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Chair’s introduction

Denis Noble

University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK

This meeting establishes a major landmark since it is the ¢rst fully published
meeting on the growing ¢eld of computer (in silico) representation of biological
processes. The ¢rst International Conference on Computational Biology was
held earlier in 2001 (Carson et al 2001) but was not published. Various funding
bodies (INSERM, MRC and NIH) have held strategy meetings, also
unpublished. And there is a lot of interest in the industrial world of
pharmaceutical, biotechnology and medical device companies. Now is the ripe
time to explore the issues in depth. That is the purpose of this meeting.
The Novartis Foundation has already played a seminal role in the thinking that

forms the background to our discussions. Two previous meetings were fertile
breeding grounds for the present one. The ¢rst was on The limits of reductionism in
Biology (Novartis Foundation 1998), proposed and chaired by LewisWolpert. That
meeting set the scene for one of the debates that will feature again in this meeting,
which is the issue of reduction versus integration. There cannot be any doubt that
most of themajor successes in biological research in the last few decades have come
from the reductionist agenda�attempting to understand biological processes
entirely in terms of the smallest entities, i.e. genes, proteins and other
macromolecules, etc. We have, successfully, broken Humpty Dumpty down into
his smallest bits. Do we now have to worry about how to put him back together
again? That is the agenda of integration, and most of the people I have spoken to
believe that this absolutely requires simulation in order to succeed. I also suggest
that there needs to be a constructive tension between reduction and integration.
Neither alone gives the complete story.
The reason is that in order to unravel the complexity of biological processes we

need to model in an integrative way at all levels: gene, protein, pathways, sub-
cellular, cellular, tissue, organ, system. This was the issue debated in the
symposium on Complexity in biological information processing (Novartis Foundation
2001), chaired by Terry Sejnowski. An important discussion in that meeting
focused on the question of whether modelling should be tackled from the
bottom^up (starting with genes and biomolecules) or top^down (starting with
physiological and pathological states and functions). A conclusion of that
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discussion, ¢rst proposed by Sydney Brenner, was that modelling had to be
‘middle^out’, meaning that we must begin at whatever level at which we have
most information and understanding, and then reach up and down towards the
other levels.
These issues will feature again, sometimes in new guise, in the present meeting.

But there will also be some new issues to discuss. What, for example, is
computational biology? How does it di¡er from and relate to mathematical
biology? Could we view the di¡erence as that between being descriptive and
being analytical?
Then, what are the criteria for good modelling? I would suggest that biological

models need to span at least three levels. Level 1 would be primarily descriptive. It
will be the level at which we insert as much data as possible. At this data-rich level,
we don’t worry about how many parameters are needed to describe an elephant!
The elephant is a given, and themore details and data the better. Far frommaking it
possible to build anything given enough parameters, at this level data will be
restrictive. It will set the boundaries of what is possible. Biological molecules are
as much the prisoners of the system as they are its determinants.
Level 2 will be integrative�how do all these elements interact? This is the level

at whichwe need to do the heaviest calculations, literally to ‘integrate’ the data into
a working model.
Level 3 is the level (or better still, multiple levels) at whichwe can be explanatory

and predictive; to gain physiological insight.
Another issue we will tackle concerns the role of biological models. Models do

not serve a single purpose. Here is a preliminary list that I propose:

(1) To systematize information and interactions
(2) For use in computational experiments
(3) For analysis of emergent properties
(4) To generate counter-intuitive results
(5) To inspire mathematical analysis
(6) . . . but ultimately to fail

The last is important and is poorly understood in biological work. Allmodelsmust
fail at some point since they are always only partial representations. It is howmodels
fail that advances our understanding. Iwill illustrate this principle inmyownpaper
at this meeting (Noble 2002a, this volume).
So, the questions to be debated at this meeting will include:

. What does in silico refer to and include?

. What are the roles of modelling in biology?

. What is the role of mathematics in modelling?
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. What is the relation of modelling to bioinformatics?

. What about model validation?

. What are the hardware and software constraints and opportunities?

. What are the applications to health and disease?

. What are the industrial applications?

. Could we eventually be so successful that we can move towards a virtual
organism/human?

. Even more ambitiously, can we envisage the development of a theoretical
biology?

My own tentative answer to the last question is that if there is to be a theoretical
biology, it will have to emerge from the integration of many pieces of the
reconstruction of living systems (see Noble 2002b). We will, appropriately, keep
this big issue for the concluding discussion.
I look forward to a lively debate, touching on everything from the immensely

practical to the audaciously theoretical.
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Integrative biological modelling

in silico

Andrew D. McCulloch and Gary Huber

Department of Bioengineering, TheWhitaker Institute of Biomedical Engineering, University of
California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA

Abstract. In silico models of biological systems provide a powerful tool for integrative
analysis of physiological function. Using the computational models of the heart as
examples, we discuss three types of integration: structural integration implies
integration across physical scales of biological organization from protein molecule to
whole organ; functional integration of interacting physiological processes such as
signalling, metabolism, excitation and contraction; and the synthesis of experimental
observation with physicochemical and mathematical principles.

2002 ‘In silico’ simulation of biological processes. Wiley, Chichester (Novartis Foundation
Symposium 247) p 4^25

During the past two decades, reductionist biological science has generated new
empirical data on the molecular foundations of biological structure and function
at an accelerating rate. The list of organisms whose complete genomes have been
sequenced is growing by the week. Annotations of these sequences are becoming
more comprehensive, and databases of protein structure are growing at impressive,
indeed formerly unimaginable rates. Molecular mechanisms for fundamental
processes such as ligand^receptor interactions and signal transduction are being
elucidated in exquisite structural detail.
But as attention turns fromgene sequencing to the next phases such as cataloguing

protein structures (proteomics), it is clear to biologists that the challenge is much
greater than assigning functions to individual genes. The great majority of cell
functions require the coordinated interaction of numerous gene products.
Metabolic or signalling pathways, for example, can be considered the expression of
a ‘genetic circuit’, a network diagram for cellular function (Palsson 1997). But the
layers of complexity do not end at the plasma membrane. Tissue and organ
functions require the interactions of large ensembles of cells in functional units and
networks (Boyd&Noble1993).Noamountofbiochemical or single-cellulardetail is
su⁄cient to describe fully memory and learning or cardiac rhythm and pumping.
To identify the comprehensive approach that will be needed to reintegrate

molecular and genetic data into a quantitative understanding of physiology and
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pathophysiology in the whole organism, Bassingthwaighte coined the term
physiome (Bassingthwaighte 1995; see http://www.physiome.org/). Other terms
conveying the same general concept such as functional genomics and systems biology
have entered the scienti¢c lexicon. While achieving these goals will require the
convergence of many new and emerging technologies, biology is increasingly
becoming an information science, and there is no doubt that there will be a
central role for information technology and mathematics, in general, and
computational modelling, in particular.
Projects such as the Human Genome Project and its spin-o¡s have generated

thousands of databases of molecular sequence and structure information such as
GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) and the Protein Data Bank
(http://www.rcsb.org/pdb/). These databases in turn have generated demand for
on-line tools for data mining, homology searching, sequence alignment and
numerous other analyses. One of the best entry points for those interested in the
burgeoning ¢eld of bioinformatics is the National Center for Biotechnology
Information web site (http://www.ncbi.nlm.nih.gov/). Others include the Biology
Workbench (http://workbench.sdsc.edu/) and the Integrative Biosciences portal at
the San Diego Supercomputer Center (http://biology.sdsc.edu/). In contrast to this
progress, a major obstacle to the progress in the computational modelling of
integrative biological function is the lack of databases of the morphology and
physiological function of cells, tissues and organs.
While there are, for example, some excellent databases of metabolic pathways

such as the Metabolic Pathways Database (http://wit.mcs.anl.gov/MPW/) and
KEGG, the Kyoto Encyclopedia of Genes and Genomes (http://
www.genome.ad.jp/kegg/), there are not yet comprehensive public databases of
myocyte ion channel kinetics or coronary vascular structure. This is one reason
that investigators have focused on developing integrated theoretical and
computational models. Models, even incomplete ones, can provide a formal
framework for classifying and organizing data derived from experimental
biology, particularly those data that serve as model parameters. Using numerical
models to simulate interacting processes, one can reveal emergent properties of the
system, test prediction against experimental observation, and de¢ne the speci¢c
needs for new experimental studies. The integrated models have the potential to
support and inform decisions about drug design, gene targeting, biomedical
engineering, and clinical diagnosis and management.

Integrative biological modelling:

structural, functional and empirical^theoretical

Computational modelling of biological systems can achieve integration along
several intersecting axes (Fig. 1): structural integration implies integration across
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physical scales of biological organization from protein to cell, tissue, organ, and
whole organism; by functional integration, we mean the logical integration of
coupled physiological subsystems such as those responsible for gene expression,
protein synthesis, signal transduction, metabolism, ionic £uxes, cell motility and
many other functions; last, but not least, as is well known from the traditions of
physics and engineering, computational models serve as a powerful tool to
integrate theoretical principles with empirical observations. We call this data
integration for short.
The challenges of structurally integrated and functionally integrated computa-

tional modelling tend to be di¡erent. Functionally integrated biological modelling
is a central goal of what is now being called systems biology (Ideker et al 2001). It is
strongly data driven and therefore data intensive. Structurally integrated
computational biology (such as molecular dynamics and other strategies that
predict protein function from structure) is driven by physicochemical ¢rst
principles and thus tends to be more computationally intensive.
Both approaches are highly complementary. Systems science is needed to bridge

the large space and time scales of structural organization that span frommolecule to
organism, without leaving the problem computationally intractable. Structural
models based on physicochemical ¢rst principles allow us to make best use of the
growing databases of structural data and yet constrain the space of possible

6 McCULLOCH & HUBER

FIG. 1. Three intersecting axes of integration in computational biology: functional (darkest
gray) left^right; structural (mid-gray), bottom to top; and (light gray) between data and theory.



solutions to the systems models by imposing physicochemical constraints, e.g. the
protein folding problem, or the application of mass balances to metabolic £ux
analyses.
Therefore, most integrative biological modelling employs a combination of

analysis based on physicochemical ¢rst principles and systems engineering
approaches by which information can be communicated between di¡erent
subsystems and across hierarchies of the integrated system. Systems models also
provide a means to include within the integrated system, necessary sub-systems
that are not yet characterized in su⁄cient detail to be modelled from ¢rst
principles. This e¡ort in turn demands new software tools for data integration,
model implementation, software interoperation and model validation. It will also
require a large and dedicated multidisciplinary community of scientists to accept
the chore of de¢ning ontologies and standards for structural and functional
biological data representation and modelling.
Examples of the intersections between structurally and functionally integrated

computational biology are becoming easier to ¢nd, not least due to the e¡orts of the
contributors to this book:

. The linkage of biochemical networks and spatially coupled processes such as
calcium di¡usion in structurally based models of cell biophysics (see Loew &
Scha¡ 2001, Loew 2002 this volume).

. The use of physicochemical constraints to optimize genomic systems models of
cell metabolism (Palsson 1997, Schilling et al 2000).

. The integration of genomic or cellular systems models into multicellular
network models of memory and learning (Durstewitz et al 2000, Tiesinga et al
2002), developmental pattern formation (Davidson et al 2002) or action
potential propagation (Shaw& Rudy 1997).

. The integration of structure-based predictions of protein function into systems
models of molecular networks.

. The development of kinetic models of cell signalling coupling them to
physiological targets such as energy metabolism, ionic currents or cell motility
(see Levin et al 2002, this volume).

. The use of empirical constraints to optimize protein folding predictions
(Salwinski & Eisenberg 2001).

. The integration of systems models of cell dynamics into continuum
models of tissue and organ physiology (Winslow et al 2000, Smith et al 2002).

Functionally integrated computational modelling of the heart

There aremany reasonswhy a structurally and functionally integratedmodel of the
heart is an important goal:

INTEGRATIVE BIOLOGICAL MODELLING 7



. Common heart diseases are multifactorial and multigenic; they are frequently
linked to other systemic disorders such as diabetes, hypertension or thyroid
disease.

. Cardiac structure and function are heterogeneous and most pathologies such as
myocardial infarction or heart failure, are regional and non-homogeneous.

. Basic cellular functions such as pacemaker activity involve the coordinated
interaction of many gene products.

. Many functional subsystems interact in fundamental physiological processes,
e.g. substrate and oxygen delivery$energy metabolism$cross-bridge
mechanoenergetics$ventricular wall stress$coronary £ow$substrate and
oxygen delivery.

. Many cardiac pathologies with known or putative molecular aetiologies also
depend critically on anatomic substrates for their expression in vivo, e.g. atrial
and ventricular re-entrant arrhythmias.

Some of the aims of integrative cardiac modelling have been to integrate data
and theories on the anatomy and structure, haemodynamics and metabolism,
mechanics and electrophysiology, regulation and control of the normal and
diseased heart. The challenges of integrating models of many aspects of such an
organ system, including its structure and anatomy, biochemistry, control
systems, haemodynamics, mechanics and electrophysiology has been the theme
of several workshops over the past decade or so (Hunter et al 2001, McCulloch
et al 1998, Noble 1995, Glass et al 1991).
Some of the major components of an integrative cardiac model that have been

developed include ventricular anatomy and ¢bre structure (Vetter & McCulloch
1998), coronary network topology and haemodynamics (Kassab et al 1997, Kroll
et al 1996), oxygen transport and substrate delivery (Li et al 1997), myocyte
metabolism (Gustafson & Kroll 1998), ionic currents (Luo & Rudy 1994, Noble
1995) and impulse propagation (Winslow et al 1995), excitation^contraction
coupling (Jafri et al 1998), neural control of heart rate and blood pressure (Rose
& Schwaber 1996), cross-bridge cycling (Zahalak et al 1999), tissue mechanics
(Costa et al 1996a,b), cardiac £uid dynamics and valve mechanics (Peskin &
McQueen 1992), ventricular growth and remodelling (Lin & Taber 1995).
Of particular interest to the physician are whole organ lumped-parameter

models describing transport and exchange of substrates, and accounting for the
spatial distribution of the coronary arteries, regional myocardial blood £ows, the
uptake and metabolism of glucose, fatty acids and oxygen used for the energy to
formATP, which is in turn used to fuel the work of contraction and ion pumping.
Data from nuclear medicine have been essential in this area both for estimating the
kinetic parameters of mass transport in the heart, but also for providing
independent measurements with which to validate such models. A unique

8 McCULLOCH & HUBER



resource for numerical models and simulation for circulatory mass transport and
exchange is the National Simulation Resource (http://nsr.bioeng.washington.edu).
To explore, how these models can be extended and integrated with

others, workers in the ¢eld have de¢ned several major functional modules for
initial attention, as shown in Fig. 2, which has been adapted and expanded from
the scheme proposed by Bassingthwaighte (Bassingthwaighte 1997). They
include:

. Coronary artery anatomy and regional myocardial £ows for substrate and oxygen
delivery.

INTEGRATIVE BIOLOGICAL MODELLING 9
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relationships from cell to tissue to organ and cardiovascular system.



. Metabolism of the substrate for energy metabolism, fatty acid and glucose, the
tricarboxylic acid (TCA) cycle, and oxidative phosphorylation.

. Purine nucleoside and purine nucleotide metabolism, describing the formation of ATP
and the regulation of its degradation to adenosine in endothelial cells and
myocytes, and its e¡ects on coronary vascular resistance.

. The transmembrane ionic currents and their propagation across the myocardium

. Excitation^contraction coupling: calcium release and reuptake, and the
relationships between these and the strength and extent of sarcomere
shortening.

. Sarcomere dynamics of myo¢lament activation and cross-bridge cycling, and the
three-dimensional mechanics of the ventricular myocardium during the cardiac
cycle.

. Cell signalling and the autonomic control of cardiac excitation and contraction.

Naturally, the scheme in Fig. 2 contains numerous omissions such as the coronary
venous system and its interactions with myocardial stresses, regulation of
intracellular enzymes by secondary processes, vascular and tissue remodelling,
protein metabolism, systemic in£uences on total body vascular resistance,
changes in cardiac pool sizes of glycogen and di- and triphosphoglycerides,
neurohumoral regulation of contractility and coronary £ow, and many other
features. Nevertheless, it provides a framework to incorporate these features
later. More importantly, despite these limitations, a model like this should
provide an opportunity to answer important questions in integrative cardiac
physiology that have eluded intuitive understanding. One excellent example is
the physical and biological basis of £ow and contractile heterogeneity in the
myocardium. Another is the role of intracellular inorganic phosphate
accumulation on contractile dysfunction during acute myocardial ischaemia.
While Fig. 2 does show di¡erent scales in the structural hierarchy, it emphasizes

functional integration, and thus it is not surprising that the majority of functional
interactions take place at the scale of the single cell. In this view, a systemsmodel of
functionally interacting networks in the cell can be viewed as a foundation for
structurally coupled models that extend to multicellular networks, tissue, organ
and organ system. But it can also be viewed as a focal point into which feed
structurally based models of protein function and subcellular anatomy and
physiology. We explore this view further in the following section.

Structurally integrated models of the heart

A fundamental challenge of biological science is the integration of information
across scales of length and time that span many orders of magnitude from
molecular structures and events to whole-organ anatomy and physiology. As
more and more detailed data accumulate on the molecular structure and diversity
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of living systems, there is an increasing need to develop computational analyses
that can be used to integrate functions across the hierarchy of biological
organization, from atoms to macromolecules, cells, tissues, organs, organ
systems and ultimately the whole organism.
Predictive computationalmodels of various processes at almost every individual

level of the hierarchy have been based on physicochemical ¢rst principles.
Although important insight has been gained from empirical models of living
systems, models become more predictive if the number of adjustable parameters
is reduced by making use of detailed structural data and the laws of physics to
constrain the solution. These models, such as molecular dynamics simulations,
spatially coupled cell biophysical simulations, tissue micromechanical models and
anatomically based continuum models are usually computationally intensive in
their own right.
But to be most valuable in post-genomic biological science, they must also be

integrated with each other across scales of biological organization. This will
require a computational infrastructure that will allow us to integrate physically
based biological models that span the hierarchy from the dynamics of individual
protein molecules up to the regional physiological function of the beating heart.
This softwarewill have tomake use of computational resources that are distributed
and heterogeneous, and be developed in a modular manner that will facilitate
integration of new models and levels.
Two examples from cardiac physiology illustrate the potential signi¢cance of

structurally integrated modelling: In the clinical arrhythmogenic disorder long-
QT syndrome, a mutation in a gene coding for a cardiomyocyte sodium or
potassium selective ion channel alters its gating kinetics. This small change at the
molecular level a¡ects the dynamics and £uxes of ions across the cellmembrane and
thus a¡ects the morphology of the recorded electrocardiogram (prolonging the
QT interval) and increasing the vulnerability to life-threatening cardiac
arrhythmia. Such an understanding could not be derived by considering only the
single gene, channel or cell; it is an integrated response across scales of
organization. A hierarchical integrative simulation could be used to analyse the
mechanism by which this genetic defect can lead to sudden cardiac death by, for
example, exploring the e¡ects of altered repolarization on the inducibility and
stability of re-entrant activation patterns in the whole heart. A recent model
study by Clancy & Rudy (1999) made excellent progress at spanning some of
these scales by incorporating a Markov model of altered channel gating�based
on the structural consequences of the genetic defect in the cardiac sodium
channel� into a whole cell kinetic model of the cardiac action potential that
included all the major ionic currents.
As a second example, it is becoming clearer that mutations in speci¢c proteins of

the cardiacmuscle contractile ¢lament system lead to structural and developmental
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abnormalities of muscle cells, impairment of tissue contractile function and the
eventual pathological growth (hypertrophy) of the whole heart as a
compensatory response (Chien 1999). In this case, the precise physical
mechanisms at each level remain speculative, though much detail has been
elucidated recently, so an integrative model will be useful for testing various
hypotheses regarding the mechanisms. The modelling approach could be based
on the same integrative paradigm commonly used by experimental biologists,
wherein the integrated e¡ect of a speci¢c molecular defect or structure can be
analysed using techniques such as in vivo gene targeting.
Investigators have developed large-scale numerical methods for ab initio

simulation of biophysical processes at the following levels of organization:
molecular dynamics simulations based on the atomic structure of biomolecules;
hierarchical models of the collective motions of large assemblages of monomers
in macromolecular structures (Huber 2002); biophysical models of the dynamics
of cross-bridge interactions at the level of the cardiac contractile ¢laments
(Landesberg et al 2000); whole-cell biophysical models of the regulation of
muscle contraction (Bluhm et al 1998); microstructural constitutive models of
the mechanics of multicellular tissue units (MacKenna et al 1997); continuum
models of myocardial tissue mechanics (Costa et al 2001) and electrical impulse
propagation (Rogers &McCulloch 1994); and anatomically detailed whole organ
models (Vetter &McCulloch 2000).
They have also investigated methods to bridge some of the boundaries between

the di¡erent levels of organization. We and others have developed ¢nite-element
models of the whole heart, incorporatingmicrostructural constitutive laws and the
cellular biophysics of thin ¢lament activation (Mazhari et al 2000). Recently, these
mechanicsmodels have been coupledwith a non-linear reaction^di¡usion equation
model of electrical propagation incorporating an ionic cellularmodel of the cardiac
action potential and its regulation by stretch (Vetter & McCulloch 2001). At the
other end of the hierarchy, Huber (2002) has recently developed a method, the
Hierarchical Collective Motions method, for integrating molecular dynamics
simulation results from small sections of a large molecule into a quasi-continuum
model of the entire molecule.
The di¡erent levels of description are illustrated in Fig. 3. In order to prevent the

models from being overwhelmed by an explosion of detail, only a representative
subset of structures from the ¢ner level can be used directly; the behaviour of the
remaindermust be inferred by spatial interpolation. This approach has been used in
software packages such as our programContinuity or the CONNFESSITmodels of
polymer rheology (Laso & Ottinger 1993) to span two or three levels of
organization. The modelling infrastructure must therefore support not only
software modules required to solve the structures at each level of the hierarchy, it
must also support adapter functions between modules. In some cases the
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communication between levels is direct; the output of one level, such as
transmembrane potential or myo¢lament stress is a more or less direct input to
the level above. In others, the results of computations on the ¢ner structure need
to be parameterized to meet the requirements of the coarser level. The amount of
detail and bidirectional communication required between levels is not only a
function of the structures being modelled but the question being investigated.
Experimenting with di¡erent degrees of coupling between levels of the hierarchy
will likely be an important new path to scienti¢c discovery.
The disparity of time scales is as signi¢cant as that of spatial scale. For example,

the period of the cardiac cycle is about 1 s, the time steps of the cellularmodel of the
cardiac action potential are shorter than a millisecond for the fastest kinetics, while
the time steps of an atomic-level simulation are on the order of femtoseconds.
Running atomic-level simulations for the entire length of a physiological
simulation time step would not be feasible. However, in many situations it is not
necessary to run the simulation for the full duration of the time step of the level
immediately above, because the response of the lower level will converge relatively
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quickly. Such a response will be characterized by either equilibrium or quasi-
steady-state behaviour. On levels close to the atomic end of the hierarchy, the
response is characterized by the infrequent crossing of free energy barriers,
driven by thermal £uctuations. In such cases, we have developed special
algorithms, such as weighted-ensemble Brownian dynamics (Huber & Kim 1996), to
circumvent the disparity between the frequency of barrier crossing and the
simulation time step size.
We identify eight levels of biological organization from atomic scale to whole

organ system as depicted in Fig. 3. Separate classes of model represent each scale
with intervening models that bridge between across scales. For example, a
weighted ensemble Brownian dynamics simulation of ion transport through a
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TABLE 1 Models at each physical scale and the bridges between them

Scale Class ofModel Mechanics Example Electrophysiology example

Organ system Lumped parameter
model

Arterial circuit
equivalent

Equivalent dipole EKG

External boundary
conditions

Haemodynamic loads No £ux condition

Whole organ Continuum PDE
model

Galerkin FE stress
analysis

Collocation FE
model

Constitutive model Constitutive law for
stress

Anisotropic di¡usion

Tissue Multicellular network
model

Tissue micromechanics
model

Resistively coupled
network

Multicellular Cell^cell/cell^matrix
coupling

Matrix micromechanics
model

Gap junction model

Single cell Whole cell systems
model

Myocyte 3D sti¡ness
and contractile
mechanics

Myocyte ionic current
and £ux model

Subcellular Subcellular
compartment model

Sarcomere dynamics
model

Intracellular calcium
£uxes

Stochastic state-
transition model

Cross-bridge model
of actin^myosin
interaction

Single channel Markov
model

Macromolecular Weighted ensemble
Brownian dynamics

Single cross-bridge
cycle

Ion transport through
single channel

Molecular Hierarchical collective
motions

Actin, myosin,
tropomyosin

Na+, K+ and Ca+

channels

Atomic Molecular dynamics
simulation

PDB coordinates PDB coordinates

EKG, electrocardiogram; FE, ¢nite element; PDB, Protein Data Bank; PDE, partial di¡erential equation.



single channel can be used to compute channel gating properties from the results of
a hierarchical collective motions simulation of the channel complex.
Homogenization theory can be used to derive a constitutive model that re-
parameterizes the results of a micromechanical analysis into a form suitable for
continuum scale stress analysis. Table 1 shows these scales, the classes of models
that apply at each scale and that bridge between each scale, and examples from
possible simulations of cardiac electrical and mechanical function. At each level,
investigators have already implemented models (some sophisticated and some
more simple) that model this level or that bridge between them.

Organ systemmodel

The top level can be represented by a lumped parameter systems model of arterial
impedance used to generate the dynamic pressure boundary conditions acting on
the cardiac chambers. In the case of electrophysiology, we have the transfer
function for integrating the electrical dipole and whole body electrocardiogram
from the current sources generated by the sequence of cardiac electrical activation
and repolarization.

Whole heart continuummodel

Finite element methods have been used to solve the continuum equations for
myocardial mechanics (Costa et al 1996) or action potential propagation (Rogers
&McCulloch 1994). In the case of cardiacmechanics, boundary conditions such as
ventricular cavity pressures are computed from the lumped parametermodel in the
top level. Detailed parametric models of three-dimensional cardiac geometry and
muscle ¢bre orientations have been used to represent the detailed structure of the
whole organ with sub-millimetre resolution (Vetter &McCulloch 1998).

Tissue model

Constitutive laws for the continuum models are evaluated at each point in the
continuum scale model and obtained by homogenizing the results of
multicellular network models. In the case of tissue mechanics, these represent
ensembles of cell and matrix micromechanics models and, in some cases, the
microvascular blood vessels too (May-Newman & McCulloch 1998). These
models represent basic functional units of the tissue, such as the laminar
myocardial sheets. Workers have used a variety of approaches for these models
including stochastic models based on measured statistical distributions of
myo¢bre orientations (Usyk et al 2001). In cardiac electrophysiology, this level is
typically modelled as resistively coupled networks of discrete cellular models
interconnected in three dimensions (Leon & Roberge 1991).
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Single cell model

This level models representative myocytes from di¡erent myocardial regions, such
as epicardial cells, mid-ventricular M-cells and endocardial cells. For mechanics
models, individual myo¢brils and cytoskeletal structures are modelled by lattices
and networks of rods, springs and dashpots in one, two or three dimensions. Single
cell electrophysiological models are well established as described elsewhere in this
book (Noble 2002, this volume). Single cell models bridge to stochastic state-
transition models of macromolecular function through subcellular compartment
models of representative structures such as the sarcomere. Another example is
di¡usive or Monte-Carlo models of intracellular calcium transfer between
restricted micro-domains and the bulk myoplasm.

Macromolecular complexmodel

This is the level of representative populations of cross-bridges or ion channels.
They are described by Markov models of stochastic transitions between discrete
states of, for example, channel gating, actin-myosin binding or nucleotide bound
to myosin.

Molecular model

The penultimate level is composed of reduced-variable, or normal-mode-type
models of the single cross-bridges and ion channels as computed by the
hierarchical collective motions (HCM) model. The cross-bridges will move
according to Brownian dynamics, and it will be necessary to use weighted-
ensemble dynamics to allow the simulation to clear the energy barriers. The
£exibility of the cross bridges themselves will be derived from the HCMmethod,
and the interactions with other molecules will be computed using continuum
solvent approximations.

Atomic model

The ¢nal level involves descriptions at the atomic scale based on crystallography
structures of these molecules in public repositories such as the Protein Data Bank.
The dynamics of representative myosin heads, actin monomers, ion channel or
troponin subunits, are simulated at atomic resolution using molecular dynamics,
in order to build the HCMmodel. Certain key parts, such as binding sites, channel
gating sites, or voltage sensor, must be kept at atomic detail during coupling with
the level above.
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Summary

Although the main emphasis of this paper is on the mechanics and electro-
physiology of the heart, other aspects of cardiac physiology could be modelled
using a similar framework. The approach should also be adaptable to other
tissues and organs especially those with physical functions, such as lung and
cartilage. Such integrative models are composed of a hierarchy of simulation
levels, each implemented by a set of communicating program modules.
Substantial experimental data and theoretical modelling has been done at each
level from the biomechanics of the myocardium and myocytes to the biophysics
of the sarcomere and the structural biology of the cross-bridge and contractile
¢lament lattice. Many other questions remain unanswered: for example, how the
geometry of the myo¢lament lattice leads to transverse as well as longitudinal
stresses remains unclear (Lin & Yin 1998).
In order to carry out numerical experiments to complement in vitro and in vivo

experiments, a £exible and composable simulation infrastructure will be
required. It is not realistic to expect that any single integrative analysis will
include atomic or even molecular resolution detail of more than a small
subset of proteins involved in the physiological response. Instead, the path to
discovery will follow the one used in experimental biology. Models will be used
to compare the e¡ects of a speci¢c molecular structure or mutation on the
integrated response.
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DISCUSSION

Noble:You have introduced a number of important issues, including the use of
modelling to lead theway in problem resolution.You gave some good examples of
this. You also gave a good example of progressive piecing together: building on
what is already there. One important issue you raised that I’d be keen for us to
discuss is that of modelling across scales. You referred to something called HCM:
would you explain what this means?
McCulloch: The principle of HCM is an algorithm by which Gary Huber breaks

down a large protein molecule� the example he has been working on is an actin
¢lament�andmodels a small part of it. He then extracts modes that are of interest
from thismolecular dynamics simulation over a short time (e.g. principle modes of
vibration of that domain of the protein). He takes this and applies it to the other
units, and repeats the process at a larger scale. It is a bit like a molecular multigrid
approach,whereby at successive scales of resolution he attempts to leave behind the
very high-frequency small-displacement perturbations that aren’t of interest, and
accumulate the larger displacements and slower motions that are of interest. The
result is that in early prototypes he is able to model a portion of an actin ¢lament
with, say, 50 G-actin monomers wiggling around and accumulates the larger
Brownian motion scale that would normally be unthinkable from a molecular
dynamics simulation.
Subramaniam: That is a fairly accurate description. HCM involves coarse-

graining in time scale and length scale. He is successfully coarse graining where
the parameterization for the next level comes from the lower level of coarse
graining. Of course, what Gary would eventually like to resolve, going from one
set of simulations to the next hierarchy of simulations, is starting from molecular
dynamics to go intoBrownian dynamics or stochastic dynamics, fromwhich he can
go into continuum dynamics and so forth. HCM is likely to be very successful in
large-scale motions of molecular assemblies, where we cannot model detailed
atomic-level molecular dynamics.
Noble: Is this e¡ectively the same as extracting from the lower level of modelling

just those parameters inwhich changes are occurring over the time-scale relevant to
the higher-level modelling?
Sumbramaniam:Yes, with one small caveat. Sometimes very small-scale motions

may contribute signi¢cantly to the next hierarchy of modelling. This would not be
taken into account in a straightforward paramaterization approach. Since the scales
are not truly hierarchically coupled, there may be a small-scale motion that can
cause a large-scale gradient in the next level of hierarchy. Gary’s method would
take this into account.
Noble: Is the method that this can automatically be taken into account, or will it

require a human to eyeball the data and say that this needs to be included?
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McCulloch: He actually does it himself; it is not automatic yet. But the process
that he uses is not particularly re¢ned. It could certainly be automated.
Cassman: You are extracting a certain set of information out of a fairly complex

number of parameters. You made a decision that these long time-scales are what
you are going to use. But of course, if you reallywant to know something about the
motion of the protein in its native environment, it is necessary to include all of the
motions. How do you decide what you put in and what you leave out, and how do
you correct for this afterwards? I still don’t quite see how this was arrived at.
McCulloch: The answer is that it probably depends on what the purpose of the

analysis is. In the case of the actin ¢lament, Gary was looking for the motion of a
large ¢lament. A motion that wouldn’t a¡ect the motion of neighbouring
monomers was not of interest. In this case it was fairly simple, but when it comes
to biological functions it is an oversimpli¢cation just to look atwhether itmoves or
not.
Noble: When you say that it all depends on what the functionality is that you

want to model, this automatically means that there will be many di¡erent ways of
going from the lower level to the upper level. This was incidentally one of the
reasons why in the discussion that took place at the Novartis Foundation
symposium on Complexity in biological information processing (Novartis Foundation
2001), the conclusion that taking the bottom^up route was not possible emerged.
In part, it was not just the technical di⁄culty of being able to do it� even if you
have the computing power�but also because you need to take di¡erent
functionalities from the lower-level models in order to go to the higher-level
ones, depending on what it is you are trying to do.
Hunter: There is a similar example of this process that might illustrate another

aspect of it. Formany yearswe have been developing amodel ofmusclemechanics,
which involves looking at the mechanics of muscle trabeculae and then from this
extracting amodel that captures the essentialmechanical features at themacro level.
Recently, Nic Smith has been looking at micromechanical models of cross-bridge
motion and has attempted to relate the two. In this, he is going from the scale of
what a cross-bridge is doing towhat is happening at the continuum level of awhole
muscle trabecula. The way we have found it possible to relate these two scales is to
look at the motion at the cross-bridge level and extract the eigenvectors that
represent the dominant modes of action of that detailed structural model. From
these eigenvectors we then get the information that we can relate to the higher-
level continuum models. This does seem to be an e¡ective way of linking across
scales.
Subramaniam: Andrew McCulloch, in your paper you illustrated nicely the fact

that you need to integrate across these di¡erent time-scales. You took a
phenomenon at the higher level, and then used biophysical equations to model it.
When you think of pharmacological intervention, this happens at a molecular
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level. For example, take cardiomyopathy: intervention occurs by means of a single
molecule acting at the receptor level. Here, you have used parameters that have
really abstracted this molecular level.
McCulloch: In the vast majority of our situations, where we do parameterize the

biophysical model in terms of quantities that can be related to drug action, the
source of the data is experimental. It is possible to do experiments on single cells
and isolated muscles, such as adding agonists and then measuring the alteration in
channel conductance or the development of force. We don’t need to use ab initio
simulations to predict how a change in myo¢lament Ca2+ sensitivity during
ischaemia gives rise to alterations in regional mechanics. We can take the careful
measurements that have been done in vitro, parameterize them in terms of quantities
that we know matter, and use these.
Subramaniam: So your parameters essentially contain all the information at the

lower level.
McCulloch: They don’t contain it all, but they contain the information that we

consider to be important.
Noble: You gave some nice examples of the use of modelling to lead the way in

trying to resolve the problemof theAnrep e¡ect. Iwould suggest that it is not just a
contingent fact that in analysing this Anrep e¡ect your student came up with
internal Na+ being a key. The reason for this is that I think that one of the
functions of modelling complex systems is to try to ¢nd out what the drivers are
in a particular situation.What are the processes that, once they have been identi¢ed,
can be regarded as the root of many other processes? Once this is understood, we
are then in the positionwherewe have understood part of the logic of the situation.
The reason I say that it is no coincidence thatNa+ turned out to be important is that
is a sort of driver. There is a lot ofNa+ present, so thiswill change relatively slowly.
Once you have identi¢ed the groupof processes that contribute to controlling that,
you will in turn be able to go on to understand a huge number of other
processes. The Anrep e¡ect comes out. So also will change in the frequency of
stimulation. I could go on with a whole range of things as examples. It seems
that one of the functions of complex modelling is to try to identify the drivers.
Do you agree?
McCulloch: Yes, I think that is a good point. I think an experienced

electrophysiologist would perhaps have deduced this ¢nding intuitively. But in
many ways the person who was addressing the problem was not really an
experienced electrophysiologist, so the model became an ‘expert system’ as much
as a fundamental simulation for learning about the cell and rediscovering
phenomena. This was a situation where we were able to be experimentally useful
by seeking a driver.
Winslow: I think this is a good example of a biologicalmechanism that is a kind of

nexus point. Many factors a¡ect Na+ and Ca2+ in the myocyte, which in turn a¡ect
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many other processes in the myocyte. These mechanisms are likely to be at play
across a wide range of behaviours in the myocyte. Identifying these nexus points
with high fan in and high fan out in biological systems is going to be key.
Noble: Andrew McCulloch, when you said that you thought a good

electrophysiologist could work it out, this depends on there being no surprises
or counterintuitive e¡ects. I think we will ¢nd during this meeting that
modelling has shown there to be quite a lot of such traps for the unwary. I will
do a mea culpa in my paper on some of the big traps that nature has set for us, and
the way in which modelling has enabled us to get out of these.
Cassman: You are saying that one of the functions of modelling is to determine

what the drivers are for a process. But what you get out depends on what you put
in. You are putting into themodel only those things that you know.What youwill
get out of the model will be the driver based on the information that you have. It
could almost be seen as a circular process. When do you get something new out of
it, that is predictive rather than simply descriptive of the information that you have
already built into the model?
McCulloch: The only answer I can give is when you go back and do more

experiments. It is no accident that three-quarters of the work in my laboratory is
experimental. This is because at the level we are modelling, the models in and of
themselves don’t live in isolation. They need to go hand in handwith experiments.
In a way, the same caveat can be attached to experimental biology. Experimental
biology is always done within the domain of what is known. There are many
assumptions that are implicit in experiments. Your point is well taken: we were
never going to discover a role for Na+/H+ exchange in the Anrep e¡ect with a
model that did not have that exchanger in it.
Noble:No, but what you did do was identify that given that Na+ was the driver,

it was necessary to take all the other Na+ transporters into account. In choosing
what then to include in your piecemeal progressive building of humpty dumpty,
you were led by that.
Paterson: Going back to the lab, the experiments were preceded by having a

hypothesis. Where things get really interesting is when there is a new
phenomenon that you hadn’t anticipated, and when you account for your current
understanding of the system, that knowledge cannot explain the phenomenon that
you just observed. Therefore, you know that you are missing something. You
might be able to articulate several hypotheses, and you go back to the lab to ¢nd
out which one is correct. What I ¢nd interesting is how you prioritize what
experiment to run to explore which hypothesis, given that you have limited time
and resources. While the iterative nature of modelling and data collection is
fundamental, applied research, as in pharmaceutical research and development,
must focus these iterations on improving their decision-making under
tremendous time and cost pressures.
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Boissel: I have two points. First, I think that this discussion illustrates that we are
using modelling simply as another way of looking at what we already know. It is
not something that is very di¡erent from the literary modelling that researchers
have been doing for centuries. We are integrating part of what we know in such a
way that we can investigate better what we know, nothing more. Second, all the
choices that we have tomake in setting up amodel are dependent on the purpose of
the model. There are many di¡erent ways of modelling the same knowledge,
depending on the use of the model.
McCulloch: I agree with your second point. But I don’t agree with your ¢rst

point� that models are just a collection of knowledge. These models have three
levels or components. One is the set of data, or knowledge. The second is a system
of components and their interactions. The third is physicochemical ¢rst principles:
the conservation of mass, momentum, energy and charge. Where these types of
models have a particular capacity to integrate and inform is through imposing
constraints on the way the system could behave. In reality, biological processes
exist within a physical environment and they are forced to obey physical
principles. By imposing physicochemical constraints on the system we can do
more than simply assemble knowledge. We can exclude possibilities that logic
may not exclude but the physics does.
Boissel: I agree, but forme, the physicochemical constraints you put in themodel

are also a part of our knowledge.
Loew: It seems to me that the distinction between traditional modelling that

biologists have been doing for the last century, and the kind of modelling that
we are concerned with here, is the application of computational approaches. The
traditional modelling done by biologists has all been modelling that can be
accomplished by our own brain power or pencil and paper. In order to deal with
even a moderate level of complexity, say of a dozen or so reactions, we need
computation. One of the issues for us in this meeting is that someone like
Andrew McCulloch, who does experiments and modelling at the same time, is
relatively rare in the biological sciences. Yet we need to use computational
approaches and mathematical modelling approach to understand even
moderately complicated systems in modern biology. How do we get biologists
to start using these approaches?
Boissel: I used to say that formal modelling is quite di¡erent from traditional

modelling, just because it can integrate quantitative relations between the various
pieces of the model.
Levin: A brief comment: I thought that what has been highlighted so well by

Andrew McCulloch, and illustrates the distinction of what modelling was 20
years ago and what modelling is today, is the intimate relationship between
experimentation and the hypotheses that are generated by modelling.
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Advances in computing, and their

impact on scienti¢c computing

Mike Giles

Oxford University ComputingLaboratory,Wolfson Building, Parks Road, Oxford OX1 3QD,
UK

Abstract. This paper begins by discussing the developments and trends in computer
hardware, starting with the basic components (microprocessors, memory, disks, system
interconnect, networking and visualization) before looking at complete systems (death of
vector supercomputing, slow demise of large shared-memory systems, rapid growth in
very large clusters of PCs). It then considers the software side, the relative maturity of
shared-memory (OpenMP) and distributed-memory (MPI) programming environments,
and new developments in ‘grid computing’. Finally, it touches on the increasing
importance of software packages in scienti¢c computing, and the increased importance
and di⁄culty of introducing good software engineering practices into very large
academic software development projects.
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Hardware developments

In discussing hardware developments, it seems natural to start with the
fundamental building blocks, such as microprocessors, before proceeding to talk
about whole systems. However, before doing so it is necessary to make the
observation that the nature of scienti¢c supercomputers has changed completely
in the last 10 years.
Ten years ago, the fastest supercomputers were highly specialized vector

supercomputers sold in very limited numbers and used almost exclusively for
scienti¢c computations. Today’s fastest supercomputers are machines with very
large numbers of commodity processors, in many cases the same processors used
for word processing, spreadsheet calculations and database management. This
change is a simple matter of economics. Scienti¢c computing is a negligibly small
fraction of the world of computing today, so there is insu⁄cient turnover, and
even less pro¢t, to justify much development of custom hardware for scienti¢c
applications. Instead, computer manufacturers build high-end systems out of the
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building blocks designed for everyday computing. Therefore, to predict the future
of scienti¢c computing, one has to look at the trends in everyday computing.

Building blocks

Processors. The overall trend in processor performance continues to be well
represented by Moore’s law, which predicts the doubling of processor speed
every 18 months. Despite repeated predictions of the coming demise of Moore’s
lawbecause of physical limits, usually associatedwith the speed andwavelength of
light, the vast economic forces lead to continued technological developments
which sustain the growth in performance, and this seems likely to continue for
another decade, driven by new demands for speech recognition, vision
processing and multimedia applications.
In detail, this improvement in processor performance has been accomplished in a

number of ways. The feature size on central processing unit (CPU) chips continues
to shrink, allowing the latest chips to operate at 2GHz. At the same time,
improvements in manufacturing have allowed bigger and bigger chips to be
fabricated, with many more gates. These have been used to provide modern
CPUs with multiple pipelines, enabling parallel computation within each chip.
Going further in this direction, the instruction scheduler becomes the
bottleneck, so the newest development, in IBM’s Power4 chip, is to put two
completely separate processors onto the same chip. This may well be the
direction for future chip developments.
One very noteworthy change over the last 10 years has been the consolidation in

the industry. With Compaq announcing the end of Alpha development, there are
now just four main companies developing CPUs: Intel, AMD, IBM and Sun
Microsystems. Intel is clearly the dominant force with the lion’s share of the
market. It must be tough for the others to sustain the very high R&D costs
necessary for future chip development, so further reduction in this list seems a
distinct possibility.
Another change which may become important for scienti¢c computing is the

growth in the market for mobile computing (laptops and personal data assistants
[PDAs]) and embedded computing (e.g. control systems in cars) both of which
have driven the development of low-cost low-power microprocessors, which
now are not very much slower than the regular CPUs.

Memory. As CPU speed has increased, applications and the data they use have
grown in size too.The price of memory has varied erratically, but main memory
sizes have probably doubled every 18 months in line with processor speed.
However, the speed of main memory has not kept pace with processor speeds, so
that data throughput from main memory to processor has become probably the
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most signi¢cant bottleneck in system design. Consequently, we now have systems
with a very elaborate hierarchy of caches. All modern chips have at least two levels
of cache, one on theCPUchip, and the other on a separate chip,while the new IBM
Power4 has three levels. This introduces a lot of additional complexity into the
system design, but the user is shielded from this.

Hard disks. Disk technology has also progressed rapidly, in both size and
reliability. One of the most signi¢cant advances has been the RAID (redundant
array of inexpensive disks) approach to providing very large and reliable ¢le
systems. By ‘striping’ data across multiple disks and reading/writing in parallel
across these disks it has also been possible to greatly increase aggregate disk
read/write speeds. Unfortunately, backup tape speeds have not improved in line
with the rapid increase in disk sizes, and this is now a signi¢cant problem.

System interconnect. Connecting the di¡erent components within a computer is
now one of the central challenges in computer design.The general trend here is a
change fromsystembuses to crossbar switches to provide su⁄cientdatabandwidth
between the di¡erent elements.The chips for the crossbar switching are themselves
now becoming commodity components.

Networking. In the last 10 years, networking performance, for example for
¢leservers, has improved by a factor of 100, from Ethernet (10Mb/s) to Gigabit
Ethernet (1Gb/s), and 10Gb/s Ethernet is now under development. This has
been driven by the development of the Internet, the World Wide Web and
multimedia applications. It seems likely that this development will continue,
driven by the same forces, perhaps with increasing emphasis on tight integration
with the CPU to maximize throughout and minimise delays.These developments
would greatly aid distributed-memory parallel computing for scienti¢c purposes.
Very high performance networking for personal computer (PC) clusters and

other forms of distributed-memory machine remains the one area of custom
hardware development for scienti¢c computing. The emphasis here of companies
such as Myricom and Dolphin Interconnect is on very low latency hardware,
minimizing the delays in sending packets of data between machines. These
companies currently manufacture proprietary devices, but the trend is towards
adoption of the new In¢niband standard which will lead to the development of
low-cost very high performance networking for such clusters, driven in part by
the requirements of the ASPs (application service providers), to be described later.

Visualization. 10 years ago, scienti¢c visualization required very specialized
visualization workstations. Today, there is still a small niche market for
specialized capabilities such as ‘immersive technologies’, but in the more
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conventional areas of scienti¢c visualization the situation has changed enormously
with the development of very low cost but incredibly powerful 3D graphics cards
for the computer games marketplace.

Systems

Vector computers. The days of vector computing are over. The huge development
costs could not be recouped from the very small scienti¢c supercomputing
marketplace. No new codes should be written with the aim of executing them on
such systems.

Shared-memory multiprocessors. Shared-memory systems have a single very large
memory to which is connected a number of processors. There is a single
operating system, and each application task is usually a single Unix ‘process’.The
parallelism comes from the use of multiple execution ‘threads’within that process.
All threads have access to all of the data associated with the process. All that the
programmer has toworry about to achieve correct parallel execution is that no two
threads try towork with, and in particular update, the same data at the same time.
This simplicity for the programmer is achieved at a high cost. The problem is

that each processor has its own cache, and in many cases the cache will have a more
up-to-date value for the data than the main memory. If another processor wants to
use that data, then it needs to be told that the cache has the true value, not the main
memory. In small shared-memory systems, this problemof cache coherency is dealt
with through something called a ‘snoopy bus’, inwhich each processor ‘snoops’ on
requests by others for data from the main memory, and responds if its cache has a
later value. In larger shared-memory systems, the same problem is dealt with
through specialized distributed cache management hardware.
This adds signi¢cantly to the cost of the system interconnect and memory

subsystems. Typically, such systems cost three-to-¢ve times as much as
distributed memory systems of comparable computing power. Furthermore, the
bene¢ts of shared-memory programming can be illusional. To get really good
performance on a very large shared-memory system requires the programmer to
ensure that most data is used by only one processor, so that it stays within the cache
of that processor as much as possible. This ends up pushing the programmer
towards the style of programming necessary for distributed-memory systems.
Shared-memory multiprocessors from SGI and Sun Microsystems account for

approximately 30% of the machines in the TOP500 list of the leading 500
supercomputers in the world which are prepared to provide details of their
systems. The SGI machines tend to be used for scienti¢c computing, and the Sun
systems for ¢nancial and database applications, re£ecting the di¡erent marketing
emphasis of the two companies.
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An interesting development is that the major database companies, such as
Oracle, now have distributed-memory versions of their software. As a
consequence of this, and the cost of large shared-memory systems, my prediction
is that the market demand for very large shared-memory systems will decline. On
the other hand, I expect that there will continue to a very large demand for shared-
memory machines with up to 16 processors for commercial computing and
applications such as webservers, ¢leservers, etc.

Distributed-memory systems. Distributed-memory systems are essentially a number
of separate computers coupled together by a very high speed interconnect. Each
individual computer, or ‘node’, has its own memory and operating system. User’s
applications have to decide how to split the data between the di¡erent nodes. Each
node then works on its own data, and they communicate with each other as
necessary when the data belonging to one is needed by another. In the simplest
case, each individual node is a single processor computer, but in more complex
cases, each node may itself be a shared-memory multiprocessor.
IBM is the manufacturer of approximately 40% of the systems on the TOP500

list, and almost all of these are distributed-memory systems. Many are based on its
SP architecture which uses a cross-bar interconnect. This includes the system
known as ASCI White which is o⁄cially the world’s fastest computer at present,
at least of those which are publicly disclosed.
Another very important class of distributed-memory systems are Linux PC

clusters, which are sometimes also known as Beowulf clusters. Each node of
these is usually a PC with one or two Intel processors running the Linux
operating system. The interconnect is usually Myricom’s high-speed low-latency
Myrinet 2000 network,whose cost is approximately half that of the PC itself. These
systems provide the best price/performance ratio for high-end scienti¢c
applications, which demand tightly-coupled distributed-memory systems. The
growth in these systems has been very dramatic in the past two years, and there
are now many such systems with at least 128 processors, and a number with as
many as 1024 processors. This includes the ASCI Red computer with 9632
Pentium II processors, which was the world’s fastest computer when it was
installed in 1999, and is still the world’s third fastest.
Looking to the future, I think this class of machines will become the dominant

force in scienti¢c computing, with In¢niband networking and with each node
being itself a shared-memory multiprocessor, possibly with the multiple
processors all on the same physical chip.

Workstation/PC farms. Workstation and PC farms are similar to distributed-
memory systems but connected by a standard low-cost Fast Ethernet network.
They are ideally suited for ‘trivially parallel’applications which involve very large
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numbers of independent tasks, each of which can be performed on a single
computer. As with PC clusters, there has been very rapid development in this
area. The big driving force now is to maximize the ‘density’ of such systems,
building systems with as much computing power as possible within a given
volume of rack space. It is this desire to minimize the space requirements that is
leading to the increasing use of low-powermobile processors.These consumevery
little power and so generate very little heat to be dissipated and can therefore be
packaged together very tightly. A single computer rack with 128 processors seems
likely in the very near future, so larger systems with1024 processors could become
common in a few years.

Software developments

Operating systems

Unix remains the dominant choice for scienti¢c computing, although Windows
dominance in everyday computing means it cannot be discounted.
Within theUnix camp, the emergence and acceptance of Linux is the big story of

the last 10 years, with many proprietary £avours of Unix disappearing.
The big issue for the next 10 years will be themanagement of very large numbers

of PCs orworkstations, including very large PC clusters. The cost of support sta¡ is
becoming a very signi¢cant component of overall computing costs, so there are
enormous bene¢ts to be obtained from system management tools that enable
support sta¡ to look after, and upgrade, large numbers of machines.
Another key technology is DRM (Distributed ResourceManagement) software

such as Sun Microsystems’ Grid Engine software, or Platform Computing’s LSF
software. These provide distributed queuing systems which manage very large
numbers of machines, transparently assigning tasks to be executed on idle
systems, as appropriate to the requirements of the job and the details of the
system resources.

Programming languages

Computer languages evolve much more slowly than computer hardware. Many
people still use Fortran 77/90, but increasingly C and C++ are the dominant
choice for scienti¢c computing, although higher-level, more application-speci¢c
languages such as MATLAB are used heavily in certain areas.

OpenMP

For shared-memory computing, OpenMP is the well-established standard with
support for both Fortran and C. The development of this standard ¢ve years ago
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hasmade it possible for code developers towrite a single codewhich can run on any
major shared-memory system, without the extensive code porting e¡ort that was
previously required.

MPI

For distributed-memory computing, the standard is MPI (message passing
interface) which has superseded the earlier PVM (parallel virtual machine). Again
this standard includes library support for both Fortran and C, and it has been
adopted by all major system manufacturers, enabling software developers to
write fully portable code.
It remains the case unfortunately that the writing of a message-passing parallel

code can be a tedious task. It is usually clear enough how one should parallelize a
given algorithm, but the task of actually writing the code is still much harder than
writing an OpenMP shared-memory code. I wish I could be hopeful about
improvements in this area over the next 10 years, but I am not optimistic; there is
only limited research and development in this area within academia or by
commercial software vendors.

Grid computing

‘Grid computing’ is a relatively new development which began in the USA and is
now spreading to Europe; within the UK it is known as ‘E-Science’. The central
idea is collaborative working between groups at multiple sites, using distributed
computing and/or distributed data.
One of the driving examples is in particle physics, in which new experiments at

CERN and elsewhere are generating vast quantities of data to be worked on by
researchers in universities around the world.
An entirely di¡erent example application is in engineering design, in which a

number of di¡erent companies working jointly on the development of a single
complex engineering product, such as an aircraft, need to combine their separate
analysis capabilities with links into a joint design database.
In the simulation of biological processes, there is also probably a strong need for

collaboration between leading research groups around the world. Each may have
expert knowledge in one or more aspects, but it is by combining their knowledge
that the greatest progress can be achieved.
Another aspect of grid computing is remote access to, and control of, very

expensive experimental facilities. One example is astronomical telescopes;
another is transmission electron microscopes. This may have relevance to the use
of robotic equipment for drug discovery.
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Other trends

ASPs and remote facility management

It was mentioned earlier that the cost of computing support sta¡ is a signi¢cant
component of overall computing costs. As a consequence, there is a strong trend
to ‘outsource’ this.Within companies, this canmean an organization such as EDS,
CSC or IBMGlobal Servicesmanaging the company’s computing systems.Within
universities, as well as companies, this may in the future lead to specialist
companies remotely managing special facilities such as very large PC clusters.
This is made feasible by the advances in networking. The economic bene¢ts
come from the economies of scale from having a team of people with specialist
knowledge supporting many such systems at di¡erent sites.
Another variation on the same theme is ASPs (application service providers)

which o¡er a remote computing service to customers, managing the systems at
their own site. This requires much higher bandwidth between the customer and
the ASP, so it does not seem so well suited for scienti¢c computing, but it is a
rapidly developing area for business computing.

Development of large software packages

My ¢nal comments concern the process of developing scienti¢c software. The
codes involved in simulation software are becoming larger and larger. In
engineering, they range from 50 000 lines to perhaps 2 000 000 lines of code, with
development teams of 5^50 people. I suspect the same is true for many other areas
of science, including biological simulations.
Managing such extensive software development requires very able

programmers with good software engineering skills. However, academic
researchers are more focused on the scienti¢c goals of the research, and academic
salaries are not attractive to talented information technology (IT) sta¡. In the long
term, I think the trendmust be formuch of the software development to be done in
private companies, but for mechanisms to exist whereby university groups can
contribute to the scienti¢c content of these packages.
I do not underestimate the di⁄culty in this. Joint software development by

multiple teams increases the complexity signi¢cantly, and developing software so
that one group can work on one part without extensive knowledge of the whole
code is not as easy as it may appear. Equally, the non-technical challenges in
agreeing intellectual property rights provisions, properly crediting people for
their academic contributions, etc., are not insigni¢cant. However, I think it is
unavoidable that things must move in this direction. Otherwise, I do not see
how university groups will be able to take part in the development of extremely
large and complex simulation systems.
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DISCUSSION

Ashburner: You were fairly optimistic that Moores’s law (a doubling of CPU
power every 18 months) would continue to hold, at least over the next 18
months. The trouble in my ¢eld is that the amount data, even its most simple
form, is quadrupling or so every 12 months. If one includes data such as those
from microarray experiments, this is probably an underestimate of the rate of
growth. We are therefore outstripping Moore’s law by a very signi¢cant factor.
Paterson: I think the problem is even worse than this. As we start building this

class of largemodels, there are never enough data to give us de¢nitive answers as to
how these systems are working. We are always in the process of formulating
di¡erent hypotheses of what might be going on in these systems. Fundamentally,
in systems biology/integrative physiologywe have to deal with combinatorics.We
may be seeing a geometric growth in computing power, but I would argue that the
permutations of component hypotheses within an integrated physiological system
also grow geometrically with the size of the biological system being studied. The
two tend to cancel each other out, leaving a linear trend in time for the size of
models that can be appropriately analysed.
Ashburner: If I wanted today to do an all-against-all comparison of two human

genome sequences, I don’t know whether I’d see this through before I retire. This
is desperately needed.We only have one human sequence (in fact, we have two, but
one is secret), but ¢ve years down the line we will have about 50.
Reinhardt: In genomics, we commonly face the problem of simultaneously

having to analyse hundreds of microarray experiments, for example for the
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prediction of protein interactions from expression data. The rate-limiting step is
getting the data out of the database. The calculation time is only a percentage of the
whole run-time of the program. For algorithms we can add processors and we can
parallelize procedures. What we don’t have is a solution for how to accelerate data
structures. This is needed for faster retrieval of data from a data management
system. This would help us a lot.
Subramaniam: I agree with you that bang for the buck is very good with the

distributed computing processors. But your statement that databases such as
Oracle deal e⁄ciently with data distributed computing is not true. We deal with
this on a day-to-day basis. If you are talking about particle physics where you have
4^10 tables this may be true, but in cell biology we are dealing typically with 120
tables. We don’t have the tools at the moment to do data grid computing and
feeding back to a database.
Biology computing is qualitatively distinct from physics equation space

computing. First, a lot of data go into the computing process. Second, we don’t
have idealized spheres and cylinders: there are very complex geometries, and the
boundary conditions are very complicated. Third, biologists think visuallymost of
the time. They need visualization tools, which rules out Fortran, because it is not
possible to write a sphere program in Fortran very easily. This is one of the reasons
why Mike Pique wrote his ¢rst sphere program in C++. I am just trying to point
out that graphical user interfaces (GUIs) are an integral component of biology.
GUIs warrant programming in Java and Perl and so on.
Giles: It is possible to combine di¡erent languages, although all the visualization

software we use is written in C. Yes, visualization is crucial. But visualization
software exists for handling distributed memory data. I have no idea how
e⁄cient Oracle’s distributed databases are, but what is important is that this is the
way they are heading. This is the platform that they see as becoming the dominant
one. If they haven’t got it right with their ¢rst release, by the time they get to their
tenth release they will surely have got it right.
Noble:Mike Giles, since you have started to use your crystal ball, I’d like you to

go a little further with it. I will show a computation in my paper which I did in
1960, on a machine that occupied a fairly large room. It was an old valve machine
and the computation took about two hours.When I show it, it will £ash across my
rather small laptop so fast that I’ll have to slow it down by a factor of about 50 in
order to let you see what happens. Jump 40 years in the future: where is the limit in
processing power? You were looking ahead no further than 5^10 years. Were you
constraining yourself because you can see some obvious physical limits, or was this
because you thought that speculating any further ahead is not possible?
Giles: It gets really tough to look beyond about 10 years. People have been

talking about reaching physical limits of computing for a while, but
manufacturing technology keeps advancing. Currently, these chips are generated
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with photolithography, laying down patterns of light that etch in and de¢ne the
pathways. Now we are at the level where the feature of individual gates is actually
less than the wavelength of UV light. This is achieved by the use of interference
patterns. The next stage will involve going to X-rays, using synchrotrons. There’s
enoughmoney in the marketplace to make this feasible. In the labs they are already
running 4GHz chips. Power is de¢nitely becoming a concern. Very large systems
consume a great deal of electricity, and dissipating this heat is a problem. Then
answer is probably to move in the direction of low-voltage chips.
Noble: So at the moment you feel we can just keep moving on?
Giles: Yes. For planning purposes Moore’s law is as good as anything.
Ashburner: In genomics we are outpacing this by a signi¢cant factor, as I have

already said.
Giles:Well, I can’t see any hope for beating Moore’s law. My other comment is

that any e¡ort spent on improving algorithms that will enable us to do something
twice as fast, is a gain for all time. The funding agencies are trying to get biologists
and computer scientists to talk to each other more on algorithm issues.
Noble: This brings us round to the software issue, including languages.
Loew: You mentioned e-computing, or grid computing, and how this might

relate to modelling. The results of modelling really require a di¡erent publication
method than the traditional ‘£at’ publications that we are used to. Even the current
electronic publications are still quite £at. Collaborative computing seems to be the
ideal sort of technology to bring to bear on this issue of how to publishmodels. It is
an exciting area. Is there any e¡ort being made to deal with this in the computer
science community?
Noble: There is in the biological science community: there is very serious

discussion going on with a number of journals on this question.
Loew: I’ve been involved a little with the Biophysical Journal on the issue, but we

are still trying to get the journal to move beyond including movies. It’s a hard sell.
Levin: There are publishing companies at this stage who are looking quite

proactively at establishing web-based publishing of interactive models. One of
the issues bedevilling all of them is standardization. Even in the scienti¢c
community we haven’t yet adopted compatible standards for developing models.
Once we have reached consensus in the community as to what are the right
standardization forms, it will be much easier for the publishers to adopt one or
the other. Wiley has made steps towards doing this in the lab notebook area. But
these aren’t sophisticated enough to accommodate complex models. What we are
talking about here is the ability to put onto the web a model, and then for an
individual investigator to place their own separate data into that model and run
the model. This is currently feasible and can be made practical. It is a question of
decidingwhich of the standards to adopt. It is likely to be based onbeing able to use
a form of XML (extensible mark-up language) as a standard.
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I have one other point that concerns the educational issue. Modelling has been
the preserve of just a few ‘kings’ over the years: in order for it to devolve down to
the pawns and penetrate across the entire spectrum of biology, I think it will take a
number of proactive e¡orts, including publication of interactive models on the
web; the development of simple tools for modelling; and the use of these tools
not only in companies but also in places of education, to answer both applied and
research biological questions.
Noble: The publication issue has become a very serious one in the UK. I

remember when the Journal of Physiology switched to double-column publication,
instead of the old-fashioned across-the-page style. The big issue was whether it
would ever be possible again to publish a paper like the Hodgkin^Huxley paper
on the nerve impulse! Much more seriously, journals that were taking a very
good view of the extensive article covering some 30^40 pages are no longer
doing so. The Proceedings of the Royal Society has gone over to short paper
publication. Philosophical Transactions of the Royal Society, which was the journal
that no one buys but everyone relies on, no longer takes original papers, though
it is noteworthy that the Royal Society journals do a good job on publishing
extensive focused issues. Progress in Biophysics and Molecular Biology does this
also. These were the places where people were gravitating towards in order to
publish huge papers.
Hunter:This is not the case in some areas of engineering andmathematics. SIAM

(Society for Industrial and Applied Mathematics) publishes very long, detailed
mathematical papers.
Loew: There’s another issue related to this that I still think has to do with

collaborative computing and databasing. Once you start including this kind of
interactive modelling environment in electronic publications, how is it archived
so that people can look for pieces of models, in order to get the much richer kind
of information, as opposed to the rather £at information that we now get through
PubMed or Medline? I think there are a great number of possibilities for really
enriching our ability to use published material in ways that just haven’t been
possible before.
Subramaniam: With regard to databases, one of the missing elements here is

ontologies. Establishing well-de¢ned ontologies will be needed before we will
have databases that can be distributed widely.
Ashburner:These are complex issues, many of which are not scienti¢c but social.

Philip Campbell, the editor ofNature, recently wrote in answer to a correspondent
stating that supplementary information attached to papers published byNature is
archived by the journal in perpetuity. If I take that statement literally, then Philip
Campbell must know something I don’t! There is clearly an inherent danger here,
because we all know that any commercial company can be taken over and the new
ownersmay not have the same commitment: no guarantees on earthwill leadme to
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believe that the new owners will necessarily respect the promises of the original
owner. This is not a scienti¢c problem but a social one.
Cassman: There are answers to this that have nothing to do with publication or

journals. There are nationally supported databases, such as the protein database.
This is the natural place for these models to be located. The di⁄culty is, as
Shankar Subramaniam has pointed out, that for databases of interacting systems
we lack ontologies that people will agree on. Ontologies exist, but there is no
common ontology. Attempts that we made to get people to agree on this issue a
couple of years ago simply failed. I don’t know what the answer is. It’s a critical
issue: if these models are to be more than descriptive, then they have to be easily
accessible in ways that are common (or at least interconvertible) for all of the
models. This hasn’t happened yet, but it needs to happen reasonably quickly.
Molecular genetics, when it started, was a very speci¢c discipline used by a small
number of people. Now everyone uses it: it is a standard tool for biology. If we
want modelling to be a standard tool also (as it should be) then we need all these
things to happen, and some group is going to have to catalyse it.
Berridge:When it comes to archiving array data, for example, dowe have to draw

a distinction between databases that store sequence information, and those in
which we store experimental data? If you are running an array experiment
comparing cells A and B, and the result of that experiment is that there are 20
new genes being expressed in cell B, do we have to keep the original data? Does
someone accessing this paper have to be able to interrogate the original data? And
is there a cut-o¡ where there is so much information, that we just need to keep the
information that was extracted from the experiment rather than archiving all the
array data? I suspect this is a balance that we will have to strike.
Ashburner:Access to these data is essential for the interpretation of these sorts of

experiment: they must be publicly available.
Berridge: There must be a balance somewhere, because it simply won’t be

physically possible to store every bit of data.
Ashburner: The particular issue of microarray data is whether or not the

primary images should be stored. I believe they should, but the problem is that
they are very large. Although memory is relatively cheap, it is still a major
problem. Moreover, even if the images are stored, to attempt to transmit them
across the internet would require massive bandwidth and is probably not
currently feasible.
McCulloch: There is an emerging standard for microarray data representation,

called MAGEML. This includes the raw image as part of the XML document, in
the form of a URL (uniform resource locator) that points to the image ¢le. At least
in principle these databases are readily federated and distributed. But then, the
likelihood of being able to retrieve and e⁄ciently query the image is not great,
especially after a long period. The consensus though is that the raw experimental
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data should be available. At least in part, this is driven by the signi¢cant di¡erences
in the way people interpret them.
Ashburner:And the softwarewill improve, too.Wemaywant to go back and get

more out of the original data in the future.
Levin: I would like to address the issue of storage of data, referring in

particular to modelling. There is a need to institutionalize memory. Without
institutionalizing memory, whether it be in an academic or commercial
organization, what happens is that frequently we are forced to recreate the errors
of the past by redoing the experiments again. The cost is unsupportable,
particularly as the number of hypotheses that are being generated by data such as
microarray data rises. With the primary data we need to come to a consensus as to
how we store them and what we store. There is an essential requirement to be able
to store models that contain within them a hypothesis and the data upon which the
hypothesis was based. So, when a researcher leaves a laboratory, the laboratory
retains that particular body of work in the form of a database of models. This
enables other researchers to go back and query, without having to recreate the
data and the models.
Boissel: The raw data are already stored somewhere, and the real problem is just

one of accessing these data. Of course, the raw data alone, even if they are
accessible, are di⁄cult to use without proper annotation. I don’t think we need a
huge database containing everything. We just need to have proper access to
existing data. This access will be aided if there is proper ontology, such that each
researcher can store their own raw data in the proper way.
I have a feeling thatwe are discussing two separate issues here: the storage of data

and the access to data, and the storage of models and the access to models.
McCulloch: The discussion started out about hardware and software, and has

quickly gravitated towards data, which is not surprising in a biological setting. It
is the large body of data, and how to get at this and query it, that is the central
driving force of modern computational biology. But let’s con¢ne the discussion
for a minute to that set of information that comprises the model, and that people
have discussed encapsulating in formats such as CellMLor SBML (systems biology
mark-up language). Itwill be helpful to the ‘kings’ (themodellers), but itwill not in
itself make the models available to other biologists without appropriate software
tools.MikeGiles, I’d like to comment on the issue you raised about software. First,
you said you looked into C++ about 10 years ago and found that it wasn’t stable.
There are now excellent C++ compilers, so stability of this language is no longer a
problem. But there is, at the moment, a perceived problem with object-oriented
languages such as C++ and Java for scienti¢c programming, and that is
performance. We found, somewhat to our surprise, that C++ has features that
can more than compensate for the performance trade-o¡s of modularity and
£exibility. For example, using templated meta-programming facilities of C++ we
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achieved speed-ups of over 10-fold comparedwith legacy FORTRANcode. These
generic programming techniques allow the programmer to optimize the
executable code at compile time by identifying data that won’t change during
execution. The idea that modern object-oriented languages must sacri¢ce
performance needs to be revised because sometimes they can actually improve
it.
Paterson:There is one point that hasn’t been addressed yet that I think is relevant

here. In terms of getting a common language and being able to get a model
published, this is moving the bottleneck from an issue of portability to an issue
of scienti¢cally sound usage now that the model is in the hands of a much larger
group of people. I would be interested to understand to what extent ontologies
have been able to solve the problem that I think is going to arise. Models are an
exercise in abstracting reality. They aren’t reality. The amount of documentation it
takes to make a model stand alone�explaining how to use, interpret and modify
it� is going to be an issue.My concern is that the bottleneck is going to come back
to the researcher.Now that everyone has themodel and is able to start doing things
with it, this is likely to create a huge support/documentation burden on the person
publishing the model. Either they will have to manage the £ood of ‘support’
questions, or worse, anticipate limits and caveats to using the model in
unanticipated applications and document the model accordingly.
Noble: This is one of the reasons why in the end we had to commercialize our

models. The reason my group launched Oxsoft is that we published a paper
(Di Francesco & Noble 1985) and couldn’t cope with the response. It wasn’t just
the 500^1000 reprint requests, but also about 100 requests for the software. There
simply wasn’t any other way of coping with that demand. Those were the days
when a disk cost »100.
Levin: You have stimulated a thought: e¡ectively all biologists are modellers in

one fashion or another, we just don’t interpret the way we conduct science in this
way. A person who has drawn a pathway on a piece of paper showing potential
proteins and how they interact has modelled in one dimension what the
relationships are. I think the challenge is less being concerned with researchers
and their use of models, or their ability to refer back to the original formation
and documentation of the model (although these are important). Rather, the
obligation resides on those who are building the software and the underlying
mathematics (including the ontologies and standardization) to ensure that the
end-user ¢nds the modelling tools su⁄ciently intuitive to utilize it in the same
way that other standardized biological tools, such as PCR, gained acceptance
once the basic technology (in the case of PCR, the thermal cycler) was simple
enough to be used universally. The onus is on those responsible for building
intuitive, practical and functional capabilities into the technologies and making
them available for modelling.
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Ashburner: Denis Noble, I’m sure you are correct that at the time
commercialization was the only way to cope. But now there exist robust systems
by means of which you can deposit your software and make it accessible to others
(for example, on the Sourceforge website; http://sourceforge.net). I agree that it has
to be well documented, but it is then freely available for anyone to download. The
lesson of Linux has to be taken seriously by the biological community. We are
working entirely through open-source sites and with open-source software.
There is no distribution problem.
Subramaniam: In addition to ontology, in order to make models universally

accessible we need to create problem-solving environments such as the Biology
Workbench.
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From physics to phenomenology.

Levels of description and levels of

selection

David Krakauer

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Abstract. Formal models in biology are traditionally of two types: simulation models in
which individual components are described in detail with extensive empirical support for
parameters, and phenomenological models, in which collective behaviour is described in
the hope of identifying critical variables and parameters. The advantage of simulation is
greater realism but at a cost of limited tractability, whereas the advantage of
phenomenological models, is greater tractability and insight but at a cost of reduced
predictive power. Simulation models and phenomenological models lie on a
continuum, with phenomenological models being a limiting case of simulation models.
I survey these two levels of model description in genetics, molecular biology,
immunology and ecology. I suggest that evolutionary considerations of the levels of
selection provides an important justi¢cation for many phenomenological models. In
e¡ect, evolution reduces the dimension of biological systems by promoting common
paths towards increased ¢tness.

2002 ‘In silico’ simulation of biological processes. Wiley, Chichester (Novartis Foundation
Symposium 247) p 42^52

. . . In that Empire, the art of cartography attained such perfection that the map
of a single province occupied the entirety of a city, and the map of the Empire,
the entirety of a province. In time those unconscionable maps no longer
satis¢ed, and the Cartographers Guilds struck a map of the Empire whose size
was that of the Empire and which coincided point for point with it.

Jorge Luis Borges OnExactitude in Science

Levels of description

The natural sciences are all concerned with many-body problems. These are
problems in which an aggregate system is made up from large numbers of a few
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basic types or particles, and where these types interact according to some well-
de¢ned rules. The state of a system at any one time can be captured by a
microscopic description of the individual particles, a macroscopic description of
system level properties such as entropy and temperature, or by statistical
descriptions of the whole system. Both microscopic and macroscopic
descriptions relate to some constituent parts of a system, whereas the statistical
description deals exclusively with aggregate properties. In the language of
biology the microscopic and macroscopic descriptions would be referred to as
mechanistic whereas the statistical property as a functional character. Formal
mathematical or computational approaches in the natural sciences re£ect these
di¡erent scales in the choice of either individual-based simulations, population-
based phenomenological models, or statistical models. The natural scale and
model choice do not map one to one. The most abstract description�the
statistical model�can be applied only to the whole system, whereas the most
speci¢c description�the microscopic model�can be used to generate results at
all three scales. Consider the combinatorial game of ‘Go’. A microscopic model
would describe the colour and position of every piece on the 19�19 Go board
and deduce the future state of the board through the application of a strategy
operating within certain basic constraints or game-rules. A macroscopic model
could describe con¢gurations of pieces forming triangles, chains, ladders and
eyes, and calculate likely transitions between these con¢gurations through the
application of pattern-based strategies such as cutting, connecting and Ko.
A statistical model could describe the mean numbers of each colour, the mean

territory size, and the temporal variance in score as a means of estimating probable
outcomes. The statistical model is of little use to a player of the game, whereas the
microscopic model will produce both macroscopic patterns and improve
parameter estimates for the statistical model.
An important limitation of the simulation-based approach is that the possible

states of the model are of the same order as the possible states of the game. The
simulation model is not signi¢cantly simpler than the system it describes. This
exposes an apparent paradox of simulation models, namely, is the natural system
the best simulation of itself (see Borges’ epigraph)? Both the phenomenological
model and the statistical model are considerably simpler than the natural system.
The natural system can exist in many more con¢gurations, and produce many

more behaviours, than the phenomenological model or the statistical model could
describe. The key to worthwhile phenomenological modelling is in the choice of
restrictions we apply in developing our macroscopic descriptions, whereas the key
to simulation-based modelling is speed. It is because we require that our
simulations reproduce possible system con¢gurations over a shorter time than
real time, that the structure of the simulation model and the natural system must
be di¡erent. The way in which this increase in speed is achieved is to
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make simulation models partially phenomenological through simplifying
approximations. We see therefore that the distinction between modelling
approaches becomes somewhat arbitrary, as all models are phenomenological
models. The di¡erences are not qualitative but quantitative, and relate to the
number of variables and parameters we are happy to plug into our brains or into
the circuitry of a computer. A smaller number of variables and parameters is always
preferable, but ourwillingness tomove toward the phenomenological, depends on
how reliable is the derivation of the macroscopic equations from the microscopic
interactions. A formal approach to rescaling many-body problems�a method for
reducing the number of variables�is to use renormalization group theory (Wilson
1979).
Here I am going to present an evolutionary perspective on this complex topic.

Rather than discussMonte Carlomethods, agent basedmodels, interacting particle
systems, and stochastic and deterministic models, and their uses at each scale. I
restrict myself to a biological justi¢cation for phenomenological modelling. The
argument is as follows. Natural selectionworks through the di¡erential replication
of individuals. Individuals are complex aggregates and yet the ¢tness of individuals
is a scalar quantity, not a vector of component ¢tness contributions. This implies
that the design of each component of an aggregate must be realized through the
di¡erential replication of the aggregate as a whole. We are entitled therefore to
characterize the aggregate with a single variable, ¢tness, rather than enumerate
variables for all of its components. This amounts to stating that identifying levels
of selection can be an e¡ective procedure for reducing the dimensionality of our
state space.

Levels of selection

Here I shall brie£y summarize current thinking on the topic of units and levels of
selection (for useful reviews seeKeller 1999,Williams 1995). The levels of selection
are those units of information (whether genes, genetic networks, genomes,
individuals, families, populations, societies) able to be propagated with
reasonable ¢delity across multiple generations, and in which these units, possess
level-speci¢c ¢tness enhancing or ¢tness reducing properties. All of the listed
levels are in principle capable of meeting this requirement (that is the total
genetic information contained within these levels), and hence all can be levels of
selection. Selection operates at multiple levels at once. However, selection is more
e⁄cient in large populations, and drift dominates selection in small populations.
As we move towards increasingly inclusive organizations, we also move towards
smaller population sizes. This implies that selection is likely to be more e¡ective at
the genetic level than, say, the family level. Furthermore, larger organizations are
more likely to undergo ¢ssion, thereby reducing the ¢delity of replication. These
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two factors have led evolutionary biologists to stress the gene as a unit of selection.
This is a quantitative approximation. In reality there are numerous higher-order
¢tness terms derived from selection at more inclusive scales of organization.
From the foregoing explanation it should be apparent that the ease with which a

component can be an independent replicator, helps determine the e⁄ciency of
selection. In asexual haploid organisms individual genes are locked into
permanent linkage groups. Thus individual genes do not replicate, rather whole
genomes or organisms. The fact of having many more genes than genomes is not
an important consideration for selection. This is an extreme example highlighting
the important principle of linkage disequilibrium. Linkage disequilibrium
describes a higher than random association among alleles in a population. In
other words, picking an AB genome from an asexual population is more likely
than ¢rst picking an A allele and subsequently a B allele. Whenever A and B are
both required for some functionwe expect them to be found together, regardless of
whether the organism is sexual, asexual, or even if the alleles are in di¡erent
individuals! (Consider obligate symbiotic relationships.) This implies that the AB
aggregate can now itself become a unit of selection. This process can be extended to
include potentially any number of alleles, spanning all levels of organization. The
important property of AB versus A and B independently is that we can now
describe the system with one variable whereas before we had to use two. The
challenge for evolutionary theory is to identify selective linkage groups, thereby
exposing units of function, and allowing for a reduction in the dimension of the
state space. These units of function can be genetic networks, signal transduction
modules, major histocompatibility complexes, and even species. In the remainder
of this paper I shall describe individual level models and their phenomenological
approximations, motivated by the assumption of higher levels of selection.

Levels of description in genetics

Population genetics is the study of the genetic composition of populations. The
emphasis of population genetics has been placed on the changes in allele
frequencies through time, and the forces preserving or eliminating genetic
variability. Very approximately, mutation tends to diversify populations,
whereas selection tends to homogenize populations. Population genetics is a
canonical many-body discipline. It would appear that we are required to track the
abundance of every allele at each locus of all members in a randomly mating
population. This would seem to be required assuming genes are the units of
selection, and all replicate increasing their individual representation in the gene
pool. However, even a cursory examination of the population genetics literature
reveals this expectation to be unjusti¢ed. The standard assumption of population
genetics modelling is that whole genotypes can be assigned individual ¢tness
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values. Consider a diploid population with two alleles. A1 and A2 and
corresponding ¢tness values W11¼1, W12¼W21¼1�hs and W22¼1�s. The
value s is the selection coe⁄cient and h the degree of dominance. Population
genetics aims to capture microscopic interactions among gene products by
varying the value of h.When h¼1 then A1 is dominant. When 05h51

2 then A1

is incompletely dominant. When h¼0, A1 is recessive. Denoting as p the
frequency of A1 and 1�p the frequency of A2, the mean population ¢tness is
given by

W ¼ 1� s þ 2s(1� h)p� s(1� 2h)p2

and the equilibrium abundance ofA1,

p̂p ¼
1� h
1� 2h

These are very general expressions conveying information about the ¢tness and
composition of a genetic population at equilibrium. The system is reduced from
two dimensions to one dimension by assuming that dominance relations among
autosomal alleles can be captured through a single parameter (h). More
signi¢cantly, the models assume that autosomal alleles are incapable of
independent replication. The only way in which an allele can increase its ¢tness is
through some form of cooperation (expressed through the dominance relation)
with another allele.
The situation is somewhat more complex in two-allele two-locus models (A1,

A2, B1, B2). In this case we have 16 possible genotypes. The state space can be
reduced by assuming that there is no e¡ect of position, such that the ¢tness of
A1B1A2B2 is equal to that of A1B2A2B1. We therefore have 9 possible
genotypes. We can keep the number of parameters in such a model below 9 while
preventing our system from becoming underdetermined, by assuming that
genotype ¢tness is the result of the additive or multiplicative ¢tness
contributions of individual alleles. This leaves us with us 6 free parameters. The
assumption of additive allelic ¢tness means that individual alleles can be knocked
outwithoutmortality of the genotype.Withmultiplicative ¢tness knockout of any
one allele in a genome is lethal. These two phenomenological assumptions relate to
very di¡erent molecular or microscopic processes. Once again this modelling
approach assumes that individual alleles cannot increase their ¢tness by going
solo; alleles increase in frequency only as members of the complete genome and
they cooperate to increase mean ¢tness.
When alleles or larger units of DNA (microsattelites, chromosomes) no longer

cooperate, that iswhen they behave sel¢shly, then the standard population genetics
approximations for the genetic composition of populations breaks down (Buss
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1987). This requires that individual genetic elements rather than whole genotypes
are assigned ¢tness values. The consequence is a large increase in the state space of
the models.

Levels of description in ecology

Population genetics was described as the study of the genetic structure of
populations. In a like fashion, ecology might be described as the study of the
species composition of populations. More broadly, ecology seeks to study the
interactions between organisms and their environments. This might lead one to
expect that theory in ecology is largely microscopic, involving extensive
simulation of large populations of di¡erent individuals. Once again this is not the
case. The most common variable in ecological models is the species. In order to
understand the species composition of populations, theoretical ecologists ascribe
replication rates and birth rates to whole species, and focus on species level
relations. We can see this by looking at typical competition equations in ecology.
Assume that we have two species X and Y with densities x and y. We assume that
these species proliferate at rates ax and dy. In isolation each species experiences
density limited growth at rates bx2 and f y 2. Finally, each species is able to
interfere with the other such that y reduces the growth of x at a rate cyx and x
reduces the growth of y at a rate exy.With these assumption we can write down a
pair of coupled di¡erential equations describing the dynamics of species change,

_xx ¼ x(a� bc� cy)

_yy ¼ y(d � ex� f y)

This system produces one of two solutions, stable coexistence or bistability.When
the parameter values satisfy the inequalities,

b
e
4

a
d
4

c
f

The system converges to an equilibrium in which both species coexist. When the
parameter values satisfy the inequalities,

c
f
4

a
d
4

b
e

then depending on the initial abundances of the two species one or the other species
is eliminated producing bistability. These equations describe in¢nitely large
populations of identical individuals constituting two species. The justi¢cation
for this approximation is derived from the perfectly reasonable assumption that
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evolution at the organismal level is far slower than competition among species.
This separation of time scales is captured by Hutchinson’s epigram, ‘The
ecological theatre and the evolutionary play’. In e¡ect these models have made
the species the vehicle for selection.
An explicit application of the separation of time scales to facilitate dimension

reduction lies at the heart of adaptive dynamics (Diekman & Law 1996). Here
the assumption is made to allow individual species composition to be neglected
in order to track changes in trait values. The canonical equation for adaptive
dynamics is,

_ssi ¼ ki(s) �
@

@s 0i
Wi(s

0
i, s)js 0i¼si .

The si with i¼1, ...,N denote the values of an adaptive trait in a population ofN
species. The W(s01, s) are the ¢tness values of individual species with trait values
given by s2 when confronting the resident trait values s. The ki(s) values are the
species-speci¢c growth rates. The derivative (@=@s0i)Wi(s0i, s)js 0i¼si points in the
direction of the maximal increase in mutant ¢tness. The dynamics describes the
outcome of mutation which introduces new trait values (s0i) and selection that
determines their fate�¢xation or extinction. It is assumed that the rapid time
scale of ecological interactions, combined with the principle of mutual exclusion,
leads to a quasi-monomorphic resident population. In other words, populations
for which the periods of trait coexistence are negligible in relation to the time
scale of evolutionary ¢xation. These assumptions allow for a decoupling of
population dynamics (changes in species composition) from adaptive dynamics
(changes in trait composition).
While these levels of selection approximations have proved very useful, there are

numerous phenomena for which we should like some feeling for the individual
behaviours. This requires that we do not assume away individual contributions
in order to build models, but model them explicitly, and derive aggregate
approximations from the behaviour of the models. This can prove to be very
important as the formal representation of individuals, can have a signi¢cant
impact on the statistical properties of the population. Durret & Levin (1994)
demonstrate this dependence by applying four di¡erent modelling strategies to a
single problem: mean ¢eld approaches (macroscopic), patch models
(macroscopic), reaction di¡usion equations (macroscopic) and interacting
particle systems (microscopic). Thus the models move between deterministic
mean ¢eld models, to deterministic spatial models, to discrete spatial models.
Durret and Levin conclude that there can be signi¢cant di¡erences at the
population level as a consequence of the choice of microscopic or macroscopic
model. For example spatial and non-spatial models disagree when two species
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compete for a single resource. The importance of this study is to act as cautionary
remark against the application of levels of selection thinking to justify approximate
macroscopic descriptions.

Levels of description in immunology

The fundamental subject of experimental immunology is the study of those
mechanisms evolved for the purpose of ¢ghting infection. Theoretical
immunology concerns itself with the change in composition of immune cells and
parasite populations. Once again we might assume that this involves tracking the
densities of all parasite strains and all proliferating antigen receptors. But
consideration of the levels of selection can free us from the curse of
dimensionality. The key to thinking about the immune system is to recognize
that selection is now de¢ned somatically rather than through the germ line. The
ability of the immune system to generate variation through mutations, promote
heredity through memory cells, and undergo selection through di¡erential
ampli¢cation, allows us to de¢ne an evolutionary process over an ontogenetic
time scale. During somatic evolution, we assume that receptor diversity and
parasite diversity are su⁄ciently small to treat the immune response as a 1
dimensional variable. Such an assumption underlies the basic model of virus
dynamics (Nowak & May 2000). Denote uninfected cell densities as x, infected
cells y, free virus as v and the total cytotoxic T lymphocyte (CTL) density as z.
Assuming mass action we can write down the macroscopic di¡erential equations,

_xx ¼ l� dx� bxv (1)

_yy ¼ bxv� ay� pyz (2)

_vv ¼ ky� uv (3)

_zz ¼ cyz� bz (4)

The rate of CTLproliferation is assumed to be cyz and the rate of decay of CTLs bz.
Uninfected cells are produced at a rate l, die at a rate lx, and are infected at a rate
bxv. Free virus is produced from infected cells at a rate ky and dies at a rate uv. The
immune system eliminates infected cells proportional to the density of infected
cells and available CTLs pyz. Assuming that the inequality cy4 b then CTLs
increase to attack infected cells. The point about this model is that individuals are
not considered: the population of receptor types, cell types and virus types are all
assumed to bemonomorphic.Aswith the ecological theatre and evolutionary play,
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we assume rapid proliferation and selection of variants, but much slower
production. When these assumptions are unjusti¢ed, such as with rapidly
evolving RNA viruses, then we require a more microscopic description of our
state space. We can write down a full quasi-species model of infection,

_xx ¼ l� dx� x
X

i

bivi (5)

_yyi ¼ x
X

j

bj Qijvj � ai yi � pyz (6)

_vvi ¼ ki yi � uivi (7)

_zz ¼
X

j

cyiz� bz (8)

Here the subscript i denotes individual virus strains and Qij the probability that
replication of virus j results in the production of a virus i. In such a model
receptor diversity is ignored, assuming that the immune response is equally
e¡ective at killing all virus strains. In other words, receptors are neutral (or
selectively equivalent) with respect to antigen. In this way we build increasingly
microscopic models of the immune response, increasing biological realism but at a
cost of limited analytical tractability.

Levels of description in molecular biology

Unlike population genetics, ecology and immunology,molecular biology does not
explicitly concern itself with evolving populations. However, molecular biology
describes the composition of the cell, a structure that is the outcome of mutation
and selection at the individual level. There are numerous structures within the cell,
from proteins, to metabolic pathways through to organelles, which remain highly
conserved across distantly related species. In other words, structures that have the
appearance of functional modules (Hartwell et al 1999). Rather than modify
individual components of these modules to achieve adaptive bene¢ts at the
cellular level, one observes that these modules are combined in di¡erent ways in
di¡erent pathways. In other words, selection has opted to combine basic building
blocks rather than to modify individual genes. (Noble has stated this as genes
becoming physiological prisoners of the larger systems in which they reside.)
This gives us some justi¢cation for describing the dynamics of populations of
modules rather the much larger population of proteins comprising these modules.
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A nice experimental and theoretical example of functional modularity comes
from Huang & Ferrell’s (1996) study of ultrasensitivity in the mitogen-activated
protein kinase (MAPK) cascades. The MAPK cascade involves the
phosphorylation of two conserved sites of MAPK. MAPKKK activates
MAPKK by phosphorylation, and MAPKK activates MAPK. In this way a
wave of activation triggered by ligand binding is propagated from the cell
surface towards the nucleus. Writing down the kinetics of this reaction (using the
simplifying assumptions of mass action, and mass conservation), Huang and
Ferrell observed that the density of activated MAPK varied ultrasensitively with
an increase in the concentration of the enzyme (E) responsible for phosphorylating
MAPKKK. Formally, the dose^response curve of MAPKKK against E can be
described phenomenologically using a Hill equation with a Hill coe⁄cient of
between 4 and 5 The function is of the form,

MAPKKK* ¼
Em

Em þ am

where 45 m5 5. The density of activated MAPKs at each tier of the cascade can
be described with a di¡erent value of m. With m¼1 for MAPK, m¼1.7 for
MAPKK and m¼4.9 for MAPKKK. The function of the pathway for the cell is
thought to be the transformation of a graded input at the cell surface into a switch-
like behaviour at the nucleus.With this information, added to the conserved nature
of these pathways across species, we can approximate pathways withHill functions
rather than large systems of coupled di¡erential equations.
Not all of molecular biology is free from the consideration of evolution over the

developmental time scale.Aswith the immune system,mitochondrial function and
replication remains partially autonomous from the expression of nuclear genes and
the replication of whole chromosomes. A better way of expressing this is to
observe that mitochondrial genes are closer to linkage equilibrium than nuclear
genes. This fact allows for individual mitochondria to undergo mutation and
selection at a faster rate than genes within the nucleus. Mitochondrial genes can
experience selection directly, rather than exclusively through marginal ¢tness
expressed at the organismal level. The molecular biology of cells must contend
with a possible rogue element. This requires that we increase the number of
dimensions in our models when there is variation in mitochondrial replication
rates.

Conclusions

Models of many-body problems vary in the number of bodies they describe.
Predictive models often require very many variables and parameters. For these
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simulation models, speedy algorithms are at a premium. Phenomenological
models provide greater insight, but tend to do less well at prediction. These
models have the advantage of being more amenable to analysis. Even predictive,
simulation models are not of the same order as the system they describe, and hence
they too contain phenomenological approximations. The standard justi¢cations
for phenomenological approaches are: (1) limiting case approximations, (2)
neutrality of individual variation, (3) the reduction of the state space, (4) ease of
analysis, and (5) economy of computational resources. A further justi¢cation can
be furnished through evolutionary considerations: (6) levels of selection.
Understanding the levels of selection helps us to determine when natural
selection begins treating a composite system as a single particle. Thus rather than
describe the set of all genes, we can describe a single genome. Rather than describe
the set of all cellular protein interactions, we can describe the set of all pathways.
Rather than describe the set of all individuals in a population, we can describe the
set of all competing species. The identi¢cation of a level of selection remains
however non-trivial. Clues to assist us in this objective include: (1) observing
mechanisms that restrict replication opportunities, (2) identifying tightly coupled
dependencies in chemical reactions, (3) observing low genetic variation across
species within linkage groups, and (4) identifying group level bene¢ts.
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Making sense of complex phenomena

in biology

Philip K. Maini

Centre for Mathematical Biology, Mathematical Institute, 24^29 St Giles, Oxford OX1 3LB

Abstract. The remarkable advances in biotechnology over the past two decades have
resulted in the generation of a huge amount of experimental data. It is now recognized
that, in many cases, to extract information from this data requires the development of
computational models. Models can help gain insight on various mechanisms and can be
used to process outcomes of complex biological interactions. To do the latter, models
must become increasingly complex and, in many cases, they also become mathematically
intractable. With the vast increase in computing power these models can now be
numerically solved and can be made more and more sophisticated. A number of models
can now successfully reproduce detailed observed biological phenomena and make
important testable predictions. This naturally raises the question of what we mean by
understanding a phenomenon by modelling it computationally. This paper brie£y
considers some selected examples of how simple mathematical models have provided
deep insights into complicated chemical and biological phenomena and addresses the
issue of what role, if any, mathematics has to play in computational biology.

2002 ‘In silico’ simulation of biological processes. Wiley, Chichester (Novartis Foundation
Symposium 247) p 53^65

The enormous advances inmolecular and cellular biology over the last two decades
have led to an explosion of experimental data in the biomedical sciences. We now
have the complete (or almost complete) mapping of the genome of a number of
organisms and we can determine when in development certain genes are switched
on; we can investigate at the molecular level complex interactions leading to cell
di¡erentiation and we can accurately follow the fate of single cells. However, we
have to be careful not to fall into the practices of the 19th century, when biology
was steeped in themode of classi¢cation and therewas a tremendous amount of list-
making activity. This was recognized byD’ArcyThompson, in his classic workOn
growth and form, ¢rst published in 1917 (see Thompson 1992 for the abridged
version). He had the vision to realize that, although simply cataloguing di¡erent
forms was an essential data-collecting exercise, it was also vitally important to
develop theories as to how certain forms arose. Only then could one really
comprehend the phenomenon under study.
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Of course, the identi¢cation of a gene that causes a certain deformity, or a¡ects an
ion channel making an individual susceptible to certain diseases, has huge bene¢ts
for medicine. At the same time, one must recognize that collecting data is, in some
sense, only the beginning. Knowing the spatiotemporal dynamics of the
expression of a certain gene leads to the inevitable question of why that gene was
switched on at that particular time and place. Genes contain the information to
synthesize proteins. It is the physicochemical interactions of proteins and cells
that lead to, for example, the development of structure and form in the early
embryo. Cell fate can be determined by environmental factors as cells respond to
signalling cues. Therefore, a study at the molecular level alone will not help us to
understand how cells interact. Such interactions are highly non-linear, may be non-
local, certainly involve multiple feedback loops and may even incorporate delays.
Therefore they must be couched in a language that is able to compute the results of
complex interactions. Presently, the best language we have for carrying out such
calculations is mathematics. Mathematics has been extremely successful in helping
us to understand physics. It is now becoming clear that mathematics and
computation have a similar role to play in the life sciences.
Mathematics can play a number of important roles in making sense of complex

phenomena. For example, in a phenomenon in which themicroscopic elements are
known in detail, the integration of interactions at this level to yield the observed
macroscopic behaviour can be understood by capturing the essence of the whole
process through focusing on the key elements, which form a small subset of the full
microscopic system. Two examples of this are given in the next section.
Mathematical analysis can show that several microscopic representations can give
rise to the same macroscopic behaviour (see the third section), and that the
behaviour at the macroscopic level may be greater than the sum of the individual
microscopic parts (see the Turing model section).

Belousov^Zhabotinskii reaction

The phenomenon of temporal oscillations in chemical systems was ¢rst observed
by Belousov in 1951 in the reaction now known as the Belousov^Zhabotinskii
(BZ) reaction (for details see Field & Berger 1985). The classical BZ reaction
consists of oxidation by bromate ions in an acidic medium catalysed by metal ion
oxidants. For example, the oxidation ofmalonic acid in an acidmediumbybromate
ions, BrO3

^, and catalysed by cerium, which has two states Ce3+ and Ce4+. With
other metal ion catalysts and appropriate dyes, the reaction can be followed by
observing changes in colour. This system is capable of producing a spectacular
array of spatiotemporal dynamics, including two-dimensional target patterns and
outwardly rotating spiral waves, three-dimensional scroll waves and, most
recently, two-dimensional inwardly rotating spirals (Vanag & Epstein 2001). All
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the steps in this reaction are still not fully determined and understood and, to date,
there are of the order of about 50 reaction steps known. Detailed mathematical
models have been written down for this reaction (see, for example, Field et al
1972) consisting of several coupled non-linear ordinary di¡erential equations.
Remarkably, a vast range of the dynamics of the full reaction can be understood
by a simpli¢ed model consisting of only three coupled, non-linear di¡erential
equations, which can be further reduced to two equations. The reduction arises
due to a mixture of caricaturizing certain complex interactions and using the fact
that a number of reactions operate on di¡erent time scales, so that one can use a
quasi-steady-state approach to reduce some di¡erential equations to simpler
algebraic equations, allowing for the elimination of certain variables.
A phase-plane analysis of the simpli¢ed model leads to an understanding of the

essence of the pattern generator within the BZ reaction, namely the relaxation
oscillator. This relies on the presence of a slow variable and a fast variable with
certain characteristic dynamics (see, for example, Murray 1993). The introduction
of di¡usion into this model, leading to a system of coupled partial di¡erential
equations, allows for the model to capture a bewildering array of the
spatiotemporal phenomena observed experimentally, such as propagating fronts,
spiral waves, target patterns and toroidal scrolls.
These reduced models have proved to be an invaluable tool for the

understanding of the essential mechanisms underlying the patterning processes
in the BZ reaction in the way that the study of a detailed computational model
would have been impossible. With over 50 reactions and a myriad of parameters
(many unknown), the number of simulations required to carry out a full study
would be astronomical.

Models for electrical activity

The problem of how a nerve impulse travels along an axon is central to the
understanding of neural communication. The Hodgkin^Huxley model for
electrical ¢ring in the axon of the giant squid (see, for example, Cronin 1987) was
a triumph of mathematical modelling in physiology and they later received the
Nobel Prize for their work. The model, describing the temporal dynamics of a
number of key ionic species which contribute to the transmembrane potential,
consists of four complicated, highly non-linear coupled ordinary di¡erential
equations. A well-studied reduction of the model, the FitzHugh^Nagumo
model, is a caricature and consists of only two equations (FitzHugh 1961,
Nagumo et al 1962). Again, a phase-plane analysis of this model reveals the
essential phenomenon of excitability by which a neuron ‘¢res’ and determines the
kinetic properties required to exhibit this behaviour.
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Models for aggregation in

Dictyostelium discoideum

The amoeba Dictyostelium discoideum is one of the most studied organisms in
developmental biology from both experimental and theoretical aspects and
serves as a model paradigm for development in higher organisms. In response to
starvation conditions, these unicellular organisms chemically signal each other via
cAMP leading to a multicellular aggregation in which the amoebae undergo
di¡erentiation into a stalk type and a spore type. The latter can survive for many
years until conditions are favourable.
Intercellular signalling in this system, which involves relay and transduction,

has been widely studied and modelled. For example, the Martiel & Goldbeter
(1987) model consists of nine ordinary di¡erential equations. By exploiting the
di¡erent timescales on which reactions occur, this model can be reduced to
simpler two- and three-variable systems which not only capture most of the
experimental behaviour, but also allow one to determine under which
parameter constraints certain phenomena arise (Goldbeter 1996). This model
turns out to exhibit excitable behaviour, similar in essence to that observed in
electrical propagation in nerves.
Such reduced, or caricaturemodels, can then serve as ‘modules’ to be plugged in

to behaviour at a higher level in a layered model to understand, for example, the
phenomenon of cell streaming and aggregation in response to chemotactic
signalling (H˛fer et al 1995a,b, H˛fer &Maini 1997). Assuming that the cells can
be modelled as a continuum, it was shown that the resultant model could exhibit
behaviour in agreement with experimental observations. Moreover, the model
provided a simple (and counterintuitive) explanation for why the speed of wave
propagation slows down with increasing wave number. More sophisticated
computational models, in which cells are assumed to be discrete entities, have
been shown to give rise to similar behaviour (Dallon & Othmer 1997). Such
detailed models can be used to compare the movement of individual cells with
experimental observations and therefore allow for a degree of veri¢cation that is
impossible for models at the continuum level. However, the latter are
mathematically tractable and therefore can be used to determine generic
behaviours.
Several models, di¡ering in their interpretation of the relay/transduction

mechanism and/or details of the chemotactic response all exhibit very similar
behaviour (Dallon et al 1997). In one sense this can be thought of as a failure
because modelling has been unable to distinguish between di¡erent scenarios. On
the other hand, these modelling e¡orts illustrate that the phenomenon of
D. discoideum aggregation is very robust and has, at its heart, signal relay and
chemotaxis.
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The Turing model for pattern formation

Di¡usion-driven instability was ¢rst proposed by Turing in a remarkable paper
(Turing 1952), as a mechanism for generating self-organized spatial patterns. He
considered a pair of chemicals reacting in such a way that the reaction kinetics were
stabilizing, leading to a temporally stable, spatially uniform steady state in chemical
concentrations. As we know, di¡usion is a homogenizing process. Yet combined
in the appropriate way, Turing showed mathematically that these two stabilizing
in£uences could conspire to produce an instability resulting in spatially
heterogeneous chemical pro¢les� a spatial pattern. This is an example of an
emergent property and led to the general patterning principle of short-range
activation, long-range inhibition (Gierer & Meinhardt 1972). Such patterns were
later discovered in actual chemical systems and this mechanism has been
proposed as a possible biological pattern generator (for a review, see Maini et al
1997, Murray 1993).
Turing’s study raises a number of important points. It showed that one cannot

justi¢ably follow a purely reductionist approach, as the whole may well be greater
than the sum of the parts and that one rules out, at one’s peril, the possibility of
counterintuitive phenomena emerging as a consequence of collective behaviour. It
also illustrates the power of the mathematical technique because, had these results
been shown in a computationalmodelwithout anymathematical backing, it would
have been assumed that the instability (which is, after all, counterintuitive) could
only have arisen due to a computational artefact. Not only did the mathematics
show that the instability was a true re£ection of the model behaviour, but also it
speci¢ed exactly the properties the underlying interactions in the system must
possess in order to exhibit the patterning phenomenon. Furthermore,
mathematics served to enhance our intuitive understanding of a complex non-
linear system.

Discussion

For models to be useful in processes such as drug design, they must necessarily
incorporate a level of detail that, on the whole, makes the model mathematically
intractable. The phenomenal increase in computing power over recent years
now means that very sophisticated models involving the interaction of
hundreds of variables in a complex three-dimensional geometry can be solved
numerically. This naturally raises a number of questions. (1) How do we
validate the model? Speci¢cally, if the model exhibits a counterintuitive result,
which is one of the most powerful uses of a model, how do we know that this
is a faithful and generic outcome of the model and not simply the result of very
special choice of model parameters, or an error in coding? (2) If we take
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modelling to its ultimate extreme, we simply replace a biological system we do
not understand by a computational model we do not understand. Although the
latter is useful in that it can be used to compute the results of virtual
experiments, can we say that the exercise has furthered our understanding?
Moreover, since it is a model and therefore, by necessity, wrong in the strict
sense of the word, how do we know that we are justi¢ed in using the model in
a particular context?
In going from the gene to the whole organism, biological systems consist of an

interaction of processes operating on a wide range of spatial and temporal scales.
It is impossible to compute the e¡ects of all the interactions at any level of this
spatial hierarchy, even if they were all known. The approach to be taken,
therefore, must involve a large degree of caricaturizing (based on experimental
experience) and reduction (based on mathematical analysis). The degree to which
one simpli¢es a model depends very much on the question one wishes to answer.
For example, to understand in detail the e¡ect of a particular element in the
transduction pathway in D. discoideum will require a detailed model at that
level. However, for understanding aspects of cell movement in response to the
signal, it may be su⁄cient to consider a very simple model which represents the
behaviour at the signal transduction level, allowing most of the analytical and
computational e¡ort to be spent on investigating cell movement. In this way,
one can go from one spatial level to another by ‘modularizing’ processes at one
level (or layer) to be plugged in to the next level. To do this, it is vital to make
sure that the appropriate approximations have been made and the correct
parameter space and spatiotemporal scales are used. This comes most naturally
via a mathematical treatment. Eventually, this allows for a detailed mathematical
validation of the process before one begins to expand the models to make them
more realistic.
The particular examples considered in this article use the classical techniques of

applied mathematics to help understand model behaviour. Much of the
mathematical theory underlying dynamical systems and reaction^di¡usion
equations was motivated by problems in ecology, epidemiology, chemistry and
biology. The excitement behind the Turing theory of pattern formation and
other areas of non-linear dynamics was that very simple interactions could give
rise to very complex behaviour. However, it is becoming increasingly clear that
often in biology very complex interactions give rise to very simple behaviours.
For example, complex biochemical networks are used to produce only a limited
number of outcomes (von Dassow et al 2000). This suggests that it may be the
interactions, not the parameter values, that determine system behaviour and, in
particular, robustness. This requires perhaps the use of topological or graph
theoretical ideas as tools for investigation. Hence it is clear that it will be
necessary to incorporate tools from other branches of mathematics and to
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develop new mathematical approaches if we are to make sense of the mechanisms
underlying the complexity of biological phenomena.
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DISCUSSION

Noble: We will almost certainly revisit the question of levels and reduction
versus integration at some stage during this meeting. But it’s important to clarify
here that you and your mathematical colleagues are using the term ‘reduction’ in a
di¡erent sense to that which we biologists use. Let me clarify: when you ‘reduce’
the Hodgkin^Huxley equations to FitzHugh^Nagumo equations, you are not
doing what would be regarded as reduction in biology, which would be to say
that we can explain the Hodgkin^Huxley kinetics in terms of the molecular
structure of the channels. You are asking whether we can use fewer di¡erential
equations, and whether as a result of that we get an understanding. It is extremely
important to see those senses of reduction as being completely di¡erent.
Maini: I agree; that’s an important point.
Noble:Does mathematical reduction always go that way? I was intrigued by the

fact that even you, as a mathematician, said you had to understand how that graph
worked, in order to understand the mathematics. I always had this na|« ve idea that
mathematicians just understood! I take it there are di¡erent sorts of
mathematicians, as well as di¡erent kinds of biologists, and some will be able to
understand things from just the equations. Presumably, the question of
understanding in maths is also an issue.
Maini: What I meant by ‘understanding’ is that we need to determine what are

the crucial properties of the system that make it behave in the way that it does. The
easiest method for doing that in this case is a phase-plane analysis. This tells us that
the behaviour observed is generic for a wide class of interactions, enabling us to
determine how accurately parameters must be measured. My talk focused on the
di¡erential equation approach to modelling. However, there may be cases where
other forms of modelling and/or analysis� for example, graph theory, networks
or topology�may be more appropriate. An issue here is how do we expose these
problems to those communities?
Loew: I would assert that the kind of mathematical reduction you were talking

about�basically, extending your mathematical insights to produce a minimal
model�may provide insights to mathematicians, but in most cases it wouldn’t
be very useful to a biologist. This is because in creating the minimal model you
have eliminated many of the parameters that may tie the model to the actual
biology. In the BZ reaction you mentioned, you were able to list all of the
individual reactions. A biologist would want to see this list of reactions, and see
what happens if there is a mutant that behaves a little di¡erently.What does this do
to the overall behaviour? You wouldn’t be able to use the model, at least as not as
directly, if you had your minimal model instead. I feel that it takes us one step
further away from biology if we produce these kinds of minimal models.
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Maini: It depends what sort of reduction you do. If you use quasi-steady-state
assumptions, the parameters in the reduced model are actually algebraically related
to the parameters in the fullmodel, so you can still follow through and compute the
e¡ects of changing parameters at the level of the full model. Very little information
is lost. My concern about very detailed computational models is that one is
replacing a complicated biological system one wishes to understand by a
complicated computational model one does not understand. Of course, in the
very detailed model one can see the outcome of changing a speci¢c parameter,
but how do you know whether the answer is correct if you cannot determine on
what processes in the model the outcome depends?
Loew: I think it is important because of the issue Denis Noble raised at the

beginning of the meeting: about whether there is the possibility for a theoretical
biology. If you can produce minimal equations that you can somehow use in a
useful way to describe a whole class of biology, this would be very important. I
can see analogies in chemistry, where there are some people who like to do ab
initio calculations in theoretical chemistry, trying to understand molecular
structure in the greatest detail. But sometimes it is more useful to get a broader
view of the patterns of behaviour and look at things in terms of interaction of
orbitals. There it is very useful. Chemistry has found what you call the
‘reductionist’ approach very useful. It remains to be seen whether this will be
useful in biology.
Maini: I would argue that it has already been shown in Kees Weijer’s work that

such an approach is very useful. He has beautiful models forDictyostelium. He is an
experimentalist, and works with mathematicians in the modelling. When it comes
to looking at how the cells interact with each other, he will use reductions such as
FitzHugh^Nagumo. His approach has resulted in a very detailed understanding of
pattern formation processes inDictyostelium discoideum.
Crampin: One of the things mathematics is useful for is to abstract phenomena

from speci¢c models to reveal general properties of particular types of system. For
example, if you combine an excitable kinetic system with chemotaxis for cell
movement, then you will always get the sorts of behaviour that Philip Maini is
describing. In this respect, the biological details become unimportant. However,
if you do startwith a complicatedmodel and usemathematical techniques to reduce
the model to a mathematically tractable form, then you can keep track of where
di¡erent parameters have gone. Some of the variables will turn out not to have
very much bearing on what goes on. These you can eliminate happily, knowing
that if the biologist goes away and does an experiment, then changing these
parameters is not going to have a strong e¡ect. But the important ones you will
keep, and they will still appear in the ¢nal equations. You should be able to predict
what e¡ect varying these parameters in experiments will have. Reducing the
mathematical complexity doesn’t necessarily throw out all of the biology.
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Hunter: If you accept that both approaches are needed (I think they are
complementary), who is doing the process of linking the two? Having got the
dispersion relation and the parameter range that leads to instability, how does
one map this back to the biological system? And how do we deduce general ways
of moving between the state space of 11 equations to the state space of two
equations?
Maini: That’s an issue we have been trying to tackle. There are certain

approaches such as homogenization techniques for looking at these sorts of
issues. But most of the homogenization techniques that I have seen in the
materials context tend to be very specialized. I think it is a challenging problem.
Most mathematicians are more interested in proving theorems and are not really
interested in such messy applications. They will happily take the sort of equations
that I wrote down and throw out a few more terms, so they can just prove some
theorem, without caring where the equations arrived from. That is ¢ne, because
good mathematics may come out of it, but it is not mathematical biology. Perhaps
it will be the physicists who will help to bridge the gap that exists.
Noble: There are obviously di¡erent demands here. Part of what you said in

relation to helping the biologists was highly signi¢cant. It was determining
where there was robustness, which I think is extremely important. This may
correspond to part of what we call the logic of life. If, through comparing
di¡erent reductions and the topology of di¡erent models, we can end up with a
demonstration of robustness, then we have an insight that is biologically
important whether or not anyone else goes on to use those mathematical
reductions in any of their modelling. Another success is as follows. Where in our
computationally heavy modelling we have come up with counterintuitive results,
then going back to the mathematicians and asking them to look at it has proven
extremely valuable. One example of this is in relation to investigating one of the
transporters involved in ischaemic heart disease, where we came across what still
seems to me to be a counterintuitive result when we down-regulated or up-
regulated this transporter. We gave this problem to Rob Hinch, to see whether
he could look at it mathematically. He demonstrated that it was a necessary
feature of what it is that is being modelled. This is another respect in which
mathematical reduction (as distinct from the biological kind) must be a help to us
where we are puzzled by the behaviour of our more complicated models. So we
have some unalloyed successes that we can chalk up, even if people don’t go on
to use the reductions in their modelling.
Hinch: The idea of all modelling, if it is to be useful and predictive, is for it to

come up with some original ideas. If you have a very complex simulation model
which comes upwith a new idea, you do not knowwhether that is an artefact of the
actual model, or if it is a real mechanism occurring. The power of mathematics and
themathematical analysis where these counterintuitive results come up, is that you
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can pinpoint what is causing this novel behaviour to happen. This would be a
much better way to direct the experimental work. The idea is that by having
these reduced models we can understand the mechanism of this interesting
behaviour, which will immediately make it much easier for an experimentalist to
see whether this is a real phenomenon, or just an artefact of the modelling.
Crampin: In addition to what Philip Maini said, I want to draw a distinction

between on the one hand this type of mathematical reduction (formal ways of
moving between complicated models and simpler representations), and on the
other hand the ‘art’ of modelling�using scienti¢c insight to do that same
process. I am not sure whether there will ever be general formal methods for
taking a complicated model and generating a simpler one. In practice one uses a
combination of approaches, both formally manipulating the equations and using
knowledge of the system you areworking on. There is also an interesting di¡erence
between simulation models and analytical models. The tradition in applied
mathematics is that a model is developed to answer a speci¢c question, just for
that purpose. It is unlikely for people to expect that model to be used in all sorts
of di¡erent contexts. In contrast, if we are talking about generating simulation
tools, models must be su⁄ciently general to be applicable in all sorts of di¡erent
areas, even if you are building computational toolswhere you can constructmodels
on an ad hoc basis for each problem.
Noble: Yes, the modellers are building a jigsaw.
Loew: I certainly appreciate the value of producing a minimal model, both

from the point of view of the mathematical insight that it provides, and also from
the practical point of view of being able to use a reduced form of a model as a
building block for a more complex model. This is certainly an important
modelling technique. But the reason I was deliberately being provocative was
because we need to be able to connect to the laboratory biologist. It is important
not only to avoid just being mathematicians who prove theorems but also to
always be practical about how the models are being used as aids for biology. If
they get too abstract, then the biologists get very quickly turned o¡ to what we
are doing.
Winslow: There is another sense in which model reduction can be performed. It

doesn’t involve reducing the number of equations used to describe a system, but
rather involves using computational techniques to study the generic properties of
those equations.These approaches have been usedwith some success.One example
is bifurcation theory to understand the generic behaviours of non-linear systems
subject to parameter variation. This kind of model reduction is where a complex,
oscillating cell may be equivalent to a much simpler oscillating system by virtue of
theway inwhich it undergoes oscillation, perhaps by a half-bifurcation. There is no
reduction in the number of equations here, but lumping of systems into those that
share these general dynamical properties.
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Paterson: Les Loew, you commented that for the lab biologist, we need to
present models in a form they see as relevant. There is a whole branch of biology
that looks at people as opposed to cells! I have people onmy sta¡whoyou can show
gene expression data until you are blue in the face, but they want to understand a
complex disease state such as diabetes where there are huge unanswered questions
of integrated physiology that can only be answered by investigations at the clinical
level. In terms of tyingmodels to the biology you are right, and for bench scientists
working with high-throughput in vitro data, I think the types of very detailed
models we are talking about are very necessary. But in terms of tying it to
extremely relevant data at the clinical level, for understanding the manifestation
of disease states, you can’t a¡ord to build a model at the gene expression level for
a complicated disease state such as diabetes. While gene expression data in key
pathways may be relevant, clinical data of the diverse phenotype must be linked
as well. How this relates to Peter Hunter’s point about the transition, is that
biology gives us a wonderful stepping stone� the cell. There is a tremendous
amount of detail within the cell. I would be interested to hear estimates of the
fraction of the proteins coded by the genome that actually participate in
communication outside the cell membrane. My guess is that it is an extremely
small fraction. If you look at the cell as a highly self-organized information and
resource-processing entity, and consider that it is participating in many di¡erent
activities taking place in the organism, then there are opportunities to operate at a
more highly aggregated level where you are looking at aggregated cellular
functions that link up to clinical data. Then you go into the more detailed cellular
models to link into in vitro and gene expression data. In this way you can have your
cake and eat it too. The fact that the cell represents a nice bridging point between
these two extremes can help us provide multiple modelling domains that are
relevant to molecular cell biologists and clinical biologists.
Cassman: Philip Maini, what did you mean by the term ‘robustness’? This is

another term that is thrown around a lot. It usually means that the output is
insensitive to the actual parameterization of the model. I’m not sure this is what
you meant.
Maini:What Imeant in this particular context is that in some of thesemodels you

could change the parameter values by several orders ofmagnitude and it would not
qualitatively change the outcome.
Noble: There’s another possible sense, which I regard as extremely important.

Between the di¡erent models we determine what is essential, and, having done the
mathematical analysis, we can say that the robustness lies within a certain domain
and these models are inside it, but another model is outside it.
Berridge: For those of us who are simple-minded biologists, when we come

across something like Dictyostelium with ¢ve or six models all capable of
explaining the same phenomenon but apparently slightly di¡erent, which one are
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we going to adopt? There needs to be some kind of seal of approval so we know
which one to opt for.
Crampin: To turn that on its head, as a modeller reading the primary

experimental literature, I often ¢nd completely con£icting results!
Berridge:One of the nice things about Philip Maini’s paper was that he was able

to explain this very complicated behaviour of cells aggregating, including complex
spiral waves, using just two ideas. One was the excitable medium idea, and the
other one was chemotaxis. While he used chemotaxis as part of the model, I don’t
think there is anything in the model that actually explains the phenomenon of
chemotaxis. This is a complex phenomenon, for which I don’t think there is a
mathematical model. How is it that a cell can detect a minute gradient between its
front end and back end? While those working on eukaryotes don’t have a good
model, people working on bacteria do. This is where we really need some help
from the mathematicians, to give us a clue as to the sorts of parameters a cell
might use to detect minute gradients and move in the right direction.
Maini: There are mathematicians trying to model the movement of individual

cells.
Berridge: It’s not the movement I’m referring to, but the actual detection of the

gradient.
Shimizu: The gradient-sensing mechanism is very well understood in bacteria.

The cell compares the concentration that is being detected at present to the
concentration that was detected a few seconds ago in the past. So in bacteria, it is
by temporal comparisons that the gradient is measured. This is di¡erent from the
spatial comparisons thatDictyosteliummakes.
Berridge: I understand the bacterial system; it is the eukaryotic cell where it isn’t

clear. There isn’t a model that adequately explains how this is done.
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Abstract. The mantra of the ‘post-genomic’ era is ‘gene function’. Yet surprisingly little
attention has been given to how functional and other information concerning genes is
to be captured, made accessible to biologists or structured in a computable form. The
aim of the Gene Ontology (GO) Consortium is to provide a framework for both the
description and the organisation of such information. The GO Consortium is presently
concerned with three structured controlled vocabularies which can be used to describe
three discrete biological domains, building structured vocabularies which can be used
to describe the molecular function, biological roles and cellular locations of gene
products.
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Status

The Gene Ontology (GO) Consortium’s work is motivated by the need of both
biologists and bioinformaticists for a method for rigorously describing the
biological attributes of gene products (Ashburner et al 2000, The Gene Ontology
Consortium 2001). A comprehensive lexicon (with mutually understood
meanings) describing those attributes of molecular biology that are common to
more than one life form is essential to enable communication, in both computer
and natural languages. In this era, when newly sequenced genomes are rapidly
being completed, all needing to be discussed, described, and compared, the
development of a common language is crucial.
Themost familiar of these attributes is that of ‘function’. Indeed, as early as 1993

Monica Riley attempted a hierarchical functional classi¢cation of all the then
known proteins of Escherichia coli (Riley 1993). Since then, there have been other
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attempts to provide vocabularies and ontologies1 for the description of gene
function, either explicitly or implicitly (e.g. Dure 1991, Commission of Plant
Gene Nomenclature 1994, Fleischmann et al 1995, Overbeek et al 1997, 2000
Takai-Igarashi et al 1998, Baker et al 1999, Mewes et al 1999, Stevens et al 2000;
see Riley 1988, Rison et al 2000, Sklyar 2001 for reviews). Riley has recently
updated her classi¢cation for the proteins of E. coli (Serres & Riley 2000, Serres
et al 2001).
One problemwithmany (though not all: e.g. Schulze-Kremer 1997, 1998, Karp

et al 2002a,b) e¡orts prior to that of the GO Consortium is that they lacked
semantic clarity due, to a large degree, to the absence of de¢nitions for the terms
used.Moreover, these previous classi¢cations were usually not explicit concerning
the relationships between di¡erent (e.g. ‘parent’ and ‘child’) terms or concepts. A
further problem with these e¡orts was that, by and large, they were developed as
one-o¡ exercises, with little consideration given to revision and implementation
beyond the domain for which they were ¢rst conceived. They generally also
lacked the apparatus required for both persistence and consistent use by others,
i.e. versioning, archiving and unique identi¢ers attached to their concepts.
The GO vocabularies distinguish three orthogonal domains (vocabularies); the

concepts within one vocabulary do not overlap those within another. These
domains are molecular ___ function, biological ___ process and cellular ___ component,
de¢ned as follows:

. molecular ___ function: an action characteristic of a gene product.

. biological ___ process: a phenomenon marked by changes that lead to a particular
result, mediated by one or more gene products.

. cellular ___ component: the part, or parts, of a cell of which a gene product is a
component; for this purpose includes the extracellular environment of cells.

The initial objective of the GO Consortium is to provide a rich, structured
vocabulary of terms (concepts) for use by those annotating gene products within
an informatics context, be it a database of the genetics and genomics of a model
organism, a database of protein sequences or a database of information about
gene products, such as might be obtained from a DNA microarray experiment.
In GO the annotation of gene products with GO terms follows two guidelines:
(1) all annotations include the evidence upon which an assertion is based and, (2)
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the evidence provided for each annotation includes attribution to an available
external source, such as a literature reference.
Databases using GO for annotation are widely distributed. Therefore an

additional task of the Consortium is to provide a centralized holding site for their
annotations. GO provides a simple format for contributing databases to submit
their annotations to a central annotation database maintained by GO. The
annotation data submitted include the association of gene products with GO
terms as well as ancillary information, such as evidence and attribution. These
annotations can then form the basis for queries� either by an individual or a
computer program.
At present, gene product associations are available for several di¡erent

organisms, including two yeasts (Schizosaccharomyces pombe and Saccharomyces
cerevisiae), two invertebrates (Caenorhabditis elegans and Drosophila melanogaster),
two mammals (mouse and rat) and a plant (Arabidopsis thaliana). In addition, the
¢rst bacterium (Vibrio cholerae) has now been annotated with GO and e¡orts are
now underway to annotate all 60 or so publicly available bacterial genomes. Over
80% of the proteins in the SWISS^PROT protein database have been annotated
with GO terms (the majority by automatic annotation, see below), these include
the SWISS^PROT to GO annotations of over 16 000 human proteins (available
at www.geneontology.org/cgi-bin/GO/downloadGOGA.pl/gene___association.goa-human).
Some 7000 human proteins were also annotated with GO by Proteome Inc. and
are available from LocusLink (Pruitt &Maglott 2001).
A number of other organismal databases are in the process of using GO for

annotation, including those for Plasmodium falciparum (and other parasitic
protozoa) (M. Berriman, personal communication), Dictyostelium discoideum
(R. Chisholm, personal communication) and the grasses (rice, maize, wheat, etc.)
(GRAMENE 2002). The availability of these sets of data has led to the
construction of GO browsers which enable users to query them all
simultaneously for genes whose products serve a particular function, play a role
in a particular biological process or are located in a particular subcellular part
(AmiGO 2001). These associations are also available as tab-delimited tables
(www.geneontology.org/#annotations) or with protein sequences. GO thus achieves
de facto a degree of database integration (see Leser 1998), one Holy Grail of
applied bioinformatics.

Availability

The products of the GO Consortium’s work can be obtained from their World
Wide Web home page: www.geneontology.org.
All of the e¡orts of the GOConsortium are placed in the public domain and can

be used by academia or industry alike without any restraint, other than they cannot
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be modi¢ed and then passed o¡ as the products of the Consortium. This is true for
all classes of the GO Consortium’s products, including the controlled
vocabularies, the gene-association tables, and software for browsing and editing
the GO vocabularies and gene association tables (AmiGO 2001, DAG Edit
2001). Thus the GO Consortium’s work is very much in the spirit of the Open
Source tradition in software development (DiBona et al 1999, OpenSource
2001). The GO ontologies and their associated ¢les are available as text ¢les, in
XML or as tables for a MySQL database.

The structure of the GO ontologies

All biologists are familiar with hierarchical graphs� the system of classi¢cation
introduced by Linnaeus has been a bedrock for biological research for some 250
years. In a Linnean taxonomy the nodes of the graphs are the names of taxa, be they
phyla or species; the edges between these nodes represent the relationship ‘is a
member of’ between parent and child nodes. Thus the node ‘species:Drosophila
melanogaster’ ‘is a member of’ its parent node ‘genus:Drosophila’. Useful as
hierarchies are, they su¡er from a serious limitation: each node has one and only
one parental node�no species is a member of two (or more) genera, no genus a
member of two (or more) families. Yet in the broader world of biology an object
may well have two or more parents. Consider, as a simple example, a protein that
both binds DNA and hydrolyses ATP. It is as equally correct to describe this as a
‘DNA binding protein’ as it is to describe it as a ‘catalyst’ (or enzyme); therefore it
should be a child of both within a tree structure. Not all DNAbinding proteins are
enzymes, not all enzymes are DNA binding proteins, yet some are and we need to
be able to represent these facts conceptually. For this reason GO uses a structure
known as a directed acyclic graph (DAG), a graph in which nodes can have many
parents but in which cycles� that is a path which starts and ends at the same
node�are not allowed. All nodes must have at least one parent node, with the
exception of the root of each graph.
Alice replies toHumptyDumpty’s inquiry as to themeaning of her name ‘Must a

name mean something?’ ‘Of course it must’, replies Humpty Dumpty (Heath
1974). This is as true in the real world as in that through the looking glass. The
nodes in the GO controlled vocabularies are concepts: concepts that describe the
molecular function, biological role or cellular location of gene products. The terms
used by GO are simply a shorthand way of referring to these concepts, which are
restricted by their natural language de¢nitions. (At present only 20% of the 10 000
or so GO terms are de¢ned but a major e¡ort to correct this situation will be
launched early in 2002.) Each and every GO term has a unique identi¢er
consisting of the pre¢x ‘GO:’ and an integer, for example, GO:0036562. But
what happens if a GO term changes? A change may be as trivial as correcting a
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spelling error or as drastic as being a new lexical string. If the change does not
change the meaning of the term then there is no change to the GO identi¢er. If
the meaning is changed, however, then the old term, its identi¢er and de¢nition
are retired (they are marked as ‘obsolete’, they never disappear from the database)
and the new term gets a new identi¢er and a new de¢nition. Indeed this is true even
if the lexical string is identical between old and new terms; thus if we use the same
words to describe a di¡erent concept then the old term is retired and the new is
created with its own de¢nition and identi¢er. This is the only case where, within
any one of the three GO ontologies, two or more concepts may be lexically
identical; all except one of them must be £agged as being obsolete. Because the
nodes represent semantic concepts (as described by their de¢nitions) it is not
strictly necessary that the terms are unique, but this restriction is imposed in
order to facilitate searching. This mechanism helps with maintaining and
synchronizing other databases that must track changes within GO, which is, by
design, being updated frequently. Keeping everything and everyone consistent is
a di⁄cult problem thatwe had to solve in order permit this dynamic adaptability of
GO.
The edges between the nodes represent the relationships between them.GOuses

twovery di¡erent classes of semantic relationship between nodes: ‘isa’ and ‘partof’.
Both the isa and partof relationships within GO should be fully transitive. That is
to say an instance of a concept is also an instance of all of the parents of that
concept (to the root); a part concept that is partof a whole concept is a partof all
of the parents of that concept (to the root). Both relationships are re£exive (see
below).
The isa relationship is one of subsumption, a relationship that permits

re¢nement in concepts and de¢nitions and thus enables annotators to draw
coarser or ¢ner distinctions, depending on the present degree of knowledge. This
class of relationship is known as hyponymy (and its re£exive relation hypernymy)
to the authors of the lexical database WordNet (Fellbaum 1998). Thus the term
DNA binding is a hyponym of the term nucleic acid binding; conversely
nucleic acid binding is a hypernym of DNA binding. The latter term is more
speci¢c than the former, and hence its child. It has been argued that the isa
relationship, both generally (see below) and as used by GO (P. Karp, personal
communication; S. Schultze-Kremer, personal communication) is complex and
that further information describing the nature of the relationship should be
captured. Indeed this is true, because the precise connotation of the isa
relationship is dependent upon each unique pairing of terms and the meanings of
these terms.Thus the isa relationship is not a relationship between terms, but rather
is a relationship between particular concepts. Therefore the isa relationship is not a
single type of relationship; its precisemeaning is dependent on the parent and child
terms it connects. The relationship simply describes the parent as the more general
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concept and the child as the more precise concept and says nothing about how the
child speci¢cally re¢nes the concept.
The partof relationship (meronymy and its re£exive relationship holonymy)

(Cruse 1986, cited in Miller 1998) is also semantically complex as used by GO (see
Winston et al 1987, Miller 1998, Priss 1998, Rogers & Rector 2000). It may mean
that a child node concept ‘is a component of’ its parent concept. (The re£exive
relationship [holonymy] would be ‘has a component’.) The mitochondrion ‘is a
component of’ the cell; the small ribosomal subunit ‘is a component of’ the
ribosome. This is themost commonmeaning of the partof relationship in theGO
cellular ___ component ontology. In the biological ___ process ontology, however, the
semantic meaning of partof can be quite di¡erent, it can mean ‘is a subprocess of’;
thus the concept amino acid activation ‘is a subprocess of’ of the concept
protein biosynthesis. It is in the future for theGOConsortium to clarify these
semantic relationships while, at the same time not making the vocabularies too
cumbersome and di⁄cult to maintain and use.
Meronymy and hyponymy cause terms to ‘become intertwined in complexways’

(Miller 1998:38). This is because one term can be a hyponym with respect to one
parent, but a meronym with respect to another. Thus the concept cytosolic

small ribosomal subunit is both a meronym of the concept cytosolic

ribosome and a hyponymof the concept small ribosomal subunit, since there
also exists the concept mitochondrial small ribosomal subunit.
The third semantic relationship represented in GO is the familiar relationship of

synonymy.Each concept de¢ned inGO(i.e. each node) has one primary term (used
for identi¢cation) and may have zero or many synonyms. In the sense of the
WordNet noun lexicon a term and its synonyms at each node represents a synset
(Miller 1998); in GO, however, the relationship between synonyms is strong, and
not as context dependent as in WordNet’s synsets. This means that in GO all
members of synset are completely interchangeable in whatever context the terms
are found. That is to say, for example, that ‘lymphocyte receptor of death’ and
‘death receptor 3’ are equivalent labels for the same concept and are conceptually
identical. One consequence of this strict usage is that synonyms are not inherited
from parent to child concepts in GO.
The ¢nal semantic relationship inGO is a cross-reference to some other database

resource, representing the relationship ‘is equivalent to’. Thus the cross-reference
between the GO concept alcohol dehydrogenase and the Enzyme
Commission’s number EC:1.1.1.1 is an equivalence (but not necessarily an
identity, these cross-references within GO are for a practical rather than
theoretical purpose). As with synonyms, database cross-references are not
inherited from parent to child concept in GO.
As we have expressed, we are not fully satis¢ed that the two major classes of

relationship within GO, isa and partof, are yet de¢ned as clearly as we would
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like. There is, moreover, some need for a wider agreement in this ¢eld on the
classes of relationship that are required to express complex relationships between
biological concepts. Others are using relationships that, at ¢rst sight appear to be
similar to these. For example, within the aMAZE database (van Helden et al 2001)
the relationships ContainedCompartment and SubType appear to be similar to
GO’s partof and isa, respectively. Yet ContainedCompartment and partof have,
on closer inspection, di¡erent meanings (GO’s partof seems to be a much
broader concept than aMAZE’s ContainedCompartment).
The three domains now considered by the GO Consortium,

molecular ___ function, biological ___ process and cellular ___ component are ortho-
gonal. They can be applied independently of each other to describe separable
characteristics. A curator can describe where some protein is found without
knowing what process it is involved in. Likewise, it may be known that a protein
is involved in a particular process without knowing its function. There are no
edges between the domains, although we realize that there are relationships
between them. This constraint was made because of problems in de¢ning the
semantic meanings of edges between nodes in di¡erent ontologies (see Rogers &
Rector 2000, for a discussion of the problems of transitivity met within an
ontology that includes di¡erent domains of knowledge). This structure is,
however, to a degree, arti¢cial. Thus all (or, certainly most) gene products
annotated with the GO function term transcription factor will be involved
in the process transcription, DNA-dependent and the majority will have the
cellular location nucleus. This really becomes important not so much within GO
itself, but at the level of the use of GO for annotation. For example, if a curator
were annotating genes in FlyBase, the genetic and genomic database forDrosophila
(FlyBase 2002), then it would be an obvious convenience for a gene product
annotated with the function term transcription factor to inherit both the
process transcription, DNA-dependent and the location nucleus. There
are plans to build a tool to do this, but one that allows a curator to say to the
system ‘in this case do not inherit’ where to do so would be misleading or wrong.

Annotation using GO

There are two general methods for using GO to annotate gene products within a
database. These may be characterized as the ‘curatorial’ and ‘automatic’ methods.
By ‘curatorial’ we mean that a domain expert annotates gene products with GO
terms as the result of either reading the relevant literature or by an evaluation of a
computational result (see for exampleDwight et al 2002). Automatedmethods rely
solely on computational sequence comparisons such as the result of a BLAST
(Altschul et al 1990) or InterProScan (Zdobnov & Apweiler 2001) analysis of a
gene product’s known or predicted protein sequence. Whatever method is used,
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the basis for the annotation is then summarized, using a small controlled list of
phrases (www.geneontology.org/GO.evidence.html ); perhaps ‘inferred from direct
assay’ if annotating on the evidence of experimental data in a publication or
‘inferred from sequence comparison with database:object’ (where database:object
could be, for example, SWISS^PROT:P12345, where P12345 is a sequence
accession in the SWISS^PROT database of protein sequences), if the inference is
made from a BLAST or InterProScan compute which has been evaluated by a
curator.
The incorrect inference of a protein’s or predicted protein’s function from

sequence comparison is well known to be a major problem and one that has often
contaminated both databases and the literature (Kyrpides & Ouzounis 1998, for
one example among many). The syntax of GO annotation in databases allows
curators to annotate a protein as NOT having a particular function despite
impressive BLAST data. For example, in the genome of Drosophila melanogaster
there are at least 480 proteins or predicted proteins that any casual or routine
curation of BLASTP output would assign the function peptidase (or one of
its child concepts) yet, on closer inspection, at least 14 of these lack residues
required for the catalytic function of peptidases (D. Coates, personal
communication). In FlyBase these are curated with the ‘function’ ‘NOT
peptidase’. What is needed is a comprehensive set of computational rules to allow
curators, who cannot be experts in every protein family, to automatically detect the
signatures of these cases, cases where the transitive inference would be incorrect
(Kretschmann et al 2001). It is also conceivable that triggers to correct dependent
annotations could be constructed because GO annotations track the identi¢ers of
the sequence upon which annotation is based.
Curatorial annotation will be at a quality proportional both to the extent of the

available evidence for annotation and the human resources available for
annotation. Potentially, its quality is high but at the expense of human e¡ort. For
this reason several ‘automatic’ methods for the annotation of gene products are
being developed. These are especially valuable for a ¢rst-pass annotation of a
large number of gene products, those, for example, from a complete genome
sequencing project. One of the ¢rst to be used was M. Yandell’s program
LOVEATFIRSTSIGHT developed for the annotation of the gene products
predicted from the complete genome of Drosophila melanogaster (Adams et al
2000). Here, the sequences were matched (by BLAST) to a set of sequences from
other organisms that had already been curated using GO.
Three other methods, DIAN (Pouliot et al 2001), PANTHER (Kerlavage et al

2002) and GO Editor (Xie et al 2002), also rely on comprehensive databases of
sequences or sequence clusters that have been annotated with GO terms by
curation, albeit with a large element of automation in the early stages of the
process. PANTHER is a method in which proteins are clustered into

ONTOLOGIES FOR BIOLOGISTS 73



‘phylogenetic’ families and subfamilies, which are then annotated with GO terms
by expert curators. New proteins can then be matched to a cluster (in fact to a
Hidden Markov Model describing the conserved sequence patterns of that
cluster) and transitively annotated with appropriate GO terms. In a recent
experiment PANTHER performed well in comparison with the curated set of
GO annotations of Drosophila genes in FlyBase (Mi et al 2002). DIAN matches
proteins to a curated set using two algorithms, one is vocabulary based and is
only suitable for sequences that already have some attached annotation; the other
is domain based, using Pfam Hidden Markov Models of protein domains.
Even simpler methods have also been used. For example, much of the ¢rst-pass

GO annotation ofmouse proteins was done by parsing theKEYWORDs attached
to SWISS^PROT records of mouse proteins, using a ¢le that semantically mapped
theseKEYWORDs toGO concepts (see www.geneontology.org/external2go/spkw2go)
(Hill et al 2001).
Automatic annotations have the advantages of speed, essential if large protein

data sets are to be analysed within a short time. Their disadvantage is that the
accuracy of annotation may not be high and the risk of errors by incorrect
transitive inference is great. For this reason, all annotations made by such
methods are tagged in GO gene-association ¢les as being ‘inferred by electronic
annotation’. Ideally, all such annotations are reviewed by curators and
subsequently replaced by annotations of higher con¢dence.

The problems of complexity and redundancy

There are in the biological ___ process ontologymany words or strings of words that
have no business being there. The major examples of o¡ending concepts are
chemical names and anatomical parts. There are two reasons why this is
problematic, one practical and the other of more theoretical importance. The
practical problem is one of maintainability. The number of chemical compounds
that are metabolized by living organisms is vast. Each one deserves its own unique
set of GO terms: carbohydrate metabolism (and its children carbohydrate
biosynthesis, carbohydrate catabolism), carbohydrate transport and so on. In the
ideal world there would exist a public domain ontology for natural (and
xenobiotic) compounds:

carbohydrate

simple carbohydrate

pentose

hexose

glucose

galactose

polysaccharide
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and so on. Thenwe couldmake the cross-product between this littleDAG (aDAG
because a carbohydrate could also be an acid or an alcohol, for example) and this
small biological ___process DAG:

metabolism

biosynthesis

catabolism

to produce automatically:

carbohydrate metabolism

carbohydrate biosynthesis

carbohydrate catabolism

simple carbohydrate metabolism

simple carbohydrate biosynthesis

simple carbohydrate catabolism

pentose metabolism

pentose biosynthesis

pentose catabolism

hexose metabolism

hexose biosynthesis

hexose catabolism

glucose metabolism

glucose biosynthesis

glucose catabolism

galactose metabolism

galactose biosynthesis

galactose catabolism

polysaccharide metabolism

polysaccharide biosynthesis

polysaccharide catabolism

Such cross-product DAGs may often have compound terms that are not
appropriate. For example, the GO concepts 1,1,1-trichloro-2,2-bis-(4’-
chlorophenyl)ethane metabolism and 1,1,1-trichloro-2,2-bis-(4’-
chlorophenyl)ethane catabolism are appropriate, yet 1,1,1-trichloro-
2,2-bis-(4’-chlorophenyl)ethane biosynthesis is not; organisms break
down DDT but do not synthesise it. For this reason any cross-product tree
would need pruning by a domain expert subsequent to its computation (or rules
for selecting subgraphs that are not be cross-multiplied).
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Unfortunately, as no suitable ontology of compounds yet exists in the public
domain, there is no alternative to the present method of maintaining this part of
the biological ___ process ontology by hand.
A very similar situation exists for anatomical terms, in e¡ect used as anatomical

quali¢ers to terms in the biological ___ process ontology. An example is eye

morphogenesis, a term that can be broken up into an anatomical component
(eye) and a process component (morphogenesis). This example illustrates a
further problem, we clearly need to be able to distinguish the morphogenesis of a
£y eye from that of amurine eye, or aXenopus eye, or an acanthocephalan eye (were
they to have eyes). Such is not theway tomaintain an ontology. Far betterwould be
to have species- (or clade-) speci¢c anatomical ontologies and then to generate the
required terms for biological ___ process as cross-products. This is indeed the way
in which GO will proceed (Hill et al 2002) and anatomical ontologies for
Drosophila and Arabidopsis are already available from the GO Consortium
( ftp://ftp.geneontology.org/pub/go/anatomy), with those for mouse and C. elegans in
preparation (see Bard & Winter 2001, for a discussion). The other advantage of
this approach is that these anatomical ontologies can then be used in other
contexts, for example for the description of expression patterns or mutant
phenotypes (Hamsey 1997).

gobo: global open biological ontologies

Although the three controlled vocabularies built by the GO Consortium are far
from complete they are already showing their value (e.g. Venter et al 2001,
Jenssen et al 2001, Laegreid et al 2002, Pouliot et al 2001, Raychaudhuri et al
2002). Yet, as discussed in the preceding paragraphs the present method of
building and maintaining some of these vocabularies cannot be sustained. Both
for their own use, as well as the belief that it will be useful for the community at
large, the GOConsortium is sponsoring gobo (global open biological ontologies)
as an umbrella for structured controlled vocabularies for the biological domain. A
small ontology of such ontologies might look like this:
gobo

gene

gene_attribute

gene_structure

gene_variation

gene_product

gene_product_attribute

molecular_function

biological_process

cellular_component
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protein_family

chemical_substance

biochemical_substance

class

biochemical_substance_attribute

pathway

pathway_attribute

developmental_timeline

anatomy

gross_anatomy

tissue

cell_type

phenotype

mutant_phenotype

pathology

disease

experimental_condition

taxonomy

Some of these already exist (e.g. Taxman for taxonomy; Wheeler et al 2000) or are
under active development (e.g. the MGED ontologies for microarray data
description; MGED 2001), a trait ontology for grasses (GRAMENE 2002)
others are not. There is everything to be gained if these ontologies could (at
least) all be instantiated in the same syntax (e.g. that used now by the GO
Consortium or in DAML+OIL; Fensel et al 2001); for then they could share
software, both tools and browsers, and be more readily exchanged. There is also
everything to be gained if these are all open source and agree on a shared namespace
for unique identi¢ers.
GO is very much a work in progress. Moreover, it is a community rather than

individual e¡ort. As such, it tries to be responsive to feedback from its users so that
it can improve its utility to both biologists and bioinformaticists, a distinction, we
observe, that is growing harder to make every day.
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DISCUSSION

Subramaniam:Sometimes cellular localization drives themolecular function. The
same protein will have a particular function in certain places and then when it is
localized somewhere else it will have a di¡erent function.
Ashburner: I thought about doing this at the level of annotation, in which you

could have a conditionality attached to the annotation. I have been lying duringmy
talk, because I have been talking about annotating gene products. For various
reasons�partly historical and partly because of resources�none of the single
model organism databases we are collaborating with (at least in their public
versions) really instantiate gene products in the proper way. That is, if you had a
phosphorylated and a non-phosphorylated form of a particular protein, they
should have di¡erent identi¢ers and di¡erent names. This is what we should be
annotating. What in fact we are annotating is genes as surrogates of gene
products. I am very aware of this problem. With FlyBase we do have di¡erent
identi¢ers for isoforms of proteins, and in theory for di¡erent post-translational
modi¢cations, but they are not yet readily usable. The di⁄cult ones are proteins
such as NF-kB, which is out there in the cytoplasm when it is bound to IF-kB, but
then the Toll pathway comes and translocates it into the nucleus. I can see
theoretically how one can express this, but this is a problem too far at the moment.
Subramaniam:MySQL is not really an object relation database. If you try to get

your ontology into an object relation database (we have tried to do this) the
cardinality doesn’t come out right. What happens is that the de¢nitions get a
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little bit mixed up between di¡erent tables. This is one of the problems in trying to
deal with Oracle.
Ashburner: That is worth knowing; we can talk to the database people about

that. The choice of MySQL was pragmatic.
Subramaniam: Also, MySQL doesn’t scale.
Ashburner: These are pretty small databases, with a few thousand lines per table

and relatively small numbers of tables.
McCulloch: What degree of interpretation do you allow, for example, in

compartmentation of the protein? If you go to the original paper it won’t
necessarily say that the protein is membrane bound or localized to caveolae: it
will probably say that it is found in a particulate fraction, or the detergent-
insoluble fraction.
Ashburner: We do have a facility for allowing curators to add biochemical

fraction information, because biochemists tend not to understand biology that
well. I want to emphasize that GO is very pragmatic, although there are places
where we are going to have to draw a line.
Noble: In relation to the question of linkingmodelling and databases together, is

it worth asking the question of what the modellers would ideally like to see in a
database? Does the GO consortium talk to the modellers?
Ashburner:We have a bit. There are some people who are beginning to do this,

particularly Fritz Roth atHarvardMedical School.We have amechanismbywhich
we can talk to the modellers because we have open days. There are other systems
out there such as EcoCyc (http://ecocyc.org/) that are designed with modelling in
mind, for making inference. GO isn’t; it’s designed for description and querying.
I think it will come. GO is being used in ways that we had no concept of initially.
For instance, it is being developed for literature mining (see Raychuadhuri et al
2002). This could be very interesting.
Kanehisa:When there is the same GO identi¢er in to organisms, how reliable is

it in terms of the functional orthologue?
Ashburner: That depends very much on how it is done. It is turning out that

when a new organism joins the group, what is normally done is a quick-pass
electronic annotation using the annotation in SWISS-PROT. This is done
completely electronically, and gives a quick and dirty annotation. Then if they
have the resources the groups start going through this and cleaning it up,
hopefully coming up with direct experimental evidence for each annotation. For
example, after Celera we had about 10 000 electronic annotations in FlyBase, but
these have all been replaced by literature curations or annotations derived from a
much more reliable inspection of sequence similarity.
Subramaniam: Going back to the issue of ontologies and databases, it is

important to ask the question about which levels of ontologies can translate into
modelling. If you think of modelling in bioinformatics and computational
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biology, the £ow of information in living systems is going from genes to gene
products to functional pathways and then physiology. What we have heard from
Michael Ashburner is concerned with the gene and gene function level. The next
step is what we are really referring to, which is not merely ¢nding an ontology for
the gene function, but going beyond this to integrated function, or systems level
function of the cell. There is currently no ontology available at this level. This is
one of the issues we are trying to address in the cell signalling project; it is critical
for the next stage ofmodellingwork. This has to be driven at this point: whether or
not you make the reverse ontology, at least you should provide format translators
such as XML.
Ashburner:GO, of course, is sent around the world in XML.
Noble:How dowemove forward on this? A comment youmade surprisedme: I

think you said that it is forbidden to modify GO.
Ashburner:No, it is forbidden tomodify it and then sell it as if it wereGO. If you

took it, modi¢ed it and called it ‘Denis Noble’s ontology’, we would be at least
mildly pissed o¡.
Subramaniam:We could call it ‘extended GO’, so that it becomes ‘EGO’!
Ashburner: TheManchester people (C. Groble, R. Stevens and colleagues) have

something called GONG: GO the Next Generation!
Boissel:Regarding the issue of databases and modelling, we should ¢rst be clear

about the functions of the database regarding the purpose of modelling.
According to the decision we have made at this stage of de¢ning the purpose
of the database, there is a series of speci¢cations. For example, a very general
speci¢cation such as entities, localization of entities, relationship between
entities, and where the information comes from (including the variability of
the evidence). There are at least four di¡erent chapters within the speci¢cation.
But ¢rst we should be clear why we are constructing a database regarding
modelling.
Subramaniam: Let’s take speci¢c examples. If you talk about pathway ontology,

what are you getting from a pathway database? The network topology. And
sometimes kinetic parameters, too. All this will be encompassed in the database
and can be translated into modelling. Having said this, we should be careful
about discriminating between two things in the database. First, the querying of
the database to get information that in turn can be used for modelling. The other
is going straight from a database into a computational algorithm, and this is
precisely what needs to be done. This is why earlier I said that we currently can’t
do this in a distributed computing environment. The point really is that we need to
be able to compute, instead of having towrite all our programming in SQL,which
wewon’t be able to do if we have a complex program.We need to design a database
so that it will enable us to communicate directly between the database and our
computational algorithm. Beyond the pathway level, when we want to model the

82 DISCUSSION



whole system, I don’t knowwhether anyone knows how to do this from a database
point of view yet.
Berridge: Say wewere interested in trying to ¢gure out the pathways in the heart,

and I put ‘heart’ into your database, what would I get out?
Ashburner:At themoment,whatever themouse genome informatics group have

put in.
Berridge:Would I get a list of all the proteins that are expressed in the heart?
Ashburner: No, but you should get a list of all the genes whose products have

been inferred to be involved in heart development, for example. The physiological
processes are not yet as well covered in GO as we wish, but we are working on this
actively.
Noble: So even if it is expressed in the liver, but it a¡ects the heart, it turns up.
Ashburner: Yes.
Berridge:What questions will people be asking with your database?
Ashburner: If youwant to ¢nd all the genes inDrosophila andmouse involved in a

signal tranduction pathway, for example. It can’t predict them: what you get out is
what has been put in. The trick is to add the entries in a rigorous manner.
Berridge: So if I put in Ras I would get out the MAP kinase pathway in these

di¡erent organisms.
Ashburner: Yes.
Levin: Looking higher than the level of the pathway, you indicated that there

were no good disease-based databases in the public domain. Can you give a sense of
why this is?
Ashburner: I have no idea. They exist commercially: things like Snomed and

ICD-10. Some are now being developed. I suspect this is because so much of the
human anatomy and physiology work has been so driven by the art of medicine,
rather than the science of biomedicine. Doctors are quite avaricious as a whole,
particularly in the USA, and many of these databases are used to ensure correct
billing!
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General discussion I

Model validation

Paterson: One of the challenges in model validation is that unless you have a
particular purpose in mind, it can turn into a largely academic conversation
about what is meant by validation. In a lot of the applied work we do, it is in the
context of making predictions for decision making that validation really comes
into its own. I would like to introduce a few concepts and then open things up
for discussion (see Fig. 1 [Paterson]). In the context of validating a model, we are
talking about linking detailed mechanisms to observed phenomena. As all of us in
this ¢eld know that there are always gaps in our knowledge, even if we are talking
about parametric variations within a set of equations. For each of these knowledge
gaps, there are multiple hypotheses that may be equally valid, and explain the same
phenomena. The question is, each of these hypotheses may yield di¡erent
predictions for novel interventions, which may then lead me to di¡erent
decisions. If we think about in silico modelling as an applied discipline, one
central issue is communicating this reality, and how to manage it properly, to the
decision makers. Typically, the modelling teams� the people who understand
these issues� are separate from the people who have the resources to decide
which is the next project to fund, or in pharmaceutical applications what is the
next target to pursue. These two groups may have very di¡erent backgrounds,
which raises further issues of communication. It is therefore necessary to explain
why you have con¢dence in the model, what you think are the unanswered
questions, and the implications of both to upcoming decisions. It is certainly in
the context of the resources and time when all this comes into play. If the
resources concerned are small and the time it takes to go through an iteration of
modelling and data collection are small, such explorations may ¢t easily within
budgets and timelines. However, as you consider applications in the
pharmaceutical industry, we are talking about many millions of dollars worth of
resources, and years of preclinical and clinical research time. These issues of
validation and uncertainty when model predictions are used to support decision-
making have driven our approach to modelling. I would be interested in whether
there are any perspectives people can share in terms of how they approach
modelling as a discipline.
Noble: Let me give you a reaction from the point of view of the academic

community. It seems to me that this issue links strongly to the issue of the
availability of models to be used by those who are not themselves primarily
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modellers. In other words, it gets back to this issue of getting the use ofmodels out
there among people who are themselves experimentalists. The experience I have is
that it is onlywhen people get hands on,where they can feel and play, that they start
to get con¢dence, and that they can get some good explanations of their own data
and that the model will help them decide on their next experiment.
Paterson:One complication to your scenario arises from the integrated nature of

these models and the diverse expertise represented within them. As the scope of an
integrated physiology model increases, the number of researchers that understand
that entire scope dwindles. What can happen is that such a model may be used by
you as a researcher and your researchmay be focused on the biology in this one area
of the model, but you may be very unfamiliar with the other subsystems. In terms
of the data you care about, this model may replicate these data and it is therefore
validated from your perspective. However, the context of the other subsystems
that you don’t have expertise in may be very relevant to those predictions and
decisions that will be guided as a result. Part of what the modeller needs to
communicate is expertise that may lie beyond the expertise of the researcher
using the model.
Noble: I wasn’t of course implying that the experimenter who takes modelling

on and starts to play around wants to cut links with the experts, as it were.
Loew: I can see where these validation issues are very critical: you need to have a

certain amount of con¢dence in the model before you can go on to in£uence
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decision making in choosing which drugs to take to clinical trials. But from the
point of view of an academic modeller, a model is actually most useful if you can
prove it to bewrong.You can never prove it to be right. The simplest example here
is classical mechanics versus quantum mechanics. Classical mechanics is a very
useful model that allows you to make many predictions and decisions, but it was
most spectacular when it was proved to be wrong, and in understanding the limits
ofwhere itwaswrong.This is how the science progresses. Froma practical point of
view, classical mechanics is great, but from an academic point of view it is really
great when you can prove it wrong.
Boissel: We should be careful not to confuse model validation and model

dissemination. Getting people to trust and use the model is not the same as
model validation. Regarding whether a model is wrong or not, a model is always
wrong. The problem is determining just howwrong it is and inwhich contexts it is
right.
Noble: I agree that all models are inevitably wrong, because they are always only

partial representations of reality.
McCulloch:TomPaterson, your diagram does resonate with the academicway of

doing things, where the result of the model is really a new hypothesis or set of
hypotheses that the decision maker can use to design to new experiment or write
a new grant. But is this really the way it works in the pharmaceutical industry? It
seems unlikely that the pharmaceutical industry would make a go/no-go decision
based on the predictions of a computational model. By the time they are willing to
invest large resources, they already have strong proof of principle. The go/no-go
decisions are presumably based on more practical considerations. For example,
does the antibody cross react in humans? Is the lead compound going to be orally
bioavailable? How does the patent position sit? Are there examples today in the
pharmaceutical industry where resources are being committed on the basis of
in silico predictions?
Paterson: Yes, there are many. The key point in answering your question is

that it is always the case that pharmaceutical research and development
decisions are made under uncertainty about the real causal factors underlying
disease pathophysiology. The question is whether they have leveraged all the
relevant data to reduce that uncertainty using the model in their heads, or
whether they use a computational model. What we are doing isn’t that
di¡erent from the normal scienti¢c process; we are just using di¡erent
languages, i.e. graphical notations and mathematics, to articulate our
hypotheses and to test their consistency. Part of the reason I drew that dotted
line in the diagram, which is very critical, was that communication. Why do we
have con¢dence in the model, what are the validation steps, and what are we
uncertain about? Research and development decision-making, in general, is less
rational and concrete than you would think. Proper use of models can improve
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decision-making, and is doing so, but communication of those issues to
decision makers is critical.
Subramaniam: Where does the quaint notion of doing a sensitivity analysis of

every design step and every parameter come into your diagram?
Paterson: Sensitivity analysis is one way of looking at uncertainty, although it is

complicated by the need to remain consistent with the constraints imposed by data.
For a particular decision that I am making, there is a certain set of data that our
scientist will identify and we will say that we are only going to trust the model if
it behaves in these ways under these circumstances consistent with these data. In
e¡ect, we de¢ne a validation set of experiments that the model needs to perform.
Part of what we need to do then, is out of this very large parameter or model space
that exists, and given limited time and resources, ask how we can explore this
parameter space, given that we may be uncertain about many of those parameters
due to the limited availability of data. We may have many competing hypotheses
that can be represented within this particular space about how a set of pathways is
regulated. As we explore these di¡erent pathways we need to ask whether
competing hypotheses would make us change our decision. If they don’t, then
we don’t need to invest resources in resolving this uncertainty. If, however, the
choice between hypotheses A and B would change our decision, then this is the
experiment we want to run.
Subramaniam:Do people routinely do this in industry?
Paterson:No; this is extremely di⁄cult using mental models. My organization is

doing this using the models we develop.
Levin:This is not quite correct as there is increasing and routine use of biological

modelling in some areas of industry. Models of absorption and metabolism are
widely distributed, but they answer very particular, limited questions. The
problem that Tom has identi¢ed of communicating the value of simulation within
an organization is a signi¢cant one. The line he describes is less a dotted one than a
lead shield in the very traditional pharmaceutical companies.What de¢nes a £exible
and innovative organization is one that understands how to cope with transferring
new technology while educating its personnel and developing the right
management structures to enable and empower change. One second point: the
issue of uncertainty and sensitivity analysis is an important one. The question of
validation is one that will bedevil many organizations until they understand and
learn how to weld biology (in the form of the day-to-day experimentation),
fundamental motif formation (at a module level with practical tools at the bench),
and then development of protocols to generate appropriate experimental data to
iterate between the module and the desired hypothesis. I disagree here with what I
think I heard from Jean-Pierre Boissel, in that I think dissemination of a model is
linked to validation, but dissemination of the tools and modelling is linked to an
understanding of how to link experimentation to models and motif.
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Boissel: For sure, you cannot disseminate a model without good
validation.
Levin: Another complex issue which is particular to e¡orts to disseminate

models within a large organization (or between organizations and multiple
people) is to ensure that you are speaking the same language (using the same
ontologies), and you actually have interchangeable models based on common
technology and hence permitting researchers to make comparisons. All of these
make that dotted line more di⁄cult to cross.
Paterson: Part of the key for adoption is to recognize that there isn’t anything

we are talking about in this room today that creates that problem. That problem
has existed since the pharmaceutical industry began. It is not data that drives
decision making, but hypotheses for exploring novel therapeutics. The issue is,
whether that hypothesis of the pathophysiology of the disease and the relevance
of a particular novel target was developed as part out of a modelling exercise. It is
still this process. The promise of what modelling can do is that it makes it more
explicit.
Levin: The problems facing those engaged in developing and promulgating

modelling are no di¡erent from the problems that others developing novel
technologies have faced when providing them to the pharmaceutical industry.
The line distinguishing decision makers from the (generally younger) scientists at
the bench has been there from the start. Whether it be a combinatorial chemist or a
genomic scientist� each have faced this in their time, and each have sequentially
overcome the managerial resistance in some fashion. In some cases dynamic
leadership breaks the ice. But eventually, each segment of science has a particular
way of solving the issue. All must overcome similar questions, such as: is this a
valid technology, what are the uncertainties relating to it, and how will it a¡ect
my decision making? Biology has arrived at a state where there are no easy ways
to answer the huge volume of questions precipitated by the genome project and its
attendant deluge of data.We no longer can a¡ord to think in the terms thatwe have
done for the last 30 years. We need to solve some very complex high-throughput
problemswhich rest on integrating all of the data and seeking emergent properties.
Hypothesis generation of the kind that modelling o¡ers is at least one way of
dealing with some key questions that are emerging because of the nature of the
pharmaceutical industry. Often, 14 years pass between the initiation and
culmination of a project (the release of a new drug), and there is a pipeline of
thousands of compounds that have been developed using standard practices and
processes. We already know that the overwhelming majority of these compounds
will fail to become drugs. By incorporating and modelling the emerging body of
data pertaining to the molecular and cell biology function of these compounds, we
have a better chance to explain to and point people to where those compounds are
likely to succeed.
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Boissel: I thinkwe need some type of goodmodel validation practices in order to
make our activity more positive for the people who can use it.We need to agree on
a series of principles regarding how models should be validated.
Noble:One of the criteria that I would put in would be the number of times that

there has been iteration between model and experiment.
Boissel:This is external validity.We also need some principles regarding internal

validity. In any validation process, there are three di¡erent steps. The ¢rst step is to
investigate the internal validity, the second is the external validity and the ¢nal one
is to look at howwell themodel predictionsmatchwhatwewould have expected at
the beginning. The internal validity is whether themodel has integrated all the data
that we wanted to put in, and really translated what we know in terms of
quantitative relationships between the entities and so on. The external validity is
what you propose: is the model valuable regarding the data and knowledge which
have not been added to it?
Cassman:Amodel isn’t just a representation of elements of some sort, but rather

is an embodiment of a theory. There is a long history of howwe validate theories. I
don’t see why it is any di¡erent for models than for anything else. Karl Popper has
listed characteristics of what constitute good theories: the breadth of information
that they incorporate, the relevance to a large set of outcomes, and most
importantly predictive value. I don’t know that there is anything unique about
models as a theory than any other theories. They should be dealtwith the sameway.
Paterson: There is at least one unique dimension that the quantitative nature of

models enables. Particularly when you are talking about developing novel
therapies, it is not enough to identify that a particular protein is in a pathway for
the disease; you need to know how much leverage it actually has. If I am going to
inhibit that protein’s activity by 50%, howmuch of an improvement in the clinical
endpoint will I have? Quantitatively, these things make a di¡erence. Even for a
single set of equations, the degrees of freedom that you have in the parametric
space for complex models relative to the constraints that are imposed by the data
is always going to be huge. It is incumbent upon the modeller to explore that
uncertainty space, and there are huge bene¢ts to doing this. Instead of giving you
one hypothesis I am going to give you a family of hypotheses, all of which have
been thoroughly tested for consistency with available data. Di¡erent hypotheses
may lead to di¡erent decision recommendations. In this way, you simultaneously
have the opportunity to help make more informed decisions, and if there are time
and resources to collect more data you can help identify what is themost important
experiment to run. Instead of giving one hypothesis, we give alternatives and show
the relevance of these to the decision being made.
Shimizu:One thing I disagree with in your diagram is that it appears to separate

the predictions from the validation. I think these are really closely intertwined.
Noble: It’s an iteration.
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Paterson: Yes, it is completely iterative. But in industry there comes a point
where there is no more time for iterations and a decision has to be made. So I
have to go with the predictions that come out of the model, or the predictions
that come out of the heads of my best researchers in order to push things
forwards. At some point the iteration needs to stop.
Shimizu: When I said that they were intertwined, I didn’t just mean it in an

iterative sense. Of course in general, the more you re¢ne a model by iteration, the
better you can expect its predictions to be. But I would call this the accuracy of the
model, rather than its validity. The term validity, I believe, should be reserved for
discerning whether the type of model you are using is ¢t to make the desired
predictions. In simulating chemical reactions, for example, a set of deterministic
equations that beautifully predicts the behaviour of a reaction system might be
called a valid model. But there are situations in which such a model can fail. For
instance, if you are interested in predicting the behaviour of the same chemical
system in a very small volume of space, the behaviour of the system can become
stochastic, in which case the deterministic model will break down. So my point is
that from the decision maker’s point of view, I don’t think it’s a good idea to have
the validation part just as a black box that gives a yes/no result.
Paterson:Absolutely not. You want the decisionmakers to help you de¢ne what

the validation criteria are. You also want the decision maker to play a role in what
uncertainties you explore and to see how sensitive they are.
McCulloch: If Marv Cassman is correct and logical positivism is the paradigm by

whichmodels are best used, this would predict that the decisionmakers would rely
on the models mostly when they decided not to proceed. Is this the case?
Noble:Most grants are turned down, so it must be!
Subramaniam: Falsi¢cation is not the only criterion.
McCulloch: Very well, allow me to rephrase the question. Is there an asymmetry

in the way that decision makers use the predictions of models? Are they more
inclined to accept the model conclusion that it is not going to work than it is?
Paterson: In our experience, as we explore the uncertainty side of the equation to

address the robustness, it has probably been easier to show a very robust answer
that things will not work versus an extremely robust answer that it will certainly
work. In terms of where the pharmaceutical industry is today, in a target-rich
environment, then anything you can do to help avoid clinical trial failure by
anticipating issues early on is a signi¢cant contribution.
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The KEGG database

Minoru Kanehisa

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji,
Kyoto 611-0011, Japan

Abstract. KEGG (http://www.genome.ad.jp/kegg/) is a suite of databases and associated
software for understanding and simulating higher-order functional behaviours of the
cell or the organism from its genome information. First, KEGG computerizes data and
knowledge on protein interaction networks (PATHWAY database) and chemical
reactions (LIGAND database) that are responsible for various cellular processes.
Second, KEGG attempts to reconstruct protein interaction networks for all organisms
whose genomes are completely sequenced (GENES and SSDBdatabases). Third,KEGG
can be utilized as reference knowledge for functional genomics (EXPRESSION
database) and proteomics (BRITE database) experiments. I will review the current
status of KEGG and report on new developments in graph representation and graph
computations.

2002 ‘In silico’ simulation of biological processes. Wiley, Chichester (Novartis Foundation
Symposium 247) p 91^103

The term ‘post-genomics’ is used to refer to functional genomics and proteomics
experiments after complete sequencing of the genome, such as for analysing gene
expression pro¢les, protein^protein interactions and 3D protein structures.
Systematic experiments have become possible through the development of high-
throughput experimental technologies including DNA chips and protein chips.
However, the complete cataloguing of genes and proteins by these experimental
approaches is only a part of the challenge in the post-genomic era. As illustrated in
Fig. 1, a huge challenge is to predict a higher-level biological system, such as a cell
or an organism, from genomic information, as is predicting dynamic interactions
of the system with its environment (Kanehisa 2000). We have been developing
bioinformatics technologies for deciphering the genome in terms of the
biological system at the cellular level; namely, in terms of systemic functional
behaviours of the cell or the single-celled organism. The set of databases and
computational tools that we are developing is collectively called KEGG (Kyoto
Encyclopaedia of Genes and Genomes) (Kanehisa 1997, Kanehisa et al 2002).
The databases inKEGGare classi¢ed into three categories corresponding to the

three axes in Fig. 1. The ¢rst category represents parts-list information about genes
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and proteins. The gene catalogues of all publicly available complete genomes and
some partial genomes are stored in the GENES database, which is a value-added
database containing our assignments of EC (Enzyme Commission) numbers and
KEGG orthologue identi¢ers as well as links to SWISS-PROT and other
databases. Selected experimental data on gene expression pro¢les (from
microarrays) and protein^protein interactions (from yeast two-hybrid systems)
are stored in the EXPRESSION and BRITE databases, respectively. In addition,
the sequence similarity relationsof all protein-codinggenes in theGENESdatabase
are computationally generated and stored in the SSDB database. The second
category represents computerized knowledge on protein interaction networks in
the cell, such as pathways and complexes involving various cellular processes. The
networks are drawn by human e¡orts as graphical diagrams in the PATHWAY
database. The third category represents chemical information. The LIGAND
database contains manually entered entries for chemical compounds and chemical
reactions that are relevant to cellular processes. Chemical compounds include
metabolites and other compounds within the cell, drugs, and environmental
compounds, while chemical reactions are mostly enzymatic reactions.

Graph representation

A graph is a mathematical object consisting of a set of nodes (vertices) and a set of
edges. It is general enough to represent various objects at di¡erent levels of
abstraction. For example, a protein molecule or a chemical compound can be
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FIG. 1. Post-genomics and KEGG.



viewed as a chemical object, which is represented as a graph consisting of atoms as
nodes and atomic interactions as edges. A protein sequence or aDNA sequence can
be viewed as a molecular biological object, which is represented as a graph
consisting of monomers (amino acids or nucleotides) as nodes and covalent
bonds for polymerization (peptide bonds or phosphodiester bonds) as edges. As
illustrated in Fig. 2, a molecular biological object is at a higher level of abstraction
than a chemical object, because the graph of a chemical object, such as an amino
acid, is considered as a node in a molecular biological object. Then, at a still higher
level of abstraction, the graph of a molecular biological object can be considered as
a node in, what we call, a KEGG object. A KEGG object thus represents
interactions and relations among proteins or genes.
Computational technologies are relatively well developed for analysing the

molecular biological objects of sequences and the chemical objects of 3D
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structures, largely because the databases are well developed: GenBank/EMBL/
DDBJ for DNA sequences; SWISS-PROT for protein sequences; and PDB for
protein 3D structures, among others. In order to analyse higher-level
interactions and relations among genes and proteins, it is extremely important to
¢rst computerize relevant data and knowledge and then to develop associated
computational technologies. KEGG aims at a comprehensive understanding of
interaction networks of genes, proteins, and compounds, based on graph
representation of biological objects (see Table 1 for the list of KEGG objects),
and graph computation technologies (Kanehisa 2001).

Graph computation

The graph computation technologies of interest to us are extensions of the
traditional technologies for sequence and 3D structure analyses. First, the
sequence comparison and the 3D structure comparison are generalized as the
graph comparison, which is utilized to compare two or more KEGG objects in
Table 1 for understanding biological implications. Second, feature detection�
e.g. for sequence motifs or 3D structure motifs� can be extended as the graph
feature detection, which is utilized to analyse a single graph to ¢nd characteristic
connection patterns, such as cliques, that can be related to biological features.
Third, the big challenge of network prediction, which is to predict the entire
protein interaction network of the cell from its genome information, can be
compared in spirit with the traditional structure prediction problem, which
involves predicting the native 3D structure of a protein from its amino acid
sequence.
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TABLE 1 KEGG objects representing interactions and relations among genes and
proteins

Database KEGG object Node Edge

GENES Genome Gene Adjacency

EXPRESSION Transcriptome Gene Expression similarity

BRITE Proteome Protein Direct interaction

SSDB Protein universe Protein Sequence similarity (orthology, etc.)

3D structural similarity

PATHWAY Network Gene product or
subnetwork

Generalized protein interaction
(direct interaction, gene expression
relation, or enzyme^enzyme
relation)

LIGAND Chemical universe Compound Chemical reaction



A simple way to compare two sequences is to search for common sub-
sequences. In Fig. 3 two sequences of alphabet letters, one in upper case and
the other in lower case, are compared to identify case-insensitive matches. The
common subsequence is DEF and def, which consist of a stretch of matching
letters: D-d, E-e, and F-f. Note that in addition to the matching nodes (letters)
the common subsequence implicitly contains matching edges, in this case DE-de
and EF-ef. Now let us generalize the common subsequence in sequence
comparison to the common subgraph in graph comparison, which is an
isomorphic pair of subgraphs consisting of the same number of nodes
connected in the same way. In Fig. 3 the common subgraph is (D, E, F, G,
DE, EF, EG) and (d, e, f, g, de, ef, eg), which consist of matching nodes and
edges: D-d, E-e, F-f, G-g, DE-de, EF-ef, and EG-eg.
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In practice, during protein and nucleic acid sequence comparisons perfect
matches of common sub-sequences are too restrictive to identify interesting
biological features. Thus, sequence comparison algorithms have been developed
to ¢nd subtle sequence similarities containing gaps and mismatches. In the
sequence comparison of Fig. 3, the two sub-sequences DEFGH and defjgh are
similar by considering the node j as a gap. More precisely, in the subgraphs
(D, E, F, G, H, DE, EF, FG, GH) and (d, e, f, j, g, h, de, ef, fj, jg, gh), the edge
FG is matched to the pair of edges fj and jg to introduce a gap. In the graph
comparison, the two subgraphs (D, E, F, G, I, H, DE, EF, EG, EI, IH) and
(d, e, f, g, h, de, ef, eg, eh) are de¢ned as similar subgraphs, because the pair of
edges EI and IH can be matched to the edge eh to introduce a gap node I. We
have developed a heuristic algorithm to ¢nd this type of graph similarity, which
is called a correlated cluster (Ogata et al 2000).

Knowledge-based network prediction

The problem of 3D structure prediction has become feasible and practical because
of the accumulated body of experimental data on actual protein 3D structures
determined by X-ray crystallography and NMR. Empirical relationships between
amino acid sequences and protein 3D structures have been analysed and utilized for
prediction, for example, in terms of potential functions for threading and libraries
of oligopeptide structures. The KEGG/PATHWAY database is our attempt to
computerize current knowledge on protein interaction networks based on graph
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TABLE 2 The top two levels of the KEGG network hierarchy

Metabolism
Carbohydrate metabolism
Energy metabolism
Lipid metabolism
Nucleotide metabolism
Amino acid metabolism
Metabolism of other amino acids
Metabolism of complex carbohydrates
Metabolism of complex lipids
Metabolism of cofactors and vitamins
Metabolism of secondary metabolites
Degradation of xenobiotics

Genetic information processing
Transcription
Translation
Sorting and degradation
Replication and repair

Environmental information processing
Membrane transport
Signal transduction
Ligand^receptor interaction

Cellular processes
Cell motility
Cell cycle and cell division
Cell death
Development

Human diseases
Neurodegenerative disorder



representation and to understand empirical relations between genomes and
networks based on graph computations.
The PATHWAY database is hierarchically categorized. The top two levels are

shown in Table 2. The third level corresponds to a pathway diagram, such as the
lysine biosynthesis pathway shown in Fig. 4. The pathway diagram represents a
protein interaction network where gene products (proteins) are the nodes that are
connected by three types of edges. The edge in the metabolic pathway is called the
enzyme^enzyme relation consisting of two enzymes catalysing successive reaction
steps. The other two types of edges are the direct protein^protein interaction (such
as binding, phosphorylation, and ubiquination), and the gene expression relation
between a transcription factor and a target protein product. The protein interaction
network is a compound (or nested) graph which allows nodes to contain graphs.
For example, an enzyme complex with a single EC number is a node in the
metabolic network but it is also a graph consisting of multiple gene products.
Each pathway diagram is manually drawn gathering knowledge and

information from published literature. This reference knowledge can then be
utilized for network prediction, as illustrated in Fig. 5. By matching genes in the
genome and gene products in the reference network according to the assigned
KEGG orthologue identi¢ers, an organism-speci¢c network is computationally
generated. Figure 4 is a result of this matching where the nodes (boxes) are
shaded grey when genes are found in the genome, in this case in the E. coli
genome. The connection pattern of coloured boxes then indicates the presence of
the bacteria-type lysine biosynthesis pathway. Thus, given the reference network, a
metabolic capability of the organism can be predicted from the genome
information.
The knowledge-based prediction has an inherent limitation; when the reference

knowledge does not exist, the prediction is not possible. To overcome this
limitation, additional experimental data and/or computational results are
incorporated in the prediction procedure as illustrated in Fig. 6. For example, the
data obtained by yeast two-hybrid systems suggest possible protein^protein
interactions, and the data obtained by microarrays suggest possible relations of
coexpressed genes. These data are thus represented as a set of binary relations,
which is essentially a graph. By making use of the graph comparison algorithm,
multiple graphs are superimposed to identify possible extensions of the network
graph.

Network dynamics

The predicted network according to the protocol shown in Fig. 6 is a static
network indicating the constituent nodes and their connection patterns. The next
step is to predict the network dynamics. We think small perturbations around the
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native network are computable, which is like computing small perturbations
around the native structure of a protein. However, the dynamics of cell
di¡erentiation, for example, would be extremely di⁄cult to compute, which is
like computing the dynamics of protein folding from the extended chain to the
native structure. A perturbation to the network may be internal or external. An
internal perturbation is a genomic change such as a gene mutation or a molecular
change such as a protein modi¢cation, and an external perturbation is a change in
the environment of the cell.
Althoughwe do not yet have a proper way to compute dynamic responses of the

network to small perturbations, a general consideration can be made. Figure 7
illustrates the basic system architecture that results from the interactions with the
environment. The basic principle of the native structure formation of a globular
protein is that it consists of the conserved hydrophobic core to stabilize the globule
and the divergent hydrophilic surface to perform speci¢c functions. The protein
interaction network in the cell seems to have a similar dual architecture. It consists
of the conserved core such as metabolism for the basic maintenance of life and the
divergent surface such as transporters and receptors for interactions with the
environment. The subnetwork of genetic information processing may also have a
dual architecture: the conserved core of RNA polymerase and ribosome and the
divergent surface of transcription factors. In both cases the core is encoded by a
set of orthologous genes that are conserved among organisms, and the surface is
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FIG. 6. Network prediction protocol in KEGG.

FIG. 7. System architecture that results from interactions with the environment.



encoded by sets of paralogous genes that are dependent on each organism. Thus,
we expect that the genomic compositions of di¡erent types of genes in di¡erent
organisms re£ect the environments which they inhabit and also the stability of
the network against environmental perturbations. By comparative analysis of a
number of genomes, together with experimental data observing perturbation^
response relations such as by microarray gene expression pro¢les, we hope to
come up with a ‘conformational energy’ of the protein interaction network,
which would then be utilized to compute a perturbed network by an energy
minimization procedure.
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DISCUSSION

Subramaniam:Howwould one go aboutmaking comparisons ofmicroarray data
with yeast two-hybrid data, which have di¡erent methods of interaction distance
assessment and completely di¡erent metrics?
Kanehisa: At the moment we don’t include a numerical value. We just say

whether the edge is present or not. It is a kind of logical comparison. If we start
including the metrics we run into the problem of how we balance two di¡erent
graphs. We would need to normalize them.
Subramaniam: When you draw networks by analogy, using your graph-related

methods, if you havemore nodes adding on going from a pathway in one organism
to a pathway in another organism, it is not a problem because you can add more
nodes. But what if the state of the protein is di¡erent in the two pathways?We have
a good example with receptor tyrosine kinases: there are two di¡erent
phosphorylation states of this. In one case there are two tyrosines
phosphorylated, in another there are four. How do you deal with this distinction
in the state-dependent properties of the graph?
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Kanehisa: At the moment we don’t distinguish di¡erent states. We are satis¢ed
with just relating each node to the genomic information. As long as we have the
box coloured, whichmeans that the gene is present, that is su⁄cient�our interest
is to obtain a rough picture of the global network, not details of individual
pathways.
Reinhardt: Take the following scenario. I am trying to predict a protein^

protein interaction from expression pro¢les. I take two di¡erent genes, look
at them across a number of experiments and construct and compare the
vectors. I ¢nd that one of the genes has two biochemical roles, and is
shuttling between two compartments. Then what I would need, when I try
to speak in the language of sequence analysis, is a local alignment. Currently,
all we do in expression pro¢ling is to compute a global alignment. We are in
the Stone Age. Have you any idea of how to address this need for local
alignment? Given your concluding Pearson correlation coe⁄cient of 0.97, it
wouldn’t work if you have multifunctional proteins. How do you address
this?
Kanehisa: Again, just looking at expression data it is very di⁄cult to ¢nd the

right answer. But we have an additional set of data, including yeast two-hybrid
data. Integration of di¡erent types of data is the way we want to do the screening.
Togetherwith an additional data set we can ¢nd the local similaritywhenwe do the
graph comparison.
Crampin:Howdo you go about incorporating data other than just connectivity,

for example the strengths of interactions between components of a network?
Obviously, if you are describing atoms within a protein molecule, this is not of
such great importance. But if you are looking at networks at the signalling level,
the strengths of interactions may be crucial. Interestingly, there are some
modelling results suggesting that for some gene networks it is the topology and
not the strengths of connections that is responsible for the behaviour of the
network (von Dassow et al 2000).
Kanehisa:Wesee thisdatabase as the startingpointofgivingyouall candidates.By

using this database and then screening it is possible to identify subsets of candidates.
If youhaveadditional information, thismayhelp identify subsets amongthe results.
Then you can start incorporating kinetic parameters and so forth.
Crampin: As you go up in scale from purely molecular data, you also need to

include spatial information. Are there clear ways of doing this?
Kanehisa: This can be done. We showed the distinction of organism-speci¢c

pathways by colouring. The spatial information can be included by di¡erent
colouring or by drawing di¡erent diagrams.
Subramaniam: From your graphs can you de¢ne modules for pathways that can

then be used for modelling at higher levels? Is there an automatic emergence of the
natural de¢nition of ‘module’.
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Kanehisa:Yes.The reasonwhywe are able to ¢ndgraph features such as hubs and
cliques is that the graph can be viewed at a lower resolution.We are trying to ¢nd a
composite node or a module that can be used as a higher-level node in modelling.
Berridge: So if you put Ras into your model, would it predict the MAP kinase

pathway?
Kanehisa: Yes.
McCulloch:Would you be able to predict this without the reference information?
Kanehisa:No.
Subranamiam: With reference to your modules, can they be used for kinetic

modelling such as the sort of thing that Andrew McCulloch does? Or can they be
used as a central node for doing control-theory-level modelling?
Kanehisa: I’mnot sure. First, we need a kinetics scheme amongmodules,which is

not present in our graph. But maybe we can tell you which modules to consider.
Reinhardt: As an example of how this approach might be used, if you have a

protein and you don’t know what it does, you can ask this system to give it its
biological context. If you think about it, half of the genes in the genome are of
unknown function. In the future we will have whole genome A¡ymetrix-style
chips, and this will be a very important tool. We can go to this 50% of unknown
genes, run it across a series of tissue samples and then try to see which pathways
these genes are involved with and which proteins they are interacting with. This
would give us a rough idea of the biological context of these unknown genes.
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Bioinformatics of cellular signalling
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Abstract. The completion of the human genome sequencing provides a unique
opportunity to understand the complex functioning of cells in terms of myriad
biochemical pathways. Of special signi¢cance are pathways involved in cellular
signalling. Understanding how signal transduction occurs in cells is of paramount
importance to medicine and pharmacology. The major steps involved in deciphering
signalling pathways are: (a) identifying the molecules involved in signalling; (b) ¢guring
out who talks to whom, i.e. deciphering molecular interactions in a context speci¢c
manner; (c) obtaining the spatiotemporal location of the signalling events;
(d) reconstructing signalling modules and networks evoked in speci¢c response to
input; (e) correlating the signalling response to di¡erent cellular inputs; and
(f) deciphering cross-talk between signalling modules in response to single and multiple
inputs. High-throughput experimental investigations o¡er the promise of providing
data pertaining to the above steps. A major challenge, then, is the organization of this
data into knowledge in the form of hypothesis, models and context-speci¢c under-
standing. The Alliance for Cellular Signaling (AfCS) is a multi-institution,
multidisciplinary project and its primary objective is to utilize a multitude of high
throughput approaches to obtain context-speci¢c knowledge of cellular response to
input. It is anticipated that the AfCS experimental data in combination with curated
gene and protein annotations, available from public repositories, will serve as a basis
for reconstruction of signalling networks. It will then be possible to model the
networks mathematically to obtain quantitative measures of cellular response. In this
paper we describe some of the bioinformatics strategies employed in the AfCS.

2002 ‘In silico’ simulation of biological processes. Wiley, Chichester (Novartis Foundation
Symposium 247) p 104^118

The response of a mammalian cell to input is mediated by intracellular signalling
pathways. Such pathways have been the focus of extensive research ranging from
mechanistic biochemistry to pharmacology. The availability of the complete gen-
ome sequences portends the potential to provide a detailed parts list fromwhich all
signalling networks can eventually be constructed. However, the genome merely
provides the constitutive genes and carries no information on the on the exact state
of the protein that manifests function.
In order to map signalling networks in mammalian cells it is desirable to obtain

an inventory of the contents of the cell in a spatiotemporal context, such that the
presence and concentration of every species is mapped from cellular input to
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response. The ‘functional states’ of proteins and their interactions then can be
constituted into a network which can then serve as a model for computation and
further experimental investigations (Duan et al 2002).
The Alliance for Cellular Signaling (AfCS) (http://www.afcs.org), is a multi-

institutional, multi-investigator e¡ort aimed at parsing cellular response to input
in a context-dependent manner. The major objectives of this e¡ort are to carry out
extensivemeasurements of the parts list of the cell involved in cellular signalling to
answer the question of where, when and how proteins parse signals within cells
leading to a cellular response. The measurements include ligand screen experi-
ments that provide snapshots of the concentrations of the intracellular second
messengers, phosphorylated proteins and gene transcripts after the addition of
de¢ned ligand inputs to the cell. Further, protein interaction screens provide a
detailed list of interacting proteins and £uorescent microscopy provides the
location within the cell where speci¢c events occur. These measurements in
conjunction with phenotypic measurements such as movement of B cells in the
presence of chemoattractants and contractility in cardiac myocyte cells can
provide insights into the intracellular signalling framework.
The ligand screen experiments are expected to provide a measure of similarity

of cellular response to di¡erent inputs and as a consequence provide insights into
the signalling network. The data are publicly disseminated prior to analysis by
the AfCS laboratories through the AfCS website (http://www.afcs.org). Further
experiments include a variety of interaction screens including yeast two-hybrid
and co-immunoprecipitation. It is expected that the combined data from these
experiments will provide the input for reconstruction of the signalling network
Reconstruction of biochemical networks is a complex task. In metabolism, the

task is somewhat simpli¢ed because of the nature of the network, where each step
represents the enzymatic conversion of a substrate into a product (Michal 1999).
This is not the case in cellular signalling. The role of each protein in a signalling
network is to communicate the signal fromone node to the next, and to accomplish
this the protein has to be in a de¢ned signalling ‘state’. The state of a signalling
molecule is characterized by covalent modi¢cations of the native polypeptide, the
substrates/ligands bound to the protein, its state of association with other protein
partners, and its location in the cell. A signalling molecule may be a receptor, a
channel, an enzyme, or several other functionally de¢ned species, depending on
its state. In the process of parsing a signal, a molecule may undergo a transition
from one functional state to another. We de¢ne the Molecule Pages database
which will provide a catalogue of states of each signalling molecule, such that
one can begin to reconstruct signalling pathways with molecules in well-de¢ned
states functioning as nodes of a network. Interactions within and between
functional states of molecules, as well as transitions between functional states,
provide the building blocks for reconstruction of a signalling network. The
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AfCS experiments will test and validate such interactions and transitions in
speci¢c cells of interest.

TheMolecule Pages database

‘Molecule Pages’ are the core elements of a comprehensive, literature-derived
object-relational (Oracle) database that will capture qualitative and quantitative
information about a large number of signalling molecules and the interactions
between them. The Molecule Pages contain data from all relevant public
repositories and curated data from published literature entered by expert authors.
Authors will construct Molecule Pages by entry of information from the literature
into Web-based forms designed to standardize data input. The principal barrier
on constructing a database such as this lies in the complex vocabulary used by
biologists to de¢ne entities relating to a molecule. The database can only be
useful if it is founded on a structured vocabulary along with de¢ned relationships
between objects that constitute the database (Carlis&Maguire 2001). The building
of this ‘schema’ thus is the ¢rst step towards the reconstruction of signalling
networks. The schema for sequence and other annotation data obtained from
public data repositories is presented below. A detailed schema for the author-
curated data will be presented elsewhere.

Automated data for Molecule List andMolecule Pages

The automated data component of each Molecule Page comprises information
obtained from external database records related in some way to the speci¢c AfCS
protein. This includes SwissProt, GenBank, LocusLink, Pfam, PRINTS and
Interpro data as well as Blast analysis results from comparing against a non-
redundant set of sequence databases (created by the AfCS bioinformatics group).

Generation of Protein List sequences

Protein and nucleic numbers are read on a nightly basis from theAfCS Protein List
(by a Perl program), and they are used to scan the NCBI Fasta databases to ¢nd the
sequences. A tool that reports back information and any discrepancies (based on
the GI numbers that were assigned) is available for use by the Protein List editors.
Fasta ¢les for all AfCS proteins and nucleotides are generated, with coded headers
that allow us to tie each sequence to its AfCS ID. The Fasta ¢les as well as a text ¢le
containing a spreadsheet-like view of the AfCS Protein List can be downloaded by
the public from an anonymous ftp server. The Fasta protein ¢le is used as the basis
for further analysis.
AllAfCSdata are stored inOracle tables, keyed on the ProteinGI number. Links

are provided to NCBI. A database is used to store information to allow each
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sequence to be imported the BiologyWorkbench for further analysis. This process
is run about once a month, and consists of a set of PERL programs, which launch
the various jobs, parse the output, and load the parsed output into the Oracle
database.

Supporting databases forMolecule Pages

In order to support all the annotation, entire copies of each relevant database are
mirrored in £at ¢le form on the Alliance Information Management System. These
databases include Genbank, Refseq, SwissProt/TrEMBL/TrEMBLnew,
LocusLink, MGDB (Mouse Genome Database from Jackson Laboratories), PIR,
PRINTS, Pfam, InterPro, and the NCBI Blastable non-redundant protein data-
base ‘NCBI-NR’. These databases are updated every day, if changes in the parent
repositories are detected. Some of the databases (or sections of the databases) are
converted to a relational form and uploaded to the Oracle system to make the
analysis system more e⁄cient.
The NCBI-NR database contains all the translations from Genbank, PIR

sequences, and SwissProt sequences. It does not contain information on TrEMBL
sequences, however, and many public databases contain SwissProt/TrEMBL
references exclusively. This necessitated the construction of an in-house combined
non-redundant database, called ‘CNR’ for short.
In addition to database links, title information and the sequence, CNR database

contains date information (last update of the sequence) and NCBI taxonomy ID
where available. The database also contains the sequences SwissProt/TrEMBL
classify as splice variants, variants and con£icts (these are generally features within
those records, so a special parser provided by SwissProt is used to generate those
variant sequences). A Perl program constructs this database on a weekly basis, and
a combination of a Perl/DBI script and Oracle sqlldr is used to load the database
to the Alliance Information Management Oracle System.
The interface pages are logical groups of the automated data, and are subject to

rearrangement and reclassi¢cation. Making changes will have no e¡ect on the
underlying schema or the methods for obtaining the data. Examples of schema
for automated data, employed in the molecule page database, for annotating
GenBank, SwissProt, LocusLink and Motif and Domain data are shown in
Figs 1^3.

Design of the Signalling Database and Analysis System

TheMolecule Pages will serve as a component of the large SignallingDatabase and
Analysis System.This systemwould have the capability to compare automated and
experimental data to elucidate the network components and connectivities in a
context-dependent manner. Thus, we can use our biological knowledge of the
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putative signalling pathways and concomitant protein interactions to interrogate
large-scale experimental data. The analysis of the data can then serve to form a
re¢ned pathway hypothesis and, as a consequence, suggest new experiments.
The process of construction of pathway models requires the assembly of an

extended signalling database and analysis system. The main components of such a
system are a pathway graphical user interface (GUI) for representing both legacy
and reconstructed pathways, an underlying data structure that can parse the
objects in the GUI into database objects, a signalling pathway database (in
Oracle), analysis links between the signalling GUI and other databases, and links
to systems analysis and modelling tools.
The components of the Signalling Database and Analysis System include:

(a) Creation of an integrated signalling GUI and database system
(b) Design of a system for testing legacy pathways againstAfCS experimental data
(c) Reconstruction of signalling pathways
(d) Creation of tools for validation of pathway models

An overview of an integrated signalling database environment is presented in
Fig. 4.

Computer science strategies

Development of an integrated system of this nature requires the amalgamation of
four separate pieces, namely Java, Oracle, Enterprise Java Beans (EJB) and XML
(eXtensible Markup Language). We envision an application based on a three-tier
paradigm, consisting of the following components.

System architecture. The system is based on a three-tier architecture (Tsichritzis &
Klug 1978), as illustrated in the following diagram (Fig. 5). An Oracle 9i database
server is connected through a middle tier, Oracle application server (OAS) 9i
from a client web browser or a stand-alone application using Java swing. OAS
9i can reduce the number of database connections from client by combination
and then connect to the database server. Java Servlets, Java Server Page (JSP),
Java Beans and/or EJB are used to separate business logic and presentation for a
dynamic web interface. In the business logic middle tier, Java Beans and EJB are
used.With Object Oriented features and component-oriented programming, Java
API bene¢ts our interface development.
Communication between swing client and middle tier will be through EJB

components or via HTTP by talking to servlet/JSP. The latter allows easy
navigation through ¢rewalls, while the former allows the client to call the server
using intuitive method names, obviates the need for XML parsing, and automati-
cally gives remote access and load-balancing. XML (Quin 2001) will be used for
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building the pathway model to store locally and send back to the server. We will
explore SBML (Systems Biology Markup Language, (http://xml.coverpages.org/
sbml.html), and CellML (Cell Markup Language) (http://www.cellml.org/public/
speci¢cation/cellml __ speci¢cation.html) for this purpose. EJB/Java Beans middle tier
enables query of the relational database, creation of the XMLmodel, and export to
the client for display purposes.

Database structure. The Molecule Page database will serve as a core starting point
for the PathwayDatabase System.This databasewill communicatewith otherAfCS
experimental and annotation databases. The functional states of signalling
proteins created in the Molecule Page database will be used to build signalling
pathways. A digital signature corresponding to each functional state of a protein
has been established in the Molecule Pages to determine whether states described
in two distinct Molecule Pages are the same. This digital signature captures the
state of the protein in terms of its interactions, covalent modi¢cations, and
subcellular localizations.The digital signature enables direct comparisons across
nodes in two distinct pathways.Thus, if the digital signature of protein kinase A
in two di¡erent pathways is the same, then the kinase is in the same functional state
in the two pathways.

Middle tier. The middle tier will be composed of both EJB and regular Java
classes and is based on Enterprise Java technology. Enterprise Java technology
provides common services to the applications, ensuring that these applications
are reasonably portable and can be used with little modi¢cation on any applica-
tion server. The speci¢cations cover many areas including:

. HTTP communication: a simple interface is presented for the interrogation of
requests from web browsers and for the creation of the response.
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. HTMLformatting: Java Server Pages (JSP) provide a formatting-centricway of
creating web pages with dynamic content.

. Database communication: Java database connectivity (JDBC) is a standard
interface for talking to databases from application code. Many large database
vendors provide their own implementations of the JDBC speci¢cations.

. Database encapsulation: The EJB speci¢cation de¢nes a way to declare a
mapping between application code and database tables using an XML ¢le, as
well as additional services such as transaction control.

. Authentication and access control: many of the Enterprise Java speci¢cations
de¢ne standard mechanisms for authenticating users and restricting the
content that is available to di¡erent users.

. Naming services: the Java naming and directory interface (JNDI) speci¢cation
de¢nes a way for application code to consistently obtain references to remote
objects (i.e. those in another tier) based on names de¢ned in XML ¢les.

The motivation for the development of a middle tier is to isolate the client tier
from changes in the database by forcing communication through a consistent
interface featuring the objects that we know are present in our system, but for
which the schema still occasionally changes. The use of a middle tier also allows
both Java swing and web clients to e⁄ciently obtain information from the
database. The middle tier can take care of the ‘business logic’ and database access
on behalf of other clients. A typical task for the middle tier is that of intercepting
requests from client and querying the database for node list, reaction list,
localization information, and model meta data, and then returning instances of
Java classes that encapsulate the requested information in an object-oriented
manner. It can also return to the client an XML document that describes the
pathway model.

GUI applications: testing pathway models against AfCS and other data. The primary
objective of the GUI will be to extract and display visual representation of
pathways. The user will be able to make selection(s), changes, and extensions to
the representations in an interactive session. In addition to invoking existing
pathways and drawing/editing pathways, the user will be able to launch queries
and applications from the GUI. Some examples of interactive queries the user
can pose are:

. has the inserted node been seen in any canonical pathways in the legacy
databases?

. are the ensuing interactions already known based on protein interaction
databases or interaction screen data?

. is a module present in other pathways?

. are two states of a molecule similar and, if so, to what extent?
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Reconstruction of pathways

We use a combination of state-speci¢c information from the Molecule Pages and
AfCS experimental data to reconstruct pathways. The GUI will provide the
graphical objects for the visual assembly editing and scrutiny of the pathways.
Existing pathway models can also be invoked and edited to build models that are
consistentwith theAfCSdata.Weplan toprovide twostrategies for reconstruction.
In the ¢rst, the authorwill be able tomanually invoke speci¢c signalling proteins in
assigned states from theMolecule Pages and build appropriate connections. At any
intermediate stage, the user can utilize the tools provided to check/validate the
connections (as described previously). In the second strategy, the user will be able
to utilize the knowledge of pair-wise interactions in speci¢c contexts to auto-
matically build networks that can be further edited. For example, if a user wants to
map the interaction partners for a particular protein in a state dependent manner,
the user will need to select a protein and its state from the Molecule Page database
and make another selection to ¢nd the interacting partner. The protein and its
interacting partners will be displayed as nodes on the GUI. Each node can now
act as a further starting point, and the interaction diagram can be expanded
dynamically to build an entire pathway. The existing annotation about the each
node in the diagram, which represents a state of the protein, can be obtained by
clicking at the node. It will also be possible for the user to incorporate other data
that is not available in theMolecule Page database. The user will be able to save the
interaction diagram as an XML ¢le, which can be read back into the application or
stored in the Oracle database. Other tools available on theGUIwill enable the user
to compare signalling pathways in relationship to expression or proteomic pro¢les.

Validation of pathways

Weembed three combined approaches to validate pathways. In the ¢rst, we can test
our pathway models against AfCS experimental measurements. Ca2þ and cAMP
assays are expected to provide insight at a coarse-grained level into modules and
pathways invoked by a ligand input. The immunoblot assays will indicate some
of the proteins implicated in the pathway, as will the 2D phosphoprotein gels. The
interaction screens will yield information on interaction partners, while the
expression pro¢les are expected to show levels of similarity in response to
di¡erent inputs. A pathway model can thus be tested against the AfCS data. We
note that a more quantitative test of the pathway models will only be feasible
when detailed experiments where a system is perturbed to achieve loss or gain of
function (e.g. systematic RNAi experiments based on initial pathway models) are
carried out and intermediate activities and endpoints are measured.
In the second approach, the pathways can be validated against existing data

managed in AfCS databases. Comparative analysis of similar pathways across
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cells fromdi¡erent tissues and fromdi¡erent species has been proven to be valuable
for both testing the pathway models as well as providing insight into other
putative players that have a role in the pathway. The presence of all legacy
databases (sequence, interaction and pathways) will allow the user to query them
interactively from the interface page.
In the third approach, network analysis tools are employed to investigate the

role and sensitivity of each node in the network (Schilling et al 1999). We provide
tools for constructing a discrete state network model and perform sensitivity
analysis to test the importance and strength of each node and connection in the
network. To test the robustness and correctness of our model of the signalling
network, we will develop tools that will perturb individual nodes and their
interactions to understand the sensitivity of the network to perturbation. The
Signalling Database and Analysis System makes these tools accessible through
the GUI.

Acknowledgements

The Alliance for cellular signalling is a multi-institutional research endeavour spearheaded by
Dr Alfred Gilman at the University of Texas Southwest Medical Center. The participating
laboratories include Core Laboratories at UT Southwest Medical Center, University of
California San Francisco, Caltech, Stanford and University of California San Diego. The
Alliance is a multi-investigator e¡ort. The material presented here describes a collaborative
e¡ort across these laboratories. The AfCS is funded primarily through a Glue Grant by the
National Institute for General Medical Sciences. Other funding sources include other
Institutes at NIH and a number of pharmaceutical and biotechnology companies.

References

Duan XJ, Xenarios I, Eisenberg D 2002 Describing biological protein interactions in terms of
protein states and state transitions. THE LiveDIP DATABASE. Mol Cell Proteomics
1:104^116

Michal G (ed) 1999 Biochemical pathways. Wiley, New York
Carlis JV,Maguire JD2001Mastering datamodeling: a user-driven approach. Addison-Wesley,
Boston, MA

QuinL2001ExtensibleMarkupLanguage(XML).W3CArchitecture:http://www.w3.org/XML
Schilling CH, Schuster S, Palsson BO, Heinrich R 1999 Metabolic pathway analysis: basic
concepts and scienti¢c applications in the post-genomic era. Biotechnol Prog 15:296^303

Tsichritzis D,KlugA 1978TheANSI/X3/SPARCDBMS framework report of the study group
on dabatase management systems. Inf Syst 3:173^191

DISCUSSION

Winslow:What kinds of analytical procedures are you using, particularlywith the
gene expression data, to deduce network topology?
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Subramaniam: Currently we are using gene expression data to characterize the
state of each cell. At this point in time we are not doing pathway derivation from
this. Having said this, for characterizing the state of each cell, we are focusing very
speci¢cally on comparing across di¡erent inputs.We are taking 50 di¡erent inputs,
at ¢ve time points with three repetitions. This is 750 microarray data sets. The
analysis is done by using ANOVA, which cleans up the statistics, and then we
analyse the pro¢les. The third thing we do is to relate each of the things that
come out of this to our biological data. Our hope is that once we have a state-
dependent knowledge of the molecule tables, then we can go back and tighten
the pathways. Once we know the network, then we can ask the question about
how it is related back in the gene expression pro¢le database. One caveat is that
we are looking at G protein-coupled receptor (GPCR) events, which are very
rapid. During this short time-scale, gene expression changes don’t happen, so we
are the doing the same types of things with proteomic data, which come from 2D
gels and mass spectrometry.
McCulloch:What are the ¢ve time points?
Subramaniam:FormouseB cells, the time points are zero, 30minutes, 1 h, 2 h and

4 h. We haven’t started yet with the cardiac myocytes. These were chosen on the
basis of preliminary experiments.
Hinch: How do you deal with con£icting experimental results? What if two

people do the same experiment and get di¡erent results?
Subramaniam: It depends on whether these are Alliance experiments or

outside experiments. For the Alliance experiments we have a number of repeats.
We want to make sure that we have some level of con¢dence in everything that we
do. We have experimental protocols for every experiment included. Even given
this, there will be variation in gene expression data. In this case we take into
account an average index, and this is where ANOVA is important. With outside
data it is di¡erent. If we are doing state-dependent tables, for example, we have two
di¡erent authors. Don’t forget that many times these experimental output data are
gathered under di¡erent conditions.We list all the di¡erent conditions. If for some
reason for the same conditions there are two di¡erent results, then we cite them
both.
Ashburner: I have a question about the functional states. If there is a protein that

has ¢ve di¡erent states at which phosphorylation might occur, then theoretically
we have 25 functional states. Do you compute all of these?
Subramaniam: This is where the author-created interactions come into the

picture. We ask the author to de¢ne all functional states for which data are
available, both qualitative and quantitative. If they are not available, we don’t
worry about the potential functional states. For example, if tryosine kinases have
16 phosphorylation sites, we are not trying to de¢ne 216 possibilities.We recognize
just the phsophorylation states that have been characterized.
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Paterson: I was interested in how you come up with the perturbations to this
system. You are using mouse B cells, and there are lots of interesting signalling
events taking place in B cells that are not G protein-related, such as cytokines,
Fas^Fas ligand interactions, di¡erentiation and isotype switching. Are you
looking at perturbations through cytokine and other receptors?
Subramaniam: GPCRs are our ¢rst line of investigation, but we are going to

explore all signalling pathways that are coupled to GPCRs in one way or another.
This includes cytokines and growth factor signalling.
Paterson: What is the process the Alliance uses for interacting with others in

terms of conversations about what sort perturbations actually occur?
Subramaniam: That is an important question. This is why we have a steering

committee. We don’t want to work for a company, but we would like to solicit
input from various pharmaceutical companies as to what they ¢nd interesting and
exciting. We also have a bulletin board on the Alliance information management
system. We encourage people to communicate with the Alliance at whatever of
level of detail they choose. This is a community project.
Reinhardt: If many people submit data to your system, how do you deal with the

problem of controlling the vocabulary?
Subramaniam: This is one thing we are not socialistic about. We are not going to

allow everyone to submit data to this system: it’s not that type of database. Where
the public input comes in is to alter the shape of molecular pages. The authorship
will be curated, peer reviewed and so forth. In terms of the Alliance data, we will
post this but it doesn’tmeanwewon’t cite references to external datawhere they are
relevant.
Reinhardt: Something you said early on in your talk caught my attention: while

the community today mostly relies on relational databases in biology, it is
appreciated and understood that this concept is not good enough to model the
complexity of biological data. You said you are moving towards object relational
databases. What are the object-oriented features of this database?
Subramaniam: This is a very important question. The original article is more

relational than object relational. We have entered into a collaboration with Oracle
and have decided thatwe are going to gowith an object-relational database. In fact,
if you look at our ontology, everything is an object-driven ontology de¢nition.
Oracle is now coming up with 10i, which will be a completely object-relational
database. We explored four di¡erent database formats before we arrived at this,
including msSQL, postgresSQL (which I like a lot, but we don’t have enough
people available to do programming for this) and sybase. It is our ¢rm conclusion,
based on hard evidence, that the only thing that has the features of scalability,
£exibility and the potential for middle-tier interactions is Oracle.
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General discussion II

Standards of communication

Hunter: I am going to talk about the development of CellML, which is a
project that originally grew out of our frustrations in dealing with translating
models published in papers into a computer program. We decided that the
XML (eXtensible Markup Language) developed by the W3C (World Wide
Web Consortium) was the appropriate web-browser compliant format for
encapsulating the models in electronic form. In conjunction with Physiome
Sciences Inc., Poul Nielsen of the Auckland Bioengineering group has led the
development of an XML standard for cell models called CellML. It uses
MathML, the W3C approved standard for describing mathematical equations
on the web and a number of other standards for handling units and bibliographic
information, etc. A website (www.cellML.org) has been established as a public
domain repository for information about CellML and it contains a rapidly
expanding database of models which can be downloaded free of charge and
with no restrictions on use. These are currently mainly electrophysiological
models, signal transduction pathway models and metabolic models, but the
CellML standard is designed to handle all types of models. A similar e¡ort is
underway at Caltech for SBML (Systems Biology Markup Language) and the
two groups are keeping closely in touch. A number of software packages are
being developed which can now, or will soon be able to, read CellML ¢les.
Authoring tools are available from Physiome Sciences (free for academic use).
Our hope is that the academic journals dealing with cell biology will eventually
require models to be submitted as CellML ¢les. This will make it easier for
referees to test and verify the models and for scientists to access and use the
published models.
Loew: I think the people at Caltech are going to link SBML to Genesis. If the

two merge, this would be one of the consequences.
Winslow: There aren’t many people�whether they are modellers or

biologists�who can write XML applications. You referred to the development
of these authoring tools: do you see these being publicly available as open
source for the entire community to use to create the kind of CellML that you
showed here?
Hunter: One source of these has been Jeremy Levin; he may want to comment

on this.
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Levin: Part of what we will be doing is actually making some of these tools
available publicly and openly.
Winslow: On the £ip side, once you have these descriptions of models that are

available publicly, what are you plans for converting them to code? How will the
community use those descriptions to generate code?
Hunter:There are several ways this can currently be done. For example, you read

MathML into Mathematica or MathCAD. These are standard programs that can
churn out code from MathML. The cell editor from Physiome Sciences can read
CellML ¢les or create new ones. These can then be exported in various languages.
InAucklandwe are alsoworking on exactly this issue for our own codes, so thatwe
can just take CellML ¢les and generate the code that we can then run in the bigger
continuum models.
McCulloch: One of the features of XML is that it is extensible. Some of the

models that you cited are actually extensions of previous models. They are often
not simple extensions, but people have taken a previous model and made some
speci¢c modi¢cations, such as changing some of the parameters and adding a
channel. Then the next model came along and took the previous one as a subset.
Have you tried an example of actually composing a higher-order model from the
lower-order models?
Hunter: It is very tempting to do this. One reason I wanted to illustrate the

historical development of electrophysiological models, from Denis Noble’s early
ones to the latest versions, was to use this almost as a teaching tool, demonstrating
the development of models of increasing sophistication. Each one has been based
on a published paper. The CellML ¢le is deliberately intended to re£ect the model
as published in the paper. CellML certainly has the concept of reusability of com-
ponents where you could do exactly as you are saying. The initial intent has just
been to get these models on the website corresponding to the published versions.
Loew:The big problem there would be vocabulary.
Paterson: In my experience, one of the ¢rst things you want to do when you

share a model is that there may be a variety of behaviours that you want to point
out. One question I have for the CellML standard is the following: part of what I
would want to give to someone with the model would be various parametric
con¢gurations of that model. So I can say that this is a con¢guration that mimics
a particular experiment, or a con¢guration where you see a particular set of
phenomena that come out of the model. I may have many of these to show
how the model behaves in di¡erent regimes. Is there a facility within CellML
to capture di¡erent parametric con¢gurations of the basic cellular equations,
and then perhaps to annotate to end-users, looking for the behaviour that comes
out under these circumstances?
Hunter: In a way this is more to do with the database issue. Once you have a

CellML version of a published model, you can then run that model with di¡erent
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initial conditions and parameters. Some of the Physiome modelling software
will allow you to do this and archive those particular parameter sets for those
runs in the database. This is a little bit separate from CellML itself.
Paterson: I guess that is the key question. I am not sure whether what I am asking

is purely in the domain of the environment, or whether CellML itself as a standard
captures some of those. It seems that the answer is that it is more the environment.
Levin: CellML facilitates at least the two topics you are talking about here. For

example, one is that by using our software we can automatically sweep through
model parameters and store them. This is a di¡erent issue to CellML itself, but it
is related to the ability to use it easily. Perhaps more importantly, because of the
common format CellML actually allows us to merge di¡erent types of models
together. For example, we can combine an electrophysiological model and a
signalling model. This is made feasible only by the use of CellML.
Hinch: In CellML is there a way to link back to the original experimental data?
Hunter: Yes.

Semantics and intercommunicability

Boissel: I have prepared a short list of words for which there is uncertainty
regarding their meaning, both in the ¢eld and�perhaps more importantly�
outside our community (Fig. 1 [Boissel]). We want to communicate with people
outside the ¢eld, in particular to convince them that the modelling approach is
important in biology. I propose to go systematically through this list discussing
the proper meaning we should adopt for each of these terms.
First, what are the purposes of a model? It is either descriptive, explanatory or

predictive. These three functions are worth considering.
Levin: I would also say that a model is integrative. Its job is also to integrate

data. If this ¢ts under the heading of ‘descriptive’, then I agree with you, but I’m
not sure that this is what you are encompassing.
Boissel: So you are proposing we add integrative as a fourth function?
Paterson: I would think that integrative would cut across all three: it is almost

orthogonal.
Subramaniam: I don’t understand the di¡erence between ‘descriptive’ and

‘explanatory’. Can you give an example of the di¡erence between the two?
Boissel:Wemay decide to model something just for the sake of putting together

the available knowledge, tomake this knowledgemore accessible. This is a descrip-
tion. In contrast, if you are modelling in order to explain something, you are
doing the model in order to sort out what the important components are, in order
to explain the outcome of interest. This adds something to a purely descriptive
purpose.
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Ashburner: Surely the description of Hodgkin^Huxley within CellML is a
descriptive model of that model.
Noble: It is interesting that you have taken the Hodgkin^Huxley model as an

example. The title of that paper is very interesting. It isn’t, ‘A model of a nerve
impulse’. It does not even go on to say, ‘A theory of a nerve impulse’. It says,
‘A description of ionic currents, and their application to conduction and
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excitation in nerve’. This title has been ingrained in my head since 1952! This
raises an important question: what is explanatory, like beauty, is in the eye of
the beholder. Is a description already an explanation? Obviously Andrew Huxley
and Alan Hodgkin were operating in a biological environment in 1952 that did
not accept the idea that there was a theory. Certainly, the Journal of Physiology
would not have accepted that you publish a theory� I know from hard
experience! I also think that what is explanatory to me or you, Jean-Pierre
Boissel, is not explanatory to Philip Maini. What he regards as an explanation
is something he can get his mathematical mind around, be it graphically or in
terms of seeing an insight in certain equations. I would suggest that we will all
have our di¡erent ways of seeing something as being satisfactorily explanatory.
In relation to communicating to the outside world, it would be very likely that
the cross-section of what we regard as explanatory in this room will not be
the cross-section of what is regarded as explanatory in the outside world.
McCulloch: You are really talking about the relationship between observation

and theory. In the case of ‘descriptive’, you mean a mathematical formulation
that merely parameterizes observation, without attempting to gain any further
insight from it. The explanatory goes beyond merely parameterizing observation
to be able to compute or predict results that have already been observed inde-
pendently. Predictive modelling is applying that same sort of process to come up
with a result that has not yet been observed, but in principle could be.
Asbhurner: Consider a model of the universe at the time of the big bang. This

model has to be all three: descriptive, explanatory and predictive.
Boissel: I believe that it is di⁄cult to delineate a clear boundary between these

di¡erent classes of models. Nonetheless, when you start to do your modelling
process, you have an objective inmind, and it will probably primarily be concerned
with one of these.
Cassman: I would like to give another dichotomy. The models that I have seen

tend to fall into two categories. One is archival. Essentially, all they do is represent
existing information in some kind of a form that is easily visible and that can then
be tracedback to some fundamental pieceof information.These arepurely archival,
but they can’t be used inmany cases for any kind of predictive approaches. There is
no embedded information that can be extracted in a way that allows us to
manipulate them: they are static, and could just as easily be on a page as in a
computer. The big di¡erence between that and models that can be manipulated is
that is someway or other the latter are predictive, even if they are only predictive of
something that people already know.
Paterson: At least for me, what I have found in working with mainstream

biologists is what I would mark as a distinct cutting line between descriptive and
explanatory models, in that statistical models are descriptive. They are telling us
that something happened; they aremaking no attempt to saywhy it happened. The
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minute we start modelling the underlying dynamic processes that can give rise to
these data, then we have stepped across the line into explanation, and thenwhether
or not it is explanation or prediction is a question of our state of information. For
most biologists, ‘model’ means statistics.
Boissel: There seems to be a certain consensus here, so we can move on to model

components. I am not sure how important this is. A model is composed of com-
ponents, which might be biochemical or functional entities. One question is what
we should call the various pieces we put in the model between the entities.
Should we call them component pieces? Perhaps this isn’t important.
Noble: It is important: theway inwhichwe structure our languages and software

is in part an attempt to respect the ontology, what we think are the components.
The dilemma is that the world is not divided up in a way that is given. We have to
divide the world up and see what the entities are.
Subramaniam: We need to de¢ne the elements or components of the model

before we can go beyond that point. Ontology comes into the picture here as
well, because we need to de¢ne the elements fairly precisely, so that any two
people who are using the model will have the same understanding of the com-
ponents and their relationships.
Boissel:What term do you prefer: ‘component’ or ‘element’?
Subramaniam:They are interchangeable in this case. Themain point is that when

we de¢ne the elements we are not de¢ning the relationships between the elements.
It is in the ontology that we de¢ne the relationships with the elements.
Boissel: I think we are dealing with two types of ontologies. There is one

ontology for the models, and one for the data used to design and parameterize
the model.
Subramaniam:With reference tomodels, there is an issue of representationwhich

becomes integrally tied inwith the ontology to some extent.With reference to data,
sometimes there are representation issues, but many times these can be extraneous,
a middle layer.Whenwe talk aboutmodels, the representation becomes integral to
the model itself. This is an issue we need to be aware with when dealing with
ontologies for models.
Boissel: The next issue is modularity and modules. I propose two di¡erent

de¢nitions. The ¢rst is breaking down the problem into autonomous and homo-
geneous sub problems. These are the modules. An extension to this de¢nition is
the answer to the question ‘is life a combination of modules’?
Subramaniam: That is far too philosophical! However, I’d like to focus on a

question that is raised by Raimond Winslow (Winslow et al 2002, this volume)
and Les Loew’s (Loew 2002, this volume) papers: how do we de¢ne signalling
modules and pathway modules?
Boissel: It is important to be clear about what we mean when we say that a par-

ticular model has ‘modules’. For me the de¢nition of ‘module’ is an operational
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one: it is only de¢ned as the process of modelling progresses, rather than by an a
priori de¢nition.
Noble: Combination, of course, is a kind of logic. Another way of putting your

question is one that I hope that we will return to in the concluding discussion:
could there be a ‘theoretical biology’ in the grand sense? This has to do with the
question, is there a logic of life? I once edited a book called ‘The logic of life’
(Boyd & Noble 1993). The main criticism I received of this book is that the title
was wrong. It should have been ‘The logics of life’, on the grounds that what has
happened is that evolution has found various ways of making combinations that
happen to work. This means, of course, that they get selected for. Since this is a
haphazard a¡air, therewon’t be one logic. I think it is an open question, but it is one
perhaps we should return to later when we discuss whether a theoretical biology
exists.
Boissel: Are you satis¢ed with the vague de¢nition of modules we have so far?
Subramaniam: I don’t like the terms ‘autonomous’ and ‘homogeneous’.Wedon’t

need these for de¢ningmodules. You can have heterogeneous or non-autonomous
modules.
Loew: Ideally, you would want them to be autonomous because this makes the

world much easier to deal with, but practically they are not. The real question is
how do we deal with modules that are not autonomous?
Ashburner: There could be dependencies between modules.
McCulloch: Also, there are di¡erent types of modules. There are structural

modules such as the cells and subcellular compartments, and there are functional
modules or subsystems.
Cassman: You can think of them as autonomous in the sense of getting

modules that have inputs and outputs that are not dependent on any other
external interactions. The architecture that you de¢ne de¢nes the output based
on a speci¢c input, without regard to any other component. There are always
going to be some feedback processes or other interactions that could modulate
this, but it can be de¢ned as an integral system that doesn’t require other kinds
of components.
Ashburner: But autonomy is not a necessary condition for modularity.
Cassman: It depends on what you mean by ‘autonomy’.
Ashburner: Lack of dependencies.
Cassman: I think it is lack of dependency for something. It doesn’t have to be lack

of dependency for everything. For example, bacterial chemotaxis is a modular
component that is certainly not removed from the rest of the organism, but
within that context of interactions you can understand the output without regard
to any other involvement.
Subramaniam: It all depends on how you de¢ne it. The MAP kinase cascade is a

module, but it is not autonomous, because it can go from one system to another.
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Boissel: Tying down a de¢nition for ‘integration’ is likely to be di⁄cult. I have
two de¢nitions of this term that stem from what we heard yesterday. The ¢rst is
incorporating components through quantitative relationships. The second is
combining all available knowledge and evidence. Which is best?
Noble:There’s a problemwith the secondone, in that allmodels are partial repre-

sentations of reality. This is necessarily so, because a complete representation of
reality is a clone of reality.
Paterson:You are making a very important distinction: there is integration from

the perspective of the pieces that make the whole, and there is integration from the
perspective of looking at available knowledge, data and evidence. The data or
evidence may relate to phenomena that come from a component in isolation, and
phenomena that come from the integrated whole. This is describing integration
from both the perspective of the components that make up the whole, and then
the behaviours and phenomena generated by the components versus those
generated by the integrated whole. Having both pieces is useful.
Boissel: So would you keep the two de¢nitions?
Paterson: Yes.
Noble: I likemy own integrators! But this £ippant remark is only to indicate that

there is a problem with the term ‘integration’. I tend to distinguish between levels
of modelling, although I take the point made earlier that things can be wrapped
together. Nevertheless, in biological work one has to be data rich at some fairly
low level of modelling. I see the middle level, before we get to functional inter-
pretation and explanation, as being the integrative level. What you describe as
incorporating components with quantitative relations, I would describe as com-
puting the functionality that emerges through those components talking to each
other. If I model a pacemaker mechanism, for example, my descriptive data-rich
level consists of all the equations for the transporters that are thought to be
contributing current to that particular phenomenon. The integrative level will
involve connecting those together in the model so that you can literally integrate
the equations. What you are also doing is integrating through functionality, and
what you hope will emerge out of that will be the oscillation that is the pacemaker
phenomenon. Incidentally, when I ¢rst asked to use a computer way back in 1960,
and I had convinced the bearded computer scientists that I wasn’t going to waste
time on their precious machine, the ¢rst question they asked was one of puzzle-
ment at the fact that the 1962 Noble equations lacked an oscillator. If I had been
sophisticated, rather than a young graduate student, I would have said that this is a
phenomenon that is going to emerge by integration.Of course, what integration is
doing is to bring out functionality. This will emerge, as presumably it did in
evolution, through those interactions.
Boissel: Could we say then that integration is the process of moving from a

purely descriptive state to an explanatory one?
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Subramaniam: Not necessarily. You can have emergent properties as a conse-
quence of integration.
Noble: And you may even be puzzled as to why. This is not yet an explanation.
Boissel: The next term is ‘robustness’. Yesterday, again, I heard two di¡erent

de¢nitions. First, insensitivity to parameter values; second, insensitivity to uncer-
tainty. I like the second but not the ¢rst.
Noble: In some cases you would want sensitivity. No Hodgkin^Huxley analysis

of a nerve impulsewould be correctwithout it being the case that at a certain critical
point the whole thing takes o¡.Wewill need to have sensitivity to some parameter
values.
Boissel: For me, insensitivity to parameter values means that the parameters are

useless in the model.
Cassman: In those cases (at least, the fairly limited number where this seems to be

true) it is the architecture of the system that determines the output and not the
speci¢c parameter values. It seems likely this is only true for certain characteristic
phenotypic outcomes. In some cases it exists, in others it doesn’t.
Hinch: Perhaps a better way of saying this is insensitivity to ill-de¢ned parameter

values. In some models there are parameters that are not well de¢ned, which is the
case in a lot of signalling networks. In contrast, in a lot of electrophysiology they
are well de¢ned and then the model doesn’t have to be robust to a well de¢ned
parameter.
Loew: Rather than uncertainty, a better concept for our discussion might be

variability. That is, because of di¡erences in the environment and natural
variability. We are often dealing with a small number of molecules. There is there-
fore a certain amount of uncertainty or variability that is built into biology. If a
biological system is going to work reliably, it has to be insensitive to this
variability.
Boissel: That is di¡erent from uncertainty, so we should add variability here.
Paterson: It is the di¡erence between robustness of a prediction versus robustness

of a system design. Robustness of a system design would be insensitivity to
variability. Robustness of a prediction, where you are trying to make a prediction
based on a model with incomplete data is more the uncertainty issue.
Maini: It all dependswhat youmean by parameter. Parameter can also refer to the

topology and networking of the system, or to boundary conditions. There is a link
between the parameter values and the uncertainty. If your model only worked if a
certain parameter was 4.6, biologically you could never be certain that this
parameter was 4.6. It might be 4.61. In this case you would say that this was not a
goodmodel.
Boissel: There is another issue regarding uncertainty, which is the strength of

evidence of the data that have been used to parameterize the model. This is a
di⁄cult issue.
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Abstract. We describe methodologies for: (a) mapping ventricular activation using high-
density epicardial electrode arrays; (b)measuring andmodelling ventricular geometry and
¢bre orientation at high spatial resolution using di¡usion tensor magnetic resonance
imaging (DTMRI); and (c) simulating electrical conduction; using comprehensive data
sets collected from individual canine hearts. We demonstrate that computational models
based on these experimental data sets yield reasonably accurate reproduction of measured
epicardial activation patterns. We believe this ability to electrically map and model
individual hearts will lead to enhanced understanding of the relationship between
anatomical structure, and electrical conduction in the cardiac ventricles.

2002 ‘In silico’ simulation of biological processes. Wiley, Chichester (Novartis Foundation
Symposium 247) p 129^143

Cardiac electrophysiology is a ¢eld with a rich history of integrative modelling. A
critical milestone for the ¢eld was the development of the ¢rst biophysically based
cell model describing interactions between voltage-gated membrane currents,
pumps and exchangers, and intracellular calcium (Ca2+) cycling processes
(DiFrancesco & Noble 1985), and the subsequent elaboration of this model to
describe the cardiac ventricular myocyte action potential (Noble et al 1991, Luo
& Rudy 1994). The contributions of these and other models to understanding of
myocyte function have been considerable, and are due in large part to a rich
interplay between experiment and modelling� an interplay in which
experiments inform modelling, and modelling suggests new experiments.
Modelling of cardiac ventricular conduction has to a large extent lacked this

interplay. While it is now possible to measure electrical activation of the
epicardium at relatively high spatial resolution, the di⁄culty of measuring the
geometry and ¢bre structure of hearts which have been electrically mapped has
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limited our ability to relate ventricular structure to conduction via quantitative
models. We believe there are four major tasks that must be accomplished if we
are to understand this structure^function relationship. First, we must identify an
appropriate experimental preparation�one which a¡ords the opportunity to
study e¡ects of remodelling of ventricular geometry and ¢bre structure on
ventricular conduction. Second, we must develop rapid, accurate methods for
measuring both electrical conduction, ventricular geometry and ¢bre structure in
the same heart. Third, we must develop mathematical approaches for identifying
statistically signi¢cant di¡erences in geometry and ¢bre structure between hearts.
Fourth, once identi¢ed, these di¡erences in geometry and ¢bre structure must be
related to di¡erences in conduction properties.
We are pursuing these goals by means of coordinated experimental and

modelling studies of electrical conduction in normal canine heart, and canine
hearts in which failure is induced using the tachycardia pacing-induced
procedure (Williams et al 1994). In the following sections, we describe the ways
in which we: (a) map ventricular activation using high-density epicardial
electrode arrays; (b) measure and model ventricular geometry and ¢bre
orientation at high spatial resolution using di¡usion tensor magnetic resonance
imaging (DTMRI); and (c) construct computational models of the imaged
hearts; and (d) compare simulated conduction properties with those measured in
the same heart.

Mapping of epicardial conduction in normal and failing canine heart

In each of the three normal and three failing canine hearts studied to date, we
have, prior to imaging, performed electrical mapping studies in which
epicardial conduction in response to various current stimuli are measured using
multi-electrode epicardial socks consisting of a nylon mesh with 256 electrodes
and electrode spacing of �5mm sewn around its surface. Bipolar epicardial
twisted-pair pacing electrodes are sewn onto the right atrium (RA) and the
right ventricular (RV) free-wall. Four to 10 glass beads ¢lled with gadolinium-
DTPA (�5mM) are attached to the sock as localization markers, and responses to
di¡erent pacing protocols are recorded. Figure 1A shows an example of
measurement of activation time (colour bar, in ms) measured in response to an
RV stimulus pulse applied at the epicardial locations marked in red. After all
electrical recordings are obtained, the animal is euthanatized with a bolus
of potassium chloride, and the heart is then scanned with high-resolution
T1-weighted imaging in order to locate the gadolinium-DTPA ¢lled beads in
scanner coordinates. The heart is then excised, sock electrode locations are
determined using a 3D digitizer (MicroScribe 3DLX), and the heart is formalin-
¢xed in preparation for DTMRI.
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Measuring the ¢bre structure of the cardiac ventricles using DTMRI

DTMRI is based on the principle that proton di¡usion in the presence of a
magnetic ¢eld gradient causes signal attenuation, and that measurement of this
attenuation in several di¡erent directions can be used to estimate a di¡usion
tensor at each image voxel (Skejskal 1965, Basser et al 1994). Several studies have
now con¢rmed that the principle eigenvector of the di¡usion tensor is locally
aligned with the long-axis of cardiac ¢bres (Hsu et al 1998, Scollan et al 1998,
Holmes et al 2000).
Use of DTMRI for reconstruction of cardiac ¢bre orientation provides several

advantages over traditional histological methods. First, DTMRI yields estimates
of the absolute orientation of cardiac ¢bres, whereas histological methods yield
estimates of only ¢bre inclination angle. Second, DTMRI performed using
formalin-¢xed tissue: (a) yields high resolution images of the cardiac boundaries,
thus enabling precise reconstruction of ventricular geometry using image
segmentation software; and (b) eliminates £ow artefacts present in perfused
heart, enabling longer imaging times, increased signal-to-noise (SNR) ratio and
improved spatial resolution. Third, DTMRI provides estimates of ¢bre
orientation at greater than one order of magnitude more points than possible
with histological methods. Fourth, reconstruction time is greatly reduced (�60 h
versus weeks to months) relative to that for histological methods.
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FIG.1. (A)Electrical activation times (indicatedbygrey scale) in response to rightRVpacingas
recorded using electrode arrays. Data was obtained from a normal canine heart that was
subsequently reconstructed using DTMRI. Activation times are displayed on the epicardial
surface of a ¢nite-element model ¢t to the DTMRI reconstruction data. Fibre orientation on the
epicardial surface, as ¢t to the DTMRI data by the FEM model, is shown by the short line
segments. (B)Activation timespredictedusingacomputationalmodelof theheartmapped in (A).



DTMRIdataacquisitionandanalysis forventricular reconstructionhasbeensemi-
automated. Once image data are acquired, software written in the MatLab
programming language is used to estimate epicardial and endocardial boundaries in
each short-axis section of the image volume using either the method of region
growing or the method of parametric active contours (Scollan et al 2000). Di¡usion
tensoreigenvaluesandeigenvectorsarecomputedfromtheDTMRIdata setsat those
imagevoxels corresponding tomyocardialpoints, and¢breorientationateach image
voxel is computed as the primary eigenvector of the di¡usion tensor.
Representative results from imaging of one normal and one failing heart are

shown in Fig. 2. Figures 2A & C are short-axis basal sections taken at
approximately the same level in normal (2A) and failing (2C) canine hearts. These
twoplots show regional anisotropy according to the indicated colour code. Figures
2B &D show the angle of the primary eigenvector relative to the plane of section
(inclination angle), according to the indicated colour code, for the same sections as
in Figs 2A&C. Inspection of these data show: (a) the failing heart (HF: panels C&
D) is dilated relative to the normal heart (N: panelsA&B); (b) left ventricular (LV)
wall thinning (average LV wall thickness over three hearts is 17.5�2.9mm in N,
and 12.9�2.8mm in HF); (c) no change in RV wall thickness (average RV wall
thickness is 6.1�1.6mm in N, and 6.3�2.1mm in HF); (d) increased septal wall
thickness HF versus N (average septal wall thickness is 14.7�1.2mm N, and
19.7�2.1mmHF); (e) increased septal anisotropy in HF versus N (average septal
thickness is 0.71�0.15 N, and 0.82�0.15 HF); and (f) changes in the transmural
distribution of septal ¢bre orientation in HF versus N (contrast panels B & D,
particularly near the junction of the septum and RV).

Finite-element modelling of cardiac ventricular anatomy

Structure of the cardiac ventricles is modelled using ¢nite-element modelling
(FEM) methods developed by Nielsen et al (1991). The geometry of the heart to
be modelled is described initially using a prede¢ned mesh with six circumferential
elements and four axial elements. Elements use a cubicHermite interpolation in the
transmural coordinate (l), and bilinear interpolation in the longitudinal (m) and
circumferential (y) coordinates. Voxels in the 3D DTMR images identi¢ed as
being on the epicardial and endocardial surfaces by the semi-automated
contouring algorithms described above are used to deform this initial FEM
template. Deformation of the initial mesh is performed to minimize an objective
function F(n).

F(n) ¼
XD

d¼1

gdkv(ed)� vdk
2 þ

ð

<2

far2nþ b(r2n)2g@e, (1)
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where n is a vector of mesh nodal values, vd are the surface voxel data, v(ed) are the
projections of the surface voxel data on the mesh, and a and b are user de¢ned
constants. This objective function consists of two terms. The ¢rst describes
distance between each surface image voxel (vd) and its projection onto the mesh
v(ed). The second, known as the weighted Sobelov norm, limits stretching (¢rst
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FIG. 2. Fibre anisotropy A(x), computed as:

AðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½l1(x)� l2(x)�

2 þ ½l1(x)� l3(x)�
2 þ ½l2(x)� l3(x)�

2

l1(x)2 þ l2(x)2 þ l3(x)2

s

where lI(x) are di¡usion tensor eigenvectors at voxel x, in normal (A) and failing (C) canine
heart. Fibre inclination angle computed using DTMRI in normal (B) and failing (D) heart.
Panels (A) and (B) are the same normal, and panels (C) and (D) the same failing heart.



derivative terms) and the bending (second derivative terms) of the surface. The
parameters a and b control the degree of deformation of each element. The
weighted Sobelov norm is particularly useful in cases where there is an uneven
distribution of surface voxels across the elements. A linear least squares
algorithm is used to minimize this objective function..
After the geometric mesh is ¢tted to DTMRI data, the ¢bre ¢eld is de¢ned for

the model. Principle eigenvectors lying within the boundaries of the mesh
computed above are transformed into the local geometric coordinates of the
model using the following transformation.

VG ¼ ½F G H�T ½R�VS (2)

where R is a rotationmatrix that transforms a vector from scanner coordinates (VS)
into the FEM model coordinates VG and F, G, H are orthogonal geometric unit
vectors computed from the ventricular geometry as described by LeGrice et al
(1997). Once the ¢bre vectors are represented in geometric coordinates, DTMRI
inclination and imbrication angles (a and f) are ¢t using a bilinear interpolation in
the local e1 and e2 coordinates, and a cubic Hermite interpolation in the e3
coordinate. A graphical user interface for ¢tting FEMs to both the ventricular
surfaces and ¢bre ¢eld data has been implemented using the MatLab
programming language. Figure 3 shows FEM ¢ts to the epicardial/endocardial
surfaces of a reconstructed normal canine heart (Fig. 1A is also an FEM). FEM
¢ts to the ¢bre orientation data are shown on these surfaces as short line segments.
We have developed relational database and data analysis software named

HeartScan to facilitate analysis of cardiac structural and electrical data sets
obtained from populations of hearts. HeartScan enables users to pose queries (in
standard query language, or SQL) on a wide range of cardiac data sets by means
of a graphical user interface. These data sets include: (a) DTMRI imaging data;
(b) FEMs derived from DTMRI data; (c) electrical mapping data obtained using
epicardial electrode arrays; (d) model simulation data. Query results are either:
(a) displayed on a 3D graphical representation of the heart being analysed; or
(b) piped to data processing scripts, the results of which are then displayed
visually. Queries may be posed by direct entry of an SQL command into the
Query Window (Fig. 4B). This query is executed, and the set of points satisfying
this condition are displayed on a wire frame model of the heart being studied
(Fig. 4C). Queries operating on a particular region of the heart may also be
entered by graphically selecting that region (Fig. 4D). SQL commands
specifying the coordinates of the selected voxels are then automatically entered
into the Query Window. One example of such a prede¢ned operation is shown in
Fig. 4E, which shows computation of transmural inclination angle for the region
enclosed by the box in Fig. 4D.
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Statistical comparison of anatomical di¡erences between hearts

In order to assess anatomical di¡erences between hearts and their e¡ects on
ventricular conduction, we must ¢rst understand how to bring di¡erent hearts
into registration, and how to identify statistically signi¢cant local and global
di¡erences in cardiac structure over ensembles of hearts. Approaches for
addressing these issues are being developed in the emerging ¢eld of
computational anatomy� the discipline of computing transformations f
between di¡erent anatomical con¢gurations (Grenander & Miller 1998). The
transformations f satisfy Eulerian and Lagrangian equations of mechanics so as
to generate consistent movement of anatomical coordinates. They are
constrained to be one-to-one and di¡erentiable with a di¡erentiable inverse, so
that connected sets in the template remain connected in the target, surfaces are
transformed as surfaces, and the global relationships between structures are
maintained. Transformations can include: (a) translation, rotation and expansion/
contraction; (b) large deformation landmark transformations; and (c) high
dimensional large deformation image matching transformations. Because of the
di⁄culty in identifying reliable ventricular landmarks as a guide for designing
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transformations, we use landmark-free transformations that are compositions of
rigid and linear motions (a), and that rely on intrinsic image properties such as
intensity and connectedness of points (c). These transformations are applied as
maps of increasingly higher dimension, generated one after another through
composition (Matejic 1997).
The transformations f 2 H are de¢ned on the space of homeomorphisms

constructed from the vector ¢eld f : (x1,x2,x3)3 7! (f1(x),f2(x),f3(x))2 O, with
inverse f�1 2 H. These transformations evolve in time t 2 ½0,1� to minimize a
penalty function, and are controlled by the velocity ¢eld v( � , � ). The £ow is
given by the solution to the transport equations

df(x,t)
dt
¼ v(f(x,t),t), f(x,0) ¼ x,

@f�1(x,t)
@t

¼�rt
xf
�1(x,t)v(x,t),

f�1(x,0)¼ x (3)

where

rt
x ¼

�
@

@x1
,
@

@x2
,
@

@x3

�
(4)
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FIG. 4. ‘Screenshot’ of the windows by which the user interacts withHeartScan. (A) window
for viewing data tables; (B) SQL query window; (C) window for interactive 3D display of heart
data; (D) pull-down window for user selection of heart regions to query. (E) statistics display
window.



The metric distance between two anatomical con¢gurations I0 and I1 is given by
the geodesic length r(I0,I1) between them (Trouve 1998, Miller & Younes 2002)

r(I0,I1) ¼ inf
v
kLvk2 (5)

where L is the Cauchy^Navier operator.
Since all the imagery being matched are observed with noise, they are modelled

as conditional Gaussian random ¢elds. Take I0 as the template. The target imagery
I1 is therefore a conditionally Gaussian random ¢eld with mean ¢eld given by the
template composed with the unknown invertible map I0 � f, and ¢xed variance.
The problem is to estimate the velocity ¢eld which matches I0 to the observable
image I1, subject to constraints, with minimum penalty. The optimal matching of
I0 to observation I1 is given by the df̂f/dt ¼ v̂v(f̂f) from Eq. (3) which satis¢es the
extremum problem

v̂v( ) ¼ arg inf
v
kLvk2 þ kI0 � f

�1(1)� I1k
2 (6)

The cost is chosen as

kI0 � f̂f
�1(1)� I1k

2 ¼

ð

½0,1�3
jI0(f̂f

�1(x,1))� I1(x)j
2dx (7)

TheEuler^Lagrange equations for the extremumproblem for themapping (Miller
& Younes 2002) are then given by:

(I1(x)� I0(f(x,1)))rI0(f(x,1))(rf)
�1(x,1) ¼ Lv(x,1)

@Lv(x,t)
@t

þ v:Lv(x,t)þ r:vL(x,t)þ v:rLv(x,t)þ Lvrv ¼ 0
(8)

A gradient-based computational algorithm is used to solve the Euler^Lagrange
equations.
Figure 5 show preliminary results on computation of transformations f which

align a three-dimensional template (failing) and target (normal) cardiac ventricular
geometry. In each ¢gure, the left column shows a transverse section from the
template (top) and target (bottom). The top panel of the middle column shows
the result of applying the forward mapping f to the template in order to map
points in this template to points in the target. The bottom panel shows the result
of applying the inverse mapping f to the target to take this target back into the
template. The right column shows the displacements associated with the
transformations f and f�1. These transformations were computed without using
any anatomical landmarks to align the images. Note the dilation (indicating by
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spreading of the lines between grid points) and compression associated with the
forward and inverse maps, respectively. Also note that in both ¢gures, the
template image is similar to the inverse transformed target image (template� f�1

(target)) and the target image is similar to the forward transformed template (target
� f (template)).
We have not yet reconstructed su⁄ciently large populations of normal and

failing hearts to perform meaningful statistical analyses of anatomic variation.
However, the theoretical approach to this problem will be that applied
previously to the analysis of hippocampal shape variation, in which anatomical
shapes are characterized as Gaussian ¢elds indexed over the manifolds on which
the vector ¢elds are de¢ned (Amit & Picconi 1991, Joshi et al 1997, Miller et al
1997, Grenander &Miller 1998).

Three-dimensional modelling of electrical conduction

in the cardiac ventricles

Electrical conduction in the ventricles is modelled using the monodomain
equation:

@v(x,t)
@t
¼

1
Cm

�
� Iion(x,t)�Iapp(x,t)þ

1
b

�
k

kþ 1

�
r� (Mi(x)rv(x,t))

�
on H (9)
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FIG. 5. Transformation of a normal heart (template) transverse section to a failing heart
(target). The left column shows the template (A) and target (B), the middle column shows the
result of applying the forwardmappingf to the template (C), and the inversemappingf�1 to the
target (D); the right column shows the grids deformed by the forward mapping f (E) and the
inverse mapping f�1 (F).



where Iion(x,t) is membrane ionic current as de¢ned in the caninemyocytemodel of
Winslow et al (1999). The conductivity tensors at eachmyocardial point x are then
de¢ned as

Mi(x) ¼ P(x)Gi(x)P
T(x), (10)

where Gi(x) is a diagonal matrix with elements s1,i, s2,i and s3,i, (s1,i is
longitudinal, and s2,i and s3,i are transverse intracellular conductivities), and
P(x) is the transformation matrix from local to scanner coordinates at each point
x (Winslow et al 2000, 2001). When working from DTMRI data, the columns of
P(x) are set equal to the eigenvectors of the di¡usion tensor estimated at point x
(Winslow et al 2000, 2001). Coupling conductances are set as in previous models
(Henriquez 1993, Henriquez et al 1996), and re¢ned to yield measured epicardial
conduction velocities. Presently, coupling conductances are assumed to be
transversely isotropic. The reaction^di¡usion monodomain equation (Eqs. 9^10)
are solved using methods described previously (Yung 2000).
Figure 1 shows the results of applying these methods to the analysis of

conduction in a normal canine heart. As described previously, Fig. 1A shows
activation time (greyscale, in ms) measured in response to an RV stimulus pulse
applied at the epicardial locations marked by the dots. Following electrical
mapping, this heart was excised, imaged using DTMRI, and an FEM was then ¢t
to the resulting geometry and ¢bre orientation data sets. Figure 1A shows
activation time displayed on this FEM. The stimulus wave front can be seen to
follow the orientation of the epicardial ¢bres, which is indicated by the dark line
segments in Fig. 1A. Fig. 1B shows results of simulating conduction using a
computational model of the very same heart that was mapped electrically in Fig.
1A. Results can be seen to agree qualitatively, however model conduction is more
rapid in the region where the RV and LV join.

Discussion

In this paper, we have presented a methodology for the electrical mapping,
structural modelling and analysis, and electrical modelling of the cardiac
ventricles. This methodology is based on the use of high density electrode arrays
to measure epicardial conduction properties in response to well de¢ned stimuli,
DTMRI to map ventricular geometry and ¢bre organization, and computational
modelling to predict electrical activation in response to the same stimuli used
experimentally, all in the same heart. Using these methods, we can now test the
hypothesis that the three-dimensional models of the cardiac ventricles can
quantitatively reproduce conduction patterns measured in the same hearts that
are modelled. While these initial studies have been limited to comparison of
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epicardial conduction properties, use of plunge and endocardial basket catheter
electrodes will ultimately enable more extensive comparisons of 3D conduction
properties between model and experiment. It will also be possible to use MR
spin-tagging procedures to collect data on mechanical motion in the same hearts
that are electrically mapped and modelled. While there are certainly additional
modi¢cations that must be made to the computational models (such as addition
of a Purkinje network), we believe the ability to collect such comprehensive data
sets in each heart studied will lead to enhanced understanding of the relationship
between anatomical structure, electrical conduction, and mechanics of the cardiac
ventricles.
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DISCUSSION

Hunter: Presumably, if you are looking beyond 20^30ms you will be
reactivating Purkinje networks. Is there any way you can get some assessment
from these hearts of the di¡erent topology of a Purkinje network? If you are
using the mapping data to do this comparison and you try to match the models
to it, you are going to be in trouble if you can’t deal with the role of Purkinjes
involved in that.
Winslow: I amnot surewhether there is a preciseway.We can change conduction

velocity in the entire endocardial surface. This is a crude approximation for a
Purkinje network. Or perhaps we could use one of the models that have mapped
the conduction network in a particular heart and try to use this. But I don’t know
any way of speci¢cally marking the Purkinje cells so we could see that network in
the same heart that we are imaging.
McCulloch: There are established histological methods.
Hunter: The same question would apply to the sheet structure, whether under

those heart failure conditions you would see substantial changes in the second
eigenvector. Is there any way you could get information on that?
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Winslow: We have this hypothesis that the second and third eigenvectors are
within sheet and are the surface normal to a sheet. We came to this hypothesis by
taking data in rabbit and plotting these angles of the surface normal. We looked at
those angles compared with your histologically reconstructed canine data.
Qualitatively, they looked similar. We then passed a data set to Andrew
McCulloch. Unfortunately it was one of our very ¢rst imaging data sets and was
not of high quality. Andrew actually performed a reconstruction of sheet
orientation in regions of this data set and the correspondence was partial. The
di⁄culty for us in testing this hypothesis about what these second and third
eigenvectors are telling us is our inability to perform these very complicated
sheet reconstructions.
McCulloch: It turns out to bemuchmore di⁄cult to do in the rabbit than the dog.

It might be better to use the new high-resolution canine data. I have a related
question. You described a surprising change in the apparent ¢bre orientation in
the septum in the failing dog hearts. Could this be due to something other than a
change in the principal axis of the myocytes, and instead due to some of what the
cardiology literature refers to as slippage? This is presumably some sort of shearing
between adjacent sheets, as opposed to a genuine change in the vectorial
orientation of the myocyte. Or do you think that this really does represent a
reorientation of myo¢brils and myocytes in that area?
Winslow: I would think that a change in sheet structure would be more re£ected

in properties of the second and third eigenvectors, if our hypothesis were correct.
We haven’t paid any attention to these data yet; we have been focused on the
information that we think relates to ¢bre structure. It is a very clear change not
so much in the magnitude of di¡usion in the direction of the principle
eigenvector, but a massive change in the direction of that vector itself. I would
think this would have to correspond to a reorientation of the ¢bres themselves.
That reorientation may have something to do with the way in which that heart
was paced into failure, with the location of the pacing electrode or the particular
pacing rate and parameters. It would probably be worthwhile looking at a di¡erent
model of heart failure in the dog to test this hypothesis, and also to look at the
human data to see whether this feature is still present.
McCulloch:Arelated question: could it be connected to a remodelling of vascular

or microvascular architecture?
Winslow: I don’t think it is. The reason why is related to the reason why we

switched from imaging in a perfused preparation to a ¢xed preparation. There
were two reasons for changing from a perfused preparation. First, this
preparation limited our imaging time: after 10^12 h imaging these hearts would
frequently go into contraction and their geometry would change. Second, Ed
Hsu and colleagues looked at the e¡ect of turning o¡ the perfusate to these hearts
that were being di¡usion imaged. They found that when they represented the
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di¡usion tensor as being formed by a linear combination of two separate di¡usion
tensors, the second component of the di¡usion tensor went away when the
perfusate was shut o¡. There could therefore have been a perfusion artefact in the
hearts that we had originally imaged using this preparation. The fact that this
imaging artefact goes away argues that the contribution of £ow in vessels is
minimal. This contribution can be seen when you look at the raw di¡usion
imaging data on the surface of the heart. You can see regions of isotropic
di¡usion that seem to agree with the positioning of coronary arteries on the
surface of the heart. If there is an e¡ect, it is probably to corrupt our estimate of
¢bre angle when we encounter a blood vessel, because it is di¡usion in that region
that is tending to be isotropic.
Noble: It seems tome that the analysis of cardiac arrhythmia is almost a paradigm

example of a disease state in which, without integrating all the way from gene
through to whole organ physiology, we can’t really say that we have a grip on
what it is we are trying to understand. There is simply no stage at which we can
say there can be amajor gap. It leaves one feeling how audacious it was thatwe have
tried over the last 40 years to develop anti-arrhythmic drugs, without all of this
knowledge. Of course, it is not too surprising that we haven’t been that
successful. The dream must be that eventually one can lead the way back into
doing this in a much more rational way.

MODELS OF THE HEART 143



General discussion III

Modelling Ca2þ signalling

Noble: I’d like now to switch to general discussion, and focus on one issue�
modelling Ca2þ signalling, with a view to addressing a general problem, which is
the way in which we can interface di¡erent levels or types of modelling. I’d like to
ask Raimond Winslow to lead o¡ on this.
Winslow: The kinds of models of cardiac myocytes that we and others have

constructed so far do a very good job of describing the electrical behaviour of the
cellmembrane, andare e¡ective atdescribing long-termCa2þ cyclingprocesses that
occur within the myocyte. However, they do a terrible job of describing accurately
the detailed properties of Ca2þ release from the sarcoplasmic reticulum (SR) and
what drives this release. It is surprising that the myocyte models have been able to
do so well in their ability to reproduce and even predict data, given that they don’t
do a good job describing mechanisms of Ca2þ release from SR. After all, this is a
fundamental property of the myocyte: the amount of Ca2þ released from the SR is
graded with ‘trigger’ Ca2þ entering the cell normally, through L-type Ca2þ

channels. This is important for regulating the force of contraction in the heart.
These models can’t do that at all, yet they have predictive power. We really
couldn’t understand how these models work so well, given that they have failed
dismally to reproduce this fundamental property of the myocyte.
I would like to describe some results showing the importance of this so-called

mechanism of graded release. This speaks to the issue of Ca2þ cycling in general,
and also the issue of integrating across levels of modelling. What I will present is a
stochastic model of Ca2þ release that needs to be understood and solved con-
currently with a di¡erential equation model of the behaviour of the whole cell.
Here we have a problem of combining di¡erent model types together and sim-
plifying the stochastic component of the model to make it manageable at the
level of the whole cell and for whole-heart simulations.
Thekeyobservation regardingCa2þ release fromtheSR is that this release causes

inactivation of L-type Ca2þ channels. This is not the only thing that inactivates
these channels: they are also voltage inactivated. If the membrane is depolarized,
L-type Ca2þ channels open, but then they go into an inactivated non-conducting
state. If Ca2þ is released from the SR, this Ca2þ can bind to receptors on the inner
pore of the channel and also inactivate them. New data are emerging from Dave
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Yue’s lab suggesting that the balance between Ca2þ inactivation and voltage
inactivation is radically di¡erent from what was suspected. All existing models of
the myocyte describe voltage-dependent inactivation of this channel as being the
primary mode. We believe that is wrong, and that it is in fact Ca2þ inactivation.
Our experimental evidence for this comes from recording Ca2þ currents in
cultured rat myocytes, and comparing situations in which either Ca2þ or Ba2þ is
the charge carrier. Ba2þ is used because it knocks out the inactivation of the
L-type Ca2þ channel. Ryanodine is also used in these cultured cells to empty the
SR of Ca2þ , so this is not available to be released by the SR. In the absence of this
rapid, strong Ca2þ inactivation there is a very weak and slow inactivation com-
ponent that presumably re£ects the voltage-dependent properties of inactivation.
In an even better experiment, David Yue used the observation that calmodulin
appears to be tethered to the L-type Ca2þ channel, and it is this that binds the
Ca2þ and this complex then interacts with the channel to inactivate it. He has
fabricated a mutant calmodulin, which is no longer capable of binding Ca2þ , and
therefore this is a mechanism for ablating the Ca2þ -dependent inactivation. In this
case, there is a very slow, long inactivation process that presumably re£ects this
small amount of voltage inactivation.
Linz & Meyer (1998) have further data that argue for this new idea about a

shift in balance between Ca2þ inactivation and voltage inactivation. They did an
AP clamp recording in isolated cardiac myocytes. They showed that there are lots
of channels that aren’t voltage inactivated, but there aren’t many channels that
are not Ca2þ inactivated. This indicates that Ca2þ inactivation in these native
myocytes (as opposed to cultured ones) might be primarily controlled by Ca2þ .
Current models di¡er from this signi¢cantly. The Jafri^Rice guinea-pig

ventricular myocyte model (Jafri et al 1998) is wrong. Our estimate of the not-
voltage-inactivated fraction is very low, and the not-Ca2þ -inactivated fraction
is way too high. This general conclusion holds for all of these other models.
The trouble is, when we take these models and shift the balance between
voltage and Ca2þ inactivation, we ¢nd that they all become unstable. The action
potentials alternate between long and short values.We think these models become
unstable because they are what Micheal Stern referred to as ‘common pool’
models. All the Ca2þ in the SR of the cell is being represented as being in one
compartment; all the Ca2þ in the diadic space is lumped into one diadic space;
and all the L-type Ca2þ channels empty into that one diadic space. These models
are not capable of reproducing graded release. The problem here is that when
you build in these new physiological data, the models don’t work. They can’t
even predict action potentials.
What we have done is to formulate a new model based on the principle of

local control, as investigated by many physiologists and theoreticians. In this
model of local control we have individual jSR compartments that are
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communicating with an L-type Ca2þ channel. There is an individual L-type Ca2þ

channel that is in communication with a small number (four-to-eight) Ca2þ -
sensing Ca2þ release channels. While Ca2þ release at the level of this small
functional unit may be all or none, it is the ensemble averaging of these units
working in an independent fashion throughout the cell that provides the
property of a graded release. For any depolarization of the membrane a certain
fraction of these channels will open, and for those that open there is regenerative
all-or-none release from the functional unit, but it is the averaging of this
behaviour that re£ects the probability of opening the L-type Ca2þ channels. To
simulate a model like this, we have done the following. First, to simulate a cell,
we have to integrate the system of ordinary di¡erential equations (ODEs)
de¢ning the cell model over a time step DT. Within each time step we do a
Monte Carlo simulation of the gating of this system over some large number of
similar systems that we model in an individual myocyte. It is a large calculation
that couples Monte Carlo simulation within an ODE integration. The system
behaves beautifully and in accordance with experimental data. When we use this
local control model as a way of simulating Ca2þ release, we can now obtain stable
action potentials. We now have a system that is accurately describing the detailed
mechanisms of Ca2þ release, and thesemore global properties of their release, yet it
is a very complicated simulation model: one that is not really even practical for
simulating single cells (we did this on a parallel machine), let alone a myocardial
model. There are issues here about the nature of Ca2þ release and uptake, and even
Ca2þ signalling in general in themyocyte that we can discuss. And I think there are
issues about integration between di¡erent levels of models. What we would now
like to do with this system is to ¢nd a way to retain the detailed biophysical
information about the subsystems, while using a mathematical approach to
describe the average behaviour that would be consistent with the principles of
local control of Ca2þ release. We need to do this to build models of the cardiac
myocyte that accurately describe that release. The reason we want to retain a level
of biophysical detail is that we know in heart failure that there are changes in the
di¡erent b subunit compositions of L-type Ca2þ channels that can change their
gating kinetics. We believe in heart failure that there may be changes in the
microstructure of this diadic space. It is not known for sure, but this hypothesis
is out there. There may be changes in the phosphorylation state of the ryanodine
receptor. All of these things can be addressed with this kind of model. We need
a way to move to the more integrative cell model in an e⁄cient fashion.
Noble: If you were to remove the Ca2þ -dependent inactivation of the Ca2þ

channel from the models, you would predict that you would get a massive
prolongation of the action potential. I think this is a beautiful case where
modelling is clearly leading the way, because quite a lot of the data on this don’t
show that. It is an interesting point. If you look at Boyett’s work on BAPTA-AM,
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it doesn’t show it (Janvier et al 1997). Nor does Jamie Vandenberg’s work on
whole hearts (personal communication); again, there is virtually no change in
action potential duration. I think we know the answer: a few years ago Jean-Yves
Le Guennec and I infused a massive amount of bu¡er into the cell through the
pipette: 30mM (Le Guennec & Noble 1994). The action potential was doubled
in length. I take it that you would agree that the problem lies in the fact that the
experiments, although removing the Ca2þ transient enough to remove the
contraction, are not actually stopping this process.
Winslow: That’s right. It has been terribly di⁄cult to control what is happening

in that little compartment. I didn’t point out that the di¡erence between these
channels is 12 nm, so this is a tiny subspace. Dave Yue has done a truly elegant
experiment in which he has expressed a mutant CAM in cultured myocytes and
looked at action potential duration.
Noble: I don’t think one could have unravelled this without modelling. In fact,

given the nature of the experiments that have been done with the Ca2þ bu¡ers, I
think these would have led one in the wrong direction.
Winslow: What Dave observes in this calmodulin mutant myocyte is a ventri-

cular action potential with a duration of about 3 s, as opposed to the 200^300ms
that is normal for the guinea-pig.
Subramaniam: The reason why we are not able to model the SR release of Ca2þ

e⁄ciently is that the time constants for these processes are very di¡erent. This is
why a local model is able to do that in a more accurate manner. This goes back to
the de¢nition of ‘module’. We need to specify the time constants in de¢ning
modules appropriately.
Winslow: Even if we de¢ne the module in that way, there are 50 000 of these

modules in the myocyte. What we need here are mathematical approaches that
will enable us to step from the microscopic stochastic behaviour to macroscopic
behaviour. I don’t know what those approaches are yet, but we desperately need
them for the myocyte.
Hinch: This is something that I have been working on. If you look at the results

of an individual functional unit, there aremany short scale stochastic events. If you
look at the overall result, e¡ectively it is £ipping between two states. We are
working on ways to reduce this very complicated system into a simpli¢ed system
that has a long time constant. You can go from having millions of Monte Carlo
events to having just a few.
Winslow: That is exactly the kind of thing that is necessary. But I would say

that whatever technique is used to simplify the system, this technique needs to
incorporate the level of biophysical detail that is in the detailed functional unit
model. This is so you can change something in this model, such as the properties
of the L-type Ca2þ channel, reconstruct this simpli¢cation and test its conse-
quences on integration.
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Hinch:The simpli¢cation is a mathematical derivation.We end upwith di¡erent
transition coe⁄cients but they are functions of what happened before. It is
possible.
Shimizu: I am quite interested in this; it is exactly the type of thing that we deal

with in bacterial chemotaxis. We do stochastic modelling of localized membrane
receptors. You say that you can reduce the model and retain the function. Surely
you must lose some information?
Hinch: The information lost is about what happens at the submillisecond level.

The interesting thing that happens is that it switches on at some point and then
stays on for a couple of hundred milliseconds. What is happening at the sub-
millisecond level is not interesting when you are studying processes at the 100ms
timescale. What you want to know is does it last for 100ms or 200ms?
Shimizu: That is ¢ne if you know exactly which features you need to retain to

obtain the correct outcome. Obviously inmost cases, it is not feasible to have a full
stochastic model running in parallel with an ODE system in real time. But what
this sort of combined modelling allows people to do is to highlight which
experiments need to be done to identify the essential events that occur at the
individual molecule level. Many new experimental techniques are becoming
available for this type of analysis. Once you have characterized a system at the
stochastic individual molecule level, then you can go on to reduce the problem.
Berridge:Many of the things I was going to say have been covered by Raimond

Winslow and others. I am not a modeller, but it does seem from hearing what
people have been saying that we really need to integrate information between
di¡erent molecular, structural and physiological elements. While attention has
focused on the molecular and structural aspects, the physiological tool kit is also
something we need to concentrate on. In fact, the answer to the problem of
trying to describe the paradox of graded responses in cardiac cells emerged from
a study of the physiological tool kit: breaking the Ca2þ signal down into its
elementary events led to the realization that individual sparks were associated
with the individual SR regions that functioned as autonomous units. These
functioned as all-or-none units, and depending on how many are recruited there
is a graded response. Such studies on elementary events have been extended to a
study of arrhythmias in atrial cells. The structural tool kit is particularly interesting
in this cell with regard to the distribution of two key intracellular channels: the
ryanodine receptors, and the inositol-1,4,5-trisphosphate (InsP3) receptors that
are particularly strongly expressed in the atrial cell. Staining with anti-ryanodine
receptor antibodies lights up striations, which are the individual SR units and these
are the modules described earlier. On the other hand, the type 2 InsP3 receptor is
all in the periphery: there is no trace of it on the internal SR. This has led to the
idea that there might be a completely novel form of EC coupling in these cardiac
cells. The conventional coupling mechanism involves depolarization to activate
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the L-type channels to produce the Ca2þ sparklet that then ¢res ryanodine
receptors to produce a Ca2þ spark. This spark is then ampli¢ed by a process of
Ca2þ -induced Ca2þ release and this causes a globalization of the signal. Since
endothelin, which is associated with cardiac hypertrophy and heart failure, is
known to generate InsP3, it is possible that InsP3 can activate its receptors in the
junctional zone to produce trigger Ca2þ , which is then able to activate the same
kind of ampli¢cation units that are used conventionally. Under this condition,
therefore, InsP3 will be acting when there is no depolarization, and essentially will
set up an arrhythmia. This example emphasizes the importance of developing a
holistic view when trying to understand the Ca2þ signalling system.
Noble: I am not a smooth muscle expert, but I believe it’s the case that Ca2þ

oscillations in some forms of smooth muscle also implicate InsP3.
Berridge: In the interstitial cells of Cajal, which drive the rhythm in smooth

muscle, there seems to be a pacemaker system very similar to the one that has been
described for the sinoatrial node in the heart, in that there is an interplay between
the intercellular stores and the plasma membrane. Activation of the InsP3 receptor
plays a role in setting up the instability during the pacemaker phase.
Hunter: It occurs to me that there’s another sense in which the need for inte-

gration is illustrated by the example you have given. The electrotonic coupling
between the atrial cell and its adjacent cell will have a big in£uence on whether
this local arrhythmia is able to propagate.
Berridge: Yes, the individual cells must be considered as part of a connected

network. What one would imagine is that this kind of spontaneous activity
would be distributed throughout the atrial system. If these events coincide in a
local area, then the individual e¡ects would sum to drive the depolarization
su⁄ciently to trigger an extra beat.
McCulloch: This phenomenon has been seen in multicellular ventricular pre-

parations by ter Keurs and colleagues. They propagate at about 200 ms^1.
Berridge: I think the atrial waves are a little slower. It all depends on the sensi-

tivity of the regenerative components. The closer they are the faster the wave goes.
Paterson:Whenever I come to these sorts of meetings I am always impressed by

the quality of the modelling, the research that is going into this, and the ability to
collect real time data for these kinds of phenomena. A lot of these issues are very
unique to this domain. There is a lot of modelling that is perhaps less advanced or
has less of a history in other ¢elds such as metabolism and immunology. Some of
the broad conclusions in terms of what the key problems and solutions are can be
very di¡erent. Everything we are talking about here is valid, but it is somewhat
coloured by the fact that there is a particular class of problems being worked on
by most of the people in this room.
Berridge: I’m not sure that’s right: althoughwework on cardiac cells, we are very

interested in T cell activation and how the Ca2þ signal is presented there.
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Paterson: I didn’t say it was irrelevant, but there are certainly issues that I’m
aware of in modelling aspects of the immune system that aren’t on anyone’s radar
screens here.
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The Virtual Cell project
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Abstract. The Virtual Cell is a modular computational framework that permits
construction of models, application of numerical solvers to perform simulations, and
analysis of simulation results. A key feature of the Virtual Cell is that it permits the
incorporation of realistic experimental geometries within full 3D spatial models. An
intuitive JAVA interface allows access via a web browser and includes options for
database access, geometry de¢nition (including directly from microscope images),
speci¢cation of compartment topology, species de¢nition and assignment, chemical
reaction input and computational mesh. The system is designed for cell biologists to aid
both the interpretation and the planning of experiments. It also contains sophisticated
modelling tools that are appropriate for the needs of mathematical biologists. Thus,
communication between these traditionally separate scienti¢c communities can be
facilitated. This paper will describe the status of the project and will survey several
applications to cell biological problems.

2002 ‘In silico’ simulation of biological processes. Wiley, Chichester (Novartis Foundation
Symposium 247) p 151^161

The accelerating progress in cataloguing the critical molecular and structural
elements responsible for cell function has led to the hope that cell biological
processes can be analysed and understood in terms of the interactions of these
components. One prerequisite for such analyses is the acquisition and organization
of quantitative data on these interactions. These would include biochemical
reaction rates, electrophysiological data on membrane transport dynamics, di¡u-
sion of cellular species within cellular compartments, and the mechanical pro-
perties of cellular structures. But a second prerequisite is the e¡ective synthesis of
these often heterogeneous data by constructing models that can then predict the
overall behaviour of the biological system. If the model correctly predicts the
biological endpoint, one can hypothesize that the elements within the model are
su⁄cient; furthermore, it is often possible to discern which of these elements are
the most critical. This can then be tested by further experiments designed to
speci¢cally perturb or remove these elements (e.g. gene knockouts). Perhaps more
useful, however, is when themodel is unable to predict the observed biology. This
requires that the elements of the model are either incorrect or incomplete. Analysis
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of such faulty models can directly motivate the discovery, via new experiments, of
previously unknown critical biochemical or structural features required for the
cellular process under investigation.
Despite these clear bene¢ts of the use of modelling as an adjunct to experiment,

the di⁄culties associated with the formulation of mathematical models and the
generation of simulations from them has impeded the adoption of this disciplined
andquantitative approach to research in cell biology.Because biologists rarely have
su⁄cient training in the mathematics and physics required to build quantitative
models, modelling has been largely the purview of theoreticians who have the
appropriate training but little experience in the laboratory. This disconnection to
the laboratory has limited the impact of mathematical modelling in cell biology
and, in some quarters, has even given modelling a poor reputation. The Virtual
Cell project aims to address this problem by providing a computational modelling
framework that is accessible to cell biologists. It does this by abstracting and
automating the mathematical and physical operations involved in constructing
models and generating simulations from them. At the same time, the Virtual Cell
provides a mathematical interface that allows theoreticians to examine and elabo-
rate models through purely mathematical formulations. This dual interface has the
additional bene¢t of encouraging communication and collaboration between the
experimental and modelling communities. This paper will describe the current
implementation of the Virtual Cell and brie£y review some of the cell biological
problems to which it has been applied. The reader is referred to other recent
reviews for broader coverage of the ¢eld of computational cell biology (Loew &
Scha¡ 2001, Slepchenko et al 2002) and to our website (http://www.nrcam.uchc.edu)
for a user guide and tutorial.

The problem domain: reaction/di¡usion in arbitrary geometries

At its most fundamental level, a cell biological process can be described as the
consequence of a complex series of chemical transformations. To understand the
process, the relevant molecules have to be identi¢ed and their time-varying con-
centrations and spatial distributions have to be determined. A model, at this
molecular level, chooses all the presumed chemical species, assigns them initial
concentrations and spatial distributions and connects them with appropriate
kinetic expressions. A simulation that predicts the spatiotemporal behaviour of
this system has to solve a class of problems known as reaction/di¡usion equations.
The mathematical problem is summarized by the equations:

Fi ¼ �DirCi � zimiCirF, mi ¼
DiF
RT

(1)
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kþ j !i Ri ¼
d ½i�
dt
¼ k1½k�½ j� � k�1½i� (2)

@Ci

@t
¼ �divFi þ Ri (3)

The ¢rst line is the familiar Nernst^Planck equation that describes the £ux, Fi,
of a molecule i, driven by its concentration gradient, rCi, and, if it has an ionic
charge zi, the electric ¢eld in the system rF. The di¡usion coe⁄cient,Di, and the
mobility mi, are the proportionality constants for these driving forces. The
second line portrays a typical reaction that produces molecule i (while consuming
j and k). The mass action ordinary di¡erential equation (ODE) for the rate of
change of i, Ri, depends on the concentrations of the reactants and products. In
general, Ri can depend on the concentrations of any of the molecules in the sys-
tem and may have a more complex form than the mass action expression shown
here. The third line combines the £uxes and reactions into a system of partial
di¡erential equations (PDEs) that must be integrated to simulate the behaviour
of the molecular species.
The fact that the Virtual Cell is designed to handle any reaction system in any

geometry, precludes the formulation of a general analytical solution for the
problem. There are two generic approaches to numerical solutions� stochastic
and continuous. The continuous approach provides a deterministic description
in terms of average species concentration. This approach is e¡ective and accurate
so long as the number ofmolecules in a system is large, such that thermal stochastic
£uctuations around average values can be ignored. We have found that the ¢nite
volume method (Patankar 1980) for discretization of a system of PDEs is espe-
cially well suited for our problem domain� that is reaction/di¡usion equations
in arbitrary geometries (Scha¡ et al 1997, 2001, Choi et al 1999). Of course, the
software can also solve non-spatial problems corresponding to systems of ODEs
describing reactions within well stirred compartments and £uxes across the
membranes that separate the compartments. The software provides a choice of
several solvers for such compartmental problems including a sti¡ solver. For
both spatial and compartmental problems, we have implemented an automated
pseudo-steady approximation that can be invoked by the user when a subsystem of
reactions equilibrates rapidly on the timescale of the overall process of interest
(Slepchenko et al 2000). The currently available user interface for the Virtual Cell
includes full access to these capabilities for numerical solutions of continuous
reaction/di¡usion equations.
Stochastic £uctuations can become important if the number of molecules

involved in a process is relatively small. For fully stochastic problems in which
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the number of particles in a reaction/di¡usion system is too small to solve with
numerical solutions of PDEs, di¡usion can be described as Brownian random
walks of individual particles and chemical kinetics is simulated as stochastic
reaction events. We also need to consider hybrid systems of stochastic di¡erential
equations where one can combine the numerical techniques commonly applied
to regular di¡erential equations and Monte Carlo methods employing random
number generators. In the Virtual Cell, we employ an e⁄cient algorithm in
which the probabilities of each reaction are calculated from rate constants and
numbers of substrate molecules (Gillespie 1977, 2001). A stochastic method is
used to determine which reaction will occur based on their relative probabilities.
The time step is then adjusted to match the particular reaction that occurs. After
the reaction is complete the numbers of substrate molecules are readjusted prior to
the next cycle. When combined with stable accurate numerical schemes developed
for the conventional di¡erential equations, they can be applied for numerical
solution of stochastic di¡erential equations with discrete random processes.
Although this approach has been implemented in our Cþþ library and has been
applied to problems on the dynamics of RNA granule tra⁄cking (Carson et al
2001; http://www.nrcam.uchc.edu), the stochastic modelling capabilities of the
Virtual Cell are not accessible through the current Java user interface.

The modelling process in the Virtual Cell environment

The Virtual Cell system uses a distributed client-server architecture that permits
access over the Internet. The Java client runs through a web browser and is thus
compatible with all the common operating systems (Windows, MacOS X and
Linux). A numerics server, currently consisting of a cluster of eight dual-processor
Alpha nodes, assures the availability of su⁄cient computational power to the user.
The system also includes a database server that maintains user information and
ensures the security and integrity of models and simulation results. Through the
database structure, users also have the option of ‘sharing’ models with a selected
group of collaborators or ‘publishing’ completed models so that they can be
accessed by the entire scienti¢c community. Models can be copied and reused or
modi¢ed through the database as well. In addition to the above bene¢ts, the
architecture has the important additional advantage of permitting centralized
maintenance and the ready deployment of enhancements.
The modelling process within the Virtual Cell is based on a hierarchical

organization that emphasizes reusability. As depicted in Fig. 1, the parent object
in a model is a general cell physiological description of the system that we desig-
nate the BioModel. The BioModel speci¢es: the compartmental topology of the
system; the identities of molecular species; the compartmental or membrane
locations of the species (membranes are automatically de¢ned as the boundaries
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separating compartments); and reactions and membrane transport kinetics. A
BioModel can then spawn several ‘Applications’ that each specify a geometry,
boundary conditions, default initial concentrations and parameter values, and
whether any of the reactions are su⁄ciently fast to permit a pseudo-steady state
approximation. The geometry can be from zero- (i.e. a compartmental model) to
three-dimensional and can be derived either by importing a segmented experi-
mental image (e.g. confocal micrographs) or by specifying an analytical geometry.
For compartmental models or for compartments that are unresolved within the
geometry, volume fractions relative to the parent compartment and surface to
volume ratios must be speci¢ed. Also at the Application level, individual reactions
can be disabled as an aid in determining the proper initial conditions for a pre-
stimulus stable state.
An Application together with its parent BioModel is su⁄cient to completely

de¢ne the governing mathematics of the model and, accordingly, each applica-
tion generates its own unique math description expressed in VCMDL (Virtual
Cell Math Description Language). VCMDL is a fully declarative language that
can be edited independently of the BioModel in a separateMathModel workspace.
This can be used to re¢ne models in ways that are more £exible than permitted
by the BioModel interface. Indeed, a VCMDL formulation of a model may be
created from scratch within the MathModel workspace. The dual BioModel and
MathModel interfaces were developed to permit the maximum £exibility in
developing a model, but also serve to facilitate interaction between biologists
and theoreticians.
The last part of Fig. 1 illustrates the relationshipofApplications andMathModels

to Simulations. The implementation of a simulation is kept separate from the
model speci¢cations and several simulations can be spawned o¡ of a given
Application/MathModel. The simulation speci¢cations include the choice of
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FIG. 2. Fit of model to experiment for InsP3-induced Ca
2þ dynamics in a smooth muscle cell

line. (a) The time course of Ca2þ levels following uncaging of either InsP3 (closed circles) or
GPIP2 (open circles); each point represents the average of 10 experiments, each of which is
normalized internally to 1.0 for the peak Ca2þ concentration. The ¢tted lines are the calculated
values for the time-course of [Ca2þ ]cyt based on the simulations for InsP3 andGPIP2 stimulation
(of the same concentrations measured in the experiments). The rate for metabolite degradation
was determined for the two conditions to optimize the ¢t to each set of averaged experimental
points; the resultant time constants were 0.8 s for InsP3 and 13 s for GPIP2. For comparison,
degradation curves for InsP3 are also included as dotted curves. (b) The model can also be used
to simulate a dose response series for the Ca2þ response to varying levels of uncaged InsP3 in a
single cell. The circles are experimental data for a titration of InsP3 in a single cell; the simulation
results are shown as a solid line. (c) Using the same parameters as for the dose-response in (b), we
simulated the full time-course for four concentrations of uncaged InsP3. Experimental data are
light curves and simulation results are shown as heavy curves. (Taken fromFink et al 1999a, with
permission of the Biophysical Journal.)



solver, time step, mesh size for spatial simulations, and overrides of the default
initial conditions or parameter values. Local sensitivity analysis can be performed
within a Simulation to probe for which features of the model are most critical
in determining its overall behaviour and also to aid in parameter estimation.
Simulation results are displayed as images of the variable values coded in
greyscale or pseudocolour and mapped to the simulation geometry. Timeplots
at multiple coordinates or intensities along a line or curve within the geometry
at a selected time can also be displayed. In addition, results of simulations can
be exported in multiple formats, including images, movies and lists of variable
values suitable for spreadsheet analysis.

Examples of studies using the Virtual Cell

Our laboratory has applied the Virtual Cell to the analysis of Ca2þ dynamics in
several cell types. The ¢rst paper to appear was a study of inositol-1,4,5-
trisphosphate (InsP3)-induced release of Ca2þ from the endoplasmic reticulum
(ER) of a smooth muscle cell line (Fink et al 1999a). In that work we used the
Virtual Cell to develop a model for the calcium dynamics following uncaging
of InsP3 and a non-hydrolysable analogue, GPIP2. The results summarized in
Fig. 2 show that the model was able to reproduce both the time-course and
dose dependence of the experimentally observed Ca2þ release event. The model
demonstrated that the behaviour of the system was critically dependent on the
degradation of InsP3� i.e. that the Ca2þ release channel did not signi¢cantly
inactivate on the timescale of the observed Ca2þ dynamics.
This study was followed with a much more extensive investigation of Ca2þ

release in di¡erentiated N1E-115 neuroblastoma cells (Fink et al 1999b, 2000).
This study showed that the neuronal morphology of these cells controlled the
spatiotemporal pattern of Ca2þ signals following stimulation by bradykinin, a
neuromodulator. The modelling activity led us to discover the uneven distribu-
tion of ER Ca2þ stores within these cells and discern how the interplay of cell
shape and receptor distribution assured a Ca2þ wave with a uniform amplitude.
In the laboratory of my colleague John Carson, the Virtual Cell has been used to

understand the mechanism of RNA granule tra⁄cking (Carson et al 2001). These
models require the stochastic simulation capabilities of the Cþþ library because
they attempt to elucidate the behaviour of single granules as they are driven along
microtubules by molecular motors. The behaviour of the granules in the Virtual
Cell model can be directly compared to the motions of £uorescently labelled
RNA granules as visualized through a confocal microscope. A model that includes
two opposing motors each with three states corresponding to whether they are
unbound to the microtubule track, bound but inactive, or bound and exerting
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force is su⁄cient to describe the behaviour if elastic forces within the granule are
also included.
Several other important examples of Virtual Cell applications represent a

spectrum ranging from the testing of simple but analytically intractable hypo-
theses, to the elaboration of complex reaction schemes for well-regulated intra-
cellular processes. Representative of the latter is a study of nucleocytoplasmic
transport mediated by the RanGTPase system (Smith et al 2002); in this study
the ability of the model to visualize the separate components of the system gave
credence to the assertion that the nuclear pore complex did not play an important
regulatory role. Also complex is a model that is being developed to understand
the in£uence of mitochondrial morphology as a potential regulator of respiratory
e⁄ciency (Mannella et al 2001); this study develops a model for a single mito-
chondrion based on 3D electron tomography data. A spatially larger system is
represented by a model of transepithelial Ca2þ transport (Slepchenko & Bronner
2001) that points to the coexistence of two transport systems in the apical
membrane. At the level of simpler hypothesis testing, is a study that used the
Virtual Cell to demonstrate that nuclear envelope breakdown during mitosis
proceeds via an initial breach in the nuclear membrane that progressively widens
(Terasaki et al 2001). Finally, the focal photorelease of caged thymosin b, an
actin-sequestering molecule, was modelled in order to determine the localization
of this perturbation to the cytoskeleton given the di¡usion of released molecules
from the site of irradiation and their rate of reaction with the pool of g-actin (Roy
et al 2001). Thus in the short period that the Virtual Cell has been available, it has
been proven useful in quite a variety of cell biological investigations.

Acknowledgements

The author thanks his colleagues James Scha¡ and Boris Slepchenko who have led the
development of the Virtual Cell over the last 6 years. Yung-sze Choi, Ann Cowan, Susan
Krueger, Frank Morgan, Ion Moraru, Charles Fink, John Wagner, James Watras and Daniel
Lucio are also acknowledged for their many contributions to this work. The NIH National
Center for Research Resources has supported this work through grant RR13186.

References

Carson JH, Cui H, Krueger W, Slepchenko B, Brumwell C, Barbarese E 2001 RNA tra⁄cking
in oligodendrocytes. In: Richter D (ed) Cell polarity and subcellular RNA localization.
Springer-Verlag, Berlin, p 69^83

Choi YS, Resasco D, Scha¡ J, Slepchenko B 1999 Electro-di¡usion of ions inside living cells.
IMA J Math Appl Med Biol 62:207^226

Fink CC, Slepchenko B, Loew LM 1999a Determination of time-dependent inositol-1,4,5-
trisphosphate concentrations during calcium release in a smooth muscle cell. Biophys J
77:617^628

VIRTUAL CELL 159



Fink CC, Slepchenko B, Moraru II, Scha¡ J, Watras J, Loew LM 1999bMorphological control
of inositol-1,4,5-trisphosphate-dependent signals. J Cell Biol 147:929^935

Fink CC, Slepchenko B,Moraru II,Watras J, Scha¡ J, LoewLM2000An image-basedmodel of
calcium waves in di¡erentiated neuroblastoma cells. Biophys J 79:163^183

Gillespie DT 1977 Exact stochastic simulation of coupled chemical reactions. J Phys Chem
81:2340^2361

Gillespie DT 2001 Approximate accelerated stochastic simulation of chemically reacting
systems. J Chem Phys 115:1715^1733

Loew LM, Scha¡ JC 2001 The Virtual Cell: a software environment for computational cell
biology. Trends Biotechnol 19:401^406

Mannella CA, Pfei¡er DR, Bradshaw PC et al 2001 Topology of the mitochondrial inner
membrane: dynamics and bioenergetic implications. IUBMB Life 52:93^100

Patankar SV 1980 Numerical heat transfer and £uid £ow. Taylor & Francis, London
Roy P, Rajfur Z, Jones D,Marriott G, Loew LM, JacobsonK 2001 Local photorelease of caged
thymosin b4 in locomoting keratocytes causes cell turning. J Cell Biol 153:1035^1048

Scha¡ J, Fink CC, Slepchenko B, Carson JH, Loew LM 1997 A general computational
framework for modeling cellular structure and function. Biophys J 73:1135^1146

Scha¡ JC, Slepchenko BM, Choi Y, Wagner JM, Resasco D, Loew LM 2001 Analysis of non-
linear dynamics on arbitrary geometries with the Virtual Cell. Chaos 11:115^131

Slepchenko BM, Bronner F 2001Modeling of transcellular Ca transport in rat duodenum points
to the coexistence of two mechanisms of apical entry. Am J Physiol 281:C270^C281

SlepchenkoBM, Scha¡ JC,ChoiYS 2000Numerical approach to fast reaction-di¡usion systems:
application to bu¡ered calcium waves in bistable models. J Comp Phys 162:186^218

Slepchenko B, Scha¡ JC, Carson JH, Loew LM 2002 Computational cell biology:
spatiotemporal simulation of cellular events. Annu Rev Biophys Biomol Struct 31:423^441

Smith AE, Slepchenko BM, Scha¡ JC, Loew LM, Macara IG 2002 Systems analysis of Ran
transport. Science 295:488^491

TerasakiM, Campagnola P, RollsMM et al 2001 A newmodel for nuclear envelope breakdown.
Mol Biol Cell 12:503^510

DISCUSSION

Berridge: I would like to raise an issue about the work that you did on the cere-
bellar Purkinje neuron. I am sure you are aware that input-speci¢c modi¢cation
of the spine depends not on multiple inputs from the parallel ¢bre but on coin-
cidence between the primary ¢bre and the parallel ¢bre. In 1993 I proposed that
the InsP3 receptor was the coincidence detector (Berridge 1993).
Loew:That has been shown experimentally.
Berridge:Have youmodelled this example of coincidence detection? Although it

is very interesting that the spine can restrict InsP3 di¡usion during repetitive
stimuli, the reality is that you only need one pulse to obtain dramatic changes as
long as it is connected with another one, as occurs during coincidence detection.
Loew: We have modelled that. The fact is, you can get long-term depression

(LTD) with multiple InsP3 stimulation, and that is what we modelled here. It can
also be done the way you have suggested, with one InsP3 stimulation plus a stimu-
lation from the climbing ¢bre which activates voltage-dependent channels. We
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have the channels in there as well. The tremendous non-linear sensitivity of that
system translates to a sensitivity to Ca2þ . As you know, the InsP3 receptor is also
activated by Ca2þ , and if you put a little bit of Ca2þ in there at any point, you can
automatically produce a big Ca2þ spike. We have modelled this.
Noble: I thought that you highlighted a very important role of modelling in

pointing out that you could reveal what the model is saying the InsP3 levels are
doing. This is a feature that can be addressed by modelling in all kinds of di¡erent
contexts. In addition to revealing parameters that we don’t yet have an indicator
for (but hopefully one day we will have), we can also do ‘gene knockouts’ that at
the moment aren’t possible, pulling components out and putting them back in.
This is something that Bernhard Palsson has demonstrated in his impressive
metabolic modelling (Edwards et al 2001) and we have also done in relation to
some of the work on cardiac modelling. These are aspects of modelling that we
need to bring out as one of the great strengths.
Loew:This is sort of equivalent to the idea of lowering the InsP3 receptor density

in the Purkinje cell, or in some way changing its characteristics.
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Modelling the bacterial chemotaxis

receptor complex
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Abstract. The pathway controlling chemotaxis inEscherichia coli is the simplest and most
well understood cell signalling system to date. However, quantitative models based on
the available data still fail to reproduce important features of the pathway. Most notably,
the observed sensitivity of cells to very small changes in stimulus concentrations cannot
be reproduced by conventional models based on the measured concentrations, binding
a⁄nities and rate constants of the proteins involved. This discrepancy, together with
recent experimental ¢ndings, drew our attention to the spatial organization of
molecules within the cell and in particular to the clusters of receptors localised at the cell
poles. A stochastic simulator for chemical reactions, STOCHTOCHSIMIM, was previously
developed to model the chemotaxis pathway at the level of individual molecular inter-
actions. This program has now been extended to incorporate a spatial representation
that allows the interaction between molecules in a two-dimensional lattice to be
simulated. In silico ‘experiments’ using this new version of STOCHTOCHSIMIM demonstrate that
lateral interactions between clustered receptors can signi¢cantly enhance the excitation
response. The adaptation reactions may also exploit the proximity of receptor
molecules, and a hypothetical mechanism by which this may occur is currently being
tested.

2002 ‘In silico’ simulation of biological processes. Wiley, Chichester (Novartis Foundation
Symposium 247) p 162^181

The Escherichia coli chemotaxis system presents a unique opportunity to identify
the principles and to develop the methods required for studying cell signalling in
silico. It has been the subject of intensive investigation for over three decades as a
model cell sensory and signalling system, and an extensive body of literature has
developed as a result (for recent reviews, see Bren & Eisenbach 2000, Falke et al
1997). All of the enzymes in the pathway have been characterized kinetically, and a
large collection of mutant strains are available for quantitative physiological
analysis. Atomic resolution structures have also been determined for nearly all of
the involved proteins in recent years, and this has opened the door to a detailed
molecular explanation of the mechanisms that account for the observed kinetics.
The structure of the pathway is simple, consisting of the chemotactic receptors
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and only six cytoplasmic proteins (see Fig. 1A and Table 1), but it shares many
features in common with more complicated pathways of eukaryotes, including
phosphorylation cascades, covalent modi¢cation, multiprotein complexes and
clustered receptors. A small number of protein species combine to generate
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FIG. 1. The bacterial chemotaxis signalling pathway. (A) Overview of the pathway.
Chemotactic receptors (T) are clustered primarily at the cell poles, and form stable ternary
complexes with the histidine kinase CheA (A) and the linking protein CheW (W). Ligand
binding to the receptors in£uences the rate of phosphotransfer from CheA to the response
regulator CheY (Y), the phosphorylated form of which (Yp) interacts with the £agellar motor
to control swimming. The steady-state level of this signal is regulated by the antagonistic e¡ects
of two- adaptation enzymes, CheR (R) and CheB (B). The reversible phosphorylation of CheB
providesnegative feedback in thepathway, andCheZaccelerates thedephosphorylationofCheY.
See Table 1 for a description of each component. (B) The Tar receptor complex as modelled in
STOCHTOCHSIMIM.The state of each receptor complex is represented by eleven binary £ags. Ten of these
represent the state of binding or modi¢cation sites: aspartate binding (1); CheBp binding (2);
CheR binding (3); methylation (4^7); phosphorylation (8); CheY binding (9); and CheB (10)
binding. Each receptor complex is assumed to be in rapid equilibrium between two
conformational states, active (white) and inactive (black), represented by the ¢nal £ag (11).



surprisingly sophisticated behaviour including signal detection, integration,
ampli¢cation and adaptation. The near-completeness of molecular information
on this pathway makes it an ideal prototype system for the simulation of cell
signalling pathways in general.
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TABLE 1 Components of the bacterial chemotaxis pathway

Component (copies per cell) Description

Receptors
(�4000 dimers)

Transmembrane transducers also known as methyl accepting
chemotaxis proteins (MCPs). They monitor various
attractant and repellent concentrations, as well as temperature
and pH. E. coli possesses ¢ve MCP species named after the
attractants they bind: Tar (aspartate), Tsr (serine), Trg (ribose
and galactose), Tap (dipeptides) and Aer (oxygen).

CheW
(�8000 monomers)

Sca¡olding protein that couples the chemotactic receptors to
CheA. It has been shown that CheW is required for polar
receptor cluster formation (Maddock & Shapiro 1993).

CheA
(�4000 dimers)

Histidine kinase that donates phosphoryl group to CheY and
CheB. Its activity is regulated by the chemotactic receptors.
Attractant stimuli inhibit CheA activity and repellent stimuli
enhance it.

CheY
(�17000 monomers)

Response regulator that relays signal from receptor complex to
£agellar motors. The phosphorylated form of CheY (CheYp)
interacts directly with the switch complex of the £agellar
motor to promote CW rotation.

CheR
(�200 monomers)

Methyltransferase that adds methyl groups to speci¢c glutamyl
residues on the cytoplasmic domain of MCPs. Each added
methyl group increases the activity of CheA in complex with
the receptor, thereby counteracting the e¡ect of attractant
binding.

CheB
(�1700 monomers)

Methylesterase/deamidase that counteracts the e¡ect of CheR by
removing the added methyl groups and lowering the activity
of CheA. Because this activity is strongly enhanced in the
phosphorylated form of CheB (CheBp), which in turn is
regulated by CheA, it serves as a negative feedback in the
pathway.

CheZ
(�12000 dimers)

Accelerates the dephosphorylation of CheYp, thereby
dramatically increasing the speed at which E. coli cells can
respond to stimuli. Only enteric bacteria possess aCheZ gene.

Flagellar motor
(�6)

Large protein complex comprising over 100 subunits. In the
absence of CheYp, it rotates exclusively counter-clockwise
(CCW), causing the cell to swim forward in a straight line
(run). The probability of clockwise (CW) rotation, which
causes a swimming cell to change direction (tumble),
increases with the intracellular concentration of CheYp.



A standard method for simulating biochemical pathways is to represent each
reaction by a continuous, deterministic rate equation and to numerically integrate
the resulting set of equations to obtain the changes in species concentrations over
time. This approach has been applied to the chemotaxis pathway for nearly a
decade with considerable success. One of the ¢rst of such e¡orts, a computer
program named BCT, was developed in an attempt to incorporate the available
biochemical data in a coherent simulation. Initially, BCT consisted of 10 ordinary
di¡erential equations describing the excitation response, and a simpli¢ed model of
the £agellar motor to produce a behavioural output (Bray et al 1993). It has since
been extended to include the binding reactions leading to the formation of the
receptor complex (Bray & Bourret 1995), and a simpli¢ed adaptation response
(Levin et al 1998). It now consists of 75 di¡erential equations capable of repro-
ducing the chemotactic phenotypes of over 60 mutants, and is actively maintained
as a referencemodel (available for download at http://www.zoo.cam.ac.uk/comp-cell).
In another application of deterministic equation-based modelling, Barkai &
Leibler (1997) have proposed and simulated a mechanism that ensures the robust-
ness of exact adaptation to perturbations in biochemical parameters, and this
property was demonstrated later by experiment (Alon et al 1999).
Certain quantitative features of the chemotactic response, however, have

proven di⁄cult to reproduce. Cells of E. coli display remarkable sensitivity to
very small changes in stimulus over a wide range of background concentrations
(Mesibov et al 1973, Berg & Tedesco 1975, Segall et al 1986). This combination
of high sensitivity and wide dynamic range is not reproduced by BCT or any
other simulation based on the measured protein concentrations and rate con-
stants. One possible explanation for this discrepancy was that these models do
not fully account for the large number of states that the receptor complex can
occupy. For example in BCT, the aspartate receptor (Tar) is modelled with only
one methylation site whereas in reality there are four. The Barkai and Leibler
model, which does include multiple methylation, ignores the downstream phos-
phorylation cascade. The full complement of receptor states should include, in
addition, the binding of ligand in the periplasm and of the modi¢cation enzymes,
as well as the activity of the receptor. The deterministic equation-based approach
breaks down when one tries to incorporate all of these states as separate molecular
species. This is due to the combinatorial explosion in the number of equations that
need to be integrated�as additional bindings ormodi¢cations are considered, the
number of reactions which need to be explicitly represented as rate equations
grows exponentially.
To overcome this di⁄culty, and to study the random £uctuations that may

in£uence the pathway, a novel stochastic simulation program named STOCHTOCHSIMIM
was developed by Carl Firth (Morton-Firth 1998) (available for download at
http://www.zoo.cam.ac.uk/comp-cell/StochSim.html). In STOCHTOCHSIMIM, every molecule
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in the reaction system is represented as an individual software object, and a unique
algorithm tests a pair of molecules for reaction in every simulation iteration.
Because every copy of each molecular species is stored as a software ‘object’ in a
separate location of memory, the internal state of each molecule can be
encapsulated within a molecule object. This removes the need to represent each
state of a protein complex as a separate molecular species, and greatly increases
the e⁄ciency of simulation when the number of internal states is large. In
addition, because the interaction between discrete particles are computed using
reaction probabilities, STOCHTOCHSIMIM is capable of reproducing realistic £uctuations
in the concentration of molecules which can be signi¢cant when the number of
particles of one or more reactant species are very small. This feature has been
exploited in a study of the temporal £uctuations in the concentration of the
active response regulator CheYp of the chemotaxis pathway (Morton-Firth &
Bray 1998).

The STOCHTOCHSIMIM model of chemotaxis

STOCHTOCHSIMIM individual-based algorithm has allowed us to develop a detailed
simulation of the chemotaxis pathway in which the Tar receptor complex is
modelled with the full complement of known bindings, modi¢cations and
conformational states (Fig. 1B). The key assumption of the model is that the
signalling output of the receptor complex is determined by a rapid, thermally
driven equilibrium between two conformational states, active and inactive. The
probability that a receptor complex is in the active state at any instant in time ( p)
can then be obtained by assigning a free energy di¡erence (DG) between the active
and inactive states, and using the thermodynamic relationship

DG ¼ �RT ln p=(1� p)
� �

(1)

where R is the gas constant and T is the absolute temperature.
The inputs that modulate this equilibrium are the binding of stimulus ligand in

the periplasm, and the methylation state of the receptor dimer. We express their
contributions to DG by assigning speci¢c energy values based on experimental
observations to each ligand binding and methylation event (EL and EM, respec-
tively), and assume that their e¡ects are additive so that

DG ¼ EL þ EM (2)

This results in a unique value ofDG for every permutation of ligand-binding and
methylation state, some examples of which are depicted in Fig. 2A. Solving
Equations 1 and 2 for each of these combinations yields the required set of
activation probabilities ( p).
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Using these probabilities for receptor activation and experimentally determined
rates of the downstream reactions, we constructed the full model of aspartate
signalling from ligand binding to CheY phosphorylation. The response time-
courses of this model to step stimuli (sudden jumps in concentrations) of aspartate
were in good agreement with experiment (Morton-Firth et al 1999). However, the
threshold of the response was still much higher than experimental observations,
indicating that the sensitivity of the model was still insu⁄cient.

A novel mechanism for signal ampli¢cation

This led us to consider the possibility that an as yet unidenti¢ed ampli¢cation
mechanism is responsible for the observed gain in sensitivity. Speci¢cally, we
asked whether the spatial organization of molecules in the cell could account for
this discrepancy. Signi¢cantly, it was shown in 1993 that E. coli chemotactic
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FIG. 2. Free energy-based modelling of receptor activity. White indicates receptors in the
active conformation, and black inactive. (A) Dependence of receptor activation energies on
ligand binding and methylation. The activation energy is the free energy di¡erence DG
between the active and inactive states. We set the unliganded receptor with two methyl groups
to be the average state with half-maximal activity ( p¼0.5, DG¼0). The energy of ligand
binding can be obtained from the observation that the activity is reduced fourfold when ligand
binds (Borkovich & Simon 1990). Solving Eq. 1 for DG at 37 8C with p¼0.125 yields 1.2 kcal/
mol. Conversely, increasing methylation reduces the activation energy. The two extreme
methylation states are depicted (middle right and far right). (B) Activity coupling between
nearest neighbours in receptor clusters. Each receptor’s activity is in£uenced by that of its four
nearest neighbours, so that the more active neighbours there are, the higher the probability of
being active. A small portion (¢ve lattice points) of an extended square lattice is shown here, and
the magnitude of DG for the receptor at the centre is indicated by the height of the platform. A
receptor surrounded by inactive receptors (left panel) has a higher activation energy, and hence a
lower probability of being active, than the same receptor when it is surrounded by active
neighbours (right panel).



receptors aggregate in clusters at the cell poles (Maddock & Shapiro 1993). This
discovery was particularly striking because it had been previously pointed out that
a uniform distribution of receptors over the cell surface would maximize the
e⁄ciency of chemoreception (Berg & Purcell 1977). In an attempt to provide an
explanation for this observation as well as for the high gain of the system, the idea
was put forward that signal ampli¢cation could be achieved by interactions
between neighbouring receptors in these clusters (Bray et al 1998). Based on this
proposal, a Monte Carlo simulation of receptor signalling was developed, and it
was shown that a simple mechanism involving nearest-neighbour coupling of
activities (Fig. 2B) could enhance the response over a wide dynamic range (Duke
& Bray 1999). This model, however, did not include the downstream reactions in
the pathway and the receptors were modelled with only one methylation site. To
make quantitative comparisons with experimental observations, a more realistic
model incorporating these features would be required.

The spatially extended STOCHTOCHSIMIM model

We therefore sought to extend the STOCHTOCHSIMIM model of the chemotaxis pathway
to include a spatial representation of nearest-neighbour interactions in receptor.
The original STOCHTOCHSIMIM program did not have any explicit representation of
spatial location� implicitly assuming a uniform distribution of molecules
throughout the cell volume. The program was therefore modi¢ed so as to allow
the activity of each receptor to be dependent not only on its own internal state,
but also on the state of neighbouring receptors in a cluster. The free energy
di¡erence (DG) between the active and inactive state of a receptor is now
dependent on three inputs, ligand binding (EL), methylation (EM) and activity
coupling between nearest neighbours (EJ). For simplicity, we assume that
contributions from these inputs are independent so that

DG ¼ EL þ EM þ EJ (3)

EJ takes discrete values determined by the number of active neighbours, so in the
case of a square lattice, there are ¢ve possible values (with 0, 1, 2, 3 or 4 active
neighbours). Solving Equations 1 and 3 for all possible combinations of EL,EM

and EJ yields the complete set of activation probabilities ( p) for the coupled
model (Table 2).
The new model of the chemotaxis pathway incorporating these spatial

interactions reveals that receptor coupling brings the expected performance
much closer to experimental observations. This is readily seen in the impulse
response (the response of the system to a brief pulse of stimulus), which provides
a succinct phenomenological description of the system’s response characteristics.
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Experimentally, it has been shown that the response of E. coli cells to short pulses
(�0.1 s) of aspartate is biphasic (Segall et al 1986, left panel of Fig. 3A). The ¢rst
phase of the response lasts for approximately one second, over the course of which
the motor bias (the probability that the £agellar motor spins in the counter
clockwise mode) rapidly jumps to a peak value and then falls below the steady
state bias. The second phase of the response is a slower recovery from this
undershoot back to the baseline, which lasts approximately four seconds. In the
uncoupled STOCHTOCHSIMIM model, the ¢rst phase of this response could be reproduced
if a su⁄ciently large pulse of aspartate was applied, but no undershoot could be
observed, even in response to a pulse of saturating concentration (middle panel of
Fig. 3A). With coupling, however, the STOCHTOCHSIMIM model produces a signi¢cant
undershoot of a magnitude comparable to the experimentally determined impulse
response (right panel of Fig. 3A).
The increased sensitivity due to the activity-coupling mechanism can be

observed quantitatively by comparing the dose^response curves of the coupled
and uncoupled models. Figure 3B is such a plot which shows the response in
receptor activity to steps of aspartate at zero background concentration. There is
a noteworthy di¡erence in the shape of the curves (the uncoupled model is
satisfactorily ¢t by a Hill function, whereas the ¢t to the coupled model is poor).
More importantly, there is a �50-fold di¡erence in the concentration at which
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TABLE 2 Free energy changes and activation probabilities for coupled receptors

Ligand unbound Ligand bound

active neighbours active neighbours

Species 0 1 2* 3 4 Species 0 1 2* 3 4

p 0.00 0.00 0.02 0.31 0.91 0.00 0.00 0.00 0.06 0.59
DG 6.22 4.31 2.40 0.49 ^1.42 7.42 5.51 3.60 1.69 ^0.22
p 0.00 0.01 0.13 0.76 0.99 0.00 0.00 0.02 0.31 0.91
DG 5.02 3.11 1.20 ^0.71 ^2.62 6.22 4.31 2.40 0.49 ^1.42
p 0.00 0.04 0.50 0.96 1.00 0.00 0.01 0.13 0.76 0.99
DG 3.82 1.91 0.00 ^1.91 ^3.82 5.02 3.11 1.20 ^0.71 ^2.62
p 0.01 0.24 0.88 0.99 1.00 0.00 0.04 0.50 0.96 1.00
DG 2.62 0.71 ^1.20 ^3.11 ^5.02 3.82 1.91 0.00 ^1.91 ^3.82
p 0.41 0.94 1.00 1.00 1.00 0.09 0.69 0.98 1.00 1.00
DG 0.22 ^1.69 ^3.60 ^5.51 ^7.42 1.42 ^0.49 ^2.40 ^4.31 ^6.22

* The free energies and activation probabilities for receptors with two active neighbours (shaded column)
are equivalent to uncoupled receptors.
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half-maximal inhibition occurs, indicating a signi¢cant gain in sensitivity. This
enhancement, however, comes at the cost of increased steady-state noise
(horizontal lines in Fig. 3B).
The range of ambient concentrations over which the system can respond has

been tested by doubling the stimulus concentration after adaptation to an initial
stimulus (Fig. 3C). In both the coupled and uncoupled case, the response ismasked
by the steady-state noise at the high and low extremes of ambient concentration,
but the coupled system exhibits a wider range by an order of magnitude. It can
also be seen that the response is signi¢cantly ampli¢ed in the coupled model over
the entire range.

Insights from a structural view

One consequence of the way in which the coupled model is formulated is that its
performance is very sensitive to the parameterEJ, the energy input due to activity
coupling between neighbouring receptors. This suggests that if such a mechanism
were to stably provide ampli¢cation for the pathway, the receptors would need to
be arranged in a well-ordered lattice (Duke & Bray 1999). Another concern in
considering ampli¢cation is the stoichiometric ratio of receptor to CheW to
CheA in the receptor complex. Until recently, this was widely accepted to be
2:2:2, as suggested by binding assays using receptors in membrane preparations
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FIG. 3. Performance of the STOCHTOCHSIMIM model with nearest-neighbour coupling between
clustered receptors. (A) Impulse response to aspartate. All three panels show the response in
motor bias to a brief pulse of aspartate (50.25 s) at 5 s. The biphasic experimental response
(left) reported by Segall et al (1986) could not be reproduced by the STOCHTOCHSIMIM model without
receptor coupling, even when pulses of saturating concentration (1mM) were used (centre).
However, when receptor coupling was incorporated into the STOCHTOCHSIMIM model, pulses of
comparable size to those used in the experiment (50.8 mM) generated biphasic time-courses of
comparable shape and amplitude (right). Motor bias (mb) for the STOCHTOCHSIMIM model was
computed from CheYp concentration using the Hill-type equation

mb ¼ 1�
½Yp�H

(hmbi=(1� hmbi))½Yp�H þ hYpiH
,

where [Yp] is the CheYp concentration, hYpi is the CheYp concentration at steady state, hmbi is
the motor bias at steady state and the Hill coe⁄cient H was assigned a value of 10 (Cluzel et al
2000). (B) Response to step stimuli at zero background concentration. The initial response prior
to adaptation is measured here as the minimum receptor activity encountered within 1 s after
stimulus. In the coupled model (crosses), the activity falls o¡ much more rapidly than the
uncoupled model (circles) as the step size is increased. (C) Response of system to doubling in
concentration after adaptation to an initial stimulus. The response here is measured as the
fractional change in receptor activity. It can be seen that the signal is ampli¢ed in the coupled
model (circles) over the entire range of ambient concentrations tested. Error bars show the
steady-state level of noise in the system, which can mask the signal at very low and high
ambient concentrations.



and puri¢ed cytoplasmic components (Gegner et al 1992). However, a more recent
study using soluble receptor fragments has indicated a much higher receptor
content, which could have signi¢cant consequences on ampli¢cation (Liu et al
1997).
These concerns have led us to consider the physical arrangement of receptors

in the cluster and the details of how the receptor cytoplasmic domains, CheW and
CheA, assemble to form the complex. Fortunately, atomic resolution structures
of all three components had been determined in recent years (Kim et al 1999,
Bilwes et al 1999, F. W. Dahlquist, personal communication, 2000). We used a
somewhat unconventional approach to predict how these structures might
assemble into a regular and laterally extendible lattice (Shimizu et al 2000).
Brie£y, plastic models of all three components were generated using a three-
dimensional printer. Guided by mutational data implicating residues which a¡ect
the pairwise interactions (Liu & Parkinson 1991, Bass et al 1999) and manual
exploration of surface complementary between these hand-held structures, we
were able to assemble a hexagonal lattice composed of trigonal units (Fig. 4). The
receptor cytoplasmic domains, which are inserted into the centre of each trigonal
unit, are very long coiled-coils of a helices, approximately 26 nm in length. Because
it is known that the region of interaction with CheW is at the cytoplasmic end of
these ‘pillars’, the lattice structure of Fig. 4 implies that there will be a signi¢cant
volume of cytoplasm that is sandwiched between the plasma membrane and the
CheA/CheW layer. This may function as an ‘adaptation compartment’ because all
of the receptor residues which are subject to reversible methylation would be
located within this region. Sequestration of CheR and/or CheB within such a
compartment could have unexpected consequences on adaptation kinetics.

Molecular brachiation: a novel mechanism for adaptation?

The possibility that adaptation kinetics could be a¡ected by the spatial arrange-
ment of molecules in the cell was of particular interest to us: while the kinetics of
both adaptation enzymes have been characterized in vitro (Simms& Subbaramaiah
1991, Lupas & Stock 1989), a straightforward application of the measured rates
had not produced the correct adaptational phenotype in previous models. In
the STOCHTOCHSIMIM model, it has been necessary to tune the rate of either CheR or
CheB by nearly an order of magnitude to obtain the correct adaptation pheno-
type (Morton-Firth 1999). In addition, it has been shown recently that both CheR
and CheB possess two sites for interacting with the receptors, raising new ques-
tions about their kinetic mechanisms. In both CheR and CheB, the ¢rst site that
binds to the receptors is the catalytic site, which interacts with the methylatable
glutamyl residues on the receptors. The second site has an a⁄nity for the C-term-
inal pentapeptide of the receptors, which is attached to the cytoplasmic domain by
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a region of unde¢ned secondary structure. This £exible tether (�30 residues) is
su⁄ciently long for a CheR molecule attached at its end to reach the methylation
sites of a neighbouring receptor, according to the lattice depicted in Fig. 4, and
such inter-receptor methylation has been observed experimentally (Li et al 1997).
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FIG. 4. Hexagonal network consisting of receptors, CheW and CheA predicted from their
atomic resolution structures. (A) Plan view, as viewed from the plasma membrane towards the
cytoplasm, of a small portion of the lattice. The binding arrangement is such that a networkwith
this geometry could be extended inde¢nitely in two dimensions. Note the pores at the centre of
each hexagon which are large enough (�10 nm) for CheR and CheB to pass through. (B) The
layer of CheW and CheA, which contains the vertices of the network, is expected to be separated
from the plasma membrane by the approximate length of the receptor cytoplasmic domains
(�26 nm). The cytoplasmic space sandwiched between this layer and the plasma membrane
contains all of the methylation sites of the receptors, and thus could serve as an ‘adaptation
compartment’.



Wehave found that under suitable conditions, the combination of this tethering
e¡ect and the proximity of receptors in the lattice could have a signi¢cant e¡ect
on the movement and localization of CheR (and possibly CheB). By sequential
binding and unbinding of the two sites, it is possible that the molecules could
move in a hand-over-hand fashion, like an orang-utan swinging through the
branches in a jungle (Fig. 5A). We use the term molecular brachiation to
characterize this novel mode of movement (Levin et al 2002). Using STOCHTOCHSIMIM,
we are currently investigating the feasibility of molecular brachiation as well as
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FIG. 5. Molecular brachiation. (A) Schematic illustration of the of brachiation mechanism.
Each receptor has two sites to which CheR can bind, one tether site and one site that can
undergo methylation. The four panels depict the possible states of binding for the CheR
molecule. Note that the presence of two binding sites on the major chemotaxis receptors
allows both inter- and intra-receptor binding of CheR. By alternating between states in which
one site is attached (upper-right and lower-left panels) and states in which both sites are
attached (lower-right panel), CheR could ‘brachiate’ through a lattice of receptors such as
that depicted in Fig. 4. (B) Stochastic simulation of brachiation. A single CheR molecule in
a volume of 1.4610^15 l (the approximate volume of a bacterial cell) was allowed to di¡use to a
lattice of binding sites and followed over a period of 500 s. (A) Coverage of the lattice by the
CheR molecule. Binding sites visited by the molecule are shown in shades of grey, with the
intensity indicating the number of repeat visits (1, 2, 3,44). (C) As for (B) but with the tethers
on the receptors removed, so that each receptor has only one binding site for CheR.
Brachiation does not occur under these conditions, and the lattice is covered more
uniformly, but with fewer return visits to each individual site.



its possible e¡ects on the kinetics of CheR. We predict that such a mechanism
would help to sequester CheR in the receptor lattice without compromising its
mobility (Fig. 5B, C).

Summary

Because of the unparalleled richness of data regarding its physiology, biochemistry
and genetics, many believe that the bacterial chemotaxis pathway is set to become
the ¢rst cell signalling pathway to be understood ‘completely’. This abundance
of information is allowing us to utilise a number of computational methods,
including deterministic and stochastic simulations, to reconstruct the pathway
in silico. While our deterministic model (BCT) allows us to e⁄ciently analyse the
broad features of the chemotactic response, the stochastic model (STOCHTOCHSIMIM)
is capable of simulating more detailed, physically realistic models. Additionally,
the recently determined structures of the component proteins, in conjunction
with molecular graphics programs, can be used to explore possible reaction
mechanisms and spatial organization.
In general, stochastic simulations are computationally demanding, but for

certain types of models noted above, the STOCHTOCHSIMIM algorithm can prove more
e⁄cient than its deterministic counterparts. This advantage has been exploited
to construct a detailed model of the chemotaxis pathway in which the receptor
complex possesses a large complement of molecular states. This model repro-
duced many features of the physiological response, but singularly failed to
reproduce the magnitude of the signal. A two-dimensional spatial structure
was implemented in STOCHTOCHSIMIM to reconcile the discrepancy, and the new model
with nearest-neighbour coupling produced results that are signi¢cantly closer to
experimental observations.We also considered the three-dimensional arrangement
of the receptor complex and postulated a lattice structure capable of supporting the
receptor coupling mechanism. A novel mechanism by which the adaptation
enzymes may be sequestered to, but not immobilized at, the receptor cluster has
been proposed, and is currently being tested using a combination of deterministic
and stochastic simulations.
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DISCUSSION

Hinch: Your 2D model is the 2D Ising model with a few additional elements
added on. The increased sensitivity is very much related to the divergence of
the magnetic susceptibility of the Ising model near the critical point, and the
increase in background £uctuation is likely to be related to the divergence of
the correlation length near the critical point. Both these things very much rely
on being close to the critical point. Doesn’t that require a very ¢ne tuning of
parameters which you do not know?
Shimizu: One thing that I didn’t show here is that compared to a standard

Ising model, this system with multiple methylation states is less sensitive to the
coupling parameter which corresponds to the magnetic susceptibility you
mentioned. It is still sensitive, but the border between what you would call the
ferromagnetic and paramagnetic behaviours becomes blurred. This is one
interesting outcome. But we also think that perhaps there is a mechanism that
might account for this in a more robust way.
Subramaniam: The local concentration is going to be very di¡erent from overall

concentration. This is one of the things that you aren’t able to take into account
e¡ectively in a model such as yours. You are trying to do this using two
dimensions. But this is one of the di⁄culties in modelling chemotaxis or any
other phenomenon like this. There are also some neat experiments that have been
done inmore complex organisms such asDictyostelium. Have you thought of doing
modelling with this?
Shimizu: We’d like to see our program applied to other systems. One thing we

think would be very useful is to combine this stochastic algorithm with a deter-
ministic simulator, in a similar fashion to what Raimond Winslow demonstrated
earlier with his model of Ca2þ channels. This could be used, for example to
improve the brachiation simulations. The distributions of sites visited by CheR
in the untethered case, as predicted by our present program, is more or less
uniform. But more realistically, you would expect this distribution to be more
biased, because the CheR molecule performs a three-dimensional random walk
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when it is not attached to the lattice. There are e⁄cient analytical expressions for
computing this e¡ect (Lagerholm & Thompson 1998), and it would be very
interesting to combine such equation-based methods with our individual-based
stochastic approach.
Noble: When Raimond Winslow was presenting his work on combining

stochastic modelling with di¡erential equation modelling, as I understand it this
leads to greatly increased computational times.When I recently heardDennis Bray
present some of this work, he gave the impression that the stochastic com-
putational methods that you are using actually go extremely fast. What is the
explanation for this?
Shimizu: If it is the case that there are certain complexes that have a large number

of states, so that a large number of equations would need to be integrated at every
time point, then stochastic modelling can be faster.
Noble: So it’s a matter of whether each of those states were otherwise to be

represented by kinetic expressions, rather than by an on^o¡ switch.
Winslow: The reason this is di⁄cult for us is that we are describing stochastic

gating of a rather large ensemble of channels in each functional unit. Another
confounding variable is the local Ca2þ concentration, because this is increasing
the total number of states that every one of these channels can be in.
I have a comment.We have now heard about models in three di¡erent areas.We

have heard about a model of bacterial chemotaxis, neural models that Les Loew
described and the cardiac models that Andrew McCulloch and I have talked
about. I grant you that in each one of these systems there are di¡erent experi-
mental capabilities that may apply, and thereby make the data available for
modelling di¡erent in each case. But there are a lot of similarities between the
mathematics and the computational procedures used in these systems. In each
case, we have dealt with issues of stochastic models where the stochastic nature
comes in through the nature of channel gating or molecular interactions. We
have dealt with ordinary di¡erential equations which arise from systems that
are described in laws of mass action, and we have dealt with partial di¡erential
equations for systems where there are both reaction and di¡usion processes
occurring on complicated geometries. Perhaps this is one reason why Virtual
Cell is a useful tool for such a community of biologists: it covers so much of
what is important in biological modelling. We should see how much overlap
there is in these three areas, and whether this is a rather comprehensive class of
models de¢ned in these three areas.
Noble:A good way of putting the question would be, ‘What is it that is actually

missing?’ Part of what I suspect is missing at the moment would be the whole ¢eld
of systems analysis, which presumably can emerge out of the incorporation of
pathway modelling into cellular modelling. One of the reasons I regret not
having people like Bernhard Palsson here is that we would have seen much more
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of that side of things. Are there tricks there that we are missing, that we should
have brought out?
Winslow: I would say that this is not a di¡erent class of model; it is a technique

for analysing models.
Noble: Yes, this could be applicable to a cell or to an immune system.
Subramaniam: I think the missing elements are the actual parameters that can ¢t

in your model at this point, based on the molecular level of detail. We don’t have
enough of these to do the modelling. Tom Shimizu’s paper raised another
important point, which is the state dependence. Our lack of knowledge of all
the states clearly inhibits us from doing any model that is speci¢c to a system.
We are coarse graining all the information into one whole thing.
Winslow:Again, I didn’t hear anything inwhat you just said about a requirement

for a new class ofmodels. Rather than newmethods of data analysis, you are saying
that there may be systems or functionality that we don’t yet have powerful experi-
mental tools to fully probe in the same way we can for ion channel function in
cardiac myocytes. I agree with that.
Loew: One kind of model that I don’t think we have considered here is that of

mechanical or structural dynamics, in terms of the physics that controls that. Part of
the problem there is also that we don’t completely understand that at a molecular
level. Virtual Cell deals with reaction^di¡usion equations in a static geometry. It
isn’t so much the static geometry that is the limitation; rather it is that we don’t
know why that geometry might change. We don’t know how to model it because
we don’t know the physics. We know the physics of reaction^di¡usion equations,
but the structural dynamics issue is another class of modelling that we haven’t
done.
Subramaniam: The time-scale is a major issue here. If you want to model at the

structural dynamics level, you need to marry di¡erent time-scales.
Loew: Getting back to Raimond Winslow’s point about the di¡erent kinds of

modelling, this time-scale by itself does not de¢ne a di¡erent kind of modelling.
The issue is whether the physics is understood.
McCulloch: I agree with both of those points. It seems that what is missing is an

accepted set of physical principles by which you can bridge these classes of models,
from the stochastic model to the common pool model, and from the common pool
model to the reaction^di¡usion system. Such physical principles can be found, but
I don’t think they have been articulated.
Winslow: Yes, we need these rather than our own intuition as to what can be

omitted and what must be retained. We need algorithmic procedures for quanti-
fying and performing that.
Paterson: The opportunity to use data at a level above the cell can provide very

powerful clues for asking questions of what to explore at the individual cell level.
If we are trying to understand behaviour at the tissue, organ or organism level,
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this gives us some ways to focus on what mechanisms we may want to investigate
at the cellular level. It makes a huge di¡erence in terms of which biologists we
work with� for example, whether these are physiologists or clinicians. Many
biologists will go on at length about how di⁄cult it is to reproduce in vivo envir-
onments in in vitro experiments. They want to understand things at a higher level.
Winslow: Do you think there is a new class of model at that level, which we

haven’t considered here yet?
Paterson: No, I think a lot of the issues that we have been talking about are the

same at those di¡erent levels. In the sort of work my organization does we often
run into this issue: if you are starting at the level of biochemical reactions you are
much closer to ¢rst principles, to the point where if you can actually measure
parameters then you can work up to emergent behaviours. But if you are talking
with a biologist who studies phenomena signi¢cantly above ¢rst principles, such as
clinical disease, then you have to postulate a hypothesis about what might be
responsible for the phenomena and then drill down to see what mechanisms
might embody that hypothesis. I’m not sure that there is anything that is
fundamentally di¡erent, but there are many di¡erent domains and specialities
in biology, all valuable for providing their unique perspective and data. These
perspectives simply change the nature of the conversation.
Crampin: In this discussion of di¡erent classes of models, it might also be

appropriate to raise the question of di¡erent types of algorithms and numerical
methods for model solution. The numerical method chosen will of course depend
on the sort of models you are dealing with. We have discussed how computer
software and hardware will advance over coming years, but we should remember
that e¡orts spent on improving numerical algorithmswill pay dividends, especially
for more complex problems. Are those people who are developing technologies
for biological simulation spending much time considering the di¡erent sorts of
algorithms that might be used to solve the models? For example, if you are pri-
marily solving reaction^di¡usion equations, how much time is spent developing
algorithms that run particularly fast for solving the reaction^di¡usion models?
Loew: There’s a competing set of demands. We use a method called the ¢nite

volume method, which is very well adapted to reaction^di¡usion equations, but
is probably not the best approach. Finite element approaches might be consid-
erably faster. The problem with them, particularly on unstructured grids, is that
it is very di⁄cult to create a general-purpose software system that can produce
unstructured grids. An experienced modeller would tend to use unstructured
grids within a ¢nite element framework; but if we are trying to create a general-
purpose software system for biologists, at least so far we haven’t been able to
think of how to do this.
Subramaniam: Raimond Winslow, with the class of models that you talked

about, which are widely applicable, the issues that come up are often boundary
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conditions and geometries. How easy is it to develop general-purpose methods
that can scale across these? A second issue is that we need to have explosive
understanding of feedback regulation coming into the system. It is not obvious
to me at this point that this can be taken into account simply by parameterization.
Winslow: The problem with boundary conditions and representing complex

geometries is being dealt with rather well by the center for Bioelectric Field
Modeling, Simulation and Visualization at the University of Utah (http://
www.sci.utah.edu/ncrr/). They are building the bio problem-solving environment
using Chris Johnson’s ¢nite element methods to describe electric current £ow in
the brain and throughout the body. They have built nice graphical user interfaces
for readily adapting these kinds of models. I don’t have a sense for whether the
applications of those tools have moved to a di¡erent and distinct area, but I
would o¡er them as an example of a group that is doing a good job in creating
general purpose ¢nite element modelling tools for the community.
Subramaniam:This still doesn’t take into account the forces between the di¡erent

elements that we are dealing with at this point in time. You are doing a stochastic
force or a random force. You are not solving Newton’s equations, for example.
When you try to do this, the complexity becomes quite di⁄cult to deal with, in
that it cannot be dealt with in this framework.
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The heart cell in silico: successes,

failures and prospects

Denis Noble

University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK

Abstract. The development of computer models of heart cells is used to illustrate the
interaction between simulation and experimental work. At each stage, the reasons for
new models are explained, as are their defects and how these were used to point the way
to successormodels. Asmuch, if notmore,was learnt from theway inwhichmodels failed
as from their successes. The insights gained are evident in themost recent developments in
this ¢eld, both experimental and theoretical. The prospects for the future are discussed.

2002 ‘In silico’ simulation of biological processes. Wiley, Chichester (Novartis Foundation
Symposium 247) p 182^197

Modelling is widely accepted in other ¢elds of science and engineering, yet many
are still sceptical about its role in biology. One of the reasons for this situation in
the case of excitable cells is that the paradigm model, the Hodgkin^Huxley (1952)
equations for the squid nerve action potential, was so spectacularly successful that,
paradoxically, it may have created an unrealistic expectation for its rapid
application elsewhere. By contrast, modelling of the much more complex cardiac
cell has required many years of iterative interaction between experiment and
theory, a process which some have regarded as a sign of failure. But, in
modelling complex biological phenomena, this is in fact precisely what we
should expect (see discussions in Novartis Foundation 2001), and it is standard
for such interaction to occur over many years in other sciences. Successful
models of cars, bridges, aircraft, the solar system, quantummechanics, cosmology
and so on all go through such a process. Iwill illustrate this interaction in biological
simulation using some of themodels I have been involved in developing. Sincemy
purpose is didactic, I will be highly selective. Amore complete historical review of
cardiac cell models can be found elsewhere (Noble & Rudy 2001) and the volume
in which that article appeared is also a rich source of material on modelling the
heart, since that was its focus.
The developments I will use in this paper will be described in four ‘Acts’,

corresponding to four of the stages at which major shifts in modelling paradigm
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occurred. They also correspond to points at which major insights occurred, most
of which are now ‘acceptedwisdom’. It is the fate of insights that were hard-won at
the time to become obvious later. This reviewwill also therefore serve the purpose
of reminding readers of the role simulation played in gaining them in the ¢rst place.

Act I�Energy conservation during the cardiac cycle:

nature’s ‘pact with the devil’

FitzHugh (1960) showed that the Hodgkin^Huxley model of the nerve impulse
could generate a long plateau, similar to that occurring during the cardiac action
potential, by greatly reducing the amplitude and speed of activation of the delayed
K+ current, IK. These changes not only slowed repolarization; they also created a
plateau. This gave the clue that there must be some property inherent in the
Hodgkin^Huxley formulation of the sodium current that permits a persistent
inward current to occur. The main defect of the FitzHugh model was that it was
a very expensive way of generating a plateau, with such high ionic conductances
that during each action potential the Na+ and K+ ionic gradients would be run
down at a rate at least an order of magnitude too large.
That this was not the case was already evident since Weidmann’s (1951, 1956)

results showed that the plateau conductance in Purkinje ¢bres is very low. The
experimental reason for this became clear with the discovery of the inward-
recti¢er current, IK1 (Hutter & Noble 1960, Carmeliet 1961, Hall et al 1963). The
permeability of the IK1 channel falls almost to zero during strong depolarization.
These experiments were also the ¢rst to show that there are at least two K+

conductances in the heart, IK1 and IK (referred to as IK2 in early work, but now
known to consist of IKr and IKs). The Noble (1960, 1962) model was constructed
to determine whether this combination of K+ channels, together with a Hodgkin^
Huxley type Na+ channel could explain all the classical Weidmann experiments on
conductance changes. The model not only succeeded in doing this; it also
demonstrated that an energy-conserving plateau mechanism was an automatic
consequence of the properties of IK1. This has featured in all subsequent models,
and it is a very important insight. The main advantage of a low conductance is
minimizing energy expenditure.
Unfortunately, however, a low conductance plateau was achieved at the cost of

making the repolarization process fragile. Pharmaceutical companies today are
struggling to deal with evolution’s answer to this problem, which was to entrust
repolarization to the K+ channel IKr. A ‘pact with the devil’, indeed! This is one of
the most promiscuous receptors known: large ranges of drugs can enter the
channel mouth and block it, and even more interact with the G protein-coupled
receptors that control it. Molecular promiscuity has a heavy price: roughly US$0.5
billion per drug withdrawn. Simulation is now playing a major role in attempting
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to ¢nd a way around this di⁄cult and intractable problem (Muzikant & Penland
2002).
Figure 1 shows the ionic conductance changes computed from this model. The

‘emergence’ of a plateau Na+ conductance is clearly seen, as is the dramatic fall in
K+ conductance at the beginning of the action potential. Both of these
fundamental insights have featured in all subsequent models of cardiac cells.
The main defect of the 1962 model was that it included only one voltage gated

inward current, INa. There was a good reason for this. Ca2+ currents had not then
been discovered. There was, nevertheless, a clue in the model that something
important was missing. The only way in which the model could be made to work
was to greatly extend the voltage range of theNa+ ‘window’ current by reducing the
voltage dependence of the Na+ activation process (see Noble 1962 [Fig. 15]). In
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FIG. 1. Na+ and K+ conductance changes computed from the 1962 model of the Purkinje
¢bre. Two cycles of activity are shown. The conductances are plotted on a logarithmic scale to
accommodate the large changes in Na+ conductance. Note the persistent level of Na+

conductance during the plateau of the action potential, which is about 2% of the peak
conductance. Note also the rapid fall in K+ conductance at the beginning of the action
potential. This is attributable to the properties of the inward recti¢er IK1 (Noble 1962).



e¡ect, the Na+ current was made to serve the function of both the Na+ and
Ca2+ channels so far as the plateau is concerned. There was a clear prediction
here: either Na+ channels in the heart are quantitatively di¡erent from those in
nerve, or other inward current-carrying channels must exist. Both predictions are
correct.
The ¢rst successful voltage clamp measurements came in 1964 (Deck &

Trautwein 1964) and they rapidly led to the discovery of the cardiac Ca2+ current
(Reuter 1967). By the end of the 1960s therefore, it was already clear that the 1962
model needed replacing.

Act II�Controversy over the ‘pacemaker’ current:

the MNTmodel

In addition to the discovery of the Ca2+ current, the early voltage clamp
experiments also revealed multiple components of IK (Noble & Tsien 1969) and
that these slow gated currents in the plateau range of potentials were quite distinct
from those near the resting potential, i.e. that there were two separate voltage
ranges in which very slow conductance changes could be observed (Noble &
Tsien 1968,1969). These experiments formed the basis of the MNT model
(McAllister et al 1975).
This model reconstructed a much wider range of experimental results, and it did

sowith great accuracy in some cases.Agood example of thiswas the reconstruction
of the paradoxical e¡ect of small current pulses on the pacemaker depolarisation in
Purkinje ¢bres (see Fig. 2)�paradoxical because brief depolarisations slow the
process and brief hyperpolarizations greatly accelerate it. Reconstructing
paradoxical or counterintuitive results is of course a major function of modelling
work. This is one of the roles of modelling in unravelling complexity in biological
systems.
But the MNTmodel also contained the seeds of a spectacular failure. Following

the experimental evidence (Noble & Tsien 1968) it attributed the slow
conductance changes near the resting potential to a slow-gated K+ current, IK2.
In fact, what became the ‘pacemaker current’, or If, is an inward current activated
by hyperpolarization (DiFrancesco 1981) not an outward current activated by
depolarization. At the time it seemed hard to imagine a more serious failure than
getting both the current direction and the gating by voltage completely wrong.
There cannot be much doubt therefore that this stage in the iterative interaction
between experiment and simulation created a major problem of credibility.
Perhaps cardiac electrophysiology was not really ready for modelling work to be
successful?
This was how the failure was widely perceived. Yet it was a deep

misunderstanding of the signi¢cance of what was emerging from this experience.
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It was no coincidence that both the current direction and the gating were wrong as
one follows from the other. And so did much else in the modelling! Working that
out in detail was the ground on which future progress could be made.
This is the point at which to make one of the important points about the

philosophy of modelling. It is one of the functions of models to be wrong! Not,
of course, in arbitrary or purely contingent ways, but in ways that advance our
understanding. Again, this situation is familiar to those working in simulation
studies in engineering or cosmology or in many other physical sciences. And, in
fact, the failure of the MNT model is one of the most instructive examples of
experiment^simulation interaction in physiology, and of subsequent successful
model development. I do not have the space here to review this issue in all
its details. From an historical perspective, that has already been done (see
DiFrancesco & Noble 1982, Noble 1984). Here I will simply draw the
conclusions relevant to modern work.
First, careful analysis of the MNT model revealed that its pacemaker

current mechanism could not be consistent with what is known of the process of
ion accumulation and depletion in the extracellular spaces between cells. The
model itself was therefore a key tool in understanding the next stage of
development.
Second, a complete and accurate mapping between the IK2model and the new If

model could be constructed (DiFrancesco & Noble 1982) demonstrating how
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FIG. 2. Reconstruction of the paradoxical e¡ect of small currents injected during pacemaker
activity. (Left) Computations from the MNTmodel (McAllister et al 1975). Small depolarizing
and hyperpolarizing currents were applied for 100 ms during the middle of the pacemaker
depolarization. Hyperpolarizations are followed by an acceleration of the pacemaker
depolarization, while subthreshold depolarizations induce a slowing. (Middle) Experimental
records from Weidmann (1951, Fig. 3). (Right) Similar computations using the DiFrancesco^
Noble (DiFrancesco & Noble 1985) model. Despite the fundamental di¡erences between these
twomodels, the feature that explains the paradoxical e¡ects of small current pulses survives. This
kind of detailed comparison was part of the process of mapping the twomodels onto each other.



both models related to the same experimental results and to each other. Such
mapping between di¡erent models is rare in biological work, but it can be very
instructive.
Third, this spectacular turn-around was the trigger for the development of

models that include changes in ion concentrations inside and outside the cell, and
between intracellular compartments.
Finally, the MNT model was the point of departure for the ground-breaking

work of Beeler & Reuter (1977) who developed the ¢rst ventricular cell model.
As they wrote of their model: ‘In a sense, it forms a companion presentation to
the recent publication of McAllister et al (1975) on a numerical reconstruction of
the cardiac Purkinje ¢bre action potential. There are su⁄ciently many and
important di¡erences between these two types of cardiac tissue, both functionally
and experimentally, that a more or less complete picture of membrane ionic
currents in the myocardium must include both simulations.’ For a recent
assessment of this model see Noble & Rudy (2001).
TheMNTandBeeler^Reuter paperswere the last cardiacmodelling papers to be

published in the Journal of Physiology. I don’t think the editors ever recovered from
the shock of discovering thatmodels could bewrong! The leading role as publisher
was taken over ¢rst by the journals of The Royal Society, and then by North
American journals.

Act III� Ion concentrations, pumps and exchangers:

the DiFrancesco^Noble model

The incorporation not only of ion channels (following the Hodgkin^Huxley
paradigm) but also of ion exchangers, such as Na+^K+ exchange (the Na+

pump), Na+^Ca2+ exchange, the SR Ca2+ pump and, more recently, all the
transporters involved in controlling cellular pH (Ch’en et al 1998), was a
fundamental advance since these are essential to the study of some disease states
such as congestive heart failure and ischaemic heart disease.
It was necessary to incorporate the Na+^K+ exchange pump since what made If

so closely resemble a K+ channel in Purkinje ¢bres was the depletion of K+ in
extracellular spaces. This was a key feature enabling the accurate mapping of the
IK2 model (MNT) onto the If model (DiFrancesco & Noble 1982). But, to
incorporate changes in ion concentrations it became necessary to represent the
processes by which ion gradients can be restored and maintained. In a form of
modelling ‘avalanche’, once changes in one cation concentration gradient (K+)
had been introduced, the others (Na+ and Ca2+) had also to be incorporated since
the changes are all linked via the Na+^K+ and Na+^Ca2+ exchange mechanisms.
This ‘avalanche’ of additional processes was the basis of the DiFrancesco^Noble
(1985) Purkinje ¢bre model (Fig. 3).
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Biological modelling often exhibits this degree of modularity, making it
necessary to incorporate a group of protein components together. It will be one
of themajor challenges of mathematical biology to use simulation work to unravel
the modularity of nature. Groups of proteins co-operating to generate a function
and therefore being selected together in the evolutionary process will be revealed
by this approach. This piecemeal approach to reconstructing the ‘logic of life’
(which is the strict meaning of the word ‘physiology’� see Boyd & Noble 1993)
could also be the route through which a systematic theoretical biology could
eventually emerge (see the concluding discussion of this meeting).
The greatly increased complexity of the DiFrancesco^Noble model, which for

the ¢rst time also represented intracellular events by incorporating a model of
calcium release from the sarcoplasmic reticulum, increased both the range of
predictions and the opportunities for failure. Here I will limit myself to one
example of each.
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FIG. 3. Mapping of the di¡erent models of the ‘pacemaker’ current. The ¢lled triangles show
the experimental variation of the resting potential with external bulk potassium concentration,
[K+]b, which closely follows the Nernst equation for K+ above 4mM. The open symbols show
various experimental determinations of the apparent ‘reversal potential’ for the pacemaker
current. The closed circles and the solid lines were derived from the DiFrancesco^Noble
(1985) model. The new model not only accounted for the remarkable ‘Nernstian’ behaviour of
the apparent reversal potential; it also accounted for the fact that all the experimental points are
above (more negative than) the real Nernst potential by around 10^20mV (the solid lines show
14 and 18mV discrepancies).



Perhaps the most in£uential prediction was that relating to the Na+^Ca2+

exchanger. In the early 1980s it was still widely thought that the original
electrically neutral stoichiometry (Na+: Ca2+¼2:1) derived from the early £ux
measurements was correct. The DiFrancesco^Noble model achieved two
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FIG. 4. The ¢rst reconstruction of Ca2+ balance in cardiac cells. TheHilgemann^Noble model
incorporated complete Ca2+ cycling, such that intracellular and extracellular Ca2+ levels returned
to their original state after each cycle and that the e¡ects of sudden changes in frequency could
be reproduced. (Left) Simulation using the single-cell version of the model (Earm & Noble
1990). (a) Action potential. (b) Some of the ionic currents involved in shaping repolarization.
(c) Intracellular Ca2+ transient and contraction. (Right) Experimental recordings of ionic current
during voltage clamps at the level (^40mV) of the late phase of repolarization showing a time
course very similar to the computed Na+^Ca2+ exchange current. As the Ca2+ bu¡er (BAPTA)
was infused to raise its concentration from 20 mM to 1mM the current is suppressed (fromEarm
et al 1990).



important conclusions. The ¢rst was that, with the experimentally known Na+

gradient, there simply wasn’t enough energy in a neutral exchanger to keep
resting intracellular Ca2+ levels below 1 mM. Switching to a stoichiometry of 3:1
readily allowed resting Ca2+ to be maintained below 100 nM. This automatically
led to the prediction that there must be a current carried by the Na+^Ca2+

exchanger and that, if this exchanger was activated by intracellular Ca2+, it must
also be strongly time-dependent as intracellular Ca2+ varies by an order of
magnitude during each action potential. Even as the model was being published,
experiments demonstrating the current INaCa were being performed (Kimura et al
1986) and the variation of this current during activity was being revealed either as a
late component of inward current or as a current tail on repolarization.
The main failure was that the intracellular Ca2+ transient was far too large. This

signalled the need to incorporate intracellular Ca2+ bu¡ering.

Act IV�Ca2+ balance: the Hilgemann^Noble model

This de¢ciencywas tackled in theHilgemann^Noble (1987) modelling of the atrial
action potential (Fig. 4). Although this was directed towards atrial cells, it also
provided a basis for modelling ventricular cells in species (rat, mouse) with short
ventricular action potentials. This model addressed a number of important
questions concerning Ca2+ balance:

(1) When does the Ca2+ that enters during each action potential return to the
extracellular space? Does it do this during diastole (as most people had
presumed) or during systole itself, i.e. during, not after, the action
potential? Hilgemann (1986) had done experiments with tetra-
methylmurexide, a Ca2+ indicator restricted to the extracellular space,
showing that the recovery of extracellular Ca2+ (in intercellular clefts)
occurs remarkably quickly. In fact, net Ca2+ e¥ux is established as soon as
20 ms after the beginning of the action potential, which at that time was
considered to be surprisingly soon. Ca2+ activation of e¥ux via the Na+^
Ca2+ exchanger achieved this in the model (see Hilgemann & Noble 1987,
Fig. 2).

(2) Where was the current that this would generate and did it correspond to the
quantity of Ca2+ that the exchanger needed to pump?Mitchell et al (1984) had
already done experiments in rat ventricle showing that replacement of Na+

with Li+ removes the late plateau. This was the ¢rst experimental evidence
that the late plateau in action potentials with this shape might be maintained
by Na+^Ca2+ exchange current. The Hilgemann^Noble model showed that
this is what one would expect.
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(3) Could a model of the SR that reproduces at least the major features of
Fabiato’s (1983, 1985) experiments showing Ca2+-induced Ca2+ release
(CICR) be incorporated into the cell models and integrate in with whatever
were the answers to questions 1^2? This was amajor challenge (Hilgemann&
Noble 1987). Themodel followed asmuch of the Fabiato data as possible, but
the conclusions were that the modelling, while broadly consistent with the
Fabiato work, could not be based on that alone. It is an important function
of simulation to reveal when experimental data needs extending.

(4) Were the quantities of Ca2+, free and bound, at each stage of the cycle
consistent with the properties of the cytosol bu¡ers? The answer here was a
very satisfactory ‘yes’. The greatmajority of the cytosol Ca2+ is bound so that,
although much more calcium movement was involved, the free Ca2+

transients were much smaller, within the experimental range.

There were however some gross inadequacies in the Ca2+ dynamics. An additional
voltage-dependence of Ca2+ release was inserted to obtain a fast Ca2+ transient.
This was a compromise that really requires proper modelling of the
subsarcolemmal space where Ca2+ channels and the ryanodine receptors interact,
a problem later tackled by Jafri et al (1998) (also see recent review byWinslow et al
2000, Noble et al 1998). Another problem was how the conclusions would apply
to action potentials with high plateaus. This was tackled both experimentally
(Le Guennec & Noble 1994) and computationally (Noble et al 1991, 1998). The
answer is that the high plateau in ventricular cells of guinea-pig, dog, human, etc.,
greatly delays the reversal of the Na+^Ca2+ exchanger so that net Ca2+ entry
continues for a longer fraction of the action potential. This property is important
in determining the force-frequency characteristics.
I end this historical survey at this point, not because this is the end of the story

(see Noble & Rudy 2001), but because these examples deal with the major
developments that formed the groundwork for all the current, enormously
wide, generation of cellular models of the heart (all cell types have now been
modelled, including spatial variations in expression levels), and they illustrate the
main conclusions regarding in silico techniques that I think are relevant to this
meeting.

Finale�Future challenges and the nature of biological simulation

This article has focused on the period up to 1990, which can be regarded as the
‘classical period’ in which the main foundations of all cardiac cellular models
were laid. Since 1990 there has been an explosion of modelling work on the heart
(see Hunter et al 2001, and the volume that this article introduces). There are
multiple models of all the cell types, and I con¢dently predict that there will be
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many more to come. Why do we have so many? Couldn’t we simply ‘standardize’
the ¢eld and choose the ‘best’? To some extent, that is happening. None of the
historical models described in this article are now used much in their original
form. Knowledge does advance, and so do the models that represent it!
Nevertheless, it would be a mistake to think that there can be one, canonical,
model of anything.
One of the major reasons for the multiplicity of models is that there will always

be a compromise between complexity and computability. A good example here is
the modelling of Ca2+ dynamics (discussed in more detail elsewhere in this
volume). As we understand these dynamics in ever greater detail, models become
more accurate and they encompass more biological detail, but they also become
computationally demanding. This was the motivation behind the simpli¢ed
dyadic space model of Noble et al (1998), which achieves many of the required
features of the initiation of Ca2+ signalling with only a modest (10%) increase in
computation time, an important consideration when importing such models into
models of the whole heart. But no one would use that model to study the ¢ne
properties of Ca2+ dynamics at the subcellular level. That was not its purpose.
There will probably therefore be no unique model that does everything at all
levels. Any of the boxes at one level could be deepened in complexity at a lower
level, or fused with other processes at a higher level. In any case, all models are
only partial representations of reality. One of the ¢rst questions to ask of a
model therefore is what questions does it answer best. It is through the
iterative interaction between experiment and simulation that we will gain that
understanding.
It is however already clear that incorporation of cellmodels into tissue and organ

models is capable of spectacular insights. The incorporation of cell models into
anatomically detailed heart models (recently extensively reviewed by Kohl et al
2000) has been an exciting development. The goal of creating an organ model
capable of spanning the whole spectrum of levels from genes (see Clancy & Rudy
1999, Noble & Noble 1999, 2000) to the electrocardiogram (see Muzikant &
Penland 2002, Noble 2002) is within sight, and is one of the challenges of the
immediate future. The potential of such simulations for teaching, drug
discovery, device development and, of course, for pure physiological insight is
only beginning to be appreciated.
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DISCUSSION

Winslow: I think there are some instances where the reverse happens: sometimes
the experiments are at fault, and not the models. There’s a tendency among
biologists to think of the experimental data as being the last word. They don’t
always appreciate that there are many things that can’t be controlled in their
particular preparations. Sometimes the model can shed insight into what those
uncontrolled variables might be and explain a discrepancy between experiment
and model.
Noble: You gave a nice example of this in your work: the failure to realize that

Ca2+ bu¡ers don’t do the job we hoped they would do. This is a good example of
this kind of problem in experimental analysis.
Ashburner: Sydney Brenner put this very well: we should never throw away a

good theory because of bad facts (Brenner 2001).

194 DISCUSSION



Crampin: Denis Noble, if you are right in saying that models are most useful
when they fail, and that this is a message that needs to be got across to the
biology community, could this not lead to a problem if we are also trying to sell
these technologies to the pharmaceutical industry? If they think that part of the
point of what we are doing is that simulations will also fail, might they be less
ready to take them on board?
Noble: I believe that the pharmaceutical industry is vastly more sophisticated

than that. Of course, we don’t design a model to fail. Let me illustrate a good
way in which one could put the point that would be of relevance to the
pharmaceutical industry, or indeed any of us with an interest in unravelling the
‘logic of life’. Suppose that you ¢nd that there is an element missing from your
model, or at least what you have got is an aspect of what it is that you are trying
to reconstruct but you can’t reconstruct it. A good example of this in one of my
areas of modelling, pacemaker activity in the heart, would be the recent discovery
byAkinoriNoma and his colleagues in Japan of yet another pacemakermechanism
(Guo et al 1995). There are two things that modelling has contributed to that,
including the models that failed earlier on because they lacked it. The ¢rst is an
understanding of the robustness of that particular functionality. If you have
something like four fail-safe mechanisms involved in the pacemaker mechanism,
then it is clearly an important thing for evolution to have developed. It is not
surprising that it has developed so many fail-safe mechanisms. What the
progressive addition of one mechanism after another involved is revealing is that
you have unravelled part of the logic of life, part of the reason for the robustness of
that particular physiological function.
Berridge: What might the evolutionary pressure have been? What were the

evolutionary changes that would have led to a cell selecting such a fail-safe
mechanism? Presumably if it has selected a second mechanism and the ¢rst one
failed, it would have a selective advantage over an organism with just one. But it
is di⁄cult to imagine how a cell would develop three or four di¡erent fail-safe
mechanisms.
Ashburner: Noble’s example of four fail-safe heart pacemakers illustrates the

‘Boeing 747’ theory of evolution. It is very common among na|« ve molecular
biologists.
Noble: The answer I was going to give was to refer to the new mechanism that

Akinori Noma has identi¢ed, which is a low voltage-activated Na+ channel. It
comes in at a certain phase in the pacemaker depolarization. If you put it into our
cell models, there is virtually no change. It is as though this particular mechanism
doesn’t matter until you start to put on agents such as acetylcholine or adrenaline
that change frequency. Then, this mechanism turns out to be a beautiful re¢ning
mechanism. I don’t knowhow evolution discovered that, but I can see its function.
The previous models show that this re¢nement is lacking. It is not a case where the
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modelling actually identi¢ed the need for an extra channel, but it has certainly
enabled us to understand this and then in turn to understand if you developed a
drug to go for this what use it would be. Now let me give you an example the other
way round,where the spotting of a failure helped enormously.One of the gaps that
early pacemakermodelling identi¢edwas the need to suppose that there had to be a
backgroundNa+ channel. That is, not a Na+ channel that activates at the threshold
for the standard Na+ current, but that there is a background Na+ £ux. At the time
this was introduced there was no experimental evidence for it. It has now been
con¢rmed that there is such a background Na+ channel (Kiyosue et al 1993): we
know its characteristics and selectivity, but we don’t know its protein or gene. It
leads to a very signi¢cant result. The background channel contributes about 80%
of the pacemaker depolarization. If this had beenwrong, it would have been a huge
mistake, but it was necessary and the modelling identi¢ed it as necessary. We have
no blocker for this channel at the moment, but in the model you can do the
‘thought experiment’ of blocking it. It produces a counterintuitive result. Since
it is carrying 80% of the current, if we block it we’d at least expect to see a large
slowing. But what we see is that there is almost no change in pacemaker activity: a
fail-safe mechanism kicks in and keeps the pacemaker mechanism going (Noble et
al 1992). There is just a slight deceleration. Such a deceleration of cardiac
pacemaker activity could be therapeutic in certain circumstances, and so attempts
to ¢nd cardiac slowers might be worthwhile. If we could ¢nd a drug that targets
this channel it would be a marvellous cardiac slower, but we don’t yet know the
protein or gene. Nevertheless, we have a clue. I was at a meeting recently at which
David Gadsby gave an account of how the Na+/K+ exchange pump can be
transformed into a channel by digesting part of it o¡ (Artigas & Gadsby 2001).
He and I went through the characteristics of this ‘Na+ pump channel’, and it
almost exactly matches the properties of the background Na+ channel. I have a
hunch that what nature has done is to use this Na+ pump protein to make a
channel by a little bit of deletion that has this property. The complicated answer
to your question, EdmundCrampin, is that it unpacks di¡erently in each case, yet it
would amaze me if people working in the pharmaceutical world were not
su⁄ciently sophisticated to appreciate that it is the unpacking that gives the
insight, and it is this that gives us the leads to potentially important drugs.
Levin: I was struck by your account of the history of model building. It may be

worth re£ecting that the Hodgkin^Huxley model was published at around the
same time as Crick, Watson and others developed their work on DNA. In my
opinion there seems to have occurred a default within the world of biology at
that moment between molecular biology and physiology. A large number of
scientists saw experimental biology progressing largely down the road of
molecular biology, while a smaller number were increasingly restricted to
experimental physiology (and the domain of modelling). Over the years this
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division has been progressively more emphasized. The work in the 1970s on
genetic manipulation enhanced and accelerated this process. With the emerging
understanding of biological complexity, this process has now come full circle.
We are now seeing a convergence, putting back into perspective the relative role
of the reductive and integrative sciences. I don’t think the question is somuchwhat
will it take biologists to get back into modelling� they will be forced to by
biology. But instead it is, what will it take for modellers to actually think about
biological problems?
Ashburner: Denis Noble, I think you made a very strong case for the utility of

failure, but yourmodelsmaynot be a typical example. The fundamental intellectual
basis of the modelling that you have done over the last decades hasn’t changed.
More knowledge has come, but there are in the history of theoretical biology
dramatic examples of fundamental failure of ‘models’ which have no utility at all,
because the whole intellectual basis of that modelling was wrong. These failures
have cast theoretical biology in a very poor light.
Noble: Let’s remember also that there have been spectacular dead ends in

experimental work, too.
Ashburner: I see from what you have presented now that modelling undergoes

progressive evolution and you are learning from your mistakes.
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General discussion IV

Noble: I have identi¢ed three somewhat interlocking topics that we ought to
address during this general discussion. One is the ¢lling of the gap: what is it that
the people who are not here would be able to tell us, and in particular the sort of
work that Lee Hood is doing (I am going to ask Jeremy Levin and Shankar
Subramaniam to comment on this). Second, there is the issue of the acceptability
or otherwise of modelling in the biological community, and connected to that,
thirdly, the question of training.
Levin:Although I wouldn’t want to attempt to represent what Lee Hood or his

institute are doing, I would like to draw out some of the essence of this work.
Across the world there are many di¡erent modelling groups. In Lee’s case, the
Institute for Systems Biology has brought together a fairly remarkable group of
people from diverse backgrounds, including mathematicians, physicists,
biologists and talented engineers who build instruments required for high-
throughput biology. These people have been brought together to solve a set of
particular problems ranging from bacterial metabolism through to innate
immunity. If I were to encapsulate the discussions I have had with Lee and
members of his team it would be that they understand the requirements for
biological computing to be part of an integrative spectrum that extends from
bioinformatics through to simulation, and is an essential step to take for
biologists. They also understand the interplay of experimental design as a core
component in modelling, such that modelling becomes the basis for experimental
design. We have had extensive discussions around the importance of iterating
between experimental design, developing a particular instrument to measure the
speci¢c data that will then be incorporated in the model and that will in turn then
test the experiment, creating a better model.
Subramaniam:Theway they think aboutmodelling biological phenomena is that

they start with molecular-level processes. Then there is the integration mode,
which is already entering the systems-level approaches, dealing with the
collections and interactions of molecules. The next level is modelling the
network in terms of equations of motions, with standard physical equations. The
question is, howdowe bridge these di¡erent levels? There are fourways of doing it
that are generally used, and Lee Hood’s is one of these. The ¢rst way is to ask the
following question. All this molecular level interaction is data modelling, so how
do we incorporate this in an e¡ective way into equation modelling? This issue is to
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some extent unresolved.Having said this, there are three approaches people take to
solve these kinds of things. One, taken by some of the chemotaxis people, is to use
control theory level modelling: they create a network, ask a question and carry out
sensitivity analysis of this dynamical network. Canwemodel such a network using
simple equations ofmotion?The second approach is the oneGreg Stephanopolous
and Bernhard Palsson do. They are chemical engineers and they use £ux balance
modelling. It is easy to do this in metabolic processes: you start with a metabolite
which gets successively degraded in di¡erent forms.You can ask the question, can I
use simple conservation loss of the overall concentrations to combine coupled
concentration equations and solve a matrix? This may give solutions that will
narrow the space down and tell us what are the spatial solutions under which a
cell can operate. This is what Bernhard Palsson talks about with regard to
genotype^phenotype relationships: he can say that one of the spaces is restricted
by using this choice of conditions. For that you need to know all the reactions of
the cell. It is only good for linear networks. The third level of modelling deals with
kinetic modelling, which is that once you know all the reactions you can piece it all
together into kinetic schemes andmodel it in a similar way towhat Les Loew does.
You can ¢t this into an overall kinetic equation network pathway model. This is
more explanatory at this point than predictive. What Lee Hood’s group wants to
do is to combine all these di¡erent approaches, but his main focus is the following,
and this is illustrated by his one publication which deals with galactose pathway
modelling. The galactose pathway modelling idea is very interesting, because it
tries to combine the data modelling (experimental data from expression pro¢le
analysis) along with a pathway model which is obtained by taking all these
di¡erent nodes in a pathway and seeing what combinatorics you can get with the
constraints of the experiment. This is an element that is very important, and is
missing today in biology: how do we take experimental data and use it to
constrain the models at a physical level? This is to a large extent what Lee would
like to do with mammalian cells. The moment we talk about cell signalling it is no
longer possible.
McCulloch: Presumably this is because you can’t invoke conservation of mass to

constrain the solution space.
Subramaniam: Let me summarize all of this. We currently have high-throughput

data coming from chemical analysis, reaction networks and cellular analysis. How
can we use these high-throughput data as constraints in equations in a model? Is
each case going to be its own case, in which case it becomes a task for every
modeller to do their own thing? Or are there general principles that are
emerging? How can we incorporate the use of high-throughput data as
constraints in this modelling? Is this also going to be generalizable at some level,
or is it going to be speci¢c to each problem?This is a fundamental issue that Jeremy
Levin and I wanted to bring up for discussion.
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McCulloch: I’d like to add a question here. If you use the analogy with £ux
balance analysis and/or energy balance analysis approaches to metabolic pathway
modelling, there are two features that have been employed. One is the use of
physical constraints to narrow the solution space. This still leaves an in¢nite
number of solutions. The way that Bernhard Palsson, for example, has been able
to ¢nd particular solutions is by invoking an optimization criterion, usually that of
maximizing growth. I have a question: is it a worthwhile endeavour to search for
equivalent optimality criteria in signalling pathways? Is this a search for a
theoretical biology, or does it not exist?
Subramaniam:Wehave a partial answer to that questionwhichwe have not tested

extensively. In a metabolic pathway case, you have a starting point and an end
point, and these are the constraints. The intermediate constraints are metabolite
concentrations. In signalling, you don’t have such a thing. What you really have
is signal £ux, which bifurcates and branches out. It is the enzymes such as kinases
which phosphorylate things that are often intermediate constraints: this is a
conserved concentration of either phosphorylated or unphosphorylated states. If
you talk about protein^protein interactions, there is the interacting state and the
non-interacting state. These are local constraints in terms of going though this
chain of £ux of the signal. We should be able to use these local constraints to do
similar types of constrained modelling, and optimize the ultimate phenotype,
which in this case would be the end point of the signalling, such as transcription
factor initiation.
Winslow: One additional reason that it is important is because the kinds of

biophysically based models that we are all constructing are now so complex that
our ability to build them from the bottom up is becoming very limited. It is hard to
add a new component to a complex model and ensure that all the data that the
model was based on originally are still being described well by the new model. It
is di⁄cult to knowhowprecisely to adjust parameters to bring that newmodel into
accordance with all of the ever-increasing body of data. What we need (this is an
easy thing to say) is an understanding of how nature self-assembles these systems.
This may mean that we need to understand the optimality principles: the cost
functions that are being minimized by nature.
Cassman: One way of addressing this is to look for functional motifs within

models, such as ampli¢ers and transducers. For example, Jim Ferrall has shown
that the phosphorylation cascade is not an ampli¢cation mechanism, but actually
an on^o¡ switch, and works as a histeresis module to go up very sharply and then
remain on and return to ‘o¡’ only very slowly. Perhaps this is one way to put
together modules. We could build models by trying to identify the operating
components: the switches, transducers, ampli¢ers and so on. These may be
conserved within biological systems.
Levin: It would be surprising if they weren’t.
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Ashburner: I’m very surprised to hear that you can’t use optimization in
modelling signal transduction.
Subramaniam: I am not saying you cannot do optimization. You can do this, but

you do not know the local constraints. There are in¢nite solutions which will give
you the same optimum endpoint.
Ashburner: Telecommunications engineers have been working hard for a long

time to ¢nd out how best to optimize getting the signal from one end of the world
to the other.
Subramaniam: Absolutely, but that is easier to do because there are standard

components.
Hunter: I want tomake the point that in thinking aboutmodels generally (and in

thinking about people in themodelling community who are not represented here),
and relating back to the comment that one of the great attractions of reaction^
di¡usion models is that they apply in many areas, we don’t want to lose sight of
the fact that there are many classes of modelling that we haven’t considered here,
yet are relevant to human physiology. I would list things like soft tissuemechanics,
£uid £ow, circulation, issues of transport generally, electromagnetic modelling
and optics. There is a whole class of models that haven’t arisen in our discussions.
Paterson:One way to look at what is optimal for signalling is to talk about what

function a particular cellular component is playing in the role of the entire
organism. In much of my organization’s work we don’t know the identity of all
the proteins that characterize the input^output relationships for di¡erent cells, and
that participate in di¡erent systems. For example, in the work that we have done in
diabetes, the number of constraints that we have by starting and looking at clinical
data, simply to make the whole body metabolism stable under di¡erent levels of
exercise and food intake, are quite powerful. We may not currently understand
every protein interaction for every signal transduction cascade, but the only
way to make the system stable and reproduce a variety of di¡erent clinical
data that perturb the system in very orthogonal ways, is for us to characterize
the in vivo envelope of that part of the system. I think there are some powerful
ways to impose those constraints by means of the context. Whether or not
anyone has tried to ¢gure out how to do an optimization around that is another
question.
Noble:You could call those top^down constraints. Incidentally, you could think

of what I described rather colourfully as the pact that evolution has made with the
devil in terms of cardiac repolarization as a lovely optimization problem.What has
happened there is that it has gone for optimizing energy consumption�you can
have as long an action potential as you need with minimal energy consumption�
and presumably in the balance someone dropping dead at the age of 55 after a
squash game is a small price to pay for the rest of humanity having all of that
energy saved!
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Hinch:Linking back towhat RaimondWinslowwas saying aboutwhen you add
an additional thing to a model worrying about what it does to the previous data, it
is useful to consider the work of John Reinitz in Stonybrook on patterning in
Drosophila. They have a model based on a gene network, with six or seven genes
and loads of interactions: themodel has some 60 parameters. They really don’t have
good idea about many of the parameters, but they have a very good, large data set.
They use numerical techniques to ¢t all the parameters to all their data in one go. By
doing this they come up with some interesting things about the topology of the
network. This is something that I have felt may be worth doing with cardiac cells:
getting all the data together and then using one of these numerical techniques to
piece all the parameters together in one go.
Shimizu: There must be an upper limit to how many parameters you could use.
Hinch: It would probably depend on the quality and the type of data. They are

doing about 60 parameters, and it takes a large cluster of computers quite a long
time to do it. In principle, it can be done but you are correct in suggesting that
scalability is a potential problem.
Hunter:There are people looking at this issue, such as SocratesDokos in Sydney,

who is looking at parameter optimization for connecting cardiac models to
measured current^voltage data and action potential data. It is needed.
Noble: I wonderwhetherwe could now focus on the issues of the acceptability of

modelling and the training of people who could operate in this area. I threw up a
challenge to the mathematicians and engineers to think a bit about this.
Cassman: Earlier, Jeremy Levin put the onus on the modellers to develop

mechanisms to be able to make them accessible to the biologists. I would go the
other way round, frankly. You mentioned that 99.9% of the biologists don’t do
modelling, and I think there are several reasons for this, and these are serious
barriers that have to be overcome. One is that for a long time much of biology
has been an area for people who want to do science without mathematics. These
are not people who are going to readily accept mathematical models, because they
are afraid of maths. The second is that a mindset has developed as a consequence of
the success of molecular genetics that regards single-gene defects as the primary
paradigm for the way one thinks about biology. This means that thinking about
networks is going to require some degree of retraining. People just aren’t
conditioned to do that. Frankly, I think the answer is not that dissimilar from the
way it is in much of science: you have to wait for people to die before a paradigm
changes! The students are very interested and are anxious to get into programs that
will give them both the biology and themathematics. The real question is, what do
you expect as an endpoint? Do you expect people to be able to do both themselves,
with intensive training in both biology andmaths?Or do youwant peoplewho can
communicate, and this is good enough? I don’t think it’s either/or. There will be
both, although relatively fewer of the ¢rst type. We need to be able to design
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programs that will allow people tomake that change. I think that most of themore
senior current practitioners will have a hard time making that transition.
Levin: This is a good point. At its core, the process requires inducing students

who are learning molecular biology to appreciate the role mathematics has as an
integral component of their science. We run the training programs for molecular
biologists, and it has been striking how extraordinarily responsive these young
people are to modelling and using computers to extend their thinking. They are
able to enter into an environment they have never seen before, adopt a mode of
thinking very rapidly over a period of one or two months, and adopt modelling.
I would say that it is incumbent on us as modellers, in as much as we are training
biologists, to start thinking about the tools we use to train people. It is absolutely
impossible for one of the new students to go back and become a mathematician.
What they want to be able to do is to have intuitive tools which by virtue of, for
example, drawing a simple diagram (a ‘visual model’), automatically generate a
mathematical model that they can then populate with their data. From this they
can design experiments and create and test hypotheses. I ¢nd myself deeply
impressed with the rate at which the young people pick this up, given the right
tools.
Ashburner:Marvin Cassman, part of your diagnosis is wrong.What I would call

the aristocratic period of molecular genetics probably ended in 1974 and was
succeeded by the demotic period dominated by cloning and sequencing; the
elucidation of the life cycle of l is nothing if it is not a model. Go back to Jacob
andMonod: this was done by classical genetic analysis, but the famous 1961 paper
was a model (Jacob &Monod 1961).
Cassman:Let’s talk about quantitative models as opposed to descriptivemodels.

If you are talking about quantitative models, that of Changeux, Monod and
Wyman was a quantitative theory, because Wyman was around, not because of
Monod and Changeux. There are other examples, but they are relatively limited
in molecular genetics.
Winslow: Marvin Cassman asked the question about how we should educate

students in biology. It is critical that biologists should know mathematics and/or
engineering principles. It has to be part of their education. Modelling is not going
to advance if the process of modelling is turn key. If you go to a system and you
don’t know themathematics and numerical methods behind it, and simply use that
system, just asDenisNoble has pointed out thatmodels are inherent failures, so the
numerical methods embodied in the simulators are also subject to inherent failures.
People who use them need to understand this. The problem is that there is somuch
to teach a student, so how do we balance it? We face this every day in our
biomedical engineering programs. The way we approach it is to teach biology in
the context of engineering. Biology is presented to students via an engineering and
mathematics framework.
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Cassman: For what it is worth, the National Academy of Sciences in the USA is
completing a study on a revision of curricula in biology at the undergraduate and
graduate levels. They are going to recommend a heavy dose of mathematics,
starting early. It is a little hard to bring people into the graduate level and to
expect them to swallow all of that, but they need to be started at a relatively early
stage.
Noble: That’s when I learned my mathematics, but that is ancient history!
Cassman: It is not that you can’t do it, just that it is much harder then.
Boissel: Don’t you think there are two di¡erent objectives that should be

achieved through training? One is for the biologists to use formal modelling.
The other is to have more specialized people able to develop new models. For the
¢rst, we need to enable biologists to communicate with engineers; for the second
we need people who are able to do both biology and maths.
Subramaniam: The education issue is signi¢cant. There are two institutions�

Caltech and MIT�which have started a compulsory biology course for
undergraduate engineers. Similarly, for biology students there is currently no
equivalent requirement for mathematics. Having said this, some of the problems
start at the high school level: many biology undergraduates will not have studied
maths at a calculus level. They automatically preselect themselves to go into
biology because they say there is no maths in biology. I also want to comment on
RaimondWinslow’s point. It is not su⁄cient if you just train biologists in terms of
learning calculus or di¡erential equations, for the following reason. One of the
fundamental principles the engineers learn is how to coarse grain a system: how
to model a system to get the required level of sophistication to compare with the
experiment. This is not something that comes from just learning maths. It comes
from engineering approaches towards systems. The third issue deals with
quantitatively orientated people learning biology. One of the problems we have
encountered with physicists, chemists and mathematicians is they do not care for
the ‘devil is in the details’ biology. If you don’t care for the details, you only
contribute super¢cially. One of the ¢rst things we need to do is to make sure that
the students who come to us learn gory details in biology. At least then they can do
the coarse graining principles at some level. The fourth thing that needs to be
addressed is that it is not su⁄cient to know maths or biology. You also need to
know scienti¢c computing and data management. This is very di¡erent from just
learning maths. We have students who know very sophisticated maths and
biology, but who don’t know anything about computing. This is a serious
problem, because today all the modelling is done with real data. To deal with this
we need to understand data structures. It may be worthwhile integrating people
who make games for children and students to make games involving cells.
Instead of warriors shooting each other’s heads o¡, you could have T cells and B
cells ¢ghting infections!
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Paterson: It has been our experience that precisely because it takes years of
training to do mathematics and biology really well, there is tremendous value in
keeping those skill sets in two separate heads. The checks and balances you get by
providing a team environment where those people communicate e⁄ciently
capitalizes on the strengths.
McCulloch: That’s what people said 15 years ago about bioengineering as an

undergraduate discipline. Medical device companies started o¡ hiring specialists,
but now bioengineering graduates are employed for those positions. It is not that
the specialists don’t still exist in these companies, but having people with the
information in one head has proven extremely valuable.
Levin:TomPaterson has a good point. There is a distinction between creating an

educational environment and creating an organization that is designed to deliver a
product every two months. There is an element of what Tom is describing that is
temporal: we don’t yet have the expertise that provides for organizations such as
Tom’s and mine the kind of people who can deliver on a model straight out of the
graduate programs. We are forced to recruit the experts and create teams. An
optimal team in our case is three-headed: a superb mathematician, a superb
engineer and a biologist who really understands what they are doing. They can
grow on either side of that. One thing that is essential, underlying this, is that
they all understand the language.
Loew: Marvin Cassman mentioned the older generation of biologists, and I

agree that this is an issue. On the other hand, from a practical point of view, they
are also in£uencing the younger scientists. We shouldn’t be giving up on them.
From the point of view of the science of biology, there are many of these
scientists and they are very good scientists. What I have found is that the good
biology investigator is highly focused on his problem and will be motivated to
learn a new technique such as modelling if he or she is convinced that it will
advance their work. We need to be ambassadors for modelling in terms of
reaching out to our colleagues.
Noble: I have had a recent and beautiful experience of that nature, attending a

meeting that was addressing the question of whether the Na+/Ca2+ exchanger was
or was not a good guy in relation to cardiac ischaemia. A set of experimentalists
were presenting data that I was able to show, using simulation, were inexplicable. I
demonstrated that the level of Ca2+ they had recorded during ischaemia was not
possible to understand with their data. We retired and sat down at the computer,
trying toworkwhat elsewas going on that could explain this phenomenon.We ran
a simulation that got the required result (Noble 2002). This is a team that has
absolutely no modelling experience, but what they have now asked for is to have
hands on the model. They want to play with it. Once it is demonstrated that not
only can you point out that something isn’t understood, but you can then interact
with a set of experimentalists to determine what would be needed in order to
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resolve the issue, then you have people queuing up to get further understanding.
This comes back to the point I emphasized earlier on. The ‘hands on’ is necessary.
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Abstract.Modernmedicine is currently bene¢ting from the development of newgenomic
and proteomic techniques, and also from the development of ever more sophisticated
clinical imaging devices. This will mean that the clinical assessment of a patient’s
medical condition could, in the near future, include information from both diagnostic
imaging and DNA pro¢le or protein expression data. The Physiome Project of the
International Union of Physiological Sciences (IUPS) is attempting to provide a
comprehensive framework for modelling the human body using computational
methods which can incorporate the biochemistry, biophysics and anatomy of cells,
tissues and organs. A major goal of the project is to use computational modelling to
analyse integrative biological function in terms of underlying structure and molecular
mechanisms. To support that goal the project is establishing web-accessible
physiological databases dealing with model-related data, including bibliographic
information, at the cell, tissue, organ and organ system levels. This paper discusses the
development of comprehensive integrative mathematical models of human physiology
based on patient-speci¢c quantitative descriptions of anatomical structures and models
of biophysical processes which reach down to the genetic level.

2002 ‘In silico’ simulation of biological processes. Wiley, Chichester (Novartis Foundation
Symposium 247) p 207^221

Physiology has always been concerned with the integrative function of cells,
organs and whole organisms. However, as reductionist biomedical science
succeeds in elucidating ever more detail at the molecular level, it is increasingly
di⁄cult for physiologists to relate integrated whole organ function to underlying
biophysically detailed mechanisms. Understanding a re-entrant arrhythmia in the
heart, for example, depends on knowledge of not only numerous cellular ionic
current mechanisms and signal transduction pathways, but also larger scale
myocardial tissue structure and the spatial distribution of ion channel and gap
junction densities.
The only means of coping with this explosion in complexity is mathematical

modelling�a situation very familiar to engineers and physicists who have long
based their design and analysis of complex systems on computermodels. Biological
systems, however, are vastly more complex than human engineered systems and
understanding them will require specially designed software and instrumentation
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and an unprecedented degree of both international and interdisciplinary
collaboration.
Furthermore, modern medicine is currently bene¢ting both from the

development of new genomic and proteomic techniques, based on our recently
discovered knowledge of protein-encoding sequences in the human genome, and
from the development of ever more sophisticated clinical imaging devices (MRI,
NMR, micro-CT, ultrasound imaging, electrical ¢eld imaging, optical
tomography, etc.). This will mean that the clinical assessment of a patient’s
medical condition could, in the near future, include information from both
diagnostic imaging and DNA pro¢le or protein expression data. To relate these
two ends of the spectrum, however, will require very comprehensive integrative
mathematical models of human physiology based on patient-speci¢c quantitative
descriptions of anatomical structures and models of biophysical processes which
reach down to the genetic level.
The term ‘Physiome Project’ means, somewhat loosely, the combination of

worldwide e¡orts to develop databases and models which facilitate the
understanding of the integrative function of cells, organs and organisms. It was
launched in 1997 by the International Union of Physiological Sciences (see http://
www.physiome.org). The project aims both to reach down through subcellular
modelling to the molecular level and the database generated by the genome
project, and to build up through whole organ and whole body modelling to
clinical knowledge and applications. The initial goals include both organ speci¢c
modelling such as the Cardiome Project (driven partly by a collaboration between
Oxford University, UK, the University of Auckland, NZ, the University of
California at San Diego and Physiome Sciences Inc, but also involving
contributions by many other cardiac research groups around the world) and
distributed systems such as the Microcirculation Physiome Project (led by
Professor Popel at Johns Hopkins University; http://www.bme.jhu.edu/news/
microphys/).

The Physiomemarkup languages

An important aspect of the Physiome Project is the development of standards and
tools for handling web-accessible data and models. The goal is to have all relevant
models and their parameters available on theweb in a waywhich allows themodels
to be downloaded and run with easy user-editing of parameters and good
visualization of results. By storing models in a machine and application
independent form it will become possible to automatically generate computer
code implementations of the models and to provide web facilities for validating
new code. The most appropriate choice for web based data storage would appear
to be the newly approved XML standard (eXtensible Markup Language� see
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http://www.w3c.org/). XML ¢les contain tags identifying the names, values and
other related information of model parameters whose type is declared in
associated DTD (Data Type De¢nition) ¢les. XQL (XML Query Language) is a
set of tools designed to issue queries to database search engines to extract relevant
information fromXMLdocuments (which can reside anywhere on theworld wide
web). The display of information in web browsers is controlled by XSL (XML
Style Language) ¢les. Two groups are currently developing an XML for cell
modelling. One group, based at Caltech, is developing SBML (Systems Biology
Markup Language) as a language for representing biochemical networks such as
cell signalling pathways, metabolic pathways and biochemical reactions (http://
www.cds.caltech.edu/erato/), and a joint e¡ort by the University of Auckland and
Physiome Sciences is developing CellML with an initial focus on models of
electrophysiology, mechanics, energetics and signal transduction pathway
models (http://www.cellml.org). The CellML and SBML development teams are
now working together to achieve a single common standard.
TheAuckland group is also developing ‘FieldML’ to encapsulate the spatial and

temporal variation of parameters in continuum (or ‘¢eld’) models, and ‘AnatML’
as a markup language for anatomical data (see http://www.physiome.org.nz). When
all the pertinent issues for each area have been addressed it may be appropriate to
coalesce all three markup languages into one more general Physiome markup
language since the need for a standardized description of spatially varying
parameters at the organ level is equally important within the cell for models of
cellular processes.

The hierarchy of models

A major objective of the Physiome Project is to develop mathematical models
which link gene, protein, cell, tissue, organ and whole body systems physiology
into one comprehensive framework. Models are currently being developed at
many levels in this hierarchy, including

. whole body system models

. whole body continuum models

. tissue and whole organ continuum models

. subcellular ordinary di¡erential equation (ODE) models

. subcellular Markov models

. molecular models

. gene network models

An important issue is how to relate the parameters of a model at one spatial scale to
the biophysical detail captured in the model at the level below.
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The computational models used in the Physiome Project are largely
‘anatomically based’. That is, they attempt to capture the real geometry and
structure of an organ in a mathematical form which can be used together with the
cell and tissue properties to solve the physical laws which govern the behaviour of
the organ such as the electrical current £ow, oxygen transport, mechanical
deformation and other physical processes underlying function. Wherever
possible the models are also ‘biophysically based’, meaning that the equations
used to describe the material properties at both cell and tissue level either directly
contain descriptions of the biophysical processes governing those properties or are
derived from suchdescriptions in a computationally tractable form.One important
consequence of an anatomically and biophysically basedmodelling approach is that
as more and more detail is added (such as the spatial distribution of ion channel
expression) the greater complexity often leads to fewer rather than more free
parameters in the models because the number of constraints increases. Another
important point is that the governing tissue-level equations represent physical
conservation laws that must be obeyed by any material� e.g. conservation of
electrical current (Faraday’s law) or conservation of mass and momentum
(Newton’s laws). The models are therefore predictive and represent much more
than just a summary of experimental data.
The question of how much detail to include in a model is one that all

mathematical modellers have to deal with, irrespective of the ¢eld of application.
If added detail includes more free parameters (model parameters which can be
altered to force the model to match observed behaviour at the integrative level)
the answer� in keeping with the principle of Occam’s Razor�must be ‘as little
as possible’. On the other hand, detail added in the form of anatomical structure
and validated biophysical relationships can often constrain possible solutions and
therefore enhance physiological relevance. It is surprisingly easy, for example, to
create amodel of ventricular ¢brillationwith over-simpli¢ed representations of cell
electrophysiology. Adding more biophysical detail in the form of membrane ion
channels reduces the arrhythmogenic vulnerability to more realistic levels.
A brief summary of the various types of model used in computational

physiology is given here in order to highlight the major challenges and the
immediate requirements for the Physiome Project.

Tissue mechanics

The equations come from the physical laws of mass conservation and momentum
conservation in three dimensions and require a knowledge of the tissue structure
and material (constitutive) properties, together with a mathematical
characterization of the anatomy and ¢brous structure of the organ (or bone, etc.).
Solution of the equations gives the deformation, strain and stress distributions

210 HUNTER ET AL



throughout the organ.Examples are the large deformation soft-tissuemechanics of
the heart, lungs, skeletal muscles and cartilage, and the small strain mechanics of
bones. The mathematical techniques required for these problems are now well
established and the main challenge is to de¢ne the geometry of all body parts and
the spatial variation of tissue structure and material properties. The most urgent
requirements are to de¢ne the markup language (FieldML) which allows the
anatomy and spatial property variations to be captured in a format for storage
and exchange, and to develop the visualization tools for viewing the 3D anatomy
and computed ¢elds such as stress and strain. Another high priority is to enhance
the tools that allow a generic model to be customized to individual patient data
from medical imaging devices such as MRI, CAT and ultrasound.

Fluid mechanics

The equations are also based on mass conservation and momentum or energy
conservation and the requirement for a mathematical representation of anatomy
is similar, but now the constitutive equations come from the rheology of a £uid
(e.g. blood or air) and the solution of the equations yields a pressure and £ow ¢eld.
Obvious examples are blood £ow in arteries and veins, and gas £ow in the lungs. In
some cases the equations can be integrated over a vessel or airway cross-section to
reduce the problem to the solution of 1D equations, while in others a full 3D
solution is required. The top priorities in this area are as above� the markup
languages, visualization tools and patient customization tools.

Reaction^di¡usion systems

There are many issues of transport by di¡usion and advection, coupled to
biochemical reactions, in physiological systems. The transport equations are
based on well established laws of £ux conservation, and the numerical solution
strategies are also well developed. Examples are the electrical activation of the
heart (equations based on conservation of current) and numerous problems in
developmental biology. The need for good anatomical descriptions using
FieldML is similar to the above two categories. The main challenges lie in
developing good models of the biochemical reactions and capturing these in the
CellML format for storage and exchange.

Electrophysiology

All cells make use of ion channels, pumps and exchangers. The mathematical
description of the ion channel conductance and voltage (or ion) dependent
gating rate parameters is usually based on the Hodgkin^Huxley formalism
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(typically using voltage clamp data) or more molecularly-based stochastic models
(with patch clamp data). Examples are the Hodgkin^Huxley models of action
potential propagation in nerve axons, the Noble and Rudy models for cardiac cell
electrophysiology and pancreatic b-cell models of the metabolic dependence of
insulin release. The major challenge now is to relate the parameters of these
models to our rapidly increasing knowledge of gene sequence and 3D structure
for these membrane-bound proteins, together with tissue speci¢c ion channel
densities (and isoforms) and known mutations. The CellML markup language is
currently being extended to link into FieldML for handling the spatially varying
parameters such as channel density. The most urgent requirements are authoring
tools, application programming interfaces (APIs) and simulation tools.

Signal transduction and metabolic pathways

The governing equations here are based on mass balance relations. The
information content is often based on signal dynamics rather than steady-state
properties, so a system dynamics and control theoretical framework is important.
An example is the eukaryoticmitogen-activated protein kinase (MAPK) signalling
pathway which culminates with activation of extracellular signal-regulated kinases
(ERKs). The signal transduction pathway de¢nitions can be encapsulated in
CellML and a priority now is the development of tools which will allow the
activity of the pathways to be modelled in the context of a 3D cell and linked to
ion channel and pumps (e.g. as sites of phosphorylation), and to tissue and organ
level models.

Gene networks

This relates to the study of gene regulation, where proteins often regulate their
own production or that of other proteins in a complex web of interactions. The
biochemistry of the feedback loops in protein^DNA interactions often leads to
non-linear equations. Techniques from non-linear dynamics, control theory and
molecular biology are used to develop dynamic models of gene regulatory
networks.
It should be emphasized that no onemodel could possibly cover the 109 dynamic

range of spatial scales (from the 1 nm pore size of an ion channel to the 1 m scale of
the human body) or 1015 dynamic range of temporal scales (from the 1ms typical of
Brownian motion to the 70 years or 109 s typical of a human lifetime). Rather, it
requires a hierarchy of models, such that the parameters of one model in the
hierarchy can be understood in terms of the physics or chemistry of the model
appropriate to the spatial or temporal scale at the level below. This hierarchy of
models must range from gene networks, signal transduction pathways and
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stochastic models of single channels at the ¢ne scale, up to systems of ODEs,
representing cell level function, and partial di¡erential equations, representing
the continuum properties of tissues and organs, at the coarse scale.

Modelling software and databases

There are now a number of cell and organ modelling programs freely available for
academic use:

. PathwayPrism and CardioPrism (http://www.physiome.com) provide access to
databases as well as cell modelling and data analysis tools

. E-Cell (http://www.e-cell.org/) is a modelling and simulation environment for
biochemical and genetic processes

. VCell (http://www.nrcam.uchc.edu/) is a general framework for the spatial
modelling and simulation of cellular physiology

. CMISS is the modelling software package developed by the Bioengineering
Research group at the University of Auckland (see http://www.bioeng.
auckland.ac.nz/cmiss/cmiss.php)

. CONTINUITY from the Cardiac Bioengineering group at UCSD is a ¢nite
element based package targeted primarily at the heart (see http://cmrg.ucsd.edu)

. BioPSE from the Scienti¢c and Computing Institute (SCI) deals primarily with
bioelectric problems (http://www.sci.utah.edu)

. CardioWave from the Biomedical Engineering Department at Duke University
is designed for electrical activation of myocardial tissue (http://bme-
www.egr.duke.edu/).

. XSIM models the transport and exchange of solutes and water in the
microvasculature (http://nsr.bioeng.washington.edu).

Physiome projects

Several Physiome projects are mentioned brie£y here. Figure 1 illustrates the
sequence of measuring geometric data for the femur and ¢tting a ¢nite element
model (Fig. 1A,B), incorporating the femur model into a whole skeleton model
(Fig. 1C) and then combining with the muscles of the leg (Fig. 1D) for analysis
of loads in the knee. Figure 2 illustrates a model of the torso (Bradley et al 1997),
including the heart and lungs and the layers of skin, fat and skeletalmuscle,which is
being used for studying the forward and inverse problems of electrocardiology and
for developing the lung physiome. Figure 3 illustrates the ¢brous structure,
coronary network and epicardial textures in a model of the heart (LeGrice et al
1997, Smith et al 2000, Kohl et al 2000).
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FIG. 1. (A) A ¢nite element mesh of the femur prior to ¢tting, together with a cloud of data
points measured from a bone with a laser scanner, and (B) the same (bicubic Hermite) mesh after
¢tting the nodal parameters. (C) Anatomically detailed model of the skeleton. (D) Rendered
¢nite element mesh shown for the bones of the leg and a subset of the muscles (sartorius,
rectus femoris and biceps femoris in upper leg and gastrocnemius and soleus in lower leg). The
musculo-skeletal models contain descriptions of 3D geometry and material properties and are
used in computing stress distributions under mechanical loads.
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FIG. 2. Computational model of the skull and torso. (A) The layer of skeletal muscle is
highlighted. (B) The heart and lungs shown within the torso.
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FIG. 3. The heart model. (A) Ribbons showing the ¢brous-sheet architecture of the heart are
drawn in the plane of themyocardial sheets on the epicardial surface of the heart. (B) Computed
£ow in the coronary vasculature. (C) The heart model with textured epicardial surface.
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DISCUSSION

Subramaniam: I have a na|« ve question. In your mechanical model involving the
cube you talk about cell walls deforming. What is the frequency at which this
happens, and how does it relate to gene expression changes, cell and morphology
changes, and what is the feedback mechanism between those things?
Hunter: The time-scale is that of a heartbeat for the deformation that you are

looking at.
Subramaniam:So in that time-scale you don’t have gene expression, transcription

and regulation occurring. I’m curious to knowwhat the long-term consequence is,
and how this feeds back into the ¢brillation?
Hunter: I’d love to know that. We are still dealing with the time-scales in the

order of a heartbeat. We are looking at electrophysiology with Denis Noble and
we are looking at cell signalling as this comes out of the Alliance for Cell Signaling,
but all of this is on the time-scale of a heartbeat at themoment. Itwould be very nice
to then look at the longer time-scale of minutes to hours to days to see gene
expression changes, but this is for the future.
Noble:Thewaywe tackle that particular problem is to run simulations at the cell

and tissue level thatmay goon formany tens ofminutes. Thenwe take snapshots of
the states in those simulations. By snapshots, I mean that many of the variables that
were parts of the di¡erential equations in the lower-level modelling are frozen, or
their vectors are frozen.This is then inserted into 2Dor 3D simulations at the tissue
or organ level, hoping that we can validly claim that the development of the tissue
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states up to this point hasn’t been terribly badly perturbed by the fact that the tissue
is part of an organ. This is a huge assumption, I agree. One of the people frommy
groupwho I feel would have been able to contribute to this meeting enormously is
Peter Kohl (see Kohl & Sachs 2001). He deals with the question of the feedback
between the whole organ mechanical changes and the electrophysiology. This
turns out to be extremely important, particularly for some of the arrhythmias
that are known to be mechanically induced. The issues you are highlighting are
very important.
McCulloch: There have been a few studies where physiological consequences of

signalling events can be seen within the time-scale of a single beat.
Subramaniam: That is at the proteomic level, not gene expression.
Berridge: The same thing applies to the nervous system during memory

acquisition. Memory has to be consolidated by gene transcription. It seems that
what happens in the brain is that this access to gene transcription occurs during
sleep. A temporary modi¢cation of the synapses during memory acquisition is
then consolidated during slow-wave sleep when gene activation occurs. The
brain appears to go o¥ine to carry out all the genetic processes responsible for
consolidation. The amazing thing about the heart is that it has to go on
pumping, and creating Ca2+ pulses while it carries out its genetic changes.
Noble: Could I turn now to the question of cell types. To be provocative, it is

possible to take the view of the cardiac conducting system that you were
proposing� that there is one cell type, but with di¡erent levels of expression for
various protein transporters� to an extreme, and say that there is just one cell
type. Why not?
Hunter: There are two extremes. That is one, and the other is that there are 1015

cell types. The reality is somewhere in between; it is just a question of where we put
the demarcation.
Noble: Why does it matter, then? Presumably it matters for the reason that we

discussed right at the beginning of this meeting, which is that what you call
something does actually matter. Presumably, it will matter from the point of
view of the way in which you organize the database of information.
Hunter: I’m thinking of it mattering in terms of modelling, where we want to

make sure thatwe are pulling in all the appropriate functional behaviour of that cell
type. It may well be that you go to your CellML ¢le for an electrically active cell
from the heart, but then you input the parameter set that is appropriate for the
di¡erent positions though the conducting system, just as even within myocytes
you would need that appropriate di¡erence between M cells and other cells. You
have to acknowledge the di¡erent expression levels for di¡erent types of cells as a
function of spatial position. But you certainly don’t want to regard each di¡erent
spatial position as giving rise to a di¡erent cell type. There is no one answer; it is
simply a pragmatic issue of getting access to information for modelling.
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Ashburner: I would go further and say that if you are going through this exercise
for modelling, it is worth doing in such a way that this classi¢cation can be used by
others. For example, those who are merely looking at gene expression and protein
expression have no interest whatsoever in modelling per se.

This may be based on a misconception, but let me put to you the critique that
with AnatML and CellML you are confounding the ontology itself and its
representation. What you really need is ontology. How you represent that
ontology is an independent operation.
Hunter: I accept that. Ontologies are currently being considered in conjunction

with the CellML schemas.
Ashburner: I am not arguing with that. My problem is that you have wrapped it

up in a particular £avour of XML with your own tags.
Subramaniam: I am a consultant for theNIMHdatabase for neuroanatomy-based

functional imaging. The neuroanatomy project looks at four brains: mouse, rat,
human and primate. There are similar kinds of complications in that one of the
¢rst things they are going to do is de¢ne clearly the ontology. Once this is
de¢ned representation becomes a critical issue here. You cannot say, for example,
that a particular region of the brain is going to be exactly the same even across two
members of the same species, so you need tomap it into a feature space and then use
the feature space to de¢ne the actual ontology of that object or the element that is
being de¢ned. This is exactly what they are proceeding with. On top of that they
are having a structure which uses geographical informations systems (GIS) to help
map this feature space e⁄ciently into the ontology. Doug Bowden has created a
beautiful atlas which deals with primate brains (http://braininfo.rprc.washington.edu/
brainatlas.html) and does exactly the same things that you are talking about. Once
you have de¢ned the ontology and have amapping systemwithin the ontology it is
actually a little bit more complicated than just a straightforward database. A £at ¢le
system will never do this feature mapping coupled with the de¢nition of an
ontology.
Hunter: The reason for a £at ¢le is that you may want to get that information

from an entirely di¡erent set of relationships. You may want to be looking at a
particular cell in the brain across species, or across age. There are all sorts of ways
that you may want to access information. If you con¢ne it to a particular tree-like
GIS-type structure, you are in danger of limiting access to that information in
another way.
Subramaniam: Not really. The caveat here is that some of your representation

problems and feature mapping may depend upon relationships between di¡erent
objects within your ontology. If you use a £at ¢le you lose the £exibility of doing
this.
Hunter: I’m suggesting thatwe have the information in a £at ¢le andwe also have

the relationships� the ontologies� that allow us to access that.
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Subramaniam: But it doesn’t scale. When you start scaling to higher levels if you
are doing it this way, there are so many microcomputations and calculations in
order to do this mapping that pretty soon it becomes an explosively complicated
process.
McCulloch:The point that we need the ontology ¢rst is key, butwith anatomy all

the way to cell type there already exists an ontology. This has been done at the
University of Washington in a project directed by Cornelius Rosse that expresses
anatomic relationships in the form of a directed acyclic graph.
Hunter: Is this in a way that is relevant to modelling?
McCulloch: Certainly in a way that is more relevant to modelling than the index

structure of textbooks.
Subramaniam: And it is hierarchical.
Ashburner: I have one for Drosophila (http://£y.ebi.ac.uk:7081/docs/lk/bodyparts-

cv.txt).
Noble:There is often discussion, particularly in themedia, about the question of

whether we are in reach of a virtual human. I usually answer that question in the
negative. Yet when I hear your presentation, and watch all the structures that are
already in someway or another coded into themesh, I am left wonderingwhether I
ought not to be more positive. This is a strategic issue, among other things,
because it a¡ects the way in which funding agencies see what we are trying to do.
This isn’t a trivial question, which is why I treat it quite carefully in discussions
with the media.
McCulloch:My answer would be that what we see emerging from PeterHunter’s

work is a virtual body.
Hunter: I think what will emerge over a relatively short time frame is the

description of the anatomy and the material properties relevant to the larger scale
continuum problems. But there is a huge gap between gene expression and the
tissue or organ-level models. I wouldn’t for one moment suggest that we are
anywhere near beginning to tackle the complexity of that issue. It is only at the
top level that I see things coming together reasonably fast.
Noble: So you are creating the outer mesh.
Hunter: Yes, into which we want to put all the cell types with increasing

information about signal transduction systems and so on.
Paterson: One thing that might characterize the transition from having the

virtual body to the virtual human is an increased understanding of all the
di¡erent interacting control systems that allow the ‘meat on the bone’ to be
maintained. As an example, we have worked on epithelial turnover. All the
dermatology texts seem to take a standard bricks-and-mortar histological view of
the skin. However, when you look at the control systems that are necessary to
maintain normal turnover of skin as well as injury repair, there are a huge
number of unanswered questions masked by simply giving a picture saying that
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it is static when there is actually a large degree of activity from multiple feedback
systems that keep this ‘static’ view stable.
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Using in silico biology to facilitate

drug development

Jeremy M. Levin, R. Christian Penland, Andrew T. Stamps and Carolyn R. Cho

Physiome Sciences, 307 College Road East, Princeton, NJ 08540-6608, USA

Abstract. G protein-coupled receptor (GPCR) mediation of cardiac excitability is often
overlooked in predicting the likelihood that a compound will alter repolarization. While
the areas ofGPCR signal transduction and electrophysiology are rich in data, experiments
combining the two are di⁄cult. In silicomodelling facilitates the integration of all relevant
data in both areas to explore the hypothesis that critical associationsmay exist between the
di¡erent GPCR signalling mechanisms and cardiac excitability and repolarization. An
example of this linkage is suggested by the observation that a mutation of the gene
encoding HERG, the pore-forming subunit of the rapidly activating delayed recti¢er
K+ current (IKr), leads to a form of long QT syndrome in which a¡ected individuals are
vulnerable to stress-induced arrhythmia following b-adrenergic stimulation. Using
Physiome’s In Silico CellTM, we constructed a model integrating the signalling
mechanisms of second messengers cAMP and protein kinase A with IKr in a cardiac
myocyte. We analysed the model to identify the second messengers that most strongly
in£uence IKr behaviour. Our conclusions indicate that the dynamics of regulation are
multifactorial, and that Physiome’s approach to in silico modelling helps elucidate the
subtle control mechanisms at play.

2002 ‘In silico’ simulation of biological processes. Wiley, Chichester (Novartis Foundation
Symposium 247) p 222^243

Previously in this symposium we have discussed many of the tools of in silico
biology. For my presentation I will concentrate on one particular aspect of in
silico biology, building and simulating mathematical models: why model and
how to model. I will speci¢cally focus on the role of modelling in the
pharmaceutical industry, then dive down to a more granular level and use a case
example to examine howwe answered a very speci¢c question related to a problem
in the pharmaceutical industry. This examplewill demonstratewhymodelling is an
advantageous approach. It will also serve to show how a model is constructed�
what data are required and how the components are joined. The question that Iwill
try to address throughout the talk, is how can we use modelling and simulation to
serve the biological research industry in its goal of identifying control mechanisms
that are important for drug discovery?
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What is in silico modelling in the context of drug discovery? This question is a
very di¡erent one from those previously discussed in this symposium. In silico
technologies are complex and interrelated, and they appear everywhere in drug
discovery today. They range from molecular structure and docking simulation,
mathematical modelling, bioinformatics, high-throughput data gathering and
processing, three-dimensional imaging, pathway mapping and network analyses,
through to system modelling which includes intelligent decision systems and
expert system diagnosis of disease. Importantly, all these technologies
complement wet-lab experimentation; we cannot divorce experimentation from
modelling. Over the last 20 years we have seen an increased emphasis on the
process of data-driven drug discovery. In a philosophical context, this result is a
re£ection of the complexity of biology and the e¡ort to develop an increasingly
deep, but reductionist, understanding of this biology. The result is that we have
amassed a body of biological data overwhelming in its complexity and volume.
This drives a critical need for new approaches to interpret and extract insight
from the data derived from complex biological systems. Many informal
modelling methods are designed to interpret data, such as gedanken experiments,
drawing cartoon diagrams, developingword or phenomenological models, and so
forth. We use mathematics to translate these conceptual models into logically
rigorous representations. These models are then used to generate hypotheses that
can then be experimentally tested, yielding more data, which in turn are used to
re¢ne the original model. Any of the steps in this process may lead to novel
biological insight.
We are now moving towards what I believe to be an important change in drug

discovery: hypothesis-driven, as compared to data-driven, drug discovery. This is
made possible because new technologies for biological modelling enable drug
discovery through the exploration of hypotheses in silico. This new approach
allows integration of diverse types of data as well as re-use of legacy data. Given
the large amount of data generated in the industry over the past few decades, the
critical issue is how to build and apply the newmethodologies of in silico biology to
address the increasingly complex questions that new high-throughput tools and
data sources allow us to pose. The scale of this problem becomes apparent when
we examine the choices companies today face with their current programs. For
example, companies that may have over 200 pre-clinical drug programmes, yet
can only a¡ord to test 40 of those in the clinic, face a very important economic
question: which 40 of these drugs are going to work when failures could
potentially cost hundreds of millions of dollars for each program? In silico
biology provides the capability to address this important process of programme
selection in a rational and predictive manner by coupling the experiments to
hypotheses, e⁄ciently exploring parameter space of experimental variables, and
permitting direct comparisons and predicting outcomes.
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Physiome technology approach

Before presenting a case example of where in silico biology technology can be
applied, I would like to talk about the technology itself. I think it is critical for
the drug development community to standardize the processes that underlie the
technology, such as building, storing and communicating mathematical models,
and developing visualization and analysis tools.What is really required?At its core,
an open information technology architecture that permits global collaboration is
essential. In addition, intuitive software that allows the scientist to organize, view
and analyse data, as well as build and simulate models. This software needs to be
developed with the plan that it becomes a tool in the hands of the scientists at the
bench, not necessarily the modelling specialist, while retaining the functionality
required to correctly communicate the details and analysis of the model including
annotation, literature references and underlying mathematics. Most importantly,
there is a need for the technology to make use of all forms of data, including the
reuse of legacy data as well as capturing data from new sources.
New data generation technologies are driving the adoption of in silico

biological modelling. Biological modelling can be applied to the full spectrum
of observable biological phenomena, capable of dealing with data on gene and
protein expression all the way through to disease maps and simulations. The
approach that we have adopted is to develop a biological simulation
environment called In Silico CellTM.
Within this environment we can integrate all the data necessary for modelling of

both speci¢c, and broad biological questions. We use this environment to build
models, run simulations, and analyse simulation and experimental data. Most
importantly, our technology is speci¢cally designed for placement within a
pharmaceutical company. The purpose here is to enable the development of in
silico biological modelling as a core competency within drug discovery groups.
In addition, we help companies build models themselves, evaluate their data
using our own in-house capabilities, and as a result we are now involved with a
number of di¡erent companies that are taking the lead in introducing this form
of technology among multiple sites around the globe. These companies are either
using the completed models developed and customized by us, such as the cellular,
tissue and organ cardiac models in our CardioPrismTM program, or the metabolic
and signal pathway analysis capability a¡orded by PathwayPrismTM, both ofwhich
derive directly from In Silico CellTM. It is not necessary to have all possible data in
order to build an e¡ective and utilitarian model, capable of answering important
questions for the pharmaceutical scientist. Our process can bring together many
di¡erent forms of data, all of which are directly applicable to the particular
experiment being performed. The data are constrained from the beginning of the
modelling process. We do not attempt to integrate all data without a rationale: we
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constrain ourselves to the problem and the data that are available. We then look at
the available data to see if we have missing pieces, and if so, parameter estimations
are performed. On the ¢rst build of a model, we have always been able to make use
of purely legacy data. Additional data generated from testing themodel can then be
used to re¢ne the model through iterative steps of experimental and in silico
hypothesis testing. In order to accommodate the changing model and new data,
the modelling environment is developed to be £exible and extensible, so
permitting the incorporation of changes with minimal e¡ort.
The process begins by generating a mathematical description of the biological

question, and then works systematically through to prediction and hypothesis.
The process may suggest new experiments be done, providing new data, which
then generate a new biological question and lead to a reiteration of the whole
process. There are di¡erent ways to address each step in this process, many of
which we have discussed in this symposium. No matter what the speci¢c
approaches are, the important point is that novel insight may be gained
throughout the process, whether it be developing the model, formulating new
hypotheses, or analysing the new experimental data that are generated.
Whatmakes our process fundamentally £exible and extensible is our approach to

the process of building models (Fig. 1); we identify currently known biological
mechanisms beginning with those most commonly and widely observed. We
build (or reuse) a model of each of these mechanisms, which we call a motif or
module. The categories of these motifs, at the cell and subcellular level, are
metabolism, signalling, excitability, transport and cell cycle. Each of these motifs
represents mechanisms underlying such fundamental biological functions as
glycolysis, translocation and motility. The data supporting each of these motifs
may be separated from the model itself and replaced with data relating to another
cell type, species and so forth, and modules may be combined so that we can, for
example, use clinical parameters to model a variety of diseases such as rheumatoid
arthritis, asthma, and osteoporosis. Each module we create can then be reused to
build a model in another disease area, so that we minimize the ‘reinvention of the
wheel’. This concept raises technology implementation issues of how we store our
models and data, which I would be happy to discuss after this presentation.
One application of our technology and modelling approach that I would like to

highlight is that it can be applied to summarizing and leveraging data within and
between research groups of pharmaceutical companies. Our PathwayPrismTM

technology illustrates this issue very clearly (Fig. 2). Using such an application,
di¡erent groups within a pharmaceutical company can create and/or explore
di¡erent pathways that are internal to their own group and not seen by others.
They can then merge these pathways using our technology to form a composite
pathway that shares data, annotations, stored simulation data and so forth. The
example shown here is the tumour necrosis factor (TNF) pathway, which is a
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merge of many smaller pathways with which we are working internally. This
capability provides people with a tool to represent, explore, and understand their
combined data in an intuitive graphical format. Moreover, from a drug
development point of view, one avenue of exploration (illustrated in Fig. 2) is to
compare the behaviours of themany drugs that impact this one pathway. For us, as
a modelling company focused on helping pharmaceutical companies ¢nd better
products, this capability is critical.
In addition to the technology to build pathways, we have developed an

analogous technology to build whole cell models. We use this tool to model, for
example, cardiac action potentials similar to those of Winslow et al (1999) and
others (Luo & Rudy 1994a,b, Noble et al 1998). We have a very di¡erent aim
than these other groups from a practical point of view. Rather than ever further
re¢ning the physiological mechanisms in such myocyte models, we seek to
understand the avenues by which pharmaceutical compounds interact with the
cells in both bene¢cial and harmful ways. We accomplish this goal by integrating
the modelling with a laboratory equipped to study ion channels and
electrophysiology. We also incorporate drug regulatory expertise to understand
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FIG. 1. Modelling motifs. The process of model building reuses mathematical descriptions of
individual biological processes. These processes, shown in the ¢gure as ‘physiological units’,
give rise to such fundamental biological motifs as signalling, excitability, and transport, which
are indicated as ‘physiological units’. Each of these units (e.g. fast sodium current) can be part of a
motif (e.g. excitability), which is a widely observed phenomenon in physiological systems. The
designation of motifs allows one to describe the critical physiological units of models which can
facilitate an understanding between mechanism of action of a drug and the disease state.
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and provide insight where these 10 models ¢t into the US Food & Drug
Administration (FDA) process required to develop a drug.
There are many examples that testify to the value of modelling in the discovery

and development process. One area of interest is in preventing unnecessary deaths
from cardiac arrhythmias. Though there are many di¡erent applications of models
in cardiovascular safety, a case study that we often point to is that of the
antiarrhythmic d-sotalol, which blocks the rapid component of the delayed
recti¢er current (IKr). Tested in 1996 via the SWORD (survivability with oral
d-sotalol) trial (Pratt et al 1998), d-sotalol was administered prophylactically to
patients surviving myocardial infarctions in the hope that it would reduce their
mortality from subsequent arrhythmic episodes. Unfortunately, mortality
increased with d-sotalol administration vs. placebo, and surprisingly, women
were found to be at much greater risk of death than men. The unanswered
question was why?
We constructed a series of canine ventricular myocyte models corresponding to

the three di¡erent cell types across the ventricular wall (epicardial, endocardial and
M cell), and incorporated modi¢cations accounting for data showing ventricular
myocytes from female rabbits having 15% less IKr density and 13% less IK1 density
compared to those frommale rabbits. With no drug onboard, the simulatedM cell
action potential from the female was only slightly di¡erent from that of the male.
As drug concentration is increased bothmale and female action potentials prolong,
however only a 50% blockage in IKr is required to begin to observe early after
depolarizations (EADs) in the female action potential, while 80% IKr block is
required to see the same e¡ect in male cells (Fig. 3). This result indicates a
threefold di¡erential in the male/female susceptibility to this drug. The reduction
in repolarizing currents expressed in females thus makes them more sensitive to
action potential abnormalities induced by IKr block. Though no speci¢c type of
arrhythmia was cited in the SWORD trial as leading to mortality, EADs are
commonly viewed as a marker for arrhythmic susceptibility. Therefore, our
modelling results suggested a possible cause for the gender di¡erence in mortality.
I want now to turn to the issue of integrating data to investigate the signi¢cance

of individual components in a complex system. The following will illustrate how
modelling can make logical inferences from available data to make testable
predictions. These predictions provide evidence as to the underlying
mechanisms, which is particularly useful when the underlying mechanisms
cannot be addressed by current experimental techniques.

Case example: indirect signalling in cardiac excitability

I previously mentioned that leveraging prior e¡orts is one of the powerful aspects
of our approach to modelling. Having discussed two separate Physiome
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technologies representing two distinct scienti¢c areas, signal transduction and
electrophysiology, I want to present a case example that brings together these
two diverse areas. This example demonstrates Physiome Sciences’ ability to
integrate models from both a biological perspective as well as a software
implementation perspective. We have joined together two very distinct areas of
experimental research using our technology platform to couple separate models
into a single simulation of second messenger control of ion channel current. This
workwas performed by a teamof scientists at Physiome, in addition to the authors,
including Dr AdamMuzikant, Director of the Modeling Sciences Group, and Ms
Neelofur Wasti, in the same group, who provides data and literature support and
curation.

Drugs indirectly a¡ect the heart

In the case of d-sotalol, the compound was in fact an antiarrhythmic targeted
directly at the IKr channel to prolong the action potential. A more di⁄cult
problem to analyse is that of drugs that a¡ect ion channels of the heart despite
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FIG. 3. Simulation of male and female canineM cell action potentials in the presence of a drug
that blocks the IKr channel. As drug concentration increases (top to bottom), an early after
depolarization (EAD) occurs at a lower drug concentration for the female than for the male
cell, which is indicated by the small heart symbol above the ¢rst EAD for each gender. These
EADs are thought to be a trigger for drug-induced arrhythmia. The basic cycle length (interval
between pacing stimuli) was 2500ms.



not being targeted speci¢cally to them. More than 60% of all drugs target G
protein-coupled receptors (GPCRs). A drug that targets a CNS GPCR, for
example, could have severe cardiotoxicity that would not be necessarily be
identi¢ed in present screening protocols, which are designed to assess direct
drug-channel interaction, mostly for IKr.
Toxicological concerns involving the most common form of drug related

cardiac rhythm concern, QT prolongation, are a frequent cause of clinical holds,
non-approvals, approval delays, withdrawals and restricted labelling by the FDA.
In fact, QT prolongationwas a factor inmany such actions taken by the FDA since
the late 1990s, and continues to form a major hurdle in bringing new drugs to
market, regardless of therapeutic class. The regulatory focus on QT prolongation
as a toxicological concern derives from its role as a surrogate marker for altered
cardiac cell repolarization, and risk of Torsades de Pointes, a life-threatening
arrhythmia.
All known drugs that appear to induce cardiac arrhythmia associated with long

QT preferentially block IKr, hence pharmaceutical companies routinely evaluate a
compound’s QT prolongation risk preclinically by screening for its e¡ect on the
HERG channel, the pore-forming subunit of IKr. Current best practices in
preclinical cardiac safety assessment include using voltage clamps in expression
systems transfected with HERG; in vitro action potential measurements using
isolated myocytes, and in vivo telemetered electrocardiograms from intact animals.
However, these best practices occasionally fail to identify drugs with a high risk of
inducing cardiac arrhythmia. For example, grepa£oxacinweakly blocks IKr but has
been observed to induce Torsades de Pointes, leading to its withdrawal from the
market by Glaxo-Wellcome in 1999. Conversely, these practices may be overly
harsh in assessing drugs like verapamil, which despite blocking IKr and causing
QT prolongation is not associated with arrhythmia. To understand this issue
better, we must take a closer look at the relationship between arrhythmia and IKr.
According to Shimizu & Antzelevitch (1999), diminished IKr leads to arrhythmia
by preferentially prolonging the action potential in ventricular M cells. This
repolarization change leads not only to a cellular substrate with increased
dispersion of refractoriness that is vulnerable to arrhythmia, but also to increased
incidence of EADs thatmay trigger such arrhythmias. In contrast blocking IKs, the
slowly activated delayed recti¢er K+ current, more uniformly prolongs the action
potential throughout the ventricle, and is not associated with life-threatening
arrhythmias.
There are many factors that accentuate the e¡ect of blocking IKr including

decreased heart rate, gender and genetic susceptibility, and though no single
factor may greatly alter the action potential their combination may signi¢cantly
increase the risk of drug-induced arrhythmia. Transmembrane voltage,
electrolyte balance, and direct drug^channel binding principally regulate IKr by
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itself. Mutations in channel proteins can dramatically impact the gating of the
channel, while drugs that stimulate a second messenger cascade can indirectly
regulate the channel. Though poorly understood at present, the second
messenger-mediated e¡ects on ion channels like IKr are gaining increasing
attention.
The indirect e¡ects we are concerned about are triggered by cell surface

receptors. Speci¢cally, we concentrated on GPCR stimulation because the
majority of prescription drugs act via this family. There is a rich literature of
experimental data that describes the biochemical pathways that de¢ne the second
messenger signal transduction pathways. A separate, equally rich literature
provides the electrophysiological characterization of HERG, which is often
studied in expression systems as a surrogate for the native channel (Trudeau et al
1995). However, experimental approaches to studying the combined second
messenger control of ion channel current are di⁄cult. In native cell
environments, it is di⁄cult to both control second messenger activation and
isolate ion channels. In expression systems, it is di⁄cult to ensure that the
necessary elements of the native cell signalling system are reconstructed correctly.
These considerations provide an excellent opportunity for modelling.

Modelling approaches have been used extensively to study the kinetics of G
protein signalling (Bos 2001, Davare et al 2001, Dalhase et al 1999, Destexhe &
Sejnowski 1995, Kenakin 2002, Moller et al 2001, Tang & Othmer 1994, 1995);
they have also been used extensively to study ion channel currents (Clancy&Rudy
2001, Zeng et al 1995,Winslow et al 1999, Luo&Rudy 1994a,b, Noble et al 1998).
Although combining these models does pose a challenge, in a relatively short
amount of time we were able to use existing techniques to make predictions
about the behaviour of the combined system.

Integrating signalling and electrophysiology motifs

There are a limited amount of data available on direct secondmessenger regulation
of HERG though some investigators have identi¢ed cAMP and protein kinase A
(PKA) as key players (Cui et al 2000, 2001, Kiehn et al 1998, 1999). From our
library of GPCR signalling templates, we selected the cAMP-PKA regulation
motif and customized it with available data. Cui et al (2000) showed that PKA
phosphorylation of HERG renders the channel less likely to open, but that
cAMP also directly binds HERG to counterbalance the PKA e¡ect and lower the
activation voltage of the channel (V1/2, see Equation 1.3, below). In addition, it is
well known that cAMP activates PKA. We therefore described the well-
characterized activation kinetics of the second messengers using the standard
ordinary di¡erential equation representation of the mass action kinetics.
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We formulated the IKr dependence on voltage and second messengers from
previous model-based and experimental studies (Zeng et al 1995, Cui et al 2000).
Using a combination of directly applying amembrane-soluble cAMP analogue and
mutating the PKA-sensitive phosphorylation sites of HERG, investigators
reached three conclusions that were used in our model: (1) channel conductance
is regulated by PKA alone; (2) both cAMP and PKA coordinately regulated the
strength of channel response to voltage (m, the slope of the voltage-sensitive
activation at half-maximal response); and (3) PKA and cAMP independently
regulate channel activation in response to voltage (V1/2). Based on these
observations, we used their reported single-channel current measurements at
varying levels of cAMP and PKA to generate the relationship between V1/2 and
PKA, V1/2 and cAMP, m as a function of both PKA and cAMP, and the
dependence of conductance on PKA (Equation 1):

IKr(V,cAMP,PKA*)¼ ½gKr(PKA*)�½XKr(V,cAMP,PKA*)�½R(V)�½V�EK�

(1)

The gating variableXKr is governed by

dXKr

dt
¼

X1 �XKr

t
(1:1)

where

X1(V,cAMP,PKA*) ¼

�
1þ exp

�
�V1=2 �V

m

���1
(1:2)

and

V1=2 ¼ DV1=2,baseline þ DV1=2(cAMP)þ DV1=2(PKA*): (1:3)

We combined our signalling and ion channelmodels automatically using internally
developed software. The environment accepts all the required kinetic and
electrophysiological data as well as the mathematical descriptions, and
implements fast di¡erential equation solvers to generate predictions from the
model.

Predicting ion channel behaviour

Sensitivityanalysis. I will brie£y present some preliminary predictions frommodel
analysis. The ¢rst thing we did was a sensitivity analysis, to predict the relative
strengths of the two second messengers as regulators of ion channel current. Of
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the several parameters that describe the gating and conductance regulation, we
examined the parameters generated from ¢tting dose-response data to the
conductance (gKr, Equation 1), to the strength of channel response to voltage (m,
Equation 1.2), and to the shift parameters describingV1/2 (Equation 1.3). Because
the system was linear, to a reasonable approximation, a perturbation analysis was
performed to compare how the ‘baseline’ behaviour of the model changes in
response to changes in parameter values. We used several di¡erent baseline
behaviours corresponding to the experimental conditions where ‘wild-type’
versus ‘phosphorylation-mutant HERG’ conditions were combined with and
without stimulation by cAMP.
We observed that changes in any of the cAMP parameters caused less than a 1%

change in ion channel current, while the PKA-dependent strength of channel
response to voltage was responsible for more than 75% of the current variation.
Thuswe predicted that IKr is most strongly a¡ected by the PKA-controlled gating,
independent of cAMP activity. This result suggests that the nucleotide-binding
domain of HERG is not as important for its regulation as the PKA-dependent
phosphorylation sites.
The implications for a pharmaceutical company are quite signi¢cant. First if one

were to screen a compound library for new IKr blockers, these predictions suggest
that looking for compounds that control voltage gatingwould yieldmore e¡ective
candidates than simply screening for compounds that bind the HERG subunit of
IKr. Secondly, in the arena of cardiotoxicology, if you are going to develop a safety
screen for a drug, doing a HERG screen may not identify all potentially toxic
compounds, and it may in fact eliminate safe compounds. Our results suggest, in
fact, that toxicological screens can be developed to assess indirect drug e¡ects by
measuring activation of second messengers.

Action potential generation. It may be that second messenger activation is not an
available measurement. A common electrophysiological measurement is the
action potential from a whole cell. We used a whole cell model of guinea-pig
ventricular myocyte (Luo & Rudy 1994b) to report out the predicted action
potential, given a predicted IKr current, to predict the whole cell e¡ects of
second messenger regulation of HERG. Figure 4 shows simulated action
potentials with no stimulation, PKA stimulation alone, cAMP alone and
combined stimulation. The model predicts that cAMP-induced shift in
activation potential has only a small e¡ect on the action potential, while
activating PKA independently delays repolarization by 5%. The cooperative
contribution of cAMP increases this delay slightly.
The experimental di⁄culty in isolating the e¡ect of PKA stimulation from that

of cAMPprecludes the possibility that this prediction could bemade easilywithout
the use of modelling. This prediction of action potential behaviour illustrates that
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although ourmodel was focused on a single ion channel, we were still able tomake
some prediction about whole cell behaviour. This ¢nding is important, as stated
above, because it provides predictions about a commonly measured indicator of
cardiac cell behaviour.
There are a few aspects that I would like to summarize. Although a 5% delay in

repolarization is relatively small, it is profoundly important. Firstly, this
independent e¡ect of PKA would not otherwise have been predicted, which is
quite remarkable. Secondly, this 5% delay is predicted to arise from second
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FIG. 4. Merged electrophysiology and signal transduction model in In Silico CellTM
software. This screenshot shows how the ion channel and concentrations of second messengers
can be represented both graphically (top right pane) and mathematically (lower right pane).

FIG. 5. (Opposite) Simulation of second messenger control of the IKr current and guinea-pig
ventricular myocyte action potential. (A) The alteration in simulated IKr current for the three
second-messenger cases described in the text, plus control. This IKrmodelwas then included into
a model of the action potential. (B) The simulated action potentials for the same four cases as in
Panel A. The e¡ect of cAMP independent of PKA is small, whereas PKA alone or in
combination with cAMP causes up to a 5% delay in repolarization.
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messenger regulation alone. Yet this kinase is just one of many di¡erent factors that
impact rectifying current. Our system allows you to then build on this result and
consider the additional impact of other e¡ectors, including drugs, di¡erent
receptors, di¡erent G proteins, di¡erent second messengers and di¡erent ion
channels. The key message is this: having created the motif of second messenger
control of IKr, we can now reuse it with new or improved parameters to capture
new behaviour, without having to expend extra e¡ort in developing extensions of
themodel from scratch. Itmay also be extended to other ion channels, to generate a
more complete picture of second messenger regulation of cellular electro-
physiology. Previous e¡orts in developing, parameterizing and optimizingmodels
have paved the way for the work that I have shown you here today. This general
approach ofmotifs is one that we have been usingwith great success at Physiome. I
anticipate that we will be seeing future bene¢ts well beyond what has been
demonstrated here. We will be developing motifs to encapsulate regulatory
control units in signalling, to tackle the biological scalability problem, and to
understand the behaviour of whole systems arising from cellular and subcellular
level interactions.

Motif-based modelling

Our modelling approach based on physiological motifs is an application of the
concept that cellular behaviour such as signal transduction is comprised of
groups of interacting molecules (Hartwell et al 1999, Lau¡enburger 2000, Rao &
Arkin 2001, Asthagiri & Lau¡enburger 2000). The same groups of molecules
related by similar interactions are observed from behaviour to behaviour.
Indeed, we do not always need to know all the molecules to understand the
mechanism by which a motif achieves its function. Additionally, in some cases
the identity of the molecules may change while the interactions and function of
the motif remain constant. This way is ideal for handling the current state of
biological knowledge: there is a wide variation in the amount of available data.
Motif-based modelling allows the investigator to use a combination of heuristic
and mechanistic descriptions to test a hypothesis.
I have presentedwork on the regulation ofHERGby cAMP andPKA.Within a

cardiac myocyte, there are additional protein components of IKr, such as MiRP1
and minK (Nerbonne 2000, Schledermann et al 2001), other ion channels, other
second messengers, and other signalling receptors. The combined signal
transduction^electrophysiology model used here is easily extensible to these
other biological contexts.
The implications for such an approach go well beyond cardiac

electrophysiology. We are working in a number of di¡erent areas. One is in CNS
diseases, where these excitable cell models are directly applicable, and GPCR drug
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e¡ects are known to be important. Bladder cells are also electrically excited, andwe
have been working in that area as well. Downstream second messenger signalling
of NF-kB, for example, is a motif that is found in such areas as immunological and
in£ammatory responses, and we have been asked to developmodels of these signal
transduction pathways. My ¢nal illustration, here, is cytokine secretion and
recognition in initiating immunological response, which we are modelling in T
cells.
This one example motif that I have discussed has very wide-ranging

implications. Though it was developed in the extremely speci¢c biological
context of the cardiac myocyte K+ channel, a straightforward reparameterization
will allow this motif to be reused in an incredible range of therapeutic areas, from
CNS, to gastrointestinal, to oncology to immune disorders. The challenge for us,
as for all modellers, I think, is to understand clearly which are the right motifs to
develop. In facilitating drug discovery, I have demonstrated here the role of using
mathematical modelling to predict indirect drug e¡ects. Beyond this particular
example, the model demonstrates how reusing in silico biology motifs can extend
hypotheses. These motifs are central to our technology approach, to our thinking
about biology, and to our application of our technology for use in the
pharmaceutical industry.
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DISCUSSION

Winslow: I would like to go back to your opening statement about the company
that has 200 compounds that they want to ¢lter down to 40. For the sake of

238 DISCUSSION



argument, let’s say that they are looking for antiarrhythmic drugs. To model the
action of an antiarrhythmic drug requires a great deal of data. Collecting these data
is a very labour intensive process. There is the possibility that constructingmodels
of the action of this drug for the 160 that youwant to eliminate can take a great deal
of time and e¡ort on the part of the company.Have you found that drug companies
are willing to follow your guidance in the data that they collect? And are they
willing to invest the time and energy in collecting the kind of data that are
needed to build models?
Levin: That’s an excellent question. There are a number of ways of doing this,

but what is required is a standardized technical way of predicting which of these
compounds is likely to be successful. Are there standardized data being collected
to answer this? The answer is broadly, no. For example, in the case of cardiac
toxicity, there is a tremendous e¡ort to collect a standard set of data within one
company according to their protocol. We have now evaluated at least 10 di¡erent
companies’ protocols, and they di¡er quite substantially. As a consequence, we
developed a collaboration with Dr Charles Antzelevitch’s laboratory to re¢ne the
best practices approach to collect standardized data. This can provide a
standardized set, or can teach companies the protocols required to generate
such data.
Subramaniam:Howdo you get the kinetic parameters? Do you estimate them, or

are they experimentally measured?
Levin: Everything we do is experimentally based. Every model we build has an

experimentally based component: if we don’t do it ourselves we will ¢nd someone
to do it. For the kinetic constants it is critical for us to have outside relationships
with key scientists who work with us to generate data.
Subramaniam:When you de¢ne modules or motifs, do you have any constraints

on how you de¢ne the modules? What are the ground rules for de¢ning a module?
Levin: There are two ways. Remember that we start with what is important for

the pharmaceutical industry. Often, the way we think about modules is with two
constraints:what is important for the pharmaceutical industry andwhat role does it
play in the biology? We wrap those two together. In this case we had a speci¢c
problem that we had to deal with.
McCulloch: I have a question about compartmentation. In the case of GPCR

regulation of the L-type Ca2+ channel, if you apply agonist locally to one channel
then it will a¡ect just that channel. But if you inject forskolin directly into the
cytosol, the other channels will be a¡ected because PKA is partitioned between
the membrane and the cytosol. Have you thought about including structural
domains as well as functional motifs?
Levin:Wehave, andwe have talkedwith Les Loew about how some of thework

that he has done could be used to create these functional domains, and then fusing
them to create a more accurate approach to it. This is essential. It is quite practical
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now, but the question is, is it a true representation of biology? I don’t think it is
meant to be; it is meant to answer quite a speci¢c question.
Loew: I was struck by the semantics: the di¡erence between what we have been

calling ‘modules’ during the course of this symposium and the term ‘motif’ that
you used. It struck me that there really is a di¡erence between the two terms that
might be useful. We have been trying to grope for modules that are truly reusable;
that can be plugged into di¡erent kinds of models with minimum modi¢cation.
This is certainly a useful goal or concept, and would be enormously bene¢cial to
modelling. But then there is a slightly di¡erent approach, which perhaps is
encapsulated by the term ‘motif’. This is where you can have a particular
structure that then can have di¡erent components plugged into it as necessary.
This is di¡erent from a module. Peter Hunter was talking about this in terms of
cells that can have various combinations of channels with varying levels of activity,
but we can really think about a motif as being the overall structure that can be
modi¢ed by drawing from the database, and then specialized or customized for a
particular kind of cell biological environment or question.
Subramaniam: Then you wouldn’t be able to put it into your computational

framework, because if you try to take your de¢nition of a structural motif, the
time constants are going to be so di¡erent that it would not ¢t very well.
Levin: I don’twant to confuse the issue of the general approach. If I have used the

wordmotif, and it is confusingwith the concept of themodel, letme go back to the
original concept: we have adopted basic biological processes that can be adapted
from one subcellular level or cell through to another. It is this structured approach
that is important to us. This approach to describing components of cells or
pathways is a representation of a biological functional unit and also a practical
tool. It is economically impractical for us as an organization to constantly have to
recreate new entities for each model of a pathway or cell. What we must do is to
follow biology. Evolution has been kind to us in that it has o¡ered a way of
representing these biological functions in a manner that allows us to encapsulate
mathematically the ‘module’ or ‘motif’. I have probably confused the issue; let’s
put it down to my linguistic slip, but I hope this clari¢es the idea.
Loew: I like the idea of expanding the concept of the module, to create a new

de¢nition for another more adaptable way of reusing data or model components.
Berridge: The way you have portrayed a module is that it responds to a certain

input with a set of outputs and this means that you don’t have to worry about
what’s in the module. However, cells are far more complex because the output
signal can vary in both time and space and this then relates to what Shankar
Subramaniam says. Therefore, I don’t think you can use such a simple de¢nition
of amodule, because each cell will have a di¡erent composition of enzymes, all with
di¡erent kinetic parameters. Essentially, there is an almost in¢nite number of
modules based on this system. It is a real problem dealing with this because each
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cell type has to be treated separately. From what you have said, I understand that
you see modules as ¢xed units with standard output signals.
Levin:Not quite: the data are driven by experimentation.What you have created

in the module is the framework for inserting these data. The module is therefore a
framework. On the basis of experimental results we can adjust the kinetic
parameters for cell type and for species. For example, looking at the example of
the myocyte, I showed earlier that in a male the e¡ect of a drug di¡ers from its
e¡ect on a female cell. It is important to note that the same framework for the cell
exists containing a number of di¡erent ionic currents and other components or
modules. These frameworks are made sex speci¢c by inserting data into the
module that have been developed from experiments on male and female cells.
Similarly, if you have a module that has been populated by human data, you can
modify the species by inserting data from other species, such as guinea-pig or dog.
The output is now species speci¢c.
Paterson: This is an important point in terms of the ‘plug and play’ character of

modules. In looking at di¡erent cells or across species the structure of the model
may be very portable. The parametric con¢guration of that model is something
that will almost certainly have to be ¢ne-tuned and adjusted to accommodate the
di¡erent cells and tissues.With regard to Les Loew’s point about something that is
a little higher-level than a module, there are some lessons to be learned from the
software community. A lot of the promise in the early days of object-oriented
programming was that it would be possible to build reusable modular programs
that had speci¢ed inputs and outputs, and from the exterior what went on in the
inside didn’t matter. Then these objects could be grafted together to build larger
pieces of software without having to work on the details. This promise has not
really been ful¢lled. However, what has come out of this is the concept of design
patterns. That is, for solving a particular class of problem, this is the right approach
for dealing with it: you need a class of data structures that looks like this. There
needs to be message passing, a graphical user interface (GUI) and at the very least
making some parametric changes if not some structural changes to it. I think the
idea of plug and playmodules in the biologymay not be there. There is tremendous
leverage to be got from reuse, but we shouldn’t be thinking about modules in
terms of plug and play.
Subramaniam: In the Alliance for Cell Signaling we have been struggling with

this notion ofmodules.We have constant discussions about this, mainly because in
order for us to quantitatively model once we get frameworks of these signalling
proteins, we would need to have some notion of modules. The ¢rst de¢nition is
that components within a module will not be a¡ected by anything else outside
directly, other than the fact that they can have a generic regulation or feedback.
The second de¢nition relates to time constants. Within a module, if you don’t
have the same set of time constants then the module loses its meaning. Then you
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have many processes that are happening elsewhere which will impact that module
itself. It doesn’t mean they cannot have diverse time constants. The third criterion
is that each module has an input^output characteristic that is regulated by just the
single feedback-regulation input. Let me give you an example that underlies the
complexity of dealing with this. MAP kinase is a good example of a module. If
you take MAPK, MAPK K and MAPK KK, in yeast for the same process under
low and high osmolarity conditions there are di¡erent players with the same
module, although the structure of the module itself is preserved. If you go to a
mammalian system such as mouse, it becomes very complicated because there are
a lot more players. This notion of plug and play will become very di⁄cult. What
you are providing is a framework, but a framework should have some constraints
that will help you de¢ne a module. This brings us back to the markup language
(ML) concept.
Levin: This is really important, and I think we are in agreement on this. I don’t

believe that plug and play per se is a realistic approach, unless you can actually de¢ne
frameworks that have the ability to absorb data of di¡erent kinds. TheML concept
does this.
Hinch:With these modules you said it takes the results from about 40 papers to

deliver the kinetic parameters and the structure of the system.Youwere saying that
if we are going to use this module in a di¡erent cell type, the basic structure is
transferable, but the experiments will need to be repeated to pull out the kinetic
parameters. Do you have a way that, once the structure is de¢ned, of being able to
reduce the large number of experiments needed to parameterize the module?
Levin: That’s a good question. In certain cases we do. When I said 40 papers, I

think I referred speci¢cally to coagulation, which is an extraordinarily well-de¢ned
system. This is a system for which we have worked out the kinetics for the last 30
years.What was important in themodelling is that even though these kinetics have
already been done for somany years, non-intuitive results emerge all the timewhen
we use the types of modules that we have developed. For example, we were asked
to examine the e¡ect of overexpression of factor IX on thrombin production.
Intuitively, looking at the coagulation cascade, experts would traditionally say
that such over-expression should lead to a more rapid production of thrombin.
We modelled this by taking that data in the literature and formatting our model
on the published kinetic data. This took us about a week with another day for
evaluation of the model using existing compounds. We then analysed the
problem and produced a counterintuitive result. Depletion of factor IX leads to a
bleeding dyscrasia; interestingly, increasing it also leads to a bleeding dyscrasia, as
shown by the model. This has now been demonstrated in animal models. With
regard to your main question, can we constrain the data that we require by
looking at the model? I think we can in certain cases, but I’m probably not the
right person to answer this question in detail. In summary, however, what we do
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for the pharmaceutical companies is try to de¢newhich are the important points for
them to focus experiments on, using a variety of techniques.
Subramaniam: The question you want to ask is if you identify within a module

nodes or points in which you can quantitatively measure inputs and outputs, then
you can coarse-grain the rest of the structure.
Winslow: I have a comment that stems from something that Shankar

Subramaniam said about composing modules that may evolve under di¡erent
time scales. I think this means that how a module is represented is dependent on
the context of the othermoduleswithwhich it is used. If all the othermodules have
a slow time scale and you have one that is fast, you have created a sti¡ system.
Somehow you have to recognize that it is composed of these other modules and
use a quasi-steady-state approximation to simplify that module. But there are
probably many other kinds of interactions like this that will really be necessary in
building these modules. This will make it a challenging problem.
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