

XML for Bioinformatics

Ethan Cerami

XML for Bioinformatics

Library of Congress Cataloging-in-Publication Data

Cerami, Ethan.
XML for bioinformatics / Ethan Cerami.

p. cm.
Includes bibliographical references and index.
ISBN 0-387-23028-9
1. XML (Document markup language) 2. Bioinformatics. I. Title.

QA76.76.H94C47 2005
572.8′0285′674–dc22

2004058903

ISBN 0-387-23028-9

C© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springeronline.com

To Lily Cerami.
Welcome to the world.

Preface

Introduction

The goal of this book is to introduce XML to a bioinformatics audience. It does so by introducing
the fundamentals of XML, Document Type Definitions (DTDs), XML Namespaces, XML Schema,
and XML parsing, and illustrating these concepts with specific bioinformatics case studies. The
book does not assume any previous knowledge of XML and is geared toward those who want a
solid introduction to fundamental XML concepts.

The book is divided into nine chapters:
� Chapter 1: Introduction to XML for Bioinformatics. This chapter provides an introduction

to XML and describes the use of XML in biological data exchange. A bird’s-eye view of our
first case study, the Distributed Annotation System (DAS), is provided and we examine a sample
DAS XML document. The chapter concludes with a discussion of the pros and cons of using
XML in bioinformatic applications.

� Chapter 2: Fundamentals of XML and BSML. This chapter introduces the fundamental
concepts of XML and the Bioinformatic Sequence Markup Language (BSML). We explore the
origins of XML, define basic rules for XML document structure, and introduce XML Name-
spaces. We also explore several sample BSML documents and visualize these documents in the
Rescentris Genomic WorkspaceTM Viewer.

� Chapter 3: DTDs for Bioinformatics. This chapter introduces XML Document Type Defini-
tions (DTDs). With DTDs, you can define specific rules for XML document construction and
validate XML instance documents against these rules. This chapter builds a DTD for represent-
ing protein sequences and does so in incremental stages—we therefore start out simply and add
layers of complexity as new concepts are introduced. The chapter also includes an overview of
XML data formats available from The National Center for Biotechnology Information (NCBI),
and provides a complete description of the NCBI TinySeq DTD.

� Chapter 4: XML Schemas for Bioinformatics. XML Schema represents the successor to
XML Document Type Definitions (DTDs). We begin by comparing the two specifications and
describe some of the advantages of using XML Schema. To illustrate core concepts, we rebuild
the protein sequence DTD from Chapter 3 as an XML Schema, enabling you to compare the two
specifications directly. The chapter concludes with a discussion of the Proteomics Standards
Initiative Molecular Interaction (PSI-MI) XML format, an XML exchange format used to encode
protein–protein interactions.

� Chapter 5: Parsing NCBI XML in Perl. Perl remains the programming language of choice for
many in bioinformatics. This chapter therefore explores several options for parsing XML in Perl,

vii

viii Preface

and focuses on two standard interfaces: the Simple API for XML (SAX) and the Document
Object Model (DOM). We also explore the NCBI E-Fetch service, and retrieve nucleotide
sequence records in XML in real time. This chapter assumes some prior knowledge of Perl.

� Chapter 6: The Distributed Annotation System. This chapter provides comprehensive cover-
age of the Distributed Annotation System (DAS), a distributed XML protocol used to exchange
genome annotation data. To put DAS in perspective, we begin by exploring the process of
genome annotation, and illustrate the DAS protocol from the end-user perspective. We then
describe the DAS XML protocol in detail, and examine numerous sample XML documents
from the Ensembl and UCSC DAS servers. The chapter includes a reference guide to all DAS
commands, and a preview of anticipated features in the next version of DAS.

� Chapter 7: Parsing DAS Data in SAX. Despite the popularity of Perl, Java is becoming in-
creasingly popular in bioinformatic applications. This chapter therefore describes the mechanics
of parsing XML documents using the Java Simple API for XML (SAX). SAX is the de facto
event-based XML parsing standard, and is widely implemented by many XML parsers, in-
cluding several open source XML parsers. Several sample DAS applications are demonstrated,
including one sample application which makes use of the open source BioJava library. This
chapter assumes some prior knowledge of Java.

� Chapter 8: Parsing DAS Data in JDOM. This chapter focuses on the fundamentals of the
JDOM API, a popular alternative to the SAX API. With JDOM, Java applications can easily
navigate through XML document tree structures and extract elements, attributes, and character
data. JDAS, an open source DAS client library, created by the author, is explored in detail. This
chapter also assumes some prior knowledge of Java.

� Chapter 9: Web Services for Bioinformatics. Web services represent a new paradigm for
building distributed web applications, and are currently being used extensively in bioinfor-
matics. This chapter begins by presenting two broad approaches to building web services: the
Representational State Transfer (REST) approach and the SOAP approach. We explore each
approach in detail, and provide complete details on the latest SOAP specification. We also
explore caBio, a comprehensive web service built by the National Cancer Institute (NCI).

Companion Web Site

This book includes a companion web site, available at: http://www.xmlbio.org. All the sample XML
documents, and example Perl/Java programs described in the book are available for download.

Acknowledgments

Many people deserve special acknowledgments for making this book happen. First, I want to thank
Lincoln Stein of Cold Spring Harbor Laboratory. Lincoln’s presentation at the 2002 O’Reilly Open
Bioinformatics Conference and his subsequent paper in Nature (described in Chapter 1), inspired
me to write this book in the first place. Lincoln’s vision of creating a “bioinformatics nation” is
a compelling one; I hope this book provides readers with the nuts and bolts information to make
Lincoln’s dream a reality. Lincoln also provided answers to many of my questions regarding the
DAS protocol, and a complete technical review of Chapter 6. His feedback and detailed explanations
were invaluable.

Preface ix

Second, I want to thank everyone at the Computational Biology Center (cBio) at Memorial
Sloan-Kettering Cancer Center, where I work. Chris Sander has created a unique and intellectually
vibrant center, where I have been able to learn and thrive, and gain hands-on experience in many
of the technologies described in this book. Alex Lash provided help in understanding the database
resources at NCBI, and pointed me to the NCBI E-Fetch service described in Chapter 5. Anton
Enright provided detailed feedback on Chapter 5. Gary Bader provided me with much-needed
background information about specific biological databases and detailed background information
about the PSI-MI XML format. Gary also provided feedback on Chapter 4.

Third, I want to thank Lorrie LeJeune, Simon St. Laurent, Tracey Cranston, and Brian Gilman
who helped out with an earlier incarnation of this book, before it found a new home at Springer-
Verlag.

Fourth, I want to thank several additional individuals who generously agreed to review specific
chapters and provided scientific and technical feedback. Peter Covitz, Director of Bioinformatics
Core Infrastructure at the National Cancer Institute (NCI) provided feedback on Chapter 9, and
answered many of my questions regarding the NCI caBIO bioinformatics framework. Jeff Spitzner,
Chief Science Officer of Rescentris, Ltd., reviewed Chapter 2, and provided valuable feedback
regarding BSML. I also want to thank Paul Farrell, my editor at Springer, for ushering the book to
completion and keeping me on schedule.

Finally, I want to thank my entire family for supporting me during the whole writing process
associated with this book. Thanks to Dad, who hired me at the ripe age of twelve to complete my first
bioinformatics programming project (really), and instilled in me a love of scientific ideas and ideals.
Thanks to Mom for buying me my first computer (a Commodore Vic 20), and always reminding
me to remain balanced. Special thanks to Nelli and Carla for their support and encouragement.

Lastly, I want to thank my wife, Amy. All authors thank their wives in the acknowledgments, but
Amy has the distinction of supporting me in this fourth book endeavor while also being pregnant.
I do not know how she puts up with me, but she has been my rock, my soulmate, my everything. I
love you.

Contents

1. Introduction to XML for Bioinformatics 1
1.1 Introduction to XML 2

1.1.1 XML Defined 2
1.1.2 Origins of XML 4
1.1.3 The XML Family of Specifications 5
1.1.4 Web Services Defined 6

1.2 Using XML for Biological Data Exchange 7
1.2.1 Case Study: The Distributed Annotation System 8
1.2.2 XML Formats for Bioinformatics 11

1.3 Evaluating XML Usage in Bioinformatics 12
1.3.1 Advantages of XML 12
1.3.2 Disadvantages of XML 13

1.4 Useful Resources 14
1.4.1 Articles 14
1.4.2 Web Site and Web Resources 15

2. Fundamentals of XML and BSML 17
2.1 Getting Started with BSML 17

2.1.1 Using Genomic WorkspaceTM 20
2.2 Fundamentals of XML 22

2.2.1 Working with Elements 22
2.2.2 Working with Attributes 23
2.2.3 The XML Prolog 24
2.2.4 Comments 24
2.2.5 Processing Instructions 24
2.2.6 Character Encoding 25
2.2.7 CDATA Sections 26
2.2.8 Creating Well-Formed XML Documents 27
2.2.9 Creating Valid XML Documents 28
2.2.10 Working with XML Parsers 30

2.3 Fundamentals of XML Namespaces 31
2.3.1 Why We Need XML Namespaces 31
2.3.2 Declaring and Using XML Namespaces 33
2.3.3 Declaring a Default Namespace 34

xi

xii Contents

2.4 Fundamentals of BSML 35
2.4.1 BSML File Formats 36
2.4.2 BSML Document Structure 36
2.4.3 Representing Sequences 38
2.4.4 Representing Sequence Features 39
2.4.5 Retrieving Live BSML Data via XEMBL 45

2.5 Useful Resources 47

3. DTDs for Bioinformatics 49
3.1 Introduction to DTDs 49

3.1.1 A Bird’s-Eye View: Protein DTD 50
3.1.2 Validating XML Documents 52

3.2 Document Type Declarations 55
3.3 Declaring Elements 57

3.3.1 EMPTY 57
3.3.2 ANY 58
3.3.3 #PCDATA 58
3.3.4 Child Elements 59
3.3.5 Mixed Content 60

3.4 Declaring Attributes 61
3.4.1 Attribute Types 62
3.4.2 Attribute Behaviors 65

3.5 Working with Entities 66
3.5.1 General Entities 66
3.5.2 Parameter Entities 69
3.5.3 Entity Summary 70
3.5.4 Conditional DTD Sections 70

3.6 Case Study: NCBI TinySeq 72
3.6.1 NCBI and XML 72
3.6.2 The TinySeq DTD 73

4. XML Schemas for Bioinformatics 81
4.1 Introduction to XML Schemas 81

4.1.1 XML Schemas for Bioinformatics 82
4.2 Essential Concepts: Representing Protein Data 82

4.2.1 The <schema> element 84
4.2.2 Schema Documentation 86
4.2.3 Simple Types vs. Complex Types 86
4.2.4 Global Elements vs. Local Elements 86
4.2.5 Creating Instance Documents 87
4.2.6 Validating Instance Documents 88

4.3 Working with Simple Types 89
4.3.1 Built-in Schema Types 89
4.3.2 Working with Facets 91

4.4 Working with Complex Types 94
4.4.1 Introduction to Complex Types 94
4.4.2 Declaring Empty Element Types 96

Contents xiii

4.4.3 Declaring Mixed Element Types 97
4.4.4 Occurrence Constraints 98
4.4.5 Declaring Default Values 99
4.4.6 Compositors: Sequence and Choice 100
4.4.7 Defining Named Complex Types 102
4.4.8 All Together Now! 103

4.5 Basic Namespace Issues 103
4.6 Case Study: The HUPO PSI Molecular Interaction Format 107

4.6.1 PSI-MI Schema Overview 108
4.6.2 A Sample PSI-MI Instance Document 109
4.6.3 Working with the PSI-MI Controlled Vocabulary 113

5. Parsing NCBI XML in Perl 115
5.1 Introduction to XML Parsing in Perl 115

5.1.1 Tree-Based vs. Event-Based XML Parsers 116
5.1.2 Installing Modules via CPAN 117

5.2 The Simple API for XML (SAX) 118
5.2.1 Introduction to SAX 118
5.2.2 SAX and Bioinformatics Applications 118
5.2.3 SAX 2.0 119
5.2.4 Introduction to XML::SAX 119
5.2.5 Using NCBI EFetch and XML::SAX 125

5.3 The Document Object Model (DOM) 129
5.3.1 DOM Traversal with XML::LibXML 129
5.3.2 Validating XML Documents with XML::LibXML 132
5.3.3 Creating New Documents with XML::LibXML 132
5.3.4 Using NCBI EFetch and XML::LibXML 132

6. The Distributed Annotation System (DAS) 137
6.1 Genome Annotation 137
6.2 Introduction to DAS 140

6.2.1 The WormBase DAS Viewer 141
6.3 DAS Protocol Overview 141

6.3.1 Getting Started 144
6.3.2 DAS Requests 145
6.3.3 DAS Responses 146
6.3.4 X-DAS-Capabilities Header 148

6.4 DAS Command Reference 149
6.4.1 Retrieving Data Sources 149
6.4.2 Retrieving Entry Points 151
6.4.3 Retrieving Sequence Data 153
6.4.4 Retrieving Annotations 155

6.5 Working with Reference Maps 168
6.5.1 Traversing the Ensembl Reference Map 169
6.5.2 Working with Evolving Reference Maps 171

6.6 The Future of DAS 172

xiv Contents

7. Parsing DAS Data with SAX 175
7.1 Introduction to SAX 175

7.1.1 A First Example 175
7.1.2 The XMLReader Interface 179
7.1.3 The ContentHandler Interface 182
7.1.4 Extending the DefaultHandler 184
7.1.5 Using InputSource Objects 186

7.2 Validating XML Documents 188
7.2.1 Checking for Well-Formedness 188
7.2.2 Validating XML Documents: Overview 190
7.2.3 Activating the SAX Validation Feature 191
7.2.4 The ErrorHandler Interface 191
7.2.5 Validating against XML Schemas 196

7.3 Elements, Attributes, and Namespaces 197
7.3.1 Working with Elements and Namespaces 197
7.3.2 Working with Attributes 202

7.4 Building Custom Data Structures with SAX 204
7.4.1 Parsing DAS Feature Data 204
7.4.2 Integrating with BioJava 208

8. Parsing DAS Data with JDOM 215
8.1 JDOM Basics 215

8.1.1 JDOM Package Overview 215
8.1.2 Parsing XML Documents with JDOM 216

8.2 Parsing DAS Documents with JDOM 221
8.2.1 Introduction to the JDOM Element API 221
8.2.2 Traversing DAS Documents 224
8.2.3 Parsing DAS dsn Documents 229

8.3 Creating DAS Documents with JDOM 233
8.3.1 Creating New Documents 233
8.3.2 Creating New Elements 234
8.3.3 A Complete Example 235

8.4 Building the JDAS Library 238
8.4.1 Using JDAS 238
8.4.2 The JDAS Source Code 243

9. Web Services for Bioinformatics 247
9.1 Introduction to Web Services 247

9.1.1 Web Services Defined 247
9.1.2 Architectural Options 250

9.2 Case Study: Introduction to the NCI caBIO Project 251
9.2.1 Background: Connecting to caBIO via the Java RMI

Interface 253
9.3 Introduction to REST-Based Web Services 257

9.3.1 Introduction to REST 257
9.3.2 Connecting to the caBIO REST Interface 258
9.3.3 Example Application: Command Line caBIO Browser 262

Contents xv

9.4 Introduction to SOAP 267
9.4.1 SOAP Overview 268
9.4.2 Constructing SOAP Messages 270
9.4.3 Transporting SOAP via HTTP 273

9.5 Introduction to Apache Axis 275
9.5.1 Building a Web Service with Axis 276
9.5.2 Connecting to caBIO with Axis 281

Appendix 283
1 Nucleotide Base Codes 283
2 Amino Acid Codes 283

Bibliography 285

Index 291

Introduction to XML for
Bioinformatics 1

Bioinformatics represents a new field of scientific inquiry, devoted to answering questions about
life and using computational resources to answer those questions. A key goal of bioinformatics is
to create database systems and software platforms capable of storing and analyzing large sets of
biological data. To that end, hundreds of biological databases are now available and provide access
to a diverse set of biological data.

Given this diverse set of biological data, the exponential growth of biological data sets, and
the desire to share data for open scientific exchange, the bioinformatics community is continually
exploring new options for data representation, storage, and exchange. In the past few years, many
in the bioinformatics community have turned to XML to address the pressing needs associated
with biological data. XML, or Extensible Markup Language, is a technical specification originally
created for data representation and exchange over the Internet. XML is an open standard, officially
specified by the World Wide Web Consortium (W3C), and deliberately designed to be operating
system and programming language independent.

XML is extensible to many application domains and has been successfully used to represent
multiple types of data, including e-commerce transactions, search engine results, scalable vector
graphics, and even voice recognition and voice synthesis. Since its introduction, XML has also been
successfully used to represent a growing set of biological data, including nucleotide sequences,
genome annotations, protein–protein interactions, and signal transduction pathways. XML also
forms the backbone of biological data exchange, enabling researchers to aggregate data from
multiple heterogeneous data sources.

The goal of this book is to present the fundamentals of XML, and to demonstrate the ways in
which XML is being usefully applied in the field of bioinformatics. This chapter presents the first
step in this goal, and therefore focuses on three main questions:
� What exactly is XML?
� How is XML currently being used in bioinformatics?
� What are the pros and cons of using XML in bioinformatics?

To explore these issues, we examine the origins of XML, compare XML with HTML, and provide
a snapshot of the XML family of specifications. We also take a bird’s-eye view of our first case
study in bioinformatics and explore the Distributed Annotation System (DAS).

1

2 XML for Bioinformatics

1.1 Introduction to XML

1.1.1 XML Defined
XML is a technology specification that enables you to create highly structured documents. The ML
in XML stands for Markup Language. A markup language is any language that takes raw text and
adds annotation. For example, you could take this page, and underline some words in red and some
words in green. Red might indicate bold and green might indicate italics. Along the same lines,
Hypertext Markup Language (HTML) is a markup language for creating web pages. It too can be
used to represent bold and italics, but it also includes many additional markup options for creating
visually compelling web pages.

XML focuses on document semantics. This means that you can identify specific document parts
and assign them specific meaning. For example, if you are representing biological sequence data,
you can clearly identify which portion of the document contains sequence identifiers and cross-
references to public databases, and which portion contains raw sequence data. These sections are
clearly marked and organized in a hierarchical document structure. A human reader or a computer
program can therefore easily traverse a complete document and extract individual pieces of data.
For example, a pipeline application can extract the raw sequence data within a document and pass
this information along to a BLAST sequence similarity service.

By focusing on document semantics, XML focuses on the meaning and hierarchical structure of
documents and ignores the specifics of presentation and layout.∗ This is in sharp contrast to HTML.
In its original design, HTML was created to convey very simple document structure. For example,
an H1 tag indicates a first-level heading, and an H2 tag indicates a second-level heading. However,
HTML has grown significantly away from document structure and now has a much greater focus
on content presentation and layout. For example, HTML now supports fonts, images, tables, and
colors.

One of the best ways to understand XML is to take a single set of data, encode it in HTML,
and then compare it to the same data encoded in XML. Let us take a look at two very simple
examples. Listing 1.1 shows a nucleotide sequence record in HTML, and Listing 1.2 shows the
same nucleotide sequence record in XML.

Hopefully, you have at least a passing familiarity with HTML. If not, do not worry. There are
only a few important pieces to note. First, HTML markup items are indicated with the very familiar
angle brackets. For example, the markup tag indicates the start of a bold item; likewise, the
 markup tag indicates the end of a bold item. HTML documents are also formally defined
with a start <html> tag and a corresponding end </html> tag. In a nutshell, markup tags are used
to denote specific elements. Hence, we say that the start <html> tag marks the beginning of the
<html> element. Understanding the difference between tags and elements is important. We shall
return to the topic in Chapter 2.

If you view Listing 1.1 in a web browser, you will see something like that shown in Figure 1.1.
You can now start to ask yourself some very basic questions about this document. For example, what
is the accession number (or unique identifier) for this record? What organism are we dealing with?
What is the raw sequence data? As a human, these answers are intuitively obvious. For example,

∗ There are some exceptions to this rule. For example, Scalable Vector Graphics (SVG) is an XML vocabulary designed pre-
cisely for presentation, layout, and even animation. XHTML is also an XML vocabulary designed precisely for presentation
and layout of web pages.

Chapter 1 � Introduction to XML for Bioinformatics 3

Listing 1.1 A nucleotide sequence record, encoded in HTML

<html>
<body>

<h1>NM-171533</h1>
Organism: Caenorhabditis elegans
<p>
agcacatgacatgagcagtgccccaaatgatgactgtgagatcgacaaggg
aacaccttctaccgcttcactttttacaacgctgatgctcagtcaaccatcttcttct
acagctgttttacagtgtacatattgtggaagctcgtgcacatcttcccaattgca
aacatgtttattctg
<p>
[Full sequence has been omitted for brevity.]

</body>
</html>

Listing 1.2 A nucleotide sequence record, encoded in XML

<?xml version="1.0" encoding="UTF-8"?>
<Sequence>
<accession>NM-171533</accession>
<organism>Caenorhabditis elegans</organism>
<sequence-data>

agcacatgacatgagcagtgccccaaatgatgactgtgagatcgacaaggg
aacaccttctaccgcttcactttttacaacgctgatgctcagtcaaccatcttcttct
acagctgttttacagtgtacatattgtggaagctcgtgcacatcttcccaattgca
aacatgtttattctg
[Full sequence has been omitted for brevity.]

</sequence-data>
</Sequence>

Figure 1.1 Sample HTML nucleotide sequence record, shown in the Mozilla web browser.

4 XML for Bioinformatics

it’s obvious that the accession number is NM-171533, and that we are dealing with a nucleotide
sequence from C. elegans.

To a computer, however, these answers are not so obvious. For example, how do we program-
matically identify the organism? There are two general approaches one could use. One option is
to maintain a database of organisms (for example, one could copy the NCBI Taxonomy database),
extract substrings from the HTML document, and search for matches within the database. The
second option is to examine the HTML and find patterns in usage. For example, we can see that the
accession number is specified within H1 tags and the organism is specified within bold tags. You
could therefore write an HTML parser and map specific patterns to specific fields. This technique
is frequently known as HTML “screen-scraping” and it is notoriously brittle [10]. Screen-scraping
is fragile because the webmaster maintaining the HTML page may arbitrarily decide to reformat
it. For example, the webmaster may decide to present organisms within italic tags instead
of bold tags. If this happens, your parser breaks, and you can no longer extract the correct
data.

Now, consider the XML version of the same sequence record. Listing 1.2 contains the exact
same content as Listing 1.1. However, this time, instead of using HTML tags we are using XML
tags. We can now revisit the same questions, e.g.: what is the accession number, what organism
is this? To a human reader, the answers are still intuitively obvious. To a computer application,
the answers are also now trivial. If you want to determine the accession number, simply extract
the <accession> element. To determine the organism, extract the <organism> element. XML
therefore makes it trivially easy for both humans and computers to identify and extract pieces of
data.

HTML and XML both share a similar structure. For example, they both use the familiar angle
brackets to denote markup. However, HTML is focused on document presentation, and XML
is focused on document semantics. Furthermore, with HTML, you are restricted to the HTML
element set such as , <I> , and <H1> . With XML, you no longer have such a restriction. You
can create elements for any piece of data you like. You can also organize these elements into any
hierarchy of your choosing.

1.1.2 Origins of XML
XML has its roots in another markup language called Standard Generalized Markup Language
(SGML). SGML has been around since the early 1970s. In fact, the predecessor to SGML, the
Generalized Markup Language (GML), was first proposed at IBM as early as 1969. SGML is a
markup language, which focuses on document semantics, and has been used by many organizations
for document management. SGML also includes a number of companion technologies that are
capable of transforming SGML into different file formats. For example, given a training manual
in SGML, you can convert it to HTML, PDF, or some other format more suitable for printed,
hard-copy manuals.

In 1997, the World Wide Web Consortium (W3C) set out to create a specification for XML.
The goal of the W3C working group was to create a new markup language that could build on the
strengths of SGML, but cut out much of its complexity. According to Tim Bray, one of the original
editors of the XML 1.0 specification:

XML is an attempt to package up the important virtues and most-used features of SGML in a compact,
easily-implemented package that is optimized for delivery on the WWW. [3]

Chapter 1 � Introduction to XML for Bioinformatics 5

In fact, one of the more curious pieces of XML trivia is that the name “Extensible Markup Language”
was not the only name option under consideration. Following are the three other options that
were considered:
� MAGMA: Minimal Architecture for Generalized Markup Applications
� SLIM: Structured Language for Internet Markup
� MGML: Minimal Generalized Markup Language

Each of these names conveys that XML was intended to create a minimized or “slimmed” down
version of SGML. However, in the end, the name XML won with the most votes (MAGMA came
in a close second, and MGML came in last) [3].

1.1.3 The XML Family of Specifications
In the early days of XML, everything you needed to know about XML appeared in just one
document, the official W3C XML 1.0 specification. This document includes all the official rules
for creating XML documents, and all the rules for creating Document Type Definitions (DTDs).
DTDs enable you to create XML grammars which define document types or document structures.
For example, you can create a DTD which requires that every <sequence> element must contain
an <organism> element. It also provides a powerful mechanism for validating that documents
actually include the data that they purport to hold. We cover DTDs in Chapter 3.

Since those early days, however, XML has grown considerably to now include a complete family
of XML-related specifications. In fact, the list of XML-related specifications seems to grow every
few months. Below is a brief summary of the most important XML specifications:
� XML Namespaces: The XML Namespace specification enables you to partition an XML

document into distinct namespaces, and thereby prevent any possible naming conflicts. The
XML Namespace specification is covered in Chapter 2.

� XML Schema: XML Schema represents the successor to XML Document Type Definitions
(DTDs). XML Schema offers more flexibility and advanced validation options than DTDs.
XML Schema is covered in Chapter 4.

� XSLT (Extensible Style Sheet Language Transformations): XSLT enables you to transform
an XML document into a different XML format or into an HTML format. For example, you can
transform an XML document into HTML and make the HTML document available via a web site.

� XInclude (XML Inclusions): XInclude enables you to merge multiple XML documents into
one. For example, a single master XML document can import one or more XML documents or
document fragments.

� XLink (XML Linking Language): XLink enables you to define links within XML docu-
ments. XLinks go well beyond the basic linking capabilities of HTML, and include support for
multitarget, and even bidirectional links.

� XPath (XML Path Language): XPath enables you to locate specific elements or attributes
within an XML document. For example, you can select all sequence elements or only the
third sequence element. XPath is used extensively in XSLT.

� XPointer (XML Pointer Language): XPointer builds on XPath to enable the creation of XML
specific URLs. For example, an XPointer URL is capable of pointing to a specific element
within an XML document.

� XQuery (XML Query Language): XQuery defines a language for querying XML documents,
in much the same way that SQL enables querying of relational databases.

6 XML for Bioinformatics

Computer A:
Language: Perl
Operating System:
 Windows XP

Computer B:
Language: Java
Operating System:
 Linux

XML

XML

Figure 1.2 Web services defined. A web service enables two computers to communicate using XML.

It is important to note that a specification beginning with “X” or “XML” does not imply
the same wide adoption as XML itself.

1.1.4 Web Services Defined
Beyond the XML family of specifications, XML has also spawned an entirely new field of web
services. Web services represent an important step forward in building distributed applications over
the Internet. They also represent an increasingly important building block for many distributed
bioinformatics applications. In this book, we cover the fundamentals of web services, and provide
a case study of the caBIO web service, created by the National Cancer Institute (NCI).

In a nutshell, a web service is any service that is available over the Internet, uses a standardized
XML messaging system, and is not tied to any one operating system or programming language [4].
(See Figure 1.2.) More succinctly put, one observer has defined web services as “XML in motion”
[7].

In its simplest form, a web service can consist of XML documents delivered over a network
protocol, such as HTTP. As we will soon see below, the Distributed Annotation System (DAS)
is a prime example of one such service. At a higher level, a web service might use one of the
formally defined XML protocols, such as XML-RPC or SOAP. For example, as we will see in
later chapters, the XEMBL project provides a SOAP interface to the complete European Molecular
Biology Laboratory (EMBL) nucleotide sequence database. When using SOAP, a web service can
also be self-describing. In other words, if you publish a new web service, you can also publish a
public interface to the service. This interface describes a list of publicly available methods, along
with method parameters and return values. With a formally defined interface, new clients can more
easily determine what functionality exists, and more easily connect to the service. Currently, web
services can be described using the W3C Web Service Description Language (WSDL).

To appreciate the value of web services, it is useful to think of a human-centric web vs. an
application-centric web. In a human-centric web, web sites are primarily designed for human
consumption. Data is encoded in HTML web pages, and these pages are specifically tailored for
display within standard web browsers. However, as we have already seen, applications have a hard
time extracting meaningful data out of HTML documents. In an application-centric web, web sites

Chapter 1 � Introduction to XML for Bioinformatics 7

are designed for both human consumption and application consumption. Data is encoded in HTML
web pages for human users, but data is also encoded in XML for applications. In this model, there is
no need for HTML screen-scraping, and applications can more easily aggregate data from a diverse
set of web resources.

1.2 Using XML for Biological Data Exchange

XML is currently used to encode a wide range of biological data and has rapidly become a critical
tool in bioinformatics. In fact, one recent paper on XML in bioinformatics predicted that XML
will soon become “ubiquitous in the bioinformatics community” [1]. The real strength of XML is
that it enables communities to create XML formats, and then use these common formats to share
data. XML therefore enables individual researchers, software applications, and database systems to
exchange and share biological data. In the end, this enables biologists to more easily access relevant
data, aggregate data from multiple sources, and mine this data for important scientific clues.

At the 2002 O’Reilly Open Bioinformatics Conference, Lincoln Stein of the Cold Spring Harbor
Laboratory delivered a keynote speech, entitled “Creating a Bioinformatics Nation.” Stein’s presen-
tation and subsequent paper in Nature [10] describe a vision and a blueprint for creating common
data formats, supporting open source software projects, and building interoperable web services for
exchanging biological data. By historical analogy, Stein likened the current state of bioinformatics
to the city states of Medieval Italy:

During the Middle Ages and early Renaissance, Italy was fragmented into dozens of rival city-states con-
trolled by such legendary families as the Estes, Viscontis and Medicis. Though picturesque, this politi-
cal fragmentation was ultimately damaging to science and commerce because of the lack of standardiza-
tion in everything from weights and measures to the tax code to the currency to the very dialects people
spoke. [10]

In the same vein, Stein argued that bioinformatics is currently dominated by rival groups, rival
data formats, and incompatible web sites, and that the lack of clear standards and interoperable
software is a “significant hindrance to researchers wishing to exploit the wealth of genome data to
its fullest” [10]. A recent technology feature regarding bioinformatics, published in Nature in 2002,
echoed many of these same concerns. According to one bioinformatics expert quoted in the Nature
feature, “To answer most interesting biological problems, you need to combine data from many
data sources. However, creating seamless access to multiple data sources is extremely difficult”
[5]. Echoing Stein’s sentiments exactly, the researcher concludes that “The key to bioinformatics
is integration, integration, integration” [5].

Academic research labs are not the only ones interested in creating interoperable bioin-
formatics software. The Interoperable Informatics Infrastructure Consortium (I3C) is a
consortium of computer companies, biotech companies, and academic research labs de-
voted to supporting interoperable data and software “to accelerate discovery and solve
critical problems in drug development” [8]. Several dozen organizations are currently
involved, including Merck & Co., Millennium Pharmaceuticals, IBM Life Sciences,
and the MIT Whitehead Center for Genome Research. Information is available online
at: http://i3c.org.

8 XML for Bioinformatics

1.2.1 Case Study: The Distributed Annotation System
By moving toward common XML data formats and open web-service protocols, the bioinformatics
community can significantly lower the barriers to data integration and help build Stein’s long-term
vision of creating a “bioinformatics nation.” To illustrate a concrete example of Stein’s bioinformat-
ics nation in action, we now turn briefly to our first case study: the Distributed Annotation System
(DAS) [6]. By taking a bird’s-eye view of DAS, we can gain insights into current XML usage in
biological data exchange and explore the mechanics of data aggregation. We can also gain insight
into the essential XML concepts and technologies that are explored throughout the remainder of
this book.

DAS is an XML-based protocol that enables the distribution and sharing of genomic annotation
data. Genomic annotation is the process of analyzing regions of raw sequence data, and then adding
notes, observations, and predictions. For example, annotation includes the identification of exons
(protein-coding portions of genes), introns (noncoding portions of genes), and the categorization
of repeat-coding regions. Genomic annotation may also include the linking of sequence data to
already cataloged gene sequences, making computerized predictions about the locations of novel
genes, and identifying sequence similarities across species.

Despite its enormous potential, genomic annotation faces numerous technical challenges. First,
annotation is highly decentralized and currently underway at hundreds of laboratories throughout
the world. Second, it is not likely that one organization or institution will be able to coordinate and
centralize all genomic annotations. In response to these challenges, Lincoln Stein of the Cold Spring
Harbor Laboratory, along with Sean Eddy and LaDeana Hillier, both of Washington University at
St. Louis, set out to build a distributed protocol for genomic annotation.

DAS is formally specified by a client/server protocol and a set of XML documents. Client
applications connect to DAS servers, send queries in the form of URL parameters, and receive
XML encoded data back. See Figure 1.3. For example, a client can request all genomic annotations
within a specific region of human chromosome 11, or request only a subset of those annotations.
This is a prime example of “XML in motion,” as DAS uses XML to encode documents and then
delivers those documents over Internet protocols.

Currently, clients can issue one of eight different DAS commands, and each command will
trigger a different XML response from the server. For example, a client can request a list of data
sources or genomes hosted by the server, retrieve annotations across a specific chromosomal region,
or request raw DNA sequence data.

All DAS servers return XML data encoded in the same exact format. For example, if a client
requests annotation data, the DAS server must return data encoded in the standard DASGFF , or

DAS
Client

DAS
Server

HTTP Request: URL

HTTP Response: XML

Figure 1.3 The DAS protocol. Client applications issue DAS commands in the form of URL parameters, and receive XML encoded
documents back from the server.

Chapter 1 � Introduction to XML for Bioinformatics 9

General Feature Format. If a client requests raw sequence data, the DAS server must return data
encoded in the standard DASSEQUENCE XML format.

In Chapter 6, we will discuss in detail the specific nature of DAS requests and responses.
However, to get your feet wet, here is a sample DAS request:

http://servlet.sanger.ac.uk:8080/das/ensembl830/sequence?segment=1:1000, 1200

DAS requests are defined as regular web URLs. The first part of the URL indicates that we are
connecting to the DAS server located at the Wellcome Trust Sanger Institute. Following this is the
“/das” prefix, required by the DAS protocol. We then have three additional elements:
� The Data Source Name (DSN). Each DAS server can host multiple data sources, and clients

must specify which data source they want. In the case above, we have specified “ensembl830,”
indicating that we want the Ensembl Human Genome assembly, version 8.30.∗

� The DAS Command. In the case above, we have specified “sequence,” indicating that we want
to retrieve raw sequence data.

� DAS parameters. Each DAS command requires a different set of parameters. For example, to
request raw sequence data, clients must specify a reference ID, such as a chromosome number,
and start/stop values. In the case above, we have specified chromosome 1, base pairs 1000–1200.

In response to the DAS command defined above, the Ensembl DAS server will return the following
XML document:

<?xml version='1.0' standalone='no' ?>
<!DOCTYPE DASSEQUENCE SYSTEM 'dassequence.dtd' >
<DASSEQUENCE>
<SEQUENCE id="1" version="8.30" start="1000" stop="1200"

moltype="DNA">
taatttctcccattttgtaggttatcacttcactctgttgactttcttttgctgtgcaga
agctttttaggttgatgctattccatttgtgttttgttgcttttcttgcctgtgctttag
agtcatatcataaaatattattgcccagaccaatgtcttggagttattcccctgttttct
tctaggagttctatagtgcta
</SEQUENCE>

</DASSEQUENCE>

In the next chapter, we will formally analyze all the important parts of an XML document. For
now, however, you can just focus on the <SEQUENCE> element. As you can see, the <SEQUENCE>
element contains the requested raw sequence data. It also includes a number of XML attributes. For
example, the id attribute indicates the chromosome number, version indicates the Ensembl version
number, start and stop indicate the sequence coordinates, and moltype indicates the type of molecule
(in this case, DNA).

DAS is built to use regular web protocols, such as HTTP. You can therefore use a regular web
browser to issue DAS requests. For example, to issue your very first DAS request, try typing the
URL above into a web browser. A sample screenshot of the DAS response is shown in Figure 1.4.

The real power of DAS, and of XML in general, is that it enables applications to aggregate
data from multiple sources. Without DAS, a user would need to manually surf to three different
web sites to compare annotation data. With DAS, a user can open a single client application, and
simply specify three DAS servers. Behind the scenes, the client application connects to each DAS

∗As this book goes to press, the most recent Ensembl Human Genome assembly is version 18. For the latest version
information, go to: http://servlet.sanger.ac.uk:8080/das.

10 XML for Bioinformatics

Figure1.4 DAS is built to use regular web protocols, such as HTTP. You can therefore use a regular web browser to issue DAS requests.
A sample sequence request to the DAS Ensembl server is shown.

DAS Client

UCSC: DAS
Server

Ensembl:
DAS

Server

TIGR: DAS
Server

XML

XML

XML

UCSC Data

Ensembl Data

TIGR Data

Figure 1.5 Using the DAS protocol, client applications can easily connect to multiple DAS servers and aggregate annotation data.

server, aggregates the response data, and creates a unified view of the data. Users can then see all
the annotation data in one place and more easily compare the data. See Figure 1.5.

For another quick preview of DAS in action, try using the DAS viewer available at Wormbase.org,
the model organism database for Caenorhabditis elegans. The Wormbase DAS viewer runs on the
Wormbase server, but behind the scenes, it actually works as a DAS client. Here is how it works:
First, the user must specify one or more DAS servers. They do this via the Wormbase web site.
Second, the user specifies a specific chromosomal region of interest. The Wormbase server receives
the user request and translates it into multiple DAS client commands, one for each specified DAS

Chapter 1 � Introduction to XML for Bioinformatics 11

Figure 1.6 Sample screenshot of the DAS viewer available at Wormbase.org.

server. The Wormbase application then waits for responses from each server, parses the XML
response data from each, and then aggregates this data into a unified view.

The unified view is then presented as a single web page to the end user. See Figure 1.6 for a
sample screenshot. The bottom of our sample screenshot indicates the chosen chromosome region;
in this case, we are viewing chromosome 2, 2500–5000 base pairs. Directly above this, each DAS
source is represented as a separate horizontal track of data. Annotation from The Institute for
Genomic Research (TIGR) is shown on the top and annotation from Wormbase.org is shown on
the bottom. As you can see, the screenshot shows a coding sequence (CDS) for NP334958, and
that TIGR and Wormbase agree on the location of all exons and introns.

1.2.2 XML Formats for Bioinformatics
DAS is one of the best-known examples of XML in bioinformatics. However, many other XML
formats have been created. For example, the Bioinformatic Sequence Markup Language (BSML)
is used to encode biological sequence and annotation data. NCBI hosts several newly released
XML formats for encoding sequence data. The MicroArray Gene Expression Markup Language
(MAGE-ML) is used to encode gene expression data. The UniProt XML format (formerly called
SPTr-XML) is used to encode protein data. And, the Proteomics Standards Initiative Molecular
Interaction XML format (PSI-MI) is used to encode protein–protein interaction networks. See
Table 1.1 for a summary of current XML formats for bioinformatics.

12 XML for Bioinformatics

Table 1.1 XML formats currently in use in bioinformatics. This list includes XML formats that are most widely used and most
frequently cited. It is not meant to be comprehensive.

Name Web Address

AGAVE: Architecture for Genomic Annotation, Visualization and Exchange http://www.animorphics.net/lifesci.html
BioML: BIOpolymer Markup Language http://www.bioml.com/BIOML
BioPAX: Biological Pathways Exchange http://www.biopax.org
BSML: Bioinformatic Sequence Markup Language http://www.bsml.org
CellML http://www.cellml.org
DAS: Distributed Annotation System http://www.biodas.org
Gene Ontology (GO) DTD http://www.geneontology.org/xml-dtd/go.dtd
MAGE-ML: MicroArray Gene Expression Markup Language http://www.mged.org/mage
NCBI DTDs: Numerous DTDs, including GBSeq, TinySeq, SeqSet, and NCBI Blast http://www.ncbi.nlm.nih.gov/dtd
PEML: Proteomics Experiment Markup Language http://pedro.man.ac.uk
PSI-MI: Proteomics Standards Initiative Molecular Interaction http://psidev.sourceforge.net
SBML: The Systems Biology Markup Language http://www.sbw-sbml.org/sbml/docs
UniProt XML http://uniprot.org
XFF: The Extensible Feature Format http://www.biojava.org/thomasd/XFF

Throughout this book, we explore many of these formats in detail. For example, in Chapter 2,
we cover BSML. In Chapter 3, we cover the NCBI TinySeq XML format. In Chapter 4, we cover
the PSI-MI XML format. In Chapters 6–8, we cover DAS and several options for parsing DAS data
in Java.

1.3 Evaluating XML Usage in Bioinformatics

XML is a tool, and like any tool, it has specific advantages and disadvantages. This makes it very
suitable for many types of bioinformatics applications, but not for all. You therefore need to evaluate
each specific bioinformatics application on a case-by-case basis.

1.3.1 Advantages of XML
� XML is extensible. The X in XML stands for extensible. This means that you can extend XML to

many areas of interest, and can create XML formats for encoding a growing set of bioinformatics
data. Already, XML formats exist for representing sequence data, protein–protein interactions,
and Microarray data, to name just a few. You are not beholden to any central XML committee
that controls XML data formats, and can create new XML formats as needed.

� XML provides built-in document validation. Using Document Type Definitions (DTDs) and
XML Schemas, you can create formal rules which define valid XML documents. You can then
validate XML documents to make sure that they follow all the rules. This relieves you from
having to write your own validation software and enables you to more easily focus on document
content instead. This is particularly useful if you need to process XML documents from third
parties.

� XML is both human readable and computer readable. XML documents are written in plain
text and not in binary format. No special tools are required to view them, and you can get started
with a regular text editor and a standard web browser. This lowers the barrier for getting started
in XML and makes debugging XML documents much easier.

Chapter 1 � Introduction to XML for Bioinformatics 13

� XML is platform and language independent. XML was specifically designed to work on any
operating system and with any programming language. It therefore works on Windows, UNIX,
Linux, and Mac OS X. It also works with all your favorite programming languages, including
C, C++, C#, Perl, Python, and Java. By using XML, you are not tied to any one system, and can
more easily communicate with other platforms. This is particularly important in bioinformatics,
as you frequently need to aggregate data from heterogenous systems and platforms.

� XML is a public standard. XML is an official recommendation of the World Wide Web
Consortium (W3C). As a public standard, XML is not tied to any one company, and all companies
that provide XML support generally find it in their best interest to fully support the W3C XML
specifications. In addition to the core XML specification, the W3C also sponsors numerous
other XML specifications, such as XML Schema, XLink, XQuery, and SOAP.

� The XML tool set is large and growing. Hundreds of XML parsers, browsers, and editors
are now available. These are generally available for all the major operating systems, and all
the major programming languages. Open source development around XML is also particularly
strong. For example, the Apache Software Foundation hosts a number of excellent XML tools,
including the Xerces XML parser, the Xalan XSLT transformation tool, and the Apache Axis
SOAP toolkit. Commercial XML development is also quite strong and a number of excellent
commercial XML editors are available.

� XML works well with the Internet. One of the original goals of XML was to create a web-
friendly version of SGML. As such, XML works well with most other Internet protocols,
such as HTTP. For example, you can easily serve up XML pages from a web server. You
can also use XML-RPC or SOAP to create distributed applications that communicate over the
Internet.

� XML documents can be transformed. Using XSLT, you can transform an XML document
into a different format. This enables you to build conversion utilities to support multiple XML
formats, and to transform XML documents into HTML documents, for presentation on the
web.

� XML is global. The XML specification requires that all XML parsers support the global Unicode
character encoding system. Unicode provides support for most of the languages on Earth, and
stands in sharp contrast to ASCII, which supports only Latin or English characters. You can
therefore include multiple character sets and languages within a single XML document.

1.3.2 Disadvantages of XML
The list of disadvantages is shorter, but it is important to keep the following items in mind:
� XML is verbose. XML documents are stored as plain text and include lots of markup tags.

These markup tags add considerable overhead to the document and take up lots of memory.
Very large XML documents delivered over the Internet therefore generally take up a lot of
bandwidth and are hardly optimized for network delivery. As one example where this is already
a problem, consider gene expression data from a microarray experiment. Just one experiment
might include tens of thousands of data points and might be better off formatted in a simple tab
delimited format, making it both more compact and easier to parse.

� XML is not a cure-all for data integration. XML certainly facilitates integration of biological
data. However, there are in fact many critical data integration issues that are not addressed by
XML. This includes the assignment of unique identifiers across databases, the development of
ontologies for describing biological entities and phenomena, and the timely synchronization of
data sources [11]. There is also a serious political dimension, as it is difficult to get database

14 XML for Bioinformatics

providers to actually agree to one XML format and to convert their existing data into this new
XML format.

� XML does not guarantee unified formats. Just because you can create common XML formats
does not mean that everyone will use that format. In fact, you can frequently end up with fractured
efforts and overlapping XML formats. For example, in bioinformatics there are already several
options for encoding sequence data, and not all the data providers even support an overlapping
set of these formats. For example, the EMBL database currently returns data in both BSML and
AGAVE, but NCBI returns data in its own internally developed XML formats. If you want to
retrieve XML data from both EMBL and NCBI, you have to minimally include support for at
least two different XML formats.

� XML requires a large learning curve. XML was specifically designed to be a simpler, web-
friendly version of SGML. In the early days of XML, you could therefore get by with a basic
understanding of the XML specification, and perhaps one or two XML parsers. Today, however,
the learning curve is much greater. To truly take advantage of XML, you need to be familiar with
the core XML 1.0 specification, XML Namespaces, XML Schema, XSLT, and several XML
parsing APIs. This requires a significant investment of time. Furthermore, XML specifications
and technologies are constantly evolving. Staying on top of these new developments is a difficult
and time-consuming task.

Hopefully, you now have a good introductory understanding of XML, can appreciate it strengths
and weaknesses, and can envision ways in which XML can be usefully applied to bioinformatics.
We now turn to the fundamentals of XML and explore our second case study, the Bioinformatic
Sequence Markup Language (BSML).

1.4 Useful Resources

1.4.1 Articles
� F. Achard, G. Vaysseix, and E. Barillot, “XML, bioinformatics and data integration.” Bioinfor-

matics, 2001. 17(2): 115–125.

This is one of the very first papers describing the use of XML in bioinformatics. The paper
provides a list of pros and cons for using XML for bioinformatics and compares XML with
other data encoding systems, such as Abstract Syntax Notation One (ASN.1), CORBA, Java
RMI, and object-oriented databases.

� E. Barillot and F. Achard, “XML: a lingua franca for science?” Trends in Biotechnology, 2000.
18(8): 331–333.

Provides an overview of XML and its usage in scientific data exchange.
� R.D. Dowell et al., “The distributed annotation system.” BMC Bioinformatics, 2001. 2(1): 7.

Official description of the Distributed Annotation System.
� L. Stein, “Creating a bioinformatics nation.” Nature, 2002. 417 (6885): 119–120.

Describes the current state of bioinformatics and provides a blueprint for building interoperable
software and web services. Based on Stein’s keynote presentation at the 2002 O’Reilly Open
Bioinformatics Conference.

Chapter 1 � Introduction to XML for Bioinformatics 15

� L.D. Stein, “Integrating biological databases.” Nature Reviews Genetics, 2003. 4(5): 337–345.

Explores the challenges in integrating biological databases. Stein outlines the three main ap-
proaches to data integration, examines the role of biological ontologies, and assesses options
for creating globally unique identifiers.

� A.C. Martin, “Can we integrate bioinformatics data on the Internet?” Trends in Biotechnology,
2001. 19(9): 327–328.

Provides an overview of the 2001 Workshop on “CORBA and XML: Towards a Bioinformatics-
integrated Network Environment.”

1.4.2 Web Site and Web Resources
� DAS web site: http://www.biodas.org

Official home of the Distributed Annotation System. The web site includes the official DAS
specification, a list of public DAS servers, links to DAS client and server software, and a Request
for Comment (RFC) section with proposed features for DAS 2.

� XML.com Bioinformatics Resources: http://www.xml.com/pub/rg/Bioinformatics

Provides a list of XML formats and resources for bioinformatics. The list is maintained by the
editors of xml.com.

Fundamentals of XML and BSML 2
This chapter provides a detailed introduction to the fundamentals of XML. We cover all the essen-
tial concepts for understanding XML markup, creating XML elements, and working with XML
Namespaces. To make the concepts concrete and focused on bioinformatics, we introduce our first
case study and explore the Bioinformatic Sequence Markup Language (BSML). BSML is an open
XML standard used to represent biological sequences and sequence annotation data.

The chapter begins with a bare bones BSML document used to represent raw sequence data.
As we introduce this first example, we take a bird’s-eye view of XML document structure in
general, including start tags, end tags, elements, and attributes. We also take a quick tour of the
Rescentris Genomic WorkspaceTM, a freely available software application that visually renders
BSML documents.

After our high-level introduction to XML, we turn to a detailed description of the most important
XML concepts. The topics include: tag structure, comments, processing instructions, the XML
prolog, options for character encoding, XML grammars, and XML Namespaces. We also explore
what it means to be “well-formed” and “valid,” and how to test for either property.

The chapter concludes with a more detailed overview of the BSML specification. BSML is one
of the most mature XML standards in bioinformatics, and has grown to encompass a very large
set of bioinformatics sequence data. We do not have space to cover BSML in its entirety, and have
therefore chosen to specifically focus on core elements of the BSML specification. We also provide
several more BSML examples and explore these further within Genomic WorkspaceTM.

2.1 Getting Started with BSML

The best way to learn XML is by example. Therefore, before discussing any major concepts we will
begin with a sample XML document. This initial example adheres to the Bioinformatic Sequence
Markup Language (BSML) [12; 13; 25]. BSML is an open standard for representing and exchanging
biological sequence data. This data can include raw sequence data, sequence features, literature
references, networks of biological entities, and even graphical display widgets.

BSML is a great place to get started in XML. The first main advantage is that BSML represents
one of the very first XML formats specifically created for the life sciences. Second, BSML is com-
prehensive in scope. Those who have ushered the BSML specification and its continuing evolution
have made every effort to ensure that BSML is capable of accurately representing biological reality
and all the complexity that this requires. Furthermore, the BSML web site (http://www.bsml.org)
includes excellent documentation, including tutorial documents, a reference manual, and an
FAQ. Finally, Rescentris, Ltd. makes available a free BSML viewer that enables you to visually

17

18 XML for Bioinformatics

Listing 2.1 The SARS virus, encoded in BSML

<?xml version="1.0" encoding="UTF-8"?>
<!-- SARS coronavirus Urbani, complete genome. -->
<!-- Accession Number: AY278741 -->
<Bsml>
<Definitions>
<Sequences>
<Sequence id="AY278741" length="29727">
<Seq-data>
atattaggtttttacctacccaggaaaagccaaccaacctcgatctcttgtagatctgttct
ctaaacgaactttaaaatctgtgtagctgtcgctcggctgcatgcctagtgcacctacgcagt
ataaacaataataaattttactgtcgttgacaagaaacgagtaactcgtccctcttctgcaga
ctgcttacggtttcgtccgtgttgcagtcgatcatcagcatacctaggtttcgtccgggtgt
gaccgaaaggtaagatggagagccttgttcttggtgtcaacgagaaaacacacgtccaactca
gtttgcctgtcc
[For brevity, sequence is truncated.]
</Seq-data>
</Sequence>

</Sequences>
</Definitions>

</Bsml>

inspect and interact with BSML documents. This makes for much more exciting and interactive
examples.

Listing 2.1 shows our first XML example, a bare bones BSML document. The document repre-
sents the raw sequence data for the coronavirus responsible for severe acute respiratory syndrome
(SARS). The virus sequence is 29,727 base pairs in length, and we have taken the liberty of only
displaying the first few hundred base pairs. Let us now examine Listing 2.1, and we will continue
with a high-level overview of the document structure.

There is a lot going on in our first example. For now, note the following items of interest:
� Our document begins with the characters “<?xml” This is formally known as the XML prolog

and is used to indicate the version of XML and the character encoding.
� The second and third lines of the document are XML comments. Comments begin with the

characters “<!- -” and end with the characters “- ->”.
� Every XML document must have a root element. In our case, Bsml is the root element, and all

other elements are descendants of the root. For example, the Definitions element is a child
of the root Bsml element.

� XML elements are defined with start and end tags. For example, this tag: <Seq-data> signals
the start of the Seq-data element. Likewise, this tag: </Seq-data> indicates the end of the
element.

� Attributes appear within start element tags, and provide additional information about that ele-
ment. For example, our document includes two attributes: id and length. Within BSML, the id
attribute is used to uniquely identify an element within a document, and the length attribute is
used to denote the number of base pairs or residues in a sequence.

Every XML document explicitly defines a document structure or element hierarchy. The element
hierarchy for our sample document is shown in Figure 2.1. As you can see, Bsml is the roots
element. The root element contains aDefinitions element, which in turn contains a [Sequences]
element. This element then contains a [Sequence] element, which in turn contains a [Seq-data]

Chapter 2 � Fundamentals of XML and BSML 19

Bsml

Definitions

Sequences

Sequence

Seq-data

Figure 2.1 Element hierarchy of our first BSML document.

Figure 2.2 A sample screenshot of Internet Explorer. The first sample BSML document is shown. If the XML document does not
reference a specific style sheet for transforming to HTML, Internet Explorer will apply a default style sheet. This default style sheet
enables users to point and click their way through the element hierarchy. Clicking the + sign expands the element, revealing its direct
descendents. Clicking the – sign collapses the element, hiding all its descendants.

element. Note that many BSML documents will have this same structure, and we will explore this
structure in detail at the end of the chapter.

Many tools, including XML parsers and web browsers, provide complete access to the XML
element hierarchy. For example, Internet Explorer provides an interactive display for browsing an
XML document’s structure. You can easily open and close nodes, and thereby show or hide specific
branches of the element hierarchy. A sample screenshot is shown in Figure 2.2.

20 XML for Bioinformatics

2.1.1 Using Genomic WorkspaceTM

Viewing BSML documents within Internet Explorer certainly helps you understand and navigate the
document structure, but it’s hardly exciting. To appreciate the full power of BSML, it helps to have a
BSML-aware browser. Rescentris, Ltd. provides such a browser in its Genomic WorkspaceTM soft-
ware application. Genomic WorkspaceTM enables you to visually browse and interact with BSML
documents. Visualization is provided by a number of specialized viewers, such as a hierarchical
tree viewer, sequence viewer, sequence editor, and a multiple alignment viewer. In addition to these
features, Genomic WorkspaceTM includes a data conversion and import utility. This enables you
to import data in existing data formats, such as GenBank, Swiss-Prot, and EMBL file formats, and
convert these records to BSML. This is a particularly useful feature for learning the full BSML
specification.

Genomic WorkspaceTM is written in Java, and runs on most platforms, including Win-
dows, Linux, and Mac OS. You can download a free copy from the Rescentris web site at:
http://www.rescentris.com.

To explore BSML further, start Genomic WorkspaceTM, and select File → Open, and select the
example from Listing 2.1. You should now see a screen like the one shown in Figure 2.3. As you
can see, the screen is divided into a number of sections. The main visual window in the center
shows a snapshot of the sequence. If our sequence included annotations, such as the location of
protein-coding regions, you would see these here too. However, since our example includes only

Figure 2.3 Screenshot of the Rescentris Genomic WorkspaceTM . First sample BSML document is shown.

Chapter 2 � Fundamentals of XML and BSML 21

Figure 2.4 Screenshot of the Genomic WorkspaceTM Tree Viewer (shown highlighted). First sample BSML document is shown.

raw sequence data, we simply see a sequence widget with no annotation. The sequence widget
begins at base pair 1 and ends at base pair 29,727. The navigation elements at the top of the main
visual window, including the left and right arrows, enable you to zoom in and scroll through the
sequence.

To the left of the main visual window, you will see three tabbed windows. By default, the
“Details” tab is shown. We have not provided much information in our sample document, but
you can see that the sequence ID and the sequence length are displayed. If you click on the Tree
tab, you will see an interactive tree showing the complete element hierarchy. See Figure 2.4.
Not surprisingly, the tree shown here matches the tree structure we saw earlier in Internet
Explorer.

Next, let’s explore the BSML Sequence Viewer. To access this, select View → Sequence →
Sequence Viewer. Then, click the icon for “Zoom to Base Pair Level.” You should now see a screen
similar to that shown in Figure 2.5. As you can see, the 5′ to 3′ strand is shown, along with its
complement. Below and above the strands are translation frames for amino acids. Just as in the
main visual window, the sequence viewer includes navigation buttons for zooming in and scrolling
through the entire sequence. Again, if this example included annotations, you would see these here.
When we get to annotations at the end of the chapter, we will return to this view.

Hopefully, this gives you a taste of both BSML and the Genomic WorkspaceTM. Once we
explore the fundamentals of XML, we will return to both topics and explore them in more
detail.

22 XML for Bioinformatics

Figure 2.5 The Genomic WorkspaceTM sequence viewer. First sample BSML document is shown.

2.2 Fundamentals of XML

We now turn to the fundamental rules and concepts of XML. These rules apply regardless of
XML application. For example, we could be dealing with e-commerce data, real estate listings,
or genomics data. Some have argued that XML has grown in complexity, and that we are now
inundated with too many XML specifications and XML protocols. This is certainly true, but if we
stick to the core XML 1.0 specification, you may be surprised that there are only a handful of major
concepts. Furthermore, the main rules for constructing XML documents are quite straightforward.
We have made every effort to distill these concepts and rules into bite-size sections below.

2.2.1 Working with Elements
In its most basic form, an XML document consists of a set of elements. An element represents
a discrete unit of data, such as a product listing, news headline, or biological sequence. With

Chapter 2 � Fundamentals of XML and BSML 23

XML, you can create elements for anything you want, and you are not restricted to a predefined
list of elements. Furthermore, you can nest elements inside one another, and create any element
hierarchy you like. For example, a product listing can include a description and a price, a news
headline can include a title and a news category, and a sequence can contain references to scientific
papers.

An XML element is formally defined with a start tag and a corresponding end tag.
Start tags always take the form: <ELEMENT-NAME> , whereas end tags always take the form:
</ELEMENT-NAME> . For example, the Seq-data element is defined with a start <Seq-data>
tag and an end </Seq-data> tag. The complete element therefore looks like this:

<Seq-data>gcaggcgcagtgtgagcggcaacatggcgtccaggtc</Seq-data>

XML requires that every start tag must have a matching end tag. This is true even for empty XML
elements. An empty element is one that does not contain any textual data or subelements, but
may contain attributes. For example, the following empty element includes a cross-reference to the
EMBL database:

<cross-reference database="EMBL" id="M29855"></cross-reference>

As a shortcut, you can specify empty elements with the more concise syntax: <ELEMENT-NAME
/> . For example:

<cross-reference database="EMBL" id="M29855"/>

XML has specific rules on naming XML elements. Specifically, element names must begin
with a letter, an underscore character (“--”), or a colon character (“:”). Names can then con-
tinue with letters, digits, hyphens, underscore, or colons. Names cannot begin with the let-
ters “xml” or any case combination of “xml,” as these are specifically reserved for use by the
specification.

XML is also case sensitive. This is particularly important to remember when matching start tags
with end tags. For example, the following example will result in an error:

<Seq-data>gcaggcgcagtgtgagcggcaacatggcgtccaggtc</SEQ-DATA>

In this example, Seq-data is not equal to SEQ-DATA , and the XML parser will report that the
start tag is missing a matching end tag.

Every XML document must contain exactly one root element. This root element rep-
resents the entry point for traversing the entire element hierarchy. It is not legal to have
more than one root element.

2.2.2 Working with Attributes
Attributes are used to provide additional information about a specific element. For example, you
can specify width and height attributes for an HTML img element or you can add a length attribute
to a BSML Sequence element. You can specify as many attributes for an element as you need,
and they need not be placed in any specific order. Attributes are always placed within the start tag
and never within the end tag.

24 XML for Bioinformatics

XML requires that attribute values appear within quotes. You can use single quotes (') , or
double quotes (") . For example, the following excerpt specifies an id attribute:

<Sequence id="AY064249">
...

</Sequence>

2.2.3 The XML Prolog
XML documents should (but are not actually required to) begin with an XML prolog. The XML
prolog includes an XML declaration and an optional reference to a Document Type Declaration
(DTD). The XML declaration specifies the XML version number and optional character encoding
information. The declaration must begin with the characters: <?xml and end with the characters
?> .

The current version of XML is 1.1, but many individuals (and all the examples in this book)
continue to use XML 1.0. XML 1.1 does not represent a significant break from XML 1.0, and
primarily focuses on character encoding issues. For example, it includes revised rules on including
Unicode characters and expanding the set of end-of-line characters.

As a quick example, the following XML prolog specifies XML version 1.0:

<?xml version="1.0"?>

Details on character encoding will be covered later in this section.

2.2.4 Comments
XML comments begin with the characters: <!-- and end with the characters: --> . Here is an
example comment:

<!-- SARS coronavirus Urbani, complete genome. -->

Comments can span multiple lines, if needed. To maintain SGML compatibility, the character
sequence “- -” is not permitted within comments.

2.2.5 Processing Instructions
Processing instructions are special XML directives, used to forward information to software
applications. In certain scenarios, a single XML document may be processed by one or more
software applications. This XML document may include processing instructions specifically di-
rected at these applications, possibly providing important application parameters or other hints for
processing.

Processing instructions must begin with the characters <? , and must end with the characters ?> .
Within these tags, a processing instruction consists of two parts:
� The first part is the software target. This indicates the target of the directive, usually specifying

a specific software application or a specific type of software application.
� The second part is a list of one or more processing instructions. This can be any arbitrary text,

but usually takes the form of name/value pairs, called pseudo-attributes.

Chapter 2 � Fundamentals of XML and BSML 25

Processing instructions are frequently used in XSL Transformations (XSLT). With XSLT, you can
transform an XML document into another XML format or to an HTML document. XML documents
use processing instructions to pass application parameters to XSLT parsers. Here is an example
XSLT processing instruction:

<?xml-stylesheet type="text/xsl" href="bsml-to-html.xsl"?>

In the line above, we have specified a target value of “xml-stylesheet.” We have also specified two
name/value pairs. The first specifies the MIME type of the transformation document, and the second
specifies the name of the specific XSLT template to use. In this case, we are using the BSML to
HTML XSLT style sheet.

2.2.6 Character Encoding
As stated above, the XML declaration can include optional information about character encoding.
The XML specification requires that all XML parsers support Unicode. Unicode is a character-
encoding standard that provides support for most languages on Earth. This is in sharp contrast
to ASCII (American Standard Code for Information Interchange), which supports only English
or Latin characters. Unicode is made available by the Unicode Consortium, but is also officially
endorsed by the ISO (International Organization for Standardization). The terms Unicode and
ISO-10646 refer to the same standard.

XML parsers are required to support two specific encodings of Unicode/ISO-10646: UTF-
16 and UTF-8. UTF-16 encodes Unicode characters using 16-bit characters. For text docu-
ments which primarily consist of ASCII characters, UTF-16 can result in inefficient storage
and unnecessarily large documents. For these documents, it is more efficient to use the UTF-8
encoding schema. UTF-8 uses a few tricks to more compactly store Unicode characters. Specif-
ically, ASCII characters are stored within one byte, and other characters are stored as multibyte
sequences.

Within the XML declaration, you can use the encoding declaration to specify the character
encoding of your XML document. For example, the following XML declaration specifies XML
version 1.0 and UTF-8 character encoding:

<?xml version="1.0" encoding="UTF-8"?>

Besides UTF-8 and UTF-16, you can also specify other character encodings, such as one of the ISO-
8859 family of character encodings. This includes Latin 1 (ISO 8859-1), which contains characters
for English and most Western European languages; Latin 2 (ISO 8859-2), which contains character
for most Eastern European languages; or Cyrillic (ISO 8859-5), which contains characters for
Russian and Russian-influenced languages, such as Bulgarian and Macedonian.

If you plan to create XML documents, which make extensive use of Unicode characters, it
helps to use a Unicode enabled editor. For example, for Windows platforms, you might consider
using the excellent UniPad editor (http://www.unipad.org). UniPad comes with its own set of fonts,
meaning that it works out of the box without having to install separate Windows system fonts. It
also provides several easy options for inputting Unicode characters, including keyboard shortcuts
and virtual keyboards. A screenshot of UniPad with a sample XML document (and the Japanese
virtual keyboard) is shown in Figure 2.6.

If your document consists of just ASCII characters, and you want to include an occasional non-
ASCII character, you can do so with a character escape sequence. Character sequences begin with:
&#[followed by a decimal value] or &#x[followed by a hexadecimal value]. Escape sequences

26 XML for Bioinformatics

Figure 2.6 UniPad in action. UniPad provides several options for inputting Unicode characters, including virtual keyboards. The
Japanese (Katana only) keyboard is shown.

must end with a semicolon (“;”). For example, the following escape code references the Japanese
Kana letter A:

<sample>KATAKANA LETTER A (Escaped): ア</sample>

Certain characters in XML have special importance, because they are used to denote XML markup.
For example, the less than sign (<) is used as the first character for XML tags. If you want to use one
of these reserved characters within element text, you must use its corresponding character escape
sequence. There are only five reserved characters in XML, and each of these has a corresponding
character escape sequence. These are defined as follows:
� & ampersand sign (&)
� < less than sign (<)
� > greater than sign (>)
� ' apostrophe (')
� "e; quote (")

2.2.7 CDATA Sections
Occasionally, you may want to escape an entire section of text. Text that is stored within a CDATA
section is preserved exactly as it is. Reserved characters, such as the less than sign (<), which

Chapter 2 � Fundamentals of XML and BSML 27

would normally be interpreted as markup characters, are no longer interpreted as such. This can
be useful if you want to include sample XML or HTML markup examples within your XML
document. CDATA sections must begin with the characters <![CDATA[, and must end with the
characters]]> .

Here is a sample XML document with a CDATA section:

<note>
<section>
<![CDATA[

In XML, start tags always take the form: <ELEMENT-NAME>.
]]>
</section>

</note>

Without the CDATA section, this XML document would result in an error; specifically, an XML
parser would complain that the <ELEMENT-NAME> element was missing a corresponding end tag.
However, because this text is actually contained within a CDATA section, the parser knows to
ignore all the markup characters and preserve the text as it is.

2.2.8 Creating Well-Formed XML Documents
XML has very strict requirements on what constitutes a legal XML document. If an XML document
meets these specific requirements, it is said to be well-formed.

To be well-formed, an XML document must meet the following requirements:
� Every start tag must have a corresponding end tag. The only exception to this rule is the empty

element tag syntax, e.g., <ELEMENT-NAME/> .
� Elements must be properly nested. In other words, a subelement must have its start and end tags

defined within the scope of the parent element. For example, this example is nested properly
and therefore well-formed:

<Sequence>
<Seq-data>atggcgtccaggtctaagcggcgtgccgtg</Seq-data>

</Sequence>

However, this example is not property nested, and therefore not well-formed:

<Sequence>
<Seq-data>atggcgtccaggtctaagcggcgtgccgtg

</Sequence>
</Seq-data>

� All attribute values must appear within quotes.
� Every XML document must have exactly one root element.
� Reserved characters, such as the less than sign, are always treated as markup. If they appear on

their own, they must be specified with character escape sequences, or placed within a CDATA
section.

There are lots of XML editors and command line tools, which can test your XML documents
for well-formedness. We explore some of these tools in the next chapter. However, you may have a
convenient XML tool already loaded on your machine. In fact, if you have one of the more current

28 XML for Bioinformatics

Figure2.7 Mozilla Web Browser in action. Upon loading an XML document, the built-in parser will automatically check the document
for well-formedness and immediately report any errors.

web browsers, such as Internet Explorer 6.0 or Mozilla 1.4 or later, both of these now include lots
of built-in XML features and a built-in XML parser. When these browsers load an XML document,
the internal XML parser will automatically check for well-formedness and report any errors. For
example, Figure 2.7 shows a screenshot of the Mozilla browser. We have just opened a sample
XML document, and it immediately reports a missing end tag:

XML Parsing Error: mismatched tag. Expected: </Seq-data>.

It also reports the exact location of the error. If no errors are encountered, Mozilla uses a default
style sheet to render the XML document with a simple tree view. See Figure 2.8.

2.2.9 Creating Valid XML Documents
An XML grammar defines rules for creating XML documents. For example, the BSML specifica-
tion is actually a grammar, and this grammar spells out specific rules for creating BSML documents.
For example, it defines that a Sequences element can contain one or more Sequence elements,
and that the Sequence element contains a length attribute. If we know that a document adheres to
a specific grammar, we already know what type of data we are dealing with, and we can accurately
predict the extract structure of the document. We can therefore build applications that are specifi-
cally designed to consume specific types of XML documents. Furthermore, if multiple documents
adhere to the same grammar, we can process all these documents using the same software applica-
tion. We can even create new software applications, which aggregate data from multiple disparate
sources.

Chapter 2 � Fundamentals of XML and BSML 29

Figure 2.8 Mozilla Web Browser in action (continued). If Mozilla does not find any errors in well-formedness, it will use a default
style sheet to display your XML document. In other words, if you see this view, you can be certain that your XML document is in fact
well-formed.

There are two main types of XML grammars: Document Type Definitions (DTDs) and XML
Schemas. DTDs have been around since the very beginning of XML and are formally specified
within the W3C XML 1.0 specification. XML Schemas are a newer specification and provide
considerably more features than DTDs. For example, XML Schema supports data typing and
enables you to specify that certain elements can only contain integer or float values. With XML
Schema, you can also specify regular expression patterns and require that certain elements match
those patterns.

We discuss both DTDs and XML Schemas in detail in the next two chapters. For now, we only
want to cover one essential point: document validity. A document that adheres to all the critical
rules in XML is said to be well-formed. A document that adheres to all the rules of a specific
grammar is said to be valid. This is a critical distinction, and one that we will explore many times
in the next few chapters.

For now, a very simple example should make the distinctions very clear. First, consider this
sample document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Bsml PUBLIC "-//Labbook, Inc. BSML DTD//EN"
"http://www.labbook.com/dtd/bsml3-1.dtd">
<Bsml>

<Definitions>
<Sequences>

<Sequence id="AY064249" length="1245" molecule="rna">
<Seq-data>gcaggcgcagtgtgagcggcaacatggcg....

30 XML for Bioinformatics

</Sequence>
</Sequences>

</Definitions>
</Bsml>

See any problems here? The end </Seq-data> tag is missing. The document is therefore not
well-formed. To fix this problem, we simply add the end tag, like this:

<Seq-data>gcaggcgcagtgtgagcggcaacatggcg....</Seq-data>

Now, consider this sample document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Bsml PUBLIC "-//Labbook, Inc. BSML DTD//EN"
"http://www.labbook.com/dtd/bsml3-1.dtd">
<Bsml>

<Definitions>
<Sequences>

<Dna id="AY064249" length="1245">
<Seq-data>gcaggcgcagtgtgagcggcaacatggcg....</Seq-data>

</Dna>
</Sequences>

</Definitions>
</Bsml>

See any problems here? All the start tags have matching end tags, everything is nested properly,
and all attribute values appear in quotes. It is therefore well-formed. However, you can now see that
the Sequences element contains a Dna element. This may seem just fine, but the BSML grammar
does not actually specify a Dna element. Therefore, this document does not follow all the rules of
the BSML grammar and is considered invalid.

How do we actually know that BSML does not specify a Dna element? This is the topic that
we explore in great detail in the next two chapters. For now, understand that there is a funda-
mental difference between well-formedness and validity. To recap, we define these two terms
below:
� Well-formed: a document is said to be well-formed if it follows all the main rules defined by

the XML specification. For example, every start tag must have a matching end tag, elements
must be properly nested, and all attribute values must appear within quotes.

� Valid: a document is said to be valid if it follows all the rules of the referenced XML
grammar.

A document can be well-formed, but invalid. This means that the document follows all the main
XML rules, but fails to follow the rules of the XML grammar.

2.2.10 Working with XML Parsers
An XML parser (or XML processor) is responsible for parsing an XML document and making
its contents available to a calling application. Specific responsibilities include: retrieving XML
documents from a local file system or from a network connection, checking to make sure that the
document is well-formed, and making the contents of the document available via a standard Applica-
tion Programming InterFace (API). If you have lots of time to spare, you could, of course, write your
own XML parser. However, this may not make the best use of your time! A much more convenient

Chapter 2 � Fundamentals of XML and BSML 31

XML
Document

XML
Parser

Application

Figure 2.9 A typical XML application consists of three distinct layers.

option is to find an existing XML parser, and plug this into your application. XML parsers are freely
available for dozens of programming languages, including C, C++, C#, Java, Perl, and Python.

A typical XML application consists of three distinct layers, see Figure 2.9. Working from right to
left, the first layer is an XML document or a set of XML documents. These documents contain useful
information, which you want to extract; for example, the documents may contain useful BSML data
that you want to analyze further. The second layer is the XML parser. The parser consumes XML
documents and makes the content available to the third layer, which is your software application.
The XML parser takes care of all XML specific details and enables your application to more easily
focus on content and programming logic.

XML parsers are broadly divided into two types:
� validating parser: this parser is capable of validating a document against an XML grammar,

such as a DTD or an XML Schema.
� nonvalidating parser: this parser is not capable of validating a document against an XML schema.

As a general rule of thumb, nonvalidating parsers tend to be faster and take up less memory.
However, validating parsers tend to be more useful, as you can use them to validate documents,
and you don’t need to include any validation code within your software application.

We will explore XML parsers in great detail in later sections of this book.

2.3 Fundamentals of XML Namespaces

XML Namespaces were not defined in the original W3C XML 1.0 specification. However, the
namespace specification was finalized soon after, and namespaces are now considered a cru-
cial element in the XML family of protocols. They are also a critical building block for other
XML specifications, including XML Schemas, XSL Transformations, SOAP, and the Web Service
Description Language (WSDL). In this section, we explore why XML Namespaces are important
and then describe the mechanics of declaring and using namespaces.

2.3.1 Why We Need XML Namespaces
XML Namespaces are designed to address two very specific issues. First, namespaces prevent name
conflicts. If your XML document references a single DTD or XML Schema, this is never an issue.
However, if your document references two or more XML grammars, you have the potential for
name conflicts. For example, two DTDs might define a Sequence element. XML Namespaces lets
you attach a namespace to each Sequence element, and therefore uniquely identify each element.

32 XML for Bioinformatics

Second, namespaces enable you to mark certain elements for processing by a specific software
application. From the software module perspective, an XML document consists of actionable
elements and nonactionable elements. By filtering for elements from a specific namespace, the
software module can determine which elements are actionable and take the appropriate action.

In practice, name conflicts do not actually occur that often. For example, if your document
references two grammars, the chance that they both define the same element is small. This is not
to minimize name conflicts. It is just to point out that the second scenario of the software module
perspective is more common. Hence, let’s dig a little deeper into this scenario.

First, consider the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<stylesheet version="1.0">

<template match="/">
<html>

<body>
<h1>BSML Sequence Data:</h1>
<value-of select="Bsml/Definitions/Sequences/Sequence"/>
</body>

</html>
</template>

</stylesheet>

This is an example XSLT document. The document consists of two sets of elements. The first set
consists of XSLT specific instructions. For example, stylesheet , template , and value-of
are all XSLT instructions. The second set consists of HTML elements. For example, html, body ,
and h1 are all HTML elements. An XSLT application will consume this document and apply the
XSLT transformations. In this specific example, the style sheet is responsible for transforming
BSML documents into HTML.

From the XSLT software module perspective, it needs an easy way to identify which elements
are XSLT and which are not. In other words, it needs an easy way to determine which elements are
actionable and which are nonactionable. As the document exists right now, the elements are not
clearly partitioned.

Now, consider this XML document:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/
XSL/Transform">
<xsl:template match="/">

<html>
<body>
<h1>BSML Sequence Data:</h1>

<xsl:value-of select="Bsml/Definitions/Sequences/
Sequence"/>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

This document now contains an XML namespace declaration for XSLT. Furthermore, all XSLT
elements now have an xsl prefix. For example, the template element is now defined as
xsl:template . From the software module perspective, it is now a trivial task to determine

Chapter 2 � Fundamentals of XML and BSML 33

which elements are XSLT instructions and which are not. It can therefore more easily carry out the
XSL transformation.

The “Namespaces in XML” specification [14; 15] is currently available as an of-
ficial W3C Recommendation. The complete specification is available online at:
http://www.w3.org/TR/REC-xml-names/.

2.3.2 Declaring and Using XML Namespaces
Now that you understand the rationale for namespaces, let’s look into the mechanics of declaring
and using XML namespaces.

To use an XML namespace, you must first declare it. XML namespace declarations can occur
within any XML element, but in practice, most developers place them at the top of their document
usually within the root XML element. A namespace declaration is scoped to the element wherein
the declaration occurs and all its subelements.

An XML declaration is a special XML attribute consisting of three parts. The first part is the
reserved prefix xmlns. The second part is a namespace prefix of your choosing, and the third part
is a Uniform Resource Identifier (URI). For example, the following element declares a namespace
for XSLT:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">

The namespace prefix serves as a shortcut to the namespace declaration. You can use whatever
namespace prefix you like. However, there are a few common conventions. For instance, the
XSLT prefix is usually specified as xsl and the XML Schema prefix is usually specified as xs or
xsd.

The URI value serves as a unique identifier and enables you or a software module to unambigu-
ously partition elements into discrete namespaces. Values are most often represented as absolute
URLs, e.g., http://www.w3.org/1999/XSL/Transform. If you are creating your own namespace, you
should have control over the referenced host or URL. Otherwise, you may not be able to ensure
absolute uniqueness.

It is important to note that the URI value does not necessarily point to anything meaningful. For
example, if you copy and paste a namespace URI value into a web browser, you may or may not
find a meaningful resource there. Therefore, the URI value serves as a unique identifier and nothing
more.

Having declared a namespace, you later reference the namespace via a Qualified Name. A
Qualified Name consists of two parts: a namespace prefix and a local element name. The two parts
are delimited with a colon character. For example, the following start tag now includes a Qualified
Name:

<xsl:template match="/">

In plain English, this start tag now references the template element in the xsl namespace. We
already know that every start tag must have a matching tag. In this case, the end tag must also
include a Qualified Name:

</xsl:template>

34 XML for Bioinformatics

The complete XSLT example above should now make a lot more sense. It is repeated below:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">
<xsl:template match="/">

<html>
<body>
<h1>BSML Sequence Data:</h1>
<xsl:value-of select="Bsml/Definitions/Sequences/Sequence"/>
</body>

</html>
</xsl:template>

</xsl:stylesheet>

We now know that the root element contains a namespace declaration for XSLT. We also know
that all XSLT elements are specified with Qualified Names. All other elements, e.g., html , body,
and h1, are not namespace qualified and therefore, do not exist within any namespace. Also note
that the select attribute in the xsl:value-of element does not exist in any namespace either. To
place an attribute within a namespace, you must explicitly specify it with a Qualified Name. For
example:

<xsl:value-of xsl:select="Bsml/Definitions/Sequences/Sequence"/>

Now, both the element and the attribute share the same namespace.

2.3.3 Declaring a Default Namespace
The XML Namespaces specification supports default namespaces. A default namespace applies to
the element where the declaration occurs and all its subelements. All unqualified elements within
this scope are assumed to be part of the default namespace.

Default namespaces are specified with the special xmlns attribute—this is a special case of the
namespace declaration defined above, except that there is no namespace prefix. For example, the
following declares a default namespace for the XHTML specification:

<html xmlns="http://www.w3.org/1999/xhtml">

All unqualified subelements will therefore belong to the XHTML namespace. Here is a slightly
longer example:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform" xmlns="http://www.w3.org/1999/xhtml">
<xsl:template match="/">

<html>
<body>
<h1>BSML Sequence Data:</h1>
<xsl:value-of select="Bsml/Definitions/Sequences/
Sequence"/>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

Chapter 2 � Fundamentals of XML and BSML 35

The root stylesheet element now contains two namespace declarations. The first is for XSLT;
the second is a default namespace for XHTML. All elements beginning with the xsl prefix are
explicitly defined to exist within the XSLT namespace. All unqualified elements, e.g., html , body ,
and h1 , now exist within the default XHTML namespace.

Note that default namespaces do not apply to attributes. If you want an attribute to exist within
a specific namespace, you must always specify it with a Qualified Name.

2.4 Fundamentals of BSML

As stated at the beginning of the chapter, BSML is an open standard for representing and exchanging
bioinformatics sequence data. Since its inception, BSML has grown to accommodate a wide range
of bioinformatics data. This now includes:
� raw sequence data, including the ability to reference sequence data stored in other external data

files. Sequences can also be represented at several levels, including at the individual sequence
record level, chromosome level, and whole genome level.

� sequence annotation, enabling you to attach positional and nonpositional sequence features,
such as coding regions, promoter sequences, Single Nucleotide Polymorphisms (SNPs),
etc.

� scientific literature references, including the ability to reference full journal citations, along with
Pub Med identifiers.

� networks of biological entities, enabling you to encode metabolic and signaling pathways.
� multiple sets of tabular data, enabling you to encode gene expression or Microarray data.
� display widgets, used to store visual representations of sequences. This includes the ability to

store image captions, draw sequence features, and reference external GIFs and JPEGs.
� resource information, enabling you to store information about individual investigators, research

organizations, and copyright availability.

BSML was originally created by Visual Genomics and was first funded in 1997 by the National
Human Genome Research Institute (NHGRI). The goal of the initial NHGRI grant was to develop
a standard for representing sequence data in XML, and to release the standard to the public domain.
Joseph H. Spitzner, Ph.D. was the primary author of BSML at Visual Genomics. Spitzner continued
work on BSML while working at LabBook, Inc., and now works at Rescentris, Ltd. BSML is
currently available as a Document Type Definition (DTD), but the data model is at least partially
based on preexisting data formats, including the GenBank ASN.1 file format.

The main BSML web site at: http://www.bsml.org includes an FAQ, an introductory
tutorial, and a complete reference guide.

As this book goes to press, BSML is currently available as version 3.1. Since its original
release, a number of organizations have announced support for BSML, including Bristol-Meyers
Squibb, IBM, Accelrys, Inc., and the European Bioinformatics Institute (EBI). A number of other
organizations have also released BSML conversion programs. For example, the Cold Spring Harbor
Laboratory has released a utility for converting GenBank ASN.1 sequence data to BSML. The
EBI has also released a utility for converting European Molecular Biology Laboratory (EMBL)
documents to BSML.

36 XML for Bioinformatics

BSML is not the only XML format for representing sequence data. In fact, there are
several alternatives to BSML, including the NCBI DTDs, the Architecture for Genomic
Annotation, Visualization and Exchange (AGAVE), Genome Annotation Markup Ele-
ments (GAME), and Biopolymer Markup Language (BioML).

As stated in the introduction, the BSML specification is quite large and we do not have the
space to explore the specification in full. Instead, we will focus on the core elements, and on the
representation of sequences and sequence features.

2.4.1 BSML File Formats
The BSML specification recommends three file extensions for use with BSML. These are defined
in Table 2.1.

2.4.2 BSML Document Structure
Every BSML document shares properties and a similar structure. The first property is that every
BSML document must begin with an XML prolog and must include a reference to the BSML DTD.
Every BSML document will therefore begin like this:

<?xml version="1.0"?>
<!DOCTYPE Bsml PUBLIC "-//Labbook, Inc. BSML DTD//EN"
"http://www.rescentris.com/dtd/bsml3-1.dtd">

In the next chapter, we will discuss the exact mechanics of referencing DTDs. For now, note that
we are referencing the BSML 3.1 DTD, available on the Rescentris.com web site.

Second, every BSML document must begin with a root Bsml element. Following the root
element, BSML is divided into three main sections.
� Definitions: this section stores biological sequences and sequence annotations. The section can

also include tables of associated data and network graphs.
� Research: this section stores information about experimental research, such as experimental

conditions, program queries, or search parameters. For example, you can store query parameters
for a specific BLAST search.

� Display: this section stores display widgets and references external image files. This section is
primarily used by software applications that are capable of visually rendering sequence data.
For example, the Rescentris Genomic WorkspaceTM application uses this section to store visual
representations of sequences and their features.

Table 2.1 BSML file extensions

File Extension Description

*.bsml A regular BSML file
.bsmz This is a gzipped archive of one or more BSML documents, along with related resources, such as external data files and images
.bso This is a BSML overlay file. An overlay file consists of BSML fragments, which can be overlaid onto an existing BSML

document. For example, two researchers can swap overlay files for a base sequence record, and more easily exchange
and compare sequence annotations

Chapter 2 � Fundamentals of XML and BSML 37

Figure 2.10 A bird’s-eye view of the BSML DTD. The first level of elements is shown. (Document was created with XML Spy R© .)

For a bird’s-eye view of the BSML document structure, refer to Figure 2.10. As you can see,
the root of the document structure is specified with a Bsml element. Under this, you have three
common elements: Attribute , Info , and Resource . The Attribute element is used to store
arbitrary name/value pairs which do not fit into any other elements. For example:

<Attribute name="definition" content="SARS coronavirus Urbani,
complete genome."/>

Most BSML elements can contain 0 or more Attribute elements, providing a catch-all category
for any data that doesn’t fit the existing BSML data model. Furthermore, the BSML Info element
can be used to store sets of Attribute elements.

The BSML Resource element is used to store metadata about the BSML document. In general,
metadata elements are used to store “data about data.” For example, a web page can contain metadata
that describes the author, description, keywords, and the date last updated. The BSML metadata
elements are based on the Dublin Core Metadata Initiative [19; 22; 24], one of the most popular
metadata standards, used primarily to describe web pages and XML documents. Dublin Core is
a minimal specification consisting of just 15 basic elements, such as Title, Description, Creator,
Rights, and Date. By using Resource elements, you can therefore add important metadata to
your BSML documents and record authorship, organizational affiliation, and copyright availability.
Furthermore, since most BSML elements contain a Resource element, you can even add metadata
to specific portions of the document. For example, you can record who made a specific sequence
annotation and when they made it.

For more information about the Dublin Core Metadata Initiative, see:
http://www.dublincore.org. The web site includes a number of relevant documents,
including a guide to “Using Dublin Core” and a list of “Guidelines for implementing
Dublin Core in XML.”

38 XML for Bioinformatics

Table 2.2 Text/binary formats for storing raw sequence data. For use with the BSML seq-data-import element

Format Name Description

IUPACna One-letter IUPAC codes for nucleic acids (see Appendix A for IUPAC codes)
IUPACaa One-letter IUPAC codes for amino acids (see Appendix A for IUPAC codes)
NCBI2na NCBI compact binary representation for nucleic acids. Each nucleic acid is represented with

just 2 bits. Does not allow for ambiguity or gaps
NCBI4na NCBI moderately compact binary representation for nucleic acids. Each nucleic acid is

represented with 4 bits. Does include provisions for ambiguity and gaps

2.4.3 Representing Sequences
Sequence elements represent the heart of any BSML document. As we have already seen, these
elements are used to store raw sequence data and can also be used to store annotations about the
raw sequence. For example, we can add positional and nonpositional sequence features. Within this
section, we consider the mechanics of representing raw sequences. In the next section, we move
on to discuss sequence features.

The first important detail to note is that all sequence data must appear with the BSML
Definitions section. This section contains a Sequences element, which can contain any num-
ber ofSequence-import orSequence elements.Sequence-import elements are used to refer-
ence sequence data stored within other BSML files. For example, consider the following document
fragment:

<Definitions>
<Sequences>

<Sequence-import source="sars-sequence1.bsml" id="AY278741"/>
</Sequences>

</Definitions>

This document references sequence id=AY27841 in the sars--sequence1.bsml file.
In contrast to the Sequence-import element, the Sequence element is used to define se-

quence data within a BSML document. However, even in this case, the actual raw sequence
data can be stored within the BSML document itself or within an external text or binary file.
To represent raw sequence data, use the Seq-data element. To import data from an external
text or binary file, use the Seq-data-import element. When importing data, you must spec-
ify a source attribute specifying the location of the file, and a format attribute specifying the
text/binary format (see Table 2.2 for details). For example, consider the following document
excerpt:

<Definitions>
<Sequences>

<Sequence id="AY278741" length="29727">
<Seq-data-import format="IUPACaa" source="
sars-sequence.txt"/>

</Sequence>
</Sequences>

</Definitions>

Chapter 2 � Fundamentals of XML and BSML 39

Table 2.3 Main attributes of theSequence element

Attribute Name Description

comment Usually used to indicate a displayable description of the sequence record. See also the title attribute
db-source Used to identify a public database, such as GenBank, EMBL, or the DNA Database of Japan (DDBJ). See also the ic-acckey
ic-acckey An accession number used to uniquely identify a sequence record within the international consortium of nucleotide

sequence databases. The consortium consists of GenBank, the EMBL Nucleotide Sequence Database, and the DNA
Database of Japan (DDBJ). This attribute is usually used in conjunction with the db-source attribute.

length Indicates the length of the sequence
local-acckey An accession number used to uniquely identify a sequence record within a local or private database
molecule Indicates the type of molecule represented. Options include: “dna,’’ “rna,’’ “aa’’ (amino acid), “na’’ (nucleic acid),

“other-mol,’’ and “mol-not-set.’’ If you do not specify a molecule attribute, it defaults to “dna’’
title A displayable name for the sequence record. See also the comment attribute
topology Specifies the topology of the sequence. Usually indicated with the values “linear’’ or “circular’’

In this case, we are defining a new sequence for the same SARS virus as Listing 2.1, but
specifying that the actual sequence data is stored in an external text file.

When using the Seq-data element, you must stick to IUPAC codes for nucleic acids and amino
acids (see Appendix A). However, the data can include white space characters and numbers. For
example, the following document excerpt is considered valid:

<Definitions>
<Sequences>

<Sequence id="AY278741" length="29727">
<Seq-data>

1 atattaggtt tttacctacc caggaaaagc caaccaacct cgatctcttg tagatctgtt
61 ctctaaacga actttaaaat ctgtgtagct gtcgctcggc tgcatgccta gtgcacctac
121 gcagtataaa caataataaa ttttactgtc gttgacaaga aacgagtaac tcgtccctct
181 tctgcagact gcttacggtt tcgtccgtgt tgcagtcgat catcagcata cctaggtttc

[For brevity, sequence is truncated.]
</Seq-data>

</Sequence>
</Sequences>
</Definitions>

</Bsml>

Each Sequence element can include a number of attributes. The main attributes are defined in
Table 2.3. A more complete example of the SARS virus, along with more fully detailed attributes,
is also provided in Listing 2.2.

2.4.4 Representing Sequence Features
In addition to raw sequence data, BSML can also represent sequence features. A sequence feature
is any piece of annotation that provides additional details regarding a specific location or range of
sequence data. When we get to Chapter 6, we will spend more time formally defining sequence
annotation, and discuss in detail the Distributed Annotation System (DAS). For now, it is simplest
to think of sequence annotation as any piece of data that provides additional details regarding a
raw sequence record. For example, we can take a raw sequence record, and identify important
parts, such as promoter regions, protein-coding regions, and 5′ and 3′ untranslated regions. We can
also annotate sequence records with important references to scientific articles. Sequence features

40 XML for Bioinformatics

Listing 2.2 The SARS virus, Take 2. This example is identical to Listing 2.1, except that we have now added additional attributes.

<?xml version="1.0"?>
<!DOCTYPE Bsml PUBLIC "-//Labbook, Inc. BSML DTD//EN"
"http://www.rescentris.com/dtd/bsml3-1.dtd">
<Bsml>
<Definitions>

<Sequences>
<Sequence id="AY278741" title="AY278741" molecule="rna"

length="29727" db-source="GenBank" ic-acckey="AY278741"
topology="linear" strand="ss" representation="raw">
<Attribute name="definition" content="SARS coronavirus
Urbani, complete genome."/>

<Attribute name="submission-date" content="21-APR-2003"/>
<Attribute name="version" content="AY278741.1 GI:30027617"/>
<Attribute name="source" content="SARS coronavirus Urbani"/>
<Seq-data>
atattaggtttttacctacccaggaaaagccaaccaacctcgatctcttgtagatctgtt
ctctaaacgaactttaaaatctgtgtagctgtcgctcggctgcatgcctagtgcacctac
gcagtataaacaataataaattttactgtcgttgacaagaaacgagtaactcgtccctct
tctgcagactgcttacggtttcgtccgtgttgcagtcgatcatcagcatacctaggtttc
gtccgggtgtgaccgaaaggtaagatggagagccttgttcttggtgtcaacgagaaaaca
cacgtccaactcagtttgcctgtcc
[For brevity, sequence is truncated.]
</Seq-data>

</Sequence>
</Sequences>

</Definitions>
</Bsml>

are an important element in other file formats as well. For example, the GenBank Flat File For-
mat includes extensive support for sequence features and includes a recommended list of feature
types.

In BSML, each sequence can contain any number of features. Features are formally nested
within a Feature-tables element and individual features are defined within a Feature element.
Two types of features are supported: positional and nonpositional. Positional features are tied to
specific sequence locations and can be used to represent a host of sequence annotations, including
protein-coding regions, locations of predicted genes, single nucleotide polymorphisms (SNPs), etc.
Nonpositional features are not tied to any specific region of sequence, but are instead associated
with the sequence record as a whole. For example, you can attach literature references that are
associated with the entire sequence record.

Nonpositional features are slightly less complex than positional features. Let’s take a look at
an example, shown in Listing 2.3. This new example adds a single nonpositional feature detailing
the direct submission to GenBank. More specifically, it lists the primary contributors of the work
and their affiliation with the Centers for Disease Control and Prevention. As you can see, the
Reference element contains a list of authors, a title, and the complete journal reference. For
references to published material, you can include cross-reference identifiers to MEDLINE and
PubMed.

Chapter 2 � Fundamentals of XML and BSML 41

Listing 2.3 The SARS virus, Take 3. The record now includes a single nonpositional feature, describing the direct submission to
GenBank.

<?xml version="1.0"?>
<!DOCTYPE Bsml PUBLIC "-//Labbook, Inc . BSML DTD//EN"
"http://www.rescentris.com/dtd/bsml3-1.dtd">
<Bsml>
<Definitions>

<Sequences>
<Sequence id="AY278741" title="AY278741" molecule="rna"
length="29727" db-source="GenBank" ic-acckey="AY278741"
topology="linear" strand="ss" representation="raw">
<Attribute name="definition" content="SARS coronavirus
Urbani, complete genome."/>

<Attribute name="submission-date" content="21-APR-2003"/>
<Attribute name="version" content="AY278741.1 GI:30027617"/>
<Attribute name="source" content="SARS coronavirus Urbani"/>
<Feature-tables id="AY278741.FTS1">
<Feature-table id="AY278741.FTS1.FTB1" title="Genbank

References" class="GB-REFERENCES">
<Reference id="REF1" title="Direct Submission">
<RefAuthors>Bellini,W.J., Campagnoli,R.P.,

Icenogle,J.P., Monroe,S.S., Nix,W.A., Oberste,M.S.,
Pallansch,M.A. and Rota,P.A.

</RefAuthors>
<RefTitle>Direct Submission</RefTitle>
<RefJournal>Submitted (17-APR-2003) Division of Viral
and Rickettsial Diseases, Centers for Disease Control
and Prevention, 1600 Clifton RD, NE, Atlanta, GA
30333, USA</RefJournal>

</Reference>
</Feature-table>

</Feature-tables>
<Seq-data>
atattaggtttttacctacccaggaaaagccaaccaacctcgatctcttgtagatctgttctc
taaacgaactttaaaatctgtgtagctgtcgctcggctgcatgcctagtgcacctacgcagta
taaacaataataaattttactgtcgttgacaagaaacgagtaactcgtccctcttctgcagac
tgcttacggtttcgtccgtgttgcagtcgatcatcagcatacctaggtttcgtccgggtgtga
ccgaaaggtaagatggagagccttgttcttggtgtcaacgagaaaacacacgtccaactcagt
ttgcctgtcc
[For brevity, sequence is truncated.]
</Seq-data>

</Sequence>
</Sequences>

</Definitions>
</Bsml>

Positional features are just slightly more complicated. Each feature can contain any number of
Qualifier and location elements. A Qualifier element describes a name/value attribute that describes
the feature. A location element describes the location of the feature. Two types of locations can be
specified: Site-loc and Interval-loc. A Site-loc identifies a single point within a raw sequence; an

42 XML for Bioinformatics

Listing 2.4 SARS virus, Take 4. The record now includes a single positional feature.

<?xml version="1.0"?>
<!DOCTYPE Bsml PUBLIC "-//Labbook, Inc. BSML DTD//EN"
"http://www.rescentris.com/dtd/bsml3-1.dtd">
<Bsml>
<Definitions>
<Sequences>
<Sequence id="AY278741" title="AY278741" molecule="rna"

length="29727" db-source="GenBank" ic-acckey="AY278741"
topology="linear" strand="ss" representation="raw">
<Attribute name="definition" content="SARS coronavirus
Urbani, complete genome."/>

<Attribute name="submission-date" content="21-APR-2003"/>
<Attribute name="version" content="AY278741.1 GI:30027617"/>
<Attribute name="source" content="SARS coronavirus Urbani"/>
<Feature-tables id="AY278741.FTS1">
<Feature-table id="AY278741.FTS1.FTB2" title="Genbank

Features" class="GB-FEATURES">
<Feature id="AY278741.FTS1.FTB2.FTR9" title="envelope

protein" class="CDS" comment="envelope protein"
display-auto="1">

<Interval-loc startpos="26117" endpos="26347"/>
<Qualifier value-type="note" value="envelope protein"/>
<Qualifier value-type="codon-start" value="1"/>
<Qualifier value-type="product" value="E protein"/>
<Qualifier value-type="protein-id" value="AAP13443.1"/>
<Qualifier value-type="db-xref" value="GI:30027622"/>
<Qualifier value-type="translation" value="MYSFVSEETGTLIVNSVL

LFLAFVVFLLVTLAILTALRLCAYCCNIVNVSLVKPTVYVYSRVKNLNSSEGV
PDLLV"/>
</Feature>

</Feature-table>
</Feature-tables>

<Seq-data>
atattaggtttttacctacccaggaaaagccaaccaacctcgatctcttgtagatctgttctcta
aacgaactttaaaatctgtgtagctgtcgctcggctgcatgcctagtgcacctacgcagtataaa
caataataaattttactgtcgttgacaagaaacgagtaactcgtccctcttctgcagactgctta
cggtttcgtccgtgttgcagtcgatcatcagcatacctaggtttcgtccgggtgtgaccgaaagg
taagatggagagccttgttcttggtgtcaacgagaaaacacacgtccaactcagtttgcctgtcc
[For brevity, sequence is truncated.]
</Seq-data>
</Sequence>
</Sequences>
</Definitions>
</Bsml>

Interval-loc identifies a specific interval or range of raw sequence data. Again, a specific example
should clarify the most important points. Take a look at Listing 2.4.

If you download the full SARS virus genome record from GenBank, you will see that it includes
dozens of features. However, to keep the example more manageable, we have chosen to just include
one positional feature in Listing 2.4. As you can see, this feature identifies a single coding sequence

Chapter 2 � Fundamentals of XML and BSML 43

Figure 2.11 Sample screenshot of the Rescentris Genomic WorkspaceTM application. We have just loaded the SARS example from
Listing 2.4. Note that our envelope protein is now included in the main sequence window (it is denoted with a single line between
the markers 23,782 and 29,727).

region, identifying the SARS virus envelope protein. The coding region spans a specific interval of
sequence data and we therefore use the Interval-loc element:

<Interval-loc startpos="26117" endpos="26347"/>

As stated above, each feature can include any number of Qualifier elements. In this case, we
use Qualifier elements to denote important attributes. For example, we identify the protein ID, a
cross-reference to the protein GI number in GenBank, and the amino acid sequence of the translated
region.

The Rescentris Genomic WorkspaceTM application will automatically draw all sequence features
for you. For example, Figure 2.11 shows a screenshot of our revised SARS example. As you can see,
our single feature is overlaid onto the main sequence widget in the center of the screen. Of course,
this is one of the simplest possible feature examples. If you import a fully annotated sequence
with multiple features, Genomic WorkspaceTM will draw all these features for you as well. You
can then interactively select specific features and drill down to an increased level of detail. For
example, Figure 2.12 shows a screenshot of one of the sample BSML files that comes bundled with
the viewer. All features are displayed around the perimeter of the main circular sequence widget.
If you select one of the features in the main window, detailed feature information is immediately
displayed in the “Details” panel on the left.

44 XML for Bioinformatics

Figure 2.12 Sample screenshot of the Rescentris Genomic WorkspaceTM application. A fully annotated BSML sequence is shown.

You may have noticed that the Feature element contains a display-auto attribute.
When set to “1,” this provides a hint to the BSML rendering software that you want
to automatically display the feature with a separate graphical widget. For example,
Genomic WorkspaceTM uses this information to automatically render and visualize all
BSML files.

In BSML 3.1, you can explicitly denote that some features span multiple regions. For example,
you can specify all the exons for a protein-coding sequence. To do so, you must specify a join
attribute, and set it to “1.” Following this, the first Interval-loc specifies the complete range of
the sequence, and each subsequent Interval-loc element specifies a specific subrange of data.
For example, the following excerpt describes a protein-coding sequence with three exons:

<Feature-table>
<Feature id="sample-protein" class="CDS" display-auto="1"

join="1">
<Interval-loc startpos="100" endpos="400"/>
<Interval-loc startpos="120" endpos="150"/>
<Interval-loc startpos="190" endpos="210"/>
<Interval-loc startpos="300" endpos="400"/>

</Feature>
</Feature-table>

Chapter 2 � Fundamentals of XML and BSML 45

Figure2.13 Sample screenshot of the Genomic WorkspaceTM Sequence Viewer. A sample protein-coding sequence with three exons
is shown.

Within Genomic WorkspaceTM Sequence Viewer you can then choose to explicitly draw all indi-
vidual exons. A sample screenshot is shown in Figure 2.13.

Genomic WorkspaceTM includes a number of utilities for importing existing data
and converting it to BSML. It also includes functionality for searching and im-
porting data directly from public databases, search as GenBank, Ensembl, Swiss-
Prot, and EMBL. To get started, select Wizards → Import and follow the onscreen
instructions.

2.4.5 Retrieving Live BSML Data via XEMBL
Before ending our discussion of BSML, we will take a quick tour of the XEMBL service, from the
European Bioinformatics Institute. XEMBL provides complete access to the EMBL Nucleotide
Sequence Database. This database is produced in collaboration with GenBank and the DNA
Database of Japan, and currently provides access to millions of nucleotide sequence records.
It also provides access to completed genomes, including the human genome, the fruit fly, and
C. elegans.

XEMBL [26] is a recently released interface that provides easy XML access to the complete
EMBL database. Access is provided via two main methods. The first is a URL interface whereby
users specify parameters within a URL and XEMBL returns a complete XML document. The second

46 XML for Bioinformatics

Figure 2.14 XEMBL in action.

is a formal web services interface that uses the SOAP protocol and the Web Services Description
Language (WSDL). (For details on SOAP, refer to Chapter 9.)

The XEMBL services expect two main parameters: an accession ID and a format. The ID
specifies a unique international accession code; for example, SC49845 specifies the AXL2 gene in
Saccharomyces cerevisiae. The format indicates the XML format of the returned document. Two
format options are currently supported: BSML and AGAVE (Architecture for Genomic Annotation,
Visualization and Exchange). To retrieve data in BSML format, you must specify format=Bsml; to
retrieve data in AGAVE format, you must specify format=sciobj.

The XEMBL home page is available at: http://www.ebi.ac.uk/xembl.

You don’t need any special tools or toolkits to access the XEMBL URL interface. All you need
is a web browser. Simply start your browser, enter the main XEMBL URL and append the ID
and format parameters. For example, the URL http://www.ebi.ac.uk/cgi-bin/xembl/XEMBL.pl?id=
AY064249&format=Bsml retrieves the complete AY064249 record in BSML format. A sample
screenshot of the XEMBL response is shown in Figure 2.14.

BSML is currently available as version 3.1. However, as this book goes to press,
XEMBL is currently using BSML 2.2.

Chapter 2 � Fundamentals of XML and BSML 47

2.5 Useful Resources

Articles and Tutorials
� Bioinformatic Sequence Markup Language—BSML 3.1 Tutorials. LabBook, Inc.

Provides a general introduction to the Bioinformatic Sequence Markup Language (BSML). Tu-
torial is available in MS Word and PDF formats at: http://www.bsml.org/Resources/default.asp.

� Cibulskis Kristian, “An Introduction to BSML.” XML J. 4(3).

Provides a concise introduction to BSML. Article is available online at:
http://www.sys-con.com/xml/archivesa.cfm?volume=04&Issue=03.

� L. Wang, J. J. Riethoven, and A. Robinson, “XEMBL: distributing EMBL data in XML format.”
Bioinformatics 2002; 18(8): 1147–1148.

Provides a short description of the XEMBL web service. Includes a discussion of the supported
XML formats, and the CORBA back-end. Article can be downloaded from the Bioinformatics
web site at: http://bioinformatics.oupjournals.org.

Web Sites and Web Services
� BSML web site: http://www.bsml.org

Official home of the Bioinformatic Sequence Markup Language. The web site includes a short
BSML Overview, an FAQ, a BSML Tutorial, and the official BSML Reference Manual.

� Rescentris, Ltd.: http://www.rescentris.com

Official home of the Rescentris Genomic WorkspaceTM BSML Viewer.
� Unicode web site: http://www.unicode.org

Official home of the Unicode specification. The site includes an introduction to Unicode, FAQ,
and Glossary. Code charts in PDF format are available at: http://www.unicode.org/charts.

� XEMBL web service: http://www.ebi.ac.uk/xembl

XEMBL provides XML access to the complete European Molecular Biology Laboratory
(EMBL) Nucleotide Sequence Database. BSML and AGAVE formats are currently supported.

� The XML FAQ: http://www.ucc.ie:8080/cocoon/xmlfaq

This is an excellent resource for those new to XML. It includes answers to dozens of ques-
tions, including: “What is XML?” “Where can I get an XML Browser?” “Does XML Replace
HTML?”

XML Specifications
� XML 1.0 Specification: http://www.w3.org/TR/REC-xml

48 XML for Bioinformatics

When in doubt, head to the official specification. The specification can be difficult to digest on
the first reading. For excellent commentary and jargon-free side notes, check out Tim Bray’s
Annotated XML Specification at: http://www.xml.com/axml/testaxml.htm.

� Namespaces in XML: http://www.w3.org/TR/REC-xml-names

The namespace specification is only 12 pages long and highly readable. The introductory section,
“Motivation and Summary,” is well worth the read.

DTDs for Bioinformatics 3
Document Type Definitions (DTDs) describe XML document structures. This chapter provides a
comprehensive overview of reading and creating DTDs, along with specific applications to bioin-
formatics. We begin with a bird’s-eye view of a simple DTD for exchanging protein data, and
explore several options for validating XML documents. We then dive into the specific details of
DTD declarations, including the mechanics of declaring elements and attributes. We also explore
the use of XML entities as a tool for creating reusable text and for building modular DTDs. Entities
exist in several flavors, and this chapter describes when and how to use each one.

The chapter concludes with a case study of the NCBI TinySeq DTD. We begin with an overview
of NCBI support for XML in general, and conclude with an in-depth discussion of TinySeq, a
concise DTD used to represent biological sequence data.

3.1 Introduction to DTDs

Document Type Definitions (DTDs) contain specific rules, which constrain the content of XML
documents. These rules are extremely specific—for example, a PROTEIN element must contain an
ORGANISM element, and the ORGANISM element must include a taxonomy id attribute. Within the
world of XML, a set of these constraint rules is formally known as a grammar. Language grammars
specify rules for constructing sentences. XML grammars specify rules for constructing documents.
Grammars can be written in DTDs (explored in this chapter) or in XML Schemas (explored in the
next chapter).

DTDs (and grammars in general) are important for several reasons. First, DTDs define specific
constraints on XML documents and provide an easy method to verify that all the constraints are
followed. A document which purports to follow a specific DTD is formally known as an XML
instance document. An instance document which follows all the grammar rules is said to be valid.
All the validity checking can be performed by a validating XML parser, freeing you from the
tedious task of writing your own validation code.

The second reason DTDs are important is that they can easily be shared within communities or
industries. Ideally, interested parties gather together, share opinions, and hammer out a common
grammar. Ideally, they also create a stable process for soliciting further opinion and evolving the
specification to support new functionality. With a common grammar, people, research labs, and
software applications can more easily exchange and distribute data.

A number of DTDs have been developed for bioinformatics and computational biology. A list of
the best-known DTDs for bioinformatics is presented in Table 3.1. Note that a number of the newest
bioinformatics formats now use XML Schemas. A list of these is provided in the next chapter.

49

50 XML for Bioinformatics

Table 3.1 DTDs for bioinformatics

Name Web Address

AGAVE: Architecture for Genomic Annotation, Visualization and Exchange [27; 28]
Note: AGAVE 2.3 is written as an XML DTD. The latest version, AGAVE 3.0, is written as an
XML Schema

http://www.animorphics.net/lifesci.html

BioML: BIOpolymer Markup Language [32] http://www.bioml.com/BIOML
BSML: Bioinformatic Sequence Markup Language [12; 25] http://www.bsml.org
CellML [31] http://www.cellml.org
DAS: Distributed Annotation System [6] http://www.biodas.org
Gene Ontology (GO) DTD [33] http://www.geneontology.org/xml-dtd/go.dtd
MAGE-ML: MicroArray Gene Expression Markup Language [39] http://www.mged.org/mage
NCBI DTDs: Numerous DTDs, including GBSeq, TinySeq, SeqSet, and NCBI Blast [36] http://www.ncbi.nlm.nih.gov/dtd

Figure 3.1 A sample protein record from the Swiss-Prot database.

3.1.1 A Bird’s-Eye View: Protein DTD
The best way to learn DTDs is by example. We therefore begin with a simple DTD for representing
protein data. Don’t worry if all the details don’t make sense just yet—the premise of the first
example is to present a bird’s-eye view of a sample DTD. All of the details are explored in the
sections that follow.

Our task is to build a very simple DTD for exchanging protein data. For example, the screenshot
in Figure 3.1 shows a sample protein record from Swiss-Prot. Swiss-Prot is a database of curated

Chapter 3 � DTDs for Bioinformatics 51

Figure 3.2 Schematic of the proposed protein DTD. Required elements are outlined in solid rectangular lines. Optional elements are
outlined in dashed rectangular lines. (Diagram was created with XMLSpy R©).

protein sequences, maintained by the Swiss Institute of Bioinformatics (SIB) and the European
Bioinformatics Institute (EBI).

To simplify things, we will take a subset of the Swiss-Prot fields, and draw a schematic of our
envisioned DTD (see Figure 3.2). As you create new DTDs, it helps to have a basic visual schematic
of your DTD. It also helps to have a textual description, written in plain English. For example,
our schematic diagram has a few rules: the root of the document is specified with a PROTEIN-SET
element. The root element contains one or more PROTEIN elements. The PROTEIN element in
turn contains a number of subelements, such as accession number, protein name, organism, and
comment.

The protein DTD described here is purely for instructive purposes. However, Swiss-
Prot does have it own grammar, called UniProt XML (formerly called SPTr-XML).
UniProt XML is written in XML Schema and is capable of representing the full set of
Swiss-Prot/TrEMBL data. Information is available at: http://www.uniprot.org.

The complete DTD is presented in Listing 3.1. Again, don’t be too concerned with the details.
Here’s a bird’s-eye view of what to look for now:
� DTDs are written in their own special format, and do not actually use the familiar XML format

of start and end tags.
� DTDs can contain comments. Make sure to include concise, readable documentation within

any DTD.

52 XML for Bioinformatics

Listing 3.1 Sample DTD for representing protein data: protein.dtd

<!-- Sample DTD for representing protein data-->
<!-- A PROTEIN-SET can have one or more PROTEIN elements -->
<!ELEMENT PROTEIN-SET (PROTEIN+)>
<!-- Main PROTEIN Element -->
<!ELEMENT PROTEIN (ACCESSION, ENTRY-NAME, PROTEIN-NAME, GENE-NAME+,
ORGANISM, COMMENT*, KEYWORD*)>
<!-- Sub Elements containing PCDATA -->
<!ELEMENT ACCESSION (#PCDATA)>
<!ELEMENT ENTRY-NAME (#PCDATA)>
<!ELEMENT PROTEIN-NAME (#PCDATA)>
<!ELEMENT GENE-NAME (#PCDATA)>
<!ELEMENT COMMENT (#PCDATA)>
<!ELEMENT KEYWORD (#PCDATA)>
<!-- ORGANISM for referencing NCBI Taxonomy ID -->
<!ELEMENT ORGANISM (#PCDATA)>
<!ATTLIST ORGANISM

taxonomyid NMTOKEN #REQUIRED
>

� Elements are declared with the prefix <!ELEMENT. For example, the third line declares the
PROTEIN SET element. Each element is declared with a specific content model—this de-
fines a set of valid content that can exist within the specified element. For example, the
PROTEIN SET element can only contain PROTEIN elements.

� Attributes are declared with the prefix <!ATTLIST. For example, the final three lines specify
that all ORGANISM elements must include a taxonomy id attribute.

� A number of elements are defined to contain #PCDATA. The full details of this are explored
below. However, the basic idea is that these elements can only contain textual data, but may not
contain any other subelements.

A sample instance document that adheres to the protein DTD is presented in Listing 3.2. Note
that the XML prolog now includes two lines. The first line is the XML declaration and is used to
specify the XML version and the character encoding. The second line is known as the Document
Type Declaration, and is used to specify the location of the document’s DTD. In Listing 3.2, the
instance document points to the protein DTD.

3.1.2 Validating XML Documents
A document that adheres to all the rules of its specified DTD is valid. To validate a document,
you need to run it through a validating XML parser. Dozens of validating XML parsers exist,
but you are probably best off if you pick an XML editor with a built-in validation feature. For
example, Figure 3.3 shows a screenshot of the <oXygen/> XML editor. To validate a document,
select menu XML → Validate XML. Figure 3.3 shows the validation results of a sample invalid
protein document. As shown in the screenshot, the <oXygen/> validator has discovered a sin-
gle validation error: “Attribute ‘taxonomy id’ is required and must be specified for element type
‘ORGANISM’.”

If you haven’t already chosen a good XML editor, take some time now to select one.
A full and growing list of XML editors (both open source and commercial) is provided

Chapter 3 � DTDs for Bioinformatics 53

Listing 3.2 Sample instance document adhering to the protein DTD.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE PROTEIN-SET SYSTEM "protein.dtd">
<PROTEIN-SET>

<PROTEIN>
<ACCESSION>P26954</ACCESSION>
<ENTRY-NAME>IL3B-MOUSE</ENTRY-NAME>
<PROTEIN-NAME>Interleukin-3 receptor class II beta chain
[Precursor]

</PROTEIN-NAME>
<GENE-NAME>CSF2RB2</GENE-NAME>
<GENE-NAME>AI2CA</GENE-NAME>
<GENE-NAME>IL3RB2</GENE-NAME>
<GENE-NAME>IL3R</GENE-NAME>
<ORGANISM taxonomy-id="10090">Mus musculus</ORGANISM>
<COMMENT>FUNCTION: IN MOUSE THERE ARE TWO CLASSES OF
HIGH-AFFINITY IL-3 RECEPTORS. ONE CONTAINS THIS
IL-3-SPECIFIC BETA CHAIN AND THE OTHER CONTAINS THE BETA
CHAIN ALSO SHARED BY HIGH-AFFINITY IL-5 AND GM-CSF
RECEPTORS.</COMMENT>

<COMMENT>SUBUNIT: Heterodimer of an alpha and a beta
chain.</COMMENT>

<COMMENT>SUBCELLULAR LOCATION: Type I membrane
protein.</COMMENT>

<COMMENT>SIMILARITY: BELONGS TO THE CYTOKINE FAMILY OF
RECEPTORS.

</COMMENT>
<KEYWORD>Receptor</KEYWORD>
<KEYWORD>Glycoprotein</KEYWORD>
<KEYWORD>Signal</KEYWORD>

</PROTEIN>
</PROTEIN-SET>

at: http://www.xmlsoftware.com/editors.html. Whichever editor you choose, make sure that it has
a simple, easy to use XML validation feature.

As you evaluate XML editors, note that some editors will automatically scan a DTD file, and use
this information to provide automatic code suggestions. For example, XMLSpy R© will read DTD and
XML Schema files, and provide automatic code suggestions and completion. A sample screenshot
of XMLSpy’s editing capabilities is shown in Figure 3.4. In this example, the user is creating a
new sample protein document. After typing “<P”, XMLSpy R© automatically suggests the PROTEIN
element. After completing the PROTEIN start tag, XMLSpy R© automatically creates a skeleton of
all the required subelements. A screenshot of the auto-generated code is provided in Figure 3.5.

Information about the <oXygen/> XML editor is available at: http://www.
oxygenxml.com. Information about XMLSpy R© is available at: http://www.xmlspy.com.

If you don’t want to bother with installing a full-blown XML editor, a number of command line and
web service based validators are available. For example, ElCel Technology offers a free command
line XML validator at: http://www.elcel.com/products/xmlvalid.html. To use it, simply specify the

54 XML for Bioinformatics

newProject.xpr

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE PROTEIN_SET SYSTEM "protein.dtd">
<PROTEIN_SET>
 <PROTEIN>
 <ACCESSION>P26954</ACCESSION>

<ENTRY_NAME>IL3B_MOUSE</ENTRY_NAME>
<PROTEIN_NAME>Interleukin-3 receptor class II beta chain [Precursor]

 </PROTEIN_NAME>
 <GENE_NAME>CSF2RB2</GENE_NAME>
 <GENE_NAME>AI2CA</GENE_NAME>
 <GENE_NAME>IL3RB2</GENE_NAME>
 <GENE_NAME>IL3R</GENE_NAME>
 <ORGANISM>Mus musculus</ORGANISM>
 <COMMENT>FUNCTION: IN MOUSE THERE ARE TWO CLASSES OF HIGH-AFFINITY
 IL-3 RECEPTORS. ONE CONTAINS THIS IL-3-SPECIFIC BETA CHAIN AND THI
 OTHER CONTAINS THE BETA CHAIN ALSO SHARED BY HIGH-AFFINITY IL-5
 AND GM-CSF RECEPTORS.</COMMENT>
 <COMMENT>SUBUNIT: Heterodimer of an alpha and a beta chain.</COMMENT>

C:\xmlbio\book\xml\dtd\dtd_sandbox\tiny_prote... Validation failed. errors:1 13:1 Modified

- [tiny_protein_P26954.xml] E Attribute "taxonomy_id" is required and must be specified for element type "ORGANISM".(13.1)

Figure 3.3 Sample screenshot of the <oXygen/> XML editor. Results of XML validation for a sample protein document are shown.

xmlvalid executable, followed by the file name. For example:

xmlvalid protein-P26954-2.xml
protein-P26954-2.xml [13:19] : Error: required attribute 'taxonomy-id'
has not been supplied for element 'ORGANISM'

Brown University also hosts an easy-to-use XML validation service at: http://www.stg.
brown.edu/service/xmlvalid. You can specify the URL of an XML document, upload a local XML
file, or simply cut and paste the document into the HTML form. Upon submission, the Brown
service will automatically parse the XML file and report any validation errors.

If you are creating a new DTD from scratch, a good first step is to create one or more
sample instance documents. You can then send these sample documents through an
auto-DTD generator. For example, XMLSpy R© can examine several sample documents,
and then produce a DTD or an XML Schema. You are not likely to get perfect results,
but the generated DTD can serve as a good first draft and will save you a lot of time.
For a web-based DTD generator, check out http://www.pault.com/pault/dtdgenerator.
Simply specify a local XML file and hit the “Generate DTD!” button.

Chapter 3 � DTDs for Bioinformatics 55

Figure3.4 Sample screenshot of XMLSpy. XMLSpy will automatically read the protein DTD and use this to provide coding suggestions
to the user.

3.2 Document Type Declarations

XML instance documents reference DTDs via a Document Type Declaration. The declaration is
part of the XML prolog and must be specified before the root XML element. Instance documents
can include internal DTDs, reference external DTDs, or both. For example, the following document
includes an internal DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dna [

<!ELEMENT dna (#PCDATA)>
]>
<dna>catctcgcacttccaactgc</dna>

The <!DOCTYPE prefix indicates the Document Type Declaration, and “dna” specifies the name
of the root element. All the actual DTD rules are specified between the opening and closing square
brackets. Following the Document Type Declaration, the document continues with instance data—
in this case, beginning with the root dna element. By definition, internal DTDs are tied to specific
instance documents and cannot be shared among multiple documents. Internal DTDs are therefore
most useful during the initial stages of DTD development, where you may want to keep DTD rules
together with a sample instance document.

56 XML for Bioinformatics

Figure3.5 Sample screenshot of XMLSpy R© (continued). After completing the <PROTEIN> start tag, XMLSpy R© automatically creates
a skeleton of all the required subelements.

After the initial stage of DTD development, you nearly always want to separate your DTD into
a separate file where it can be used by multiple documents. For example, you can separate the DTD
above into a separate file, named dna.dtd:

<!-- External DTD -->
<!ELEMENT dna (#PCDATA)>

You can then create an external reference within your instance document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dna SYSTEM "dna.dtd">
<dna>catctcgcacttccaactgc</dna>

Note that the Document Type Declaration now includes a SYSTEM keyword, followed by a Uniform
Resource Identifier (URI). In this case, we specify a relative file location, but you could just as
easily specify an absolute URL to a specific web location.

The SYSTEM keyword generally designates DTDs that are used locally within a specific appli-
cation or organization. To reference a DTD that is publicly available, use the PUBLIC keyword.
For example, the following document references the NCBI TinySeq DTD (discussed later in the
chapter):

<?xml version="1.0"?>
<!DOCTYPE TSeq PUBLIC "-//NCBI//NCBI TSeq/EN"
"http://www.ncbi.nlm.nih.gov/dtd/NCBI-TSeq.dtd">

Chapter 3 � DTDs for Bioinformatics 57

<TSeq>
<TSeq-seqtype value="nucleotide"/>
<!-- Content Continues... -->

</TSeq>

When referencing a public DTD, you must specify the PUBLIC keyword, followed by a public
identifier, followed by a URI. Although not required by the XML specification, most public identi-
fiers are specified as Formal Public Identifiers (FPIs), as defined by the International Organization
for Standardization (ISO). FPIs have a peculiar syntax, where the / and // characters serve as token
delimiters. The first token is specified with a + or –. + indicates that the organization is formally
registered with ISO (as the example above shows, NCBI is not registered with ISO). The second
token indicates the owner of the DTD. The third token indicates the name of the DTD, and the
fourth token indicates the natural language of the DTD—in this case, English.

In theory, an XML parser could extract the public identifier and look up the DTD in a DTD
catalog. However, the XML specification requires that public identifiers must also include a URI.
In practice, therefore, most XML parsers simply ignore the public identifier and retrieve the DTD
from the URI.

3.3 Declaring Elements

When reading a DTD, or creating a new DTD from scratch, the first step is to understand element
declarations. Element declarations provide the backbone to a document’s content model, giving it
structure and hierarchy. This backbone defines a valid list of XML elements, and a specific set of
content rules for each of those elements. For example, some elements can have text, while others
can only contain specific child elements. Furthermore, the DTD can specify the specific order of
child elements and the occurrence with which they may appear. For example, some elements are
required and must be specified once and only once. Other elements are optional and may appear
zero or more times.

The general rules for declaring elements are actually quite straightforward, and this section
includes details on all the various options. We begin with an overview of element content. Every
time you declare a new element, it can be defined with one of five options:
� EMPTY: the element cannot contain any text or any child elements.
� ANY: the element can contain any text or any child element(s).
� #PCDATA: the element can contain regular text.
� Child Elements: the element can contain a specific set of child elements.
� MIXED: the element can contain text data interspersed with child elements.

Information on each option is provided in the sections below.

3.3.1 EMPTY
The EMPTY keyword is used to indicate that the declared element cannot contain any text or any
child elements. It is, by definition, the simplest possible option for element declaration. EMPTY
element declarations are most frequently used to define elements which do not have content, but
may have attributes. For example, a DB-REFERENCE element could be used to reference external

58 XML for Bioinformatics

biological databases. It may have no content, but it might have two required attributes. Its element
declaration would therefore be defined as:

<!ELEMENT DB-REFERENCE EMPTY>

Information on attribute declaration is provided later in the chapter.

3.3.2 ANY
The ANY keyword is used to indicate that the declared element can contain any text or any defined
child element. It is the least restrictive option for element declaration and should therefore be
strenuously avoided. The use of ANY can sometimes be useful during the early stages of DTD
development, where it can be used to indicate a placeholder for an element which needs further
refinement*. However, ANY is usually much too open-ended and you are not likely to find its use
in many public DTD standards.

Below is a simple example of the ANY keyword, used to create a subset of XHTML:

<!ELEMENT BODY ANY>
<!ELEMENT H1 (#PCDATA)>
<!ELEMENT H2 (#PCDATA)>
<!ELEMENT B (#PCDATA)>
<!ELEMENT I (#PCDATA)>

The BODY tag uses the ANY keyword and can therefore contain any of the defined elements,
including H1, H2, B, and I. Note, however, that ANY restricts content to elements defined within
the DTD. The following is therefore invalid, because it references an undeclared H3 element:

<BODY>
<H1>XML for Bioinformatics</H1>
<H3>Springer Verlag</H3>

</BODY>

3.3.3 #PCDATA
The #PCDATA keyword is used to indicate that the declared element can contain text. Formally,
PCDATA stands for Parsed Character Data, indicating that the text data will be parsed by the
XML processor. For example, the XML parser will analyze PCDATA text and replace all enti-
ties with their defined text substitution strings (information on entities is provided later in the
chapter).

Most DTDs have lots of #PCDATA elements and we will see many examples throughout the
chapter. For example, the declaration below defines a SEQUENCE element:

<!ELEMENT SEQUENCE (#PCDATA)>

* Tim Bray, one of the original editors of the XML specification, actually voted against including the ANY keyword in the
XML 1.0 specification. Bray originally argued that ANY was too open-ended and he “couldn’t see any excuse” for including
it in the specification [16]. Bray now concedes that ANY is a useful tool for building placeholder elements. Complete details
are available in the Annotated XML Reference [16], available online at: http://www.xml.com.

Chapter 3 � DTDs for Bioinformatics 59

Below is a sample document fragment:

<SEQUENCE>
MINIRKTHPLMKILNDAFIDLPTPSNISSWWNFGSLLGLCLIMQILTGLFLAMHYTPDTS
TAFSSVAHICRDVNYGWFIRYLHANGASMFFICLYAHIGRGLYYGSYMFQETWNIGVLLL
LTVMATAFVGYVLPWGQMSFWGATVITNLLSAIPYIGTTLVEWIWGGFSVDKATLTRFFA
</SEQUENCE>

One caveat to using #PCDATA: the declaration states that the element may contain text data, but a
validating parser will not actually enforce that text is actually provided. For example, consider the
following fragment:

<SEQUENCE></SEQUENCE>

This element contains no textual data, but is considered valid. The XML parser will return
the text content as an empty string and your application will need the correct logic to act
appropriately.

3.3.4 Child Elements
Elements can be declared to contain other elements, thereby creating hierarchical content models.
For example, consider the following declaration:

<!ELEMENT PROTEIN (ACCESSION, NAME, DESCRIPTION)>

This defines a protein element, which must contain three subelements: an accession number,
name, and description. Each subelement is separated by a comma, and instance documents
must follow the exact same order of elements. For example, the following instance document is
valid:

<PROTEIN>
<ACCESSION>Q9TDL5</ACCESSION>
<NAME>CYB-CEPHA</NAME>
<DESCRIPTION>Cytochrome b</DESCRIPTION>

</PROTEIN>

However, this document is invalid:

<PROTEIN>
<ACCESSION>Q9TDL5</ACCESSION>
<DESCRIPTION>Cytochrome b</DESCRIPTION>
<NAME>CYB-CEPHA</NAME>

</PROTEIN>

The exact validity message will vary by parser. For example, in XMLSpy R©, the error message
states: “Mandatory element ‘NAME’ expected in place of ‘DESCRIPTION’.”

You can also specify either/or options via the vertical bar operator. For example, consider the
following declaration:

<!ELEMENT PROTEIN ((ACCESSION | NAME), DESCRIPTION)>

This protein element can have either an accession number or a name (but not both), followed by a
description.

60 XML for Bioinformatics

Occurrence Operators
When declaring child elements, each element can be appended with an occurrence operator. This
operator determines the number of times the element may appear and is based on regular expression
syntax. The operators are defined as follows:

Operator Description

No Operator Indicates that exactly one instance of the element is required
? Indicates that zero or one instance of the element may appear
∗ Indicates that zero or more instances of the element may appear
+ Indicates that one or more instances of the element may appear

To make these concepts more concrete, let’s return to the protein DTD in Listing 3.1. For now, we
focus on the first six lines:

<!-- Sample DTD for representing protein data-->
<!-- A PROTEIN-SET can have one or more PROTEIN elements -->
<!ELEMENT PROTEIN-SET (PROTEIN+)>
<!-- Main PROTEIN Element -->
<!ELEMENT PROTEIN (ACCESSION, ENTRY-NAME, PROTEIN-NAME, GENE-NAME+,
ORGANISM, COMMENT*, KEYWORD*)>

The PROTEIN-SET element uses the + occurrence operator, indicating that it can have one or
more PROTEIN elements. In turn, the PROTEIN element specifies its own content model. In
plain English, the element declaration specifies that a PROTEIN must have exactly one of each,
ACCESSION , ENTRY-NAME , and PROTEIN-NAME. Following this, the PROTEIN can have one
or more GENE-NAME elements and a required ORGANISM element. Finally, a PROTEIN can have
zero or more COMMENT elements, followed by zero or more KEYWORD elements.

3.3.5 Mixed Content
The final option for element declaration is mixed content. This indicates that an element can contain
text data interspersed with specific child elements. Mixed content declarations require a special
syntax, defined as follows:

<!ELEMENT ELEMENT-NAME (#PCDATA | CHILD1 | CHILD2, etc.)* >

When using mixed content, you are not permitted to determine the sequence of child elements or
to specify any occurrence operators.

As a simple example, consider the following DTD that defines a subset of XHTML:

<!ELEMENT BODY (#PCDATA | H1 | H2 | B | I)* >
<!ELEMENT H1 (#PCDATA)>
<!ELEMENT H2 (#PCDATA)>
<!ELEMENT B (#PCDATA)>
<!ELEMENT I (#PCDATA)>

The BODY element is defined to have mixed content and the following instance document is
therefore valid:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE BODY SYSTEM "xhtml-mixed-content.dtd">

Chapter 3 � DTDs for Bioinformatics 61

<BODY>
This text is Bold.
This text is <I>Italics</I>
</BODY>

There is in fact no way to specify a root element within a DTD. For example, a document
that adheres to the protein DTD in Listing 3.1 could specify a root PROTEIN-SET
element, a root PROTEIN element, or even a root COMMENT element. Any of these
options would be considered valid. The choice of the root element is entirely determined
by the instance document within the Document Type Declaration. For example, the
following declaration specifies PROTEIN-SET as the root element:

<!DOCTYPE PROTEIN-SET SYSTEM "protein.dtd">

In contrast, the following declaration specifies PROTEIN as the root element:

<!DOCTYPE PROTEIN SYSTEM "protein.dtd">

3.4 Declaring Attributes

Once you have defined your elements, the next step is to define attributes for those elements. The
syntax for declaring attributes is specified in Figure 3.6. The basic syntax requires that you first
specify the element name, followed by the attribute name. Following this, you specify an attribute
type. Attribute types are primarily used to restrict the range of value for attributes. For example, you
can restrict your attribute values to a specific set by using an enumerated list, or you can specify
that the attribute must specify a unique identification value. In total, the XML specification defines
ten different attribute types and each of these is defined in the section below. Following the attribute
type, you specify an attribute behavior. Generally, this enables you to specify if the attribute is
required or optional, and if it has a default value.

<! ATTLIST ELEMENT_NAME
ATTRIBUTE_NAME ATTRIBUTE_TYPE
ATTRIBUTE_BEHAVIOR>

Specifies the attribute type. Primarily
used to restrict the range of values for
attributes. For example, the CDATA
type allows white space characters,
while the NMTOKEN type does not.

Specifies if the attribute is required
or optional, and if the attribute has a
default value.

Figure 3.6 DTD syntax for defining XML attributes.

62 XML for Bioinformatics

Tim Bray, one of the original technical editors for the XML 1.0 specification, provides
an excellent “Annotated XML” [3] reference on the web. It is available online at:
http://www.xml.com. Throughout the specification, you can click on annotation icons
and immediately view historical commentary, technical explanations, and examples.
If you happen to view the annotations for attribute types, Tim Bray has written a
witty note on “Attribute Declarations and Proust.” Bray has taught in numerous one-
day seminars on XML and most of these seminars explore attribute types right after
lunch:

“The consequence of this is that when the class comes back after lunch, to listen
to the discussion of attribute types and their declarations, most of them go to sleep.
The fact of the matter is that there are a lot of attribute types (I voted against a few
of them), there are lots of relevant details, and it is pretty tedious” [3].
If you find all this tedious too, or find yourself falling asleep in the next section,

focus on the first three subsections: CDATA, Enumeration Lists, and IDs. You are most
likely to use these attributes and will only rarely use the others.

3.4.1 Attribute Types
XML 1.0 defines a total of 10 different attribute types. Each of these types is detailed
below.

CDATA
This is the most general and commonly used attribute type. It indicates that the attribute value may
be set to any arbitrary text string. For example, the following rule defines a CDATA species attribute
for a PROTEIN element:

<!ATTLIST PROTEIN species CDATA #REQUIRED>

The following PROTEIN element is therefore valid:

<PROTEIN species="Homo Sapiens"/>

It is perfectly legal to use entities within attribute values. For example, consider the
following DTD declarations:

<!ENTITY ecoli "Escherichia coli">
<!ATTLIST PROTEIN species CDATA #REQUIRED>

You can then define the following XML document:

<PROTEIN species="&ecoli;"/>

Your XML parser will automatically replace the entity with its defined value and return
the following element to you:

<PROTEIN species="Escherichia coli" />

Chapter 3 � DTDs for Bioinformatics 63

Enumeration List
Attributes can be restricted to a specific set of values by using the enumeration construct. Valid
values must be placed within parentheses and separated by a vertical bar. For example, the following
defines an enumerated source attribute, which is restricted to a list of four possible values:

<!ATTLIST SEQUENCE source (WormBase | FlyBase | Ensembl | UCSC)
#REQUIRED>

The following SEQUENCE element is therefore valid:

<SEQUENCE source="WormBase"/>

Enumeration values are restricted to XML name tokens. Within the official XML 1.0
specification, name tokens are restricted to specific characters, including letters, digits,
periods, dashes, underscores, and colons. However, name tokens may not contain white
space characters. Therefore, although this looks tempting, the following attribute rule
is actually illegal:

<!ATTLIST PROTEIN species
(Mus musculus | Homo sapiens) #REQUIRED>

This rule is illegal because the enumerated values contain whitespace characters. One
option to fix this is to replace whitespace characters with underscores. For example,
this rule is now legal:

<!ATTLIST PROTEIN species
(Mus-musculus | Homo-sapiens) #REQUIRED>

ID, IDREF, and IDREFs
The third attribute type is ID, which requires that the attribute value contain a unique identifier. By
using an ID attribute, each XML element can be assigned a unique identifier. You can then later
reference those elements with IDREF attributes. This enables you to create a web of internal links
within a single document.

To make these concepts concrete, consider a simple DTD for defining protein–protein inter-
actions. The DTD consists of PROTEIN elements and INTERACTION elements. Each protein is
assigned a unique identifier and each interaction contains INTERACTOR elements, which reference
those identifiers. Here is the complete DTD:

<!-- Sample DTD for representing protein-protein interactions -->
<!ELEMENT SUBMISSION (PROTEIN+, INTERACTION+) >

<!-- Proteins must have a unique ID, and a text description -->
<!ELEMENT PROTEIN EMPTY>
<!ATTLIST PROTEIN id ID #REQUIRED>
<!ATTLIST PROTEIN description CDATA #REQUIRED>

<!-- Interactions use IDREF attributes to reference proteins -->
<!ELEMENT INTERACTION (INTERACTOR+)>
<!ELEMENT INTERACTOR EMPTY>
<!ATTLIST INTERACTOR reference IDREF #REQUIRED>

64 XML for Bioinformatics

Note that the PROTEIN id attribute is defined as the unique identifier. Also note that the
INTERACTOR reference attribute is defined to reference unique identifiers.

Below is a sample XML file, which adheres to the interaction DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE SUBMISSION SYSTEM "interaction.dtd">
<SUBMISSION>

<PROTEIN id="lat" description="Linker for Activation of T-cells"/>
<PROTEIN id="itk" description="IL-2 Inducible Tyrosine Kinase"/>
<PROTEIN id="grap" description="Grb2-like adaptor protein"/>
<PROTEIN id="grb2" description="Growth factor Receptor Bound
protein 2"/>

<INTERACTION>
<INTERACTOR reference="lat"/>
<INTERACTOR reference="itk"/>

</INTERACTION>
<INTERACTION>

<INTERACTOR reference="lat"/>
<INTERACTOR reference="grap"/>

</INTERACTION>
<INTERACTION>

<INTERACTOR reference="lat"/>
<INTERACTOR reference="grb2"/>

</INTERACTION>
</SUBMISSION>

This document declares four proteins and three interactions. For example, you can see that the LAT
protein interacts with ITK, GRAP, and GRB2. By using IDs and IDREFs, your XML validator
will ensure referential integrity. For example, if a INTERACTOR element references a “gads”
protein, the validator will immediately indicate that the referenced ID does not exist within the
document.

NMTOKEN
The NMTOKEN attribute type restricts values to XML name tokens. Within the official XML 1.0
specification, name tokens are restricted to specific characters, including letters, digits, periods,
dashes, underscores, and colons. However, name tokens may not contain white space characters.
The main difference between a CDATA type and an NMTOKEN type is that CDATA values may
include whitespace characters, whereas NMTOKEN values cannot. This may not seem like much
of a difference, but it does provide a very rudimentary filter for attribute values. For example, an
NMTOKEN might be useful for describing specific numerical attributes, which by their very nature
never contain whitespace. Examples might include: accession number, sequence length, or version
number.

NMTOKENS
The NMTOKENS attribute type restricts values to a list of XML name tokens. Each token must be
separated by one or more whitespace characters.

Chapter 3 � DTDs for Bioinformatics 65

ENTITY
The ENTITY attribute type provides a mechanism for referencing unparsed external entities defined
elsewhere in the DTD. Although it is not commonly used, it provides a mechanism for referencing
external data, such as images, sounds, or videos. For details on parsed vs. unparsed entities, refer
to the section on “External Entities,” later in this chapter.

ENTITIES
The ENTITIES attribute type provides a mechanism for referencing multiple unparsed external
entities. Each entity reference must be separated by one or more whitespace characters. For
details on parsed vs. unparsed entities, refer to the section on “External Entities,” later in this
chapter.

NOTATION
The NOTATION attribute type provides a mechanism for referencing notations defined elsewhere
in the DTD. This attribute type is very rarely used.

3.4.2 Attribute Behaviors
The XML 1.0 specification defines four kinds of attribute behaviors. Each of these is defined below.

#IMPLIED
The attribute is optional.

#REQUIRED
The attribute is required and must be specified.

Default Value
The attribute has a defined default value. If no value is specified, the default value is automati-
cally used. For example, the following attribute declaration specifies Homo Sapiens as the default
species:

<!ATTLIST PROTEIN species CDATA "Homo Sapiens">

Therefore, if you have the following XML element:

<PROTEIN/>

and run it through an XML parser, the end result will look like this:

<PROTEIN species="Homo Sapiens" />

66 XML for Bioinformatics

You can also specify default values for enumeration lists. For example, the following attribute
defaults to UCSC:

<!ATTLIST SEQUENCE source (WormBase | FlyBase | Ensembl | UCSC) "UCSC">

#FIXED
The attribute is hard coded to a specific value. This may seem odd, but could be useful in some
situations. For example, the following declaration provides a hard coded version number:

<!ATTLIST SEQUENCE version NMTOKEN #FIXED "1.0">

If your document attempts to override the fixed value, it is considered a validation error.

3.5 Working with Entities

For many simple DTDs, you can get by with just element and attribute declarations. For added
convenience and power, however, it is useful to delve into the details of XML entities. An XML
entity is any label that references another piece of data. For example, in the simplest case, the entity
&author; may reference the text “James Watson.” Upon parsing your XML document, the XML
parser will automatically undertake a global search and replace operation and replace all &author;
references with the text “James Watson.” Simple enough. However, entities are actually much more
powerful than this, and are capable of referencing data that is outside the XML document, and
even referencing non-XML data, such as images and videos. They are also a key tool in building
modular DTDs.

Very broadly, there are two types of entities: general entities and parameter entities. General
entities are used within XML documents and provide a simple mechanism for referencing common
data. Parameter entities are used within DTDs, and provide a general mechanism for creating
modular DTDs that are easier to maintain over the long haul. We examine each type of entity in the
sections below. We also examine conditional DTD sections, particularly when used in combination
with parameter entities.

3.5.1 General Entities
General entities encode simple rules for text replacement. The XML standard includes five built-in
entities:
� & ampersand sign (&)
� < less than sign (<)
� > greater than sign (>)
� ' apostrophe (')
� "e; quote (")

The standard includes entities for each of these special characters, because each one conveys special
meaning to the XML parser. For example, the less than sign (<) indicates the start of an XML tag.
Therefore, if you use the less than sign within regular element text, the parser will interpret this
as the start of a tag, and will probably report a well-formedness error. To prevent the parser from
processing special text, you have two options. The fist is to include your text within a CDATA

Chapter 3 � DTDs for Bioinformatics 67

section. For example:

<![CDATA[
Error: You must specify a <PROTEIN> element.
]]>

The second option is to use the built-in entities. For example:

Error: You must specify a <PROTEIN> element.

Of course, you are not just limited to the five built-in entities and are free to define your own entities
within your DTD. The general syntax for declaring general entities is as follows:

<!ENTITY entity-name "[Entity Value Goes Here]">

For example, the lines below define entities for common organisms:

<!ENTITY mouse "Mus musculus (house mouse)">
<!ENTITY human "Homo sapiens (human)">
<!ENTITY fly "Drosophila melanogaster (fruit fly)">

To reference a general entity, the reference must begin with an ampersand character (&), followed
by the entity name, and end with a semicolon (;). More concisely, the general syntax for referencing
a general entity is as follows:

&entity-name;

For example, the following element references the mouse entity defined above:

<ORGANISM taxonomy-id="10090">&mouse;</ORGANISM>

After XML parsing, the element will look like this:

<ORGANISM taxonomy-id ="10090">Mus musculus (house mouse)</ORGANISM>

External Entities
General entities are not just confined to referencing simple strings of text. They can, in fact,
reference data outside of an XML document and even non-XML data. External entities are further
subdivided into two additional categories: parsed external entities and unparsed external entities.
A parsed external entity is actually parsed by the XML processor and must contain either XML or
regular text. An unparsed external entity is not parsed by the XML processor and usually contains
non-XML data, such as images or audio files.

The syntax for defining a parsed external entity is very similar to a regular entity, except that
you must specify the SYSTEM keyword, followed by an absolute or relative path to the data. The
general syntax is as follows:

<!ENTITY entity-name SYSTEM "[Path to External Data]">

To make this clear, let’s consider a complete example. First, consider that we have a file
NM-000854.txt that contains DNA sequence data only. For example, the first three lines of the
file look like this:

ctccataagg cacaaacttt cagagacagc agagcacaca agcttctagg acaagagcca
ggaagaaacc accggaagga accatctcac tgtgtgtaaa catgacttcc aagctggccg
tggctctctt ggcagccttc ctgatttctg cagctctgtg tgaaggtgca gttttgccaa

68 XML for Bioinformatics

Our goal is to include the same sequence data within multiple XML documents. To do so, we need
to create an external entity. For example, consider the following simple, but complete DTD:

<!ELEMENT DNA (SEQUENCE)>
<!ELEMENT SEQUENCE (#PCDATA)>
<!-- External Parsed Entities -->
<!ENTITY NM-000584 SYSTEM "NM-000584.txt">
<!ENTITY NM-000584-REMOTE SYSTEM

"http://www.xmlbio.org/NM-000584.txt">

The first entity declaration assumes the sequence data is located within the same directory as the
DTD, but you could just as easily specify an absolute URL (as seen in the second entity declaration).

To include the sequence data within your XML document, simply include an entity reference.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DNA SYSTEM "seq-ext-entity.dtd">
<DNA>

<SEQUENCE>
&NM-000584-REMOTE;
</SEQUENCE>

</DNA>

Upon processing the document, the XML parser will read the DTD, discover the entity declarations,
download the contents of the external data files, and paste everything together. After processing
the document will therefore look like this:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE DNA SYSTEM "seq-ext-entity.dtd">
<DNA>
<SEQUENCE>ctccataagg cacaaacttt cagagacagc agagcacaca agcttctagg
acaagagcca ggaagaaacc accggaagga accatctcac tgtgtgtaaa catgacttcc
aagctggccg tggctctctt ggcagccttc ctgatttctg
For brevity, complete contents are omitted...

</SEQUENCE>
</DNA>

Of course, the example above will only work if the DTD you are using defines the
external entity for you. Frequently, this is not the case, and you may want to create
external entities for a specific subset of XML documents. To do so, your instance
document can extend an external DTD with an internal DTD subset. For example,
consider the following instance document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DNA SYSTEM "seq-ext-entity.dtd" [
<!ENTITY NM-000576-REMOTE SYSTEM
"http://www.xmlbio.org/NM-000576.txt">

]>
<DNA>
<SEQUENCE>
&NM-000576-REMOTE;
</SEQUENCE>
</DNA>

Chapter 3 � DTDs for Bioinformatics 69

This document references the previous DTD, but also includes an internal DTD sub-
set. This internal DTD includes its own entity declaration, which references a second
sequence document.

By using external parsed entities, you can create modular, reusable components of text or XML.
The advantage of this approach is that you generally only need to make changes in one place. For
example, to update the sequence content, you just update the sequence file, instead of dozens of
instance documents.

In theory, unparsed external entities work in a similar manner, but can be used to reference
non-XML data, such as images and audio. In practice, however, very few applications actually use
them, and we shall spare you the complex details here. If you are looking for an in-depth discussion
of unparsed external entities, there are several excellent references, including: XML in a Nutshell
[34] and XML: A Primer [40].

3.5.2 Parameter Entities
Parameter entities provide text substitution within DTDs. This is especially useful for two spe-
cific situations. In the first situation, you may have two or more elements, which share common
properties. For example, consider the following element declarations:

<!ELEMENT PROTEIN (ACCESSION, NAME, DESCRIPTION, ORGANISM, SEQUENCE)>
<!ELEMENT SMALL-MOLECULE (ACCESSION, NAME, DESCRIPTION,
SMILES-STRUCTURE)>

Proteins and small molecules share three common properties: accession number, name, and de-
scription. If you are used to thinking in terms of object-oriented programming, you might want to
extract these properties to a superclass, and then create subclasses for proteins and small molecules.
However, DTDs are not object oriented and the best you can do is extract common properties into
a parameter entity.

To declare a parameter entity, use the following syntax:

<!ENTITY % entity-name "[Entity Value Goes Here]">

Note that the percent sign (%) is required, and there must be a space between the percent sign and
the entity name. To reference a parameter entity, use this syntax:

%entity-name;

In this case, note that the percent sign (%) is again required, but there is no space between the
percent sign and the entity name.

Using parameter entities, we can rewrite the element declarations for proteins and small
molecules like this:

<!ENTITY % general-info "ACCESSION, NAME, DESCRIPTION" >
<!ELEMENT PROTEIN (%general-info;, ORGANISM, SEQUENCE)>
<!ELEMENT SMALL-MOLECULE (%general-info;, SMILES-STRUCTURE)>

In the text above, we have extracted the common elements into a parameter entity, named
general info. This entity is later referenced in the element declarations for PROTEIN and
SMALL-MOLECULE .

70 XML for Bioinformatics

There are several advantages to using parameter entities in a situation like this. First, the DTD
becomes more concise and easier to maintain. For example, if you want to add a new common
element to proteins and small molecules, you only need to add it to the general info entity. Second,
it helps you to think about your content model in a more structured manner. When you are first
developing a DTD, you will probably start with a series of individual elements. As you add more
elements, you may notice certain commonalities and work to extract those commonalities into
parameter entities.

The second situation when parameter entities are useful is when you want to break a large
monolithic DTD into a series of smaller, modular DTDs. To do so, you create external parameter
entities. For example, we might want to break our protein DTD into two files: one file which
contains the protein grammar rules and another file that contains common organisms. We can tie
these two DTDs together via a master DTD document that uses external parameter entities. For
example, we could create a protein root.dtd file:

<!-- Example of Using External Parameter Entities -->
<!-- Include Main Protein DTD via Parameter Entity-->
<!ENTITY % protein-set SYSTEM "protein.dtd">
%protein-set;
<!-- Include Common Organisms via Parameter Entity-->
<!ENTITY % organisms SYSTEM "organisms.dtd">
%organisms;

As you can see, the root DTD declares external parameter entities for two external files. It then
includes these files by referencing the entities directly. When the XML parser validates documents
against the main DTD, it automatically retrieves the external entities, and pastes them together to
create one single DTD in memory. Breaking your DTD into submodules like this makes it possible
to reuse specific components. Further examples of this are provided in the NCBI case study at the
end of the chapter.

3.5.3 Entity Summary
Many new XML developers tend to find the complete suite of entity options a bit confusing at
first. To help you along, we have created an entity overview diagram, presented in Figure 3.7. The
overview diagram includes a complete hierarchy of entity options along with a few simple rules of
thumb.

3.5.4 Conditional DTD Sections
XML 1.0 provides support for conditional DTD sections. This enables you to include or ignore
specific sections of a DTD. For example, to include the ORGANISM taxonomy id attribute, use the
following markup:

<![INCLUDE[
<!ATTLIST ORGANISM

taxonomy-id NMTOKEN #REQUIRED
>

]]>

Chapter 3 � DTDs for Bioinformatics 71

Entity

Any label that
references another
piece of data.

General

Parameter

External

Internal

Parsed

UnParsed

External

Internal

Used within XML
documents.

Used within DTDs.

Provides simple text substitution. The
most common type of entity. The XML
standard includes five built-in internal
entities, including < (less than sign), and
& (ampersand sign).

References data which is
not parsed by the XML
processor. In theory, this is
used to include non-XML
data, such as images and
audio files. In practice, they
are rarely used.

Used to reference data
which is located in another
external file.

References data which is
parsed by the XML
processor. Used to
reference common text or
XML data, which is stored
in external files.

Substitution text is located locally within the
DTD. Commonly used to specify common
properties, shared by multiple elements.

Substitution text is located externally in other
files. Commonly used to break large DTDs
into several smaller DTD files.

Figure 3.7 Entity overview diagram. The diagram includes the complete hierarchy of entity options along with a few rules of
thumb.

To ignore this section, use the IGNORE directive:

<![IGNORE[
<!ATTLIST ORGANISM

taxonomy-id NMTOKEN #REQUIRED
>

]]>

When using the IGNORE directive, the taxonomy id attribute is completely ignored, and any
instance document that includes a taxonomy id attribute will be considered invalid.

By themselves, the IGNORE/INCLUDE directives are not very useful. However, when combined
with parameter entities, you can create more powerful conditional sections. For example, consider
the following:

<!ENTITY % specifyNcbiTaxonomyId "IGNORE">
<![%specifyNcbiTaxonomyId; [

<!ATTLIST ORGANISM
taxonomy-id NMTOKEN #REQUIRED

>
]]>

72 XML for Bioinformatics

In this example, the specifyNcbiTaxonomyId entity can be specified as “IGNORE” or “IN-
CLUDE.” Depending on the setting, the taxonomy id attribute can be turned on or off. This
is particularly useful for developing a new DTD, as you can test out only certain sections at a
time. It can also be particularly useful when you are extending an existing DTD, and you want
to conditionally activate specific sections. For example, assume that the example above is de-
fined in protein conditional.dtd, and that specifyNcbITaxonomyId is set to “IGNORE.” You
can create a new DTD, protein with tax id.dtd, and now activate the conditional section, like
this:

<!ENTITY % specifyNcbiTaxonomyId "INCLUDE">
<!ENTITY % protein-conditional SYSTEM "protein-conditional.dtd">
%protein-conditional;

If an entity with the same name is declared more than once, the first entity declaration has prece-
dence. Hence, in the example above, our new specifyNcbiTaxonomyId entity will over-
ride the default value. The taxonomy id attribute declaration section is therefore dynamically
included.

3.6 Case Study: NCBI TinySeq

Now that we have covered the basics of DTDs, we turn to a sample DTD for storing and exchang-
ing biological sequence data. A number of XML formats actually exist for representing biological
sequences, including Bioinformatic Sequence Markup Language (BSML) [12; 13; 25] and Archi-
tecture for Genomic Annotation, Visualization and Exchange (AGAVE) [27; 28]. For this section,
however, we will focus on TinySeq [37], a very simple DTD made available by NCBI. The Tiny-
Seq DTD is itself quite concise and yet it uses most of the concepts discussed within this chapter.
Furthermore, NCBI makes its sequence data available in TinySeq format, and it is therefore very
easy to find real, live TinySeq examples. For all of these reasons, TinySeq is an ideal candidate for
an in-depth case study. We begin with a brief overview of the NCBI data model and then continue
with the details of the TinySeq DTD.

3.6.1 NCBI and XML
The National Center for Biotechnology Information (NCBI) is the central location for numerous
bioinformatics databases, including Entrez, GenBank, LocusLink, RefSeq, and PubMed. Due to
its central role in storing and exchanging sequence data, NCBI set out over 12 years ago to create a
comprehensive data model for representing biological sequences. The data model includes specific
details regarding sequence identifiers, sets of sequences, scientific literature citations, cross database
references, organism information, and sequence features.*

Specific instances of sequence data are required to adhere to the NCBI data model, and this
data is stored internally within NCBI in ASN.1 format. ASN.1, or Abstract Syntax Notation 1, is

* For a complete description of the NCBI Data Model, see Chapter 2 of Bioinformatics: A Practical Guide to the Analysis
of Genes and Proteins, edited by Andreas D. Baxevanis and B.F. Francis Oullette (John Wiley: New York, 2001) [3].

Chapter 3 � DTDs for Bioinformatics 73

a standard for defining abstract data types and predates XML. ASN.1 includes support for specific
predefined data types, such as integers, and Booleans, and makes it possible to create compound
data types, such as structures and lists [35]. NCBI uses ASN.1 to store data internally, but also
includes utility tools for converting ASN.1 data to more easily readable formats, such as the familiar
GenBank and FASTA flat file formats.

Recently, NCBI introduced a new set of conversion tools for converting to XML [36]. The current
NCBI plan is to offer two levels of XML support. The first level is a complete translation from
ASN.1 directly to XML. This level, simply known as NCBI XML, provides a complete mapping
of the entire NCBI data model. However, the NCBI DTD is quite lengthy, and according to the
official NCBI README file, “not for the faint of heart” [36].

The second level of XML support provided by NCBI is a set of smaller DTDs, targeted for
specific audiences. Within this set, NCBI has released GBSeq [38] and TinySeq [37]. GBSeq is an
attempt to provide the same information as that provided in GenBank flat files. In contrast, TinySeq
is a minimal set of elements for describing a set of biological sequences. It essentially conveys the
same information as that found in a FASTA file, plus a few additional fields.

Complete details regarding NCBI support for XML are available online at:
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/XML/ncbixml.txt. This document also in-
cludes information regarding the NCBI asn2xml tool for converting ASN.1 data to
XML.

Fortunately for end users, NCBI stores its sequence data in ASN.1, but provides easy access to the
same data in multiple formats. For example, if you search NCBI for a specific sequence record, you
can immediately select a data format from the “display” pull-down menu. For example, as you can
see in Figure 3.8, NCBI currently offers 10 different display options, including ASN.1, FASTA,
and GenBank flat file format. It also offers three options for XML output: TinySeq XML, GBSeq
XML, and “XML.” The final XML option is the full ASN.1-to-XML conversion.

3.6.2 The TinySeq DTD
With that quick overview of NCBI and XML, we now turn to the TinySeq DTD. The TinySeq
DTD actually consists of three separate files (see Figure 3.9). The first file, NCBI TSeq.dtd, is the
root DTD file and it references two other modules. The first module, NCBI Entity.mod, contains
definitions for basic data types, such as INTEGER, REAL, and BOOLEAN (more on this below).
The second module, NCBI TSeq.mod, contains the bulk of rules for defining biological sequences.

By convention, most other NCBI DTDs are structured in a similar manner—the root DTD
is usually specified with a .dtd file extension and this root document references module DTDs,
specified with a .mod file extension. By breaking their DTDs into modules, NCBI can reuse
modules across several applications. For example, several root documents reference the same
NCBI Entity.mod file.

The full contents of the three TinySeq DTD files are provided in Listings 3.3–3.5. You might
want to take a first quick look at each file, before delving into the detailed discussion below.
If you want to download the files, and try them out locally, they are all available online at:
http://www.ncbi.nlm.nih.gov/dtd.

74 XML for Bioinformatics

Figure 3.8 A sample screenshot from the NCBI web site. The TinySeq XML data format is highlighted.

NCBI_TSeq.dtd

NCBI_Entity.mod

NCBI_TSeq.mod

Figure 3.9 A graphical representation of the three files which make up the complete TinySeq DTD. The root DTD, NCBI TSeq.dtd
includes references to two other modular DTD components. The modular components are included via external parameter
entities.

Chapter 3 � DTDs for Bioinformatics 75

Listing 3.3 NCBI TSeq.dtd

<!-- NCBITSeq.dtd
This file is built from a series of basic modules.
The actual ELEMENT and ENTITY declarations are in the modules.
This file is used to put them together.

-->

<!ENTITY % NCBI-Entity-module PUBLIC "-//NCBI//NCBI Entity Module//EN"
"/dtd/NCBI-Entity.mod">
%NCBI-Entity-module;

<!ENTITY % NCBI-TSeq-module PUBLIC "-//NCBI//NCBI TSeq Module//EN"
"/dtd/NCBI-TSeq.mod">
%NCBI-TSeq-module;

Listing 3.4 NCBI Entity.mod

<!-- ======================== -->
<!-- NCBI DTD -->
<!-- NCBI ASN.1 mapped to XML -->
<!-- ======================== -->

<!-- Entities used to give specificity to #PCDATA -->
<!ENTITY % INTEGER '#PCDATA'>
<!ENTITY % ENUM 'EMPTY'>
<!ENTITY % BOOLEAN 'EMPTY'>
<!ENTITY % NULL 'EMPTY'>
<!ENTITY % REAL '#PCDATA'>
<!ENTITY % OCTETS '#PCDATA'>
<!-- == -->

Listing 3.5 NCBI TSeq.mod

<!-- == -->
<!-- This section mapped from ASN.1 module NCBI-TSeq -->

<!-- == -->
<!-- Definition of TSeq -->
<!--
**

ASN.1 for a tiny Bioseq in XML
basically a structured FASTA file with a few extras
in this case we drop all modularity of components
All ids are Optional - simpler structure, less checking
Components of organism are hard coded - can't easily
add or change sequence is just string whether DNA or protein

by James Ostell, 2000

**
-->

76 XML for Bioinformatics

Listing 3.5 (cont.)

<!ELEMENT TSeq (
TSeq-seqtype ,
TSeq-gi? ,
TSeq-accver? ,
TSeq-sid? ,
TSeq-local? ,
TSeq-taxid? ,
TSeq-orgname? ,
TSeq-defline ,
TSeq-length ,
TSeq-sequence)>

<!ELEMENT TSeq-seqtype %ENUM; >
<!ATTLIST TSeq-seqtype value (

nucleotide |
protein) #REQUIRED >

<!ELEMENT TSeq-gi (%INTEGER;)>
<!ELEMENT TSeq-accver (#PCDATA)>
<!ELEMENT TSeq-sid (#PCDATA)>
<!ELEMENT TSeq-local (#PCDATA)>
<!ELEMENT TSeq-taxid (%INTEGER;)>
<!ELEMENT TSeq-orgname (#PCDATA)>
<!ELEMENT TSeq-defline (#PCDATA)>
<!ELEMENT TSeq-length (%INTEGER;)>
<!ELEMENT TSeq-sequence (#PCDATA)>

<!-- Definition of TSeqSet -->

<!ELEMENT TSeqSet (TSeq+)>

NCBI TSeq.dtd
The root NCBI TSeq.dtd file declares two external parameter entities. As discussed in the entity
section above, parameter entities are used within DTDs, and external parameter entities can be
used to merge multiple DTD modules into a single DTD. For example, the first entity definition
references the NCBI Entity.mod file:

<!ENTITY % NCBI-Entity-module PUBLIC "-//NCBI//NCBI Entity Module//EN"
"/dtd/NCBI-Entity.mod">

Note that the declaration includes a PUBLIC identifier and a file location. Most XML parsers will
ignore the PUBLIC identifier and jump directly to the file location. In this instance, the file location
is specified with a relative path. If your XML parser has downloaded the root DTD file directly from
NCBI, the file location is relative to the NCBI web site, and your parser will therefore automatically
reconnect to NCBI to download the module files. The advantage of using relative file locations is that
you can easily copy the NCBI DTDs locally to your file system and the entity references still work.

Having defined the NCBI Entity module, the root DTD file includes the complete file contents
by referencing the parameter entity directly:

%NCBI-Entity-module;

Chapter 3 � DTDs for Bioinformatics 77

The same process is repeated for the NCBI TSeq.mod file. By using external parameter entities,
the root DTD basically copies and pastes the two module files together and creates a single, larger
“virtual” DTD.

NCBI Entity.mod
At first glace, the NCBI Entity.mod file may seem counterintuitive. The file consists of six parameter
entities, each of which defines a specific data type. For example, the following declarations define
INTEGERs and REALs:

<!ENTITY % INTEGER '#PCDATA'>
<!ENTITY % REAL '#PCDATA'>

The DTD specification has no built-in support for data types—everything is basically a string. It,
therefore has no facility for verifying that a specific element or attribute can only contain integer
or real values. However, as we will soon see in the next chapter, the XML Schemas specification
does support data typing, and therefore provides significantly more validation features than DTDs.

While DTDs do not support data typing, data typing is central to ASN.1 and to the NCBI data
model. NCBI therefore created the NCBI Entity.mod file to provide hints about mapping ASN.1
data types to XML. These hints are purely for the benefit of the human reader. For example, certain
elements in TinySeq are defined as INTEGERs, and human users are advised to provide only
integer values for these elements. However, in the actual entity declaration, INTEGERs are simply
defined as #PCDATA, meaning that the element can contain any string value. The XML parser
therefore cannot enforce that integer values are actually specified. If and when NCBI migrates to
XML Schemas, these data types will become more meaningful and enforceable by XML parsers.

NCBI TSeq.mod
The third and final DTD, NCBI Tseq.mod, contains the actual rules for specifying one or more
biological sequences. A graphical representation of these rules is presented in Figure 3.10 and a
sample instance document is provided in Listing 3.6.

The root of the TinySeq DTD is specified with a TSeqSet element declaration. The root
TSeqSet element can contain one or more TSeq elements. Alternatively, an instance document
can specify a root TSeq element and forgo the use of the TSeqSet element altogether (see Listing
3.6 for an example). The TSeq element in turn contains a number of subelements:
� TSeq-seqtype (required): specifies the type of sequence represented. The seqtype attribute

uses an enumeration list to restrict sequence types to “nucleotide” or “protein.”
� TSeq-gi (optional): specifies the NCBI GenInfo (GI) number. Every sequence stored in NCBI

receives a unique GI number. If the sequence data is updated (even by one base pair), a new
record is created and a new GI number is assigned. However, the accession number (defined
below) remains constant.

� TSeq-accver (optional): specifies the NCBI accession number, followed by a version number.
Accession numbers represent the most stable NCBI identifiers and are used by most NCBI
end-users. As indicated above, if the sequence data is updated, a new GI number is assigned;
however, the accession number remains constant, and the version number is incremented by
one.

78 XML for Bioinformatics

Figure 3.10 A graphical representation of the TinySeq DTD. Required elements are outlined in solid rectangular lines. Optional
elements are outlined in dashed rectangular lines. (Diagram was created with XMLSpy R© .)

� TSeq-sid (optional): specifies other meaningful sequence identifiers associated with this se-
quence record. Sequence identifiers are specified using the “vertical bar format,” commonly
found in other NCBI flat file formats. For example, in the instance document provided in List-
ing 3.6, the TSeq sid element is specified as:

<TSeq-sid>ref|NM-001464.2|</TSeq-sid>
The first part of the string before the vertical bar specifies the database name. In this case, the
record references the NCBI RefSeq database of curated genes. The value after the vertical bar
indicates the accession number, followed by the version number.

� TSeq-taxid (optional): specifies the taxonomy ID of the source organism. Taxonomy IDs
are available at the NCBI Taxonomy database at: http://www.ncbi.nlm.nih.gov/Taxonomy.
For example, the instance document in Listing 3.6 specifies 9606 as the taxonomy ID for
Homo.

� TSeq-orgname (optional): specifies the species name of the source organism.
� TSeq-defline (required): specifies a short description of the sequence record. This roughly

corresponds to the first line of the FASTA flat file format.

Chapter 3 � DTDs for Bioinformatics 79

Listing 3.6 Sample instance document adhering to the TinySeq DTD.

<?xml version="1.0"?>
<!DOCTYPE TSeq PUBLIC "-//NCBI//NCBI TSeq/EN"
"http://www.ncbi.nlm.nih.gov/dtd/NCBI-TSeq.dtd">
<TSeq>

<TSeq-seqtype value="nucleotide"/>
<TSeq-gi>11497606</TSeq-gi>
<TSeq-sid>ref|NM-001464.2|</TSeq-sid>
<TSeq-taxid>9606</TSeq-taxid>
<TSeq-orgname>Homo sapiens</TSeq-orgname>
<TSeq-defline>Homo sapiens a disintegrin and metalloproteinase

domain 2 (fertilin beta) (ADAM2), mRNA</TSeq-defline>
<TSeq-length>2650</TSeq-length>
<TSeq-sequence>CATCTCGCACTTCCAACTGCCCTGTAACCACCAACTGCCCTTATTCCGGCTG

GGACCCAGGACTTCAAGCCATGTGGGTCTTGTTTCTGCTCAGCGGGCTCGGCGGGCTGCGGATGGACAGT
AATTTTGATAGTTTACCTGTGCAAATTACAGTTCCGGAGAAAATACGGTCAATAATAAAGGAAGGAATTG
AATCGCAGGCATCCTACAAAATTGTAATTGAAGGGAAACCATATACTGTGAATTTAATGCAAAAAAACTT
TTTACCCCATAATTTTAGAGTTTACAGTTATAGTGGCACAG
For brevity, full sequence has been omitted.
</TSeq-sequence>
</TSeq>

� TSeq-length (required): specifies the length of the sequence data.
� TSeq-sequence (required): contains the actual sequence data.

You may be curious to check out the other NCBI DTDs, including GBSeq and the full
ASN.1 to XML translation. All of the NCBI DTDs are available in one central directory at:
http://www.ncbi.nih.gov/dtd/. Each of these DTDs is considerably longer than the TinySeq DTD,
but they each use the same basic DTD concepts discussed in this chapter. You are therefore well
equipped to dive right in.

XML Schemas for Bioinformatics 4
XML Schema represents the successor to Document Type Definitions (DTDs), offering more
features, flexibility, and complexity. This chapter provides an overview of the XML Schema speci-
fication, with specific applications to bioinformatics. The XML Schema specification is one of the
largest ever produced by the World Wide Web Consortium (W3C), and several entire books have
been devoted to the subject. Therefore, rather than covering the complete specification, the chapter
focuses on the most important and essential Schema concepts, and illustrates those concepts with
numerous examples. When possible, we provide references to other sources for more in-depth
information.

The chapter begins with an overview of the main features of XML Schemas, especially as
contrasted with DTDs. We also provide an overview of the best-known bioinformatics standards
that currently use XML Schema. Following the introduction, we examine our first XML Schema—
a relatively simple schema used to represent protein data. Although relatively concise (especially
when compared to full-blown bioinformatics schemas), the protein schema provides us with a point
of departure for discussing several critical schema issues. This includes the differences between
simple and complex types and global versus local element declarations. Each of these topics along
with several intermediate topics is explored in detail throughout the remainder of the chapter.

The chapter concludes with a case study discussion of the Proteomics Standards Initiative
Molecular Interaction (PSI-MI) XML Schema. The PSI-MI format is a recent initiative of the
Human Proteome Organization (HUPO), and is used to represent and exchange protein–protein
interactions. We explore the main goals of the PSI-MI format and provide an overview of its main
schema components.

4.1 Introduction to XML Schemas

The XML Schema specification [42; 43; 52] is an official recommendation of the World Wide Web
Consortium (W3C). The W3C specifically created XML Schemas to address several deficiencies
with XML1.0 Document Type Definitions (DTDs). Both specifications provide rules for building
valid instance documents. For example, both specifications can dictate that a protein element
must have an accession element and may have 0 or more keyword elements.

Beyond this overlapping functionality, Schemas provide several features beyond those defined
by DTDs. These features include the following:
� With DTDs, elements and attributes are all treated as strings. In contrast, XML Schema provides

built-in data types, such as integers, floats, and dates. This is an extremely powerful feature, as
it enables you to provide extra validation rules for instance documents. It also enables tools to

81

82 XML for Bioinformatics

automatically map between XML documents and primitive data types provided in programming
languages and databases.

� DTDs are written in their own peculiar syntax, which is largely inherited from SGML. In
contrast, XML Schemas use regular XML syntax. As a result, any tool that can read or process
an XML document, can read and process an XML Schema.

� Schemas support several object-oriented practices, which are simply not provided by DTDs. For
example, Schemas have a notion of named types, which are akin to classes; and element dec-
larations, which are akin to object instances. Schemas also support basic inheritance concepts,
which enable you to derive new types from existing base types.

� Schemas provide several additional validation rules, which are not supported by DTDs. For
example, values can be restricted to a minimum or maximum length of characters, or can be
restricted to match a specific regular expression pattern.

� Schemas provide full support for XML Namespaces. This is critically important, as it enables
a single instance document to reference two or more schemas, each of which is defined in a
separate namespace.

4.1.1 XML Schemas for Bioinformatics
With all these features, XML Schemas provide considerably more power than DTDs. For this reason,
many of the newest file formats for bioinformatics are now being created as XML Schemas, and
many of the older DTDs are being upgraded to schemas. A list of the best-known XML Schemas
for bioinformatics is presented in Table 4.1. A case study of the PSI-MI format is provided at the
end of the chapter.

4.2 Essential Concepts: Representing Protein Data

We are now ready to jump into our first example XML Schema. Listing 4.1 provides an XML
Schema for representing basic protein data (a visual representation of the Schema is also provided
in Figure 4.1). It is similar to the protein DTD explored in the previous chapter, but it also includes
a few additional features.

There is actually a lot going on in our first sample schema. Don’t be too concerned if it doesn’t all
make sense just yet. We will dissect its major parts below and explore some of the more advanced
concepts in later sections.

Table 4.1 XML Schemas for bioinformatics

Name Description

AGAVE: Architecture for Genomic Annotation, Visualization and Exchange [28] http://www.animorphics.net/lifesci.html
Note: AGAVE 2.3 is written as an XML DTD. The latest version, AGAVE 3.0, is written as an
XML Schema.

CML: Chemical Markup Language [49] http://www.xml-cml.org/
PEML: Proteomics Experiment Markup Language http://pedro.man.ac.uk
PSI-MI: Proteomics Standards Initiative Molecular Interaction [46] http://psidev.sourceforge.net/
SBML: The Systems Biology Markup Language [44; 47] http://www.sbw-sbml.org/sbml/docs/
UniProt XML (formerly SPTr-XML) http://www.pir.uniprot.org/
XFF: The Extensible Feature Format http://www.biojava.org/thomasd/XFF/

Chapter 4 � XML Schemas for Bioinformatics 83

Listing 4.1 protein.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:annotation>
<xs:documentation>
Sample XML Schema for representing Protein data.

</xs:documentation>
</xs:annotation>
<xs:element name="protein-set">

<xs:annotation>
<xs:documentation>
A protein set can have one or more protein elements.

</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:complexContent>
<xs:restriction base="xs:anyType">

<xs:sequence>
<xs:element ref="protein"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:restriction>
</xs:complexContent>

</xs:complexType>
</xs:element>
<xs:element name="protein">

<xs:annotation>
<xs:documentation>Main Protein Element</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:complexContent>
<xs:restriction base="xs:anyType">

<xs:sequence>
<xs:element name="accession"

type="xs:string"/>
<xs:element name="entry-name"

type="xs:string"/>
<xs:element name="protein-name"

type="xs:string"/>
<xs:element name="gene-name" type="xs:string"

maxOccurs="unbounded"/>
<xs:element ref="organism"/>
<xs:element ref="cross-reference"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="comment" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="keyword" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:restriction>
</xs:complexContent>

84 XML for Bioinformatics

Listing 4.1 (cont.)

</xs:complexType>
</xs:element>
<xs:element name="organism">

<xs:annotation>
<xs:documentation>

Organism for referencing NCBI Taxonomy ID
</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="taxonomy-id" type="xs:integer"
use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="cross-reference">

<xs:annotation>
<xs:documentation>Cross reference to other database.

</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:complexContent>
<xs:restriction base="xs:anyType">

<xs:attribute name="database" type="xs:string"
use="required"/>

<xs:attribute name="id" type="xs:string"
use="required"/>

</xs:restriction>
</xs:complexContent>

</xs:complexType>
</xs:element>

</xs:schema>

As noted in the previous chapter, the protein DTD and schema are designed to illustrate
basic concepts, and are not meant to provide a complete description of protein data.
Readers looking for a comprehensive format should check out UniProt XML (formerly
SPTr-XML), available at: http://www.uniprot.org.

4.2.1 The <schema> element
Like every other XML document, an XML Schema document begins with an XML prolog and
a root XML element. For XML Schemas, the root element is the schema element. For example,
Listing 4.1 has the following root element:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

Chapter 4 � XML Schemas for Bioinformatics 85

Figure 4.1 Visual overview of the protein.xsd schema. (Diagram was created with XMLSpy R©)

In the line above, the schema element defines a namespace prefix “xs,” which references
the namespace for XML Schemas. The prefix could be named anything, but most people and
applications use “xs” or “xsd.”

By declaring a namespace for XML Schemas, you can easily reference schema specific elements,
such as xs:annotation and xs:complexType. These elements are referenced via qualified
names. A qualified name consists of a namespace prefix, followed by a colon, and a local name.
For example, the start tag: <xs:annotation> references the annotation element in the XML
Schema namespace.

86 XML for Bioinformatics

4.2.2 Schema Documentation
The third line of Listing 4.1 creates an annotation element and is used to document the schema:

<xs:annotation>
<xs:documentation>

Sample XML Schema for representing Protein data.
</xs:documentation>

</xs:annotation>

In DTDs, any documentation you provide goes into regular XML comments. You are free to use
comments within XML Schemas too, but Schema annotations have two important features.

First, annotations can contain two distinct sets of documentation. Specifically, an annotation
element can contain a documentation element, used primarily for human readable information,
and/or an appinfo element, used primarily for external tools and applications.

Second, annotations can be tied to specific elements. For example, you can place an
annotation element at the beginning of most schema elements, such as element, attribute, and
type declarations. Tools can take advantage of this feature to automatically generate schema docu-
mentation. For example, XMLSpy R© automatically extracts annotation data and creates beautifully
formatted HTML and Microsoft Word documents.

4.2.3 Simple Types vs. Complex Types
In order to understand XML Schemas, you must first understand the differences between simple
types and complex types. In a nutshell, a simple type contains a single value, such as a string,
integer, or date value. By contrast, a complex type can contain more than one value, usually in the
form of attribute values or element children.

To make this concrete, let’s consider a few examples. First, consider the following gene-name
element:

<gene-name>CSF2RB2</gene-name>

This element contains a single string value, and is therefore considered a simple type.
Now, consider the following organism element:

<organism taxonomy-id="10090">Mus musculus</organism>

This element contains more than one value; specifically, it contains a string value, e.g., “Mus
musculus,” and an attribute named taxonomy-id. The organism element is therefore considered a
complex type.

The protein schema contains a mix of simple types and complex types. For example,
accession, protein-name, and gene-name are all defined as simple types. By contrast, the
root protein-set and the main protein element can each contain child elements—these are
therefore defined as complex types.

We will explore the details of simple and complex types in the sections that follow.

4.2.4 Global Elements vs. Local Elements
In order to understand XML Schemas, you must also understand the differences between global and
local elements. A global element is any element which is a direct child of the root schema element.

Chapter 4 � XML Schemas for Bioinformatics 87

For example, in Listing 4.1, protein-set, protein, organism, and cross-reference are
all direct children of the schema element, and are therefore considered global in scope. By
contrast, a local element is any element which is scoped within another schema construct and
is not a direct child of the schema element. For example, the protein element is global in
scope, but it defines a number of local elements, such as entry-name, protein-name, and
gene-name.

Global elements can be referenced and reused multiple times throughout your schema. To do
so, you simply specify the ref attribute and specify the name of the global element. For example,
Listing 4.1 defines a global element named organism. This element is then referenced within the
protein element declaration like so:

<xs:element ref="organism"/>

By using a ref attribute, we have declared that the protein element will contain an organism
element, and that the organism structure is defined by the global element declaration. Since the
organism element is global, other schema constructs can also reference and reuse it. By their very
nature, local elements cannot be reused. In fact, local elements are scoped to their direct parent,
and cannot be referenced outside this scope.

4.2.5 Creating Instance Documents
Before diving into the details of simple and complex types, let us consider how to create and validate
instance documents. As a quick review, an instance document is any XML document that purports
to adhere to an XML grammar (the grammar may be specified with a DTD or an XML Schema).
Instance documents are not required to specifically reference a grammar document, but most do so
in practice.

References to external XML Schemas are always specified within the root schema element.
You have two main options. The first pertains to schemas without a declared namespace. In
this case, you use the noNamespaceSchemaLocation attribute. The second option pertains to
schemas with a declared namespace. In this case, you use the alternative schemaLocation at-
tribute. We explore the first option in detail here and defer the second until later in the chapter (see
Section 4.5).

A sample instance document, which adheres to the protein schema, is provided in Listing 4.2.
Note in particular the root element:

<protein-set xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="protein.xsd">

The root element includes an ”xsi” namespace declaration that references the XML Schema
instance specification. Again, the prefix ”xsi” is just a convention and you are free to use whatever
prefix you like.

By declaring the instance namespace, your document is free to reference schema instance con-
structs. For example, your document can now reference either the noNamespaceSchemaLocation
attribute or the schemaLocation attribute.

Our protein schema has no declared namespace, and therefore Listing 4.2 uses the noName-
spaceSchemaLocation attribute. The value of this attribute specifies the location of the associated
schema. For example, Listing 4.2 specifies the protein.xsd file. This specific file must be located
in the same directory as the instance document, but you could just as easily specify an absolute or
relative URL and point to any location on the Internet.

88 XML for Bioinformatics

Listing 4.2 Sample protein instance document

<?xml version="1.0" encoding="UTF-8"?>
<protein-set xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="protein.xsd">
<protein>

<accession>P26954</accession>
<entry-name>IL3B-MOUSE</entry-name>
<protein-name>Interleukin-3 receptor class II

beta chain [Precursor]
</protein-name>
<gene-name>CSF2RB2</gene-name>
<gene-name>AI2CA</gene-name>
<gene-name>IL3RB2</gene-name>
<gene-name>IL3R</gene-name>
<organism taxonomy-id="10090">Mus musculus</organism>
<cross-reference database="EMBL" id="M29855"/>
<cross-reference database="EMBL" id="AAA39295"/>
<cross-reference database="PIR" id="A40091"/>
<cross-reference database="MGD" id="MGI:1339760"/>
<cross-reference database="InterPro" id="IPR002996"/>
<comment>FUNCTION: IN MOUSE THERE ARE TWO CLASSES OF
HIGH-AFFINITY IL-3 RECEPTORS. ONE CONTAINS THIS IL-3-
SPECIFIC BETA CHAIN AND THE OTHER CONTAINS THE BETA
CHAIN ALSO SHARED BY HIGH-AFFINITY IL-5 AND GM-CSF
RECEPTORS.</comment>

<comment>SUBUNIT: Heterodimer of an alpha
and a beta chain.</comment>
<comment>SUBCELLULAR LOCATION: Type I
membrane protein.</comment>
<comment>SIMILARITY: BELONGS TO THE CYTOKINE
FAMILY OF RECEPTORS.
</comment>
<keyword>Receptor</keyword>
<keyword>Glycoprotein</keyword>
<keyword>Signal</keyword>

</protein>
</protein-set>

4.2.6 Validating Instance Documents
Now that we have a sample instance document, and know how to reference its associated schema,
we are ready to validate it. The best option for validating instance documents is to pick a good
XML editor (see previous chapter for some suggestions). The second best option is to pick a
command-line validator. Information on two of the best-known schema validators is provided
below:
� xsv is an open source Schema validator created by Henry S. Thompson and Richard Tobin.

You can validate documents via a web interface at: http://www.w3.org/2001/03/webdata/xsv,
or download a Windows command line interface tool at: ftp://ftp.cogsci.ed.ac.uk/pub/XSV/
XSV14.EXE.

Chapter 4 � XML Schemas for Bioinformatics 89

� The Sun Multi-Schema XML Validator is a free command-line validation tool written in Java.
It is capable of validating against several different grammar specifications, including DTDs,
Schema, RELAX, and TREX. It is available for download at: http://wwws.sun.com/software/
xml/developers/multischema.

Before moving on, make sure you have a good XML editor, or one of the free command line tools.
You can therefore experiment with the remaining examples in the chapter.

4.3 Working with Simple Types

As described above, a simple type contains a single value, such as a string, integer, or date value.
By contrast, a complex type can contain more than one value, usually in the form of attribute values
or element children. As our next step in exploring XML Schemas, we now move onto an in-depth
discussion of simple types. We begin with a discussion of built-in Schema data types, and conclude
with a discussion of XML Schema facets.

4.3.1 Built-in Schema Types
As described in the introduction, one of the main benefits of XML Schemas over DTDs is its built-in
support for data types. All told, the XML Schemas specification includes support for 44 different
data types, including integers, floats, doubles, and dates. Details on the main data types are provided
in Table 4.2.

Table 4.2 Main XML Schema data types

Type Notes

String A character string
NormalizedString A character string, which does not contain carriage returns, line feeds, or tabs
Byte An integer value restricted to the range: –128 to +127
unsignedByte An integer value restricted to the range: 0 to 255
base64Binary Binary value encoded in Base64 format
HexBinary Binary value encoded in Hex format
Integer An integer value with no minimum/maximum range specified
positiveInteger A positive integer with no maximum range specified
negativeInteger A negative integer with no minimum range specified
Int An integer value restricted to the range: –2,147,483,648 to +2,147,483,647
unsignedInt An integer value restricted to the range: 0 to 4,294,967,295
Long An integer value restricted to the range: –9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
unsignedLong An integer value restricted to the range: 0 to 18,446,744,073,709,551,615
Short An integer value restricted to the range: –32768 to 32767
unsignedShort An integer value restricted to the range: 0 to 65,535
Decimal A decimal value with no minimum/maximum range specified
Float IEEE 32-bit floating point type
Double IEEE 64-bit floating point type
Boolean Boolean value containing the value: true, false, 1, or 0
Time Time value represented in ISO 8601 format
DateTime Date–Time value represented in ISO 8601 format
Qname A namespace qualified value, consisting of a namespace prefix and a local name. For example:

prot:gene-name
AnyURI An absolute or relative Uniform Resource Identifier (URI)

90 XML for Bioinformatics

Figure 4.2 The W3C XML Schema type hierarchy. Diagram is copied from the W3C specification, XML Schema Part 2: Datatypes [42],
available online at: http://www.w3.org/TR/xmlschema-2.

The built-in schema types are organized into a type hierarchy, as shown in Figure 4.2. Note that
the root of the type hierarchy is the anyType type. This type places no restrictions on content, and
all other types are derived from it.

Creating an element or an attribute with an assigned data type is straightforward. You simply
specify the type attribute and indicate which type you want to use. For example, the following

Chapter 4 � XML Schemas for Bioinformatics 91

declaration comes from our protein schema:

<xs:element name="protein-name" type="xs:string"/>

This declares a protein-name element with a string data type. Now, consider a second example
from our protein schema:

<xs:attribute name="taxonomy-id" type="xs:integer" use="required"/>

This declares a taxonomy-id attribute with an integer data type. Your schema validator will ensure
that only valid integer values are used. For example, the following example would be considered
valid:

<organism taxonomy-id="10090">Mus musculus</organism>

However, the next two examples would be considered invalid:

<organism taxonomy-id="Mus musculus">Mus musculus</organism>
<organism taxonomy-id="10090.10">Mus musculus</organism>

4.3.2 Working with Facets
Beyond the 44 primitive data types, XML Schema provides a built-in mechanism for creating new
types. All new types are derived from existing types, and this forms the basis of the type hierarchy
in Figure 4.2. For example, the byte data type is derived from the short data type, which is
derived from the int data type, and so on, up the type hierarchy.

XML Schema provides two primary mechanisms by which you can derive new types. The first
is derivation by extension. This means that the newly derived type has the same properties of the
base type, plus a few additionally specified properties. The second is derivation by restriction. This
means that the newly derived type has the same properties of the base type, but that additional
restrictions are placed on the newly derived type.

Most data types in the type hierarchy are derived via restriction, and most new data types you
create are likely to be derived by restriction as well. For simple types, XML Schema supports a
concept, called facets, which enables you to derive new types via restriction and to place specific
restrictions on data values. There are a total of 12 facets, including length, minLength, maxLength,
pattern, and enumeration. For an overview of the main schema facets, refer to Table 4.3.

To use the schema facets, you must create a new data type. This new type must be based on
an existing data type in the type hierarchy. For example, Listing 4.3 shows our first schema facet
example.

In Listing 4.3, we are declaring a new data type, named accessionType. This type will contain
string data, but the string data must be between four and eight characters in length.

Let us dissect each line in detail. The first line indicates that we are declaring a newsimpleType.
This is a simple type because it will contain a single value, and will not contain any attributes or
child elements. The second line indicates that the accessionType will be derived from the built-in
string data type, and that we will be deriving via restriction. The third and fourth lines specify
the minLength and maxLength facets.

To summarize, accessionType is the same as string data type, except that additional restric-
tions on character length have been specified. Because of these additional restrictions, the following
element is considered valid:

<accession>P26954</accession>

92 XML for Bioinformatics

Table 4.3 Main XML Schema facets

Facet Description

length Specifies the exact number of characters for a string. Can also be applied to other data types,
such as hexBinary and base64Binary

minLength Specifies the minimum number of characters for a string. Can also be applied to other data
types, such as hexBinary and base64Binary

maxLength Specifies the maximum number of characters for a string. Can also be applied to other data
types, such as hexBinary and base64Binary

pattern Restricts content to those values which match a regular expression pattern
enumeration Restricts content to an enumerated list of valid values
minInclusive Specifies the minimum value (inclusive) for a numeric type
maxInclusive Specifies the maximum value (inclusive) for a numeric type
minExclusive Specifies the minimum value (exclusive) for a numeric type
maxExclusive Specifies the maximum value (exclusive) for a numeric type
totalDigits Specifies the maximum number of digits for a decimal derived type
fractionDigits Specifies the maximum number of fractional digits for a decimal derived type

Listing 4.3 Illustrates basic use of XML Schema facets

<xs:simpleType name="accessionType">
<xs:restriction base="xs:string">

<xs:minLength value="4"/>
<xs:maxLength value="8"/>

</xs:restriction>
</xs:simpleType>

However, this element has too many characters, and is therefore considered invalid:

<accession>P26954382</accession>

Once you have created a new type, you can reference that type throughout your schema. To do so,
you simply use the type attribute, just like before. However, instead of specifying one of the built-in
data types, you specify the name of your newly derived data type.

For example, Listing 4.4 shows a bare bones version of our complete protein schema. Within
this example, we have declared the accessionType as before. We have also declared a protein
accession element. However, instead of specifying accession with a data type of “string”,
we now reference the accessionType. In a nutshell, the example states that the protein element
contains a single accession element and that the accession element must follow all the rules
specified by accessionType.

The Pattern Facet
The pattern facet restricts string values to those that match a regular expression pattern. The pattern
syntax adopted by XML Schema is based on the regular expression syntax provided in the Perl
programming language.

Let us look at two pattern examples. First, Listing 4.5 shows a new variation on the accession
Type. This accessionType must be between four and eight characters and must begin with the

Chapter 4 � XML Schemas for Bioinformatics 93

Listing 4.4 Illustrates how to declare and reference a named simple type

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="protein-set">
<xs:complexType>
<xs:sequence>
<xs:element ref="protein" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="protein">
<xs:complexType>
<xs:sequence>
<xs:element name="accession" type="accessionType"
minOccurs="1" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:simpleType name="accessionType">
<xs:restriction base="xs:string">
<xs:minLength value="4"/>
<xs:maxLength value="8"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

Listing 4.5 Using the pattern facet, first example

<xs:simpleType name="accessionType">
<xs:restriction base="xs:string">
<xs:minLength value="4"/>
<xs:maxLength value="8"/>
<xs:pattern value="P.*"/>

</xs:restriction>
</xs:simpleType>

letter “P.” The following example is therefore considered valid:

<accession>P26954</accession>

However, this example does not begin with a “P,” and is therefore considered invalid:

<accession>YDR26954</accession>

The second pattern example is shown in Listing 4.6. This example restricts the sequence alphabet
to the letters: ACGT. The following example is therefore considered valid:

<sequence>CCAAGGGTT</sequence>

However, this amino acid sequence is considered invalid:

<sequence>MPVKGGSKCIK</sequence>

94 XML for Bioinformatics

Listing 4.6 Using the pattern facet, second example

<xs:simpleType name="sequenceType">
<xs:restriction base="xs:string">

<xs:pattern value="[ACGT]*"/>
</xs:restriction>

</xs:simpleType>

Listing 4.7 Using the enumeration facet

<xs:simpleType name="databaseType">
<xs:restriction base="xs:string">
<xs:enumeration value="EMBL"/>
<xs:enumeration value="PIR"/>
<xs:enumeration value="MGD"/>
<xs:enumeration value="InterPro"/>
<xs:enumeration value="Pfam"/>
<xs:enumeration value="SMART"/>
<xs:enumeration value="PROSITE"/>

</xs:restriction>
</xs:simpleType>

The Enumeration Facet
The enumeration facet restricts values to a list of predefined values. It is similar to attribute enu-
merations provided by DTDs; however, schema enumerations are more powerful, as you can apply
them to both attributes and elements.

Listing 4.7 provides a useful illustration of the enumeration facet. In it, we create a new
databaseType which is restricted to a specific set of biological databases, e.g., EMBL, Inter-
Pro, Pfam, etc. This type might be usefully used within a cross-reference element, so that you can
easily restrict cross-references to known biological databases.

4.4 Working with Complex Types

4.4.1 Introduction to Complex Types
As stated earlier in the chapter, complex types are those than can contain attributes and/or child
elements. They are complex in the sense that they can contain more pieces of data, and when
combined with other complex types, can form elaborate content models and tree hierarchies.

When creating a new type for your schema, the first question to ask is whether the new type will
be simple or complex. If the type will contain a single value, such as a string, integer, or date, it
will be a simple type. If the type will contain attributes and/or child elements, it will be a complex
type.

This much we already know. However, having decided that you want to create a complex type,
you must ask yourself a second question: will the complex type contain child elements? If the type
will not contain child elements, this is formally known as a complex type with simple content.

Chapter 4 � XML Schemas for Bioinformatics 95

Listing 4.8 An example of a complex type with simple content

<xs:element name="organism">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="taxonomy-id" type="xs:integer"

use="required"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>

Listing 4.9 An example of a complex type with complex content

<xs:element name="protein-set">
<xs:complexType>
<xs:complexContent>
<xs:restriction base="xs:anyType">
<xs:sequence>
<xs:element ref="protein" maxOccurs="unbounded"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:element>

If the type will contain child elements, this is formally known as a complex type with complex
content.∗

Concrete examples will make the distinctions very clear. First, consider Listing 4.8. This is
an excerpt of the organism element declaration from our main protein schema. The organism
element contains a string value and a taxonomy-id. It does not, however, contain child elements. It
is therefore defined as a complex type with simple content.

Note thatorganism is derived from thestring data type, and that we are deriving via extension.
When deriving via extension, you can add additional properties not present in the base type. In this
case, we are adding a taxonomy-id, which is not present in the string base type.

Next, consider Listing 4.9. This is an excerpt of the protein-set element from our main
protein schema. Theprotein-set element contains child elements, namely, one or moreprotein
elements. The element is therefore defined as a complex type with complex content.

Note that the protein-set element is derived from the anyType type, and we are now deriving
via restriction. Recall that anyType is the root of the XML Schema type hierarchy and places
no restrictions on content. The protein-set element is therefore derived from anyType and
restricted to contain protein elements only.

∗ The line of schema questioning here is based on an excellent article by Donald Smith, “Understanding W3C
Schema Complex Types” [51], available online at: http://www.xml.com/pub/a/2001/08/22/easyschema.html.
The article includes a handy visual “Schema Type Decision Tree” available as a separate PDF document.

96 XML for Bioinformatics

Listing 4.10 An example of the abbreviated complexType syntax

<xs:element name="protein-set">
<xs:complexType>
<xs:sequence>
<xs:element ref="protein" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Creating a new complex type with complex content and deriving from anyType is such a
common occurrence that it is actually the default behavior for new complex types. You can therefore
use an abbreviated syntax, as shown in Listing 4.10.

Listing 4.10 is functionally equivalent to Listing 4.9. However, Listing 4.9 uses the long syntax,
whereas Listing 4.10 uses the abbreviated syntax. Which syntax you use is a matter of choice. Some
people prefer the long syntax because it offers greater conceptual clarity, whereas others prefer the
abbreviated syntax, simply because it is more concise.∗

4.4.2 Declaring Empty Element Types
Next, let us consider the mechanics of declaring empty elements. An empty element is one
that does not contain any text or child elements, but may contain attributes. For example, the
cross-reference element is considered empty:

<cross-reference database="EMBL" id="M29855"/>

The easiest option for declaring an empty element is to define a complex type with complex
content. This is a bit of a hack, and may even seen counter-intuitical, but recall that complex
content is reserved for elements which contain child elements. However, if you neglect to specify
any child elements, the element is defined as empty. Using this small loophole, you can therefore
declare empty elements.∗∗

Let us take a look at an example. Listing 4.11 provides an excerpt of the cross-reference
element declaration. As you can see, the element is defined as a complex type with complex content.
Within complex content, we define two attributes, but do not define any child elements. That is all
there is to it.

If you recall the abbreviated syntax from the previous section, you can create a much more con-
cise, empty element declaration. For example, the following declaration is functionally equivalent
to Listing 4.11:

<xs:element name="cross-reference">
<xs:complexType>

<xs:attribute name="database" type="xs:string" use="required"/>
<xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

∗ Again, I am indebted to Donald Smith and his xml.com article, “Understanding W3C Schema Complex
Types.” Smith argues that the long syntax offers greater conceptual clarity and provides new users with a
better window into the inner mechanics of XML Schemas. Once you understand these mechanics, you can
more easily transition to the abbreviated syntax.
∗∗This is not the only option for declaring empty elements. A full discussion is provided in Chapter 7 of Van
der Vlist, XML Schema (O’Reilly 2002) [53]

Chapter 4 � XML Schemas for Bioinformatics 97

Listing 4.11 Declaring an empty element

<xs:element name="cross-reference">
<xs:complexType>
<xs:complexContent>
<xs:restriction base="xs:anyType">
<xs:attribute name="database" type="xs:string" use="required"/>
<xs:attribute name="id" type="xs:string" use="required"/>

</xs:restriction>
</xs:complexContent>

</xs:complexType>
</xs:element>

Listing 4.12 Declaring an element with mixed content

<xs:element name="PubmedUpdate">
<xs:complexType mixed="true">

<xs:sequence>
<xs:element name="ArticleTitle" type="xs:string"/>
<xs:element name="Url" type="xs:anyURI"/>

</xs:sequence>
</xs:complexType>

</xs:element>

The example above is considerably more concise, and I would argue that in this case, the
abbreviated syntax is also more intuitive. Again, it is up to you to choose the long or the abbreviated
syntax, and you may want to do so on a case-by-case basis.

4.4.3 Declaring Mixed Element Types
A mixed element type is one that contains text data interspersed with child elements. For example,
the following PubmedUpdate element contains mixed type content:

<PubmedUpdate>
The article you requested:
<ArticleTitle>Initial sequencing and analysis of the
human genome.</ArticleTitle> is available for download from the
following website: <Url>http://www.nature.com</Url>
</PubmedUpdate>

To declare that an element supports mixed type content, you simply set the complexType mixed
attribute to “true.” For example, Listing 4.12 shows the element declaration for PubmedUpdate.

Note that mixed content functionality in XML Schemas is considerably more powerful that
that provided in DTDs. In DTDs, you can specify mixed content along with a list of valid child
elements. However, you cannot specify the sequence of the elements, nor can you specify the
occurrence with which they appear. In XML Schema, you can specify mixed content, along with a
detailed content model. For example, in Listing 4.12, we specify that the PubmedUpdate element
must contain exactly one ArticleTitle element followed by exactly one Url element. The

98 XML for Bioinformatics

following document is therefore considered valid:

<PubmedUpdate>
<ArticleTitle>Initial sequencing and analysis of the human genome.
</ArticleTitle>

<Url>http://www.nature.com</Url>
</PubmedUpdate>

However, this document does not follow the specified sequence and is therefore considered
invalid:

<PubmedUpdate>
<Url>http://www.nature.com</Url>
<ArticleTitle>Initial sequencing and analysis of the human genome.
</ArticleTitle>

</PubmedUpdate>

4.4.4 Occurrence Constraints
When declaring an element which contains child elements, you can specify the exact num-
ber of times the child element may appear. Within XML Schema, these are formally known
as occurrence constraints. Occurrence constraints are set via two attributes: minOccurs and
maxOccurs.

The minOccurs attribute specifies the minimum number of times the element must occur, and
must be specified with an integer value. For example, a minOccurs value of 1 indicates that the
element must appear at least once. A minOccurs value of 0 indicates that the element may occur
zero times and is therefore optional. If the minOccurs attribute is not specified, its default value is
set to 1.

The maxOccurs attribute specifies the maximum number of times the element may occur. Its
value must be specified with a positive integer value or the string value, “unbounded.” For example,
a maxOccurs value of 5 indicates that the element can appear at most five times. A maxOccurs
value of “unbounded” indicates that the element may appear as many times as you like. If the
maxOccurs attribute is not specified, its default value is set to 1.

As a concrete example, take a look at Listing 4.13. This shows an excerpt of the protein element
from our main protein schema. Within the example, you can find numerous examples of occurrence
constraints. For example, the protein-name element has no explicit occurrence constraints. In
this case, the default values kick in, and the element must occur exactly once. By contrast, the
comment element is entirely optional, and yet there are no limits on the maximum number of times
it may occur.

Attributes have entirely different occurrence constraints than elements. For example, you cannot
specify that an attribute appear more than once. You can, however, specify whether an attribute is
optional or required. To do so, simply specify the use attribute. For example, the following attribute
is required, and must be specified within all instance documents:

<xs:attribute name="database" type="xs:string" use="required"/>

To make the attribute optional, redo the example like this:

<xs:attribute name="database" type="xs:string" use="optional"/>

If you do not specify a use attribute, the default value is set to “optional.”

Chapter 4 � XML Schemas for Bioinformatics 99

Listing 4.13 Using occurrence constraints

<xs:element name="protein">
<xs:complexType>
<xs:complexContent>
<xs:restriction base="xs:anyType">
<xs:sequence>
<xs:element name="accession" type="xs:string"/>
<xs:element name="entry-name" type="xs:string"/>
<xs:element name="protein-name" type="xs:string"/>
<xs:element name="gene-name" type="xs:string"
maxOccurs="unbounded"/>

<xs:element ref="organism"/>
<xs:element ref="cross-reference" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="comment" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="keyword" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:element>

Listing 4.14 Declaring a default value

<xs:element name="source">
<xs:complexType>
<xs:sequence>
<xs:element name="organization" type="xs:string"
default="Memorial Sloan-Kettering Cancer Center"/>

</xs:sequence>
</xs:complexType>

</xs:element>

4.4.5 Declaring Default Values
In addition to specifying occurrence constraints, you can also specify default values for your
elements and attributes. To do so, simply specify the default attribute.

For example, Listing 4.14 shows an organization element with a default value.
If you have an organization element with no content, your XML parser will automatically insert

the default text. For example, consider the following instance document:

<source>
<organization/>

</source>

Your XML parser will automatically insert “Memorial Sloan-Kettering Cancer Center”
within the organization element. After parsing, the document will therefore look like

100 XML for Bioinformatics

Listing 4.15 Declaring a fixed value

<xs:element name="source">
<xs:complexType>
<xs:sequence>

<xs:element name="organization" type="xs:string"
fixed="Memorial Sloan-Kettering Cancer Center"/>

</xs:sequence>
</xs:complexType>

</xs:element>

this:

<source>
<organization>Memorial Sloan-Kettering Cancer Center </organization>

</source>

Although used less commonly, you can also specify fixed values for your elements and attributes.
In this case, if the instance value is specified, it must exactly match that specified by the fixed value.
Otherwise, it is considered a validation error. If the instance value is not specified, the fixed value
is automatically inserted, just like a regular default value.

For example, Listing 4.15 shows a slight variation on our organization element.
This time, organization is defined with a fixed value. Since it has a fixed value, the following

instance data is considered invalid:

<source>
<organization>MIT</organization>

</source>

However, this element is valid:

<source>
<organization>Memorial Sloan-Kettering Cancer Center </organization>

</source>

This element is also considered valid:

<source>
<organization/>

</source>

After parsing, the fixed value is automatically inserted and the element becomes:

<source>
<organization>Memorial Sloan-Kettering Cancer Center </organization>

</source>

4.4.6 Compositors: Sequence and Choice
Elements which contain child elements can organize those elements into specific content models.
Within XML Schema, elements can be organized via schema compositors. We will examine two

Chapter 4 � XML Schemas for Bioinformatics 101

Listing 4.16 Using the sequence compositor

<xs:element name="PubmedArticle">
<xs:complexType>
<xs:sequence>
<xs:element name="MedlineID" type="xs:long"/>
<xs:element name="PMID" type="xs:long"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Listing 4.17 Using the choice compositor

<xs:element name="PubmedArticle">
<xs:complexType>
<xs:choice>
<xs:element name="MedlineID" type="xs:long"/>
<xs:element name="PMID" type="xs:long"/>

</xs:choice>
</xs:complexType>

</xs:element>

of the main compositors: sequence and choice. To make the concepts clear, we examine several
example schemas for storing PubMed scientific literature data.

First up is the sequence compositor. The sequence compositor specifies an exact sequence of
child elements. An instance document must follow the exact sequence specified—otherwise, the
document is considered invalid.

Listing 4.16 shows a sample schema for storing PubMed data. Note that we are using the
sequence compositor to specify that the MedlineID element must occur before the PMID element.
The following is therefore considered valid:

<PubmedArticle>
<MedlineID>21131739</MedlineID>
<PMID>11237011</PMID>

</PubmedArticle>

However, this example uses the wrong sequence and is therefore considered invalid:

<PubmedArticle>
<PMID>11237011</PMID>
<MedlineID>21131739</MedlineID>

</PubmedArticle>

Next up is the choice compositor. The choice compositor is used to indicate that an instance
document can select from one of several element options. For example, Listing 4.17 shows a new
variation on our PubMed schema. The MedlineID and PMID elements are now defined within a
choice compositor. A valid instance document must therefore include either a MedlineID or a
PMID, but not both. For example, the following is considered valid:

<PubmedArticle>
<MedlineID>21131739</MedlineID>

</PubmedArticle>

102 XML for Bioinformatics

Listing 4.18 Combining compositors

<xs:element name="PubmedArticle">
<xs:complexType>
<xs:sequence>
<xs:choice>
<xs:element name="MedlineID" type="xs:long"/>
<xs:element name="PMID" type="xs:long"/>

</xs:choice>
<xs:element name="ArticleTitle" type="xs:string"/>
<xs:element name="AbstractText" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

However, this example includes both choices and is therefore considered invalid:

<PubmedArticle>
<MedlineID>21131739</MedlineID>
<PMID>11237011</PMID>

</PubmedArticle>

Of course, you can combine compositors to create more complicated content models. For example,
Listing 4.18 uses a choice element within a sequence element. In plain English, this schema states
that a PubmedArticle must contain a MedlineID or a PMID, followed by an ArticleTitle
and an AbstractText.

4.4.7 Defining Named Complex Types
Up until now, our schema examples have used a combination of global and local elements. As a quick
recap, global elements are direct children of the schema element and can be reused throughout a
schema via the ref attribute. Global elements represent one viable option for code reuse, and just
like programming code reuse is almost always a good thing. However, global elements are not the
only reusable schema components. As we have already seen with simple types, it is possible to
create named simple types, and to reuse these types via the type attribute. The same mechanism
exists for named complex types. We now turn to this alternative.

To create a reusable, named complex type, you make it a direct child of the schema element and
specify its name attribute. If you do not specify a name, you are creating an anonymous complex
type (so far, all of our complex types have been anonymous). Given a unique name, you can then
reuse the complex type via the type attribute—this is the same mechanism used to reference built-in
or user derived simple types. For example, the following creates an organism type:

<xs:complexType name="organismType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="taxonomy-id" type="xs:integer"
use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

Chapter 4 � XML Schemas for Bioinformatics 103

This named complex type represents a blueprint for an element, and this blueprint can be reused
throughout your schema. For example, consider the following declaration:

<xs:element name="organism" type="organismType"/>

This declares a new organism element, which will use the blueprint defined by organismType.
If you are used to thinking in terms of object-oriented design, you can think of the named complex
type as a class, and the element declaration as an instantiation of that class.∗

4.4.8 All Together Now!
By now, you should be confident in creating complex types, setting occurrence constraints, using
schema compositors, and creating named complex types. To tie all these concepts together, let us
take a look at one more example. Listing 4.19 shows a revised version of our protein schema.

The new schema is functionally equivalent to the first protein schema in Listing 4.1. However,
there are several important differences in schema design. First, the new schema uses the abbreviated
syntax for complex types, making for a much more concise example. Second, the new schema
contains only one global element and makes extensive use of named complex types. These named
complex types are referenced throughout the schema via the type attribute.

Take a few moments now to review the complete schema in Listing 4.19. If everything makes
sense, you are in good shape!

This final complex type example touches lightly upon two schema design patterns.
Our first protein schema uses global elements throughout, and this design pattern is
sometimes referred to as the “salami slice” pattern. The second protein schema uses
named complex types throughout, and is sometimes called the “Venetian blind” pattern.
For an in-depth discussion of schema design patterns, and the pros and cons of each
approach, see Ayesha Malik’s article, “Create flexible and extensible XML schemas:
Building XML schemas in an object-oriented framework” [48]. The article is available
at the IBM Developer Works web site: http://www-106.ibm.com/developerworks/.

Do complex types seem too complicated? If so, you might want to consider an alterna-
tive to XML Schemas, called RELAX NG. For more information see http://relaxng.org
or Eric van der Vlist’s “RELAX NG” (O’Reilly, 2003). The RELAX NG web site in-
cludes a tutorial, a list of RELAX NG validators, and a list of conversion tools for
converting RELAX NG to XML Schemas.

4.5 Basic Namespace Issues

When creating a new XML Schema, you can define an associated namespace. In XML Schema,
this associated namespace is formally known as the target namespace. All newly defined elements

∗ I first came across this specific analogy from the writings of Eric van der Vlist. For additional details on the
connection between XML Schemas and object-oriented design, see van der Vlist’s xml.com article, “Using
XML Schema,” available online at: http://www.xml.com/pub/a/2000/11/29/schemas/part1.html .

104 XML for Bioinformatics

Listing 4.19 Our final complex type example

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="protein-set">
<xs:complexType>
<xs:sequence>
<xs:element name="protein" type="proteinType"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name="proteinType">

<xs:sequence>
<xs:element name="accession" type="xs:string"/>
<xs:element name="entry-name" type="xs:string"/>
<xs:element name="protein-name" type="xs:string"/>
<xs:element name="gene-name" type="xs:string"
maxOccurs="unbounded"/>

<xs:element name="organism" type="organismType"/>
<xs:element name="cross-reference" type="crossReferenceType"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="comment" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="keyword" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="organismType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="taxonomy-id" type="xs:integer"
use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
<xs:complexType name="crossReferenceType">
<xs:complexContent>
<xs:restriction base="xs:anyType">

<xs:attribute name="database" type="xs:string"
use="required"/>

<xs:attribute name="id" type="xs:string" use="required"/>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:schema>

and types within your schema will belong to this target namespace. If you do not specify a target
namespace, schema constructs will not be associated with any namespace.

Associating a schema with a namespace is accomplished via the targetNamespace attribute,
which is specified in the root schema element. Using a target namespace is best understood in the

Chapter 4 � XML Schemas for Bioinformatics 105

context of real examples. The full implications are also best understood when comparing schemas
with target namespaces, and instance documents which adhere to those schemas.

First, let us take a look at the newly revised version of our protein schema (see Listing 4.20).
The content model has been significantly simplified to keep the example short, and to enable us to
concentrate solely on namespace issues. Most of the new information is also contained in the first
three lines of the example, all within the root schema element.

As you examine Listing 4.20, first note that the root schema element now contains a target-
Namespace attribute. This target namespace is set to the value: http://www.xmlbio.org/protein.
Recall that namespaces are used to disambiguate elements with the same names, and that name-
space values are merely identifiers. Namespace values therefore do not necessarily need to actually
point to meaningful resources. For example, if you type “http://www.xmlbio.org/protein” into a
web browser, you get a 404 Not Found error. Nonetheless, our namespace value is still a useful,
unique identifier and newly defined elements, such as protein and organism, now belong to this
unique namespace.

One consequence of using a target namespace is that all references to newly defined schema
components must be namespace qualified. For example, consider the following variation for the

Listing 4.20 Using a target namespace

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.xmlbio.org/protein"

xmlns:prot="http://www.xmlbio.org/protein"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:annotation>

<xs:documentation>
Simplified Protein Schema that illustrates basic namespace
issues.

</xs:documentation>
</xs:annotation>
<xs:element name="protein">

<xs:complexType>
<xs:sequence>

<xs:element name="entry-name" type="xs:string"/>
<xs:element ref="prot:organism"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="organism">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="taxonomy-id"

type="xs:integer" use="required"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
</xs:schema>

106 XML for Bioinformatics

protein element declaration:

<xs:element name="protein">
<xs:complexType>
<xs:sequence>
<xs:element name="entry-name" type="xs:string"/>
<xs:element ref="organism"/>

</xs:sequence>
</xs:complexType>

</xs:element>

If you look closely, you will note that the second local element references the global organism
element. However, organism is actually in the target namespace and must therefore be namespace
qualified.

To address this issue, the example in Listing 4.20 actually includes two namespace declarations.
The first is the namespace for the XML Schema specification. The second is named “prot” and
specifies the value: “http://www.xmlbio.org/protein.” This is the same value as our target name-
space. The “prot” namespace prefix can therefore reference any items within the target namespace.
In fact, the protein element does just that, and specifically references the organism element like
the following:

<xs:element name="protein">
<xs:complexType>
<xs:sequence>
<xs:element name="entry-name" type="xs:string"/>
<xs:element ref="prot:organism"/>

</xs:sequence>
</xs:complexType>

</xs:element>

The value of the ref attribute is now specified as a qualified name. The first part specifies the
namespace prefix, and the second part specifies the local element name.

What about instance documents? If an instance document adheres to a schema, and that
schema does not have a target namespace, you use the noNamespaceSchemaLocation attribute.
We illustrated this approach early in the chapter in Listing 4.2. However, if an instance doc-
ument adheres to a schema and that schema does have a target namespace, you must use the
schemaLocation attribute. The peculiar nature of this attribute is that it contains two values. The
first value is the namespace of the schema, and the second value is the location of the schema
document itself. In other words, it associates a namespace identifier with a concrete schema
document.

Listing 4.21 shows one such instance document. In particular, note that the example uses the
schemaLocation attribute, and that this value references the protein namespace and the schema
document itself. Note also that all protein schema elements must now be namespace qualified. This
is accomplished via a namespace declaration for the namespace prefix, “prot.” All protein schema
elements, including protein, entry-name, and organism, are then qualified with the “prot”
namespace prefix.

If you do not feel like providing a namespace prefix for each element, you can declare a default
namespace. This approach is shown in Listing 4.22.

Chapter 4 � XML Schemas for Bioinformatics 107

Listing 4.21 Using the schemaLocation attribute

<?xml version="1.0" encoding="UTF-8"?>
<prot:protein xmlns:prot="http://www.xmlbio.org/protein"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.xmlbio.org/protein protein-ns1.xsd">

<prot:entry-name>IL3B-MOUSE</prot:entry-name>
<prot:organism taxonomy-id="10090">Mus musculus</prot:organism>

</prot:protein>

Listing 4.22 Using the schemaLocation attribute with a default namespace

<?xml version="1.0" encoding="UTF-8"?>
<protein xmlns:prot="http://www.xmlbio.org/protein"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.xmlbio.org/protein protein-ns1.xsd"
xmlns="http://www.xmlbio.org/protein">

<entry-name>IL3B-MOUSE</entry-name>
<organism taxonomy-id="10090">Mus musculus</organism>

</protein>

This section only presents the tip of the iceberg for namespace issues, and we have inten-
tionally glossed over some of the more advanced concepts. Nonetheless, it does provide
enough information to get you started, and to work with most basic and intermediate
examples. If you want to dig deeper, Priscilla Walmsley provides an in-depth discus-
sion in Chapter 3, “Namespaces,” of her book, Definitive XML Schema (Prentice–Hall,
2002) [54].

4.6 Case Study: The HUPO PSI Molecular Interaction Format

Now that you have a firm grasp of XML Schemas, let us turn to a specific case study in bioin-
formatics. The HUPO PSI Molecular Interaction (PSI-MI) [46; 50] format is a standard for rep-
resenting and exchanging protein–protein interactions. It is one of the first XML standards in the
emerging field of proteomics, and aims to provide a common format for several heterogeneous
interaction databases. With recent advances in proteomics, high-throughput techniques are now
available for detecting large-scale protein–protein networks. However, much of this data remains
dispersed among many databases, and each of these databases has its own specific database plat-
form and data format. With a common format for interaction data, applications will be able to
more easily aggregate data from diverse databases and import this data into modeling tools and
visualization applications. Interaction databases will also be able to more easily exchange and share
data.

PSI-MI was developed under the auspices of the Proteomics Standards Initiative (PSI) of the
Human Proteome Organization (HUPO), and is currently endorsed by a number of major biological
interaction databases. These include: the Biomolecular Interaction Network Database (BIND), the
Database of Interacting Proteins (DIP), IntAct, the Molecular Interactions Database (MINT), and

108 XML for Bioinformatics

the Human Protein Reference Database (HPRD).∗ Each of these databases plans to provide its data
in PSI-MI format, and by the time this book goes to press, most will have already completed the
process. Check each database web site for complete details.

PSI-MI is maintained as an open source project and is hosted on Source Forge at:
http://psidev.sourceforge.net.

The PSI-MI standard consists of an XML Schema, and a set of externally controlled vocabulary
terms (more on the controlled vocabulary in Section 4.6.3). The standard is currently being de-
veloped among several working groups with a multilevel approach. Level 1 represents the first
level of standardization and focuses exclusively on protein–protein interactions. As the standard
evolves, incremental levels will be developed and will provide additional layers of complexity and
detail.

As this book goes to press, work on PSI-MI Level 2 is in progress. For full details, visit
the PSI-MI web site at: http://psidev.sourceforge.net.

The XML Schema for PSI-MI is approximately 14 pages long. Rather than examining the entire
schema, we will instead give you an overview of the main structure, examine a few excerpts, and
take a look at a sample document. We will also briefly explore the mechanics of using the controlled
vocabulary terms. If you want to view the full schema, you can download a copy from the PSI web
site at: http://psidev.sourceforge.net.

4.6.1 PSI-MI Schema Overview
To get started, let us consider the main structure of the PSI-MI schema. Figure 4.3 shows an overview
of the top-level elements, as generated by XMLSpy R©. The root element is named entrySet, and
it can contain one or more entry elements. The entry element is the main record type and is
defined to contain six elements, which are defined as follows:
� source (optional): describes the source of the data. This is usually the name of a specific

database or a specific institution.
� availability (optional): describes the availability of the data. For example, the data may be

freely available to the public or may contain copyright statements.
� experimentList (optional): describes a list of experiments used to identify interactions. This

includes a literature reference that fully describes the experiment, and one or more controlled
vocabulary terms that describe the experimental technique.

� interactorList (optional): describes a list of interactors, which participate in interactions.
Currently, this consists of protein interactors only, but may be expanded in the future to include
other entities, such as small molecules.

∗Information on each of these databases is available online. BIND: http://www.bind.ca. DIP:
http://dip.doe-mbi.ucla.edu. IntAct: http://www.ebi.ac.uk/intact. MINT: http://cbm.bio.uniroma2.it/mint.
HPRD: http://www.hprd.org.

Chapter 4 � XML Schemas for Bioinformatics 109

Figure 4.3 Visual overview of the PSI-MI XML Schema.

� interactionList (required): this is the heart of the exchange format, as it represents the actual
protein–protein interactions. Interactions minimally consist of an experimental description and
two or more protein participants.

� attributeList (optional): describes additional details about the entry. Attributes are designed
to be semistructured in order to accommodate a wide range of additional details.

4.6.2 A Sample PSI-MI Instance Document
To explore PSI-MI further, let us examine a sample instance document. Listing 4.23 shows a
sample file that includes exactly one interaction. The specified interaction occurs between two
yeast proteins: YER168C and YHR174W.

First, note that the instance document references the PSI-MI schema via the schemaLocation
attribute. The PSI-MI namespace is “net:sf:psidev:mi” and we are referencing a local copy of the
schema. Also, note that we have declared a default namespace, xmlns =“net:sf:psidev:mi.” All
unqualified elements, such as entry, interactorList, etc., use this default namespace, and are
therefore within the PSI namespace.

110 XML for Bioinformatics

Listing 4.23 Sample PSI-MI instance document

<?xml version="1.0" encoding="UTF-8"?>
<entrySet level="1" version="1" xmlns="net:sf:psidev:mi"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="net:sf:psidev:mi MIF.xsd">
<entry>
<interactorList>
<proteinInteractor id="YER168C">
<names>
<shortLabel>YER168C</shortLabel>
<fullName>tRNA nucleotidyltransferase tRNA

CCA-pyrophosphorylase</fullName>
</names>

</proteinInteractor>
<proteinInteractor id="YHR174W">
<names>
<shortLabel>YHR174W</shortLabel>
<fullName>enolase</fullName>

</names>
</proteinInteractor>

</interactorList>
<interactionList>
<interaction>
<experimentList>
<experimentDescription id="exp1">

<bibref>
<xref>
<primaryRef db="pubmed" id="11805826"/>

</xref>
</bibref>
<interactionDetection>
<names>
<shortLabel>affinity chromatography
technologies</shortLabel>

</names>
<xref>
<primaryRef db="PSI-MI" id="MI:0004"/>

</xref>
</interactionDetection>

</experimentDescription>
</experimentList>
<participantList>
<proteinParticipant>
<proteinInteractorRef ref="YER168C"/>

</proteinParticipant>
<proteinParticipant>
<proteinInteractorRef ref="YHR174W"/>

</proteinParticipant>
</participantList>

</interaction>
</interactionList>

</entry>
</entrySet>

Chapter 4 � XML Schemas for Bioinformatics 111

Second, note that the interactorList consists of two protein interactors. Each of these
interactors includes a required id attribute. This attribute value must be unique, and serve as a
global reference throughout the instance document. You can then reference a specific protein later
in the instance document by simply referencing its unique ID. For example, the interaction
element includes two protein participants, each of which references the interactors defined earlier
in the file. In PSI-MI, this technique is formally known as the canonical or compact form. However,
PSI-MI also supports a noncanonical or expanded form. In the expanded form, interactors are not
referenced via IDs; rather, interactors are defined directly within interaction elements and can be
repeated as many times as necessary.

In Listing 4.23, we have intentionally defined the protein interactors with a minimal
set of data. However, interactors can also include more detailed information, such as
cross-reference links to other databases, organism information, and sequence data.

The PSI-MI schema enforces that interactions only reference existing protein IDs.
Within XML Schemas, this is referred to as referential integrity. Referential integrity
can be maintained via Schema key/keyref constraints. Full details are available in
Chapter 9 of Eric van der Vlist’s book, XML Schema (O’Reilly, 2002) [53].

Lastly, note that the interaction element includes an interactionDetection element. This
element is defined to be of type cvType. A cvType is a complex type used to reference externally
controlled vocabulary terms. To dig a little deeper into how this works, let us take a look at the
XML Schema excerpt for cvType and a few other related types (see Listing 4.24).

Listing 4.24 Excerpts from the PSI-MI XML Schema

PSI-MI cvType:

<xs:complexType name="cvType">
<xs:annotation>

<xs:documentation>
Reference to an external controlled vocabulary.
</xs:documentation>

</xs:annotation>
<xs:sequence>

<xs:element name="names" type="namesType"/>
<xs:element name="xref" type="xrefType"/>

</xs:sequence>
</xs:complexType>

PSI-MI namesType:

<xs:complexType name="namesType">
<xs:annotation>

<xs:documentation>Names for an object.</xs:documentation>
</xs:annotation>
<xs:sequence>

112 XML for Bioinformatics

Listing 4.24 (cont.)

<xs:element name="shortLabel" type="xs:string"/>
<xs:element name="fullName" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

PSI-MI xrefType:

<xs:complexType name="xrefType">
<xs:annotation>

<xs:documentation>
Crossreference to an external database.
</xs:documentation>

</xs:annotation>
<xs:sequence>

<xs:element name="primaryRef" type="dbReferenceType">
<xs:annotation>

<xs:documentation>Primary reference to an
external database.</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="secondaryRef" type="dbReferenceType"

minOccurs="0" maxOccurs="unbounded">
<xs:annotation>

<xs:documentation>Further external objects
describing the object.</xs:documentation>

</xs:annotation>
</xs:element>

</xs:sequence>
</xs:complexType>

PSI-MI dbReferenceType:

<xs:complexType name="dbReferenceType">
<xs:annotation>

<xs:documentation>Refers to a unique object in
an external database.</xs:documentation>

</xs:annotation>
<xs:attribute name="db" type="xs:string" use="required"/>
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="secondary" type="xs:string" use="optional"/>
<xs:attribute name="version" type="xs:string" use="optional"/>

</xs:complexType>

The cvType is defined as a complex type with two child elements. These child elements must
appear within the sequence specified, and each element uses the type attribute to reference an-
other complex type. For example, the names element is defined to be of type: namesType,
and the xref element is defined to be of type: xrefType. These additional complex types
are also included in Listing 4.24. For example, you can see that the xrefType includes a

Chapter 4 � XML Schemas for Bioinformatics 113

primaryRef and any number of secondaryRefs. Each of these is defined to be of type:
dbReferenceType.

Hopefully, this gives you a flavor for the inner mechanics of the PSI-MI Schema. If you
have been following this chapter closely, none of the concepts should be new. In fact, these are
all the same concepts we have been discussing throughout the chapter. The main difference is
that PSI-MI simply has more layers of data than our earlier examples. For example, our pro-
tein schema has just a few complex types, whereas the PSI-MI schema has dozens of complex
types, and each of these complex types are layered on top of one another. Nonetheless, the con-
cepts remain the same, and you are well equipped to understand the full PSI-MI schema in its
entirety.

4.6.3 Working with the PSI-MI Controlled Vocabulary
Several portions of the PSI-MI schema require reference to externally controlled vocabulary terms.
These terms are defined externally to the XML schema and are not actually enforced by the
schema. However, the controlled vocabulary is a vital component of the PSI-MI standard. In general,
controlled vocabularies are also a vital component in sharing and exchanging data, particularly in
the realm of bioinformatics.

Controlled vocabularies provide a common set of terms and a set of relationships between those
terms. The best known example in bioinformatics is the Gene Ontology (GO) [41; 45]. GO provides
a comprehensive set of terms for annotating genes, including three categories of data: biological
process, molecular function, and cellular component. The terms are defined within two sets of files.
The first file defines relationships between terms, and the second file defines the terms themselves,
including a short description and a literature reference.

The PSI-MI controlled vocabulary is based on GO, and uses the GO file format. The
evolving list of PSI terms is available at the Open Biological Ontologies (OBO) web site:
http://obo.sourceforge.net. Here, you will find terms for several categories of data. For example,
you will find terms for interaction detection—this is a catalog of experimental techniques that are
used to determine physical interactions between proteins. You will also find terms for participant
detection—this is a catalog of experimental techniques used to identify specific participants within
an interaction. By sticking with these defined terms, it is much easier to conclusively identify which
experimental techniques were used, and it is therefore much easier to share data with others and
integrate data from heterogeneous data sources.

Within the PSI ontology, you will also find terms that describe specific protein features.
For example, the binding site term (MI:0117) specifies a binding site where two proteins
physically interact. Again, sticking with the defined terms makes it easier to conclusively
identify features. If each database specified binding site features with different values, e.g.,
“binding,” “binding-site,” “binding site,” it would be more difficult to aggregate and compare
data.

Note that PSI-MI terms are always specified with a db attribute value equal to “PSI-MI,” and an
id attribute value beginning with the prefix “MI.” For example, in our sample instance document, we
have specified a single controlled vocabulary term. Specifically, we have declared that the interaction
between YER168C and YHR174W was determined via “affinity chromatography technologies”
(MI:0004).

114 XML for Bioinformatics

If you would like to browse the entire PSI-MI ontology, it is best to use one of the
many useful GO ontology browsers. For example, the DAG-Edit Java application
lets you navigate through a set of terms, view relationships between terms, and view
term definitions. It also enables you to create new ontologies or edit existing ontolo-
gies. DAG-Edit is freely available for download. Check the Gene Ontology web site
(http://www.geneontology.org/doc/GO.tools.html) for details.

If you want to explore PSI-MI further, you can download the complete schema file from the PSI
web site on SourceForge. You should now be well equipped to understand its complete details.
You should also be well equipped to read any other schema files that come your way and even start
building your own.

Parsing NCBI XML in Perl 5
Perl remains the programming language of choice for many in bioinformatics. Perl has excellent
support for processing and manipulating text, finding regular expression patterns, retrieving files
via the Internet, and connecting to a wide variety of relational databases. This makes it an ideal
language for parsing flat text files, such as GenBank Flat File records, integrating biological data
from multiple sources, and performing sequence analysis. Building on these strengths, the bioinfor-
matics community has developed BioPerl [72], a very successful open source module that includes
numerous features, including the ability to retrieve biological data from remote data sources, run
BLAST searches, and manipulate sequence data.

Perl also has excellent support for XML, and is supported by a wide variety of third-party open
source XML modules. This chapter provides an introduction to XML parsing in Perl, and introduces
two standard interfaces: the Simple API for XML (SAX) and the Document Object Model (DOM).
To explore SAX, we focus on the XML::SAX module, and to explore the DOM, we focus on the
XML::LibXML module. To illustrate basic concepts, the chapter includes numerous examples for
parsing XML documents from the National Center for Biotechnology Information (NCBI) at the
U.S. National Institutes of Health. We also explore the NCBI EFetch service, and illustrate how to
dynamically retrieve and parse sequence records from NCBI.

This chapter assumes that you have a basic familiarity with Perl programming, and understand
the fundamentals of object-oriented programming in Perl. If you do not have such background, you
may want to check out one of the recommended Perl references [56; 66; 67; 73; 74].

5.1 Introduction to XML Parsing in Perl

A quick search of CPAN, the Comprehensive Perl Archive Network, will reveal several hun-
dred modules pertaining to XML. Given the sheer scope of XML-related modules, it is diffi-
cult to figure out where to begin. For example, both XML::Simple [59] and XML::Twig [63]
provide “perlish” interfaces for parsing XML documents, and have proven to be quite success-
ful. The original XML::Parser [75] module, originally written by Larry Wall himself, also re-
mains quite popular. Given the multitude of options, we have chosen to focus exclusively on
Perl modules, which adhere to specific well-known and well-documented standards. The chapter
therefore focuses on Perl implementations of the Simple API for XML (SAX) and the Doc-
ument Object Model (DOM). If you are interested in some of the other more “perlish” in-
terfaces, such as XML::Simple or XML::Twig, check out some of the recommend references
[59; 62].

115

116 XML for Bioinformatics

For general questions about XML and Perl, check out the excellent Perl-XML FAQ
[58], available at: http://perl-xml.sourceforge.net/faq/.

5.1.1 Tree-Based vs. Event-Based XML Parsers
XML parser interfaces are broadly divided into two categories: tree-based and event-based. A
tree-based interface, such as the DOM, will parse an XML document and build an in-memory tree
of all its XML elements. For example, consider the XML document in Listing 5.1. This is a sample
GBSeq XML document, retrieved from NCBI. If you send this document through a tree-based
interface, the parser will create a tree like that displayed in Figure 5.1. The root element is specified
as the GBSet element and your application can navigate through the tree one node at a time. As
your application traverses the tree, it can extract any and all data that it needs.

Contrast this with an event-based parser, such as SAX. An event-based interface will read the
document one line at a time. Each time the parser encounters an important piece of data, it will
immediately fire off an event. For example, when the parser reaches the start <GBSeq-locus> tag,
it fires off a start element event. When it sees the text, “BC034957,” it immediately fires off one
or more character events. The same GBSeq example in Listing 5.1 will therefore trigger a very

Listing 5.1 Excerpt of a sample GBSeq document from NCBI

<?xml version="1.0"?>
<!DOCTYPE GBSet PUBLIC "-//NCBI//NCBI GBSeq/EN"
"http://www.ncbi.nlm.nih.gov/dtd/NCBI-GBSeq.dtd">
<GBSet>
<GBSeq>
<GBSeq-locus>BC034957</GBSeq-locus>
<GBSeq-length>2547</GBSeq-length>
<GBSeq-strandedness value="not-set">0</GBSeq-strandedness>
<GBSeq-moltype value="mrna">5</GBSeq-moltype>
<GBSeq-topology value="linear">1</GBSeq-topology>
<GBSeq-division>PRI</GBSeq-division>
<GBSeq-update-date>04-OCT-2003</GBSeq-update-date>
<GBSeq-create-date>15-OCT-2002</GBSeq-create-date>
<GBSeq-definition>Homo sapiens a disintegrin and metalloproteinase
domain 2 (fertilin beta), mRNA (cDNA clone MGC:26432 IMAGE:4826530),
complete cds</GBSeq-definition>
<GBSeq-primary-accession>BC034957</GBSeq-primary-accession>
<GBSeq-accession-version>BC034957.2</GBSeq-accession-version>
<GBSeq-other-seqids>
<GBSeqid>gb|BC034957.2|</GBSeqid>
<GBSeqid>gi|34783181</GBSeqid>

</GBSeq-other-seqids>
...
</GBSeq>
</GBSet>

Chapter 5 � Parsing NCBI XML in Perl 117

GBSet

GBSeq

GBSeq_locus

GBSeq_length

Text: ‘BC034957’

Text: ‘2547’
...

Start Document

Start Element: GBSet

Start Element: GBSeq

Start Element: GBSeq_locus

Characters: ‘BC034957’

End Element: GBSeq_locus

Start Element: GBSeq_length

Characters: ‘2547’

End Element: GBSeq_length

...

End Element: GBSeq

End Element: GBSet

End Document

 Event-Based XML ParserTree-Based XML Parser

Figure 5.1 Tree-based vs. event-based XML parsing.

specific sequence of events (see Figure 5.1). To extract the XML data, your application must be
registered to receive parsing events and act upon them appropriately.

In event-based parsing, the XML parser is typically referred to as an event producer, and your
application handler is referred to as an application consumer [61]. As the XML parser reads in an
XML document, the parser will “push” events to the application consumer, and the consumer can
choose to record these events or ignore them. Note that event-based parsers are always sequential,
and therefore do not provide random access to the XML document content.

5.1.2 Installing Modules via CPAN
All of the modules discussed in this chapter are available from CPAN, the Comprehensive Perl
Archive Network. The easiest way to install them is via the interactive CPAN shell. For example,
the following command starts the interactive CPAN shell and installs XML::SAX:

perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.61)
ReadLine support available (try 'install Bundle::CPAN')

cpan> install XML::SAX

Note, however, that the XML::LibXML module (discussed in the second half of the chapter)
requires platform specific binary files, and may present specific installation challenges. If you are

118 XML for Bioinformatics

using a Windows platform, you may be able to use the Active State Programmer’s Package Module
(PPM), to automatically install XML::LibXML. For up-to-date information about platform-specific
installation issues, refer to the Perl-XML FAQ [58].

The CPAN Shell can sometimes be a bit daunting, even to those with consider-
able Perl experience. If you find yourself having difficulties, check out the official
CPAN documentation at: http://www.perl.com/doc/manual/html/lib/CPAN.html. Alter-
natively, check out Section 2.4, “Getting and Installing Modules,” in Perl in a Nutshell,
2nd edition (O’Reilly, 2002).

5.2 The Simple API for XML (SAX)

5.2.1 Introduction to SAX
The Simple API for XML (SAX) is a standard event-based interface for parsing XML documents
[71]. Unlike XML itself or the Document Object Model (DOM), SAX is not an official standard
of any organization, such as the World Wide Web Consortium (W3C). Rather, SAX is a de facto
standard, developed by a group of volunteers, freely available to the public, and widely implemented
by dozens of XML parsers. SAX was originally designed for Java, but SAX and SAX-inspired
implementations are now available for other languages, including Perl, Python, C++, Visual Basic,
and Pascal (for a complete listing of SAX implementations see [71]).

The official SAX web site is available at: http://www.saxproject.org. Continued SAX
development is now hosted at SourceForge.net.

5.2.2 SAX and Bioinformatics Applications
Using an event-based XML parsing interface like SAX provides a number of advantages, partic-
ularly when used for bioinformatics applications. First, SAX is a de facto standard and has wide
support within the industry. Second, you can learn the SAX interface in one language and immedi-
ately apply it to a second language; for example, you can learn the Perl XML::SAX interface and
apply your knowledge to the Java SAX interface.

Third, SAX is very fast and requires little memory. Unlike a tree-based interface, SAX will not
store a complete representation of the XML document within memory. After an event has been
reported to the application handler, the parser will immediately discard the event. This saves memory
and is particularly important when parsing very large XML documents. For example, consider the
implications of parsing the complete contents of UniProt [55], a comprehensive database of protein
sequences and annotations. From the UniProt web site, you can download a complete snapshot of
the database in UnitProt XML format. However, the complete snapshot consists of a single XML
document, which is several hundreds of megabytes long. To parse this document via a tree-based

Chapter 5 � Parsing NCBI XML in Perl 119

interface, you need enough memory to hold the entire tree, and you always run the risk of receiving
“out of memory” errors. In contrast, SAX requires very little overhead and is capable of parsing
arbitrarily large documents.

Although SAX itself is very memory efficient, keep in mind that your application handler can
choose to store any and all XML events within its own internal data structures, and this will
require its own set of memory requirements. You therefore need to carefully evaluate the specific
requirements for your application. For example, if you want to parse the UnitProt XML file, and
locate only a specific subset of proteins, your application handler can choose to record events
specific to the target set, and discard the rest. Alternatively, if you want to import the UnitProt
XML file into a set of relational database records, you only need to store one protein record at a
time. After each record is committed to the database, you can purge your internal data structures,
and move onto the next record.

The main disadvantage of SAX is that it does not provide facilities for easily modifying existing
XML documents, or easily creating new XML documents from scratch. Some programmers also find
the capturing and processing of individual SAX events counterintuitive, and prefer the simplicity
of a tree traversal API.

5.2.3 SAX 2.0
The SAX API was originally developed by a group of volunteers, coordinating over the xml-dev
mailing list. SAX 1.0 was originally released in May 1998 [65]. SAX 2.0.1 was officially released
in January 2002. Several major changes were introduced in SAX 2.0, including complete support
for XML Namespaces, standard methods for configuring XML parser features and properties,
and support for SAX filters, enabling you to chain XML applications together [57; 64]. This
book focuses on SAX 2.0 only. For details regarding SAX 1.0, refer to the SAX web site at:
http://www.saxproject.org/?selected=sax1.

5.2.4 Introduction to XML::SAX
The Perl XML::SAX [70] module provides a complete implementation of the SAX 1.0 and 2.0
interfaces. The module is available for download from CPAN, and includes an XML parser written in
Perl, called, XML::SAX::PurePerl [68]. PurePerl is considered quite slow, but it enables XML::SAX
to work right out of the box on all platforms. XML::SAX also works with other faster SAX-
compliant XML parsers, such as XML::LibXML [69], and provides a simple interface for selecting
an XML parser at runtime.

To get started with XML::SAX, follow these three steps:

� Create a SAX event handler. As the XML parser reads a document, it will encounter specific
XML constructs and notify your handler via callback methods. For example, when the XML
parser encounters a new start element tag, it will call the event handler start-element()
method, and pass information about the element. As a convenience, your event handler can
extend XML::SAX::Base , and provide implementations of only those call-back methods that
are of interest.

� Obtain an XML parser and register your event handler with the parser. XML::SAX provides
a factory class, called ParserFactory , which will locate, instantiate, and initialize an XML

120 XML for Bioinformatics

parser of your choosing. Later in this section, we will also explore options for selecting an
XML parser at runtime.

� Initiate parsing by calling one of the parse-xxx() methods. For example, you can parse a
local document by calling the parse-uri() method and supplying an absolute or relative
path to the file. Alternatively, you can use the parse-file() method and pass in a stream or
file handle, such as an IO::File. You can also use the parse-string() method and pass
in the complete XML document as one string. In all cases, the XML parser will immediately
start parsing the document of your choosing, and report each XML event to the registered
handler.

To illustrate the basic concepts of XML::SAX, consider the sample Perl code in Listing 5.2.
The source code in Listing 5.2 instantiates a parser object via the XML::SAX::ParserFactory

class. By default, the ParserFactory will look for a package variable to determine which
parser to instantiate. For example, the following package variable will load the PurePerl SAX
parser:

$XML::SAX::ParserPackage="XML::SAX::PurePerl";

Alternatively, the following package variable will load the LibXML SAX parser:

$XML::SAX::ParserPackage="XML::LibXML::SAX::Parser";

If no package variable is set, XML::SAX will automatically search all the directories in @INC
in search of a SAX.ini file. The SAX.ini file uses a simple key=value format. For example, the
following file specifies the LibXML SAX parser:

ParserPackage = XML::LibXML::SAX::Parser

If XML::SAX is unable to find a package variable or a SAX.ini file, it will automatically default
to the PurePerl SAX parser.

Listing 5.2 First XML::SAX application

#!/usr/bin/perl
Basic SAX Example.
Author: Ethan Cerami
use strict;
use XML::SAX;
use ContentReporter;

Create ElementReporter Instance
my $handler = ContentReporter->new;

Obtain SAX Parser via ParserFactory
my $parser = XML::SAX::ParserFactory->parser(Handler =>$handler);

Parse TinySeq XML Document
my $element-counter = $parser->parse-uri("sample/ncbi.xml");

print "Total Number of Elements: $element-counter\n";

Chapter 5 � Parsing NCBI XML in Perl 121

Tip: If you want to confirm which SAX parser is currently in use, you can use
the very helpful Data::Dumper Perl module. Just obtain an XML parser via the
ParserFactory and dump out its data. For example:

use Data::Dumper;
...
my $parser = XML::SAX::ParserFactory->parser(

Handler =>$handler);
print Dumper ($parser);

The Data::Dumper will display all information about the parser, including the pack-
age name of the selected parser, and a list of all features and properties.

The bulk of the work in using XML::SAX goes into creating a custom SAX event handler. A sample
event handler, called ContentReporter, is shown in Listing 5.3. Examine the code now, and we
will survey its components below.

The ContentReporter in Listing 5.3 extends XML::SAX:Base , and selectively listens
for four types of events: start-document, end-document, start-element, and end-element. The
ContentReporter also keeps a running count of the number of elements encountered, and re-
turns the total count to the main calling application. When we use this event handler on our sample
GBSeq document in Listing 5.1, we get the following output:

Start Document
Start Element: GBSet
Start Element: GBSeq
Start Element: GBSeq-locus
End Element: GBSeq-locus
Start Element: GBSeq-length
End Element: GBSeq-length
Start Element: GBSeq-strandedness
...
End Document
Total Number of Elements: 320

Depending on the call-back method, you may or may not receive additional information about the
event. For example, when the parser encounters the beginning of an XML document, it will call
the start-document() method, but will not pass any additional event details. By contrast, when
the parser encounters a new element, it will call the start-element() method, and pass along
specific element details. Event details are specified as a hash reference with specific predefined
keys. For example, the start-element() method receives a hash reference with several element
specific keys, including “Name,” “LocalName,” and “Prefix.” You can then reference these keys to
display additional information about the event. For example:

sub start-element {
my ($self, $element) = @-;
my $name = $element->{"Name"};
print "Start Element: $name\n";

}

122 XML for Bioinformatics

The element hash reference also contains an optional “Attributes” key, which contains all attribute
data associated with the element. For example, the following code will extract all attribute data and
display it to the console:

Extract All Attributes
my $attributes = $element->{"Attributes"};
foreach my $key (keys %$attributes) {

my $attribute = $attributes->{$key};
my $name = $attribute->{"Name"};
my $value = $attribute->{"Value"};
print "Attribute: $name --> $value\n";

}

Listing 5.3 ContentReporter.pm
#!/usr/bin/perl
Basic SAX Handler
Reports Basic Content Events
use strict;
package ContentReporter;

Extend XML::SAX::Base
use base qw (XML::SAX::Base);

my $element-counter = 0;

Report Start Document Event.
sub start-document {

my ($self, $doc) = @-;
print "Start Document\n";

}

Report Start Element Events.
sub start-element {

my ($self, $element) = @-;
my $name = $element->{"Name"};
print "Start Element: $name\n";
$element-counter++;

}

Report End Element Events.
sub end-element {

my ($self, $element) = @-;
my $name = $element->{"Name"};
print "End Element: $name\n";

}

Report End Document.
sub end-document {

my ($self, $doc) = @-;
print "End Document\n";
return $element-counter;

}
1;

Chapter 5 � Parsing NCBI XML in Perl 123

Table 5.1 provides a listing of the main methods in XML::SAX::Base . Note in particular that the
end-document() method is the final method called, and that its return value is returned by the
parse-xxx() methods. This provides a convenient mechanism to propagate data from the event
handler back to the main calling application.

Table 5.1 Main methods of XML::SAX::Base

Method Description

attribute-decl

($self, $attribute-info)

Indicates a DTD Attribute Declaration. The$attribute-info parameter is a hash reference
containing the following keys:

• Type: the attribute type, e.g. CDATA or ID
• eName: the element name
• aName: the attribute name
• ValueDefault: attribute default flag, e.g. #REQUIRED or #IMPLIED
• Value: default value, or undef if a default value is not supplied

characters

($self, $text)

Indicates a character event. The $text parameter is a hash reference containing a single key:
• Data: contains the character content.

Given a string of XML text, each SAX parser is free to report character events as it sees fit. For example,
one parser may report the entire text string via a single call tocharacters() ; a second parser
may split the string and call characters() twice. Given this flexibility, it is important that
your handler provide some type of character buffering

comment

($self, $comment)

Indicates an XML comment. The $comment parameter is a hash reference containing a single
key:

• Data: contains the comment text

element-decl

($self, $element-info)

Indicates a DTD Element Declaration. The $element-info parameter is a hash reference
containing the following keys:

• Name: name of the element
• Model: content model of the element

end-cdata ($self) Indicates the end of a CDATA section

end-document ($self) Indicates the end of an XML document. The return value of end-document() is returned by
the parse-xxx() methods, and therefore provides a convenient mechanism for propagating
data from the event handler back to the main calling application

end-element

($self, $element)

Indicates the end of an XML element. The $element parameter is a hash reference containing
the same keys as those defined in start-element(). See start-element() for
details

end-prefix-mapping

($self, $namespace-info)

Indicates the end scope of a namespace declaration. The $namespace-info parameter is a
hash reference containing the following keys:

• Prefix: the namespace prefix, e.g., “psi’’
• NamespaceURI: the namespace URI, e.g., “net:sf:psidev:mi’’

processing-instruction

($self, $pi)

Indicates a processing instruction. The$pi parameter is a hash reference containing the following
keys:

• Target: the target of the processing instruction
• Data: the complete text of the processing instruction

set-document-locator

($self, $doc-locator)

Sets a document locator object. This is usually the very first method called, directly before a call to
start-document(). If you want to determine the location of all subsequent SAX events,
store the $doc-locator object locally and reference it within other SAX call-back methods.
The $doc-locator parameter is a hash reference, containing the following keys:

• ColumnNumber: column number where the event occurred
• LineNumber: line number where the event occurred

124 XML for Bioinformatics

Table 5.1 (cont.)

Method Description

• SystemId: the system identifier of the current document or undef, if it is not defined
• PublicId: the public identifier of the current document or undef, if it is not defined

Note that SAX parsers are strongly encouraged to supply a document locator, but are not required
to do so

start-cdata ($self) Indicates the start of a CDATA section. The actual content of the CDATA section is subsequently
reported via the characters() method

start-document ($self) Indicates the start of an XML document

start-element

($self, $element)

Indicates the start of an XML element. The $element parameter is a hash reference containing
the following keys:

• Prefix: the namespace prefix of the element, e.g., “psi’’
• LocalName: the local name of the element. This is the name of the element, without its

namespace prefix, e.g., “interaction’’
• Name: a fully qualified element name. This is the name of the element with its namespace

prefix, e.g., “psi:interaction’’
• NamespaceURI: the namespace URI of this element
• Attributes: a hash reference containing all the element’s attributes

If the element has attributes, the Attributes hash reference will contain one key for each attribute.
The key is specified in the following form: “{NamespaceURI}LocalName’’. If the attribute is not
associated with any namespace, it will have an empty NamespaceURI, e.g., “{ }LocalName’’. Each
attribute will in turn contain the following keys:

• Prefix: the namespace prefix of the attribute
• LocalName: the local name of the attribute
• Value: the attribute value
• Name: a fully qualified attribute name
• NamespaceURI: the namespace URI of the attribute

start-prefix-mapping

($self, $namespace-info)

Indicates the beginning scope of a namespace declaration. The$namespace-info parame-
ter is a hash reference containing the following keys:

• Prefix: the namespace prefix, e.g., “psi’’
• NamespaceURI: the namespace URI, e.g., “net:sf:psidev:mi’’

xml-decl

($self, $declaration)

Indicates an XML declaration. The $declaration parameter is a hash reference containing
the following keys:

• Version: XML version, e.g., “1.0’’
• Encoding: character encoding, e.g., “UTF-8’’

Error Handling
It is important to note that if your XML parser encounters an error in well-formedness, the parser
will consider this a fatal error and stop program execution via a call to die(). (Recall from
Chapter 2 that an XML document is considered well-formed if it follows the basic rules of document
construction, e.g., all start tags must have matching end tags, elements must be properly nested,
attributes must appear in quotes, etc.) If you want to prevent your program from dying, you can
wrap your call to parse-xxx() inside an eval block. For example:

eval {
$parser->parse-uri("sample/ncbi.xml");

};

Chapter 5 � Parsing NCBI XML in Perl 125

if ($@) {
my $message = $@->{"Message"};
my $line-number = $@->{"LineNumber"};
print "Error! --> $message\n";
print "Error Occurred at line number: $line-number\n";

}

Note that the $@ hash reference contains a number of predefined keys, such as “Mes-
sage,” “LineNumber,” and “ColumnNumber,” allowing you to access specific details about the
error.

5.2.5 Using NCBI EFetch and XML::SAX
Now that you understand the basics of XML::SAX , you can apply this knowledge to dynamically
retrieve and parse sequence data from NCBI. Fortunately for us, NCBI provides a web service,
called EFetch that simplifies the process of retrieving sequence records. EFetch is actually an
example of a REST-based web service (for details on REST-based web services, refer to Chapter 9).
In a nutshell, client applications connect to EFetch via HTTP and specify search criteria with a set of
URL parameters. Based on the search criteria, the EFetch service will connect to the NCBI Entrez
back-end database system, find a matching record, and return the requested record in the format
of your choosing. EFetch currently provides access to several NCBI Entrez databases, including
sequence, literature, and taxonomy databases; and can return data in several data formats, including
text, HTML, ASN.1 and XML. If you are eager to try out a few sample EFetch requests, refer to
Table 5.2.

As of this writing, the base URL for connecting to EFetch is:

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi

To retrieve a specific nucleotide sequence record, you must append a database parameter and
an ID parameter, which uniquely identifies the record. For example, the following URL re-
trieves the complete genome record for the SARS coronavirus, formatted in the GenBank flat file
format:

Table 5.2 Example EFetch queries

How to Retrieve a Nucleotide Record:
Example #1: Retrieves information regarding the BRCA2 gene in Human, and formats the results in TinySeq XML:
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db= nucleotide&id=U43746&rettype=fasta&retmode=xml
Example #2: Retrieves information regarding the BRCA2 gene in Human, and formats the results in GenBank XML:
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=U43746&rettype=gb&retmode=xml

How to Retrieve a Protein Record:
Example: Retrieves information regarding the BRCA2 protein in Human, and formats the results in GenPept XML:
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=protein&id=AAB07223.1&rettype=gp&retmode=xml

How to Retrieve a Literature Record:
Example: Retrieves citation and abstract information regarding PMID: 14597658, and formats the results in XML:
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=14597658&retmode=xml

How to Retrieve a Taxonomy Record:
Example: Retrieves the species name for NCBI Taxonomy ID: 7227. In this case, E-Fetch returns a single string: “Drosophila melanogaster’’.
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=taxonomy&id=7227&report=brief

126 XML for Bioinformatics

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&rettype=gb&retmode=
text&id=30271926

In the URL above, the db parameter specifies the NCBI nucleotide database, rettype specifies the
GenBank flat file format, retmode specifies text content, and id specifies the NCBI GI number
for the SARS virus. Conveniently, the id parameter accepts both NCBI GI numbers and NCBI
accession numbers.

For XML content, set the retmode parameter to “xml.” For example, to retrieve data in the
NCBI TinySeq XML format, set rettype=fasta and retmode=xml. To retrieve data in the more
comprehensive NCBI GBSeq XML, set rettype=gb and retmode=xml . For example, the following
URL retrieves the same SARS virus record, but this time it is formatted in GBSeq XML:

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&rettype=gb&retmode=
xml&id=30271926

Complete details regarding NCBI EFetch are available online at:
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/efetchseq-help.html.

Our goal is to write a Perl program capable of automatically retrieving sequence data from EFetch
and extracting a small subset of the XML content for display to the console. The program expects
a single command line argument, indicating an NCBI GI number or accession number. A sample
run of the application is shown below:

>fetch.pl NC-004718
Downloading XML from NCBI E-Fetch
Using URL: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.
fcgi?db=nucleotide&rettype=gb&retmode=xml&id=30271926
Definition: SARS coronavirus, complete genome
Accession: NC-004718
Locus: NC-004718
Organism: SARS coronavirus
Sequence (0..20): ATATTAGGTTTTTACCTACC...

Source code for the Perl fetcher is shown in Listings 5.4 and 5.5. Examine the code now and we
will describe its main components below.

As in our first SAX application, the fetch application consists of two parts: a main application,
which initiates parsing (Listing 5.4), and a SAX event handler (Listing 5.5). The main application
uses the World Wide Web library for Perl (LWP) [60] to connect to NCBI EFetch and retrieve the
specified sequence record. It also obtains an XML parser via the SAX factory, and initiates parsing
via the parse-string() method. The parse-string() method returns an associative array,
which we then print to the console.

The NcbiHandler.pm module listens for specific SAX events, and selectively stores specific
GBSeq elements in an internal associative array. There are a few important items to note. First, the
characters() method uses a character buffer. This is important because SAX parsers are free
to perform character “chunking”—for example, one SAX parser may report a line of text via a
single call to characters() , whereas a second SAX parser may break the line into two “chunks”
and report it via two calls to characters() . Since there is no way to know ahead of time which
chunking method the parser will use, it is always safest to assume multiple calls to characters()
and to append to a character buffer each time. Second, the end-element() method is used to

Chapter 5 � Parsing NCBI XML in Perl 127

Listing 5.4 Parsing NCBI EFetch data via the SAX API

#!/usr/bin/perl
Fetches NCBI XML from the NCBI E-Fetch Utility.
Author: Ethan Cerami
use XML::SAX;
use LWP::Simple;
use NcbiHandler;
use strict;

Display Command Line Usage
if (@ARGV == 0) {

print "Usage: fetch.pl ncbi-identifier (NCBI GI or Accession
Number)\n";

die "Example: fetch.pl 30271926\n";
}

Download File from NCBI e-Fetch; uses LWP Module
my $ncbi-url = get-ncbi-url($ARGV[0]);
print "Downloading XML from NCBI E-Fetch\n";
print "Using URL: $ncbi-url\n";
my $xml-doc = LWP::Simple::get($ncbi-url);

Parse XML Document
my $handler = NcbiHandler->new;
my $parser = XML::SAX::ParserFactory->parser(Handler =>$handler);
my %data = $parser->parse-string($xml-doc);

Output Results of Parsing
my $sequence = $data{"GBSeq-sequence"};
$sequence = substr ($sequence, 0, 20);
print "Definition: ", $data{"GBSeq-definition"};
print "\nAccession: ", $data{"GBSeq-primary-accession"};
print "\nLocus: ", $data{"GBSeq-locus"};
print "\nOrganism: ", $data{"GBSeq-organism"};
print "\nSequence (0..20): $sequence...\n";

Gets NCBI Identifier from user, and returns an absolute URL
to the NCBI E-Fetch Utility.
sub get-ncbi-url {

my $id = $-[0];

Set Base URL for NCBI E-Fetch
my $baseurl = "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/"
."efetch.fcgi?db=nucleotide&rettype=gb&retmode=xml&id=";

return ($baseurl . $id);
}

128 XML for Bioinformatics

Listing 5.5 NcbiHandler.pm

#!/usr/bin/perl -w
Parses NCBI GBSeq XML Documents, and extracts only
selected elements.
package NcbiHandler;
use strict;

Extend XML::SAX::Base
use base qw (XML::SAX::Base);

my ($current-text, %data);

Report Start Element Events.
Each time we get a start element event,
reset the character buffer.
sub start-element {

my ($self, $element) = @-;
$current-text = "";

}

Selectively store element information.
sub end-element {

my ($self, $element) = @-;
my $name = $element->{"Name"};
if ($name eq "GBSeq-locus"

| | $name eq "GBSeq-primary-accession"
| | $name eq "GBSeq-definition"
| | $name eq "GBSeq-organism"
| | $name eq "GBSeq-sequence") {

$data{$name} = $current-text;
}

}

Keep Character Buffer.
sub characters {

my ($self, $characters) = @-;
$current-text .= $characters->{"Data"};

}

Return Associative Array to main application.
sub end-document {

my ($self, $doc) = @-;
return %data;

}
1;

selectively filter for specific GBSeq elements. For those specific elements of interest, we store
the current character buffer into an associative array and use the element name as a hash key. We
subsequently return the associative array to the main calling application by returning it from the
end-document() method.

Chapter 5 � Parsing NCBI XML in Perl 129

5.3 The Document Object Model (DOM)

The Document Object Model (DOM) is a standard tree-based interface for reading, modifying, and
creating XML documents. The DOM is an official recommendation of the W3C, and the DOM
API is specified in the Object Management Group Interface Definition Language (OMG IDL).
This enables the DOM API to be both platform and language independent. DOM implementations
are available in numerous programming languages, including Perl, Java, JavaScript, VBScript,
C/C++, and Python. In this section, we provide an introduction to the Perl XML::LibXML module,
and illustrate its support for the DOM standard. We also revisit the NCBI EFetch service, and re-
create the same functionality as our earlier SAX application. This enables you to directly compare
and contrast the DOM approach with the SAX approach.

5.3.1 DOM Traversal with XML::LibXML
The XML::LibXML Perl module provides an interface to the very popular libxml parser, an XML
parser written in C and developed for the Linux Gnome project. The libxml parser itself is packed
with numerous features, including support for XML Namespaces, SAX, DOM, XPath, XPointer,
and XInclude. For our purposes, we will be focusing exclusively on the DOM implementation
provided by libxml. If you are interested in the other features of libxml, check out the main libxml
web site at: http://xmlsoft.org.

Let us jump right in with our first DOM example. Listing 5.6 provides an example application,
which will traverse through all the elements in our sample NCBI XML document. Examine the
code now, and we will describe its main components below.

There are several important elements to note about the code in Listing 5.6. First, we instantiate
a new LibXML parser object and direct the parser to parse a local file:

Instantiate LibXML Parser
my $parser = XML::LibXML->new();

Parse Sample Document
my $doc = $parser->parse-file("sample/ncbi.xml");

The parse-file() method returns a DOM Document object. This document object contains a
complete tree representation of our XML document. To begin tree traversal, we request the root
document element:

my $root = $doc->getDocumentElement();

We then pass this root element to the recursive traverse-node() method. In the DOM data
model, all XML constructs, e.g., elements, attributes, text data, and processing instructions, are
represented as DOM nodes, and all nodes provide a number of very useful attributes/methods. For
example, you can retrieve the node name or node type:

my $node-name = $node->nodeName;
my $node-type = $node->nodeType;

Depending on the node type, our code takes different actions. For example, if we encounter a text
node, we extract the embedded text content. If we encounter an element node, we retrieve a list of
all its child nodes and pass these nodes recursively to the traverse-node() method:

130 XML for Bioinformatics

my @children = $node->childNodes();
foreach my $child (@children) {

traverse-node ($child, $indent+1);
}

Listing 5.6 First DOM example
DOM Traversal Example
Illustrates Basic DOM Functionality

use XML::LibXML;
use strict;

Instantiate LibXML Parser
my $parser = XML::LibXML->new();

Parse Sample Document
my $doc = $parser->parse-file("sample/ncbi.xml");

Get Document Root Element
my $root = $doc->getDocumentElement();

Initiate DOM Traversal at root
traverse-node ($root, 0);

Recursive Function to Traverse DOM Tree
sub traverse-node {

my ($node, $indent) = @-;

Indent X Characters
my $line = "." x ($indent * 2);
print "$line";

Get Node Name and Type
my $node-name = $node->nodeName;
my $node-type = $node->nodeType;

Take Different Actions depending on node type
if ($node-type == 3) {

This is a text node
my $text-content = $node->textContent;
$text-content =∼ s/\n/[new line]/;
print "$node-name: $text-content\n";

} elsif ($node-type == 1) {
This is an Element Node
print "Element: $node-name\n";
Iterate through all Child Nodes
my @children = $node->childNodes();
foreach my $child (@children) {

traverse-node ($child, $indent+1);
}

}
}

Chapter 5 � Parsing NCBI XML in Perl 131

By examining each element, and recursively exploring each of its child nodes, our sample applica-
tion is capable of traversing through the entire XML document tree. An excerpt from this traversal
is shown below:

Element: GBSet
..text: [new line]
..Element: GBSeq
....text: [new line]
....Element: GBSeq-locus
......text: BC034957
....text: [new line]
....Element: GBSeq-length
......text: 2547
[output continues...]

If you want to determine if an element has attributes, you can use the hasAttributes query
method, and then retrieve those attributes via the attributes property. For example, the following
code excerpt outputs all element attributes to the console:

if ($node->hasAttributes) {
my @attributes = $node->attributes;
foreach my $attribute (@attributes) {

my $name = $attribute->nodeName;
my $value = $attribute->value;
print "Attribute Name: $name --> Value: $value\n";

}
}

The DOM API also supports several methods for finding specific subelements. For example, the
getChildrenByTagName() method will find all direct children with the specified tag name. By
contrast, the getElementsByTagName() method will recursively search all descendants of the
current node, and return all descendants with the specified tag name. The LibXML module also
provides support for XPath, a W3C specification that enables you to pinpoint specific elements or
sets of elements within an XML document. For example, the code snippet below uses the XPath
find feature to extract two specific GBSeq elements:

my $doc = $parser->parse-file("sample/ncbi.xml");
my $locus = $doc->find("/GBSet/GBSeq/GBSeq-locus");
my $def = $doc->find("/GBSet/GBSeq/GBSeq-definition");
print "Locus: $locus\n";
print "Definition: $def\n";

The complete LibXML DOM API is quite large, and we could not hope to
cover it in its entirety in this chapter. For complete documentation on all rel-
evant classes and methods, refer to the LibXML documentation, available on-
line at: http://search.cpan.org/dist/XML-LibXML. If you are working extensively
with LibXML, you may find it useful to print out the documented API for
XML::LibXML::Node , the base class used to represent all DOM nodes, and
XML::LibXML::Element , the class used to represent element nodes.

132 XML for Bioinformatics

5.3.2 Validating XML Documents with XML::LibXML
The LibXML Perl module provides built-in support for validating XML documents against DTDs.
To turn XML validation on, simply pass a true value to the parser validation() method, and then
initiate parsing. If LibXML encounters an error in well-formedness or validity, it will immediately
die() and report the error to the console. If you want to prevent your program from exiting, you
can wrap the parse call in an eval block. For example:

my $parser = XML::LibXML->new();
$parser->validation(1);

eval {
my $doc = $parser->parse-file($file-name);

};

if ($@) {
print "Error --> $@\n";

} else {
print "----> OK\n";

}

5.3.3 Creating New Documents with XML::LibXML
In addition to reading in XML documents, the Document Object Model also provides convenient
mechanisms for modifying existing documents or creating new XML documents from scratch. For
example, the code in Listing 5.7 uses the DOM API to create an entirely new document in the
NCBI TinySeq XML format.

To create a new XML document, you must first instantiate a Document object:

my $document = XML::LibXML::Document->new ();

You then need to create root element, and add this to the document:

my $root = $document->createElement ("TSeq");
$document->addChild ($root);

You can then proceed to create new elements, and add these to the root element. Note that if you
want to add text to an element, you must first create a text node, and then add this to the element
node. This operation is automatically performed by the appendTextNode() method. In the same
manner, to create an element with attributes, you must first create one or more attribute objects, and
then add each attribute to the element node. The DOM API provides dozens of other methods for
creating new nodes, removing nodes, and copying nodes. However, the scope of the complete API
is beyond the scope of what we hope to cover here. For the complete API, refer to the LibXML
API documentation, available online at: http://search.cpan.org/dist/XML-LibXML.

5.3.4 Using NCBI EFetch and XML::LibXML
As our final topic, we revisit the NCBI EFetch service. Our goal is to retain the exact same
functionality as our first EFetch application (see Section 5.2.5), but to replace the SAX code with

Chapter 5 � Parsing NCBI XML in Perl 133

Listing 5.7 Creating a TinySeq XML document via the DOM API

Creates a new TinySeq XML Document via the DOM API.
use XML::LibXML;
use strict;

Instantiate New Document Object
my $document = XML::LibXML::Document->new ();

Create Root Element
my $root = $document->createElement ("TSeq");
$document->addChild ($root);

Add Sequence Type with Attribute
my $seq-type = $document->createElement ("TSeq-seqtype");
my $attribute = $document->createAttribute("value", "nucleotide");
$seq-type->addChild ($attribute);
$root->addChild ($seq-type);

Add Other Sub-elements
add-element ($document, $root, "TSeq-gi", "11497606");
add-element ($document, $root, "TSeq-sid", "ref| NM-001464.2| ");
add-element ($document, $root, "TSeq-taxid", "9606");
add-element ($document, $root, "TSeq-orgname", "Homo sapiens");
add-element ($document, $root, "TSeq-defline",

"Homo sapiens a disintegrin and metalloproteinase domain 2 "
. "(fertilin beta) (ADAM2), mRNA");

add-element ($document, $root, "TSeq-length", "2659");
add-element ($document, $root, "TSeq-sequence", "CATCTCGCACTTC...");

Convert to XML String, with indentation
my $xml = $document->toString(1);
print "XML Document:\n$xml";

Adds New Element with Single Text Value
sub add-element {

my ($document, $parent, $element-name, $text-str) = @-;
my $child = $document->createElement ($element-name);
$child->appendTextNode ($text-str);
$parent->addChild ($child);

}

DOM code. By comparing the two examples, you can therefore directly compare the SAX and
DOM interfaces and gain insight into both approaches.

The complete source code for our new fetch application is shown in Listing 5.8.
As in our first DOM example, we parse an NCBI XML document and immediately extract

its root element. However, instead of traversing the entire XML object tree, we now selectively
traverse the tree in search of five specific GBSeq elements. To do so, we first obtain the GBSeq
element:

my @seq-children = $root->getElementsByTagName("GBSeq");
my $seq-node = $seq-children[0];

134 XML for Bioinformatics

Listing 5.8 Parsing NCBI EFetch data via the DOM API

Fetches NCBI XML from the NCBI E-Fetch Utility.
Author: Ethan Cerami
use XML::LibXML;
use LWP::Simple;
use strict;

Display Command Line Usage
if (@ARGV == 0) {

print "Usage: fetch.pl ncbi-identifier (NCBI GI or Accession
Number)\n";

die "Example: fetch.pl 30271926\n";
}

Download File from NCBI e-Fetch; uses LWP Module
my $ncbi-url = get-ncbi-url($ARGV[0]);
print "Downloading XML from NCBI E-Fetch\n";
print "Using URL: $ncbi-url\n";
my $xml-doc = LWP::Simple::get($ncbi-url);

Instantiate LibXML Parser and Parse Document
my $parser = XML::LibXML->new();
my $doc = $parser->parse-string($xml-doc);

Get Document Root Element
my $root = $doc->getDocumentElement();

Get First GBSeq Element
my @seq-children = $root->getElementsByTagName("GBSeq");
my $seq-node = $seq-children[0];

Extract Individual Elements
my $def-line = get-element-text ($seq-node, "GBSeq-definition");
my $acc = get-element-text ($seq-node, "GBSeq-primary-accession");
my $locus = get-element-text ($seq-node, "GBSeq-locus");
my $organism = get-element-text ($seq-node, "GBSeq-organism");
my $sequence = get-element-text ($seq-node, "GBSeq-sequence");
$sequence = substr ($sequence, 0, 20);

print "Definition: $def-line\n";
print "Accession: $acc\n";
print "Locus: $locus\n";
print "Organism: $organism\n";
print "Sequence (0..20): $sequence...\n";

Gets Element Text
sub get-element-text {

my ($node, $target-name) = @-;

getChildrenByTagName gets direct children only.
getElementsByTagName gets all descendants.

Chapter 5 � Parsing NCBI XML in Perl 135

Listing 5.8 (cont.)

my @elements = $node->getChildrenByTagName($target-name);

if (@elements) {
my $element = $elements[0];
my $text = $element->textContent;

} else {
return "Not Available";

}
}

Gets NCBI Identifier from user, and returns an absolute URL
to the NCBI E-Fetch Utility.
sub get-ncbi-url {

my $id = $-[0];

Set Base URL for NCBI E-Fetch
my $baseurl = "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/"
. "efetch.fcgi?db=nucleotide&rettype=gb&retmode=xml&id=";

return ($baseurl . $id);
}

We then selectively search for direct children with specific tag names. To do so, the local
get-element-text() method uses the DOM getChildrenByTagName() method to find di-
rect children with the specified tag name. If any matching children are found, we take the first
matching child and immediately return its text content. We are therefore able to easily extract any
piece of GBSeq data and immediately display it to the console.

In conclusion, Perl provides excellent support for XML. In this chapter, we have discussed the
fundamental differences between tree-based and event-based XML parsers, and have illustrated
these differences by exploring the SAX and DOM interfaces. Event-based parsers, such as SAX,
are generally faster and require less memory than comparable tree-based parsers. However, tree-
based parsers provide random access to any node or branch in the XML document and also provide
facilities for modifying or creating new documents. If you have intense performance requirements,
or are working with very large documents, you may have no choice but to use an event-based parser.
However, for moderate-sized XML documents, you may find a tree-based interface easier to use.
In either case, by sticking to well-defined public standards, such as SAX or DOM, you can more
easily apply your XML knowledge to other programming languages, such as C++ or Java.

The Distributed Annotation
System (DAS) 6

The genome sequence of an organism is an information resource unlike any that biologists have previously
had access to. But the value of the genome is only as good as its annotation. It is the annotation that bridges
the gap from the sequence to the biology of the organism. [81]

The Distributed Annotation System (DAS) [6; 82] is an XML-based protocol that facilitates the
distribution and sharing of genome annotation data. Since its introduction, DAS has become one
of the most widely used protocols for biological data exchange, and is now implemented at numer-
ous laboratories, including UCSC, the Institute for Genomic Research (TIGR), and the European
Bioinformatics Institute (EBI). The core of the DAS protocol is built around a small set of XML
queries, and a corresponding set of XML Document Type Definitions (DTDs). It therefore provides
an exciting window into the use of XML at the cutting edge of bioinformatics.

This chapter aims to provide you with a comprehensive introduction to DAS. The following
topics are covered:
� introduction to genome annotation
� overview of available DAS clients
� DAS protocol overview
� comprehensive discussion of the main DAS queries
� working with DAS reference maps
� the future evolution of DAS

The next two chapters explore specific DAS queries further and use DAS examples to illustrate
XML parsing in Java.

6.1 Genome Annotation

With the complete sequencing of numerous whole genomes, including the fruit fly (Drosophila
melanogaster), the Japanese pufferfish (Fugu rubripes), C. elegans, and a working draft of the
human genome, we now have gigabytes of raw DNA sequence data. Hidden within these raw
sequences lie biological clues to the molecular machinery of life, the evolution of life on earth,
and the origins of many human diseases. Much attention is therefore focused on the analysis and
interpretation of raw genome sequences. This process is already well underway, and is likely to
take decades and involve thousands of scientists across the globe.

A crucial step in genomic analysis and interpretation is genome annotation. At a very broad level,
genome annotation is simply the process of analyzing regions of raw sequence data and adding
notes, observations, and predictions. For example, annotation includes the identification of exons

137

138 XML for Bioinformatics

(protein-coding portions of genes) and introns (noncoding portions of genes), and the categorization
of repeat-coding regions. Genome annotation may also include the linking of sequence data to
already cataloged genes, making computerized predictions on the location of novel genes, and
identifying sequence similarities across species. In short, annotation attempts to decipher and
analyze raw sequence data and eventually connect it to biological function. If the genome represents
the book of life, genome annotation represents our collective notes in the margins.

To make genome annotation more concrete, consider the Ensembl project [79], a joint collabora-
tion between the European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute.
The goal of Ensembl is to take eukaryotic genomes, including the human, mouse, and zebrafish,
and provide automated genome annotation. In the case of Ensembl, automated annotation requires
an astonishing array of computing power. This includes a complicated data pipeline process and a
cluster of several hundred computers.

Ensembl currently provides several categories of annotations, but its main goal is to link sequence
data to already known genes and to make computerized predictions regarding the location of novel
genes. In fact, the gene analysis provided by Ensembl played a large part in the initial analysis
of the human genome provided by the International Human Genome Sequencing Consortium (the
public project).

Ensembl makes all of its software, genome annotations, and computerized predictions available
freely though its web site. For example, Figure 6.1 shows a sample screenshot, showing a region
of human chromosome 3. The display screen is divided into three main panels. The first panel

Figure 6.1 An example of genome annotation: a region of human chromosome 3, provided by the Ensembl web site. Ensembl
provides automated annotation of the human genome. In the middle panel, labeled “Overview”, Ensembl has annotated three
known genes (left of panel), and three novel genes (middle of panel).

Chapter 6 � The Distributed Annotation System (DAS) 139

provides a bird’s-eye view of the entire chromosome, the second panel provides an overview of the
selected region, and the bottom panel provides a more detailed view of the selected region. Within
the second panel under “genes,” you can see that Ensembl has annotated three known genes (on
the left), and predicted the location of three novel genes (middle of panel).

The computerized prediction of novel genes, such as that provided by Ensembl, is a
particularly challenging endeavor. For an overview of the challenges and an introduction
to available gene finding software, see “Gene Finders and Feature Detection in DNA”
in Chapter 7 of Developing Bioinformatics Computer Skills (O’Reilly, 2001) [78].

Ensembl is but one example of genome annotation. In fact, Lincoln Stein (creator of the DAS
protocol) currently divides annotation into three distinct layers: nucleotide-level, protein-level, and
process-level (see Figure 6.2) [81]. Nucleotide-level annotation includes the mapping of genetic

Figure 6.2 The three layers of genome annotation: where?, what?, and how? (Reprinted with permission, from Lincoln Stein [81].)

140 XML for Bioinformatics

landmarks, the identification of genes, the categorization of repeat sequences, the mapping of se-
quence similarities across species, and the identification of sequence variability within individuals.
Protein-level annotation attempts to connect sequences to their protein products and to create a
comprehensive catalog of proteins. Process-level annotation attempts to determine protein func-
tion(s) within the organism and to determine biological interactions among genes, proteins, RNA,
and other macromolecules. Each layer of annotation provides additional clues to biological function
and ultimately leads to an overall view of the genome as a whole.

6.2 Introduction to DAS

Despite its enormous potential, genome annotation presents numerous technical challenges. First,
annotation is highly decentralized and currently underway at dozens of laboratories throughout
the world. Second, it is not likely that one organization will be able to coordinate and centralize
all genomic annotations, and yet, we still need a mechanism to aggregate data from multiple
laboratories. In response to these challenges, Lincoln Stein of Cold Spring Harbor Laboratory,
along with Sean Eddy and LaDeana Hillier, both of Washington University at St. Louis, set out to
build a distributed protocol for genome annotation.

DAS is formally specified by a client/server protocol and a set of XML Document Type Defini-
tions (DTDs). Client applications connect to DAS servers, send queries, and receive XML encoded
data back. For example, a client can request all genomic annotations within a specified region of
human chromosome 11, or request only a subset of those annotations.

All DAS servers adhere to the same specification and encode annotation data in the same XML
format. Client applications can therefore easily aggregate data from multiple servers. Without DAS,
a user would need to manually surf through three different web sites to compare annotation data.
With DAS, a user can open a single client application and simply specify three DAS servers. Behind
the scenes, the client application connects to each DAS server, aggregates the response data, and
presents a unified data view (see Figure 6.3).

DAS Client

UCSC: DAS
Server

Ensembl:
DAS

Server

TIGR: DAS
Server

XML

XML

XML

UCSC Data

Ensembl Data

TIGR Data

Figure 6.3 All DAS servers are required to create XML documents which adhere to common Document Type Definitions (DTDs).
Clients can therefore easily aggregate annotation data from multiple DAS servers.

Chapter 6 � The Distributed Annotation System (DAS) 141

DAS specifies two types of servers: reference servers and annotation servers. Reference servers
hold a reference map to the genome and store the raw genomic sequence data. Annotation servers
hold the actual genomic annotations. The two server types are not necessarily mutually exclusive,
and a single server can (and frequently does) act as both a reference and annotation server.

In order to work successfully, DAS requires that the community at large agree on a set of common
genomic reference maps. For example, for the human genome, most DAS servers are using the
public genome assembly, available from NCBI. Multiple versions of this assembly exist and new
versions are continually published, as new data is generated and finalized. In order to accurately
compare data from multiple DAS servers, each of the annotation servers must be using the same
assembly, and the same version of the assembly. We will delve into specifics later in the chapter in
“Working with Reference Maps” (Section 6.5).

Information in this chapter is based on DAS version 1.53. For a copy of the complete
specification, go to: http://www.biodas.org.

A number of DAS clients are currently available, including web-based clients and stand-alone
applications. Web-based clients perform data aggregation on the server side and therefore do not
require local installation of any software. A summary of DAS clients is presented in Table 6.1. A
summary of public DAS servers follows in Table 6.2.

6.2.1 The WormBase DAS Viewer
One of the first web-based DAS clients was created at WormBase.org [83], a site devoted to the
study of C. elegans. The WormBase site includes a genome browser and an experimental DAS
browser. Figure 6.4 shows a screenshot of the DAS browser. The bottom of the page indicates the
chromosome region; in this case, we are viewing chromosome 4, 500–1000 base pairs. Directly
above this is a list of selectable DAS data sources, including WormBase, the Knockout Consortium,
and the Institute for Genomic Research (TIGR). If you select the “custom” option on any of the
data sources, you can filter for specific types of annotation data.

Directly above the source list is a visualization of the annotation data. Each data source is
represented as a separate horizontal track of data—in this case, we have chosen to display data
from WormBase and TIGR. If you click on any of the individual annotation elements, such as the
TIGR transcripts, you are directed to a TIGR page with annotation details.

The WormBase DAS browser also includes direct links to the WormBase DAS server. For
example, if you click the “Ref Server Features” link, you will receive an XML document specifying
the annotations within the selected region. This is a very useful feature for learning the DAS protocol,
because it enables you to easily compare raw XML data with a graphical visualization.

6.3 DAS Protocol Overview

The DAS protocol is built on a simple pattern of requests and responses. DAS clients issue requests in
the form of Internet URLs and servers issue responses encoded in XML (see Figure 6.5). Currently,
there are only eight different DAS commands, and each command will trigger a different XML
response from the server. For example, a client can request a list of data sources hosted by the

142 XML for Bioinformatics

Table 6.1 A summary of DAS clients

DAS Client Client Type Description

Ensembl Genome Browser Web Based The Ensembl genome browser provides built-in support for DAS. Users can select from
a preconfigured list of DAS servers or specify the URL for any arbitrary DAS server.
Behind the scenes, the web site connects to all user-specified DAS servers and creates
a single integrated view of the genomic data.

URL: http://www.ensembl.org

WormBase Genome Browser Web Based The WormBase genome browser includes an experimental DAS viewer, named
DASView. DASView enables users to select from a preconfigured list of DAS sources.
Currently, this list includes: WormBase, the Knockout Consortium, and The Institute
for Genomic Research (TIGR). Each DAS source is represented as a separate horizontal
track of data. A sample screenshot is provided in Figure 6.4.

URL: http://www.wormbase.org

TIGR DAS Viewer Web Based DAS Viewer hosted at The Institute for Genomic Research. Genome annotations
are currently available for: Arabidopsis, Mosquito, Fugu, Human, Rice, Mouse, and
C. elegans.

URL: http://www.tigr.org/tdb/DAS/DAS.shtml

BioJava DAS Client Stand alone The BioJava DAS client is a stand-alone Java client application that relies extensively on
the open source BioJava library. It is currently maintained by Matthew Pocock of the
Sanger Institute. Users begin a client session by specifying the URL for a DAS server.
The client automatically retrieves a list of data sources, and enables the user to zoom
in on specific chromosomal regions. At any point, users can add additional DAS data
sources.

URL: http://www.ensembl.org/das/client.html

OmniGene Stand alone The OmniGene OmniView application includes experimental support for a SOAP-based
version of DAS. In addition to connecting directly to DAS servers, the OmniView ap-
plication can connect to the OmniGene server at MIT via a SOAP-based protocol. The
OmniGene server then connects to the specified DAS server using the DAS 1.0 pro-
tocol, wraps these results in SOAP, and returns the results to the client. By using a
“middleware’’ server, OmniView can retrieve both DAS data and non-DAS data. The
user interface for OmniView is based on the Ensembl genome browser interface, and
should be very familiar to Ensembl users. OmniGene is an open source project and is
currently hosted on Source Forge.

URL: http://omnigene.sourceforge.net

Geodesic Stand alone Geodesic is an experimental DAS client designed to work with an earlier version of
the DAS specification. It does not work with the current version of DAS, and there are
currently no plans to continue its development.

URL: http://biodas.org/geodesic

Table 6.2 A partial list of DAS servers currently available online. A more complete list is maintained
at: http://www.tigr.org/tdb/DAS/das-server-list.html

Name URL

Ensembl/Sanger http://servlet.sanger.ac.uk:8080/das/dsn
University of California, Santa Cruz http://genome.cse.ucsc.edu/cgi-bin/das/dsn
WormBase.org http://www.wormbase.org/db/das/dsn
The Institute for Genomic Research http://www.tigr.org/docs/tigr-scripts/tgi/das/dsn
Max Planck Institute for Molecular Genetics http://tomcat.molgen.mpg.de:8080/das/dsn

Chapter 6 � The Distributed Annotation System (DAS) 143

Figure 6.4 The WormBase DAS browser. Data from each DAS source is represented as a separate horizontal track of data. In this case,
DAS data from WormBase and The Institute for Genomic Research (TIGR) is shown.

DAS
Client

DAS
Server

HTTP Request: URL

HTTP Response: XML

Figure 6.5 DAS clients issue requests in the form of Internet URLs and servers issue responses encoded in XML. Transportation is
provided by HTTP.

server, retrieve annotations across a specific chromosomal region, or request raw DNA sequence
data. An overview of the eight DAS commands is presented in Table 6.3.

The biodas.org web site maintains an active mailing list related to DAS issues. To
subscribe or view the mail archives, go to: http://biodas.org/mailman/listinfo/das.

144 XML for Bioinformatics

Table 6.3 Summary of DAS commands

Command Description

dsn Requests a list of data sources hosted by the DAS server. For example, a dsn request to the Ensembl site returns a
complete list of its cataloged genomes, including: human, mosquito, mouse, and fruit fly

entry-points Requests a list of entry points for accessing the genome. For most DAS servers, entry points refer to specific chromosomes
within the genome. For example, an entry-points request to the Ensembl human genome returns a list of chromosomes
1–22, X, and Y

dna Requests raw DNA sequence data
sequence Requests raw sequence data (either DNA, RNA, or protein sequences). The sequence command is a newer, more general

version of the dna command. For backward compatibility, the dna command is still maintained
types Requests a summary of annotations across a specified genomic region
features Requests full annotation records across a specific genomic region
link Requests a web page associated with a specific annotation. The web page contains additional details regarding the

annotation, but is formatted in HTML, not XML
stylesheet Requests the DAS style sheet recommended by the server. The style sheet provides hints on how to visually render

specific categories of annotations

Each of the DAS commands will be explored in detail in the next section. However, before
we can understand the individual commands, we must first begin with a detailed overview of the
protocol itself.

6.3.1 Getting Started
Transportation for the DAS protocol is handled by HTTP (HyperText Transfer Protocol), the same
protocol used to connect web browsers and web servers. Because of this, you can easily use a
regular web browser to experiment with and debug the DAS protocol. Therefore, before going any
further, let us try a sample DAS query using Internet Explorer. Simply open up your browser and
type the following URL:

http://servlet.sanger.ac.uk:8080/das/ensembl1533/dna?segment=1:100000,100100

As we will soon see, URLs associated with DAS queries have a very specific syntax. For now, note
that we are connecting to the DAS server at Ensembl, and that the DAS portion of the request begins
with a required /das prefix. This is followed by a data source (ensembl1533 refers to the Ensembl
human genome, version 15.33), a DAS command (we are using the dna command to retrieve raw
sequence data), and a segment parameter (indicating human chromosome 1, 100,000–100,100 base
pairs). To summarize, the URL basically says: “Connect to Ensembl and give me the raw DNA
sequence for human chromosome 1: 100,000–100,100 base pairs.”

The dna command is arguably the simplest of the DAS queries and it is therefore a good place to
begin. In response, the Ensembl DAS server returns the following XML document (see Figure 6.6).

<?xml version='1.0' standalone='no' ?>
<!DOCTYPE DASDNA SYSTEM 'dasdna.dtd' >
<DASDNA>

<SEQUENCE id="1" version="15.33" start="100000" stop="100100">
<DNA length="101">

ttatgaattggtgttgagcttagtaagtcaccaaacaccttctgctcagcagcata
aaggacatttccatgaaacctcccagggataatcttatttactct

</DNA>
</SEQUENCE>

</DASDNA>

Chapter 6 � The Distributed Annotation System (DAS) 145

Figure 6.6 A sample DAS query, as seen through Internet Explorer. Since DAS uses existing web standards, including HTTP and XML,
you can use a regular web browser to experiment with the protocol.

The DAS response is a valid XML document containing the raw sequence data. The prolog to
the document specifies a Document Type Definition, named dasdna.dtd. The client can therefore
validate the XML content against the DTD. The root of the document is specified by a DASDNA
element, which contains an embedded SEQUENCE element. The SEQUENCE element specifies the
chromosomal region and contains a DNA element containing the raw data.

Hopefully, this provides you with a taste of how the protocol works. Now, onto the details of
requests and responses.

There are currently two open source DAS server software packages. The first is the
Lightweight Distributed Annotation Server (LDAS). LDAS is written in Perl and
runs on a MySQL database. Source code and installation instructions are available
at: http://www.biodas.org/servers. The second is the BioJava Dazzle Server. Dazzle is
written in Java and implemented as a Java servlet. Dazzle includes data source plug-
ins for distributing EMBL (European Molecular Biology Laboratory) as well as GFF
(General Feature Format) formatted flat files. Source code and installation instructions
are available at: http://www.biojava.org/dazzle.

6.3.2 DAS Requests
Each DAS request is specified as an Internet URL. The URL is defined by five components, which
appear in the following order:

146 XML for Bioinformatics

http://servlet.sanger.ac.uk:8080/das/ensembl830/dna?segment=3:500,1000

Site Specific Component

Required DAS Prefix

Data Source

DAS Command

DAS Command Parameters

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/features?segment=2:5000,6000

Site Specific Component Data Source DAS Command Parameters

Required DAS Prefix DAS Command

Figure 6.7 Two sample DAS requests. DAS requests are specified as Internet URLs, which must adhere to a specific syntax. Individual
components of the URLs are noted.

� Site-specific component: this is the Internet domain name, followed by a path to the DAS
server application. For example, the site-specific component of the WormBase DAS server is
specified by http://www.wormbase.org/db, whereas the Ensemble DAS server is specified by
http://servlet.sanger.ac.uk:8080.

� /das: a required prefix indicating the beginning of a DAS command.
� [Data source]: a data source element (required for most commands) indicating the data source

of interest. Data sources vary by DAS server. For example, a data source of “mosquito1602”
specifies the mosquito genome (version 16.2) at Ensembl.

� [DAS Command]: the actual DAS command, e.g., entry-points, dna, features, etc.
� [Command Parameters]: each DAS command can include specific parameters to refine the actual

query. For example, a parameter of “segment=3:500,1000” refines the query to a specific region
on chromosome 3, 500–1000 base pairs.

The first four components are specified as part of the URL. In contrast, command arguments
are specified via HTTP name/value parameters. These parameters can be sent via HTTP GET
(parameters are appended directly to the end of the URL), or via HTTP POST (parameters are
embedded within the body of the HTTP request). Note that some servers restrict the length of
URLs, and clients are therefore advised to send large sets of parameters via HTTP POST. Two
sample DAS requests are illustrated in Figure 6.7.

6.3.3 DAS Responses
The DAS server response is embedded within the body of the HTTP response. For example, here
is a request to the UCSC DAS server:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/features?segment=2:5000,6000

UCSC responds with the following:

HTTP/1.1 200 OK
Date: Thu, 07 Nov 2002 20:28:07 GMT
Server: Apache/1.3.26 (Unix)

Chapter 6 � The Distributed Annotation System (DAS) 147

X-DAS-Status: 200
X-DAS-Version: DAS/0.95
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/plain; charset=iso-8859-1
<?xml version="1.0" standalone="no"?>
<DASGFF>

[... For brevity, the full XML document is not shown here]
</DASGFF>

As you can see, the DAS server specifies a number of regular HTTP headers, including: the current
date, the server software, and the Content-Type.∗ However, the DAS server is also required to specify
two additional headers. The first is: X-DAS-Version, indicating the DAS version implemented by
the server. The second is: X-DAS-Status, indicating the status of the server response.

X-DAS-Status codes are divided into roughly the same categories as HTTP status codes. For
example, a status code between 200–299 generally indicates that the response is OK, 400–499
indicates a bad request from the client, and 500–599 indicates some type of server error. A complete
list of X-DAS-Status codes is presented in Table 6.4.

If you are curious to see a DAS error, try issuing the following invalid request to UCSC:

http://genome.cse.ucsc.edu/cgi-bin/das/human/features?segment=2:5000,5100

If you issue this request from a web browser, it looks as if UCSC simply returns a blank page.
However, if you have some kind of network sniffer that is capable of intercepting HTTP packets
(see side note below), you can view the full response from UCSC:

HTTP/1.1 200 OK
Date: Thu, 19 Sep 2002 21:55:20 GMT
Server: Apache/1.3.26 (Unix)
X-DAS-Status: 401
X-DAS-Version: DAS/0.95
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/plain; charset=iso-8859-1

The X-DAS-Status code of 401 indicates that we have specified an invalid data source. To fix the
error, we have to change “human” to a valid UCSC data source, such as “hg12.”

To view the full HTTP response from a DAS server, you will need a network “sniffer”
that is capable of intercepting HTTP packets. A number of HTTP sniffer programs
are available on the Internet. A particularly good program is Ethereal Network An-
alyzer, available at: http://www.ethereal.com. Ethereal is available for free, runs on
Windows, Linux, and MacOS X, and is distributed under the GNU General Public
License.

∗ The DAS Protocol does not formally specify a Content-Type. Some servers currently specify “text/plain,” whereas others
specify “text/xml.”

148 XML for Bioinformatics

Table 6.4 X-DAS-status codes

Status Code Description

200 Success Codes
200 OK, request was successful.

400 Client Error Codes
400 Invalid command specified by the client.

For example, if the client specifies an “annotations’’ command (the correct command is actually “features’’), the DAS
server will return a 400 status code

401 Invalid data source specified by the client.
Specifically, the data source specified by the client is not hosted by the DAS server

402 Invalid command arguments specified by the client.
For example, if the client issues a dna request to retrieve raw sequence data, but does not specify a chromosomal region,

the server does not have enough information to process the request and returns a 402 status code
403 Invalid reference ID specified by the client.

Reference IDs represent anchors for retrieving genomic data and frequently refer to chromosome number. For example,
if the client incorrectly attempts to retrieve a portion of chromosome 30 from the human genome (humans only have
23 chromosomes), the DAS server will return a 403 status code

404 Missing Stylesheet.
The DAS server does not have a stylesheet for the requested data source

405 Invalid or out of bounds sequence coordinates specified by the client.
For example, a common error is to assume that sequences begin at 0, e.g., retrieve annotations for chromosome 2, 0–500

base pairs. This is actually out of bounds (biological sequences are numbered from 1), and will trigger a 405 error code.
To fix the error, you must specify chromosome 2, 1–500 base pairs

500 Server Error Codes
500 Internal Server Error.

A 500 status code indicates that the client request was valid, but the server was still unable to fulfill the request. For
example, the main database may be currently offline

501 The server does not implement the requested feature.
For example, if the client connects to an annotation server and issues a command reserved for reference servers, such as

a sequence command, the server will return a 501 status code

6.3.4 X-DAS-Capabilities Header
Starting with DAS version 1.5, servers can return an X-DAS-Capabilities header. As its name
implies, the capabilities header summarizes the capabilities of the server and includes a complete
list of all implemented functionality. The header is useful for two purposes. First, clients can check
the capabilities header to determine which DAS commands and command arguments are supported,
and thereby determine how to interface with the server. Second, DAS servers can implement new
experimental functionality and easily inform the clients of the new feature.

Much like X-DAS-Status and X-DAS-Version, the X-DAS-Capabilities header is a regular
HTTP header. The value of the header is a semicolon separated list of implemented functionality.
For example, here is a response from Ensembl:

HTTP/1.1 200 OK
Server: Resin/2.0.5
Content-Encoding: gzip
X-DAS-Version: 1.5
X-DAS-Server: DazzleServer/0.97 (20020924; BioJava pre-1.3)
X-DAS-Capabilities: dsn/1.0; dna/1.0; types/1.0; stylesheet/1.0;
features/1.0; encoding-dasgff/1.0; encoding-xff/1.0; entry-points/1.0;
error-segment/1.0; unknown-segment/1.0; component/1.0

Chapter 6 � The Distributed Annotation System (DAS) 149

Table 6.5 The X-DAS-Capabilities header

Name Description

component/1.0 Server returns map components via the features command. For details, refer to Section 6.5 of this chapter
dna/1.0 Server implements the DAS dna command. For details, refer to Section 6.4.3 of this chapter
dsn/1.0 Server implements the DAS dsn command. For details, refer to Section 6.4.1 of this chapter
entry-points/1.0 Server implements the DAS entry-points command. For details, refer to Section 6.4.2 of this chapter
error-segment/1.0 Server will respond to feature requests for invalid segments via an ERRORSEGMENT element. For details, refer

to the error handling section of “Retrieving Annotations’’ (6.4.4) in this chapter
feature-by-id/1.0 Server supports the feature-id parameter in the DAS features command. For details, refer to the features command

summary in Table 6.12
features/1.0 Server implements the DAS features command. For details, refer to Section 6.4.4 of this chapter
group-by-id/1.0 Server supports the group-id parameter in the DAS features command. For details, refer to the features command

summary in Table 6.12
sequence/1.0 Server implements the DAS sequence command. For details, refer to Section 6.4.3 of this chapter
stylesheet/1.0 Server implements the DAS stylesheet command
Supercomponent/1.0 Server returns map super-components via the features command. For details, refer to Section 6.5 of this chapter
types/1.0 Server implements the DAS types command. For details, refer to Section 6.4.4 of this chapter
unknown-segment/1.0 Server will respond to feature requests for invalid segments via an UNKNOWNSEGMENT element. For details,

refer to the error handling section of Section 6.4.4 of this chapter

X-DAS-Status: 200
Content-Type: text/xml
Transfer-Encoding: chunked
Date: Sat, 09 Nov 2002 16:29:21 GMT

A complete list of the possible X-DAS-Capabilities values is presented in Table 6.5.

6.4 DAS Command Reference

We are now ready to delve into the details of specific DAS commands. In general, DAS commands
can be divided into four categories:
� retrieving data sources
� retrieving entry points
� retrieving sequence data
� retrieving annotation data

We explore each category below, in this order. For each DAS command, we have included
a command reference table. The table includes a command description, the scope (reference
or annotation server), request syntax, the response DTD, and real examples from public DAS
servers.

6.4.1 Retrieving Data Sources
Once you have a URL for a DAS server, the first command to issue is usually the dsn command.
The dsn command retrieves a list of all data sources hosted by the server. Note that both reference
servers and annotation servers are required to respond to a dsn request. Reference servers will

150 XML for Bioinformatics

Table 6.6 The DAS dsn command

Description: Requests a list of data sources hosted by the DAS server

Scope: Annotation and Reference Servers

Request Syntax:
PREFIX/das/dsn

Examples:
1. Retrieve data sources from the Max Planck Institute:

http://tomcat.molgen.mpg.de:8080/das/dsn
2. Retrieve data sources from UCSC:

http://genome.cse.ucsc.edu/cgi-bin/das/dsn

Response: http://www.biodas.org/dtd/dasdsn.dtd
<!ELEMENT DASDSN (DSN+)>

<!ELEMENT DSN (SOURCE, DESCRIPTION?, MAPMASTER)>

<!ELEMENT SOURCE (#PCDATA)>

<!ATTLIST SOURCE id CDATA #REQUIRED>

<!ATTLIST SOURCE version CDATA #IMPLIED>

<!ELEMENT DESCRIPTION (#PCDATA)>

<!ATTLIST DESCRIPTION href CDATA #IMPLIED>

<!ELEMENT MAPMASTER (#PCDATA)>

return a list of all sources for which it maintains genomic maps and raw sequence data. Annotation
servers will return a list of all annotated data sources. Each annotated data source will include a
URL to the correct reference server, and therefore enables clients to immediately tie the annotation
server with the correct reference server.

The syntax for the dsn command is summarized in Table 6.6.
To get started, here is a dsn request to the Max Planck Institute DAS server:

http://tomcat.molgen.mpg.de:8080/das/dsn

The XML response is as follow:

<?xml version='1.0' standalone='no' ?>
<!DOCTYPE DASDSN SYSTEM 'dasdsn.dtd' >
<DASDSN>

<DSN>
<SOURCE id="CNBs" version="1.0">CNBs</SOURCE>
<MAPMASTER>http://servlet.sanger.ac.uk:8080/das/ensembl729
</MAPMASTER>

<DESCRIPTION>Conserved Noncoding Blocks</DESCRIPTION>
</DSN>
<DSN>

<SOURCE id="CNBs-Mouse" version="1.0">CNBs-Mouse</SOURCE>
<MAPMASTER>http://servlet.sanger.ac.uk:8080/das/mouse53/
</MAPMASTER>

<DESCRIPTION>CNBs-Mouse</DESCRIPTION>
</DSN>
<DSN>

<SOURCE id="EPD-Mouse" version="1.0">Mouse EPD Promoter
</SOURCE>

Chapter 6 � The Distributed Annotation System (DAS) 151

<MAPMASTER>http://servlet.sanger.ac.uk:8080/das/mouse53/
</MAPMASTER>

<DESCRIPTION>EPD-Mouse</DESCRIPTION>
</DSN>
<DSN>

<SOURCE id="EPD-promoters" version="1.0">EPD-Promoters
</SOURCE>

<MAPMASTER>http://servlet.sanger.ac.uk:8080/das/ensembl729
</MAPMASTER>

<DESCRIPTION>Promoter positions</DESCRIPTION>
</DSN>

</DASDSN>∗

The prolog of the document specifies the dasdsn.dtd document, and the root of the document is
specified by the DASDSN element. Each data source is specified by a separate DSN element.

The SOURCE element specifies a data source id, which is to be used in subsequent DAS com-
mands. The DESCRIPTION element is human readable text. The MAPMASTER element specifies the
URL for the reference server. If this is a reference server, the URL simply points back to itself. As
you can see in the example above, the Max Planck DAS server hosts four data sources, all of which
use reference maps located at the Ensembl/Sanger DAS server.

6.4.2 Retrieving Entry Points
DAS reference servers maintain a detailed sequence map of the hosted genome. To navigate through
a sequence map, clients must first retrieve a set of entry points. Entry points represent high-level
or well-known elements on the reference sequence map. Frequently, entry points are simply chro-
mosomes within the organism. For example, the entry points for the human genome are frequently
listed as chromosomes 1–22, X, and Y. However, entry points can also refer to nonchromosomal
entities, such as contigs or clones—the building blocks used to create the final genomic assembly.

To retrieve a list of entry points for a particular data source, the client issues a DAS entry-points
command. The command syntax is summarized in Table 6.7.

For example, here is a sample query to the human genome assembly hosted at Ensembl:

http://servlet.sanger.ac.uk:8080/das/ensembl830/entry-points

Here is the XML response:

<?xml version='1.0' standalone='no' ?>
<!DOCTYPE DASEP SYSTEM 'dasep.dtd' >
<DASEP>
<ENTRY-POINTS
href="http://servlet.sanger.ac.uk:8080/das/ensembl830/entry-points"
version="8.30">

∗ If you look carefully, you will note that this XML document is actually invalid. The DTD requires that the <DSN> element
contain SOURCE, DESCRIPTION, and MAPMASTER in that specific order. However, the DAS 1.53 specification states
that elements should appear in the order: SOURCE, MAPMASTER, DESCRIPTION, and many DAS servers have chosen
to follow this convention. Unfortunately, this means there is a discrepancy between the DTD and the specification, and
those servers which follow the specification are actually returning invalid DSN documents.

152 XML for Bioinformatics

<SEGMENT id="Y" size="58368225" subparts="yes" />
<SEGMENT id="X" size="149249818" subparts="yes" />
<SEGMENT id="19" size="60013307" subparts="yes" />
<SEGMENT id="18" size="77516809" subparts="yes" />
<SEGMENT id="17" size="80052782" subparts="yes" />
<SEGMENT id="16" size="81671585" subparts="yes" />
<SEGMENT id="15" size="99217355" subparts="yes" />
<SEGMENT id="14" size="104324908" subparts="yes" />
[... For brevity, the full XML document is not shown here.]

</ENTRY-POINTS>
</DASEP>

The prolog of the document specifies the dasep.dtd document, and the root of the document
is specified by a DASEP element. The DASEP element contains a single ENTRY-POINTS element,
which in turn contains 0 or more SEGMENT elements.

The SEGMENT element contains a number of important attributes. First up is the id attribute.
This specifies a reference ID that can be used within subsequent DAS commands. The size attribute
specifies the size, in base pairs, of the specific segment (alternatively, DAS servers can specify start
and stop attributes).

The subparts attribute indicates whether the segment has an internal structure. If subparts is set
to “yes,” you can issue a features request to retrieve those subparts. Details are provided in Section
6.5 below.

Table 6.7 The DAS entry-points command

Description: Requests a list of entry points for accessing the genome. For most DAS servers, entry points correspond to
specific chromosomes within the genome

Scope: Reference Servers Only

Request Syntax:
PREFIX /das/ DSN /entry-points

Examples:
1. Retrieve entry points for Ensembl human genome:

http://servlet.sanger.ac.uk:8080/das/ensembl830/entry-points
2. Retrieve entry points for WormBase C. elegans genome:

http://www.wormbase.org/db/das/elegans/entry-points

Response: http://www.biodas.org/dtd/dasep.dtd
<!ELEMENT DASEP (ENTRY-POINTS)>

<!ELEMENT ENTRY-POINTS (SEGMENT*)>

<!ATTLIST ENTRY-POINTS href CDATA #REQUIRED>

<!ATTLIST ENTRY-POINTS version CDATA #REQUIRED>

<!ATTLIST ENTRY-POINTS id CDATA #IMPLIED>

<!ELEMENT SEGMENT (#PCDATA)>

<!ATTLIST SEGMENT id CDATA #REQUIRED>

<!ATTLIST SEGMENT start CDATA #IMPLIED>

<!ATTLIST SEGMENT stop CDATA #IMPLIED>

<!ATTLIST SEGMENT orientation CDATA #IMPLIED>

<!ATTLIST SEGMENT subparts CDATA #IMPLIED>

<!ATTLIST SEGMENT size CDATA #IMPLIED>

<!ATTLIST SEGMENT class CDATA #IMPLIED>

Chapter 6 � The Distributed Annotation System (DAS) 153

If two DAS servers provide annotation for the same species, it is important that they
share a common naming convention for entry points. For example, consider two DAS
servers that provide data on the human genome. One uses chromosomes named “1,” “2,”
etc., and the other uses chromosomes named “chr1,” “chr2,” etc. In order to aggregate
data from both DAS servers, the client has to be smart enough to be able to map between
two naming schemes. If the client does not contain the mapping (as is quite common
for most current DAS clients), you cannot aggregate the data at all.

Unfortunately, this was a fairly common problem during early adoption of DAS,
and the DAS community has therefore worked to informally standardize names within
species. For example, human chromosomes are informally standardized as 1–22, X,
Y, as opposed to “chr1,” “CHR1,” etc. In contrast, chromosomes for C. elegans are
informally standardized as I, II, III, etc.

6.4.3 Retrieving Sequence Data
DAS provides two commands for retrieving sequence data. The first is the dna command, used
exclusively for retrieving DNA sequences. The second is the sequence command (new to DAS
version 1.5), used to retrieve any category of sequence data, including DNA, RNA, and protein.
This section includes details on both commands.

The syntax of the DAS dna command is as follows:

PREFIX/das/ DSN/dna?segment=RANGE[;segment=RANGE]

In the syntax above, DSN refers to a data source (see Section 6.4.1). The segment refers to the
specific genomic coordinates of the requested data. Note that you can specify multiple segments
within one request.

For example, to request sequence data from human chromosome 13, you can issue the following
request to UCSC:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/dna?segment=13:30875977,30876100

Alternatively, to retrieve two regions of data, you can issue this request:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/dna?segment=13:30875977,30876200;
segment=13:30876005,30876240

Note that the range is specified by a reference ID, followed by the start and stop positions. If you
do not specify start and stop positions, the server will return the complete sequence data for the
specified segment.

In response to the second request, UCSC will return the following XML document:

<?xml version="1.0" standalone="no"?>
<DASDNA>

<SEQUENCE id="13" start="30875977" stop="30876200" version="1.00">
<DNA length="224">

gtggcgcgagcttctgaaactaggcggcagaggcggagccgctgtggcac
tgctgcgcctctgctgcgcctcgggtgtcttttgcggcggtgggtcgccg
ccgggagaagcgtgaggggacagatttgtgaccggcgcggtttttgtcag

154 XML for Bioinformatics

cttactccggccaaaaaagaactgcacctctggagcgggttagtggtggt
ggtagtgggttgggacgagcgcgt

</DNA>
</SEQUENCE>
<SEQUENCE id="13" start="30876005" stop="30876240" version="1.00">
<DNA length="236">

agaggcggagccgctgtggcactgctgcgcctctgctgcgcctcgggtgt
cttttgcggcggtgggtcgccgccgggagaagcgtgaggggacagatttg
tgaccggcgcggtttttgtcagcttactccggccaaaaaagaactgcacc
tctggagcgggttagtggtggtggtagtgggttgggacgagcgcgtcttc
cgcagtcccagtccagcgtggcgggggagcgcctca

</DNA>
</SEQUENCE>

</DASDNA>

The document must adhere to the dasdna.dtd Document Type Definition file, and the root of the
document must be specified with a DASDNA element. For each segment in the request, the response
will include a corresponding SEQUENCE element. The SEQUENCE element includes a single DNA
element, which contains the actual sequence data. Sequence data must adhere to the standard IUPAC
coding conventions (see Appendix).

The syntax of the sequence command is nearly identical to the dna command. The DAS response
is nearly identical as well. The main differences are that the root element must be specified with
a DASSEQUENCE element, instead of DASDNA , and that the SEQUENCE element must specify a
molecule attribute. The molecule attribute specifies the type of sequence data. Valid options are:
“DNA,” “ssRNA” (single-stranded RNA), “dsRNA” (double-stranded RNA), or “Protein.” All data
must be specified using the standard IUPAC coding conventions (see Appendix).

Table 6.8 The DAS dna command

Description: Requests raw sequence data for a specific genomic region

Scope: Reference Servers Only

Request Syntax:
PREFIX/das/ DSN/dna?segment=RANGE[;segment=RANGE...]

Arguments:
• segment: indicates a specific region of sequence data. Segments are specified as: referenceID :start ,stop . For example, to request a portion of

human chromosome 3, use: segment=3:50000,100000. If start and stop positions are omitted, the server will return the complete sequence
for the specified reference ID. Requests can specify one or more segments, as needed.

Examples:
1. Retrieve single segment of DNA from UCSC:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/dna?segment=13:30875977,30876100
2. Retrieve two segments of DNA from UCSC:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/dna?segment=13:30875977,30876200;segment=13:30876005,30876240

Response: http://www.biodas.org/dtd/dasdna.dtd
<!ELEMENT DASDNA (SEQUENCE+)>

<!ELEMENT SEQUENCE (DNA)>

<!ATTLIST SEQUENCE id CDATA #REQUIRED>

<!ATTLIST SEQUENCE start CDATA #REQUIRED>

<!ATTLIST SEQUENCE stop CDATA #REQUIRED>

<!ATTLIST SEQUENCE version CDATA #REQUIRED>

<!ELEMENT DNA (#PCDATA)>

<!ATTLIST DNA length CDATA #REQUIRED>

Chapter 6 � The Distributed Annotation System (DAS) 155

Table 6.9 The DAS sequence command

Description: Requests raw sequence data (DNA, RNA, or protein sequence data). The sequence command is a newer, more general version of the
dna command. For backward compatibility, the dna command is still maintained.

Scope: Reference Servers Only

Request Syntax:

PREFIX/das/ DSN/sequence?segment=RANGE[;segment=RANGE...]

Arguments:
• segment: indicates a specific region of sequence data. Segments are specified as: referenceID: start, stop. For example, to request a portion of

human chromosome 3, use: segment=3:50000,100000. If start and stop positions are omitted, the server will return the complete sequence for
the specified reference ID. Requests can specify one or more segments, as needed.

Examples:
1. Retrieve single segment of DNA from Ensembl:

http://servlet.sanger.ac.uk:8080/das/ensembl830/sequence?segment=1:1000,1050

Response: http://www.biodas.org/dtd/dassequence.dtd
<!ELEMENT DASSEQUENCE (SEQUENCE+)>

<!ELEMENT SEQUENCE (#PCDATA)>

<!ATTLIST SEQUENCE id CDATA #REQUIRED>

<!ATTLIST SEQUENCE start CDATA #REQUIRED>

<!ATTLIST SEQUENCE stop CDATA #REQUIRED>

<!ATTLIST SEQUENCE version CDATA #REQUIRED>

<!ATTLIST SEQUENCE molecule CDATA #REQUIRED>

6.4.4 Retrieving Annotations
The DAS protocol provides three specific commands for retrieving annotation details. The types
command retrieves a summary of available annotations. The features command retrieves a full list
of annotation details. Finally, the link command retrieves a web page with detailed information
regarding a specific annotation.

Prior to the invention of DAS, a number of other encoding formats were devised to annotate
sequence data. Chief among these is the General Feature Format (GFF, formerly called the Gene
Finding Format). GFF is a tab-delimited format used to encode biological features associated with
sequences. DAS annotations are specified in XML, but the XML is based on the GFF specification.
To understand annotations, we therefore begin with an overview of GFF.

Background: General Feature Format
The General Feature Format [77] is a text-based specification for annotating DNA, RNA, and protein
sequences. GFF focuses on describing features, broadly defined as any property of a sequence that
has biological significance. For example, given a long sequence of DNA, a GFF file might describe
the predicted locations of genes, exons, and introns. Alternatively, a GFF file might mark certain
regions of sequence data and indicate the sequence similarity between two or more species. GFF
files are frequently bundled with one or more FASTA formatted files, which contain the actual
sequence data.

GFF was originally created at the Wellcome Trust Sanger Institute. The full specification
is available online at: http://www.sanger.ac.uk/Software/formats/GFF/GFF-Spec.shtml.

156 XML for Bioinformatics

Below is a sample GFF file:

Sequence1 genscan prediction 98689 98876 4.5100 + .
Sequence1 genscan prediction 112435 112605 7.3900 + .
Sequence1 genscan prediction 113507 113554 2.7300 + .
Sequence1 EnsEMBL exon 15135 15214 . + .
Sequence1 EnsEMBL exon 90205 90389 . + .
Sequence1 EnsEMBL exon 98689 98876 . + 2

Each line indicates a unique feature, and each column indicates a different feature attribute. The
current version of GFF (version 2) defines eight fields of data. These fields must be separated by
tabs and must be specified in the following order:

<seqname> <source> <feature> <start> <end> <score> <strand> <frame>

A summary of the main fields is provided below:
� seqname: identifies the name of the sequence. Normally, the name is defined locally and usually

references an accompanying FASTA file. Alternatively, the sequence name could reference the
unique accession code of a record already stored in a public database, such as NCBI.

� source: identifies the source of the feature. Generally, this indicates the software package or
institution that identified the feature. For example, in the sample above, the first three features
were identified by the genscan gene finding software package.

� feature: identifies the type of feature. GFF does not formally enforce a predefined list of feature
types. However, to ensure greater sharing of data, users are strongly encouraged to stick to
the feature list already defined by NCBI/DDBJ/EMBL. The feature list is available online at:
http://www3.ebi.ac.uk/Services/WebFeat. There are currently over sixty feature types defined,
including: gene, intron, exon, tRNA, repeat-region, and promoter. The EBI web site includes
detailed descriptions and examples of each feature type. Note that the DAS specification urges
that its users stick to the same feature list.

� start, end: identifies the start and stop coordinates for the specified feature.
� score: if the feature was identified by a software package, the package can record a score,

indicating the relative certainty that the feature actually exists. The actual score value can
only be understood within the context of the software application, and you cannot necessarily
compare scores generated by two different applications. If there is no score associated with the
feature, you must specify a “.”.

� strand: indicates the direction of transcription: + or –. Each base pair within a sequence has
a unique position, starting at 1. If transcription is set to +, transcription occurs in the positive
direction from min to max, or 5’ to 3’. If transcription is set to –, transcription occurs in the
negative direction from max to min, or 3’ to 5’. If transcription direction is irrelevant to the
feature, you must specify a “.”.

Following the final field, you can specify a series of additional attributes. In an earlier version of
the specification, the only attribute you could specify was a groupID. This enables users to specify
that multiple features are part of the same group. For example, a series of exons and introns can
be grouped together to form one gene. With GFF version 2, the attribute fields are much more
open-ended. For details, refer to the specification online.

A number of GFF parsing tools are freely available on the web. In particular, the gff2ps
tool takes GFF files and creates visualizations in PostScript format. For details, go to:
http://www1.imim.es/∼jabril/GFFTOOLS/GFF2PS.html.

Chapter 6 � The Distributed Annotation System (DAS) 157

The types command
The DAS types command retrieves a summary of annotations for a specific region of sequence data.
The summary includes two categories of information:

� the type of annotation features available and
� the number of records for each feature type.

For example, a types command response may indicate that a specific region of data contains two
types of features: exons and introns. Furthermore, it may indicate that the region contains a total of
six exons and four introns. To retrieve details on each of these features, you must follow-up with a
features command.

Unlike GFF, DAS annotation records are categorized via a two-level hierarchy. At the top level,
DAS has annotation categories, which usually correspond to broad biological function. For example,
the DAS specification defines nine annotation categories, including “transcription,” “translation,”
and “similarity.” Each category contains multiple types, which provide a finer grained description of
the annotation record. For example, the transcription category contains types for “exons,” “introns,”
and “mRNA.”

Below is a sample types command issued to the UCSC DAS server:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/types?segment=3:50000,100000

The DAS response is provided below:

<?xml version="1.0" standalone="no"?>
<DASTYPES>
<GFF version="1.2" summary="yes" href="http://genome.cse.ucsc.edu/
cgi-bin/das/hg12/types">
<SEGMENT id="3" start="50000" stop="100000" version="1.00">
...
<TYPE id="all-sts-primer" category="other" >0</TYPE>
<TYPE id="all-sts-seq" category="other" >0</TYPE>
<TYPE id="bacEndPairs" category="other" >5</TYPE>
<TYPE id="chimpBac" category="other" >1</TYPE>
<TYPE id="chimpBlat" category="other" >0</TYPE>
<TYPE id="blastzBestMouse" category="transcription" method="BLAT" >31</TYPE>
<TYPE id="blastzMm2" category="other" >13</TYPE>
<TYPE id="blatFish" category="similarity" method="BLAT" >0</TYPE>
[For brevity, the full XML document is not shown here.]
<TYPE id="softberryGene" category="transcription" >0</TYPE>
<TYPE id="stsMap" category="other" >0</TYPE>
<TYPE id="twinscan" category="transcription" >0</TYPE>
...
</SEGMENT>
</GFF>
</DASTYPES>

In total, the UCSC server returns over 40 TYPE elements. Each TYPE element provides a summary
of available annotations. Each element is also described via the two-level categorization described
above. Specifically, each record has an annotation category for broad grouping of features and a
type ID for finer grained descriptions. An optional method attribute identifies the method by which

158 XML for Bioinformatics

Table 6.10 The DAS types command

Description: Requests a summary of annotations for a specific genomic region

Scope: Annotation and Reference Servers

Request Syntax:
PREFIX/das/DSN/types[?segment= RANGE]

[;segment= RANGE]
[;type= TYPE]
[;type= TYPE]

Request Arguments:
• segment: indicates a specific region of sequence data. Segments are specified as: referenceID: start, stop. For example, to request a portion of

human chromosome 3, use: segment=3:50000,100000. If no segment is specified, then all feature types for the specified data source are returned.
• type: filters the data set for records of the specified feature type. If multiple types are specified, the types are connected via a logical OR. For

example, type=genscan;type=snpNih returns all records of type genscan or type snpNih.

Examples:
1. Retrieve UCSC feature types for human chromosome 3, base pairs: 50,000–100,000:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/types?segment=3:50000,100000
2. Retrieve all UCSC feature types for data source: hg12:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/types
3. Retrieve UCSC feature types for human chromosome 3, base pairs: 50,000–100,000; filter for feature types set to type=genscan or type=snpNih:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/types?segment=3:50000,100000;type=genscan;type=snpNih

Response: http://www.biodas.org/dtd/dastypes.dtd
<!ELEMENT DASTYPES (GFF)>

<!ELEMENT GFF (SEGMENT)>

<!ATTLIST GFF version CDATA #REQUIRED>

<!ATTLIST GFF href CDATA #REQUIRED>

<!ELEMENT SEGMENT (TYPE+)>

<!ATTLIST SEGMENT id CDATA #REQUIRED>

<!ATTLIST SEGMENT start CDATA #REQUIRED>

<!ATTLIST SEGMENT stop CDATA #REQUIRED>

<!ATTLIST SEGMENT version CDATA #REQUIRED>

<!ATTLIST SEGMENT label CDATA #IMPLIED>

<!ELEMENT TYPE (#PCDATA)>

<!ATTLIST TYPE id CDATA #REQUIRED>

<!ATTLIST TYPE method CDATA #IMPLIED>

<!ATTLIST TYPE category CDATA #IMPLIED>

the annotation was identified. For example, the “blatFish” feature was identified via the UCSC
BLAT sequence similarity tool.

As noted above, the DAS specification contains a list of nine predefined annotation categories.
Each of these categories contains a list of recommended feature types. The list is not meant to
be comprehensive, but does provide users with a starting reference point. For the most part, the
DAS feature types are based on the same NCBI/DDBJ/EMBL features list used by GFF (see
above). The main difference is that DAS attempts to group these features into broad categories. See
Table 6.11 for details.

Just like GFF, categories and types are not enforced by the specification, and annotation servers
are free to return whatever they like. This can lead to some confusion for users. For example,
in the UCSC response above, one transcription type is specified as “softberryGene.” The soft-
berryGene is not part of the predefined list of DAS types, nor is it part of the NCBI feature list.
To find out what it actually means, you can issue a link command to retrieve additional details
(defined below). However, if the link command is not implemented (as in the case of UCSC), or

Table 6.11 DAS categories and types: The DAS specification includes a list of nine predefined annotation categories and their
associated feature types. The list is not meant to be comprehensive, and annotation servers are free to return whatever categories
or types they choose

Category Name Description Example Types

Component Any annotation that identifies genomic map components.
For details, refer to Section 6.5 of this chapter

� chromosome
� super-contig
� contig
� bac
� read

Experimental A miscellaneous annotation category for new
experimental results

Repeat Any annotation that identifies repetitive
sequence content

� microsatellite
� inverted
� tandem
� transposable-element
� LINE
� SINE
� misc-repeat

Similarity Any annotation that identifies sequence similarity
between two sequences, including cross-species
sequence similarity

� NN (nucleotide-to-nucleotide)
� NP (nucleotide-to-protein)
� PN (protein-to-nucleotide)
� PP (protein-to-protein)
� misc-homology

Structural Any annotation related to mapping, sequencing, and
assembly of the genome

� clone
� primer-left
� primer-right
� oligo
� assembly-tag
� misc-structural

Supercomponent Any annotation that identifies genomic map
super-components. For details, refer to Section 6.5 of
this chapter

� chromosome
� super-contig
� contig
� bac
� read

Transcription Any annotation related to the transcription of DNA to RNA � exon
� intron
� tRNA
� mRNA
� 5’Cap
� PolyA
� Splice5
� Splice3
� misc-transcribed

Translation Any annotation related to the translation of RNA to protein � stop
� ATG
� CDS
� 5’UTR
� 3’UTR
� misc-translated

Variation Any annotation that identifies sequence variation or
polymorphism

� insertion
� deletion
� substitution
� misc-variation
� SNP (single nucleotide polymorphism)

160 XML for Bioinformatics

Table 6.12 The DAS features command

Description: Requests full annotation records across a specific genomic region

Scope: Annotation and Reference Servers

Request Syntax:
PREFIX/das/ DSN/features?[segment= RANGE]

[;segment= RANGE. . .]
[;type= TYPE]
[;type= TYPE]
[;category= CATEGORY]
[;category= CATEGORY]
[;categorize= yes| no]
[;feature-id= ID]
[;group-id= ID]

Request Arguments:
� segment: indicates a specific region of sequence data. Segments are specified as: referenceID: start, stop. For example, to

request a portion of human chromosome 3, use: segment=3:50000,100000. Users are free to specify multiple segments,
as necessary.

� type: filters the data set for records of the specified feature type. If multiple types are specified, the types are connected
via a logical OR. For example, type=genscan;type=snpNih returns all records of type genscan or type snpNih.

� category: filters the data set for records of the specified category. If multiple categories are specified, the categories
are connected via a logical OR.

� categorize: indicates whether the returned feature records include a functional category. If set to “yes,’’ features must
include category information.

� feature-id: instead of specifying a segment, users can opt to retrieve a specific feature by specifying the feature-id
argument. This argument is new to DAS version 1.5, and not yet widely implemented. Check the X-DAS-Capabilities
header “feature-by-id/1.0’’ to determine if the server implements this functionality.

� group-id: instead of specifying a segment, users can opt to retrieve a specific group of features by specifying the group-id
argument. This argument is new to DAS version 1.5, and not yet widely implemented. Check the X-DAS-Capabilities
header “group-by-id/1.0’’ to determine if the server implements this functionality.

Examples:
1. Retrieve all UCSC annotations for human chromosome 3, 50000–100000:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/features?segment=3:50000,100000
2. Retrieve all UCSC annotations for human chromosome 3, 50000–100000; filter for features types set to blastzBestMouse:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/features?segment=3:50000,100000;type=blastzBestMouse
3. Retrieve all UCSC annotations for human chromosome 3, 50000–100000; filter for features related to transcription:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/features?segment=3:50000,100000;category=transcription
4. Retrieve WormBase feature by feature-id:

http://www.wormbase.org/db/das/elegans/features?feature-id=Sequence:cb25.fpc0039/3015360

Response: http://www.biodas.org/dtd/dasgff.dtd
<!ELEMENT DASGFF (GFF)>

<!ELEMENT GFF (SEGMENT | ERRORSEGMENT | UNKNOWNSEGMENT)+>

<!ATTLIST GFF version CDATA #REQUIRED>

<!ATTLIST GFF href CDATA #REQUIRED>

<!ELEMENT SEGMENT (FEATURE+)>

<!ATTLIST SEGMENT id CDATA #REQUIRED>

<!ATTLIST SEGMENT start CDATA #REQUIRED>

<!ATTLIST SEGMENT stop CDATA #REQUIRED>

<!ATTLIST SEGMENT version CDATA #REQUIRED>

<!ATTLIST SEGMENT label CDATA #IMPLIED>

<!ELEMENT FEATURE (TYPE, METHOD, START, END, SCORE, ORIENTATION,

PHASE, GROUP?, LINK?, NOTE?, TARGET?)>

<!ATTLIST FEATURE id CDATA #REQUIRED>

Chapter 6 � The Distributed Annotation System (DAS) 161

Table 6.12 (cont.)

<!ATTLIST FEATURE label CDATA #IMPLIED>

<!ATTLIST FEATURE version CDATA #IMPLIED>

<!ELEMENT TYPE (#PCDATA)>

<!ATTLIST TYPE id CDATA #IMPLIED>

<!ATTLIST TYPE category CDATA #IMPLIED>

<!ATTLIST TYPE reference CDATA "no">

<!ATTLIST TYPE subparts CDATA "no">

<!ELEMENT METHOD (#PCDATA)>

<!ATTLIST METHOD id CDATA #IMPLIED>

<!ELEMENT START (#PCDATA)>

<!ELEMENT END (#PCDATA)>

<!ELEMENT SCORE (#PCDATA)>

<!ELEMENT ORIENTATION (#PCDATA)>

<!ELEMENT PHASE (#PCDATA)>

<!ELEMENT GROUP (NOTE*, LINK*, TARGET*)>

<!ATTLIST GROUP id CDATA #REQUIRED>

<!ELEMENT NOTE (#PCDATA)>

<!ELEMENT LINK (#PCDATA)>

<!ATTLIST LINK href CDATA #REQUIRED>

<!ELEMENT TARGET (#PCDATA)>

<!ATTLIST TARGET id CDATA #REQUIRED>

<!ATTLIST TARGET start CDATA #REQUIRED>

<!ATTLIST TARGET stop CDATA #REQUIRED>

<!ELEMENT ERRORSEGMENT EMPTY>

<!ATTLIST ERRORSEGMENT id CDATA #REQUIRED>

<!ATTLIST ERRORSEGMENT start CDATA #IMPLIED>

<!ATTLIST ERRORSEGMENT stop CDATA #IMPLIED>

<!ELEMENT UNKNOWNSEGMENT EMPTY>

<!ATTLIST UNKNOWNSEGMENT id CDATA #REQUIRED>

<!ATTLIST UNKNOWNSEGMENT start CDATA #IMPLIED>

<!ATTLIST UNKNOWNSEGMENT stop CDATA #IMPLIED>

the DAS server does not have information about this specific type, you only have two options
left—search the web site associated with the DAS server or contact the maintainers of the server
directly via email. In the specific case of the softberryGene type, a quick search of Google will
quickly lead you to the UCSC Genome Browser User Guide, where a detailed explanation is
provided.

The Sequence Ontology project aims to create a controlled vocabulary for describing
sequence features, and may be adopted in a future version of DAS. With a controlled
vocabulary, DAS annotation servers would be constrained to use a predefined list of
terms to describe all sequence features. According to Lincoln Stein, “the existence of a
shared ontology allows an integrator to merge two databases with some guarantee that
a term used in one database corresponds to the same term used in the other” [11]. This
would add some overhead to the existing protocol, but would also significantly improve
the ability of DAS to aggregate data from multiple servers. Complete details regarding
the Sequence Ontology project are available online at: http:// song.sourceforge.net.

162 XML for Bioinformatics

Figure 6.8 A screenshot of TIGR annotation data viewed via the WormBase DAS viewer. Exons are represented as blue rectangles
and the introns are represented as single black lines.

The features command
The DAS features command returns the actual genomic annotation records stored within a DAS
annotation server. The request syntax and the resulting XML are more complicated than other DAS
commands, and this section therefore includes a more detailed example.

One of the best ways to learn the features command is to view genomic annotations through a
DAS viewer and compare the visualizations provided with the actual XML data. For an introductory
example, we consider annotation data for the C. elegans genome, provided by the Institute for
Genomic Research (TIGR). We first examine a small sample of the data via the WormBase DAS
viewer. We then examine the same data in its native XML format.

To get started, open a web browser and go to the WormBase DAS viewer:

http://www.wormbase.org/db/searches/dasview?chromosome=CHROMOSOME-IV;
start=20000;stop=24000

At the bottom of the page, you will see multiple data sources, including “WormBase-elegans” and
“TIGR-elegans.” Under the panel named “Features to show,” select “none” for WormBase and
“all” for TIGR. You should now see a screen that looks similar to Figure 6.8. The visualization
provided by WormBase shows a single coding sequence for the C. elegans Y38C1AB gene. Exons
are represented as blue rectangles and the introns are represented as single black lines. All told, the
visualization shows seven exons and seven introns.

Chapter 6 � The Distributed Annotation System (DAS) 163

Next, issue a features request to the TIGR DAS server and request the same set of data:

http://www.tigr.org/docs/tigr-scripts/tgi/das/elegans/features?segment=CHROMOSOME-IV:
20000,24000

The TIGR response is displayed in Listing 6.1. For brevity, only a portion of the XML response
is shown. However, you can see that several of the FEATURE elements correspond to the visual-
ization provided by WormBase. For example, the first two features correspond to exons starting
at location 23046 and 21606, and the third feature corresponds to an intron starting at location
23199.

The features response must reference the dasgff.dtd document, and must contain a root GFF
element. To help understand the DTD, a visual representation is presented in Figure 6.9.

The FEATURE element represents the actual genome annotation record, and therefore deserves
a close look. Fortunately, most of the elements associated with features correspond to the GFF
format described earlier. Below is a summary of each of these elements:
� TYPE : indicates the feature type. This includes a type id and category. For example, in the TIGR

response, the first feature specifies an exon , which is part of the transcription category.
� METHOD : indicates the method by which the feature was identified. For example, this might

specify a gene finding software package.
� START : indicates the start position of the feature.
� END : indicates the stop position of the feature.
� SCORE : if the feature was identified by a software package, the package can record a score,

indicating the relative certainty that the feature actually exists. The actual score value can only be
understood within the context of the software application and you cannot necessarily compare
scores generated by two different applications. This field corresponds to the “score” column in
GFF.

� ORIENTATION : indicates the direction of transcription: + or –. If transcription is set to +,
transcription occurs in the positive direction. If transcription is set to –, transcription occurs
in the negative direction. If transcription is set to 0, transcription direction is irrelevant to this
feature. This field corresponds to the “strand” column in GFF.

� PHASE : specifies the number of base pairs to shift before reading codons. A codon is a sequence
of three base pairs that codes for a specific amino acid. For example, a phase value of 1 indicates
that the sequence should be shifted be one, and that codons should be read starting at position
2. A value of “−” indicates that the phase is irrelevant to the feature.

� GROUP : indicates that the specified feature is part of a group of features. For example, in the
TIGR example, all the exons and introns correspond to a single gene, and are therefore grouped
together with a common group id, TC83864.

� LINK : a URL that provides further information about the feature.
� NOTE : human readable documentation about the feature.
� TARGET : indicates the target sequence for a sequence similarity match. The element requires

three attributes: an id reference, and start and stop values.

Starting in DAS version 1.5, DAS servers can indicate invalid segment requests by returning ei-
ther an ERRORSEGMENT or UNKNOWNSEGMENT element. Reference servers are required to return an
ERRORSEGMENT element. In contrast, annotation servers are required to return an UNKNOWNSEG-
MENT element. The difference arises because annotation servers do not store a complete genomic
map, and they are therefore unable to determine if the requested segment is actually invalid or just
outside the set of data it contains.

Listing 6.1 DAS response from TIGR. Note that the complete DAS response includes a total of 13FEATURE elements. For brevity,
only the first threeFEATURE elements are displayed here.

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE DASGFF SYSTEM "http://biodas.org/dtd/dasgff.dtd">
<DASGFF>
<GFF version="0.995" href= "http://www.tigr.org/docs/tigr-
scripts/tgi/das/elegans/features">
<SEGMENT id="Sequence:CHROMOSOME-IV" start="20000" stop="24000"
version="1.0">
<FEATURE id="TC83864" label="TC83864">
<TYPE id="exon" category="transcription">transcript</TYPE>
<METHOD id="curated">curated</METHOD>
<START>23046</START>
<END>23198</END>
<SCORE>-</SCORE>
<ORIENTATION>+</ORIENTATION>
<PHASE>0</PHASE>
<GROUP id="TC83864">

<LINK href="http://www.tigr.org/docs/tigr-
scripts/tgi/tc-report.pl?species=elegans;tc=TC83864">TC83864
</LINK>

</GROUP>
</FEATURE>
<FEATURE id="TC83864" label="TC83864">
<TYPE id="exon" category="transcription">transcript</TYPE>
<METHOD id="curated">curated</METHOD>
<START>21606</START>
<END>21689</END>
<SCORE>-</SCORE>
<ORIENTATION>+</ORIENTATION>
<PHASE>0</PHASE>
<GROUP id="TC83864">

<LINK href="http://www.tigr.org/docs/tigr-
scripts/tgi/tc-report.pl?species=elegans;tc=TC83864">TC83864
</LINK>

</GROUP>
</FEATURE>
<FEATURE id="TC83864" label="TC83864">
<TYPE id="intron" category="transcription">transcript</TYPE>
<METHOD id="curated">curated</METHOD>
<START>23199</START>
<END>21605</END>
<SCORE></SCORE>
<ORIENTATION>+</ORIENTATION>
<PHASE>0</PHASE>
<LINK href="http://www.tigr.org/docs/tigr-
scripts/tgi/tc-report.pl?species=elegans;tc=TC83864">""</LINK>
<GROUP id="TC83864">
</GROUP>
</FEATURE>
...

</SEGMENT>
</GFF>
</DASGFF>

Chapter 6 � The Distributed Annotation System (DAS) 165

Figure 6.9 A visual representation of the dasgff DTD. The diagram was created with XMLSpy R© .

The following is an invalid request to the Ensembl DAS reference server:

http://servlet.sanger.ac.uk:8080/das/ensembl830/features?segment=30:100000,200000

DAS style sheets
When creating a visualization of annotations, DAS clients can base the visualization on a style
sheet retrieved from the annotation server. Annotation servers are free to maintain separate style
sheets for each data source, or simply maintain one master style sheet. Furthermore, clients are
not required to actually follow the style sheets—in practice, many of the current DAS viewers
simply ignore the style sheet or implement a limited set of functionality.

It is important to note the DAS style sheets bear no resemblance to other style sheet tech-
nologies, such as Cascading Style Sheets (CSS) or eXtensible Stylesheet Language (XSL).
DAS style sheets are completely homegrown and have their own unique syntax and set of
conventions.

A complete discussion of DAS style sheets is beyond the scope of this chapter. However, a
quick example will provide you with a taste of how it works. To request a style sheet, you simply
invoke the stylesheet command. For example, to retrieve the style sheet for the human genome
provided by Ensembl, use this command:

http://servlet.sanger.ac.uk:8080/das/ensembl830/stylesheet

166 XML for Bioinformatics

The style sheet document associates feature categories and types with objects known as glyphs.
Glyphs represent graphical objects, such as lines, boxes, triangles, and arrows. Each glyph can
be customized with attributes, such as height, color, outline color, and labeling conventions. For
example, here is an excerpt from the Ensembl style sheet:

<TYPE id="similarity">
<GLYPH>
<BOX>
<HEIGHT>15</HEIGHT>
<COLOR>black</COLOR>
<OUTLINECOLOR>green</OUTLINECOLOR>
<LINEWIDTH>1</LINEWIDTH>

</BOX>
</GLYPH>

</TYPE>

This snippet of XML basically recommends that similarity features be rendered with a black
box, 15 pixels high and outlined with a green border. The remainder of the Ensembl style sheet
contains similar recommendations for other feature types.

There is no human chromosome 30 and Ensembl will therefore return the following response:

<?xml version='1.0' standalone='no' ?>
<!DOCTYPE DASGFF SYSTEM 'dasgff.dtd' >
<DASGFF>
<GFF version="1.0"
href="http://servlet.sanger.ac.uk:8080/das/ensembl830/features?
segment= 30:1000000,2000000">
<ERRORSEGMENT id="30" start="100000" stop="200000" />
</GFF>

</DASGFF>

If Ensembl was acting purely as an annotation server, it would return an UNKNOWNSEGMENT
element instead. To determine if a server supports either type of error messages, check the X-DAS
Capabilities header for “error-segment/1.0” or “unknown-segment/1.0.”

The link command
The final DAS command to explore is the link command. The link command retrieves a web page
with additional information regarding an individual annotation. The response is a regular HTML
page, and unlike all the other DAS commands, the page does not contain any structured XML
content. The purpose of the link command is to provide end users with additional human readable
information about individual annotations.

It is important to note that the link command is not yet widely implemented. Instead of imple-
menting the link command, most DAS servers have elected to return URL links within the LINK
element provided by a features command request (see the features command above). By using the
LINK element, each feature comes with a URL link automatically, and the clients have no need to
issue a separate link command.

Complete request/response syntax for the link command is provided in Table 6.13.

Chapter 6 � The Distributed Annotation System (DAS) 167

Table 6.13 The DAS link command

Description: Retrieves a web page with additional information regarding an individual feature

Scope: Annotation and Reference Servers

Request Syntax:

PREFIX/das/ DSN/link?field= FIELD;id=ID

Request Arguments:
� field: indicates the specific type of data to retrieve. Possible values are:

� feature: retrieves information about the feature itself
� type: retrieves type information about the specified feature
� method: retrieves method information about the specified feature
� category: retrieves category information about the specified feature
� target: retrieves target information about the specified feature. Usually used to retrieve sequence similarity

information
� id: indicates the feature ID

Response:
The response is an HTML web page

The Bio::Das Perl Module
In the next two chapters, we will discuss the specifics of parsing DAS data using Java.

However, if you are eager to programmatically interface with DAS and do not want to delve
into the specifics of XML parsing, you may want to consider using one of the open source
Bio* libraries. For example, both BioJava and BioPerl now provide DAS support. To use DAS
in Perl, you will need to download the Bio::Das Perl module, created by Lincoln Stein. This
module is available via CPAN and requires the installation of XML::Parser and LWP (The
World-Wide Web library for Perl). Once properly installed, you can easily make programmatic
calls to any DAS server. For example, the code below connects to Ensembl and issues a DSN
request:

#!/usr/local/bin/perl
use Bio::Das;

print "Running Bio::Das DSN Request\ n";

Create New BioDas Object, with timeout of 5 seconds.
$das = Bio::Das->new(5);

Issue DAS DSN Request
Use the Sanger/Ensembl DAS Server
$response = $das->dsn

('http://servlet.sanger.ac.uk:8080/das');

Display the URL Request
print "DAS Request URL: ", $response->url,"\ n";

Check if Request was successful.
If successful, print all DSN results;
Otherwise print the DAS error message.

168 XML for Bioinformatics

if ($response->is-success) {
@dsns = $response->results;
foreach $dsn (@dsns) {

print "Data Source ID: ", $dsn->id;
print "\ n\tName: ",$dsn->name;
print "\ n\tDescription: ",$dsn->description;
print "\ n\tMapmaster: ",$dsn->master;
print "\ n";

}
} else {

print "Error: ",$response->error,"\ n";
}

As you can see, you issue DAS requests by first instantiating a Das object and subsequently
use this object to issue queries. For example, in the code above, we are using the dsn query
and passing the URL to the Sanger/Ensembl DAS server. You can then check for possible error
codes and display the complete contents of the DAS server response. Complete documentation,
along with more detailed examples, is available within the module.

6.5 Working with Reference Maps

With a complete understanding of the full suite of DAS commands, we can now return to a critical
issue in DAS—working with reference maps. We already know that users can issue an entry-points
command to receive a list of starting points to the genomic map. Most reference servers will return
a set of chromosome numbers. For example, the Ensembl reference server returns chromosomes
1–22, X, and Y. These chromosome numbers are used as reference IDs within subsequent DAS
commands. For example, you can retrieve annotations for human chromosome 1 with this features
command:

http://servlet.sanger.ac.uk:8080/das/ensembl830/features?segment=1:100000,200000

So far, all of the examples in this chapter have used chromosome reference IDs, but you are
not restricted to using just chromosomes. In fact, as we will soon see, chromosome coordinates
may shift between each new version of the genomic assembly, and DAS therefore allows you to
use other reference IDs. DAS even provides the functionality for drilling down within a genomic
map.

The DAS drill-down functionality is based on the genomic map maintained by the reference
server. For example, many genomic assemblies are created via the “clone-contig” approach—
individual clones are sequenced and the clones are then tiled together to form “contigs.” To make
this more concrete, consider Figure 6.10. The figure shows a portion of human chromosome 3
(1–1,000,000 base pairs) via the UCSC genome browser. The map for human chromosome 3 is
divided into hundreds of contigs, and the screenshot shows a portion of just one of these contigs,
NT-005927. The screenshot also shows the clones, which make up the contig, and you can clearly
see the tiling path of overlapping clones. For example, the first clone is AC066595 and its end
overlaps with the beginning of clone AC026187.

DAS enables you to drill down the genomic map, from chromosomes to contigs to clones. To
do so, you must issue a cascading set of DAS commands. A summary of these steps is presented
in Figure 6.11. A detailed example is presented below.

Chapter 6 � The Distributed Annotation System (DAS) 169

Figure 6.10 Screenshot of the USCS genome browser. A portion of chromosome 3 is shown. The browser has been configured to
show clone coverage and map contigs.

Issue entry_points command

Issue features command for
segment; filter for components

If <SEGMENT>
subparts= yes

If <SEGMENT>
subparts= yes

Figure 6.11 To drill down within a genomic map, you must issue a cascade of DAS commands. You begin with an entry-points
command and follow-up with a series of feature commands. At each point, you can check the subparts attribute to determine if there
is further substructure to explore.

6.5.1 Traversing the Ensembl Reference Map
The first step in traversing a genomic map is to retrieve a set of entry points. Here is an excerpt
from the Ensembl entry-points response:

<?xml version='1.0' standalone='no' ?>
<!DOCTYPE DASEP SYSTEM 'dasep.dtd' >
<DASEP>
<ENTRY-POINTS href="http://servlet.sanger.ac.uk:8080/das/
ensembl830/entry-points" version="8.30">
<SEGMENT id="Y" size="58368225" subparts="yes" />
<SEGMENT id="X" size="149249818" subparts="yes" />
<SEGMENT id="19" size="60013307" subparts="yes" />
<SEGMENT id="18" size="77516809" subparts="yes" />
. . .

170 XML for Bioinformatics

If the subparts attribute is set to “yes,” then the segment has some internal structure. To determine
just what the internal structure is, you must issue a features command and restrict the result set
to “components” only. For example, the following command queries Ensembl for all components
within a specific portion of chromosome 3:

http://servlet.sanger.ac.uk:8080/das/ensembl830/features?segment=3:1,20000000;
category=component

Here is an excerpt from the Ensembl response:

<?xml version='1.0' standalone='no' ?>
<!DOCTYPE DASGFF SYSTEM 'dasgff.dtd' >
<DASGFF>
<GFF version="1.0"
href="http://servlet.sanger.ac.uk:8080/das/ensembl830/features
?segment=3:1,20000000;category=component">
<SEGMENT id="3" version="8.30" start="1" stop="20000000">
<FEATURE id="components/NT-005927">
<TYPE id="static-golden-path-contig" reference="yes"

subparts="yes">static-golden-path-contig</TYPE>
<METHOD id="ensembl">ensembl</METHOD>
<START>1</START>
<END>17431026</END>
<SCORE>-</SCORE>
<ORIENTATION>+</ORIENTATION>
<PHASE>-</PHASE>
<TARGET id="NT-005927" start="1" stop="17431026" />

</FEATURE>
...

</SEGMENT>
</GFF>

</DASGFF>

All told, the response includes four features, each of which corresponds to a single contig within
the genomic map. If you use the UCSC genome browser, you can see the same four contigs (see
Figure 6.12). The first contig within the UCSC map and within the XML response is NT-005927. If
you look carefully at the FEATURE element, you can see that the reference attribute is set to “yes.”
This means that NT-005927 can be used as a reference ID in subsequent DAS commands.

Also note that the FEATURE subparts attribute is set to “yes.” This indicates that the contig itself
has even more internal structure. You can therefore query for the components of the contig:

http://servlet.sanger.ac.uk:8080/das/ensembl830/features?segment=NT-005927:1,1000000;
category=component

Here is an excerpt from the Ensembl response:

<?xml version='1.0' standalone='no' ?>
<!DOCTYPE DASGFF SYSTEM 'dasgff.dtd' >
<DASGFF>
<GFF version="1.0"

href="http://servlet.sanger.ac.uk:8080/das/ensembl830/features?
segment=NT-005927:1,1000000;category=component">
<SEGMENT id="NT-005927" version="8.30" start="1" stop="1000000">
...

Chapter 6 � The Distributed Annotation System (DAS) 171

Figure 6.12 Screenshot of the UCSC genome browser. A portion of chromosome 3 is shown. The browser has been configured to
show map contigs only.

<FEATURE id="components/AC066595">
<TYPE id="static-golden-path-clone" reference="yes"

subparts="no">static-golden-path-clone</TYPE>
<METHOD id="ensembl">ensembl</METHOD>
<START>1</START>
<END>172113</END>
<SCORE>-</SCORE>
<ORIENTATION>-</ORIENTATION>
<PHASE>-</PHASE>
<TARGET id="AC066595" start="5" stop="172117" />
</FEATURE>

</SEGMENT>
</GFF>

</DASGFF>

We have now drilled all the way down to the clone level. All told, the response document references
a total of eight clones (each of the clones appears within Figure 6.10). In the one clone shown above,
you can see that its subparts attribute is set to “no,” meaning that it does not contain any further
substructure. Its reference attribute is, however, set to “yes.” This means that you can use the clone
as a reference ID. For example, this command retrieves all features for the clone:

http://servlet.sanger.ac.uk:8080/das/ensembl830/features?segment=AC066595

Some DAS servers also support the ability to query for “supercomponents.” When
querying for components, you are basically drilling down the genomic map; for ex-
ample, you can drill down from chromosomes to contigs to clones. By querying for
supercomponents, you essentially work in reverse—you can begin with a clone, dis-
cover its contig, and then move up to its chromosome. At the time of this writing, the
Ensembl DAS server does not support supercomponent functionality.

6.5.2 Working with Evolving Reference Maps
Now that you understand reference maps, contigs, and clones, we are ready to tackle one remaining
issue: working with evolving reference maps. To highlight the specific issues involved, consider

172 XML for Bioinformatics

a simple scenario: how to retrieve all genomic annotations related to the ADAM2 gene in human
from two different annotation servers.

The first step is to determine that the two annotation servers share a common reference map.
In the ideal case, both annotation servers reference the same DAS reference server, and you can
therefore be certain that they share a common genomic map. However, this is not always the case.
For example, both UCSC and Ensembl are currently set up as annotation servers and reference
servers. In other words, if you issue a DSN query to UCSC, you can see that its annotations
reference UCSC maps. Annotations from Ensembl reference Ensembl maps. Therefore, based on
information from DAS, it is impossible to tell if UCSC and Ensembl are actually referencing the
same genomic map. In fact, the only way to determine this type of information is usually to check
the web site associated with the DAS server. For example, you can check the UCSC Release FAQ,
and determine that the July 2003 release (hg16) uses NCBI Assembly Build 34. Similar information
can be found from the Ensembl web site. If the two data sources use identical NCBI Assembly
builds, they will share a common genomic map, and you can proceed with the second step.

DAS primarily deals with retrieval of annotations based on genomic coordinates (it is also
possible to retrieve annotations based on feature id, but this is not yet widely implemented). Hence,
the second step is to determine the genomic coordinates of the ADAM2 gene. DAS does not provide
such a lookup facility, and you will therefore need to manually obtain this information from one
of the main genome browsers, such as NCBI, UCSC, or Ensembl. For example, you can connect
to UCSC, enter the term “ADAM2,” and find a matching gene location. If you select the July 2003
assembly, you can determine that ADAM2 is located at chr8:39618624-39713096. You can also
determine that the gene is located in contig NT-008251 and clone AP005902.

As the third and final step, you can issue a feature request for each annotation server and specify
the chromosomal coordinates for the ADAM2 gene. However, you may also retrieve annotation
data via contig or clone coordinates. Which option is best? To answer this question, consider that
each time a new genomic assembly is created, sequences are added, deleted, and refined, and
chromosomal (or absolute) coordinates inevitably shift. For example, a new assembly may insert
100 nucleotides at the beginning of chromosome 8 and this will shift all features by 100. ADAM2 is
therefore not guaranteed to always be located at the same absolute coordinates. In fact, if you select
the April 2003 assembly from UCSC, you can see that ADAM2 is now located at chr8:39342200-
39436675—it has shifted approximately 276,000 base pairs. However, you can also determine that
ADAM2 is still located in contig NT-008251 and clone AP005902.

In general, chromosomal coordinates tend to change with each new version of the assembly, but
contig/clone coordinates tend to stay the same. Therefore, if you want to reliably compare features
across multiple versions of an assembly, you are advised to use contig or clone coordinates.

6.6 The Future of DAS

DAS is supported by an active community of developers, and work on DAS 2.0 is already well
under way. The specification process is open to the entire DAS community, and the biodas web site
maintains a Request for Comment (RFC) section (see http://www.biodas.org/RFCs/index.html).
Anyone with a good idea can simply write a new RFC and submit it directly to the web site. Users
can then comment on specific RFCs via the biodas mailing list.

Over a dozen RFCs have already been submitted for DAS version 2.0. Collectively, they provide
some hints regarding the future evolution of DAS. Some RFCs are focused on architectural issues.

Chapter 6 � The Distributed Annotation System (DAS) 173

For example, two RFCs propose that DAS adopt a formal SOAP specification; another RFC proposes
the creation of a DAS registry service that will enable clients to automatically discover new DAS
servers. Other RFCs are focused on creating new functionality for the future. For example, two RFCs
propose a new coordinate mapping service for mapping between different genomic assemblies;
another RFC proposes the creation of a DAS visualization service. Check the biodas.org web site
for details on each RFC.

Parsing DAS Data with SAX 7
The Simple API for XML (SAX) is a standard event-based interface for parsing XML documents.
It is particularly well suited for bioinformatics applications because it is very fast, takes up little
memory, and is capable of parsing very large documents.

This chapter provides a comprehensive overview of the Java SAX API (the Perl SAX API is
covered in Chapter 5). The chapter includes a detailed description of the main SAX interfaces
and detailed examples to illustrate core concepts. We begin with an introduction to the two most
important SAX interfaces: the XMLReader interface implemented by the XML parser; and the
ContentHandler interface, used to receive SAX events as they occur. We then continue with ad-
ditional topics, including: document validation against DTDs and XML Schemas, XML namespace
issues new to SAX 2.0, and options for converting SAX events into custom data structures. The
chapter concludes with an in-depth example that parses Distributed Annotation System (DAS) fea-
ture data via SAX and displays those features via the open source BioJava toolkit. Throughout the
chapter, the sample code uses two SAX 2.0 compliant XML parsers: the lightweight nonvalidating
Piccolo XML parser, and the fully featured Xerces2 XML parser from the Apache group.

7.1 Introduction to SAX

The Simple API for XML (SAX) [71] is a standard event-based interface for parsing XML docu-
ments. Unlike XML itself or the Document Object Model (DOM), SAX is not an official standard of
any organization, such as the World Wide Web Consortium (W3C). Rather, SAX is a de facto stan-
dard, developed by a group of volunteers, freely available to the public, and widely implemented
by dozens of XML parsers. SAX was originally designed for Java, but SAX and SAX-inspired
implementations are now available for other languages, including Perl, Python, C++, Visual Basic,
and Pascal.

For a complete introduction to SAX, and a description of tree-based vs. event-based interfaces,
refer to Chapter 5.

7.1.1 A First Example
Let us dive right in with our first SAX example. Listing 7.1 shows a sample XML document,
retrieved from the Ensembl DAS server. We will use this sample document in subsequent examples.
Listing 7.2 provides the source code for BasicSAX.java. The goal of the program is to capture

175

176 XML for Bioinformatics

Listing 7.1 ensembl-dna.xml

<?xml version="1.0" standalone="no" ?>
<!DOCTYPE DASDNA SYSTEM
"http://servlet.sanger.ac.uk:8080/das/dasdna.dtd">
<DASDNA>
<SEQUENCE id="1" version="8.30" start="1000" stop="1050">
<DNA length="51">
taatttctcccattttgtaggttatcacttcactctgttgactttcttttg
</DNA>

</SEQUENCE>
<SEQUENCE id="2" version="8.30" start="1000" stop="1050">
<DNA length="51">
taatgcaactaaatccaggcgaagcatttcagcttaaccccgagacttttg

</DNA>
</SEQUENCE>

</DASDNA>

Listing 7.2 SAXBasic.java

package org.xmlbio.sax;

import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.Locator;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

import java.io.IOException;

/**
* Basic SAX Example.
* Illustrates basic implementation of the SAX Content Handler.
*/
public class SAXBasic implements ContentHandler {

public void startDocument() throws SAXException{
System.out.println("Start Document");

}

public void characters(char[] ch, int start, int length)
throws SAXException {
String str = new String(ch, start, length);
System.out.println("Characters: " + str.trim());

}

public void endDocument() throws SAXException {
System.out.println("End Document");

}

Chapter 7 � Parsing DAS Data with SAX 177

Listing 7.2 (cont.)

public void endElement(String namespaceURI, String localName,
String qName) throws SAXException {
System.out.println("End Element: " + localName);

}

public void endPrefixMapping(String prefix) throws SAXException {
// No-op

}

public void ignorableWhitespace(char[] ch, int start, int length)
throws SAXException {
// No-op

}

public void processingInstruction(String target, String data)
throws SAXException {

// No-op
}
public void setDocumentLocator(Locator locator) {

// No-op

}
public void skippedEntity(String name) throws SAXException {

// No-op
}

public void startElement(String namespaceURI, String localName,
String qName, Attributes atts) throws SAXException {
System.out.println("Start Element: " + localName);

}

public void startPrefixMapping(String prefix, String uri)
throws SAXException {
// No-op

}

/**
* Prints Command Line Usage
*/
private static void printUsage() {
System.out.println ("usage: SAXBasic xml-file");
System.exit(0);

}

/**
* Main Method
* Options for instantiating XMLReader Implementation:
* 1) XMLReader parser = XMLReaderFactory.createXMLReader();
* 2) XMLReader parser = XMLReaderFactory.createXMLReader

178 XML for Bioinformatics

Listing 7.2 (cont.)

* ("org.apache.xerces.parsers.SAXParser");
* 3) XMLReader parser = new org.apache.xerces.parsers.SAXParser();
*/
public static void main(String[] args) {
if (args.length != 1) {

printUsage();
}
try {

SAXBasic saxHandler = new SAXBasic();
XMLReader parser = XMLReaderFactory.createXMLReader

("org.apache.xerces.parsers.SAXParser");
parser.setContentHandler(saxHandler);
parser.parse(args[0]);

} catch (SAXException e) {
System.out.println ("SAXException: "+e.getMessage());

} catch (IOException e) {
System.out.println ("IOException: "+e.getMessage());

}
}

}

the major SAX events as they occur and output them to the console. For example, if we run this
program on our DNA example from Listing 7.1, we receive the following output:

Start Document
Start Element: DASDNA
Start Element: SEQUENCE
Start Element: DNA
Characters: taatttctcccattttgtaggttatcacttcactctgttgactttcttttg
Characters:
End Element: DNA
End Element: SEQUENCE
Start Element: SEQUENCE
Start Element: DNA
Characters: taatgcaactaaatccaggcgaagcatttcagcttaaccccgagacttttg
Characters:
End Element: DNA
End Element: SEQUENCE
End Element: DASDNA
End Document

As we continue this section, we will flesh out the full details ofSAXBasic.java. For now, consider
a bird’s-eye view. First, the main() method is responsible for creating an XMLReader class. The
XMLReader interface provides a simple API for interacting with any SAX compliant XML parser.
For example, the XMLReader.parse() method directs the parser to retrieve the specified XML
document and immediately start parsing.

To receive call-backs from the SAX parser, SAXBasic.java provides an implementation of
the SAX ContentHandler interface. For each major parsing event, the parser calls the registered
content handler and invokes the appropriate method. For example, when the parser encounters
a start tag, it invokes the startElement() method. In the SAXBasic class, some methods are

Chapter 7 � Parsing DAS Data with SAX 179

Java
Application

XMLReader
Interface

Crimson
XML Parser

Piccolo
XML Parser

for Java

Xerces 2
Java Parser

Figure 7.1 The XMLReader interface provides a common API for interfacing with any SAX 2 compliant XML parser. You can
therefore easily swap XML parsers in and out.

implemented to simply output the event to System.out. Other methods, such as startPre-
fixMapping() , have empty implementations and are therefore silently ignored. In the event of a
fatal error, the parser will throw a SAXException and the program will display a full stack trace.

7.1.2 The XMLReader Interface
As noted above, the XMLReader interface provides a simple API for interacting with any SAX
compliant XML parser. For example, the XMLReader interface provides methods for setting parser
properties or features. From the developer perspective, the XMLReader interface provides a com-
mon set of methods, but the implementation details are conveniently hidden from view. SAX
therefore provides a simple plug and play facility for swapping XML parsers. For example, your
application can easily swap between the Xerces2 XML parser, the Crimson XML parser, and the
Piccolo XML parser. See Figure 7.1.

There are several options for retrieving an instance of an XMLReader. The first option is
to specify your XML parser via a system property and then call the SAX XMLReaderFac-
tory.createXMLReader(). For example, you can modify the main() method as follows:

try {
SAXBasic saxHandler = new SAXBasic();
XMLReader parser = XMLReaderFactory.createXMLReader ();
parser.setContentHandler(saxHandler);
parser.parse(args[0]);

} catch (SAXException e) {

180 XML for Bioinformatics

e.printStackTrace();
} catch (IOException e) {

e.printStackTrace();
}

To specify an XML parser at runtime, you must provide a system property for the SAX driver:
org.xml.sax.driver. The value of the property must point to the XMLReader implementation
provided by the XML parser. This varies by parser. For example, for Xerces2, the system property
must be set to org.apache.xerces.parser.SAXParser ; for Piccolo, the property must be set
tocom.bluecast.xml.Piccolo. If you are using another XML parser, check its documentation
for the exact class name.

You normally specify system properties via the -D option to the java command line program.
For example, the following command line invokes our newly modified SAXBasic program with
the Xerces2 XML parser:

java -Dorg.xml.sax.driver=org.apache.xerces.parsers.SAXParser
org.xmlbio.sax.SAXBasic ensembl-dna.xml

This command line invokes SAXBasic with the Piccolo XML parser:

java -Dorg.xml.sax.driver=com.bluecast.xml.Piccolo
org.xmlbio.sax.SAXBasic ensembl-dna.xml

The advantage of using this approach is that you can easily swap parsers without modifying or
recompiling any code. Note that if the XMLReaderFactory is unable to determine any valid
system defaults, it will throw a SAXException , with a specific message: “System property
org.xml.sax.driver not specified.”

If the XMLReaderFactory is unable to locate the SAX driver specified by
org.xml.sax.driver, it will next check all the JAR files within your CLASSPATH.
JAR files can contain a META-INF/services directory for registering implementations
of well-known interfaces. If an implementation of XMLReader is registered, the XML-
ReaderFactory will use this one.

There are two caveats to using this approach: first, not all XML parsers actually
register their services in this manner; for example, the Xerces2 JAR file specifically
does not register any services. Second, the XMLReaderFactory goes through each
JAR file in your CLASSPATH and finds the first registered implementation. If you have
multiple XML parsers in your CLASSPATH (quite common these days, because many
software distributions automatically include XML parsers), and each one implements
the XMLReader interface, the first matching parser is chosen. Adding a new JAR file
may therefore have a side effect of changing the chosen parser, and this new parser
may not necessarily implement the features your code requires. To avoid this type of
problem, it is best to explicitly set the driver via system properties.

If you have read the warning above, you will note that it is sometimes tricky to determine
which XML parser you are actually using. To determine the current parser, simply print
out the full class name of the XMLReader implementation object. The following code
illustrates the basic idea:

Chapter 7 � Parsing DAS Data with SAX 181

XMLReader parser = XMLReaderFactory.createXMLReader();
System.out.println ("XMLReader: "+parser.getClass().getName());

For example, based on the following sample output:

XMLReader: com.bluecast.xml.Piccolo

you can determine that the Piccolo XML parser was chosen.

The second option is to call the XMLReaderFactory.createXMLReader() method and explic-
itly pass the full path to the XMLReader implementation. For example, the following code loads
the Xerces2 SAX driver:

XMLReader parser = XMLReaderFactory.createXMLReader
("org.apache.xerces.parsers.SAXParser");

The third option is to bypass the XMLReaderFactory altogether and instantiate the XMLReader
implementation directly. For example, this code also loads the Xerces2 SAX driver:

XMLReader parser = new org.apache.xerces.parsers.SAXParser();

The downside to this approach is that you must recompile your code if you decide to swap in a
different parser.

As a fourth option, you can use Sun’s JAXP API (Java API for XML Parsing [85]) to
instantiate an XML parser object. JAXP 1.1 is now included in Java JDK 1.4 and the
following code illustrates the basic functionality:

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser parser = factory.newSAXParser();
parser.parse(args[0], handler);

This code will instantiate a SAXParser object via the JAXP SAXParserFactory.
System properties determine which parser gets instantiated. If you are using JDK 1.4
and have no other parsers within your CLASSPATH, the factory will default to the built-
in Crimson XML parser. Once you have a SAXParser object, it essentially serves as
a wrapper to the SAX XMLReader interface and enables you to set properties/features
and initiate XML parsing.

Most of the power of JAXP comes from providing a vendor neutral API for
interfacing with DOM parsers and XSL transformers. When it comes to SAX, however,
JAXP does not provide much new functionality, and it is often simpler to stick with
the regular SAX XMLReaderFactory class. For full details regarding JAXP, go to:
http://java.sun.com/xml/jaxp.

About Xerces2 and Piccolo
The examples in this chapter will work with any SAX 2.0 compliant parser. However, to illustrate
the range of available XML parsers, the examples alternate between using the Xerces2 Java parser
and the Piccolo XML parser for Java.

182 XML for Bioinformatics

Table 7.1 The SAX XMLReader interface. TheXMLReader interface provides a common API for
interfacing with any SAX 2 compliant XML parser. Copied from the official SAX 2.0 JavaDoc API [71]

Method Summary

ContentHandler getContentHandler()
Return the current content handler

DTDHandler getDTDHandler()
Return the current DTD handler

EntityResolver getEntityResolver()
Return the current entity resolver

ErrorHandler getErrorHandler()
Return the current error handler

boolean getFeature(String name)
Look up the value of a feature flag

Object getProperty(String name)
Look up the value of a property

void parse(InputSource input)
Parse an XML document

void parse(String systemId)
Parse an XML document from a system identifier (URI)

void setContentHandler(ContentHandler handler)
Allow an application to register a content event handler

void setDTDHandler(DTDHandler handler)
Allow an application to register a DTD event handler

void setEntityResolver(EntityResolver resolver)
Allow an application to register an entity resolver

void setErrorHandler(ErrorHandler handler)
Allow an application to register an error event handler

void setFeature(String name, boolean value)
Set the value of a feature flag

void setProperty(String name, Object value)
Set the value of a property

Xerces2 [87] is available from the Apache group and represents a complete rewrite of the very
popular Xerces 1 parser. Xerces2 is extremely full-featured, includes support for SAX and DOM,
and is capable of validating against both DTDs and XML Schemas. Full details and downloads
are available at: http://xml.apache.org/xerces2-j/index.html. Note that the current Xerces2 release
includes two JAR files. The first, xmlParserAPIs.jar, includes all the standard XML APIs, including
DOM and SAX. The second, xercesImpl.jar, includes the Xerces implementation of these APIs.
To use Xerces, you must include both JAR files within your CLASSPATH.

The Piccolo XML parser [86] is a fast, nonvalidating XML parser, hosted on SourceForge. You
can download the Piccolo distribution at: http://piccolo.sourceforge.net.

7.1.3 The ContentHandler Interface
The SAX ContentHandler interface represents the core of any SAX application. As your
XML parser encounters significant parsing events, it calls the appropriate methods in the Con-
tentHandler. For example, when the parser encounters a start tag, it calls the startElement()
method. Your implementation of the interface determines if and how the event is recorded.

In total, the ContentHandler interface defines 11 call-back methods. Each of these methods
is summarized in Table 7.2. For now consider the five most important methods:

Chapter 7 � Parsing DAS Data with SAX 183

Table 7.2 The SAXContentHandler Interface. Copied from the official SAX 2.0 JavaDoc API [71]

Method Summary

void characters(char[] ch, int start, int length)
Receive notification of character data

void endDocument()
Receive notification of the end of a document

void endElement(String uri, String localName, String qName)
Receive notification of the end of an element

void endPrefixMapping(String prefix)
End the scope of a prefix-URI mapping

void ignorableWhitespace(char[] ch, int start, int length)
Receive notification of ignorable whitespace in element content

void processingInstruction(String target, String data)
Receive notification of a processing instruction

void setDocumentLocator(Locator locator)
Receive an object for locating the origin of SAX document events

void skippedEntity(String name)
Receive notification of a skipped entity

void startDocument()
Receive notification of the beginning of a document

void startElement(String uri, String localName, String
qName, Attributes atts)

Receive notification of the beginning of an element
void startPrefixMapping(String prefix, String uri)

Begin the scope of a prefix-URI Namespace mapping

� startDocument(): indicates that the parser has encountered the beginning of an XML docu-
ment. This is usually a good place to execute any initialization procedures.

� startElement(): indicates that the parser has encountered a start XML tag. The method
receives a total of four parameters. The first three parameters provide information about the
element name and its associated XML namespace. The fourth parameter is an Attributes
object, which encapsulates all attribute data associated with this element. We will explore
namespace issues and attributes in detail in the next section.

� endElement(): indicates that the parser has encountered an end XML tag. Much like the
startElement() method, endElement() also receives three parameters, which provide
element name and XML namespace data.

� characters(): indicates that the parser has encountered character data. For performance
optimization, the method receives a character array, instead of a String or StringBuffer
object. To extract the correct character data, you must use the start and length parameters. For
example, this code extracts the current character data into a regular String object:

public void characters(char[] ch, int start, int length)
throws SAXException {
String str = new String(ch, start, length);

...
}

Parsers are free to call the characters() method in any way they see fit. For example,
consider the following snippet of XML:

<DNA>taatttctcccattttgtaggttatc</DNA>

184 XML for Bioinformatics

One XML parser might choose to call characters() once with all the text. Another parser
might choose to break the text into two chunks of data and call characters() twice. Yet
another parser might choose to call characters() for each single character encountered. You
have no way of knowing which strategy your parser will take, and your application therefore
needs some method of buffering character data. For example, the following implementation of
characters() appends to a StringBuffer object:

private StringBuffer currentText;

...

public void characters(char[] ch, int start, int length)
throws SAXException {
String str = new String(ch, start, length);
currentText.append(str);

}

� endDocument(): indicates that the parser has reached the end of the XML document. This is
usually a good place to execute any finalization procedures or free any resources.

7.1.4 Extending the DefaultHandler
When you implement the SAX ContentHandler, you must implement a total of 11 methods. Most
of the time, however, your application really only needs a few of these methods. To help out in
this common situation, SAX provides a helper class, named DefaultHandler. The Default-
Handler provides an empty, no-operation implementation of the ContentHandler interface.
(Actually, the DefaultHandler provides empty implementations for several SAX interfaces, in-
cluding the SAX ErrorHandler—more on this shortly.)

To create a SAX ContentHandler, you simply extend the DefaultHandler, and override
only those methods that you need. For example, Listing 7.3 provides a rewrite of our first example.

Listing 7.3 SAXDefaultHandler.java

package org.xmlbio.sax;

import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.helpers.XMLReaderFactory;
import org.xml.sax.SAXException;
import org.xml.sax.Attributes;
import org.xml.sax.XMLReader;

import java.io.IOException;
/**
* Basic SAX Example.
* Illustrates extending of DefaultHandler
*/
public class SAXDefaultHandler extends DefaultHandler {

public void startDocument() throws SAXException {
System.out.println("Start Document");

}

Chapter 7 � Parsing DAS Data with SAX 185

Listing 7.3 (cont.)

public void characters(char[] ch, int start, int length)
throws SAXException {
String str = new String(ch, start, length);
System.out.println("Characters: " + str.trim());

}

public void endDocument() throws SAXException {
System.out.println("End Document");

}

public void endElement(String namespaceURI, String localName,
String qName) throws SAXException {
System.out.println("End Element: " + localName);

}

public void startElement(String namespaceURI, String localName,
String qName, Attributes atts) throws SAXException {
System.out.println("Start Element: " + localName);

}

/**
* Prints Command Line Usage
*/
private static void printUsage() {

System.out.println ("usage: SAXDefaultHandler xml-file");
System.exit(0);

}

/**
* Main Method
*/
public static void main(String[] args) {

if (args.length != 1) {
printUsage();

}
try {

SAXDefaultHandler saxHandler = new SAXDefaultHandler();
XMLReader parser = XMLReaderFactory.createXMLReader

("com.bluecast.xml.Piccolo");
parser.setContentHandler(saxHandler);
parser.parse(args[0]);

} catch (SAXException e) {
System.out.println ("SAXException: "+e.getMessage());

} catch (IOException e) {
System.out.println ("IOException: "+e.getMessage());

}
}

}

186 XML for Bioinformatics

The class extends the DefaultHandler and overrides a total of five elements. Note that the code
is much more compact than our original example. Note also that for variety, we have now switched
to the Piccolo XML parser.

In SAX 1.0, the helper class was named HandlerBase. The class is now deprecated.

7.1.5 UsingInputSourceObjects
So far, our examples have passed a URI String to the XMLReader.parse() method. For example,
we currently have the following code:

XMLReader parser = XMLReaderFactory.createXMLReader
("com.bluecast.xml.Piccolo");

parser.setContentHandler(saxHandler);
parser.parse(args[0]);

The URI argument can represent a path to a local file or an absolute URL to an external file. For
example, this command line parses a file in the current working directory:

java org.xmlbio.sax.SAXDefaultHandler ensembl-dna.xml

In contrast, this command line retrieves the same file directly from the Ensembl DAS server:

java org.xmlbio.sax.SAXDefaultHandler\
http://servlet.sanger.ac.uk:8080/das/ensembl830/dna?\
segment=1:1000,1050;segment=2:1000,1050

The parser automatically downloads the specified file and handles all the networking details for
you.

For full flexibility, SAX also enables you to specify XML documents via the SAXInputSource
class. (See Table 7.3 for the full API.) The advantage of using InputSource objects is that you
can process XML files via URIs, character streams, or byte streams.

InputSource objects can be useful in numerous situations. For example, you can parse Strings,
which contain XML documents. You can even upload an XML document to a Java servlet, and
parse the document on the server side. The following code excerpt illustrates the basic concepts
for server-side parsing:

public class SAXServlet extends HttpServlet {

/**
* Processes HTTP Post Requests
*/

public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

...
parseXML(request, response);
...

}
/**
* Parses XML document specified by "xml" parameter
*/
private void parseXML(HttpServletRequest request,

Chapter 7 � Parsing DAS Data with SAX 187

HttpServletResponse response) {

PrintWriter out = null;
try {

out = response.getWriter();
SAXHTMLHandler saxHandler = new SAXHTMLHandler(out);
XMLReader parser = XMLReaderFactory.createXMLReader

("org.apache.xerces.parsers.SAXParser");
parser.setContentHandler(saxHandler);
String xml = request.getParameter("xml");
StringReader reader = new StringReader(xml);
InputSource inputSource = new InputSource(reader);
parser.parse(inputSource);

} catch (SAXException e) {
e.printStackTrace(out);

} catch (IOException e) {
e.printStackTrace(out);

}
}

}

Table 7.3 The SAXInputSource class. Copied from the official SAX 2.0 JavaDoc API [71]

Constructor Summary

InputSource()
Zero-argument default constructor

InputSource(InputStream byteStream)
Create a new input source with a byte stream

InputSource(Reader characterStream)
Create a new input source with a character stream

InputSource(String systemId)
Create a new input source with a system identifier

Method Summary
InputStream getByteStream()

Get the byte stream for this input source
Reader getCharacterStream()

Get the character stream for this input source
String getEncoding()

Get the character encoding for a byte stream or URI
String getPublicId()

Get the public identifier for this input source
String getSystemId()

Get the system identifier for this input source
void setByteStream(InputStream byteStream)

Set the byte stream for this input source
void setCharacterStream(Reader characterStream)

Set the character stream for this input source
void setEncoding(String encoding)

Set the character encoding, if known
void setPublicId(String publicId)

Set the public identifier for this input source
void setSystemId(String systemId)

Set the system identifier for this input source

188 XML for Bioinformatics

Figure7.2 Sample screenshot of HTML form. The form enables you to cut and paste XML documents and submit them for server-side
processing. See Figure 7.3 for sample output.

In the Servlet API, you receive HTML form parameters via the request getParameter() method.
In this case, we are retrieving an “xml” parameter, wrapping this in a StringReader object, and
then wrapping this in an InputSource object. Sample screenshots of the servlet in action are
provided in Figures 7.2 and 7.3. You can download the full servlet code from the web site that
accompanies this book.

The InputSource API enables you to specify a byte stream, a character stream, or a
URI. Because it is possible to specify more than one of these options (and the options
may not even be related), the class follows a strict order of evaluation. Character streams
have highest priority, followed by byte streams, and then by URIs. In other words, if
you create an InputSource object and specify both a character stream and a URI, the
parser will always retrieve the document from the character stream.

7.2 Validating XML Documents

7.2.1 Checking for Well-Formedness
By default, XML parsers will automatically check for well-formedness. To review, a document is
said to be well-formed if every start tag has a corresponding end tag, all tags are properly nested,
and all attributes are enclosed in quotes. If any of these constraints are not met, the XML parser
will immediately stop parsing and throw a SAXException.

Chapter 7 � Parsing DAS Data with SAX 189

Figure 7.3 Sample screenshot of server-side XML processing. See Figure 7.2 for sample input.

To capture exceptions, our first two examples surround parse() with a try/catch block:

try {
...
parser.parse(args[0]);

} catch (SAXException e) {
System.out.println ("SAXException: "+e.getMessage());

} catch (IOException e) {
System.out.println ("IOException: "+e.getMessage());

}

To view a well-formedness error, let us modify our working DNA example by removing one of the
end </DNA> tags. (See Listing 7.4.) When we run the example through our SAXBasic program,
we get the following output:

Start Document
Start Element: DASDNA
Start Element: SEQUENCE
Start Element: DNA
Characters: taatttctcccattttgtaggttatcacttcactctgttgactttcttttg
Characters:
End Element: DNA
End Element: SEQUENCE
Start Element: SEQUENCE
Start Element: DNA
Characters: taatgcaactaaatccaggcgaagcatttcagcttaaccccgagacttttg
Characters:
SAXException: The element type "DNA" must be terminated by
the matching end-tag "</DNA>".

190 XML for Bioinformatics

Listing 7.4 ensembl-dna-error.xml. The second end </DNA> tag has been removed, and the document is therefore no longer
well-formed

<?xml version='1.0' standalone='no' ?>
<!DOCTYPE DASDNA SYSTEM
"http://servlet.sanger.ac.uk:8080/das/dasdna.dtd">
<DASDNA>

<SEQUENCE id="1" version="8.30" start="1000" stop="1050">
<DNA length="51">

taatttctcccattttgtaggttatcacttcactctgttgactttcttttg
</DNA>

</SEQUENCE>
<SEQUENCE id="2" version="8.30" start="1000" stop="1050">
<DNA length="51">

taatgcaactaaatccaggcgaagcatttcagcttaaccccgagacttttg
</SEQUENCE>

</DASDNA>

As you can see, a SAXException is thrown, and the exception includes specific details about the
missing end tag. The specific error message is created by the XML parser, and therefore varies from
parser to parser. For example, if we switch from Xerces to Piccolo and parse the same document,
we now get the following slightly different error message: “SAXException: </SEQUENCE> does
not close tag <DNA>.”

It is important to note that the XML parser reports all events prior to the error. For example,
in the output above, you can see that the parser reports several events before reporting the actual
error. Depending on your application, your code may need to take special precautions to handle
this situation. For example, imagine that your application takes each DNA element and stores it to
a relational database. After the first DNA element, you store one string of DNA to the database.
While processing the second element, you encounter the error, and no data is stored. You may
now have a data integrity issue because you have only stored half the DNA data. One potential
solution is to create a database transaction. If you complete parsing without any exceptions, you
can commit the transaction. If, however, a SAXException occurs, you can choose to roll back the
entire transaction.

7.2.2 Validating XML Documents: Overview
Checking for well-formedness is easy and automatic. Checking for validity requires more work.
Below is an overview of the four-step process:

� First, you need to pick a validating XML parser. For example, Xerces is validating, but Piccolo
is not.

� Second, you must explicitly turn XML validation on. You do this via the XMLReader.
setFeature() method.

� Third, you must provide an implementation of the SAX ErrorHandler interface.
� Fourth, you need to explicitly register your ErrorHandler.

In the sections that follow, we provide implementation details for each of the steps.

Chapter 7 � Parsing DAS Data with SAX 191

7.2.3 Activating the SAX Validation Feature
Once you have selected a validating parser, the first step is to turn the SAX validation feature on:

try {
parser.setFeature
("http://xml.org/sax/features/validation", true);

} catch (SAXNotRecognizedException e) {
System.out.println ("SAX Not Recognized: "+e.getMessage());

} catch (SAXNotSupportedException e) {
System.out.println ("SAX Not Supported: "+e.getMessage());

}

The first parameter to setFeature() takes a String argument, indicating the feature that you
want to activate or deactivate. Generally, features are divided into two categories: standard SAX
features, common to all parsers; and vendor-specific features, which are specific to a single
XML parser. Standard features begin with the prefix “http://xml.org/sax/features/.” For exam-
ple, “http://xml.org/sax/features/validation” turns validation on. Vendor-specific features usually
begin with the associated domain. For example, Xerces-specific features begin with the prefix
“http://apache.org/xml/features/.”

Even though SAX features are specified as URLs, these URLs do not point to anything
meaningful. For example, if you type “http://xml.org/sax/features/validation” into a
web browser, you actually get a 404 Not Found Error. It is therefore best to think of
the features as identifiers only. A full list of the standard SAX features is provided in
the JavaDoc API at http://www.saxproject.org.

The setFeature() method can throw two possible exceptions. The first, SAXNotRecog-
nizedException , indicates that the specified feature is not recognized. For example, your feature
string may have a typo or you may have just switched parsers, and the vendor-specific feature is
no longer recognized. The second, SAXNotSupportedException, indicates that the feature is
recognized, but not supported. For example, if you attempt to activate validation for Piccolo, a
nonvalidating parser, it will throw a SAXNotSupportedException.

7.2.4 TheErrorHandler Interface
Once you have activated the validation feature, the parser will check all validity constraints, but va-
lidity errors will be silently ignored. To receive notification of validation errors, you must provide an
implementation of the SAX ErrorHandler interface and explicitly register your ErrorHandler
with the parser.

The ErrorHandler interface defines three error methods, corresponding to the three levels of
errors defined in the XML 1.0 specification:
� Fatal Errors: Primarily refer to errors in well-formedness.
� Errors: Primarily refer to errors in validity.
� Warnings: Catch-all category for reporting low-level warnings.

192 XML for Bioinformatics

Table 7.4 The SAXErrorHandler interface. Copied from the official SAX 2.0 JavaDoc
API [71]

Method Summary

void error(SAXParseException exception)
Receive notification of a recoverable error

void fatalError(SAXParseException exception)
Receive notification of a nonrecoverable error

void warning(SAXParseException exception)
Receive notification of a warning

Table 7.5 TheSAXException API. Copied from the official SAX 2.0 JavaDoc
API [71]

public class SAXException extends Exception

Method Summary

Exception getException()
Return the embedded exception, if any

String getMessage()
Return a detail message for this exception

String toString()
Override toString to pick up any embedded exception

public class SAXParseException extends SAXException

Method Summary

int getColumnNumber()
The column number of the end of the text where the exception occurred

int getLineNumber()
The line number of the end of the text where the exception occurred

String getPublicId()
Get the public identifier of the entity where the exception occurred

String getSystemId()
Get the system identifier of the entity where the exception occurred

Each of the SAX error methods receives a SAXParseException parameter and declares that
it can throw a SAXException. The SAXParseException encapsulates information about the
error, including the specific error message and its location within the XML document.

Upon receiving an error notification, the error handler has two main options. The first option is
to simply record the error and choose not to throw the exception. For example, the implementation
can output the error to System.out or record it to a log file. Because the method does not throw
an exception, the parser continues normal processing.

The second option is to perform some type of logging and then explicitly throw the exception.
By throwing the exception, all normal XML processing is stopped. For example, the following
implementation stops all parsing when a validity error is encountered:

public void error(SAXParseException exception) throws SAXException {
reportError(exception);
throw exception;

}

Chapter 7 � Parsing DAS Data with SAX 193

By definition, fatal errors are nonrecoverable, and will always trigger
a SAXParseException. Even if your error handler does not explicitly throw
any exceptions, the parser will still stop normal processing and throw its own
SAXParseException.

A complete example of XML validation is provided in Listing 7.5. This program extends the
SAX DefaultHandler helper class. As you may recall, the DefaultHandler provides

Listing 7.5 SAXValidator.java

package org.xmlbio.sax;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.helpers.XMLReaderFactory;

import java.io.IOException;
/**
* SAX Validator.
* Illustrates Basic Error Handling.
*/
public class SAXValidator extends DefaultHandler {

private boolean isValid = true;

/**
* Receives notification of a recoverable error.
* Validation Errors are reported here.
*/

public void error(SAXParseException exception) throws SAXException {
isValid = false;
reportError("Error", exception);

}

/**
* Receives notification of a warning.
*/

public void warning(SAXParseException exception) throws SAXException {
reportError("Warning", exception);

}
/**
* Reports SAXParseException Information
*/

private void reportError(String errorType, SAXParseException exception) {
System.out.println(errorType + ": " + exception.getMessage());
System.out.println(" Line: " + exception.getLineNumber());
System.out.println(" Column: " + exception.getColumnNumber());

}
/**

194 XML for Bioinformatics

Listing 7.5 (cont.)

* Returns isValid boolean flag
*/
public boolean isValid() {
return isValid;

}

/**
* Prints Command Line Usage
*/
private static void printUsage() {
System.out.println("usage: SAXValidator xml-file");
System.exit(0);

}

/**
* Main Method
*/
public static void main(String[] args) {

if (args.length != 1) {
printUsage();

}
try {

SAXValidator errorHandler = new SAXValidator();
XMLReader parser = XMLReaderFactory.createXMLReader

("org.apache.xerces.parsers.SAXParser");

// Turn Validation On and Set Error Handler
turnValidationOn(parser);
parser.setErrorHandler(errorHandler);
parser.parse(args[0]);

// If SAXException has not been thrown,
// document must be well-formed
System.out.println("The Document is well-formed.");
if (errorHandler.isValid()) {

System.out.println("The Document is valid.");
}

} catch (SAXException e) {
System.out.println("SAXException: " + e.getMessage());

} catch (IOException e) {
System.out.println("IOException: " + e.getMessage());

}
}

/**
* Turns Validation On
* Includes specific exception handling for
* SAXNotRecognizedException and SAXNotSupportedException.
*/
private static void turnValidationOn(XMLReader parser) {

Chapter 7 � Parsing DAS Data with SAX 195

Listing 7.5 (cont.)

try {
parser.setFeature
("http://xml.org/sax/features/validation", true);

} catch (SAXNotRecognizedException e) {
System.out.println("SAX Not Recognized: " + e.getMessage());

} catch (SAXNotSupportedException e) {
System.out.println("SAX Not Supported: " + e.getMessage());

}
}

}

Listing 7.6 ensembl-dna-invalid.xml. The <SEQUENCE> id attributes have been removed and the document is therefore no longer
valid

<?xml version='1.0' standalone='no' ?>
<!DOCTYPE DASDNA SYSTEM
"http://servlet.sanger.ac.uk:8080/das/dasdna.dtd">
<DASDNA>

<SEQUENCE version="8.30" start="1000" stop="1050">
<DNA length="51">

taatttctcccattttgtaggttatcacttcactctgttgactttcttttg
</DNA>

</SEQUENCE>
<SEQUENCE version="8.30" start="1000" stop="1050">

<DNA length="51">
taatgcaactaaatccaggcgaagcatttcagcttaaccccgagacttttg

</DNA>
</SEQUENCE>

</DASDNA>

implementations of several interfaces, including ContentHandler and ErrorHandler. In this
case, we choose to override the error() and warning() methods—in each case, we simply
record the error to System.out. If no errors are encountered, the program declares that the
document is both well-formed and valid.

Note that by default, the DefaultHandler fatalError() method will throw a SAXExcep-
tion and terminate normal processing. Note also that you must explicitly register your error
handler via the setErrorHandler() method:

parser.setErrorHandler(errorHandler);

Consider the program output for an invalid XML file. For example, consider the revised example
in Listing 7.6. This program is still well-formed, but the required <SEQUENCE> id attributes have
been deleted. When run through the SAX validator, we get a listing of all the validation errors:

Error: Attribute "id" is required and must be specified for
element type "SEQUENCE".

Line: 5
Column: 53

196 XML for Bioinformatics

Error: Attribute "id" is required and must be specified for
element type "SEQUENCE".

Line: 10
Column: 53

The Document is well-formed.

If you are using Xerces and turn validation on, your document must specify a
DTD or XML Schema. Otherwise, you receive the following error: “Document is
invalid. No grammar found.” To get around this, you can activate the Xerces dy-
namic validation feature http://apache.org/xml/features/validation/dynamic. When ac-
tivated, documents with grammars are validated; documents without grammars are not
validated.

7.2.5 Validating against XML Schemas
Not all validating parsers are capable of validating against an XML Schema. The Xerces2 XML
parser provides this functionality, but requires that you explicitly activate the regular validation
feature and a schema-specific validation feature. The schema validation feature is specified by the
URL http://apache.org/xml/features/validation/schema.

To redo our SAXValidator example and add explicit support for schema validation, we can
rewrite the turnValidationOn() method as follows:

private static void turnValidationOn(XMLReader parser) {
try {

parser.setFeature
("http://apache.org/xml/features/validation/schema", true);

parser.setFeature
("http://xml.org/sax/features/validation", true);

} catch (SAXNotRecognizedException e) {
System.out.println ("SAX Feature Not Recognized:"+e.getMessage());

} catch (SAXNotSupportedException e) {
System.out.println ("SAX Feature Not Supported:"+e.getMessage());

}
}

Errors in schema validity are reported to the error handler, just like DTD validity errors.
To determine if your parser supports schema validation, check the parser’s original documenta-

tion.

In addition to the ContentHandler and the ErrorHandler, SAX 2.0 provides
three additional handlers: EntityResolver, DTDHandler, and LexicalHandler.
For details on these handlers, an excellent description is provided in Elliotte Rusty
Harold, Processing XML with Java (Addison-Wesley Professional; November 5,
2002) [57]. The complete book is available online at: http://cafeconleche.org/books/
xmljava.

Chapter 7 � Parsing DAS Data with SAX 197

7.3 Elements, Attributes, and Namespaces

Now that you have a solid understanding of the basic SAX interfaces, let us dig a little deeper
into elements, attributes, and namespaces. Support for XML Namespaces is the biggest addition
to SAX 2.0, and deserves to be explored in detail. To make all the concepts concrete, we will
examine a new SAX program, and its output for two sample XML documents. The first sample
document is the DAS DNA example, already introduced earlier in the chapter. As you may have
already noticed, DAS documents do not use XML Namespaces. The second sample document is
an excerpt of TrEMBL data in its SPTr-XML format. Unlike DAS, the SPTr-XML format does use
XML Namespaces. By comparing the output of the two documents, we can explore element and
namespace issues in detail. Following this, we will delve into the SAX attributes API.

7.3.1 Working with Elements and Namespaces
To get started, let us examine a very simple XHML document that utilizes XML Namespaces:

<?xml version="1.0"?>
<xhtml:html xmlns:xhtml="http://www.w3.org/TR/REC-html40">

<xhtml:head>
<xhtml:title>XML for Bioinformatics</xhtml:title>

</xhtml:head>
<xhtml:body>

<xhtml:p>Welcome!</xhtml:p>
</xhtml:body>

</xhtml:html>

The document has one declared namespace, specified by the prefix “xhtml.” Each of the elements is
specifically declared within the xhtml namespace via the use of qualified names. As a quick review,
qualified names are specified by a namespace prefix, followed by a colon, and the local name. For
example, “xhtml:body” specifies that the body element is associated with the xhtml namespace.

Next, let us examine our new SAX program. The source code is provided in Listing 7.7.

Listing 7.7 SAXElementNamespace.java

package org.xmlbio.sax;

import org.xml.sax.Attributes;
import org.xml.sax.Locator;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.helpers.XMLReaderFactory;

import java.io.IOException;
/**
* SAXElementNamespace.
* Illustrates Element and Namespace Functionality.
* Also illustrates use of Document Locator object.
*/

198 XML for Bioinformatics

Listing 7.7 (cont.)

public class SAXElementNamespace extends DefaultHandler {
private Locator -locator;

/**
* Prints out all three name/namespace parameters.
*/
public void startElement(String namespaceURI, String localName,

String qName, Attributes atts) throws SAXException {
namespaceURI = checkEmptyString(namespaceURI);
System.out.println("Start Element: ");
System.out.println("... Line: " + -locator.getLineNumber());
System.out.println ("... Column: " + -locator.getColumnNumber());
System.out.println("... Namespace URI: " + namespaceURI);
System.out.println("... Local Name: " + localName);
System.out.println("... qName: " + qName);

}

/**
* Signals Start Prefix Mapping for XML Namespaces
*/
public void startPrefixMapping(String prefix, String uri)

throws SAXException {
prefix = checkEmptyString(prefix);
uri = checkEmptyString(uri);
System.out.println("Start Prefix Mapping: ");
System.out.println("... Prefix: " + prefix);
System.out.println("... URI: " + uri);

}

/**
* Signal End Prefix Mapping for XML Namespaces
*/
public void endPrefixMapping(String prefix) throws SAXException {

System.out.println("End Prefix Mapping: " + prefix);
}

/**
* Stores Document Locator
*/
public void setDocumentLocator(Locator locator) {

this.-locator = locator;
}

/**
* Checks for Empty Strings
*/
private String checkEmptyString(String str) {

if (str.equals(""))
return new String("[Empty String]");

else

Chapter 7 � Parsing DAS Data with SAX 199

Listing 7.7 (cont.)

return str;
}

/**
* Prints Command Line Usage
*/
private static void printUsage() {

System.out.println("usage: SAXElementNamespace xml-file");
System.exit(0);

}

/**
* Main Method
*/
public static void main(String[] args) {

if (args.length != 1) {
printUsage();

}
try {

SAXElementNamespace saxHandler = new SAXElementNamespace();
XMLReader parser = XMLReaderFactory.createXMLReader

("org.apache.xerces.parsers.SAXParser");
parser.setContentHandler(saxHandler);
parser.parse(args[0]);

} catch (SAXException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}
}

}

There are a number of important items to note about the example. First, the startElement()
method implementation is now much more detailed. Specifically, it now prints information about
each of the following method parameters:
� namespaceURI: indicates the namespace URI for the specified element. For example,

in the document above, the <xhtml:body> element will have its namespace URI set to
http://www.w3.org/TR/REC-html40. If the element is not associated with any namespace, the
parameter is specified by an empty string.

� localName: indicates the local element name. The local name is the element name, minus any
namespace information. For example, the <xhtml:body> element will have its local name set
to “body.” If the element is not associated with any namespace, the local name is simply the
regular element name. If you do not want to worry about any namespace issues, and just want
the regular element name, this is the parameter you want.

� qualifiedName: indicates the element qualified name. For example, the <xhtml:body> element
will have its qualified name set to “xhtml:body.” If the element is not associated with a namespace
or your document has declared a default namespace, the qualified name will be identical to the
local name and can frequently be ignored.

200 XML for Bioinformatics

Determining Namespace Scope
Namespaces are declared for a specific document scope. For example, in the XHTML document
above, the xhtml namespace is defined for the root element and all of its descendants. To determine
namespace scoping, SAX provides the startPrefixMapping() and endPrefixMapping()
methods. When the XML parser finds an XML namespace declaration, it signals a start prefix
mapping event, and passes the namespace prefix and URI. It then calls the startElement()
method associated with the namespace declaration. For example, when parsing the html root element
above:

<xhtml:html xmlns:xhtml="http://www.w3.org/TR/REC-html40">

the parser will first call the startPrefixMapping() method, followed by the startElement()
method. When the namespace goes out of scope, the parser signals an end prefix mapping event
and passes the same prefix and URI.

By default, all SAX 2.0 parsers support XML Namespaces. If you want to disable
namespace support, set the SAX namespace feature to false:

parser.setFeature ("http://xml.org/sax/features/namespaces", false);

With namespace support disabled, the parser will not signal any start/end prefix mapping
events. Additionally, namespace URIs and local names are simply ignored and passed
as empty strings.

The Document Locator
As a final item, note that the new example also provides an implementation for the
setDocumentLocator() method. This method is called at the very beginning of parsing, and
receives a SAX Locator object. If you save a local reference to the locator object, you can use
it to determine the specific location of parsing events. This can be extremely useful for debugging
purposes or error handling.

For example, ourstartElement() method now prints out the line number and column number
for each start tag:

Table 7.6 The SAX Locator interface. Copied from the official SAX 2.0 JavaDoc
API [71]

Method Summary

int getColumnNumber()
Return the column number where the current document event ends

int getLineNumber()
Return the line number where the current document event ends

String getPublicId()
Return the public identifier for the current document event

String getSystemId()
Return the system identifier for the current document event

Chapter 7 � Parsing DAS Data with SAX 201

public void startElement(String namespaceURI, String localName,
String qName, Attributes atts) throws SAXException {
System.out.println ("Start Element: ");
System.out.println ("... Line: " + -locator.getLineNumber());
System.out.println ("... Column: " + -locator.getColumnNumber());
...

}

Sample Output
As promised, let us now run two sample documents through our new program. First, we process
the DAS DNA example from Listing 7.1. An excerpt of the program output is provided below:

Start Element:
... Line: 4
... Column: 9
... Namespace URI: [Empty String]
... Local Name: DASDNA
... qName: DASDNA
Start Element:
... Line: 5
... Column: 60
... Namespace URI: [Empty String]
... Local Name: SEQUENCE
... qName: SEQUENCE
Start Element:
... Line: 6
... Column: 22
... Namespace URI: [Empty String]
... Local Name: DNA
... qName: DNA
[Output continues...]

As you can see, we can now determine the location of each start element event. Since the DAS
document does not use XML Namespaces, the Namespace URI parameters are specified as empty
strings, and local names are identical to qualified names.

Next, let us examine the sample SPTr-XML in Listing 7.8. This sample document declares a
default namespace in the root <sptr> element. This default namespace is set to urn:uk:ac:ebi:spml,
and applies to all element descendants. When run through our new program, we get the following
output:

Start Prefix Mapping:
... Prefix: [Empty String]
... URI: urn:uk:ac:ebi:spml
Start Prefix Mapping:
... Prefix: xsi
... URI: http://www.w3.org/2001/XMLSchema-instance
Start Element:
... Line: 5
... Column: 2
... Namespace URI: urn:uk:ac:ebi:spml

202 XML for Bioinformatics

... Local Name: sptr

... qName: sptr
Start Element:
... Line: 6
... Column: 118
... Namespace URI: urn:uk:ac:ebi:spml
... Local Name: entry
... qName: entry
[Output continues...]

As you can see, the elements <sptr> and <entry> are both defined within the defined spml name-
space. Because the document uses a default namespace, qualified names are not required, and local
names are identical to qualified names in the program output.

7.3.2 Working with Attributes
When the startElement() method is invoked, the parser will pass all attribute information in a
SAXAttributes object. The Attributes interface provides easy access to all attribute information,
including attribute names, values, types, and associated namespaces. You can easily retrieve attribute

Listing 7.8 Sample SPTr-XML file. For brevity, we have only included a small excerpt of the file

<?xml version="1.0" encoding="UTF-8"?>
<sptr xmlns="urn:uk:ac:ebi:spml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:uk:ac:ebi:spml http://www.ebi.ac.uk/krunte/

sp-ml/src/xsd/SP-ML.xsd"
>
<entry accession="Q99ME3" database="TrEMBL" name="Q99ME3"
firstPublic="2001-06-01" lastAnnotationUpdate="2002-06-01">

<protein>
<name>Synphilin-1</name>

</protein>
<geneList>
<gene>
<name>
Sncaip
<evList>

<ev ref="EI3" />
</evList>

</name>
</gene>
</geneList>
<organismList>

<organism iRefID="1">
<name type="scientific name">Mus musculus</name>
<name type="common name">Mouse</name>
<dbReferenceList>

<dbReference db="NCBI Taxonomy" id="10090" iRefID="2">
...

Chapter 7 � Parsing DAS Data with SAX 203

information by index value or by name. For example, the following method implementation loops
through all attributes by index value:

public void startElement(String namespaceURI, String localName,
String qName, Attributes atts) throws SAXException {
System.out.println ("Start Element: ");
System.out.println ("... Local Name: "+localName);
System.out.println ("... qName: "+qName);
for (int i=0; i< atts.getLength(); i++) {{

System.out.println ("--> Attribute: ");
System.out.println (" ... URI: "+atts.getURI(i));
System.out.println (" ... Local Name: "+atts.getLocalName(i));
System.out.println (" ... QName: "+atts.getQName(i));
System.out.println (" ... Type: "+atts.getType(i));
System.out.println (" ... Value: "+atts.getValue(i));

}}
}

Just like elements, attributes can be specified as qualified names and can be associated with specific
XML Namespaces.

If an element has more than one attribute, the parser may not maintain the order of
those attributes. In fact, the precise order of attributes is implementation dependent.

Table 7.7 The SAX Attributes interface. Copied from the official SAX 2.0 JavaDoc
API [71]

Method Summary

int getIndex(String qName)
Look up the index of an attribute by XML 1.0 qualified name

int getIndex(String uri, String localName)
Look up the index of an attribute by Namespace name

int getLength()
Return the number of attributes in the list

String getLocalName(int index)
Look up an attribute’s local name by index

String getQName(int index)
Look up an attribute’s XML 1.0 qualified name by index

String getType(int index)
Look up an attribute’s type by index

String getType(java.lang.String qName)
Look up an attribute’s type by XML 1.0 qualified name

String getType(String uri, String localName)
Look up an attribute’s type by Namespace name

String getURI(int index)
Look up an attribute’s Namespace URI by index

String getValue(int index)
Look up an attribute’s value by index

String getValue(String qName)
Look up an attribute’s value by XML 1.0 qualified name

String getValue(String uri, String localName)
Look up an attribute’s value by Namespace name

204 XML for Bioinformatics

7.4 Building Custom Data Structures with SAX

For our final SAX topic, we explore the mechanics of building custom data structures. SAX parsing
is a series of linear events, but we frequently need to convert these events into objects or collections
of objects. For example, you can easily transform SAX events into a hierarchical tree of node objects.
You can also transform events into custom objects better suited for your specific application. For
example, you can transform DAS XML documents into discrete sets of sequence or features objects.

For our final example, we will parse DAS documents into feature objects and then display
the features using the open source BioJava toolkit [84]. To make the example more manageable,
we have broken the code into two parts. The first part handles the SAX processing and converts
the SAX events into our own Feature objects. The second part uses the BioJava API to render
the features. The second part is not necessary for understanding SAX, but makes the example much
more compelling.

7.4.1 Parsing DAS Feature Data
Our goal is to parse XML results from a DAS features request. As a quick refresher, here is an
excerpt from a DAS response:

<?xml version='1.0' standalone='no' ?>
<!DOCTYPE DASGFF SYSTEM 'dasgff.dtd' >
<DASGFF>

<GFF version="1.0"
href="http://servlet.sanger.ac.uk:8080/das/ensembl930/features?
segment=NT-008045; type=transcript">

<SEGMENT id="NT-008045" version="9.30" start="1" stop="1433313">
<FEATURE id="ENST00000079954">
<TYPE id="transcript">transcript</TYPE>
<METHOD id="ensembl">ensembl</METHOD>
<START>118771</START>
<END>147304</END>
<SCORE>-</SCORE>
<ORIENTATION>+</ORIENTATION>
<PHASE>-</PHASE>

</FEATURE>
...

Features contain multiple fields of data, but for now we will focus solely on the feature ID, start
and end location. Our first task is therefore to build a Feature class that encapsulates this data.
The code for the Feature class is presented in Listing 7.9. As you can see, the class has get()
methods for each of the main properties.

The BioJava API includes its own Feature interface. We are using our own Feature
class to keep the example simpler, especially for those readers not yet familiar with
BioJava.

Our next task is to create a ContentHandler capable of parsing a DAS response document and
extracting the feature data. This code is presented in Listing 7.10. There are a few important elements

Chapter 7 � Parsing DAS Data with SAX 205

Listing 7.9 Feature.java

package org.xmlbio.sax;

/**
* Encapsulates Basic DAS Feature Information.
*/
public class Feature {

private int -start;
private int -end;
private String -id;

/**
* Constructor.
* @param id Feature ID
* @param start Start Base Pair Location
* @param end Stop Base Pair Location
*/
public Feature (String id, int start, int end) {

this.-id = id;
this.-start = start;
this.-end = end;

}

/**
* Gets Feature ID.
* @return Feature ID
*/
public String getID () {

return this.-id;
}

/**
* Gets Start Base Pair Location.
* @return Base Pair Location
*/
public int getStart () {

return this.-start;
}

/**
* Gets End Base Pair Location.
* @return Base Pair Location
*/
public int getEnd () {

return this.-end;
}

}

206 XML for Bioinformatics

Listing 7.10 DASHandler.java

package org.xmlbio.sax;

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;

import java.util.ArrayList;

/**
* SAX DAS Processor.
* Processes results from DAS Feature Commands.
*/
public class DASHandler extends DefaultHandler {

private final static String FEATURE-ELEMENT = "FEATURE";
private final static String START-ELEMENT = "START";
private final static String END-ELEMENT = "END";
private final static String ID-ATTRIBUTE = "id";

private ArrayList-features;
private int-startLocation;
private int-endLocation;
private String-featureID;
private StringBuffer-currentText;

/**
* Constructor.
*/
public DASHandler () {

this.-features = new ArrayList ();
}

/**
* Gets ArrayList of Fetures.
*/
public ArrayList getFeatures () {

return this.-features;
}

/**
* Processes Start Element Events.
*/
public void startElement (String namespaceURI, String localName,

String qName, Attributes atts) throws SAXException {
if (localName.equals (FEATURE-ELEMENT)) {

-featureID = atts.getValue (ID-ATTRIBUTE);
}
-currentText = new StringBuffer ();

}

/**
* Processes Character Events.
*/

Chapter 7 � Parsing DAS Data with SAX 207

Listing 7.10 (cont.)

public void characters (char[] ch, int start, int length)
throws SAXException {

String str = new String (ch, start, length);

-currentText.append (str);
}

/**
* Processes End Element Events.
*/
public void endElement (String namespaceURI, String localName,

String qName) throws SAXException {
if (localName.equals (START-ELEMENT)) {

-startLocation = Integer.parseInt (-currentText.toString ());
} else if (localName.equals (END-ELEMENT)) {

-endLocation = Integer.parseInt (-currentText.toString ());
} else if (localName.equals (FEATURE-ELEMENT)) {

Feature feature = new Feature
(-featureID, -startLocation, -endLocation);

-features.add (feature);
}

}

/**
* Prints Feature Objects.
* Primarily Used for Debugging Purposes.
*/
public void printFeatures () {

System.out.println ("DAS Features");
for (int i = 0; i < -features.size (); i++) {

Feature feature = (Feature) -features.get (i);
System.out.println ("Feature:");
System.out.println ("... ID: " + feature.getID ());
System.out.println ("... Start: " + feature.getStart ());
System.out.println ("... End: " + feature.getEnd ());

}
}

}

to note. First, the handler contains an ArrayList of Feature objects. When the handler encoun-
ters an end </FEATURE> tag, a new Feature object is created and added to the ArrayList.
Second, note that we explicitly extract the Feature id attribute via the Attributes.getValue()
method. Third, note that the code handles character “chunking” by appending to a StringBuffer
object. The handler also includes a handy printFeatures() method used to print out all the
feature objects—this is particularly helpful for debugging the application.

The BioJava API also includes several classes for automatically parsing DAS data. We
could have used these as well, but then we could not illustrate the mechanics of SAX!

208 XML for Bioinformatics

7.4.2 Integrating with BioJava
As our next step, we can use the open source BioJava package to render the DAS features. The
BioJava API includes a SequencePanel class capable of rendering sequences and their associated
features. The full rendering code is shown in Listings 7.11 and 7.12.

Listing 7.11 FeatureViewer.java

package org.xmlbio.sax;

import org.biojava.bio.Annotation;
import org.biojava.bio.BioException;
import org.biojava.bio.gui.sequence.*;
import org.biojava.bio.seq.DNATools;
import org.biojava.bio.seq.Sequence;
import org.biojava.bio.seq.StrandedFeature;
import org.biojava.bio.seq.impl.SimpleSequence;
import org.biojava.bio.symbol.DummySymbolList;
import org.biojava.bio.symbol.RangeLocation;
import org.biojava.bio.symbol.SymbolList;
import org.biojava.utils.ChangeVetoException;

import javax.swing.*;
import java.awt.*;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.util.ArrayList;

/**
* Simple Feature Browser.
* Utilizes the open source BioJava Libaray.
*/
public class FeatureViewer extends JFrame {

private final static int SEQUENCE-LENGTH = 1000000000;
private Sequence -sequence;
private ArrayList -features;
private int -rangeStart;
private int -rangeEnd;

/**
* Constructor.
*/
public FeatureViewer (ArrayList features)

throws BioException, ChangeVetoException {
this.-features = features;
this.-sequence = createDummySequence ();
determineWindowRange ();
addFeatures (-sequence);
createGUI ();
setExit ();
show ();

}

Chapter 7 � Parsing DAS Data with SAX 209

Listing 7.11 (cont.)

/**
* Creates a Dummy Sequence.
* We create a Dummy Sequence, because we do not have the actual
* sequence data.
*/
private Sequence createDummySequence () {

SymbolList dummyList = new DummySymbolList (DNATools.getDNA (),
SEQUENCE-LENGTH);

Sequence sequence = new SimpleSequence (dummyList, "ensembl",
"ensembl", Annotation.EMPTY-ANNOTATION);

return sequence;
}

/**
* Adds Features to Sequence.
*/
private void addFeatures (Sequence sequence)

throws BioException, ChangeVetoException {
for (int i = 0; i < -features.size (); i++) {

Feature feature = (Feature)-features.get (i);
StrandedFeature.Template bioFeature =

new StrandedFeature.Template ();
bioFeature.location = new RangeLocation (feature.getStart (),

feature.getEnd ());
bioFeature.annotation = Annotation.EMPTY-ANNOTATION;
sequence.createFeature (bioFeature);

}
}

/**
* Determines Window Range for Sequence Panel.
*/
private void determineWindowRange () {

if (-features.size () > 0) {
Feature feature = (Feature)-features.get (0);
this.-rangeStart = feature.getStart ();
this.-rangeEnd = feature.getEnd ();
for (int i = 1; i <-features.size (); i++) {

feature = (Feature)-features.get (i);
int start = feature.getStart ();
int end = feature.getEnd ();
if (start <-rangeStart)

-rangeStart = start;
if (end >-rangeEnd)

-rangeEnd = end;
}

}
}

210 XML for Bioinformatics

Listing 7.11 (cont.)

/**
* Create the User Interface.
*/
private void createGUI () throws ChangeVetoException {

// Create Master Panel
JPanel panel = new JPanel ();
panel.setLayout (new BorderLayout ());
panel.setBorder (BorderFactory.createTitledBorder

("SAX Feature Viewer"));

// Add Sequence Panel inside Scroll Pane
SequencePanel sequencePanel = createSequencePanel ();
JScrollPane scrollPane = new JScrollPane (sequencePanel);
panel.add (scrollPane, BorderLayout.CENTER);

// Add Master Panel to Frame
Container contentPane = this.getContentPane ();
contentPane.add (panel);

// Set Frame Title and Size
setTitle ("SAX Feature Viewer");
setSize (600, 120);

}

/**
* Creates the Sequence Panel for Displaying Features.
*/
private SequencePanel createSequencePanel ()

throws ChangeVetoException {
// Create Sequence Panel
SequencePanel sequencePanel = new SequencePanel ();

// Create Ruler to display Base Pair Locations
RulerRenderer ruler = new RulerRenderer ();

// Create Feature Renderer to Display Features
FeatureBlockSequenceRenderer features =

new FeatureBlockSequenceRenderer ();
RectangularBeadRenderer featr = new RectangularBeadRenderer();
features.setFeatureRenderer (featr);

// Add Renderers to the MultiLineRenderer.
// Enables us to display features along with a ruler.
MultiLineRenderer mlr = new MultiLineRenderer ();
mlr.addRenderer (features);
mlr.addRenderer (ruler);
sequencePanel.setRenderer (mlr);

// Set the Sequence to Render, Range, and Scale
sequencePanel.setSequence (-sequence);

Chapter 7 � Parsing DAS Data with SAX 211

Listing 7.11 (cont.)

sequencePanel.setRange (new RangeLocation (-rangeStart, -rangeEnd));

sequencePanel.setScale (.001);
return sequencePanel;

}
/**
* Sets Window Exit Event Handling.
*/
private void setExit () {

this.addWindowListener (
new WindowAdapter () {

public void windowClosing (WindowEvent e) {
System.exit (0);

}
});

}
}

Listing 7.12 DASProcessor.java

package org.xmlbio.sax;

import org.biojava.bio.BioException;
import org.biojava.utils.ChangeVetoException;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

import java.io.IOException;
import java.util.ArrayList;

/**
* DAS Processor.
* Retrieves features via DAS Protocol and displays them via
* the BioJava Sequence Panel.
*/
public class DASProcessor {

private ArrayList-features;
private String-urn;

/**
* Constructor.
*/
public DASProcessor (String urn) throws BioException,

ChangeVetoException, IOException, SAXException {
this.-urn = urn;
loadFeatures ();
showViewer ();

}

212 XML for Bioinformatics

Listing 7.12 (cont.)

/**
* Loads Features from Specified Data Source.
*/
private void loadFeatures () throws SAXException, IOException {

DASHandler dasHandler = new DASHandler ();
XMLReader parser = XMLReaderFactory.createXMLReader

("org.apache.xerces.parsers.SAXParser");
parser.setContentHandler (dasHandler);
parser.parse (-urn);
dasHandler.printFeatures ();

-features = dasHandler.getFeatures ();
}

/**
* Show Feature Viewer.
*/

private void showViewer () throws BioException, ChangeVetoException {
FeatureViewer featureViewer = new FeatureViewer (-features);

}

/**
* Prints Command Line Usage.
*/
private static void printUsage () {

System.out.println ("usage: DASProcessor URL | xml-file");
System.exit (0);

}

/**
* Main Method.
*/
public static void main (String[] args) throws Exception {

if (args.length != 1) {
printUsage ();

}
DASProcessor processor = new DASProcessor (args[0]);

}
}

To fully understand the code in Listing 7.11, you will need some passing familiarity with the Java
Swing API and the BioJava API. For now, note that the code transforms our custom Feature
objects into BioJava Feature objects. The code also makes use of the BioJava MultiLineRen-
derer class:

MultiLineRenderer mlr = new MultiLineRenderer ();
mlr.addRenderer (features);
mlr.addRenderer (ruler);

This enables us to display features directly above a ruler that displays the base pair locations.

Chapter 7 � Parsing DAS Data with SAX 213

Figure 7.4 The SAX DAS processor program in action. The program receives DAS feature data over the Internet, parses the data via
SAX, and renders the features via the BioJava API.

To run the program, you must specify a fully qualified DAS features request on the command
line. For example, the following invocation requests transcript features from Ensembl for contig
NT-008045:

java org.xmlbio.sax.DASProcessor
"http://servlet.sanger.ac.uk:8080/das/ensembl930/features?
segment=NT-008045;type=transcript"

A sample screenshot of the program in action is provided in Figure 7.4. Each feature is represented
as a black rectangle, and you can use the scroll-bar to scroll through the complete set of features.

Parsing DAS Data with JDOM 8
JDOM is a popular open source library for reading, writing, and modifying XML documents.
Unlike the Document Object Model (DOM), JDOM was specifically created for Java and provides
a very elegant, intuitive API.

JDOM provides easy facilities for reading and validating XML documents, traversing through
document contents, and working with XML Namespaces. It also provides built-in functionality for
creating new XML documents from scratch, moving elements within a document, and outputting
the final result using a number of formatting options. Furthermore, JDOM includes built-in support
for XSL transformations, and a new JDOM extension for XPath functionality.

This chapter takes you through the basics of JDOM. Along the way, each new JDOM concept is
illustrated with an example specifically tailored to the Distributed Annotation System (DAS). For
example, when discussing JDOM traversal functionality, we provide several examples that parse
and extract DAS XML response data. We also explore options for validating DAS documents,
creating new DAS documents, and modifying existing documents.

For a larger case study, the chapter concludes with a discussion of JDAS, an open source DAS
client library that makes extensive use of the JDOM API.

8.1 JDOM Basics

JDOM [91] is an open source library for reading, writing, and modifying XML documents. It is
currently released under an Apache-style open source license and available for download from
http://www.jdom.org. The original release of JDOM was created by Brett McLaughlin and Jason
Hunter. Since its original release, JDOM has been officially accepted into the Sun Java Community
Process (JCP) [88], and may eventually find its way into the core Java distribution. For latest details
on JDOM’s progress within the JCP, check out the main JCP web site at: http://www.jcp.org.

8.1.1 JDOM Package Overview
JDOM consists of five main packages:
� org.jdom: Contains the core classes for representing XML components. For example, this

package contains XML Document, Element, and Attribute classes. Each of these classes
provides accessor methods for extracting pieces of data, such as element text, element children,
or element namespace information.

215

216 XML for Bioinformatics

� org.jdom.input: Contains classes for reading in XML documents from a variety of sources.
For example, the SAXBuilder class builds documents by utilizing the Simple API for XML
(SAX).

� org.jdom.output: Contains classes for outputting XML documents to a variety of sources.
For example, the XMLOutputter class provides several options for “pretty printing” XML
documents.

� org.jdom.filter: Contains aFilter interface and several prebuilt filters for filtering the contents
of an XML document.

� org.jdom.transform: Contains several classes for performing XSL transformations and inter-
facing with the new Java Transformation API for XML (TRaX).

8.1.2 Parsing XML Documents with JDOM
JDOM is not actually an XML parser. Rather, JDOM is a set of classes for representing XML
documents and easily interfacing with existing XML parsers. You can therefore use just about any
XML parser with JDOM. The JDOM distribution does, however, include the Apache Xerces XML
parser and JDOM therefore works “out of the box.”

When parsing XML documents via JDOM, you have two main options. The first option is to
use the SAXBuilder class. This class builds a JDOM document by intercepting SAX events (for
details on SAX events, see the previous chapter). The second option is to use the DOMBuilder
class. The DOMBuilder class parses the entire XML document and builds a complete DOM tree;
it then traverses the entire tree and creates a second JDOM document tree with the identical
information.

Note that the DOMBuilder requires that you build two complete trees, and this takes up more
time and memory than the SAXBuilder . It is therefore generally recommended that you use the
SAXBuilder over the DOMBuilder.

SAXBuilderBasics
To parse a document via the SAXBuilder class, you instantiate a SAXBuilder object and call its
build() method. For example:

SAXBuilder builder = new SAXBuilder();
File file = new File("test-data/ensembl-dna.xml");
Document document = builder.build (file);

The build() method is overloaded and includes options for building documents from files, in-
put streams, character streams, and URLs. Once invoked, the build() method will locate your
specified file, parse it, and return a fully formed JDOM Document object. The Document ob-
ject will contain the complete contents of the XML file and represents the entry point for tree
traversal.

By default, XML validation will be turned off. By passing true to theSAXBuilder() constructor,
you turn XML validation on. For example:

SAXBuilder builder = new SAXBuilder(true);
Document document = builder.build (file);

If any errors occur during the parsing process, JDOM will throw a JDOMException . For example,
errors in well-formedness and validity are reported as JDOMExceptions .

Chapter 8 � Parsing DAS Data with JDOM 217

Behind the scenes, JDOM uses the Java API for XML (JAXP) to locate your XML parser. If
you are using JDK 1.4, JAXP defaults to the built-in Crimson XML parser. If JDOM is unable
to determine your JAXP settings, it is hard coded to use the Xerces XML parser included in the
JDOM distribution.

If you want to override the defaults and use a specific XML parser, you have two main options.
The first option is to specify a JAXP system property, usually from the command line. The JAXP
property is “javax.xml.parsers.SAXParserFactory,” and it must point to the SAXParserFactory
implementation provided by your XML parser. For example, the following command line specifies
the Xerces XML parser:

java - Djavax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.
SAXParserFactoryImpl org.xmlbio.jdom.JDOMBasic ensembl-dna.xml

The second option is to pass the XML parser information to the SAXBuilder() orDOMBuilder()
constructors. For this to work, you must pass a fully qualified reference to the XMLReader imple-
mentation provided by your XML parser. For example, the following code also specifies the Xerces
XML parser:

SAXBuilder builder = new SAXBuilder
("org.apache.xerces.parsers.SAXParser", true);

If you are using a parser other than Xerces, check the parser documentation directly for information
on the correct class settings.

With validation turned on, JDOM will only validate against DTDs. To validate against
an XML Schema, you need to take a few additional steps. First, make sure that your
XML parser is capable of validating against XML Schemas. For example, both Apache
Xerces 1 and Xerces 2 provide Schema support (Xerces 1 is currently included in the
JDOM distribution). Second, make sure that JDOM is using your Schema capable
parser. You can set this via a JAXP system property or via the SAXBuilder() con-
structor (see above).

Third, you need to explicitly turn on Schema validation. In Xerces, you must activate
the “validation/schema” feature. Your code would therefore look like this:

SAXBuilder builder = new SAXBuilder
("org.apache.xerces.parsers.SAXParser", true);

builder.setFeature
("http://apache.org/xml/features/validation/schema", true);

Once everything is set up, Xerces will automatically validate your document against the
XML Schema referenced by your document. If any validation errors are encountered,
JDOM will throw a JDOMException.

XMLOutputterBasics
To output the contents of your XML document, use the JDOM XMLOutputter class. For example,
the following code outputs a JDOM Document to System.out :

XMLOutputter out = new XMLOutputter();
out.output (document, System.out);

218 XML for Bioinformatics

By default, XMLOutputter will output your document exactly as it is stored in memory. How-
ever, the XMLOutputter class also includes several configuration options. For example, you can
force new line characters after the end of each element. You can also specify the exact size
of indentation. For example, the following code outputs your XML document in “pretty print”
format:

XMLOutputter out = new XMLOutputter();
out.setNewlines(true);
out.setIndentSize(4);
out.output(document, System.out);

You can also use XMLOutputter to write out the document contents to a file. For example:

XMLOutputter out = new XMLOutputter();
File file = new File ("document.xml");
FileWriter writer = new FileWriter (file);
out.output(doc, writer);

Basic JDOM Examples
We are now ready for some actual code. Our first example parses any XML file, checks
it for well-formedness, and outputs its contents to the screen. See Listing 8.1 for the full
code.

Listing 8.1 JDOMBasic.java

package org.xmlbio.jdom;

import org.jdom.Document;
import org.jdom.JDOMException;
import org.jdom.input.SAXBuilder;
import org.jdom.output.XMLOutputter;

import java.io.IOException;

/**
* Basic JDOM Example.
* Illustrates the JDOM SAXBuilder and XMLOutputter.
*/
public class JDOMBasic {

/**
* Build and Output the Specified XML Document
*/
public void process(String systemID) {

try {
SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(systemID);
XMLOutputter out = new XMLOutputter();
out.output(doc, System.out);

Chapter 8 � Parsing DAS Data with JDOM 219

Listing 8.1 (cont.)

// If we get here without a JDOMException,
// document is well-formed.
System.out.println("Document is well-formed.");

} catch (JDOMException e) {
System.out.println("JDOM Exception: " + e.getMessage());

} catch (IOException e) {
System.out.println("IOException: " + e.getMessage());

}
}

/**
* Prints Command Line Usage
*/
private static void printUsage() {

System.out.println("usage: JDOMBasic xml-file");
System.exit(0);

}

/**
* Main Method
*/
public static void main(String[] args) {

if (args.length != 1) {
printUsage();

}
System.out.println("JDOMBasic Example");
System.out.println("Parsing file: " + args[0]);
JDOMBasic app = new JDOMBasic();
app.process(args[0]);

}
}

There are a number of important elements to note about Listing 8.1. First, we are using
the SAXBuilder object to build a JDOM Document object. We are using the no-argument
SAXBuilder() constructor, and XML validation is, by default, turned off. If JDOM detects any
errors in well-formedness, it will immediately throw a JDOMException . Otherwise, the program
exits with the message “Document is well-formed.” The program also outputs the document to the
screen via the XMLOutputter class.

Our second example performs basic XML validation. See Listing 8.2 for the complete code.
This time, we pass true to the SAXBuilder() constructor. If JDOM detects any errors in

Listing 8.2 JDOMValidator.java

package org.xmlbio.jdom;

import org.jdom.Document;
import org.jdom.JDOMException;
import org.jdom.input.SAXBuilder;

220 XML for Bioinformatics

Listing 8.2 (cont.)

/**
* DAS Validator.
* Illustrates XML Validation.
*/
public class JDOMValidator {

/**
* Build and Validate the Specified XML Document
*/

public void process(String systemID) {
try {

// By passing true to SAXBuilder Constructor, we
// turn XML validation on
SAXBuilder builder = new SAXBuilder(true);
Document doc = builder.build(systemID);
// If we get here without a JDOMException,
// document is well-formed and valid.
System.out.println("Document is well-formed.");
System.out.println("Document is valid.");

} catch (JDOMException e) {
// Indicates error in well-formedness or validity
System.out.println("JDOM Exception: " + e.getMessage());

}
}

/**
* Prints Command Line Usage
*/
private static void printUsage() {

System.out.println("usage: JDOMValidator xml-file");
System.exit(0);

}

/**
* Main Method
*/
public static void main(String[] args) {

if (args.length != 1) {
printUsage();

}
JDOMValidator app = new JDOMValidator();
app.process(args[0]);

}
}

well-formedness or validity, it will immediately throw a JDOMException . Otherwise, the pro-
gram exits with the message “Document is well-formed. Document is valid.”

The second example is a handy program to keep around. You can use it to validate any XML
document and immediately determine the source of any validity errors.

Chapter 8 � Parsing DAS Data with JDOM 221

8.2 Parsing DAS Documents with JDOM

8.2.1 Introduction to the JDOM Element API
Once you have processed your XML document via the SAXBuilder or DOMBuilder classes,
your application will receive a JDOM Document object. The Document object contains the
complete contents of your XML document. It also serves as the entry point to the root element of
the document and the starting point for complete tree traversal.

To obtain the root element of your document, simply call the getRootElement() method.
For example:

SAXBuilder builder = new SAXBuilder();
Document doc = builder.build (systemID);
Element root = doc. getRootElement();

The JDOM Element class contains numerous accessor methods. For example, you can determine
the element’s name, extract its attributes, get a list of all its child elements, add new content, or
remove existing content. A list of these methods is provided in Table 8.1. Take a moment now to
skim the table. We will not be covering every single one of these methods here, but it is helpful to
understand the range of functionality provided.

Table 8.1 Methods of the JDOMElement class. Copied directly from the official JDOM JavaDoc API [91], with the permission of
Jason Hunter. For the complete JDOM API go to http://www.jdom.org/docs/apidocs/index.html

Method Summary

Element addContent(CDATA cdata)
This adds a CDATA section as content to this element

Element addContent(Comment comment)
This adds a comment as content to this element

Element addContent(Element element)
This adds element content to this element

Element addContent(EntityRef entity)
This adds entity content to this element

Element addContent(String str)
This adds text content to this element

Element addContent(Text text)
This adds text content to this element

void addNamespaceDeclaration(Namespace additional)
This will add a namespace declaration to this element

java.lang.Object clone()
This returns a deep clone of this element

Element detach()
This detaches the element from its parent, or does nothing if the element has no parent

boolean equals(java.lang.Object ob)
This tests for equality of this Element to the supplied Object, explicitly using the == operator.

java.util.List getAdditionalNamespaces()
This will return any namespace declarations on this element that exist, excluding the namespace of the

element itself, which can be obtained throughgetNamespace()
Attribute getAttribute(String name)

This returns the attribute for this element with the given name and within no namespace, or null if no such
attribute exists

222 XML for Bioinformatics

Table 8.1 (cont.)

Method Summary

Attribute getAttribute(String name, Namespace ns)
This returns the attribute for this element with the given name and within the given namespace, or null if no

such attribute exists
java.util.List getAttributes()

This returns the complete set of attributes for this element, as a List of Attribute objects in no particular order,
or an empty list if there are none

String getAttributeValue(String name)
This returns the attribute value for the attribute with the given name and within no namespace, null if there is

no such attribute, and the empty string if the attribute value is empty
String getAttributeValue(String name, Namespace ns)

This returns the attribute value for the attribute with the given name and within the given namespace, null if
there is no such attribute, and the empty string if the attribute value is empty

String getAttributeValue(String name, Namespace ns,
String def)

This returns the attribute value for the attribute with the given name and within the given namespace, or the
passed-in default if there is no such attribute

String getAttributeValue(String name, String def)
This returns the attribute value for the attribute with the given name and within no namespace, or the passed-in

default if there is no such attribute
Element getChild(String name)

This returns the first child element within this element with the given local name and belonging to no namespace
Element getChild(String name, Namespace ns)

This returns the first child element within this element with the given local name and belonging to the given
namespace

java.util.List getChildren()
This returns a List of all the child elements nested directly (one level deep) within this element, as Element

objects
java.util.List getChildren(String name)

This returns a List of all the child elements nested directly (one level deep) within this element with the given
local name and belonging to no namespace, returned as Element objects

java.util.List getChildren(String name, Namespace ns)
This returns a List of all the child elements nested directly (one level deep) within this element with the given

local name and belonging to the given namespace, returned as Element objects
String getChildText(String name)

This convenience method returns the textual content of the named child element, or returns an empty String
(“’’) if the child has no textual content

String getChildText(String name, Namespace ns)
This convenience method returns the textual content of the named child element, or returns null if there is no

such child
String getChildTextNormalize(String name)

This convenience method returns the normalized textual content of the named child element, or returns null
if there is no such child

String getChildTextNormalize(String name, Namespace ns)
This convenience method returns the normalized textual content of the named child element, or returns null

if there is no such child
String getChildTextTrim(String name)

This convenience method returns the trimmed textual content of the named child element, or returns null if
there is no such child

String getChildTextTrim(String name, Namespace ns)
This convenience method returns the trimmed textual content of the named child element, or returns null if

there is no such child

Chapter 8 � Parsing DAS Data with JDOM 223

Table 8.1 (cont.)

java.util.List getContent()
This returns the full content of the element as a List that may contain objects of typeText, Element,
Comment, ProcessingInstruction, CDATA , andEntityRef

java.util.List getContent(Filter filter)
Return a filter view of this Element’s content

Document getDocument()
This retrieves the owning Document for this Element, or null if not currently a member of a Document

String getName()
This returns the (local) name of the Element, without any namespace prefix, if one exists

Namespace getNamespace()
This will return this Element’s Namespace

Namespace getNamespace(String prefix)
This returns the namespace in scope on this element for the given prefix (this involves searching up the tree,

so the results depend on the current location of the element)
String getNamespacePrefix()

This returns the namespace prefix of the Element, if one exists
String getNamespaceURI()

This returns the URI mapped to this Element’s prefix (or the default namespace if no prefix)
Element getParent()

This will return the parent of this Element
String getQualifiedName()

This returns the full name of the Element, in the form [namespacePrefix]:[localName]
String getText()

This returns the textual content directly held under this element
String getTextNormalize()

This returns the textual content of this element with all surrounding whitespace removed and internal white-
space normalized to a single space

String getTextTrim()
This returns the textual content of this element with all surrounding whitespace removed

boolean hasChildren()
Test whether this element has a child element

int hashCode()
This returns the hash code for this element

boolean isAncestor(Element element)
Determines if this element is the ancestor of another element

boolean isRootElement()
This returns a boolean value indicating whether this Element is a root Element for a JDOM Document

boolean removeAttribute(Attribute attribute)
This removes the supplied Attribute should it exist

boolean removeAttribute(String name)
This removes the attribute with the given name and within no namespace

boolean removeAttribute(String name, Namespace ns)
This removes the attribute with the given name and within the given namespace

boolean removeChild(String name)
This removes the first child element (one level deep) with the given local name and belonging to no namespace

boolean removeChild(String name, Namespace ns)
This removes the first child element (one level deep) with the given local name and belonging to the given

namespace
boolean removeChildren()

This removes all child elements
boolean removeChildren(String name)

This removes all child elements (one level deep) with the given local name and belonging to no namespace

224 XML for Bioinformatics

Table 8.1 (cont.)

Method Summary

boolean removeChildren(String name, Namespace ns)
This removes all child elements (one level deep) with the given local name and belonging to the given

namespace
boolean removeContent(CDATA cdata)

This removes the specified CDATA
boolean removeContent(Comment comment)

This removes the specified Comment
boolean removeContent(Element element)

This removes the specified Element
boolean removeContent(EntityRef entity)

This removes the specified EntityRef
boolean removeContent(ProcessingInstruction pi)

This removes the specified ProcessingInstruction
boolean removeContent(Text text)

This removes the specified Text
void removeNamespaceDeclaration(Namespace

additionalNamespace)
This will remove a namespace declaration from this element

Element setAttribute(Attribute attribute)
This sets an attribute value for this element

Element setAttribute(String name, String value)
This sets an attribute value for this element

Element setAttribute(String name, String value,
Namespace ns)

This sets an attribute value for this element
Element setAttributes(java.util.List newAttributes)

This sets the attributes of the element
Element setChildren(java.util.List children)

This sets the content of the element the same as setContent(java.util.List), except only Element objects
are allowed in the supplied list

Element setContent(java.util.List newContent)
This sets the content of the element

protected Element setDocument(Document document)
This sets the Document parent of this element and makes it the root element

Element setName(String name)
This sets the (local) name of the Element

Element setNamespace(Namespace namespace)
This sets this Element’s Namespace

protected Element setParent(Element parent)
This will set the parent of this Element

Element setText(String text)
This sets the content of the element to be the text given

String toString()
This returns a String representation of the Element, suitable for debugging

8.2.2 Traversing DAS Documents
To illustrate the core methods of the JDOM Element class, let us try out another example. List-
ing 8.3 provides code for a DASWalker program. The program accepts a single URL argument

Chapter 8 � Parsing DAS Data with JDOM 225

Listing 8.3 DASWalker.java

package org.xmlbio.jdom;

import org.jdom.Attribute;
import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.input.SAXBuilder;

import java.util.List;

/**
* DAS Walker.
* Illustrates the basics of JDOM Traversal.
*/
public class DASWalker {

/**
* Download and Traverse the Specified XML File.
*/
public void process(String systemID) {

try {
// Build Document via SAXBuilder
SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(systemID);
// Get Root Element
Element root = doc.getRootElement();
// Process Root Element
processElement(root);

} catch (JDOMException e) {
system.out.println("JDOM Exception: " + e.getMessage());

}
}

/**
* Recursive Method to Process Elements.
*/

private void processElement(Element element) {
// Get Element Name and Normalized Text
String elementName = element.getName();
String text = element.getTextNormalize();
System.out.println("Element: " + elementName);
processAttributes(element);
if (text != null && text.length() > 0)

System.out.println("... Text: " + text);
// Get all Element Children and pass to processElement
List children = element.getChildren();
for (int i = 0; i < children.size(); i++) {

Element child = (Element) children.get(i);
processElement(child);

}
}

226 XML for Bioinformatics

Listing 8.3 (cont.)

/**
* Process Attributes.
*/
private void processAttributes(Element element) {

List attributes = element.getAttributes();
for (int i = 0; i < attributes.size(); i++) {

Attribute attribute = (Attribute) attributes.get(i);
String attributeName = attribute.getName();
String attributeValue = attribute.getValue();
System.out.println("... " + attributeName + " : " +
attributeValue);

}
}

/**
* Prints Command Line Usage.
*/
private static void printUsage() {

System.out.println("usage: DASWalker xml-file");
System.exit(0);

}

/**
* Main Method.
*/
public static void main(String[] args) throws Exception {

if (args.length != 1) {
printUsage();

}
DASWalker app = new DASWalker();
app.process(args[0]);

}
}

and can be used to parse the contents of any DAS XML response document. For example, the
following command line issues a dsn command, requesting a full list of data sources hosted by the
Wormbase DAS server:

java org.xmlbio.jdom.DASWalker http://www.wormbase.org/db/das/dsn

In response to a dsn request, Wormbase returns the document shown in Listing 8.4. JDOM parses
this document and outputs the following content:

Element: DASDSN
Element: DSN
Element: SOURCE
... id: elegans
... Text: elegans
Element: MAPMASTER
... Text: http://www.wormbase.org/db/das/elegans
Element: DESCRIPTION
... Text: C. elegans annotations from WormBase

Chapter 8 � Parsing DAS Data with JDOM 227

Listing 8.4 DAS DSN response from Wormbase.org

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE DASDSN SYSTEM "http://www.biodas.org/dtd/dasdsn.dtd">
<DASDSN>

<DSN>
<SOURCE id="elegans">elegans</SOURCE>
<MAPMASTER>http://www.wormbase.org/db/das/elegans</MAPMASTER>
<DESCRIPTION>C. elegans annotations from WormBase

</DESCRIPTION>
</DSN>

</DASDSN>

Element Names and Namespaces
The DASWalker program works by traversing the complete contents of the JDOM tree. The core
of the tree traversal occurs within the recursive processElement() method. This method first
extracts the element name via the getName() method:

String elementName = element.getName();

If you want to determine the element’s namespace, call the getNamespace() method. With the
returned Namespace object, you can determine the Namespace prefix and the Namespace URI.
For example:

Namespace namespace = element.getNamespace();
if (namespace != null) {

System.out.println ("... Namespace --> " + namespace.getPrefix()
+ ": " + namespace.getURI());

}

Extracting Element Text
You have several options when extracting element text. First, the getText() method returns the
text as it is stored in memory and may include multiple whitespace characters. ThegetTextTrim()
method gets the same text string, but removes the leading and trailing whitespaces. Finally, the
getTextNormalize() method replaces multiple whitespace characters with a single space char-
acter, and returns a more compact representation of the string.

Note that the Element API also includes a handy convenience method for extracting the text of
a specific subelement. For example, this line of code extracts the text from the first element named
“MAPMASTER”:

String mapMaster = dsnElement.getChildText("MAPMASTER");

Traversing Element Children
To traverse through the children of an element, the DASWalker program calls the getChildren()
method:

List children = element.getChildren();
for (int i = 0; i < children.size(); i++) {

228 XML for Bioinformatics

Element child = (Element) children.get(i);
processElement(child);

}

The getChildren() method returns a list of immediate descendants, each of which is passed
recursively to the processElement() method.

If you want to filter for specific elements, use the getChildren (String name) method.
For example, as we will see in the next example, this line of code extracts all <DSN> elements
from the root element:

List dsnElements = root.getChildren("DSN");

Working with Attributes
Working with XML attributes is very straightforward in JDOM. Each JDOM attribute is represented
by an Attribute object, and you receive a complete list of attributes via the getAttributes()
method:

List attributes = element.getAttributes();
for (int i = 0; i < attributes.size(); i++) {

Attribute attribute = (Attribute) attributes.get(i);
String attributeName = attribute.getName();
String attributeValue = attribute.getValue();
System.out.println("... " + attributeName + " : "
+ attributeValue);

}

As a convenience, the Attribute class has a number of get() methods for performing automatic
type conversion. For example, there are methods for getDoubleValue(), getFloatValue(),
and getIntValue() .

As an extra convenience, you can also extract a specific attribute value from the Element object
by using the getAttributeValue() method. For example, the following line extracts the “id”
attribute from the current element object:

String id = element.getAttributeValue("id")

Much like Element objects, you can determine an Attribute object’s namespace information by
calling the getNamespace() method. For example:

Namespace namespace = attribute.getNamespace();
String prefix = namespace.getPrefix();
String uri = namespace.getURI();

Traversing the Complete Contents of an XML Document
The Element getChildren() method only returns element children. However, it is sometimes
useful to extract nonelement children, such as comments and processing instructions. To get the
complete contents of an Element object, use the getContent() method. This method will return
a list of JDOM objects, including objects of type Comment, CDATA, ProcessingInstruction,

Chapter 8 � Parsing DAS Data with JDOM 229

etc. To determine the type of each object in the list, you frequently need an if/else tree with multiple
uses of the instanceof operator. For example:

List content = element.getContent();
for (int i = 0; i < content.size(); i++) {

Objec object = content.get(i);
if (object instanceof Element)

...
else if (object instanceof Comment)

...
else if (object instanceof CDATA)

...
else if (object instanceof ProcessingInstruction)

...
else if (object instanceof Text)

...
}

JDOM includes a Filter interface for filtering the direct descendants of an Element
object. This can be useful for numerous scenarios. For example, you can filter for ele-
ments within a specific namespace, or filter for specific node types, such as processing
instructions or comments.

To use a filter, you have the option of implementing the JDOM Filter interface
directly or using one of two prebuilt JDOM filter classes. To build your own filter, you
need to create a new class and implement the three required methods, as defined in
the JDOM Filter interface . However, for most common tasks, you can use the pre-
built ElementFilter or ContentFilter classes. The ElementFilter is useful
for filtering elements which match specific criteria, e.g., elements must exist within
a specified namespace. The ContentFilter is useful for filtering specific types of
nodes. For example, the following code extracts only comment nodes and hides all the
rest:

// By passing false to constructor, all JDOM
// objects are filtered out.
ContentFilter filter = new ContentFilter(false);
// Turn Filtering on for Comments only
filter.setCommentVisible(true);
// Get the Comments
List content = element.getContent(filter);

As you can see from the code above, once you have a filter object, you pass it to the
getContent() method. The method applies the filter to all direct descendants and
returns only those objects which match the defined criteria.

8.2.3 Parsing DAS dsn Documents
The DASWalker program can traverse any arbitrary DAS XML response (or any arbitrary XML
document, for that matter). Most of the time, however, you want to parse a specific XML document,
which adheres to a predefined DTD or XML Schema. Given the XML document, you frequently

230 XML for Bioinformatics

want to extract a subset of the data and pass the data objects along to other components within your
application.

We will see more examples of parsing specific DAS documents in our discussion of JDAS at the
end of the chapter. However, for now, we consider a slightly simpler example. Our next example
parses dsn responses from DAS servers and prints out a simple directory of available data sources.
For example, the following command line:

java org.xmlbio.jdom.DAS-DSNProcessor http://www.wormbase.org/
db/das/dsn

generates the following output:

Retrieving data sources from: http://www.wormbase.org/db/das/dsn
Data Source:
... ID: elegans --> elegans
... MapMaster: http://www.wormbase.org/db/das/elegans
... Description: C. elegans annotations from WormBase

The full code is shown in Listing 8.5.

Listing 8.5 DAS-DSNProcessor.java

package org.xmlbio.jdom;

import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.input.SAXBuilder;

import java.util.Iterator;
import java.util.List;

/**
* Parses DAS Data Source (DSN) Data.
* Illustrates Basic use of JDOM Traversal Functionality.
* Example usage: java DAS-DSNProcessor http://www.wormbase.org/

db/das/dsn
*/
public class DAS-DSNProcessor {

/**
* Processes XML Document.
*/
public void process(String systemID) {

System.out.println("Retrieving data sources from:" + systemID);
try {

// Build Document
SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(systemID);
// Get Root Element
Element root = doc.getRootElement();
processRootElement(root);

Chapter 8 � Parsing DAS Data with JDOM 231

Listing 8.5 (cont.)

} catch (JDOMException e) {
System.out.println("JDOM Exception: " + e.getMessage());

}
}

/**
* Processes Root Element of DAS Response.
*/
private void processRootElement(Element root) {

List dsnElements = root.getChildren("DSN");
Iterator iterator = dsnElements.iterator();
while (iterator.hasNext()) {

Element dsnElement = (Element) iterator.next();
processDSNElement(dsnElement);

}
}

/**
* Processes DSN Element of DAS Response.
*/
private void processDSNElement(Element dsnElement) {

System.out.println("Data Source:");
Element sourceElement = dsnElement.getChild("SOURCE");
if (sourceElement != null) {

String id = sourceElement.getAttributeValue("id");
String version = sourceElement.getAttributeValue("version");
String sourceText = sourceElement.getTextNormalize();
System.out.print("... ID: " + id);
if (version != null)

System.out.print (", Version: " + version);
System.out.println(" --> " + sourceText);

}

String mapMaster = dsnElement.getChildText("MAPMASTER");
String description = dsnElement.getChildText("DESCRIPTION");

if (mapMaster != null && mapMaster.length() > 0)
System.out.println("... MapMaster: " + mapMaster);

if (description != null && description.length() > 0)
System.out.println("... Description: " + description);

}

/**
* Print Command Line Usage.
*/
private static void printUsage() {

System.out.println("usage: DAS-DSNProcessor xml-file");
System.exit(0);

}

232 XML for Bioinformatics

Listing 8.5 (cont.)

/**
* Main Method.
*/
public static void main(String[] args) {

if (args.length != 1) {
printUsage();

}
DAS-DSNProcessor app = new DAS-DSNProcessor();
app.process(args[0]);

}
}

The example in Listing 8.5 does a good job of recapping the main methods of the JDOM API. For
example, the processRootElement() method takes the root element of the document and filters
it for all elements named “DSN”:

List dsnElements = root.getChildren(“DSN");

Each matching element is then sent to the processDSNElement() method. Here, we extract
information on three specific elements: <SOURCE>, <MAPMASTER>, and <DESCRIPTION>.
For each of these elements, the code extracts the element text and any known attributes. For example,
these lines extract the <SOURCE> element data:

Element sourceElement = dsnElement.getChild ("SOURCE");
if (sourceElement != null) {

String id = sourceElement.getAttributeValue("id");
String version = sourceElement.getAttributeValue("version");
String sourceText = sourceElement.getTextNormalize();
...

}

JDOM and XPath
The very latest JDOM code now provides built-in support for XPath via the open source
Jaxen Project (http://jaxen.sourceforge.net). As of this writing, XPath support is functional,
but not fully complete, and is therefore not yet part of the official JDOM distribution. To
get the very latest JDOM code with XPath functionality, you must download the source code
from the JDOM CVS server directly. Instructions are available on the JDOM web site at:
http://www.jdom.org/downloads/source.html.

Once you have downloaded the source code and generated the proper Jar files, using XPath
is easy. To apply an XPath query to an existing document, you first need a JDOM XPath
object. New instances of XPath are available via the static XPath.newInstance() method.
For example, the following code instantiates an XPath object for locating DAS <DNA> sequence
elements:

XPath xpath = XPath.newInstance ("/DASDNA/SEQUENCE/DNA");

Chapter 8 � Parsing DAS Data with JDOM 233

The XPath selectNodes() method receives a Document object, applies the XPath query,
and returns a matching list of objects. For example:

List list = xpath.selectNodes (doc);

You can then iterate through the matching nodes and extract any data you need.
A more complete code excerpt is shown below:

SAXBuilder builder = new SAXBuilder ();
Document doc = builder.build (url);

// Create XPath Instance
XPath xpath = XPath.newInstance ("/DASDNA/SEQUENCE/DNA");

// Select Nodes which match XPath
List list = xpath.selectNodes (doc);

// Iterate through selected nodes
Iterator iterator = list.iterator ();
while (iterator.hasNext ()) {

Element element = (Element) iterator.next ();
System.out.println ("DNA: "

+ element.getTextNormalize ());
}

8.3 Creating DAS Documents with JDOM

So far, we have seen that JDOM provides a very simple, powerful API for parsing and traversing
existing XML documents. We now turn to the use of JDOM in creating and modifying documents.
To illustrate the concepts, we examine a simple program that generates DAS response documents
using hard-coded data. Creating DAS documents like this may be quite useful to you, but the basic
principles can be applied to any other bioinformatics application.

8.3.1 Creating New Documents
To create a new XML document via JDOM, you first need to instantiate a JDOM Document object:

Document document = new Document();

To specify a DTD for your document, create a DocType object and then call the Document set-
DocType() method. For example, the following code creates a document with the dasdna.dtd
file:

DocType docType = new DocType("DASDNA", "http://biodas.org/dtd/dasdna.dtd");
document.setDocType(docType);

234 XML for Bioinformatics

8.3.2 Creating New Elements
To create a new XML element, you instantiate a new Element object and specify the element
name. For example, the following code instantiates a <DASDNA> element:

Element root = new Element("DASDNA");

If your element exists within an XML Namespace, you need to first create a JDOM Namespace
object, and then pass this to the element constructor. For example, this code excerpt creates an
<html> element within the XHTML namespace:

Namespace xhtmlNamespace = Namespace.getNamespace("xhtml",
"http://www.w3.org/TR/REC-html40");

Element root = new Element("html", xhtmlNamespace);

Every document must have a root element, which is set via the setRootElement() method. For
example, the following creates a <DASDNA> element and sets it as the root element:

Document document = new Document();
Element root = new Element("DASDNA");
document.setRootElement(root);

To create nested elements within your document, you call the addContent() method. For
example, this code creates a <SEQUENCE> element and adds it to the root <DASDNA>
element:

Element root = new Element("DASDNA");
Element sequenceElement = new Element("SEQUENCE");
root.addContent(sequenceElement);

To move an element within a document, you must first detach() it from its parent. It is then free
to be attached anywhere within the document. For example, the following code swaps the first two
elements within a document:

Element root = doc.getRootElement();
List children = root.getChildren();
Element element1 = (Element) children.get(0);
Element element2 = (Element) children.get(1);
element1.detach();
element2.detach();
root.addContent(element2);
root.addContent(element1);

Once you have an Element object, you can easily set its attributes via the
setAttribute() method. For example, the following code adds two attributes to the
<SEQUENCE> element:

Element sequenceElement = new Element("SEQUENCE");
sequenceElement.setAttribute("id", id);
sequenceElement.setAttribute("version", version);

To remove an attribute, use the removeAttribute (String attributeName) method.

Chapter 8 � Parsing DAS Data with JDOM 235

Setting Element Text
To add text to an element, use the setText() method. For example:

Element dnaElement = new Element("DNA");
dnaElement.setText("taatttctcccattttgtaggttatca");

JDOM will automatically escape any special characters for you. For example, the following call
adds sample HTML code to your document:

Element paragraph1 = new Element("p", xhtmlNamespace);
paragraph1.setText("Sample HTML Code: This is Bold");

If you subsequently call paragraph1.getText() , you get back the text string exactly like
this: “Sample HTML Code: This is Bold.” However, when you output the document
via XMLOutputter, the angle brackets are automatically replaced with entity references. The
outputted element therefore looks like this:

<xhtml:p>Sample HTML Code: This is Bold</xhtml:p>

If you want to explicitly add a CDATA section to your document, instantiate a CDATA object and
add it to the contents of your element. For example:

Element paragraph2 = new Element("p", xhtmlNamespace);
CDATA cdata = new CDATA("<I>More Sample Code</I>");
paragraph2.addContent(cdata);

If you subsequently call paragraph2.getText(), JDOM automatically detects the CDATA
sections and returns the following string: “<I>More Sample Code</I>.” However, when
you output the document via XMLOutputter, the CDATA section is explicitly set like this:

<xhtml:p><![CDATA[<I>More Sample Code</I>]]></xhtml:p>

8.3.3 A Complete Example
To tie all these concepts together, let us look at a complete example. Listing 8.6 creates a valid
XML document, which adheres to the dasdna.dtd file. For simplicity, the data is hard-coded. Note
that the program uses XMLOutputter to pretty print the generated document. Sample output is
provided below:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DASDNA SYSTEM "http://biodas.org/dtd/dasdna.dtd">
<DASDNA>

<SEQUENCE id="1" version="8.30" start="1000" stop="1025">
<DNA length="25">taatttctcccattttgtaggttat</DNA>

</SEQUENCE>
<SEQUENCE id="2" version="8.30" start="1000" stop="1025">

<DNA length="25">taatgcaactaaatccaggcgaagc</DNA>
</SEQUENCE>

</DASDNA>

Most of the code is self-explanatory. We first create a Document object, specify its DTD, and
add a root <DASDNA> element. We then add two embedded <SEQUENCE> objects to the root
<DASDNA> element. The outputDocument() method takes care of theXMLOutputter options
and outputs the document to the screen.

236 XML for Bioinformatics

Listing 8.6 DASCreator.java

package org.xmlbio.jdom;

import org.jdom.DocType;
import org.jdom.Document;
import org.jdom.Element;
import org.jdom.output.XMLOutputter;

import java.io.IOException;

/**
* JDOM Creator.
* Illustrates how to create a new XML document from scratch via
JDOM API.

*/
public class DASCreator {

/**
* Creates a Sample DAS DNA Document.
*/
public void createXML() throws IOException {

// Create New Document
Document document = new Document();

// Set DTD
setDocType(document);

// Create Root Element
Element root = new Element("DASDNA");
document.setRootElement(root);

// Create Sequence Element #1
Element sequenceElement = createSequenceElement

("1", "8.30", "1000", "1025", "taatttctcccattttgtaggttat");
root.addContent(sequenceElement);
// Create Sequence Element #2
sequenceElement = createSequenceElement("2", "8.30", "1000",

"1025", "taatgcaactaaatccaggcgaagc");
root.addContent(sequenceElement);

// Output Document in Pretty Print Format
outputDocument(document);

}

/**
* Sets the DTD.
*/

private void setDocType(Document document) {
DocType docType = new DocType("DASDNA",

Chapter 8 � Parsing DAS Data with JDOM 237

Listing 8.6 (cont.)

"http://biodas.org/dtd/dasdna.dtd");
document.setDocType(docType);

}

/**
* Creates a DAS Sequence Element.
*/
private Element createSequenceElement(String id, String version,

String start, String stop, String dnaSequence) {
Element sequenceElement = new Element("SEQUENCE");
sequenceElement.setAttribute("id", id);
sequenceElement.setAttribute("version", version);
sequenceElement.setAttribute("start", start);
sequenceElement.setAttribute("stop", stop);
Element dnaElement = createDNAElement(dnaSequence);
sequenceElement.addContent(dnaElement);
return sequenceElement;

}

/**
* Creates a DAS DNA Element.
*/
private Element createDNAElement(String dnaSequence) {

Element dn{Element = new Element("DNA");
dnaElement.setAttribute("length",

Integer.toString(dnaSequence.length()));
dnaElement.setText(dnaSequence);
return dnaElement;

}

/**
* Outputs the New XML Document in "pretty-print" format.
*/
private void outputDocument(Document document) throws
IOException {
XMLOutputter out = new XMLOutputter();
out.setNewlines(true);
out.setIndentSize(4);
out.output(document, System.out);

}

/**
* Main Method.
*/
public static void main(String[] args) throws IOException {

DASCreator creator = new DASCreator();
creator.createXML();

}
}

238 XML for Bioinformatics

8.4 Building the JDAS Library

Now that we have covered the basics of JDOM, we are ready to move onto a larger case study.
JDAS is an open source Java library for connecting to and querying remote Distributed Annotation
System (DAS) servers. It was created by the author during the course of writing this book and can
be downloaded from the web site that accompanies this book at: http://www.xmlbio.org/jdas.

JDAS aims to be fully compliant with the latest DAS specification and currently offers the
following features:
� Full support for the following DAS Commands: dsn, dna, sequence, entry--points, types, and

features.
� Easy access to the X-DAS Status code and detailed error messages.
� Easy access to the X-DAS-Capabilities header.
� Console logging feature for viewing all request/response data as it is transmitted over the wire.
� XML validation for all DAS responses and the ability to programmatically disable XML vali-

dation.

JDAS makes extensive use of several open source packages, including JDOM, the Apache Xerces
XML parser, and the Jakarta Commons HttpClient library. JDOM is responsible for parsing DAS
XML responses and packaging the data into intermediate data model objects. For example, the
JDOM code parses DAS sequence documents and packages the data into Sequence objects. The
HttpClient library is responsible for connecting to remote DAS servers and issuing DAS commands.

8.4.1 Using JDAS
The goal of JDAS is to provide flexible access to DAS data via a very simple API. To that end,
JDAS consists of just four main packages:
� org.xmlbio.jdas.request: Request classes encapsulate requests sent to remote DAS

servers. Request classes currently exist for six DAS commands, including: DsnRequest, Se-
quenceRequest , and DnaRequest . All request classes extend the base DASRequest class,
which provides methods for setting the DAS server URL, specifying the DAS data source, acti-
vating/deactivating XML validation, and setting timeouts for network connections. See Table 8.2
for details.

� org.xmlbio.jdas.parameter: Parameter classes encapsulate parameters sent to DAS
servers. For example, the Segment parameter enables you to specify exact genomic coor-
dinates, such as chromosome number and start/stop base pair values.

� org.xmlbio.jdas.response: Response classes encapsulate data returned by DAS servers.
For each request class, there is a corresponding response class. For example, the pack-
age includes: DsnResponse, SequenceResponse , and DnaResponse . Each of the re-
sponse classes provides accessor methods for extracting the underlying data. For example, the
SequenceResponse class includes a getSequenceList() method, which returns an Ar-
rayList of Sequence objects. All response classes extend the base DasResponse class,
which provides access to the X-DAS status code, the X-DAS version number, and the X-DAS
capabilities header. The base class also provides a convenience method for viewing the complete
XML response document. See Table 8.3 for complete details.

� org.xmlbio.jdas.datamodel: Data model classes encapsulate the core data returned by
DAS servers. For example, the package includes Sequence and DataSource classes. Each of
the classes includes specific accessor methods for extracting individual pieces of data.

Table 8.2 The DasRequest class. Abstract base class for all DAS requests

Method Summary

int getConnectionTimeOut ()
Gets the Connection Time Out

String getDataSource()
Gets the DAS Data Source

String getHttpGetURI()
Gets the complete HTTP URL used for Get Requests

NameValuePair[] getRequestParameters()
Gets the List of Request Parameters

java.net.URL getRequestURL()
Gets the DAS Request URL (not including request parameters)

String getURLBase()
Gets the URL Base of the DAS Server

boolean getValidateXMLResponse()
Gets the XML Validation Status

void setConnectionTimeOut(int timeOutInMilliseconds)
Sets the Connection Time Out

void setDataSource(java.lang.String dataSource)
Sets the DAS Data Source

void setURLBase(java.lang.String urlBase)
Sets the URL Base of the DAS Server

void setValidateXMLResponse(boolean validate)
Activates/Deactivates XML Validation of DAS Response

Table 8.3 The DasResponse class. Abstract base class for all DAS responses

Field Summary

static int X-DAS-STATUS-BAD-COMMAND
X-DAS-Status: 400 Bad command (command not recognized)

static int X-DAS-STATUS-BAD-COMMAND-ARGS
X-DAS-Status: 402 Bad command arguments (arguments invalid)

static int X-DAS-STATUS-BAD-DATA-SOURCE
X-DAS-Status: 401 Bad data source (data source unknown)

static int X-DAS-STATUS-BAD-REFERENCE-OBJECT
X-DAS-Status: 403 Bad reference object (reference sequence unknown)

static int X-DAS-STATUS-BAD-STYLESHEET
X-DAS-Status: 404 Bad stylesheet (requested stylesheet unknown)

static int X-DAS-STATUS-COORDINATE-ERROR
X-DAS-Status: 405 Coordinate error (sequence coordinate is out of bounds/invalid)

static int X-DAS-STATUS-OK
X-DAS-Status: 200 OK, data follows

static int X-DAS-STATUS-SERVER-ERROR
X-DAS-Status: 500 Server error, not otherwise specified

static int X-DAS-STATUS-UNIMPLEMENTED-FEATURE
X-DAS-Status: 501 Unimplemented feature

Method Summary
String[] getDasCapabilities()

Gets the X-DAS-Capabilities Header
int getDasStatusCode()

Gets the X-DAS-Status Code
String getDasStatusCodeDescription()

Gets the X-DAS-Status Code Description
String getDasVersion()

Gets the X-DAS-Version Number

240 XML for Bioinformatics

Client Code:

new DsnRequest ():
DsnRequest:

DsnRequest:

new DsnResponse (DsnRequest):

DsnResponse:

DsnResponse:

URL Connect:

DAS XML Response:

Parse XML via JDOM:

DAS Server:

Figure 8.1 Sequence diagram, illustrating typical client interaction with the JDAS library.

To use JDAS, you generally follow four steps:
� First, instantiate a DAS request object. For example, to issue a DAS sequence command, in-

stantiate a SequenceRequest object.
� Second, instantiate a response object. Each response constructor must be passed a correspond-

ing request object. For example, the SequenceResponse class must be instantiated with a
SequenceRequest parameter. Upon instantiation, JDAS connects to the remote server, sends
the DAS request, and parses the XML response document. In the event of a network error or an
XML validation error, JDAS will throw a DasException.

� Third, check the DAS response status code. If the server code is set to X-DAS-STATUS-OK
(200), jump to the next step. Otherwise, check the status code and determine the source of the
error.

� Process the DAS response data. All DAS response data is available via simple data model
objects. For example, the DAS Sequence object contains data from a DAS Sequence com-
mand, and therefore contains accessor methods, such as getLength(), getStart(), and
getSequenceData().

A sequence diagram of the typical JDAS client interaction is provided in Figure 8.1.
To make these concepts more concrete, let us look at a sample JDAS client application. Listing 8.7

provides sample code for issuing a dsn request to the Ensembl DAS server. As a first step, we create
a DsnRequest object:

DsnRequest dsnRequest = new DsnRequest
(SampleConstants.ENSEMBL-BASE);

Chapter 8 � Parsing DAS Data with JDOM 241

Listing 8.7 SampleDsnRequest.java

package org.xmlbio.jdas.sample;

import org.xmlbio.jdas.datamodel.DataSource;
import org.xmlbio.jdas.request.DsnRequest;
import org.xmlbio.jdas.response.DasException;
import org.xmlbio.jdas.response.DasResponse;
import org.xmlbio.jdas.response.DsnResponse;

import java.util.ArrayList;

/**
* Sample DSN Request to Ensembl.
*
* @author Ethan Cerami
*/
public class SampleDsnRequest {

/**
* Execute DSN Request.
*/
public void execute() {

try {
DsnRequest dsnRequest = new DsnRequest

(SampleConstants.ENSEMBL-BASE);
dsnRequest.setValidateXMLResponse(false);
DsnResponse dsnResponse = new DsnResponse(dsnRequest);
if (dsnResponse.getDasStatusCode() == DasResponse.X-DAS-STATUS-OK){

outputDataSources(dsnResponse);
} else {

System.out.println("DAS Status Code: "
+ dsnResponse.getDasStatusCode());

System.out.println("DAS Status Code Description: "
+ dsnResponse.getDasStatusCodeDescription());

}
} catch (DasException e) {

System.out.println("DASException: " + e.getMessage());
}

}

/**
* Outputs Data Source Objects.
* @param dsnResponse DSNResponse Object.
*/
private void outputDataSources(DsnResponse dsnResponse) {

ArrayList dataSources = dsnResponse.getDataSources();
System.out.println("Number of DataSources: " + dataSources.size());
for (int i = 0; i < dataSources.size(); i++) {

DataSource dataSource = (DataSource) dataSources.get(i);
System.out.println("Data Source:");

242 XML for Bioinformatics

Listing 8.7 (cont.)

System.out.println("... ID: " + dataSource.getId());
System.out.println("... Name: " + dataSource.getName());
if (dataSource.getVersion() != null) {

System.out.println("... Version: "
+ dataSource.getVersion());

}
System.out.println("... Description: "

+ dataSource.getDescription());
System.out.println("... MapMaster: "

+ dataSource.getMapMaster());
}

}

/**
* Main Method
* @param args Command Line Arguments.
*/
public static void main(String[] args) {

SampleDsnRequest sample = new SampleDsnRequest();
sample.execute();

}
}

Second, we create a DsnResponse object:

DsnResponse dsnResponse = new DsnResponse(dsnRequest);

Upon instantiation, JDAS connects to the specified DAS server, issues a dsn request, and
parses the XML response document. Third, we check the response code. If the status is set to
X-DAS-STATUS-OK , we output the contents of the data source objects. Otherwise, we output the
DAS status code number and description. Note that the code includes a try/catch block for catching
DasException objects.

When you run the program, it will connect to the Ensembl DAS server and display a directory
of registered data sources. Sample output is provided below:

Number of DataSources: 18
Data Source:
... ID: ens1431cds
... Name: Ensembl 14.31 CDS
... Version: 14
... Description: Ensembl CDS
... MapMaster: http://das.ensembl.org/das/ensembl1431/
Data Source:
... ID: ens1431snp
... Name: snps
... Version: 14.31
... Description: Human genome SNPs from Ensembl
... MapMaster: http://das.ensembl.org/das/ensembl1431/
[Output Continues. . .]

Chapter 8 � Parsing DAS Data with JDOM 243

8.4.2 The JDAS Source Code
A complete discussion of the JDAS source code is beyond the scope of this chapter. However, we
can focus on the JDOM/XML parsing specific code. The core of XML parsing occurs within the
JDAS response classes.

The base DasResponse code is responsible for connecting to the remote server, sending the
request, and receiving the XML response document. The XML document is then sent to the JDOM
SAXBuilder class, which validates the XML document, and returns a JDOM Document object.
The Document object is then sent to the specific response subclass, where the relevant data is
extracted and converted into data model objects.

For example, Listing 8.8 shows the complete source code for the DsnResponse class. The
heart of the DsnResponse class occurs within the parseDocument() method. This method

Listing 8.8 DsnResponse.java

package org.xmlbio.jdas.response;

import org.apache.log4j.Logger;
import org.jdom.Document;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.xmlbio.jdas.datamodel.DataSource;
import org.xmlbio.jdas.request.DsnRequest;

import java.io.File;
import java.util.ArrayList;
import java.util.List;

/**
* Encapsulates a DAS DSN Response.
*
* @author Ethan Cerami
*/
public class DsnResponse extends DasResponse {

private static final String DSN-ELEMENT = "DSN";
private static final String SOURCE-ELEMENT = "SOURCE";
private static final String DESCRIPTION-ELEMENT = "DESCRIPTION";
private static final String MAP-MASTER-ELEMENT = "MAPMASTER";
private static final String ID-ATTRIBUTE = "id";
private static final String VERSION-ATTRIBUTE = "version";
/**
* ArrayList of Data Source Objects.
*/
private ArrayList dataSources;

/**
* Constructor.
* @param dsnRequest DAS ENSEMBL-HUMAN Request Object.
* @throws DasException Indicates Error Reading/Parsing XML Response.
*/

244 XML for Bioinformatics

Listing 8.8 (cont.)

public DsnResponse(DsnRequest dsnRequest)
throws DasException {

super(dsnRequest);
}

/**
* Constructor.
* @param file Local File containing XML Response.
* @param validate Boolean flag to validate XML Response.
* @throws DasException Indicates Error Reading/Parsing XML Response.
*/
public DsnResponse(File file, boolean validate)

throws DasException {
super(file, validate);

}

/**
* Gets Complete List of Data Sources.
* @return ArrayList of Data Source objects.
*/
public ArrayList getDataSources() {

return this.dataSources;
}

/**
* Parses DAS XML Response and extracts DataSource data.
* @param document JDOM Document.
* @throws JDOMException Indicates Error Parsing XML Document.
*/
protected void parseDocument(Document document) throws
JDOMException {
dataSources = new ArrayList();
Element root = document.getRootElement();
List children = root.getChildren(DsnResponse.DSN-ELEMENT);
for (int i = 0; i < children.size(); i++) {

Element dsnChild = (Element) children.get(i);
DataSource dataSource = extractDataSource(dsnChild);
dataSources.add(dataSource);

}
}

/**
* Extract Data Source Data.
* @param dsnElement ENSEMBL-HUMAN Element
* @return Populated DataSource object.
*/
private DataSource extractDataSource(Element dsnElement) {

DataSource dataSource = new DataSource();
extractSourceData(dsnElement, dataSource);

Chapter 8 � Parsing DAS Data with JDOM 245

Listing 8.8 (cont.)

extractMapMasterData(dsnElement, dataSource);
extractDescriptionData(dsnElement, dataSource);
logDataSource(dataSource);
return dataSource;

}

/**
* Extracts MapMaster Data.
* @param dsnElement ENSEMBL-HUMAN Element.
* @param dataSource Data Source object.
*/
private void extractMapMasterData(Element dsnElement,

DataSource dataSource) {
Element mapMasterElement = dsnElement.getChild(

DsnResponse.MAP-MASTER-ELEMENT);
if (mapMasterElement != null) {

String text = mapMasterElement.getTextNormalize();
dataSource.setMapMaster(text);

}
}

/**
* Extracts Description Data.
* @param dsnElement ENSEMBL-HUMAN Element.
* @param dataSource Data Source object.
*/
private void extractDescriptionData(Element dsnElement,

DataSource dataSource) {
Element descElement = dsnElement.getChild(

DsnResponse.DESCRIPTION-ELEMENT);
if (descElement != null) {

String text = descElement.getTextNormalize();
dataSource.setDescription(text);

}
}

/**
* Extracts Source Data, including id, version, and name.
* @param dsnElement ENSEMBL-HUMAN Element.
* @param dataSource Data Source object.
*/
private void extractSourceData(Element dsnElement,

DataSource dataSource) {
Element sourceElement =

dsnElement.getChild(DsnResponse.SOURCE-ELEMENT);
if (sourceElement != null) {

String id = sourceElement.getAttributeValue(
DsnResponse.ID-ATTRIBUTE);

String version = sourceElement.getAttributeValue(
DsnResponse.VERSION-ATTRIBUTE);

246 XML for Bioinformatics

Listing 8.8 (cont.)

String name = sourceElement.getTextNormalize();
if (id != null) {

dataSource.setId(id);
}
if (version != null) {

dataSource.setVersion(version);
}
if (name != null) {

dataSource.setName(name);
}

}
}

/**
* Logs Data Source Data.
* @param dataSource Data Source Object.
*/
private void logDataSource(DataSource dataSource) {

Logger log = Logger.getLogger(DsnResponse.class);
log.info("Data Source Found:");
log.info("...Source ID: " + dataSource.getId());
log.info("...Source Name: " + dataSource.getName());
log.info("...Source Version: " + dataSource.getVersion());
log.info("...MapMaster: " + dataSource.getMapMaster());
log.info("...Description: " + dataSource.getDescription());

}
}

walks the document tree and extracts all the data source information. For example, we begin tree
traversal by first locating all the <DSN> elements:

Element root = document.getRootElement();
List children = root.getChildren(DsnResponse.DSN-ELEMENT);

The code then extracts the <SOURCE>, <MAPMASTER>, and <DESCRIPTION> elements. For
example, this code extracts the <MAPMASTER> element text:

Element mapMasterElement = dsnElement.getChild
(DsnResponse.MAP-MASTER-ELEMENT);

if (mapMasterElement != null) {
String text = mapMasterElement.getTextNormalize();
dataSource.setMapMaster(text);

}

Each of the other response classes contains similar code for traversing the parsed response document.
To take a look, you can download the complete source code from the web site that accompanies
this book.

Hopefully you will agree that JDOM is an excellent toolkit for parsing XML documents in Java.
If you have not already done so, download the JDOM distribution, try out the examples in this
chapter, and see just how easy it is to get started.

Web Services for Bioinformatics 9
Web services represent a new paradigm for building distributed applications over the Internet. This
chapter will introduce you to web services and explore the many ways in which web services are
currently being used in bioinformatics. We examine several architectural alternatives for building
web services, introduce the major web service specifications, and explore numerous coded exam-
ples. To make the concepts as concrete as possible, we explore a web service framework built by the
National Cancer Institute (NCI), and explore several client applications that extract useful genomic
data. Specific topics will include:
� Introduction to Web Services
� Case Study Overview: the National Cancer Institute caBIO Project
� Introduction to REST-Based Web Services
� Introduction to SOAP
� Introduction to the Apache Axis SOAP Library

9.1 Introduction to Web Services

We begin the chapter by first defining web services, examining a sample bioinformatics web service,
and exploring the main architectural options for building web services.

9.1.1 Web Services Defined
A web service is any service that is available over the Internet, uses a standardized XML messaging
system, and is not tied to any one operating system or programming language [4]. Ideally, a web
service also has a public interface described in XML and is easily discoverable via a centralized or
distributed web services registry. As officially defined by the Web Services Activity of the World
Wide Web Consortium, a web service is therefore:

a software system identified by a URI, whose public interfaces and bindings are defined and described using
XML. Its definition can be discovered by other software systems. These systems may then interact with
the Web service in a manner prescribed by its definition, using XML based messages conveyed by Internet
protocols. [95]

The goal of web services is to marry the success of the web with the strengths of XML. The World
Wide Web provides a global infrastructure for distributing and linking documents throughout the
world. XML offers a platform-independent framework for describing a diverse set of data, and

247

248 XML for Bioinformatics

Figure 9.1 The Cancer Genome Anatomy Project (CGAP) Gene Finder web page.

provides a growing set of tools, parsers, and other related technologies. When used in combination,
XML delivered over the web provides a robust solution for delivering structured content and
enabling interapplication communication.

In the predominant model of the World Wide Web, we have what is commonly referred to as
a human-centric web. Documents are distributed around the world, web clients connect to web
servers via the HTTP protocol, and most documents are created for easy human consumption.
For example, web servers serve up HTML documents, images, and multimedia clips. Web clients
receive these resources, render them within a browser, and present the results to human readers.

Human readers have little difficulty processing and extracting data from rendered HTML pages.
However, HTML is not ideal for application consumption, and XML is much better suited to this
kind of task. By delivering XML via web protocols, we therefore move from a purely human-centric
web to an application-centric web. Data that was formerly only available in HTML format is now
made available in XML format, and applications can now use this data for their own purposes.

Chapter 9 � Web Services for Bioinformatics 249

Figure 9.2 The Cancer Genome Anatomy Project (CGAP) Gene Info web page. Information regarding the BRCA2 gene is shown.

As a concrete example, consider the Cancer Genome Anatomy Project (CGAP), hosted by the
U.S. National Cancer Institute. We will explore CGAP in more detail in our case study below. For
now, let us focus on the sample screenshot provided in Figure 9.1. The screenshot shows a copy of
the CGAP Gene Finder page. From this page you can search for genes based on multiple criteria,
such as organism, unique identifier, or Gene Ontology term. As an example, we are searching
for the BRCA2 gene in human. (BRCA2 has been characterized as a tumor suppressor gene, and
mutations in the gene have been linked to an increased risk of breast cancer.)

Clicking the “Submit Query” button, we get a list of matching results (in this case, we get
only one result). Selecting this one result provides us with the “Gene Info” page for BRCA2
(shown in Figure 9.2). This page includes several important data elements, including: the gene
name and short description, links to external databases, a list of tissues where the gene is ex-
pressed, a list of orthologous genes in mouse, and a list of Gene Ontology terms associated with
the gene. For example, we can see that BRCA2 is involved in apoptosis or programmed cell
death.

From an application perspective, it would be much more convenient if all the data in Figure 9.2
were also available in an easily digestible XML format. In fact, it is. Through the National Cancer
Institute caBIO interface, applications can programmatically interface with CGAP and extract result
sets directly. For example, consider the following URL:

http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit name=BRCA2

250 XML for Bioinformatics

Figure 9.3 The Cancer Genome Anatomy Project (CGAP) getXML service. Information regarding the BRCA2 gene is shown.

This URL requests the BRCA2 gene for all cataloged organisms and receives back two hits: one
for mouse and one for human. The results of the query are shown in Figure 9.3. As you can see,
the browser has issued a regular URL request, but has received an XML document back from
the caBIO server. This XML document contains the same data as the HTML document, including
the gene title, name, and symbol, as well as links to additional sets of data, such as associated Gene
Ontology terms. By making data available in XML format, the caBIO framework makes it much
easier for other institutions, labs, and researchers to extract relevant data and use this data for their
own purposes. Furthermore, since XML is not tied to any one platform, the caBIO framework is
open to a diverse set of operating systems and programming languages.

9.1.2 Architectural Options
There are several different architectural options for building web services. These options are sepa-
rated into three general categories:
� XML via HTTP, or REST: In this option, XML documents are identified with Uniform Re-

source Identifiers (URIs), just like regular HTML documents. However, instead of returning

Chapter 9 � Web Services for Bioinformatics 251

XML-RPC

SOAP

REST:
HTTP POST/GET

XML Document

Figure 9.4 Three options for building web services: XML via HTTP (REST), XML-RPC, and SOAP.

regular HTML documents, the web server returns easily digestible XML documents. To build
a complete, robust web service, all you need is an understanding of URIs, HTTP, and XML.
This approach is most commonly referred to as REST, or Representational State Transfer.
We will define REST and the properties of REST-based web services in the first half of this
chapter.

� XML-RPC: Created by Dave Winer, XML-RPC [110] is an XML-based protocol that enables
remote procedure calls (RPC). In XML-RPC, a client application can invoke a remote procedure
by sending a standard XML document via HTTP. This standard XML document contains the
procedure or method name to invoke and an optional list of parameters. The server receives
the XML payload, invokes the right service, and returns the results in another standard XML
document.

� SOAP: SOAP enables applications to communicate via standard XML messaging, and is
capable of working on multiple transport protocols, including HTTP and SMTP (Simple Mail
Transfer Protocol). Unlike XML-RPC, SOAP is an official recommendation of the World Wide
Web Consortium (W3C). We explore SOAP in the second half of this chapter.

Each of these web service options is summarized in Figure 9.4. To manage the scope of coverage,
this chapter will cover REST and SOAP, but will not cover XML-RPC. For an overview of XML-
RPC, see Chapter 2 of Web Services Essentials [4] or Programming Web Services with XML-RPC
[109].

Fortunately, our bioinformatics case study provides multiple interfaces, including a REST-based
interface and a SOAP-based interface. You can therefore try out both interfaces and compare and
contrast the two architectural options. For background on our case study, we now turn to an overview
of the caBIO project.

9.2 Case Study: Introduction to the NCI caBIO Project

For our case study, we will be examining the Cancer Bioinformatics Infrastructure Objects (caBIO)
[100] project, created by the U.S. National Cancer Institute (NCI). caBIO provides a programmatic
interface to caCORE, a comprehensive set of interlinked databases hosted at NCI. In its initial
incarnation, caBIO was built to provide programmatic access to several NCI resources, including

252 XML for Bioinformatics

the Cancer Genome Anatomy Project (CGAP), the Cancer Molecular Analysis Project (CMAP),
and the Genetic Annotation Initiative (GAI) [100]. Since its early stages, however, caCORE has been
expanded to include a number of other data resources, including those hosted at NCI, the National
Center for Biotechnology Information (NCBI), and other public repositories. For example, caCORE
now provides access to cancer clinical trial data, the NCI thesaurus of cancer-specific terminology,
and biological pathways from BioCarta [97]. caCORE also aggregates several NCBI databases,
including Unigene, LocusLink, and RefSeq [97]. All software related to the caCORE project is
available under an open source license.

The caBIO framework is organized around objects referred to as “domain objects.” Domain
objects encapsulate biological, laboratory, or clinical entities [100], such as genes, chromosomes,
sequences, diseases, and biological pathways. Behind the scenes, each of these domain objects is
defined as a Java class with numerous accessor methods. For example, the caBIO Gene class has a
getName() method, which returns a string indicating the name of the gene. Many of these accessor
methods, however, return other caBIO domain objects. For example, the getChromosome()
method returns a caBIO Chromosome object; likewise, the getProteins() method returns an
array of caBIO Protein objects.

Starting with aGene object, you can navigate through a web of interconnected data. Accordingly,
“domain objects are related to each other, and examining these relationships can bring to the surface
biomedical knowledge that was previously buried in the various primary data sources” [98].

The complete set of caBIO domain objects and the relationships between these objects
are formally defined within a series of Unified Modeling Language (UML) diagrams.
These UML diagrams are used to automatically generate the Java classes, and therefore
form the basis of all the caBIO APIs described below. A PDF file of the complete caBIO
UML model is included in the caBIO distribution.

To access and search domain objects, caBIO provides three different interfaces (see Figure 9.5):
� Java RMI: Clients written in Java can download the caBIO distribution and access domain

objects directly. Behind the scenes, client applications use Java Remove Method Invocation
(RMI) to connect to caBIO and retrieve the data.

� XML via HTTP: Clients issue specific URL requests to caBIO, and receive XML documents
in response. This corresponds to the REST-based approach defined briefly in the section above.

� SOAP: Clients connect to caBIO via SOAP, and receive XML SOAP messages in response.

As we proceed through the chapter, we will examine each of these interfaces. But, first, let us
examine the Java RMI interface. This is not a web service interface per se, but by examining the
Java RMI interface first, you can gain a much greater insight into the two other interfaces that follow.

The National Cancer Institute maintains a mailing list for caBIO users.
Mailing list archives and subscription information are available online at:
http://list.nih.gov/archives/cabio users.html.

The examples in this chapter are based on caBIO version 2.0. As this book goes to
press, however, caBio is finalizing caBIO version 2.1. Check the caBIO web site for
complete, up-to-date information.

Chapter 9 � Web Services for Bioinformatics 253

Java RMI
Interface

caBIO

SOAP
Interface

XML-HTTP
Interface

NCI Hosted Databases

Database 1 Database 2

Database 3 Database N

Remote Databases

Database 1 Database N

Figure 9.5 Schematic overview of the three caBIO programmatic interfaces. Each interface provides access to the same core set of
databases.

9.2.1 Background: Connecting to caBIO via the Java RMI Interface
We begin by connecting to caBIO via the Java RMI interface, and requesting data regarding the
BRCA2 gene in human. Step-by-step instructions are provided below:

1. Connect to the caBIO web site: http://ncicb.nci.nih.gov/core/caBIO, and download the caBIO
distribution package.

2. Unpack the caBIO distribution to a directory of your choosing.
3. Set up your classpath. Check the caBIO jars directory and make sure to include the following

four jar files in your classpath:
� caBIO.jar: contains the core caBIO library, including copies of all caBIO domain objects.
� xercesImpl.jar: contains implementation code for the Apache Xerces Java XML

parser.
� xml-apis.jar: contains standard XML parsing interfaces, including the Simple API for XML

(SAX) and the Document Object Model (DOM).
� jaxb-rt-1.0.ea.jar: contains code for the Java Architecture for XML Binding (JAXB), used

to automatically transform XML documents to Java classes and vice versa.
4. Type in the following code (or download it from xmlbio.org):

package org.xmlbio.cabio;

import gov.nih.nci.caBIO.bean.*;
import gov.nih.nci.caBIO.util.ManagerException;
import gov.nih.nci.common.exception.OperationException;

/**
* Sample caBio Application.
* Illustates use of the caBIO Java RMI Interface.

254 XML for Bioinformatics

*
* @author Ethan Cerami
*/
public class GeneRmi {

/**
* Executes a caBIO Search for the BRCA2 Gene in Human.
*/
public void execute() throws ManagerException,
OperationException {
// Instantiate a new Gene Object.
Gene gene = new Gene();

// Instantiate a new Gene Search Criteria Object
// and search for the BRCA2 Gene in Human
GeneSearchCriteria criteria = new GeneSearchCriteria();
criteria.setSymbol("BRCA2");
criteria.setOrganism("Homo Sapiens");

// Execute Search
SearchResult result = gene.search(criteria);
if (result != null) {

// Get Result Set
Gene[] genes = (Gene[]) result.getResultSet();
for (int i = 0; i < genes.length; i++) {

Gene geneCandidate = genes[i];
outputGene (geneCandidate);
System.out.println("---------------");

}
}

}

/**
* Outputs Gene Information.
*/
private void outputGene (Gene gene) throws OperationException {

String locusLinkId = gene.getLocusLinkId();
Long id = gene.getId();
Taxon taxon = gene.getTaxon();
Chromosome chr = gene.getChromosome();
String title = gene.getTitle();
String scientificName = taxon.getScientificName();

System.out.println("Internal ID: " + id);
System.out.println("LocusLink ID: " + locusLinkId);
System.out.println("Title: " + title);
System.out.println("Organism: " + scientificName);
System.out.println("Chromosome: " + chr.getName());

outputHomologousGenes(gene);
}

Chapter 9 � Web Services for Bioinformatics 255

/**
* Outputs Homologous Genes.
*/
private void outputHomologousGenes(Gene gene) throws
OperationException {

GeneHomolog geneHomologs[] = gene.getGeneHomologs();
for (int i=0; i < geneHomologs.length; i++) {

GeneHomolog geneHomolog = geneHomologs[i];
String name = geneHomolog.getName();
Long id = geneHomolog.getId();
String organism = geneHomolog.getTaxon().
getScientificName();

Float similarity = geneHomolog.
getSimilarityPercentage();

System.out.println("Homologous Gene: " + name);
System.out.println("... Internal ID: " + id);
System.out.println("... Organism: " + organism);
System.out.println("... Similarity Percentage: " +
similarity);

}
}

/**
* Main Method.
*/

public static void main(String args[]) throws Exception {
GeneRmi geneRmi = new GeneRmi();
geneRmi.execute();

}
}

This example application just touches the surface of what is possible with caBIO. However, it
does a good job of illustrating basic caBIO usage. The most important item to note is the caBIO
Gene object. The first line of the execute() method instantiates an empty Gene object:

Gene gene = new Gene();

Within caBIO, each domain object has an associated “Search Criteria” object. For example, the
gene domain object has a GeneSearchCriteria object; likewise, the chromosome domain
object has a ChromosomeSearchCriteria object. Each of these search criteria objects en-
ables you to specify one or more search parameters. For example, the GeneSearchCriteria
object enables you to search by gene symbol, chromosome number, and organism. In our case,
we search by gene symbol and organism:

criteria.setSymbol("BRCA2");
criteria.setOrganism("Homo Sapiens");

Note that if you specify two or more criteria, caBIO will connect each search criterion with a
logical AND operator.

To execute a search for matching genes, we execute the search() method, and pass in the
GeneSearchCriteria object:

SearchResult result = gene.search(criteria);

256 XML for Bioinformatics

In response, we receive a caBIO SearchResult object, containing any matching domain
objects. The actual domain objects are available via the getResultSet() method:

Gene[] genes = (Gene[]) result.getResultSet();

Note that you must cast to the correct caBIO domain object, in this case, we cast the result set
to an array of caBIO Gene objects. We then iterate through all the matching results and display
several Gene properties, including the gene title, Locus Link ID (as specified within the NCBI
Locus Link database), and the organism. We also display information on all homologous genes.
There are many other additional properties available, but we have not included these to keep
the overall example more concise.

5. To run the sample program, you must grant the application explicit security permissions
to connect to caBIO. This is a security requirement of Java RMI and is not specific to caBIO.
To do so, you will need to copy or write a java security file. Fortunately, the caBIO distribution
includes a sample java.policy file, which you can use for this purpose. To execute the sample
program, you must specify the caBIO java.policy file via the –D system property argument.
For example:

java -Djava.security.policy=java.policy org.xmlbio.cabio.GeneRmi

Upon execution, the sample program will display the following:

Internal ID: 5506
LocusLink ID: 675
Title: breast cancer 2, early onset
Organism: Homo sapiens
Chromosome: 14
Homologous Gene: Brca2
... Internal ID: 108157
... Organism: Mus musculus
... Similarity Percentage: 79.71

As you can see, caBIO has found one gene match in human. This gene has a 79.71% similarity
with a homologous mouse gene.

If you fail to specify a security policy file, you will see a stack trace containing the following error:

java.lang.RuntimeException: Error getting object manager:
Couldn't instantiate remote object manager.

For an in-depth discussion of the complete Java API, you can consult the caCORE
Technical Guide [99], available in PDF format at: http://ncicb.nci.nih.gov/core/caBIO.
You can also reference the complete Java API, also available online.

Behind the scenes, the caBIO REST and SOAP interfaces programmatically interact with the
Java domain objects. More specifically, each of the caBIO domain objects implements an
XMLInterface, which provides a number of useful XML-related methods. For example, each
domain object must implement a toXML() method, which provides an XML representation of the
object. Both the REST and SOAP interfaces invoke the toXML() method to obtain XML represen-
tations of domain objects. Likewise, both interfaces also use SearchCriteria objects to search
for matching domain objects. Therefore, the better you understand the Java API, the better you can

Chapter 9 � Web Services for Bioinformatics 257

understand the XML-based interfaces. And, now that we understand the broad outlines of the Java
API, we are ready to tackle the REST-based interface.

9.3 Introduction to REST-Based Web Services

As stated at the beginning of the chapter, there are a number of different architectural options
for building web services. The first option is to build web services using just Uniform Resource
Identifiers (URIs), Hypertext Transfer Protocol (HTTP), and XML. This approach is usually referred
to as REST. This section explores the underlying concepts of REST, and explains how to connect
to the caBIO REST interface.

9.3.1 Introduction to REST
REST stands for Representational State Transfer, and was originally coined by Roy T. Fielding
in his doctoral dissertation from the University of California, Irvine [102]. Fielding developed
REST over a period of several years, while he was busy building the Apache web server, serving
as Chairman of the Apache Software Foundation, and editing or co-editing several major Internet
specifications, including HTTP/1.1 and Uniform Resource Identifiers (URIs) [102].

REST is an attempt to formalize the architecture of the World Wide Web, and to formally
describe those architectural elements, which are most responsible for the success of the web. As
Fielding writes in his dissertation:

The name “Representational State Transfer” is intended to evoke an image of how a well-designed Web
application behaves: a network of web pages (a virtual state-machine), where the user progresses through
the application by selecting links (state transitions), resulting in the next page (representing the next state of
the application) being transferred to the user and rendered for their use. [102]

Within his work, Fielding identifies a number of successful properties of the web, including: support
for caching and scalability to large audiences, independent evolution of web clients and web servers,
a low entry barrier for new developers, and a single addressing scheme for all resources [102]. Also
critical to REST is the highly decentralized nature of the web itself, and the ability to evolve
protocols, even when there is no centralizing force which can mandate global upgrades [102].

According to REST, all of these successful properties are based on the three most important
elements of web architecture: URIs, HTTP, and HTML. URIs provide a global method for identi-
fying resources anywhere on the globe. HTTP provides an application protocol for web clients to
retrieve resources from web servers. And, HTML provides a simple common language for creating
web content.

Since Fielding’s original conceptualization of REST, a number of developers have applied REST
principles to the world of web services. Henceforth, we therefore refer to these services as REST-
based web services. These developers argue that XML messaging systems, such as XML-RPC or
SOAP, add a level of unnecessary overhead, and that you can build robust web services with just
URIs, HTTP, and XML. According to one proponent of REST architecture:

The best part about REST is that it frees you from waiting for standards like SOAP and WSDL to mature.
You do not need them. You can do REST today, using W3C and IETF standards that range in age from
10 years (URIs) to 3 years (HTTP 1.1). [108]

The Distributed Annotation System (DAS) [6] is a prime example of a REST-based web service.
As described in Chapter 6, all DAS data is addressable via a URL. For example, the following URL

258 XML for Bioinformatics

requests annotation features from UCSC for a portion of human chromosome 3:

http://genome.cse.ucsc.edu/cgi-bin/das/hg12/features?segment=3:50000,100000

DAS clients issue requests via HTTP and DAS servers return XML documents encapsulating the
requested data. DAS is built entirely on URL requests, HTTP, and a small set of Document Type
Definitions (DTDs). With just these three elements, DAS is able to create a highly decentralized
system of annotation servers, and is able to do so without the need of a more formalized XML
messaging system, such as SOAP.

9.3.2 Connecting to the caBIO REST Interface
To explore REST-based services in more detail, let us now return to the caBIO framework. As
described above, caBIO provides three main interfaces for obtaining data. The second of these
interfaces uses only HTTP and XML, and is therefore considered a REST-based web service.

To access the caBIO REST interface, you need to issue a request to the caBIO GetXML servlet.
As of this writing, the GetXML servlet is available at the following URL:

http://cabio.nci.nih.gov/servlet/GetXML

The GetXML servlet expects a series of URL parameters. Generally, requests consist of a domain
object, e.g., gene, chromosome, or sequence, and a list of one or more search criteria. For example,
in the following URL:

http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit symbol=BRCA2

the query parameter refers to a caBIO domain object and we are requesting gene domain ob-
jects only. The crit symbol parameter further narrows the search to those genes with the symbol
“BRCA2.” The URL parameters and their values are case sensitive.

Here is another sample query:

http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit symbol=
BRCA2&crit taxon scientificName=homo+sapiens

This time, we have provided two search criteria, and have requested the BRCA2 gene for humans
only. Note that you must properly encode the values of all URL parameters. By URL encoding
conventions, you are required to replace all spaces with + signs, and provide hexadecimal represen-
tations for all nonalphanumeric characters. In response, the caBIO server will return the following
document. For brevity, only an excerpt of the full response document is shown:

<nci-core xmlns="http://ncicb.nih.nci.gov/caBIO">
<gov.nih.nci.caBIO.bean.Gene xmlns="" id="5506"

xmlns:xlink="http://www.w3.org/1999/xlink/">
<id>5506</id>
<locusLinkId>675</locusLinkId>
<OMIMId>600185</OMIMId>
<title>breast cancer 2, early onset</title>
<name>BRCA2</name>
<symbol>BRCA2</symbol>
<clusterId>34012</clusterId>
<GeneHomolog

xlink:href="http://cabio.nci.nih.gov:80/servlet/GetXML?
query=GeneHomolog& crit-homologousGene-id=5506"/>

Chapter 9 � Web Services for Bioinformatics 259

<ExpressionMeasurement
xlink:href="http://cabio.nci.nih.gov:80/servlet/GetXML?
query=ExpressionMeasurement&crit-genes-id=5506"/>

<Organ
xlink:href="http://cabio.nci.nih.gov:80/servlet/GetXML?
query=Organ&crit-expressedGenes-id=5506"/>

<Protein
xlink:href="http://cabio.nci.nih.gov:80/servlet/GetXML?
query=Protein&crit-genes-id=5506"/>

[For brevity, not all elements are shown .]
</gov.nih.nci.caBIO.bean.Gene>
<searchResult xmlns="">

<hasMore>false</hasMore>
<startsAt>1</startsAt>
<endsAt>2</endsAt>

</searchResult>
</nci-core>

As you can see, caBIO has returned an XML document with one gene element. The specified gene
matches the one discovered earlier in the chapter when we used the caBIO Java RMI interface.

The returned XML document contains two types of elements. The first type encapsulates sim-
ple character data, such as id , title , name , and symbol. The second type provides links to
related objects. For example, in the caBIO object model, Gene objects can reference 0 or more
homologous genes. Rather than including information about all homologous genes within a single
XML document, caBIO provides pointers to these related objects. These pointers are specified as
XLinks (see the sidebar for a quick overview of the XLink specification), which specify additional
search queries against caBIO. For example, our sample document includes the following link to
homologous genes:

<GeneHomolog
xlink:href="http://cabio.nci.nih.gov:80/servlet/GetXML?
query=GeneHomolog&crit-homologousGene-id=5506"/>

If you reconnect to caBIO and specify the new XLink URL, caBIO will return the following XML
document:

<?xml version="1.0" encoding="UTF-8"?>
<nci-core xmlns="http://ncicb.nih.nci.gov/caBIO">

<gov.nih.nci.caBIO.bean.GeneHomolog xmlns="" id="108157"
xmlns:xlink="http://www.w3.org/1999/xlink/">

<id>108157</id>
<similarityPercentage>79.71</similarityPercentage>
<Gene xlink:href="http://cabio.nci.nih.gov:80/servlet/GetXML?
query=Gene&crit-geneHomologs-id=108157"/>

</gov.nih.nci.caBIO.bean.GeneHomolog>
<searchResult xmlns="">

<hasMore>false</hasMore>
<startsAt>1</startsAt>
<endsAt>2</endsAt>

</searchResult>
</nci-core>

This document indicates that the human BRCA2 gene has one homolog, which has a 79.91 similarity
match. The homologous gene is identified with an ID of 108157. You can then retrieve information

260 XML for Bioinformatics

about this gene by issuing yet another request:

http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit-id=108157

Although caBIO makes extensive use of XLinks, it also provides the option of returning
“heavy” XML. Using this option, caBIO will expand the first level of XLinks and return
XML representations for these objects. For example, instead of including an XLink
to homologous genes, caBIO will include information about the homologous genes
directly. To activate heavy XML, set the returnHeavyXML parameter to 1. For example:

http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit-symbol=
BRCA2&returnHeavyXML=1

When using this option, the returned XML documents are significantly larger and the
response time from caBIO is slower. If you only want to expand specific XLinks, you
can optionally specify a fillInObjects parameter. With this parameter, you can specify
a comma-separated list of related objects. For example, this URL:

http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit-symbol=
BRCA2&fillInObjects=GeneHomolog

will return gene homology data directly, but will return XLinks for other related objects.

Error Handling
A major element of web services is planning for when things go wrong, and propagating error
messages back to client applications. As we will soon see, SOAP has very specific rules for
encoding and propagating error messages. By contrast, REST-based web services do not have
a well-defined convention for returning error messages, and a number of alternative options are
currently in use. For example, we have already seen that the DAS protocol uses its own set of HTTP
headers (e.g., the X-DAS-Status header), to inform clients of errors (see Chapter 6 for details). By
contrast, caBIO uses a mini XML document to inform users of error messages. For example, try
issuing the following query:

http://cabio.nci.nih.gov/servlet/GetXML?query=Gene&crit-sumbol=BRCA2

We have misspelled the word “symbol” and caBIO responds by returning a mini XML document
with a single error element:

<error>Your search has failed for the following reason:
Couldn't find getter for sumbol. Please refer to
http://ncicb.nci.nih.gov/content/coreftp/caBIO-JavaDocs/index.html
for more information.
</error>

Applications connecting to caBIO can therefore check for the error element and take appropriate
action, as needed.

Sidebar: XLinks
XML Linking Language, or XLink [101], is a W3C Recommendation that enables you to embed
links within XML documents. Simple XLinks provide the same functionality as HTML hypertext

Chapter 9 � Web Services for Bioinformatics 261

links, but extended XLinks enable much more complex linking capability. For example, an XML
document with extended XLinks can link one XML element to multiple resources. XLinks even
enable you to create separate linker documents that describe bidirectional connections between
resource. Unlike HTML links, which are supported by web browsers and have very well-defined
user semantics, support for XLinks is not yet widely supported, and the user experience of navigating
XLinks varies from application to application.

To create XLinks within an XML document, you must first declare an XML namespace for the
XLink specification. You can specify whatever namespace prefix you like, but by convention, most
people and applications set the namespace prefix to: xlink . The value of the namespace must be
set to http://www.w3.org/1999/xlink.

Having defined an XML namespace, you can then attach an XLink to any XML element. At
a minimum, each XLink must include an xlink:type attribute, which can be set to one of several
values; the two most commonly specified values are “simple ” and “extended. ” Depending
on the type, you may set other XLink attributes or subelements. For example, if you are spec-
ifying a simple XLink, you may also want to specify an xlink:href attribute. The href attribute
specifies the location of the linked resource and is usually specified with an absolute or relative
URL.

For example, the following document includes two simple XLinks pointing to NCBI resources:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="xlink.css" type="text/css" ?>
<resources xmlns:xlink="http://www.w3.org/1999/xlink">

<resource xlink:type="simple"
xlink:href="http://www.ncbi.nlm.nih.gov/omim/"
xlink:title="Online Mendelian Inheritance in Man"
xlink:show="replace"
xlink:actuate="onRequest">OMIM</resource>

<resource xlink:type="simple"
xlink:href="http://www.ncbi.nlm.nih.gov/RefSeq/"
xlink:title="NCBI Reference Sequences"
xlink:show="new"
xlink:actuate="onRequest">RefSeq</resource>

</resources>

Both of these links include an xlink:type attribute set to "simple" and an xlink:href attribute set
to an absolute URL value. The title attribute can be used by browsers to display a mouse over
description or a tool-tip. The show attribute provides general semantics for how the link should
be shown within the application browser. For example, a value of "replace" indicates that the
content of the link should replace the content of the current window. A value of "new" indicates
that the content of the link should be displayed in a new, separate application window. A value of
"embed" indicates that the content of the link should be embedded directly within the page, much
like an image embedded inside of HTML.

Lastly, the actuate attribute indicates the conditions under which the link will be followed. For
example, if this value is set to "onRequest," the application will wait for the user to click the
link before following it. If the value is set to "onLoad," the application will immediately follow
the link as soon as it loads the container XML document.

Extended XLinks require a few additional attributes and additional work. For complete details,
the full W3C specification is online at: http://www.w3.org/TR/xlink. For an example application
that illustrates one potential use of extended XLinks, see Simon St. Laurent’s image map example,
available online at: http://www.simonstl.com/buildxml/extended2/links.htm.

262 XML for Bioinformatics

9.3.3 Example Application: Command Line caBIO Browser
As a next step toward exploring the caBIO REST interface, we now explore a simple command line
browser application. The goal of the application is to present a user with caBIO data, and to allow
the user to navigate all the XLinks contained within the response document. By simply selecting
which links to follow, the user can navigate through a wealth of caBIO data.

To build the command line application, we combine our previous knowledge of JDOM from
Chapter 8, and our new understanding of REST and XLinks. Before looking at any code, however,
let us first look at a sample application run.

The application begins by prompting the user for a gene symbol. In the sample below, the user
has typed in brca2 (user input is denoted in bold):

Enter a Gene Symbol: brca2

Based on the gene symbol, the application makes its first request to caBIO, parses the XML response
document, and presents a text version of the caBIO data:

id: 5506
locusLinkId: 675
OMIMId: 600185
title: breast cancer 2, early onset
name: BRCA2
symbol: BRCA2
clusterId: 34012
1. Link: GeneHomolog
2. Link: ExpressionMeasurement
3. Link: Organ
4. Link: Protein
5. Link: CMAPOntology
6. Link: Sequence
7. Link: ExpressionFeature
8. Link: GoOntology
9. Link: Pathway
10. Link: MapLocation
11. Link: GeneAlias
12. Link: Taxon
13. Link: Chromosome
14. Link: SNP
15. Link: Library
16. Link: Target
hasMore: false
startsAt: 0
endsAt: 1
Select a link #: 12

As you can see, the user is presented with top-level information about the gene, including the
gene title, name, and symbol. All XLinks are also presented to the user, and are numbered in the
order they appear in the document. The user is then prompted to select a link number. In the case
above, the user has selected Link #12 to retrieve taxonomy information. Based on this selection,
the application follows the specified XLink, parses the response document, and again presents the
contained data. For example:

Chapter 9 � Web Services for Bioinformatics 263

id: 5
scientificName: Homo sapiens
abbreviation: Hs
isPreferred: true
1. Link: Pathway
2. Link: Protein
3. Link: Tissue
4. Link: Gene
5. Link: Chromosome
hasMore: false
startsAt: 0
endsAt: 1
0. Go Back
Select a link #:

As you can see, information about Homo sapiens is presented as are additional XLinks. The user
can then choose to follow these new XLinks or select 0 to go back to the previous document.

The complete code for the command line browser is presented in Listing 9.1. Take a moment
now to skim over the code, and we will explore the most important parts in detail below.

Listing 9.1 Command line caBIO browser

package org.xmlbio.cabio;

import java.io.IOException;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.util.List;
import java.util.ArrayList;
import java.util.Stack;

import org.jdom.*;
import org.jdom.input.SAXBuilder;

/**
* A Bare Bones caBIO Command Line Browser.
*
* @author Ethan Cerami
*/
public class caBioBrowser {

private static final String baseUrl =
"http://cabio.nci.nih.gov/servlet/GetXML?";

private ArrayList links;
private Stack history = new Stack();
private int linkCount;

/**
* Executes a caBio Search with the specified URL.
*/
private void executeQuery(String url) throws JDOMException,
IOException {

264 XML for Bioinformatics

Listing 9.1 (cont.)

// Reset Links
linkCount = 1;
links = new ArrayList();

// Connect to caBio and read into a JDOM Document.
SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(url);

// Process all Elements
Element rootElement = doc.getRootElement();
processElement(rootElement);

// Prompt for Next User Choice
navigate(url);

}

/**
* Navigates to Next Link
*/
private void navigate(String url) throws IOException,
JDOMException {
if (history.size() > 0) {

System.out.println("0. Go Back");
}
String choice = promptUser("Select a link #");
int option = Integer.parseInt(choice);
String nextUrl;
if (option == 0) {

nextUrl = (String) history.pop();
} else {

history.push(url);
nextUrl = (String) links.get(option - 1);

}
executeQuery(nextUrl);

}

/**
* Prompts for User Input.
*/
private String promptUser(String prompt) throws IOException {

System.out.print(prompt+": ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader stdin = new BufferedReader(isr);
return stdin.readLine();

}

/**
* Recursively Processes Elements.
*/
private void processElement(Element element) {

String text = element.getTextNormalize();

Chapter 9 � Web Services for Bioinformatics 265

Listing 9.1 (cont.)

String elementName = element.getName();
Namespace xlink = Namespace.getNamespace

("http://www.w3.org/1999/xlink/");
String href = element.getAttributeValue("href", xlink);
if (text != null && text.length() > 0) {

System.out.println(elementName + ": " + text);
}
if (href != null) {

links.add(href);
System.out.println(linkCount + ". Link: " + elementName);
linkCount++;

}
List children = element.getChildren();
for (int i = 0; i < children.size(); i++) {

Element child = (Element) children.get(i);
processElement(child);

}
}

/**
* Initializes Browser with First caBIO Query.
*/
public void init() throws JDOMException, IOException {

String symbol = promptUser("Enter a Gene Symbol");
StringBuffer url = new StringBuffer(baseUrl);

// Specify the Domain Object to retrieve
url.append("query=Gene&");

// Specify the Initial Search Criteria
url.append("crit-symbol="+symbol);
url.append("&crit-taxon-scientificName=homo+sapiens");
executeQuery(url.toString());

}

/**
* Main Method.
*/
public static void main(String args[]) throws Exception {

caBioBrowser browser = new caBioBrowser();
browser.init();

}
}

The heart of the application occurs within two methods: executeQuery() and
processElement() . The executeQuery() method is responsible for issuing a URL re-
quest to caBIO, parsing the response XML document, and prompting for user input regarding
XLink navigation. We are using the JDOM API to connect to caBIO and parse the XML response
document:

266 XML for Bioinformatics

// Connect to caBio and read into a JDOM Document.
SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(url);
// Process all Elements
Element rootElement = doc.getRootElement();
processElement(rootElement);

As a quick refresher, the SAXBuilder object reads in an XML document and constructs an in-
ternal JDOM representation of the document. After construction, the JDOM Document object
contains the complete contents of the caBIO XML response document, making it available for
easy traversal. Document traversal begins by passing the root document element to the recursive
processElement() method.

The processElement() method extracts the element name, any associated text, and any em-
bedded XLinks. XLinks are all defined within the namespace of http://www.w3.org/1999/xlink/,
and we use this namespace to extract all href attributes:

Namespace xlink = Namespace.getNamespace
("http://www.w3.org/1999/xlink/");

String href = element.getAttributeValue("href", xlink);

All href links are then added to an ArrayList object for subsequent traversal. Finally, the
processElement() method extracts all child elements, and passes each child recursively back to
the same method. This enables us to traverse this entire document tree, display all embedded data,
and extract all XLinks. The remainder of the code in Listing 9.1 provides for user input and XLink
navigation. Note also that a stack of XLink URLs is maintained; this enables the application to
record a history of documents browsed, and thereby enables users to navigate back to previously
viewed documents.

Side Bar: Bio Browser
Our command line caBIO browser does a good job of illustrating the caBIO REST interface, but it
is certainly rudimentary in design and functionality. For a visual browser with much more robust
functionality, check out the Bio Browser [129] application, written by Jonny Wray.

Bio Browser is a visual Java client application that enables users to search caBIO, and easily
navigate through embedded XLinks with a simple click of the mouse. It even includes support for
Scalable Vector Graphics (SVG), which enables users to view the interactive pathway diagrams that
are served up by caBIO. Bio Browser is currently made available as a Java Web Start application,
making it extremely easy to install. To get started, go to http://www.jonnywray.com/java. A sample
screenshot of the Bio Browser application is shown in Figure 9.6.

As explored in Chapter 5, the National Center for Biotechnology Information (NCBI)
maintains a REST-based web service, called EFetch. EFetch represents a core element in
NCBI’s effort to provide programmatic access to a wide set of interconnected databases,
and currently provides access to sequence, literature, and taxonomy databases. EFetch
is also currently capable of returning documents in multiple file formats. For example,
you can retrieve sequence records in FASTA, GenBank, ASN.1, GenBank XML, or
TinySeq XML. For additional details, refer back to Chapter 5 or go to the EFetch Help
page at: http://eutils.ncbi.nlm.nih.gov/entrez/query/static/efetchseq-help.html.

Chapter 9 � Web Services for Bioinformatics 267

Figure 9.6 Sample screenshot of the Bio Browser application. Reprinted with permission of Jonny Wray.

9.4 Introduction to SOAP

SOAP [103; 104; 106] is an XML-based protocol which enables applications to communicate and
share data. SOAP is currently available as version 1.2, and is formally endorsed by the World
Wide Web Consortium (W3C).∗ Since its introduction, a number of major computer vendors,
including Microsoft, IBM, and Sun Microsystems, have announced broad support for SOAP and
have provided a number of SOAP implementations and toolkits. A number of bioinformatics
resources are also currently available via SOAP. For example, the European Bioinformatics Institute
(EBI) provides a SOAP-based interface for retrieving nucleotide sequence records [26], and the
DNA Database of Japan (DDBJ) provides a SOAP-based interface for retrieving sequence records
and running BLAST queries [107]. As discussed above, the National Cancer Institute caBIO project
also provides a SOAP-based interface.

This section provides an introduction to the SOAP protocol and includes a number of complete,
working examples. We begin with a description of the SOAP message format and examine a sample

∗ In previous versions, SOAP stood for Simple Object Access Protocol. However, the W3C SOAP 1.2 working group
decided that the acronym was misleading, and decided to drop the acronym altogether [105].

268 XML for Bioinformatics

SOAP request and response. We also discuss the encoding of error messages and the use of SOAP
via HTTP. We then provide an introduction to Apache Axis, an open-source Java toolkit for creating
SOAP services and clients. The section concludes with a complete example for connecting to the
caBIO SOAP interface.

Information about the EBI XEMBL SOAP interface is available at:
http://www.ebi.ac.uk/xembl. Information about the DNA Database of Japan (DDBJ)
SOAP project is available at: http://xml.ddbj.nig.ac.jp/soapp.html.

9.4.1 SOAP Overview
SOAP formally defines a framework for computers to communicate via XML. The SOAP spec-
ification is designed to accommodate a number of usage scenarios, and is therefore open-ended
on a number of implementation issues. For example, SOAP can be used to transmit any arbitrary
payload of XML between any two computers. SOAP is also not tied to a specific network proto-
col, and one can theoretically deliver SOAP messages via HTTP, Simple Mail Transfer Protocol
(SMTP), or Blocks Extensible Exchange Protocol (BEEP). The SOAP framework also supports the
use of SOAP intermediaries. For example, an initial SOAP sender can send a message to a SOAP
intermediary, which can forward it to a second SOAP intermediary, and so on, until the message
reaches the ultimate receiver.

While the SOAP specification can accommodate a diverse set of usage scenarios, most “real-
world” SOAP applications are much more focused in application. For example, most SOAP appli-
cations are specifically designed to enable Remote Procedure Calls (RPC). In this scenario, a client
invokes a remote method by sending a SOAP message with the method name and any number of
method arguments. In response, the receiver invokes the correct method and encodes the method
response in a second SOAP message. While SOAP can also be transmitted via several protocols,
nearly all real-world SOAP messages are transmitted via the very familiar HTTP protocol. And,
finally, while it is possible to use SOAP intermediaries, most current services stick to one SOAP
sender and one SOAP receiver, and avoid the use of SOAP intermediaries altogether.

Most SOAP applications are therefore focused on three elements: using XML to perform Remote
Procedure Calls, transmitting SOAP messages via HTTP, and using just two computers—one
sender and one receiver. SOAP is capable of much more, but we focus on these three properties
for our introductory discussion. Furthermore, it is important to note that while it certainly helps
to understand the intricacies of the SOAP protocol in detail, most developers will use toolkits,
which shield them from SOAP-specific details. For example, you will not need to construct a
SOAP message from scratch—in fact, most SOAP toolkits will pack, transmit, and unpack SOAP
messages for you automatically.

A Sample SOAP Session
The best way to learn SOAP is to examine a sample SOAP session. Later in this chapter, we will
build a simple bioinformatics web service that calculates the GC content of a specified sequence.
Our remote service provides a single method: getGCContent() , which expects a single string
argument and returns a double value. Assuming we have already deployed our service, a client

Chapter 9 � Web Services for Bioinformatics 269

Listing 9.2 A SOAP request

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<getGCContent
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">

<arg0 xsi:type="xsd:string">ATGTACCCCG</arg0>
</getGCContent>

</soapenv:Body>
</soapenv:Envelope>

Listing 9.3 A SOAP response

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<getGCContentResponse

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">

<getGCContentReturn xsi:type="xsd:double">0.6</getGCContentReturn>
</getGCContentResponse>
</soapenv:Body>
</soapenv:Envelope>

application can invoke the GC content method by sending a properly formatted SOAP message. A
sample SOAP request is shown in Listing 9.2.

A number of important elements are shown in Listing 9.2. First, all SOAP messages must be
specified with a root Envelope element. The Envelope element contains the SOAP message,
much as a regular envelope might contain a letter.

Second, within the Envelope, we find a Body element, where we specify the main “payload”
of the SOAP message. In our case, the Body element contains a single getGCContent element,
indicating the name of the remote method we want to invoke. This element also contains a single
method argument, where we have specified a short nucleotide sequence.

Third, SOAP messages make extensive use of namespaces (for a quick review of XML Names-
paces, refer to Chapter 2). For example, the SOAP Envelope , Body , and Header elements must
be defined in the SOAP Envelope namespace. This enables SOAP processors to easily identify
SOAP-specific elements and process them accordingly. SOAP messages may also include addi-
tional namespaces. For example, in Listing 9.2, we declare namespaces for XML Schema and XML
Schema instance documents. This enables us to reference data types specified in the XML Schema
specification. For example, we can define arg0 as an XML Schema string data type.

In response to our SOAP request, our web service generates a corresponding SOAP response.
See Listing 9.3.

270 XML for Bioinformatics

SOAP Message

Envelope (Required)

Header (Optional)

Body (Required)

Fault (Required if error occurs)

Header Block 1

Header Block N
…

Figure 9.7 The SOAP Envelope.

Again, the SOAP message contains a SOAP Envelope, and the same namespace declarations.
However, the Body element now contains the response for our remote method invocation. The
getGCContentReturn element specifies an xsi:type attribute of xsd:double, indicating that
our method has returned a double value of 0.6.

9.4.2 Constructing SOAP Messages
The W3C SOAP specification provides very explicit rules for constructing SOAP messages. This
includes specific rules for constructing SOAP envelopes, headers, bodies, and faults.

SOAP Envelope
Every SOAP message must have a root SOAP Envelope element, and this element must be defined
within the SOAP Envelope namespace. The SOAP Envelope namespace is used to specify the SOAP
version. For SOAP 1.1, the namespace must be set to: http://schemas.xmlsoap.org/soap/envelope.
For SOAP 1.2, the namespace must be set to: http://www.w3.org/2003/05/soap-envelope.

The SOAP Envelope can contain one optional Header element, and one mandatory Body ele-
ment. The Body element can in turn contain the message payload or an optional Fault element.
A schematic diagram of the SOAP Envelope is provided in Figure 9.7.

SOAP Header
The SOAP Header element is used to convey additional information or meta-data about the
SOAP message. For example, the header element may be used to convey session information,

Chapter 9 � Web Services for Bioinformatics 271

account information, or transaction identification. The Header element must be specified within
the SOAP Envelope namespace and can contain any number of subelements, referred to as header
blocks. Header blocks can be specified with zero or more SOAP-specific attributes. For exam-
ple, header blocks can specify a mustUnderstand attribute. If set to “true,”∗ the SOAP receiver
must understand and process the SOAP header block. Otherwise, the SOAP receiver must return a
fault.

Header blocks can also include other SOAP-specific attributes, such as role and
relay. However, these attributes are specific to using SOAP intermediaries. For
complete details, refer to the SOAP specification, Part I, available online at:
http://www.w3.org/TR/SOAP.

Here is an example header:

<env:Header xmlns:env="http://www.w3.org/2003/05/soap-envelope" >
<t:Transaction xmlns:t="http://www.xmlbio.org"

env:mustUnderstand="true">705
</t:Transaction>

</env:Header>

This header specifies one header block, where we have specified a transaction identifier. The trans-
action header block must be understood and processed by the receiving SOAP server. Otherwise,
the SOAP receiver must return a fault.

SOAP headers are not yet widely used. For example, none of the bioinformatics services refer-
enced in this chapter use SOAP headers. As SOAP services mature, this may change, and header
elements may become more prevalent.

SOAP Body
The Body element is used to encapsulate the “payload” of the SOAP message. For example,
in a client request, the Body may contain the method to invoke, along with a list of method
arguments. In a SOAP response, theBody may contain the results of the method invocation or a fault
element.

You can include any well-formed XML within a SOAP body element. However, an important
aspect of SOAP processing is the automatic transformation of XML data into language-specific
data structures.

In XML applications, marshaling is the process of transforming language-specific data structures
into a cross-platform XML representation. For example, the Axis toolkit will automatically marshal
a Java array of double values into an XML representation. This XML representation can then be
unmarshaled at the other end and converted back into a different programming language, such as
C#. This is the magic that enables cross-platform communication.

In order to effectively marshal and unmarshal XML data, SOAP senders and receivers must
agree on a convention for encoding XML data. For example, both ends must agree on a convention
for encoding primitive data types, such as integers and doubles. Both ends may also need to agree

∗ SOAP 1.1 uses the integer values of 1/0 for boolean types; SOAP 1.2 uses the boolean values of true/1/false/0.

272 XML for Bioinformatics

on a convention for encoding compound data types, such as arrays and hash maps. While the SOAP
specification does not mandate the use of one encoding convention, the specification does define a
built-in set of encoding rules, referred to as the SOAP encoding style.

The SOAP encoding style defines rules for marshaling and unmarshaling XML data and is not
tied to any programming language. For primitive data types, the SOAP encoding style leverages
XML Schema data types and therefore includes support for primitive types, such as integers, floats,
and doubles. The SOAP encoding style also includes detailed support for compound data types,
such as structs and arrays.

By leveraging the SOAP encoding style, SOAP toolkits can automatically marshal and unmarshal
XML encoded data. Best of all, the transformation details are usually completely hidden from the
developer. For example, the Apache Axis toolkit can automatically marshal a Java array of double
values and transform it into a SOAP array of XML Schema xsd:double values. At the other end,
a Microsoft .NET application can automatically unmarshal the SOAP message into a C# array of
double values.

For SOAP 1.1, the SOAP Encoding style must be set to:
http://schemas.xmlsoap.org/soap/encoding. For SOAP 1.2, the encoding style
must be set to: http://www.w3.org/2003/05/soap-encoding.

SOAP Faults
One of the primary advantages of using SOAP is that it has a set of well-defined rules for encoding
error messages and propagating them back to clients. To indicate an error, the SOAP receiver must
return a SOAP message with a SOAP Envelope and Body. However, the Body element must contain
a single SOAP Fault element.

In SOAP 1.1, the fault element must include a mandatory faultCode and a mandatory
faultString. The faultCode must contain a SOAP-specific value and must be chosen from
one of the values specified in Table 9.2. For example, a value of Client indicates an error in
the client request, whereas a value of Server indicates that the server encountered an internal
error. The faultString element is used to convey a human readable explanation of the error. For
example, here is a sample SOAP 1.1 fault message:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<soapenv:Fault>
<faultcode>soapenv:Server</faultcode>
<faultstring>Database down for required maintenance.</faultstring>
</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

This SOAP message indicates that a Server error occurred, and that the database is currently down
for required maintenance.

Chapter 9 � Web Services for Bioinformatics 273

Table 9.1 SOAP 1.1 and 1.2 fault elements

SOAP 1.1 Element Corresponding SOAP 1.2 Element

FaultCode
Indicates an error code, suitable for algorithmic

processing. The value of thefaultCode must
match one of the values in Table 9.2

env:Code
Indicates an error code, suitable for algorithmic processing. Theenv:Code

element must contain a mandatoryenv:Value element and an
optionalenv:Subcode element. Theenv:Value element
must match one of the values in Table 9.2

FaultString
Indicates a human-readable explanation of the error

env:Reason
Indicates a human-readable explanation of the error. Theenv:Reason

element must contain one or moreText elements. EachText element
must contain an XML lang attribute, indicating the language of the error
message. For example, a value of “en’’ indicates an English error message. By
returning multipleText elements, you can return error messages in
multiple languages

FaultActor
Indicates which SOAP node in the message path caused

the fault. Used for SOAP intermediaries

env:Node andenv:Role
Theenv:Node element identifies which SOAP node in the message path

caused the fault. Theenv:Role element identifies the role of the SOAP
node when the fault was generated. Used for SOAP intermediaries

Detail
Carries application specific error messages, such as a

program stack trace

env:Detail
Carries application-specific error messages, such as a program stack trace

SOAP fault processing is significantly different in SOAP 1.2 [105], and represents one of the
biggest changes between the two versions. Below is a sample SOAP 1.2 fault:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-
envelope">

<soapenv:Body>
<soapenv:Fault>

<soapenv:Code>
<soapenv:Value>soapenv:Receiver</soapenv:Value>

</soapenv:Code>
<soapenv:Reason>

<soapenv:Text xml:lang="en"
xmlns:xml="http://www.w3.org/XML/1998/namespace">

Database down for required maintenance.
</soapenv:Text>

</soapenv:Reason>
</soapenv:Fault>

</soapenv:Body>
</soapenv:Envelope>

This document contains the same error as the previous example. However, the faultCode and
faultReason elements have been replaced with Code and Reason elements, respectively. Addi-
tional differences are summarized in Tables 9.1 and 9.2.

9.4.3 Transporting SOAP via HTTP
SOAP messages can be delivered via a variety of network protocols. However, transporting SOAP
via HTTP remains the most popular option. When using HTTP, the sender will usually send the

274 XML for Bioinformatics

Table 9.2 SOAP 1.1 and 1.2 fault codes

SOAP 1.1 Fault Code Corresponding SOAP 1.2 Fault Code

VersionMismatch
Indicates an invalid SOAP Envelope Namespace value or a SOAP

version mismatch between SOAP client and server

VersionMismatch
No Change

MustUnderstand
Indicates that the SOAP receiver is unable to process a header block

element with a mustUnderstand attribute set to “1/true.’’ This
ensures that mustUnderstand elements are not silently ignored

MustUnderstand
No Change

Client
Indicates that the client request contained an error. For example, the

client has specified a nonexistent method name, or has supplied
the incorrect parameters to the method

Sender
In SOAP 1.2,Client is changed toSender

Server
Indicates that the server is unable to process the client request. For

example, a central database may be down for routine
maintenance

Receiver
In SOAP 1.2,Server is changed toReceiver

DataEncodingUnknown
New to SOAP 1.2. Indicates that the incoming SOAP message uses

an encoding style, which is either unknown or not supported at
the receiving node

SOAP message via HTTP POST. The receiver will respond by transmitting a SOAP message in
the body of the HTTP response.

For example, here is a complete SOAP request, as transmitted via HTTP:

POST /axis/services/BioService1 HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.1
Host: localhost
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 417
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<getGCContent
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<arg0 xsi:type="xsd:string">ATGTACCCCG</arg0>
</getGCContent>
</soapenv:Body>
</soapenv:Envelope>

In SOAP 1.1, applications are required to specify a Content-Type of text/xml and clients are
required to specify a SOAPAction HTTP Header. The SOAPAction header is used to indicate
the “intent” of the SOAP message [96]. For example, SOAP servers can inspect the SOAPAction

Chapter 9 � Web Services for Bioinformatics 275

header, and automatically route the message to the correct web service. Firewalls can also check for
the existence of the header and automatically filter out all SOAP messages. The SOAP specification
does not define any rules for valid SOAPAction header values, and the interpretation of the header
is entirely server dependent. However, even if the server does not require a specific SOAPAction
header value, the specification requires that clients specify an empty string (""), or a null value.
For example:

SOAPAction: ""

or

SOAPAction:

Here is a sample HTTP response:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Date: Wed, 14 Jan 2004 15:55:58 GMT
Server: Apache Coyote/1.0
Connection: close
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<getGCContentResponse
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<getGCContentReturn xsi:type="xsd:double">0.6</getGCContentReturn>

</getGCContentResponse>
</soapenv:Body>
</soapenv:Envelope>

Note that the server response also specifies a Content-Type of text/xml . If the request is
successful, the server must return an HTTP status code of 200 OK. Otherwise, the server must
return SOAP fault and an HTTP status code of 500 Internal Server Error.

In SOAP 1.2, the Content-Type has been changed from text/xml to application/
soap+xml [105]. The SOAPAction Header has also been deprecated and is no longer required.
In its place, clients can specify an optional action parameter to the Content-Type [105]. Further-
more, SOAP 1.2 requires a finer grained mapping between SOAP fault codes and HTTP status codes
[105]. More specifically, a SOAP fault code ofenv:Sender must trigger an HTTP 400 Bad Request
status code; all other faults must trigger an HTTP 500 Internal Server Error status code [104].

9.5 Introduction to Apache Axis

We are now ready to apply our knowledge of the SOAP protocol and start building our own web
services. This section provides an introduction to the Apache Axis [93] web services toolkit. Axis
is an open source Java toolkit, hosted by the Apache Software Foundation and currently maintained
by several dozen dedicated volunteers. Using Axis, you can build and deploy SOAP services, create
SOAP clients, and even create SOAP intermediaries.

276 XML for Bioinformatics

9.5.1 Building a Web Service with Axis
To explore Axis in detail, we explore the complete lifecycle of building a new web service. We
begin by creating a web service and deploying it locally, and then move onto creating a typical
SOAP client. We also discuss options for debugging SOAP services and capturing SOAP messages
as they are transmitted over the wire.

To get started, you will need to first download a copy of the Axis distribution from the Axis web
site at: http://ws.apache.org/axis. Complete installation instructions are included in the distribution
and are also available on the Axis web site.

Building the Service
Building a new web service is remarkably simple in Axis. Listing 9.4 provides the complete
source code for our new bioinformatics service. Our service provides a single public method,
getGCContent() . This method receives a sequence string argument, counts up the total number
of Gs and Cs, and calculates the total GC content for the sequence. The calculated result is returned
as a double value.

Most noticeably, the code in Listing 9.4 does not import any Axis-specific libraries or utili-
ties. Each web service class is simply a public class, with any number of public methods. When
you deploy the class, Axis takes care of wrapping your class and SOAP-enabling it for you
[94].

Listing 9.4 A bioinformatics web service

package org.xmlbio.axis;

/**
* Sample Web Service: Determines GC Content.
*
* @author Ethan Cerami
*/
public class BioService1 {

/**
* Determines GC Content for the specified sequence string.
*/
public double getGCContent (String sequence) {

sequence = sequence.trim().toUpperCase();
int counter = 0;
for (int i=0; i<sequence.length(); i++) {

char c = sequence.charAt(i);
if (c == 'G' | | c == 'C') {

counter++;
}

}
return counter / (double) sequence.length();

}
}

Chapter 9 � Web Services for Bioinformatics 277

Deploying the Service
Axis provides a number of options for hosting and deploying web services. The first and simplest
option is to host your services within the standalone Axis server. The second option is to host your
services within a servlet engine, such as Apache Tomcat. In the interests of getting you up and
running quickly, we explore the first option here. However, the stand-alone Axis server is designed
for small-scale development use only [94]. For production-level services, you will need to follow
the second option. For complete details, refer to the Axis installation notes.

To run the stand-alone Axis server, make sure your CLASSPATH is set correctly, open a new
terminal or DOS window, and then type:

java org.apache.axis.transport.http.SimpleAxisServer -p 8080

This will start the stand-alone Axis server on port 8080, and you will see the following message:

- SimpleAxisServer starting up on port 8080.

To keep the server running, keep the terminal or DOS window open as you proceed with the rest
of the section.

Axis provides an Admin Client, which is capable of deploying, undeploying, and listing web
services. To deploy a new web service, you must invoke the Admin Client and specify a Web Services
Deployment Descriptor (WSDD) file. The WSDD file contains information about your web service
and directs the server to immediately deploy it. A sample WSDD file for our bioinformatics web
service is presented in Listing 9.5.

Listing 9.5 deploy1.wsdd. Web Services Deployment Descriptor (WSDD) file

<?xml version="1.0" encoding="UTF-8"?>
<!-- Deploys the BioService to the Axis Engine -->
<deployment name="BioService1"

xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<service name="BioService1" provider="java:RPC">

<parameter name="className"
value="org.xmlbio.axis.BioService1"/>

<parameter name="allowedMethods" value="*"/>
</service>

</deployment>

Our sample WSDD file has a root deployment element and one service element. The ser-
vice element specifies the name of the web service, identifies the Java class that implements the
service, and specifies that all methods in the class are to be made public. It also specifies that our
service is to be deployed as a SOAP Remote Procedure Call (RPC).

To deploy the service, invoke the AdminClient program and pass the name of the WSDD file.
Again, make sure your CLASSPATH is set correctly, and then type:

java org.apache.axis.client.AdminClient deploy1.wsdd

Assuming your stand-alone server is still running, you will see the following message:

Processing file deploy1.wsdd
<Admin>Done processing</Admin>

278 XML for Bioinformatics

Listing 9.6 undeploy1.wsdd: Undeploys the BioService

<?xml version="1.0" encoding="UTF-8"?>
<!-- Undeploys the BioService1 -->
<undeployment xmlns="http://xml.apache.org/axis/wsdd/">

<service name="BioService1"/>
</undeployment>

To verify that your service is indeed available, you can request a full list of currently deployed
services:

java org.apache.axis.client.AdminClient list

You will receive a large XML document with several service elements. Verify that the newly
deployed service is listed here.

To undeploy a web service, you invoke the AdminClient again. This time, however, you must
specify a WSDD file with a root undeployment element. For example, Listing 9.6 specifies a
WSDD file for undeploying the BioService.

To undeploy the BioService, type:

java org.apache.axis.client.AdminClient undeploy1.wsdd

You will see the following message:

Processing file undeploy1.wsdd
<Admin>Done processing</Admin>

Axis also supports Java Web Services (JWS) files for instant deployment [94]. To
use this option, you must first install a servlet engine, such as Apache Tomcat, and
then make a few minor changes to your service class. First, remove any package
declarations from your service class, rename it from .java to .jws, and place it in the
webapps/axis directory. Upon restart, Axis will automatically discover all JWS files
and instantly deploy them [94]. Instant deployment only works for nonpackaged classes
and is intended for simple development purposes only [94]. For production-level web
services, you are advised to use WSDD files, as described in this section.

Building the Client
We now have an Axis server running, and our sample web service is fully deployed. The next step
is to create a SOAP client and test out the connection. Listing 9.7 provides the full source code for
a typical SOAP client.

The core of the Axis client code is creating and configuring an Axis Call object. You can
instantiate a Call object by passing in the absolute URL of the web service. In this case, we
specify a localhost URL running on port 8080. Once you have a Call object, you need to specify
the remote method name and any method arguments. Method arguments are specified as an array
of Objects and you can therefore include arbitrary Java objects, Strings, or wrapper classes such as
Integer and Double. In our case, we specify a single String parameter:

Object params[] = new Object[1];
params[0] = SEQUENCE;

For simplicity, the sequence value is hard-coded.

Chapter 9 � Web Services for Bioinformatics 279

Listing 9.7 BioClient1.java

package org.xmlbio.axis;

import org.apache.axis.client.Call;

import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;

/**
* Sample Client to the Bio Web Service.
*
* @author Ethan Cerami
*/
public class BioClient1 {

private static final String SEQUENCE = "ATGTACCCCG";

public static void main(String[] args) {
try {

// Specify URL to Localhost BioService1
URL url = new URL

("http://localhost:8080/axis/services/BioService1");
// Create a New Call Object
Call call = new Call (url);

// Set Method Name and Parameters
call.setOperationName("getGCContent");
Object params[] = new Object[1];
params[0] = SEQUENCE;

// Invoke Remote Service
Double gc = (Double) call.invoke(params);
System.out.println("Sequence: " + SEQUENCE

+ " has GC Content: " + gc);
} catch (MalformedURLException e) {

System.out.println(e.getMessage());
} catch (RemoteException e) {

System.out.println(e.getMessage());
} }

}

With the method name and argument set, we can execute the remote method by calling the
invoke() method. This method will automatically create the correct SOAP request message,
send it to the remote server, and parse the corresponding SOAP response message. The invoke()
method returns a Java Object , which you can cast at runtime. For example, we know that the
getGCContent() method returns a double value, and we therefore cast to the corresponding
wrapper class:

Double gc = (Double) call.invoke(params);

When you run the client, you should therefore see the following output:

Sequence: ATGTACCCCG has GC Content: 0.6

280 XML for Bioinformatics

Figure 9.8 The Axis TCPMonitor tool in action.

In the event of a SOAP fault, the invoke() method will throw a RemoteException. You can
then inspect the RemoteException for a specific error message.

Axis also includes built-in support for the Web Services Description Language
(WSDL). WSDL is beyond the scope of this chapter, but you can find complete details
in Web Services: Essentials, by Ethan Cerami [4].

Viewing SOAP Messages with TCPMonitor
As you build web services, it is very useful to monitor and debug SOAP messages as they are
transmitted over the wire. Axis includes a handy tool called TCPMonitor, which enables you to do

Chapter 9 � Web Services for Bioinformatics 281

just that. To use it, type:

java org.apache.axis.utils.tcpmon 8070 localhost 8080

This will direct the TCPMonitor tool to listen for requests on port 8070 and to forward those
requests to the localhost running on port 8080. Once the monitoring tool is running, update the
URL of you web client to point to port 8070. For example, modify Listing 9.7 as follows:

URL url = new URL ("http://localhost:8070/axis/services/BioService1");

Then, rerun the client application, and TCPMonitor will capture the entire SOAP conversation. A
sample screenshot is shown in Figure 9.8.

9.5.2 Connecting to caBIO with Axis
As a final topic, we now come full circle to our caBIO case study. caBIO maintains SOAP interfaces
for all of the domain objects described at the beginning of the chapter. For each domain object, there
is an associated SOAP method name. For example, to retrieve Gene domain objects, you invoke the
getGenes SOAP method. Each of the domain-specific methods takes in a hash map of name/value
pairs, and returns a single XML string. The valid name/value arguments match public methods
specified in the correspondingSearchCriteria object. For example, theGeneSearchCriteria
object has a setSymbol() method. The hash map for invoking the SOAP service can therefore
include a member named “symbol.”

Sample client code for connecting to the caBIO SOAP interface via Axis is provided in
Listing 9.8. The client code in Listing 9.8 is nearly identical to our earlier example. As before,
we instantiate a Call object, set the method name, and method parameters. This time, however,
the method parameters consist of a HashMap object, containing a single name/value pair. Note
also that caBIO requires that the method name be namespace qualified, and that we use the caBIO
namespace of “urn:nci-gene-service.”

Listing 9.8 GeneSoap.java

package org.xmlbio.cabio;

import org.apache.axis.client.Call;
import javax.xml.namespace.QName;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import java.util.HashMap;

/**
* Sample caBio Application.
* Illustates use of the caBio SOAP Interface.
*
* @author Ethan Cerami
*/
public class GeneSoap {

String caBioUrl = "http://cabio.nci.nih.gov:80/soap/servlet/
rpcrouter";

282 XML for Bioinformatics

Listing 9.8 (cont.)

/**
* Executes a caBio Search for the BRCA2 Gene.
*/
public void execute() throws MalformedURLException,
RemoteException {
// Create the Axis Call Object
URL url = new URL(caBioUrl);
Call call = new Call(url);

// Set Method Name
QName operationName = new QName("urn:nci-gene-service",

"getGenes");
call.setOperationName(operationName);

// Set Method Parameters
HashMap params [] = new HashMap[1];
params[0] = new HashMap();
params[0].put("symbol", "brca2");

// Invoke Remote Method and print XML Response
String response = (String) call.invoke(params);
System.out.println(response);

}

/**
* Main Method.
*/
public static void main(String args[]) throws Exception {

GeneSoap geneSoap = new GeneSoap();
geneSoap.execute();

}
}

In Listing 9.8, we also cast the invoke() response object to a String object. This String
object contains a complete XML representation of all matching Gene objects and is identical to the
XML one would receive via the REST-based caBIO interface.

Appendix: IUPAC Code Tables

1 Nucleotide Base Codes

Authority: Nomenclature Committee of the International Union of Biochemistry [112].

Symbol Meaning

A Adenine (A)
C Cytosine (C)
G Guanine (G)
T Thymine in DNA (T); Uracil in RNA
M A or C
R A or G
W A or T
S C or G
Y C or T
K G or T
V A, C, or G; not T
H A, C, or T; not G
D A, G, or T; not C
B C, G, or T; not A
N A, C, G, or T

2 Amino Acid Codes

Authority: IUPAC-IUB Joint Commission on Biochemical Nomenclature [113].

1-Letter Code 3-Letter Code Description

A Ala Alanine
R Arg Arginine
N Asn Asparagine
D Asp Aspartic acid (Aspartate)
C Cys Cysteine
Q Gln Glutamine
E Glu Glutamic acid (Glutamate)

(cont.)

283

284 XML for Bioinformatics

(cont.)

1-Letter Code 3-Letter Code Description

G Gly Glycine
H His Histidine
I Ile Isoleucine
L Leu Leucine
K Lys Lysine
M Met Methionine
F Phe Phenylalanine
P Pro Proline
S Ser Serine
T Thr Threonine
W Trp Tryptophan
Y Tyr Tyrosine
V Val Valine
B Asx Aspartic acid or Asparagine
Z Glx Glutamine or Glutamic acid
X Xaa Any amino acid

Bibliography

[1] Achard, F., G. Vaysseix, and E. Barillot, “XML, bioinformatics and data integration,” Bioinformatics
2001; 17 (2):115–125.

[2] Barillot, E. and F. Achard, “XML: a lingua franca for science?,” Trends in Biotechnology 2000; 18
(8):331–333.

[3] Bray, Tim, xml.com. Annotated XML Specification. http://www.xml.com/axml/testaxml.htm
[4] Cerami, Ethan, Web Services: Essentials. 1st edn. Beijing; Sebastopol, CA: O’Reilly, 2002.
[5] Chicurel, M., “Bioinformatics: bringing it all together,” Nature 2002; 419 (6908):751, 753, 755 passim.
[6] Dowell, R. D., R. M. Jokerst, A. Day, S. R. Eddy, and L. Stein, “The distributed annotation system,”

BMC Bioinformatics 2001; 2 (1):7.
[7] Dumbill, Edd, Whither Web Services? xml.com, 2002.
[8] I3C FAQs. Interoperable Informatics Infrastructure Consortium. http://i3c.org/about/faq.asp
[9] Martin, A. C., “Can we integrate bioinformatics data on the Internet?,” Trends Biotechnol 2001; 19

(9):327–328.
[10] Stein, L., “Creating a bioinformatics nation,” Nature 2002; 417 (6885):119–120.
[11] Stein, L. D., “Integrating biological databases,” Nature Rev Genet 2003; 4 (5):337–345.
[12] Bioinformatic Sequence Markup Language—BSML 3.1 Reference Manual. LabBook, Inc.

http://www.bsml.org/i3c/docs/BSML3 1 Reference Manual.pdf
[13] Bioinformatic Sequence Markup Language—BSML 3.1 Tutorials. LabBook, Inc. http://www.bsml.org/

i3c/docs/BSML3 1 Tutorials.pdf
[14] Bray, Tim, Dave Hollander, Andrew Layman, and Richard Tobin, World Wide Web Con-

sortium (W3C). Namespaces in XML 1.1 (W3C Recommendation). http://www.w3.org/TR/2004/
REC-xml-names11-20040204

[15] Bray, Tim, Dave Hollander, and Andrew Layman, World Wide Web Consortium (W3C). Namespaces
in XML (W3C Recommendation). http://www.w3.org/TR/REC-xml-names

[16] Bray, Tim, Jean Paoli, C.M. Sperberg-McQueen, and Eve Maler, World Wide Web Consortium (W3C).
Extensible Markup Language (XML) 1.0 (W3C Recommendation). http://www.w3.org/TR/2000/REC-
xml-20001006

[17] Cibulskis, Kristian, “An introduction to BSML,” XML Journal 4 (3).
[18] Cowan, John, World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.1 (W3C

Recommendation). http://www.w3.org/TR/2004/REC-xml11-20040204
[19] Dublin Core Metadata Element Set, Version 1.1: Reference Description. Dublin Core Metadata Initia-

tive. http://dublincore.org/documents/dces
[20] Flynn, Peter, The XML FAQ. http://www.ucc.ie/xml
[21] Gilbert, Howard, Character Encoding and the Web. http://www.yale.edu/pclt/encoding
[22] Hillmann, Diane, Dublin Core Metadata Initiative, Using Dublin Core. http://dublincore.org/

documents/2003/08/26/usageguide
[23] Korpela, Jukka, A Tutorial on Character Code Issues. http://www.cs.tut.fi/∼jkorpela/chars.html

285

286 Bibliography

[24] Powell, Andy, Dublin Core Metadata Initiative. Guidelines for Implementing Dublin Core in XML.
http://dublincore.org/documents/dc-xml-guidelines

[25] Spitzner, Joseph, LabBook, Inc. Bioinformatic Sequence Markup Language—BSML Document Type
Definition DTD Version 3.1. http://www.labbook.com/dtd/bsml3 1.dtd

[26] Wang, L., J. J. Riethoven, and A. Robinson, “XEMBL: distributing EMBL data in XML format,”
Bioinformatics 2002; 18 (8):1147–1148.

[27] AGAVE—Architecture for Genomic Annotation, Visualization and Exchange 2.3 DTD. DoubleTwist,
Inc. http://www.lifecde.com/products/agave/schema/v2 3/agave.dtd

[28] AGAVE—Architecture for Genomic Annotation, Visualization and Exchange 3.0 Beta XML Schema.
DoubleTwist, Inc. http://www.lifecde.com/products/agave/schema/v3 0/agave.xsd

[29] Baxevanis, Andreas D., and B. F. Francis Ouellette, “Bioinformatics: a practical guide to the analysis of
genes and proteins,” 2nd edn., Methods of Biochemical Analysis; vol. 43, New York: Wiley-Interscience,
2001.

[30] Bray, Tim, Jean Paoli, C.M. Sperberg-McQueen, and Eve Maler, World Wide Web Consortium (W3C).
Extensible Markup Language (XML) 1.0 (2nd edn.). http://www.w3.org/TR/2000/REC-xml-20001006

[31] CellML 1.0 Specification. CellML.org. http://www.cellml.org/public/specification/index.html
[32] Fenyo, D. 1999. “The biopolymer markup language,” Bioinformatics 1999; 15 (4):339–340.
[33] Gene Ontology File Format Guide. Gene Ontology Consortium. http://www.geneontology.org/

GO.format.html
[34] Harold, Elliotte Rusty and W. Scott Means, XML in a Nutshell. 2nd edn. Sebastopol, CA: O’Reilly,

2002.
[35] Introduction to ASN.1. ASN.1 Information Site. http://asn1.elibel.tm.fr/en/introduction/index.htm
[36] NCBI Data in XML. National Center for Biotechnology Information (NCBI), National Insti-

tutes of Health, U.S. Department of Health and Human Services. http://www.ncbi.nih.gov/IEB/
ToolBox/XML/ncbixml.txt

[37] Ostell, James, National Center for Biotechnology Information (NCBI), National Institutes of Health,
U.S. Department of Health and Human Services. NCBI TinySeq DTD. http://www.ncbi.nih.gov/
dtd/NCBI TSeq.dtd

[38] Ostell, James, National Center for Biotechnology Information (NCBI), National Insti-
tutes of Health, U.S. Department of Health and Human Services. NCBI GBSeq DTD.
http://www.ncbi.nih.gov/dtd/NCBI GBSeq.dtd

[39] Spellman, P. T., M. Miller, J. Stewart, C. Troup, U. Sarkans, S. Chervitz, D. Bernhart, G. Sherlock,
C. Ball, M. Lepage, M. Swiatek, W. L. Marks, J. Goncalves, S. Markel, D. Iordan, M. Shojatalab,
A. Pizarro, J. White, R. Hubley, E. Deutsch, M. Senger, B. J. Aronow, A. Robinson, D. Bassett, C.
J. Stoeckert, Jr., and A. Brazma, “Design and implementation of microarray gene expression markup
language (MAGE-ML),” Genome Biol 2002; 3 (9):RESEARCH0046.

[40] St. Laurent, Simon, XML: A Primer. New York: MIS:Press, 1998.
[41] Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski,

S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese,
J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock, “Gene ontology: tool for the unification
of biology,” The Gene Ontology Consortium. Nature Genet 2000; 25 (1):25–29.

[42] Biron, Paul V. and Ashok Malhotra, World Wide Web Consortium. XML Schema Part 2: Datatypes
(W3C Recommendation). http://www.w3.org/TR/xmlschema-2

[43] Fallside, David C., World Wide Web Consortium. XML Schema Part 0: Primer (W3C Recommendation).
http://www.w3.org/TR/xmlschema-0

[44] Finney, A. and M. Hucka, “Systems biology markup language: Level 2 and beyond,” Biochem Soc
Trans 2003; 31 (6):1472–1473.

[45] Harris, M. A., J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foulger, K. Eilbeck, S. Lewis, B.
Marshall, C. Mungall, J. Richter, G. M. Rubin, J. A. Blake, C. Bult, M. Dolan, H. Drabkin, J. T. Eppig,
D. P. Hill, L. Ni, M. Ringwald, R. Balakrishnan, J. M. Cherry, K. R. Christie, M. C. Costanzo, S. S.

Bibliography 287

Dwight, S. Engel, D. G. Fisk, J. E. Hirschman, E. L. Hong, R. S. Nash, A. Sethuraman, C. L. Theesfeld,
D. Botstein, K. Dolinski, B. Feierbach, T. Berardini, S. Mundodi, S. Y. Rhee, R. Apweiler, D. Barrell, E.
Camon, E. Dimmer, V. Lee, R. Chisholm, P. Gaudet, W. Kibbe, R. Kishore, E. M. Schwarz, P. Sternberg,
M. Gwinn, L. Hannick, J. Wortman, M. Berriman, V. Wood, N. de la Cruz, P. Tonellato, P. Jaiswal, T.
Seigfried, and R. White, “The Gene Ontology (GO) database and informatics resource,” Nucleic Acids
Res 2004; 32 Database issue:D258–261.

[46] Hermjakob, H., L. Montecchi-Palazzi, G. Bader, J. Wojcik, L. Salwinski, A. Ceol, S. Moore, S. Orchard,
U. Sarkans, C. von Mering, B. Roechert, S. Poux, E. Jung, H. Mersch, P. Kersey, M. Lappe, Y. Li, R.
Zeng, D. Rana, M. Nikolski, H. Husi, C. Brun, K. Shanker, S. G. Grant, C. Sander, P. Bork, W. Zhu, A.
Pandey, A. Brazma, B. Jacq, M. Vidal, D. Sherman, P. Legrain, G. Cesareni, I. Xenarios, D. Eisenberg,
B. Steipe, C. Hogue, and R. Apweiler, “The HUPO PSI’s molecular interaction format—a community
standard for the representation of protein interaction data,” Nat Biotechnol 2004; 22 (2):177–183.

[47] Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J. Bornstein,
D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, Goryanin,
II, W. J. Hedley, T. C. Hodgman, J. H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling,
U. Kummer, N. Le Novere, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama,
M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J.
Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang, “The systems biology markup language
(SBML): a medium for representation and exchange of biochemical network models,” Bioinformatics
2003; 19 (4):524–531.

[48] Malik, Ayesha, “Create flexible and extensible XML schemas: building XML schemas in an object-
oriented framework,” IBM DeveloperWorks, October 2002.

[49] Murray-Rust, P. and H. S. Rzepa, “Chemical markup, XML, and the World Wide Web. 4. CML schema,”
J Chem Inf Comput Sci 2003; 43 (3):757–772.

[50] Orchard, S., H. Hermjakob, and R. Apweiler, “The proteomics standards initiative,” Proteomics 2003;
3 (7):1374–1376.

[51] Smith, Donald, “Understanding W3C schema complex types,” xml.com August 2001.
[52] Thompson, Henry S., David Beech, Murray Maloney, and Noah Mendelsohn, World Wide Web Con-

sortium. XML Schema Part 1: Structures (W3C Recommendation). http://www.w3.org/TR/xmlschema-1
[53] Van der Vlist, Eric, XML Schema. 1st edn. Sebastopol, CA: O’Reilly, 2002.
[54] Walmsley, Priscilla, Definitive XML Schema. Upper Saddle River, NJ: Prentice-Hall PTR, 2002.
[55] Apweiler, R., A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R.

Lopez, M. Magrane, M. J. Martin, D. A. Natale, C. O’Donovan, N. Redaschi, and L. S. Yeh, “UniProt:
the universal protein knowledgebase,” Nucleic Acids Res 2004; 32 Database issue:D115–119.

[56] Christiansen, Tom and Nathan Torkington, Perl Cookbook. 2nd edn. Beijing; Sebastopol, CA: O’Reilly,
2003.

[57] Harold, Elliotte Rusty, Processing XML with Java: A Guide to SAX, DOM, JDOM, JAXP, and TrAX.
Boston: Addison-Wesley, 2003.

[58] McLean, Grant, Perl-XML frequently asked questions. http://perl-xml.sourceforge.net/faq
[59] McLean, Grant, XML::Simple—Easy API to maintain XML. http://www.cpan.org
[60] Newby, Adam, et al. LWP—The World-Wide Web library for Perl. http://cpan.org
[61] Perl SAX 2.0 Binding. Perl XML Project. http://perl-xml.sourceforge.net/sax
[62] Rodriguez, Michel, Processing XML efficiently with perl and XML::Twig. http://xmltwig.com/

xmltwig/tutorial
[63] Rodriguez, Michel, XML::Twig—A perl module for processing huge XML documents in tree mode.

http://www.xmltwig.com
[64] SAX 2.0 Changes. SAX Project http://www.saxproject.org/?selected=sax2
[65] SAX Genesis. SAX Project. http://www.saxproject.org/?selected=history1
[66] Schwartz, Randal L., Perlboot—Beginner’s Object-Oriented Tutorial.
[67] Schwartz, Randal L. and Tom Phoenix, Learning Perl. 3rd edn. Sebastopol, CA: O’Reilly, 2001.

288 Bibliography

[68] Sergeant, Matt, XML::SAX::PurePerl. http://www.cpan.org
[69] Sergeant, Matt and Christian Glahn. XML::LibXML—Perl binding for libxml2. http://www.cpan.org
[70] Sergeant, Matt, Kip Hampton, and Robin Berjon, XML::SAX—Simple API for XML.

http://www.cpan.org
[71] Simple API for XML (SAX). SAX Project. http://www.saxproject.org
[72] Stajich, J. E., D. Block, K. Boulez, S. E. Brenner, S. A. Chervitz, C. Dagdigian, G. Fuellen, J. G. Gilbert,

I. Korf, H. Lapp, H. Lehvaslaiho, C. Matsalla, C. J. Mungall, B. I. Osborne, M. R. Pocock, P. Schattner,
M. Senger, L. D. Stein, E. Stupka, M. D. Wilkinson, and E. Birney, The Bioperl toolkit: Perl modules
for the life sciences. Genome Res 2002; 12 (10):1611–1618.

[73] Tisdall, James D., Beginning Perl for Bioinformatics. 1st edn. Beijing; Sebastopol, CA: O’Reilly,
2001.

[74] Wall, Larry, Tom Christiansen, and Jon Orwant, Programming Perl. 3rd edn. Beijing; Cambridge, MA:
O’Reilly, 2000.

[75] Wall, Larry, Clark Cooper, and Matt Sergeant, XML::Parser— A perl module for parsing XML docu-
ments. http://www.cpan.org

[76] Wood, Lauren, et al. The World Wide Web Consortium (W3C). Document Object Model (DOM) Level
1 Specification (2nd edn.). http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929

[77] GFF (General Feature Format) Specifications Document. Wellcome Trust Sanger Institute.
http://www.sanger.ac.uk/Software/formats/GFF/GFF Spec.shtml

[78] Gibas, Cynthia and Per Jambeck, Developing Bioinformatics Computer Skills. 1st edn. Beijing; Cam-
bridge, MA: O’Reilly, 2001.

[79] Hubbard, T., D. Barker, E. Birney, G. Cameron, Y. Chen, L. Clark, T. Cox, J. Cuff, V. Curwen, T.
Down, R. Durbin, E. Eyras, J. Gilbert, M. Hammond, L. Huminiecki, A. Kasprzyk, H. Lehvaslaiho,
P. Lijnzaad, C. Melsopp, E. Mongin, R. Pettett, M. Pocock, S. Potter, A. Rust, E. Schmidt, S. Searle,
G. Slater, J. Smith, W. Spooner, A. Stabenau, J. Stalker, E. Stupka, A. Ureta-Vidal, I. Vastrik, and M.
Clamp, “The Ensembl genome database project,” Nucleic Acids Res 2002; 30 (1):38–41.

[80] Kent, W. J., C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and D. Haussler,
“The human genome browser at UCSC,” Genome Res 2002; 12 (6):996–1006.

[81] Stein, L., “Genome annotation: from sequence to biology,” Nature Rev Genet 2001; 2 (7):493–503.
[82] Stein, L., S. R. Eddy, and R. D. Dowell, Distributed Sequence Annotation System (DAS), Version 1.53.

http://biodas.org/documents/spec.html
[83] Stein, L., P. Sternberg, R. Durbin, J. Thierry-Mieg, and J. Spieth, “WormBase: network access to the

genome and biology of Caenorhabditis elegans,” Nucleic Acids Res 2001; 29 (1):82–86.
[84] BioJava. Open Bioinformatics Foundation. http://biojava.org
[85] Mordani, Rajiv and Scott Boag, Sun Microsystems. Java API for XML Processing (Version 1.2 Final

Release). http://java.sun.com/xml/jaxp/index.jsp
[86] Oren, Yuval, Piccolo XML Parser for Java. http://piccolo.sourceforge.net
[87] Xerces2 Java Parser, Apache Software Foundation. http://xml.apache.org/xerces2-j/index.html
[88] Hunter, Jason, Java Community Process. JSR 102: JDOM 1.0. http://www.jcp.org/en/jsr/detail?id=102
[89] Hunter, Jason, “JDOM and XML Parsing,” Parts I, II, and III. Oracle Technology Network, 2002.
[90] Hunter, Jason and Brett McLaughlin, “Easy Java/XML integration with JDOM,” Parts 1 and 2. Java-

World May 2000.
[91] Hunter, Jason and Brett McLaughlin. JDOM. http://jdom.org
[92] McLaughlin, Brett, Java & XML. 2nd edn. Sebastopol, CA; Cambridge, MA: O’Reilly, 2001.
[93] Apache Axis. The Apache Software Foundation. http://ws.apache.org/axis
[94] Apache Axis User’s Guide. The Apache Software Foundation. http://ws.apache.org/axis/

java/user-guide.html
[95] Austin, Daniel, Abbie Barbir, Christopher Ferris, and Sharad Garg, Web Services Architecture Require-

ments (W3C Working Group Note), 2004.

Bibliography 289

[96] Box, Don, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Frystyk
Nielsen, Satish Thatte, and Dave Winer, World Wide Web Consortium (W3C). Simple Object Access
Protocol (SOAP) 1.1 (W3C Note). http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[97] caBIO Data Sources, National Cancer Institute, Center for Bioinformatics, National Institutes of Health.
http://ncicb.nci.nih.gov/core/caBIO/core/caBIO/technical resources/system architecture/caBIO/
data sources

[98] caBIO Overview. National Cancer Institute. http://ncicb.nci.nih.gov/initiatives/core/caBIO
[99] caCore 2.0 Technical Guide. National Cancer Institute, Center for Bioinformatics, National Institutes

of Health. ftp://ftp1.nci.nih.gov/pub/cacore/caCORE2.0 Tech Guide.pdf
[100] Covitz, P. A., F. Hartel, C. Schaefer, S. De Coronado, G. Fragoso, H. Sahni, S. Gustafson, and K. H. Bue-

tow, “caCORE: a common infrastructure for cancer informatics,” Bioinformatics 2003; 19 (18):2404–
2412.

[101] DeRose, Steve, Eve Maler, and David Orchard, World Wide Web Consortium (W3C). XML Linking
Language (XLink) Version 1.0 (W3C Recommendation). http://www.w3.org/TR/xlink

[102] Fielding, Roy Thomas, Architectural Styles and the Design of Network-based Software Architectures,
University of California, Irvine, 2001.

[103] Gudgin, Martin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik Frystyk Nielsen,
World Wide Web Consortium (W3C). SOAP Version 1.2 Part 1: Messaging Framework (W3C Recom-
mendation). http://www.w3.org/TR/2003/REC-soap12-part1-20030624

[104] Gudgin, Martin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik Frystyk
Nielsen, World Wide Web Consortium. SOAP Version 1.2 Part 2: Adjuncts (W3C Recommendation).
http://www.w3.org/TR/2003/REC-soap12-part2-20030624

[105] Hadley, Marc, What’s New in SOAP 1.2. http://www.hadleynet.org/marc/whatsnew.html
[106] Mitra, Nilo, World Wide Web Consortium (W3C). SOAP Version 1.2 Part 0: Primer (W3C Recommen-

dation). http://www.w3.org/TR/2003/REC-soap12-part0-20030624
[107] Miyazaki, S., H. Sugawara, T. Gojobori, and Y. Tateno, “DNA Data Bank of Japan (DDBJ) in XML,”

Nucleic Acids Res 2003; 31 (1):13–16.
[108] Prescod, Paul, REST and the Real World. xml.com February 2002.
[109] St. Laurent, Simon, Joe Johnston, and Edd Dumbill, Programming Web Services with XML-RPC.

1st edn. Beijing; Sebastopol, CA: O’Reilly, 2001.
[110] Winer, Dave, XML-RPC Specification. http://www.xmlrpc.com/spec
[111] Wray, Jonny, Bio Browser. http://www.jonnywray.com/java
[112] Cornish-Bowden, A., “Nomenclature for incompletely specified bases in nucleic acid sequences: rec-

ommendations 1984,” Nucleic Acids Res 1985; 13 (9):3021–3030.
[113] IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN), “Nomenclature and symbolism

for amino acids and peptides. Recommendations 1983,” Biochem J 1984; 219 (2):345–373.

Index

&, <, >, ",' (reserved characters and escape
sequences), 26, 66, 71

Abstract Syntax Notation 1 (ASN.1), 72–73, 77, 79,
266

Accession number, 2, 4
EFetch queries, 126
NCBI TSeq.mod subelements, 77, 78
sequence data representation, 39
XEMBL requirements, 46

Action, SOAP headers, 274–275
Activating feature, SAX, 191
AGAVE (Architecture for Genomic Annotation,

Visualization, and Exchange), 12, 36
Document Type Definition, 50
Schema, 82
XEMBL requirements, 46

Amino acid codes, 283–284
Ampersand (&), 26, 66, 71
ANY, DTDs, 57, 58
Apache Axis, 285–282

building web service with, 276–281
building client, 278–280
building service, 276
deploying service, 277–278
viewing messages with TCPMonitor,

280–281
connecting to caBIO with, 281–282
marshaling and unmarshaling, 271, 272

Apache Group, Xerces parser: see Xerces2 XML
parser

Apache Software Foundation, 13
Apostrophe, 26, 66, 71
Applications, layers of XML, 31
Application software, namespaces and, 32
Application-centric web, 6–7, 248
Architectural options, web services, 250–251
Architecture for Genomic Annotation,

Visualization, and Exchange: see AGAVE

ASCII characters, escape sequences, 25–26, 27
ASN.1 format, 72–73, 77, 79, 266
Assembly of genome, DAS annotation categories,

159
Attributes

DTDs, 52
behaviors of, 61, 65–66
types of, 62–65

JDOM, 215, 228, 234
SAXAttributes object, 202–203
Schemas, 81, 109

data types, 90–91
default value declarations, 99–100
named complex types, defining, 102
occurrence constraints, 98–99

well-formed documents, 27
working with, 23–24
XML::SAX::Base, 123

Auto-DTD generators, 54
Axis toolkit: see Apache Axis

Base64 format, schema data types, 89, 90
Bidirectional links, XLink, 5
Binary formats

schema data types, 89, 90
sequence data, 38

Binding site terms, controlled vocabulary, 113
Bio* libraries, 167
BioBrowser, REST-based web services, 266,

267
BioCarta, 252
BIO::Das Perl Module, 167–168
Bioinformatic Sequence Markup Language

(BSML): see BSML
Bioinformatics, 57–58

evaluating use of XML in, 12–14
advantages, 12–13
disadvantages, 13–14

SAX and, 118–119

291

292 Index

Bioinformatics (cont.)
Schemas for: see Schemas
XML for biological data exchange, 7–12

Distributed Annotation System, 8–11
formats for, 11–12

BioJava, 175, 208–213
automatic parsing, 207
DAS client, 142

Biological data exchange, XML basics, 7–12
BioML (BIOpolymer Markup Language), 12, 36,

50
Biomolecular Interaction Network Database

(BIND), 107
BioPAX (Biological Pathways Exchange), 12, 82
BLAST, 2, 12, 36
Body elements

ANY keyword, 58
mixed content, 60–61
SOAP, 269, 270, 271–272

Boolean values, schema data types, 89, 90
Brown University XML validation service, 54
Browsers; see also Graphics, displays, viewers,

interfaces
BioBrowser, 266, 267
DAS command, 9, 10
UCSC, 137, 140, 169, 170, 171
XEMBL services, 46
XML features and parsers, 28, 29

BSML (Bioinformatic Sequence Markup
Language), 11, 12, 35–46

alternatives to, 36
document structure, 18, 36–37
Document Type Definitions, 50
file formats, 36
features spanning multiple regions, 44
formats, disadvantages of XML, 14
retrieving BSML data via XEMBL, 45–46
sequence features, representing, 39–45
sequences, representing, 38–39
XEMBL requirements, 46

Built-in data types, Schemas, 81
Built-in entities, 67
Built-in schema types, 89–91

C++, 175
caBIO, 248–249

connecting to, 258–260
version numbers, 252
web services, 262–266; see also Web services

caCORE, 251, 252
Call object, SOAP, 278
Callbacks from SAX parser, 178, 182–184

Cancer Bioinformatics Infrastructure Objects
(CaBIO): see caBIO

Cancer Genome Anatomy Project (CGAP), 248,
249, 252

Cancer Molecular Analysis Project (CMAP), 252
Canonical form, PSI-MI, 111
Capabilities header, 148–149, 238
Cascading Style Sheets, 165
Case sensitivity, XML, 23
CDATA, 63

JDOM, 235
working with, 26–27
XML::SAX::Base, 123, 124

CellML, 12, 50
Character encoding, working with, 25–26
Character escape sequences, 25–26, 27
Character events, XML::SAX::Base, 123
Character sets

advantages of XML, 13
UniPad editors, 25

Character strings, schema data types, 89, 90
Characters

element name rules, 23
reserved, 26–27, 66, 71

Chemical Markup Language (CML), 82
Child elements

complex types, 94–95
Document Type Definitions, 58, 59–60
JDOM, 227–228, 232
mixed content, 60
Schemas

compositors, sequence and choice, 100–102
mixed element declarations, 97

Chromosomal coordinates, reference map evolution,
172

Classes, Schemas, 82
Clinical trial data, 252
Clone-contig approach, 168, 169
CML (Chemical Markup Language), Schemas, 82
Coding conventions, IUAPC

amino acids and nucleotide bases, 283–284
Coding regions, sequence features, 40
Command line caBIO browser, REST-based web

services, 262–266
Command line tools, well-formed documents, 27–28
Comments

Document Type Definitions, 51
working with, 24

Commercial XML editors, 13
Complex type Schemas, 94–103, 104

compositors, sequence and choice, 100–102
default value declarations, 99–100

Index 293

Complex type Schemas (cont.)
defining normal complex types, 102–103
empty element type declarations, 96–97
mixed element declarations, 97–98
occurrence constraints, 98–99
PSI-MI Schema, 112–113
versus simple Schemas, 86

Compositors, schema, 100–102
Conditional DTD sectors, 70–72
Conflicts, namespace, 32
Consumer, event-based parsing, 117
Content model, Schemas

compositors, sequence and choice, 100–102
mixed element declarations, 97

ContentHandler, SAX175, 178, 182–184, 196
DefaultHandler and, 184–185
error handling, 195
feature data extraction, 204–205

Content-type specification, SOAP, 274, 275
Controlled vocabulary, 12, 50

DAS annotation, 161
HUPO PSI-MI, 113–114

Conversion utilities, 4, 45, 73
advantages of XML, 13
BSML, 35

Coordinates, reference map evolution, 172
Copyright data, Dublin Core Meta Data Initiative,

37
CPAN, Perl installation, 117–118
Creating new documents

JDAS, 240–242
JDOM, 236–237
valid documents, 28–30
well-formed documents, 27–28, 29, 30
with XML::LibXML, 132

Crimson XML parser, 179, 181, 216
Custom data structures, SAX, 204–213

integrating with BioJava, 208–213
parsing feature data, 204–207

-D system property argument, 256
DAG-Edit Java application, 114
DAS: see Distributed Annotation System
Data conversion: see Conversion utilities
Data integrity, parsing errors/exceptions and, 190
Data types

marshaling and unmarshaling, 271–272
NCBI Entity.mod, 77
Schemas, built-in schema types, 81, 89–91
TinySeq DTD files, 73

Database of Interacting Proteins (DIP), 107
Data::Dumper, 121

Dates
Dublin Core Meta Data Initiative, 37
Schemas, 81
submission, sequence features, 40

Date-time value, schema data types, 89, 90
Debugging, SOAP, TCPMonitor, 280–281
Decimal derived types, schema facets, 92
Decimal values, characters, 25–26, 89, 90
Default values

attribute declarations, 61
DTD attribute behaviors, 65–66
namespace, declaring, 34–35, 107, 109
parsers

JDOM, 216
specification, 180, 181

Schemas, complex, 99–100
style sheets, 19

DefaultHandler, SAX interface, 175, 184–186, 193
Definition of XML, 2–4
Derivation by extension, 91
Derivation by restriction, 91
Derived types, schema, 90, 91, 92
Display: see Graphics, displays, viewers, interfaces
Distributed Annotation System (DAS), 6, 8–11,

137–173
categories of information in, 138–140
clients and servers, overview of, 140–141, 142,

143
command reference, 149–168

annotation data retrieval, 155–156
data source retrieval, 149–151
features command, 162–166
General Feature Format, 155–156
link command, 166–168
retrieving entry points, 151–153
sequence data retrieval, 153–155
types command, 157–161

Document Type Definitions, 50
future evolution, 172–173
parsing

JDOM, 215–246; see also JDOM
SAX, 175–213; see also SAX, parsing DAS

data with
protocols, overview of, 141, 143–149
queries, main, 144–167

requests, 145–146
responses, 146–148
X-DAS capabilities header, 148–149

reference maps, 168–172
Ensembl, 169–171
evolving, 171–172

REST-based web services, 257–258

294 Index

Distributed Annotation System (DAS) (cont.)
sequence features, representing, 39–40
WormBase DAS viewer, 141DNA
DAS annotation categories, 159
nucleotide base codes, 283
sequence command, 153, 154
sequence data representation, 39

dna command, 153–154
DAS, 144
JDAS, 238
X-DAS capabilities header, 149

DNA Database of Japan (DDBJ), 267
<!DOCTYPE prefix, 55
Document

advantages of XML, 12–13
creation of: see Creating new documents
layers of XML application, 31
location: see Location of files and documents;

Uniform Resource Locators
semantics, 2
structure of, 2, 18–19, 36–37

Document Object Model (DOM)
Perl, 129–135

creating new documents with XML::LibXML,
132

traversal with XML::LibXML, 129–131
using NCBI EFetch and XML::LibXML,

132–135
validating documents with XML::LibXML,

132
Document Type Definitions (DTDs), 5, 49–79

BSML, 35
case study, NCBI TinySeq, 72–79
CASE study, NCBI TinySeq

NCBI and XML, 72–73
TinySeq DTD, 73–79

declaring attributes, 61–66
attribute behaviors, 65–66
attribute types, 62–65

declaring elements, 57–61
ANY, 58
children, 59–60
EMPTY, 57–58
mixed content, 60–61
occurrence operators, 60
#PCDATA, 58–59

Document Type Declarations, 55–57
entities, working with, 66–72

conditional DTD sectors, 70–72
general, 66–69
parameter, 69–70
summary, 70

Document Type Definitions (DTDs) (cont.)
general rules and properties, 49–54, 55

sample record from Swiss-Prot, 50–52
validating XML documents, 52–54, 55

valid-document creation, 29
XML Schema comparisons, 81–82

Document validation: see Validation
Domain objects, caBIO, 252, 255–256
Double Data Type

marshaling and unmarshaling, 271–272
SOAP, Apache Axis, 278

DTDs: see Document Type Definitions
Dublin Core Meta Data Initiative, 37

Editors, XML, 13, 52–53
UniPad, 25
well-formed documents, 27–28
xmlspy©R, 51

EFetch
with XML::LibXML, 132–135
with XML::SAX, 125–128

ElCel Technology, 53
Element children: see Child elements
Element declarations

parameter entities, 69–70
Schemas, 82
target namespace, 105–106

Elements, 2
DTDs, 52, 57–61

ANY, 58
children, 59–60
EMPTY, 57–58
mixed content, 60–61
occurrence operators, 60
#PCDATA, 58–59

hierarchy of, 18–19
JDOM, 227, 228–229
SAX, 197–202
Schemas, 81, 85

compositors, sequence and choice, 100–102
data types, 90–91
default value declarations, 99–100

working with, 22–23
EMBL: see European Molecule Biology

Laboratory (EMBL) nucleotide sequence
database

Empty elements, 23
Document Type Definitions, 57–58
Schemas, 96–97

Encoding, advantages of XML, 13
Encoding character, working with, 25–26
Encoding style, SOAP, 272

Index 295

Ensembl, 9, 45, 144, 167
client type and description of features, 142
DAS, 169–171

client-server structure, 140
display screen, 138–139
reference map evolution, 172
reference maps, 169–171

Entities, DTDs
conditional DTD sectors, 70–72
general, 66–69
parameter, 69–70
summary, 70

Entrez, NCBI, 72
entry points, 169–170

DAS, 144, 151–153
JDAS, 238
X-DAS capabilities header, 149

Enumeration facet, Schemas, 94
Enumeration list, 63
Envelope, SOAP, 269, 270
Error handling and exceptions, 166, 190

children elements, 59
choosing parser and turning feature on, 191–192
DAS server response, 147
JDOM, 216–217

new document creation, 237
validation, 220

parser specification, 180, 182
REST-based web services, 260
SAX, 124–125, 196
schema validation, 196
SOAP, 272–273, 274, 280
well-formed documents, 66, 188–189, 190
X-DAS status codes, 148

Escape sequences, non ASCII characters, 25–26,
27

Ethereal Network Analyzer, 147
European Bioinformatics Institute (EBI), 51, 137,

138, 267, 268
European Molecule Biology Laboratory (EMBL)

nucleotide sequence database, 6, 35, 45
DAS, 145
formats, disadvantages of XML, 14
retrieving BSML data via XEMBL, 45–46

Eval blocks, error handling, 124
Event handlers

SAX, 119, 121
Event-based parsers, 116–117
Exceptions, JDOM, 216; see also Error handling

and exceptions
Exclusive values, schema facets, 92
Exons, annotations, 137–138

Experimental results, DAS annotation categories,
159

Extended XLinks, 261
Extensibility, advantages of XML, 12
Extensible Feature Format (XFF), 12, 82
Extensible Style Sheet Language Transformations

(XSLT), 5, 21, 31
Extension, derivation by, 91
Extensions, BSML files, 36
External entities, 70, 71, 76
External files, BSML documents, 36
Extracting element text, JDOM, 227

Facets, Schemas
new data type creation, 91–92, 93
pattern facet, 94–103, 104

Family of XML specifications, 5–6
FASTA, 73, 74; see also EFetch
Fatal errors, SAX parsing, 193
Faults, SOAP, 270

Apache Axis, 280
message construction, 272–273, 274

features command, 160–161
DAS, 162–166
JDAS, 238
reference maps, 170
retrieving annotations, 155
X-DAS capabilities header, 149

File extensions, BSML, 36
File formats

BSML, 35, 36
DAS, 145
FASTA, 73, 74
SGML conversion to, 4

Filters, JDOM, 216, 228, 232
#FIXED, 66
Fixed values, Schemas, default value declarations,

99–100
Flat File Format, 73, 74

DAS, 145
NCBI display options, 73, 74
sequence features, representing, 40

Float data type, 81, 272
Formal Public Identifiers (FPIs), 57
Formats, 7, 11–12; see also File formats

advantages of XML, 12, 13
ASN.1, 72–73
bioinformatics, 11–12
BSML, 35
conversion of, 45
disadvantages of XML, 14
Distributed Annotation System, 8–9

296 Index

Formats (cont.)
Document Type Definitions, 51
General Feature Format, 155–156
importing (XInclude), 5
importing data, 38, 39
integration of, 7
JDOM, creating new documents, 235
merging (XInclude), 5
specifications, 5
XEMBL requirements, 46
transformations (XSLT), 5

Fraction digits, schema facets, 92
Fundamentals of XML and BSML, 17–48

articles, tutorials, web sites, and specifications,
47–48

BSML, 35–46
document structure, 36–37
file formats, 36
retrieving BSML data via XEMBL, 45–46
sequence features, representing, 39–45
sequences, representing, 38–39

BSML sample document, 17–21, 22
Genomic WorkspaceTM, 20–21, 22
structure and element hierarchy definition,

18–19
Namespaces, 31–35

declaring and using, 33–34
default, declaring, 34–35
need for/purpose of, 31–33

resources, 47–48
XML, 22–25

attributes, 23–24
CDATA sections, 26–27
character encoding, 25–26
comments, 24
elements, 22–23
parsers, working with, 30–31
processing instructions, 24–25
prolog, 24
valid document creation, 28–30
well-formed document creation, 27–28, 29,

30

GBSeq, NCBI 79
EFetch queries, 126–128
SAX event handlers, 121
tree-based versus event-based parsers,

116–117
using NCBI EFetch and XML::LibXML,

133–135
GenBank, 45, 72, 73, 74, 266
GenBank ASN.1, BSML, 35

GenBank Flat File Format, 40
Gene Ontology (GO) DTD, 12, 50, 113, 114
General entities, DTD, 66–69, 71
Generalized Markup Language (GML), 4
Genome annotation

categories of, 159
DAS, 137–138; see also Distributed Annotation

System
layers of, 139–140

Genome Annotation Markup Elements (GAME),
36

Genomic map components, DAS annotation
categories, 159

Genomic WorkspaceTM, 17–18
BSML document structure, 36
BSML sequence features, 39–45
using, 20–21, 22

Geodesic, 142
GI number, 77, 126
Global elements versus local elements, Schemas,

86–87
GO (Gene Ontology DTD), 12, 50, 113, 114
Grammars, 28, 51, 57

namespaces and, 31, 32
types of, 29; see also Document Type Definitions;

Schemas
Greater than sign (>), 26, 66, 71

Header
SOAP, 270–271, 274–275
X-DAS capabilities, 148–149

Header blocks, SOAP, 271
Heavy XML activation, 260
Hexadecimal values

characters, 25–26
schema data types, 89, 90

Hierarchical content models, child elements, 59–60
Hierarchy

entity options, 71
Schema types, 90, 95–96

HTML, 2, 5, 4, 7, 248
HTTP, 6

architectural options, 250–251
DAS client requests, 143
DAS command, 9, 10
DAS protocol, 144
DAS server response, 146–147
REST-based web services, 257
SOAP transmission, 268, 273–275
types of interfaces, 252, 253

HttpClient library, 238
Human centric web, 248

Index 297

Human genome, DAS, 141
Human Protein Reference Database (HPRD),

108
Human Proteome Organization (HUPO) PSI-MI:

see PSI-MI
Human-centric web, 6–7, 12
HUPO PSI-MI: see PSI-MI
Hypertext Markup Language: see HTML

ID and IDREF attributes, 63–64
IGNORE, 71–72
Image files, BSML documents, 36
IMPLIED, 65
INCLUDE, 71–72
Inclusions (XInclude), specifications, 5
Inclusive values, schema facets, 92
Installing modules via CPAN, 117–118
Instance documents

DTD creation, 54, 55
HUPO PSI-MI, 109–113
Schemas, 81

creation, 87–88
validation, 88–89

SOAP, 267
Institute for Genomic Research, The (TIGR): see

TIGR
Instructions, processing, 24–25, 123
Integers, 29

marshaling and unmarshaling, 271–272
schema data types, 89, 90
Schemas, 81
SOAP, Apache Axis, 278

Integrity, document; see also Error messages and
exceptions

validation: see Validation
Internal entities, 71
Internal parameter entities, 71
International Human Genome Sequencing

Consortium, 138
International Organization for Standardization

(ISO), 25, 57
Internet: see Web resources/utilities; Web

services
Interoperable Informatics Infrastructure

Consortium (I3C), 7
ISO (International Organization for

Standardization), 25, 57
IUPAC codes and standards, 283–284

Jakarta Commons HttpClient library, 238
Java, 11

Apache Axis: see Apache Axis

Java (cont.)
BioJava: see BioJava
DAG-Edit, 114
DAS, 145
Genomic WorkspaceTM, 20
parsing DAS data with JDOM, 215–246; see also

JDOM
parsing DAS data with SAX, 175–213; see also

SAX, parsing DAS data with
Java API for XML parsing (JAXP API), 181,

216–217
Java RMI interface

caBIO connection, 253–257
types of interfaces, 252, 253

Java Web Start application, 266
Jaxen Project, 232
JAXP API (Java API for XML parsing), 181,

216–217
JDAS

library, 238
using, 238–242

JDOM, 215–246
basics, 215–220

examples, 218–220
package overview, 215–216
parsing documents, 216–218
Web resources, 215

creating documents, 233–237
JDAS, using, 238–242
JDAS library, 238

parsing, 221–233
attributes, 228
complete content, 228–229
element children, 227–228
Element class, 221
element names and namespaces, 227
extracting element text, 227
XPath and, 232–233

REST-based web services, 265

Languages, foreign
advantages of XML, 13
UniPad editors, 25

Languages, programming, 6
advantages of XML, 13
XML parsers, 31

Learning curve, disadvantages of XML, 14
Less than sign (<), 26, 66, 71
Library

Bio::Das Perl, 167
caBIO, 253
Jakarta HttpClient, 238

298 Index

LibXML
creating new documents with XML::LibXML,

132
installing modules via CPAN, 117
traversal with XML::LibXML, 129–130
using NCBI EFetch and XML::LibXML,

132–135
validating documents with XML::LibXML, 132

Lightweight Distributed Annotation Server
(LDAS), 145

Linking language, XML: see XLink
Literature references, 41

EFetch queries, 125
sequence features, representing, 40

Local elements
Schemas, 86–87
target namespace, 106

Local names, 199, 200, 201
Location of files and documents; see also Uniform

Resource Locators
schema instance documents, 87
target namespace, 106
XML::SAX::Base, 123

Locations of genes, sequence features, 40
LocusLink, 72, 252

MAGE-ML (MicroArray Gene Expression Markup
Language), 11, 12, 50

Maps
DAS, 139, 141, 168–172

annotation categories, 159
Ensembl, 169–171
evolving, working with, 171–172

Markup, reserved characters, 26–27 66, 71
Markup languages, 2; see also specific markup

languages
bioinformatics, 11, 12
Document Type Definitions, 50
formats most commonly in use, 12
Schemas, 82

Markup tags, disadvantages of XML, 13
Marshaling, 271–272
Memory, tree-based versus event-based parsers,

118–119
Merging documents, (XInclude), 5
Meta-data, Dublin Core Meta Data Initiative, 37
MicroArray Gene Expression Markup Language

(MAGE-ML), 11, 12, 159
Minimum-maximum ranges, Schemas

characters, facets, 92
data types, 89, 90
occurrence constraints, 98–99

Mixed content, DTDs, 58, 60–61

Mixed element declarations, complex Schemas,
97–98

Modular components, TinySeq DTD files, 74
Molecular Interactions Database (MINT),

107
Monitor, SOAP message viewing with

TCPMonitor, 280–281
Multitarget links, XLink, 5

Names
DAS standardization, 153
Data Source (DSN), 9
qualified, 33, 34, 197, 199, 201

Schemas, 85
target namespace, 106

Schemas, complex types, 102–103
Namespaces, 31–35

caBIO, 281
declaring and using, 33–34
default, declaring, 34–35, 106, 107
disabing, 200
JDOM, 227
need for/purpose of, 31–33
REST-based web services, 261, 266
SAX, 197–202

Locator object, 200–201
scope of namespace, 200

Schemas, 82, 85, 87, 89, 90
default, 106, 107
qualified, 106
target, 103–106

SOAP, envelope, 269, 270
specifications, 5
XML::SAX::Base, 123, 124

National Center for Biotechnology Information: see
NCBI

National Human Genome Research Institute
(NHGRI), 35

National Cancer Institute CaBio project: see Web
services

NCBI (National Center for Biotechnology
Information), 252

BLAST, 2, 12
Document Type Definitions, 50

BSML, 35
XML support, 72–73

EFetch queries
with XML::LibXML, 132–135
with XML::SAX, 125–128

formats, 11, 12
disadvantages of XML, 14
parsing: see Perl

reference map evolution, 172

Index 299

NCI caBIO web services: see Web services
Network protocols: see Protocols
Network sniffer programs, 147
New document creation: see Creating new

documents
NMTOKENS, 64
Nodes, hierarchy, 19
NOTATION, 65
Novel gene prediction, DAS, 139
Nucleotide base codes, 283
Nucleotide sequences; see also Sequence data
Numeric type, schema facets, 92

Object-oriented practices, Schemas, 82, 103
Objects, SOAP, Apache Axis, 278
Occurrence constraints, complex Schemas,

98–99
Occurrence operators, DTDs, 60
OmniGene OmniView application, 142
Ontologies

DAS annotation, 161
Gene Ontology (GO) DTD, 12, 50
PSI-MI Schema, 113–114

Open Biological Ontologies (OBO), 113
Open source software, 13

Bio* libraries, 167
caCORE project software, 252
DAS server software, 145
Jaxen Project, 232
JDAS, 238

Organizational data, Dublin Core Meta Data
Initiative, 37

<oXygen/> XML editors, 53, 54

Parsed Character Data (#PCDATA), 57, 58–59,
77

Parsed external entities, 67, 71
Parsers/parsing

children elements, 59
DAS

JDOM, 215–246; see also JDOM
SAX, 175–213; see also SAX, parsing DAS

data with
layers of XML application, 31
with Perl: see Perl
validity checking, 57
working with, 30–31

Pascal, 175
Path Language (XPath), 5, 232–233
Pattern facet, Schemas, 92–94
Pattern matching, 29
#PCDATA

Document Type Definitions, 57, 58–59

PEML (Proteomics Experiment Markup Language),
12, 82

Perl, 115–135, 167, 175
Document Object Model (DOM), 129–135

creating new documents with XML::LibXML,
132

traversal with XML::LibXML, 129–131
using NCBI EFetch and XML::XML, l32–135
validating documents with XML::LibXML,

132
installing modules via CPAN, 117–118
pattern syntax, 92
SAX (simple API for XML), 118–128

and bioinformatics, 118–119
error handling, 124–125
introduction to SAX, 118
introduction to XML::SAX, 119–120
SAX 2.0, 119
using NCBI EFetch and XML::SAX,

125–128
tree-based versus event-based parsers, 116–117

Piccolo XML parser, 175, 179, 180, 181–182, 190
Placeholder elements, ANY keyword, 58
Pointer Language (XPointer) specifications, 5
Political issues, XML formats and standards,

13–14
Predicted gene locations, 40
Prediction of novel genes, 139
Primitive types

marshaling and unmarshaling, 271–272
schema, 90

Processing, namespaces and, 32
Processing instructions

working with, 24–25
XML::SAX::Base, 123

Processors/parsers, XML, 30–31
Producer, event-based parsing, 117
Programmer Package Module (PPM), Perl

installation, 117
Programming languages, 6

advantages of XML, 13
Prolog, 24
Promoter regions, representing, 40
Protein coding regions

annotations, 138
sequence features, representing, 40

Protein-protein interactions, 81
Proteins

amino acid codes, 283–284
DAS annotation categories, 138, 139, 140, 159
EFetch queries, 125
sequence command, 153, 154
SwissProt, 50–52

300 Index

Proteomics Experiment Markup Language (PEML),
12

Proteomics Standards Initiative Molecular
Interaction: see PSI-MI

Protocols
Distributed Annotation Systems, 9, 141, 143–149
SOAP transporting, 273–275
web services, 6; see also HTTP; specific protocols

PSI-MI (Proteomics Standards Initiative Molecular
Interaction)

Schema, 81, 82, 107–114
controlled vocabulary, 113–114
sample instance document, 109–113

PUBLIC keywords, 56–57
PubMed, 40, 72

Qualified names: see Names, qualified
Queries

DAS, 144–167
requests, 145–146
responses, 146–148
X-DAS capabilities header, 148–149

EFetch queries, 125
XQuery, 5, 13

Quotes
attribute values, 24
character escape sequences, 26, 66, 71
well-formed documents, 27

Range values
characters, schema facets, 92
schema data types, 89, 90

Raw sequence data, representation of, 37
Record retrieval, EFetch queries, 125–126
Reference maps: see Maps
Reference servers, DAS, 141
References, sequence features, 40, 41, 125
Referential integrity, PSI-MI Schema, 111
RefSeq, 72, 252
Registry, DAS servers, 173
Regular expression patterns, 29, 92
RELAX NG, 89, 103
Remote Method Invocation (RMI), Java, 252
Repeat regions, annotations, 138, 140, 159
Representational State Transfer: see REST-based

web services
Request for Comments (RFCs), DAS, 172–173
Requests, DAS, 145–146
#REQUIRED, 65
Rescentris, Ltd, 17–18, 20; see also Genomic

Workspace
Reserved characters, 26–27, 66, 71

REST-based web services, 257–267
architectural options, 250–251
Bio Browser, 266, 267
command line caBIO browser, 262–266
connecting to, 258–260
EFetch, 266
error handling, 260
features, 257–258
Java domain object interactions, 256
types of interfaces, 252, 253
XLinks, 260–261

Restriction, derivation by, 91
Retrieval of records, EFetch queries, 125–126
Retrieving BSML data via XEMBL, 45–46
Rights, Dublin Core Meta Data Initiative, 37
RMI (Remote Method Invocation), Java, 252
RNA

DAS annotation categories, 159
nucleotide base codes, 283
sequence command, 153, 154
sequence data representation, 39

Root element, 18
BSML documents, 36
JDOM, 230–231, 232

JDAS, 246
new document creation, 236

Schemas, 87
single, 23
well-formed documents, 27

Sanger Institute, 138, 155
SAX (Simple API for XML), 115

caBIO Java RMI interface, 253
EFetch queries, 126
Perl (XML::SAX), 118–128

and bioinformatics, 118–119
error handling, 124–125
introduction to, 118
introduction to XML::SAX, 119–120
SAX 2.0, 119
using NCBI EFetch and XML::SAX, 125–128

SAX (Simple API for XML), parsing DAS data
with, 175–213

Attributes, 202–203
ContentHandler interface, 182–184
custom data structures, 204–213

integrating with BioJava, 208–213
parsing feature data, 204–207

DefaultHandler interface, 184–186
elements and namespaces, 197–202
InputSource objects, 186–188
validating XML documents, 188–196

Index 301

SAX (Simple API for XML) (cont.)
activating feature, 191
ErrorHandler interface, 191–196
overview, 190
schema validation feature, 196
well-formedness, 188–190

XMLReader interface, 179–182
options with, 179–181
Xerces2 and Picolo, 181–182; see also Xerces2

XML parser
SAX 2.0, 119
SAX 2.0 parsers, 200
SAXException, 180, 188–190, 192, 194
SAXNotRecognizedException, 191, 195
SAXNotSupportedException, 191, 195
SAXParseException, 192–193
SAXParser object, 181
SAXParserFactory, 217
SBML (Systems Biology Markup Language), 12, 82
Scalable Vector Graphics (SVG), 266
<schema> element, 84–85
SchemaLocation attribute, target namespace, 106
Schemas, 13, 81–114

case study, HUPO PSI-MI, 107–114
controlled vocabulary, 113–114
sample instance document, 109–113

complex types, 94–103, 104
compositors, sequence and choice, 100–102
default value declarations, 99–100
defining normal complex types, 102–103
empty element type declarations, 96–97
mixed element declarations, 97–98
occurrence constraints, 98–99

JDOM, 217
namespace issues, 103–107
namespaces and, 31
parsing DAS dsn documents, 228–229
protein data representation, 82–89

documentation, 86
global elements versus local elements, 86–87
instance document creation, 87–88
instance document validation, 88–89
schema element, 84–85
simple types versus complex types, 86

SAX, validation feature, 196
simple types, working with, 89–94

built-in schema types, 89–91
enumeration facet, 94
facets, new data type creation, 91–92
pattern facet, 92–94

SOAP, 267
specifications, 5

Schemas (cont.)
valid-document creation, 29
xmlspy, 51

Screen-scraping, 4
Search criteria, caBIO, 255
Security file, Java, 256
Self-describing web services, 6
Semantics, document, 2
Semicolon, escape sequences, 25–26
sequence command, 153, 154–155, 240

DAS, 144
JDAS, 238
X-DAS capabilities header, 149

Sequence data
DAS, 8–9, 145, 139, 140, 153–155
EFetch queries, 125
formats, 38
raw, 37
representation of, 39
web service, 6

Sequence features, representing with BSML, 39–45
Sequence Ontology project, DAS annotation, 161
Sequence similarities, DAS, 138, 140, 159
Sequence variations, DAS annotation categories, 159
Sequences, representing

BSML
definitions, 38–39
feature representation, 39–45

Servers: see Clients and servers
Servlet API, 186–188
SGML, 4–5, 13
Similarity, DAS annotation categories, 138, 140, 159
Simple, XLink values, 261
Simple API for XML: see SAX
Simple type Schemas, 89–94

built-in schema types, 89–91
versus complex Schemas, 86
enumeration facet, 94
facets, new data type creation, 91–92
pattern facet, 92–94

Single nucleotide polymorphisms, representing, 40
Single-stranded RNA, 154
Sniffer programs, HTTP, 147
SOAP, 6–7, 13, 46, 267–275

Apache Axis, 285–282
building client, 278–280
building service, 276
building web service with, 276–281
connecting to caBIO with, 281–282
deploying service, 277–278
viewing messages with TCPMonitor, 280–281

architectural options, 251

302 Index

SOAP (cont.)
constructing messages, 270–273, 274

body, 271–272
envelope, 270
faults, 272–273, 274
header, 270–271
transporting via HTTP, 273–275

DAS, 142, 173
Java domain object interactions, 256
namespaces and, 31
OmniView application, 142
overview, 268
sample, 268–270
types of interfaces, 252, 253
version numbers, 271

Source Name
data (DSN): see Data Source Name
sequence data representation, 39, 40

SourceForge, 114, 182
Specifications, XML, 5–6, 14
SPTr-XML: see UniProt XML
Standard Generalized Markup Language (SGML),

4–5, 13
Standardized naming schemes, DAS, 153
Standards

advantages of XML, 13
disadvantages of XML, 13–14
IUPAC: see IUPAC codes and standards
REST architecture and, 257
WWW specifications: see World Wide Web

Consortium
Status codes

DAS, 240
X-DAS, 148, 238

String values, pattern facet, 92–93
Strings

schema data types, 89, 90
schema facets, 92
SOAP, Apache Axis, 278

Structure, document, 2, 18–19, 36–37
Style Sheet Language Transformations, 5
Style sheets

cascading, 165
DAS, 165–166
specification/default, 19
XSLT, 5, 25, 31

stylesheet command
DAS, 144
X-DAS capabilities header, 149

Supercomponent
DAS annotation categories, 159
reference maps, 171

SwissProt, 45, 50–52
SYSTEM keywords, 56–57, 67
Systems Biology Markup Language (SBML), 12

Target namespace, 103–106
Taxonomy records, EFetch queries, 125
TCPMonitor, message viewing with, 280–281
Terminology, controlled vocabulary, 113–114, 161
Text data

DTDs
element types, 57–61
parameter entities, 69

Schemas, mixed element declarations, 97
TIGR (The Institute for Genomic Research), 11

DAS client-server structure, 141, 142
DAS features command, 162–164
DAS implementation, 137, 140
DAS server list URL, 142

Time value, schema data types, 89, 90
TinySeq, 11, 12, 266

Document Type Definitions, 72–79
keywords, 56–57

Tools, advantages of XML, 13
Transcription, DAS, 156, 159, 163
Transformations, 79

namespaces and, 31
XSLT, 5, 25

Tree-based versus event-based parsers, 116–117
TrEMBL data, 197
TREX, 89
Twig, 115
types command, 157

DAS, 144, 157–161
JDAS, 238
retrieving annotations, 155
X-DAS capabilities header, 149

UCSC browser, 137, 140, 169, 170, 171
Undeployment of web service, 278
Unicode, 13
Unified Modeling Language (UML) diagrams,

252
Uniform Resource Identifiers (URIs), 33

disabling namespace support, 200
InputSource API and, 188
namespaceURI, 199
REST-based web services, 257
schema data types, 89, 90

Uniform Resource Locators (URLs), 33; see also
Web resources/utilities

architectural options, 250–251
DAS queries/requests, 9, 143, 144, 145–146

Index 303

Uniform Resource Locators (URLs) (cont.)
Document Type Definitions, PUBLIC keywords,

56, 57
EFetch queries, 127
external entities, 69
REST-based web services, 257–258, 259
target namespace, 105
XEMBL

BSML data retrieval, 45–46
XLink, 261

Unigene, 252
UniPad editor, 25
UniProt XML (SpTr-XML), 11, 12, 118–119, 197,

201
SAX, sample SpTr-XML file, 202–203
web URLs, 51, 82, 84

Unmarshaling, 271
Unparsed external entities, 67, 69, 71
Untranslated regions, representing, 40
URIs: see Uniform Resource Identifiers
URLs: see Uniform Resource Locators
User interface: see Graphics, displays, viewers,

interfaces
UTF-8 and UTF-16, 25

Valid document creation, 28–30
Validation; see also specific parsers

advantages of XML, 12
child elements, 59
choosing parser and turning feature on, 190
Document Type Definitions (DTDs), 52–54, 55
DTD external entities, 70
JDAS, 238, 240
JDOM, 217, 219–220
SAX, 188–196

activating feature, 191
ErrorHandler interface, 191–196
overview, 190
schema validation feature, 196
well-formedness, 188–190

Schemas
advantages of, 81, 82
instance document, 107–114

turning on, 196
XML parsers, 31, 53–54
XML::LibXML, 132

Viewers: see Graphics, displays, viewers, interfaces
Visual Genomics, 35
Visual representations: see Graphics, displays,

viewers, interfaces
Visualization, DAS, 173
Vocabulary, controlled, 12, 50, 113–114, 161

W3C: see World Wide Web Consortium
Web browsers: see Browsers
Web protocols, DAS command, 9, 10
Web services, 6–7, 247–282

advantages of XML, 13
architectural options, 250–251
case study, NCI CaBIO project, 251–257

interfaces, 252, 253
Java RMI interface, 253–257

DAS queries/requests, 146
defined, 6–7, 247–250
REST-based, 257–267

Bio Browser, 266, 267
command line caBIO browser, 262–266
connecting to, 258–260
error handling, 260
features, 257–258
XLinks, 260–261

SOAP, 267–275
constructing messages, 270–273, 274
overview, 268
sample, 268–270
transporting via HTTP, 273–275

Web services (cont.)
SOAP, Apache Axis, 285–282

building client, 278–280
building service, 276
building web service with, 276–281
connecting to caBIO with, 281–282
deploying service, 277–278
viewing messages with TCPMonitor, 280–281

SOAP, constructing messages
body, 271–272
envelope, 270
faults, 272–273, 274
header, 270–271

Web Services Deployment Descriptor (WSDD) file,
277

Web Services Description Language (WSDL),
Apache Axis SOAP, 280

Wellcome Trust Sanger Institute, 138, 155
Well-formedness, 27–28, 29, 30, 66, 188–190
World Wide Web Consortium (W3C)

advantages of XML, 13
namespace, 33
SOAP, 267
XML 1.0, 4–5
XML schema specification, 81
web service definition, 247
Web Service Description Language (WSDL), 6

WormBase, 9–11, 141, 142, 143, 162–164
Wrapper classes, SOAP, 278, 279

304 Index

WSDL (W3C Web Service Description Language),
6, 46

Xalan XSLT transformation tool, 13
X-DAS

capabilities header, 148–149
JDAS and, 238

XEMBL, 6, 45–46
Xerces2 XML parser, 13, 175, 179, 180, 181–182,

196, 217, 238
caBIO Java RMI interface, 253
validating documents, 190

XFF (Extensible Feature Format), 12, 82
XHTML, 2, 197

default namespace, 34–35
qualified names, 197

XInclude specifications, 5
XLink (XML Linking Language)

REST-based web services, 260–261
Bio Browser, 266, 267
command line caBIO browser, 262–266

specifications, 5
XML, 22–25

architectural options, 250–251
attributes, 23–24
CDATA sections, 26–27
character encoding, 25–26
comments, 24
elements, 22–23
namespaces

disabling, 200
specifications, 5

parsers, 167
caBIO Java RMI interface, 253
working with, 30–31

Processing instructions, 24–25
Prolog, 24

XML (cont.)
Reserved characters, 26–27, 66, 71
Valid document creation, 28–30
well-formed document creation, 27–28, 29, 30

XML basics, 1–15
biological data exchange, 7–12

Distributed Annotation System, 8–11
formats for, 11–12

definition of XML, 2–4
evaluating usage in bioinformatics, 12–14

advantages, 12–13
disadvantages, 13–14

family of specifications, 5–6
origins of, 4–5
resources, 14–15
web services, defined, 6–7

XML Linking Language: see XLink
XML Schemas: see Schemas
XML::Parser, 167
XMLReader interface, 175, 179–182, 190

creation of, 178
options with, 179–181
Xerces2 and Picolo, 181–182; see also Xerces2

XML parser
XMLReaderFactory, 179–180, 181
XML-RPC, 6

architectural options, 251, 257
XML::SAX: see SAX
XML::Simple, 115
xmlspy©R, 51, 53, 54, 55
XML::Twig, 115
XPath, 5, 232–233
XPointer, specifications, 5
XQuery, 5, 13
XSLT (Extensible Style Sheet Language

Transformations), 5, 25, 31, 165
xsv (open source schema validator), 88

	Cover
	XML for Bioinformatics
	ISBN 9780387230283
	Preface
	Contents
	1. Introduction to XML for Bioinformatics
	1.1 Introduction to XML
	1.1.1 XML Defined
	1.1.2 Origins of XML
	1.1.3 The XML Family of Specifications
	1.1.4 Web Services Defined

	1.2 Using XML for Biological Data Exchange
	1.2.1 Case Study: The Distributed Annotation System
	1.2.2 XML Formats for Bioinformatics

	1.3 Evaluating XML Usage in Bioinformatics
	1.3.1 Advantages of XML
	1.3.2 Disadvantages of XML

	1.4 Useful Resources
	1.4.1 Articles
	1.4.2 Web Site and Web Resources

	2. Fundamentals of XML and BSML
	2.1 Getting Started with BSML
	2.1.1 Using Genomic Workspace™

	2.2 Fundamentals of XML
	2.2.1 Working with Elements
	2.2.2 Working with Attributes
	2.2.3 The XML Prolog
	2.2.4 Comments
	2.2.5 Processing Instructions
	2.2.6 Character Encoding
	2.2.7 CDATA Sections
	2.2.8 Creating Well-Formed XML Documents
	2.2.9 Creating Valid XML Documents
	2.2.10 Working with XML Parsers

	2.3 Fundamentals of XML Namespaces
	2.3.1 Why We Need XML Namespaces
	2.3.2 Declaring and Using XML Namespaces
	2.3.3 Declaring a Default Namespace

	2.4 Fundamentals of BSML
	2.4.1 BSML File Formats
	2.4.2 BSML Document Structure
	2.4.3 Representing Sequences
	2.4.4 Representing Sequence Features
	2.4.5 Retrieving Live BSML Data via XEMBL

	2.5 Useful Resources

	3. DTDs for Bioinformatics
	3.1 Introduction to DTDs
	3.1.1 A Bird's-Eye View: Protein DTD
	3.1.2 Validating XML Documents

	3.2 Document Type Declarations
	3.3 Declaring Elements
	3.3.1 EMPTY
	3.3.2 ANY
	3.3.3 #PCDATA
	3.3.4 Child Elements
	3.3.5 Mixed Content

	3.4 Declaring Attributes
	3.4.1 Attribute Types
	3.4.2 Attribute Behaviors

	3.5 Working with Entities
	3.5.1 General Entities
	3.5.2 Parameter Entities
	3.5.3 Entity Summary
	3.5.4 Conditional DTD Sections

	3.6 Case Study: NCBI TinySeq
	3.6.1 NCBI and XML
	3.6.2 The TinySeq DTD

	4. XML Schemas for Bioinformatics
	4.1 Introduction to XML Schemas
	4.1.1 XML Schemas for Bioinformatics

	4.2 Essential Concepts: Representing Protein Data
	4.2.1 The <schema> element
	4.2.2 Schema Documentation
	4.2.3 Simple Types vs. Complex Types
	4.2.4 Global Elements vs. Local Elements
	4.2.5 Creating Instance Documents
	4.2.6 Validating Instance Documents

	4.3 Working with Simple Types
	4.3.1 Built-in Schema Types
	4.3.2 Working with Facets

	4.4 Working with Complex Types
	4.4.1 Introduction to Complex Types
	4.4.2 Declaring Empty Element Types
	4.4.3 Declaring Mixed Element Types
	4.4.4 Occurrence Constraints
	4.4.5 Declaring Default Values
	4.4.6 Compositors: Sequence and Choice
	4.4.7 Defining Named Complex Types
	4.4.8 All Together Now!

	4.5 Basic Namespace Issues
	4.6 Case Study: The HUPO PSI Molecular Interaction Format
	4.6.1 PSI-MI Schema Overview
	4.6.2 A Sample PSI-MI Instance Document
	4.6.3 Working with the PSI-MI Controlled Vocabulary

	5. Parsing NCBI XML in Perl
	5.1 Introduction to XML Parsing in Perl
	5.1.1 Tree-Based vs. Event-Based XML Parsers
	5.1.2 Installing Modules via CPAN

	5.2 The Simple API for XML (SAX)
	5.2.1 Introduction to SAX
	5.2.2 SAX and Bioinformatics Applications
	5.2.3 SAX 2.0
	5.2.4 Introduction to XML::SAX
	5.2.5 Using NCBI EFetch and XML::SAX

	5.3 The Document Object Model (DOM)
	5.3.1 DOM Traversal with XML::LibXML
	5.3.2 Validating XML Documents with XML::LibXML
	5.3.3 Creating New Documents with XML::LibXML
	5.3.4 Using NCBI EFetch and XML::LibXML

	6. The Distributed Annotation System (DAS)
	6.1 Genome Annotation
	6.2 Introduction to DAS
	6.2.1 The WormBase DAS Viewer

	6.3 DAS Protocol Overview
	6.3.1 Getting Started
	6.3.2 DAS Requests
	6.3.3 DAS Responses
	6.3.4 X-DAS-Capabilities Header

	6.4 DAS Command Reference
	6.4.1 Retrieving Data Sources
	6.4.2 Retrieving Entry Points
	6.4.3 Retrieving Sequence Data
	6.4.4 Retrieving Annotations

	6.5 Working with Reference Maps
	6.5.1 Traversing the Ensembl Reference Map
	6.5.2 Working with Evolving Reference Maps

	6.6 The Future of DAS

	7. Parsing DAS Data with SAX
	7.1 Introduction to SAX
	7.1.1 A First Example
	7.1.2 The XMLReader Interface
	7.1.3 The ContentHandler Interface
	7.1.4 Extending the DefaultHandler
	7.1.5 Using InputSource Objects

	7.2 Validating XML Documents
	7.2.1 Checking for Well-Formedness
	7.2.2 Validating XML Documents: Overview
	7.2.3 Activating the SAX Validation Feature
	7.2.4 The ErrorHandler Interface
	7.2.5 Validating against XML Schemas

	7.3 Elements, Attributes, and Namespaces
	7.3.1 Working with Elements and Namespaces
	7.3.2 Working with Attributes

	7.4 Building Custom Data Structures with SAX
	7.4.1 Parsing DAS Feature Data
	7.4.2 Integrating with BioJava

	8. Parsing DAS Data with JDOM
	8.1 JDOM Basics
	8.1.1 JDOM Package Overview
	8.1.2 Parsing XML Documents with JDOM

	8.2 Parsing DAS Documents with JDOM
	8.2.1 Introduction to the JDOM Element API
	8.2.2 Traversing DAS Documents
	8.2.3 Parsing DAS dsn Documents

	8.3 Creating DAS Documents with JDOM
	8.3.1 Creating New Documents
	8.3.2 Creating New Elements
	8.3.3 A Complete Example

	8.4 Building the JDAS Library
	8.4.1 Using JDAS
	8.4.2 The JDAS Source Code

	9. Web Services for Bioinformatics
	9.1 Introduction to Web Services
	9.1.1 Web Services Defined
	9.1.2 Architectural Options

	9.2 Case Study: Introduction to the NCI caBIO Project
	9.2.1 Background: Connecting to caBIO via the Java RMI Interface

	9.3 Introduction to REST-Based Web Services
	9.3.1 Introduction to REST
	9.3.2 Connecting to the caBIO REST Interface
	9.3.3 Example Application: Command Line caBIO Browser

	9.4 Introduction to SOAP
	9.4.1 SOAP Overview
	9.4.2 Constructing SOAP Messages
	9.4.3 Transporting SOAP via HTTP

	9.5 Introduction to Apache Axis
	9.5.1 Building a Web Service with Axis
	9.5.2 Connecting to caBIO with Axis

	Appendix: IUPAC Code Tables
	1 Nucleotide Base Codes
	2 Amino Acid Codes

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

