

Joill

(يخصص ^ـ درجات للسؤال الاول) إجابة السبؤال الؤول: (إجباري)

(يخصص لكل سيؤال \& درجات)

$$
1+u \frac{\mu}{\Gamma}-\mu \frac{1}{\lambda}=(\mu) d
$$

$$
\omega
$$

蘦

$$
\frac{\mu}{r}-{ }^{r} u \frac{\mu}{\lambda}=(u)^{\prime} d
$$

$$
\left\langle\hat{r}{ }^{1} y \pm=u \therefore \quad \text { jin }=(u)^{\prime}\right.
$$

$$
\infty \xrightarrow{\stackrel{+}{4}+\odot-\cdots-O^{Y}+++}
$$

$$
(\mu, ~ \gamma-)
$$

صضري هحلية (1-، ${ }^{\text {Y }}$)

إِإِ الحْ

$\langle\hat{\bar{p}}$

A
-

الـعلاقة" هن هنديسة الشيكل

$$
\frac{\hat{r}}{r} \quad r=\theta^{r}{ }^{r} \therefore
$$

令 $\frac{\nu s}{N S} \frac{1}{1 \theta_{0}}=\frac{\theta s}{N g} \theta^{r}{ }^{*} \therefore$

$$
\frac{\xi y}{1 \theta_{0}}=\frac{\theta_{s}}{N g} y
$$

令 $\operatorname{sig} \frac{V}{\theta_{i}}=\frac{\theta s}{N G} \therefore$

"

$\left\langle\left.\hat{Y} \quad \operatorname{uss}(Y-\infty)^{V}\right|_{Y} \pi=c \therefore\right.$
$\frac{1}{\gamma} \quad{ }_{\gamma}^{r}\left[{ }^{r}(r-\operatorname{rr})\right] \frac{\pi}{r}=$

．

us
تكامكا

$$
{ }^{r} \frac{1}{r}
$$

$$
\begin{aligned}
& \text { 立 } 1-\varepsilon=\text { 目 } \therefore \\
& \varepsilon s(1-\varepsilon)^{r}=س s \therefore \\
& \text { unt } \\
& { }^{r}(1-\varepsilon)=\sim \therefore \\
& \varepsilon s^{\frac{1}{r}} \varepsilon^{r} l=w s \frac{\bar{w}+1}{w}, 1 \therefore \\
& \dot{*}+{ }^{\frac{r}{r}} \varepsilon \frac{\varepsilon}{\tilde{p}}= \\
& \text { 令 } \quad+\overline{(u)+1)} \left\lvert\, \frac{\xi}{\psi}=\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\frac{1}{Y}(Y \div) \quad Y=\omega^{4}+\frac{v a}{U B} x v y\right. \\
& \text { 菩 } 1=\omega^{W}+\frac{v s}{v_{s}} \times v \therefore
\end{aligned}
$$

ص

会 $\frac{N Y}{\mu-U}=v$芦 $\frac{Y}{\Gamma-U}=-\therefore$
$\left\langle\frac{1}{p} \frac{\mu^{\eta}-v^{v}}{r\left(r-u^{\mu}\right)}=10\right.$

$$
\xi=v \therefore \quad q=u \operatorname{sic}
$$

$$
\frac{1}{y} \quad 1 Y=8 \times 7 \times \frac{1}{r}=\hat{p}
$$

$$
\left.\frac{1}{p} \text { (}{ }^{1-9} 1 \cdot-9\right)=\hat{i}
$$

$$
\text { Yas }\left(\frac{1}{A}-q_{0}\right)=\hat{A}
$$

> [
> إدابة الهز

$$
\begin{aligned}
& \dot{\omega}+{ }^{N}, \vec{A} 10-=0 \therefore \\
& \left\langle\frac{1}{p} q \cdot=\ddot{\therefore}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { 色) = N }
\end{aligned}
$$

