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Introduction

Terrence Sejnowski

Computational Nenrobiology Laboratory, Salk Institute for Biological Sciences, 10010 North
Torrey Pines Road, La Jolla, CA 92037-1099, USA

I am looking forward, over the next two days, to exploring in depth this exciting
and emerging area of biological complexity. It was Dobzhansky who once said that
nothing in biology makes sense except in the light of evolution, and this is certainly
true of biological complexity. In some ways, complexity is something that many
biologists try to avoid. After all, it is a lot easier to study a simple subject than a
complex one. But by being good reductionists— taking apart complex creatures
and mechanisms into their component parts— we are left at the end with the
problem of putting them back together. This is something I learned as a child
when I took apart my alarm clock, discovering it didn’t go back together nearly
as easily as it came apart. What is emerging, and what has given us the opportunity
for this meeting, is the fact that over the last few years there has been a confluence
of advances in many different areas of biology and computer science which make
this a unique moment in history. It is the first time that we have had the tools to
actually put back together the many pieces that we have very laboriously and
expensively discovered. In a sense, we are at the very beginning of this process
of integrating knowledge that is spread out over many different fields. And each
participant here is a carefully selected representative of a particular sub-area of
biology.

In real estate there is a well known saying that there are three important criteria in
valuing a property: location, location and location. In attempting to identify a
theme to integrate the different papers we will be hearing in this symposium, it
occurred to me that, likewise, there are three important threads: networks,
networks and networks. We will be hearing about gene networks, cell signalling
networks and neural networks. In each of these cases there is a dynamical system
with many interacting parts and many different timescales. The problem is coming
to grips with the complexity that emerges from those dynamics. These are not
separate networks: I don’t want to give the impression that we are dealing with
compartmentalized systems, because all these networks ultimately are going to be
integrated together.

One other constraint we must keep in mind is that ultimately it is behaviour that
is being selected for by evolution. Although we are going to be focusing on these
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details and mechanisms, we hope to gain an understanding of the behaviour of
whole organisms. How is it, for example, that the fly is able to survive
autonomously in an uncertain world, where the conditions under which food can
be found or under which mating can take place are highly variable? And how has
the fly done so well at this with such a modest set of around 100 000 neurons in the
fly brain? We will hear from Simon Laughlin that one of the important constraints
is energetics.

I have a list of questions that can serve as themes for our discussion. I want to
keep these in the background and perhaps return to them at the end in our final
discussion session. First, are there any general principles that will cut across all the
different areas we are addressing? These principles might be conceptual,
mathematical or evolutionary. Second, what constraints are there? Evolution
occurred for many of these creatures under conditions that we do not fully
understand. We don’t know what prebiotic conditions were like on the surface of
the earth, and this is partly why this is such a difficult subject to study
experimentally. The only fossil traces of the early creatures are a few forms
preserved in rock. What we would really like to know is the history, and there is
apparently an opportunity in studying the DNA of many creatures to look at the
past in terms of the historical record that has been left behind, preserved in
stretched of DNA. But the real question in my mind concerns the constraints
that are imposed on any living entity by energy consumption, information
processing and speed of processing. In each of our areas, if we come up with a list
of the constraints that we know are important, we may find some commonality.
The third question is, how do we make progress from here? In particular, what new
techniques do we need in order to get the information necessary for progress? I am
a firm believer in the idea that major progress in biology requires the development
of new techniques and also the speeding-up of existing techniques. This is true in
all areas of science, but is especially relevant in biology, where the impact of
techniques for sequencing DNA, for example, has been immense. It was recently
announced that the sequence of the human genome is now virtually complete. This
will be an amazingly powerful tool that we will have over the next 10 years. As we
ask a particular question we will be able to go to a database and come up with
answers based on homology and similarities across species. Who would have
guessed even 10 years ago that all of the segmented creatures and vertebrates
have a common body plan based around the Hox family of genes? This is
something that most of the developmental biologists missed. They didn’t
appteciate how similar these mechanisms wete in different organisms, until it was
made obvious by genetic techniques. Another technique that will provide us with
the ability both to do experiments and collect massive amounts of data is the use of
gene microarrays. It is now possible to test for tens of thousands of genes in
parallel. We can take advantage of the fact that over the last 50 years, the
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performance of computers, both in terms of memory and processing power, has
been rising exponentially. In 1950 computers based on vacuum tubes could do
about 1000 operations per second; modern parallel supercomputers ate capable of
around 10'3 operations per second. This is going to be of enormous help to us,
both in terms of keeping track of information and in performing mathematical
models. Imaging techniques are also extremely powerful. Using various dyes, it
is possible to get a dynamic picture of cell signalling within cells. These are very
powerful techniques for understanding the actual signals, where they occur and
how fast they occur. Please keep in mind over the next few days that we need
new techniques and new ways of probing cells. We need to have new ways of
taking advantage of older techniques for manipulating cells and the ability to
take into account the complexity of all the interactions within the cell, to develop
a language for understanding the significance of all these interactions.

I very much look forward to the papers and discussions that are to follow.
Although it will be a real challenge for us to understand each other, each of us
coming from our own particular field, it will be well worth the effort.
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Functional modules in biological

signalling networks

Upinder S. Bhalla and *Ravi Iyengar!

National Centre for Biological Sciences, Bangalore, India and * Department of Pharmacology,
Box 1215, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029,

UsA

Abstract. Signalling pathways carry information from the outside of the cell to cellular
machinery capable of producing biochemical or physiological responses. Although linear
signalling plays an important role in biological regulation, signalling pathways are often
interconnected to form networks. We have used computational analysis to study
emergent properties of simple networks that consist of up to four pathways, We find
that when one pathway gates signal flow through other pathways which produce
physiological responses, gating results in signal prolongation such that the signal may
be consolidated into a physiological response. When two pathways combine to form a
feedback loop such feedback loops can exhibit bistability. Negative regulators of the
loop can serve as the locus for flexibility whereby the system has the capability of
switching states or functioning as a proportional read-out system. Networks where
bistable feedback loops are connected to gates can lead to persistent signal activation at
distal locations. These emergent properties indicate system analysis of signalling
networks may be useful in understanding higher-order biological functions.

2001 Complexity in biological information processing. Wiley, Chichester ( Novartis Foundation
Symposium 239) p 4-15

Complexity is a defining feature of signal flow through biochemical signalling
networks (Weng et al 1999). This complexity arises from a multiplicity of
signalling molecules, isoforms, interactions and compartmentalization. This
leads to significant practical problems in understanding signalling networks. On
the one hand, the common ‘block diagram’ description of signalling pathways is
lacking in quantitative detail. On the other, a listing of all the rate constants in a
pathway (assuming they are available) also does not convey much understanding.
Depending on the signalling context, it is very likely that details such as the fine

balance between rates of action of competing pathways, or the timing of series of

'The chapter was presented at the symposium by Ravi Iyengar to whom correspondence should
be addressed.
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reactions are critical determinants of the outcome of signal inputs. Computational
analysis is poised to bridge this divide between crude abstractions and raw data. In
this paper we will discuss the emergence of more useful functional concepts from
the molecular building blocks, and consider how these might behave in
combination.

We have developed experimentally constrained models of individual enzyme
regulation and signalling pathways described in terms of molecular interactions
and enzymatic reactions. Biochemical data from the literature were used to work
out mechanisms and specify rate constants and concentrations. These values were
entered and managed using the Kinetikit interface for modelling signalling
pathways within the GENESIS simulator. Simulations have been carried out on
PCs running Linux. Modelling and parameterization methods have been
previously described (Bhalla 1998, 2000)

We have examined four major protein kinase pathways and their regulators:
protein kinase C (PKC); the mitogen-activated protein kinase (MAPK); protein
kinase A (PKA); and the Ca?*—calmodulin-activated protein kinase type II
(CaMKII). Reaction details have been previously reported (Bhalla & Iyengar
1999). Figure 1 describes in block diagram form the molecular interactions and
inputs into a network containing these four protein kinases. The block diagram
in Figure 1 is clearly complex, and the underlying reaction details are even more
so. How then can the functioning of such a system be understood? Our
computational analyses suggest a set of functional modules which capture the
essential behaviour of the system and also facilitate prediction of responses. The
behaviour of each module is strongly dependent on the details of the reaction
kinetics and mechanisms, and is often context-dependent. These details are
readily examined through simulations but tend to become obscured by block-
diagram representations. One of the goals of describing the system in terms of
functional modules is to provide a conceptual tool for examining signal flow,
which is nevertheless based on the molecular details. Some of the key signalling
functions we observe are gating, bistable feedback loops, coincidence detectors,
and regulatory inputs.

Gating

Gating occurs when one signalling pathway enables or disables signal flow along
another. In the present system, this is illustrated by the action of PKA on CaMKII
responses to Ca®* influx. Biochemical experiments show that this regulation occurs
when PK A phosphorylates the inhibitory domain of the protein phosphatase, PP1.
This phosphorylation turns off PP1 by activating the inhibitor. This interaction
plays a gating role because PP1 rapidly reverses the autophosphorylation of
CaMKII and hence prevents long-term activation of CaMKII and consequently
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FUNCTIONAL MODULES 7

long-term potentiation. Supporting evidence for this interaction comes from
experiments on long-term potentiation where activation of the cAMP pathway
was a prerequisite for synaptic change (Blitzer et al 1995, 1998). As described in
these papers, PKA activation gates CaMKII signalling by regulating the
inhibitory process that deactivates the persistently activated CaMKII.

Coincidence detectors

There is some overlap between the concept of gating and that of coincidence
detection. The former implies that one pathway enables or disables another. The
latter suggests that two distinct signal inputs must arrive simultaneously for full
activation. The requirement of timing is a distinguishing feature between the two.
Coincidence detectors typically involve situations in which both inputs are
transient, whereas gating processes are usually prolonged. At least two
coincidence detectors are active in the case of the pathways considered in
Figure 1. First, PKC is activated to some extent by Ca?" and diacylglycerol
(DAG) individually, but there is a strong synergistic interaction such that
simultaneous arrival of both signals produces a response that is much greater
than the additive response (Nishizuka 1992). Ca’" signals arrive in vatious ways,
notably through ion channels and by release from intracellular stores. DAG is
produced by the action of phospholipase C (PLC) f and y, which also mediate
Ca®" release from intracellular stores via inositol-1,4,5-trisphosphate (InsP3). At
synapses the coincident activation of these two pathways occurs through strong
stimulation resulting in glutamate release. As described elsewhere, an important
step in synaptic change occurs when the NMDA receptor opens on an already
depolarized synapse, leading to Ca?* influx (Bliss & Collingridge 1993).
Simultaneously, the metabotropic glutamate receptor (mGluR) is also activated,
turning on PLC. The PLC cleaves phosphatidylinositol-4,5-bisphosphate (PIP,)
into InsP; and DAG. The coincident arrival of DAG and Ca?* strongly activates
PKC. A second important coincidence detection system is the Ras pathway, acting
through the MAPK cascade in this model (Fig. 1). Ras is activated by several
inputs, but for our purposes it is interesting to note that simultaneous receptor
tyrosine kinase (RTK) as well as G protein-coupled receptor input can act
synergistically to turn on Ras. Due to the strongly non-linear nature of MAPK
responses, coincident activation produces responses that are much greater than
either individual pathway.

Bistable feedback loops

Bistable feedback loops ate among the most interesting functional modules in
signalling. In this system, such a loop is formed by the successive activation of
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MAPK by PKC, of PLA2 by MAPK, and the formation of arachadonic acid (AA)
by PLA2 and the activation of PKC by AA (Fig. 1). Bistable systems can store
information. This occurs because brief input signals can ‘set’ the feedback loop
into a state of high activity, which will persist even after the input has been
withdrawn. Thus the information of the previous occurrence of a stimulus is
stored in the feedback loop. We have previously shown that transient synaptic
input can lead to prolonged activation of this biochemical bistable loop (Bhalla
& Iyengar 1999). The system also exhibits sharp thresholds for stimuli. Feedback
loops have the potential to act as biochemical ‘engines’ driving several emergent
signalling phenomena.

Regulation of feedback

The range of operation of this feedback circuit is still further extended by
regulatory inputs. These are worth considering as distinct functional modules
because of the additional functions they confer upon the basic feedback loop. In
our system, one such regulatory signal is provided by MAPK phosphatase 1
(MKP-1). MKP-1 itself is synthesised in response to MAPK activation. MKP-1
and another inhibitory regulator of the MAPK cascade, PP2A, can each regulate
the mode of action of the feedback system. These modes include linear responses
with variable gain; ‘timer switching’ which turns on in response to brief stimuli but
turns off after delays ranging from tens of minutes to over an hour; or as
constitutively ‘on’ or ‘off’ systems. Furthermore, slow changes in regulator levels
can elicit sharp irreversible responses from the feedback circuit in a manifestation
of catastrophic transitions (Bhalla & Iyengar 2001).

Modularity and integrated system properties

There is clearly a rich repertoire of functional behaviour displayed by a signalling
network. The specific responses in a given biological context are governed by the
details of the signalling kinetics and interactions, and are not readily deduced
simply from the pathway block diagram. Once one has identified the likely
functional modules, it is possible to examine the integrated behaviour of the
system from a different viewpoint. The reclassification of the same network in
terms of functional modules rather than chemical blocks is shown in Fig. 2.
Using such modularity as the basis for analysis, we can begin to understand many
of the aspects of system behaviour that tend to defy intuition based on molecular
block diagrams. These include:
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Inputs

Coincidence
detector
Timer Output
. Gate P .
switch response unit

FIG. 2. The functional modules that comprise the signalling network shown in Fig. 1. In this
context the four protein kinases are parts of different modules including the timer switch, the
gate and the response unit.

(1) The feedback loop as a key determinant of overall system responses. In this
context the feedback loop acts as a timer switch sensitive to very brief inputs
and is capable of maintaining an output for around an hout.

(2) 'The presence of a coincidence detector in the inputs to the timer switch. This
configuration suggests that simultaneous activation of multiple pathways to
activate PK.C may be more effective in turning on the switch than individual
inputs.

(3) The output of the timer switch as a feed to a gating module that affects
CaMKII function. Weak stimuli will activate CaMKII in a transient
mannet, since the gate will rapidly shut down its activity. Stronger stimuli
open the gate by activating the feedback loop. This provides a mechanism
for selective prolongation of CaMKII activity.

The modular organization of the signalling network in Fig. 1 as described above is
shown in Fig. 3.

With such a functional outline of the signalling network, one can now return to
the biological context to assess the likely implications. In this network, for
example, there is a clear suggestion that the termination process for the switch
(induction of MKP-1 synthesis by MAPK) may in parallel induce other synaptic
proteins. These proteins could therefore integrate into the synapse to ‘take over’
from the switch at precisely the same time as the switch itself is turned off by
MKP-1. The cytoskeletal roles of CaMKII and MAPK suggest further specific
possibilities for how these changes might occur in a spatially restricted manner.
Experimental reports also support this notion of synaptic ‘tagging’, in which
strong stimuli induce activity in specific synapses and lead to synthesis of new
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FUNCTIONAL MODULES 11

proteins, which are selectively taken up at the ‘tagged’ synapses (Frey & Morris
1997).

Understanding complexity

A key question in performing detailed computational analyses is: does exhaustive
detail really lead to a better understanding of the system? It is often felt that detailed
models appear to simply map one complex system (interacting molecules) onto an
equally complex one (a computer model) without highlighting the underlying
principles that define the system. The process of modelling does not support this
pessimistic view. Modelling gives one the tools to identify simple conceptual and
functional modules from amongst the mass of molecular interactions. This is not
merely a matter of grouping a set of molecules and interactions into a new module
according to some fixed classification. The configuration as well as the operation of
these modules is highly dependent on the specific details of the system, so one
cannot simply replace a signalling block diagram with a functional one. For
example, the experimental parameters placed our positive feedback loop in a
regime where it is most likely to act as a timer switch. Other parameters could
readily have made it into a linear responsive element, or even an oscillator (Bhalla
& Iyengar 2001). Other feedback loops, comprising of completely different
molecules, would exhibit a similar repertoite of properties, with the similar
dependence on the exact signalling context. This includes the most intuitively
obvious function of a positive feedback loop, signal amplification. The
functional description is therefore useful as a level of understanding, and not
merely a classification device.

Analysis

Once the system identification has been performed, it is much easier to analyse
signal flow in the network in terms of functional entities rather than simply
molecular ones. The network we use as an example was reduced to three or four
functional elements, whose interactions were rather simple. One could build on
this approach by considering a greater number of pathways as well as by
acknowledging the presence of additional interactions among the existing ones.
For instance, PKA is known to negatively gate the Ras pathway in some
biological systems, depending on the isoform of Raf that is present. Our
functional network would suggest that this should rapidly turn off the feedback
system, perhaps even before it could reach full activity. This would depend on
the relative ratios of the isoforms of Raf differentially regulated by PKA. Thus
we can define functions of the modules and their interactions in terms of the
identity and concentrations of the molecular components within the modules. It
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is also much easier now to consider the operation of the same functional units in a
different context, for example in triggering proliferative responses. Although the
inputs and many of the intermediate players are now different, one can
experimentally demonstrate responses that are consistent with the presence of a
bistable feedback loop in growth-factor stimulated cells (Gibbs et al 1990). The
propetties of the feedback loop provide a clear basis for thinking about how
thresholds are set and sustained responses obtained for this different
physiological function.

Biological context

The process of analysing signalling is brought full circle by placing the functional
modules back into the biological context to ask what the response might mean for
the cell. At this point we would have an opportunity to describe and evaluate
events which may have been obscured by the abstraction. In the synaptic context
we have numerous potential interactions, not only at the putative signalling end-
points in this model (the four kinases), but also at the level of intermediate
regulators such as the phospholipases. The essential purpose of the whole
exercise, of course, is to advance the state of understanding of the system as a
whole with the simultaneous knowledge of the role each individual component
and reaction plays in this systems property. The abstract functional description,
the detailed simulations, and the experimental data are meant to feed into each
other to predict system behaviour in terms of molecular components and
interactions and suggest fruitful lines of further investigation.
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DISCUSSION

Sejnowski: You mentioned long-term potentiation (ILTP), which is one of the
most controversial issues in neurobiology. Chuck Stevens has evidence for
changes occurring in presynaptic terminals, whereas Roger Nicoll sees changes in
the postsynaptic side. The biochemical basis of LTP is even more complicated.
Mary Kennedy has addressed this issue: why is it that there is so much
controversy over LTP (Kennedy 1999)? Are physiologists not doing the
experiments propetly, or could they be using the wrong model? Physiologists
look at signalling in terms of a linear sequence of events: the voltage gates the
channel, the channel opens, current flows and this causes an action potential. In
other words, there is a nice progression involving a sequence of events that can
be followed all the way through to behaviour of the axon, as Hodgkin and
Huxley first showed. But could it be that LTP is not like that? Perhaps LTP is
much closer to a system such as the Krebs cycle. The diagrams you showed
looked more like metabolism to me than an action potential. If this is true,
perhaps we are thinking about things in the wrong way.

Iyengar: My collaborator, Manny Landau, was a collaborator with Chuck
Stevens back when Chuck was at Yale. In theory, we belong to the presynaptic
camp, except that most of our experiments seem to work postsynaptically. We
don’t want to upset Chuck, but we don’t as yet have any data that indicate a
presynaptic locus for the functions we study. One of the reasons we conceived
the large-scale connections map I described is that many of the same pathways
that work postsynaptically also function presynaptically. We are limited by the
tools we have. We can easily get things into the postsynaptic neuron, but there is
currently no real way of getting stuff into the CA3 neuron and working out the
presynaptic signalling network.

Sejnowski: Suppose that we have a system with a whole set of feedback pathways
that involves not just the postsynaptic element, but also the presynaptic and even
the glial cells. There is a lot of evidence for interactions between all these elements.
Also, time scales are important. There is short-term, intermediate and long-term
potentiation. Associated with each of these timescales will be a separate
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biochemistry and set of issues. For example, Eric Kandel and others have shown
that for the very longest forms of synaptic plasticity, protein synthesis and gene
regulation are necessary. This takes hours.

Iyengar: Indeed. In our large-scale connections map, we have translation coupled
here, when in reality in the LTP model translation is after the movement
machinery. In the most recent papers, the translation that goes on in L'TP seems
to be at the dendrites. There is some mechanism that allows this RNA to come and
move out to the dendrites, and this is where the real biochemistry happens. One of
the focuses that people have is on the Rho-integrin signalling pathway, because
this can send signals through MAPK to the nucleus, and at the same time mark
the dendrites.

Eichele: What ate the contributions of positive and negative feedback loops at
the cellular level? In developmental biology feedback regulation is important and
can be positive or negative.

Iyengar: 1t appears that signal consolidation is always required at the cellular
level. It could almost be a shifting scale as well. Some key enzyme, in most cases a
protein kinase, needs to be activated at a certain level for a certain length of time.
These positive feedback loops allow this to happen. In the case of the MAPK
pathway I showed, going back and activating PKC allows MAPK to stay active
for much longer than the initial EGF signal. In the case of CaMKII, it is the
autophosphorylation that allows CaM kinase to stay active for an extended
period after the initial Ca?" signal has passed through. Cleatly, regulation of the
kinase/phosphatase balance is going to be important for signal consolidation.
What is not clear in my own mind is whether the timescales over which the signal
consolidation occurs are different for different phenomena. My initial guess is that
they will be different. The initial MAPK marking in the dendrites, which is a good
model for polarity, is going to be very rapid, while the amount of MAPK
activation required for gene expression is going to take much longet. This may
account for why, if you don’t keep it active for long enough, the system
depontentiates, but if you go past this 3040 minute barrier, L'TP can be sustained.

Fields: 1have some questions relating to the constraints. The general principle of
your approach is one based upon kinetic modelling. The assumption is that this
problem can be modelled using equilibrium reaction kinetics and constants. To
what extent is this valid when the cell is in a dynamic state and the stimulus is
dynamic, and how well are the concentrations of the reactants and the kinetic
constants known in actual cells? A related question is, given the spatiotemporal
constraints, how confident can one be in modelling and knowing that one has set
up the right system of reactions when some of these reactions, such as phosphatase
feedback loops, may only come into play under certain stimulus conditions?

Iyengar: This is a preliminary model. This is all deterministic, whereas in reality
half of life is probably stochastic. We need to include stochastic processes. Many
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scaffolds and anchors are showing up, and one of their roles is to bring reactants
together, anchor them and raise their effective concentrations. The model we have
been thinking about most is MAPK. With very low stimulations— single
boutons — there is MAPK activated at the dendrites. The model here is that as
the MAPK moves up towards the nucleus, it marks the tracks. This is what will
give you the ‘activated dendrite’ that knows that your protein has to come
through. This model process is most likely to be stochastic. The problem
computationally is not so much dealing with stochastic processes or deterministic
processes, but dealing with the boundaries between these processes. Consider that
you have 100 molecules of MAPK, and given the temporal aspects of this reaction
40 of them behave stochastically. The question arises as to when these 40 molecules
can be integrated back into the deterministic part of the reaction. We don’t have
real solutions for this issue. Space is another issue we haven’t dealt with seriously.
With the MAPK model there is one clear compartment between the cytoplasm and
the nucleus. MAPK is phosphorylated and goes into the nucleus, but it is clamped
there until it is dephosphorylated. If we can map the nuclear phosphatases we can
count what is in the nucleus, and see what those rates are.

Brenner: Roughly how many molecules are present?

Iyengar: In the last model 1 showed you, without taking into account the
isoforms, there ate about 400 molecules in this connections map.

Brenner: Is this a measured number?

Iyengar: This comes from the actual number of known components. The number
of 400 is a gross underestimation, because each of these molecules has at least two or
three isoforms present in each neuronal cell. Three would be a reasonable guess.

Brenner: So it is in the order of 103 molecules.
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Abstract. The outcome of both autoimmune reactions and antiviral responses depends on
a complex network of multiple components of the immune system. For example, most
immune reactions can be viewed as a balance of aggressive and regulatory processes.
Thus, a component of the immune system that has beneficial effects in one situation
might have detrimental effects elsewhere: organ-specific immunity and autoimmunity
are both governed by this paradigm. Additionally, the precise timing and magnitude of
an immune response can frequently be more critical than its composition for determining
efficacy as well as damage. These issues make the design of immune-based interventions
very difficult, because it is frequently impossible to predict the outcome. For example,
certain cytokines can either cure or worsen autoimmune processes depending on their
dose and timing in relation to the ongoing disease process. Consequently, there is a
strong need for models that can predict the outcome of immune-based interventions
taking these considerations into account.
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We are unravelling the molecular basis of cellular functions, interactions and
effector mechanisms of the immune system at an increasingly rapid pace. The
‘mainstream’ scientific approach is to isolate single components, characterize
them 7n vitro and subsequently probe their 7z vivo function by using genetic
knockout or over-expressor animal or cellular models. Although this strategy has
significantly furthered our understanding, it has also generated inexplicable
situations, for example in that the same molecule might appear to have different
functions iz vivo than it exhibits 7z vitro. The causes of these dilemmas are the
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redundancy in biological pathways, the issue of compartmentalization and the ‘At’
as well as ‘Ac’, which is the change in factors or concentrations over time that can
frequently be as important as their absolute levels. At this point, there is no clear
way to introduce these concepts into our predictive modelling systems for the
immune system, and therefore many issues have to be resolved empirically or by
trial and error. As a consequence, there are many published observations that
appear to be contradictory and cannot be reconciled, which generates confusion
rather than understanding. The purpose of this article is to illustrate these
considerations with practical examples from our work and that of others in the
areas of autoimmunity and viral infections. It will become clear that approptriate
models that can describe and predict complex systems would be extremely valuable
for bringing immune-interventive therapies closer to the clinic and in increasing
our understanding of immunobiology.

Autoimmunity
Regulatory versus aggressive classes of immune responses

Our laboratory is interested in understanding the regulation of autoimmunity. Our
previous work, and that of others, has shown that the amount of immuno-
pathology or tissue injury is determined not only by the magnitude and precise
timing of a localized or systemic immune process, but also to a large extent by
the components or the class(es) of responses it encompasses (Homann et al 1999,
Ttoh et al 1999, Seddon & Mason 1999, von Herrath 1998, von Herrath et al 1995a,
1996). Thus, each immune or autoimmune reaction has aggressive and regulatory
components that balance each other out, and these have a strong effect on the
duration or magnitude of the response and resulting tissue injury (Liblau et al
1995, Racke et al 1994, Rocken et al 1996, Weiner 1997). In autoimmune diseases,
it is possible to take therapeutic advantage of this paradigm and generate
autoreactive regulatory cells by targeted immunization with self-antigens. We
have shown that such cells can be induced by oral immunization (Homann et al
1999), DNA vaccines (Coon et al 1999) and peripheral immunization. These
cells are able to selectively suppress an ongoing autoimmune reaction, because
they are preferentially retained in the draining lymph node closest to the target
organ where they exert their regulatory function (see Fig. 1). It is clear that certain
‘regulatory’ cytokines are favourable for autoimmune diabetes in preventing islet
destruction, whereas others enhance the pathogenic process. Studies from our lab
and others have shown that interleukin 4 has beneficial effects and is required
when protecting from autoimmune diabetes by vaccination (Homann et al
1999, King et al 1998). In contrast, induction of interferons generally enhances
disease.
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Local, ‘professional’ APC: Target cell under attack:
Presents self-antigens A and Expresses self-antigens A and B
B in inflammatory lesion (B cell, oligodendrocyte)

v A < A and B are taken up by APCs

Autoreactive regulatory Th2 Autoreactive CTL or inflammatory

lymphocyte reactive to self- Th1 lymphocyte reactive to self-
aﬂtigen B: antigen A

Secretes IL-4 (other?) after Attacks some target cells, but
recognizing seff-antigen 8 on APC, depends on local APCs to present
which prevents APC from activating antigen A for expansion/activation

Th1 cells reactive to self antigen A

FIG. 1. Regulation of autoimmunity as a function of auto-aggressive and autoreactive
regulatory responses— the concept of bystander suppression. APC, antigen-presenting cell;
CTL, cytotoxic T lymphocyte; IFN, interferon; IL, interleukin; Th, helper T lymphocyte.

Current studies are dissecting the precise mechanism(s) of action for regulatory,
autoreactive cells (modulation of antigen presenting cells, cytokines/chemokines,
cell contact inhibition) as well as the requirements for their induction (endogenous
autoreactive regulatory T cell repertoire; route and dose of external antigen
administration; expression level and involvement of the endogenous self-antigen
in the autoimmune process). Paradigms developed from these studies will be
useful in suppressing autoimmune diseases very selectively. In general,
autoreactive regulatory lymphocytes are thought to act as ‘bystander
suppressors’ (Homann et al 1999, Racke et al 1994). This means that an auto-
aggressive process initiated in response to an auto-antigen ‘A’ can be modulated
by auto-regulatory lymphocytes specific to another auto-antigen ‘B’ that is also
specific for the targeted organ, and is released and presented to the immune
system by antigen presenting cells after destruction has been initiated by auto-
aggressive cells specific for ‘A’ (Fig. 1).
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Opposing effects of the same cytokine on an ongoing antoimminne process
— levels as well as timing are key issues

Recent findings using cytokine overexpressor or knockout mice have yielded
conflicting results for the function of several cytokines in either preventing or
enhancing autoimmune diabetes (Cope et al 1997a,b). Key factors influencing the
role of a given cytokine in disease are the level, timing in relation to the disease
process, and the rate of increase. For example, interferon y can enhance
inflammation and actively participate in f§ cell destruction (Lee et al 1995, von
Herrath & Oldstone 1997), but can also abrogate disease by increasing islet cell
regeneration or by augmenting activation-induced cell death (AICD) in
autoaggressive lymphocytes (Horwitz et al 1999). Similarly, local expression of
interleukin 2 in islets can enhance autoimmunity, but can also abrogate disease by
enhancing AICD (von Herrath et al 1995b). Intetleukin 10 can have differential
effects as well depending on its local ‘dose’ (Balasa & Sarvetnick 1996, Lee et al
1994, Wogensen et al 1993). Recent observations from our laboratory in a mouse
model of virally induced autoimmune diabetes show that production of tumour
necrosis factor (TNF)a early or late during the disease process can halt the
inflammation leading to diabetes, whereas its expression at the height of islet
infiltration enhances incidence and severity of type 1 diabetes (Christen et al
2001). Thus, cytokine levels as well as the time-point of cytokine expression are
crucial for defining their function in the disease process and to understanding
their role in pathogenesis of autoimmunity.

Since the molecular understanding of immune responses progresses at a very
rapid pace, it is frequently impossible to make simple predictions, because the
number of molecules and cells involved is too high and their interactive network
is too complex. Furthermore, the relative contribution of the different ‘players’ has
to be taken into account as a major factor and this is probably at least one of the
reasons why different research teams are frequently reporting seemingly
opposing or conflicting results. Such issues might profit from appropriate
mathematical or other computer-based modelling systems, which ultimately
would allow us to predict more teliably the outcome of interventions for viral
infections or autoimmune syndromes. However, before such computer-based
models can be developed, we need to have the numerical data to ‘feed’ into the
programs. This has not yet been achieved to a sufficient level. For example, an
improved /7 vivo imaging system that permits tracking of specific lymphocytes in
animal models and/or humans in a non-invasive way will be instrumental to
achieve this.

The goal of immune-based interventions is to preserve stage 2 and prevent its
progressing towards the clinical stage 3. Molecules known to be instrumental in
this decision are inflammatory and regulatory cytokines, chemokines, adhesion
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FIG. 2. Levels of ‘aggressive’ autoimmunity. The goal of immune-based interventions is to
preserve stage 2 and prevent its progressing towards the clinical stage 3. Molecules known to be
instrumental in this decision are inflammatory and regulatory cytokines, chemokines, adhesion
molecules and the activation profile of autoreactive lymphocytes as well as antigen presenting
cells. Many of these molecules can have beneficial or detrimental effects based on the time and
level of expression in relation to the ongoing disease process. Due to the complexity of this
situation, it has thetefore been very difficult to make good predictions about the safety and
efficacy of a given approach. Importantly, many of these molecules can be assessed as markers
in the peripheral blood and could potentially be used as a basis for a predictive model that would
allow rating of the success of immune interventions.

molecules and the activation profile of autoreactive lymphocytes as well as antigen
presenting cells. Many of these molecules can have beneficial or detrimental effects
based on the time and level of expression in relation to the ongoing disease process.
Due to the complexity of this situation, it has therefore been very difficult to make
good predictions about the safety and efficacy of a given approach. Importantly,
many of these molecules can be assessed as markers in the peripheral blood and
could potentially be used as a basis for a predictive model that would allow rating
of the success of immune interventions (Fig. 2).



TOWARDS PREDICTIVE MODELS IN IMMUNOBIOLOGY 21
Antiviral immunity

Usually, vaccine-based strategies attempt to enhance immunity to infectious agents
(Klavinskis et al 1990). This is generally successful, if the pathogen itself damages
host tissues and can be eliminated completely. However, dampening the antiviral
response can ameliorate viral immunopathology especially in persistent viral
infections but also in some acute situations, where the immune system over-does
its ‘job’ and an intolerable amount of tissue or organ damage is occurring while the
infection is cleared (von Herrath et al 1999). This can be achieved with altered or
blocking peptides (Bot et al 2000, von Herrath et al 1998) or, more recently, using
‘killer’ dendpritic cells, both of which abrogate antiviral lymphocytes (Matsue et al
1999). Since such immune modulations will curtail the antiviral response, it might
be important in some situations that viral replication is suppressed at the same
time by using antiviral drug therapy in order to avoid generation of
unacceptably high systemic viral titres. Thus, to achieve the desired effect, the
immune response has to be suppressed in a very controlled manner and it
would be helpful to be able to model/predict the outcome and fine-tune the
intervention accordingly.

Similar to the situation in autoimmunity, augmenting or decreasing the antiviral
response during an ongoing infection can be either beneficial or detrimental. Many
viral infections will not fall neatly into the extreme categories 1-3 indicated in
Fig. 3, but instead will be in the ‘middle section’. Since the viral load is a
function of the efficacy of the immune response and concomitant antiviral drug
therapy, the prediction of the outcome of immune dampening or enhancing
interventions is complex. It depends on the replication rate of the virus, number
of antigen-presenting cells infected, lytic damage of the viral infection to the host
cell and the precise kinetics and effector molecules of the antiviral response
(cytokines, petforin, FAS, etc.). Many of these factors have been characterized in
experimental models and could form the basis for designing appropriate predictive
model systems.

Conclusions and future outlook

Immunological processes governing autoimmunity and antiviral responses are too
complex to be predicted with methods available to date. Immune modulatory
interventions relying on changing the kinetics of an ongoing local or systemic
response are currently under evaluation, but would greatly profit from a
predictive model that is based on empirical data as well as assessment of the
immunological status of a given individual. T'o obtain such a model, we will need
the ability to derive systemic data (non-invasively), for example by determining
antigen specific cells as well as antibody levels in the peripheral blood, which has
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FIG. 3. Regulation of virally induced immunopathology as a function of viral load and the
magnitude of the immune response.

almost become a reality with novel techniques such as MHC tetramers and
intracellular fluorescence-activated cell sorting (FACS) analysis. However, the
peripheral blood only offers us a tiny and narrow window to the overall immune-
status of an individual: dynamic changes and compartmentalization of antigen-
specific immune reactions can only be captured incompletely. Therefore, the next
logical and important step will be to develop techniques that can rapidly and, if
possible, non-invasively monitor systemic immune tresponses. The most
promising approaches involve the use of refined imaging such as magnetic
resonance imaging (MRI) coupled with an appropriate ‘labelling agent’ that will
identify antigen specific cells or other players of the immune system during the
procedure. Data obtained could be fed into computers, where a whole
mathematical model of the existing immune response specific to an individual
can be created. This would allow us, while linked to an empirical database for
pervious immune interventions and their outcome, to identify the optimal
immune-based intervention for each patient and disease and monitor their
therapeutic success, without having to rely on the final outcome, which is
clinically undesirable.
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DISCUSSION

Segel: Relevant here is some work I did with my colleague, Irun Cohen, at the
Weizmann Institute (Segel et al 1995). This work concerns the situation you
outlined where there are aggressive cells and regulator cells. We examined this
situation in the context of vaccination against autoimmune disease. Experiments
by Cohen and his colleagues showed that if you give animals a certain amount of
‘bad guy’ autoaggressive cells, the animals get autoimmune disease. If you give
fewer ‘bad guy’ cells, they don’t develop disease. Moteovet, if you follow this
experiment with another experiment somewhat later, giving the standard disease-
generating dose of aggressive cells, the animals still don’t get autoimmune disease.
Thus a lowish dose of the very same aggressive cells gives what looks like a
vaccinated state.

We strove to construct the simplest possible model for these experiments with a
schematic dynamic interaction between aggressive and regulator populations. In
mathematical terms, the model consisted of two ordinary differential equations. As
shown in Fig. 1 (Sege/) we generated a situation with three stable states: one with a
low amount of autoaggression, which we call the normal state; a second with an
intermediate amount, which we call the vaccinated state; and a third with a lot of
autoaggression, which we call the diseased state. Since there are three possible
stable states of this dynamical system, there must be some sort of line (called
‘separatrices’) that will separate the possibilities. If you start on one side of the
(dashed) separatrix between the first two stable states, you go to the normal state
(curve A); if you start on the other side you go to the vaccinated state (curve B).
There is a similar line separating the vaccinated state from the diseased state. It
could be, as drawn in the figure, that this second line bends down as it moves to
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(Sege/) Schematic showing the dynamic interaction between aggressive and regulator
populations of cells in the immune system (see text for explanation).

the right. Then if you are in the diseased state and add some aggressive cells, you
would bring the system into the vaccinated state (curve C). Adding more
aggression can result in a less severe diseasel My colleague and I had experiments
in a drawer which showed exactly this. The reason is that the aggression brings
forth regulation. The modelling simultaneously brings good and bad news. It is
good news because our model shows conceptually how autoimmune ‘vaccination’
can happen. It is bad news because actual interactions are doubtless many
dimensional, not just two dimensional, and it is very hard to know what is the
appropriate intervention that will result in an improved outcome. For this we
need precise and careful models.

Sejnowski: Y ou seem to imply that this intermediate or vaccinated state would be
stable for many years and then eventually the full blown clinical disease will
develop if there is the right stimulus. It sounds a bit like it is not really a stable
state, but instead a metastable state.

Segel: That sort of thing can happen. In the simplest possible model, you take
certain things as constants. In fact, they aren’t constants; they slowly vary. And if

you slowly vary things, all of a sudden the domains of attraction may switch, and
you can fall from a normal state into a bad state.
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von Herrath: It is interesting how you point out that in situations of disease, if you
add moreaggressive cells or enhance inflammation, this may in some circumstances
move the system to a vaccinated or protected state. There is now a fair amount of
experimental evidence from animal models, such as those of diabetes, where this is
seen (Singh 2000, Mor & Cohen 1995).

Sejnowski: Has this also been seen in humans?

von Herrath: No. In humans the real problem with autoimmune diabetes is that
we don’t have an effective and feasible way of collecting data for this type of disease.
We can measure values in the blood, for example of antibodies, which is done very
well, or oral glucose tolerance, which gives an idea of f§ cell function, but this is
about it. Assessment of cellular autoimmune responses in the petipheral blood
mononuclear cells (PBMCs) of the blood has so far been unreliable. We can’t go
into the pancreas, because this may cause cysts, which we don’t want to risk in
healthy individuals. We can’t even access the pancreatic draining lymph nodes.
From animal models we know that a lot of the autoimmunity happens as a cross-
current between the islets and the draining nodes. This is why one has to explore the
area of invivo imaging systems. We would like to able to label certain cells and have a
high-resolving magnetic resonance imaging (MRI) scan with which to track these
autoreactive cells to the islets in real time. This would let us know where they go,
how they compartmentalize, and what they go on to do. These data could then be fed
into a computer analysis and give us a much better idea of how the system works.

Sejnowski: Which labels do you have in mind?

von Herrath: We are working with a group who have been tagging f cells with
certain molecules which they can then visualize. The problem at this point is still
the resolution of the MRI. Unless we can get it down to the single cell level, this
approach will be unsuccessful.

Iyengar: You have been talking about not being able to predict. I have been
talking to some engineers who do this sort of model design for a living. They
have their complexity divided into what they call ‘real’ and ‘appatent’
complexity. The apparent complexity exists where they don’t understand the
design parameters and not because the system intrinsically behaves in a complex
way. Do you think that if you could model this at a cellular level — because after all
viral infection is going to be cellular — rather than at any of these higher levels of
modelling, will the models give you predictive capabilities? For instance, when
you talk about a second rapid infection causing infectivity to fail and your cell is
saved, my challenge to you would be that unless you can show why it failed at a
cellular level, doing it in islets or aggregate cells will tell you very little in terms of
being able to predict outcome.

von Herrath: To model like this, you need to understand both what the virus does
to the cell, and then also the cell—cell interactions. The second level of the model
needs to include an organ-wide understanding of the process.
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Iyengar: 1 would agree that you would learn something at the cellular level, but to
get at infection as a whole you need a second level of model going beyond the
cellular detail.

von Herrath: For example, this is how such a model could work. You start with
the co-stimulators at the cellular level. If you use sophisticated imaging techniques
and visualize T cell receptor clustering upon activation along with accessory
molecules, one can localize the co-stimulators B7.1 and B7.2, for example, just as
Mark Davis is doing (Wiilfing et al 1999). One could quantitate this and get a good
idea of movement within a cell. You could take these data and use them as a basis to
make the cellular model. From there you can take the model to the systemic level if
sufficient information is available on the trafficking of autoreactive lymphocytes
(e.g. Merica et al 2000).

Sejnowski: Y ou alluded to memory processes, which presumably take place over
much longer time scales, of years.

von Herrath: Immunological memory, as well as ‘autoimmune’ memoty, is a
difficult issue: there has been a long-running controversy over whether this is
maintained by persistent antigen or not. The Rolf Zinkernagel ‘camp’ thinks that
functional immune memory is driven by antigen (Zinkernagel 2000); on the other
hand, Rafi Ahmed and Polly Matzinger think itis not driven by antigen (Matzinger
1994, Whitmire et al 2000). This situation will not be easily resolved. The antigen
may persist in some kind of vesicle where it is not easily detectable or ‘stainable’.
How a memory lymphocyte is characterized is also controversial. The markers that
are used are just empirical molecules and might have nothing to do with the
memory property. Most recently, it has become clear that there is some sort of
homeostatic cycling of the immune system. The memory cells, although they can
be long lived, turn over. The question is, how do they maintain their specificity
when they are being turned over in this way (Antia et al 1998)? On the T cell level
there is not a great deal of affinity maturation. It is not known how these cells turn
over, and what makes them go into this maintenance cycle. It is a fascinating
problem. Therefore the role of the immune/autoimmune memory is not well
understood.

Kahn: 1 want to ask a question that might compare the first two papers that we
have heard. In one situation you are talking about things which are continuous.
However, when you talk about the induction of disease state, it is stochastic: you
either develop diabetes or you do not. The difference between the two outcomes
might be 85% killing of the f cells versus 95% killing of the f cells. At some point
there will be enough cells damaged to cause a difference. The question I was trying
to envision as one sets up models is this: is the power of the model decreased or
increased when you are dealing with a continuous variable (such as a signalling
system) versus one that is discontinuous (a stochastic event such as a disease state
or mitosis)?
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von Herrath: By measuring insulin levels, f cell mass and blood glucose one has a
pretty good continuous variable in most experimental 7z vivo systems for diabetes
(von Herrath et al 1994, Homann et al 1999).

Sejnowksi: Diagnosis of a disease state is often binary, but this hides the fact that
there is usually a grey area.

Kahn:1understand diabetes very well; that is not the problem. What I am asking
is, is the model less powerful because we are not able to measure the correct
quantitative data or that the critical variable is not assessed at all? Or will the
modelling be just as powerful if the final endpoint is the presence of absence of
disease?

Iyengar: You need the trigger. I could bring my model down to this level if 1
didn’t know about MAP kinase phosphatase. Assume that you didn’t know that
MAP kinase phosphatase existed. Then at certain times you put in epidermal
growth factor (EGF) and the cell starts to divide. There are other cells that you
put EGF into and nothing happens. This comes back to the issue of apparent
complexity: because we didn’t know there was this determinant process, which is
the regulating enzyme, we had no idea why these cells responded to the same signal
in different ways. In disease states, I suspect that there is a trigger that causes the
transition. My question is whether in disease systems this trigger will be a
molecular one (a single component of one cell type), or whether it involves
several components from several cell types.

Sejnowski: Are you saying that if we know the initial conditions— what was
there to begin with— you could predict whether an individual cell would go up
or down?

Iyengar: One thing that came out of our modelling relates to the question of how
memory is sustained. Our MAP kinase model gives a sustained stimulus. We don’t
need to preserve any individual molecule of MAP kinase. Each one can turn over
and a new one can be synthesized. PKC comes back and goes through Raf, and
picks up any MAP kinase that is there, so we can get continuous turnover at one
end and still maintain an active state.

Dolmetsch: A philosophical question. You suggested that there are no stochastic
events, only a lack of knowledge of the mechanism that undetlies events. Do you
think that this is the case? Do you think that if you were to know all the molecular
players, everything that we now call stochastic would turn out not to be stochastic
after all?

Iyengar:1wouldn’t say that. I was trying to make my life easy by going along with
the currently favoured idea of molecular scaffolds and anchors, which in a
computational sense makes our life a lot easier. Clearly, there are many processes
that are stochastic. There ate probably real stochastic processes and real
uncertainty, which means that however much we know, there will probably be
some variability in our prediction. Until we actually measure everything and
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prove that it is there, we can’t say that it is. At this stage, I would still use the
engineers’ concept of apparent complexity where we haven’t measured
everything correctly.

Sejnowski: There are known sources of fluctuations. Diffusion is cleatly an
important process: we have to live with the variability with which a single
molecule will diffuse from point A to point B. As an example, let us take the
simulation of the release of acetylcholine and its binding. We can start from
exactly the same initial positions, use a random walk model, and see the same
randomly fluctuating currents that are seen physiologically at the neuromuscular
junction. We have to do this computation dozens of times and average, just as the
physiologist does, to get a good result. This is an inherent source of stochasticity,
which nature can take advantage of as a computational principle to overcome
barriers.

Dolmetsch: 1t is analogous to the difference between thermodynamics and
statistical mechanics. If you have lots of molecules, you can predict what they are
going to do, but it is much harder to do this with just a few. In the disease state,
there is prediabetes for a period of, say, seven years, then one day you develop
diabetes. Is this truly predictable? Is it that we don’t know some variable, and if
this variable wete known then prediction would be possible? It might be that this is
not the case, and that one day, one cell does something for some reason, and this
somehow nucleates the disease. It might be very difficult to predict. A better
example of this is probably cancer, in which there are a certain number of hits,
which are stochastic.

Iyengar: 1 think we can predict cancer pretty well.

Se¢jnowski: 1t is probably the case that there are some things which we can make a
definite prediction about, and other things about which you can only make a
probabilistic prediction. The question is perhaps a philosophical one, ultimately.

Iyengar: That is a multicellular question. But cancer is basically a unicellular
disease. Only one cell needs to transform and then it takes over.

Brenner: We don’t know that. There may be many such initial events, and they
just decay. There may have to be some other stochastic condition that nucleates the
disease. We know quite a lot about these things in ecological systems and it may be
helpful to apply ecological ‘population biology’ thinking when we consider
populations of cells in a complex environment.
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Abstract. Diffuse feedback is defined to be a process by which a system in some sense
improves its performance with respect to a variety of conflicting and even contradictory
goals. In the immune system, such feedback is mediated by scores of extracellular
chemicals (cytokines), each of which participates in achieving several goals. Progress
toward any given goal is mediated by several cytokines. The ‘immunoinformatics’ of
this diffuse informational network will be discussed. It will be shown how diffuse
feedbacks, based on this network, can improve the performance of a given type of
immune effector cell, and can cause the preferential amplification of more potent
effectors. It will be argued that diffuse feedback also acts in other biological systems
ranging from the metabolic system to ant colonies.
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The immune system is a superb venue for learning about biological information
processing. Because of the immune system’s intrinsic interest and medical
importance, its ‘hardware’ is rather well understood, although much remains to
be done. At its molecular level the remarkable phenomenon of hypermutation
chemically scrambles genetic information in order to provide diversity for B cell
receptors. But what interests me more is the cellular level — because I believe that
insights at this level are not only definitive with regard to immune system
behaviour, but also are applicable to other major biological systems, and indeed
to non-biological distributed autonomous systems.

Vertebrates possess trillions of immune cells, of dozens of different types, with
no apparent ‘boss’. Different sets of cell types are mobilized to combat different
species and strains of pathogens that attack the host. Moreover, the immune
system participates in other homeostatic tasks such as wound healing and tissue
remodelling. Scores of signalling molecules, called cytokines, guide the immune
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system. Each cytokine seems to have several functions, and any given function
seems to be affected by several cytokines. When suitable receptors are ligated, not
one but several cytokines are typically secreted.

How does this vastly complicated distributed autonomous system ‘decide’ what
to do and when and how intensely to do it? I will discuss various aspects of this
question, emphasizing the role of information. In particular I argue that a decisive
role is played by what I call a diffuse informational network, based on cytokines. In
doing so I am responding to the suggestion of Orosz (2001) concerning the key
role of ‘immunoinformatics’, defined to be the study of how the immune system
generates, posts, processes, and stores information’.

I will not give references to well-accepted assertions about immune system
opetation. The reader who wishes to learn more can consult texts such as that of
Janeway & Travers (1997) or that of Paul (1999). I have concentrated here on
showing that my ideas for the role of information in immunology fulfil a need
and are feasible. In addition, evidence is required that these ideas are actually
implemented. For that, see Segel & Bar-Or (1999).

Cytokines: command network or informational network?

The immune system is triggered to act by information that something is wrong.
The following are non-exclusive alternatives for the triggering mechanism.

(1) Characteristic microbial molecules bind special ‘pattern recognition
detectors’. These are receptors on cells, such as macrophages, of the
evolutionarily primitive innate immune system (Janeway 1992).

(if) A ‘tuneable activation threshold’ detects significant departures from ‘normal’
conditions (Grossman & Paul 1992).

(iif) Special receptors on various cells bind molecules that signal some form of
‘danger’ or tissue destruction (Matzinger 1994, Ibrahim et al 1995).

Once triggered, the immune system’s response is normally regarded as reactive. A
number of factors combine to shape the response—not only the initial pattern
detectors but also receptors that detect peculiar molecular constituents of the
individual antigen. Also of importance are the different conditions that are
characteristic of the various tissues. All these factors interact in a complex
manner to yield a response that has been selected by evolution to be
advantageous to the host.

How do the cytokines modulate the immune response? The classical view is that
the cytokines form a command network that directs cell activity. For example, invitro
experiments show that the switch of B cells from secreting IgM antibody to the
alternative IgG can be induced by interleukin (IL)-2, IL-4, IL-6 and intetferon
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(INF)-y. I advocate the (non-exclusive) alternative that the cytokines can be
regarded as forming an znformational network. Typically by ‘chords’ of several
cytokines, not by ‘tones’ (single cytokines), this network provides information
that various different cell types can use in different ways to forward the goals of
the immune system. In fact hymns’ of cytokines is a better metaphor, because it
is likely that there is significance to the temporal development of cytokine profiles.

The ‘command’ view of cytokines is reflected in numerous surveys of cytokine
action, which typically list the various activities associated with a given cytokine, as
well as the receptor for that cytokine (for example, see Appendix II of Janeway &
Travers 1997). Viewing the cytokines as an informational network focuses
attention differently, on what molecules trigger (via what receptors) sectetion of
the various cytokines, in what amount. For example, since we know that
engagement of the lipopolysaccharide (LPS) receptor on macrophages induces
sectetion of IL.-1, IL-6, 11.-8, I1.-12 and tumour necrosis factor (TNF)a, then we
can infer that this cytokine chord gives the information ‘there is potential danger
from Gram-negative bacteria’ (whose outer membrane contains much LPS).
Unfortunately, information is not readily available on the amplitudes of the
various secretions, for presumably several different ‘chords’ are composed of the
same cytokine ingredients in different proportions.

Another of the many macrophage receptors (an Fc-y receptor) binds the constant
y region’ of IgG, typically during the processes of macrophage phagocytosis of
pathogens that have been ‘opsonized’ by binding IgG antibodies of suitable
specificity. 1L-10 secretion is induced by such binding, so that a message
associated with abundant quantities of this cytokine is ‘macrophages are
internalizing opsonized pathogens’. (I am using ‘message’ in its general sense,
not in connection with messenger RNA.) In addition the message ‘apoptosis is
occurring’ can be inferred by relatively high levels of transforming growth factor
(TGE)f, PGE2 and PAF, which (i vitro) are secreted by macrophages that have
ingested apoptotic cells (Fadok et al 1998). Such sectetions when, respectively, Fc-y
receptors or apoptotic body teceptors are bound constitute examples of what 1
have termed the ‘do-moo’ principle —if a cell is accomplishing one of the actions
that it is capable of then it ‘moos’ — it informs the whole system of what it is doing.

Once an information network has been postulated, a natural question is whether
various cells respond appropriately to the available information. For example, if
macrophages can effectively dispose of a pathogen challenge by ingesting
opsonized pathogens then one would expect to see a down-regulation of
alternative responses via T cells and an up-regulation of antibody-secteting B
cells. (This illustrates an important principle — different cells should respond
differently to the same information.) In broad terms, this expectation is
confirmed by data reviewed by Denny (2001). Increasing IL-10 curbs antigen
presentation by macrophages and monocytes (their blood-borne precursors),
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which decreases T cell activity. IL-10 also acts to encourage B cell proliferation and
differentiation. Moreover, at least in monocytes, there is positive feedback from
this type of IL-10 secretion, since the secretant up-regulates the Fc-y receptors
whose ligation induces the secretion in question.

The reader should not gain the impression from the previous paragraph that
adopting an information-network point of view provides instant clarification of
the function of cytokine networks. At best, it is a promising lead in
understanding cytokines (concerning which more than 10000 papers a year are
currently being written, yet ‘practically nothing is known about the behaviour of
the network asa whole’; Callard et al 1999). Thus, if we return to the example of IL-
10, we must bear in mind that it is not only ligation of Fc-y receptors on
macrophages that induce its secretion. Among several other possibilities is
infection of B-cells by Epstein—Barr virus and the appearance of certain types of
lymphomas (Denny 2001). Thus there appears to be no single ‘message’ that can be
attributed to I1.-10. Moreover, there are other actions of I1.-10 in addition to those
I have cited. For example the up-regulation of Fc-y receptors is associated with
additional antibody-dependent cell killing by natural killer (NK) cells (Denny
2001). This action seems to have little to do with the macrophage ingestion of
opsonized pathogens that was previously discussed.

To provide a tentative explanation for the complications just cited, I suggest that
the system can cope with a message of the form ‘either I or Il is happening’, for this
narrows the focus of the system. Mobilizing NK cells might well be an appropriate
response to ‘alternative II” for interpreting high I1.-10 concentration, the presence
of lymphomas. If responses of the immune system are generally encouraged when
they lead to the proven repelling of dangerous attackers (see below) then there
would be an eventual selection of the correct response to the ambiguous message
‘it’s I’ or ‘it’s II’: suitable antibody secretion and opsonization if the threat is
bacteria that can be destroyed by macrophages via opsonization, and active NK
killing if the threat is a lymphoma.

Another complication inherent in the view of cytokines as information
providers is the ability even of mere viruses to subvert the signalling system
(Ahmed & Biron 1999). Here are three examples.

(1) Pox viruses encode a protein, T2, that is similar to the TNF receptor. T2 is
released from infected cells; it binds TNF, presumably blocking TNEF’s
antiviral action.

(it) A protein encoded by the Epstein—Barr virus blocks the synthesis of IL.-2 and
INF-y.
(iii) A protein encoded by the myxoma virus binds INF-y.

An argument frequently made against the notion that an information network
plays an important role in immune defence is that pathogens can subvert the
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information. As I have just pointed out, subversion is indeed possible. Yet,
somehow the subverting pathogens are not devastating, which indicates that the
subversion does not force the host to abandon all use of the information in
question. Rather, an alternative is found. Indeed, the diffuse nature of the
cytokine informational network may well be one defence against subversion.

How diffuse feedback can modify the original immune response

I'do not accept the conventional view that the immune response is essentially pre-
programmed, even though features such as those that I have discussed can provide
a very sophisticated hard-wired response. For one thing, the immune system is so
varied and complex that a hard-wired response cannot be relied on. Many aspects of
the response are unpredictable (Sercarz 2001). Moreover the attacking pathogens
mutate so fast that they are likely to escape any inflexible attack.

The pre-programmed response is the first attempt, and may well be a successful
one, but I believe that the first response is often modified, perhaps in a major way,
during the period that the host is subject to a given challenge to homeostasis.
Hete’s how I suggest that the modification operates.

(A) The dominant initial immune response is biased by evolutionary experience
to provide adequate countermeasures for combating a wide variety of
‘standard’ pathogens and other ‘standard’ disturbances to homeostasis. But
the initial response contains a number of other elements, in addition to the
dominant response, which provide a spectrum of replies to each challenge.

(B) The immune system can be regarded as possessing a number of goals, which
typically overlap or even contradict each other. A set of sensors monitors
progress toward these goals.

(C) A diffuse informational network presents to all cells not only indications of
progress toward the various goals but also other important information
concerning the state of the immune system and of the host.

(D) During the course of any challenge, by a process of diffuse feedback the immune
system continually adjusts its response so as to obtain some sort of overall
improvement in attaining its goals. The fundamental hypothesis here is that
the information mentioned in Item C is employed by individual cells to hone
their characteristic response, and by the system as a whole to select for relative
amplification of those cells in the response spectrum (Item A) that are most
effective in promoting the overall goals (B).

Two major immune system goals can be expressed by the postulates that the
immune system acts as if —all other things being equal — killing dangerous
pathogens is good and harming self is bad. There is no teleology here. ‘Harming
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self is bad’ is merely a terse formulation of the observation that, during the course
of evolution, selection processes generally favour organisms whose immune
systems — all other things being equal — do not produce excessive self-harm.

To modify its behaviour in such a way as to improve in some sense its attainment
of its multiple goals, the immune system must know ‘how it’s doing’. Given the
goals I have suggested, this suggests the presence of a ‘harm chemical’ H and a kill
chemical K that respectively provide evidence of harm done to the host and of
pathogen killing. (See Segel & Bar-Or (1999) for specific suggestions for
molecules that act as harm and kill chemicals.) (If tumour cells can also be
recognized as attackers, then there should be chemicals that give evidence of
tumour destruction.)

Evidence of harm by pathogens should up-regulate immune response (for
then the pathogens are dangerous) but response should be down-regulated if
the harm is generated by the immune system. These two types of harm, Hp
and Hj, can be distinguished if they are respectively associated with high
pathogen levels or high levels of immune activity. Moreover, association of
Hp and K, i.e. high levels of both pathogen harm and pathogen killing, signals
the achievement of the goal of destroying dangerous pathogens. By contrast,
high levels of Hj are bad; they indicate that the immune system is damaging
the host. Simultaneous consideration of both good and bad features of a given
response is not difficult; the response intensity need only be programmed to be
an increasing function of evidence of ‘good’ (e.g. simultaneous high values of
both K and Hp) and a decreasing function of evidence of ‘bad’ (e.g. high values
of Hj).

Segel & Bar-Or (1999) provided a mathematical model that showed how the
principle just cited could improve the performance of a single cell. The basic
problem that they examined is one of wide application in immunology,
arranging an immune response with a suitable level of inflammation. Too little
inflammation engendets a poor immune response; too much engenders
unnecessary self-damage. This idea was examined in the framework of the
hypothesis that the immune system has evolved with the overall goal of
minimizing the combined direct and indirect harm that stems from a pathogen,
where the indirect harm comes from inflammation. The analysis showed that if
the pathogen characteristics are fixed then there is an optimal level of
inflammation. But this level depends on pathogen virulence. For example, faster
growing pathogens should evince a higher level of inflammation, since it is worth
suffering incteased damage from inflammation in order to prevent even more
damage from the rapidly reproducing pathogens. It was demonstrated that a pre-
programmed immune system cannot cope well with a variety of pathogens but that
‘coping’ can be greatly improved with the aid of feedbacks governed by
information concerning concentrations of the chemicals H and K.



FEEDBACK IN THE IMMUNE SYSTEM 37

I stress the difference between the overall goal of minimizing total damage to the
host by both pathogens and the immune system and what can be temporarily
termed the intermediate goals of killing dangerous pathogens and avoiding harm
to self. As we have seen, the intermediate goals overlap and conflict. No optima
are sought: optimal achievement of one intermediate goal may well mean that an
important alternative goal is almost entirely neglected. The degree of achievement
of intermediate goals can be monitored and they moderate day to day and week to
week activity of the immune system. Although immune ‘goals’ are an abstraction
invented by scientists, the intermediate goals seem to model parts of immune
system operation with considerable faithfulness.

The relative importance of the various intermediate goals is decided by
evolution. By contrast an overall goal, such as minimizing total harm from
pathogens and the immune system (a way of ‘maximizing fitness’), is too lofty to
provide a basis for the development of an effective immune response to a particular
challenge. An overall goal is a theoretical construct that is aimed to underpin a
computationally feasible substitute for the true complexities of evolution.

In addition to providing a means for improving the operation of a particular
effector cell, information on immune performance can permit the selection of
those effector cells that contribute strongly to the performance of a given
immune task, and to the down-regulation of inefficient cell classes. This process
was also modelled by Segel & Bar-Or (1999). A key question here is this.
Suppose that informational chemicals indicate that a certain task (for example
killing dangerous pathogens without causing too much self-damage) is being
well done. How can the ‘credit’ be assigned to the right set of effectors? One way
is by spatial organization. Suppose that several different effector types are
concentrated at several points of space. Suppose further that a chemical C is
secreted wherever the given task is well done, and suppose finally that a//
effectors ate up-regulated (via proliferation and/or activation) by high
concentrations of C. This is enough to ensure the selection of ‘effective effectors’.
If effective effectors can be selected, then feedback can help select between the
helper T cell classes Th1 and Th2 (Segel 2001a).

Another way to describe the process is as follows. As I have emphasized, there is
a spectrum of immune responses. The effects of each response are ‘simulated’ at
different points of space—for example in lymph nodes or spleen, immune
organs that are noted for their subtle spatial organization. Those responses that
prove their worth are magnified.

Discussion: ‘informatics’ of other complex biological systems

In my analysis of ‘immunoinformatics’ I have concentrated on the suggestion that
the cytokines form a diffuse informational network. But it is not possible to
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consider biological information in isolation from how it is used. This has required
discussions about diffuse feedback, which employs the information to modulate
immune activity in order to promote a set of overlapping and contradictory goals.

The approach described here offers explanations for salient observations
concerning the cytokine network. Why does a given cytokine ‘command’
numerous functions? Because different cells respond differently to the same
information. Why is a given function affected by so many cytokines? Because this
function is relevant to many overlapping and contradictory goals.

The approach that I have advocated is relevant to other biological contexts
(Segel 2001b). For example, the metabolic system must also contend with a
variety of overlapping and contradictory requirements, as it ceaselessly adjusts
itself in the face of changing nutritional opportunities and changing structural
and energetic demands. Here the metabolite concentrations themselves seem
directly to provide information on the state of the network. The presence of
multiple regulatory sites on key enzymes (e.g. at least six on phospho-
fructokinase) seems sufficient evidence for the assertion that the information is
exploited via diffuse feedback.

The genomic regulatory network is another locus for diffuse feedback. Yuh et al
(1998) demonstrated that the control of the sea urchin developmental gene Endo16
is exerted via seven sites on the ¢zs-regulatory element ‘module A’, which acts as a
complex switch in processing occupancy information concerning these sites. Here
too there are multiple ‘goals’, for Endo16 seems to have many functions, which are
exerted at different locations and at different times in the life cycle of the sea urchin.
It remains to elucidate how information about the goals is translated into varied
concentrations of DNA binding proteins.

An additional example of ‘informatics’ in biology, concerns information transfer
in ant colonies. (i) As discussed in the review by Holldobler (1995), there are
documented examples of signalling ‘chords’: for example, mymicine worker ants
respond maximally to trail pheromones composed of a 3:7 ratio of two pyrazines.
(ii) Holldobler conjectures that if genetically similar members of an ant colony tend
to produce similar patterns of multicomponent alarm signals then this can inform
the ants whether nest mates or aliens are producing the signal. (iii) In the immune
system, different effector cells are selected. In ant colonies, adaptive behaviour is
more likely to occur when ants switch tasks. The ‘do-moo’ principle could well
hold, however, for ants from different task groups (e.g. foragers and nest
maintenance workers) have different chemical profiles (Wagner et al 1998). These
differences may be sensed in brief antennal contacts.

Returning to immunology, let me mention a possible medical application of the
point of view that it is preferable to regard the cytokine network as providing
information, not as embodying commands. The command paradigm leads to the
idea of accomplishing the beneficial proliferation of cell type A by introducing a
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chemical o, that is known to accelerate the division of A cells. But o may have many
side affects, and may not work well owing to the presence of o antagonists. It may
be better to inject a panel of cytokines which the body interprets as information
that it is in a situation where high A concentrations are beneficial. Then the body
itself will come up with a good way to achieve such concentrations.
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DISCUSSION

Dolmetsch: Things are a bit different in the case of metabolism: you have the end
product feeding back on the metabolic enzymes, but in killing bacteria what you
really need is a signal for success. This may not be information that the immune cell
itself has. It may be that this signal is something that feeds back from the bacteria.

Segel: Yes, some sort of signal for success is needed to feed back. What would be
success when you are thinking about killing bacteria? A dead bacterium. But you
don’t need a corpse; it is sufficient to have a scalp — irrefutable evidence that there
is a corpse somewhere. I claim that there are indeed ‘scalp’ molecules (see Segel &
Bar-Or 1999). One example is mycolic acid, which is a constituent of the cell wall of
a certain class of Gram-negative bacteria— not of the outside cell wall, as in the
case of LPS, but of the inside cell wall. Mycolic acid binds to CD1, an MHC-like
molecule that ‘presents’ lipids and thus has a role in modulating the immune
response. Other ‘scalp’ molecules for bacteria are N-formyl peptides that
promote inflammation by attracting leukocytes.

In general, I suggest that with its reflexive responses, the built-in innate immune
system has all sorts of ways to take care of the classical kinds of pathogens that have
been around and will continue to be around, because we have coevolved nicely
with them. More ‘sophisticated’” immune responses with feedback on the fly
during the course of the hours and weeks that a single disease may last, these
have evolved to take care of the “wise guys’: pathogens that rapidly evolve a new
way to ‘get us’.

Brenner:1disagree with your anthropomorphic view. I put this in the same genre
as Dawkins’ ‘selfish gene’. It may be a nice way of looking at the problem, but it is
very misleading, because it doesn’t connect you to what you have to really solve.
The immune system isn’t everywhere; only some animals have it. I will give you a
counter-argument to the LPS idea you proposed. Once upon a time thete wasn’t an
immune system. Defence mechanisms certainly evolved to cope with a generic
microorganism. One way of detecting a Gram-negative bacterium is to use a
receptor to bind LPS. Therefore this was not designed as a signal to give the
body information about how well you are doing, as you want to claim. It is just
an ancient defence mechanism which has been overlaid through the course of time
with this very elaborate immune system. There are many other examples like this.
Evolution measures reproductive success, and the systems we have today are those
that worked, while the ones that didn’t have been wiped out. The complexity of the
cytokine network did not arise to provide information. It is complex because it has
been used to control the development of the immune system which needs many
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cytokines because it has many different cell types. We have to consider the existence
of conditions such as, ‘If cytokine x and y but not z is present’, then the receptors
will signal this perhaps to turn on a gene which allows that cell to move to the next
stage. People like to imagine that there are goals in biological systems, but I have
always thought that once you go down that path, the thinking you apply then
becomes perverted. We also need to ask where the molecular information comes
from. Receptors cannot arise from nothing, and all have origins further back. They
may have been used for different things; our job is to show how they got harnessed
into this developmental pathway, which is what the immune system is. It is not a
question of taste, but one of discipline.

Sejnowski: Is it known whether it is a Boolean operation?

Brenner: 1 think it is a Boolean operation plus quantitative thresholds. It is
necessary to get away from the idea of commands— these are not instructing a
cell what to do next, but rather are providing the conditions that permit the cell
to go on to the next stage, and withdraw the next book from the library of genes
and read out what it has to do. It is more a library model than an instructive model.

Segel: 1 would answer with the following. First, the instructive view should be
modified to something more complicated, a program view: if A and not too much
B, then Cinanamountdepending on D and E. The program view is more accurate,
but it is still a model. And of course the immune system doesn’t have anything ‘in
mind’: it behaves, it does, it was selected. None the less, my multiple goals model,
taken carefully, can be a useful aid to understanding. Physiologists certainly talk
about the homeostatic system that keeps our body at a particular temperature and
keeps the concentration of CO,, cholesterol, glucose and so on within appropriate
ranges. In essence, they postulate ‘goals’ for homeostasis, and everyone thinks
that this is a useful way of working. If you just take that well accepted
physiological view one step further, and allow for the fact that these different,
well accepted model goals intetfere and ovetlap, then you are with me. It is not
so radical.

Brenner: Let me make one other point, concerning phosphofructokinase. You
say it is more complicated, but if you think about it, it is a device to measure ratios.
This may be what you want.

Segel: Why does it want to measure so many different ratios? Because it is doing
several different things at the same time. If you read Stryer (1988), he talks about
several different functions that phosphofructokinase is simultaneously involved in.

Brenner: This enzyme has partitioned functions. It isn’t sitting there in
schizophrenic doubt, not knowing what to do next.

Sejnowski: If 1 could reformulate this issue, I think what Lee Segel is saying is that
when a cytokine signal increases it is giving the rest of the system information that
some event is occurring, but it is actually a well defined piece of information, as
opposed to this binary or Boolean model.



4 DISCUSSION

Brenner: 1 am saying that there is a contrast between those two views. We don’t
know which is the right one. The rate of an enzyme reaction can certainly depend
on more than one parameter, and a metabolic system can equally be optimized for
morte than one signal.

Iyengar: 1 didn’t understand one point about the organization of information.
When you have these information sub-goals, when you classify these, does this
aggregate define your system? This comes to your question of what each part
does in respect to the other. If there are three cytokines, for example, do they
show up together or does one show up just late enough so that it can or cannot
have an effect? How do you define your information sub-goals in the way you
model these systems?

Segel: One of the things that as yet I don’t understand very well is how I can take
an abstract system and define what goals or sub-goals it can usefully be regarded as
having. We all agree that an organism works to enhance its own reproduction in
the long run. But this doesn’t help a given cell to decide what to do in a particular
circumstance. The cell needs proximal information from many different sensors in
order to tell it how to behave at a given moment. My model of multiple goals, if
successful, is still no mote than a model. This means that if I can think of several
suitable goals, then perhaps I can explain 75% of a certain amount of information.
As with every model, there will be things I can’t explain and questions that I can’t
touch.

Dolmetsch: Let’s approach this from an experimental point of view. The idea of
feedback is well established in biology, and clearly there is feedback at many levels
and from multiple systems. In a model like yours, is there any way in which you can
predict mathematically what I want to look for experimentally as a feedback
mechanism? If I was to define the initial state and the final state, could you make a
prediction as to the minimum number of feedbacks there are? Could you give me a
concrete idea of what sort of experiment I should do?

Segel: Here is one possibility, dressing a sheep in wolf’s clothing. Most
immunologists believe that it is the epitopes on a pathogen that define the
response. Take some standard Gram-positive bacterium and stick a whole bunch
of LPS on the outside, so that the bacterium has Gram-negative clothes. Then, see
whether after the first response due to the ligation of the LPS receptor there is a
shift in response when the system figures out that the standard thing that it is doing
isn’t working out. Another experimental guideline is a shift in emphasis. In
addition to determining many factors that bias choice towards Thl or Th2,
examine how factors lead to the correct choice in the Th1/Th2 dichotomy.

Launghlin: Y ou repeatedly used the word ‘information’. An information theorist
would say that in this system you should use combinations of different cytokines to
specify a set of probabilities, which would specify the likelihoods that the cell did
each of the several different things that it was able to do. Have you applied that
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approach? It gets over the problem of focusing diffuse signals onto a single
action.

Segel: Y ou are right that it would be an improvement in my modelling (though a
complication) to use information to regulate probabilities. Concerning signal
combinations, I have suggested specific chemicals which indicate that the body is
being harmed. It makes a big difference whether the harm is due to the immune
system (all other things being equal, this should down-regulate the immune
system) or the harm is being done by pathogens (which should up-regulate the
system). How could you tell the difference between harm done by the immune
system and harm done by the pathogen? If harm is associated with a high level of
pathogens, then the best bet is that it is being done by pathogens. If harm is not
associated with high levels of pathogens, the best bet is that the harm is being done
by the immune system. Here is a way to associate two pieces of information to give
you additional information.

Laughlin: Information theory would ultimately tell you how many signals are
required to do this.

Segel: A graduate student has started working on a project involving a genetic
algorithm as a surrogate for evolution. Suppose we put in a panoply of possible
signals, with parameters giving the strength of those signals. How will the system
evolve so that the signals are used to minimize the overall damage from pathogens?
Are there circumstances whetein the system will use information in the way we
suggested? This is a theoretical test of the ideas that I have proposed.

Iyengar: What would an endpoint measure be in your model?

Segel: Now you are getting into the real nitty gritty details. I don’t think we can
say at the moment. As an example of what might be done (see Bergman et al 2001),
we could take a restricted system and try to make sense of the Th1/Th2 choice.
There is evidence that the immune system tends to shift to Th2 at high pathogen
levels, and that initially there isa Th1 bias. If so, our modelling shows that the Th1/
Th2 choice is usually appropriate, except that fast-growing Th1l pathogens are a
problem. In order to handle this case, outside information is required. This is a
highly complex system that we have modelled in a simple way. We have lumped
Th1 cytokines and Th2 cytokines together, instead of all the dozens of different
ones, and we have incorporated some information. I don’t think we will be able
to say something like, “We predict that if you measure TGFua its concentration will
triple after 4 hours, otherwise we will jump off a bridge’, for some years yet.

Brenner: There are now many examples that we can apply to this question. A
group of people, who die of cerebral malaria in Africa, have been shown to
harbour a mutation in the promoter of the NF-«B recognition site of the TNF
gene. Whatever signal these people are getting from the malaria, they ate unable
to respond by making adequate TNF. When we test wild-type mice with viruses
and bacteria, we find many strains differing in their resistance. The genes can then



44 DISCUSSION

be examined to provide information on what evolution has done to optimize
survival after infection with different pathogens. The genetic approach will also
uncover mechanisms of resistance. I am sure there will be many surprises.

Segel: We have this complex cytokine network and we don’t really understand it,
but we want to cure sick people. Immunology is a funny subject: if you don’t start
curing people within 10 years, people think that you are not a good immunologist.
The command method doesn’t work very well: if we add a particular interleukin, it
often turns out there are all sorts of side effects and it doesn’t do what we want. For
example, we might want to cure someone by switching from Th2 to Th1, so we add
something which is supposed to push the system in that way. If this ‘command
mode’ doesn’t work, we can try an alternative strategy of tricking the system by
providing it with some sort of information via a panel of cytokines, information
that implies that the right sort of response is to switch to Th1l. Then we can let the
different cells themselves differently interpret this information so that the whole
system switches to Thl. It is an alternative philosophy that may prove useful.

Brenner: That’s voodoo.
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General discussion I

Sejnowski: 1 have a list of issues that we might address in this general discussion,
prompted by the first three papers. The first had to do with this issue of stochastic
variability and how this should be dealt with mathematically. Sydney Brenner,
during the break you came up with a nice experiment that can be used to examine
a particular probabilistic approach: could you summarize this?

Brenner: This 1s an experiment carried out by Novick and Weiner more than 40
years ago. In Escherichia coli, the Lac operon specifies a f-galactosidase and a
permease, and can be induced with isopropylthiogalactoside (IPTG). The
permease is needed for the inducer to get into the cell. However, there is another
leaky permease for IPTG, so at a very high concentration (107> M), it can get in.
You now take a population of uninduced bacteria and put them in high IPTG
(107> M) for various periods, and then dilute them into a medium containing the
maintenance level of IPTG, which is 107°M. Those that have had enough
permease induced during the initial period now become fully induced and loaded
with f galactosidase, and this state is passed on to their progeny. Those that do not
have enough permease stay uninduced. The culture therefore differentiates into
two kinds of cells, fully induced and uninduced. The ratios are maintained,
except that the ones with lots of f-galactosidase grow a bit more slowly because
they are at a disadvantage. It is clear that the initial induction is a stochastic event.
There is of the order of 100 molecules of repressor in each cell, which is a femtolitre
in volume. There are also cells that apparently lose the property of being fully
induced. This can be explained by partitioning of the relatively small number of
permease molecules at each division. Presumably, instances arise where one
daughter cell receives a number of permeases that is below threshold, and in
subsequent divisions the molecules will then dilute out and cells that have no
enzyme will ultimately appear. This is a very good model system: you can do
experiments on this and under certain conditions you can make fairly accurate
predictions, relating the numbers of cells induced as a function of the initial
induction time. But if you want to describe the process at a quantitative level, at
the level of causal relations involving molecules, first you need to understand the
details of the process and use a stochastic treatment.

Se¢jnowski: This is similar to the mathematics one sees in population biology and
epidemiology for keeping track of probability distributions in populations.

Brenner: That is right.

45
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Iyengar: What happens when you have a pool of molecules, such as with MAP
kinase, when they go back and forth between a probabilistic set of events and a
deterministic set? This is like when MAP kinase climbs on and off these scaffolds.
Onceitis on the scaffold it can nicely be phosphorylated. What kind of quantitative
representations could be used here? There are probably many molecules that
behave this way within the cell. They are concentrated in a certain region, then
there is a gradient, and at the lower end of the gradient they behave in a
stochastic fashion.

Se¢jnowski: You can imagine that it is just a matter of numbers. If the numbers
drop below a certain value, fluctuations become as large as the numbers.

Brenner: With many of these processes, we can place limits to the variation in
number and how much can be tolerated. In general, an organism mutant in one
of the copies in genes specifying these proteins has only half the normal amount
of protein and function, but is still normal. That is, the mutation is recessive in the
heterozygote. Because function is normal, we know that variation of protein
concentration by a factor of two can be tolerated. People have not used these
facts as constraints for modelling. If half works as well, this says quite a lot about
what the system can and can’t do. There are other constraints that we can find. For
example, in tetraploid cells, such as Purkinje cells in the cerebellum, there is twice as
much DNA and the cell will have twice the volume. More protein will be produced
from the added gene copies but of course there will be different consequences for
those that are in solution and those that are in a membrane.

Sejnowski: Is there any advantage to them in being bigger cells?

Brenner: This is a fascinating area. Salamander cells are 30 times the volume of
frog cells because they have 30 times more DNA. Thus you can make a salamander
with only 3% of the number of cells of a frog. Function does not seem to change
under these different conditions of scale and we need to make use of these natural
experiments in our models.

Berridge: 1 would like to comment briefly on the significance of stochastic
processes in signalling systems. Such stochastic events only become significant
when they exceed the threshold for some cellular process. For example, cardiac
cells produce random sparks, but they don’t lead to contraction. However, if you
add a low dose of caffeine or overload the cells with Ca2*, then these stochastic
events will spawn a regenerative Ca?" wave, leading to a full contraction. We
have to live with stochastic processes, but I think that most signalling systems
have thresholds that filter out these random events.

Sejnowski: The promoter systems are often working down in that limit, where
there are stochastic processes involved.

Prank: If there is an extracellular subthreshold stimulus, which won’t be
transduced across the cell membrane into intracellular Ca?™ oscillations, and if
you add noise, the dynamic stimulus which is subthreshold becomes
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suprathreshold. This improves signal transduction, or makes signal transduction
possible at all. This is an example of where stochasticity is not detrimental to signal
transduction, but instead facilitates it.

Launghlin: Not only does having a threshold reduce the level of noise, but using
positive feedback to drive the system to a saturated response also eliminates noise
by making sure that all of the available signalling molecules are recruited. This use
of positive feedback to increase reliability is an important design principle in cell
signalling.

Sejnowski: That is also how digital computers work. They are making sure that
they are only operating in regimes where it is saturated or not.

Launghlin: This is why there is a formal equivalence between the action potential,
Ca?* signalling and cAMP waves in Dictyostelium. They all point to the reliability of
this method of signalling.

Iyengar: In simple systems this works, but what has always surprised me
experimentally is that most of these signalling systems work at a very small
fraction of their actual capability. You can get a lot more signal out of it if
necessary, but a small fraction suffices.

Sejnowski: Part of this could be a sort of insurance policy.

Langhlin: If there are insufficient G protein molecules in the region of the cell
where the receptor is activated, then it is likely that the signal will be lost. A
minimum concentration of signalling molecules is required for a signal to be
reliably transmitted and to achieve this over the entire cell requires a lot of
molecules.

Sejnowski: That is another good point: spatial heterogeneity of signalling
components. It may be that you need to have the concentration everywhere at a
high value, not just where it is being produced.

Berridge: Dr Iyengar, what exactly do you mean when you talk about signalling
systems operating at a small fraction of their capability?

Iyengar: 1 was thinking of more recent experiments that we have done with
Ca?*—calmodulin-activated protein kinase (CaMK) activation. Initially, when
you surge in with Ca?", you can activate CaMK 20-fold and measure it in the
tissue. But in the actual state at which we see long-term potentiation (LTP)
consolidating, the activation is only sometimes 30-50% more than the
threshold level.

Berridge: 1s it 30-50% in those synaptic spines that have been activated, orare you
looking at the whole cell?

Iyengar: 1t 1s the whole cell.

Berridge: The whole point about L'TP is that it is input specific. You are only
activating L'TP in a very small proportion of the synapses of each neuron.

Iyengar: Not in the way that we do it. We use Kandel’s so-called ‘German’
method, which delivers an intense stimulus. You can go back into those cells and
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give a second stimulus, which results in enormous CaMK activation. But only a
small fraction of this is needed to get the physiological response.

Dolmetsch: One of the important things that people haven’t mentioned yet is that
there are often multiple thresholds for different kinds of events. For example, in the
case of Ca?*, very high Ca?" kills a lot of cells. A low threshold of Ca?" is required
for other events. The challenge is to keep the signal between the two thresholds.
One possibility is that if there is noise, all you need to do is elevate the average so
that the noise barely peaks above the lower threshold. This ensures that you don’t
exceed the upper threshold, which is important if the two thresholds are subtly
different. For example, if we have a lower threshold that has a memory, even if
you only exceed the threshold periodically, you are still activating that signalling
pathway, whereas you do not activate the upper pathway, because it requires more
Ca?* and has less memory because of its lower affinity.

Eichele: 1 find the issue of multiple thresholds very interesting. In developing
systems, such as the specification of neurons in spinal cord, it has been shown
that subtly different threshold concentrations of Sonic hedgehog (Shh) protein
will evoke very different cell fates. This is not an artificial situation which is
created 7z vitro, but is actually how ventral cell fates—say A and B—are defined
in the spinal cord. I find it quite remarkable that the concentration differences in
evoking fate A or B are small, just about five- to 10-fold. It is an interesting
challenge to determine how this works. Threshold detection actually works
through the same receptor system as far as we know.

Dolmetsch: There are two different Shh output systems. One possibility is that
they differ not only in their affinity, but also in their on and off rates.

Eichele: As 1 said, there is only one receptor system for Shh.

Se¢jnowski: There is another factor: time. It is not just concentration of a signal,
but also how long this concentration is maintained. Frequency is also important.

Eichele: In these experiments performed by Tom Jessell, there was no temporal
variation. They just vary concentration. One of the key questions in development
is how thresholds can specify the cell fates.

Brenner: Another key question concerns the number thresholds that can be read.
Given a set of chemical systems, how many different levels can be generated and
distinguished? All gradient theories need to deal with this problem. Different
steady states cannot be sustained by one system, so a different mechanism is
needed. It is interesting to analyse exactly how any particular system works. Thus
in a chemical synapse, an impulse frequency is converted into a quantity of
chemical transmitter, which is measured. Often, there ate mechanisms to destroy
or remove the transmitter, so that the currency of frequency is converted into the
value of a pulse. We need to dissect all chemical communication systems in this
way: do they count molecules, or do they measure different steady state levels? Is
a signal transmitted as a pulse, or as a change of level? This is necessary before we
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can consider networks. One other point, in relation to the complexity of these
systems is to recognize that they evolved by accretion. The fact that interleukin
(IL)-5 and IL-4 are homologous proteins suggests that once there was just one
protein and then the gene duplicated, to allow the evolution of different
functions for them. Perhaps this was in response to new pathogens that had to be
dealt with in a different way.

Laughlin: To evaluate signalling mechanisms we need to consider the
magnitudes of the signalling processes. I was struck when Gregor Eichele said
that a 10-fold change in the concentration of Shh was small. If one considers the
numbers involved, this concentration change produces a large signal. Start with a
modest number of molecules in a cell, say 100 bound to receptors at any one time.
The binding of these molecules to teceptors is subject to random fluctuations.
Assuming a Poisson process, binding produces noise that fluctuates with a
standard deviation of 10. When one increases the concentration 10-fold, to give
1000 bound molecules, the standard deviation of these fluctuations inctreases to
30. This 10-fold increase in concentration, from 100 to 1000, is 30 times larger
than the standard deviation of the noise. This is a very robust and reliable signal.
When you consider the relevant magnitudes, which in this case is numbers of
molecules, you see why those of us who work with analogue signals in cells
regard a 10-fold change as a large signal.

Eichele: In this case the Shh molecule can be associated with cholesterol moieties
on the surface of the cell. This will elevate the concentration locally.

Launghlin: This signal, which you said was small, turns out to be an incredibly
robust signal when you put the numbers in.

Eichele: The concentration of Shh is probably about 107 M.

Laughlin: None the less, if you are going to increase the concentration 10-fold
you don’t need many Shh molecules to get a very good signal.

Iyengar: Most of us who deal with membrane signalling find that numbers are
not entirely useful to us. Counting the number of molecules is quite misleading
when one of the reactants is in two dimensions and the other is in solution in three
dimensions. Suzanne Scarlata has been measuring carefully what phospho-
lipase C does, when it is dispersed or when it is in membranes. I have been
sttuck by how different the numbers are when we have to make this factor
correction.

Sejnowski: 1 wanted to turn the discussion towards the issue of evolution. Earlier
on Sydney Brenner pointed out that there are some creatures with much more
primitive immune systems, yet somehow they survive.

Brenner: These organisms without immune systems still have elaborate defence
systems. Drosophila has a large number of genes that make lethal peptides. They
don’t have an adaptive immune system; they just react.

Sejnowski: What about plants?
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Brenner: Plants respond to damage. They have chemical defences such as the
phytoalexin response. Plants can respond by inducing enzymes such as chitinase
as well as inhibitors of proteolytic enzymes. Defence is ancient.

Sejnowski: The reason I raised this is because there is a theory that all of these
systems evolved as part of the warfare between hosts and pathogens. This raises
the issue of sex: the rearrangement of genes in order to outrun the parasites. This
has come up in the case of trying to model the brain. It is always a mistake to think
that we are smarter than nature. According to Orgell’s second law, ‘nature is more
clever than Leslie Orgell’ (who in factisa very clever person). In modelling the brain
we often fall into the trap of assuming that we know what the function of a tissue is,
that the purpose of vision is to tecreate an internal model of the world, for example.
Often these are implicit assumptions in the sense that no one questions them. What
we discover after a lot of work is that nature isn’t trying to do this for us, but the
function is just a by-product or small part of what nature is trying to do. I wonder
whether weare fooling ourselves in thinking that we can even guess what the goal of
something is, given the fact that it evolved a long time ago for other purposes.

Brenner: 1 think there is another thing that we ought to watch out for: we have
many combinations of signals, and it looks very complicated, but they may be
present because of a ‘don’t care’ condition. We often think that everything is
specified and that genes are turned on and turned off in the combinations
required. We should calculate the cost of evolving such elaborately specified
regulation. If a gene happens to be turned on in a particular cell and has no effect,
there will be no selection for repression of that instantiation. For example,
encephalin is turned on in activated lymphocytes but does not do anything
because a lymphocyte lacks the proteolytic secretory apparatus to process the
product. Thus in this case, there would have been an evolutionary cost to develop
a special control mechanism to turn it off in a lymphocyte, which it is not necessary
to pay. I think many things will fall into this ‘don’t care’ category. That is, you can
have both IL-4 and 1L-5; you may need IL-5 for eosinophils, but whether there is
ILL-4 or the two together doesn’t matter because under those conditions there would
be no advantage in having the unnecessary one turned off. This explanation of the
apparent complexity can also account for many cases of apparent redundancy.

Dolmetsch: We need to devise some way of quantitating what the real cost is in
producing a particular protein.

Brenner: Protein is not cheap. Regulation requires orthogonality of recognition,
and that means we must cost new recognition elements. We know very little about
this area. There are something like 1000 zinc finger regulatory genes in our
genomes. This could generate a huge number of possible combinations; my
belief is that most of these are not actually used.

Eichele: There is also a risk in turning genes off. This requires a change in the
regulatory regions and such changes are not predictable in their effect on sites and
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levels of gene expression. In principle, this could even result in ectopic expression
in cells that normally do not express a particular protein, a situation that could be
detrimental to the organism.

Brenner: We are not ‘running’ evolution. All I am saying is that all natural
selection must be treated simply on the grounds of reproductive success. Does
IL-5 secretion do this? We test this by making a knockout of IL-5 in a mouse.
This is the only experiment we can do to see whether fitness is decreased and, as
you know, it is possible to knock out many genes in the mouse with no obvious
decrease in fitness. Organisms cannot plan their genomes. A bacterium sitting the
primitive ocean cannot say, ‘I’d better not make this mutation in heat shock protein
because I’'m going to need actin in 2 billion years time’.

Kahn: 1f we evoke evolution of systems as a final guiding principle, we may
oversimplify biology. Evolution can rediscover the same process in multiple
ways. There are many species that fly that aren’t derived linearly from one
another. You can’t say that because humans are more advanced than flies, that
flying leads to disadvantage. We can’t be strictly hierarchical in our evolutionary
thinking. I am struck by the fact that in knockout experiments and in some cases
tissue-specific knockouts, often when proteins are expressed in a tissue for which
we thought they had no function they turn out to have a function. It is because we
think in such limited roles of the function of a protein. Pethaps an interleukin in a
non-lymphoid tissue may serve a completely different role than it would in the
lymphoid tissue.

Sejnowski: It also might be the case that it doesn’t have a function unless the cell is
stressed ot in an unusual condition.

Brenner: 1f we released every knockout mouse that we have made out into the
wild, they most likely wouldn’t survive, and come to think of it, normal mice
would also not survive.

Fields: This discussion goes to the heart of the issue of the function of
complexity: does it have a potential role in information processing, or is it a by-
product of evolution. I guess we would all agree that it is not necessary, yet we find
complex systems. What does complexity give us? Most of us would agree that it
gives us resiliency through redundancy. If you lose a certain transcription factor or
enzyme, you can still have a function. It also means that you can have more
complex behaviour. You can induce LTP by many different types of stimuli, and
therefore different mechanisms. This brings us to the question of what we should
be modelling, and how we should go about it. Is the best approach to use reaction
kinetics and build our way up through this system, or do we need a more unifying
idea, such as information or energy flow through trophic systems?

Brenner: 1 know one approach that will fail, which is to start with genes, make
proteins from them and to try to build things bottom—up.
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Abstract. Ca** is a universal second messenger used to regulate a wide range of cellular
processes such as fertilization, proliferation, contraction, secretion, learning and memory.
Cells derive signal Ca?* from both internal and external sources. The Ca** flowing
through these channels constitute the elementary events of Ca®* signalling. Ca?" can act
within milliseconds in highly localized regions or it can act much more slowly as a global
wave that spreads the signal throughout the cell. Various pumps and exchangers are
responsible for returning the elevated levels of Ca*" back to the resting state. The
mitochondrion also plays a critical role in that it helps the recovery process by taking
Ca®* up from the cytoplasm. Alterations in the ebb and flow of Ca®" through the
mitochondria can lead to cell death. A good example of the complexity of Ca?*
signalling is its role in regulating cell proliferation, such as the activation of
lymphocytes. The Ca?" signal needs to be present for over two hours and this
prolonged period of signalling depends upon the entry of external Ca** through a
process of capacitative Ca®" entry. The Ca®" signal stimulates gene transcription and
thus initiates the cell cycle processes that culminate in cell division.
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The universality of Ca?* as an intracellular messenger depends upon its enormous
versatility. Many of the molecular components of the Ca?* signalling system have
multiple isoforms that can be mixed and matched to create a wide range of spatial
and temporal signals. Ca®" can operate within milliseconds in highly localized
regions or it can act much more slowly as global waves of Ca®" spreading
throughout the cell or through large groups of cells. This versatility, which is
exploited to control processes as diverse as fertilization, cell proliferation,
development, secretion, chemotaxis, learning and memory must all be
accomplished within the context of Ca?" being a highly toxic ion. If its normal
spatial and temporal boundaries are exceeded, this deregulation of Ca?*
signalling results in cell death through both necrosis and apoptosis. The aim of
this review is twofold: I will first describe the complex nature of Ca?* signalling

52



COMPLEXITY OF Ca?* SIGNALLING 53

FIG. 1. 'The Ca®" signalling toolkit. All of the molecular components regulating the Ca?"
signalling pathway are composed of multiple components, often closely related isoforms with
subtly different properties. The duplication shown on the figure illustrates the degree of this
diversity. Inositol 1,4,5-trisphosphate (InsP;), which is generated by phospholipase C (PLC),
acts on InsP; receptors (InsP3R) located on the endoplasmic reticulum (ER). Ca®" enters the
cell through multiple isoforms of voltage-operated channels (VOCs), receptor-operated
channels (ROCs) and store-operated channels (SOCs). Various Ca**-binding proteins (CaBPs)
buffer Ca?* both in the cytoplasm and within the lumen of the ER. Ca?* is pumped out of the cell
by exchangers and plasma membrane Ca?"-ATPases (PMCA) or into the ER by
sarcoendoplasmic reticulum Ca**-ATPases (SERCA).

and then consider how this messenger system functions in cell proliferation and cell

death.

The Ca?* signalling network

The hallmark of Ca?* signalling is its complexity. One manifestation of this is the
existence of two separate sources of Ca>", which can be derived from either internal
stores or by uptake from the external medium (Fig. 1). Different channels and
pumps regulate each source. Signalling begins when the external stimulus binds
to receptors that either activate channels in the plasma membrane or generate
Ca?*-mobilizing signals that release Ca?* from the internal stores. The Ca®" that
flows into the cytoplasm functions as a messenger to stimulate numerous
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Ca’"-sensitive processes. Finally, there ate OFF mechanisms, composed of pumps
and exchangers, which remove Ca?* from the cytoplasm to restore the resting state.
Most of the processes of the signalling pathway are carried out by different
components, which means that each cell has access to a diverse molecular toolkit
(Fig. 1). By mixing and matching all the available possibilities, cells can create Ca?*
signals with widely different spatial and temporal properties.

Generation of Ca’* signals

There are families of Ca?* entry channels defined by the way in which they are
activated. We know most about voltage-operated channels (VOCs) of which
there are at least 10 types (Fig. 1) with subtly different properties. Ca®* can also
enter cells through receptor-operated channels (ROCs) and through store-
operated channels (SOCs). There is considerable debate as to how empty stores
can activate channels in the plasma membrane. Recent evidence has begun to
support a conformational-coupling mechanism, which proposed that the
inositol-1,4,5-trisphosphate (InsP3;) receptors in the plasma membrane are
directly coupled to the SOCs in the plasma membrane (Berridge et al 2000).
There is considerable interest in these SOCs since they provide the Ca®* signal
that controls cell proliferation (see later).

Signal Ca®" is also derived from the internal stores using channels regulated by
Ca’"-mobilizing messengers, such as InsP; that diffuses into the cell to engage the
InsP; receptors (InsP3Rs) that release Ca?* from the endoplasmic reticulum (ER).
Cyclic ADP ribose (cADPR) acts by releasing Ca?* from ryanodine receptors
(RYRs). Sphingosine-1-phosphate (S1P) and nicotinic acid dinucleotide
phosphate (NAADP) release Ca?* by binding to channels that have yet to be
charactetized.

Most attention has focused on the InsP;Rs and the RYRs, which are regulated by
anumber of factors— the most important of which is Ca®" itself. For example, the
InsP;Rs have a bell-shaped Ca?* dependence in that low concentrations (100—
300 nM) are stimulatory but above 300 nM, Ca?* becomes inhibitory and acts to
switch the channel off. Once the receptor binds InsPs, it becomes sensitive to the
stimulatory action of Ca®". In the same way, cADPR increases the Ca?* sensitivity
of the RYRs. The InsP;Rs and the RYRs have a mechanism of Ca?"-induced Ca?*
release (CICR) and this autocatalytic process enables individual channels to
communicate with each other to establish highly coordinated Ca®* signals often
organized into propagating waves. The main function of the Ca?"-mobilizing
messengers, therefore, is to alter the sensitivity of the InsP;Rs and RYRs to this
stimulatory action of Ca?*.

These different Ca?*-mobilizing messengers often coexist in cells where they
seem to be controlled by different receptors. For example, in the exocrine
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pancreas, acetylcholine receptors act through InsP; whereas CCK receptors
employ NAADP and cADPR (Cancela et al 1999). Similarly, human SH-SY5Y
cells have acetylcholine receptors linked through InsP3; while lysophosphatidic
acid (LPA) acts through SI1P (Young et al 1999). The complexity of the
signalling network is thus enhanced by having different Ca?*-mobilizing
messengers linked to separate input signals.

Ca?*-sensitive processes

Various Ca’"-sensitive processes translate Ca?* signals into cellular responses.
There ate a large number of Ca®’- binding proteins, which can be divided into
Ca®" sensors and Ca®* buffers. The Ca?* sensors respond to the increase in Ca?*
by activating a wide range of responses. Classical examples of sensors are
troponin C (TnC) and calmodulin, which have four E-F hands that bind Ca®*
and undergo a pronounced conformational change to activate a variety of
downstream effectors. TnC has a somewhat limited function of controlling the
interaction of actin and myosin during the contraction cycle of cardiac and
skeletal muscle. By contrast, calmodulin is used much more generally to regulate
many different processes such as the contraction of smooth muscle, cross-talk
between signalling pathways, gene transcription, ion channel modulation and
metabolism. The same cell can use different detectors to regulate separate
processes. In skeletal muscle, for example, TnC regulates contraction whereas
calmodulin stimulates phosphorylase thereby ensuring an increase in ATP
production.

In addition to the above proteins, which have a more general function, there are
alarge number of Ca?*-binding proteins designed for more specific functions. For
example, synaptotagmin is associated with membrane vesicles and is responsible
for mediating exocytosis. A large family of S100 Ca®>*-binding proteins seems to
be particularly important in cell proliferation and have been implicated in cancer
growth and metastasis. For example, human chromosome Iq21 has a cluster of
approximately 10 S100 genes that are differentially expressed in neoplastic tissues.
Melanoma cells overexpress S100B and antibodies against this Ca’*-binding
protein are used for tumour typing and diagnosis of melanoma. S100B can
activate a nuclear serine/threonine protein kinase (Millward et al 1998) and can
cooperate with protein kinase C to induce the translocation of p53 early in the
G1 phase of the cell cycle (Scotto et al 1999).

Once Ca®" has catried out its signalling functions, it is rapidly removed from the
cytoplasm by various pumps and exchangers located both on the plasma membrane
and on the internal stores (Fig. 1). The mitochondrion is another important
component of the OFF mechanism in that it sequesters Ca®* rapidly during the
recovery phase and then slowly releases it back when the cell is at rest. In order to
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synthesize ATP, the mitochondrion extrudes protons to create the electrochemical
gradient that is used to synthesize ATP. Exactly the same gradient is used to drive
Ca?* uptake through a uniporter which functions much like a channel. The
mitochondtion has a large capacity to accumulate Ca?*. Once the cytosolic level
of Ca?* has returned to its resting level, a Na™/Ca®" exchanger transfers the large
load of Ca?* back into the cytoplasm where it is once again returned to the ER or
removed from the cell. In addition to this slow efflux pathway, Ca®" can also leave
through a permeability transition pore (PTP). This PTP may have two functional
states. First, there is a low conductance state that acts reversibly, allowing
mitochondria to become excitable and thus contributing to the generation of
Ca?* waves (Ichas et al 1997). Second, there is an irreversible high conductance
state of the PTP that has a dramatic effect on the mitochondrion in that it
collapses the transmembrane potential and leads to the release of cyctochrome ¢
and the initiation of apoptosis.

During normal signalling, therefore, there is a continuous ebb and flow of Ca?*
between the ER and the mitochondria. At the onset of each spike, a small bolus of
Ca’" is released to the cytoplasm and some of this signal enters the mitochondria
where it has a temporary residence before being returned to the ER. Mitochondria
contribute to the onset of apoptosis if this normal exchange of Ca?* with the ER is
distorted.

The apoptosis regulatory proteins that function either as death antagonists (Bcl2
and BclX) or death agonists (Bax, Bak and Bad), may exert some of their actions
by interfering with the Ca?* dynamics of these two organelles. For example, Bax
and Bad accelerate the opening of the voltage-dependent anion channel, which is
part of the PTP, and thus contribute to the release of cytochrome ¢ (Shimizu et al
1999). On the other hand, Bcl2 and BclX; seem to act by blocking Ca?*-induced
apoptosis, enabling the mitochondria to cope with large loads of Ca?* (Zhu et al
1999). Bcl2 is also present on the ER where it acts to enhance the store of Ca?* (Zhu
etal 1999) perhaps by up-regulating the expression of Ca>* pumps (Kuo et al 1998).

Spatial and temporal aspects of Ca?* signalling

Much of the versatility of Ca>" signalling arises from the way that it is presented in
both time and space. Our understanding of the spatial aspects has increased
enormously due to advances in imaging technology that have enabled us to
visualize the elementary events of Ca®" signalling. These elementary events are
the basic building blocks of Ca®" signals in that they represent the Ca®" that
results from the opening of either single or small groups of channels. They have
been described most extensively for the channels that release Ca?* from the internal
stores. Whether ot not these channels open to release Ca?* is determined by their
degtee of excitability, which is controlled by a number of factors. As described
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earlier, the primary determinant for the InsP;Rs is InsP; whereas the RYRs are
sensitive to cADPR. Both channels are also sensitive to the degree of Ca?*
loading in the store.

Atlow levels of stimulation, the level of excitability is such that individual RYRs
or InsP;Rs open; such events have been recorded as quarks or blips, respectively.
They may be considered as the fundamental events that form the basis of most Ca?*
signals. These single-channel events are rare and the more usual event is somewhat
larger, resulting from the coordinated opening of small groups of InsP;Rs or
RYRs known as puffs or sparks, respectively. Sparks were first described in
cardiac cells where they arise from a group of RYR2 channels opening in
response to Ca’" entering through L channels. Puffs have a wide range of
amplitudes suggesting that there are variable numbers of InsP;Rs within each
cluster. These spatks and puffs are the elementary events of Ca®" signalling that
contribute to the intracellular waves that sweep through cells to create global
Ca’* signals. When gap junctions connect cells, such intracellular waves can
spread to neighbouring cells thus creating intercellular waves capable of
coordinating the activity of large groups of cells.

In addition to creating global responses, these elementary events have another
important function in that they can carry out signalling processes within highly
localized cellular domains. A classic example is the process of exocytosis at
synaptic endings where N- or P/Q-type VOCs create a local pulse of Ca’" to
activate synaptotagmin to trigger vesicle release. Sparks located near the plasma
membrane of excitable cells activate Ca®"-sensitive K* channels bringing about
membrane hyperpolarization, which can regulate the excitability of neurons or
the contractility of smooth muscle cells. In HeLa cells, Ca’* puffs are
concentrated around the nucleus where they feed Ca?" directly into the
nucleoplasm (Lipp et al 1997). Finally, as mentioned earlier, the mitochondria
located near the sites of elementary events take up Ca?' rapidly and this
stimulates mitochondrial metabolism to increase the formation of ATP.

In addition to these spatial variations, there are also marked differences in the
temporal aspect of Ca?' signalling. More often than not, Ca®" signals are
presented as brief spikes. In some cases, individual spikes are sufficient to trigger
a cellular response as occurs during contraction of skeletal or cardiac muscle or the
release of synaptic vesicles by exocytosis. When longer periods of signalling are
necessary, such spikes are repeated to give oscillations with widely differing
frequencies. Periods within the 1-60 second range are found in the pancreas and
liver, but much longer periods of 1-5 minutes have been recorded in mammalian
eggs following fertilization. A Ca®* oscillator that initiates mitosis during the cell
cycle has an even longer period of signalling of approximately 24 hours.

The mitotic Ca?* oscillator is particularly interesting because it is an integral
component of the control mechanisms that regulate the cell cycle. The latter is an
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orderly programme of events controlled by two linked oscillators: a cell cycle
oscillator and the Ca?* oscillator (Swanson et al 1997). The former depends upon
the synthesis and periodic proteolysis of various cyclins at specific points during
the cell cycle. The Ca?" oscillator, based on the periodic release of stored Ca?*, is
responsible for initiating specific events associated with mitosis such as nuclear
envelope breakdown (NEBD), anaphase and cell cleavage. As the one-cell mouse
embryo approaches its first mitosis, there are a seties of spontaneous Ca?* transients
responsible for triggering various events during mitosis such as NEBD, anaphase
and cleavage to the two-cell stage (Chang & Meng 1995). Just what drives the Ca?*
oscillator is a mystery but there are indicators that it depends upon the periodic
elevation of InsP;. In the case of the sea urchin, the level of InsP; is increased at
distinct points during mitosis such as NEBD, anaphase and cleavage, at the time of
each spontaneous Ca?* transient (Ciapa et al 1994).

When cells need to be activated for prolonged periods, a single Ca?* spike is not
sufficient and is replaced by Ca®" oscillations. Cells respond to changes in stimulus
intensity by varying spike frequency. Such frequency-modulated signalling is used
to control processes such as liver metabolism, smooth muscle contractility and
differential gene transcription, especially in developing systems. For example,
presenting Ca?* in the form of spikes was more effective in initiating gene
expression than a steady maintained level of Ca?* (Li et al 1998). A low frequency
of spiking activated NF-xB, whereas higher frequencies were necessary to switch on
NF-AT and Oct (Dolmetsch et al 1998). Such oscillatory activity is particularly
important for the development of both neural and muscle cells (Buonanno &
Fields 1999). In Xenopus, spontaneous Ca®* spikes produced by RYRs during a
narrow developmental window are responsible for the differentiation of myocytes
into somites (Ferrari etal 1998). Neural development is also mediated by Ca>* spikes
that control process such as differentiation (Gu & Spitzer 1997, Carey &
Matsumoto 1999), the behaviour of growth cones (Gomez & Spitzer 1999) and
the establishment of the specific connections within neural circuits (Feller 1999).

In order to use such a frequency-modulated signalling system, cells have evolved
sophisticated ‘molecular machines’ for decoding such frequency encoded Ca®*
signals. The two Ca?*-sensitive proteins that seem to play a role in decoding are
CaM kinase II (DeKoninck & Schulman 1998) and protein kinase C (Oancea &
Meyer 1999).

Cell proliferation

A good example of the complexity of Ca?* signalling is its role in regulating cell
proliferation. Once cells have differentiated to perform specific functions, they
usually stop proliferating. In many cases, however, such differentiated cells
maintain the option of returning to the cell cycle and this usually occurs in
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response to growth factors. For example, lymphocytes proliferate rapidly in
response to antigens, smooth muscle cells respond to growth factors such as
PDGF at the sites of wounds and astrocytes are stimulated to grow at sites of
brain injury. In many of these examples, Ca?* is one of the key regulators of cell
proliferation, where it functions in conjunction with other signalling pathways
such as those regulated through MAP kinase and phosphatidylinositol-3 kinase
(PI 3-K) (Lu & Means 1993, Berridge 1995). The function of Ca®" in regulating
cell proliferation is well illustrated in lymphocytes responding to antigen. Figure 2
attempts to summarize all the signalling elements that are used by a T cell as it
responds to the arrival of an antigen. In this case, the antigen functions as a
‘growth factor’ that binds to the T cell receptor to initiate the assembly of a
‘supramolecular activation cluster’ (Monks et al 1998) containing scaffolding and
signal transducing elements. The latter function to relay information into the
nucleus using various signalling cassettes. The cassettes linked to phospholipase
C (PLC)y1, which produces both diacylglycerol (DAG) and InsP;, are
particularly important and frequently associated with the action of growth
factors and have been implicated in cell transformation. In fact, PLCy has been
referred to as a malignancy linked signal transducing enzyme (Yang et al 1998)
and its overexpression will promote transformation and tumorigenesis in NIH
3T3 cells (Smith et al 1998). The InsP; formed by PL.Cy1 releases Ca?* from the
internal store, which then promotes entry of external Ca?* through a SOC.

When used for controlling cell proliferation, this Ca?* signalling pathway needs
to be active for a prolonged period — two hours in the case of lymphocytes. Since
the stores have a very limited capacity, this prolonged period of Ca?* signalling is
critically dependent on this influx of external Ca?*. There are two modulatory
mechanisms that function to maintain Ca®" signalling (Fig. 3). The first is an
example of the cross talk between signalling pathways and concerns the ability of
PI 3-K to stimulate PLCy1 to maintain the supply of InsP; (Scharenburg & Kinet
1998). Formation of the lipid second messenger PIP; activates the non-receptor
tyrosine kinase Btk that then phosphotylates and activates PLCy1. The tumour
suppressor PTEN, which acts as a 3-phosphatase to lower the level of
phosphatidylinositol-3,4,5-trisphosphate (PIP3), reduces both the level of InsP;
and the influx of external Ca?* (Morimoto et al 2000). The second is the
activation of potassium channels that serve to hyperpolarize the membrane
which is essential to maintain the entry of external Ca®* (Lewis & Cahalan 1995).
For example, cell proliferation is regulated by IKc,, which is inhibited by
charybdotoxin and iberiotoxin. The net effect of these two mechanisms is to
ensure a continuous influx of external Ca?", which seems to be one of the
principle early signals to promote cell proliferation. A Ca?* influx inhibitor
carboxy-amidotriazole can prevent cell proliferation and has been used in clinical
trials to control refractory cancers (Kohn et al 1996).
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FIG. 3. The role of Ca®" in lymphocyte activation. The antigen activates the T cell receptor
(TCR), which stimulates phospholipase C (PLC) to hydrolyse phosphatidylinositol-4,5-
bisphosphate (PIP,), to release inositol-1,4,5-trisphosphate (InsP;) to the cytosol. InsP;
releases Ca** from the internal store, which then sends an unknown signal to the store-
operated channels (SOCs) in the plasma membrane. Ca®* acts through calmodulin (CAM) to
stimulate calcineurin (CN) which dephosphorylates the nuclear factor of activated T cells
(NFAT) enabling it to enter the nucleus to initiate gene transcription.

The main function of Ca®" is to activate transcription factors either in the
cytoplasm (NF-AT, NF-kB) or within the nucleus (CREB). The role of Ca?* in
stimulating gene transcription is very similar in neurons undergoing learning as
it is in cells being induced to grow. An increase in Ca®?" is one of the signals
capable of bringing about the hydrolysis of the inhibitory IxB subunit allowing
the active NF-kB subunit to enter the nucleus. Perhaps the most important
action of Ca?* is to stimulate calcineurin to dephosphorylate NF-AT, which then
enters the nucleus (Fig. 3) (Crabtree 1999). As soon as Ca?' signalling ceases,

FIG.2. A spatiotemporal map of T cell activation. The spatial aspect (i.e. from top to bottom)
concerns the way in which the antigen binding to the complex T cell receptor activates a number
of signalling cassettes that transfer information from the plasma membrane to the nucleus. The
temporal aspect (i.e. from left to right) deals with the flow of information through the sequential
signalling elements that occurs during the protracted G1 period of the cell cycle and culminates
in the activation of either proliferation or apoptosis.



62 BERRIDGE

kinases in the nucleus rapidly phosphorylate NF-A'T which then leaves the nucleus
and transcription ceases. The prolonged period of Ca?" signalling that is required
for proliferation to occur is thus necessary to maintain the transcriptional activity
of NF-AT. Transcription is inhibited in mutants with defective SOCs that cannot
sustain Ca®" signalling (Timmerman et al 1996). Likewise, the immuno-
suppressant drugs cyclosporin A and FK506 prevent transcription by inhibiting
the action of calcineurin. In contrast to the previous two transcription factors that
are activated within the cytoplasm, CREB is a nuclear Ca?*-responsive element,
which is phosphorylated by CaMKII and CaMKIV. In addition, Ca®" acting
within the nucleus is also responsible for stimulating the Ca®"-sensitive
transcriptional coactivator CREB-binding protein (CBP) (Hatdingham et al
1999). A CaM inhibitory peptide targeted to the nucleus was able to block DNA
synthesis and cell cycle progression thus emphasizing the importance of a nuclear
Ca?* signal for cell proliferation (Wang et al 1996). These transcription factors
activate a large number of target genes, some code for progression factors such as
the interleukin 2 system responsible for switching on DNA synthesis whereas
others produce components such as Fas and the Fas ligand that are responsible
for apoptosis (Fig. 2). Ca?* thus plays a central role in putting in place the
signalling systems that enable cells to decide whether to grow ot to die.
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DISCUSSION

Fields: You said something that appears contradictory. You said that
subthresold events such as low agonist concentrations lead to local Ca>* changes,
and then higher intensity stimulation leads to a global Ca®" response. Then you
also told us that the local Ca?* changes in spines are important for long-term
potentiation (L'TP). I would be interested in your comments on this. The normal
stimulus that induces LTP causes the neuron to fire action potentials and therefore
causes a global change in Ca?*. How can the importance of local Ca?* change be
reconciled with situations where the stimulus would produce a global Ca?" change?

Berridge: In the case of LTP one has to be very careful in terms of understanding
local versus global effects. In the case of the spine, Ca?* is input specific in the sense
that it is elevated in only those synapses that are active. In addition, you can get
global changes, but my feeling is that the concentration caused by a global Ca?*
change within the whole dendritic tree will probably not reach threshold to
modify individual spines. Neurons have an enormous concentration of Ca?*
buffers and they vary in the proportion of these buffers that are expressed. One of
the functions of such buffers is to dampen out Ca®* signals. Every time the neuron
fires, as part of its information-processing role, there is a back-propagating action
potential that spreads into the dendritic tree, resulting in a global Ca®* change. You
don’t want to modify your synapses every time you are processing information.
Although this is a global Ca>" change, I would argue that the buffers ensure that
the concentration is relatively low within individual spines. However, if you havea
back-propogated action potential occurring in conjunction with the activation of a
synapse, then there will be a much larger but localized elevation of Ca?* within the
spine.

Fields: Are there measurements that indicate that the Ca®" rise is insulated or
augmented in the spine?

Berridge: The measurements are only really just starting, but we already have
recordings to show that Ca>" signals can be restricted to individual spines. It is
amazing that we ate actually able to measure the Ca?" in these spines: the estimate
is that at rest there are only six free Ca?* ions in each spine.

Sejnowski: We have done simulation of Ca?" entry into the spines of pyramidal
cells. You have to be careful interpreting these pictures, because the Ca?* indicator
is itself a buffer.
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Noble: 11ove the emphasis on beauty rather complexity. It is the unravelling of
these beautiful systems that is the great joy to those of us who ate trying to work at
higher levels. Adding to your versatility, there is at least one cell for which the
amplitude of the global signal is variable in an important way, which is the heart.
One of the reasons I say this is connected with my comment on the joy of
unravelling complex systems: it was actually quite difficult to get a graded release
in modelling the Ca®* release mechanism in the heatt. I would even go so far to say
that although we have now got models of this, we still don’t fully understand why
it is as graded as it is.

Berridge: Recent studies on Ca?' sparks in cardiac cells have provided an
explanation for such graded responses. This has been one of the unsolved
problems in physiology: how can a process of Ca?*-induced Ca®" release (CICR),
which is a positive feedback mechanism, generate a graded release of Ca?*? One of
the ideas is that the gradation may actually depend upon the variable recruitment of
these elementary events.

Noble: Exactly. You may need to bring in what you call the ‘physiological
toolkit’. Trying to model with just one variable of free Ca?* is only possible
provided you make Ca?" do two things: activate the release and also inactivate it
with another time course. People who have tried to isolate that inactivation process
by breaking the system down into its component bits can’t find it. There has to be
something else, and I have a strong suspicion it may be in what you call the
physiological toolkit: the way Ca?* is located in complex physiological spaces
and structures.

Berridge: To expand on this idea of the physiological toolkit, it looks very much
as if at low depolarizations, relatively few of these individual events are recruited.
Each of these spark sites is an autonomous unit that fires independently of the
others. Each unit is using CICR, but because they are separated from each other
Ca?* doesn’t spread to neighbouring sites. By varying the level of depolarization,
you can recruit variable numbers of these individual events. By having autono-
mous units it is possible to get a graded response. It is a very elegant solution.

Schultz: You mentioned the fact that cADP ribose stimulates the Ca?* release
and that cGMP stimulates cADP ribose formation. In which systems is this
control important? I know systems in which cGMP blocks Ca?* release and
others where it stimulates Ca?" influx, but I don’t really know of a system in
which cGMP would stimulate Ca®* release.

Berridge: That’s a good point. This was a very old slide which came from work
on the sea urchin, where there seems to be some indication of cGMP playing a role
in fertilization. The idea is that fertilization may generate cADP ribose, which in
the sea urchin is responsible for activating Ca®* release from the ER. In other cell
types, there is some uncertainty concerning cADP ribose with regard to its precise
function. There’s evidence that it is playing an important role in the pancreas,
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which is activated by different hormonal systems. Acetylcholine acts through the
InsP; system, whereas CCK seems to use cADP ribose.

Sejnowski:1liked your idea about looking at spatial scales. You used the micron
scale asa convenient one. I’d like to suggest that there is actually a sub-micron scale
that is equally important, especially in synapses, because of the fact that much of the
machinery of the receptors and the Ca?*—calmodulin complexes are right there
under the plasma membrane, organized in a very precise way. In fact, these are
little machines: they are really complexes. They are positioned such that when
Ca’" does enter, say through the NMDA receptor, it is at a very high
concentration, briefly and locally. It could be that there is an even more precise
molecular machinery.

Berridge 1 agree that we need to study more closely the precise morphology and
molecular organization of the spine. There’s some intriguing evidence coming out
in terms of the variation between, for example, the CA1 neuron and the Purkinje
cell in terms of the distribution of the metabotropic receptors, the G4/Gyy
transducers and various phospholipase C isoforms.

Segel: You mentioned that contraction and relaxation occur together in smooth
muscle. I have thought for a long time that there must be some sort of system that
makes smooth muscle contract smoothly, in the sense of coordinating all the sub-
parts of it. Has that been studied? Is there such a system where you would need both
contraction and relaxation together to make everything work in a coordinated
fashion?

Berridge: There is not just one type of smooth muscle, but instead there is an
enormous variety of types. A lot of these smooth muscle cells function in a tonic
state of contraction: they are poised between contraction and relaxation. This
dynamic equilibrium between relaxation and contraction may be governed by the
spatial organization of the Ca®" signalling system. Giinter Schultz is an expert on
smooth muscle: perhaps he would like to comment on this?

Schultz: With regard to the tonic aspect of smooth muscle contraction, the Ca®*-
independent pathway causes contraction via Gy, and Gyj signalling to Rho and
Rho kinase, and inhibition of myosin phosphatase. This is an important aspect,
contributing as much as the Ca?* part does to the overall contraction.

Langhlin: 1f one sat down with a piece of paper and decided to design a signalling
system in a cell which depended on the propagation of some signalling molecule,
one probably would not choose a molecule that was very heavily buffered. Because
Ca®" is heavily buffered, the density of sites required to regenerate and propagate
the Ca?* signal must be quite high. Have you any idea what that density is? How
many of these elementary sites do you need in order to propagate a wave through
the cell?

Berridge: That’s an interesting question. In the case of muscle it might be possible
to find that out, and there is some evidence for a high density of RYRs. But in other
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cell types we don’t really have that information. It’s quite hard to do
immunohistochemistry on, say, InsPj receptors, although this is something we
would like to know because the density of these sites has a marked effect in
determining the rate of propagation. In fact, nature has done some beautiful
experiments for us. For example, in the Xenopus oocyte the fertilization wave
progresses faster at the animal pole than at the vegetal pole. This correlates with
the density of InsP; receptors, which is much higher at the animal pole where the
wave moves quickly.

Schifl: 1 have a few questions regarding the localized Ca?* puffs around the
nucleus. Do they also occur at rest, which might be important for the control of
Ca?*-dependent genes expressed in the basal state? Are these Ca?t puffs
differentially regulated by distinct agonists? Is there any evidence that for
example InsP;-mobilizing agonists are better at enhancing these perinuclear
changes in Ca?* than agonists which predominantly activate Ca?* influx through
voltage-gated Ca®* channels?

Berridge: With regard to the first point, we do see some activity at rest, but it is
very low. We need to activate the cell to see these elementary events. It might just
be fortuitous that we find these all around the nucleus because that’s where most of
the endoplasmic reticulum is located. The ER also spreads out into the petiphery,
but we don’t see many puffs out there. It’s a paradoxical situation in that the
petipheral ER is located closer to the site of InsP3 generation, yet when you start
to activate the cell you see a lot of activity immediately around the nucleus. The
Ca?* released from one of these perinuclear puffs enters the nucleus very quickly
and you can actually see it traversing through the nucleus and popping out at the
other end.
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Abstract. It has only recently been fully realized that G protein-coupled receptors and G
proteins play crucial roles in the regulation of cell growth, differentiation and even
tumour formation. Naturally occurring mutations in G protein-coupled receptors and
in G protein « subunits result in uncontrolled cellular proliferation resulting in distinct
human diseases. One important mechanism to transduce mitogenic signals from the cell
membrane to the cell nucleus is the engagement of the extracellular signal-regulated
kinase (ERK)-mitogen-activated protein kinase (MAPK) cascade. A multitude of
distinct signal transduction pathways have been deciphered which connect G proteins
with the ERK cascade. Both receptor and non-receptor tyrosine kinases play pivotal
roles in these signalling pathways. Mitogenic signalling by G protein-coupled receptors
can be regarded as a complex interplay between signals emanating from different classes of
cell surface receptors which ultimately converge upon a small subset of central signalling
proteins in the cell. The characterization of receptor-, G protein- and tyrosine kinase-
specific contributions to mitogenic signalling in a particular cell and the identification of
proteins serving as a point of convergence in the mitogenic signalling cascade may
ultimately allow the design of novel pharmacological approaches to treat diseases
involving unrestricted cell proliferation.
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Cellular differentiation and proliferation programs are determined by transctription
factors, some of which are controlled by the extracellular signal-regulated kinase
(ERK) subfamily of mitogen-activated protein kinases (MAPKSs). One of the most
extensively studied signalling cascades is activated by ligand-engaged receptor
tyrosine kinases (RTKs) which recruit guanine nucleotide exchange factors for
the monomeric GTPase Ras subsequent to RTK autophosphorylation and
tyrosine phosphorylation of adaptor proteins like SHC and Grb2. Activated Ras
subsequently engages the ERK-MAPK cascade involving the serine/threonine
kinase Raf, MEK and finally ERKSs (Fig. 1).

In addition to classical growth factors such as epidermal growth factor (EGF)
and platelet-derived growth factor (PDGF), agonists acting at G protein-coupled

68
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FIG. 1. Rapl-mediated ERK activation. Signals emanating from G-coupled receptors feed
into the ERK cascade at the level of Raf. In Raf-1 expressing cells, Go-mediated inhibition of
adenylyl cyclase may lead to derepression of PK. A-mediated Raf inhibition. Additionally, cAMP
directly activates guanine nucleotide exchange factors (GEFs) for Rapl. Agonist-bound G-
coupled receptors initiate a rise in [Ca**]; and DAG, thereby directly activating CaIDAG-GEFs
for Rapl. GTP-loaded Gu; activates a GTPase-activating protein (Rap1-GAPII) for Rapl
resulting in decreased Rap1 activity. As Rap1 is thought to compete with Raf for Ras binding,
decreased Rapl activity promotes signalling through the Ras/Raf-1/MEK/ERK pathway. In
neuronal cells, GDP-loaded G, may sequester Rapl-GAP and thus enhance signalling
through the Rap1/B-Raf/MEK/ERK pathway. Rap1-GAP also interacts with GDP-liganded
Go, and inhibits G,-dependent signalling pathways. PKA-mediated phosphorylation of a
haematopoietic phosphotyrosine phosphatase (HePTP) impairs the enzyme’s ability to
dephosphorylate ERKSs. Solid lines indicate proven relations between signalling components;
dashed lines represent putative relationships or multiple-step signalling between different
components. fi,-AR, f,-adrenergic receptor; CalDAG-GEF, calcium/DAG-stimulatable GEF;
cAMP-GEF, cAMP-activated GEF; EGFR, epidermal growth factor receptor; ERK,
extracellular signal-regulated kinase; GAP, GTPase activating protein; Grb2/SOS, complex of
the adaptor protein growth-factor-receptor-bound protein 2 and the guanine nucleotide
exchange factor son-of-sevenless; HePTP, haematopoietic phosphotyrosine phosphatase;
MEK, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase; m1,3R,
ml and m3 muscarinic acetylcholine receptor; m2,4R, m2 and m4 muscarinic acetylcholine
receptor; PDGFR, platelet-derived growth factor receptor; PKA, cAMP-dependent protein
kinase.
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receptors (GPCRs) also play a role in differentiation and cellular transformation,
and there is compelling evidence to suggest that GTPase-deficient G protein «
subunits can behave as oncogenes. This paper presents a synopsis of the multiple
signalling pathways leading to ERK activation by GPCRs and heterotrimeric G
proteins. For more specialized information the reader is referred to several recent
reviews (Gutkind 1998, Farfel et al 1999, Gudermann et al 2000).

Effects of Ggand cAMP on ERK activity

In NIH 37T3 cells, an increase in intracellular cAMP and activation of protein kinase
A (PKA) reverses the oncogenic phenotype induced by constitutively active Ras.
The reversal of transformation by cAMP is due to PK A-mediated inhibition of Raf
kinase activity. In PC12 cells, however, cAMP does not antagonize the activation
of ERKs by growth factors, but rather activates these kinases. The latter
phenomenon requires the expression of B-Raf which in contrast to Raf-1 is not
inhibited by PKA. The small GTPase Rap1 appears to be a selective activator of
B-Raf by a mechanism analogous to Raf-1 activation by Ras (Fig. 1).

Three common second messengers, Ca>", diacylglycerol (DAG) and cAMP, are
capable of activating Rapl in a cell type-specific manner. Interestingly, phorbol
ester-induced Rapl activation is insensitive to inhibitors of PKC, and cAMP-
mediated Rap activation does not require PKA. Recently, cAMP-binding
proteins have been identified that have the ability to directly activate Rapl
(Kawasaki et al 1998, de Rooij et al 1998). These proteins are characterized by
both cAMP-binding and guanine nucleotide exchange factor (GEF) domains and
selectively activate Rapl in a cAMP-dependent, but PKA-independent manner
(see Fig. 1). In addition, a family of three Ca>" and DAG-binding proteins
(CalDAG-GEFI, II, and III) predominantly expressed in the central nervous
system has recently been identified (Yamashita et al 2000). These proteins display
GEF activity upon Ca?* and DAG mobilization without requiring calmodulin and
protein kinase C (PKC). CalDAG-GEFI is a GEF for Rapl and R-Ras, while
CalDAG-GEFII (identical to Ras-GRP) facilitates guanine nucleotide exchange
in Ras and R-Ras (see Fig. 1). CalDAG-GEFIII has the broadest spectrum of Ras
family GTPase substrates (H-Ras, R-Ras, Rapl) and affects differentiation and
proliferation in a cell type-specific manner.

In lymphocytes a novel cross-talk mechanism between cAMP-dependent
protein kinase and ERKs is realized by the haematopoietic protein tyrosine
phosphatase HePTP, a negative regulator of ERK and p38 MAP kinases (see
Fig. 1). HePTP dephosphorylates a critical tyrosine residue in the kinase
activation loop. cAMP-dependent protein kinase phosphorylates HePTP in the
kinase interaction motif, resulting in a decreased affinity of HePIP to its kinase
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substrates, the release of activated MAP kinases and transcription induction from
the c-fos promoter (Saxena et al 1999).

ERK activation via Ga;), subunits

Expression of GTPase-deficient Gaj, in Rat la cells results in constitutive
activation of the MEK-ERK cascade by a poorly understood mechanism.
Mochizuki et al (1999) showed that activated GTP-bound Ga; forms a complex
with an N-terminally extended isoform of Rapl GTPase activating protein
(Rap1-GAPIID), thus activating Rap1-GAPII and decreasing the cellular content
of active, GTP-bound Rap1 (see Fig. 1). Considering the potential role of Rap1
as an antagonist of Ras signalling by scavenging Ras effectors like Rafl (Bos
1998), a decrease in GTP-bound Rapl is expected to amplify Ras signalling, and
in HEK 293T cells ERK-MAPKSs are activated by Rap1-GAPII ovetexpression
independently of Ras activation (Mochizuki et al 1999).

A variation of the same general theme is illustrated by the modulation of Rap1
activity by Go,,,. Jordan et al (1999) observed that GDP-bound Go,, interacts with
Rap1-GAP, thereby sequestering the exchange factor and raising the cellular
amount of activated Rapl (see Fig. 1). In PCI12 cells, overexpression of
unactivated Gua, resulted in ERK activation in a Rap1-GAP-dependent manner
(Jordan et al 1999). Thus in neuronal cells, activation of a Gjj,-coupled receptor
may antagonize cAMP-dependent signalling to ERK by lowering cellular cAMP
levels on the one hand and by mitigating the Rap1-GTP/B-Raf/MEK/ERK
cascade via release of Gua,-sequestered Rapl-GAP. Guo,, a member of the Go;
family highly expressed in brain, specifically interacts with Rapl-GAP in its
activated form (Meng et al 1999). While this protein—protein interaction has no
effect on the GAP activity of Rapl-GAP towards Rapl, it may modulate Rap1
signalling processes by relocalizing Rap1-GAP within the cell. Conversely, the
interaction between Gua, and Rap1-GAP sequesters the Go subunit and prevents
interactions with RGS proteins ot effectors such as adenylyl cyclase. Thus, Rap1-
GAP may act as an integrator between G, and Rap1 signal transduction pathways.

ERK activation via Gfy subunits released from activated G; proteins

Mitogenic signals mediated by Gj-coupled receptors are thought to be chiefly
transmitted via Gy subunits (Gutkind 1998). There is convincing evidence to
support a role of the Src family of tyrosine kinases in mitogenic signalling via
Gi-coupled receptors. For the COS-7 cell model it has been postulated that Src is
responsible for GPCR-mediated SHC phosphorylation and for the use of the
adaptor protein as a point of entry into the Ras/ERK signalling cascade (Fig. 2).
Other signalling molecules implicated in linking Gfy to the ERK cascade are the
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FIG. 2. Activation of ERK-MAP kinases by Gj,- and Gy-coupled receptors. While G
protein fy subunits play a central role in ERK activation via Gj-coupled receptors, products of
phospholipase Cactivity such as DAG and Ca**, and protein kmase Cisoformsactivated by these
products are key signalling intermediates linking G;;-coupled receptors with the ERK-MAPK
cascade. Increases in [Ca**]; and in PKC actlvlty are suggested to activate matrix metallo-
proteinases (MMPs) at the cell surface. Activated MMPs may release heparin-bound EGF-like
growth factors (HB-EGF) which initiate a classical RTK signalling cascade. Src-like kinases are
recruited by f-arrestins bound to GRK-phosphorylated G-protein-coupled receptors or by
PYK2, a cytosolic tyrosine kinase related to focal adhesion kinase. As yet, it is not clear
whether Src kinases play a role upstream or downstream of activated receptor tyrosine kinases
such as EGF or PDGF receptors. See text for further details. f,-AR, f,-adrenergic receptor; farr,
p-arrestin; CaM, calmodulin; CaMK, CaM protein kinase; DAG, diacylglycerol; EGFR,
epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; GnRHR,
gonadotropin-releasing hormone receptor; GEF, guanine nucleotide exchange factor; GnRH,
gonadotropin-releasing hormone; Grb2/SOS, complex of the adaptor protein growth-factor-
receptor-bound protein 2 and the guanine nucleotide exchange factor son-of-sevenless; GRK,
G-protein-coupled receptor kinase; HB-EGF, heparin-bound EGF-like growth factor; LPA,
lysophosphatidic acid; LPAR, LPA receptor; m3,5R, m3 and m5 muscarinic acetylcholine
receptor; MEK, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase;
MMP, matrix metalloproteinase; PDGFR, platelet-derived growth factor receptor; PI3K,
phosphatidylinositol 3-kinase; PKC, protein kinase C; PLC, phospholipase C; PYK2, proline-
rich tyrosine kinase 2; RasGRF, RasGRP, guanine nucleotide exchange factors for Ras.
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protein tyrosine phosphatase PTP1C and Ras guanine nucleotide-releasing factor
(Ras-GRF) (Cdc25M™), a Ras-GEF highly enriched in neuronal cells (for review see
Gudermann et al 2000). Ras-GRF also exhibits Racl-specific GEF activity when
activated by Gpfy-mediated signals. Phosphorylation of Ras-GRF by the non-
receptor tyrosine kinase Src is sufficient for the induction of GEF activity
towards Rac, indicating that Src may be located downstream of Gfy to modulate
Ras-GRF substrate specificity (Kiyono et al 2000).

ERK activation via Ggj11-coupled receptors

PKC isotypes are central signalling molecules coupling the Gqjy family of
G proteins to ERKs. Activation of PKC by phorbol esters results in robust
ERK activation in most cell types by a mechanism that is still unclear. One
potential mechanism to explain ERK activation by PKC is derived from the
observation that PKCa directly phosphorylates and activates Raf-1 7z vitro and in
an NIH 3T3 cell clone (reviewed in Gutkind 1998) (see Fig. 2). However, it was
recently shown that Raf must be associated with Ras-GTP for its activation by
PKC (Marais et al 1998), so that the primary role of PKC for Raf activation
appears to be the activation of Ras, which would provide for membrane
anchoring of Raf. Phorbol esters were demonstrated to stimulate Ras-GTP
accumulation, but the activation of Raf by PKC was not blocked by N17Ras
(Marais et al 1998). N17Ras, which sequesters Ras-GEFs, for example SOS,
abrogates Raf activation by RTKSs, suggesting that PKC activates Ras by a
mechanism distinct from that employed by RTKSs, probably via a novel GEF
distinct from SOS.

Ca?*- and cytoskeleton-dependent ERK activation

In PC12 cells, Ca®" transients alone were reported to be sufficient to trigger ERK
activation. Special emphasis has been laid on the role of proline-rich tyrosine kinase
2 (PYKZ2, also known as cell adhesion kinase f [CAKp], related adhesion focal
tyrosine kinase [RAFTK], Ca?* dependent protein tyrosine kinase [CADTK]), a
non-receptor tyrosine kinase related to focal adhesion kinases, which appears to be
involved in ERK activation by G11-coupled receptors via a direct interaction of
the tyrosine phosphorylated PYK2 with c-Src (see Schlaepfer et al 1999). PYK2
expressed at high levels in cells of neuronal origin and in cells of the haematopoietic
lineage, is independently activated by elevations of [Ca?*]; and by phorbol esters
(see Fig. 2). The activated tyrosine kinase subsequently mediates Ras-dependent
ERK activation via interaction with Stc, tyrosine phosphorylation of Shc and
Shc-Grb2/SOS complex formation. These observations underpin a G- and
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Ca’"-mediated signalling pathway that utilizes the same intermediates as Gfy-
and RTK-mediated pathways.

Ligand-independent activation of receptor tyrosine kinases

The convergence of signalling pathways at the level of or even upstream of Shc
proteins highlighted a previously unrecognized degree of cross-talk between the
GPCR and RTK signalling pathways. In each case tyrosine kinase activity is
required for mitogenic signalling. The identity of the tyrosine kinases involved
in GPCR signalling is still a matter of debate, but there is mounting evidence that
RTKSs are of central importance to GPCR signalling (Zwick et al 1999a). Ligand-
independent activation (transactivation) of the EGF receptor (EGFR) appears to
be a general phenomenon evoked by various Gi1- or Gj-coupled receptors in
different cellular settings. Later on the concept evolved that cross-talk between
different classes of cell surface receptors, i.e. GPCRs and RTKSs, is a general
feature, because the GPCR ligand pysophosphatidic acid (LPA) induces ligand-
independent tyrosine phosphorylation of the EGFR or of the PDGFf receptor
depending on the cellular setting (Herrlich et al 1998).

The molecular mechanism of RTK activation via GPCRs is not thoroughly
understood at present. Although several studies analysing conditioned cell
culture media failed to obtain evidence for a release of growth factors which
would activate their respective receptors subsequent to GPCR stimulation, such
a mechanism is hard to rule out. In CHO cells, shedding of membrane-anchored
heparin-binding EGF-like growth factor (HB-EGF) can be effectively induced by
Ca’* ionophore and phorbol ester treatment (see Fig. 2). In several cell systems the
shedding process executed by matrix metalloproteinases appears to be positively
regulated by MAPKs (ERK, p38) (Fan & Derynck 1999). Time course analyses
indicate that 12-O-tetradecanoyl-13-phorbol aceteate (TPA)-induced ERK
activation occurs within 5 min and precedes soluble heparin-binding EGF-like
growth factor (HB-EGF) release which can be observed after 10-20 min
(Gechtman et al 1999). These findings can be interpreted to mean that Ca?*- and
TPA-induced ERK activation is located upstream of HB-EGF shedding.

Despite the latter kinetic reasoning a sound body of evidence underpins a
significant contribution of metalloproteinase-mediated cleavage of proHB-EGF
to GPCR-dependent EGFR transactivation (Prenzel et al 1999). Inhibition of
proHB-EGF cleavage was shown to preclude GPCR-dependent EGFR
activation, and proHB-EGF shedding was noted 10 min after LPA or TPA
addition to COS cells. Preincubation of PC3 prostate cancer cells with
batimastat, a potent non-selective inhibitor of metalloproteinases, abolished
EGFR tyrosine phosphorylation upon neuropeptide or TPA challenge (Prenzel
et al 1999). Although the identity of the metalloproteinase involved still remains
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elusive, these studies favour a transactivation mode which essentially reflects the
classical way of RTK activation by growth factors and highlights a role for
membranous proteinases as therapeutic targets.

In vascular smooth muscle cells as well as in neuronal PC12 cells a rise in [Ca?*];
appears to be sufficient to trigger growth factor-independent tyrosine
phosphorylation of RTKs (Zwick et al 1999a, Gudermann et al 2000). In these
cellular settings Ca®*-activated tyrosine kinases of the PYK2 family have recently
been placed upstream of RTKs in the signalling pathway from Gg1i-coupled
receptors to ERKs (reviewed in Gudermann et al 2000). In T84 intestinal
epithelial cells carbachol-initiated EGFR tyrosine phosphorylation is brought
about by a signalling pathway involving increases in intracellular Ca?*, calmodulin,
PYK2 and Stc (Keely et al 2000), and PYK2 can be co-immunoprecipitated with
EGFR ina Ca?*-dependent manner. In breast cancer cells, the association of PYK2
and ErbB2 appears to be indirect and mediated by Src (Zrihan-Licht et al 2000).
Although EGFR transactivation and PYK2 tyrosine phosphorylation have
recently been described as two distinct and unrelated Ca>"-dependent events in
PC12 cells (Zwick et al 1999b), it is presently not possible to exclude a role of
non-receptor tyrosine kinases PYK2 and Src in triggering RTK transactivation.
Alternatively, experiments on the UV response indicated that inactivation of a
phosphotyrosine phosphatase (PTP) is critically involved in RTK activation
(Gross et al 1999), a process that is attributed to the UV-induced generation of
reactive oxygen intermediates.

Interplay between different classes of cell surface receptors appears to be a
general principle, because RTKs do not only cross-talk with GPCRs but also
with cell adhesion molecules such as integrins (Boudreau & Jones 1999). RTKs
can additionally be activated by cytokine action. In LNCaP prostate carcinoma
cells IL.-6 induces tyrosine phosphorylation of ErbB2 and ErbB3 and association
of the IL-6 receptor gp130 subunit with ErbB2 (reviewed in Zwick et al 1999a).
ErbB2 tyrosine kinase activity is a prerequisite for IL-6 signalling to ERK, and
thus the ErbB2-specific tyrphostin AG879 precludes IL-6-induced MAPK
activation. In contrast to GPCR- or IL-6 receptor-mediated RTK transactivation
which necessitates intrinsic RTK tyrosine kinase activity for downstream
signalling, the EGFR is directly phosphorylated by the cytosolic tyrosine kinase
Jak2 following growth hormone stimulation (reviewed in Zwick et al 1999a).

Collectively, these findings place RTKSs at a central position in many signal
transduction pathways enabling them to modulate and integrate various
extracellular stimuli. It is likely, however, that transactivation of RTKs is a
principally dispensable event for GPCR-induced signalling to the nucleus and
that RTKSs are utilized to shape the kinetics of signal transmission to the nucleus
which would nevertheless occur without RTK contribution (Grosse et al 2000a).
There is recent evidence that the population of RTKsactivated by growth factors is
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distinct from that transactivated via GPCRs, implicating a unique activation
pathway separable from the one engaged by endogenous tytrosine kinase ligands
(Heeneman et al 2000). Many groups are currently dedicating considerable effort
to unravel intricate signalling networks and to identify relevant, cell-specific
pathways.

Contribution of the receptor internalization
machinery to ERK activation

In several cell systems signal transmission from GPCRs to ERKs is ablated
subsequent to inhibition of clathrin-mediated endocytosis. Furthermore, it was
shown that Src-mediated tyrosine phosphorylation of dynamin involved in
fission of the budding clathrin-coated vesicle from the plasma membrane is a
requirement for GPCR internalization and ERK signalling (Luttrell et al 1999).
These findings have been interpreted to suggest that agonist-binding to the f,-
adrenergic receptor results in f-arrestin-dependent formation of a signalling
complex consisting of the heptahelical receptor, f-arrestin and Src, which would
then, through receptor internalization and Src-mediated Shc tyrosine
phosphorylation, engage the Ras/ERK signalling cascade (Luttrell et al 1999)
(see Fig. 2). By interacting with the catalytic domain of Src, f-arrestin recruits
tyrosine kinase activity to the cell membrane to enable phosphorylation of key
components of the endocytotic machinery such as dynamin and clathrin heavy
chains (Wilde et al 1999, Miller et al 2000). This overall model of GPCR-
dependent ERK activation circumvents the need for second messenger
production, because the active receptor conformation is the decisive trigger for
signalling. The role of fy subunits would primarily be the recruitment of
receptor kinases to the agonist-bound receptor to secure phosphorylation of
cytoplasmic receptor domains required for the interaction with f-arrestin.
However, GPCR internalization via clathrin-coated pits does not appear to be a
universal prerequisite for ERK activation by Gj-coupling receptors, because the
op-adrenergic as well as opioid receptors are able to engage the ERK-MAPK
cascade under conditions which preclude receptor internalization (reviewed in
Gudermann et al 2000). Mammalian exclusively Ggi1-coupled gonadotropin-
releasing hormone (GnRH) receptors (Grosse et al 2000b) completely lack a
cytoplasmic C-terminal tail and are regulated in a f-arrestin-independent fashion.
None the less, GnRH challenge results in a rapid GTP-loading of Ras and increased
ERK activity (Grosse et al 2000a), thus challenging the concept that GPCR
endocytosis is generally required for ERK activation. In a systematic,
comparative study DeFea et al (2000) demonstrated that both the wild-type
PAR?2 receptor and also a PAR2 receptor mutant defective in f-arrestin binding
are able to activate ERKs, yet by distinct pathways. ERK activation by wild-type
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PAR2 is accompanied by the formation of a multi-protein signalling complex
consisting of the internalized receptor, f-arrestin, Raf-1 and activated ERKs, the
latter being confined to the cytosol and devoid of mitogenic potential. The above-
mentioned PAR2 receptor mutant was able to mediate ERK activation without
concomitant signalling complex formation. Activated ERKs were now allowed
access to the nucleus, resulting in increased cell proliferation (DeFea et al 2000).
Thus, while GPCR-mediated ERK activation does not require GPCR
internalization, the formation of an internalized signalling complex may ensure
appropriate subcellular localization of ERK activity and thereby determine the
mitogenic potency of a given agonist.

Conclusions concerning the importance of receptor endocytosis for GPCR-
mediated ERK activation have been drawn from experiments employing a
dynamin mutant (K44A) defective in GTP binding and hydrolysis. In cells
overexpressing this mutant dynamin, coated pits fail to become constricted and
to bud. While in many cell systems clathrin-mediated endocytosis is required for
GPCR-dependent ERK activation, the dynamin mutant does not allow us to
address the question of whether it is GPCR endocytosis or rather internalization
of other signalling proteins such as activated MEK (Kranenburg et al 1999) which
represents the crucial step in the ERK activation cascade. Clathrin-mediated
endocytosis and downstream receptor signalling is not only required for GPCR
internalization, but also for EGFR endocytosis, and Src-mediated tyrosine
phosphorylation of clathrin heavy chains is a crucial prerequisite for effective
EGFR internalization (Wilde et al 1999). A comparison of ERK activation
cascades initiated by sequestering versus non-sequestering GPCRs provided
evidence for the concept that RTKs or other downstream signalling proteins
rather than GPCRs have to engage the endocytotic pathway (Pierce et al 2000).
In the case of the f,-adrenoceptor, isoproterenol-induced ERK activation is
realized by the assembly of a multireceptor complex made up of the f,-
adrenoceptor, EGFR and interaction of the transactivated RTK with
components of the endocytotic machinery (Maudsley et al 2000).

Conclusions

G protein-mediated signal transduction is realized as a complex signalling network
with converging and diverging transduction steps at every coupling interface
(Gudermann et al 1996). A new level of complexity has been added by realizing
that cross-talk exists between different classes of cell surface receptors (i.e.
GPCRs, RTKs, cytokine receptors, extracellular matrix receptors) at the level of
the receptors and further downstream between the signalling cascades. The
delineation of relevant signalling pathways shaping the intricate cross-talk
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between different classes of cell surface receptors may ultimately help develop
novel pharmacological intervention strategies.
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DISCUSSION

Dolmetsch: Do you know what the Ca?* sensor for PIP2 is? I have often
wondered what the Ca®* sensor for the MAP kinase cascade is. This cascade is
clearly Ca®" activated, yet PIP2 itself does not bind Ca?*.

Gudermann: The simple answer is that it is not known. The only observation is
that an elevation of Ca®" is sufficient to lead to ERK activation. There are some
ideas that perhaps CaM kinases are involved here, so this could be a link between
Ca?* and PIP2.

Dolmetsch: The problem with the ERK cascade is the problem shared by all
signalling cascades: there are clearly lots of players and they all interact with each
other. If you do a literature search for any one of these pathways you get many
thousands of papers, half saying one thing and the other half saying things that
are apparently contradictory. The current approach for unravelling this system is
for everyone to work on one small story. The typical postdoc or graduate student
will work on the activation of some target by ERK or PKB or whatever. The
problem with this approach is that it produces lots of contradictory results. Do
you have any idea of how you could integrate this into something that is reliable?

Gudermann: One has to ask specific questions and explore them in depth in the
cell. Perhaps there is no way around these little stories. We were interested in
understanding how GnRH signalling works in the gonadotrope, so we
concentrated on gonadotropic pituitary cells and tried to assemble the signalling
pathway in this specific cell, knowing that if we took the same signalling
components in a slightly different cell line, things would be completely different.
I don’t know what you mean by ‘making sense’ out of this: is there really one
universal concept in cell signalling? I am not sure there is.

Sejnowski: Is the source of apparent unreliability the fact that people are using
different cells or different ligands? Are they doing exactly the same experiments and
getting different results?

Dolmetsch: Of course not. The difference is partly due to different cells and
different techniques. Part of it, however, is the way in which signalling in general
is studied. Typically, when people attempt to characterize an interaction in a
signalling pathway, they use lots of different cell lines. Neurons are hard to
transfect and it is difficult to do biochemistry on neurons, so half of the
experiments are done in 293 cells. The problem here is that in the end you have
these papers that tell stories which in fact are a mish mash of what is happening in
a lot of different cells.

Gudermann: We have to go back and do the hard job of studying those cells that
endogenously express the receptors and signalling components. If we really want
to understand whether this has any physiological meaning, we have to go as close
to physiology as we can.
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Kahn: The problem isn’t the reliability of the data. For the most part, the data are
the data: people haven’t done bad experiments; they have done what they said they
did and have reported the results of these. I think part of the confusion comes from
the stoichiometry of molecules when a reconstituted cell is made. I think it is very
important to look in physiologically relevant cells at physiological concentrations
of these proteins. Along these lines, with regard to the GnRH story and the EGF
receptor role, is the role of the ERK signalling in GnRH action ultimately via the
release of gonadotropins? GnRH may have multiple effects on that cell and the
EFK pathway may just be involved in some of these.

Gudermann: We don’t know yet. These are the questions that we are addressing
right now. The first thing we did was to look at transcriptional events, and there are
no obvious differences there. This does not mean that the accelerated time coutse of
ERK activation via the EGF receptor has no role, but at the moment we have no
idea what it does physiologically.

Kahn: 1 have been thinking about the idea of the signal from, say, a GPCR,
coming to an intracellular domain, creating mediators which then come back and
activate another membrane receptor to create a new intracellular signal. Is there are
rationale for why the system might adopt this seemingly inefficient method of
signal transduction?

Gudermann: There are a number of potential answers. One has to do with the
strength of the signals. The signal goes into the ERK cascade after the binding of
growth factor and the activation of a GPCR. Usually this is a much lower level than
what is seen after the cell has been stimulated by EGF. Again, this does not
necessarily mean that this signal has no physiological significance. The easiest
explanation would be that such a #7ans-activated EGF receptor may only serve as
a scaffold molecule for the assembly of components, so that the signalling pathway
can progress into the cell in a coordinated fashion. But there is a clear difference in
the strength of the signal. There are some papers looking at the contribution of
colonic epithelial cells which claim that you need the input of a RTK to see a
physiological effect. But studies addressing a physiological endpoint are very rare.

Sejnowski: There are many possible benefits of this sort of convoluted signal
pathway, such as additional points of regulation, or the need for signal validation
to make sure it is not just random fluctuation or system noise.

Gudermann: The idea that it is a validation or amplification system is an attractive
hypothesis. But there are very few studies in which people have tried to eliminate
the contribution of this amplifier-like signal system. There is some evidence that
this kind of cross-talk between membrane receptors not only exists between
receptor tyrosine kinases and GPCRs, but also between cell adhesion molecules
and cytokine receptors.

Eichele: Coming back to the issue of physiological and pharmacological
significance, could it be time to return to the organismal level with some of these
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questions? I realise that GnRH neurons can’t be studied in Caenorhabditis elegans or
Drosophila, but these model organisms have been wonderfully developed for
addressing signalling in the organismal context. Even in the mouse we have, at
least in principal, the tools to address these questions. We can get away from
cells.

Iyengar: Some of us are still stuck at the cellular level. I'd like to share some of the
experience from my own lab over the last 8-10 years. 10 years ago we published a
paper stating that activated G,o transforms NIH 3T3 cells. I ruined at least two
graduate students by pushing them to find out how o activated MAP kinase. It
didn’t work at all. It turns out that in those cells, for reasons I still don’t fully
understand, oo engages Stc to activate STAT3. The entite pathway operates
without touching MAP kinase in NIH 3T3 cells. We have repeated the same
experiments that Bob Lefkowitz and others have done that have shown ao
activation of MAP kinase in CHO cells, and they work for us as well. There are
questions that remain unanswered at the cellular level. We don’t understand what
the context of these connections is, and until we do, we are effectively building on a
second level of black boxes if we go on to the organismal level. Src shows up in so
many contexts with respect to this type of signalling, in channel regulation,
engagement of integrins and so on.

Sejnowski: Thete is a real danger that some of the phenomena being studied are
basically tissue culture artefacts. This is true of primary cell lines of neurons; the
transformed cell lines are even less normal.

Iyengar: We just have to be careful that we don’t overexpress the molecules we are
studying. These things can be controlled.

Kahn: The presumption there is that we know the correct concentration of the
different components that are put back. I am not sure we do yet.

Eichele: Stc is a good case: the Src knockout mouse doesn’t show what it is
supposed to show. I appreciate cellular studies, but I would like to see genetic
experiments done at the organismal level first.

Berridge: If Stc has been knocked out and there is no phenotype, what do we do
then?

Pogzan: 1 think that cell lines deserve an advocate. My impression is that studies
on cell lines indicate the existence of potential signaling pathways. Then we have to
verify whether those potential pathways are actually exploited in the organism.
Knockout mice very often don’t show a phenotype or show an unexpected
phenotype. In the case of the growth factors that you mentioned, another aspect
that needs to be considered is the amount of time for which the receptor is engaged.
For example, muscatinic receptors are potentially mitogenic because they can
activate the MAP kinase pathway, but most often people use carbachol (that is
not metabolized) rather than the physiological agonist acetylcholine, that is
rapidly metabolized. In other words, in real life it is unlikely that acetylcholine
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will activate the muscarinic receptor for long enough to effectively turn on a
mitogenic signal.

Gudermann: 1 agree. 1 would like to reemphasize the point that we should be
aware of exactly which questions we are asking and what answers we are going to
get. If one asks the question about what potential interactions are there, and if one
only interprets them as potential interactions and does not draw any unjustified
conclusions as to what is happening in real life, these sorts of studies are valuable.

Dolmetsch: Knockout animals are useful for answering specific sorts of
questions. They are extremely useful for questions of development. But if you
want to test the function of a particular molecule in an adult, you need a slightly
different approach, such as using an inducible knockout. Just about every time 1
look at the journal Neuron, thete are papers in which someone has produced a
knockout mouse and tested in the Morris water maze, showing that it has a
learning deficit, or that it learns better. These experiments are completely
uninformative. They tell us virtually nothing about the function of the molecule
that has been knocked out. I am not so sure that making a knockout is the way
forward, if we don’t really understand what that molecule does.

von Herrath: 1 have a point that has been increasingly worrying me over the last
few years. If I take a field such as this, which is not my own, and do a literature
search, this will pull up say 10000 papers. The human mind is not made to
integrate all this information and make sense of it. Can all this information,
which is probably very useful, be put into some kind of computer-guided
algorithm that would integrate it, together with all the experimental details
contained in the papers? If we only look at the abstracts we will miss all the
technical details. This sort of approach may provide a route to a better
mechanistic understanding of some of these areas. Or is this approach complete
nonsense at this stager

Berridge: You may or may not be awate of the initiative Al Gilman has put
forward, the Alliance for Cell Signalling. This is intended to do just what you
have mentioned. Again, the issue about cloned cells comes up. I am very much
against the use of cloned cells, mainly because they have undergone an ill-defined
immortalization phenomenon, which makes them very different to primary cells.
We really have to tackle primary cells, and this is what Al Gilman has decided.
Therefore, the Alliance for Cell Signalling will study two cell types: the
ventricular cardiac cell and B lymphocytes. The whole emphasis is on looking at
primary cells.

Iyengar: That is just one point of view. I think there is a lot mote to be learned
from cloned cells.

Berridge: There is a lot more to be learned about the artefacts!

Iyengar: There are many people who think that there are other ways to do this
research from the way you suggested. We have learned a lot from cloned cells. It
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would be disingenuous to suggest that we haven’t made progress because we have
been using these cell lines. All of cancer biology has come from studying
transformed cell lines. Even last year when Weinberg published his paper on 293
cells, we still learned something new. I agree about the limitations, but I think we
can still learn quite a bit more.

Sejnowski: 1 don’t think that the suggestion is that we stop the old research, just
that we initiate a new line that potentially will give a different picture and allow us
to see something that we can’t get from a transformed cell line.
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Abstract. Over the last years we have utilised chimeras from aequorin and green
fluorescent protein (GFP) to monitor the dynamics of second messenger levels in living
cells. In this contribution we address two problems, i.e. the complexity of Ca** handling
by mitochondria and the localization of cAMP signalling. As to the first, we here
demonstrate that physiological increases in mitochondrial Ca**, monitored with
selectively localized recombinant aequorin, concern a sub-population of organelles that
is stably and selectively associated with the endoplasmic reticulum. As to cAMP, we
describe the use of a novel probe to monitor its changes in living cells, that takes
advantage of the phenomenon of fluorescence resonance energy transfer (FRET)
between suitable GFPs linked to the regulatory and catalytic subunits of protein kinase
A (PKA). When cAMP is low the two fluorophores are in close proximity and generate
FRET while increasing levels of cAMP determine progressive reduction of FRET as the
two subunits (linked to the GFPs) diffuse apart. We also demonstrate that by using such
cAMP sensor, localized increase of this second messenger can be observed upon selective
stimulation of plasma membrane receptors.
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When a receptor binds its ligand on the outer surface of the plasma membrane, it
undergoes a conformational change that permits the initiation of a cascade of
events leading, eventually, to the activation of specific cellular responses. These
membrane receptors can be subdivided into three major categories: those
endowed with intrinsic catalytic activities (e.g. the growth factor receptors),
those coupled to G proteins (e.g. muscarinic acetylcholine receptors), and those
endowed with ion channel properties (e.g. the ionotropic glutamate receptors).
Despite major differences in the mechanisms of signal transduction, multiple

'This paper was presented at the symposium by Tullio Pozzan to whom cortrespondence should
be addressed.
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communication points exist between these signalling pathways. In most cases—
though not in all — the activation of the receptor results, directly or indirectly, in
the alteration of the concentration of one or more intracellular second messengers.
These are small, soluble molecules — the concentration of which can vary rapidly
and transiently within the cell—and their binding to specific effector proteins
controls a variety of cellular phenomena. To date, although hundreds of
receptors are known to be expressed in different cell types, the number of known
second messengers is extremely small. The classical second messengers are Ca’",
inositol-1,4,5-trisphosphate (InsPj), diacylglycerol, cAMP and cGMP. A few
other compounds (NO, phosphatidylinositol-3,4,5-trisphosphate [PIP;], cADP
ribose, NAADP, and arachidonic acid) could be included in this class of
molecules, though they can hardly be defined as second messengers sensu stricto.
Amongst the bona fide second messengers, it is noteworthy that the only known
action of InsPj is that of inducing Ca?'* mobilization from stores—all its
biological effects are thus mediated through Ca’?" ions. The same treasoning
applies to cADP ribose and NAADP. Succinctly, the many different receptors
that are involved in the control of an ample variety of biological processes (from
contraction to secretion, from phagocytosis to cell division), exert their biological
action through the modulation of intracellular levels of very few messengers. In
other words, many teceptors share the same second messenger yet promote
different cell responses. How can distinct cellular functions be controlled by the
same signal?

Different strategies can be envisaged to achieve this purpose, the simplest being
cell differentiation. If a given pathway is turned off during differentiation (e.g. the
ability of progressing through mitosis), such a pathway will never be activated,
whatever the level of stimulation. This, however, is only one of many
possibilities. Other strategies may depend on the intensity or duration of the
stimulation; i.e. given the same signalling molecule, a brief and intense signal can
turn on a specific pathway, whereas a weak but prolonged stimulation leads to the
activation of a different one (Dolmetsch et al 1998). The array of possibilities for
diversifying the signal output includes many other alternatives such as interactions
of multiple signalling pathways, temporal complexities (oscillations versus steady
state increases etc; Li et al 1998). Over the last few years, another strategy has been
the focus of much attention: the spatial organization of signalling molecules. In
other words, not only can the quantitative and temporal aspects of signal
generation ultimately regulate the output signal, but also the spatial organization
within the cell can dictate the final response to the stimulus. For the fine mapping of
the spatial complexity of second messengetrs however, new methodologies were
required. The techniques developed ate capable of monitoring — dynamically
and with high spatial and temporal resolution—the concentration of these
molecules within single living cells.
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Spatial complexity of Ca?* signalling

The measurement of cytoplasmic Ca?" with fluorescent probes has been possible
for several years (Zacharias et al 2000). The individual events leading to global Ca?*
elevations, however, have only relatively recently been revealed, through the use of
high-speed confocal microscopy (Berridge et al 2000a, Berridge 2001 this volume).
The changes in cytoplasmic Ca?* are only part of the spatially complex Ca®* signals.
Within the lumen of various organelles (such as mitochondria, endoplasmic
reticulum [ER], Golgi) changes also occur, and these are at least as important as
those of the cytosol (Pozzan et al 1994). The main limitation of fluorescent dyes—
either microinjected or loaded via membrane-permeable esters—is that these
indicators reside in the cytoplasm and only in some cases (often erratically) do
they end up within organelles. Information about the latter is thus largely
indirect and obtained through the use of selective drugs. A more direct approach
of monitoring the dynamics of organelle Ca?* changes in living cells is that of
selectively targeting a Ca®" probe. This can be very efficiently and selectively
done using moleculatly engineered Ca®*-sensitive proteins. At present, two
families of such probes are available: those based on the Ca?"-sensitive
photoprotein aequorin (Robert et al 2000), and those based on mutants of green
fluorescent protein (GFP; the so-called cameleons and camgaroos; Miyawaki et al
1999, Baird et al 1999).

Aequorin is a 20 kDa protein produced by the jellyfish .4 equoreavictoria that was
used extensively in the 60s and 70s to probe Ca?" in the cytoplasm of large cells,
such as squid giant axons or muscle fibres (Blinks et al 1978). Functional aequorin
contains a covalently linked coenzyme, named coelenterazine. Upon binding of
Ca®" to the specific sites (three EF hand sites/molecule) aequorin undergoes a
conformational change that results in the emission of a photon and oxidation of
the coenzyme. The major obstacle to the wide use of aequotin as a Ca>" probe was
the necessity of microinjecting it into the cytoplasm. Cloning of the cDNA
encoding this protein (Inouye et al 1985) and modern molecular biology
techniques have overcome this problem, and it is now possible to transfect any
cell of interest; the expressed photoprotein is rendered functional simply by
incubating the cells with exogenous coelenterazine. In addition, acquorin can be
moleculatly engineered with the insertion of targeting sequences that dictate the
localisation of the expressed protein in specific cell compartments (reviewed in
Robert et al 2000).

Wherteas aequorin is naturally Ca>"-sensitive, the GFP-based Ca?" sensors have
been molecularly tailored to this purpose. The so-called cameleons are chimeric
proteins composed of four independent domains (Miyawaki et al 1999, 1997):
two differently coloured GFPs are located at the N and C termini, while the
central core is composed of calmodulin (CaM) and the CaM binding domain of
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myosin light chain kinase (M13); several variants of this basic structure have been
generated by different groups (Romoser et al 1997, Persechini et al 1997). Ca?*-
sensing by cameleons depends on the phenomenon of fluorescence resonance
energy transfer (FRET) between the two GFPs. Oversimplifying, FRET results
from the non-radiant transfer of energy from an excited donor chromophore
(e.g. BFP, a blue mutant of GFP) to an acceptor chromophore (e.g. GFP). This
phenomenon is highly sensitive to the distance and orientation of the
chromophores. In practical terms, the sample is excited at a wavelength typical of
the donor (in the case mentioned above, UV light) and, if FRET occurs, the
resulting emission is that typical of the acceptor (green light). When the [Ca®*] is
low, FRET of cameleons is minimal, while binding of Ca®" to CaM results in a
drastic conformational change that increases FRET.

Camgaroos, on the other hand, result from the insertion of CaM at a specific site
within the GFP molecule (Baird et al 1999). In this case, the conformational change
induced by Ca?* binding to the CaM domain changes the fluorescence intensity of
the GFP. As in the case of aequorin, cameleons and camgaroos, being genetically
encoded, can be transfected and targeted to specific cellular regions. At the moment
these protein indicators can be targeted to the nucleus, mitochondria (matrix or
intermembrane space), the ER, the Golgi, the surface of secretory vesicles or the
inner leaflet of the plasma membrane; a chimeric aequorin for the lumen of
secretory vesicles is also available (T. Pozzan & L. Filippin, unpublished data).
To our knowledge, peroxisomes remain the only organelles for which a Ca®*
probe is still not available.

These probes have led to major improvements in our understanding of the
spatial complexity of the Ca?* signalling pathway. It is beyond the purpose of
this brief report to extensively review this information and we will limit
ourselves to a brief discussion of recent data regarding Ca’?" handling by
mitochondria.

Mitochondria as biosensors of Ca?* microheterogeneity

It has been known for a long time that mitochondria are endowed with the ability
to accumulate Ca?" at the expense of the membrane potential generated by the
respiratory chain. This property, however, was generally attributed to
experimental artefacts or even post-mortem effects —and there were reasons for
this prejudice. For example, the apparent affinity of the mitochondrial Ca®*
uptake system is very low (10-100 uM); i.e. well above the Ca>" concentrations
that are found in healthy living cells (for review see Pozzan & Rizzuto 2000a,b).
Luckily, the unexpected finding that physiological stimuli result invariably in large
increases in mitochondrial Ca?* — more than 10-fold higher than the cytoplasmic
values— renewed the interest in this phenomenon. The vast majority of the
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experts in the field currently agree with the idea that this apparent contradiction is
explained by the microheterogeneity of Ca?" within the cytoplasm. In particular,
the idea has been put forward that mitochondria are strategically located close to
the Ca?* channels either of organelles (ER or sarcoplasmic reticulum [SR]) or of the
plasma membrane (Pozzan & Rizzuto 2000a,b). At the mouth of these channels,
the Ca?* concentration is transiently much higher than in the rest of the cytoplasm;
i.e. petfectly suited for the low-affinity Ca?* transport into mitochondria. Thus,
not only do mitochondtia take up part of the Ca>" released into the cytoplasm
(exerting a significant buffering capacity on the amplitude of the cytoplasmic
Ca?* peaks), but they also play more subtle roles. These include, for example,
modulating the feedback of Ca?* on the channels, shaping the duration of the
cytoplasmic Ca®" increase, and local modulation of the activity of Ca?*-
dependent events, such as secretion (Montero et al 2000). One question that is
still unanswered in this field is whether the proximity of mitochondria to the
Ca?* hot-spots is simply a stochastic event (mitochondria represent up to 20% of
the cytoplasmic volume and, simply by random distribution, some of them are
likely to be found in the vicinity of a Ca?* channel), or whether some specific
interaction is involved.

If the proximity of mitochondria to the Ca®" release sites is a stochastic event —
and considering that both the ER and mitochondria in a living cell move around
continuously — one would expect that the individual mitochondtia close to the
Ca?* release channels would continuously change. We have tried to address this
issue by taking advantage of one of the characteristics of aequorin: upon binding
of Ca?*, aequotin emits a photon and is irreversibly ‘consumed’ (i.e. a second Ca?*-
binding event results in no photon emission). Given this premise, if we stimulate
the cells twice with the same stimulus (one that induces the same increase in
cytosolic Ca?* concentration), different regions of the mitochondrial network
would be exposed to the Ca?* hot-spots during each challenge. In other words,
the mitochondrial subpopulation exposed to a high Ca?" microdomain would
contain ‘fresh’ aequorin in both instances, and the measured average Ca?*
increase in mitochondria would therefore be identical. Conversely, if the regions
of mitochondrial network that are close to the Ca*-release sites remain constant,
the aequorin in that subpopulation of mitochondria is irreversibly and extensively
consumed during the first stimulus— the apparent Ca®" rise upon a second
stimulation will, thus, be abolished or drastically reduced. Figure 1 shows that
the latter alternative is correct. HelLa cells expressing mitochondrially targeted
aequorin wete challenged twice, with a 7 min interval, with histamine. The two
stimuli resulted in identical cytoplasmic Ca?" increases (not shown), while the
first mitochondrial Ca?* peak was almost threefold larger than the second. The
data obtained in recent experiments support the concept that the subpopulation
of the mitochondrial network that is close to the InsPs-activated Ca®* channels is
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FIG. 1. Effect on mitochondrial [Ca®"] of two consecutive stimuli of histamine (100 uM) in
HeLa cells transfected with aequorin targeted to mitochondria.

stably associated with those regions of the ER. The two histamine stimulations
must be separated by over 60min to obtain a complete recovery of the
mitochondrial response. In other words, these experiments strongly suggest that
the proximity of mitochondria to ER-released Ca®" hot-spots is not a stochastic
event, but it is due to a stable association between the two organelles. This
finding obviously opens the search for the molecules responsible for this close
association, but at the moment no candidates are available.

Cyclic AMP spatial heterogeneity

If the idea of spatial heterogeneity in the levels of Ca?" is a widely accepted concept,
much less is known about the other classical second messenger, cAMP. There are
two reasons for the poor understanding of the spatial organization of cAMP
signalling. The first is that the methodology for monitoring cAMP levels in
single living cells has only recently become available. The second is that, unlike
Ca®", the rate of diffusion of cAMP in living cells is thought to be very fast. Yet,
indirect evidence pointing to the importance of localized increases of cAMP has
been obtained, particularly in heart cells (Jurevicius & Fischmeister 1996). Two
probes are currently available to monitor cAMP levels at the single-cell level and
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FIG. 2. Schematic representation of the FRET-based biosensor for cAMP. Incoming arrows
indicate fluorescence excitation and outgoing arrows indicate fluorescence emission. Excitation
and emission peak wavelengths are stated. The two subunits of protein kinase A are tagged with
two variants of GFP suitable for FRET. The catalytic subunit of PK A is shown in light grey and
the regulatory subunit of PKA is shown in dark grey. Donor and acceptor fluorophores are BFP
and GFP, respectively. When cAMP is low, most PKA subunits form a GFP-tagged
heterotetramer. In this condition, the donor and acceptor fluorophores are in close proximity
and FRET occurs. When cAMP increases it binds to the regulatory subunits. The consequent
conformational change in the regulatory subunit determines the release of the active catalytic
subunit: the two fluorophores diffuse apart and FRET disappears.

they are both based on the same principle, FRET. The first of these probes was
introduced nine years ago (Adams et al 1991) and is based on the covalent
labelling of protein kinase A, PKA: the catalytic subunit (C) is labelled with
fluorescein, whereas rhodamine is linked to the regulatory subunit (R). The
second probe is genetically encoded and is based on the fusion of two differently
coloured GFPs (suitable for FRET) to the PKA subunits (Zaccolo et al 2000). The
rationale is the same in both cases: in conditions of low [cAMP], the C and R
subunits of PKA are closely associated and FRET will be maximal. When
[cAMP] rises, the C and R subunits dissociate and FRET is abolished. A scheme
that summarizes this concept is presented in Fig. 2. The necessity to microinject
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covalently labelled PKA has limited enormously the use of the first probe, while
the GFP-based probe can be introduced into living cells by transfection. This latter
methodology has been introduced only a few months ago and accordingly only
very few data are available. However, preliminary evidence obtained in our
laboratory indicate that at least in some model systems—for example,
cardiomyocytes in culture—it is possible to demonstrate spatially distinct
domains of high cAMP upon stimulation of specific receptors. A crucial role in
the maintenance of such steep local gradients of cAMP is played by the cAMP-
degrading enzymes, as demonstrated by the homogeneous diffusion of cAMP
throughout the cell upon pharmacological inhibition of phosphodiesterases.

Conclusions

In this brief report we mentioned a few methodological approaches to the study of
the spatial complexity of two key second messengers — Ca?* and cAMP —and we
described some recent new data from our group. This is by no means an exhaustive
review of the available methods to monitor the spatial complexity of these second
messengers or of their downstream effector systems. The reader is referred to the
reviews or to the original articles quoted below for more details. Our purpose was
only that of stimulating the discussion on the novel aspects of signal transduction
in the hope that some of the information provided might be of some help in
modelling the spatial complexity of second messengers in living cells.
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DISCUSSION

Kahn: Yesterday we talked a bit about the difference between graded responses
and quantal responses. Using the imaging approach in both the cAMP and the Ca?*
system, at the level of single cells if you see 50% stimulation, is this because half the
mitochondria show a response and half don’t? Or does each of the mitochondria
show a 50% response?

Pogzan: My interpretation is that in each single cell, 50% of the mitochondria
respond, but I cannot prove this hypothesis formally. In other words, according to
my interpretation, 50% of the mitochondpria of each cell show a big spike and 50%
hardly respond. This interpretation is consistent with the very slow recovery of the
mitochondrial response, despite the fact that the Ca®" rise in the cytoplasm is
unaffected.

Brabant: 1s this a functional regulation of the non- or less-responding
mitochondria, or is it a dynamic state fluctuating from high to low?

Pogzan: This is a difficult question to answer. The possibility that mitochondria
are close to the Ca?* channels simply as a consequence of a stochastic event is, in my
opinion, too risky for the cell, because this process is vital in generating ATP.
There is evidence in some specific cell types that Ca®" release always starts from
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the same sites. There are InsP; receptor clusters that are more sensitive than others,
but, at the moment, it is not known whether or not mitochondria cluster
preferentially around these receptors.

Sejnowski: In this regard, is the Ca?" transport localized?

Pogzan: Nothing is known at the molecular level about the components of the
mitochondrial Ca?* uptake or release mechanisms.

Langhlin: Does this mean that we know very little about how the mitochondria
return the Ca®*?

Pogzan: To alarge extent under physiological conditions they return Ca?* to the
cytoplasm through the action of two exchangers, the Na*/Ca?* and the H*/Ca®*
electroneutral exchangers. Under physiological conditions these are the only two
Ca?* efflux pathways that mediate Ca?* release from mitochondria. This conclusion
is based on the use of drugs that are reasonably specific for these exchangers. They
either reduce the speed or block Ca?* eflux. Under other conditions there is a third
pathway, the so called ‘permeability transition pore’. If this pore opens, Ca®* can
come out through it very rapidly. The conditions under which this pore opens
are usually very artificial and the evidence that it does so in healthy cells is very
limited.

Laughlin: Presumably the rate at which Ca* is returned has an influence on the
dynamics and the efficiency of signalling.

Pogzan: In terms of cell energy balance, we know that when Ca?" is taken up, the
mitochondtia stop making ATP. However, the Ca?" microdomain mechanism is
economically advantageous for the cells. Mitochondria stop making ATP for justa
few milliseconds, the time required for the rapid uptake of Ca?*. The Ca®*
microdomains disappear rapidly and the efflux pathway is very slow. In other
words, by sacrificing a few hundred milliseconds of ATP synthesis, this
arrangement ensures that the mitochondrial dehydrogenases remain activated for
several minutes (and thus ATP synthesis is increased for a long period).

Schultz: Why is it so difficult to set up a single cell assay for cGMP similar to the
one for cAMP? Is it possible in the cAMP-dependent protein kinase to teplace the
cAMP binding domain with a cGMP binding domain?

Pogzan: 1t could be done. We haven’t tried. The rumours are that a few groups
have tried to do the same with cGMP dependent kinase. I haven’t seen anything
published on this, which probably means that it hasn’t worked. We considered the
alternative possibility, given that this construct works, i.e. to substitute the cAMP
binding domain with the cGMP binding domain, hoping that the rest of the
structure would remain unperturbed.

Brenner: This will work: I have made the construct, although not for this
purpose. Just replace it. It is one PCR experiment.

Sejnowski: But you haven’t published it.

Brenner: No. This was done in bacteria, for another purpose.
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Berridge: 1 was struck by the very slow recovery when you took out 10% of the
sites. This didn’t fit too well with the idea that these are sausage-shaped structures
that are in contact with 90% of the normal aequorin, which should diffuse in quite
quickly. It seems rather a slow process for this kind of tunnelling.

Pogzan: The 10% I was talking about are regions where the vicinity of the
mitochondria to the ER could not be resolved. In these regions the two
organelles are less than 80 nm apart. My idea is that Ca®" has privileged entry sites
in those areas, but then it diffuses through the tubes intralumenally. Thus the
amount of aequorin that will be burned will be much larger than 10%, depending
on how far Ca2* diffuses into the mitochondrial tubular network.

Berridge: This sieve idea is interesting, because it fits nicely with the possibility
that you have a mitochondrion sitting close to the channel, which takes the Ca®*
away and prevents the negative feedback on the channel, and then it diffuses down
through the mitochondria and gets sprayed into the cytoplasm at deeper points.

Sehifl: Do you have any indications from your single cell measurements of
cAMP concentrations whether cAMP rises in a graded or amplitude-regulated
fashion? Are there any temporal fluctuations in cAMP concentrations like in Ca?*
signalling systems?

Pozzan: These are all planned experiments. If I had to bet, I would bet that
cAMP will oscillate as well, but with less sharp fluctuations than those of Ca?*. It
appears unlikely to me that cAMP will not oscillate in some kind of synchrony with
Ca?*, given that both the cyclases and the phosphodiesterases are Ca?" modulated.
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Abstract. Humoral communication systems are dynamically regulated. Most hormones
are released in a pulsatile or burst-like manner into the bloodstream. It is well known that
information coded in the frequency and amplitude of secretory pulses allows for the
differential regulation of specific target cell function and structure. However, despite
intensive study of transmembrane signalling relatively little is known about how the
temporal dynamics of extracellular humoral stimuli specifically regulates the temporal
pattern of intracellular signalling pathways, such as Ca*'-dependent signalling.
Repetitive spikes of Ca** encode this information in their amplitude, duration and
frequency, and are in turn decoded into the pattern of gene expression and
phosphorylation of target proteins. Using a mathematical model for G protein-coupled
Ca?*signalling and information-theoretic approaches to stimulus reconstruction we have
systematically quantified the amount of information coded in the Ca**-signal about the
dynamics of the stimulus, which allows us to explore the temporal bandwidth of
transmembrane signalling. These 7 silico approaches permit us to differentiate the
amount of information coded in the frequency, temporal precision, amplitude and the
complete Ca**-signal. This may open an avenue to the quantification of information
flow and processing in the intra- and intercellular coding and decoding machinery.
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Biological information transfer

The two major biological systems that communicate information over long
distances are the nervous and endocrine systems. There are common principles of
information processing in humoral and neuronal communication. Both systems
are regulated dynamically. Information transferred via the nervous system
appears to be predominantly encoded in the frequency of action potentials
(frequency coding, Adrian 1928). The same holds true for humoral signalling,
which is conventionally viewed as an analogue operating system. However, most
hormones are secreted in a burst-like or pulsatile manner into the bloodstream and
modulations in the amplitude- and/or frequency of secretory pulses are able to
specifically regulate the function and structure of distinct target organs (Brabant

96



HUMORAL CODING 97

et al 1992). A number of examples support the theory that disruptions of the
temporal pattern of secretion serve as the basis of endocrine diseases (Brabant
et al 1992). Compared to the millisecond time scale of neuronal information
processing, the time scale of hormonal rhythms is at least five orders of
magnitude slower. The period of these hormonal rhythms ranges from minutes
(for hormones such as insulin and catecholamines regulating acute physiological
processes), to hours (circadian and infradian rhythms) (Brabant et al 1992).

Transmembrane signal transduction in humoral signalling

The frequency coding scheme seen in the pulsatile pattern of hormone secretion
continues across the cell membrane through G protein-coupled receptor signalling
to the temporal pattern of intracellular Ca?" dynamics (Woods et al 1986). The
ubiquitous intracellular second messenger Ca?* has been demonstrated to be
organized in complex spatiotemporal patterns. These patterns exhibit repetitive
spikes or oscillations as well as waves in a variety of different cell types upon
stimulation with hormonal agonists and neurotransmitters (Berridge 1993). The
frequency of Ca?* oscillations is modulated by the dose of humoral agonists
(Woods et al 1986) in analogy to the modulation of the frequency of neuronal
firing by the depolarization current (Adrian 1928). In addition, it has been
demonstrated experimentally that square wave stimuli of o-adrenergic agonists
mimicking the physiological pattern of pulsatile catecholamine secretion lead to a
modulation of the Ca?" spike amplitude in single hepatocytes (Schofl et al 1993).
The modulation of the frequency, amplitude, and duration of Ca?* spikes plays an
important role in the regulation of intracellular processes and can be decoded in the
activation of enzymes such as the ubiquitous Ca?"—calmodulin-dependent protein
kinase II (De Koninck & Schulman 1998) or the activation of gene expression
through the regulation of transcription factors (Dolmetsch et al 1997).

Temporal coding

For neuronal information processing it has been demonstrated that the exact
timing of individual spikes (temporal coding) is relevant to characterize the
neuronal response (Rieke et al 1997). This contribution to the information
content of a neuronal spike train is neglected if only the firing rate (frequency
coding) is taken into account. The idea behind temporal coding is that the timing
of spikes plays an important role in encoding various aspects of the stimulus as has
been demonstrated in a number of different sensory neuronal systems (Chung et al
1970, Abeles 1990, Strehler & Lestienne 1986, Bialek et al 1991, Eskandar et al
1992, Singer & Gray 1995, Decharms & Merzenich 1996, Laurent 1996, Wehr &
Laurent 1996, Gabbiani et al 1994, Haag & Borst 1997, Lisman 1997). Temporal
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coding allows for a significant increase in the information capacity of neuronal
spike trains. One well-studied example for the use of temporal coding is the
visual information processing in the fly (Bialek et al 1991). Flies control their
flight behaviour visually on a time scale of tens of milliseconds, which allows
them to observe only a few action potentials. Thus, their behavioural decisions
cannot be based on frequency coding but rather on temporal coding.
Experimentally, the neuronal spike train of a movement-sensitive neuron (H1
neuron) was recorded upon visual stimuli consisting of the angular velocity of a
moving random pattern. Using an information-theoretic approach for stimulus
reconstruction it is possible to reconstruct the dynamics of stimulus from the
neuronal spike train. This allows for an estimation of the coding efficiency,
information rate, and temporal bandwidth of visual information processing

(Bialek et al 1991).

Simulation of transmembrane signal transduction

In analogy to neuronal signalling we addressed the question how temporal coding
contributes to the encoding of humoral stimulus dynamics in the Ca?* spike train.
We used a mathematical model for the transduction of extracelluar fluctuating
hormonal stimuli into Ca?* spike trains (Chay et al 1995) which is based on
experimental Ca?* data in hepatocytes stimulated with an oj-adrenergic pulsatile
stimulus (Schofl et al 1993). This model allows for the simulation of receptot-
controlled activation of G proteins upon agonist stimulation, the subsequent
activation of phospholipase C (PLC), and the build up of inositol-(1,4,5)-
trisphosphate (InsP3;) which finally triggers the release of Ca?* from internal
stores such as the endoplasmic reticulum (ER). The level of cytosolic Ca?* drops
fast as Ca®" is pumped back into the ER leading to repetitive spikes of Ca?* (Fig. 1).
To explore the temporal bandwidth of transmembrane signal transduction we
generated fluctuating stimuli from Gaussian white noise by low-pass filtering as a
first approximation of the physiological input of pulsatile oq-adrenergic
stimulation (Fig. 2).

Stimulus reconstruction from Ca?* spike trains

The use of a reverse-engineering approach allows us to compute a temporal filter
that, when convolved with a spike train in response to the stimulus, will produce an
estimate of the stimulus. By using such an information-theoretic approach part of
the temporal dynamics of the stimulus can be reconstructed from the Ca®* spike
train and the rate and accuracy of information transmission can be estimated
(Bialek et al 1991, Rieke et al 1993, Gabbiani & Koch 1996, Gabbiani 1996,
Prank et al 1998b, 2000). A linear estimate of the stimulus is calculated by
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extracellular
stimulus

—
100 s

FIG. 1. Simulation of transmembrane signal transduction. The simulations are based a model
of receptor-controlled Ca?" oscillations (Chay et al 1995). DAG, diacylglycerol; IP;, inositol-
1,4,5-trisphosphate; PIP,, phosphatidylinositol-4,5-bisphosphate; PLC, phospholipase C.

convolving the spike train with a filter. The filter is chosen in such a way as to
minimize the mean square error between the stimulus and the estimate. The filter
is not causal in the sense that the occurrence of a spike can be used to predict the
future temporal dynamics of the stimulus. This is of course only possible because of
the response properties of the simulated cell. Once the best linear estimate is found,
the ‘noise’ contaminating the reconstruction is defined as the difference between
the estimated stimulus and the stimulus (Fig. 2). There are two measures to
quantify the accuracy of the reconstruction and thus the information transmitted
from the stimulus respectively. The coding fraction represents the percentage of
temporal stimulus fluctuations encoded in units of the standard deviation of the
stimulus. The coding fraction takes a maximum value of 1 when the stimulus is
petfectly estimated and the minimum value of 0 if the stimulus estimation from
the Ca?* spike train is at chance level (Gabbiani 1996, Gabbiani & Koch 1996).
An alternative measure, the mutual information transmitted by the
reconstructions about the stimulus can be used (Bialek et al 1991). For a Gaussian
white noise stimulus this is a measure of the equivalent rate of information
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FIG. 3. Coding behaviour in transmembrane signal transduction. (A) Impact of the
bandwidth of the stimulus on coding fraction and information rate. (B) Impact of the mean
Ca** spike frequency on coding fraction and information rate.

transmission. A lower bound for the rate of information transmitted per Ca?* spike
is obtained by dividing the rate of information transmission by the mean Ca’" spike

frequency. More details on the algorithms and software used for the reconstruction
can be found in Prank et al (1998b, 2000) and Gabbiani & Koch (1998).

Effect of the stimulus bandwidth on the coding behaviour

We used stimuli with low frequency as well as high frequency content by choosing
filters with different cut-off frequencies. Figure 3A demonstrates the close
agreement between the original and estimated stimulus for the low cut-off
frequency resulting in a high values for the coding fraction as well as information
rate and a poor reconstruction of the stimulus with the high frequency content
stimulus leading to a smoothed moving average estimate (Fig. 3B). Thus, the
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bandwidth of this stimulus seems to be beyond the bandwidth of the
transmembrane coding machinery. This becomes obvious in the temporal
pattern of the corresponding Ca?* spike train. The spacing of Ca®" spikes for the
irregular stimulus is very uniform and does not allow for coding the stimulus
dynamics in the temporal pattern. In contrast, the regular stimulus with low
frequency content results in a Ca?* spike train exhibiting a large variability in the
interspike intervals which enables coding of the stimulus dynamics in the timing of
Ca®" spikes. This has been systematically evaluated by changing the cut-off
frequency from 3 mHz to 100 mHz producing low-to-high frequency content
stimuli (Fig. 3A). Increasing the cut-off frequency led to a monotonic decrease of
the coding fraction, whereas the information transmitted per spike remained
constant for cut-off frequencies larger than approximately 30 mHz. Since the
mean Ca’" spike frequency has an effect on the coding behaviour, we chose a
fixed cut-off frequency of 10 mHz to generate a stimulus which has been
demonstrated to yield good reconstructions of the stimulus. The [Ca?*];-spike
frequency was increased monotonically by increasing the amplitude range of the
fluctuating stimuli (Fig. 3B). The maximum of the coding fraction and the
information transmitted per Ca®" spike were 0.87 and 1.1 bit/spike respectively at
a mean Ca?* spike frequency of 27 mHz. At low Ca?* spike frequencies below 10
mHz the coding fraction decreased below 0.5, in contrast to the information
transmitted per spike which increased to 1.4 bit/spike (Fig. 3B).

Coding in Ca?* spike amplitude and interspike interval

Since Ca?* spikes can be modulated not only in their frequency and temporal
pattern but also in their amplitude, we investigated how the amplitude and
interspike interval (ISI) might differentially code information about the stimulus
dynamics. To address this question we used the Ca®* spike signal containing ISI
and amplitude information and compared this to the Ca?* signal containing only
ISIinformation by ‘clamping’ the amplitude to a fixed value (Fig. 4). The reduction
in the coding performance by ‘clamping’ the Ca?* spike amplitude is exemplified in
Fig. 4. The coding fraction reduces from 73% to 62% and the information
transmitted per spike from 1.0 bit to 0.7 bit.

Universality in biological information transfer

Both long-range signalling systems— neuronal and endocrine systems—are
operating on time scales that differ by three-to-five orders of magnitude, as
indicated on the logarithmic scale of the y-axis for the information rate in bits/
spike (Fig. 5). However, if we determine the information rate per action potential
or per Ca®" spike, they are of the same order, ranging from 1-4 bit/spike in
neuronal signalling and 1 bit/spike for the model system for humoral signalling
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investigated in this study. This suggests some sort of universality principle in
information processing between neuronal and humoral signalling.

Discussion

It has been demonstrated in recent years that studying the average firing rate in
neuronal signalling neglects most of the information contained in a neuronal
spike train. Recently, the temporal coding of information in the patterns of
spikes, both in the single cell as well as between multiple cells, has received
renewed attention. The broad idea that spike timing plays an important role in
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encoding various aspects of the stimulus, in particular across an ensemble of cells, is
suppotted by experiments in a variety of sensory systems such as locust olfaction,
electric fish electrosensation, cat vision and olfaction, and monkey vision and
audition (Chung et al 1970, Abeles 1990, Strehler & Lestienne 1986, Bialek et al
1991, Eskandar et al 1992, Singer & Gray 1995, Decharms & Merzenich 1996,
Laurent 1996, Wehr & Laurent 1996, Gabbiani et al 1994, Lisman 1997). Because
little or no information can be encoded into a stream of completely regularly spaced
action potentials, this raises the question of how variable neuronal firing really is
and what the relation is between variability and the neural code (Rieke et al 1997,
Mainen & Sejnowski 1995). It is the mathematical theory of stochastic point
processes and the field of statistical signal processing that offer us the adequate
tools for attacking these questions.

For humoral information processing, the coding of information in the
extracellular pattern of pulsatile hormone secretion and the temporal dynamics of
intracellular second messengers such as Ca?" have been studied mainly regarding
their mean frequency and amplitude. It is not known yet whether temporal coding
(i.e. the timing of single secretory pulses as well as Ca?* spikes besides the well
known frequency) and/or amplitude coding schemes play a physiological role in
the regulation of intracellular signalling and target cell function and structure,
respectively. The amplitude (AM) and frequency modulation (FM) of Ca?* spike
trains have been reported to regulate distinct cellular processes differentially
(Berridge 1997). The FM mode of Ca®" signalling is used to control processes
such as secretion (Rapp & Berridge 1981), glycogen metabolism in hepatocytes
(Woods et al 1986, Schofl et al 1993), and differentiation in the neuronal system
(Gu & Spitzer 1995, Gomez & Spitzer 1999). The AM mode and duration of the
Ca’" signal on the other hand allow for differential gene activation in B
lymphocytes (Dolmetsch et al 1997). An additional example for the FM
regulation of cellular signalling by calcium is the ubiquitous Ca?*—calmodulin-
dependent protein kinase II (CaM kinase II). In silico approaches have proposed
that CaM kinase acts as a molecular frequency decoder of Ca®* spikes (Hanson et
al 1994, Dosemeci & Albers 1996, Prank et al 1998a). These results are confirmed in
in vitro experiments (De Koninck & Schulman 1998). This versatility and
complexity of Ca?* signalling from elementary events to global signals is
elaborated in Berridge (2001, this volume), demonstrating the wide range of
cellular mechanisms controlled by this ubiquitous second messenger.

In addition to the versatility and complexity already known for calcium
signalling, we have used an iz silico approach to explore temporal coding in the
encoding and decoding of dynamic humoral stimuli through Ca®" signalling.
The information content of Ca?* spike trains about the extracellular stimulus
dynamics was quantified by two different measures: the coding fraction and the
rate of information transmitted per Ca?* spike. Up to 90% of the stimulus
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dynamics could be coded in the temporal pattern of a Ca®* spike train with a
maximum information rate of 1.1 bit/spike. Although the coding fraction
severely dropped with a decrease in the mean Ca?" spike frequency or an increase
of the cut-off frequency of the stimulus, the information rate per Ca?* spike kept
relatively constant over a broad range of cut-off frequencies and Ca?* spike
frequencies. Increasing the frequency content of the stimulus to yield highly
irregular stimuli led to almost regular Ca®* spike trains with poor reconstructions
of the original stimulus. These results clearly demonstrate that temporal coding is
capable of increasing the information capacity compared to codes that only rely on
the mean firing rate. Besides temporal coding in the pattern of action potentials and
Ca?* spikes, Ca?* signalling allows for a differential coding of information in the
amplitude and interspike intervals. This has been demonstrated by artificially
‘clamping’ the Ca®" spike amplitude to a fixed value leading to a reduction in the
coding fraction as well as the information transmitted per Ca* spike.

However, it would be a challenge to test these results experimentally by using
time-varying hormonal stimuli matching the physiological pattern of pulsatile
hormonal secretion to explore the encoding and decoding machinery of
transmembrane signalling. Although we have demonstrated that cells are capable
of increasing their information processing capacity by making use of temporal as
well as amplitude coding, it remains an open issue to determine whether they are
making really use of it and what the biological meaning of the temporal code would
be. The information-theoretic approaches introduced to study neuronal
information processing (Bialek et al 1991) which we adapted for calcium
signalling (Prank et al 1998b, 2000) might be used in the future to quantify the
dynamics of the information flow and the operational time scales in other parts of
cellular signalling, i.e. between cells as well as between parallel pathways (‘cross-
talk’). The information-theoretic measures might then be correlated with cellular
responses such as the level of phosphorylation of proteins or levels of gene
expression to give the different codes a biological meaning.
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DISCUSSION

Aertsen: This method of reconstruction very much focuses on the linear aspects
of the system you are studying. The stronger the non-linearities, the lower the
values of the coding fraction are bound to be. Does the fact that you get
reasonably high numbers mean that the biological system is indeed linear? Or
does it mean that your model is effectively linear? If so, is your model adequate to
describe the biological system?

Prank: The stimulus dynamics could be reconstructed nearly optimally by
our approach using a linear filter leading to values for the coding fraction of up
to 90%. Thus, non-linear filters might not improve the stimulus reconstruction
substantially. However, the mathematical model simulating transmembrane
signal transduction in this study is based on coupled non-linear differential
equations.

Laughlin: How well do the dynamics of the random hormone signal that you
used in the model correspond to natural hormone signals?

Prank: We simulate the signal transduction on the basis of experimental data for
an oj-adrenergic stimulus. The dynamics, for example of catecholamines,
correspond well at least with the low frequency, regular situation.

Berridge: 1 have a feeling that that is an erroneous depiction of what is actually
happening in a liver cell. If you used stepwise concentration of agonist, which
might be closer to reality, you would see no change in amplitude. This was the
original expetiment done by Peter Cobbold, which clearly showed that while
frequency varied, amplitude remained constant.
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Prank: It is a matter of debate: what does the physiological pattern of the
hormonal stimulus look like? We know for most hormones that they are released
in a burst-like or pulsatile manner (Brabant et al 1992). This holds true on a short
time-scale as in the release of insulin with a mean interval between secretory pulses
of around 12 min, and also for catecholamines on an even faster time scale of only a
few minutes. With regard to the relevance of the fluctuating stimuli used in our
study and the square wave pulses used in the experiments of Schofl et al (1993),
they are a first approximation of the physiological pattern of catecholamine release.

Berridge: What would be much more interesting would be to present the
stimulus as a ramp.

Prank: That depends on the timescale of the increase. In our situation we are
dealing with very fast increases.

Berridge: They are not fast relative to the signalling system inside the cell. The
slowest rate of spiking in a liver cell is once every minute, and the highest rate is
about once every second. The administration of the hormone would have to be
within this time frame, and I don’t believe that this is a very physiological
simulation.

Schifl: In the experiments shown by Klaus Prank we used the oy-receptor-
activated intracellular Ca?* signal in hepatocytes to test whether different patterns
of a pulsatile or burst-like activation of the receptor would result in distinct
changes in the intracellular Ca?* signal (Schéfl et al 1993). As the ay-receptor is
physiologically activated by noradrenaline, which is released from nerve endings
in the liver, rapid and short bursts of noradrenaline rather than relatively slow
changes in the agonist concentration (over several minutes) could be assumed.
We therefore designed a perfusion system, which allowed for rapid changes in
the agonist concentration at the site of the cell with a time constant of about 4 s
to reach complete equilibration of the superfusate. With this system we were then
able to demonstrate, that changes in the temporal pattern of o-receptor activation
could lead to marked changes in the amplitude of the intracellular Ca®* transients
(Schofl et al 1993). This is a rather unexpected phenomenon, since constant cell
stimulation with different agonist concentrations only caused changes in the
frequency of the Ca?* transients with a more or less constant amplitude (Woods
et al 1986). Our results were therefore compatible with the hypothesis that
intercellular information could be encoded in the temporal pattern of
neurotransmitter or hormonal stimulation of target cells. As pulsatile or burst-
like secretion of hormones or neurotransmitters is the rule rather than the
exception, this might be physiologically relevant. Furthermore, in subsequent
experiments it could be shown that cross-signalling with the cAMP-signalling
cascade can also cause marked changes in the amplitude as well as in the
frequency of cytosolic Ca?' transients. Interestingly, these changes in the
intracellular Ca?* signal were agonist-specific (Schofl et al 1991, Sanchez-Bueno
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et al 1993). It therefore appears, that at least in hepatocytes the intracellular Ca?*
signal is amplitude and frequency encoded, which might allow for differential
activation of distinct Ca?*-controlled processes depending on co-activation of
other second messenger pathways and on the temporal pattern of agonist
stimulation (Schofl et al 1994).

Prank: You addressed the question of amplitudes. Another issue is the relevance
of the precision of Ca>" spiking for the regulation of the intracellular decoding
machinery.

Fields: Have you thought of applying this kind of analysis to the next
downstream event, such as Ca?*-activated kinase or transcription factors?

Prank: Yes, we are working on correlating the measures for the coding
behaviour to downstream biological responses that are dependent on the
temporal pattern of Ca®?", such as the activation of the Ca?"/calmodulin-
dependent kinase II (CaMKII). The methods used in this study are of course
applicable to investigate the information flow to other downstream events, such
as activation of gene expression.

Sejnowski: To what extent could the same approach be used to look at frequency
dependence in other signalling systems? For example, the differentiation of spinal
cord cells depends on the frequency of the Ca®" spikes. In the developing spinal
cord, depending on the frequency, progenitor cells can become interneurons or
excitatory cells (Gu & Spitzer 1995). There must be some way that the frequency
affects the differentiation: the actual genes that are turned on or off. How would you
incorporate this into your model?

Prank: Whether genes are turned on or off is a binary decision. The recon-
struction method used in our study to explore the dynamics of transmembrane
signalling is based on dynamic input pattern and dynamic output pattern. Thus,
it is conceivable that the input can be a Ca>" spike train and the output the time
course of a Ca®"-dependent process, such as the phosphorylation of an enzyme, a
target protein, the dynamics of secretion, or the dynamics of gene exptession.
However, the reconstruction method requires dynamic input and output.

Sejnowski: Let me try to be more explicit. There is one point of view, which is
that you are trying to preserve as much of the information coming in as possible.
This is the traditional view of information theory, and is the approach that you
have taken. There is a different view, which is that the receiver is trying to
detect a stereotyped or simple signal buried in a lot of noise. Therefore, the
amount of information that it is receiving is not the entire bandwidth that is
coming through, but a small fraction of it. In this case this kind of analysis
might be deceiving.

Prank: This is an important point: what is the receiver trying to detect? To
answer this question, one might relate the measures for the quality of coding,
such as the coding fraction or information rate, to the biological responses



110 DISCUSSION

downstream from the Ca?*-signal. You might then address the question, from one
step to the other of the intracellular encoding and decoding machinery, of how
much of the bandwidth from the stimulus to Ca®" signal is preserved in the final
biological response, such as the information coded in the levels of phosphorylated
target protein, the pattern of gene expression and other responses.

Berridge: Such experiments have been done on T cells, where differential gene
activation was recorded when Ca?* spikes were applied at different frequencies. It
comes back to the question Sydney Brenner asked earlier: how much information
can you transmit using one signal? It seems that the cell can use Ca" to regulate a
number of different processes simply by varying both amplitude and frequency.

Launghlin: There are cases where reconstruction techniques have been misapplied
to neurons because random stimuli are inappropriate. Many neurons are rather
poor at monitoring random stimuli and reject white noise, because the nervous
system has evolved to detect and process patterns that are, by definition, non-
random. Consequently such a neuron’s response to white noise is so weak that
the reconstruction is pitiful and tells us virtually nothing about the neuron’s
function. It is remarkable, therefore, that the reconstruction of random inputs
obtained by Klaus Prank is quite good. The reconstruction tells us that detailed
information on how the hormone concentration is changing, minute-by-minute,
is available to mechanisms within the cell. We learn that the second messenger
system is not averaging the signal over such long time intervals that all temporal
fluctuations are removed. Whether or not these details are used by downstream
mechanisms is a matter for further investigation, but we now know that they are
thete. That is an advance.
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Abstract. The successful analysis of physiological processes requires quantitative
understanding of the functional interactions between the key components of cells,
organs and systems, and how these interactions change in disease states. This
information does not reside in the genome, or even in the individual proteins that genes
code for. There is therefore no alternative to copying nature and computing these
interactions to determine the logic of healthy and diseased states. The rapid growth in
biological databases, models of cells, tissues and organs, and in computing power has
made it possible to explore functionality all the way from the level of genes to whole
organs and systems. Examples are given of genetic modifications of the Na™ channel
protein in the heart that predispose people to ventricular fibrillation, and of multiple
target therapy in drug development. Complexity in biological systems also arises from
tissue and organ geometry. This is illustrated using modelling of the whole heart.

2001 Complexity in biological information processing. Wiley, Chichester ( Novartis Foundation
Symposium 239) p 111-128

Beyond the genome: the role of modelling

The amount of biological data generated over the past decade by new technologies
has completely overwhelmed our ability to understand it. Genomics has provided
drug discoverers with a massive ‘parts catalogue’ for the human body, while
proteomics secks to define these individual ‘parts’ and their structure in detail.
But there is as yet no ‘uset’s guide’ describing how these parts interact to sustain
life or cause disease. In many cases, the cellular, organ and system functions are
unknown, though clues often come from homology in the gene sequences.
Moreover, even when we understand function at the protein level, successful
physiological and pharmaceutical intervention depends on knowing how a
protein behaves in context, as it interacts with the rest of the relevant cellular
machinery to generate function at a higher level. Without this integrative
knowledge, we may not even know in which disease states the proteins are
relevant, and we will certainly encounter side- and countetintuitive-effects that
are unpredictable from molecular information alone.

111
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Inspecting genome databases alone will not get us very far in addressing these
problems. The reason is simple. Genes code for protein sequences. They do not
explicitly code for the interactions between proteins and other cell molecules and
organelles that generate function. Nor do they indicate which proteins are on the
critical path for supporting cell and organelle function in health and disease. Much
of the logic of the interactions in living systems is implicit. Wherever possible,
nature leaves much of the detail to be determined by the chemical properties of
the molecules themselves and to the exceedingly complex way in which these
properties have been exploited during evolution. Thus, nothing in the genome
codes for the properties of water but these properties, like many other naturally
occurring physicochemical properties, are essential to life as we know it. It is as
though the function of the genetic code, viewed as a program, is to build the
components of a computer, which then self-assembles to run programs about
which the genetic code knows nothing. At a previous Nowvartis Foundation
Symposium, Sydney Brenner (1998) expressed this very effectively when he
wrote: ‘Genes can only specify the properties of the proteins they code for, and
any integrative properties of the system must be “computed” by their
interactions’. Brenner meant not only that biological systems themselves
‘compute’ these interactions but also that in order to understand them we need to
compute them, and he concluded, ‘this provides a framework for analysis by
simulation’.

Computer models must be used when the complexity of a system is too great to
grasp intuitively. This has increasingly become the case in biology (Bailey 1999).
Proteins must interact with many other proteins depending on time and place,
individual molecules may participate in multiple pathways, and the background
against which protein function is expressed can change dynamically with sex, age
and disease. Models are used to hypothesize new approaches, and to identify where
gaps in knowledge exist. A modeller can take a set of existing data and determine
whether those data are sufficient to generate the output of the system under study.
If they are not, the modeller can then suggest specific directions for further study as
well as predictions about possible results. This iterative interaction between
modelling and experimentation is essential for success. Conducting ‘experiments’
in a virtual environment where the possible impact of different conditions can be
tested systematically allows the researcher to select the best overall design
principles in advance of real life studies. Modelling, therefore, is an essential tool
of analysis.

Itis also of practical importance since the computational modelling of biological
systems can add significant value in the discovery and development of new
therapeutic agents (Noble & Colatsky 2000). One can understand protein
function in context, identify and validate new drug targets against the
background in which the function of that target is expressed, and understand the
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impact of clinical variables on drug action in ways that cannot be adequately
represented in even the most complex animal models. Computer modelling of
cells and organs can help the researcher conduct virtual genetic studies in which
cellular components are ‘knocked-out’, ‘knocked-in’ or modified by genetic
mutation, and then to use this information to design new drugs or to carry out
a more advanced research plan. Given the complexity of many diseases, models
also provide an additional advantage by allowing us to define the optimal
therapeutic profile of a new drug prior to chemical synthesis. For example, the
researcher can explore in a rational and systematic way whether the most
effective treatment is a drug that acts specifically on a single target ot one that
acts at multiple targets, and in what relative proportion these additional
activities should occur. Finally, one can prospectively investigate issues of
clinical safety and efficacy using models developed to answer questions about
toxicology and pharmacodynamics.

Non-linear effects of a genetic mutation

In this article I will illustrate some of these general principles using computer
modelling of the heart. The first example is that of genetic mutations in the
Na™ channel protein that can cause ventricular fibrillation, a life-threatening
event in which the heart beats in a highly asynchronous fashion and ceases to
act as an efficient pump. Several such mutations are known. One of these is a
missense mutation that has a well-characterized effect on the function of the
Na* channel protein: the inactivation curve is shifted by a few millivolts in
the depolarizing direction (Chen et al 1998). By itself, this information does
not enable us to make any predictions about the effect on the heart. However,
by inserting this information into the highly complex models that have now
been developed for cardiac cells, we can make some very interesting
predictions.

One of the effects of this mutation is to shift the voltage dependence of Na*
channel inactivation. Figure 1 shows the result of inserting 12 and 18 mV shifts
of the inactivation curve into a ventricular cell model (Noble et al 1998). We
chose these two values first because they fall within the range of the experimental
data on Na* channels expressed in oocytes and, second, because they illustrate how
highly non-linear the overall response may be. In fact, a 12 mV shift (curve b) has
only a small effect on the computed action potential. The repolarization phase is
prolonged by an amount that would be too small to have any significant effect at the
level of the whole organ. By contrast, adding a further 6 mV of voltage shift givesa
qualitatively different response (curve c). The late phase of repolarization is
interrupted by a series of after-depolarizations (EADs), leading to massive
prolongation of the action potential. This kind of extreme non-linearity,
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FIG. 1. Reconstruction of the arrhythmogenic effects of SCN5A4 gene mutation. Action
potential repolarization (top) and Na' current (bottom) are shown in three different
conditions: (a) normal Na* channel; (b) model of SCN5.A4 gene mutation, exptressed by a
moderate positive shift in Na* channel inactivation cutrve; and (c) as before, but with a more
severe shift of inactivation. Reprinted with permission of The Physiological Society from
Noble & Noble (1999).

involving a qualitative change in behaviour frequently occurs in complex systems.
Moteover, the sudden occurrence of EADs is observed in several other
pathological conditions that predispose the heart to fatal arrhythmia.

Similar results have been obtained using mutations of the Na* channel that
underlie the long QT syndrome (Clancy & Rudy 1999).

Multiple changes in gene expression levels:
the example of congestive heart failure

Congestive heart failure is an example in which the molecular mechanisms of the
EADs are very different but the end result is very similar. This illustrates another
property of complex systems, which is that very similar outcomes may be generated
by very different underlying molecular processes. In this case, the eatly after-
depolarizations arise from changes in the expression levels of several membrane
transporters other than the Na* channel. Figure 2 summarizes these changes.
Two surface membrane potassium channels (I, 1 and ix;) have their expression
levels reduced, which prolongs the action potential and predisposes the cells to
the generation of EADs. The sarcoplasmic reticulum Ca?" pump (SERCA,
referred to as I, in this diagram) is also reduced in activity. One transportet, the
Na*/Ca®" exchanger, is up-regulated.

Figure 3 shows the results of incorporating this particular EAD mechanism into
a model of the whole ventricles. In place of the ordered spread of excitation
following each sinus beat (as in A) we obsetve continuously re-entrant waves of
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Molecular basis of CHF
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FIG. 2. Some of the key transporters involved in cardiac cell activity together with their
changed levels of expression in congestive heart failure (CHF). Based on Winslow et al (1998).

excitation that meander in a complex way around the heart (B). This form of
re-entrant arrhythmia generates a characteristic triangular ECG whose amplitude
waxes and wanes slowly. This is the arrhythmia characterized as Torsades de
Pointes, and it is well reconstructed by the computer model.

There is another important difference to note here. In the case of the Na* channel
mutation, a single molecular event is responsible for the pathology, whereas in the
case of congestive heart failure, multiple molecular changes are responsible. It is
likely that the latter is the more frequent case than the former. This has extremely
important consequences for the development of therapeutic approaches. The
standard ‘classical’ pharmaceutical approach to arrhythmia therapy, for
example, has been to develop compounds that target a particular receptor or
transporter. In fact, the major system of classification of anti-arrhythmic drugs
(the Vaughan-Williams classification) is based on identifying the channel
mechanism on which the drug acts. Ideally, it has been thought, we should
look for ‘pure’ drugs that have a single action with few ‘side effects’. This
approach has been a spectacular and expensive failure. Clinical trials of many
anti-arrhythmic compounds developed using this approach have been either
disappointing or disastrous (see e.g. CAST Investigators 1989)—so much so
that many pharmaceutical companies no longer have a major drug discovery
programme in this area.



‘£3o1oyred sernonred sy jo eard£y
ODH padeys qao0o1-mes 941 90N ‘(4 PUE ¢ SOWET]) UONEIDXD JULNU-03 3e[nSo1x1 £q pamo[[o] sI (7 pue | sowesy) oouonbos uoneanse [enrur oy,
‘[PPOW 9IN{IE] 138 DATISISUOD © UT UONELIDXI Jo peardg () *(3yS13 01 339] wo3J) 9240 derped ouo Jupnp uonezirejodor put TONEIDX Jo 2ouanbos
[EWIOU 3Y3 2IeXISN[[I SIWET,] "UONEIDX JO prards [ewroN (V) -2[242 derpres ay3 01 aapeas Joysdeus, (J¢ renonsed a3 o vonisod ay) sa3edrpur
ODH 9Y2 UO J0P [[BWS SY[, "PO[[PPOW ST UONEIDXD [ELIIE OU St ‘ IABM-, B JO 90UISqE oy ON "(28ewr yoes mo[dq s20ex sul]) panduwod
o3t syuofeAmnbo D) pue (91eds £938 UT UMOYS 239y AW GO+ ON[q YFEP ‘AW 95— PIF) PIPOI-INO[0D ¥ S[ENUN0d JUBIQUIDIA "S[PPOW IUO]
9'"A 1JOSX() U3 JO UOISFOA PIYI[dWIS € UO PIseq XL SPPOW [[99 FE[NDFIUI A "SIDIFIUIA JUTUED UT UOMEIIXD JO Peards 9yl JO UONEMWIS ¢ "O[]




GENES TO ORGANS 117
Multiple target therapy: example of an anti-arrhythmic compound

This approach is cleatly flawed. In fact, the failure is not surprising. In complex
systems in which many proteins interact there is little reason to expect that
intervening on a single molecular mechanism will be effective or that the outcome
will be easily predictable. Instead of requiring a solo performance, we should
perhaps be expecting our therapies to play a more complex performance, tailored
to the particular pathology and its profile of changes in expression levels of the
proteins involved.

A good example of this approach is the compound BRL-32872 (SmithKline-
Beecham), which was for a period a lead compound in anti-arrhythmia therapy.
The objective of this drug discovery program was to obtain the therapeutic
effects of action potential prolongation via K* channel blockade, without
triggering Torsades de Pointes arrhythmias (Bril et al 1996). In the case of K*
channel blockers the mechanism of these early after-depolarizations is that the
L-type Ca?* channels generate a strong ‘window’ current in the range of potentials
at which the rapid phase of repolarization begins. This is a critical phase of
repolarization where an imbalance of ionic currents can switch the process over
from smooth repolarization to re-excitation. The logical aim therefore should be
to combine K channel blockade with just enough L-type Ca?* channel block to
ensure that repolatrization continues to occur smoothly even in a prolonged
action potential. BRL-32872 succeeded in achieving action potential prolonga-
tion without triggering Torsades de Pointes in animal experiments.

Figure 4 shows that the cardiac action potential models are fully capable of
reproducing this logic. 90% block of ik clearly triggers EADs, whereas adding
just 20% block of L-type Ca?* channels completely abolishes the EADs, while
still giving nearly all the action potential prolongation.

Although BRL-32872 was later dropped as a lead compound because of
metabolic side effects, the approach is clearly valid, and other compounds with
this multi-receptor action profile are now under investigation (Nadler et al 1998).
One use of the models is to trawl through the many other combinations of two and
three site actions to determine which would be therapeutic and which could be
expected to be dangerous.

Complexity arising from tissue and organ geometry

The examples of complexity I have given so far are those in which multiple
molecular interactions occur which are difficult to understand or predict without
integrative experimental and computational analysis. In the final part of this article
I will emphasise another source of complexity in biological systems: that of
complex tissue and organ geometry (Hunter et al 1997, 1998, Hunter & Smaill
1989, Kohl et al 2000).
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FIG. 4. Reconstruction of the action of a multiple target compound, BRL-32872. Top traces:
computed membrane potentials in normal situation, with K* channel block only and with
combined K* and Ca*' channel block. Middle traces: computed membrane currents. Lower
traces: computed Ca®" transients. At therapeutic concentrations this compound produces 90%
block of the K* channel, iy, which would be expected to prolong the action potential but at the
price of inducing early after-depolarizations of the kind that undetlie Torsades de Pointes
arhhythmias. At the cell level these are represented by the repetitive after-depolarizations
computed here. In fact, BRL-32872 also produces 20% block of the Ca?* channel, i¢,, which is
sufficient to abolish the early after-depolarizations while still generating the action potential
prolongation. From Noble & Colatsky (2000).

The ventricular geometry used in the model shown in Fig. 3 is based on
measurements of the epicardial and endocardial surfaces of both ventricles of a
canine heart, fitted with a finite element model to an accuracy of about 0.5 mm
(Nielsen et al 1991). In addition to general geometry, the fibrous-sheet structure
of ventricular myocardium (LeGrice et al 1997) is also represented by finite element
model parameters, yielding a continuous description of fibre and sheet orientations
throughout the myocardium. Fibre direction and sheet orientation determine
passive and active mechanical propetties, as well as key electrical characteristics,
including patterns of conduction (see Fig. 5). Active contraction is triggered in
the model via excitation-contraction coupling. The undetlying electrical
propertties of cells can be defined to represent any of the single cell models.



*(91e0s £213 s 0301 UMOYS) 20LJINS [E[PFLIOPUD ON[q ITVOIJOALM UONEANDIE ‘PIY "UONEIIXD JO UOISSIWSUELI) WIOJIUN-UOU o) Aq parerisny[l
st ‘wnIpredoAw oY) JO 9INIDANIYDIEL 1IYS-SN0IqY oy Aq paduanpur A[Suoxis st 2ouanbos voneande oy, ‘(sowesy ofpprw ‘spremdn) 1reoy oy
JO 9seq 9y spremo) xode WoLy pue (SPFemIN0) UONIIIP [eIpFed1do-01-[erpredopus uf speards uoy) uoneAndy *(33o]) xode oY) JeaU 908JINs [BIPILdI0PUd
JL[NOTIIUDA 1J9T 9] 1 SINID0 UOMEATIOE ISIT[FLH ‘[OPOW DBIPFED PI[TIDP A[[EIIWOILTE UL UT JUOIJIAELA UONEBATIDL [EI1HIID[ 1) Jo prardg G "OT]




120 NOBLE

Furthermore, the first six generations of the coronary tree, starting with the large
epicatrdial vessels and ending with vessels of the order of 100 um diameter, are
represented disctretely (see Fig. 6) (Kassab et al 1993, Smith 1999). A black box
model of the capillary bed is used to connect arterial and venous vessels in the
model.

Solving this anatomically representative, electro-mechanical model of the heart
requires powerful super-computational equipment. I will illustrate two examples
of such studies, performed on a Silicon Graphics 16-processor (R10000) shared
memory Power Challenge.

In the first example, the spread of ventricular activation is modelled (Fig. 5). In
this case, the membrane potential is represented by a FitzHugh-Nagumo type
model. Excitation is initiated by a stimulus point on the left ventricular
endocardium near the apex (eatliest breakthrough point). Spread of the
activation wavefront is heavily influenced by cardiac ultrastructure, with
preferential conduction along the fibre-sheet axes referred to above (Sands 1998).

The second example combines contraction and coronary tree architecture in one
model that allows simulation of changes in intra-luminal coronary pressure during
the cardiac cycle. The coronary tree moves with the cardiac tissue into which it is
embedded and the transmural pressure acting on the vessels is calculated from the
difference between fluid pressure in the coronaries and external stress. This pressure
is shown with the deforming coronary vessel tree in Fig. 6 (Smith 1999).

Thus, complex electromechanical models of ventricular anatomy and function
allow one to describe coronary perfusion during the cardiac cycle. By linking this
to models of cell metabolism (Ch’en et al 1998) and electromechanical function, the
whole sequence from a simulated disturbance in coronary blood supply to
depression in ventricular pressure development may be computed. This creates
an immense potential, not only for biomedical research but also for clinical
applications, including patient-specific modelling of therapeutic interventions.
This approach could, for example, be used for the prediction of optimal coronary
bypass procedures, as modelling of a patient’s cardiac anatomy is feasible on the
basis of nuclear magnetic resonance data (Young et al 1996a,b) and 3D coronary
angiography can provide data on coronary tree architecture.

Conclusion: from genome to proteome to physiome

The human genome is a vast database of information containing in the order of
50000 to 150000 genes. Each of these is used to determine the amino acid
sequence of a particular protein. The complete sequence and structure of the
proteins 1s sometimes referred to as the proteome. Understanding how the
information in the genome is used to ctreate the proteome is a major challenge,
first because we need to identify all the genes (which we are still far from doing)
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and, second, because predicting three-dimensional structure and chemical function
from the amino acid sequences of the corresponding proteins is very difficult
(Onuchic et al 1997). But even these major challenges pale in significance when
we consider the complexity of the next stage: understanding the interactions of
tens of thousands of different proteins as they generate functionality at all levels
through cells to organs and systems. This is the task of quantitative analysis of
physiological function, which in its entirety is sometimes now called the
physiome (Bassingthwaighte 1995). Computational modelling will play an
increasingly important role in all these stages of unravelling the way in which the
information contained in the genome is ‘read’ to create living systems. We will be
able to say that we have really read “The Book of Life’ when we have succeeded in
going all the way from the genome, through the proteome to the physiome.
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DISCUSSION

Segel: Have you included the fluids in your model of the heart?

Noble: We are computing the pressure changes of the blood inside the heart (see
for example Fig. 6 in my paper), but you will notice two things missing in our
model. First of all there are no valves and, second, the atrium and sinus node are
missing. These are jobs in progress. We are in the process of putting together the
atrial and sinus node anatomy; this is more complicated than the ventricular
anatomy. We think we have the right models for the cellular behaviour in the
sinus node and attium, and we have models of the valves.

Segel: Do you plan to employ Peskin’s immersed boundary approach to the
fluids (McQueen & Peskin 1997, 2000), or something different?

Noble: I'm not the right person to ask. The team tackling the flow side of this
project are our collaborators in Auckland, New Zealand. I can guess what their
answer would be, though: our equations are going to be much the same, because
the fundamental equations of flow are faitly obvious. There is one difficulty with
modelling complicated systems, particularly when you are going all the way from
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biochemical and genetic changes up to the whole organ level, which is that the
number of forms of expertise involved in doing this is quite phenomenal. My
latest estimate of the total team involved in making sure that this happens around
the world is 80 scientists, of which 20 are working in Oxford, 20 in New Zealand,
20 in Johns Hopkins and 20 in Princeton. No one of us knows the whole story.

Segel: Thave a question about your general philosophy. Let us take channels as an
example. There are many different channel types: do you start with most of the
known channels and then remove them if they don’t do anything interesting, or
do you build up from a simple Hodgkin—Huxley model, adding more channels as
you need them to obtain significant observed behaviour?

Noble: We have multiple models of neatly all the channels. Take the Na*
channel. What I used in my presentation was the simple Hodgkin-Huxley type
of model, but we also have multistate models, running up to the full set of a
dozen or so states that some people have postulated. For the details of that
genetic mutation, not the shift of the inactivation curve (Fig. 1 in my paper) but
the other features—some of the detailed kinetics of the changes— we are
unfortunately going to have to graduate to the multistate models. We are in the
process at the moment of trying to fit experimental data from the gene mutation
information on the kinetics obtained by Peter Ruben and his colleagues in the USA
to the multistate models (Ruben et al 2000). The problem we encounter is that it is
not very well defined. There is a major difficulty with multistate models of
channels, because by and large we don’t have enough data from the kinetic
information to give unique fits. We desperately need better ways of achieving
this, which is taking time. For other mechanisms, such as K* channels, again we
have different levels of models. You might be wondering why we don’t put all the
data in and go to the most complicated of each of the transporter models. Why cut
down? The obvious reason for cutting down has to do with the volume of data and
computability. Even with the massive computing power of some of the parallel
machines we have access to, we need nevertheless to be economical on total
computing time. The other reason is one of more general interest to this
symposium: we can get fooled by the complexity of what we have done. We then
have great difficulty understanding precisely what has emerged. Let me give one
example. Ischaemic arrhythmias are thought to be generated by the fact that the
Ca®" oscillator acts on the Na*/Ca?" exchanger to produce current flowing into
the cell through Na* trying to push the Ca?* out: this current generates the
depolarization, which is why it generates arrhythmia. The classic pharmaceutical
apptroach to this problem would be to use a drug that blocks that particular
transpotter to try to control the arrhythmia. What we discovered when we ran
this computation was that this doesn’t work! In fact, it makes things worse. This
gave us a very interesting counterintuitive hint. If blocking it makes the situation
much worse, why not go in the other direction and up-regulate this mechanism?
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That works (Ch’en et al 1998). There are already transgenic mice with up-regulated
Na'*/Ca?" exchangers, so there is a lovely experimental test of this. We will have to
put the hearts of these mice into ischaemia and see whether they resist Na®/Ca®*
overload much better and thus don’t go into cardiac arrhythmia. The point I am
making is as follows. Coming back to the question of complexity, we have to make
sure that we don’t build models that are so complex that we can’t understand them.
We need to unravel this counterintuitive result. In this case, we asked a research
student, who is a mathematician, to take on as his PhD project the task of building a
simpler model of the subset of components that we think is essential for that
process and then work out mathematically why it is that up-regulation of the
Na*/Ca?" exchanger would be predicted to be beneficial. This does two things.
First of all it gives you better understanding. We sometimes have to go into a
much simpler system, retaining the main features of the complex system, in order
to get the understanding, and then we can take that back into the more complex full
scale system and start to see whether our simple system is a good model
mathematically of the computational detail at a higher level. So, we have multiple
models of the various channels and transporters. We do not apologise for this
because we think they are needed. This relates to another matter that I think we
should address in the general discussion later on, which is what is the philosophy of
modelling complex systems? The second thing is that to understand what we have
done, we have often got to simplify it.

Segel: Do you ever throw out channels that don’t seem to be doing
anything?

Noble: Sydney Brenner said something earlier about it not being cost effective
for an organism to knock things out that were no longer used; that it might be
better to leave them there. The heart has a beautiful way of doing this. The
pacemaker current is present in all parts of the heart, and in the embryo it works
in all parts of the heart. Embryonic ventricular cells will beat away even if they are
isolated. This was first demonstrated by William Harvey, a few hundred years ago.
He took the heart of an eel, put some of his spittle on his hand and proceeded to
chop the heart up into tiny bits. Every single bit went on beating. This means that
the eel heart is like the embryonic human heart: it has functional pacemaker current
in all regions. But the mammalian heart doesn’t switch this system off in
development, it just changes the voltage dependence to take it out of the
physiological range (except of course in the adult pacemaker regions). When we
first did experiments on atrial cells, we hyperpolarized them beyond the normal
physiological range, well below the testing potential, and lo and behold we
found our dear friend the pacemaker current. It is still there. So far, in every
single cardiac cell that has been investigated, if you do it with fresh enough cells,
the pacemaker current is there. However, in the modelling, we just knock out
everything that we think is not functionally relevant to the cell.
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Se¢jnowski: Are there conditions when it does hyperpolarize under abnormal
conditions?

Noble: That is a good question. Can a cardiac cell ever go below —95mV? My
answer would be no, because that is the K* equilibrium potential. There is
therefore no current that could drive it beyond that voltage. As far as I can see,
unless you come along with a great big defibrillator—and who knows how
defibrillators work, incidentally—1 don’t think cells are ever hyperpolarized
beyond —95mV. So what is a channel that only activates at —120mV doing
there? My theory is that shifting the activation curve is the easiest way to get rid
of the channel, i.e. to render it non-functional.

Launghlin: 1t is very impressive that this system, which doesn’t have a huge
number of molecular components, is complicated and demanding to model.

Noble: We are modelling up to about 100 molecular components in a single cell,
but we don’t always include all of these in all simulations.

Langhlin: You cannot possibly understand how this system works without this
model.

Noble: I’d also say that you can’t understand it without an understanding of the
physiology. I think this is an interaction between intuitive physiological
understanding and computational understanding.

Laughlin: The critical question for those of us who don’t work on the heart is,
how typical are the interactions that require this complex modelling of other
systems?

Noble: You are raising not just a question of typicality, but also one of
validation. These are connected, because if you can validate the model you can
decide how typical the behaviour is. At the cellular level, for reconstruction of
basic electrophysiology, that iteration between experiment and theory has gone
on for many years (Noble & Rudy 2001). I have 40 years’ experience of doing
this: I first modelled a single cardiac cell way back in 1960, when the computer
we used was a huge valve machine filling a room. I am not saying that there is
not room for immense improvement—there is—but I think for many
purposes, particularly insertion into whole organ models and linking biochemistry
and physiology, there have been enough rounds of iteration to feel some degree of
confidence. But as we go on to the newer parts of the modelling, we feel much less
confident. For the metabolism modelling, we compared results with those
obtained by NMR studies on whole hearts. We got reasonably good results in
terms of the changes in basic metabolites during ischaemia. Nevertheless, on that
kind of modelling we still need to add a lot more detail. Can we get whole heart
validation? Thank goodness there are a few whole organ physiologists left! Very
fortunately, one of these is David Paterson, working in the physiology laboratory
in Oxford, who still does experiments on whole hearts, plunging a vast number of
electrodes into dog and pig hearts. We are collaborating with him, trying to check
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whether our simulations of the whole heart in terms of spread of excitation and so
on, are validated reasonably well by experimental data. So, I think that where we
have gone through alot of iteration, the results are reasonably typical. But thereisa
lot of fringe work, particularly in the newer modelling, where I think we have a
long way to go before we can say that the system is validated.

Laughlin: 1 was actually using typicality in a difference sense: whether the bits and
pieces that make this system complicated are the same bits and pieces that are found
in other systems, which might make them equally complicated.

Noble: What is going to happen when we go on to model the lung, for example?
We atre on the way to developing a lung structure. We are in the process of using
our expertise with modelling the electrophysiology of cardiac cells to see whether
we can do the same for tracheal smooth muscle. The aim would be to model what
must go wrong in asthma or the effects of pollutants on breathing. To answer your
question, we have got quite a long way with modelling tracheal cells using our
heart expertise. Of course, the big difference is that in this case the Ca®" oscillator
is driven by an InsP; receptor rather than a ryanodine receptor. So far as we know,
quite a bit of the expertise with modelling channels can be carried over. The basic
behaviour of the Na*/Ca®" exchanger, for example, is the same.

Brenner: There is now a rich resource of human mutations, which we can
correlate with the physiology of the organism. Using this information, together
with our ability to make mutations in the isolated components, to look at
molecular function, will be helpful in providing the bridge. The use of specific
drugs that allow us to dissect the physiology is also going to be very important.

Sejnowski: A problem with many drugs is that they are not specific.

Brenner: They are not specific, but none the less they have allowed tremendous
insights.

Noble: It might sometimes be a good thing if the drugs are not specific. Let me
givean example. The standard pharmaceutical approach to arrhythmia is to identify
the channel that is the immediate cause and to try to develop a pure blocker for that
channel. Between 19892000 this led to six catastrophic clinical trials on anti-
arrhythmic drugs, and now practically all the main pharmaceutical companies are
out of the game of developing drugs for cardiac arrhythmia, despite the fact that this
is a US$50 billion market. We found that if we add a 20% block of the Ca2*
channel to a K* channel blocker, we get a superb ‘virtual” compound (see Fig. 4
in my paper). This is a good example of where modelling can tell you which
combination of receptors you should go for, and even in which proportion.

Sejnowski: 1 know that there is another approach to arthythmia based on a top—
down model, involving bifutrcation theory. To what extent does this approach map
on to what you have done?

Noble: In the case of the Ca?* oscillator, that is precisely what we did: we stripped
down to a simple set of equations which would give the minimum conditions for
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Ca®" oscillation but be capable of treatment by bifurcation theoty, chaos theory
and so on. This is producing some valuable insights. The short answet to your
question is that I think that we do need to map from the simpler models onto the
complicated, computationally intense models, partly to get understanding but
partly also because we may find that for many purposes in whole organ
simulation the simple models will do. This relates to a point I would like to raise
in the general discussion about levels of modelling.

Brenner: 1 think it is important to do it this way because you want to intervene. It
is very hard to intervene on bifurcation equations. That indeed would be a great
drug!
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Abstract. Genomes of animals contain between 15000 (e.g. Drosophila) and 50 000
(human, mouse) genes, many of which encode proteins involved in regulatory
processes. The availability of sequence data for many of these genes opens up
opportunities to study complex genetic and protein interactions that underlie biological
regulation. Many examples demonstrate that an understanding of regulatory networks
consisting of multiple components is significantly advanced by a detailed knowledge of
the spatiotemporal expression pattern of each of the components. Gene expression
patterns can readily be determined by RNA 7z sizu hybridization. The unique challenge
emerging from the knowledge of the sequence of entire genomes is that assignment of
biological functions to genes needs to be carried out on an appropriately large scale. In
terms of gene expression analysis by RNA iz situhybridization, efficient technologies need
to be developed that permit determination and representation of expression patterns of
thousands of genes within an acceptable time-scale. We set out to determine the spatial
expression pattern of several thousand genes encoding putative regulatory proteins. To
achieve this goal we have developed high-throughput technologies that allow the
determination and visualization of gene expression patterns by RNA in situ
hybridization on tissue sections at cellular resolution. In particular, we have invented
instrumentation for robotic 77 situ hybridization capable of carrying out in a fully
automated fashion, all steps required for detecting sites of gene expression in tissue
sections. In addition, we have put together hardware and software for automated
microscopic scanning of gene expression data that are produced by RNA in situ
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hybridization. The potential and limitations of these techniques and our efforts to build a
Web-based database of gene expression patterns are discussed.
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Monday June 26, 2000 may become a memorable day in the history of biology.
That day a draft sequence of the human genome was announced by US President
Bill Clinton and UK Prime Minister Tony Blair. Both politicians declared, ‘that
there would be an entirely new type of medicine and that disease as we know it
would eventually be a thing of the past’. Such prophecy is likely to exaggerate
the potential of the marked achievement of a human genome draft sequence, but
there is little doubt that knowing the sequence of the entire genome of organisms
opens many oppotrtunities for molecular genetic research and delivers very useful
information into the hands of scientists and physicians. It goes without saying that
the promises made pose a considerable challenge to the scientific community.
Scientists must now deliver tangible results not only to meet the public’s
expectations, but also to justify the funds they are being given to pursue genome
research.

A central theme in genome research concerns the function and interaction of
genes and gene products. Investigations of a number of model organisms have
already unravelled complex genetic regulatory networks. For example,
embryonic development in Drosophila melanogaster is now undetstood in terms of
an orchestrated expression of developmental genes (Lawrence 1992). At the top of
this hierarchy of genes reside the so-called egg polarity genes that coarsely
subdivide the early embryo along its dorsoventral and anterioposterior axes.
Then follows the action of the ‘gap’ genes that divide the embryo into sub-
regions. Next in the hierarchy are the ‘pair-rule’ and ‘segment polarity’ genes that
provide an ever finer segmental subdivision of the embryo. Finally, homeotic
selector genes assign identity to individual segments. As a result of the action of
this hierarchical genetic network, the intricate body plan of an insect is formed.

These types of findings are largely derived from an approach that starts with a
genetic mutation (e.g. a fly that exhibits abnormal features) followed by molecular
cloning and characterization of the gene that causes the mutation. Hence in this
paradigm the discovery process initiates with a mutation which defines the overt
function of a gene. In the case of genomics, the research strategy is reversed.
Genomics begins with the knowledge of gene sequence and then seeks to define
gene function. Now that we know the sequence of most of the genes, elucidation of
gene function moves to the front. The tools of ‘functional genomics’ include
characterization of gene expression patterns, structural characterization of gene
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products by biophysical methods, investigation of gene product interactions and
production of mutants using transgenic methods. Because of its broad scope and
significant potential for medicine, functional genomics is moving towards the
centre stage of contemporary biomedical research.

This chapter has two parts. Part 1 is a brief discussion of the usefulness of gene
expression analysis for understanding gene function. The second part summarizes
our efforts in the development of methods to determine and document
spatiotemporal gene expression patterns on a genome-wide scale.

Benefits of gene expression pattern analysis

Although each cell of a multicellular organism contains the complete genetic
information only a fraction of the genome is expressed in a particular cell or
tissue. Gene expression is studied with a broad spectrum of methods including
Northern analysis, RNase protection assays, gene arrays, RNA in situ
hybridization and, at protein level, Western blots and immunohistochemistry.
When, where, and how much of a gene is expressed depends on transcriptional
and translational regulation, on mRNA and protein transport and on the half-life
of gene products. Much effort is put in the development of technologies to
determine expression patterns on a genome-wide scale. A widely discussed
technology are the microarrays in which DNAs representing many thousand
genes are arrayed in spots on an inert surface (Brazma & Vilo 2000, and
references therein). Array-based technology for proteins is also emerging
(MacBeath & Schreiber 2000). In the case of DNA microarrays, hybridization of
labelled cDNA probes derived from tissues of interest enables gene expression
profiles of thousands of genes to simultaneously be determined in a single
experiment. The disadvantage of this high-throughput technique is a loss of
spatial information on gene expression, because the cDNA probes are produced
from mRNA of whole tissue extracts.

RNA 77 sitn hybridization has been used systematically since the mid 1980s. The
principle of this method is simple. Tissues or sections of tissues are probed with
tagged synthetic DNA or tagged antisense RNA. Sense mRNA present in the
tissue hybridizes with the probe and detection reactions such as autoradiography
or immunohistochemistry reveal tissue and cellular localization of transcripts.
RNA 7n situ hybridization is carried out on sections or, if the sample is sufficiently
small, with whole-mounts.

Antibodies have long been used to localize and characterize proteins in tissue
specimens. Because gene function resides in proteins and not in mRNAs,
antibody localization of proteins is, in principle, preferable to RNA in situ
hybridization. Localizations of RNA and protein can also differ, as is the case for
secreted proteins. In this instance, RNA is found in cells that express the gene but
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protein is also present in tissues that may be at a distance away from the site of their
synthesis. Examples of this include the peptide hormones that ate present in the
blood but are synthesized in specialized endocrine glands, and secreted growth
factors. In addition to such spatial differences of mRINA and protein distribution,
there are also temporal differences. The circadian genes wPer! and mPer2 are
expressed in a periodic pattern with a high-point of expression occurring with a
rhythm of 24 hours. This cyclical expression is also observed with the
corresponding proteins, but the peak expression of protein is delayed relative to
mRNA by approximately 6 hours (Field et al 2000). Hence there are cases of
differences between spatiotemporal mRNA and protein expression patterns and
this must be kept in mind when interpreting mRNA-based exptession data.
Despite these caveats, it should be emphasized that the presence of a particular
transcript in a cell reflects its potential to synthesize the corresponding protein.

There are also notable practical reasons for first focusing on transcripts rather
than on proteins. Generating antibodies is time-consuming and costly. Ideally
protein with the correct post-translational modifications must be used for
immunization and animals are needed for the production of antisera. Among the
antibodies presently available only a fraction are suitable for immunohistochemical
localization procedures. These technical challenges of antibody work greatly
contrast with the ease of using RNA probes, which can be synthesized as soon as
a (partial) gene sequence is available using simple and inexpensive in vitro
reactions.

A vast body of literature demonstrates that 7z situ hybridization and
immunolocalization of proteins have been extraordinarily informative in many
fields of biology. For example, a good fraction of what is known about the
fundamental steps in embryonic development resulted from gene expression
pattern analyses in normal and mutant embryos. Gene expression hierarchies that
undetlie Drosophila development were established primartily by studying the
expression of gene cascades in wild-type and mutant embryos. In this way it was
possible not only to establish gene networks, but also to unravel the cellular basis
of these networks. Similar efforts have been undertaken in vertebrate embryos.
Here too, RNA ## situ hybridization has illustrated how cells and tissues interact
in the embryo and bring about development. In the nervous system, localization of
gene products has uncovered the mechanisms of development and physiology of
the CNS. Signals emanating from the dorsal and ventral part of the neural tube
specify the identity of neurons in the developing spinal chord. To pinpoint
distinct populations of neurons during development and hence to uncover
neuronal identity, a series of molecular markers are used that are expressed in a
highly restricted, cell type specific pattern in the spinal chord (reviewed in Lee &
Jessell 1999). Diagnostic analyses of tumour tissues also makes abundant use of
molecular markers.
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Development of high-throughput
methods for RNA ¢% situ hybridization

Gene expression analysis by histological methods is time-consuming and for the
most part is performed manually. This poses a considerable problem when using
RNA in sitn hybridization and immunohistochemistry for genome-wide
expression analysis. In fact, without appropriate technology development, this
extraordinarily powerful tool is not of much use to functional genomics. To
addtess this issue, we have initiated a technology development program aimed at
automation of RNA 7x situ hybridization and automated imaging of expression
patterns by light microscopy. In addition, we are currently developing a database
that will make gene expression data collected by RNA 7# siz# hybridization and
immunohistochemistry available to the scientific community through the
Internet. Fig. 1 is a flow chart documenting the key steps of the procedure and
the text below briefly describes the salient aspects of the individual elements of
the flow chart.

Gene selection

Eventually the expression pattern of all genes should be determined because there
are presumably very few genes that have no importance. Priority is given,
however, to genes encoding proteins that are involved in regulatory and disease
processes. This includes receptors, their protein ligands, proteins that mediate
signal transduction within cells, channels, transcription factors and their
associated regulatory proteins, and extracellular and cell surface proteins that
mediate neuronal connectivity, just to name a few examples. It is not uncommon
that such molecules can readily be identified based on their primary sequence and
characteristic signature motifs and domains. Growth factor receptors contain
transmembrane domains, G protein-coupled receptors are characterized by seven
transmembrane helices, transcription factors harbour typical DNA binding motifs,
extracellular proteins often have characteristic repeat structures such as fibronectin
type III repeats, and secreted proteins contain a leader peptide. As the prediction
algorithms for protein domains become more robust, selection of particular genes
encoding interesting proteins will become more straightforward (Schultz et al

1998).

Probes and tissues

While applicable to any species and tissue type, the focus of our technology efforts
are on the nervous system of the mouse. This choice derives primarily from the fact
that the brain is the most elusive organ in mammals and it is expected that knowing
gene expression patterns at the mRNA and protein levels will help in
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FIG.1. Flow diagram of the ‘Genepaint’ procedure. The term Genepaint is used because the
result of the procedure is a visualization of gene expression ‘painted’ onto the tissue. The
procedure is subdivided into several distinct elements each of which can be automated to a

considerable extent, including database import and retrieval.
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understanding aspects of brain development and function. Although brain
functionality undoubtedly depends in an important way on protein interactions
within neurons as well as on frans-neuronal signalling, knowing the spatial and
temporal localization of gene products provides essential base information. The
reason for choosing mouse as the model is based on several advantageous
features of this organism. First, the mouse is a genetically amenable organism in
which genes can be mutated by means of homologous recombination (Joyner
1999). Second, the mouse is suitable to study the development of the CNS and at
least simple behaviour can effectively be studied in this organism. There is also
marked similarity between mouse and humans at the genetic level. Because of
this, the physiology and pathophysiology of normal and genetically affected mice
and humans are similar (Habré de Angelis et al 2000). Last but not least, numerous
mouse genes and their human homologues have now been identified, expressed
sequence tags (ESTSs) derived form the mouse CNS exist, and within the next
year or so a draft sequence of the entire mouse genome will be available.

Oncea gene has been selected for expression analysis, the following steps have to
be taken: (1) selection and preparation of DNA template, (2) synthesis of riboprobe
and (3) preparation of tissue.

Expressed sequence tags (ESTs) are readily available to generate DNA
templates. ESTs represent known as well as presently unknown genes. They are
DNA sequences ranging between 500 to 1500 bp and hence may not encode the
entire open reading frame of a protein. However, this is not a problem, since a
riboprobe corresponding to less than an entire open reading frame is still
sufficiently long to confer specific hybridization with the complementary
mRNA. Many sequence-verified ESTs are available from commercial or non-
profit suppliers and contain T3, SP6 or T7 RNA bacteriophage polymerase
binding sites. Because of this feature, EST DNA can readily be PCR-amplified
using T3, SP6 or T7 primer sequences which results in a double-stranded DNA
template. An alternative to EST-derived DNA templates are PCR products from
known genes. In this scenario, RT-PCR is first used to generate a cDNA fragment,
which is then cloned into T3, SP6 or T7-containing vectors, linearized and
translated 7z vitro. It goes without saying that most if not all of the above
procedures can be automated using commercially available equipment.

To synthesize RNA probes used for i situ hybridization, DNA templates
bounded by RNA polymerase binding sites are used. To detect the probe, a
radioactive tag (e.g. [?>SJUTP) or a hapten tag (e.g. digoxygenin-labelled UTP)
is incotporated into the RNA during an in vitro transcription reaction. The
advantage of radioactive probes is that they are detectable at low concentration.
Their disadvantage is that they are unstable and have to be consumed within a
couple of weeks after synthesis. In addition, autoradiography is difficult to
automate, uses expensive emulsion, and requires an exposure time of several days
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or weeks. Hence there is a considerable time-lag between the hybridization step and
the instant at which the result of the hybridization experiment can be assessed.
These disadvantages have promoted the use of riboprobes that are tagged with a
hapten against which high-affinity antibodies have been developed. The most
popular epitope — digoxigenin — is detected with an anti-digoxigenin antibody
coupled to peroxidase that in turn is detected by a chromogenic assay. The main
caveat of this one step amplification is that it is not as sensitive as radioactive probe
detection. We found it necessary to add another amplification step based on
enzyme-catalysed reporter deposition (Adams 1992, Kerstens et al 1995).
Specifically, the peroxidase enzyme attached to the antidigoxygenin antibody is
used to activate a biotin—tyramide complex. The activated tyramide reacts with
protein molecules in the vicinity of the peroxidase, resulting in a localized cluster
of covalently bound biotin molecules. Covalently attached biotin in turn is
detected with avidin coupled to alkaline phosphatase, i.e. an enzyme based
system that now amplifies the biotin—tyramide signal. It is estimated that this
reaction enhances the sensitivity by 100-fold compared to single-step
amplification. Also note that riboprobes with digoxygenin tags are stable for
months or even years, a marked advantage over radioactive riboprobes.

Because tissue preparation significantly contributes to the sensitivity of a
detection method, affects the visual appearance of the specimen and has
considerable influence on the signal to noise ratio, several commonly used
methods of tissue preparation have been examined. For embryonic and adult
mouse sections of frozen tissue have proven to be optimal, but sections of
paraffin-embedded tissue can also be used, although tissue quality is not as good
as with frozen sections. This is in part due to the fact that tissues are dehydrated in
organic solvents, embedded in paraffin and then deparaffinized. These procedures
are not only time-consuming but reduce tissue quality. In addition, dehydration
reduces tissue size by 20-30%. We prepate frozen sections as follows. Fresh tissue
such as mouse brain is collected, placed into a mould filled with cryomount
medium and frozen on a slab of dry ice. In this form, tissue can be kept for many
weeks without dehydration at —80 °C. Sections are cut in a Leica 3020 cryostat,
placed on a microscope slide and fixed in 4% paraformaldehyde. Slides are then
stored for weeks or months at —80 °C. Contary to a widely-held belief, cutting
frozen sections on a modern cryostat is not more difficult than preparing paraffin
sections.

In situ hybridigation robotics

The manual execution of iz situ hybridization, a multiple step procedure, is very
time consuming. This problem is exacerbated by the number of samples and genes,
which is large in the case of genomics-directed projects. To cope with throughput
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problems a new technology has been developed. Specifically, slides carrying the
tissue sections are integrated into a flow-through chamber (Fig. 2A). The slide is
placed inside an aluminium frame with sections facing up. Two 80 um-thick
spacers are positioned along the long edges of the slide, and a 5mm thick glass
plate is placed on top of the spacers. Slide, spacers and glass are clamped together
with two metal brackets. A depression milled into the top portion of the glass plate
plus the slide form a reservoir (Fig. 2A). This device thus constitutes a small flow-
through chamber with a 400 ul reservoir on top, an 80 um thick chamber housing
the tissue (volume: 120 ul) and an exit for solutions at the bottom. Solutions filled
into the well enter the narrow hybridization chambet by gravity and remain in
place due to capillary forces until displaced by a fresh solution added into the
well. Importantly, reagent in- and out-flow is uniform and flow rates are low,
reducing the risk of tissue shearing by liquid flow. This flow-through procedure
contrasts with manual procedures in which the reagents are pipetted on top of the
sections. The sections are then covered with a glass coverslip that has to be
removed following completion of the hybridization and immunohistochemical
reaction steps. In the case of manual procedures, several of the steps require that
slides be moved in and out of solutions, which can result in tissue damage and,
furthermore, consumes significant amounts of reagents. Of note, all components
of the hybridization chamber are made of heat- and solvent-resistant materials and,
with the exception of the spacers, can be reused.

The aluminium frame of the hybridization chamber fits into a temperature-
controlled rectangular, protruding platform. Eight such platforms are arranged
into a row and six rows constitute a 48-position rack (Fig. 2B). In this set-up, the
slide of the hybridization chamber is in direct contact with the surface of the
platform permitting efficient thermal transfer. Moreover, platforms and the walls
of the racks are hollow, allowing flow-through of liquid delivered by external
water circulators. Temperatures typically used in #» sitw hybridization
expetiments tange from room temperature to 55-65°C. In this range,
hybridization chamber temperature is constant with an accuracy of +0.2°C and
temperature variation across the rack is +0.5 °C. The controller software of the
liquid-handling robot can generate temperature profiles by regulating external
circulators and valves. Temperature changes in the range of 20-30°C can be
achieved within 5 min or less.

A liquid handling system retrieves and delivers, in a programmable fashion,
buffers and reagents from receptacles placed next to the racks. Figure 2C depicts a
Tecan Genesis platform whose software has been adapted to the in situ
hybridization protocol. Using this equipment with four racks (192 hybridization
chambers), prehybridization steps, hybridization, stringency washes, chromogenic
detection reactions and counterstaining are carried out automatically with little
human intervention and supervision. One ‘run’ takes approximately one day and
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depending on how many sections fit on a slide, a daily throughput of as many as
1000 sections can be achieved.

DImage acquisition

The massive amount of data generated by the 77 sitz# hybridization robot requires
effective and automated image data acquisition. The fundamental issue to consider
in image data collection is that of resolution. Non-radioactive riboprobes
hybridized to mRNA are detected by serial amplification steps (see above)
thereby creating a blue-coloured granular precipitate that resides in the
cytoplasm. Because the size of an individual grain is in the range of 1 um,
resolution better than this dimension is not informative. In addition, the
subcellular localization of mRNA is usually not informational for studies aiming
at definition of sites of gene expression. It should be recalled that the dimension of
typical specimens such as a mouse brain is in the range of millimetres or
centimetres. Thus one needs to use an imaging technique that spans the three to
four orders of magnitude between the dimension of the signal (1-10 um) and the
dimension of the specimen (~ 1 cm).

One approach is provided by optical scanning devices, as has recently been
illustrated by Hanzel et al (1999). These investigators used a confocal digital
microscanner for high-throughput analysis of fluorescent specimens. This
strategy allows a resolution of approximately 5um per pixel and scanning of a
large field (entire sections) within a time frame of minutes.

An alternative strategy of data acquisition is based on a compound microscope
equipped with a scanning stage that stepwise and accurately translocates the
specimen in front of the objective. At each step, the specimen is focused and an
image is acquired with a CCD camera. The reproducibility of stage movement is
~0.75 um and the resolution of the x—y translation is ~0.025 um. A segmental
data collection procedure requires software that subsequently assembles
individual images into composites. The advantage of a microscope-scanning

FIG. 2. In situ hybridization robot. (A) A hybridization chamber consisting of a standard
microscope glass slide (depicted in black) loaded with sections, two spacers, and a glass plate
that are assembled onto an aluminium frame and held together with two spring clamps. (B)
Hybridization chambers are placed into a temperature-regulated rack. The photograph shows
the first row of the rack occupied by hybridization chambers (arrow). (C) A TECAN platform
housing two such racks plus vatious containers of different volumes in which the solutions used
for hybridization, washing and colour reaction are stored. Note the eight dispensing pipettes in
the back of the platform (arrow). These pipettes take up and then deliver solutions into the
reservoir on top of each hybridization chamber (see A). There is sufficient space on the Genesis
200 platform to accommodate four racks plus solvent containers.
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stage-based system is that it generates high-resolution data of the expression signal
and of the undetlying tissue histology. Using a 440 000 pixel CCD camera, a x5
objective and a x10 eyepiece provides a resolution of approximately 3.5 um per
pixel. This resolution can readily be increased to below 1 um per pixel when a
%20 lens is used (e.g. Fig. 4B, D).

The equipment used in our laboratory consists of a Leica microscope, a
motorized Mirzhduser stage that accommodates up to eight slides, a Leica
electronic focusing motor, a JVC CCD camera and a PC controller using the
image analysis software QWin V2.3 from Leica (Fig. 3A).

Data acquisition is initialized eithet by a prescan during which the location of
each section on the slides is empirically determined or by scanning within a
predefined area. In the prescan mode the stage meanders stepwise across the array
of slides and at each step an image is captured. An integrated intensity of each of
these images is calculated and compared against a preset threshold value. Only
those images in which the integrated intensity is greater than the threshold value
are considered to represent tissue. Rectangular frames, termed regions of interest,
are calculated, each of which encloses one section. The prescan thus results in the
definition of the position of each of the sections on a slide. The subsequent main
scan collects images only in the regions of interest. The main scan is more time-
consuming than the prescan, since the acquisition of high quality images requires
determination of the optimal focal plain. This is achieved by an autofocus routine
executed prior to image capturing.

In the template scanning mode all tissue sections are collected into rectangular
windows defined by a mask that is transiently fastened to the slide (Fig. 2B). Using
this device allows sections to be placed at predefined positions. Hence images are
captured only within this predefined rectangle. Asis the case for the prescan mode,
an autofocus routine is executed prior to image capturing.

The prescan/mainscan procedure and the template procedure each have specific
advantages and drawbacks. The first strategy does not requite that sections be
placed to a patticular position, because the region of interest is determined
empirically. The prescan takes time, making this mode about 50% slower than
the template mode. In addition, if sections are weakly stained, setting a detection
threshold can be difficult. If the threshold is set too low, the procedure fails to
distinguish between the section and background and if the threshold is set too
high, sections fail to be recognized at all. The template mode does not have this
complication, but requires some skill in placing sections at defined positions and
depends on having appropriate masks.

In either mode of data collection, individual images ate stored as bitmap files.
They are named using a so-called speaking key ‘ImageName @ Xposition @
Yposition® (see Fig. 3C). The information on images is stored in an ASCII
database that also includes data on specimen characteristics such as the identity of
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FIG. 3. Image data collection system. (A) Leica microscope equipped with an analogue
camera, an eight-position scanning stage and an autofocus motor. (B) Acrylic template used
for proper positioning of sections on slides. One of the four windows of this mask is indicated
by an arrow. (C) Image nomenclature used by the ‘Exgen’ software package. Each square
corresponds to one captured image. (D, E) Composite image assembled using mosaic
software. The frame represents one image that is shown at higher magnification in (E).

the gene whose expression is being determined, name of the operator, thickness of
and distance between section, etc. The platform-independent database, an open
data format and the ‘speaking key’ annotation of the images make import of the
data into another database fairly simple.
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As illustrated in Fig. 3D, a section is composed of several images. An image set
may consist of as few as four elements and be as large as 50 or 100 elements. The
image set (mosaic) is created using mosaic software that assembles individual
images to a composite. To create a composite of adjacent but not overlapping
images requires accurate stage movement and a precise alignment of the camera
with the optical axis of the microscope and the x and y axes of the stage. This
alignment is achieved using custom-made software and mechanical centring
devices. Fig. 3D shows a composite image and a black square outlines one single
element of ~0.8 Mb, shown at higher magnification in Fig. 3E. To capture one
image element takes ~ 3 seconds, i.e. the composite shown in Fig. 3D was collected
in a few minutes. Composite images can be stored in a variety of formats including
JPEG, TIFF and as Bitmaps. TIFF files for a single section of a mouse brain
typically amount to 25-50 Mb.

Sample data generated by the system described above are shown in Fig. 4. Figure
4A depicts the pattern of expression of the transcript encoding the y subunit of
calmodulin—calcinm-dependent protein kinase 11 (CaMKII), a gene that is broadly
expressed in the mouse brain. The specimen is a 20 um frozen section. A high-
power view reveals the details of expression at a cellular level (Fig. 4B). It can
readily be seen that expression data have single-cell resolution, a distinguishing
feature that cannot be achieved with radioactive riboprobes unless cells are very
large (e.g. Purkinje neurons of the cerebellum). Figure 4C depicts the pattern of
expression of the circadian clock gene mper2 on 7 um thick paraffin sections, a gene
that is almost exclusively expressed in the suprachiasmatic nucleus. Even here, it is
clear that single neurons are seen, although the overall quality of the tissue is
somewhat lower than seen with frozen sections. The data shown in Fig. 4D
depict the expression of Nurrl (a nuclear hormone orphan receptor; Xiao et al
1996, Castillo et al 1997) in a 20 um frozen section through the cortex. This
illustration depicts Nurri-positive and negative cells and demonstrates that
detection of expression based on digoxygenin-tagged riboprobes can readily
distinguish between expressing and non-expressing neurons. All data shown in
Fig. 4 have low background staining, yet background is sufficiently high to
visualize cells that lack transcripts eliminating the need of having to counterstain
sections. In summary, non-radioactive probes are excellent tools to detect
expressed genes in (frozen and paraffin) sections and are in many respects
superior to radioactive probes.

Database

Numerous databases containing biological data are accessible through the Internet
(e.g. Discala et al 1999, Ringwald et al 2000). Web-based databases are an excellent
means to efficiently retrieve and hence disseminate scientific data. Automated
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FIG.4. Examplesof images of expression patterns created with the Genepaint system. (A) The
calmodulin—calcium-dependent protein kinase I gene (CaMKIT) is broadly expressed in this coronal
frozen section through an adult mouse brain. This image is a mosaic consisting of ~40
individual images. The section is 20 um thick and the image was taken with a x5 objective and
a x10 eyepiece. (B) High-power view of outer layers of the cortex (co), showing numerous
CamKII expressing neurons. ml, layer 1 of the cortex. The section is 20 um thick and the image
was taken with a x40 objective and a X 10 eyepiece. (C) Photograph of a 7 um paraffin section
hybridized with mper2 riboprobe. Strong expression is seen in the suprachiasmatic nucleus
(SCN). Note individual neurons in this preparation. The image was taken with a Xx10
objective and a x10 eyepiece. (D) This 20 um frozen section was hybridized with a Nurr!
antisense riboprobe and reveals expression of this gene in a subset of cortical neurons. Arrow 1
points at a positive cell whereas arrow 2 indicates a non-expression cell. The image was taken
with a x40 objective and a x 10 eyepiece.
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image acquisition by the procedures described in this chapter results in a large
quantity of data from a variety of specimens and hence a database is also a
powetful tool to track data acquisition and for data storage. A database is
currently being developed that can provide these functions. As outlined in Fig. 1,
the task of the database can be divided into two segments: data import/processing
and data retrieval.

Data acquisition itself is a multistep process and one critical function of the
database is to provide information on the specimens used (species, strain, fixation
methods, histological methods), the sequences of the genes analysed (e.g.
GenBank accession number, cloning vector, sequence of template) and
experimental parameters of hybridization and of detection. A second critical task
of the database is the storage of images. As pointed out above, the average size of a
brain section stored in TIFF format is approximately 30 Mb. We plan to store such
images ona Web server in a compressed form in which they can be readily retrieved
by and viewed with commercially available Web imaging software such as MGI’s
ZOOM Server (http:||www.mgisoft.com). This software enables website visitors to
zoom into images and thus reveal details commensurate with the high resolution of
the primary image data provided by scanning light microscopy. An additional
feature of the database is a summary description of the sites of gene expression in
tabulated form. Image analysis procedures will be developed that are capable of an
automated identification of sites of expression and able to relate these sites of
expression to standard brain anatomy maps.

A detailed map of mouse brain anatomy currently exists only for the adult mouse
brain (Franklin & Paxinos 1997). Until now, a limited amount of information has
been compiled into atlases of embryonic or postnatal murine CNS, but efforts are
being undertaken to close this gap (Valverde 1998, Jacobowitz & Abbott 1998,
Kaufman et al 1998, Brune et al 1999). An important facet of this effort is the
development of an appropriate and systematic nomenclature of cells and tissues
(Altman & Bayer 1995, Bard et al 1998). This anatomical nomenclature should
be hierarchical so as to facilitate a search for gene expression patterns in
structures and substructures. Another requirement of the nomenclature that it
needs to reflect the developmental history of a tissue. The CNS, for example,
arises from a simple tube-like structure which becomes progressively more
complicated and eventually ends up as a structure consisting of well over 1000
distinct anatomical structures. To have a nomenclature reflecting the
developmental hierarchy of tissues would be extremely beneficial.

A key task the database has to accommodate is the retrieval of the data using
parametric searches. For example, it is planned that the database can be queried
for the sites of expression of specific genes and for regions of overlapping
expression patterns of two or more genes. Pilot tests have been undertaken to
retrieve images of gene expression using MGI’s Zoom server software. Retrieval
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of images of resolution and quality equal to the primary data in the time-frame of
seconds was achieved worldwide using standard Web browsers such as Netscape or
Explorer without the need to instal any additional software. By downloading an
appropriate freeware plug-in, it is possible to move around within images and
zoom into images reminiscent of the way this is done in the microscope.

In summary, we have developed procedures that allow an efficient production
and analysis of gene expression patterns by 7 sizu hybridization on tissue sections.
This instrumentation will make it possible to analyse large numbers of genes in a
reasonable amount of time and thus will allow us to create spatial maps of gene
expression in mouse brain. These maps will not only be established for the adult
brain, but also for embryonic and eatly postnatal CNS. This endeavour in
combination with other technology is likely to shed light on the genetic and
biochemical signalling networks that underlie brain development and function.
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DISCUSSION

Sejnowski: How many genes are you going to be able to do per week?

Eichele: In the mouse brain expression analysis, we intend to look at four stages,
including adult. We will do selective sections; pethaps 15 for the adult brain and
take a corresponding number for the developing stages. This will give us a set of
about 20 slides for one gene. If we have 200 positions, this will enable us to do 10
genes per day, which works out at 50 genes a week. I suspect we will have to do
duplicate experiments, so the theoretical output of 2500 genes per year will
probably not be reached. Like sequencing, it is just a matter of money, because
the technology is basically there. We plan to use ESTs as templates for making
our RNA.

Sejnowski: What is the behavioural status of the mice before they are sacrificed?

Eichele: We try to use as uniform conditions as possible. We use the C57BL6
strain of mice. For the adults, we will take them at 8 weeks of age and keep them
under constant conditions, sacrificing them at a specified hour of the day. Of course
circadian and sex-specific genes will sometimes be missed.

Brenner: There is a mini-problem here, which should be tackled, in the retina,
where you can see how deep you need to plumb specificity. For example, it is
claimed that there are 22 kinds of amacrine cells. Are these all different cell types
in the sense that they represent disjoint sets of gene expression combinations? One
distinct amacrine cell is called the starburst amacrine cell. Some starburst amacrine
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cells have been shown to have acetylcholine. The question is, are all acetylcholine
cells starbursts, and are all starburst cells acetylcholine cells? We know that rods
and cones are different, and that there are three kinds of cones based upon the
visual pigments that they produce. The retina will allow us to do things even at
the biochemical level much faster than your high-throughput, brute force
approach, and provides us with a simpler way of getting real information. There
must be simpler ways of doing this and getting real information.

Eichele: You are asking two questions here. I agree with what you said about the
retina, and similar thoughts apply to the spinal cord. None the less, we somehow
need global expression information for the extensive CNS. Recall, the issue of cell
fate is just one problem: gene expression has additional important facets. Yes, our
efforts are a ‘stamp-collecting’ approach, just as sequencing genes is. But a
systematic approach does provide a base of information.

Brenner: If you can get all the stamps it would be terrific. The trouble is that it is
going to be very difficult. There will be rare genes expressed in rare cell types
that are going to be critical, and which you may not be able to find this way. If
it does not aim at completion, it isn’t going to be worthwhile. One has to think
very carefully about the uniqueness of a cell type in the brain, and I think the
retina is a well defined way of starting. Let me mention another approach.
Brains could be dissociated into cells, and an antibody could be used to collect
all the cells that express the muscarine type I receptor, for example. A total
analysis of everything expressed in these cells could then be done and
correlations established. More antibodies could be used to select more complex
subsets of cells. The same antibodies could then be used to localize the cells in
the brain.

Sejnowksi: Dick Masland has done this in the retina (MacNeil & Masland 1998).
He has gone through systematically and used all the known neurotransmitter
probes. He has made a lot of progress on the amacrine cells. He is finding many
more cell types than people had discovered previously, but it is very hard going.

Eichele: Alternative approaches to the one I proposed are certainly worth
pursuing. I am just saying that systematic strategies are powerful and make no
assumptions about outcomes. Some people may not look at the brain as an issue
just of cell fate: there are other key issues such as cell migration and neural
degeneration. The other point I wanted to respond to is an issue raised by Dr
Brenner, concerning rare meassages. Certainly, for the adult brain I can envision
a situation where rare messages are very important. It turns out that in developing
embryos, many key signalling molecules — such as transforming growth factor f,
bone morphogenetic proteins and Sonic hedgehog— are always expressed at
reasonably high levels in one or more cells. Although these regulatory molecules
are on the whole (i.e. if you average over the entire organ) expressed at low levels,
they are usually expressed locally at high levels and thus are easy to detect. So I am
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not too wortried about the detection problem on the basis of my experience in
embryology.

Berridge: In Caenorbabditis elegans, where we know all the neurons, how many
neurons are similar? How much divergence is there?

Brenner: You can unify them by transmitters into subsets. They have functional
connotations. But C. e/egans has very few cells, so quite often there are unique single
cells.

Berridge: 1 am surprised by this figure of 500 cell types in the brain.

Eichele: This is a guess.

Brenner: How many cell types do you think there are in the body?

Eichele: 1 would estimate 1000-2000.

Brenner: 1t is about 200, if you look at a classical textbook of histology. I think the
brain must have at least the same number.

Sejnowski: Francis Crick went through this exercise a few years ago, and came up
with about 1000.

Berridge: How different are these? Are there groups like pyramidal cells with
subtle variation, which are all classed as different?

Brenner: 1f you use the technology we have to look at one cell type, such as a
monocyte changing into a macrophage, and you look at how many of the genes
change by a factor of two or more, it is something of the order of 30 000 genes.
Some of these can be made sense of and are trivial because this is an exponential
cell which has to come out of the growth phase, but it is an enormous number of
genes changing in this one process. You can see the big things that turn out to be
1% of the entire message. The analysis of this is quite difficult.

Berridge: Presumably, this would not show up in this sort of screen. Gregor
Eichele is doing a screen that is quantitative in nature.

Eichele: 1t is semi-quantitative. It is also questionable whether mRNA levels
actually reflect protein levels. I could have told you of several examples where
that is not the case.

Brenner: 1 think the mRNA is important and I think this argument about
whether mRNAs reflect protein levels is neither here nor there. It reflects the
protein-coding capacity of the cell which you want to know: can this cell make
this channel or not?

Berridge: From a physiological point of view, in the cortex we have a series of
columns, which helps to simplify matters. What I would like to know is if you take
something like the cerebellum, there appear to be relatively few cell types that have
been recognized for making up the circuitry. The same applies for the
hippocampus. Now if we come to the cortex, are you telling me that there need
to be 500 individual cell types to make up the circuitry?

Sejnowksi: 1 need to explain a bit about how this is done. It depends on
topography. For example, it is known that there are cells that tile the retina, in
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the sense that their dendrites don’t overlap very much, but they cover the entire
area. If this is defined as one cell type, all cell types have similar tilings.

Brenner: 1t is about 50 in the retina based on the minimum member.

Sejnowski: There are problems in the cerebellum: it is not true that all Purkinje
cells are the same. It is known that there are zones where different peptides are
expressed in different subsets of cells.

Eichele: 1f you look at the expression patterns of genes such as gebra, you see
stripes of expression in the cerebellum. Of course, this doesn’t mean that these
stripes represent different cell types, but they might.

Sejnowski: These are stripes that are very regular. It is known that these stripes
project to different locations within the inferior olive and so forth. You have to
look at more than just expression in order to define a function. There is
something that is even more disturbing to me: you brought up circadian rhythms
asa clear case where the gene expression is going to change in a regular way. It turns
out that any disturbance to the animal causes the intermediate-eatly genes to be
activated. This means that small changes in the previous history of the animal’s
experience are going to be causes of activation in whole sets of different genes.
With long-term memory, there are presumably changes in gene expression that
are going to last for even longer, that have to do with the exact details of how the
animal was handled in the past. Rusty Gage at the Salk Institute in La Jolla recently
discovered that there are new cells being born in the dentate gyrus of the
hippocampus every day, and their survival depends on the experience of the
animal. If the animal runs on a treadmill more of those cells survive than if it
doesn’t. If that is the case, there must be lots of changes occurring in the patterns
of the gene expression depending on exercise.

Brenner: A lot of our thinking is based on the haemopoeitic system, in which
there are different kinds of granulocytes and lymphocytes. Are you going to call a
cell which has been subjected to stress and has a new gene expression pattern a
different cell type? This is why I am so keen on classifying them according to
their receptors. The receptor tells me something about functionality. And a lot of
the antibodies are available.

Eichele: One of the applications of the kind of approach we are using in the lab is
for screening genes. For example, we have done a lot of two-hybrid screens with
circadian proteins. We have a specific hypothesis and then we use 7z situ
hybridization for co-localization of prey and bait. This approach can be
implemented in any lab very efficiently to sift through screens in a week or two,
which without robotics would previously have taken a year.
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General discussion I1

Understanding complex systems: top—down, bottom—up or middle—out?

Sejnowski: In this general discussion I’d like us to address the issue of the best
approach for trying to understand complex systems. Do you start at the top or the
bottom, or do you jump in somewhere in the middle?

Noble: Farlier on Sydney Brenner made a comment about preferring to go
middle-out, rather than top—down or bottom—up. It helps to ask the question,
what is wrong with the bottom—up and top-down approaches? The bottom
elements of a biological model will be components such as proteins. We know
that there are large numbers of these. We may then want to model a subcellular
system, such as the Ca?" oscillator, so we bring together a group of proteins and
make a model of these. In my case the next level might be modelling different cells.
You can think of it in your own field in a different way. Then to build up to the next
level, you will want to bring together a lot of these cellular elements. As we go on
up, more of these lower level components start to come in. One might think that it
is obvious how to proceed from the bottom to conflate at each level, by bringing
together a group of processes and representing them by simpler equations and
simpler ways of thinking about the next step up. This, I suggest, is a reasonable
caricature of the bottom—up approach. The top—down approach takes the view that
we look at some piece of functionality at the top, such as the heart beating or the
pancreas secreting, and we try to work the other way and break things down into
components at each level, hoping that somehow or other it will connect with the
bottom—up approach. am going to argue that, first of all, there is no guarantee that
they will connect, and moreover both approaches are impossible. Why is this the
case? There is no one way in which you partition your dividing lines amongst all
the components. You choose what you bring together as a set of components in
one model; but someone else measuring another process might want to take in
another group, also. This means that we end up with a different element at the
next level. There are many ways in which you could break up such a multilevel
structure. This is even more true given the fact that we now know that genes
play roles in many different functionalities. We can’t even think therefore that we
have a unique way of going up. I would argue that it is impossible to go completely
bottom—up because there is no unique way of doing it. The obvious difficulty with
the top—down approach is that we will not know what is the best way of breaking
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the upper levels into components at a lower level, so that it would meet any one of
the bottom—up approaches. I am going to argue that, whether he meant it or not,
Sydney’s comment that he preferred middle-out is actually totally necessary. There
is no alternative.

Brenner: From my point of view, you are already starting at the middle: you are
starting with proteins. That’s fine; I like that. I'd go a little bit higher, actually.

Noble: I would argue that even just starting with proteins is not going to work.

Brenner: That’s the middle. Starting with genomics is what I call the bottom—up
approach. I think this is impossible.

Noble: The comment about multiple ways of dividing elements up takes me to
the next remark I wanted to make. It seems to me that whichever of these
intermediate levels you might be concentrating on, you are going to need
physiological insight: you need to know what function you are reproducing.
What I'm saying is, 1 hope, absolutely obvious. There is a very important
conclusion that comes from this, which is that not only will it lead to you
dividing the world up in different ways at this level according to the functionality
you seek to reproduce, this will also happen all the way up and down. Therefore,
there will inevitably be many models of the heart and pancreas, for example, and it
all depends on what you want to do with them. This leads on to another question:
how can the different models be mapped onto each other? We have been thinking
about this a lot in relation to simplifying complex models.

Fields: Isn’t there another way to approach this problem? This is to view the
system as having an input and an output. In this, we see the complex system as a
sort of black box, and we look at the input function (which may be action potential)
and the output function (which may be gene expression). When we understand the
correlation between the two, we can go in and measure a unit or system within that
box. We can investigate what happens when we perturb this component of the
overall system, and then go in and measure the input and output function again
to see how it has changed. We can continue this process until we can reconstruct the
complex system.

Brenner: That is pretty a fair approach, but you have to partition the problem.
Some of us are still very interested in how the representation of an organism in the
genome changes in the course of evolution. We think this is very important
because we know organisms succeed by trying out genome variations to see
whether they work. I believe that most biologists are committed to this rather
unique property of biological systems in the world of natural complexity: the
existence of an internal description of the organism written in the genes. In the
1960s, when we thought that all the problems of molecular biology were solved,
some of us decided to go to more complex biological systems. Seymour Benzer
decided he would try to connect genes with behaviour. His aim was to use
mutations of behaviour to ‘parse’ the genes of the organism. I, on the other
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hand, thought that this transformation would be too complicated to understand,
and that there certainly would not be a mathematical function to transform gene
space into behavioural space. I felt very strongly that there were really two separate
problems. First of all, we need to build the object that ‘behaves’: this is where the
genes fitin, and this is one problem we can try to solve. Then the second problem of
how such a gene-constructed machine generates behaviour can be studied
independently. So, all of this grand genetics collapses into two classical
problems— one of development and one of physiology — but it turns out they
are united by one thing: structure. Thus the key to understanding the nervous
system is anatomy. You want to know what this is and how it is generated by
development, and then you want to know how it works. Now that we have
genome sequences we can go back to address the old questions with the
componentry defined. For my part, the middle area between the organism and
the genes consists of cells. What I want to know is how the genes get hold of
cells. This discussion of cell types is terribly important, because it will tell us
about the true complexity of that space. This is my ‘middle’, and the cell is my
unit, because I can look outwards from the cell to physiology and inwards to
molecules.

Launghlin: I would like to return to the more mundane problem of the black box.
Douglas Fields is exactly right: we are not going to get anywhere unless we can
associate in a deterministic way a particular input with a particular output, because
that is telling us what the box is doing. The trick is to pick the right set of inputs. We
have heard that some of these boxes are non-linear and they are adaptive, and we
have heard before that we must look at a cell signalling system within the context
of the correct set of inputs. This is where we need to go back and look at the
physiology of the system as a whole. You can’t pick your inputs out of thin air.

Se¢jnowski: There is a problem with this approach: it assumes that what comes out
is a consequence of what goes in. In other words, there are autonomous events
occurring within brains that produce behaviour and create information. There-
fore, if your whole analysis is based upon this input-output, stimulus—response
behaviourist conceptual framework, you are doomed. You are missing out on
something really important about how cells work and how brains work: they are
not stimulus—response devices.

Laughlin: That seems to imply that there are things that happen without any
preceding events. I can’t believe that.

Sejnowski: They are all oscillations: intrinsic mechanisms such as circadian
rhythms. What do you think happens at night when you fall asleep? Do you
think that what is happening in your brain is a consequence of what is going in at
that moment?

Langhlin: Y our oscillator happens to be entrained. We shouldn’targue too much
about this, but I suppose that you are saying that there are closed systems where the
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output is also the input. We can deal with those. They are not going to be very
complex systems, because they are not connected to anything else. The really
complicated systems are open.

Sejnowski: No, I am making a different point. Yes, we do have sensory surfaces
that take in information, and we do respond to the world. But in addition to these,
we are also generating internally very complex signals that we are imposing on the
world.

Berridge: That is part of the black box.

Sejnowski: What 1 am arguing against is the traditional stimulus-response
analysis: that the way that you analyse the black box is by giving it a stimulus and
looking at the response. If we do this, we’ll miss part of what is in the black box.

Launghlin: 1 am saying that you have a knowledge of the processes, which tells you
that given something happening in the system, this will be the consequence. Itis a
good local description, which I think is what the idea of the black box was aimed
towards.

Segel: 1 agree. There will inevitably be many models of the heart, for example. 1
wrote something about this sort of thing a few years ago (Segel 1995). You will ask
different questions and you will need different models for the different questions.
Some of the questions will require detailed submolecular models at a high level.
Some will need input—output models, and others not. If you want to understand an
automobile, you may be talking about the engine and wheels and transmission at
one level to answer certain questions. At another level, probably the biggest cause
of failure of automobiles where I come from in New England is rust, which is due
to a fault in the paint, which involves a different set of questions and a
corresponding different level of modelling. The more complex a system, the
more models will be needed.

Prank: Choosing the right input in the black box approach is important. If we
put in the wrong input we won’t answer the question we have addressed. One
important example is a study on the precision of spiking in neocortical neurons.
It has been demonstrated that the same constant depolarization current leads to
imprecise spiking if injected in a repetitive way to the same neuron, in contrast to
a fluctuating current consisting of Gaussian white noise which had the same mean
amplitude as the constant current (Mainen & Sejnowski 1995). The white noise
current input produced a highly reproducible precise temporal pattern of spiking.

Dolmetsch: In theory, it is possible to have some sort of unified model. After all,
cells do work, and in principle there is a single way of describing everything. What
you have described is the pragmatic approach: in practice we can’t model what
every protein is doing, but in principle we could. In principle it should be
possible to model everything from the bottom. In fact, it should form an assembly.

Sejnowski: Let’s give you your dream. Suppose someone actually went out and
spent the entire budget of the world to create a perfect model of a cell, down to the
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last molecule. You turn it on, and lo and behold it works just like a cell. Every
single experiment you do with the model is just the same as in a real cell. What
have you learned? If your model is just as complicated as the cell itself, I would
claim that you have learned nothing.

Dolmetsch: 1 disagree with you. The whole point behind having a model is to be
able to change parameters that you cannot change experimentally. If you cannot do
that, then you don’t need the model.

Brenner: You have to distinguish between an imitation and a simulation. The
difference is that the simulation is couched in the machine language of the
object being simulated. You could write a model that might explain the heart
but it uses radar waves that are reflected off surfaces. This will imitate the
behaviour of the heart, but it is not a simulation, because it is not written in the
machine language of all that stuff that is in the heart. That will involve
computation, because what you are asking is how the components generate the
next level.

Se¢jnowski: Are you arguing for or against the bottom—up approach here?

Brenner: Middle—out. The bottom—up has very grave difficulties to go all the
way. Denis Noble’s bottom is my middle.

Sejnowski: The arguments you have both made are very cogent ones that
question the very enterprise itself; whether it is even possible. But what I am
saying is, let’s go beyond that. Suppose that someone took all the effort and
discovered every molecular component of the cell. I really don’t think that this,
by itself, will be very informative. Perhaps you can do some experiments with a
model that couldn’t be done with a real cell. With the techniques improving all
the time, I think it will be a lot cheaper to do the experiments on real cells.

Dolmetsch: What is the goal? Why do you want to have a model? One reason
might be that it allows you to test things more rapidly or cheaply once you have
the model. For example, why would pharmaceutical companies be willing to pay
lots of money for Denis Noble’s model of the heart?

Sejnowski: 1love models; I work with them every day. It is the particular type of
model that you are advocating which I am questioning. In physics, the ‘model” isn’t
an exact replica down to the last detail. In fact, it is not a model unless you throw
something away. It means that you have picked out a subset of all the things there,
and you have been able to replicate some behaviour of the system. It is proof that
you have, in a sense, identified the critical variables or relationships responsible for
the complexity that you are observing. This is when you learn something: not
when you have everything there, but instead just a few things and you still get
the behaviour.

Dolmetsch: What you really want is for a model to be able to predict an
experimental result. If it is going to be predictive, it doesn’t matter whether you
have all the details.
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Sejnowski: A model does more than just make predictions; it means explaining
things and understanding, as well as predicting.

Noble: 1 would go along with you in saying that models have to be partial
representations of reality, if you are going to achieve some understanding. This
partly comes from the fact that even if we did build a ‘supermodel’, we would
have difficulty understanding it. Then we would have to make partial models of
this supermodel in order to understand it. I also suspect that it is possible to prove
that what Ricardo Dolmetsch is proposing — delightful though it might be —is
impossible. This is a matter of computability. Suppose we say that we want to
represent every molecule in the system and compute it. What are we going to use
for this? A molecular computer (see Reed & Tour 2000)? Is it possible that the
wotld has got enough stuff in it to compute the world?

Dolmetsch: This was just a thought experiment. It is probable that every single
molecular interaction is not computable. But what I meant is if we could start at a
fine level, such as the level of proteins. It is conceivable that you will get enough
detail at the level of proteins that it will somehow assemble into the right thing.

Sejnowksi: There is another issue involved here, and this came out of Denis
Noble’s paper — the issue of scale. The type of model that is appropriate for one
scale is quite different from the type of model that will be used at another scale. If
you are dealing with single proteins for the channels, you might use a Hodgkin—
Huxley model. But it is not clear what mathematics you want to use if you are
describing organelles or molecular machines. In the case of neurons, for example,
when I model entire neurons with a compartmental model, I am dealing with finite
elements: I am looking at spatial relationships and the coupling between them.
Given that we have many different scales, and many different types of models,
how do we join those models together? In other words, what is relevant at one
level that we want to include at the next level as a parameter? This will be an
important issue, and engineers know this already because they have to deal with
simulating a Boeing 777 and they can’t just use one model. They struggle with this
issue of scale, and finding the appropriate way of matching the details at one scale
with the variables at the next one.

Noble: You have posed two distinct questions. One issue is how we map very
different types of model, and the other is with regard to making models talk to each
other and how we avoid the tower of Babel in the world as we try to link things
together. It may seem obvious, but in the end, we need to get away from having to
write computer code. We want to be able to deal just with the mathematics.
Somehow or another, software has to be developed that will enable us all to code
ina way that is invisible: so what we can talk about is the equations we use, whether
we code in one language or another, or use one type of software development or
another. It seems to me that internationally we have to coordinate to ensure that
there is this kind of development.
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Brenner: In other words, you need a workbench for this kind of work. Itis nota
database, which seems to be all that people want.

Noble: We need a platform technology. As a minimum requirement this would
have to include equation editors and something like XML to act as a platform (see
for example www.physiome.com).

Sejnowski: These are issues that have been explored in great depth in computer
science: what you need is a software layer within a hierarchy. For example, the
Windows operating system has a user interface that is quite different from what is
going on underneath when manipulating your files. What you are describing is the
need for the equivalent of the Windows user interface that will free us from having
to wiggle all the bits down at the bottom layer. However, for something like this to
happen we would need a Microsoft equivalent.

Brenner: You need a commitment, and I don’t see this going into every home in
the world!

Sejnowski: What I meant was that we need a standard: some official body or
sufficiently smart group of people who can anticipate all the different things that
will be needed in the future and create a framework that will grow with these needs.
The problem all along has been that when one person decides to do this it usually
ends up becoming obsolete very quickly.

Brenner: That is why I think the Linux precedent is very good. Someone started
it, and because it was open source, people contributed to it and it works.

Noble: That is the operating system. Even with that it should not matter whether
people code in C, Fortran or Pascal. This is what I mean when I say that we should
be able to communicate.

Sejnowski: There are computer scientists who are trying to develop interfaces
between tools. You want to be able to define the variables that are going back
and forth between the programs, regardless of how they are implemented. It is
not a trivial problem.

Laughlin: There is one thing that we haven’t discussed which I think is central to
scientific investigation, the hypothesis. We have seen that we have a wide variety of
available models and we have systems that are undetermined. The first thing that
we have to do is to generate hypotheses. You think that it is one sort of system, a
richly interconnected diffuse system, and someone else thinks that it is a different
sort: a small network of proteins that forms a well defined computational module.
Proceeding from these hypotheses you construct the appropriate models and see
whether they work. If a model doesn’t work you throw it away and try to think of a
better one. This is a very important part of modelling. We make decisions a priori
about what sort of system it is, and then construct a model on that basis to see
whether it works. You don’t sit thete and wait until you have all the information.

Segel: On the question of levels of models, my opinion is that you will never be
able to link the levels fully. My opinion stems from the situation in a simple subject,
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physics. In fluid mechanics, in the 19th century scientists derived the Navier—
Stokes equations for fluid flow. For very dilute gases, you can deduce the
dependence of viscosity on temperature and pressure, but for something like
watet, it is so complicated that we are a long way off being able to do this. So what
do people do? They measure the viscosity dependence and thereby operate
successfully at the continuum level for a certain class of questions. For other classes
of questions they have to go to otherlevels. Conceptually one can dimly see thelinks
between the models, but practically, we have to operate separately at different levels.

Brenner: A physicist looking at a complex system takes a very different stance
from that of a biologist. Biologists understand the overall constraint imposed by
the fact of evolution; we are in the business of trying to explain a very complex
system that arose in a self-organizing way and carries with it the marks of its
history.

Von Neumann made a remark many years ago in which he said that when things
reach a high level of complexity, maybe one ceases to give a theoretical explanation
of it, possibly because there is no meta-language to call on to couch the explanation.
The alternative he proposed was to create a device that generates that behaviour.
Today we would call this an algorithmic explanation.

Sejnowski: That sounds like a justification for artificial intelligence. This relates
to the issue of levels. This grand experiment was done — it started around 1956 —
and it is just about over and the returns are in. If you go about it in this way, you are
almost bound to fail. It is interesting to look at why it failed. In retrospect,
researchers failed to appreciate how a formalism can affect your way of thinking.
At the time that they started, digital computers were really slow (a few thousand
operations per second), and the one thing that the digital computer did exceedingly
well (because of the machine language) was the ability to manipulate symbols,
because a symbol only takes one bit to code. Furthermore, Turing had proven
that anything that can possibly be computed can be done with that
architecture — therefore we should be able to write a program that is intelligent
ot can see, or indeed have any other property that is computable. They set about
trying to do this and ended up going down one blind alley after another. In
retrospect, what happened is that if you constrain yourself to the part of
computational space that is purely described by Boolean expressions, it may be
that the Boolean expression that describes intelligence is so complicated that no
one will be able ever to write it down. It is a problem of discovery. How is our
own brain able to conceptualize and formulize complex systems? Recently, a new
approach is being taken which starts with a mathematical formalism that looks
more like the brain itself, namely neural networks. There are many
simplifications and abstractions, starting with the assumption that there are
massively parallel operations, and that the fundamental operation is arithmetic
rather than Boolean. It is also a limited model, in the sense that you have now
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put yourself into another part of computational space, and it is a framework that
may or may not be more conducive for us to discover general computational
principles. The point is, you have to be very aware that when you start with any
mathematical formalism that it will bias your thinking, in terms of what is easy to
express in that formalism and what is difficult.

Berridge: I'd like to lead us back to where we started from with Denis Noble’s
comment about William Harvey taking a reductionist’s approach to analysing the
eel’s heart. As experimentalists, we have usually gone top—down. We have started
with the intact heart and tried to understand it, working out where the
pacemaker is, where the atrial cells are, what channels are expressed and so on.
Now we are arguing about whether or not this is a reasonable approach and
Simon Laughlin has said that we need a good hypothesis. I would argue that
Denis Noble already has a very good hypothesis about how the heart works. 1
would also argue that Denis has started at the molecular level. For example, he
has begun with the channels and has modelled the action potential of a
ventricular cell. Then, of course, the problem is to describe how such cells
interact with each other in the intact heart, as Denis Noble has described.
Unlike the experimental approach, which is top—down, it seems that modelling
has to go from the bottom—up.

Noble: 1 would add that the choice of the formalism for each of those proteins
was determined by what they were going to be used for in the physiological model.
Let me give one example: when we modelled the Na*/Ca?* exchanger, we
concentrated on getting the voltage and ion dependence of the flux of that
exchanger right. At the same time, there was a group in Duke University
publishing a minimal model of the Na*/Ca?" exchange. It represented around
40 reactions! It was never used by anyone else. This illustrates that there still
has to be a functional viewpoint, and the maths that we chose constrained what
we could then do with the model. This, in turn, was constrained by the
physiology.

Sejnowski: This is something that is informing all of these choices: the
physiology. This can occur at many different levels: the organ, the cell or even
the channel. We have to be sensitive to what is really important. Casey Cole
invented the voltage clamp, and taught Hodgkin how to use it. Cole had a theory
for the action potential that was based on adding an inductance to the RC circuit.
Once he started down this path, he ended up going in the wrong direction.
Hodgkin and Huxley wrote down their kinetic equations not as a first choice, but
as a fall-back, because they wanted to have a biophysical model. They ended up just
fitting a bunch of equations which they felt was simply a phenomenological model,
In retrospect, these equations fit very well with the kinetics of ionic channels. Two
different models: one led down a dead end, the other to a highly successful
description of excitable cells.
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Abstract. Nervous system development and plasticity are regulated by neural impulse
activity, but it is not well understood how the pattern of action potential firing could
regulate the expression of genes responsible for long-term adaptive responses in the
nervous system. Studies on mouse sensory neurons in cell cultutes equipped with
stimulating electrodes show that specific genes can be regulated by different patterns of
action potentials, and that the temporal dynamics of intracellular signalling cascades are
critical in decoding and integrating information contained in the pattern of neural
impulse activity. Functional consequences include effects on neurite outgrowth, cell
adhesion, synaptic plasticity and axon—glial interactions. Signalling pathways involving
Ca?*, CaM KII, MAPK and CREB are particularly important in coupling action potential
firing to the transcriptional regulation of both neurons and glia, and in the conversion of
short-term to long-term memory. Action potentials activate multiple convergent and
divergent pathways, and the complex network properties of intracellular signalling and
transcriptional regulatory mechanisms contribute to spike frequency decoding.
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Development and plasticity of the nervous system are regulated by neural impulse
activity, which encodes information in the temporal pattern of action potentials. If
persistent changes in nervous system structure and function are to result from
neural impulse activity, regulation of gene expression is likely to be involved.
This implies that gene expression must be regulated by the temporal pattern of
action potential firing, not simply the presence or absence of activity. In contrast
to what is known about temporal coding in neural circuits, much less is known of
how information contained in the temporal pattern of membrane depolarization is
transduced and integrated within the neuron to produce an approptiate
transcriptional response in a specific gene.

160
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FIG. 1. Preparation for studying the effect of action potential firing patterns on intracellular
signalling and gene expression in mammalian neurons. DRG neurons from fetal mice are
cultured in multicompartment cell culture chambers equipped with platinum electrodes for
electrical stimulation (Fields et al 1992). Neurons are stimulated to fire action potentials at
different frequencies and in different patterns, and Ca®" imaging and molecular techniques are
used to monitor responses in signalling pathways and gene expression.

Our aim has been to explore the hypothesis that transcription of specific genes
could be regulated by the temporal pattern of action potential firing. In pursuing
this question, we were interested in identifying genes that could have important
structural and functional effects on the nervous system. Secondly, we wished to
determine whether structural and functional responses relevant to nervous
system development and plasticity could be regulated by appropriate patterns of
action potential firing. Finally, intracellular signalling mechanisms that could
activate specific genes by appropriate action potential firing patterns were
investigated.

To investigate these questions, we developed a biological model system that
allows control of the input function (action potential firing pattern) and a
method to monitor the output function (second messenger dynamics, kinase
activity and gene expression) (Fields et al 1992). This is a preparation of mouse
dorsal root ganglion (DRG) neurons cultured in a multicompartment cell culture
chamber equipped with electrodes for extracellular stimulation (Fig. 1). These
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neurons offer several advantages for these studies: (1) they do not form synapses in
culture, (2) they lack spontaneous impulse activity, and (3) they respond to brief
electrical stimulation with a single action potential. These features allow the
frequency and pattern of action potential firing to be controlled precisely and
indefinitely in the incubator. Furthermore, direct membrane depolarization
activates a much simpler intracellular signalling cascade than would be evoked
by synaptic stimulation, with the attendant release of neurotransmitters and
neuromodulators in a synaptic network of excitatory and inhibitory
connections.

Using this preparation we have demonstrated functional effects of action
potentials on a wide range of developmental phenomena, including growth cone
motility (Fields et al 1990, 1993), synaptic plasticity (Nelson et al 1989, Fields et al
1991), Ca?* channel expression (Li et al 1996), cell—cell adhesion (Itoh et al 1995,
1997), axon fasciculation and defasciculation (Itoh et al 1995), neuron—glial
interactions (Stevens & Fields 2000), myelination (Stevens et al 1998) and cell
proliferation (Stevens & Fields 2000). In each case, the frequency and pattern of
action potentials have been investigated, and in most cases the pattern of action
potential firing is an important factor in the functional response.

Regulation of c-fos by action potential firing pattern

The immediate early gene c-fos codes a transcription factor that binds to AP-1
recognition sites in the promoter region of other genes, and thereby regulates
long-term adaptive responses to relatively brief physiological stimuli (Sheng et al
1990). Transcription of this gene is rapidly induced and the biochemical and
molecular mechanisms regulating its transcription are understood in detail. By
means of a combination of electrophysiology, Ca?* imaging and molecular
biological methods, the stimulus transcription pathway has been traced from
action potentials through Ca?* fluxes, to the protein kinases and transcription
factors regulating transcription of the c-fos gene. The temporal dynamics of steps
along the signalling pathway have been quantified, and the extent to which
temporal dynamics, spatial heterogeneity in Ca?" signalling or levels of
cytoplasmic Ca?* can confer specificity between stimulus and response has been
examined. The results emphasized the importance of the dynamic properties of
intracellular signalling cascades working as a complex system to provide
specificity between stimulus and response.

Expression of c-fos increases as a non-monotonic function of action potential
frequency (Sheng et al 1993). Surprisingly low frequencies of action potentials
are sufficient to induce transcription of this gene. Expression of c-fos increases
significantly in response to one action potential delivered every 10s (0.1 Hz) for
30 min. Near maximal levels of c-fos mRNA are reached after delivering 1 action
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potential per second (1 Hz), with minimal further increase in response to higher
frequency stimulation.

Delivering the same number of action potentials (180) in a 30 min period results
in very different levels of c-fos expression, depending upon how bursts of action
potentials are patterned over time (Fig. 2). Delivering 180 action potentials in a
single 18 burst at 10 Hz was not effective in stimulating transcription, but
delivering regular short 0.6s bursts (6 action potentials at 10 Hz) every minute
was more effective than constant frequency stimulation at 0.1 Hz (Fig. 2).
However, longer bursts of action potentials at 10Hz (1.2s or 12 action
potentials/burst) delivered at longer inter-burst intervals (every 2 min), was also
ineffective in stimulating transcription of this gene. Interestingly, a different
gene, nur77 showed a different pattern of sensitivity to these stimuli (Sheng et al
1993). The results indicate that individual genes can be regulated by different
patterns of action potentials, and that the temporal pattern of action potentials
can be a more critical factor than the amount of stimulation (number of action
potentials in a burst or the total number of action potentials delivered).

The signal transduction cascade by which membrane depolarization activates
c-fos transcription has been characterized in detail. Depolarization causes an
influx of extracellular Ca?*, which activates Ca®*-dependent kinases that carry
the signals to the nucleus via a cascade of reactions ending in the
phosphorylation of transctription factors bound to regulatory sequences in the
promoter region of the gene (Fig. 3). Differences in intracellular Ca®*
concentration produced by different action potential firing patterns might provide
specificity in signalling by activating appropriate enzymes based on their
individual Ca?* affinities. However, a simple relation between the concentration
of intracellular Ca?* and gene expression appears unable to account for the
response of c-fos to these different action potential patterns. The results of Ca®*
imaging in neurons stimulated with these action potential patterns showed that
gene expression was not dependent on a sustained increase in intracellular Ca?*
(Sheng et al 1993). All the stimuli produced only a transient increase in
intracellular Ca?* that returned to baseline within a few seconds of a stimulus
burst. Secondly, gene expression in this case is not easily explained by the
hypothesis that transcription depends upon reaching a patticular Ca®*
concentration threshold, because a large increase in intracellular Ca?* was not
necessary to stimulate gene transcription, and in some instances was ineffective
in doing so (e.g. bursts of 12 action potentials repeated at 2min intervals).
Conversely, the smallest Ca?" transient that could be induced— that
accompanying a single action potential (which produces only a 20nM brief
Ca?* transient)— was effective in activating transcription when repeated at 10s
intervals. In contrast, two stimulus patterns producing the largest increase in
Ca’* (bursts of 12 action potentials repeated at 2min intervals, or 180 action
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FIG. 2. The relationship between action potential firing pattern, intracellular Ca?*
concentration, and levels of mRNA for the gene c-fos was investigated in DRG neurons in
multicompartment cell cultures. When neurons were stimulated to fire 180 action potentials in
a 30 min period, we found that short bursts of action potentials every minute (b) were more
effective in activating c-fos transcription than the same number of action potentials delivered in
longer bursts, but repeated at 2 minute intervals (c). Fura-2 measurements of the intracellular
Ca** transients evoked by action potential firing in these different patterns, show that neither
high levels of intracellular Ca** nor prolonged elevation of intracellular Ca®" are necessary to
activate c-fos transcription. Extremely low frequency stimulation (0.1 Hz) produces a
significant increase in c-fos expression (a) although this produces only a minimal change in
intracellular Ca®* concentration. A similar relation holds for c-fos expression in response to 540
action potentials grouped in longer duration bursts (d). The results suggest that the temporal
dynamics of second messenger generation, not only peak or steady-state concentration levels, are
critical in understanding how neural impulse firing patterns activate transcription of specific
genes. Adapted from Fields (1996) and Fields et al (1997) with permission.
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potentials at 10 Hz for 18s), were not as effective as short bursts of action
potentials (0.6's) repeated at 1 min intervals.

Expression of c-fos was inversely correlated with the interval of time between
bursts of action potentials, and this has been confirmed in a larger series of
stimulus patterns using longer duration bursts that raise Ca®* to relatively equal
peak levels (1.8-9s bursts, repeated at 1-5min intervals) (Fig. 2) (Fields et al
1997). The results indicate that gene expression is not necessarily a function of
the Ca®* concentration dynamics; the temporal dynamics of intracellular Ca?*
concentration are an important factor. This conclusion is supported by similar
findings in non-neuronal cells, where the temporal dynamics of Ca?* oscillations
(Dolmetsch et al 1998, Li et al 1998) or pulsatile hormone secretion have important
functional consequences (Novartis Foundation 2000, Schofl et al 1993). Studies on
frog spinal cord neurons during development show a relation between the
frequency of spontaneous Ca®" transients and maturation of K* channels (Gu &

Spitzer 1995).

CaMKII autophosphorylation as a
function of action potential frequency

The next step in signalling from action potentials is the activation of Ca?*-
dependent protein kinases, such as Ca?>*—calmodulin-activated protein kinase
type II (CaMKII). It has been proposed that this enzyme could provide a
mechanism for encoding Ca®?" spike frequency (Hanson et al 1994). High-
frequency stimulation promotes autophosphotryaltion of CaMKII at Thr286 and
subsequent CaM trapping (Hanson et al 1994), which sustains activation of the
enzyme in the absence of Ca". This could decode different action potential firing
rates into different levels of sustained kinase activity (Meyer et al 1992).
Experiments on purified alpha-CaMKII subjected to pulses of Ca’*-containing
solutions 7z vitro have demonstrated this behaviour and revealed several factors
that modulate the frequency response of the enzyme (De Koninck & Schulman
1998). Among these are the duration of the individual Ca?* pulses, the level of
autophosphotylation of the enzyme prior to stimulation with Ca®" pulses, and
the particular isoform of the enzyme. In addition to these factors, phosphatase
activity inside cells would be expected to regulate the frequency response
(Dupont & Goldbeter 1992). Measurements of Ca>" dynamics induced by action
potentials in DRG neurons indicate that Ca?* transients are much longer than those
that can result in effective frequency-dependent activation of the enzyme
(Eshete & Fields 1999). In addition, the isoforms of CaMKII in these cells, and
the high level of autophosphorylation of the enzyme prior to stimulation, predict
that the enzyme would be unable to decode action potential frequencies of
greater than 1 Hz. Direct measurements of CaMKII autonomous activity and



REGULATION OF GENE EXPRESSION BY ACTION POTENTIALS 167

0.42

0.40 -

0.38 -

0.36 -

0.34 -

0.32 1

0.30 -

0.28 -

CaMKIl autonomy ratio

0 2 4 6 8 10
Action potential frequency (Hz)

0.26

FIG. 4. Action potential firing patterns may be decoded by the autonomous activation of
CaMKII resulting from autophosphorylation of the enzyme at Thr286 (De Koninck &
Schulman 1998). However, measurements of autonomous activity of CaMKII in DRG
neurons, indicate that this enzyme fails to decode fiting patterns at frequencies of greater than
1/s. This would be expected from the high level of autophosphorylation in the basal state, the
prolonged duration of the Ca?* transients accompanying action potentials, and the predominant
isoforms of CaMKII in these neurons (Eshete & Fields 1999).

autophosphorylation confirm this prediction (Fig. 4) (Eshete & Fields 1999).
CaMKII autonomous activity may well decode action potential or intracellular
Ca?* pulse frequencies in other neurons or in specialized subcellular
compartments, but this mechanism does not fully account for the frequency-
dependent response in DRG neurons.

Spatial/temporal segregation in signalling networks

Rather than dependence upon a single signalling molecule, these data suggest that
the network of intracellular signalling pathways may operate as a complex system
to provide specificity between temporal patterns of stimulation and appropriate
cellular response (Fields 1996). In addition to CaMKII, MAPK is activated in
DRG neurons in response to action potential-induced Ca>" influx. Both of these
kinase cascades can act on transcription factors regulating c-fos transcription
(Sheng et al 1991). Our measurements indicate that CREB is phosphorylated in
DRG neurons by brief action potential stimulation (10 s at 10 Hz), and it remains
activated for prolonged periods (tens of minutes) (Fields et al 1997). These kinetics
would make CREB an excellent molecule for sustaining activation between bursts
of action potentials separated by long inter-burst intervals, but would make it a
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FIG. 5. Differences in inactivation kinetics of CREB and MAPK result in differential
activation of these two signalling pathways in response to patterned action potential
stimulation. (A) The inactivation kinetics of MAPK are much faster than the inactivation
kinetics of CREB. (B) This allows temporal summation of CREB, but not MAPK in response
to bursts of action potentials repeated at 3-5 min intervals. Neuronal responses and transcription
factors dependent on activation of MAPK would not be activated effectively in response to this
stimulus pattern. Adapted from Fields et al (1997).

poor enzyme for responding to different frequencies of action potentials, since it
could not follow rapid firing rates with high fidelity. The kinetics of MAPK differ
from CREB in that it is inactivated comparatively quickly, returning to near pre-
stimulus levels within 3-5 min (Fig. 5A). This implies that bursts of action
potentials arriving at intervals longer than 3-5 min would fail to propagate
effectively through signalling pathways involving MAPK, and our
measurements in intact DRG neurons corroborate this (Fig. 5B) (Fields et al 1997).

Ca?*-dependent signalling from action potentials
in hippocampus and glia

These intracellular signalling pathways are activated by action potentials in many
other cells in the nervous system, including the means by which action potentials
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signal to peripheral glia (Stevens & Fields 2000), and the conversion of short-term
to long-term memoty (review see Dudek & Fields 1999). Using time-lapse laser
scanning confocal microscopy, we observed Ca?* responses in cultured Schwann
cells when premyelinated DRG axons were stimulated electrically (Stevens &
Fields 2000). This axon—Schwann cell communication is mediated by the non-
synaptic release of ATP from DRG axons activating P2Y receptors on Schwann
cells, and causing release of Ca>" from intracellular stores. Further work showed
that action potential firing activated these same Ca’*-dependent signalling
pathways in the Schwann cells, including CaMKII and MAPK, to phosphorylate
CREB and stimulate transcription of the genes c-fos and 4rox24. The response
varies directly with action potential frequency, and action potential firing rates as
low as 1/s were effective. The effect of this axon—Schwann cell signalling was to
regulate differentiation and proliferation of the Schwann cells (Stevens & Fields
2000).

The gene product responsible for this conversion of short-term to long-term
memory is unknown, but work from several laboratories have implicated Ca®",
CaMKII (Mayford et al 1995), MAPK (English & Sweatt 1997) and CREB
phosphorylation (Bourtchuladze et al 1994, Yin et al 1995) in the signalling
pathway activating transcription of the gene or genes responsible for long-term
memory. It is not known, however, how these signals reach the nucleus (Frey &
Motris 1997, Dudek & Fields 1999). A number of signalling molecules have been
proposed that could carry signals from the subsynaptic membrane to the nucleus,
including calmodulin (Deisseroth et al 1998), Ca?*, BDNF and NF-kB (review by
Suzuki 1996). We find that by blocking all excitatory synaptic transmission and
inducing somatic action potentials in CA1 hippocampal neurons, that CREB
phosphorylation and transcription of a gene associated with induction of long-term
potentiation (L'TP), 3//268, could bestimulated by somaticaction potentials without
the need for a synapse—nucleus signalling molecule (Dudek & Fields 1998). This
suggests that Ca®* influx through somatic voltage-sensitive Ca®" channels can
trigger CREB-dependent gene expression necessary for long-term memory.

MAPK in these neurons could be activated by either LTP-inducing stimulation
(theta-bursts at high frequency) or low frequency stimulation (3-10 Hz), which is
not typically effective in inducing L'TP. However, different Ca?*-dependent
signalling pathways were activated by these two stimulus paradigms. Ca?* influx
through the L-type Ca?* channels or postsynaptic NMDA receptorts is sufficient to
allow phosphorylation of MAPK by LTP-inducing stimuli, but Ca?* influx
through NMDA receptors alone was primarily responsible for MAPK activation
in response to the low-frequency stimulus protocol (Dudek & Fields 2001). This
indicates that the frequency of synaptic input to postsynaptic CA1 hippocampal
neurons is temporally and spatially resolved to activate distinct intracellular
signalling pathways known to regulate gene expression and synaptic plasticity.
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Late-response genes and functional effects
of patterned action potential firing

The use of gene arrays for expression profiling is revealing that a large number of
genes can be expressed in response to a single stimulus, such as growth factor
stimulation (Fanbrough et al 1999), and our preliminary observations in DRG
neurons in response to action potential stimulation are consistent with this.
Thus, the complex network behaviour that contributes to specificity in
cytoplasmic signalling enzymes (Bhalla & Iyengar 1999, Weng et al 1999)
appears to operate in transcriptional regulation in the nucleus as well (Robertson
etal 1995, McAdams & Shapiro 1995). Some of the genes activated by appropriate
action potential firing patterns would be expected to have major effects on nervous
system development and plasticity. Expression of the cell adhesion molecule L1 is
down-regulated in DRG neurons by 0.1 Hz stimulation, but 1 Hz stimulation is
without effect (Itoh et al 1995). In contrast, N-cadherin mRNA is down-
regulated by both 0.1 and 1 Hz stimulation, whereas NCAM-180 expression is
not altered (Itoh et al 1997). These changes are associated with functional effects
on the adhesion of axons into bundles (Itoh et al 1995). This could be important in
regulating axon pathfinding and synaptogenesis in late stages of development.

Conclusion

Intracellular signalling cascades are characterized by multiple points of interaction,
including cross- talk, convergence, divergence, synergism etc. This research invitro
supports the view that these points of interaction are necessary to allow
intracellular signalling to function as a network. Differences in temporal
dynamics of activation and inactivation of different signalling pathways allow
appropriate patterns of temporally varying stimulation from action potentials to
propagate preferentially through signalling pathways with favourable kinetics,
thus providing one mechanism for stimulus—response specificity. Spatial
heterogeneity in signalling reactions within neurons provides another important
mechanism for stimulus—response specificity (e.g. Hardingham et al 1997).
Differences in concentration of second messengers can be less important than the
temporal dynamics when the cell is not in a saturating, steady-state stimulus
condition, such as the normal physiological state. Rather than dependence on
second messenger concentration or the properties of a single signalling molecule,
the complex network properties of signalling reactions and transcriptional
responses provide specificity and resiliency of neuronal responses to changing
conditions and environments.



REGULATION OF GENE EXPRESSION BY ACTION POTENTIALS 171

References

Bhalla US, Iyengar R 1999 Emergent properties of networks of biological signaling pathways.
Science 283:381-387

Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva A ] 1994 Deficient long-term
memory in mice with a targeted mutation of the cAMP-responsive element-binding protein.
Cell 79:59-68

De Koninck P, Schulman H 1998 Sensitivity of CaM kinase II to the frequency of Ca?"
oscillations. Science 279:227-230

Deisseroth K, Heist EK, Tsien RW 1998 Translocation of calmodulin to the nucleus supports
CREB phosphorylation in hippocampal neurons. Nature 392:198-202

Dolmetsch R, Xu K, Lewis R 1998 Calcium oscillations increase the efficiency and specificity of
gene expression. Nature 392:933-936

Dudek SM, Fields RD 1998 Somatic action potentials are sufficient for rescue of tagged synapses.
Soc Neurosci Abstr 24:1074

Dudek SM, Fields RD 1999 Gene expression in hippocampal long-term potentiation.
Neuroscientist 5:275-279

Dudek SM, Fields RD 2001 Mitogen-activated protein kinase/extracellular signal-regulated
kinase activation in somatodendritic compartments: roles of action potentials, frequency,
and mode of calcium entry. ] Neurosci 21:RC122

Dupont G, Goldbeter A 1992 Protein phosphoryaltion driven by intracellular calcium
oscillations: a kinetic analysis. Biophys Chem 42:257-270

English JD, Sweatt D 1997 A requirement for the mitogen-activated protein kinase cascade in
hippocampal long term potentiation. | Biol Chem 272:19103-19106

HEshete F, Fields RD 1999 Spike frequency decoding and autonomous activation of CaM kinase
IIin DRG neurons. Soc Neurosci Abstr 25:1192

Fanbrough D, McClure K, Kazlauskas A, Lander ES 1999 Diverse signaling pathways activated
by growth factor receptors induce broadly overlapping, rather than independent, sets of
genes. Cell 97:727-741

Fields RD 1996 Signaling from neural impulses to genes. Neuroscientist 2:315-325

Fields RD, Neale EA, Nelson PG 1990 Effects of patterned electrical activity on neurite
outgrowth from mouse sensory neurons. ] Neurosci 10:2950-2964

Fields RD, Yu C, Nelson PG 1991 Calcium, network activity, and the role of NMDA channels in
synaptic plasticity 7z vitro. | Neurosci 11:134-146

Fields RD, Yu C, Neale EA, Nelson PG 1992 Recording chambers in cell culture. In:
Kettenmann H, Grantyn R (eds) Electrophysiological methods for iz vitro studies in
vertebrate neurobiology. Liss, New York, p 67-76

Fields RD, Guthrie PG, Russell JT, Kater SB, Malhotra BS, Nelson PG 1993 Accommodation
of mouse DRG growth cones to electrically induced collapse: kinetic analysis of calcium
transients and set-point theory. ] Neurobiol 24:1080-1098

Fields RD, Eshete F, Stevens B, Itoh K 1997 Action potential-dependent regulation of gene
expression: temporal specificity in Ca**, cAMP-responsive element binding proteins, and
mitogen-activated protein kinase signaling. ] Neurosci 17:7252-7266

Frey U, Morris RGM 1997 Synaptic tagging and long-term potentiation. Nature 385:533-536

Gu X, Spitzer NC 1995 Distinct aspects of neuronal differentiation are encoded by frequency of
spontaneous Ca?* transients. Nature 375:784-787

Hanson PI, Meyer T, Stryer L, Schulman H 1994 Dual role of calmodulin in
autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium
signals. Neuron 12:943-956

Hardingham GE, Chawla S, Johnson CM, Bading H 1997 Distinct functions of nuclear and
cytoplasmic calicum in the control of gene expression. Nature 385:260-265



172 DISCUSSION

Itoh K, Stevens B, Schachner M, Fields RD 1995 Regulated expression of the neural cell
adhesion molecule L1 by specific patterns of neural impulses. Science 270:1369-1372

Itoh K, Ozaki M, Stevens B, Fields RD 1997 Activity-dependent regulation of N-cadherin in
DRG neurons: differential regulation of N-cadherin, NCAM, and L1 by distinct patterns of
action potentials. | Neurobiol 33:735-748

LiM, Jia M, Fields RD, Nelson PG 1996 Modulation of calcium currents by electrical activity. |
Neurophysiol 76:2595-2607

Li WH, Llopis J, Whitney M, Zlokarnik G, Tsien RW 1998 Cell-permeant caged InsP; ester
shows that Ca?* spike frequency can optimize gene expression. Nature 392:936-941

Mayford M, Wang J, Kandel ER, O’Dell TJ 1995 CaMKII regulates the frequency-response
function of hippocampal synapses for the production of both LTD and LTP. Cell 81:891-904

McAdams HH, Shapiro L 1995 Circuit simulation of genetic networks. Science 269:650-656

Meyer T, Hanson P, Stryer L, Schulman H 1992 Calmodulin trapping by calicum-calmodulin-
dependent protein kinase. Science 256:1199-1202

Nelson PG, Yu C, Fields RD, Neale EA 1989 Synaptic connections 7z vitro: modulation of
number and efficacy by electrical activity. Science 244:585-587

Novartis Foundation 2000 Mechanisms and biological significance of pulsatile hormone
secretion. Wiley, Chichester (Novartis Found Symp 227)

Robertson LM, Ketppola TK, Vendrell M et al 1995 Regulation of c-fos expression in transgenic
mice requires multiple interdependent transcriptional control elements. Neuron 14:241-252

Schofl C, Brabant G, Hesch RD, von zur Muhlen A, Cobbold PH, Cuthbertson KS 1993
Temporal patterns of alpha 1-receptor stimulation regulate amplitude and frequency of
calcium transients. Am ] Physiol 265:C1030-C1036

Sheng HZ, Fields RD, Nelson PG 1993 Specific regulation of immediate early genes by
patterned neuronal activity. ] Neurosci Res 35:459-467

Sheng M, McFadden G, Greenberg ME 1990 Membrane depolarization and calcium induce c-
fos transcription via phosphorylation of transcription factor CREB. Neuron 4:571-582

Sheng M, Thompson MA, Greenberg ME 1991 CREB: a Ca*'-regulated transcription factor
phosphorylated by calmodulin-dependent kinases. Science 252:1427-1430

Stevens B, Fields RD 2000 Response of Schwann cells to action potentials in development.
Science 287:2267-2271

Stevens B, Tanner S, Fields RD 1998 Control of myelination by specific patterns of neural
impulses. ] Neurosci 15:9303-9311

Suzuki T 1996 Messengers from the synapses to the nucleus (MSNs) that establish late phase of
long-term potentiation (LTP) and long-term memory. Neurosci Res 25:1-6

Weng G, Bhalla US, Iyengar 1999 Complexity in biological signaling systems. Science 284:92-96

Yin JC, Del Vecchio M, Zhou H, Tully T 1995 CREB as a memory modulator: induced
expression of a dCREB2 active isoform enhances long-term memory in Drosophila. Cell
7:107-115

DISCUSSION

Noble: Did 1 understand correctly that you said that in investigating the
messaging from synapses to the nucleus, it was not necessary that there should be
such transmission, because you can show that everything can be accounted for by
Ca?* signals that arise from full scale action potentials down the axon?

Fields: Yes.
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Noble: 1 now want to unpack why you said this was not necessary but it might
still happen. One reason why it might still happen is that you might want the
specificity. This leads me to my question. The trouble with discharge of the
whole axon is that this is an integrative activity of a large number of synapses.
This doesn’t discriminate between different inputs. If you want to have
complexity that is to do with the nature of the input, you would want it to be the
case that it matters which synapses have been activated. Was this the reason for
your hesitation?

Fields: No. In fact, I don’t think that is necessarily the case. The labelling
specificity is determined by synaptic stimulation. Frey & Morris (1997) showed
that even brief synaptic stimulation tags that synapse (The brief stimulation
referred to hete is one that is sufficient to induce e-L'TP). But the gene product
could be induced by somatic depolarization turning on CREB. This brings us
back to what Hebb proposed originally in his rule for synaptic modification: that
it was the firing of the postsynaptic neuron that provided the necessary condition
for strengthening the coincidentally active synapse. It may be that short-term
plasticity does not require a spike, but it may be that in the long-term, it is when
the neuron fires that there is the appropriate condition to induce a permanent
change in synaptic efficacy. The reason I hesitated was only that we don’t yet
have experimental evidence to exclude the possibility that late LTP (I-LTP) can
occur without a somatic spike. It is very hard to exclude this, because it would
require 10 h intracellular recordings.

Noble: But there could be interaction between changes in gene expression due to
global activity and the preexisting synaptic changes due to specific synapses acting.
Is that possible?

Fields: Yes.

Sejnowski: When you used antidromic stimulation, what was the pattern?

Fields: The pattern we used for antidromic stimulation was the same pattern
delivered synaptically to induce I-LTP. We are trying to determine the pattern of
antidromic stimulation necessary to convert e-L'TP to I-LTP. In a way, the pattern
of afferent stimulation required to induce L'TP in experimental preparations is
necessary to recruit massive activation of multiple synaptic inputs to raise the
neuron above spike threshold. So it may not be necessary to make the cell body
fire at 0 burst patterns of action potentials.

Sejnowski: If you stimulate synaptically with 0 bursts, you don’t necessarily get a
0 burst response in the action potentials, because you are recruiting inhibitory
networks that hyperpolarize the cell. It is going to be complicated to understand
therelationship of the presynapticand postsynapticsignalsand what they contribute.

Fields: There is a lot of wotk to be done, but you might also argue the extreme
case, that we only need one somatic action potential, if that were enough to turn on
CREB.
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Iyengar: We are doing some work on genes that has led us to a real block. Using
the L'TP model, we have found that inhibition of MAP kinase blocks increases in
CaMKIIlevel. Then we went ahead and did a fancy experiment with the gene array.
It turns out that a number of genes that have been previously described show up.
The most interesting thing is that CaMK doesn’t show up at all.

Sejnowski: This may be a way to understand the complexity of LTP. Now that we
know that in normal L'TP there are cascades of many different genes that are
regulating each other, it is likely that a lot of the confusion in the L'TP field may
arise from different experimental procedures playing out the different
combinations of reactions, leading to different outcomes.

Berridge: 1 want to unpack this a little further with regard to the role of CREB
phosphorylation in setting the stage to consolidate these synapses. The idea is that
you activate CREB and the transcriptional products start drifting out into the
dendritic tree, and from what I understood you were trying to say, they go to
those synapses that have been activated in order to perform some consolidation
process. In effect, the cell is now in a sensitive state ready for consolidation. What
happens if you now activate another set of synapses? Will they use the
information from a previous simulation to facilitate the consolidation event? If
you go back to Hebb, he was saying that what we really need is coincidence
between the post-synaptic and pre-synaptic processes. This then provides a
unique tag on that synapse. You have to think a little more deeply about
exactly how the transcription event functions to consolidate those synapses that
have witnessed the unique Hebbian event. I don’t see this connection in what you
have been saying. It seems to me that this is a critical factor that one has to bear in
mind.

Fields: Hebb was very careful in what he said. He did say something to the extent
that the necessary condition for increasing the efficacy of a neuronal connection
was provided when the presynaptic neuron repeatedly and persistently took part in
Jiring the postsynaptic cell. In other words, he didn’t really define the temporal
window. There could be an as yet undefined temporal window with regard to
what is meant by ‘coincidence’ of pre- and postsynaptic activation for different
types of synaptic changes in strength. This temporal window may be different for
the induction of LTP versus the consolidation into long-term synaptic
potentiation. Induction of e-L'TP does not require a somatic action potential, but
perhaps, as Hebb originally proposed and our data suggest, the long-lasting form
of LTP might.

Iyengar: The Frey & Morris (1997) paper is quite important for that. If the MAP
kinase starts off at the synapse that was activated, and is going to the nucleus to get
CREB, along the way it can tag the tracks. Let’s assume that CREB activates the
expression and synthesis of TPA, and TPA needs to go to that activated synapse.
Now you have a synapse tagged by MAPIC so that even though TPA is all over the
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soma you can track it in one direction. In this respect you could still have TPA
accumulate in a dendrite-specific manner, if that is what MAP kinase does.

Berridge: Then how does this work in Doug Fields’ experiment with the
antidromic stimulation?

Iyengar: 1 don’t know.

Fields: 1t is also interesting that you can have MAP kinase turned on with a
stimulus that doesn’t induce L'TP.

Iyengar: Sure, isoprotenal alone will turn on MAP kinase very well in neurons,
and cAMP does not induce LTP.

Sejnowski: It may be that more than one signal pathway needs to be activated.

Dolmetsch: 1 was under the impression that people could induce long-lasting
LTP by just depolarizing a post-synaptic cell, without it firing an action potential.
If you pair that with stimulation, this is sufficient to induce L'TP. Is that correct?

Fields: You are correct with regard to the induction of LTP, but those
experiments are short-term: certainly less than an hour.

Dolmetsch: 1 am trying to reconcile your results with a couple of papers from
Dick Tsien’s laboratory (Mermelstein et al 2000, Deisseroth et al 1996). He says
that CREB is mostly phosphorylated by synaptic input and not by non-synaptic
input, and the reason for this is that L-type channels which are required ate highly
tuned to the specific inputs. If you just fire action potentials, this doesn’t allow
enough time for L-type channels to open, whereas if you have EPSPs it does.

Fields: Dr Tsien’s work was done in dissociated hippocampal cultures, where
this is probably the case, but it is not true in slices.

Segel: Have you made a model that is a reasonable representation of the network
that shows how the inter-beat interval could work?

Fields: We are beginning to work on mathematical models for this. It is probably
due to the differences in kinetics of the CREB and MAP kinase pathways. The
transcription factors that regulate c-fos involve both DNA regulatory elements
that are preferentially activated by MAP kinase and CREB (the SRE and CRE).
Robertson and colleagues in the Curran and Morgan labs have shown that a
combination of all these transcription factors is necessary to bring about high
levels of transcription of c-fos (Robertson et al 1995). It seems reasonable to us
that those patterns of stimulation that bring about the maximal activation of
both MAPK and CREB pathways will activate a combination of these DNA
binding elements and lead to higher levels of transcription. Our results are
compatible with this.

Segel: Is there a functional reason why you would try to build a device that works
this way?

Fields: 1 think so. To regulate a genetic event in response to neural activity you
would not want to have a system that is sensitive to minute-to-minute changes in
neural activity. The genome can’t respond on second or millisecond intervals.
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Therefore it makes sense to have a system that looks at the timing of a burst, not
just the frequency of action potentials or how much second messenger is generated,
but how often the cell fires. The inter-burst interval is a better measure of the
overall pattern of activity in a given period.

Berridge: 1 have another comment with regard to complexity. I am intrigued by
the fact that a lot of memory consolidation takes place during sleep. We are always
trying to associate the immediate synaptic events with gene activation. I don’t
know how strong the evidence is that you have to have both events occurring at
the same time. It is possible that the synapses are tagged when the memory is
acquired, but that the consolidation process may occur during sleep when the
neuronal cells go off-line. Thus there may be a large temporal sepatration between
memory acquisition and consolidation.

Sejnowski: This should be prefaced with the comment that no one has ever
demonstrated that real learning and memory has been caused by LTP, except
perhaps in the amygdala during fear conditioning (e.g. Maren 1999). In terms of
behaviour, we know a few facts. One of them is that you can interfere with
consolidation if you interfere with certain phases of sleep.

Berridge: This is why I am intrigued by the idea that these two events could be
separated in time. In all our models we try to associate them, but this may not be the
case.

Sejnowski: The problem with learning on-line is that the same cells that are busy
processing sensory input and conditioning motor input are the ones that have
ultimately to be reorganized. There are many reasons for why it would be useful
to separate the period when structural changes occur from the period when
learning takes place.
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Abstract. Neural coding in the retina and lamina of fly compound eyes is amenable to
detailed anatomical, physiological and theoretical analysis. This approach shows how
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quickly and efficiently.

2001 Complexity in biological information processing. Wiley, Chichester ( Novartis Foundation
Symposium 239) p 177192

Brains are animals’ evolutionary responses to demands that are as basic to life as the
requirement for energy; the need to collect, transmit, process and store
information. Thus, in common with systems that structure and organize cells, a
nervous system will recognize signals, detect patterns, co-ordinate inputs and
outputs, generate patterns in space and time, and store information. Nervous
systems elaborate and extend a set of molecular mechanisms for intra- and
intercellular communication that enable living systems to organize components
and achieve homeostasis. Given these similarities in mechanism and function,
nervous systems must typify some aspects of complexity in biological signalling.
Because nervous systems are specialised for speed, efficiency and wide-scale
integration, some of the molecular and cellular constraints that determine
signalling and computation in complex systems will be obvious. This facility is
illustrated by work on fly retina.
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Coding in the fly retina

The retinas of the blowfly Ca//iphora and the housefly Musca fulfil requirements
that are necessary for a proper understanding of a signalling system: well-defined
structures, well defined functions, and the ability to monitor signals accurately in
intact systems, in space and time (Laughlin 1994). Each optical module
(ommatidium) of the compound eye defines an image pixel. A well-defined
group of photoreceptors and interneurons (Fig. 1) code achromatic contrast at
each pixel (Hardie 1986, Strausfeld 1989). Photoreceptors R1-6 drive the two
large monopolar cells (LMCs) via an array of 1320 chemical synapses (Nicol &
Meinertzhagen 1982). As the eye moves across an image, the contrast in each
pixel changes and this is represented by continuous changes in the membrane
potential, first in the photoreceptor, then in the LMC (Fig. 1). The signal is
enhanced as it passes from photoreceptor to LMC. High-pass filtering, a product
of transient responses, removes the standing background signal. The fluctuations
about the background represent objects of different contrast, and these fluctuations
are amplified to fill the LMC response range (Fig. 1). Because we can make stable
intracellular recordings from these cells in the intact animal, this straightforward
coding process has been rigorously analysed. Experiment and theory have revealed
fundamental principles of coding applicable to cell signalling systems.

Coding information

The six photoreceptors and two LMCs maximize the amount of information
captured from photons and transmitted to the brain (Laughlin 1994). More bits
means more grey levels per pixel and a better view for the fly. Bits quantify the
amount that a fly can learn about the world (Ricke et al 1997). The information
rate, I bits/s, is given by Shannon’s formula for analogue signals

b
()
I = |log, [l —i——} df
J N(f)

where S(f) and N(f) are the power spectra of signal and noise respectively, fis
frequency, and the bandwidth, 4, is the highest frequency coded (Shannon 1949).
Note that the information rate increases when the response is faster (4 increases)
and when it is more reliable (the signal to noise ratio term, S( /)/IN( /), increases).
To measure the bit rate, I, we drive photoreceptors and LMCs with random
(Gaussian white noise) modulations in stimulus contrast (Fig. 1) that resemble
the natural inputs measured with a model fly’s eye (de Ruyter van Steveninck &
Laughlin 1996a). The signals and noise recorded from photoreceptors and LMCs
are sufficiently linear and Gaussian to satisfy the conditions of Shannon’s formula.
In daylight, a single photoreceptor codes 1000 bits/s. The LMC transmits more,
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1600 bits/s, because it averages the signals from the six identical photoreceptors.
From the number of synapses and the synaptic transfer function, we calculate that
one chemical synapse transmits 55 bits/s. This is much more than the LMC bit rate
divided by the number of synapses driving the LMC, because all synapses are
carrying the same signal and this introduces massive redundancy. Averaging
over the output of many synapses is a simple way of achieving a high bit rate in
the face of synaptic noise. We presume that the fly uses this simple inefficient
method because the efficient option, dividing the photoreceptor signal into
independent components that can be passed through separate synapses, is too
complicated to be implemented. The information rates in a photoreceptor and an
LMCare two to three times those reported for axons transmitting action potentials
(Rieke et al 1997), suggesting that simple and direct analogue codes can carry more
information than pulsatile codes, at least over relatively short distances (de Ruyter
van Steveninck & Laughlin 1996a).

Optimization identifies the constraints to signalling

The application of information theory to this system shows that coding is
optimized to maximize bit rate (Laughlin 1981, van Hateren 1992a).
Optimization confirms that the principal function of these cells is to maximise the
number of bits acquired by the eye and that bit rate is a valid quantitative index of
performance. The analysis of optimization defines the constraints that limit
transmission, and demonstrates codes that minimize their effects. The constraints
are noise, response range, bandwidth and metabolic cost.

Noise is ubiquitous because cell signalling involves diffusion and stochastic
events (e.g. channel activation, molecular collision, the binding of ligand to
receptor, vesicular release) (Berg 1983, Laughlin 1989). Noise can be reduced in a
number of ways. Signalling complexes eliminate diffusion and chance collision,
and force a stricter relationship between the number of events at the input
(ligand bound) and at the output (enzymatic sites activated) (Bray 1998). Driving
a system to saturation, with spikes, pulses or waves or by utilizing all the molecules
in a restricted compartment, produces responses of constant amplitude. Signalling
complexes (Montell 1998) and site saturation may contribute to the remarkable
efficiency of blowfly photoreceptors, whose inositol-1,4,5-trisphosphate (InsP3)-
based phototransduction pathway (Hardie 1996) signals almost faultlessly to
reach the limits set by photon noise (de Ruyter van Steveninck & Laughlin
1996b). In control systems, noise is reduced by negative feedback, as observed in
motor systems and gene networks (Becskei & Serrano 2000). There is also the
brute force method used by fly photoreceptors and LMCs, averaging over a
population of components carrying the same signal. Finally, noise can be
countered by boosting the signal but this raises the second constraint, saturation.
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Saturation limits signal amplitude and power and, like signals, comes in many
forms (reversal potential, maximum reaction rate, full occupancy, etc.). Because
noise divides the signal into discriminable levels, saturation limits the number of
signal levels, and hence the capacity to transmit information (note that I depends
on S(f)/IN(f) in equation 1). Information theory formulates coding procedures
that optimise coding by squeezing signals to fill this limited capacity. The two
optimizations demonstrated by LMCs involve a precise match between coding
and signal statistics.

The curve relating LMC response amplitude (mV) to stimulus strength
(contrast), follows the cumulative probability function for contrast in natural
scenes (Fig. 2). According to Information theory this match makes optimal use
of the response range by ensuring that all response levels are used equally often
(Laughlin 1981). Note that the LMCs contrast/response curve exhibits a non-
linearity commonly observed in signalling systems and this coding strategy could
be applied to receptors or enzymes by matching their dose-response curves to the
statistical distribution of input signals.

The second optimal coding procedure adapts the LMC response waveform to
the power spectra of natural inputs, as determined by natural image statistics and
photon noise (van Hateren 1992a). At low light levels the response of an LMC is
slow and monophasic to smooth out photon noise. As the light level increases the
effect of photon noise reduces. The response waveform adjusts to remain
optimum, becoming progressively faster and more biphasic (Fig. 2). By respond-
ing best to rapid and reliable changes, the LMC eliminates the redundancy
generated by optics and correlations in natural images. Note that mechanisms
that improve efficiency also increase the complexity of signalling, in this case by
making the response waveform dependent on the previous history of input.

The third constraint is bandwidth, defined by the highest transmitted frequency,
and equivalent to speed of response. LMCs make optimum use of bandwidth by
speeding up their response as the input signal becomes more teliable (Fig. 2).
Photoreceptors extend their bandwidth by reducing their membrane time
constant. Time constant is the product of capacitance and resistance. Capacitance
is generally fixed by membrane area, so to reduce their time constant
photoreceptors reduce their membrane resistance by opening potassium channels
(Weckstrom & Laughlin 1995). The resultant increase in transmembrane current
introduces the fourth constraint, metabolic cost. This energy consumption can be
equated with information.

The metabolic cost of information

Energy is required to generate the electrical signals of photoreceptors and LMCs.
The major cost is providing metabolic energy to the pumps that restore
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transmembrane ion fluxes. From biophysical measurements of ionic conductances
and membrane potentials in intact cells we estimate ionic fluxes and derive the rate
at which pumps consume ATP to maintain concentration gradients (Laughlin et al
1998). Dividing hydrolysis rate by bit rate gives a cost per bit of 7x10° ATPs in a
photoreceptor. This makes vision expensive. Pumps in photoreceptors account for
about 10% of oxygen consumption in the resting fly (Howard et al 1987). The cost
in an LMC is lower, 2x10° ATP/bit as the result of redundancy reduction during
coding, and photon noise reduction from the convergence of six photoreceptor
signals. Calculations suggest that it would be just as expensive to transmit a bit
through an LMC using an action potential. Clearly, we cannot automatically
expect that pulsatile codes will be more economical than analogue ones.

A bitis over 20 times cheaper at a synapse. This suggests an important principle:
the cost of a bit falls with bit rate (Laughlin et al 1998). Simple biophysics explains
the dependence of bit cost on rate (Laughlin et al 1998). In an analogue systems,
where signal amplitudes code information (e.g. membrane potential, ligand
concentration or numbers of active sites), the information rate, I, increases with
signal:noise ratio (SNR) and bandwidth (equation 1). To increase the SNR one
must increase the number of events, molecules or organelles carrying the same
signal. Because the SNR goes as the square root of number, and information
goes as the log of the SNR (equation 1), the costs skyrocket as the rate increases
(Fig. 3). In pulsatile signalling (spikes, Ca®" transients, waves, etc.) the cost of a
pulse is, to a first approximation, independent of rate, but cost will tend to
increase slightly with rate because infrequent pulses can carry more information
than frequent ones (Ricke et al 1997).

Metabolic cost and network complexity

Because unit costs increase with rate, it is more economical to transmit a certain
number of bits (e.g. the bits that define the signal’s accuracy and context) by
distributing these bits among a number of weak channels of low capacity. Thus if
the metabolic load of signalling is significant, distributed codes will be favoured
(Laughlin et al 1998). Combinatorial considerations greatly increase the advantage
of distributing information among weak channels. Consider 16 signalling particles
(e.g. receptors, enzymes or second messenger molecules) that are subject to noise
that goes as the square root of the number of particles. If all particles are used in the
one pathway they code four states (16/4/16 discriminable levels) but if the particles
are distributed equally among four pathways they code 16 states (each pathway
codes 4/4/4=2 levels, giving 2* combinations). The combinatorial advantage of
distributed coding is illustrated by a fine analysis of metabolically efficient neural
codes. This study demonstrates that the extent to which information should be
distributed across pathways depends on the ratio between the cost of sending a
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FIG.3. The metabolic cost per bit, expressed as ATP molecules hydrolysed, increases with the
bit rate of a signalling pathway. The relationship was obtained by modelling a neuron that is
driven by different numbers of identical synapses. Bit rate and cost rise with the number of
synapses. Costs and rates are based on empirical estimates obtained for photoreceptor—-LMC
synapses in the fly compound eye (Laughlin et al 1998).

signal along a pathway and the cost of maintaining that pathway between signals
(Levy & Baxter 1996).

Although economical, the division of signals among several pathways poses
problems. An efficient system should avoid redundancy by dividing signals into
independent components. As we have seen, a real system, such as the synapses from
photoreceptors to LMCs, does not do this, presumably because it is too
complicated. Where such division is possible the need for economy will enforce a
logical set of coding processes that, by taking into account probabilities and
context, will match coding to the structure of signals and patterns. Implementing
this logical division must increase the number of operations and components and
this will increase noise in the network. Perhaps the metabolic economies of
distributed codes and the overheads of complicated networks strike a balance
that defines the complexity of biologically relevant signalling systems?

Limits on complexity and stability imposed by noise can be countered by
reducing noise. Noise accumulates (von Neumann 1958) and obscures signals in
at least three situations, when different inputs converge, when signals pass through
several stages and when signals cycle around loops (Fig. 4), as in models of neural
motor pattern generators and circadian clocks where the build-up of noise
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FIG. 4. Noise builds up as signals pass through systems. Three configurations are illustrated,
the convergence of signals on a single element (C), passage through a series of components (S),
and passage around a cyclical system (Cyc).

seriously degrades performance (Miall 1989, Barkai & Leibler 2000). Pulsatile
coding can, in conjunction with thresholding, eliminate noise (Sarpeshkar 1998,
Laughlin et al 2000) but, as we have seen, spike codes transmit at lower rates than
analogue. Hybrid analogue/digital systems offer the best of both worlds. The
advantages of analogue computation—a rich set of primitives, flexibility, and
high information rates—are exploited to perform small sets of computations
locally. The accumulated noise is then stripped away by reducing the outcome of
the analogue computation to a digital code whose pulses are faithfully transmitted
as input to the next set of analogue processes. This hybrid system resembles cortical
neurons where analogue signals are processed locally on dendrites and then
integrated and transformed into an action potential train for transmission to the
next stage (Sarpeshkar 1998). It will be interesting to see if this idea applies to cell
signalling outside the nervous system (e.g. to Ca?* transients that are triggered by
small groups of signalling molecules).

Conclusions

We have identified three familiar constraints to cell signalling (noise, saturation
and bandwidth), measured and modelled their effects, and discovered codes that
optimize the processing of information within these constraints. These codes
could well be applicable to a variety of cell signalling systems. Theoretical and
experimental techniques are now being applied to a constraint that has previously
received little formal analysis, the metabolic cost of information. Costs are high and
scale with the amount of information to be transmitted so that a bit costs less in a
communication channel of low information capacity than in a channel of high
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capacity. This trade-off between rate and cost promotes complexity by favouring
the use of many low capacity channels; i.e. multiple signalling pathways. However,
the other constraints, particularly noise, promote simplicity because these
limitations are minimized by focusing signalling capacity on specific tasks. For
example, the analysis of coding in the fly retina has shown that the effects of
noise, saturation and bandwidth can be reduced by matching coding to the
statistical properties of signals. Thus both noise and complexity will be reduced
by matching each step in the system’s operations to the input signal, and to the
logical requirements of the network’s ultimate function, pattern processing.
Those logical operations that are common to different types of pattern processing
could be encapsulated in signalling modules (Bray 1995, Hartwell et al 1999).
Given a need for efficiency (e.g. from metabolic cost and crowding within the
cell) these trade-offs could lead to tightly organized networks, laid out so that
information flows freely and independently, yet patterned so that the necessary
contacts and transactions are made quickly and efficiently. This scenario
resembles the logical reliability of operations that von Neumann (1958) proposed
as nature’s solution to the problem of building a reliable brain from unreliable
components. The design of such networks will be determined by the logic and
statistics of the transactions being performed, and the mechanisms available from
the genome. To understand their function we must have detailed descriptions of
the processes being performed, the mechanisms being used and the statistics of
signals. In physiological parlance, an understanding of integrative function
requires that we link descriptions of anatomy and physiology to a detailed
knowledge of both behaviour and the stimuli that determine behaviour. On this
basis I suggest that we approach signalling complexity by considering pathways
tied to specific sets of functions. This appears more promising than modelling
the capabilities of an omnipotent spaghetti.
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DISCUSSION

Sejnowski: What is the difference between the amount of energy that is being
consumed when you are thinking and when you are resting?



188 DISCUSSION

Langhlin: 1 recently learnt from Ritchie & Keynes (1985) that there is a fallacy
here. If one thinks of ions traversing the membrane through channels, then the
flow of this ionic current through these tiny resistors should heat the neuron.
However Bernstein, working here in Berlin in the early 1900s, argued that this
heating is counterbalanced by the cooling produced when ions pass from a
compartment of high concentration to one of lower concentration. This cooling
is equivalent to that produced during the adiabatic expansion of a gas. Thus there is
no net heat production by current flowing across the neural membrane.
Measurements of the heat produced by an action potential reveal two
components. A small rapid pulse is associated with the change in membrane
thickness induced by the change in potential, while a large slow component is
generated by the activity of the Na"/K* exchange pump (Ritchie & Keynes 1985).

With regard to the increase in metabolic rate in the active brain, my reading of
the literature is that mental activity causes no perceptible increase in the overall
oxygen consumption of the brain. We know from functional imaging studies,
however, that there are local changes. But the people who do functional imaging
do a lot of enhancement, and the increases are actually quite small, in the region of
10%.

Sejnowski: They also don’t emphasize that when blood flow increases in one area,
it decreases in others.

Langhlin: The other thing is that there is no significant change in oxygen
consumption of the human brain during sleep. Whatever these theta rhythms are
doing, they are generating the same levels of activity.

Sejnowski: During REM sleep, the metabolic rate is indistinguishable from that
during the awake state. However, during slow-wave sleep the metabolic rate does
go down somewhat.

Iyengar: 1f 1 can move completely away from neuronal systems, it seems that
speed is not such an important thing. Is there an advantage in maintaining the
reliability at low cost by simply slowing down? I started off studying
desensitization back in 1978 in f-adrenergic or glucagon-stimulated systems.
There, the stimulation and desensitization is very tightly coupled. The speed
seems irrelevant. Are the other systems slowed down to increase reliability?

Langhlin: 1 think that the speed of signalling greatly increases the cost. I think the
reason for this is twofold. In the nervous system you need shorter time constants in
your neurons. This requires lower resistances, which make neurons leakier.
Second, in any signalling system the signal must be turned on and then turned off
again. If you need a fast signal, the mechanisms that turn the signal off have to work
very effectively. They ate probably going to chew up some of your signal before it
even arrives at its destination. There is therefore some temporal overlap between
the activation and inactivation mechanisms.

Iyengar: Does that make it more reliable?
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Launghlin: Ultimately, the reliability depends on the total number of molecules
that are being activated to transmit the signal, and the context. As we heard before,
if you saturate your population of molecules, you will get a reliable signal. I think
the dynamics of cell signalling are much more closely related to the temporal
patterns that have to be generated within cells for them to produce appropriate
responses.

Berridge: 'The process of desensitization is an interesting aspect. Were you
measuring cAMP production and were you operating at agonist concentrations
that are normally seen by a cell? Another important question is whether cells
desensitize over their normal physiological range?

Iyengar: 1f you go back and look at John Perkins’ papers, which are more careful
than mine, there is a full overlap between maximal stimulation and desensitization
(Su et al 1980). I don’t remember the name of these partial agonists, but they had
some that would stimulate but would not desensitize.

Berridge: But if you took a liver cell and studied glucose output, would you see a
desensitization? These cells secrete for hours and we never see desensitization. As
long as the dose is in the physiological range you won’t see it; if you use a massive
dose you see some strange things happening.

Iyengar: 1t may not be as fast as this, but in a few minutes glucose production
shuts down, certainly with glucagon-sensitive cells.

Sejnowski: In digital computers, the amount of heat generated is directly related
to the speed. There has to be a similar relationship.

Laughlin: That is presumably because the number of switches per second is going
up in proportion to the speed. But I have been talking about the cost per switch (i.e.
cost per pulse), and this is constant. An advantage of a pulsatile system over an
analogue system is that when you increase the rate in a pulsatile system, the cost
per bit tends to stay the same, but as we saw in Klaus Prank’s paper (Prank et al
2001, this volume), the cost per bit goes up as you increase the rate because each
spike can carry slightly less information because it is more frequent and therefore
more predictable.

Sejnowski: Simon Laughlin and Klaus Prank, you raised the issue of information
theory. This is a nice theory that is used by engineers in order to quantify how
much information can be transmitted, for example, with cellular phones from a
transmitter to a receiver. It is impressive that it agrees so well with experimental
results. It is clear that the computation that needs to be done at the photoreceptor is
to transduce the light signal into a form that is electrical and which can then be
transmitted across that synapse. It makes sense that it should apply, and the fact
that it does gives you some confidence both in your understanding of the system,
but also in the ability of biology to meet the challenge of efficiency and speed of
transmission. The question in my mind is how much of that formalism should
apply to the next synapse. That is, is it the case that the purpose of the brain is
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simply to reproducibly transmit as much information as possible? In some respects,
this would cause overload. If you had to deal with all the information that is
coming into your brain, you would quickly be saturated with distractions. One
of the important jobs the brain has is to sort out from all that information what
is relevant for a particular task. This means that in some respects, one of the goals
of the brain is to throw away information: to figure out which information is
relevant and sort it out from what is not. This means that information theory
by itself is probably not the only thing you need to apply in order to make
these decisions.

Launghlin: Ultimately, what animals want to be able to do is to predict the most
likely state of the world. They cannot establish the state of the wotld with total
certainty; they predict. The accuracy of their predictions is a measure of the
amount of information that they gain. This may be one way in which
information theory can be developed further to understand behaviour and the
brain, by determining the amount of information that can be inferred from the
events in the world and comparing this with the ability of the brain to use that
information. Terry Sejnowski is correct: information theory, as outlined here, is
absolutely brilliant for determining the performance and the function of systems
that are hungry for information, such as ears and eyes. Further up in the brain, what
is important is semantics: what the information actually means. When Shannon
developed this theory, he was most explicit. He states at the outset that he is not
concerned with semantics. This immediately raises biologists” hackles, because the
whole function of the nervous system is to determine which bits are the most
important for survival. None the less, at higher levels of the nervous system,
information theory tells you about ‘good housekeeping’. It tells you that it is
very wasteful to have a huge number of neurons, all carrying absolutely identical
signals. This redundancy is a waste of space. It also gives you some idea about the
representational capacity of different sorts of systems: how many states they can
encode and what limits their ability to represent states. Note that if you don’t
have a unique state in your brain for something that is going on in the wozld,
you can’t discriminate it. Information theory gives us some clues as to what
determines the number of unique states you can have.

Sejnowski: You are advocating something interesting, which relates to our
discussion yesterday of levels. Here your whole theory can be applied to the level
of the synapse, or the cell, which is a valid way of thinking. Then, at the level of
semantics, you are suggesting that we should think about information theory but
not at that level, but at the level of the representation of the whole pattern. In other
wotds, the same theoretical foundations could apply at quite separate levels. My
last challenge to you is the following. I am tecording from an area deep in the
cortex, and it produces an output spike train that typically has long intervals and
short intervals. The membrane potentials are always fluctuating. How much of this
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is signal in terms of the timing of each impulse or spike, and how much of it is
noise?

Launghlin: We don’t know, because it seems highly likely that information is
represented as patterns of activity distributed across cells. If you just look at the
spike output of one cell, you learn very little about the pattern. What may be very
important in this signal is the coincidence of a spike in this cell with a spike in
another cell. I wouldn’t try to infer very much from such a signal in a single
cortical neuron.

Brenner: Information theory has been a source of confusion in my field. The way
we use information when we talk about genetic information is not in the terms of
information theory, but rather the way one uses ‘information” when one talks
about reading a newspaper for information. It is useful to think of this in terms
of messages, rather than in terms of information.

Launghlin: 1 don’t think information theory is the be all and end all of signalling. It
happens to be the measure of useful work in the system I work with, the retina, and
because it is fundamental it does offer us some insight into other systems. Everyone
in neuroscience who is using information theory recognizes its limitations.

Dolmetsch: As we move up the evolutionary scale is the energetic optimization of
coding lost to some extent? The reason I ask is that when I think of how
photoreceptors work in mammals, it strikes me as highly inefficient in terms of
energy use. They are continuously secreting neurotransmitter in the dark, and
then they stop secretion when they encounter a photon. This is not an efficient
design. When you become warm blooded, it costs a lot of energy just to be in the
resting state. Perhaps in a moth it is essential that you consume the least amount of
energy, but this constraint is lost further up the evolutionary tree.

Launghlin: As it happens, a moth is warm-blooded when active and this enables it
to do more things per second. I believe that metabolic limitations could well
promote the optimization of retinal function in vertebrates. Despite using
different mechanisms, the cells of the vertebrate retina are subject to similar
constraints. Although our rods are turned off in bright light by saturation, our
cones have to continue to operate, scoring the arrival of every photon with the
opening or closing of a channel. There has to be a coupling between one photon
and at least one channel to code the signal. Consequently, the average number of
channels open at any time must be roughly equal to the number of photons you
transduce. This means that cones are no less or no more expensive to operate than
insect photoreceptors. Moreover, our own retina shows the same sort of intensity-
dependent coding that is demonstrated here in the insect. The fact that this
optimum filtering of the input signal is used in both types of retina suggests that
similar constraints operate in both cases.

Brenner: Years ago I tried to calculate the economy of Escherichia coli in terms of
ATP. We looked at the cost of biosynthesis of all the components. We knew how



192 DISCUSSION

much ATP E. ¢co/i made but we could only account for 10% of this in material
synthesis. Later, it turned out that the cost of maintaining accuracy —all the
repair and error correcting mechanisms—is much higher than the cost of
actually making things.
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Abstract. Electrophysiological studies of cortical function on the basis of multiple single-
neuron recordings reveal neuronal interactions which depend on stimulus context and
behavioural events. These interactions exhibit dynamics on different time scales, with
time constants down to the millisecond range. Mechanisms underlying such dynamic
organization of the cortical network were investigated by experimental and theoretical
approaches. We review some recent results from these studies, concentrating on the
occurrence of precise joint-spiking events in cortical activity, both in physiological and
in model neural networks. These findings suggest that a combinatorial neural code, based
on rapid associations of groups of neurons co-ordinating their activity at the single spike
level, is biologically feasible.
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Modern attempts to understand the mechanisms of higher brain function are
increasingly concerned with neuronal dynamics. The task of organizing
perception and behaviour in a meaningful interaction with the external world
prompts the brain to rectruit its tesources in a propetly orchestrated manner.
Contributions from many elements, ranging from individual nerve cells to entire
brain atreas, need to be coordinated in space and time. Our principal research goal is
to understand how this organization is dynamically brought about, and how the
brain uses such coordinated activity in neurons. To this end, we studied the
spatiotemporal organization of cortical activity recorded at many different sites at
a time. The rules that govern this organization and the underlying mechanisms are
brought to light by complementary approaches of neurobiological
experimentation, advanced data analysis, and neural network modelling.
According to the classical view, firing rates play a central role in neuronal coding
(Barlow 1972, 1992). The firing rate approach indeed led to fundamental insights
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into the neuronal mechanisms of brain function (e.g. Georgopoulos et al 1993,
Hubel & Wiesel 1977, Newsome et al 1989). In parallel, however, a different
concept was developed, according to which the temporal organization of spike
discharges within functional groups of neurons, the so-called neuronal
assemblies (Hebb 1949), also contribute to neural coding (von der Malsburg
1981, Abeles 1982a, 1991, Gerstein et al 1989, Palm 1990, Singer 1993). It was
argued that the biophysics of synaptic integration favours coincident presynaptic
events over asynchronous events (Abeles 1982b, Softky & Koch 1993).
Accordingly, synchronized spikes are considered as a property of neuronal
signals which can indeed be detected and propagated by other neurons (Perkel &
Bullock 1968, Johannesma et al 1986). In addition, these spike correlations must
be expected to be dynamic, reflecting varying affiliations of the neurons
depending on the stimulus or behavioural context. Such dynamic modulations
of spike correlation at various levels of precision have in fact been observed in
different cortical areas, namely visual (Eckhorn et al 1988, Gray et al 1989; for
reviews see Engel et al 1992, Aertsen & Arndt 1993, Singer & Gray 1995,
Roelfsema et al 1996), auditory (Ahissar et al 1992, Eggermont 1994, de Charms
& Merzenich 1995, Sakurai 1996), somato-sensory (Nicolelis et al 1995), motor
(Murthy & Fetz 1992, Sanes & Donoghue 1993), and frontal (Aertsen et al
1991, Abeles et al 1993a,b, Vaadia et al 1995, Prut et al 1998). Little is known,
however, about the functional role of the detailed temporal organization in such
signals.

The first important hints about the importance of accurate spike patterns came
from the work of Abeles and colleagues (Abeles etal 1993a,b, Prut etal 1998). They
observed that multiple single-neuron recordings from the frontal cortex of awake
behaving monkeys contained an abundance of precise spike patterns. These
patterns had a total duration of up to several hundred milliseconds and repeated
with a precision of +1ms. Moreover, these patterns occurred in systematic
relation to sensory stimuli and behavioural events, indicating that these instances
of precise spike timing play a functional role. Independent evidence for the
possibility of precise spike timing in cortical neurons came from intracellular
recordings 7n vitro (Mainen & Sejnowski 1995, Nowak et al 1997, Stevens &
Zador 1998, Volgushev et al 1998) and invivo (Azouz & Gray 1999).

We investigated the mechanisms underlying the dynamic organization of the
cortical network by experimental and theoretical approaches. Here, we review
evidence— both from experimental data and from model studies — that volleys
of precisely synchronized spikes can propagate through the cortical network in a
stable fashion, thereby serving as building blocks for spatiotemporal patterns of
precisely timed spikes. Taken together, these findings support the hypothesis
that precise synchronization of individual action potentials among groups of
neurons presents an inherent mode of cortical network activity.
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‘Unitary events’ in cortical multiple single-neuron activity

It has been proposed that cortical neurons organize dynamically into functional
groups, so-called ‘cell-assemblies’ (Hebb 1949, Gerstein et al 1989). It is widely
assumed that this functional organization is reflected in the temporal structure of
the spike activity of the neurons involved. Thus, cortical activity would be
characterized by synchronous spike volleys, travelling through the sparsely firing
cortical network (‘synfire chain’ hypothesis; Abeles 1982a, 1991). To test this
hypothesis, we analysed multiple single-neuron recordings from various cortical
areas for the presence of excessive coincident spike events among the recorded
neurons. We refer to such conspicuous coincidences as ‘unitary events’, and
define them as those joint spike constellations that occur significantly more often
than expected by chance (Grin et al 1994, Griin 1996). The functional significance
of such unitary events was tested by investigating their occurrence and
composition in relation to sensory stimuli and behavioural events.

‘Unitary event’ analysis

We developed a method that detects the presence of conspicuous spike
coincidences and evaluates their statistical significance, taking into account the
non-stationarities in the firing rates of the neurons involved (Griin 1996, Griin et
al 2001a,b). Briefly, the detection algorithm works as follows: The simultaneous
observation of spiking events from N neurons can be described mathematically by
the joint process, composed of N parallel point processes. By appropriate binning,
this can be transformed to an N-fold (0,1)-process, the statistics of which are
described by the set of activity vectors reflecting the various (0,1)-constellations
that occurred across the recorded neurons. Under the null-hypothesis of
independently firing neurons, the expected number of occurrences of any activity
vector and its probability distribution can be calculated analytically on the basis of
the single neuron firing rates. The ‘mutual dependence’ measures the degree of
deviation from independence among the neurons by comparing these
theoretically derived probabilities with their empirical values. Those activity
vectors that violate the null-hypothesis of independence define potentially
interesting occurrences of joint events; their composition defines the set of
neurons which are momentarily engaged in synchronous activity.

To test the significance of such unitary events, we developed a new statistical
measure: the ‘joint-P-value’. For any particular spike activity vector, this joint-P-
value measures the cumulative probability of observing the actual number of
coincidences (or an even larger one) by chance. Finally, in order to account for
non-stationarities in the discharge rates of the observed neurons, modulations in
spike rates and coincidence rates are determined on the basis of short data segments
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by sliding a fixed time window (typically 100 ms wide) along the data in steps of the
coincidence binwidth. This timing segmentation is applied to each trial, and the
data of corresponding segments in all trials are then analysed as one quasi-
stationary data set, using the appropriate rate approximation. (Further details and
calibration of the unitary event analysis technique are described in Griin 1996,
Griin et al 2001a,b; recent extensions of the approach are discussed in Griin et al
1999, Gitig et al 2001.)

‘Unitary events’ in motor cortex

In collaboration with Alexa Riehle (CNRS, Marseille, France) we tested the
hypothesis that such precise synchronization of individual action potentials
among groups of neurons in the monkey motor cortex is involved in
dynamically organizing the cortical network during the planning and execution
of voluntary movements (Riehle et al 1997).

We found that simultaneously recorded activities of neurons in monkey primary
motor cortex indeed exhibited context-dependent, rapid changes in the patterns of
coincident action potentials during performance of a delayed-pointing task.
Accurate spike synchronization occurred in relation to external events (visual
stimuli, hand movements), commonly accompanied by discharge rate
modulations, however, without precise time-locking of the spikes to these
external events. Accurate spike synchronization also occurred in relation to
purely internal events (stimulus expectancy), where firing rate modulations were
distinctly absent. These findings indicate that internally generated synchronization
of individual spike discharges may subserve the cortical organization of cognitive
motor processes. The clear correlation of spike coincidences with stimuli and
behavioural events underlines their functional relevance (Riehle et al 1997; see
also Fetz 1997).

Taken together, these findings demonstrate the existence of precise ( 1-3 ms)
synchronization of individual spike discharges among selected groups of neurons
in the motor cortex. This synchronization is associated with distinct phases in the
planning and execution of voluntary movements, indicating that it indeed plays a
functional role. Moreover, these findings suggest that under behavioural
conditions as investigated in this study, the brain uses different strategies in
different contextual situations: in order to process a purely cognitive, i.e. an
internal and behaviourally relevant event, neurons preferentially synchronize
their spike occurrences without changing, at the same time, their firing rates. By
contrast, when processing an external, behaviourally relevant event, neurons tend
to synchronize their spikes and modulate their firing rates at the same time. Thus,
precise synchronization of spike events and modulation of discharge rate may serve
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different and complementary functions. They act in conjunction at some times, and
not others, depending on the behavioural context (Riehle et al 1997).

Conditions for stable propagation of
synchronous spiking in cortical networks

In a complementary, model-oriented study we explored the mechanisms
underlying these rapid synchronizations of cortical spiking activity. Specifically
we focused on the explanation for the excessive occurrences of highly accurate
(£ 1-3 ms) spike patterns (Abeles et al 1993a,b, Riehle et al 1997, Prut et al 1998),
observed in frontal cortex and in motor cortex neurons of awake behaving
monkeys.

Synfire chains and pulse packets

On the basis of the characteristic anatomy and physiology of the cortex, Abeles
(1982a, 1991) proposed that ‘synfire’ activity, which propagates in volleys
through the sparsely firing cortical neural network, presents a natural explanation
for this phenomenon. We have investigated the conditions under which such
synchronous volleys of action potentials can propagate reliably through the
cortical network (Diesmann et al 1996, 1999, Aertsen et al 1996). Our theoretical
approach combined analytical calculations and extensive simulations of single-
neuron responses and network dynamics (Diesmann et al 1995, Gewaltig 1999).

Existing measures for the efficacy of synaptic transmission concentrate on two
limiting cases: full synchrony and random arrival of spikes. Intermediate cases with
a realistic degree of temporal dispersion are hardly addressed. To overcome these
restrictions and to quantify the degree of temporal synchrony in propagating
volleys of spike activity we introduced the concept of ‘pulse packets’ (Diesmann
et al 1996). A pulse packet is a probabilistic description of the spiking activity of a
group of neurons, represented by a pulse density function. This density function is
characterized by two parameters: the ‘activity’, defining the number of spikes in the
volley, and the ‘width’, defining their temporal dispersion. For a single realisation
of a pulse packet, the activity is measured by counting the number of spikes in the
volley, and its width is measured by the standard deviation of the spike
distribution.

Neural transfer function and synchronization dynamics

Adopting this approach, we studied the response behaviour of a model cortical
neuron to input activity with varying degrees of synchrony by presenting pulse
packets with different choices of the ‘activity® and ‘width’ parameters as stimuli.
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From the model neuron we recorded the response (time of first spike), collected in a
peri-stimulus time (PST) histogram over many trials. After normalization for the
number of trials, the resulting output distribution was again desctibed as a pulse
packet, and the associated pulse density, along with the values of the activity and
width were determined. The resulting neural transfer function, which describes the
input-output relation between incoming and outgoing pulse packets, was
visualized in an iterative map. This map yields a compact characterization of the
neuron’s response to transient input. In contrast to earlier approaches where the
neuron’s firing probability is measured quasi-statically as a function of DC current,
this new transmission function takes full account of the dynamic properties of the
input distribution (Aertsen et al 1996).

The temporal evolution of a pulse packet as it travels through the network can be
traced by iterating the transfer function. Keeping the width of the chain fixed at a
value in the order of 100, the dynamics of the two-dimensional iterated system is
characterized by three fix points: two attractors and a saddle point. These fix points
partition the state space in two domains, with stable propagation of the
synchronous pulse packet in the first and extinction of the synchronous activity
in the second. For increasing numbers of neurons per group, the fix points move
further apart, increasing the basin of attraction, i.e. the range over which
synchronous spiking can survive in the network. By contrast, for too few
neurons per group, the fix points disappear, and all trajectories lead to
extinction. Synchronous spiking then is no longer a viable option for the
network. We found that under physiological conditions, pools of 100 neurons
can easily sustain stable synchronous transmission through the network
(Diesmann et al 1999).

This state space portrait describes the evolution of synchronous activity ‘in the
mean’, i.e. by subsequent values of the expectation of the pulse packet parameters
across trials with different background activity realizations. On the basis of
network simulations we could confirm that the results of such analysis in the
mean also hold for single-trial realizations (Gewaltig et al 2000, 2001). Around
each point of a trajectory, these realizations form a distribution with a width
determined by the pulse packet parameters, the group size and inter-group
connectivity. This width becomes more important near the separatrix, due to the
increased probability — even for trajectories which are stable in the mean — that
individual realizations leave the basin of attraction (and vice versa). Thus, it is
possible to assess the survival probability at each point in the state space, by
computing which fraction of the trajectories crossing a small area around that
point reaches the attractor. We found that there is a wide range of stimulus
parameters for which the pulse packet is likely to evolve towards the attractor. If
the pulse packet is moved away from the fix point, it is able to re-synchronize and to
re-gain activity. Important aspects of these synchronization dynamics could be
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dissected and understood with the help of a continuous, probabilistic description
of propagating synfire activity: the ‘pulse-density model’ (Gewaltig et al 1997,
Gewaltig 1999).

Synchronization dynamics in recurrent networks

We also studied the spatiotemporal dynamics of spiking activity in cortical
network models with recurrent synaptic architecture (Rotter & Aertsen 2000).
The dynamics in such networks provide clues to the interplay that may result
from the simultaneous activity of many pulse packets travelling through the
cortical network.

Spatiotemporal patterns of precisely timed spikes

We used a network model, which is based on interacting stochastic point processes
(Rotter 1994, 1996). Such systems can be formally described in terms of a Markov
process, the dynamic state of which at a given point in time is the spatiotemporal
pattern of previously generated spikes. The transition probabilities specify how the
pattern gradually evolves in time. A generalized type of integrate-and-fire
dynamics thereby emerges as a mathematical consequence of the assumption that
neurons communicate by action potentials. Assuming the existence of infinitesimal
spike probabilities, which is in fact a very mild condition for physical systems, the
corresponding dynamic equations could be completely solved.

The solutions for special cases have been used to identify some important model
parameters from electrophysiological recordings of real neurons. A simple
parametric characterization of single neuron function is in fact achieved by fitting
the model to the discharge behaviour of various types of cortical pyramidal cells.
Some fundamental properties of recurrent cortex-like networks assembled from
such neurons can be readily predicted, most notably their ability to maintain
stable low rates of activity without the help of inhibitory neurons (Rotter &
Aertsen 1997). Furthermore, computer simulations of random-topology, but
otherwise realistic cortical networks indicate that high precision spatiotemporal
patterns, embedded in periods of enhanced cooperative group activity, may play
arole in coding and computation in such networks. This is true, even if neither the
anatomy of the network nor the physiology of its neurons are in any sense
specifically designed for that purpose.

Plasticity of precise time structure

Plasticity of the temporal structure of patterns of precisely timed spikes is achieved
by introducing Hebb-like synaptic plasticity into the network. The phenomena
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observed in a number of experiments concerning the influence of local synaptic
modification on the spatiotemporal dynamics in recurrent networks allow a
number of conclusions (Rotter & Aertsen 1995, Rotter 1996). Learning rules can
be formulated which only use local information, without the necessity for explicit
renormalization of total synaptic transmission (cf. Song et al 2000, Rubin et al
2001). Evidence for temporally asymmetric plasticity, very much in line with
such learning rules, has recently come from electrophysiological studies
(Markram et al 1997, Bi & Poo 1998). Using such rules, rapid convergence of
synaptic strengths can be achieved, while stable global activity is maintained.
Convergence can be extremely fast, within a few presynaptic action potentials.
The reason is that the pre-existing (random) patterns of activity are ‘te-used’ or
only slightly modified until the correlation structure of the stimulus input is
matched. Learning affects only the microscopic time scale, i.e. there is plasticity
of time structure in the millisecond range. In fact, the Hebbian time window
defining temporal coherence is determined both by the dynamics of after-
hyperpolarization in the post-synaptic neuron and by the low-pass properties of
the synapse. Modification of a synapse can be enabled and disabled by controlling
the rate of the presynaptic neuron. Thereby, a more global strategy of supervised
learning is achieved by letting pools of dedicated instructor neurons control firing
rates within the network, depending on some reward condition. The learning of
input-output associations may take place in terms of a stochastic exploration of
error gradients. Again, this amounts to a completely local processing of global
information.

Conclusions and outlook

Assuming realistic values for the anatomical and physiological parameters, our
model work predicts that the cortical network is able to sustain stable
propagation of synchronous spike volleys consisting of spikes from groups of
about 100 neurons, interconnected in feedforward fashion, with a temporal
precision of about 1ms. We are currently investigating to what extent the
cortical architecture supportts the existence of such structures, and how they are
spatially embedded in the cortical network (Hehl et al 2001).

Evidence from recent computer simulations suggests that the observed
synchronization dynamics are strongly influenced by the activity climate in the
surrounding network. In particular, the robustness and propagation velocity of
the synchronous spike volleys exhibit a non-monotonic dependence on the level
(Diesmann et al 2000) and temporal structure (Mohns et al 1999) of the background
activity. With increasing membrane potential fluctuations, the basin of attraction
first increases and then decreases again (see also Boven & Aertsen 1990, Aertsen et
al 1994), a phenomenon reminiscent of stochastic resonance (Collins et al 1996).
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These results have interesting consequences in view of recent findings regarding
the relation between ongoing network activity and the variability of evoked
responses, both in cortical activity and in behavioural responses (Arieli et al
1996a,b, Azouz & Gray 1999).

Our findings on the synchronization dynamics in recurrent networks indicate
that the degree of irregularity of neuronal spike trains is primarily a reflection of
the network dynamics. Spatiotemporal patterns of precisely timed spikes are a
consequence of these network dynamics. The introduction of Hebb-like synaptic
learning rules (cf. Song et al 2000, Rubin et al 2001, Gitig et al 2001) induces a
plasticity of the precise spike patterns. Possible scenarios for the functional
relevance of such precisely timed spike patterns and their plasticity ate the subject
of current investigation.
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DISCUSSION

Sejnowski: There is a problem that has to do with the probability of transmission
at synapses. Several groups have now used various techniques to look at the
reliability of transmission at a single synapse between, for example, two
pyramidal cells. It varies. The peak of the distribution is at one tenth: every 10
times that you stimulate the axon, on average you only get the release of a single
vesicle on one of those trials. That is a typical synapse. There are some that have a
probability of a third or a half, and there are a few that are silent. How does this
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degree of unreliability at the synapse fit into a model like yours that requires
recovery of precision at every stage.

Aertsen: The actual values for the synaptic strengths used in our model were
taken from the experimental literature. As these numbers are based on spike-
triggered averaging, they of course represent an average picture. As I have shown,
the stability is very much governed by the size of the neuron groups in the network.
You can compensate for lower synaptic strength by up-scaling this group size.
Essentially, it is the product of the two that determines what arrives at the next
stage. So, if you bring the synaptic connectivity down, you will need more neurons
pet group. If, by contrast, you manage to increase the strength of the synaptic
connections — through learning or some other means — this will bring the neces-
sary group size down. Another issue is how this scaling interacts with background
activity. In additional simulations (Diesmann et al 2000) we found that if you
consider the level of background activity, this introduces a third axis, in addition to
the two I showed here. Asa result, the phase portrait is re-shaped in a rather complex
way, because it depends in a non-monotonic way on this third dimension. Yet, there
are interesting trade-offs that can be made between the level of background
activity and the numbers for the necessary group size and synaptic connectivity.

Berridge: When considering Terry Sejnowski’s comment about failures in
synaptic transmission, it is reasonable to ask whether there are any data on how
many synapses ate formed between interacting neurons. Pethaps you get around
the failure rate by having more synapses.

Aertsen: There are numbers on this from various sources. Braitenberg was one
of the first who looked into this (reviewed in Braitenberg & Schiiz 1991), later
several others also studied it. The number of synapses between any two neurons
in the neo-cortex depends strongly on the distance between the two cells. If they are
very close, there is a high probability that they will have multiple (up to 10)
synapses between them; if they ate further apart (100 um or morte), this
probability goes down rapidly (e.g. Hellwig 2000). So, neurons that are some
500 um apart will typically have at most one synapse between them.

Berridge: Then this probability of failure really matters.

Aertsen: Yes. For a story like this to hold under such circumstances, by necessity
we need to increase the size of the assembly. Also, it imposes interesting constraints
on the amount of cortical space such an assembly can live in (Hehl et al 2001). I
would like to point out that if this doesn’t work, nothing does. This is the only
viable type of activity in such networks.

Iyengar: 1 am still thinking what your boundary conditions mean. To achieve
that, one has to increase reliability at each synapse, so there is no potentiation but
the synapse becomes reliable enough that all of them work, and if this is not
achieved in a few cases it fails. If you go back and record at single synapses will
they become more reliable?
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Se¢jnowski: That has been done. It is much easier to potentiate a low probability
synapse than a high probability synapse. Conversely, it is much easier to depress a
high probability synapse. I think there is a close relationship between the two. One
idea of LTP is that you are just converting a synapse from a low probability state to
a high probability state. This can be deceiving. The beauty of having a contact of a
low probability is that you can recruit it if you need it, and you can reorganize your
network. Thereis yet another degree of complexity that underlies synapses that has
to do with short-term dynamics. For example, if you stimulate a synapse at high
frequency, some synapses will depress, that is each subsequent signal will produce a
smaller output, and there are some synapses where the probability of release will go
up.

Iyengar: This scares me, because then I wonder how is it that these biochemical
events in each of these get coordinated to produce these results.

Aertsen: 1 agree that the combinatorial complexity increases with each new axis
that you open up. On the other hand, part of the good news is that this sort of
construction creates robustness.

Se¢jnowski: There may be a principle for self-repair of a network with many
unreliable components, which collectively produces a reliable state.

Iyengar: So you pre-select biochemically for those that are working, and when
you reach a critical number the system becomes reliable.

Eichele: However, there are organisms that have very few neurons, yet they still
work.

Aertsen: This isn’t a theory for all brains of all animals. It is just a theory for the
neo-cortex of the mammalian brain. Moreover, it critically depends on the spike
rates in the network: it works nicely for low to moderate rates (typical for cortex),
but at high spike rates, this theory breaks down.

Se¢jnowski: Even in humans there are synapses that are highly reliable, such as the
neuromuscular junction, which releases so many vesicles thata contraction is bound
to occur, regardless of the fluctuation. Where reliability is called for, nature usually
achieves this with an anatomical specialization. This is not found in the cortex,
except in a few specialized places such as the mossy fibre terminals in CA3.

Langhlin: 1 would put a slightly different gloss on it. We found that the single
synapse, which is just a small synapse, 0.5x0.1 um, was transmitting 55 bits per
second. It is achieving a good transmission rate without any failure. It is not just
a question of using large numbers of synapses or big synapses. You can engineer
small synapses to be reliable or unreliable, presumably by adjusting vesicle release
mechanisms.

Sejnowski: The distinction there is that it is a graded or drip synapse, working
over a wide range of potentials, whereas in the cortex it is an all-or-none event.

Langhlin: I would say that these synapses have been deliberately engineered to be
unreliable and to have their probability of release depend on other events.
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Neocortical circuits are dominated by massive excitatory feedback: more than 80%
of the synapses made by excitatory cortical neurons are onto other excitatory
cortical neurons (Douglas et al 1995, Braitenberg & Schiiz 1991). Why is there
such massive recurrent excitation in the neocortex and what is its role in cortical
computation? Previous modelling studies have suggested a role for excitatory
feedback in amplifying feedforward inputs (Douglas et al 1995, Suarez et al 1995,
Mineiro & Zipser 1998, Ben-Yishai et al 1995, Somers et al 1995, Chance et al
1999). Recently, it has been shown that recurrent excitatory connections between
cortical neurons are modified according to a spike-timing dependent Hebbian
learning rule: synapses that are activated slightly before the cell fires are
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strengthened whereas those that are activated slightly after are weakened
(Markram et al 97) (see also Levy & Steward 1983, Zhang et al 1998, Bi & Poo
1998, Abbott & Blum 1996, Gerstner et al 1996, Senn 1997). Information
regarding the postsynaptic activity of the cell is conveyed back to the dendritic
locations of synapses by backpropagating action potentials from the soma (Stuart
& Sakmann 1994).

Because these recurrent feedback connections can adapt in a temporally specific
manner, they may subserve a more general function than amplification, such as the
prediction and generation of temporal sequences (Abbott & Blum 1996, Minai &
Levy 1993, Montague & Sejnowski 1994, Schultz et al 1997, Softky 1996, Koch
1999, Rao & Ballard 1997). The observation that recurrence can generate
sequences has its roots in dynamical systems theory (Scheinerman 1995) and
forms the basis of numerous engineering (Kalman 1960) and neural network
(Minai & Levy 1993, Rao & Ballard 1997, Jordan 1986, Elman 1990) models for
predicting and tracking input sequences. Consider the network of excitatory
neurons shown in Fig. 1A. By appropriately learning its recurrent connections,
the network can generate sequences of outputs in anticipation of its inputs as
depicted in Fig. 1B. The initial activation of a subset of input neurons causes the
corresponding set of excitatory neurons to be activated, which in turn activate a
different set of excitatory neurons and so on, such that each set of active neurons ata
given time step represents the anticipated input at that time step (active neurons are
represented as shaded circles in Fig. 1B). The predicted outputs occur just in time
to inhibit the input neurons if the external input is excitatory, or excite them if the
external input is inhibitory, thereby implementing a stable negative feedback loop
and allowing only the unpredicted part of the input to be conveyed to the
prediction neurons. Such a model is consistent with some recent ideas regarding
cortico-cortical feedback loops (Rao & Ballard 1997, Mumford 1994), predictive
coding (Rao & Ballard 1999, Barlow 1998, Daugman & Downing 1995) and visual
receptive field development from natural images (Rao & Ballard 1997, Olshausen
& Field 1997). In these models, feedback connections from a higher to a lower
order cortical area are posited to carry predictions of lower level neural activity,
while the feedforward connections are assumed to convey the residual errors in
prediction. These errors are used to correct the neural representation at the
higher level before generating a subsequent prediction (for example, see Rao &
Ballard 1997). Note that for clarity, Fig. 1B shows two different sets of excitatory
neurons firing at the two successive time steps, but the model allows arbitrary
ovetlapping subsets of neurons to fire in order to represent temporal sequences
with possible ovetlapping inputs, resulting in sustained firing in some neurons
and transient firing in others due to learned recurrent connections.

In this study, we have modelled spike-timing dependent Hebbian synaptic
plasticity as a form of ‘temporal-difference’ learning (Montague & Sejnowski
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FIG. 1. Prediction using recurrent excitation. (A) An example of a model network of
recurrently connected excitatory neurons receiving inputs from a set of input neurons (bottom
row). (B) The activation of a subset of input neurons (shaded circles) causes a subset of
excitatory neurons to fire which in turn cause a different subset of excitatory neurons to fire
due to recurrent excitatory connections. If these recurrent connections are appropriately
learned, the second subset of neurons will fire slightly before the expected activation of their
corresponding input neurons, allowing inhibition of the inputs and forming a stable negative
feedback loop. For clarity, the example shows two different sets of excitatory neurons firing at
the two successive time steps, but the learning algorithm allows arbitrary overlapping subsets
of neurons to fire in order to represent sequences with possible overlapping inputs, resulting in
sustained firing in some neurons and transient firing in others due to the learned recurrent
connections.

1994, Schultz et al 1997, Sutton 1988). We have simulated recurrent networks of
excitatory and inhibitory cortical neurons possessing this form of synaptic
plasticity and have investigated the ability of such networks to learn predictive
models of input sequences, focusing in particular on moving stimuli. Detailed
compartmental models take into account the temporal dynamics of signal
processing in dendrites and the relative timing of spikes in neural populations.
Both of these properties were found to be essential in explaining the genesis of
complex cell-like direction selectivity in model neocortical neurons.
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Results
Spike-timing dependent Hebbian plasticity as temporal-difference learning

To accurately predict input sequences, the recurrent excitatory connections
between a given set of neurons need to be adjusted such that the appropriate set
of neurons are activated at each time step. This can be achieved by using a
‘temporal-difference’ learning rule (Montague & Sejnowski 1994, Schultz et al
1997, Sutton 1988). In this paradigm of synaptic plasticity, an activated synapse
is strengthened or weakened based on whether the difference between two
temporally separated predictions is positive or negative. This minimizes the
errors in prediction by ensuring that the prediction generated by the neuron after
synaptic modification is closer to the desired value than before (see Methods for
more details).

In order to ascertain whether spike-timing dependent Hebbian learning in
cortical neurons can be interpreted as a form of temporal-difference learning, we
used a two-compartment model of a cortical neuron consisting of a dendrite and a
soma-axon compartment. The compartmental model was based on a previous
study that demonstrated the ability of such a model to reproduce a range of
cortical response properties (Mainen & Sejnowski 1996). Figures 2A and 2B
illustrate the responses of the model neuron to constant current pulse injection
into the soma and random excitatory and inhibitory Poisson-distributed synaptic
inputs to the dendrite respectively (see Methods). The presence of voltage-
activated sodium channels in the dendrite allowed backpropagation of action
potentials from the soma into the dendrite as shown in Fig. 2C.

To study synaptic plasticity in the model, excitatory postsynaptic potentials
(EPSPs) were elicited at different time delays with respect to postsynaptic spiking
by presynaptic activation of a single excitatory synapse located on the dendrite.
Synaptic currents were calculated using a kinetic model of synaptic transmission
(Destexhe et al 1997) with model parameters fitted to whole-cell recorded AMPA
(2-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid) currents (see Methods
for more details). Other inputs representing background activity were modelled as
sub-threshold excitatory and inhibitory Poisson processes with a mean firing rate of
3 Hz. Synaptic plasticity was simulated by incrementing or decrementing the value
for maximal synaptic conductance by an amount propottional to the temporal-
difference in the postsynaptic membrane potential at time instants 7 + A7 and 7—A¢
for presynapticactivation at time # (see Methods). The delay parameter A7 was set to
5ms for these simulations; similar results were obtained for other values in the
5-15 ms range. Presynaptic input to the model neuron was paired with postsynaptic
spiking by injecting a depolarizing current pulse (10 ms, 200 pA) into the soma.
Changes in synaptic efficacy were monitored by applying a test stimulus before
and after pairing, and recording the EPSP evoked by the test stimulus.
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FIG.2. Model neuron response properties. (A) Response of a model neuron toa 70 pA current
pulse injection into the soma for 900 ms. (B) Response of the same model neuron to Poisson
distributed excitatory and inhibitory synaptic inputs at random locations on the dendrite. (C)
Example of a backpropagating action potential in the dendrite of the model neuron as
compared to the corresponding action potential in the soma (enlarged from the initial portion
of the trace in [B]).

Figure 3A shows the results of pairings in which the postsynaptic spike was
triggered 5 ms after and 5 ms before the onset of the EPSP, respectively. While
the peak EPSP amplitude was increased 58.5% in the former case, it was
decreased 49.4% in the latter case, qualitatively similar to experimental
observations (Markram et al 1997). As mentioned above, such changes in
synaptic efficacy in the model are determined by the temporal-difference in the
dendritic membrane potential at time instants #+ Az and 7—A¢ for presynaptic
activation at time #: the difference is positive when presynaptic activation occurs a
few milliseconds before a backpropagating action potential invades the dendrite
and negative when it occurs slightly after, causing respectively an increase or
decrease in synaptic efficacy. The critical window for synaptic modifications in
the model depends on the parameter Af as well as the shape of the
backpropagating action potential. This window of plasticity was examined by
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FIG. 3. Synaptic plasticity in a model neocortical neuron. (A) (Lef? panel) The response at the
top (‘before’) is the EPSP evoked in the model neuron due to a presynaptic spike (S1) at an
excitatory synapse. Pairing this presynaptic spike with postsynaptic spiking after a 5 ms delay
(“pairing’) induces long-term potentiation as revealed by an enhancement in the peak of the
EPSP evoked by presynaptic simulation alone (‘aftet’). (Right panel) If presynaptic stimulation
(82) occurs 5 ms after postsynaptic firing, the synapse is weakened resulting in a decrease in peak
EPSP amplitude. (B) Critical window for synaptic plasticity obtained by varying the delay
between presynaptic and postsynaptic spiking (negative delays refer to cases where the
presynaptic spike occurred before the postsynaptic spike).

varying the time interval between presynaptic stimulation and postsynaptic
spiking (with A/=5ms). As shown in Fig. 3B, changes in synaptic efficacy
exhibited a highly asymmetric dependence on spike timing similar to
physiological data (Bi & Poo 1998). Potentiation was observed for EPSPs that
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occurred between 1 and 12ms before the postsynaptic spike, with maximal
potentiation at 6 ms. Maximal depression was observed for EPSPs occurring
6ms after the peak of the postsynaptic spike and this depression gradually
decreased, approaching zero for delays greater than 10 ms. As in rat neocortical
neurons (Markram et al 1997), Xenopus tectal neurons (Zhang et al 1998), and
cultured hippocampal neurons (Bi & Poo 1998), a narrow transition zone
(roughly 3 ms in the model) separated the potentiation and depression windows.
Note that the exact duration of the potentiation and depression windows in the
model can be adapted to match physiological data by appropriately choosing the
temporal-difference parameter Az and/or varying the distribution of active
channels in the dendrite the synapse is located on.

Learning to predict using temporal-difference learning

To see how a network of model neurons can learn to predict sequences using the
learning mechanism described above, consider the simplest case of two excitatory
neurons N1 and N2 connected to each other, receiving inputs from two separate
input neurons I1 and 12 (Fig. 4A). Suppose input neuron I1 fires before input
neuron I2, causing neuron N1 to fire (Fig. 4B). The spike from N1 results in a
sub-threshold EPSP in N2 due to the synapse S2. If input arrives from 12 any
time between 1 and 12 ms after this EPSP and the temporal summation of these
two EPSPs causes N2 to fite, the synapse S2 will be strengthened. The synapse
S1, on the other hand, will be weakened because the EPSP due to N2 artives a
few milliseconds after N1 has fired. Thus, on a subsequent trial, when input I1
causes neuron N1 to fire, it in turn causes N2 to fire several milliseconds before
input I2 occurs due to the potentiation of the recurrent synapse S2 in previous
trial(s) (Fig. 4C). Input neuron I2 can thus be inhibited by the predictive
feedback from N2 just before the occurrence of imminent input activity
(marked by an asterisk in Fig. 4C). This inhibition prevents input I2 from
further exciting N2. Similatly, a positive feedback loop between neurons N1
and N2 is avoided because the synapse S1 was weakened in previous trial(s)
(see arrows in Figs 4B and 4C). Figure 4D depicts the process of potentiation
and depression of the two synapses as a function of the number of exposures to
the I1-12 input sequence. The decrease in latency of the predictive spike elicited
in N2 with respect to the timing of input 12 is shown in Fig. 4E. Notice that
before learning, the spike occurs 3.2ms after the occurrence of the input
whereas after learning, it occurs 7.7 ms before the input. This simple example
helps to illustrate how subsets of neurons may learn to selectively trigger other
subsets of neurons in anticipation of future inputs while maintaining stability in
the recurrent network.
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FIG. 4. Learning to predict using spike-timing dependent Hebbian plasticity. (A) A simple
network of two model neurons N1 and N2 recurrently connected via excitatory synapses S1
and S2. Sensory inputs are relayed to the two model neurons by input neurons I1 and 12.
Feedback from N1 and N2 inhibit the input neurons via inhibitory interneurons (darkened
circles). (B) Activity in the network elicited by the input sequence I1 followed by I2. Notice
that N2 fires after its input neuron I2 has fired. (C) Activity in the network elicited by the same
input sequence after 40 trials of learning. Notice that due to the strengthening of synapse S2,
neuron N2 now fires several milliseconds before the time of expected input from 12 (dashed
line), allowing it to inhibit I2 (asterisk). On the other hand, synapse S1 has been weakened,
thereby preventing re-excitation of N1 (downward arrows show the corresponding decrease in
EPSP). (D) Potentiation and depression of synapses S1 and S2 respectively during the course of
learning. Synaptic strength was defined as maximal synaptic conductance in the kinetic model of
synaptic transmission (see Methods). (E) Latency of the predictive spike in neuron N2 during the
course of learning measured with respect to the time of input spike in I2 (dotted line). Note that
the latency is initially positive (N2 fires after 12) but later becomes negative, reaching a value of
up to 7.7 ms before input 12 as a consequence of learning.

Direction selectivity from predictive sequence learning

To facilitate comparison with published neurophysiological data, we have focused
specifically on the problem of predicting moving visual stimuli. Previous
modelling studies have suggested that recurrent excitation may play a crucial role
in generating direction selectivity in cortical neurons by amplifying their weak
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feedforward inputs (Douglas et al 1995, Suarez et al 1995, Mineiro & Zipser 1998).
Our simulations suggest that a network of recurrently connected neurons can
develop direction selectivity as a consequence of learning to predict moving
stimuli. We used a network of recurrently connected excitatory neurons as
shown in Fig. 5A receiving retinotopic sensory input consisting of moving
pulses of excitation (8 ms pulse of excitation at each neuron) in the rightward and
leftward directions. The task of the network was to predict the sensory input by
learning appropriate recurrent connections such that a given neuron in the
network can fire a few milliseconds before the arrival of its input pulse of
excitation. The network was comprised of two parallel chains of neurons with
mutual inhibition (dark arrows) between corresponding pairs of neurons along
the two chains. The network was initialized such that within a chain, a given
excitatory neuron received both excitation and inhibition from its predecessors
and successors. This is shown in Fig. 5B for a neuron labelled ‘0’. Inhibition at a
given neuron was mediated by an inhibitory interneuron (dark circle) which
received excitatory connections from neighbouring excitatory neurons (Fig. 5B,
lower panel). The interneuron received the same input pulse of excitation as the
nearest excitatory neuron. Excitatory and inhibitory synaptic currents were
calculated using kinetic models of synaptic transmission based on propetties of
AMPA and GABA, (y-aminobutyric acid A) receptors as determined from
whole-cell recordings (see Methods). Maximum conductances for all synapses
were initialized to small positive values (dotted lines in Fig. 5C) with a slight
asymmetry in the recurrent excitatory connections for breaking symmetry
between the two chains. The initial asymmetry elicited a single spike slightly
earlier for neurons in one chain than neurons in the other chain for a given
motion direction, allowing activity in the other chain to be inhibited.

FIG. 5. Emergence of direction selectivity in the model. (A) A model network consisting of
two chains of recurrently connected neurons receiving retinotopic inputs. A given neuron
receives recurrent excitation and recurrent inhibition (white-headed arrows) as well as
inhibition (dark-headed arrows) from its counterpart in the other chain. (B) Recurrent
connections to a given neuron (labelled ‘0”) arise from 4 preceding and 4 succeeding neurons in
its chain. Inhibition at a given neuron is mediated via a GABAergic interneuron (darkened
circle). (C) Synaptic strength of recurrent excitatory (EXC) and inhibitory (INH) connections
to neurons N1 and N2 before (dotted lines) and after learning (solid lines). Synapses were
adapted during 100 trials of exposure to alternating leftward and rightward moving stimuli.
(D) Responses of neurons N1 and N2 to rightward and leftward moving stimuli. As a result of
learning, neuron N1 has become selective for rightward motion (as have other neurons in the
same chain) while neuron N2 has become selective for leftward motion. In the preferred
direction, each neuron starts firing several milliseconds before the actual input arrives at its
soma (marked by an asterisk) due to recurrent excitation from preceding neurons. The dark
triangle represents the start of input stimulation in the network.
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To evaluate the consequences of synaptic plasticity, the network of neurons was
exposed alternately to leftward and rightward moving stimuli for a total of 100
trials. The excitatory connections (labelled ‘EXC’ in Fig. 5B) were modified
according to the asymmetric Hebbian learning rule in Fig. 3B while the
excitatory connections onto the inhibitory interneuron (labelled ‘INH’) were
modified according to an asymmetric anti-Hebbian learning rule that reversed
the polarity of the rule in Fig. 3B. In other words, if presynaptic activity occurred
before (after) the postsynaptic spike in the interneuron, the excitatory connection
to the inhibitory interneuron was weakened (strengthened). Although not yet
reported in the neocortex, such a rule for inhibitory interneurons is consistent
with the spike-timing dependent anti-Hebbian plasticity observed in inhibitory
interneurons in a cerebellum-like structure in weakly electric fish (Bell et al 1997).

The synaptic conductances learned by two neurons (marked N1 and N2 in
Fig. 5A) located at corresponding positions in the two chains after 100 trails of
exposure to the moving stimuli are shown in Fig. 5C (solid line). Initially, for
rightward motion, the slight asymmetry in the initial excitatory connections of
neuron N1 allows it to fire slightly earlier than neuron N2 thereby inhibiting
neuron N2. Additionally, since the EPSPs from neurons lying on the left of N1
occur before N1 fires, the excitatory synapses from these neurons are strengthened
while the excitatory synapses from these same neurons to the inhibitory
interneuron are weakened according to the two learning rules mentioned above.
On the other hand, the excitatory synapses from neurons lying on the right side of
N1 are weakened while inhibitory connections are strengthened since the EPSPs
due to these connections occur after N1 has fired. The synapses on neuron N2 and
its assoclated interneuron remain unaltered since there is no postsynaptic firing
(due to inhibition by N1) and hence no backpropagating action potentials in the
dendrite. Similarly, for leftward motion, neuron N2 inhibits neuron N1 and the
synapses associated with N2 are adapted according to the two learning rules. As
shown in Fig. 5C, after 100 trials, the excitatory and inhibitory connections to
neuron N1 exhibit a marked asymmetry, with excitation originating from
neurons on the left and inhibition from neurons on the right. Neuron N2
exhibits the opposite pattern of connectivity.

As expected from the learned pattern of connectivity, neuron N1 was found to
be selective for rightward motion while neuron N2 was selective for leftward
motion (Fig. 5D). Moreover, when stimulus motion is in the preferred direction,
each neuron starts firing a few milliseconds before the time of arrival of the input
stimulus at its soma (marked by an asterisk) due to recurrent excitation from
preceding neurons. Conversely, motion in the non-preferred direction triggers
recurrent inhibition from preceding neurons as well as inhibition from the active
neuron in the corresponding position in the other chain. Thus, the learned pattern
of connectivity allows the direction-selective neurons comprising the two chains in
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the network to conjointly code for and predict the moving input stimulus in each
direction.

The role of recurrent exccitation and inhibition

To ascertain the role of recurrent excitation in the model, we gradually decreased
the value of the maximum synaptic conductance between excitatory neurons in the
network, starting from 100% of the learned values. For a stimulus moving in the
preferred direction, decreasing the amount of recurrent excitation increased the
latency of the first spike in a model neuron and decreased the spike count until,
with less than 10% of the learned recurrent excitation, the latency equalled the
arrival time of the input stimulus and the spike count dropped to 1 (Figs 6A and
6B). These results demonstrate that recurrent excitation plays a crucial role in
generating predictive activity in model neurons and enhances direction-selective
responses by increasing the spike count in the preferred direction.

To evaluate the role of inhibition in maintaining direction selectivity in the
model, we quantified the degree of direction selectivity using the direction index:
1—(number of spikes in non-preferred direction)/(number of spikes in preferred
direction). Figures 6C and 6D show the distribution of direction indices with and
without inhibition in a network of two chains containing 35 excitatory and 35
inhibitory neurons. In the control case, most of the excitatory neurons and
inhibitory interneurons receiving trecurrent excitation are highly direction
selective. Blocking inhibition significantly reduces direction selectivity in the
model neurons but does not completely eliminate it, consistent with some
previous physiological observations (Sillito 1975, Nelson et al 1994). The source
of this residual direction selectivity in the model in the absence of inhibition can be
traced to the asymmetric recurrent excitatory connections in the network which
remain unaffected by the blockage of inhibition.

Comparison with awake monkey complex cell responses

Similar to complex cells in primary visual cortex, model neurons are direction
selective throughout their receptive field because at each retinotopic location, the
corresponding neuron in the chain receives the same pattern of asymmetric
excitation and inhibition from its neighbours as any other neuron in the chain.
Thus, for a given neuron, motion in any local region of the chain will elicit
direction-selective responses due to recurrent connections from that part of the
chain. This is consistent with previous modelling studies (Chance et al 1999)
suggesting that recurrent connections may be responsible for the spatial-phase
invariance of complex cell responses. Assuming a 200 um separation between
excitatory model neurons in each chain and utilizing known values for the
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FIG.6. Therole of recurrent excitation and inhibition. (A) & (B) Latency of the first spike and
number of spikes elicited in an excitatory neuron in the preferred direction as a function of the
strength of recurrent excitation in a model network (100% corresponds to the learned values of
recurrent connection strength). The network comprised of two chains, each containing 35
excitatory neurons and 35 inhibitory interneurons (mutual inhibition between corresponding
neurons in the two chains was mediated by a separate set of inhibitory neurons that were not
plastic). (C,D) Distribution of direction selectivity in the network for excitatory and inhibitory
interneurons respectively with (Control) and without GABAergic inhibition (Inh Block) as
measured by the direction index: 1—(Non-Preferred Direction Response)/(Preferred Direction
Response).

cortical magnification factor in monkey striate cortex (Tootell et al 1988), one can
estimate the preferred stimulus velocity of model neurons to be 3.1°/s in the fovea
and 27.9°/s in the petiphery (at an eccentricity of 8°). Both of these values fall
within the range of monkey striate cortical velocity preferences (1°/s to 32°/s)
(van Essen 1985, Livingstone 1998).

The model predicts that the neuroanatomical connections for a direction-
selective neuron should exhibit a pattern of asymmetrical excitation and
inhibition similar to Fig. 5C. A recent study of direction-selective cells in awake
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monkey V1 found excitation on the preferred side of the receptive field and
inhibition on the null side consistent with the pattern of connections learned by
the model (Livingstone 1998). For comparison with this experimental data,
spontaneous background activity in the model was generated by incorporating
Poisson-distributed random excitatory and inhibitory alpha synapses on the
dendrite of each model neuron. Post-stimulus time histograms (PSTHs) and
space-time response plots were obtained by flashing optimally oriented bar
stimuli at random positions in the cell’s activating region. As shown in Fig. 7,
there is good qualitative agreement between the response plot for a direction-
selective complex cell and that for the model. Both space-time plots show a
progressive shortening of response onset time and an increase in response
transiency going in the preferred direction; in the model, this is due to recurrent
excitation from progressively closer cells on the preferred side. Firing is reduced to
below background rates 40-60 ms after stimulus onset in the upper part of the
plots; in the model, this is due to recurrent inhibition from cells on the null side.
The response transiency and shortening of response time course appears as a slant
in the space-time maps, which can be related to the neuron’s velocity sensitivity (see
Livingstone 1998 for more details).

Discussion

Our results show that a network of recurrently connected neurons endowed with a
temporal-difference based asymmetric Hebbian learning mechanism can learn a
predictive model of its spatiotemporal inputs. Using a biophysical model of
neocortical neurons, we showed that a temporal-difference learning rule for
prediction when applied to backpropagating action potentials in dendrites
produces asymmetric learning windows similar to those observed in
physiological experiments (see Senn 1997, Egelman & Montague 1998) for
possible biophysical mechanisms based on IN-methyl-D-aspartate (NMDA)
receptor activation and voltage-dependent Ca®* channels). When exposed to
moving stimuli, neurons in a simulated network with recurrent excitatory and
inhibitory connections learned to fire a few milliseconds before the expected
arrival of an input stimulus and developed direction selectivity as a consequence
of learning. The model predicts that a direction-selective neuron should start
responding a few milliseconds before the preferred stimulus arrives at the
retinotopic location of the neuron in primary visual cortex. Such predictive
neural activity has recently been reported in ganglion cells in the rabbit and
salamander retina (Berry et al 1999).

The development of direction selectivity in our model requires a slight initial
bias in cortical connectivity (Fig. 5C) which is then sharpened by visual
experience of moving stimuli. This is consistent with experimental evidence
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indicating that (a) some cells in cat visual cortex show some amount of direction
selectivity before eye opening (Movshon & van Sluyters 1981) and (b) visual
experience during a critical period can profoundly affect the development of
direction selectivity (for example, direction selectivity can be abolished by strobe
rearing; Humphrey & Saul 1998). Although several models for the development of
direction selectivity have been proposed (Feidler et al 1997, Wimbauer et al 1997),
the roles of spike timing and asymmetric Hebbian plasticity have not been
previously explored. An interesting question currently being investigated is
whether the explicit dependence of visual development on spike timing in our
model can account for the fact that only low frequencies of stroboscopic
illumination (approximately 8 Hz or below) lead to a loss of direction selectivity.

Temporally asymmetric Hebbian learning has previously been suggested as a
possible mechanism for sequence learning in the hippocampus (Levy & Steward
1983, Abbott & Blum 1996) and as an explanation for the asymmetric expansion of
hippocampal place fields during route learning (Mehta et al 1997). Some of these
theories require relatively long temporal windows of synaptic plasticity (on the
order of several hundreds of milliseconds) (Abbott & Blum 1996) while others
have utilized temporal windows in the sub-millisecond range for coincidence
detection (Gerstner et al 1996). Prediction and sequence learning in our model is
based on a window of plasticity in the tens of milliseconds range which is roughly
consistent with recent physiological observations (Markram et al 1997, Zhang et al
1998, Bi & Poo 1998). Although a fixed learning window (roughly 15ms of
potentiation/depression) was used in the simulations, the temporal extent of this
window can be modified by changing the parameter Az. The temporal-difference
model predicts that the shape and width of the asymmetric learning window should
be a function of the backpropagating action potentials in the dendrite that the
synapse is located on. In the case of hippocampal neurons and cortical neurons,
the width of backpropagating action potentials in apical dendrites has been
reported to be in the range of 10-25ms, which is comparable to the size of
potentiation/depression windows for synapses located on these dendrites (Bi &
Poo 1998, Stuart & Sakmann 1994). Additionally, in order to account for the off
regions observed in the receptive fields of cortical direction-selective cells
(Livingstone 1998), we included synaptic plasticity of excitatory synapses on
inhibitory interneurons by assuming that the sign of the spike-timing dependent
Hebbian learning window was inverted from that found on pyramidal neurons.
This inversion has been found in excitatory synapses on inhibitory interneurons
in a cerebellum-like brain structure in weakly electric fish (Bell et al 1997), but
remains a prediction of our model for the cortex.

In vitro experiments involving cortical and hippocampal slices suggest the
possibility of short-term plasticity in synaptic connections onto pyramidal
neurons (Thomson & Deuchars 1994, Tsodyks & Markram 1997, Abbott et al
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1997). The kinetic model of synaptic transmission used in the present study can be
extended to include short-term plasticity with the addition of a parameter
governing the level of depression caused by each presynaptic action potential
(Chance et al 1999, Tsodyks & Markram 1997, Abbott et al 1997). The
adaptation of this parameter may allow finer control of postsynaptic firing in the
model in addition to the coarse-grained control offered by modifications of
maximal synaptic conductance. As suggested by previous studies (Chance et al
1999, Abbott 1997), we expect the addition of synaptic depression in our model
to enhance the transient response of model neurons to stimuli such as flashed bars
(see Fig. 7) and to broaden the response to drifting stimuli, due to the reduced
sensitivity of postsynaptic neurons to mean presynaptic firing rates. In
preliminary simulations, the inclusion of short-term plasticity did not
significantly alter the development of direction selectivity in recurrent network
models as reported here.

The idea that prediction and sequence learning may constitute an important goal
of the neocortex has previously been suggested in the context of statistical and
information theoretic models of cortical processing (Minai & Levy 1993,
Montague & Sejnowski 1994, Mumford 1994, Daugman & Downing 1995,
Abbott & Blum 1996, Schultz et al 1997, Rao & Ballard 1997, Barlow 1998, Rao
1999). Our biophysical simulations suggest a possible implementation of such
models in cortical circuitry. Several authors have observed the general
uniformity in the basic structure of the neocortex across different cortical areas
(Hubel & Wiesel 1974, Creutzfeldt 1977, Sejnowski 1986, Douglas et al 1989).
Given the universality of the problem of encoding and generating temporal
sequences in both sensory and motor domains, the hypothesis of predictive
sequence learning in recurrent neocortical circuits may help provide a unifying
principle for understanding the general nature of cortical information processing

(Creutzfeldt 1977, Sejnowski 1980).

Methods

Temporal-difference learning.  The simplest example of a temporal-difference learning
rule arises in the problem of predicting a scalar quantity z using a neuron with
synaptic weights w(1),...w() (tepresented as a vector w). The neuron receives as
presynaptic input the sequence of vectors x, . .. X,,. The output of the neuron at
time # is assumed to be given by: P,=> w(@)x,0). The goal is to learn a set of
synaptic weights such that the prediction P, is as close as possible to the target
2. One method for achieving this goal is to use a temporal-difference (TDJ[0])
learning rule (Sutton 1988). The weights are changed at time # by an amount
given by:
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Aw, = a(P,1 — P)x, 1)

where o is a learning rate or gain parameter and the final prediction P, is defined
to be . Note that in such a learning paradigm, synaptic plasticity is governed by
the temporal difference in postsynaptic activity at time instants 7+ 1 and 7 in
conjunction with presynaptic activity x, at time 7.

Neocortical nenron model. Two-compartment model neocortical neurons consisting
of a dendritic compartment and a soma-axon compartment (Mainen & Sejnowski
1996) were implemented using the simulation software Nexron (Hines 1993). Four
voltage-dependent currents and one Ca®*-dependent current were simulated: fast
Na*, In,; fast K¥, Ix,; slow non-inactivating K*, Ix,,; high voltage-activated Ca’",
Ic,; and Ca?*-dependent K* current, Ige, (see Mainen & Sejnowski 1996 for
references). Conventional Hodgkin—Huxley-type kinetics were used for all
cutrrents (integration time step=25us, temperature=237 °C). Ionic currents |
were calculated using the ohmic equation: [=gA*B(l"—E) whete g is the
maximal ionic conductance density, .4 and B are activation and inactivation
variables, respectively (v denotes the order of kinetics; see Mainen & Sejnowski
1996 for further details), and E is the reversal potential for the given ion species
(Ex=-90mV, Ex,=60mV, E,=140mV, E; ,=—70mV). The following active
conductance densities were used in the dendritic compartment (in pS/um?):
2ne=20, 3c,=0.2, gx,,=0.1, and g, =3, with leak conductance 33.3 uS/cm? and
specific membrane resistance 30 kQ/cm?. The soma—axon compartment contained
2ny=40000 and gg,=1400. For all compartments, the specific membrane
capacitance was 0.75 uF/cm?. Two key parameters governing the response
properties of the model neuron are (Mainen & Sejnowski 1996): the ratio of axo-
somatic area to dendritic membrane area (p) and the coupling resistance between
the two compartments (k). For the present simulations, we used the values p =150
(with an area of 100 um? for the soma—axon compartment) and a coupling
resistance of k=8 MQ. Poisson-distributed synaptic inputs to the dendrite were
simulated using alpha function (Koch 1999) shaped current pulse injections (time
constant=>5ms) at Poisson intervals with a mean presynaptic firing frequency of

3 Hz.

Model of synaptic transmission and plasticity.  Synaptic transmission at excitatory
(AMPA) and inhibitory (GABA,) synapses was simulated using first order
kinetics of the form:

dr

3 =aTI =) = pr @
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where r(#) denotes the fraction of postsynaptic receptors bound to the
neurotransmitter at time #, [ T] is the neurotransmitter concentration, and o and f8
are the forward and backward rates for transmitter binding. Assuming receptor
binding directly gates the opening of an associated ion channel, the resulting
synaptic current can be described as (Destexhe et al 1998):

I{)w = g{m’(" X quﬂ (1) — E{yﬂ) (3

where g, is the maximal synaptic conductance, 17,(?) is the postsynaptic potential
and E,, is the synaptic reversal potential. For the simulations, all synaptic
parameters wetre set to values that gave the best fit to whole-cell recorded
synaptic currents (see Destexhe et al 1998). Parameters for AMPA synapses:
a=1.1x10"M~1s71, B=190s"1, and E_4yp4 =0mV. Parameters for GABA
receptors: a=5x10"M~1s~1, f=180s"1, and E;4344=—80mV. Synaptic
plasticity was simulated by adapting the maximal synaptic conductance g4p.4
for recurrent excitatory synapses onto excitatory neurons and GABAergic
interneurons according to the learning mechanism described in the text.
Inhibitory synapses were not adapted since evidence is currently lacking for their
plasticity. We therefore used the following fixed values for gs4p4.4 (in uS): 0.04
for Fig. 4, 0.05 for mutual inhibition between the two chains and 0.016 for
recurrent inhibitory connections within a chain for the simulations in Fig. 5.

Synaptic plasticity was simulated by changing maximal synaptic conductance
gampA4 by an amount equal to Agqypa = oa(Ps4a; — Pi—as) for each presynaptic
spike at time #, where P; denotes the postsynaptic membrane potential at time 7.
The conductance was adapted whenever the absolute value of g43p4 exceeded
10 mV with a gain « in the range 0.02-0.03 uS/V. The maximum value attainable
by a synaptic conductance was set equal to 0.03 uS. Note that the learning rule
above differs from the pure TD(0) learning rule in that it depends on
postsynaptic activity Azms in the future as well as A7ms in the past whereas the
TD(0) rule depends on future and current postsynaptic activity (see Equation 1).
This phenomenological model of synaptic plasticity is consistent with known
biophysical mechanisms such as calcium-dependent and NMDA receptor-
dependent induction of long-term potentiation (LTP) and depression (LTD)
(see Senn 1997, Egelman & Montague 1998, for possible biophysical
implementations).
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DISCUSSION

Launghlin: Your model is very elegant, but it is what Mittlestaedt, the famous
German physiologist, described as an ‘implicator’ model. It is a hypothesis that
will work. The difficulty in modelling and understanding the cortex is turning an
‘implicator’ model into what he called an ‘explicator’ model, where you actually
show that the thing that you imply is actually implemented in the system and
works. How would you go from testing your model within the cortex to seeing
whether it really is operating? We can see that in principle it could operate, but
there may be many other models that would produce the same end result.

Sejnowski: The model I presented should be compared with other possible
models, which can be experimentally distinguished. An alternative model for
direction selectivity is a feed-forward model in which one of two nearby stimuli
is delayed or low-pass filtered. The two signals can then be compared at two
different times. This is a completely different mechanism for detecting motion
from the model I presented, which depends on time delays within the cortex. I
think it is valuable as an alternative. It is useful to know what the possibilities are
before you begin, so when you do an experiment you can sort out which is more
likely to be the case. How would you actually put this to a test? We did, in the sense
that when we worked on the model we didn’t know what the actual fields looked
like in the monkey cortex. The model had properties that are the signature so-to-
speak of this type of network, and these turned out to be exactly the properties of
neurons recorded by Margaret Livingstone in monkey visual cortex. She went on
to do some other experiments in which, instead of flashing just one bar, she flashed
a bar at one location, and then after a short delay another bar at another location.
She varied the relative times and the relative positions. This produced a much more
complex pattern of response. When we did that same experiment in our model, it
also looked very similar in terms of the patterns of suppression and activation. As
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Klaus Prank suggested, one way to test the model is to vary the stimulus, making it
more complex, looking at it under more widely different conditions to see whether
of not you can break the model. So far, all the tests are working out qualitatively in
terms of the actual patterns of activity that are seen 7z vivo. You would like to go
further, I know. You would like to ask whether there is a way to go in and look at
the synapses. We are suggesting something radical, that there is a temporal
asymmetry: there should be groups of neurons connected together in a chain that
have very asymmetric connectivity. There will be anatomical techniques some day
to test this. For example, you can inject one cell with a virus that jumps across
synapses. It would be great to inject virus into a direction-selective cell to see
whether it jumps into the neurons in exactly the right direction. I think it will be
possible to test the model some day in a way that will satisfy Mittlestaedt.

Langhlin: You raised the Reichardt model. The big distinction between your
model and the Reichardt model is that the latter is hard-wired. Your model is
plastic and is based upon coincidences. If you fed the cortex some rather bizarre
coincidences, it might learn to anticipate those rather than the simpler pattern of
motion.

Se¢jnowski: There is an interesting story here, which again goes back to Hubel and
Wiesl. If you look at the properties of neurons in monkeys, you discover that there
are already cells that are selective for orientation, and some that are selective for
direction of motion. Initially, the tuning is very weak and the number of cells
that are selective is relatively small. Over a critical period during the first few
months of life, interaction with the world will sharpen up the tuning of these
cells and more will become tuned. In the case of binocular vision, cells that are
selective for disparity between the two eyes will develop. If for some reason one
eye is strabismic, the two eye images cannot be fused in the brain and the cortical
cells never develop binocular input and there will be no stereo vision. We therefore
know that there is this period of plasticity in the cortex where correlated inputs are
needed. When kittens are brought up in a stroboscopic environment, where there
is no continuous motion, the number of cells which respond to direction of motion
goes down.

Aertsen: The way I understand it, the rule that you are applying in your model
network should, in addition to selectivity for movement direction, also give rise to
selectivity for magnitude of stimulus velocity. Do you indeed observe such
selectivity in your model and, if so, does it match the properties of the biological
cortex?

Sejnowski: There is a preferred velocity, which has to do with the distance and the
time delays within the cortex itself. We compared our model with the cortex in
terms of the distances between neurons and the actual delays that are observed in
the cortex. Because the cortex has a magnification factor that greatly expands the
representation of the foveal region, the sensitivity to speed tuning in the fovea hasa
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peak that is much lower in velocity than in the periphery. We were able to match
those numbers very well.

Noble: Does this lead you to make some predictions about the tiniest interval
that the cortex might be able to distinguish in certain circumstances, and how
that would depend on the total number of neurons in a net? My intuition is that
the way in which we may come to detect extremely tiny intervals may have to do
with the total number of neurons, and this is an explanation then for why you need
so many. As an example of this, can we do something similar in relation to auditory
signals? The suggestion I have comes from an experiment I did on myself at the age
of 40, when I started to learn to play guitar. The first thing my tutor did was to ask
me to tune the instrument. The first way I did it, having never tuned a musical
instrument befote, was to listen for beats. He said this was not the way to do it,
and that it was possible to tell immediately. I told him that this was impossible, at
least for me at that time, but after about five months I found I no longer had to
listen for beats. I have been trying to do the sums on my sheet of paper. If you are
telling the difference between 500 cycles per second and 505, waiting for a beat
takes quite a long time (at least 200 ms). If you know virtually immediately the
difference in timing this has to be detected within a millisecond or so. It is
certainly down to a tiny interval. It seems to be like immediately identifying a
colour. What I am pressing you for is, could your modelling answer the question
of how big a net is needed to detect such very small time differences?

Sejnowski: There are two ways of answering that. One of them would be to look
at the smallest displacement that is needed in order to detect motion. This depends
on the distance and time. There is a phenomenon known as ‘apparent motion’ that
occurs when one stimulus goes off and a nearby one turns on. We are capable of
detecting whether two visual stimuli are simultaneous to within a few milli-
seconds.

Langhlin: 1 would say that auditory discrimination is about 50 us and visual is
300 ps. Just to sharpen up people’s appreciation of the nervous system, in owls
that need to establish the direction of sound very well, it is below 10 us, and in
electric fish which can establish phase differences extremely well it is below 1 us.
The consensus is that this resolution is achieved by some sort of population code,
where you have an array of neurons, each of which is relatively broadly tuned to a
unique delay, and then you look for the peak of activity in this array.

Sejnowski: There is another level of precision hyperacuity. If you have two lines
that are displaced by a small amount, we can detect this down into the arc second
range, despite the fact that rods are about 30 arcseconds across. Again, it is thought
that this is due to some population code, although no one understands exactly how
it is done.

Fields: Have you preformed any experiments or simulations for the cellular
mechanism for the back-propagation effect on plasticity?
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Sejnowski: Yes. In the model I showed you this is hardwired in the sense that we
took what was there and automatically changed the synapse when it was within the
right direction. This learning algorithm can be summarized as follows:

AWOC(V; - V;71)P/

where IV is the synaptic strength, 1”is voltage in the postsynaptic cell and P is the
presynaptic signal. This is Hebbian in the sense that in order for the plasticity to
take place, you have to have a presynaptic signal present at the same time as a
postsynaptic signal. This temporal difference equation yields a temporally
asymmetric synaptic learning rule. The insight is that during the back-
propagating action potential there is a period during which the voltage is
increasing and there is a period in which it is decreasing. If you look at this
temporal difference, it is basically a true discrete form of a time derivative. This
means that during the rising period of the back-propagating action potential, this
difference is positive, which means that you increase the strength of that synapse,
and during the falling period, when the spike occurs before the EPSP, the slope of
the back-propagating potential is negative and therefore you decrease the strength
of the synapse. This is the origin of the concept of temporal difference learning rule
in neural networks. You were asking a question about the biophysical mechanisms.
During the back-propagating action potential, Ca>" channels open in the spine and
Ca®" will enter the spine. If glutamate is already bound to the NMDA receptor,
even more Ca’" enters the depolarized spine, binding to Ca?"-binding proteins
with a range of off-time constants. Putting all the kinetics and all of the numbers
of channels and time courses into the model, we have been able to reproduce this
temporal difference learning algorithm. The key to understanding why it works
was given by Michael Berridge earlier in the meeting: the Ca?* buffer has to
become saturated before free Ca?t can activate the TP machinery. If you just
have the EPSP by itself, it never activates and you’ll never get enough free Ca®*.
But if, just after the NMDA channel opens, you have the back-propagating action
potential coming in, this will allow enough Ca?* to come in for a long enough time
to be able to bind to the buffers and therefore allow satutration to occut. Activation
of the calmodulin and Ca?*—calmodulin-activated protein kinase type II (CaMKII)
then leads to a biochemical cascade leading to LTP. We are beginning to see how to
implement, with molecular mechanisms, an abstract learning rule, and then on the
basis of thislearning rule fed into a network we can see how populations of neurons
can produce interesting computation properties in the cortex. There are three
levels of modelling here: biophysical, modelling single neurons using a temporal
difference rule, and the level of the whole network.

Iyengar: 1 have been wondering about how the relatively slow reactions that we
study fitinto what you are doing. Given the rate at which a back-propagation has to
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work, it has to come fast enough so that CaMKII is not completely
dephosphorylated.

Sejnowski: This is another key insight: the duration as well as the magnitude of
the Ca" entry must match the kinetics of CaMK phosphorylation.

Iyengar: You need to go back and activate the phosphatases in such a way that
you don’t drive the system completely down.

Sejnowski: Activation of the calmodulin-dependent phosphatase, calcineurin,
may indeed dephosphorylate CaMKII for prolonged, intermediate levels of Ca?*
entry. The balance between LTD and LTP depends on a kinetic race. However,
these details don’t reveal what computation is going on in the dendrite. The
biochemistry is embedded in a much larger network of reactions, which may
include gene regulation: from neural networks to gene networks. Someone
earlier suggested that different models or theories were needed at each level, and
that they shouldn’t talk to each other. These links between levels are needed.



Novartis 239: Complexity in Biological Information Processing.
Copyright © 2001 John Wiley & Sons Ltd
Print ISBN 0-471-49832-7  cISBN 0-470-84667-4

Final discussion

Noble: 1 want us to return to a question that has been haunting this meeting for
some time. Can we make the statement in relation to levels that the best models are
those that span at least three levels? One can see a reason for this. There will be a
level at which you are purely descriptive. (It is very interesting that Hodgkin and
Huxley’s 1952 paper was entitled a ‘description’ of membrane current, not a
‘model’” of membrane current: they never said that they were building a theory.)
There is a second level at which a model tries to integrate, and a third level at which
it tries to predict. Asa general rule, one could say that good models must span three
levels.

Sejnowski: The same mathematical model can serve all those different functions.
It can first describe the data. Then it suggests a theory that will go beyond the actual
data, which has to do with mechanisms, which can be tested.

Berridge: 1 have a philosophical comment. When do people accept that a project,
especially one dealing with modelling, is complete? For example, we talk about the
genome project being completed. In the case of modelling the heart, is there any
way that we can conceive that there will be a cleatly defined endpoint, or is this
going to go on for ever?

Brenner: 1t is asymptotic. Even the genome projectis. W. C. Fields once said that
for a man who falls off a 300 ft cliff, it is only the last inch that really hurts. I think
science is asymptotic, and I also think we change the conditions that we accept for
understanding. That is why so many problems just disappear, because in one
period we formulate the problems in terms that we think will give us
understanding, and then the whole basis of understanding changes. People look
back and are puzzled by some of the questions posed in the past. I can remember a
period in developmental biology when a crucial question was whether
differentiation was a process or a state. This was discussed endlessly but, in
hindsight, it seems a crazy question and that problem has certainly vanished. It is
a good thing for science, because we develop a new picture with every step of
advance. I am reminded of the story about the man who falls off a tall building.
On the way down someone at the window sees him go past and asks him how he
is. He says, ‘So far it’s OK’.

Dolmetsch: T would like to ask the opposite question, which is when is it
appropriate to start modelling? Many experimental biologists feel that models are
often made prematurely, and that they really don’t contribute anything until most
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of the components in a particular threshold are known. Is there some way of
determining when that threshold is reached, or should we always make a model
because it is a good exercise?

Brenner: 1f you can make a model, then it is the right time.

Noble: 1 have aslightly different version of the answer to that, which is that it has
to be when you think there is the possibility of answering a question. I was recently
asked by someone writing a review article, what was the purpose of the model 1
developed with Don Hilgemann about 15 years ago, when we first looked at trying
to model Ca?" dynamics inside the cell, together with Ca®" buffers represented
(Hilgemann & Noble 1987). I compiled a list of six questions that we were
asking at the time which we thought needed to be answered. Interestingly, no
one asks those questions any longer. One of them, for example, was ‘is the
Na'/Ca?" exchanger electrogenic or not?” In its original description this exchanger
was neutral. When we were first modelling we had to determine whether it
mattered to the Ca?* dynamic system that we were building. We found that it did
matter. My answer to your question would therefore be that the right time to
model is when you think you can answer a question.

Se¢jnowski: There is another way to answer the question, which has to do with the
need to think clearly about a problem, which raises the issue of complexity. It may
be that there are not enough data yet to answer the question, but you don’t even
know what the question is. In other wotds, you are dealing with things that are too
poortly understood. This is what often happens in the brain. Having explored a
model, even in the absence of all the details, we can begin to formulate the
question in a way that begins to make sense.

Iyengar: There are some things that we have found in biochemical modelling that
help us understand connections mechanistically. We always know of lots of
pairwise interactions that result in large models. Some of these models are really
helping us tease out which interactions matter and which don’t within the time
frames of the processes we study. In the model that I published, I coupled MAP
kinase activation to cAMP through PKC regulation of adenylate cyclase 2 for
regulating the CaMK activity. We have done experiments now where we have
shown nicely that MAP kinase activation can regulate CaMK phosphorylation,
but there seems to be no role of cAMP in that. This was a connection we made
that we thought was the most reasonable on the basis of all the pairwise
interaction data. Now we can go back and say we have these two endpoints, so
how are the interconnecting mechanisms set up? This would not have come out
of thinking about the individual molecules.

Noble: I’d like to react once again to Ricardo Dolmetsch’s point, because I think
this also raises a general issue that we should tackle: is there in this respect a serious
difference between the engineering and physical sciences and the biological
sciences? What I am also detecting in Ricardo’s question is that there have of
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course been many early attempts at biological modelling that have been spectacular
failures. My reading of the situation is that in the physical sciences this is OK. It has
been accepted that there is a theoretical branch to the subject and an expetimental
part. It is the function of most theories ultimately to be wrong. In the biological
sciences we don’t seem to have had this tradition, although it may be emerging.
Faced with the extreme complexity of biological systems, perhaps we have been
super-sceptical about the use of theory.

Iyengar: 1 would put many scientists who experimentally study the cell cycle in
that category. They do not favour modelling because they think it produces no
new insight. Many of these models have been somewhat accounting sort of
models, where they just put into perspective what is already known rather than
push the envelope to try to predict something new.

Sejnowski: The reason why models are effective in physics, in part is that the
modellers collaborate with people doing the experiments, and they discover that
it gives them an edge on their competition. In biology, this is just beginning to
become part of the culture.

Aertsen: One of the critical questions about whether a model will be helpful or
not has to do with the number of free parameters in it. As you all know, five
parameters make an elephant, so we should try to make it fewer than that.

Noble: 1like the point you are making, but I’d like to add a caveat. When we are
dealing with systems that have so much detail in them, you are not going to count
the fact that you rely on vast databases as having free parameters. Given the
complexity of what we are trying to deal with and the huge databases on which
we increasingly rely in biological modelling, we are going to have to accept that
modelling will be done with huge numbers of parameters. Which of these are free
and which are fixed is going to be a matter of debate, to some extent.

Segel: You may be able to make an elephant with five parameters, but you can’t
make several different animals. In my experience, if you try to get semi-quantitative
agreement with several different experiments it is very hard to do. Secondly,
concerning the cell cycle, although the models may not interest the expetimenters
who are trying to get more detail, they definitely have a value. For example, they
can explain the systemic nature of how a checkpoint works. There is a receptor
which monitors a system property. But this receptor has to lead to the stopping
of the cell cycle if something doesn’t work. Then, if the blockage is relieved, the
cell cycle has to go on as it did before. The basic underlying idea of how this works
is described in some of the nice cell cycle models. Even though it may not influence
what the experimenters are doing at the moment, such conceptual clarifications are
undoubtedly of value (see for example Tyson et al 1996).

Brenner: In the early days of the cell cycle research, before we knew so much
about the machinery, there were two models. There was the clock model, which
said that the cycle starts, you go to the next position and something happens and so
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on, a bit like a set of dominos. And then there were people in dynamical system
theory who said it was a limit cycle that can be described in terms of chemical
reactions. One knew that if it was a domino model, there would be nothing for it
but to go and find all the components, which is what they are busy doing in cell
cycle research. It isn’t that we haven’t had models. One just has to think back to
Mitchell’s theory about energy coupling in oxidative phosphorylation.
Biochemists were fixed on the thought that there would be chemical
intermediates, and when Mitchell proposed his theory of concentration gradients
it was considered to be nonsense. But it is the one that actually is true, and
biochemists had to get used to thinking in different terms.

Sejnowski: 1 gave another example eatlier, of Hebb. He guided a lot of eatly
physiology. It never occurred to the physiologists when they first discovered
LTP that one should look to see whether it was necessary for the postsynaptic
cell to be depolarized during the stimulus. It wasn’t at the top of the agenda. But
one of the physiologists, Tom Brown, who had read Hebb, was inspired to
hyperpolarize the cells and show that this could block LTP. There are now
temporally asymmetric versions of Hebbian synapses. This is a case where
progress has been made with a theory that involved conceptual frameworks and
not necessarily equations with many parameters.

Brenner: 1 was going to take up the question that Denis Noble raised, that we
have to get equations so we can understand each other. Well, you’ll have to
count me out, because I don’t speak that language! What is happening in biology
is a change of the conceptual framework in which we are operating. I wrote some
time ago that I thought we were generating new strange names, such as
computational biology, to conceal what we really want to call it, and that is
‘theoretical biology’. This has such a bad name that people are reluctant to use it.
Inoticed at our meeting that when people have been asked a question about theory,
they have prefaced it with the remark, ‘I am going to ask a philosophical question’.
But these are really theoretical or conceptual questions.

Pozzan: 1have a philosophical question. What is the difference between a theory
and a model?

Brenner: The term ‘model’ used to refer to a provisional theory, just as a
‘paradigm’ used to mean an example. Now, of course, ‘paradigm’ has come to
mean something different, with excellence and uniqueness attached to it. The
word model came in with molecular biology. They tried to provide a theory but
called it a model because it was based on componentry.

Sejnowski: The structure of DNA was a literal model, made of bits of wood and
metal, but inherent in the model is a theory. It was both.

Brenner: People also proposed models of DNA replication, but I think they
meant they had a biochemical theory of how it might work in the real
world.
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Berridge: Denis Noble, what do you call your work on the heart? Is it a model
with some theoretical aspects to it?

Noble: 1 am trying to think carefully in the light of Sydney Brenner’s remarks,
and that question is precisely what I am asking myself. It seems to me that some
aspects of modelling do not involve new theory. You are trying to build a jigsaw,
which you want to get as accurate as you can. At this stage in your modelling work,
you are not operating with any new theory, you are just filling out the detail. I
identified in the discussion eatlier on about the question about whether the Na*/
Ca”" model was or was not electrogenic a point at which a model in that stage of
development of our ideas about Ca?* handling had to make a hypothesis. It had to
say, ‘I think this has to be electrogenic and I am now going to build a model to
show why this may be so’. By any criteria, you have to say that this is a theory.
There is an iterative process here (Noble & Rudy 2001). There are stages of
modelling that require that you put forward new hypotheses, but as with
experimental work there are also great long tracts of time when what we are
doing is largely filling in.

Brenner: People began to model photosynthesis and some thought that electron
tunnelling would be required to explain certain phenomena. Electron tunnelling
made the prediction that certain processes would go on in the thylakoid
membranes at the temperature of liquid nitrogen, which of course is not very
biological. Then an experiment was done, that showed that electron tunnelling
was found in the membranes and that it could take place at normal temperatures.
Once electron tunnelling was found to apply to photosynthesis, where we have
unique structures, it began to be applied to everything. There are always people
who will take physical theories and try to embed them in models in other fields:
some are right and some are wrong. But if you are asking about the enveloping
theory, I think it is going to have the flavour of a computational theory. We have
representations of things, they interact and they produce something else. This is a
sort of guiding scheme in which I can embed my thinking: in crude terms, I start
with the data bank the genome provides, from which I have to proceed.

Sejnowski: ‘Bvolvability’ will be an important constraint.

Iyengar: There are also context-dependent functions: molecules function in
different ways in different contexts.

Laughlin: Talking about all these theories and saying that we need a theoretical
biology rather makes us lose sight of the problem. Going back to what Denis
Noble said about why people in physics are allowed to make mistakes with their
theories, I think this is because the physical systems are so constrained that the
number of possible theories is rather small. The likelihood of getting the right
one is, therefore, reasonable. We are working with complex systems, and this
means that by definition there are many alternative models which could explain
the phenomena. In the past, biologists have been sceptical of theorists because
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they have simply wandered off into this space of all possible models and have got
totally lost.

Sejnowksi: 1 can assure you that there were a lot of theories in physics that were
wrong, too. Models can help you sort out the right ones because they allow distinct
comparison with experiment.

Laughlin: The scale on which you can be wrong in biology is much greater. The
two things we have to guide us and keep us from getting lost are the data and
concepts.

Brenner: 1 would like to provide two examples in which we can see how a general
theoretical framework involving the symmetry of protein—protein interactions can
help us in thinking about the evolution of regulation. When the model of allosteric
inhibition was introduced by Monod, the idea was that the allosteric sites were not
the same as the active site, and that in proteins with multiple subunits, there were
inhibitory subunits for the allosteric sites and regulation took place by interaction
through the proteins. The actual example was haemoglobin, a tetramer. Thisled to
the idea that if a protein was not a monomer, the oligomeric state must exist for
purposes of regulation. We know dozens of enzymes that are oligomers with no
evidence at all that regulation is involved. Thus we conclude that making dimers
must be quite common; sometimes it is used in regulation and sometimes not. We
need a theory for why proteins exist in this form. I want to give you one that was
formulated by Francis Crick and myself when we were interested in this problem.
Let us assume that we have a set of proteins in a cell subjected to random mutation,
and that some mutations change the charge distribution on the surface of the
protein so that it can interact with itself. It is easy to see that the most probable
structure generated is an infinite helix, which may precipitate and be
disadvantageous to the cell. There would be selection to remove this state, and
one way would be to reverse the original mutation, a relatively rare event.
Another would be a compensatory mutation, such as additional charges which
occur around a dyad axis, because then the interaction becomes closed and does
not propagate.

Sejnowski: So a dimer is a cell’s best friend!

Brenner: Yes, and the argument continues that the same might have happened to
dimers, which will create another asymmetry axis and make a tetramer. Finally, we
can consider the case of aspartate transcarbamylase. It has a regulatory subunit that
binds cytosine triphosphate (CTP), the end product of the pathway. How can we
explain how this recognition site arose? It is unlikely that we evolved a site for this
on the surface of a protein. Pethaps there existed somewhere else in the cell another
enzyme with a recognition site for CTP. Random mutations might have brought
these two proteins together, and if their interaction was of advantage to the cell,
then there would have been selective pressure to improve it. The original function
could be retained eventually by a gene duplication, two versions could be
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generated, one of which was the enzyme and the other the allosteric subunit. This is
a theory which gives a plausible account of how a cettain state may have arisen by a
series of small steps and does not require one complicated jump.

Sejnowski: I'd like to draw this meeting to a close. We have just begun to get a
sense for the issues here: I see this meeting as a positive beginning. We are reaching
astage with the science of complexity where theoretical thinking is beginning to be
helpful. There isn’t going to be any single paradigm or prescription. We are taking
our constraints from wherever they come and getting our insights from many
different places. This is exactly the way it should be. I think the way we will
converge on a better understanding is by intersecting constraints from many
different levels. It is not a question of which is the right model, but whether or
not a model is useful. Models are tools to facilitate progress, and like any
experimental tool they have flaws. We are seeing this convergence of constraints
happening from the genetic direction with much better cataloguing of what is
there. We are also seeing this with physiological techniques such as Ca?* and
cAMP imaging that make explicit the spatial heterogeneity in the cell. We are
dealing here not with a soup, but with a highly structured cellular milieu in
which there are ordered organelles and proteins that are interacting in a way that
produces a useful function. There ate a finite number of molecular machines that
the cell uses in order to produce all the functions we see. I am also very impressed
with the convergence going on between the biochemists and neurobiologists. I
began this meeting by quoting Dobzhansky, who said that nothing in biology
makes sense except in the light of evolution. This brings us full circle to the close
of this meeting. I have had a wonderful time and would like to thank you all for
your contributions.
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