strengthened by genetic manipulation, such
as the generation of transgenic mice and knockout mice. These allow the
realization of thorough functional analysis, a crucial step to the unraveling of
physiological mechanisms.

4. Software
There exists a large variety of software, developed for the specific purpose

of QTL mapping. An exhaustive list of the available software can be found at
http://www.stat.wisc.edu/biosci/linkage.html. Manly and Olson (88) presented
an excellent overview of existing software for QTL mapping and we encourage
the reader to examine that work when choosing software. Table 1 presents a list
of some of the major programs and the websites where they can be downloaded.
Additional software resources are given in Table 1 in Chapter 7.

5. Examples from the Literature
In this section, we briefly describe a sample of published studies that illustrate

several experimental strategies in QTL analysis. We have focused to some
extent on examples related to behavioral phenotypes, but also other complex
phenotypes are presented where the experimental strategy may be of interest.
This sample, obviously, does not include the entire work done on QTL analysis
nor does it necessarily represent the most important studies.

5.1. Selective Genotyping

Flint et al. (11) used selective genotyping on an F2 population for the
identification of QTLs affecting emotionality in mice. They took advantage of
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existing inbred lines, known to differ in their emotionality. Their first screening
was based on one emotionality test (Open-Field Activity, OFA), and they
further examined the detected QTLs for their possible effect on additional
emotionality criteria. Out of the six initially detected QTLs, three were found
to affect all emotionality tests and seem to account for all or the major part of
the genetic component of the trait.

Gershenfeld and Paul (89) carried out a similar study for fearlike behavior
QTLs and simultaneously measured two phenotypic criteria. From their F2
screening, they detected distinct QTLs for the different phenotypic criteria and
were able to locate several QTLs, each with a moderate effect, explaining
2.3–8.4% of the phenotypic variance.

5.2. Backcross Populations

Melo et al. (13) exploited the advantages of BC populations to identify
QTLs for sex-specific alcohol preference. They conducted a two-way backcross
between B6, known as an alcohol-preferring strain, and DBA/J2, a recognized
avoider strain. Selective genotyping of the phenotypic extremes led to the
definition of five unlinked chromosomal regions involved in alcohol preference.
These regions were further examined on the whole populations and this led to
the assessment of one male-specific QTL and one female-specific QTL, affecting
alcohol preference. Both QTLs have a strong effect, with 22.5% and 23% of
the total genetic variance for male and female, respectively. It should be noted
that a previous attempt to identify QTLs involved in alcohol preference had
been made, using RI strains of the same origins, and failed to reach significance.
This is expected because of the low power that RI strains provide for QTL
detection.

5.3. Selective DNA Pooling

Collin et al. (90) took advantage of a modifier, known to enhance the
susceptibility to germ-cell tumors, and applied the efficient selective DNA
pooling strategy on a backcross population segregating for tumorigenesis fac-
tors. The pooling enabled a differential screening of unilateral versus bilateral
tumors. The screening, using an average marker spacing of approx 9 cM,
uncovered three candidate QTLs. The authors calculated that by using the DNA
pooling approach they achieved a 7.2-fold reduction in genotyping.

5.4. Congenic Strains for Chromosomal Localization

Frankel et al. (12) constructed congenic strains for the study of epilepsy
and were able to differentiate between the E12 locus and other QTLs. The use
of congenics allowed for the chromosomal localization of E12 to chromosome
2, where a few functional candidate genes are known to reside.
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5.5. Chromosome Substitution Strains

Matin et al. (91) produced a 129.MOLF-Chr19 CSS (chromosome 19 from
the MOLF strain, substituted in the 129 strain). They used this CSS to investigate
the tumorigenic effect of MOLF chromosome 19 on the 129 background, as
detected in their previous study. This CSS was further intercrossed with the
129 parent, as well as with the MOLF parent. Both F2’s were examined for
tumor incidence, and a marked effect was found for the MOLF-Chr 19, on
129 background only. Segregation analysis of the 129 × CSS F2 also allowed
for the localization of the tumorigenic effect to proximal chromosome 19.

5.6. Heterogeneous Stock

Talbot et al. (92), in search for a higher-resolution mapping for behavioral
traits, used a selective genotyping approach on the heterogeneous stock (HS)
of mice. Their study focused on QTLs previously identified by Flint et al. (11)
and located on chromosome 1. With the HS, they could reduce the CI to 1.2
cM. Using the same population, they could also identify a QTL on chromosome
12, thus demonstrating the possibility of simultaneously mapping multiple QTL,
using the heterogeneous stock.

5.7. Advanced Intercross

Iraqi et al. (93) described the construction of two trypanosomiasis susceptibil-
ity AI lines, issued from one resistant strain, crossed with two alternative
sensitive strains. Genetic analysis of the segregating populations was performed
by selective genotyping. Using this approach, they reduced the CI by 2.5- to
15-fold, for three resistance QTL that had previously been mapped, each to a
10- to 50-cM interval. Moreover, because of the high recombination level
present in the AIL, one QTL on chromosome 1 could now been shown to
consist of three independent loci. Another QTL was mapped to a 0.9-cM
interval, a degree of resolution allowing positional cloning.

5.8. Congenic Strains for Fine Mapping

Encinas et al. (94) took advantage of congenic strains of mice, previously
established for the analysis of diabetes on chromosome 3, to examine QTL effect
on experimental autoimmune encephalomyelitis (EAE). Using this strategy, they
were able to identify a 1.5-cM region, affecting EAE, and including the Iddm2
diabetes locus.

5.9. Transgenic mice

A recent study, by Symula et al. (95), described the use of YAC-transgenic
mice to study factors altering an asthma QTL. Using a panel of transgenic
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mice, they were able to demonstrate a transgene-effected modulation of the
mouse immune response.

6. Notes

1. Evidence of a genetic component. It is advisable, when probing genetic variation
of a trait, to carry out a small-scale cross between phenotypically different strains
and examine trait segregation in the F2. Alternatively, recombinant inbred lines
may also be valuable for this purpose. When the genetic variation between the
strains is demonstrated to occur and segregate, then proceed with genetic dissection
of the trait.

2. Cost-effectiveness. Cost-effectiveness is controlled mainly in two different ways:
(1) by limiting the genotyping cost (e.g., the number of genotyping test that are to
be carried out and (2) by reducing the cost of establishing and maintaining a
specialized mapping population (either by using an existing population or by reduc-
ing the generation × individual effective number).

3. Environmental variance. When phenotyping for a complex trait, it is necessary to
keep in mind the possible environmental contribution to the phenotype. In this
aspect, ISCS are of considerable advantage, as they represent established, genetically
simplified, pure strains. Phenotyping a number of individuals for each genotype
permits to minimize the error resulting from environmental variance.

4. Limitations of RI strains. The RI strains are of advantage for the localization and
detection of QTLs with large effects. In most cases, however, the small number of
RI strains available will not allow the required statistical power to be attained.
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Approaches to the Analysis of Complex Quantitative
Phenotypes and Marker Map Construction Based on
the Analysis of Rat Models of Hypertension

Dominique Gauguier and Nilesh Samani

1. Introduction

1.1. Essential Hypertension

Essential hypertension is among the best examples of inherited complex
quantitative phenotypes. Although this syndrome is well characterized for multi-
ple pathophysiological circuits that have led to the development of potent
pharmacological agents influencing blood pressure (BP), it remains a major
health issue in Westernized populations because of its high prevalence and the
increased risk of end-organ complications, including stroke, coronary heart
disease, heart failure, peripheral vascular disease, and renal failure. Both genetic
factors and “environmental” factors such as diet, alcohol intake, and obesity
are involved in the development of hypertension and its complications and
contribute to its phenotypic heterogeneity. Investigating the genetic basis of
BP control represents a paradigm to analyze gene–gene and gene–environment
interactions. Although BP shows a continuous distribution in both human
populations and experimental models, hypertension is arbitrarily defined by
values above 140 mm Hg systolic and 90 mm Hg diastolic pressure. The
utilization of quantitative values of the trait for statistical analysis of data
derived from genetic studies represents a key strategy to overcome the arbitrary
classification of hypertensive and normotensive individuals. This approach takes
into account extreme values of the phenotypes, as well as quantitative values
of the traits for a priori unaffected or undiagnosed individuals.

From: Methods in Molecular Biology: vol. 195: Quantitative Trait Loci: Methods and Protocols.
Edited by: N. J. Camp and A. Cox  Humana Press, Inc., Totowa, NJ
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1.2. The Use of Rat Models

The quantitative trait locus (QTL) approach, which uses the continuous
values of phenotypic variables in each individual of a population, is therefore
particularly appropriate in genetic studies of BP control. Taking advantage of
this strategy, genetic studies in rat models of spontaneous hypertension have
played an important role in the identification of genetic loci that regulate BP.
The rat is, by far, the leading model species in pharmacology and toxicology
and provides the most relevant model for the accurate analysis of whole-
organism, organ, and cellular phenotypes relevant to essential hypertension.
Many of the noninvasive and invasive phenotyping techniques that are readily
available in the rat are, at present, difficult or impossible to apply in other
species, including the mouse. The rat is therefore the most relevant model
organism for the dissection of blood pressure into distinct subphenotypes that
participate in the pathophysiological process leading to hypertension through
possible distinct molecular mechanisms and gene pathways. However, trans-
genic experiments in mice remain essential to investigating and validating the
role of potential candidate genes on BP regulation.

The analysis of the genetic basis of complex phenotypes, is, in theory,
simplified in inbred models. Studies of the genetic control of BP in spontane-
ously hypertensive rat strains (see Subheading 2.1.) have pioneered the QTL
strategy in rats and opened a new field of investigation for other multifactorial
disorders in rats, including type 1 and type 2 diabetes mellitus, atopy, arthritis,
and behavioral traits. Most BP QTL studies have applied standard genetic
strategies based on genetic and phenotypic analyses in a segregating population
(F2 or first backcross), often supported by a comprehensive pathophysiological
screening of the hybrids. The ultimate goal of genetic studies in experimental
models remains the application to human health. Investigating BP QTLs in rat
models represents one of the most demonstrative examples of an integrated
scientific strategy applied to the identification of etiological pathways relevant
to a human-complex disorder. This chapter synthesizes the individual compo-
nents of QTL analysis based on results from numerous studies carried out with
spontaneously hypertensive rat models and emphasizes the contribution of
BP QTL results in models to our understanding of the etiology of human
essential hypertension.

2. Methods

2.1. Susceptible and Resistant Rat Strains

In contrast to rodent models in which spontaneous obesity and diabetes are
induced by naturally occurring single-gene mutations (fa, db, ob, Agouti), no
monogenic rodent models of severe hypertension have been described. A pro-
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Table 1.
Rat Strains Commonly Used for QTL Analysis of BP Phenotypes

Strains Strain designation Original outbred stock

High BP
S Dahl salt-sensitive Sprague–Dawley
SHR Spontaneously hypertensive Wistar
SHRSP SHR stroke prone SHR
MHS Milan hypertensive Wistar
LH Lyon hypertensive Sprague–Dawley
GH Genetically hypertensive Wistar
SBH DOCA salt-sensitive Unknown
FHH Fawn-hooded hypertensive German brown × White Lashley
ISIAH Inherited stress-induced hypertension Wistar
PHR Prague hypertensive Wistar

Normal or low BP
R Dahl salt-resistant Sprague–Dawley
WKY Wistar Kyoto Wistar
MNS Milan normotensive Wistar
LN Lyon normotensive Sprague–Dawley
LL Lyon low blood pressure Sprague–Dawley
SBN DOCA salt-resistant Unknown
FHL Fawn-hooded low blood pressure German brown × White Lashley
PNR Prague normotensive Wistar

Normotensive inbred rats
unrelated to hypertensive strains

BN Brown Norway
LEW Lewis
F344 Fisher

cess of repeated selective breeding of increasingly hypertensive animals isolated
from an outbred normotensive stock has been used to produce hypertensive
lines. This procedure, based on the existence of naturally occurring alleles
altering BP alleles in outbred animals, has been used to derive a wide range
of inbred rat strains that have been specifically selected for high BP (Table
1). In most cases, the normotensive or low-BP strains have been concomitantly
produced from the same outbred stock (Table 1). The main phenotypic and
genetic characteristics of these strains have been recently reviewed (1). There
is not much genetic diversity in commonly used hypertensive strains because
most of them were developed from either Wistar and Sprague–Dawley outbred
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stocks, which share a common origin. This may limit the detection of susceptibil-
ity loci in experimental crosses. Other inbred rat strains such as the Brown
Norway (BN), Fisher (F), and Lewis (LEW), which are often models for
other disorders, are well characterized for the absence of BP alterations and
appropriate for the generation of genetic crosses with hypertensive strains.

2.2. Design of the Experimental Cross

The critical stage of experimental genetic projects lies in the selection of
the susceptible and resistant strains that will be used for the experimental cross.
Two different empirical concepts have been used to choose the most appropriate
cross. The first assumes that the analysis of hybrids derived from closely related
strains that were isolated from the same outbred stock using the same selection
criterion (i.e., SHR×WKY, SHRSP×WKY, LH×LN, S×R, MHS×MNS) would
identify major genetic loci regulating BP. The second approach consists of the
generation of hybrid cohorts from a hypertensive strain bred with a completely
unrelated normotensive inbred strain (BN, F344, LEW), which allows the
potential of contrasting alleles at additional BP QTLs. Each strategy has its
advantages and drawbacks. Applying the first one will result in poor QTL
mapping resolution of variables selected in the strain selection process, whereas
the latter will provide a high coverage of the QTLs linked to traits that may
not be relevant to the characteristics of the disease strain. Polymorphism rates
between inbred rat strains could be a significant criterion to be considered for
the choice of the experimental cross, as high mapping resolution is required
in the long term for the characterization of speed congenic lines (see Chapter
8, Subheading 2.3.3.) derived for the QTL intervals.

Based on the obvious polygenic nature of high BP in hypertensive rats,
intercrosses have been generally preferred to backcross breedings (which are
better for oligogenic dominant traits). Highly significant QTLs have been identi-
fied with relatively small crosses (<200 animals). In most studies, only males
have been considered for the genetic analysis to minimize the sex effect on
BP. Analyzing male hybrids has often been prioritized because BP measurement
procedures are easier in males and males develop evidence of high BP faster
than females. However, genetic studies in crosses derived from SBH, GH, and
SHRSP rats that included both males and females have shown sex specificity
in the detection of BP QTLs, which may be relevant to the differential progres-
sion of hypertension in male and female rats. Reciprocal crosses could also be
considered in order to test the respective effects of susceptible and resistant
alleles and genetic background on BP control.

A panel of 31 recombinant inbred lines have been derived from BN and
SHR rats (2) and are maintained at the Czech Academy of Sciences in Prague.
Each line carries a different combination of homozygous chromosomal segments
originated from the founding parental strains and potentially represents a mosaic
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of BP contrasting alleles from the original strains. The panel has been character-
ized for a large number of genetic markers and provides useful resources of
inbred animals that can be repeatedly tested for various phenotypes likely to
play a role on BP regulation.

2.3. Phenotype Analysis

Indirect BP using the tail-cuff method and/or direct BP via a femoral or
carotid cannula are the most common ways of measuring BP, although more
sophisticated methods such as radiotelemetry have also been applied. On the
one hand, BP measurement based on the tail-cuff method was the selection
criterion used to derive all hypertensive rat strains and is therefore expected
to be the most appropriate procedure. On the other hand, radiotelemetry allows
a follow-up recording of BP for several weeks in individual animals, improves
the accuracy of BP measures, and represents an efficient system to evaluate
variations of BP during the light/dark cycles. In several studies, animals have
been placed on a high-salt diet (2–8% NaCl) prior to BP measurement. Supple-
mental dietary NaCl is required in crosses derived for the S strain. Variation
in BP responses to changes in dietary intake of NaCl involves the interaction
of multiple environment and genetic factors and creates an additional level of
complexity in the interpretation of QTL results. The analysis of individual BP
variables builds upon our knowledge of the multiple pathways involved in the
pathophysiology of hypertension. Although systolic and diastolic BP are the
major phenotypes measured in the hybrids, a number of subphenotypes that
are directly relevant to BP, including mean arterial pressure, pulse pressure,
circadian variation (telemetry), and heart rate, are also tested. BP-related pheno-
types that may have their own additional genetic control have also been ana-
lyzed, including cardiac mass and variables relevant to complications (renal
failure and stroke). In most hypertensive strains, high BP is associated with
effects on heart weight, as the heart hypertrophies in response to chronically
increased BP. Similarly, stroke and renal damage occur in response to either
spontaneous hypertension or high BP experimentally induced. It is, however,
reasonable to hypothesize the existence of loci that influence these variables
independent of BP.

2.4. Marker Resources for Genomewide Searches

More than 10,000 rat microsatellite markers have been produced over the
past 5 yr and public databases have been implemented mainly on two sites
(http://www.well.ox.ac.uk/rat mapping resources; http://rgd.mcw.edu/) to pro-
vide the scientific community with all information required to efficiently carry
out a genomewide search in almost any rat cross. These large collections
of rat microsatellite markers have been characterized for allele variation
between strains most commonly used in experimental crosses. The maximum
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polymorphism rate between two rat strains is unlikely to exceed 70% (3). An
optimal panel of polymorphic microsatellite markers can be chosen from the
repositories for a specific cross, assuming that the strains are derived from
identical colonies to those used in the polymorphism assays. In this context,
it should be noted that a very high level of allele variations was found among
colonies of WKY and SHR strains (3), which were distributed to various
laboratories and commercial suppliers before either strain was fully inbred.

An initial genomewide search is generally carried out with an average spacing
of 10–15 cM between adjacent markers. The vast majority of rat microsatellite
markers are integrated in dense linkage maps that allow the selection of a
collection of markers evenly spaced for the genomewide search (http://
www.well.ox.ac.uk/rat mapping resources; http://rgd.mcw.edu/). Markers are
usually robust, and standardized touch-down PCR protocols (3) can be applied
for high-throughput fluorescent genotyping. However, genotype analysis in
hybrids derived from fully inbred strains is relatively simple and based on the
detection of only two genotypes in a backcross and three genotypes in an
intercross. Allele size differences of approx 10 bp or more between parental
strains can be easily analyzed on a standard 4% agarose gel. With the increasing
density of the rat linkage maps, a panel of such markers can be selected in
public databases, thus substantially reducing the cost of genotype analysis as
compared to fluorescent genotyping.

Several database systems are suitable for storing information on pedigree
structure and both phenotype and genotype data, including Access, Discovery
Manager, Sybase, and, more simply, File Maker Pro. Export files of the data
are generally in text files appropriate for subsequent map construction and
QTL analysis.

2.5. Map Construction

Prior to statistical analyses and QTL identification, genetic maps are con-
structed to confirm the appropriate genome coverage in the cross and identify
possible typing errors and inconsistencies between the resulting maps and
published data. JoinMap 2.0 (JM) is one of the most robust and user-friendly
packages available for linkage analysis and genetic mapping (4,5). It was
designed by Stam and Van Oijen (5), initially for the analysis of results from
plant breeding, and can be applied to most experimental crosses in mammals.
All files handled and produced by JM are ASCII text files. Each phase of the
mapping analysis is summarized in Table 2 and briefly described in the follow-
ing subsections. An example is also given in Chapter 10, Subheading 5.1.

2.5.1. Creation of a Locus Genotype File (“loc-file”)

Export files from the database system used to store data from a study may
not comply to the format required for JM. For example, they may provide
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Table 2.
Summary of the Main Steps Required for the Construction and
Verification of Linkage Maps with the JoinMap Program

Step Module Input files Output file

1. Formatting jmdma file.dat file.loc
2. Linkage groups jmgrp file.loc file.out
3. Grouping files jmspl file.loc and file.out file1.loc, file2.loc, etc.
4. Recombination jmrec file1.loc, file2.loc, etc. file1.pwd, file2.pwd,

frequency analysis etc.
5. Linkage mapping jmmap file1.pwd, file2.pwd, file1.jmo, file2.jm,. etc.

etc.
6. Marker ordering jmdma file1.loc, file2.loc, etc. file1.loc, file2.loc, etc.

file1.map, file2.map,
etc.

7. Unexpected double jmchk file1.loc, file2.loc, etc. file1.chk, file2.chk, etc.
recombinants

8. Distorted segregation jmsla file1.loc, file2.loc, , etc. file1.sla, file2.sla, etc.

marker data in columns and individuals in rows and may use different genotype-
coding systems. One of the roles of the jmdma utility program is to transform
raw data into an appropriate format for the first stage of JM, using a translation
file (file.tra) and a file.dat as input file.

The translation file (file.tra) (see following example) allows the transforma-
tion of genotype codes in the original datafile (0, 1, 2, 3 in an F2 cross for
unknown, homozygote for each allele, and heterozygote, respectively) in a
coding system that can be analyzed by JM (−, a, b, h):

1 − > a
2 − > b
0 − > −
3 − > h

Examples of a file.dat:

transpose skip= Number of columns to be skipped (pedigree

type, individual number, phenotypes, etc)

translate=File.tra File.tra

name= Name of the study

popt= Population type (f2, bc, . . .)

nloc= Number of loci

nind= Number of individuals

1 column 1: Pedigree (to be skipped)
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2 column 2: Individuals (to be skipped)

3 column 3: First phenotype (to be skipped)

D1Wox1 column 4: First genetic marker

D1Wox2 column 5

D1Wox3 column 6

Etc...

f2 1 456 2 2 2 2 1 0 3 3 0...

f2 2 557 2 3 3 2 2 2 1 3 3...

f2 3 675 1 1 2 2 1 1 3 2 1...

f2 4 890 2 3 3 2 3 3 3 3 3...

f2 5 555 1 1 2 2 1 0 3 3 0...

Etc...

The output file is the file.loc, which will be used throughout the analysis with
the following format:

; original file: LEIC1.dat
; no individuals removed
name = LEIC
popt = F2
nloc = 875
nind = 403
D1Wox1
bbaba . . .

D1Wox2
bhaha . . .

D1Wox3
bhbhb . . .

2.5.2. Chromosome-Specific “loc” Files

The jmgrp module is used to assign markers to linkage groups, based on
the calculation of log odds (LOD) scores of pairs of markers; that is, to determine
those markers that are linked to each other that most often translates to those
on the same chromosome. This module runs through several LOD thresholds
in order to obtain the best grouping file. In our experience, using a LOD range
between 3 and 6, with a step size of 1, generates linkage groups that are
consistent with published maps, regardless of the number of markers analyzed
(100 to >1500) and the size of the pedigree (100–400 hybrids). Greater LOD
thresholds can be applied to analyze a possible marker clustering in a particular
chromosomal region.

The input and output files are the file.loc and the file.out, respectively. A
new file.out is created with results from the most appropriate LOD threshold.
Ideally, for a genomewide search, the best LOD threshold will lead to a number
of groups corresponding to the number of chromosomes, or greater.
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The module jmspl will create a loc-file for each linkage group (e.g., file1.loc,
file2.loc, etc). This module requires both the file.loc and the appropriate file.out.

2.5.3. Calculation of Recombination Frequencies

The jmrec module calculates estimates of recombination frequencies from
the raw data in each of the chromosome-specific loc-files and produces LOD
scores. The input file is a chromosome (linkage group)-specific file.loc and
the output file (file.pwd) contains a list of pairwise recombination estimates.
The parameters required for the jmrec module are a LOD threshold and recombi-
nation (REC) threshold. In the tutorial, the authors recommend values in the
range 0.01–0.50 and 0.45–0.49 for LOD and REC thresholds, respectively. In
our experience, thresholds of 0.01 (LOD) and 0.49 (REC) provide a reasonable
choice for the analysis of large datasets.

An example of pwd-file is as follows:

; JoinMap JMREC output Fri, 14 Feb 1997, 16:01
; data taken from LEIC1.loc
; LOD-threshold: 0.0100
; REC-threshold: 0.4900

name = LEIC1

D1Wox1 D1Wox2 0.1083 13.6677
D1Wox1 D1Wox3 0.1299 13.8006
D1Wox1 D1Wox4 0.1202 13.2372
D1Wox1 D1Wox5 0.1885 8.2965
Etc...

The recombination frequency between pairs of markers in the pwd-file should
be between 0 and 0.5. If an estimate exceeds a value of 0.5, a “SUSPECT”
warning is issued and genotypes should be double-checked prior to linkage
mapping analysis. The module jmrec can be applied for calculations of recombi-
nation frequencies even when the genotype of the parental strains is unknown
or missing. In this case, suspect estimates may be the result of an inverted
genotype phase between linked markers that can be easily corrected in the
loc-file.

It must be noted that when data from reciprocal crosses are analyzed, a
loc-file must be created for each population and the module jmrec must be
independently applied to each loc-file in order to account for different recombi-
nant frequencies in the two crosses. As a result, two independent pwd-files are
produced that are merged for subsequent mapping. For the construction of an
integrated map from different crosses, the analysis is performed with population
specific pwd-files
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2.5.4. Constructing the Chromosomal Maps

A linkage map is produced by the module jmmap, which uses the pairwise list
of recombination estimates stored in the file.pwd created for each chromosome/
linkage group. The module jmmap requires the creation of a file.rsp (response
file) containing the chosen criteria for the analysis. The response file refers to
the corresponding pwd (input) and jmo (output) files as follows:

pwd= LEIC
jmo= LEIC
fix=
map=Kosambi
lod=0.001
rec=0.499
jum=4
tri=6
rip=3
top=0
int=n
opd=n

For the construction of the first map, it is reasonable to analyze the data
without specifying a fixed marker order (fix). Two mapping functions (Haldane
and Kosambi) can be used. LOD and REC thresholds of 0.001 and 0.499,
respectively, enable the use of all information in the pwd-file. The three mapping
parameters correspond to the following:

1. “Jumps in goodness to fit” ( jum) which evaluate changes in the map (chi square)
when a new marker is analyzed. It should be in the range 3.0–5.0.

2. Triplet (tri) which is used by JoinMap to calculate LOD of the three possible orders
within a triplet before map construction starts. Threshold value should be above 5.0.

3. Ripple (rip), which corresponds to a local search through permutations for improve-
ments in the order of three adjacent markers.

The three parameters correspond to the number of top linkages to output for
each locus (top), the output of intermediate results (int: yes or no), and the
output of ordered pairwise data (opt: yes or no), respectively.

The maps are produced in three rounds of marker–marker linkage analysis,
the last one being the least stringent and including all markers. It is recommended
to exclude from the dataset any marker mapped at the last round and creating
either a large gap in the chromosome or a substantial expansion in the chromo-
somal extremities when compared to the maps derived in rounds 1 and 2. The
resulting maps and the statistics related to their construction are in a file.jmo.
Markers excluded after rounds 1 and 2 that are likely to be problematic for
mapping are reported as “removed <marker>,” followed by the reason of
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removal (jump, conflict, or negative distance). For each of the three cycles, a
map is constructed (in two orientations) reporting the cumulative map position
(cM). Following error checks and remapping, a file.map containing the most
appropriate map is created. The module jmdma can be used again here to
organize markers in the loc-file in the same order as in the map-file. This is
particularly useful for the final error checking step. The specifications for the
module jmdma at this stage are as follows:

Data file? file.loc
Map file for sorting? file.map
Output file? file.loc

The final loc-file overwrites the initial one.

2.5.5. Maker Error Checking

The last stages of the analysis consist of the identification of improbable
genotypes originating from suspect double recombinants between closely linked
markers, and distortion in the genotype ratio for each markers locus using the
jmchk and jmsla modules, respectively.

The jmchk module analyses the three locus genotypes that are not considered
with the jmmap module, which is based on pairwise recombination frequencies.
The input file is a file.loc and the output file is a file.chk, which is organized
as follows. Individuals, problematic genotypes, and flanking markers are
reported as well as a statistical estimation of the magnitude of the problem.

ind previous locus locus next locus log (1/p)

--- ----------------------- ----------------------- -----------------

25 b: D1Wox31 h: D1Wox32 b: D1Wox75 3.092 *

50 a: D1Wox31 b: D1Wox32 a: D1Wox75 6.786 ****

31 h: D1Wox32 b: D1Wox75 h: D1Wox78 2.672

log(1/p) values: *>3; **>4; ***>5; ****>6; *****>7

Because markers in the loc-file are in the same order as in the map, problematic
genotypes can be easily identified and double checked:

original file: file.loc

; map file for sorting: file.map

; no individuals removed

name = LEIC

popt = F2

nloc = 149

nind = 403

; linkage group 1 (bottom-up):

D1Wox31
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hhhha hhhhb hbhab aaahb abhbb hab-b hbbbb hhhhb babhh babba...

D1Wox32

hhhha hhhhb hbhab aaahb abhbh habab hbbbb hhhhb babhh babbb...

D1Wox75

hhhha hhhab hbhab aaahb hbhbb aabab bbbbb hahhb aabhh babba...

D1Wox78

hbaha hhhab hhhah ahahb hbhbb aabab hbbbb hahhh aabha babba...

The jmsla module analyzes the genotype frequency distribution and provides
statistics (chi square) to estimate distorted segregations. The input file is the
loc-file.

JoinMap Single Locus Analysis 2.0/a

locus genotype file: file.loc

population name: Leic

population type: F2

number of loci: 149

number of individuals: 403

significance levels: *:0.1 **:0.05 ***:0.01 ****:0.005 *****:0.001

******:0.0005 *******:0.0001

frequency distributions per locus (149 loci):

a h b c d − X2 (df) :signif.[classes]

---- ---- ---- ---- ---- ---- --------------------------------

1: D1Wox31 86 156 105 0 0 56 0.47 (2): [a:h:b]

2: D1Wox32 101 162 83 0 0 57 0.76 (2): [a:h:b]

3: D1Wox75 83 190 113 0 0 17 2.01 (2): [a:h:b]

4: D1Wox78 90 123 151 0 0 39 12.51 (2): **** [a:h:b]

2.6. QTL Analysis and Fine Mapping

Genetic linkage analysis of BP data generated in crosses has received much
attention by statistical geneticists. The analysis is expected to prove the existence
of QTLs, give statistical support to their map position, detect possible interac-
tions between QTLs, evaluate different inheritance modes and identify the allele
contributing to the disease phenotype. Several different techniques have been
developed that are based on the utilization of maximum likelihood techniques
to calculate LOD scores at many selected positions in an interval between
markers and plotted versus map location. These techniques are reviewed in
Chapter 7, Subheadings 2.2. and 2.3. Although optimized for experimental
crosses and broadly used for most of the QTL mapping projects, applying these
programs requires statistical expertise.

For example, all phenotypes in the cross must be analysed for Normal
distribution and possible correlation prior to linkage analysis, because most of
the test statistics are either based on the Normal distribution or on distributions
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that are related to and can be derived from Normal. The property of the Normal
distribution is that 68% of all its observations fall within a range of ±1 standard
deviation from the mean, and a range of ±2 standard deviations includes 95%
of the values. Obviously, the shape of the sampling distribution becomes Normal
as the sample size increases and Normal distribution is usually obtained for
most BP phenotypes. Validation of Normality and evidence of correlation
between traits can be easily tested with standard statistical softwares, including,
for example, SPSS 9.0.

2.6.1. Preparation of JM files for MAPMAKER/QTL

The most popular and readily available programs for QTL analysis are Map
Manager QT for Macintosh computers and MAP-MAKER/QTL, JoinMap/
QTL, and MultiQTL for PC and other platforms. The majority of BP QTLs
in rats have been identified using the program MAP-MAKER/QTL. Mapping
files constructed with JoinMap can be entered in MAP-MAKER/QTL using
the module prepare chr.raw of MAPMAKER/EXP 3.0. MAPMAKER/EXP
requires the creation of two files. The first is a raw data file similar to the loc-
file of JoinMap and containing the phenotype data in addition to the genotypes.
The header of the raw data file (file.raw) should include information on the
cross used (F2 backcross or F2 intercross) and the total numbers of individuals,
markers, and phenotypes as follows:

Data type f2 backcross
403 149 17
*D1Wox1 b b a b a ...
*D1Wox2 b h a h a ...
*D1Wox3 b h b h b ...
*Phenx 456 557 675 890 555 ...

The second file that is required (file.prep) reports the correspondence between
marker order in the genetic map and in the raw data file (this order is actually
identical in the map [file.map] and in the final JoinMap loc-file [file.loc] when
loci are sorted by map position, as described earlier using jmdma). Distances
from the centromere in the JoinMap files must be converted in interval size
between adjacent markers:

print name on
make chromosome chr1
seq 1 2 3 4
anchor chr1
seq 1=3.5 2=3.6 3=5.7 4=2.1
framework chr1
save data
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Four files are generated by the module prepare chr.raw of MAPMAKER/EXP
3.0 (file.dat, file.maps. file.traits, file.xmaps) that can be subsequently processed
by MAPMAKER/QTL, as described in Chapter 7, Subheading 5.3.

Following initial linkage analysis, fine mapping is required in order to
confirm the existence of the QTLs, identify the peak of linkage, and define
the genetic size of the QTLs. The observation of several peaks within the same
QTL after linkage map saturation and complete genotyping of the progeny set
could indicate the existence of several independent QTLs. Some approaches
to fine mapping are discussed in Chapter 8.

3. Interpretation

3.1. Phenotypic Analysis

The accurate measurement of BP or related phenotypes (see above) is, of
course, crucial to the genetic analysis. However, even when BP measurement
procedures are standardized, alterations in experimental conditions, such as age
of hybrids and diet composition (including salt intake), may affect the detection
and significance of QTLs. Alterations may be subtle and even unrecognized
but can significantly affect results. With regard to phenotyping, the panel of
recombinant inbred strains (Chapter 8, Subheading 2.4.1.) derived by Pravenec
and colleagues (2), which is already genetically characterized, provides a power-
ful system to carry out comprehensive and serial screening of multiple pheno-
types and study their possible genetic control. Although phenotype analysis in
this panel would only reflect the expression of SHR alleles on a BN genetic
background (or vice versa), a similar thorough screening in a classical F2 or
backcross population would require a genomewide search for several series
of hybrids.

3.2. QTL Mapping

Our knowledge of BP QTLs in rats is based on data from approximately 25
different crosses that were able to identify more than 60 QTLs throughout the
rat genome. Results from genomewide searches in these crosses have recently
been reviewed (1,6). Although it is impossible to assess if an appropriate
significance criterion was applied in each of the studies, they provide a compre-
hensive overview of the complex genetic basis of BP regulation. As expected,
the allele of the hypertensive strain at the QTLs is usually associated with high
BP. However, at some QTLs, alleles that originate from the hypertensive strain
have an opposite effect and actually lower BP! The likely reason for this is
the random fixing of a “hypotensive” allele at the locus during the initial
selection of the hypertensive strain. This important observation serves to empha-
size the complex way in which a quantitative variable such as BP is actually
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determined in an individual. Once initial evidence of linkage have been detected,
additional markers can be chosen in public databases for subsequent fine map-
ping of the QTLs. The identification of the peak of linkage and the definition
of 1-LOD and 2-LOD confidence intervals are particularly important for the
subsequent derivation of congenic lines for the QTLs. Determinants of statistical
resolution of a QTL include the strength of its genetic effect, the number of
animals studied, and the number of markers analyzed, although, in most of the
studies, increasing marker density beyond a resolution of one marker every
5–10 cM does not significantly improve the QTL position. As a consequence,
BP QTLs based on classical F2 and backcross populations are localized in
fairly large chromosomal regions (>30 cM), which makes the isolation of the
underlying gene(s) impossible through classical positional cloning methodol-
ogies.

3.3. Significance of the QTLs

As a rough estimation, a LOD of 3 or higher is generally considered as
statistically significant. However, factors such as the size of the genome, the
assumed genetic model for the effect, and the experimental cross (backcross
or intercross) influence the LOD plot. Lander and Kruglyak (7) calculated
values for LOD scores under various conditions to determine threshold for
suggestive significance and significance in specific inheritance models and in
a given cross. Under various models of inheritance (additive, recessive, domi-
nant), suggestive linkage corresponds to a LOD score of 1.9–2.0 (p<3.4 × 10−3

and p<2.4 × 10−3) in a backcross and an intercross, respectively, whereas
significant linkage corresponds to a LOD score of 3.3–3.4 (p<1.0 × 10−4 and
p<7.2 × 10−5, respectively. Suggestive linkage is defined as “a statistical evidence
that would be expected to occur one time at random in a genome scan.”
Significant and highly significant linkages are supported by statistical evidence
expected to occur 0.05 and 0.001 times in a genome scan, respectively. However,
when subphenotypes are analyzed, it may be worth considering a QTL supported
by suggestive LODs when it colocalizes with a strongly significant QTL already
identified in the same cross for another phenotype. This somewhat reflects the
fourth class of linkage (“confirmed linkage”) proposed by Lander and Kruglyak.
Confirmed linkage applies to a significant QTL that is replicated in a further
study, for which a nominal p-value of 0.01 should be required. However,
as described later in this chapter, although BP QTLs identified in different
hypertensive rat strains tend to aggregate in the same chromosomal regions,
further analysis in congenic lines demonstrates that the genes involved are
likely to be strain-specific. The criterion of confirmed linkage should therefore
be applied to data from identical crosses, or at least from crosses derived from
the same hypertensive strain.
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3.4. QTL Replication and QTL Clustering

The genetic background of a normotensive strain appears to strongly influ-
ence the replication of QTLs in different crosses. The most comprehensive
analysis of BP QTLs that supports this observation has been performed by
Rapp who derived crosses from the same colony of hypertensive rats (S) bred
with five different normotensive strains (R, LEW, MNS, WKY, BN) (1). Results
from QTL analysis demonstrated that although some QTLs can be replicated
in different crosses, the majority of them are unique to a pair of strains (1).
Genetic studies performed in backcrosses F1 (S×R)×R and F1 (S×R)×S and
in the intercross F2(S×R) have demonstrated the importance of the genetic
background and allele dosage in the detection of linkage. In these crosses, the
higher the proportion of S alleles in the genetic background, the more significant
the linkage to BP (1).

Blood pressure QTLs in rat are spread along the genome, but evidence of
linkage with BP has been consistently found on rat chromosomes 1, 2, 10, and 13.
For example, evidence of linkage between BP and a region of rat chromosome 13
containing the Renin gene has been detected in five different crosses
(SHR×WKY, SHR×LEW, SHR×BB, S×R and LH×LN) and in the SHR×BN
recombinant inbred panel (6). In the first approximation, this clustering of
QTLs linked to the same trait in a similar region of the genome suggests that
hypertensive strains may share alleles, significantly influencing BP at the same
locus and possibly in the same gene. However, subsequent analysis of congenic
lines demonstrated that this QTL is likely to be either a composite locus
containing multiple alleles increasing or decreasing BP, with an overall net effect
significantly increasing BP in the hypertensive strain, or strongly influenced by
permissive alleles elsewhere in the genome (8). A similar clustering of QTLs
linked to BP and related phenotypes was identified in rat chromosome 1 in S,
SHRSP, and SHR strains (1). Subsequent analysis of congenic lines for these
loci ruled out the possibility of variants in a single gene affecting BP (9,10).

3.5. How Many BP QTLs in a BP QTL?

At the stage of QTL mapping in an experimental cross, the interpretation
of results from linkage analysis in terms of the number of loci detected in the
same chromosomal region is difficult and results can be misleading. A single
broad peak is generally observed spanning a large chromosomal interval. Refin-
ing a QTL map may lead to the identification of either “ghost” peaks or multiple
significant peaks (see Chapter 7, Subheading 2.3.). Although they may be the
result of the presence of several alleles on the same chromosome independently
affecting BP, they may also indicate genotyping errors and incomplete typing
of the progeny set. The existence of multiple linked QTLs can only be confirmed
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by dissecting the locus in a series of congenic lines that carry overlapping
regions of the QTL. For example, chromosome 1 harbors strongly significant
BP QTLs identified in the S, SHR, and SHRSP strains. Linkage analysis
initially identified several peaks in a S×LEW cross and the existence of several
independent BP QTLs was suggested (11). Recent results from the screening
of congenic lines independently derived from the S and SHR strains for this
region showed that the initial QTL defined in an experimental cross contains
at least three QTLs in the S rat and two in the SHR (9,10). Obviously, the
observation of several gene loci at the same QTL able to significantly increase
BP raises the possibility that two closely linked QTLs may also cancel each
other out and may remain undetected in a cross if the alleles at the two loci
have opposite effects on BP.

3.6. Gene–Gene and Gene–Environment Interactions

Additive effects are assumed as a first approximation for the statistical
analysis of QTLs. However, numerous examples of interactions between alleles
at QTLs (epistasis) have been reported. For example, evidence of a strong
interaction between BP QTLs on chromosomes 2 and 10 was observed in an
F2(S×MNS) population and was subsequently confirmed in congenic lines
carrying both QTLs introgressed into a S genetic background (12). Time-
dependent detection of linkage, which may be relevant for ecogenetic factors
and/or epistatic effects between QTLs, has been observed on chromosome 13
in a SHR×WKY cross (13). The identification of BP QTLs specifically in
hybrid populations treated with a high-salt diet may also indicate the influence
of ecogenetic factors. Results from QTL analysis in a classical F2 or backross
population can only suggest such effects and data from other experimental
systems are required to confirm the hypothesis.

3.7. Intermediate Phenotypes

Mapping QTLs for BP-related phenotypes such as cardiac hypertrophy,
stroke, or renal failure has led to the successful identification of susceptibility
loci for these traits that, however, do not cosegregate with BP in the cross.
These results raised the hypothesis that intermediate phenotypes have their
own genetic control independent of BP, although most of these regions were
previously characterized for BP QTLs in other crosses and/or hypertensive
strains. For example, stroke phenotypes in the SHRSP rat were investigated
in two intercrosses (SHRSP×SHR and SHRSP×WKY) and gave fundamentally
different results. In the SHRSP×SHR cross, stroke latency appears to be a
polygenic trait controlled by three chromosomal regions that are not linked to
BP in the cross but have been previously described for BP QTLs in other
hypertensive strains (14). Using a different phenotype based on brain infarct
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size following occlusion of the middle cerebral artery, which would reflect
stroke sensitivity, a single strongly significant QTL was identified (LOD=16.6)
on chromosome 5 and accounts for 67% of the total variance in the cross
(15). Thus, based on a different cross and different experimental conditions to
determine stroke phenotype, different QTL location and effects can be identified.
Although these phenotypes may underly different mechanisms, the analysis of
congenic lines derived for these loci represents the most efficient system to
confirm the existence of these QTLs and their BP-independent genetic control.

3.8. Beyond QTL Mapping

Quantitative trait loci mapping is only a preliminary stage in the genetic
analysis of BP control. Further investigations are required to prove the existence
of the QTLs and, most importantly, to test their relevance to human essential
hypertension. The construction of congenic strains where segments of chromo-
somes harboring a QTL are introgressed into a permissive background (usually
the reciprocal strain used in the intercross), by marker-selected breeding (“speed
congenics”), currently provides the most reliable way of progressing from
mapping of a QTL to identification of the susceptibility gene (16). With recent
improvements in the number of genetic markers available for the rat and the
construction of dense genetic maps, this strategy can be applied to rat congenic
lines (17). The strategy usually involves an initial transfer of a large chromo-
somal regional (at least the 2-LOD confidence interval) to ensure that the QTL
is “captured” in the congenic strain, and the subsequent development of congenic
substrains by further rounds of backcrossing to narrow the interval containing
the QTL. Often multiple substrains containing overlapping introgressed seg-
ments are developed and, by comparing the BP in each substrain with that of
the parental strain (which should be different if the QTL is still present in the
substrain), the smallest interval containing the QTL is defined. Although the
strategy is generally robust, difficulties of interpretation can arise if there are
multiple QTLs in the targeted chromosomal interval, some with opposing
effects harbored within the original segment (see above). However, the ultimate
expectation is that the interval can be narrowed to a segment of approx 1
cM. Although subcentimorgan narrowing can be attempted (depending on the
availability of polymorphic markers and an accurate genetic map), the process
becomes more cumbersome because of the need to type increasingly larger
numbers of animals to find suitable recombinants.

At this stage, identifying high-BP candidate genes located in QTLs refined
by congenic analyses can occur in various ways. Candidates can be identified
in rat gene maps constructed for the QTLs as well as in maps for the homologous
chromosomal intervals in the human and mouse genomes (18,19). An alternative
approach that is being increasingly utilized is to identify a likely tissue or organ
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(e.g., kidney) through which the QTL may manifest its effect and comparison
gene-expression profiles in such a tissue between the congenic and parental
strain. Any differentially expressed gene that also maps to the congenic interval
would be a strong candidate. An advantage of the approach is that other
differentially expressed genes, even if they do not map to the region, may play
important downstream roles and allow pathophysiologic pathways to be defined.
Finally, progress in sequencing of the rat genome may provide information on
other potential candidates. In addition, improved comparative genome analysis
between rat and human can be applied to the identification of short chromosomal
intervals that can be analyzed for evidence of linkage and association with
hypertension in appropriate family collections. Evidence of linkage between
hypertension and human chromosome 17, in a region showing synteny conserva-
tion with rat chromosome 10 BP QTLs, is a clear demonstration of the potential
application of rat BP QTL analysis to human essential hypertension (20).

3.9. Conclusions

The identification of BP QTLs in rat models is a tedious process involving
sound phenotypic analysis and valid statistical support for the analysis of
phenotypes and genotypes. At best, linkage analysis in a classical cross will
identify QTLs spanning 20 to 30 cM regions, even when supported by high
LOD-score values and dense maps. Data already obtained in congenic lines
generally confirm QTL mapping data, although, for reasons discussed here,
they do not prove that the phenotypic effect observed in congenic actually
accounts for the effect detected in the cross. The emergence of new resources
for genetic studies in the rat, including genomic libraries (21,22), gene maps
(18,19), radiation hybrid maps (18), EST sequences (23), and rat genomic
sequencing data, combined with modern high-throughput expression-profiling
technologies will assist disease gene isolation in hypertensive rat models.

Multiple analyses of BP QTLs in experimental rat crosses have demonstrated
the complexity of the genetic control of BP even in inbred models that are
expected to facilitate the identification of susceptibility genes for human-
complex disorders. Both resources for genomewide searches in rat crosses and
statistical programs applied to QTL mapping in experimental crosses have
progressed to increase the speed and efficiency of QTL detection and analysis.
Consequently, the limiting step in quantitative genetics in high-BP rat models
remains the extensive and accurate phenotype screening of large cohorts of
hybrids. It is anticipated that BP QTL maps, which seem already thoroughly
characterized in the rat, will progress in the future with the use of numerous
and precise BP subphenotypes and related phenotypes based on the application
of extensive physiological, biochemical, and histological analyses. Others pan-
els of hybrid animals, such as advanced intercross lines (AIL; Chapter 8,
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Subheading 2.4.3.) (24) and heterogeneous mouse stocks (Chapter 8, Subhead-
ing 2.4.4.) (25) may also provide additional information on BP QTL mapping
in the future. Overall, QTL mapping studies in the rat will contribute to improv-
ing our knowledge of BP homeostasis and should provide new insights in the
definition of novel disease pathways for drug development.

4. Software

4.1. SPSS

Many of the basic statistical analyses can be performed in standard statistical
software packages, such as SPSS. SPSS 9.0 is available from http://www.
spss.com/.

4.2. JoinMap 2.0

JoinMap version 2.0 was created in 1995 by Stam and Van Oijen (5). It
is a registered trademark software which can be obtained from Johan W. Van
Oijen (CPRO-DLO, P.O. Box 16, 6700 AA Wageningen, the Netherlands,
e-mail: mapping@CPRO.DLO.NL). It operates on almost all computer systems,
including PC/MSDOS, VAX/OpenVMS, Alpha/OpenVMS, SUN/SunOS, and
Apple Macintosh. The software package comes with a licence file (joinmap.lic)
that must not be altered, as the integrity of the file is verified by each JoinMap
module. Instructions for the installation of the software in each platform are
described in the tutorial. The analysis of data derived from other experimental
crosses than F2 cross and first backcross as well as genotype data from codomi-
nant markers are described in the tutorial.

4.3. MAPMAKER/QTL

See Chapter 7, Table 1, for information on this program.

5. Worked Example

5.1. Experimental Cross and Phenotypes

The example chosen to illustrate the various aspects of QTL analysis
described in this chapter is based on results from a SHR×WKY F2 cross that
was derived by Samani (13). A total of 233 male hybrids were generated
and indirect BP was measured in 12-, 16-, and 20-wk-old hybrids by tail
plethysmography. Direct BP was measured in a subset of 193 hybrids at 25
wks of age, and systolic BP, diastolic BP, and heart rate were determined. At
the end of the experiment, heart weight and ventricular mass were determined.
Prior to genetic analysis, phenotypes measured in the hybrids were checked
for Normal distribution using the SPSS software (Table 3). Phenotypes that
failed to pass the Normal distribution test (RV, SBP2M, DBP2M, and PPMAP)
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Table 3.
Physiological Variables Measured in the SHR×WKY Cross, Test of
Normality for the Phenotypes, and Analysis of Correlations Between
Phenotypes

Test of Normality
Significant(Kolmogorov–Smirnov)
correlations

Phenotypes Statistic df Significance (p<0.001)

BPS16 Indirect BP (16 wk-old) 0.054 84 0.200 BPS18, 20, DBP/SBP,

V, LV, MAP, PP

BPS18 Indirect BP (18 wk-old) 0.048 84 0.200 BPS16, 20, DBP/SBP,

V, LV, MAP

BPS20 Indirect BP (20 wk-old) 0.073 84 0.200 BPS16, 18, DBP/SBP,

V, LV, MAP

BW Body weight 0.065 84 0.200 V, LV, RV

V Total ventricular weight 0.055 84 0.200 BPS16, 18, BW, LV,

RV, HR

LV Left ventricular weight 0.045 84 0.200 BPS16, 18, 20, BW,

V, RV, HR

RV Right ventricular weight 0.154 84 0.000 BW, V, LV, HR

SBP Direct systolic BP 0.092 84 0.073 BPS16, 18, 20, DBP,

PP, MAP

DBP Direct diastolic BP 0.099 84 0.040 BPS16, 18, 20, SBP,

MAP, PPMAP

MAP Mean arterial BP 0.080 84 0.200 BPS16, 18, 20,

DBP/SBP, PP, PPMAP

HR Mean heart rate 0.064 84 0.200 BW, V, LV, RV

PP Pulse pressure 0.082 84 0.200 BPS16, SBP, MAP,

PPMAP

PPMAP Pulse pressure/mean 0.109 84 0.016 DBP, PP, MAP

blood pressure

were adjusted prior to linkage analysis. Correlation tests between phenotypes
were carried out using the SPSS software (Table 3).

5.2. Genetic Mapping

A collection of markers showing allele variations between the colonies of
SHR and WKY used to derive the intercross were selected for the genomewide
search. Based on microsatellite markers, the overall polymorphism rate between
these strains was 50%. Genotypes of the hybrids were determined for a total
of 195 markers evenly spaced in the 20 rat autosomes (average spacing 8 cM
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with no gap greater than 10 cM). Genetic maps were constructed using the
JoinMap software and unlikely double recombinants were verified.

5.3. QTL Analysis

Linkage analysis between genetic markers and phenotypes was carried out
with the MAPMAKER/QTL package. Among the BP QTLs identified in this
intercross, loci mapped to chromosomes 1 and 13 illustrate the careful analysis
that is required in interpreting results from genetic linkage analysis.

Chromosome 13 was the primary target of linkage analysis in the SHR×WKY
cross because conflicting results from linkage analysis between BP and a region
containing the Renin gene were obtained in various crosses (1,6,8). Surprisingly,
in the SHR×WKY cross, strong evidence of genetic linkage between BP and
a 50 cM region of rat chromosome 13 (maximum LOD score of 5.75) was
found to be maximal in 20-wk-old animals and disappeared in 25-wk-old
hybrids (Fig. 1). The existence of linkage with other loci in 12- to 25-wk-old
animals ruled out the possibility of a bias in phenotype measurements. These
observations emphasize the difficult interpretation of negative results (absence
of genetic linkage in a cross or absence of significant phenotypic effects in
congenics derived for a QTL), which may be the consequence of an age-
dependent expression of the phenotype, as well as other factors, including cross
or gender-specific effects. More sophisticated hypotheses involving epistatic
and ecogenetic factors may also explain these controversial results.

A major QTL spanning 40 cM of rat chromosome 1 strongly influences
blood pressure regulation in the SHR×WKY cross (maximum LOD>7 for
marker D1Mit2 and D1Wox19) (Fig. 2). In first approximation, the localization
of the QTL supports BP QTL mapping data obtained in other crosses and/or
strains (1,6). A series of reciprocal congenic lines (WKY alleles at the locus
introgressed onto a SHR genetic background and SHR alleles at the QTL onto
a WKY background) were subsequently derived. Results from BP analysis in
the congenics confirmed the existence of a gene or a group of linked genes
controlling BP regardless of major influences from resistant/susceptible alleles
in the genetic background. However, analysis of congenic sublines designed
to further dissect the QTL in a region containing the SA gene demonstrated
that the original QTL contains at least two genes independently regulating BP
(10) (Fig. 2). This complex situation is consistent with results obtained by
Rapp in congenic derived from the S rat, in which the original QTL mapped
to chromosome 1 in an intercross can be dissected in at least three regions
independently controlling BP (S1a, S1b, and S2) (9) (Fig. 2). By comparing
the localization of the QTLs in the different series of congenics, it appears that
intervals S2 and SHR1 and SHR2 contain hypertensive alleles are specific to
the S and SHR strains, respectively. On the other hand, intervals S1a and S1b
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Fig. 1. BP QTL maps of rat chromosome 13 in the SHR×WKY intercross. Linkage
analysis was performed using BP phenotypes measured in 12- (bp12), 16- (bp16), 20-
(bp20), and 25 (sbp25 and dbp25)-wk-old hybrids. The horizontal dotted line indicates
the threshold of significant linkage as calculated by Lander and Kruglyak (7) for an
F2 cross.
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Fig. 2. BP QTL map of rat chromosome 1 in the SHR×WKY intercross and subse-
quent refinement of the QTL maps in reciprocal congenic lines derived from the SHR
and WKY rats (congenic intervals SHR1 and SHR2). The horizontal dotted line indicates
the threshold of significant linkage as calculated by Lander and Kruglyak (7) for an
F2 cross. Intervals S1a, S1b and S2 refer to the approximate position of the chromosome
1 BP QTLs determined in congenic lines of the S rat (9).

correspond to regions of significant linkage in the SHR×WKY cross and the
effect of a common gene on BP in the two strains cannot be excluded. A cluster
of QTLs for BP-related phenotypes, including mean arterial pressure, ventricular
mass, stroke, and renal failure have been localized in rat chromosome 1 within
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the region of significant linkage, with BP identified in the SHR and S rats.
The genetic dissection of these QTLs and the extensive characterization of BP
variables controlled by genes at these loci should provide important insights
in the mechanisms involved in the development of hypertension and associated
complications. Results from chromosome 1 BP QTL maps demonstrate that,
even when a QTL is accurately mapped in a classical cross and supported by
highly significant LOD scores, the susceptibility locus in unlikely to uncover
the effect of a single gene in congenic lines. They also demonstrate that, in
addition to possible influences of resistant and/or susceptible alleles throughout
the genome on the detection of the original QTL, strains derived from different
outbred stocks (e.g., SHR and S) are likely to carry different combinations of
susceptibility alleles in similar chromosomal regions.

6. Note

1. Data repositories for rat genetic/genomic resources
a. http://www.well.ox.ac.uk/rat mapping resources/. The Wellcome Trust Centre

for Human Genetics, Oxford, UK. Microsatellite markers; linkage maps; radiation
hybrid maps; physical mapping data; polymorphism information between strains;
gene maps and comparative genome analysis based on linkage and/or radiation
hybrid maps.

b. http://ratmap.gen.gu.se/. Göteborg University, Sweden. Repository of gene, locus,
and QTL maps. Comparative genome analysis.

c. http://rgd.mcw.edu/. Medical College of Wisconsin, Madison, WI. Microsatellite
markers; linkage maps; radiation hybrid maps; physical mapping data; polymor-
phism information between strains; EST mapping data.

d. http://ratest.uiowa.edu/. University of Iowa, Ames, IA. EST sequencing and
mapping.

e. http://ratmap.ims.u-tokyo.ac.jp/. The Otsuka GEN Research Institute, Tokushima,
Japan. Microsatellite markers; radiation hybrid maps.
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A Case Study of QTL Analysis in a Mouse Model
of Asthma

Youming Zhang and William Cookson

1. Introduction

1.1. Background

Asthma is the most common childhood disease (1). It is characterized by
inflammation of the small airways of the lung that produces intermittent narrow-
ing of the respiratory bronchioles, airflow limitation, and the symptoms of
wheezing, chest tightness, and breathlessness. The most common form is allergic
asthma, also known as atopic asthma. The atopic state is distinguished by the
strength of the immunoglobulin E (IgE) response to commonly inhaled proteins,
known as allergens.

Asthma is a complex genetic disorder with a high population prevalence
compared with other, Mendelian, pulmonary disorders such as cystic fibrosis.
The complex inheritance of asthma suggests oligogenic inheritance and genetic
heterogeneity (2). Asthma is also described as “multifactorial” because it is
determined by the interaction between major and minor genes and involves
important nongenetic factors such as the environment. Genes that influence
atopy and asthma can be detected most simply by testing for associations
with particular polymorphisms of candidate genes in samples of affected and
unaffected individuals. The candidate approach is limited by the number of
known genes with roles in the pathophysiology of atopy and asthma. A second
approach to gene identification, known as “positional cloning,” relies on the
localization of disease genes to a particular chromosomal segment by genetic
linkage. Genome-wide screens using linkage analysis in humans have identified
several loci with potential linkage to asthma or asthma-associated traits, such
as the total serum IgE concentration, allergen skin test responses, eosinophil
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count in blood, and bronchial hyperresponsiveness (BHR) (3–6). The direct
candidate approach and genome screens have revealed potential roles for various
genes (for both asthma and atopy) in a number of regions; most notably in the
11q13, 5q31–33, 6p31–33, 12q14.3–q24.1, 13q14, and 14q11.2–13 regions in
humans (7). Bronchial hyperresponsiveness of the airways to a wide range of
different stimuli is an important feature of asthma. These stimuli include aller-
gens, smoking, air pollution, and infections. The degree of sensitivity of the
airway to various stimuli can be quantified by measuring the concentration of
a nonspecific bronchoconstrictor, usually histamine or methacoline, necessary
to cause a 20% fall in the FEV1 (forced expiratory volume in 1 s). This is
termed the provocative concentration that causes a 20% fall (Pc20). BHR may
also be represented as the provocative dose of spasmogen that produces a 20%
fall in FEV1 (PD20) or as the slope between the initial FEV1 and the FEV1
following the last dose of spasmogen.

Bronchial hyperresponsiveness is clearly associated with airway inflamma-
tion and there is increasing evidence that in asthma, BHR may be the result
of thickening of the bronchial wall. The presence of BHR is suggestive of
ongoing airway inflammation and may be an independent predictor of the
development of overt clinical asthma (8). In the general population, there is a
normal distribution in the dose-response slope to bronchoconstrictors. This is
generally regarded as suggestive of a polygenic pattern of inheritance, although
a single gene with variable penetrance could also be consistent with a normally
distributed phenotype.

1.2. The Use of Animal Models

The use of animal models of disease has proved useful in the study of the
biochemistry, physiology, and pharmacology of asthma. A large degree of
syntenic homology exists between mouse and human chromosomes (9). Mice
can reproduce the features of human diseases spontaneously and large numbers
of offspring can be used for genetic studies. Inbred strains provide a homogenous
genetic background in which to study disease phenotypes. Environmental effects
can be controlled or reduced by maintaining all experimental mice in the same
living conditions.

Bronchial hyperresponsiveness is one of the most studied quantitative traits
underlying asthma. Continuous variation in the expression of the trait can be
the result of both genetic and nongenetic factors. Nongenetic factors can be
either environmental or random variation. In mice, it is relatively straightforward
to separate genetic from nongenetic contributions through the analysis and
comparison of animals within and between inbred strains. If individual members
of an inbred strain are maintained under identical environmental conditions,
then the existing variation is likely to be the result of chance alone.
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A major advance in the genetics of complex traits was the development of
statistical methods that take account of the fact that multiple genes make
different quantitative contributions to the phenotype. Quantitative trait locus
(QTL) mapping has now become commonplace and has accelerated the analysis
of polygenic susceptibility to various diseases (10). The development of compre-
hensive chromosomal maps of microsatellites and SNPs has made it possible
to carry out mapping studies for quantitative traits such as BHR.

Bronchial hyperresponsiveness is the most often studied phenotype in mouse
models of asthma. A/J mice are consistently hyperresponsive to cholinergic
challenge and have been extensively studied. One segregation and linkage
analysis indicated that a major locus on chromosome 6 acting additively with
a polygenic effect segregates with airway press–time index (APTI) (the measure
of BHR used in this study) in the progeny of hyperresponsive A/J and hypo-
responsive C3H/HeJ mice (11). The chromosome region contains the candidate
gene interleukin-5 (IL-5) receptor. A genome screen of the progeny of a cross
between the A/J strain and C57BL/6J mice found that BHR failed to segregate
as a Mendelian trait (12). However, the results showed significant linkage at
two loci, Bhr1 (log odds [LOD] = 3.0) and Bhr2 (LOD = 3.7) on chromosomes
2 and 15, respectively. A third locus, Bhr3 (LOD = 2.83), mapped to chromo-
some 17. In a BN × LEW rat cross, a region on rat chromosome 10 containing
the candidate genes IL-4 and IL-13 has been found to show linkage with serum
IgE levels (13). The results of these studies are summarized in Table 1.

1.3. Strategy Used for This Study

BP2 mice, “Bon Producteurs 2,” are derived from Biozzi mice. Biozzi mice
have been produced by repeated assortative mating from a population of outbred
albino mice. Biozzi mice have two extreme phenotypes: one is a high-antibody
production line and the other is a low-antibody production line (14,15). Several
quantitative trait loci contributing to extreme phenotypes of the selected high
(H) and low (L) antibody-responder lines of mice have been mapped to mouse
chromosomes 6, 8, 12, and 17 (16,17).

BP2 higher-responder mice were bred by bidirectional selection for antibody
responsiveness (agglutinin titres) to sheep erythrocytes. They have been shown
to be homozygous for that character in F14–F17 generations (18,19). BP2 mice
have subsequently been shown to provide a good model of human asthma,
following presensitization and inhalation of ovalbumin (OA) (20).

In our studies, we have crossed BP2 mice with BALB/c mice. The BP2
strain differs from BALB/c in at least four ways: (1) The first and essential
difference is that BP2 mice display BHR following antigenic challenges; (2)
BP2 mice show very high levels of serum IgE, which doubles after immuniza-
tion, whereas the BALB/c mice have a considerably lower amount, which, as



Table 1
Linkage Results for Asthma-Associated Quantitative Traits in Rodent Genome Screens

No. of No. of Quantitative
Animal Breeding animals markers traits Results Ref.

Mouse (C3H/HeJ × A/J)F1 × A/J 196 94 APTI (BHR) Chromosome 6 (LOD = 3.1) 11
Mouse (C57BL/6J × A/J)F1 321 157 ED200 (RL) (BHR) Chromosome 2 (LOD = 3.0) 12

× C57BL/6J Chromosome 15 (LOD = 3.7)
Chromosome 17 (LOD = 2.83)

Rat (LEW × BN)F1 × F1 186 8 (chromosome 10) IgE Chromosome 10 (p = 0.0002) 13

256
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expected, also augments upon immunization; (3) BP2 mice undergo an intense
anaphylactic bronchoconstriction when challenged with iv OA, whereas the
BALB/c mice are unresponsive; (4) eosinophils may be identified in the bronchi-
olar epithelium of BP2 mice after challenge, but are absent in BALB/c mice
(21). Our mapping strategy was based on an intercross between BP2 and BALB/
c. The use of intercross breeding need not assume any genetic model of BHR
and, thus, an intercross has two main advantages over a backcross. First, it can
be used to map loci defined by recessive deleterious mutations, which cannot
be detected in a backcross. The second advantage is a consequence of the
occurrence of informative meiotic events in both parents. This will lead to
twice as much recombination information per animal compared to the backcross.
However, the data obtained from intercross breeding are more complex and
more difficult to analyze because of the impossibility of determining which
allele at each heterozygous F2 locus came from which parent (22).

2. Methods

2.1. Mouse Breeding and Crossing Strategies

Bronchial responsiveness (BHR: expressed as ∆Penh, defined in Subheading
2.2) was measured in 18 BP2 mice, 18 BALB/c mice, 27 F1s (generated by
BALB/c × BP2), and 10 F1s (generated by BP2 × BALB/c). Female BP2 and
male BP2 had no significant difference in the trait ∆Penh (data not shown). Two
hundred nineteen F2 animals were used in the genome screen and were generated
from a BALB/c (M) × BP2 (F) intercross. All of the mice were provided by the
Centre d’Elevage R. Janvier (Le Genest Saint-Isle, France). The F2 generation
contained 110 males and 109 females. Two male mice died during the allergen
challenge and were excluded from the study. The mice were 6 wk old at the
beginning of experiment.

2.2. Mouse Immunization and Provocation Procedure

The mice were immunized subscutaneously with 0.4 mL immunization solu-
tion (containing 100 µg OA) when they were 6 wk old (day 1). On day 8, the
mice were immunized again with 0.4 mL immunization solution. On d 15 and
16, the mice were twice challenged intranasally under light ether anesthesia
with 50 µL provocation solution (containing 10µg OA). On d 17, mouse
bronchial responsiveness to methacholine was evaluated in a plethysmographic
chamber to analyze their respiratory waveforms. After a few minutes for stabili-
zation (during which at least five values had been obtained), an aerosol of
methacholine was delivered for 20 s. The airway resistance was expressed as
Penh (enhanced pause) calculated as follows:

Penh = 0.67[(0.4Tr /Te) − 1] (Pef /Pif) (1)
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Table 2
Statistics for √�Penh (Square Root Transformed) in Nonsegregating and
Segregating Generation

BALB/c BP2 BALB/c × BP2 BP2 × BALB/c F2√∆Penh

Mean 0.941 1.783 1.186 1.134 1.372
Variance 0.046 0.173 0.074 0.073 0.159
SE 0.051 0.098 0.052 0.085 0.027
N 18 18 27 10 217

where Te is the expiratory time, Tr is the relaxation time, Pef is the peak expiratory
flow, and Pif is the peak inspiratory flow.

To calculate the ∆Penh (difference between the basal and maximal value; the
basal value was measured in the stabilization period and the maximum value
was measured after methacholine administration), an average of five maximal
values was used. A higher ∆Penh means that the airway resistance is higher and
so the mouse has a higher airway reactivity. A square root transformation was
applied to the ∆Penh to normalize the data. The results of ∆Penh measurements
in nonsegregating and segregating generations are listed in Table 2.

2.3. Mouse DNA Extraction and Genotype Generation

Mouse DNA was extracted from tails using a salting-out method (23). For-
ward primers for most polymerase chain reactions (PCRs) were labeled with
either 6-FAM, HEX, or TAMRA fluorescent dyes (Oswel DNA, Edinburgh;
Pekin-Elmer, UK). The PCR of mouse microsatellite loci was performed in
25-mL reactions containing (1) 50 ng genomic DNA, (2) 67 mM Tris-HCl,
pH 8.8, 16.6 mM (NH4)SO2, 0.1% Tween-20 (Bioline, UK), (3) 0.2 mM each
of dATP, dTTP, dCTP, and dGTP, (4) 62.5 ng of each primer used, and (5)
0.3 U of BIOTAQ polymerase (Bioline, UK) overlaid with 50 µL mineral oil.
Reactions were performed in Hybaid Omnigene thermocyclers by use of 32
successive cycles, each cycle consisting of (1) 60 s at 94°C, followed by (2)
60 s at 45–60°C, and then (3) 30 s at 72°C. TaqGold can be used instead of
BIOTAQ, in which case PCR was begun at 94°C for 8 min (hot start).

In order to reduce the cost of experiments we used [F]dNTP instead of
fluorescent primers to differentiate between BALB/c and BP2 alleles. Like
other nucleotides, [F]dNTPs can be incorporated into both strands of a PCR
amplification at random dC and dT sites and extended by DNA polymerase.
The [F]dNTPs consist of either a 2′-deoxyuridine 5′-triphosphate (dUTP) or
a 2′-deoxycytidine 5′-triphosphate (dCTP) coupled to one of the following
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rhodamine dyes: [R110], [R6G], and [TAMRA]. [F]dNTPs PCR was only
used to test marker polymorphism between BLAB/c and BP2. Markers were
organized into different sets according to the sizes of the products of the
PCR and labeled primers. PCR products from the sets were pooled before
electrophoresis and analyzed on an ABI 373 automated sequencer. An internal
lane size standard was used in each run for calculation of the size of allele
peaks using Genescan software and calling of alleles using Genotyper.

The whole mouse genome is estimated to be 1360.9 cM in length. The rate
of polymorphism in microsatellites between two lab strains usually approxi-
mates 50% (24). We tested 507 microsatellites covering the entire mouse
genome in order to find markers that were polymorphic between BALB/c and
BP2 strains. A total of 245 markers (48%) showed a difference of allelic sizes
between two strains (Table 3). These markers covered 1260.3 cM of the mouse
genome (calculated from our F2 data).

2.4. First Stage of Genome Screen
2.4.1. Genotype Checking and Generation of the Marker Map Using

JoinMap

A total of 122 polymorphic markers were used for the first stage of the whole-
genome screen. These markers covered the whole genome at approximately 10
to 15 cM intervals. After the generation of the phenotype and genotype data,
the genotype data were checked and the marker map generated using the program
JoinMap. This process is illustrated in the worked example (Subheading 5.1.)
and also discussed in Chapter 9, Subheading 2.5.

2.4.2. QTL Mapping Using MAPMAKER/QTL

MAPMAKER/QTL was used to test for additive and dominance effects for
each marker; this is also illustrated in the worked example (Subheading 5.2)
and this software is discussed in relation to other available softwares in Chapter
7. The positive linkage results are listed in Table 4 (p values less than 0.05
and their likelihood ratio statistics (LRSs) and corresponding LOD scores
are shown).

2.5. Saturation Mapping

Several potential loci that influenced the asthma-associated quantitative traits
were located from the first stage of the genome screen. High-resolution mapping
to narrow down the map interval was then carried out by selecting and typing
additional microsatellite markers across 20 cM of the regions of interest. A
total of 58 new polymorphic markers were used in saturation mapping around
loci, showing linkages to ∆Penh on chromosome 9, 10, 11, and 17. After all
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Table 3
Marker Polymorphism Rates Between BALB/c and BP2 Strains

Markers Polymorphic Markers used in Length
Chromosome tested markers Percentage genome screen (cM)

1 40 22 55 17 92.3
2 35 18 51 13 105.2
3 26 9 35 7 58.6
4 16 13 81 7 71
5 17 9 53 7 77.3
6 11 9 82 6 72.7
7 20 12 60 6 63.5
8 27 13 48 9 64
9 50 18 36 13 67.7

10 49 20 41 13 62.1
11 51 28 55 24 74.4
12 14 8 57 6 55.6
13 18 8 44 5 53.8
14 23 8 35 5 37.7
15 11 6 55 5 53.9
16 17 7 41 5 53.3
17 44 20 45 17 51.3
18 11 7 64 6 55.3
19 13 5 38 5 52.1
x 14 5 36 4 38.5

Total 507 245 48 180 1260.3

genotypes were obtained, the data were analyzed for linkage. The positive
linkage results to BHR from the genome screen, and the human chromosomal
regions of syntenic homology are shown in Table 5.

2.5.1. Permutation Tests Using Map Manager QT

The permutation test is a method of establishing the significance of the LRSs
generated by the interval mapping procedures. The permutation test was needed
to provide genome-wide thresholds for suggestive, significant, and highly sig-
nificant evidence for linkage in this study. The trait values are randomly per-
muted among the progeny, destroying any relationship between the trait values
and the genotypes of the marker loci. The regression models are fitted for the
permuted data and the LRS is recorded. This procedure is repeated hundreds
or thousands of times, giving a distribution of statistical values that we would
be expected if no QTL was linked to any of the marker loci. The critical values
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Table 4
Results of the First Stage of Genome Screening of Quantitative Trait
√�Penh

Loci Position (cM) p Value LRSs LOD

D3Mit82 48.6 0.02 7.4 1.60
D4Mit59 71 0.03 6.9 1.50
D7Mit14 63.5 0.03 6.5 1.41
D9Nds6 14.7 0.04 6.1 1.32
D9Mit48 22.9 0.002 11.8 2.56
D10Nds1 0 0.004 11.4 2.47
D10Mit2 5.4 0.04 6.1 1.32
D10Mit91 36.2 0.01 8.8 1.91
D10Mit70 48.5 0.0006 14.8 3.21
D10Mit14 57.3 0.0003 16.2 3.51
D11Mit131 27.7 0.03 6.6 1.43
D11Nds1 39.9 0.0001 16.8 3.65
D11Nds5 57.6 0.0003 15.8 3.42
D17Mit60 5.3 0.031 6.9 1.50
D17Mit34 9.7 0.007 9.7 2.10

were calculated by this test using whole genome markers sets. One thousand
permutations were calculated by the Map Manager QTb21 program. The results
of the permutation tests are listed in Table 6. The threshold values of the
permutation test, which was labeled suggestive, significant, and highly signifi-
cant, correspond to the genomewide probabilities proposed by Lander and
Kruglyak (27).

3. Interpretation

3.1. Phenotype Data from the Cross

The BP2 and BALB/c strains had overlapping but significantly different
distributions of ∆Penh (Table 2). The mean ∆Penh in the F1 mice was significantly
lower than the average of that of the two parents, indicating overall partial
dominance for low ∆Penh. The F2 mean was not significantly different from
the average of the two parents.

3.2. Potential QTL

Potential QTL effects that controlled ∆Penh were found on chromosomes 9
(LOD score 2.5), 10 (LOD score 3.8), 11 (LOD score 3.65), and 17 (LOD
score 2.1); see Table 5. According to published criteria for interpreting the



Table 5
QTL Mapping Results of √�Penh and the Human Chromosome Syntenic Homology

QTL Regions of human syntenic
Chromosome position ± m a d d/a LOD LRS %varexp homology/candidate genes

9 18 10 1.300 −0.105 0.022 −0.210 2.5 11.5 5.2 Chromosome 11q23: IL10R
10 44 7 1.380 −0.220 0.116 −0.530 3.8 17.5 8.3 Chromosome 12q22–q24
11 52 7 1.372 0.146 0.097 0.664 3.65 16.8 7.5 Chromosome 17: inos, eotaxin
17 10 4 1.370 0 −0.155 11.9 2.1 9.7 4.4 Chromosome 6: MHC, TNF

Note: m, mean; a, additive effect; d, dominance ratio; LOD, LOD score; LRS, likelihood ratio statistics; %varexp. percentage explained. The
trait was square root transformed before analysis. The QTL positions, m, a, d, and d/a were given by the Marker Regression Program (25,26).
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Table 6
Results of the Permutation Test

Suggestive LRS Significant LRS Highly significant
Trait (LOD) (LOD) LRS (LOD)

10.3 (2.23) 16.5 (3.58) 22.8 (4.95)√∆Perh

Note: Suggestive LRS corresponded to the 37th percentiles of genomewide probabilities.
Significant LRS corresponded to the 95th percentiles of genome-wide probabilities. Highly
significant corresponded to the 99.9th percentiles of genomewide probabilities (37).

significance of linkages in genomewide searches (27) and our permutation test
results (Table 6), the chromosome 9 and 17 signals would be classified as
“suggestive” and linkages to chromosome 10 and chromosome 11 as “signifi-
cant.” Together, the loci explained 25.4% of the phenotypic variance of ∆Penh

in the F2 mice (Table 5).
∆Penh was decreased by the BP2 allele on chromosomes 9 and 10, and

increased by that allele on chromosome 11. Interpretation of the QTL effect
on chromosome 17 was not straightforward, although the LOD score for this
QTL was only 2.1. The additive effect (a) of the QTL on chromosome 17 was
close to zero, and the dominance effect (d) was relatively large, leading to a
dominance ratio (d/a) more than 10 (see Table 5). Such a situation may
arise from two closely linked QTLs, with similar additive effects in opposite
directions, but each showing dominance in the same direction. In other words,
if a1 and a2 are the additive effects of loci 1 and 2 and d1 and d2 are the
dominance effects, a1 + a2 is small (since a1 and a2 are similar in magnitude
but opposite in sign), but d1 + d2 is large (because both are positive). Therefore,
the results suggested that the QTL effect on chromosome 17 comprised more
than one QTL. The region contains the major histocompatibility complex
(MHC), which holds many genes that may influence immunologically medi-
ated traits.

3.3. Relevance to Studies of Human Disease

Several of the potential linkages may be relevant to human loci linked
to asthma-associated traits. The chromosome 10 ∆Penh QTL shows syntenic
homology with human chromosome 12q21.1–12q24.22. This region has pre-
viously been shown to be linked to human asthma-associated traits in several
studies (28,29). It contains the important candidate gene interferon-γ. The
chromosome 11 ∆Penh QTL shows syntenic homology to human chromosome
17, which has been implicated in previous human linkage studies of asthma



264 Zhang and Cookson

(5). The region contains a cluster of chemokine genes that are involved in
many inflammatory pathways. One of these, eotaxin, is a chemokine that acts
as a potent inducer of eosinophil migration (30). The region also contains the
important candidate inducible nitric oxide synthase (iNOS). The suggestive
linkage of ∆Penh to mouse chromosome 17 supports the previous study of De
Sanctis et al. (12), who showed the region to be linked to spontaneous bronchial
responsiveness in an AJ × C57/B6 cross. This region contains the MHC and
tumor necrosis factor (TNF) genes, which may have diverse effects on antigen
recognition and the promotion of airway inflammation. The MHC and TNF
genes have also been implicated in gold salt-induced IgE nephropathy in a BN
× LEW rat cross (13). In humans, class II human leukocyte antigen (HLA)
genes are known to restrict the ability to react to particular allergens (31,32),
and polymorphisms within TNF genes have been associated with asthma inde-
pendently of class II effects (33). The suggestion that two or more loci are
acting within this QTL in our murine model is, therefore, consistent with the
observations in humans.

Although the BP2 mouse does show many features that typify human asthma,
the induction of florid changes by intraperitoneal injection and inhalation of
OA does not match the events that produce human disease. It should not be
assumed, therefore, that either the pathophysiological or genetic mechanisms
producing changes in airway histology or responsiveness are the same in mice
and human. Nevertheless, the presence of loci that are potentially shared between
our murine model and human families segregating asthma suggests that underly-
ing genetic factors may also be shared to some extent. The sharing of loci
between different mouse models of BHR may also aid in the dissection of the
complex genetics underlying asthma.

4. Software

4.1. JoinMap

The JoinMap program is a software package program for linkage analysis
and genetic mapping that was written by Piet Stam and Johan W. van Ooijien.
The program can be run on UNIX-based workstations or VAX under the VMS
operating system. They can be contacted either by e-mail (mapping@
CPRO.DLO.NL), fax (+313 174 16513), or mail: (CPRO-DLO, POBox 16,
6700 AA Wageningen, the Netherlands).

4.2. MAPMAKER/QTL

MAPMAKER/QTL is a pedigree-based program written by Dr. Eric Lander
and his colleagues for constructing linkage maps from raw genotyping and
phenotyping data recovered from large numbers of loci. The program uses a
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highly efficient algorithm for “likelihood of linkage” computations. It can be
run on UNIX-based workstations or VAX minicomputers running under the
VMS operating system. The program and a manual are available from the
author for licensing to academic researchers. MAPMAKER/QTL can be used
of the analysis of quantitative traits. For further information, contact Dr. Eric
Lander, Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142,
USA. The website is http://www-genome.wi.mit.edu/genome software/
genome software index.html.

4.3. Map Manager QT

The Map Manager QT program was written by Dr. Kenneth F. Manly and
is made available without charge from the author. Dr. Manley can be contacted
at his E-mail address (Kmanly@mchio.med.buffalo.edu) or at Roswell Park
Cancer Institute, Buffalo, New York 14263, USA.

5. Worked Example

5.1. Generation of the Marker Map Using JoinMap

The JoinMap program (34) was used to check the genotypes and generate
the linkage map. This process is outlined in more detail in Chapter 9, Subheading
2.5. The relevant files for the example described in this chapter, using the data
from chromosome 10, are shown here.

5.1.1. Phenotypic Data Preparation

All values of the trait ∆Penh are listed in Table 7. Missing values are indicated
by a “−”.

5.1.2. Preparation of loc.file

When the genotype data of the 219 F2 mice were generated by the Genotyper
program (see Subheading 2.3), homozygosity for the BP2 allele was defined
as “a,” homozygosity for the BALB/c allele as “b,” and heterozygosity for the
BP2 allele and BALB/c allele as “h.”

Unread genotypes were recorded as “−.” The genotype data of the first four
markers of chromosome 10 are listed in the correct format in Table 8,
“chr10.loc.” See Chapter 9, subheadings 2.5.1.–2.5.3. for how to generate this
chromosome-specific file.loc file from other data formats. The order of markers
used was according to published results (24).

5.1.3. Estimating Recombination and Constructing a Linkage Map
Using JMREC and JMMAP

This is one of the core tasks in which the JoinMap program is used. The
JoinMap recombination estimation module (JMREC) calculates estimates of
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Table 7
The Phenotype √�Penh Data of 219 F2 Mice

Penh
3.752 2.908 1.258 2.986 1.246 3.268 1.854 2.244 — 1.794
5.826 1.730 1.770 2.172 1.566 3.884 2.272 2.096 4.864 3.804
2.936 2.596 3.684 1.056 2.056 1.050 1.504 1.814 1.632 1.188
2.686 3.850 0.180 4.022 1.470 1.548 2.064 3.230 1.976 3.059
1.148 3.020 6.326 1.268 3.028 3.698 3.844 2.016 0.874 2.224
1.616 0.416 3.746 1.644 7.256 0.896 1.402 2.582 1.568 2.676
2.490 2.460 1.302 3.442 1.384 1.152 1.848 1.644 0.706 2.240
0.966 1.250 0.702 0.524 1.918 3.984 2.266 1.296 1.042 1.792
1.612 1.154 1.410 1.958 4.994 4.484 3.330 1.220 2.670 —
0.968 2.620 1.938 0.740 0.816 0.174 2.644 3.490 0.422 7.268
1.650 1.420 2.858 1.394 0.890 1.596 2.020 2.024 2.252 1.452
3.192 3.620 2.104 3.740 1.388 1.560 1.678 2.586 0.392 1.268
2.434 1.082 2.020 0.822 1.926 3.886 4.146 1.182 3.183 0.636
2.456 0.920 1.156 1.980 1.594 1.524 1.139 0.946 0.936 1.462
2.202 1.904 0.542 1.444 1.78 1.314 0.998 1.154 1.476 1.396
2.396 1.616 1.078 1.090 1.596 0.222 1.832 0.498 0.692 3.854
2.816 2.900 1.884 1.968 2.730 1.098 2.084 1.546 0.150 1.032
2.326 2.030 0.790 2.254 1.65 1.196 2.418 1.340 1.652 3.328
1.774 0.906 3.962 1.272 1.928 0.824 2.744 2.664 2.052 3.998
1.350 0.408 1.602 2.350 1.63 1.616 1.705 1.182 3.270 2.386
1.514 1.266 2.318 4.090 2.382 2.326 2.144 1.960 1.794 1.980
0.540 0.766 1.638 2.952 1.602 0.328 2.520 2.278 3.296

recombination frequency from the raw data in a locus genotype file (e.g.,
chr10.loc; Table 8). The parameters used by JMREC are listed in Table 9.
The output of JMREC is a simple list of pairwise recombination estimates,
together with their marker–marker LOD scores: a so-called pairwise data file
(pwd-file). The JoinMap map construction module (JMMAP) produces a linkage
map from the pwd-file. Part of the pwd-file is shown in Table 10.

5.1.4. Checking the Genotypes in the Raw Data

The JoinMap genotype checking module (JMCHK) provides the opportunity
to verify, after a map is calculated, whether the population contains very
improbable genotypes such as those originating from double recombinations.
It calculates for all loci and for all individuals the probability of obtaining
the present genotype, conditional on each genotype at the two flanking loci
and on their recombination frequency. It takes the chr10.loc file as input,
and outputs a chr10.chk file (shown in Table 11). We considered problematic
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Table 8
Loc.file of Genotypes of Mouse Markers on Chromosome 10

Chr10.loc

name = chromosome 10

popt = F2

nloc = 13

nind = 219

d10nds1

aahha hahhh hhhha hhhba hhhha hhhhb ahbhh haahh ahaba bhahb

hbhba hhhba abbab bbhhh bhhba bahb- bahba haaha hhhba abhbb

hhbhb babha ahaba hhaba hhahh hbbah ahhah hbbhb hhah- hbbab

bahbh bahhb aaahb bahhh aabhb hhhba hbahh ahhbh bbahh ha-h-

abbah hbhbh b-hhh bhbh

d10mit2

aahha hahhh hbhha hhhba hhhha hhhhb abbhh hhhhh ababa bhhhb

hhhbh hhhba abhab bbhhh bhhba baabh ba-bh haaha hhhba abhbb

hhbhb babba ababa hhaba hhahh hbbhh hhbah hbbhb hhaha hbbah

bahbh bahhb ahahb hahhh ahbhb bhhba abaah ahhbh bbahh haahh

abbah hbhbh baahh bhhh

d10mit36

hahhh babhh hbahh hhhbh hhhha hhhhb hbhhh hbhhh abhbh hhhhb

ahhbh hhhba abhhb bbhhb bhhbh bhabh ha-bh hahhh bhhba abahb

h-bhh habbh hhaba bhbbh hhahb hbbhh hhhah bbhhh hhaha hhhah

bahbh hhaab ahahb habhh hbhhh bbhba ahaah ahbbb bbaah hhaah

abhhh hbbbh baahh bahh

d10mit113

hhaah babab hbahh hhhhh hhhha hhhah hbhhh abhab abbbh hhhhb

ahhhh hhahh abhhb bbhab bhhbh bhabh haabh hahhh bbhba abahb

hhhhh habbh hhaba hhbhh hhahb hbahh hhhah bbahh hhaha hhhah

bahba hhaab ahahb habhb hbhaa hbbba ahhhh abhhb bhaah hhaab

abhhh hbbbh bhahh babh

Note: a: homozygotes of BP2 allele; h = heterozygotes; b: homozygotes of BALB/c allele.

genotypes to be those having a threshold of greater than 3 for the test statistic
log10(1/p). Problematic genotypes can be checked in original genotype results
and subsequently removed from any further analyses if still problematic after
the check.

5.1.5. Checking the Distribution of the Genotype Frequencies of Loci

The JoinMap single-locus analysis module (JMSLA) determines the fre-
quency distribution of the numbers of informative loci and performs a chi-
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Table 9
JMREC Parameters for Chromosome 10

Response file y.rsp
Data taken from chr10.pwd
LOD threshold for mapping 0.0010
REC threshold for mapping 0.4990
Jump threshold 4.0000
Triplet threshold 10.0000
Mapping function KOSAMBI
Ripple value 3
No. of genes 13
No. of pairs 78
No. of linkage groups 1 (based on LOD = 1.0 and REC = 0.45)

square goodness-of-fit test for the expected segregation ratios. Genotypes of
“a,” “h,” and “b” in the F2 should be present in roughly the ratio of 1:2:1, so
if the marker segregation ratio was distorted in distribution, the genotypes were
rechecked. This module takes as input the chr10.loc file and outputs chr10.sla.
The results for the chromosome 10 loci are shown in Table 12. In this table,
“c” refers to the genotype either homozygote “b” or heterozygote “h,” “d”
refers to the genotype either homozygote “a” or heterozygote “h.”

5.1.6. Constructing the final marker map

Having corrected genotypes when necessary in the “.loc” file, the map was
constructed anew (as in Subheading 5.1.2.) and tested again for distorted
segregation ratios and unexplained double-recombination events. These cycles
of checking and mapping were repeated until problematical genotypes and
markers were either corrected or eliminated from the analysis. The final order of
markers and pairwise recombination frequencies were verified against existing
maps. Linear map distances were established using the Kosambi mapping
function. The final chromosome 10 linkage map is shown in Table 13.

5.2. Application of the MAPMAKER/QTL Program

The MAPMAKER/QTL program was used to check the phenotype distribu-
tion and carry out linkage analysis (35). The use of this program is described
in more detail in Chapter 7, Subheading 5.3.1. Before running MAPMAKER/
QTL, a raw data file should be set up to include all of the genotype and
phenotype data from each linkage group, which will usually correspond to data
from one chromosome. For our data, the phenotypes are given in Table 7 and
the genotypes in Table 8. These data are included in the chr10.raw file (see
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Table 10
Part of the pwd-file of Chromosome 10 (chr10.ptd)

; data taken from chr10.loc

; LOD-threshold: 0.0010

; REC-threshold: 0.4990

name = chromosome10

d10nds1 d10mit2 0.0529 62.2508

d10nds1 d10mit36 0.2106 18.5558

d10nds1 d10mit113 0.2987 7.4102

d10nds1 d10mit91 0.3303 4.4882

d10nds1 d10mit134 0.4145 0.5860

d10nds1 d10mit70 0.4098 0.6844

d10nds1 d10mit150 0.4146 0.7132

d10nds1 d10mit267 0.4854 0.1338

d10nds1 d10mit14 0.4801 0.1661

d10nds1 d10mit25 0.4848 0.1902

d10nds1 d10mit145 0.4949 0.1202

d10nds1 d10mit103 0.4942 0.3946

d10mit2 d10mit36 0.1497 30.0925

d10mit2 d10mit113 0.2480 12.5741

d10mit2 d10mit91 0.2818 7.9436

d10mit2 d10mit134 0.3787 1.0825

d10mit2 d10mit70 0.3754 1.2361

d10mit2 d10mit150 0.3828 1.0562

d10mit2 d10mit267 0.4619 0.0121

d10mit2 d10mit14 0.4516 0.0553

d10mit2 d10mit25 0.4604 0.0299

d10mit2 d10mit145 0.4699 0.0143

d10mit2 d10mit103 0.4607 0.1408

Table 14 for example). A chr10.prep file is set up using the mapping information
obtained from JoinMap (data shown in Table 13). The example of the output
generated from running MAPMAKER/QTL for the chromosome 10 data is
given in Table 15. In this table, POS indicates positions relative to the flanking
markers. On the right-hand side, the distance between the neighboring markers
are shown in cM. WEIGHT is the additive effect which can have direction,
DOM is the dominance deviation, and LOG-LIKE is the LOD score. In this
table, there is evidence of a QTL between markers 5 and 13. The “show peak”
command reveals that the peak of linkage for this QTL was detected between
markers 8 and 9, exactly 5 cM from marker 8. The command “sequence [8–9:
try]” instructs the program to perform the scan four times, once with each of
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Table 11
Checking Results of Chromosome 10 Genotypes (chr10.chk)

JoinMap genotype Checking module 2.0/a
locus genotype file: chr10.loc
population name: chromosome10
population type: F2
number of individuals: 219
number of loci: 13
map file: chr10.map
number of linkage groups: 1
analysing linkage groups: 1
list of genotype data with log(1/p) values > 2.0:

(log(1/p) is minus the 10-log of the probability of a genotype, conditional
on the genotype of the neighboring loci and conditional on the map)

log(1/p) values: * > 3 ** > 4 *** > 5 **** > 6 ***** > 7

ind previous locus locus next locus log(1/p)
--- ------------------- ------------------- ----------------------- ----------
linkage group nr. 1 ((bottom up)):
9 h: d10mit36 a: d10mit113 h: d10mit91 2.032
174 h: d10mit36 a: d10mit113 h: d10mit91 2.032
178 h: di0mit36 b: di0mit113 h: d10mit91 2.032
161 h: d10mit145 b: d10mit103 - 2.227

top 5% (=1) loci with high average (over n cases) log(1/p):

locus log(1/p) n
-------------------- -------- ---
d10nds1 0.165 214

top 5% (=11) individuals (ind) with high average (over n cases) log(1/p):

ind log(1/p) n
--- -------- ---
161 0.268 12
174 0.257 13
178 0.235 13

9 0.235 13
70 0.234 13

133 0.232 13
176 0.227 11
162 0.206 13
55 0.206 13

213 0.198 13
28 0.185 13
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Table 12
Checking Results of the Frequency Distribution of Chromosome 10 Loci
(chr10.sla)

JoinMap Single Locus Analysis 2.0/a
locus genotype file: chr10.loc
population name: chromosome10
population type: F2
number of loci: 13
number of individuals: 219
significance levels: *:0.1 **:0.05 ***:0.01 ****:0.005 *****:0.001
******:0.0005 *******:0.0001
frequency distributions per locus (13 loci):

a h b c d - X2 (df):signif. [classes]
---- ---- ---- ---- ---- ---- ------------------------------

1:d10nds1 55 100 59 0 0 5 1.07 (2): [a:h:b]
2:d10mit2 53 105 60 0 0 1 0.74 (2): [a:h:b]
3:d10mit36 41 118 58 0 0 2 4.33 (2): [a:h:b]
4:d10mit113 50 114 55 0 0 0 0.60 (2): [a:h:b]
5:d10mit91 49 116 50 0 0 4 1.35 (2): [a:h:b]
6:d10mit70 50 119 48 0 0 2 2.07 (2): [a:h:b]
7:d10mit134 51 119 47 0 0 2 2.18 (2): [a:h:b]
8:d10mit150 52 118 49 0 0 0 1.40 (2): [a:h:b]
9:d10mit267 49 119 51 0 0 0 1.68 (2): [a:h:b]
10:d10mit14 47 119 51 0 0 2 2.18 (2): [a:h:b]
11:d10mit25 48 119 52 0 0 0 1.79 (2): [a:h:b]
12:d10mit145 46 120 52 0 0 1 2:55 (2): [a:h:b]
13:d10mit103 42 115 52 0 0 10 3:07 (2): [a:h:b]

frequency distribution of numbers of informative plants
in pairwise combinations of loci (78 pairs):

informative freq
----------- ----

0 - 9 0
10 - 19 0
20 - 29 0
30 - 39 0
40 - 49 0
50 - 59 0
60 - 69 0
70 - 79 0
80 - 89 0
90 - 99 0

100 - 109 0
110 - 119 0
120 - 129 0
130 - 139 0
140 - 149 0
150 - 159 0
160 - 169 0
170 - 179 0
180 - 189 0
190 - 199 0
200 - 209 12
210 - 219 66
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Table 13
Linkage Map of Chromosome 10 (cM) (chr10.map)

d10nds1 0.0
d10mit2 5.4
d10mit36 21.9
d10mit113 30.8
d10mit91 36.2
d10mit70 48.5
d10mit134 48.5
d10mit150 50.2
d10mit267 57.3
d10mit14 57.3
d10mit25 58.8
d10mit145 61.5
d10mit103 62.1

Table 14
Part of the chr10.raw File (chr10.raw)

data type f2 intercross

219 13 6

*d10nds1

aahha hahhh hhhha hhhba hhhha hhhhb ahbhh haahh ahaba bhahb

hhhba hhhba abbab bbhhh bhhba bahb- bahba haaha hhhba abhbb

hhbhb babha ahaba hhaba hhahh hbbah ahhah hbbhb hhah- hbbab

bahhh bahhb aaahb bahhh aabhb hhhba hbahh ahhbh bbahh ha-h-

abbah hhhhh b-hhh bhhb

*d10mit2

aahha hahhh hbhha hhhba hhhha hhhhb abbhh hhhhh ababa hhhhb

hbhbh hhhba abhab bbhhh bhhba baabh ba-bh haaha hhhba abhbb

hhbhb babba ahaba hhaba hhahh hbbhh hhbah hbbhb hhaha hbbah

bahbh bahhb ahahb hahhh ahbhb bhhba abaah ahhbh bbahh haahh

abbah hbhbh baahh bhhh

*d10mit36

hahhh babhh hbahh hhhbh hhhha hhhhb hbhhh hbhhh abhbh hhhhb

ahhbh hhhba ahhhb bbhhb bhhbh bhabh ha-bh hahhh bhhba abahb

h-bhh habbh hhaba bhbbh hhahb hbbhh hhhah bbhhh hhaha hhhah

bahbh hhaab ahahb habhh hbhhh bbhba ahaah ahbbb bbaah hhaah

abhhh hbbbh baahh bahh

....

*Penh

3.752 2.908 1.258 2.986 1.246 3.268 1.854 2.244 - 1.794 5.826...
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Table 15
MAPMAKER/QTL Outfile of Chromosome 10 Analyses

************************************************************************

* *

* MAPMAKER/QTL *

* (version 1.1b) *

* *

************************************************************************

‘photo’ is on: file is ‘chn10.out’
3> sequence [all]
The sequence is now ‘[all]’
4> trait 4
The current trait is now: 4 (sgrphen)
5> scan 1 2 0.125
QTL maps for trait 4 (sgrphen):
Sequence: [all]
LOD threshold: 2.00 Scale: 0.12 per ‘*’
NO fixed-QTLs.
Scanned QTL genetics are free.

POS WEIGHT DOM %VAR LOG-LIKE |
---------------------------------------| 1-2 5.6 cM
0.0 −0.114 0.019 4.4% 2.139 | **
1.0 −0.109 0.029 4.2% 1.947 |
2.0 −0.103 0.041 3.8% 1.763 |
3.0 −0.094 0.055 3.5% 1.599 |
4.0 −0.085 0.068 3.2% 1.465 |
5.0 −0.074 0.079 2.9% 1.362 |
---------------------------------------| 2-3 17.8 cM
0.0 −0.068 0.084 2.7% 1.310 |
1.0 −0.065 0.086 2.7% 1.210 |
2.0 −0.061 0.088 2.6% 1.109 |
3.0 −0.056 0.090 2.4% 1.007 |
4.0 −0.051 0.092 2.3% 0.906 |
5.0 −0.046 0.092 2.1% 0.807 |
6.0 −0.040 0.092 2.0% 0.710 |
7.0 −0.034 0.091 1.8% 0.617 |
8.0 −0.028 0.089 1.6% 0.529 |
9.0 −0.021 0.085 1.4% 0.447 |
10.0 −0.014 0.081 1.1% 0.374 |
11.0 −0.007 0.076 1.0% 0.312 |
12.0 0.000 0.071 0.8% 0.262 |
13.0 0.007 0.065 0.7% 0.225 |
14.0 0.013 0.058 0.5% 0.203 |
15.0 0.020 0.052 0.5% 0.196 |
16.0 0.026 0.046 0.5% 0.202 |
17.0 0.032 0.041 0.5% 0.220 |

continued
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Table 15.
Continued

POS WEIGHT DOM %VAR LOG-LIKE |
---------------------------------------| 3-4 9.9 cM
0.0 0.036 0.037 0.5% 0.244 |
1.0 0.041 0.035 0.6% 0.279 |
2.0 0.046 0.033 0.7% 0.321 |
3.0 0.051 0.030 0.8% 0.370 |
4.0 0.056 0.027 1.0% 0.427 |
5.0 0.061 0.023 1.1% 0.489 |
6.0 0.065 0.020 1.3% 0.555 |
7.0 0.069 0.017 1.4% 0.624 |
8.0 0.071 0.015 1.5% 0.693 |
9.0 0.074 0.013 1.6% 0.760 |
---------------------------------------| 4-5 5.7 cM
0.0 0.075 0.012 1.7% 0.818 |
1.0 0.085 0.018 2.2% 1.005 |
2.0 0.093 0.024 2.7% 1.203 |
3.0 0.100 0.028 3.1% 1.402 |
4.0 0.106 0.032 3.5% 1.596 |
5.0 0.110 0.035 3.8% 1.781 |
---------------------------------------| 5-6 13.4 cM
0.0 0.112 0.037 4.0% 1.904 |
1.0 0.118 0.041 4.4% 2.038 | *
2.0 0.123 0.045 4.8% 2.174 | **
3.0 0.128 0.049 5.2% 2.310 | ***
4.0 0.132 0.054 5.6% 2.444 | ****
5.0 0.135 0.059 6.0% 2.574 | *****
6.0 0.137 0.065 6.3% 2.700 | ******
7.0 0.139 0.070 6.5% 2.820 | *******
8.0 0.140 0.076 6.8% 2.934 | ********
9.0 0.140 0.081 6.9% 3.039 | *********
10.0 0.140 0.086 7.0% 3.136 | **********
11.0 0.139 0.090 7.1% 3.223 | **********
12.0 0.138 0.094 7.1% 3.300 | ***********
13.0 0.136 0.096 7.0% 3.365 | ***********
---------------------------------------| 6-7 0.0 cM
0.0 0.135 0.097 6.9% 3.387 | ************
---------------------------------------| 7-8 1.6 cM
0.0 0.135 0.097 6.9% 3.387 | ************
1.0 0.141 0.083 7.0% 3.382 | ************
---------------------------------------| 8-9 7.4 cM
0.0 0.140 0.077 6.8% 3.336 | ***********
1.0 0.145 0.086 7.4% 3.491 | ************
2.0 0.148 0.093 7.8% 3.624 | *************
3.0 0.150 0.098 8.2% 3.729 | **************
4.0 0.151 0.103 8.3% 3.802 | ***************
5.0 0.151 0.107 8.4% 3.840 | ***************
6.0 0.149 0.108 8.3% 3.837 | ***************
7.0 0.146 0.107 7.9% 3.782 | ***************

continued
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Table 15.
Continued

POS WEIGHT DOM %VAR LOG-LIKE |
---------------------------------------| 9-10 0.0 cM
0.0 0.143 0.105 7.6% 3.742 | **************
---------------------------------------| 10-11 1.4 cM
0.0 0.143 0.105 7.6% 3.741 | **************
1.0 0.140 0.092 7.0% 3.261 | ***********
---------------------------------------| 11-12 2.6 cM
0.0 0.134 0.076 6.0% 2.920 | ********
1.0 0.133 0.080 6.0% 2.887 | ********
2.0 0.131 0.084 5.9% 2.846 | *******
---------------------------------------| 12-13 0.5 cM
0.0 0.129 0.086 5.8% 2.816 | *******
---------------------------------------|

Results have been stored as scan number 1.
6> show peak
LOD score peaks for scan 1.1 of trait 4 (sgrphen).
Sequence: [all]
No fixed-QTLs.
Scanned QTL genetics are free.

Peak Threshold: 2.00 Falloff: −2.00
=============================================================
QTL-Map for peak 1:
Confidence Interval: Left Boundary= 5-6 + 0.0

Right Boundary= 12-13 (off end)
INTERVAL LENGTH QTL-POS GENETICS WEIGHT DOMINANCE
8-9 7.4 5.0 free 0.1509 0.1065
chi∧2= 17.685 (2 D.F.) log-likelihood= 3.84
mean= 1.163 sigma∧2= 0.145 variance−explained= 8.4 %
=============================================================
7> sequence [8-9:try]
The sequence is now ‘[8-9:try]’
8> map
=============================================================
QTL map for trait 4 (sgrphen):
INTERVAL LENGTH QTL-POS GENETICS WEIGHT DOMINANCE
8-9 7.4 4.7 free 0.1512 0.1058
chi∧2= 17.655 (2 D.F.) log-likelihood= 3.83
mean= 1.163 sigma∧2= 0.145 variance−explained= 8.4 %
=============================================================
QTL map for trait 4 (sgrphen):
INTERVAL LENGTH QTL-POS GENETICS WEIGHT DOMINANCE
8-9 7.4 5.0 dominant 0.1359 0.1359
chi∧2= 17.258 (2 D.F.) log-likelihood= 3.75
mean= 1.162 sigma∧2= 0.145 variance−explained= 8.2 %
=============================================================

continued
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Table 15.
Continued

QTL map for trait 4 (sgrphen):
INTERVAL LENGTH QTL-POS GENETICS WEIGHT DOMINANCE
8-9 7.4 3.6 recessive 0.0660 −0.0660
chi∧2= 3.939 (2 D.F.) log-likelihood= 0.86
mean= 1.341 sigma∧2= 0.155 variance−explained= 2.0 %
=============================================================
QTL map for trait 4 (sgrphen):
INTERVAL LENGTH QTL-POS GENETICS WEIGHT DOMINANCE
8-9 7.4 3.7 additive 0.1513 0.0000
chi∧2= 14.042 (2 D.F.) log-likelihood= 3.05
mean= 1.220 sigma∧2= 0.148 variance−explained= 6.7%
=============================================================
9>q
save data before quitting? (yes) y
Now saving chn10.qtls...
Now saving chn10.traits...
...goodbye...

four genetic models; free, additive, dominant, and recessive. The free model
fits separate regression coefficients for additive and dominance components,
allowing these coefficients to have any values. The additive model fits a single
coefficient for the additive component, forcing the dominant component to be
0. The dominant model fits a single coefficient that is used for both additive
and dominant components. The recessive model fits a single coefficient that is
used for both additive and dominance components, but with an opposite sign
for each. The results of these four analyses are shown in the lower part of
Table 15 and indicate that the QTL on mouse chromosome 10 controlling
BHR is a dominant effect.

6. Notes

1. Comparison of MAPMAKER/QTL and Map Manager QT. Both MAPMAKER/
QTL and Map Manager can carry out data transformation, QTL detection, and
genetic model analysis. MAPMAKER/QTL can give more details of the QTL’s
localization, but the Map Manager program can provide the strain distribution
patterns obtained from each chromosome (data not shown), and like the
MAPMAKER/QTL program, it can rapidly determine likely map positions relative
to other loci in the database and can also give linkage results in LRS format. (The
LRS can be converted to the conventional base-10 LOD score by dividing it by
4.61 [twice the natural logarithm of 10]). In addition, MapManager QT can be used
to perform the permutation test. Map Manager QT is only available for the Macintosh
platform, whereas MAPMAKER/QTL is available for other platforms.
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QTL Analysis in Plants

Shizhong Xu

1. Introduction
Quantitative traits are defined as traits that have a continuous phenotypic

distribution (1,2). Variances of these traits are often controlled by the segregation
of many loci, called quantitative trait loci (QTL). Therefore, quantitative traits
are often synonymously called polygenic traits. Another characteristic of quanti-
tative traits is that environmental variates can play a large role in determining
the phenotypic variance. The polygenic nature and the ability of being modified
by the environment make the study of genetic basis for quantitative traits more
difficult than that for monogenic traits. Traditional methods of quantitative
genetics that use only the phenotypic and pedigree information cannot separate
the effects of individual loci but examine the collective effect of all QTL. With
the rapid development of molecular technology, a large number of molecular
markers (DNA variants) can be generated with ease. Most molecular markers are
functionally neutral, but they normally obey the laws of Mendelian inheritance.
Therefore, the relative positions of the markers along the genome (called the
marker map) can be reconstructed using observed recombinant events. The joint
segregating patterns of markers, in conjunction with phenotypic and pedigree
information, provides additional information about the genetic basis of quantita-
tive traits, including the number and chromosomal locations of QTL, the mode
of gene action, and sizes (effects) of individual QTL. A complete description
of the properties of QTL is called the genetic architecture. The study of the
genetic architecture of quantitative traits using molecular markers is called
QTL mapping.

Plants are ideal organisms for QTL analysis. Many plant species are self-
compatible, which enables the generation of inbred lines quickly by recurrent
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selfing. Crosses between inbred lines can be used for QTL analysis. For mapping
purposes, inbred line crosses have the fewest complications. The progeny from
such crosses display maximum disequilibrium. Using F1 parents, a variety of
populations, such as backcross (BC) and F2, can be generated for mapping.
We can control the mating designs with arbitrary complexity (e.g., diallel
crosses) to maximize the interactions between founder alleles (3). We can
deliberately choose fewer founders and increase family sizes so that each
founder allele or allelic combination is well represented in the progeny. We
can even take advantage of cloning and vegetative reproduction to obtain
repeated measurements for each genotype. These unique properties possessed
by plants provide a unique opportunity to detect additional QTL effects (e.g.,
dominance and epistatic effects), in addition to additive effects. In contrast,
human geneticists cannot enjoy these luxuries as we plant people do.

There are numerous statistical methods and programs available for QTL
mapping. The simplest and quickest one is the least square (LS) method (4,5).
However, regression mapping is an ad hoc approach because it fails to take
into account the heterogeneity of the residual variance (6). The iteratively
reweighted least square (IRWLS) method (7,8) has corrected this defect in LS
mapping but still ignores the mixture distribution of the residual error. Maximum
likelihood (ML) mapping, developed by Lander and Botstein (9) and improved
by Jansen (10), Zeng (11), and others, fully takes into consideration the mixture
distribution of the residual error and thus is optimal. However, ML is computa-
tionally more intensive than LS and IRWLS. Therefore, LS and IRWLS are
still commonly used in QTL mapping. Recently, Bayesian methodology has
become popular because of the availability of simulation-based Markov chain
Monte Carlo (MCMC) algorithms. Bayesian mapping was initiated by
Hoeschele and VanRaden (12,13) and subsequently developed by Satagopan
et al. (14) and Sillanpää and Arjas (15,16). Recently, Yi and Xu (17,18) extended
the Bayesian methodology to map QTL for complicated binary traits. Bayesian
mapping allows the use of prior knowledge of QTL parameters. Because Bayes-
ian mapping provides a posterior distribution of QTL parameters, one automati-
cally obtains the posterior variances and credibility intervals for the estimated
QTL parameters. One of the major hurdles of ML mapping is finding the
number of QTL. This involves a change in the dimensionality of the model.
The recently developed reversible jump MCMC algorithm (19,20) allows
the number of QTL to change in a convenient and objective way. This has
revolutionized QTL mapping studies. Previous works of Bayesian mapping
are primarily focused on simple line crosses. The work presented in this
study intends to develop a Bayesian mapping for complicated mating
designs involving multiple lines, as commonly seen in commercial stocks
of plant breeding.
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2. Methods

2.1. Data Preparation

Data required for QTL mapping include (1) phenotypic values of all individu-
als in the mapping population, (2) pedigree relationships among the individuals,
and (3) marker genotypes.

2.1.1. Distributional Requirements

Because the Bayesian method is highly model dependent, we must make an
assumption about the probability distribution of the phenotypic values. The
Normal distribution is usually assumed, but other types of distribution can also
be used. If the distribution severely deviates from Normality, one should perform
a transformation to make it Normal before data analysis. For example, if the
phenotypic value y is measured in ratio, the angular y′ = sin−1√y transformation
is recommended (21). If the phenotypic distribution shows a scale effect (i.e.,
the standard deviation proportional to the mean), a logarithm transformation
is desirable. Note that by Normal distribution we mean that the phenotypic
distribution conditional on the genotypic value (i.e., the distribution of the
residual error) is Normal. The usual way of diagnosing Normality by looking
at the frequency histogram of phenotypic values is not valid because that
distribution is actually the distribution of the sum of the genetic effect and
residual error. If the trait is controlled by a few QTL with large effects, we
expect the phenotypic distribution to deviate from Normality. Therefore, a
skewed and multimode phenotypic distribution does not justify the transforma-
tion. Some characters have a binary or categorical phenotypic distribution but
with a polygenic genetic background (i.e., disease resistant/susceptible). The
phenotypic measurements of such discrete characters may be coded as numerals.
Instead of transforming the phenotypic values to make them Normal, we should
choose Bernoulli or multinomial distribution (22–24).

2.1.2. Pedigree Structure

Knowledge of pedigree relationships is essential in QTL mapping because
without a family structure, it is not possible to construct any sort of genetic
model (25). A line cross (e.g., backcross [BC]) is a simple pedigree because
all of the progeny in the BC family are full sibs, resulting from the mating of
a homozygous parent with its hybrid offspring. For multiple line crosses, the
relationships of individuals become complicated. A special format is required
to input the pedigree data. First, individuals are classified into founders and
nonfounders. A founder in a pedigree is defined as an individual whose parents
are not identified. A nonfounder is an individual whose both parents are identi-
fied and included in the pedigree. To identify the pedigree relationships, three
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Fig. 1. A path diagram illustrating a complex pedigree with 11 individuals.

identifications (IDs) are required for each individual: the ID of the individual
itself, the ID of its father, and the ID of its mother. The ID numbers of the
parents for a founder should be treated as missing values ( ; see Table 1).
In many software packages, the records of individuals are assumed to be entered
into the data sheet in a chronological order. In other words, the parents must
be entered into the data sheet before their children or, equivalently, that the
ID number of a parent must be smaller than those of its children (see Note 1).

Let us use the small pedigree shown as a path diagram in Fig. 1 as an
example to illustrate the required format of data entry. Individuals 1 and 2 are
the founders of the pedigree. The cross of 1 and 2 produces 3, a hybrid. This
hybrid individual is then crossed back to each founder and produces two BC-
like individuals, 4 and 6. In the meantime, 3 is selfed to generate 5, an F2-like
individual. The relationships among the remaining plants in the pedigree are
similarly traced by the path diagram (Fig. 1). We assume that the plant is
hermaphroditic, so that an individual can serve as both male and female. Records
of the 11 plants are entered into the data sheet in a chronological way as shown
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Table 1
Format for Data Input, Example for the Small Pedigree Shown in Fig. 1

Marker 1 Marker 2 Marker 3

Individual ID Father ID Mother ID Phenotype Pa Ma P M P M

1 — — y1 1 1 2 1 1 2
2 — — y2 2 3 3 3 1 3
3 1 2 y3 1 2 2 3 2 1
4 1 3 y4 1 1 1 2 1 1
5 3 3 y5 2 2 2 3 1 2
6 2 3 y6 3 1 3 3 3 1
7 1 5 y7 1 2 1 2 1 2
8 4 5 y8 1 2 1 2 1 1
9 5 5 y9 2 2 2 2 2 2

10 5 6 y10 2 3 3 3 1 3
11 2 5 y11 2 2 2 3 3 2

aP and M stand for paternal and maternal alleles, respectively. However, if this is not known,
the alleles can be entered arbitrarily.

in Table 1. The first three columns of Table 1 store the ID of individual plant,
the father ID, and the mother ID, respectively. The phenotypic values are
entered in the fourth column. The last three columns store the genotypes of
three markers.

2.1.3. Marker Data

The third source of data is the array of marker genotypes for all individuals
in the pedigree. In contrast to the traditional way of coding genotypic data in
plants, we code the genotype by recording the two allelic forms. In the traditional
coding system, the three genotypes in a F2 family, A1A1, A1A2, and A2A2, may
be coded as 0, 1, and 2, respectively. In the current system, we assign a unique
number to each allele, such as allele A1 is assigned value 2. Therefore, the
three genotypes can now be coded as four allele-pairings: (1 1), (1 2), (2 1),
and (2 2). The first number in each genotype represents the paternal allele and
the second represents the maternal allele. When the genotype is unordered
(phase unknown), the two alleles can be arbitrarily assigned. A missing allele
should be assigned a special numerical value, such as 0 or 9.

2.1.4. The Marker Map

In addition to marker genotypes, we assume that the marker map is given
or inferred using an existing mapping program [e.g., MAPMAKER (26) and
JOINMAP (27)].
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2.2. Linear Model
2.2.1. Single QTL Model

Let n/2 be the number of founders in the mapping population so that the
total number of founder alleles at any locus is n. In plants, a founder can be
an inbred line, which only carries one allelic form. If all the n/2 founders are
inbred, the total number of different alleles is n/2. Let us use a single QTL as
an example to demonstrate the derivation of the linear model. Multiple QTL
will be discussed later. Define a = {ak}n×1

as a vector for the n allelic values

(i.e., the value that each allele contributes to the quantitative trait) and
d = {dkl}n×n

as a symmetric matrix for the interaction (dominance) effects

between each pairs of alleles. Let N be the total number of individuals in the
mapping population, including the founders, the parents, and all progeny. If
plant j happens to carry copies of founder alleles k and l, then the phenotypic
value of j can be described by

yj = b + ak + al + dkl + εj (1)

where yj is the phenotypic value, b is the overall population mean, and εj is
the environmental error assumed N(0, σ2) distribution. We can replace b by
xjb if there are classifiable environmental effects (covariates) that we wish to
separate from the genetic effects. If the phenotypic value yj is measured as a
plot mean of r replicates of the same plant (genotype), the residual error variance
should be σ2/r. In plant QTL mapping, N (the total number of individuals) is
usually much larger than n (number of founder alleles) so that each founder
allele and allelic combination can be replicated many times in the descendants.
A good mating design should be well balanced so that each allele and allelic
combination is equally represented in the descendents. From this point of view,
a cross-classified mating design is more efficient than a nested hierarchical
mating design. The diallel cross is a cross-classified mating design in which k
inbred lines served as male parents are crossed with the same k lines served
as female parents. The number of matings is k × k, which makes up a square
matrix. The diagonal elements represent pure breeding and the off-diagonal
elements represent cross-breeding. If one is not interested in cytoplasmic effects,
only half of the off-diagonals are needed. Such a diallel design is called the
half-diallel. If each male parent is mated with several female parents and each
female parent is only mated with one male parent, the design is called half-
sib design. The half-sib design is a typical nested hierarchical mating design.

The sum of the two allelic values for an individual is called the additive
effect or the breeding value. Note that the allelic and dominance effects of all
individuals in the mapping population can be traced back to the corresponding
effects defined in the founders. Therefore, QTL analysis amounts to estimating



QTL Analysis in Plants 289

and testing these effects in the founders, not the effects of descendents in the
mapping population.

Unlike in a usual linear model where an observation can be unambiguously
identified to a particular treatment combination, in QTL mapping we do not
observe which founder alleles are actually carried by any particular plant at
the QTL; instead, we use observed marker information to infer the allelic
inheritance of the QTL. Therefore, a probability statement must be assigned
to the design matrix of the QTL model. Let us define ip

j = 1, . . . , n as the
allelic identifier for the paternal allele of individual j and im

j as that for the
maternal allele. For example, if the paternal allele of j is a copy of the first
founder allele and the maternal allele of j is a copy of the fourth founder allele,
then ip

j = 1 and im
j = 4. Using the founder allele identifiers, we can rewrite the

linear model using a pseudocode notation:

yj = b + a(ip
j ) + a(im

j ) + d(im
j ) + εj (2)

Here we have adopted the pseudocode notation of a(ip
j ) to represent element

ip
j of the allelic value vector a instead of using the awkward expression ai p

j
.

Note that matrices a and d are parameters of the model.

2.2.2. Multiple QTL Model

For a multiple QTL model, the notation becomes complicated, but the basic
principle of the linear model remains identical. Assume that the number of
QTL is q. We now extend vector a into a matrix, A = {(aki}n×q, so that the ith
column vector of A stores the additive values for the ith QTL. Similarly, we
extend matrix d into a three-dimensional matrix, D = {dkli}n×n×q, so that the third
dimension defines the loci. Again, let us use ip

j and im
j as the founder allelic

identifiers for individual j at the ith QTL. This time, the letter i in symbol ip
j

is a variable, the value of which varies depending on the locus. This leads to
a rather unusual notation for a variable. For example, the allelic identifiers for
the second QTL would be 2p

j and 2m
j . If the paternal allele of the second QTL

for individual j is a copy of the third founder allele, then 2p
j = 3. Although 2

is a constant, with both a superscript and a subscript, 2p
j becomes a symbol for

a variable. Using this notation, the multiple QTL model is written

yj = b + ∑
q

i=1

{a(ip
j , i) + a(im

j , i) + d(ip
j , im

j , i)} + εj (3)

With this notation, epistatic effects can be easily incorporated into the model.
Let us take a two-QTL model, for example, to demonstrate the formulation.
Define H = {hkl}n×n as an epistatic effect matrix, where hkl is the interaction
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effect between the kth founder allele at locus 1 and the lth founder allele at
locus 2. In contrast to the dominance effect, dkl, which is the interaction between
the two alleles within a locus, the epistatic effect is the interaction effect
between two alleles, one from each locus. Therefore, dominance and epistasis
are also called allelic and nonallelic interactions, respectively (1). Hence, the
two-locus epistatic model would be represented as follows:

yj = b + a(1p
j , 1) + a(1m

j , 1) + d(1p
j , 1m

j , 1)
+ a(2p

j , 2) + a(2m
j , 2) + d(2p

j , 2m
j , 2) (4)

+ h(1p
j , 2p

j ) + h(1p
j , 2m

j ) + h(1m
j , 2p

j ) + h(1m
j , 2m

j ) + εj

The epistatic effect matrix H only contains the interaction effects between a
pair of alleles, called the additive-by-additive effects. There are many other
types of epistatic effects, including additive-by-dominance, dominance-by-
additive, and dominance-by-dominance effects (28). These higher-order interac-
tions are difficult to represent and, thus, are not dealt with in this chapter. For
a total of q QTLs, the total number of possible nonallelic interaction matrices
(additive-by-additive) is q(q − 1)/2. Therefore, we need a third subscript for
matrix H to define which two loci are interacting. The general expression of
the linear model for q QTL is

yj = b + gj + εj (5)

where

gj = ∑
q

i=1

{a(ip
j , i) + a(im

j , i) + d(ip
j , im

j , i)} (6)

+ ∑
q−1

i=1
∑

q

r=i+1

{h(ip
j , r p

j , t) + h(ip
j , r m

j , t) + h(im
j , r p

j , t) + h(im
j , r m

j , t)}

is the genetic value and t = 1, . . . , q(q − 1)/2 indexes the pairs of loci that
are interacting and is a function of i and r. If needed, epistatic effects involving
three or more loci can be added into the model. However, it is prudent to limit
what is included in the model to avoid severe overparameterization.

2.3. Tracing the Allelic Origins

Each of the two (paternal and maternal) alleles carried by j at locus i can,
in principle, be traced back to its origin in the founders using the founder-
allele identifiers, ip

j and im
j . However, the precise segregations of these allele

identifiers are not directly observed, and there may be many generations away
between j and the founders; thus, it becomes difficult to directly sample ip

j and
im

j . Instead, we must sample possible allelic identifier configurations for our
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calculations by adopting a dynamic programming approach to generate samples
for the allele identifiers, for example, via Markov chain methods. Allelic identi-
fiers for individuals must be generated in a chronological order (i.e., parents
must be generated before their children). We begin by arbitrarily assigning the
alleles to the founders using the integers from 1 to n. By convention, we assign
the paternal allele followed by the maternal allele for each founder. For example,
the allele identifiers for individual k, who is the f th founder, will be
ip

k = 2f − 1 and im
k = 2f, for f = 1, . . . , n/2. If individual j is not a founder, we

know that its parents must be already generated. In this case, the designation
of alleles is more complicated and depends on two factors. First, the allelic
identifiers of the parents for j and, second, on the observed genotypic markers
for individual j for the flanking markers to the proposed QTL. The dependence
of allelic identifiers for j on the allelic identifiers of the parents can be expressed
as follows. Define ip

p and im
p as the founder-allele identifiers for the father of j,

and ip
m and im

m as the identifiers for the mother of j. Given the allele identifiers
of the parents, the identifiers for j can be easily represented using the following
recursive equations:

ip
j = zp

j ip
p + (1 − zp

j )im
p (7)

and

im
j = zm

j ip
m + (1 − zm

j )im
m (8)

where zp
j = 1 if the paternal allele of the father has been passed to j and

zp
j = 0 otherwise, regardless of the allelic form, and zm

j is similarly defined, but
for the paternal allele of the mother (29). If we assume the ordered genotypes
of the father and mother are A1A2 and A3A4, respectively, then each child can
take one of the four following genotypes: A1A3,A1A4, A2A3,A2A4. If a child is
A2A3, we know that the maternal allele of the father and the paternal allele of
the mother have been passed to the child; thus, zp

j = 0 and zm
j = 1.

By structuring the problem in this way, we have turned the problem of
identifying the founder alleles into that of finding the allelic transmission from
parents to the progeny, a much simpler problem. The distribution of zp

j or zm
j

is Bernoulli with a probability depending on the genotypes of markers and
their distances from the locus in question. The distributions of zp

j and zm
j condi-

tional on marker information, however, are not independent, making it difficult
to derive the joint distribution. Therefore, we need another variable Uj to indicate
one of the four possible genotypes for a progeny. Define Uj = k for k = 1, . . . ,
4 if individual j takes the kth-ordered genotype. The values of zp

j and zm
j are

solely determined by Uj with the following relationships: zp
j = I(Uj=1) + I(Uj=2) and

zm
j = I(Uj=1) + I(Uj=3), where I(Uj=k) = 1 for Uj = k and I(Uj=k) = 0 for Uj ≠ k. With-
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out marker information, we have Pr(Uj = k) = 1/4 for k = 1, . . . , 4. However,
this marginal distribution is not useful for QTL mapping, because what we
need here is the conditional distribution given the observed marker data. Next,
we incorporate the observed genotypic data from flanking markers. Let us
consider two markers, one in each side of the QTL. Define M1j and M2j as the
genotypes for the left and right flanking markers, respectively. In other words,
the values of M1j and M2j are defined in the same way as Uj, except that they
are for the marker genotypes. We assume that both markers are fully informative
so that the values of M1j and M2j are observed data (see Note 2). The joint
distribution of the three loci, {M1j, Uj, M2j}, is determined by the relative posi-
tions of the loci along the chromosome. Let λi be the position of the ith QTL
measured in Morgans from the left end of the chromosome. The positions of
the two markers are assumed known and thus suppressed from the following
derivation. Under the Haldane (30) map function, the joint distribution of
{M1j, Uj, M2j}, can be described exploiting a property of Markov chains:

Pr(M1j, U
j
, M2j | (λi) = Pr(M1j) Pr(Uj | M1j, λi) Pr(M2j | Uj, λi) (9)

where Pr(M1j = k) = 1/4 for k = 1, . . . , 4 and Pr (Uj | M1j, λi) is the transition
probability from the left marker to the QTL and Pr(M2j | Uj, λ1) is the transition
probability from the QTL to the right marker. These transition probabilities
are obtained from the following transition matrix:

T = [(1−c)2

c(1−c)
c(1−c)

c2

c(1−c)
(1−c)2

c2

c(1−c)

c(1−c)
c2

(1−c)2

c(1−c)

c2

c(1−c)
c(1−c)
(1−c)2]

where c is the recombination fraction between the two loci in question. For
instance, if Uj = 1 and M1j = 3, then Pr(Uj = 1 | M1j = 3, λi) = T(3,1) = c(1 −
c), where c is the recombination fraction between the left marker and the QTL.
In general, Pr(Uj = t | M1j = s, λi) = T(s, t). From the joint distribution, we can
calculate the conditional distribution,

Pr(Uj | M1j,M2j, λi) =
Pr(M1j, Uj, M2j|λi)

Pr(M1j, M2j)
(10)

where Pr(M1j, M2j) = Pr(M1j)Pr(M2j|M1j). The above conditional distribution will
be used in modeling the posterior distribution of Uj and thus the posterior
distribution of zp

j and zm
j , which, in turn, determine the founder allele identifiers,

ip
j and im

j . These founder allele identifiers are the keys to our Bayesian analysis
of QTL.
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2.4. Bayesian Mapping
2.4.1. Background

In Bayesian analysis parameters such as the QTL locations, the additive and
dominance effects are treated as unknown variables with prior distributions.
The purpose of Bayesian analysis is to combine the prior distribution with the
observed data to obtain a posterior distribution for the unknown parameters.
It should be noted that the prior distributions are not actual distributions of the
parameters, rather that the parameters themselves are fixed, and it is our belief
of the parameter values that varies. Therefore, the prior distribution is actually
the distribution of our subjective belief. Similarly, the posterior distribution of
parameters is the updated distribution of our belief after incorporation of data
information. Note that the parameters that define the prior distributions are
referred to as hyperparameters to avoid confusion.

The observed data include phenotypic values, y = {yj}N×1, and observed
marker genotype information. However, because it is cumbersome to derive
the MCMC algorithm if marker genotypes are explicitly expressed as data, we
have suppressed marker information from the likelihood for simplicity. Here,
we will assume full information for all markers, with the function of markers
only being used to provide information about the distribution of the four
genotypes for each individual Uj. After suppressing markers from the model,
we treat the distribution of Uj conditional on markers as the prior distribution
of Uj in subsequent MCMC analysis.

2.4.2. The Parameters

The parameters in the analysis include population mean b, environmental
error variance σ2, the number of QTL q, the locations of the QTL λ
= {λi}q×1, the allelic effects of founders A, the dominance effects D, and the
epistatic effects H. The values for Uj are considered as missing. For multiple
QTL, Uj needs one more subscript i to index the QTL. Therefore, Uij denotes
the genotype of individual j at the ith QTL. Later, we will use Uj = {Uij}q×1 to
denote the vector for the (unobserved) genotypic configurations for all the q
QTL of individual j.

2.4.3. The Likelihood Function

Define � as a vector containing all the parameters detailed thus far and the
missing genotypic configuration Uj. Given �, we can construct the likelihood
function, which is proportional to the conditional probability density of the
data. Let us use p(x) and p(y|x) as generic symbols for the density and conditional
density functions, respectively; the actual forms depend on the arguments rather
than the symbol p. The likelihood function is
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p(y|θ) = ∏
N

j=1

p(yj|θ) ∝ 1
(σ2)N/2

exp [− 1
2σ2 ∑

N

j=1

(yj − b − gj)2] (11)

If the phenotypic value has a distribution other than Normal, we simply replace
Eq. (11) by the appropriate density. For example, if the phenotype is a binary
disease, yj should be modeled as a Bernoulli variable with a probability

p(yj |θ) = [Φ(θ)]yj[1− Φ(θ)]1−yj (12)

where

Φ(�) = ∫
0

−∞

1

√2π
exp [−1

2
(x − b − gj)2]dx (13)

In binary data analysis, the residual variance cannot be estimated but set to
σ2 = 1.

2.4.4. Prior Probability Densities

We need to specify the prior density for the parameters and the distribution
of the missing values given the parameters. For convenience, we choose the
following prior:

p(θ) = p(b)p(σ2)p(q)p(λ)p(A|q)p(D|q)p(H|q)p(U|q, λ) (14)

Uniform priors are chosen for b and σ2. A Poisson prior is used for q; that is,

p(q) =
µqe−µ

q!
, where µ is the Poisson prior mean for the number of QTL. The

positions of QTL have a joint prior of p(λ) = ∏
q

i=1

p(λi), where each p(λi) is

uniform across the whole genome [i.e., p(λi) ∝ constant]. The joint prior for

the allelic effects if p(A) = ∏
q

i=1
∏

n

k=1

p(a(k, i)), where a(k, i) ~ N(0, σ2
A(i)) ∀i.

The joint prior for the dominance effects is

p(D) = ∏
q

i=1
∏

n−1

k=1
∏

n

l=k+1

p(d(k, l, i)),

where d(k, l, i) ~ N(0, σ2
D(i)) ∀i. Similiarly,
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p(H) = ∏
q−1

i=1
∏

q

r=i+1
[∏n

k=1
∏

n

i=1

p(h(k, l, t))]
where h(k, l, t) ~ N(0, σ2

H(t)) for t = 1, . . . , q(q − 1)/2.
The hyperparameters, σ2

A(i) and σ2
D(i), are the prior variances for the allelic and

dominance effects respectively for the ith QTL, and σ2
H(t) is the prior variance

for the tth pairwise additive-by-additive epistatic effects.

2.4.5. The distribution for Uj

The joint distribution of the missing values is p(U | q, λ) = ∏
N

j=1

p(Uj | q, �) because the allelic inheritance configurations of different individuals
are independent. The distribution p(Uj | q, λ) appears to be the prior distribution
of Uj; however, it represents the conditional distribution given marker informa-
tion because we have suppressed markers from the model for simplicity. If the
marker map is relatively dense and QTLs are sparsely distributed along the

genome, it is reasonable to assume p(Uj | q, λ) = ∏
q

i=1

p(Uij | λi), where

p(Uij|λi) is the conditional probability of allelic inheritance configuration for j
at the ith QTL, given information on the flanking markers, previously denoted
by p(Uj | M1j,M2j, λi) and given in Eq. (10).

2.4.6. The Posterior Probability Density

Given the complexity of the likelihood and the prior, the joint posterior
probability density does not have a standard form. In addition, Bayesian infer-
ence should be made at the marginal level for each unobservable. Let us partition
� into � = {θi, �−i} where θi is a single element of � and �−i is a vector of the
remaining elements. The marginal posterior distribution of θi is

p(θi | y) ∝ ∫∫ p(y | θi, �−i) p(θi, �−i) d�−i (15)

Bayesian inference for θi should be made from the above marginal distribution.
Unfortunately, this marginal distribution does not have an explicit expression.
Numerical integration is often prohibited because of the high dimensionality
of �−i. Therefore, we need to use the MCMC algorithm to simulate a sample
from the joint posterior distribution p(�|y). From the realized sample, we can
infer the marginal distribution of θi by simply looking at the empirical distribu-
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tion of θi, ignoring the variation of �−i. From this empirical distribution, we
can calculate summary statistics such as the mean and variance for θi.

2.5. MCMC Algorithm
2.5.1. Background

Our target distribution is the joint posterior distribution p(�|y). With the
MCMC algorithm, however, we do not directly generate the joint sample from
p(�|y); instead, we only generate realizations from p(θi |�−i, y), the conditional
posterior distribution for the ith parameter with all other variables fixed at their
current values. This conditional posterior distribution is proportional to the
joint posterior distribution p(θi, �−i |y) except that, in the conditional distribution,
�−i are treated as constants and θi as a variable. Starting from an initial value
for �, denoted by �(0) = {θ(0)

1 , θ(0)
2 , . . . , θ(0)

r }, where r is the total number of
parameters, we draw one parameter at a time from p(θi | �(0)

−i , y) with other
parameters fixed at their initial values. After all the parameters have been
drawn, we complete one cycle of the Markov chain; the updated values are
denoted by �(1) = {θ(1)

1 , θ(1)
2 , . . . , θ(1)

r }. The chain will grow and eventually reach
a stationary distribution. Let C be the length of the chain. Because there is one
realization of � in each cycle of the chain, we will have a realized sample of
� with sample size C, denoted by {�(1), �(2), . . . , �(C)}. Discarding data points
of the first few thousand cycles (burn-in period) and thereafter saving one
realization in every hundred cycles (approximately), we get a random sample
of � drawn from p(�|y).

2.5.2. Sampling from the Chain

We now discuss how to draw θi from p(θi|�−i, y). This conditional posterior
distribution usually has a standard form (e.g., Normal). In this case, we can
directly sample θi from the standard distribution. The method is then called
the Gibbs sampler (31). If p(θi|�−i, y) does not have a standard form, we will
take a general acceptance–rejection approach, called the Metropolis–Hastings
algorithm (32,33).

2.5.2.1. THE METROPOLIS–HASTINGS ALGORITHM

Define �(t−1) as the values simulated at the t − 1 cycle. We want to draw
θ(t)

i from the target distribution p(θi |θ(t−1)
−i , y). Instead of drawing θ(t)

i directly
from this target distribution, the Metropolis–Hastings algorithm draws a candi-
date θ*

i from a proposal density, q(θ*
i |θ(t−1)

i ), which is different from
p(θ*

j |θ(t−1)
−i , y) but has a standard form. We then use the Metropolis–Hastings

rule to decide whether to accept θ*
i or not. If θ*

i is accepted,
θ(t)

i = θ*
i , otherwise θ(t)

i = θ(t−1)
i . In either case, we will move to the next element.
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With the Metropolis–Hastings rule, we accept θ*
i with probability min

{1, α}, where

α =
p(θ*

i | �(t−1)
−i , y) q(θ(t−1)

i | θ*
i )

p(θ(t−1)
i | �(t−1)

−i , y) q(θ*
i | θ(t−1)

i )
(16)

Recall that

p(θ*
i | �(t−1)

−i , y) = const × p(y | θ*
i , �(t−1)

−i ) p(θ*
i , �(t−1)

−i )

and

p(θ(t−1)
i | θ(t−1)

−i , y) = const × p(y | θ(t−1)
i , θ(t−1)

−i ) p(θ(t−1)
i , θ(t−1)

−i )

After cancellation of the constants, the acceptance probability becomes

α =
p(y | θ*

i , θ(t−1)
−i ) p(θ*

i , θ(t−1)
−i ) q(θ(t−1)

i | θ*
i )

p(y | θ(t−1)
i , θ(t−1)

−i p(θ(t−1)
i , θ(t−1)

−i ) q(θ*
i | θ(t−1)

i )
= r1r2r3. (17)

Therefore, the acceptance probability has been factorized into the product of
the likelihood ratio (r1), the prior ratio (r2), and the proposal ratio (r3).

2.5.2.2. CHOOSING THE PROPOSAL DENSITIES

Although the notation of the proposal density q(θ*
i | θ(t−1)

i ) implies that this
density is a probability density of θ*

i conditional on the current value θ(t−1)
i , it

does not have to depend on θ(t−1)
i . In fact, the proposal density can be chosen

in an arbitrary fashion. It may be completely independent of θ(t−1)
i or dependent

of every thing else, including the data. However, the exact form of the proposal
density determines the acceptance rate, and thus the efficiency, of the
Metropolis–Hastings algorithm. The most efficient proposal density is the condi-
tional posterior because it leads to a unity acceptance rate. As mentioned
previously, this is the Gibbs sampler algorithm. However, if the conditional
posterior density does not have a standard form, we should choose a proposal
density with a standard form simply for convenience of generating random
numbers. To increase the efficiency, the shape of the proposal density should
be close to that of the conditional posterior.

We now discuss the proposal density for each variable. A uniform proposal
density is used for the population mean b, the environmental variance σ2, and
the position of each QTL λi. Define θ(t−1)

i as the current value for each of the
above parameters. The proposal θ*

i is drawn from θ*
i ~ U(θ(t−1)

i − 1⁄2δ,
θ(t−1)

i + 1⁄2δ) distribution, where δ is a small positive number called the tuning
parameter. Therefore, the proposal density is q(θ*

i | θ(t−1)
i ) = 1/δ. The reverse

density, q(θ(t−1)
i | θ*

i ), is identical to the proposal density, so they cancel out
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each other in the proposal ratio. This characterizes a random-walk Markov
chain and is the original form of the Metropolis algorithm (32).

The indicator variables for the configuration of allelic transmission from
parents to a child (Uij) are sampled in a locus-by-locus and individual-by-
individual basis. This allows the use of a Gibbs sampler. For each individual
at a particular locus, there are only four possible configurations of allelic
transmission. One can easily calculate the conditional posterior probability for
each configuration and use it to draw a realized one. The conditional posterior
probability for a QTL is

p(Uij | �−i, y) =
p(yj | Uij, �−i) p(A | q) p(D | q) p(H | q) p(Uij | λi)

∑
Uij

p(yj | Uij, �−i) p(A | q) p(D | q) p(H | q) p(Uij | λi)
(18)

where �−i stands for all the parameters except Uij and the summation in the
denominator is over all the four possible genotypes for Uij. It should be empha-
sized that the distribution of Uij is highly dependent of the QTL position λi.
Therefore, when a new λi is proposed, Uij should be redrawn from the proposed
position. The Uij drawn from the proposed position, rather than the one from
the old position, should be used to evaluate the acceptance probability for
the new λi. The proposed λi and its corresponding Uij should be accepted
simultaneously. This is different from what has been suggested previously,
where the proposed position was evaluated using Uij from the old position (15).
However, personal experience has shown that using the old position may lead
to a QTL becoming trapped within an interval between two markers; hence,
we suggest simultaneously updating Uij and λi.

A Normal proposal density is applied to each of the genetic effects (including
additive, dominance, and epistatic effects). Again, define θ(t−1)

i as the current
value for one of the genetic effects. The proposed θ*

i is drawn from
θ*

i ~ N(θ(t−1)
i , δ), where δ is a proposal variance (a tuning parameter). The

proposal density is

q(θ*
i | θ(t−1)

i ) =
1

√2πδ
exp { − 1

2δ (θ*
i − θ(t−1)

i )2} (19)

The reverse density q(θ(t−1)
i | θ*

i ) is, again, identical to the proposal density,
leading to a unity proposal ratio.

2.5.2.3. UPDATING THE NUMBER OF QTL (q)

The Metropolis–Hastings algorithm described earlier can be used for updat-
ing all unobservables except q, the number of QTL. This is because q itself
also defines the dimension of the model and the Metropolis–Hastings algorithm
in its original form only works when the dimensionality of the model is fixed.
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Green (19) developed a reversible-jump MCMC algorithm to accomplish the
variable dimension problem. Sillanpää and Arjas (15) applied this method to
QTL mapping for inference of the number of QTL. Instead of randomly drawing
a proposed QTL number and using the Metropolis–Hastings rule to accept it,
here we only consider one of two possibilities: adding a new QTL to the model
(with a predetermined probability Pa) or deleting an existing QTL from the
model (with probability Pd = 1 − Pa). Because q is also the dimension of the
model, when q changes, the set of parameters will change accordingly. Let us
define the set of unobservables under the current model (with q QTL) by �(t−1).
If we propose adding a QTL, the new QTL number becomes q* = q + 1. We
should propose a new position and all other variables associated with the added
QTL. Define the additional unobservables after a new QTL has been added by
v. The proposed set of parameters becomes �* = {�(t−1), v}. If v is drawn
independently from �(t−1), the proposal is q(�* | �(t−1)) = paq(v), where q(v) is
the proposal density from which the variables associated to the new QTL are
drawn. The reverse density is q(�(t−1) | θ*) = pd / (q + 1). Therefore, the accep-
tance probability is min {1, α}, where

α =
p(y | �*) p(�*) p(q*) q(�(t−1) | �*)

p(y | �(t−1)) p(�t−1)) p(q) q(�* | �(t−1))
(20)

where p(q*) = µq+1 e−µ / (q + 1)! and p(q) = µqe−µ/q! are the prior probabilities
for the new and old numbers of QTL, respectively. The prior density for the
new model is p(�*) = p(�(t-−1) p(v), where p(v) is the prior density for v. Note
that p(v) is, in general, different from the proposal density q(v). The above
acceptance probability can be simplified as

α =
p(y | �*) p(v)µpd

p(y | �(t−1)) q(v)(q+1)2 Pa

(21)

If the proposed QTL is accepted, all variables associated to it are simultaneously
accepted. Deleting a QTL simply takes the reverse process. Define the current
model with q QTLs by �(t−1) and the proposed model with q* = q − 1 QTLs
by �*. Further defining the variables associated to the deleted QTL by v, we
get θ(t−1) = {�*, v}. Therefore, the proposal density is q(�* | �(t−1)) = pd / q and
the reverse density is q(�(t−1) | �*) = paq(v). After some algebraic simplification,
we have the following acceptance probability:

α =
p(y | �*) q(v)q2pa

p(y | �(t−1) p(v) µpd

(22)

2.5.3. Overview

The MCMC algorithm starts with given values of the hyperparameters
(parameters in the prior distributions) and the initial values for all the unknowns
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generated from their prior distributions �(0) and proceeds with the following
updating steps:

1. Update the allelic effects A, the dominance effects D, and the epistatic effects H
of the founders.

2. Update the population mean b and the residual variance σ2.
3. Update QTL location � and the allelic inheritance configurations of QTL Uj simulta-

neously.
4. Update the QTL number q.

After the burn-in period, realizations of � are sampled from the chain and
stored. Once enough realizations have been sampled, empirical posterior distri-
butions for parameters in � can be created from the posterior sample.

3. Interpretation
Unlike maximum likelihood, Bayesian mapping does not result in a signifi-

cance test; therefore, results generated from Bayesian analysis should be inter-
preted in a different way. The product of the MCMC algorithm is a realized
sample of all unknown variables drawn from the joint posterior distribution.
The posterior sample contains all of the information we need to infer the
statistical properties of the parameters. Therefore, the MCMC algorithm serves
as an experiment to generate data. Upon completion of the experiment, we
need to summarize the results and draw conclusions. In fact, the statistical
properties of parameters (means and variances) are “observed” from the data
rather than inferred as in usual data analyses. This is because the sampled data
points are directly made on the parameters.

3.1. Summary Statistics

The most informative summary statement from the posterior sample is the
frequency table for each parameter of interest. The table may be converted
into a histogram, a visual representation of the posterior density. The posterior
mean, posterior variance, and credibility interval are also easily obtained from
the posterior sample. The posterior mean or posterior mode of a parameter
may be compared to the point estimate obtained using the maximum likelihood
analysis. The 95% credibility interval is defined as

Pr(a ≤ θi ≤ b | y) = ∫
b

a
p(θi | y) dθi = 0.95 (23)

where a and b are found such that b − a is minimum among all other values
that satisfy Eq. (23). Note that p(θi | y) is simply obtained from the joint
posterior sample by ignoring the variation of �−i. The Bayesian credibility
interval appears similar to, but has a quite different meaning from the confidence
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interval in significance test. The 95% credibility interval is a statement of
conditional probability (i.e., conditional on observed data, the probability that
θi lies between a and b is 0.95). The confidence interval in a significance test,
however, defines an interval based on observed data. Because the interval is
a function of the data, it varies from one experiment to another. The 95%
confidence interval is defined in such a way that if the experiment were repeated
many times, 95% of the times the intervals would cover the true parameter value.
Because Bayesian inference refers to a statement of conditional probability given
data in the current experiment, it never intends to make an inference about the
hypothetical future experiments.

3.1.1. Locating the QTL Under a Single-QTL Model

The summary statistics of the posterior distribution are useful for QTL
parameters when a single QTL is fitted to the model. The most important
parameter of interest is the location of the QTL in the genome, λ. The marginal
posterior distribution of QTL position can be depicted via plotting the number
(frequency) of hits by the QTL in a short interval against the genome location
of the interval. The regions frequently hit by the QTL are candidate locations
for the QTL. The uncertainty of each candidate region is reflected by the width
of the peak in the posterior density.

3.1.2. Locating QTL Under a Multiple-QTL Model

For multiple QTL, we use the reversible-jump MCMC for the change of
model dimension. As the number of QTL frequently changes, most QTL have
lost their identities. For instance, the first QTL in one observation may not be
the first one in another observation if new QTL have been added. When the
QTLs lose their identities, the posterior distributions of the corresponding QTL
effects also lose their meanings. Although the posterior distributions of q, b,
and σ2 are still meaningful in the multiple-QTL model, we must seek alternative
representations of the summary statistics for other QTL parameters. As men-
tioned in Subheading 5.1.1, the posterior density of the location of a QTL is
estimated by the proportion of the number of hits by the QTL to a short interval
surrounding that location. When a QTL loses its identity, we are unable to
keep track of the hits by individual QTL; rather, we can only keep record of
the total number of hits to a particular interval. Multiple hits to a short interval
may be the result of different hits of the same QTL from different observations
or of multiple hits by different QTL from the same observation. As a conse-
quence, we completely ignore the origins of the hits and record the total number
of hits by QTL along the whole genome. We then divide the whole genome
into many equal-distant short intervals, say 1 cM, and count the number of
hits to each short interval. The proportion of the hits to each interval, P(t), is
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plotted against t, the genome location of the interval. In contrast to a single-
QTL model, the curve is no longer called the posterior density of QTL location;
rather, it is called the QTL intensity profile. Therefore, the posterior density
of QTL location and QTL intensity profile are used interchangeably only under
a single-QTL model.

3.1.3. Estimating the Genetic Effects Under a Multiple-QTL Model

Similarly, when the identity of a QTL is lost, the effects associated to
individual QTL also lose their meanings. Corresponding to the QTL intensity
profile, we calculate the average effect for each of the short intervals of the
genome (sum of the QTL effects of multiple hits divided by the number of
hits) and form a profile for the QTL effect, E(t). For the candidate regions
of QTL (regions repeatedly hit by QTL), we can visualize the average effect
of QTL in those regions. It should be cautious that sometimes the profile of
the QTL effect may be misleading. We have noted that regions rarely hit by
QTL can sometime show a large average effect. So, the effect profile is only
meaningful for regions with high QTL intensity. We propose a weighted QTL
intensity, which takes the product of the QTL intensity and QTL effect, denoted
by W(t) = P(t)E(t). This weighted QTL intensity will eliminate the peaks in
the regions rarely hit by QTL, even if the average effect in the regions may
be large. There is one weighted QTL intensity profile for each QTL effect. By
looking at the weighted QTL intensity profiles of all effects, we can tell the
sources of variation of the detected QTL in a particular region of the genome.

3.2. Bayesian Mapping in Humans

With slight modification, the Bayesian mapping statistics developed here
can be applied to QTL analysis in humans. The only difference between human
pedigrees and multiple line crosses of plants that needs to be considered in
modifying the method is the difference in the number of founders. Human
pedigrees usually contain a much larger number of founders than plants, making
the statistical inference of QTL effects more difficult. When the number of
founders becomes large, information content per effect becomes small, leading
to a large estimation error per effect. Furthermore, the large number of effects
makes the results hard to interpret. These problems can be circumvented via
the random-model approach of QTL mapping. Under the random model, QTL
effects are treated as random effects and their variances become the parameters
of interest.

Traditional methods used for human pedigree analysis cannot handle the
complicated pedigrees with the high levels of inbreeding created by plant
breeders. The method developed here does not have this limitation. The advan-
tage of using such inbred pedigrees comes from the smaller number of founders
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Table 2
An Example for the Input Data Format of a Marker Linkage Map

3
1 3 0 15 31
2 6 0 20 40 60 80 100
3 5 0 12 15 26 50

Note: The first row of the data file contains a single numerical value (integer) for the total
number of chromosomes (three in this example). The first values (integers) for subsequent rows
store the chromosome ID numbers (chromosomes 1, 2, and 3 in this example). The second value
of each subsequent row stores the number of markers for that chromosome (three markers for
chromosome 1, six markers for chromosome 2, and five markers for chromosome 3 in this
example). The third and subsequent values for each row are the marker positions measured in
cM from the left end of the chromosome. For example, the first chromosome has three markers
with positions 0, 15, and 31 cM, respectively. Numbers within the same row are separated by
one or more spaces.

than that of noninbred pedigrees. With the smaller number of founders, one
can estimate and test dominance and epistatic effects more accurately. Based
on this argument, human pedigrees with high levels of inbreeding would provide
a good resource for QTL mapping using the methodology outlined here.

4. Software
The computer program for implementing analyses as described in this chapter

is called PlantModelQTL. The program is written in FORTRAN 77 and runs
on a UNIX platform. The program code and a user manual are available from
the author on request (xu@genetics.ucr.edu). The program analyzes both line
crossing and pedigree data. The relevant file format is that shown in Table 1.
In addition to the data file, the program requires another file storing the informa-
tion of the marker linkage map (see Table 2 for an example). The output file
contains a posterior sample of all parameters of interest. Currently, summary
statistics and graphical presentations of the posterior sample are not provided.
However, we are developing a user-friendly program with a window interface
that will be released in the near future.

5. Worked Example

5.1. The Simulated Data

The applicability of the proposed method is demonstrated by analyzing a
set of simulated data. This experiment involves three inbred lines. The three
lines were crossed in a factorial fashion to form a 3×3 half-diallel cross (see
Subheading 2.2.1. for the definition of diallel cross). The mapping population
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contains the three crosses and their derived F2 families. One hundred fifty
individuals were sampled from each of the three F2 families. One chromosome
of length 100 cM was simulated. Eleven markers were placed on the chromo-
some at positions 0, 15, 20, 28, 37, 50, 58, 67, 80, 85, and 100 cM. Marker
alleles of the three inbred lines were randomly sampled from a hypothetical
population with six equally frequent alleles. This led to a possibility that the
three lines might carry the same allele at a certain marker. Such a marker locus
is actually uninformative. A quantitative trait was modeled as being controlled
by two QTL residing on the simulated chromosome and a random environmental
deviate distributed as N(0, 1). The two simulated QTL were positioned at 25
cM and 65 cM, respectively (illustrated in Fig. 2 with arrows). For each QTL,
there were three allelic effects and six dominance effects. The true values of the
genetic effects with necessary constraints are given in Table 3. For simplicity,
epistatic effects were assumed to be absent and they were not included in the
model. The overall population mean was set at b = 0.0. All individuals in the
mapping populations were genotyped for markers, but only the terminal F2

progeny had phenotypic records.

5.2. Initializing the Markov Chain

The MCMC algorithm started with no QTL. The starting values for the
overall mean and the residual variance were 0.0 and 2.0, respectively. The
truncated Poisson prior for the number of QTL had a mean of µ = 3 and a
maximum number of lmax = 6. The prior for the overall mean was uniform in
the range of [−4, 4]. The residual variance took a uniform prior with a range
of [0.2]. The priors for all QTL allelic and dominance effects were chosen
to be Normal, N(0, 1). Finally, the tuning parameters of proposals in the
Metropolis–Hastings sampling were chosen to be 2.0 cM for QTL locations
and 0.05 for all other parameters.

5.3. Running the MCMC Sampler

The proposed MCMC sampler was run for 106 cycles, after discarding the
first 2000 cycles for the burn-in period. On a Sun Ultra 2 workstation, our
analysis took about 7 h. The chains were thinned (saved 1 iteration in every
50 cycles) to reduce serial correlation in the stored samples so that the total
number of samples kept in the post-Bayesian analysis was 20,000 for each
parameter. The stored samples were subject to the post-Bayesian analysis.

5.4. Results from the Posterior Sample
5.4.1. The Number of QTL (q)

The number of QTL, the overall mean and the residual variance were inferred
using all stored samples. The frequencies of the sampled values of the number
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Fig. 2. (A) QTL intensity profile and profiles of QTL; (B) allelic effects; (C) domi-
nance effects.
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Table 3
The True Locations and Allelic and Dominance Effects for the Two
Simulated QTL

Allelic effect Dominance effect

Location a(1) a(2) a(3) d(1, 1) d(1, 2) d(1, 3) d(2, 2) d(2, 3) d(3, 3)

25 cM 0.3 −0.3 0.0 −0.6 0.4 0.2 −0.6 0.2 −0.4
65 cM 0.4 −0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Note: The allelic and dominance effects satisfy the following constraints: a(3) = −[a(1) +
a(2)], d(1, 1) = −[d(1, 2) + d(1, 3)], d(2, 2) + d(2, 3)], and d(3, 3) = −[d(1, 3) + d(2, 3)].

of QTL provide an estimate of the marginal posterior distribution. The posterior
mode of the number of QTL is 2, which coincides with the true QTL number.
The posterior probability of q = 2 is Pr(q = 2 | y) = 0.9194. The result strongly
supports a model with two QTL in the chromosome.

5.4.2. The Locations of the QTL

Quantitative trait locus locations were inferred using the posterior QTL
intensity function (15,16). The QTL intensity profiles are shown in Fig. 2a.
The two major peaks of the QTL intensity fall between markers three and four
(20–28 cM) and between markers seven and nine (58–80 cM), respectively.

5.4.3. Genetic Effects

For each of the QTL allelic and dominance effects, we calculated the average
value within the short interval (1 cM) and then plotted the average value against
the chromosomal position, forming an effect profile. For the candidate regions
of QTL (regions repeatedly hit by QTL), we can visualize the size of QTL
effects. The effect profiles are shown in Figs. 2b,c. The estimates of allelic
and dominance effects, corresponding to the two major peaks on the QTL
intensity profiles, are close to the true values. Note, Sillanpää and Arjas (15)
state that the effect profile is only meaningful in the chromosomal regions
where the QTL intensity is reasonably high. We used the weighted QTL intensity
profiles to partition the QTL intensity profile into various components, each
corresponding to one specific effect. By looking at the weighted QTL intensities,
we can envisage the source of variation (additive and dominance) of the
detected QTL in a particular region of the genome. The weighted QTL
intensities are depicted in Fig. 3. From these weighted profiles, it is evident
that the second QTL are completely caused by the allelic effects, rather than
the dominance effects.
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Fig. 3. Weighted QTL intensity profiles for (A) allelic and (B) dominance effects.

6. Notes

1. File preparation. It is extremely important to have individual records entered into
the data sheet in chronological order. This will ensure that when generating geno-
types, parents are generated before their children. If the genotype of a child is
generated before its parents, the founder-allele identifiers would not necessarily be
appropriately passed from the parents to the child and the method would not work.

2. Missing genotypes. For simplicity, the algorithm described in this chapter was
derived under the assumptions that all markers were fully informative and there
were no missing marker genotypes. However, markers that are not fully informative
can be used in the computer program detailed in Subheading 4. In addition, the
issue of missing genotypes has been reduced. For individuals with no children,
missing genotypes are handled by the program. However, the problem of missing
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marker genotypes in the founders and parents is difficult to handle. In real data
analysis, a missing marker genotype in the founders and parents may be replaced
manually by a legal genotype before the data analysis. When there are too many
missing genotypes in the founders and parents, the method of the descent graph
(34) should be adopted to sample marker genotypes.

3. Standardizing the phenotype. The Bayesian mapping statistics requires prior informa-
tion and the starting values for all unknown variables. The prior distributions and
starting values, however, must be chosen not too far away from the true values.
The true parameter values depend on the scales and ranges of the phenotypic
distribution. It is convenient to transform the phenotypic value into a standardized
variable. This can be obtained using y* = (y − y)/sy, where y and sy are the calculated
average and standard deviation of y in the mapping population, respectively. When
analyzing y*, the starting values of parameters and the prior distributions can be
easily chosen. For instance, given that the overall variance of y* is approximately
unity, the true residual variance must be less than 1. With the standardized phenotypic
values, the computer program can use a set of intrinsic default starting values for
all the unknown variables. The final results may be reported in the transformed
scale or converted back into the original scale.
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QTL Analysis in Livestock

Joao L. Rocha, Daniel Pomp, and L. Dale Van Vleck

1. Introduction
In a recent issue of Science, Lander and Weinberg (1) stated that “without

doubt, the greatest achievement in biology over the past millennium has been the
elucidation of the mechanism of heredity.” The genetic dissection of quantitative
phenotypes into Mendelian-like components, or quantitative trait loci (QTL)
analysis, has provided significant insight into how complex traits are regulated
and controlled. In combination with the new tools of genomics, QTL analysis
promises to uncover the underlying variation in human genes that predispose
to maladies such as obesity, hypertension, and diabetes and that contribute to
behavioral phenotypes. This will not only yield informative diagnostics but
may also lead to new therapies and potential cures in the future. In addition,
we will begin to understand interactions between genes and the environment
and between genes and other genes (epistasis), which, together, will play critical
roles in implementing pharmacogenomic paradigms.

In food animal production, determining the identity of QTL is an important
goal, but, nonetheless, accurate estimates of linkages to QTL are the necessary
raw material to implement marker-assisted selection or marker-assisted manage-
ment. These methodologies will utilize DNA marker information to improve
the speed and accuracy of estimating breeding values in genetic selection
programs or to tailor management practices (e.g., feeding, drug therapy) to
better fit the genotypes of the animals.

Detection of QTL requires three essential stages: (1) collection of accurate
phenotypic data within properly developed/existing pedigrees/populations; (2)
collection of accurate genotypic data (DNA markers) within the pedigrees; and
(3) statistical analysis correlating phenotypic and genotypic data, reflecting
pedigree organization and structure. This chapter reviews the third step, particu-

From: Methods in Molecular Biology: vol. 195: Quantitative Trait Loci: Methods and Protocols.
Edited by: N. J. Camp and A. Cox  Humana Press, Inc., Totowa, NJ
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larly with regard to methodologies and software in use (or proposed) for live-
stock populations. Although the reader is referred to previous reviews (2–12),
a comprehensive assessment of state-of-the-art developments is offered, with
consideration of relevant historical observations.

Methodological and statistical contributions have been significant in the last
decade, and QTL analysis in livestock has reached a level of statistical sound-
ness, as reflected by the considerable number of experiments showing replication
and confirmation of findings (e.g., refs. 13–20). However, integration of thought
processes and terminologies of QTL researchers in different fields would be
of considerable benefit. Solutions to problems of very similar genetic essence
are often supported by terminologies that fail to recognize commonality, convey-
ing the notion that methodologies and approaches are substantively different.
Regardless of the species and underlying experimental paradigm, QTL analysis
reflects a universal and unifying principle: the assessment of linkage disequilib-
rium in the segregation deriving from an event of double heterozygosity. The
framework of reference is always a family or set of relatives, where the marker–
QTL-allele phase relationships structuring the double heterozygosity of the
common parent(s) of reference are disrupted only to the extent that there is
recombination between the loci (9). All human and livestock QTL analysis
stems from a 1938 article by Penrose (21), which represents the introduction
and the initial quantification of the principle stated earlier. Taylor and Rocha
(9) detailed the evolution of Penrose’s contribution into modern experimental
design for QTL detection in livestock.

The history of QTL analysis in livestock closely parallels that of the highly
successful science of estimating genetic parameters and breeding values for
quantitative traits (22), requiring increasingly sophisticated statistical methodol-
ogies in order to fully utilize existing complex data structures. These are often
of an unbalanced nature, frequently encompassing missing data and nuisance
parameters, and composed of large, complex pedigrees (6,12,23,24).

2. Methods

2.1. Crosses Between Outbred Lines

A common experimental design for QTL detection in livestock is the crossing
of lines (e.g., breeds, or artificially selected populations; Fig. 1). In livestock
populations, linkage equilibrium is expected. Thus, reverse marker–QTL phase
relationships may occur in the two parents of a full-sib family with biallelic
markers (25), complicating the statistical analysis and dramatically reducing
its power (25–27). A cross between two lines determines linkage disequilibrium
in the gametes forming the F1 such that marker–QTL phase relationships will
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Fig. 1. A cross between outbred lines.
Recombinant classes not shown and identical genotypes assumed for both F1 parents

of this Family 1.
Ignoring double-recombinants, the expectation for the statistical contrast between

the alternate double-homozygote marker-classes is (+ 2a).
Coefficients cai and cdi in equation (1) are computed regularly within the M-N marker-

interval, conditional upon the flanking marker-information of Individual I as a function
of the recombination rates r1 and r2.
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be the same in both parents of a full-sib family (25). Additionally, nonrandom
mating in the first generation of the cross will determine maximum parental
(F1) heterozygosity (25). Crossing of lines is a special case of a “full-sib”
design (see Subheading 2.3.), similar to the traditional F2 approach (26) used
for inbred plants and animals (e.g., mice) and the power of which is considerably
increased as a result of the concurrence of identical parental phases, maximal
parental heterozygosity, and minimal background variation (25,26).

An interesting feature of this design concerns the statistical nature of QTL
effects to be estimated. From a population genetics perspective, an inbred line
represents an isolated, reproducible gamete, with an isolated reproducible QTL
allele at each genomic location. With respect to these QTL alleles, specific
statistical inferences can be made, and allelic effects are thus fixed effects in
the statistical sense. In contrast, livestock populations are outbred, and individual
parents of a particular experiment are only a possible sample of many from a
population. The number of alleles at any given QTL is therefore unknown
(24,28,29), and statistical inferences are usually not relative to the particular
sample of alleles in the experiment, but to the overall population. Thus, with
few exceptions (e.g., very large sire families in dairy or beef cattle), QTL
allelic effects in livestock are random effects in the statistical sense, despite
the fact that many of the analyses used to detect livestock QTL treat allelic
effects as fixed effects for pragmatic reasons (24). Although inbred lines of
livestock generally do not exist, most animals are members of a breed, sharing
a higher degree of relationship than randomly chosen individuals from the
species. Experimental lines having undergone long-term selection for quantita-
tive traits will similarly have accumulated some level of inbreeding. Thus,
individuals within a breed or line will simultaneously be segregating for some
loci and fixed for others. Therefore, pairs of breeds/lines (especially those with
large phenotypic divergence) can be treated as inbred lines from a statistical
point of view for the purposes of QTL analysis. A cross between two breeds/
lines can be analyzed as an F2 design under some assumptions, the most
important of which is that the two breeds are in fixation for alternate QTL
alleles while likely segregating for most marker loci with some degree of allele
sharing. Inheritance of marker alleles is then traced within families, such that
the breed/line of origin of each F2 marker allele can be ascertained and the
appropriate statistical contrasts evaluated (see Fig. 1).

An example of different terminologies for conceptually similar genetic
designs is offered here. What is designated as “mapping by admixture linkage
disequilibrium” in human populations (30–32) is what animal breeders designate
as mapping from a cross between outbred lines. In the latter case, the admixture
is complete in the first generation (fractions of 0.5 for each line), occurring in
a single pulse without random mating, such that all gametic-phase disequilib-
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rium (not resulting from linkage) vanishes in the F2 offspring of the second
generation of admixture (32,33).

The breed/line cross design requires F1 marker heterozygosity, which does
not always occur. Whereas Beckmann and Soller (34) provided the first clear
theoretical indication of how to analyze such data, Haley et al. (35) solidly
established the multimarker mapping regression approach for this particular
design, as illustrated by Knott et al. (16). The basic statistical linear model,
fitted in a least square framework and easily accommodating fixed factors and
covariates, is of the type:

Yi = µ + caia + cdid + εi (1)

where Yi is the phenotype of the ith F2 individual, µ is the mean, and cai is the
coefficient for the additive component for individual i at the assumed given
location, equal to [prob(QQ) − prob(qq)] (a QTL fixed for alternative alleles
Q and q is assumed in the two breeds/lines; following Falconer and Mackay
(36), the effect of QQ is denoted “a,” that of Qq is denoted as “d,” and that
of qq as “−a”); cdi is the coefficient for the dominance component for individual
i at the given location, which is equal to prob(Qq), and εi are random residuals
with expectation 0 and common variance (16,35).

The probabilities [prob(QQ) − prob(qq)] and prob(Qq) are computed at 1-
to 2-cM intervals throughout the genome, conditional upon flanking marker
information (16,35; Fig. 1). When the assumed location is at a fully informative
marker, the probabilities depend on information from that marker only. Other-
wise, the probabilities are functions of the recombination rates between the
assumed location and the flanking informative markers.

A composite interval mapping approach (CIM; 37–39) should be followed
in these types of analysis. However, in outbred crosses and in livestock experi-
mental designs in general, implementation of CIM is not straightforward because
different markers will be informative in different families, and the presence of
segregating QTL alleles may also be family specific (23,29). Knott et al. (16)
outlined a scheme for cofactor selection in the context of an outbred cross, to
adjust the analysis for unlinked QTL/polygenic effects. Based on the statistical
model shown in Eq. (1), an F-ratio (or log odds [LOD] score) is computed at
every cM to compare a model with a QTL at this location against a model
without the QTL. The best estimate for QTL position is taken to be the location
giving the highest F-ratio (16,35). Two-QTL models may be tested using two-
dimensional searches, fitting the coefficients for two locations simultaneously
(16). A genetic search algorithm to facilitate the implementation of multiple
interacting QTL models has very recently been introduced (40).

Guidelines for reporting of suggestive and significant linkages (41) have
been adopted in many livestock QTL studies. With regression approaches,
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suitable thresholds are often determined empirically by permutation testing
(42). Confidence intervals for QTL location estimates may be obtained by
bootstrapping (43,44).

The regression approach described in Eq. (1) treats the QTL effect as fixed,
justifiable by the assumption of fixation of alternate alleles in the two lines.
When this assumption is violated by within-line segregation of QTL alleles,
there will be a random within-line variation. Perez-Enciso and Varona (45)
recently introduced a mixed linear model procedure that provides a flexible
variance component framework for QTL mapping in crosses between outbred
lines and treats the average difference in allelic effects between the two breeds
as a fixed effect. Additional variation within breeds is allowed through a
covariance structure. They also propose partitioning the genome into a series
of segments. The expected change in mean according to percentage of breed
origin and the genetic variance associated with each segment are estimated
using maximum likelihood [segment mapping (45)].

2.2. Half-Sib Designs
2.2.1. Regression Approaches

The half-sib design (27), sometimes designated the daughter design in dairy
cattle, is illustrated in Fig. 2. This and other related approaches (Figs. 3 and
4) can be viewed as truncated F2 designs, starting at the F1 level. Given linkage
equilibrium in the grandparental gametes, such that marker–QTL phase relation-
ships may be reversed in different F1 parents (25), within-family statistical
analyses are required.

A multimarker mapping regression approach, deriving from refs. 46 and 47,
has become the analytical method of choice for data from this design (e.g., ref.
15). Initially, the most likely haplotypes for each sire’s gametes are determined
(marker genotypes from dams would enhance this process, but are often too
costly to justify and are seldom available). The most likely linkage phase is
assumed to be the one minimizing the number of recombination events in the
sire. If both phases are equally likely, one is selected at random. This process
is repeated for each pair of adjacent heterozygous markers to reconstruct the
two sire gametes (15,46,47). The QTL allele of reference for the statistical
analysis is arbitrarily assigned to one of the linkage phases. The probability
of inheriting the chromosomal segment of that linkage phase is calculated for
every 1 or 2 cM for each sib, based on information from the closest informative
markers, which will vary from sire family to sire family. Once these steps are
completed, the following statistical linear model is fitted by least squares, which
would easily accommodate additional fixed effects and covariates (15,46,47):

Yij = µ + si + biXij + εij (2)
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Fig. 2. Half-sib design.
Recombinant and ambiguous classes not shown. Assumes a bi-allelic QTL.
Ignoring double-recombinants, the expectation for the statistical contrast between

half-sib groups above is [a + d(q-p)].
The probability Xij in equation (2) is computed regularly within the marker-interval

M-N, conditional upon the flanking marker-information of half-sib j and as a function
of the recombination rates r1 and r2.

where Yij is the phenotype of sib j of sire family i, si is the fixed effect associated
with sire family i, and bi is the average effect of the QTL allele substitution
for sire i, with expectation [a + d(q−p)] (27) if a biallelic QTL is assumed,
with a and d as defined previously, and p and q are the QTL allele frequencies
in the dams mated to sire i (multiple QTL alleles among the dams mated to
sire i would require some reinterpretation of d, p, and q). Xij is the probability
of sib j of sire i inheriting the chromosomal segment for gamete one of sire i
at the particular location being considered; other parameters are as defined
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previously. This model [Eq. (2)] allows for a maximum number of QTL alleles
equal to twice the number of sires in the design (15). Residual sums of squares
(RSS) from Eq. (2) are summed across families, and by the difference, the
sum of squares explained by the QTL fitted in the model is (15)

∑
n

j=1
(Yij − µ − si)2 − ∑

n

j=1
(Yij − µ − si − biXij)2 (3)

Larger sire-families will contribute more to overall RSS (15), and weighting
by inverses of variances can be considered. Test statistics are then calculated
at every 1 or 2 cM across the genome (15).

A two-stage strategy to increase experimental power has been proposed (48),
relying on initial screening of a few progeny per sire to identify sires most
likely to be heterozygous for QTL with large effects. Sires homozygous for
important QTL are useless for their detection; in stage 2, only progeny of
likely heterozygous sires are genotyped. A similar strategy for identification
of chromosomes likely to harbor QTL was also proposed (48).

2.2.2. Maximum Likelihood

A maximum likelihood (ML) approach for mapping QTL in the context of
a half-sib design has been proposed (49). The likelihood function Λ is the
product of within-sire likelihoods Λi, which are of the following form:

Λi = ∑
hsi

p(hsi | Mi) Π
ni

j=1
∑
2

q=1
p(dij = q | hsi, Mi) f(ypij | dij = q) (4)

The data are assumed to be from i independent sire families, with respective
dams (mates) unrelated to each other and to the sires. Sire i’s mates and
offspring are denoted ij (one offspring per dam). Phenotypes of progeny ij are
denoted ypij, and marker genotypes of progeny, parents, and grandparents for
a set of codominant loci are denoted by the prefix m (msi for sire i, mdij for
dam j mated to sire i, etc.). At each locus, the two alleles are arbitrarily denoted
as ms1

i and ms2
i. Marker information concerning the family of sire i is pooled

in vector Mi (49).
The L marker loci belonging to a previously known linkage group are

considered simultaneously and recombination rates are assumed known from
previous analyses. In (hsi), a matrix of order L × 2, the first column, hs1

i ,
corresponds to the chromosome transmitted by the grandsire to the sire, and
the second column hs2

i , corresponds to the chromosome transmitted by the grand-
dam to the sire (and equivalently for hdij). At any position x within the linkage
group, the hypothesis is tested that sire i is heterozygous for a QTL influencing
the mean of the trait. Given the sire allele received at location x (dij = 1 or 2), the
quantitative trait for progeny ij is assumed to be normally distributed with mean
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µd
i
ij + Xij β and variance σ2

e, β being a vector of fixed effects and Xij the correspond-
ing incidence vector (for simplification, not included in Λ; see ref. 49). The pene-
trance function, f, is conditional on the q chromosome segment transmitted by
the sire and is assumed to follow a normal distribution (49):

( 1
2πσ2

e
).5

exp[−0.5 (ypij − µq
i

σe
)2] (5)

For computation of the remaining two components of Λ, the transmission
probability p(dij = q | hsi, Mi) and the ordered-sire genotype probability condi-
tional on the marker information, p(hsi | Mi), the reader is referred elsewhere
(49). A number of alternative analytical strategies within the framework defined
in Eq. (4) have been considered, including (1) simpler methods for handling
the problem of unknown sire marker linkage phases (50), (2) linearization of
the likelihood for relatively small QTL effects (50), (3) a variance components
approach (51), (4) modeling of a biallelic QTL (51), and (5) heteroskedastic
within-QTL variances between sire families (51).

Georges et al. (14) used ML with a mixture model similar to that defined
in Eq. (4). Different sire families were analyzed independently, and likelihood
ratio tests were computed by dividing the likelihood under Ha : (αi = µ1

i − µ2
i

≠ 0; σ2
A ≠ 0) by that under H0 : (αi = 0; σ2

A ≠ 0) (i.e., assuming no QTL segregating
at the corresponding map position but still accommodating the MLE for the
additive genetic variance [σ2

A] in the likelihood). A threshold of 3 for the
LOD score was chosen to indicate statistical significance based on theoretical
considerations (14). Knott et al. (47) have also presented an approximate ML
methodology for QTL mapping in half-sib families.

2.3. Full-Sib Designs
2.3.1. Regression Approaches

A full-sib design (27) is illustrated in Fig. 3. Least squares regression (LSR)
approaches to interval mapping (52) with full-sib data are similar to those used
in half-sib designs (see ref. 53). The basic statistical model is

Yij = µ + fi + bsiXsij + bdiXdij + εij (6)

Interpretation of statistical terms in Eq. (6) is similar to Eq. (2), but now Yij is
the phenotype of sib j of full-sib family i, fi is the fixed effect associated with
full-sib family i, and because two QTL allele transmissions are traced per
family (from the sire [s] and from the dam [d]), two regression terms are needed
in Eq. (6). With full-sib designs, marker informativeness is particularly critical;
otherwise, the capacity to ascertain allele transmission and paternal and maternal
marker–QTL phase relationships may be severely hindered. Assuming fully
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Fig. 3. Full-sib design.
Recombinant classes not shown. Assuming fully informative markers, and both

parents heterozygous for the QTL, two statistical contrasts can be established among
the full-sib progeny: one associated with the alternate paternal alleles inherited; the
other with the alternate maternal alleles inherited. Ignoring double-recombinants, and
based on the appropriate pairs of the non-recombinant classes shown above, each of
these statistical contrasts has an expectation of [a + d (q-p)] (see Fig. 2).

If more than two QTL alleles are involved, interpretation of a and d parameters
above needs to be slightly readjusted, as they become average values across several
genotypic combinations. In the context of this full-sib design, the distribution of the
allele frequencies p and q in the expectation above becomes discrete as opposed to
continuous in the context of the half-sib design.
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informative markers (often unrealistic), the power associated with a full-sib
design is roughly double that of a half-sib design (27,54).

2.3.2. Maximum Likelihood

Knott and Haley (25) introduced the following likelihood function L to map
QTL in the context of a full-sib design, incorporating a random common-
family effect:

L = Π
N

i=1
�∞

−∞ (2πσ2
b)−0.5 exp[−u2

i /2σ2
b] ∑

Ms

ms=1
p(ms) ∑

Q

qs=1
freq(qs) ∑

Md

md=1
p(md) (7)

× ∑
Q

qd=1
freq(qd) Π

ni

j=1
∑
Mj

mj=1
∑
Q

qo=1
trans(mj, qo | ms, qs, md, qd) (2πσ2

w)−0.5 exp[−(yij−µ−gq
o
−µi)2/2σ2

w)]dui

The first term of L is the random common-family effect, which is assumed to
be normally distributed, with mean 0 and variance σ2

b, and independent of the
QTL and of the within-family environmental variance σ2

w. The likelihood of
the offspring phenotype given the QTL genotype (the last term of L) must also
take account of the common-family effect (ui). This parameter, however, is
unknown and, for a given family mean, is expected to vary according to the
different QTL genotypes considered for the parents. Hence, the likelihood must
allow for integration over all possible values of the family effect (25). Apart
from the common-family effect, components of L are analogous to those of
Eq. (4), the likelihood considered in the half-sib design (49): N is the number
of full-sib families, ni is the number of full sibs in family i, Mj is the number
of possible marker phases for offspring j (including whether marker haplotypes
are from sire or dam); Q is the number of ordered genotypes at the QTL (i.e.,
4), p(m) is the probability of marker phase m, of sire s or dam d, freq(q) is
the frequency of QTL genotype q, of sire s or dam d, in the parental generation,
Ms and Md are the number of possible marker phases for the sire and dam,
respectively, gqo is equal to a for Q1Q1, d for Q1Q2 and Q2Q1, and −a for Q2Q2

(25,36) (a bi-allelic QTL is assumed), and trans(mj, qo|ms, qs, md, qd) is the
probability of the offspring marker and QTL genotypes given the parental
genotypes and phase of linkage [the probability of QTL genotypes is considered
jointly with, rather than conditional on, that of observed marker genotypes (25)].

The QTL genotype and phase of linkage are not known for any parent
and, hence, all possible genotypes and phases need to be considered (linkage
equilibrium assumed in the parental generation). The N full-sib families are
assumed unrelated with parents mated at random. A prior estimate for the
recombination fraction between markers is used so that transmission probabili-
ties can be written in terms of a single unknown parameter, the recombination
fraction between one of the markers and the QTL (25).
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A numerical approximation to the exact likelihood in Eq. (7) was proposed
(25), replacing integration with weighted summation. To test for a QTL linked
to a marker, the maximized likelihood in Eq. (7) is compared to the maximized
likelihood under a model without a linked QTL. Marker data are omitted
from the model under H0, which then becomes a segregation analysis likelihood
(25). This test is different from that implemented by Georges et al. (14).
Knott and Haley (25) indicate that inflation of the test statistic may result
when the test for a linked QTL is made against a model not allowing for
between-family variation (including an unlinked QTL or a between-family
variance component). This method [Eq. (7)] constitutes a direct mapping
approach (55), with the recombination rate being a parameter over which
the likelihood function is maximized, as opposed to indirect mapping
approaches (55), which rely on computation of test statistics at regular genomic
intervals (15,16,35,46,47,53).

2.4. Mixtures of Full Sibs and Half Sibs

Le Roy et al. (56) have proposed an ML method to map QTL with data from
a mixture of large full- and half-sib families, a scenario frequently encountered in
many livestock species. The methodology proposed is an extension of Eq. (4),
the likelihood function introduced by Elsen et al. (49) for half-sib designs.

2.5. Granddaughter and Grand2-daughter Designs

The granddaughter design proposed by Weller et al. (57) (Fig. 4) represented
an important innovation in experimental designs for QTL mapping, primarily
in dairy cattle where pedigrees of sufficient size exist. The design is derived
from the replicated progenies concept (58,59) and fits the structure of the
progeny-testing schemes in the dairy cattle industry. In essence, the granddaugh-
ter design (57) amounts to a half-sib design for which the phenotype being
considered and utilized for QTL mapping is a mean of grand-offspring, rather
than the phenotype of the half-sib (contrast Figs. 2 and 4). The fact that
granddaughter phenotypes are considered halves of the expectation of the marker
contrasts as compared to those obtained under a half-sib design (Figs. 2 and
4), but the associated variances of these granddaughter contrasts will also be
reduced because means are used as opposed to single measurements. This
increases the power of QTL detection, requiring much less marker genotyping
as opposed to more extensive phenotypic measurement (54,57). However, exten-
sive phenotyping is routinely obtained in dairy bull progeny testing schemes,
so little extra effort or cost is incurred.

Although the traditional granddaughter design (57) encompasses a half-
sib structure, Van der Beek et al. (54) considered additional variants of the
granddaughter design, such as all combinations of half- or full-sib offspring
(second generation) and half- or full-sib grand-offspring (third generation).
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Fig. 4. Granddaughter design.
A bi-allelic QTL is assumed, recombinant marker-classes are not shown, double-

recombinants are ignored, and only unambiguous paternal-haplotype transmissions are
considered above (see Fig. 2).

The expectation for the statistical contrast between the two alternate mean grand
offspring-values corresponding to the two alternate half-sib marker-classes above is
1⁄2 [a + d (q − p)], which is half of the expectation for the corresponding statistical
contrast in a half-sib design (see Fig. 2).

Their conclusion was that three-generation designs encompassing a full-sib-
based second generation (typed for markers) and a half-sib-based third genera-
tion (with trait measurements) were most efficient in regard to genotyping for
a given statistical power (54). They further concluded that the relative advantage
decreases as heritability of the trait increases (54).
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When means of grand-offspring are used in the analysis of a granddaughter
design, each half-sib is associated with only one quantitative value (the average
of his daughters’ phenotypes), and, therefore, the statistical analysis becomes
that for a conventional half-sib design [Eqs. (2)–(4)]. The only difference may
be consideration of weighting factors (15,60) because some means may be
based on more measurements than others (Fig. 4). The inverse of the variance
is the weighting factor usually implemented (15,60).

The grand2-daughter design proposed by Coppieters et al. (61) consists of
a strategy for QTL confirmation, once evidence for a putative QTL emerges
from a conventional granddaughter design (57). The method uses multimarker
tracing of the segregation of the two QTL alleles from a grandsire to his
maternal grandsons via nongenotyped daughters, followed by contrasting the
quantitative value associated with the inheritance of these alternative homologs
by the maternal grandsons. This is an effective way to rapidly confirm putative
QTL in an independent sample without additional sampling or genotyping (61).
The density of markers in the regions of interest should be increased to facilitate
QTL allele tracing and compensate for missing genotypes of the dams (61).

2.6. Complex Pedigree Structures
2.6.1. Variance Component Approaches

Variance components (VC) approaches to interval mapping (52) have been
developed for livestock (24,62–64). This is particularly relevant because predic-
tion of breeding values from phenotypic records (22) is an integral component
of genetic selection programs, having had a tremendous impact on genetic
improvement in livestock species. Prediction of breeding values (22) derives
from implementation of a mixed linear model incorporating fixed effects and
additive genetic values of animals (the breeding value) as random effects with
an associated variance component (22). A key component is the modeling of
covariances among relatives with a matrix of additive genetic relationships
(under no inbreeding, the fraction of genes that two individuals are, on average,
expected to share identical by descent, IBD) among all members of a pedigree
(22). Parameter estimation usually is based on restricted (or residual) maximum
likelihood (REML) which maximizes the portion of the likelihood that is
invariant to the fixed effects (7,65). Because data structures in livestock popula-
tions usually encompass large pedigrees with complex relationships, restriction
to statistical methods capable of analyzing only previously described experimen-
tal designs would be a major limitation, failing to use all available information
(66,67). Thus, incorporation of QTL interval mapping (52) into this VC analyti-
cal framework (22,65) is a significant advance that adequately models the
random (statistical) nature of QTL effects in livestock populations and includes
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the capability to estimate the variance component associated with this random
effect. The model also simultaneously accounts for residual polygenic effects
while estimating QTL effects, and it adjusts predicted breeding values (22) to
reflect estimated QTL effects. VC methods are robust approaches that, compared
to ML methods treating QTL as fixed effects, require fewer parametric assump-
tions, are less sensitive to deviations from normality, and are often more tractable
computationally (24,62).

Building on previous contributions (68–70), the mixed linear model intro-
duced by Grignola et al. (62) is

Y = Xβ + Zu + ZTv + ε (8)

where Y is an N × 1 vector of phenotypes, β is a vector of fixed effects, X is
a design matrix relating β to Y, u is an n × 1 vector of random residual additive
polygenic effects, Z is an incidence matrix relating u to y, v is a 2n × 1 vector
of random QTL allelic effects, T is an incidence matrix relating each animal
to its two QTL alleles, and ε is a vector of random residuals (62). The variance
structures underlying Eq. (8) are

Var(u) = Aσ2
u, Var(v) = Qσ2

v, Var(ε) = Rσ2
ε (9)

where A is the additive genetic relationship matrix of dimension n × n, which,
under no inbreeding (inbreeding can easily be accommodated), is a matrix of
1’s in the diagonals and the remaining elements aij being the expected fraction
of genes (alleles) that animals i and j are expected to share IBD relative to a
reference base population; σ2

u is the residual additive polygenic variance, Qσ2
v

is the variance–covariance matrix of the QTL allelic effects conditional on
marker information, with σ2

v being half of the additive genetic variance explained
by the QTL (also designated QTL allelic variance); R is usually an identity
matrix, and σ2

ε is the residual variance (62). All of these variances are assumed
to be associated with normal distributions. The expectation of Qσ2

v is equal to
a weighted average of variance–covariance matrices conditional on all possible
sets of multilocus marker genotypes given the observed marker data (62).
Probabilities of multilocus marker genotypes are computed from the observed
marker information without consideration of phenotypic information, contrary
to exact mixture and Bayesian approaches (23,29,62).

Parameterization in Eqs. (8) and (9) circumvents the need for assumptions
concerning the number of QTL alleles, often unknown in livestock populations
(24,28,29). Effects of QTL alleles are assumed normally distributed under an
infinite alleles model (62). Implementation of a REML-based VC procedure is
complex, especially with a variance–covariance matrix of QTL allelic effects
[Eqs. (8) and (9)] conditional on marker information, and requires estimation
of a recombination parameter (see refs. 62–64 for details). Grignola et al. (64)
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expanded the model [Eqs. (8) and (9)] to include mapping of two linked QTL.
The methodology appears to accommodate some degree of missing marker
data (critical in complex pedigrees involving ancestors with no DNA sample),
but this capability is limited (71). Currently, only groups of simple half- or
full-sib families can be efficiently accommodated (62–64). Pedigree relation-
ships among sires can be accommodated, but dams are assumed unrelated. A
similar, less general REML-based VC procedure was presented by Van Aren-
donk et al. (71).

An additional consideration concerns hypothesis testing of QTL effects in
the context of the model in Eqs. (8) and (9). The likelihood under the null
hypothesis is evaluated at σ2

v = 0 (62). A likelihood ratio test is conducted, but
the distribution is not known and empirical assessment through data permutation
is computationally unfeasible (62). Grignola et al. (62) proposed the estimation
of thresholds for a number of less stringent significance levels, followed by
extrapolation to obtain the desired thresholds (62,72). Concern over robustness
of likelihood ratio tests, in the framework of QTL mapping procedures using
VC methods, has been raised (73).

A more general and flexible VC approach for QTL mapping, capable of
handling considerable missing marker information and arbitrarily complex pedi-
gree structures, is that of George et al. (24). The methodology is similar to the
model described in Eqs. (8) and (9) and is a two-step VC approach based on
interval mapping principles (52), which begins by utilizing available marker
data and pedigree information to calculate the covariance matrices associated
with a QTL at a particular position on the genome. The mixed linear model
is then constructed and parameter estimates are obtained. This two-step process
is repeated for each position of the genome. The approach (24) is highlighted
by implementation of a simulation-based algorithm for calculating IBD proba-
bilities (74) at a QTL between all pairs of individuals, given considerable
missing information and pedigree complexities.

For pedigrees with incomplete marker information, direct application of
recursive or correlation-based algorithms (24) is not possible. The matrix Q
in Eq. (9) is often replaced by its expectation (E) conditioned on the observed
marker data (Mobs):

E(Q | Mobs) = ∑
Ω

w
Qw Pr(w | Mobs) (10)

where w is a single phase-known complete marker configuration for the pedigree
from the set of all possible complete marker configurations Ω, Qw is the covari-
ance matrix for a putative QTL conditional on w and test position, and Pr(w |
Mobs) is the conditional probability of the complete marker configuration w
given observed marker data Mobs (24). Each of these Qw matrices in Eq. (10)
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can be estimated via recursive or correlation-based algorithms. However, calcu-
lating the expectation of Q for pedigrees including substantial missing data
presents two computational challenges. First, the number of configurations in
Ω is large, and the order of summation in Eq. (10) makes the calculation
infeasible (24). Second, exact calculation of Pr(w | Mobs) is intractable (24). Both
problems lead to utilization of simulation techniques to obtain the expectation
in Eq. (10), namely Markov chain Monte Carlo (MCMC) approaches (24).
Specifically, George et al. (24) implement a multiple-site segregation sampler
that relies on the Gibbs sampler and on utilization of segregation indicators
(24,74).

Variance component approaches to QTL mapping have also been developed
for use in human pedigrees (67). Almasy and Blangero (67) implemented a
correlation-based algorithm for the computation of IBD probabilities deriving
from ref. 75. Once again, integration of approaches and thought processes
across species would be a welcome advance in this area, where the multiplicity
of related ML methodologies for complex pedigree analysis is remarkable
(24,29,62–64,66,67,71,75–86). Although much remains to be accomplished in
this respect, important steps have been initiated (7,12,86).

2.6.2. Maximum Likelihood
2.6.2.1. JANSEN’S MIXTURE MODEL

Assuming QTL segregate for a particular trait, the full relationship between
phenotypes and possible QTL genotypes has necessarily to be a mixture of
distributions. However, an exact mixture analysis can be quite demanding
computationally; hence, approximate expectation methods have been developed
that are based on normality assumptions, such as the previously described LSR
approaches of Haley et al. (35) and Knott et al. (46,47) for fixed QTL effects,
and the VC approaches of Grignola et al. (62–64) and George et al. (24) for
random QTL effects (29). The ML approaches of Elsen et al. (49), Georges
et al. (14), and Knott and Haley (25) use mixture models, but for the simplified
conditions of one QTL, no relationships or dependencies among animals and
no missing marker data exist.

Jansen et al. (29) introduced a mixture model applicable to complex popula-
tion structures in which dependencies (pedigree relationships) among individu-
als may exist. Their methodology is based on the expectation–maximization
(EM) algorithm. They proposed both a stochastic EM algorithm and a Monte
Carlo EM algorithm in which a Markov chain of possible genotypic configura-
tions is generated via the Gibbs sampler (29) to maximize the likelihood. They
considered both single- and multiple-QTL models, with fixed random effects,
and illustrated their approaches with an application to half-sib families of dairy
cattle (29).
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With θ the vector of all parameters for fixed and random model terms and
for recombination and allele frequencies, the simultaneous likelihood L(θ) of
all observed trait and marker data under the mixture model considered by
Jansen et al. (29) is of the form

L(θ) = f(y, h) = ∑
g

P(g)f(y, h|g) (11)

where y denotes trait values, h denotes the observed marker data, and g denotes
possible genotypic configurations at all marker loci and one or more putative
QTL, each with a scalar probability of occurrence P(g); f(y, h|g)= f(y|g) if h
is consistent with g, and 0 otherwise (29).

Jansen et al. (29) evaluated models including parameters for allele frequencies
of markers and QTL, for discrete or normal effects of biallelic or multiallelic
QTL, and for homogeneous or heterogeneous residual variances. Compared to
VC approaches previously described (24,62–64), their methodology (29) seems
to offer more flexibility in handling of missing marker data and fitting of
multiple QTL models. However, how their approach could parallel those of
Grignola et al. and George et al. (24,62–64) in modeling the covariance structure
among related individuals, and therefore estimation of variance components
associated with random QTL effects, is not entirely clear. Consequently, the
future potential of this procedure in the context of livestock QTL analysis is
uncertain. The authors (29) describe data imputation via the Gibbs sampler
that could generate “known genotypes,” which would be analyzed by standard
software routines for linear regression and variance components (29). Further
developments are needed before the merits of this approach can be ade-
quately assessed.

2.6.2.2. COMPLEX SEGREGATION AND LINKAGE ANALYSIS

Developments in ML-based complex segregation analysis have recently taken
place in livestock breeding (83,87,88). The finite polygenic mixed model (83),
an alternative to the classical mixed major-gene–polygenic model of inheritance
(76), offers some capability for marker–QTL linkage analysis in complex
pedigrees by application of the Elston–Stewart algorithm (66; C. Stricker,
personal communication). In a sense, all QTL analysis could historically be
viewed as special cases of the Elston-Stewart algorithm (66), which provides
a general framework for quantitative trait analysis in pedigrees.

2.6.3. Bayesian Approaches

In QTL analysis, evaluation of a number of likelihood functions requires
summing over the set of all possible unobserved discrete genotypes of many
individuals. These likelihoods may include complex dependencies (relation-
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ships) among pedigree members, segregation of multiple QTL, occurrence of
incomplete marker data in many individuals, and uncertainty with respect to
a number of parameters that are not of direct relevance to the ultimate goals
of the analysis [e.g., fixed effects, variance components, allele frequencies
(89)]. The number of terms rapidly becomes too large to be calculated in an
exact manner (90). MCMC methods and the Bayesian framework fit well for
approximating these tasks numerically (90). Monte Carlo integration draws
samples from the required distribution and MCMC samples for a long time,
to construct a chain having at equilibrium a distribution equal to the distribution
being approximated (23).

In Bayesian analysis, all model parameters and missing data (“unobserv-
ables”) are treated as random variables. A full probability model is formulated
considering all variables (θ) conditioned on the observed data. By applying
Bayes’ rule, an expression is obtained for the posterior density (90):

p (θ | data) = [p (data | θ) p (θ)/p (data)] (12)

where p (data | θ) is the likelihood of the data given θ, p (θ) is a joint prior,
and p (data) is the unconditional likelihood of the data (90). Nuisance parameters
(not of posterior interest) are integrated out from the full posterior. MCMC
methods provide feasible approximate numerical solutions to the exact evalua-
tion of the posterior distribution, especially because the expression for the
posterior density needs to be known only up to a Normalizing constant when
using MCMC (90). Through the application of simple conditional independence
assumptions, Bayesian analysis allows for a description of complex dependency
structures in the joint prior p(θ). Uncertainty in one parameter is automatically
incorporated into the estimation of marginal posterior distributions of other
parameters (90). For a QTL analysis, the dimension of the parameter space
(depending on the number of QTL) is treated as a random variable with an
associated marginal posterior probability (90–92). This provides an automatic
and useful feature for model selection for an analysis considering alternative
multiple QTL models (91–93).

A frustrating aspect of current Bayesian applications in genetics is that
Bayesian jargon and methodology are not well understood by many. Addition-
ally, successful computer implementation of MCMC methods may be more an
art than a scientific exercise. To obtain an MCMC realization seems to be
straightforward, but to make sure that the generated sample represents the
correct target distribution seems to be a different matter (90). To date, few
analyses of real datasets have been reported, and if Bayesian approaches have
real merit, a serious effort is needed to clearly elucidate the basic principles
and methodologies that are involved in this implementation. For an in-depth
treatment of Bayesian approaches, the reader is referred to previous reviews
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(6,12) and recent dissertations (23,55,90). Understanding these works requires
extensive knowledge of Bayesian principles and methodologies.

Two main Bayesian approaches have evolved for use in livestock QTL
analysis. Hoeschele and VanRaden (94,95) defined a basic Bayesian framework
for marker–QTL linkage analysis for half-sib and granddaughter designs. This
included derivation of prior distributions for QTL substitution effects, QTL
allele and genotype frequencies, marker–QTL recombination rates, and prior
probability of linkage between a single or pair of marker loci and a QTL (94).
Subsequently, this prior information was combined with simulated data from
half-sib and granddaughter designs in a Bayesian analysis to compute the
posterior probability of linkage between markers and a biallelic QTL (95). A
prior exponential distribution of QTL effects was assumed, and if the posterior
probability of linkage exceeded a limit, linkage was declared and Bayesian
estimates were obtained. Estimates of QTL effects were shrunken toward the
mean/mode of the exponential prior (94,95).

The MCMC algorithms to implement this approach (94,95) were developed
by Thaller and Hoeschele (96,97). Estimators of parameters were marginal
posterior means computed using a Gibbs sampler with data augmentation for
marker–QTL genotypes and polygenic effects (96,97). MCMC versions of
Bayesian tests for marker–QTL linkage (represented by an indicator variable)
were also introduced (96,97). Uimari et al. (98) extended the approach to utilize
information from multiple linked markers and to perform one analysis per
chromosome, as opposed to analyzing each marker separately (98). Finally,
Uimari and Hoeschele (91) expanded the methodology to accommodate map-
ping of two linked QTL. Three different MCMC schemes for testing the presence
of a single or two linked QTL were compared, two of them based on the
formulation of indicator variables, and the third based on model determination
by reversible-jump MCM (91–93).

Hoeschele (12) has expanded on genotype sampling algorithms that are
essential for implementation of MCMC Bayesian approaches and even for ML
approaches such as those of Jansen et al. (29). Genotype sampling algorithms
are necessary to obtain genotype samples for MCMC realizations and are critical
for accommodating missing marker data for many individuals. Samples of
genotypes derive from the joint distribution of genotypes of all pedigree mem-
bers at all loci, conditional on observed marker genotypic and phenotypic data
(in contrast to VC approaches that do not use phenotypic information for this
purpose; see above; refs. 12, 23, 29, and 62). Hoeschele (12) has discussed
genotype sampling algorithms based on genotypic peeling, allelic peeling, and
descent graphs.

Whereas these MCMC Bayesian methodologies are focused on biallelic QTL
and characterized by the utilization of reversible-jump MCMC algorithms,
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Bink’s Bayesian framework (in the context of granddaughter designs) is focused
on normally distributed QTL effects and characterized by utilization of simu-
lated tempering MCMC algorithms (23,99–102). First, Bink et al. (23,99)
formulated a basic Gibbs sampling approach capable of accommodating and
extracting full genetic information from ungenotyped pedigree members. A
single marker linked to a QTL was considered and phenotypic information was
included (12,23,29,62) to derive sampling distributions for augmentation of
marker genotypes (23,99). Subsequently, the focus shifted to QTL variance
component estimation through implementation of Metropolis–Hastings (M-H)
algorithms, which allow for exploration of sampling spaces with nonstandard
densities (23,100), and QTL mapping through the implementation of simulated
tempering, a relatively new MCMC technique that improves the mixing proper-
ties of some Markov chains (23,101). In fact, straightforward implementation
of a M-H algorithm to shuffle the QTL position within the linkage maps led
to an effectively reducible Markov chain (i.e., not all possible positions were
reached from a given starting position for the QTL). Bink and Van Arendonk
(102) integrated previous developments (99–101) in an MCMC framework for
QTL mapping and parameter estimation, facilitating augmentation of marker
genotypes for ungenotyped individuals and accommodating additional depend-
encies (pedigree relationships) among ungenotyped dams of a granddaughter
design. Although these advancements appear to create an advantage, the meth-
ods do not consider multiple QTL models in contrast to others (91). With both
sets of methodologies [(91,94–98) and (23,99–102)], covariances among genetic
effects of related individuals are taken into account via an additive genetic
relationship matrix for polygenes and a gametic relationships matrix for QTL
(see earlier; refs. 24, 62–64, and 71).

An MCMC Bayesian framework for half-sib designs was introduced by
George et al. (55,103). The methodology focuses on a biallelic QTL, but a mono-
genic model of inheritance is considered, without modeling of genetic covari-
ances among relatives or inclusion of residual polygenic variance (55,103).
This limitation detracts from the utility of a methodology that appears suitable
primarily for estimation of QTL dominance effects (55,103). Reversible-jump
and product-space MCMC sampler algorithms were utilized and compared
(55,103).

Finally, Janss et al. (104) developed a Bayesian approach to complex segrega-
tion analysis (55). De Koning et al. (105) utilized this procedure to map QTL
by obtaining posterior genotype probabilities for QTL imputed from complex
segregation analyses (104), and subsequently conducting standard linkage anal-
yses among these QTL genotypes, and genomewide markers. Results were not
encouraging (105); genotypic assignments from posterior inferences were based
on probability thresholds, likely yielding considerable imprecision.
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3. Interpretation

For a discussion of statistical power associated with different analytical tech-
niques and experimental designs, the reader is referred to studies addressing this
important issue (27,34,48,54,57,106–111). Although statistical methodology for
QTL analysis in livestock has reached a level of high quality, appropriate con-
struction of 95% confidence intervals (CI) for QTL location parameters often
leads to inclusion of large proportions of the target chromosomes, even when
large QTL effects are detected (16,112) and sufficiently dense marker maps are
employed. This has rendered nonselective bootstrapping (43) practically useless
for CI construction in the context of QTL analysis (112). Selective bootstrapping
strategies (44), which utilize only samples with particular properties, such as
samples providing statistical evidence for the QTL or samples that support the
same mode of QTL gene action and the same signs of the estimated additive and
dominance effects as in the original sample, have been proposed and provide
better results (44,112). However, even these improved strategies (44) lead to 95%
CI that often average 20 cM in genetic distance (112). Assuming an average of
25 genes/cM, approximately 500 genes will be harbored within a CI spanning a
particular QTL location. In addition, Visscher and Haley (113) and Liu and Dek-
kers (114) have established that current QTL models have limited ability to deter-
mine whether genetic variance resulting from a chromosome is contributed by a
single QTL of major effect or a large number of QTL with minor effects. Thus,
it is essentially impossible to extrapolate from a significant test at a particular
location to identification of a list of putative candidate genes that can individually,
or incombination, be responsible for the estimatedeffect. Obviously, increasingly
sophisticated analyses, but more importantly, increasingly powerful datasets, will
be necessary for refinement of estimates of QTL locations and effects. To make
the leap to actual gene discovery, new tools will need to be combined with QTL
analysis, including gene expression (mRNA and protein) analysis, mutational
analysis, well-characterized and ordered genomic libraries, and large-scale
sequencing of the expressed genomes of livestock species.

To address these issues, deriving from the study of Visscher and Haley
(113), a number of complementary statistical tests have been proposed for a
QTL analysis in the framework of a line cross (16). Three additional related
statistical models were implemented and tested by Knott et al. (16) to explore
biological meaning and assess the most likely genetic model underlying any
statistical significance detected by the model in Eq. (1): a multiple QTL model,
a single region model, and a polygenic model. With the multiple QTL model,
offspring phenotypes are regressed simultaneously onto the coefficients of a
and d for a number of evenly spaced marker locations along a chromosome,
testing for genetic variation on the chromosome affecting the trait under consid-
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eration. Degrees of freedom for the genetic component of this model are twice
the number of selected marker locations on the chromosome (16,113). With
the single-region model, the coefficients of a and d from two selected marker
locations flanking an interval are fitted. This tests for an effect associated
with the flanked interval, with the analysis repeated for each interval in the
chromosome. The genetic component of this model has four degrees of freedom
(16,113). Under the polygenic model, offspring phenotypes are regressed on
the proportion of each breed/line that is present along the chromosome. Some
of the assumptions inherent to the fitting of this polygenic model are (1) no
double recombination between selected markers, (2) means of coefficients at
selected markers are weighted to account for unequal marker spacing, and (3)
each equal length of a chromosome from one breed/line has the same effect
in the same direction, which implies cis associations of QTL alleles in the two
breeds or lines (otherwise trans effects will mask each other). If all markers
in a chromosome are used, the test would be equivalent to regressing on the
mean coefficients for a and d for the chromosome (16,113).

Comparing these tests indicates the most likely underlying genetic models
for each chromosome harboring a putative QTL. If the multiple QTL model
is significant, the other two models are compared with it to determine whether
they provide an adequate description of the data. If one or several QTL are
linked together in a small region of the chromosome, then fitting coefficients
from markers flanking this region would explain most of the genetic variation
associated with the chromosome and, hence, the multiple QTL model would
not be a significant improvement over the single-region model. Alternatively,
with many QTL linked in association in the grandparental lines, the polygenic
model would provide an adequate description of the data and would not be
rejected in favor of the multiple QTL model (16,113). Although conclusions
drawn from these comparisons are somewhat limited, they may reveal clues
as to the biological and genetic relevance of some of the statistically significant
results detected in a QTL analysis. Similar tests could be tailored to fit experi-
mental designs other than breed/line crosses.

Interpretation of a and d coefficients in the model in Eq. (1) was based on the
assumption of alternate QTL alleles being fixed in the two crossed breeds/lines.
If this assumption does not hold true, the approach may considerably lose power,
and a and d become complex functions of differences between effects of QTL
alleles weighted by differences in their frequency in the two lines and subject
to a sampling effect as a result of parental F1 representation in the particular
experiment. Assuming that parental F1’s are a representative sample of all pos-
sible grandparental gametic combinations, a and d could then be interpreted as
average additive differences and dominance deviations (at that genomic location)
among all pairs of QTL alleles segregating in the two breeds/lines crossed.
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4. Software

4.1. Crosses Between Outbred Lines

Software implementing methodologies described for this design (model 1;
refs. 16, and 35) is available for use at no cost from http://latte.cap.ed.ac.uk.
This WWW site, although still in development, is user-friendly with clear
instructions and detailed examples. File formats are common and easily pre-
pared. Although the software is not available for downloading, data files may
be submitted for analysis, with results provided to the user. Capabilities for data
permutation (42) and construction of CIs by bootstrapping (43,44) are available.

4.2. Half-Sib Designs

Three computer programs appear to be available with capabilities to imple-
ment QTL analyses under this design (Fig. 2). QTLMAP (49) is a program
written in FORTRAN 77, available upon request and at no cost from Jean-
Michel Elsen (INRA; elsen@toulouse.inra.fr). The program implements ML
methodology described in Eqs. (4) and (5) as well as alternative analytical
strategies that were discussed under that framework (49–51). HSQM is a series
of computer programs that promise to perform LSR, ML, and rank-based
nonparametric (115) QTL analyses under half-sib designs (Fig. 2). Michel
Georges (University of Liege; michel@stat.fmv.ulg.ac.be) has indicated that
the programs are available upon request. Programs implementing LSR method-
ologies described in Eqs. (2) and (3) are available upon request from Chris
Haley (Roslin Institute; chris.haley.@bbsrc.ac.uk).

4.3. Full-Sib Designs

From Elsen et al. (49), it is not clear whether QTLMAP will perform QTL
analyses under strict full-sib designs (Fig. 3), but it may. MapQTL is a program
sold from http://www.cpro.wageningen-ur.nl/cbw/mapping. This is software
designed for plant-breeding applications; it implements ML-based QTL analyses
for a single full-sib family, accommodating up to four QTL alleles (116). This
limitation renders the program of little use for livestock-breeding structures.

4.4. Mixture of Full and Half Sibs

QTLMAP also implements the ML methodology introduced by Le Roy et
al. (56), a variant of model in Eq. (4) suited to these types of family structures.

4.5. Complex Pedigree Structures
4.5.1. Variance Component Approaches

MQREMLH and MQREMLF are REML-based VC programs that imple-
ment methodologies introduced by Grignola et al. (62–64) and described in



QTL Analysis in Livestock 335

Eqs. (8) and (9). The programs are available upon request, from Ina Hoeschele
(Virginia Polytechnic Institute; inah@vt.edu). MQREMLH is designed for
QTL mapping in half-sib and granddaughter designs (Figs. 2 and 4), whereas
MQREMLF is targeted to half- and full-sib mixtures. Pedigree relationships
can be accommodated only through males (62–64,117). These programs are
written in FORTRAN 77 and run under UNIX environments. Chromosomes
are analyzed singly, and two strategies are used to accommodate multiple QTL
models (117). In strategy A, multiple QTL are mapped simultaneously with a
cyclic optimization of QTL positions. In each cycle, all but one QTL are fixed
at their current most likely position while the position of one of the QTLs is
optimized. This procedure is performed, in turn, for each QTL until convergence
is reached (117). Either an empty marker interval or a minimum distance
between any two QTL is required to ensure estimability of both QTL positions
and QTL variances (117). A likelihood ratio is computed for each QTL as the
ratio of the likelihood with all QTL variances estimated (Ha) to the likelihood
with the variance of the QTL being considered fixed at zero (H0; refs. 62–64
and 117). In strategy B, for a given marker interval, one QTL at either side
of the interval (flanking QTL) is fitted and the QTL within the interval is
mapped while fixing the position of the flanking QTL. For each interval, a
likelihood ratio test is constructed between the likelihood with variances esti-
mated for both QTL (Ha) and the likelihood with variance fixed at zero for the
QTL being mapped (H0; refs. 62–64 and 117).

4.5.2. Complex Segregation and Linkage Analysis

SALP (Segregation And Linkage analysis for Pedigrees) (118) is a computer
program mainly designed for complex segregation analyses in complex pedi-
grees implementing the finite polygenic mixed-model approach of Fernando
et al. (83) or the regressive models of Bonney et al. (80). Applications of the
Elston-Stewart algorithm gives the program capability for two-point linkage
analyses between a single biallelic QTL/major locus and a single marker with
any number of alleles while accommodating a residual polygenic component
(118). Missing marker data are not accommodated. SALP can be obtained at
no cost from http://www.tz.inw.agrl.ethz.ch/~stricker/salp/.

4.5.3. Bayesian Approaches

Programs for exact Bayesian analyses for half-sib designs with relationships
across families (6) are not currently available, but more general Bayesian
programs will be available sometime in 2001 (Hoeschele, personal communica-
tion). Software developed by Sillanpaa (90) for Bayesian QTL analyses is
aimed at plant-breeding research. Again, as with MapQTL, the focus is on
single full-sib outbred families with up to four QTL alleles accommodated



336 Rocha, Pomp, and Van Vleck

(90). Sillanpaa’s Bayesian software for multiple QTL mapping in outbred
populations with incomplete marker data [Multimapper/outbred (90) is avail-
able at no cost from http://www.rni.helsinki.fi/~mjs/.

5. Examples in the Literature
Given the broad scope and inclusive nature of this chapter and the multitude

of designs, approaches, and models used in the analysis of livestock QTL data,
a single worked example is not feasible nor would it be particularly useful.
Many real examples illustrating the use of most of these methodologies have
been referenced in the text (13–20,23,53,60,61,105,112,115). Alternatively,
results are available from a QTL workshop held at the 1996 biannual meeting
of the International Society of Animal Genetics (5,72), where a systematic
comparison of different QTL methodologies was conducted. Real and simulated
data from a granddaughter design (57) comprising 20 half-sib families were
analyzed by 3 different procedures: LSR, REML-VC, and Bayesian analysis
(5,72). Bayesian analysis was performed under both a normal-effects and a
biallelic QTL model. All three procedures were able to locate accurately the
simulated QTL and agreed on QTL location estimates from the real dataset.
However, there were important differences in estimates of QTL-associated
variance, with the Bayesian analysis being sensitive to model misspecification
(e.g., analyzing a simulated biallelic QTL under a normal-effects model and
vice versa).

Computational advantages offered by LSR approaches were emphasized by
the workshop (72), because they allow easy application of permutation proce-
dures (42) essential for determination of significance thresholds. Although
computationally demanding, Bayesian approaches were noted for their superior
capabilities concerning parameter estimation under different models. REML-
VC procedures were intermediate with respect to advantages and disadvantages
of the other approaches (72). Different procedures are recommended for differ-
ent stages of data analysis (72). A first genome scan could be conducted with
LSR approaches with data permutations for threshold determination. Subse-
quently, genomic regions yielding evidence of suggestive or significant QTL
in the first scan should then be re-evaluated with more powerful procedures
for parameter estimation (72).

6. Notes
Several lessons and general inferences may be gleaned from this broad

review of methods for QTL analysis in livestock.

1. Interval mapping. Interval mapping (52) approaches have become routine, with
modifications of the original methodologies. Because informative markers vary from



QTL Analysis in Livestock 337

family to family, all markers in a linkage group are simultaneously used rather than
only the two flanking markers of each interval as originally considered (52).

2. Maximum likelihood interval mapping. Maximum likelihood interval mapping is
seldom used; LSR approaches (35,46,47) derived from the seminal contribution of
Haley and Knott in 1992 (119) are usually preferred. ML methods do not provide
advantages in statistical power (47,110,120), although computationally demanding
and not as robust to deviations from normality and other assumptions (46,47).

3. The necessity for operational simplicity. The drive to develop ever more complex
statistical methodology needs to be tempered by the recognition that elements of
operational simplicity should be retained for successful and pragmatic application
of any new technology (9). In this respect, recent comments by Terwilliger and
Goring (121) on roles played by the more statistically oriented in this field of
research are insightful.

4. Does the method fit the data? Full utilization of, and adaptation of statistical proce-
dures to, existing data structures are preferred to fitting data to available statistical
procedures. In this regard, Bayesian approaches are appealing, although most
researchers have not been exposed to those methods.

Least squares approaches will continue to be useful as data-screening tools when
large kindreds are available, especially given their ability to support data permuta-
tion necessary for statistical tests (16,24,42,47,50,62,72). Variance component
approaches (24,62–64) are likely to be productive and convenient for QTL analysis
in the near future and will provide a platform to tackle the complex issues of
genotype × environment interaction and epistasis (122). Strategies for data analysis
encompassing different statistical procedures at different stages of the process will
likely become routine in the future (46,72,123).

5. The success of QTL mapping in livestock. Although a few QTL with large effects
are found in nearly every study that is conducted (13–20,60,61,112), we have yet
to find compelling evidence to dispel the wisdom of Jinks that “the number of genes
found is proportional to the patience and effort which the experimenter is willing
to put into their detection” (124). Further advances in methodology for QTL detection
will likely add to the growing list of chromosomal regions of livestock harboring
genes contributing to genetic variation in a variety of economically relevant com-
plex traits.

Quantitative trait loci analysis in livestock has successfully reached a threshold
of biological and genetic relevance. However, QTL analysis has yet to reach the
threshold of production relevance, enabling implementation of marker-assisted selec-
tion (125,126) and/or management practices. In the context of gene discovery using
animal models, QTL analysis will continue to play an important role in a succession
of integrated genomic applications (127).
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