Ir.lt'r'nduétiun to
Computational
Genomics

A CASE STUDIES APPROACH

1

Nello Cristianini
~and Matthew W, Hahn

v A
.

S _

www.cambridge.org/978052 1856034

http://www.cambridge.org/9780521856034

This page intentionally left blank

Introduction to Computational Genomics

Where did HIV and SARS come from? Have we inherited genes from Neanderthals?
How do plants use their internal clock? How do odor receptors function? The ge-
nomic revolution in biology, started in the late 1990s, enables us to answer such
questions. But the revolution would have been impossible without the support of
powerful computational and statistical methods that enable us to exploit the mas-
sive amounts of genomic data. Accordingly, many universities are introducing the
courses to train the next generation of bioinformaticians: biologists who are fluent
in the language of mathematics and computer science, and data analysts who are
familiar with the problems and techniques of biology. The entry cost into this field is
very high, requiring knowledge of several disciplines and of a large and fast-growing
literature. Students need a road map to navigate entry to this field. This readable and
entertaining book, based on successful courses taught at the University of California
and elsewhere, provides that. It guides the reader step by step through some of the
key achievements of bioinformatics. The hands-on approach makes learning easier
and experimentation natural, as well as equipping the reader with the necessary
tools and skills. Statistical sequence analysis, sequence alignment, hidden Markov
models, gene and motif finding, gene expression data analysis and reconstruction
of evolutionary relations between genomes are all introduced in a rigorous yet ac-
cessible way. A companion website provides the reader with all the data used in the
examples, links to publicly available software, and Mat1ab® demonstration for
reproducing and adapting all the steps performed in the book.

Nello Cristianini is Professor of Artificial Intelligence at the University of Bristol.

Matthew Hahn is Assistant Professor, Department of Biology and School of Infor-
matics, Indiana University.

Introduction to
Computational
Genomics

A Case Studies Approach

Nello Cristianini and Matthew W. Hahn

i CAMBRIDGE

275 UNIVERSITY PRESS

cambridge university press

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo
Cambridge University Press

The Edinburgh Building, Cambridge cb2 2ru, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521856034

© N. Cristianini and M. W. Hahn

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2006

isbn-13 978-0-511-26007-0 eBook (EBL)
isbn-10 0-511-26007-5 eBook (EBL)

isbn-13 978-0-521-85603-4 hardback
isbn-10 0-521-85603-5 hardback

isbn-13 978-0-521-67191-(paperback
isbn-10 0-521-67191-4 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

http://www.cambridge.org/9780521856034
http://www.cambridge.org

Contents

Preface
Prologue: In praise of cells

page ix

X1

Chapter | | The first look at a genome: Sequence statistics 1
1.1 Genomic era, year zero 1
1.2 The anatomy of a genome 3
1.3 Probabilistic models of genome sequences 5
1.4 Annotating a genome: statistical sequence analysis 10
1.5 Finding data: GenBank, EMBL, and DDBJ 18
1.6 Exercises 20
1.7 Reading List 21

Chapter 2 | All the sequence’s men: Gene finding 22
2.1 The human genome sweepstakes 22
2.2 An introduction to genes and proteins 23
2.3 Genome annotation: gene finding 29
2.4 Detecting spurious signals: hypothesis testing 31
2.5 Exercises 37
2.6 Reading List 37

Chapter 3 | Allin the family: Sequence alignment 38
3.1 Eye of the tiger 38
3.2 On sequence alignment 39
3.3 On sequence similarity 40
3.4 Sequence alignment: global and local 42
3.5 Statistical analysis of alignments 47
3.6 BLAST: fast approximate local alignment 50
3.7 Multiple sequence alignment 53

3.8% Computing the alignments 55
3.9 Exercises 60

3.10 Reading list 60

Chapter 4 | The boulevard of broken genes: Hidden

Markov models 61
4.1 The nose knows 61
4.2 Hidden Markov models 63
4.3 Profile HMMs 67
4.4 Finding genes with hidden Markov models 69
4.5 Case study: odorant receptors 70

4.6% Algorithms for HMM computations 75
4.7 Exercises 77
4.8 Reading list 77

vi CONTENTS

Chapter 5 | Are Neanderthals among us?: Variation

within and between species 78
5.1 Variation in DNA sequences 79
5.2 Mitochondrial DNA: a model for the analysis of variation 83
5.3 Variation between species 85
5.4 Estimating genetic distance 87
5.5 Case study: are Neanderthals still among us? 92
5.6 Exercises 94
5.7 Reading list 95
Chapter 6 | Fighting HIV: Natural selection at the
molecular level 96
6.1 A mysterious disease 96
6.2 Evolution and natural selection 97
6.3 HIV and the human immune system 98
6.4 Quantifying natural selection on DNA sequences 99
6.5 Estimating K4/Ks 102
6.6 Case study: natural selection and the HIV genome 105
6.7 Exercises 108
6.8 Reading list 109
Chapter 7 | SARS — a post-genomic epidemic:
Phylogenetic analysis 110
7.1 Outbreak 110
7.2 On trees and evolution 112
7.3 Inferring trees 115
7.4 Case study: phylogenetic analysis of the SARS epidemic 120
7.5 The Newick format 126
7.6 Exercises 127
7.7 Reading list 127
Chapter 8 | Welcome to the hotel Chlamydia: VWhole
genome comparisons 128
8.1 Uninvited guests 128
8.2 By leaps and bounds: patterns of genome evolution 129
8.3 Beanbag genomics 130
8.4 Synteny 135
8.5 Exercises 138
8.6 Reading list 139
Chapter 9 | The genomics of wine-making: Analysis of
gene expression 141
9.1 Chateau Hajji Feruz Tepe 141
9.2 Monitoring cellular communication 143
9.3 Microarray technologies 145
9.4 Case study: the diauxic shift and yeast gene expression 147
9.5 Bonus case study: cell-cycle regulated genes 155

CONTENTS

vii

9.6 Exercises 158
9.7 Reading list 158
Chapter 10 | A bed-time story: Identification of
regulatory sequences 159
10.1 The circadian clock 159
10.2 Basic mechanisms of gene expression 161
10.3 Motif-finding strategies 162
10.4 Case study: the clock again 167
10.5 Exercises 172
10.6 Reading list 172
Bibliography 173
Index 179

Preface

Nothing in biology makes sense except in the
light of evolution.
Theodosius Dobzhansky

Modern biology is undergoing an historical transformation, becoming — among
other things — increasingly data driven. A combination of statistical, compu-
tational, and biological methods has become the norm in modern genomic
research. Of course this is at odds with the standard organization of university
curricula, which typically focus on only one of these three subjects. It is hard
enough to provide a good synthesis of computer science and statistics, let alone
to include molecular biology! Yet, the importance of the algorithms typical of
this field can only be appreciated within their biological context, their results
can only be interpreted within a statistical framework, and a basic knowledge
of all three areas is a necessary condition for any research project.

We believe that users of software should know something about the al-
gorithms behind the results that are presented, and software designers should
know something about the problems that will be attacked with their tools. We
also believe that scientific ideas need to be understood within their context,
and are often best communicated to students by means of examples and case
studies.

This book addresses just that need: providing a rigorous yet accessible intro-
duction to this interdisciplinary field, one that can be read by both biologically
and computationally minded students, and that is based on case studies. It has
evolved from a course taught at UC Davis, where both authors were doing
research in computational biology, one coming from computer science (N.C.)
and the other from biology (M.W.H.).

The authors had to understand the other’s field in order to do research in the
hybrid science of computational genomics. The goal of this book is to develop
a simple, entertaining, and informative course for advanced undergraduate and
graduate students. Based on carefully chosen case studies, the chapters of this
book cover ten key topics that we feel are essential to a scientist conducting
research in bioinformatics and computational genomics. We will be satisfied if
at the end of this first course the reader is able to understand and replicate the
main results from the classic papers in this field.

X

PREFACE

This book benefited from the input of many colleagues and students. In
particular, many of the case studies have been based on projects developed
by students, post-docs, and research visitors, as well as teaching assistants. In
particular we want to thank Elisa Ricci, Tara Thiemann, Margherita Bresco,
Chi Nguyen, Khoa Nguyen, and Javannatah Gosh. The authors have benefited
from discussions with various outstanding colleagues, and it is difficult to list
them all. However in particular we want to thank Linda Bisson, Stacey Harmer,
Wolfgang Polonik, Dan Gusfield, Sergey Nuzhdin, Lucio Cetto, Leonie Moyle,
Jason Mezey, and Andrew Kern. The first draft has been proof-read by various
colleagues: Chris Watkins, John Hancock, Asa Ben Hur, Tom Turner, Quan Le,
Tara Thiemann, Vladimir Filkov, and Rich Glor. N. C. acknowledges support
from NIH grant R33HG003070-01.

The book’s website contains the data, the algorithms and the papers used
in the case studies, and much more. It can be found at the URL

www.computational-genomics.net

Bristol, Bloomington

Prologue

In praise of cells

The physicist Richard Feynman is credited with jump-starting the field of nan-
otechnology. In a talk at Caltech in December 1959, Feynman issued a famous
challenge: he would pay $1000 to anyone who could write the entire Encyclo-
pedia Britannica on the head of a pin. Feynman calculated that the size of the
area was approximately 1/16 of an inch across (about 1.6 x 1073 meters), and
that in order to fit all 42 million letters of the Encyclopedia one would have to
make each letter 1.0 x 10~% meters across. It took (only) 26 years before the
prize was finally claimed by a graduate student at Stanford University.

Now, consider the problem of having to write out the entire set of instructions
needed to build and operate a human, and consider having to do so in each of the
trillions of cells in the body. The entire human genome is 3.5 billion “letters”
long, and each cell is only 2 microns (2 x 1077 meters) across. (Actually, two
complete copies of the genome are present in each cell, so we have to fit a bit
more than 7 billion letters.) However all the organisms on earth overcome these
packaging problems to live and prosper in a wide range of environments.

In the same 1959 lecture Feynman also imagined being able to look inside a
cellin order to read all of the instructions and history contained within a genome.
A few decades later the genomic era began —a time when technological advances
in biology and computational advances in computer science came together to
fulfill Feynman’s dream. Bioinformatics and computational genomics make it
possible to look inside a cell and read how an organism functions and how it
got to be that way. This book endeavors to be a first course in this new field.

Why bioinformatics?

How are all forms of life related? What was the first cell like? How do species
adapt to their environments? Which part of our genome is evolving the fastest?
Are we descendents of Neanderthals? What genes are responsible for major
human diseases? Why do we need new flu vaccines every year?

Modern biology is a goldmine of fascinating questions, and never be-
fore have we been so close to the answers. The main reason for this is the
new, data-driven approach to biological investigation spawned by the avail-
ability of large-scale genomic data. The availability of these data has trig-
gered a revolution in biology that can only be compared to the revolution in
physics at the beginning of the twentieth century. The effects of this revolu-
tion have been felt in other fields of science, as well. Application of genomic

* How cells work

* What is a genome

* The computational future of
biology

* A roadmap to this book

Xii

PROLOGUE

technology to medicine, drug design, forensics, anthropology, and epidemiol-
ogy holds the promise to improve our life and enlarge our understanding of the
world.

Almost as important as this scientific revolution is the cultural revolution
that has accompanied it. Many of the questions asked in modern biology can
only be answered by computational analysis of large quantities of genomic data.
Researchers in computer science and statistics have been recruited to this effort
to provide both a conceptual framework and technological support. Biologists,
computer scientists, and statisticians now work together to analyze data and
model living systems to a level of detail that was unthinkable just a few years
ago. The impact of this collaboration on biology has been invaluable and has
lead to the new discipline of bioinformatics.

Soon, a new kind of scientist (with knowledge in computer science, statis-
tics, mathematics, biology, and genetics) will arise. Most major universities
have already started various types of degrees in bioinformatics and are drawing
students with a wide range of backgrounds. The purpose of this book is to pro-
vide a first course in the questions and answers to problems in bioinformatics
and computational genomics (because many people have preconceived notions
of the term “bioinformatics,” we use these two phrases interchangeably). We
hope to provide the biology necessary to computational researchers — though
we obviously cannot cover everything — and the algorithms and statistics neces-
sary to biologists. All of this is in the hope of molding a new type of researcher
able to ask and answer all (or almost all) of the questions in modern biology.

A bit of biology

One of the most fundamental questions, the one that underlies many others,
is: How do cells work? For both unicellular and multicellular organisms, we
want to know how cells react to their environment, how genes affect these
reactions, and how organisms adapt to new environments. The general picture
is known, but many of the details are missing. Modern biology aims to answer
this question in detail, at a molecular level. Here we review some of the most
basic ideas in biology to provide the minimum knowledge needed to conduct
research in bioinformatics. We stress at the outset that biology is a field of
exceptions: all of the generalizations and rules we introduce here will be wrong
for some organisms, but covering all of the exceptions would take another book.
Throughout the text, we have tried to note when there are important exceptions
that bear on the examples given.

Every organism’s dream (so to speak) is to become two organisms. An
organism reproducing faster, or exploiting its environment more efficiently,
rapidly out-competes its rivals for resources. This was the basic point made by
Darwin and is vital to understanding the way cells and organisms work. The
conceptual framework of evolution is the most fundamental aspect of biological
thinking and allows us to organize and interpret all of the data we will be analyz-
ing in this book. No analysis of the genetic differences between individuals in
a species, or between different species, makes sense outside of an evolutionary
framework. Over the 3.5 billion years life has been on this planet, organisms
have become extremely streamlined and efficient, shaped to a large extent by
the evolutionary process of natural selection. If we want to understand cells,
we have to understand both the power and the limitations of natural selection.

PROLOGUE

xiii

Conversely, in order to understand natural selection, we also must understand
much about basic biology.

There are two basic types of cells, those with and without nuclei (called
eukaryotic and prokaryotic cells, respectively). These types of cells largely
share the same fundamental molecular machinery, but prokaryotes are simpler,
unicellular organisms (such as bacteria), while eukaryotes are often more com-
plex and include both unicellular and multicellular organisms (such as fungi,
animals, and plants).

Unicellular organisms are the simplest free-living things; their ability to
interact with the environment, derive the energy and materials needed to con-
tinually fabricate themselves, and then eventually to reproduce is controlled by
a complex network of chemical reactions. Even the individual cells that make
up a multicellular organism must each perform thousands of such reactions.
These chemical reactions (called metabolism as a whole) are the very essence
of cellular life: a cell needs to process various nutrients found in its environ-
ment, to produce the components it needs to operate, and then to breakdown
components no longer needed. These tasks are carried out via biochemical
processes that can be finely controlled by the cell. Each reaction needs to be
catalyzed (triggered) by specific proteins — special molecules produced by the
cell itself. Many proteins are enzymes, a kind of molecule involved in nearly
every activity of the cell. Other proteins are used as structural elements to build
cellular parts, as activation or repression agents to control reactions, as sensors
to environmental condition, or take part in one of the many other tasks nec-
essary for cellular function. There are thousands of different proteins in each
cell, often specialized to control one specific reaction, or to be part of a specific
cellular structure. Producing these proteins not only requires the cell to obtain
energy and materials, but also requires detailed communication between differ-
ent parts of a cell or between cells. Much of the cellular machinery is devoted
simply to ensuring the production of proteins at the right moment, in the right
quantity, in the right place.

A protein is a large molecule formed by a chain of amino acids, which
folds into a characteristic shape. The same 20 basic amino acids are used by
all known organisms. The exact composition of the chain (which amino acids
are in which order) determines its shape, and its shape determines its function
—1.e. which reactions it will facilitate, which molecules it will bind to, etc. The
need to produce thousands of proteins means that a cell must have a way to
remember the recipe for each of them, as well as have a way to produce them
at the right time.

A cell’s most reliable way to pass on the recipe for making proteins is con-
tained in its genetic material and is passed on to daughter cells at each division.
The machinery for reading this information is one of the core components of
all living things and is highly similar in all types of cells; the machinery itself
is formed by a complex of enzymes, specified by the very instructions it must
read! This self-referential, auto-poietic, aspect of life can be mind-boggling.

The genetic material used by cells is formed by molecules of DNA (de-
oxyribonucleic acid), which have a sequential structure that enables them to act
as information storage devices. The way in which they store the recipe for pro-
teins and the information needed to control their production will be discussed
in Chapters 1 and 2.

Xiv

PROLOGUE

The quest to understand the way in which DNA is used by organisms to
pass on genetic instructions has spanned the last two centuries of biology. The
initial steps were taken in 1859 by a Moravian monk named Gregor Mendel.
Mendel discovered that genetic information is contained in discrete units (what
we now call genes), passed from generation to generation. The second major
step came in 1944, when a group in New York led by Oswald Avery showed that
nucleic acids were the molecules used to encode this information. Finally, with
the proposal of the structure of DNA by James Watson and Francis Crick in
1953, the mechanism for the replication and retrieval of information stored in a
DNA sequence was found. What came in the years following these discoveries
has been an incredible series of events, with biologists unraveling the exact way
in which proteins are specified by DNA, and revealing how cells use genetic
information to synthesize proteins.

The future of biology

Although the big picture came to emerge gradually in the last decades of the
twentieth century, it also became increasingly clear that the size and complex-
ity of organisms meant that a detailed understanding of their inner-workings
could not be achieved by small-scale experiments. By the end of the century
it became possible to automate the acquisition of this knowledge and thus to
collect gigabytes of data in a short period of time. The invention of sequencing
machines that can read the entire DNA sequence of a bacterium in only a day,
and of a larger eukaryote in a month, as well as machines that can identify and
quantify all of the genes active in a cell or a tissue, has ensured a steady flood
of biological information for the foreseeable future. The analysis of these data
promises to be the biggest challenge to biology in the twenty-first century.

The details of the roles played by different proteins in cellular reactions,
how these reactions are organized into pathways (whereby the product of one
reaction becomes the substrate of another reaction), and how pathways are
organized into a complex network that must continually reproduce itself are
now the questions that biologists can address. In addition, crucial questions
concerning the way in which genes are responsible for differences between
species, between individuals of the same species, and the role genes play in
evolution can be answered by a large-scale analysis of the entire collection of
genetic material contained within each individual.

But there are also many simpler questions that we still cannot answer sat-
isfactorily: How many different proteins do organisms have? How is their pro-
duction coordinated? How did they arise? What — if not proteins — does the
majority of DNA in a cell code for?

It is the aim of this book to provide the tools necessary to answer the
above questions by computational analysis of genomic data. The ten chapters
of this book cover ten topics that we feel are necessary to a scientist conducting
research in bioinformatics and computational genomics. Below we outline these
ten topics.

A roadmap to this book

This book is divided into ten chapters, each presenting a major idea or task in
computational genomics. On top of this structure, however, the book is divided
into three main threads. Chapters 1-4 provide the tools necessary to annotate

PROLOGUE

XV

a genomic sequence — to describe the main features and structures found in a
genome, and ideally also their function. In Chapters 5-8 we learn how to go
from treating the genome as a static edifice to the dynamic, evolving object that
it truly is. Finally, because each of the first eight chapters has looked solely at
DNA sequences, we turn to the analysis of gene expression in Chapters 9 and
10, showing how this can be used to identify the function of genes and other
structures found in the sequence. We show how the analysis of data produced
by DNA microarrays differs from sequence analysis, but we also show how
it can be synthesized with sequence data to reveal even more about the inner
workings of cells. Below is a short synopsis of each of the ten chapters.

Chapter 1 describes the major features of a genome, by using as a leading
example the first genomic sequence of a free-living organism ever obtained:
that of the bacterium Haemophilus influenzae. We show how to retrieve and
handle genomic data, perform some simple statistical analysis, and draw some
conclusions. The chapter also introduces probabilistic models of biological
sequences and important notation and terminology. After this chapter, the reader
will be able to download and manipulate DNA sequences from public databases,
and understand their statistical properties.

Chapter 2 explains what genes are and how to find them in a DNA sequence
by locating particular regions called open reading frames (ORFs), again in the
case of simple bacterial sequences. It also deals with other statistical signals to
be found in genome sequences, and discusses a crucial point: how to assess the
significance of a pattern and how to report it in terms of p-values. This chapter
will enable the reader to find candidate genes and assess the significance of
their findings.

Chapter 3 deals with the important algorithmic issue of assessing sequence
similarity, the standard way to detect descent from a common ancestor. To
this purpose the chapter introduces the technology of sequence alignment as
an indispensable tool of bioinformatics, describing in detail the basic pairwise
global and local alignment algorithms (based on dynamic programming) as well
as briefly discussing multiple alignment and fast pairwise alignment algorithms
(such as BLAST). This chapter will enable the reader both to decide if two
given DNA sequences are likely to be homologous and to understand how to
use common alignment tools.

Chapter 4 uses the example of odorant-receptor proteins to introduce another
of the algorithmic workhorses of the field of bioinformatics: hidden Markov
models (HMMs). This class of probabilistic models for sequences (and signals
therein) underlies many modern gene finding algorithms, but is also used in
sequence segmentation, multiple alignment, etc. The chapter demonstrates how
to detect change points in the statistical make-up of biological sequences — a
task that can help to identify features such as horizontally transferred segments
of DNA - and how to summarize all the features of a protein family into a
single probabilistic description. The reader should then be able to determine
the likelihood that a protein belongs to a certain family, and therefore whether
already annotated proteins can be used to assign function.

Chapter 5 introduces the issue of genetic variation among individuals of
the same species, by comparing genetic sequences of Neanderthal and Homo
sapiens. The fascinating question of our relation with these ancient inhabi-
tants of Europe can be entirely answered by analyzing publicly available DNA

XVi

PROLOGUE

sequences, and in the process we can learn about single nucleotide polymor-
phisms (SNPs) and statistical models of sequence evolution. In order to account
for the probability of multiple substitutions in DNA sequences, and hence to ob-
tain better assessments of the genetic distance between individuals, the Jukes—
Cantor and Kimura 2-parameter models are derived. An analysis of DNA from
various apes also hints at fundamental questions about human origins. The
reader will be able to assess genetic distance between sequences, understand
the mathematics behind the models, and apply this to real data.

Chapter 6 directly addresses the question of sequence evolution under nat-
ural selection. A sequence evolves with different rates if it is under selective
pressure either to change or to stay constant, and this selective pressure can
be quantified by using statistical models and appropriate algorithmic methods.
The example of HIV evolution is used in this chapter to illustrate how certain
locations of this fast-evolving virus change at a high rate — to keep ahead of
the immune system of the host — while others are fairly conserved. Evolution
of drug resistance follows similar patterns, and can be similarly detected. The
reader will become familiar with the computation and the interpretation of the
K, /K ratio on real sequence data.

Chapter 7 takes these ideas one step further, showing how it is possible to
reconstruct the evolutionary history of a set of homologous sequences by con-
structing phylogenetic trees. This is not just important for evolutionary studies,
but can have many practical applications, as is demonstrated by the case study
of the SARS epidemic. In late 2002 a virus jumped from an animal to a human
in China, triggering a violent epidemic that spread to many countries before
being identified and isolated. But its time, place, and host of origin, as well as
the trajectory followed by the infection, can be reconstructed by an analysis
of the viral genetic sequences. Simple algorithms and advanced concepts of
phylogenetic analysis are presented, including the basic neighbor-joining al-
gorithm, and more advanced and sophisticated approaches. These methods are
also used to answer questions about the origin of HIV, and to address questions
about early human evolution. The reader will learn to construct phylogenetic
trees from sequence data.

Chapter 8 discusses one of the most recent applications of computational
genomics, namely whole-genome analysis of multiple species. This involves
large-scale genomic comparisons between different species, and if the species
are chosen carefully it can provide a wealth of information, from helping to
identify functional regions to reconstructing the evolutionary mechanisms that
led to speciation. We take the complete genomes of different species of Chlamy-
dia, an internal parasite of eukaryotic cells, and we see how they differ from
major large-scale rearrangements of the same genes. We also identify syntenic
regions, gene families, and distinguish between orthologous and paralogous
genes. The reader will become familiar with the basic concepts and tools of
whole-genome analysis.

In Chapter 9 we address another major source of genomic information:
gene expression data collected by using DNA microarrays. Exploiting patterns
found in this type of data requires using pattern recognition technology, a mix
of statistics and computer science. We demonstrate the power of this approach
to functionally annotate genomes by studying the case of yeast. A series of
landmark papers in the late 1990s introduced the analysis of gene expression

PROLOGUE

XVii

data by looking just at yeast genomes, and these studies are repeated in this
chapter. The main tools are presented, including data processing, clustering,
classification, visualization, and applied to the detection of cell-cycle regulated
genes. The reader will be able to perform basic tasks of data mining with
gene expression data, and to understand the assumptions underlying the most
common algorithmic approaches.

Finally, in Chapter 10 we discuss the integration between expression and
sequence information, by studying the circadian clock in plants. Genes regu-
lated by the internal clock (as opposed, for example, to genes responding to
external stimulations) can be identified by gene expression analysis, and clus-
tered according to the time phase of their cycle. The upstream sequences of
genes of equal phase can reveal common patterns, candidate binding sites for
regulatory proteins. This analysis can be performed by the reader, illustrating
how sequence and expression information can be synthesized, to annotate not
only protein coding but also regulatory regions.

Many more important topics and approaches exist in computational ge-
nomics, but in order to make this introduction as gentle as possible, we have
selected the above ten themes as representatives of the style of analysis typically
found in this exciting scientific domain. More advanced approaches should be
more easily accessible to the readers once they have become familiar with the
contents presented in this book. Sections marked with a * can be skipped at a
first read.

Reading list

A general understanding of molecular biology, genetics, and evolution are all
essential for researchers in computational genomics. This can be obtained in
many introductory textbooks of biology, as well as in more specialized intro-
ductions to the field of genomics. The reader may refer to Brown (1999) and to
Gibson and Muse (2004) for a general introduction to genomics and evolution,
or follow the links in the book’s website to online introductory material about
molecular and cell biology. The lecture by Richard Feynman on nanotechnology
can be found in the article Feynman (1960). The book’s website:

www .computational-genomics.net

contains links to introductory articles and other online material.

Chapter |

The first look at a genome
Sequence statistics

I.| ' Genomic era, year zero

In 1995 a group of scientists led by Craig Venter, at The Institute for Genomic
Research (TIGR) in Maryland, published a landmark paper in the journal Sci-
ence. This paper reported the complete DNA sequence (the genome) of a free-
living organism, the bacterium Haemophilus influenzae (or H. influenzae, for
short). Up until that moment, only small viral genomes or small parts of other
genomes had been sequenced. The first viral genome sequence (that of phage
phiX174) was produced by Fred Sanger’s group in 1978, followed a few years
later by the sequence of human mitochondrial DNA by the same group. Sanger —
working in Cambridge, UK — was awarded two Nobel prizes, the first one in
1958 for developing protein sequencing techniques and the second one in 1980
for developing DNA sequencing techniques. A bacterial sequence, however,
is enormously larger than a viral one, making the H. influenzae paper a true
milestone. Given the order of magnitude increase in genome size that was se-
quenced by the group at TIGR, the genomic era can be said to have started in
1995.

A few months later the same group at TIGR published an analysis of the full
genome of another bacterium, Mycoplasma genitalium — a microbe responsible
for urethritis — and shortly thereafter the sequence of the first eukaryote, the fun-
gus, Saccharomyces cerevisiae (or S. cerevisiae, baker’s yeast) was published
by other groups. The method created by the TIGR group to obtain and assem-
ble genome sequences was itself a watershed; their method relied massively on
computer technology, but is beyond the topics discussed here. In the years that
followed, the number of complete genomes published grew enormously, and
the pace is still increasing. Before the start of the genomic era the collection
of publicly available DNA sequence data was distributed among scientists on
magnetic tape, then on CD, and finally over the internet. Now whole genomes
are available for fast download from a number of public databases.

After completing the sequencing of H. influenzae, Venter’s group moved to
what is the next phase of any genomic project: genome annotation. Annotation

Genomes and genomic
sequences
Probabilistic models of

sequences
Statistical properties of
sequences

Standard data formats and
databases

THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

Table |.1 | Some of the genomes discussed in this book, with their size and date of completion
Completion

Organism date Size Description

phage phiX174 1978 5,368 bp I'st viral genome

human mtDNA 1980 16571 bp I'st organelle genome

lambda phage 1982 48,502 bp important virus model

HIV 1985 9,193 bp AIDS retrovirus

H. influenzae 1995 1,830 Kb I'st bacterial genome

M. genitalium 1995 580 Kb smallest bacterial genome

S. cerevisiae 1996 2.5 Mb I'st eukaryotic genome

E. coliKI2 1997 4.6 Mb bacterial model organism

C. trachomatis 1998 1,042 Kb internal parasite of eukaryotes

D. melanogaster 2000 180 Mb fruit fly, model insect

A. thaliana 2000 125 Mb thale cress, model plant

H. sapiens 2001 3,000 Mb human

SARS 2003 29,751 bp coronavirus

involves various phases, and is never really complete. However, most sequenc-
ing projects perform at least two steps: a first (usually simpler) analysis, aimed
at identifying all of the main structures and characteristics of a genome; then
a second (often more complicated) phase, aimed at predicting the biological
function of these structures. The first chapters of this book present some of the
basic tools that allow us to perform sequence annotation. We leave the more
advanced topic of sequence assembly — the initial step of constructing the entire
genome sequence that must occur before any analyses begin — to more advanced
courses in bioinformatics.

Now that we have the complete genome sequences of various species, and
of various individuals of the same species, scientists can begin to make whole-
genome comparisons and analyze the differences between organisms. Of course
the completion of the draft human genome sequence in 2001 attracted headlines,
but this was just one of the many milestones of the genomic era, to be followed
soon thereafter by mouse, rat, dog, chimp, mosquito, and others. Table 1.1
lists some important model organisms as well as all of the organisms used in
examples throughout this book, with their completion dates and genome length
(the units of length will be defined in the next section). We should stress here
that there were many challenges in data storage, sharing, and management that
had to be solved before many of the new analyses we discuss could even be
considered.

In the rest of this chapter we begin our analysis of genomic data by repro-
ducing some of the original analyses of the early genome papers. We continue
this aim in the following chapters, providing the reader with the data, tools,
and concepts necessary to repeat these landmark analyses. Before we start our
first statistical examination of a complete genome; however, we will need to
summarize some key biological facts about how DNA is organized in cells and
the key statistical issues involved in the analysis of DNA.

1.2 THE ANATOMY OF A GENOME

It is also worth emphasizing at this point that genomic data include more
than just DNA sequence data. In 1995 a group of scientists led by Pat Brown
at Stanford University introduced a high-throughput technology that enabled
them to measure the level of activity of all the genes in an organism in a single
experiment. The analysis of the large datasets generated by these experiments
will be addressed in Chapter 9 and, partly, Chapter 10.

1.2 The anatomy of a genome

As a first definition, we can say that a genome is the set of all DNA contained
in a cell; shortly we will explain how some organisms actually have multiple
genomes in a single cell. The genome is formed by one or more long stretches
of DNA strung together into chromosomes. These chromosomes can be linear
or circular, and are faithfully replicated by a cell when it divides. The entire
complement of chromosomes in a cell contains the DNA necessary to synthesize
the proteins and other molecules needed to survive, as well as much of the
information necessary to finely regulate their synthesis. As we mentioned in
the Prologue, each protein is coded for by a specific gene — a stretch of DNA
containing the information necessary for that purpose.

DNA molecules consist of a chain of smaller molecules called nucleotides
that are distinct from each other only in a chemical element called a base.
For biochemical reasons, DNA sequences have an orientation: it is possi-
ble to distinguish a specific direction in which to read each chromosome
or gene. The cell’s enzymatic machinery reads the DNA from the 5’ to the
3" end (these are chemical conventions of the nucleic acids that make up
DNA), which are often represented as the left and right end of the sequence,
respectively.

A DNA sequence can be either single-stranded or double-stranded. The
double-stranded nature of DNA is caused by the pairing of bases. When it
is double-stranded, the two strands have opposite direction and are comple-
mentary to one another. This complementarity means that for each A, C, G,
T in one strand, there is a T, G, C, or A, respectively, in the other strand.
Chromosomes are double-stranded — hence the “double helix” — and informa-
tion about a gene can be contained in either strand. Importantly, this pair-
ing introduces a complete redundancy in the encoding, which allows the
cell to reconstitute the entire genome from just one strand, which in turn
enables faithful replication. For simple convenience, however, we usually
just write out the single strand of DNA sequence we are interested in from
5'to 3.

Example 1.1

Sequence orientation and complementarity. The sequence 5 ~ATGCATGC — 3/
is complementary to the sequence 3’ — TACGTACG — 5', which would often be
represented in print as simply ATGCATGC if no other directionality is provided.

We have seen that DNA molecules consist of chains of nucleotides, each
characterized by the base it contains. As a result, the letters of the DNA alphabet

THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

are variously called nucleotides (nt), bases, or base pairs (bp) for double stranded
DNA. The length of a DNA sequence can be measured in bases, or in kilobases
(1000 bp or Kb) or megabases (1 000000 bp or Mb). The genomes present in
different organisms range in size from kilobases to megabases, and often have
very different biological attributes. Here we review some of the basic facts
about the most common genomes we will come across.

Prokaryotic genomes. As of the writing of this book, the Comprehensive
Microbial Resources website hosted at TIGR contains the sequences of 239
completed genomes: 217 from bacteria, and 21 from archaea (including the two
bacterial genomes from 1995 discussed above). This number is sure to have risen
since then. Eubacteria and archaea are the two major groups of prokaryotes:
free-living organisms without nuclei, a structure within cells that is used by
eukaryotes to house their genomes. Prokaryotic organisms generally have a
single, circular genome between 0.5 and 13 megabases long. M. genitalium has
the smallest prokaryotic genome known, with only 580074 bases. In addition
to having relatively small genomes, prokaryotes also have rather simple genes
and genetic control sequences; in the next chapter we will explore these issues
in depth and see how they affect the identification of genes. Because of this
simplicity and their fundamental similarities to more complex genomes, we will
use many prokaryotic genomes as first examples for the analyses performed in
the book. We will focus in particular on H. influenzae, M. genitalium, and
Chlamydia trachomatis.

Viral genomes. Although viruses are not free-living organisms, an examina-
tion of viral genomes can be very informative. At least a thousand viral genomes
have been sequenced, starting from what is considered the “pre-genomic” era,
dating back to the late 1970s. Although these genomes are usually very short —
between 5 and 50 kilobases (Kb) —and contain very few genes, their sequencing
was a milestone for biology, and they enabled scientists to develop conceptual
tools that would become essential for the analysis of the genomes of larger,
free-living organisms. As they are an excellent model for practicing many of
the methods to be deployed later on larger genomes, we will use them to illus-
trate basic principles. Their analysis is also highly relevant for epidemiological
and clinical applications, as has been demonstrated in cases involving HIV and
SARS (see Chapters 6 and 7). Peculiarly, viral genomes can be either single-
or double-stranded, and either DNA- or RNA-based (we will learn more about
the molecule RNA in the next chapter). Because of their small size, we can
analyze a large number of viral genomes simultaneously on a laptop, a task
that would require a large cluster of machines in the case of longer genomic
sequences.

Eukaryotic genomes. The nuclear genome of eukaryotes is usually considered
the genome of such an organism (see the next paragraph for a description of
the organellar genomes contained in many eukaryotes). These nuclear genomes
can be much larger than prokaryotic genomes, ranging in size from 8 Mb for
some fungi to 670 gigabases (billions of bases or Gb) for some species of the
single-celled amoeba; humans come in at a middling 3.5 Gb. Because of the
large size of eukaryotic genomes, their sequencing is still a large effort usually

1.3 PROBABILISTIC MODELS OF GENOME SEQUENCES

undertaken by consortia of labs; these labs may divide the work up by each se-
quencing different linear chromosomes of the same genome. Currently we have
sequences representing more than 50 different eukaryotic organisms, including
various branches of the evolutionary tree: the fungus, S. cerevisiae (baker’s
yeast); the round worm, Caenorhabditis elegans; the zebrafish, Danio rerio;
important insects like the fruitfly, Drosophila melanogaster, and mosquito,
Anopheles gambiae; mammals such as humans, Homo sapiens, and mouse,
Mus musculus; and plants such as rice, Oryza sativa. The large size of such
genomes is generally due not to a larger number of genes, but rather to a
huge amount of repetitive “junk” DNA. It is estimated that only 5% of the
human genome is functional (e.g. codes for proteins), while at least 50% of
the genome is known to be formed by repetitive elements and parasitic DNA.
Added to the packaging problems associated with stuffing these large amounts
of DNA into each cell of a multicellular organism, most eukaryotes carry two
copies of their nuclear genome in each cell: one from each parent. We refer to
the single complement as the haploid set, as opposed to the diploid set of both
genomes.

Organellar genomes. Inaddition to these huge nuclear genomes, most eukary-
otes also carry one or more smaller genomes in each cell. These are contained
in cellular organelles, the most common of which are the mitochondrion and
the chloroplast. These organellar genomes are likely the remnants of symbi-
otic prokaryotic organisms that lived within eukaryotic cells. We now have the
genome sequence of the mitochondria and chloroplasts of at least 600 species,
often with multiple whole genomes of different individuals within a species.
These genomes are usually only tens of thousands of bases long, circular, and
contain a few essential genes. There can be hundreds of each of these organelles
in a cell, with more copies resulting in more expressed products. Mitochon-
drial DNA (mtDNA) is particularly important for anthropological analyses,
and we will use it to discuss whole genome comparisons within humans in
Chapter 5.

.3 Probabilistic models of genome sequences

All models are wrong, but some are useful.
(G. E. P Box)

When the first whole genome of a free-living organism was sequenced in 1995,
much was already known about the general workings of cellular function, and
many things were also known about DNA sequences. Complete genomes of
small viruses and organelles were available in the early 1980s, as were the
sequences of individual genes from a variety of organisms. Although nothing
done before 1995 compared in scale with the problems that were to be addressed
when analyzing even a simple bacterial genome, earlier experiences provided
the basic statistical techniques that were to evolve into modern whole-genome
analysis.

A large part of the study of computational genomics is comprised of sta-
tistical methods. While any undertaking involving millions or billions of data

THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

points necessarily requires statistics, the problem is especially acute in the
study of DNA sequences. One reason for this is that we often wish to find
structures of interest (such as genes) in sequences of millions of bases, and in
many important cases most of those sequences do not contain biologically rele-
vant information. In other words, the signal-to-noise ratio in genome sequences
may be very low. As we will see, interesting elements are often immersed in
a random background — detecting them requires sophisticated statistical and
algorithmic tools.

As a first step, we need to have probabilistic models of DNA sequences.
These will set a foundation for all of the analyses that follow in this book. We
first define some of the basic concepts in probabilistic models of DNA, and then
present a simple statistical framework for the analysis of genome sequence data.
To highlight the usefulness of probabilistic models we continue the chapter by
carrying out simple analyses of genome sequences. Later chapters will introduce
increasingly sophisticated biological questions and the commensurate statistical
methods needed to answer them.

Alphabets, sequences, and sequence space. Although we should not forget
that DNA is a complex molecule with three-dimensional properties, it is often
convenient to model it as a one-dimensional object, a sequence of symbols from
the alphabet {2, C, G, T}. This abstraction is extremely powerful, enabling us
to deploy a large number of mathematical tools; it is also incorrect, in that it
neglects all the information that might be contained in the three-dimensional
structure of the molecule. In this book we make this approximation, without
any further warning, and will develop statistical and computational methods of
analysis based on it.

Definition 1.1

DNA sequences and genomes: formal model. A “DNA sequence,”’ s, is a finite
string from the alphabet A = {A, C, G, T} of nucleotides. A “genome” is the
set of all DNA sequences associated with an organism or organelle.

This representation of genomes as strings from an alphabet is very general,
and enables us to develop statistical models of sequence evolution, sequence
similarity, and various forms of sequence analysis. Some of them are discussed
in this chapter.

Definition 1.2

Elements of a sequence. We denote the elements of a sequence as follows
S = $1S3. . .S, where an individual nucleotide is represented by s;. Given a set
of indices K, we can consider the sequence formed by concatenating together
the corresponding elements of s in their original order: s(K) = s;s;s; if K =
{i, j, k}. If the set is a closed interval of integers, K = [i, j], we can denote it
also as K = (i : j); the corresponding subsequence is the substring s(i : j). If
it is formed by just one element, K = {i}, then this indicates a single, specific
symbol of the sequence: s; = s(i).

1.3 PROBABILISTIC MODELS OF GENOME SEQUENCES

Example 1.2
Elements of a sequence. In the DNA sequence s =ATATGTCGTGCA we find
s(3:6) =ATGT and s(8) = sg = G.

Remark 1.1

Strings and sequences. Note that what we call sequences in biology are usu-
ally called strings in standard computer science terminology. This distinction
becomes relevant in computer science when defining subsequences and sub-
strings, two very different objects. What we call subsequences in this book —
contiguous, shorter sequences from a longer sequence — are called substrings in
computer science, where subsequences refer to non-contiguous sets of symbols
from a longer sequence.

Nearly all probabilistic sequence analysis methods assume one of two sim-
ple models, or variations thereof. They are the multinomial model and the
Markov model, and will be described below. As is often the case in modeling,
these do not need to mimic true DNA sequences in every respect. Their main
feature is that they capture enough of the properties of sequences while still be-
ing efficiently computable. In other words, they are the result of a compromise
between accuracy and efficiency.

Although in this chapter we deal with DNA sequences, in the rest of the book
we will find various other types of biological sequences; sequences defined on
different alphabets. All the algorithms we present will be valid for any type of
sequence, and we will often define them in terms of a generic alphabet X, so as to
preserve generality. The most common other types of biological sequences are
RNA sequences (also defined over a 4 letter alphabet, Nzy4 = {A, C, G, U}),
and amino acid sequences (based on a 20 letter alphabet

A={a,RN,D,C,Q,E,G,HI,LXKMF,P,ST,WY,V}

and discussed further in Chapter 2). It is often also useful to define a sequence
of codons (see Chapter 2), where the alphabet is formed by all triplets from the
nucleotide alphabet A/ and will be indicated by C = {AAA, - - -, TTT}.

Multinomial sequence models. The simplest model of DNA sequences as-
sumes that the nucleotides are independent and identically distributed (the
“i.i.d.” assumption): the sequence has been generated by a stochastic process
that produces any of the four symbols at each sequence-position i at random,
independently drawing them from the same distribution over the alphabet A/
This is called a multinomial sequence model, and is simply specified by choos-
ing a probability distribution over the alphabet, p = (p4, pc, pc, pr), where
the probability of observing any of the four nucleotides at position i of the
sequence s is denoted by p, = p(s(i) = x) and does not depend on the position
i. This model can also be used to calculate the probability of observing the
generic symbol x € X (i.e. x within any alphabet).

For this model we could assume that all four nucleotides are of equal fre-
quency (pa=pc=pc=pr), or that they are the observed frequencies from some
dataset. Our only requirement is that the distribution needs to satisfy the nor-
malization constraint p4 + pc + pc + pr = 1.

THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

Paa Pcc

The trajectory of a

Markov chain process generates a
sequence of symbols. Starting at
any one of the four nucleotides,
the probability of the next
nucleotide in the sequence is
determined by the current state.

The multinomial model allows us to easily calculate the probability of a
given sequence (denoted P), also called the likelihood of the data given the
model (denoted £). Given a sequence s = §18;...S,, its probability is

P@s) =[] p(sti).
i=1

This is equivalent to multiplying together the probabilities of all of the individual
nucleotides.

Of course we do not expect DNA sequences to be truly random, but having
a model that describes the expectation for a randomly generated sequence can
be very helpful. Furthermore, this simple model already captures enough of a
sequence’s behavior to be useful in certain applications, while remaining very
easy to handle mathematically. Even finding violations of this simple model
will point us towards interesting regions of the genome. We can easily test if
this model is realistic by checking to see whether real data conform to its as-
sumptions. We can do this either by estimating the frequencies of the symbols
in various regions of the sequence — to check the assumption of stationarity
of the independent and identically distributed (i.i.d). probability distribution
across the sequence — or by testing for violations of the independence assump-
tion by looking for correlations among neighboring nucleotides. Regions that
both change in the frequency of A, C, G, and T and where there are strong
correlations among nearby symbols can be quite interesting, as we will show
later.

Markov sequence models. A more complex model of DNA sequences is pro-
vided by the theory of Markov chains. In Markov chains the probability of
observing a symbol depends on the symbols preceding it in the sequence. In so
doing, Markov chains are able to model local correlations among nucleotides.
A Markov chain is said to be of order 1 if the probability of each symbol only
depends on the one immediately preceding it, and of increasing order as the
dependency on past symbols extends over greater distances. We can think of
the multinomial model as a Markov chain of order O because there is no depen-
dence on previous symbols. How do we know which model to pick, or what
order Markov model to pick? This is a problem of hypothesis testing, a topic
we address in Chapter 2. For now, we will simply discuss the basic aspects of
Markov models. (Markov chains are central tools in bioinformatics, and we
will encounter them again in Sections 5.4.1 and 5.4.2).

Briefly, a Markov chain is a process defined by a set of states (in this case
the symbols of an alphabet) and by a transition probability from one state
to the next. The transition probabilities are organized in the transition matrix 7.
The trajectory of the process through the state space defines a sequence. This
is represented in Figure 1.1.

The figure shows that, starting at any one of the four nucleotides, the prob-
ability of the next nucleotide in the sequence is determined by the current state.
If we start at G, the probabilities of any of the four other nucleotides appearing
next are given by pga, pce, Pce, and pgr. Moving to another nucleotide state
means that there are new transition probabilities: if we moved to state A, these
would be paa, pac, Pac, and par. In this manner, a Markov chain defines a
DNA sequence. All of the transition probabilities are given by the matrix 7,

1.3 PROBABILISTIC MODELS OF GENOME SEQUENCES

and the probability for the start state is given by m = (74, 7¢, 7g, 77), again
with the obvious normalization constraint:

Paa Pac Pac Par
T — Pca Pca Pcc Pcr

PGa Pcc PGG pPcr

Pra Prc Prc prr
T = T Tc TG T,

The Markov model therefore no longer assumes that the symbols are indepen-
dent, and short-range correlations can be captured (if the transition probabilities
are all 0.25, we are again back at a multinomial model).

Example 1.3
Markov DNA sequence. Using the Markov chain defined by uniform starting
probabilities (7) and the transition matrix

to A to C to G toT
from A 0.6 0.2 0.1 0.1
T = fromC 0.1 0.1 0.8 0
from G 0.2 0.2 0.3 0.3
from T 0.1 0.8 0 0.1

we generated the following sequence:
ACGCGTAATCAAAAAATCGGTCGTCGGAAAAAAAAAATCG

As you can see, many As are followed by As, Ts are followed by Cs, and Cs are
followed by Gs, as described by our transition matrix.

The entries in the transition matrix are defined formally as follows:

Dxy = P(Sit1 = ylsi = x).

This says that the probability of going from state x to state y is equivalent to the
conditional probability of seeing state y given that it was preceded by state x.
We generally define the probability of an entire sequence as a joint probability:

P(s) = P(s152- -+ 8,).

The computation of this probability can be greatly simplified when we can
factorize it. In the case of multinomial models, the factorization is obvious:
P(s) = p(s1)p(s2) ... p(sy); for Markov chains (of order 1) it is only slightly
more complicated:

P(S) = P(Sn|S”,1)P(Sn,1|S,1,2) e P(SZISI)H(SI)

or
Ps) =7][psilsi) =m0] pors
i=2 i=2

where 7 (s; = x) represents the probability of seeing symbol x in position s;.
In other words, we exploit the fact that the probability of a symbol depends
only on the previous one to simplify the computation of the joint probability of
the entire sequence.

10 THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

Table 1.2 ‘ Basic statistics of the H. influenzae genome:
the count of each nucleotide and its relative frequency. The
total length of the sequence is 1 830 138 bp.

Base Number Frequency
A 567,623 0.3102
c 350,723 0.1916
G 347,436 0.1898
T 564,241 0.3083

|.4 Annotating a genome: statistical
sequence analysis

There are various elements of interest in a genome sequence, and many
of them will be discussed in various chapters of this book. For example,
Chapter 2 will discuss the structure of genes, how we find them, and the way in
which they are regulated. Here we examine simpler statistical properties of the
DNA sequences such as the frequency of nucleotides, dinucleotides (pairs of
bases), and other short DNA words. We will see that this preliminary descrip-
tion is of fundamental importance for genome annotation, as well as a stepping
stone for further analysis.

Base composition. One of the most fundamental properties of a genome se-
quence is its base composition, the proportion of A, G, C, and T nucleotides
present. For H. influenzae, we can easily count the number of each type of
base and divide by the total length of the genome (performing both opera-
tions on only one strand of the DNA sequence) to obtain the frequency of each
base. Table 1.2 shows the number of times each base appears in the genome,
and its relative frequency (the total length, L, of the H. influenzae genomes is
1 830 138 bp).

We can see that the four nucleotides are not used at equal frequency across
the genome: A and T are much more common than G and C. In fact, it is fairly
unusual for all of the bases to be used in equal frequencies in any genome. We
should point out that, while we have only counted the bases on one strand of
the DNA molecule, we know exactly what the frequency of all the bases are
on the other strand because of the complementarity of the double helix. The
frequencies in the complementary sequence will be T = 0.3102, G = 0.1916,
C =0.1898, and A = 0.3083.

In addition to the global base composition of a genome, it is of inter-
est to consider local fluctuations in the frequencies of nucleotides across the
sequence. We can measure local base composition by sliding a window of size
k along a chromosome, measuring the frequency of each base in the window,
and assigning these values to the central position of the window. This produces
a vector of length L — k + 1 that can be plotted, as seen in Figures 1.2 and 1.3
(with window sizes 90 000 bp and 20 000 bp, respectively).

1.4 ANNOTATING A GENOME: STATISTICAL SEQUENCE ANALYSIS

0.35

Nucleotide density

0.25} il
021 e]
0 0.5 1 15 2
x 10°
A-T C-G density
0.7 T T T
— AT
o6k —————— | C-G| |
0.5F i
041 1
0 0.5 1 1.5 2
x 10°
Nucleotide density
0.35 T T T
/ ——A
0.3 < Al C |
‘v |- -G
\ _
0.25} T
02_ L R \"\ o = FRN .A/\, i
T N = KN
0 0.5 1 15 2
x 10°
A-T C-G density
0.7 T T T
— AT
osf — o T\ Lo C-G|
0.5 1
0.4 e 1
0 0.5 1 15 2
x10°

Of course, smaller window sizes reveal a higher variance in base com-
position, and larger windows may miss small regions with different base
composition, so a trade-off is inherent in choosing k. Allowing k to vary
reveals patterns at different scales, as shown in Figure 1.3. Both extremes
may hide interesting patterns, and hence some exploration is necessary when
choosing k.

Sliding window plot
showing local fluctuations in the
frequencies of nucleotides across
the sequence of H. influenzae (with
window size of 90 000 bp)

Sliding window plot
showing local fluctuations in the
frequencies of nucleotides across
the sequence of H. influenzae (with
window size of 20 000 bp)

12 THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

Table 1.3 ‘ A comparison of overall GC content
in three different organisms (Note that this quan-
tity can vary significantly across species)

Organism GC content
H. influenzae 38.8
M. tuberculosis 65.8
S. enteritidis 495

There is clearly quite a lot of variance in base composition along the genome
of H. influenzae. This variation highlights a first important violation of the as-
sumption of the multinomial model that nucleotides are drawn from an i.i.d.
probability distribution. This distribution clearly changes along the chromo-
some.

Based on this statistical analysis, various other analyses can be performed:
for example we may be interested in identifying positions in the sequence where
the base composition changes, or in the variation of the joint frequency of some
class of nucleotides (C 4 G vs. A + T), and so on. This is the topic of the next
few sections. We will also examine the frequency of dimers (pairs of letters,
such as ‘AT’) and other short DNA words.

GC content. The analysis of frequencies of the four nucleotides performed
above seems quite natural, but in fact is overly complex for most biological
needs. What most papers report (and is all that is generally necessary) is the
aggregate frequencies for C and G (called GC content) versus the aggregate fre-
quencies for A and T (AT content). Given that these two quantities are required
to always sum to 1, only the GC content is typically reported. The motivation
for reporting simply the GC content is that — due to a number of chemical
reasons — the content of G and C in a genome is often very similar, as is the
content of A and T. In this way, only one value needs to be reported instead of
four. Looking back at Table 1.2 we can see that this is exactly the case in the
H. influenzae genome.

A simple analysis of GC content can reveal significant biological informa-
tion. For example, in bacteria these frequencies are highly dependent on an
organism’s replication machinery, and can be very different from species to
species (see Table 1.3 for some examples). Because of this, an analysis of GC
content can be used to detect foreign genetic material that has been inserted
into a genome by identifying locations where this content is different from
the genomic average. It is indeed well known that a species may acquire sub-
sequences from other organisms — such as viruses — in a phenomenon known
as horizontal gene transfer. After completing each bacterial genome sequence,
researchers look for horizontally acquired genes, and do so by scanning the
sequence for regions of atypical base composition.

As an example, the H. influenzae genome contains a 30 Kb region of unusual
GC content 1.56 Mb into the genome (positions in circular chromosomes are
generally given relative to the site where DNA replication starts during cell
division). We can see this region by plotting the GC content landscape of

1.4 ANNOTATING A GENOME: STATISTICAL SEQUENCE ANALYSIS

13

the H. influenzae genome, as seen in Figure 1.2, towards the right end of the
plot. Examining that plot, we see that there is a short stretch of DNA from
approximately 1.56 Mb to 1.59 Mb with a highly different GC content than the
rest of the genome. This stretch is attributed to an ancient insertion of viral DNA
into the H. influenzae genome. Further analysis (using methods developed in
Chapters 2 and 3) could reveal the identity of these alien sequences and their
most likely origin.

A natural next step for this kind of analysis is to have a method to automat-
ically detect regions with statistical properties that are much different from the
average, or that can define the boundaries between very different regions. We
call this class of methods change point analysis.

Change point analysis. We would like to have a method to identify locations
in the sequence where statistical properties, such as GC content, change. These
locations, called change points, divide the genome into regions of approximately
uniform statistical behavior, and can help to identify important biological sig-
nals. Change point analysis can be performed in various ways; one particularly
effective approach based on hidden Markov models will be discussed in detail
in Chapter 4. For now we limit our treatment to a very elementary approach to
carry out change point analysis.

The most simple-minded strategy for finding regions of different statistical
behavior involves setting a threshold value that distinguishes two such regions.
If we cross this threshold between two windows, we have identified a change
point. Of course setting this threshold is a statistical problem, as is the size of
the window used. Both have to do with the probability of finding variation in
random data, a question of hypothesis testing (which is discussed in the next
chapter). For now, we will just give a simple example where the change point
in GC content is quite obvious without the need for a statistical analysis.

Example 1.4

Variation in GC content of A-phage. Bacteriophage lambda (1) was one of
the first viral genomes to be completely sequenced — in 1982 — and is 48 502
bases long. Phages are viruses that infect bacteria, and bacteriophage lambda
infects the bacterium E. coli, a very well-studied model system. An analysis of
the phage genome reveals that it is composed of two halves with completely
different GC content: the first half G + C rich, the second A + T rich. This
is a simple example of a change point in a genome, clearly dividing it into
homogeneous regions of base composition (see Figure 1.4).

Remark 1.2

A physical property related to GC-content. An interesting difference between
AT- and GC-rich regions is the energy needed to separate (denature) the two
DNA strands: AT-rich regions separate at lower temperatures. Given this fact,
it should come as no surprise that thermophilic organisms living in the extreme
temperatures found in oceanic vents have very GC-biased genomes. It is thought
that the difference in GC content in the Bacteriophage lambda genome may be
due to the need to quickly denature the DNA that is inserted into the bacterial
cell being infected.

14 THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

Sliding window plot
nucleotide density in lambda
phage. Note the peculiar structure
of this genome

Nucleotide density

o4t C |

0-1 1 1 1 1
0 1 2 3 4 5
x 10"
A-T C-G density
0.7 T - T
— AT
0.6-/~\4,__\A - — — C-G|1
\
0.5¢ \ X <X E
s N _ 7/ \
0.4‘ \ ’/ ~ A
0 1 2 3 4 5
x104

k-mer frequency and motif bias. Another simple and important property of
a genome to be measured is the frequency of all nucleotide words of length 2
(dinucleotides or dimers), or higher (trimers, k-mers). (Words of length k are
often called k-grams or k-tuples in computer science. We stick to the biolog-
ical convention of calling them k-mers.) We will also consider the algorith-
mic and statistical problems associated with finding unusual k-mers for small
to moderate values of k (between 1 and 15). We define “unusual” k-mers as
any words that appear more or less often than is expected. Bias in the num-
ber or position of these words can reveal important information about their
function.

We count k-mers by again looking at only one strand of the genome. For
a window of size k, we move along the sequence one base at a time — in an
overlapping manner — and record every k-mer that we observe. This means
that there are L — k + 1 possible k-mers in a sequence of length L (e.g. L — 1
dimers in a sequence of length L).

Example 1.5
2-mer frequencies in H. influenzae. The dinucleotide frequencies for H. influen-
zae are shown here:

‘ EFN *C *Q *
aA* | 0.1202 0.0505 0.0483 0.0912
c* | 0.0665 0.0372 0.0396 0.0484
G* | 0.0514 0.0522 0.0363 0.0499
T | 0.0721 0.0518 0.0656 0.1189

The left-hand side of the table shows the first nucleotide in the dimer, while the
second nucleotide is listed across the top.

We can also plot the frequency of certain 2-mers of interest along a genome,
as shown in Figure 1.5 for the dimer AT in H. influenzae (note this represents

1.4 ANNOTATING A GENOME: STATISTICAL SEQUENCE ANALYSIS

15

Dinucleotide density

0.1

009
0.08f
0.07}
0.06}
0.05}

0.04 MM%W

0.03 1 1 1
0 0.5 1 1.5 2

x 10

the frequency of the word AT, and not the joint A 4+ T frequency; similarly the
line CG represents the frequency of the 2-mer CG).

There are many examples of peculiar statistical biases in nucleotide us-
age, from the universal rarity of the dinucleotide TA to the low frequency of
CGs (often called CpGs) in certain organisms such as vertebrates and ther-
mophiles. In order to view these biases more easily, it is convenient to view a
simple diagram — called a “chaos game representation” or “genome signature” —
that color-codes the observed frequencies of the different k-mers. These rep-
resentations make it easier to see patterns in the frequency of different words
as we consider larger and larger values of k: for 1-mers there are 4 unique
motifs, for 2-mers there are 16, and so on as 4 to the kth power. (See the
book’s website for an explanation of the plotting algorithm behind chaos game
representations.)

Example 1.6

Frequent words in H. influenzae. As a further example, we can look for the
most frequent 10-mers in the genomic sequence of H. influenzae. In this case
we would find that the words AAAGTGCGGT and ACCGCACTTT are the two
most frequent ones, both appearing more than 500 times. The significance of this
finding, however, needs to be established by statistical and biological means.

Finding unusual DNA words. A simple statistical analysis can be used to find
under- and over-representation of motifs, and can also help us to decide when an
observed bias is significant (we will discuss significance of patterns in Chapter
2). We explain this idea for the case of 2-mers. The main point is to compare

Dimer density for two
dimers in H. influenzae, Sliding
window plot of the frequency of
the dimers at AT and CG along the
H. influenzae genome

16

THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

the observed frequency N of the given k-mer with the one expected under a
background model, typically a multinomial model. The ratio between the two
quantities indicates how much a certain word deviates from the background
model, and is called the odds ratio:

N(xy)

odds ratio ~ ————.
N@)N(y)

If the sequence had been generated by a multinomial model, then this ratio
should be approximately 1. Any significant deviation from 1, therefore, sig-
nals some effect of either the mutational process or of natural selection. Of
course, deviations from 1 need to be larger than a certain threshold, and this
depends on the number of motifs observed in each category, and on the length
of the sequence. In Chapter 10 we will use a more realistic background model,
given by a set of “reference” sequences, when assessing the significance of
9-mer motifs.

Example 1.7
Finding unusual dimers in H. influenzae. The observed/expected ratio for din-
ucleotide frequencies in the H. influenzae genome are:

*A *C *G *T

A* | 1.2491 0.8496 0.8210 0.9535
cx | 1.1182 1.0121 1.0894 0.8190
G* | 0.8736 1.4349 1.0076 0.8526
T* | 0.7541 0.8763 1.1204 1.2505

Clearly dimers deviating from value 1 are unusually represented, although the
amount of deviation needed to consider this as a significant pattern needs to
be analyzed with the tools discussed in Chapter 2. Note the difference with the
table in Example 1.5, e.g. the dimer CC looks extremely infrequent in that table,
but this analysis reveals that this is not likely to be a significant bias because
the nucleotide C is low in frequency to begin with.

Biological relevance of unusual motifs. Under- or over-representation of nu-
cleotide motifs may reflect biological constraints, either mutational or selective.
Frequent words may be due to repetitive elements (a very common feature of
certain genomes), gene regulatory features, or sequences with other biologi-
cal functions. Rare motifs include binding sites for transcription factors (see
Chapter 2), words such as CTAG that have undesirable structural properties
(because they lead to “kinking” of the DNA), or words that are not compatible
with the internal immune system of a bacterium. Bacterial cells can be infected
by viruses, and in response they produce restriction enzymes, proteins that
are capable of cutting DNA at specific nucleotide words, known as restriction
sites. This discovery has immense technological applications, and was rewarded
with a Nobel Prize in 1978 (to Werner Arber, Dan Nathans, and Hamilton
Smith). The nucleotide motifs recognized by restriction enzymes are under-
represented in many viral genomes, so as to avoid the bacterial hosts’ restriction
enzymes.

1.4 ANNOTATING A GENOME: STATISTICAL SEQUENCE ANALYSIS

17

This diagram (called a genome signature) color codes the observed
frequencies of the different k-mers found in H. influenzae. There are four k-mers each of
which is represented by a square in the figure. (Note that k-mers with the same prefix
are located in the same quadrant.) This representation can help detect unusual statistical
patterns in the sequence

One interesting feature of restriction sites is that they are often formed by
palindromes, sequences that can be read the same way from both directions, like
ABBA. However, for DNA sequences what we call palindromes are words that
are complementary to themselves. For example, the sequence 5'-AACGCGTT-3'
is a palindrome because its complementary sequence, 3'-TTGCGCAA-5', is read
5'-AACGCGTT-3' by the cell.

Remark 1.3

Pattern matching versus pattern discovery. Notice that in computer science it
is customary to distinguish between the tasks of pattern matching and pattern
discovery. In the first case, one is given a specific word (or other pattern) and
is requested to find all of its occurrences in the sequence. In the second case,
one needs to discover a pattern in the sequence that has certain properties of
interest (e.g. the most frequent, or the most surprising word). In bioinformatics
the first case would correspond, for example, to finding occurrences of a given
DNA motif, as opposed to discovering a new motif that characterizes a certain
class of sequences. Algorithmic and statistical issues can be very different for
the two tasks.

18

THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

|.5 ' Finding data: GenBank, EMBL, and DDBJ

Throughout this book, we will show how to apply all of our newly gained
knowledge by analyzing real DNA (and protein) sequences. This means that
we must be able to access, handle, and process genome sequence data. Most of
the steps involved are now standardized and are part of the general toolkit of
every bioinformatics researcher.

Online databases. The first step in any analysis is to obtain the sequences.
All published genome sequences are available over the internet, as it is a re-
quirement of every respectable scientific journal that any published DNA se-
quence must be deposited in a public database. The main resources for the
distribution of sequences are the members of the International Nucleotide Se-
quence Database Collaboration. This is a consortium of three large databases:
the DNA Database of Japan (DDBJ), the European Molecular Biology Lab-
oratories (EMBL), and GenBank, sponsored by the US National Institutes of
Health. These databases collect and exchange all publicly available DNA se-
quence data, and make it available for free. As of August 2005, there were
approximately 100 billion bases of DNA sequences collectively stored in
the three databases (just a little less than the number of stars in the Milky
Way).
The web addresses of the major databases are:

GenBank www.ncbi.nlm.nih.gov
EMBL www.ebi.ac.uk
DDBIJ www.ddbj.nig.ac.jp

Sequences in GenBank are each identified by an accession number, a num-
ber associated with only that single sequence. Each sequence also comes with
a certain amount of meta-data (data about data, or annotation) — such as the
species name of the organism sequenced — that can be very useful. In Chapter
3 we will see how one can also search some databases by sequence similarity,
rather than by using accession numbers. Here are a few examples of accession
numbers and the sequences they reference:

AF254446 Homo sapiens neanderthalensis mitochondrial D-loop,
hypervariable region I
NC_.001416 Bacteriophage lambda, complete genome

NC_000907 Haemophilus influenzae Rd KW20, complete genome
NC_000908 Mpycoplasma genitalium G-37, complete genome
NC_001807 Homo sapiens mitochondrion, complete genome

Data formats and annotation. There are several formats in which a se-
quence and its annotation can be given. EMBL, GenBank, DDBJ, and
other repositories all use their own standard, and a number of formats not
associated with any database (but usually associated with a sequence anal-
ysis program) are also considered standard. One of these is called FASTA
(pronounced “fast A”). It is commonly used to encapsulate sequence infor-
mation along with a very limited amount of information about the sequence.

1.5 FINDING DATA: GENBANK, EMBL, AND DDB| ‘

19

The format consists of a first line, designated with the “>" symbol, followed
by the annotation, which can be in any format so long as it is not inter-
rupted by a line break. Sequence information begins on the next line, and
all subsequent lines under that until another “>"" symbol is present as the first
character.

Example 1.8

A sequence in FASTA format. This is a small DNA sequence in FASTA format.
It belongs to the remains of a Neanderthal found in Russia. We will use this
sequence in Chapter 5 to study human origins. When more than one sequence
need to be represented, they are simply concatenated one under the other, in
the same format.

>Homo sapiens neanderthalensis mitochondrial D-loop, HVR |
CCAAGTATTGACTCACCCATCAACAACCGCCATGTATTTCGTACATTACTGCCAGCCACCATGAATATTGTACAG
TACCATAATTACTTGACTACCTGTAATACATAAAAACCTAATCCACATCAACCCCCCCCCCCCATGCTTACAAGC
AAGCACAGCAATCAACCTTCAACTGTCATACATCAACTACAACTCCAAAGACACCCTTACACCCACTAGGATATC
AACAAACCTACCCACCCTTGACAGTACATAGCACATAAAGTCATTTACCGTACATAGCACATTATAGTCAAATCC
CTTCTCGCCCCCATGGATGACCCCCCTCAGATAGGGGTCCCTTGA

The FASTA format is accepted by most sequence analysis software, and is
provided by most online sequence databases. However, the amount of annota-
tion it allows is limited, and other standards are used when one wants to convey
more meta-information.

A GenBank entry contains various sections, the main ones of which are:
LOCUS, which identifies that sequence, followed by a short DEFINITION of
the sequence and a unique ACCESSTION number. The accession number is what
really identifies the sequence in a stable way. It is reported in scientific pub-
lications dealing with that sequence, and can be used to cross-reference with
other databases. The SOURCE and ORGANISM fields identify the biological
origin of the sequence. The REFERENCE field contains article references rel-
evant to the sequence; more than one reference can be listed. The FEATURES
section contains basic information about the location and definition of various
elements of interest in the sequence (such as regulatory sequences). The SE-
QUENCE section is the main one, and lists all of the nucleotides. The sequences
are organized in lines containing six blocks of ten bases each, separated by a
space, and numbered for convenience as shown in the following example. The
symbols / / signal the end of the entry.

Example 1.9
A sequence in GenBank format. The short Neanderthal sequence shown above
in FASTA format looks like this in GenBank format:

LOCUS AF254446 345 bp DNA linear PRI 11-MAY-2000

DEFINITION Homo sapiens neanderthalensis mitochondrial D-loop,
hypervariable region I.

ACCESSION AF254446

SOURCE mitochondrion Homo sapiens neanderthalensis

20

THE FIRST LOOK AT A GENOME: SEQUENCE STATISTICS

ORGANISM Homo sapiens neanderthalensis

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 345)

AUTHORS Ovchinnikov,I.V., Gotherstrom, A., Romanova, G.P., Kharitonov, V.M.,

Liden, K.

and Goodwin, W.
TITLE Molecular analysis of Neanderthal DNA from the
JOURNAL Nature 404

(6777)

MEDLINE 20222552

PUBMED 10761915

northern Caucasus

, 490-493 (2000)

FEATURES Location/Qualifiers
source 1..345

/organism = “Homo sapiens neanderthalensis"

/organelle = “mitochondrion"

/mol type = “genomic DNA"
/sub_species
/db_xref =
/country =

D-loop 1..345
/note = “hypervariable region I"
ORIGIN
1 ccaagtattg actcacccat caacaaccgc catgtatttc gtacattact gccagccacc
61 atgaatattg tacagtacca taattacttg actacctgta atacataaaa acctaatcca

121
181
241
301
//

catcaacccc
catcaactac
ccttgacagt
cttctcgecec

“neanderthalensis"

“taxon:63221"
“Russia:

cccccecccat
aactccaaag
acatagcaca
ccatggatga

Southern Russia,

Mezmaiskaya Cave"

gcttacaagc aagcacagca atcaaccttc aactgtcata

acacccttac acccactagg atatcaacaa acctacccac

taaagtcatt taccgtacat agcacattat agtcaaatcc

cccccectcag ataggggtce cttga

Remark 1.4

Standard nucleotide alphabet. The sequences found in all DNA repositories are
written using a standard nucleotide alphabet. Symbols also exist for ambiguous
nucleotides (positions in the sequence that are not clearly one base or another,
due for example to sequencing uncertainties). The most common symbols are

the

following:

A Adenine N aNy base

C Cytosine R A or G (puRine)

G Guanine Y C or T (pYrimidine)
T Thymine M A or C (aMino)

|.6 Exercises

@

Download from GenBank the complete genomic sequence of Bacterio-
phage lambda, accession number NC_001416, and analyze its GC content
with various choices of window size.

1.7 READING LIST

21

(2) Compare statistical properties of human and chimp complete mitochondrial
DNA (respectively NC_001807 and NC_001643).
(3) Find unusual dimers in rat mitochondrial DNA (NC_001665).

|.7 ' Reading list

The molecular structure of DNA was elucidated by Watson and Crick and pub-
lished in 1953 (Watson and Crick, 1953). The first wave of genome sequences
appeared in the early 1980s and included small phages and viruses, mostly
based on Fred Sanger’s work (Sanger et al., 1982), (Sanger et al., 1978), as
well as mitochondrial genomes (Anderson et al., 1981; Bibb et al., 1981).

The second wave of genomes included prokaryotes and small eukaryotes,
the first free-living organisms ever sequenced, and started in the mid 1990s.The
paper (Fleischmann et al., 1995) reports the sequencing and basic statistical
analysis of H. influenzae’s genome, and is a recommended reading for this
course, as is the paper (Fraser et al., 1995) presenting the sequence of M. geni-
talium. Many of the genomic properties discussed in this chapter are addressed
in those papers. The article of Blattner et al. (1997) reports the sequencing
and analysis of E. coli’s genome, and that of Goffeau et al. (1996) the first
eukaryote, the fungus S. cerevisiae.

The third wave of genome sequences, starting in the year 1998, includes
multicellular organisms. The complete sequence of C. elegans was the first to
be completed, followed by others including the human genome, published by
two competing groups in papers which appeared simultaneously in Science and
Nature (Consortium, 2001; Venter, 2001). The genomes of mouse, rat, chicken,
dog, cow, chimp followed at ever-increasing pace.

A general discussion of statistical properties of genomic sequences can
be found in Karlin et al. (1998), including many of the concepts presented
in this chapter. A description of GenBank can be found in the article Benson
et al. (2004). A discussion of the biological facts needed to understand this
chapter can be found in Brown (1999) and Gibson and Muse (2004), including
horizontal gene transfer, DNA structure, and general cell biology.

Links to these and many more papers, as well as to data and software for
the exercises and all the examples, can be found on the book’s website:

www.computational-genomics.net

* Genes and proteins
* Gene finding and sequences
e Statistical hypothesis testing

Chapter 2

All the sequence’s men
Gene finding

2.1 The human genome sweepstakes

In May of 2003 it was announced that Lee Rowen of the Institute for Systems
Biology in Seattle, Washington was the winner of GeneSweep, an informal
betting pool on the number of genes contained in the human genome. Rowen’s
guess of 25 947 won her half of the $1200 pool and a signed copy of James
Watson’s book, The Double Helix. GeneSweep had been created in 2000 by
Ewan Birney of the European Bioinformatics Institute just as large pieces of the
genome were being completed; because of the increasing amount of sequence
becoming available, the cost of bets rose from $1 in 2000, to $5 in 2001, to $20
in 2002. One of the most surprising things about Rowen’s winning guess was
that it was almost certainly 3 000 genes off the mark — above the true number
of genes! Researchers had placed wagers on figures as high as 300 000 genes,
with only three sub-30 000 guesses. This number of genes put humans below
the two plants that have been sequenced and barely above the worm, C. elegans.

Though the draft sequence of the human genome was published in 2001,
nailing down exactly how many genes it contained turned out to be a tricky
proposition. Genes are what make proteins and other biological molecules that
are necessary for life, but they are not marked in any physical way in the genome.
Rather, they are relatively short stretches of DNA that the cellular machinery
must find and read. Because of this lack of obvious signposts marking off genes
(“obvious” to us — the cell finds genes very easily), computational methods are
needed to find and identify them. Without these methods researchers would
be stuck sorting through 3.5 Gb (3.5 billion base pairs) of As, Cs, Gs, and Ts
in order to settle the winner of GeneSweep. But even the best gene-finding
algorithms have many problems identifying genes in the human genome.

This chapter addresses the computational challenge of finding genes in a
genome, a key step in annotation; for simplicity we focus on the much easier
problem of finding genes in prokaryotes. Sequenced genomes contain as few as
500 genes — in the bacterium Mycoplasma genitalium — to upwards of 30 000
genes in a number of different plant and animal species. Knowing what genes

2.2 AN INTRODUCTION TO GENES AND PROTEINS

23

look like, how to find candidate genes in a genome, and how to decide which
of these candidates are actual genes will take up the majority of our discussion.
While finding complex eukaryotic genes requires commensurately complex
methods, finding prokaryotic genes turns out to be a relatively simple task
once we learn what to look for (we introduce the computational and statistical
methods needed for eukaryotic gene finding in Chapter 4). By the end of this
chapter we will be able to identify with high confidence almost all of the genes
in a prokaryotic genome.

2.2 An introduction to genes and proteins

We saw in the Prologue that all cells need to produce the right molecules at the
right time to survive. Their life is a continuous balancing act that requires them
to maintain relatively constant internal conditions in the face of variation in the
external environment. This constancy is achieved by constantly correcting the
internal chemical environment to compensate for external change. For multicel-
lular organisms, it is also necessary to orchestrate the growth and development
of an individual from a tiny single-celled embryo to an enormous trillion-celled
adult. In order to do all of this, each cell directs the production of thousands of
specific proteins that each in turn control specific chemical reactions. Here we
briefly review how the production of proteins and other necessary molecules is
accomplished by a cell. If we understand better how a cell finds genes, it will
make our job much easier.

What are proteins? Proteins are perhaps the most crucial piece in the cellular
puzzle. They are molecules used for many tasks, from internal communication
to the bricks-and-mortar of cells themselves. Some proteins (called degradases)
are used to cut apart molecules no longer needed by the cell, while others
(called ligases) are used to join molecules together. In humans, a protein called
hemoglobin carries oxygen in red blood cells, while hormones such as insulin
are proteins used to communicate between organs. For the first half of the
twentieth century, many people even thought that proteins would be the carriers
of genetic information.

For all their sophistication, it is perhaps surprising that all proteins are
formed from chains of simpler molecules called amino acids (or AAs for short).
Proteins are macromolecules, made by stringing together a chain of amino acids.
A typical protein contains 200-300 amino acids, but some are much smaller
(30-40 amino acids) and some are much larger (the largest ones reaching tens of
thousands of amino acids). Proteins can thus be read as one-dimensional objects,
but do not have a linear form in the cell: the amino acids chain rapidly folds
itself into the three-dimensional shape that ultimately determines its function.
The final shape of a protein is specified by the exact identity and order of
the amino acids in the chain, and is largely the result of atomic interactions
between amino acids and with the cellular medium (which is mostly water).
Even small errors in the amino acid sequence can result in altered protein
shape and performance, while major disruptions to their structure are likely to
completely abolish function.

24

ALL THE SEQUENCE’S MEN: GENE FINDING

Table 2.1 | The 20 amino acids and their standard symbols

A Alanine L Leucine

R Arginine K Lysine

N Asparagine M Methionine

D Aspartic acid F Phenylalanine

C Cysteine P Proline

Q Glutamine S Serine

E Glutamic acid T Threonine

G Glycine w Tryptophan

H Histidine Y Tyrosine

I Isoleucine v Valine
Remark 2.1

On protein folding. Protein folding describes the process of producing a three-
dimensional protein from a chain of amino acids, and the computational task of
predicting this three-dimensional structure based on the AA sequence, called
“protein fold prediction,” is a challenging one. While the cell seems to fold
proteins easily and consistently, it has so far largely eluded our modeling efforts.
Though we cannot reliably predict the exact shape of a protein based solely
on its sequence, protein fold prediction is a classical topic in bioinformatics; it
will not be discussed in this introductory book.

There are only 20 amino acids used to form proteins (Table 2.1). Like
the 5’ to 3’ orientation of a string of DNA, amino acid sequences also have an
orientation: N-terminus to C-terminus. We will see shortly that the directionality
of a gene’s DNA sequence maps directly on to the directionality of its resulting
protein sequence.

The number of possible proteins is enormous. If we assume that all proteins
are just long 400 amino acids long, we can create 20*% different proteins.
This number is huge (larger than 1 with 520 zeros behind it), and is more than
sufficient to account for the total number of existing proteins on earth.

Definition 2.1

Amino acid alphabet. As with DNA sequences, we will model proteins as
strings from a finite alphabet. This representation neglects much of the crucial
structural information, but also allows for powerful computational and statis-
tical techniques to be employed. The statistical analysis of substrings within
amino acid sequences is also as well developed as the one seen in Chapter 1
for DNA strings. For amino acid sequences (also called polypeptides) we use
the alphabet

A={a,RN,D,CQ,EG,HI,LKMFP,S T,WY,V}

which directly represents the 20 molecules listed in in Table 2.1. Each of
them also has unique physical properties, but these will not be discussed until
Chapter 4.

2.2 AN INTRODUCTION TO GENES AND PROTEINS

25

DNA

Transcription (RNA Polymerase)

U RNA

Translation (Ribosome)

Protein

Example 2.1
Sequence of an enzyme in H. influenzae. This is part of the amino acid sequence
of the protein manganese-dependent superoxide dismutase in H. influenzae:

HFDAQTMETHHSKHHQAYVNNANAALEGLPAELVEMYPGHLISNLDKIPA
EKRGALRNNAGGHTNHSLFWKSLKKGTTLQGALKDATERDFGSVDAFKAE
FEKAAATRFGSGWAWLVLTAEGKLAVVSTANQDNPLMGKEVAGCEGFPLL

From genes to proteins. The simplest way to explain how proteins are
made — ignoring many details and condensing complicated cellular reactions —
is a simple diagram that shows what is known as the central dogma:

DNA — RNA — Protein.

In words, the central dogma states that “DNA makes RNA makes Proteins”
(which then helps to make DNA again). While the central dogma is not exactly
right, itis right so much of the time that scientists are often rewarded with Nobel
Prizes for showing where it is wrong. (Prions, the auto-replicating proteins
responsible for Mad Cow disease, are one such exception to the dogma that
led to a Nobel Prize for their discoverer, Stanley Prusiner of the University
of California, San Francisco.) Figure 2.1 illustrates the main phases of the
process.

Although the basic method for the production of proteins is the same in
all forms of life, the complexity of the process can be quite variable. In this
chapter we focus on idealized genes that share characteristics common to all

An illustration of the
central dogma: a gene is first
transcribed into an mRNA
sequence, then translated into a
protein. The amino acid sequence
of the protein folds to acquire its
three-dimensional structure and
hence its functionality

26

ALL THE SEQUENCE’S MEN: GENE FINDING

systems, with examples largely taken from prokaryotic organisms. We should
also state up-front that not all genes encode proteins — sometimes RNA is the
end-product required. We focus for now solely on protein-coding genes.

Transcription and translation. The process of going from a gene encoded
in DNA to a protein made up of amino acids is divided conceptually into two
steps: transcription (DNA—RNA) and translation (RNA— Protein).

Let us work backwards for a moment and consider the cellular machine
for making proteins, called the ribosome. The ribosome can take a sequence of
nucleotides (RNA, as we will see) and translate this string into a string of amino
acids. Since the ribosome cannot work directly from the double-stranded DNA
sequence found in chromosomes, the cell must create a workable copy of this
DNA that can be delivered to the ribosome. This is where RNA comes in. For
physical reasons that we need not dwell upon, the ribosome has a much easier
time translating RNA strings into amino acid strings; so the cell transcribes the
DNA encoding genes into messenger RNA (mRNA), which it then sends on to
the ribosome. Hence the two steps of transcription and translation.

The mRNA sequence transcribed is a faithful copy of the DNA sequence:
it has a one-to-one correspondence to it and the same 5’ to 3’ orientation.
(Important exception: RNA uses the nucleotide uracil, U, in place of thymine, T.)
This mRNA sequence is then translated by the ribosome to produce a colinear
sequence of amino acids. However, things are now a bit more complicated than
a simple one-to-one mapping; RNA has four symbols (2, C, G, and U), while
there are 20 different amino acids. It is therefore not possible to specify a protein
using a one-to-one, nucleotide-to-A A encoding. A more abstract code is needed,
and the discovery of how this code works has had important implications for
our understanding of gene function, gene failure, and gene finding.

The genetic code. Whatis the minimum length of a nucleotide string necessary
to specify 20 amino acids? We have already seen that a 1-nucleotide code
only allows us to specify four amino acids (4'); likewise a 2-nucleotide code
only allows for the specification of 16 amino acids (4%); but a 3-nucleotide
code allows for 64 amino acids (4°). Every organism on earth uses such a 3-
nucleotide code, with each 3-nucleotide unit referred to as a codon. By using
what is effectively a look-up table, every cell can translate codons into amino
acids (or into special punctuation called stop codons), and can always succeed
in obtaining the amino acid sequence specified by a gene. This look-up table is
called the genetic code, and can be seen in Table 2.2.

The genetic code was discovered by the joint efforts of Robert Holley,
Gobind Khorana, Marshall Nirenberg, and many others (though the three we
have named won the Nobel Prize in 1968 for their work). While we show here
what is known as the “universal” genetic code, it is nothing of the sort (another
example of our rule that, in biology, every rule has important exceptions). While
nearly all organisms use this genetic code, there are a number of instances where
slight variants of this code are used; the difference in these codes is generally
just the mapping of one or a few codons to different amino acids. The human
mitochondria uses one such alternative genetic code, and this will be relevant
in the Exercises section at the end of this chapter.

2.2 AN INTRODUCTION TO GENES AND PROTEINS 27

Table 2.2 | The standard genetic code

A G c T
AAA K AGA R ACA T ATA I
AAG K AGG R ACG T ATG M
A AAC N AGC S ACC T ATC I
AAT N AGT S ACT T ATT I
GAA E GGA G GCA A GTA 'V
GAG E GGG G GCG A GTG V
G GAC D GGC G GCC A GTC V
GAT D GGT G GCT A GTT 'V
CAA Q CGA R CCA P CTA L
c CAG OQ CGG R CCG P CTG L
CAC H CGC R ccec P CTC L
CAT H CGT R CccT P CTT L
TAA * TGA * TCA S TTA L
TAG * TGG W TCG S TTG L
T TAC Y TGC C TCC S TTC F
TAT Y TGT C TCT S TTT F

Because of the many-to-one mapping of codons to amino acids, there is
some redundancy built into the genetic code (for example, all four codons
starting with AC code for the amino acid threonine). Nevertheless, because we
always go from RNA to protein, the specification is unambiguous.

Example 2.2

The genetic code. In this example we see how a DNA sequence can be organized
into codons to specify an amino acid sequence. Note that different codons can
specify the same amino acid.

DNA CTT GTG CCC GGC TGC GGC GGT TGT ATC CTG
Protein L v P G C G G C I L

A wonderful summary of the genetic code was given by Francis Crick in
1962 as part of his own Nobel Prize acceptance speech. It should be noted,
however, that the deciphering of the code was far from complete in 1962 —
Crick was making educated guesses about many of these points:

At the present time, therefore, the genetic code appears to have the following

general properties:

(1) Most if not all codons consist of three (adjacent) bases.

(2) Adjacent codons do not overlap.

(3) The message is read in the correct groups of three by starting at some fixed
point.

(4) The code sequence in the gene is colinear with the amino acid sequence, the
polypeptide chain being synthesized sequentially from the amino end.

(5) In general more than one triplet codes each amino acid.

(6) It is not certain that some triplets may not code more than one amino acid, i.e.
they may be ambiguous.

28

ALL THE SEQUENCE’S MEN: GENE FINDING

(7) Triplets which code for the same amino acid are probably rather similar.
(8) It is not known whether there is any general rule which groups such codons
together, or whether the grouping is mainly the result of historical accident.
(9) The number of triplets which do not code an amino acid is probably small.
(10) Certain codes proposed earlier, such as comma-less codes, two- or three-letter
codes, the combination code, and various transposable codes are all unlikely
to be correct.
(11) The code in different organisms is probably similar. It may be the same in all
organisms but this is not yet known.

It is impressive to note that nearly all of the above predictions eventually turned
out to be true, with the only exception of point 6.

Reading frames and frameshift mutations. Even with the genetic code in
hand, there is still a major problem to be overcome by the translation machinery.
The ribosome does not simply start reading the mRNA sequence from one end;
there are both 5" and 3’ untranslated regions (UTRs) that flank the sequence to
be translated into protein. As a result, the translational machinery must know
exactly where on the mRNA to start working. And depending on where one
starts reading a DNA sequence, there are three different ways to decompose it
into codons.

Example 2.3
Reading frames. The sequence: . ..ACGTACGTACGTACGT. .. can be de-
composed into codons in the following ways:

.. .ACG-TAC-GTA-CGT-ACG-T. ..
...A-CGT-ACG-TAC-GTA-CGT. ..
.. .AC-GTA-CGT-ACG-TAC-GT. ..

The translation into amino acids, and hence the resulting protein, would be
completely different in each of the three cases. The ribosome must therefore
know where to start. We call each non-overlapping decomposition of a DNA
sequence into codons a reading frame (i.e. the succession of codons determined
by reading nucleotides in groups of three from a specific starting position).

The way that a gene specifies its reading frame is to begin every protein with
the amino acid methionine. Because there is only one codon for methionine —
ATG — the ribosome knows that the first ATG in the messenger RNA specifies
both the start of translation and the reading frame for the rest of the protein;
the next amino acid in the chain is given by the three nucleotides that follow
ATG. (Note that we should be writing AUG, since in RNA alphabet T is replaced
by U, but for simplicity we use the DNA alphabet, which is the one in which
sequences are found in online databases.)

In much the same way, the ribosome does not continue to read the mRNA
sequence until it runs out, but instead looks for a stop codon to tell it where
to cease translation. There are three stop codons — TGA, TAA, and TAG — and
any one of them specifies the end of the growing amino acid chain (unlike
start codons, there is no amino acid associated with stop codons). In order to
foreshadow the gene-finding algorithms that we introduce later in the chapter,

2.3 GENOME ANNOTATION: GENE FINDING

29

we will merely say here that a stretch of DNA that has a start codon (in any
frame), followed by a run of stop-codon-free DNA in the same reading frame,
followed by a stop codon, is called an open reading frame, or ORF. We will
return to this concept later.

Mutations in the DNA sequence of a gene occur all the time, due to a number
of biotic and abiotic factors. Mutations that change one DNA nucleotide to
another within a gene result in a protein that has either one different amino
acid or no different amino acids, depending on whether the mutation occurs
between codons coding for the same amino acid or not. Often, differences of
only a single amino acid have negligible effects on protein function. But if
we have a mutation that deletes nucleotides from or inserts nucleotides into
a sequence, the consequences can be much more far reaching. Imagine the
insertion of just a single new base into a gene: if the cellular machinery does
not realize there has been such a mutation, it reads all succeeding codons in
the wrong reading frame. We call this a frame-shift mutation. Consequently,
all the amino acids attached to the growing protein after this mutation will be
completely mis-specified. The resulting protein will often be totally ruined, in
effect removing an important piece of machinery from the cell.

2.3 Genome annotation: gene finding

We have seen in Chapter 1 that the first step in genome analysis and annotation
involves measuring a number of statistical quantities, such as GC content. Gene
finding (or gene prediction) is certainly the second step in this process, and a
number of computational techniques have been developed that attempt to find
genes without any extra experimental evidence. The methods are divided into
two main categories: ab initio methods, based on statistical properties of the
sequence such as the ones discussed in the previous section; and homology-
based methods, based on comparing sequences with known genes or with other
un-annotated whole genomes (sequence comparison methods will be discussed
later in the book, in Chapters 3, 4, and 8).

For now we will discuss the basic ab initio methods, sufficient for
prokaryotic gene finding but insufficient for most eukaryotic nuclear genomes.
Chapters 3 and 4 will provide some tools needed for comparison-based methods
(respectively, alignment and hidden Markov models), and Chapter 4 will also
discuss some ideas of the more advanced ab initio methods that are needed for
eukaryotic gene finding. Chapter 8 will discuss how whole-genome compar-
isons can also be used to detect genes.

Open reading frames. We have seen that (protein-coding) genes consist of
stretches of (non-stop) codons that begin with a start codon and end in a
stop codon. A diagram is presented in Figure 2.2, showing the ORF structure
of a gene, as well as the transcription signals and the promoter (i.e. regula-
tory) region. However, only prokaryotic genes consist of single, continuous
open-reading frames — eukaryotic genes are interrupted by transcribed, but not
translated, sequences called introns. The translated portions of the gene are
referred to as exons. (Actually, and a bit confusingly, not all exons need to be
translated: the 5" and 3’ UTRs mentioned earlier are considered exons. So the

30

ALL THE SEQUENCE’S MEN: GENE FINDING

I'l ORF "
-35 -10 START STOP
5 : — e —————————————— 1 EE—EE. 20 [3 !
' 3'UTR

TIGACA TATAAT YN ATG ACGCGT = AAT COGTAA
TSS TGA End
é:a;suﬁpﬁan TAG Transcription

a
Sita Paly A Signal
PROMOTER

The structure of a
eubacterial gene. We can
distinguish the promoter
(regulatory) region, the start site
of transcription, the open reading
frame, and the end of transcription
signal

true definition of an exon is that part of a gene that is transcribed and eventually
specifies the mRNA. Introns are spliced out before the RNA travels to the ribo-
some for translation.) Because prokaryotic genes do not contain introns, gene
finding can be simplified into a search for ORFs.

Definition 2.2

Open reading frame. Given a sequence, s, from the alphabet V' = {A, C, G, T},
we define an open reading frame (ORF) as any subsequence whose length L
is a multiple of 3, starting with the start codon ATG, ending in any of the three
stop codons {TAA, TAG, TGA}, with no stop codons in the middle. Internal start
codons are allowed. For example, the sequence: GTATTATTATGAAGGGCC-
CTTCTATAGTATGATTGAAT contains an ORF of length 24 nt:

GTATTATT.ATG.AAG.GGC.CCT.TCT.ATA.GTA.TGA.TTGAAT

Remark 2.2

ORFs on the reverse complement of a sequence. Because chromosomes are
double-stranded, genes may be on either strand (but still in a 5’ to 3’ orientation).
Given only one strand, we can easily reconstruct the other one by the property
of complementarity. We can distinguish three reading frames on each strand for
a total of six reading frames. Thus any gene-finding algorithm needs to locate
ORFs on both strands, and implicitly requires that we search a second 5 to 3’
sequence that is complementary to the strand given by GenBank or other DNA
databases.

The definition given above just begs the question of how long must an ORF
be for us to call it a gene? Ten codons? One hundred? After all, there may be
many random stretches of DNA in a genome that will contain start and stop
codons in the right order, just by chance. The classic approach to deciding
whether an ORF is a good candidate as a gene is to calculate the probability of
seeing an ORF of length L in a random sequence (given some specific sequence
probability model). We would then make a choice as to how unlikely a given
OREF has to be for us to accept it; in general, longer ORFs will be more unlikely
to be due to chance. Obviously, the more stringent our conditions, the fewer
candidates we will have, and the longer they will be on average.

Here we introduce an algorithm for finding open reading frames. In the next
section we present a statistical method for evaluating our confidence that any
particular ORF is part of a true gene, based on its length.

2.4 DETECTING SPURIOUS SIGNALS: HYPOTHESIS TESTING

31

Algorithm 2.1

ORF finder. Given a DNA sequence s, and a positive integer k, for each reading
frame decompose the sequence into triplets, and find all stretches of triplets
starting with a start-codon and ending with a stop codon. Repeat also for the
reverse complement of the sequence, §. Output all ORFs longer than the prefixed
threshold k.

Once an ORF has been found, its translation into the corresponding protein
sequence is easy, by simply rewriting each triplet from C with the corresponding
amino acid from .4, using the translation Table 2.2.

Example 2.4

ORFs in the M. genitalium genome. Using the algorithm given above, we can
search the M. genitalium genome for all open reading frames. For a thresh-
old k of 90 amino acids (i.e. we only accept ORFs as candidate genes if they
are longer than 90 amino acids), we find 543 ORFs in the genome. If we
fix a threshold of 100 amino acids, we find about 471 ORFs. The original
genome paper gave the number of genes as about 470, including non-translated
RNA genes that will not be identified by our protein-coding gene-finding
algorithm.

Example 2.5

ORFs in H. influenzae genome. For a threshold of 80 amino acids we find 1966
ORFs in the genome of H. influenzae. For a threshold of 90 amino acids, the
number is 1814 (the true number is approximately 1750, including RNA genes).
Any other choice of a threshold will obviously lead to different results, as well
as different false positive and false negative rates.

In the following section we will see how to pick a threshold length that will
provide us with believable ORFs as candidate genes.

2.4 Detecting spurious signals: hypothesis testing

The fundamentals of hypothesis testing. When analyzing patterns in a whole
genome we need to consider the possibility that they are a result of chance; this
will be more of a problem the bigger a genome gets. Hence we must devise
methods to help us to distinguish reliable patterns from background noise.
Measuring the probability of a pattern (such as seeing an open reading frame
of a given length) under a null model is a simple and effective way of doing
this, though we will often need to make simplifying assumptions about the
statistical nature of the underlying DNA sequence. Calculating this probability
and making inferences based on it is a fundamental problem in statistics, and
is referred to as hypothesis testing.

There are many important, subtle concepts in hypothesis testing, and we
cannot cover them all. For the reader unfamiliar with basic hypothesis testing

32

ALL THE SEQUENCE’S MEN: GENE FINDING

we suggest that you refer to a general book on probability and statistics; for now
we cover the topics that will be essential throughout this book. We consider the
data (e.g. an ORF of a certain length) to be significant when it is highly unlikely
under the null model. We can never guarantee that the data are not consistent
with the null, but we can make a statement about the probability of the observed
result arising by chance (called a p-value). For any fest statistic — the aspect
of the data that we are testing the significance of (e.g. ORF length) — we must
also choose the statistical threshold at which we decide to call our observation
significant or not significant. This threshold is referred to as «, and defines the
probability with which the null hypothesis will be wrongly rejected (an event
called a “Type I error” in statistics, and further discussed below). When our
p-value is less than «, we consider our data to be significant and unlikely to be
due to chance.

Often a threshold value of « = 0.05 is used to define significance, a popular
(but arbitrary) choice. This value of o means that even if the null hypothesis
is true, 5% of the time our data will appear to be significant. Putting it another
way, if our data are significant at « = 0.05, it means that we would only have
seen a test statistic (e.g. ORF length) as extreme or more extreme than our
observed value 5% of the time due to chance alone. Finding a low p-value for
the data, then, gives support for the rejection of the null hypothesis.

Definition 2.3

Significance level. The significance level of a statistical hypothesis test is a
fixed probability of wrongly rejecting the null hypothesis Hy, if it is true. The
significance level is usually denoted by «:

Significance level = P(Type I error) = «.

Definition 2.4

Test statistic. The test statistic is any aspect of the data that we wish to test the
null hypothesis against. We wish to know whether observing our test statistic
is likely under the null hypothesis, and if not how unlikely it is to appear by
chance. A test statistic can be a value that is directly observable from the data
(e.g. ORF length, or number of Cs in a sequence of some length) or it may
be a function of the data (such as a x-squared value or other traditional test
statistic).

Definition 2.5

p-value. The probability value (p-value) of a statistical hypothesis test is the
probability of getting a value of the test statistic as extreme as or more extreme
than that observed by chance alone, if the null hypothesis, Hy, is true. It is the
probability of wrongly rejecting the null hypothesis if the null is in fact true.
The p-value is compared with the chosen significance level and, if it is smaller,
the result is significant.

Remark 2.3

Types of errors in hypothesis testing. Formally, designing a hypothesis test
requires us to define a “null” hypothesis, Hp, and an “alternative” hypothesis,
H, (e.g. the null hypothesis could be that a given ORF is generated by a random
process, the alternative that the ORF has been generated by some biologically

2.4 DETECTING SPURIOUS SIGNALS: HYPOTHESIS TESTING

33

relevant process). The goal of hypothesis testing is to choose between H, and
H,, given some data. Errors in this decision are almost unavoidable, and can be
of two types: rejecting a true null hypothesis (a false positive or Type I error) or
accepting a false null hypothesis (a false negative or Type II error). Generally
one would like the probability of all errors to be low, but often there is a trade-
off between Type I and Type II errors — lowering the risk of one can increase
the risk of the other. So typically one fixes the acceptable level of Type I error,
«, and calls this the significance level. The numerical value of Type II error is
called B, and is sometimes implicitly defined by the choice of «. In our ORF
example we decided that we can accept up to 5% false positive ORFs in our
list of candidate genes. To define a false negative rate for this type of data we
would first have to know the true identity of genes to know how many we have
missed.

Computing a p-value for ORFs. Once an ORF has been found in a sequence,
the statistical question is: what is the probability of finding an ORF of the same
length (or longer) in a random sequence? This question will help us to better
define how long an ORF must be for us to believe that it is a true gene.

Let us formalize the question: What is the probability of an ORF of k or
more codons arising by chance? And: What is the threshold value of k such
that 95% of random ORFs are shorter than k? This threshold will provide a
lower bound on the length of ORFs to be kept by the algorithm given above.
It is often the case in bioinformatics that such simple models can provide a
first estimate of statistical significance. If we generate random sequences by a
simple multinomial model, the answer can be calculated easily.

Imagine a random process generating a sequence of DNA, and let us ask the
probability of this process generating an ORF by chance. If all nucleotides are
emitted (used) with the same probability — and even if they are not — we can eas-
ily estimate the probability of observing a stop codon in a given reading frame.
We are really computing the probability of seeing a stop codon, conditioned on
seeing a start codon in the same frame, by chance.

What is the probability of picking one of the stop codons? It is the sum of
their probabilities: if the distribution of codons is uniform, it will be 3/64, versus
a 61/64 probability of picking a non-stop codon (since there are 64 possible
codons, three of which are stop codons). So the probability of a run of k (or
more) non-stop codons following a start codon is

P(run of k non-stop codons) = (61/64)~.

Setting «=0.05, we can easily estimate the minimum acceptable ORF length.
Since

(61/64) = 0.051,

then, by discarding all ORFs of length k < 64 (62 plus one start codon and one
stop codon), we will remove 95% of the spurious ORFs. This provides a first,
crude but surprisingly accurate estimate of the threshold to be used for reliable
gene finding in prokaryotes.

34

ALL THE SEQUENCE’S MEN: GENE FINDING

Do not be mislead by the fact that — in this case — the threshold turns out to
be equal to 64 (the same as the number of codons). This is just a coincidence,
due to our choice of 95% confidence. If we request a 99% confidence level,
ORFs need to be longer. The probability of a stretch of 100 non-stop codons is
(61/64)'%° = 0.0082, so with confidence higher than 99% we can conclude that
an ORF longer than 102 codons is highly significant. Of course this approach
runs the risk of accepting a few spurious ORFs and of rejecting a few valid ORFs
that are too short to be noticed. The two types of error give rise to a trade-off
between sensitivity and specificity that must be balanced by any gene-finding
algorithm.

Non-uniform codon distribution. If we assume that the distribution of codon
usage is uniform, then all 64 codons will have the same probability. But if
we observe, for instance, nucleotide usage with a strong AT-bias, then AT-rich
codons may be more frequent; the more frequent codons would then include
both the start and stop codons (ATG; and TAA, TGA, TAG). In fact, almost every
organism shows both an unequal usage of amino acids and an unequal usage of
synonymous codons that encode the same amino acid (called codon bias). Often
these biases in codon usage have little to do with underlying nucleotide usage
bias and more to do with the requirements of the transcriptional and translational
machinery. (This can result in differing GC-contents between coding and non-
coding DNA.) Instead of assuming equal codon frequencies, therefore, we can
simply estimate the distribution from the genome sequence itself.

Given unequal codon frequencies we can easily repeat the above calcula-
tions without even accounting for differences in the frequencies of the non-stop
codons. All we need to know is the total frequency of stop codons:

P(stop) = P(TAR) + P(TAG) + P(TGA).

So, the probability of a run of more than k non-stop codons following a
start codon (again assuming that the DNA sequence has been generated in an
i.i.d. fashion) is

P(run of k£ non-stop codons) = [1 — P(stop)]k,

and this can be used to estimate the value of k that corresponds to an « of 0.05
in the same way as above.

Randomization tests. It is often the case that we cannot easily calculate the
exact p-value associated with some observation, either for theoretical or compu-
tational reasons. In these situations a randomization test can be used; random-
ization tests are a common method in computational genomics, where many
of the assumptions of exact methods may be violated. While there are many
different types of tests that might fall under the heading randomized, all rely
upon randomization of the observed data to create a large number of artificial
datasets that have many of the same statistical properties as the real data. These
replicated datasets are then used to compute a null distribution of a test statis-
tic against which the observed data can be compared. We obtain a p-value by
finding the rank of the observed test statistic in our null distribution: if it lies in
a percentile less than o, we say it is significant (e.g. for « = 0.05 the data must
be in the top 5% of the distribution to be considered significant).

2.4 DETECTING SPURIOUS SIGNALS: HYPOTHESIS TESTING

35

A simple way to generate random sequences with the same length and sta-
tistical properties as the one being tested is to randomly permute the original
sequence. There are actually a number of different ways to permute any se-
quence, with each choice capturing different aspects of the original sequence.
For instance, we could generate a new sequence by shuffling the order of indi-
vidual nucleotides, or by shuffling the order of triplets of nucleotides in some
reading frame. Obviously the latter method captures some of the local correla-
tions between nucleotides, but requires some arbitrary choice of reading frame.
A second method to generate a random sequence is known as bootstrapping:
rather than permuting the original data we now sample with a replacement from
the data to create a new sequence of the same length. Once again, we must make
a choice to sample either individual nucleotides or longer nucleotide strings,
although with bootstrapping we do not have to stick to a single reading frame
when sampling from the data. There are a number of additional randomization
methods that are commonly used, but we do not cover them here.

Example 2.6

ORF length in Mycoplasma genitalium. To test the significance of open reading
frames found in the M. genitalium genome we use a single-nucleotide permu-
tation test, which is the equivalent of generating a random sequence under
a multinomial model using the same symbol probabilities as the original se-
quence. After permuting the genome sequence, we search for ORFs and record
the length of each observed. We find a total of 11922 ORFs in the original
sequence, and 17367 in the randomized one. This list of ORF lengths in the
random sequence becomes our null distribution; we will only keep as candidate
genes those ORFs in the real genome sequence that are longer than most (or
all) the ORFs in the random sequence. If we use as a threshold the maximum
OREF length in the randomized sequence, 402 bp, we find in the original se-
quence 326 ORFs longer than that. This is a good estimate, since it is known
that there are about 470 genes in M. genitalium, several of which are not protein
coding, and hence would not be found as ORFs. Using this threshold we are
of course not able to detect short genes, and we may want to identify these.
We could then choose a more tolerant threshold (i.e., a lower one) so that we
keep all ORFs of length equal to or greater than the top 5% of random ORFs.
Since this choice significantly lowers the length of acceptable candidate ORFs,
it is not surprising that such a threshold leads to a list of 1520 ORFs, more
than the known number of genes and hence containing many false positives.
However we started from more than 10000 candidates, and we have found a
highly enriched set of about 1400 that likely contains most of the genes. In
Figure 2.3, we see the details of the two ORF-length distributions (gray for the
actual sequence and black for its randomized version). It is clear that a thresh-
old of about 150 bp would eliminate nearly all ORFs found in the random
sequence.

Example 2.7

ORF length in Haemophilus influenzae. The same analysis can be repeated for
H. influenzae. If we use as a threshold the length of the longest ORF in the
randomized sequence, 573 bp, we find 1182 ORFs in the original sequence
that are longer than this. Again, this matches well with the estimated number of

36

| ALL THE SEQUENCE’S MEN: GENE FINDING

m ORF-length distribution

for M. genitalium (blue) and its
randomized genome sequence
(red). This figure does not show
the long tail of the blue
distribution, hiding some of the
very long ORFs in the original
sequence

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0
0 50 100 150 200 250 300 350 400 450

ORF Length (in codons)

genes, although it clearly misses too many valid ORFs. Using a lower threshold,
we find 2209 ORFs that are longer than 207 bps, a value greater than or equal
to the top 1% of the ORFs in the randomized sequence.

Remark 2.4

Problems with multiple testing. Though we have not addressed them yet, issues
of multiple testing are found throughout computational genomics, including in
the statistics behind gene finding. Briefly, the problem is that when we choose
o so as to accept a false positive rate of (say) 5%, this is really a false positive
rate on a single test. But if we were to conduct 100 tests — and thousands of
tests are routinely carried out across a genome — then we would expect to see
five false positives just by chance. In other words, if we found five “significant”
genes out of 100 tests with « = 0.05, we would have no reason to believe that
those significance tests meant anything biologically.

The awesome power (and weakness) of computational genomics. In this
chapter we have presented a simple computational method for finding genes.
We were able to find a set of about 400 genes in the M. genitalium genome
and about 1300 genes in H. influenzae of which we were highly confident, and
the Exercises below will convince you that the method can be applied to other
simple genomes.

Finding genes in the laboratory is a long and arduous process; the power
of computers coupled with some basic biological knowledge allows us to find
candidate genes in just a few minutes. But we should stress that these are just
candidate genes. We have no evidence at this point that they make translated,
functioning proteins. In Chapter 3 we discuss computational tools that may

2.6 READING LIST

37

bolster or weaken our candidates by comparison with the sequences of known
genes stored in online databases.

2.5 \ Exercises

(1) Find all ORFs in human, chimp and mouse mtDNA (GenBank accession
numbers respectively NC_001807, NC_001643 and NC_005089). Note that
the genetic code for mitochondria is slightly different from the standard one.
In particular the one for vertebrates has different start and stop codons,
resulting in different ORFs: the codon TGA means stop in the universal
code, but codes for tryptophan in mtDNA; AGA and AGG code for arginine
in the universal code and the stop codon in mtDNA; and ATA represents
isoleucine in the universal code and methionine in mtDNA. What fraction
of the sequence represents (candidate) protein coding genes?

(2) Repeat the ORF search on randomized mtDNA sequences. How long is the
longest ORF that you find in this randomized sequence?

(3) Find ORFs in H. influenzae (NC_000907). Try various choices of length
threshold. How does this affect the number of ORFs you find?

2.6 | Reading list

A modern and stable account of the state of the art of the genetic code, ORFs,
and related material can be found in the books Gibson and Muse (2004) and
Brown (1999). A discussion of hypothesis testing in a bioinformatics context
can be found in Ewens and Grant (2006) and a discussion of bootstrap methods
can be found in Efron and Gong (1983).

A nice account of the GeneSweeps story was published in Science magazine
(Pennisi, 2003). The Nobel lectures of James Watson and Francis Crick can be
found in Watson (1964), Crick (1964) and and the one by Marshall Nirenberg
Nirenberg (1972). A very early discussion of the genetic code can also be
found in Crick et al. (1961). At the 1966 Symposium on Quantitative Biology,
H. Gobind Khorana and Marshall Nirenberg announced the cracking of the
genetic code. This was based on a long series of papers (mostly by Nirenberg
and Leder) on various codons (see (Khorana et al., 1966)).

Links to these and many more papers, as well as to data and software for
the exercises and all the examples, can be found on the book’s website:

www.computational-genomics.net

* Sequence similarity and
homology

* Global and local alignments

* Statistical significance of
alignments

* BLAST and CLUSTAL

Chapter 3

All in the family
Sequence alignment

3.1 | Eye of the tiger

In 1994, at the same time the genomic era was beginning, Walter Gehring and
colleagues at the University of Basel carried out a Frankenstein experiment par
excellence: they were able to turn on a gene called eyeless in various places on
the body of the fruitfly, Drosophila melanogaster. The result was amazing —
fruitflies that had whole eyes sprouting up all over their bodies. Scientists refer
to genes such as eyeless as master regulatory genes (note that genes are often
named after the problems they cause when mutated). These master regulatory
genes produce proteins that control large cascades of other genes, like those
needed to produce complex features such as eyes; eyeless controls one such
cascade that contains more than 2000 other genes. Turning it on anywhere in
the body activates the cascade and produces a fully formed, but non-functioning,
eye.

It turns out that all multicellular organisms use master regulatory genes,
often for the same purpose in different species. Slightly different versions of
the eyeless gene are used in humans, mice, sea squirts, squids, and, yes, tigers,
to control eye formation. We call these different versions of the same gene
homologs, to denote their shared ancestry from a common ancestor. This means
that at least 600 million years ago there was an organism that itself used some
version of eyeless in cellular function, and that throughout the evolution of all of
these animals this gene continued to be maintained, albeit while accumulating
mutations that did not greatly affect its function. The version of this gene found
in humans, called aniridia (because defects in it cause malformation of irises),
is virtually identical to the fruitfly eyeless gene in certain key segments. The
most important such segment encodes the PAX (paired-box) domain, a sequence
of 128 amino acids whose function is to bind specific sequences of DNA. This
segment has remained essentially unchanged for the past 600 million years.
The genes related to eyeless also contain another common element: the HOX
(homeobox) domain. This element, first discovered in Drosophila, encodes a
60-amino acid protein domain that is thought to be part of more than 0.2%

3.2 ON SEQUENCE ALIGNMENT

39

of the total number of vertebrate genes, and is also involved in regulating the
activity of other genes. These examples are not exceptional: a relatively large
fraction of the genes in any organism are shared even among distantly related
species.

But how can we tell that two genes (or their parts), possibly in two different
organisms, are actually two versions of the same gene, or at least that they
are related? Genes can be passed down for billions of years, slowly changing
sequence (and possibly function), but at a pace that often enables us to recognize
two homologous genes simply based on sequence similarity.

This chapter covers the computational challenges inherent in comparing
gene sequences. Being able to measure the similarity between sequences is
probably the single most important calculation in computational genomics,
and it has become an everyday task for biologists. The ease with which these
comparisons are made is due to methods that pre-date the genomic era by 25
years; we will briefly review the seminal results in this field to bring us to the
next stage of genome annotation — assignment of function to genes. All of these
methods revolve around the central idea of sequence alignment, the task of
finding corresponding parts in two related sequences.

Remark 3.1

Multiple levels of homology. Although the different versions of the eyeless gene
found in animals are all homologous, the actual eyes of these organisms are
not. Eyes have evolved independently in insects, vertebrates, and mollusks, and
hence are not homologous. Even in organisms without eyes, however, eyeless
homologs are used in neural development, suggesting that the master regulatory
function of this gene has been co-opted each time to control eye formation.
Supporting this is the fact that eyeless homologs also control tasks such as ear
development in vertebrates.

32 On sequence alignment

This chapter deals with the algorithmic and statistical issues of sequence align-
ment. As we said earlier — and we repeat here for emphasis — sequence align-
ment is probably the most important task in bioinformatics; it is routinely
applied to both amino acid and DNA sequences. The ultimate purpose of
sequence alignment is to measure sequence similarity, or how closely se-
quences resemble each other. It is only by first aligning sequences, how-
ever, that we can say whether an amino acid or nucleotide is the same or
different between sequences, and hence how similar the sequences are over
their entire length. A simple example of alignment between two (artificial)
amino acid sequences (VIVALASVEGAS and VIVADAVIS) is shown here
to illustrate the notion of alignment before its formal definition is given
below:

\% I \Y% A L A S \% E G A S
\ I \Y% A D A - \% - - I S

40

ALL IN THE FAMILY: SEQUENCE ALIGNMENT

This example is discussed in more detail in various parts of this chapter.
Note that once such an alignment is available, corresponding parts between two
sequences, and a similarity score, can easily be obtained.

Being able to align sequences quickly has many uses in biology. Here we
list a few:

* Prediction of function. As we saw with the eyeless example, organisms share
many genes. This fact has important consequences for annotating protein
function: if we know the function of a protein in one organism, we can
make inferences about the function of similar proteins for which we have no
experimental evidence. Assigning protein function is the next step in genome
annotation after we have found candidate genes.

* Database searching. We can use fast sequence alignment methods to deter-
mine whether a gene that we know from one organism (whether or not we
know its function) is similar to any known sequence. This extensive com-
parison will require approximate methods, and is the main function of the
algorithm and the program of the same name, BLAST. We cover the uses of
BLAST and searchable public databases later in this chapter.

* Gene finding. Comparison of whole genome sequences from two or more
organisms can reveal the location of previously unknown genes, especially
if they are too short to be found by ab initio methods. Whole genome com-
parisons are discussed in Chapter 8.

* Sequence divergence. The amount of sequence divergence (or, conversely,
similarity) between two sequences can tell us how closely they are related.
Whether we are comparing genes from two humans or from a plant and an
animal, we need some measure of their similarity; one way to calculate such a
metric is to first align the sequences. The application of sequence alignment to
variation within populations and between species is the subject of Chapters 5,
6, and 7.

* Sequence assembly. Though we will not discuss sequence assembly in this
book, it is still important to point out that sequence alignment has uses in
this most basic of genomic analyses. Without efficient sequence assembly
(genome sequences are normally assembled from a huge number of shorter
pieces of DNA), we would not have all the genomes we see today.

3.3 | On sequence similarity

Before we leap into the algorithmics of sequence alignment, there are a few
important biological issues that we must first cover.

Homology. After we align genes or proteins, we are able to make objective
statements about their similarity: they are 50% similar, or 99% similar, etc. But
any two random sequences can be similar to some extent, so similarity does
not necessarily imply homology, or relatedness, of the sequences. Homology
means that sequences come from a common ancestor and are not simply sim-
ilar by chance. It is therefore proper to refer to the “similarity” of sequences
after alignment, and not to their “homology” (as is found too often in certain

3.3 ON SEQUENCE SIMILARITY

41

corners of biology). There is no such thing as two sequences that are “50%
homologous™: they either share a common ancestor or they do not, and this is
an inference that comes from further analysis. We should say, though, that high
similarity between sequences is good evidence for a recent common ancestor
and hence homology.

While on the subject of homology, there are a few related issues that would
be helpful in understanding the alignment of gene sequences. It so happens that
genes can be homologous in a number of different ways — after all, we can be
related to people with whom we share an ancestor in a number of different ways
(e.g. mother, brother, cousin). The two most common forms of homology are
orthology and paralogy.

Orthologous genes (or the proteins they produce) are ones that are found in
separate species and derive from the same parental sequence in a common an-
cestor. Orthologs reflect the history of splitting (speciation) between species —
if an ancestral species carried gene A, then upon splitting into two daughter
species both would contain orthologous versions of gene A, even as their se-
quences evolve. The basic processes of molecular evolution that led to the evo-
lution of sequences include substitution of one nucleotide for another, insertion
of nucleotides, and deletion of nucleotides. We collectively call the insertion
or deletion of bases indels. We will discuss probabilistic models of nucleotide
substitution in Chapter 5, and other processes in molecular evolution, including
large genome rearrangements, in Chapter 8.

In order to understand paralogous genes, we must introduce yet another
biological concept: gene duplication. Via cellular mechanisms that we need
not discuss in detail, genes are often duplicated to produce multiple copies
in one genome. These duplicates often diverge in function very slightly, such
that the tasks carried out by a parental copy are now carried out by multiple
specialized members of a gene family. The eyeless gene we discussed ear-
lier is actually a member of the homeodomain gene family, a group of dupli-
cated genes that all fill separate roles as master regulatory genes. The relation-
ship between members of a gene family within a single genome is known as

paralogy.

Remark 3.2

Gene duplication and evolutionary novelty. In addition to simply dividing up
necessary tasks among members of a gene family, gene duplication is also a
great engine of evolutionary novelty. Because an organism initially has exact
duplicates of a gene, one of the two copies is free to evolve novel functions;
this is often the origin of genes with entirely new roles.

Protein domains. The eyeless gene encodes a protein with a specific function —
in this case that function is the binding of DNA. Only a short stretch of the
protein actually binds to DNA, however; we call these functional stretches
of proteins domains. The eyeless gene has a homeobox domain, a conserved
stretch approximately 60 amino acids long and found in a huge number of
related regulatory genes. Depending on their function, single proteins can have
one or more domains that perform different tasks; as discussed earlier, eyeless

42

ALL IN THE FAMILY: SEQUENCE ALIGNMENT

actually has two domains, the homeobox domain and the paired-box domain (of
approximately 128 amino acids). Protein domains are often the most important
part of the molecule, and hence evolve very slowly (because very few mutations
are allowed in them). This conservation means that protein domains will be
much easier to align than other parts of genes — we will see how this manifests
itself shortly.

3.4 | Sequence alignment: global and local

In contrast to the frenetic pace of computational genomics in the late 1990s, se-
quence alignment technology developed glacially. Results came in leaps, often
separated by full decades: Saul Needleman and Christian Wunsch introduced
the concept of global alignment in 1970; Temple Smith and Michael Water-
man the computational advance of local alignment in 1981; and fast heuristic
methods, the third panel in alignment’s triptych, were introduced by Stephen
Altschul, Warren Gish, Webb Miller, Gene Myers, and David Lipman in 1990.
All three were published in the Journal of Molecular Biology. Of course none
of these papers appeared de novo — all required important results from other
researchers — but they mark important milestones, nonetheless.

We first discuss the algorithms and statistics behind global and local align-
ment. Only by understanding these basic methods can we come to see the truly
daunting computations inherent in modern genomic biology. The basic ques-
tions to be answered include: given two sequences, what is the best way to
align them against one another? How can we assess the quality of any given
alignment? Can an alignment be explained by chance, or should we conclude
that it is due to a shared history between the sequences? These are algorithmic
and statistical questions.

3.4.1 Global alignment
A global alignment of two sequences (referred to as a pairwise alignment)
can be thought of as a representation of the correspondence between their
respective symbols (i.e. their nucleotides). If two sequences have the same
ancestor, we expect them to have many symbols — and indeed entire sub-
strings — in common. For most symbols in a sequence we should be able
to identify the corresponding homologous position in the other sequence.
This can be represented by an alignment, where mutations between the se-
quences appear as mismatches, and indels appear as gaps in one of the two
sequences.

For example, if we were to align the amino acid sequences
s = VIVALASVEGAS and t = VIVADAVIS (notice that these are unequal in
length), we would obtain something like this:

AGs, t) =

Notice that the total length of the alignment ¢, can be larger than both of the
input sequences under consideration.

3.4 SEQUENCE ALIGNMENT: GLOBAL AND LOCAL

43

Definition 3.1

Global alignment. A global alignment of two sequences, s and t, is an as-
signment of gap symbols “—" into those sequences, or at their ends. The two
resulting strings are placed one above the other so that every character or gap
symbol in either string is opposite a unique character or a unique gap symbol
in the other string. It can be represented as a ¢ x 2 matrix, for some value of c,
the first row containing the first sequence and (interspersed) gap symbols, the
second row containing the second sequence and (interspersed) gap symbols.
Note that ¢ — the total length of the alignment — will be either equal to the
length of the longest sequence or longer if gaps have been inserted, but cannot
be longer than s + t (since insertion of gap symbols at the same position in both
rows is considered meaningless).

We often improve readability by adding an extra row representing matches
and mismatches:

As, = [| | | | | |

where vertical lines denote an exact match between the two sequences. We can
see that there are both individual symbol substitutions between the sequences
and several insertion or deletion events. (Because we do not know what the
ancestor of these two sequences looked like, we do not know if the length
difference is due to insertions in one sequence, deletions in the other, or some
combination of the two.)

Alignment scoring functions. Any arrangement of the two sequences in a
matrix like the one above is a valid pairwise alignment. We are interested in the
best possible arrangement. A crucial aspect of alignments is that we can devise
a simple scoring scheme to judge their value, so as to define and find the “best”
alignment. Every position in an alignment, which we denote A, specifies a pair
of opposing symbols from an expanded alphabet of nucleotides or amino acids
that includes the gap symbol, “~”” We will call x; and y; the symbols appearing
at the ith position of the alignment, respectively in the top and bottom row,
and a scoring function for position i will be denoted by o (x;, y;). Once we
define a scoring function for pairs of symbols from that alphabet, the score of
the alignment between sequences, M, can be defined as an additive function of
the symbol scores. This additive property of alignment scores is a key factor in
ensuring their efficient calculation.

So, if we have a function o (x;, y;) characterizing the cost of aligning two
symbols x; and y;, then we can define a function to compute the cost of an
entire alignment, as follows:

M=) o,),
i=1

where we sum over all positions of the alignment.

44

ALL IN THE FAMILY: SEQUENCE ALIGNMENT

A simple scoring function. An example might be helpful at this point. Con-
sider the simple scoring function assigning a penalty of —1 to indels and mis-
matches, and an award of +1 for matches. This can be written as

o(—,a)=o0(a,—)=o0c(a,b)y=—1 VYa#b
o(a,b)=1 Ya = b,

(where the symbol V means “for all,” and a and b are any symbols different from
“—7). If we apply this scoring function to the global alignment given above, we
get an alignment score of (7 matches, 2 mismatches, 3 gaps):

MA)=7T-2-3=2.

Itis clear that the choice of scoring function is crucial in determining the score of
the alignment, and we should try to make this function as reflective of biological
constraints as possible. It is often the case in constructing scoring functions that
positive matches are given a positive value, mismatches are given a negative
value, and gaps are given a value intermediate between the two; the score thus
reflects the amount of sequence overlap in alignment A.

Substitution matrix. A convenient way of representing many scoring functions
is as a matrix, often called a substitution matrix. In general, a substitution matrix
shows the cost of replacing one letter (of either a nucleotide or amino acid
alphabet) with another letter or a gap. (Substitution matrices can be presented
without the gap character, but because we are using them for alignments here, we
include a column and row for gaps.) For nucleotides, thereisa5 x 5 substitution
matrix, which when given our simple scoring scheme from above would look
like this:

A C G T —
A +1 —1 —1 —1 —1
C -1 +1 —1 —1 —1
G —1 —1 +1 -1 —1
T —1 —1 —1 +1 —1
-/ -1 -1 -1 -1 N/D
Note that the value o (—, —) is not defined — because we do not need to align

gaps with each other — and we indicate this fact by using the notation N/D (not
determined).

The notation for the scoring function remains the same, but now o (x, y) can
refer to an entry in the substitution matrix. Ideally, the substitution scores should
be direct measures of symbol similarity and should reflect as much as possible
the underlying evolutionary and biochemical properties of sequences. In prac-
tice, heuristic solutions are often adopted to achieve practical scoring functions.
Because nucleotides differ very little in biochemical functions, simple scoring
functions are often used for DNA alignment. The simplest nucleotide matrix
penalizes all changes equally; more complicated matrices can favor certain
nucleotide substitutions over others (see Chapter 5).

Amino acids, on the other hand, can be quite different from one an-
other, and mismatches can be of varied effect depending on how similar or

3.4 SEQUENCE ALIGNMENT: GLOBAL AND LOCAL

45

dissimilar amino acids are in their biochemical properties. Scores based on
inferences about chemical or physical properties of proteins are possible and
useful. It is well known that certain pairs of amino acids are much more likely
to substitute for each other during evolution than others. This is likely due to
certain physicochemical properties that they have in common, such as their
hydrophobicity, size, or electrical charge. A good alignment should consider
this and incorporate it into the scoring function so that the overall alignment
reflects the biological similarity between sequences more closely. The two
most common scoring functions that do this are based on observed substi-
tution frequencies in proteins, and are called PAM and BLOSUM matrices
(see Chapter 5 for more information). Whichever function we use, remem-
ber that the choice of scoring function can have a major impact on the re-
sulting alignment, especially when choosing the “best” alignment, as defined
below.

At this point, however, we can give a formal definition of the optimal global
alignment between two sequences. An algorithm to find it will be discussed
immediately after.

Definition 3.2

Optimal global alignment. The optimal (global) alignment of two strings, s and
t, is defined as the alignment A(s,t), that maximizes the total alignment score
over all possible alignments. The optimal alignment is often referred to as A*,
M (A¥) its alignment score.

Finding the optimal alignment. Tt is obvious from these definitions that an
alignment of two sequences will have a high score if it only requires a few
edit operations — including insertion of gaps, and symbol replacements. If
two sequences are closely related, they will have a high alignment score.
The more closely two sequences are related — that is, the less time that has
elapsed since they shared a common ancestor — the better their alignment should
be.

The problem, of course, becomes finding the optimal alignment from all
possible alignments. The naive approach, calculating scores for all possible
alignments and ranking them, would have an exponentially high cost. This cost
is largely due to the fact that we allow for gaps — finding the optimal un-gapped
alignment would be relatively easy. The number of different alignments (with
gaps) of two sequences of length n is (2:), a quantity which grows exponentially
with n. This means that for two sequences of length 30, there are approximately
10" possible alignments between them!

The computational problem we need to solve is now apparent and can be
stated as follows: given two sequences, s and t, and a symbol-scoring func-
tion, o, find the alignment with the maximum alignment score, A*. A solution
based on enumeration of all possible alignments would have an intractable
cost. The problem is efficiently solved by the Needleman—Wunsch algorithm.
This remarkable algorithm is guaranteed to find the optimal score for any given
symbol-scoring function in feasible time.

46

ALL IN THE FAMILY: SEQUENCE ALIGNMENT

himan DRXKRGRQTYTRYQTLELEKEFHFNRYLTRRRRIEIAHALCLTERQVKIWFQNRRMKWKKEHKD

ERKRGRQTYTRYQTLELEKEFHFNRYLTRRRRIEIAHALCLTERQIKIWFQNRRMKWKKENKT

fly

The Needleman—Wunsch algorithm. Without enumerating all alignments,
how can we find the best one? Fortunately, this problem is amenable to an
efficient solution based on dynamic programming. Dynamic programming
(DP) is a general method of computing solutions when a suitable recursive
relation can be found; in other words, when the larger problem can be bro-
ken down into many smaller, easier problems of the same type. In this case,
the optimal alignment of two sequences can be related to the optimal align-
ment of shorter sequences within them. By exploiting this relation, DP meth-
ods — such as the Needleman—Wunsch (NW) algorithm — allow us to start
the computation by aligning very short DNA sequences, and growing this
alignment efficiently to the full length of the two sequences. When imple-
mented well, this approach has a much lower computational cost than the naive
solution.

There are three elements to DP algorithms in sequence alignment: a recur-
sive relation, a tabular computation, and a trace-back procedure. We discuss all
three procedures in Section 3.8, which can be skipped by readers not interested
in algorithmic details.

The important feature of this approach is how its computational cost depends
on the length of the two sequences: this dependency is proportional to |s||t|,
the product of the two sequence lengths. This allows us to efficiently align long
sequences with modest computers.

Example 3.1

Global alignment of proteins. We demonstrate the use of global alignments
on two short subsequences of human and fly Hox proteins (AAD01939,
AAQ67266): see adjacent table.

342 Local alignment

We have discussed the benefits of computing the best global alignment between
two sequences, s and t. A more realistic situation is when we are interested in
the best alignment between two parts of s and t (that is, two subsequences).
As we have seen in the example of eyeless gene, it is often the case that we
suspect two different proteins might share a common domain, but it could also
be the case that we suspect that two homologous regions of DNA might contain
smaller conserved elements within them. The best alignment of subsequences
of s and t is called the optimal local alignment. In other words, we are con-
sidering the best global alignment over all possible choices of subsequences
of s and t. This can be thought of as removing a prefix and a suffix in each of
the two sequences, and testing how well we can align the remaining internal
substrings.

For example, we may want to find similar subsequences within the se-
quences s = QUEVIVALASVEGAS and t = VIVADAVIS. This could be ac-
complished by computing the best (global) alignment between all subsequences
in s and all subsequences in t, each subsequence being defined by ignoring a
prefix and a suffix in the original sequence. A possible (but not optimal) local

3.5 STATISTICAL ANALYSIS OF ALIGNMENTS

47

alignment is

where a prefix and suffix have been removed from the original sequences. For
clarity we show the subsequences and their prefixes/suffixes in an alignment-
like representation:

Q U E v I v A L A S V| E G
R R R R R
- - - v I v A D A -V - -

H D
n X n

where we denote by “R” the removed parts. Note that the optimal local align-
ment is the one presented in the alignment containing only the subsequences
without their prefixes and suffixes above. This can be seen by considering the
following formal definition.

Definition 3.3

Local alignment. A local alignment of two sequences, s and t, is a global
alignment of the subsequences s;.; and t;.;, for some choice of (7, j) and (k,).
The optimal local alignment is given by the optimal choice of (7, j) and (k, [),
so as to maximize the alignment score.

Based on this definition, local alignment appears to be harder than global
alignment, since it contains many instances of global alignment within it: we are
not only optimizing over all possible alignments, but over all possible choices
of starts and ends of each substring. However, a very clever adaptation of the
Needleman—Wunsch algorithm, called the Smith—Waterman (SW) algorithm,
makes it possible to perform local alignment with the same cost as global
alignment. The keys to local alignment are to use a slightly more complex scor-
ing function, and to use a different method for reading the desired alignment
from the table (the trace-back), as are discussed in Section 3.8. The result is a
very efficient procedure that enables us to reveal the presence of common struc-
tures in the two input sequences. This has countless applications in genomic
analysis.

3.5 | Statistical analysis of alignments

Once we determine the highest alignment score for two sequences, we need
to decide whether this is due to chance or biology. Over millions of years,
sequences accumulate large numbers of substitutions, so that it is sometimes
hard to decide if two sequences share a common ancestor. This is made harder
by the fact that unrelated sequences can also display some degree of similar-
ity, simply due to chance. Without such a determination of significance, any

48

| ALL IN THE FAMILY: SEQUENCE ALIGNMENT

The distribution of
global alignment scores for 1000
permutations of the two example
sequences. Notice that the score
obtained for the original sequences
has only been equalled twice in
1000 experiments, and hence is
highly significant

250

200

150

100

50

-8 -7 6 -5 4 -3 -2 A 0 1 2
Distribution of Alignment Scores over 1000 Random Permutations

inferences that we wish to draw about homology or protein function will be
weakened.

As in the case of gene finding, a good way to determine if an alignment score
has statistical significance is to compare it with the score generated from the
alignment of two random sequences “of the same type.” This might mean using
randomly generated sequences as a reference (or randomly selected sequences
from a database, depending on the application). Although there are various
ways to define the random sequences whose alignment scores we want to use
as a comparison, the idea is always the same: we use a probability over the set
of possible sequences, and we calculate the probability of randomly picking
two sequences from that distribution that have an equal or higher alignment
score than observed in the real data.

As in Chapter 2, random sequences are produced by permutation of one
of the original sequences (so as to respect base composition), or the permuta-
tion of the original sequence by blocks (so as to respect local relations such as
codons). Alternatively, we could first estimate the parameters of a multinomial
or Markov distribution, and then generate random sequences with those param-
eters. We then align one of the original sequences (the one that has not been
permuted) with the random ones, and compare the scores obtained with the
original alignment score. This method can be used to estimate the significance
of alignments in the form of p-values.

We can use this method to perform hypothesis tests, as discussed in
Chapter 2. We rank all the alignment scores, and we see what proportion of the
randomly generated sequences have an alignment score equal or greater than
the original sequences. We can accept the alignment as significant (possibly
indicating homology) if its score is in the top 5% (or another chosen value of
«) of the randomly generated scores.

3.5 STATISTICAL ANALYSIS OF ALIGNMENTS

49

More sophisticated methods are available, based on a theoretical analysis
of the distribution of scores for random sequences, but they are too complicated
for the purpose of this introductory book. Pointers to literature about advanced
methods can be found in Section 3.10.

Example 3.2
Significance of global alignment. Remember that for the global alignment:

AGs. t) = v I v AL A S V E G A S

v I v A D A - V - - I 8

we have a score of 2, resulting from seven matches, two mismatches, and
three gaps (using our elementary scoring scheme). Now, if we do 1000 random
permutations of the second sequence, t, and we find the best global alignment
for it with s for every randomization, we get the distribution of alignment scores
observed in Figure 3.1.

Only twice out of the 1000 permutations did we find an alignment score
equal to or greater than the observed score (in fact, we never see a higher score).
This can be interpreted as a p-value of 0.002. We must conclude that our original
alignment is highly significant, and would arise by chance much less than 1%
of the time.

We can also do the same type of permutation test for local alignments, with
little difference in interpretation, as seen in the following example.

Local alignment of PAX genes. We have seen that the eyeless protein is one
of many factors controlling the development of eyes in many distantly related
species. Like eyeless, many other PAX and HOX genes are expressed in the
developing nervous system and are believed to help regulate neurogenesis. We
demonstrate how to use local and global alignment algorithms by discovering
conserved domains in PAX and HOX proteins, finding the celebrated paired-box
and homeobox domains.

This can readily done by first downloading two sequences from Gen-
Bank, one from human and the other from fruitfly, corresponding to the cod-
ing regions of the PAX gene discussed in the opening story. Since eukary-
otic genes often contain introns, we can get a file from GenBank that con-
tains the sequence of just the mRNA (and the associated protein), where in-
trons have already been removed. The accession numbers are AY707088 and
NM_001014694.

We expect these genes to contain two segments in common: a longer seg-
ment — the PAX domain — and a shorter segment—the HOX domain. By running
Smith—Waterman local alignment, we obtain the segment of 133 amino acids
shown in the adjacent table
The score of this alignment (437, with a PAM 50 substitution matrix) is then
tested against the score of 1000 alignments between randomized sequences,
and is never equaled, indicating a highly significant result (see histogram in
Figure 3.2). Indeed, this sequence is found to correspond to the PAX domain,
and is in the very beginning of these two sequences (within the first 200 amino
acids).

human HSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETGSIRPRA

HSGVNQLGGVFVGGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETGSIRPRA

fly

human IGGSKPRVATPEVVSKIAQYKRECPSIFAWEIRDRLLSEGVCTNDNIPSVSSINRVLRNLASEK-QQ

IGGSKPRVATAEVVSKISQYKRECPSIFAWEIRDRLLQENVCTNDNIPSVSSINRVLRNLAAQKEQQ

fly

50

ALL IN THE FAMILY: SEQUENCE ALIGNMENT

humanQRNRTSFTQEQIEALEKEFERTHYPDVFARERLAAKIDLPEARIQVWFSNRRAKWRREEKLRNQRR

QRNRTSFTNDQIDSLEKEFERTHYPDVFARERLAGKIGLPEARIQVWFSNRRAKWRREEKLRNQRR

fly

100

90

80

70

60

50

40

30

20

10

30 35 40 45 50 55 60 65

Result of 1000 local alignments with randomized versions of the two PAX
genes. The alignment score of the original sequences is 437 and is never reached during
statistical testing, indicating a highly significant alignment (the highest random alignment
score is 61)

The same two sequences also have a second common element, the home-
obox, not found in the previous alignment because it is too short. This element
can be seen, for example, by running a global alignment, since these two genes
are sufficiently similar to be globally aligned. However, we can also choose to
run another local alignment, this time only on the second half of the sequences
(hence removing the PAX element, which is longer and therefore preferentially
found by the Smith—Waterman algorithm). The result is again clear: a subse-
quence of length 66 containing the homeobox (featured in Example 3.4), whose
score is highly significant; see the adjacent table.

3.6 | BLAST: fast approximate local alignment

As the number of DNA sequences deposited in public databases grew during
the late 1980s, even the computational cost of the Smith—Waterman algorithm
became prohibitive. For large-scale applications such as database searching (the
three main genomic databases collectively now contain more than 100 billion
bases of DNA sequence), exact methods appeared to be unwieldy. The cost of
all dynamic programming algorithms presented above is of the order of O(nm)
(meaning that the algorithm takes an amount of time that grows linearly with
the product of n and m); although these are amazingly low costs, they are still
too high for the scale of applications that are routine in modern computational

3.6 BLAST: FAST APPROXIMATE LOCAL ALIGNMENT

51

biology. As a solution, the field turned to heuristic methods — faster methods
that are not guaranteed to deliver the optimal solution. The most popular of
these is the BLAST algorithm.

Developed at the National Center for Biotechnology Information (the cura-
tors of GenBank) by Stephen Altschul and others in 1990, BLAST and the set
of sister programs it has spawned are the most used bioinformatics algorithms
in the world. They are so commonly used that 7o blast has become an accepted
verb (I blast, you blast, we all blast). BLAST is considered the third milestone
in sequence alignment, after Needleman—Wunsch and Smith—Waterman. The
word BLAST is an acronym for Basic Local Alignment Search Tool, and is
rumored to be a play on FAST, a predecessor search program by David Lip-
man and Bill Pearson (now remembered mainly for its widely used file format,
FASTA, described in Example 1.8).

BLAST’s strategy for increasing speed is mainly accomplished by two
shortcuts: don’t bother finding the optimal alignment, and don’t search all of
the sequence space. Effectively, BLAST wants to quickly find the regions of
high similarity, regardless of whether it checks every acceptable local alignment.
We briefly outline the algorithm it uses below.

An approximate alignment algorithm. BLAST finds local alignments, as de-
scribed in Definition 3.3; it attempts to find high-scoring local alignments,
but does not guarantee finding the maximum scoring ones. The basic version
focuses on un-gapped alignments; later versions extended this to gapped align-
ments as well. However, in many practical applications un-gapped alignments
are sufficient. BLAST is used not to infer homology of individual sequence
segments, but rather to retrieve similar sequences from a database. Further-
more, BLAST provides a built-in statistical estimate of the significance of its
results.

BLAST finds islands of similarity without gaps, called segment pairs. It
is of course very easy to locally align two sequences if gaps are not allowed
(essentially one needs to just find the optimal choice of prefix and suffix to
remove). In practice it can be even easier if the length of the alignment is small,
as one could precompute an index of all length / words and their position in
the database (the related program BLAT, by Jim Kent and colleagues, does
something very similar to this). Together, such short un-gapped alignments can
form seeds for regions of high local similarity.

Definition 3.4

Maximal segment pair. Given two strings s and t, a segment pair is a pair of
substrings of these two sequences, of equal length, aligned without gaps. A
locally optimal segment pair is a segment pair whose alignment score (without
spaces) cannot be improved by extending it or shortening it. A maximal segment
pair (MSP) in s and tis a segment pair with the maximum score over all segment
pairs between the two.

When comparing all the sequences in the database against the query, BLAST
attempts to find all the sequences that when paired with the query contain
an MSP whose score is above some threshold, ®. ® is chosen based on

52

ALL IN THE FAMILY: SEQUENCE ALIGNMENT

statistical considerations, such that it is unlikely to find a random sequence
in the database that achieves a score higher than ® when compared with the
query sequence. The search starts by identifying a short segment pair, and then
by extending it in both directions until the score drops below the specified
threshold.

Hence there are two main steps in the BLAST algorithm: first, given a
length parameter, /, and a threshold parameter, ®, BLAST finds all the /-length
words of database sequences that align with words from the query with an
alignment score higher than ®. These are called hotspots, or hits. Then, each
hit is extended to find whether it is contained within a larger segment pair with
a higher score than ©.

We will not discuss in this book the many crucial algorithmic aspects of
BLAST, referring the readers to the references listed in Section 3.10

Remark 3.3

Statistical analysis of BLAST scores. After interrogating a database of se-
quences, for example by using BLAST, we need to assess the statistical sig-
nificance of the hits (the sequences retrieved from the database, due to their
similarity to the query sequence). An important parameter is the E-value: the
number of hits we can expect to see just by chance. This is different from
the p-value, since this also considers the size of the database itself. The lower
the E-value, the more significant the score. For example, an E-value of 1 as-
signed to a hit means that we might expect to see one match of similar length
and percent identity by chance.

Online BLAST tool. Besides being an algorithm to compute local align-
ments and their significance, BLAST is also a popular online software
tool, connected to various NCBI databases, including GenBank. The tool
compares nucleotide or protein sequences to sequence databases and cal-
culates the statistical significance of matches. It is regularly used to infer
functional and evolutionary relationships between sequences, and to iden-
tify gene families. It comes in many flavours: for amino acids, for nu-
cleotides, and many more, but the basic principles are the ones discussed
above. Its URL is: http: //www.ncbi.nlm.nih.gov/BLAST/. Happy
Blasting!

Example 3.3

Blasting the homeobox. If we use BLASTP (for proteins) to query GenBank
with the Drosophila sequence included in the local alignment on page 49,
we find hundreds of hits. The online service reports the first 500, ranging in
E-value from 3e-37 to le-15. Here is an arbitrary selection, to illustrate the
result. Note that the organisms range from flies to plants, from mice to mol-
luscs. Also note that the raw alignment scores have been transformed into a
“normalized score” expressed in bits, to ensure comparability between scores
of different length sequences. We will not discuss this normalization step
here, however pointers to online discussions of this quantity can be found in

3.7 MULTIPLE SEQUENCE ALIGNMENT

53

Section 3.10.

Sequence Description Organism Score E-Value
CAA56038.1 transcription factor D. melanogaster 155 3e-37
CAC80518.1 paired box protein M. musculus 139 2e-32
CAA09227.1 DtPax-6 protein G. tigrina 106 3e-22
AAL67846.1 paired-related homeobox G. gallus 90.5 2e-17
AAM33145.1 - P vulgata 85.5 5e-16

As a comparison, if we BLAST the sequence VIVALASVEGAS we find the
following results

ZP_00530569.1 inner-membrane translocator C. phaeobacteroides 26.1 154
AAQI18142.1 poly(A)-binding protein C. sativus (cucumber) 25.2 278
AAM36438.1 conserved hypothetical protein X. axonopodis 25.2 278

none of which is significant (given the very high E-values), as expected.

3.7 Multiple sequence alignment

While pairwise alignment is almost always the first step in assigning biological
function to sequences, simultaneously aligning multiple sequences can reveal
a wealth of biological information and is necessary for many more advanced
analyses in biology. The search for an optimal multiple alignment leads to both
important conceptual and algorithmic issues, briefly discussed below.

As an example, consider comparing the three sequences, VIVALASVE-
GAS, VIVADAVIS, and VIVADALLAS. A multiple alighment (not necessar-
ily an optimal one) would look like

v I v A L A S V E G A S
A=v I VvV A D A - V I - - 8
v I v A D A L L A - - S.

When performed for related sequences, multiple alignment can help researchers
identify conserved domains and other regions of interest. We can readily adapt
the definition of pairwise alignment to cover this case.

Definition 3.5
Multiple alignment. A multiple (global) alignment of k sequences, is an assign-
ment of gap symbols “—" into those sequences, or at their ends. The k resulting

strings are placed one above the other so that every character or gap symbol in
either string is opposite a unique character or a unique gap symbol in the other
string. It can be represented as a ¢ x k matrix, for some value of c, the ith row
containing the ith sequence and (interspersed) gap symbols.

The above definition is of course a mathematical one. From a biological
perspective, a multiple alignment represents a hypothesis about homology of
individual positions within the aligned sequences.

54

ALL IN THE FAMILY: SEQUENCE ALIGNMENT

Many algorithmic ideas transfer directly from pairwise to multiple align-
ment. For example, we can distinguish between global and local multiple align-
ment, where with local alignment we allow the possibility of dropping prefixes
and suffixes from each of the sequences. This problem is related to the problem
of motif finding, discussed in Chapter 10, and hence we do not discuss it here.
We concentrate here on multiple global alignment.

Two problems arise when extending the concepts of pairwise alignment to
multiple alignment. First, we need to be able to score multiple alignments. There
are various ways of scoring multiple alignments, as this is a problem that needs
to be addressed with an eye towards biology and an eye towards computational
convenience. Second, we need to devise an efficient method of finding the
optimal alignment. This is a computational question that unfortunately does
not have an elegant solution as with pairwise alignment.

The extension of pairwise alignment algorithms such as Needleman—
Wunsch or Smith—Waterman to more than two sequences are straightforward,
but their cost increases exponentially with & (where k is the number of se-
quences). This fact means that there is an exponential cost in the number of
sequences being aligned, limiting the use of these algorithms to very few se-
quences.

A number of heuristics have been proposed to find approximate so-
lutions, none of which guarantees finding the optimal multiple alignment.
The simplest ones are greedy algorithms, that start with a pairwise align-
ment and iteratively add the other sequences. Usually they use an initial
step of clustering the sequences, so that one first merges the closest se-
quences, and then gradually adds the ones that are less and less similar. In
the next chapter we will address a hidden Markov model approach to multiple
alignment .

A very popular and efficient heuristic algorithm for multiple alignment
is CLUSTAL, originally developed by Desmond Higgins and Paul Sharp at
Trinity College, Dublin in 1988 and extended by Higgins, Julie Thompson,
and Toby Gibson into the current version, CLUSTALW. The basic idea behind
CLUSTAL is to break down the multiple alignment problem into multiple com-
putationally familiar pairwise alignment problems. First, CLUSTAL clusters
the sequences together by rough similarity, and then starts doing pairwise align-
ments of the most similar sequences, moving out to eventually include all of the
sequences.

Example 3.4

Multiple alignment. A multiple alignment of human, sheep, and cow home-
odomains (accession numbers: AAH07284, AAX39333, AAP41546). Note that
in this case, due to the high level of conservation of these domains, no gaps
were needed to align them. In most real applications, gaps would be present in
a multiple alignment.

KRKLORNRTSFTQEQIEALEKEFERTHYPDVFARERLAAKIDLPEARIQVWF SNRRAKWRREEKL
KKKHRRNRTTFTTYQLHQLERAFEASHYPDVYSREELAAKVHLPEVRVOVIWFONRRAKWRRQERL
KKKHRRNRTTFTTYQLHQLERAFEASHYPDVYSREELAAKVHLPEVRVOVWFONRRAKWRRQERL

3.8% COMPUTING THE ALIGNMENTS

55

Drosophila Prd ----- DI P R R 75
Drosophila Gsb ----- DE| PS R. R 75
human Pax3 ---P P R. R 77
mouse_ Pax3 ---P| P, R. R 77
zebrafish Pax3 ----- D R. R 75
human_Pax7 DKGNR P R R 80

C el RO8B4.2 --NRENGSPEDGTNSPDDNGKRKQRRYRETFSAFQLDELEKVFARTHYPDVFEREELATR-------------------- 58

ruler 1....... 10........ 20........30........40........50........60........ 700ceean.. 80

A multiple alignment
produced by the CLUSTALW
package using fragments of various

Example 3.5 PAX genes

CLUSTALW. Output of the freely available CLUSTALW package showing a
multiple alignment of fragments of various PAX genes as well as the amount
of similarity at each position is shown in Figure 3.3. Pointers to the online
software packages and relative literature can be found in Section 3.10.

3.8% | Computing the alignments

In this section we describe some of the details behind the Needleman—Wunsch
and Smith—Waterman dynamic programming algorithms that were skipped
above. Being aware of these details is essential for a computer scientist, but
might not be necessary for a biologist or a statistician interested in using these
alignment methods to analyze data.

3.8.1 Needleman—Wunsch algorithm
Recursive relations. The ideabehind the recursion in the Needleman—Wunsch
algorithm is that in order to find the score of an optimal alignment between the
first i symbols of sequence s and the first j symbols symbols of sequence t, all
we need to know is the score of the alignment between the two sequences up
to the previous position. While this might seem confusing at first — how do we
know the score of the alignment up to the previous position to begin with? — it
turns out to be easy to perform once you know where to start the calculation.
Consider the first position in an alignment between two sequences. There
are only three possibilities for the state of this position: (1) gap in the first
sequence, (2) gap in the second sequence, and (3) no gaps, but either a match or
mismatch. Given a scoring function (let us continue to use the simple one defined
above), we immediately know the score for each of these three possibilities.
In either of the first two cases we would pay the gap penalty; in the third
case we would not suffer any penalty if x = y, but we would if x # y. Of
course any one of the three options might make for a better or worse alignment
of the remaining sequence, so it is not yet possible to choose which one is
best (otherwise we could use a “greedy” algorithm). However, if we know the
possible scores for these three alignments, then we can choose the optimal
alignment for the sequences up to next position. We write this recursion as

56

ALL IN THE FAMILY: SEQUENCE ALIGNMENT

follows:

M;_y;j+o(si,—)
Mi.j = max M[__,'_l + U(—, tj)
M;_y j—1 +o(si, t)).

Inwords, the score of the alignment between s; and t; is equal to the maximum of
the score of the alignment of the three prefixes plus the score for the consequent
edit operation. We have effectively reduced the problem of optimally aligning
two sequences to that of optimally aligning their prefixes.

Tabular computation. The essential feature of any dynamic programming
technique is the tabular computation — we will reduce our computation time by
storing the results of calculations we carry out over and over again in a table.
For instance, for all the possible alignments between VIVALASVEGAS and
VIVADAVIS we would need to perform the same partial computation many
times (say, the alignment of VIVA and VIVA). An efficient solution is to cache
the partial results that may be reused by maintaining a table filled in by using
the recursion in a bottom-up way.

We will maintain partial alignment scores in a rectangular table with m +
1 x n 41 cells (where m is the length of sequence s, and n is the length of
sequence t). The first row and column are associated with the “empty sequence”
and, in order to initialize the table, we begin by filling them with multiples of
the gap penalty according to the following rules:

M;, = ZU(Sk, -)
=1

J
M=) o(—t)
k=1

This results in an initialized dynamic programming table whose first row and
column are as those of Table 3.1 and depend only on the gap-insertion penalty
cost.

After initializing our alignment in this way, we start filling each cell that has
its top, left, and top-left neighbor already filled (the first cell to be filled is there-
fore position (2, 2)). To fill in position (2, 2), we choose the best score according
to our recursive relationship defined above. Choosing the left neighboring cell,
(i — 1, j), is equivalent to putting a gap in the sequence along the side of the
table; the resulting score would therefore be —2 (—1 from position (i — 1), j
plus —1 for the gap penalty). Choosing the neighboring cell above is equivalent
to putting a gap in the sequence across the top of the table; the resulting score
is also —2. If we choose the diagonal neighbor, (i — 1), (j — 1), we are not
inserting any gaps; the resulting score is therefore +1 (0 from the neighbor
plus +1 for a match). We would therefore put a +1 in this position to maximize
our alignment score, remembering that we chose the diagonal neighbor (this
is for our trace-back procedure, defined below). Moving to position (3, 2), we
again evaluate our choices and decide to choose the left neighbor — inserting
a gap in the top sequence results in the optimal score (0) given the alignment
of V with V in the first position. We can move across the second row in this

3.8% COMPUTING THE ALIGNMENTS 57

Table 3.1 | The dynamic programming table resulting from the global
alignment of two amino acid sequences. The winning path in

emphasized
\% I \ A D A \ I S

0 -1 -2 -3 -4 -5 -6 -7 -8 -9
v -1 -1 o -1 -2 -3 -4 -5 -6 -7
I -2 0 2 1 o -1 -2 -3 -4 -5
v -3 -1 1 3 2 1 o -1 -2 -3
A -4 -2 0 2 4 3 2 1 0o -1
L -5 -3 -1 1 3 3 2 1 0 -1
A -6 -4 -2 0 2 2 4 3 2 1
S =7 -5 -3 -1 1 1 3 3 2 3
\Y -8 -6 -4 -2 0 0 2 4 3 2
E -9 -7 -5 -3 -1 -1 1 3 3 2
G | -10 -8 -6 -4 -2 -2 0 2 2 2
A | -11 -9 -7 -5 -3 -3 -1 1 1 1
S| -12 -10 -8 -6 -4 -4 -2 0 0 2

manner, and then across the following rows until we have filled out the entire
table.

The alignment score of the global alignment can be read in the bottom-right
cell in the table (the score is 2). The alignment itself can be reconstructed from
the optimal path with a method called trace-back, described below.

Trace-back. The bottom-right cell of Table 3.1 gives the score of the optimal
global alignment between s and t. However, what we really want is the alignment
itself; we obtain this by means of the trace-back procedure. When filling the
table in the previous step, we noted the need to keep track of which one of
the three recursive rules was used to fill each cell — which one of the three
neighboring cells was used to fill in a given cell. The information on the path
taken can be stored in each cell in the form of a pointer, and once we reach the
bottom-right cell we can trace-back the pointers to the initial top-left cell. This
path specifies the optimal alignment.

To translate the trace-back into an alignment we simply remember what
each choice in our recursive relation meant when filling out the table. For each
diagonal step, there is a corresponding match/mismatch in the alignment; for
each vertical step, there is a gap insertion in the top sequence; for each horizontal
step, there is a gap insertion in the sequence along the side of the table. Starting
with the bottom-right cell, the alignment of this position is determined by the
step we took to get there. In this case we took a diagonal step (see Table 3.1)
so we align S with S. Tracing back the entire alignment in this way, we end up
with the optimal global alignment:

v I VvV A L A S V E G A S
As,p=1 | | | | | I
v I Vv A D A - V - - I s

58

ALL IN THE FAMILY: SEQUENCE ALIGNMENT

We can see that the score given in the bottom-right cell of the array matches
the score if we simply count up the number of matches, mismatches, and gaps
in the alignment: 7 matches, 2 mismatches, 3 gaps.

Algorithm 3.1
Needleman—Wunsch global alignment.

* Create a table of size (m + 1) x (n + 1) for sequences s and t of length m
and n.
¢ Fill table entries (m : 1) and (1 : n) with formula:

M;, = ZU(Sks -)
k=1

J
M, ; = ZU(_’).
k=1
¢ Starting from top left, compute each entry using the recursive relation:

M ;+o(si,—)
M; ; =max { M;;_1 +o(—,t;)
M;_yj-1 +o(s;, t)).

* Perform the trace-back procedure.

The computational cost of this algorithm is determined by the size of the
table to be filled, and hence is proportional to |s||t|.

3.8.2 Smith—Waterman algorithm

For local alignment, we again choose a scoring function that gives negative
values to mismatches and gaps, positive values to correct matches; the scoring
function is again additive. We use the same recursive relation as before, but now
we allow a fourth option: whenever a cell would normally take on a negative
value, it is instead assigned a value of zero:

Mi_y i +o(s;, t))
M;_j+o(si,—)
M; i +o(—,t))
0.

Mi,_i = max

One consequence of this recursion is that we now initialize the DP table with
zeros. A zero option also guarantees that there are no negative cells. Once the
table is filled, finding the best local alignment is simple. First, locate the highest
value in the matrix, and trace-back as before until we reach a zero entry. This
path constitutes the best local alignment. Any extension of this path to the left
or to the right would result in a lower score, as would any restriction (i.e. any
subpath that only traversed a part of it). So the score of the local alignment is
the highest element in the table, whereas before it was the element found in the
bottom-right cell. The option of stopping at the first zero amounts to removing
a prefix. That of choosing the start of the trace-back at the highest element of
the table amounts to removing a suffix.

3.8% COMPUTING THE ALIGNMENTS

59

Example 3.6

Local alignment DP table. One solution of the local alignment between QUE-
VIVALASVEGAS and VIVADAVIS is given by the subsequences VIVA con-
tained in both sequences (other solutions with the same cost can be found).
That is, the solution is

\Y% I \% A

| | | |
v I v A

For convenience, however, we choose to represent here the entire sequences,
including also the removed prefixes and suffixes that are marked with the symbol

R:
Q U E|V I V A|L A S V E G A S
R R R||] | | J/R R R R R R R R
- - -|Vv I Vv A|/D A - V - - I 8

The corresponding dynamic programming table is shown below. Every solution
can be found by finding all the cells with maximum value (in this case 4) and
tracing back until a zero entry is found.

Q U E v I vV A L A S V E G A S

o o0 o o0 o o0 o o0 o o0 o0 o o0 o o0 o

v/ O 0O 0 0Of12(0 1 0 O O O 1 0 0 0 O
I/0 0O OO 021 0 0 0 0O O O O O O
vio 0 o 0 1 1(3}(2 1 0 0O 1 O 0O 0 O
A0 O O O O 0 2 ﬂ 321 0 0 0 1 O
p/o 0 0600 0 1 3 3 2 1 0 0 0 0 0
A0 OO O OO O 2 2 4 3 2 1 0 1 0
vio o 0o 010 1 1 1 3 3 4 3 2 10
I/0 0 00 0 2 1 0 0 2 2 3 3 2 1 0
s/i0o 0o 0o 00 11 0 0 1 3 2 2 2 1 2

Algorithm 3.2

Smith—Waterman local alignment.

* Create table (n + 1) x (m + 1).
 Fill table entries (1,1 : m + 1) and (1 : n + 1, 1) with zeros.
¢ Starting from top left, compute each entry using recursive relation:

My ;1 +0(s;, t))
My +o(si,—)
M; i +o(—,t;)
0.

M; ; = max

¢ Perform trace-back procedure, from highest element in table to first zero
element on the trace-back path.

60

ALL IN THE FAMILY: SEQUENCE ALIGNMENT

3.9 ' Exercises

(1) The genes discussed in the opening story about the Frankenstein experi-
ment can be found in GenBank (eyeless at X79493 and human aniridia
at AY707088). Study their local and global alignments, and discuss their
statistical significance.

(2) Use BLAST to verify the biological significance of your findings.

(3) Protein-coding DNA sequences are best aligned after translation into amino
acids. Find two homologous ORFs in GenBank, and align them both as
nucleotide sequences, and then as amino acid sequences.

(4) Use the links to free software tools found on the book’s website, to per-
form multiple alignment of the sequences presented in this chapter (use
CLUSTALW).

3.10 Reading list

The paper that introduced the Smith—Waterman algorithm is Smith and Wa-
terman (1981), the Needleman—Wunsch algorithm was introduced in Needle-
man and Wunsch (1970) and BLAST in Altschul et al. (1990). The gen-
eral CLUSTAL algorithm is discussed in Thompson et al. (1994), and the
CLUSTALW version in Higgins et al. (1996). Recommended readings are also
the 1986 book by Russell Doolittle on early sequence alignment and bioin-
formatics methods (Doolittle, 1986), and the discussion by Gribskov and co-
workers on the same topic (Gribskov and Eisenberg, 1987). A discussion of
advanced statistical testing techniques for sequence alignment can be found in
(Ewens and Grant, 2006).

A tutorial on the use of BLAST is also available online, following the links
contained on the book’s companion website:

www .computational-genomics.net.

In the same website you can find pointers to CLUSTALW and other free align-
ment software, as well as to all the papers and all protein sequences discussed
in this chapter.

Chapter 4

The boulevard of broken genes
Hidden Markov models

4. ‘ The nose knows

The Nobel Prize in Physiology or Medicine in 2004 went to Richard Axel of
Columbia University and Linda Buck of the Fred Hutchinson Cancer Research
Center for their elucidation of the olfactory system. The olfactory system is
responsible for our sense of smell: it includes a large family of proteins called
odorant receptors that in combination make it possible to recognize over 10 000
different odors. These odorant receptors are attached to the surface of cells in
our nasal passage, detecting odorant molecules as they are inhaled and passing
the information along to the brain.

In order for odorant receptors (ORs) to both sense molecules outside of
the cell and to signal the inside of the cell of their discoveries, these proteins
must traverse the cell membrane. To do this, odorant receptors contain seven
transmembrane domains: stretches of highly hydrophobic amino acids that in-
teract with the fatty cell membrane. The seven transmembrane domains result
in a highly heterogeneous protein sequence: alternating stretches of hydropho-
bic and hydrophilic amino acids that mark the function of receptor proteins.
Axel and Buck’s discovery led to the further description of similar receptors
involved in the sense of taste and in the detection of pheromones, chemicals
used in signaling between organisms.

The odorant receptors are the largest gene family in the human genome, with
approximately 1000 members. However, only 40% of the genes are functional —
over 600 human odorant receptors are pseudogenes, inactive or defective de-
scendants of functional genes. Mice and rats, for instance, have an almost full
complement of functioning odorant receptors, and as a result can distinguish
a much fuller palette of smells. When genes are no longer needed for smell —
such as when color vision becomes the predominant sense — natural selection
no longer maintains their function and they accumulate debilitating mutations.
Pseudogenes are often very similar to their functioning relatives, except that they

Gene families

Hidden Markov models
Sequence segmentation
Multiple alignment

62

THE BOULEVARD OF BROKEN GENES: HIDDEN MARKOV MODELS

contain stop codons or indels that result in the production of non-functioning
proteins.

The analysis of odorant receptors requires more advanced tools than the
ones presented so far. The similarity between various OR genes is too remote
to be revealed by a simple pairwise alignment, but provides a strong signal
when we consider all of them together in a multiple alignment. In addition, we
may be interested in modeling the chemical structure of ORs in order to reveal
their transmembrane structure.

Probabilistic sequence models: the state of the art. In order to perform
the steps outlined above, we will introduce one of the most important tools
of computational genomics: hidden Markov models (HMMs). These naturally
combine multinomial and Markov sequence models, as well as the algorithmic
machinery of dynamic programming discussed in the previous chapter. HMMs
are the probabilistic model of choice for biological sequences (both DNA and
protein), and allow us more freedom to detect patterns that do not necessarily
have rigidly defined structures.

Their uses in computational genomics cover many areas. Here we list some
of the most common:

* Segmentation. Gene and protein sequences may contain distinct regions
whose chemical properties differ widely. HMMs can help us to define
the exact boundaries of these regions. Segmentation is also used to de-
fine much larger stretches of heterogeneous nucleotide use in genome se-
quences, and can be used to identify interesting biological features re-
sponsible for this heterogeneity (as we saw with change-point analysis in
Chapter 1).

* Multiple alignment. In the previous chapter we showed that multiple se-
quence alignment is often efficiently computed by reducing the complexity
of an all-versus-all comparison to the relatively easy task of one-versus-all.
HMMs make this task even easier by defining a so-called profile HMM against
which all new sequences can be aligned. These profile HMMs are also what
makes it possible to assign protein function quickly, and can be regarded
both as a summary of a multiple alignment and as a model for a family of
sequences.

* Prediction of function. Often, simple alignment of sequences does not allow
for firm predictions of protein function; just because we can align sequences
does not mean that they are functionally related. HMMs allow us to make
probabilistic statements about the function of proteins, or let us assign proteins
to families of unknown function. There are now a number of public databases
that use HMMs for this step in genome annotation.

* Gene finding. So far, our gene-finding algorithms have depended on very
rigid definitions of genes: start codon, a run of multiple codons, stop codon.
While algorithms of this type work fairly well for prokaryotic genes, they are
not at all appropriate for finding eukaryotic genes. In addition, if we wish to
find pseudogenes — which may fulfill all of the requirements of functioning
genes save for some misplaced stop codons — we require the flexibility of
HMMs.

4.2 HIDDEN MARKOV MODELS

63

42 | Hidden Markov models

In 1989 Gary Churchill, now a scientist at the Jackson Labs in Bar Harbor,
Maine, introduced the use of hidden Markov models for DNA sequence seg-
mentation. HMMs had been used in a variety of applications previously — such
as in software for speech recognition — but not in sequence analysis. Churchill’s
use of HMMs allowed him to segment a DNA sequence into alternating regions
of similar nucleotide usage. Since then HMMs have been applied to an ever-
growing series of analyses in genomics, including gene finding and the predic-
tion of protein function, mostly due to pioneering work by David Haussler at
UC Santa Cruz. Now, together with alignment methods, HMMs are among the
most representative algorithms of the field of bioinformatics.

The basic need for HMM s arises from the fact that genome data is inherently
noisy. Even in regions with a high GC-content, for instance, there may be long
stretches of As and Ts; patterns observable in DNA sequences are necessarily
a rough facsimile of the underlying state of the genome (“high GC-content”
might be one such state). Simple multinomial and Markov sequence models
used separately are not flexible enough to capture many properties of DNA
sequences. HMMs elegantly put these two models together in a simple and
efficient scheme.

A primer on HMMs. The basic idea behind the application of HMMs is to
model a sequence as having been indirectly generated by a Markov chain. At
each position in the sequence the Markov chain has some unknown (hidden)
state — but all we are able to observe are symbols generated according to a multi-
nomial distribution that depends on that state. In other words, the information
that we receive about the hidden Markov chain is indirect, possibly corrupted
by noise.

The sequence we are trying to analyze is hence modeled as being the result
of a doubly random process: one generating a hidden Markov chain, and one
turning this hidden chain into the observable sequence. This second process
follows a multinomial distribution: in each hidden state, a different set of pa-
rameters is used to produce the observed sequence. One of the keys to HMMs
is to take this necessarily noisy observed sequence and infer the underlying
hidden states.

Hidden states can represent different types of sequence. The simplest
HMMs only have two states — such as “GC-rich” or “AT-rich” — while more
complex HMMs can have many states — such as “regulatory DNA,” “coding
region,” or “intron.”

HMMs have two important parameters: the transition probability and the
emission probability. The transition parameter describes the probability with
which the Markov chain switches among the various hidden states. These
switches can happen very often or very rarely; the chain may transition be-
tween only two states or among many states. The emission parameter describes
the probabilities with which the symbols in the observable sequence are pro-
duced in each of the different states. Each of the hidden states should be able to
produce the same symbols, just in differing frequencies. The number of emitted

64

| THE BOULEVARD OF BROKEN GENES: HIDDEN MARKOV MODELS

o C(F)_ (L) D
o

1(0.1667) 1(0.1000)
2(0.1667) 2(0.1000)
3(0.1667) 3(0.1000)
4(0.1667) 4(0.1000)
5(0.1667) 5(0.1000)
6 (0.1667) 6(0.5000)

The HMM associated
with Example 4.1 : transitions
between fair and loaded dice are
modeled as a Markov chain, and
outcomes of rolls as independent
emissions of a multinomial model

symbols can range between two and many; the most common number in se-
quence analysis is either four (for DNA or RNA) or 20 (for amino acids).

We now give a simple (and classic) example of a 2-state HMM to explore
some of the basic ideas.

Example 4.1

Switching between fair and loaded dice. Imagine that we have a pair of dice,
one that is fair, but the other is “loaded” (i.e. it does not roll each side with
equal probability). A Markov model decides which one of the two dice to roll,
and depending on the state of the model either the emission probabilities for
the fair or the loaded die is used. In this way we generate a sequence of symbols
that is the result of being in two different states.

We will specify our transition parameter so that in either of the two states
there is a 90% chance of remaining in that state, and a 10% chance of changing
states, as shown in Figure 4.1. For our fair die, the probability of rolling the
numbers between 1 and 6 is equal and is given by:

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667,

where each column describes the probability for each of the six numbers; this
is our multinomial distribution.
For our loaded die, the emission probabilities are:

0.1000 0.1000 0.1000 0.1000 0.1000 0.5000.

Here the probabilities of rolling 1-5 are still equal, but there is a much higher
probability of rolling a 6 (50%).
The visible sequence produced by such an HMM might look like this:

s =4553653163363555133362665132141636651666.

If we know the properties of the two dice and of the underlying Markov chain,
can we find the most likely sequence of hidden states behind it? In other words,
can we guess which die was used at each time point in the sequence? This is
a task referred to as segmentation (and what we earlier referred to as change
point analysis in Chapter 1). Later in this chapter we will describe how to infer
these hidden states; here we will simply show you the hidden sequence that
generated our visible sequence:

Hidden: h=1111111111111111111122221111111222222222
Visible: §=4553653163363555133362665132141636651666.

Notice that the symbol “6” occurs with high frequency when the sequence is
in hidden state 2, corresponding to the loaded die, but this dependency is just
probabilistic. Often in biological applications we will train our HMM on one
set of data where the hidden states are known, even when we do not know the
exact transition and emission probabilities. This allows our model to calculate
the most likely transition and emission matrices based on data, and so to better
infer the hidden states on novel data. This is especially useful in gene finding
where models are often trained on a well-annotated genome and then run on
related genomes.

4.2 HIDDEN MARKOV MODELS

65

Computing with HMMs. 1t is an important feature of HMMs that the proba-
bility of a sequence (the likelihood of a model) is easily computed, as are all
the fundamental quantities necessary to use them. The efficient algorithms that
made HMMs popular are based on the same dynamic programming principles
behind global and local alignment methods discussed in Chapter 3 and will be
discussed in depth separately in Section 4.6. Here we simply review the basics
of HMM computations and the parameters used in them.

As a strict generalization of multinomial and Markov models, we have al-
ready seen that HMMs need to maintain parameters for both a Markov transition
matrix and a number of multinomial models (one for each state of the system).
These parameters are generally presented as matrices, one for transitions, 7,
and one for emissions, E. The transition matrix has dimension N x N where
N is the size of the hidden alphabet, H (i.e. the number of hidden states). The
emission matrix has dimension N x M, where M is the size of the observable
alphabet (typically the nucleotide, N, or amino acid, A, alphabet). They are
defined as

T(k,1) = P(h; =llhi—y = k)
E(k,b) = P(s; = blh; = k).

In words: the probability of being in hidden state /, given that the previous
position was in state k, is given in the transition matrix by entry 7 (k, /). And
the probability of emitting symbol b is determined by the multinomial model
associated with state k, which is given in the emission matrix by entry E(k, b).
We denote the sequence of hidden states created by the Markov process by h,
and the sequence of symbols generated by the HMM by s. We will assume
the sequences have length n. In order for the model to be fully specified, we
also need to declare the initial probabilities for the state of the Markov process,
denoted T(0, k) = P(hy = k).

Basic quantities computable with HMMs. We would now like to make infer-
ences about genome sequences with HMMs. The most common task will be to
infer the hidden states of the genome in order to better annotate it, or to better
understand its dynamics. Our end goal, therefore, will be to find hidden se-
quence with the highest likelihood; in order to do this, we must first understand
how to calculate probabilities associated with HMMs.

The stochastic process assumed to be generating the sequence is the fol-
lowing: a hidden sequence is generated by the Markov process. Then in each
different state, a different multinomial model is used according to the emission
parameters associated with that state to produce the observable sequence. This
means that, for each position of the hidden sequence, the system emits a visi-
ble symbol independently from the appropriate multinomial distribution. The
probabilities of these sequences can hence be written as

Py = P(h) [[Philhi) = T, h) [[T(hir, i)

i=2 i=2

P@sih) = [] PGsilhi) = [Ehi, 50,
i=1 i=1

n

66

THE BOULEVARD OF BROKEN GENES: HIDDEN MARKOV MODELS

(0.2462) A
(0.2476) c
(0.2985) G
(0.2077) T

00>

The model of Lambda
phage sequence obtained by the
EM algorithm in Example 4.2

where we have deliberately used two notations, the second one being more
convenient for the description of algorithms in Section 4.6.

This says that the total likelihood of the hidden sequence, h, is simply
the product of the individual probabilities of the states at each position in the
sequence, with states determined by the transition matrix. The same applies to
the likelihood of the observed sequences given the hidden state at each position,
with the emission matrix describing the probability of each observed symbol.

If we know the hidden sequence (typically we do not), then we can readily
calculate the joint probability of s and h under the parameters (7', E):

P(s,h) = P(s|h)P(h).

This part is very efficient and not very different from what was done in Chapter 1
for simple multinomial and Markov sequence models.

However when the hidden sequence h is unknown (as is often the case)
we can use the theorem of total probability to compute the probability of the
observed symbols, P(s):

P(s)= Y P(s,h)= Y P(sih)P(h)),
Vh; eH" vh; eH"
where Vh; € H" means that we must sum over all of the possible hidden chains
of length n, a number that grows exponentially with n. Although this calculation
requires a large number of summations, it can be efficiently computed by an
algorithm called the forward algorithm based on dynamic programming.

Given this algorithm we can now compute the most likely hidden sequence,
h*:

h* = argvrl?ea}gtc’x P(s, h);

note that this is also equivalent to computing arg maxyn, ez P (hls). This quan-
tity is also called the “most probable state path,” and can be computed with
a dynamic programming algorithm called the Viterbi algorithm, which is de-
scribed in Section 4.6.

These two last steps appear to be less trivial to perform algorithmically, as
they require us to respectively marginalize and optimize over an exponentially
large set in the sequence (Vh; € H"). It is remarkable that this can be done in a
time that grows only linearly with the length n of the sequence, using a method
that is essentially the same method used in Chapter 3 for sequence alignment,
and a direct consequence of the Markov assumptions.

We can also estimate the model parameters given some training data where
both the hidden and observed states are known, using the maximum likeli-
hood principle and an algorithm called expectation maximization (EM), briefly
discussed in Section 4.6.

Example 4.2

Segmentation of the lambda phage genome. We saw in Chapter 1 that the lambda
phage genome has long stretches of GC- and AT-rich sequence. We can use an
HMM to segment this genome into blocks of these two states. Starting with
random transition (7") and emission (£) matrices, we can use the EM algorithm
to better estimate those parameters (assuming that there are two hidden states
and four visible symbols {A, C, G, T }). This yields the model in Figure 4.2 that

4.3 PROFILE HMMS

67

0.8+

|
|
i
|
|
|
0.7 |
|
|
|
|

CG content

essentially describes a sequence with very rare change points; there is a high
probability of staying in the same state (99.98%) for both hidden states. (Note
that transition probabilities do not necessarily have to be symmetric for the two
states.) We also see that state 1 has a high GC-content and state 2 has a high
AT-content. Parsing the genome of Lambda phage with the Viterbi algorithm
and using the above matrices, we get the results shown in Figure 4.3. Notice
that the system did not know what type of segmentation we were looking for
(we did not tell it to group G with C and A with T, for example), just that we
wanted to divide the sequence into two parts with different statistical properties.
We can see from the figure that the segmentation found by the algorithm seems
to reflect the GC content of the sequence. The figure shows GC and AT content
plots, and the change points found by the algorithm.

43 | Profile HMMs

In the examples above, we have used HMMs to segment a sequence, detecting
boundaries between statistically different regions. In this setting, the hidden
states are interpreted as different types of sequence, and typically the hid-
den alphabet is very small. The Markov chain is characterized by a cyclic
graph such as the one in Figure 4.2: a graph that allows the system to alter-
nate among the hidden states, possibly returning many times to the same state.
But other interpretations of the hidden states can lead to different uses of this
model.

An important problem in computational genomics is to characterize sets
of homologous proteins (gene families) based on common patterns in their

GC content plot for
Lambda phage, and the
segmentation found by a two-state
HMM, as described in Example 4.2

68

| THE BOULEVARD OF BROKEN GENES: HIDDEN MARKOV MODELS

Spo il A profile HMM
corresponding to the multiple
alignment below

sequence. This allows us, for example, to determine if a new protein belongs
to a certain family or not. A classic approach to characterizing families is to
start from a multiple alignment of all the elements of the family, and look for
columns of highly conserved amino acids. The summary of the alignment can
be characterized by the frequency with which certain symbols appear in certain
positions. Sometimes these can be represented by Position Specific Scoring
Matrices (PSSM), specifying the probability of observing a specific symbol at
a specific position; these will be discussed in Chapter 10. This method, however,
does not work well for cases which include gaps of variable length. HMMs can
be used in this situation to provide a more flexible characterization of sequence
patterns. This is done by defining a profile HUM (pHMM). One way to think
of pHMMs is as abstract descriptions of a protein family; another way is as
statistical summaries of a multiple sequence alignment.

More formally, profile HMMs encode position-specific information about
the frequency of particular amino acids as well as the frequency of insertions
and deletions in the alignment. They are constructed from multiple alignments
of homologous sequences. They contain match states, which describe the dis-
tribution of amino acids at each position, as well as insertion and deletion states
that allow for the addition or removal of residues. There is a match state, in-
sertion state, and deletion state for each column of a multiple alignment. In
other words, for an alignment 250 amino acids in length, there are 250 match,
250 insertion, and 250 deletion states in the pHMM (not all need to be visited
in one path, of course). For each match and insertion state there is a specific
probability of emitting each of the 20 amino acids. No amino acids are emitted
from deletion states.

An example may clarify how pHMMSs can be used to represent sequence
alignments. Let us consider again the multiple alignment used in Chapter 3:

v I v AL A S V E G A S
v 1 vV A DA -V I - - S
v 1 v A DA ALL - - A S

We see that its sequences have many features in common: they all start
with the same four amino acids, VIVA, then they have a position where various
choices are possible, then they have another conserved position, A. After a
variable number of positions, more or less rigidly specified, they all have the
symbol S.

All this can be summarized in the pHMM model shown in Figure 4.4,
where each path represents a possible sequence. For readability, in each state

4.4 FINDING GENES WITH HIDDEN MARKOV MODELS 69

we write only the dominant symbols of the emission matrix for that state. It
should be clear, however, that in general any symbol is possible, with different
probabilities. Similarly, transitions with low probability are denoted by dotted
lines, and those with high probability by solid lines. At each square node, a
symbol can be emitted, according to the emission probability associated with
that position. Insertion (diamonds) and deletion (circles) states are present, so
certain paths allow us to insert gaps or extra symbols in the profile. The first
and last nodes are referred to as the beginning (b) and end (e), and simply
specify the boundaries of the pHMM. Every path between the beginning and
end nodes represents a possible instantiation of the profile. Each hidden state
can be interpreted as a specific position in the pHMM, and the underlying
graph is traversed only in one direction, from left to right (except for insertion
symbols, where loops are possible).

The example above is very simplified. In reality, each position of the profile
has different emission probabilities associated with each symbol, and each edge
of the graph has its own transition probabilities. Any path from the beginning
state to the end state can correspond to a valid instance of the pattern. This
model allows us to compute the degree to which a given sequence fits the
model. Sequences that satisfy this profile will have a certain set of symbols
in the correct order, with high probability, but exceptional symbols are easily
tolerated.

Profile HMM:s allow us to summarize the salient features of a protein align-
ment into a single model, against which novel sequences can easily be tested
for similarity. Also, since pHMMs are an abstract representation of a multi-
ple alignment, they can be used to produce pairwise or multiple alignments;
sequences are said to be aligned to the model. Aligning a sequence with a
pHMM is equivalent to aligning it with the hundreds of sequences used to
produce the model. There are free online repositories, like Pfam, that store
pHMMs of many protein families. The next section will provide some exam-
ples of such alignments related to the family of proteins containing odorant
receptors.

44 Finding genes with hidden Markov models

Another important use for HMMs in DNA sequence analysis is to find genes —
techniques such as simple ORF finding are not flexible enough to be used
for finding many types of genes. Similar methods are limited by a number of
problems, including: an inability to detect very short genes that are indistin-
guishable from background noise; an inability to detect non-translated genes
(RNA-coding genes) that have no codon structure; and an inability to deal with
eukaryotic genes that have introns interrupting the coding sequence. In addi-
tion, if we want to find pseudogenes (such as many of the odorant receptors
in humans), we must relax our requirements of an intact open reading frame.
Gene-finding methods can be significantly improved over simple ORF searches
by integrating a number of different sequence signals, each of which is prob-
abilistic in nature. HMMs provide a natural framework for doing this. These

70

THE BOULEVARD OF BROKEN GENES: HIDDEN MARKOV MODELS

signals may include transcription factor binding sites, open reading frames,
intron splice sites, and many others.

The state of the art for gene finding is based on quite complex HMM models,
most of which are beyond the scope of this introductory book. Although we
do not discuss the details here, it should be relatively easy to imagine how
an HMM can be used to encode a series of signals associated with genes by
combining ideas from profile HMMs and from segmentation HMMs. Section
4.8 provides pointers to relevant articles on this topic. Here and in Chapter 10
we simply discuss in more detail the kind of signals that can be incorporated
into a gene model based on HMMs.

Introns and exons. Eukaryotic genes can be very large, upwards of 250 Kb
or more. But the proteins they encode generally require only half as many nu-
cleotides to fully specify all the amino acids they contain. The reason for this
is that almost all eukaryotic genes are divided up into introns and exons. While
a very long stretch of DNA is transcribed for every gene, some of the result-
ing RNA will be edited out before the messenger RNA is sent for translation;
the parts of the gene that are removed are called introns. The remaining por-
tions of the transcribed gene are the exons. While not all exonic sequences are
translated — there will often be 5" and 3’ untranslated regions at the head and
tail of the mRNA - in general exons are coding and introns are non-coding
DNA.

One of the major problems in eukaryotic gene finding, then, is to find open
reading frames amidst the confusion of intervening non-coding sequences. The
manner in which introns divide exons does not make the task easier: rather
than always being inserted between codons in-frame (i.e. between the third
position of one codon and the first position of the next), introns can break up
codons in any frame. While there are often splice sites to mark the position
of introns, these are not rigidly defined sequences that are always present. In
general, splice sites consist of a 5" AG/GT sequence (i.e. the exon ends in AG
and the intron begins with GT) and a 3’ AG/G (i.e. the next exon begins with
a G). Other signals in the intron may help to identify splice sites and may also
identify branch sites, an intronic sequence necessary for splicing. The branch
site is usually located 20-50 bases upstream of the 3’ splice site and has the
sequence TATAAC. So even though intervening non-coding sequences make
ORF finding much more difficult, there are sequence signals that can help us
in our search. Using this information together with signal from transcription
factor binding sites (Chapter 10) in a complex model like an HMM makes it
possible to identify eukaryotic genes.

4.5 | Case study: odorant receptors

We are now ready to see HMMs in action by studying the protein family to
which odorant receptors belong: 7-transmembrane (7-TM) G-protein coupled
receptors. This is an important family containing (in humans) 250 proteins in
addition to the 400 ORs. It includes receptors found in the retina to sense light

4.5 CASE STUDY: ODORANT RECEPTORS

71

as well as receptors for hormones and neurotransmitters such as melatonin,
serotonin, and dopamine. More than half of today’s pharmaceuticals target
these receptors.

While all of these receptor proteins have the characteristic 7-TM structure
discussed above, there is still a large amount of sequence variation between
members. This makes it difficult to identify members of the family by pairwise
comparison alone. We will use a pHMM representing this important protein
family, obtained from the online database Pfam (accession number PFO0001)
to decide if a given odorant receptor sequence (GenBank number Q8NGD?2)
belongs to the family or not. As a comparison, we will try to make the same
decision based on pairwise global alignment between the same sequence and
a typical receptor (GenBank number NP_002368) that was used to create the
pHMM (remember that pHMMs are built using the multiple alignment of known
homologous sequences). This will illustrate the power of alignment to a pHMM
rather than to other sequences. We will also see how a pHMM can be used to
obtain a multiple alignment.

Finally, we will use a 2-state HMM to segment the odorant receptor pro-
tein, as a way to reveal the alternating hydrophobic and hydrophilic regions
characteristic of 7-TM proteins.

As discussed earlier in this chapter, humans have only about 400 odorant
receptors. We will use a dataset of 347 well-known human OR protein sequences
available from GenBank (the data are available on the book’s website). The
length of these sequences is mostly between 300 and 330 amino acids, with a
mean length of 314 amino acids. The sequence below is a typical example of
an OR, of length 312 amino acids:

MAMDNVTAVF QFLLIGISNY PQWRDTFFTL VLIIYLSTLL GNGFMIFLIH FDPNLHTPIY
FFLSNLSFLD LCYGTASMPQ ALVHCFSTHP YLSYPRCLAQ TSVSLALATA ECLLLAAMAY
DRVVAISNPL RYSVVMNGPV CVCLVATSWG TSLVLTAMLI LSLRLHFCGA NVINHFACEIL
LSLIKLTCSD TSLNEFMILI TSIFTLLLPF GFVLLSYIRI AMAIIRIRSL QGRLKAFTTC
GSHLTVVTIF YGSAISMYMK TQSKSSPDQD KFISVFYGAL TPMLNPLIYS LRKKDVKRATL
RKVMLKRT

4.5.1 Profile HMMs for odorant receptors

We will first address the problem of assigning a given protein sequence to a
known family. We will try to perform a pairwise global alignment of an odorant
receptor sequence to a typical element of the 7-TM receptor family (a rhodopsin
protein). Here is the global alignment score of these two proteins. Only the first
50 residues are shown in Table A adjacent.

In order to assess the the significance of this alignment score, we permute
the OR sequence many times and realign it with the rhodopsin. One resulting
alignment is shown in the adjacent Table B.

Alignment with the randomized OR sequence does produces a slightly lower
score, but across 1000 permutations there is not a significantly higher alignment
score of the true OR to the rhodopsin. But we can try the same experiment using
a pHMM rather than a pairwise alignment, aligning both the real OR sequence
and randomized sequence to the pHMM. Only five sequences from the multiple
alignment are shown; in actuality, thousands of aligned sequences were used
to develop this pHMM.

- WELQMFFFMVFSLLYVATMYV

- - NS

- L S

FVLLG -

- TM S E -

MDVG-N-KS

OR

|
F v

RHODMD - GSNVTSFVVEEPTNISTGRNASVGNAHRQIPIVHWVIMSTISPVG -

Table A: Needleman and Wunsch Global Alignment Score: 54.8

- TNVQLGAFYFLWKMTV-SPSNALVTVMVLDSVHMYF

ITHTIFTFA -

RND OR C Q G -

I
PVGEF

S

IVHWVIMSTI

MDGSNVTSFVVEEPTNISTGRNASVGNAHROQTITP -

RHOD

Table B: Needleman and Wunsch Global Alignment Score: 46.8

72

THE BOULEVARD OF BROKEN GENES: HIDDEN MARKOV MODELS

O10JI.-HUMAN
OLFI5-MOUSE
OLF6_RAT
OLFI _CHICK
FSHR_BOVIN
OR

RND-OR

Table 4.1 | Hydrophobicity levels for each of the 20 amino acids (positive
values are hydrophobic and negative values are hydrophilic)

Amino acid Value Amino acid Value
Ala [.8 Leu 3.8
Arg 4.5 Lys -39
Asn -3.5 Met 1.9
Asp -35 Phe 2.8
Cys 2.5 Pro —1.6
GIn -35 Ser -0.8
Glu -3.5 Thr -0.7
Gly 04 Trp 09
His -32 Tyr -1.3
lle I.5 Val 42

GNIIIVTIIRIDLHLH. ..TPMYFFLSMLSTSETVYTLVILPRMLSSLV
GNLTIILLSRLDARLH. . .TPMYFFLSNLSSLDLAFTTSSVPOMLKNLW
GNLAITISLVGAHRCLQ. . . TPMYFFLCNLSFLEIWFTTACVPKTLATFA
TNLGLIALISVDLHLQ. . .TPMYIFLONLSFTDAAYSTVITPKMLATFL
GNILVLVILITSQYKL. ..TVPRFLMCNLAFADLCIGIYLLLIASVDVH
GNSLIVITVIVDPHLHSPMYFLLTNLSIIDMSLASFATPKMITDYLTG-H

PNLLLC

The alignment score between pHMM and the actual OR is 154.6, while the
score for the randomized sequence is —5.6. In this case, the signal is much
stronger, and it is clear that the OR sequence has a significant alignment with
the 7-TM receptor family. Alignment with a pHMM has much more power than
pairwise alignment since it includes the characteristics of all the sequences used
to create the model; in this case, thousands of sequences.

4.5.2 Segmenting odorant receptors
Odorant receptors are 7-transmembrane proteins, meaning that each needs to
cross the cell membrane seven times. As a consequence, the protein has to
have seven hydrophobic segments (that do not react with the fatty cell mem-
brane) alternating with seven hydrophilic segments (that do not react with the
watery cytoplasm and extra-cellular environments). Every amino acid has its
own characteristic level of hydrophobicity, from highly hydrophobic to highly
hydrophilic. But because not every amino acid in a hydrophobic region of the
protein will be highly hydrophobic (and vice versa for hydrophilic regions), we
need to use HMMs to segment odorant receptors into their hydrophobic and
hydrophilic segments.

Table 4.1 shows the hydrophobicity levels for each of the common amino
acids (positive values are hydrophobic and negative values are hydrophilic).

We can convert the above OR amino acid sequence into a numeric sequence
of 312 values of hydrophobicity (one for each of the amino acids). If we plot
this numeric sequence, we obtain the plot in Figure 4.5. Although it does not

4.5 CASE STUDY: ODORANT RECEPTORS

73

ok

3 \ \ \ \

50 100 150 200

appear easy to distinguish the hydrophobic regions in this graph, we can smooth
this plot by using a sliding window of 20 amino acids and reporting the aver-
age hydrophobicity level of each region. Because we do not necessarily need to
know the hydrophobicity of each position, but rather that of stretches of the pro-
tein, this smoothing should make it easier to visualize hydrophobic segments.
Figure 4.6 shows the effect of smoothing.

Although we can pick out a number of hydrophobic and hydrophilic peaks
in these graphs simply by eye, an HMM can help us to exactly delineate these
regions. We model the protein sequence as having been generated by a stochastic
process that alternates between two hidden states: “out of membrane” and “in
the membrane.” Again, these states do not exclusively use hydrophobic or
hydrophilic amino acids in the corresponding regions, but rather they have a
bias for one type or the other. In each state, a different multinomial model
picks amino acids with a different bias. If we are given these values, the Viterbi
algorithm can be used to automatically segment the protein into its component
regions; otherwise we will first have to estimate the emission matrices from the
data, by using the EM algorithm.

Figure 4.7 shows the hidden Markov model used to produce the segmenta-
tion shown in Figure 4.6; emission counts (out of 312) are shown for each amino
acid in the two states, but the transition probabilities are left off for readability.

250 300

The hydrophobicity
profile of an OR receptor protein,
obtained by replacing each of the
312 AAs with the corresponding
values in Table 4.2

74

THE BOULEVARD OF BROKEN GENES: HIDDEN MARKOV MODELS

HMM. Note that smoothing has the effect of emphasizing the periodic structure of the
sequence

(Ln0-1n0) g

A 15 A: 15
R: 11 R: 11
N: 10 N: 10
D:9 D:9
C:12 C:12
Q:8 Q:8
E: 4 E:4
G: 12 G: 12
H:8 H: 38
1:29 [:29
L:36 L:36
K:8 K:8
HMM resulting from M: 13 M: 13
running the EM algorithm on the g 12;1 g 12;1
smoothed numeric sequence of S 34 S 34
hydrophobicity levels. The T:20 T:20
emission matrices show the W1 Wil
number of times each amino acid 5‘:3112 5_:3112
is emitted (out of 312 AAs) '

4.6* ALGORITHMS FOR HMM COMPUTATIONS

75

4.6% | Algorithms for HMM computations

It is often the case that we are given the sequence s and the model parameters
(E, T), and we need to compute the probability of the sequence under the model
(the likelihood function). Alternatively, we may need to compute the most likely
hidden sequence, h, to understand the statistical and biological properties of
the data.

The probability of the sequence under the given model is

P(s)= Y P(s,h)= Y P(sih)P(h)),
Vh;eH" Vh;eH"
where h; € H" indicates the jth element of H". We will be interested in the
most probable hidden sequence, h*:

h* = arg vrglle% P(s, h),

as discussed above. These summations both involve operating over an expo-
nentially large space (in the length of the sequence), and can be solved with
dynamic programming methods.

Maximum likelihood of the hidden sequence: Viterbi algorithm. The maxi-
mum likelihood hidden sequence can be found efficiently by exploiting a simple
recursive relation, and the tabular computations typical of dynamic program-
ming. The main idea is to introduce a slightly different function, V, from which
it is easy to calculate the solution, and that can be computed recursively for
increasingly long prefixes of the sequence. Such a function is denoted V (k, i),
and represents the probability of the most probable hidden sequence associated
with the prefix s(1 : i) and ending with state h; = k.

We maintain a table V of size |H| x (n + 1) where n is the length of the
sequence. Each entry V (k, i) is indexed by a position i in the sequence and a
symbol k of the hidden alphabet. If we have this information for all possible
symbols, we can compute the same quantities for the prefix of length i + 1, as
follows:

V(l,i)= E(,s(i)) m]?x(V(k,i — DT (k,1)).

In other words, the information in each column is sufficient to compute the next
column (a direct consequence of the Markov assumption).

Algorithm 4.1
Viterbi. Given a sequence s of length n, and an HMM with parameters (T, E):

* Create table V of size |H| x (n + 1);
e Initialize: i = 0; V(0,0) = 1;V(k,0) = 0 fork > 0.
* Fori =1 : n, compute each entry using the recursive relation:

V(,i)= E(,s@))max,(V(k,i — DT (k,1))
pointer(i, /) = argmax,(V(k,i — 1)T(k,).

° Output: P(s, h*) = max(V (k, n)).

76

THE BOULEVARD OF BROKEN GENES: HIDDEN MARKOV MODELS

e Trace-back, i = n : 1, using: hj_; = pointer(i, h*(7)).

* Qutput: h*(n) = argmax;(V (k, n)).

In practice, because the quantities involved can become very small, it is
common to work with the logarithm of these probabilities, and a similar algo-
rithm can be readily designed that makes use of this (numerically more stable)
representation.

Probability of the sequence: forward algorithm. The probability of the se-
quence under a model, (E, T'), can be found with the highly similar forward
algorithm. In this case we use a function

F(k,i)= P (s(1:i);h(i) =k), 4.1)

representing the probability of the prefix of length i of the sequence, given that
h(i) = k. As with the Viterbi algorithm, we compute the solution by filling a
table, F, from left to right.

Algorithm 4.2
Forward. Given a sequence, s, of length n, and an HMM with parameters (7', E):

* Create table F of size |H| x (n + 1).
e Initialize: i = 0; F(0,0) = 1; F(k,0) = 0 for k > 0.
* Fori = 1: n, compute each entry using recursive relation:

F(.i) = E(.s() Y (F(k,i — DT (k. 1)).
k

° Output: P(s) =Y, F(k, n).

The time complexity of this algorithm, as with Viterbi, is linear in the length
of the sequence. It is interesting to observe that the two recursive relations
are essentially identical, with the exception that the maximization in the first
algorithm is replaced by a summation in the second. This is not accidental, and
reflects a deep algebraic connection between the two algorithms, one that we
will not discuss in this book.

Tuning the parameters: expectation maximization. The maximum likeli-
hood estimate of the parameters E and T, given only the observable sequence
s, cannot be computed exactly, because the likelihood function is not convex.
However, heuristic methods can deliver solutions that are often good enough to
be used in practice, corresponding to local maxima of the function. One of these
methods is called the expectation maximization (EM) algorithm. Although we
will not go in to the details of the approach, we will give a general intuition
about how such an algorithm can work.

One important observation is that we can easily obtain exact estimates of
E and T if we are given both s and h; also we can obtain exact inference of h
if we are given s and (E, T'). Although we do not know how to optimally infer
h and (E, T) simultaneously given s (that would be the result of optimizing
a non-convex function), we can resort to an iterative procedure, by which we

4.8 READING LIST

77

start with an initial guess of parameters (E, T'), compute the best h for those
parameters, then use it to get a better estimate of (£, T'), and so on, until some
stopping criterion is met. If things are done with some care, this process stops
at a local maximum, and is often sufficient for our purposes. More details can
be found following the links in Section 4.8.

4.7 | Exercises

(1) Using the lambda phage genome, segment it with a 4-state HMM, one
biased towards each nucleotide. Do you find differences between these
results and simply using a 2-state HMM?

(2) Draw the topology of a 2-state HMM emitting symbols from the alphabet
{0,1,2,3,...,9}, the two states being {even, odd}.

(3) Sketch the general architecture of an ORF finding HMM.

4.8 Reading list

Many technical aspects of this chapter are based on the excellent presenta-
tion of HMMs in Durbin ef al. (1998). This book is a modern classic, and
is highly recommended to all statistics and computer science students inter-
ested in using HMMs as part of their research. The first uses of HMMs for
segmentations of biosequences date back to Churchill (1989, 1992), The use
of HMMs for gene finding and for gene family prediction were pioneered by
David Haussler and his collaborators in a series of papers starting in the mid
1990s. Some of those ground-breaking papers are Haussler ez al. (1993, 1994),
and Krogh e al. (1994). An early discussion of pHMMs for multiple alignment
can be found in Eddy er al. (1995). Baldi et al. (1994) is an early discussion
of HMM s as models of biosequences. A discussion of HMMs for human gene
finding can be found in Kulp et al. (1996). A classic tutorial on HMMs in
the context of signal processing is Rabiner (1989). Eukaryotic gene finding
with HMMs is discussed in Burge and Karlin (1997, 1998). A good and ac-
cessible survey of the biology of ORs can be found in Axel (1995). Our case
study, and the data file available on the book’s website, have been based for
the data discussed in Zozulya et al. (2001). The database Pfam can be found at
www . sanger.ac.uk/Software/Pfam/.

Links to these and many more papers, as well as to data, software, and
websites, as well as to more background on HMMs, can be found on the book’s
website:

www.computational -genomics.net

* Mutations and substitutions

* Genetic distance

e Statistical estimations: Kimura,
Jukes-Cantor

Chapter 5

Are Neanderthals among us?
Variation within and between species

In 1856, workers involved in limestone blasting operations near Diisseldorf,
Germany, in the Neander Thal (Neander Valley) discovered a strange human
skeleton. The skeleton had very unusual features, including a heavy brow-
ridge, a large nose, receding chin, and stocky build. Initially neglected, the
importance of the finding was recognized only many years later by the Irish
anatomist William King. The skeleton belonged to an ancient species of ho-
minid biologically different from modern humans. King called the specimen
Neanderthal Man: man of the Neander Valley. The skeleton was dated to about
44 thousand years ago.

Since then, many other skeletons of the same species, H. neanderthalen-
sis, have been discovered in Europe. Popular imagination has been cap-
tured by the image of these cavemen; the name itself has become a sym-
bol of prehistoric humans. It has been possible to reconstruct the lifestyle of
Neanderthals in prehistoric Europe based on the tools that they used, but one
fundamental question remained: are Neanderthals our ancestors? Are mod-
ern Europeans the offspring of these primitive hominids? This question has
divided scientists for decades, and has only been settled recently by genetic
analysis.

Many other fundamental questions about human origins have been answered
by modern genetics, as well as by recent fossil discoveries. The search for the
oldest hominid fossils has continually revealed evidence that humans originated
in sub-Saharan Africa. Beginning with the 1964 discovery of H. habilis by
the archaeologist Louis Leakey (in Olduvai Gorge, Tanzania), ancient fossils
of distinctly hominid form have been found all over the African continent.
Radiocarbon dating of fossils from both H. habilis and H. erectus (another
pre-historic hominid species) find that specimens of both species — as well as
their stone tools — were present in Africa as long as 2 million years ago (MYA).
Fossils of H. erectus dating from 1.6-1.8 MYA are found throughout the Old
World; the famous Java Man and Peking Man specimens are the earliest known
members of the genus Homo outside of Africa. Our next closest living relatives
are the chimpanzee and bonobo, African apes that diverged from our lineage
approximately 5 million years ago.

5.1 VARIATION IN DNA SEQUENCES

79

But when and where did our species, H. sapiens, first appear? The earliest
skeletons from anatomically modern humans were found in southern Ethiopia
and date to about 130 thousand years ago (KYA). Following this, fossil and
archaeological evidence show that H. sapiens made it to Asia and Australia
by about 60 KYA, Europe by 40 KYA, and the Americas — via Siberia — less
than 30 KYA. We were not the only members of our genus inhabiting the earth
during the last 130 thousand years. In Indonesia, H. erectus may have been
present up until 27 KYA, and, as we said before, evidence has been found that
H. neanderthalensis were living in Europe and Western Asia from 250 to 28
KYA.

In this chapter we will begin to learn how to address the questions of human
origins using DNA sequence data. Rather than the very static view of the genome
that we have presented in the preceding chapters, we now consider the dynamic
nature of DNA: how sequences change over time and how we can use this
information to infer the history and function of different parts of the genome.
Variation data can also be used in medical research, forensics, and genome
annotation. By the end of this chapter you will be able to provide a relatively
conclusive answer to the question of our relations with Neanderthals, as well
as confirm our African origins.

5.1 | Variation in DNA sequences

We can answer questions about human origins by exploiting the fact that ev-
ery individual — whether comparing within or between species — has a slightly
different genome sequence. Even siblings with the same parents will have dif-
ferences between them. Variation in DNA accumulates via mutations, mistakes
made by the cellular machinery that are then encoded in the genome. Variation
in the exact configuration of DNA sequences can also be introduced by recombi-
nation (when the organism is diploid, i.e. has two copies of each chromosome);
this phenomenon is a consequence of sexual reproduction. The analysis of
variation, through comparison of two or more sequences, can provide us with a
wealth of information about various aspects of genome structure, function, and
history.

Mutations arise for many reasons. Generally, mutations occur because a
mistake is made during the replication of the genome. Imagine how many mis-
takes you could make re-typing the approximately 2500 letters on this page. A
human cell does this over and over for 3.5 billion letters. But the cell’s proof-
reading machinery is very good. The best estimates of the human mutation rate
calculate that there is only one mistake for every 200 million to 1 billion bases
replicated. External factors, like chemicals or UV rays, can act to increase the
rate of mutations by damaging DNA. Mutation rates differ between organisms
and between the various genomes in single cells — in most animals the rate of
mutation in the mitochondrial genome is an order of magnitude higher than in
the nuclear genome, and in plants this is reversed.

Regardless of variation in mutation rates, new mutations at any one nu-
cleotide position are relatively rare. As a consequence, most genetic differences
between individuals are inherited mutations and not newly arisen variants. We

80

ARE NEANDERTHALS AMONG US?

X|PlQ|@

olw|w|H4

Q0 N

NN

H 3 3

H 3 3

QNN

will exploit this fact to study the history of individuals and species: shared
mutations are indicative of shared ancestry.

Remark 5.1

Germline mutations. Mutations occur at every cell duplication because the
genome must be replicated each time. Creating a fully grown human with
trillions of cells, each of which dies off and is replaced multiple times during
a lifetime, therefore introduces a number of mutations. This is one reason that
cancer is largely an illness of the elderly. But mutations in our skin cells or
heart-muscle cells are not passed on to our offspring: only mutations that occur
in the germline cells (in the testes and ovaries) have any chance of spreading
through the population. Of course for organisms that do not have a separate
germline — such as plants — many additional mutations have the possibility of
being passed on.

Every mutation first appears in a single individual — the mutation may be
neutral (it has no effect), deleterious (it disrupts some biological function), or
advantageous (it improves some biological function). Regardless of its effect,
if the mutation is not passed on to a child, it is lost. Any difference among
individuals at a specific position in the genome, whether it is at a frequency of
1% or 50% in a population, is called a polymorphism.

The most common types of mutations involve “point” mutations: the change
of one base into another (e.g. A—T). When we find these mutations polymor-
phic within a species we call them SNPs (pronounced “snips”; single nucleotide
polymorphisms). The various versions of the DNA sequence are called alleles,
so that we might find a SNP with an A allele and a T allele at a certain po-
sition. A SNP usually refers to the location in a genome that is polymorphic;
a SNP map for an organism lists all locations for which polymorphisms have
been documented with sufficient frequency and is a very important research
tool.

Example 5.1

Sequence polymorphism. In this artificial example, we have three sequences
with six polymorphic positions. The last line represents a simple SNP map,
highlighting the positions that are polymorphic in the sample. The different
symbols used to mark polymorphic sites represent two different types of sub-
stitutions, as explained below.

A T A A|T|]C A T C|A|C|G|G G A C|T
A T A A|C c A T Cc|aA|C|G|G G A C|T
A T A A |C c A T Cc|T|C|C|G G A C|C
- - - - X - - - - 0o - 0o - - - - o0

SNPs account for a large part of genetic variation. In humans, for instance,
there is on average one SNP every 1500 bases in the nuclear genome. In other
words, any two sequences will differ at 0.067% of positions compared. It turns
out that humans as a whole actually have very little polymorphism relative to

5.1 VARIATION IN DNA SEQUENCES

8l

the other great apes (and to many other species); the main reason for this is the
relatively small number of humans that have inhabited the earth for the past
130 000 years.

A second major source of variation among human genomes involves short
tandem repeats (STRs, or microsatellites). These are back-to-back (tandem)
repeats of short DNA words such as CACACACA. Because of slippage during
replication, the number of repeats of the word can vary. At some microsatel-
lites, for instance, individuals may have as few as one or as many as 30 or
40 tandem repeats. The mutation rate at microsatellites is much higher than
that for SNPs, making them very useful in identification, either for foren-
sic or anthropological investigations (so-called “DNA fingerprints” often use
microsatellites).

There are a number of other sources of genetic variation, but most occur
more rarely. Most frequent of these are insertions or deletions (indels), where
DNA sequences are either inserted or removed from the genome. These can be
from one to one million bases long. Variation also comes from rearrangements
such as inversions, duplications, and transpositions, where certain segments of
the genome are “copied and pasted” or “cut-and-pasted” elsewhere during repli-
cation. Even whole genome duplications have been found to be polymorphic
within certain plant species, but these are extremely rare events.

Remark 5.2

SNPs as point mutations. The definition of a “SNP” varies, but it is more
common to reserve this word for only point mutations; some people also include
single-nucleotide indels as SNPs. We stick to the first, more common definition.

Transitions and transversions. It is important to note that not all point mu-
tations are equally likely, even among mutations with no effect. This is be-
cause nucleotides can actually be divided chemically into purines (2, G) and
pyrimidines (C, T), as shown in Figure 5.1. (We will not worry about the spe-
cific chemical differences that distinguish these bases.) Mutations within the
groups are called transitions (i.e. A — G, or C — T), and between groups are
called transversions (e.g. G — C, or C — A). Although there are four possible
transitions and eight possible transversions (or two and four, if we do not con-
sider the direction of mutations), we often observe many more transitions than
transversions. In humans, for instance, transition mutations are at least twice
as likely as transversion mutations, resulting in many more SNPs that are A/G
or C/T.

These differences in mutation rates are simply due to similarities in chem-
ical structure within purines and pyrimidines, making it easier for transitions
to occur; natural selection does not normally care whether a mutation is a tran-
sition or a transversion. Notice, however, that the genetic code is set up to be
more robust to transitions: when only two synonymous codons code for the
same amino acid they always differ by only one transition mutation. This nec-
essarily means that transitions within coding sequences will be on average less
harmful than transversions. Even in non-coding sequences, though, transitions
outnumber transversions.

PURINES

A

PYRIMIDINES

G

C

T

m Nucleotides can be

divided into purines and
pyrimidines. Substitutions within
the same group are called
“transitions,” the ones across
groups are called “transversions”

82

ARE NEANDERTHALS AMONG US?

Example 5.2

Transitions and transversions in human mtDNA. If we perform a global align-
ment of the complete mitochondrial genome for two humans (GenBank acces-
sion numbers NC_001807 and AC_000021) we find 38 polymorphic positions.
The table below shows the specific mutations found (rows indicate the first,
columns the second genome). In total we have 36 transitions (17 A-G and 19
C-T) and two transversions. Note that we cannot distinguish the direction of
mutations without extra information not provided here. Mitochondrial DNA
will be discussed further in the next section.

‘ A c G T
A 0 4 1
C 1 0 14
G 13 0 0
T 0 5 0

DNA and amino acid substitution matrices. As we have shown in the above
example, not all nucleotide mutations occur with the same frequency. Some-
times this is due to the chemical nature of the bases, and sometimes this is due to
the deleterious consequences of the change in DNA sequence. Similarly, not all
changes between amino acids are seen with equal frequency, often because the
codon for two amino acids are multiple nucleotide-mutation steps away from
each other (e.g. GCA and TGT), but also because some amino acids are more in-
terchangeable than others due to their shared biochemical characteristics, such
as size, polarity, and hydrophobicity.

Differences in mutation between nucleotides are often well described by
simply considering transitions and transversions separately — although the de-
fault parameters in BLAST do not differentiate among these changes — but
the situation for amino acids is much more complex. Due to the complexity
of the genetic code and the various different chemical roles played by each
individual amino acid, summarizing the mutation frequencies among amino
acids necessitates a complete description of all of the pairwise mutation prob-
abilities. This can be represented by a substitution matrix, identical to the
ones described in Chapter 3 for alignment scoring. (Note that differences be-
tween individuals within a species are referred to simply as mutations, and
differences between species as substitutions.) In the case of the alphabet of
amino acids, A4, it is a 20 by 20 matrix, called an amino acid substitution
matrix (because it is obtained from a comparison between species). Just as
with the example given above for constructing a nucleotide substitution ma-
trix from an alignment, so we can compare amino acid sequences to infer
the amino acid substitution matrix. This idea originated with the pioneering
work of Margaret Dayhoff, after whom the original substitution matrices were
named.

Of course, the inference of substitution probabilities is somewhat self-
referential: good alignments require substitution matrices, but substitution ma-
trices need to be constructed based on good alignments. There are a few ways
around this problem: one way is to start with very similar sequences where

5.2 MITOCHONDRIAL DNA: A MODEL FOR THE ANALYSIS OF VARIATION

83

the alignment is obvious and unambiguous, and can be done with a simple
scoring matrix. Consequently, we can use this alignment to obtain a first sub-
stitution matrix, use it to align slightly more divergent sequences, and so on.
For any amount of divergence, we can then use a different matrix. There are
two main families of such matrices for amino acid substitutions: PAM and
BLOSUM.

PAM and BLOSUM. The most commonly used amino acid substitution ma-
trices are called PAM (Percent or Point Accepted Mutation) and BLOSUM
(BLOcks SUbstitution Matrix). While they differ slightly in how they are con-
structed and in how well they perform for any given alignment, these two types
of matrices are largely similar. PAM matrices are constructed by comparing
global alignments of very closely related sequences (less than 1% divergence)
and tallying observed differences. The resulting matrix is known as PAM1 and
is meant to be used for aligning sequences that have approximately 1% di-
vergence. For more distant comparisons, extrapolations of PAM1 can be used
(although it is not a linear extrapolation — PAM250 is not for proteins that are
250% divergent). BLOSUM matrices are built by direct observation of local
alignments between sequences of differing similarity. For BLOSUM, the vari-
ous different versions of the matrix are numbered by how similar the proteins
should be. The default matrix used by BLAST, BLOSUMSG62, is built from a
comparison of sequences that are a minimum of 62% identical. The choice of
which matrix to use in any single case is therefore largely determined by the
comparison being made.

5.2 Mitochondrial DNA: a model for the analysis
of variation

In previous chapters we have discussed the advantages of mitochondrial
genomes relating to their compactness. But mitochondrial DNA (mtDNA) is
also ideal for studying human evolution, largely because of its high mutation
rate. For this and a number of other technical advantages discussed below, we
will focus on mtDNA in this chapter.

Mitochondria are organelles of eukaryotic cells involved in energy pro-
duction. Largely because of their role in producing energy through oxidative
phosphorylation, mitochondria contain a high number of mutagenic oxygen
molecules that lead to a high rate of mutation. They have their own small circu-
lar chromosome (16 569 bases long in humans), containing 37 protein-coding
and RNA genes (see map in Figure 5.2). Mitochondria also have a slightly
different genetic code than the nuclear genome (see Exercise 1 of Chapter 2).
Because we only inherit mtDNA from our mothers, we have only one version
of it (as opposed to the nuclear genome, where we have one version from our
mother and one from our father). Each cell contains multiple copies of mtDNA,
which makes it easier to isolate and sequence.

A specific region of mtDNA is of particular interest for our analyses. This
1.1 Kb region is the only real stretch of non-coding sequence in the mito-
chondrial genome and is known as the D-loop or control region. Although the

84

| ARE NEANDERTHALS AMONG US?

A simple map of
mitochondrial genome. Human
mtDNA has 16 569 bases with 37
genes (I3 proteins, 22 tRNAs, and
two rRNAs). At the top of the
map the D-Loop is highlighted. It
contains the replication start site,
and on each side a hypervariable
region (HVR) of a few hundred
nucleotides. The replication start
site is also conventionally used as
the origin for numbering all
sequence positions

1 EE]

Proteins

D-loop does not contain any genes, it does contain necessary features including
the origin of replication and the mitochondrial promoter. The origin of repli-
cation is where the replication of the circular genome begins; the promoter is
where transcription of all of the mtDNA genes begins. In addition to these im-
portant sequences, the D-loop also contains two hypervariable regions with no
known function: named hypervariable regions I and II (HVR-I and HVR-II).
These regions are found on each side of the replication start site, and make up
the majority of the D-loop (each having length between 400 bp and 500 bp).
These regions show particularly high sequence variability among humans and
are therefore ideal for studying the relationships among individuals.

Since by convention the circular mtDNA chromosome is presented in linear
format starting from the origin of replication, the two HVRs have positions
approximately 16024—-16400 (for HVR-I) and positions 1-500 (for HVR II).
The entire D-loop stretches from approximately position 16 024 to position 576.
Of course numbering genomic positions is always somewhat arbitrary (since
length might in principle change due to insertions and deletions). Because
of this, numbering in human mitochondrial genomes is usually relative to the
Cambridge Reference Sequence (CRS), the original mtDNA sequence obtained
in 1981 by Fred Sanger’s group in Cambridge, UK.

Technical advantages of mtDNA. There are two main technical advantages
of using mtDNA over nuclear DNA. First, because mitochondria are only
passed down through the mother, every individual will only have one ver-
sion of mtDNA. Since we only have one version, we automatically know the

5.3 VARIATION BETWEEN SPECIES

85

haplotype of the mtDNA; that is, we know the configuration of polymorphisms
on chromosomes. This turns out to be a huge technical advantage of mtDNA
over nuclear DNA.

Consider a situation (completely realistic given today’s sequencing tech-
nologies) where all you are told is that there are two polymorphisms present
in a nuclear gene from a single individual. That is, there are two differences
between the maternal and paternal copies of this gene that the person inherited.
If there is an A /G polymorphism at one site and a C /T polymorphism at another
site, there are two ways in which the sequences can be configured along the
two parental chromosomes:

_A—C—
—G-T —
or
_A-T—
—_Gc-—C—

We can easily see that the number of possible configurations (called hap-
lotypes) goes up exponentially with the number of polymorphisms considered.
A major computational problem in genomics is to infer the haplotype of each
of the sequences. For now, just be thankful that we do not have to worry about
these issues because there is only one mitochondrial haplotype per person.

The second technical advantage inherent in studying mtDNA is the high
copy number of these genomes in every cell. Because of this, it is relatively easy
to extract DNA out of older tissues such as museum specimens or mummies.
The skeletal remains of three Neanderthals are so well-preserved that careful
extraction of tissue allows us to get DNA from the samples, even though these
individuals each lived more than 30 KYA. The D-loops of these three Nean-
derthals have been sequenced and reported in the literature. Later in this chapter
we will get these sequences from GenBank in order to determine whether H.
sapiens and H. neanderthalensis were interbreeding in Europe thousands of
years ago. Mitochondrial DNA sequences can also be used to determine our
relationships to the other great ape species, and in the next section we begin to
address the additional issues in comparing sequences among species.

5.3 Variation between species

In addition to studying variation within a species (such as humans), we are often
interested in variation between species. The genetic differences between species
are responsible for many of the behavioral, morphological, and physiological
differences that we observe between species. Variation between species can also
begin to tell us about the relationships among species — because more closely
related species will have on average more similar DNA sequences, examining
these sequences can tell us about how evolution has proceeded over millions
of years. If we now want to know how distantly related the other great apes
(chimpanzees, bonobos, gorillas, and orangutans) are to humans, we need to
compare sequences between species. Key to understanding differences between

86

ARE NEANDERTHALS AMONG US?

species is knowing how many nucleotide substitutions separate any two DNA
sequences.

The substitution rate. 1t is often useful to study the substitution rate between
homologous sequences from different species. This can tell us about the time
since divergence between the species, the biological function of genomic se-
quences (more on this in Chapter 6), and the relationships among species (Chap-
ter 7). As mentioned earlier, every mutation originates in a single individual.
This mutation may be lost immediately if the individual carrying it leaves no
offspring, or it may rise to higher frequency, eventually becoming fixed through-
out the species (that is, every individual in the species will have the new allele
at the specific nucleotide position). The substitution rate is the rate at which
species accumulate such fixed differences.

If mutations are neutral (i.e there is no effect of the mutation on the repro-
ductive abilities of the organism), then a surprising relationship arises between
the mutation rate and the substitution rate. Consider any new mutation: it is
initially present at a frequency of 1/2N (where N is the number of individuals
in the population, each of whom carries two copies of each nuclear gene). The
chance that this new allele becomes fixed by random sampling alone is 1 /2N —
simply its initial frequency. Likewise, if a mutation is already present at 60%
frequency it has a 60% chance of being fixed, and so on. So the substitution
rate must take into account the number of new mutations created and the prob-
ability that any one of them is fixed. When there are N diploid individuals in a
population and a rate, u, of mutating to a new base, the substitution rate, p, is
equal to

p=2Nu(1/2N) = .

The above equation says that the substitution rate of new mutations is in-
dependent of the population size, and is simply equal to the (neutral) mutation
rate. Larger populations create more mutations, but each has a lower chance of
fixing; smaller populations have fewer polymorphisms, but each has a higher
chance of fixing. We will see that when mutations are not strictly neutral the
mutation rate and the substitution rate can be quite different, as new alleles can
have an intrinsically better or worse chance of spreading.

A common confusion. Unfortunately, biologists have (at least) two uses for the
phrase “substitutionrate.” Most of the time they take the time since divergence of
two sequences from a common ancestor as a given and define the substitution
rate, K, as simply the number of substitutions that have occurred between
sequences (so it is not really a rate, per se, but a genetic distance). Generally
K is expressed as the number of substitutions per site, so as to control for the
length of the sequence compared.

If the divergence time, 7', is known, however, then we can define the sub-
stitution rate as

p=K/QT).

We divide by 2T because both lineages that come from a common ancestor
can accumulate mutations independently. The parameter p is usually expressed

5.4 ESTIMATING GENETIC DISTANCE

87

as the number of substitutions per site per million years. For clarity, we will
refer to p as the substitution rate and K as the genetic distance.

5.4 Estimating genetic distance

The genetic distance between two homologous sequences is defined as the num-
ber of substitutions that have accumulated between them since they diverged
from a common ancestor. Being able to estimate the true genetic distance be-
tween two sequences is crucial for the methods discussed here and in Chapters
6 and 7. Estimating this quantity exactly is not easy, though we can easily count
the number of positions at which two sequences differ. The problem is that a
simple count will be an underestimate of the true number of differences when
multiple substitutions have occurred at the same site.

Consider the situation (illustrated in Example 5.3) in which multiple sub-
stitutions occur in the same position. Examination of the sequences at the
beginning and the end of this time period will reveal either one substitution
(if the second mutation is to a different base from the initial sequence) or zero
substitutions (if the second mutation is to the same base as the initial sequence).
This will occur with low frequency, but can be a real problem over long periods
of time in under-counting the true number of substitutions and hence the time
separating species. We can correct for multiple hits when estimating the genetic
distance between two sequences by using a probabilistic model as we will see
below.

Example 5.3

Multiple substitutions. Below we show how there can be six substitutions over
time, yet only three would be visible by comparing the first sequence with
the last one (time proceeds from the top sequence towards the bottom se-
quence). Multiple substitutions occurring at the same location end up being
under-counted:

D=0 ia33|3| 3@
IO |3 a3 3]
SocnNnNnNOnNOnN
SocnNNNOnNOnN
coHAAaA4d43434
coHAaAAaA4d4d4d4
SonNnNNNnNOnN
SO E PP PP
SO PP
S o3 HdH3Hd 34434
ScSocnNnNnNNnNNnN
SonNnNNNnNOnN
SCCN OO Q@
SCOCN O Q@
SonNnN NN

Scowr
Scod3 3343343843

[=1=[5[A]>[]2][]

[=I=[e[]o[a]e]a]o]

At the extreme, two sequences are said to have reached “saturation” when
there is on average at least one substitution per site across the sequence. We can
see that in the limit the divergence between two homologous sequences will
be such that only about a quarter of their sites match: a match this great can

Observed: 3
Actual : 6

88

ARE NEANDERTHALS AMONG US?

easily be obtained for two random sequences. Since the process of substitution
is assumed to be random, both the true genetic distance, K, and the observed
proportion of differences d are random variables. We are able to observe d, and
can use it to estimate the hidden random variable K. There are various ways to
infer K depending on what model of evolution we assume.

Possible evolutionary models go from the simple — where each substitution
has the same probability — to the more complex — distinguishing between tran-
sitions and transversions, or even between substitutions that change the protein
and ones that do not. We present here two simple models of sequence evolution.
The next chapter will also include ideas about the effect of natural selection on
genetic distances and substitution rates.

Sequence evolution can be regarded as a Markov process: a sequence at
time (or generation) ¢ depends only on the sequence at time (or generation)
t — 1. It is not surprising, then, that both of the models we present are again
based on the theory of Markov chains.

54.1 The Jukes—Cantor model

As mentioned above, a simple count of differences between two sequences does
not tell the full story about their genetic distance. If even moderate amounts
of time have passed, it is possible that many substitutions have occurred at the
same position and can no longer be counted. On the other hand, if there are very
few differences between sequences, it is likely that their count is an accurate
estimate of the number of substitutions that have actually occurred.

How can we estimate the true number of substitutions given the observed
differences between sequences? In 1969 Thomas Jukes and Charles Cantor
proposed a probabilistic model to correct the observed number of differences
to account for the possibility of multiple substitutions. Below we derive the
famous Jukes—Cantor (JC) correction; for those who wish to skip the math, the
equation is simply

This says that the true number of substitutions per site between two sequences
(K) can be estimated from the observed fraction of sites that differ (d).

Jukes—Cantor derivation

Letus assume that all positions in a sequence evolve independently, and focus on
just one position. We are interested in the probability of a substitution occurring
at this position in a given time, a probability we refer to as «. If we assume that
all three possible substitutions from one base to any of the others are equally
likely, we can describe the one-step Markov chain with the following transition

matrix:
A C G T
A l—a «a/3 a/3 /3
M;c=C «a/3 l—a «a/3 /3
G /3 /3 l—a «o/3
T /3 /3 a/3 l —o.

5.4 ESTIMATING GENETIC DISTANCE

89

The theory of Markov processes says that the probability of a substitution
after ¢ time steps can be calculated as

M(t) = M'.
This matrix can be written as
Mie =Y M. G.1)

where (};, v;) are the ith eigenvalue and eigenvector of the matrix M. It is also
possible to prove that the eigenvalues are

M=1
4

Miza=1-— gﬂl,

and the eigenvectors are independent of o:

1
v = 1(1, LD

1
vy = Z(—l,—l, LD

1
v3 = Z(l’ -1, =11

1
vy = Z(l’ -1, 1, -1,

(Notice that there is triple degeneracy, and hence this is just one of the possible
sets of eigenvectors for this matrix.)

By inserting these eigenvectors in Equation (5.1) we can see that M ;¢(t)
can be written as

r(t) s() s@) s()
s@) r@) s@) s@)
s(t) s@) r@) s()
s@) s@) s@) r@),

Mjc(t) =

where

t—l 1 | 4\

This is the probability of a substitution being observed at a given position after
a time interval of ¢ time steps. It can be directly translated into a proportion of
differences observed between two sequences, a quantity we call d. We now want
to express ¢ as a function of d. This is done by exploiting the approximation
In(1 4+ x) & x for small x, obtaining

3 4
t~——1In(l1—-=d).
4o 3

On the other hand, we estimate that if the probability of a substitution per time
step is «, then over ¢ time steps, we can expect the number of substitutions that
occur (the genetic distance) to be

K =ta,

90

ARE NEANDERTHALS AMONG US?

this enables us to remove the number of time steps ¢, and conclude that

K 3l 1 4d
~—"In(1--d).
4 3

This remarkable relation is known as the Jukes—Cantor formula. (We have
assumed that %a is small, so this formula is more accurate for small «.)

This relation makes K tend to infinity when d tends to 43_1’ which is the
distance we would expect to assign to unrelated sequences, and gives K ~ d
for very similar sequences, again what we would expect. Furthermore, this
model predicts that after a very long time, any letter can be equally present
at any location, implying that alignments would be trivial and the information
about common ancestry would be lost.

Finally, we can also estimate the variance of K using the standard “delta
method”:

(5)
Var(K) ~ | —) Var(d),

od
and since
d(l —d
Var(d) = 24 =9
n
0K 1
dd 1 —-3d’
we obtain that
d(1 —d)

Var(K) ~ ————,
e~ =@y

where 7 is the length of the sequence. These two quantities are plotted together

in the example below, where multiple hits and the Jukes—Cantor correction are

applied to artificial data.

Example 5.4

Simulating the Jukes—Cantor model of sequence evolution. We simulated the
evolution of a sequence by using the JC model with an extremely high substi-
tution rate to emphasize the effects of multiple hits. We started with a random
sequence of length n = 1000 and performed one random substitution at each
iteration, at random locations chosen uniformly. By keeping track of the dif-
ferences between the current sequence and the original one at each iteration,
we can plot (Figure 5.3) the true number of substitutions versus the observed
number of differences. Averaging over ten experiments, we obtain the mean
and variance of these values. Note that after 2000 substitutions, less than half
are actually observable. Notice also that applying the JC correction, an almost
linear relation between the two quantities is returned. This is not surprising,
since the simulation was designed to follow the JC substitution model (equal
probability of substitution among all symbols). Error bars were computed in
the first plot by repeating the simulation ten times, in the second plot, by using
the formula for the variance.

5.4 ESTIMATING GENETIC DISTANCE 91

Simulating the Effect of Multiple Substitutions

800 T T T T m Number of observed

substitutions versus the true

600 i number of substitutions (upper
diagram) and estimated number of
: 400} 3 substitutions versus the true
number (lower diagram). The
2001 3 simulation is described in Example
, , ‘ l 54
00 500 1000 1500 2000

True Number of Substitutions

T T T T

1500 &

1000 =

5001 &

0 1 1 1 1
0 500 1000 1500 2000
True Number of Substitutions

Estimated Num. of Substitutions Ghictrond Moot Bibatiiasns

5.4.2 The Kimura two-parameter model
The Jukes—Cantor model assumes that all substitutions are equally likely,
whereas we know that this is not the case. For example, we have seen in
Example 5.2 that transitions are more likely to be observed than transver-
sions. In order to account for this and other effects, the Japanese population
geneticist Motoo Kimura proposed a model based on more than just the one
parameter, «, indicating the general probability of substitution. In the widely
used two-parameter model, we distinguish between transition and transversion
probabilities.

If « is the probability of transitions G <> A and T <> C, and B is the
probability of transversions G <> T, G <> C, A <> T, and A <> C, we obtain the
substitution matrix

A C G T
A l—a—-8 B o B
Mg,p =C B l—a—p8 B o
G « B l—a—-8 B
T B o B l—a—8.

Now the probability of a substitution is 8 + B + « (two possible transversions
and one possible transition). A similar analysis to the one above for Jukes—
Cantor yields the following estimation for genetic distances:

1 1
K:—Eln(l—ZP—Q)—Zln(l—ZQ),

where P and Q are respectively the fraction of transitions and transversions. If
we just count the overall number of substitutions and do not distinguish between
these two types of mutation (d = P + Q), then we recover the Jukes—Cantor
formula.

92

ARE NEANDERTHALS AMONG US?

5.4.3 Further models of nucleotide evolution

More complicated models of nucleotide substitution can also be used, includ-
ing models that distinguish among different types of transitions and transver-
sions, and models that have a separate parameter for every pairwise substitution
probability (this model is called the general time reversible or GTR model).
Every model we have discussed (and those in general usage) have one impor-
tant limitation: they assume that substitutions probabilities are symmetric, that
A — T substitutions are just as likely as T — A substitutions. The same as-
sumption applies to amino acid substitution matrices. Accumulating evidence
suggests this may not always be true, but it remains to be seen how these
asymmetries can be incorporated into estimates of genetic distance or even
alignments.

5.5 | Case study: are Neanderthals still among us?

The discovery of Neanderthal skeletons in various parts of Europe raised many
questions about human origins, among them the issue of our relation with this
species. We can now answer many questions about human and primate origins
by studying variation in the mitochondrial genome, either by using the whole
genome or just the hypervariable regions.

In order to answer the question posed in this chapter’s title, we used 206
modern human mtDNAs and parts of two Neanderthal mtDNAsS, including that
of the original individual from the German cave (all available on GenBank).
Because only parts of the hypervariable regions are available for the Nean-
derthal, we extracted the corresponding regions from the available human se-
quences by using local alignment. This produced a homogeneous set of 206 + 2
homologous (and hence comparable) sequences of about 800 bp each.

We computed the pairwise genetic distances between all 208 sequences, that
is the proportion of sites at which the two sequences are different, corrected by
the Jukes—Cantor formula. Even though we are comparing sequences within
(at least one) species, the HVR is so quickly evolving that the use of the JC
correction is recommended.

The average distance between any two H. sapiens sequences is 0.025, this
being the number of substitutions per site (so out of 1000 bases, 25 will be
different on average). The average distance between a Neanderthal and amodern
human is 0.140, quite a bit higher. The resulting matrix of all of the pairwise
differences can be visualized by means of multidimensional scaling, a statistical
visualization method that enables us to embed the datapoints on a plane in a
way that respects their pairwise distances, as seen in Figure 5.4. Distances in
the figure reflect actual genetic distances between individuals. In Chapter 7
we will describe a more biologically meaningful ways of representing this
type of data, namely phylogenetic trees. One such tree is already presented
in Figure 5.5 to provide a more complete view of the data discussed in this
chapter.

Examining the figure, it is easy to see that the Neanderthal sequences
(the two star points on the top right) are very distant from the 206 H. sapi-
ens sequences, all clustered on the left. We conclude that H. neanderthalensis

5.5 CASE STUDY: ARE NEANDERTHALS STILL AMONG US?

93

0.04
*
0.03 |
*
0.02 . |
e
0.01F "é. , 1
of - ..: |
0-"‘.
-0.01F .ﬁ'.,-. 1
gy
-0.02 i 1
oty
-0.03 o 1
—0.04
-0.05 0 0.05 0.1 0.15 0.2

were indeed a different species, and that their DNA is different from that of
modern humans (i.e. they are not a sub-population within modern humans).
To better understand their role as possible European ancestors, we can exam-
ine the average distance between the two Neanderthals and humans on var-
ious continents. It turns out that they are related at approximately the same
distance for all five continents, once more indicating that Neanderthals are
not especially related to Europeans, or to any of the existing human pop-
ulations. Their relation to us is simply one of a shared ancient common
ancestor.

Out of Africa. If we compare the pairwise genetic distances among individuals
living on specific continents, we find that Africans have the highest levels of
variation on average (0.029, measured from 45 individuals). As a comparison,
Native Americans have an average pairwise distance of 0.020 (measured from
ten individuals). This suggests that Africa was likely to have been the continent
where early humans evolved, in agreement with available fossil evidence: as
humans left Africa they went through a population bottleneck that resulted in a
loss of genetic diversity. If we combine this information with the results from
Neanderthal mtDNA, we start to see a picture in which an ancient hominid
species living in Africa (possibly H. erectus) gave rise to a wave of migration
to Europe that produced Neanderthals, followed some time later by a second
wave of migration out of Africa by modern humans, entirely replacing the
Neanderthal in Europe.

Primate evolution. Finally, we can address questions about the evolution of
the primates using mtDNA. Although we will study the details in Chapter 7,
we show in Figure 5.5 a simple phylogenetic tree constructed using Jukes—
Cantor estimates of distances between the Hyper Variable Region II of human,
Neanderthal, chimpanzee, bonobo, gorilla, orangutan, and gibbon. The tree tells
us that Neanderthals are indeed more closely related to modern humans than
are any of the other extant Great Apes, including our closest living relatives,

Visualization of 208
mtDNA sequences. The cluster of
206 points on the left is entirely
formed by H. sapiens data, whereas
the two stars on the top-right
represent the two Neanderthal
sequences. Distances in this
diagram directly reflect genetic
distances between sequences

94

| ARE NEANDERTHALS AMONG US?

m Phylogenetic tree

constructed using pairwise genetic
distances between primate HVRs.
The theory behind the
construction and interpretation of
such trees in presented in
Chapter 7. Phylogenetic relations
between species are represented
by branches of the tree

0.1
0.071
10.049 Neanderthal
0.100 Pan troglodytes 2
0.072
0.041 Pan troglodytes 1
0.068
0.074 Pan troglodytes 3
0.026 Pan paniscus 2
] 0.144
Pan paniscus 1
Gorilla gorilla 2
0.241 |
0.018 L0.144 |Gorilla gorilla 1
0.335 Gorilla gorilla gorilla
Pongo pygmaeus abelii 2
0.208 |
|Pongo pygmaeus abelii 1
0.180
Pongo pygmaeus 2
0.223 |
|Pongo pygmaeus 1
0.339

Hylobates lar

the chimpanzees and bonobos. More details and examples of phylogenetic trees
and how to interpret them are presented in Chapter 7.

5.6 | Exercises

(1) The complete mtDNA of a mammoth is available on Genbank
(NC_007596), as is that of African and Indian elephants (NC_000934,
NC_005129, NC_004921). A standard way to compare such sequences
would involve the removal of the rapidly evolving HVRs, and the global

5.7 READING LIST

95

alignment of the remaining sequence. This is done because we expect to
have sufficient variation in the coding part of the genome, due to its length,
and so we can afford removing the noisier parts. Which of the modern
elephants seems to be more closely related to mammoths?

(2) Extinct saber-tooth tigers lived until 15,000 years ago, and many parts of
their mtDNA are available. The 12S ribosomal RNA gene has accession
number DQ097171 and can be compared to homologous sequences from
various extant felines. What conclusions can you draw about their relations?

(3) The mtDNA sequences of blue whale, hippopotamus, and cow have ac-
cession numbers respectively NC_001601, NC_000889, NC_006853. Is the
whale genetically closer to cows or to hippos?

5.7 | Reading list

The use of genetic techniques to address questions about the early history of
modern humans was pioneered by Luigi Luca Cavalli-Sforza and his collabo-
rators, and is presented in their book (Cavalli-Sforza et al., 1996) (an account
more suitable for a general audience is Cavalli-Sforza (2001)). The article
Cavalli-Sforza (1998) discusses the impact of DNA techniques on population
genetics. A book aimed at a general audience about mtDNA and early human
migrations is the very readable Sykes (2002).

Large-scale whole-genome analysis of mtDNA for population genetics has
become possible only in the past few years, for example see Ingman et al.
(2000). The use of Neanderthal mtDNA fragments has been reported in various
articles, see Krings et al. (1997, 2000), Ovchinnikov et al. (2000), Schmitz et
al. (2002).

Saber-tooth tiger mtDNA sequences can be found in Barnett ez al. (2005).
The data used in this chapter are derived from various of the above papers and
can be found on the website (Handt ez al., 1998; Ingman et al., 2000).

The formulas for the calculation of genetic distances were introduced be-
tween 1969 and 1980. The celebrated Jukes—Cantor formula was introduced in
1969 (Jukes and Cantor, 1969) when Cantor was a student of Jukes at UC Berke-
ley. Motoo Kimura was an influential mathematical biologist, his contributions
to the statistics of sequence evolution are countless, the results presented in
this chapter can be found in Kimura and Ohta (1972), Kimura (1968, 1980).
A general discussion of genetic distances and their calculation can be found in
the very readable and complete book Felsenstein (2004).

The tree in Figure 5.5 was drawn with TreeView, a free software package
created by Roderic Page. Links to this package, and to all of the above mentioned
papers, datasets, and websites, can be found on the book’s website:

www.computational -genomics.net

* The neutral theory of
evolution

* Substitution rates

e Ka/Ks: quantifying the amount
of selection on a sequence

Chapter 6

Fighting HIV
Natural selection at the
molecular level

6.1 A mysterious disease

In the spring of 1979 the Centers for Disease Control in the United States re-
ceived reports of an unknown disease that affected young men and produced a
wide range of symptoms, including rare forms of cancer. In 1981 the disease
was named Acquired Immune Deficiency Syndrome (AIDS). It was recognized
that transmission of this disease was largely sexual, but it was not until 1983
that the infectious agent — Human Immunodeficiency Virus (HIV) — was “si-
multaneously” identified by labs in France and the US (the sordid story of this
inter-continental competition has been the subject of multiple books). Since the
first cases were identified, 20 million people have died from AIDS worldwide.

At present there is no known cure for this disease and no effective vaccine
against HIV infection. Large parts of the world are now facing an AIDS epi-
demic, with some African nations counting more than 60% of their population
among the affected. Although methods exist to keep the virus in check, the high
cost of these treatments means that most infected individuals in the developing
world will die from AIDS. Indeed, this disease has now surpassed malaria as
the number one killer in Africa.

Various aspects of the AIDS epidemic have caught scientists by surprise,
including its sudden appearance, mysterious origin, and the difficulty in finding
a cure or vaccine. In this chapter we will see one of the reasons why the fight
against HIV and AIDS has been so difficult: the capability of the virus to
constantly and rapidly evolve, evading our immune system as well as the action
of drugs. We will address the appearance and origin of HIV and other viruses
in the next chapter. In order to understand the insidious nature of this virus,
we will need to address a number of issues, including how the human immune
system works and how viruses mutate to escape it.

Yes, viruses do evolve: we can actually observe their genomes changing
over very short periods of time. HIV, like other viruses, evolves during the
course of infection of a single individual. In fact, the virus that eventually kills

6.2 EVOLUTION AND NATURAL SELECTION

97

a patient is often quite different from the one that infected them. Viruses have
very high mutation rates and very short generation times, characteristics that
make it relatively easy for them to adapt in response to the human immune
system. By evolving, HIV manages to remain one step ahead of our defenses.

HIV does not only evolve to evade our innate immune system, it also evolves
in response to anti-viral drugs manufactured to fight infection. Shortly after
many anti-viral drugs are introduced, drug-resistant versions of HIV appear.
For instance, in 1987 a promising new drug called AZT was introduced in
the fight against HIV. AZT interferes with a key enzyme involved in virus
replication. After initial success with many infected patients, a new strain of
HIV emerged that was resistant to the effects of AZT. HIV had managed to
evolve around the anti-viral drug; this is what makes HIV so difficult to treat
and prevent.

How exactly does HIV manage to evade our best attempts to destroy it?
Which of its genes evolve in response to the immune system and which genes
are so necessary to the viral function that they change very little? In the previous
chapter we saw that DNA sequences evolve because mutations arise and can
be passed to the next generation even if they have no effect on the function
of the organism. However the process of natural selection can act to retard or
accelerate the rate of evolution across a genome. This leaves a strong signature
on both genes and non-coding regions.

Being able to understand how natural selection has shaped a genome can
help us to understand the genome’s functions, its interactions with the environ-
ment, and to some extent can help to reconstruct its past (or to better predict
its future). Recognizing which parts of a viral genome are evolving the most
slowly may point us to the most fundamental elements of organism function;
recognizing which parts are evolving the fastest can lead us to the elements that
are locked in an arms race with the immune system. Here we will discuss data
analysis methods for analyzing and quantifying the effects of natural selection
on a genome.

6.2 ‘ Evolution and natural selection

The example of HIV illustrates the evolution of drug resistance in a virus,
as well as the evolution of resistance to the host’s immune responses. Many
similar cases of drug resistance in viruses and bacteria have been documented,
and all represent cases of adaptive natural selection on the part of the infectious
agent.

By 1859, when Darwin’s On the Origin of Species by Means of Natural
Selection was published, many people already accepted the idea that species
evolved over time. Darwin’s contribution was to provide a framework for un-
derstanding how organisms adapt to their environment: evolution by natural
selection. At the molecular level, natural selection acts (teleologically speak-
ing) to both remove deleterious mutations — called negative or purifying selec-
tion — and to promote the spread of advantageous mutations — called positive
selection. At the organismal level, natural selection is the process by which
individuals who are best able to survive and reproduce leave more offspring for

98

FIGHTING HIV: NATURAL SELECTION AT THE MOLECULAR LEVEL

the next generation. This is how adaptations such as bird wings, whale flippers,
and primate brains spread and flourish.

In order for evolution by natural selection to occur, two conditions must
hold: individuals in a population must vary in the characteristics that are genet-
ically controlled, and these characteristics must have differential effects on the
survival or reproductive success (the fitness) among individuals. Under these
conditions, the “fitter” individuals in a population will do better and leave more
offspring, changing the genetic and genomic properties of a species. Evolution
can also be driven by random effects, as mentioned in Chapter 5 and will be
discussed later.

Generally speaking, these two axioms can be satisfied by systems other
than living organisms. So-called genetic algorithms are computer programs
that find optimal solutions to problems by keeping track of multiple, competing
solutions undergoing repeated rounds of mutation and natural selection, much
like living organisms. Viruses themselves are considered non-living entities by
many researchers, yet they clearly can evolve over time in response to natural
selection. Note that it is populations — not individuals — that evolve.

Much of the selection imposed on viruses comes from the attempts of
the immune system to hunt and destroy them. The immune system must first
recognize viruses as foreign invaders and then must find a way to either kill
the virus or the cell it has infected. A number of features of viruses make them
very hard to control in this manner. We next describe some of these features.

6.3 ' HIV and the human immune system

HIV is a virus formed by a protein envelope containing two copies of its 9.5
Kb RNA genome (some viruses have DNA genomes; some have RNA). The
genome contains only nine genes, some of which are encoded in overlapping
sequences. HIV recognizes and infects the helper T cells of the human immune
system. The human immune system’s response to any infection is to find and
kill infected cells, using helper T cells to identify the infected targets. One
reason that HIV is such a difficult enemy to fight is because it infects the very
cells that should be attacking it.

Infected cells become marked by small sub-sequences of viral proteins
called epitopes that stick out of the cell membrane. If the immune system
recognizes the specific epitope on an infected cell, it can kill it using special
“killer” cells; if it cannot, then the virus is able to commandeer the cell’s
machinery to replicate itself. As a result, mutations that occur in the HIV
epitope that make the virus invisible to detection by helper T cells that then
communicate with killer cells are highly advantageous. It turns out that HIV
is very good at producing new individuals with new versions of these protein
epitopes.

A virus reproduces extremely quickly: one generation takes only 1.5 days
and viral replication is quite error prone. It is estimated that the error rate for
RNA viruses such as HIV is five mutations per 100 000 bases each generation
(approximately 1000 times as high as the average mutation rate in humans).

6.4 QUANTIFYING NATURAL SELECTION ON DNA SEQUENCES

99

Therefore, if we simply wait a few (viral) generations, the population of the
virus found in an infected patient will contain a significant amount of genetic
diversity. It is little wonder that any time the immune system figures out how to
recognize viral envelope proteins, there is usually a version of the virus already
in existence that is able to escape detection.

Like viruses, the human immune system is not static: it can change (within
a single individual) to recognize new epitopes. This recognition may take a
few days, but for many viruses (and for bacteria) leads to lifelong immunity.
Unfortunately, HIV evolves so quickly that no immunity is permanent. The
arms race between the host and virus continues throughout infection, but may
slow down as the human immune system is finally defeated by HIV.

It is clear that having epitopes recognized by the immune system reduces
the fitness of individual viruses; any new mutation that can evade detection will
be selected for and the individual carrying it will give rise to huge numbers of
offspring immune to the host’s defenses, at least for a while. A study of the
HIV genome should be able to detect the regions that are under such positive
selection. As we will see, the HIV envelope proteins that contain the epitopes
recognized by the immune system show clear signatures of adaptive natural
selection.

6.4 Quantifying natural selection on
DNA sequences

In the last chapter we saw that mutations originating in a single individual —as all
mutations must — can eventually rise in frequency and become fixed throughout
a species. Because this process happens within a single evolutionary lineage, we
observe these fixed mutations as differences between species. And if mutations
are neutral, that is they have no effect on the organism’s probability of survival
and reproduction, then we can exactly predict the rate at which mutations fix
within a species, and hence the rate at which observable differences between
species accrue. But all mutations are not neutral; most mutations that change
amino acids will disrupt the function of proteins and will be selected against, as
will non-coding mutations that affect gene regulation. Indeed, the best estimates
are that between 80 and 90% of all new mutations that change the amino acid
sequence of a protein are detrimental to organismal function.

How do we know which mutations are neutral and which are deleterious
or advantageous? Many attempts have been made to actually measure the fit-
ness of individuals with new mutations in the lab, but these experiments are
only possible with very short-lived organisms that can be maintained in huge
numbers. The simplest way, therefore, is to compare the rate of substitution of
mutations that have the possibility of changing protein function with the rate
in areas that have no effect on protein function. The most common way to do
this is to compare the rate of non-synonymous to synonymous substitutions in
a single gene.

Non-synonymous mutations to a DNA sequence are ones that change
the amino acid sequence after translation. Synonymous mutations are those

100

FIGHTING HIV: NATURAL SELECTION AT THE MOLECULAR LEVEL

that change the sequence of the codon without changing the resulting amino
acid. If we look at the genetic code in Chapter 2 (Table 2.2), we can see
that most changes in the third position of codons do not change the amino
acid coded for. Changes in the first codon position can sometimes (5% of
the time) be synonymous, while changes in the second position are never
synonymous. The assumption of our analyses will be that synonymous sub-
stitutions have no effect on protein function, and therefore on organismal
fitness, while non-synonymous mutations will change the protein sequence,
and may therefore have an effect on fitness. Because the rate of both non-
synonymous and synonymous changes are proportional to the underlying mu-
tation rate, the only difference in the observed substitution rates will be due to
differing acceptance rates. This acceptance is a direct consequence of natural
selection.

It is in fact not strictly true that all synonymous mutations are com-
pletely neutral (the synonymous codon bias observed in Chapter 2 can be
caused by selection), but selection against them is so weak that we can ig-
nore this effect for now. We may wonder why we cannot just compare the
number of non-synonymous substitutions in any gene to the number of sub-
stitutions in a sequence that we know is completely free from selective con-
straint, such as the hyper-variable regions of the mitochondrial genome that we
discussed in the last chapter. The reason is that the underlying mutation rate
itself varies throughout the genome, and even along chromosomes. In order
to make a fair comparison of the number of substitutions, therefore, we need
to ensure that we are comparing regions with equivalent underlying mutation
rates.

Because there are many more possible mutations in any coding region that
are non-synonymous, we will actually compare the number of non-synonymous
substitutions per non-synonymous site (denoted K 4) to the number of synony-
mous substitutions per synonymous site (denoted K g). This allows us to correct
for the fact that in most genes approximately 70% of all mutations will be non-
synonymous.

The K4 /K ratio. The Japanese geneticist Motoo Kimura pointed out in 1977
that a comparison of the non-synonymous to synonymous substitutions in a
gene can tell us about the strength and form of natural selection. Kimura
started from the premise that advantageous mutations are extremely rare —
proteins already function quite well, so the chance that any change to them
is an improvement is very low (this premise is also borne out by laboratory
experiments). He also surmised that deleterious mutations will have little if
any chance of spreading through a population; these mutations will be se-
lected against and will not rise in frequency. If both of these premises are true,
then the great majority of differences between DNA sequences that we see
will be completely neutral. The stronger the negative selection on a gene (i.e.
the fewer changes allowed), the fewer non-synonymous substitutions will be
observed.

Here is how Kimura described this set of relationships in terms of the ratio
of non-synonymous to synonymous substitutions per site (K 4/Kg; sometimes
also represented as dy/ds). (The “A” in K, stands for “amino acid.”) We
saw in Chapter 5 that the rate of substitution equals the rate of mutation for

6.4 QUANTIFYING NATURAL SELECTION ON DNA SEQUENCES

101

neutral mutations. If the fraction of non-synonymous mutations in a gene that
are neutral is fp, then the number of non-synonymous substitutions observed
in time ¢ is

Ka = vfot,

where v is the total mutation rate. Likewise, the number of synonymous sub-
stitutions in the same period of time is

K¢ =vt.

Because all synonymous mutations are neutral, fy = 1. This implies that the
number of synonymous substitutions is limited solely by the mutation rate. The
ratio K 4 /K s then tells us about the fraction of non-synonymous mutations that
are neutral, and consequently the strength of selection:

Ki/Ks = fy.

The stronger the negative selection on a gene, the fewer non-synonymous mu-
tations will be neutral, resulting in a smaller fy; as a consequence, K,/Kg
will be less than 1. Data from thousands of comparisons of genes show that
in the vast majority of cases K, /Ky is well below 1, usually between 0 and
0.3. (K4/Ky is not always constant across an entire gene; later in this chap-
ter we will see how it can vary according to the region of the protein we are
examining.)

Under the framework we have defined so far, K 4 /K5 can be no greater than
1; indeed, it will only be 1 when all non-synonymous mutations are neutral.
But if we allow for advantageous non-synonymous mutations — which can
substitute faster than synonymous mutations — K 4/Kg can be greater than
1. Representing the proportion of mutations that are advantageous as «, the
number of non-synonymous mutations is then

Ka=v(fo+oa;

and K, /Kg would be equal to fy + o, a combination of neutral and advanta-
geous substitutions.

If we thus consider all types of mutations, we can use K4 /K ratios to tell
us only about which form of natural selection has the biggest effect on genes.
If K4/Ks < 1, then negative selection predominates; this does not mean that
positive selection has not also contributed to sequence divergence, only that
it has been a small part. Conversely, if K4/Kg > 1, then positive selection
predominates, although this does not mean that all mutations are allowed or
are advantageous. We can see from these relationships that when K4 /Kg = 1
it does not necessarily mean that a gene is under no selective constraint, only
that positive and negative selection may be canceling each other out.

Of course it is important to be able to estimate K 4/Kg with accuracy and
confidence, and this is often far from simple in practice. As we saw in Chapter 5,
we may even need to apply corrections to account for the possibility of multiple
substitutions, especially multiple synonymous substitutions. Estimation of this
ratio can be done either by fast approximate methods, or by more complex
statistical approaches based on maximum likelihood. Next we describe one of
the most widely used approximate algorithms.

102

FIGHTING HIV: NATURAL SELECTION AT THE MOLECULAR LEVEL

6.5 ' Estimating K4 /Ks

The simplest class of estimation methods separately counts the number of syn-
onymous and non-synonymous sifes in the two sequences (S, and A.) and
the number of synonymous and non-synonymous differences between the two
sequences (S; and A,). By adjusting for the number of possible sites that
can produce non-synonymous and synonymous changes, we can calculate
the non-synonymous and synonymous substitutions per site. These are nec-
essary to obtain a normalized ratio (after correction for multiple hits) of K4
and K.

The simplest methods (such as the popular algorithm by Masatoshi Nei and
Takashi Gojobori) assume that the rate of transversions and transitions are the
same, and that there is no codon usage bias. More complex algorithms take
into account transition and transversion biases, as well as codon and nucleotide
usage biases. We describe the simple Nei and Gojobori algorithm below.

Algorithm: Nei and Gojobori. In order to compute the proportion of synony-
mous and non-synonymous substitutions we need to start with an alignment of
homologous DNA sequences. Given the alignment, there should be a one-to-
one correspondence between codons in the two sequences (if there are gaps in
either of the two sequences, those codons are not compared and are not included
in further calculations). It is now possible to separately count both the number
of non-synonymous and synonymous sites and the number of non-synonymous
and synonymous differences between sequences. We should say that the idea
of either a non-synonymous or synonymous “site” is artificial, as really only
mutations can be defined as amino acid changing or not. But, for both algorith-
mic and semantic convenience, researchers define sites by their propensity to
produce non-synonymous or synonymous changes. This is the first step in our
algorithm.

Step 1: Counting A and S sites. Itis useful to start by focusing our attention on
just one pair of corresponding codons, as all the quantities defined on individual
codons will be readily generalized to the case of longer sequences. Here is an
alignment:

TTT
TTA .

We assume each protein-coding DNA sequence is a sequence from the codon
alphabet C, with the kth codon denoted by c¢;. We define the number of syn-
onymous sites in the kth codon as s.(c;) and that of non-synonymous sites
as a.(cx) =1 —s.(cx). We denote by f; the fraction of changes at the ith
position of a given codon (i = 1, 2, 3) that result in a synonymous change
(not to be confused with the fraction of neutral mutations, fy, used above).
The s.(cx) and a.(cy) for this codon are then given by s.(cx) = Y f; and
ac(cr) = (B —sc(cr)) = (3 =Y fi), respectively.

Example 6.1
Counting s.(c;) and a.(cg). In the case of codon TTA (Leucine), f; = 1/3,
f> =0, and f5 = 1/3. In other words, one change at the first position, no

6.5 ESTIMATING K,/Ks ‘

103

changes at the second, and one change at the third do not change the amino
acid and are hence synonymous (see the genetic code table in Chapter 2 to
verify this for yourself). Thus, s.(TT2) = 2/3 and a.(TT2a) = 7/3.

For a DNA sequence of r codons, the total number of synonymous and
non-synonymous sites is therefore given by

Se =Y seler)
k=1

Ac = (3r - Sc)a

respectively. So S, and A, are properties of individual sequences, more precisely
properties of the specific codon composition of a sequence.

Since these models are always used when comparing two sequences, we
will define the averages of S. and A, for the two sequences:

= (Scl + SLZ)/2

Ac = (A(‘l + AL‘Z)/Z

These are the quantities that we will use in calculating K4 and K.

Remark 6.1

Stop codon. Typically the stop codon is left out of all calculations, since
it is impossible to define non-synonymous and synonymous changes at this
position.

Step 2: Counting A and S differences. We denote by s,(cr) and ay(cy) the
number of synonymous and non-synonymous differences for the kth codon
pair in the alignment. When there is only one nucleotide difference, we can im-
mediately decide whether the substitution is synonymous or non-synonymous.

Example 6.2

Synonymous and non-synonymous substitutions. If the codons compared are
GTT (Val)
GTA (Val),

there is only one difference, and it is synonymous; hence s, = 1 and a; = 0.

When two nucleotide differences exist between the two codons under com-
parison, there will be two possible ways to obtain the observed differences.
That is, we can think of two possible pathways of evolution leading from the
first to the second codon, depending which one of the two mutations came
first (we are considering here only the shortest pathways between two codons).
Notice that depending on the order of substitutions, a certain difference can be
synonymous or not, as can be seen in the example below. For simplicity, we
assign equal probability to both pathways, compute the values s, and a,; for
each pathway, and then average them.

104

FIGHTING HIV: NATURAL SELECTION AT THE MOLECULAR LEVEL

Example 6.3
Synonymous and non-synonymous substitutions. For example, in the compari-
son of

T
GTA,

the two possible pathways are

pathway 1 TTT (Phe) <> GTT (Val) <> GTA (Val)
pathway 2 TTT (Phe) <> TTA (Leu) <> GTA (Val) .

Pathway I involves one non-synonymous and one synonymous substitution,
whereas pathway II involves two non-synonymous substitutions. We assume
that pathways I and IT occur with equal probability. The s; and a, then become
0.5 and 1.5, respectively.

When there are three nucleotide differences between the codons compared,
there are six different possible pathways between the codons, and in each path-
way there are three mutational steps. Considering all these pathways and mu-
tational steps, we can again evaluate s; and a4 in the same way as in the case of
two nucleotide differences, by averaging the s; and a, scores of each pathway
with equal weight.

As before, once we can compute s; and a, for each codon pair in the
alignment, we can easily obtain the same values for the entire sequence by
summing up the contribution of each. The total number of synonymous and
non-synonymous differences between the two sequences is then

Sq = Z sa(cr)
=1

Ag =Y aulcy),
k=1

where s,4(cy) and ay(cy) are sy and a, for the kth codon pair, respectively, and
r is the number of codons compared. Note that S; + A, is equal to the total
number of nucleotide differences between the two DNA sequences compared.

Step 3: Computing K5 and Ks. We can now estimate the proportion of syn-
onymous (dy) and non-synonymous (d,) differences by the following equations:
dx = Sd / §c
da = Ad/ AACv
where S, and A, are the average number of synonymous and non-synonymous
sites for the two sequences compared. To estimate the number of synonymous

substitutions (K) and non-synonymous substitutions (K 4) per site, we use the
Jukes and Cantor correction:

K:—Eln<1—id>
4 3

for both d; and d,, hence obtaining Ks and K 4.

6.6 CASE STUDY: NATURAL SELECTION AND THE HIV GENOME

105

Algorithm 6.1
Nei—-Gojobori, 1986. The table below shows the steps involved in the compu-
tation of Kg and K 4 using the Nei—-Gojobori method:

Input: two homologous ORF sequences

Output: K, and K

Global alignment of sequences

For each codon-pair with no gaps
Compute s.(c;) and a.(c) for both sequences
Compute s4(cx) and ay(cy)

Compute: S. = Y _, sc(cx)

A, =Q@r—-3S)

Se = (Sc1+ S2)/2

A, =(An + An)/2

Sa =y saler)

A=y aalcr)

d, =S, /S}A

dy = Ag/A;

Ks=—3In(1-3d)

Ki=-3In(1—%d,).

The computation of the codon quantities s.(c), ac(ck), sa(cx), and ay(cy) is
performed as described above, and could be precomputed and stored in a table
prior to seeing the input sequences. That part of the computation is general,
and is simply a function of codon pairs. Given a global alignment of two ORFs,
then, we can readily perform the summations shown in the second part of the
table, and hence the cost is linear in the length of the sequences.

6.6 = Case study: natural selection and the
HIV genome

The genome of HIV has been sequenced hundreds of times since 1985, so that
it is possible to study the differences between many individual genomes, and to
gain a general understanding of how this virus evolves. By applying many of
the algorithms and statistics we have learned over the first six chapters of this
book, we can find genes, align their sequences, count their differences between
individuals, and quantify the effect of natural selection on the HIV genome.
HIV (like many other viruses) evades the immune system by constantly
evolving. In other words, HIV is a moving target. In particular, there are spe-
cific regions of its proteins that are recognized and attacked by our immune
system, and these are the regions that are expected to show a signature of adap-
tive evolution due to the advantage accrued by novel variants. This process is
balanced by the need of the virus to maintain its biological functions. Other
regions are therefore under predominantly negative selection and remain in-
variant, because they have important biological functions and are likely not
involved in interactions with the immune system. An analysis of K4/Kg in
different genes and different parts of a single gene can reveal those regions of

106

FIGHTING HIV: NATURAL SELECTION AT THE MOLECULAR LEVEL

Table 6.1 | Main ORFs found in HIV1 genome (accession number NC-001802), with their length in base
pairs, start and stop positions, and the reading frame (RF) in which they are found. We also report the name
of the protein encoded by the relative gene, and an estimate of the K, /K, ratio of each gene, obtained
comparing two different sequences of HIV, see main text for details

Start Stop Length RF Protein name Ka/Ks
5377 5593 216 bp | TAT (part of) 0.16/0.15
5608 5854 246 bp | VPU -
1904 4640 2736 bp 2 GAG-POL-lI 0.024/0.20
5105 5339 234 bp 2 VPR (part of) 0.05/0.50
5771 8339 2568 bp 2 ENV (precurs. of 2) 0.13/0.27
336 1836 1500 bp 3 GAG-POL- 0.05/0.22
4587 5163 576 bp 3 VIF 0.06/0.21
8343 8712 369 bp 3 NEF (part of) 0.09/0.31

ﬁ' |

Genome of HIVI. Note
the ENV gene and the GAG-POL-I
gene, used below in the sliding
window analysis, in Figure 6.2. The
details of these ORFs can be seen
in Table 6.1

0 2000 4000 6000 8000
| . | L) S \
GAG-POL-II VPR TAT ENV
B]
GAG-POL-I VIF VPU NEF

the HIV genome undergoing adaptive evolution. Here we go through the steps
necessary to conduct a genome-wide analysis of natural selection in HIV.

ORYF finding. The HIV genome has nine open reading frames but 15 proteins
are made in all (some genes are translated into large polyproteins which are
then cleaved by a virus-encoded protease into smaller proteins). Some ORFs
overlap slightly, and there are also some introns. All these factors complicate
the detection of genes (see Figure 6.1 for a diagram of the HIV genome).

If we apply the ORF-finding algorithm discussed in Chapter 2 on an HIV
genome downloaded from GenBank (accession number NC_001802), we obtain
the eight ORFs reported in Table 6.1. Note that there are more genes in the HIV
genome, but we have missed some protein-coding regions because of limitations
of our simple gene-finding strategy: for example there are two genes containing
introns in HIV that cannot be detected by simple ORF finding (HMMs should
be used for this). We also report the length of the ORF, the reading frame (RF)
on which it is found, and the protein encoded by it. The last column reports
the K4 /Ky ratio as computed by the Nei—Gojobori algorithm (see below for
details).

6.6 CASE STUDY: NATURAL SELECTION AND THE HIV GENOME

107

K4 /Ks ratio. In order to measure natural selection on each of the eight ORFs
that have been identified, we used a second HIV genome (GenBank accession
numbers AF033819 and M27323).

After aligning the corresponding ORFs, we used the Nei—Gojobori algo-
rithm outlined earlier in this chapter to calculate K,/Kg for each ORF (see
Table 6.1). We can see that K 4 /K ranges from 0.1 to 1.0, indicating a wide
range of evolutionary constraints. However, we should keep in mind that we
are averaging over entire genes to calculate these values, so there may still
be smaller sections of these genes evolving at a very high rate, possibly with
a ratio significantly greater than 1. We can detect such regions using a sliding-
window analysis as described below.

Natural selection on HIV epitopes: the ENV gene. The ENV gene codes for
the envelope glycoprotein gp160, which is a precursor to two proteins: gp41
and gp120. The gp120 protein is embedded in and extends exterior to the viral
outer envelope and is primarily responsible for binding to receptors on T-cells.
(In fact, mutations in the human receptor protein recognized by gp120, CCRS,
are known to confer increased immunity to HIV.) Additionally, due partly to
its physical location in the viral envelope, gp120 is recognized by the immune
system as an indicator of infection. So selection on gp120 acts both to maintain
continuing recognition of host cells and simultaneously to avoid detection by
the immune system. These roles are carried out by different parts of the gp120
protein, and we therefore expect that simply measuring K 4 / K g across the whole
gene will obscure both processes by giving us an average value (we observed an
average score of 0.5 for the entire gp120 ORF). To avoid this we can measure
the effect of selection on smaller regions of the gene, by computing K 4/ K in
sliding windows.

Sliding window analysis. For the analysis of single genes — especially long
ones — we can measure K 4 /K¢ by taking smaller windows of only a fraction
the size of the gene, and computing the ratio for just the window. By sliding
this window along the sequence (as we did for GC-content in Chapter 1), we
gain a good heuristic feeling for the range of values of K4 /Ky, and therefore
of selection, across the gene. The size of the windows used is quite important:
windows that are too small give highly noisy results, while windows that are too
large can hide the local effects of selection by averaging together variable and
stable regions. The step size taken in sliding the window across the sequence can
similarly have an effect on the patterns revealed. It is important to remember,
however, that while sliding-window plots are very valuable for visualizing
patterns in data, they are not necessarily statistically rigorous analyses. In this
case, however, they enable us to see the varying levels of selective pressure on
different parts of the envelope protein.

After a pair of ENV sequences are aligned, a window with length L moves
along the length of the pair in steps of size m. We calculate the K 4 /K ratio
for each window (see Figure 6.2). As expected, the rate of non-synonymous
substitutions is greater than the rate of synonymous substitutions in some re-
gions of ENV — a clear indication of positive selection, although the average
over the entire gene is below 1. These may be the regions that are known to be
recognized by the human immune system. There are also many regions with

108 | FIGHTING HIV: NATURAL SELECTION AT THE MOLECULAR LEVEL

Sliding window analysis
of two HIV proteins, ENV and
GAG (using genomes AF033819
and M27323). Window size is 60
codons. Although most of the
protein sequence has K4 /Ks
values below |, a few parts have
higher values. The red line
indicates K 4, the blue line K g, the
green line the ratio K4 /K.

ENV Polyprotein

0 100 200 300 400 500 600 700 800

GAG Polyprotein
1 ‘ ‘

0.8 i

0.4 b

0.2 i

0 50 100 150 200 250 300 350 400 450

K 4/ K less than 1, and these are the regions necessary for the virus to recognize
the receptors of its host cells. As we observed earlier, the average ratio for the
entire gene is less than 1; clearly, sometimes finer-scale analyses are necessary
to uncover the true story of natural selection.

GAG polyprotein. GAG is one of the three main genes found in all retroviruses
(along with ENV and polymerase). It contains around 1500 nucleotides, and
encodes four separate proteins which form the building blocks for the viral
core. This protein contains additional epitopes recognized by the human im-
mune system, and hence it is under constant pressure to escape by evolving.
We repeated the same analysis of K,/Kg with this protein (see Figure 6.2).
The results also show regions of higher divergence, mixed with more stable
regions.

6.7 | Exercises

(1) Measure the K4/Kg ratio for various mtDNA genes, comparing human
with mouse, as well as with chimpanzee (make sure to use the correct
genetic code). What can you conclude about natural selection?

(2) Repeat the same exercise, this time using viral genomes (HIV or SARS,
which is discussed in detail in Chapter 7). Compare the results with those
obtained for mtDNA.

(3) Practice with free online software tools for measuring K 4 / K s (information
about these packages can be found in the book’s website).

6.8 READING LIST

109

6.8 | Reading list

The first genomic sequence of HIV was obtained in 1985 and was published
in the journal Cell (Wain-Hobson et al., 1985). A survey of HIV can be found
in Greene, (September 1993). Two survey papers on the K /Ky ratio can be
found in Hurst (2002) and Yang and Bielawski (2000). More discussions can
be found in Muse (1996) and Tzeng et al. (2004), and additional readings can
be found in Kumar (1996).

The original papers that introduced this kind of analysis and the algorithms
we use here are Miyata and Yasunaga (1980) and the classic article by Nei
and Gojobori (Nei and Gojobori, 1986). More advanced and recent discussions
revolve around the issue of estimating the ratio at single codon, using multiple
alignments, see for example Suzuki and Gojobori (1999), while estimates of
variance are found in Ota and Nei (1994). Also of interest is Thorne et al.
(1991).

A freely available software tool that also computes the K,/Ky ratio is
MEGA, referenced via the book’s website. A phylogenetic analysis of the
various strains of HIV (and a discussion of the origins of this virus) are the
topic of Exercise 2 in Chapter 7 and can be found on the book’s website. Links
to software packages, and to all of the above-mentioned papers, datasets, and
websites, can be found on the book’s website:

www .computational-genomics.net

* Phylogenetic trees

* The neighbor-joining algorithm

* The Newick format for
representing trees

Chapter 7

SARS-A post-genomic
epidemic
Phylogenetic analysis

7.1 Outbreak

On February 28, 2003 the Vietnam French Hospital of Hanoi, a private hospital
with only 60 beds, called the World Health Organization (WHO) with a report
of patients who had unusual influenza-like symptoms. Hospital officials had
seen an avian influenza virus pass through the region a few years earlier and
suspected a similar virus. The pathogen seemed highly contagious and highly
virulent, so they asked that someone from the WHO be sent to investigate. Dr.
Carlo Urbani, an Italian specialist in infectious diseases, responded.

Dr. Urbani quickly determined that the Vietnamese hospital was facing a
new and unusual pathogen. The infections he observed were characterized by
a fever, dry cough, shortness of breath, and progressively worsening respira-
tory problems. Death from respiratory failure occurred in a significant frac-
tion of the infected patients. For the next several days, Dr. Urbani worked at
the hospital documenting findings, collecting samples, and organizing patient
quarantine. He was the first person to identify and describe the new disease,
called Severe Acute Respiratory Syndrome, or SARS. In a matter of weeks,
Dr. Urbani and five other healthcare professionals from the hospital would be
dead.

By March 15 the WHO had already issued a global alert, calling SARS a
“worldwide health threat.” They warned that possible cases had been identified
in Canada, Indonesia, Philippines, Singapore, Thailand, and Vietnam.

The origin of the epidemic. Although the origins and cause of SARS were
still unknown in March of 2003, it would not be long before the analysis of
multiple SARS genomes revealed the story of how this disease had originated
and traveled to many countries.

We now know that the first cases of what was to become known as SARS
appeared as early as November 2002 in the Chinese province of Guangdong. A
few months later the first major outbreak of SARS hit Guangdong: more than
130 infected patients were treated, 106 of whom had acquired the disease while

7.1 OUTBREAK

in a hospital in the city of Guangzhou (the rest of the world was unaware of
this). A doctor who worked in this hospital visited Hong Kong and checked
into the city’s Hotel Metropole on February 21, 2003. He was eventually hos-
pitalized with pneumonia during his visit to Hong Kong and died. A number of
other travelers staying on the ninth floor of the Metropole became infected and
left Hong Kong as disease carriers. One of these was an American business-
man named Johnny Chen; he would be the first patient treated in the Vietnam
French Hospital of Hanoi (before dying Mr. Chen infected at least 80 peo-
ple, including half of the hospital workers who cared for him). Other infected
travelers from the Metropole would bring SARS to Canada, Singapore, and the
United States. By late April 2003, over 4300 SARS cases and 250 SARS-related
deaths had been reported to the WHO from over 25 countries around the world.
Most of these cases occurred after exposure to SARS patients in household or
hospital settings. Many of these cases would later be traced, through multiple
chains of transmission, to the doctor from Guangdong province who visited
Hong Kong. (On April 5, 2003 China apologized for its slow response to the
outbreak.)

In response to the outbreak — and while struggling to control the spread
of the pathogen — the WHO coordinated an international collaboration that
included clinical, epidemiological, and laboratory investigations to identify the
exact cause of the disease, as well as its origin. In the third week of March
2003 laboratories in the United States, Canada, Germany, and Hong Kong
independently isolated a novel coronavirus (SARS-CoV) from SARS patients.
Evidence of SARS-CoV infection has since been documented in SARS patients
throughout the world, indicating that the new virus is in fact responsible for the
syndrome.

Coronaviruses are RNA viruses common in humans and animals; they are
called coronaviruses because their distinctive halo of spiky envelope proteins
resembles a crown. Some of these viruses cause common colds and are respon-
sible for 15-25% of all upper respiratory tract infections, as well as being the
cause of important diseases of livestock. In April 2003 scientists from Canada
announced the completion of the genome sequence of the SARS virus. Phylo-
genetic analyses revealed the most closely related coronavirus to be one that
infected a small mammal (not a bird as initially suspected), the palm civet. Not
coincidentally, the palm civet is a part of the diet in the Guangdong province
of China.

Phylogenetic analysis of the SARS epidemic. While SARS was still spread-
ing, and television was filled with images of people wearing surgical masks
in the streets, scientists were already discussing the significance of the SARS
genome. Multiple laboratories around the world were racing to find the origin
and ultimately a cure for SARS.

In May of 2003, two papers were published in the journal Science that re-
ported the first full genome sequences of SARS-CoV. The agent of the epidemic
turned out to be a 29 751 base pair coronavirus that was substantially different
from any known human virus; the conclusion, therefore, was that SARS was
derived from some non-human virus. Jumping the species barrier is not un-
common for viruses, as quite a number of examples of such zoonotic infections
are known (HIV is one other such example). By 2003 the virus had spread to

112

SARS-A POST-GENOMIC EPIDEMIC: PHYLOGENETIC ANALYSIS

Africa, India, and Europe, so genome sequences of additional SARS viruses
were available from individuals around the world. All of these data were avail-
able online, and became a leading example of how virology and medicine can
benefit from genomic tools.

Many important questions can be answered by analyzing large sets of com-
plete viral genomes. In this chapter we will present the tools to answer some
of them. What kind of virus caused this epidemic? What organism was the
original viral host? What was the time and place of the crossing of the species
barrier? What are the key mutations that made this switch possible? What was
the route of transmission of SARS from the time it crossed the species barrier
to its spread around the world?

In order to answer these questions, we will first examine some key algo-
rithms of phylogenetics, and then will apply these algorithms to the very SARS
data that were obtained in the spring of 2003. (All of these sequences are avail-
able from GenBank, and on this book’s website.) Phylogenetics — the study of
relationships among individuals and species — forms a crucial set of tools in
computational genomics, needed for everything from building the tree of life,
to discovering the origins of epidemics, to uncovering the very processes that
shape genomes. We now take a general look at the algorithms and statistical
models that are used to analyze phylogenetic relationships.

7.2 | On trees and evolution

The trajectory followed by the SARS virus during the winter and spring of
2003 can be likened to a tree. All of the SARS viruses in the world are re-
lated to one another: starting from the single virus that appeared in China, the
network of relationships branched over and over again as SARS was passed
from person to person. The result of this branching process can be envi-
sioned as a graph with a tree-like structure, and we can infer this tree from
the DNA differences between the different SARS genomes (see for example
Figure 7.2).

Traditionally, the evolutionary history connecting any group of species or
individuals (not just viruses) has been represented by means of a tree, which
mathematically is a special type of graph. (We can also represent the relation-
ships among related genes, or other groups using trees; we will call any such
units under comparison faxa.) We are able to draw such trees because all of the
species on earth share a common ancestor, as do all of the individuals within a
species. The use of trees to represent relationships among species dates at least
to the time of Charles Darwin. Note however that the relation among some
genes or species can be more complex than a tree, and we may need to resort
to phylogenetic networks on these occasions, due to the role of recombination
or inter-specific hybridization. In this book we will not explore this important
issue further, but will only use phylogenetic trees.

The structure of phylogenetic trees. Whatever taxa we wish to represent the
relationships among, a phylogenetic tree attempts to represent both the ordering
of relationships (A is closer to B than it is to C), and the distance separating
any two groups (i.e. the time since they diverged). The simplest tree contains

7.2 ON TREES AND EVOLUTION

113

only two taxa (whether the taxa represent species, individuals, genes, etc.),
and is represented in Figure 7.1. The two taxa are called the external nodes
(or leaves), and they are connected by branches. Their common ancestor is
an internal node. In the case of two taxa there is only one possible topology,
or ordering of relationships. However, the length of time since the common
ancestor can cover a huge range, from one day to one billion years. If both of
these taxa are extant (that is, present now), then the time back to the ancestor
must be the same for both lineages.

When we have more than two taxa, we must define a number of ad-
ditional characteristics of trees. Bifurcating trees are those in which every
internal node has exactly degree 3 (except for the root node — defined be-
low), and every external node has exactly degree 1. (The degree of a node
is the number of branches connecting to it.) Multifurcating trees can have
interior nodes with a degree higher than 3. In evolutionary trees, the exter-
nal nodes represent existing taxa, while the internal nodes represent their an-
cestors (typically, but not necessarily, extinct). Bifurcating trees can thus be
thought of as requiring that every ancestor leads to only two descendants.
Note that we normally assume that the true tree is bifurcating, that one an-
cestor leads to only two descendants at splitting; however, we can some-
times use multifurcating trees to represent uncertainty in the order of splitting
events.

Rooted vs unrooted trees. We can also define a phylogenetic tree as either
rooted or unrooted. In a rooted tree we define a special internal node called
the root. The root node is the common ancestor to all the other nodes in the
tree and all evolutionary paths lead back to the root (the root node has a degree
of 2, as can be seen in Figure 7.2). When we have a rooted tree, we can consider
its branches to have an orientation going from the root to each external node.
Unrooted trees, on the other hand, are un-oriented; they show the topological
relationships among taxa, but are agnostic with respect to the identity of the
common ancestor of all taxa (see Figure 7.3).

The task of finding the root (choosing an edge of an unrooted tree where to
place the root node) requires external biological information, or at least some
assumptions about where the root should be placed. The root is typically defined
by including in the dataset one or more taxa that are known to be the result of
an earlier split, and hence to be more distantly related to each of the other
taxa. This external taxon (or taxa) is called an outgroup. The branch of the tree

A simple tree with only

two leaves: nodes | and 2. Node A
is the root of the tree

A bifurcating rooted
tree with five leaves, three internal
nodes, and one root

An unrooted tree with
five leaves and three internal nodes

114

| SARS-A POST-GENOMIC EPIDEMIC: PHYLOGENETIC ANALYSIS

G0t These two trees are

mathematically different, but they
are biologically equivalent: the
order in which the children of a
node are represented is irrelevant,
and hence phylogenetic trees are
to be considered invariant with
respect to changes of this order

® ® O 66 O O

where the outgroup joins the rest of the taxa then is considered to contain the
root node. Additional methods for defining the root based on the structure of
the tree are also used, and we discuss some of them below.

Finally, we must underscore an important component of these graphs: any
rotation of branches about an internal node does not change the relationships
among taxa. No matter the exact order in which we list the taxa from left to
right, the tree represents the same set of phylogenetic relationships (see for
example Figure 7.4).

The number of possible trees. The algorithmic and statistical problem of
reconstructing a phylogenetic tree from a set of related DNA sequences is
greatly complicated by the huge number of possible trees. The number of
possible tree topologies is a function of 7, the number of taxa in the tree, and
depends on whether a tree is rooted or unrooted. The number of unrooted trees
forn > 3is

(2n —5)!
2n —3(n —3)!"

The number of rooted trees for n > 2 is

(2n — 3)!
2n—2n—2)!

We can see that there is only one possible unrooted tree for the case of three
taxa; the same holds for the case of two taxa in a rooted tree. For either kind
of tree, the number of possibilities increases very quickly as n rises. For five
taxa there are already 105 rooted trees, and for ten taxa there are 34 459 425
rooted trees. Only one of these is the true tree of evolutionary relationships,
and inferring it from data is one of the main tasks of phylogenetic analysis.

Representing trees. There are various ways to non-graphically represent a
tree, 7. A simple representation is — as with other graphs — by listing its nodes
and the neighbors of each node. For oriented trees (those with a root) it is even
easier: we only need to list the descendants of each node. So if we number
the external nodes from 1 to n, for a bifurcating tree, there will always be
n — 1 internal nodes, and hence a matrix of all internal nodes and their children
will be (n — 1) x 3 and will suffice to fully specify the tree topology (see
the next example). Note that in this chapter we will denote by 7 both the
graph itself and its representation in one of the various equivalent non-graphical
formats.

7.3 INFERRING TREES

115

Example 7.1
Tree representation as an array. The topology of the 5-taxarooted tree in Figure
7.2 can be represented by the array:

— A~ W oo
SNV e NI

— N W Rk LN 0O
|
|

s

where each entry in the left-most column represents a node (internal and exter-
nal), and the two corresponding entries on the same row represent its children.
External nodes (here 1-5) have no descendant nodes, and hence the last five
rows could be omitted. Note that this representation only works for rooted trees
and is not the most intuitive one for biological interpretation; however, it is
often used in implementation. If we also want to specify the distance between
nodes (the branch lengths), we can either add this information to the above
matrix, in the two right-most columns, or create a separate array that contains
the distance from each node to its direct ancestor.

The example above shows one of the many possible representations of
a tree. Another, more intuitive, representation of directed trees exploits the
relationship between parental nodes and their descendants, using parentheses.
In this representation, the tree 7 would be represented as

((1,2),3), (4, 5)).

This is the same tree that appears in Figure 7.2. A popular standard tree
file format called Newick Format is based on this idea, and is described in
Section 7.5.

7.3 Inferring trees

7.3.1 Introduction to phylogenetic inference

As we have seen, the relationships among organisms can be viewed as a tree,
and this representation is likely to be a very close, if not exact, model for the true
relationships among species, individuals, and even genes. But the underlying,
true tree is unknown. Yes, in the case of SARS we might have been able to
re-create the true tree if we had known of the original infection and tracked its
passing from one person to the next; but more often than not we are simply
presented with organisms in the present day and asked to infer the most likely
set of relationships connecting them. Just a few years ago this task would have
been done largely by tracking changes in morphological characters: visible

)

SARS-A POST-GENOMIC EPIDEMIC: PHYLOGENETIC ANALYSIS

differences in the organisms that might tell us about their underlying genetic
relatedness. Starting in the 1980s, and concomitant with technological advances
in DNA sequencing technologies, inferring phylogenetic trees became a task
inextricably linked to the analysis of DNA. More recently, it has been based on
whole-genome comparisons.

There is always a true tree (or tree-like diagram) that describes the relation-
ships among organisms. This unknown tree can be inferred from a comparison
of the DNA sequences of these organisms because the sequences are always
changing, leaving behind a trail of mutations that will be present in the de-
scendants of mutant genes and absent from all other individuals. (Note that this
line of reasoning relies heavily on the fact that mutation is rare, and will there-
fore lead unrelated individuals to the same sequence extremely infrequently.)
If a gene or any segment of DNA did not change over time, we would have
no record of its past. But mutation ensures that there is a traceable history of
relationships.

Within a set of organisms we expect that every gene that they share will
lead us to the same or very similar trees. Each of the genes might mutate and
evolve at a different rate, but all of the genes will be inherited as a group and
will be passed to descendants together, resulting in the same tree. Recombi-
nation between sequences within a species can cause two genes (or different
parts of the same gene) to have different histories, but as we said earlier we
will ignore this complication for now. So regardless of the exact DNA se-
quence we choose to examine, we expect to obtain the same tree from our
analyses. And the more sequence we examine — and hence the more muta-
tions — the more power we gain to resolve relationships between closely related
organisms. However, although the true tree reflects the fact that the organ-
isms at the external nodes are all equally distant from their common ances-
tor (in terms of time), different genes evolve at different rates, and different
species may even have different mutation rates. As a result, though all of the
external taxa in the true tree are the same distance from the root node, the
vagaries of mutation mean that inferred trees may include some very long
branches and some very short branches. All of the external taxa may therefore
not necessarily be the same measured genetic distance from the root (a fact
that can be very interesting for the study of changes in mutation or substitution
rates).

Given a set of taxa and homologous sequences from each of them, there
are a number of common ways to reconstruct their phylogenetic relationships.
The methods can be broadly divided into two groups: those that rank all pos-
sible trees using some criterion in order to find the optimal one; and those
that directly build the tree from the data (without explicitly stating a scor-
ing function). Within the first group, criteria used often center around finding
the tree with the smallest number of necessary mutations to explain the data
(via likelihood and other methods). Given the huge number of possible trees,
these methods can take a very long time to find the best tree, and even then
may not necessarily find this tree because of the approximations that must be
used to speed up the search. However, likelihood-based methods are favored
for in-depth phylogenetic analyses. The second group includes phylogenetic
methods that are themselves both criteria and algorithms for building trees,
and are often based on computing the pairwise distance between taxa as a first

7.3 INFERRING TREES

117

step. They are typically very fast and have hence become extremely popular
in genomic analyses. Although not necessarily as well behaved statistically as
other methods, the most popular of these so-called “distance” methods (the
neighbor-joining algorithm) is surprisingly robust and accurate. It is guaran-
teed to infer the true tree if distances used reflect the true distances between se-
quences, a result that is often not guaranteed by more statistically sophisticated
methods.

7.3.2 Inferring trees from distance data

For a set of n taxa {ty, ..., 7,}, we represent the genetic distance between them
as a matrix of pairwise distances, D, usually taken from pairwise alignments
and corrected for multiple substitutions by schemes such as Jukes—Cantor (with
each distance measure between taxa given by d(i, j)). Given a distance matrix,
simple and efficient algorithms can be used to infer the tree as long as these
distances are additive (a notion defined shortly below) and often even when
they are not.

Additivity and distance matrices. If the branches within a tree each have
a specified length, then the distance between any two nodes can easily be
computed as the total length of the (unique) path connecting them (see Figure
7.5 for an example).

In this way a tree can specify a distance matrix between its leaf nodes.
However, not all distance matrices have this “additivity” property. Intuitively,
the notion of additivity means that a certain distance can be represented by a
tree. Formally, this translates into a technical condition that is stated below, and
that motivates the algorithmics used in this chapter. Biologically, additivity is
an important property for a distance matrix: the actual number of substitution
events separating two taxa from their last common ancestor (their genetic dis-
tance) forms an additive distance. One of the attractions of using substitution
models such as Jukes—Cantor is that they attempt to make the distance matrix
more additive, and hence they make inference of the tree easier.

We can represent the distances within the tree of Figure 7.5 with the fol-
lowing distance matrix:

L1 L2 L3 L4 L5
L1 0 2 4 6 6
L2 2 0 4 6 6
L3 4 4 0 6 6
L4 6 6 6 0 4
L5 6 6 6 4 0

Definition 7.1

Additive tree of a distance matrix. Let D be a symmetric m x m matrix where
the numbers on the diagonal are all zero and the off-diagonal numbers are all
strictly positive. Let 7 be an edge weighted tree with at least m nodes, where m
distinct nodes of 7 are labeled with the rows of D. Tree 7 is called an additive
tree for matrix D if, for every pair of labeled nodes (i, j), the path from node
i to node j has total weight (or distance) exactly d(i, j).

A rooted tree with
length-annotated branches.

118

SARS-A POST-GENOMIC EPIDEMIC: PHYLOGENETIC ANALYSIS

Definition 7.2

Length of a tree. We also define the rotal length of a tree as the sum of all the

branch lengths.

7.3.3 The neighbor-joining algorithm

The most popular distance-based method for inferring phylogenetic trees is
known as neighbor-joining. The neighbor-joining (NJ) algorithm was first de-
scribed by Naruya Saitou and Masatoshi Nei in 1987 (this is the same Nei as
in the Nei—Gojobori method discussed in Chapter 6). NJ is a greedy algorithm
that starts with an initial star phylogeny (one in which all taxa are connected
directly to a single root node) and proceeds by iteratively merging pairs of
nodes. The criterion with which each pair of nodes is selected is the key to its
success: it identifies nodes that are topological neighbors in the underlying tree
by using a mathematical characterization that is valid for all additive distance

matrices.

After selecting the two taxa, they are merged into a single taxon, which will
be further treated as a new single taxon. A new modified distance matrix is then
created, where the distances of other taxa to the composite taxon are calculated.
This process is repeated until all of the taxa have been joined together. Because
NIJ produces unrooted trees, an outgroup or other method is needed to specify
the root node. As noted earlier, if the distance matrix used to build the tree
is additive, then NJ will give the true tree; if, however, it is non-additive (i.e.
there is noise in the data), there can be ambiguities in the inferred tree. Below
we provide details for the calculation and construction of trees with NJ (using
the corrected method published by James Studier and Karl Keppler), including
some of the necessary background that makes it clear how NJ works. The reader

can safely skip this technical part if they prefer.

Finding branch lengths. The lengths of individual branches in an unrooted
tree with three external taxa can be computed from pairwise distances for
additive matrices. To see this, imagine first that we have three taxa in an unrooted
tree with known distances on all branches. Consider this unrooted tree joining
taxa A, B, and C, with the length of each branch L,, L,, and L respectively

(see Figure 7.6); then:

L+ L, =dug
L, + L, =dac
Ly+ L. =dpc.

The solution for this system is

_ (dap +dac —dpc)

L,
2
I (dap +dpc —dac)
v 2

_ (dac +dpc —das)

lllustration of the L 2
3-point formula . . . :
This formula is called the 3-point formula, and shows how we can infer the
individual branch lengths on a tree from a set of pairwise distances.

7.3 INFERRING TREES ‘

119

A test of neighborliness for two taxa. Neighbor-joining proceeds by finding
neighbors in the tree, and iteratively joining them until the whole tree is com-
plete. In order to do this, NJ must be able to identify these neighboring taxa. It
is a remarkable property of additive distances that it is possible to devise a test
to find nodes that are neighbors in the underlying tree.

Consider two taxa, t; and 1, that are joined to the vertex V and two other
generic neighbor nodes 7; and 7; (as in Figure 7.7). Then the following inequal-
ity holds when 7; and t, are neighbors:

d(t,) +d(z;, tj) < d(t, 5) +d(12, T)).

This can be seen from Figure 7.7. In words, the sum of the distances between 7y,
T, Tj, and 7; should be minimized when neighbors are paired in the summation.
This leads to a criterion for detecting neighbors when there are an arbitrary
number of external nodes in a tree. First, define the total distance from taxon
7; to all other taxa as

R, = Zd(fi, i),
j=1

where the distance d(t;, t;) is naturally interpreted as 0. We also define the
“neighborliness” between two taxa to be

M(T;,T_I') :(n—Z)d(ri,r_i)—Ri — R_,', (71)

where we are minimizing both the distance between external nodes and the
total distance in the tree. For any two nodes 7; and 7; that are neighbors, we
require that

M(z;. 1)) < M(ti, 7)) Yk # J.

This gives us the crucial piece of the NJ algorithm: from the distance matrix
D that contains all of the pairwise distances d(t;, t;), compute a new table of
values for M(7;, 7;). Then choose to join the pair of taxa with the smallest value
of M(7;, 7;). We call this the 4-point condition.

Joining neighbors in the tree. The NJ algorithm chooses to merge two nodes
that satisfy the criterion above into a new node, V, and then computes the
distance between V and all of the other nodes, as well as the length of the newly
created branches to 7; and 7; using the 3-point formula. It then recomputes M
(now using V as an external taxon) and iterates.

We calculate the distance from the new node V to each of the remaining
external nodes as

1
dl\V,) = E[d(ri, o) +d(t;,) —d(z, tj)] fork #1i, j. (7.2)

The 3-point formula described above gives us the branch lengths from V to the
joined neighbors 7; and 7;. The branch lengths from 7; to V and 7; to V are
given by

d(fi,fj) Ri _R/

L(y;, V) = > TP (7.3)
d(T,‘,T/') R/' —R,'
L, V)= ==+ S (7.4)

Below we summarize the various steps of the algorithm.

The 4-point condition,
used in the development of the

neighbor-joining algorithm

120

SARS-A POST-GENOMIC EPIDEMIC: PHYLOGENETIC ANALYSIS

Rooting the tree. The procedure described above constructs an unrooted tree.
In order to define a root node, we need to specify an outgroup, so that the
root is assumed to be on the branch connecting the outgroup to the rest of the
tree. The midpoint of this branch is a possible choice for the root, but other
criteria may be used, for example some aimed at producing a more balanced
tree. Here we simply apply so-called midpoint rooting to all of the trees we
construct.

NJ algorithm. Input: an n x n distance matrix, D, and the specification of an
outgroup.

Output: a rooted phylogenetic tree, 7, represented by a table of relationships,
T, and a separate array with all branch lengths, 7' D:

Step 1: Given a pairwise distance matrix for n taxa, D, compute a new table of
values of M(z;, 7;) as defined in equation (7.1). Choose the smallest
value in this matrix to determine which two taxa to join.

Step 2: If 7; and 7; are to be joined at a new vertex V, first calculate the
distance from V to the remaining external nodes using equation (7.2).
Use these values to update the distance matrix, D, replacing 7; and 7;
by V.

Step 3: Compute the branch length from 7; to V and 7; to V using equations
(7.3)and (7.4). Setthe valuesof T'(V, 1) = ;, T(V,2) = 7;, T D(7;) =
L(z;, V)and T D(z;) = L(t;, V). These describe the tree topology and
branch lengths.

Step 4: The distance matrix now includes n — 1 taxa. If there more than two
taxa remaining, go back to step 1. If only two taxa remain, join them
by a branch of length d(z;, 7;).

Step 5: Define a root node on the branch connecting the outgroup to the rest
of the tree.

UPGMA. The NI algorithm reduces to a simpler method, called UPGMA
(Unweighted Pair Group Method with Arithmetic Averages), in the case when
the matrix M is defined to be equal to the distance matrix D. This means that the
distance from the leaf taxa to the root is the same for all taxa, a condition called
ultrametricity. While this condition must hold for the true tree, in practice it
is almost never true of DNA sequence data and therefore leads to erroneous
inference of phylogenetic trees. However, UPGMA was an early distance-based
phylogenetic method, and is related to the hierarchical clustering algorithm
discussed in Chapter 9.

7.4 Case study: phylogenetic analysis of the
SARS epidemic

7.4.1 The SARS genome

The genome sequence of SARS-CoV obtained by the Canadian group in April
2003 is a 29 751 bp, single stranded RNA sequence. It can be accessed via
GenBank (accession number AY274119.3), and amap of its genes is provided in

7.4 CASE STUDY: PHYLOGENETIC ANALYSIS OF THE SARS EPIDEMIC

121

!
0 5000 10000 15000 20000

f |
25000 30000

| |
Replicase 1A (REP) Membrane (M)
| |

[|
Replicase 1B (REP)

Figure 7.8. Its GC content is approximately 41%, within the range for published
complete coronavirus genome sequences (37-42%). It has a structure typical of
coronaviruses, with five or six genes in a characteristic order. Using the methods
described in Chapter 3 we can easily find most of these genes. Notice however
that — as with HIV — things can be a little more complicated in viruses, with
overlapping ORFs and other problems that can prevent simple ORF-finding
methods from identifying all coding regions.

742 Reconstructing the epidemic

During the SARS epidemic, many of the key questions about its origin and
nature could be answered by genomic sequence analysis. The sequence of
SARS was obtained and published by various groups in early 2003, and was
used as the basis for investigation into the origin and spread of the epidemic. The
entire epidemic can now be re-created with the many viral sequences available
in GenBank. By building a phylogenetic tree of the isolates from known dates
and places, we can observe the crucial role played by the Hotel Metropole. We
have chosen 13 sequences for which we could find date and location of the
sample (see Table 7.1), and use them to demonstrate how sequence information
can illuminate the unfolding of an epidemic.

Identifying the host. The SARS virus was recognized early on as a corona-
virus, having the same genes in the same order as other known coronaviruses.
It was, however, very different from any other known human coronavirus, and
hence its origin was likely to be from another animal. A NJ tree of the spike
proteins for various animal coronaviruses, including the coronavirus found in
the palm civet, leaves little doubt about the closest relative of SARS coronavirus.
SARS appears most closely related to the Himalayan palm civet coronavirus
(Figure 7.9), and is quite distantly related to other human coronaviruses.

The disease was not carried by birds but it originated in the palm civet, and
later adapted to be spread from human to human.

The epidemic tree. Using the 13 genomes in Table 7.1, a neighbor-joining
tree of the spike protein was constructed (see Figure 7.10). The distance matrix
was obtained by Jukes—Cantor corrections on genetic distance calculated from
global alignments of the spike nucleotide sequence.

Spike (S) Nucleocapsid (N)

0
Envelope (E)

Gl The ORF map of SARS
genome. Two-thirds of the genome
contains the gene for the replicase
protein, the remaining third
various key genes, including spike
and envelope. The order of these
genes is typical of other

coronaviruses

122 SARS-A POST-GENOMIC EPIDEMIC: PHYLOGENETIC ANALYSIS

Table 7.1 | Name, location, and sampling date of SARS virus isolates used in our case study

Name of isolate Acc. number Date Location

GZ0| AY278489 DEC-16-2002 Guangzhou (Guangdong)
Z5-A AY394997 DEC-26-2002 Zhongshan (Guangdong)
Z5-C AY395004 JAN-04-2003 Zhongshan (Guangdong)
GZ-B AY394978 JAN-24-2003 Guangzhou (Guangdong)
HZS-2A AY394983 JAN-31-2003 Guangzhou Hospital
GZ-50 AY304495 FEB-18-2002 Guangzhou (Guangdong)
CUHK-W| AY278554 FEB-21-2003 Hong Kong

Urbani AY278741 FEB-26-2003 Hanoi

Tor 2 AY274119 FEB-27-2003 Toronto

Sin2500 AY283794 MAR-01-2003 Singapore

TWI AY29145] MAR-08-2003 Taiwan

CUHK-AGOI AY345986 MAR-19-2003 Hong Kong

CUHK-L AY394999 MAY-15-2003 Hong Kong

We can read the entire story of the epidemic on this tree. Using the palm
civet as an outgroup, we see that all the early cases occurred in the Guangdong
province, and that the Hotel Metropole coronavirus is almost identical to one
of these sequences (i.e. there is no discernible genetic distance between them;
Figure 7.10). The rest of the world-wide epidemic is seen to be nested within
these initial infections: the events in Singapore, Hanoi, Taiwan, and Toronto
can all be traced to the Hong Kong hotel and/or Guangdong. (The sequence of
the Hanoi coronavirus is now called the Urbani strain.) The main question that
remains is: When did the epidemic start? The answer can be found in the data
from Table 7.1.

Date of origin. Because we know the date of collection of each of the SARS
viruses for which we have sequence, we are able to observe the progression of
mutations over time. For convenience, we again use the ORF corresponding
to the spike protein. Relative to the sequence from the palm civet, we see that
genetic distance (the y-axis of Figure 7.11) increases with time, in a roughly
linear manner (time is along the x-axis, with the O point representing January 1,
2003). If we interpolate a least-squares line through these data, we can estimate
the approximate date for the origin of the epidemic. Any date compatible with
zero distance from the palm civet is a plausible start date for the epidemic,
and we estimate it to be an interval centered around September 16, 2002 (106
days before January 1, 2003). The 95% confidence intervals are also shown in
Figure 7.11. The method we have used is rather crude, and relies on many
assumptions that we cannot verify, yet it delivers a very plausible estimate
since the earliest reported cases can be traced back to the second half of 2002.

Area of origin. Even though we now know that the Guangdong province was
the area of origin of the epidemic, we can use the same method as presented
in Chapter 5 for the origin of humans to look for the likely area of origin of

0.1

Bovine CoV1 g2
Bovine CoV2 g2
Humanl CoV OC43 g2
Porcine HEV3 g2
Equine Cov3 g2

Murine HV3 g2

Murine HV2 g2

Murine HV6 g2

Murine HV1 g2

Puffinosis V g2

TGEV gl

Canine CoV1 gl

Feline CoV4 gl

Porcine PEDV gl

|7 IBV3 g3

Turkey CoV2 g3

Himalayan Palm Civet SARS CoV

Human SARS Cov HK

- Phylogenetic tree connecting various coronaviruses. Clearly the closest
relative to SARS is not a bird virus, but that of palm civet

124

SARS-A POST-GENOMIC EPIDEMIC: PHYLOGENETIC ANALYSIS

The story of this
epidemic can be read on the
phylogenetic tree obtained from
genomic data. Note the crucial
position of the sequence from
Hotel Metropole as the root of
the international epidemic

0.0005,
Hanoi - Urbani 02/26/03

Guangzhou [Guangdong] 01/24/03

Toronto 02/27/03

Hong Kong 05/15/03

Taiwan 03/08/03

Hong Kong 03/19/03

Singapore 03/01/03

[[|Hong Kong [Hotel Metropole] 02/21/03

| 'Zhongshan [Guangdong] 01/04/03

Guangzhou [Guangdong] 02/18/03

- Guangzhou Hospital [Guangdong] 01/31/03

Zhongshan [Guangdong] 12/26/02

Guangzhou [Guangdong] 12/16/02

Palm Civet

SARS. We again take the high nucleotide diversity between sequences in
Guangdong as an indication that the virus originated there, with the lower
diversity outside this area a result of the subsequent international spread of the
single Hotel Metropole strain. Using the genetic distance matrix, we plot (by
multidimensional scaling) each sequence as a point. Figure 7.12 shows clearly
that there is more diversity among the Guangdong sequences than among all
the sequences collected abroad. Of course the tree of Figure 7.10 is another way

7.4 CASE STUDY: PHYLOGENETIC ANALYSIS OF THE SARS EPIDEMIC

125

x 10

/ X:~105.4

The genetic distance of
samples from the palm civet
increases roughly linearly with time

Y:0
-1 b Multidimensional
scaling visualization of the genetic
-2 b distance between spike genes
shows that the international
-3 L L . L epidemic sequences are not as
~150 ~100 -50 50 100 150 diverse as those found in the
Guangdong province of China
x107™
4
Guangzhou (Guangdong) 16/12/02
2+ Hong Kong 15/05/03
Guangzhou Hospital (Guangdong) 31/01/03
9 pial (gdong) Toronto 27/02/03 Taiwan 08/03/03
Guangzhou (Guangdong) 24/01/03 Hong Kong 19/03/03
oL Hanoi — Urbani 26/02/03 ~ Singapore 01/03/03 |
Zhongshan (Guangdong) 26/12/02 Hong Kong (Hotel Metropole) 21/02/03
Zhongshan (Guangdong) 04/01/03
o]
4 _
76 — —
Guangzhou (Guangdong) 18/02/03
8 | | | | | | |

-1.5

0.5 1 1.5

x 10

126

SARS-A POST-GENOMIC EPIDEMIC: PHYLOGENETIC ANALYSIS

0 of expressing the same information by looking at the lengths of branches sepa-
rating the various viruses. Both the phylogenetic tree and the multidimensional
scaling therefore strongly suggest that Guangdong Province was the area of

origin for SARS.

7.5 ' The Newick format

7.13 can be represented in the previously introduced format by the array in

The Newick in the beginning of this chapter, the Newick format makes use of the corre-
representation of this tree is spondence between trees and nested parentheses. This becomes very useful for
((&.B). (. D)) representing trees in computer-readable form. For example, the tree in Figure

(7.5):
1 2 3

2 A B
3 C D.

In the Newick format this tree is represented by the following sequence of

printable characters:

(&, B), (C,D));

the convention is that the tree file must end with a semicolon. Interior nodes are
represented by a pair of matched parentheses. Between them are representations
of the nodes that are immediately descended from that node, separated by
commas. In the above tree, the immediate descendants of the root are two interior
nodes. Each of them has two descendants. In our example these happen to be
leaves, but in general they could also be interior nodes and the result would be
further nesting of parentheses. Leaves are represented by their names. A name
can be any string of printable characters, except blanks, colons, semicolons,
parentheses, and square brackets. Any name may also be empty; a tree like:

((7)7 (7));

is allowed in the file format. Note also that trees can be multifurcating; that is,

nodes can have more than two children.

Branch lengths can be incorporated into a tree by putting a real number, with
or without decimal point, after a node and preceded by a colon. This represents
the length of the branch immediately above that node. Thus the above tree might

have lengths represented as

(Aa:1.0,B:1.0):2,(C:1,D:1):2);

The tree starts on the first line of the file, and can continue to subsequent lines.
It is best to proceed to a new line, if at all, immediately after a comma. Blanks
can be inserted at any point except in the middle of a species name or a branch
length. Names can also be assigned to interior nodes: these names follow the

right parenthesis for that interior node, as in

((&,B)2,(C,D)3);

As an alternative to the rather awkward matrix tree representation introduced

7.7 READING LIST

127

7.6 ‘ Exercises

(1) Using the mtDNA data discussed in Chapter 5, create a tree comparing
human and apes. Discuss the position of Neanderthal. Compare the trees
obtained with and without the Jukes—Cantor correction.

(2) The mysterious origins of HIV, described in Chapter 5, have been the
subject of many investigations. In particular, the relation between HIV and
a similar virus found in monkeys, SIV, has been debated and studied in
depth. Genomic analysis of various strains of HIV and SIV can be used to
settle the question. The data are available on the book’s website, both for
complete genomes and just for the ENV protein. Using the free package
Phylip, construct the phylogenetic tree of various strains of HIV and SIV.
This tree should show that the virus crossed the species barrier twice, once
leading to the HIV1 epidemic and the second time leading to the HIV2
epidemic. The book’s website contains a reconstruction of the tree as a
reference.

(3) Construct the tree of the odorant receptors and related proteins, as discussed
in Chapter 4 (dataset available on the book’s website).

7.7 | Reading list

The genome sequence of the SARS-associated coronavirus was first reported
in Marra et al. (2003) and Rota et al. (2003) and its evolution discussed in Guan
et al. (2003) and Consortium (2003). The timing of the last common ancestor
of SARS viruses can be found in Zeng et al. (2003) and Lu et al. (2004) and
the estimation of the area of origin is discussed in Zhang and Zheng (2003).
Its phylogeny with other coronaviruses is presented in Eickmann et al. (2003)
and in Lei et al. (2003), and a more general discussion of viral evolution can be
found in Holmes and Rambaut (2004). The story of Carlo Urbani’s death can
be found in Reilley et al. (2003).

A complete textbook on phylogenetic tree inference is the excellent Felsen-
stein (2004), which should be considered the starting point of any investigation
into the algorithmic and statistical issues concerning computational phyloge-
netic analysis. A classical reference on the construction of phylogenetic trees is
Fitch and Margoliash (1967). The neighbor-joining algorithm was introduced
in Saitou and Nei (1987).

Interesting introductory readings on phylogenetic topics are Doolittle
(2000) (on the tree of life) and Cann and Wilson (2003) (on human origins). A
discussion of the phylogenetic tree of HIV can be found on the book’s website.

Freely available packages for phylogenetic analysis include CLUSTALW
Thompson et al. (1994) and Phylip, the phylogeny inference package created by
J. Felsenstein (Felsenstein, 2004). Very popular tree visualization tools include
NJPLOT, UNROOTED, and TreeView, whose complete references and web
coordinates are available via the book’s website.

Links to software packages, and to all of the above-mentioned papers,
datasets, and websites, can be found on the book’s website:

www.computational-genomics.net

* Genome rearrangements

* Orthology and paralogy

* Synteny blocks, inversions, and
transpositions

Chapter 8

Welcome to the Hotel

Chlamydia
Whole genome comparisons

8.1 Uninvited guests

Every human being has multiple species of bacteria living within them. Most
of these bacteria, such as E. coli, are not harmful to us and are considered
beneficial symbionts. The bacteria help us to digest certain foods or supply us
with vitamins that we cannot make on our own, and we provide them with
the nutrients and environment they need to survive. The benefits of having
bacterial symbionts extend beyond the production of necessary chemicals.
These bacteria actually prevent infection by other pathogenic bacteria sim-
ply by virtue of having already established their presence in our gut. In fact,
after taking a course of antibiotics it is often recommended that people eat
foods like yogurt to re-populate their stomach and intestines with symbiotic
bacteria.

Although there are many well-known examples of beneficial symbiotic re-
lationships in nature, they tend to be interactions between free-living organisms
such as bees and flowers or birds and rhinoceros (the appropriately named tick-
bird eats ticks off the back of the rhino). As with our relationship with E.
coli, however, there are many symbionts that are hidden from view because
they live within their hosts. These symbionts often aid their hosts in diges-
tion and benefit themselves by living in the stomach of a mobile organism.
For instance, termites have specific protozoa (a type of single-celled eukary-
ote) living in their digestive tract to help with the digestion of wood. Without
the protozoa, the termite would lose the ability to process its main source of
nutrients.

Some symbionts have even moved permanently into the cells of their hosts;
they have become completely dependent on the host to provide them with
nutrients. In the process, the genomes of these intracellular symbionts have un-
dergone dramatic changes. Because many of the chemicals that they previously
had to synthesize themselves are now provided by their hosts, symbionts often
lose the genes underlying whole biochemical pathways. There is no longer any
natural selection to maintain the function of these genes, and so mutations that

8.2 BY LEAPS AND BOUNDS: PATTERNS OFGENOME EVOLUTION

129

destroy them are simply ignored. As a result, intracellular symbiont genomes
are some of the smallest known, both in total size and in the number of genes.

Chlamydia trachomatis is an intracellular symbiont of humans that does
not provide any benefit to the host — it is a parasite (Mycoplasma genitalium,
which we introduced in Chapter 1 as having the smallest genome known, is
also a parasite of humans). Chlamydia (a bacterium) is the most common sex-
ually transmitted disease in the United States, with an estimated 3 million new
infections each year. It has lost the ability to make many biochemical products,
so that it can live only in specific cells of humans. It cannot even be kept alive
in the lab. Because of this simplified lifestyle scientists believed for some time
that it was a virus.

Chlamydia pneumoniae is a related bacterial parasite of humans, infecting
cells in the respiratory tract; it causes both pneumonia and bronchitis. As with
C. trachomatis, it shows very reduced metabolic and biosynthetic functions and
has a very small genome (both genomes are approximately 1 Mb in length).
Six different Chlamydia species have now been fully sequenced. They are all
obligate intracellular symbionts, though not all are harmful to their hosts. All of
the species show slight differences in the number and identity of genes that have
been lost since their most common ancestor, but their overall genome organi-
zation is quite similar. The intracellular lifestyle of Chlamydia appears to date
back 700 million years, with the emergence of the first eukaryotes. Both mito-
chondria and chloroplasts are thought to be derived from intracellular bacterial
symbionts that lost so many of their genes that they became an essential part of
the eukaryotic cell. As with both mitochondria and chloroplasts, Chlamydia are
locked into a symbiotic relationship with their eukaryotic hosts, and it appears
that Chlamydia are quite closely related to the cyanobacterial ancestors of plant
chloroplasts.

In this chapter we address the challenges inherent in making whole genome
comparisons. The Chlamydia genomes make a perfect case study because
of their small size and relatively slow rate of genome evolution — although
nucleotide substitutions occur at an average rate, Chlamydia show very few
genome rearrangements and very few instances of horizontal gene transfer.
There are now many other species in which whole-genome comparisons can
be made, and Chlamydia provides us with a simple example of the questions
that can only be answered by this kind of analysis.

8.2 By leaps and bounds: patterns of
genome evolution

In this chapter we want to make comparisons between DNA sequences at a
different resolution than we have previously discussed. Instead of focusing
on small differences between homologous genes, we will look at large-scale
features of genome evolution. These comparisons can tell us about changes
in the gene content of genomes as well as changes in the relative position of
genes in a genome. Whole genome comparisons provide useful information for
understanding evolution and for understanding sequence and gene function. The
statistical and algorithmic tools required for many aspects of whole genome

130

WELCOME TO THE HOTEL CHLAMYDIA: WHOLE GENOME COMPARISONS

comparisons build upon and expand those tools needed to compare much shorter
sequences; we provide an overview to a handful of these methods.

The evolutionary trajectory of a genome in sequence space is not de-
termined solely by the steady accumulation of independent nucleotide sub-
stitutions, insertions, and deletions. To be sure, single nucleotide polymor-
phisms do form the bulk of genetic variability between individuals of the
same species, but often other, less local transformations of the genome can
be observed both within and (more frequently) between species. For exam-
ple, the transfer of long sequences between species (horizontal gene transfer)
is much more common than previously thought, accounting for up to 20%
of the E. coli genome. Sequence rearrangements due to reshuffling within a
genome are also common: inversions occur when an entire segment of DNA is
“flipped” around (Figure 8.3), and transpositions occur when DNA is cut-and-
pasted from one location of the genome to another. Whole chromosomes can
break apart and re-form by sticking novel combinations of chromosomal pieces
together, and even whole genomes can be duplicated, resulting in polyploid
individuals.

Furthermore, the gene content of genomes can change without the drastic
effects of large duplications, deletions, or horizontal gene transfers. Single genes
are often gained or lost via small-scale duplications or deletions. Typically,
gene duplication results in the presence of two copies of the original gene, one
of which may then diverge in function. Small deletions or single frameshift
mutations are also sufficient to turn functioning genes into pseudogenes; it
appears that such gene loss is quite common, either because genes are redundant
in function or because the environment has changed in such a way that the genes
are no longer needed. Gene gain and loss results in many differences between
genomes, both in total gene number and in the identity of genes carried in
individual genomes.

Comparative genomics, or the study of large differences between whole
genomes, can tell us much about the organization, function, and evolution of
genomes. In this chapter we learn multiple methods in comparative genomics
by examining the key steps in an analysis of multiple Chlamydia genomes. We
begin by comparing the genes contained within various Chlamydia genomes.

8.3 | Beanbag genomics

To some extent, the comparison of whole genomes often boils down to many
comparisons of the individual genes within each genome. While this approach
is akin to treating a genome as simply a beanbag full of genes, it is frequently
the most manageable and informative thing to do. Because of the multiple
inversions, transpositions, duplications, deletions, and other chromosomal re-
arrangements that can occur in evolution, an alignment of two genomes will
often be uninformative or uninterpretable. Most of the time whole genome
alignments will not even be possible. This does not mean that we will not be
able to compare two genomes side-by-side, only that we will first have to break
the problem down into smaller pieces and then build it back up. Even larger
questions about genome evolution that should not be addressed in a beanbag
fashion can benefit from initial multiple single-gene analyses.

8.3 BEANBAG GENOMICS

131

Of course the first step in comparing gene sets in two different genomes is
to find which genes are present in both. Besides the obvious biological interest
of these genes, they can also serve as landmarks in the genome, helping in
the identification of homologous regions between two distant sequences. In
Chapter 2 we learned the most basic way to find (prokaryotic) genes — find
open-reading frames. As we have done before, we can apply our basic ORF-
finding program (with a significance threshold of 100 codons) to the genomes
of Chlamydia trachomatis and C. pneumoniae. Our analysis (see below) reveals
only slight differences in the number of genes between the two genomes, with
C. pneumoniae having about 100 more genes:

Size (nt) ORFs GenBank Acc. Num.
C. trachomatis 1042519 916 NC_000117
C. pneumoniae 1229 853 1048 NC_002179

They both have many fewer genes than the model prokaryote, E. coli (for
which we can find nearly 5000 ORFs), as we expect for intracellular symbionts.
In order to see the genes and pathways that have been lost in the Chlamydia
genomes we first have to identify the genes that are present. We might expect
that different biological processes are needed for life in the respiratory and
urinary tracts inhabited by these species. In the next section we present methods
for comparing the genes that have been lost or gained between Chlamydia
species.

Similarity on a genomic scale. While comparisons of the total numbers of
genes can be informative, we would further like to know the identity of genes in
each genome and their similarity to all other genes. Studying nucleotide substi-
tution between orthologous genes (defined in Chapter 3), analyzing changes in
the size of gene families, and finding blocks of conserved gene order all require
us to have information about the similarity between all pairs of genes.

In order to generate such similarity scores, we take the amino acid sequences
of all of the genes found in both genomes and fill out a matrix containing the
alignment score between each possible pair of sequences. In the case of the
Chlamydiae the resulting matrix would be of size 1048 x 916 and we can use
the Needleman—Wunsch global alignment algorithm to compute the similarity
scores (it is a good idea to normalize the alignment scores by the length of
sequences). For larger genomes we may want to use faster but less accurate
algorithms such as BLAST. This matrix contains all the information needed to
address the questions outlined above.

Identifying orthologous and paralogous genes. With our similarity matrix
in hand we can now attempt to distinguish between orthologous and paral-
ogous genes. Remember from Chapter 3 that duplication can generate large
gene families of related genes, and that the relationships among these homol-
ogous genes can be quite complex. The two main types of relationship are
orthology and paralogy. Orthologous genes are those that are related not by
any duplication event, but merely by speciation. As a result, we rely on or-
thologous genes to estimate the number of substitutions — and the amount of
time — between species in order to reconstruct phylogenetic trees. Paralogous
genes are those that are related via a duplication event; all of the genes in a

132

WELCOME TO THE HOTEL CHLAMYDIA: WHOLE GENOME COMPARISONS

gene family from a single genome are paralogous, as are homologous genes
between genomes that are not direct orthologs. The complexity of genome evo-
lution means that sometimes there will not be clear one-to-one orthologous
relationships. As duplication and deletion events occur in one lineage and not
the other, one-to-many, many-to-one, and many-to-many relationships may be
created.

There are a number of different ways to identify orthologs between
genomes. The most common method is to identify best reciprocal similarity
hits or BRHs (for best reciprocal hits). A pair of ORFs is said to be a BRH
if the two sequences are each other’s best match between two genomes (using
alignment-based genetic distances). It is clear from this definition that it is quite
possible for an ORF not to belong to any BRH pair, and for an ORF to both
have an ortholog in another species as well as highly similar paralogs in the
same genome. More importantly, it is clear that these definitions depend on our
choice of a similarity measure. For simplicity, in our examples we will use the
score produced by a global alignment (which has the drawback of being af-
fected by sequence length). More sophisticated measures can easily be devised
and are regularly used.

Example 8.1

Homology in Chlamydia. Given a similarity matrix it is simple to identify
orthologs by finding pairs of genes that meet the reciprocal requirement of
maximal similarity. With an acceptance threshold of 100 codons we find 1964
total ORFs (916 in C. trachomatis [CT] and 1048 in C. pneumoniae [CP]).
Among these we find 728 pairs that are orthologs. We also find 126 pairs of
genes that show high similarity within genomes and can be considered paralogs
(56 in CT and 70 in CP). These paralogous pairs were all more similar to each
other than to their orthologs, and are therefore likely to be the result of gene
duplication events that occurred since the species split. These two categories
account for 87% of the ORFs. The remaining 253 ORFs did not have well-
defined homologs of any kind and may represent older paralogs or genes whose
ortholog was lost from the other genome.

Identifying gene families. Defining what exactly is meant by “gene family”
is a tricky thing. At some level, all the genes that exist on Earth are in a gene
family: they are homologous sequences that can trace their origin back to a
common ancestor (i.e. the first DNA-based genome). However this is not the
type of relationship people want to explain with the concept of a gene family.
Instead, gene families are intended to represent groups of more closely related
genes that likely have similar function (because they share a relatively recent
common ancestor). As such, there is no hard and fast rule for how closely related
genes must be to put them in the same gene family. Generally people consider
genes that are 50% identical and above as being in a gene family; these genes
are then considered paralogs or orthologs depending upon which species they
are found in.

Just because there is no objective measure to define a gene family does not
mean that we cannot be operationally objective when studying these families.

8.3 BEANBAG GENOMICS

133

1200

1000 b

800 b

600 b

Number of Gene Families

400

200

0 5 10 15 20 25
Family size

For instance, consider the case when we want to compare the evolution of some
particular gene family between two genomes. If we clustered our genes into
families separately for each genome, we might call gene families differently in
the two genomes. This is because there is always a certain degree of arbitrariness
in clustering methods, as will be discussed in Chapter 9. As a result, the data
could look as if there was a difference in gene family size between species that
was actually a result of using two sets of criteria.

Because studies of changes in gene family size can tell us a lot about
the function and evolution of genes (see Chapter 4 and the odorant receptor
family), we need to make sure that we use consistent criteria across genomes.
The expansion and contraction of gene families during evolution can be just
as important as nucleotide substitutions in determining differences between
species.

To ensure the identification of equivalent gene families across genomes, we
will cluster all of the genes from both genomes at the same time. Only after
defining individual clusters as gene families will we then count the number of
genes in each family that come from each genome. The basic algorithm we use
takes the similarity matrix generated above and clusters the genes according
to a method not unlike UPGMA (see Chapter 7) that is called hierarchical
clustering and is briefly described in Chapter 9.

The clustering of the data reveals a large number of small gene families
and a small number of large families in both Chlamydia species, as seen in
Figure 8.1. This is of course somewhat arbitrary, since the clustering algorithm
has a few tunable parameters, but the general shape of the histogram is rather
robust to these settings. (Note that we consider even single genes to be in their
own “family.”) We can also see that there are differences in the size of a number
of gene families between these two genomes The table below compares the sizes

Histogram showing the
distribution of gene family size in
Chlamydia. There are few large
families, and many small ones

134

| WELCOME TO THE HOTEL CHLAMYDIA: WHOLE GENOME COMPARISONS

18t A The hydrophobicity

profile of ABC transporters, the
largest gene family found in
Chlamydia. Based on the discussion
in Chapter 4, we can infer a
possible transmembrane function
for these proteins. The red line is
unsmoothed and the blue one is
smoothed

1.5

Hydrophobicity

50 100 150 200 250 300 350

of the largest families, and reports their function according to BLAST:

CT CP

12 12 ABC transporters
6 15 G family outer membrane protein
9 10 Function not known
5 7 Function not known

We can identify the function for some of these families, for example the
ATP-binding cassette (ABC) transporters. All cells acquire the molecules and
ions they need from their surrounding environment through their plasma mem-
brane. ABC transporters are transmembrane proteins that expose a ligand-
binding domain at one surface and an ATP-binding domain at the other sur-
face. Much like the proteins discussed in Chapter 4, they cross the membrane.
ABC transporters must have evolved early in the history of life, since the
ATP-binding domains in Archaea, Eubacteria, and Eukaryotes all share a ho-
mologous structure, the ATP-binding cassette; that they must cross the mem-
brane can also be seen by their alternating hydrophobicity profile, shown in
Figure 8.2.

Remark 8.1

Alternative approaches to finding orthologs. The clustering of genes into fam-
ilies also suggests another method for identifying orthologous genes between
species. If we were to construct a phylogenetic tree for all of the genes in a
family from both species, we expect that one-to-one orthologs would appear
as sisters to one another on the tips of the tree. This is because these genes
are separated only by a speciation event between the two genomes in our com-
parison. Although tree-building methods are generally considered to be more

8.4 SYNTENY 135

reliable than the reciprocal similarity method, they can be much less amenable
to automated analysis.

8.4 Synteny

Now that we have identified orthologous genes, we can put them back on to
chromosomes in order to examine changes in their physical position over time.
The relative ordering of genes on chromosomes is called synteny, and we can
examine whether syntenic relationships are conserved between species. As we
said earlier, inversions and transpositions are the most common mechanisms
by which syntenic relationships are reshuffled; insertions, duplications, and
deletions can all add noise to the study of synteny. Even with all of these
processes going on, it is often quite easy to identify “blocks” of synteny — long
stretches where the relative ordering of orthologous genes has been conserved.
Finding these blocks will be especially important for annotation of non-coding
sequences, as we cover in the next section. It will also allow us to define
homologous intergenic regions, which might have little or no similarity, and
hence could never be identified by alignment methods.

Visualizing synteny. One convenient, heuristic way to study synteny is by
constructing a dot-plot, as in Figure 8.3. To make a dot-plot, we simply line
up all the genes in each genome according to their positions and visualize
the similarity level between all possible pairs, often by plotting only pairs
whose similarity score is above a given threshold (here we have only plotted

orthologs).
1200
i
1000 . *
\ ﬁe
*ae F ox * *
800} ok *]
® k *&
(0] * *
W .
£ * N
S 600 ¥ * ¥ 1
: " o
s * Hox T ok %
(@]
*
400 1
* % #1505 Dot-plot showing
homologous genes in Chlamydia
200} % . | trachoma'tis and Chlamydia
% ** pneumoniae. Synteny blocks are
% clearly visible, as well as regions
‘ X ‘ ‘ where inversions have taken place.
00 200 400 600 800 1000 | Stars represent orthologous gene
C. trachomatis pairs

136

WELCOME TO THE HOTEL CHLAMYDIA: WHOLE GENOME COMPARISONS

In the dot-plot comparing the two pathogenic Chlamydia species we see that
there is almost complete synteny between the genomes. This is evident because
the genes with the highest similarity between the two genomes are also in
the same relative positions; hence, we see a strong diagonal line. However, two
major inversion events are clearly visible in the off-diagonal stretches. The order
of genes has been reversed, resulting in short stretches where the off-diagonal
line is strongest. There are also genes that have clearly been transposed to
another part of the genome in one or both species.

This high level of conservation in gene position is quite remarkable, but
seems to be typical of intracellular symbionts. In a comparison of the genomes
of two species of Buchnera, obligate intracellular symbionts of pea aphids,
there are no rearrangements or horizontal gene transfer events whatsoever after
50 million years. Apparently something about the cloistered lifestyle of these
symbiotic organisms shields them from contact with other bacteria or viruses
that may otherwise induce rearrangement.

Homologous intergenic regions and phylogenetic footprinting. Detection
of synteny blocks also enables us to identify homologous intergenic regions.
Generally these regions evolve faster than the rest of the genome, and hence are
more difficult to align and assign homology to than coding sequences. Using
genes as “anchors” to ensure that we are examining homologous intergenic se-
quences, it is then possible to examine the evolution of these quickly evolving
sequences. For instance, we can use intergenic regions to compute the under-
lying mutation rate in these stretches as we expect there to be little constraint
on nucleotide substitution.

Of course we know that there are non-protein-coding regions of the genome
that are conserved, possibly because they are RNA-coding genes or because
they are regulatory sequences. By anchoring our alignments with syntenic cod-
ing regions, it is much easier to find the relatively short sequences that are
conserved in non-coding DNA. This procedure is sometimes called phyloge-
netic footprinting, and has been used to find conserved regulatory sequences,
as well as coding regions. We have chosen a region of approximately 3500
bp that contains three ORFs preserving synteny between the two Chlamy-
dia genomes to examine further. Figure 8.4 was obtained by performing a
global alignment and plotting the degree of conservation between the two se-
quences, using a moving window of size 75 bp for smoothing. The result-
ing plot shows that intergenic regions are less conserved than regions within
ORF.

Sorting by reversals. An interesting algorithmic question is raised by the
study of synteny. Since two genomes can be formed by many smaller syn-
tenic blocks that have been rearranged by inversions or transpositions between
the two, we would like to have a metric of this syntenic distance. Obvi-
ously, simple pairwise alignment will not work, as we are interested in the
number of genomic rearrangements that separate the two species and not the
number of nucleotide differences. So we are interested in finding the small-
est number of inversion events that might have led from one genome to the
other; by “inversion event” we mean the inversion of a string of ORFs or

8.4 SYNTENY

137

701 1

60 1

301 1

Degree of Conservation

20 b

CT672
ORF CT671 - CP1949 || cP1950 CT673 — CP1951

0 500 1000 1500 2000 2500 3000 3500
Nucleotide Positions and ORF Boundaries

homologous non-coding regions. (It becomes a much more complicated prob-
lem to include transposition or translocation events; here we stick to the simplest
case where only inversions occur.) This algorithmic problem is called “sorting
by reversals.” We can informally state the problem as follows: given a permu-
tation of N numbers, find the shortest series of reversals that can sort them
back into their original order. A reversal in this case is the inversion of the
order of the entries in a given interval of indices, as illustrated in the following
table:

| 3 [2] 1| 4 8 7 6 5 9
I 2 3 4 [8] 7] 6] 5] 09
1 2 3 4 5 6 7 8 9

Here we see that there have been two reversals relative to the bottom sequence
of numbers: the middle sequence has an inversion from 5 to 8, while the top
sequence has an inversion from 1 to 3. In practice we do not know the original
order of the ORFs, only the relative orders. To deal with this we often designate
one of the two genomes as the standard, and try to apply a series of inversion
events to the other. We consider the minimum number of reversals as our dis-
tance metric (sometimes called the reversal distance). Note that there may be
multiple series of reversals between two sequences that have the same number
of steps (i.e. the same distance) but that solve the problem in a different order
or using different specific inversions.

The simplest greedy algorithm for finding the reversal distance be-
tween two sequences (the simple reversal sort algorithm) is carried out as
follows:

gt Phylogenetic footprint
of three contiguous ORFs in
Chlamydia. The homologous
intergenic regions show higher
divergence than the coding
regions, as expected

138

WELCOME TO THE HOTEL CHLAMYDIA: WHOLE GENOME COMPARISONS

Step 1: Designate one of the two sequences as the “standard” (s); reversals
will be applied only to the other, non-standard sequence (t).

Step 2: Starting from one end of the standard sequence, move along until there
is a position where the two sequences do not match: s; # t;.

Step 3: Perform the necessary reversal so that the symbol in the non-standard
sequence matches the standard. If the symbol at position s; is the
same as that in position t;, then the necessary reversal is from
t,‘ it e

Step 4: Continue to move down the sequence, applying reversals as necessary
until all of the symbols match.

Example 8.2
Simple reversal sort. One such application of the simple reversal sort algorithm
is shown below. Given these two sequences:

Standard 1 2 3 4 5 6 7 8 9
Non-standard 1 2 4 3 5 8 7 9 6

we first reverse 3 and 4 in the non-standard sequence:

1 2 3 4 5 8 7 9 6

then 8,7, 9, 6:

1 2 3 4 5 6 9 7 8
then 9 and 7:

1 2 3 4 5 6 7 9 8
and finally 9 and 8:

1 2 3 4 5 6 7 8 0O

This has taken us four inversions, for a total reversal distance of 4. In reality, the
number of operations performed on the standard sequence to produce the non-
standard sequence was three, but our greedy algorithm does not do well when
reversals overlap with one another. While this greedy solution may not give the
maximally shortest distance, it has the advantage of only requiring linear time.
Algorithms do exist that are better estimators of the reversal distance, but they
do so at an additional computational cost. We do not discuss these here, but
give pointers to the relevant literature in Section 8.6.

8.5 ' Exercises

(1) Study the dot-plot for Mycoplasma genitalium and Mycoplasma pneumo-
niae, shown in Figure 8.5. Discuss what series of inversions could have led
to such a configuration.

(2) Study the distribution of gene family size in Mycoplasma genitalium and
Mycoplasma pneumoniae, by first detecting all ORFs, then computing a
pairwise distance matrix, and finally clustering them (using methods dis-
cussed in Chapter 9 for clustering).

(3) Align two HIV sequences and produce a phylogenetic footprint of the entire
genome. Can you identify ORFs from this footprint?

8.6 READING LIST

139

700 T T T T

600 /-

(o))
o
o
T
1

N

o

o
T
*
1

Mycoplasma genitalium G-37
n W
o o
o o
*‘ *
\
*
¥ *
*
* *
*
* *
*

o

0 200 400 600 800 1000
Mycoplasma pneumoniae M129

(4) Figure out the three reversal steps that it takes to go from the stan-
dard to the non-standard sequences given in the “Sorting by Reversals”
section.

8.6 | Reading list

The genomic sequences of C. pneumoniae and C. trachomatis were compared
in Kalman et al. (1999). An interesting discussion of the evolutionary history
of Chlamydiae can be found in Horn et al. (2004), where it is suggested that
they might be related to the early history of eukaryotes, and possibly even to
the processes by which mitochondria became part of eukaryotic cells.

Rearrangement within organisms that have many chromosomes often in-
volves changes in chromosome number. The genomes of humans and mice
share remarkable levels of similarity in ORFs, but these are completely shuf-
fled. An important computational problem is that of identifying the smallest set
of moves that can transform a genome into another (where by moves we mean
inversions, transpositions, and other major operations). This is related to the
important research topic of sorting by reversals, and will not be discussed in
this introductory book. A discussion of that problem can be found in the article
Bourque et al. (2004), comparing human, mouse, and rat, and in the excellent
book Jones and Pevzner (2004).

Conserved sequences across multiple species are of great importance as
possible functional elements can be detected in this way. The paper Margulies
etal. (2003). discusses this problem. Statistical analysis and comparison across
various whole genomes can be seen also in Karlin ez al. (1998). A multi-genome
comparison of many strains of yeast helped to identify genes and regulatory

FI80EG Synteny analysis of
Mycoplasma genitalium and
Mycoplasma pneumoniae, using an
ORF dot-plot

140 WELCOME TO THE HOTEL CHLAMYDIA: WHOLE GENOME COMPARISONS

motifs (see Kellis ef al., 2003). A good overall introduction to the field of
comparative genomics is Koonin and Galperin (2002).

Free software packages are available for efficient alignment of whole
genomes, for example the tool MUMmer, developed by Stephen Salzberg and
his colleagues. Pointers to this and other software packages, and to all of the
above mentioned papers, datasets, and websites, can be found on the book’s
website:

www .computational-genomics.net

Chapter 9

The genomics of wine-making
Analysis of gene expression

9.1 = Chateau Haijji Feruz Tepe

In 1985 the world’s most expensive bottle of wine was sold at auction for
$160 000. This bottle of 1787 Chateau Lafite came from the cellar of Thomas
Jefferson (third president of the United States) and was apparently purchased
during his time as ambassador to France. While Jefferson’s Bordeaux is un-
doubtedly an historic artifact (and probably undrinkable), the oldest bottle of
wine dates to 5000 BC from the site of Hajji Feruz Tepe in Iran. This 9-liter
clay pot did not contain any liquid when found, but still had dried residue from
the wine it once held.

The recipe for making wine and other fermented beverages has not changed
much in the past 7000 years. A solution rich in sugars (usually fruit juice)
is turned into the alcoholic nectar we consume by exploiting a remarkable
organism: the yeast, Saccharomyces cerevisiae. This unicellular fungus extracts
energy from the environment by fermenting sugars, a process which produces
alcohol as a by-product. Because S. cerevisiae is found naturally on grapevines,
wine making is as easy as crushing grapes and putting them into a tightly
sealed container for a few months. During this time yeast transforms the sugars
contained in grape juice into alcohol, and this is why your wine is so much less
sweet (and more alcoholic) than the grape juice it started from.

When the yeast exhausts its supply of sugar, however, it must find a new
source of energy. When oxygen is available, the yeast transitions from fermen-
tation to respiration. Respiration allows yeast to use alcohol as a source of
energy. As a result, winemakers must keep oxygen out of the containers where
fermentation is taking place. (When yeast cannot ferment or respire, it goes
into a quiescent phase that allows it to conserve energy.) The switch between
fermentation and respiration requires the cell to turn off hundreds of genes in-
volved in fermentation and to turn on hundreds more involved in respiration.
This transition has been extensively studied by biologists, and is known as the
diauxic shift.

Gene expression data
Types of DNA microarrays
Data clustering and
visualization

Expression during the cell
cycle

142

THE GENOMICS OF WINE-MAKING: ANALYSIS OF GENE EXPRESSION

In this chapter we will learn how modern genomic techniques allow us to
monitor the internal activity of a cell in order to find the genes involved in the
diauxic shift and other cellular processes, such as the cell cycle. This is a crucial
part of both genome annotation and basic biology, revealing important clues
into a gene’s function. One technology in particular, known as a DNA micro-
array, lets us simultaneously measure the expression level of every gene in a
cell. The expression level essentially tells us the number of mRNA transcripts
that each gene is producing at a single point in time. Although the final objective
of most experiments is to know the amount of each active protein in a cell —
which we assume is an indicator of which processes are active in the cell —
censusing proteins is much more difficult to do than censusing RNAs. As a
consequence, biologists have turned to microarrays in the hope of better un-
derstanding cell function. Before describing the technology of microarrays
and their uses we need to review a few salient facts about Saccharomyces
cerevisiae.

The budding yeast. Saccharomyces cerevisiae is a fungus that goes by many
names: “brewer’s yeast,” “baker’s yeast,” and “budding yeast” (for its method
of replication by budding) are all common names for this unicellular eukary-
ote. Yeast’s connection to baking dates back to around the same time as the
discovery of wine making. When mixed with water, sugar, and flour, yeast
ferments the sugars in the dough and produces carbon dioxide (CO,) as a by-
product. Trapped bubbles of CO, cause the dough to rise. Partly because of
its commercial importance, S. cerevisiae has become one of the most studied
organisms in biology, and is now one of the standard models for genetics and
genomics.

S. cerevisiae is a complex organism, despite the fact that it is unicellular.
To start with, it is a eukaryote, so its genome is sequestered inside a nucleus.
The genome is organized into 16 linear chromosomes of double-stranded DNA
totaling 12.5 Mb (more than twice the size of most bacteria). The genome
contains approximately 6400 genes, about 2000 more than are in the bacterium
E. coli. S. cerevisiae was the first eukaryotic genome to be sequenced, in 1996;
a simple map of this genome can be seen in Figure 9.1.

The ability to transition between energy sources is not unique to yeast: many
organisms are known to exploit similar mechanisms. E. coli, for example, has
a well-studied mechanism that allows it to switch from glucose metabolism to
lactose metabolism when all of the glucose in the environment has been de-
pleted. Most such mechanisms — in both eukaryotes and prokaryotes — rely on
relatively simple switches to control production of the proteins that are neces-
sary in each state. We can imagine that many biochemical changes accompany
this transition: entire pathways involved in carbon metabolism, protein syn-
thesis, and carbohydrate storage must be turned on or off. Like an automobile
factory that can manufacture either cars or trucks, the raw materials available
for production largely dictate which assembly line will be used. While many
of the proteins involved in cellular assembly lines are not known, we can begin
to implicate genes via their association with the diauxic shift or other cellu-
lar changes. In order to do this it is extremely useful to monitor each of the
thousands of genes in a yeast cell, following their activity over time. Obtaining
this information gene-by-gene is slow and expensive; fortunately, this has now

9.2 MONITORING CELLULAR COMMUNICATION

143

IQO 390 590 7q0 9Q0 1 1‘00 13‘00 15‘00 17‘00 1?00
I 229,237
o 813,138
I 315,339
A 1,531,974
V B 576,870
VI B 270,148
VII | 1,090,936
VI] 562,638
X B 439,885
X \ 745 440
XI |) 666,448
XII | 1,078,172
XIII | 924,430
XIV [\ 784,328
XV | 1,091,283
XVI |) 948,062

become very efficient with the introduction of high throughput genomic meth-
ods such as microarrays.

The type of information obtained about gene function by means of mi-
croarrays is of vital importance to computational genomics, but as in the case
of sequences, it can only be extracted by means of computational analysis. This
chapter discusses various aspects of this process, starting with a description of
the uses and technology of microarrays. Following this we will analyze the data
from the original whole-genome analysis of yeast undergoing the diauxic shift,
as well as of the yeast cell cycle, and present the statistical and computational
tools necessary to complete the task.

9.2 | Monitoring cellular communication

In 1995, Pat Brown’s lab at Stanford University introduced microarrays to the
world. Microarrays allow scientists to monitor the activity of all the genes in a
genome in a single experiment. The data produced by microarray experiments —
expression levels for every gene — present many computational and statistical
challenges, but the potential of this method is so huge that a large effort is under
way to develop effective methods to analyze the information it provides. For
example, with microarrays we can look at the differences in expression between
cancerous and non-cancerous cells, at the effect of drugs on cellular function,
as well as how metabolic patterns change when yeast switch from fermentation
to respiration. As such, the analysis of gene expression has become one of the
fundamental tasks of computational genomics (as well as an economic force in
biotechnology), on par with the analysis of DNA sequences.

The purpose of microarrays. Imagine that you could flash-freeze a cell to
capture all of the thousands of messenger RNA (mRNA) molecules present at

m The genome of yeast S.

cerevesiae is formed by 16 linear
chromosomes, for a total length of
12.5 Mb (it also has mtDNA but
we neglect it in this map). The
length of each chromosome is
shown in bp on the right column.
This was the first eukaryotic
genome to be completely
sequenced, in 1996, and it contains
approximately 6000 genes

| 44

THE GENOMICS OF WINE-MAKING: ANALYSIS OF GENE EXPRESSION

a single point in time. These transcribed RNA sequences, or transcripts, are
a record of the proteins the cell intends to produce at this moment in time.
If you could count how many molecules of each type are present, you would
measure the level of activity of each gene. How would you count all those
molecules? The mRNA molecules all have a similar chemical composition
and are of relatively comparable length, differing only in the order in which
their nucleotides are arranged (which is determined by the gene that produced
them).

One way would be to sequence every mRNA transcript in your collection,
after reverse transcribing the mRNA to complementary DNA, or cDNA. While
this method is rather expensive, it is often done to help in gene annotation
since it provides clear evidence that a certain sequence is transcribed. Usually
referred to as expressed sequence tag (EST) sequencing, this method can help
to identify genes that ab initio gene-finding algorithms do not identify. But
EST sequencing is not meant to measure the number of transcripts present. In
fact, the collection of cDNAs is usually normalized before EST sequencing to
remove repeated occurrences of transcripts present in high numbers.

So unless we want to sequence each mRNA one-by-one, we need to exploit
some other aspect of DNA sequences to measure expression levels. Luckily
there is one such characteristic that can be used to distinguish among different
sequences: complementarity. Remember that DNA (or RNA) can be double-
stranded because it sticks to its complementary sequence. The important point
here is that it does so with high specificity. We can imagine constructing a special
probe that is a DNA sequence exactly complementary to an mRNA transcript.
If the transcript is present in a cell it will stick or hybridize to our probe; if it is
not present we get no hybridization. With hundreds of thousands of identical
probes for a single gene, we could in principle quantify the number of transcripts
present by measuring the number of probes that have been hybridized (given
that we can detect this hybridization).

Now the problem is that there are more than 6000 different genes in yeast,
and more than 20 000 in multicellular eukaryotes, such as humans. How can
we quantify the expression of all of these genes? This is the problem solved
by microarrays. While there are a number of types of microarrays, which we
describe in more detail below, the basic idea behind all of them is the same.
Complementary DNA sequences for every gene in a genome (the probes) are
laid down in great quantity on individual spots on a glass slide or silicon chip.
This is the microarray itself. Then the mRNAs from a cellular extract are washed
over this array to allow them to find and stick to their complements. By counting
the number of transcripts that bind to each spot, we can measure at least the
relative abundance of each.

This general description begs two further questions: How do we count the
number of transcripts bound to each spot, and how do we make an array that
contains over 6000 spots in such a small area? The first problem is solved
by labeling each transcript with a fluorescent dye; after hybridization a laser is
pointed at each spot on the microarray so that the fluorescence level can be mea-
sured by a computerized system. The greater the number of mRNA molecules
in a cell and therefore hybridizing, the greater the intensity of fluorescence at the
spot containing the complementary probe. The second problem of constructing
a microarray has a number of solutions, each of which strongly determines

9.3 MICROARRAY TECHNOLOGIES

145

experimental design and data analysis. We discuss the most common methods
in the next section.

9.3 | Microarray technologies

There are three main technologies for producing and carrying out microarray
experiments. These technologies differ in the amount of information about gene
sequences needed to construct them, in the accuracy of the data they provide,
and in the price of each experiment. The first two of these differences also
dictate the analyses that can be done with each platform.

cDNA arrays. The simplest microarrays — and the first arrays to be widely
used — are known as cDNA arrays. Simply, cDNA arrays are manufactured
by spotting droplets of pre-made complementary DNAs on a glass slide. Pat
Brown’s lab website has maintained the instructions for making homemade
cDNA arrays for more than ten years. Of course, these directions include the
use of a robotic arm that can spot hundreds of micro-droplets of cDNA at a
time, but most universities have at least one such printer and many labs now
have their own.

One of the great advantages of cDNA microarrays is that no prior knowledge
of the gene sequences is needed in order to measure expression levels. While this
might sound paradoxical, as we explained earlier there are common methods
to capture all of the transcripts expressed in a cell. If we make a collection
of these mRNA transcripts, regardless of whether we know the sequence of
each, we can spot them as cDNAs on the array as our probes. Thereafter, we
can hybridize RNA from new cellular extracts to measure expression levels.
If there are spots that show interesting patterns (we explain what we mean by
“interesting” later), then we can sequence the DNA in that spot to find out what
gene it represents.

As we can imagine, there can be huge variation in exactly how much cDNA
is printed on each spot of our array. If we cannot be sure that every spot has
exactly the same amount of cDNA — and therefore that fluorescence intensities
are comparable across spots and across arrays — then we must somehow con-
trol for this unevenness. For this reason, cDNA arrays are used by hybridizing
two samples to each array. The two samples are labeled with different fluores-
cent dyes, usually Cy3 (green) and Cy5 (red), that can be read separately by
image-processing software.

The data that result from cDNA array experiments are generally represented
as the ratio of fluorescent intensities of the two samples (usually as the log of the
ratio). As such, these experiments are not meant to measure the absolute level of
expression of genes, but rather relative changes in the expression of individual
genes between samples. This means that we cannot necessarily distinguish
among expression levels of all the genes in a single sample, only the differences
within a single gene between samples. This basic microarray was the first to
be widely used and was the platform for the 1997 Science paper studying
yeast sampled at various stages of the diauxic shift that we discuss in our case
study. Though it is the most primitive technology in some respects, many of

146

THE GENOMICS OF WINE-MAKING: ANALYSIS OF GENE EXPRESSION

the statistical tools developed for the analysis of cDNA arrays are applicable to
all arrays and will be discussed in the case study.

Remark 9.1

Experimental design. One important issue in microarray experiments using two
dyes is that the two most common fluorescent dyes, Cy3 and Cy5, differ in their
size and rate of decay. For this reason, it is often necessary to include a “dye
swap” in experiments. In effect, each sample is run labeled with both Cy3 and
Cys5 to accurately measure expression. Generally the average of the two ratios
is used as a single value for each spot; alternatively, linear models including
dye as a covariate are gaining in popularity.

Remark 9.2

Image processing. A key step in obtaining the data from microarray experiments
is neglected in this book: image processing. Every array experiment involves
reading the fluorescent intensity of each spot using a scanner or other device,
and then transforming this intensity into a numerical value that is used as data.
Of course one should be aware of the methods (and potential errors) of this
step in the experiment, as it may affect the quality of the data analysis. For
simplicity in this introductory text we ignore this aspect of data collection and
refer the reader to more advanced books.

Oligonucleotide arrays (two-dye). Soon after the first use of cDNA arrays
in measuring gene expression, more advanced methods for constructing arrays
were introduced. These methods use chemical or photolithographic technolo-
gies to synthesize oligonucleotides (short DNA sequences) on to the array. Each
gene can then be represented on the array merely by synthesizing the appropri-
ate sequence. These sequences are usually 25 to 80 bases long, depending on
the exact technology used. Of course the synthesis of 6000 or more spots with
specific oligonucleotides requires that we know the sequences a priori through
genome annotation. Oligonucleotide arrays can either use one or two dyes
(and therefore one or two samples per array). Two-dye arrays are conceptually
similar to cDNA arrays, so we discuss these first.

The most common two-dye oligonucleotide arrays are made by companies
such as Agilent, Incyte, and NimbleGen. These companies often have pre-
made arrays for the genomes of many organisms available for purchase. These
arrays contain from one to a few probes per gene, each of which is 60 to 100
nucleotides long (there is usually no variation in oligo length within arrays, only
between companies and the technologies they use to synthesize probes). While
the commercial synthesis of oligonucleotides results in a much more consistent
number of probes across spots, two-dye arrays are still generally analyzed as
ratios of the two samples.

Though we will not discuss it here, there are quite a number of compu-
tational challenges in the design of oligonucleotide arrays. Because we want
an array whose probes will complement only a single gene, we need to pick
oligonucleotides that are specific to individual genes. While this may sound
relatively simple, many recent gene duplicates will be extremely similar to one

9.4 CASE STUDY: THE DIAUXIC SHIFT AND YEAST GENE EXPRESSION

147

another (as we saw in Chapter 8). The computational challenge is to design
the probes such that they span regions that differ between closely related genes
(paralogs). This will be especially important as the length of the oligonucleotide
gets bigger, as longer probes will likely complement sequences with one or two
mismatches.

Oligonucleotide arrays (one-dye). The most common single-dye oligonu-
cleotide arrays are manufactured by the Affymetrix Corporation, and are some-
times referred to by their commercial trademark name, GeneChip microarrays.
Affymetrix arrays use from 10 to 20 individual 25 bp oligonucleotides to repre-
sent a gene. These probes are intended to provide 10 to 20 independent expres-
sion measurements per gene. (Note that the probes are not truly independent
as the probe sequences often overlap each other.) In addition, each probe has
a paired “mismatch” probe that is exactly the same sequence as the “perfect
match” except that the 13th nucleotide is changed. Because of the short probe
length (25 bp) on Affymetrix arrays, the mismatch probes are intended to be
used as a correction for non-specific hybridization. However, there are many
disagreements over the usefulness of the mismatch probes, and they seem to be
falling out of use in the majority of studies.

The high accuracy of Affymetrix arrays and the fact that only single samples
are used means that absolute levels of expression can be inferred from GeneChip
experiments. These expression levels are actually averages of the numerous
probes that represent a single gene, but even the average expression level can
identify differences within and between samples. On the other hand, multiple
studies have shown that the more 3’ a probe is, the higher the fluorescence
intensity. This is most likely due to the fact that mRNA degrades from 5" to 3'.
But the one-chip/one-sample design of Affymetrix arrays means that many of
the issues in experimental design are obviated.

9.4 Case study: the diauxic shift and yeast
gene expression

In 1997 Joseph DeRisi, Vishwanath Iyer, and Patrick Brown produced the
first study that used microarrays to monitor gene expression over time in a
single organism. The experimental design used by DeRisi and his collaborators
to study expression across the diauxic shift in yeast was relatively simple.
Following an initial 9 hours of growth, for 12 hours — approximately six hours
before and six hours after the shift — they sampled cultured yeast every two
hours and isolated mRNA from each sample. Because they were using cDNA
arrays, at each time point they compared the mRNA collected at that time to
the mRNA collected at time O (the first collection). This experimental set-up
is generally referred to as a reference design in the microarray literature. The
resulting dataset contains just over 43 000 ratios: seven time-points times 6400
genes measured at each point.

Among the main challenges presented by this kind of data is the fact that
the number of microarrays used in each experiment is typically much smaller

148

| THE GENOMICS OF WINE-MAKING: ANALYSIS OF GENE EXPRESSION

m The expression level of

most genes remains invariant over
time. This histogram shows, for
each of the seven time points, the
distribution of expression levels
(measured as the logarithm of a
ratio compared to time 0). Most
genes have value close to zero,
suggesting no or little activity

400 T T T T T T T T
I time 1
asol I time 2| |
I time 3
time 4
300 time 5| 1
I time 6
I time 7
250 1
200 R
|
150 R
100 | 1
50 1
0 1 1 1 i 1
-10 -8 -6 -4 4 6 8

than the number of genes screened by each of them, mostly due to the cost
of running arrays. This situation creates high-dimensional datasets with low
sample sizes (the so-called “large p, small n”” problem). Coupled with the rela-
tively high noise levels among arrays, detection of significant patterns becomes
a statistically challenging task.

There is no standard routine for all microarray analyses. Sometimes arrays
are used as discovery tools, and as such do not require stringent standards
for hypothesis testing. At other times arrays are used to explicitly test for the
effect of a condition or mutation on gene expression, and more replication
may be needed to obtain statistically significant results. Most often microarray
experiments provide researchers with a list of candidate genes that deserve
closer attention in future experiments. In order to produce such a list, there
are a few standard analyses that can be carried out. These analyses can all be
categorized as exploratory data analysis (a field of statistics unto itself), and in
microarray experiments the basic set of analyses consists of data description,
data clustering, and data visualization. Additional methods, like classification-
learning algorithms, can also be employed. We use the same dataset presented
in the study from DeRisi ef al. to examine and discuss some of these methods.

9.4.1 Data description

The first thing we can explore in this dataset is the relative change in activity of
all 6400 genes. Figure 9.2 shows that most genes do not change their activity
at all over the 12 hours sampled, and thus are relatively stable in the face of the
diauxic shift. In fact, between the first two measurements less than 5% of the
genes change more than 1.5 fold. As glucose runs out during the experiment,
more genes show many-fold increases, but they are still on the order of hundreds
of genes in a set of 6400.

9.4 CASE STUDY: THE DIAUXIC SHIFT AND YEAST GENE EXPRESSION

149

3000

2500 b

2000 i

1500 1

1000 1

500 b

The remaining genes are either not expressed during this time (many genes
are only turned on during specific times or in specific environments), or are
so necessary to basic cellular function that they need to be on all the time at
constant levels. Remember that 2-dye arrays do not allow us to measure absolute
expression levels, just relative changes in concentration.

The maximum change in expression observed above the level at time 0 is
a 16-fold increase. Because there was little replication in this early microarray
experiment we cannot say whether any of these changes are significant. It may
be, in fact, that many of the genes that were increased only 1.5-fold (or 1.0001-
fold) were important, replicable changes that the cell made in order to adjust to a
changing environment. And it may be that 10-fold changes in other genes affect
very little within the cell. Biologists cannot yet generalize the consequences of
changes in expression for most genes.

While a simple description of the maximum change in level of expression
for any single gene is quite revealing, it neglects the pattern of change over time
that occurs in many genes. Most do not simply change in expression at a single
time point, but rather either gradually go up or down, or follow a completely
different pattern. In addition, as we will see in the next section, many of the
genes that do change in level of expression share the same pattern of change
over time with one another, and thus appear to be coordinately controlled by
the cell. No simple statistic can capture the entirety of this dynamic expression,
but measuring the range of expression — the difference between the highest and
lowest ratios — does at least help us to find those genes that appear to be very
active. Figure 9.3 shows the distribution of the variance and Figure 9.4 that of
the range of values assumed by each gene.

In these conditions, with a large set of genes essentially remaining constant,
and with few genes showing visible activity, it is essential to focus the analy-
sis on the more promising subset of variable genes. Our next set of analyses

m Most yeast genes do not

change their expression level
during the experiment. We
consider here the variance
(computed across the seven time
points) of each of the 6400 genes.
This histogram shows how the
variance is distributed.

150

THE GENOMICS OF WINE-MAKING: ANALYSIS OF GENE EXPRESSION

v The range of the values
assumed by a gene is plotted here
for each gene. Note that most
genes move within a small range of
values, while some of them vary
significantly

700

600

500

400

300

200

100

aim to find those genes that do change in expression over the course of this
experiment, and to describe the common patterns (if any) in change among
genes. In order to do this, we will narrow down the set of genes considered to
include just those whose maximum fold-change is greater than a certain thresh-
old. This leaves us with a much smaller set of genes, focusing our attention on
the subset of genes whose expression level changes significantly during this
experiment.

We can use various methods to achieve this. The simplest one is to measure
the variance of a gene, and to simply keep those genes that have high variance.
The goal is to retain just a few hundred “interesting” genes.

Remark 9.3

Missing data. The original 6400 x 7 matrix used in the experiment has various
entries with missing values, possibly due to errors of measurement or in the
construction of the array. Statisticians have many ways of dealing with the
problem of missing data, but for this study — due largely to the abundance of
data — we take the wasteful approach of simply neglecting any gene having at
least one missing value.

9.4.2 Data clustering

We will not limit ourselves to the analyses that were performed in the original
paper, but rather will apply to this dataset a wider range of techniques that
have since become standard, many of them borrowed from the fields of pat-
tern recognition, data mining, and multivariate statistics. These largely over-
lapping fields deal with different aspects of data analysis and have created
a rich toolbox of algorithms that can readily be applied to gene expression
data.

9.4 CASE STUDY: THE DIAUXIC SHIFT AND YEAST GENE EXPRESSION

151

One of the most basic tasks in pattern recognition is clustering, namely the
identification of subsets of data that have high internal similarity, as well as
low inter-cluster similarity (similar to finding gene families, as in Chapter 8).
Of course the definition of clusters in the data relies on the specific distance
measure used between two data points, in this case between two gene expression
profiles (similarity and distance are of course two sides of the same coin). After
one such distance measure has been defined, we also need to define a criterion
by which we partition the dataset into clusters; distances by themselves do not
define clusters. The definition of the distance measure, the clustering criterion,
and the algorithm needed to find clusters are conceptually separate steps, and
various combinations are possible. We go through some of the most common
methods below.

Distance measures. Depending on what aspect of the data we want to capture
within clusters, we can define different distance measures between data points.
For example, we could use some function of the Pearson correlation coefficient:

> =B =)

NOMETE D W

This type of correlation captures information about the similarity in relative
behavior of two expression profiles, but does not consider similarity in the mag-
nitude of change. A Euclidean distance, on the other hand, includes information
on the absolute difference between two expression profiles. More sophisticated
measures are possible, depending on what aspect of the data we want to em-
phasize. Among the most popular choices are: standardized Euclidean distance,
Mahalanobis distance, and cosine distance. Here we use the simple similarity
metric based on the correlation coefficient: d(x, y) = 1 — C(x, y).

Clx,y)=

Clustering criterion. A clustering criterion allows us to define which points
should be considered as belonging to the same cluster. A simple way to calculate
a clustering criterion is to subtract the sum of between-cluster distances from
the sum of within-cluster distances (here S is the data sample, C(S) is the “cost”
or “quality” of the clustering, and x; the generic data point i):

C(S) = > d (xi,x;) — > d (x;, x)).
i,j in same cluster i.j in different clusters

Once the distance measure between data points has been established and a
clustering criterion has been defined, we still need to search among all possible
partitions of the dataset in order to find the one that maximizes the clustering cri-
terion. Unfortunately it turns out that optimizing the clustering of the data over
all possible decompositions of it into clusters is computationally intractable.
However, various approximation strategies are available. Two classic “greedy”
methods are hierarchical clustering and k-means clustering. They are outlined
below.

Hierarchical clustering. Hierarchical clustering is the simplest approach to
clustering. The basic idea is the same as that of the NJ and UPGMA algorithms
for phylogenetic trees mentioned in Chapter 7. It starts with a distance matrix
between all pairs of datapoints, then iteratively identifies the closest pairs,

152

THE GENOMICS OF WINE-MAKING: ANALYSIS OF GENE EXPRESSION

This example shows
how clusters can be represented
by subtrees, in hierarchical
clustering approaches. The leaves
in the tree correspond to points in
the lower half of the image
(representing data points)

251

1.5F

0.5

12 15 13 14 1 2 3 4 5 6 8 10 7 11 9

fé?g *14
*13 E
%10

*1 *2 %9
0’ %4 %5 i

merges them into a new cluster, and computes the distance between this new
cluster and all the other points or clusters; the cycle is then repeated. When
only one element is left in the matrix, the system stops. Notice that in order for
the algorithm to be fully specified, we also need to define a distance between
sets of points. A popular choice is called single linkage: distances between
groups is defined as the distance between the closest pair of objects, where
only pairs consisting of one object from each group are considered. Another
standard choice is called average linkage: the distance between two clusters is
defined as the average of distances between all pairs of objects, where each pair
is made up of one object from each group. More sophisticated notions can also
be devised.

By keeping track of which points have been merged into which clusters, the
algorithm can then produce a tree, though of course this cannot be interpreted
in the same manner as a phylogenetic tree. After choosing how many clusters
we want, we can cut the tree at the appropriate level. At the root-node level,
we have one single cluster containing all the data; at the leaf-nodes level, we
have n clusters containing one data-point each; in between, the cluster structure
of the dataset can be analyzed. Figure 9.5 demonstrates these concepts on an
artificial dataset of 15 points on a multidimensional scaling plane.

Hierarchical clustering thus creates a hierarchy of clusters from small to
big, and allows the user to choose the desired number of clusters after seeing the
results. Various numbers of clusters can be defined using the same tree, without
re-computing the distances each time. In k-means clustering —described below —
we need to repeat the entire procedure when a different number of clusters is
desired.

We can apply this method to the yeast dataset, arbitrarily choosing to ob-
tain nine clusters. These are displayed in Figure 9.6. Notice that they more or

9.4 CASE STUDY: THE DIAUXIC SHIFT AND YEAST GENE EXPRESSION 153

2V The expression profiles
of yeast genes associated with
each of the nine clusters in a
hierarchical clustering tree

1
2
0 0
1 1 -1
-2
-2 0 3
0 10 20 0 10 20 0 10 20

less cover the various behaviors that can be expected: increasing, decreasing,
peaking, etc. There appears to be a cluster with only a single representative,
so it is possible that forming fewer than nine clusters would have been a better
choice. Notice also that a cluster for constant genes is not present, as they have
all been eliminated in our earlier pre-processing step. This would have been
the largest cluster. One additional important thing to note is that the majority
of genes do not simply shut off or turn on at the mid-point of the experi-
ment: it appears as though the diauxic shift is not a single point in time, but
rather a gradual switch from one set of internal and external conditions to
another.

k-means clustering. This method starts by choosing how many clusters we
want to obtain from our dataset. We call this number k. The clusters are implic-
itly defined by specifying k points called centers or prototypes. Each datapoint
belongs to the cluster represented by the nearest center. The iterative strategy
known as k-means starts with a random choice of k centers, and then replaces
them with the means of the clusters defined by them. The new centers spec-
ify new clusters, and hence new means, etc., and the algorithm iterates until
it converges. The result is a local minimum of the above clustering criterion.
One advantage of this method is that we can also plot the centroids as a way to
represent the clusters and to summarize the data.

We applied the k-means algorithm for kK = 9 to the yeast data, obtaining
the results shown in Figure 9.7. Again, it seems that the main types of gene
expression behavior have been captured. We also report in Figure 9.8 the nine
prototypes that represent the nine clusters.

Gene function and clustering. The earliest studies of microarray data often
found that genes with similar expression profiles had related functions. This of

154

THE GENOMICS OF WINE-MAKING: ANALYSIS OF GENE EXPRESSION

The expression profiles
of yeast genes associated with nine
clusters obtained by the K-means
algorithm. See Figure 9.8 for the
prototypes associated with each of
the clusters

S0V The prototypes
representing each of the nine
clusters in Figure 9.7

course makes sense, because if genes are involved in the same cellular process
(say the diauxic shift), then they should be expressed at the same time. This
also immediately suggests a possible strategy for functional annotation of a
genome where the function of only a few genes is known. Indeed, one of the
main attractions of gene expression analysis is that it can be used to infer gene
function information from simple data analysis. Especially when combined
with information on gene family relationships and experimental associations
using other technologies, many of the functions of unannotated genes can be
inferred using microarray data.

9.5 BONUS CASE STUDY: CELL-CYCLE REGULATED GENES

155

9.4.3 Visualization

Detecting patterns in a large matrix of numbers is not easy for most people,
but there are various ways to visualize the data so as to make patterns readily
visible (though this is not necessarily any better than a statistical analysis).
Among the many methods used to sort the data for visualization, ordering the
genes according to their position along individual chromosomes might reveal
some patterns (it has been shown that neighboring genes are often expressed
similarly). Ordering them based on the results of our hierarchical clustering
might also reveal interesting patterns.

Of course given a cluster-tree (or dendrogram) there is still significant free-
dom to the ordering imposed by the tree topology on the list associated with
the genes. To be precise, there are N! possible permutations of a list of N
elements; when a tree is fixed, for example by hierarchical clustering, there
are still 2V equivalent permutations. So some extra heuristic needs to be in-
voked to break the ties, often as simple as alphabetic ordering or chromosomal
position.

Once an ordering of the list has been chosen, the second step is often
to display numbers as colors. The numeric values of each cell can be color
coded, resulting in the very popular heatmaps that are often associated with
microarray experiments. Black represents the experimental mean or a ratio
of 1, while green represents increased expression (ratios greater than 1) and red
represents decreased expression. Note that though heatmaps are often color-
coded red and green, this has nothing to do with the fluorescent dyes used in
the experiment: any colors could be used. Figure 9.9 shows one such heatmap
of the clustered data.

9.5 | Bonus case study: cell-cycle regulated genes

The diauxic shift is not the only change that occurs during the life of a yeast.
In the course of normal existence, in fact, each individual yeast will go through
what is known as the cell cycle. From being budded off from its parent cell, to
reproducing its own offspring, each yeast goes through a number of typical steps
that also involve changes in gene expression, turning whole pathways on and
off. In 1998, Paul Spellman and colleagues (again from Stanford University)
examined expression of the entire yeast genome through two rounds of the
cell cycle over the course of five hours, with samples taken at 24 different
time points. (Note: They performed the experiment with a number of different
protocols, with differing numbers of time points sampled in each protocol.
We discuss only the experiment with the largest number of samples here.)
This corresponds to a dataset of about 6000 rows (one for each gene) and
24 columns.

In order to identify genes that vary with the cell cycle, Spellman et al.
compared the expression of genes over time with sine and cosine functions of
a period approximately similar to the length of cell cycle. This is equivalent to
looking for genes that go up and down in expression in a regular pattern. One
way to find such genes is to first cluster the data via k-means methods, then to
compare clusters to cosine or sine functions. When we do this, we find various

156 THE GENOMICS OF WINE-MAKING: ANALYSIS OF GENE EXPRESSION

9.5

VA Heatmap of the
expression profiles for yeast genes.
The genes are clustered by profile
similarity, and the activity levels are
color coded

11.5 13.5 15.5 18.5 20.5

sets of genes with clearly periodic behavior, just as Spellman and colleagues
did.

For simplicity here we cluster the genes based on the correlation coefficient,
as we did before. After a first filtering of the 6400 genes — to remove those
with missing values and those with very low variability — we clustered the
remaining ones with k-means into 16 clusters (an arbitrary choice), as shown in
Figure 9.10. The advantage of using k-means in this context is that it produces,
as a by-product, the center of each cluster, shown in Figure 9.11. This can
be used to determine if a cluster contains periodic genes, by comparing the
center to periodic functions such as cosines of various frequencies and phases.
By computing the correlation coefficient between these cluster centers and a
cosine function, it is possible to identify as periodic clusters numbers 1, 3, 4, 6,
and 15. Of course, different choices of tunable parameters would give different
results, but these conclusions are stable and seem reasonable.

9.5 BONUS CASE STUDY: CELL-CYCLE REGULATED GENES

157

FSVA L The gene expression

profiles associated with each of the
16 clusters discussed in Section 9.5

5 101520

5 101520

5101520 5 101520

The prototypes
associated with each of the 16
clusters shown in Figure 9.10

It is interesting to note how many genes of yeast are regulated by the cell-
cycle, a number much larger than what was previously known. A single set
of microarray experiments, followed by careful data analysis, can instantly
reveal important clues about the function of hundreds of genes, and greatly
help genome annotation.

The paper by Spellman et al. went on to analyze the upstream sequences
of these genes, looking for DNA elements that might be responsible for this
periodic and coordinated control. We will not discuss these methods here, as
the next chapter is entirely devoted to this task.

158

THE GENOMICS OF WINE-MAKING: ANALYSIS OF GENE EXPRESSION

9.6 Exercises

(1) Download from the book’s website the yeast dataset used in the examples
above, and cluster it using hierarchical clustering. Try obtaining 2, 3, and
20 clusters. Try different distance measures. Discuss the results.

(2) Visualize the same dataset using one of the many tools available online
(accessible via the book’s website).

(3) Do a web search to discover the main applications of gene expression
data analysis, and the main tools. This is a fast-evolving field, and new
technologies are important. Discuss one of the applications.

9.7 | Reading list

The first paper to demonstrate a whole genome analysis over time with cDNA
microarrays is that of DeRisi et al. (1997). Shortly after that, a paper discussing
pattern recognition algorithms for microarrays appeared (Eisen et al., 1998),
introducing methods of clustering, visualization, and other techniques. The
analysis of the cell cycle with microarrays can be found in Spellman (Spellman
et al., 1998), and in Chu (Chu et al., 1998).

A book discussing many of these topics in much greater depth is Baldi and
Hatfield (2002). The website of Pat Brown’s Lab (link available on the book’s
website), contains much information about the construction of microarray fa-
cilities, as well as about many applications of this technology. Data about the
yeast genome can be found at: www.yeastgenome.org.

Machine learning and pattern recognition approaches are routinely used to
predict gene function based on microarray data. Brown et al. (2000) describes
the use of support vector machines for this task.

The tools and methods we have discussed here are only the tip of the
iceberg when it comes to microarray analysis. Free software packages for
microarray analysis range from the popular tools made available by Mike Eisen
on his website, to more sophisticated methods contained in BioConductor, a
set of tools written in the statistical language R. All of these packages will
lead the reader to more sophisticated methods of analysis. Pointers to all of the
above-mentioned papers, datasets, and websites, can be found on the book’s
website:

www.computational-genomics.net

Chapter 10

A bed-time story

|dentification of regulatory
sequences

0.1 ' The circadian clock

As you step off a trans-oceanic flight into the midday bustle of an airport, your
body may be telling you that it’s time for bed. This is because our body’s sense
of time depends as much on an internal clock as it does on external cues. Our
internal clock — known as the circadian clock — will eventually synchronize
itself with the new day—night cycle, but not before we suffer through the mind-
deadening effects of jet lag. Reestablishing a link between the external clock
(the sun) and our internal clock is essential for human health. Disruption of
circadian rhythms has been linked to mania in people with bipolar disorder, and
various health problems manifest themselves more often during the morning
(heart attacks) or at night (asthma attacks) depending on our internal clock.

The circadian clock is fundamental to many organisms. Bacteria, insects,
fungi, mammals, and many other species maintain an internal clock in order
to synchronize their metabolism, activity, and body temperature to the sun. In
no other organism is the ability to keep time as important as it is in plants.
Much more than in mobile species, plants depend on a steady day—night cycle
for energy production: they are able to photosynthesize sunlight during the day
to store energy, but must use up these stores at night. Maintaining a circadian
clock can confer a significant advantage by allowing the plant to anticipate
dawn, dusk, or even seasonal changes.

Plants lead a relatively stressful life, dependent on their environment for
many needs, such as nutrients and water, but are unable to move. Unlike mobile
organisms, plants often react to external challenges by changing their internal
condition. For instance, they may produce chemical insect repellents as soon as
they detect an herbivore (nicotine is one such insecticide), or they may produce
anti-freeze proteins in reaction to falling temperatures. It is easy to see how
the ability of a plant to anticipate such changes can directly translate into a
competitive advantage. This is why a circadian clock is so important.

* Regulatory regions and
sequence motifs

* Motif finding algorithms

¢ Combining expression and
sequence data

160

A BED-TIME STORY: IDENTIFICATION OF REGULATORY SEQUENCES

Many of the most important steps in maintaining a circadian clock have
been studied in the plant, Arabidopsis thaliana. Arabidopsis, whose common
name is mouse-ear cress or thale cress, is a small, weedy organism that has
become the model genetic and genomic study system for plants. Its genome
is approximately 120 Mb long, with five chromosomes and 29 000 genes. (It
should be noted that the rice genome has also been sequenced, and appears to
also have more genes than humans with at least 36 000.)

Arabidopsis has a cell-autonomous circadian clock, meaning that each cell
keeps track of the day—night cycle independently of all other cells. Experiments
in tobacco plants have shown that you can keep different sides of the same plant
on effectively opposite circadian clocks by alternating the amount and duration
of light exposure to each half. If you remove the day—night cycle by keeping
Arabidopsis in constant light or in constant darkness, it loses the periodicity of
the circadian clock over a matter of days. Mice kept in constant light, on the
other hand, can maintain the steady rhythm of the circadian clock over a period
of months. These experiments demonstrate that the Arabidopsis circadian clock
is coupled to stimulus from the sun, and that this stimulus is needed to reinforce
internal metabolic cycles.

How does Arabidopsis tie the external clock set by the sun to cellular ac-
tivity? It does so largely by controlling the activity of a few key proteins that
sit at the top of giant gene cascades. Although all of the steps are not known,
it appears that three proteins — LHY, CCA1, and TOC1 — are the key players
in an oscillatory loop. These three proteins take part in a negative feedback
loop: LHY and CCAL are activated early in the morning (partly by sunlight)
and act to repress the transcription of TOC1. (Remember that gene names are
generally italicized and protein names are not.) As the supply of LHY and
CCA1 dwindles with diminishing light, TOC1 is produced. During the night
the production of TOCI is at its peak, and TOC1 actually acts to promote the
transcription of LHY and CCA1, which in turn act to shut down TOC1 pro-
duction. Thus a simple negative feedback loop, like those found in many ma-
chines, serves to maintain the internal oscillations of the Arabidopsis circadian
clock.

LHY and CCAL also affect the expression of many other genes tied to
the circadian clock. These two proteins are transcription factors that act to re-
press or promote the expression of many other genes. By their action, LHY
and CCAL1 sit at the top of gene cascades that allow the plant to turn on
and off large groups of genes needed at different times of day and night.
They do so by binding to specific regulatory sequences (called transcrip-
tion factor binding sites, or TFBS for short) adjacent to the genes that they
regulate.

In this chapter we will learn how to find the regulatory sequences that
control gene transcription. This is generally a difficult task because of a number
of features of binding sites discussed in the next section. From the perspective
of sequence analysis, binding sites appear as sequence motifs, that is specific
patterns in DNA sequences (see, for example, the discussion in Chapter 4).
However, by clustering genes to find those that have similar expression patterns,
we will be able to identify the common sequence motifs that contribute to this
co-expression. In the previous chapter we covered the basics of the clustering
of gene expression profiles, and how to identify sets of expression profiles that

10.2 BASIC MECHANISMS OF GENE EXPRESSION

161

cycle together; here we will learn the algorithms that allow us to identify the
regulatory sequences key to the cycling of the circadian clock in Arabidopsis.

10.2 | Basic mechanisms of gene expression

The goal of this chapter is to present the algorithmic and statistical issues that
arise when we search for transcription factor binding sites in DNA sequences.
Before we address these issues (generally called motif finding), we briefly re-
view the mechanisms by which gene expression is regulated and a few properties
of binding sites that may help us in our task of finding them.

The most common way for cells to control the activity of proteins is by
controlling the level of transcription of genes. Cells can also regulate protein
activity by controlling the number of mRNA transcripts available for transla-
tion (through degradation of mRNAs), by post-translational modifications of
proteins that determine whether they are in active or inactive states, or by a
number of other mechanisms. But to maximize efficiency, the level of proteins
is best regulated by controlling gene expression in the first place.

Regulatory DNA: the genetic signposts. A gene embedded in random DNA
is inert. Without additional signals that direct the transcriptional machinery,
both prokaryotic and eukaryotic cells cannot know where to start transcribing
the DNA necessary to construct a protein. In addition, an organism must have
a way to control how much of a protein to produce, when to produce it, and
in which cells (if it is multi-cellular) to produce it in. All of these tasks are
controlled in part by regulatory DNA.

Regulatory DNA (also called cis-regulatory DNA, or simply the promoter)
is the sequence surrounding a gene that specifies proper transcription; it is a
mosaic of short sequence motifs (6—12 bases long) and semi-random DNA (see
also Figure 2.2). These short motifs, or binding sites, are usually found upstream
(i.e. 5') of coding regions, but they can also be found downstream (3') or even
within untranslated parts of the transcribed gene. (The start of transcription is
labeled position +1, and anything upstream is numbered —1, -2, etc.) Binding
sites direct transcription by binding specific transcription factors; these proteins
bind to the regulatory DNA and drive transcription.

One of the most important transcription factor binding sites is the one
bound by RNA polymerase — the protein that carries out transcription. In Eu-
bacteria, the binding sites are relatively rigidly defined: there is a “—10" se-
quence, TATAAT, and a “—35” sequence, TTGACA (where the positions of the
sequences are approximately 10 and 35 bases upstream of the start of tran-
scription, respectively). While variants of these sequences appear quite often,
these consensus sequences represent the most commonly used nucleotides at
each position in the binding sites. In Eukaryotes, a different RNA polymerase
is used, and hence a different binding site is used. The so-called TATA-box
consists of the sequence TATAA [A/T] by itself (where the last base can be
either A or T with equal frequency), approximately 40 bases upstream of the
start of transcription. Of course the start of transcription may itself be many
bases upstream of the start of translation (where the start codon, ATG, is found),
so identification of the true TATA-box is not a simple task.

162

A BED-TIME STORY: IDENTIFICATION OF REGULATORY SEQUENCES

Computational challenges in finding binding sites. 1It is extremely difficult
to identify the transcription factor binding sites that control a gene by com-
putational means alone. There are many reasons for this, but three stand out:
(1) transcription factor binding site motifs are short and will therefore ap-
pear thousands of times in a genome by chance alone, (2) variants on these
motifs that are one or a few bases different from each other will often bind
the same transcription factor, and (3) we often do not even know the bind-
ing site motifs that are recognized by a transcription factor, much less their
location.

One strategy to identify TFBSs that has been used to some success in-
volves the methods discussed in Chapter 8: comparison of different genomes
to identify conserved elements in intergenic regions. Although some mutations
to binding sites will not compromise their function, a majority often result in
a lower binding affinity of the transcription factors that must locate and bind
them. Therefore, identifying short motifs that appear to be conserved over long
periods of time helps to identify functional regulatory sequences. This tech-
nique has been applied to organisms ranging from yeast to mammals, with
apparent success in identifying otherwise unknown binding sites. A drawback
to this approach is that it only produces a list of possible binding sites, but does
not give any information about their function or even the transcription factor
that binds to them.

Another common method can be used to find binding sites as well as in-
formation about their function. This method involves grouping together genes
that are co-regulated (by using whole-genome gene expression data) and then
looking for motifs that are common to the upstream regions of genes in the
same cluster, on the assumption that many of them are directly regulated by
the same transcription factors. Hypothesis testing can be used to decide if any
motifs identified are likely to be due to biological factors, or if they can be
explained by chance. Of course the two methods just described can also be
combined.

In this chapter we will discuss the second approach, focusing in particular
on motifs that are found upstream of clock-regulated genes. Although scientists
believed that LHY and CCA1 controlled the expression of genes involved in
day—night oscillations, they did not know what regulatory motifs were bound
by these proteins. By finding the motifs bound by LHY and CCA1 we will be
able to elucidate the first few interactions that take place at the top of the gene
cascades activated or repressed by daylight. The general approach we take to
motif finding is to first cluster genes showing a similar day—night oscillatory
pattern, and then to look for DNA motifs that occur upstream of all or most of
these genes.

10.3 | Motif-finding strategies

The biological problem of finding TFBSs directly translates into the com-
putational problem of finding common sequence motifs. Motifs can gener-
ically be defined as patterns in sequences, typically specific sets of words.
A number of different biological problems are subsumed under the heading

10.3 MOTIF-FINDING STRATEGIES

163

of motif finding and hence various statistical and computational methods are
used. In this chapter we focus only on the simplest problems, providing point-
ers to more detailed literature in Section 10.6. We review here the main de-
sign choices to be made by the analyst, before illustrating all of them in
Example 10.1.

Given a set of co-regulated genes, the first thing we do is collect the set of
DNA sequences surrounding these genes that we believe will contain the rele-
vant binding sites. Generally the sequences collected will be some fixed length
sequence upstream of the coding region. The choice of how far upstream to
search is always an arbitrary one, and depends on the specific organism be-
ing analyzed; one common choice is to use 1000 bases upstream of the ORF.
Though regulatory elements can be found hundreds of thousands of bases up-
stream and downstream of coding regions (at least in the genomes of multicel-
lular organisms), the highest concentration is generally found in the first 1000
bases.

The next choice in our analysis is the type of motif to search for, i.e. the
motif model. Is it going to be a gapped or an ungapped motif? Is the gap going
to be of fixed or variable length? How long will the motif be? In this chapter we
will concentrate on ungapped motifs of fixed length (gapped motifs of variable
length were discussed in Chapter 4, in the context of profile HMMs). Ungapped
motifs of fixed length can be seen as words of length L that appear somewhere
in the upstream regions and that are similar to each other.

As mentioned earlier, binding sites for the same transcription factor are
not necessarily identical, only highly similar. One way to summarize any list of
fixed-length motifs that differ in their exact sequences is to report the consensus
sequence: a new sequence formed by the most frequent letter used at each
position (the consensus sequence does not necessarily need to appear in the
data). When all (equal-length) motifs are aligned, we can easily find the most
common nucleotide for each position, and form a consensus motif from these.
Thus, from any alignment, we can easily obtain the consensus sequence. This
can be a very useful representation of a set of sequences, and is described in
Example 10.1.

Another way to summarize motifs (given a multiple alignment) is to re-
port the frequency of each nucleotide used at every position, resulting in a
position specific scoring matrix (PSSM) or profile (these are also sometimes
called position specific weight matrices, or PSWMs). The PSSM essentially
represents a multinomial model of a sequence of length L, where one of the
four bases (or 20 AAs) is chosen independently from a multinomial distribu-
tion for each position, and in which parameters are position specific. In other
words, a different loaded-die is rolled for each position, its bias represented
in the PSSM. The PSSM is a 4 x L (or 20 x L) matrix (4 rows, L columns),
like the one shown in Example 10.1 . Note that a consensus motif can read-
ily be obtained from a PSSM by taking the most frequent nucleotide in each
position.

Example 10.1
Fixed length, ungapped motifs. In this set of eight sequences we find a similar
6-letter motif in each, appearing in various positions. The start positions are

164

A BED-TIME STORY: IDENTIFICATION OF REGULATORY SEQUENCES

noted with a *, and the motifs are then aligned in the table below:

A T G| *xc | T G A |a[T|]Ge T A
[*)c[r]a] T A T A G T A A T
C T G T ¢ | A A TlalT|le T
C cC T A A A *G|lala|T|[a]|T|
A A c | A A T|lT] e T T
|*c|afc|[a T T T c c ¢ A C
C T C G A * | a aAlalr|T]rT
A c T [* | A G A T|lTt|lc T C

An alignment of these motifs would look like this:

c T G A A T

Q000 An
>3 P 3
NN A
> o 3 A 3
H 333> P>
H 3 33 3343

cC A G A

The consensus sequence and the PSSM for this alignment are shown below.
Note that both the PSSM and consensus are completely specified once the set
of start positions has been specified. Notice also that the consensus sequence
appears once in the dataset:

A 0 5 5 5 4 0
C 7 0 0 0 0 O
G 1 0 3 0 0 O
T 0 3 0 3 4 8
CONSENSUS ¢ A A A T T

Identifying motifs. In the above example we gave the starting positions and
lengths of the set of motifs in each sequence, which together define a common
motif. The task of motif finding is to identify these starting positions without
prior knowledge of motifs that may be similar in all of the sequences. This
problem is highly similar to multiple local alignment, where the PSSM can be
used as a kind of scoring matrix for each set of starting positions proposed. In
order to find the highest scoring set of starting positions (and hence the motif
of interest) we will need to define a scoring function.

We also want to know whether the high-scoring motifs we find are signif-
icant. This will necessarily depend on our background model to define which
motifs we expect to encounter by chance. Rather than using a statistical se-
quence model, people often select a set of sequences not believed to contain the
motif as a background model. This background set should otherwise be similar
to the set under investigation, such as using non-coding DNA from different
regions of the same genome. Comparing the score of the motifs from the focal
dataset with the set of scores from the background dataset will then indicate
the significance of the identified motifs.

10.3 MOTIF-FINDING STRATEGIES

165

At this point, we should decide how to algorithmically find the motif that
maximizes the score. Unfortunately, for most choices of motif representation
and scoring function this is a computationally expensive problem to solve ex-
actly, so a number of heuristics have been proposed. Randomized and greedy
methods, such as Gibbs sampling, are among the most popular. These proce-
dures iteratively refine the choice of starting positions and will be described
briefly below. For situations where there is no variation in the binding site
sequence, however, it is still possible to solve the problem exactly and this
is the situation that we have selected for our case study on the circadian
clock.

We will now go through the algorithmic details of motif finding in some
more detail. We focus on finding high-scoring ungapped motifs of fixed length
in the form of PSSMs. In other words, we are assuming that the motif can be
(approximately) represented in this form:

1 2 3 4 5 6
A 0 0.625 0.625 0.625 0.5 0
C 0.875 0 0 0 0 0
G 0.125 0 0.375 0 0 0
T 0 0.375 0 0.375 0.5 1

A motif is considered interesting if it is very unlikely under the background
distribution. If we assume a uniform distribution for the PSSM, for example, we
should prefer motifs with columns that are far from uniform. The matrix above
has been made using the data from Example 10.1 , and shows that column 6 is
more unbalanced than, say, column 5. Many scoring functions can be defined
to embody this imbalance; one of the popular ones is called the KL divergence
of the motif, which measures how different from the background distribution
the motif is

Z (Z PrklOgﬂ)

position i \letter x

where p;; is the probability of seeing symbol k in position i in the PSSM,
and ¢ is the probability of symbol k under a multinomial sequence model
derived from the background model. Both probabilities are practically obtained
by simply counting the frequencies of symbols at each position in a multiple
alignment. Note that for statistical and computational reasons, it is often a
good idea to add pseudocounts to the entries of the matrix (increasing their
value by a fixed amount before normalizing) so that we never have to deal with
zero entries. The reason behind this step is that we are estimating a probability
based on a small sample, and it is quite possible that we never observe symbols
that have small — but positive — probability. Having zeros in the PSSM would
automatically prevent the motif from matching certain patterns, whereas we
would prefer to just make this unlikely. After adding pseudocounts to the above
matrix (in this case we added 1 to each entry of the matrix from Example 10.1)
we would obtain the following new PSSM:

166 A BED-TIME STORY: IDENTIFICATION OF REGULATORY SEQUENCES

1 2 3 4 5 6
A 0.083 0.5 0.5 0.5 0416 0.083
C 0.666 0.083 0.083 0.083 0.083 0.083
G 0.167 0.083 0.333 0.083 0.083 0.083
T 0.083 0.333 0.083 0.333 0.416 0.75

Finding high-scoring motifs. The problem now is to find a PSSM from a
set of sequences that maximizes the score of choices of starting positions, and
thus gives us our motif of interest. This is a problem of pattern discovery;
the related problem of pattern matching is quite simple. It involves finding
the starting position in the sequence, s, that best matches a previously de-
fined PSSM. We will use pattern matching as one step in our goal of pattern
discovery.

Given a single sequence, s, of length n (longer than the length, L, of the
PSSM), we can easily slide a defined PSSM along, computing the likelihood
of the match at each position. For each starting position, j, in the sequence, s,
we calculate the likelihood of the motif as follows:

LGy =]]riw
j=1

where again p; is the probability of seeing symbol k in position i in the
PSSM. (This is more commonly reported as the log of the likelihood.) This
likelihood represents how well the PSSM fits the segment of the sequence
s(j : j 4+ L — 1). The starting position j where £(j) is maximal represents
the best match of the PSSM to the sequence. For the purposes of demon-
stration we compute the log-likelihood score of the PSSM given above on
an artificial sequence obtained concatenating together all eight sequences
from Example 10.1 . Since each of them contained one instance of the com-
mon motif, it is not surprising to see (approximately) eight high peaks in
Figure 10.1.

So we are left with the following situation: given a set of sequences, and a
PSSM, we can easily find the best-matched positions (the ones with the highest
likelihoods) for the PSSM in each sequence. And at the same time, given a set of
starting positions, we can readily find the corresponding PSSM, as was shown
previously. This suggests an iterative process, starting with random positions —
and arandom PSSM — and gradually improving them both. Although this is not
guaranteed to find the highest scoring motif, it is guaranteed to converge to a
local optimum and stop. This is one of the many variations of the expectation-
maximization (EM) algorithm that was encountered in Chapter 4.

Instead of selecting as matches of the motif the positions with maximum
score, we could alternatively introduce some randomization into the iterative
process, randomly choosing these positions from a distribution that is propor-
tional to the resulting score. This, and other tricks, can reduce the risk of getting
stuck in local minima during our search, and generally have been observed to
lead to better scoring PSSMs. The implementation of this and other random-
ization steps leads to a method known as Gibbs sampling.

10.4 CASE STUDY: THE CLOCK AGAIN 167

6 The log likelihood
score resulting from sliding the
PSSM defined above on a sequence
ar) obtained by concatenating the
eight sequences of Example 10.1 .
Note that as expected we can see
2r b at least eight peaks
[%2]
o
g Or b
o
(2}
—2F R
4t i
-6 ! ! ! !
0 20 40 60 80 100

Position in sequence

These computational complications are necessary because the set of all
possible start positions for a motif-match is very large, and there are as many
possible solutions as there are motif position vectors in the dataset. However,
if we make an extra simplifying assumption, one that is rarely realistic, we can
greatly accelerate the search process. The assumption is that the motif appears
every time with the same spelling. In this case, the search space is restricted
to all exact words of length L appearing in the dataset, and this grows only
linearly with the number of sequences. Exhaustive search is now possible. In
our case study below, we analyze one such example. We find a motif that is
identical in every instance where it is found, the motif controlling a group of
clock-regulated genes in Arabidopsis. The scoring function we use here to find
the motif is given by the difference in frequency of the motif between two sets
of sequences (the target set and a background set). We will call this quantity
the margin.

0.4 ' Case study: the clock again

We illustrate the problem of motif finding by studying a simple case in detail,
the discovery of regulatory motifs for clock-regulated genes in Arabidopsis
activated in the evening. The discovery of a specific motif for evening genes was
originally carried out by Stacey Harmer and colleagues in 2000; they found an
identical word of nine bases found upstream of genes turned on in the evening,
aptly named the evening element (EE). The study of this discovery is important
because it contains all the elements of a standard motif discovery problem, but
having a completely identical motif frees us from many algorithmic details.
This in turn allows us to use a number of simpler strategies. This type of motif

168

A BED-TIME STORY: IDENTIFICATION OF REGULATORY SEQUENCES

does not need to be represented by a PSSM or a consensus sequence, and can
be found by simply comparing the frequency of all words of a given length
between two sets of sequences. Nevertheless, even this simple task requires us
to deal with all of the classical problems: comparing a set of sequences with a
background set; filtering out repeats and other uninformative signals; focusing
only on significant patterns. The evening element motif is

AAAATATCT,

and it appears upstream of many of the genes that are activated in the evening.

Experimental design. Harmer and coworkers were interested in finding genes
that are regulated by the circadian clock and in discovering how exactly the
clock controls them. The experiment they designed was able to deliver both
a list of hundreds of clock-regulated genes, and a specific regulatory element
that controls genes activated in a specific time phase, the evening. The key to
identifying this binding site was in combining the gene expression and sequence
data, and analyzing them jointly.

Harmer et al. used DNA microarrays to determine mRNA levels in Ara-
bidopsis at six 4-hour intervals during the subjective day and night. Before the
start of the experiment, the plants lived in controlled growth chambers, with day
length set by the experimenters as cycles of 24 hours (12 light and 12 dark).
During the experiment itself, the lighting conditions were kept constant, but
the internal clock of the plant kept ticking. In order to identify which ones of
the thousands of genes are regulated by the clock, tissue (and mRNA) was ex-
tracted and hybridized on microarrays at four-hour intervals. (The microarrays
used contained probes for only 8 200 genes, but remember that Arabidopsis has
more than 28 000 genes.) The resulting dataset contained expression levels of
each of the genes through the 24 hour day/night cycle. Because the experiment
was started at the equivalent of 8 AM, the different time intervals are labeled
circadian time (CT) 0, 4, 8, 12, 16, and 20, with CT = 0 at § AM and CT=8
at 4 PM. These are the data we use in our analysis, although we use slightly
simpler analysis methods.

Expression data analysis. To determine which of the 8 200 genes exhibited
a circadian pattern of expression, the gene expression profiles were compared
with various cosine functions of different periods and phases. Genes that showed
a high correlation with a cosine wave that had a period between 20 and 28
hours (independent of amplitude) were considered to be clock regulated. We
then clustered these clock-regulated genes into three main phases: cluster 1,
corresponding to genes whose expression peaked in phases 0 and 4, cluster 2
for phases 8 and 12, and cluster 3 for phases 16 and 20. The computational tools
used for this part of the experiment are the same as those discussed in Chapter
9, and thus will not be described in detail here.

According to this criterion for identifying clock-regulated genes, 437 genes,
or 6% of the genes on the chip, were classified as cycling. Of these, 191 were
highly expressed in cluster 2, the evening (corresponding to genes peaking at
4 PM and 8 PM). These will be the genes among which we look for common
binding sites. The others will be used to provide a background against which
to contrast the patterns found in cluster 2.

10.4 CASE STUDY: THE CLOCK AGAIN 169

Table 10.1 | The 9-mers with the largest difference in frequency between cluster 2 and the rest of the data.
The difference in frequency is called here “margin.” Note the presence of repeats and other motifs without
biological relevance

Motif (and reverse complement) Margin Frequency 2 Frequency | and 3
AAAAAAAAA TTTTTTTTT -0.00022218 0.001191099 0.001413279
AAAATATCT AGATATTTT 0.000147462 0.000198953 5.14905E-05
CTCTCTCTC GAGAGAGAG 0.00012498 0.000183246 5.82656E-05
AGAGAGAGA TCTCTCTCT 0.000121717 0.000198953 7.72358E-05
AAAAAAAAC GTTTTTTTT —8.07687E-05 0.000138743 0.000219512
ATATATATA TATATATAT 7.58808E-05 0.0005 0.000424119
AAATATCTT AAGATATTT 747173E-05 0.000109948 3.52304E-05
AAAAATATC GATATTTTT 6.62183E-05 0.000120419 5.42005E-05
AAATAAAAT ATTTTATTT 6.57004E-05 0.000212042 0.000146341
TAAAAAAAA TTTTTTTTA —6.07486E-05 0.000185864 0.000246612

Motif-finding results. If we decide to look just for motifs that are formed
by exact words of length L, many of the computational problems mentioned
previously disappear, while all of the statistical and biological ones remain. An
easy way to discover the evening element is to consider all words of length
L whose frequency in the evening cluster is very different from its frequency
in the rest of the data. This can be achieved by a program that simply counts
the frequency of each word in both sequence sets. The frequency needs to be
counted in all available sequences and in their reverse complement, meaning
that the motif could be present on the complementary DNA strand.

We will score every candidate motif (that is every length L word) by com-
puting the difference between its frequency in cluster 2 and its frequency in the
rest of the data, a quantity we call the margin. This score can also be directly
used to assess the significance of the motif. Over-represented motifs are those
that appear very frequently in the 1000 bp upstream regions of cluster 2 genes,
and much less frequently in the corresponding regions of the other genes.

The top 10 9-mers with largest frequency difference between cluster 2 and
the rest of the data are given in Table 10.1.

Here we note a phenomenon that is very typical in motif finding: the pres-
ence of repeats (or near repeats) in the set. Repeats (either of single letters or
of 2-mers) are highly common and generally non-functional components of
the genome, and likely have no biological significance in this context. So it
is customary to filter them out during the analysis, though there are definitely
some repeats that do actually have a function as binding sites in many organ-
isms. Similarly, this filtering is often done with near-repeats, patterns such as
AAAAAAAAAT. Once the filtering is complete, large differences in frequency
between motifs in different clusters can reveal functionally important elements,
or at least restrict the attention of researchers to examining just a few interesting
candidates.

Excluding motifs formed by repeats, the top four 9-mers with the largest
difference in frequency between clusters are given in Table 10.2. After remov-
ing the repeated elements, we now see that the evening element emerges as

170

A BED-TIME STORY: IDENTIFICATION OF REGULATORY SEQUENCES

Table 10.2 | The 9-mers with the largest difference in frequency between cluster 2 and the rest of the data,
excluding repeats and partial repeats. Note the evening element in top position, followed by related motifs

Motif (and its reverse complement) Margin Frequency 2 Frequency | and 3
AAAATATCT AGATATTTT 0.000147462 0.000198953 5.14905E-05
AAATATCTT AAGATATTT 7.47173E-05 0.000109948 3.52304E-05
AAAAATATC GATATTTTT 6.62 183E-05 0.000120419 5.42005E-05
AAATAAAAT ATTTTATTT 6.57004E-05 0.000212042 0.000146341

the strongest signal distinguishing the two clusters; note that two of the other
top three motifs in the table are simply variants of the evening element that
include extra A nucleotides (AAATATCTT and AAAAATATC). The margin of
the evening element (the difference in frequency between cluster 2 and clusters
1 and 3) is 0.000 147 462. In order to decide if such a margin could occur by
chance (and hence to assess its significance) we performed many random splits
of the data and for each of them we measured the margin of the highest-scoring
element. This is the score we could expect to see as the result of chance. In
100 trials, we never observed a larger margin, giving us a p-value estimate of
< 0.01.

Now that we have identified the putative evening element, we can look in
more detail at its frequency among all of the clock-regulated genes. Below we
show the number of times the EE is present in the upstream regions (on both
strands) of the genes peaking in each of the six time points sampled by Harmer
and colleagues (starting at 8 AM):

Circadian Time 0 4 8 12 16 20
Number of genes 78 45 124 67 30 93
EE Count 5 6 49 27 8 8

Itappears as though not all genes in the second cluster have the evening element,
nor is this motif limited only to these genes. However, it is definitely enriched
in cluster 2.

Selecting motif length (why L = 9). 1f we look for the largest-margin (non-
repeat) words of length L distinguishing cluster 2 from the rest, we have a clear
result: for all values of L < 9 they are simply substrings of the evening element,
and for L = 10 it is a superstring of it (with an extra A on the left). So how
do we know which one of these motifs is the evening element, and how do we
know that we were looking at the correct motif length to begin with? One way
to decide on the optimal motif length is to compare the margins of the motifs of
different lengths to find the one that has the maximum. This can then be used
as a guide to the motif length that has the most biological significance.

In order to compare the margins among motifs of different lengths we need
to consider the fact that longer words naturally have lower frequency, and hence
we can expect a lower margin for longer motifs. In order to avoid this artifact,
we use the ratio between the maximal margin obtained for each motif length
and what we would expect to obtain in a background model. In other words, we
should divide the score obtained for each motif length by the score obtained on

10.4 CASE STUDY: THE CLOCK AGAIN

171

Optimal motif length
1.5 T T

_1'5 Il Il Il Il Il Il
5 6 7 8 9 10 11 12

Motif length

random sequences with the same parameters. As an estimate of this quantity
we use the score obtained by averaging the scores in the two other clusters.

If we carry out this procedure, we find that motifs of length 9 are maximally
informative in discriminating cluster 2 from the others (see Figure 10.2).

Biological validation. A motif-finding task is only truly complete after it has
received biological validation. After detecting one or a few promising motifs,
one typically searches TFBS databases to see if that motif is already known to
be a regulatory element, and which factors bind to it if any are known. More
direct experimental validation is eventually required to confirm the motif and
its function.

In this case, Harmer and colleagues experimentally validated the newly dis-
covered regulatory element by directly attaching it to a gene whose fluorescent
product can be viewed under a microscope. The resulting experiment showed
that the fluorescence was only detected during the plant’s evening, indicating
that the evening element directly drove transcription during the evening. In this
case, computational analysis found a new putative transcription factor binding
site, and biological experiment validated it.

Now that researchers have the evening element sequence, they can simply
go to the Arabidopsis genome sequence to find other genes (not represented
on the original array) that may be regulated by the genes at the top of the
circadian clock regulatory cascade. In addition, not all of the genes that showed
peak expression during the evening necessarily had an EE sequence in their
regulatory regions. Because not all genes are directly regulated by the first
few transcription factors in the circadian regulatory cascade, the presence or
absence of the EE motif can begin to reveal the exact sequence of events that
occur during circadian control.

The score achieved by
the best motif as a function of

motif length L. The highest score is
obtained for L =9

172

A BED-TIME STORY: IDENTIFICATION OF REGULATORY SEQUENCES

10.5 | Exercises

(1) Use the free package AlignACE to analyze the same set of sequences
discussed in this chapter (data available online). Compare the results with
those in the book.

(2) Practice obtaining upstream regions of yeast genes, using the resources
provided in book website.

(3) Detect cell-cycle genes in yeast, using the methods and the data discussed
in Chapter 9. Can you find any motifs in the upstream regions of those
genes?

10.6 | Reading list

The paper by Stacey Harmer and co-workers on the circadian clock in Ara-
bidopsis is Harmer et al. (2000). An interesting paper on the computational
identification of regulatory elements in Saccharomyces cerevisiae makes uses
of similar techniques, and can be found in Hughes et al. (2000).

The Gibbs sampling approach is presented in Lawrence et al. (1993). The
paper Brazma et al. (1998) discusses various aspects of the computational dis-
covery of regulatory motifs. The paper Guhathakurta et al. (2002) presents
similar approaches, this time to discover regulatory motifs controlling heat
shock proteins in Caenorhabditis elegans. Motifs of course can be found in
many other ways, for example by phylogenetic comparisons of the type dis-
cussed in Chapter 8: the papers Kellis et al. (2003) and McCue et al. (2001)
present and use this approach.

The software packages MEME and AlignACE are the most commonly used
free tools for motif finding. They use EM and Gibbs strategies, respectively.
They can be found, as all papers, websites and software tools referred to in this
book, by following links contained on the book’s website:

www .computational-genomics.net

Bibliography

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215, 1990.

Anderson, S., A. Bankier, B. G. Barrell, M. H. de Bruijn, A.R. Coulson, J. Drouin,

1. C. Eperon, D. P. Nierlich, B. A. Roe, F. Sanger, P. H. Schreier, A.J. Smith,
R. Staden, and I. G. Young. Sequence and organization of the human mitochondrial
genome. Nature, 290(5806), 1981.

Axel, Richard. The molecular logic of smell. Scientific American Magazine (October),
1995.

Baldi, Pierre, and G. Wesley Hatfield. DNA Microarrays and Gene Expression: From
Experiments to Data Analysis and Modeling. Cambridge University Press,

2002.

Baldi, P., Y. Chauvin, T. Hunkapillar, and M. McClure. Hidden Markov models of
biological primary sequence information. Proceedings of the National Academy of
Sciences, 91, 1994.

Barnett, R., I. Barnes, M. J. Phillips, L. D. Martin, C. R. Harington, J. A. Leonard, and
A. Cooper. Evolution of the extinct sabretooths and the American cheetah-like cat.
Current Biology, 15(15), 2005.

Benson, D. A., I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and D. L. Wheeler.
GenBank: update. Nucleic Acids Research, 32(1), 2004.

Bibb, M.J., R. A. Van Etten, C. T. Wright, M. W. Walberg, and D. A. Clayton.
Sequence and gene organization of mouse mitochondrial DNA. Cell, 26(2),

1981.

Blattner, F. R., G. III Plunkett, C. A. Bloch, N. T. Perna, V. Burland, M. Riley,

J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis,
H. A. Kirkpatrick, M. A. Goeden, D.J. Rose, B. Mau, and Y. Shao. The complete
genome sequence of Escherichia coli K-12. Science, 277(5331), 1997.

Bourque, G., P. A. Pevzner, and G. Tesler. Reconstructing the genomic architecture of
ancestral mammals: lessons from human, mouse, and rat genomes. Genome
Research, 14(4), 2004.

Brazma, A., I. Jonassen, J. Vilo, and E. Ukkonen. Predicting gene regulatory elements
in silico on a genomic scale. Genome Research, 8, 1998.

Brown, M. P. S., W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey,

M. Ares. Jr, and D. Haussler. Knowledge-based analysis of microarray gene
expression data by using support vector machines. Proceedings of the National
Academy of Sciences, 97, 2000.

Brown, T. Genomes. John Wiley & Sons, 1999.

Burge, C., and S. Karlin. Prediction of complete gene structures in human genomic
DNA. Journal of Molecular Biology, 268, 1997.

Burge, C., and S. Karlin. Finding the genes in genomic DNA. Curr. Opin. Struct. Biol
(8), 1998.

Cann, R., and A. Wilson. The recent African genesis of humans. Scientific American,
2003.

Cavalli-Sforza, L. L. The DNA revolution in population genetics. Trends in Genetics,
14, 1998.

Cavalli-Sforza, L. L. P. Menozzi, and A. Piazza. The History and Geography of Human
Genes. Princeton University Press, 1996.

174

BIBLIOGRAPHY

Cavalli-Sforza, L. L. Genes, Peoples, and Languages. University of California Press,
2001.

Chu, S., J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P. O. Brown, and
I. Herskowitz. The transcriptional program of sporulation in budding yeast. Science,
282, 1998.

Churchill, G. Stochastic models for heterogeneous DNA sequences. Bull Math Biol.,
51(1), 1989.

Churchill, G. Hidden Markov chains and the analysis of genome structure. Computers
and Chemistry, 16(2), 1992.

Crick, F. H. On the genetic code. Nobel Lectures, Physiology or Medicine 1942—1962.
Elsevier Publishing Company, 1964.

Crick, F. H., L. Barnett, S. Brenner, and R. J. Watta-Tobin. General nature of the
genetic code for proteins. Nature, 192, 1961.

DeRisi, J. L., V. R, Iyer, and P. O. Brown. Exploring the metabolic and genetic control
of gene expression on a genomic scale. Science, 278, 1997.

Doolittle, R. F. Of URFs and ORFs. University Science Books, 1986.

Doolittle, W. F. Uprooting the tree of life. Scientific American, February, 2000.

Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
1998.

Eddy, S., G. Mitchison, and R. Durbin. Maximum discrimination hidden Markov
models of sequence consensus. J. Comput. Biol., 2, 1995.

Efron, B., and G. Gong. A leisurely look at the bootstrap, the jackknife, and
cross-validation. The American Statistician, 37(1), 1983.

Eickmann, M., S. Becker, H. D. Klenk, H. W. Doerr, K. Stadler, S. Censini, S. Guidotti,
V. Masignani, M. Scarselli, M. Mora, C. Donati, J. H. Han, H. C. Song,

S. Abrignani, A. Covacci, and R. Rappuoli. Phylogeny of the SARS coronavirus.
Science, 302, 2003.

Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display
of genome-wide expression patterns. Proceedings of the National Academy of
Sciences USA, 95, 1998.

Ewens, W. J. and G. Grant. Statistical Methods in Bioinformatics — An Introduction.
Springer, 2006.

Felsenstein, J. Inferring Phylogenies. Sinauer Associates, 2004.

Feynman, R. P. There’s plenty of room at the bottom: an invitation to enter a new world
of physics. Engineering and Science, 23(5), 1960.

Fitch, W. M., and E. Margoliash. Construction of phylogenetic trees. Science, 155,
1967.

Fleischmann, R. D. ef al. Whole-genome random sequencing and assembly of
Haemophilus influenzae rd. Science, 269, 1995.

Fraser, C. M., J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton,
R. D. Fleischmann, C. J. Bult, A. R. Kerlavage, G. Sutton, J. M. Kelley,
R. D. Fritchman, J. F. Weidman, K. V. Small, M. Sandusky, J. Fuhrmann,
D. Nguyen, T. R. Utterback, D. M. Saudek, C. A. Phillips, J. M. Merrick, J. F. Tomb,
B. A. Dougherty, K. F. Bott, P. C. Hu, T. S. Lucier, S. N. Peterson, H. O. Smith,
C. A. Hutchison 3rd, and J. C. Venter. The minimal gene complement of
Mpycoplasma genitalium. Science, 270(5235), 1995.

Gibson, G., and S. V. Muse. A Primer of Genome Science. Sinauer, 2004.

Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann,
F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes,
Y. Murakami, P. Philippsen, H. Tettelin H., and S. G. Oliver. Life with 6000 genes.
Science, 274, 1996.

BIBLIOGRAPHY

175

Greene, W. AIDS and the immune system. Scientific American, September 1993.

Gribskov M., A. D. McLachlan, and D. Eisenberg. Profile analysis: detection of
distantly related proteins. Proceedings of the National Academy of Sciences, 84,
1987.

Gribskov, M. and D. Eisenberg. Profile analysis: detection of distantly related proteins.
Proceedings of the National Academy of Sciences USA, 84, 1987.

Guan, Y., B.J. Zheng, Y. Q. He, X. L. Liu, Z. X. Zhuang, C. L. Cheung, S. W. Luo,
P. H. Li, L. J. Zhang, Y. J. Guan, K. M. Butt, K. L. Wong, K. W. Chan, W. Lim, K. F.
Shortridge, K. Y. Yuen, J. S. M. Peiris, and L. L. M. Poon. Isolation and
characterization of viruses related to the SARS coronavirus from animals in southern
china. Science, 302, 2003.

Guhathakurta, G., L. Palomar, G. D. Stormo, P. Tedesco, T. E. Johnson, D. W. Walker,
G. Lithgow, S. Kim, and C. D. Link. Identification of a novel cis-regulatory
element involved in the heat shock response in Caenorhabditis elegans using
microarray gene expression and computational methods. Genome Research, 12(5),
2002.

Handt, O., S. Meyer, and A. von Haeseler. Compilation of human mtDNA control
region sequences. Nucleic Acids Research, 26, 1998.

Harmer, S. L., J. B. Hogenesch, M. Straume, H.-S. Chang, B. Han, T. Zhu, X. Wang,
J. A. Kreps, and S. A. Kay. Orchestrated transcription of key pathways in
Arabidopsis by the circadian clock. Science, 290, 2000.

Haussler, D., A. Krogh, K. Mian, and I. S. Sjolander. Protein modeling using hidden
Markov models: analysis of globins. Proceedings of the Hawaii International
Conference on System Sciences, volume 1. IEEE Computer Society Press, 1993.

Haussler, D., A. Krogh, and I. Mian. A hidden Markov model that finds genes in E. coli
DNA. Nucleic Acids Research, 22(22), 1994.

Haussler, D., E. D. Green, E. H. Margulies, and M. Blanchette. Identification and
characterization of multi-species conserved sequences. Genome Research, 13(12),
2003.

Higgins, D. G., J. D. Thompson, and T. J. Gibson. Using CLUSTAL for multiple
sequence alignments. Methods Enzymol, 266, 1996.

Hongchao, L., Y. Zhao, J. Zhang, Y. Wang, W. Li, X. Zhu, S. Sun, J. Xu, L. Ling, L.
Cai, D. Bu, and R. Chen. Date of origin of the SARS coronavirus strains. BMC
Infectious Diseases, 4(3), 2004.

Holmes, E. C., and A. Rambaut. Viral evolution and the emergence of SARS
coronavirus. Phil. Trans. R. Soc. Lond. B, 359, 2004.

Horn, M., A. Collingro, S. Schmitz-Esser, C. L. Beier, U. Purkhold, B. Fartmann,

P. Brandt, G. J. Nyakatura, M. Droege, D. Frishman, T. Rattei, H. W. Mewes, and
M. Wagner. Illuminating the evolutionary history of Chlamydiae. Science,
304(5671), 2004.

Hughes, J. D., P. W. Estep, S. Tavazoie, and G. M. Church. Computational
identification of cis-regulatory elements associated with groups of functionally
related genes in Saccharomyces cerevisiae. Journal of Molecular Biology, 296,
2000.

Hurst, L. D. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends in
Genetics, 18(9), 2002.

Ingman, M., H. Kaessmann, S. Pédidbo, and U. Gyllensten. Mitochondrial genome
variation and the origin of modern humans. Nature, 408, 2000.

Int’l. Human Genome Sequencing Consortium. Initial sequencing and analysis of the
human genome. Nature, 409(6822), 2001.

Jones, N. C., and P. A. Pevzner. An Introduction to Bioinformatics Algorithms. MIT
Press, 2004.

176

BIBLIOGRAPHY

Jukes, T. H., and C. R. Cantor. Evolution of protein molecules. In H. N. Munro, editor,
Mammalian Protein Metabolism, pp. 21-32. Academic Press, 1969.

Kalman, S., W. Mitchell, R. Marathe, C. Lammel, J. Fan, R. W. Hyman, L. Olinger,

J. Grimwood, R. W. Davis, and R. S. Stephens. Comparative genomes of Chlamydia
pneumoniae and Chlamydia trachomatis. Nat Genet., 21(4), 1999.

Karlin, S., A. M. Campbell, and J. Mrazek. Comparative DNA analysis across diverse
genomes. Annu Rev Genet., 32, 1998.

Kellis, M., N. Patterson, M. Endrizzi, B. Birren, and E. Lander. Sequencing and
comparison of yeast species to identify genes and regulatory motifs. Nature, May 15,
2003.

Khorana, H. G., H. Buchi, H. Ghosh, N. Gupta, T. M. Jacob, H. Kossel, R. Morgan,

S. A. Narang, E. Ohtsuka, and R. D. Wells. Polynucleotide synthesis and the genetic
code. Cold Spring Harb. Symp. Quant. Biol, 1966.

Kimura, M. Evolutionary rate at the molecular level. Nature, 217, 1968.

Kimura, M. A simple method for estimating evolutionary rates of base substitutions
through comparative studies of nucleotide sequences. Journal of Molecular
Evolution, 16, 1980.

Kimura, M., and T. Ohta. On the stochastic model for estimation of mutational distance
between homologous proteins. Journal of Molecular Evolution, 2(1),

1972.

Koonin, E. V., and M. Y. Galperin. Sequence — Evolution — Function: Computational
Approaches in Comparative Genomics. Springer Verlag, 2002.

Krings, M., A. Stone, R. W. Schmitz, H. Krainitzki, M. Stoneking, and S. Paabo.
Neandertal DNA sequences and the origin of modern humans. Cell, 90(1), 1997.

Krings, M., C. Capelli, F. Tschentscher, H. Geisert, S. Meyer, A. von Haeseler,

K. Grossschmidt, G. Possnert, M. Paunovic, and S. Paabo. A view of Neandertal
genetic diversity. Nat. Genet., 26(2), 2000.

Krogh, A., M. Brown, I. S. Mian, K. SjTander, and D. Haussler. Hidden Markov models
in computational biology: applications to protein modeling. Journal of Molecular
Biology, 235, 1994.

Kulp, D., D. Haussler, M. G. Reese, and F. H. Eeckman. A generalized hidden Markov
model for the recognition of human genes in DNA. Proceedings of the Fourth
International Conference on Intelligent Systems for Molecular Biology, pp.
134-142. AAAI Press, 1996.

Kumar, S. Patterns of nucleotide substitution in mitochondrial protein coding genes of
vertebrates. Genetics, 1(143), 1996.

Lawrence, C. E., S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Wootton.
Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment.
Science, 262, 1993.

Lei, G., Q. Ji, W. Haibin, S. Yigang, and H. Bailin. Molecular phylogeny of
coronaviruses including human SARS-cov. Chinese Science Bulletin, 48(12),

2003.

Lu, Hongchao, Y. Zhao, J. Zhang, Y. Wang, W. Li, X. Zhu, S. Sun, J. Xu, L. Ling, L.
Cai, D. Bu, and R. Chen. Date of origin of the SARS coronavirus strains. BMC
Infectious Diseases, 4(3), 2004.

Margulies, E. H., M. Blanchett, D. Haussler, and E. D. Green. Identification and
characterization of multi-species conserved sequences. Genome Research, 13(12),
2003.

Marra, M. A., S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. Butterfield,
J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, A. Cloutier, S. M. Coughlin,

D. Freeman, N. Girn, O. L. Griffith, S. R. Leach, M. Mayo, H. McDonald,
S. B. Montgomery, P. K. Pandoh, A. S. Petrescu, and A. G. Robertson. The genome
sequence of the SARS-associated coronavirus. Science, 300, 2003.

BIBLIOGRAPHY

177

McCue, L. A., W. Thompson, C. S. Carmack, M. P. Ryan, J. S. Liu, V. Derbyshire, and
C. E. Lawrence. Phylogenetic footprinting of transcription factor binding sites in
proteobacterial genomes. Nucleic Acids Research, 29, 2001.

Miyata, T., and T. Yasunaga. Molecular evolution of mRNA: a method for estimating
evolutionary rates of synonymous and amino acid subtitutions from homologous
nucleotide sequences and its applications. Journal of Molecular Evolution, 16, 1980.

Muse, S. V. Estimating synonymous and nonsynonymous substitution rates. Molecular
Biology and Evolution, 13, 1996.

Needleman, S. B., and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48, 1970.

Nei, M., and T. Gojobori. Simple methods for estimating the numbers of synonymous
and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution,
5(3), 1986.

Nirenberg, M. W. The genetic code. In Nobel Lectures, Physiology or Medicine
1963-1970. Elsevier Publishing Company, 1972.

Ota, T., and M Nei. Variance and covariances of the numbers of synonymous and
nonsynonymous substitutions per site. Molecular Biology and Evolution, 4(11),
1994.

Ovchinnikov, I. V., A. Gotherstrom, G. P. Romanova, V. M. Kharitonov, K. Liden, and
W. Goodwin. Molecular analysis of Neanderthal DNA from the northern caucasus.
Nature, 404, 2000.

Pennisi, E. Human genome: a low number wins the genesweep pool. Science,
300(1484), 2003.

Rabiner, L. R. A tutorial on hidden Markov models and selected applications in speech
recognition. Proc. IEEE, 77, 1989.

Reilley, B., M. Van Herp, D. Sermand, and N. Dentico: SARS and Carlo Urbani. New
England Journal of Medicine, 348(20), 2003.

Rota, P. A., M. S. Oberste, S. S. Monroe, W. A. Nix, R. Campagnoli, J. P. Icenogle,

S. Penaranda, B. Bankamp, K. Maher, M. H. Chen, S. Tong, A. Tamin, L. Lowe,
M. Frace, J. L. DeRisi, Q. Chen, D. Wang, D. D. Erdman, T. C. Peret, C. Burns,
T. G. Ksiazek, P. E. Rollin, A. Sanchez, S. Liffick, and B. Holloway.
Characterization of a novel coronavirus associated with severe acute respiratory
syndrome. Science, 300, 2003.

Saitou, N., and M. Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4, 1987.

Sanger, F., A. R. Coulson, T. Friedmann, G. M. Air, B. G. Barrell, N. L. Brown,

J. C. Fiddes, C. A. Hutchison 3rd, P. M. Slocombe, and M. Smith. The nucleotide
sequence of bacteriophage phix174. Journal of Molecular Biology, 125(2), 1978.

Sanger, F., Coulson A. R., Hong G. F, D. F. Hill, and G. B. Petersen. Nucleotide
sequence of bacteriophage lambda DNA. Journal of Molecular Biology, 162, 1982.

Schmitz, R. W., D. Serre, G. Bonani, S. Feine, F. Hillgruber, H. Krainitzki, S. Paabo,
and F. H. Smith. The Neandertal type site revisited: interdisciplinary investigations
of skeletal remains from the Neander Valley, Germany. Proceedings of the National
Academy of Sciences USA, 99(20), 2002.

Smith, T. F., and M. S. Waterman. Comparison in biosequences. Advances in Applied
Mathematics, 2, 1981.

Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen,

P. O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell
cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Mol Biol Cell, 9, 1998.

Suzuki, Y., and T Gojobori. A method for detecting positive selection at single amino

acid sites. Molecular Biology and Evolution, 10(16), 1999.

178

BIBLIOGRAPHY

Sykes, B. The Seven Daughters of Eve. W. W. Norton & Company, 2002.

The Chinese SARS Molecular Epidemiology Consortium. Molecular evolution of the
SARS coronavirus during the course of the SARS epidemic in China. Science, 303,
2003.

Thompson, J. D., D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Research,
22, 1994.

Thorne, J. L., H. Kishino, and J. Felsenstein. An evolutionary model for maximum
likelihood alignment of DNA sequences. Molecular Biology and Evolution, 2(33),
1991.

Tzeng, Y. H., R. Pan, and W. H. Li. Comparison of three methods for estimating rates
of synonymous and non-synonymous nucleotide substitutions. Molecular Biology
and Evolution, 21(12), 2004.

Venter, J. C., et al. The sequence of the human genome. Science, 291(5507),

2001.

Wain-Hobson, S., P. Sonigo, O. Danos, S. Cole, and M. Alizon. Nucleotide sequence of
the AIDS virus, LAV. Cell, 40(1), 1985.

Watson, J., The involvement of RNA in the synthesis of proteins. In Nobel Lectures,
Physiology or Medicine 1942—1962. Elsevier Publishing Company, 1964.

Watson, J., and F. Crick. A structure for deoxyribose nucleic acid. Nature, 171(4356),
1953.

Yang, Z., and J. Bielawski. Statistical methods for detecting molecular adaptation.
Trends Ecol Evol., 15, 2000.

Zeng, F., K. Y. C. Chow, and F. C. Leung. Estimated timing of the last common
ancestor of the SARS coronavirus. New England Journal of Medicine, 349, 25, 2003.

Zhang, Y., and N. Zheng. Genomic phylogeny of SARS coronavirus suggested that
Guangdong province is the origin area. Unpublished Manuscript, 2003.

Zozulya, S., F. Echeverri, and T. Nguyen. The human olfactory receptor repertoire.
Genome Biology 2, 2001.

Index

3-point formula, 118
4-point condition, 119

ab initio methods, 29, 40
accession number, 18, 19
additive distance, 117
additive tree, 117
Affymetrix, 147
AIDS, 96
Alanine, 24
AlignACE, 172
alignment, 39, 48
approximate, 51
global, 42, 43, 48
local, 47, 51
multiple, 53, 62, 71
optimal global, 45
optimal local, 46
pairwise, 42
alignment score, 48
alignment scoring function, 43
allele, 80
alternative hypothesis, 32
Altschul, Stephen, 42, 51
amino acid, xiii, 44
amino acid alphabet, 24
amino acid sequence, 7
amino acid substitution matrix, 82
amino acids, 23
aniridia, 38, 60
Anopheles gambiae, 5
approximate alignment, 51
Arabidopsis thaliana, 2, 159, 160, 167
Arber, Werner, 16
Archaea, 4
Arginine, 24
Asparagine, 24
Aspartic acid, 24
Avery, Oswald, xiv
Axel, Richard, 61
AZT, 97

baker’s yeast, 1

base, 3, 4

best reciprocal hit, 132
binding site, 16, 160, 161
bioinformatics, xii
biological validation, 171
Birney, Ewan, 22
BLAST, xv, 40, 51, 60

BLOSUM matrix, 45, 83
blue whale, 95

bonobo, 78, 85, 93
bootstrap, 35

branch length, 115
branches, 113

BRH, see best reciprocal hit
Brown, Pat, 3, 143
buchnera, 136

Buck Linda, 61

Caenorhabditis elegans, 5, 21, 22
cancer, 80
Cantor, Charles, 88, 95
Cavalli-Sforza Luigi Luca, 95
CCAL, 160
CCRS, 107
cDNA, 144
cDNA microarray, 145
central dogma, 25
change point analysis, 13, 62
chaos game representation, 15
chimpanzee, 78, 85, 93, 108
Chlamydia, xvi, 4
Chlamydia pneumoniae, 129, 131
Chlamydia trachomatis, 2, 129,
131
chloroplast, 5, 129
chromosome, 3, 30
Churchill, Gary, 63
circadian clock, xvii, 159
CLUSTALW, 54, 60
clustering, 151
k-means, 151
hierarchical, 151
codon, 26, 81
start, 29, 33
stop, 26, 28, 33
codon bias, 34, 100
codon distribution
non-uniform, 34
uniform, 34
codon sequence, 7
codon structure, 69
comparative genomics, 130
comparison-based methods, 29
complementarity, 3, 30
consensus sequence, 163
coronavirus, 111
correlation coefficient, 151

cow, 95

Crick, Francis, xiv, 21, 27, 37
CRS, 84

Cysteine, 24

D-loop, 84
Danio rerio, 5
database searching, 40
Dayhoff, Margaret, 82
DDBJ database, 18
degradase, 23
delta method, 90
dendrogram, 155
diauxic shift, 141, 145, 147, 153
dimer, 14
dinucleotide, 14
diploid, 79
directed tree, 115
distance matrix, 117
distance measures, 151
distance-based methods, 117
DNA, xiii, xiv, 3, 26
regulatory, 161
DNA alignment, 44
DNA fingerprinting, 81
DNA microarray, 142
DNA sequence, xiv, 3, 6,7, 79
Drosophila melanogaster, 5, 38, 53
drug resistance, xvi
duplications, 81
dynamic programming, 46, 56, 62, 75

E-value, 52

E. coliK12,2,13,128

elephant, 94

EM algorithm, see
expectation-maximization algorithm

EMBL database, 18

emission matrix, 65, 66

emission probability, 63

ENV, 107, 121, 127

enzyme, Xiii

epitopes, 98

EST, 144

Eubacteria, 4, 161

Eukaryote, xiii, 69

evening element, 167

evolution, 97, 98

exceptions, xii, 26

exon, 29, 70

180

INDEX

expectation-maximization algorithm, 66,

76, 166
exploratory data analysis, 148
external node, 113
eyeless gene, 38, 41, 46, 49,
60

false negative, see Type II error
false positive, see Type I error
fast heuristic methods, 42
FASTA, 18, 51
FASTA format, 19
footprinting, 136
forward algorithm, 66, 76
frame shift mutation, 29
function

prediction, 40, 62

GAG, 108

GC content, 12

Gehring, Walter, 38
GenBank, 18

gene, xiv, 3

gene duplication, 41, 130
gene expression, Xv

gene family, 41, 132, 133

gene finding, 29, see gene prediction, 48,

62, 69
prokaryotic, 22
gene function, 154
gene-finding, 28, 40
prokaryotic, 29
GeneChip, 147
genetic algorithms, 98
genetic code, 26
mitochondrial, 37
genetic distance, 86, 87, 88, 89,
91
genome, 3, 6
annotation, 1
eukaryotic, 4
organelle, 5
prokaryotic, 4
viral, 4
genome signature, 15
germline mutation, 80
gibbon, 93
Gibbs sampling, 165, 166
Gibson, Toby, 54
Gish, Warren, 42
global alignment, 42, 43, 49
optimal, 45
Glutamic acid, 24
Glutamine, 24

Glycine, 24
Gojobori, Takashi, 102
gorilla, 85, 93
gpl20, 107
egpl60, 107
gp41, 107
graph
cyclic, 67
GTR model, 92

Haemophilus influenzae, xv, 1, 2, 4, 10,

12,14, 16, 18, 21, 25, 31, 35,
36

haplotype, 85

Harmer, Stacey, 167

Haussler, David, 63

heat maps, 155

helix, double, 3

hemoglobin, 23

hidden Markov model, xv, 13, 62, 63, 65,

67, 69

hierarchical clustering, 133
Higgins, Desmond, 54
Histidine, 24
HIV, 96, 127
HIV genome, 105
Holley, Robert, 26
homeobox domain, 38, 41
Homeobox, 52
Homo erectus, 78,79, 93
Homo habilis, 78
Homo neanderthalis, 78, 85
Homo sapiens, xv, 2,5,79, 85, 92
Homo sapiens mitochondrion, 18
homolog, 38, 40
homologous sequence, 67
homology, 40, 48, 51, 53

multiple levels of, 39
homology-based methods, 29
horizontal gene transfer, 12
Hotel Metropole, 111, 121, 122
hotspot, 52
HOX, 38
HOX domain, 49
HOX gene, 49
human genome sequence, 2
human mtDNA, 2
HVR, see hypervariable region
hybridization, 144
hydrophilic, 72
hydrophobic, 72
hydrophobicity, 82
hypervariable region, 18, 84, 92, 100
Hypothesis Testing, 31

iid, 7,12

image processing, 146
immune system, 97, 98
indel, 41, 81

insulin, 23

intergenic region, 136
internal node, 113
intron, 29, 63, 69, 70
inversions, 81
Isoleucine, 24

Java Man, 78
Jukes, Thomas, 88, 95

Jukes—Cantor formula, 88, 90, 91

k-mers, 14

Ka/Ks Ratio, 100

Khorana, Gobind, 26, 37
Kimura Model, 91

Kimura, Motoo, 91, 95, 100
kinking, 16

KL divergence, 165

Leakey, Louis, 78

leaves, 113

length of a tree, 118

Leucine, 24

LHY, 160

ligase, 23

likelihood, 8

Lipman, David, 42

loaded dice, 64

local alignment, 42, 47, 51
optimal, 46

locus, 19

Lysine, 24

mad cow disease, 25
malaria, 96
mammoth, 94

manganese-dependent superoxide

dismutase, 25
Markov chain, 8, 9, 88
Markov DNA sequence, 9
Markov model, 7, 9, 48
master regularity gene, 38
matrix

substitution, 82
maximal segment pair, 51
MEGA, 109
MEME, 172
Mendel, Gregor, xiv
metabolism, xiii
methionine, 24, 28

INDEX

181

microarray, xv, 144
one-dye, 147
two-dye, 146
cDNA, 145
microsatellites, 81
midpoint rooting, 120
Miller, Webb, 42
missing data, 150
mitochondria, 5, 26, 129
motif, 15, 16, 54, 161
ungapped, 163
motif bias, 14
motif finding, 160, 164
mouse, 108, 160
mRNA, 26, 28, 70
mtDNA, 5, 82, 83, 85,95
multidimensional scaling, 92,
124
multinomial model, 7, 9, 16, 48
multiple alignment, 53, 62, 71
multiple testing, 36
MUMmer, 140
Mus musculus, 5, 53
mutation, 79, 80, 81, 82, 86, 97
fixed, 86
germline, 80
neutral, 86
point, 80
Mycoplasma genitalium, 1, 2,4, 18, 21,
22,31, 35, 36, 129, 138
Mycoplasma pneumoniae, 138
Myers, Gene, 42

Nathans, Dan, 16

natural selection, 97

Neanderthal, xv, 19, 78, 85, 92, 93, 95,
127

Needleman, Saul, 42

Needleman—Wunsch algorithm, 45, 47,
51, 54,55, 58, 60

Nei, Masatoshi, 102, 118

Nei—Gojobori Algorithm, 102, 105

neighbor-joining algorithm, 117, 118,
119, 120

neighborliness, 119

network

phylogenetic, 112

neurogenesis, 49

neutral mutation, 86

Neutral Theory of Evolution, 100

Newick format, 115, 126

Nirenberg, Marshall, 26, 37

NJ algorithm, see neighbor-joining
algorithm

non-synonymous substitution, 99, 101
nucleotides, 3, 4, 6, 8
null hypothesis, 32

odds ratio, 16

odorant receptors, 61, 69, 71, 72, 127

olfactory system, 61

open reading frame, 29, 30

optimal global alignment, 45

optimal local alignment, 46

orangutan, 85, 93

OREF, see open reading frame, see Open
Reading Frame, 132

OREF finding, 69, 106

ortholog, 41

orthologous genes, 41

orthology, 41, 131

Oryza sativa, 5

out of africa, 93

outgroup, 113

oxidative phosphorylation, 83

p-value, 32

paired-box domain, 38, 42

pairwise alignment, 42

palindrome, 17

palm civet, 111, 121

PAM matrix, 45, 83

paralogous genes, 41

paralogy, 41, 131

parasite, 129

pathway, xiv

pattern detection, 62

pattern discovery, 18, 166

pattern matching, 18, 166

PAX, 38

PAX domain, 49

PAX gene, 49, 50

Peking Man, 78

permutaton test, 35

phage, 1, 2, 13, 18, 20, 66, 77

Phenylalanine, 24

pheromone, 61

pHMM, see profile HMM, 68, 71

Phylip, 127

phylogenetic analysis, 114

phylogenetic footprinting, 136

phylogenetic network, 112

phylogenetic tree, xvi, 93, 112,
116

phylogenetics, 112

polymerase, 108, 161

polymorphism, 80,

polypeptides, 24

polyploid, 130
prediction of function, 40, 62
primate evolution, 93
prion, 25
probabilistic model, 6
probability, 8
conditional, 9
joint, 9
transition, 8
probes, 144
profile, 68
profile HMM, 68
Prokaryote, xiii, 4
Proline, 24
promoter, 30, 163
protein, xiii, 23, 26
domains, 41
protein coding, 60
protein fold prediction, 24
protein folding, 24
protozoa, 128
Prusiner, Stanley, 25
pseudocount, 165
pseudogenes, 61
PSSM, 68, 163, 166
PSWM, see PSSM
purines, 81
pyrimidines, 81

randomization test, 34
reading frame, 28
recombination, 116
reference design, 147
regulatory DNA, 161
repeats, 169

replicase, 121
restriction enzyme, 16
restriction site, 16
reversal distance, 137
reversal sort algorithm, 138
rhodopsin, 71
ribosome, 26, 28
RNA, 26

RNA sequence, 7
RNA-coding genes, 69
rooted tree, 113

sabre-tooth tiger, 95

Saccharomyces cerevisiae, 1, 2, 5, 21,
141, 142

Saitou, Naruya, 118

Sanger, Fred, 1, 21

SARS, xvi, 2, 108, 110, 115

saturation, 87

182

INDEX

scoring function, 44, 164
alignment, 43
segment pair, 51
maximal, 51
segmentation, 62, 64
selection
negative, 97
positive, 97
purifying, 97
sequence alignment, xv, 3, 39
sequence assembly, 40
sequence divergence, 40
sequence evolution, 88
sequence polymorphism, 80
sequence similarity, xv, 40
Serine, 24
Sharp, Paul, 54
significance level, 32
significant, 32
similarity, 51
Single Nucleotide Polymorphism, see
SNP
single nucleotide polymorphisms, xvi
SIV, 127
sliding window, 107
Smith, Hamilton, 16
Smith, Temple, 42
Smith—Waterman algorithm, 47, 49, 50,
54, 58, 59, 60
SNP, 80, 81
sorting by reversals, 136
speciation, 41, 131
Spike gene, 121
splice sites, 70
standard nucleotide alphabet, 20
start codon, 29, 33
stop codon, 26, 28, 33, 34, 103

STR, 81
string, 7
subsequence, 7
substitution, 82, 86
matrix, 44
multiple, 87
non-synonymous, 99
synonymous, 99
substitution matrix, 82
substitution rate, 86
substring, 7
symbiont, 128
synonymous substitution, 99, 101
synteny, 135, 136

T Cells, 98

tabular computation, 56
tandem repeats, 81
TATA-box, 161

taxa, 112

test statistic, 32

theorem of total probability, 66
Thompson, Julie, 54
Threonine, 24, 27
tobacco, 160

TOCI1, 160

topology, 113

trace-back, 57
transcription, 26
transcription factors, 160
transition matrix, 9, 65, 66
transition probability, 63
transitions, 81

translation, 26
transmembrane domain, 61
tranversions, 81

tree, 116

additive, 117
bifurcating, 113
directed, 115
oriented, 114
phylogenetic, 112
rooted, 113
unrooted, 113
Tryptophan, 24
Type I error, 32, 33
Type II error, 33
Tyrosine, 24

ultrametricity, 120
ungapped motif, 163
unrooted tree, 113
untranslated regions, 28
UPGMA, 120
upstream region, 163
Urbani strain, 122
Urbani, Carlo, 110

Valine, 24

variation between species, 86
Venter, Craig, 1
visualization, 155

Viterbi algorithm, 66, 75

Waterman, Michael, 42

Watson, James, xiv, 21, 37

whole-genome analysis, xvi,
5

wine, 141

Waunsch, Christian, 42

yeast, 141, 142, 143, 172

zebrafish, 5

	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface
	Nothing in biology makes sense except in the light of evolution.

	Prologue In praise of cells
	Why bioinformatics?
	A bit of biology
	The future of biology
	A roadmap to this book
	Reading list

	Chapter 1 The first look at a genome
	1.1 Genomic era, year zero
	1.2 The anatomy of a genome
	1.3 Probabilistic models of genome sequences
	1.4 Annotating a genome: statistical sequence analysis
	1.5 Finding data: GenBank, EMBL, and DDBJ
	1.6 Exercises
	1.7 Reading list

	Chapter 2 All the sequence’s men
	2.1 The human genome sweepstakes
	2.2 An introduction to genes and proteins
	2.3 Genome annotation: gene finding
	2.4 Detecting spurious signals: hypothesis testing
	2.5 Exercises
	2.6 Reading list

	Chapter 3 All in the family
	3.1 Eye of the tiger
	3.2 On sequence alignment
	3.3 On sequence similarity
	3.4 Sequence alignment: global and local
	3.4.1 Global alignment
	3.4.2 Local alignment

	3.5 Statistical analysis of alignments
	3.6 BLAST: fast approximate local alignment
	3.7 Multiple sequence alignment
	3.8 Computing the alignments
	3.8.1 Needleman–Wunsch algorithm
	3.8.2 Smith–Waterman algorithm

	3.9 Exercises
	3.10 Reading list

	Chapter 4 The boulevard of broken genes
	4.1 The nose knows
	4.2 Hidden Markov models
	4.3 Profile HMMs
	4.4 Finding genes with hidden Markov models
	4.5 Case study: odorant receptors
	4.5.1 Profile HMMs for odorant receptors
	4.5.2 Segmenting odorant receptors

	4.6 Algorithms for HMM computations
	4.7 Exercises
	4.8 Reading list

	Chapter 5 Are Neanderthals among us?
	5.1 Variation in DNA sequences
	5.2 Mitochondrial DNA: a model for the analysis of variation
	5.3 Variation between species
	5.4 Estimating genetic distance
	5.4.1 The Jukes–Cantor model
	Jukes–Cantor derivation

	5.4.2 The Kimura two-parameter model
	5.4.3 Further models of nucleotide evolution

	5.5 Case study: are Neanderthals still among us?
	5.6 Exercises
	5.7 Reading list

	Chapter 6 Fighting HIV
	6.1 A mysterious disease
	6.2 Evolution and natural selection
	6.3 HIV and the human immune system
	6.4 Quantifying natural selection on DNA sequences
	6.5 Estimating K A/K S
	6.6 Case study: natural selection and the HIV genome
	6.7 Exercises
	6.8 Reading list

	Chapter 7 SARS–A post-genomic epidemic
	7.1 Outbreak
	7.2 On trees and evolution
	7.3 Inferring trees
	7.3.1 Introduction to phylogenetic inference
	7.3.2 Inferring trees from distance data
	7.3.3 The neighbor-joining algorithm

	7.4 Case study: phylogenetic analysis of the SARS epidemic
	7.4.1 The SARS genome
	7.4.2 Reconstructing the epidemic

	7.5 The Newick format
	7.6 Exercises
	7.7 Reading list

	Chapter 8 Welcome to the Hotel Chlamydia
	8.1 Uninvited guests
	8.2 By leaps and bounds: patterns of genome evolution
	8.3 Beanbag genomics
	8.4 Synteny
	8.5 Exercises
	8.6 Reading list

	Chapter 9 The genomics of wine-making
	9.1 Chateau Hajji Feruz Tepe
	9.2 Monitoring cellular communication
	9.3 Microarray technologies
	9.4 Case study: the diauxic shift and yeast gene expression
	9.4.1 Data description
	9.4.2 Data clustering
	9.4.3 Visualization

	9.5 Bonus case study: cell-cycle regulated genes
	9.6 Exercises
	9.7 Reading list

	Chapter 10 A bed-time story
	10.1 The circadian clock
	10.2 Basic mechanisms of gene expression
	10.3 Motif-finding strategies
	10.4 Case study: the clock again
	10.5 Exercises
	10.6 Reading list

	Bibliography
	Index

