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I dedicate this book to my parents, James and Joyce Wilson.



Preface

Littlewood-Paley theory can be thought of as a profound generalization of the
Pythagorean theorem. If x ∈ Rd—say, x = (x1, x2, . . . , xd)—then we define
x’s norm, ‖x‖, to be (

∑d
1 x2

n)1/2. This norm has the good property that, if
y = (y1, y2, . . . , yd) is any other vector in Rd, and |yn| ≤ |xn| for each n, then
‖y‖ ≤ ‖x‖. In other words, the size of x, as measured by the norm function,
is determined entirely by the sizes of x’s components. This remains true if
we let the dimension d increase to infinity, and define the norm of a vector
(actually, an infinite sequence) x = (x1, x2, . . .) to be ‖x‖ ≡ (

∑∞
1 x2

n)1/2.
In analysis it is often convenient (and indispensable) to decompose func-

tions f into infinite series,

f(x) =
∑

λnφn(x), (0.1)

where the functions φn come from some standard family (such as the Fourier
system) and the λn’s are complex numbers. (For the time being we will not
specify how the series 0.1 is supposed to converge.) Typically the coefficients
λn are defined by integrals of f against some other functions ψn. If we are
interested about convergence in the sense of L2 (or “mean-square”), and if
the φn’s comprise a complete orthonormal family, then each ψn can be taken
to be φ̄n, the complex conjugate of φn; i.e.,

λn =
∫

f(x) φ̄n(x) dx,

and we have ∫
|f(x)|2 dx =

∑
|λn|2.

(For the time being we will not specify the domain on which f and the φn’s
are defined.) If we are only interested in L2 functions, then the natural norm,

‖f‖2 ≡
(∫

|f(x)|2 dx

)1/2

=
(∑

|λn|2
)1/2

,
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has the same domination property possessed by the Euclidean norm on Rd:
if g =

∑
γnφn and |γn| ≤ |λn| for all n, then ‖g‖2 ≤ ‖f‖2. Even better, if, for

some ε > 0, we have |γn| ≤ ε|λn| for all n, then ‖g‖2 ≤ ε‖f‖2.
Unfortunately, L2 is not always the most useful function space for a given

problem. We might want to work in L4, with its norm defined by

‖f‖4 ≡
(∫

|f(x)|4 dx

)1/4

.

To make things specific, let’s suppose that our functions are defined on [0, 1).
The collection {exp(2πinx)}∞−∞ defines a complete orthonormal family in
L2[0, 1). Now, if f ∈ L4[0, 1), then the coefficients

λn ≡
∫ 1

0

f(x) exp(−2πinx) dx

are defined, and the infinite series,

∞∑
−∞

λn exp(2πinx),

converges to f in the L4 sense, if we sum it up right. But the domination
property fails in a very strong sense. Given f ∈ L4, and given an integrable
function g such |γn| ≤ |λn| for all n, where

γn =
∫ 1

0

g(x) exp(−2πinx) dx,

there is no reason to expect that ‖g‖4 is even finite, let alone controlled by
‖f‖4.

Littlewood-Paley theory provides a way to almost preserve the domina-
tion property. To each function f , one associates something called the square
function of f , denoted S(f). (Actually, the square function comes in many
guises, but we will not go into that now.) Each square function is defined via
inner products with a fixed collection of functions. Sometimes this collection is
a complete orthonormal family for L2, but it doesn’t have to be. The square
function S(f)(x) is defined as a weighted sum (or integral) of the squares
of the inner products, |〈f, φ〉|2, where φ belongs to the fixed collection. The
function S(f)(x) varies from point to point, but, if f and g are two functions
such that |〈g, φ〉| ≤ |〈f, φ〉| for all φ, then S(g)(x) ≤ S(f)(x) everywhere. The
square function S(f) also has the property that, if 1 < p < ∞, and f ∈ Lp,
the Lp norms of S(f) and f are comparable.

The combination of these two facts—domination plus comparablility—lets
us, in many situations, reduce the analysis of infinite series of functions,

f(x) =
∑

λiφi(x),
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to the analysis of infinite series of non-negative functions,

S(f)(x) =
(∑

|γi|2|ψi(x)|2
)1/2

;

and that greatly simplifies things. We have already mentioned the practice,
common in analysis, of cutting a function into infinitely many pieces. Typi-
cally we do this to solve a problem, such as a PDE. We break the data into
infinitely many pieces, solve the problem on each piece, and then sum the
“piece-wise” solutions. The sums encountered this way are likely to contain a
lot of complicated cancelations. Littlewood-Paley theory lets us control them
by means of sums that have no cancelations.

The mutual control between |f | and S(f) is very tight. We will soon show
that, if f is a bounded function defined on [0, 1), there is a positive α such that
exp(α(S(f))2) is integrable on [0, 1)—and vice versa. (This is not quite like
saying that |f | and S(f) are pointwise comparable, but in many applications
they might as well be.) This tight control is expressed quantitatively in terms
of weighted norm inequalities. The reader will learn some sufficient (and not
terribly restrictive) conditions on pairs of weights which ensure that∫

|f(x)|p v dx ≤
∫

(S(f)(x))p w dx (0.2)

or ∫
(S(f)(x))p v dx ≤

∫
|f(x)|p w dx (0.3)

holds for all f in suitable test classes, for various ranges of p (usually, 1 < p <
∞). He will also learn some necessary conditions for such inequalities.

The usefulness of the square function (in its many guises) comes chiefly
from the fact that, for many linear operators T , S(T (f)), the square function
of T (f), is bounded pointwise by a function S̃(f), where S̃(·) is an operator
similar to—and satisfying estimates similar to—S(·). This makes it possible
to understand the behavior of T , because one can say: |T (f)| is controlled by
S(T (f)), which is controlled by S̃(f), which is controlled by |f |. Obviously,
the closer the connection between |f | and S(f), the more efficient this process
will be. The exponential-square results (and the corresponding weighted norm
inequalities) imply that this connection is pretty close.

We have tried to make this book self-contained, not too long, and ac-
cessible to non-experts. We have also tried to avoid excessive overlap with
other books on weighted norm inequalities. Therefore we have not treated
every topic of relevance to weighted Littlewood-Paley theory. We have not
touched on multi-parameter analysis at all, and we have dealt only briefly
with vector-valued inequalities. We discuss Ap weights mainly with reference
to the square function and singular integral operators. We prove the bounded-
ness of the Hardy-Littlewood operator on Lp(w) for w ∈ Ap and we prove an
extrapolation result—because we need both—but we don’t prove Ap factor-
ization or the Rubio de Francia extrapolation theorem, excellent treatments
of which can be found in many books (e.g., [16] and [24]).
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The book is laid out this way. Chapter 1 covers some basic facts from
harmonic analysis. Most of the material there will be review for many people,
but we have tried to present it so as not to intimidate the non-experts. Chapter
2 introduces the one-dimensional dyadic square function and proves some of its
properties; it also introduces a few more techniques from harmonic analysis. In
chapter 3 we prove the exponential-square estimates mentioned above (in one
dimension only). These lead to an in-depth look at weighted norm inequalities.
In chapter 4 we extend the results of the preceding chapters to d dimensions
and to continuous analogues of the dyadic square function.

Chapters 5, 6, and 7 are devoted to the Calderón reproducing formula.
The Calderón formula provides a canonical way of expressing “arbitrary”
functions as linear sums of special, smooth, compactly supported functions.
It is the foundation of wavelet theory. Aside from some casual remarks1, we
don’t talk about wavelets. The expert will see the close connections between
wavelets and the material in chapters 5–7. The non-expert doesn’t have to
worry about them to understand the material; but, should he ever encounter
wavelets, a good grasp of the Calderón formula will come in very handy. We
have devoted three chapters to it because we believe the reader will gain more
by seeing essentially the same problem (the convergence of the Calderón in-
tegral formula) treated in increasing levels of generality, than in having one
big portmanteau theorem dumped onto his lap. The portmanteau theorem
(Theorem 7.1) does come; but we trust that, when it does, the reader is more
than able to bear its weight.

Chapters 8 and 9 give some straightforward applications of weighted
Littlewood-Paley theory to the analysis of Schrödinger and singular integral
operators. This material could easily have come after that in chapter 10, but
we felt that, where it is, it gave the reader a well-earned break from purely
theoretical discussions.

In chapter 10 we return to theory. The scale of Orlicz spaces (which in-
cludes that of Lp spaces for 1 ≤ p ≤ ∞) provides a flexible way of keeping
track of the integrability properties of functions. It is very useful in the study
of weighted norm inequalities. The material here could have come at the very
beginning, but we felt that the reader would understand this theory better if
he first saw the need for it.

As an application of Orlicz space theory, chapter 11 presents a different
proof of Theorem 3.8 from chapter 3. This ingenious argument, due to Fedor
Nazarov, completely avoids the use of good-λ inequalities (which we introduce
in chapter 2). These have been a mainstay of analysis since the early 1970s.
In the opinion of some researchers, they have also become a crutch. We are
neutral on this issue, but please see our note at the end of chapter 2.

Chapter 12 applies the theory from the preceding chapters to give a new
(and, we hope, accessible) proof of the Hörmander-Mihlin multiplier theorem.
Chapter 13 extends the main weighted norm results from earlier chapters

1 Like this one.
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to the �2-valued setting. In chapter 14 we prove one theorem (Khinchin’s
Inequalities), but our discussion there is mainly philosophical. We look at
what Littlewood-Paley theory can tell us about pointwise summation errors
of Haar function expansions.

We have put exercises at the end of almost every chapter. Some of them
expand on topics treated in the text; some tie up loose ends in proofs; some
are referred to later in the book. We encourage the reader to understand all
of them and to attempt at least a few. (We have supplied hints for the more
difficult ones.)

The author wishes to thank the many colleagues who have offered sug-
gestions, helped him track down references, and steered him away from
blunders. These colleagues include David Cruz-Uribe, SFO (of Trinity Uni-
versity in Hartford, Connecticut), Doug Kurtz (of New Mexico State Univer-
sity), José Martell (of the Universidad Autónoma de Madrid), Fedor Nazarov
(of Michigan State University), Carlos Pérez Moreno (of the Universidad de
Sevilla), and Richard Wheeden (of Rutgers University, New Brunswick). I
must particularly thank Roger Cooke, now retired from the University of
Vermont, who read early drafts of the first chapters, and whose insightful
criticisms have made them much more intelligible and digestible.

The author could not have written this book without the generous support
of the Spanish Ministerio de Educación, Cultura, y Deporte, which provided
him with a research grant (SAB2003-0003) during his 2004-2005 sabbatical at
the Universidad de Sevilla. My family and I are indebted to so many members
of the Facultad de Matematicas for their hospitality, that I hesitate to try to
name them, for fear of omitting some. However, I must especially point out
the kindness of my friend and colleague, Carlos Pérez Moreno. Without his
tireless efforts, our visit to Sevilla would never have taken place. I do not
have adequate words to express how much my family and I owe to him for
everything he did for us, both before and after we arrived in Spain. Carlos,
Sevilla, y España se quedarán siempre en nuestros corazones.
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1

Some Assumptions

Every area of mathematics—and, indeed, of learning—is a minefield of pre-
suppositions and “well-known” results. In this section I will try to acquaint
the reader with what things are taken for granted in weighted Littlewood-
Paley theory. Some of these things are definitions and notations, and some of
them are theorems.

We assume that the reader has had a graduate course in measure theory, at
least to the level of chapters 5 and 6 in [21]. Roughly speaking, this includes:
the theory of the Lebesgue integral (in 1 and d dimensions), Lp spaces in Rd

(1 ≤ p ≤ ∞) and their duals, and some functional analysis. We also assume
that the reader knows a little about the Fourier transform.

We will use certain definitions and conventions repeatedly.
The definition of the Fourier transform we shall adopt is:

f̂(ξ) ≡
∫
Rd

f(x) e−2πix·ξ dx,

originally defined for f ∈ L1(Rd), and then by extension to f ∈ L2. We have
the Fourier inversion formula

f(x) =
∫
Rd

f̂(ξ) e2πix·ξ dξ,

which holds pointwise for appropriate f , and extends, by beginning functional
analysis, to all f ∈ L2.

Our definition of the Fourier transform satisfies

‖f‖2 = ‖f̂‖2

and ̂(f ∗ g)(ξ) = f̂(ξ)ĝ(ξ),
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where f ∗ g is the usual convolution,

f ∗ g(x) =
∫
Rd

f(x − y) g(y) dy =
∫
Rd

f(y) g(x − y) dy

defined for appropriate pairs of functions f and g.
We use C∞

0 (Rd) to denote the family of infinitely differentiable functions
with compact supports. The Schwartz class S(Rd) is the family of infinitely
differentiable functions f such that, for all differential monomials Dα and all
positive integers M , ∫

Rd

|Dαf | (1 + |x|)M dx < ∞.

A measurable function f is said to be locally integrable if
∫

K
|f | dx < ∞

for every compact subset of f ’s domain. This domain will always be Rd or
some nice subset of it (such as an interval, ball, rectangle, or half-space). The
only half-space we ever look at is Rd+1

+ , which equals Rd × (0,∞). We denote
the space of locally integrable functions defined on Rd by L1

loc(R
d).

If E is a measurable subset of Rd, we denote E’s Lebesgue measure by |E|.
We will try to make it clear from the context when | · | means the measure of
a set and when it means the absolute value of a number. We will also use | · |
to denote the norm of a vector in Rd.

If I ⊂ R is an interval, we let �(I) denote I’s length (which is the same as
|I|). A cube Q ⊂ Rd is a cartesian product of d intervals all having the same
length. We refer to this common length by �(Q), and we call it Q’s sidelength.
Notice that |Q| = �(Q)d.

Incidentally, we use ‘⊂’ to denote “subset,” not just “proper subset.”
A dyadic interval is one of the form [j/2k, (j + 1)/2k), where j and k are

integers. A dyadic cube Q ⊂ Rd is a cube whose component intervals are
all dyadic. The family of all dyadic cubes in Rd is denoted by Dd. Strictly
speaking, the family of dyadic intervals should be D1, but we will usually refer
to it by D.

The reader’s first exercise is to show that, if Q and Q′ are two dyadic cubes
in Rd, then either Q ⊂ Q′, Q′ ⊂ Q, or Q ∩ Q′ = ∅.

The reader’s second exercise is to show that, if I ⊂ R is any bounded
interval, there exist dyadic intervals I1, I2, and I3, all having the same length
2−k, such that (1/2)�(I) < 2−k ≤ �(I) and I ⊂ I1∪I2∪I3. (This is like saying
that every interval is “almost” a dyadic interval.)

The reader’s third exercise is to generalize the second exercise to Rd.
The first exercise has this consequence: If F ⊂ Dd is any collection of

dyadic cubes such that
sup
Q∈F

�(Q) < ∞ (1.1)

then there exists a disjoint collection F ′ ⊂ F such that every Q ∈ F is con-
tained in some Q′ ∈ F ′. The proof is: For every Q ∈ F , let Q′ be the maximal
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element (in the sense of set inclusion) of F that contains Q; such a maximal
element must exist because of 1.1. The collection of all such Q′’s is F ′.

If f is locally integrable and E is an appropriate measurable subset of f ’s
domain (in practice, E is almost always a cube), then fE is f ’s average value
over E, defined by

fE ≡ 1
|E|
∫

E

f dx.

Very early in the book, the reader will encounter two conventions, endemic
in Fourier analysis, which he might find a little disturbing. They are “the
constantly changing constant”1 and the use of ‘∼’.

Much of analysis is about proving inequalities. We have two positive
quantities—call them A and B—that depend on something else: a variable,
a vector, a function, or some combination of these. Suppose it’s a variable t.
We typically want to show that there is a positive, finite constant C so that,
for all t under consideration,

A(t) ≤ CB(t). (1.2)

We often want to prove such inequalities because they help us prove equations.
For example, we might have two complicated but continuous functions f(t)
and g(t), and want to show f(0) = g(0). This is an immediate consequence of:

|f(t) − g(t)| ≤ CB(t)
lim
t→0

B(t) = 0.

In practice, |f(t) − g(t)| is hard to estimate directly, but B(t) is easy (or
easier) to handle.

An inequality like 1.2 usually follows from a chain of inequalities, like so,

A(t) ≤ C1A1(t)
≤ C2A2(t)
≤ · · ·
≤ C129B(t),

but usually not so long. However, unless one is keeping careful track of the
constants Ck, it is normal for analysts to write the preceding inequalities as:

A(t) ≤ CA1(t)
≤ CA2(t)
≤ · · ·
≤ CB(t).

The “constant” C, which is understood to be different at every stage, is “the
constantly changing constant.” It is understood that C can depend on the
functions A1, etc., but NOT on the parameter t.
1 The name is due to T. W. Körner.
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The other disturbing convention also concerns inequalities. Sticking with
our example, suppose there are two positive, finite constants, C1 and C2, such
that, for all relevant t,

C1B(t) ≤ A(t) ≤ C2B(t). (1.3)

The inequalities 1.3 say that A and B are roughly the same size. An example
of such a pair of functions is A(t) = t(log(e+ t)) and B(t) = t(log(534+ t25)),
where the range of admissible t’s is [0,∞); the reader should check this. A more
interesting example is given by A(t) = t/(log(e + t))2 and B(t) = the inverse
function of t(log(e + t))2—and the reader should check this one, too.

Unless we are very interested in the values of C1 and C2, we will often
express relationships like 1.3 by means of the “semi-equation,”

A(t) ∼ B(t).

When the context does not make it clear, we will say what the admissible t’s
are.

We will conclude this section with a deceptively simple observation and a
few of its profound consequences.

Suppose that f is a locally integrable function with the property that, for
every ε > 0, there exists an R > 0 such that, if Q is any cube with �(Q) > R,
then

1
|Q|
∫

Q

|f | dx < ε. (1.4)

This hypothesis is not very restrictive: it is satisfied by every f ∈ Lp, for all
1 ≤ p < ∞ (but not for p = ∞). Let λ be a positive number, and let Fλ be
the family of dyadic cubes Q such that

1
|Q|
∫

Q

|f | dx > λ.

Our hypothesis on f implies that every Q ∈ Fλ is contained in some maximal
Q′ ∈ Fλ. (This, by the way, holds even if Fλ is empty: check the logic!)

Call this family of maximal cubes F ′
λ.

If Q ∈ F ′
λ, then

1
|Q|
∫

Q

|f | dx > λ.

I claim that, as well,
1
|Q|
∫

Q

|f | dx ≤ 2dλ.

To see this, let Q̃ be the unique dyadic cube such that Q ⊂ Q̃ and �(Q̃) =
2�(Q). Then, because of Q’s maximality,

1
|Q̃|

∫
Q̃

|f | dx ≤ λ.
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But
1
|Q|
∫

Q

|f | dx ≤ 1
|Q|
∫

Q̃

|f | dx ≤ |Q̃|
|Q|λ,

from which the inequality follows.
Notice that, by the Lebesgue differentiation theorem, |f | ≤ λ almost every-

where off the set ∪F ′
λ
Q.

Now, what is this good for?
Harmonic analysis is about the action of linear operators on functions.

Usually we are trying to show that some operator T is bounded on some Lp;
i.e., we wish to show that there is a constant A such that, for all f ∈ Lp,

‖T (f)‖p ≤ A‖f‖p.

This is often accomplished by splitting the function f into finitely many pieces,

f =
N∑
1

fi,

and showing that each T (fi) is “well-behaved” in some fashion. (There are also
times when we split f into infinitely many pieces, but that story can wait.)
Such splittings typically work because the pieces fi are “well-behaved”—and
so give rise to good T (fi)’s—for different reasons.

The best-known and most widely used technique for splitting functions,
due to A. P. Calderón and A. Zygmund, is based on the foregoing observation
about dyadic cubes. It lets us write any function f satisfying 1.4 as the sum
of two functions (usually called g and b, for “good” and “bad”). As we shall
see, “good” and “bad” must be used advisedly, because the functions g and b
are both “good” (also “bad”), but in different ways.

Theorem 1.1. Let f satisfy 1.4. For every λ > 0, there is a (possibly empty)
family F of pairwise disjoint dyadic cubes such that f = g + b, where ‖g‖∞ ≤
2dλ and b =

∑
Q∈F b(Q). Each function b(Q) has its support contained in Q

and satisfies ∫
b(Q) dx = 0

and ∫
|b(Q)| dx ≤ 2dλ|Q|.

Moreover, the family F can be chosen so that∑
F

|Q| ≤ 2
λ

∫
|f |>λ/2

|f | dx. (1.5)

Before proving the theorem, we should explain how the functions g and b
are good and bad in their own ways.
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The function g is good because it is bounded. It is bad because it might
have unbounded support.

The function b is bad because it is in general unbounded. However, it is
good because it is a sum of non-interfering pieces (disjoint supports) with
controlled L1 norms, and which satisfy a cancelation condition, and with a
total support that is also controlled, at least in terms of measure.

Proof of Theorem 1.1. We will essentially prove the theorem twice. The
first proof will give us g and b that almost do what we want. Then we will
show how, with only a small modification, we can get the desired g and b.

To begin: let Fλ (note that we have dropped the ‘prime’) be the family of
maximal dyadic cubes satisfying

1
|Q|
∫

Q

|f | dx > λ.

By our observation,
1
|Q|
∫

Q

|f | dx ≤ 2dλ

for every Q ∈ Fλ.
Define

g(x) =
{

f(x) if x /∈ ∪Fλ
Q;

1
|Q|
∫

Q
f dt if x ∈ Q ∈ Fλ.

Then g is clearly bounded by 2dλ almost everywhere. Set b = f − g. A little
computation shows

b(x) =
{

0 x /∈ ∪Fλ
Q;

f(x) − fQ if x ∈ Q ∈ Fλ.

We set b(Q)(x) = (f(x) − fQ)χQ(x). Then this gives the desired splitting in
most respects. We have the right bound on g and, for every Q ∈ Fλ,∫

|b(Q)| dx ≤ 2d+1λ|Q|,

which is only off by a factor of 2. What about 1.5? I claim that we are close
to having it. Every Q ∈ Fλ satisfies

|Q| ≤ 1
λ

∫
Q

|f | dt.

But these cubes are also disjoint. Therefore∑
Fλ

|Q| ≤
∑
Fλ

1
λ

∫
Q

|f | dt ≤ 1
λ

∫
|f | dt,

which is nearly right.
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To get our final decomposition, we first split f in a naive fashion. Set

f1(x) =
{

f(x) if |f(x)| > λ/2;
0 otherwise,

and define f2 = f − f1. Notice that |f2| ≤ λ/2 everywhere. Now we apply the
previous splitting argument to f1, but use λ/2 as our cut-off height, instead
of λ. We obtain two functions g̃ and b̃, and a disjoint family of dyadic cubes
F̃λ such that b̃ =

∑
F̃λ

b̃(Q), where the functions b̃(Q) satisfy the support and
cancelation conditions, and also have∫

|b̃(Q)| dx ≤ 2d+1(λ/2)|Q| = 2dλ|Q|.

Summing up the measures of the Q’s, we get∑
F̃λ

|Q| ≤
∑
F̃λ

2
λ

∫
Q

|f1| dt ≤ 2
λ

∫
|f |>λ/2

|f | dt,

which is 1.5.
We now set b = b̃ and g = g̃ + f2. Then b is what we want, and |g| ≤

λ/2 + 2dλ/2 ≤ 2dλ. That finishes the proof.

The reader could reasonably ask what purpose is served by being able to
split f this way for every positive λ. Why isn’t it enough to split it just for
λ = 1? That is another story that will have to wait.

Notes

The Calderón-Zygmund decomposition (Theorem 1.1) first appears in [8]. The
treatment here is based on that in [53].



2

An Elementary Introduction

We begin with the simplest object in Littlewood-Paley theory: the dyadic
square function.

Let D be the collection of dyadic intervals on R. For every I ∈ D, we let
Il and Ir denote (respectively) the left and right halves of I. For each I ∈ D,
set

h(I)(x) ≡
⎧⎨⎩ |I|−1/2 if x ∈ Il;

−|I|−1/2 if x ∈ Ir;
0 if x /∈ I.

Notice that each h(I) satisfies
∫

h(I) = 0 and ‖h(I)‖2
= 1. These functions

h(I) are known as the Haar functions.
We claim that {h(I)}I∈D is an orthonormal system for L2(R). We’ve just

seen that ∫
h(I)(x)h(I)(x) dx = 1.

Suppose I and J belong to D and I �= J . If I ∩ J = ∅ it is trivial that∫
h(I)(x)h(J)(x) dx = 0.

Suppose I∩J �= ∅. Without loss of generality, we may assume that I ⊂ J . But
then, since I �= J , the support of h(I) is entirely contained in Jl or Jr—across
which h(J) is constant. But

∫
h(I) = 0, and so∫

h(I)(x)h(J)(x) dx = 0

in this case, too.
For any f ∈ L1

loc(R) and I ∈ D, we define

λI(f) =
∫

f(x)h(I)(x) dx

= 〈f, h(I)〉,
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where we are using 〈·, ·〉 to denote the usual L2 inner product. The number
λI(f) is known as f ’s Haar coefficient for the interval I. By Bessel’s Inequality,
we immediately have: ∑

I

|λI(f)|2 ≤
∫

|f(x)|2 dx

for any f ∈ L2(R). We claim that the Haar functions actually form a complete
orthonormal system for L2(R). To see this, take f ∈ L2, and suppose that
〈f h(I)〉 = 0 for all I ∈ D. The claim will be proved if we can show that f = 0.
For this it is sufficient to prove that f is (a.e.) constant on (−∞, 0) and (0,∞).

A little computation shows that, for any I ∈ D,

λI(f) = (fIl
− fI)|I|1/2 = −(fIr

− fI)|I|1/2
, (2.1)

where we are using the convention that fJ equals f ’s average over the interval
J : fJ = 1

|J|
∫

J
f . Now, let x and y belong to (0,∞). There is a minimal dyadic

interval I0 such that both x and y belong to I0. Suppose that J0 and K0 are
two very small dyadic intervals such that

x ∈ J0 ⊂ I0

y ∈ K0 ⊂ I0.

We can find a sequence of nested dyadic intervals J0 ⊂ J1 ⊂ J2 ⊂ . . .⊂ Jn ≡ I0

so that each Jk is a right or left half of Jk+1. Because of 2.1, we must have

fJ0 = fJ1 = · · · = fJn
= fI0 .

But a similar argument proves that fK0 = fI0 . Thus fJ0 = fK0 . Since J0 and
K0 are arbitrarily small, the Lebesgue differentiation theorem implies that f
is a.e. constant on (0,∞). Obviously, the same argument works as well on
(−∞, 0). This proves completeness.

Elementary functional analysis now implies that, for all f ∈ L2(R), the
sum

∑
I λI(f)h(I) converges to f in L2, and that∫

|f(x)|2 dx =
∑

I

|λI(f)|2. (2.2)

We will be saying a lot about 2.2, but before we start that, it might be a
good idea to say a few words about the convergence of

∑
I λI(f)h(I). This is

not just any old Hilbert space sum.
Suppose that f ’s support is contained inside [0, 1) and that

∫
f dx = 0.

The reader should satisfy himself of the truth of the following statement: If
I ∈ D and I �⊂ [0, 1), then λI(f) = 0. This says that the sum

∑
I λI(f)h(I)

is, in a very useful sense, localized. For, suppose now that f is an arbitrary
locally integrable function. Write f = f1 + f2, where
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f1(x) =
{

f(x) − ∫ 1

0
f dt if x ∈ [0, 1);

0 otherwise.

Again, the reader should see for himself that

λI(f) =
{

λI(f1) if I ⊂ [0, 1);
λI(f2) otherwise.

and that, in fact, if J is any dyadic interval, and we split f into f1 +f2, where

f1(x) =
{

f(x) − fJ if x ∈ J ;
0 otherwise,

we will have

λI(f) =
{

λI(f1) if I ⊂ J ;
λI(f2) otherwise.

We can even go further. Suppose that {Jk}k is an arbitrary disjoint collection
of dyadic intervals. Now split f into f1 + f2, where

f1(x) =
{

f(x) − fJk
if x ∈ Jk;

0 if x /∈ ∪kJk.
(2.3)

This definition forces f2 to equal

f2(x) =
{

fJk
if x ∈ Jk;

f(x) if x /∈ ∪kJk.

This splitting has the consequence that, if I is any dyadic interval not properly
contained in some Jk, then ∫

I

f dx =
∫

I

f2 dx. (2.4)

Establishing 2.4 is an excellent exercise for the reader. Equation 2.4 implies
that, for all dyadic intervals I,

λI(f) =
{

λI(f1) if I is a subset of some Jk;
λI(f2) otherwise. (2.5)

To put all this in plain, but approximate, language: λI(f) measures f ’s
deviation from its mean, at the scale (1/2)�(I), on I. This fact is expressed
more precisely by 2.1. Another way to understand 2.5 is to think of the inner
products 〈f, h(I)〉 as filters that “catch” the action of f on I, at scale roughly
equal to �(I), and allow everything else to pass through.

If we combine 2.1 with the formula for h(I), we get this convenient fact: If
I is any dyadic interval, and I ′ is I’s right or left half, then

fI′ − fI = λI(f)h(I)(x),

where x is any point in I ′.
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Why is it convenient? Consider a “tower” of dyadic intervals I0 ⊂ I1 ⊂
I2 ⊂ · · · ⊂ IN , where �(Ik+1) = 2�(Ik) for all 0 ≤ k < N . Then, for any
x ∈ I0:

fI0 − fIN
=

N−1∑
0

(fIk
− fIk+1)

=
N∑
1

λIk
(f)h(Ik)(x).

We can rewrite the last sum as∑
I∈D: I0⊂I

�(I0)<�(I)≤2N �(I0)

λI(f)h(I)(x).

There is clearly nothing special about I0, IN , or x in this argument. We
are allowed to say the following: If I and J are dyadic intervals, I ⊂ J , and
x ∈ I, then

fI − fJ =
∑

K∈D:I⊂K⊂J
�(I)<�(K)≤�(J)

λK(f)h(K)(x). (2.6)

But I has a length—call it 2p—and so does J—call it 2r (where, of course,
r ≥ p). If we sum up 2.6 over all dyadic I with length 2p and all dyadic J
with length 2r, we get∑

I∈D:�(I)=2p

fIχI(x) −
∑

J∈D:�(J)=2r

fJχJ(x) =
∑
K∈D

2p<�(K)≤2r

λK(f)h(K)(x). (2.7)

Look closely at what is going on in 2.7. The sum on the far left is what you
get when you replace f by its average values over dyadic intervals of length
2p. The sum contains infinitely many terms, but, for every x, at most one
term will be non-zero. Similar comments apply to the second sum on the left.
The sum on the right side of the equals sign also has infinitely many terms.
However, for any x, at most r − p of these terms will be non-zero.

Before going further, the reader should prove to himself that everything I
have just said is true.

Notice what happens if we let p → −∞ and r → ∞. If f ∈ L2, the
far-left sum converges to f almost everywhere, while the second sum on the
left converges to zero everywhere; so, the left-hand side of 2.7 converges to f
almost everywhere. Meanwhile, the right-hand side of 2.7 will converge to f
in L2. THEREFORE, the left-hand side of 2.7 also converges to f in L2, and
the right-hand side also converges to f almost-everywhere.

Here is a question: To what extent does this equivalence extend to other
Lp spaces, and even to weighted Lp spaces? (We’ll explain what weighted
spaces are in a bit.) To put it more generally: When can we use a vector-space
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decomposition of a function, via Haar functions, to get information about
the function’s actual values—and vice-versa? This is one way to phrase the
problem that Littlewood-Paley theory tries to address.

Let’s get back to 2.2. We begin by rewriting it in a funny way. Notice that

1 =
1
|I|
∫

χI(x) dx.

Therefore, ∑
I

|λI(f)|2 =
∑

I

|λI(f)|2 1
|I|
∫

χI(x) dx

=
∫ (∑

I

|λI(f)|2
|I| χI(x)

)
dx.

The one-dimensional dyadic square function, which makes sense for any
f ∈ L1

loc(R), is defined by the equation

S(f)(x) =

(∑
I

|λI(f)|2
|I| χI(x)

)1/2

. (2.8)

We have approached this formula through an L2 result 2.2, which says
that

‖f‖2 = ‖S(f)‖2 (2.9)

for f ∈ L2. Before going one step further, it will be profitable to reflect on
the meaning of 2.9. It is a peculiar equation.

Let’s first consider
‖f‖2 ≤ ‖S(f)‖2. (2.10)

Notice that |f |2 = |∑I λI(f)h(I)|2, while (S(f))2 =
∑

I |λI(f)h(I)|2. We
usually expect the square of a sum to be a lot bigger than a sum of squares,
but inequality 2.10 says that, on the average, this isn’t true for sums of Haar
functions. The reason is that the sum

∑
I λI(f)h(I) has a lot of cancelation

in it. It’s remarkable that this cancelation should work out so neatly as to
give 2.10. If it doesn’t seem remarkable, that’s only because we’ve been spoiled
by a too-close familiarity with functional analysis.

Now let’s consider
‖f‖2 ≥ ‖S(f)‖2. (2.11)

This says that the square of the sum is not, on the average, much smaller
than the sum of squares. Given what was said in the preceding paragraph,
that doesn’t seem like a big deal; but it is, precisely because of the sum’s
cancelation. Inequality 2.11 says that there isn’t too much cancelation in∑

I λI(f)h(I). It only seems obvious because of Bessel’s inequality, which is a
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general fact about Hilbert spaces, and so hides the numerical nitty-gritty in
this special case.

Another way to consider 2.9 is in terms of energy and amplitude. Think
of f = f(t), a function of time, as if it were a signal. Then ‖f‖2 gives one
measure of f ’s average amplitude. The expression ‖S(f)‖2

2, which is a sum
of squares of f ’s component pieces, provides a measure of the energy of the
signal. Equation 2.9 says that there is a direct relation between a signal’s
amplitude and its energy. Later, when we consider weighted forms of 2.10,
and their applications to the study of Schrödinger operators, we will make
the connection between amplitudes and energies more explicit.

We have emphasized the non-obviousness of 2.9 because the burden of
Littlewood-Paley theory is to extend 2.9 to settings where it is patently not
obvious. These include Lp (p �= 2) and so-called weighted spaces, in which the
underlying measure is no longer the familiar Lebesgue one. For example, it
turns out that, if 1 < p < ∞, there are constants cp and Cp so that, for all
f ∈ Lp(R),

cp‖f‖p ≤ ‖S(f)‖p ≤ Cp‖f‖p.

This fact is so central to what we will be doing that it deserves to be stated
in a theorem.

Theorem 2.1. For all 1 < p < ∞, there are constants cp and Cp, depending
only on p, so that, for all f ∈ Lp(R),

cp‖f‖p ≤ ‖S(f)‖p ≤ Cp‖f‖p. (2.12)

We will prove Theorem 2.1 shortly. However, before doing so, we wish
to describe one possible application of an inequality like 2.12. It may help to
convince the reader that Littlewood-Paley theory really is good for something.

It involves that notorious buzzword-of-the-hour, “wavelets.” Now, Haar
functions aren’t wavelets, strictly speaking, but they’re near enough for this
example. Suppose we have a function f which belongs to some Lp(R), with
1 < p < ∞. It is fundamentally important to know to what extent the
sum

∑
I λI(f)h(I) really represents f . This is not a stupid question; and its

non-stupidity comes from the fact that the coefficients λI(f) are bound to
have errors in them. In other words, the sum we have to contend with isn’t∑

I λI(f)h(I), but
∑

I λI(f)h(I) +
∑

I εIλIh(I), where the numbers εI reflect
the relative errors in our “measurements” of the λI ’s. Inequality 2.12 says
that if the εI ’s all have small absolute values, then the relative error in the
sum will also be small, as measured in various Lp spaces. This property is,
alas, not shared by Fourier coefficients for p �= 2.

But why do we care about Lp for p �= 2, when L2 is so nice? The reason
is that having a “small” Lp norm means different things for different p. For
small p, it means that f has good decay at infinity; for large p, it tells us
that f doesn’t ever “spike” too sharply. So, an inequality like 2.12 says that
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I λI(f)h(I) can represent f pretty well, and that good estimates of cp and

Cp tell us how careful we have to be in computing the λI(f)’s, if we want this
representation to be faithful.

Our first major goal is a proof of Theorem 2.1. There are at least two
approaches we could take here. We could give a quick-and-dirty, relatively dir-
ect proof. Unfortunately, this proof does not generalize to small p (0 < p ≤ 1)
or to weighted settings. The other proof—the one we will give—is more
involved, but we believe it better shows what is going on in Theorem 2.1.
It also generalizes readily. Readers wishing to see the quick and dirty proof
first will find it sketched in exercises at the end of the next chapter. We feel
it fair to warn the reader that this “simpler” proof has complications of its
own, including discussions of things which, at first, seem to have nothing to
do with the square function.

Our proof of Theorem 2.1 will not work directly with f , but with f ’s
averages.

Definition 2.1. Let f : R �→ R be locally integrable. The dyadic maximal
function of f , f∗, is given by:

f∗(x) ≡ sup
I:x∈I∈D

|fI |.

The dyadic Hardy-Littlewood maximal function of f , Md(f), is defined by:

Md(f)(x) ≡ sup
I:x∈I∈D

|f |I .

We will be seeing a lot of maximal functions like these. Before actually
proving Theorem 2.1, we will make a rather long digression to investigate
some of their properties. This will also provide a chance to introduce the sorts
of arguments we will frequently see in this book, and to review some of the
fundamentals from chapter 1.

By the Lebesgue differentiation theorem, |f(x)| ≤ f∗(x) almost every-
where.

Because Md(f) has the absolute value inside its defining integral, we always
have f∗(x) ≤ Md(f)(x).

What makes Md(f) really useful is the following:

Theorem 2.2. For all 1 < p ≤ ∞ there is a constant Cp, depending only p,
such that, for all f ∈ Lp,

‖Md(f)‖p ≤ Cp‖f‖p. (2.13)

We will prove Theorem 2.2, and we will apply some ideas from the proof
to investigate the “fine structure” of Md. (These fine structure properties
will be used in the next chapter.) Then we will continue with the proof of
Theorem 2.1.
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The proof of Theorem 2.2 is based on the following well-known equation:
For any 0 < p < ∞,∫

X

|f(x)|p dµ = p

∫ ∞

0

λp−1µ({x : |f(x)| > λ}) dλ, (2.14)

which is valid for any measure space (X,M, µ). (Equation 2.14 is frequently
stated to hold for σ-finite measure spaces, and proved by Fubini-Tonelli. If the
reader tries to do this, he will find that the trickiest step comes in proving the
measurability of certain sets in X × (0,∞). If he’s lucky, he’ll stumble upon
a proof for the general case.)

Now, take g ∈ L1 and let λ > 0. The set {x : Md(g)(x) > λ} consists of

Sλ = ∪{I ∈ D : |g|I > λ}.
But, if I is big enough, |g|I ≤ λ (because g ∈ L1). So, we can replace the
union defining Sλ by a union over a subcollection; namely, those I ∈ D such
that |g|I > λ and are maximal (in the sense of set inclusion). Call this set of
maximal intervals {Ii}. Because these intervals are dyadic, they are pairwise
disjoint.

Each Ii satisfies
1
|Ii|
∫

Ii

|g| dt > λ;

implying

|Ii| ≤ 1
λ

∫
Ii

|g| dt.

Therefore,

|Sλ| =
∑

i

|Ii|

≤ 1
λ

∑
i

∫
Ii

|g| dt

≤ 1
λ

∫
|g| dt.

This is the celebrated weak-type inequality for the Hardy-Littlewood maximal
function.

Now take f ∈ Lp, with 1 < p < ∞, and write f = f1 + f2, where

f1(x) =
{

f(x) if |f(x)| > λ/2;
0 otherwise,

where λ is an arbitrary positive number. Then Md(f) ≤ Md(f1) + Md(f2) ≤
Md(f1) + λ/2 (because |f2| ≤ λ/2 everywhere). Therefore,

{x : Md(f)(x) > λ} ⊂ {x : Md(f1)(x) > λ/2}.
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The celebrated inequality implies that

|{x : Md(f1)(x) > λ/2}| ≤ 2
λ

∫
|f1| dt

=
2
λ

∫
{t: |f(t)|>λ/2}

|f(t)| dt.

We plug in our estimate for |{x : Md(f)(x) > λ}| and apply 2.14:∫
(Md(f))p dx ≤ p

∫ ∞

0

λp−1

[
2
λ

∫
{t: |f(t)|>λ/2}

|f(t)| dt

]
dλ

=
∫

|f(t)|
[∫ 2|f(t)|

0

2pλp−2 dλ

]
dt

= 2p(
p

p − 1
)
∫

|f(t)||f(t)|p−1
dt

= 2p(
p

p − 1
)
∫

|f(t)|p dt.

We’ve used Fubini-Tonelli in the antepenultimate line.
This implies ‖Md(f)‖p ≤ Cp‖f‖p for 1 < p < ∞. Of course, the case of

p = ∞ is trivial.
The kind of argument used to prove Theorem 2.2 is called interpolation.

We showed—or could see directly—that Md was “controlled” on L1 and L∞,
and we used that to prove that it was actually bounded on Lp, for 1 < p < ∞.
A general principle is lurking here, which the reader might want to investigate
for himself. When he gets tired of that, he can turn to the end of this chapter,
where we state and prove a special case of the Marcinkiewicz Interpolation
Theorem.

The “fine structure” of Md referred to above concerns its action on L1.
This might seem pointless, since Md is obviously not bounded on L1(R): if
f = χ[−1,1], then Md(f) ∼ |x|−1 when |x| is large. However, if f ’s support
is contained in a dyadic interval I, we have two substitute results. The first
one is ∫

I

|f(x)| log(e + |f(x)|/|f |I) dx ∼
∫

I

Md(f) dx. (2.15)

The second result is

1
|I|
∫

I

(Md(f))β dx ≤ Cβ

(
1
|I|
∫

I

|f | dx

)β

, (2.16)

valid for 0 < β < 1.
Inequality 2.15 says that, if we restrict our attention to an interval, then

Md(f) is integrable if and only f , in a precise sense, is a little better than
integrable. Inequality 2.16 says—with the same restriction—that, if f is inte-
grable, then Md(f) is almost integrable.
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We will prove these inequalities when f ≥ 0 and |I| = |f |I = 1, leaving
the general cases as exercises.

The splitting argument we used to prove Theorem 2.2 implies that, for
every λ > 1,

|{x ∈ I : Md(f)(x) > λ}| ≤ C

λ

∫
|f |>λ/2

|f(t)| dt, (2.17)

with the bound of
|{x ∈ I : Md(f)(x) > λ}| ≤ 1 (2.18)

for λ ≤ 1. If we multiply both sides of these estimates by pλp−1 (i.e., 1) and
integrate from 0 to ∞, we get∫

Md(f) dx ≤
∫ 1

0

|{x ∈ I : Md(f)(x) > λ}| dλ

+
∫ ∞

1

(
C

λ

∫
|f |>λ/2

|f(t)| dt

)
dλ

≤ 1 + C

∫
I

|f(t)|
(∫ 2|f(t)|

1

C

λ
dλ

)
+

dt

≤ 1 +
∫

I

|f(t)| log+(|f(t)|) dt

≤ C

∫
I

|f(x)| log(e + |f(x)|) dx,

proving one direction of 2.15.
To show the other direction in 2.15, define {Ik

j }j (k = 0, 1, 2, . . .) to be
the family of maximal dyadic Ik

j ⊂ I such that

fIk
j

> 2k.

By maximality, these intervals also satisfy

fIk
j
≤ 2k+1.

Then
Md(f)(x) ∼ 1 +

∑
k,j

fIk
j
χIk

j
(x)

on I, since the sum on the right is comparable to 1 +
∑∞

0 2kχ{Md(f)>2k}.
Therefore ∫

I

Md(f)(x) dx ∼ 1 +
∫ ⎛⎝∑

k,j

fIk
j
χIk

j
(x)

⎞⎠ dx

= 1 +
∫

f(x)

⎛⎝∑
k,j

χIk
j
(x)

⎞⎠ dx

∼
∫

I

f(x) log(e + Md(f)(x)) dx

≥ C

∫
I

f(x) log(e + f(x)) dx,

proving 2.15.
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Inequality 2.16 is proved very much in the same manner as the second
inequality in 2.15. Simply multiply the estimates 2.17 and 2.18 by βλβ−1 and
integrate from 0 to ∞. The integral from 0 to 1 is bounded by 1 (because
of 2.18), and the integral from 1 to ∞ is bounded by a constant times∫

I

|f |
(∫ 2|f |

1

λβ−2 dλ

)
+

dx ≤ Cβ ,

from our normalization on f and the fact that β < 1.
Note that 2.15 implies that Md(f) is not bounded on L1(I), and it even

points the way to building a counterexample. For example, the function de-
fined by

f(x) =
{

2k

k2 if x ∈ [2−k, 2−k+1), k ≥ 1;
0 otherwise,

is in L1, but
∫ 1

0
|f | log+(|f |) dx = ∞, as the reader should have no trou-

ble showing. (He might have a little more trouble showing directly that∫ 1

0
Md(f) dx = ∞, but we think it will do him good to try.)
This concludes our digression on Md.

The proof of Theorem 2.1 will use the method of “good-λ inequalities.”
Since we will be using this method several times, we’ll state it here in a general
theorem.

Theorem 2.3. Let f and g be non-negative measurable functions defined on
a measure space (Ω,M, µ). Suppose that, for every ε > 0, there is a γ > 0
such that, for all λ > 0,

µ({x : f(x) > 2λ, g(x) ≤ γλ}) ≤ εµ({x : f(x) > λ}). (2.19)

Let 0 < p < ∞. If f ∈ Lp(Ω,µ) then∫
Ω

(f(x))p dµ(x) ≤ C

∫
Ω

(g(x))p dµ(x),

where the finite constant C only depends on p and the way that ε depends on
γ (to be made explicit below).

Proof of Theorem 2.3. Suppose that 2.19 holds. Then, for any λ,

µ({x : f(x) > 2λ}) ≤ µ({x : g(x) > γλ}) + µ({x : f(x) > 2λ, g(x) ≤ γλ})
≤ µ({x : g(x) > γλ}) + εµ({x : f(x) > λ}).

If we multiply both sides of this inequality by pλp−1, integrate from 0 to
infinity, and do two easy changes-of-variable, we get:

2−p

∫
Ω

f(x)p dµ(x) ≤ γ−p

∫
Ω

g(x)p dµ(x) + ε

∫
Ω

f(x)p dµ(x).
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Let ε = 2−p−1 and pick the appropriate γ. When we subtract and divide
(which is okay, because f ∈ Lp), we get∫

Ω

f(x)p dµ(x) ≤ 2p+1γ−p

∫
Ω

g(x)p dµ(x),

which was to be proved.

The proof of Theorem 2.3 goes by so fast, it can be hard to see the idea
behind it. Rewrite 2.19 for λ = 2k. It is:

µ({x : f(x) > 2k+1, g(x) ≤ γ2k}) ≤ εµ({x : f(x) > 2k}). (2.20)

Imagine that f and g are having a race. For any x, let F (x) be the set
{k : f(x) > 2k} and let G(x) be the set {k : g(x) > γ2k}. There are
two possibilities: F (x) ⊂ G(x), or G(x) is a proper subset of F (x). If the first
happens, then f(x) ≤ 2γ−1g(x), and we can say that g is “keeping pace” with
f(x) (up to a factor of 2γ−1). If the second happens, then at some point f
has clearly pulled ahead of g: there is a k such that k ∈ F (x) ∩ G(x), but
k + 1 ∈ F (x) \ G(x): as if to say, g kept pace with f to stage k, but failed to
do so at stage k + 1. The meaning of 2.19 (or of 2.20) is that the set of x’s for
which this happens is negligible.

The proof of Theorem 2.1 will go more smoothly with the help of a useful
definition, one that will follow us through later chapters.

Definition 2.2. If N is a positive integer, we set

D(N) = {I ∈ D : I ⊂ [−2N , 2N ), �(I) > 2−N},
where �(I) is I’s length.

In plain language, D(N) consists of the dyadic intervals that aren’t too
small, aren’t too big, and aren’t too far from the origin.

We observe that each D(N) is finite, D(N) ⊂ D(N + 1) for all N , and
∪ND(N) = D.

We are finally ready to prove Theorem 2.1. (After such a long digression,
the reader might want to review the definition of the dyadic square function,
given by 2.8.)

Proof of Theorem 2.1. We will actually prove that, for all finite sums
f =
∑

λIh(I) and 0 < p < ∞,

cp‖f∗‖p ≤ ‖S(f)‖p ≤ Cp‖f∗‖p. (2.21)

This implies Theorem 2.1. To see this, let N be an integer, and define

fN ≡
∑

I: I∈D(N)

λIh(I).
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If we prove 2.21, we will have

cp‖fN‖p ≤ ‖S(fN )‖p ≤ ‖S(f)‖p.

Let’s set J+
N = [0, 2N ) and J−

N = [−2N , 0). The reader who has understood
why 2.7 is true will have little trouble seeing that

fN =

⎛⎜⎜⎜⎝ ∑
I: I⊂J

+
N

∪J
−
N

�(I)=2−N

fIχI

⎞⎟⎟⎟⎠−
(
fJ+

N
χJ+

N
+ fJ−

N
χJ−

N

)

= (IN ) − (IIN ).

If f ∈ Lp(R) (1 < p < ∞), then (IN ) → f almost everywhere, and
(IIN ) → 0 uniformly; and so the left-hand inequality of 2.12 would follow
from Fatou’s Lemma.

As for the right-hand side: If f ∈ Lp (1 < p < ∞), then
|fJ+

N
χJ+

N
+ fJ−

N
χJ−

N
| converges to 0 in Lp as N → ∞. Now, for any N ,

f∗
N ≤ f∗ + |fJ+

N
χJ+

N
+ fJ−

N
χJ−

N
|.

Thus, if we prove 2.21 for finite sums, we’ll have

‖S(fN )‖p ≤ Cp‖f∗ + |fJ+
N

χJ+
N

+ fJ−
N

χJ−
N
|‖

p
(2.22)

for all N . Letting N go to infinity, we get, by Monotone Convergence,

‖S(f)‖p ≤ Cp‖f∗‖p

for arbitrary f ∈ Lp, from which 2.12 follows by Theorem 2.2.
So, it’s enough to show 2.21 for finite linear sums.
At the outset let’s observe that, for all f in our test class (finite linear

combinations of Haar functions), f∗ and S(f) are bounded and have compact
support, and so belong to Lp for all p.

Proof of the first inequality in 2.21. By the good-λ inequality, it will be
enough to show that, for all ε > 0, there is a γ > 0, such that, for all λ > 0
and all f in our test class,

|{x : f∗(x) > 2λ, S(f)(x) ≤ γλ}| ≤ ε|{x : f∗(x) > λ}|. (2.23)

Let {Iλ
i } be the maximal dyadic intervals such that |fIλ

i
| > λ. The intervals

Iλ
i are disjoint and {x : f∗(x) > λ} = ∪Iλ

i . Therefore (modulo the usual
business about quantifiers), it is enough to show that, for every i,

|{x ∈ Iλ
i : f∗(x) > 2λ, S(f)(x) ≤ γλ}| ≤ ε|Iλ

i |. (2.24)
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Fix the interval Iλ
i , and let Ji be its “dyadic double”; i.e., the unique dyadic

interval for which Iλ
i is either a right or left half. Because of Iλ

i ’s maximality,
|fJi

| ≤ λ. Now, if |fIλ
i
| > 1.1λ, then |fJi

− fIλ
i
| > .1λ, and so S(f) > .1λ on

all of Iλ
i . In this case, if we pick γ ≤ .1, the left-hand side of 2.24 is zero, and

we have nothing to prove. Henceforth we assume that γ ≤ .1; and, without loss
of generality, we may also assume that |fIλ

i
| ≤ 1.1λ. Given this, our problem

now reduces to showing

|{x ∈ Iλ
i : (f − fIλ

i
)∗(x) > .9λ, S(f)(x) ≤ γλ}| ≤ ε|Iλ

i |. (2.25)

Set

g(x) =
{

f(x) − fIλ
i

if x ∈ Iλ
i ;

0 otherwise.

If I ⊂ Iλ
i , then λI = 〈f, h(I)〉 = 〈g, h(I)〉, and if I �⊂ Iλ

i , then 〈g, h(I)〉 = 0.
(Work it out!) Therefore S(g) ≤ S(f) in Iλ

i and is equal to 0 outside Iλ
i . This

reduces our problem to showing

|{x ∈ Iλ
i : g∗(x) > .9λ, S(g)(x) ≤ γλ}| ≤ ε|Iλ

i |. (2.26)

Let {Qj} be the maximal dyadic subintervals of Iλ
i such that

∑
J: Qj⊂J

|λJ |2
|J | > (γλ)2.

Define (‘s’ stands for “stopped”):

gs(x) =
{

gQj
if x ∈ Qj ;

g(x) if x /∈ ∪jQj .

I claim that S(gs) ≤ γλ on all of Iλ
i , and that (gs)I = gI for all dyadic

intervals I ⊂ Iλ
i which are not properly contained in any Qj . This claim, to

put it mildly, requires some justification, which we reserve for the end of the
proof. For now, let us take the claim for granted.

Suppose that g∗(x) > .9λ and S(g)(x) ≤ γλ. Then there is an I ⊂ Iλ
i

such that |gI | > .9λ. This I is either properly contained in some Qj or it
isn’t. If it is contained in a Qj , then S(g) > γλ on all of I, which we are
assuming does NOT happen, because S(g)(x) ≤ γλ. Therefore: I is NOT
properly contained in any Qj. The second part of the claim now implies that
|(gs)I | > .9λ. Therefore,

{x ∈ Iλ
i : g∗(x) > .9λ, S(g)(x) ≤ γλ} ⊂ {x ∈ Iλ

i : g∗s (x) > .9λ},

with the corresponding inequality in measures.
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But now we can write:∫
Iλ

i

(g∗s )2 dx ≤ C

∫
|gs|2 dx

≤ C

∫
Iλ

i

(S(gs))2 dx

≤ C(γλ)2|Iλ
i |,

where the last inequality follows from the first part of the claim. Now
Chebyshev’s inequality implies

|{x ∈ Iλ
i : g∗s (x) > .9λ}| ≤ C(γ/.9)2|Iλ

i |,

finishing the proof.
The justification of the claim is not hard. It is an application of 2.5 and 2.4,

where our intervals Qj are the Jk’s, and gs is f2. If I ⊂ Iλ
i and I is not a

subset (proper or otherwise) of any Qj , then λI(gs) = λI(g). On the other
hand, if I is a subset of a Qj , then λI(gs) = 0 (because gs is constant across
Qj). Therefore, if x ∈ Qj ,

(S(gs)(x))2 =
∑

J: Qj⊂J

J �=Qj

|λJ |2
|J | ≤ (γλ)2,

because of Qj ’s maximality; and, if x /∈ ∪jQj , then S(gs)(x) ≤ S(g)(x) ≤ γλ.
That is the first part of the claim. The second part is simply a translation
of 2.4.

Proof of the second inequality in 2.21. We’ll need another maximal func-
tion. Remember that Il and Ir denote the left and right halves of a dyadic
interval I. Define the “look-ahead” maximal function La(f) by:

La(f)(x) ≡ sup
I:x∈I

max(|fIl
|, |fIr

|).

It’s clear that f∗(x) ≤ La(f)(x) pointwise. However, a moment’s thought also
shows that, for all λ > 0,

|{x : La(f)(x) > λ}| ≤ 2|{x : f∗(x) > λ}|.

Therefore, in order to prove the right-hand part of 2.21, it will be enough to
show the appropriate good-λ inequality between S(f) and La(f).

Let {Iλ
i } be the maximal dyadic intervals such that

∑
J:Iλ

i
⊂J

|λJ |2
|J | > λ2.
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Clearly, {x : S(f) > λ} = ∪iI
λ
i . Arguing as in the proof of 2.23, it is

enough to show that, for each i,

|{x ∈ Iλ
i : S(f)(x) > 2λ, La(f)(x) ≤ γλ}| ≤ ε|Iλ

i |. (2.27)

Now, for whatever γ we decide on, if |fIλ
i
| > γλ, then the left-hand side

of 2.27 will be 0, and we’ll have nothing to prove. Therefore, without loss of
generality, we can always assume |fIλ

i
| ≤ γλ.

If ∑
J: Iλ

i
⊂J

|λJ |2
|J | > (1.1λ)2, (2.28)

then
|λIλ

i
| = |〈f, h(Iλ

i
)〉| > .1λ

√
|Iλ

i |. (2.29)

Let Il and Ir denote Iλ
i ’s left and right halves, respectively. Inequality 2.29

implies that
|fIl

− fIr
| > .1λ,

which in turn implies that La(f) > .05λ on all of Iλ
i . Therefore, if γ ≤ .05

(which we henceforth assume) and 2.28 holds, then the left-hand side of 2.27
is 0 and, again, we have nothing to prove. So, in perfect analogy with the
proof of 2.23, we may assume that 2.28 does not hold.

Let’s now define
floc ≡

∑
I⊂Iλ

i

λIh(I),

which we think of as the “localized” version of f . Since |fIλ
i
| ≤ γλ, we have

that
{x ∈ Iλ

i : La(f)(x) ≤ γλ} ⊂ {x ∈ Iλ
i : La(floc)(x) ≤ 2γλ}.

Also, because 2.28 does not hold,

{x ∈ Iλ
i : S(f)(x) > 2λ} ⊂ {x ∈ Iλ

i : S(floc)(x) > .9λ}.

Putting these two inclusions together, we see that it is enough to show that

|{x ∈ Iλ
i : S(floc)(x) > .9λ, La(floc)(x) ≤ 2γλ}| ≤ ε|Iλ

i |,

and it is this inequality which we will now prove.
Let {Jk} be the maximal dyadic subintervals of Iλ

i having the property
that either the right or left half of Jk—call it J∗

k—satisfies |(floc)J∗
k
| > 2γλ.

Set (once again, ‘s’ is for “stopped”):

fs(x) =
{

(floc)Jk
if x ∈ Jk;

floc(x) if x /∈ ∪kJk.

Because of Jk’s maximality, |fs(x)| ≤ 2γ almost everywhere.
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Suppose that x ∈ Iλ
i is a point such that S(floc)(x) > .9λ and

La(floc)(x) ≤ 2γλ. Then x /∈ ∪kJk. We claim that, if x /∈ ∪kJk, then
S(fs)(x) = S(floc)(x). The proof of this is simply the fact that

〈fs, h(I)〉 = 〈floc, h(I)〉 (2.30)

if I is not contained in any Jk—which is just equation 2.5 showing up again.
Therefore,

{x ∈ Iλ
i : S(floc)(x) > .9λ, La(floc)(x) ≤ 2γλ} ⊂ {x ∈ Iλ

i : S(fs)(x) > .9λ}.

However, ∫
Iλ

i

(S(fs))2 dx =
∫

Iλ
i

|fs(x)|2 dx

≤ (2γ)2|Iλ
i |,

and now our result follows (again!) by Chebyshev’s inequality. This finishes
the proof of 2.21, and thus of Theorem 2.1.

If we look closely at the proof of Theorem 2.1, we can see that we have
obtained something slightly stronger. Recall that we proved 2.21 for all p,
0 < p < ∞, for finite linear sums of Haar functions. The only role this
finiteness hypothesis played was to ensure that S(f) and f∗ belonged to Lp.
Therefore we have actually shown that, if 0 < p < ∞ and f∗ ∈ Lp, then

‖f∗‖p ≤ cp‖S(f)‖p; (2.31)

and, if S(f) ∈ Lp, then
‖S(f)‖p ≤ Cp‖f∗‖p. (2.32)

It would be nice to obtain the statements f∗ ∈ Lp (respectively S(f) ∈ Lp)
as conclusions of 2.31 (respectively 2.32) rather than having to assume them
as hypotheses.

Unfortunately, some extra hypothesis is needed in 2.31: if f is identically 1,
its square function is identically 0. But a case like this, it turns out, is essen-
tially the worst that can happen. That is, if |fJ+

N
| and |fJ−

N
| both go to 0 as

N → ∞, then 2.31 holds. Because, if these averages go to 0, f∗(x) will equal
the limit of f∗

N (x) for every x, implying, by Fatou’s Lemma,∫
(f∗(x))p dx =

∫
(lim

N
f∗

N (x))p dx

≤ C lim
N

∫
(S(fN ))p dx

= C

∫
(S(f))p dx.
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However, we do not need to assume anything about S(f) in 2.32. This is
because, if 0 < p < ∞, then, for any positive N ,

‖S(fN )‖p ≤ Cp‖f∗
N‖p.

But f∗
N ≤ 2f∗ everywhere; while ‖S(fN )‖p ↗ ‖S(f)‖p because of Monotone

Convergence. Therefore, if f∗ ∈ Lp, S(f) ∈ Lp.

A moment’s (or perhaps several moments’) thought shows that weighted
forms of 2.21’s component inequalities,∫

(f∗(x))p v dx ≤ c(p, v)
∫

(S(f))p v dx (2.33)

and ∫
(S(f))p v dx ≤ C(p, v)

∫
(f∗(x))p v dx (2.34)

should follow for any weight v that is “regular” enough. But, before we say
what “regular” means here, let us first explain what we mean by a weight.

Definition 2.3. A weight v is a non-negative, locally integrable function.

If v is a weight and E is a measurable set, we use v(E) to denote
∫

E
v dx.

With those preliminaries out of the way, let’s now introduce two classes of
weights.

Definition 2.4. A weight v is said to belong to Ad
∞ (pronounced, “dyadic

A-infinity” or “A-infinity dyadic”) if, for every ε > 0, there is a δ > 0 such
that, for all dyadic intervals I and measurable E ⊂ I, |E|/|I| < δ implies
v(E) ≤ εv(I).

Remark. If the preceding implications hold for all bounded intervals I, v
is said to belong to A∞.

Definition 2.5. A weight v is said to be dyadic doubling if there are positive
constants c and C such that, for all dyadic intervals I,

cv(Il) ≤ v(Ir) ≤ Cv(Il).

Remark. If
cv(I) ≤ v(I ′) ≤ Cv(I)

for any two congruent intervals that touch, v is said to be doubling. This is
equivalent to saying that v(2I) ≤ Cv(I) for some C, for all intervals I, where
2I means the concentric double of I. If v is defined on Rd, v is said to be
doubling if v(2Q) ≤ Cv(Q) for all cubes Q ⊂ Rd, and it is said to be dyadic
doubling if, for every Q ∈ Dd, v(Q) is bounded by a constant times v(Q′) for
any dyadic Q′ ⊂ Q such that �(Q′) = (1/2)�(Q). The reader might want to
check that this reduces to Definition 2.5 when d = 1.
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What do these definitions mean? They are two different ways of saying that
a weight v is “almost constant.” Notice that they apply to constant weights
and to weights v for which v(x) and 1/v(x) are both bounded functions. They
also apply to weights of the form |x|r, where r is any positive real number.
With a little work the reader can see that they even apply to certain weights
|x|r for negative r.

Essentially, the property of belonging to Ad
∞ means that, considered as

a measure, v is absolutely continuous, uniformly, with respect to changes in
scale. Another way to say this is that, if v ∈ Ad

∞, then, on any I ∈ D, v does
not put very much of its mass, relative to I, on very small subsets of I.

We have the following characterization of Ad
∞, which we will prove in the

next chapter (Theorem 3.3):

Theorem 2.4. Let v be a weight. Then v ∈ Ad
∞ if and only if there is a

positive constant A such that, for all dyadic intervals I,∫
I

Md(vχI) dx ≤ Av(I). (2.35)

This characterization yields a cornucopia of Ad
∞ weights. Here is how.

Suppose that a weight w belongs to Lp, with 1 < p ≤ ∞. We know that there
is a constant Cp such that ‖Md(f)‖p ≤ Cp‖f‖p for all f ∈ Lp. I claim that
there is a weight w̃ such that

w(x) ≤ C1,pw̃(x) everywhere (2.36)
‖w̃‖p ≤ C2,p‖w‖p (2.37)

Md(w̃)(x) ≤ C3,pw̃(x) a.e. (2.38)

The first two inequalities say that w and w̃ are roughly the same size. The
third inequality implies that w̃ satisfies 2.35.

There are at least two ways to construct such a weight w̃. The first method,
due to José Luis Rubio de Francia, is theoretically elegant, but a little hard
to compute. Simply set:

w̃(x) ≡ w(x) + (2Cp)−1Md(w)(x) + (2Cp)−2M2
d (w)(x) + · · · , (2.39)

where Mk
d denotes a k-fold application of the operator Md. This yields a w̃

for which C1,p ≤ 1, C2,p ≤ 2, and C3,p ≤ 2Cp: 2.36 is trivial; 2.37 follows from
the operator bound on Md; and, applying Md to both sides of 2.39 yields

Md(w̃)(x) ≤ Md(w)(x) + (2Cp)−1M2
d (w)(x) + (2Cp)−2M3

d (w)(x) + · · ·
≤ 2Cpw̃(x),

which is 2.38.
The second method is cruder but, in many cases, more computable. It

makes use of the following lemma, which we will also prove in the next chapter.
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Lemma 2.1. If v and Md(v) are weights, and 0 < β < 1, then

Md((Md(v))β) ≤ Cβ(Md(v))β

almost everywhere.

How does this give us a weight like w̃? Suppose w ∈ Lp, p > 1. Let
1 < r < p, and set v = wr and β = 1/r < 1. Then Md(v) is a weight, because
it belongs to Lp/r. Indeed:

‖Md(v)‖r
p/r ≤ Cp,r‖v‖r

p/r

= Cp,r

∫
(w(x))p dx.

We can then take w̃ to be (Md(v))β . The advantage of this construction is
that it yields w̃ through the application of only one maximal function. One of
its disadvantages is that this w̃ can easily be a lot bigger than the one given
by 2.39.

Notice that both of these constructions, by making use of maximal func-
tions, tend to “homogenize” the weight. This is consistent with our observation
that Ad

∞ weights are “almost constant.”
We can see this homogenization in action if we apply the second construc-

tion to w = χ[0,1) +χ[n−1,n), where n >> 1. Put v = wr, where r > 1 is fixed.
Observe that Md(v) ≡ 0 on (−∞, 0). The function (Md(v))β has a value of 1
on [0, 1), then decreases, to bottom out at around n−β , near x = n/2. It then
rises, to equal 1 again on [n, n + 1), after which it decreases toward 0, being
comparable to |x − n|−β when x is large.

The result of the construction has been, in effect, to drape a tent over
the graph of w. A good exercise for the reader is to show that these sorts
of constructions (“finding Lp, Ad

∞ majorants”) are impossible in L1. In other
words, the reader should show that if v is an Ad

∞ weight, and v is not identically
0, then v /∈ L1(R).

The property of being dyadic doubling means that, if v assigns positive
mass to any dyadic interval I, it assigns roughly equal positive masses to
I’s right and left halves. One consequence of this property is that if v is
dyadic doubling and v(I) > 0 for any dyadic I ⊂ [0,∞), then v(I) > 0 for
every dyadic I ⊂ [0,∞), with the analogous fact holding for subintervals of
(−∞, 0).

It is easy to see that v ∈ Ad
∞ does not imply that v is dyadic doubling;

and the reader is invited to build a counterexample showing this. If we require
that the ε−δ implication should hold for all intervals I, then we do get dyadic
doubling; and, indeed, doubling, i.e., the existence of a constant C such that,
for all intervals I, v(2I) ≤ Cv(I), where 2I is I’s concentric double. This is
not especially hard to prove, and we have made this an exercise in the next
chapter. It is harder to show that the dyadic doubling property does not imply
v ∈ Ad

∞; exercise 14.1 outlines a proof of this fact.
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The relevance of these classes to weighted problems is:

Theorem 2.5. If v ∈ Ad
∞, then 2.33 holds for all finite linear sums of Haar

functions.

Theorem 2.6. If v ∈ Ad
∞ and is dyadic doubling, then 2.34 holds for all finite

linear sums of Haar functions.

If the reader goes over the proof of 2.21, he will see that the v-weighted
version of the good-λ inequality, namely

v
({x ∈ Iλ

i : f∗(x) > 2λ, S(f)(x) ≤ γλ}) ≤ εv(Iλ
i )

(and that’s all that’s needed for Theorem 2.5), only requires v ∈ Ad
∞. Dyadic

doubling yields
v({La(f) > λ}) ≤ C̃v({f∗ > λ}),

which is the extra element needed in the proof of Theorem 2.6.
What can we say if v /∈ Ad

∞? In that case it is impossible for the conclu-
sion of Theorem 2.5 to hold; we shall see a proof of this later. As to whether
Theorem 2.6 holds, the author doesn’t know. In any event, the general in-
equalities we can prove when v /∈ Ad

∞ have the form∫
(f∗(x))p v dx ≤ C

∫
(S(f))p w dx (2.40)

and ∫
(S(f))p v dx ≤ C

∫
|f(x)|p w dx (2.41)

for pairs of weights (v, w). A complete “solution” to the problem presented
by 2.40 (respectively 2.41) would be a set of testable necessary and sufficient
conditions on pairs (v, w) for inequality 2.40 (respectively 2.41) to hold for
all finite linear combinations f =

∑
λIh(I). Such an achievement is probably

too much to hope for, at least in this lifetime. We will content ourselves with
obtaining strong sufficient conditions for these two inequalities.

By setting f = h(I), for I arbitrary, we see that a necessary condition for
either 2.40 or 2.41 to hold is that v ≤ Cw almost everywhere. It is therefore
natural to look for sufficient conditions that automatically imply v ≤ Cw.
We have already seen two such sufficient conditions, though not their proofs
(which will come in the next chapter). If R is any number larger than 1, we
define the Rubio de Francia maximal function of v, with parameter R, by the
following equation:

MR(v) ≡
∞∑
0

Mk
d (v)
Rk

,

where M0
d (v) is just v. Likewise, if r > 1 and v is a weight, let us define

Mr,d(v) ≡ (Md(vr))1/r.
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Both of these functions are pointwise ≥ v. We know that the first one satisfies
the inequality Md(w) ≤ Cw, and we have asserted (but not yet proved) that
the second one does too. We have also asserted (but not yet proved) that, if
w is any weight satisfying

Md(w) ≤ Cw, (2.42)

then w ∈ Ad
∞. Therefore, if we can prove 2.42 for Mr,d(v), and the implication

“2.42 ⇒ the weight w belongs to Ad
∞,” we will have:

Theorem 2.7. a) If v and MR(v) are weights, then for all 0 < p < ∞ and
all f =

∑
I λIh(I), finite linear sums of Haar functions,∫

(f∗(x))p v dx ≤ Cp,R

∫
(S(f))p MR(v) dx (2.43)

and ∫
(S(f))p v dx ≤ Cp,R

∫
(La(f)(x))p MR(v) dx. (2.44)

b) If v and Mr,d(v) are weights, then for all 0 < p < ∞ and all f =
∑

I λIh(I),
finite linear sums of Haar functions,∫

(f∗(x))p v dx ≤ Cp,r

∫
(S(f))p Mr,d(v) dx (2.45)

and ∫
(S(f))p v dx ≤ Cp,r

∫
(La(f)(x))p Mr,d(v) dx. (2.46)

The proofs of these inequalities are fast and easy. For 2.43, we write,∫
(f∗(x))p v dx ≤

∫
(f∗(x))p MR(v) dx

≤ Cp,R

∫
(S(f))p MR(v) dx,

where the first inequality comes from the fact that v ≤ MR(v) and the second
is due to the Ad

∞ property of MR(v). The proofs of the others are practically
identical.

Corollary 2.1. a) If v and w are two weights and MR(v) ≤ w almost every-
where for some R > 1, then∫

(f∗(x))p v dx ≤ Cp,R

∫
(S(f))p w dx

and ∫
(S(f))p v dx ≤ Cp,R

∫
(La(f)(x))p w dx

hold for all 0 < p < ∞ and all finite linear sums f =
∑

I λIh(I). b) If v and
w are two weights and Mr,d(v) ≤ w almost everywhere for some r > 1, then
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(f∗(x))p v dx ≤ Cp,r

∫
(S(f))p w dx

and ∫
(S(f))p v dx ≤ Cp,r

∫
(La(f)(x))p w dx

hold for all 0 < p < ∞ and all finite linear sums f =
∑

I λIh(I).

In essence, Theorem 2.7 and Corollary 2.1 say that (v, w) is a good pair
for our weighted problems if w is bigger than or equal to “enough” (infinitely
many, but rapidly damped down) iterates of Md applied to v, or a “bumped
up” version of Md(v) (bumped up to (Md(vr))1/r). It is reasonable to ask:
Can we get away with just v? If not, is plain old unbumped Md, applied to
an arbitrary weight v, enough?

The answer to the first reasonable question is “definitely not.” For k =
0, 1, 2, . . ., let Ik = [0, 2k), and set λk = 2k/2/(k + 1). For N ≥ 0, define

gN ≡
N∑
0

λkh(Ik).

Then ‖S(gN )‖∞ ≤ (
∑∞

0 (k + 1)−2)1/2, independent of N , but gN (x) =∑N
0 (k + 1)−1 ↗ ∞ for all x ∈ [0, 1). Therefore∫

|gN |p v dx ≤ C

∫
Sp(gN ) v dx

cannot hold, for any p, with a constant C independent of v and N : just set
v = χ[0,1). Similarly,∫

(S(f))p v dx ≤ Cp

∫
(La(f))p v dx

cannot hold with a constant independent of f and v. To see this, again let
v = χ[0,1). For k ≥ 0, define λ̃k ≡ 2k/2/

√
k + 1. Using the same Ik’s as before,

define, for N ≥ 0,

g̃N ≡
N∑
0

(−1)kλ̃kh(Ik).

The alternating factor (−1)k ensures that ‖g̃N‖∞ (hence ‖La(g̃N )‖∞) has a
bound independent of N . Hence∫

(La(g̃N )(x))p v dx ≤ Cp.

But ∫
(S(g̃N ))p v dx =

(
N∑
0

(k + 1)−1

)p/2

→ ∞.
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The answer to the second question—about whether Md(v) is ever big
enough—is, “sometimes yes and sometimes no—but ‘no’ is the safer bet.” We
will see this in the next chapter. At the same time we will learn some pretty
good sufficient conditions on pairs of weights (v, w) which ensure that 2.40
or 2.41 holds for all f in some large test class, with constants independent
of f .

The search for these conditions will be somewhat circuitous. It will begin
with an examination of what is probably the least forceful link in the proofs
of Theorem 2.5 and Theorem 2.6: namely, the weak-type L2 − L2 bounds
between f and S(f). At present we know that, if f (respectively, S(f)) is
bounded, then, on any bounded interval, the measure of the set where S(f)
(respectively, |f |) is bigger than λ decays at least as fast as λ−2.

We will see that these measures actually decay a lot faster.

Mini-Appendix: Interpolation

We will now give the promised proof of (a special case of) the Marcinkiewicz
Interpolation Theorem (Theorem 2.8).

Definition 2.6. An operator T is called subadditive if |T (f + g)| ≤ |Tf |+|Tg|
pointwise for all f and g such that Tf , Tg, and T (f + g) make sense. The
operator T is called homogeneous if, for all scalars α and all f in T ’s domain,
|T (αf)| = |α||Tf |. If T is subadditive and homogeneous, it is called sublinear.

Definition 2.7. Let (X,M, µ) and (Y,N , ν) be two measure spaces,
0 < p < ∞, and suppose that T is a sublinear operator mapping from
Lp(X,M, µ) into the space of Y -measurable functions. T is said to be of weak
type (p, p) if there is a constant C such that, for all f and for all λ > 0,

ν ({y ∈ Y : |Tf(y)| > λ}) ≤ Cλ−p

∫
X

|f(x)|p dµ(x).

T is said to be of weak type (∞,∞) if there is a constant C such that
‖Tf‖L∞(Y ) ≤ C‖f‖L∞(X) for all bounded f .

We note (and the reader should show) that if T maps boundedly from
Lp(X) into Lp(Y ), then T is automatically weak type (p, p). The converse is
false. We proved that Md is weak type (1, 1), but the example of f = χ[0,1)

shows that it is not bounded on L1.

Theorem 2.8. Suppose that (X,M, µ) and (Y,N , ν) are two σ-finite measure
spaces. Let T be a sublinear operator as defined above and let 0 < p1 < p <
p2 ≤ ∞. If T is of weak type (p1, p1) and (p2, p2), then it maps boundedly
from Lp(X) into Lp(Y ).



2 An Elementary Introduction 33

Proof. Let f ∈ Lp, fix λ > 0, and write f = f1 + f2, where

f1(x) =
{

f(x) if |f(x)| > λ;
0 otherwise.

Notice (prove!) that f1 ∈ Lp1 and f2 ∈ Lp2 . Let’s first assume that p2 < ∞.
Because T is sublinear,

ν ({y ∈ Y : |Tf(y)| > λ})
≤ ν ({y ∈ Y : |Tf1(y)| > λ/2}) + ν ({y ∈ Y : |Tf2(y)| > λ/2}) .

The first term following the ‘≤’ sign is no bigger than

C

λp1

∫
|f |>λ

|f |p1 dµ(x), (2.47)

while the second term is no bigger than

C

λp2

∫
|f |≤λ

|f |p2 dµ(x). (2.48)

If we multiply 2.47 by pλp−1 and integrate from 0 to ∞, we get a constant
times∫ ∞

0

λp−1−p1

(∫
|f |>λ

|f | dµ(x)

)
dλ =

∫
X

|f |p1

(∫ |f |

0

λp−1−p1 dλ

)
dµ(x)

= (p − p1)−1

∫
X

|f |p1 |f |p−p1 dµ(x)

= (p − p1)−1

∫
X

|f |p dµ(x),

and that’s what we want. Notice how crucial it was for p− 1− p1 to be larger
than −1.

If we perform similar manipulations on 2.48 we get a constant times∫
X

|f |p2

(∫ ∞

|f |
λp−1−p2 dλ

)
dµ(x);

which (because p − 1 − p2 is less than −1) is equal to

(p2 − p)−1

∫
X

|f |p2 |f |p−p2 dµ(x) = (p2 − p)−1

∫
X

|f |p dµ(x),

and that’s also okay.
If p2 = ∞, we split f at ελ (instead of λ), where ε is positive, but chosen so

small that {y ∈ Y : |Tf2(y)| > λ/2} has ν-measure equal to 0. The theorem
is proved.
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Exercises

2.1. Prove equation 2.14. (Hint: Follow this trail: characteristic functions →
simple functions → monotone limits of simple functions.)

2.2. Prove 2.15 and 2.16 without the assumption that |f |I = |I| = 1.

2.3. The Hardy-Littlewood maximal function of f , a locally integrable func-
tion, is defined by

M(f)(x) ≡ sup
I:x∈I

1
|I|
∫

I

|f(t)| dt,

where the supremum is over all bounded intervals containing x. It is trivial
that Md(f) ≤ M(f) pointwise. Show that there are positive constants c1 and
c2 such that, for all f and all λ > 0,

|{x : M(f)(x) > λ}| ≤ c1|{x : Md(f)(x) > c2λ}|,

with the consequence that, for all 1 < p ≤ ∞,

‖M(f)‖p ≤ Cp‖f‖p.

2.4. We can generalize Md and M to d dimensions as follows. If f : Rd �→ R
is measurable, then we set

Md(f)(x) ≡ sup
Q∈Dd
x∈Q

1
|Q|
∫

Q

|f | dt

and
M(f)(x) ≡ sup

Q a cube
x∈Q

1
|Q|
∫

Q

|f | ds.

Trivially, Md(f) ≤ M(f) pointwise. Show that, for all 1 < p ≤ ∞,

‖M(f)‖p ≤ Cp,d‖f‖p.

2.5. State and prove d-dimensional versions of 2.15 and 2.16, in which Md is
replaced by the operator M , and the interval I is replaced by an arbitrary
d-dimensional cube Q.

2.6. If t ∈ Rd and y > 0, the ball B(t; y) is the set of x ∈ Rd such
that |x − t| < y. The classical Hardy-Littlewood maximal operator, MC , is
defined by

MC(f)(x) ≡ sup
(t,y)∈R

d+1
+

x∈B(t;y)

1
|B(t; y)|

∫
B(t;y)

|f | ds.



2 An Elementary Introduction 35

Show that there are positive constants c1 and c2, depending only on d, such
that, for all measurable f and all x ∈ Rd,

c1MC(f)(x) ≤ M(f)(x) ≤ c2MC(f)(x),

and that therefore ‖MC(f)‖p ≤ Cp,d‖f‖p for all 1 < p ≤ ∞.

2.7. Let h : [0,∞) �→ [0,∞] be non-increasing. (Notice that we allow h to
be infinite.) Define Φ : Rd �→ [0,∞] by Φ(x) ≡ h(|x|), and suppose that∫
Rd Φ(x) dx = 1. Show that, if g : Rd �→ R is non-negative and measurable,

then, for all x ∈ Rd and all y > 0,

g ∗ Φy(x) ≤ MC(g)(x). (2.49)

(Hint: It’s enough to prove this when x = 0 and y = 1. You might have an
easier time seeing what’s going on if you try to prove something stronger;
namely, that

g ∗ Φ(0) ≤ sup
y>0

1
|B(0; y)|

∫
B(0;y)

g(s) ds.)

If we replace 0 by an arbitrary point x, the supremum on the right is called
the centered Hardy-Littlewood maximal function of g, evaluated at the point x.
An important special case of 2.49 is when Φ(x) = cβ,d(1 + |x|)−d−β for some
β > 0. For this particular Φ we actually have (and the reader should show it):

sup
(t,y): |x−t|<y

g ∗ Φy(t) ≤ C(β, d)MC(g)(x).

In other words, the inequality isn’t spoiled even if we “jiggle” the kernel Φ a
bit. We use this fact in the proof of Theorem 6.1.

2.8. Suppose that v is a weight defined on Rd and f is a non-negative mea-
surable function. For every cube Q ⊂ Rd, set

fv,Q ≡
{

1
v(Q)

∫
Q

f(t) v(t) dt if v(Q) > 0;
0 if v(Q) = 0.

Define
Mv,d(f)(x) ≡ sup

Q: x∈Q∈Dd

fv,Q.

This is the v-weighted dyadic maximal function of f . We can similarly define

Mv(f)(x) ≡ sup
Q: x∈Q

Q a cube

fv,Q,

the v-weighted maximal function of f . a) Show that

‖Mv,d(f)‖Lp(Rd,v) ≤ Cp‖f‖Lp(Rd,v)
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for all 1 < p ≤ ∞, where the constant Cp only depends on p and not on d
or v. b) Suppose that v has the doubling property; i.e., that v(2Q) ≤ Cv(Q)
for all cubes Q. Show that

‖Mv(f)‖Lp(Rd,v) ≤ C‖Mv,d(f)‖Lp(Rd,v),

for all 1 < p ≤ ∞, where the constant C now depends on p, d, and v.

2.9. Recall our definition of fN :

fN =
∑

I∈D(N)

λI(f)h(I).

Show that, if f ∈ Lp (1 < p < ∞), then fN → f in the Lp norm. Show that
this implication fails for p = 1 and p = ∞.

2.10. Now define
m(f)N =

∑
I∈D

�(I)=2−N

fIχI ;

i.e., this is just f replaced by its averages over dyadic intervals of length 2−N .
Show that, if f ∈ Lp (1 ≤ p < ∞), then m(f)N → f in the Lp norm: notice
that this time we’re including p = 1. Show that convergence can still fail
for p = ∞. (Hint: Almost-everywhere convergence comes from the Lebesgue
differentiation theorem. For the norm convergence, first show that it works
for continuous functions with compact support.)

2.11. Let F1 ⊂ F2 ⊂ F3 · · · be an increasing sequence of finite subsets of D
such that ∪kFk = D. Elementary functional analysis implies that, if f ∈ L2,
the sequence of functions

fFk
≡
∑

I∈Fk

λI(f)h(I) (2.50)

converges to f in the L2 norm. Using Littlewood-Paley theory, we can show
more: If f ∈ Lp (1 < p < ∞), the sequence defined by 2.50 converges to f
in the Lp norm. One argument goes like this (the missing steps are left to
the reader.) We know that ‖f‖p ∼ ‖S(f)‖p. Since f ∈ Lp, S(f − fFk

) ≤
S(f) < ∞ and S(f − fFk

) → 0 almost everywhere. Therefore, by Dominated
Convergence, S(f − fFk

) → 0 in Lp, implying the result. We could also go
another way: the sequence of operators defined by f �→ fFk

is uniformly
bounded on Lp (1 < p < ∞), and the sequence converges to the identity on
finite linear sums of Haar functions, which are dense in Lp.

2.12. Show that, if v ∈ Ad
∞ ∩ L1, then v ≡ 0.
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Notes

The Haar functions first occur in [27]. The interpolation theorem (Theorem
2.8) is first proved in [40]. The Hardy-Littlewood Maximal Theorem (a general
term referring to the results expressed in Theorem 2.2, exercise 2.3, exercise
2.4, exercise 2.5, and exercise 2.6) was first proved in its non-dyadic, one-
dimensional form in [28]; it has since been generalized in a large but finite
number of ways. The Rubio de Francia maximal function, which has many
variations, first appeared (in a non-dyadic form) in [49]; see also [23]. Good-λ
inequalities first appeared in the work of Burkholder and Gundy [1] [2]. This
work was followed by the seminal papers [3] and [19], which established the
surprising Lp equivalence between certain maximal and square functions. This
equivalence was sharpened significantly in [20] and [43].

Good-λ inequalities have fallen out of fashion lately, because they are not
well-suited to two-weight problems. Nevertheless, the author believes they
are something every analyst should know about. One must walk before one
can run, and, when even the one-weight problem looks intractable, good-λ
inequalities can be just the tool one needs to pry things open.



3

Exponential Square

A function f is said to be uniformly locally exponentially square integrable if
there exist positive constants α and β such that, for all finite intervals I,

1
|I|
∫

I

exp(α|f − fI |2) dx ≤ β. (3.1)

We express this in symbols by f ∈ Exp(L2
loc).

By Chebyshev’s inequality, f ∈ Exp(L2
loc) implies that, for all intervals

I and λ > 0,
|{x ∈ I : |f − fI | > λ}| ≤ β exp(−αλ2)|I|. (3.2)

Conversely, by integrating distribution functions, the existence of positive
numbers α and β such that 3.2 holds for all λ > 0 and intervals I implies
that f ∈ Exp(L2

loc) (with different α and β, of course).
The good-λ inequalities used in the proof of Theorem 2.1 turned on the

facts that, if f is bounded on I, then S(f) is in L2(I), in a controlled way;
and, if S(f) is bounded on I, then f is in L2(I), in a controlled way.

But much more is true.

Theorem 3.1. There exist positive constants α and β such that, if ‖f‖∞ ≤ 1,
then for all dyadic intervals I and positive numbers λ,

|{x ∈ I : S(f − fI) > λ}| ≤ α|I| exp(−βλ2).

Theorem 3.2. There exist positive constants α and β such that, if
‖S(f)‖∞ ≤ 1, then, for all dyadic intervals I and positive numbers λ,

|{x ∈ I : |f − fI | > λ}| ≤ α|I| exp(−βλ2).

Essentially, we are saying that f ∈ L∞ implies S(f) ∈ Exp(L2
loc) with

respect to dyadic intervals I, and vice versa.
We shall prove these theorems momentarily. Before doing so, let us note

that they imply the following improved good-λ inequalities:
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Corollary 3.1. There exist positive constants C1 and C2 such that, for all
finite linear sums f =

∑
λIh(I) and all λ > 0,

|{x : S(f)(x) > 2λ, La(f)(x) ≤ γλ}| ≤ C1 exp(−C2/γ2)|{x : S(f)(x) > λ}|.

Corollary 3.2. There exist positive constants C1 and C2 such that, for all
finite linear sums f =

∑
λIh(I) and all λ > 0,

|{x : f∗(x) > 2λ, S(f)(x) ≤ γλ}| ≤ C1 exp(−C2/γ2)|{x : f∗(x) > λ}|.

Remark. These corollaries, of course, follow from the analogous inequal-
ities on the maximal dyadic intervals Iλ

i that make up {x : S(f)(x) > λ}
(respectively, {x : f∗(x) > λ}).

The proof of Theorem 3.1 is pretty short, and it follows from a simple
trick. The proof of Theorem 3.2, while also fairly short, uses a cleverer trick.

Proof of Theorem 3.1. We claim that there is a constant C such that,
for any weight v and function f ,∫

(S(f))2 v dx ≤ C

∫
|f(x)|2 Md(v) dx. (3.3)

This will yield the result. How? Since the estimate we are seeking is purely
local, we can, without loss of generality, assume that f ’s support is contained
in I and that

∫
I
f dx = 0. In chapter 2 we proved inequality 2.15, which says

that, if v is supported on a dyadic interval I and
∫

I
v > 0, then

c1

∫
I

Md(v) dx ≤
∫

I

v(x) log(e + v(x)/vI) dx ≤ c2

∫
I

Md(v) dx,

where c1 and c2 are positive, absolute constants. Supposing we have 3.3, let
I be a dyadic interval and set Eλ = {x ∈ I : S(f)(x) > λ}. Define v = χEλ

.
Then the left-hand side of 3.3 is bounded below by λ2|Eλ|, while, because of
our assumption about f ’s support, the right-hand side is bounded above by
C|Eλ| log(e+ |I|/|Eλ|). If |Eλ| = 0, we’re done. Otherwise, after canceling, we
get

λ2 ≤ C log(e + |I|/|Eλ|),
which, after some algebra, yields

|Eλ| ≤ C1 exp(−C2λ
2)|I|.

So, how do we prove 3.3? For each integer k, let Fk denote the family of
dyadic intervals I for which

2k <
1
|I|
∫

I

v dx ≤ 2k+1,
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and define Dk = {x ∈ R : Md(v)(x) > 2k}. We observe that ∪{I : I ∈
Fk} ⊂ Dk, and that every dyadic I for which

∫
I
v > 0 lies in one and only

one of the sets Fk.
Now we write∫

(S(f))2 v dx =
∑

I

|λI |2
|I|
∫

I

v dx

=
∑

k

∑
I∈Fk

|λI |2 1
|I|
∫

I

v dx

≤
∑

k

2k+1
∑

I∈Fk

|λI |2. (3.4)

Now comes the trick. For any I, λI = 〈f, h(I)〉. However, if I ∈ Fk then
I ⊂ Dk, implying that λI = 〈fχDk , h(I)〉. Therefore, the right-hand side of
3.4 is equal (respectively, less than or equal to):∑

k

2k+1
∑

I∈Fk

|〈fχDk , h(I)〉|2 ≤
∑

k

2k+1

(∫
|fχDk |2 dx

)

=
∫

|f(x)|2
(∑

k

2k+1χDk

)
dx

≤ 4
∫

|f(x)|2 Md(v) dx,

because
∑

k 2k+1χDk ≤ 4Md(v). This finishes the proof of Theorem 3.1.

Proof of Theorem 3.2. The result will follow from a lemma.

Lemma 3.1. Let g be supported in [0, 1) and satisfy
∫ 1

0
g dx = 0. Then:∫ 1

0

exp(g − 1
2
(S(g))2) dx ≤ 1. (3.5)

To see how this applies to our problem, note that, by rescaling, it is
enough to prove Theorem 3.2’s exponential square estimate for I = [0, 1),
under the hypotheses that f is supported in [0, 1) and satisfies

∫
f dx = 0.

Under these assumptions, and with the additional one that S(f) ≤ 1 almost
everywhere, set g = λf . Then 3.5 says∫ 1

0

exp(λf − 1
2
λ2) dx ≤ 1,

or ∫ 1

0

exp(λf) dx ≤ exp(
1
2
λ2),
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from which Chebyshev’s inequality yields:

|{x ∈ [0, 1) : f(x) > λ}| ≤ exp(−1
2
λ2).

Switching −λ for λ gives the same inequality for |{x ∈ [0, 1) : f(x) < −λ}|.
Combining the two, we get

|{x ∈ [0, 1) : |f(x)| > λ}| ≤ 2 exp(−1
2
λ2),

which is what we want. So our problem reduces to showing Lemma 3.1.
The proof works by induction.
Define g0 = 0 and, for k > 0,

gk = gk−1 +
∑

I: �(I)=2−k+1

λIh(I).

Notice that gk is simply what we get when we replace g by its averages over
dyadic intervals of length 2−k. We have implicitly assumed that g ∈ L1.
Therefore gk → g and S(gk) → S(g) almost everywhere as k → ∞, and it
is enough to prove 3.5 for gk, since the general result will follow by Fatou’s
Lemma.

The case of k = 0 is trivial (both g0 and S(g0) are 0). Now assume that∫ 1

0

exp(gk − 1
2
(S(gk))2) dx ≤ 1.

Let I ⊂ [0, 1) be any dyadic interval of length 2−k. It will be enough to show
that ∫

I

exp(gk+1 − 1
2
(S(gk+1))2) dx ≤

∫
I

exp(gk − 1
2
(S(gk))2) dx.

But, since gk and S(gk) are both constant across I, this will follow if we show
that ∫

I

exp(gk+1 − gk − 1
2
[(S(gk+1))2 − (S(gk))2]) dx ≤ 1.

Let Il and Ir denote I’s left and right halves, respectively. The function
gk+1 − gk has constant value—call it c—on Il and value −c on Ir. The func-
tion (S(gk+1))2−(S(gk))2 has constant value c2 on all of I. Thus, our problem
reduces (last time!) to showing∫

Il

exp(c) dx +
∫

Ir

exp(−c) dx ≤ |I| exp(c2/2).

Transposing, this is the same as:

1
|I|
[∫

Il

exp(c) dx +
∫

Ir

exp(−c) dx

]
≤ exp(c2/2). (3.6)
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However, an easy computation shows that the left-hand side of 3.6 is just
cosh(c), which is ≤ exp(c2/2) (compare their power series). Theorem 3.2 is
proved.

Remark. The reader might reasonably wonder why we didn’t prove
Theorem 3.2 by first showing that∫

|f(x)|2 v dx ≤ C

∫
(S(f))2 Md(v) dx (3.7)

for all v and all appropriate f . The reason is simple: inequality 3.7 is false. The
counterexample isn’t hard to present. For k = 0, 1, 2, . . ., let Ik = [0, 2−k).
Now let N be a large integer and define

v(x) = 2NχIN
(x)

f(x) =
N−1∑
k=0

1
2k/2(N − k)

h(Ik)(x).

Then |f(x)| = 1 + 1/2 + 1/3 + · · · + 1/N ∼ log N on IN , and so∫
|f(x)|2 v dx ≥ C(log N)2.

However, on [2−k−1, 2−k] (0 < k < N − 1), Md(v) ∼ 2k and

(S(f))2 ≤ 1
(N − k)2

+
1

(N − k + 1)2
+ · · · + 1

N2

≤ C/(N − k),

implying
∫

(S(f))2 Md(v) dx ≤ C log N .

In the preceding chapter we devoted approximately equal space to in-
equalities of the form∫

(f∗(x))p v dx ≤ C

∫
(S(f))p v dx

and those of the form∫
(S(f))p v dx ≤ C

∫
(f∗(x))p v dx.

We are now forced to change that practice. We want to understand the two-
weight problems ∫

(f∗(x))p v dx ≤ C

∫
(S(f))p w dx (3.8)

and ∫
(S(f))p v dx ≤ C

∫
(f∗(x))p w dx. (3.9)
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At present, the theory of 3.8 is well-developed and (we think) well-understood;
and the exponential-square result Theorem 3.2 plays a big role in this theory.
But what I have just said is only partly true of 3.9. The basic L2 inequality,∫

(S(f))2 v dx ≤ C

∫
|f(x)|2 Md(v) dx,

can be generalized to Lp for 1 < p < 2, yielding∫
(S(f))p v dx ≤ C

∫
|f(x)|p Md(v) dx. (3.10)

However, the proof makes no use of exponential-square estimates: it works by
an interpolation argument like the one used to the prove the Hardy-Littlewood
maximal theorem. If p > 2 then 3.10 fails; we show this at the end of the
chapter. When p is large, substitutes for 3.10 are available, in which Md(v)
is replaced by bigger maximal functions of v—such as iterations of Md(·).
However, the proofs of these results also make no use of exponential-square
estimates. What they use is the theory of Orlicz spaces, which we will develop
later in the book.

In order to maintain the flow of our narrative, we will temporarily shift
our attention entirely to inequalities of the form 3.8. At the end of this chapter
we will prove 3.10 for 1 < p < 2, show that it fails for p > 2, and show an
extension to 0 < p ≤ 1. Unfortunately, the “large-p” analogues of 3.10—akin
to what we will do with inequalities of the form 3.8—will have to wait until
we have looked at Orlicz space theory.

So, given all that, our next order of business is to show how Theorem 3.2
lets us generalize the inequality∫

(f∗(x))p v dx ≤ C

∫
(S(f))p v dx

to two-weight settings∫
(f∗(x))p v dx ≤ C

∫
(S(f))p w dx (3.11)

in which neither v nor w is assumed to belong to Ad
∞. We begin by introducing

a useful functional.

Definition 3.1. If v is a weight and I is a bounded interval, we define

Y (I, v) =
{

1
v(I)

∫
I
v(x) log(e + v(x)/vI) dx if v(I) > 0;

1 if v(I) = 0.

The Y -functional measures the extent to which v concentrates a lot of
its mass on a small subset of I. For example, if we take I = [0, 1) and set, for
n ≥ 0,
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v(x) =
{

1 if 0 ≤ x ≤ 2−n;
0 otherwise,

then Y (I, v) ∼ n.
The following theorem, which we mentioned in the last chapter, shows

the intimate connection between the Y -functional and the Ad
∞ property.

Theorem 3.3. Let v be a weight. Then v ∈ Ad
∞ if and only if there is a

positive constant A such that, for all dyadic intervals I,∫
I

Md(vχI) dx ≤ Av(I). (3.12)

Proof of Theorem 3.3. Suppose first that, for all dyadic intervals I,∫
I

Md(vχI) dx ≤ Av(I).

By our inequality 2.15, this implies∫
I

v(x) log(e + v(x)/vI) dx ≤ CAv(I) (3.13)

for all I ∈ D. Fix I, and, for λ > 0, define Eλ = {x ∈ I : v(x) > eλvI}. By
3.13 and Chebyshev’s inequality, we have

v(Eλ) ≤ (A/λ)v(I). (3.14)

Let ε > 0 and take λ so large that e−λ/2 and A/λ are both less than ε/4. Now
let E ⊂ I and suppose |E|/|I| < e−λ. Then:

v(E) ≤ v(E ∩ Eλ/2) + v(E \ Eλ/2).

By 3.14, the first term on the right is no bigger than (2A/λ)v(I) ≤ (ε/2)v(I).
The second term is less than or equal to

eλ/2vI |E| ≤ e−λ/2v(I) ≤ (ε/2)v(I).

Therefore, v ∈ Ad
∞.

For the other direction, let δ > 0 be so small that, for all dyadic I and
measurable E ⊂ I, |E|/|I| ≤ δ implies v(E) ≤ (1/2)v(I). Fix a dyadic interval
I0, which we can, without loss of generality, take to be [0, 1), and suppose—
also without loss of generality—that

∫
I0

v dx = 1. Set R = 2δ−1, and, for
k = 1, 2, . . ., let {Ik

j }j be the maximal dyadic subintervals Ik
j ⊂ I0 such that

vIk
j

> Rk. By maximality, each Ik
j satisfies

vIk
j
≤ 2Rk
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or ∫
Ik

j

v dx ≤ 2Rk|Ik
j |.

Therefore, following the argument for the weak (1, 1) estimate for Md,∑
j′:Ik+1

j′ ⊂Ik
j

|Ik+1
j′ | ≤ 2Rk

Rk+1
|Ik

j |

= δ|Ik
j |,

for all k and j. Because of our choice of R, this implies, for all k and j,∑
j′:Ik+1

j′ ⊂Ik
j

v(Ik+1
j′ ) ≤ (1/2)v(Ik

j ), (3.15)

and ∑
j′:I1

j′⊂I0

v(I1
j′) ≤ (1/2)v(I0) = 1/2. (3.16)

If we sum 3.15 over all j, for fixed k ≥ 1, we get:,∑
j′

v(Ik+1
j′ ) ≤ (1/2)

∑
j

v(Ik
j ),

because every Ik+1
j′ is contained in some Ik

j . We can continue this, going
backward in k, to obtain, for each k ≥ 1,∑

j

v(Ik
j ) ≤ (1/2)

∑
j′

v(Ik−1
j′ )

≤ (1/2)2
∑
j′

v(Ik−2
j′ )

≤ · · ·
≤ 2−kv(I0) = 2−k.

An argument we used in chapter 2 implies that Md(vχI0) ∼ 1 +∑
k,j RkχIk

j
on I0, with approximate proportionality constants depending

on R. Therefore:∫
I0

Md(vχI0) dx ≤ CR

⎛⎝1 +
∫ ⎛⎝∑

k,j

RkχIk
j

⎞⎠ dx

⎞⎠
≤ CR

⎛⎝1 +
∑
k,j

Rk|Ik
j |
⎞⎠
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≤ CR

⎛⎝1 +
∑
k,j

∫
Ik

j

v(x) dx

⎞⎠
≤ C ′

R

(
1 +
∑

k

2−k

)
≤ C ′

R = C ′
Rv(I0),

which was to be proved.

Theorem 3.3 implies the following sufficient condition for a weight v to
belong to Ad

∞, which we mentioned in chapter 2.

Corollary 3.3. If v is a weight and there is a positive constant A such that

Md(v) ≤ Av (3.17)

almost everywhere, then v ∈ Ad
∞.

As we have seen, we can obtain weights satisfying 3.17 by applying the
Rubio de Francia maximal function MR to a weight w. Another way is by
means of the following lemma, also mentioned in chapter 2.

Lemma 3.2. . Let 0 < β < 1. If v and (Md(v))β are weights, then (Md(v))β

satisfies 3.17, with a constant A depending only on β.

Proof of Lemma 3.2. Let I = [0, 1) and suppose that x0 ∈ I is arbitrary.
It will be enough to show that∫

I

(Md(v)(x))β dx ≤ Cβ(Md(v)(x0))β ,

because then, by rescaling and translating, we will have, for all dyadic intervals
J and all points y ∈ J ,

1
|J |
∫

J

(Md(v)(x))β dx ≤ Cβ(Md(v)(y))β ,

which is 3.17.
Write

v = v1 + v2 ≡ vχI + vχR\I .

We will show ∫
I

(Md(v1)(x))β dx ≤ Cβ(Md(v)(x0))β (3.18)

and ∫
I

(Md(v2)(x))β dx ≤ Cβ(Md(v)(x0))β . (3.19)
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For the first inequality 3.18, we use inequality 2.16. It directly gives us∫
I

(Md(v1)(x))β dx ≤ Cβ

(∫
I

|v1| dx

)β

≤ Cβ(Md(v)(x0))β .

For the second, we note that Md(v2) must be constant on I. This is because
any dyadic interval that meets both I and v2’s support must contain I as a
subset. This constant value—call it c—is less than or equal to the infimum of
Md(v) on I, from which 3.19 now follows.

We have seen that Theorem 3.3 and Lemma 3.2 imply, for many weights v,
the existence of weights w such that∫

(f∗(x))p v dx ≤ C

∫
(S(f))p w dx (3.20)

holds for all finite linear sums of Haar functions. Unfortunately, the w’s so
obtained tend to be rather singular (i.e., likely to blow up) maximal functions
of v. We are about to use the Y -functional to find less singular w’s, at least
for some ranges of p. (Later we will able to do so for all p.)

A careful examination of the proof of Theorem 3.3 reveals the following
very useful quantitative estimate: There is an absolute constant C such that,
for all positive A and λ, if Y (I, v) ≤ A and E ⊂ I satisfies |E|/|I| < e−λ,
then

v(E) ≤ CA

λ
v(I).

We shall use this fact in the following

Theorem 3.4. Let 0 < p < ∞. There is a positive constant Cp so that, for
all weights v, if

sup
I∈D

Y (I, v) ≤ A,

then, for all finite linear sums f =
∑

I λIh(I),∫
(f∗(x))p v dx ≤ CpA

p/2

∫
(S(f))p v dx.

Proof of Theorem 3.4. Write {x ∈ R : f∗(x) > λ} = ∪iI
λ
i , where the

Iλ
i are the usual maximal dyadic intervals. For every γ > 0 and Iλ

i , we have

|{x ∈ Iλ
i : f∗(x) > 2λ, S(f)(x) ≤ γλ}| ≤ C1 exp(−C2γ

−2)|Iλ
i |.

Because of our hypothesis on v, this implies

v({x ∈ Iλ
i : f∗(x) > 2λ, S(f)(x) ≤ γλ}) ≤ (CAγ2)v(Iλ

i ).

If we choose γ such that CAγ2 = 2−p−1, we will get
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(f∗(x))p v dx ≤ 2p+1γ−p

∫
(S(f))p v dx.

(The reader might want to go through the original good-λ inequality proof
again and check this.) But

γ =
1

2(p+1)/2
√

CA
,

and that implies our estimate.

In order to squeeze the most out of the Y -functional, we will need a more
severely “localized” form of Theorem 3.4.

Theorem 3.5. Let v be a weight and let F be a finite family of dyadic inter-
vals such that, for all I ∈ F , Y (I, v) ≤ A. If f =

∑
I∈F λIh(I) then, for all

0 < p < ∞, ∫
(f∗(x))p v dx ≤ CpA

p/2

∫
(S(f))p v dx,

where the constant Cp only depends on p.

Remark. The proof of this theorem might at first appear trivial, since the
only intervals that “count” are those in F , which satisfy the good estimate
Y (I, v) ≤ A. However, things are not quite so simple, because we need to
prove our good-λ estimate on the stopping intervals Iλ

i , each of which is a
right or left half of some I ∈ F , and we don’t know anything about those.

Proof of Theorem 3.5. Let Iλ
i be a maximal dyadic interval such that

|fIλ
i
| > λ. As always, we can assume that |fIλ

i
| ≤ (1.1)λ; and we do so.

Let {Kj} be the family of maximal I ∈ F which are also subsets of Iλ
i . We

“observe” that if J ⊂ Iλ
i is a dyadic interval that is not properly contained

in any Kj , then fJ = fIλ
i
. This observation is the key to the proof. Why is it

true? Note that, for any dyadic interval L,

fL =

⎛⎜⎝∑
I∈F
I �⊂L

λIh(I)

⎞⎟⎠
L

,

because the terms λIh(I) with I ⊂ L integrate to 0. Therefore,

fJ − fIλ
i

=

⎛⎜⎜⎝ ∑
I∈F:I⊂Iλ

i
I �⊂J

λIh(I)

⎞⎟⎟⎠
J

. (3.21)

However, because of our assumption on J , the sum in 3.21 is empty. (Remem-
ber: we are using ‘⊂’ to mean “subset,” not “proper subset.”) So the obser-
vation is true.
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Because of the observation, we can now state that

v
({x ∈ Iλ

i : f∗(x) > 2λ, S(f)(x) ≤ γλ})
≤ v
(
{x ∈ Iλ

i : (f − fIλ
i
)∗(x) > .9λ, S(f)(x) ≤ γλ}

)
=
∑

j v
({x ∈ Kj : (f − fKj

)∗(x) > .9λ, S(f)(x) ≤ γλ}) .
But each Kj satisfies Y (Kj , v) ≤ A. So, by choosing, as before, γ =
(2(p+1)/2

√
CA)−1, we get∑

j v
({x ∈ Kj : (f − fKj

)∗(x) > .9λ, S(f)(x) ≤ γλ})
≤ 2−p−1

∑
j v(Kj)

≤ 2−p−1v(Iλ
i ),

and that does it!

Remark. Let us observe (what we’ve already seen) that∫
(S(f))2 v dx =

∑
I

|λI |2
|I|
∫

I

v dx.

This will be useful shortly.

Before considering applications of Theorem 3.5 to the two-weight prob-
lem, ∫

(f∗(x))p v dx ≤ C

∫
(S(f))p w dx

we note in passing an easy generalization. For η > 0, define

Yη(I, v) =
{

1
v(I)

∫
I
v(x) (log(e + v(x)/vI))η dx if v(I) > 0;

1 if v(I) = 0.
(3.22)

The proof of the next theorem closely follows that of Theorem 3.5, and is left
to the reader.

Theorem 3.6. Let v be a weight and let F be a finite family of dyadic inter-
vals such that Yη(I, v) ≤ A for all I ∈ F . If 0 < p < ∞ and f =

∑
I∈F λIh(I)

then ∫
(f∗(x))p v dx ≤ CAp/(2η)

∫
(S(f))p v dx,

where the constant C only depends on p and η.

The proof of the next theorem will be a model for the Lp arguments
which follow it.
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Theorem 3.7. Let v be a weight and let τ > 1. There is a C = C(τ) such
that, if f =

∑
I λIh(I) is any finite linear sum, then∫

(f∗(x))2 v dx ≤ C
∑

I

|λI |2
|I|
∫

I

v(x) (log(e + v(x)/vI))τ dx.

Proof of Theorem 3.7. By an easy limiting argument, we can assume
that Y (I, v) is finite for all I in our sum. For k = 0, 1, 2, . . ., define

Fk = {I : 2k ≤ Y (I, v) < 2k+1}
and

f(k) ≡
∑

I:I∈Fk

λIh(I).

Now set δ = τ − 1 > 0 and write:∫
(f∗(x))2 v dx ≤

∫ (∑
k

(f(k))∗(x)

)2

v dx

≤ Cτ

∑
k

2kδ

∫
(f(k)(x))2 v dx

≤ Cτ

∑
k

2kδ2k

∫
(S(f(k)))2 v dx

= Cτ

∑
k

2kτ
∑

I∈Fk

|λI |2
|I|
∫

I

v dx, (3.23)

where the next-to-last line follows from Theorem 3.5 (applied to each f(k))
and the last line is a consequence of our remark above.

For every I ∈ Fk,

2kτv(I) dx ≤ v(I)
(

1
v(I)

∫
I

v(x) log(e + v(x)/vI) dx

)τ

≤ v(I)
1

v(I)

∫
I

v(x) (log(e + v(x)/vI))τ dx

≤
∫

I

v(x) (log(e + v(x)/vI))τ dx.

Therefore, the right-hand side of 3.23 is less than or equal to

Cτ

∑
k

∑
I∈Fk

|λI |2
|I|
∫

I
v(x) (log(e + v(x)/vI))τ dx

≤ Cτ

∑
I

|λI |2
|I|
∫

I
v(x) (log(e + v(x)/vI))τ dx

which is the result we sought.

We immediately get this sufficient condition for the L2 − L2 two-weight
inequality.
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Corollary 3.4. Let τ > 1, and let v and w be weights such that∫
I

v(x) (log(e + v(x)/vI))τ dx ≤
∫

I

w(x) dx

for all I ∈ D. Then ∫
(f∗(x))2 v dx ≤ Cτ

∫
(S(f))2 w dx

for all finite sums f =
∑

I λIh(I).

Things are relatively simple in the L2 case, because (as we’ve already
noted), ∫

(S(f))2 v dx =
∑

I

|λI |2
|I| v(I).

In dealing with Lp, p �= 2, we shall have to be trickier. Temporarily fix 0 <
p < ∞ and let f =

∑
I λIh(I) be a finite linear sum. For every I ∈ D, define

c(p, I) ≡
( ∑

J: I⊂J

|λJ |2
|J |

)p/2

−

⎛⎜⎝ ∑
J: I⊂J

J �=I

|λJ |2
|J |

⎞⎟⎠
p/2

.

The non-negative numbers {c(p, I)} have two valuable properties.
First, c(p, I) �= 0 if and only if λI �= 0.
Second, (S(f)(x))p =

∑
I:x∈I c(p, I). (It’s a telescoping sum.)

We now have the tools to prove a pretty good sufficient condition for the
two-weight inequality 3.8.

Theorem 3.8. Let 0 < p < ∞ and let τ > p/2. Let v and w be weights such
that ∫

I

v(x) (log(e + v(x)/vI))τ dx ≤
∫

I

w(x) dx

for all I ∈ D. Then, for all finite sums f =
∑

I λIh(I),∫
(f∗(x))p v dx ≤ C

∫
(S(f))p w dx,

where the constant C only depends on p and τ .

Proof of Theorem 3.8. The proofs for p > 2 and p < 2 are slightly
different, but since the one for p > 2 more closely resembles those of Theorem
3.7 and its corollary, we’ll do it first.

As before, we may assume that Y (I, v) < ∞ for all I. Define Fk and f(k)

as we did earlier, and set ε = τ − p/2 > 0. Write:
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k

(f∗
(k)(x)

)p

v dx ≤ C
∑

k

2kε

∫
(f∗

(k)(x))p v dx

≤ C
∑

k

2kε2kp/2

∫
(S(f(k)))p v dx

= C
∑

k

2k(ε+p/2)

∫ ( ∑
I:x∈I∈Fk

c(p, I)

)
v dx

= C
∑

k

∑
I:I∈Fk

c(p, I)2k(ε+p/2)v(I).

However, arguing exactly as in the proof of Theorem 3.7 (recall that τ =
ε + p/2),

2k(ε+p/2)v(I) ≤
∫

I

v(x) (log(e + v(x)/vI))τ dx

≤ w(I).

Thus:∑
k

∑
I:I∈Fk

c(p, I)2k(ε+p/2)v(I) ≤ C
∑

k

∫ ( ∑
I:x∈I∈Fk

c(p, I)

)
w dx

= C
∑

k

∫
(S(f(k)))p w dx

= C

∫ (∑
k

(S(f(k)))p

)
w dx

≤ C

∫
(S(f))p w dx,

where the last line follows because (S(
∑

k f(k)))p ≥∑k(S(f(k)))p when p/2 ≥
1. This finishes the “p > 2” half of the proof.

Now take p < 2 and let p/2 < η < τ . The reader should recall the
definition of Yη(I, v) from 3.22. We assume that Yη(I, v) is finite for all I.
Now define, for k = 0, 1, 2, . . .,

Fk,η = {I : 2k ≤ Yη(I, v) < 2k+1}
f(k,η) =

∑
I∈Fk,η

λIh(I).

Let ε = (1/2)(τ − p/2)/η > 0 and (much as before) write:∫
(f∗(x))p v dx ≤ C

∑
k

2kε

∫
(f∗

(k,η)(x))p v dx

≤ C
∑

k

2kε2kp/(2η)

∫
(S(f(k)))p v dx
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= C
∑

k

2k(ε+p/(2η))

∫ ⎛⎝ ∑
I:x∈I∈Fk,η

c(p, I)

⎞⎠ v dx

= C
∑

k

∑
I:I∈Fk,η

c(p, I)2k(ε+p/(2η))v(I).

But, for I ∈ Fk,η,

2k ≤ 1
v(I)

∫
I

v(x) (log(e + v(x)/vI))η dx

≤
(

1
v(I)

∫
I

v(x) (log(e + v(x)/vI))τ dx

)η/τ

≤
(

w(I)
v(I)

)η/τ

,

which implies
v(I) ≤ 2−kτ/ηw(I).

When we substitute this estimate in, we get:∑
k

∑
I:I∈Fk,η

c(p, I)2k(ε+p/(2η))v(I) ≤
∑

k

∑
I:I∈Fk,η

c(p, I)2k(ε+p/(2η))2−kτ/ηw(I)

= C
∑

k

2−kε
∑

I:I∈Fk,η

c(p, I)w(I)

= C
∑

k

2−kε

∫ ⎛⎝ ∑
I:x∈I∈Fk,η

c(p, I)

⎞⎠ w dx

= C
∑

k

2−kε

∫
(S(f(k)))p w dx

≤ C

∫
(S(f))p w dx,

where this time we need that extra ε at the end. Theorem 3.8 is proved.

Theorem 3.8 immediately suggests a question: Given a positive number
η and a weight v, what weights w satisfy∫

I

v(x) (log(e + v(x)/vI))η dx ≤
∫

I

w(x) dx (3.24)

for all I ∈ D? We have seen that∫
I

v(x) log(e + v(x)/vI) dx ∼
∫

I

Md(χIv) dx;

so, if η ≤ 1, we may take w = cMd(v), with c some positive constant. It turns
out that, for any positive integer k,



3 Exponential Square 55∫
I

v(x) (log(e + v(x)/vI))k dx ∼
∫

I

Mk
d (χIv) dx, (3.25)

where Mk
d denotes the k-fold iteration of the operator Md. This approximate

equivalence is well-known; we will give a proof of it in our chapter on Or-
licz spaces. Granting the result, we can see that one candidate w for 3.24 is
cηM

[η]+1
d v, where [η] is the greatest integer in η. We get:

Corollary 3.5. Let 0 < p < ∞. There is a positive constant C = C(p) such
that, for all weights v and all finite sums f =

∑
I λIh(I),∫

(f∗(x))p v dx ≤ C

∫
(S(f))p M

[p/2]+1
d (v) dx.

Note that, if p < 2, Corollary 3.5 yields:∫
(f∗(x))p v dx ≤ C

∫
(S(f))p Md(v) dx. (3.26)

The reader will recall that 3.26 is false for p = 2. This fact—in light of
Theorems 3.1 and 3.2 and inequality 3.3—seems to say that, while the control
that S(f) exercises over f and the control that f exercises over S(f) are
essentially equivalent, f ’s control over S(f) is just a hair’s breadth tighter.

For large k, the function Mk
d (v) is an unsatisfactory majorant of v, for

two reasons: 1) it’s hard to estimate (it requires us to apply the Md operator
repeatedly); 2) it’s sloppy—i.e., much too big—when η is not an integer. When
we study Orlicz spaces, and just about the same time we see a proof of 3.25,
we will learn about a family of majorants which avoid both of these problems.

Mini-Appendix I: The Necessity of the Ad
∞ Condition

We will show that the inequality∫
R

|f(x)|2 v dx ≤ C

∫
R

(S(f))2 v dx

cannot hold if v /∈ Ad
∞. Recall that if I ∈ D and v is a weight,

Y (I, v) ∼
{∫

I
Md(χIv) dx/

∫
I
v dx if v(I) > 0;

1 otherwise.

We have seen that if
sup

I
Y (I, v) = A < ∞

then ∫
|f(x)|2 v dx ≤ CA

∫
(S(f))2 v dx, (3.27)
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valid for all finite linear sums of Haar functions, for some constant C indepen-
dent of f and v. Now we will show that the bound CA in 3.27 is essentially
sharp. It is sharp in a strong sense. It is not merely the case that, for every
A ≥ 1, we can find a weight v and a finite linear sum of Haar functions, f ,
such that

sup
I

Y (I, v) = A

and ∫
|f(x)|2 v dx ≥ cA

∫
(S(f))2 v dx,

where c > 0 does not depend on f and v. Instead, we have

Theorem 3.9. There is a constant c > 0 such that, for all dyadic intervals J
and all weights v, if Y (J, v) > A > 1, then we can find a function f , a finite
linear sum of Haar functions, supported in J , satisfying

∫
J

f dx = 0, and such
that ∫

J

|f(x)|2 v dx ≥ cA

∫
(S(f))2 v dx.

Proof of Theorem 3.9. The proof depends on a construction and a few
observations. Without loss of generality, we assume that J = [0, 1), v(J) = 1,
and A is very large (but finite). For R = 10 and k ≥ 1, we let {Ik

j }j be the
maximal dyadic subintervals of J such that vIk

j
> Rk. Let us set Ek ≡ ∪jI

k
j

for k ≥ 1. Our value of R ensures that |E1| ≤ 1/3 and, for all Ik
j ,

|Ek+1 ∩ Ik
j | ≤ (1/3)|Ik

j |.
By our previous work, we know that∫

J

v(x)

⎛⎝∑
k,j

χIk
j
(x)

⎞⎠ dx ≥ cA,

where c is an absolute constant1. We will build a (possibly unbounded) f ,
supported in J , with integral 0, and satisfying

|f(x)| ≥ (1/2)
∑
k,j

χIk
j
(x).

But its square function S(f) will satisfy

∫
(S(f))2 v dx ≤ C

∫
J

v(x)

⎛⎝∑
k,j

χIk
j
(x)

⎞⎠ dx.

This is nearly what we want. Set ψ(x) =
∑

k,j χIk
j
(x). Then

1 It depends on R, but we’ve fixed that.
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J

|f(x)|2 v dx ≥ (1/4)
∫

J

(ψ(x))2 v dx

while ∫
(S(f))2 v dx ≤ C

∫
J

ψ(x) v(x) dx;

implying ∫
J
|f(x)|2 v dx∫

(S(f))2 v dx
≥ c

∫
J
(ψ(x))2 v dx∫

J
ψ(x) v(x) dx

≥ c

∫
J

ψ(x) v(x) dx ≥ cA,

where the next-to-last inequality follows by the Cauchy-Schwarz inequality
and the normalization of v. A trivial approximation argument will then yield
the f we seek.

Define, for x ∈ J ,

φ0(x) =
{

1 if x ∈ E1;
−|E1|/|J \ E1| if x /∈ E1.

If k ≥ 1, we “relativize” the definition of φ0 to Ik
j by setting

φk,j(x) =

⎧⎨⎩ 1 if x ∈ Ek+1 ∩ Ik
j ;

−|Ek+1 ∩ Ik
j |/|Ik

j \ Ek+1| if x ∈ Ik
j \ Ek+1;

0 otherwise.

The functions φk,j all have supports contained in Ik
j , have values lying

between 1 and −1/2 (because of our choice of R), and satisfy
∫

Ik
j

φk,j dx =
0. Similarly, φ0 is supported in J , has absolute value ≤ 1, and satisfies∫

J
φ0 dx = 0. We set

f(x) ≡ φ0(x) +
∑
k,j

φk,j(x).

To see that |f(x)| ≥ (1/2)
∑

k,j χIk
j
(x), suppose that x ∈ I l

j \ El+1. Then, for
some indices j1, j2, . . . ,

f(x) = φ0(x) + φ1,j1(x) + φ2,j2(x) + · · · + φl−1,jl−1(x) + φl,jl
(x)

≥ 1 + 1 + 1 + · · · + 1 − (1/2)
≥ (1/2)

(
χ1,j1(x) + χ2,j2(x) + · · · + χl−1,jl−1(x) + χl,jl

(x)
)
,

because all the summands defining f(x) equal 1, except possibly the very last,
and that one is no smaller than −1/2.

To establish our bound for S(f), we look at 〈f, h(I)〉, where I ⊂ J . If I

is not contained in any Ik
j then h(I) is orthogonal to all of the φk,j ’s, and

〈f, h(I)〉 = 〈φ0, h(I)〉. Otherwise, there is a unique Ik
j such that I ⊂ Ik

j but
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I �⊂ ∪j′Ik+1
j′ . For this I we will have 〈f, h(I)〉 = 〈φk,j , h(I)〉: the inner product

〈φk′,j′ , h(I)〉 will be zero for all other φk′,j′ , because either I and Ik′
j′ are

disjoint, or h(I) integrates to 0 across an interval on which φk′,j′ is constant,
or the reverse happens. Therefore

(S(f))2 = (S(φ0))2 +
∑
k,j

(S(φk,j))2,

and ∫
(S(f))2 v dx =

∫
J

(S(φ0))2 v dx +
∑
k,j

∫
Ik

j

(S(φk,j))2 v dx.

We finish the construction by showing∫
J

(S(φ0))2 v dx ≤ Cv(J)

and, for each k and j, ∫
Ik

j

(S(φk,j))2 v dx ≤ Cv(Ik
j ).

Since the arguments are very similar, we will only show the first of these
inequalities.

Let F = {I ∈ D : I ⊂ J, I �⊂ ∪jI
1
j }. The two important things to notice

are that each of these intervals satisfies vI ≤ R and

(S(φ0))2 =
∑
I∈F

|〈φ0, h(I)〉|2
|I| χI ,

because only the I’s in F yield non-zero inner products. Therefore∫
J

(S(φ0))2 v dx =
∑
I∈F

|〈φ0, h(I)〉|2
|I| v(I)

≤ R
∑
I∈F

|〈φ0, h(I)〉|2

= R

∫
J

|φ0(x)|2 dx

≤ R = 10v(J),

which is what we wanted.
Exercise 14.1 outlines a proof that the dyadic doubling property

(Definition 2.5) does not imply the dyadic A∞ property. Therefore, dyadic
doubling in a weight v is not sufficient for the inequality∫

R

|f(x)|2 v dx ≤ C

∫
R

(S(f))2 v dx

to hold.
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Mini-Appendix II: Going the Other Way

We will show to what extent inequality 3.3 can be extended to p’s below
2—leaving aside, for the time being, the problem of extending it to larger p’s.
We will need the following lemma:

Lemma 3.3. If v is a weight and f is locally integrable then, for all λ > 0,

v ({x : Md(f)(x) > λ}) ≤ C

λ

∫
|f |Md(v) dx.

Proof of Lemma 3.3. We first assume that f ∈ L1. Let {Ij} be the
maximal dyadic intervals such that

1
|Ij |
∫

Ij

|f | dt > λ.

By maximality,
1
|Ij |
∫

Ij

|f | dt ≤ 2λ.

Therefore,

|Ij | ∼ 1
λ

∫
Ij

|f | dt

for each j. We need to estimate
∑

j v(Ij). This is the same as∑
j

v(Ij)
|Ij | |Ij |,

which is bounded by a constant times∑
j

v(Ij)
|Ij |

1
λ

∫
Ij

|f | dt.

However, Md(v) ≥ v(Ij)
|Ij | on all of Ij . Therefore,

∑
j

v(Ij)
|Ij |

1
λ

∫
Ij

|f | dt ≤
∑

j

1
λ

∫
Ij

|f |Md(v) dt

≤ 1
λ

∫
|f |Md(v) dt,

proving the lemma for integrable f . For the general case, replace f by fN ≡
fχ[−N,N ] and let N → ∞. (We will leave the details of this to the reader, but
give him the crucial hint that Md(fN ) ↗ Md(f) by Monotone Convergence.)

Lemma 3.3 says that Md is weak type (1, 1) when mapping from
L1(Md(v)) to L1(v), with a constant independent of v. Since Md is trivially
weak type (∞,∞), Theorem 2.8 implies
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Corollary 3.6. If 1 < p < ∞, there is a Cp such that∫
(Md(f))p v dx ≤ Cp

∫
|f(x)|p Md(v) dx

for all functions f and weights v.

We now recall our condition 1.4 from chapter 1: for every ε > 0, there is
an R such that, if I is any interval with �(I) > R, then

1
|I|
∫

I

|f | dt < ε.

Theorem 3.10. If 1 < p ≤ 2 then∫
(S(f))p v dx ≤ Cp

∫
|f(x)|p Md(v) dx,

for all weights v, and all functions f satisfying 1.4, where the constant Cp

only depends on p.

Proof of Theorem 3.10. We know that∫
(S(f))2 v dx ≤ C

∫
|f(x)|2 Md(v) dx,

which amounts to saying that S(·) maps boundedly from L2(Md(v)) to L2(v).
By Theorem 2.8, all we need to do is to show that it is also weak type (1, 1).

Let λ > 0, and let Iλ
j be the maximal dyadic intervals such that

1
|Iλ

j |
∫

Iλ
j

|f | dt > λ;

such intervals exist by 1.4. We write f = g + b, where g and b are the “good”
and “bad” functions corresponding to the intervals {Iλ

j }. In other words,

g(x) =

{
f(x) if x /∈ ∪jI

λ
j ;

fIλ
j

if x ∈ Iλ
j ;

and b =
∑

bj , where
bj = (f − fIλ

j
)χIλ

j
.

We observe that |g| ≤ 2λ everywhere, and that

|g| ≤ 1
|Iλ

j |
∫

Iλ
j

|f | dt

on each Iλ
j . We also observe that the support of S(b) is contained entirely

inside ∪jI
λ
j (this follows from equations 2.4 and 2.5).
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We recall that Ωλ ≡ ∪jI
λ
j is the set where Md(f) > λ. Lemma 3.3 says

that this set has v-measure no larger than

C

λ

∫
|f |Md(v) dx.

Therefore it is enough to show that

v ({x /∈ Ωλ : S(f)(x) > λ}) ≤ C

λ

∫
|f |Md(v) dx.

But S(f) ≤ S(g) + S(b), and S(b) ≡ 0 on the complement of Ωλ. Therefore it
suffices to show

v ({x /∈ Ωλ : S(g)(x) > λ}) ≤ C

λ

∫
|f |Md(v) dx, (3.28)

and that is what we will do.
The proof of 3.28 requires a simple lemma, whose proof we leave to the

reader.

Lemma 3.4. If v is any weight and J is any dyadic interval,

sup
x∈J

Md(vχR\J)(x) ≤ C inf
x∈J

Md(v)(x).

Given this, we use our L2 inequality:∫
R\Ωλ

(S(g))2 v dx =
∫

(S(g))2 (vχR\Ωλ
) dx

≤ C

∫
|g|2 Md((vχR\Ωλ

)) dx

= C

∫
R\Ωλ

|f |2 Md(v) dx +
∑

j

∫
Iλ

j

|g|2 Md((vχR\Ωλ
)) dx

≡ (I) + (II).

Since |f | ≤ λ almost-everywhere off Ωλ, quantity (I) is no larger than

Cλ

∫
|f |Md(v) dx.

Each of the summands in (II) is no bigger than

Cλ

(
1

|Iλ
j |
∫

Iλ
j

|f | dt

)∫
Iλ

j

Md((vχR\Ωλ
)) dt,

which, by Lemma 3.4, is no larger than

Cλ

∫
Iλ

j

|f |Md(v) dt.
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These facts imply that (I) + (II) is no bigger than a constant times

Cλ

∫
|f |Md(v) dx.

Inequality 3.28 now follows from Chebyshev’s inequality (dividing both sides
by λ2).

Theorem 3.10 fails for p ≤ 1. If f = χ[0,1) and v ≡ 1, then∫
|f(x)|p Md(v) dx = 1.

When 2k ≤ x < 2k+1 (k ≥ 0), we have S(f) = 2−k, implying that∫
(S(f))p Md(v) dx = ∞

if 0 < p ≤ 1.
However, for small p, a substitute inequality is true.

Theorem 3.11. If 0 < p ≤ 1 then∫
(S(f))p v dx ≤ C

∫
(f∗)p Md(v) dx,

where the constant C only depends on p.

Proof of Theorem 3.11. We can assume that v has bounded sup-
port; the general result will then follow by Monotone Convergence. For
k = 0, ±1, ±2, . . ., let {Ik

j } be the maximal dyadic intervals such that
vIk

j
> 2k. Define Ek

j to be the collection of I ∈ D which are subsets of Ik
j

but are not contained in any Ik+1
j′ . Write:

f(k,j) =
∑

I:I∈Ek
j

λI(f)h(I).

Then (S(f))p ≤ ∑k,j(S(f(k,j)))p, because p ≤ 2. Also, each S(f(k,j)) is sup-
ported in Ik

j . Therefore∫
(S(f))p v dx ≤

∑
k,j

∫
Ik

j

(S(f(k,j)))p v dx.

We will be done if we can show that∫
Ik

j

(S(f(k,j)))p v dx ≤ Cp2k

∫
Ik

j

(f∗
(k,j))

p dx, (3.29)
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because, summing on k and j will then yield:∫
(S(f))p v dx ≤ Cp

∑
k,j

∫
(f∗

(k,j))
p
(
2kχIk

j

)
dx

≤ Cp

∫
(f∗)p Md(v) dx,

since f∗
(k,j) ≤ 2f∗ and

∑
k,j 2kχIk

j
≤ 4Md(v).

So let’s show 3.29.
If we knew that∫

Ik
j

(S(f(k,j)))p v dx ≤ C2k

∫
Ik

j

(S(f(k,j)))p dx, (3.30)

we’d be done, because we already know that∫
Ik

j

(S(f(k,j)))p dx ≤ Cp

∫
Ik

j

(f∗
(k,j))

p dx.

Inequality 3.30 isn’t hard. Look at (S(f(k,j)))p. It is a function of the form(∑
I∈F

γIχI

)α

,

where α > 0, the γI ’s are non-negative, and F is a bounded family of dyadic
intervals such that vI ≤ C2k for each I ∈ F . Inequality 3.30 will follow if we
know that ∫ (∑

I∈F
γIχI

)α

v dx ≤ C2k

∫ (∑
I∈F

γIχI

)α

dx,

and this turns out to be true.
We can phrase this fact in a lemma.

Lemma 3.5. Let F be a bounded family of dyadic intervals and let v be a
weight such that vI ≤ A for all I ∈ F , where A is a non-negative number. If
{γI}I∈F is any collection of non-negative numbers and α > 0 then∫ (∑

I∈F
γIχI

)α

v dx ≤ A

∫ (∑
I∈F

γIχI

)α

dx.

Proof of Lemma 3.5. There is nothing to prove if α = 1. But the
general case reduces to α = 1 by writing(∑

I∈F
γIχI

)α

=
∑
I∈F

γ̃IχI ,
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where

γ̃I =

⎛⎜⎝∑
J∈F
I⊂J

γJχJ

⎞⎟⎠
α

−

⎛⎜⎝ ∑
J∈F

I⊂J,I �=J

γJχJ

⎞⎟⎠
α

.

All we have done (let the reader note) is to write the function(∑
I∈F

γIχI

)α

as a telescoping series. This proves Lemma 3.5 and Theorem 3.11.

What about p > 2? The theory we have developed in this chapter implies
the following chain of inequalities, valid for all 1 < p < ∞ and any r > 1. The
reader is invited to provide the justifications:∫

(S(f))p v dx ≤
∫

(S(f))p Mr,d(v) dx

≤ Cp,r

∫
(La(f))p Mr,d(v) dx

≤ Cp,r

∫
(Md(f))p Mr,d(v) dx

≤ Cp,r

∫
|f(x)|p Md(Mr,d(v)) dx

≤ Cp,r

∫
|f(x)|p Mr,d(v) dx,

yielding ∫
(S(f))p v dx ≤ Cp,r

∫
|f(x)|p Mr,d(v) dx

for all p > 1. If p ≤ 2, we know that we can replace Mr,d(v) with M1,d(v) =
Md(v). It is natural to ask whether we can do so when p > 2, and perhaps
somewhat unfortunate to find out that we can’t.

For N ≥ 0, let g̃N be as we defined it near the end of chapter 2; i.e.,

g̃N ≡
N∑
0

(−1)kλ̃kh(Ik),

where Ik = [0, 2k) and λ̃k ≡ 2k/2/
√

k + 1. Put v = χ[0,1). It is easy to see that

Md(v) = 2−k on [2k−1, 2k) (k ≥ 1), and therefore that
∫ 2k

2k−1 Md(v) dx = 1/2.
On the other hand, if x ∈ [2k−1, 2k) and 1 ≤ k ≤ N , then

|g̃N (x)| = | 1√
N + 1

− 1√
N

+
1√

N − 1
− 1√

N − 2
+ · · · ± 1√

k + 1
| ≤ 2√

k + 1
.
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Therefore ∫
|g̃N |p Md(v) dx ≤ C

N∑
0

(k + 1)−p/2 ≤ Cp,

independent of N , because p > 2. However, as we saw in chapter 2,∫
(S(g̃N ))p v dx → ∞

as N → ∞.
This example shows that a more fully developed, “large p” Lp theory of

these inequalities really is necessary. And now would seem to be the right
time to start. Alas, such inequalities turn out to be not so simple, and their
extension to p > 2 will have to wait until we have become acquainted with
the theory of Orlicz spaces.

However, before doing that, we will make a quick detour into higher
dimensions, and into continuous analogues of the square function.

Exercises

3.1. Let p(x) be any non-trivial polynomial. Show that v(x) ≡ |p(x)| is an A∞
weight. Show that any such v satisfies 3.12 with a constant A only depending
on p’s degree. Generalize this result to functions of the form |p(x)|α, where α
is a positive number.

3.2. Show that, if v is any weight, then v ∈ Ad
∞ if and only if there are a

constant K and a number r > 1 such that(
1
|I|
∫

I

(v(x))r dx

)1/r

≤ K

|I|
∫

I

v(x) dx (3.31)

for all I ∈ D. In the weighted-norm business, 3.31 is called the “reverse Hölder
inequality.” (Hint: Assume |I| = vI = 1. The key step is to show that, for some
A > 1 and some 0 < η < 1,∫

{x: v(x)>Ak}
v(x) dx ≤ ηk

for all k ≥ 0, because it implies that

∞∑
0

∫
Ak<v(x)≤Ak+1

(v(x))1+ε dx ≤
∞∑
0

A(k+1)εηk,

which converges if ε is small enough.) Use the reverse Hölder inequality to
prove another characterization of Ad

∞: v ∈ Ad
∞ if and only if there are positive

constants a and b so that, for all dyadic intervals I and all measurable E ⊂ I,
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v(E) ≤ a

( |E|
|I|
)b

v(I).

(These results are proved in a later chapter.)

3.3. Recall the definition of A∞ (without the superscript d) from the last
chapter. Show that a weight v belongs to A∞ if and only if there is a constant
A such that, for all bounded intervals I,∫

I

M(vχI)(x) dx ≤ A

∫
I

v(x) dx.

Then show that v ∈ A∞ if and only if there are a constant K and a number
r > 1 such that (

1
|I|
∫

I

(v(x))r dx

)1/r

≤ K

|I|
∫

I

v(x) dx (3.32)

for all bounded intervals I. (These results are proved in a later chapter.)

3.4. Show that if v ∈ A∞ then v is doubling; i.e., that there is a constant
C so that, for all bounded intervals I, v(2I) ≤ Cv(I), where I denotes I’s
concentric double. (This result is proved in a later chapter.)

3.5. Show that there is a constant C so that, for all f , all weights v, and all
λ > 0,

v ({x : M(f)(x) > λ}) ≤ C

λ

∫
|f |M(v) dx,

with the consequence that, if 1 < p < ∞, there is a Cp such that∫
(M(f))p v dx ≤ Cp

∫
|f(x)|p M(v) dx

for all functions f and weights v. In other words, show that the non-dyadic
analogues of Lemma 3.3 and Corollary 3.6 are also true.

3.6. Here is one way to dispense with the hypothesis 1.4 in Theorem 3.10. For
N a positive integer, define the restricted square function of f by the equation

SN (f)(x) ≡
⎛⎝ ∑

I∈D(N)

|λI(f)|2
|I| χI(x)

⎞⎠1/2

.

Notice that SN (f) = SN (fχIN
), where IN = [−2N , 2N ), and that fχIN

sat-
isfies 1.4. It is now easy to adapt the proof of Theorem 3.10 to show that, for
all N and all 1 < p ≤ 2,∫

(SN (f))p v dx ≤ C(p)
∫

|fχIN
|p M(v) dx.

Theorem 3.10 (unrestricted form) follows by letting N → ∞. (The reader is
invited to recall the appropriate limit theorem.)
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3.7. We proved the inequalities,

‖f‖p ∼ ‖S(f)‖p, (3.33)

valid for 1 < p < ∞, by means of good-λ inequalities. This approach has the
advantage that it generalizes easily to 0 < p ≤ 1 and to weighted problems.
But if we only want to know 3.33 for 1 < p < ∞, we don’t have to work so
hard. We will sketch the argument, inviting the reader to fill in the details.
The inequalities, ∫

(S(f))p v dx ≤ C(p)
∫

|f(x)|p M(v) dx,

valid for 1 < p ≤ 2, imply that ‖S(f)‖p ≤ C(p)‖f‖p for all 1 < p < ∞. (Hint:
If 2 < p < ∞,

‖S(f)‖p =
[
sup{

∫
(S(f))2 v dx : ‖v‖r ≤ 1}

]1/2

,

where r = (p/2)′, the dual exponent to p/2.) If 1 < p < ∞, f is a finite linear
sum of Haar functions,

f =
∑

λI(f)h(I),

and ‖h‖p′ = 1, where p′ is p’s dual exponent, then∣∣∣∣∫ f h dx

∣∣∣∣ ≤∑ |λI(f)||λI(h)|

=
∫ (∑ |λI(f)||λI(h)|

|I| χI

)
dx

≤
∫

S(f)S(h) dx

≤ ‖S(f)‖p‖S(h)‖p′

≤ C(p′)‖S(f)‖p,

implying ‖f‖p ≤ C(p′)‖S(f)‖p for finite linear sums. How to extend this to
general f is left to the reader.

3.8. Show that having v ∈ A∞ does not imply∫
(S(f))p v dx ≤ C

∫
|f(x)|p v dx,

for any 0 < p < ∞, even if f is bounded and has compact support. (Hint: A
good place to look for “bad” A∞ weights is among the powers |x|R, with R
very large, depending on p.)

3.9. We proved Theorem 3.7 (respectively, Theorem 3.8) under the simplifying
assumption that Y (I, v) (respectively, Yη(I, v)) was finite for all I ∈ D. Justify
those assumptions.
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Notes

Theorem 3.2 and inequality 3.3 are from [10]. The Y -functional Y (I, v) first
appears in [60]; it is further developed in [62]. Theorem 3.7 is implicit in [62]
but is first stated explicitly in [64]. Theorem 3.9 is essentially from [61]. Lemma
3.3 and Theorem 3.6 are both from [18]. The extension of 3.3 to 1 < p < 2
is based on the main result from [12], which treats a “continuous” version of
the square function (we deal with this in a later chapter). The authors there
also show that the inequality fails for p > 2, but they prove that the result
can be salvaged if Md(v) is replaced by (Md(v))p/2v1−p/2. The corresponding
inequality for 0 < p ≤ 1 is proved in [63].
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Many Dimensions; Smoothing

If I ⊂ R is a bounded interval (not necessarily dyadic), we say that a function
a(I)(x) is adapted to I if:

a) supp a(I) ⊂ I;
b)
∫

a(I) dx = 0;
c) for all x and y in R,

|a(I)(x) − a(I)(y)| ≤ |I|−1/2

( |x − y|
�(I)

)
.

Remark. The reader might wonder why we wrote condition c) in this
peculiar way; since, for an interval, |I| and �(I) are identical. We did so because
this definition readily extends to higher dimensions, and we’ll be looking at
those shortly.

We shall consider how our estimates for finite sums
∑

I∈D λIh(I) may be
extended to finite sums

∑
I∈G γIa(I), where G is a family with some especially

good properties.

Definition 4.1. A family of bounded intervals G is called good if: 1) for every
I ∈ G, Il and Ir both belong to G; 2) every I ∈ G is the right or left half of
some other interval in G; 3) if I and J belong to G, then I ⊂ J , J ⊂ I, or
I ∩ J = ∅.

It turns out that a finite linear sum of adapted functions,
∑

I∈F γIa(I),
indexed over a good family F , is almost as easy to work with as a finite linear
sum of Haar functions

∑
I∈D λIh(I). Perhaps the simplest way to see this is

by way of F-adapted “Haar functions.”

Definition 4.2. Let F be a good family. For I ∈ F , we set

hF,(I)(x) =

⎧⎨⎩ |I|−1/2 if x ∈ Il;
−|I|−1/2 if x ∈ Ir;
0 otherwise.



70 4 Many Dimensions; Smoothing

Corresponding to these are the F-adapted square function and maximal
function.

Definition 4.3. If f =
∑

I∈F λIhF,(I) is a finite sum, where F is a good
family, then

SF (f)(x) ≡
( ∑

x∈I∈F

|λI |2
|I|

)1/2

.

Definition 4.4. If F is a good family and x ∈ ∪FI, we define

f∗
F (x) ≡ sup

I:x∈I∈F
1
|I|
∣∣∣∣∫

I

f dt

∣∣∣∣. (4.1)

We similarly define
MF (f)(x) ≡ |f |∗(x),

the F-adapted “dyadic” Hardy-Littlewood maximal function.

(We drop the subscript F when F = D. We shall follow this convention
in higher dimensions as well: see below.)

The estimates we proved earlier for S(f) and f∗, regarding finite sums∑
I∈D λIh(I), hold for SF (f), f∗

F , and finite sums
∑

I∈F λIhF,(I), with proofs
that are identical, except for (what we hope are) obvious modifications. What
are “obvious” modifications? Well, instead of having∫

(S(f)(x))2 v dx ≤ C

∫
|f(x)|2 Md(v) dx,

we have, for example,∫
(SF (f)(x))2 v dx ≤ C

∫
|f(x)|2 MF (v) dx,

with a constant C that is independent of F . Or, suppose that

f =
∑

I∈G⊂F
λIhF,(I),

is a finite sum, and every I ∈ G satisfies Yη(I, v) ≤ A. (Recall the definition
3.22of Yη(I, v).) Then∫

(f∗
F (x))p v dx ≤ Cη,pA

p/(2η)

∫
(SF (f)(x))p v dx, (4.2)

with Cη,p only depending on η and p (0 < p < ∞). We shall refer to such
generalizations casually, in passing. We vigorously encourage the reader to
check up on us occasionally to make sure we aren’t cheating.
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We have need now to speak of functions f that are not expressible as
finite sums

∑
I∈F λIhF,(I) but are still “nice”: i.e., controllable by a square

function based on the λI ’s. Let’s say that f is nice, relative to F , if there is an
increasing sequence of finite families F1 ⊂ F2 ⊂ · · · F such that F = ∪kFk

and
f = lim

k→∞

∑
I∈Fk

〈f, hF,(I)〉hF,(I)

almost everywhere. For such an f , we extend our square function definition
in the obvious way, and set

SF (f)(x) ≡
(∑

I∈F

|〈f, hF,(I)〉|2
|I| χI(x)

)1/2

.

By Fatou’s Lemma, any inequality of the form∫
(f∗(x))p v dx ≤ C

∫
(SF (f)(x))p w dx,

valid for finite sums f =
∑

I∈F λIhF,(I) (=
∑

I∈F 〈f, hF,(I)〉hF,(I)), holds
automatically for “nice” f ’s, with the same constant C.

The “nice” functions we have in mind are finite linear sums of adapted
functions, f =

∑
I∈F γIa(I), indexed over a good family F . To see that these

are “nice”, consider a single function a(I), where I ∈ F . We leave it as an
exercise to show that

a(I)(x) = lim
k→∞

∑
J∈F:J⊂2kI

�(J)≥2−k

〈a(I), hF,(J)〉hF,(J) (4.3)

almost everywhere (and indeed, in L∞). (The reader will have an easier time
proving this if he first observes that 〈a(I), hF,(J)〉 = 0 for J �⊂ I.) The families
{J ∈ F : J ⊂ 2kI, �(J) ≥ 2−k} are clearly finite, increasing, and have union
equal to F .

For such a function f =
∑

I∈F γIa(I), we define a “semi-discrete” square
function by:

Ssd,F (f)(x) ≡
(∑

I∈F

|γI |2
|I| χI(x)

)1/2

. (4.4)

Our first order of business is to establish an inequality between Ssd,F (f)
and SF (f).

Theorem 4.1. There is an absolute constant C so that, for all good families
F and all finite sums f =

∑
I∈F γIa(I),

SF (f)(x) ≤ C Ssd,F (f)(x)

pointwise.
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Proof of Theorem 4.1. Temporarily fix J ∈ F . We must estimate
λJ ≡ 〈f, hF,(J)〉. Since—as noted above—〈a(I), hF,(J)〉 = 0 for J �⊂ I, we may
write

|λJ | ≤
∑

I:J⊂I

|γI ||〈a(I), hF,(J)〉|.

Temporarily fix an I containing J . Because
∫

hF,(J) dx = 0,

|〈a(I), hF,(J)〉| =
∣∣∣∣∫

J

a(I)(x)hF,(J)(x) dx

∣∣∣∣
=
∣∣∣∣∫

J

(a(I)(x) − a(I)(x∗
J))hF,(J)(x) dx

∣∣∣∣ (4.5)

where x∗
J is some fixed (but arbitrary) point in J . Our estimate of a(I)’s

smoothness (condition c)) says that

|a(I)(x) − a(I)(x∗
J)| ≤ |I|−1/2

( |x − x∗
J |

�(I)

)
≤ |I|−1/2(�(J)/�(I))

for all x ∈ J . Therefore,∣∣∣∣∫
J

(a(I)(x) − a(I)(x∗
J))hF,(J)(x) dx

∣∣∣∣ ≤ (�(J)/�(I))|I|−1/2‖hF,(J)‖1

= (�(J)/�(I))(
√

|J |/
√

|I|).

Plugging this in and summing, we get

|λJ |2
|J | ≤

( ∑
I:J⊂I

|γI |√|I| (�(J)/�(I))

)2

,

which is less than or equal to( ∑
I:J⊂I

|γI |2
|I| (�(J)/�(I))

)( ∑
I:J⊂I

(�(J)/�(I))

)
. (4.6)

But, for each k = 0, 1, 2, . . ., there is exactly one I ∈ F such that J ⊂ I and
�(I) = 2k�(J). Therefore

∑
I:J⊂I(�(J)/�(J)) ≤ 2, and we can bound 4.6 by

2
∑

I:J⊂I

|γI |2
|I| (�(J)/�(I)).

Now we sum over all J ’s containing a fixed x ∈ R—and take care to remember
that if x ∈ J ⊂ I, then x ∈ I:
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(SF (f)(x))2 =
∑

J:x∈J

|λJ |2
|J |

≤ 2
∑

J:x∈J

( ∑
I:J⊂I

|γI |2
|I| (�(J)/�(I))

)

= 2
∑

I:x∈I

|γI |2
|I|

( ∑
J:x∈J⊂I

(�(J)/�(I))

)

≤ 4
∑

I:x∈I

|γI |2
|I|

= 4(Ssd,F (f)(x))2,

where the next-to-last inequality comes from the fact that∑
J:x∈J⊂I

(�(J)/�(I)) ≤ 2;

because, for each k = 0, 1, 2, . . ., there is only one J ⊂ I that contains x and
satisfies �(J) = 2−k�(I). This proves Theorem 4.1.

Before continuing, we want to take special notice of equation 4.5, which
is the key to Theorem 4.1. This is actually a particular example of a general
technique, in which a cancelation condition in one function (hF,(J) in this case)
is played off against smoothness in another, such as a(I). We shall enshrine
this idea in a lemma.

Lemma 4.1. Let f and g be locally integrable functions defined on a cube
Q ⊂ Rd. Suppose that g’s support is contained in Q,

∫
Q

g dx = 0, and, for
some positive numbers A and α,

|f(x) − f(y)| ≤ A|x − y|α

for all x and y in Q. Then:∣∣∣∣∫ f(x) g(x) dx

∣∣∣∣ ≤ Cd,αA�(Q)α

∫
Q

|g(x)| dx,

where we can take Cd,α to be ((1/2)
√

d)α.

Proof. Let xQ be the center of Q. Because of g’s cancelation,∣∣∣∣∫ f(x) g(x) dx

∣∣∣∣ = ∣∣∣∣∫ (f(x) − f(xQ)) g(x) dx

∣∣∣∣.
However, for all x ∈ Q,

|f(x) − f(xQ)| ≤ A|x − xQ|α ≤ A((1/2)
√

d)α�(Q)α,

from which the inequality follows.
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Remark. The point of Lemma 4.1 is not the value of the constant Cd,α,
but the factor �(Q)α, which goes to 0 as �(Q) → 0. Had we chosen a different
fixed point in Q (as we did in the proof of Theorem 4.1), we would have got
a slightly bigger constant Cd,α, but the same factor of �(Q)α.

Theorem 4.1 implies easy corollaries of our main results from the preced-
ing chapter. For example, we obtain:

Theorem 4.2. Let 0 < p < ∞ and let τ > p/2. Let F be a good family and
let v and w be weights such that∫

I

v(x) (log(e + v(x)/vI))τ dx ≤
∫

I

w(x) dx

for all I ∈ F . Then, for all finite sums f =
∑

I∈F γIa(I), where each a(I) is
adapted to I, ∫

(f∗
F )p v dx ≤ C

∫
(Ssd,F (f))p w dx,

where the constant C only depends on p and τ .

Also:

Corollary 4.1. Let f =
∑

I∈F γIa(I) be as in the statement of Theorem 4.2,
let v be a weight, and let 0 < p < ∞. If 0 < p < 2 then∫

(f∗
F )p v dx ≤ C(p)

∫
(Ssd,F (f))p MF (v) dx.

Assuming that we can prove the appropriate Orlicz space results, we will
also have this generalization of Corollary 3.5:

Corollary 4.2. Let 0 < p < ∞. There is a positive constant C = C(p) such
that, for all weights v and all finite sums f =

∑
I∈F γIa(I),∫

(f∗
F )p v dx ≤ C

∫
(Ssd,F (f))p M

[p/2]+1
F (v) dx.

For many purposes, these generalizations are entirely adequate. However,
when we come to study weighted inequalities of the form∫

|f |2 v dx ≤
∫

|∇f |2 dx,

we will want a little more control than this straightforward approach provides.
That is why we will prove the following, more delicate estimate.

Theorem 4.3. Let F be a good family, and suppose that G ⊂ F is such that
Yη(I, v) ≤ A for all I ∈ G. Let f =

∑
I∈G γIa(I) be a finite sum. Then∫

|f |p v dx ≤ CAp/(2η)

∫
(Ssd,F (f))p v dx,

where C depends on p and η, and 0 < p < ∞.
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Proof of Theorem 4.3. We control f∗
F (x) via a good-λ inequality. There

is a small subtlety here. We cannot simply use inequality 4.2 and Theorem
4.1 to get ∫

(f∗
F )p v dx ≤ CAp/(2η)

∫
(SF (f))p v dx

≤ CAp/(2η)

∫
(Ssd,F (f))p v dx,

because, if we write f =
∑

I∈F λIhF,(I), it’s almost certain that some λIs will
be non-zero for Is that don’t belong to G. Therefore we have to directly control
the partial sums of

∑
I∈G γIa(I). We can’t assume that these will be constant

across our stopping intervals Iλ
i , but the smoothness of the a(I)s implies that

they will be almost constant, and that’s good enough. The crucial observation
is the following. Let J ∈ F and set

g =
∑
I∈G
J⊂I

γIa(I).

Define

R =

⎛⎜⎝∑
I∈G
J⊂I

|γI |2
|I|

⎞⎟⎠
1/2

.

Then, for any x and y in J ,

|g(x) − g(y)| ≤ CR. (4.7)

The proof of this inequality is very simple. For any x and y in J , we have

|g(x) − g(y)| ≤
∑
I∈G
J⊂I

|γI ||a(I)(x) − a(I)(y)|

≤
∑
I∈G
J⊂I

|γI ||I|−1/2(|x − y|/�(I))

≤ �(J)
∑
I∈G
J⊂I

|γI ||I|−1/2
�(I)−1

≤ R

⎛⎜⎝∑
I∈G
J⊂I

(�(J)/�(I))2

⎞⎟⎠
1/2

,

where the last inequality is due to Cauchy-Schwarz. Now 4.7 follows from the
fact that ∑

I∈G
J⊂I

(�(J)/�(I))2 ≤ 1 +
1
4

+
1
16

+ · · · = 4/3.
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With 4.7 in hand, let us now consider a maximal Iλ
i ∈ F such that

|fIλ
i
| > λ. Let P be Iλ

i ’s immediate (relative to F) superinterval. Then |fP | ≤
λ and ||fP | − |fIλ

i
|| ≤ supx,y∈P |g̃(x) − g̃(y)|, where

g̃(x) =
∑
I∈G

Iλ
i

⊂I

γIa(I).

Because of 4.7, if |fIλ
i
| > 1.1λ, then we have (setting J = Iλ

i ) R > cλ, implying
that Ssd,F (f) > cλ on all of Iλ

i , and we have nothing to prove. For the same
reason, inequality 4.7 lets us assume that∣∣∣∣∣∣∣∣

∑
I∈F

Iλ
i

⊂I

γIa(I)

∣∣∣∣∣∣∣∣ ≤ 1.1λ

on all of Iλ
i . Thus, we only need to worry about the summands which are

supported in Iλ
i . Set

h =
∑
I∈F

I⊂Iλ
i

γIa(I).

Following our earlier procedure (in the “pure dyadic” case), we need to show
that

v
({x ∈ Iλ

i : h∗
F (x) > .9λ, Ssd,F (f) ≤ γλ}) ≤ ε(p)v(Iλ

i )

for γ ∼ A−1/(2η). As in the dyadic case, the problem is that Iλ
i probably

doesn’t satisfy Yη(Iλ
i , v) ≤ A. But, just as in the dyadic case, the solution

presents itself. Let {Jk}k be the maximal J ∈ G which are also contained in
Iλ
i . Because of the cancelation in the a(I)’s, if K ∈ F but K is not properly

contained in any Jk, we must have
∫

K
h = 0. Therefore,

v
({x ∈ Iλ

i : h∗
F (x) > .9λ, Ssd,F (f) ≤ γλ})

=
∑

k v ({x ∈ Jk : h∗
F (x) > .9λ, Ssd,F (f) ≤ γλ}) ,

but we do have our estimate Yη(Jk, v) ≤ A for each k. An application of
Theorem 4.1, combined with the dyadic exponential square good-λ inequality,
yields

v ({x ∈ Jk : h∗
F (x) > .9λ, Ssd,F (f) ≤ γλ}) ≤ ε(p)v(Jk)

for each k, for γ ∼ A−1/(2η). Summing on k now yields our inequality, and
finishes the proof of Theorem 4.3.

By following the pattern of Theorem 3.7, we obtain:

Corollary 4.3. Let τ > 1. There is a constant C = C(τ) such that, for all
weights v and all finite linear sums f =

∑
I∈F λIa(I), where the a(I)’s are

adapted to intervals I belong to a good family F ,



4 Many Dimensions; Smoothing 77∫
|f(x)|2 v dx ≤ C

∑
I∈F

|λI |2
|I|
∫

I

v(x) (log(e + v(x)/vI))τ dx.

(See also Theorem 4.6 at the end of this chapter.)
Everything we’ve said so far generalizes with almost no extra work to

Rd, d > 1. We must replace dyadic intervals with dyadic cubes,

Q = [
j1
2k

,
j1 + 1

2k
) × [

j2
2k

,
j2 + 1

2k
) × · · · × [

jd

2k
,
jd + 1

2k
),

where k and the ji are integers. The sidelength of such a cube, denoted �(Q),
is 2−k. The cube Q is contained in a unique dyadic cube Q′ with sidelength
2−(k−1) and it contains 2d congruent dyadic subcubes of sidelengths 2−(k+1).
We denote the family of all dyadic cubes by Dd.

There are many (essentially equivalent) ways we can define the dyadic
square function for Rd. We elect the following. If f ∈ L1

loc(R
d) and k is an

integer, we set
fk =

∑
Q∈Dd: �(Q)=2−k

fQχQ; (4.8)

i.e., fk is what we get when we replace f by its averages over dyadic cubes of
sidelength 2−k. Following our convention in the 1-dimensional case, we define
f∗(x) ≡ supk |fk(x)|. If Q ∈ Dd and �(Q) = 2−k, we set

a(Q)(f) = (fk+1 − fk)χQ.

The function a(Q)(f): a) is supported in Q; b) is constant on Q’s immediate
dyadic subcubes; and c) satisfies

∫
a(Q)(f) = 0. Let H(Q) denote the space

of functions satisfying a), b), and c). It has dimension 2d − 1. At the end
of this chapter we will show how to construct a canonical orthonormal basis
{h(Q),i}2d−1

1 for it, one that reduces to a single Haar function when d = 1.
For now we will take the existence of this basis for granted, and note some of
its properties:

‖h(Q),i‖∞ ∼ |Q|−1/2;

a(Q)(f) =
∑

i

〈f, h(Q),i〉h(Q),i;

‖a(Q)(f)‖2

2
=
∑

i

|〈f, h(Q),i〉|2;

‖a(Q)(f)‖
2
∼ ‖a(Q)(f)‖∞|Q|1/2

∼ max
i

|〈f, h(Q),i〉|.

The family {a(Q)(f)}Q∈Dd
is pairwise orthogonal. If f ∈ L2(Rd) then

f =
∑

Q a(Q)(f) in L2, implying∫
|f |2 dx =

∑
Q

‖a(Q)(f)‖2

2
.
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We rewrite the sum on the right as∫ ⎛⎝∑
Q

‖a(Q)(f)‖2

2

|Q| χQ

⎞⎠ dx.

We define our d-dimensional dyadic square function by:

Sd(f)(x) ≡
⎛⎝∑

Q

‖a(Q)(f)‖2

2

|Q| χQ(x)

⎞⎠1/2

. (4.9)

We can make this look more like the 1-dimensional version S(f) (see 2.8) if
we write it as: ⎛⎝∑

Q

1
|Q|

(∑
i

|〈f, h(Q),i〉|2
)

χQ(x)

⎞⎠1/2

.

What of our exponential-square and weighted norm estimates? For one
class—those in which f controls Sd(f)—we need only minor changes in the
proofs to extend them to d dimensions. The basic weighted L2 inequality,∫

Rd

(Sd(f))2 v dx ≤ Cd

∫
Rd

|f |2 Md(v) dx,

is proved essentially as in R1, as are its extensions to Lp (1 < p < 2),∫
Rd

(Sd(f))p v dx ≤ Cd,p

∫
Rd

|f |p Md(v) dx

and ∫
Rd

(Sd(f))p v dx ≤ Cd,p

∫
Rd

(f∗)p Md(v) dx

for 0 < p ≤ 1. Following our convention, noted above, we are using f∗ to
denote the “ordinary” dyadic maximal function of f with respect to Dd:

f∗(x) ≡ sup
x∈Q∈Dd

|fQ|.

(We strongly encourage the reader to check that what we have just said
is true.)

For the other class, we need to modify the arguments a little more. The
heart of the 1-dimensional proof was the observation that if

∫ 1

0
f dx = 0 and f

is constant on the two halves of [0, 1) (say f(x) ≡ t on [0, 1/2) and f(x) ≡ −t
on [1/2, 1)), then ∫ 1

0

exp(f(x)) dx = cosh(t);

and what was really needed was that the integral was ≤ cosh(t). As a substi-
tute for this simple fact we have:
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Lemma 4.2. Let (Ω,µ) be a probability space and let f : Ω �→ R be a random
variable (i.e., a measurable function) such that |f(x)| ≤ t for all x ∈ Ω and∫

Ω

f(x) dµ(x) = 0.

Then ∫
Ω

exp(f(x)) dµ(x) ≤ cosh(t).

Proof of Lemma 4.2. Let ν be f ’s distribution measure on R. This
means that ν is a Borel probability measure, supported in [−t, t] and satisfying

ν(E) = µ({x ∈ Ω : f(x) ∈ E})
for all Borel E ⊂ R. We recall a theorem from basic probability theory: If
F : [−t, t] �→ R is any continuous function, then∫

Ω

F (f(x)) dµ(x) =
∫ t

−t

F (s) dν(s). (4.10)

If the reader hasn’t seen 4.10 before, an easy way to prove it is to observe
that, for all −∞ < a < b < ∞,

µ ({x ∈ Ω : a < F (f(x)) < b}) = ν ({s ∈ [−t, t] : a < F (s) < b}) ,

from which 4.10 readily follows by an approximation argument.
Given 4.10, our hypotheses on f imply that∫ t

−t

x dν(x) = 0, (4.11)

and the conclusion of the lemma is equivalent to∫ t

−t

exp(x) dν(x) ≤ cosh(t).

We prove the conclusion this way. The function exp(x) is convex. On [−t, t]
it lies below the line connecting (−t, exp(−t)) and (t, exp(t)). This line has
equation y = mx + b, where b is exactly cosh(t). Thus:∫ t

−t

exp(x) dν(x) ≤
∫ t

−t

(mx + b) dν(x)

=
∫ t

−t

b dν(x)

= b = cosh(t),

where the next-to-last line follows from 4.11. That proves Lemma 4.2.
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Remark. I learned this proof from Juan Sueiro Bal while he was a graduate
student at the University of Wisconsin in Madison.

Now consider one of our difference functions a(Q)(f). It is supported in Q,
has integral 0, and satisfies

‖a(Q)(f)‖∞ ≤ C(d)‖a(Q)(f)‖
2
|Q|−1/2

.

By Lemma 4.2,

1
|Q|
∫

Q

exp(a(Q)(f)) dx ≤ cosh(C(d)‖a(Q)(f)‖
2
|Q|−1/2),

which is less than or equal to

exp

(
C ′(d)

‖a(Q)(f)‖2

2

|Q|

)
.

The expression
‖a(Q)(f)‖2

2

|Q|
corresponds to what we got in the 1-dimensional case:

|λI |2
|I| .

If run our 1-dimensional proof again, but now in d dimensions, we obtain:

Theorem 4.4. Let Q be a dyadic cube in Rd. Let f ∈ L1(Rd) have support
contained in Q and satisfy

∫
f dx = 0. Define fk as in 4.8 and Sd(f) as in 4.9.

For all integers k and positive numbers t,

1
|Q|
∫

Q

exp(tfk(x) − C ′(d)t2(Sd(fk))2) dx ≤ 1,

where C ′(d) only depends on d. There exist positive constants c1(d) and c2(d)
so that, if ‖Sd(f)‖∞ ≤ 1 then, for all λ > 0,

|{x ∈ Q : |f(x)| > λ}| ≤ c1(d)|Q| exp(−c2(d)λ2).

The Y -functional and its variants are defined exactly as in R1. For η > 0,

Yη(Q, v) ≡ 1
v(Q)

∫
Q

v(x) (log(e + v(x)/vQ))η dx (4.12)

when v(Q) > 0, and is 1 otherwise. Also as in the 1-dimensional case, we set
Y (Q, v) ≡ Y1(Q, v). The proofs from the 1-dimensional setting go through
almost verbatim, and yield:
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Theorem 4.5. Let 0 < p < ∞ and let η > p/2. If v and w are non-negative
functions in L1

loc(R
d) that satisfy∫

Q

v(x) (log(e + v(x)/vQ))η dx ≤
∫

Q

w(x) dx

for all Q ∈ Dd, then, for all finite linear sums

f =
∑
Q

a(Q)(f),

we have ∫
Rd

(f∗)p v dx ≤ C(p, η, d)
∫
Rd

(Sd(f))p w dx,

where Sd(f) is as defined in 4.9.

We continue our generalizing process by defining d-dimensional adapted
functions. (We refer the reader to the definition of 1-dimensional adapted
functions given at the beginning of the chapter.)

If Q ⊂ Rd is a cube (not necessarily dyadic), we say that b(Q) is adapted
to Q if:

a) supp b(Q) ⊂ Q;
b)
∫

b(Q) dx = 0;
c) for all x and y in R,

|b(Q)(x) − b(Q)(y)| ≤ |Q|−1/2

( |x − y|
�(Q)

)
.

Similarly, we define d-dimensional “good” families of cubes, following the
pattern for R1. The only twist is that, no longer having a right and left half
of a cube Q, we speak of the 2d congruent subcubes obtained by bisecting
Q’s component intervals. We will refer to these as Q’s “immediate dyadic
subcubes” even if Q isn’t dyadic.

A family of cubes G is called good if: 1) for every Q ∈ G, all of its
immediate dyadic subcubes belong to G; 2) every Q ∈ G is an immediate
dyadic subcube of some other cube in G; 3) if Q and Q′ belong to G, then
Q ⊂ Q′, Q′ ⊂ Q, or Q ∩ Q′ = ∅.

Just as in R1, we can define G-based versions of our Haar functions,
the dyadic maximal function, and the dyadic square function. We will denote
these respectively as hG,(Q),i, f∗

G , and SG,d; their definitions should give the
reader no problems.

If G is a good family of cubes, and f =
∑

Q∈G λQb(Q) is a finite linear sum
of adapted functions, we define the G-based semi-discrete square function by

Ssd,G(f)(x) ≡
⎛⎝∑

Q∈G

|λQ|2
|Q| χQ(x)

⎞⎠1/2

.
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The reader will recall that in one dimension we had SF (f)(x) ≤ C Ssd,F (f)(x)
pointwise (Theorem 4.1), valid for finite linear sums of F-based adapted func-
tions, and that this was a useful inequality. The corresponding inequality,
SG,d(f)(x) ≤ CSsd,G(f)(x), holds in d dimensions, with almost the same
proof. The key ingredient is an estimate on |〈b(Q), hG,(Q′),i〉|, where Q and
Q′ belong to G and b(Q) is adapted to Q. This estimate is:

|〈b(Q), hG,(Q′),i〉|
{

= 0 if Q′ �⊂ Q;
≤ C |Q′|1/2

|Q|1/2
�(Q′)
�(Q) if Q′ ⊂ Q,

which has a close analogue (and almost identical proof) to one obtained in
the proof of Theorem 4.1. Working out this estimate and how it implies that
SG,d(f)(x) ≤ CSsd,G(f)(x) will make a good exercise for the reader. He should
also have no trouble proving the following theorems.

Theorem 4.6. If τ > 1, there is a constant C = C(τ, d) such that, for all
weights v, all good families G, and all finite linear sums f =

∑
Q∈G λQb(Q),

where each b(Q) is adapted to Q,∫
Rd

|f(x)|2 v dx ≤ C
∑
Q∈G

|λQ|2
|Q|

∫
Q

v(x) (log(e + v(x)/vQ))τ dx.

Theorem 4.7. If 0 < p < ∞, η > p/2, and v and w are weights such that∫
Q

v(x) (log(e + v(x)/vQ))η dx ≤
∫

Q

w(x) dx

for all cubes Q ∈ G, a good family, then, for all finite linear sums f =∑
Q∈G λQb(Q), where each b(Q) is adapted to Q, we have∫

Rd

(f∗
G)p v dx ≤ C(p, η, d)

∫
Rd

S̃p
sd,G(f)w dx.

We will use Theorem 4.6 when we look at the Calderón reproducing
formula and Schrödinger operators.

Multidimensional “Haar Functions”

Let Q0 = [0, 1)d be the unit dyadic cube, and consider the space H(Q0) of
all functions f supported in Q0 that are constant on Q0’s immediate dyadic
subcubes, and which satisfy

∫
f dx = 0. This space has an L2 orthonormal

basis of 2d − 1 elements. We shall construct a canonical basis for H(Q0), one
that reduces to a single Haar function when d = 1. By translating and scaling,
we get a corresponding set of “Haar functions” for every cube Q ⊂ Rd.



4 Many Dimensions; Smoothing 83

The construction depends on the following lemma.

Lemma 4.3. There exist 2d − 1 pairs of subsets of Q0, (Ej , Fj) (1 ≤ j ≤
2d − 1), such that:

a) each Ej or Fj consists of a union of immediate dyadic subcubes of Q0;
b) for each j, Ej ∩ Fj = ∅;
c) for each j, |Ej | = |Fj | > 0;
d) if j �= k, then either (Ej ∪ Fj) ∩ (Ek ∪ Fk) = ∅, or Ej ∪ Fj is entirely

contained in one of Ek or Fk, or Ek ∪ Fk is entirely contained in one of Ej

or Fj.

Remark. What on earth does this mean? Set

hj(x) =
χEj

(x) − χFj
(x)

|Ej ∪ Fj |1/2
.

Each hj belongs to H(Q0), because of a) and c). Because of b), ‖hj‖2 = 1.
If k �= j, then either hj and hk have disjoint supports or else one of them—let’s
say it’s hj—has its support entirely contained in a set across which the other
function, hk, is constant. But

∫
hj dx = 0, implying

∫
hj(x)hk(x) dx = 0.

Therefore the family {hj}2d−1
1 is an orthonormal basis for H(Q0)—assuming

we can prove Lemma 4.3.

Proof of Lemma 4.3. We do induction on d. The result is trivial when
d = 1. Assume the result for d− 1, and let (E′

j , F
′
j) (1 ≤ j ≤ 2d−1 − 1) be the

corresponding pairs of subsets of Q′
0 ≡ [0, 1)d−1. Write Q0 = Q′

0 × [0, 1). For
i = 1, 2, define

E1
j = E′

j × [0, 1/2)

F 1
j = F ′

j × [0, 1/2)

E2
j = E′

j × [1/2, 1)

F 2
j = F ′

j × [1/2, 1),

and set G1 = Q′
0 × [0, 1/2) and G2 = Q′

0 × [1/2/1). Then the pairs (Ei
j , F

i
j )

(i = 1, 2, 1 ≤ j ≤ 2d−1 − 1) and (G1, G2) make up the collection we seek.

Exercises

4.1. Prove equation 4.3.

4.2. Recall Theorem 3.10 and Theorem 3.11. State and prove appropriate
d-dimensional generalizations of them.

4.3. State and prove appropriate d-dimensional generalizations of all of the
exercises from the preceding chapter.
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Notes

The extension of Theorem 3.2 to d dimensions is found in [10]. The idea
of treating adapted functions like “nearly” Haar functions has been used by
many authors, notably in [9] and [57]. Most of the d-dimensional weighted
norm inequalities in this chapter are from [62]. The construction of multi-
dimensional Haar functions is from [65].



5

The Calderón Reproducing Formula I

The theorems at the end of the last chapter dealt with functions f expressible
as nice sums of adapted functions. That is, given a function f =

∑
Q λQa(Q),

where the cubes Q belonged to a good family, we could say something about
its size, in various weighted spaces, in terms of the coefficients λQ. But those
theorems didn’t tell us what to do if we were just given the function f .

In essence, the Calderón reproducing formula allows us to express “arbi-
trary” functions as sums of adapted functions, indexed over good families of
cubes, and with useful (or at least intelligible) bounds on the coefficients.

It would probably be more correct to call the Calderón formula a
“method.” It is based on a trick involving the Fourier transform.

We warn the reader that a small part of our discussion (not too much,
we hope) will refer to the theory of distributions. The only concept we will
use from it is that of “support.” It will do no harm if the reader thinks of
the support of a distribution as being the support of a measure—since, in our
case, it will be.

Let ψ ∈ C∞
0 (Rd) be real, radial, have support contained in {x : |x| ≤ 1},

satisfy
∫

ψ dx = 0, and be normalized so that, for all ξ ∈ Rd \ {0},∫ ∞

0

|ψ̂(yξ)|2 dy

y
= 1. (5.1)

Formula 5.1, to put it mildly, calls for a few words of explanation. Since ψ is
radial, so is ψ̂. Thus, by a change of variable u = y|ξ|, we see that the left-
hand side of 5.1 is independent of ξ �= 0. Indeed, if we set ξ ≡ (1, 0, 0, . . . , 0),
the left-hand side of 5.1 is simply∫ ∞

0

|ψ̂(y, 0, 0, . . . , 0)|2 dy

y
. (5.2)

Since ψ is compactly supported and has integral 0, we have |ψ̂(y, 0, . . . , 0)| ≤
Cψy for small y; since ψ is smooth, we have |ψ̂(y, 0, . . . , 0)| ≤ C/y when y
is large (strictly speaking, we have ≤ C/yM for any M here, but M = 1
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will do). Together these imply that the integral 5.2 is finite for any such ψ.
Now we just take some non-trivial ψ and multiply it by an appropriate positive
constant, to get a function satisfying 5.1.

Let’s write Rd+1
+ = Rd × (0,∞). If d = 1, this is the familiar upper half-

plane from complex analysis; we usually call it the upper half-space. Notice
that Rd+1

+ is an open subset of Rd+1. This has the consequence that any
compact subset of Rd+1

+ has a strictly positive distance to ∂Rd+1
+ , which we

think of as Rd.
For y > 0, we let ψy(t) stand for y−dψ(t/y), the usual L1-dilation. We

claim that, if f ∈ L2(Rd), then∫
|f |2 dx =

∫
Rd+1

+

|f ∗ ψy(t)|2 dt dy

y
. (5.3)

The proof is easy. By the Fourier Convolution Theorem, and by the Plancherel
Theorem, the right-hand side of 5.3 is∫

Rd

|f̂(ξ)|2
(∫ ∞

0

|ψ̂(yξ)|2 dy

y

)
dξ

which equals
∫
Rd |f̂(ξ)|2 dξ because of 5.1. Equation 5.3 follows by another

application of the Plancherel Theorem.
We now claim that, if f ∈ L2(Rd), then

f =
∫
Rd+1

+

(f ∗ ψy(t))ψy(x − t)
dt dy

y

in some “useful” sense. Let us now make this sense precise! It is clear that,
if K ⊂ Rd+1

+ is any measurable set with compact closure contained in Rd+1
+ ,

then
f(K)(x) ≡

∫
K

(f ∗ ψy(t))ψy(x − t)
dt dy

y
(5.4)

belongs to L2(Rd) (because it’s continuous and has compact support). We
have a nice bound on f(K)’s L2 norm; to wit, ‖f(K)‖2

≤ ‖f‖2, independent
of K. To see this, let h ∈ L2(Rd) satisfy ‖h‖2 = 1, and check the inner
product

∫
f(K) h̄ dx. It is∫

K

(f ∗ ψy(t)) (h̄ ∗ ψy(t)))
dt dy

y
.

By the Cauchy-Schwarz inequality, this integral is bounded in modulus by(∫
Rd+1

+

|f ∗ ψy(t)|2 dt dy

y

)1/2(∫
Rd+1

+

|h ∗ ψy(t)|2 dt dy

y

)1/2

.

(Notice that we have dropped K.) The first factor is no bigger than ‖f‖2 and
the second equals 1. Thus, since h is arbitrary, ‖f(K)‖2

≤ ‖f‖2.
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We will say that {Ki}i is a compact-measurable exhaustion of Rd+1
+ if

each K1 ⊂ K2 ⊂ K3 ⊂ · · · is an increasing sequence of measurable subsets
of Rd+1

+ , such that each Ki has compact closure K̄i contained in Rd+1
+ , and

∪iKi = Rd+1
+ . Note that we do not require any K̄i to be contained in any

Ki+1.
Remark. The only reason we require the Ki’s to have compact closures

is to ensure that the integrals defining f(Ki) will yield continuous, compactly
supported functions.

The next theorem describes one sense in which the Calderón reproducing
formula converges.

Theorem 5.1. Let f ∈ L2(Rd). If {Ki}i is any compact-measurable exhaus-
tion of Rd+1

+ , then f(Ki) → f weakly; i.e.,
∫

f(Ki) h̄ dx → ∫
f h̄ dx for all

h ∈ L2(Rd).

But, with just a little more work, we can see that the convergence of the
Calderón formula is actually much better.

Theorem 5.2. Let f ∈ L2(Rd). If {Ki}i is any compact-measurable exhaus-
tion of Rd+1

+ , then f(Ki) → f in the L2 norm.

Proof of Theorem 5.1. Because of equation 5.3, we have, for any
f ∈ L2, ∫

Rd

f(x) f̄(x) dx =
∫
Rd+1

+

(f ∗ ψy(t)) (f̄ ∗ ψy(t))
dt dy

y
.

Notice that both integrals are absolutely convergent. By polarization (i.e.,
algebra), this implies that, for any f and h in L2,∫

Rd

f(x) h̄(x) dx =
∫
Rd+1

+

(f ∗ ψy(t)) (h̄ ∗ ψy(t))
dt dy

y
; (5.5)

and, again, both integrals are absolutely convergent. Therefore, the left-hand
side of 5.5 equals the limit of∫

Ki

(f ∗ ψy(t)) (h̄ ∗ ψy(t))
dt dy

y
=
∫
Rd

f(Ki) h̄ dx.

Theorem 5.1 is proved.

Proof of Theorem 5.2. Let f ∈ L2 and {Ki}i be as in the preceding
theorem. For every m and n, m < n, ‖f(Km) − f(Kn)‖2

is less than or equal to(∫
Kn\Km

|f ∗ ψy(t)|2 dt dy

y

)1/2

.
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(Repeat our earlier duality argument, but this time don’t drop the K’s.)
Because ∫

Rd+1
+

|f ∗ ψy(t)|2 dt dy

y
< ∞,

this implies that ‖f(Km) − f(Kn)‖2
→ 0 as m → ∞, and so {f(Ki)} is Cauchy

in L2. Call its L2 limit g. But the sequence {f(Ki)} converges weakly to f .
Therefore g = f . That proves Theorem 5.2.

We have just shown that the linear mapping

f �→ Tf ≡
∫
Rd+1

+

(f ∗ ψy(t))ψy(x − t)
dt dy

y
(5.6)

(where the integral is defined as the L2 limit of integrals over a compact-
measurable exhaustion) is equal to the identity operator on L2.

The statement that Tf = f , in the sense (and with the restrictions) we
have described, is the Calderón reproducing formula.

Remark. Before saying more about this formula, we should notice that it
comes with an unfortunate limitation: the equation Tf = f only applies (for
now) to functions f ∈ L2. It turns out that this formula holds for all f ∈ Lp

(1 < p < ∞), in precisely the same sense: If K1 ⊂ K2 ⊂ K3 . . . ⊂ Rd+1
+ is

any compact-measurable exhaustion of Rd+1
+ , then f(Ki) → f in Lp. We will

prove this after we develop some more theory. The reader should think of the
Calderón formula as a continuous analogue of the result from exercise 2.11.
The cornerstone of its proof will be a continuous analogue of the dyadic result
‖f‖p ∼ ‖S(f)‖p.

The Calderón formula 5.6 looks a little like our earlier Haar function
decomposition sum,

f =
∑

I

〈f, h(I)〉h(I);

and it should. The convolution f ∗ψy(t) is an inner product between f and a
suitably localized and normalized smooth function with cancelation, which is
then multiplied by ψy(x− t) (which is another suitably localized and normal-
ized smooth function with cancelation), and summed (integrated) up. That’s
roughly what happened with the Haar functions.

We’re about to make 5.6 look a lot more like a Haar function decompo-
sition.

Definition 5.1. If Q ⊂ Rd is a cube then

T (Q) ≡ {(x, y) ∈ Rd+1
+ : x ∈ Q, �(Q)/2 ≤ y < �(Q)}.

Analysts often refer to T (Q) as the top half of the so-called Carleson
box Q̂ ≡ Q × (0, �(Q)). Before going further, let’s observe some simple (and
intentionally redundant) properties of T (Q) and Q̂.
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1. If Q and Q′ are cubes, then Q ⊂ Q′ if and only if T (Q) ⊂ Q̂′, if and
only if Q̂ ⊂ Q̂′.

2. If Q and Q′ are dyadic cubes and Q �= Q′, then T (Q) ∩ T (Q′) = ∅.
3. If Q is a dyadic cube, then

Q̂ = ∪{T (Q′) : Q′ ∈ Dd, Q′ ⊂ Q},

and this is a disjoint union (by 2.).
4. The family {T (Q)}Q∈Dd

tiles Rd+1
+ .

Because of 4., we may cut up the integral in the Calderón reproducing
integral as follows:

f =
∫
Rd+1

+

(f ∗ ψy(t))ψy(x − t)
dt dy

y

=
∑

Q∈Dd

∫
T (Q)

(f ∗ ψy(t))ψy(x − t)
dt dy

y

≡
∑

Q∈Dd

b(Q)(x).

Our preceding arguments about compact-measurable exhaustions imply that
this sum converges to f in L2 in the following sense: If F1 ⊂ F2 ⊂ · · · are
increasing, finite families of dyadic cubes such that ∪nFn = Dd, then∑

Q∈Fn

b(Q) → f

in L2 as n → ∞.
Now, if t ∈ Q and y ≤ �(Q), then ψy(x − t) can only be non-zero for x’s

in Q̃, the concentric triple of Q. It is also clear that∫
b(Q) dx =

∫
T (Q)

(f ∗ ψy(t))
(∫

ψy(x − t) dx

)
dt dy

y

=
∫

T (Q)

(f ∗ ψy(t)) (0)
dt dy

y
= 0.

We often express this fact by saying that b(Q) “inherits cancelation from ψ.”
So, b(Q) is supported in Q̃ and has integral 0. How large is b(Q)? The

function ψy(x − t) doesn’t get any bigger than c �(Q)−d when (t, y) ∈ T (Q).
Therefore, by Hölder’s Inequality and a little arithmetic (which the reader is
encouraged to work through),

‖b(Q)‖∞ ≤ cλQ(f)|Q|−1/2
,
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where we can take λQ(f) to be(∫
T (Q)

|f ∗ ψy(t)|2 dt dy

y

)1/2

. (5.7)

Similarly, the gradient ∇xψy(x − t) has size no bigger than c �(Q)−1−d when
(t, y) ∈ T (Q), which, after we differentiate under the integral sign, yields

‖∇b(Q)‖∞ ≤ cλQ(f)�(Q)−1|Q|−1/2
.

In other words, b(Q) is equal to cλQa(Q), where a(Q) is adapted to Q̃, and
c > 0 depends only on ψ (and, of course, d).

Putting it all together, we can decompose any f ∈ L2 as

f = c
∑

Q∈Dd

λQa(Q),

where the sum converges in L2, each a(Q) is adapted to Q̃, and the λQ(f)’s
satisfy ∑

|λQ(f)|2 =
∫

|f |2 dx. (5.8)

Let’s define

S̃sd(f)(x) ≡
⎛⎝ ∑

Q∈Dd

|λQ(f)|2
|Q̃| χQ̃(x)

⎞⎠1/2

. (5.9)

(The reason for the Q̃’s will become clear in a moment.)
Equation 5.8 implies that ‖S̃sd(f)‖2 = ‖f‖2 for f ∈ L2. However, the

coefficients λQ(f) make sense for any f ∈ L1
loc(R

d), and even for f ’s that
are distributions (which the reader is free to think of as measures). We want
to know: To what extent does S̃sd(f) control f ’s size in spaces other than
L2(Rd)—in particular, weighted Lp spaces?

This is really several questions, which we will try to confront in a logical,
intelligible order1.

Using the Calderón formula, we can represent an arbitrary f ∈ L2

as a limit of finite linear sums of adapted functions. We know how to use
Littlewood-Paley theory to control such sums, if they are indexed over good
families of cubes. Now, our sums are indexed over {Q̃ : Q ∈ Dd}, which is
clearly not a good family.

Our first question is: How do we get around this?
Fortunately, the answer is not too bad.
If Q is any cube, and m > 0, we let mQ denote the cube having the same

center and orientation as Q, and sidelength m�(Q) (e.g., Q̃ is 3Q). We set
mDd = {mQ : Q ∈ Dd}.

The answer to our first question is:
1 “Logical” does not always imply “intelligible,” nor vice versa.
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Theorem 5.3. Let m be an odd positive integer. The collection mDd is equal
to the union of md pairwise disjoint good families.

Remark. When reading through this proof for the first time, the reader is
advised to set m equal to 3. In fact, he’s encouraged to do so, since we won’t
be needing it for higher values of m.

Proof of Theorem 5.3. It is sufficient to prove the theorem when d = 1.
For the purposes of this proof, [k] shall mean ‘k mod m.’ Since m is odd, 2 is
invertible mod m; let p be its multiplicative inverse (mod m).

Every I ∈ mD has the form

I = [
mj + s

2k
,
m(j + 1) + s

2k
), (5.10)

where j, k, and s are integers, with 0 ≤ s < m. For fixed k and s, denote the
family of intervals satisfying 5.10 for some j by Gk

s .
Now comes the fun part. If we divide I ∈ Gk

s in half, the resulting subin-
tervals (check them!) belong to Gk+1

[2s] . A slightly more detailed computation

shows that every I ∈ Gk
s is either the right or left half of some J ∈ Gk−1

[ps]

(the question of “right” or “left” depends on the parity of j). If we define, for
s = 0, 1, . . . , m − 1,

Gs ≡
(
∪∞

k=0Gk
[2ks]

)
∪
(
∪∞

k=1Gk
[pks]

)
,

then these are the required families.

Therefore, if f =
∑

Q∈Dd
λQa(Q) is a finite linear sum of adapted func-

tions, with each a(Q) adapted to Q̃, we can write f =
∑3d

1 fj , where each
fj =

∑
Q̃∈Gj

λQa(Q), with the Gj ’s being good families. The methods of the
previous chapter now let us control each fj—and therefore f itself—with
S̃sd(f). We just need to make sure that the hypotheses on our weights imply
that appropriate inequalities hold for all the Q̃’s, Q ∈ Dd. Usually we do this
by asking that certain inequalities hold for all cubes Q, period.

One example should make our meaning clear.

Theorem 5.4. Let 0 < p < ∞ and let p/2 < η. Suppose that v and w are two
weights such that, for all cubes Q ⊂ Rd,∫

Q

v(x) (log(e + v(x)/vQ))η dx ≤
∫

Q

w(x) dx.

Then, if f =
∑

Q∈Dd
λQa(Q) is a finite linear sum of adapted functions, with

each a(Q) adapted to Q̃, we have∫
Rd

|f |p v dx ≤ C

∫
Rd

(S̃sd(f))p w dx,

where S̃sd(f) is as defined in 5.9, and the constant C only depends on p, η,
and d.
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Of course, what goes for such finite sums of adapted functions f =∑
Q∈Dd

λQa(Q) goes just as well for functions in L2(Rd); because, given
f ∈ L2(Rd), we can find a sequence of finite, nested subsets F1 ⊂ F2 ⊂ · · ·
such that ∪Fk = Dd and the sequence of functions

f(k) ≡
∑

Q∈Fk

λQa(Q)

converges to f almost everywhere. The corresponding theorem for f will then
follow by Fatou’s Lemma.

So, arbitrary functions in L2(Rd) are no problem.
What about the others?
That brings us to our second question: To what extent, and in what

sense(s), does the Calderón formula represent f ’s in spaces other than L2(Rd)?
To answer it we need to step up and look more closely at the Calderón

formula. When we do, we find that the formula is not so mysterious as it at
first appeared.

Set η = ψ ∗ ψ. We can rewrite 5.2 as∫ ∞

0

f ∗ ηy(x)
dy

y
,

which (formally) is the convolution of f with∫ ∞

0

ηy(x)
dy

y
, (5.11)

whatever that means. Our preceding work in L2 amounts to a case for saying
that 5.11 gives a representation (in some sense) of δ0, the Dirac mass at 0.
Let’s make this “in some sense” more precise.

Define
φ(x) =

∫ ∞

1

ηy(x)
dy

y
.

It’s not hard to see that the integral defining φ(x) converges absolutely, uni-
formly in x. A simple change of variable shows that, for any t > 0,

φt(x) =
∫ ∞

t

ηy(x)
dy

y
.

So, the Calderón formula 5.2 can perhaps be reinterpreted as

f = lim
t→0+

f ∗ φt

or
f = lim

t→0+
T→∞

f ∗ φt − f ∗ φT ,
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both of which are true a.e. for f ∈ Lp (1 ≤ p < ∞), if φ is nice enough. (See
exercise 5.7 at the end of this chapter.)

How “nice” is φ?
For R > 1 let’s temporarily define

g(R)(x) =
∫ R

1

ηy(x)
dy

y
.

It’s clear that g(R) ∈ L1. Taking Fourier transforms, we get

ĝ(R)(ξ) =
∫ R

1

|ψ̂(yξ)|2 dy

y
.

As R → ∞, ĝ(R)(ξ) ↗ to

F (ξ) ≡
∫ ∞

1

|ψ̂(yξ)|2 dy

y
.

By Minkowski’s Inequality for integrals:(∫
|F (ξ)|2 dξ

)1/2

≤
∫ ∞

1

(∫
|ψ̂(yξ)|4 dξ

)1/2
dy

y

=
∫ ∞

1

(∫
|ψ̂(ξ)|4 dξ

)1/2
dy

y1+d/2

< ∞,

because ψ belongs to the Schwartz class. The Monotone Convergence Theorem
now implies that the functions ĝ(R)—and hence the functions g(R)—have an
L2 limit. But we already know that the g(R)’s converge pointwise to φ. Thus,
φ ∈ L2, and its Fourier transform is what we’ve called F (ξ):∫ ∞

1

|ψ̂(yξ)|2 dy

y
.

We can similarly show that |ξ|MF (ξ) ∈ L2 for all M , implying that φ is
infinitely differentiable.

We claim that φ has compact support. What this means is that there is
a compact set K ⊂ Rd such that φ(x) = 0 almost everywhere on Rd \ K.
Indeed, we can take K to be {x ∈ Rd : |x| ≤ 4}. We prove this by showing
that, if h ∈ C∞

0 (Rd) has support disjoint from K, then
∫

φh dx = 0.
This last statement is easy to prove. Let h ∈ C∞

0 (Rd). If y is small,
the integral

∫
h(x)ηy(x) dx is bounded by a constant times y (exercise 5.2).

Therefore the integral ∫ 1

0

∫
h(x)ηy(x) dx

dy

y
(5.12)
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converges. The mapping C∞
0 (Rd) �→ R defined by 5.12 is a distribution with

compact support; because, if the support of h is disjoint from {x ∈ Rd : |x| ≤
4}, h(x)ηy(x) ≡ 0 for 0 < y ≤ 1. However, as a distribution, the function φ is
equal to

δ0 −
∫ 1

0

ηy(x)
dy

y
.

In English, this last statement means that, for any h ∈ C∞
0 (Rd),∫

φ(x) h̄(x) dx = h̄(0) −
∫ 1

0

∫
h̄(x)ηy(x) dx

dy

y
, (5.13)

which proves that φ has support contained inside K. The proof of 5.13 goes
as follows:∫

φ(x) h̄(x) dx =
∫

ĥ(ξ) φ̂(ξ) dξ

=
∫

ĥ(ξ)
(

1 −
∫ 1

0

|ψ̂(yξ)|2 dy

y

)
dξ

=
∫

ĥ(ξ) dξ −
∫ (∫ 1

0

ĥ(ξ) |ψ̂(yξ)|2 dy

y

)
dξ

= h̄(0) −
∫ 1

0

(∫
ĥ(ξ) |ψ̂(yξ)|2 dξ

)
dy

y

= h̄(0) −
∫ 1

0

∫
h̄(x)ηy(x) dx

dy

y
.

The manipulations of the integrals are justified by the smoothness and rapid
decay of h and ψ.

Now, knowing this, we can assert that φ is a smooth, radial function in L1.
The integral of φ is

F (0) = lim
ξ→0

∫ ∞

1

|ψ̂(yξ)|2 dy

y

= lim
ξ→0

∫ ∞

|ξ|
|ψ̂(y(1, 0, 0, . . . , 0)))|2 dy

y

=
∫ ∞

0

|ψ̂(y(1, 0, 0, . . . , 0))|2 dy

y
= 1.

That makes φ nice enough for a lot of things. In the exercises we have
outlined proofs of the following facts: 1) if f ∈ Lp (1 ≤ p < ∞), then it is
the Lp and almost everywhere limit of f ∗ φt as t → 0; 2) if 1 < p < ∞, then
these are also true of the Lp limit of f ∗φt −f ∗φT as t → 0 and T → ∞; 3) if
p = 1, f ∗φt − f ∗φT converges to f almost everywhere as t → 0 and T → ∞.
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Assuming these, we now have almost all we need for a useful reinter-
pretation of the Calderón formula. What’s missing is a justification of the
equality:

f ∗ φt − f ∗ φT =
∫ T

t

f ∗ ηy(x)
dy

y
.

Let’s now provide this.
Note that both sides make sense for any f ∈ Lp. The problem in equating

them comes from the fact that, on the left, we are essentially taking the
difference of two improper integrals that might not converge in the sense of
Lebesgue. Fortunately, this is easy to fix. The equation is easily seen to be
true for f ∈ C∞

0 (Rd) and—here’s the important part—both sides depend
continuously on f ∈ Lp. Therefore the equation holds for all f ∈ Lp (1 ≤
p < ∞).

With this equation in hand, an Lp Littlewood-Paley estimate on f ’s size
is straightforward.

For k, n = 1, 2, . . . and f ∈ Lp (1 ≤ p < ∞), set

fk,n =
∫ 2n

2−n

∫
|t|≤2k

(∫
(f ∗ ψy(t))ψy(x − t) dt

)
dy

y
.

If kn → ∞ fast enough then, for all x, we will have fkn,n(x) = f ∗ φ2−n(x) −
f ∗ φ2n(x), for large enough n (depending on x, of course). For example: pick
kn = 22n. If 2−n ≤ y ≤ 2n, then the support of ψy is contained in a ball of
radius 2n. Let |x| ≤ 2r, with r > 0. If r < n then the ball centered at x and
of radius 2n will be contained in {t : |t| ≤ 22n}, implying that

fkn,n(x) =
∫ 2n

2−n

∫
|t|≤22n

(∫
(f ∗ ψy(t))ψy(x − t) dt

)
dy

y

=
∫ 2n

2−n

∫
Rd

(∫
(f ∗ ψy(t))ψy(x − t) dt

)
dy

y

= f ∗ φ2−n(x) − f ∗ φ2n(x).

Assume we’ve chosen such a sequence kn. Then fkn,n → f almost everywhere.
What’s nice about this is that every fkn,n can be written as a finite linear
combination of adapted functions; not only that, but this sum is one for which
we have good control on the sizes of the coefficients.

Let’s call the region {(t, y) ∈ Rd+1
+ : |t| ≤ 2kn , 2−n ≤ y ≤ 2n} by the

name Rn. Then

fkn,n =
∫

Rn

(f ∗ ψy(t))ψy(x − t)
dy dt

y
.

For each Q ∈ Dd and each n, we can write

λQ,n(fkn,n)a(Q),n ≡
∫

Rn∩T (Q)

(f ∗ ψy(t))ψy(x − t)
dy dt

y
,
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where each a(Q),n is adapted to Q̃ and |λ(Q),n| ≤ |λ(Q)(f)|. (The coefficients
λ(Q)(f) are as defined by 5.7.) Note that, for each n, only finitely many λ(Q),n’s
are non-zero. Putting

fkn,n =
∑

Q∈Dd

λQ,n(fkn,n)a(Q),n

gives the desired decomposition of fkn,n as a linear sum of adapted functions.
The family {Q̃ : Q ∈ Dd} is equal to the disjoint union of 3d good families

Gi. Theorem 5.4 (with v ≡ w ≡ 1) can be applied to each of the functions

fkn,n,i ≡
∑

Q:Q̃∈Gi

λQ,n(fkn,n)a(Q),n,

to obtain (1 ≤ p < ∞):∫
Rd

|fkn,n,i|p dx ≤ Cp,d

∫
Rd

(S̃sd,Gi
(fkn,n,i))p dx,

where

S̃sd,Gi
(fkn,n,i) =

⎛⎝ ∑
Q:Q̃∈Gi

|λQ,n(fkn,n)|2
|Q̃| χQ̃

⎞⎠1/2

.

It is clear that each S̃sd,Gi
(fkn,n,i) ≤ S̃sd(f) pointwise (recall 5.9) and trivial

that fkn,n =
∑

i fkn,n,i. Therefore, by Fatou’s Lemma, if f ∈ Lp(Rd), (1 ≤
p < ∞), then ∫

Rd

|f |p dx ≤ Cp,d

∫
Rd

(S̃sd(f))p dx. (5.14)

This inequality generalizes readily to weighted spaces, and to Lp when
0 < p < 1. If v and w are two weights satisfying the hypotheses of Theorem
5.4 and if f is the almost-everywhere limit of∫

Rn

(f ∗ ψy(t))ψy(x − t)
dy dt

y
(5.15)

for some compact measurable exhaustion Rn ↗ Rd+1
+ , then∫

Rd

|f |p v dx ≤ C(p, d, η)
∫
Rd

(S̃sd(f))p w dx,

where η is any number bigger than p/2.
As we have seen, if f ∈ ∪1≤r<∞Lr, then f can be written as the almost-

everywhere limit of a sequence of functions of the form 5.15. We can sum up
the meaning of much of this chapter in the following theorem.
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Theorem 5.5. Let 0 < p < ∞, η > p/2, and suppose that v and w are two
weights such that, for all cubes Q ⊂ Rd,∫

Q

v(x) (log(e + v(x)/vQ))η dx ≤
∫

Q

w(x) dx.

Suppose that ψ ∈ C∞
0 (Rd) is real, radial, has support contained in {x : |x| ≤

1}, has integral equal to 0, and also satisfies 5.1. There is a constant C =
C(ψ, p, d, η) such that, for all f ∈ ∪1≤r<∞Lr,∫

Rd

|f |p v dx ≤ Cp,d

∫
Rd

(S̃sd(f))p w dx, (5.16)

where S̃sd(f) is as defined in 5.9. In particular, 5.16 holds if v = w and
v ∈ A∞.

Remark. Honesty compels us to point out that 5.14 and Theorem 5.5,
while true, are slightly deceptive. It is now natural to jump to the conclusion
that, if f ∈ Lp(Rd) (1 < p < ∞), and {Ki} is any compact-measurable
exhaustion of Rd+1

+ , then f(Ki) → f in Lp, with 5.14 holding. This is true,
but we haven’t proved it yet. We will do so in the next chapter.

The Calderón reproducing formula is a powerful tool, but we should not
oversell it. It also has some powerful limitations. We have already seen one:
The Calderón integral does NOT converge in the L1 norm (although, properly
interpreted, it does converge almost everywhere). In L∞ the situation is even
worse. If f ∈ L∞(Rd) we cannot, in general, expect the integral∫

Rd+1
+

(f ∗ ψy(t))ψy(x − t)
dt dy

y

to converge to f in any sense. For example, if f is a constant, the integrand
is identically 0, which means that the Calderón formula cannot distinguish
between two bounded functions that differ by a constant. (Fortunately, for
bounded functions, this is the worst that can happen: see the exercises.)

As promised, we have shown that the Calderón formula allows us to write
essentially arbitrary functions as limits of finite sums of adapted functions,
and in ways that allow us to apply Littlewood-Paley analysis. We wish to
make three final observations about these adapted function decompositions.

Observation 1: Our Littlewood-Paley estimates do not require very smooth
adapted functions. Instead of asking that a function a(Q), adapted to a cube
Q, satisfy

|a(Q)(x) − a(Q)(y)| ≤ (|x − y|/�(Q))|Q|−1/2
,

we could have asked that, for all x and y,

|a(Q)(x) − a(Q)(y| ≤ (|x − y|/�(Q))α|Q|−1/2 (5.17)
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for some fixed α > 0, independent of Q. What we are requiring is that a(Q)

satisfy a suitably scaled Lipschitz (or Hölder) smoothness condition of order α.
The Littlewood-Paley estimates we obtained in chapter 4 for sums of adapted
functions also go through for these Hölder-smooth adapted functions, but with
constants that (of course) depend on α.

Nevertheless, it is sometimes useful to note:
Observation 2: The Calderón formula yields adapted functions with ar-

bitrarily many derivatives. We obtained our adapted functions a(Q) from the
formula

λQa(Q) =
∫

T (Q)

(f ∗ ψy(t))ψy(x − t)
dt dy

y
, (5.18)

where

λQ = c

(∫
T (Q)

|f ∗ ψy(t)|2 dt dy

y

)1/2

.

However, since ψ is infinitely differentiable, we can take as many derivatives
as we like (in x) on both sides of 5.18. Simple estimates now imply that, for
all derivatives Dα(a(Q)), we will have

‖Dα(a(Q))‖∞ ≤ Cα,d�(Q)−|α||Q|−1/2
,

where |α| is the order of the differential operator Dα. We don’t need this
extra smoothness for our basic Littlewood-Paley estimates, but it can come
in handy when studying the action of differential operators.

Observation 3: The Calderón formula yields adapted functions with arbi-
trarily many moments of cancelation. Let ∆ be the Laplacian operator on Rd,
and let ψ be as in 5.1. We could just as well write our Calderón representation
of f with respect to CM (∆Mψ), where CM is a constant chosen to ensure 5.1.
But ∆Mψ is orthogonal to all polynomials of degree < 2M . Usually we don’t
need this extra cancelation, but it can be useful when studying the action of
certain integral operators.

Exercises

5.1. The Calderón reproducing formula uses a function ψ ∈ C∞
0 (Rd) that is

real, radial, has support contained in {x : |x| ≤ 1}, satisfies
∫

ψ dx = 0, and
is not identically 0. Show that such a ψ exists.

5.2. Let h and η belong to C∞
0 (Rd), and suppose that

∫
η dx = 0. Show that

there is a constant C, depending only on h and η, so that, for all 0 < y ≤ 1,
and all x, |h ∗ ηy(x)| ≤ Cy.
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5.3. Let ρ and ψ be two functions in C∞
0 (Rd) having integrals equal to 0.

Show that ∫
Rd+1

+

|ρ ∗ ψy(t)| dt dy

y
< ∞.

What does this say about the convergence of the Calderón reproducing for-
mula for functions ρ ∈ C∞

0 (Rd) that satisfy
∫

ρ dx = 0?

5.4. Let f ∈ L2(Rd), and suppose that E ⊂ Rd+1
+ is measurable. Let ψ be

any function in C∞
0 (Rd) satisfying

∫
ψ dx = 0. Show that, if {Ki} is any

compact-measurable exhaustion of Rd+1
+ , then

lim
i→∞

∫
E∩Ki

(f ∗ ψy(t))ψy(x − t)
dt dy

y

exists in the L2 sense, and that the limit is independent of the sequence of
sets {Ki}. Formally, this limit is equal to

f(E)(x) ≡
∫

E

(f ∗ ψy(t))ψy(x − t)
dt dy

y
.

Show that ‖f(E)‖2
≤ Cψ‖f‖2. Show that this definition of f(E) coincides with

our earlier formula 5.4 when E has compact closure contained in Rd+1
+ . Show

that, if F and E are arbitrary measurable subsets of Rd+1
+ , and E ⊂ F , then

f(F ) − f(E) = f(F\E).

5.5. This exercise builds on exercise 5.4. Let f ∈ L2(Rd). Show that, for all
ε > 0, there is a compact K ⊂ Rd+1

+ such that, for all measurable E ⊂ Rd+1
+ ,

if K ⊂ E, then ‖f(K) − f(E)‖2
< ε.

5.6. Let ψ ∈ C∞
0 (Rd) be real, radial, have support contained in {x : |x| ≤ 1},

satisfy
∫

ψ dx = 0, and be normalized so that, for all ξ �= 0,∫ ∞

0

|ψ̂(tξ)|2 dt

t
= 1.

Let φ ∈ L∞(Rd) satisfy φ ∗ψy(t) = 0 for all (t, y) ∈ Rd+1
+ . Show that φ is a.e.

constant. (Hint: First show that the conclusion follows if
∫

φρ dx = 0 for all
ρ ∈ C∞

0 (Rd) with integral equal to 0. Then show that the hypothesis implies
this.) Show that this conclusion can fail if φ is a polynomial.

5.7. Let φ ∈ C∞
0 (Rd) satisfy

∫
φ dx = 1. This exercise guides you through a

proof that, if f ∈ Lp(Rd) (1 ≤ p < ∞), then

lim
T→∞
t→0

(f ∗ φt(x) − lim f ∗ φT (x)) = f(x)

almost everywhere, with convergence in Lp as well when p > 1.
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a) Show that there is a constant Cφ such that, for all f ∈ L1
loc(R

d),

sup
t>0

|f ∗ φt(x)| ≤ CφM(f)(x).

(Hint: Assume that φ and f are non-negative, and look at exercise 2.7.)
b) Show that, if f ∈ Lp(Rd) and 1 ≤ p < ∞, then

lim
T→∞

f ∗ φT (x) → 0

uniformly. Show that this convergence holds in Lp if p > 1.
c) For δ > 0 and f ∈ L1

loc(R
d), define

Ωδ(f)(x) ≡ sup
0<t1,t2<δ

|f ∗ φt1(x) − f ∗ φt2(x)|,

and set Ω(f)(x) = limδ→0 Ωδ(f)(x). Notice these facts about Ω(f): it might
be infinite, but it is defined everywhere and it is measurable; Ω(f + g) ≤
Ω(f) + Ω(g); Ω(f) ≤ 2CφM(f); Ω(f)(x) = 0 if and only if limt→0 f ∗ φt(x)
exists; if f is continuous, then Ω(f)(x) = 0 everywhere.

d) Show that, if f is continuous and with compact support, then

lim
t→0

f ∗ φt(x) → f(x)

uniformly and in Lp (0 < p ≤ ∞). Use this to infer that f ∗ φt → f in Lp for
arbitrary f ∈ Lp (1 ≤ p < ∞).

e) Let f ∈ Lp (1 ≤ p < ∞), and write f = g + b, where g is continuous
with compact support, and ‖b‖p < ε. Put some of the preceding estimates
together to infer that, for all η > 0, the set {x : Ω(f)(x) > η} has measure
zero, and therefore that limt→0 f ∗ φt(x) exists almost everywhere.

f) Last step: under the same assumptions as in step e), show that the
almost-everywhere value of limt→0 f ∗ φt(x) is f(x).

Notes

The original form of the Calderón reproducing formula appears in [4]. Versions
of it more closely resembling what we see in this chapter appear in [6], [7],
[5], [9], and [57]. Our proofs of Theorem 5.1 and Theorem 5.2 are heavily in-
debted to [53]; see also [15] for one treatment of the L2 case. The papers [57]
and [9] exploit the connection between Calderón’s formula and adapted func-
tion decompositions essentially as we do here. The combinatorial argument
(Theorem 5.3) used to construct “good” families, which is presented here, is
from [62], but is similar to constructions in [10] and [25]. The convergence of
the Calderón formula for smooth functions with good decay is proved in [22].
The use of the Calderón formula, combined with dyadic results, to prove
weighted Littlewood-Paley inequalities for “arbitrary” functions, is based on
the treatment in [62].



6

The Calderón Reproducing Formula II

The way we have been discussing the square function, in terms of Haar func-
tions and adapted functions, is not how it has traditionally been done. Now
we want to describe how Littlewood-Paley theory, as we have developed it,
relates to a more classical theory.

We wish to emphasize that we will not be treating the classical theory of
the square function in depth. Instead, we will develop some “semi-classical”
(real-variable) theory and show how it meshes with some familiar1 square
function results. Our reasons for this are two-fold: 1) it saves space; and,
2) the real-variable theory is closer to the spirit of modern work in analysis.

Let ψ ∈ C∞
0 (Rd) be real, radial, have support contained in {x : |x| ≤ 1},

satisfy
∫

ψ dx = 0, and be normalized so that, for all ξ ∈ Rd \ {0},∫ ∞

0

|ψ̂(yξ)|2 dy

y
= 1.

This is equation 5.1 from the preceding chapter. For α > 0 and x ∈ Rd, let
Γα(x) be the “cone” over x:

Γα(x) ≡ {(t, y) ∈ Rd+1
+ : |x − t| < αy}.

This cone is said to have aperture equal to α. We call Γ1(x) the “standard
cone,” and we usually denote it by plain Γ (x). Notice that, if 0 < α < β, then
Γα(x) ⊂ Γβ(x).

With α and ψ fixed, we define the (real-variable) square function Sψ,α(f)
of a function f ∈ L1

loc(R
d) by

Sψ,α(f)(x) ≡
(∫

Γα(x)

|f ∗ ψy(t)|2 dt dy

yd+1

)1/2

. (6.1)

1 Familiar to older mathematicians!
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In analogy with our definition of Γα(x), we will denote Sψ,1(f) by plain
Sψ(f).

An analogous operator, the (real-variable) g-function, is defined by the
equation:

gψ(f)(x) ≡
(∫ ∞

0

|f ∗ ψy(x)|2 dy

y

)1/2

. (6.2)

These operators are sublinear and non-negative. They are also bounded on L2.
Indeed, for any α > 0,∫

Rd

(Sψ,α(f)(x))2 dx =
∫
Rd+1

+

|f ∗ ψy(t)|2 |x : (t, y) ∈ Γα(x)| dt dy

yd+1

= Cd

∫
Rd+1

+

|f ∗ ψy(t)|2 αdyd dt dy

yd+1

= Cdα
d

∫
Rd+1

+

|f ∗ ψy(t)|2 dt dy

y

= Cdα
d‖f‖2,

when f ∈ L2; and the analogous computation for gψ(f) is even simpler.
Notice that, up to possible constant factors, Sψ,α and gψ(f) induce nonlinear
isometries on L2.

I claim that we have already seen the operator Sψ,α(f), though in a
disguised form. Recall our definition of S̃sd(f),

S̃sd(f)(x) ≡
⎛⎝ ∑

Q∈Dd

|λQ(f)|2
|Q̃| χQ̃(x)

⎞⎠1/2

,

where

|λQ(f)| =

(∫
T (Q)

|f ∗ ψy(t)|2 dt dy

y

)1/2

.

The function S̃sd(f) is pointwise comparable to⎛⎜⎝ ∑
Q∈Dd
x∈Q̃

∫
T (Q)

|f ∗ ψy(t)|2 dt dy

yd+1

⎞⎟⎠
1/2

.

There is a positive constant α1(d) such that, if (t, y) ∈ T (Q) and x ∈ Q̃, then
|x − t| < α1(d)y; conversely, there is another positive constant, α2(d), such
that, if |x − t| < α2(d)y, then (t, y) lies in a T (Q) such that x ∈ Q̃. Put
together, these say that S̃sd(f) is less than or equal to a constant times
Sψ,α1(d)(f), and that it is larger than or equal to a constant times Sψ,α2(d)(f).
Therefore, if
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Rd

|f |p v dx ≤ C

∫
Rd

(S̃sd(f))p w dx

holds for all f in some test class, it automatically holds (with a different
constant C) if we replace S̃sd(f) with Sψ,α1(d)(f); and, likewise, if∫

Rd

(S̃sd(f))p v dx ≤ C

∫
Rd

|f |p w dx

holds for all suitable f , it will hold with Sψ,α2(d)(f) in place of S̃sd(f); and,
of course, weighted norm inequalities involving Sψ,α1(d)(f) and Sψ,α2(d)(f)
automatically imply others for S̃sd(f).

The problem then arises of how to relate the Lp norms of Sψ,α1(d)(f) and
Sψ,α2(d)(f) if we are working in weighted spaces or if p �= 2.

We will avoid many technical problems in studying these objects if we
define a new square function, one which is independent of any particular kernel
ψ. This square function pointwise dominates all of the Sψ,α(f)’s and gψ(f)’s,
but is not essentially larger, or any harder to handle, than any particular
Sψ,α(f). Using it, we will be able to show with relatively little trouble that
Sψ,α(f) and gψ(f) have Lp(Rd) norms comparable to ‖f‖p when 1 < p < ∞.
This new square function also has the virtue of being essentially aperture
independent: its values for one aperture are pointwise comparable to its values
for any other aperture, and this pointwise comparability even holds good for
its “zero-aperture” version. This property makes it well-suited for work in
weighted spaces.

For β > 0, let Cβ be the family of functions φ : Rd �→ R having their
supports contained in {x : |x| ≤ 1}, satisfying

∫
φ dx = 0, and such that, for

all x and x′, |φ(x) − φ(x′)| ≤ |x − x′|β . If f ∈ L1
loc(R

d) and (t, y) ∈ Rd+1
+ , we

define
Aβ(f)(t, y) ≡ sup

φ∈Cβ

|f ∗ φy(t)|.

Notice that Aβ(f)(t, y) is a measurable function of (t, y) and, for every fixed
x ∈ Rd, Aβ(f)(x, y) is a measurable function of y. These imply that the
following definitions make sense.

Definition 6.1. Given the family Cβ, the intrinsic square function of f , of
aperture α, is defined by the equation

Gα,β(f)(x) ≡
(∫

Γα(x)

(Aβ(f)(t, y))2
dt dy

yd+1

)1/2

.

When α = 1, we write Gα,β(f) simply as Gβ(f). The intrinsic g-function of
f is defined by the equation

gβ(f)(x) ≡
(∫ ∞

0

(Aβ(f)(x, y))2
dy

y

)1/2

.
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The discretized intrinsic g-function of f is defined by the equation

σβ(f)(x) ≡
( ∞∑

−∞
(Aβ(f)(x, 2k))2

)1/2

.

It is trivial that Sψ,α(f) ≤ C(ψ, β, d)Gα,β(f) pointwise, and therefore
that ‖f‖2 ≤ C‖Gα,β(f)‖2 when f ∈ L2. Any inequality of the form∫

Rd

|f(x)|p v dx ≤ C

∫
Rd

(Sψ,α(f)(x))p w dx

for any 0 < p < ∞ and any weights v and w, automatically implies∫
Rd

|f(x)|p v dx ≤ C

∫
Rd

(Gα,β(f)(x))p w dx. (6.3)

For example, our work in the preceding chapter shows that 6.3 holds for any
0 < p < ∞, any f ∈ ∪1≤r<∞Lr, and any pair of weights v and w such that∫

Q

v(x) (log(e + v(x)/vQ))η dx ≤
∫

Q

w(x) dx

holds for all cubes Q, where η > p/2.
Only slightly less trivial is the fact that if α and α′ are two aperture

sizes, then Gα,β(f) and Gα′,β(f) are pointwise comparable. But even more is
true. It is not hard to show that gβ(f), σβ(f), and Gβ(f) are all pointwise
comparable. We refer the reader to the exercises for the ideas behind the
proofs of these facts; we will take them for granted.

Our next theorem is:

Theorem 6.1. Let 1 < p ≤ 2 and β > 0. There is a constant C = C(p, d, β)
such that, for all f ∈ L1

loc(R
d) and all weights v,∫

Rd

(Gβ(f))p v dx ≤ C

∫
Rd

|f |p M(v) dx.

The meaning of Theorem 6.1 is that, while the intrinsic square function
dominates all the square functions Sψ,α(f) and gψ(f), it is not much bigger
than any of them. Of course, Theorem 6.1 immediately implies ‖Sψ,α(f)‖p +
‖gψ(f)‖p ≤ C(p, α, ψ, d)‖f‖p for all 1 < p < ∞, all ψ, and all α.

Proof of Theorem 6.1. The proof has three main steps.
Step 1.

‖Gβ(f))‖2 ≤ C(d, β)‖f‖2.

Step 1 is the key to the proof.
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Step 2. ∫
Rd

(Gβ(f))2 v dx ≤ C(d, β)
∫
Rd

|f |2 M(v) dx

for all f and all weights v.
Step 3. There is a constant C = C(d, β) so that, for all f , all weights v,

and all λ > 0,

v ({x : Gβ(f)(x) > λ}) ≤ C

λ

∫
|f |M(v) dx.

Theorem 6.1 will then follow by interpolation.
Step 1. The L2 boundedness of Gβ(f) is equivalent to having∫

Rd+1
+

(Aβ(f)(t, y))2
dt dy

y
≤ C(β, d)

∫
Rd

|f |2 dx

for all f ∈ L2, which is the same as showing∫
K

(Aβ(f)(t, y))2
dt dy

y
≤ C(β, d)

∫
Rd

|f |2 dx (6.4)

for all compact K ⊂ Rd+1
+ . Inequality 6.4 is what we will show.

Let K ⊂ Rd+1
+ be compact and suppose that ‖f‖2 ≤ 1. If ψ ∈ Cβ then

f ∗ψy(t) is continuous on K. The function Aβ(f)(t, y) is also continuous on K.
Therefore we can choose, in a measurable (indeed, piecewise constant) fashion,
functions ψ(t,y) ∈ Cβ such that, for every (t, y) ∈ K,

|f ∗ ψ(t,y)
y (t)| ≥ (1/2)Aβ(f)(t, y).

Let g : Rd+1
+ �→ R be a measurable function such that∫

K

|g(t, y)|2 dt dy

y
= 1.

We will be done if we can show∣∣∣∣∫
K

(f ∗ ψ(t,y)
y (t)) g(t, y)

dt dy

y

∣∣∣∣ ≤ C(β, d). (6.5)

The integral in 6.5 is equal to∫
Rd

f(x)
(∫

K

g(t, y)ψ(t,y)
y (t − x)

dt dy

y

)
dx.

Set
G(x) ≡

∫
K

g(t, y)ψ(t,y)
y (t − x)

dt dy

y
.
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Since the integration is over a compact set, this is a bounded, continuous
function of x, with bounded support. What we need to show is that ‖G‖2 ≤
C(β, d). We will now do this.

We can rewrite the integral defining G as∑
Q

∫
K∩T (Q)

g(t, y)ψ(t,y)
y (t − x)

dt dy

y
;

and, as our earlier work has shown, this is in fact a finite sum. We can rewrite
each summand as∫

K∩T (Q)

g(t, y)ψ(t,y)
y (t − x)

dt dy

y
= λQa(Q),

where

λQ =

(∫
K∩T (Q)

|g(t, y)|2 dt dy

y

)1/2

and a(Q) is a continuous function having certain nice properties. In particular:

1. The support of a(Q) is contained inside Q̃, the triple of Q.
2.
∫

a(Q) dx = 0.
3. There is a constant C(β, d) such that, for all x and x′,

|a(Q)(x) − a(Q)(x′)| ≤ C(β, d)(|x − x′|/�(Q))β |Q|−1/2
.

Each of these properties follows from a corresponding defining property
for Cβ . The only moderately tricky one is number 3, for which the crucial
inequality to show is:(∫

T (Q)

∣∣∣ψ(t,y)
y (t − x) − ψ

(t,y)
y (t − x′)

∣∣∣2 dt dy
y

)1/2

≤

C(β, d)(|x − x′|/�(Q))β |Q|−1/2
,

which is easy, but we should note how important it is that the smoothness
property of functions in Cβ holds pointwise, and not merely in an averaged
sense.

In other words, the functions a(Q) are, up to a positive multiple, adapted
functions, adapted to the dyadic triples Q̃. Our earlier work2 implies that, for
every finite linear sum

∑
Q γQa(Q),

∫
|
∑
Q

γQa(Q)|
2
dx ≤ C(β, d)

∫ ⎛⎝∑
Q

|γQ|2
|Q| χQ̃

⎞⎠ dx = C(β, d)
∑
Q

|γQ|2.

(6.6)

2 Apply Theorem 5.3 to the family of Q̃’s, and then think: Theorem 4.6 with v ≡ 1.
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Applying this inequality to the finite linear sum G =
∑

Q λQa(Q) yields∫
|G(x)|2 dx ≤ C(β, d)

∑
Q

|λQ|2

= C(β, d)
∫

K

|g(t, y)|2 dt dy

y
,

which is what we wanted for Step 13.
Step 2. Let v be an arbitrary non-negative function in L1

loc(R
d). For

(t, y) ∈ Rd+1
+ , let B(t; y) be the ball {x ∈ Rd : |x − t| < y}. By Fubini-

Tonelli,∫
Rd

(Gβ(f))2 v dx = C(d)
∫
Rd+1

+

(Aβ(f)(t, y))2
v(B(t; y))
|B(t; y)|

dt dy

y
.

For each integer k, define

F k = {(t, y) ∈ Rd+1
+ : 2k <

v(B(t; y))
|B(t; y)| ≤ 2k+1}.

These sets are disjoint and their union is {(t, y) ∈ Rd+1
+ : v(B(t; y)) > 0}.

Therefore∫
Rd

(Gβ(f))2 v dx = C(d)
∑

k

∫
F k

(Aβ(f)(t, y))2
v(B(t; y))
|B(t; y)|

dt dy

y

≤ C(d)
∑

k

2k

∫
F k

(Aβ(f)(t, y))2
dt dy

y
.

Let’s observe two things about the sets F k: a) if (t, y) ∈ F k then
B(t; y) ⊂ {x ∈ Rd : M(v) > 2k} ≡ Ek; b) if (t, y) ∈ F k then Aβ(f)(t, y) =
Aβ(fχEk

)(t, y). The first fact is trivial. The second follows because, if ψ ∈ Cβ ,
the function ψy(t− ·) has support contained in B(t; y). Therefore, for each k,∫

F k

(Aβ(f)(t, y))2
dt dy

y
=
∫

F k

(Aβ(fχEk
)(t, y))2

dt dy

y

≤ C(β, d)
∫

|fχEk
|2 dx

= C(β, d)
∫

|f |2 χEk
dx,

3 Referring to “our earlier work” to justify 6.6 is really a bit of overkill. For a more
direct proof, see exercise 6.13 at the end of this chapter.
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where the second line follows from Step 1. Summing on k, we now get∫
Rd

(Gβ(f))2 v dx ≤ C(β, d)
∑

k

2k

∫
|f |2 χEk

dx

= C(β, d)
∫
Rd

|f |2
(∑

k

2kχEk

)
dx

≤ C(β, d)
∫
Rd

|f |2 M(v) dx,

which finishes Step 2.
Step 3. We will only prove Step 3 for functions f that have the following

property: for every ε > 0, there is an N such that, if Q ⊂ Rd is any cube with
�(Q) > N , then

1
|Q|
∫

Q

|f | dx < ε.

(One way to remove this restriction is outlined in an exercise.) That said, let
{Qλ

k}k be the maximal dyadic cubes such that

1
|Qλ

k |
∫

Qλ
k

|f | dx > λ.

Each Qλ
k is contained in the set where Md(f) > λ, but in fact a little more

is true. If we let Q̃λ
k denote the triple of Qλ

k , then Q̃λ
k is contained in the

set where M(f) > cλ, where c is a positive constant depending only on d
(note that this second maximal function does not have a subscript ‘d’). This
is because, if x ∈ Q̃λ

k , there is a ball (or cube: it doesn’t matter which) not
much bigger than Qλ

k , which contains both x and Qλ
k .

We write f = g + b, where, following a familiar pattern,

g =
{

fQλ
k

if x ∈ Qλ
k ;

f(x) x /∈ ∪kQλ
k ;

and b =
∑

k bk, with bk ≡ (f − fQλ
k
)χQλ

k
.

Set Ω = {x : M(f)(x) > cλ}, where c is the positive constant from a few
lines ago. According to exercise 3.5, there is a constant C = C(d) such that

v (Ω) ≤ C

λ

∫
|f |M(v) dx.

Therefore it will be enough to show that

v ({x /∈ Ω : Gβ(f)(x) > λ}) ≤ C

λ

∫
|f |M(v) dx,

which will follow from
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v ({x /∈ Ω : Gβ(g)(x) > λ/2}) ≤ C

λ

∫
|f |M(v) dx (6.7)

and
v ({x /∈ Ω : Gβ(b)(x) > λ/2}) ≤ C

λ

∫
|f |M(v) dx. (6.8)

The proof of 6.7 will depend on our Step 2 result and on a lemma, whose
proof we leave to the reader:

Lemma 6.1. Let Q be a cube, and set S = Rd \ Q̃ (note the tilde). There is
a constant C, depending only on d, so that, for any weight v,

sup
x∈Q

M(vχS)(x) ≤ C inf
x∈Q

M(v)(x).

By the Step 2 inequality,∫
Rd\Ω

(Gβ(g))2 v dx ≤ C
∫ |g|2 M(vχRd\Ω) dx

≤ C
∫
Rd\∪Qλ

k
|f |2 M(v) dx + C

∑
k |fQλ

k
|2 ∫

Qλ
k

M(vχRd\Ω) dx

≤ Cλ
∫
Rd |f |M(v) dx + Cλ

∑
k |fQλ

k
| ∫

Qλ
k

M(vχRd\Ω) dx,

where the last line (factoring out the λ’s) follows from the usual bound on g.
Lemma 6.1 implies that, for each Qλ

k ,

|fQλ
k
|
∫

Qλ
k

M(vχRd\Ω) dx ≤ C

∫
Qλ

k

|f |M(v) dx.

Therefore,∫
Ω

(Gβ(g))2 v dx ≤ Cλ

∫
Rd

|f |M(v) dx + Cλ
∑

k

∫
Qλ

k

|f |M(v) dx

≤ Cλ

∫
|f |M(v) dx.

The weak-type estimate for g now follows from Chebyshev’s Inequality (i.e.,
dividing both sides by (λ/2)2).

To estimate 6.8, we will show that, for each k,∫
Rd\Ω

Gβ(bk) v dx ≤ C(α, d)
∫

Qλ
k

|f |M(v) dx. (6.9)

Summing on k will then yield∫
Rd\Ω

Gβ(b) v dx ≤ C(α, d)
∑

k

∫
Qλ

k

|f |M(v) dx,

from which the weak (1, 1) estimate will follow at once.
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Inequality 6.9 is a direct consequence of a simple fact: Suppose that h ∈
L1(Q), Q a cube, and

∫
Q

h dx = 0. If d(x,Q) means the distance from x to Q,
then, for all x such that d(x,Q) > �(Q),

Gβ(h)(x) ≤ C(β, d)‖h‖1|Q|−1(1 + |x − xQ|/�(Q))−d−β , (6.10)

where we are using xQ to denote Q’s center. This implies 6.9, because it yields∫
Rd\Ω

Gβ(bk) v dx ≤
C(β, d)

(∫
Qλ

k
|f | dx

)(
|Qλ

k |
−1 ∫

Rd v(x) (1 + |x − xQλ
k
|/�(Qλ

k))−d−β dx
)

.

But

|Qλ
k |

−1
∫
Rd

v(x) (1 + |x − xQλ
k
|/�(Qλ

k))−d−β dx ≤ C(α, d) inf
x∈Qλ

k

M(v)(x)

(see exercise 2.7), and therefore∫
Rd\Ω

Gβ(bk) v dx ≤ C(β, d)
∫

Qλ
k

|f |M(v) dx.

We finish by proving 6.10.
Suppose d(x,Q) > �(Q), (t, y) ∈ Γ (x), and φ ∈ Cβ . Since φ is supported

inside {x : |x| ≤ 1} and |x − t| < y, the convolution h ∗ φy(t) will be zero
unless y > c′|x − xQ|, where c′ is some positive constant that depends on d.
We merely note this fact now; it will become important soon.

We can easily estimate the convolution h ∗ φy(t).

|h ∗ φy(t)| =
∣∣∣∣∫

Q

φy(t − x)h(x) dx

∣∣∣∣
=
∣∣∣∣∫

Q

(φy(t − x) − φy(t − xQ)) h(x) dx

∣∣∣∣
≤ C(d)(�(Q)/y)βy−d‖h‖1

= C(d)�(Q)β‖h‖1y
−d−β ,

implying that Aβ(h)(t, y) ≤ C(β, d)�(Q)β‖h‖1y
−d−β for (t, y) ∈ Γ (x). If we

fix a y > c′|x − xQ| then∫
|t−x|<y

(Aβ(f)(t, y))2
dt

yd+1
≤ C(β, d)�(Q)2β‖h‖2

1y
−2d−2β−1.

When we integrate this (in y) from c′|x − xQ| to infinity, and take a square
root, we obtain:

Gβ(h)(x) ≤ C(β, d)�(Q)β‖h‖1|x − xQ|−d−β
.
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However, so long as |x − xQ| > �(Q),

�(Q)β

|x − xQ|d+β
≤ C

�(Q)β

(�(Q) + |x − xQ|)d+β

= C�(Q)−d(1 + |x − xQ|/�(Q))−d−β

= C|Q|−1(1 + |x − xQ|/�(Q))−d−β ,

which is exactly what we wanted. Theorem 6.1 is proved.
Knowing that ‖gψ(f)‖p and ‖Sψ(f)‖ are both less than or equal to C‖f‖p

for 1 < p < ∞, we can use duality to prove the converse inequalities, much as
we did in the dyadic setting (see exercise 3.7). If f ∈ L2∩Lp and h ∈ L2∩Lp′

,
then (see equation 5.5),∫

Rd

f(x) h̄(x) dx =
∫
Rd+1

+

(f ∗ ψy(t)) (h̄ ∗ ψy(t))
dt dy

y
.

By the Cauchy-Schwarz inequality, the right-hand integral is seen to have
modulus no bigger than∫

Rd

gψ(f)(x) gψ(h)(x) dx ≤ ‖gψ(f)‖p‖gψ(h)‖p′

≤ C‖gψ(f)‖p‖h‖p′ .

Therefore, by taking the supremum of |∫ f h̄ dx|, as h runs over all of L2∩Lp′
,

with ‖h‖p′ ≤ 1, we get ‖f‖p ≤ C‖gψ(f)‖p, for f ∈ L2 ∩ Lp. Now let f be
an arbitrary element of Lp, and let fn be a sequence in L2 ∩ Lp such that
fn → f in Lp. We have the pointwise inequality |gψ(fn)(x) − gψ(f)(x)| ≤
gψ(fn − f)(x) (it’s just the triangle inequality in disguise). But we also have
that ‖gψ(fn − f)‖p ≤ C‖fn − f‖p → 0. Therefore, gψ(fn) → gψ(f) in Lp.
Putting it all together:

‖f‖p = lim
n

‖fn‖p

≤ C lim
n

‖gψ(fn)‖p

= C‖gψ(f)‖p,

as was to be proved. The corresponding converse inequality for Sψ(f) is shown
in the same fashion.

As often happens in analysis, we have proved—or almost proved—a little
more than we advertised. The Cauchy-Schwarz inequality argument above
implies that, if f ∈ Lp and h ∈ Lp′

, the integral∫
Rd+1

+

(f ∗ ψy(t)) (h̄ ∗ ψy(t))
dt dy

y
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is absolutely convergent, and the integral of the integrand’s modulus is
bounded by a constant times ‖f‖p‖h‖p′ . From this we can quickly get that∫

Rd

f(x) h̄(x) dx =
∫
Rd+1

+

(f ∗ ψy(t)) (h̄ ∗ ψy(t))
dt dy

y
(6.11)

for all f ∈ Lp and h ∈ Lp′
. Denote the integral on the right as B(f, h). Let

fn be a sequence in L2 ∩ Lp and let hn be a sequence in L2 ∩ Lp′
such that

fn → f in Lp and hn → h in Lp′
. Then

∫
fn h̄n dx = B(fn, hn) for all n, and∫

f h̄ dx = limn

∫
fn h̄n dx. However, mimicking the proof of the product rule,

we have

|B(fn, hn) − B(f, h)| ≤ C
(
‖fn − f‖p‖hn‖p′ + ‖f‖p‖hn − h‖p′

)
→ 0,

implying
∫

f h̄ dx = B(f, h).

We now have the equipment necessary to prove that the Calderón repro-
ducing formula, in a very general sense, holds “in Lp” for all 1 < p < ∞.
(We will show that it holds in an even stronger sense somewhat later in this
chapter.)

Theorem 6.2. Let f ∈ Lp (1 < p < ∞), and, for any measurable K ⊂ Rd+1
+

with compact closure contained in Rd+1
+ , define, as we did in the previous

chapter,

f(K)(x) =
∫

K

(f ∗ ψy(t))ψy(x − t)
dt dy

y
.

If K1 ⊂ K2 ⊂ · · · is any compact-measurable exhaustion of Rd+1
+ , then

f(Ki) → f in Lp.

Proof of Theorem 6.2. For any measurable subset A ⊂ Rd+1
+ , tempo-

rarily define

SA(f)(x) ≡
(∫

Γ (x)∩A

|f ∗ ψy(t)|2 dt dy

yd+1

)1/2

.

A repetition of the duality argument above shows that, if Km ⊂ Kn,
‖f(Km) − f(Kn)‖p

≤ Cp‖SKn\Km
(f)‖

p
. But SKn\Km

(f) is pointwise domi-
nated by Sψ(f), which belongs to Lp. Thus, SKn\Km

(f) → 0 almost every-
where and—by Dominated Convergence—also goes to 0 in Lp, as m and n go
to infinity. Therefore the sequence {f(Kn)}n is Cauchy in Lp. Denote its Lp

limit by g. It will be enough to show that f(Kn) → f weakly.
Let h ∈ Lp′

. Then
∫

f h̄ dx = B(f, h), where B(·, ·) is the bilinear func-
tional we defined in 6.11. However, on the one hand, B(f, h) is the limit of
B(f(Kn), h), by the Dominated Convergence Theorem; while, on the other
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hand, B(f(Kn), h) → B(g, h) =
∫

g h̄ dx, because f(Kn) → g in Lp. That
finishes the proof.

Remark. It might seem that the proof of Theorem 6.2 makes those of
Theorem 5.1 and Theorem 5.2 superfluous. Not quite. The proof of Theorem
6.2 rested on a reduction to L2, which was handled by the two earlier theorems.

The square functions Sψ(f) and gψ(f) are “semi-classical.” The “classi-
cal” square functions Scl(f) and gcl(f) are defined as follows. Let P : Rd �→ R
be defined by

P (x) ≡ cd(1 + |x|2)(−d−1)/2,

where the constant cd is chosen to ensure that
∫

P (x) dx = 1. If f : Rd �→ R
is such that fP ∈ L1, then, for every (x, y) ∈ Rd+1

+ , we can define

u(x, y) ≡ Py ∗ f(x).

This function satisfies Laplace’s equation ∆u ≡ 0 in Rd+1
+ and has boundary

values equal to f , in the sense that

lim
y→0

u(x, y) = f(x)

almost everywhere, and u(·, y) → f in Lp if f ∈ Lp and 1 ≤ p < ∞. The gra-
dient of u, ∇u, is a (d + 1)-dimensional vector ∇u = (ux1 , ux1 , . . . , uxd

, uy),
all of whose components have essentially the same form. To wit, each uxi

(or
uy) is given by a formula like

y−1φy ∗ f(x),

where φ : Rd �→ R satisfies the following properties: 1) |φ(x)| ≤ C(1+|x|)−d−1

for all x; 2) |∇φ(x)| ≤ C(1 + |x|)−d−2 for all x; 3)
∫

φ(x) dx = 0. In other
words, the generating kernels for the components of ∇u are like non-compactly
supported versions of the function ψ, in which the compact support condition
has been replaced with uniform decay in the modulus and in the size of the
derivatives.

The classical square functions are defined by the integrals:

Scl(f)(x) =

(∫
Γ (x)

|∇u(t, y)|2 dt dy

yd−1

)1/2

gcl(f) =
(∫ ∞

0

y|∇u(x, y)|2 dy

)1/2

.

These are the ancestors of Sψ(f) and gψ(f). They have a couple of advan-
tages (but many disadvantages) when compared with their real-variable de-
scendants. The main advantage is that, since they are defined via harmonic
functions, tricks from classical harmonic analysis and partial differential equa-
tions (Green’s Theorem, the Mean Value Property, etc.) can be used to control
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them. Unfortunately, this fact is usually swamped by one big disadvantage:
they are generated by non-compactly supported kernels.

It turns out that Scl(f), gcl(f), and essentially all “reasonable” square
functions are dominated by some Gβ(f), where β depends on the smoothness
and rate of decay of the kernel used to define the square function. Proving
this requires that we understand square functions that have the same form
as Sψ(f) and gψ(f), in which the function ψ is not assumed to have compact
support, but to have “reasonable” decay in its size and smoothness (according
to some measure), and of course to have integral equal to 0.

We will define two classes of such functions, each indexed over positive
parameters β and ε, where we will (for obvious reasons) always assume that
β ≤ 1. The first class, C(β,ε), consists of functions that are only “pretty good,”
while those in the second class, U(β,ε), are “very good.”

Definition 6.2. We say that φ : Rd �→ R belongs to C(β,ε) if, for all x ∈ Rd,

|φ(x)| ≤ (1 + |x|)−d−ε; (6.12)

and, for all x and x′,

|φ(x) − φ(x′)| ≤ |x − x′|β ((1 + |x|)−d−ε + (1 + |x′|)−d−ε
)
;

and if it also satisfies
∫

φ dx = 0. We say that φ ∈ U(β,ε) if φ satisfies 6.12,
has integral equal to 0, and also, for all x and x′,

|φ(x) − φ(x′)| ≤ |x − x′|β ((1 + |x|)−d−ε−β + (1 + |x′|)−d−ε−β
)
. (6.13)

The difference between the two classes is obvious: to belong to U(β,ε), we
require that φ belong to C(β,ε) and have extra decay in its modulus of Hölder
continuity, as expressed in 6.13. But this difference is something of an illusion.
On the one hand, it is trivial that U(β,ε) ⊂ C(β,ε). On the other hand, we have:

Lemma 6.2. Let 0 < β ≤ 1 and ε > 0, and suppose 0 < β′ ≤ β and β′ < ε.
Define ε′ ≡ ε − β′. Then:

C(β,ε) ⊂ U(β′,ε′).

Remark. We shall refer to Lemma 6.2 as the Free Lunch Lemma. The
lemma means this: by sacrificing (actually, by not counting) a little of the
decay of a φ ∈ C(β,ε), we get a function (the same function!) with “improved”
decay in its Hölder modulus, though to a different order.

Proof of the Free Lunch Lemma. Let φ ∈ C(β,ε). It is trivial that

|φ(x)| ≤ (1 + |x|)−d−ε′ ,

because ε′ < ε. If |x − x′| ≤ 1 then
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|φ(x) − φ(x′)| ≤ |x − x′|β ((1 + |x|)−d−ε + (1 + |x′|)−d−ε
)

≤ |x − x′|β′ (
(1 + |x|)−d−ε′−β′

+ (1 + |x′|)−d−ε′−β′)
,

because |x − x′| ≤ 1, β′ ≤ β, and ε′+β′ = ε. On the other hand, if |x − x′| ≥ 1,

|φ(x) − φ(x′)| ≤ (1 + |x|)−d−ε + (1 + |x′|)−d−ε

≤ |x − x′|β′ (
(1 + |x|)−d−ε′−β′

+ (1 + |x′|)−d−ε′−β′)
.

The Free Lunch Lemma is proved.

For us, the usefulness of the Free Lunch Lemma comes from the following
decomposition lemma due to A. Uchiyama [57]:

Lemma 6.3. Let 0 < β ≤ 1 and ε > 0. There is a constant C(d, β, ε) such
that, if ψ ∈ U(β,ε), there exists a sequence of functions {φk}∞0 such that

ψ = C(d, β, ε)
∞∑
0

2−kε(φk)2k

and every φk belongs to Cβ.

Proof of Lemma 6.3. Let h ∈ C∞
0 (Rd) be real, radial, non-negative,

have support contained in {x : 1/4 ≤ |x| ≤ 1}, and be normalized so that

∞∑
−∞

h(2−kx) ≡ 1

for x �= 0. There exists a j0 < 0 such that

∞∑
j0+1

h(2−kx) ≡ 1

when |x| ≥ 1. Re-index this sum as
∑∞

1 h(2−(j0+k)x). Define ρ0(x) ≡ 1 −∑∞
j0+1 h(2−kx) and set ρk(x) ≡ h(2−(j0+k)x) for k ≥ 1. Each ρk has support

contained in {x : |x| ≤ 2k} and satisfies the inequalities:∫
ρk(x) dx ≥ C2kd

|∇ρk(x)| ≤ C2−k,

where the constants C only depend on d, h, and j0.
Define, for k ≥ 0,

gk(x) ≡
(∫ (∑k

0 ρj

)
ψ dt
)

ρk(x)∫
ρk(t) dt

.
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It is easy to see that gk → 0 uniformly. In fact, this convergence is pretty fast.
For any k, ∫ ( k∑

0

ρj

)
ψ dt = −

∫ ⎛⎝∑
j>k

ρj

⎞⎠ ψ dt, (6.14)

because
∫

ψ dt = 0. But, when k ≥ 1, the integral on the right-hand side of
6.14 has modulus no bigger than∫

|x|≥c2k

|ψ(t)| dt ≤ C2−kε.

Therefore, gk = Ckρk, where |Ck| ≤ C2−k(d+ε).
Notice that

∫
g0(t) dt =

∫
ψ ρ0 dt; and, when k ≥ 1,∫

(gk(t) − gk−1(t)) dt =
∫

ψ(t) ρk(t) dt.

We can now finish the proof of Lemma 6.3 in a few lines. We write:

ψ =
∞∑
0

ψρk =
∞∑
0

ψρk −
(

g0 +
∞∑
1

(gk − gk−1)

)

= (ψρ0 − g0) +
∞∑
1

(ψρk − (gk − gk−1))

≡ C(d, β, ε)
∞∑
0

2−kεφ̃k,

and we claim that, if we take C(d, β, ε) large enough, the φk’s we have just
(implicitly) defined will do the trick; i.e., that each φ̃k equals (φk)2k for some
φk ∈ Cβ . This amounts to showing that, for each k, the support of φ̃k is
contained in {x : |x| ≤ 2k}, ∫ φ̃k dt = 0, and, for all x and x′,

|φ̃k(x) − φ̃k(x′)| ≤ C|x − x′|β2−k(d+β),

where C is a constant depending only on h, j0, β, ε, and d. The first two
requirements are easy; and the third is also not so bad. Without loss of gen-
erality we can assume that k ≥ 2. Because of the support condition, we can
assume that |x − x′| ≤ C2k; and, because each ρk is supported in an annu-
lus, with inner and outer radii comparable to 2k, we can assume that |x| and
|x′| are both comparable to 2k. For these x’s and x′’s we have the following
estimates:

|ψ(x)| + |ψ(x′)| ≤ C2−k(d+ε)

|ψ(x) − ψ(x′)| ≤ C|x − x′|β2−k(d+ε+β)

|ρk(x)| + |ρk(x′)| ≤ C

|ρk(x) − ρk(x′)| ≤ C|x − x′|2−k ≤ C|x − x′|β2−kβ ,
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where the last inequality uses the facts that β ≤ 1 and |x − x′|/2k ≤ C.
Combining these with our estimates on Ck above, we also get:

|gk(x)| + |gk(x′)| ≤ C2−k(d+ε)

|gk(x) − gk(x′)| ≤ C2−k(d+ε+β)|x − x′|β ,

which is exactly the smoothness we require. But now, by mimicking the proof
of the product rule, it is easy to show that

|ψ(x)ρk(x) − ψ(x′)ρk(x′)| ≤ C2−k(d+ε+β)|x − x′|β ,

which finishes the proof of Lemma 6.3.

Combined with the Free Lunch Lemma, Lemma 6.3 says that any φ ∈ Cβ,ε

can be written, in a uniform manner, as a rapidly converging sum of dilates
of functions in Cβ′ , for suitable β′ ≤ β.

We will be applying this fact shortly.

Definition 6.3. Let β and ε be positive numbers, and suppose that |f |(1 +
|x|)−d−ε ∈ L1. For every (t, y) ∈ Rd+1

+ , set

Ã(β,ε)(f)(t, y) ≡ sup
φ∈C(β,ε)

|f ∗ φy(t)|.

Given this, the corresponding intrinsic square functions (non-compact
support) are defined by:

G̃(β,ε)(f)(x) ≡
(∫

Γ (x)

(Ã(β,ε)(f)(t, y))2
dt dy

yd+1

)1/2

g̃(β,ε)(f)(x) ≡
(∫ ∞

0

(Ã(β,ε)(f)(x, y))2
dy

y

)1/2

σ̃(β,ε)(f)(x) ≡
( ∞∑

−∞
(Ã(β,ε)(f)(x, 2k))2

)1/2

.

We have left it as an exercise to show that G̃(β,ε)(f), g̃(β,ε)(f), and
σ̃(β,ε)(f) are pointwise comparable, with comparability constants that only
depend on d, β, and ε. Given this, the next theorem comes without too much
extra work4:

Theorem 6.3. Let 0 < β′ ≤ β and β′ < ε. There is a constant C =
C(β, β′, ε, d) such that, for all f having |f |(1 + |x|)−d−ε ∈ L1,

G̃(β,ε)(f) ≤ CGβ′(f)

pointwise.
4 Some work, but not too much.
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Proof of Theorem 6.3. It’s enough to show

σ̃(β,ε)(f)(0) ≤ Cσβ′(f)(0).

Set ε′ = ε− β′. Let φ ∈ C(β,ε). By the Free Lunch Lemma and Lemma 6.3, we
can write

φ = C(d, β′, ε)
∞∑
0

2−kε′(φk)2k

with every φk lying in Cβ′ . Therefore,

|f ∗ φ(0)| ≤ C(d, β′, ε′)
∞∑
0

2−kε′Aβ′(f)(0, 2k)

≤ C(d, β′, ε′)

( ∞∑
0

2−kε′(Aβ′(f)(0, 2k))2
)1/2

.

If we dilate both sides of the preceding inequality by 2j , we get, for each j,

|f ∗ φ2j (0)| ≤ C(d, β′, ε′)

( ∞∑
0

2−kε′(Aβ′(f)(0, 2k+j))2
)1/2

.

Now let {φ(j)}∞−∞ be an arbitrary sequence of functions from C(β,ε). Summing
the preceding inequality over j yields:

∞∑
j=−∞

|f ∗ φ
(j)
2j (0)|2 ≤ C(d, β′, ε′)

∞∑
j=−∞

∞∑
k=0

2−kε′(Aβ′(f)(0, 2k+j))2

= C(d, β′, ε′)
∞∑

l=−∞
(Aβ′(f)(0, 2l))2

l∑
j=−∞

2−(l−j)ε′

= C(d, β′, ε′)
∞∑

l=−∞
(Aβ′(f)(0, 2l))2

∞∑
k=0

2−kε′

= C(d, β′, ε′)
∞∑

l=−∞
(Aβ′(f)(0, 2l))2

= C(d, β′, ε′)(σβ′(f)(0))2;

which is what we want, because the supremum of the left-hand side—over all
such sequences {φ(j)}∞−∞—is (σ̃(β,ε)(f)(0))2. Theorem 6.3 is proved.

Since the kernels that generate the components of ∇u all belong to U(1,1),
the inequality,

Scl(f) + gcl(f) ≤ CG1(f),

is now trivial, implying that ‖Scl(f)‖p +‖gcl(f)‖p ≤ C‖f‖p for all 1 < p < ∞.
As with the ψ-defined square functions we saw earlier, these classical square
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functions also satisfy converse inequalities, and these converse inequalities are
also proved via duality. This duality argument will go through more smoothly
if we first prove a very general version of the Calderón reproducing formula.

Let φ and ψ be two positive multiples of functions in C(β,ε). We also
require that φ and ψ be real, radial, and “co-normalized” so that∫ ∞

0

φ̂(yξ) ψ̂(yξ)
dy

y
= 1 (6.15)

for all ξ �= 0. (It is this co-normalization that makes us resort to positive mul-
tiples of function in C(β,ε).) For now we will also require that the integral 6.15
be absolutely convergent. In an exercise it is shown that this is no restriction.

Theorem 6.4. . Let φ and ψ be as in the preceding paragraph. Let f be such
that |f |(1 + |x|)−d−ε ∈ L1. For any measurable K with compact closure con-
tained in Rd+1

+ , define

f(K),φ,ψ(x) =
∫

K

(f ∗ φy(t))ψy(x − t)
dt dy

y
. (6.16)

If f ∈ Lp (1 < p < ∞) and K1 ⊂ K2 ⊂ · · · is any compact-measurable
exhaustion of Rd+1

+ , then f(Ki),φ,ψ → f in Lp.

Proof of Theorem 6.4. If f ∈ L2, then∫
|f(x)|2 dx =

∫
|f̂(ξ)|2 dξ

=
∫

|f̂(ξ)|2
(∫ ∞

0

φ̂(yξ) ψ̂(yξ)
dy

y

)
dξ

=
∫ ∞

0

(∫
f̂(ξ) φ̂(yξ) f̂(ξ) ψ̂(yξ) dξ

)
dy

y

=
∫
Rd+1

+

(f ∗ φy(t)) (f̄ ∗ ψy(t))
dt dy

y
,

where every equation follows from Plancherel’s Theorem and the fact that the
integrals are all absolutely convergent. (To bound the last one, note that∫

Rd+1
+

|f ∗ φy(t)||f̄ ∗ ψy(t)| dt dy

y
≤ C

∫
(g̃(β,ε)(f)(t))2 dt.)

Polarization shows that, for every h ∈ L2,∫
Rd

f(x) h̄(x) dx =
∫
Rd+1

+

(f ∗ φy(t)) (h̄ ∗ ψy(t))
dt dy

y
. (6.17)
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Both integrals are absolutely convergent. Indeed, the second integral is
bounded by ∫

Rd

g̃(β,ε)(f)(t) g̃(β,ε)(h)(t) dt.

Because of this absolute convergence, the integral on the right-hand side of
6.17 is equal to the limit of∫

f(Ki),φ,ψ(x) h̄(x) dx =
∫

Ki

(f ∗ φy(t)) (h̄ ∗ ψy(t))
dt dy

y
.

Therefore, if f ∈ L2, the sequence f(Ki),φ,ψ → f weakly in L2. To prove that
f(Ki) → f in Lp when f ∈ Lp, we only need to show that, for every f ∈ Lp,
the sequence {f(Ki),φ,ψ} is Cauchy in Lp.

By considering integrals of the form
∫

f(Ki),φ,ψ h̄ dx for arbitrary f ∈
L2 ∩ Lp and h ∈ L2 ∩ Lp′

, we see that∣∣∣∣∫ f(Ki),φ,ψ(x) h̄(x) dx

∣∣∣∣ ≤ ∫ g̃(β,ε)(f)(x) g̃(β,ε)(h)(x) dx

≤ C‖g̃(β,ε)(f)‖
p
‖g̃(β,ε)(h)‖

p′ ,

implying that ‖f(Ki),φ,ψ‖p
≤ C‖g̃(β,ε)(f)‖

p
. But more is true. For E ⊂ Rd+1

+ ,
define

g̃(β,ε,E)(f)(x) =

(∫
y: (x,y)∈E

(Ã(β,ε)(f)(x, y))2
dy

y

)1/2

.

The duality argument shows that

‖f(Ki),φ,ψ‖p
≤ C‖g̃(β,ε,Ki)(f)‖

p
, (6.18)

with a constant independent of Ki, for all f ∈ L2 ∩ Lp. But, because Ki has
compact closure contained in Rd+1

+ , it is trivial that both sides of 6.18 vary
continuously with f ∈ Lp, relative to the Lp norm. Therefore 6.18 holds for
all f ∈ Lp.

Continuing on this line, if f ∈ Lp and Km ⊂ Kn, then

‖f(Km),φ,ψ − f(Kn),φ,ψ‖p
≤ C‖g̃(β,ε,Kn\Km)(f)‖

p
.

A (by now) familiar argument shows that

‖g̃(β,ε,Kn\Km)(f)‖
p
→ 0

as m and n go to infinity. Therefore {f(Kn),φ,ψ} is Cauchy in Lp. This finishes
the proof of Theorem 6.4.

It is now easy to show that ‖f‖p ≤ Cp‖gcl(f)‖p. In fact, we’ve essentially
just shown it.
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We will prove the inequality for something smaller than gcl(f); namely,

g0(f)(x) ≡
(∫ ∞

0

y

∣∣∣∣∂u

∂y
(x, y)

∣∣∣∣2 dy

)1/2

.

The partial derivative ∂u
∂y is given by the formula

∂u

∂y
(x, y) = y−1φy ∗ f(x),

where φ is real, radial, and, modulo a scalar multiple, belongs to U(1,1). We
can find a real, radial ψ ∈ C∞

0 (Rd) with integral equal to 0, and normalized
so that ∫ ∞

0

φ̂(ξy) ψ̂(ξy)
dy

y
≡ 1

for all ξ �= 0. By the Calderón reproducing formula method, we can write

f =
∫
Rd+1

+

(f ∗ φy(t))ψy(x − t)
dt dy

y
,

in the sense that f equals the Lp limit of integrals on the right, taken over a
compact-measurable exhaustion of Rd+1

+ . However, this is the same as saying

f =
∫
Rd+1

+

∂u

∂y
(t, y)ψy(x − t) dt dy.

For K ⊂ Rd+1
+ a compact set, define

f(K) =
∫

K

∂u

∂y
(t, y)ψy(x − t) dt dy.

Choose K so that ‖f − fK‖p < ε, and let h ∈ Lp′
have unit norm. Then:

∣∣∣∣∫
Rd

f(x) h̄(x) dx

∣∣∣∣ ≤ ε +
∣∣∣∣∫

K

∂u

∂y
(t, y) (h̄ ∗ ψy(t)) dt dy

∣∣∣∣
≤ ε +

∫
Rd

g0(f)(t) gψ(h)(t) dt

≤ ε + C‖g0(f)‖p,

which proves ‖f‖p ≤ C‖g0(f)‖p.

There is clearly nothing terribly special about the kernel defining g0. The
preceding argument actually gives us the following.
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Theorem 6.5. Let φ ∈ C(β,ε) be real and radial, and suppose that φ �≡ 0. If
1 < p < ∞, then, for all f ∈ Lp,

‖f‖p ∼ ‖Sφ(f)‖p ∼ ‖gφ(f)‖p,

with comparability constants depending only on p, φ, and d; and where we are
defining

Sφ(f)(x) ≡
(∫

Γ (x)

|f ∗ φy(t)|2 dt dy

yd+1

)1/2

gφ(f)(x) ≡
(∫ ∞

0

|f ∗ φy(x)|2 dy

y

)1/2

.

Proof of Theorem 6.5. Our theorems on the intrinsic square function
show that the Lp norms of Sφ(f) and gφ(f) are dominated by ‖f‖p. For the
other direction, note that, up to multiplication by a positive constant, the pair
of functions (φ, φ) satisfies 6.15. The result now follows by a virtual repetition
of the argument we just gave for g0(f).

Exercises

6.1. For β > 0 and (t, y) ∈ Rd+1
+ , let Cβ(t, y) be the family of functions

φ : B(t; y) �→ R such that
∫

φ dx = 0 and, for all x and x′, |φ(x) − φ(x′)| ≤
y−d−β |x − x′|β . Show that

Aβ(f)(t, y) = sup
φ∈Cβ(t,y)

|
∫

f(x)φ(x) dx|.

6.2. Show that, if α ≥ 1, then Gα,β(f) ≤ C(β, d)αMGβ(f), where M is an
exponent depending on β and d. Also, find the value of M . (Hint: Exercise
6.1 will come in useful here.)

6.3. Prove that Gβ(f) ∼ gβ(f) ∼ σβ(f) pointwise, with comparability con-
stants that only depend on β and d. Exercise 6.1 will be useful here too.

6.4. Prove that G̃(β,ε)(f), g̃(β,ε)(f), and σ̃(β,ε)(f) are pointwise comparable,
with comparability constants that only depend on d, β, and ε.

6.5. Theorem 6.1 was proved with the restriction that f ’s averages over large
cubes got very small. To remove it, we consider the modified square function
Gβ,K(f),

Gβ,K(f)(x) ≡
(∫

Γ (x)∩K

(Aβ(f)(t, y))2
dt dy

yd+1

)1/2

,
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where K is a measurable set with compact closure contained in Rd+1
+ .

Theorem 6.1 will follow if we can prove it for Gβ,K(f), with constants in-
dependent of K. Show that this approach will solve our problem. The main
thing to observe here is that, for every such K, there is an R > 0 such that, for
all f , Gβ,K(f) = Gβ,K(fχB(0;R)), and the function fχB(0;R) has the “small
average” property if f ∈ L1

loc(R
d).

6.6. The proof of Lemma 6.3 calls for a function h ∈ C∞
0 (Rd) that is real,

radial, non-negative, has support contained in {x : 1/4 ≤ |x| ≤ 1}, and
satisfies ∞∑

−∞
h(2−kx) ≡ 1

for x �= 0. Show that such a function exists. Also, show that, for such an h,
there is a j0 < 0 such that

∞∑
j0+1

h(2−kx) ≡ 1

when |x| ≥ 1.

6.7. Let φ ∈ U(β,ε). Show that there are positive numbers δ1 and δ2, and a
positive constant C, depending only on β, ε, and d, so that, for all ξ:

|φ̂(ξ)| ≤ C min(|ξ|δ1 , |ξ|−δ2).

Then show how this implies that the integral 6.15 is automatically absolutely
convergent for φ and ψ in C(β,ε).

6.8. Let f ∈ Lp (1 < p < ∞), and suppose that φ and ψ are two real, radial
scalar multiples of functions in C(β,ε) satisfying 6.15. We know that

f(x) =
∫
Rd+1

+

(f ∗ φy(t))ψy(x − t)
dt dy

y

as an Lp limit over any compact-measurable exhaustion {Ki} of Rd+1
+ . Show

that, if E ⊂ Rd+1
+ is measurable, then

f(E),φ,ψ(x) ≡ lim
∫

E∩Ki

(f ∗ φy(t))ψy(x − t)
dt dy

y

exists as an Lp limit, independent of the sequence {Ki}. Show that this defi-
nition of f(E),φ,ψ coincides with our earlier formula 6.16 when E has compact
closure contained in Rd+1

+ . Show that, if F and E are arbitrary measurable
subsets of Rd+1

+ , and E ⊂ F , then f(F ) − f(E) = f(F\E). Show that, if {Ei}
is any increasing sequence of measurable sets such that ∪iEi = Rd+1

+ , then
f(Ei),φ,ψ → f in Lp.
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6.9. Suppose we have µ, a positive Borel measure on Rd+1
+ , and that µ satisfies

µ(T (Q)) ≤ |Q|
for all cubes Q ⊂ Rd. Let β and ε be two positive numbers, and let φ and
ψ be two fixed functions in C(β,ε). We want to make sense of the following
operator:

T (f)(x) ≡
∫
Rd+1

+

(f ∗ ψy(t))φy(x − t) dµ(t, y). (6.19)

a) Show that, if 1 < p < ∞, f ∈ Lp, and {Ki}i is any compact-
(Borel)measurable exhaustion of Rd+1

+ , then the sequence of functions∫
Ki

(f ∗ ψy(t))φy(x − t) dµ(t, y)

has an Lp limit that is independent of the collection {Ki}i. In the process you
will show that this limit has Lp norm less than or equal to a constant times
‖f‖p, with a constant that only depends on β, ε, p, and d. “This limit,” of
course, is what we formally mean by 6.19.

b) Now we are going to use part a) to show that the Calderón reproducing
formula has a fair amount of redundancy built into it. Let ψ ∈ C∞

0 (Rd) be
real, radial, have support contained in {x : |x| ≤ 1}, and satisfy

∫
ψ dx = 0

and 5.1. Let E ⊂ Rd+1
+ be a measurable set such that, for some δ > 0,

|E ∩ T (Q)| ≤ δ|T (Q)|
for all cubes Q ⊂ Rd. Let TE be the operator defined by

TE(f)(x) ≡
∫

E

(f ∗ ψy(t))ψy(x − t)
dt dy

y
,

where the integral is defined as in problem 6.8. Use part a) to show that
‖TE(f)‖p ≤ Cδ‖f‖p, where C depends on p, d, and ψ, but not on δ. Use this
to show that, if δ is small enough, the operator I−TE (where I is the identity)
is invertible on Lp. In other words, if E is sparse enough on all of the T (Q)’s,
and we throw out the values of f ∗ ψy(t) on E, we can still recover all of f
from the remaining values.

6.10. Suppose we have a family of functions {φ(Q)}Q, indexed over the family
of dyadic cubes Dd. We also suppose that, for some fixed positive numbers α
and ε, each φ(Q) satisfies

|φ(Q)(x)| ≤ |Q|−1/2

(
1 +

|x − xQ|
�(Q)

)−d−ε

|φ(Q)(x) − φ(Q)(x′)| ≤
( |x − x′|

�(Q)

)α

|Q|−1/2

×
((

1 +
|x − xQ|

�(Q)

)−d−ε

+
(

1 +
|x′ − xQ|

�(Q)

)−d−ε
)
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for all x and x′ in Rd (where we are using xQ to denote Q’s center); and
furthermore ∫

φ(Q)(x) dx = 0.

Show that the family {φ(Q)}Q is “almost-orthogonal” in the following sense:
there is a constant C, depending only on α, ε, and d, such that, for all finite
linear sums

∑
λQφ(Q),∫

|
∑

λQφ(Q)|
2 ≤ C

∑
|λQ|2.

Then state and prove a generalization of this result to Lp(Rd), for 1 < p < ∞.
(Hint: Begin by showing that, if g ∈ L2(Rd), then∣∣∣∣∫ (∑λQφ(Q)

)
g(x) dx

∣∣∣∣ ≤ C

∫
H(x)G(g)(x) dx,

where G(g) is the intrinsic square function of g [to some order, depending on
α and ε] and

H(x) =

⎛⎝∑
Q

|λQ|2
|Q| χQ(x)

⎞⎠1/2

.

6.11. In our proof of Theorem 6.4, we wrote: “Therefore, if f ∈ L2, the
sequence f(Ki),φ,ψ → f weakly in L2. To prove that f(Ki) → f in Lp, when
f ∈ Lp, we only need to show that, for every f ∈ Lp, the sequence {f(Ki),φ,ψ}
is Cauchy in Lp.” There is a small logical gap between the first and second
sentences. Find it and fill it.

6.12. Suppose that φ and ψ are two positive multiples of functions in C(β,ε),
satisfying 6.15, and 1 < p < ∞. Show that, if f ∈ Lp and h ∈ Lp′

, then∫
Rd

f(x) h̄(x) dx =
∫
Rd+1

+

(f ∗ φy(t)) (h̄ ∗ ψy(t))
dt dy

y
,

and that the integral on the right is absolutely convergent.

6.13. We justified inequality 6.6 by referring to “our earlier work” on adapted
functions, which involved some roundabout manipulations (reductions to the
dyadic case, good-λ inequalities, etc.). Here is a more direct way to get 6.6.
First, assume that all the cube triples Q̃ under consideration belong to a good
family G. Then, by a familiar reduction, assume that every function a(Q) is
adapted to a dyadic cube Q. Next show that, for all Q and Q′ in Dd,∣∣∣∣∫ a(Q)(x) a(Q′)(x) dx

∣∣∣∣ ≤ { 0 if Q ∩ Q′ = ∅;
C(|Q|1/2

/|Q′|1/2)(�(Q)β/�(Q′)β) if Q ⊂ Q′.
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(See Lemma 4.1.) Therefore, for any finite sum
∑

γQa(Q), where the a(Q)’s
satisfy 1., 2., and, 3.,

∫
|
∑
Q

γQa(Q)|
2
dx ≤ C

∑
Q

|γQ|
⎛⎝ ∑

Q′:Q⊂Q′
|γQ′ |

(
|Q|1/2

|Q′|1/2

)(
�(Q)β

�(Q′)β

)⎞⎠ .

(6.20)
For each fixed Q, ∑

Q′:Q⊂Q′ |γQ′ |
(

|Q|1/2

|Q′|1/2

)(
�(Q)β

�(Q′)β

)
≤(∑

Q′:Q⊂Q′ |γQ′ |2
(

|Q|
|Q′|
)

�(Q)β

�(Q′)β

)1/2 (∑
Q′:Q⊂Q′

�(Q)β

�(Q′)β

)1/2

by Cauchy-Schwarz. But ∑
Q′:Q⊂Q′

�(Q)β

�(Q′)β
≤ Cβ .

Therefore the left-hand side of 6.20 is less than or equal to a constant times

∑
Q

|γQ|
⎛⎝ ∑

Q′:Q⊂Q′
|γQ′ |2

( |Q|
|Q′|
)(

�(Q)β

�(Q′)β

)⎞⎠1/2

;

which (again by Cauchy-Schwarz) is less than or equal to⎛⎝∑
Q

|γQ|2
⎞⎠1/2⎛⎝∑

Q′
|γQ′ |2

∑
Q:Q⊂Q′

( |Q|
|Q′|
)(

�(Q)β

�(Q′)β

)⎞⎠1/2

.

The first factor (containing the single sum, over Q) is what we want. The
second factor (containing the iterated sum) is also okay; because, for every
fixed Q′ ∈ Dd, ∑

Q:Q⊂Q′

( |Q|
|Q′|
)(

�(Q)β

�(Q′)β

)
≤ Cβ . (6.21)

Proving 6.21 will give the reader valuable practice with the geometry of dyadic
cubes.

Notes

The intrinsic square function first appears in [59]. An early form of gcl(f) first
appeared in the papers [37] [38] [39] of Littlewood and Paley. The classical
theory (based on analytic and harmonic functions) was further developed
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in [66], [51], and [52]. An excellent classical treatment of Scl(f) and gcl(f) is in
Chapter IV of [53], to which the approach taken here is indebted. We refer the
reader to Stein’s article [54] for a historical overview of classical Littlewood-
Paley theory. To the author’s best knowledge, the earliest appearance of a
real-variable square function having the form of Sψ,α(f) is in [9].
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The Calderón Reproducing Formula III

We have seen that, if 1 < p < ∞, the Calderón reproducing formula converges
“in Lp(Rd, dx)” under very general hypotheses. In this chapter we will see that
it converges, in the same sense, in Lp(Rd, w dx) ≡ Lp(w), for a particular class
of weights, called Ap. In the process we will have to prove some facts about
Ap, and this process should help to explain why this class is the natural one
for which such a result should hold. It is also natural for a lot of other things
in analysis. Our arguments will (we hope) show this too.

Recall that, if 1 < p < ∞, we set p′ = p/(p − 1), the dual exponent to p.
We say that a weight w belongs to the Muckenhoupt class Ap (1 < p <

∞) if

sup
Q⊂Rd

(
1
|Q|
∫

Q

w(x) dx

)1/p( 1
|Q|
∫

Q

w(x)1−p′
dx

)1/p′

< ∞, (7.1)

where the supremum is over all bounded cubes Q ⊂ Rd. The value of the
supremum is called w’s Ap “norm” and is denoted by ‖w‖Ap

.
The first things to observe about Ap are that w ∈ Ap if and only if

w1−p′ ∈ Ap′ , and ‖w‖Ap
= ‖w1−p′‖Ap′ . The reason for these is that, if we

replace w by w1−p′
and p by p′ in 7.1, we get an identical condition. Proving

this will give the reader valuable practice with manipulating the relationships
between p and p′, which include:

pp′ = p + p′;
(1 − p)(1 − p′) = 1;

−p′/p = 1 − p′.

We are going to show that the Calderón reproducing formula converges
in Lp(w) (1 < p < ∞) for all Ap weights w. The formal statement of this is
the following theorem.
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Theorem 7.1. Let β and ε be positive numbers. Suppose that φ and ψ are real
and radial, and are positive multiples of functions in C(β,ε). We furthermore
assume that φ and ψ are “co-normalized” so that∫ ∞

0

φ̂(yξ) ψ̂(yξ)
dy

y
= 1

for all ξ �= 0. Let 1 < p < ∞ and suppose w ∈ Ap. For every f ∈ Lp(w) and
measurable K with compact closure contained in Rd+1

+ , set

f(K),φ,ψ(x) =
∫

K

(f ∗ φy(t))ψy(x − t)
dt dy

y
.

If K1 ⊂ K2 ⊂ · · · is any compact-measurable exhaustion of Rd+1
+ , then

f(Ki),φ,ψ → f in Lp(w).

Theorem 7.1 will follow almost immediately from

Theorem 7.2. Let 0 < β ≤ 1 and 1 < p < ∞. If w ∈ Ap, there is a constant
C = C(β,w, p, d) such that, for all f ∈ Lp(w),∫

Rd

(Gβ(f)(x))p w dx ≤ C

∫
Rd

|f(x)|p w dx. (7.2)

Here is how Theorem 7.2 will almost give us Theorem 7.1. Let f ∈ Lp(w)
and let g be any bounded, compactly supported function defined on Rd. Set
h ≡ gw. Let K ⊂ Rd be as in the hypotheses of Theorem 7.1. We have made
it an exercise (see 7.2; it has lots of hints) to show that f ∗φy(t) is defined and
bounded on K (this is the “almost” part at the beginning of the paragraph).
Assuming that fact, we have:∫

Rd

f(Ki),φ,ψ(x) g(x)w dx =
∫

K

(f ∗ φy(t)) (h ∗ ψy(t))
dt dy

y
. (7.3)

Define

gφ(f)(x) =
(∫ ∞

0

|f ∗ φy(x)|2 dy

y

)1/2

gφ,Ki
(f)(x) =

(∫
{y: (x,y)∈Ki}

|f ∗ φy(x)|2 dy

y

)1/2

gψ(h)(x) =
(∫ ∞

0

|h ∗ ψy(x)|2 dy

y

)1/2

.

By Cauchy-Schwarz, the absolute value of the right-hand side of 7.3 is
bounded by ∫

Rd

(gφ,Ki
(f)(x)) (gψ(h)(x)) dx,
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which we will write as∫
Rd

[
(gφ,Ki

(f)(x))w1/p
] [

(gψ(h)(x))w−1/p
]

dx.

If we have Theorem 7.2, this integral will be bounded by a constant times the
product of ‖(gφ,Ki

(f)‖Lp(w) and(∫
Rd

(Gβ̃(h)(x))p′
w−p′/p dx

)1/p′

, (7.4)

for some 0 < β̃ ≤ β. However, w−p′/p = w1−p′ ∈ Ap′ . Applying Theorem 7.2
again lets us dominate 7.4 by a constant times(∫

Rd

|h(x)|p′
w1−p′

dx

)1/p′

;

which, after unraveling the exponents, turns out to be ‖g‖Lp′ (w). Taking the
supremum over all such g satisfying ‖g‖Lp′ (w) ≤ 1, we get

‖f(Ki),φ,ψ‖Lp(w)
≤ C‖gφ,Ki

(f)‖Lp(w).

But we also have that

‖gφ,Ki
(f)‖Lp(w) ≤ C‖(Gβ̃(f)‖

Lp(w)
≤ C‖f‖Lp(w) < ∞,

implying that gφ(f) < ∞ w-almost-everywhere. Therefore (arguing exactly
as we did in the unweighted setting), if {Ki} is any compact-measurable ex-
haustion, the sequence {f(Ki),φ,ψ} will be Cauchy in Lp(w). It is not hard
(we leave it as an exercise) to show that this limit will be independent of the
exhaustion {Ki}. If f is bounded and has bounded support, the limit of the
f(Ki),φ,ψ’s must be f (because we can always take a subsequence converging
to f almost everywhere). Therefore the limit must be f for all f ∈ Lp(w).

So, everything comes down to showing Theorem 7.2 and the boundedness
of f ∗ φy(t) on K. For now we will concentrate on Theorem 7.2. It will follow
from some work on Ap weights and:

Theorem 7.3. Let X be a non-empty set, and let T1 and T2 be two operators
mapping from X into L1

loc(R
d). Suppose there is a number p0 > 1 such that,

for all 1 < q < p0, all weights v, and all f ∈ X,∫
Rd

|T1(f)(x)|q v dx ≤ Cq

∫
Rd

|T2(f)(x)|q M(v) dx,

where the constant Cq only depends on q. Then, for all 1 < p < ∞ and all
w ∈ Ap, there is a constant C = C(w, p, d) such that∫

Rd

|T1(f)(x)|p w dx ≤ C

∫
Rd

|T2(f)(x)|p w dx

for all f ∈ X.
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After we show that Lp(w) ⊂ L1
loc(R

d) for all w ∈ Ap (see exercise 7.2),
Theorem 7.2 will follow from Theorem 7.3 by setting X = Lp(w), T1(f) =
Gβ(f), and T2(f) = f .

We will now explore some properties of Ap weights. Much of this will
involve review of material from earlier chapters. We hope the reader has been
doing the exercises.

The next definition is redundant with (but also consistent with) a defin-
ition we gave earlier.

Definition 7.1. A weight v ∈ L1
loc(R

d) belongs to the class A∞ if, for all
ε > 0, there is a δ > 0, such that, for all cubes Q and measurable E ⊂ Q,

|E|/|Q| < δ ⇒ v(E) ≤ εv(Q).

Lemma 7.1. If v ∈ A∞, it is doubling.

Proof of Lemma 7.1. Pick ε = 1/2, find the appropriate δ > 0, and
let ρ > 1 be so close to 1 that |ρQ \ Q| < δ|ρQ| for all cubes Q; where ρQ
means the concentric ρ-dilate of Q. Algebra then implies that v(ρQ) ≤ 2v(Q).
Now let n be such that ρn ≥ 2. Repeating this argument n times implies
v(2Q) ≤ 2nv(Q).

We leave the proof of the next result to the reader:

Corollary 7.1. Let v be a weight. If v ∈ A∞ and v �≡ 0, then v(Q) > 0 for
all cubes Q.

Theorem 7.4. Let v be a weight, and suppose that v(Q) > 0 for all cubes Q.
The following are equivalent: a) v ∈ A∞; b) there exist numbers η and τ ,
0 < η, τ < 1, such that, for all cubes Q and measurable E ⊂ Q,

|E|/|Q| ≤ η ⇒ v(E) ≤ τv(Q);

c) there exist numbers η and τ , 0 < η, τ < 1, such that, for all cubes Q and
measurable E ⊂ Q,

v(E) ≤ τv(Q) ⇒ |E|/|Q| ≤ η.

Proof of Theorem 7.4. It is clear that a)⇒b). It is also not hard to
see that b) and c) are equivalent. For example, suppose that b) holds for
some τ and η. Let Q be a cube and let E ⊂ Q satisfy v(E) < (1 − τ)v(Q).
Such an E must exist, because v(Q) > 0. Then v(Q \ E) > τv(Q), implying
(by b)) |Q \ E|/|Q| > η, and therefore, |E|/|Q| < 1 − η, which implies c).
A similar argument shows that c)⇒b). We conclude by showing b)⇒a). Fix
the appropriate η and τ , and let Q ≡ Q0 be a fixed cube, which we shall
assume (without loss of generality) to be dyadic. We shall also assume that
vQ0 = 1. For k = 1, 2, . . ., let {Qk

j }j be the maximal dyadic cubes of Q0

such that
vQk

j
> Ak,
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where A > 1 is chosen so large that∑
j

|Q1
j | ≤ η|Q0|

and, for all k ≥ 1 and j, ∑
j′:Qk+1

j′ ⊂Qk
j

|Qk+1
j′ | ≤ η|Qk

j |,

both of which will hold if
2d

A
≤ η.

These inequalities imply that∑
j

v(Q1
j ) ≤ τv(Q0)

and, for all k and j, ∑
j′:Qk+1

j′ ⊂Qk
j

v(Qk+1
j′ ) ≤ τv(Qk

j ).

Induction on k now implies that∑
j

v(Qk
j ) ≤ τkv(Q0)

holds for all k. Because of the Lebesgue Differentiation Theorem, we now have,
for all k ≥ 1,

v
({x ∈ Q0 : v(x) > Ak}) ≤ τkv(Q0),

with the consequence that, for any ε > 0,

1
|Q0|

∫
Q0

(v(x))1+ε dx ≤ A1+ε +
∞∑
1

∫
x∈Q0:Ak<v(x)≤Ak+1

(v(x))1+ε dx

≤ A1+ε + C

∞∑
1

Akε

∫
x∈Q0:Ak<v(x)≤Ak+1

v(x) dx

≤ A1+ε + C

∞∑
1

Akετk

≤ C,

if ε is chosen so small that Aετ < 1. We proved this under the assumption that
vQ0 = 1. By homogeneity, we can immediately infer the existence of positive
numbers ε and K such that, for all cubes Q,(

1
|Q|
∫

Q

(v(x))1+ε dx

)1/(1+ε)

≤ K

|Q|
∫

Q

v(x) dx.
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This is the reverse Hölder inequality we saw earlier. Let E ⊂ Q be measurable.
Using the “forward” and reverse Hölder inequalities together, we get:

1
|Q|
∫

E

v(x) dx =
1
|Q|
∫

Q

v(x)χE(x) dx

≤
(

1
|Q|
∫

Q

(v(x))1+ε dx

)1/(1+ε)

(|E|/|Q|)ε

≤
(

K

|Q|
∫

Q

v(x) dx

)
(|E|/|Q|)ε,

yielding
v(E) ≤ Kv(Q)(|E|/|Q|)ε,

which implies a).

The preceding theorem had to assume that v(Q) > 0 for all cubes Q. The
next lemma shows that, unless v ≡ 0, such a hypothesis is unnecessary.

Lemma 7.2. Let v be a weight and suppose that v �≡ 0. If v satisfies a), b),
or c) from Theorem 7.4, then v(Q) > 0 for all cubes Q.

Proof of Lemma 7.2. We already know this for a). Suppose that c)
holds, and let Q be any cube. Starting with Q ≡ Q0, build a tower of nested
cubes,

Q0 ⊂ Q1 ⊂ Q2 ⊂ . . . QN ,

such that v(QN ) > 0 and |Qi|/|Qi+1| > η for each 0 ≤ i < N . Working
downwards from QN , we get v(Q0) > τNv(QN ) > 0. For b), we use a similar
tower of cubes, but this time choose them so that, for each 0 ≤ i < N ,

|Qi+1 \ Qi| ≤ η|Qi+1|,

which ensures that
v(Qi+1 \ Qi) ≤ τv(Qi+1),

and thus
v(Qi) ≥ (1 − τ)v(Qi+1),

leading to
v(Q0) ≥ (1 − τ)Nv(QN ) > 0.

Henceforth we will assume that every weight we consider is non-trivial.
Lemma 7.2 and the proof of Theorem 7.4 yield this corollary, with no

extra work.

Corollary 7.2. A weight v belongs to A∞ if and only if it satisfies the reverse
Hölder inequality for some K and ε.
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Corollary 7.3. For all 1 < p < ∞, Ap ⊂ A∞.

Proof of Corollary 7.3. Set R = ‖v‖Ap
, and fix a cube Q. For A > 1,

define
EA = {x ∈ Q : v(x) ≤ A−1vQ}.

An easy computation shows that(
1
|Q|
∫

Q

v(x) dx

)1/p( 1
|Q|
∫

EA

v(x)1−p′
dx

)1/p′

≥ A1/p(|EA|/|Q|)1/p′
.

However, the left-hand side of the preceding inequality is less than or equal
to R. Therefore,

|EA|/|Q| ≤ A1−p′
Rp′

.

Let A be so large that A1−p′
Rp′ ≤ 1/4. If E ⊂ Q and |E|/|Q| > 1/2, then

v(x) > A−1vQ on at least half of E, which means that v(x) > A−1vQ on a
subset with measure ≥ (1/4)|Q|. Therefore v(E) > (4A)−1v(Q), which is c)
from Theorem 7.4. Therefore v ∈ A∞.

When we combine the preceding corollary with Theorem 5.5 (note the
last sentence of its statement), we obtain:

Corollary 7.4. Let 1 < p < ∞ and w ∈ Ap. Suppose that 0 < β ≤ 1. There is
a constant C = C(w, p, d, β) such that, for all f ∈ ∪1≤r<∞Lr(dx) (the usual
“unweighted” Lr spaces),∫

Rd

|f(x)|p w dx ≤ C

∫
Rd

(Gβ(f)(x))p w dx.

Proof of Corollary 7.4. Since w ∈ A∞, Theorem 5.5 implies∫
Rd

|f(x)|p w dx ≤ C

∫
Rd

(S̃sd(f)(x))p w dx,

where S̃sd(f) is as we defined it in 5.9. But S̃sd(f)(x) ≤ CGβ(f)(x) pointwise.

Remark. The reader should be aware of what Corollary 7.4 does not say.
It does not say that∫

Rd

|f(x)|p w dx ≤ C

∫
Rd

(Gβ(f)(x))p w dx (7.5)

for f ∈ Lp(w). For example, it is possible for f to belong to L2(w), with w
an A2 weight, but not belong to Lr(dx) for any 1 ≤ r ≤ ∞. (See exercise
7.5.) Nevertheless, inequality 7.5 does hold for f ∈ Lp(w) when w ∈ Ap

(1 < p < ∞); see Corollary 7.7 at the end of this chapter.
Strictly speaking, we won’t need the next result for our Littlewood-Paley

results. We are including it here because it is a standard part of the theory of
Ap weights.
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Corollary 7.5. If v ∈ A∞, then v ∈ Ap for some 1 < p < ∞.

Proof of Corollary 7.5. Let Q = Q0 be a cube, which we will take
to be dyadic. We assume that vQ0 = 1. Let A > 1 be a large number (to
be specified presently). For k = 1, 2, . . ., let {Qk

j }j be the maximal dyadic
subcubes of Q0 such that

vQk
j

< A−k.

Because v is doubling, these cubes will also satisfy

vQk
j
≥ cA−k

for some fixed c > 0. Therefore, by taking A big enough, we can ensure that,
for every Qk

j , ∑
j′:Qk+1

j′ ⊂Qk
j

v(Qk+1
j′ ) ≤ τv(Qk

j ),

and also that ∑
j

v(Q1
j ) ≤ τv(Q0),

where τ is the number from statement c) in Theorem 7.4. Therefore, for each
Qk

j , ∑
j′:Qk+1

j′ ⊂Qk
j

|Qk+1
j′ | ≤ η|Qk

j |

and ∑
j

|Q1
j | ≤ η|Q0|;

which, by induction, imply ∑
j

|Qk
j | ≤ ηk|Q0|

for all k ≥ 1. By Lebesgue’s theorem again, the subset of Q where v(x) < A−k

is almost-everywhere contained in ∪jQ
k
j . Therefore, for any ε > 0,

1
|Q|
∫

Q

v(x)−ε dx ≤ Aε +

( ∞∑
1

Akεηk

)
≤ C,

if we choose ε so small that Aεη < 1. That proves that v ∈ Ap if p′ − 1 < ε.

Corollary 7.6. If v ∈ A∞ then {x : v(x) = 0} has Lebesgue measure 0.

The next theorem provides the reason the Ap classes can be considered
“natural.” It is also the key to proving Theorem 7.3. We will state the theorem,
discuss it briefly, state and prove a lemma, and then prove the theorem.
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Theorem 7.5. Let 1 < p < ∞. If w ∈ Ap, the Hardy-Littlewood maximal
operator M(·) is bounded on Lp(w); i.e., there is a constant C = C(p, w) such
that, for all f ∈ Lp(w),∫

Rd

(M(f)(x))p w dx ≤ C

∫
Rd

|f(x)|p w dx. (7.6)

Remark. This theorem is due to Benjamin Muckenhoupt [42]. The Ap

condition is also necessary for 7.6. To (almost) see this, put f = wαχQ and
plug it into 7.6. Out pops:∫

Q

(
1
|Q|
∫

Q

wα dt

)p

w dx ≤ C

∫
Q

wαp+1 dx.

Setting α = 1− p′ (which has the effect of making α = αp + 1) and canceling
yields: (

1
|Q|
∫

Q

w1−p′
dt

)p−1( 1
|Q|
∫

Q

w dx

)
≤ C,

which yields the Ap condition, provided we know that wαχQ ∈ Lp(w). How to
fill this small gap is left as an exercise.

Lemma 7.3. Let 1 < p < ∞. If w ∈ Ap then there exists an r, 1 < r < p,
such that w ∈ Ar.

Proof of Lemma 7.3. If w ∈ Ap then w1−p′ ∈ Ap′ ⊂ A∞, implying
that, for some positive ε and K,(

1
|Q|
∫

Q

w(x)(1−p′)(1+ε) dx

)1/(1+ε)

≤ K

|Q|
∫

Q

w(x)1−p′
dx

holds for all cubes Q. Define r by the equation (1− p′)(1 + ε) = 1− r′; which,
after some algebra, yields

1 < r =
p + ε

1 + ε
< p.

I claim that, for any cube Q,(
1
|Q|
∫

Q

w(x) dx

)1/r ( 1
|Q|
∫

Q

w(x)1−r′
dx

)1/r′

≤ C, (7.7)

where C is a constant not depending on Q. Proving 7.7 is really just a matter
of unraveling the exponents. The left-hand side of 7.7 is(

1
|Q|
∫

Q

w(x) dx

)(1+ε)/(p+ε)( 1
|Q|
∫

Q

w(x)(1−p′)(1+ε) dx

)(p−1)/(p+ε)

.
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Because w1−p′
satisfies the reverse Hölder inequality for 1 + ε and K, the

product is bounded by a constant times(
1
|Q|
∫

Q

w(x) dx

)(1+ε)/(p+ε)( 1
|Q|
∫

Q

w(x)(1−p′) dx

)(1+ε)(p−1)/(p+ε)

.

When we take a (1 + ε)/(p + ε) root of this, we get(
1
|Q|
∫

Q

w(x) dx

)(
1
|Q|
∫

Q

w(x)(1−p′) dx

)p−1

;

and if we take a pth root of that, we get(
1
|Q|
∫

Q

w(x) dx

)1/p( 1
|Q|
∫

Q

w(x)1−p′
dx

)1/p′

≤ ‖w‖Ap
.

The lemma is proved.

Proof of Theorem 7.5. We will prove Lp(w) boundedness for Md(·).
The doubling property of w will then imply the existence of two positive
constants c1 and c2 such that, for all λ > 0,

w ({x : M(f)(x) > λ}) ≤ c1w ({x : Md(f)(x) > c2λ}) .

We leave this implication as an exercise; it follows the same pattern as with
Lebesgue measure (see exercise 2.3.) For T > 0, define

Md,T (f)(x) ≡ sup
x∈Q∈Dd
�(Q)≤T

1
|Q|
∫

Q

|f(t)| dt.

By Monotone Convergence, we only need to show that Md,T (·) maps Lp(w) �→
Lp(w), with a bound independent of T . Since Md,T (·) is trivially bounded on
L∞(w), Lp boundedness will follow if we can show that Md,T (·) is weak-
type (r, r) for some 1 < r < p (with weak-type bounds independent of T ,
of course). However, we know that there exists an r (1 < r < p), such that
w ∈ Ar. Therefore our theorem will follow from this: If 1 < r < ∞ and
w ∈ Ar, there exists a constant C = C(w, d, r) such that, for all f ∈ Lr(w)
and λ > 0,

w ({x : Md,T (f)(x) > λ}) ≤ C

λr

∫
|f(x)|r w dx. (7.8)

We finish by showing 7.8.
Because it will be convenient, let us set σ(x) = w(x)1−r′

. If Q is any
cube, then

1
|Q|
∫

Q

|f(x)| dx =
1
|Q|
∫

Q

|f(x)|w(x)1/r w(x)−1/r dx

≤
(

1
|Q|
∫

Q

|f(x)|r w dx

)1/r ( 1
|Q|
∫

Q

σ(x) dx

)1/r′

.
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But (
1
|Q|
∫

Q

σ(x) dx

)1/r′

≤ C

(
1
|Q|
∫

Q

w(x) dx

)−1/r

,

because w ∈ Ar. Therefore:

1
|Q|
∫

Q

|f(x)| dx ≤ C

(
1

w(Q)

∫
Q

|f(x)|r w dx

)1/r

. (7.9)

Let {Qλ
k}k be the maximal dyadic cubes such that �(Qλ

k) ≤ T and

1
|Qλ

k |
∫

Q

|f(x)| dx > λ.

(The restriction to cubes satisfying �(Q) ≤ T is an easy way to ensure that
these maximal cubes exist.) The union of the Qλ

k ’s is the set where Md,T (f)
is bigger than λ. Because of 7.9, each of these cubes satisfies:

w(Qλ
k) ≤ C

λr

∫
Qk

λ

|f(x)|r w dx.

Summing the preceding inequality over k yields 7.8. We have proved Theorem
7.5.

Proof of Theorem 7.3. Let 1 < q < min(p, p0), where q is to be
specified presently. Let g be a non-negative function satisfying∫

(g(x))(p/q)′ w dx = 1.

What we need to estimate is∫
Rd

|T1(f)(x)|q g(x)w dx.

By hypothesis, this is bounded by a constant times∫
Rd

|T2(f)(x)|q M(v) dx, (7.10)

where v = g(x)w. We re-write 7.10 as∫
Rd

(
|T2(f)(x)|q wq/p

)(
M(v)w−q/p

)
dx.

By Hölder’s inequality, this is less than or equal to the product of(∫
Rd

|T2(f)(x)|p w dx

)q/p
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and (∫
Rd

(M(v)(x))p/(p−q) w−q/(p−q) dx

)(p−q)/p

. (7.11)

The first factor is just fine: it equals ‖T2(f)‖q
Lp(w). We will conclude the proof

by showing that, for appropriate q (depending on p and w), the second factor
is bounded by the “constantly changing constant.”

Pick q so close to 1 that w ∈ Ap/q. Then w1−(p/q)′ ∈ A(p/q)′ . In plain
language, this means that

w−q/(p−q) ∈ Ap/(p−q).

But now Theorem 7.5 implies that 7.11 is bounded by a constant times(∫
Rd

(v(x))p/(p−q) w−q/(p−q) dx

)(p−q)/p

.

After unpacking the definition of v, that last expression turns out to be:(∫
Rd

(g(x))(p/q)′ w(x)p/(p−q) w(x)−q/(p−q) dx

)(p−q)/p

,

which simplifies to (∫
Rd

(g(x))(p/q)′ w(x) dx

)(p−q)/p

= 1.

Except for the few loose ends we have left as exercises, Theorem 7.3 is proved.

Much as in the unweighted case, the preceding arguments give us the
following corollary, whose proof we leave to the reader.

Corollary 7.7. Let 1 < p < ∞ and w ∈ Ap. Suppose that 0 < β ≤ 1. There
is a constant C = C(p, w, d, β) such that, for all f ∈ Lp(w),∫

Rd

|f(x)|p w dx ≤ C

∫
Rd

(Gβ(f)(x))p w dx.

Exercises

7.1. Show that, for all 1 < p < q < ∞, Ap ⊂ Aq.

7.2. a) Show that, if w ∈ Ap (1 < p < ∞), then (1 + |x|)−d ∈ Lp(w). b) Show
that, if w ∈ Ap (1 < p < ∞) and f ∈ Lp(w), then |f |(1 + |x|)−d ∈ L1(dx)
(the usual “unweighted” L1). Deduce that Lp(w) ⊂ L1

loc(R
d). c) Show that,

if w ∈ Ap (1 < p < ∞), f ∈ Lp(w), φ ∈ C(β,ε), and K is a measurable set with
compact closure contained in Rd+1

+ , then f ∗ φy(t) is defined and bounded on
K. Hint for b): Begin by writing

|f |(1 + |x|)−d = (|f |w1/p)((1 + |x|)−dw−1/p).
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7.3. As p ↘ 1, the Ap condition naturally morphs into

sup
Q⊂Rd

(
1
|Q|
∫

Q

w(x) dx

)
‖w−1‖L∞(Q) < ∞. (7.12)

A weight is said to belong to A1 if 7.12 holds; the supremum, denoted by
‖w‖A1

, is called w’s A1 norm. a) Show that w ∈ A1 if and only if there is
a constant C such that M(w)(x) ≤ Cw(x) almost everywhere. b) Show that
A1 ⊂ Ap for all p > 1, and that w ∈ A1 implies that the Hardy-Littlewood
maximal operator is weak-type (1, 1) with respect to w; i.e., that there is a
constant C such that, for all f ∈ L1(w) and all λ > 0,

w ({x : M(f)(x) > λ}) ≤ C

λ

∫
Rd

|f(x)|w dx. (7.13)

(See exercise 3.5 and the results it refers to.) c) Show that, if M(·) is weak-
type (1, 1) with respect to w (i.e., if 7.13 holds), then w ∈ A1. (Hint: Let
x0 ∈ Rd be such that

w(x0) = lim
�(Q)→0
x0∈Q

1
|Q|w(Q),

and test the weak-type inequality against the functions of the form
|Q|−1

χQ(x), where the cubes Q are homing in on x0.)

7.4. Let q : Rd �→ R be a polynomial, and suppose that q �≡ 0. In exercise 3.1
you were asked to show that |q| ∈ A∞. Now show that, for all 1 < p < ∞,
there is a δ > 0 such that |q|δ and |q|−δ both belong to Ap. Show that, unless
q is constant, no strictly positive power of |q| can belong to A1.

7.5. Define g : R �→ R by

g(x) ≡ |x|1/2
χ[−1/2,1/2](x),

and set

w(x) =
∞∑
−∞

g(x − n).

Show that w ∈ A2. For n = 1, 2, 3, . . ., define cn = n−1/2, εn = 1/ log(10+n),
and let In be the open interval (n − εn, n + εn). Define

f(x) ≡ |x|−1/2
χ[−1/2,1/2](x) +

( ∞∑
1

cnχIn
(x)

)
.

Show that f ∈ L2(w), but that f does not belong to Lr(R, dx) for any 1 ≤
r ≤ ∞.
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7.6. Let w ∈ Ap (1 < p < ∞) and suppose that f ∈ Lp(w). Show directly
that the Lp(w) limit of {f(Ki),φ,ψ} (where {Ki} is a compact-measurable
exhaustion) is independent of the exhaustion. (Hint: Let {Li} be any other
compact-measurable exhaustion. Show that gφ,Ki∆Li

(f) → 0 in Lp(w), and
consider what this says about ‖f(Ki),φ,ψ − f(Li),φ,ψ‖Lp(w)

.)

7.7. Following the lead given in the text, show that the Ap condition is neces-
sary for the Lp(w) boundedness of the Hardy-Littlewood maximal operator.
(Hint: Consider weights of the form w(x)+ε as ε ↘ 0.) A very similar argument
will now show that the Ap condition is necessary for the Lp(w) boundedness
of the intrinsic square function. (Hint: Consider f = wαχQ, and get a lower
bound on Ã(β,ε)(f)(t, y) when (t, y) doesn’t stray too far from T (Q).)

7.8. Show that, if w ∈ L1
loc(R

d) is any doubling weight, then there exist
positive constants c1 and c2 such that, for all λ > 0 and all f ∈ L1

loc(R
d),

w ({x : M(f)(x) > λ}) ≤ c1w ({x : Md(f)(x) > c2λ}) .

7.9. To what extent—if any—do the analogous equivalences of Theorem 7.4
hold in the dyadic setting?

7.10. a) Show that, if w ∈ L1
loc(R

d) is any weight and 0 < p < ∞, then
C∞
0 (Rd) is dense in Lp(w) (no Littlewood-Paley theory needed). b) Let φ ∈

C∞
0 (Rd) satisfy

∫
φ dx = 1. For f ∈ L1

loc(R
d) and y > 0, define

f(x, y) = f ∗ φy(x).

Show that, if w ∈ Ap (1 < p < ∞) and f ∈ Lp(w), then f(·, y) → f in Lp(w)
as y → 0. The upshot is that, if w ∈ Ap, then smooth, Lp approximations to
f ∈ Lp(w) can be obtained in this canonical fashion.

7.11. Prove this generalization of Theorem 7.3. Suppose that X is a non-
empty set, and T1 and T2 are two operators mapping from X into L1

loc(R
d).

Suppose there exists a number p0 > 1 such that, for all 1 < q < p0, we can
find a k = k(q) with the following property: For all weights v, and all f ∈ X,∫

Rd

|T1(f)(x)|q v dx ≤ Cq

∫
Rd

|T2(f)(x)|q Mk(v) dx,

where the constant Cq only depends on q, and Mk(·) means a k-fold iteration
of the maximal operator M(·). Show: For every 1 < p < ∞ and every w ∈ Ap,
there is a constant C = C(w, p, d) such that, for all f ∈ X,∫

Rd

|T1(f)(x)|p w dx ≤ C

∫
Rd

|T2(f)(x)|p w dx.
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Notes

Our analysis of A∞ is closely based on the discussion in [13]. The extrapolation
trick (Theorem 7.3) is implicit in arguments in [16] and [24]. In fact, a stronger
result is true: If, for all 1 < q < p0 and all A1 weights w, there is a constant
C(q, w) such that∫

Rd

|T1(f)(x)|p w dx ≤ C

∫
Rd

|T2(f)(x)|p w dx

for all f ∈ X, then, for all 1 < p < ∞ and all w ∈ Ap, there is a constant
C(p, w) such that∫

Rd

|T1(f)(x)|p w dx ≤ C(p, w)
∫
Rd

|T2(f)(x)|p w dx

holds for all f ∈ X. (These facts were pointed out to the author by D. Cruz-
Uribe and J. Martell at a conference in Sevilla.) The second fact is the key
to the celebrated Rubio de Francia Extrapolation Theorem: If, for some fixed
1 < p0 < ∞, a sublinear operator T maps boundedly from Lp0(w) into itself,
for all w ∈ Ap0 , then T maps boundedly from Lp(w) into itself, for all w ∈ Ap,
for all 1 < p < ∞ ([49]; see [16], pp. 141–142, for a nice proof). We believe
that C. Pérez was the first to observe that the extrapolation trick could be
extended to arbitrary (and not necessarily sublinear) pairs of operators T1

and T2. The analogue of Theorem 7.2, for the classical Lusin square function
on the unit disk, was first proved by C. Segovia and R. L. Wheeden in [50].
The first proof for the the Lusin square function in Rd+1

+ is due to R. F. Gundy
and R. L. Wheeden [26]. These classical proofs used good-λ inequalities. They
were generalized to a particular “real-variable only” square function in [35].
Extensions to more general real-variable square functions appear in [55] and
[56]. Theorem 7.1 is something that “everybody knows,” but which, to our
knowledge, has not previously been proved.
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Schrödinger Operators

This chapter will have a long lead-up to a short payoff.
The reader might want to refresh his memory concerning Theorem 4.6.

We will be using it soon.
In non-relativistic quantum mechanics, a particle is represented by a wave

function u : R3×(−∞,∞) �→ C, such that |u(x, t)|2 is the probability density
of finding the particle in the neighborhood of x at time t. More precisely, if
E ⊂ R3 is measurable, then ∫

E

|u(x, t)|2 dx

is the probability that the particle will be in the set E at time t.
The wave function evolves in time according to the Schrödinger equation,

which we we may write as:

i
∂u

∂t
= Hu, (8.1)

where H is the Hamiltonian operator. If the particle is moving in a potential
field −V (x) that only depends on x, then, with appropriate choices of units,
the operator H can be written H = −∆ − V (x), where this means:

Hu(x, t) ≡ −∆xu(·, t) − V (x)u(x, t).

The Hamiltonian’s two parts, −∆ and −V , represent, respectively, the par-
ticle’s kinetic and potential energies. In our discussion, we will only consider
V ’s that are non-negative. This has the effect of turning the Hamiltonian’s
−V into a potential well—i.e., one that can trap a particle.

The eigenfunctions of H are identified with the particle’s possible energy
states, with the eigenvalues being the energies. According to quantum me-
chanical formalism, the energy of the wave function u is given by the inner
product 〈Hu, u〉, or∫

R3
(−∆xu(x, t) − V (x)u(x, t))ū(x, t) dx.
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Integrating by parts in x, this seen to be formally equal to∫
R3

(|∇xu(x, t)|2 − V (x)|u(x, t)|2) dx.

We are most interested in whether this quantity can ever be negative for some
u, which would physically correspond to the potential −V trapping a particle.

We will henceforth ignore any possible dependence u might have on t, and
only consider functions u depending on x ∈ R3. We shall also only consider
functions u which are infinitely differentiable and have compact support.

With these assumptions, we can now phrase the main mathematical ques-
tion of this chapter: What conditions on a non-negative, locally integrable V
imply that ∫

R3
|u(x)|2 V (x) dx ≤

∫
R3

|∇u(x)|2 dx (8.2)

holds for all u ∈ C∞
0 (R3)? Given our previous discussion, if 8.2 always holds,

then −V can never trap a particle.
We can easily find a necessary condition for 8.2. Let φ be a fixed function

in C∞
0 (R3) satisfying:

φ(x) =
{

1 if |x| ≤ 1;
0 if |x| > 1.1.

Set R =
∫
R3 |∇φ|2 dx. Applying 8.2 to φ, we see that a necessary condition is

V ({x : |x| ≤ 1}) ≤ R,

which is not very interesting. Now let δ > 0 and apply 8.2 to the function
φ(·/δ). The left-hand side of 8.2 becomes the V -measure of {x : |x| < δ},
while the left-hand side is now δR. Thus, a necessary condition for 8.2 is that

V ({x : |x| < δ}) ≤ δR

for all δ > 0. By considering translations of φ, we get our “trivial” necessary
condition for 8.2: There is a constant R such that, in order for 8.2 to hold, we
must have

V (B(t; δ)) ≤ Rδ (8.3)

for all balls B(t; δ) ⊂ R3.
The reader will not have a hard time showing that 8.3 implies the fol-

lowing: There is a positive constant C such that, in order for 8.2 to hold, we
must have

1
|Q|
∫

Q

V (x) dx ≤ C�(Q)−2 (8.4)

all cubes Q ⊂ R3.
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Inequality 8.4 is in some ways more natural than 8.3. If V is fairly smooth
and Q is not too big, then V (x) will stay close to its average for x ∈ Q, and
then 8.4 is saying that V does not have any deep wells. Put another way, it
says that, in order to trap a particle in a cube Q, you need a potential well of
depth roughly �(Q)−2. This is a semi-quantitative statement of the Heisenberg
uncertainty principle. If we confine a particle in a region of diameter ∼�(Q),
the uncertainty in its momentum must be ∼�(Q)−1, forcing the expected value
of its kinetic energy to be ∼�(Q)−2. If the potential well isn’t deep enough,
the particle’s kinetic energy will allow it to escape.

Inequality 8.4 is not sufficient for 8.2; a proof of this is sketched in the
exercises. But, using weighted Littlewood-Paley theory, we can obtain a suf-
ficient condition for 8.2 that is just a little stronger than 8.4.

Let us recall that we have defined the Fourier transform this way:

f̂(ξ) =
∫
R3

f(x) e−2πix·ξ dx,

where here we are assuming that f ∈ C∞
0 (R3). Our convention has the conse-

quence that ∫
R3

|∇f(x)|2 dx = 4π2

∫
R3

|ξ|2|f̂(ξ)|2 dξ,

for the same f ’s.
Now let φ be a fixed real, radial function in the Schwartz class on R3,

such that φ̂(ξ) ≥ 0 for all ξ, and that also satisfies

φ̂(ξ) =
{

1 if 3/4 < |ξ| < 4/3;
0 if |ξ| ≤ 1/2 or |ξ| > 2.

Now let ψ ∈ C∞
0 (R3) be real, radial, supported in {x : |x| ≤ 1}, have integral

equal to 0, and be normalized so that∫ ∞

0

φ̂(yξ) ψ̂(yξ)
dy

y
≡ 1

for all ξ �= 0. (We leave it as an exercise to show that, given a φ as we have
described, such a ψ always exists.)

If f ∈ C∞
0 (R3) then our work on the Calderón reproducing formula lets

us write
f(x) =

∫
R4

+

(f ∗ φy(t))ψy(x − t)
dt dy

y
,

as the Lp limit (for all 1 < p < ∞) of the sequence of functions∫
Ki

(f ∗ φy(t))ψy(x − t)
dt dy

y
,

for any compact-measurable exhaustion {Ki}i of R4
+.
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Our previous work (in particular, Theorem 4.6) implies that, for all τ > 1,
there is a constant C = C(τ) such that, for all f ∈ C∞

0 (R3) and all non-
negative, locally integrable V ,∫

R3
|f(x)|2 V (x) dx ≤ C

∑
Q∈D3

|λQ(f)|2
|Q̃|

∫
Q̃

V (x) (log(e + V (x)/VQ̃))τ dx,

(8.5)
where

λQ(f) ≡
(∫

T (Q)

|f ∗ φy(t)|2 dt dy

y

)1/2

.

If V satisfies
1
|Q|
∫

Q

V (x) (log(e + V (x)/VQ))τ dx ≤ �(Q)−2

for all cubes Q ⊂ R3, then the right-hand side of 8.5 is less than or equal to
a constant times∑

Q∈D3

�(Q)−2

∫
T (Q)

|f ∗ φy(t)|2 dt dy

y
≤ C

∫
R4

+

y−2|f ∗ φy(t)|2 dt dy

y
. (8.6)

By Plancherel’s Theorem (and Fourier convolution), the right-hand side of 8.6
is equal to

C

∫
R4

+

|f̂(ξ)|2
(∫ ∞

0

|φ̂(yξ)|2 dy

y3

)
dξ.

A change of variable and our hypothesis on the support of φ̂ imply that∫ ∞

0

|φ̂(yξ)|2 dy

y3
≡ cφ|ξ|2

for all ξ, for some constant cφ > 0. Therefore the right-hand side of 8.6 is less
than or equal to a constant times∫

R3
|ξ|2|f̂(ξ)|2 dξ ≤ C

∫
R3

|∇f(x)|2 dx.

Putting everything together, we have the following theorem:

Theorem 8.1. Let τ > 1. There is a constant c = cτ > 0 such that, if V is
any non-negative weight, and

1
|Q|
∫

Q

V (x) (log(e + V (x)/VQ))τ dx ≤ c �(Q)−2

for all cubes Q ⊂ R3, then∫
R3

|u(x)|2 V (x) dx ≤
∫
R3

|∇u(x)|2 dx

for all u ∈ C∞
0 (R3).
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Exercises

8.1. Let ν be the positive Borel measure, defined on R3, given by

ν(E) ≡ mz(E ∩ Lz),

where Lz is the z-axis and mz is Lebesgue measure on Lz. Show that, for all
cubes Q,

1
|Q|ν(Q) ≤ c�(Q)−2

for some c > 0. Nevertheless, show that there is no A such that∫
R3

|u(x)|2 dν(x) ≤ A

∫
R3

|∇u(x)|2 dx

holds for all u ∈ C∞
0 (R3). (Hint: Write x ∈ R3 as x = (x′, z). Let ψ ∈ C∞

0 (R3)
be identically 1 for |x| ≤ 1. Let φ ∈ C∞

0 (R2) be identically 1 for |x′| ≤ 1 and
identically 0 for |x′| ≥ 2. Consider functions of the form

u(x) = ψ(x)

(
N∑
1

φ(2kx′)

)

for large—but finite—N .) Then use a suitable approximation to show that
8.4 is not sufficient for 8.2.

8.2. Let φ be a fixed real, radial function in the Schwartz class on R3, chosen
so that φ̂(ξ) is always non-negative, and also satisfying

φ̂(ξ) =
{

1 if 3/4 < |ξ| < 4/3;
0 if |ξ| ≤ 1/2 or |ξ| > 2.

Show that there exists a ψ ∈ C∞
0 (R3) that is real, radial, supported in

{x : |x| ≤ 1}, has integral equal to 0, and satisfies∫ ∞

0

φ̂(yξ) ψ̂(yξ)
dy

y
≡ 1

for all ξ �= 0. (Hint: by convolving an appropriate function with itself, we can
assume that ψ̂(ξ) ≥ 0 for all ξ.)

Notes

The results and basic approach in this chapter are taken from [62], and are
based on those in [17] and [10]. There is nothing essential about our restriction
to R3, and in fact Theorem 8.1 extends immediately to any Rd (d > 2) with
no extra work. Theorem 8.1 has been significantly generalized by Pérez [48].
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His result is as follows: If d > 2, then for all non-negative V ∈ L1
loc(R

d) and
all f ∈ C∞

0 (Rd),∫
Rd

|f(x)|2 V dx ≤ C(d)
∫
Rd

|∇f(x)|2 N(V )(x) dx, (8.7)

where N(·) is a certain maximal function of V , which we now define. For
0 ≤ β < d, define

Mβ(V )(x) ≡ sup
x∈Q

Q a cube

1

|Q|1−β/d

∫
Q

V (t) dt.

When β = 0 this is the Hardy-Littlewood maximal function M(·). When
β > 0, Mβ(·) is naturally associated with the Riesz potential Iβ ,

Iβ(f)(x) ≡ cβ,d

∫
Rd

f(t)

|x − t|d−β
dt,

where cβ,d is usually chosen so that̂Iβ(f)(ξ) = |2πξ|−β
f̂(ξ)

for all f ∈ S(Rd). In [48] it is shown that 8.7 holds for N(V ) equal to
M2(M2(V )), where M2(·) means a two-fold application of M(·). Pérez shows
that the M2(·) can be replaced by an Orlicz maximal operator MBε

(·), where
Bε(x) ∼ x(log(e + x))ε.(We discuss Orlicz maximal operators in chapter 10.)
He also proves that∫

Rd

|f(x)|2 V dx ≤ C(d)
∫
Rd

|∆f(x)|2 N(V )(x) dx

if d > 4 and N(V ) = M4(MBε
(V )). His proofs do not use Littlewood-Paley

theory, but rely on Orlicz maximal functions, Riesz potentials, and certain
differential operators.

A different non-negativity criterion for the Schrödinger operator, based
entirely on maximal functions of the form Mβ , was proved by Kerman and
Sawyer in [32].

Finding a criterion for non-negativity is only the beginning of the analysis
of the Schrödinger operator. The next step is to count the number of negative
eigenvalues of −∆ − V in the cases when the operator is not non-negative.
C. Fefferman and D. H. Phong [17] introduced the method of (essentially)
identifying these negative eigenvalues with the minimal dyadic cubes Q where
the non-negativity criterion fails. In our treatment, these would be the minimal
dyadic Q such that

1
|Q|
∫

Q

V (x) (log(e + V (x)/VQ))τ dx > c �(Q)−2,

where c is a positive constant depending on d and τ . We have not explored
this topic here. The interested reader can find treatments of it, for a variety
of non-negativity criteria, in [17], [10], [32], and [11].
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Some Singular Integrals

A singular integral operator is a type of linear operator defined by an inte-
gral that, strictly speaking, does not converge, but has to be evaluated in a
principal value sense. What all of that means will become clear presently.

The most basic—and by far the most important—singular integral oper-
ator is the Hilbert transform, defined by the integral formula,

H(f)(x) ≡ 1
π

∫
R

f(y)
x − y

dy. (9.1)

Before proving anything about this operator, we should try to explain why
anybody cares about operators like 9.1.

Formally, 9.1 is equal to convolution of f with 1
πx , and so it should have

a Fourier transform equal to

f̂(ξ)
1̂

πx
(ξ).

Arguing formally (again), the Fourier transform of 1
πx is given by the principal

value integral

lim
ε→0+

1
π

∫
ε−1>|x|>ε

e−2πixξ

x
dx = lim

ε→0+

−i

π

∫
ε<|x|<ε−1

sin(2πxξ)
x

dx

=

{−i if ξ > 0;
i if ξ < 0;
0 if ξ = 0.

In other words, assuming one accepts this formal reasoning,

Ĥ(f)(ξ) = −iσ(ξ)f̂(ξ),

where σ(ξ) is the familiar signum function:

σ(ξ) =

{ 1 if ξ > 0;
−1 if ξ < 0;
0 if ξ = 0.
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Let us assume that f is real-valued. If we set g(x) = (f(x)+ iH(f)(x))/2
then

ĝ(ξ) =
{

f̂(ξ) if ξ > 0;
0 if ξ < 0.

If g is regular enough, we can write:

g(x) =
∫

ĝ(ξ)e2πixξ dξ =
∫ ∞

0

f̂(ξ)e2πixξ dξ. (9.2)

The nice feature about 9.2 is that, if f̂ is at all reasonable, then 9.2 even
makes sense for z = x + iy, with y > 0. To wit, we can set

g(z) =
∫ ∞

0

f̂(ξ)e2πi(x+iy)ξ dξ,

and the function g(z) so defined is analytic on R2
+. It has real and imaginary

parts u and v. As y → 0, then (arguing formally!),

u(x, y) + iv(x, y) → (f(x) + iH(f)(x))/2,

where we are leaving the precise mode of convergence unspecified.
Now, the function u is half of Py ∗ f , the Poisson integral of f which we

briefly discussed in chapter 6. The function v, which is u’s harmonic conjugate,
is, plausibly, half of the Poisson integral of H(f). We can thus outline the
formal process that results in the operator 9.1: f �→ u (by taking the Poisson
integral); u �→ v (integrate the Cauchy-Riemann equations); v �→ H(f) (take
v’s boundary values).

Let’s consider another example. If f ∈ C∞
0 (Rd) and d > 2, then the

differential equation

∆u = f

lim
|x|→∞

u(x) = 0,

has a unique solution given by the integral formula

u(x) = cd

∫
f(y)

|x − y|d−2
dy,

where cd is a constant. If we take two partial derivatives of u, then we get
(arguing formally),

∂2u

∂xi∂xj
=
∫

f(y)Ki,j(x − y) dy,

where

Ki,j(x) =
{

cdd(d − 2)xixj/|x|d+2 if i �= j;
cd(2 − d)(−dx2

i +
∑

l x
2
l )/|x|d+2 if i = j.

(9.3)
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The reader should notice a strong family resemblance between 9.1 and
9.3. First, both operators arise from similar processes: a differentiation (or
an integration) is followed by an integration (or a differentiation), but these
operations are not inverses of each other. Second, both operators are formally
convolutions, in which the integrals very likely don’t converge in the sense of
Lebesgue. We can nevertheless use these convolutions to define bounded oper-
ators, because—point number three!—the kernels involved have some saving
properties. These properties are captured in the following definition.

Definition 9.1. A function K : Rd \ {0} �→ R is a classical Calderón-
Zygmund kernel if: a) for all x �= 0,

|K(x)| ≤ |x|−d;

b) there is a positive α ≤ 1 such that, for all x �= 0 and all h ∈ Rd satisfying
|h| ≤ (1/2)|x|,

|K(x) −K(x + h)| ≤ |h|α
|x|d+α

;

c) for all 0 < r < R < ∞, ∫
x: r<|x|<R

K(x) dx = 0.

Up to multiplication by positive constants, the convolution kernels for
9.1 and 9.3 are classical Calderón-Zygmund kernels (with α = 1); we leave
the proof of this as an exercise. If K is such a kernel, the classical Calderón-
Zygmund operator TK is defined by the integral

TK(f)(x) ≡
∫
Rd

K(x − y) f(y) dy, (9.4)

for functions f belonging to an appropriate test class (soon to be specified).
The integral 9.4 is likely to be undefined. We fix this problem by taking

the integral in the principal value sense, i.e., by setting∫
Rd

K(x − y) f(y) dy = lim
δ→0

∫
{y: |x−y|>δ}

K(x − y) f(y) dy. (9.5)

But it is still not obvious that this integral makes sense for “reasonable” f ’s
(say, f ∈ Lp, for 1 ≤ p < ∞) even almost everywhere; and we are going to
avoid this question.

Fortunately, it isn’t hard to show that 9.5 makes sense for functions f
that are fairly smooth and have bounded supports. Let f be supported in the
ball B(0; 1) and have two continuous derivatives. I claim that TK(f) is not
only defined for all x, but bounded, and Hölder continuous of order 1.
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The “defined” part is easy. Let 0 < η1 < η2 be two very small numbers.
Then: ∣∣∣∣∣

∫
η1<|x−y|<η2

K(x − y) f(y) dy

∣∣∣∣∣ ≤ Cη2, (9.6)

where C is a constant that only depends on d and the supremum of |∇f |. The
proof of 9.6 is simple—once you know the trick. Let B be |∇f |’s supremum.
Since ∫

η1<|x−y|<η2

K(x − y) dy = 0,

we have∣∣∣∣∣
∫

η1<|x−y|<η2

K(x − y) f(y) dy

∣∣∣∣∣ =
∣∣∣∣∣
∫

η1<|x−y|<η2

K(x − y) (f(y) − f(x)) dy

∣∣∣∣∣
≤ B

∫
η1<|x−y|<η2

|x − y|
|x − y|d

dy

≤ CBη2.

Inequality 9.6 easily implies the existence of the principal value integral 9.5.
As for smoothness, we note that, for any x and x′,

TK(f)(x) − TK(f)(x′) =
∫
Rd

K(x − y) (f(y) − f(y + x′ − x)) dy, (9.7)

because the operator TK commutes with translations. But, as functions of y,
the first partial derivatives of f(y) − f(y + x′ − x) have their sizes bounded
by a constant times |x − x′|. Now a repetition of the earlier argument im-
plies |TK(f)(x) − TK(f)(x′)| ≤ C|x − x′|. The form of TK(f) shows that
TK(f)(x) → 0 fairly fast as |x| → ∞, implying that TK(f) is a bounded
function. In fact, because of the decay in K, we have

|TK(f)(x)| ≤ C(1 + |x|)−d (9.8)

for large x. Since TK(f) is bounded, 9.8 holds for all x (with a possibly larger
C). It is clear that similar arguments will imply similar estimates if B(0; 1) is
replaced by any other ball. Therefore, TK(f) is defined on a dense subspace
of Lp(Rd) when 1 < p < ∞. The problem now is to prove that TK satisfies an
Lp bound on this subspace; in other words, that

‖TK(f)‖p ≤ C‖f‖p (9.9)

for all f ∈ C∞
0 (Rd), with a constant C independent of f . Inequality 9.9 will

then imply that TK has a unique, bounded extension to all of Lp. Our work on
the square function will make proving 9.9 a fairly easy task. Since we already
know that TK(f) ∈ Lp, it is enough to show that
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Sψ(TK(f))(x) ≤ CGβ(f)(x) (9.10)

pointwise, for some fixed β > 0, where Sψ(·) and Gβ(·) are (respectively) the
real-variable and intrinsic square functions we defined in chapter 6. (See 6.1
and the sentence immediately following, and see Definition 6.1.)

Let ψ ∈ C∞
0 (Rd) be real, radial, be supported in {x : |x| ≤ 1}, have

integral equal to 0, and be normalized so that, for all ξ ∈ Rd \ {0},∫ ∞

0

|ψ̂(yξ)|2 dy

y
= 1.

(Formula 5.1 showing up again.) Inequality 9.10 will follow if we can show
that

|(TK(f)) ∗ ψy(t)| ≤ CÃ(β,ε)(f)(t, y), (9.11)

for all (t, y) ∈ Rd+1
+ , for some fixed, positive β and ε.

Inequality 9.11 will follow from the equation

(TK(f)) ∗ ψy(t) = f ∗ (TK(ψy))(t) (9.12)

and some estimates on TK(ψy)(t). The equation is easy. For every δ > 0, set

TK,δ(f)(x) ≡
∫
{y: |y|>δ}

f(x − y)K(y) dy.

The previous arguments imply that if f ∈ C∞
0 (Rd), then TK,δ(f) → TK(f)

uniformly and in Lp when 1 < p < ∞. (The convergence in Lp holds because,
when x is large, TK,δ(f)(x) = TK(f)(x) when δ is less than the distance to
f ’s support.) It is therefore trivial that

(TK,δ(f)) ∗ ψy(t) = f ∗ (TK,δ(ψy))(t) (9.13)

for all δ > 0, and that both sides of 9.13 converge to both sides of 9.12 as
δ → 0. That gives us 9.12.

The estimates are also not too bad. The essential step is to show that
TK(ψ) is a positive multiple of a function in C(1,α). An additional argument
will show that, for every y > 0, TK(ψy) is a boundedly positive multiple of
a function of the form φ

(y)
y , where φ(y) ∈ C(1,α). This function φ(y) will in

general not be TK(ψ), but will—as we have indicated—vary with y. But that
will be sufficient to yield 9.11.

We almost have what we need. Our earlier arguments show that

|TK(ψ)(x) − TK(ψ)(x′)| ≤ C|x − x′|

holds for any x and x′. We also know that

|TK(ψ)(x)| ≤ C(1 + |x|)−d.
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We need to show that TK(ψ) and its Hölder modulus actually decay a little
faster than this, and that

∫
Rd TK(ψ) dx = 0.

Size decay estimate. It is clear that, if x and x′ both have moduli larger
than 3, and |x − x′| ≤ 1, then

|K(x) −K(x′)| ≤ C(d)|x − x′|α|x|−d−α
.

Now, when |x| ≥ 3,

|TK(ψ)(x)| =
∣∣∣∣∫ K(x − y)ψ(y) dy

∣∣∣∣
=
∣∣∣∣∫ (K(x − y) −K(x))ψ(y) dy

∣∣∣∣,
because

∫
ψ dy = 0. Because of the smoothness bound on K, and the fact that

ψ is supported in the unit ball, the last integral is no bigger than a constant
times |x|−d−α. This shows that TK(ψ)(x) decays fast enough for us.

Smoothness decay estimate. Once again, we can assume that x and x′

have moduli larger than 3 and |x − x′| ≤ 1. We write

|TK(ψ)(x) − TK(ψ)(x′)| =
∣∣∣∣∫ (K(x − y) −K(x′ − y))ψ(y) dy

∣∣∣∣
=
∣∣∣∣∫ K(x − y) (ψ(y) − ψ(y + x′ − x)) dy

∣∣∣∣
=
∣∣∣∣∫ (K(x − y) −K(x)) (ψ(y) − ψ(y + x′ − x)) dy

∣∣∣∣
≤ C|x|−d−α|x − x′|
≤ C|x − x′|(1 + |x|)−d−α,

which is just what we needed.
Cancelation. Recall that, for δ > 0, we defined

TK,δ(ψ)(x) ≡
∫
{y: |y|>δ}

ψ(x − y)K(y) dy.

Our decay estimates imply that this is an L1 function for every δ > 0. As
δ → 0, this function converges in the L1 norm to the L1 function TK(ψ).
(The reason the convergence is in L1, and not merely uniform, is that, when
|x| ≥ 2, TK(ψ)(x) = TK,δ(ψ)(x) as soon as δ < 1.) Thus, it is enough to show
that

∫
TK,δ(ψ) dx = 0 for every δ > 0. Now fix δ > 0 and, for R > δ, define

TK,δ,R(ψ)(x) ≡
∫
{y: R>|y|>δ}

ψ(x − y)K(y) dy.
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The function TK,δ,R(ψ) is the convolution of ψ with an L1 function, and
therefore ∫

TK,δ,R(ψ) dx = 0

for all R (it inherits cancelation from ψ). Let us set

TK,R(ψ)(x) ≡
∫
|y|>R

ψ(x − y)K(y) dy,

and notice that TK,δ(ψ) = TK,δ,R(ψ) + TK,R(ψ). We will be done if we can
show

lim
R→∞

∫
TK,R(ψ)(x) dx = 0.

This integral is easy to estimate. If |x| < R − 1, TK,R(ψ)(x) = 0. If R − 1 ≤
|x| ≤ R + 1, |TK,R(ψ)(x)| is bounded by a constant times |x|−d. If |x| >

R + 1, |TK,R(ψ)(x)| is less than or equal to a constant times |x|−d−α. Putting
everything together, ∫

TK,R(ψ)(x) dx

is seen to be no bigger than a constant times R−1 + R−α, and that is just
what we needed.

Now we want to show that TK(ψy) is, up to a bounded positive multiple,
a function of the form φ

(y)
y , where φ(y) ∈ C(1,α). There are at least two ways to

do this. The longer way is to repeat the preceding argument, making allowance
(in several places) for the dilation by y. The shorter way is to observe that
TK(ψy) = (TK̃(ψ))y, where K̃(x) = ydK(yx); and to note that K̃ is also a
classical Calderón-Zygmund kernel. Thus, TK(ψy) will be a boundedly positive
multiple of some φ

(y)
y , where φ(y) ∈ C(1,α)(Rd). From this we immediately get

inequality 9.11 (with β = 1 and ε = α), which in turn yields inequality 9.10
for any β strictly less than α.

We have now shown that TK is well-defined as a bounded linear operator
on Lp. But this definition is a little troublesome, because we obtained it as
an extension from C∞

0 (Rd). It would be nice to have a tractable definition of
TK(f) that worked directly with f . By “tractable” we mean one that avoids
directly evaluating the singular integral 9.4. Our square function machinery
gives us a straightforward, fairly constructive way to do this.

Take another look at 9.12. We know it holds for f ∈ C∞
0 (Rd). However,

both sides depend continuously on f , with respect to the Lp norm. Therefore,
9.12 holds for all f ∈ Lp. The reader should spend a minute thinking of what
this means. The right-hand side of 9.12 is the convolution of f with a dilate of
a function in C(1,α): it is something we can know as a function. The left-hand
side of 9.12 is convolution of TK(f) with ψy, where TK(f) is only “known” as
a vector in Lp. Therefore, we can use 9.12 to understand TK(f) as a function.
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Let K have compact closure contained in Rd+1
+ . If f ∈ Lp, 1 < p < ∞,

then the following integral makes sense, and defines a function in C∞
0 (Rd):

PK(f)(x) ≡
∫

K

(f ∗ (TK(ψy))(t)ψy(x − t)
dt dy

y
. (9.14)

By what we said in the preceding paragraph, PK(f) is equal to∫
K

((TK(f) ∗ ψy(t))ψ(x − t)
dt dy

y
. (9.15)

Let K1 ⊂ K2 ⊂ · · · be a compact-measurable exhaustion of Rd+1
+ . Our work

with the Calderón reproducing formula now implies that PKi
(f) → TK(f)

in Lp. But this is a sequence of integrals of the form∫
Ki

(f ∗ Φ(y)
y (t))ψy(x − t)

dt dy

y
,

where Φ(y) = TK̃(ψ). If we denote the Lp limit of these integrals by∫
Rd+1

+

(f ∗ Φ(y)
y (t))ψy(x − t)

dt dy

y
, (9.16)

then 9.16 can be our definition of TK on Lp.

The bound 9.10 and our earlier work on square functions lead quickly to
weighted norm inequalities for the singular integral operators TK. Recall the
inequality from chapter 4:

S̃sd(f)(x) ≤ CSψ,α(f)(x),

valid for some sufficiently large α > 0. Therefore, if f ∈ C∞
0 (Rd),

S̃sd(TK(f))(x) ≤ CSψ,α(TK(f))(x) ≤ CGτ (f)(x),

for appropriate τ > 0. If 1 < p < ∞, and if v and w are weights such that∫
Q

v(x) (log(e + v(x)/vQ))r dx ≤
∫

Q

w(x) dx

for all cubes Q, for some r > p/2, then∫
|TK(f)|p v dx ≤ C

∫
(S̃sd(TK(f)))p w dx, (9.17)

implying ∫
|TK(f)|p v dx ≤ C

∫
(Gτ (f))p w dx.
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If 1 < p ≤ 2, then ∫
(Gτ (f))p w dx ≤ C

∫
|f |p M(w) dx.

Inequality 9.17 holds with w = M(v) for 1 < p < 2 and with w = M2(v)
when p = 2. Therefore, if f ∈ C∞

0 (Rd) and 1 < p ≤ 2,∫
|TK(f)|p v dx ≤ C

∫
|f |p M∗(v) dx (9.18)

for all weights v, where we may take

M∗(v) =
{

M2(v) if 1 < p < 2;
M3(v) if p = 2.

In the next chapter we will learn how to generalize inequalities of the
form 9.18 to all 1 < p < ∞.

Exercises

9.1. For d > 1, define Sd−1 to be the set {x ∈ Rd : |x| = 1}, the boundary
of {x : |x| ≤ 1}. Let Ω : Sd−1 �→ R be Hölder continuous of order α > 0, and
suppose that ∫

Sd−1
Ω(x) dσ(x) = 0,

where dσ denotes Euclidean surface measure. Show that, up to multiplication
by a positive constant, the formula

K(x) =
Ω(x/|x|)

|x|d

defines a classical Calderón-Zygmund kernel. Show that, if ψ ∈ C∞
0 (Rd), then,

for all y > 0,
TK(ψy) ≡ (TK(ψ))y,

implying that, if f ∈ Lp (1 < p < ∞), we can write

TK(f)(x) = c

∫
Rd+1

+

(f ∗ Φy(t))ψy(x − t)
dt dy

y

for a suitable ψ ∈ C∞
0 (Rd), constant c, and Φ ∈ C(1,α)(Rd).

9.2. Let w ∈ Ap for 1 < p < ∞, and let TK be a classical Calderón-Zygmund
operator. Show that∫

Rd

|TK(f)(x)|p w dx ≤ C(p, w)
∫
Rd

|f(x)|p w dx
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for all f ∈ C∞
0 (Rd). Use the results from exercise 7.10 to show how one can

extend TK to a bounded operator on all of Lp(w). Show that if f ∈ Lp(w),
and {Ki} is any compact-measurable exhaustion of Rd+1

+ , then TK(f) equals
the Lp(w) limit of PKi

(f), where PK(f) is as defined by 9.14 and 9.15.

9.3. Let 1 < p < ∞ and let w ∈ L1
loc(R

d) be a weight. Suppose that every
classical Calderón-Zygmund operator TK defines a bounded operator mapping
Lp(w) into Lp(w). Show that w ∈ Ap. (Hint: First show that w is doubling.
Then see exercise 7.7 for an idea of what sort of function to test the bound-
edness criterion against.)

Notes

The Lp(w) boundedness (1 < p < ∞, w ∈ Ap) was proved for the Hilbert
transform by Hunt, Muckenhoupt, and Wheeden in [30], where they also
proved the necessity of the Ap condition. Their result was generalized to
general classical Calderón-Zygmund operators TK by Coifman and Fefferman
in [13]. Inequalities of the form∫

|TK(f)|p v dx ≤ C

∫
|f |p M̃(v) dx,

with M̃ being some maximal function, first appeared in [13], with M̃(v) being
(M(vr))1/r for any r > 1. Inequalities in which M̃ is some finite iterate of M
were first proved in [62], but only for 1 < p ≤ 2. By a clever use of Orlicz
maximal functions, Pérez [46] was able to reprove these results and extend
them to large p without using Littlewood-Paley theory. The method we have
followed, of defining the action of TK via the Calderón reproducing formula,
is similar to that in [62]; see also [22], where the this is done in the context of
Besov spaces.
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Orlicz Spaces

Many precise results in analysis call for a scale of integrability conditions more
flexible than that provided by the Lp spaces. We have encountered such a scale
in the two-weight norm inequalities studied in chapter 3 and chapter 4. But,
more simply, we could consider the example given by

f(x) ≡
{
|x| ln |x||r|−1 if |x| ≤ 1/2;
0 otherwise,

where r > 1. The function f belongs to L1, but not to Lp for any p > 1.
However, this is not the whole story. If |x| is small then f(x)| ln(f(x))|s is
comparable to |x| ln |x||r−s|−1

, and so f | ln f |s will still be in L1 if 0 < s < r−1.
In other words, when r > 1, this function is in L1—and a little more—without
being in Lp for any higher p.

A useful, finely structured scale of integrability conditions is provided
by the theory of Orlicz spaces, which are natural generalizations of the Lp

spaces—in the following sense. Consider: we can say that f ∈ Lp if and only
if Φ(|f |) ∈ L1, where Φ(t) = tp. The theory of Orlicz spaces applies this idea
to more general functions Φ.

We say that Φ : [0,∞] �→ [0,∞] is a Young function if:
a) Φ(0) = 0;
b) there exists a number 0 < x0 < ∞ such that Φ(x0) < ∞;
c) Φ ↗ ∞; i.e., Φ is increasing and limx→∞ Φ(x) = ∞;
d)Φ is convex, where this means that, for all 0 ≤ x ≤ y ≤ ∞, and all 0 ≤ t ≤ 1,
Φ(tx + (1 − t)y) ≤ tΦ(x) + (1 − t)Φ(y).

Before going on, let’s observe some features and easy consequences of this
definition.
1. We allow Φ to take on the value +∞.
2. We do not require Φ to be either strictly convex or strictly increasing;
however, unless Φ takes on the value +∞ for some finite x0, Φ(x) must be
strictly increasing for sufficiently large x.
3. Φ(∞) = ∞.
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4. Either Φ is continuous on all of [0,∞) or there is a 0 < b < ∞ such that
Φ is continuous on [0, b) and identically infinite on (b,∞]. In particular, Φ is
continuous at 0.

Now let’s suppose we are working on a measure space (X,M, µ). Given
a Young function Φ, we define the Orlicz space LΦ(X,M, µ) to be the set of
measurable f such that ∫

Φ(|f |/λ) dµ < ∞

for some λ > 0. We put a norm on LΦ by defining

‖f‖Φ = inf{λ > 0 :
∫

Φ(|f |/λ) dµ ≤ 1}.

It will be helpful to observe some features of this so-called norm.
1. It really is a norm. It’s trivial to see that ‖αf‖Φ = |α|‖f‖Φ and that
‖f‖Φ = 0 if and only if f = 0 µ-a.e. The triangle inequality is only slightly
trickier. Let f and g be non-negative functions in LΦ, with respective norms
λ1 and λ2, both of which we may take to be positive. We need to show that
‖f + g‖Φ ≤ λ1 + λ2. Let λ1 < γ1 and λ2 < γ2. Then∫

Φ(f/γ1) dµ

and ∫
Φ(g/γ2) dµ

are both ≤ 1. We will be done if we can show that∫
Φ((f + g)/(γ1 + γ2)) dµ ≤ 1.

Fortunately, this is easy. By simple algebra:

f + g

γ1 + γ2
=

f

γ1

γ1

γ1 + γ2
+

g

γ2

γ2

γ1 + γ2
.

The convexity of Φ now implies that∫
Φ((f + g)/(γ1 + γ2)) dµ ≤ γ1

γ1 + γ2

∫
Φ(f/γ1) dµ +

γ2

γ1 + γ2

∫
Φ(g/γ2) dµ

≤ γ1

γ1 + γ2
+

γ2

γ1 + γ2
= 1,

proving the result. Armed with this fact, the reader should have little trouble
showing that LΦ is complete, and we urge him to do it.
2. If Φ1 and Φ2 are two Young functions, and Φ1(x) ≤ Φ2(x) for all x, then
‖f‖Φ1

≤ ‖f‖Φ2
. Therefore if there are positive constants a and b such that
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Φ1(ax) ≤ Φ2(x) ≤ Φ1(bx) for all x, then LΦ1 = LΦ2 , with comparability of
norms.
3. If Φ1 and Φ2 are two Young functions, then Φ ≡ Φ1+Φ2 is a Young function,
and LΦ = LΦ1 ∩ LΦ2 .

Let’s look at some examples.
1. If Φ(x) = xp (1 ≤ p < ∞), then LΦ = Lp(X,M, µ) and ‖f‖Φ = ‖f‖p.
2. If we let p → ∞ in the previous example, we get

Φ(x) =

{ 0 if 0 ≤ x < 1;
1 if x = 1;
∞ otherwise.

This is a Young function according to our definition. The corresponding Orlicz
space LΦ is L∞, with the usual norm.
3. Now suppose we take

Φ(x) =
{

x/(1 − x) if 0 ≤ x < 1;
∞ otherwise.

The reader should check that Φ is a Young function. If our measure space
is finite, this Φ also yields LΦ = L∞, though not with equality of norms,
even if we also assume µ(X) = 1. To see that the norms aren’t equal, take
f identically equal to 1 and suppose that

∫
Φ(f/λ) dµ ≤ 1. Then λ > 1, and

the integral is equal to 1/(λ−1), implying that λ ≥ 2. If the measure space is
infinite, we do not get LΦ = L∞, but LΦ = L1 ∩L∞: since Φ(x) is essentially
x near 0, the functions in LΦ must not only be bounded, but must (in an
average sense) decay rapidly “at infinity.”
4. Define Φ(x) = exp(x2) − 1. If the measure space is finite, LΦ consists of
the exponentially square-integrable functions: f ∈ LΦ if and only if there is
an ε > 0 such that ∫

exp(ε|f |2) dµ < ∞.

(The −1 in the defintion of Φ is unimportant here.) If the space is infinite
then LΦ consists of all of the L2 functions f such that, for some ε > 0,∫

{x: |f(x)|>1}
exp(ε|f |2) dµ < ∞.

The restriction to L2 comes because, when f is small, Φ(|f |) ∼ |f |2. This
restriction is similar to the restriction to L1 in example 3.
5. Consider the two functions Φ1(x) = x log(1 + x) and Φ2(x) = x log(2 + x).
If the measure space is finite then LΦ1 = LΦ2 , with comparable but different
norms; the common space is called L log L. But if the measure space is R with
Lebesgue measure, the spaces will not be the same. We urge the reader to find
an f in this setting that lies in one space but not in the other.
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6. Let 1 ≤ r < ∞ and s ∈ R. If s ≥ 0, then xr(log(e+x))s is a Young function
for any r ≥ 1. But what if s is negative? We notice that xr(log(e + x))s is
eventually increasing. However, it will not be convex—even eventually—unless
r > 1. So, if s < 0, we will require that r > 1. In that case we can define a
Young function Φ that is linear for “small” x and that equals a constant
multiple of xr(log(1 + x))s when x is “large.” When s > 0, the LΦ norm is
marginally stronger than the Lr norm, but, when the measure space is finite,
it is weaker than the Lr+ε norm, for any ε > 0. If s < 0—and r > 1—LΦ’s
norm is weaker than Lr’s, but (in the case of finite total measure) stronger
than all the Lr−ε norms. We will soon be taking a closer look at these spaces.

Since LΦ is a Banach space (do the exercise!), it has a dual space. Some-
times this dual space is LΨ for some Ψ , and sometimes it isn’t. The functions
Φ = xp (1 ≤ p < ∞) provide examples of the first type. If 1 < p then we
can take Ψ = xp′

, where p′ = p/(p − 1), p’s dual exponent. If p = 1 then we
can take as Ψ the Young function which gave us L∞ earlier, or we can take a
shortcut and set

Ψ(x) =
{ 0 if 0 ≤ x ≤ 1;
∞ otherwise.

(The reader should check that the Orlicz space defined by this Ψ is also L∞.)
However, if Φ equals the Ψ we just wrote, which makes LΦ equal to L∞, its
dual is not an Orlicz space except in trivial cases. This suggests two questions:
a) Given a Young function Φ, when is (LΦ)∗ an Orlicz space? b) If (LΦ)∗ equals
some LΨ , what is Ψ? Fortunately, we won’t need to know the answers to either
a) or b) in general. But we will need to know this: Given a Young function Φ,
do there exist a constant C and a Young function Ψ such that∫

|fg| dµ ≤ C‖f‖Φ‖g‖Ψ

for all measurable f and g; and, if so, what is a “good” or “natural” Ψ?
What we need is an Orlicz space version of Hölder’s inequality.

Definition 10.1. If Φ is a Young function, its dual function, Φ̄ : [0,∞] �→
[0,∞] is defined by:

Φ̄(y) = sup{xy − Φ(x) : x ≥ 0}.

Remark. This definition looks peculiar. The main reason for its strange
form is to ensure

xy ≤ Φ(x) + Φ̄(y)

for all x and y. This numerical inequality is the heart of the proof of the
general Hölder inequality.

The reader might want to come back to the next theorem after looking
at the examples which follow it.

Theorem 10.1. If Φ is a Young function, so is Φ̄.
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Proof of Theorem 10.1. For any y, xy − Φ(x) equals 0 when x = 0,
thus Φ̄(y) ≥ 0; and it is trivial that Φ̄(0) = 0. If 0 ≤ y1 ≤ y2 then, for any
x, xy2 − Φ(x) ≥ xy1 − Φ(x), implying that Φ̄(y2) ≥ Φ̄(y1), and that Φ̄ ↗.
By definition, there is a number 0 < x0 < ∞ such that Φ(x0) < ∞. Thus,
for every y, Φ̄(y) ≥ x0y − Φ(x0), which goes to ∞ as y → ∞. Since Φ is
convex and Φ(0) = 0, the function Φ(x)/x increases to a positive (possibly
infinite) value as x → ∞. Call this limit m and suppose that 0 < y < m. Then
xy − Φ(x) → −∞ as x → ∞, implying that Φ̄(y) is finite. (N.B. It might be
0.) The only thing left to prove about Φ̄ is its convexity. If 0 ≤ y1 ≤ y2 < ∞
and 0 < t < 1 then

x(ty1 + (1 − t)y2) − Φ(x) = t(xy1 − Φ(x)) + (1 − t)(xy2 − Φ(x))
≤ tΦ̄(y1) + (1 − t)Φ̄(y2)

for all x ≥ 0. Taking the supremum on the left-hand side yields Φ̄(ty1 +(1− t)
y2) ≤ tΦ̄(y1) + (1 − t)Φ̄(y2); easy arguments (which we invite the reader to
do) take care of the endpoint cases t = 0, t = 1, and y2 = ∞. That was the
last piece: Φ̄ is a Young function.

Now some examples (which we encourage the reader to work out).
1. Let Φ(x) = xr/r, where 1 < r < ∞. This makes LΦ equal to Lr, but
with a slightly different norm. The supremum of xy − Φ(x) is attained when
xr−1 = y, and it equals yr′

/r′, where r′ is r’s dual exponent.
2. Let Φ(x) = x, making LΦ = L1. If y ≤ 1 then the supremum of xy − Φ(x)
is 0 (attained when x = 0). If y > 1 its supremum is infinite. Thus, the Φ̄ we
obtain is one whose LΦ̄ is L∞.
3. Now define

Φ(x) =
{

0 if 0 ≤ x ≤ 1;
∞ if x > 1,

and consider xy − Φ(x). This equals xy for 0 ≤ x ≤ 1 and −∞ when x > 1.
Therefore its supremum—Φ̄(y)—is just y.
4. Let Φ(x) = exp(x2) − 1. Then xy − Φ(x) attains its supremum when y =
2x exp(x2). If y is large, this happens when x ∼ (log y)1/2, and xy − Φ(x) =
(2x2 −1) exp(x2)+1 ∼ y(log y)1/2. In this case we don’t get a precise formula
but, what is just as useful, an estimate of Φ̄(y) for large y: Φ̄(y) ∼ y(log y)1/2.
5. If, in the previous example, we had taken Φ(x) = exp(xr) − 1, with r ≥ 1,
we would have got Φ̄(y) ∼ y(log y)1/r for large y.
6. If 0 < r < 1 then exp(xr) − 1 is convex for large x. We can build a Young
function Φ(x) that equals exp(xr)−1 when x is big. Repeating the construction
from example 4, we get Φ̄(y) ∼ y(log y)1/r for large y.
7. Let Φ(x) = x(log(e+x))α, where α > 0. If y is large, the quantity xy−Φ(x)
is maximized when y ∼ (log(e + x))α, or x ∼ exp(c′αy1/α). This implies that,
for large y, Φ̄(y) ∼ exp(cαy1/α) for some positive constant c′α.
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8. Let Φ(x) ∼ (x(log(1 + x))s)r for large x, where r > 1 and s ∈ R. If y is
large, we maximize xy − Φ(x) by setting x ∼ (y/(log(1 + y))sr)1/(r−1). Then
Φ̄(y) ∼ xy − Φ(x) ∼ yr′

(log(1 + y))−sr/(r−1) = (y(log(1 + y))−s)r′
.

The point of the dual Young function is this:

Theorem 10.2. Let Φ be a Young function and let Φ̄ be its dual. If f ∈ LΦ

and g ∈ LΦ̄, then fg ∈ L1, and∫
|fg| dµ ≤ 2‖f‖Φ‖g‖Φ̄.

Proof of Theorem 10.2. It’s enough to prove the theorem when ‖f‖Φ =
‖g‖Φ̄ = 1. By the construction of Φ̄, we have, for every x in our measure space,

|f(x)g(x)| ≤ Φ(|f(x)|) + Φ̄(|g(x)|).

Integrating both sides with respect to dµ(x) gives∫
|f(x)g(x)| dµ(x) ≤ 2,

and that’s what we wanted.

The reader may have noted that, in several of the previous examples,
we did not bother to find a precise formula for a given Young function, but
were content with a “large x” estimate. The reason for this is that the only
Orlicz spaces of interest to us will be those in which the underlying measure
spaces are finite. For such spaces, the question of whether f belongs to LΦ

only depends on how Φ(x) grows as x → ∞.
These finite measure spaces will, in fact, be very simple probability spaces.

Definition 10.2. Let Φ be a Young function. If Q ⊂ Rd is a cube and f :
Rd �→ R is Lebesgue measurable, we define ‖f‖Φ,Q to be the the LΦ norm of
f where the underlying measure space is |Q|−1

χQ dx. I.e.,

‖f‖Φ,Q = inf{λ > 0 :
1
|Q|
∫

Q

Φ(|f |/λ) dx ≤ 1}.

A few remarks are in order.
1. If Φ(x) = xp (1 ≤ p < ∞) then

‖f‖Φ,Q =
(

1
|Q|
∫

Q

|f |p dx

)1/p

,

as the reader can (and should) verify. This ‖f‖Φ,Q gives a useful, locally
averaged measure of the size of f .
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2. If

Φ(x) =
{

0 if 0 ≤ x ≤ 1;
∞ otherwise,

then ‖f‖Φ,Q is the essential supremum of fχQ. This ‖f‖Φ,Q does NOT give
a useful, locally averaged measure of the size of f .
3. Just to get used to the notation, we’ll look at what might or might not be
an old friend. (If it’s not, just take what I say on faith.) A function f is said
to be of bounded mean oscillation (f ∈ BMO) if

sup
Q⊂Rd

1
|Q|
∫

Q

|f − fQ| dx < ∞,

and the supremum is denoted by ‖f‖∗. The celebrated John-Nirenberg theo-
rem states that, if f ∈ BMO, there is positive constant cf such that

1
|Q|
∫

Q

exp(cf |f − fQ|) dx ≤ 2

for all cubes Q (see [25] for a nice proof). Moreover, this cf satisfies cf >
A(d)/‖f‖∗, where A(d) is positive and only depends on the dimension d.

Let’s restate this result in terms of local Orlicz norms. Define Φ1(x) = x
and Φ2(x) = exp(x) − 1. The John-Nirenberg theorem becomes:

sup
Q⊂Rd

‖f − fQ‖Φ2,Q ≤ C sup
Q⊂Rd

‖f − fQ‖Φ1,Q,

for a positive constant C that depends only on d.
In our opinion, this phrasing of the theorem is almost completely unintel-

ligible; but, precisely because of that, unwinding it might be an illuminating
exercise.

We will encounter local Orlicz norms in the context of Orlicz maximal
functions.

Definition 10.3. If Φ is a Young function and f : Rd �→ R is Lebesgue
measurable, the Orlicz maximal function of f , MΦ(f)(x), is defined by:

MΦ(f)(x) ≡ sup
Q:x∈Q

‖f‖Φ,Q.

If Φ(x) = xr (1 ≤ r < ∞) then

MΦ(f)(x) = sup
Q:x∈Q

(
1
|Q|
∫

Q

|f |r dt

)1/r

.

This maximal function, which is obviously similar to Mr,d, is often denoted
as Mr(f), and we will follow that convention. Note that setting Φ = x (r = 1)
gives the usual Hardy-Littlewood maximal function.

By virtue of the generalized Hölder inequality (Theorem 10.2), we have
the following interesting and useful result.
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Theorem 10.3. Let Φ be a Young function and let Φ̄ be its dual. Then the
pointwise inequality

M(fg)(x) ≤ 2(MΦ(f)(x))(MΦ̄(g)(x))

holds for all x ∈ Rd, for all Lebesgue measurable f and g.

The reader knows that M1 is a bounded sublinear operator on Lp for
p > 1, but not for p = 1. In a similar fashion, Mr is bounded on Lp for p > r,
but not for p = r. Now, mathematicians love to motivate theorems by calling
questions “natural,” and it is certainly natural to ask the following: Given a
Young function Φ, when does MΦ define a bounded operator on Lp? However,
we can do better here. Our work on the square function and singular integral
operators has yielded a collection of inequalities of the form∫

|T (f)|p v dx ≤ C

∫
|f |p M∗(v) dx,

valid for all weights v and all 1 < p ≤ 2, where M∗(·) denotes some maximal
operator depending on T and p. We left open the question of how to generalize
such inequalities to p > 2. The following theorem plays an essential part in
filling this gap.

Theorem 10.4. Let Φ be a Young function and let 1 < p < ∞. Then MΦ is
bounded on Lp(Rd) if ∫ ∞

1

Φ(x)
dx

xp+1
< ∞. (10.1)

Remark. This theorem is due to Carlos Pérez [47], and we shall refer
to 10.1 as the Pérez condition. The Pérez condition is also necessary for Lp

boundedness. However, since all of our interest in the theorem concerns its
sufficiency, we will hold off proving necessity until the end of the chapter.

Remark. The ‘1’ at the lower limit of the integral 10.1 can be replaced by
any positive number c.

Before proving the theorem, let’s see what it says about some of the
Young functions we’ve looked at.
1. If Φ(x) = xr, then Φ satisfies the Pérez condition 10.1 if and only if r < p,
which is a classical result.
2. If Φ(x) ∼ xr(log(1+x))sr for large x, then the Theorem 10.4 says that MΦ

is bounded when r < p and unbounded when r > p. What about when r = p?
In that case, ∫ ∞

c

Φ(x)
dx

xp+1
=
∫ ∞

c

1
x(log(1 + x))−sp

dx,

which is finite when sp < −1 and infinite otherwise. In other words, when
r = p, a sufficiently large negative power of the logarithm can “mollify” xr

enough to make MΦ bounded on Lp.
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3. The Young function Φ(x) = exp(x) − 1 doesn’t satisfy 10.1. It isn’t hard
to see that MΦ isn’t bounded on any Lp (1 < p < ∞). For n = 0, 1, 2, 3, . . .,
let En ⊂ [n, n + 1] be measurable. (The measures of the En’s will be chosen
presently.) Define f =

∑
χEn

. Then
∫ |f |p dx =

∑ |En|. For each n (the
reader should check this),

‖f‖Φ,[n,n+1] =
1

log(1 + 1/|En|) ,

and therefore
MΦf(x) ≥ 1

log(1 + 1/|En|)
for all x ∈ [n, n + 1], implying that∫

(MΦf)p dx ≥
∑(

1
log(1 + 1/|En|)

)p

.

Setting |En| = 1/(n + 1)2 gives an f ∈ Lp for which MΦ(f) /∈ Lp. (Question
for the reader: Is this MΦ bounded on L∞?)

Proof of Theorem 10.4. We will first prove sufficiency of 10.1 for
boundedness of the dyadic form of MΦ; i.e., for

MΦ,d(f)(x) ≡ sup
Q:x∈Q∈Dd

‖f‖Φ,Q,

where the supremum is only taken over dyadic cubes containing x. The general
case will follow from a slight modification of this argument.

Boundedness of MΦ,d will follow from the inequality:

|{x : MΦ,d(f)(x) > t}| ≤ C

∫
{x: |f(x)|≥ct}

Φ(|f(x)|/t) dx, (10.2)

valid for all t > 0, and for some positive constants C and c. That’s because,
once we have 10.2, we can multiply both sides by ptp−1, integrate from 0 to
infinity, and get:∫

(MΦ,d(f))p dx = p

∫ ∞

0

tp−1|{x : MΦ,d(f)(x) > t}| dt

≤ C

∫ ∞

0

tp−1

(∫
{x: |f(x)|≥ct}

Φ(|f(x)|/t) dx

)
dt

= C

∫
|f(x)|p

(∫ ∞

c

Φ(u)
up+1

du

)
dx

= C

∫
|f(x)|p dx,

where the next-to-last line follows from Fubini-Tonelli and a substitution
u = |f |/t.
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The proof of 10.2 is not hard. Let N be a large number, and define

MΦ,d,N (f)(x) ≡ sup
Q:x∈Q∈Dd

�(Q)≤N

‖f‖Φ,Q.

It will be enough to prove 10.2 with MΦ,d,N (f) in place of MΦ,d(f), so long
as we can do so with constants C and c that do not depend on N . Let Q
be any dyadic cube with �(Q) ≤ N and such that ‖f‖Φ,Q > t. Now recall
the definition of ‖f‖Φ,Q for a moment. Having ‖f‖Φ,Q > t implies that if
0 < λ ≤ t, then we must have

1
|Q|
∫

Q

Φ(|f |/λ) dx > 1.

In particular,
1
|Q|
∫

Q

Φ(|f |/t) dx > 1.

These dyadic cubes Q have bounded diameters. Therefore, each one is con-
tained in a maximal dyadic Qk satisfying ‖f‖Φ,Qk

> t, and these cubes Qk

are disjoint. For each Qk, we have

|Qk| ≤
∫

Qk

Φ(|f |/t) dx. (10.3)

Now, we would like to say, “Sum over k and we’re done.” Unfortunately, doing
that would only yield

|{x : MΦ,d,Nf(x) > t}| ≤
∫

Φ(|f(x)|/t) dx,

which is not quite what we need.
Let c > 0 be such that Φ(c) < .5; such a c exists because Φ is continuous

at 0. Then ∫
{x∈Qk: |f(x)|≤ct}

Φ(|f |/t) dx ≤ .5|Qk|.

Combining this with 10.3 gives∫
{x∈Qk: |f(x)|≥ct}

Φ(|f |/t) dx ≥ .5|Qk|,

and therefore
|Qk| ≤ 2

∫
{x∈Qk: |f(x)|≥ct}

Φ(|f |/t) dx.

If we now sum this inequality over k, we get 10.2 for MΦ,d,N (f), which implies
the Lp boundedness of MΦ,d.

We shall now prove sufficiency for the non-dyadic maximal function MΦ.
Our proof will follow (pretty closely) the one we gave for MΦ,d, and in fact
will depend on it. We will show:
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|{x : MΦ(f)(x) > t}| ≤ C|{x : MΦ̃,d(f)(x) > t}|,

where Φ̃ = AΦ for some large constant A; and that will clearly suffice.
Suppose MΦ(f)(x′) > t > 0. Then, repeating the argument given above,

x′ lies in a cube Q such that∫
Q

Φ(|f |/t) dx ≥ |Q|.

We will now use a simple geometrical fact: For every cube Q ⊂ Rd, there
exist 3d congruent, dyadic cubes {Qi}3d

1 , all satisfying (1/2)�(Q) < �(Qi) ≤
�(Q), and such that

Q ⊂ ∪Qi.

(It’s easiest to see this when d = 1; the general case follows by covering Q ‘one
dimension at a time.’ By the way, this was a suggested exercise in chapter 1.)
At least one of these Qi’s must satisfy∫

Qi

Φ(|f |/t) dx ≥ (1/3d)|Q| ≥ (1/3d)|Qi|,

or ∫
Qi

Φ̃(|f |/t) dx ≥ |Qi|,

where Φ̃ = 3dΦ. This implies that ‖f‖Φ̃,Qi
≥ t, and thus that MΦ̃,d(f) ≥ t on

all of Qi. But Qi is not much smaller than Q, and it is close to Q; in fact,
Q is contained in 20Qi, the twenty-fold dilate of Qi. Therefore (we encourage
the reader to fill in the details),

|{x : MΦ(f)(x) > t}| ≤ 20d|{x : MΦ̃,d(f)(x) > t}|,

finishing the proof of sufficiency.

We will be most interested in Orlicz maximal functions MΦ such that
Φ(x) ∼ xr(log(1 + x))sr for large x, with r ≥ 1. Our most important appli-
cations of these will require a generalization of the Orlicz Hölder inequality
proved above.

Suppose that A and B are Young functions with the property that, for
some positive y, the function B(xy)−A(x) is bounded on [0,∞); an example
of such a pair is B(x) = x and A(x) = xr, with r > 1. Note that, in this
example, B(xy) − A(x) isn’t just bounded for some y, but goes to negative
infinity, as x → ∞, for all y. The same thing will happen in every case of
interest to us.

Define
C(y) ≡ sup{B(xy) − A(x) : x ≥ 0}.
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By following virtually the same argument we gave earlier, we can show that
C is also a Young function. (Our extra hypothesis on A and B ensures that
C(y) will be finite for some positive y.) Moreover, it satisfies

B(xy) ≤ A(x) + C(y)

for all x and y. The argument in the proof of the generalized Hölder inequality
goes through with easy modifications to imply that, for any f and g,

‖fg‖B ≤ 2‖f‖A‖g‖C . (10.4)

We note in passing that the pointwise inequality,

MB(fg)(x) ≤ 2MA(f)(x)MC(g)(x),

follows immediately.
Although inequality 10.4 is beautiful and rigorous, in many applications

it is not very useful, because it can be difficult to find a formula for C from
the definition we have given. The trouble with our definition is that it’s too
general: it applies to arbitrary Young functions, but all the interesting appli-
cations involve “nice” Young functions.

What is “nice”?
Claim: Suppose that A, B, and C are three strictly increasing, every-

where continuous Young functions. Let A−1, B−1, and C−1 be their inverse
functions. If, for all t > 0,

A−1(t)C−1(t) ≤ B−1(t), (10.5)

then, for all positive x and y,

B(xy) ≤ A(x) + C(y). (10.6)

Conversely, if A, B, and C satisfy 10.6 for all x and y , then, for all t > 0,

A−1(t)C−1(t) ≤ B−1(2t). (10.7)

Proof of claim: Let A(x) = s and C(y) = v, and set t = s + v. Then, since
t ≥ s and t ≥ v, and A−1 and C−1 are both increasing,

xy = A−1(s)C−1(v) ≤ A−1(t)C−1(t) ≤ B−1(t),

implying
B(xy) ≤ t = s + v = A(x) + C(y),

which is 10.6. Conversely, if 10.6 holds and t > 0, let A(x) = C(y) = t. Then
10.6 implies that

B(xy) ≤ A(x) + C(y) = 2t,

and therefore that
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A−1(t)C−1(t) = xy ≤ B−1(A(x) + C(y)) = B−1(2t).

Conclusion: 10.6 and 10.5 are essentially equivalent, for appropriate
Young functions. Also, it isn’t hard to see that if A, B, and C satisfy 10.7
then they almost satisfy 10.6; namely, B(xy) ≤ 2(A(x) + C(y))—which is
good enough to yield a generalized Hölder’s inequality (up to a factor of 2).

Given this, it’s natural to ask why we didn’t use 10.5 or 10.7 to define
the dual Young function C. The reason is that it isn’t obvious that a C
satisfying 10.5 or 10.7 will automatically be a Young function. In other words,
the supremum process based on 10.6 gives us existence of an appropriate C.
Once we have it (and if we know it has the right properties), we can use 10.7
to estimate C. What is important to keep in mind is that these two kinds
of inequalities yield three Orlicz norms satisfying 10.4, and they allow us to
control the Orlicz norm of a product by the product of two other Orlicz norms.

Now let’s look at some examples.
1. If we put B(x) = xr and A(x) = xp, with 1 ≤ r < p < ∞, then freshman
calculus shows that C(y) is a constant times yq, where q = pr

p−r , or 1/q = 1/r−
1/p; and we obtain, up to a constant factor, the classical Young’s Inequality.
2. Let B(x) = x(log(e + x))s for large x and suppose A(x) = xr, with r > 1.
In this case it’s much easier to use 10.5. We can also simplify things by re-
membering that we only need to estimate C(y) for large y. We make a simple
observation about numbers: If p is any real number, the inverse function of
x(log(e + x))p is approximately t(log(e + t))−p, at least when x or t is large.
Therefore, B−1(t) is essentially t(log(e + t))−s. Now, the inverse function of
A is trivially t1/r. So, to get 10.5, we want

C−1(t) ∼ t1/r′
(log(e + t))−s,

which will follow if
C(x) ∼ xr′

((log(e + x))sr′
.

3. Let B be as in the last example, but now let A(x) ∼ xr(log(e+x))k, where
r > 1 and k is a real number. The inverse function of A is essentially

t1/r

(log(e + t))k/r
,

implying that a good choice for C−1(t) is

t1/r′

(log(e + t))s−k/r
,

which, after some juggling, yields

C(x) ∼ xr′
(log(e + x))(s−k/r)r′

.
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4. Finally, for an extreme example, let’s take B(x) = exp(x) − 1 and A(x) =
exp(xr) − 1, with r > 1. It isn’t hard to see that the right C will have the
form C(x) ∼ exp(c xr′

) for large x.
Theorem 10.4 answers the question of what Orlicz maximal functions MΦ

are bounded on Lp, and it naturally raises another question: Given an MΦ,
what growth condition on f ensures that MΦ(f) is locally integrable? We can
make this more precise: Given a Young function Φ, does there exist another
Young function Φ∗ such that, for all f and all cubes Q,∫

Q

MΦ(fχQ) dx ≤ C‖fχQ‖Φ∗ , (10.8)

where C is some absolute constant? Our interest in this question is practical,
because very soon we will need to know what happens when we take (Hardy-
Littlewood) maximal functions of (Orlicz) maximal functions, and 10.8 and
its converse (see below) provide the key estimates. We will only consider these
inequalities for the special case when Φ is everywhere continuous and strictly
increasing. As our examples and discussions show, those are not very restric-
tive conditions.

One well-known instance of 10.8 is provided by the pair of functions
Φ(x) = x and Φ∗(x) = x log(e+x). A proof of 10.8 for these functions is given
in [53]. That proof is what motivates the following definition.

Definition 10.4. If B is a strictly increasing, everywhere continuous Young
function, we define

B∗(x) = x

(
1 +
(∫ x

1

B(u)
u2

du

)
+

)
.

It is not hard to see that B∗ is also a strictly increasing, everywhere
continuous Young function. It is also useful to observe that there is a positive
constant C such that B(x) ≤ CB∗(x) for all x; and therefore that, for any f ,

‖f‖B ≤ c‖f‖B∗ .

Our theorem is:

Theorem 10.5. If B is a strictly increasing, everywhere continuous Young
function, then there is a constant C, depending on B, such that, for all cubes
Q and all f ,

1
|Q|
∫

Q

MB(fχQ) dx ≤ C‖f‖B∗,Q. (10.9)

Before proving Theorem 10.5, we should check it. Let B(x) = xr, where
1 < r < ∞. Then

B∗(x) = x

(
1 +
(∫ x

1

ur−2 du

)
+

)
=
{

x if 0 ≤ x ≤ 1;
x + xr−x

r−1 if x > 1,
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and thus is ∼ xr when x is large. This amounts to saying

1
|Q|
∫

Q

Mr(f) dx ≤ Cr,d

(
1
|Q|
∫

Q

|f |r dx

)1/r

,

which looks a little weird, but is classical: we essentially proved it in chapter
3 (Lemma 3.2). If instead we put B(x) = x, then

B∗(x) = x

(
1 +
(∫ x

1

1
u

du

)
+

)
= x(1 + log+ x) ∼ x log(e + x),

for large x, which gives the result from [53].
Proof of Theorem 10.5. We take f to be non-negative. We will prove

the theorem for the dyadic form of MB , and under the assumption that Q is
a dyadic cube with volume equal to 1. We will also assume that f ’s support is
contained inside Q and that ‖f‖B∗ = 1. Because of B∗’s continuity, the last
statement means the same as

∫
Q

B∗(f) dx = 1. The integral we are trying to
control is less than or equal to

|Q| +
∫ ∞

1

|{x ∈ Q : MB(f)(x) > t}| dt. (10.10)

The first term—|Q|—is clearly no problem. Earlier arguments imply that the
integrand in the t integral is less than or equal to∫

{x∈Q: f(x)>ct}
B(f/t) dx,

where c is a small positive constant depending on B. Therefore our t integral
is bounded by∫ ∞

1

(∫
{x∈Q: f(x)>ct}

B(f/t) dx

)
dt =

∫
Q

(∫ f(x)/c

1

B(f(x)/t) dt

)
+

dx.

After a change of variables, the inner integral becomes

f(x)

(∫ f

c

B(u)
u2

du

)
+

≤ c′B∗(f(x)),

where the constant c′ comes in because c might be pretty small (though it
won’t be zero). When we integrate this inequality in x, and combine it with
our earlier estimate 10.10, we get 10.9.

Readers of [53] will recall that, when B(x) = x, Theorem 10.5 has a con-
verse. Essentially the same argument as in [53] yields the analogous converse
for general B.
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Theorem 10.6. Let B and B∗ be as in Theorem 10.5. Then, for any cube Q,

‖f‖B∗,Q ≤ C
1
|Q|
∫

Q

MB(fχQ) dx.

Proof of Theorem 10.6. Again we assume that Q is dyadic, with
volume 1. We also assume that our non-negative f has support contained in
Q and that

∫
Q

B∗(f) dx = ‖f‖B∗ = 1; the reader should notice that the pre-
ceding equation implies that 1

|Q|
∫

Q
f dx ≤ 1. We will show that

∫
Q

MB(f) dx

is bounded below by an absolute constant.
We have two cases to consider. Write:

1 =
∫

Q

B∗(f) dx =
∫
{x∈Q:f≤10}

B∗(f) dx +
∫
{x∈Q:f>10}

B∗(f) dx. (10.11)

One of the integrals on the far right must be ≥ 1/2. Suppose it’s the first
one. We split it into two pieces, and remember that B∗(x) = x when x ≤ 1:∫

{x∈Q:f≤10}
B∗(f) dx =

∫
{x∈Q:f≤1/4}

B∗(f) dx +
∫
{x∈Q:1/4<f≤10}

B∗(f) dx

≤ (1/4) + B∗(10)|{x ∈ Q : 1/4 < f(x)}|.

We are assuming that the integral on the left is ≥ 1/2, which implies that

|{x ∈ Q : 1/4 < f(x)}| ≥ (4B∗(10))−1 > 0.

This implies a lower bound on ‖f‖B,Q; because, for any λ > 0,∫
Q

B(f/λ) dx ≥
∫
{x∈Q:f≥1/4}

B(f/λ) dx ≥ B(1/(4λ))|{x ∈ Q : 1/4 < f(x)}|,

which goes to infinity as λ → 0. So, if we’re going to have
∫

Q
B(f/λ) dx ≤ 1,

λ has to be ≥ some λ0 > 0. But then (remember that |Q| = 1):∫
Q

MB(f) dx ≥ ‖f‖B,Q ≥ λ0,

and we’re done—in this case.
Now we assume that the second of the far-right integrals in 10.11 is ≥ 1/2.

On the set {x ∈ Q : f(x) > 10},

B∗(f(x)) = f(x) + f(x)
∫ f(x)

1

B(u)
u2

du ≤ Cf(x)
∫ f(x)

1

B(u)
u2

du,

where C is some positive constant depending only on B. Therefore, our hy-
pothesis on the integral in 10.11 implies
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Q

f(x)

(∫ f(x)

1

B(u)
u2

du

)
+

dx ≥
∫
{x∈Q:f(x)>10}

f(x)

(∫ f(x)

1

B(u)
u2

du

)
+

dx

≥ c,

where c is a positive constant. We will now use this inequality to get a lower
bound on

∫
Q

MB(f) dx. Here it will be important that B is continuous and
strictly increasing.

Let t > 1. By suitably normalizing B, we may assume that B(1)=1. Then
B(f(x)/t) > 1 precisely on the set where f(x) > t. For almost every x ∈ Q for
which f(x) > t, there is a maximal dyadic subcube Qk ⊂ Q such that x ∈ Qk

and
1

|Qk|
∫

Qk

B(f(s)/t) ds > 1.

(Having Qk ⊂ Q follows from having 1
|Q|
∫

Q
f dx ≤ 1.) Because of Qk’s maxi-

mality,

2d ≥ 1
|Qk|

∫
Qk

B(f(s)/t) ds.

Therefore,

|{x : MBf(x) > t}| ≥
∑

k

|Qk|

≥ c
∑∫

Qk

B(f(s)/t) ds

≥ c

∫
{s∈Q:f(s)>t}

B(f(s)/t) ds, (10.12)

where 10.12 follows from the fact that f(s) ≤ t almost everywhere off of ∪Qk.
When we integrate both ends of 10.12 with respect to t, from 1 to infinity,
the left end gives a lower bound for

∫
Q

MB(f) dx, while the right end is a
constant times ∫ ∞

1

(∫
{x∈Q:f(x)>t}

B(f(x)/t) dx

)
dt.

But the “familiar” change of variables shows that the last integral is equal to∫
Q

f(x)

(∫ f(x)

1

B(u)
u2

du

)
+

dx,

which is bounded below by an absolute constant. The theorem is proved.

If we put together Theorem 10.5 and Theorem 10.6, and work a little,
we get the following characterization of how the Hardy-Littlewood maximal
operator affects an Orlicz maximal operator.
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Theorem 10.7. Let B be a strictly increasing, everywhere continuous Young
function, and let B∗ be as in the statement of Theorem 10.5. Then, for any
f ∈ L1

loc(R
d),

M(MB(f)) ∼ MB∗(f) (10.13)

pointwise, with comparability constants depending only on B and d.

Proof of Theorem 10.7. We will prove 10.13 for the dyadic versions of
the operators involved (all three of them), leaving the extension to the general
case as an exercise.

Let Q ∈ Dd, and write f = f1 + f2. where f1 = fχQ. By Theorem 10.5
and Theorem 10.6,

1
|Q|
∫

Q

MB(f1) dx ∼ ‖f‖B∗,Q.

This implies that our result will now follow if we can only show that

1
|Q|
∫

Q

MB(f2) dx ≤ CMB∗(f)(x0)

holds for all x0 ∈ Q, for some absolute constant C. But that is a consequence
of the fact that MB(f2) is constant across Q. In fact, MB(f2) equals ‖f2‖B,Q2

for some dyadic Q2 containing Q. This last quantity satisfies

‖f2‖B,Q2
≤ ‖f‖B,Q2

≤ C‖f‖B∗,Q2
,

which proves the theorem (in the dyadic case).

We’ve already seen two important special cases of Theorem 10.5 and its
converse: B(x) = x, B∗(x) ∼ x log(e+x); and B(x) = xr, B∗(x) ∼ xr (when x
and r are bigger than 1). Now we’ll see another example—or, rather, a whole
scale of examples.

For α ≥ 0, set Bα(x) = x(log(e + x))α; this notation will stand until
the end of the chapter. We claim (we have left the proof as an exercise) that
(Bα)∗(x) ∼ Bα+1(x). This equivalence means that the operation of applying
the Orlicz maximal operator MBα

induces a progression in this particular
family of Young functions, in which every step bumps up the power of the
logarithm. In symbols: for every cube Q, and for every α ≥ 0,∫

Q

MBα
(fχQ)(ξ) dξ ∼ ‖fχQ‖Bα+1

. (10.14)

Theorem 10.7 lets us understand this scale of Orlicz spaces in terms of
iterated maximal functions. The theorem implies that, if k ≥ 1 is an integer,
then Mk(f) ∼ MBk−1(f). It also implies that

Mk(MBα
(f)) ∼ MBα+k

(f).

If we define M0(f) to be |f |, then this last equivalence is even true for k = 0.
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The scale of spaces defined by {Bα}α≥0 gives the promised answer to
a problem we raised in chapter 3, when we studied two-weight inequali-
ties for the square function. Let’s recall our basic, one-dimensional result:
If 0 < p < ∞ and α > p/2, then the weighted inequality∫

|f |p v dx ≤ C

∫
(S(f))p w dx,

(where S(f) is as defined by 2.8) will hold for all f =
∑

I λIh(I), finite linear
sums of Haar functions, for a pair of weights v and w, if∫

I

v(x) (log(e + v(x)/vI))α dx ≤
∫

I

w(x) dx

holds for all dyadic intervals I. We asked, “Given v, what is a reasonable
w?” and we said that w = M

[α]+1
d (v) would do. But we also said that this

majorant had two serious defects: 1) its estimation required applying the Md

operator many times; 2) it was too big when α was not an integer (because
the order of the maximal operator jumped up).

The theory of Orlicz spaces seems to provide a more flexible family
of maximal functions, one that might give us a better (as in “easier” and
“smaller”) choice of w’s. But we immediately encounter a difficulty: our two-
weight condition speaks in terms of integral expressions involving v; Orlicz
norms, on the other hand, are defined indirectly, as infima. Now, it is evident
that ∫

Q

v(x) (log(e + v(x)/vQ))α dx

should be about the same size as ‖v‖Bα,Q for any cube Q. That is the content
of the next theorem.

Theorem 10.8. For any α ≥ 0, any weight v, and any cube Q ⊂ Rd,

1
|Q|
∫

Q

v(x) (log(e + v(x)/vQ))α dx ∼ ‖v‖Bα,Q, (10.15)

with (approximate) proportionality constants that depend only on α.

Remark. The analogue of Theorem 10.8 fails catastrophically for Young
functions that grow very fast, even when they are finite and everywhere con-
tinuous. Take Φ(x) = ex−1, and consider f(x) = | log x| on [0, 1]. The function
f has average value 1, and a quick computation shows that ‖f‖Φ,[0,1] = 2. But∫ 1

0

Φ(f(x)) dx =
∫ 1

0

(
1
x
− 1
)

dx = ∞.

Proof of Theorem 10.8. There is nothing to prove if α = 0, so we take
α > 0. We also assume |Q| = vQ = 1. We need to prove two inequalities.
One of them is easy. Set T =

∫
Q

v(x) (log(e + v(x)))α dx. We note two facts
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about T . The first fact is that T is finite if and only if v ∈ LBα(Q) (this
is because the logarithm grows so slowly); indeed, T is finite if and only if∫

Q
Bα(v/λ) dx is finite for all λ > 0. Therefore we can assume T < ∞, since

otherwise there’s nothing to prove. The second fact is that T ≥ 1. Putting
these two facts together, we get:∫

Q

Bα(v(x)/T ) dx =

∫
Q

v(x) (log(e + v(x)/T ))α dx∫
Q

v(x) (log(e + v(x)))α dx
≤ 1,

implying ‖v‖Bα,Q ≤ T .
Now we need to show that ‖v‖Bα,Q ≥ cαT , where cα > 0. Because of

v’s normalization, ‖v‖Bα,Q ≥ 1, and so we may assume that T is huge (of a
precise hugeness yet to be determined). Now,

T =
∫
{x∈Q:(log(e+v(x)))α≤T/2} v(x) (log(e + v(x)))α dx

+
∫
{x∈Q:(log(e+v(x)))α>T/2} v(x) (log(e + v(x)))α dx,

while
∫

Q
v dx = 1. Therefore,∫

{x∈Q:(log(e+v(x)))α>T/2}
v(x) (log(e + v(x)))α dx ≥ T/2.

Set E = {x ∈ Q : (log(e + v(x)))α > T/2}. If T is very big (and we assume it
is), then on E we have v(x) ≥ c1 exp(c2T

1/α), where c1 and c2 depend on α.
This implies that, for x ∈ E, v(x)/T will be bigger than or equal to a constant
times

√
v(x).

Set λ0 = ‖v‖Bα,Q. Because of Bα’s continuity,∫
Q

Bα(v/λ0) dx = 1,

which implies ∫
Q

v(x) (log(e + v(x)/λ0))α dx = λ0.

We have already noted that λ0 ≤ T . Therefore:

λ0 =
∫

Q

v(x) (log(e + v(x)/λ0))α dx

≥
∫

E

v(x) (log(e + v(x)/λ0))α dx

≥
∫

E

v(x) (log(e + v(x)/T ))α dx

≥
∫

E

v(x) (log(e + c
√

v(x)))α dx

≥ c′α

∫
E

v(x) (log(e + v(x)))α dx

≥ cαT,
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where the last inequality follows from the fact that
∫

E
v(x) (log(e +

v(x)))α dx ≥ T/2. Theorem 10.8 is proved.

Theorem 10.8, combined with 10.14, finally yields the family of majorants
we promised in chapter 3:

Corollary 10.1. Let 0 < p < ∞ and let α > p/2. Set β = max(α − 1, 0).
There is a constant C = C(p, α) such that, for all f =

∑
I λIh(I), finite linear

sums of Haar functions, and all weights v,∫
|f |p v dx ≤ C

∫
(S(f))p MBβ

(v) dx.

We will (almost) conclude this chapter with a proof and discussion of a
remarkable extrapolation theorem due to David Cruz-Uribe and Carlos Pérez
[14]. This is not really a theorem in Littlewood-Paley theory, but one that
applies to very general pairs of operators.

Theorem 10.9. Let φ1 and φ2 be two measurable functions defined on Rd.
Suppose that, for some fixed α ≥ 0 and 0 < p0 < ∞, the following holds:
There is a fixed constant C1 so that, for all weights v,∫

|φ1|p0 v dx ≤ C1

∫
|φ2|p0 MBα

(v) dx. (10.16)

Then, for all p0 < p < ∞ and ε > 0, there is a constant C2, depending only
on α, ε, d, p0, and p, such that, for all weights v,∫

|φ1|p v dx ≤ C2C1

∫
|φ2|p MB(p/p0)(α+1)+ε−1(v) dx. (10.17)

What does this give us? Set φ1 = f and φ2 = S(f), where f is a finite
linear sum of Haar functions. Let p0 < 2 ≤ p < ∞. Inequality 10.16 holds for
p0 < 2 and α = 0. Theorem 10.9 implies that∫

|f |p v dx ≤ C1C2

∫
(S(f))p MBp/p0+ε−1(v) dx

holds. If we take p0 very close to 2, then p/p0 is just a little larger than p/2,
and the inequality amounts to having∫

|f |p v dx ≤ C̃

∫
(S(f))p MBβ−1(v) dx,

valid for β > p/2 ≥ 1. This is Corollary 10.1, which (looking back at chapter 3)
we obtained in a way that depended on a series of subtle estimates for the
square function. Theorem 10.9 shows that it only depends on one such (albeit
rather subtle) estimate.
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Here is another application. Put φ1 = S(f) and φ2 = f . We know that∫
(S(f))2 v dx ≤ Cp

∫
|f |2 MB0(v) dx.

(Actually, we know it for all 1 < p ≤ 2, but right now we want to take p as
big as possible.) Theorem 10.9 lets us extend this L2 result to Lp (p > 2) with
no additional work. We get:∫

(S(f))p v dx ≤ Cp

∫
|f |p MB(p/2)−1+ε

(v) dx.

Notice that, again, the “order” of the maximal function is essentially p/2.
And here is yet another application. If TK is any classical Calderón-

Zygmund operator, as discussed in the preceding chapter, then the following
inequality holds for all f ∈ C∞

0 (Rd), all weights v, and all 1 < p < 2:∫
|TK(f)|p v dx ≤ C

∫
|f |p M2(v) dx. (10.18)

(Of course, we also have∫
|TK(f)|2 v dx ≤ C

∫
|f |2 M3(v) dx,

but we will not need that fact.) Theorem 10.9 gives the promised extensions
to all 1 < p < ∞. Simply take 1 < p0 < 2 ≤ p < ∞, where we assume that p0

is very close to 2. We have that M2(v) ∼ MB1(v), and therefore∫
|TK(f)|p0 v dx ≤ C

∫
|f |p0 MB1(v) dx.

But Theorem 10.9 implies that, for any ε > 0,∫
|TK(f)|p v dx ≤ C

∫
|f |p MB2(p/p0)+ε−1(v) dx. (10.19)

If p is an integer, we can take ε very small and p0 close enough to 2 to make
2(p/p0) + ε − 1 < p, implying MB2(p/p0)+ε−1(v) ≤ CM [p+1](v). If p is not an
integer, similar choices of ε and p0 yield the same inequality. Therefore, for
any TK, any 1 < p < ∞, and any weight v,∫

|TK(f)|p v dx ≤ C

∫
|f |p M [p+1](v) dx. (10.20)

Inequalities 10.19 and 10.20 can both be seen as natural extensions of 10.18;
which one is more illuminating is, perhaps, a matter of taste.
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Proof of Theorem 10.9. Set r = p/p0 > 1 and let r′ be r’s dual
exponent, so that 1

r + 1
r′ = 1. The function Bα(x) satisfies B−1

α (t) ∼ t/(log(e+
t))α when t is large. We seek two Young functions A(x) and C(x) such that
A−1(t)C−1(t) = B−1

α (t) and such that the maximal operator MC is bounded
on Lr′

(Rd, dx); and, we would like C to be, in some sense, as “large” as
possible. The reason for this quest will become apparent soon (we hope).

Because of Theorem 10.4, a good choice for C(x) is one for which

C(x) ∼ xr′

(log(e + x))sr′ ,

where sr′ > 1. This is the same thing as saying sr > r − 1, so let’s fix some
ε > 0, and put sr = r − 1 + ε. For such a C, C−1(t) ∼ t1/r′

(log(e + t))s,
implying

A−1(t) ∼ t1/r

(log(e + t))s+α

and
A(x) ∼ xr(log(e + x))r(s+α).

The generalized Hölder inequality implies MBα
(fg) ≤ cMA(f)MC(g) for

any functions f and g. Let h be a function in Lr′
(v) such that

∫ |h|r′
v dx = 1

and ∫
|φ1|p v dx =

(∫
|φ1|p0 h v dx

)p/p0

.

Writing hv = (v1/r)(hv1/r′
), we get∫

|φ1|p0 h v dx ≤ C1

∫
|φ1|p0 MBα

(hv) dx

≤ cC1

∫
|φ1|p0 MA(v1/r)MC(hv1/r′

) dx

≤ cC1(I)(II),

where

(I) =
(∫

|φ1|p(MA(v1/r))r dx

)1/r

(II) =
(∫

(MC(hv1/r′
))r′

dx

)1/r′

.

Because of our choice of C(x),∫
(MC(hv1/r′

))r′
dx ≤ K

∫
|hv1/r′ |r

′
dx

= K

∫
|h|r′

v dx = K.
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The theorem will be proved if we can show that

(MA(v1/r))r ≤ cMB(p/p0)(α+1)+ε−1(v),

where, recall, r = p/p0 and rs = r−1+ ε. Fortunately, this just involves (very
carefully) unwinding the definitions of both sides of the inequality.

I claim that, for any cube Q, and any λ0 > 0,∫
Q

A(v1/r/λ0) dx ∼
∫

Q

Br(s+α)(v/λr
0) dx,

with approximate proportionality constants depending only on r, α, and s.
To see that the claim is true, write out both sides. The left-hand integral is∫

Q

(v/λr
0)(log(e + v1/r/λ0))r(s+α) dx.

The right-hand integral is∫
Q

(v/λr
0)(log(e + v/λr

0))
r(s+α) dx.

The only difference between them is in the arguments of the logarithms. We
now prove the claim by observing that log(e + t) ∼ log(e + tr) is valid for all
positive t: the relevant “t” here is t = v1/r/λ0.

The claim implies that (‖v‖A,Q)r ∼ cr,α,s‖v‖Br(s+α),Q
, and therefore that

(MA(v1/r))r ≤ cMBr(s+α)(v).

But r(s + α) = rs + rα = rα + r− 1 + ε = (p/p0)(α + 1) + ε− 1. That finishes
the proof of Theorem 10.9.

Theorem 10.9 is very powerful. However, it is easy to believe that it says
more than it actually does. Early on, we proved that, for all 0 < p < ∞, if v
and w are two weights in L1

loc(R
d) such that∫

Q

v(x) (log(e + v(x)/vQ))α dx ≤
∫

Q

w(x) dx (10.21)

for all cubes Q, for some α > p/2, then∫
|f |p v dx ≤ C

∫
(S(f))p w dx

for all f which are finite linear sums of Haar functions. Theorem 10.9 might
seem to make all of these theorems (one for each p) follow from a result for
only one p; or that, at least, having the result for one p0, we should be able
to infer the corresponding results for all p > p0. That is not quite correct.
Theorem 10.9 says that, given an inequality of the form
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|T1f |p0 v dx ≤ C

∫
|T2f |p0 M̃(v) dx,

where M̃ is some Orlicz maximal operator, we can infer inequalities of the
form ∫

|T1f |p v dx ≤ C

∫
|T2f |p M∗(v) dx

for all p > p0, where M∗ is some other Orlicz maximal operator. However,
it is possible that, for a given v, many weights w satisfy 10.21, and none of
them are Orlicz maximal functions of v. For example, if v(x) is the absolute
value of a polynomial function, then v ∈ A∞, and therefore w = cv satisfies
10.21, where c is a “big enough” constant. But, unless v itself is constant, any
Orlicz maximal function of such a v will be identically infinite.

Appendix: Necessity of the Pérez Condition

We will show that, if Φ : [0,∞] �→ [0,∞] is a Young function such that∫ ∞

1

Φ(t)
dt

tp+1
= ∞,

where p > 1, then MΦ(χ[0,1)) /∈ Lp(R). We are only considering the d = 1
situation because it is a little easier to see what is going on there; the reader
should have no trouble generalizing the argument to Rd.

We need to consider two cases: either Φ(x0) = ∞ for some finite x0, or
Φ(x) < ∞ for all x ∈ R. We leave it to the reader to show that, if the first
case happens, MΦ(χ[0,1)) is bounded below by a positive constant, and we are
done.

Therefore, we assume that Φ is everywhere finite. Since Φ is a Young
function, this implies that there is an a > 0 such that Φ is continuous and
strictly increasing on [a,∞). Define:

Φ̃(x) =

{
x
(

Φ(a+1)
a+1

)
if 0 ≤ x ≤ a + 1;

Φ(x) if x ≥ a + 1.

Then Φ̃ is a Young function that is everywhere continuous and strictly in-
creasing, and which equals Φ for large enough x. Therefore:∫ ∞

1

Φ̃(x)
dx

xp+1
= ∞ (10.22)

and—very important—MΦ̃(f) ∼ MΦ(f), for any f .
We now redefine Φ to equal Φ̃.
We leave the proof of the next lemma to the reader.
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Lemma 10.1. If 10.22 holds, then∑
k

2−kpΦ(2k) = ∞. (10.23)

For k ≥ 0, set Ik ≡ [0, 2k). We encourage the reader to show that the
following equation is true:

‖χ[0,1)‖Φ,Ik =
(
Φ−1(2k)

)−1
, (10.24)

where the superscript −1 on the Φ denotes the inverse function, and the second
−1 is the plain old multiplicative inverse. Equation 10.24 has the consequence
that, for all x ∈ Ik+1 \ Ik (k ≥ 0), MΦ(χ[0,1))(x) ≥ (Φ−1(2k+1)

)−1, and
therefore ∫

(MΦ(χ[0,1))(x))p dx ≥ c

∞∑
1

2k

(Φ−1(2k))p . (10.25)

We will prove necessity of 10.1 by showing that 10.23 forces the right-hand
side of 10.25 to be infinite.

For each j ≥ 1, let Ej be the set of k ≥ 1 such that

2j ≤ Φ−1(2k) < 2j+1.

The right-hand side of 10.25 is bounded below by a constant times∑
j≥1

2−jp
∑

k:k∈Ej

2k.

I claim that, for sufficiently large j, each set Ej is non-empty. That will prove
necessity, because then we will have, for some large N ,∑

j≥1

2−jp
∑

k:k∈Ej

2k ≥
∑
j≥N

2−jpΦ(2j) = ∞.

To see that Ej is eventually non-empty, we note that its defining condition is
equivalent to having

Φ(2j) ≤ 2k < Φ(2j+1).

The convexity of Φ implies that, for all j,

Φ(2j)
2j

≤ Φ(2j+1)
2j+1

,

hence
Φ(2j+1) ≥ 2Φ(2j).

Let j be so large that the least k for which Φ(2j) ≤ 2k satisfies k ≥ 1. In other
words, let j be so large that 2k−1 < Φ(2j) ≤ 2k holds for some k ≥ 1. Then
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Φ(2j+1) ≥ 2Φ(2j) > 2k, implying that this k belongs to Ej . That finishes the
proof.

Remark. The sets Ej are eventually non-empty because Φ’s convexity
forces it to grow fast, which means that its inverse function, while going to
infinity, must grow fairly slowly, and so cannot jump over too many intervals
of the form [2j , 2j+1).

Exercises

10.1. Show that, if Φ is any Young function, then there is a positive constant
C, depending only on Φ, such that

‖f‖Φ ≤ C‖f‖∞
holds in all measure spaces. Use this to show that the operator MΦ is always
bounded on L∞(Rd).

10.2. Show that if B is a strictly increasing, everywhere continuous Young
function, and we set

B∗(x) = x

(
1 +
(∫ x

1

B(u)
u2

du

)
+

)
,

then B∗ is also a strictly increasing, everywhere continuous Young function.
Also prove that there is a positive constant C such that B(x) ≤ CB∗(x)
for all x.

10.3. Prove the non-dyadic version of Theorem 10.7. (Hint: Once again, our
attention centers on what happens on a cube Q. The argument follows the
pattern of the dyadic case, but with some small adaptations. Decompose f =
f1 + f2, where f1 = fχQ̃, with Q̃ being Q’s triple. The estimation of MB(f1)
goes much as before. However, the function MB(f2) is likely not constant
across Q.)

10.4. Suppose that A and B are Young functions with the property that, for
some positive y, the function B(xy) − A(x) is bounded on [0,∞). Define, for
y ≥ 0,

C(y) ≡ sup{B(xy) − A(x) : x ≥ 0}.

Show that C is a Young function.

10.5. Give a precise statement and proof of the following: “If p is any real
number, the inverse function of x(log(e+x))p is approximately t(log(e+t))−p,
when x or t is large.”
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10.6. Show that, for all α ≥ 0,

(Bα)∗(x) ∼ Bα+1(x),

with approximate proportionality constants depending only on α.

10.7. (Due to F. Nazarov.) Show that, for all α ≥ 0 and β ≥ 0, and all
measurable f : Rd �→ R,

MBα
(MBβ

(f)) ∼ MBα+β+1(f)

pointwise, with approximate proportionality constants depending only on α,
β, and d. One can interpret this as implying that the operators MBα

and MBβ

“almost commute.”

Notes

Our exposition of beginning Orlicz space theory is based on [45]; see also [16]
and [34]. The first generalized Hölder inequality (Theorem 10.2) was proved
in [58]. Its generalization (inequality 10.4) is from [45]. Theorem 10.4 is from
[47]. Theorem 10.9, which powerfully extends results from [12], [46], and [62],
is from [14]. The many relationships between MB and the ‖ · ‖B∗ norm were
pointed out to the author by F. Nazarov [44].
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Goodbye to Good-λ

In this chapter we work on R1, and we only consider dyadic intervals.
We recall a result (Theorem 3.8) we proved in chapter 3:

Theorem 11.1. Let 0 < p < ∞ and let τ > p/2. Let v and w be weights such
that ∫

I

v(x) (log(e + v(x)/vI))τ dx ≤
∫

I

w(x) dx

for all I ∈ D. Then, for all finite sums f =
∑

I λIh(I),∫
(f∗(x))p v dx ≤ C

∫
(S(f)(x))p w dx,

where the constant C only depends on p and τ .

We proved Theorem 3.8 by means of some good-λ inequality estimates
and a telescoping series trick. Thanks to our work on Orlicz spaces, we are
now able to prove the theorem without either of those devices.

The following proof, which I learned from Fedor Nazarov, is very short,
but it does require a few preliminaries.

If I ∈ D and β > 0, we let Exp(I, β) be the family of non-negative,
measurable functions φ, supported on I, such that

1
|I|
∫

I

exp(φ(x)β) dx ≤ e + 1.

(Why e+1? See below.) The set Exp(I, β) is “morally” the unit ball of a local
Orlicz space. Recall that there is a Young function Φ such that Φ(x) = exp(xβ)
when x is large. Now fix Φ. The reader can show (and we leave it as an exercise)
that there are positive constants C1 and C2, depending only Φ, such that, for
all non-negative, measurable φ, supported on I,

φ ∈ Exp(I, β) ⇒ ‖φ‖Φ,I ≤ C1
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and

‖φ‖Φ,I ≤ C2 ⇒ φ ∈ Exp(I, β).

Given these implications, the next theorem is easy to prove.

Theorem 11.2. Let v be non-negative and locally integrable, and let α > 0.
For all I ∈ D,∫

I

v(x) (log(e + v(x)/vI))α dx ∼ sup
{∫

I

v(x)φ(x) dx : φ ∈ Exp(I, 1/α)
}

,

(11.1)
with comparability constants that only depend on α.

Proof of Theorem 11.2. The function φ(x) = (log(e + v(x)/vI))α

belongs to Exp(I, 1/α), which implies one inequality (and also explains why
we picked e + 1). For the other direction (which is the one we actually need),
set Bα(x) = x(log(e+x))α, and let Φ(x) = Bα(x), its dual Young function. We
know that, for large x, Φ(x) ∼ exp(cx1/α), where c is some positive constant.
(See #7 in our list of dual Young function examples.) This implies that, if
φ ∈ Exp(I, 1/α), then ‖φ‖Φ,I ≤ Cα. Therefore, for any φ ∈ Exp(I, 1/α), our
Orlicz space Hölder inequality implies:

1
|I|
∫

I

v(x)φ(x) dx ≤ 2Cα‖v‖Bα,I .

But, according to Theorem 10.8,

‖v‖Bα,I ≤ C

|I|
∫

I

v(x) (log(e + v(x)/vI))α dx,

which finishes the proof.

Corollary 11.1. Let f be an integrable function supported in I ∈ D and
suppose that S(f) ∈ L∞. If v is a weight and 0 < p < ∞ then∫

I

|f |p v dx ≤ C(p)‖S(f)‖p
∞

∫
I

v(x) (log(e + v(x)/vI))p/2 dx.

Proof of Corollary 11.1. We make the usual reductions—I = [0, 1),
vI = 1—and we add another:

∫ 1

0
f dx = 0. (The reader should check that the

last one is legitimate.) We also assume that ‖S(f)‖∞ = 1.
There is a c > 0, independent of f , such that cf ∈ Exp(I, 2). Thus,

|cf |p ∈ Exp(I, 2/p). The result follows now from Theorem 11.2.

We shall almost re-prove Theorem 3.8, leaving to an exercise how to fill
a small gap.
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Theorem 11.3. Let 0 < p < ∞, τ > p/2, and let v and w be two weights
such that ∫

I

v(x) (log(e + v(x)/vI))τ dx ≤
∫

I

w(x) dx

for all I ∈ D. Then∫
|f(x)|p v dx ≤ C(τ, p)

∫
(S(f))p w dx

for all finite linear sums f =
∑

I λIh(I).

Proof of Theorem 11.3. Set p0 = 2τ > p. By Corollary 11.1, if g is
supported on I ∈ D and S(g) ∈ L∞, then∫

I

|g|p0 v dx ≤ C(p0)‖S(g)‖p0
∞

∫
I

v(x) (log(e + v(x)/vI))τ dx

≤ C(p0)‖S(g)‖p0
∞

∫
I

w(x) dx.

We will use this fact shortly.
Let f =

∑
λIh(I), a finite linear sum of Haar functions. For every integer

k, set Ek = {x ∈ R : S(f) > 2k}, and define Dk = {I ∈ D : I ⊂ Ek, I �⊂
Ek+1}. The sets Dk are disjoint (some of them might be empty) and ∪kDk

contains {I ∈ D : λI �= 0} as a subset. This implies that {x : f(x) �= 0} ⊂
∪kEk. Put

fk ≡
∑

I∈Dk

λIh(I).

The preceding arguments imply that f =
∑

k fk. We notice that Ek is equal to
a disjoint union of some maximal intervals; say Ek = ∪n

1 Ij
k. Each fk’s support

is contained in the corresponding Ek, and the integral of fk is zero over each
of these maximal intervals Ij

k. We observe that S(fk) ≤ C2k everywhere.
The bound on S(fk) and the argument at the beginning of the proof

imply, for each j and k,∫
Ij

k

|fk|p0 v dx ≤ C(p0)2kp0

∫
Ij

k

w(x) dx.

Summing over j, we get:∫
|fk|p0 v dx ≤ C(p0)2kp0

n∑
1

w(Ij
k)

≤ C(p0)2kp0w(Ek). (11.2)

We are now ready to begin the proof proper. We divide it into two cases:
i) 0 < p ≤ 1 and ii) 1 < p < ∞.
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Case i).∫
|f |p v dx =

∫ ∣∣∣∣∣∑
k

fk

∣∣∣∣∣
p

v dx ≤
∑

k

∫
|fk|p v dx =

∑
k

∫
Ek

|fk|p v dx

≤
∑

k

v(Ek)1−p/p0

[∫
Ek

|fk|p0 v dx

]p/p0

≤ C
∑

k

v(Ek)1−p/p0
[
2kp0w(Ek)

]p/p0

≤ C
∑

k

v(Ek)1−p/p02pkw(Ek)p/p0 ≤ C
∑

k

2pkw(Ek)

= C
∑

k

2pkw({x ∈ R : S(f) > 2k})

≤ C

∫
(S(f))p w dx,

which finishes case i).
Case ii). Here we require a more sophisticated analysis. We begin with

the observation that, when x ∈ El \ El+1,

f(x) =
∑

k: k≤l

fk(x). (11.3)

Why is 11.3 true? For any x,

f(x) =
∑

I∈D: x∈I

λIh(I).

But, if x /∈ El+1, x cannot belong to any I ∈ Dr for which r > l. Thus, if
x ∈ El \ El+1,

f(x) =
∑

I∈D: x∈I

λIh(I) =
∑

I∈D: x∈I,
I /∈Dr, r>l

λIh(I)

=
∑

I∈D: x∈I,
I∈Dr, r≤l

λIh(I) =
∑

k: k≤l

fk(x),

which is 11.3.
Let ε > 0, to be specified presently. We recall that {x : f(x) �= 0} ⊂ ∪lEl.

Then:∫
|f(x)|p v dx =

∑
l

∫
El\El+1

|f(x)|p v dx

=
∑

l

∫
El\El+1

|
∑

k: k≤l

fk(x)|p v dx
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≤ Cε,p

∑
l

∫
El\El+1

⎡⎣ ∑
k: k≤l

2ε(l−k)|fk(x)|p v dx

⎤⎦
≤ Cε,p

∑
k,l: k≤l

2ε(l−k)

∫
El

|fk(x)|p v dx

≤ Cε,p

∑
k,l: k≤l

2ε(l−k)v(El)1−p/p0

[∫
El

|fk(x)|p0 v dx

]p/p0

≤ Cε,p

∑
k,l: k≤l

2ε(l−k)v(El)1−p/p0

[∫
Ek

|fk(x)|p0 v dx

]p/p0

,

(11.4)

where the (very small) change in the last line comes from the fact that El ⊂ Ek

if k ≤ l. Arguing as in case i), for each k we have[∫
Ek

|fk(x)|p0 v dx

]p/p0

≤ C2pkw(Ek)p/p0 .

Since it is trivial that v ≤ w almost everywhere, we also have v(El) ≤ w(El)
for all l. Set δ = 1− p/p0 > 0. For each k and l such that k ≤ l, we can write:

v(El)1−p/p0

[∫
Ek

|fk(x)|p0 v dx

]p/p0

≤ Cw(El)δ2pkw(Ek)1−δ.

When we substitute this into 11.4 we get∫
|f(x)|p v dx ≤ C

∑
k,l: k≤l

2ε(l−k)w(El)δ2pkw(Ek)1−δ

= C
∑

k,l: k≤l

2−(pδ−ε)(l−k)
[
2plw(El)

]δ [
2pkw(Ek)

]1−δ

≤ C
∑

k,l: k≤l

2−(pδ−ε)(l−k)
[
δ2plw(El) + (1 − δ)2pkw(Ek)

]
,

(11.5)

where the last line follows from the fact that aδb1−δ ≤ δa + (1 − δ)b when a
and b are non-negative.

Now we have to sum the two pieces of 11.5, where these two pieces are

C
∑

k,l: k≤l

2−(pδ−ε)(l−k)
[
δ2plw(El)

]
(11.6)

and
C
∑

k,l: k≤l

2−(pδ−ε)(l−k)
[
(1 − δ)2pkw(Ek)

]
. (11.7)
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The first piece is bounded by a constant times

∑
l

2plw(El)

⎡⎣ ∑
k: k≤l

2−(pδ−ε)(l−k)

⎤⎦ .

The inner sum, ⎡⎣ ∑
k: k≤l

2−(pδ−ε)(l−k)

⎤⎦ ,

will be bounded by a constant independent of l if pδ − ε > 0; i.e., if ε < pδ.
Choose ε = pδ/2. Plugging this back in, 11.6 is seen to be less than or equal
to a constant times ∑

l

2plw(El) ≤ C

∫
(S(f))p w dx,

which is what we wanted.
The second piece is bounded by a constant times

∑
k

2pkw(Ek)

⎡⎣∑
l: l≥k

2−(pδ−ε)(l−k)

⎤⎦ .

Our choice of ε now ensures that the inner sum,∑
l: l≥k

2−(pδ−ε)(l−k),

is bounded by a constant independent of k. Plugging it back in, 11.7 is seen
to be bounded by a constant times∑

k

2pkw(Ek),

which is just right.

Exercises

11.1. The reader has probably noticed the small gap between Theorem 3.8
and Theorem 11.3: the first theorem gives a bound for f∗, the second gives
one for f . This exercise outlines the argument needed to fill the gap.

a) Let f be a measurable function supported in I ∈ D, and suppose that∫
I
f dx = 0 and S(f) ∈ L∞. Show that, if v is a weight and 0 < p < ∞, then∫

I

(f∗(x))p v dx ≤ C(p)‖S(f)‖p
∞

∫
I

v(x) (log(e + v(x)/vI))p/2 dx.
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(Hint: Assume ‖S(f)‖∞ ≤ 1, and show that there is positive constant c,
independent of f and I, such that cf∗ ∈ Exp(I, 2).)

b) For the p ≤ 1 case we have

(f∗(x))p ≤
∑

k

(f∗
k (x))p,

and we can proceed almost exactly as in the proof of Theorem 11.3, using
part a) at the right point.

c) We have to be more careful when p > 1. Show that f∗ ≡ 0 outside
∪lEl, and therefore∫

(f∗(x))p v dx =
∑

l

∫
El\El+1

(f∗(x))p v dx.

The trick now is to show that, when x ∈ El \ El+1,

f∗(x) =

⎛⎝∑
k: k≤l

fk

⎞⎠∗

(x).

From this point the rest of the proof is like that of Theorem 11.3, with another
timely use of part a).

11.2. Generalize the proofs of Theorem 11.3 and the extension mentioned in
problem 11.1 to functions defined on Rd.

Notes

The proof given here comes from handwritten notes by F. Nazarov [44].
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A Fourier Multiplier Theorem

We will give an application of much of the material from the preceding chap-
ters by presenting a proof of the Hörmander-Mihlin Multiplier Theorem.
We warn the reader that this chapter assumes some familiarity with the theory
of Fourier multipliers, as treated in [53].

If m : Rd �→ C is a bounded measurable function, the Fourier multiplier
operator associated to m, denoted Tm, is defined implicitly by the formula

̂Tm(f)(ξ) = m(ξ)f̂(ξ),

for functions f belonging to some suitable test class (such as C∞
0 (Rd)). We

restrict ourselves to bounded functions because we want to ensure that Tm

maps L2(Rd) into itself. By the Plancherel Theorem, it is easy to see that the
operator norm of Tm : L2 �→ L2 is exactly equal to ‖m‖∞.

The Hörmander-Mihlin Multiplier Theorem states that, if m is sufficiently
smooth away from 0 (in a manner to be made precise), the Fourier multiplier
operator Tm is bounded on Lp(Rd) for all 1 < p < ∞. When we say that Tm

is bounded, we mean that there is a positive constant C(m, p) such that, for
all f ∈ C∞

0 (Rd),
‖Tm(f)‖p ≤ C(m, p)‖f‖p.

Such an a priori estimate allows us to define a unique extension of Tm—
satisfying the same bound—to all of Lp.

What we will actually prove is that, if m is smooth enough, then, for all
ε > 0, there is a constant Cε so that, for all f ∈ C∞

0 (Rd) and all bounded,
compactly supported weights v,∫

|Tm(f)|2 v dx ≤ Cε

∫
|f |2 MB3+ε

(v) dx, (12.1)

where MB3+ε
(v) is as we defined it in chapter 10, and can be taken to be:

MB3+ε
(v)(x) ≡ sup

Q: x∈Q

1
|Q|
∫

Q

v(t) (log(e + v(t)/vQ))3+ε dt.
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Since the operator MB3+ε
is bounded on all of the Lp spaces such that 1 <

p ≤ ∞, 12.1 will imply that Tm extends to a bounded operator on Lp for
all 2 ≤ p < ∞. An argument from duality will then yield boundedness for
1 < p < 2.

We will now define the sorts of multipliers we are interested in. We recall
the standard convention that, if α = (α1, . . . , αd) is a vector of non-negative
integers, then the differential monomial Dα is the operator defined by(

∂α1

∂xα1
1

)(
∂α2

∂xα2
2

)
· · ·
(

∂αd

∂xαd

d

)
,

and the order of Dα, defined to be α1 + · · ·+ αd, is denoted by |α|. If |α| = 0
then Dα is just the identity operator.

Definition 12.1. We will say that m : Rd \ {0} �→ C is a normalized
Hörmander-Mihlin multiplier if m is bounded, infinitely differentiable, and if,
for all differential monomials Dα of order ≤ d/2 + 1 and all ξ ∈ Rd \ {0},

|Dαm(ξ)| ≤ |ξ|−|α|
.

Theorem 12.1. Let m be a normalized Hörmander-Mihlin multiplier. For
every ε > 0 there is a constant C(ε, d) such that, for all f ∈ C∞

0 (Rd) and all
bounded, compactly supported weights v,∫

|Tm(f)|2 v dx ≤ C(ε, d)
∫

|f |2 MB3+ε
(v) dx.

The proof of the theorem will require a lemma and its corollary.

Lemma 12.1. Let β > d/2 and suppose that g ∈ L2(Rd). Set h(x) ≡ g(x)(1+
|x|2)−β/2. If f is a Schwartz function and v is any weight,∫

|h ∗ f(x)|2 v dx ≤ C‖g‖2
2

∫
|f(x)|2 M(v) dx,

where the constant C only depends on β and d.

Proof of Lemma 12.1. We assume that f and g are non-negative. For
any x,

h ∗ f(x) =
∫

g(x − t)
(1 + |x − t|2)β/2

f(t) dt

≤
(∫

(g(x − t))2 dt

)1/2
(∫

(f(t))2

(1 + |x − t|2)β
dt

)1/2

= ‖g‖2

(∫
(f(t))2

(1 + |x − t|2)β
dt

)1/2

,
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and therefore∫
|h ∗ f(x)|2 v dx ≤ ‖g‖2

2

∫
(f(t))2

(∫
v(x)

(1 + |x − t|2)β
dx

)
dt.

But ∫
v(x)

(1 + |x − t|2)β
dx ≤ C(β, d)M(v)(t).

(See exercise 2.7.) That proves the lemma.

We note that the preceding lemma can easily be generalized. Namely, the
same conclusion will hold, with the same constant C, if, for the same g and β,
and for some y > 0, h(x) ≡ y−dg(x/y)(1+ |x/y|2)−β/2. The reason is that the
Cauchy-Schwarz inequality will now yield:

h ∗ f(x) ≤
(∫

y−d(g((x − t)/y))2 dt

)1/2
(∫

y−d (f(t))2

(1 + |(x − t)/y|2)β
dt

)1/2

= ‖g‖2

(∫
y−d (f(t))2

(1 + |(x − t)/y|2)β
dt

)1/2

,

and therefore∫
|h ∗ f(x)|2 v dx ≤ ‖g‖2

2

∫
(f(t))2

(∫
y−d v(x)

(1 + |(x − t)/y|2)β
dx

)
dt.

But y−d(1+ |(x − t)/y|2)−β is simply an L1 dilate of (1+ |(x − t)|2)β ; and so,
by exercise 2.7 again,∫

y−d v(x)
(1 + |(x − t)/y|2)β

dx ≤ C(β, d)M(v)(t).

Proof of Theorem 12.1. Let φ : Rd �→ R be a real, radial Schwartz
function, chosen so that its Fourier transform is always non-negative and has
support contained in {ξ : 1 ≤ |ξ| ≤ 2}. Let ψ ∈ C∞

0 (Rd) be real, radial,
satisfy

∫
ψ dx = 0, and be co-normalized with φ so that∫ ∞

0

φ̂(yξ) ψ̂(yξ)
dy

y
≡ 1

for all ξ �= 0.
Now let Φ be a third real, radial Schwartz function, chosen so that∫

Φ dx = 0 and Φ̂(ξ) ≡ 1 when 1 ≤ |ξ| ≤ 2. This second condition has
the consequence that, for all y > 0 and all x ∈ Rd

(Tm(Φy)) ∗ φy(x) = Φy ∗ (Tm(φy))(x).
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Since f ∈ L2, we also have

(Tm(f)) ∗ φy(x) = (Tm(f)) ∗ φy ∗ Φy(x) = f ∗ Φy ∗ (Tm(φy))(x)

for the same ranges of y and x. By our work on the Calderón reproducing
formula, the preceding equation implies that

Tm(f)(x) =
∫
Rd+1

+

(f ∗ Φy ∗ (Tm(φy))(t)) ψy(x − t)
dt dy

y
,

where the convergence of the integral is in the L2 sense, taken over any
compact-measurable exhaustion of Rd+1

+ . This means that we can take an in-
creasing sequence of finite families F1 ⊂ F2 ⊂ · · · ⊂ Dd for which ∪jFj = Dd

and such that the sequence of functions defined by

gj(x) ≡
∑

Q∈Fj

∫
T (Q)

(f ∗ Φy ∗ (Tm(φy))(t)) ψy(x − t)
dt dy

y

converges to Tm(f) almost everywhere as j → ∞. By Fatou’s Lemma it will
be enough to show that∫

|gj(x)|2 v dx ≤ C(ε, d)
∫

|f(x)|2 MB3+ε
(v) dx

for each j.
Our earlier work implies that∫
|gj(x)|2 v dx ≤ C(ε, d)

∑
Q∈Dd

|λQ|2
|Q|

∫
Q̃

v(x) (log(e + v(x)/vQ̃))1+ε dx,

where

λQ =

(∫
T (Q)

|f ∗ Φy ∗ (Tm(φy))(t)|2 dt dy

y

)1/2

.

It is clear that

1
|Q|
∫

Q̃

v(x) (log(e + v(x)/vQ̃))1+ε dx ≤ CMB1+ε
(v)(t)

if t ∈ Q, and therefore

∑
Q∈Dd

|λQ|2
|Q|

∫
Q̃

v(x) (log(e + v(x)/vQ̃))1+ε dx

≤ C

∫
Rd+1

+

|f ∗ Φy ∗ (Tm(φy))(t)|2 MB1+ε
(v)(t)

dt dy

y
.
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Let us now closely examine the function Tm(φy). I claim that it is a
boundedly positive multiple of an L1 dilate of a function of the form g(x)(1+
|x|2)−β/2, where ‖g‖2 ≤ 1. This will prove the theorem, because the corollary
to Lemma 12.1 will yield, for every y > 0,∫

Rd |f ∗ Φy ∗ (Tm(φy))(t)|2 MB1+ε
(v)(t) dt

≤ C
∫
Rd |f ∗ Φy(t)|2 M(MB1+ε

(v))(t) dt ≤ ∫
Rd |f ∗ Φy(t)|2 MB2+ε

(v)(t) dt.

Integrating in y will then give us:∫
Rd+1

+
|f ∗ Φy ∗ (Tm(φy))(t)|2 MB1+ε

(v)(t) dt dy
y

≤ C
∫
Rd(G1(f)(t))2 MB2+ε

(v)(t) dt ≤ C
∫
Rd |f(t)|2 M(MB2+ε

(v))(t) dt

≤ C
∫
Rd |f(t)|2 MB3+ε

(v)(t) dt.

In the preceding inequalities, the reader should note how the maximal func-
tion, acting on v, gets bumped up at every stage.

Now for the claim. First consider y = 1, and set h(x) = Tm(φ)(x). The
Fourier transform of h, ĥ(ξ), has support contained inside {ξ : 1 ≤ |ξ| ≤ 2}
and satisfies

|Dαĥ(ξ)| ≤ C

for some absolute constant C, and for all multi-indices α such that |α| ≤
d/2 + 1. Set β = [d/2] + 1, and note that β > d/2. We have just seen that
Dαĥ ∈ L2 for all α such that |α| ≤ β. Therefore, by taking inverse Fourier
transforms,

(1 + |x|2)β/2h(x) ∈ L2(Rd),

implying
h(x) = g(x)(1 + |x|2)−β/2

for some g ∈ L2. That takes care of things when y = 1. For the general case,
we consider the function with Fourier transform equal to k̂(ξ) ≡ m(ξ)φ̂(yξ).
The support of k̂ is contained inside {ξ : 1/y ≤ |ξ| ≤ 2/y} and satisfies

|Dαk̂(ξ)| ≤ Cy|α|

for all α such that |α| ≤ β. Set λ(x) ≡ ydk(xy). Its Fourier transform, λ̂(ξ), is
equal to k̂(ξ/y). This Fourier transform is supported inside {ξ : 1 ≤ |ξ| ≤ 2}
and satisfies

|Dαλ̂(ξ)| ≤ C

for all α such that |α| ≤ β. Therefore the function λ (up to multiplication by a
bounded constant) satisfies the hypotheses of Lemma 12.1. Now the corollary
to the lemma finishes the proof.

Theorem 12.1 implies that, for every normalized Hörmander-Mihlin mul-
tiplier m, the associated Fourier multiplier operator Tm is bounded on Lp(Rd)
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when 2 ≤ p < ∞, with a norm that only depends on d and p. Now suppose
that 1 < p < 2, and let p′ be p’s dual exponent. If f and g are two functions
in C∞

0 (Rd), then ∫
Rd

(Tm(f)(x)) g(x) dx

makes sense and is equal to∫
Rd

m(ξ)f(ξ) ĝ(ξ) dξ =
∫
Rd

f(x) (Tm̄(g)(x)) dx.

But m̄ is also a normalized Hörmander-Mihlin multiplier. Therefore∣∣∣∣∫
Rd

(Tm(f)(x)) g(x) dx

∣∣∣∣ ≤ C‖f‖p‖g‖p′ .

This holds for all g ∈ C∞
0 (Rd), and therefore

‖Tm(f)‖p ≤ C‖f‖p

for all f ∈ C∞
0 (Rd). But that is exactly what we meant by boundedness of

Tm.

Notes

The proof of the Hörmander-Mihlin Theorem ( [29] [41]) given here owes much
to its presentation in [16]. In [36] a version of the theorem is proved for Ap

weights.
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Vector-Valued Inequalities

Many of our weighted-norm results extend, with little extra work, to vector-
valued functions. In this chapter we will restrict our discussion to functions
f : R �→ �2(N). This is not the only possible setting for vector-valued
inequalities—one could also consider functions mapping into �r for any
0 < r < ∞ (see [18] and [24])—but it is the one that shows up most often in
applications, and it is the “natural” one to look at when working with square
functions.

When we say that f maps into �2, we mean that

f(x) = (fj)∞1 ,

where each fj is Lebesgue measurable and, for almost every x ∈ R,

‖f(x)‖ ≡
(∑

k

|fj(x)|2
)1/2

is finite. We will say that f belongs to (vector-valued) Lp(R) if ‖f(x)‖ (as a
function of x) belongs to (ordinary) Lp(R), and the Lp norm of f is simply
‖‖f‖‖p. However, to save eyestrain, we will usually denote the Lp norm of f by
‖f‖p. Similarly, we will say that a Lebesgue measurable f is locally integrable
if ‖f‖ is. It is useful to note that, if f is locally integrable, then, for every
bounded measurable set E,∫

E

f dt ≡
(∫

E

fj(t) dt

)∞

1

exists as a vector in �2. It is also very useful to note that

‖
∫

E

f dt‖ ≤
∫

E

‖f‖ dt. (13.1)

We suggest that the reader prove these two statements.
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The dyadic square function of such an f, denoted Sf, is defined by

Sf(x) ≡
( ∞∑

1

(S(fj)(x))2
)1/2

,

where S(fj) denotes the familiar, scalar-valued, dyadic square function. We
similarly define the intrinsic square function of f , Gβ(f), by

Gβ(f)(x) ≡
( ∞∑

1

(Gβ(fj)(x))2
)1/2

.

We will prove inequalities of the form∫
‖f‖p

v dx ≤ C

∫
(Sf)p w dx

and ∫
(Sf)p v dx ≤ C

∫
‖f‖p

w dx

(and analogously for Gβ(f)) for pairs of weights v and w. We observe that, to
prove such inequalities, it is sufficient to prove them for functions of the form
f : R �→ RM , so long as the constants C we obtain are independent of M .
Henceforth we will assume that f(x) = (fj(x))M

1 , where M is unspecified but
is assumed to be large.

In order to state our theorems, it will be convenient to define a new test
class.

Definition 13.1. A vector-valued function f(x) = (fj(x))M
1 is said to be of

finite type if every fj is a finite linear sum of Haar functions.

The following theorems are direct analogues of results we proved earlier.

Theorem 13.1. Let 0 < p < ∞ and suppose that τ > p/2. If v and w are
weights such that, for all dyadic intervals I,∫

I

v(x) (log(e + v(x)/vI))τ dx ≤
∫

I

w(x) dx,

then, for all f : R �→ RM of finite type,∫
‖f‖p

v dx ≤ C

∫
(Sf)p w dx,

where C only depends on τ and p.

Theorem 13.2. Let 1 < p ≤ 2. There is a constant C, depending only on p,
so that, for all weights v and all f : R �→ RM ,∫

(Sf)p v dx ≤ C

∫
‖f‖p

Md(v) dx.
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As with their scalar-valued predecessors, Theorem 13.1 and Theorem 13.2
will motivate (and quickly lead to) non-dyadic extensions.

Theorem 13.3. Let 0 < p < ∞ and 0 < β ≤ 1, and suppose that τ > p/2. If
v and w are weights such that, for all intervals I,∫

I

v(x) (log(e + v(x)/vI))τ dx ≤
∫

I

w(x) dx, (13.2)

then, for all f : R �→ RM such that each component fj lies in C∞
0 (R),∫

‖f‖p
v dx ≤ C

∫
(Gβ(f))p w dx, (13.3)

where C only depends on τ , β, and p. In particular, when p < 2, 13.3 holds
when w = M(v).

Theorem 13.4. Let 1 < p ≤ 2 and 0 < β ≤ 1. There is a constant C,
depending only on p and β, so that, for all weights v and all f : R �→ RM ,∫

(Gβ(f))p v dx ≤ C

∫
‖f‖p

M(v) dx.

As in the scalar-valued setting, the two preceding theorems yield corol-
laries for Ap weights.

Corollary 13.1. Let 1 < p < ∞ and w ∈ Ap. Suppose that 0 < β ≤ 1. There
is a constant C = C(p, β, w) such that, for all f : R �→ RM such that each
component fj lies in C∞

0 (R),∫
‖f‖p

w dx ≤ C

∫
(Gβ(f))p w dx.

Corollary 13.2. Let 1 < p < ∞ and w ∈ Ap. Suppose that 0 < β ≤ 1. There
is a constant C = C(p, β, w) such that, for all f : R �→ RM ,∫

(Gβ(f))p w dx ≤ C

∫
‖f‖p

w dx.

The proof of Theorem 13.1 depends on the following lemma.

Lemma 13.1. Let 0 < ρ < 2. There are positive constants cρ and Cρ such
that, if I is any dyadic interval, f is of finite type, with support contained in I,∫

f dx = 0, and ‖Sf‖∞ ≤ 1, then, for all λ > 0,

|{x ∈ I : ‖f(x)‖ > λ}| ≤ Cρ|I| exp(−cρλ
ρ).
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Remark. The meaning of Lemma 13.1 is that, for a vector-valued function
f, boundedness of the vector-valued dyadic square function implies that f is
nearly exponentially-square integrable.

Proof of Lemma 13.1. We apply Corollary 10.1, putting p = 2 and
letting α > 1 (to be specified presently). For every fj we get∫

I

|fj |2 v dx ≤ C

∫
I

(S(fj))2 MBα−1(v) dx,

for all weights v supported on I, and therefore, after summing on j,∫
I

‖f‖2
v dx ≤ C

∫
I

(Sf)2 MBα−1(v) dx ≤ C

∫
I

MBα−1(v) dx

≤ C

∫
I

v(x) (log(e + v(x)/vI))α dx,

where we have used Theorem 10.5 and Theorem 10.8 to infer the last inequal-
ity. Now set Eλ ≡ {x ∈ I : ‖f(x)‖ > λ} and put v = χEλ

. An easy argument
using Chebyshev’s inequality yields

|Eλ| ≤ Cα|I| exp(−cαλ2/α).

We conclude the proof by setting α = 2/ρ.

The proof of the next corollary is very much like that of Corollary 11.1,
and we omit it.

Corollary 13.3. Let 0 < ρ < 2 and 0 < p < ∞. There is a positive constant
C, depending only on p and ρ, such that, if I is any dyadic interval, f is of
finite type, with support contained in I,

∫
f dx = 0, and Sf ∈ L∞, then, for

weights v, ∫
I

‖f‖p
v dx ≤ C‖Sf‖p

∞

∫
I

v(x) (log(e + v(x)/vI))p/ρ dx.

Proof of Theorem 13.1. The proof follows the lines of the proof of
Theorem 11.3, with only trivial modifications. We will sketch the outline and
leave it to the reader to fill in the details.

Given τ > p/2, pick 0 < ρ < 2 such that τ > p/ρ. Set p0 = ρτ > p.
Much as in the proof of Theorem 11.3, for every integer k, we set Ek =

{x ∈ R : Sf > 2k}, and define Dk = {I ∈ D : I ⊂ Ek, I �⊂ Ek+1}. We may
write each Ek as a disjoint union ∪n

1 I l
k of maximal dyadic intervals. We are

assuming that every fj (1 ≤ j ≤ M) has the form fj =
∑

λI,jh(I), which is a
finite sum. For each j and k define

(fj)k ≡
∑

I∈Dk

λI,jh(I),
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and set fk = ((fj)k)M
1 . Then f =

∑
k fk. (Note that this is actually a finite

sum.) We define Sfk to be the square function of fk; i.e.,

Sfk =

(
M∑
1

((S(fj)k))2
)1/2

.

This decomposition of f is exactly analogous with the decomposition
f =

∑
fk we used in the proof of Theorem 11.3. The support of each fk is

contained in the corresponding Ek, and the integral of fk (hence of each (fj)k)
is zero over every interval I l

k. We also observe that Sfk ≤ C2k everywhere.
Because of Corollary 13.3, for every I l

k, we have∫
Il

k

‖fk‖p0 v dx ≤ C2kp0

∫
Il

k

v(x) (log(e + v(x)/vIl
k
))p0/ρ dx

= C2kp0

∫
Il

k

v(x) (log(e + v(x)/vIl
k
))τ dx

= C2kp0w(I l
k) dx,

where the last line comes from our hypothesis on v and w. When we sum
over l, we get ∫

‖fk‖p0 v dx ≤ C(p0)2kp0

n∑
1

w(I l
k)

≤ C(p0)2kp0w(Ek).

But this is nothing but a vector-valued version of inequality 11.2. From this
point the proof is practically identical to that of Theorem 11.3. We omit the
details.

Proof of Theorem 13.2. The first step is to show that∫
(Sf)2 v dx ≤ C

∫
‖f‖2

Md(v) dx,

which follows immediately from the scalar-valued result. The other step is to
show the weak-type inequality,

v ({x : Sf(x) > λ}) ≤ C

λ

∫
‖f‖Md(v) dx.

The proof of this is almost a verbatim repetition of the proof of Theorem 3.10,
and we will only sketch it. As in the scalar-valued case, we will assume that,
for every ε > 0, there is an R > 0 such that, if I is any interval satisfying
�(I) > R, then

1
|I|
∫

I

‖f‖ dt < ε.
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(The treatment of the general case is almost exactly as with scalar-valued f ’s:
see exercise 3.6.) Let Ωλ be the set {x : Sf(x) > λ}, and write Ωλ = ∪Iλ

j , a
disjoint union of the maximal dyadic intervals such that

1
|Iλ

j |
∫

Iλ
j

‖f‖ dx > λ.

As in the proof of Theorem 3.10, we only need to show that

v ({x /∈ Ωλ : Sf(x) > λ}) ≤ C

λ

∫
‖f‖Md(v) dx.

Write f = g + b, where

g(x) =

{
f(x) if x /∈ ∪kIλ

k ;
1

|Iλ
k
|
∫

Iλ
k
f(t) dt if x ∈ Iλ

k .

By virtue of inequality 13.1, the vector-valued function g satisfies ‖g‖∞ ≤ 2λ,
and, if x ∈ Iλ

j ,

‖g(x)‖ ≤ 1
|Iλ

j |
∫

Iλ
j

‖f‖ dt.

As with Theorem 3.10, Sf ≤ Sg + Sb, and the support of Sb is entirely
contained in Ωλ. Therefore, it is enough to show

v ({x /∈ Ωλ : Sg(x) > λ}) ≤ C

λ

∫
‖f‖Md(v) dx, (13.4)

which is merely a vector-valued rephrasing of 3.28 from the proof of Theorem
3.10. The proof of 13.4 is almost identical to that of 3.28, and we leave it to
the reader.

Proof of Theorem 13.3. Recall that we use 3D to denote the family of
concentric triples of the dyadic intervals I ∈ D. Following our procedure from
chapter 5 (Theorem 5.3), we can write 3D as a disjoint union G1 ∪ G2 ∪ G3,
where each Gi is a good family. We will fix our attention on G1, which we will
simply refer to as G. Let ψ ∈ C∞

0 (R) be real, radial (i.e., even), supported in
[−1, 1], have integral equal to 0, and satisfy the usual normalization, to wit:∫ ∞

0

|ψ̂(yξ)|2 dy

y
≡ 1

for all ξ �= 0. If g ∈ C∞
0 (R) and F ⊂ G is any finite family, we set

gF (x) =
∑

I: Ĩ∈F

∫
T (I)

(g ∗ ψy(t))ψy(x − t)
dt dy

y
,
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where we may always assume that the sum converges almost everywhere1 and
in L2. If f : R �→ RM is such that each of its components fj lies in C∞

0 (R),
we define

fF ≡ ((fj)F )M
1 .

Our earlier work on the convergence of the Calderón reproducing formula
implies that the theorem will follow if we can show∫

‖fF‖p
v dx ≤ C

∫
(Gβ(f))p w dx, (13.5)

so long as the constant C does not depend on F .
Showing 13.5 does not take long. Each (fj)F is the L2 and almost every-

where2 limit of a sequence of finite sums
∑

I: Ĩ∈F λI(fj)hF,(Ĩ), where the
functions hF,(Ĩ) are F-adapted Haar functions as defined in chapter 4, and
λI(fj) =

∫
fj hF,(Ĩ) dx. Still following the pattern of chapter 4, we can define

SF (fF ) ≡
(

M∑
1

(SF ((fj)F ))2
)1/2

,

which is really much easier to understand than it looks. Each SF ((fj)F ) is
merely the F-adapted dyadic square function of (fj)F . Our work in chapter
4 (Theorem 4.1) implies that, for each j,

SF ((fj)F ) ≤ C S̃sd,F ((fj)F )

pointwise, for an absolute constant C, where

S̃sd,F ((fj)F )(x) =

⎛⎝ ∑
I: Ĩ∈F

|λ̃(Ĩ)(fj)|2

|Ĩ| χĨ(x)

⎞⎠1/2

,

and

λ̃(Ĩ)(fj) =

(∫
T (I)

|fj ∗ ψy(t)|2 dt dy

y

)1/2

.

At the beginning of chapter 6 we observed that S̃sd,F ((fj)F ) is pointwise
dominated by Sψ,α(fj) for sufficiently large α > 0. Later in chapter 6, we also
observed (and left as an exercise) that Sψ,α(fj) ≤ CGβ(fj) pointwise, with a
constant C depending on α, β, ψ, and d. Putting all of this together, we can
now assert that

SF (fF ) ≤ CGβ(f) (13.6)

1 Actually, it converges uniformly for g ∈ C∞
0 (R), but we don’t need that.

2 Uniform again!



210 13 Vector-Valued Inequalities

pointwise. Since each (fj)F is the almost everywhere3 limit of a sequence of
finite sums

∑
I: Ĩ∈F λI(fj)hF,(Ĩ), a repetition of the proof of Theorem 13.1,

adapted now to the family G, yields∫
‖fF‖p

v dx ≤ C

∫
(SF (fF ))p w dx,

so long as 13.2 holds for all intervals. The pointwise estimate 13.6 lets us finish
the proof.

Proof of Theorem 13.4. The L2 inequality,∫
(Gβ(f))2 v dx ≤ C

∫
‖f‖2

M(v) dx,

follows immediately from the scalar-valued result. All we need to finish the
proof is the weak-type bound,

v ({x : Gβ(f)(x) > λ}) ≤ C

λ

∫
‖f‖M(v) dx.

We assume, as usual, that f has the property that, for every ε > 0, there is an
R > 0 such that, if I is any interval with �(I) > R, then

1
|I|
∫

I

‖f‖ dt < ε,

and leave the general case as an exercise.
For λ > 0, let {Iλ

k }k be the maximal dyadic intervals I such that

1
|I|
∫

I

‖f‖ dt > λ,

and set Ω = ∪k Ĩλ
k . Our work in chapter 6 (Step 3 in the proof of Theorem

6.1) implies that we only have to show

v ({x /∈ Ω : Gβ(f)(x) > λ}) ≤ C

λ

∫
‖f‖M(v) dx.

Much as in the scalar case, define

g(x) =
{

fIλ
k

if x ∈ Iλ
k ;

f(x) if x /∈ ∪kIλ
k ,

and put b = f − g. Our problem reduces to showing

v ({x /∈ Ω : Gβ(g)(x) > λ/2}) ≤ C

λ

∫
‖f‖M(v) dx (13.7)

3 See preceding footnotes.
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and
v ({x /∈ Ω : Gβ(b)(x) > λ/2}) ≤ C

λ

∫
‖f‖M(v) dx.

The function g satisfies the same bounds as the function g we encountered
in the proof of Theorem 13.2. It is now straightforward (with the help of
Lemma 6.1 from chapter 6) to show 13.7; we leave this as an exercise.

We may further decompose b into
∑

k bk, where bk = bχIλ
k
. These func-

tions also satisfy bounds and equations similar to those of their scalar coun-
terparts: ∫

bk(t) dt = 0

1
|Iλ

k |
∫

‖bk(t)‖ dt ≤ C
1

|Iλ
k |
∫

Iλ
k

‖f(t)‖ dt

≤ Cλ.

The first formula means that every component of bk has integral equal to 0.
Much as in the proof of Theorem 6.1 (see 6.9 and 6.10), our result will

follow immediately from the next lemma:

Lemma 13.2. Suppose that h : I �→ RM is integrable (i.e., that
∫

I
‖h‖ dt <

∞), where I ⊂ R is an interval. Assume that
∫

I
h dt = 0. For all x such that

d(x, I) > �(I),

Gβ(h)(x) ≤ C(β, d)‖h‖1|I|−1(1 + |x − xI |/�(I))−1−β , (13.8)

where we are using xI to denote I’s center.

We essentially know this. If h is scalar-valued, inequality 6.10 says that

Gβ(h)(x) ≤ C(β, d)‖h‖1|I|−1(1 + |x − xI |/�(I))−1−β

when d(x, I) > �(I). Therefore, if h = (hj)M
1 is a vector, Gβ(h) will be a

vector (Pj)M
1 , each of whose components Pj is bounded by a constant times(∫

I

|hj(t)| dt

)
|I|−1(1 + |x − xI |/�(I))−1−β .

The size of such a vector is dominated by

(
|I|−1(1 + |x − xI |/�(I))−1−β

)
×
⎛⎝∑

j

(∫
I

|hj(t)| dt

)2
⎞⎠1/2

.

However (see exercise 13.1),⎛⎝∑
j

(∫
I

|hj(t)| dt

)2
⎞⎠1/2

≤
∫

I

⎛⎝∑
j

|hj(t)|2
⎞⎠1/2

dt =
∫

I

‖h(t)‖ dt,

which is the conclusion of the lemma. Theorem 13.4 is proved.



212 13 Vector-Valued Inequalities

Exercises

13.1. Prove inequality 13.1. (Hint: It’s enough to show that, if v is any vector
in �2 with only finitely many non-zero components, then∣∣∣∣(∫

E

f dt

)
· v
∣∣∣∣ ≤ ‖v‖

∫
E

‖f‖ dt.)

13.2. State and prove d-dimensional generalizations of Theorems 13.1–13.4
and Corollaries 13.1 and 13.2.

13.3. The statement of Theorem 13.1 requires that the component functions
fj all be finite sums of Haar functions, and Theorem 13.3 requires that they
belong to C∞

0 (R). To what extent can these hypotheses be weakened?
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Random Pointwise Errors

The reader might recall that in an earlier chapter we raised the question of the
effect of random errors in summing Haar function expansions. Let us suppose
we have a Haar function series,∑

I

〈f, h(I)〉h(I) ≡
∑

I

λI(f)h(I), (14.1)

which we wish to sum it up to recover f . The problem we face is that the
series we add up won’t be 14.1, but∑

I

λI(f)(1 + εI)h(I), (14.2)

where the εI ’s are (we hope) small, but random errors. Set ε ≡ supI |εI |. Our
square function results prove that, if 1 < p < ∞, then

‖
∑

I

εIλI(f)h(I)‖
p

≤ Cpε‖f‖p,

showing that, under reasonable assumptions, the effects of the errors in 14.2
are manageable, at least in a “norm” sense.

What of pointwise summation? Because we want to avoid a detailed dis-
cussion of probability theory, we will only consider this problem in a very
simple case. We suppose that we have the “true” series

∑
λI(f)h(I), in which

each summand is perturbed by an amount equal to ±ελIh(I), where ε > 0 is
small and ‘±’ represents a sequence of “fair” (50-50 probabilities) and inde-
pendent sign changes. What these probabilities and what independence mean
both require some explanation.

In the real world, we often do not measure the λI(f)’s once and for all,
but repeatedly, and then take averages, with the hope that our measurement
errors will mostly cancel out. The question is: How effective—or how rapid—is
this cancelation? That is what a probabilistic analysis tries to address.
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Each observation of f and its Haar coefficients is bookmarked, so to
speak, by a point ω in a probability space Ω. For us Ω will be [0, 1) endowed
with Lebesgue measure. Borel measurable functions X1, . . . , Xn, mapping
from [0, 1) to R, are said to be independent if, for all Borel sets E1, . . . , En,
subsets of R,

|{ω ∈ [0, 1) : Xi(ω) ∈ Ei ∀1 ≤ i ≤ n}| =
n∏
1

|{ω ∈ [0, 1) : Xj(ω) ∈ Ej}|.
(14.3)

Probabilists do not call measurable functions defined on a probability space
“functions”: they call them random variables. We shall follow their convention.

By an approximation argument (which we leave as an exercise), equation
14.3 can be generalized to the following: If the functions fi : R �→ R are
bounded Borel measurable functions and the Xi(·) (1 ≤ i ≤ n) are indepen-
dent, then ∫ 1

0

(
n∏
1

fi(Xi(ω))) dω =
n∏
1

(∫ 1

0

fi(Xi(ω)) dω

)
.

We will be interested in a particular family of independent random vari-
ables {ri(ω)}∞1 . We will make our discussion easier to follow by first defining
these “variables” for all ω ∈ R and then restricting them to [0, 1).

The first Rademacher function r1(ω) is the 1-periodic function defined
on [0, 1) by

r1(ω) =
{

1 if 0 ≤ ω < 1/2;
−1 if 1/2 ≤ ω < 1.

For every positive integer n, the nth Rademacher function rn(t) is defined by
rn(t) ≡ r1(2n−1t).

For any Borel E ⊂ R and any n, the set {ω ∈ [0, 1) : rn(ω) ∈ E} has
measure 0, 1, or 1/2. In fact:

|{ω ∈ [0, 1) : rn(ω) ∈ E}| =

⎧⎨⎩ 0 if E ∩ {−1, 1} = ∅;
1 if {−1, 1} ⊂ E;
1/2 if E ∩ {−1, 1} is a singleton.

It is not too difficult to show that the Rademacher functions constitute
a family of independent random variables. We strongly recommend that the
student verify this for himself: the exercise will teach him a lot about what is
going on here.

The Rademacher functions let us quantify the intuitive notion of random,
fair-probability changes in sign. Let ω ∈ [0, 1), and consider the sequence of
numbers rp1(ω), rp2(ω), . . . , rpn

(ω), where 1 ≤ p1 < p2 < · · · < pn. This is a
sequence of ±1’s. There are 2n possible such sequences, and each one occurs
on a set of ω’s having probability exactly equal to 2−n. Consider the quantity:

|rp1(ω) + rp2(ω) + · · · + rpn
(ω)|. (14.4)
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If we choose the right ω (or “wrong”, depending on how you look at it), this
might be as big as n. However, that only happens on a set of probability
2−n+1. We would like to know: What is the average size of 14.4? Actually,
we would like to know something a little more precise. Let γ1, . . . , γn be real
numbers, and consider the quantity

|γ1rp1(ω) + γ2rp2(ω) + · · · + γnrpn
(ω)|. (14.5)

In order to understand the effects of random errors on summing Haar expan-
sions, we will need to have a good estimate of the average value of 14.5.

Such an estimate is provided by the following theorem.

Theorem 14.1. For every 0 < p < ∞, there are positive constants c1(p) and
c2(p) such that, for all finite linear sums

∑n
1 γiri(ω),

c1(p)

(
n∑
1

|γi|2
)1/2

≤
(∫ 1

1

∣∣∣∣∣
n∑
1

γiri(ω)

∣∣∣∣∣
p

dω

)1/p

≤ c2(p)

(
n∑
1

|γi|2
)1/2

.

(14.6)
The constants c1(p) and c2(p) do not depend on n or on the γi’s.

Remark. These are known as Khinchin’s Inequalities.

Proof of Theorem 14.1. Without loss of generality, we assume that∑n
1 |γi|2 = 1. Consider the function

f(ω) ≡
n∑
1

γiri(ω),

where ω ∈ [0, 1). Here is an easy exercise: If h(I) is any Haar function such
that I ⊂ [0, 1), then there is exactly one index i such that h(I)’s inner product
with the Rademacher function ri is non-zero, and that inner product equals√|I|. Therefore, S(f), the dyadic square function of f , satisfies

S(f)(ω) =

(
n∑
1

|γi|2
)1/2

on all of [0, 1). The proof of Theorem 3.2 now implies that, for all λ > 0,

|{ω ∈ [0, 1) : |f(ω)| > λ}| ≤ 2 exp(−λ2/2); (14.7)

and this immediately leads to∫ 1

0

|f(ω)|p dω ≤ Cp

for all 0 < p < ∞, which is the right-hand inequality in 14.6.
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Hölder’s inequality implies the left-hand inequality in 14.6 when p ≥ 2.
Suppose now that 0 < p < 2. We can write:

n∑
1

|γi|2 =
∫ 1

0

∣∣∣∣∣
n∑
1

γiri(ω)

∣∣∣∣∣
2

dω

=
∫ 1

0

∣∣∣∣∣
n∑
1

γiri(ω)

∣∣∣∣∣
p/2∣∣∣∣∣

n∑
1

γiri(ω)

∣∣∣∣∣
2−p/2

dω

≤
(∫ 1

0

∣∣∣∣∣
n∑
1

γiri(ω)

∣∣∣∣∣
p

dω

)1/2
⎛⎝∫ 1

0

∣∣∣∣∣
n∑
1

γiri(ω)

∣∣∣∣∣
4−p

dω

⎞⎠1/2

,

where the last line follows from Cauchy-Schwarz. However, by the right-hand
inequality in 14.6,⎛⎝∫ 1

0

∣∣∣∣∣
n∑
1

γiri(ω)

∣∣∣∣∣
4−p

dω

⎞⎠1/2

≤ Cp

(
n∑
1

|γi|2
)1−p/4

.

Therefore, after dividing, we get(
n∑
1

|γi|2
)p/4

≤ Cp

(∫ 1

0

∣∣∣∣∣
n∑
1

γiri(ω)

∣∣∣∣∣
p

dω

)1/2

;

which, after raising both sides to the 2/p power, yields the result.

What do these tell us about pointwise summation? Let’s assume that we
have a finite Haar function sum with ±ε errors,∑

I

λI(1 + εrI(ω))h(I)(x),

where rI(ω) is a Rademacher function we have assigned to the dyadic inter-
val I, via some enumeration of D (in other words, rI(ω) = rnI

(ω)). The size
of the error at any point x is

ε

∣∣∣∣∣∑
I

λIrI(ω)h(I)(x)

∣∣∣∣∣,
and the expected value of this error—averaging over all ω ∈ [0, 1)—equals ε
times ∫ 1

0

∣∣∣∣∣∑
I

rI(ω)h(I)(x)

∣∣∣∣∣ dω,

which is bounded above and below by constants times
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I

|λI |2(h(I)(x))2
)1/2

.

But that is simply the dyadic square function of
∑

I λIh(I)!
What have we gained? Our goal is to estimate

∑
I λIh(I)(x). Unfortu-

nately, the measured value of this sum depends delicately on cancelation of
errors in the Haar coefficients and functions. However, as long as ε is not too
big (ε < 1/2 will do), we can get a pretty good estimate of the square function
from the observed Haar coefficients λI(1 + εrI(ω)). The square function then
gives us a measure of how much confidence we should put in any estimated
value of

∑
I λIh(I). Namely, if the square function is large, we should not

expect the sum to be too accurate. Put another way, if the square function
is large, we should expect to have to average

∑
I λI(1 + εrI(ω))h(I)(x) over

many observations before getting a trustworthy estimate of
∑

I λIh(I)(x). The
square function also gives us a picture of the amount and type of “spread”
we should see in the sums: a standard deviation roughly equal to S(f), with
sub-Gaussian decay.

Exercises

14.1. The Rademacher functions provide a fairly easy way to construct a
weight v that is dyadic doubling but not in Ad

∞. (The reader might want to
look back at Definition 2.4 and Definition 2.5.) Let 0 < λ < 1 and, for N a
positive integer, define

vN (t) ≡
N∏
1

(1 + λrk(t))

for t ∈ R. a) Show that, for all N and for all dyadic I,

1 ≤ vN (Il)
vN (Ir)

≤ 1 + λ

1 − λ
,

where Il and Ir are the right and left halves of I. Show also that vN ([0, 1)) = 1
for all N . b) Show that, for all η > 0,∣∣∣∣∣

{
t ∈ [0, 1) :

1
N

N∑
1

rk(t) < η

}∣∣∣∣∣→ 1 (14.8)

as N → ∞. c) Let δ > 0 be so small that ρ ≡ (1 − λ2)(1 + λ)δ < 1. Consider
the sequence {r1(t), r2(t), . . . , rN (t)}. It consists of m terms equal to −1 and
N − m terms equal to +1. For such a t, the value of vN (t) is(

(1 − λ2)(1 + λ)δ
)m

(1 + λ)N−(2+δ)m,
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and this will be ≤ ρm if N − (2 + δ)m ≤ 0. Use this fact and 14.8 to show
that vN → 0 in measure on [0, 1). Since vN ([0, 1)) = 1, this implies that the
sequence {vN}, while being uniformly dyadic doubling, is not uniformly in
Ad

∞. By restricting v1 to [0, 1), v2 to [1, 2), v3 to [2, 3), and so on, and setting
our weight equal to 1 on (−∞, 0), we get a weight that is globally dyadic
doubling on R but does not belong to Ad

∞.

14.2. How might the preceding construction be extended to Rd for d > 1?

14.3. How might the construction in exercise 14.1 be modified to yield a
weight that is doubling but not in A∞? (Hint: See the reference to Riesz
products below.)

Notes

The original proof of Khinchin’s Inequalities, which exploited the indepen-
dence of the Rademacher functions, appeared in [33]. The exponential-square
estimate at the heart of the proof was the motivation for Theorem 3.2, which
was first conjectured by E. M. Stein. The exercise is a based on a construc-
tion I learned from José Luis Fernandez (now at the Universidad Autónoma de
Madrid) when we were post-docs at the University of Wisconsin in Madison.
The construction can be thought of as a “dyadic Riesz product.” If the reader
has never seen Riesz products before, he will find a nice introduction to
them in [31].
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Vol. 1836: C. Nǎstǎsescu, F. Van Oystaeyen, Methods of
Graded Rings. XIII, 304 p, 2004.
Vol. 1837: S. Tavaré, O. Zeitouni, Lectures on Probabil-
ity Theory and Statistics. Ecole d’Eté de Probabilités de
Saint-Flour XXXI-2001. Editor: J. Picard (2004)
Vol. 1838: A.J. Ganesh, N.W. O’Connell, D.J. Wischik,
Big Queues. XII, 254 p, 2004.
Vol. 1839: R. Gohm, Noncommutative Stationary
Processes. VIII, 170 p, 2004.
Vol. 1840: B. Tsirelson, W. Werner, Lectures on Probabil-
ity Theory and Statistics. Ecole d’Eté de Probabilités de
Saint-Flour XXXII-2002. Editor: J. Picard (2004)
Vol. 1841: W. Reichel, Uniqueness Theorems for Vari-
ational Problems by the Method of Transformation
Groups (2004)
Vol. 1842: T. Johnsen, A. L. Knutsen, K3 Projective Mod-
els in Scrolls (2004)
Vol. 1843: B. Jefferies, Spectral Properties of Noncom-
muting Operators (2004)
Vol. 1844: K.F. Siburg, The Principle of Least Action in
Geometry and Dynamics (2004)
Vol. 1845: Min Ho Lee, Mixed Automorphic Forms, Torus
Bundles, and Jacobi Forms (2004)
Vol. 1846: H. Ammari, H. Kang, Reconstruction of Small
Inhomogeneities from Boundary Measurements (2004)
Vol. 1847: T.R. Bielecki, T. Björk, M. Jeanblanc, M.
Rutkowski, J.A. Scheinkman, W. Xiong, Paris-Princeton
Lectures on Mathematical Finance 2003 (2004)
Vol. 1848: M. Abate, J. E. Fornaess, X. Huang, J. P. Rosay,
A. Tumanov, Real Methods in Complex and CR Geom-
etry, Martina Franca, Italy 2002. Editors: D. Zaitsev, G.
Zampieri (2004)
Vol. 1849: Martin L. Brown, Heegner Modules and Ellip-
tic Curves (2004)
Vol. 1850: V. D. Milman, G. Schechtman (Eds.), Geomet-
ric Aspects of Functional Analysis. Israel Seminar 2002-
2003 (2004)
Vol. 1851: O. Catoni, Statistical Learning Theory and
Stochastic Optimization (2004)
Vol. 1852: A.S. Kechris, B.D. Miller, Topics in Orbit
Equivalence (2004)
Vol. 1853: Ch. Favre, M. Jonsson, The Valuative Tree
(2004)
Vol. 1854: O. Saeki, Topology of Singular Fibers of Dif-
ferential Maps (2004)
Vol. 1855: G. Da Prato, P.C. Kunstmann, I. Lasiecka,
A. Lunardi, R. Schnaubelt, L. Weis, Functional Analytic
Methods for Evolution Equations. Editors: M. Iannelli,
R. Nagel, S. Piazzera (2004)
Vol. 1856: K. Back, T.R. Bielecki, C. Hipp, S. Peng,
W. Schachermayer, Stochastic Methods in Finance, Bres-
sanone/Brixen, Italy, 2003. Editors: M. Fritelli, W. Rung-
galdier (2004)
Vol. 1857: M. Émery, M. Ledoux, M. Yor (Eds.), Sémi-
naire de Probabilités XXXVIII (2005)
Vol. 1858: A.S. Cherny, H.-J. Engelbert, Singular Stochas-
tic Differential Equations (2005)

Vol. 1859: E. Letellier, Fourier Transforms of Invariant
Functions on Finite Reductive Lie Algebras (2005)
Vol. 1860: A. Borisyuk, G.B. Ermentrout, A. Friedman,
D. Terman, Tutorials in Mathematical Biosciences I.
Mathematical Neurosciences (2005)
Vol. 1861: G. Benettin, J. Henrard, S. Kuksin, Hamil-
tonian Dynamics – Theory and Applications, Cetraro,
Italy, 1999. Editor: A. Giorgilli (2005)
Vol. 1862: B. Helffer, F. Nier, Hypoelliptic Estimates and
Spectral Theory for Fokker-Planck Operators and Witten
Laplacians (2005)
Vol. 1863: H. Führ, Abstract Harmonic Analysis of Con-
tinuous Wavelet Transforms (2005)
Vol. 1864: K. Efstathiou, Metamorphoses of Hamiltonian
Systems with Symmetries (2005)
Vol. 1865: D. Applebaum, B.V. R. Bhat, J. Kustermans,
J. M. Lindsay, Quantum Independent Increment Processes
I. From Classical Probability to Quantum Stochastic Cal-
culus. Editors: M. Schürmann, U. Franz (2005)
Vol. 1866: O.E. Barndorff-Nielsen, U. Franz, R. Gohm,
B. Kümmerer, S. Thorbjønsen, Quantum Independent
Increment Processes II. Structure of Quantum Lévy
Processes, Classical Probability, and Physics. Editors: M.
Schürmann, U. Franz, (2005)
Vol. 1867: J. Sneyd (Ed.), Tutorials in Mathematical Bio-
sciences II. Mathematical Modeling of Calcium Dynamics
and Signal Transduction. (2005)
Vol. 1868: J. Jorgenson, S. Lang, Posn(R) and Eisenstein
Series. (2005)
Vol. 1869: A. Dembo, T. Funaki, Lectures on Probabil-
ity Theory and Statistics. Ecole d’Eté de Probabilités de
Saint-Flour XXXIII-2003. Editor: J. Picard (2005)
Vol. 1870: V.I. Gurariy, W. Lusky, Geometry of Müntz
Spaces and Related Questions. (2005)
Vol. 1871: P. Constantin, G. Gallavotti, A.V. Kazhikhov,
Y. Meyer, S. Ukai, Mathematical Foundation of Turbu-
lent Viscous Flows, Martina Franca, Italy, 2003. Editors:
M. Cannone, T. Miyakawa (2006)
Vol. 1872: A. Friedman (Ed.), Tutorials in Mathemati-
cal Biosciences III. Cell Cycle, Proliferation, and Cancer
(2006)
Vol. 1873: R. Mansuy, M. Yor, Random Times and En-
largements of Filtrations in a Brownian Setting (2006)
Vol. 1874: M. Yor, M. Émery (Eds.), In Memoriam Paul-
André Meyer - Séminaire de Probabilités XXXIX (2006)
Vol. 1875: J. Pitman, Combinatorial Stochastic Processes.
Ecole d’Eté de Probabilités de Saint-Flour XXXII-2002.
Editor: J. Picard (2006)
Vol. 1876: H. Herrlich, Axiom of Choice (2006)
Vol. 1877: J. Steuding, Value Distributions of L-Functions
(2007)
Vol. 1878: R. Cerf, The Wulff Crystal in Ising and Percol-
ation Models, Ecole d’Eté de Probabilités de Saint-Flour
XXXIV-2004. Editor: Jean Picard (2006)
Vol. 1879: G. Slade, The Lace Expansion and its Applica-
tions, Ecole d’Eté de Probabilités de Saint-Flour XXXIV-
2004. Editor: Jean Picard (2006)
Vol. 1880: S. Attal, A. Joye, C.-A. Pillet, Open Quantum
Systems I, The Hamiltonian Approach (2006)
Vol. 1881: S. Attal, A. Joye, C.-A. Pillet, Open Quantum
Systems II, The Markovian Approach (2006)
Vol. 1882: S. Attal, A. Joye, C.-A. Pillet, Open Quantum
Systems III, Recent Developments (2006)
Vol. 1883: W. Van Assche, F. Marcellàn (Eds.), Orthogo-
nal Polynomials and Special Functions, Computation and
Application (2006)



Vol. 1884: N. Hayashi, E.I. Kaikina, P.I. Naumkin,
I.A. Shishmarev, Asymptotics for Dissipative Nonlinear
Equations (2006)
Vol. 1885: A. Telcs, The Art of Random Walks (2006)
Vol. 1886: S. Takamura, Splitting Deformations of Dege-
nerations of Complex Curves (2006)
Vol. 1887: K. Habermann, L. Habermann, Introduction to
Symplectic Dirac Operators (2006)
Vol. 1888: J. van der Hoeven, Transseries and Real Differ-
ential Algebra (2006)
Vol. 1889: G. Osipenko, Dynamical Systems, Graphs, and
Algorithms (2006)
Vol. 1890: M. Bunge, J. Funk, Singular Coverings of
Toposes (2006)
Vol. 1891: J.B. Friedlander, D.R. Heath-Brown,
H. Iwaniec, J. Kaczorowski, Analytic Number Theory,
Cetraro, Italy, 2002. Editors: A. Perelli, C. Viola (2006)
Vol. 1892: A. Baddeley, I. Bárány, R. Schneider, W. Weil,
Stochastic Geometry, Martina Franca, Italy, 2004. Editor:
W. Weil (2007)
Vol. 1893: H. Hanßmann, Local and Semi-Local Bifur-
cations in Hamiltonian Dynamical Systems, Results and
Examples (2007)
Vol. 1894: C.W. Groetsch, Stable Approximate Evaluation
of Unbounded Operators (2007)
Vol. 1895: L. Molnár, Selected Preserver Problems on
Algebraic Structures of Linear Operators and on Function
Spaces (2007)
Vol. 1896: P. Massart, Concentration Inequalities and
Model Selection, Ecole d’Été de Probabilités de Saint-
Flour XXXIII-2003. Editor: J. Picard (2007)
Vol. 1897: R. Doney, Fluctuation Theory for Lévy
Processes, Ecole d’Été de Probabilités de Saint-Flour
XXXV-2005. Editor: J. Picard (2007)
Vol. 1898: H.R. Beyer, Beyond Partial Differential Equa-
tions, On linear and Quasi-Linear Abstract Hyperbolic
Evolution Equations (2007)
Vol. 1899: Séminaire de Probabilités XL. Editors:
C. Donati-Martin, M. Émery, A. Rouault, C. Stricker
(2007)
Vol. 1900: E. Bolthausen, A. Bovier (Eds.), Spin Glasses
(2007)
Vol. 1901: O. Wittenberg, Intersections de deux
quadriques et pinceaux de courbes de genre 1, Inter-
sections of Two Quadrics and Pencils of Curves of Genus
1 (2007)
Vol. 1902: A. Isaev, Lectures on the Automorphism
Groups of Kobayashi-Hyperbolic Manifolds (2007)
Vol. 1903: G. Kresin, V. Maz’ya, Sharp Real-Part Theo-
rems (2007)
Vol. 1904: P. Giesl, Construction of Global Lyapunov
Functions Using Radial Basis Functions (2007)
Vol. 1905: C. Prévôt, M. Röckner, A Concise Course on
Stochastic Partial Differential Equations (2007)
Vol. 1906: T. Schuster, The Method of Approximate
Inverse: Theory and Applications (2007)
Vol. 1907: M. Rasmussen, Attractivity and Bifurcation for
Nonautonomous Dynamical Systems (2007)
Vol. 1908: T.J. Lyons, M. Caruana, T. Lévy, Differential
Equations Driven by Rough Paths, Ecole d’Été de Proba-
bilités de Saint-Flour XXXIV-2004 (2007)
Vol. 1909: H. Akiyoshi, M. Sakuma, M. Wada,
Y. Yamashita, Punctured Torus Groups and 2-Bridge Knot
Groups (I) (2007)
Vol. 1910: V.D. Milman, G. Schechtman (Eds.), Geo-
metric Aspects of Functional Analysis. Israel Seminar
2004-2005 (2007)

Vol. 1911: A. Bressan, D. Serre, M. Williams,
K. Zumbrun, Hyperbolic Systems of Balance Laws.
Lectures given at the C.I.M.E. Summer School held in
Cetraro, Italy, July 14–21, 2003. Editor: P. Marcati (2007)
Vol. 1912: V. Berinde, Iterative Approximation of Fixed
Points (2007)
Vol. 1913: J.E. Marsden, G. Misiołek, J.-P. Ortega,
M. Perlmutter, T.S. Ratiu, Hamiltonian Reduction by
Stages (2007)
Vol. 1914: G. Kutyniok, Affine Density in Wavelet
Analysis (2007)
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